MTR Corporation Limited

Shatin to Central Link - Protection Works at Causeway Bay Typhoon Shelter

Baseline Monitoring Report

(for EP-416/2011)

Revision 1

November 2011

TABLE OF CONTENT

EX	ECUTIVE SUMMARY	3
1	INTRODUCTION	5
1.1	Background	5
1.2	Organization of Report	6
2	AIR QUALITY	7
2.1	Monitoring Requirements	7
2.2	Monitoring Equipment	7
2.3	Monitoring Locations	7
2.4	Monitoring Parameters, Frequency and Duration	7
2.5	Monitoring Methodology	8
2.6	Results and Observations	10
2.7	Derivation of Action and Limit Levels	11
2.8	Event and Action Plan	12
2.9	Conclusions and Recommendations	13
3	NOISE	14
3.1	Monitoring Requirements	14
3.2	Monitoring Equipment	14
3.3	Monitoring Locations	14
3.4	Monitoring Parameters, Frequency and Duration	15
3.5	Monitoring Methodology	15
3.6	Results and Observations	16
3.7	Derivation of Action and Limit Levels	16
3.8	Event and Action Plan	18
3.9	Conclusions and Recommendations	19
4	WATER QUALITY	20
4.1	Monitoring Requirements	20

4.2	Monitoring Equipment 20			
4.3	Monitoring Locations			
4.4	Monitoring Parameters, Frequency and Duration			
4.5	Monitor	ing Methodology	21	
4.6	Results a	and Observations	21	
4.7	Derivation	on of Action and Limit Levels	22	
4.8	Conclusi	ons and Recommendations	23	
List o	of Figure	es		
Figu	re 1.1	Project Site Plan		
_	re 2.1	Location of Air Quality Monitoring Station		
_	re 3.1 re 4.1	Location of Noise Impact Monitoring Station Locations of Water Quality Monitoring Stations		
8				
List	of Apper	ndices		
Appe	endix A	Calibration Certificates of Air Quality Monitoring Equipment		
Appe	endix B	Baseline Air Quality Monitoring Data		
Appe	endix C	Calibration Certificates of Sound Level Meters and Acous Calibrator	stic	
Appe	endix D	Baseline Noise Monitoring Results		
Appe	endix E	Calibration Certificates for Water Quality Monitoring Equipment		
Appendix F Water Quality Monitoring Data				
Appendix G Water Quality Laboratory Results				
Appe	endix H	Establishment of Seasonal Water Quality Action and Limit Level	els	
Appendix I Response-to-Comment on EPD's Comments on Base Monitoring Report				

EXECUTIVE SUMMARY

Background

The SCL Protection Works (the Project) is to temporarily reclaim land for construction of a section of tunnel box for Shatin to Central Link by cut-and-cover method at the crossing above the Central-Wanchai Bypass (CWB) tunnels within the Causeway Bay Typhoon Shelter (CBTS).

The CWB has commenced in mid-2010 and scheduled for commissioning in 2017. In order to minimize the extent and duration of temporary reclamation under the SCL project for compliance with the Protection of Harbour Ordinance, the construction of the 160m SCL tunnel box at the crossing over CWB tunnels and the associated works, including temporary reclamation has to be constructed in conjunction with the CWB construction works in around late 2011 to early 2014.

Subsequently, the SCL Protection Works has been entrusted to the CWB. The Contractor of CWB will undertake construction works for both the Project and CWB. The locations of the temporary reclamation works area and duration of the construction works for the two projects are overlapped. In order to ensure better site management and environmental compliance, the environmental monitoring stations and results of CWB would be shared for this project in avoidance of inconsistency.

Impact Assessment and Baseline Monitoring

With the development of the Environmental Monitoring and Audit Manual (EM&A Manual) in accordance with the guideline set out in the Environmental Impact Assessment (EIA) report prepared by AECOM Asia Company Limited, the baseline monitoring has been conducted to establish action and target levels for air quality, noise and water for the civil construction work of the Project.

Results and Conclusions

Air Quality:

The baseline air quality monitoring was carried out between 4 December 2009 and 17 December 2009 at one designated air quality monitoring location described in the EM&A Manual. Air quality was recorded in terms of 1-hour Total Suspended Particulates (TSP) and 24-hour TSP.

The monitoring results were presented in this report and no major pollution source and extreme weather, which might affect the results, were observed during the baseline monitoring period.

The averaged 1-hour TSP levels and 24-hour TSP levels at the monitoring location, i.e. Royal Hong Kong Yacht Club (CMA3) are summarized as follows:

Air Quality Monitoring Location	CMA3
Average 1-hr TSP (µg/m3)	94.3
Average 24-hr TSP (µg/m3)	63.1

Noise:

The baseline noise monitoring was carried out at one noise monitoring location between 4 December 2009 and 17 December 2009. For baseline noise levels, continuous $L_{\rm eq}$ (5-minutes) were recorded. There was no major activity or extreme weather influencing the measured noise level during the baseline noise monitoring period.

The average baseline noise levels at the monitoring location, i.e. Caltex Petrol Filling Station (M2a) are summarized in the following table:

Noise Monitoring Location	M2a
Averaged baseline noise level during 0700-	73.7
1900hrs on normal weekdays, (dB(A))	
Averaged baseline noise level for all days	67.7
during evening (1900-2300hrs), and general	
holidays (including Sundays) during the	
daytime and evening (0700-2300hrs), (dB(A))	
Averaged baseline noise level for all days	65.3
during the nighttime (2300-0700hrs), (dB(A))	

Water Quality:

The baseline water quality monitoring was carried out 3 days per week for 4 weeks between 21 October 2009 and 16 November 2009 for the two designated water quality monitoring locations (cooling water intakes) described in the EM&A Manual. The water quality parameters such as turbidity, suspended solids, dissolved oxygen, pH, temperature and salinity were monitored either using the calibration equipment or by laboratory analysis.

The monitoring results were presented in this report and no major pollution source and extreme weather, which might affect the results, were observed during the baseline monitoring period. The Action and Limit levels of suspended solids, turbidity and dissolved oxygen were derived based on the baseline monitoring results and the water quality assessment criteria.

The baseline water quality is summarized in the following table:

Location		Parameters				
		Salinity (ppt)	Dissolved Oxygen (mg/L)	pН	Turbidity (NTU)	Suspended Solids (mg/L)
	Avg	32.69	3.60	6.85	5.31	8.21
C6	Min	31.91	2.63	5.90	3.20	4.00
	Max	33.38	5.64	8.19	8.90	12.00
	Avg	32.86	3.84	6.86	4.78	7.71
C7	Min	31.79	2.82	5.94	2.60	4.00
	Max	33.59	5.15	8.23	8.20	13.00

1 INTRODUCTION

1.1 Background

Shatin to Central Link – Protection Works at Causeway Bay Typhoon Shelter

1.1.1 The proposal of the SCL Protection Works (the Project) is to temporarily reclaim land for construction of a section of tunnel box for Shatin to Central Link by cut-and-cover method at the crossing above the Central-Wanchai Bypass (CWB) tunnels within the Causeway Bay Typhoon Shelter (CBTS).

The Scope of the Project includes:

- Temporary reclamation, which occupies about 0.7 ha of Government foreshore and sea-bed;
- Dredging works at southeast corner of the CBTS to provide space for temporary relocation of anchorage area;
- Construction of a section of the twin track railway tunnel structure (approximately 160m long) above the proposed CWB;
- Relocation of the temporary RHKYC jetty within the CWB temporary reclamation to a new location
- Removal of the temporary reclamation, except the small area at the southeast corner of the reclamation (which will be removed by the SCL project)
- 1.1.2 As shown in **Figure 1.1** Project Site Plan, the SCL tunnel box at the CBTS (highighted in orange) will cross over the CWB tunnels. The CWB has commenced in mid-2010 and scheduled for commissioning in 2017. In order to minimize the extent and duration of temporary reclamation under the SCL project for compliance with the Protection of Harbour Ordinance, the construction of the 160m SCL tunnel box at the crossing over CWB tunnels and the associated works, including temporary reclamation has to be constructed in conjunction with the CWB construction works in around late 2011 to early 2014.
- 1.1.3 Subsequently, the SCL Protection Works has been entrusted to the CWB. The Contractor of CWB will undertake construction works for both the Project and CWB. The locations of the temporary reclamation works areas (refer to Figure 1.1) and duration of the construction works for the two projects are overlapped. In order to ensure better site management and environmental compliance, the environmental monitoring stations and results of CWB would be shared for this project in avoidance of inconsistency.

5

- 1.1.4 An EIA study (EIA Report Reference: AEIAR-159/2011) has been conducted by AECOM Asia Company Limited for the Project. An EM&A Manual has provided guidelines in the preparation of this baseline monitoring report.
- 1.1.5 Baseline levels have been established for dust, noise and water before the commencement of the Project. The purpose of the baseline monitoring is to establish ambient conditions prior to commencement of construction works. As mentioned above, the baseline monitoring data for CWB will be adopted for the Project. The results and their validity are presented in subsequent sections of this report.

1.2 Organization of Report

Following the introduction, the remainder of this Report is arranged as follows:

_	Section 2	describes the air quality monitoring methodology and analyses the monitoring results;
_	Section 3	describes the noise monitoring methodology and analyses the monitoring results.
_	Section 4	describes the water monitoring methodology and analyses the monitoring results.

2 AIR QUALITY

2.1 Monitoring Requirements

2.1.1 In accordance with the EM&A Manual, baseline 1-hour and 24-hour TSP levels at one designated air quality monitoring station should be established by conducting baseline 1-hour and 24-hour TSP monitoring for at least 14 days.

2.2 Monitoring Equipment

2.2.1 The 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) located at each designated monitoring station. The HVS meets all the requirements of the EM&A Manual. Portable direct reading dust meters were used to carry out the 1-hour TSP monitoring. Brand and model of the equipment is given in **Table 2.1**.

Table 2.1 Air Quality Monitoring Equipment

Equipment	Brand and Model
Portable direct reading dust meter	Sibata Digital Dust Monitor (Model
(1-hour TSP)	No. LD-3)
High Volume Sampler (24-hour	Tisch Total Suspended Particulate
TSP)	Mass Flow Controlled High Volume
	Air Sampler (Model No. TE-5170)

2.3 Monitoring Locations

2.3.1 In accordance with the EM&A Manual, the air quality monitoring station for baseline air quality monitoring is located at Casueway Bay - Royal Hong Kong Yacht Club and presented in **Table 2.2** and also shown in **Figure 2.1**.

Table 2.2 Baseline Air Quality Monitoring Stations

Monitoring Location	Description	Level (in terms of no. of floor)
CMA3	Causeway Bay – Royal	3 (roof-top)
(Previously known as AM1)	Hong Kong Yacht Club	

2.4 Monitoring Parameters, Frequency and Duration

2.4.1 The monitoring parameters, frequency and duration of air quality monitoring are summarized in **Table 2.3**.

Table 2.3 Air Quality Monitoring Parameters, Frequency and Duration

Parameter	Frequency and Duration	
1-hour TSP 3 times (at three consecutive hours) per day w		
	the highest dust impact was expected, for 14 days	
24-hour TSP	Daily, for 14 days	

2.5 Monitoring Methodology

2.5.1 24-hour TSP Monitoring

- (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS.
 - (i) A horizontal platform with appropriate support to secure the sampler against gust wind was provided.
 - (ii) The distance between the HVS and any obstacles such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
 - (iii) A minimum of 2 meters separation from walls, parapets and penthouse for rooftop sampler.
 - (iv) No furnace or incinerator flues nearby.
 - (v) Airflow around the sampler was unrestricted.
 - (vi) Permission was obtained to set up the samplers and access to the monitoring stations.
 - (vii) A secured supply of electricity was obtained to operate the samplers.
 - (viii) The sampler was located more than 20 meters from any dripline.
 - (ix) Any wire fence and gate, required to protect the sampler, did not obstruct the monitoring process.
 - (x) Flow control accuracy was kept within $\pm 2.5\%$ deviation over 24-hour sampling period.

(b) Preparation of Filter Papers

- (i) Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected.
- (ii) All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than +/- 3 °C; the relative humidity (RH) was < 50% and not variable by more than \pm 5%. A convenient working RH was 40%.
- (iii) All filter papers were prepared and analysed by ALS Technichem (HK) Pty. Ltd. and has comprehensive quality assurance and quality control programmes.

(c) Field Monitoring

- (i) The power supply was checked to ensure the HVS works properly.
- (ii) The filter holder and the area surrounding the filter were cleaned.

- (iii) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- (iv) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- (v) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges.
- (vi) Then the shelter lid was closed and was secured with the aluminium strip.
- (vii) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- (viii) A new flow rate record sheet was set into the flow recorder.
- (ix) On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around $1.1 \text{ m}^3/\text{min}$, and compiled with the range specified in the EM&A Manual (i.e. $0.6 1.7 \text{ m}^3/\text{min}$).
- (x) The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded.
- (xi) The initial elapsed time was recorded.
- (xii) At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded.
- (xiii) The final elapsed time was recorded
- (xiv) The sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
- (xv) It was then place in a clean plastic envelope and sealed.
- (xvi) All monitoring information was recorded on a standard data sheet.
- (xvii) Filters were then sent to laboratory for analysis.

(d) Maintenance and Calibration

- (i) The HVS and its accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- (ii) HVSs were calibrated at 2-month intervals using TE-5025A Calibration Kit prior to the commencement of baseline monitoring.
- (iii) Calibration certificate of the HVSs are provided in **Appendix A.**

2.5.2 1-hour TSP Monitoring

(a) Measuring Procedures

The measuring procedures of the 1-hour dust meter were in accordance with the Manufacturer's Instruction Manual as follows:

- (i) Turn the power on.
- (ii) Close the air collecting opening cover.

- (iii) Push the "TIME SETTIG" switch to [BG].
- (iv) Push "START/STOP" switch to perform background measurement for 6 seconds.
- (v) Turn the knob at SENSI ADJ position to insert the light scattering plate.
- (vi) Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- (vii) Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- (viii) Pull out the knob and return it to MEASURE position.
- (ix) Push the "TIME SETTING" switch the time set in the display to 3 hours.
- (x) Lower down the air collection opening cover.
- (xi) Push "START/STOP" switch to start measurement.

(b) Maintenance and Calibration

(i) The 1-hour TSP meter was calibrated at 1-year intervals against a continuous particulate TEOM Monitor, Series 1400ab. Calibration certificates of the Laser Dust Monitors are provided in **Appendix A**.

2.6 Results and Observations

- 2.6.1 The baseline 1-hour and 24-hour monitoring at CMA3 Causeway Bay Royal Hong Kong Yacht Club was carried out from 4 December 2009 to 17 December 2009 for consecutive 14 days and the weather were mostly sunny. Major dust sources were from nearby traffic emissions. No major changes in the environment settings are identified except that the CWB works have commenced in 2010 which may generate fugitive dust. Nonetheless, mitigation measures have been fully implemented on site that the dust level has been elevated very slightly; the baseline monitoring results of CWB are considered applicable to represent the baseline conditions of the Project as a conservative approach.
- 2.6.2 The baseline monitoring results for 1-hour TSP and 24-hour TSP are summarized in **Table 2.4**. Detailed air quality monitoring results are presented in **Appendix B**.

Table 2.4 Summary of 1-hour and 24-hour TSP Baseline Monitoring Results at CMA3

Parameter	Average (µg/m³)	Range (µg/m³)
1-hour TSP Level in	94.3	53.5 – 142.0
$\mu g/m^3$		
24-hour TSP Level	63.1	27.0 – 123.0
$\ln \mu g/m^3$		

2.7 Derivation of Action and Limit Levels

- 2.7.1 The air quality monitoring results, in terms of 1-hour TSP and 24-hour TSP, were below the Limit Level set out in the Air Quality Objective (AQO) at CMA3 Causeway Bay Royal Hong Kong Yacht Club.
- 2.7.2 The Action and Limit Levels for air quality impact monitoring were based on the criteria adopted from the EM&A Manual as present in **Table 2.5**.

Table 2.5 Derivation of Action and Limit Levels for Air Quality

Parameters	Action	Limit
24-hour TSP	• BL < 200 μ g/m3, AL = (BL * 1.3	$260 \mu \text{g/m}^3$
Level in µg/	+LL)/2	
m^3	• BL > 200 μ g/m3, AL = LL	
1-hour TSP	• BL < 384 μ g/m3, AL = (BL * 1.3	$500 \mu \text{g/m}^3$
Level in µg/	+LL)/2	
m^3	• BL > 384 μ g/m3, AL = LL	

2.7.3 The derived Action and Limit Levels are presented in **Table 2.6**.

Table 2.6 Derived Action and Limit Levels for Air Quality

Parameter	Monitoring Location	Action Level (μg/m³)	Limit Level (µg/m³)
1-hour TSP Level in μg/m ³	CMA3	311.3	500
24-hour TSP Level in µg/m ³	CMA3	171.0	260

2.8 Event and Action Plan

EVENT		ACTION		
EVENT	ET	IEC	ER	CONTRACTOR
Exceedance for one sample 2. Exceedance Exceedance	1. Identify source, investigate the causes of exceedance and propose remedial measures; 2. Inform IEC and ER; 3. Repeat measurement to confirm finding; 4. Increase monitoring frequency to daily. (The above actions should be taken within 2 working days after the exceedance is identified) 1. Identify source:	Check monitoring data submitted by ET; Check Contractor's working method. (The above actions should be taken within 2 working days after the exceedance is identified) Check monitoring data	Notify Contractor. (The above actions should be taken within 2 working days after the exceedance is identified) 1. Confirm receipt of	Rectify any unacceptable practice; Amend working methods if appropriate. (The above actions should be taken within 2 working days after the exceedance is identified) Submit proposals for
for two or more consecutive samples	2. Inform IEC and ER; 3. Advise the ER on the effectiveness of the proposed remedial measures; 4. Repeat measurements to confirm findings; 5. Increase monitoring frequency to daily; 6. Discuss with IEC and Contractor on remedial actions required; 7. If exceedance continues, arrange meeting with IEC and ER; 8. If exceedance stops, cease additional monitoring. (The above actions should be taken within 2 working days after the exceedance is identified)	submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. The above actions should be taken within 2 working days after the exceedance is identified)	notification of failure in writing; 2. Notify Contractor; 3. Ensure remedial measures properly implemented. (The above actions should be taken within 2 working days after the exceedance is identified)	remedial to ER within 3 working days of notification; 2. Implement the agreed proposals; 3. Amend proposal if appropriate. (The above actions should be taken within 2 working days after the exceedance is identified)
LIMIT LEVEL				
Exceedance for one sample	Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. (The above actions should be taken within 2 working days after the exceedance is identified)	1. Check monitoring data submitted by ET; 2. Check Contractor's working method; 3. Discuss with ET and Contractor on possible remedial measures; 4. Advise the ER on the effectiveness of the proposed remedial measures; 5. Supervise implementation of remedial measures; (The above actions should be taken within 2 working days after the exceedance is identified)	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. (The above actions should be taken within 2 working days after the exceedance is identified)	Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. (The above actions should be taken within 2 working days after the exceedance is identified)
Exceedance for two or more consecutive samples	1. Notify IEC, ER, Contractor and EPD; 2. Identify source; 3. Repeat measurement to confirm findings; 4. Increase monitoring frequency to daily; 5. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; 6. Arrange meeting with IEC and ER to discuss the remedial actions to be taken; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; 8. If exceedance stops, cease additional monitoring. (The above actions should be taken within 2 working days after the exceedance is identified)	Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures.	1. Confirm receipt of notification of failure in writing: 2. Notify Contractor; 3. In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; 4. Ensure remedial measures properly implemented; 5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. (The above actions should be taken within 2 working days after the exceedance is identified)	Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated. (The above actions should be taken within 2 working days after the exceedance is identified)

2.9 Conclusions and Recommendations

- 2.9.1 Baseline air quality monitoring was carried out from 4 December 2009 to 17 December 2009 at CMA3 Causeway Bay Royal Hong Kong Yacht Club. Action Level for air quality at this location was derived from the baseline monitoring results.
- 2.9.2 Dust impact monitoring during construction will be carried out at the same location but subject to actual site conditions in the future. If alternative location is proposed for impact monitoring, it will be chosen based on the criteria stated in EM&A Manual.

3 NOISE

3.1 Monitoring Requirements

3.1.1 In accordance with the EM&A Manual, baseline monitoring at one designated monitoring location was conducted, for consecutively 14 days, to obtain background noise levels at the area.

3.2 Monitoring Equipment

3.2.1 Noise monitoring was performed using sound level meter at the designated monitoring location. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in **Table 3.1.**

Table 3.1 Noise Monitoring Equipment

Equipment	Brand and Model
	B&K (Model No. 2238)
Integrated Sound Level Meter	B&K (Model 2250L)
	Rion (Model NL-31)
Acoustic Calibrator	B&K (Model No. 4231)
	Rion NC-73

3.3 Monitoring Locations

3.3.1 In accordance with the EM&A Manual, the noise monitoring station is located at Marco Polo Mansion as presented in **Table 3.2**. Owing to owner's rejection in providing access and installation of monitoring equipment, baseline monitoring could not be conducted at the proposed location.

Table 3.2 Original Baseline Noise Monitoring Station

Monitoring Location	Description
M2	Marco Polo Mansion
(Previously known as NM1)	

3.3.2 M2a – Caltex Petrol Filling Station, as presented in **Table 3.3** and shown in *Figure 3.1* was identified as an alternative location for the baseline monitoring. M2a was chosen based on the criteria presented in EM&A Manual that it should be close to the major works area that are likely to have noise impacts and monitoring is close to the noise sensitive receivers as defined in the Technical Memorandum. The proposed location is also having similar

environment settings as M2 – Marco Polo Mansion. The alternative baseline monitoring proposal was submitted to EPD and approval was granted.

Table 3.3 Alternative Baseline Noise Monitoring Station

Monitoring Station	Description		n	Level (in terms of no. of floor)
M2a	Caltex Station	Petrol	Filling	2 (roof-top)

3.4 Monitoring Parameters, Frequency and Duration

3.4.1 The monitoring parameters, frequency and duration of noise monitoring are summarized in **Table 3.4**.

Table 3.4 Noise Monitoring Parameters, Frequency and Duration

Time Period	Duration, min	Parameters
0700 – 1800 hrs on normal	L _{eq} (30 min)	
weekdays	•	L_{eq}
Time period other than 0700 –	L _{eq} (5 min)]
1900 hrs on normal weekdays	*	

3.5 Monitoring Methodology

3.5.1 Monitoring Procedure

- (a) Façade measurements were made at all monitoring locations.
- (b) The battery condition was checked to ensure the correct functioning of the meter.
- (c) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - (i) frequency weighting: A
 - (ii) time weighting: Fast
 - (iii) time measurement: L_{eq} (30-minutes) were recorded for the period between 0700 and 1900 hours on normal weekdays. For all other time periods, L_{eq} (5-minutes) were recorded.
- (d) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.

(e) Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10 m/s.

3.5.2 Maintenance and Calibration

- (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
- (b) The meter and calibrator were sent to the supplier or Soils and Materials Engineering Co. Ltd. to check and calibrate at yearly intervals.
- (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in **Appendix C**.

3.6 Results and Observations

- 3.6.1 Baseline noise monitoring was conducted for consecutively 14 days, from 4 December 2009 to 17 December 2009. The dominant noise sources were from community noise, school activities and nearby traffic emissions. There was no other major activity influencing the measured noise level during the baseline noise monitoring period. No major changes in the environment settings have are identified except that the CWB works have commenced in 2010 which may elevate the noise level. Nonetheless, mitigation measures have been fully implemented on site that the noise level would not be varied substantially; the baseline monitoring results of CWB are considered applicable to represent the baseline conditions of the Project.
- 3.6.2 The baseline noise monitoring results are summarized in **Table 3.5**. Detailed noise monitoring results are presented in **Appendix D.**

Table 3.5 Summary of Baseline Noise Monitoring Results at M2a

	L_{eq} (30 min), $d(B)A$	
	Average	Range
0700 – 1900 hrs of normal weekdays	73.7	72.7 – 74.5
All days during (1900 – 2300hrs), and	67.7	64.1 – 69.7
general holidays (including Sundays)		
during the daytime and evening		
(0700 – 2300hrs)		
All days during the nighttime (2300 –	65.3	62.2 - 67.6
0700hrs)		

3.7 Derivation of Action and Limit Levels

3.7.1 The Action and Limit Levels of noise monitoring have been set in accordance with the derivation criteria specified in the EM&A Manual as shown in **Table 3.6** below.

Table 3.6 Action and Limit Levels for Construction Noise

Time Period	Action I	Level		Limit Level
0700 – 1900 hrs on	When	one	documented	75 dB(A)*
normal weekdays	complair	nt is receiv	ved	

Notes:

- If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed.
- *70 dB(A) and 65 dB(A) for schools during normal teaching periods and school examination periods, respectively.

3.8 Event and Action Plan

EVENT	ACTION					
	ET	IEC	ER	CONTRACTOR		
Action Level being exceeded	Notify ER, IEC and Contractor; Carry out investigation; Report the results of investigation to the IEC, ER and Contractor; Discuss with the IEC and Contractor on remedial measures required; Increase monitoring frequency to check mitigation effectiveness. (The above actions should be taken within 2 working days after the exceedance is identified)	1. Review the investigation results submitted by the ET; 2. Review the proposed remedial measures by the Contractor and advise the ER accordingly; 3. Advise the ER on the effectiveness of the proposed remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified)	Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified)	Submit noise mitigation proposals to IEC and ER; Implement noise mitigation proposals. (The above actions should be taken within 2 working days after the exceedance is identified)		
Limit Level being exceeded	Inform IEC, ER, Contractor and EPD; Repeat measurements to confirm findings; Increase monitoring frequency; Identify source and investigate the cause of exceedance; Carry out analysis of Contractor's working procedures; Discuss with the IEC, Contractor and ER on remedial measures required; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. (The above actions should be taken within 2 working days after the exceedance is identified)	Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly. (The above actions should be taken within 2 working days after the exceedance is identified)	Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider stopping the Contractor to continue working on that portion of work which causes the exceedance until the exceedance is abated. (The above actions should be taken within 2 working days after the exceedance is identified)	Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC and ER within 3 working days of notification; Implement the agreed proposals; Submit further proposal if problem still not under control; Stop the relevant portion of works as instructed by the ER until the exceedance is abated. (The above actions should be taken within 2 working days after the exceedance is identified)		

3.9 Conclusions and Recommendations

- 3.9.1 Baseline noise monitoring was carried out from 4 December to 17 December 2009 at one monitoring location. The Action Level of construction noise is based on documented complaints received, while the Limit Level is the level at a specific limit according to EIAO-TM. An alternative monitoring location M2a Caltex Petrol Filling Station was proposed since the owner of the designated monitoring station, M2 Marco Polo, has rejected in providing access and installation of monitoring equipment.
- 3.9.2 Noise impact monitoring during construction will be carried out at the same location but subject to actual site conditions in the future. If alternative location is proposed for impact monitoring, it will be chosen based on the criteria stated in EM&A Manual.

4 Water Quality

4.1 Monitoring Requirements

4.1.1 In accordance with the EM&A Manual, baseline water quality levels at 2 locations should be established by conducting baseline monitoring for at least 4 weeks prior to the commencement of dredging works.

4.2 Monitoring Equipment

4.2.1 The brand and model of water quality monitoring equipments is given in **Table 4.1**.

Table 4.1 Water Quality Monitoring Equipment

Equipment	Brand and Model	
Dissolved Oxygen Meter		
Water Temperature Meter		
Salinity meter	YSI 6820	
pH Meter		
Turbiditimeter		
Water Sampler	Kahlsico Water Sampler	
Echo Sampler	Eagle CudaTM 128	
Global Positioning System	Magellan SporTrak	

4.3 Monitoring Locations

4.3.1 In accordance with the EM&A Manual, the water monitoring stations for baseline water quality monitoring is presented in **Table 4.2** and shown in **Figure 4.1**.

Table 4.2 Baseline Water Quality Monitoring Stations

ID in New ID EM&A		Description	Easting Coordiates	Northing Coordinates
Manual			Coordiates	Coordinates
8	C6	Cooling Water Intake for Excelsior Hotel & World Trade Centre	837009.6	815999.3
9	C7	Cooling Water Intake for Windsor House	837193.7	816150.0

4.4 Monitoring Parameters, Frequency and Duration

4.4.1 The monitoring parameters, frequency and duration of water quality monitoring are summarized in **Table 4.3**.

Table 4.3 Water Quality Monitoring Parameters, Frequency and Duration

Parameter	Frequency and Duration
Turbidity, Suspended Solids,	Three days per week, at mid-flood
Dissolved Oxygen, pH, Temperature	and mid-ebb tides for 4 weeks
and Salinity	

4.5 Monitoring Methodology

- 4.5.1 The water quality monitoring procedures are presented in the following:
 - All monitoring equipment were checked and calibrated before use.
 Responses of sensors and electrodes were also checked with certified standard solutions before each use.
 - The interval between 2 sets of monitoring was not less than 36 hours.
 - Duplicate in-situ measurements and water sampling were carried out in each sampling event.
 - For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides was not less than 0.5m.
 - Analysis of suspended solids was carried out in a HOKLAS or other international accredited laboratory. Sufficient water samples were collected at the monitoring stations for carrying out the laboratory analysis. The laboratory analysis was started within 24 hours after collection of the water samples and the analysis followed the standard methods according to **Table 4.4** and as described in American Public Health Association (APHA) Standard Methods for the Examination of Water and Wastewater, 19th edition.

Table 4.4 Analytical Methods to be applied to Marine Water Quality Samples

Determinant	Standard Method
Suspended Solids (mg/L)	APHA 2540 D

 All monitoring equipment were certified by a laboratory accredited under HOKLAS at 3 monthly intervals. Calibration certificates of all monitoring equipment are provided in **Appendix E**.

4.6 Results and Observations

- 4.6.1 The baseline water quality monitoring for all locations were carried out 3 days per week for 4 weeks between 21 October 2009 and 16 November 2009. The baseline monitoring data and laboratory results are presented in **Appendix F** and **Appendix G** respectively.
- 4.6.2 The weather conditions during the monitoring period were mainly sunny and cloudy except for a few showers observed on 12 and 16 November 2009. No

- major pollution source and extreme weather, which might affect the results, were observed during the baseline monitoring period.
- 4.6.3 The baseline water quality monitoring results are summarised in **Table 4.5.**No major changes in the environment settings have are identified except that the CWB works have commenced in 2010 which may generate water quality impact. Nonetheless, mitigation measures have been fully implemented on site that the water quality has not been varied; the baseline monitoring results of CWB are considered applicable to represent the baseline conditions of the Project.

Table 4.5 Summary of baseline Water Quality Monitoring Results

Location		Parameters							
		Salinity (ppt)	Dissolved Oxygen (mg/L)	pН	Turbidity (NTU)	Suspended Solids (mg/L)			
	Avg	32.69	3.60	6.85	5.31	8.21			
C6	Min	31.91	2.63	5.90	3.20	4.00			
	Max	33.38	5.64	8.19	8.90	12.00			
	Avg	32.86	3.84	6.86	4.78	7.71			
C7	Min	31.79	2.82	5.94	2.60	4.00			
	Max	33.59	5.15	8.23	8.20	13.00			

4.6.4 The QA/QC results for laboratory analysis of suspended solids are presented in **Appendix G**.

4.7 Derivation of Action and Limit Levels

4.7.1 The water quality assessment criteria, namely Action and Limit levels are shown in **Table 4.6**.

Table 4.6 Derivation in Action and Limit Levels for Water Quality

Parameters	Action	Limit					
Cooling Water Intake							
SS in mg/L	95 percentile of baseline data	99 percentile of baseline data					
Turbidity in NTU	95 percentile of baseline data	99 percentile of baseline data					
DO in mg/L	5 percentile of baseline data	1 percentile of baseline data					

4.7.2 According to approved EM&A Manual Section 2.35, where necessary, EPD routine marine water quality monitoring at the relevant station(s), dry and wet seasons inclusive, could also be used to establish the baseline water quality. The variation percentage between two seasons is then applied to the baseline monitoring data (Oct-Nov 2009) for dry season to derive the action and limit

levels for impact monitoring in the wet season. Details of establishing Action and Limit levels are shown in **Appendix H**.

4.7.3 The derived Action and Limit levels are presented in **Table 4.7**.

Table 4.7 Derived Action and Limit Levels for Water Quality

Parameters	Dry Season		Wet Season				
	Action	Limit	Action	Limit			
Cooling Water Intake							
SS in mg/L	15.00	22.13	18.42	27.52			
Turbidity in NTU	9.10	10.25	11.35	12.71			
DO in mg/L	3.36	2.73	3.02	2.44			

4.8 Conclusions and Recommendations

4.8.1 Baseline water quality monitoring was carried out between 21 October 2009 and 16 November 2009 for cooling water intakes C6 and C7. Action and Limit Levels were derived based on the baseline monitoring results and water quality assessment criteria.

FULL SIZE A1

Appendix A

Calibration Certificates of Air Quality Monitoring Equipment

TSP High Volume Sampler Field Calibration Report

Station Tacht Club - CMAS Next Due Date. 11-reb-10										
Cal. Date:	11-Nov-09			Serial No.	94	69				
Equipment No.:	A-001-47T									
			Ambient	Condition						
Temperatu	ire, Ta (K)	300.5	Pressure, F	^p a (mmHg)		759.5				
	Orifice Transfer Standard Information									
Seria	l No:	1559	Slope, mc	1.97702	Interc	-0.0007				
Last Calibra	ation Date:	18-May-09			= [DH x (Pa/760) x					
Next Calibration Date: 18-May-10 Qstd = {[DH x (Pa/760) x (299/Ta)] ^{1/2} -bc} / mc										
				f TSP Sampler						
Danistana.			Orfice		HV	S Flow Recorder				
Resistance Plate No.	DH (orifice),	FD.U /D /7	201 (200 11/2	Qstd (m³/min) X	Flow Recorder	Continuous Flow	Recorder			
11010140.	in. of water	[DH X (Pa//	60) x (298/Ta)] ^{1/2}	axis	Reading (CFM)	Reading IC (CFM	Ŋ Y-axis			
18	9.7		3.10	1.57	56.0	55.75				
13	7.4		2.71	1.37	50.0	49.78				
10	6.2		2.48	1.25	44.0	43.80				
7	4.0		1.99	1.01	34.0	33.85				
5	2.4		1.54	0.78	22.0	21.90				
Du Linnar Dame	acion of V on V									
By Linear Regre				Interesent bur	10	7007				
Slope , mw = Correlation Coe	43.2566 fficient*		9920	Intercept, bw =	-10.	7267				
1		check and recali		-						
Til Correlation Co	ellicient < 0.550	, crieck and recall	brate.							
			Sat Daint	Calculation						
From the TSP Fix	eld Calibration C	urve, take Qstd =		Calculation						
From the Regres		-								
I foll the regres	sion Equation, tr	C I Value accor	ung to							
		mw	x Qstd + bw = IC x	c f(Pa/760) x (298/	Ta)1 ^{1/2}					
				. (/1					
Therefore, Set Po	Therefore, Set Point; IC = (mw x Qstd + bw) x [(760 / Pa) x (Ta / 298)] ^{1/2} = 45.71									
							•			
Remarks:										

EQUIPMENT CALIBRATION RECORD

Туре:				Laser De	ust Moni	itor		
	facturer/Brand:			SIBATA LD-3				
Model	no.: ment No.:			A.005.07	'a			
	tivity Adjustment	Scale Sett	_	557 CPI	*** *** *****			
Sensi	ivity Adjustinent	Scale Sett	mig.	557 OF	V2			
Standa	rd Equipment							
Equip	ment:	Rup	precht & Pa	tashnick	TEOM®			
Model	No.:	es 1400AB						
Serial	No:	Con		DAB2198				
		Sens		00C1436	59803	K _o : <u>12500</u>)	
Last C	Calibration Date*:	5 Ju	ne 2009					
*Remar	ks: Recommend	led interval	for hardwa	re calibra	tion is 1 y	year		
Calibra	tion Result							
Galibra	gon resun							
Sensit Sensit	ivity Adjustment ivity Adjustment	Scale Sett Scale Sett	ing (Before ing (After C	Calibration alibration	on):):	557 CF		
Hour	Date	Ti	me	Aml	pient	Concentration1	Total	Count/
	(dd-mm-yy)			Condition		(mg/m ³)	Count ²	Minute ³
				Temp	R.H.	Y-axis		X-axis
1	06-06-09	09:00	- 10:00	(°C) 30.2	(%) 76	0.04175	1392	23.20
2	06-06-09	10:00	- 11:00	30.6	76	0.03983	1330	22.17
3	06-06-09	11:00	- 12:00	31.0	75	0.04025	1339	22,31
4	06-06-09	13:00	- 14:00	31.2	76	0.04271	1426	23.77
Note:	1. Monitoring of	data was m	easured by	Rupprec	ht & Pata	ashnick TEOM®		•
	2. Total Count 3. Count/minu	was logge	d by Laser I	Dust Mon	itor			
By Line:	ar Regression of	YorX						
	(K-factor):		0.0018					
Correl	ation coefficient:		0.9965					
Validit	y of Calibration I	Record:	5 June 20	010				
Remark	s:							
1								

Appendix B
Baseline Air Quality
Monitoring Data

24-hour TSP Monitoring Results at Station CMA3 - Yacht Club

Date	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter W	/eight (g)	Particulate	ate Elapse Time		Sampling	Conc.
Date	Initial	Final	(m³/min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
4-Dec-09	1.313	1.313	1.313	1890.7	3.6238	3.8571	0.2333	25087.84	25111.84	24.00	123
5-Dec-09	1.313	1.313	1.313	1890.7	3.5973	3.7873	0.1900	25101.84	25125.84	24.00	101
6-Dec-09	1.313	1.313	1.313	1887.8	3.8750	4.0694	0.1944	16437.00	16461.00	24.00	103
7-Dec-09	1.313	1.313	1.313	1890.7	3.4958	3.5723	0.0765	25149.84	25173.84	24.00	41
8-Dec-09	1.313	1.313	1.313	1890.7	3.4100	3.4608	0.0508	25173.84	25197.84	24.00	27
9-Dec-09	1.313	1.313	1.313	1890.7	3.5056	3.5843	0.0787	25197.84	25221.84	24.00	42
10-Dec-09	1.313	1.313	1.313	1890.7	3.5086	3.6598	0.1512	25221.84	25245.84	24.00	80
11-Dec-09	1.313	1.313	1.313	1890.7	3.5068	3.5814	0.0746	25245.84	25269.84	24.00	40
12-Dec-09	1.313	1.313	1.313	1890.7	3.5327	3.5854	0.0527	25269.84	25293.84	24.00	28
13-Dec-09	1.313	1.313	1.313	1890.7	3.5241	3.7461	0.2220	25293.84	25317.84	24.00	117
14-Dec-09	1.313	1.313	1.313	1890.7	3.8221	3.9202	0.0981	25317.84	25341.84	24.00	52
15-Dec-09	1.313	1.313	1.313	1890.7	3.5226	3.5963	0.0737	25341.84	25365.84	24.00	39
16-Dec-09	1.313	1.313	1.313	1890.7	3.5221	3.6099	0.0878	25365.84	25389.84	24.00	46
17-Dec-09	1.310	1.313	1.312	1890.7	3.4292	3.5163	0.0871	25389.84	25413.84	24.00	46
-										Average	63.1
										Min	27.0
										Max	123.0

1-hour TSP Monitoring Results at Station CMA3 Yach Club

	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
4-Dec-09	9:30	104.0	99.6	109.7
5-Dec-09	14:25	113.5	114.0	114.2
6-Dec-09	10:00	127.1	118.9	102.3
7-Dec-09	9:00	70.7	94.7	78.5
8-Dec-09	17:05	80.5	59.5	53.5
9-Dec-09	9:05	71.3	82.5	75.0
10-Dec-09	13:05	113.2	117.6	121.2
11-Dec-09	9:30	82.1	82.8	83.2
12-Dec-09	9:35	76.6	72.2	88.1
13-Dec-09	10:50	121.9	117.6	124.4
14-Dec-09	9:05	135.2	142.0	134.4
15-Dec-09	10:15	76.3	80.3	75.0
16-Dec-09	9:30	81.2	82.4	83.2
17-Dec-09	9:55	65.0	67.2	69.5
			Average	94.3
			Min	53.5
			Max	142.0

Appendix C Calibration Certificate of Sound Level Meters and Acoustic Calibrator

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

G.E., S.F., 12.F., 13.F. & 20.F., Loader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 音播資性裝證3.7 號母終申心無下,9 楼,1.2 根,1.3 提及2.0 棋 E-mail: smed@cigismec.com Website: www.cigismec.com Tel : (852) 2873 6860 Fax : (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	09CA0710 04-01			Page	1	of . 2
Item tested				The state of the s		
Description: Manufacturer: Type#Model No.: Serial/Equipment No.: Adaptors used:	Sound Level Meter B & K 2238 2255677 / N009.02		:	Microphone B & K 4188 2250420		
Item submitted by						
Customer Name: Address of Customer: Request No.: Date of request:	- 10-Jul-2009					
Date of test:	11-Jul-2009					
Reference equipment	used in the calibra					
Description: Multi function sound calibrator Signal generator Signal generator	Model: 88K 4226 DS 360 DS 360	Serial No. 2288444 33873 61227		Expiry Date: 12-Jan-2010 22-Jun-2010 22-Jun-2010		Traceable to: CIGISMEC CEPREI CEPREI
Ambient conditions						
Temperature: Relative humidity:	(23 ± 1) °C (55 ± 10) %					

Test specifications

- The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580; Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%.
- replaced by an equivalent capacitance within a tolerance of ±20%.

 The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Huang Jish Min/Forg Jun Qi

Date: 14-Jul-

14-Jul-2009 Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2009

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

G/F. 9/F. 19/F. 13/E & 28/F. Leader Centro, 97 Wong Chair Hang Road, Aberdeen, Hong Kong. 资准设计注意37股利益中心地下,9楼(12楼)13 能及20楼 E-mail: smeck9cigismec.com Website: www.ckjismec.com Tel : (852) 2873 6860 Fax : (852) 2565 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

icate No.:	09CA0710 04-01	Page	2 of	2				
 Electrical Tests	manifest and the second							
The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.								
Test:	Subtest:	Status:	Uncertanity (iB) / Coverage Fa				
		Посо	0.3	-				
Self-generated noise	A	Pass Pass	0.8	2.1				
	C .	Pass	1.6	2.2				
	Lin	Pass	0.3	6.6				
Linearity range for Leq		Pass	0.3					
	Reference SPL on all other ranges 2 dB below upper limit of each range		0.3					
		Pass .	0.3					
	2 dB above lower limit of each range		0.3					
Linearity range for SPI		Pass	-1-					
Frequency weightings		Pass	0.3					
	C	Pass	0:3					
	Lin · ·	Pass	0.3					
Time weightings	Single Burst Fast	Pass	0.3					
	Single Burst Slow	Pass	0.3					
Peak response	Single 100µs rectangular pulse	Pass ·	0.3					
R.M.S. accuracy	Crest factor of 3	Pass	0.3					
Time weighting t	Single burst 5 ms at 2000 Hz	Pass	0.3					
	Repeated at frequency of 100 Hz	Pass .	0.3					
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3					
THE OVERAGING	1 ms burst duty factor 1/10° at 4kHz	Pass	0.3					
Pulsa susan	Single burst 10 ms at 4 kHz	Pass	0.4					
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4					
Sound exposure level		Pass '	0.3	-				
Overload indication	SPL Leg	Pass	0.4					
with 1000Hz and SPL	evel meter was calibrated on the reference rang. 94 dB. The sensitivity of the sound level meter	r was adjusted. `	4226 acoustic cr The test result a	ellibrator 125 Hz and				
The complete sound is with 1000Hz and SPL 8000 Hz are given in b	 94 dB. The sensitivity of the sound level meter selow with test status and the estimated uncertainty 	r was adjusted. ' sinfies.	The test result a	125 Hz and				
The complete sound is with 1000Hz and SPL	. 94 dB. The sensitivity of the sound level meter	r was adjusted. `	The test result a	elibrator 125 Hz and dB) / Coverage F				
The complete sound is with 1000Hz and SPL 8000 Hz are given in b	 94 dB. The sensitivity of the sound level meter selow with test status and the estimated uncertainty 	r was adjusted. ' sinfies.	The test result a	125 Hz and				
The complete sound is with 1000Hz and SPL 8000 Hz are given in b Test: Acoustic response	. 94 dB. The sensitivity of the sound level meter selow with test status and the estimated uncerts Subtest Weighting A at 125 Hz	r was adjusted. ' ainties. Status Pass	Uncertanity (125 Hz and				
The complete sound is with 1000Hz and SPL 8000 Hz are given in b Test: Acoustic response Response to associa	. 94 dB. The sensitivity of the sound level meter selow with test status and the estimated uncerta Subtest Weighting A at 125 Hz Weighting A at 8000 Hz	r was adjusted. ' ainties. Status Pass	Uncertanity (125 Hz and				
The complete sound is with 1000Hz and SPL 8000 Hz are given in b Test: Acoustic response	. 94 dB. The sensitivity of the sound level meter selow with test status and the estimated uncerta Subtest Weighting A at 125 Hz Weighting A at 8000 Hz	r was adjusted. ' ainties. Status Pass	Uncertanity (125 Hz and				
The complete sound is with 1000Hz and SPL 8000 Hz are given in b Test: Acoustic response Response to associa	. 94 dB. The sensitivity of the sound level meter selow with test status and the estimated uncerta Subtest Weighting A at 125 Hz Weighting A at 8000 Hz	r was adjusted. ' ainties. Status Pass	Uncertanity (125 Hz and				
The complete sound is with 1000Hz and SPL 8000 Hz are given in b Test: Acoustic response Response to associa N/A	. 94 dB. The sensitivity of the sound level meter selow with test status and the estimated uncertainty of the sound level meter substant and the estimated uncertainty. Subtest Weighting A at 125 Hz Weighting A at 8000 Hz sted sound calibrator	r was adjusted. " sinfles. Status Pass Pass Pass Publication "Guidented"	Uncertainty (dB) / Coverage F				
The complete sound is with 1000Hz and SPL 8000 Hz are given in b Test: Acoustic response Response to associa N/A The uncertainties have in measurement*, and	. 94 dB. The sensitivity of the sound level meter selow with test status and the estimated uncertainty of the sound level meter substant and the estimated uncertainty. Subtest Weighting A at 125 Hz Weighting A at 8000 Hz sted sound calibrator	r was adjusted. " sinfles. Status Pass Pass Pass Publication "Guidented"	Uncertainty (dB) / Coverage F				
The complete sound le with 1000Hz and SPL 8000 Hz are given in b Test: Acoustic response Response to associa N/A The uncertainties have in measurement*, and assumed unless explicit Calibrated by:	. 94 dB. The sensitivity of the sound level meter selow with test status and the estimated uncertainty of the sound test status and the estimated uncertainty. Subtest Weighting A at 125 Hz Weighting A at 8000 Hz Ited sound calibrator be been calculated in accordance with the ISO P gives an interval estimated to have a level of citly stated.	r was adjusted. " sinfles. Status Pass Pass Pass Publication "Guidented"	Uncertainty (dB) / Coverage F				

© Soils & Materials Engineering Co., Litt.

Form No.CARP152-28s turn 1/Revs.C401/02/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

GE, 9F, 12E, 13年 & 20F, 4sader Centre, 37 Wong Churk Hang Rosel, Aberdeen, Hong Rong. 音滴菱竹灯道37號和途中心地下・9機・12機・13機及20線 E-mail: smoothcigismec.com Wabsilte: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Consider the second selection of the selectio	09CA0311 02-02		Page:	1 of 2	
tem tested	THE ACTUAL PROPERTY OF THE PARTY OF THE PART				
Description:	Acoustical Calibrat	or (Class 1)			
Manufacturer:	B&K				
Type/Model No.:	BK4231	. ,			
Serial/Equipment No.:	1850426 / N.004.0:	2			
Adaptors used:	-				
lem submitted by					
Ourstomer:					
Address of Customer:					
Request No.:	-	4.			
	11-Mar-2009				
		ation			minimus I state
Date of test: Reference equipment Description:	used in the calibr	Serial No.	Expiry Date:	Traceable to:	minima i sist
Reference equipment Description: .ab standard microphone	used in the calibr Model: B&K 4180	Serial No. 2412857	Expiry Date: 29-Jun-2009	Traceable to:	
Reference equipment Description: .ab standard microphone Preamplifier	used in the calibr Model: B&K 4180 B&K 2673	Serial No. 2412857 2239857	Expiry Date: 29-Jun-2009 02-Dec-2009	Traceable to: SCL CEPREI	minima I sist
Reference equipment Description: Lest standard microphone Preamplifier Measuring amplifier	used in the calibr Model: B&K 4180 B&K 2673 B&K 2610	Serial No. 2412857 2239857 2346941	Expiry Date: 29-Jun-2009 02-Dec-2009 03-Dec-2009	Traceable to: SCL CEPREI CEPREI	
Reference equipment Description: .ab standard microphone Preamplifier Measuring amplifier Signal generator	Model: B&K 4180 B&K 2673 B&K 2610 DS 360	Serial No. 2412857 2239857 2346941 61227	Expiry Date: 29-Jun-2009 02-Dec-2009 03-Dec-2009 18-Jul-2009	Traceable to: SCL CEPREI CEPREI CEPREI	minima i alah
Reference equipment Description: .ab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter	Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A	serial No. 2412857 2239857 2346941 61227 US36087050	Expiry Date: 29-Jun-2009 02-Dec-2009 03-Dec-2009 18-Jul-2009 03-Dec-2009	Traceable to: SCL CEPREI CEPREI CEPREI CIGISMEC	
Reference equipment Description: .ab standard microphone reamplifier figure generator Digital multi-meter udio analyzer	Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A 8903B	serial No. 2412857 2239857 2346941 61227 US36087050 GB41360350	Expiry Date: 29-Jun-2009 02-Dec-2009 03-Dec-2009 18-Jul-2009 03-Dec-2009 27-Nov-2009	Traceable to: SCL CEPREI CEPREI CEPREI CIGISMEC CEPREI	
Reference equipment Description: ab standard microphone reamplifier fignal generator ligital multi-meter sudio analyzer	Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A	serial No. 2412857 2239857 2346941 61227 US36087050	Expiry Date: 29-Jun-2009 02-Dec-2009 03-Dec-2009 18-Jul-2009 03-Dec-2009	Traceable to: SCL CEPREI CEPREI CEPREI CIGISMEC	
Reference equipment Description: .ab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter sudio analyzer Universal counter	Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A 8903B	serial No. 2412857 2239857 2346941 61227 US36087050 GB41360350	Expiry Date: 29-Jun-2009 02-Dec-2009 03-Dec-2009 18-Jul-2009 03-Dec-2009 27-Nov-2009	Traceable to: SCL CEPREI CEPREI CEPREI CIGISMEC CEPREI	
Reference equipment Description: ab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter audio analyzer Universal counter Ambient conditions	Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A 8903B	serial No. 2412857 2239857 2346941 61227 US36087050 GB41360350	Expiry Date: 29-Jun-2009 02-Dec-2009 03-Dec-2009 18-Jul-2009 03-Dec-2009 27-Nov-2009	Traceable to: SCL CEPREI CEPREI CEPREI CIGISMEC CEPREI	
Reference equipment Description: .ab standard microphone Preamplifier	Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A 8903B 53132A	serial No. 2412857 2239857 2346941 61227 US36087050 GB41360350	Expiry Date: 29-Jun-2009 02-Dec-2009 03-Dec-2009 18-Jul-2009 03-Dec-2009 27-Nov-2009	Traceable to: SCL CEPREI CEPREI CEPREI CIGISMEC CEPREI	
Reference equipment Description: ab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter audio analyzer Universal counter Ambient conditions Generature:	Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A 8903B 53132A	serial No. 2412857 2239857 2346941 61227 US36087050 GB41360350	Expiry Date: 29-Jun-2009 02-Dec-2009 03-Dec-2009 18-Jul-2009 03-Dec-2009 27-Nov-2009	Traceable to: SCL CEPREI CEPREI CEPREI CIGISMEC CEPREI	
Reference equipment Description: ab standard microphone reamplifier Measuring amplifier Signal generator Digital multi-meter audio analyzer Universal counter Ambient conditions emperature: Relative humidity:	Wodel: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A 8903B 53132A	serial No. 2412857 2239857 2346941 61227 US36087050 GB41360350	Expiry Date: 29-Jun-2009 02-Dec-2009 03-Dec-2009 18-Jul-2009 03-Dec-2009 27-Nov-2009	Traceable to: SCL CEPREI CEPREI CEPREI CIGISMEC CEPREI	

- 2.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex 8 of IEC 60942; 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

-Obj

Approved Signatory:

Date: 17-Mar-2009 Company Chop:

Hyang dian Min/Feng Jun Oi

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soits K. Materiato Engineering Co., Ltd.

Form No.CARP1SI-1/loque 1/Rev.D/01/C0(2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

G.K., 9F., 12F., 13E. 8.20ff., Leader Centre, 37 Woog Chuk Hang Road, Abardeon, Hong Kong. 香港農竹原道37號利塞中心地下・9欄・12欄・13線及20個 E-mail: sayoo@etgismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

	cate No.:	09CA0311 02-02		. Page:	2	of	2
	Measured Sound P	ressure Level					
	The output Sound Pr a calibrated laborate the estimated uncert	ressure Level in the calibrator has ry standard microphone and inser lainties.	d was measured at t voltage technique.	The results	are give	en in belo	w with
(velin dBre	
	Frequency Shown	Output Sound Pressure Level Setting	Measured Or Sound Pressure			Estimated Incertaint	
	Hz .	dB	- dB	e reset		dB	, ,
	1000	94.00	94.10	Anni ine Kera		0.1	
				1			no promote
-		rvel Stability - Short Term Flucts				- 4- 44 - 11-11	
	The Short Term Fluc output of the B&K 26 Term Fluctuation wa	tuations was determined by meas 310 measuring amplifier over a 20 s found to be:	uring the maximum second time interva	and minimus l as required	n of the	e fast wei standard.	ighted DC The Short
	At 1000 Hz	5	TF = 0.002 dB				
-	Estimated uncertaint	y	0.005 dB				
	Actual Output Freq	uency					4
	preamplifier connect counter which was u	factual output frequency was made ed to a B&K 2610 measuring amp sed to determine the frequency av output frequency at 1 KHz was:	litier. The AC output	of the 8&K	2610 w	as taken	to an unive
	At 1000 Hz	Actual Freque	ncy = 999,8 Hz				
	Estimated uncertaint	y ·	0.1 Hz	Coverag	e facto	r k = 2.2	
	Total Noise and Dis	stortion					
	For the Total Noise a connected to an Agil	and Distortion measurement, the tent Type 8903 B distortion analys	infiltered AC output of er. The TND result a	of the B&K 2 at 1 KHz was	610 me :	easuring	amplifier wa
	At 1000 Hz		TND = 0.5%				,
	Estimated uncertaint	y .	0.7%				
							والمراجع والمراجع والمستوارين
-							_
-		ve been calculated in accordance of gives an interval estimated to h dicitly stated.					
-	in measurement", an	d gives an interval estimated to halicitly stated.					
	in measurement", an	id gives an interval estimated to h ficility stated. - E	ave a level of confid				
ne sta	in measurement", an assumed unless exp Calibrated by: C.Y. Date: 13-M	id gives an interval estimated to h ficility stated. - E	nd - Checked by: Date: 17-topable to national or	ence of 95 %	. A cox	verage fa	ctor of 2 is

© Salic & Materials Engineering Co., LIG

Form No.CARP156-2/Issue 1/Rev.C/01/95/200

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

Appendix D Baseline Noise Monitoring Results

Location: M2a - Caltex Petrol Filling Station Day time 07:00-19:00 hrs Normal Weekdays

	Noise Lev	nin, dB(A)	
Date	Leq	L10	L90
4-Dec-09	72.7	74.5	70.1
5-Dec-09	73.6	75.5	70.4
6-Dec-09*	N/A	N/A	N/A
7-Dec-09	73.8	75.7	71.0
8-Dec-09	74.5	75.9	71.9
9-Dec-09	73.4	74.7	70.9
10-Dec-09	74.1	75.5	71.5
11-Dec-09	73.9	75.4	71.1
12-Dec-09	74.3	76.0	71.5
13-Dec-09*	N/A	N/A	N/A
14-Dec-09	73.0	74.7	71.0
15-Dec-09	74.5	75.7	71.7
16-Dec-09	73.2	74.7	71.0
17-Dec-09	73.8	75.0	71.2

	Leq 30-min dB(A)
Average	73.7
Max	74.5
Min	72.7

Remarks

* Public holiday

Location: M2a - Caltex Petrol Filling Station
All days during evening (19:00 to 23:00 hours), and
general holidays (including Sundays) during the daytime and evening (07:00 to 23:00 hours)

	Noise Level for 5-min, dB(A		
Date	Leq	L10	L90
4-Dec-09	69.1	70.1	66.6
5-Dec-09	66.2	69.3	59.4
6-Dec-09*	68.4	70.0	66.1
7-Dec-09	64.1	67.3	52.6
8-Dec-09	69.0	73.1	57.8
9-Dec-09	67.2	70.2	59.1
10-Dec-09	66.8	69.3	58.1
11-Dec-09	68.1	70.8	60.4
12-Dec-09	68.0	70.3	62.1
13-Dec-09*	69.7	70.9	67.3
14-Dec-09	65.0	68.3	53.1
15-Dec-09	68.7	72.3	56.7
16-Dec-09	68.6	71.3	60.2
17-Dec-09	68.3	70.8	59.8

	Leq 5-min dB(A)
Average	67.7
Max	69.7
Min	64.1

Remarks
* Public holiday

Location: M2a - Caltex Petrol Filling Station All days during the nighttime (23:00 to 07:00 hours)

	KI	17. 7	· ID/A)
	Noise Le	in, dB(A)	
Date	Leq	L10	L90
4-Dec-09	67.6	68.6	65.1
5-Dec-09	65.5	68.5	58.8
6-Dec-09*	67.0	68.5	64.7
7-Dec-09	62.7	65.9	51.5
8-Dec-09	65.3	69.2	54.7
9-Dec-09	65.1	68.0	57.2
10-Dec-09	65.3	67.8	56.9
11-Dec-09	65.2	67.8	57.9
12-Dec-09	65.1	67.3	59.5
13-Dec-09*	66.8	67.9	64.4
14-Dec-09	62.2	65.4	50.9
15-Dec-09	65.2	68.5	53.8
16-Dec-09	65.1	67.6	57.1
17-Dec-09	65.4	67.8	57.2

	Leq 5-min dB(A)
Average	65.3
Max	67.6
Min	62.2

Remarks
* Public holiday

Appendix E

Calibration Certificate for Water Quality Monitoring Equipment

HK0917039 25/08/2009 Batch: Date of Issue: Client: Client Reference:

Calibration of Tubidimeter

YSI SONDE Environmental Monitoring System item:

6820-C-M Model No.:

0001030 D Serial No.:

W.026.09 Equipment No. :

This meter was calibrated in accordance with standard method. APHA (19th Ed.) 21308 Calibration Method:

20 August. 2009 Date of Calibration:

Testing Results:

Reconsing Beading	UTN 0.0	4.0 NTU	9.8 NTU	20.1 NTU	49.7 NTU	100 NTU	76CT 1
Expected Reading	UTN 0.0	4.0 NTU	10.0 NTU	20.0 NTU	50.0 NTU	100 NTU	Allowing Daylor

Miccharkwok Fall Godfrey
Laboratory Mahagas, Hong Kong

ALS Environmental

ALS Technichem (HK) Pty Ltd

Page 2 of 7

HK0917039 25/08/2009

Batch: Date of Issue: Client: Client Reference:

Calibration of Conductivity System

YSI SONDE Environmental Monitoring System item:

6820-C-M Model No.:

0001030 D Serial No.:

W.026.09 Equipment No.: This meter was calibrated in accordance with standard method. APHA (19th Ed.) 2510B Calibration Method:

20 August, 2009 Date of Calibration:

Testing Results:

Recolding Reading	8650 uS/cm 12910 uS/cm 58680 uS/cm	#10%
Expected Reading	8887 uS/cm 12890 uS/cm 58670 uS/cm	Allowing Deviation

McChan Kilick Fai, Godfrey Laborately Manager - Hong Kong

ALS Environmental

ALS Technichem (HK) Pty Ltd

HK0917039 25/08/2009 Batch: Date of Issue: Client: Client Reference:

Calibration of Salinity System

YSI SONDE Environmental Monitoring System item:

6820-C-M Model No.:

0001030 D Serial No.:

W.026,09 Equipment No. :

This meter was calibrated in accordance with standard method. APHA (19th Ed.) 2520 A and B. Calibration Method :

20 August, 2009 Date of Calibration:

Testing Results:

Recording Reading 10.0 g/L 20.1 g/L 30.0 g/L ±10% Expected Reading Allowing Deviation 10.0 g/L 20.0 g/L 30.0 g/L

Mr. Shankwok Fai, o Lebocatory Manager,

ALS Environmental

ALS Technichem (HK) Pty Ltd

HK0917039 25/08/2009 Batch: Date of Issue: Client: Client Reference;

Calibration of Thermometer

YSI SONDE Environmental Monitoring System

6820-C-M Model No.:

0001030 D Serial No.:

W.026.09 Equipment No.:

In-house Method Calibration Method:

20 August, 2009 Date of Calibration:

Testing Results:

Recorded Temperature (C)	27.9 °C 32.1 °C	°C -2∓
Reference Terriperatore (CC)	28.0 °C 32.1 °C	Allowing Deviation

ALS Technichem (HK) Pty Ltd

ALS Environmental

Page 5 of 7

HK0917039 25/08/2009 Batch: Date of Issue:

Client Reference:

Calibration of DO System

item:

YSI SONDE Environmental Monitoring System

6820-C-M Model No.:

0001030 D Serial No.:

W.026.09 Equipment No.:

This meter was calibrated in accordance with standard method. APHA (18th Ed.) 4500-O.C.&.G. Calibration Method:

20 August, 2009 Date of Calibration:

Testing Results:

Recording Reading 7.58 mg/L 9.07 mg/L 10.9 mg/L ±0.2 mg/L Expected Reading Allowing Deviation 7.53 mg/L 9.03 mg/L 10.8 mg/L

MrcPlan Kerck Fall Godfrey Labbratory Wahage - Hong Kong

ALS Technichem (HK) Pty Ltd

ALS Environmental

Page 6 of 7

Calibration of pH System

YSt SONDE Environmental Monitoring System item :

8820-C-M Model No.:

0001030 D Serial No.:

W.026.09 Equipment No. :

This meter was calibrated in accordance with standard method, APHA (19th Ed.) 4500-H*B Calibration Method:

20 August, 2009 Date of Calibration:

Testing Results:

Récording Reading	4.02 7.01 9.98	+ 0.2
Expected Residing	4,00 7,00 10.0	Allowing Deviation

Mr Glan Kwok Fall Godiney Labstatory Menagen - Hong Kong

ALS Technichem (HK) Pty Ltd

ALS Environmental

Water Quality Monitoring Data

Water Quality Monitoring Results at C6 - Mid-Ebb Tide

Date	Sampling	Depti	n (m)	Tempera	iture (°C)	Salinit	y (ppt)	DO Satu	ration (%)	Dissolved O:	xygen (mg/L)	F)H	Turbidi	ty(NTU)	Suspended	Solids (mg/L)
	Time			Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
21-Oct-09	14:22	Middle	1.9	27.0 27.0	27.0	32.5 32.6	32.6	56.10 56.30	56.20	3.74 3.71	3.73	7.72 7.77	7.75	5.5 5.2	5.35	7 8	7.5
23-Oct-09	15:34	Middle	1.9	27.3 27.3	27.3	32.8 32.8	32.8	55.70 50.70	53.20	3.68 3.35	3.52	7.73 7.73	7.73	5.6 5.6	5.60	10 8	9.0
27-Oct-09	7:52	Middle	1.9	26.5 26.6	26.6	33.0 33.0	33.0	64.30 57.70	61.00	4.29 3.85	4.07	6.70 6.71	6.71	6.2 6.3	6.25	7 7	7.0
29-Oct-09	9:18	Middle	2.1	26.5 26.5	26.5	32.5 32.5	32.5	46.10 44.50	45.30	3.08 2.98	3.03	6.24 6.25	6.25	4.8 4.8	4.80	9	8.5
31-Oct-09	11:45	Middle	1.9	26.5 26.5	26.5	32.5 32.6	32.6	67.00 51.30	59.15	4.49 3.43	3.96	6.73 6.74	6.74	5.8 6.1	5.95	12 10	11.0
02-Nov-09	11:33	Middle	2.5	26.3 26.3	26.3	33.2 33.4	33.3	66.60 64.00	65.30	4.46 4.28	4.37	6.74 6.76	6.75	3.8 3.9	3.85	10 8	9.0
04-Nov-09	12:29	Middle	1.6	25.3 25.3	25.3	33.3 33.3	33.3	65.70 62.90	64.30	4.47 4.28	4.38	6.07 6.09	6.08	5.4 5.0	5.20	6 6	6.0
06-Nov-09	14:01	Middle	1.8	25.5 25.5	25.5	33.0 33.1	33.0	56.10 55.40	55.75	3.80 3.76	3.78	6.70 6.71	6.71	4.0 4.0	4.00	8	8.0
10-Nov-09	6:51	Middle	1.7	25.5 25.5	25.5	32.9 32.9	32.9	42.80 41.20	42.00	2.92 2.82	2.87	6.65 6.65	6.65	5.0 4.8	4.90	9 7	8.0
12-Nov-09	9:06	Middle	1.9	25.5 25.6	25.6	33.1 33.1	33.1	41.40 40.90	41.15	2.81 2.77	2.79	5.99 6.00	6.00	4.3 4.3	4.30	7 6	6.5
14-Nov-09	11:02	Middle	1.8	24.9 24.9	24.9	32.8 32.8	32.8	56.70 55.40	56.05	3.89 3.80	3.85	7.14 7.18	7.16	5.3 5.2	5.25	10 8	9.0
16-Nov-09	11:50	Middle	2.1	24.3 24.3	24.3	31.9 32.0	32.0	80.80 74.70	77.75	5.64 5.21	5.43	8.19 8.18	8.19	8.9 8.6	8.75	10 8	9.0

Water Quality Monitoring Results at C6 - Mid-Flood Tide

Date	Sampling	Depti	h (m)	Tempera	iture (°C)	Salinit	ty (ppt)	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	P	H	Turbidi	ty(NTU)	Suspended	Solids (mg/L)
	Time			Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
21-Oct-09	10:41	Middle	2.3	26.9 27.0	26.9	32.4 32.4	32.4	53.60 51.70	52.65	3.51 3.44	3.48	7.82 7.79	7.81	5.4 5.4	5.40	6 7	6.5
23-Oct-09	10:55	Middle	2.1	27.0 27.0	27.0	32.6 32.6	32.6	42.60 39.70	41.15	2.83 2.63	2.73	7.72 7.73	7.73	5.8 5.7	5.75	10 8	9.0
27-Oct-09	15:39	Middle	2.1	26.9 26.9	26.9	32.6 32.6	32.6	53.60 49.50	51.55	3.56 3.29	3.43	6.63 6.63	6.63	7.4 7.3	7.35	10 11	10.5
29-Oct-09	15:53	Middle	2.2	27.0 27.0	27.0	32.2 32.2	32.2	56.00 49.50	52.75	3.73 3.29	3.51	6.17 6.21	6.19	6.3 5.7	6.00	10 9	9.5
31-Oct-09	16:46	Middle	2.0	26.9 26.9	26.9	32.2 32.2	32.2	60.50 58.80	59.65	4.03 3.92	3.98	6.69 6.69	6.69	4.1 4.0	4.05	8 6	7.0
02-Nov-09	6:59	Middle	2.6	26.5 26.5	26.5	32.9 32.7	32.8	61.3D 57.2D	59.25	3.85 3.76	3.81	6.64 6.69	6.67	5.6 5.8	5.70	8 10	9.0
04-Nov-09	8:04	Middle	1.8	25.0 25.0	25.0	33.1 33.1	33.1	56.20 54.70	55.45	3.85 3.74	3.80	5.90 5.92	5.91	4.8 4.5	4.65	4 6	5.0
06-Nov-09	10:04	Middle	1.9	25.1 25.1	25.1	33.1 33.1	33.1	50.60 48.90	49.75	3.46 3.34	3.40	6.62 6.63	6.63	3.2 3.3	3.25	10 9	9.5
10-Nov-09	13:32	Middle	2.1	25.8 25.7	25.7	32.8 32.8	32.8	52.70 46.20	49.45	3.57 3.13	3.35	6.67 6.70	6.69	5.3 5.1	5.20	7 7	7.0
12-Nov-09	14:31	Middle	2.1	25.7 25.7	25.7	32.9 32.9	32.9	40.90 39.90	40.40	2.76 2.70	2.73	5.95 5.96	5.96	3.6 3.7	3.65	10 12	11.0
14-Nov-09	15:25	Middle	2.3	24.8 24.8	24.8	32.0 32.0	32.0	45.70 46.20	45.95	3.16 3.19	3.18	7.22 7.26	7.24	4.5 4.3	4.40	8 7	7.5
16-Nov-09	7:10	Middle	2.2	24.3 24.3	24.3	32.1 32.1	32.1	45.20 45.90	45.55	3.15 3.20	3.18	7.65 7.64	7.65	8.0 7.7	7.85	6 8	7.0

Water Quality Monitoring Results at C7 - Mid-Ebb Tide

Date	Sampling	Depti	h (m)	Tempera	ture (°C)	Salinit	y (ppt)	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	p	Н	Turbidi	ty(NTU)	Suspended	Solids (mg/L)
	Time			Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
21-Oct-09	14:18	Middle	2.2	27.0 27.0	27.0	32.6 32.7	32.7	55.50 55.00	55.25	3.67 3.65	3.66	7.76 7.77	7.77	4.8 4.5	4.65	5 6	5.5
23-Oct-09	15:37	Middle	1.8	27.4 27.4	27.4	32.8 32.8	32.8	57.50 53.50	55.50	3.79 3.52	3.66	7.72 7.72	7.72	3.8 4.0	3.90	8	7.0
27-Oct-09	7:56	Middle	2.3	26.7 26.7	26.7	33.5 33.6	33.6	55.50 55.90	55.70	3.69 3.71	3.70	6.82 6.83	6.83	5.6 5.6	5.60	5 5	5.0
29-Oct-09	9:22	Middle	2.3	26.6 26.6	26.6	32.6 32.7	32.6	53.50 52.80	53.15	3.58 3.53	3.56	6.28 6.28	6.28	4.3 4.3	4.30	8 7	7.5
31-Oct-09	11:49	Middle	2.0	26.5 26.5	26.5	32.6 32.6	32.6	61.10 57.90	59.50	4.09 3.88	3.99	6.85 6.89	6.87	4.0 3.7	3.85	6 5	5.5
02-Nov-09	11:27	Middle	2.6	26.2 26.2	26.2	33.3 33.2	33.3	71.60 67.90	69.75	4.80 4.56	4.68	6.74 6.75	6.75	2.9 2.6	2.75	9	8.5
04-Nov-09	12:25	Middle	2.1	25.2 25.3	25.2	33.6 33.5	33.5	72.30 68.40	70.35	4.92 4.65	4.79	6.05 6.05	6.05	2.8 2.9	2.85	10 8	9.0
06-Nov-09	13:56	Middle	2.0	25.5 25.4	25.5	33.1 33.2	33.2	58.60 58.30	58.45	3.98 3.96	3.97	6.70 6.70	6.70	3.4 3.3	3.35	9 7	8.0
10-Nov-09	6:54	Middle	1.9	25.4 25.4	25.4	33.1 33.2	33.2	50.20 49.50	49.85	3.42 3.37	3.40	6.59 6.65	6.62	4.8 4.3	4.55	7 7	7.0
12-Nov-09	9:12	Middle	2.0	25.5 25.6	25.6	32.9 32.9	32.9	44.40 43.90	44.15	3.01 2.98	3.00	5.98 5.99	5.99	2.7 2.6	2.65	7 4	5.5
14-Nov-09	11:07	Middle	2.4	24.8 24.8	24.8	32.5 32.5	32.5	57.10 56.90	57.00	3.94 3.92	3.93	7.26 7.29	7.28	3.6 3.6	3.60	5 6	5.5
16-Nov-09	11:46	Middle	1.9	24.2 24.3	24.2	31.8 31.8	31.8	73.60 73.30	73.45	5.15 5.12	5.14	8.21 8.23	8.22	8.2 7.9	8.05	8	7.0

Water Quality Monitoring Results at C7 - Mid-Flood Tide

Date	Sampling	Dept	h (m)	Tempera	ature (°C)	Salinit	y (ppt)	DO Satu	ration (%)	Dissolved O:	xygen (mg/L)	F	Н	Turbidi	ty(NTU)	Suspended	Solids (mg/L)
	Time			Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
21-Oct-09	10:51	Middle	2.4	26.9 26.9	26.9	32.7 32.7	32.7	61.20 58.80	60.00	4.07 3.91	3.99	7.82 7.82	7.82	5.8 5.5	5.65	6 7	6.5
23-Oct-09	11:01	Middle	2.7	27.0 27.0	27.0	32.9 33.0	33.0	52.90 50.90	51.90	3.51 3.38	3.45	7.86 7.87	7.87	6.8 6.5	6.65	11 13	12.0
27-Oct-09	15:35	Middle	2.4	26.9 26.9	26.9	32.8 32.9	32.8	56.60 50.50	53.55	3.76 3.35	3.56	6.62 6.63	6.63	5.5 5.5	5.50	10 8	9.0
29-Oct-09	15:49	Middle	2.5	26.8 26.8	26.8	32.7 32.6	32.7	63.50 61.50	62.50	4.23 4.09	4.16	6.21 6.24	6.23	7.7 7.3	7.50	12 11	11.5
31-Oct-09	16:42	Middle	2.4	26.7 26.7	26.7	32.5 32.6	32.6	64.00 62.80	63.40	4.27 4.19	4.23	6.65 6.66	6.66	4.8 4.6	4.70	6 8	7.0
02-Nov-09	7:05	Middle	2.7	26.4 26.4	26.4	32.9 32.9	32.9	64.60 53.80	59.20	4.32 3.60	3.96	6.73 6.75	6.74	4.7 4.8	4.65	0 0	9.0
04-Nov-09	8:08	Middle	2.2	25.2 25.2	25.2	33.5 33.5	33.5	57.10 56.10	56.60	3.89 3.82	3.86	6.03 6.05	6.04	4.9 5.0	4.95	8	8.0
06-Nov-09	10:08	Middle	2.5	25.2 25.2	25.2	33.6 33.6	33.6	57.10 55.60	56.35	3.89 3.78	3.84	6.67 6.67	6.67	4.5 4.4	4.45	0 0	9.0
10-Nov-09	13:28	Middle	2.1	25.6 25.7	25.6	32.9 32.9	32.9	60.20 58.20	59.20	4.07 3.93	4.00	6.67 6.68	6.68	4.8 4.7	4.75	8 6	7.0
12-Nov-09	14:28	Middle	2.1	25.7 25.7	25.7	33.1 33.1	33.1	42.40 41.70	42.05	2.87 2.82	2.85	5.94 5.95	5.95	3.7 3.8	3.75	8 10	9.0
14-Nov-09	15:21	Middle	2.5	24.7 24.7	24.7	32.6 32.6	32.6	44.70 45.10	44.90	3.09 3.12	3.11	7.27 7.30	7.29	3.9 4.2	4.05	7 7	7.0
16-Nov-09	7:15	Middle	2.8	24.3 24.3	24.3	32.0 31.9	32.0	56.90 52.40	54.65	3.97 3.65	3.81	7.06 7.08	7.07	8.2 7.9	8.05	9	9.0

Appendix G

Water Quality Laboratory Results

(Relevant Laboratory Results

Highlighted in Yellow)

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

: CHUNG SHUN BORING ENG CO LTD Laboratory : ALS Technichem HK Pty Ltd Page : 1 of 5

Contact : --- Contact : Chan Kwok Fai, Godfrey Work Order : HK0922129

Address : --- Address : 11/F., Chung Shun Knitting Centre,

1 - 3 Wing Yip Street,

Kwai Chung, N.T., Hong Kong

E-mail : --- E-mail : Godfrey.Chan@alsenviro.com

 Telephone
 : -- Telephone
 : +852 2610 1044

 Facsimile
 : -- Facsimile
 : +852 2610 2021

Project : BASELINE MONITORING - WQM Quote number : ---- Date received : 21-OCT-2009

Order number : ---- Date of issue : 29-OCT-2009

C-O-C number : ---- No. of samples - Received : 84

Site : --- - Analysed : 84

Report Comments

Client

This report for ALS Technichem (HK) Pty Ltd work order reference HK0922129 supersedes any previous reports with this reference. The completion date of analysis is 27-OCT-2009. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for process purposes. Abbreviations: CAS number = Chemical Abstract Services number. LOR = Limit of reporting.

Specific comments for Work Order HK0922129: Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Water sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written

approval from ALS Technichem (HK) Pty Ltd.

This document has been electronically signed by those names that appear on this report and are the authorised signatories.

Electronic signing has been carried out in compliance with procedures specified in the 'Electronic Transactions Ordinance'

of Hong Kong, Chapter 553, Section 6.

Signatory Position Authorised results for:-

Fung Lim Chee, Richard General Manager Inorganics

Page Number : 2 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922129

ALS

Analytical Results

Sub-Matrix: WATER		Compound	EA025: Suspended Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
WSD7 MID-FLOOD	[21-OCT-2009]	HK0922129-001	11		
WSD7 MID-FLOOD DUP	[21-OCT-2009]	HK0922129-002	12		
WSD9 MID-FLOOD	[21-OCT-2009]	HK0922129-003	11		
WSD9 MID-FLOOD DUP	[21-OCT-2009]	HK0922129-004	10		
WSD10 MID-FLOOD	[21-OCT-2009]	HK0922129-005	9		
WSD10 MID-FLOOD DUP	[21-OCT-2009]	HK0922129-006	8		
WSD15 MID-FLOOD	[21-OCT-2009]	HK0922129-007	7		
WSD15 MID-FLOOD DUP	[21-OCT-2009]	HK0922129-008	8		
WSD17 MID-FLOOD	[21-OCT-2009]	HK0922129-009	10		
WSD17 MID-FLOOD DUP	[21-OCT-2009]	HK0922129-010	10		
WSD19 MID-FLOOD	[21-OCT-2009]	HK0922129-011	9		
WSD19 MID-FLOOD DUP	[21-OCT-2009]	HK0922129-012	10		
WSD20 MID-FLOOD	[21-OCT-2009]	HK0922129-013	11		
WSD20 MID-FLOOD DUP	[21-OCT-2009]	HK0922129-014	12		
C8 MID-FLOOD	[21-OCT-2009]	HK0922129-015	12		
C8 MID-FLOOD DUP	[21-OCT-2009]	HK0922129-016	10		
C9 MID-FLOOD	[21-OCT-2009]	HK0922129-017	11		
C9 MID-FLOOD DUP	[21-OCT-2009]	HK0922129-018	11		
C1 MID-FLOOD	[21-OCT-2009]	HK0922129-019	8		
C1 MID-FLOOD DUP	[21-OCT-2009]	HK0922129-020	8		
C2 MID-FLOOD	[21-OCT-2009]	HK0922129-021	9		
C2 MID-FLOOD DUP	[21-OCT-2009]	HK0922129-022	8		
C3 MID-FLOOD	[21-OCT-2009]	HK0922129-023	9		
C3 MID-FLOOD DUP	[21-OCT-2009]	HK0922129-024	10		
C4 MID-FLOOD	[21-OCT-2009]	HK0922129-025	11		
C4 MID-FLOOD DUP	[21-OCT-2009]	HK0922129-026	12		
C5 MID-FLOOD	[21-OCT-2009]	HK0922129-027	14		
C5 MID-FLOOD DUP	[21-OCT-2009]	HK0922129-028	15		
C6 MID-FLOOD	[21-OCT-2009]	HK0922129-029	<u>6</u>		
C6 MID-FLOOD DUP	[21-OCT-2009]	HK0922129-030	7		
C7 MID-FLOOD	[21-OCT-2009]	HK0922129-031	<mark>6</mark>		
C7 MID-FLOOD DUP	[21-OCT-2009]	HK0922129-032	7		
RC1 MID-FLOOD	[21-OCT-2009]	HK0922129-033	7		
RC1 MID-FLOOD DUP	[21-OCT-2009]	HK0922129-034	7		
RC5 MID-FLOOD	[21-OCT-2009]	HK0922129-035	15		

Page Number : 3 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922129

Sub-Matrix: WATER		Compound	EA025: Suspended Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
RC5 MID-FLOOD DUP	[21-OCT-2009]	HK0922129-036	13		
RC7 MID-FLOOD	[21-OCT-2009]	HK0922129-037	8		
RC7 MID-FLOOD DUP	[21-OCT-2009]	HK0922129-038	8		
WSD21 MID-FLOOD	[21-OCT-2009]	HK0922129-039	14		
WSD21 MID-FLOOD DUP	[21-OCT-2009]	HK0922129-040	14		
RW1 MID-FLOOD	[21-OCT-2009]	HK0922129-041	10		
RW1 MID-FLOOD DUP	[21-OCT-2009]	HK0922129-042	8		
WSD7 MID-EBB	[21-OCT-2009]	HK0922129-043	9		
WSD7 MID-EBB DUP	[21-OCT-2009]	HK0922129-044	8		
WSD9 MID-EBB	[21-OCT-2009]	HK0922129-045	7		
WSD9 MID-EBB DUP	[21-OCT-2009]	HK0922129-046	7		
WSD10 MID-EBB	[21-OCT-2009]	HK0922129-047	8		
WSD10 MID-EBB DUP	[21-OCT-2009]	HK0922129-048	7		
WSD15 MID-EBB	[21-OCT-2009]	HK0922129-049	6		
WSD15 MID-EBB DUP	[21-OCT-2009]	HK0922129-050	7		
WSD17 MID-EBB	[21-OCT-2009]	HK0922129-051	16		
WSD17 MID-EBB DUP	[21-OCT-2009]	HK0922129-052	15		
WSD19 MID-EBB	[21-OCT-2009]	HK0922129-053	14		
WSD19 MID-EBB DUP	[21-OCT-2009]	HK0922129-054	12		
WSD20 MID-EBB	[21-OCT-2009]	HK0922129-055	9		
WSD20 MID-EBB DUP	[21-OCT-2009]	HK0922129-056	11		
C8 MID-EBB	[21-OCT-2009]	HK0922129-057	10		
C8 MID-EBB DUP	[21-OCT-2009]	HK0922129-058	12		
C9 MID-EBB	[21-OCT-2009]	HK0922129-059	20		
C9 MID-EBB DUP	[21-OCT-2009]	HK0922129-060	17		
C1 MID-EBB	[21-OCT-2009]	HK0922129-061	10		
C1 MID-EBB DUP	[21-OCT-2009]	HK0922129-062	11		
C2 MID-EBB	[21-OCT-2009]	HK0922129-063	8		
C2 MID-EBB DUP	[21-OCT-2009]	HK0922129-064	6		
C3 MID-EBB	[21-OCT-2009]	HK0922129-065	8		
C3 MID-EBB DUP	[21-OCT-2009]	HK0922129-066	6		
C4 MID-EBB	[21-OCT-2009]	HK0922129-067	11		
C4 MID-EBB DUP	[21-OCT-2009]	HK0922129-068	12		
C5 MID-EBB	[21-OCT-2009]	HK0922129-069	10		
C5 MID-EBB DUP	[21-OCT-2009]	HK0922129-070	11		

Page Number : 4 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922129

Sub-Matrix: WATER		Compound	EA025: Suspended		
			Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
C6 MID-EBB	[21-OCT-2009]	HK0922129-071	7		
C6 MID-EBB DUP	[21-OCT-2009]	HK0922129-072	8		
C7 MID-EBB	[21-OCT-2009]	HK0922129-073	5		
C7 MID-EBB DUP	[21-OCT-2009]	HK0922129-074	6		
RC1 MID-EBB	[21-OCT-2009]	HK0922129-075	7		
RC1 MID-EBB DUP	[21-OCT-2009]	HK0922129-076	8		
RC5 MID-EBB	[21-OCT-2009]	HK0922129-077	8		
RC5 MID-EBB DUP	[21-OCT-2009]	HK0922129-078	9		
RC7 MID-EBB	[21-OCT-2009]	HK0922129-079	6		
RC7 MID-EBB DUP	[21-OCT-2009]	HK0922129-080	5		
WSD21 MID-EBB	[21-OCT-2009]	HK0922129-081	9		
WSD21 MID-EBB DUP	[21-OCT-2009]	HK0922129-082	10		
RW1 MID-EBB	[21-OCT-2009]	HK0922129-083	9		
RW1 MID-EBB DUP	[21-OCT-2009]	HK0922129-084	10		

Page Number : 5 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922129

Laboratory Duplicate (DUP) Report

	. , .							
Matrix: WATER					Labo	oratory Duplicate (DUP)	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical and	d Aggregate Properties (QC Lot: 1143404)						
HK0922129-001	WSD7 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	11	12	11.4
HK0922129-011	WSD19 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	9	9	0.0
EA/ED: Physical and	d Aggregate Properties (QC Lot: 1143405)						
HK0922129-021	C2 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	9	10	15.6
HK0922129-031	C7 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	6	7	14.9
EA/ED: Physical and	d Aggregate Properties (QC Lot: 1143406)						
HK0922129-041	RW1 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	10	10	0.0
HK0922129-051	WSD17 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	16	15	0.0
EA/ED: Physical and	d Aggregate Properties (QC Lot: 1143407)						
HK0922129-061	C1 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	10	11	12.1
HK0922129-071	C6 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	7	6	<mark>15.6</mark>
EA/ED: Physical and	d Aggregate Properties (QC Lot: 1143408)						
HK0922129-081	WSD21 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	9	8	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (MI	B) Report		Laboratory Contro	I Spike (LCS) and Labor	atory Control S	pike Duplicat	e (DCS) Report	
					Spike	Spike F	Recovery (%)	Recovery	Limits (%)	RPD)s (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (Q	CLot: 1143404)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	94.5		85	115		
EA/ED: Physical and Aggregate Properties (Q	CLot: 1143405)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	99.0		85	115		
EA/ED: Physical and Aggregate Properties (Q	CLot: 1143406)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	108		85	115		
EA/ED: Physical and Aggregate Properties (Q	CLot: 1143407)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	95.5		85	115		
EA/ED: Physical and Aggregate Properties (Q	CLot: 1143408)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	94.5		85	115		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

: CHUNG SHUN BORING ENG CO LTD Laboratory : ALS Technichem HK Pty Ltd Page : 1 of 5

Contact : --- Contact : Chan Kwok Fai, Godfrey Work Order : HK0922108

Address : --- Address : 11/F., Chung Shun Knitting Centre,

1 - 3 Wing Yip Street,

Kwai Chung, N.T., Hong Kong

E-mail : --- E-mail : Godfrey.Chan@alsenviro.com

 Telephone
 : -- Telephone
 : +852 2610 1044

 Facsimile
 : -- Facsimile
 : +852 2610 2021

Project : BASELINE MONITORING - WQM Quote number : HK/1192a/2009** Date received : 23-OCT-2009

Order number : ---- Date of issue : 02-NOV-2009

C-O-C number : --- No. of samples - Received : 84

Site : ---- - Analysed : 84

Report Comments

Client

This report for ALS Technichem (HK) Pty Ltd work order reference HK0922108 supersedes any previous reports with this reference. The completion date of analysis is 28-OCT-2009. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for process purposes. Abbreviations: CAS number = Chemical Abstract Services number. LOR = Limit of reporting.

Specific comments for Work Order HK0922108: Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Water sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written

approval from ALS Technichem (HK) Pty Ltd.

This document has been electronically signed by those names that appear on this report and are the authorised signatories.

Electronic signing has been carried out in compliance with procedures specified in the 'Electronic Transactions Ordinance'

of Hong Kong, Chapter 553, Section 6.

Signatory Position Authorised results for:-

Fung Lim Chee, Richard General Manager Inorganics

Page Number : 2 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922108

ALS

Analytical Results

Sub-Matrix: WATER		Compound	EA025: Suspended		
			Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
WSD7 MID-FLOOD	[23-OCT-2009]	HK0922108-001	10		
WSD7 MID-FLOOD DUP	[23-OCT-2009]	HK0922108-002	13		
WSD9 MID-FLOOD	[23-OCT-2009]	HK0922108-003	6		
WSD9 MID-FLOOD DUP	[23-OCT-2009]	HK0922108-004	6		
WSD10 MID-FLOOD	[23-OCT-2009]	HK0922108-005	8		
WSD10 MID-FLOOD DUP	[23-OCT-2009]	HK0922108-006	6		
WSD15 MID-FLOOD	[23-OCT-2009]	HK0922108-007	11		
WSD15 MID-FLOOD DUP	[23-OCT-2009]	HK0922108-008	10		
WSD17 MID-FLOOD	[23-OCT-2009]	HK0922108-009	9		
WSD17 MID-FLOOD DUP	[23-OCT-2009]	HK0922108-010	10		
WSD19 MID-FLOOD	[23-OCT-2009]	HK0922108-011	11		
WSD19 MID-FLOOD DUP	[23-OCT-2009]	HK0922108-012	11		
WSD20 MID-FLOOD	[23-OCT-2009]	HK0922108-013	13		
WSD20 MID-FLOOD DUP	[23-OCT-2009]	HK0922108-014	13		
C8 MID-FLOOD	[23-OCT-2009]	HK0922108-015	21		
C8 MID-FLOOD DUP	[23-OCT-2009]	HK0922108-016	18		
C9 MID-FLOOD	[23-OCT-2009]	HK0922108-017	23		
C9 MID-FLOOD DUP	[23-OCT-2009]	HK0922108-018	20		
C1 MID-FLOOD	[23-OCT-2009]	HK0922108-019	12		
C1 MID-FLOOD DUP	[23-OCT-2009]	HK0922108-020	11		
C2 MID-FLOOD	[23-OCT-2009]	HK0922108-021	12		
C2 MID-FLOOD DUP	[23-OCT-2009]	HK0922108-022	13		
C3 MID-FLOOD	[23-OCT-2009]	HK0922108-023	14		
C3 MID-FLOOD DUP	[23-OCT-2009]	HK0922108-024	11		
C4 MID-FLOOD	[23-OCT-2009]	HK0922108-025	14		
C4 MID-FLOOD DUP	[23-OCT-2009]	HK0922108-026	14		
C5 MID-FLOOD	[23-OCT-2009]	HK0922108-027	15		
C5 MID-FLOOD DUP	[23-OCT-2009]	HK0922108-028	13		
C6 MID-FLOOD	[23-OCT-2009]	HK0922108-029	<mark>10</mark>		
C6 MID-FLOOD DUP	[23-OCT-2009]	HK0922108-030	8		
C7 MID-FLOOD	[23-OCT-2009]	HK0922108-031	11		
C7 MID-FLOOD DUP	[23-OCT-2009]	HK0922108-032	13		
RC1 MID-FLOOD	[23-OCT-2009]	HK0922108-033	10		
RC1 MID-FLOOD DUP	[23-OCT-2009]	HK0922108-034	10		
RC5 MID-FLOOD	[23-OCT-2009]	HK0922108-035	12		

Page Number : 3 of 5 Client

: CHUNG SHUN BORING ENG CO LTD

Work Order HK0922108

Sub-Matrix: WATER		Compound	EA025: Suspended Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
RC5 MID-FLOOD DUP	[23-OCT-2009]	HK0922108-036	10		
RC7 MID-FLOOD	[23-OCT-2009]	HK0922108-037	11		
RC7 MID-FLOOD DUP	[23-OCT-2009]	HK0922108-038	13		
WSD21 MID-FLOOD	[23-OCT-2009]	HK0922108-039	14		
WSD21 MID-FLOOD DUP	[23-OCT-2009]	HK0922108-040	12		
RW1 MID-FLOOD	[23-OCT-2009]	HK0922108-041	14		
RW1 MID-FLOOD DUP	[23-OCT-2009]	HK0922108-042	13		
WSD7 MID-EBB	[23-OCT-2009]	HK0922108-043	8		
WSD7 MID-EBB DUP	[23-OCT-2009]	HK0922108-044	8		
WSD9 MID-EBB	[23-OCT-2009]	HK0922108-045	8		
WSD9 MID-EBB DUP	[23-OCT-2009]	HK0922108-046	8		
WSD10 MID-EBB	[23-OCT-2009]	HK0922108-047	8		
WSD10 MID-EBB DUP	[23-OCT-2009]	HK0922108-048	6		
WSD15 MID-EBB	[23-OCT-2009]	HK0922108-049	6		
WSD15 MID-EBB DUP	[23-OCT-2009]	HK0922108-050	5		
WSD17 MID-EBB	[23-OCT-2009]	HK0922108-051	9		
WSD17 MID-EBB DUP	[23-OCT-2009]	HK0922108-052	8		
WSD19 MID-EBB	[23-OCT-2009]	HK0922108-053	10		
WSD19 MID-EBB DUP	[23-OCT-2009]	HK0922108-054	9		
WSD20 MID-EBB	[23-OCT-2009]	HK0922108-055	5		
WSD20 MID-EBB DUP	[23-OCT-2009]	HK0922108-056	7		
C8 MID-EBB	[23-OCT-2009]	HK0922108-057	13		
C8 MID-EBB DUP	[23-OCT-2009]	HK0922108-058	12		
C9 MID-EBB	[23-OCT-2009]	HK0922108-059	10		
C9 MID-EBB DUP	[23-OCT-2009]	HK0922108-060	13		
C1 MID-EBB	[23-OCT-2009]	HK0922108-061	6		
C1 MID-EBB DUP	[23-OCT-2009]	HK0922108-062	5		
C2 MID-EBB	[23-OCT-2009]	HK0922108-063	14		
C2 MID-EBB DUP	[23-OCT-2009]	HK0922108-064	15		
C3 MID-EBB	[23-OCT-2009]	HK0922108-065	10		
C3 MID-EBB DUP	[23-OCT-2009]	HK0922108-066	10		
C4 MID-EBB	[23-OCT-2009]	HK0922108-067	9		
C4 MID-EBB DUP	[23-OCT-2009]	HK0922108-068	10		
C5 MID-EBB	[23-OCT-2009]	HK0922108-069	11		
C5 MID-EBB DUP	[23-OCT-2009]	HK0922108-070	13		

Page Number : 4 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922108

Sub-Matrix: WATER		Compound	EA025: Suspended		
			Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
C6 MID-EBB	[23-OCT-2009]	HK0922108-071	10		
C6 MID-EBB DUP	[23-OCT-2009]	HK0922108-072	8		
C7 MID-EBB	[23-OCT-2009]	HK0922108-073	8		
C7 MID-EBB DUP	[23-OCT-2009]	HK0922108-074	<u>6</u>		
RC1 MID-EBB	[23-OCT-2009]	HK0922108-075	7		
RC1 MID-EBB DUP	[23-OCT-2009]	HK0922108-076	6		
RC5 MID-EBB	[23-OCT-2009]	HK0922108-077	7		
RC5 MID-EBB DUP	[23-OCT-2009]	HK0922108-078	7		
RC7 MID-EBB	[23-OCT-2009]	HK0922108-079	13		
RC7 MID-EBB DUP	[23-OCT-2009]	HK0922108-080	12		
WSD21 MID-EBB	[23-OCT-2009]	HK0922108-081	11		
WSD21 MID-EBB DUP	[23-OCT-2009]	HK0922108-082	10		
RW1 MID-EBB	[23-OCT-2009]	HK0922108-083	10		
RW1 MID-EBB DUP	[23-OCT-2009]	HK0922108-084	12		

Page Number : 5 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922108

Laboratory Duplicate (DUP) Report

Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)		
EA/ED: Physical and	EA/ED: Physical and Aggregate Properties (QC Lot: 1145607)									
HK0922108-001	WSD7 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	10	11	10.4		
HK0922108-011	WSD19 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	11	12	0.0		
EA/ED: Physical and	d Aggregate Properties (C	QC Lot: 1145608)								
HK0922108-021	C2 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	12	14	10.9		
HK0922108-031	C7 MID-FLOOD	EA025: Suspended Solids (SS)	()	2	mg/L	11	12	9.5		
EA/ED: Physical and	d Aggregate Properties (C	QC Lot: 1145609)								
HK0922108-041	RW1 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	14	13	9.3		
HK0922108-051	WSD17 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	9	8	0.0		
EA/ED: Physical and	d Aggregate Properties (C	QC Lot: 1145610)								
HK0922108-061	C1 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	6	7	14.9		
HK0922108-071	C6 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	10	11	0.0		
EA/ED: Physical and	d Aggregate Properties (C	QC Lot: 1145611)								
HK0922108-081	WSD21 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	11	10	9.9		

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (MI	3) Report		Laboratory Control S	Spike (LCS) and Labora	tory Control S	pike Duplicat	e (DCS) Report	
					Spike	Spike Re	covery (%)	Recovery	Limits (%)	RPD	Os (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties	(QCLot: 1145607)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	86.0		85	115		
EA/ED: Physical and Aggregate Properties	(QCLot: 1145608)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	104		85	115		
EA/ED: Physical and Aggregate Properties	(QCLot: 1145609)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	90.5		85	115		
EA/ED: Physical and Aggregate Properties	(QCLot: 1145610)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	109		85	115		
EA/ED: Physical and Aggregate Properties	(QCLot: 1145611)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	95.0		85	115		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client: CHUNG SHUN BORING ENG CO LTD: Laboratory: ALS Technichem HK Pty Ltd: Page: 1 of 5

Contact : --- Contact : Chan Kwok Fai, Godfrey Work Order : HK0922176

Address : --- Address : 11/F., Chung Shun Knitting Centre,

1 - 3 Wing Yip Street,

Kwai Chung, N.T., Hong Kong

E-mail : ---- E-mail : Godfrey.Chan@alsenviro.com

 Telephone
 : -- Telephone
 : +852 2610 1044

 Facsimile
 : -- Facsimile
 : +852 2610 2021

Project : BASELINE MONITORING - WQM Quote number : HK/1192a/2009** Date received : 27-OCT-2009

Order number : ---- Date of issue : 03-NOV-2009

 C-O-C number
 : --

 Site
 : --

 - Analysed
 : 84

 - Analysed
 : 84

Report Comments

This report for ALS Technichem (HK) Pty Ltd work order reference HK0922176 supersedes any previous reports with this reference. The completion date of analysis is 30-OCT-2009. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for process purposes. Abbreviations: CAS number = Chemical Abstract Services number. LOR = Limit of reporting.

Specific comments for Work Order HK0922176: Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Water sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written

approval from ALS Technichem (HK) Pty Ltd.

This document has been electronically signed by those names that appear on this report and are the authorised signatories.

Electronic signing has been carried out in compliance with procedures specified in the 'Electronic Transactions Ordinance'

of Hong Kong, Chapter 553, Section 6.

Signatory Position Authorised results for:-

Fung Lim Chee, Richard General Manager Inorganics

Page Number : 2 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922176

ALS

Analytical Results

Sub-Matrix: WATER		Compound	EA025: Suspended		
		LOR Unit	Solids (SS) 2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
,	time	ID	Aggregate Properties		
WSD7 MID-FLOOD	[27-OCT-2009]	HK0922176-001	12		
WSD7 MID-FLOOD DUP	[27-OCT-2009]	HK0922176-002	13		
WSD9 MID-FLOOD	[27-OCT-2009]	HK0922176-003	10		
WSD9 MID-FLOOD DUP	[27-OCT-2009]	HK0922176-004	11		
WSD10 MID-FLOOD	[27-OCT-2009]	HK0922176-005	9		
WSD10 MID-FLOOD DUP	[27-OCT-2009]	HK0922176-006	8		
WSD15 MID-FLOOD	[27-OCT-2009]	HK0922176-007	10		
WSD15 MID-FLOOD DUP	[27-OCT-2009]	HK0922176-008	10		
WSD17 MID-FLOOD	[27-OCT-2009]	HK0922176-009	11		
WSD17 MID-FLOOD DUP	[27-OCT-2009]	HK0922176-010	10		
WSD19 MID-FLOOD	[27-OCT-2009]	HK0922176-011	12		
WSD19 MID-FLOOD DUP	[27-OCT-2009]	HK0922176-012	10		
WSD20 MID-FLOOD	[27-OCT-2009]	HK0922176-013	8		
WSD20 MID-FLOOD DUP	[27-OCT-2009]	HK0922176-014	8		
C8 MID-FLOOD	[27-OCT-2009]	HK0922176-015	15		
C8 MID-FLOOD DUP	[27-OCT-2009]	HK0922176-016	13		
C9 MID-FLOOD	[27-OCT-2009]	HK0922176-017	23		
C9 MID-FLOOD DUP	[27-OCT-2009]	HK0922176-018	23		
C1 MID-FLOOD	[27-OCT-2009]	HK0922176-019	13		
C1 MID-FLOOD DUP	[27-OCT-2009]	HK0922176-020	12		
C2 MID-FLOOD	[27-OCT-2009]	HK0922176-021	8		
C2 MID-FLOOD DUP	[27-OCT-2009]	HK0922176-022	10		
C3 MID-FLOOD	[27-OCT-2009]	HK0922176-023	9		
C3 MID-FLOOD DUP	[27-OCT-2009]	HK0922176-024	7		
C4 MID-FLOOD	[27-OCT-2009]	HK0922176-025	11		
C4 MID-FLOOD DUP	[27-OCT-2009]	HK0922176-026	9		
C5 MID-FLOOD	[27-OCT-2009]	HK0922176-027	11		
C5 MID-FLOOD DUP	[27-OCT-2009]	HK0922176-028	12		
C6 MID-FLOOD	[27-OCT-2009]	HK0922176-029	10		
C6 MID-FLOOD DUP	[27-OCT-2009]	HK0922176-030	11		
C7 MID-FLOOD	[27-OCT-2009]	HK0922176-031	10		
C7 MID-FLOOD DUP	[27-OCT-2009]	HK0922176-032	8		
RC1 MID-FLOOD	[27-OCT-2009]	HK0922176-033	8		
RC1 MID-FLOOD DUP	[27-OCT-2009]	HK0922176-034	7		
RC5 MID-FLOOD	[27-OCT-2009]	HK0922176-035	11		

Page Number : 3 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922176

Sub-Matrix: WATER		Compound	EA025: Suspended Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date / time	Laboratory sample ID	EA/ED: Physical and Aggregate Properties		
RC5 MID-FLOOD DUP	[27-OCT-2009]	HK0922176-036	12		
RC7 MID-FLOOD	[27-OCT-2009]	HK0922176-037	25		
RC7 MID-FLOOD DUP	[27-OCT-2009]	HK0922176-037	22		
WSD21 MID-FLOOD	[27-OCT-2009]	HK0922176-039	10		
WSD21 MID-FLOOD DUP	[27-OCT-2009]	HK0922176-040	10		
RW1 MID-FLOOD	[27-OCT-2009]	HK0922176-041	10		
RW1 MID-FLOOD DUP	[27-OCT-2009]	HK0922176-041	12		
		HK0922176-042	12		
WSD7 MID-EBB	[27-OCT-2009]		9		
WSD7 MID-EBB DUP	[27-OCT-2009]	HK0922176-044	6		
WSD9 MID-EBB	[27-OCT-2009]	HK0922176-045	4		
WSD9 MID-EBB DUP	[27-OCT-2009]	HK0922176-046	<u> </u>		
WSD10 MID-EBB	[27-OCT-2009]	HK0922176-047	9		
WSD10 MID-EBB DUP	[27-OCT-2009]	HK0922176-048	7		
WSD15 MID-EBB	[27-OCT-2009]	HK0922176-049	7		
WSD15 MID-EBB DUP	[27-OCT-2009]	HK0922176-050	8		
WSD17 MID-EBB	[27-OCT-2009]	HK0922176-051	8		
WSD17 MID-EBB DUP	[27-OCT-2009]	HK0922176-052	7		
WSD19 MID-EBB	[27-OCT-2009]	HK0922176-053	7		
WSD19 MID-EBB DUP	[27-OCT-2009]	HK0922176-054	6		
WSD20 MID-EBB	[27-OCT-2009]	HK0922176-055	7		
WSD20 MID-EBB DUP	[27-OCT-2009]	HK0922176-056	8		
C8 MID-EBB	[27-OCT-2009]	HK0922176-057	9		
C8 MID-EBB DUP	[27-OCT-2009]	HK0922176-058	9		
C9 MID-EBB	[27-OCT-2009]	HK0922176-059	10		
C9 MID-EBB DUP	[27-OCT-2009]	HK0922176-060	10		
C1 MID-EBB	[27-OCT-2009]	HK0922176-061	4		
C1 MID-EBB DUP	[27-OCT-2009]	HK0922176-062	5		
C2 MID-EBB	[27-OCT-2009]	HK0922176-063	7		
C2 MID-EBB DUP	[27-OCT-2009]	HK0922176-064	5		
C3 MID-EBB	[27-OCT-2009]	HK0922176-065	6		
C3 MID-EBB DUP	[27-OCT-2009]	HK0922176-066	4		
C4 MID-EBB	[27-OCT-2009]	HK0922176-067	8		
C4 MID-EBB DUP	[27-OCT-2009]	HK0922176-068	8		
C5 MID-EBB	[27-OCT-2009]	HK0922176-069	8		
C5 MID-EBB DUP	[27-OCT-2009]	HK0922176-070	8		

Page Number : 4
Client : 6

: 4 of 5

: CHUNG SHUN BORING ENG CO LTD

Work Order HK0922176

Sub-Matrix: WATER		Compound	EA025: Suspended		
			Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
C6 MID-EBB	[27-OCT-2009]	HK0922176-071	7		
C6 MID-EBB DUP	[27-OCT-2009]	HK0922176-072	7		
C7 MID-EBB	[27-OCT-2009]	HK0922176-073	5		
C7 MID-EBB DUP	[27-OCT-2009]	HK0922176-074	5		
RC1 MID-EBB	[27-OCT-2009]	HK0922176-075	6		
RC1 MID-EBB DUP	[27-OCT-2009]	HK0922176-076	4		
RC5 MID-EBB	[27-OCT-2009]	HK0922176-077	5		
RC5 MID-EBB DUP	[27-OCT-2009]	HK0922176-078	6		
RC7 MID-EBB	[27-OCT-2009]	HK0922176-079	10		
RC7 MID-EBB DUP	[27-OCT-2009]	HK0922176-080	10		
WSD21 MID-EBB	[27-OCT-2009]	HK0922176-081	7		
WSD21 MID-EBB DUP	[27-OCT-2009]	HK0922176-082	9		
RW1 MID-EBB	[27-OCT-2009]	HK0922176-083	9		
RW1 MID-EBB DUP	[27-OCT-2009]	HK0922176-084	8		

Page Number : 5 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922176

Laboratory Duplicate (DUP) Report

Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)		
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1147149)								
HK0922176-001	WSD7 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	12	13	0.0		
HK0922176-011	WSD19 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	12	10	13.1		
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1147150)								
HK0922176-021	C2 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	8	8	13.0		
HK0922176-031	C7 MID-FLOOD	EA025: Suspended Solids (SS)	()	2	mg/L	10	9	11.5		
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1147151)								
HK0922176-041	RW1 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	10	11	12.8		
HK0922176-051	WSD17 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	8	8	0.0		
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1147152)								
HK0922176-061	C1 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	4	5	0.0		
HK0922176-071	C6 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	7	6	<mark>15.0</mark>		
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1147153)								
HK0922176-081	WSD21 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	7	7	0.0		

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (Mi	B) Report		Laboratory Control	Spike (LCS) and Labor	atory Control S	pike Duplicat	e (DCS) Report RPDs (%) Value Control Limit			
					Spike	Spike R	ecovery (%)	Recovery	Limits (%)	RPD	s (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit		
EA/ED: Physical and Aggregate Properties (Q	CLot: 1147149)												
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	86.0		85	115				
EA/ED: Physical and Aggregate Properties (Q	CLot: 1147150)												
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	95.0		85	115				
EA/ED: Physical and Aggregate Properties (Q	CLot: 1147151)												
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	86.5		85	115				
EA/ED: Physical and Aggregate Properties (Q	CLot: 1147152)												
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	93.5		85	115				
EA/ED: Physical and Aggregate Properties (Q	CLot: 1147153)												
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	89.5		85	115				

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

: CHUNG SHUN BORING ENG CO LTD Laboratory : ALS Technichem HK Pty Ltd Page : 1 of 5

Contact : --- Contact : Chan Kwok Fai, Godfrey Work Order : HK0922328

Address : --- Address : 11/F., Chung Shun Knitting Centre,

1 - 3 Wing Yip Street,

Kwai Chung, N.T., Hong Kong

E-mail : --- E-mail : Godfrey.Chan@alsenviro.com

 Telephone
 : -- Telephone
 : +852 2610 1044

 Facsimile
 : -- Facsimile
 : +852 2610 2021

Project : BASELINE MONITORING - WQM Quote number : HK/1192a/2009** Date received : 29-OCT-2009

Order number : ---- Date of issue : 05-NOV-2009

 C-O-C number
 : --

 Site
 : --

 - Analysed
 : 84

 - Analysed
 : 84

Report Comments

Client

This report for ALS Technichem (HK) Pty Ltd work order reference HK0922328 supersedes any previous reports with this reference. The completion date of analysis is 02-NOV-2009. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for process purposes. Abbreviations: CAS number = Chemical Abstract Services number. LOR = Limit of reporting.

Specific comments for Work Order HK0922328: Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Water sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written

approval from ALS Technichem (HK) Pty Ltd.

This document has been electronically signed by those names that appear on this report and are the authorised signatories.

Electronic signing has been carried out in compliance with procedures specified in the 'Electronic Transactions Ordinance'

of Hong Kong, Chapter 553, Section 6.

Signatory Position Authorised results for:-

Fung Lim Chee, Richard General Manager Inorganics

Page Number : 2 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922328

Analytical Results

Sub-Matrix: WATER		Compound	EA025: Suspended		
			Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
WSD7 MID-FLOOD	[29-OCT-2009]	HK0922328-001	14		
WSD7 MID-FLOOD DUP	[29-OCT-2009]	HK0922328-002	14		
WSD9 MID-FLOOD	[29-OCT-2009]	HK0922328-003	8		
WSD9 MID-FLOOD DUP	[29-OCT-2009]	HK0922328-004	9		
WSD10 MID-FLOOD	[29-OCT-2009]	HK0922328-005	8		
WSD10 MID-FLOOD DUP	[29-OCT-2009]	HK0922328-006	7		
WSD15 MID-FLOOD	[29-OCT-2009]	HK0922328-007	9		
WSD15 MID-FLOOD DUP	[29-OCT-2009]	HK0922328-008	9		
WSD17 MID-FLOOD	[29-OCT-2009]	HK0922328-009	7		
WSD17 MID-FLOOD DUP	[29-OCT-2009]	HK0922328-010	7		
WSD19 MID-FLOOD	[29-OCT-2009]	HK0922328-011	7		
WSD19 MID-FLOOD DUP	[29-OCT-2009]	HK0922328-012	8		
WSD20 MID-FLOOD	[29-OCT-2009]	HK0922328-013	7		
WSD20 MID-FLOOD DUP	[29-OCT-2009]	HK0922328-014	6		
C8 MID-FLOOD	[29-OCT-2009]	HK0922328-015	16		
C8 MID-FLOOD DUP	[29-OCT-2009]	HK0922328-016	16		
C9 MID-FLOOD	[29-OCT-2009]	HK0922328-017	23		
C9 MID-FLOOD DUP	[29-OCT-2009]	HK0922328-018	24		
C1 MID-FLOOD	[29-OCT-2009]	HK0922328-019	18		
C1 MID-FLOOD DUP	[29-OCT-2009]	HK0922328-020	19		
C2 MID-FLOOD	[29-OCT-2009]	HK0922328-021	10		
C2 MID-FLOOD DUP	[29-OCT-2009]	HK0922328-022	12		
C3 MID-FLOOD	[29-OCT-2009]	HK0922328-023	11		
C3 MID-FLOOD DUP	[29-OCT-2009]	HK0922328-024	11		
C4 MID-FLOOD	[29-OCT-2009]	HK0922328-025	15		
C4 MID-FLOOD DUP	[29-OCT-2009]	HK0922328-026	14		
C5 MID-FLOOD	[29-OCT-2009]	HK0922328-027	11		
C5 MID-FLOOD DUP	[29-OCT-2009]	HK0922328-028	12		
C6 MID-FLOOD	[29-OCT-2009]	HK0922328-029	10		
C6 MID-FLOOD DUP	[29-OCT-2009]	HK0922328-030	9		
C7 MID-FLOOD	[29-OCT-2009]	HK0922328-031	12		
C7 MID-FLOOD DUP	[29-OCT-2009]	HK0922328-032	11		
RC1 MID-FLOOD	[29-OCT-2009]	HK0922328-033	14		
RC1 MID-FLOOD DUP	[29-OCT-2009]	HK0922328-034	12		
RC5 MID-FLOOD	[29-OCT-2009]	HK0922328-035	12		

Page Number : 3 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Sub-Matrix: WATER		Compound	EA025: Suspended Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
RC5 MID-FLOOD DUP	[29-OCT-2009]	HK0922328-036	11		
RC7 MID-FLOOD	[29-OCT-2009]	HK0922328-037	9		
RC7 MID-FLOOD DUP	[29-OCT-2009]	HK0922328-038	9		
WSD21 MID-FLOOD	[29-OCT-2009]	HK0922328-039	13		
WSD21 MID-FLOOD DUP	[29-OCT-2009]	HK0922328-040	11		
RW1 MID-FLOOD	[29-OCT-2009]	HK0922328-041	12		
RW1 MID-FLOOD DUP	[29-OCT-2009]	HK0922328-042	12		
WSD7 MID-EBB	[29-OCT-2009]	HK0922328-043	12		
WSD7 MID-EBB DUP	[29-OCT-2009]	HK0922328-044	11		
WSD9 MID-EBB	[29-OCT-2009]	HK0922328-045	8		
WSD9 MID-EBB DUP	[29-OCT-2009]	HK0922328-046	8		
WSD10 MID-EBB	[29-OCT-2009]	HK0922328-047	8		
WSD10 MID-EBB DUP	[29-OCT-2009]	HK0922328-048	8		
WSD15 MID-EBB	[29-OCT-2009]	HK0922328-049	8		
WSD15 MID-EBB DUP	[29-OCT-2009]	HK0922328-050	9		
WSD17 MID-EBB	[29-OCT-2009]	HK0922328-051	8		
WSD17 MID-EBB DUP	[29-OCT-2009]	HK0922328-052	9		
WSD19 MID-EBB	[29-OCT-2009]	HK0922328-053	8		
WSD19 MID-EBB DUP	[29-OCT-2009]	HK0922328-054	10		
WSD20 MID-EBB	[29-OCT-2009]	HK0922328-055	9		
WSD20 MID-EBB DUP	[29-OCT-2009]	HK0922328-056	8		
C8 MID-EBB	[29-OCT-2009]	HK0922328-057	12		
C8 MID-EBB DUP	[29-OCT-2009]	HK0922328-058	12		
C9 MID-EBB	[29-OCT-2009]	HK0922328-059	13		
C9 MID-EBB DUP	[29-OCT-2009]	HK0922328-060	13		
C1 MID-EBB	[29-OCT-2009]	HK0922328-061	9		
C1 MID-EBB DUP	[29-OCT-2009]	HK0922328-062	10		
C2 MID-EBB	[29-OCT-2009]	HK0922328-063	10		
C2 MID-EBB DUP	[29-OCT-2009]	HK0922328-064	8		
C3 MID-EBB	[29-OCT-2009]	HK0922328-065	11		
C3 MID-EBB DUP	[29-OCT-2009]	HK0922328-066	10		
C4 MID-EBB	[29-OCT-2009]	HK0922328-067	7		
C4 MID-EBB DUP	[29-OCT-2009]	HK0922328-068	6		
C5 MID-EBB	[29-OCT-2009]	HK0922328-069	9		
C5 MID-EBB DUP	[29-OCT-2009]	HK0922328-070	11		

Page Number :
Client :

: 4 of 5

: CHUNG SHUN BORING ENG CO LTD

Sub-Matrix: WATER		Compound	EA025: Suspended		
			Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
C6 MID-EBB	[29-OCT-2009]	HK0922328-071	9		
C6 MID-EBB DUP	[29-OCT-2009]	HK0922328-072	8		
C7 MID-EBB	[29-OCT-2009]	HK0922328-073	8		
C7 MID-EBB DUP	[29-OCT-2009]	HK0922328-074	<mark>7</mark>		
RC1 MID-EBB	[29-OCT-2009]	HK0922328-075	9		
RC1 MID-EBB DUP	[29-OCT-2009]	HK0922328-076	10		
RC5 MID-EBB	[29-OCT-2009]	HK0922328-077	10		
RC5 MID-EBB DUP	[29-OCT-2009]	HK0922328-078	9		
RC7 MID-EBB	[29-OCT-2009]	HK0922328-079	10		
RC7 MID-EBB DUP	[29-OCT-2009]	HK0922328-080	8		
WSD21 MID-EBB	[29-OCT-2009]	HK0922328-081	8		
WSD21 MID-EBB DUP	[29-OCT-2009]	HK0922328-082	10		
RW1 MID-EBB	[29-OCT-2009]	HK0922328-083	9		
RW1 MID-EBB DUP	[29-OCT-2009]	HK0922328-084	9		

Page Number : 5 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922328

Laboratory Duplicate (DUP) Report

Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)			
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1149302)									
HK0922328-001	WSD7 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	14	16	9.7			
HK0922328-011	WSD19 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	7	8	0.0			
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1149303)									
HK0922328-021	C2 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	10	11	0.0			
HK0922328-031	C7 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	12	12	0.0			
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1149304)									
HK0922328-041	RW1 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	12	12	0.0			
HK0922328-051	WSD17 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	8	9	0.0			
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1149305)									
HK0922328-061	C1 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	9	10	11.2			
HK0922328-071	C6 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	9	9	0.0			
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1149306)									
HK0922328-081	WSD21 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	8	8	0.0			

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (MI	B) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Repo				te (DCS) Report		
					Spike	Spike R	ecovery (%)	Recovery	Limits (%)	RPD)s (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (Q	CLot: 1149302)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	86.5		85	115		
EA/ED: Physical and Aggregate Properties (Q	CLot: 1149303)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	89.5		85	115		
EA/ED: Physical and Aggregate Properties (Q	CLot: 1149304)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	112		85	115		
EA/ED: Physical and Aggregate Properties (Q	CLot: 1149305)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	108		85	115		
EA/ED: Physical and Aggregate Properties (Q	CLot: 1149306)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	114		85	115		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

: CHUNG SHUN BORING ENG CO LTD Laboratory : ALS Technichem HK Pty Ltd Page : 1 of 5

Contact : --- Contact : Chan Kwok Fai, Godfrey Work Order : HK0922329

Address : --- Address : 11/F., Chung Shun Knitting Centre,

1 - 3 Wing Yip Street,

Kwai Chung, N.T., Hong Kong

E-mail : Godfrey.Chan@alsenviro.com

 Telephone
 : -- Telephone
 : +852 2610 1044

 Facsimile
 : -- Facsimile
 : +852 2610 2021

Project : BASELINE MONITORING - WQM Quote number : HK/1192a/2009** Date received : 31-OCT-2009

Order number : ---- Date of issue : 06-NOV-2009

C-O-C number : --- No. of samples - Received : 84

Site : ---- - Analysed : 84

Report Comments

Client

This report for ALS Technichem (HK) Pty Ltd work order reference HK0922329 supersedes any previous reports with this reference. The completion date of analysis is 04-NOV-2009. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for process purposes. Abbreviations: CAS number = Chemical Abstract Services number. LOR = Limit of reporting.

Specific comments for Work Order HK0922329: Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Water sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written

approval from ALS Technichem (HK) Pty Ltd.

This document has been electronically signed by those names that appear on this report and are the authorised signatories.

Electronic signing has been carried out in compliance with procedures specified in the 'Electronic Transactions Ordinance'

of Hong Kong, Chapter 553, Section 6.

Signatory Position Authorised results for:-

Fung Lim Chee, Richard General Manager Inorganics

Page Number : 2 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922329

ALS

Analytical Results

Sub-Matrix: WATER		Compound	EA025: Suspended		
			Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
WSD7 MID-FLOOD	[31-OCT-2009]	HK0922329-001	13		
WSD7 MID-FLOOD DUP	[31-OCT-2009]	HK0922329-002	11		
WSD9 MID-FLOOD	[31-OCT-2009]	HK0922329-003	8		
WSD9 MID-FLOOD DUP	[31-OCT-2009]	HK0922329-004	6		
WSD10 MID-FLOOD	[31-OCT-2009]	HK0922329-005	7		
WSD10 MID-FLOOD DUP	[31-OCT-2009]	HK0922329-006	8		
WSD15 MID-FLOOD	[31-OCT-2009]	HK0922329-007	8		
WSD15 MID-FLOOD DUP	[31-OCT-2009]	HK0922329-008	8		
WSD17 MID-FLOOD	[31-OCT-2009]	HK0922329-009	12		
WSD17 MID-FLOOD DUP	[31-OCT-2009]	HK0922329-010	10		
WSD19 MID-FLOOD	[31-OCT-2009]	HK0922329-011	11		
WSD19 MID-FLOOD DUP	[31-OCT-2009]	HK0922329-012	13		
WSD20 MID-FLOOD	[31-OCT-2009]	HK0922329-013	8		
WSD20 MID-FLOOD DUP	[31-OCT-2009]	HK0922329-014	8		
C8 MID-FLOOD	[31-OCT-2009]	HK0922329-015	14		
C8 MID-FLOOD DUP	[31-OCT-2009]	HK0922329-016	13		
C9 MID-FLOOD	[31-OCT-2009]	HK0922329-017	19		
C9 MID-FLOOD DUP	[31-OCT-2009]	HK0922329-018	18		
C1 MID-FLOOD	[31-OCT-2009]	HK0922329-019	11		
C1 MID-FLOOD DUP	[31-OCT-2009]	HK0922329-020	10		
C2 MID-FLOOD	[31-OCT-2009]	HK0922329-021	10		
C2 MID-FLOOD DUP	[31-OCT-2009]	HK0922329-022	10		
C3 MID-FLOOD	[31-OCT-2009]	HK0922329-023	15		
C3 MID-FLOOD DUP	[31-OCT-2009]	HK0922329-024	15		
C4 MID-FLOOD	[31-OCT-2009]	HK0922329-025	10		
C4 MID-FLOOD DUP	[31-OCT-2009]	HK0922329-026	9		
C5 MID-FLOOD	[31-OCT-2009]	HK0922329-027	9		
C5 MID-FLOOD DUP	[31-OCT-2009]	HK0922329-028	10		
C6 MID-FLOOD	[31-OCT-2009]	HK0922329-029	8		
C6 MID-FLOOD DUP	[31-OCT-2009]	HK0922329-030	6		
C7 MID-FLOOD	[31-OCT-2009]	HK0922329-031	6		
C7 MID-FLOOD DUP	[31-OCT-2009]	HK0922329-032	8		
RC1 MID-FLOOD	[31-OCT-2009]	HK0922329-033	9		
RC1 MID-FLOOD DUP	[31-OCT-2009]	HK0922329-034	10		
RC5 MID-FLOOD	[31-OCT-2009]	HK0922329-035	8		

Page Number : 3 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Sub-Matrix: WATER		Compound	EA025: Suspended Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
RC5 MID-FLOOD DUP	[31-OCT-2009]	HK0922329-036	7		
RC7 MID-FLOOD	[31-OCT-2009]	HK0922329-037	7		
RC7 MID-FLOOD DUP	[31-OCT-2009]	HK0922329-038	7		
WSD21 MID-FLOOD	[31-OCT-2009]	HK0922329-039	11		
WSD21 MID-FLOOD DUP	[31-OCT-2009]	HK0922329-040	9		
RW1 MID-FLOOD	[31-OCT-2009]	HK0922329-041	9		
RW1 MID-FLOOD DUP	[31-OCT-2009]	HK0922329-042	9		
WSD7 MID-EBB	[31-OCT-2009]	HK0922329-043	10		
WSD7 MID-EBB DUP	[31-OCT-2009]	HK0922329-044	8		
WSD9 MID-EBB	[31-OCT-2009]	HK0922329-045	8		
WSD9 MID-EBB DUP	[31-OCT-2009]	HK0922329-046	6		
WSD10 MID-EBB	[31-OCT-2009]	HK0922329-047	9		
WSD10 MID-EBB DUP	[31-OCT-2009]	HK0922329-048	11		
WSD15 MID-EBB	[31-OCT-2009]	HK0922329-049	7		
WSD15 MID-EBB DUP	[31-OCT-2009]	HK0922329-050	5		
WSD17 MID-EBB	[31-OCT-2009]	HK0922329-051	9		
WSD17 MID-EBB DUP	[31-OCT-2009]	HK0922329-052	10		
WSD19 MID-EBB	[31-OCT-2009]	HK0922329-053	9		
WSD19 MID-EBB DUP	[31-OCT-2009]	HK0922329-054	9		
WSD20 MID-EBB	[31-OCT-2009]	HK0922329-055	11		
WSD20 MID-EBB DUP	[31-OCT-2009]	HK0922329-056	11		
C8 MID-EBB	[31-OCT-2009]	HK0922329-057	12		
C8 MID-EBB DUP	[31-OCT-2009]	HK0922329-058	10		
C9 MID-EBB	[31-OCT-2009]	HK0922329-059	13		
C9 MID-EBB DUP	[31-OCT-2009]	HK0922329-060	14		
C1 MID-EBB	[31-OCT-2009]	HK0922329-061	10		
C1 MID-EBB DUP	[31-OCT-2009]	HK0922329-062	9		
C2 MID-EBB	[31-OCT-2009]	HK0922329-063	9		
C2 MID-EBB DUP	[31-OCT-2009]	HK0922329-064	8		
C3 MID-EBB	[31-OCT-2009]	HK0922329-065	11		
C3 MID-EBB DUP	[31-OCT-2009]	HK0922329-066	9		
C4 MID-EBB	[31-OCT-2009]	HK0922329-067	10		
C4 MID-EBB DUP	[31-OCT-2009]	HK0922329-068	10		
C5 MID-EBB	[31-OCT-2009]	HK0922329-069	12		
C5 MID-EBB DUP	[31-OCT-2009]	HK0922329-070	10		

Page Number : 4 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Sub-Matrix: WATER		Compound	EA025: Suspended		
			Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
C6 MID-EBB	[31-OCT-2009]	HK0922329-071	12		
C6 MID-EBB DUP	[31-OCT-2009]	HK0922329-072	10		
C7 MID-EBB	[31-OCT-2009]	HK0922329-073	6		
C7 MID-EBB DUP	[31-OCT-2009]	HK0922329-074	<u>5</u>		
RC1 MID-EBB	[31-OCT-2009]	HK0922329-075	10		
RC1 MID-EBB DUP	[31-OCT-2009]	HK0922329-076	9		
RC5 MID-EBB	[31-OCT-2009]	HK0922329-077	8		
RC5 MID-EBB DUP	[31-OCT-2009]	HK0922329-078	9		
RC7 MID-EBB	[31-OCT-2009]	HK0922329-079	10		
RC7 MID-EBB DUP	[31-OCT-2009]	HK0922329-080	10		
WSD21 MID-EBB	[31-OCT-2009]	HK0922329-081	11		
WSD21 MID-EBB DUP	[31-OCT-2009]	HK0922329-082	10		
RW1 MID-EBB	[31-OCT-2009]	HK0922329-083	10		
RW1 MID-EBB DUP	[31-OCT-2009]	HK0922329-084	10		

Page Number : 5 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922329

Laboratory Duplicate (DUP) Report

Matrix: WATER					Lab	oratory Duplicate (DUP) I	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical and	d Aggregate Properties (C	QC Lot: 1152735)						
HK0922329-001	WSD7 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	13	12	0.0
HK0922329-011	WSD19 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	11	12	9.0
EA/ED: Physical and	d Aggregate Properties (C	QC Lot: 1152736)						
HK0922329-021	C2 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	10	11	0.0
HK0922329-031	C7 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	6	7	15.3
EA/ED: Physical and	d Aggregate Properties (C	QC Lot: 1152737)						
HK0922329-041	RW1 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	9	8	12.9
HK0922329-051	WSD17 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	9	10	10.9
EA/ED: Physical and	d Aggregate Properties (C	QC Lot: 1152738)						
HK0922329-061	C1 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	10	11	0.0
HK0922329-071	C6 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	12	(11)	8.7
EA/ED: Physical and	d Aggregate Properties (C	QC Lot: 1152739)						
HK0922329-081	WSD21 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	11	10	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (MI	B) Report		Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report					
					Spike	Spike R	ecovery (%)	Recovery	Limits (%)	RPD	s (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QC	A/ED: Physical and Aggregate Properties (QCLot: 1152735)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	97.5		85	115		
EA/ED: Physical and Aggregate Properties (QC	CLot: 1152736)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	96.0		85	115		
EA/ED: Physical and Aggregate Properties (QC	CLot: 1152737)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	99.5		85	115		
EA/ED: Physical and Aggregate Properties (QC	CLot: 1152738)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	98.0		85	115		
EA/ED: Physical and Aggregate Properties (QC	CLot: 1152739)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	111		85	115		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

: CHUNG SHUN BORING ENG CO LTD Laboratory : ALS Technichem HK Pty Ltd Page : 1 of 5

Contact : --- Contact : Chan Kwok Fai, Godfrey Work Order : HK0922873

Address : --- Address : 11/F., Chung Shun Knitting Centre,

1 - 3 Wing Yip Street,

Kwai Chung, N.T., Hong Kong

E-mail : Godfrey.Chan@alsenviro.com

 Telephone
 : -- Telephone
 : +852 2610 1044

 Facsimile
 : -- Facsimile
 : +852 2610 2021

Project : BASELINE MONITORING - WQM Quote number : HK/1192a/2009** Date received : 02-NOV-2009

Order number : ---- Date of issue : 09-NOV-2009

C-O-C number : ---- No. of samples - Received : 84

Site : ---- - Analysed : 84

Report Comments

Client

This report for ALS Technichem (HK) Pty Ltd work order reference HK0922873 supersedes any previous reports with this reference. The completion date of analysis is 04-NOV-2009. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for process purposes. Abbreviations: CAS number = Chemical Abstract Services number. LOR = Limit of reporting.

Specific comments for Work Order HK0922873 : Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Water sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written

approval from ALS Technichem (HK) Pty Ltd.

This document has been electronically signed by those names that appear on this report and are the authorised signatories.

Electronic signing has been carried out in compliance with procedures specified in the 'Electronic Transactions Ordinance'

of Hong Kong. Chapter 553. Section 6.

Signatory Position Authorised results for:-

Fung Lim Chee, Richard General Manager Inorganics

Page Number : 2 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922873

Analytical Results

Sub-Matrix: WATER		Compound	EA025: Suspended		
			Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
WSD7 MID-FLOOD	[02-NOV-2009]	HK0922873-001	13		
WSD7 MID-FLOOD DUP	[02-NOV-2009]	HK0922873-002	12		
WSD9 MID-FLOOD	[02-NOV-2009]	HK0922873-003	10		
WSD9 MID-FLOOD DUP	[02-NOV-2009]	HK0922873-004	9		
WSD10 MID-FLOOD	[02-NOV-2009]	HK0922873-005	11		
WSD10 MID-FLOOD DUP	[02-NOV-2009]	HK0922873-006	9		
WSD15 MID-FLOOD	[02-NOV-2009]	HK0922873-007	9		
WSD15 MID-FLOOD DUP	[02-NOV-2009]	HK0922873-008	8		
WSD17 MID-FLOOD	[02-NOV-2009]	HK0922873-009	8		
WSD17 MID-FLOOD DUP	[02-NOV-2009]	HK0922873-010	9		
WSD19 MID-FLOOD	[02-NOV-2009]	HK0922873-011	11		
WSD19 MID-FLOOD DUP	[02-NOV-2009]	HK0922873-012	9		
WSD20 MID-FLOOD	[02-NOV-2009]	HK0922873-013	9		
WSD20 MID-FLOOD DUP	[02-NOV-2009]	HK0922873-014	11		
C8 MID-FLOOD	[02-NOV-2009]	HK0922873-015	10		
C8 MID-FLOOD DUP	[02-NOV-2009]	HK0922873-016	10		
C9 MID-FLOOD	[02-NOV-2009]	HK0922873-017	10		
C9 MID-FLOOD DUP	[02-NOV-2009]	HK0922873-018	11		
C1 MID-FLOOD	[02-NOV-2009]	HK0922873-019	9		
C1 MID-FLOOD DUP	[02-NOV-2009]	HK0922873-020	9		
C2 MID-FLOOD	[02-NOV-2009]	HK0922873-021	8		
C2 MID-FLOOD DUP	[02-NOV-2009]	HK0922873-022	8		
C3 MID-FLOOD	[02-NOV-2009]	HK0922873-023	8		
C3 MID-FLOOD DUP	[02-NOV-2009]	HK0922873-024	9		
C4 MID-FLOOD	[02-NOV-2009]	HK0922873-025	7		
C4 MID-FLOOD DUP	[02-NOV-2009]	HK0922873-026	7		
C5 MID-FLOOD	[02-NOV-2009]	HK0922873-027	5		
C5 MID-FLOOD DUP	[02-NOV-2009]	HK0922873-028	6		
C6 MID-FLOOD	[02-NOV-2009]	HK0922873-029	8		
C6 MID-FLOOD DUP	[02-NOV-2009]	HK0922873-030	10		
C7 MID-FLOOD	[02-NOV-2009]	HK0922873-031	9		
C7 MID-FLOOD DUP	[02-NOV-2009]	HK0922873-032	9		
RC1 MID-FLOOD	[02-NOV-2009]	HK0922873-033	8		
RC1 MID-FLOOD DUP	[02-NOV-2009]	HK0922873-034	7		
RC5 MID-FLOOD	[02-NOV-2009]	HK0922873-035	9		

Page Number : 3
Client : 0

: 3 of 5

: CHUNG SHUN BORING ENG CO LTD

Sub-Matrix: WATER		Compound	EA025: Suspended Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
RC5 MID-FLOOD DUP	[02-NOV-2009]	HK0922873-036	7		
RC7 MID-FLOOD	[02-NOV-2009]	HK0922873-037	7		
RC7 MID-FLOOD DUP	[02-NOV-2009]	HK0922873-038	6		
WSD21 MID-FLOOD	[02-NOV-2009]	HK0922873-039	8		
WSD21 MID-FLOOD DUP	[02-NOV-2009]	HK0922873-040	7		
RW1 MID-FLOOD	[02-NOV-2009]	HK0922873-041	9		
RW1 MID-FLOOD DUP	[02-NOV-2009]	HK0922873-042	9		
WSD7 MID-EBB	[02-NOV-2009]	HK0922873-043	12		
WSD7 MID-EBB DUP	[02-NOV-2009]	HK0922873-044	11		
WSD9 MID-EBB	[02-NOV-2009]	HK0922873-045	7		
WSD9 MID-EBB DUP	[02-NOV-2009]	HK0922873-046	9		
WSD10 MID-EBB	[02-NOV-2009]	HK0922873-047	6		
WSD10 MID-EBB DUP	[02-NOV-2009]	HK0922873-048	7		
WSD15 MID-EBB	[02-NOV-2009]	HK0922873-049	12		
WSD15 MID-EBB DUP	[02-NOV-2009]	HK0922873-050	10		
WSD17 MID-EBB	[02-NOV-2009]	HK0922873-051	12		
WSD17 MID-EBB DUP	[02-NOV-2009]	HK0922873-052	12		
WSD19 MID-EBB	[02-NOV-2009]	HK0922873-053	9		
WSD19 MID-EBB DUP	[02-NOV-2009]	HK0922873-054	8		
WSD20 MID-EBB	[02-NOV-2009]	HK0922873-055	8		
WSD20 MID-EBB DUP	[02-NOV-2009]	HK0922873-056	7		
C8 MID-EBB	[02-NOV-2009]	HK0922873-057	12		
C8 MID-EBB DUP	[02-NOV-2009]	HK0922873-058	14		
C9 MID-EBB	[02-NOV-2009]	HK0922873-059	13		
C9 MID-EBB DUP	[02-NOV-2009]	HK0922873-060	11		
C1 MID-EBB	[02-NOV-2009]	HK0922873-061	11		
C1 MID-EBB DUP	[02-NOV-2009]	HK0922873-062	9		
C2 MID-EBB	[02-NOV-2009]	HK0922873-063	10		
C2 MID-EBB DUP	[02-NOV-2009]	HK0922873-064	10		
C3 MID-EBB	[02-NOV-2009]	HK0922873-065	12		
C3 MID-EBB DUP	[02-NOV-2009]	HK0922873-066	14		
C4 MID-EBB	[02-NOV-2009]	HK0922873-067	13		
C4 MID-EBB DUP	[02-NOV-2009]	HK0922873-068	12		
C5 MID-EBB	[02-NOV-2009]	HK0922873-069	12		
C5 MID-EBB DUP	[02-NOV-2009]	HK0922873-070	13		

Page Number : 4 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Sub-Matrix: WATER		Compound	EA025: Suspended		
			Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
C6 MID-EBB	[02-NOV-2009]	HK0922873-071	10		
C6 MID-EBB DUP	[02-NOV-2009]	HK0922873-072	8		
C7 MID-EBB	[02-NOV-2009]	HK0922873-073	9		
C7 MID-EBB DUP	[02-NOV-2009]	HK0922873-074	8		
RC1 MID-EBB	[02-NOV-2009]	HK0922873-075	10		
RC1 MID-EBB DUP	[02-NOV-2009]	HK0922873-076	12		
RC5 MID-EBB	[02-NOV-2009]	HK0922873-077	9		
RC5 MID-EBB DUP	[02-NOV-2009]	HK0922873-078	9		
RC7 MID-EBB	[02-NOV-2009]	HK0922873-079	8		
RC7 MID-EBB DUP	[02-NOV-2009]	HK0922873-080	7		
WSD21 MID-EBB	[02-NOV-2009]	HK0922873-081	10		
WSD21 MID-EBB DUP	[02-NOV-2009]	HK0922873-082	11		
RW1 MID-EBB	[02-NOV-2009]	HK0922873-083	8		
RW1 MID-EBB DUP	[02-NOV-2009]	HK0922873-084	9		

Page Number : 5 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922873

Laboratory Duplicate (DUP) Report

Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)			
EA/ED: Physical and	EA/ED: Physical and Aggregate Properties (QC Lot: 1152740)										
HK0922873-001	WSD7 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	13	12	0.0			
HK0922873-011	WSD19 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	11	11	0.0			
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1152741)									
HK0922873-021	C2 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	8	9	0.0			
HK0922873-031	C7 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	9	10	11.4			
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1152742)									
HK0922873-041	RW1 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	9	9	0.0			
HK0922873-051	WSD17 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	12	14	8.7			
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1152743)									
HK0922873-061	C1 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	11	11	0.0			
HK0922873-071	C6 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	10	12	11.6			
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1152744)									
HK0922873-081	WSD21 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	10	10	0.0			

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike	Spike R	Recovery (%)	Recovery	Limits (%)	RPD	s (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QC	CLot: 1152740)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	95.5		85	115		
EA/ED: Physical and Aggregate Properties (QC	CLot: 1152741)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	112		85	115		
EA/ED: Physical and Aggregate Properties (QC	CLot: 1152742)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	104		85	115		
EA/ED: Physical and Aggregate Properties (QC	CLot: 1152743)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	104		85	115		
EA/ED: Physical and Aggregate Properties (QC	CLot: 1152744)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	111		85	115		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

: CHUNG SHUN BORING ENG CO LTD Laboratory : ALS Technichem HK Pty Ltd Page : 1 of 5

Contact : --- Contact : Chan Kwok Fai, Godfrey Work Order : HK0922875

Address : --- Address : 11/F., Chung Shun Knitting Centre,

1 - 3 Wing Yip Street,

Kwai Chung, N.T., Hong Kong

E-mail : --- E-mail : Godfrey.Chan@alsenviro.com

 Telephone
 : -- Telephone
 : +852 2610 1044

 Facsimile
 : -- Facsimile
 : +852 2610 2021

Project : BASELINE MONITORING - WQM Quote number : HK/1192a/2009** Date received : 04-NOV-2009

Order number : ---- Date of issue : 11-NOV-2009

C-O-C number : ---- No. of samples - Received : 84

Site : --- - Analysed : 84

Report Comments

Client

This report for ALS Technichem (HK) Pty Ltd work order reference HK0922875 supersedes any previous reports with this reference. The completion date of analysis is 09-NOV-2009. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for process purposes. Abbreviations: CAS number = Chemical Abstract Services number. LOR = Limit of reporting.

Specific comments for Work Order HK0922875 : Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Water sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written

This document has been electronically signed by those names that appear on this report and are the authorised signatories.

approval from ALS Technichem (HK) Pty Ltd.

Flectronic signing has been carried out in compliance with procedures specified in the 'Flectronic Transactions Ordinance'

Electronic signing has been carried out in compliance with procedures specified in the 'Electronic Transactions Ordinance'

of Hong Kong, Chapter 553, Section 6.

Signatory Position Authorised results for:-

Fung Lim Chee, Richard General Manager Inorganics

Page Number : 2 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922875

ALS

Analytical Results

Sub-Matrix: WATER		Compound	EA025: Suspended		
			Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
WSD7 MID-FLOOD	[04-NOV-2009]	HK0922875-001	12		
WSD7 MID-FLOOD DUP	[04-NOV-2009]	HK0922875-002	14		
WSD9 MID-FLOOD	[04-NOV-2009]	HK0922875-003	9		
WSD9 MID-FLOOD DUP	[04-NOV-2009]	HK0922875-004	8		
WSD10 MID-FLOOD	[04-NOV-2009]	HK0922875-005	8		
WSD10 MID-FLOOD DUP	[04-NOV-2009]	HK0922875-006	10		
WSD15 MID-FLOOD	[04-NOV-2009]	HK0922875-007	10		
WSD15 MID-FLOOD DUP	[04-NOV-2009]	HK0922875-008	12		
WSD17 MID-FLOOD	[04-NOV-2009]	HK0922875-009	9		
WSD17 MID-FLOOD DUP	[04-NOV-2009]	HK0922875-010	8		
WSD19 MID-FLOOD	[04-NOV-2009]	HK0922875-011	8		
WSD19 MID-FLOOD DUP	[04-NOV-2009]	HK0922875-012	9		
WSD20 MID-FLOOD	[04-NOV-2009]	HK0922875-013	10		
WSD20 MID-FLOOD DUP	[04-NOV-2009]	HK0922875-014	13		
C8 MID-FLOOD	[04-NOV-2009]	HK0922875-015	13		
C8 MID-FLOOD DUP	[04-NOV-2009]	HK0922875-016	12		
C9 MID-FLOOD	[04-NOV-2009]	HK0922875-017	14		
C9 MID-FLOOD DUP	[04-NOV-2009]	HK0922875-018	14		
C1 MID-FLOOD	[04-NOV-2009]	HK0922875-019	10		
C1 MID-FLOOD DUP	[04-NOV-2009]	HK0922875-020	13		
C2 MID-FLOOD	[04-NOV-2009]	HK0922875-021	9		
C2 MID-FLOOD DUP	[04-NOV-2009]	HK0922875-022	10		
C3 MID-FLOOD	[04-NOV-2009]	HK0922875-023	10		
C3 MID-FLOOD DUP	[04-NOV-2009]	HK0922875-024	10		
C4 MID-FLOOD	[04-NOV-2009]	HK0922875-025	9		
C4 MID-FLOOD DUP	[04-NOV-2009]	HK0922875-026	10		
C5 MID-FLOOD	[04-NOV-2009]	HK0922875-027	10		
C5 MID-FLOOD DUP	[04-NOV-2009]	HK0922875-028	11		
C6 MID-FLOOD	[04-NOV-2009]	HK0922875-029	4		
C6 MID-FLOOD DUP	[04-NOV-2009]	HK0922875-030	6		
C7 MID-FLOOD	[04-NOV-2009]	HK0922875-031	8		
C7 MID-FLOOD DUP	[04-NOV-2009]	HK0922875-032	8		
RC1 MID-FLOOD	[04-NOV-2009]	HK0922875-033	8		
RC1 MID-FLOOD DUP	[04-NOV-2009]	HK0922875-034	8		
RC5 MID-FLOOD	[04-NOV-2009]	HK0922875-035	10		

Page Number : 3 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Sub-Matrix: WATER		Compound	EA025: Suspended Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
RC5 MID-FLOOD DUP	[04-NOV-2009]	HK0922875-036	10		
RC7 MID-FLOOD	[04-NOV-2009]	HK0922875-037	8		
RC7 MID-FLOOD DUP	[04-NOV-2009]	HK0922875-038	7		
WSD21 MID-FLOOD	[04-NOV-2009]	HK0922875-039	13		
WSD21 MID-FLOOD DUP	[04-NOV-2009]	HK0922875-040	12		
RW1 MID-FLOOD	[04-NOV-2009]	HK0922875-041	9		
RW1 MID-FLOOD DUP	[04-NOV-2009]	HK0922875-042	11		
WSD7 MID-EBB	[04-NOV-2009]	HK0922875-043	7		
WSD7 MID-EBB DUP	[04-NOV-2009]	HK0922875-044	9		
WSD9 MID-EBB	[04-NOV-2009]	HK0922875-045	7		
WSD9 MID-EBB DUP	[04-NOV-2009]	HK0922875-046	6		
WSD10 MID-EBB	[04-NOV-2009]	HK0922875-047	6		
WSD10 MID-EBB DUP	[04-NOV-2009]	HK0922875-048	8		
WSD15 MID-EBB	[04-NOV-2009]	HK0922875-049	11		
WSD15 MID-EBB DUP	[04-NOV-2009]	HK0922875-050	14		
WSD17 MID-EBB	[04-NOV-2009]	HK0922875-051	5		
WSD17 MID-EBB DUP	[04-NOV-2009]	HK0922875-052	7		
WSD19 MID-EBB	[04-NOV-2009]	HK0922875-053	9		
WSD19 MID-EBB DUP	[04-NOV-2009]	HK0922875-054	8		
WSD20 MID-EBB	[04-NOV-2009]	HK0922875-055	7		
WSD20 MID-EBB DUP	[04-NOV-2009]	HK0922875-056	9		
C8 MID-EBB	[04-NOV-2009]	HK0922875-057	12		
C8 MID-EBB DUP	[04-NOV-2009]	HK0922875-058	13		
C9 MID-EBB	[04-NOV-2009]	HK0922875-059	14		
C9 MID-EBB DUP	[04-NOV-2009]	HK0922875-060	13		
C1 MID-EBB	[04-NOV-2009]	HK0922875-061	6		
C1 MID-EBB DUP	[04-NOV-2009]	HK0922875-062	8		
C2 MID-EBB	[04-NOV-2009]	HK0922875-063	8		
C2 MID-EBB DUP	[04-NOV-2009]	HK0922875-064	9		
C3 MID-EBB	[04-NOV-2009]	HK0922875-065	8		
C3 MID-EBB DUP	[04-NOV-2009]	HK0922875-066	9		
C4 MID-EBB	[04-NOV-2009]	HK0922875-067	13		
C4 MID-EBB DUP	[04-NOV-2009]	HK0922875-068	14		
C5 MID-EBB	[04-NOV-2009]	HK0922875-069	11		
C5 MID-EBB DUP	[04-NOV-2009]	HK0922875-070	14		

Page Number : 4 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Out Matrix MATER		0			
Sub-Matrix: WATER		Compound	EA025: Suspended		
			Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
C6 MID-EBB	[04-NOV-2009]	HK0922875-071	<mark>6</mark>		
C6 MID-EBB DUP	[04-NOV-2009]	HK0922875-072	<u>6</u>		
C7 MID-EBB	[04-NOV-2009]	HK0922875-073	10		
C7 MID-EBB DUP	[04-NOV-2009]	HK0922875-074	8		
RC1 MID-EBB	[04-NOV-2009]	HK0922875-075	6		
RC1 MID-EBB DUP	[04-NOV-2009]	HK0922875-076	7		
RC5 MID-EBB	[04-NOV-2009]	HK0922875-077	10		
RC5 MID-EBB DUP	[04-NOV-2009]	HK0922875-078	10		
RC7 MID-EBB	[04-NOV-2009]	HK0922875-079	9		
RC7 MID-EBB DUP	[04-NOV-2009]	HK0922875-080	10		
WSD21 MID-EBB	[04-NOV-2009]	HK0922875-081	10		
WSD21 MID-EBB DUP	[04-NOV-2009]	HK0922875-082	11		
RW1 MID-EBB	[04-NOV-2009]	HK0922875-083	10		
RW1 MID-EBB DUP	[04-NOV-2009]	HK0922875-084	9		

Page Number : 5 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922875

Laboratory Duplicate (DUP) Report

Matrix: WATER					Labo	oratory Duplicate (DUP) i	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1155944)						
HK0922875-001	WSD7 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	12	12	0.0
HK0922875-011	WSD19 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	8	9	0.0
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1155945)						
HK0922875-021	C2 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	9	11	11.5
HK0922875-031	C7 MID-FLOOD	EA025: Suspended Solids (SS))	2	mg/L	8	8	0.0
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1155946)						
HK0922875-041	RW1 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	9	8	0.0
HK0922875-051	WSD17 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	5	6	0.0
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1155947)						
HK0922875-061	C1 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	6	6	0.0
HK0922875-071	C6 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	6	7	14.8
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1155948)						
HK0922875-081	WSD21 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	10	10	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER		Method Blank (MB) Report Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report									
				Spike	Spike Red	covery (%)	Recovery Limits (%)		RPDs (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QCL	ot: 1155944)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	97.5		85	115		
EA/ED: Physical and Aggregate Properties (QCL	ot: 1155945)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	100		85	115		
EA/ED: Physical and Aggregate Properties (QCL	ot: 1155946)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	89.0		85	115		
EA/ED: Physical and Aggregate Properties (QCL	ot: 1155947)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	99.0		85	115		
EA/ED: Physical and Aggregate Properties (QCL	ot: 1155948)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	88.5		85	115		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

: CHUNG SHUN BORING ENG CO LTD Laboratory : ALS Technichem HK Pty Ltd Page : 1 of 5

Contact : --- Contact : Chan Kwok Fai, Godfrey Work Order : HK0922876

Address : --- HK0922876

1 - 3 Wing Yip Street,

Kwai Chung, N.T., Hong Kong

E-mail : --- E-mail : Godfrey.Chan@alsenviro.com

 Telephone
 : -- Telephone
 : +852 2610 1044

 Facsimile
 : -- Facsimile
 : +852 2610 2021

Project : BASELINE MONITORING - WQM Quote number : HK/1192a/2009** Date received : 06-NOV-2009

Order number : ---- Date of issue : 13-NOV-2009

 C-O-C number
 : --

 Site
 : --

 - Analysed
 : 84

 - Analysed
 : 84

Report Comments

Client

This report for ALS Technichem (HK) Pty Ltd work order reference HK0922876 supersedes any previous reports with this reference. The completion date of analysis is 10-NOV-2009. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for process purposes. Abbreviations: CAS number = Chemical Abstract Services number. LOR = Limit of reporting.

Specific comments for Work Order HK0922876: Sample(s) were received in a chilled condition.

Water sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written

approval from ALS Technichem (HK) Pty Ltd.

This document has been electronically signed by those names that appear on this report and are the authorised signatories.

Electronic signing has been carried out in compliance with procedures specified in the 'Electronic Transactions Ordinance'

of Hong Kong, Chapter 553, Section 6.

Signatory Position Authorised results for:-

Fung Lim Chee, Richard General Manager Inorganics

Page Number : 2 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922876

Analytical Results

Sub-Matrix: WATER		Compound	EA025: Suspended		
			Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
WSD7 MID-FLOOD	[06-NOV-2009]	HK0922876-001	18		
WSD7 MID-FLOOD DUP	[06-NOV-2009]	HK0922876-002	19		
WSD9 MID-FLOOD	[06-NOV-2009]	HK0922876-003	8		
WSD9 MID-FLOOD DUP	[06-NOV-2009]	HK0922876-004	8		
WSD10 MID-FLOOD	[06-NOV-2009]	HK0922876-005	7		
WSD10 MID-FLOOD DUP	[06-NOV-2009]	HK0922876-006	9		
WSD15 MID-FLOOD	[06-NOV-2009]	HK0922876-007	8		
WSD15 MID-FLOOD DUP	[06-NOV-2009]	HK0922876-008	10		
WSD17 MID-FLOOD	[06-NOV-2009]	HK0922876-009	9		
WSD17 MID-FLOOD DUP	[06-NOV-2009]	HK0922876-010	11		
WSD19 MID-FLOOD	[06-NOV-2009]	HK0922876-011	8		
WSD19 MID-FLOOD DUP	[06-NOV-2009]	HK0922876-012	10		
WSD20 MID-FLOOD	[06-NOV-2009]	HK0922876-013	11		
WSD20 MID-FLOOD DUP	[06-NOV-2009]	HK0922876-014	12		
C8 MID-FLOOD	[06-NOV-2009]	HK0922876-015	19		
C8 MID-FLOOD DUP	[06-NOV-2009]	HK0922876-016	16		
C9 MID-FLOOD	[06-NOV-2009]	HK0922876-017	12		
C9 MID-FLOOD DUP	[06-NOV-2009]	HK0922876-018	12		
C1 MID-FLOOD	[06-NOV-2009]	HK0922876-019	13		
C1 MID-FLOOD DUP	[06-NOV-2009]	HK0922876-020	11		
C2 MID-FLOOD	[06-NOV-2009]	HK0922876-021	9		
C2 MID-FLOOD DUP	[06-NOV-2009]	HK0922876-022	8		
C3 MID-FLOOD	[06-NOV-2009]	HK0922876-023	14		
C3 MID-FLOOD DUP	[06-NOV-2009]	HK0922876-024	12		
C4 MID-FLOOD	[06-NOV-2009]	HK0922876-025	14		
C4 MID-FLOOD DUP	[06-NOV-2009]	HK0922876-026	13		
C5 MID-FLOOD	[06-NOV-2009]	HK0922876-027	16		
C5 MID-FLOOD DUP	[06-NOV-2009]	HK0922876-028	14		
C6 MID-FLOOD	[06-NOV-2009]	HK0922876-029	10		
C6 MID-FLOOD DUP	[06-NOV-2009]	HK0922876-030	9		
C7 MID-FLOOD	[06-NOV-2009]	HK0922876-031	9		
C7 MID-FLOOD DUP	[06-NOV-2009]	HK0922876-032	9		
RC1 MID-FLOOD	[06-NOV-2009]	HK0922876-033	16		
RC1 MID-FLOOD DUP	[06-NOV-2009]	HK0922876-034	15		
RC5 MID-FLOOD	[06-NOV-2009]	HK0922876-035	12		

Page Number : 3
Client : 0

: 3 of 5

: CHUNG SHUN BORING ENG CO LTD

Sub-Matrix: WATER		Compound	EA025: Suspended Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date / time	Laboratory sample ID	EA/ED: Physical and Aggregate Properties		
RC5 MID-FLOOD DUP	[06-NOV-2009]	HK0922876-036	11		
RC7 MID-FLOOD	[06-NOV-2009]	HK0922876-037	9		
RC7 MID-FLOOD DUP	[06-NOV-2009]	HK0922876-038	9		
WSD21 MID-FLOOD	[06-NOV-2009]	HK0922876-039	10		
WSD21 MID-FLOOD DUP	[06-NOV-2009]	HK0922876-040	9		
RW1 MID-FLOOD	[06-NOV-2009]	HK0922876-041	12		
RW1 MID-FLOOD DUP	[06-NOV-2009]	HK0922876-042	12		
WSD7 MID-EBB	[06-NOV-2009]	HK0922876-043	11		
WSD7 MID-EBB DUP	[06-NOV-2009]	HK0922876-044	9		
WSD9 MID-EBB	[06-NOV-2009]	HK0922876-045	6		
WSD9 MID-EBB DUP	[06-NOV-2009]	HK0922876-046	7		
WSD10 MID-EBB	[06-NOV-2009]	HK0922876-047	7		
WSD10 MID-EBB DUP	[06-NOV-2009]	HK0922876-048	6		
WSD15 MID-EBB	[06-NOV-2009]	HK0922876-049	11		
WSD15 MID-EBB DUP	[06-NOV-2009]	HK0922876-050	9		
WSD17 MID-EBB	[06-NOV-2009]	HK0922876-051	10		
WSD17 MID-EBB DUP	[06-NOV-2009]	HK0922876-052	8		
WSD19 MID-EBB	[06-NOV-2009]	HK0922876-053	10		
WSD19 MID-EBB DUP	[06-NOV-2009]	HK0922876-054	8		
WSD20 MID-EBB	[06-NOV-2009]	HK0922876-055	8		
WSD20 MID-EBB DUP	[06-NOV-2009]	HK0922876-056	10		
C8 MID-EBB	[06-NOV-2009]	HK0922876-057	9		
C8 MID-EBB DUP	[06-NOV-2009]	HK0922876-058	11		
C9 MID-EBB	[06-NOV-2009]	HK0922876-059	12		
C9 MID-EBB DUP	[06-NOV-2009]	HK0922876-060	14		
C1 MID-EBB	[06-NOV-2009]	HK0922876-061	6		
C1 MID-EBB DUP	[06-NOV-2009]	HK0922876-062	6		
C2 MID-EBB	[06-NOV-2009]	HK0922876-063	7		
C2 MID-EBB DUP	[06-NOV-2009]	HK0922876-064	9		
C3 MID-EBB	[06-NOV-2009]	HK0922876-065	7		
C3 MID-EBB DUP	[06-NOV-2009]	HK0922876-066	6		
C4 MID-EBB	[06-NOV-2009]	HK0922876-067	9		
C4 MID-EBB DUP	[06-NOV-2009]	HK0922876-068	10		
C5 MID-EBB	[06-NOV-2009]	HK0922876-069	11		
C5 MID-EBB DUP	[06-NOV-2009]	HK0922876-070	12		

Page Number : 4 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Sub-Matrix: WATER		Compound	EA025: Suspended		
		100115	Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
C6 MID-EBB	[06-NOV-2009]	HK0922876-071	8		
C6 MID-EBB DUP	[06-NOV-2009]	HK0922876-072	8		
C7 MID-EBB	[06-NOV-2009]	HK0922876-073	9		
C7 MID-EBB DUP	[06-NOV-2009]	HK0922876-074	7		
RC1 MID-EBB	[06-NOV-2009]	HK0922876-075	8		
RC1 MID-EBB DUP	[06-NOV-2009]	HK0922876-076	9		
RC5 MID-EBB	[06-NOV-2009]	HK0922876-077	8		
RC5 MID-EBB DUP	[06-NOV-2009]	HK0922876-078	9		
RC7 MID-EBB	[06-NOV-2009]	HK0922876-079	9		
RC7 MID-EBB DUP	[06-NOV-2009]	HK0922876-080	9		
WSD21 MID-EBB	[06-NOV-2009]	HK0922876-081	9		
WSD21 MID-EBB DUP	[06-NOV-2009]	HK0922876-082	8		
RW1 MID-EBB	[06-NOV-2009]	HK0922876-083	11		
RW1 MID-EBB DUP	[06-NOV-2009]	HK0922876-084	9		

Page Number : 5 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922876

Laboratory Duplicate (DUP) Report

Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)			
EA/ED: Physical and	EA/ED: Physical and Aggregate Properties (QC Lot: 1156264)										
HK0922876-001	WSD7 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	18	18	0.0			
HK0922876-011	WSD19 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	8	9	0.0			
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1156265)									
HK0922876-021	C2 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	9	10	13.3			
HK0922876-031	C7 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	9	8	12.6			
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1156266)									
HK0922876-041	RW1 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	12	14	12.6			
HK0922876-051	WSD17 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	10	8	13.0			
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1156267)									
HK0922876-061	C1 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	6	7	0.0			
HK0922876-071	C6 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	8	10	14.4			
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1156268)									
HK0922876-081	WSD21 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	9	10	0.0			

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike	Spike R	ecovery (%)	Recovery L	Limits (%)	RPD	s (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (Q	CLot: 1156264)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	90.0		85	115		
EA/ED: Physical and Aggregate Properties (Q	CLot: 1156265)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	111		85	115		
EA/ED: Physical and Aggregate Properties (Q	CLot: 1156266)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	98.0		85	115		
EA/ED: Physical and Aggregate Properties (Q	CLot: 1156267)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	105		85	115		
EA/ED: Physical and Aggregate Properties (Q	CLot: 1156268)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	99.0		85	115		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client: CHUNG SHUN BORING ENG CO LTD: Laboratory: ALS Technichem HK Pty Ltd: Page: 1 of 5

Contact : --- Contact : Chan Kwok Fai, Godfrey Work Order : HK0922877

Address : --- Address : 11/F., Chung Shun Knitting Centre,

1 - 3 Wing Yip Street,

Kwai Chung, N.T., Hong Kong

E-mail : Godfrey.Chan@alsenviro.com

 Telephone
 : -- Telephone
 : +852 2610 1044

 Facsimile
 : -- Facsimile
 : +852 2610 2021

Project : BASELINE MONITORING - WQM Quote number : HK/1192a/2009** Date received : 10-NOV-2009

Order number : ---- Date of issue : 17-NOV-2009

C-O-C number : ---- No. of samples - Received : 84

Site : ---- - Analysed : 84

Report Comments

This report for ALS Technichem (HK) Pty Ltd work order reference HK0922877 supersedes any previous reports with this reference. The completion date of analysis is 13-NOV-2009. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for process purposes. Abbreviations: CAS number = Chemical Abstract Services number. LOR = Limit of reporting.

Specific comments for Work Order HK0922877: Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Water sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written

approval from ALS Technichem (HK) Pty Ltd.

This document has been electronically signed by those names that appear on this report and are the authorised signatories.

Electronic signing has been carried out in compliance with procedures specified in the 'Electronic Transactions Ordinance'

of Hong Kong. Chapter 553. Section 6.

Signatory Position Authorised results for:-

Fung Lim Chee, Richard General Manager Inorganics

Page Number : 2 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922877

ALS

Analytical Results

Sub-Matrix: WATER		Compound	EA025: Suspended		
			Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
WSD7 MID-FLOOD	[10-NOV-2009]	HK0922877-001	12		
WSD7 MID-FLOOD DUP	[10-NOV-2009]	HK0922877-002	14		
WSD9 MID-FLOOD	[10-NOV-2009]	HK0922877-003	10		
WSD9 MID-FLOOD DUP	[10-NOV-2009]	HK0922877-004	12		
WSD10 MID-FLOOD	[10-NOV-2009]	HK0922877-005	13		
WSD10 MID-FLOOD DUP	[10-NOV-2009]	HK0922877-006	12		
WSD15 MID-FLOOD	[10-NOV-2009]	HK0922877-007	6		
WSD15 MID-FLOOD DUP	[10-NOV-2009]	HK0922877-008	7		
WSD17 MID-FLOOD	[10-NOV-2009]	HK0922877-009	13		
WSD17 MID-FLOOD DUP	[10-NOV-2009]	HK0922877-010	12		
WSD19 MID-FLOOD	[10-NOV-2009]	HK0922877-011	14		
WSD19 MID-FLOOD DUP	[10-NOV-2009]	HK0922877-012	15		
WSD20 MID-FLOOD	[10-NOV-2009]	HK0922877-013	7		
WSD20 MID-FLOOD DUP	[10-NOV-2009]	HK0922877-014	9		
C8 MID-FLOOD	[10-NOV-2009]	HK0922877-015	14		
C8 MID-FLOOD DUP	[10-NOV-2009]	HK0922877-016	11		
C9 MID-FLOOD	[10-NOV-2009]	HK0922877-017	13		
C9 MID-FLOOD DUP	[10-NOV-2009]	HK0922877-018	13		
C1 MID-FLOOD	[10-NOV-2009]	HK0922877-019	9		
C1 MID-FLOOD DUP	[10-NOV-2009]	HK0922877-020	8		
C2 MID-FLOOD	[10-NOV-2009]	HK0922877-021	11		
C2 MID-FLOOD DUP	[10-NOV-2009]	HK0922877-022	10		
C3 MID-FLOOD	[10-NOV-2009]	HK0922877-023	12		
C3 MID-FLOOD DUP	[10-NOV-2009]	HK0922877-024	11		
C4 MID-FLOOD	[10-NOV-2009]	HK0922877-025	10		
C4 MID-FLOOD DUP	[10-NOV-2009]	HK0922877-026	11		
C5 MID-FLOOD	[10-NOV-2009]	HK0922877-027	10		
C5 MID-FLOOD DUP	[10-NOV-2009]	HK0922877-028	10		
C6 MID-FLOOD	[10-NOV-2009]	HK0922877-029	7		
C6 MID-FLOOD DUP	[10-NOV-2009]	HK0922877-030	7		
C7 MID-FLOOD	[10-NOV-2009]	HK0922877-031	8		
C7 MID-FLOOD DUP	[10-NOV-2009]	HK0922877-032	6		
RC1 MID-FLOOD	[10-NOV-2009]	HK0922877-033	9		
RC1 MID-FLOOD DUP	[10-NOV-2009]	HK0922877-034	10		
RC5 MID-FLOOD	[10-NOV-2009]	HK0922877-035	8		

Page Number : 3 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Sub-Matrix: WATER		Compound	EA025: Suspended Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
RC5 MID-FLOOD DUP	[10-NOV-2009]	HK0922877-036	8		
RC7 MID-FLOOD	[10-NOV-2009]	HK0922877-037	6		
RC7 MID-FLOOD DUP	[10-NOV-2009]	HK0922877-038	7		
WSD21 MID-FLOOD	[10-NOV-2009]	HK0922877-039	10		
WSD21 MID-FLOOD DUP	[10-NOV-2009]	HK0922877-040	11		
RW1 MID-FLOOD	[10-NOV-2009]	HK0922877-041	10		
RW1 MID-FLOOD DUP	[10-NOV-2009]	HK0922877-042	12		
WSD7 MID-EBB	[10-NOV-2009]	HK0922877-043	8		
WSD7 MID-EBB DUP	[10-NOV-2009]	HK0922877-044	10		
WSD9 MID-EBB	[10-NOV-2009]	HK0922877-045	9		
WSD9 MID-EBB DUP	[10-NOV-2009]	HK0922877-046	9		
WSD10 MID-EBB	[10-NOV-2009]	HK0922877-047	8		
WSD10 MID-EBB DUP	[10-NOV-2009]	HK0922877-048	6		
WSD15 MID-EBB	[10-NOV-2009]	HK0922877-049	6		
WSD15 MID-EBB DUP	[10-NOV-2009]	HK0922877-050	8		
WSD17 MID-EBB	[10-NOV-2009]	HK0922877-051	9		
WSD17 MID-EBB DUP	[10-NOV-2009]	HK0922877-052	8		
WSD19 MID-EBB	[10-NOV-2009]	HK0922877-053	5		
WSD19 MID-EBB DUP	[10-NOV-2009]	HK0922877-054	6		
WSD20 MID-EBB	[10-NOV-2009]	HK0922877-055	7		
WSD20 MID-EBB DUP	[10-NOV-2009]	HK0922877-056	7		
C8 MID-EBB	[10-NOV-2009]	HK0922877-057	10		
C8 MID-EBB DUP	[10-NOV-2009]	HK0922877-058	9		
C9 MID-EBB	[10-NOV-2009]	HK0922877-059	8		
C9 MID-EBB DUP	[10-NOV-2009]	HK0922877-060	8		
C1 MID-EBB	[10-NOV-2009]	HK0922877-061	8		
C1 MID-EBB DUP	[10-NOV-2009]	HK0922877-062	8		
C2 MID-EBB	[10-NOV-2009]	HK0922877-063	5		
C2 MID-EBB DUP	[10-NOV-2009]	HK0922877-064	5		
C3 MID-EBB	[10-NOV-2009]	HK0922877-065	6		
C3 MID-EBB DUP	[10-NOV-2009]	HK0922877-066	6		
C4 MID-EBB	[10-NOV-2009]	HK0922877-067	6		
C4 MID-EBB DUP	[10-NOV-2009]	HK0922877-068	7		
C5 MID-EBB	[10-NOV-2009]	HK0922877-069	8		
C5 MID-EBB DUP	[10-NOV-2009]	HK0922877-070	8		

Page Number : 4 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Sub-Matrix: WATER		Compound	EA025: Suspended		
			Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
C6 MID-EBB	[10-NOV-2009]	HK0922877-071	9		
C6 MID-EBB DUP	[10-NOV-2009]	HK0922877-072	7		
C7 MID-EBB	[10-NOV-2009]	HK0922877-073	7		
C7 MID-EBB DUP	[10-NOV-2009]	HK0922877-074	<mark>7</mark>		
RC1 MID-EBB	[10-NOV-2009]	HK0922877-075	7		
RC1 MID-EBB DUP	[10-NOV-2009]	HK0922877-076	7		
RC5 MID-EBB	[10-NOV-2009]	HK0922877-077	8		
RC5 MID-EBB DUP	[10-NOV-2009]	HK0922877-078	7		
RC7 MID-EBB	[10-NOV-2009]	HK0922877-079	8		
RC7 MID-EBB DUP	[10-NOV-2009]	HK0922877-080	8		
WSD21 MID-EBB	[10-NOV-2009]	HK0922877-081	8		
WSD21 MID-EBB DUP	[10-NOV-2009]	HK0922877-082	8		
RW1 MID-EBB	[10-NOV-2009]	HK0922877-083	9		
RW1 MID-EBB DUP	[10-NOV-2009]	HK0922877-084	7		

Page Number : 5 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922877

Laboratory Duplicate (DUP) Report

Matrix: WATER					Lab	oratory Duplicate (DUP) I	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical and	d Aggregate Properties (C							
HK0922877-001	WSD7 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	12	11	0.0
HK0922877-011	WSD19 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	14	14	0.0
EA/ED: Physical and	d Aggregate Properties (C	C Lot: 1159694)						
HK0922877-022	C2 MID-FLOOD DUP	EA025: Suspended Solids (SS)		2	mg/L	10	10	10.0
HK0922877-031	C7 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	8	7	0.0
EA/ED: Physical and	d Aggregate Properties (Q	(C Lot: 1159695)						
HK0922877-041	RW1 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	10	8	12.7
HK0922877-051	WSD17 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	9	8	12.6
EA/ED: Physical and	d Aggregate Properties (C	(C Lot: 1159696)						
HK0922877-061	C1 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	8	9	12.4
HK0922877-071	C6 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	9	8	13.1
EA/ED: Physical and	d Aggregate Properties (C	C Lot: 1159697)						
HK0922877-081	WSD21 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	8	9	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (MI	3) Report		Laboratory Control	Spike (LCS) and Labor	ratory Control S	pike Duplicat	e (DCS) Report	
					Spike	Spike R	ecovery (%)	Recovery	Limits (%)	RPL	Os (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Propertie	es (QCLot: 1159693)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	87.0		85	115		
EA/ED: Physical and Aggregate Propertie	es (QCLot: 1159694)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	110		85	115		
EA/ED: Physical and Aggregate Propertie	es (QCLot: 1159695)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	108		85	115		
EA/ED: Physical and Aggregate Propertie	es (QCLot: 1159696)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	110		85	115		
EA/ED: Physical and Aggregate Propertie	es (QCLot: 1159697)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	89.0		85	115		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

: CHUNG SHUN BORING ENG CO LTD Laboratory : ALS Technichem HK Pty Ltd Page : 1 of 5

Contact : --- Contact : Chan Kwok Fai, Godfrey Work Order : HK0922878

Address : --- HK0922878

1 - 3 Wing Yip Street,

Kwai Chung, N.T., Hong Kong

E-mail : --- E-mail : Godfrey.Chan@alsenviro.com

 Telephone
 : -- Telephone
 : +852 2610 1044

 Facsimile
 : -- Facsimile
 : +852 2610 2021

Project : BASELINE MONITORING - WQM Quote number : HK/1192a/2009** Date received : 12-NOV-2009

Order number : --- Date of issue : 19-NOV-2009

C-O-C number : --- No. of samples - Received : 84

Site : ---- - Analysed : 84

Report Comments

Client

This report for ALS Technichem (HK) Pty Ltd work order reference HK0922878 supersedes any previous reports with this reference. The completion date of analysis is 13-NOV-2009. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for process purposes. Abbreviations: CAS number = Chemical Abstract Services number. LOR = Limit of reporting.

Specific comments for Work Order HK0922878: Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Water sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written

approval from ALS Technichem (HK) Pty Ltd.

This document has been electronically signed by those names that appear on this report and are the authorised signatories.

Electronic signing has been carried out in compliance with procedures specified in the 'Electronic Transactions Ordinance'

of Hong Kong, Chapter 553, Section 6.

Signatory Position Authorised results for:-

Fung Lim Chee, Richard General Manager Inorganics

Page Number : 2 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922878

ALS

Analytical Results

Sub-Matrix: WATER		Compound	EA025: Suspended		
			Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
WSD7 MID-FLOOD	[12-NOV-2009]	HK0922878-001	11		
WSD7 MID-FLOOD DUP	[12-NOV-2009]	HK0922878-002	11		
WSD9 MID-FLOOD	[12-NOV-2009]	HK0922878-003	7		
WSD9 MID-FLOOD DUP	[12-NOV-2009]	HK0922878-004	9		
WSD10 MID-FLOOD	[12-NOV-2009]	HK0922878-005	5		
WSD10 MID-FLOOD DUP	[12-NOV-2009]	HK0922878-006	4		
WSD15 MID-FLOOD	[12-NOV-2009]	HK0922878-007	8		
WSD15 MID-FLOOD DUP	[12-NOV-2009]	HK0922878-008	7		
WSD17 MID-FLOOD	[12-NOV-2009]	HK0922878-009	14		
WSD17 MID-FLOOD DUP	[12-NOV-2009]	HK0922878-010	13		
WSD19 MID-FLOOD	[12-NOV-2009]	HK0922878-011	12		
WSD19 MID-FLOOD DUP	[12-NOV-2009]	HK0922878-012	11		
WSD20 MID-FLOOD	[12-NOV-2009]	HK0922878-013	6		
WSD20 MID-FLOOD DUP	[12-NOV-2009]	HK0922878-014	7		
C8 MID-FLOOD	[12-NOV-2009]	HK0922878-015	24		
C8 MID-FLOOD DUP	[12-NOV-2009]	HK0922878-016	20		
C9 MID-FLOOD	[12-NOV-2009]	HK0922878-017	18		
C9 MID-FLOOD DUP	[12-NOV-2009]	HK0922878-018	19		
C1 MID-FLOOD	[12-NOV-2009]	HK0922878-019	10		
C1 MID-FLOOD DUP	[12-NOV-2009]	HK0922878-020	10		
C2 MID-FLOOD	[12-NOV-2009]	HK0922878-021	10		
C2 MID-FLOOD DUP	[12-NOV-2009]	HK0922878-022	10		
C3 MID-FLOOD	[12-NOV-2009]	HK0922878-023	10		
C3 MID-FLOOD DUP	[12-NOV-2009]	HK0922878-024	10		
C4 MID-FLOOD	[12-NOV-2009]	HK0922878-025	11		
C4 MID-FLOOD DUP	[12-NOV-2009]	HK0922878-026	11		
C5 MID-FLOOD	[12-NOV-2009]	HK0922878-027	10		
C5 MID-FLOOD DUP	[12-NOV-2009]	HK0922878-028	9		
C6 MID-FLOOD	[12-NOV-2009]	HK0922878-029	10		
C6 MID-FLOOD DUP	[12-NOV-2009]	HK0922878-030	12		
C7 MID-FLOOD	[12-NOV-2009]	HK0922878-031	8		
C7 MID-FLOOD DUP	[12-NOV-2009]	HK0922878-032	10		
RC1 MID-FLOOD	[12-NOV-2009]	HK0922878-033	6		
RC1 MID-FLOOD DUP	[12-NOV-2009]	HK0922878-034	8		
RC5 MID-FLOOD	[12-NOV-2009]	HK0922878-035	10		

Page Number Client

: 3 of 5

: CHUNG SHUN BORING ENG CO LTD

Sub-Matrix: WATER		Compound	EA025: Suspended Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
RC5 MID-FLOOD DUP	[12-NOV-2009]	HK0922878-036	9		
RC7 MID-FLOOD	[12-NOV-2009]	HK0922878-037	6		
RC7 MID-FLOOD DUP	[12-NOV-2009]	HK0922878-038	7		
WSD21 MID-FLOOD	[12-NOV-2009]	HK0922878-039	10		
WSD21 MID-FLOOD DUP	[12-NOV-2009]	HK0922878-040	9		
RW1 MID-FLOOD	[12-NOV-2009]	HK0922878-041	9		
RW1 MID-FLOOD DUP	[12-NOV-2009]	HK0922878-042	9		
WSD7 MID-EBB	[12-NOV-2009]	HK0922878-043	8		
WSD7 MID-EBB DUP	[12-NOV-2009]	HK0922878-044	7		
WSD9 MID-EBB	[12-NOV-2009]	HK0922878-045	6		
WSD9 MID-EBB DUP	[12-NOV-2009]	HK0922878-046	5		
WSD10 MID-EBB	[12-NOV-2009]	HK0922878-047	5		
WSD10 MID-EBB DUP	[12-NOV-2009]	HK0922878-048	6		
WSD15 MID-EBB	[12-NOV-2009]	HK0922878-049	10		
WSD15 MID-EBB DUP	[12-NOV-2009]	HK0922878-050	8		
WSD17 MID-EBB	[12-NOV-2009]	HK0922878-051	9		
WSD17 MID-EBB DUP	[12-NOV-2009]	HK0922878-052	9		
WSD19 MID-EBB	[12-NOV-2009]	HK0922878-053	9		
WSD19 MID-EBB DUP	[12-NOV-2009]	HK0922878-054	10		
WSD20 MID-EBB	[12-NOV-2009]	HK0922878-055	5		
WSD20 MID-EBB DUP	[12-NOV-2009]	HK0922878-056	6		
C8 MID-EBB	[12-NOV-2009]	HK0922878-057	8		
C8 MID-EBB DUP	[12-NOV-2009]	HK0922878-058	9		
C9 MID-EBB	[12-NOV-2009]	HK0922878-059	12		
C9 MID-EBB DUP	[12-NOV-2009]	HK0922878-060	13		
C1 MID-EBB	[12-NOV-2009]	HK0922878-061	6		
C1 MID-EBB DUP	[12-NOV-2009]	HK0922878-062	8		
C2 MID-EBB	[12-NOV-2009]	HK0922878-063	7		
C2 MID-EBB DUP	[12-NOV-2009]	HK0922878-064	7		
C3 MID-EBB	[12-NOV-2009]	HK0922878-065	7		
C3 MID-EBB DUP	[12-NOV-2009]	HK0922878-066	8		
C4 MID-EBB	[12-NOV-2009]	HK0922878-067	8		
C4 MID-EBB DUP	[12-NOV-2009]	HK0922878-068	10		
C5 MID-EBB	[12-NOV-2009]	HK0922878-069	16		
C5 MID-EBB DUP	[12-NOV-2009]	HK0922878-070	14		

Page Number : 4 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Sub-Matrix: WATER		Compound	EA025: Suspended		
			Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
C6 MID-EBB	[12-NOV-2009]	HK0922878-071	7		
C6 MID-EBB DUP	[12-NOV-2009]	HK0922878-072	6		
C7 MID-EBB	[12-NOV-2009]	HK0922878-073	7		
C7 MID-EBB DUP	[12-NOV-2009]	HK0922878-074	4		
RC1 MID-EBB	[12-NOV-2009]	HK0922878-075	9		
RC1 MID-EBB DUP	[12-NOV-2009]	HK0922878-076	8		
RC5 MID-EBB	[12-NOV-2009]	HK0922878-077	11		
RC5 MID-EBB DUP	[12-NOV-2009]	HK0922878-078	10		
RC7 MID-EBB	[12-NOV-2009]	HK0922878-079	9		
RC7 MID-EBB DUP	[12-NOV-2009]	HK0922878-080	7		
WSD21 MID-EBB	[12-NOV-2009]	HK0922878-081	11		
WSD21 MID-EBB DUP	[12-NOV-2009]	HK0922878-082	10		
RW1 MID-EBB	[12-NOV-2009]	HK0922878-083	10		
RW1 MID-EBB DUP	[12-NOV-2009]	HK0922878-084	11		

Page Number : 5 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922878

Laboratory Duplicate (DUP) Report

Matrix: WATER					Lat	oratory Duplicate (DUP) I	Report	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1162684)						
HK0922878-001	WSD7 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	11	10	0.0
HK0922878-011	WSD19 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	12	13	10.4
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1162685)						
HK0922878-021	C2 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	10	11	10.1
HK0922878-031	C7 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	8	8	0.0
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1162686)						
HK0922878-041	RW1 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	9	10	11.2
HK0922878-051	WSD17 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	9	10	12.2
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1162687)						
HK0922878-061	C1 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	6	7	0.0
HK0922878-071	C6 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	7	6	0.0
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1162688)						
HK0922878-081	WSD21 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	11	12	8.9

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

. ,	•	. ,		•	•	· , ,					
Matrix: WATER			Method Blank (MI	3) Report		Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report					
					Spike	Spike Red	covery (%)	Recovery L	imits (%)	RPD	s (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (VED: Physical and Aggregate Properties (QCLot: 1162684)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	112		85	115		
EA/ED: Physical and Aggregate Properties (QCLot: 1162685)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	111		85	115		
EA/ED: Physical and Aggregate Properties (QCLot: 1162686)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	103		85	115		
EA/ED: Physical and Aggregate Properties (QCLot: 1162687)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	103		85	115		
EA/ED: Physical and Aggregate Properties (QCLot: 1162688)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	114		85	115		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

84

CERTIFICATE OF ANALYSIS

Client: CHUNG SHUN BORING ENG CO LTD: Laboratory: ALS Technichem HK Pty Ltd: Page: 1 of 5

Contact : --- Contact : Chan Kwok Fai, Godfrey Work Order : HK0922879

Address : --- Address : 11/F., Chung Shun Knitting Centre,

1 - 3 Wing Yip Street,

Kwai Chung, N.T., Hong Kong

E-mail : ---- E-mail : Godfrey.Chan@alsenviro.com

 Telephone
 : -- Telephone
 : +852 2610 1044

 Facsimile
 : -- Facsimile
 : +852 2610 2021

Project : BASELINE MONITORING - WQM Quote number : HK/1192a/2009** Date received : 14-NOV-2009

Order number : ---- Date of issue : 20-NOV-2009

Site : ---- - Analysed : 84

Report Comments

: ----

C-O-C number

This report for ALS Technichem (HK) Pty Ltd work order reference HK0922879 supersedes any previous reports with this reference. The completion date of analysis is 17-NOV-2009. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for process purposes. Abbreviations: CAS number = Chemical Abstract Services number. LOR = Limit of reporting.

Specific comments for Work Order HK0922879: Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Water sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written

approval from ALS Technichem (HK) Pty Ltd.

This document has been electronically signed by those names that appear on this report and are the authorised signatories.

Electronic signing has been carried out in compliance with procedures specified in the 'Electronic Transactions Ordinance'

of Hong Kong, Chapter 553, Section 6.

Signatory Position Authorised results for:-

No. of samples

Received

Fung Lim Chee, Richard General Manager Inorganics

Page Number : 2 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922879

ALS

Analytical Results

Sub-Matrix: WATER		Compound	EA025: Suspended		
			Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
WSD7 MID-FLOOD	[14-NOV-2009]	HK0922879-001	9		
WSD7 MID-FLOOD DUP	[14-NOV-2009]	HK0922879-002	7		
WSD9 MID-FLOOD	[14-NOV-2009]	HK0922879-003	7		
WSD9 MID-FLOOD DUP	[14-NOV-2009]	HK0922879-004	5		
WSD10 MID-FLOOD	[14-NOV-2009]	HK0922879-005	10		
WSD10 MID-FLOOD DUP	[14-NOV-2009]	HK0922879-006	9		
WSD15 MID-FLOOD	[14-NOV-2009]	HK0922879-007	9		
WSD15 MID-FLOOD DUP	[14-NOV-2009]	HK0922879-008	8		
WSD17 MID-FLOOD	[14-NOV-2009]	HK0922879-009	8		
WSD17 MID-FLOOD DUP	[14-NOV-2009]	HK0922879-010	8		
WSD19 MID-FLOOD	[14-NOV-2009]	HK0922879-011	12		
WSD19 MID-FLOOD DUP	[14-NOV-2009]	HK0922879-012	11		
WSD20 MID-FLOOD	[14-NOV-2009]	HK0922879-013	10		
WSD20 MID-FLOOD DUP	[14-NOV-2009]	HK0922879-014	10		
C8 MID-FLOOD	[14-NOV-2009]	HK0922879-015	14		
C8 MID-FLOOD DUP	[14-NOV-2009]	HK0922879-016	15		
C9 MID-FLOOD	[14-NOV-2009]	HK0922879-017	16		
C9 MID-FLOOD DUP	[14-NOV-2009]	HK0922879-018	14		
C1 MID-FLOOD	[14-NOV-2009]	HK0922879-019	6		
C1 MID-FLOOD DUP	[14-NOV-2009]	HK0922879-020	8		
C2 MID-FLOOD	[14-NOV-2009]	HK0922879-021	9		
C2 MID-FLOOD DUP	[14-NOV-2009]	HK0922879-022	11		
C3 MID-FLOOD	[14-NOV-2009]	HK0922879-023	12		
C3 MID-FLOOD DUP	[14-NOV-2009]	HK0922879-024	10		
C4 MID-FLOOD	[14-NOV-2009]	HK0922879-025	12		
C4 MID-FLOOD DUP	[14-NOV-2009]	HK0922879-026	14		
C5 MID-FLOOD	[14-NOV-2009]	HK0922879-027	16		
C5 MID-FLOOD DUP	[14-NOV-2009]	HK0922879-028	13		
C6 MID-FLOOD	[14-NOV-2009]	HK0922879-029	8		
C6 MID-FLOOD DUP	[14-NOV-2009]	HK0922879-030	7		
C7 MID-FLOOD	[14-NOV-2009]	HK0922879-031	7		
C7 MID-FLOOD DUP	[14-NOV-2009]	HK0922879-032	7		
RC1 MID-FLOOD	[14-NOV-2009]	HK0922879-033	11		
RC1 MID-FLOOD DUP	[14-NOV-2009]	HK0922879-034	14		
RC5 MID-FLOOD	[14-NOV-2009]	HK0922879-035	8		

Page Number : 3 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Sub-Matrix: WATER		Compound	EA025: Suspended Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date / time	Laboratory sample ID	EA/ED: Physical and		
RC5 MID-FLOOD DUP	[14-NOV-2009]	HK0922879-036	Aggregate Properties 10		
RC7 MID-FLOOD	[14-NOV-2009]	HK0922879-037	10		
	[14-NOV-2009]	HK0922879-037	10		
RC7 MID-FLOOD DUP	[14-NOV-2009]	HK0922879-039	11		
WSD21 MID-FLOOD WSD21 MID-FLOOD DUP	[14-NOV-2009]	HK0922879-040	10		
RW1 MID-FLOOD	[14-NOV-2009]	HK0922879-041	7		
		HK0922879-041	8		
RW1 MID-FLOOD DUP	[14-NOV-2009]		6		
WSD7 MID-EBB	[14-NOV-2009]	HK0922879-043	6		
WSD7 MID-EBB DUP	[14-NOV-2009]	HK0922879-044	7		
WSD9 MID-EBB	[14-NOV-2009]	HK0922879-045	6		
WSD9 MID-EBB DUP	[14-NOV-2009]	HK0922879-046			
WSD10 MID-EBB	[14-NOV-2009]	HK0922879-047	8		
WSD10 MID-EBB DUP	[14-NOV-2009]	HK0922879-048	7		
WSD15 MID-EBB	[14-NOV-2009]	HK0922879-049	8		
WSD15 MID-EBB DUP	[14-NOV-2009]	HK0922879-050	8		
WSD17 MID-EBB	[14-NOV-2009]	HK0922879-051	8		
WSD17 MID-EBB DUP	[14-NOV-2009]	HK0922879-052	9		
WSD19 MID-EBB	[14-NOV-2009]	HK0922879-053	9		
WSD19 MID-EBB DUP	[14-NOV-2009]	HK0922879-054	7		
WSD20 MID-EBB	[14-NOV-2009]	HK0922879-055	7		
WSD20 MID-EBB DUP	[14-NOV-2009]	HK0922879-056	7		
C8 MID-EBB	[14-NOV-2009]	HK0922879-057	10		
C8 MID-EBB DUP	[14-NOV-2009]	HK0922879-058	10		
C9 MID-EBB	[14-NOV-2009]	HK0922879-059	14		
C9 MID-EBB DUP	[14-NOV-2009]	HK0922879-060	12		
C1 MID-EBB	[14-NOV-2009]	HK0922879-061	9		
C1 MID-EBB DUP	[14-NOV-2009]	HK0922879-062	11		
C2 MID-EBB	[14-NOV-2009]	HK0922879-063	10		
C2 MID-EBB DUP	[14-NOV-2009]	HK0922879-064	9		
C3 MID-EBB	[14-NOV-2009]	HK0922879-065	9		
C3 MID-EBB DUP	[14-NOV-2009]	HK0922879-066	10		
C4 MID-EBB	[14-NOV-2009]	HK0922879-067	11		
C4 MID-EBB DUP	[14-NOV-2009]	HK0922879-068	13		
C5 MID-EBB	[14-NOV-2009]	HK0922879-069	11		
C5 MID-EBB DUP	[14-NOV-2009]	HK0922879-070	10		

Page Number : 4 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922879

Sub-Matrix: WATER		Compound	EA025: Suspended		
			Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
C6 MID-EBB	[14-NOV-2009]	HK0922879-071	10		
C6 MID-EBB DUP	[14-NOV-2009]	HK0922879-072	8		
C7 MID-EBB	[14-NOV-2009]	HK0922879-073	<mark>5</mark>		
C7 MID-EBB DUP	[14-NOV-2009]	HK0922879-074	<mark>6</mark>		
RC1 MID-EBB	[14-NOV-2009]	HK0922879-075	8		
RC1 MID-EBB DUP	[14-NOV-2009]	HK0922879-076	6		
RC5 MID-EBB	[14-NOV-2009]	HK0922879-077	10		
RC5 MID-EBB DUP	[14-NOV-2009]	HK0922879-078	9		
RC7 MID-EBB	[14-NOV-2009]	HK0922879-079	10		
RC7 MID-EBB DUP	[14-NOV-2009]	HK0922879-080	8		
WSD21 MID-EBB	[14-NOV-2009]	HK0922879-081	10		
WSD21 MID-EBB DUP	[14-NOV-2009]	HK0922879-082	12		
RW1 MID-EBB	[14-NOV-2009]	HK0922879-083	11		
RW1 MID-EBB DUP	[14-NOV-2009]	HK0922879-084	10		

Page Number : 5 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922879

Laboratory Duplicate (DUP) Report

Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)		
EA/ED: Physical and	d Aggregate Properties (QC Lot: 1165987)								
HK0922879-001	WSD7 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	9	10	0.0		
HK0922879-011	WSD19 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	12	13	9.8		
EA/ED: Physical and	d Aggregate Properties (QC Lot: 1165988)								
HK0922879-021	C2 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	9	10	10.3		
HK0922879-031	C7 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	7	8	0.0		
EA/ED: Physical and	d Aggregate Properties (QC Lot: 1165989)								
HK0922879-041	RW1 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	7	8	0.0		
HK0922879-051	WSD17 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	8	8	0.0		
EA/ED: Physical and	d Aggregate Properties (QC Lot: 1165990)								
HK0922879-061	C1 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	9	9	0.0		
HK0922879-071	C6 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	10	9	10.6		
EA/ED: Physical and	d Aggregate Properties (QC Lot: 1165991)								
HK0922879-081	WSD21 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	10	11	10.6		

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (MI	3) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike	Spike R	ecovery (%)	Recovery	Limits (%)	RPD)s (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (Q	CLot: 1165987)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	87.5		85	115		
EA/ED: Physical and Aggregate Properties (Q	CLot: 1165988)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	104		85	115		
EA/ED: Physical and Aggregate Properties (Q	CLot: 1165989)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	87.5		85	115		
EA/ED: Physical and Aggregate Properties (Q	CLot: 1165990)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	112		85	115		
EA/ED: Physical and Aggregate Properties (Q	CLot: 1165991)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	96.0		85	115		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client: CHUNG SHUN BORING ENG CO LTD: Laboratory: ALS Technichem HK Pty Ltd: Page: 1 of 5

Contact : --- Contact : Chan Kwok Fai, Godfrey Work Order : HK0922881

Address : --- HK0922881

1 - 3 Wing Yip Street,

Kwai Chung, N.T., Hong Kong

E-mail : ---- E-mail : Godfrey.Chan@alsenviro.com

 Telephone
 : -- Telephone
 : +852 2610 1044

 Facsimile
 : -- Facsimile
 : +852 2610 2021

Project : BASELINE MONITORING - WQM Quote number : HK/1192a/2009** Date received : 16-NOV-2009

Order number : ---- Date of issue : 23-NOV-2009

C-O-C number : ---- No. of samples - Received : 84

Site : --- - Analysed : 84

Report Comments

This report for ALS Technichem (HK) Pty Ltd work order reference HK0922881 supersedes any previous reports with this reference. The completion date of analysis is 20-NOV-2009. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for process purposes. Abbreviations: CAS number = Chemical Abstract Services number. LOR = Limit of reporting.

Specific comments for Work Order HK0922881: Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Water sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written

approval from ALS Technichem (HK) Pty Ltd.

This document has been electronically signed by those names that appear on this report and are the authorised signatories.

Electronic signing has been carried out in compliance with procedures specified in the 'Electronic Transactions Ordinance'

of Hong Kong, Chapter 553, Section 6.

Signatory Position Authorised results for:-

Fung Lim Chee, Richard General Manager Inorganics

Page Number : 2 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922881

ALS

Analytical Results

Sub-Matrix: WATER		Compound	EA025: Suspended		
			Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
WSD7 MID-FLOOD	[16-NOV-2009]	HK0922881-001	8		
WSD7 MID-FLOOD DUP	[16-NOV-2009]	HK0922881-002	10		
WSD9 MID-FLOOD	[16-NOV-2009]	HK0922881-003	6		
WSD9 MID-FLOOD DUP	[16-NOV-2009]	HK0922881-004	7		
WSD10 MID-FLOOD	[16-NOV-2009]	HK0922881-005	4		
WSD10 MID-FLOOD DUP	[16-NOV-2009]	HK0922881-006	5		
WSD15 MID-FLOOD	[16-NOV-2009]	HK0922881-007	6		
WSD15 MID-FLOOD DUP	[16-NOV-2009]	HK0922881-008	8		
WSD17 MID-FLOOD	[16-NOV-2009]	HK0922881-009	6		
WSD17 MID-FLOOD DUP	[16-NOV-2009]	HK0922881-010	6		
WSD19 MID-FLOOD	[16-NOV-2009]	HK0922881-011	6		
WSD19 MID-FLOOD DUP	[16-NOV-2009]	HK0922881-012	6		
WSD20 MID-FLOOD	[16-NOV-2009]	HK0922881-013	6		
WSD20 MID-FLOOD DUP	[16-NOV-2009]	HK0922881-014	8		
C8 MID-FLOOD	[16-NOV-2009]	HK0922881-015	7		
C8 MID-FLOOD DUP	[16-NOV-2009]	HK0922881-016	5		
C9 MID-FLOOD	[16-NOV-2009]	HK0922881-017	6		
C9 MID-FLOOD DUP	[16-NOV-2009]	HK0922881-018	6		
C1 MID-FLOOD	[16-NOV-2009]	HK0922881-019	5		
C1 MID-FLOOD DUP	[16-NOV-2009]	HK0922881-020	6		
C2 MID-FLOOD	[16-NOV-2009]	HK0922881-021	8		
C2 MID-FLOOD DUP	[16-NOV-2009]	HK0922881-022	6		
C3 MID-FLOOD	[16-NOV-2009]	HK0922881-023	6		
C3 MID-FLOOD DUP	[16-NOV-2009]	HK0922881-024	7		
C4 MID-FLOOD	[16-NOV-2009]	HK0922881-025	12		
C4 MID-FLOOD DUP	[16-NOV-2009]	HK0922881-026	10		
C5 MID-FLOOD	[16-NOV-2009]	HK0922881-027	6		
C5 MID-FLOOD DUP	[16-NOV-2009]	HK0922881-028	6		
C6 MID-FLOOD	[16-NOV-2009]	HK0922881-029	<u>6</u>		
C6 MID-FLOOD DUP	[16-NOV-2009]	HK0922881-030	8		
C7 MID-FLOOD	[16-NOV-2009]	HK0922881-031	9		
C7 MID-FLOOD DUP	[16-NOV-2009]	HK0922881-032	9		
RC1 MID-FLOOD	[16-NOV-2009]	HK0922881-033	5		
RC1 MID-FLOOD DUP	[16-NOV-2009]	HK0922881-034	7		
RC5 MID-FLOOD	[16-NOV-2009]	HK0922881-035	6		

Page Number : 3 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922881

Sub-Matrix: WATER		Compound	EA025: Suspended Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
RC5 MID-FLOOD DUP	[16-NOV-2009]	HK0922881-036	7		
RC7 MID-FLOOD	[16-NOV-2009]	HK0922881-037	7		
RC7 MID-FLOOD DUP	[16-NOV-2009]	HK0922881-038	6		
WSD21 MID-FLOOD	[16-NOV-2009]	HK0922881-039	6		
WSD21 MID-FLOOD DUP	[16-NOV-2009]	HK0922881-040	4		
RW1 MID-FLOOD	[16-NOV-2009]	HK0922881-041	6		
RW1 MID-FLOOD DUP	[16-NOV-2009]	HK0922881-042	7		
WSD7 MID-EBB	[16-NOV-2009]	HK0922881-043	7		
WSD7 MID-EBB DUP	[16-NOV-2009]	HK0922881-044	6		
WSD9 MID-EBB	[16-NOV-2009]	HK0922881-045	8		
WSD9 MID-EBB DUP	[16-NOV-2009]	HK0922881-046	8		
WSD10 MID-EBB	[16-NOV-2009]	HK0922881-047	4		
WSD10 MID-EBB DUP	[16-NOV-2009]	HK0922881-048	6		
WSD15 MID-EBB	[16-NOV-2009]	HK0922881-049	6		
WSD15 MID-EBB DUP	[16-NOV-2009]	HK0922881-050	8		
WSD17 MID-EBB	[16-NOV-2009]	HK0922881-051	11		
WSD17 MID-EBB DUP	[16-NOV-2009]	HK0922881-052	8		
WSD19 MID-EBB	[16-NOV-2009]	HK0922881-053	4		
WSD19 MID-EBB DUP	[16-NOV-2009]	HK0922881-054	4		
WSD20 MID-EBB	[16-NOV-2009]	HK0922881-055	8		
WSD20 MID-EBB DUP	[16-NOV-2009]	HK0922881-056	9		
C8 MID-EBB	[16-NOV-2009]	HK0922881-057	8		
C8 MID-EBB DUP	[16-NOV-2009]	HK0922881-058	9		
C9 MID-EBB	[16-NOV-2009]	HK0922881-059	7		
C9 MID-EBB DUP	[16-NOV-2009]	HK0922881-060	7		
C1 MID-EBB	[16-NOV-2009]	HK0922881-061	6		
C1 MID-EBB DUP	[16-NOV-2009]	HK0922881-062	7		
C2 MID-EBB	[16-NOV-2009]	HK0922881-063	8		
C2 MID-EBB DUP	[16-NOV-2009]	HK0922881-064	7		
C3 MID-EBB	[16-NOV-2009]	HK0922881-065	7		
C3 MID-EBB DUP	[16-NOV-2009]	HK0922881-066	6		
C4 MID-EBB	[16-NOV-2009]	HK0922881-067	8		
C4 MID-EBB DUP	[16-NOV-2009]	HK0922881-068	9		
C5 MID-EBB	[16-NOV-2009]	HK0922881-069	7		
C5 MID-EBB DUP	[16-NOV-2009]	HK0922881-070	8		

Page Number : 4 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922881

Sub-Matrix: WATER		Compound	EA025: Suspended		
			Solids (SS)		
		LOR Unit	2 mg/L		
Client sample ID	Client sampling date /	Laboratory sample	EA/ED: Physical and		
	time	ID	Aggregate Properties		
C6 MID-EBB	[16-NOV-2009]	HK0922881-071	10		
C6 MID-EBB DUP	[16-NOV-2009]	HK0922881-072	8		
C7 MID-EBB	[16-NOV-2009]	HK0922881-073	8		
C7 MID-EBB DUP	[16-NOV-2009]	HK0922881-074	<u>6</u>		
RC1 MID-EBB	[16-NOV-2009]	HK0922881-075	6		
RC1 MID-EBB DUP	[16-NOV-2009]	HK0922881-076	7		
RC5 MID-EBB	[16-NOV-2009]	HK0922881-077	9		
RC5 MID-EBB DUP	[16-NOV-2009]	HK0922881-078	9		
RC7 MID-EBB	[16-NOV-2009]	HK0922881-079	7		
RC7 MID-EBB DUP	[16-NOV-2009]	HK0922881-080	7		
WSD21 MID-EBB	[16-NOV-2009]	HK0922881-081	8		
WSD21 MID-EBB DUP	[16-NOV-2009]	HK0922881-082	8		
RW1 MID-EBB	[16-NOV-2009]	HK0922881-083	10		
RW1 MID-EBB DUP	[16-NOV-2009]	HK0922881-084	8		

Page Number : 5 of 5

Client : CHUNG SHUN BORING ENG CO LTD

Work Order HK0922881

Laboratory Duplicate (DUP) Report

Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)		
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1168159)								
HK0922881-001	WSD7 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	8	8	0.0		
HK0922881-011	WSD19 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	6	7	0.0		
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1168160)								
HK0922881-021	C2 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	8	6	0.0		
HK0922881-031	C7 MID-FLOOD	EA025: Suspended Solids (SS)	()	2	mg/L	9	8	0.0		
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1168161)								
HK0922881-041	RW1 MID-FLOOD	EA025: Suspended Solids (SS)		2	mg/L	6	8	0.0		
HK0922881-051	WSD17 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	11	9	12.7		
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1168162)								
HK0922881-061	C1 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	6	7	0.0		
HK0922881-071	C6 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	10	9	12.5		
EA/ED: Physical and	d Aggregate Properties (0	QC Lot: 1168163)								
HK0922881-081	WSD21 MID-EBB	EA025: Suspended Solids (SS)		2	mg/L	8	9	12.5		

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

			, ,	•						
		Method Blank (MI	3) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
				Spike	Spike Red	covery (%)	Recovery	Limits (%)	RPD	s (%)
AS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
A/ED: Physical and Aggregate Properties (QCLot: 1168159)										
	2	mg/L	<2	20 mg/L	86.5		85	115		
1168160)										
	2	mg/L	<2	20 mg/L	108		85	115		
1168161)										
	2	mg/L	<2	20 mg/L	113		85	115		
1168162)										
	2	mg/L	<2	20 mg/L	96.5		85	115		
1168163)										
	2	mg/L	<2	20 mg/L	96.0		85	115		
	1168159) 1168160) 1168161) 1168162) 1168163)	1168159) 2 1168160) 2 1168161) 2 1168162) 2 1168163)	S Number LOR Unit	1168159) 2 mg/L <2 1168160) 2 mg/L <2 1168161) 2 mg/L <2 1168162) 2 mg/L <2 1168163)	Spike Concentration Spike Concentration	Spike Spike Red Spike Re	Spike Spike Recovery (%) Spike Recovery (%)	Spike Spike Recovery (%) Recovery	Spike Spike Recovery (%) Recovery Limits (%)	Spike Spike Recovery (%) Recovery Limits (%) RPDs

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

Appendix H

Establishment of Seasonal Water Quality Action and Limit Levels (Relevant Results Highlighted in Yellow)

Appendix D Establishment of Seasonal Action and Limit Levels – Calculation using the Marine Water Quality Data Obtained at the Closest EPD Routine Monitoring Stations

 According to the location of the EPD routine monitoring stations in the diagram below, the closet monitoring station will be used for comparison purpose.

- Overlaying with Fig. 3.1, the correlation of the baseline monitoring stations and the EPD monitoring stations will be:
 - WSD15 co-relates with VM1;
 - WSD10, WSD 17 co-relates with VM2;
 - WSD9, C8, C9 co-relates with VM4
 - WSD21, C1- C7 co-relates with VM5
 - WSD19 co-relates with VM6;
 - WSD7 co-relates with VM7;
 - WSD20 co-relates with VM8
- The monthly DO, Turbidity and SS patterns derived from the EPD monitoring data for 2006 to 2008 are used to compare the baseline monitoring data collected at the intake points to take account the seasonal fluctuation in the background level. The background conditions are presented in the wet season (Apr-Sep) and dry season (Oct-Mar).
- For the baseline data taken during the dry season, the derivation of the wet season shall be adjusted with dry season Action and Limit Levels multiplied with mean variation percentage of 2006 - 2008 to account for the seasonal fluctuation.

Victoria Harbour Vivil 202000 1 Model Water 7.1 8.5 2.2	W-4 0417	I 01-1:	Deter	OI- N-	D4b	Discoluted Occurrent (see all)	To add to the co (NITLI)	0
Victoria Harbour Vivil 22/2008 1 Micade Water 7.1 8.5 2.7	Water Control Zone	Station	Dates	Sample No	Depth	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Suspended Solids (mg/L)
Vectors Nathbord								
Vectoria National Vall 304/2006 1 Middle Water 7.8 9.3 3.3 3.3 Vectoria National Vall 16/2006 1 Middle Water 5.4 13.1 1.9 Vectoria National Vall 16/2006 1 Middle Water 5.3 6.5 6.								
Victoria Harbour VMI 186/2006 1 Middle Water 5.4 13.1 19								
Victoria Harbour Vivil 18/2006 1 Mindle Water 5.3 6.6 5.6								
Victoria Narbour VM 97/2008 1 Middle Water 4.4 10.6 3.6								
Victoria Harbour VM1 49/2006 1 Middle Water 2,7 71.79 6,9 Victoria Harbour VM1 49/2006 1 Middle Water 2,7 71.79 6,9 Victoria Harbour VM1 57/10706 1 Middle Water 4,9 11.6 3.6 Victoria Harbour VM1 57/10706 1 Middle Water 6,8 13.9 4.1 Victoria Harbour VM2 57/10706 1 Middle Water 6,8 13.9 4.1 Victoria Harbour VM2 57/10706 1 Middle Water 6,5 12.5 3.8 6.9 Victoria Harbour VM2 23/10706 1 Middle Water 6,5 12.5 3.8 6.9 Victoria Harbour VM2 37/2006 1 Middle Water 6,5 12.5 3.8 4.4 Victoria Harbour VM2 37/2006 1 Middle Water 6,5 12.5 4.4 Victoria Harbour VM2 37/2006 1 Middle Water 6,9 8,6 8,9 3.5 Victoria Harbour VM2 49/2006 1 Middle Water 6,5 10.3 12 Victoria Harbour VM2 49/2006 1 Middle Water 6,5 10.3 12 Victoria Harbour VM2 49/2006 1 Middle Water 6,5 4.2 3.9 Victoria Harbour VM2 49/2006 1 Middle Water 6,5 4.2 3.9 Victoria Harbour VM2 49/2006 1 Middle Water 6,6 4.2 3.9 Victoria Harbour VM2 49/2006 1 Middle Water 6,6 4.2 3.9 Victoria Harbour VM2 49/2006 1 Middle Water 5,6 4.2 3.9 Victoria Harbour VM2 49/2006 1 Middle Water 5,6 4.3 4.2 3.9 Victoria Harbour VM2 49/2006 1 Middle Water 5,6 4.3 4.2 2.5 Victoria Harbour VM2 49/2006 1 Middle Water 5,6 4.3 4.2 2.5 Victoria Harbour VM2 49/2006 1 Middle Water 5,6 4.3 4.2 2.5 Victoria Harbour VM2 49/2006 1 Middle Water 6,6 12.4 2.5 4.4 4.7 Victoria Harbour VM4 49/2006 1 Middle Water 6,8 8,8 4.7								
Vectoria Hambour								
Victoria Harbour Vittl 5/19/2006 1 Medde Water 4-9 13-6 3-8 4-1								
Victoria Harbour								
Victoria Harbour VM1 4/12/2006 1 Middle Water 7.2 2 9.8 3.6								
Victoria Harbour ViAc2 23/2006 1 Middle Water 6.5 12.5 4.4 Victoria Harbour ViAc2 23/2006 1 Middle Water 6.5 12.5 4.4 Victoria Harbour ViAc2 33/2006 1 Middle Water 6.9 8.6 1.8 Victoria Harbour ViAc2 30/2006 1 Middle Water 6.9 8.6 1.8 Victoria Harbour ViAc2 30/2006 1 Middle Water 6.9 8.6 1.8 Victoria Harbour ViAc2 36/2006 1 Middle Water 6.9 4.2 4.2 3.0 Victoria Harbour ViAc2 48/2006 1 Middle Water 6.9 4.2 4.3 3.0 Victoria Harbour ViAc2 48/2006 1 Middle Water 6.9 4.2 4.3 3.0 Victoria Harbour ViAc2 48/2006 1 Middle Water 6.6 14.2 2.2 2.2 Victoria Harbour ViAc2 48/2006 1 Middle Water 6.6 14.2 2.5 2.2 Victoria Harbour ViAc2 48/2006 1 Middle Water 6.6 14.2 2.5 2.2 Victoria Harbour ViAc2 41/2006 1 Middle Water 6.6 14.4 4.2 2.5 3.5 3.5 Victoria Harbour ViAc2 41/2006 1 Middle Water 6.6 12.4 2.5 3								
Victoria Harbour Vik2 2/2/2006 1 Middle Water 6.8 8.9 3.5								
Velocini Harbour VML2 3/3/2006 1 Middle Water 6.9 8.6 1.8				1				
Victoria Harbour VM2 204/2006 1 Middle Water 6.5 6.5 10.3 12								
Victoria Harbour VML2 18/9/2006 1 Middle Water 4.9 4.2 3.9	Victoria Harbour	VM2		1	Middle Water		8.9	3.5
Victoria Harbour VMZ 16/2006 1 Middle Water 4.9 4.2 3.3	Victoria Harbour			1	Middle Water			
Victoria Harbour VMZ 3/72006 1 Middle Water 5.2 8.5 0.8 Victoria Harbour VMZ 4/8/2006 1 Middle Water 3.6 12.2 2 Victoria Harbour VMZ 4/8/2006 1 Middle Water 3.6 12.2 2 Victoria Harbour VMZ 2/11/2006 1 Middle Water 6.1 1.4.8 4.7 Victoria Harbour VMA 3/12/2006 1 Middle Water 6.1 1.4.8 4.7 Victoria Harbour VMA 3/12/2006 1 Middle Water 7.3 10.3 4.4 Victoria Harbour VMA 3/12/2006 1 Middle Water 6.8 8.4 2.9 Victoria Harbour VMA 1/8/2006 1 Middle Water 6.8 10 3 Victoria Harbour VMA 4/8/2006 1 Middle Water 5.3 10 1 2 Victoria Harbour VMA 4/8/2006 1	Victoria Harbour	VM2	18/5/2006	1	Middle Water	5.5	10.3	12
Victoria Harbour VMZ 4/9/2006 1 Middle Water 5.8 14.9 5.6	Victoria Harbour	VM2	1/6/2006	1	Middle Water	4.9	4.2	3.9
Victoria Harbour VMZ 4/9/2006 1 Middle Water 3.6 12.2 2 3.5 Victoria Harbour VMZ 5/10/2006 1 Middle Water 6.1 14.8 4.7 Victoria Harbour VMZ 4/12/2006 1 Middle Water 6.6 12.4 2.5 Victoria Harbour VMA 4/12/2006 1 Middle Water 6.6 12.4 2.5 Victoria Harbour VMA 3/1/2006 1 Middle Water 6.6 12.4 2.5 Victoria Harbour VMA 3/1/2006 1 Middle Water 6.7 12.6 4.4 Victoria Harbour VMA 13/3/2006 1 Middle Water 6.8 8.4 2.9 Victoria Harbour VMA 13/3/2006 1 Middle Water 6.8 8.4 2.9 Victoria Harbour VMA 13/3/2006 1 Middle Water 6.8 8.4 2.9 Victoria Harbour VMA 18/5/2006 1 Middle Water 6.8 8.4 2.9 Victoria Harbour VMA 18/5/2006 1 Middle Water 6.8 8.4 2.9 Victoria Harbour VMA 18/5/2006 1 Middle Water 6.8 8.4 2.9 Victoria Harbour VMA 4/16/2006 1 Middle Water 4.9 4.8 2.2 Victoria Harbour VMA 4/16/2006 1 Middle Water 4.9 4.8 2.2 Victoria Harbour VMA 4/16/2006 1 Middle Water 4.9 4.8 2.2 Victoria Harbour VMA 4/16/2006 1 Middle Water 4.6 1.2 3.2 Victoria Harbour VMA 4/12/2006 1 Middle Water 4.6 1.2 3.2 Victoria Harbour VMA 4/12/2006 1 Middle Water 4.1 18.1 7.4 Victoria Harbour VMA 4/12/2006 1 Middle Water 6.1 1.2 9 3.9 Victoria Harbour VMA 4/12/2006 1 Middle Water 6.1 1.2 9 3.9 Victoria Harbour VMA 4/12/2006 1 Middle Water 6.1 1.2 9 3.9 Victoria Harbour VMA 4/12/2006 1 Middle Water 6.1 1.2 9 3.9 Victoria Harbour VMS 2/2/2006 1 Middle Water 6.5 14 4 8 8 9 Victoria Harbour VMS 2/2/2006 1 Middle Water 6.5 14 9 8 9 9 9 9 9 9 9 9	Victoria Harbour	VM2	3/7/2006	1	Middle Water	5.2	8.5	0.8
Victoria Harbour VMZ 510/2006 1 Middle Water 4.3 12.9 3.5	Victoria Harbour	VM2	4/8/2006	1	Middle Water	5.8	14.9	5.6
Victoria Harbour VM2 211/2008 1 Middle Water 6.1 1 4.8 4.7 Victoria Harbour VM4 31/2008 1 Middle Water 7.3 1 0.3 4.4 Victoria Harbour VM4 31/2008 1 Middle Water 7.3 1 0.3 4.4 Victoria Harbour VM4 33/2008 1 Middle Water 6.8 8.4 2.9 Victoria Harbour VM4 18/2008 1 Middle Water 6.8 8.4 2.9 Victoria Harbour VM4 18/2008 1 Middle Water 6.8 8.4 2.9 Victoria Harbour VM4 18/2008 1 Middle Water 5.3 10 12 Victoria Harbour VM4 48/2006 1 Middle Water 5.7 8.5 1.7 Victoria Harbour VM4 48/2006 1 Middle Water 5.6 1.4 4.4 Victoria Harbour VM4 48/2006 1 Middle Water	Victoria Harbour	VM2	4/9/2006	1	Middle Water	3.6	12.2	2
Victoria Harbour VM2 41/2/2006 1 Middle Water 6.6 12.4 2.5 Victoria Harbour VM4 22/2006 1 Middle Water 6.7 12.6 4.4 Victoria Harbour VM4 22/2006 1 Middle Water 6.7 12.6 4.4 Victoria Harbour VM4 20/4/2008 1 Middle Water 6.8 8.4 2.9 Victoria Harbour VM4 33/2006 1 Middle Water 6.8 10 3 Victoria Harbour VM4 1/8/2006 1 Middle Water 5.3 10 12 Victoria Harbour VM4 1/8/2006 1 Middle Water 5.5 12.6 4.8 2 Victoria Harbour VM4 4/8/2006 1 Middle Water 5.5 12.6 4.4 Victoria Harbour VM4 4/9/2006 1 Middle Water 5.5 12.6 4.4 Victoria Harbour VM4 4/9/2006 1	Victoria Harbour	VM2	5/10/2006	1	Middle Water	4.3	12.9	3.5
Victoria Harbour VM2 41/2/2006 1 Middle Water 6.6 12.4 2.5 Victoria Harbour VM4 23/2/2006 1 Middle Water 6.7 12.6 4.4 Victoria Harbour VM4 22/2/2006 1 Middle Water 6.7 12.6 4.4 Victoria Harbour VM4 20/4/2006 1 Middle Water 6.8 8.4 2.9 Victoria Harbour VM4 18/5/2006 1 Middle Water 6.8 10 3 Victoria Harbour VM4 18/5/2006 1 Middle Water 5.3 10 12 Victoria Harbour VM4 18/2006 1 Middle Water 5.5 12.6 4.8 2 Victoria Harbour VM4 48/2006 1 Middle Water 5.5 12.6 4.4 Victoria Harbour VM4 49/2006 1 Middle Water 5.5 12.6 4.4 Victoria Harbour VM4 21/12/2006 1		VM2	2/11/2006	1		6.1	14.8	
Victoria Harbour VMA 37/12/006 1 Middle Water 7.3 10.3 4.4 Victoria Harbour VMA 37/12/006 1 Middle Water 6.8 8.4 2.9 Victoria Harbour VMA 37/12/006 1 Middle Water 6.8 8.4 2.9 Victoria Harbour VMA 37/12/006 1 Middle Water 6.8 10 3 Victoria Harbour VMA 18/5/2006 1 Middle Water 5.3 10 112 Victoria Harbour VMA 18/5/2006 1 Middle Water 5.3 10 12 Victoria Harbour VMA 18/5/2006 1 Middle Water 5.3 10 12 Victoria Harbour VMA 47/7/2006 1 Middle Water 5.7 8.5 1.7 Victoria Harbour VMA 48/7/2006 1 Middle Water 5.5 12.6 4.4 Victoria Harbour VMA 48/7/2006 1 Middle Water 5.5 12.6 4.4 Victoria Harbour VMA 48/7/2006 1 Middle Water 4.6 12.1 3.2 Victoria Harbour VMA 47/7/2006 1 Middle Water 4.6 12.1 3.2 Victoria Harbour VMA 47/7/2006 1 Middle Water 4.6 12.1 3.2 Victoria Harbour VMA 47/7/2006 1 Middle Water 4.1 18.1 7.4 Victoria Harbour VMA 47/7/2006 1 Middle Water 5.9 14.1 4.8 Victoria Harbour VMA 47/7/2006 1 Middle Water 5.9 14.1 4.8 Victoria Harbour VMA 47/7/2006 1 Middle Water 7 10.8 5.3 Victoria Harbour VMA 27/7/2006 1 Middle Water 7 10.8 5.3 Victoria Harbour VMA 27/7/2006 1 Middle Water 7 10.8 5.3 Victoria Harbour VMA 27/7/2006 1 Middle Water 6.2 9.3 2.7 Victoria Harbour VMA 27/7/2006 1 Middle Water 6.5 4.4 3.5 Victoria Harbour VMA 48/7/2006 1 Middle Water 6.5 9.4 3.2 Victoria Harbour VMA 48/7/2006 1 Middle Water 6.6 9.4 3.9 Victoria Harbour VMA 48/7/2006 1 Middle Water 6.6 9.4 3.9 Victoria Harbour VMA 48/7/2006 1 Middle Water 6.6 9.4 4.9 3.9 Victoria Harbour VMA 48/7/2006 1 Middle Water 6.6 9.4 4.9 3.9 Victoria Harbour VMA 48/7/2006 1 Middle Water 5.		VM2	4/12/2006	1	Middle Water	6.6	12.4	2.5
Victoria Harbour VM4 2/2/2006 1 Middle Water 6.7 12.6 4.4 Victoria Harbour VM4 20/4/2006 1 Middle Water 6.8 8.4 2.9 Victoria Harbour VM4 20/4/2006 1 Middle Water 6.8 10 3 Victoria Harbour VM4 1/8/2006 1 Middle Water 5.3 10 12 Victoria Harbour VM4 1/8/2006 1 Middle Water 4.9 4.8 2 Victoria Harbour VM4 4/8/2006 1 Middle Water 5.7 6.5 1.7 Victoria Harbour VM4 4/8/2006 1 Middle Water 5.5 12.8 4.4 Victoria Harbour VM4 4/9/2006 1 Middle Water 4.6 12.1 3.2 Victoria Harbour VM4 4/1/2006 1 Middle Water 5.9 14.1 1.4 4.8 Victoria Harbour VM5 3/1/2006 1				1				
Victoria Harbour VMA 13/3/2006 1 Middle Water 6.8 10 3				1				
Victoria Harbour VMA 20/4/2006 1 Middle Water 6.8 10 3								
Victoria Harbour VMA 18/5/2006 1 Middle Water 5.3 10 12								
Victoria Harbour VM4 41/8/2006 1 Middle Water 4.9 4.8 2 2 2 2 2 2 2 2 2								
Victoria Harbour VM4 4/8/2006 1 Middle Water 5.7 8.5 1.7				1				
Victoria Harbour VM4 4/9/2006 1 Middle Water 4.6 12.1 3.2								
Middle Water 4.6 12.1 3.2								
Victoria Harbour VM4 5/10/2006 1 Middle Water 5.9 14.1 4.8								
Victoria Harbour VMA 21/12/006 1 Middle Water 5.9 14.1 4.8								
Victoria Harbour VMM 41/2/2006 1 Middle Water 7 10.8 5.3								
Victoria Harbour VM5 21/12006 1 Middle Water 6.5 14 3.5								
Victoria Harbour VMS 21/2006 1 Middle Water 6.5 14 3.5								
Victoria Harbour VMS 13/3/2006 1 Middle Water 5.6 9.3 2.7								
Victoria Harbour VM5 20/4/2006 1 Middle Water 4.8 8.5 9.6								
Victoria Harbour VM5 18/6/2006 1 Middle Water 4.8 4.9 3.9								
Victoria Harbour VM5 1 /6/2006 1 Middle Water 4.9 4.9 3.9 Victoria Harbour VM5 3 /7/2006 1 Middle Water 4.9 1.0.7 3 Victoria Harbour VM5 4 /8/2006 1 Middle Water 5.6 13.4 4.7 Victoria Harbour VM5 4 /9/2006 1 Middle Water 5.1 12.2 3 Victoria Harbour VM5 5 /10/2006 1 Middle Water 5.7 13.6 3.9 Victoria Harbour VM5 2 /11/2006 1 Middle Water 5.8 12.7 3.6 Victoria Harbour VM6 3 /1/2006 1 Middle Water 6.8 10.5 4.3 Victoria Harbour VM6 3 /1/2006 1 Middle Water 6.6 13.9 7 Victoria Harbour VM6 20/4/2006 1 Middle Water 6.4 9.6 3.2 Victoria Harbour VM6 18/5/2006 1 M								
Victoria Harbour VMS 37/2006 1 Middle Water 4.9 10.7 3								
Victoria Harbour VMS								
Victoria Harbour VM5 4/9/2006 1 Middle Water 5.1 12.2 3 Victoria Harbour VM5 5/10/2006 1 Middle Water 4.3 17.5 5.6 Victoria Harbour VM5 2/11/2006 1 Middle Water 5.7 13.6 3.9 Victoria Harbour VM6 4/12/2006 1 Middle Water 5.8 12.7 3.6 Victoria Harbour VM6 3/1/2006 1 Middle Water 6.8 10.5 4.3 Victoria Harbour VM6 3/1/2006 1 Middle Water 6.6 13.9 7 Victoria Harbour VM6 13/3/2006 1 Middle Water 6.4 9.6 3.2 Victoria Harbour VM6 18/5/2006 1 Middle Water 5.9 10.1 3.5 Victoria Harbour VM6 18/5/2006 1 Middle Water 5.1 5 4.1 Victoria Harbour VM6 4/8/2006 1 Middle W								
Victoria Harbour VM5 5/10/2006 1 Middle Water 4.3 17.5 5.6 Victoria Harbour VM5 2/11/2006 1 Middle Water 5.7 13.6 3.9 Victoria Harbour VM6 3/1/2006 1 Middle Water 5.8 12.7 3.6 Victoria Harbour VM6 3/1/2006 1 Middle Water 6.8 10.5 4.3 Victoria Harbour VM6 3/3/2006 1 Middle Water 6.6 13.9 7 Victoria Harbour VM6 2/3/2006 1 Middle Water 6.6 13.9 7 Victoria Harbour VM6 20/4/2006 1 Middle Water 6.9 10.1 3.5 Victoria Harbour VM6 18/5/2006 1 Middle Water 5.9 10.1 3.5 Victoria Harbour VM6 3/7/2006 1 Middle Water 5.1 5 4.1 Victoria Harbour VM6 4/8/2006 1 Middle Wa								
Victoria Harbour VM5 2/11/2006 1 Middle Water 5.7 13.6 3.9 Victoria Harbour VM5 4/12/2006 1 Middle Water 5.8 12.7 3.6 Victoria Harbour VM6 2/12/2006 1 Middle Water 6.8 10.5 4.3 Victoria Harbour VM6 2/12/2006 1 Middle Water 6.6 13.9 7 Victoria Harbour VM6 20/4/2006 1 Middle Water 6.4 9.6 3.2 Victoria Harbour VM6 18/5/2006 1 Middle Water 5.9 10.1 3.5 Victoria Harbour VM6 18/5/2006 1 Middle Water 5.1 5 4.1 Victoria Harbour VM6 3/7/2006 1 Middle Water 6.2 8.9 1.6 Victoria Harbour VM6 4/8/2006 1 Middle Water 5.5 13.2 4.4 Victoria Harbour VM6 4/9/2006 1 Middle								
Victoria Harbour VM5 4/12/2006 1 Middle Water 5.8 12.7 3.6 Victoria Harbour VM6 3/1/2006 1 Middle Water 6.8 10.5 4.3 Victoria Harbour VM6 12/2/2006 1 Middle Water 6.6 13.9 7 Victoria Harbour VM6 13/3/2006 1 Middle Water 6.4 9.6 3.2 Victoria Harbour VM6 20/4/2006 1 Middle Water 5.9 10.1 3.5 Victoria Harbour VM6 18/5/2006 1 Middle Water 4.8 7.7 9.7 Victoria Harbour VM6 18/5/2006 1 Middle Water 5.1 5 4.1 Victoria Harbour VM6 3/7/2006 1 Middle Water 5.5 13.2 4.4 Victoria Harbour VM6 4/8/2006 1 Middle Water 5.5 13.1 5 Victoria Harbour VM6 4/1/2/2006 1 Middle								
Victoria Harbour VM6 3/1/2006 1 Middle Water 6.8 10.5 4.3 Victoria Harbour VM6 2/2/2006 1 Middle Water 6.6 13.9 7 Victoria Harbour VM6 13/3/2006 1 Middle Water 6.4 9.6 3.2 Victoria Harbour VM6 18/5/2006 1 Middle Water 5.9 10.1 3.5 Victoria Harbour VM6 18/5/2006 1 Middle Water 4.8 7.7 9.7 Victoria Harbour VM6 18/5/2006 1 Middle Water 5.1 5 4.1 Victoria Harbour VM6 4/8/2006 1 Middle Water 5.5 13.2 4.4 Victoria Harbour VM6 4/9/2006 1 Middle Water 4.6 12.6 2 Victoria Harbour VM6 4/9/2006 1 Middle Water 4.4 14.1 5 Victoria Harbour VM6 4/12/2006 1 Middle Water								
Victoria Harbour VM6 2/2/2006 1 Middle Water 6.6 13.9 7 Victoria Harbour VM6 13/3/2006 1 Middle Water 6.4 9.6 3.2 Victoria Harbour VM6 13/3/2006 1 Middle Water 5.9 10.1 3.5 Victoria Harbour VM6 18/5/2006 1 Middle Water 4.8 7.7 9.7 Victoria Harbour VM6 18/6/2006 1 Middle Water 5.1 5 4.1 Victoria Harbour VM6 1/6/2006 1 Middle Water 6.2 8.9 1.6 Victoria Harbour VM6 4/8/2006 1 Middle Water 5.5 13.2 4.4 Victoria Harbour VM6 4/9/2006 1 Middle Water 4.6 12.6 2 Victoria Harbour VM6 4/1/2/2006 1 Middle Water 4.4 14.1 5 Victoria Harbour VM7 16/2/2006 1 Middle Wate								
Victoria Harbour VM6 13/3/2006 1 Middle Water 6.4 9.6 3.2 Victoria Harbour VM6 20/4/2006 1 Middle Water 5.9 10.1 3.5 Victoria Harbour VM6 18/5/2006 1 Middle Water 4.8 7.7 9.7 Victoria Harbour VM6 1/6/2006 1 Middle Water 5.1 5 4.1 Victoria Harbour VM6 3/7/2006 1 Middle Water 6.2 8.9 1.6 Victoria Harbour VM6 4/8/2006 1 Middle Water 5.5 13.2 4.4 Victoria Harbour VM6 4/8/2006 1 Middle Water 4.6 12.6 2 Victoria Harbour VM6 5/10/2006 1 Middle Water 5.7 13.1 3.2 Victoria Harbour VM6 4/12/2006 1 Middle Water 5.7 13.1 4.4 Victoria Harbour VM7 16/3/2006 1 Middle W								
Victoria Harbour VM6 20/4/2006 1 Middle Water 5.9 10.1 3.5 Victoria Harbour VM6 18/5/2006 1 Middle Water 4.8 7.7 9.7 Victoria Harbour VM6 1/6/2006 1 Middle Water 5.1 5 4.1 Victoria Harbour VM6 3/7/2006 1 Middle Water 6.2 8.9 1.6 Victoria Harbour VM6 4/8/2006 1 Middle Water 5.5 13.2 4.4 Victoria Harbour VM6 5/10/2006 1 Middle Water 4.6 12.6 2 Victoria Harbour VM6 5/10/2006 1 Middle Water 4.4 14.1 5 Victoria Harbour VM6 5/10/2006 1 Middle Water 5.7 13.1 3.2 Victoria Harbour VM7 11/2/2006 1 Middle Water 5.5 13.1 4.4 Victoria Harbour VM7 16/2/2006 1 Middle W								
Victoria Harbour VM6 18/5/2006 1 Middle Water 4.8 7.7 9.7 Victoria Harbour VM6 1/6/2006 1 Middle Water 5.1 5 4.1 Victoria Harbour VM6 3/7/2006 1 Middle Water 6.2 8.9 1.6 Victoria Harbour VM6 4/8/2006 1 Middle Water 5.5 13.2 4.4 Victoria Harbour VM6 4/9/2006 1 Middle Water 4.6 12.6 2 Victoria Harbour VM6 5/10/2006 1 Middle Water 4.4 14.1 5 Victoria Harbour VM6 4/12/2006 1 Middle Water 5.7 13.1 3.2 Victoria Harbour VM6 4/12/2006 1 Middle Water 6.9 9.6 2.5 Victoria Harbour VM7 16/2/2006 1 Middle Water 6.9 9.6 2.5 Victoria Harbour VM7 16/3/2006 1 Middle Wate								
Victoria Harbour VM6 1/6/2006 1 Middle Water 5.1 5 4.1 Victoria Harbour VM6 3/7/2006 1 Middle Water 6.2 8.9 1.6 Victoria Harbour VM6 4/8/2006 1 Middle Water 5.5 13.2 4.4 Victoria Harbour VM6 4/9/2006 1 Middle Water 4.6 12.6 2 Victoria Harbour VM6 5/10/2006 1 Middle Water 4.4 14.1 5 Victoria Harbour VM6 5/10/2006 1 Middle Water 5.7 13.1 3.2 Victoria Harbour VM6 4/12/2006 1 Middle Water 5.5 13.1 4.4 Victoria Harbour VM7 16/2/2006 1 Middle Water 6.9 9.6 2.5 Victoria Harbour VM7 16/3/2006 1 Middle Water 6.9 10.5 4.6 Victoria Harbour VM7 12/6/2006 1 Middle Wa								
Victoria Harbour VM6 3/7/2006 1 Middle Water 6.2 8.9 1.6 Victoria Harbour VM6 4/8/2006 1 Middle Water 5.5 13.2 4.4 Victoria Harbour VM6 4/9/2006 1 Middle Water 4.6 12.6 2 Victoria Harbour VM6 5/10/2006 1 Middle Water 4.4 14.1 5 Victoria Harbour VM6 2/11/2006 1 Middle Water 5.7 13.1 3.2 Victoria Harbour VM6 4/12/2006 1 Middle Water 5.5 13.1 4.4 Victoria Harbour VM7 11/1/2006 1 Middle Water 6.9 9.6 2.5 Victoria Harbour VM7 16/3/2006 1 Middle Water 6.9 10 6.5 Victoria Harbour VM7 21/4/2006 1 Middle Water 6.9 10.5 4.6 Victoria Harbour VM7 26/5/2006 1 Middle								
Victoria Harbour VM6 4/8/2006 1 Middle Water 5.5 13.2 4.4 Victoria Harbour VM6 4/9/2006 1 Middle Water 4.6 12.6 2 Victoria Harbour VM6 5/10/2006 1 Middle Water 4.4 14.1 5 Victoria Harbour VM6 2/11/2006 1 Middle Water 5.7 13.1 3.2 Victoria Harbour VM6 4/12/2006 1 Middle Water 5.5 13.1 4.4 Victoria Harbour VM7 11/12/2006 1 Middle Water 6.9 9.6 2.5 Victoria Harbour VM7 16/2/2006 1 Middle Water 6.9 10 6.5 Victoria Harbour VM7 21/4/2006 1 Middle Water 6.9 10.5 4.6 Victoria Harbour VM7 26/5/2006 1 Middle Water 6.9 10.5 4.6 Victoria Harbour VM7 12/6/2006 1 Midd								
Victoria Harbour VM6 4/9/2006 1 Middle Water 4.6 12.6 2 Victoria Harbour VM6 5/10/2006 1 Middle Water 4.4 14.1 5 Victoria Harbour VM6 2/11/2006 1 Middle Water 5.7 13.1 3.2 Victoria Harbour VM6 4/12/2006 1 Middle Water 5.5 13.1 4.4 Victoria Harbour VM7 11/1/2006 1 Middle Water 6.9 9.6 2.5 Victoria Harbour VM7 16/2/2006 1 Middle Water 6.9 10 6.5 Victoria Harbour VM7 16/3/2006 1 Middle Water 6.1 10.3 3.8 Victoria Harbour VM7 21/4/2006 1 Middle Water 6.9 10.5 4.6 Victoria Harbour VM7 26/5/2006 1 Middle Water 4.9 5.2 3 Victoria Harbour VM7 6/7/2006 1 Middle W								
Victoria Harbour VM6 5/10/2006 1 Middle Water 4.4 14.1 5 Victoria Harbour VM6 2/11/2006 1 Middle Water 5.7 13.1 3.2 Victoria Harbour VM6 4/12/2006 1 Middle Water 5.5 13.1 4.4 Victoria Harbour VM7 11/1/2006 1 Middle Water 6.9 9.6 2.5 Victoria Harbour VM7 16/2/2006 1 Middle Water 6.9 10 6.5 Victoria Harbour VM7 16/3/2006 1 Middle Water 6.9 10.3 3.8 Victoria Harbour VM7 16/3/2006 1 Middle Water 6.9 10.5 4.6 Victoria Harbour VM7 26/5/2006 1 Middle Water 5.1 5.9 20 Victoria Harbour VM7 12/6/2006 1 Middle Water 7.7 9.6 1.4 Victoria Harbour VM7 6/9/2006 1 Middl								
Victoria Harbour VM6 2/11/2006 1 Middle Water 5.7 13.1 3.2 Victoria Harbour VM6 4/12/2006 1 Middle Water 5.5 13.1 4.4 Victoria Harbour VM7 11/1/2006 1 Middle Water 6.9 9.6 2.5 Victoria Harbour VM7 16/2/2006 1 Middle Water 6.9 10 6.5 Victoria Harbour VM7 16/3/2006 1 Middle Water 6.9 10.3 3.8 Victoria Harbour VM7 16/3/2006 1 Middle Water 6.9 10.5 4.6 Victoria Harbour VM7 21/4/2006 1 Middle Water 5.1 5.9 20 Victoria Harbour VM7 12/6/2006 1 Middle Water 7.7 9.6 1.4 Victoria Harbour VM7 11/8/2006 1 Middle Water 5.4 12.7 2.6 Victoria Harbour VM7 6/9/2006 1 Mid								
Victoria Harbour VM6 4/12/2006 1 Middle Water 5.5 13.1 4.4 Victoria Harbour VM7 11/1/2006 1 Middle Water 6.9 9.6 2.5 Victoria Harbour VM7 16/2/2006 1 Middle Water 6.9 10 6.5 Victoria Harbour VM7 16/3/2006 1 Middle Water 6.1 10.3 3.8 Victoria Harbour VM7 21/4/2006 1 Middle Water 6.9 10.5 4.6 Victoria Harbour VM7 22/5/2006 1 Middle Water 5.1 5.9 20 Victoria Harbour VM7 12/6/2006 1 Middle Water 7.7 9.6 1.4 Victoria Harbour VM7 6/7/2006 1 Middle Water 5.4 12.7 2.6 Victoria Harbour VM7 6/9/2006 1 Middle Water 4.4 11.5 1.6 Victoria Harbour VM7 12/10/2006 1 Mid								
Victoria Harbour VM7 11/1/2006 1 Middle Water 6.9 9.6 2.5 Victoria Harbour VM7 16/2/2006 1 Middle Water 6.9 10 6.5 Victoria Harbour VM7 16/3/2006 1 Middle Water 6.1 10.3 3.8 Victoria Harbour VM7 21/4/2006 1 Middle Water 6.9 10.5 4.6 Victoria Harbour VM7 26/5/2006 1 Middle Water 5.1 5.9 20 Victoria Harbour VM7 12/6/2006 1 Middle Water 4.9 5.2 3 Victoria Harbour VM7 6/7/2006 1 Middle Water 7.7 9.6 1.4 Victoria Harbour VM7 11/8/2006 1 Middle Water 5.4 12.7 2.6 Victoria Harbour VM7 6/9/2006 1 Middle Water 4.4 11.5 1.6 Victoria Harbour VM7 6/12/2006 1 Middle								
Victoria Harbour VM7 16/2/2006 1 Middle Water 6.9 10 6.5 Victoria Harbour VM7 16/3/2006 1 Middle Water 6.1 10.3 3.8 Victoria Harbour VM7 21/4/2006 1 Middle Water 6.9 10.5 4.6 Victoria Harbour VM7 26/5/2006 1 Middle Water 5.1 5.9 20 Victoria Harbour VM7 12/6/2006 1 Middle Water 4.9 5.2 3 Victoria Harbour VM7 6/7/2006 1 Middle Water 7.7 9.6 1.4 Victoria Harbour VM7 6/9/2006 1 Middle Water 5.4 12.7 2.6 Victoria Harbour VM7 6/9/2006 1 Middle Water 4.4 11.5 1.6 Victoria Harbour VM7 3/11/2006 1 Middle Water 5.3 16 5.2 Victoria Harbour VM8 11/1/2006 1 Middle Wa								
Victoria Harbour VM7 16/3/2006 1 Middle Water 6.1 10.3 3.8 Victoria Harbour VM7 21/4/2006 1 Middle Water 6.9 10.5 4.6 Victoria Harbour VM7 26/5/2006 1 Middle Water 5.1 5.9 20 Victoria Harbour VM7 12/6/2006 1 Middle Water 4.9 5.2 3 Victoria Harbour VM7 6/7/2006 1 Middle Water 7.7 9.6 1.4 Victoria Harbour VM7 11/8/2006 1 Middle Water 5.4 12.7 2.6 Victoria Harbour VM7 6/9/2006 1 Middle Water 4.4 11.5 1.6 Victoria Harbour VM7 12/10/2006 1 Middle Water 4.1 20.4 6.8 Victoria Harbour VM7 6/12/2006 1 Middle Water 5.6 12.3 4 Victoria Harbour VM8 16/2/2006 1 Middl								
Victoria Harbour VM7 21/4/2006 1 Middle Water 6.9 10.5 4.6 Victoria Harbour VM7 26/5/2006 1 Middle Water 5.1 5.9 20 Victoria Harbour VM7 12/6/2006 1 Middle Water 4.9 5.2 3 Victoria Harbour VM7 6/7/2006 1 Middle Water 7.7 9.6 1.4 Victoria Harbour VM7 11/8/2006 1 Middle Water 5.4 12.7 2.6 Victoria Harbour VM7 6/9/2006 1 Middle Water 4.4 11.5 1.6 Victoria Harbour VM7 12/10/2006 1 Middle Water 4.1 20.4 6.8 Victoria Harbour VM7 3/11/2006 1 Middle Water 5.3 16 5.2 Victoria Harbour VM8 16/2/2006 1 Middle Water 7.5 9.6 3.2 Victoria Harbour VM8 16/2/2006 1 Middle								
Victoria Harbour VM7 26/5/2006 1 Middle Water 5.1 5.9 20 Victoria Harbour VM7 12/6/2006 1 Middle Water 4.9 5.2 3 Victoria Harbour VM7 6/7/2006 1 Middle Water 7.7 9.6 1.4 Victoria Harbour VM7 11/8/2006 1 Middle Water 5.4 12.7 2.6 Victoria Harbour VM7 6/9/2006 1 Middle Water 4.4 11.5 1.6 Victoria Harbour VM7 12/10/2006 1 Middle Water 4.1 20.4 6.8 Victoria Harbour VM7 3/11/2006 1 Middle Water 5.3 16 5.2 Victoria Harbour VM7 6/12/2006 1 Middle Water 5.6 12.3 4 Victoria Harbour VM8 11/1/2006 1 Middle Water 7.5 9.6 3.2 Victoria Harbour VM8 16/2/2006 1 Middle W								
Victoria Harbour VM7 12/6/2006 1 Middle Water 4.9 5.2 3 Victoria Harbour VM7 6/7/2006 1 Middle Water 7.7 9.6 1.4 Victoria Harbour VM7 11/8/2006 1 Middle Water 5.4 12.7 2.6 Victoria Harbour VM7 6/9/2006 1 Middle Water 4.4 11.5 1.6 Victoria Harbour VM7 12/10/2006 1 Middle Water 4.1 20.4 6.8 Victoria Harbour VM7 3/11/2006 1 Middle Water 5.3 16 5.2 Victoria Harbour VM7 6/12/2006 1 Middle Water 5.6 12.3 4 Victoria Harbour VM8 11/1/2006 1 Middle Water 7.5 9.6 3.2 Victoria Harbour VM8 16/2/2006 1 Middle Water 7.7 11.2 17 Victoria Harbour VM8 16/3/2006 1 Middle								
Victoria Harbour VM7 6/7/2006 1 Middle Water 7.7 9.6 1.4 Victoria Harbour VM7 11/8/2006 1 Middle Water 5.4 12.7 2.6 Victoria Harbour VM7 6/9/2006 1 Middle Water 4.4 11.5 1.6 Victoria Harbour VM7 12/10/2006 1 Middle Water 4.1 20.4 6.8 Victoria Harbour VM7 3/11/2006 1 Middle Water 5.3 16 5.2 Victoria Harbour VM7 6/12/2006 1 Middle Water 5.6 12.3 4 Victoria Harbour VM8 11/1/2006 1 Middle Water 7.5 9.6 3.2 Victoria Harbour VM8 16/2/2006 1 Middle Water 7.7 11.2 17 Victoria Harbour VM8 16/3/2006 1 Middle Water 6.9 9.8 4.6								
Victoria Harbour VM7 11/8/2006 1 Middle Water 5.4 12.7 2.6 Victoria Harbour VM7 6/9/2006 1 Middle Water 4.4 11.5 1.6 Victoria Harbour VM7 12/10/2006 1 Middle Water 4.1 20.4 6.8 Victoria Harbour VM7 3/11/2006 1 Middle Water 5.3 16 5.2 Victoria Harbour VM7 6/12/2006 1 Middle Water 5.6 12.3 4 Victoria Harbour VM8 11/1/2006 1 Middle Water 7.5 9.6 3.2 Victoria Harbour VM8 16/2/2006 1 Middle Water 7.7 11.2 17 Victoria Harbour VM8 16/3/2006 1 Middle Water 6.9 9.8 4.6								
Victoria Harbour VM7 6/9/2006 1 Middle Water 4.4 11.5 1.6 Victoria Harbour VM7 12/10/2006 1 Middle Water 4.1 20.4 6.8 Victoria Harbour VM7 3/11/2006 1 Middle Water 5.3 16 5.2 Victoria Harbour VM7 6/12/2006 1 Middle Water 5.6 12.3 4 Victoria Harbour VM8 11/1/2006 1 Middle Water 7.5 9.6 3.2 Victoria Harbour VM8 16/2/2006 1 Middle Water 7.7 11.2 17 Victoria Harbour VM8 16/3/2006 1 Middle Water 6.9 9.8 4.6				1				
Victoria Harbour VM7 12/10/2006 1 Middle Water 4.1 20.4 6.8 Victoria Harbour VM7 3/11/2006 1 Middle Water 5.3 16 5.2 Victoria Harbour VM7 6/12/2006 1 Middle Water 5.6 12.3 4 Victoria Harbour VM8 11/1/2006 1 Middle Water 7.5 9.6 3.2 Victoria Harbour VM8 16/2/2006 1 Middle Water 7.7 11.2 17 Victoria Harbour VM8 16/3/2006 1 Middle Water 6.9 9.8 4.6	Victoria Harbour			1	Middle Water			
Victoria Harbour VM7 3/11/2006 1 Middle Water 5.3 16 5.2 Victoria Harbour VM7 6/12/2006 1 Middle Water 5.6 12.3 4 Victoria Harbour VM8 11/1/2006 1 Middle Water 7.5 9.6 3.2 Victoria Harbour VM8 16/2/2006 1 Middle Water 7.7 11.2 17 Victoria Harbour VM8 16/3/2006 1 Middle Water 6.9 9.8 4.6	Victoria Harbour			1	Middle Water	4.4		1.6
Victoria Harbour VM7 6/12/2006 1 Middle Water 5.6 12.3 4 Victoria Harbour VM8 11/1/2006 1 Middle Water 7.5 9.6 3.2 Victoria Harbour VM8 16/2/2006 1 Middle Water 7.7 11.2 17 Victoria Harbour VM8 16/3/2006 1 Middle Water 6.9 9.8 4.6	Victoria Harbour	VM7	12/10/2006	1	Middle Water	4.1	20.4	6.8
Victoria Harbour VM8 11/1/2006 1 Middle Water 7.5 9.6 3.2 Victoria Harbour VM8 16/2/2006 1 Middle Water 7.7 11.2 17 Victoria Harbour VM8 16/3/2006 1 Middle Water 6.9 9.8 4.6	Victoria Harbour	VM7	3/11/2006	1	Middle Water	5.3	16	5.2
Victoria Harbour VM8 16/2/2006 1 Middle Water 7.7 11.2 17 Victoria Harbour VM8 16/3/2006 1 Middle Water 6.9 9.8 4.6	Victoria Harbour	VM7	6/12/2006	1	Middle Water	5.6	12.3	4
Victoria Harbour VM8 16/3/2006 1 Middle Water 6.9 9.8 4.6	Victoria Harbour	VM8	11/1/2006	1	Middle Water	7.5	9.6	3.2
	Victoria Harbour	VM8	16/2/2006	1	Middle Water	7.7	11.2	17
Victoria Harbour VM8 21/4/2006 1 Middle Water 7.5 10.6 4.8	Victoria Harbour	VM8	16/3/2006	1	Middle Water	6.9	9.8	4.6
	Victoria Harbour	VM8	21/4/2006	1	Middle Water	7.5	10.6	4.8

Water Cantral Zana	Ctation	Dates Comp	lo No Donth	Discolused Overson (ma/l.)	Tunda i alita (/NITLI)	Cuanandad Calida (mar/l)
Water Control Zone Victoria Harbour	Station VM8	Dates Samp 26/5/2006 1		Dissolved Oxygen (mg/L) 5.3	Turbidity (NTU) 5.2	Suspended Solids (mg/L) 18
Victoria Harbour	VIVIO VM8	26/5/2006 1 12/6/2006 1		4.9	6.2	1.3
Victoria Harbour	VM8	6/7/2006 1		7.4	8.8	2
Victoria Harbour	VM8	11/8/2006 1		5	12	2
Victoria Harbour	VM8	6/9/2006 1		4.4	11.8	2.1
Victoria Harbour	VM8	12/10/2006 1		5.3	18.8	7.5
Victoria Harbour	VM8	3/11/2006 1		5.5	14.5	5.3
Victoria Harbour	VM8	6/12/2006 1		6.2	17.5	9.2
Victoria Harbour	VM1	15/1/2007 1		7.7	10.5	3.3
Victoria Harbour	VM1	1/2/2007 1		7.6	8.4	2
Victoria Harbour	VM1	7/3/2007 1		6.6	10.3	2
Victoria Harbour	VM1	12/4/2007 1		6	9.5	3.4
Victoria Harbour	VM1	3/5/2007 1		5.1	9.5	4.1
Victoria Harbour	VM1	22/6/2007 1		4.2	12.9	5.6
Victoria Harbour	VM1	23/7/2007 1		3.7	35	4.4
Victoria Harbour	VM1	23/8/2007 1		2.9	12.1	5.4
Victoria Harbour	VM1	17/9/2007 1		4.5	14.8	8.5
Victoria Harbour	VM1	10/10/2007 1		4.9	10.8	4
Victoria Harbour	VM1	8/11/2007 1		6	4.2	5.8
Victoria Harbour	VM1	4/12/2007 1	Middle Water	6	7.5	1.6
Victoria Harbour	VM1	3/1/2008 1	Middle Water	6.9	6.6	1.6
Victoria Harbour	VM1	1/2/2008 1	Middle Water	7.2	6.7	1.1
Victoria Harbour	VM1	28/3/2008 1		6.6	10.5	5.7
Victoria Harbour	VM1	23/4/2008 1		6.3	14.4	12
Victoria Harbour	VM1	19/5/2008 1		5.5	7.9	6.6
Victoria Harbour	VM1	11/6/2008 1		4.5	9.1	4.9
Victoria Harbour	VM1	2/7/2008 1		3.7	12.9	3.8
Victoria Harbour	VM1	4/8/2008 1	Middle Water	4.8	9.3	5.4
Victoria Harbour	VM1	19/9/2008 1	Middle Water	2.8	12.3	9.2
Victoria Harbour	VM1	8/10/2008 1	Middle Water	4.5	3.8	6.5
Victoria Harbour	VM1	5/11/2008 1	Middle Water	5.4	3.7	5
Victoria Harbour	VM1	10/12/2008 1	Middle Water	6.1	2.1	3.6
Victoria Harbour	VM2	15/1/2007 1	Middle Water	7.6	10.4	2.6
Victoria Harbour	VM2	1/2/2007 1	Middle Water	7.7	8.4	2
Victoria Harbour	VM2	7/3/2007 1	Middle Water	6.3	11.3	3.3
Victoria Harbour	VM2	12/4/2007 1	Middle Water	5.9	9.1	2.8
Victoria Harbour	VM2	3/5/2007 1	Middle Water	4.7	9.5	3.7
Victoria Harbour	VM2	22/6/2007 1	Middle Water	6.5	11.8	3
Victoria Harbour	VM2	23/7/2007 1	Middle Water	8	24.9	5.2
Victoria Harbour	VM2	23/8/2007 1	Middle Water	3.7	9.4	2.9
Victoria Harbour	VM2	17/9/2007 1		4.5	14.6	5.8
Victoria Harbour	VM2	10/10/2007 1	Middle Water	4.1	10.3	4
Victoria Harbour	VM2	8/11/2007 1		5.7	4.3	4.4
Victoria Harbour	VM2	4/12/2007 1	Middle Water	5.8	7.2	1.8
Victoria Harbour	VM2	3/1/2008 1		6.6	6.5	1.6
Victoria Harbour	VM2	1/2/2008 1		7.1	7	1.6
Victoria Harbour	VM2	28/3/2008 1		6.1	8.9	2.9
Victoria Harbour	VM2	23/4/2008 1		6.1	10.4	4.8
Victoria Harbour	VM2	19/5/2008 1		4.9	6.5	3.8
Victoria Harbour	VM2	11/6/2008 1		5.6	7.6	3.8
Victoria Harbour	VM2	2/7/2008 1		3	11.2	3.6
Victoria Harbour	VM2	4/8/2008 1		6.9	8.1	4.2
Victoria Harbour	VM2	19/9/2008 1		4	8.2	4
Victoria Harbour	VM2	8/10/2008 1		4.3	4.8	4.8
Victoria Harbour	VM2	5/11/2008 1		4.9	4.8	9.2
Victoria Harbour	VM2	10/12/2008 1		5.6	2.5	2.6
Victoria Harbour	VM4	15/1/2007 1		7.3	10.8	2.8
Victoria Harbour	VM4	1/2/2007 1		6.9	9.2	2.3
Victoria Harbour	VM4	7/3/2007 1		5.7	11.2	3.5
Victoria Harbour	VM4	12/4/2007 1		5.6	9.4	2.8
Victoria Harbour	VM4	3/5/2007 1		4.5	9.3	4.6
Victoria Harbour	VM4	22/6/2007 1		5.3	11.8	3.5
Victoria Harbour	VM4	23/7/2007 1		8	21	5.6
Victoria Harbour	VM4	23/8/2007 1		4.6	9.6	2.7 5.9
Victoria Harbour	VM4	17/9/2007 1		4.3	14.2	
Victoria Harbour	VM4	10/10/2007 1		4.1	10.6	4.8
Victoria Harbour	VM4	8/11/2007 1		5.6	4.1	3.8
Victoria Harbour	VM4	4/12/2007 1		5.4	7.1	1.7
Victoria Harbour	VM4 VM4	3/1/2008 1		6.1 7.1	7.4	2.8 2.7
Victoria Harbour Victoria Harbour	VIVI4 VM4	1/2/2008 1 28/3/2008 1		7.1 5.9	7.5 9.7	3.4
Victoria Harbour Victoria Harbour	VIVI4 VM4				9.7	
Victoria Harbour Victoria Harbour	VIVI4 VM4	23/4/2008 1 19/5/2008 1		5.8 4.7	8.4	7.8 11
Victoria Harbour	VIVI4 VM4	11/6/2008 1		5.9	8.2	3.1
Victoria Harbour	VM4	2/7/2008 1		4.2	11	3.5
Victoria Harbour	VM4	4/8/2008 1		7	8.4	4.6
viciona i ialbuul	v (v)4	7/U/2UUU	wildule water	1	0.4	4.0

Victional Intelligent Visit September Visit	W-4 041 7	L 04-4:	Datas	OI- N-	D4b	Discoluted Occurrent (see all)	To add to the co (NITLI)	Overse and ad Oalida (may (I)
Vectoria National Vect	Water Control Zone	Station	Dates	Sample No	Depth	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Suspended Solids (mg/L)
Victoria National Vivida 311/2008 1 Missia Water 4.7 5.9 7.7								
Victoria Harbour VMS 17/2000 1 Middle Water 5.3 2.5 2.9								
Vectoria Harboration VAMS 151/2007 1 Mindle Water 6.8 10.3 1.7								
Vectoria Narbour VMS 1/2/2007 1 Model Water								
Victoria Harbour VMS 73/2007 1 Middle Water 5.6 10.2 2.8 3.1								
Victoria Harbour								
Vectoria Hambour								
Vectoria Harbour								
Vectoria Harbour								
Victoria Harbour								
Victoria Harbour VMS 179/2007 1 Middle Water 3.9 12.1 3.1								
Victoria Harbour VMS 171/2007 1 Middle Water 5.3 4.1 4.2								
Vectoria Harbour VMS 211/2007 1 Middle Water 4.2 8 1.7								
Victoria Harbour								
Victoria Harbour								
Victoria Harbour VMS 1/2/2008 1 Middle Water 6.8 7.2 2.4 Victoria Harbour VMS 28/3/2008 1 Middle Water 6.2 9.2 2.7 Victoria Harbour VMS 19/5/2008 1 Middle Water 6.2 10.4 5 Victoria Harbour VMS 19/5/2008 1 Middle Water 5.1 7.9 5.8 Victoria Harbour VMS 11/5/2008 1 Middle Water 5.2 8.2 4.9 Victoria Harbour VMS 18/3/2008 1 Middle Water 6 8.4 6.3 Victoria Harbour VMS 87/1/2008 1 Middle Water 6 8.4 5.3 Victoria Harbour VMS 87/1/2008 1 Middle Water 4.4 3.8 4.4 Victoria Harbour VMS 18/1/2007 1 Middle Water 4.9 3.3 4.4 Victoria Harbour VMB 18/1/2007 1 Middle Wate								
Vectoria Harbour VMS 28/32/008 1 Middle Water 5.2 9.2 2.7 Vectoria Harbour VMS 19/52/008 1 Middle Water 6.1 7.9 5.8 Vectoria Harbour VMS 19/52/008 1 Middle Water 6.1 7.9 5.8 Vectoria Harbour VMS 22/72/008 1 Middle Water 6.1 7.9 5.8 Vectoria Harbour VMS 22/72/008 1 Middle Water 6.1 1.0 2.4 Vectoria Harbour VM5 19/92/008 1 Middle Water 6.8 8.4 5.3 Vectoria Harbour VM5 51/12/008 1 Middle Water 4.7 5.2 6.6 6.6 Vectoria Harbour VM6 150/12/2008 1 Middle Water 2.3 10.3 2.2 1.4 Vectoria Harbour VM6 150/12/2007 1 Middle Water 2.3 10.3 2.2 1.4 Vectoria Harbour VM6				1				
Velotria Harbour VMS 23/4/2008 1 Middle Water 5.2 10.4 5	Victoria Harbour	VM5	1/2/2008	1	Middle Water	6.8	7.2	2.4
Victoria Harbour VMS 195/2008 1 Middle Water 5.1 7.9 5.8	Victoria Harbour	VM5	28/3/2008	1	Middle Water	5.2	9.2	2.7
Victoria Harbour VMS 11/8/2008 1 Middle Water 5.1 10 2.4								
Victoria Harbour VMB 27/2008 1 Middle Water 5.1 10 2.4 Victoria Harbour VMB 4/8/2008 1 Middle Water 3.1 12.1 10 Victoria Harbour VMB 8/10/2008 1 Middle Water 3.1 12.1 1 1 Victoria Harbour VMB 8/10/2008 1 Middle Water 4.7 5.2 6.6 Victoria Harbour VMB 15/12/2007 1 Middle Water 4.7 5.2 6.6 Victoria Harbour VMB 15/12/2007 1 Middle Water 5.6 3 3 4 Victoria Harbour VMB 15/12/2007 1 Middle Water 5.2 10.1 2 4 Victoria Harbour VMB 15/20/207 1 Middle Water 5.2 10.1 2 2.5 Victoria Harbour VMB 25/20/207 1 Middle Water 5.6 3.3 3.8 Victoria Harbour VM	Victoria Harbour			11				
Victoria Harbour VMS 4/8/2008 1 Middle Water 6 8.4 5.3	Victoria Harbour	VM5		1	Middle Water	5.2	8.2	4.9
Victoria Harbour VMS 190/2008 1 Middle Water 3.1 1.2.1 10 Victoria Harbour VMS 81/02008 1 Middle Water 4.7 5.2 6.6 Victoria Harbour VMS 61/12008 1 Middle Water 4.7 5.2 6.6 Victoria Harbour VMB 15/12007 1 Middle Water 7.3 10.3 2.1 Victoria Harbour VMB 15/12007 1 Middle Water 7.3 10.3 2.1 Victoria Harbour VMB 15/22007 1 Middle Water 5.2 10.1 2.2 Victoria Harbour VMB 25/2007 1 Middle Water 5.5 9.5 3.8 Victoria Harbour VMB 25/2007 1 Middle Water 5.5 9.5 3.8 Victoria Harbour VMB 25/2007 1 Middle Water 5.6 12.6 2.5 Victoria Harbour VMB 23/20007 1 Middle Water<	Victoria Harbour	VM5	2/7/2008	1	Middle Water	5.1	10	2.4
Victoria Harbour VM.6 B/10/2008 1 Middle Water 4.4 3.8 4.7 Victoria Harbour VM.6 10/12/2008 1 Middle Water 5.6 3 4 Victoria Harbour VM.6 19/12/2007 1 Middle Water 5.6 3 4 Victoria Harbour VM.6 19/12/2007 1 Middle Water 6.8 9.8 4.4 Victoria Harbour VM.6 19/12/2007 1 Middle Water 5.2 10.1 2.2 Victoria Harbour VM.6 12/2007 1 Middle Water 5. 9.5 3.8 Victoria Harbour VM.6 12/20/2007 1 Middle Water 5.6 12.6 2.5 Victoria Harbour VM.6 22/8/2007 1 Middle Water 3.2 18.4 3.9 Victoria Harbour VM.6 22/8/2007 1 Middle Water 3.9 11.4 4 Victoria Harbour VM.6 16/12/2007 1 <t< td=""><td>Victoria Harbour</td><td>VM5</td><td>4/8/2008</td><td>1</td><td>Middle Water</td><td>6</td><td>8.4</td><td>5.3</td></t<>	Victoria Harbour	VM5	4/8/2008	1	Middle Water	6	8.4	5.3
Victoria Harbour VM5 5/11/2008 1 Middle Water 4.7 5.2 6.6	Victoria Harbour	VM5	19/9/2008	1	Middle Water	3.1	12.1	10
Victoria Harbour VM5 5/11/2008 1 Middle Water 4.7 5.2 6.6	Victoria Harbour	VM5	8/10/2008	1	Middle Water	4.4	3.8	4.7
Victoria Harbour VM6 19/12/2008 1 Middle Water 5.6 3 4 19/12/2007 1 Middle Water 6.8 9.8 4.4 4 19/12/2007 1 Middle Water 6.8 9.8 4.4 4 19/12/2007 1 Middle Water 6.8 9.8 4.4 4 19/12/2007 1 Middle Water 5.2 10.1 2.4 4 19/12/2007 1 Middle Water 5.2 10.1 2.4 4 19/12/2007 1 Middle Water 5.2 10.1 2.4 4 19/12/2007 1 Middle Water 5.5 9.5 3.8 3.8 19/12/2007 1 Middle Water 5.5 9.5 3.8 3.8 19/12/2007 1 Middle Water 5.6 9.5 3.8 3.8 19/12/2007 1 Middle Water 5.6 12.6 2.5 19/12/2007 1 Middle Water 5.6 12.6 2.5 19/12/2007 1 Middle Water 3.2 18.4 3.3 11.4 4 4 19/12/2007 1 Middle Water 3.2 18.4 3.3 11.4 4 4 19/12/2007 1 Middle Water 3.3 11.4 4 4 4 19/12/2007 1 Middle Water 3.3 11.4 4 4 4 4 4 4 4 4 4		VM5		1		4.7	5.2	6.6
Victoria Harbour VM6 15/12/007 1 Middle Water 7.3 10.3 2.1				1				
Victoria Harbour				1			10.3	2.1
Victoria Harbour VM6 17/2007 1 Middle Water 5.2 10.1 2.4			1/2/2007	1	Middle Water			
Victoria Harbour VM6 31/2/2007 1 Middle Water 4.3 10.1 4.2	Victoria Harbour	VM6	7/3/2007	1		5.2	10.1	2.4
Victoria Harbour VM6 36/2007 1 Middle Water 5.6 2.5 Victoria Harbour VM6 22/6/2007 1 Middle Water 5.6 12.6 2.5 Victoria Harbour VM6 23/8/2007 1 Middle Water 3.2 18.4 3.9 Victoria Harbour VM6 23/8/2007 1 Middle Water 3.9 11.4 4 Victoria Harbour VM6 17/9/2007 1 Middle Water 3.7 12.4 4 Victoria Harbour VM6 17/9/2007 1 Middle Water 3.7 12.4 4 Victoria Harbour VM6 3/17/2007 1 Middle Water 3.7 12.4 4 Victoria Harbour VM6 3/17/2007 1 Middle Water 5 4.1 4.8 Victoria Harbour VM6 3/17/2007 1 Middle Water 5 4.1 4.8 Victoria Harbour VM6 3/17/2007 1 Middle Water 5 5 4.1 4.8 Victoria Harbour VM6 3/17/2008 1 Middle Water 5.6 7 2 Victoria Harbour VM6 3/17/2008 1 Middle Water 5.6 7 2 Victoria Harbour VM6 3/17/2008 1 Middle Water 5.3 9.2 2.4 Victoria Harbour VM6 22/3/2008 1 Middle Water 5.3 9.2 2.4 Victoria Harbour VM6 23/3/2008 1 Middle Water 5.3 9.2 2.4 Victoria Harbour VM6 23/3/2008 1 Middle Water 5.3 11.4 7 Victoria Harbour VM6 19/5/2008 1 Middle Water 5.3 11.4 7 7 Victoria Harbour VM6 19/5/2008 1 Middle Water 5.9 9.7 3.5 Victoria Harbour VM6 27/2008 1 Middle Water 5 9.7 3.5 Victoria Harbour VM6 27/2008 1 Middle Water 5 9.7 3.5 Victoria Harbour VM6 19/9/2008 1 Middle Water 7.4 7.7 4.2 Victoria Harbour VM6 19/9/2008 1 Middle Water 7.4 7.7 4.2 Victoria Harbour VM6 19/9/2008 1 Middle Water 2.8 10.1 7.4 Victoria Harbour VM6 19/9/2008 1 Middle Water 3.7 12.2 2.4 Victoria Harbour VM7 19/9/2008 1 Middle Water 4.7 4 1 4 4 4 Victoria Harbour VM7 19/9/2008 1 Middle Water 4.7 4.6 6.4 Victoria Harbour VM7 19/9/2007 1 Middle Water 5.5 3.4 3.3 Victoria				1				
Middle Water S.6 12.6 2.5								
Victoria Harbour VM6 23/8/2007 1 Middle Water 3.2 18.4 3.9								
Victoria Harbour VM6 17/8/2007 1 Middle Water 3.9 11.4 4 4 Victoria Harbour VM6 17/8/2007 1 Middle Water 3.7 12.4 4 4 Victoria Harbour VM6 10/10/2007 1 Middle Water 4.4 13.4 9.5 Victoria Harbour VM6 10/10/2007 1 Middle Water 4.4 13.4 9.5 Victoria Harbour VM6 4/12/2007 1 Middle Water 5.5 4.1 4.8 Victoria Harbour VM6 4/12/2007 1 Middle Water 5.6 7.7 5.5 2.5 Victoria Harbour VM6 4/12/2008 1 Middle Water 5.6 7.7 2 Victoria Harbour VM6 12/2008 1 Middle Water 5.6 7.7 2 Victoria Harbour VM6 12/2008 1 Middle Water 5.3 9.2 2.4 Victoria Harbour VM6 28/3/2008 1 Middle Water 5.3 9.2 2.4 Victoria Harbour VM6 28/3/2008 1 Middle Water 5.3 9.2 2.4 Victoria Harbour VM6 19/8/2008 1 Middle Water 5.3 9.2 2.4 Victoria Harbour VM6 19/8/2008 1 Middle Water 5.1 7.1 6 Victoria Harbour VM6 19/8/2008 1 Middle Water 5.1 7.1 6 Victoria Harbour VM6 27/2008 1 Middle Water 5.9 9.7 3.5 Victoria Harbour VM6 47/2008 1 Middle Water 5.9 9.7 3.5 Victoria Harbour VM6 47/2008 1 Middle Water 4.6 9.9 4.4 Victoria Harbour VM6 49/2008 1 Middle Water 7.4 7.7 4.2 Victoria Harbour VM6 49/2008 1 Middle Water 7.4 7.7 4.2 Victoria Harbour VM6 8/10/2008 1 Middle Water 4.7 4 1.4 Victoria Harbour VM6 51/12/2008 1 Middle Water 4.7 4.6 6.6 4 Victoria Harbour VM6 51/12/2008 1 Middle Water 5.6 3.4 5.3 Victoria Harbour VM6 51/12/2008 1 Middle Water 5.6 3.4 5.3 Victoria Harbour VM7 8/2/2007 1 Middle Water 5.7 12.2 2.4 Victoria Harbour VM7 8/2/2007 1 Middle Water 5.7 12.2 2.4 Victoria Harbour VM7 8/2/2007 1 Middle Water 5.9 9.3 3.6 6.6 4 Victoria Harbour VM7 8/2/2007 1 Middle Water 5.5 9.2 1.3 Victoria Harbour VM7 8/2/2007 1								
Victoria Harbour VM6 10/10/2007 1 Middle Water 3.7 12.4 4 4 Victoria Harbour VM6 10/10/2007 1 Middle Water 5 4.1 4.8 9.5 Victoria Harbour VM6 8/11/2007 1 Middle Water 5 4.1 4.8 Victoria Harbour VM6 8/11/2007 1 Middle Water 5 4.1 4.8 Victoria Harbour VM6 3/12/2008 1 Middle Water 5.6 7 2 2 Victoria Harbour VM6 3/12/2008 1 Middle Water 5.6 7 2 2 Victoria Harbour VM6 10/12/2008 1 Middle Water 5.6 7 2 2 Victoria Harbour VM6 28/3/2008 1 Middle Water 5.3 9.2 2.4 Victoria Harbour VM6 28/3/2008 1 Middle Water 5.3 9.2 2.4 Victoria Harbour VM6 28/3/2008 1 Middle Water 5.3 11.4 7 Victoria Harbour VM6 19/6/2008 1 Middle Water 5.3 11.4 7 Victoria Harbour VM6 19/6/2008 1 Middle Water 5.1 7.1 6 Graph Victoria Harbour VM6 19/6/2008 1 Middle Water 5.1 7.1 6 Victoria Harbour VM6 27/2008 1 Middle Water 5.9 9.7 3.5 Victoria Harbour VM6 4/8/2008 1 Middle Water 5.9 9.7 3.5 Victoria Harbour VM6 4/8/2008 1 Middle Water 4.6 9.9 4.4 Victoria Harbour VM6 8/10/2008 1 Middle Water 7.4 7.7 4.2 Victoria Harbour VM6 8/10/2008 1 Middle Water 4.7 4 1.4 Victoria Harbour VM6 8/10/2008 1 Middle Water 4.7 4 6 6.4 Victoria Harbour VM6 8/10/2008 1 Middle Water 4.7 4.6 6.4 Victoria Harbour VM6 8/10/2008 1 Middle Water 4.7 4.6 6.4 Victoria Harbour VM6 8/10/2008 1 Middle Water 5.6 3.4 5.3 Victoria Harbour VM7 8/2/2007 1 Middle Water 5.7 12.2 2.4 Victoria Harbour VM7 8/2/2007 1 Middle Water 5.7 12.2 2.4 Victoria Harbour VM7 8/2/2007 1 Middle Water 5.7 12.2 2.4 Victoria Harbour VM7 8/2/2007 1 Middle Water 5.5 9.2 1.3 Victoria Harbour VM7 8/2/2007 1 Middle Water 5.5 9.2 1.3 Victoria Harbour VM7 8/2/2007 1 Midd								
Victoria Harbour VM6 10/10/2007 1 Middle Water 4.4 13.4 9.5								
Victoria Harbour VM6 8/11/2007 1 Middle Water 5 4.1 4.8								
Victoria Harbour VM6 4/12/2007 1 Middle Water 4.7 7.5 2.5								
Victoria Harbour VM6 31/12/008 1 Middle Water 5.6 7.4 3.1								
Victoria Harbour VM6 28/3/2008 1 Middle Water 5.3 9.2 2.4								
Victoria Harbour VM6 28/3/2008 1 Middle Water 5.3 9.2 2.4								
Victoria Harbour VM6 19/5/2008 1 Middle Water 5.3 11.4 7								
Victoria Harbour VM6 19/5/2008 1 Middle Water 5.1 7.1 6								
Victoria Harbour VM6 11/6/2008 1 Middle Water 5 9.7 3.5 Victoria Harbour VM6 2/7/2008 1 Middle Water 4.6 9.9 4.4 Victoria Harbour VM6 4/8/2008 1 Middle Water 7.4 7.7 4.2 Victoria Harbour VM6 19/9/2008 1 Middle Water 2.8 10.1 7.4 Victoria Harbour VM6 8/10/2008 1 Middle Water 4.7 4 14 Victoria Harbour VM6 8/11/2008 1 Middle Water 4.7 4.6 6.4 Victoria Harbour VM6 10/12/2008 1 Middle Water 5.6 3.4 5.3 Victoria Harbour VM7 3/1/2007 1 Middle Water 5.7 12.2 2.4 Victoria Harbour VM7 13/4/2007 1 Middle Water 5.2 10.2 3.2 Victoria Harbour VM7 15/5/2007 1 Middle Wa								
Victoria Harbour VM6 277/2008 1 Middle Water 4.6 9.9 4.4 Victoria Harbour VM6 4/8/2008 1 Middle Water 2.8 10.1 7.7 4.2 Victoria Harbour VM6 8/10/2008 1 Middle Water 2.8 10.1 7.4 Victoria Harbour VM6 8/10/2008 1 Middle Water 4.7 4 1.4 Victoria Harbour VM6 5/11/2008 1 Middle Water 4.7 4.6 6.4 Victoria Harbour VM6 10/12/2008 1 Middle Water 5.6 3.4 5.3 Victoria Harbour VM6 10/12/2008 1 Middle Water 5.6 3.4 5.3 Victoria Harbour VM7 3/1/2007 1 Middle Water 5.7 12.2 2.4 Victoria Harbour VM7 6/2/2007 1 Middle Water 5.7 10.7 5.3 Victoria Harbour VM7 9/3/2007 1 Middle Water 5.2 10.2 3.2 Victoria Harbour VM7 13/4/2007 1 Middle Water 5.2 10.2 3.2 Victoria Harbour VM7 13/4/2007 1 Middle Water 4.9 9.3 3.6 Victoria Harbour VM7 25/6/2007 1 Middle Water 4.9 9.3 3.6 Victoria Harbour VM7 25/6/2007 1 Middle Water 4.9 8.8 1.3 Victoria Harbour VM7 28/6/2007 1 Middle Water 5.5 9.2 1.3 Victoria Harbour VM7 28/8/2007 1 Middle Water 5.5 9.2 1.3 Victoria Harbour VM7 28/8/2007 1 Middle Water 5.3 11.4 3 Victoria Harbour VM7 24/9/2007 1 Middle Water 4.7 12.5 4 Victoria Harbour VM7 24/9/2007 1 Middle Water 4.7 15.5 10 Victoria Harbour VM7 17/10/2007 1 Middle Water 5.1 4.2 4.6 Victoria Harbour VM7 17/12/2007 1 Middle Water 5.1 4.2 4.6 Victoria Harbour VM7 17/12/2008 1 Middle Water 5.1 4.2 4.6 Victoria Harbour VM7 17/12/2008 1 Middle Water 5.5 8 5.9 Victoria Harbour VM7 27/8/2008 1 Middle Water 5.5 8 5.9 Victoria Harbour VM7 27/8/2008 1 Middle Water 5.1 11.6 2.6 Victoria Harbour VM7 27/8/2008 1 Middle Water 5.3 4.3 5.6 Victoria Harbour VM7 27/8/2008 1 Middle Water 5.3								
Victoria Harbour VM6 4/8/2008 1 Middle Water 7.4 7.7 4.2 Victoria Harbour VM6 19/9/2008 1 Middle Water 2.8 10.1 7.4 Victoria Harbour VM6 8/10/2008 1 Middle Water 4.7 4 14 Victoria Harbour VM6 5/11/2008 1 Middle Water 4.7 4.6 6.4 Victoria Harbour VM6 10/12/2008 1 Middle Water 5.6 3.4 5.3 Victoria Harbour VM7 3/1/2007 1 Middle Water 5.7 12.2 2.4 Victoria Harbour VM7 6/2/2007 1 Middle Water 5.7 12.2 2.4 Victoria Harbour VM7 9/3/2007 1 Middle Water 4.9 9.3 3.6 Victoria Harbour VM7 7/5/2007 1 Middle Water 4.9 8.8 1.3 Victoria Harbour VM7 2/6/2007 1 Middle Wat								
Victoria Harbour VM6 19/9/2008 1 Middle Water 2.8 10.1 7.4 Victoria Harbour VM6 8/10/2008 1 Middle Water 4.7 4 14 Victoria Harbour VM6 5/11/2008 1 Middle Water 4.7 4.6 6.4 Victoria Harbour VM6 10/12/2008 1 Middle Water 5.6 3.4 5.3 Victoria Harbour VM7 3/1/2007 1 Middle Water 5.7 12.2 2.4 Victoria Harbour VM7 6/2/2007 1 Middle Water 5.2 10.2 3.2 Victoria Harbour VM7 13/4/2007 1 Middle Water 4.9 9.3 3.6 Victoria Harbour VM7 7/5/2007 1 Middle Water 4.9 8.8 1.3 Victoria Harbour VM7 18/7/2007 1 Middle Water 5.5 9.2 1.3 Victoria Harbour VM7 18/7/2007 1 Middle								
Victoria Harbour VM6 8/10/2008 1 Middle Water 4.7 4 14 Victoria Harbour VM6 5/11/2008 1 Middle Water 4.7 4.6 6.4 Victoria Harbour VM6 5/11/2008 1 Middle Water 5.6 3.4 5.3 Victoria Harbour VM7 3/1/2007 1 Middle Water 5.7 12.2 2.4 Victoria Harbour VM7 6/2/2007 1 Middle Water 7 10.7 5.3 Victoria Harbour VM7 19/3/2007 1 Middle Water 5.2 10.2 3.2 Victoria Harbour VM7 13/4/2007 1 Middle Water 4.9 8.8 1.3 Victoria Harbour VM7 7/5/2007 1 Middle Water 4.9 8.8 1.3 Victoria Harbour VM7 18/7/2007 1 Middle Water 5.5 9.2 1.3 Victoria Harbour VM7 20/8/20007 1 Middle Wa								
Victoria Harbour VM6 5/11/2008 1 Middle Water 4.7 4.6 6.4 Victoria Harbour VM6 10/12/2008 1 Middle Water 5.6 3.4 5.3 Victoria Harbour VM7 3/1/2007 1 Middle Water 5.7 12.2 2.4 Victoria Harbour VM7 6/2/2007 1 Middle Water 7 10.7 5.3 Victoria Harbour VM7 9/3/2007 1 Middle Water 5.2 10.2 3.2 Victoria Harbour VM7 13/4/2007 1 Middle Water 4.9 9.3 3.6 Victoria Harbour VM7 7/5/2007 1 Middle Water 4.9 9.8 8 1.3 Victoria Harbour VM7 25/6/2007 1 Middle Water 5.5 9.2 1.3 Victoria Harbour VM7 18/7/2007 1 Middle Water 5.3 11.4 3 Victoria Harbour VM7 15/11/2007 1								
Victoria Harbour VM6 10/12/2008 1 Middle Water 5.6 3.4 5.3 Victoria Harbour VM7 3/1/2007 1 Middle Water 5.7 12.2 2.4 Victoria Harbour VM7 6/2/2007 1 Middle Water 7 10.7 5.3 Victoria Harbour VM7 9/3/2007 1 Middle Water 5.2 10.2 3.2 Victoria Harbour VM7 13/4/2007 1 Middle Water 4.9 9.3 3.6 Victoria Harbour VM7 25/6/2007 1 Middle Water 4.9 8.8 1.3 Victoria Harbour VM7 25/6/2007 1 Middle Water 5.5 9.2 1.3 Victoria Harbour VM7 28/6/2007 1 Middle Water 4.7 12.5 4 Victoria Harbour VM7 24/9/2007 1 Middle Water 4.7 15.5 10 Victoria Harbour VM7 11/1/10/2007 1 Midd								
Victoria Harbour VM7 3/1/2007 1 Middle Water 5.7 12.2 2.4 Victoria Harbour VM7 6/2/2007 1 Middle Water 7 10.7 5.3 Victoria Harbour VM7 9/3/2007 1 Middle Water 5.2 10.2 3.2 Victoria Harbour VM7 13/4/2007 1 Middle Water 4.9 9.3 3.6 Victoria Harbour VM7 7/5/2007 1 Middle Water 4.9 8.8 1.3 Victoria Harbour VM7 18/7/2007 1 Middle Water 5.5 9.2 1.3 Victoria Harbour VM7 18/7/2007 1 Middle Water 5.3 11.4 3 Victoria Harbour VM7 20/8/2007 1 Middle Water 4.7 12.5 4 Victoria Harbour VM7 11/10/2007 1 Middle Water 3.9 11.2 6 Victoria Harbour VM7 15/11/2007 1 Middle Wa								
Victoria Harbour VM7 6/2/2007 1 Middle Water 7 10.7 5.3 Victoria Harbour VM7 9/3/2007 1 Middle Water 5.2 10.2 3.2 Victoria Harbour VM7 13/4/2007 1 Middle Water 4.9 9.3 3.6 Victoria Harbour VM7 7/5/2007 1 Middle Water 4.9 8.8 1.3 Victoria Harbour VM7 25/6/2007 1 Middle Water 5.5 9.2 1.3 Victoria Harbour VM7 18/7/2007 1 Middle Water 5.3 11.4 3 Victoria Harbour VM7 20/8/2007 1 Middle Water 4.7 12.5 4 Victoria Harbour VM7 24/9/2007 1 Middle Water 4.7 15.5 10 Victoria Harbour VM7 11/10/2007 1 Middle Water 3.9 11.2 6 Victoria Harbour VM7 11/12/2007 1 Middle Wa								
Victoria Harbour VM7 9/3/2007 1 Middle Water 5.2 10.2 3.2 Victoria Harbour VM7 13/4/2007 1 Middle Water 4.9 9.3 3.6 Victoria Harbour VM7 7/5/2007 1 Middle Water 4.9 8.8 1.3 Victoria Harbour VM7 25/6/2007 1 Middle Water 5.5 9.2 1.3 Victoria Harbour VM7 18/7/2007 1 Middle Water 5.3 11.4 3 Victoria Harbour VM7 20/8/2007 1 Middle Water 4.7 12.5 4 Victoria Harbour VM7 24/9/2007 1 Middle Water 4.7 15.5 10 Victoria Harbour VM7 15/11/2007 1 Middle Water 3.9 11.2 6 Victoria Harbour VM7 11/10/2007 1 Middle Water 5.1 4.2 4.6 Victoria Harbour VM7 11/12/2007 1 Middle								
Victoria Harbour VM7 13/4/2007 1 Middle Water 4.9 9.3 3.6 Victoria Harbour VM7 7/5/2007 1 Middle Water 4.9 8.8 1.3 Victoria Harbour VM7 25/6/2007 1 Middle Water 5.5 9.2 1.3 Victoria Harbour VM7 18/7/2007 1 Middle Water 5.5 9.2 1.3 Victoria Harbour VM7 18/7/2007 1 Middle Water 4.7 12.5 4 Victoria Harbour VM7 24/9/2007 1 Middle Water 4.7 15.5 10 Victoria Harbour VM7 11/10/2007 1 Middle Water 3.9 11.2 6 Victoria Harbour VM7 15/11/2007 1 Middle Water 5.1 4.2 4.6 Victoria Harbour VM7 11/12/2007 1 Middle Water 5.6 8.1 4.2 Victoria Harbour VM7 11/12/2008 1 Midd								
Victoria Harbour VM7 7/5/2007 1 Middle Water 4.9 8.8 1.3 Victoria Harbour VM7 25/6/2007 1 Middle Water 5.5 9.2 1.3 Victoria Harbour VM7 18/7/2007 1 Middle Water 5.3 11.4 3 Victoria Harbour VM7 20/8/2007 1 Middle Water 4.7 12.5 4 Victoria Harbour VM7 24/9/2007 1 Middle Water 4.7 15.5 10 Victoria Harbour VM7 11/10/2007 1 Middle Water 3.9 11.2 6 Victoria Harbour VM7 15/11/2007 1 Middle Water 5.1 4.2 4.6 Victoria Harbour VM7 11/12/2007 1 Middle Water 5.1 8.6 3.4 Victoria Harbour VM7 4/1/2008 1 Middle Water 5.6 8.1 4.2 Victoria Harbour VM7 5/3/2008 1 Middle W								
Victoria Harbour VM7 25/6/2007 1 Middle Water 5.5 9.2 1.3 Victoria Harbour VM7 18/7/2007 1 Middle Water 5.3 11.4 3 Victoria Harbour VM7 20/8/2007 1 Middle Water 4.7 12.5 4 Victoria Harbour VM7 24/9/2007 1 Middle Water 4.7 15.5 10 Victoria Harbour VM7 11/10/2007 1 Middle Water 3.9 11.2 6 Victoria Harbour VM7 15/11/2007 1 Middle Water 5.1 4.2 4.6 Victoria Harbour VM7 11/12/2007 1 Middle Water 5.1 8.6 3.4 Victoria Harbour VM7 4/1/2008 1 Middle Water 5.6 8.1 4.2 Victoria Harbour VM7 5/3/2008 1 Middle Water 7.8 8 2.2 Victoria Harbour VM7 14/5/2008 1 Middle Wa								
Victoria Harbour VM7 18/7/2007 1 Middle Water 5.3 11.4 3 Victoria Harbour VM7 20/8/2007 1 Middle Water 4.7 12.5 4 Victoria Harbour VM7 24/9/2007 1 Middle Water 4.7 15.5 10 Victoria Harbour VM7 11/10/2007 1 Middle Water 3.9 11.2 6 Victoria Harbour VM7 15/11/2007 1 Middle Water 5.1 4.2 4.6 Victoria Harbour VM7 11/12/2007 1 Middle Water 5.1 8.6 3.4 Victoria Harbour VM7 11/2/2008 1 Middle Water 5.6 8.1 4.2 Victoria Harbour VM7 5/3/2008 1 Middle Water 7.8 8 2.2 Victoria Harbour VM7 14/5/2008 1 Middle Water 5.5 8 5.9 Victoria Harbour VM7 2/8/2008 1 Middle Wate								
Victoria Harbour VM7 20/8/2007 1 Middle Water 4.7 12.5 4 Victoria Harbour VM7 24/9/2007 1 Middle Water 4.7 15.5 10 Victoria Harbour VM7 11/10/2007 1 Middle Water 3.9 11.2 6 Victoria Harbour VM7 15/11/2007 1 Middle Water 5.1 4.2 4.6 Victoria Harbour VM7 11/12/2007 1 Middle Water 5.1 8.6 3.4 Victoria Harbour VM7 4/1/2008 1 Middle Water 5.6 8.1 4.2 Victoria Harbour VM7 11/2/2008 1 Middle Water 6.3 8.7 4.6 Victoria Harbour VM7 5/3/2008 1 Middle Water 7.8 8 2.2 Victoria Harbour VM7 2/4/2008 1 Middle Water 5.5 8 5.9 Victoria Harbour VM7 2/6/2008 1 Middle Water								
Victoria Harbour VM7 24/9/2007 1 Middle Water 4.7 15.5 10 Victoria Harbour VM7 11/10/2007 1 Middle Water 3.9 11.2 6 Victoria Harbour VM7 15/11/2007 1 Middle Water 5.1 4.2 4.6 Victoria Harbour VM7 11/12/2007 1 Middle Water 5.1 8.6 3.4 Victoria Harbour VM7 4/1/2008 1 Middle Water 5.6 8.1 4.2 Victoria Harbour VM7 4/1/2008 1 Middle Water 6.3 8.7 4.6 Victoria Harbour VM7 5/3/2008 1 Middle Water 7.8 8 2.2 Victoria Harbour VM7 2/4/2008 1 Middle Water 5.5 8 5.9 Victoria Harbour VM7 2/6/2008 1 Middle Water 5.1 11.6 2.6 Victoria Harbour VM7 2/5/8/2008 1 Middle Wat								
Victoria Harbour VM7 11/10/2007 1 Middle Water 3.9 11.2 6 Victoria Harbour VM7 15/11/2007 1 Middle Water 5.1 4.2 4.6 Victoria Harbour VM7 11/12/2007 1 Middle Water 5.1 8.6 3.4 Victoria Harbour VM7 4/1/2008 1 Middle Water 5.6 8.1 4.2 Victoria Harbour VM7 11/2/2008 1 Middle Water 6.3 8.7 4.6 Victoria Harbour VM7 5/3/2008 1 Middle Water 7.8 8 2.2 Victoria Harbour VM7 2/4/2008 1 Middle Water 6.1 10.3 5 Victoria Harbour VM7 14/5/2008 1 Middle Water 5.5 8 5.9 Victoria Harbour VM7 2/6/2008 1 Middle Water 5.1 11.6 2.6 Victoria Harbour VM7 25/8/2008 1 Middle Wate								
Victoria Harbour VM7 15/11/2007 1 Middle Water 5.1 4.2 4.6 Victoria Harbour VM7 11/12/2007 1 Middle Water 5.1 8.6 3.4 Victoria Harbour VM7 4/1/2008 1 Middle Water 5.6 8.1 4.2 Victoria Harbour VM7 11/2/2008 1 Middle Water 6.3 8.7 4.6 Victoria Harbour VM7 5/3/2008 1 Middle Water 7.8 8 2.2 Victoria Harbour VM7 2/4/2008 1 Middle Water 6.1 10.3 5 Victoria Harbour VM7 14/5/2008 1 Middle Water 5.5 8 5.9 Victoria Harbour VM7 2/6/2008 1 Middle Water 4.4 8.1 3.4 Victoria Harbour VM7 2/5/8/2008 1 Middle Water 5.1 11.6 2.6 Victoria Harbour VM7 2/5/8/2008 1 Middle Wa								
Victoria Harbour VM7 11/12/2007 1 Middle Water 5.1 8.6 3.4 Victoria Harbour VM7 4/1/2008 1 Middle Water 5.6 8.1 4.2 Victoria Harbour VM7 11/2/2008 1 Middle Water 6.3 8.7 4.6 Victoria Harbour VM7 5/3/2008 1 Middle Water 7.8 8 2.2 Victoria Harbour VM7 2/4/2008 1 Middle Water 6.1 10.3 5 Victoria Harbour VM7 14/5/2008 1 Middle Water 5.5 8 5.9 Victoria Harbour VM7 2/6/2008 1 Middle Water 4.4 8.1 3.4 Victoria Harbour VM7 2/6/2008 1 Middle Water 5.1 11.6 2.6 Victoria Harbour VM7 25/8/2008 1 Middle Water 5.2 7.3 2.9 Victoria Harbour VM7 2/9/2008 1 Middle Water </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Victoria Harbour VM7 4/1/2008 1 Middle Water 5.6 8.1 4.2 Victoria Harbour VM7 11/2/2008 1 Middle Water 6.3 8.7 4.6 Victoria Harbour VM7 5/3/2008 1 Middle Water 7.8 8 2.2 Victoria Harbour VM7 2/4/2008 1 Middle Water 6.1 10.3 5 Victoria Harbour VM7 14/5/2008 1 Middle Water 5.5 8 5.9 Victoria Harbour VM7 2/6/2008 1 Middle Water 4.4 8.1 3.4 Victoria Harbour VM7 7/7/2008 1 Middle Water 5.1 11.6 2.6 Victoria Harbour VM7 25/8/2008 1 Middle Water 5.2 7.3 2.9 Victoria Harbour VM7 2/9/2008 1 Middle Water 5.3 4.3 5.6 Victoria Harbour VM7 9/10/2008 1 Middle Water <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Victoria Harbour VM7 11/2/2008 1 Middle Water 6.3 8.7 4.6 Victoria Harbour VM7 5/3/2008 1 Middle Water 7.8 8 2.2 Victoria Harbour VM7 2/4/2008 1 Middle Water 6.1 10.3 5 Victoria Harbour VM7 14/5/2008 1 Middle Water 5.5 8 5.9 Victoria Harbour VM7 2/6/2008 1 Middle Water 4.4 8.1 3.4 Victoria Harbour VM7 7/7/2008 1 Middle Water 5.1 11.6 2.6 Victoria Harbour VM7 25/8/2008 1 Middle Water 5.2 7.3 2.9 Victoria Harbour VM7 22/9/2008 1 Middle Water 5.3 4.3 5.6 Victoria Harbour VM7 9/10/2008 1 Middle Water 5.3 4.3 5.6 Victoria Harbour VM7 20/11/2008 1 Middle Water								
Victoria Harbour VM7 5/3/2008 1 Middle Water 7.8 8 2.2 Victoria Harbour VM7 2/4/2008 1 Middle Water 6.1 10.3 5 Victoria Harbour VM7 14/5/2008 1 Middle Water 5.5 8 5.9 Victoria Harbour VM7 2/6/2008 1 Middle Water 4.4 8.1 3.4 Victoria Harbour VM7 7/7/2008 1 Middle Water 5.1 11.6 2.6 Victoria Harbour VM7 25/8/2008 1 Middle Water 5.2 7.3 2.9 Victoria Harbour VM7 22/9/2008 1 Middle Water 3.1 7.7 4.1 Victoria Harbour VM7 9/10/2008 1 Middle Water 5.3 4.3 5.6 Victoria Harbour VM7 20/11/2008 1 Middle Water 5.3 4.7 6.5								
Victoria Harbour VM7 2/4/2008 1 Middle Water 6.1 10.3 5 Victoria Harbour VM7 14/5/2008 1 Middle Water 5.5 8 5.9 Victoria Harbour VM7 2/6/2008 1 Middle Water 4.4 8.1 3.4 Victoria Harbour VM7 7/7/2008 1 Middle Water 5.1 11.6 2.6 Victoria Harbour VM7 25/8/2008 1 Middle Water 5.2 7.3 2.9 Victoria Harbour VM7 22/9/2008 1 Middle Water 3.1 7.7 4.1 Victoria Harbour VM7 9/10/2008 1 Middle Water 5.3 4.3 5.6 Victoria Harbour VM7 20/11/2008 1 Middle Water 5.3 4.7 6.5								
Victoria Harbour VM7 14/5/2008 1 Middle Water 5.5 8 5.9 Victoria Harbour VM7 2/6/2008 1 Middle Water 4.4 8.1 3.4 Victoria Harbour VM7 7/7/2008 1 Middle Water 5.1 11.6 2.6 Victoria Harbour VM7 25/8/2008 1 Middle Water 5.2 7.3 2.9 Victoria Harbour VM7 22/9/2008 1 Middle Water 3.1 7.7 4.1 Victoria Harbour VM7 9/10/2008 1 Middle Water 5.3 4.3 5.6 Victoria Harbour VM7 20/11/2008 1 Middle Water 5.3 4.7 6.5							_	
Victoria Harbour VM7 2/6/2008 1 Middle Water 4.4 8.1 3.4 Victoria Harbour VM7 7/7/2008 1 Middle Water 5.1 11.6 2.6 Victoria Harbour VM7 25/8/2008 1 Middle Water 5.2 7.3 2.9 Victoria Harbour VM7 22/9/2008 1 Middle Water 3.1 7.7 4.1 Victoria Harbour VM7 9/10/2008 1 Middle Water 5.3 4.3 5.6 Victoria Harbour VM7 20/11/2008 1 Middle Water 5.3 4.7 6.5								
Victoria Harbour VM7 7/7/2008 1 Middle Water 5.1 11.6 2.6 Victoria Harbour VM7 25/8/2008 1 Middle Water 5.2 7.3 2.9 Victoria Harbour VM7 22/9/2008 1 Middle Water 3.1 7.7 4.1 Victoria Harbour VM7 9/10/2008 1 Middle Water 5.3 4.3 5.6 Victoria Harbour VM7 20/11/2008 1 Middle Water 5.3 4.7 6.5								
Victoria Harbour VM7 25/8/2008 1 Middle Water 5.2 7.3 2.9 Victoria Harbour VM7 22/9/2008 1 Middle Water 3.1 7.7 4.1 Victoria Harbour VM7 9/10/2008 1 Middle Water 5.3 4.3 5.6 Victoria Harbour VM7 20/11/2008 1 Middle Water 5.3 4.7 6.5								
Victoria Harbour VM7 22/9/2008 1 Middle Water 3.1 7.7 4.1 Victoria Harbour VM7 9/10/2008 1 Middle Water 5.3 4.3 5.6 Victoria Harbour VM7 20/11/2008 1 Middle Water 5.3 4.7 6.5								
Victoria Harbour VM7 9/10/2008 1 Middle Water 5.3 4.3 5.6 Victoria Harbour VM7 20/11/2008 1 Middle Water 5.3 4.7 6.5								
Victoria Harbour VM7 20/11/2008 1 Middle Water 5.3 4.7 6.5	Victoria Harbour			1	Middle Water	3.1		
	Victoria Harbour				Middle Water			
Victoria Harbour VM7 6/12/2008 1 Middle Water 6.1 9.8 4.3	Victoria Harbour	VM7	20/11/2008	1	Middle Water	5.3	4.7	6.5
	Victoria Harbour	VM7	6/12/2008	11	Middle Water	6.1	9.8	4.3

EPD Marine Water Monitoring Data at Victoria Harbour (2006-2008)

Water Control Zone	Station	Dates	Sample No	Depth	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Suspended Solids (mg/L)
Victoria Harbour	VM8	3/1/2007	1	Middle Water	5.6	13.5	5
Victoria Harbour	VM8	6/2/2007	1	Middle Water	8.6	11.8	7
Victoria Harbour	VM8	9/3/2007	1	Middle Water	6.4	13.1	7.8
Victoria Harbour	VM8	13/4/2007	1	Middle Water	5.5	9.9	4.5
Victoria Harbour	VM8	7/5/2007	1	Middle Water	5.8	9.8	3.6
Victoria Harbour	VM8	25/6/2007	1	Middle Water	5.2	9.5	2.2
Victoria Harbour	VM8	18/7/2007	1	Middle Water	5	33.9	3.4
Victoria Harbour	VM8	20/8/2007	1	Middle Water	4.4	13	4
Victoria Harbour	VM8	24/9/2007	1	Middle Water	5	14.5	6.6
Victoria Harbour	VM8	11/10/2007	1	Middle Water	4.5	12	6.5
Victoria Harbour	VM8	15/11/2007	1	Middle Water	5.6	4.1	7.6
Victoria Harbour	VM8	11/12/2007	1	Middle Water	5.1	8.7	3.7
Victoria Harbour	VM8	4/1/2008	1	Middle Water	6.2	8.1	3.4
Victoria Harbour	VM8	11/2/2008	1	Middle Water	7.4	12.1	6.6
Victoria Harbour	VM8	5/3/2008	1	Middle Water	7.6	8.8	3
Victoria Harbour	VM8	2/4/2008	1	Middle Water	6.6	13.3	7.4
Victoria Harbour	VM8	14/5/2008	1	Middle Water	5.5	8.4	6.3
Victoria Harbour	VM8	2/6/2008	1	Middle Water	5.1	7.3	3
Victoria Harbour	VM8	7/7/2008	1	Middle Water	5.1	12.2	2.4
Victoria Harbour	VM8	25/8/2008	1	Middle Water	5.1	7.2	3.2
Victoria Harbour	VM8	22/9/2008	1	Middle Water	4	7.3	3.1
Victoria Harbour	VM8	9/10/2008	1	Middle Water	5.3	3.9	4.3
Victoria Harbour	VM8	20/11/2008	1	Middle Water	5.8	4.5	5.4
Victoria Harbour	VM8	6/12/2008	1	Middle Water	6.4	10.3	6.3

EPD Marine Water Monitoring Data (2006-2008) - DO Variation Between Dry and Wet Seasons

Station	DO (mg/L)	Dry season 2006	Wet season 2006	Variation in avg. DO	Dry season 2007	Wet season 2007	Variation in avg. DO	Dry season 2008	Wet season	Varia-tion in avg. DO	Mean Variation %
	Avg.	6.60	5.17	-21.7%	6.47	4.40	-32.0%	6.12	4.60	-24.8%	-26.2%
VM1 (WSD15)	Min.	4.90	2.70	-	4.90	2.90	-	4.50	2.80	-	-
	Max.	7.60	7.60	-	7.70	6.00	-	7.20	6.30	-	-
	Avg.	6.25	5.32	-14.9%	6.20	5.55	-10.5%	5.77	5.08	-11.8%	-12.4%
VM2 (WSD10, WSD17)	Min.	4.30	3.60	-	4.10	3.70	-	4.30	3.00	-	-
	Max.	7.20	6.90	-	7.70	8.00	-	7.10	6.90	-	-
L	Avg.	6.15	5.47	-11.1%	5.83	5.38	-7.7%	5.58	5.07	-9.3%	-9.4%
VM4 (WSD9, C8, C9)	Min.	4.10	4.60	-	4.10	4.30	-	4.40	2.80	-	-
	Max.	7.30	6.80	-	7.30	8.00	-	7.10	7.00	-	-
L	Avg.	<mark>5.92</mark>	<mark>5.15</mark>	<mark>-13.0%</mark>	<mark>5.42</mark>	4.85	<mark>-10.5%</mark>	<mark>5.40</mark>	4.95	-8.3%	<mark>-10.6%</mark>
VM5 (WSD21, C1-C7)	Min.	4.30	4.80	-	3.90	3.90	-	4.40	<mark>3.10</mark>	-	-
	Max.	7.00	<mark>5.60</mark>	-	<mark>6.90</mark>	<mark>6.10</mark>	-	<mark>6.80</mark>	6.00	-	-
	Avg.	5.90	5.35	-9.3%	5.57	4.28	-23.1%	5.42	5.03	-7.1%	-13.2%
VM6 (WSD19)	Min.	4.40	4.60	-	4.40	3.20	-	4.70	2.80	=	-
	Max.	6.80	6.20	-	7.30	5.60	-	6.60	7.40	=	-
L	Avg.	5.82	5.73	-1.4%	5.33	5.00	-6.2%	6.07	4.90	-19.2%	-9.0%
VM7 (WSD7)	Min.	4.10	4.40	-	3.90	4.70	-	5.30	3.10	-	-
	Max.	6.90	7.70	-	7.00	5.50	-	7.80	6.10	-	-
	Avg.	6.52	5.75	-11.8%	5.97	5.15	-13.7%	6.45	5.23	-18.9%	-14.8%
VM8 (WSD20)	Min.	5.30	4.40	-	4.50	4.40	-	5.30	4.00	-	-
	Max.	7.70	7.50	-	8.60	5.80	-	7.60	6.60	-	-

EPD Marine Water Monitoring Data (2006-2008) - Turbidity Variation Between Dry and Wet Seasons

Station	Turb (NTU)	Dry season 2006	Wet season 2006	Varia-tion in avg. Tur	Dry season 2007	Wet season 2007	Varia-tion in avg. Tur	Dry season 2008	Wet season 2008	Varia-tion in avg. Tur	Mean Variation %
Otation	Avg.	12.02	12.55	4.4%	8.62	15.63	81.4%	5.57	10.98	97.3%	61.1%
VM1 (WSD15)	Min.	8.50	6.80		4.20	9.50	-	2.10	7.90	-	
, ,	Max.	13.90	17.90	_	10.80	35.00	_	10.50	14.40	-	-
	Avg.	11.88	9.78	-17.7%	8.65	13.22	52.8%	5.75	8.67	50.7%	28.6%
VM2 (WSD10, WSD17)	Min.	8.90	4.20	-	4.30	9.10	-	2.50	6.50	-	-
	Max.	14.80	14.90	-	11.30	24.90	-	8.90	11.20	-	-
	Avg.	12.73	9.67	-24.1%	8.83	12.55	42.1%	6.20	9.55	54.0%	24.0%
VM4 (WSD9, C8, C9)	Min.	8.40	4.80	-	4.10	9.30	-	2.50	8.20	-	-
	Max.	18.10	12.60	=	11.20	21.00	=	9.70	11.90	=	-
	Avg.	12.98	9.85	<mark>-24.1%</mark>	9.10	12.93	42.1%	5.87	9.50	61.9%	26.6%
VM5 (WSD21, C1-C7)	Min.	9.30	4.90	-	4.10	9.30	-	3.00	7.90	-	-
	Max.	17.50	13.40	-	13.10	24.60	-	9.20	12.10	-	-
	Avg.	12.38	9.58	-22.6%	9.20	12.40	34.8%	5.93	9.32	57.0%	23.1%
VM6 (WSD19)	Min.	9.60	5.00	-	4.10	9.50	<u>-</u> -	3.40	7.10	-	-
	Max.	14.10	13.20	-	13.40	18.40		9.20	11.40	-	-
	Avg.	13.10	9.23	-29.5%	9.52	11.12	16.8%	7.27	8.83	21.6%	3.0%
VM7 (WSD7)	Min.	9.60	5.20	-	4.20	8.80	- -	4.30	7.30	-	i
	Max.	20.40	12.70	-	12.20	15.50	-	9.80	11.60	-	-
	Avg.	13.57	9.10	-32.9%	10.53	15.10	43.4%	7.95	9.28	16.8%	9.1%
VM8 (WSD20)	Min.	9.60	5.20	-	4.10	9.50	-	3.90	7.20	-	-
	Max.	18.80	12.00	=	13.50	33.90	-	12.10	13.30	=	-

EPD Marine Water Monitoring Data (2006-2008) - SS Variation Between Dry and Wet Seasons

	SS (mg/L)	Dry season	Wet season	Varia-tion in	Dry season	Wet season	Varia-tion in	Dry season	Wet season	Varia-tion in	Mean
Station		2006	2006	avg. SS	2007	2007	avg. SS	2008	2008	avg. SS	Variation %
	Avg.	3.63	7.12	95.9%	3.12	5.23	67.9%	3.92	6.98	78.3%	80.7%
VM1 (WSD15)	Min.	2.20	3.30	-	1.60	3.40	-	1.10	3.80	-	-
	Max.	6.80	19.00	-	5.80	8.50	-	6.50	12.00	-	-
	Avg.	3.70	4.35	17.6%	3.02	3.90	29.3%	3.78	4.03	6.6%	17.8%
VM2 (WSD10, WSD17)	Min.	2.50	0.80	-	1.80	2.80	-	1.60	3.60	-	ı
	Max.	4.70	12.00	-	4.40	5.80	-	9.20	4.80	-	1
	Avg.	4.63	4.38	-5.4%	3.15	4.18	32.8%	4.03	5.88	45.9%	24.4%
VM4 (WSD9, C8, C9)	Min.	2.90	1.70	-	1.70	2.70	-	2.70	3.10	=	-
	Max.	7.40	12.00	-	4.80	5.90	-	7.70	11.00	=	
	Avg.	4.10	4.57	11.4%	3.60	4.07	13.0%	3.87	5.57	44.0%	22.8%
VM5 (WSD21, C1-C7)	Min.	2.70	3.00	-	1.70	2.80	-	2.40	2.40	-	-
	Max.	5.60	9.60	-	8.00	6.20	-	6.60	10.00	-	-
	Avg.	4.52	4.22	-6.6%	4.28	3.73	-12.8%	5.53	5.42	-2.1%	-7.2%
VM6 (WSD19)	Min.	3.20	1.60	-	2.10	2.50	-	2.00	3.50	-	-
	Max.	7.00	9.70	-	9.50	4.20	-	14.00	7.40	-	-
	Avg.	4.80	5.53	15.3%	4.15	3.87	-6.8%	4.57	3.98	-12.8%	-1.4%
VM7 (WSD7)	Min.	2.50	1.40	-	2.40	1.30	-	2.20	2.60	-	-
	Max.	6.80	20.00	-	6.00	10.00	-	6.50	5.90	-	-
	Avg.	7.80	5.03	-35.5%	6.27	4.05	-35.4%	4.83	4.23	-12.4%	-27.8%
VM8 (WSD20)	Min.	3.20	1.30	-	3.70	2.20	-	3.00	2.40	-	
	Max.	17.00	18.00	-	7.80	6.60	-	6.60	7.40	-	-

Mid-flood	WSD7			WSD9			WSD10			WSD15			WSD17		
Date	Value	Value	Average												
21-Oct-09	10.2	9.3	9.75	4.6	4.6	4.60	5.0	4.3	4.65	5.7	5.2	5.45	6.2	6.4	6.30
23-Oct-09	4.9	5.8	5.35	3.4	4.1	3.75	3.1	3.2	3.15	6.3	6.4	6.35	5.0	5.5	5.25
27-Oct-09	7.6	7.4	7.50	4.0	4.2	4.10	3.3	3.2	3.25	6.3	5.7	6.00	6.6	6.7	6.65
29-Oct-09	8.0	8.0	8.00	3.8	3.8	3.80	5.0	5.0	5.00	3.0	3.0	3.00	3.6	3.6	3.60
31-Oct-09	6.3	5.4	5.85	2.2	2.0	2.10	4.9	6.1	5.50	5.6	4.2	4.90	5.9	5.9	5.90
2-Nov-09	5.8	5.0	5.40	3.7	3.8	3.75	3.3	2.9	3.10	5.0	4.8	4.90	4.9	4.8	4.85
4-Nov-09	7.1	6.8	6.95	3.8	3.7	3.75	4.7	4.5	4.60	5.1	5.5	5.30	4.8	4.6	4.70
6-Nov-09	8.4	8.1	8.25	3.7	3.6	3.65	3.0	3.0	3.00	3.5	3.4	3.45	4.1	4.5	4.30
10-Nov-09	6.3	6.0	6.15	3.7	3.4	3.55	3.6	3.9	3.75	2.9	2.6	2.75	5.8	6.2	6.00
12-Nov-09	9.8	9.2	9.50	4.4	4.3	4.35	7.1	6.5	6.80	5.6	5.5	5.55	6.0	6.2	6.10
14-Nov-09	1.9	1.8	1.85	2.1	2.4	2.25	4.9	5.1	5.00	2.3	2.2	2.25	6.6	6.1	6.35
16-Nov-09	1.9	1.8	1.85	2.3	2.3	2.30	2.6	2.7	2.65	2.4	2.3	2.35	2.4	2.4	2.40

Mid-ebb	WSD7			WSD9			WSD10			WSD15			WSD17		
Date	Value	Value	Average												
21-Oct-09	5.5	5.5	5.50	6.3	6.9	6.60	5.2	4.8	5.00	7.3	7.5	7.40	7.8	7.5	7.65
23-Oct-09	6.2	5.7	5.95	4.3	4.8	4.55	4.3	3.9	4.10	3.1	3.0	3.05	5.4	4.4	4.90
27-Oct-09	6.7	6.2	6.45	2.3	2.5	2.40	3.7	3.5	3.60	3.2	3.4	3.30	3.4	3.5	3.45
29-Oct-09	4.3	4.2	4.25	3.3	3.5	3.40	4.9	4.9	4.90	3.3	3.5	3.40	4.6	4.6	4.60
31-Oct-09	3.7	4.1	3.90	3.4	3.7	3.55	6.1	6.4	6.25	3.8	1.9	2.85	3.9	3.5	3.70
2-Nov-09	6.3	5.9	6.10	3.6	3.7	3.65	3.6	3.7	3.65	3.6	3.7	3.65	4.6	3.7	4.15
4-Nov-09	3.2	3.3	3.25	2.9	2.7	2.80	2.7	2.8	2.75	6.1	5.8	5.95	3.5	3.4	3.45
6-Nov-09	3.8	3.7	3.75	3.1	2.9	3.00	3.3	3.1	3.20	5.7	5.6	5.65	4.6	4.4	4.50
10-Nov-09	3.8	3.7	3.75	5.2	5.3	5.25	2.7	2.8	2.75	2.4	2.3	2.35	4.1	4.3	4.20
12-Nov-09	5.1	5.1	5.10	4.4	4.5	4.45	6.1	6.1	6.10	5.5	5.7	5.60	7.3	7.6	7.45
14-Nov-09	2.2	2.0	2.10	2.4	2.4	2.40	4.4	4.0	4.20	1.6	1.4	1.50	2.9	3.1	3.00
16-Nov-09	2.1	2.1	2.10	2.4	2.3	2.35	2.8	2.7	2.75	2.9	2.7	2.80	2.8	2.5	2.65

Mid-flood	WSD19			WSD20			WSD21			RW1			C1		
Date	Value	Value	Average												
21-Oct-09	6.2	5.8	6.00	5.9	6.3	6.10	8.4	8.5	8.45	10.4	10.6	10.50	6.1	6.3	6.20
23-Oct-09	7.0	6.5	6.75	5.5	5.6	5.55	6.6	6.9	6.75	8.2	8.1	8.15	6.0	5.4	5.70
27-Oct-09	6.9	6.6	6.75	3.8	3.5	3.65	7.9	7.6	7.75	7.8	7.7	7.75	5.1	5.2	5.15
29-Oct-09	4.3	4.3	4.30	3.0	2.9	2.95	5.8	6.1	5.95	6.4	6.1	6.25	4.9	4.9	4.90
31-Oct-09	5.6	7.0	6.30	4.0	3.5	3.75	4.9	5.0	4.95	4.7	5.8	5.25	4.1	4.5	4.30
2-Nov-09	5.4	4.4	4.90	5.1	4.6	4.85	5.0	4.5	4.75	4.3	4.0	4.15	6.0	5.8	5.90
4-Nov-09	4.0	4.1	4.05	6.3	6.7	6.50	6.6	6.6	6.60	5.6	5.4	5.50	4.0	3.9	3.95
6-Nov-09	5.2	5.3	5.25	5.5	5.7	5.60	6.3	6.3	6.30	6.5	6.3	6.40	3.6	3.7	3.65
10-Nov-09	7.4	7.8	7.60	4.0	4.3	4.15	6.7	7.0	6.85	4.8	5.3	5.05	4.0	3.8	3.90
12-Nov-09	9.6	9.2	9.40	6.5	6.9	6.70	5.8	5.6	5.70	4.7	4.5	4.60	3.2	3.1	3.15
14-Nov-09	5.1	5.2	5.15	5.5	5.1	5.30	4.8	5.2	5.00	6.1	5.8	5.95	4.0	3.7	3.85
16-Nov-09	1.8	1.6	1.70	1.7	1.7	1.70	8.4	8.9	8.65	7.9	7.9	7.90	8.4	8.9	8.65

Mid-ebb	WSD19			WSD20			WSD21			RW1			C1		
Date	Value	Value	Average												
21-Oct-09	8.8	8.4	8.60	6.7	6.5	6.60	6.2	6.2	6.20	6.6	6.6	6.60	5.1	5.4	5.25
23-Oct-09	5.3	4.7	5.00	4.2	4.2	4.20	5.5	5.8	5.65	4.9	5.1	5.00	5.5	5.8	5.65
27-Oct-09	3.7	3.3	3.50	3.1	3.2	3.15	6.0	6.0	6.00	5.9	5.9	5.90	8.4	8.3	8.35
29-Oct-09	5.0	4.9	4.95	2.9	2.8	2.85	4.9	5.1	5.00	4.8	4.8	4.80	6.0	6.2	6.10
31-Oct-09	3.8	3.9	3.85	4.7	5.9	5.30	4.5	4.3	4.40	4.6	4.5	4.55	4.9	4.7	4.80
2-Nov-09	4.9	5.4	5.15	3.5	3.5	3.50	4.8	4.7	4.75	3.1	2.9	3.00	4.5	3.8	4.15
4-Nov-09	3.2	3.4	3.30	3.8	3.6	3.70	6.0	5.7	5.85	5.2	5.1	5.15	4.6	4.8	4.70
6-Nov-09	7.0	6.3	6.65	5.3	4.9	5.10	5.5	5.3	5.40	4.2	4.5	4.35	4.8	4.7	4.75
10-Nov-09	4.2	4.4	4.30	3.0	3.2	3.10	4.4	4.5	4.45	3.8	4.2	4.00	4.6	4.5	4.55
12-Nov-09	4.0	4.2	4.10	3.5	3.6	3.55	4.7	4.4	4.55	4.6	4.4	4.50	4.6	4.4	4.50
14-Nov-09	2.1	2.2	2.15	2.4	2.1	2.25	5.1	5.0	5.05	6.4	6.1	6.25	4.4	4.1	4.25
16-Nov-09	2.5	2.6	2.55	1.9	1.9	1.90	8.6	8.5	8.55	9.0	8.9	8.95	9.2	8.8	9.00

Mid-flood	C2			C3			C4			C5			C6		
Date	Value	Value	Average	Value	Value	Average									
21-Oct-09	5.7	5.5	5.60	8.5	7.8	8.15	6.8	7.6	7.20	9.3	9.0	9.15	5.4	5.4	5.40
23-Oct-09	5.5	5.6	5.55	6.1	6.0	6.05	7.2	7.2	7.20	6.7	6.5	6.60	5.8	5.7	5.75
27-Oct-09	7.8	8.1	7.95	7.8	7.5	7.65	7.0	7.0	7.00	7.3	7.2	7.25	7.4	7.3	7.35
29-Oct-09	6.2	6.3	6.25	7.4	6.4	6.90	9.3	8.3	8.80	7.4	7.5	7.45	6.3	5.7	6.00
31-Oct-09	6.6	6.2	6.40	4.7	4.8	4.75	5.1	5.5	5.30	4.7	4.7	4.70	<mark>4.1</mark>	4.0	4.05
2-Nov-09	3.7	3.6	3.65	3.3	3.2	3.25	3.3	3.2	3.25	3.6	3.2	3.40	5.6	5.8	<mark>5.70</mark>
4-Nov-09	5.2	4.8	5.00	6.2	6.5	6.35	5.9	5.7	5.80	5.9	5.6	5.75	4.8	4.5	4.65
6-Nov-09	6.2	6.0	6.10	4.7	4.5	4.60	6.4	6.1	6.25	6.4	6.3	6.35	3.2	3.3	3.25
10-Nov-09	5.8	5.9	5.85	5.7	5.9	5.80	6.8	6.5	6.65	6.6	6.9	6.75	5.3	5.1	5.20
12-Nov-09	4.6	4.4	4.50	4.8	4.6	4.70	5.4	5.6	5.50	5.3	5.5	5.40	3.6	3.7	3.65
14-Nov-09	5.9	5.6	5.75	3.8	3.9	3.85	4.6	4.7	4.65	4.9	5.0	4.95	4.5	4.3	4.40
16-Nov-09	9.0	8.6	8.80	8.3	8.2	8.25	9.4	9.1	9.25	9.1	8.6	8.85	8.0	7.7	<mark>7.85</mark>

Mid-ebb	C2			C3			C4			C5			C6		
Date	Value	Value	Average	Value	Value	Average									
21-Oct-09	6.1	6.3	6.20	5.2	5.3	5.25	6.8	6.8	6.80	7.7	7.9	7.80	5.5	5.2	5.35
23-Oct-09	6.0	5.4	5.70	7.0	6.6	6.80	5.4	5.4	5.40	5.3	5.5	5.40	5.6	5.6	5.60
27-Oct-09	5.1	5.2	5.15	5.4	5.4	5.40	6.6	6.3	6.45	6.3	6.2	6.25	6.2	6.3	6.25
29-Oct-09	4.9	4.9	4.90	4.7	4.6	4.65	5.0	4.8	4.90	5.1	5.0	5.05	4.8	4.8	4.80
31-Oct-09	4.1	4.5	4.30	3.8	3.9	3.85	4.4	4.0	4.20	4.8	4.7	4.75	5.8	<mark>6.1</mark>	5.95
2-Nov-09	6.0	5.8	5.90	6.6	6.4	6.50	6.1	5.5	5.80	4.2	4.1	4.15	3.8	3.9	3.85
4-Nov-09	4.0	3.9	3.95	6.2	6.0	6.10	6.6	6.2	6.40	4.9	5.4	5.15	5.4	5.0	5.20
6-Nov-09	3.6	3.7	3.65	4.5	4.4	4.45	4.1	4.3	4.20	7.4	7.7	7.55	4.0	4.0	4.00
10-Nov-09	4.0	3.8	3.90	4.4	4.2	4.30	5.1	4.8	4.95	4.4	4.4	4.40	5.0	4.8	4.90
12-Nov-09	3.2	3.1	3.15	2.8	2.7	2.75	2.8	3.0	2.90	4.9	4.7	4.80	4.3	4.3	4.30
14-Nov-09	4.0	3.7	3.85	4.7	4.9	4.80	4.8	4.7	4.75	6.7	6.4	6.55	5.3	5.2	5.25
16-Nov-09	8.4	8.9	8.65	8.9	8.8	8.85	8.8	9.0	8.90	9.3	9.4	9.35	8.9	8.6	<mark>8.75</mark>

Mid-flood	C7			C8			C9			RC1			RC5		
Date	Value	Value	Average												
21-Oct-09	5.8	5.5	5.65	8.9	9.0	8.95	8.2	8.1	8.15	5.7	6.0	5.85	6.4	6.4	6.40
23-Oct-09	6.8	6.5	6.65	9.4	10.1	9.75	10.2	10.2	10.20	5.5	5.5	5.50	7.5	7.4	7.45
27-Oct-09	5.5	5.5	5.50	10.0	10.1	10.05	10.9	11.2	11.05	7.9	8.0	7.95	7.6	7.5	7.55
29-Oct-09	7.7	7.3	7.50	8.6	9.0	8.80	10.4	10.8	10.60	6.5	5.8	6.15	6.4	6.1	6.25
31-Oct-09	4.8	4.6	4.70	5.8	6.3	6.05	9.9	9.9	9.90	5.0	5.3	5.15	4.0	3.9	3.95
2-Nov-09	4.7	4.6	4.65	4.8	4.8	4.80	5.1	5.6	5.35	3.4	3.2	3.30	4.2	4.3	4.25
4-Nov-09	4.9	5.0	4.95	6.5	6.4	6.45	7.6	7.8	7.70	4.3	4.7	4.50	6.1	6.6	6.35
6-Nov-09	4.5	4.4	4.45	9.3	9.6	9.45	8.4	8.0	8.20	5.9	5.7	5.80	5.2	5.3	5.25
10-Nov-09	4.8	4.7	4.75	7.3	7.7	7.50	8.4	7.9	8.15	5.0	4.9	4.95	5.2	5.3	5.25
12-Nov-09	3.7	3.8	3.75	6.5	6.6	6.55	7.5	7.1	7.30	4.0	4.1	4.05	6.2	5.9	6.05
14-Nov-09	3.9	4.2	4.05	5.4	5.8	5.60	7.0	6.9	6.95	5.5	5.3	5.40	4.1	4.1	4.10
16-Nov-09	8.2	7.9	8.05	11.3	11.5	11.40	9.3	8.6	8.95	8.3	8.4	8.35	9.3	9.4	9.35

Mid-ebb	C7			C8			C9			RC1			RC5		
Date	Value	Value	Average	Value	Value	Average	Value	Value	Average	Value	Value	Average	Value	Value	Average
21-Oct-09	4.8	4.5	4.65	6.6	6.8	6.70	9.7	9.5	9.60	5.0	4.9	4.95	6.1	6.1	6.10
23-Oct-09	3.8	4.0	3.90	7.0	7.2	7.10	8.6	8.7	8.65	4.7	4.6	4.65	4.2	4.2	4.20
27-Oct-09	5.6	5.6	5.60	7.4	7.4	7.40	8.1	8.0	8.05	5.1	5.3	5.20	5.9	5.9	5.90
29-Oct-09	4.3	4.3	4.30	6.0	6.2	6.10	6.4	6.2	6.30	6.2	6.2	6.20	5.0	4.9	4.95
31-Oct-09	4.0	3.7	3.85	5.3	4.9	5.10	5.6	6.2	5.90	4.4	4.3	4.35	3.9	4.4	4.15
2-Nov-09	2.9	2.6	2.75	6.6	6.0	6.30	6.5	6.5	6.50	4.4	4.3	4.35	4.6	5.6	5.10
4-Nov-09	2.8	2.9	2.85	5.8	5.8	5.80	8.0	7.6	7.80	3.9	4.1	4.00	4.8	4.5	4.65
6-Nov-09	3.4	3.3	3.35	4.5	4.4	4.45	5.2	5.5	5.35	4.3	4.3	4.30	4.9	4.7	4.80
10-Nov-09	4.8	4.3	4.55	5.1	5.1	5.10	5.2	5.2	5.20	4.4	4.3	4.35	3.7	3.8	3.75
12-Nov-09	2.7	2.6	2.65	6.3	6.7	6.50	5.9	5.9	5.90	2.5	2.5	2.50	3.7	4.0	3.85
14-Nov-09	3.6	3.6	3.60	5.6	5.8	5.70	5.8	6.1	5.95	4.3	4.2	4.25	4.5	4.4	4.45
16-Nov-09	<mark>8.2</mark>	7.9	8.05	9.9	9.9	9.90	8.1	8.5	8.30	9.7	9.4	9.55	8.4	8.4	8.40

Mid-flood	RC7		
Date	Value	Value	Average
21-Oct-09	4.9	4.9	4.90
23-Oct-09	4.0	4.1	4.05
27-Oct-09	7.7	7.5	7.60
29-Oct-09	5.5	5.3	5.40
31-Oct-09	4.8	4.8	4.80
2-Nov-09	4.3	4.1	4.20
4-Nov-09	5.0	5.1	5.05
6-Nov-09	5.2	5.4	5.30
10-Nov-09	4.6	4.5	4.55
12-Nov-09	3.4	3.3	3.35
14-Nov-09	3.4	3.1	3.25
16-Nov-09	8.9	8.7	8.80

Mid-ebb	RC7		
Date	Value	Value	Average
21-Oct-09	5.5	5.7	5.60
23-Oct-09	4.4	4.3	4.35
27-Oct-09	9.3	8.0	8.65
29-Oct-09	5.0	4.5	4.75
31-Oct-09	4.3	4.2	4.25
2-Nov-09	4.5	4.2	4.35
4-Nov-09	5.4	4.9	5.15
6-Nov-09	4.9	4.5	4.70
10-Nov-09	6.1	6.8	6.45
12-Nov-09	3.5	3.5	3.50
14-Nov-09	4.2	4.4	4.30
16-Nov-09	8.9	8.9	8.90

Projected Turbidity Monitoring Data (Wet Season) adjusted with Mean Variation Percentage of EPD Marine Monitoring Data (2006 - 2008)

Mid-flood	WSD7		WSD9		WSD10		WSD15		WSD17		WSD19		WSD20		WSD21	
Date	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
21-Oct-09	10.5	10.04	5.7	5.70	6.4	5.98	9.2	8.78	8.0	8.10	6.4	6.18	6.4	6.65	10.6	10.70
	9.6		5.7	1	5.5		8.4	1	8.2	1	6.0	1	6.9	1	10.8	1
23-Oct-09	5.0	5.51	4.2	4.65	4.0	4.05	10.1	10.23	6.4	6.75	8.6	8.31	6.0	6.05	8.4	8.55
	6.0		5.1		4.1		10.3		7.1		8.0	1	6.1		8.7	
27-Oct-09	7.8	7.72	5.0	5.08	4.2	4.18	10.1	9.66	8.5	8.55	8.5	8.31	4.1	3.98	10.0	9.81
	7.6	1	5.2		4.1		9.2	1	8.6		8.1	1	3.8		9.6	1
29-Oct-09	8.2	8.24	4.7	4.71	6.4	6.43	4.8	4.83	4.6	4.63	5.3	5.29	3.3	3.22	7.3	7.54
	8.2		4.7	1	6.4		4.8		4.6		5.3	1	3.2		7.7	
31-Oct-09	6.5	6.02	2.7	2.60	6.3	7.07	9.0	7.89	7.6	7.59	6.9	7.75	4.4	4.09	6.2	6.27
	5.6		2.5	1	7.8		6.8	1	7.6	1	8.6	1	3.8	1	6.3	1
2-Nov-09	6.0	5.56	4.6	4.65	4.2	3.99	8.1	7.89	6.3	6.24	6.6	6.03	5.6	5.29	6.3	6.02
	5.1		4.7	1	3.7		7.7	1	6.2	1	5.4	1	5.0	1	5.7	1
4-Nov-09	7.3	7.16	4.7	4.65	6.0	5.92	8.2	8.54	6.2	6.04	4.9	4.98	6.9	7.09	8.4	8.36
	7.0	1	4.6	1	5.8		8.9	1	5.9	1	5.0	1	7.3	1	8.4	1
6-Nov-09	8.6	8.49	4.6	4.53	3.9	3.86	5.6	5.56	5.3	5.53	6.4	6.46	6.0	6.11	8.0	7.98
	8.3		4.5		3.9		5.5		5.8		6.5	1	6.2		8.0	
10-Nov-09	6.5	6.33	4.6	4.40	4.6	4.82	4.7	4.43	7.5	7.72	9.1	9.35	4.4	4.53	8.5	8.67
	6.2		4.2		5.0		4.2		8.0	1	9.6	1	4.7		8.9	
12-Nov-09	10.1	9.78	5.5	5.39	9.1	8.75	9.0	8.94	7.7	7.85	11.8	11.57	7.1	7.31	7.3	7.22
	9.5		5.3		8.4		8.9		8.0		11.3	1	7.5		7.1	1
14-Nov-09	2.0	1.90	2.6	2.79	6.3	6.43	3.7	3.62	8.5	8.17	6.3	6.34	6.0	5.78	6.1	6.33
	1.9	1	3.0	1	6.6		3.5	1	7.8	1	6.4	1	5.6	1	6.6	1
16-Nov-09	2.0	1.90	2.9	2.85	3.3	3.41	3.9	3.78	3.1	3.09	2.2	2.09	1.9	1.85	10.6	10.95
	1.9		2.9	1	3.5		3.7	1	3.1	1	2.0	1	1.9	1	11.3	1
								•		•	•					
Mid-Ebb	WSD7		WSD9		WSD10		WSD15		WSD17		WSD19		WSD20		WSD21	
Date	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
	Value 5.7	Average 5.66	Value 7.8	Average 8.18	Value 6.7	Average 6.43	Value 11.8	Average 11.92	Value 10.0	Average 9.84	Value 10.8	Average 10.58	Value 7.3	Average 7.20	Value 7.9	Average 7.85
Date 21-Oct-09	Value 5.7 5.7	5.66	Value 7.8 8.6	8.18	Value 6.7 6.2	6.43	Value 11.8 12.1	11.92	Value 10.0 9.6	9.84	Value 10.8 10.3	10.58	Value 7.3 7.1	7.20	Value 7.9 7.9	7.85
Date	Value 5.7 5.7 6.4		Value 7.8 8.6 5.3		Value 6.7 6.2 5.5	J	Value 11.8 12.1 5.0		Value 10.0 9.6 6.9		Value 10.8 10.3 6.5		7.3 7.1 4.6		Value 7.9 7.9 7.0	
Date 21-Oct-09 23-Oct-09	Value 5.7 5.7 6.4 5.9	5.66 6.13	Value 7.8 8.6 5.3 6.0	8.18 5.64	Value 6.7 6.2 5.5 5.0	6.43 5.27	Value 11.8 12.1 5.0 4.8	11.92 4.91	Value 10.0 9.6 6.9 5.7	9.84	Value 10.8 10.3 6.5 5.8	10.58 6.15	Value 7.3 7.1 4.6 4.6	7.20 4.58	Value 7.9 7.9 7.0 7.3	7.85 7.16
Date 21-Oct-09	Value 5.7 5.7 6.4 5.9 6.9	5.66	Value 7.8 8.6 5.3 6.0 2.9	8.18	Value 6.7 6.2 5.5 5.0 4.8	6.43	Value 11.8 12.1 5.0 4.8 5.2	11.92	Value 10.0 9.6 6.9 5.7 4.4	9.84	Value 10.8 10.3 6.5 5.8 4.6	10.58	Value 7.3 7.1 4.6 4.6 3.4	7.20	Value 7.9 7.9 7.0 7.3 7.6	7.85
Date 21-Oct-09 23-Oct-09 27-Oct-09	Value 5.7 5.7 6.4 5.9 6.9 6.4	5.66 6.13 6.64	Value 7.8 8.6 5.3 6.0 2.9 3.1	8.18 5.64 2.98	Value 6.7 6.2 5.5 5.0 4.8 4.5	6.43 5.27 4.63	Value 11.8 12.1 5.0 4.8 5.2 5.5	11.92 4.91 5.31	Value 10.0 9.6 6.9 5.7 4.4 4.5	9.84 6.30 4.44	Value 10.8 10.3 6.5 5.8 4.6 4.1	10.58 6.15 4.31	Value 7.3 7.1 4.6 4.6 3.4 3.5	7.20 4.58 3.44	Value 7.9 7.9 7.0 7.3 7.6 7.6	7.85 7.16 7.60
Date 21-Oct-09 23-Oct-09	Value 5.7 5.7 6.4 5.9 6.9 6.4 4.4	5.66 6.13	Value 7.8 8.6 5.3 6.0 2.9 3.1 4.1	8.18 5.64	Value 6.7 6.2 5.5 5.0 4.8 4.5 6.3	6.43 5.27	Value 11.8 12.1 5.0 4.8 5.2 5.5 5.3	11.92 4.91	Value 10.0 9.6 6.9 5.7 4.4 4.5 5.9	9.84	Value 10.8 10.3 6.5 5.8 4.6 4.1 6.2	10.58 6.15	Value 7.3 7.1 4.6 4.6 3.4 3.5 3.2	7.20 4.58	Value 7.9 7.9 7.0 7.3 7.6 6.2	7.85 7.16
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09	Value 5.7 5.7 6.4 5.9 6.9 6.4 4.4 4.3	5.66 6.13 6.64 4.38	Value 7.8 8.6 5.3 6.0 2.9 3.1 4.1 4.3	8.18 5.64 2.98 4.22	Value 6.7 6.2 5.5 5.0 4.8 4.5 6.3 6.3	6.43 5.27 4.63 6.30	Value 11.8 12.1 5.0 4.8 5.2 5.5 5.3 5.6	11.92 4.91 5.31 5.48	Value 10.0 9.6 6.9 5.7 4.4 4.5 5.9	9.84 6.30 4.44 5.92	Value 10.8 10.3 6.5 5.8 4.6 4.1 6.2 6.0	10.58 6.15 4.31 6.09	Value 7.3 7.1 4.6 4.6 3.4 3.5 3.2 3.1	7.20 4.58 3.44 3.11	Value 7.9 7.0 7.3 7.6 7.6 6.2 6.5	7.85 7.16 7.60 6.33
Date 21-Oct-09 23-Oct-09 27-Oct-09	Value 5.7 5.7 6.4 5.9 6.9 6.4 4.4 4.3 3.8	5.66 6.13 6.64	Value 7.8 8.6 5.3 6.0 2.9 3.1 4.1 4.3 4.2	8.18 5.64 2.98	Value 6.7 6.2 5.5 5.0 4.8 4.5 6.3 7.8	6.43 5.27 4.63	Value 11.8 12.1 5.0 4.8 5.2 5.5 5.3 5.6 6.1	11.92 4.91 5.31	Value 10.0 9.6 6.9 5.7 4.4 4.5 5.9 5.9	9.84 6.30 4.44	Value 10.8 10.3 6.5 5.8 4.6 4.1 6.2 6.0 4.7	10.58 6.15 4.31	Value 7.3 7.1 4.6 4.6 3.4 3.5 3.2 3.1 5.1	7.20 4.58 3.44	Value 7.9 7.9 7.0 7.3 7.6 7.6 6.2 6.5 5.7	7.85 7.16 7.60
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09	Value 5.7 5.7 6.4 5.9 6.9 6.4 4.4 4.3 3.8 4.2	5.66 6.13 6.64 4.38 4.02	Value 7.8 8.6 5.3 6.0 2.9 3.1 4.1 4.3 4.2 4.6	8.18 5.64 2.98 4.22 4.40	Value 6.7 6.2 5.5 5.0 4.8 4.5 6.3 7.8 8.2	6.43 5.27 4.63 6.30 8.04	Value 11.8 12.1 5.0 4.8 5.2 5.5 5.3 5.6 6.1 3.1	11.92 4.91 5.31 5.48 4.59	Value 10.0 9.6 6.9 5.7 4.4 4.5 5.9 5.9 5.0 4.5	9.84 6.30 4.44 5.92 4.76	Value 10.8 10.3 6.5 5.8 4.6 4.1 6.2 6.0 4.7 4.8	10.58 6.15 4.31 6.09 4.74	Value 7.3 7.1 4.6 4.6 3.4 3.5 3.2 3.1 5.1 6.4	7.20 4.58 3.44 3.11 5.78	Value 7.9 7.9 7.0 7.3 7.6 7.6 6.2 6.5 5.7 5.4	7.85 7.16 7.60 6.33 5.57
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09	Value 5.7 5.7 6.4 5.9 6.9 6.4 4.4 4.3 3.8 4.2 6.5	5.66 6.13 6.64 4.38	Value 7.8 8.6 5.3 6.0 2.9 3.1 4.1 4.3 4.2 4.6 4.5	8.18 5.64 2.98 4.22	Value 6.7 6.2 5.5 5.0 4.8 4.5 6.3 6.3 7.8 8.2 4.6	6.43 5.27 4.63 6.30	Value 11.8 12.1 5.0 4.8 5.2 5.5 5.3 5.6 6.1 3.1 5.8	11.92 4.91 5.31 5.48	Value 10.0 9.6 6.9 5.7 4.4 4.5 5.9 5.9 5.0 4.5	9.84 6.30 4.44 5.92	Value 10.8 10.3 6.5 5.8 4.6 4.1 6.2 6.0 4.7 4.8 6.0	10.58 6.15 4.31 6.09	Value 7.3 7.1 4.6 4.6 3.4 3.5 3.2 3.1 5.1 6.4 3.8	7.20 4.58 3.44 3.11	Value 7.9 7.9 7.0 7.3 7.6 7.6 6.2 6.5 5.7 5.4 6.1	7.85 7.16 7.60 6.33
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09	Value 5.7 5.7 6.4 5.9 6.9 6.4 4.4 4.3 3.8 4.2 6.5 6.1	5.66 6.13 6.64 4.38 4.02 6.28	Value 7.8 8.6 5.3 6.0 2.9 3.1 4.1 4.3 4.2 4.6 4.5 4.6	8.18 5.64 2.98 4.22 4.40 4.53	Value 6.7 6.2 5.5 5.0 4.8 4.5 6.3 6.3 7.8 8.2 4.6 4.8	6.43 5.27 4.63 6.30 8.04 4.69	Value 11.8 12.1 5.0 4.8 5.2 5.5 5.3 5.6 6.1 3.1 5.8 6.0	11.92 4.91 5.31 5.48 4.59 5.88	Value 10.0 9.6 6.9 5.7 4.4 4.5 5.9 5.9 5.0 4.5 5.9 4.8	9.84 6.30 4.44 5.92 4.76 5.34	Value 10.8 10.3 6.5 5.8 4.6 4.1 6.2 6.0 4.7 4.8 6.0 6.6	10.58 6.15 4.31 6.09 4.74 6.34	Value 7.3 7.1 4.6 4.6 3.4 3.5 3.2 3.1 5.1 6.4 3.8 3.8	7.20 4.58 3.44 3.11 5.78 3.82	Value 7.9 7.9 7.0 7.3 7.6 7.6 6.2 6.5 5.7 5.4 6.1 6.0	7.85 7.16 7.60 6.33 5.57 6.02
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09	Value 5.7 5.7 6.4 5.9 6.9 6.4 4.4 4.3 3.8 4.2 6.5 6.1 3.3	5.66 6.13 6.64 4.38 4.02	Value 7.8 8.6 5.3 6.0 2.9 3.1 4.1 4.3 4.2 4.6 4.5 4.6 3.6	8.18 5.64 2.98 4.22 4.40	Value 6.7 6.2 5.5 5.0 4.8 4.5 6.3 6.3 7.8 8.2 4.6 4.8 3.5	6.43 5.27 4.63 6.30 8.04	Value 11.8 12.1 5.0 4.8 5.2 5.5 5.3 5.6 6.1 3.1 5.8 6.0 9.8	11.92 4.91 5.31 5.48 4.59	Value 10.0 9.6 6.9 5.7 4.4 4.5 5.9 5.9 5.0 4.5 5.9 4.8 4.5	9.84 6.30 4.44 5.92 4.76	Value 10.8 10.3 6.5 5.8 4.6 4.1 6.2 6.0 4.7 4.8 6.0 6.6 3.9	10.58 6.15 4.31 6.09 4.74	Value 7.3 7.1 4.6 4.6 3.4 3.5 3.2 3.1 5.1 6.4 3.8 3.8 4.1	7.20 4.58 3.44 3.11 5.78	Value 7.9 7.9 7.0 7.3 7.6 7.6 6.2 6.5 5.7 5.4 6.1 6.0 7.6	7.85 7.16 7.60 6.33 5.57
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09	Value 5.7 5.7 6.4 5.9 6.9 6.4 4.4 4.3 3.8 4.2 6.5 6.1 3.3	5.66 6.13 6.64 4.38 4.02 6.28 3.35	Value 7.8 8.6 5.3 6.0 2.9 3.1 4.1 4.3 4.2 4.6 4.5 4.6 3.6 3.3	8.18 5.64 2.98 4.22 4.40 4.53 3.47	Value 6.7 6.2 5.5 5.0 4.8 4.5 6.3 6.3 7.8 8.2 4.6 4.8 3.5 3.6	6.43 5.27 4.63 6.30 8.04 4.69 3.54	Value 11.8 12.1 5.0 4.8 5.2 5.5 5.3 5.6 6.1 3.1 5.8 6.0 9.8 9.3	11.92 4.91 5.31 5.48 4.59 5.88 9.58	Value 10.0 9.6 6.9 5.7 4.4 4.5 5.9 5.0 4.5 5.9 4.8 4.5 4.4	9.84 6.30 4.44 5.92 4.76 5.34 4.44	Value 10.8 10.3 6.5 5.8 4.6 4.1 6.2 6.0 4.7 4.8 6.0 6.6 3.9 4.2	10.58 6.15 4.31 6.09 4.74 6.34 4.06	Value 7.3 7.1 4.6 4.6 3.4 3.5 3.2 3.1 5.1 6.4 3.8 3.8 4.1 3.9	7.20 4.58 3.44 3.11 5.78 3.82 4.04	Value 7.9 7.9 7.0 7.3 7.6 7.6 6.2 6.5 5.7 5.4 6.1 6.0 7.6 7.2	7.85 7.16 7.60 6.33 5.57 6.02 7.41
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09	Value 5.7 5.7 6.4 5.9 6.9 6.4 4.4 4.3 3.8 4.2 6.5 6.1 3.3 3.4 3.9	5.66 6.13 6.64 4.38 4.02 6.28	Value 7.8 8.6 5.3 6.0 2.9 3.1 4.1 4.3 4.2 4.6 4.5 4.6 3.6 3.3 3.8	8.18 5.64 2.98 4.22 4.40 4.53	Value 6.7 6.2 5.5 5.0 4.8 4.5 6.3 6.3 7.8 8.2 4.6 4.8 3.5 3.6 4.2	6.43 5.27 4.63 6.30 8.04 4.69	Value 11.8 12.1 5.0 4.8 5.2 5.5 5.3 5.6 6.1 3.1 5.8 6.0 9.8 9.3 9.2	11.92 4.91 5.31 5.48 4.59 5.88	Value 10.0 9.6 6.9 5.7 4.4 4.5 5.9 5.0 4.5 5.9 4.8 4.5 4.4 5.9	9.84 6.30 4.44 5.92 4.76 5.34	Value 10.8 10.3 6.5 5.8 4.6 4.1 6.2 6.0 4.7 4.8 6.0 6.6 3.9 4.2 8.6	10.58 6.15 4.31 6.09 4.74 6.34	Value 7.3 7.1 4.6 4.6 3.4 3.5 3.2 3.1 5.1 6.4 3.8 3.8 4.1 3.9 5.8	7.20 4.58 3.44 3.11 5.78 3.82	Value 7.9 7.9 7.0 7.3 7.6 7.6 6.2 6.5 5.7 5.4 6.1 6.0 7.6 7.2 7.0	7.85 7.16 7.60 6.33 5.57 6.02
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09	Value 5.7 5.7 6.4 5.9 6.9 6.4 4.4 4.3 3.8 4.2 6.5 6.1 3.3 3.4 3.9 3.8	5.66 6.13 6.64 4.38 4.02 6.28 3.35 3.86	Value 7.8 8.6 5.3 6.0 2.9 3.1 4.1 4.3 4.2 4.6 4.5 4.6 3.6 3.3 3.8	8.18 5.64 2.98 4.22 4.40 4.53 3.47 3.72	Value 6.7 6.2 5.5 5.0 4.8 4.5 6.3 6.3 7.8 8.2 4.6 4.8 3.5 3.6 4.2 4.0	6.43 5.27 4.63 6.30 8.04 4.69 3.54 4.12	Value 11.8 12.1 5.0 4.8 5.2 5.5 5.3 5.6 6.1 3.1 5.8 6.0 9.8 9.3 9.2 9.0	11.92 4.91 5.31 5.48 4.59 5.88 9.58 9.10	Value 10.0 9.6 6.9 5.7 4.4 4.5 5.9 5.0 4.5 5.9 4.8 4.5 4.4 5.9 5.7	9.84 6.30 4.44 5.92 4.76 5.34 4.44 5.79	Value 10.8 10.3 6.5 5.8 4.6 4.1 6.2 6.0 4.7 4.8 6.0 6.6 3.9 4.2 8.6 7.8	10.58 6.15 4.31 6.09 4.74 6.34 4.06 8.18	Value 7.3 7.1 4.6 4.6 3.4 3.5 3.2 3.1 5.1 6.4 3.8 3.8 4.1 3.9 5.8 5.3	7.20 4.58 3.44 3.11 5.78 3.82 4.04 5.56	Value 7.9 7.9 7.0 7.3 7.6 7.6 6.2 6.5 5.7 5.4 6.1 6.0 7.6 7.2 7.0 6.7	7.85 7.16 7.60 6.33 5.57 6.02 7.41 6.84
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09	Value 5.7 5.7 6.4 5.9 6.9 6.4 4.4 4.3 3.8 4.2 6.5 6.1 3.3 3.4 3.9 3.8 3.9	5.66 6.13 6.64 4.38 4.02 6.28 3.35	Value 7.8 8.6 5.3 6.0 2.9 3.1 4.1 4.3 4.2 4.6 4.5 4.6 3.6 3.3 3.8 3.6 6.4	8.18 5.64 2.98 4.22 4.40 4.53 3.47	Value 6.7 6.2 5.5 5.0 4.8 4.5 6.3 6.3 7.8 8.2 4.6 4.8 3.5 3.6 4.2 4.0	6.43 5.27 4.63 6.30 8.04 4.69 3.54	Value 11.8 12.1 5.0 4.8 5.2 5.5 5.3 5.6 6.1 3.1 5.8 6.0 9.8 9.3 9.2 9.0 3.9	11.92 4.91 5.31 5.48 4.59 5.88 9.58	Value 10.0 9.6 6.9 5.7 4.4 4.5 5.9 5.0 4.5 5.9 4.8 4.5 4.4 5.9 5.7 5.3	9.84 6.30 4.44 5.92 4.76 5.34 4.44	Value 10.8 10.3 6.5 5.8 4.6 4.1 6.2 6.0 4.7 4.8 6.0 6.6 3.9 4.2 8.6 7.8	10.58 6.15 4.31 6.09 4.74 6.34 4.06	Value 7.3 7.1 4.6 4.6 3.4 3.5 3.2 3.1 5.1 6.4 3.8 3.8 4.1 3.9 5.8 5.3 3.3	7.20 4.58 3.44 3.11 5.78 3.82 4.04	Value 7.9 7.9 7.0 7.3 7.6 7.6 6.2 6.5 5.7 5.4 6.1 6.0 7.6 7.2 7.0 6.7	7.85 7.16 7.60 6.33 5.57 6.02 7.41
Date 21-Oct-09 23-Oct-09 29-Oct-09 31-Oct-09 4-Nov-09 10-Nov-09	Value 5.7 5.7 6.4 5.9 6.9 6.4 4.4 4.3 3.8 4.2 6.5 6.1 3.3 3.4 3.9 3.8 3.9	5.66 6.13 6.64 4.38 4.02 6.28 3.35 3.86	Value 7.8 8.6 5.3 6.0 2.9 3.1 4.1 4.3 4.2 4.6 4.5 4.6 3.6 3.3 3.8 3.6 6.4 6.6	8.18 5.64 2.98 4.22 4.40 4.53 3.47 3.72 6.51	Value 6.7 6.2 5.5 5.0 4.8 4.5 6.3 6.3 7.8 8.2 4.6 4.8 3.5 3.6 4.2 4.0 3.5 3.6	6.43 5.27 4.63 6.30 8.04 4.69 3.54 4.12 3.54	Value 11.8 12.1 5.0 4.8 5.2 5.5 5.3 5.6 6.1 3.1 5.8 6.0 9.8 9.3 9.2 9.0 3.9 3.7	11.92 4.91 5.31 5.48 4.59 5.88 9.58 9.10 3.78	Value 10.0 9.6 6.9 5.7 4.4 4.5 5.9 5.0 4.5 5.9 4.8 4.5 4.4 5.9 5.7 5.3 5.5	9.84 6.30 4.44 5.92 4.76 5.34 4.44 5.79 5.40	Value 10.8 10.3 6.5 5.8 4.6 4.1 6.2 6.0 4.7 4.8 6.0 6.6 3.9 4.2 8.6 7.8 5.2 5.4	10.58 6.15 4.31 6.09 4.74 6.34 4.06 8.18	Value 7.3 7.1 4.6 4.6 3.4 3.5 3.2 3.1 5.1 6.4 3.8 3.8 4.1 3.9 5.8 5.3 3.3 3.5	7.20 4.58 3.44 3.11 5.78 3.82 4.04 5.56 3.38	Value 7.9 7.9 7.0 7.3 7.6 7.6 6.2 6.5 5.7 5.4 6.1 6.0 7.6 7.2 7.0 6.7 5.6 5.7	7.85 7.16 7.60 6.33 5.57 6.02 7.41 6.84 5.64
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09	Value 5.7 5.7 6.4 5.9 6.9 6.4 4.4 4.3 3.8 4.2 6.5 6.1 3.3 3.4 3.9 3.8 3.9 3.8 5.3	5.66 6.13 6.64 4.38 4.02 6.28 3.35 3.86	Value 7.8 8.6 5.3 6.0 2.9 3.1 4.1 4.3 4.2 4.6 4.5 4.6 3.6 3.3 3.8 3.6 6.4 6.6 5.5	8.18 5.64 2.98 4.22 4.40 4.53 3.47 3.72	Value 6.7 6.2 5.5 5.0 4.8 4.5 6.3 6.3 7.8 8.2 4.6 4.8 3.5 3.6 4.2 4.0 3.5 3.6 7.8	6.43 5.27 4.63 6.30 8.04 4.69 3.54 4.12	Value 11.8 12.1 5.0 4.8 5.2 5.5 5.3 5.6 6.1 3.1 5.8 6.0 9.8 9.3 9.2 9.0 3.9 3.7 8.9	11.92 4.91 5.31 5.48 4.59 5.88 9.58 9.10	Value 10.0 9.6 6.9 5.7 4.4 4.5 5.9 5.0 4.5 5.9 4.8 4.5 5.7 5.7 5.3 5.5	9.84 6.30 4.44 5.92 4.76 5.34 4.44 5.79	Value 10.8 10.3 6.5 5.8 4.6 4.1 6.2 6.0 4.7 4.8 6.0 6.6 3.9 4.2 8.6 7.8 5.2 5.4	10.58 6.15 4.31 6.09 4.74 6.34 4.06 8.18	Value 7.3 7.1 4.6 4.6 3.4 3.5 3.2 3.1 5.1 6.4 3.8 3.8 4.1 3.9 5.8 5.3 3.3 3.5	7.20 4.58 3.44 3.11 5.78 3.82 4.04 5.56	Value 7.9 7.9 7.0 7.3 7.6 7.6 6.2 6.5 5.7 5.4 6.1 6.0 7.6 7.2 7.0 6.7 5.6 5.7 6.0	7.85 7.16 7.60 6.33 5.57 6.02 7.41 6.84
Date 21-Oct-09 23-Oct-09 29-Oct-09 31-Oct-09 4-Nov-09 10-Nov-09 12-Nov-09	Value 5.7 5.7 6.4 5.9 6.9 6.4 4.4 4.3 3.8 4.2 6.5 6.1 3.3 3.4 3.9 3.8 5.3 5.3	5.66 6.13 6.64 4.38 4.02 6.28 3.35 3.86 5.25	Value 7.8 8.6 5.3 6.0 2.9 3.1 4.1 4.3 4.2 4.6 4.5 4.6 3.6 3.8 3.6 6.4 6.6 5.5 5.6	8.18 5.64 2.98 4.22 4.40 4.53 3.47 3.72 6.51 5.52	Value 6.7 6.2 5.5 5.0 4.8 4.5 6.3 6.3 7.8 8.2 4.6 4.8 3.5 3.6 4.2 4.0 3.5 3.6 7.8 7.8	6.43 5.27 4.63 6.30 8.04 4.69 3.54 4.12 3.54 7.85	Value 11.8 12.1 5.0 4.8 5.2 5.5 5.3 5.6 6.1 3.1 5.8 6.0 9.8 9.3 9.2 9.0 3.9 3.7 8.9 9.2	11.92 4.91 5.31 5.48 4.59 5.88 9.58 9.10 3.78 9.02	Value 10.0 9.6 6.9 5.7 4.4 4.5 5.9 5.0 4.5 5.9 4.8 4.5 4.4 5.9 5.7 5.3 5.5 9.4 9.8	9.84 6.30 4.44 5.92 4.76 5.34 4.44 5.79 5.40	Value 10.8 10.3 6.5 5.8 4.6 4.1 6.2 6.0 4.7 4.8 6.0 6.6 3.9 4.2 8.6 7.8 5.2 5.4 4.9	10.58 6.15 4.31 6.09 4.74 6.34 4.06 8.18 5.29 5.05	Value 7.3 7.1 4.6 4.6 3.4 3.5 3.2 3.1 5.1 6.4 3.8 3.8 4.1 3.9 5.8 5.3 3.3 3.5 3.8 3.9	7.20 4.58 3.44 3.11 5.78 3.82 4.04 5.56 3.38 3.87	Value 7.9 7.9 7.0 7.3 7.6 7.6 6.2 6.5 5.7 5.4 6.1 6.0 7.6 7.2 7.0 6.7 5.6 5.7 6.0 5.6	7.85 7.16 7.60 6.33 5.57 6.02 7.41 6.84 5.64 5.76
Date 21-Oct-09 23-Oct-09 29-Oct-09 31-Oct-09 4-Nov-09 10-Nov-09	Value 5.7 5.7 6.4 5.9 6.9 6.4 4.4 4.3 3.8 4.2 6.5 6.1 3.3 3.4 3.9 3.8 5.3 5.3 2.3	5.66 6.13 6.64 4.38 4.02 6.28 3.35 3.86	Value 7.8 8.6 5.3 6.0 2.9 3.1 4.1 4.3 4.2 4.6 4.5 4.6 3.6 3.3 3.8 3.6 6.4 6.6 5.5 5.6 3.0	8.18 5.64 2.98 4.22 4.40 4.53 3.47 3.72 6.51	Value 6.7 6.2 5.5 5.0 4.8 4.5 6.3 6.3 7.8 8.2 4.6 4.8 3.5 3.6 4.2 4.0 3.5 3.6 7.8 7.8 5.7	6.43 5.27 4.63 6.30 8.04 4.69 3.54 4.12 3.54	Value 11.8 12.1 5.0 4.8 5.2 5.5 5.3 5.6 6.1 3.1 5.8 6.0 9.8 9.3 9.2 9.0 3.9 3.7 8.9 9.2 2.6	11.92 4.91 5.31 5.48 4.59 5.88 9.58 9.10 3.78	Value 10.0 9.6 6.9 5.7 4.4 4.5 5.9 5.0 4.5 5.9 4.8 4.5 5.7 5.7 5.3 5.5 9.4 9.8	9.84 6.30 4.44 5.92 4.76 5.34 4.44 5.79 5.40	Value 10.8 10.3 6.5 5.8 4.6 4.1 6.2 6.0 4.7 4.8 6.0 6.6 3.9 4.2 8.6 7.8 5.2 5.4 4.9 5.2 2.6	10.58 6.15 4.31 6.09 4.74 6.34 4.06 8.18	Value 7.3 7.1 4.6 4.6 3.4 3.5 3.2 3.1 5.1 6.4 3.8 3.8 4.1 3.9 5.8 5.3 3.5 3.8 3.9 2.6	7.20 4.58 3.44 3.11 5.78 3.82 4.04 5.56 3.38	Value 7.9 7.9 7.0 7.3 7.6 7.6 6.2 6.5 5.7 5.4 6.1 6.0 7.6 7.2 7.0 6.7 5.6 5.7 6.0 5.6 6.5	7.85 7.16 7.60 6.33 5.57 6.02 7.41 6.84 5.64
Date 21-Oct-09 23-Oct-09 29-Oct-09 31-Oct-09 4-Nov-09 10-Nov-09 14-Nov-09 14-Nov-09	Value 5.7 5.7 6.4 5.9 6.9 6.4 4.4 4.3 3.8 4.2 6.5 6.1 3.3 3.4 3.9 3.8 5.3 5.3 2.3 2.1	5.66 6.13 6.64 4.38 4.02 6.28 3.35 3.86 5.25 2.16	Value 7.8 8.6 5.3 6.0 2.9 3.1 4.1 4.3 4.2 4.6 4.5 4.6 3.6 3.3 3.8 3.6 6.4 6.6 5.5 5.6 3.0 3.0	8.18 5.64 2.98 4.22 4.40 4.53 3.47 3.72 6.51 5.52 2.98	Value 6.7 6.2 5.5 5.0 4.8 4.5 6.3 6.3 7.8 8.2 4.6 4.8 3.5 3.6 4.2 4.0 3.5 3.6 7.8 7.8 5.7	6.43 5.27 4.63 6.30 8.04 4.69 3.54 4.12 3.54 7.85 5.40	Value 11.8 12.1 5.0 4.8 5.2 5.5 5.3 5.6 6.1 3.1 5.8 6.0 9.8 9.3 9.2 9.0 3.9 3.7 8.9 9.2 2.6 2.3	11.92 4.91 5.31 5.48 4.59 5.88 9.58 9.10 3.78 9.02 2.42	Value 10.0 9.6 6.9 5.7 4.4 4.5 5.9 5.0 4.5 5.9 4.8 4.5 5.9 5.7 5.7 5.3 5.5 9.4 9.8 3.7	9.84 6.30 4.44 5.92 4.76 5.34 4.44 5.79 5.40 9.58 3.86	Value 10.8 10.3 6.5 5.8 4.6 4.1 6.2 6.0 4.7 4.8 6.0 6.6 3.9 4.2 8.6 7.8 5.2 5.4 4.9 5.2 2.6 2.7	10.58 6.15 4.31 6.09 4.74 6.34 4.06 8.18 5.29 5.05	Value 7.3 7.1 4.6 4.6 3.4 3.5 3.2 3.1 5.1 6.4 3.8 3.8 4.1 3.9 5.8 5.3 3.5 3.8 3.9 2.6 2.3	7.20 4.58 3.44 3.11 5.78 3.82 4.04 5.56 3.38 3.87 2.45	Value 7.9 7.9 7.0 7.3 7.6 7.6 6.2 6.5 5.7 5.4 6.1 6.0 7.6 7.2 7.0 6.7 5.6 5.7 6.0 5.6 6.5 6.3	7.85 7.16 7.60 6.33 5.57 6.02 7.41 6.84 5.64 5.76 6.40
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09 10-Nov-09	Value 5.7 5.7 6.4 5.9 6.9 6.4 4.4 4.3 3.8 4.2 6.5 6.1 3.3 3.4 3.9 3.8 5.3 5.3 2.3	5.66 6.13 6.64 4.38 4.02 6.28 3.35 3.86 5.25	Value 7.8 8.6 5.3 6.0 2.9 3.1 4.1 4.3 4.2 4.6 4.5 4.6 3.6 3.3 3.8 3.6 6.4 6.6 5.5 5.6 3.0	8.18 5.64 2.98 4.22 4.40 4.53 3.47 3.72 6.51 5.52	Value 6.7 6.2 5.5 5.0 4.8 4.5 6.3 6.3 7.8 8.2 4.6 4.8 3.5 3.6 4.2 4.0 3.5 3.6 7.8 7.8 5.7	6.43 5.27 4.63 6.30 8.04 4.69 3.54 4.12 3.54 7.85	Value 11.8 12.1 5.0 4.8 5.2 5.5 5.3 5.6 6.1 3.1 5.8 6.0 9.8 9.3 9.2 9.0 3.9 3.7 8.9 9.2 2.6	11.92 4.91 5.31 5.48 4.59 5.88 9.58 9.10 3.78 9.02	Value 10.0 9.6 6.9 5.7 4.4 4.5 5.9 5.0 4.5 5.9 4.8 4.5 5.7 5.7 5.3 5.5 9.4 9.8	9.84 6.30 4.44 5.92 4.76 5.34 4.44 5.79 5.40	Value 10.8 10.3 6.5 5.8 4.6 4.1 6.2 6.0 4.7 4.8 6.0 6.6 3.9 4.2 8.6 7.8 5.2 5.4 4.9 5.2 2.6	10.58 6.15 4.31 6.09 4.74 6.34 4.06 8.18 5.29 5.05	Value 7.3 7.1 4.6 4.6 3.4 3.5 3.2 3.1 5.1 6.4 3.8 3.8 4.1 3.9 5.8 5.3 3.5 3.8 3.9 2.6	7.20 4.58 3.44 3.11 5.78 3.82 4.04 5.56 3.38 3.87	Value 7.9 7.9 7.0 7.3 7.6 7.6 6.2 6.5 5.7 5.4 6.1 6.0 7.6 7.2 7.0 6.7 5.6 5.7 6.0 5.6 6.5	7.85 7.16 7.60 6.33 5.57 6.02 7.41 6.84 5.64 5.76

Projected Turbidity Monitoring Data (Wet Season) adjusted with Mean Variation Percentage of EPD Marine Monitoring Data (2006 - 2008)

Mid-flood	RW21		C1		C2		C3		C4		C5		C6		C7	
Date	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
21-Oct-09	13.2	13.30	7.7	7.85	7.2	7.09	10.8	10.32	8.6	9.12	9.6	9.42	6.8	6.84	7.3	7.16
	13.4		8.0		7.0		9.9		9.6		9.3		6.8	1	7.0	1 - 1
23-Oct-09	10.4	10.32	7.6	7.22	7.0	7.03	7.7	7.66	9.1	9.12	8.5	8.36	7.3	7.28	8.6	8.42
	10.3	1	6.8	1	7.1		7.6	1	9.1	1	8.2	1	7.2	1	8.2	
27-Oct-09	9.9	9.81	6.5	6.52	9.9	10.07	9.9	9.69	8.9	8.86	9.2	9.18	9.4	9.31	7.0	6.97
	9.8		6.6		10.3		9.5		8.9		9.1		9.2		7.0	
29-Oct-09	8.1	7.92	6.2	6.21	7.9	7.92	9.4	8.74	11.8	11.14	9.4	9.43	8.0	7.60	9.8	9.50
	7.7		6.2		8.0		8.1		10.5		9.5		7.2		9.2	
31-Oct-09	6.0	6.65	5.2	5.45	8.4	8.11	6.0	6.02	6.5	6.71	6.0	5.95	5.2	<mark>5.13</mark>	<mark>6.1</mark>	5.95
	7.3		5.7		7.9		6.1		7.0		6.0		5.1		5.8	
2-Nov-09	5.4	5.26	7.6	7.47	4.7	4.62	4.2	4.12	4.2	4.12	4.6	4.31	7.1	7.22	6.0	<mark>5.89</mark>
	5.1		7.3		4.6		4.1		4.1		4.1		7.3		5.8	
4-Nov-09	7.1	6.97	5.1	5.00	6.6	6.33	7.9	8.04	7.5	7.35	7.5	7.28	<mark>6.1</mark>	5.89	6.2	<mark>6.27</mark>
	6.8		4.9		6.1		8.2		7.2		7.1		5.7		6.3	
6-Nov-09	8.2	8.11	4.6	4.62	7.9	7.73	6.0	5.83	8.1	7.92	8.1	8.04	4.1	<mark>4.12</mark>	<mark>5.7</mark>	5.64
	8.0		4.7		7.6		5.7		7.7		8.0		4.2		5.6	
10-Nov-09	6.1	6.40	5.1	4.94	7.3	7.41	7.2	7.35	8.6	8.42	8.4	8.55	6.7	<mark>6.59</mark>	<mark>6.1</mark>	6.02
	6.7		4.8		7.5		7.5		8.2		8.7		6.5		6.0	
12-Nov-09	6.0	5.83	4.1	3.99	5.8	5.70	6.1	5.95	6.8	6.97	6.7	6.84	4.6	4.62	4.7	4.75
	5.7		3.9		5.6		5.8		7.1		7.0		4.7		<mark>4.8</mark>	
14-Nov-09	7.7	7.54	5.1	4.88	7.5	7.28	4.8	4.88	5.8	5.89	6.2	6.27	5.7	5.57	4.9	<mark>5.13</mark>
	7.3		4.7		7.1		4.9		6.0		6.3		5.4		5.3	
16-Nov-09	10.0	10.00	10.6	10.95	11.4	11.14	10.5	10.45	11.9	11.71	11.5	11.21	10.1	<mark>9.94</mark>	10.4	<mark>10.19</mark>
	10.0		11.3		10.9		10.4		11.5		10.9		9.8		10.0	
Mid Ehh	DW21	1	C1		Ca		Ca		C4		CE		CC	1	<u>C7</u>	
Mid-Ebb	RW21	Averege	C1	Averege	C2	Averege	C3	Averege	C4	Avorage	C5	Average	C6	Average	C7	Avorago
Date	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
	Value 8.4	Average 8.36	Value 6.5	Average 6.65	Value 7.7	Average 7.85	Value 6.6	Average 6.65	Value 8.6	Average 8.61	Value 9.8	Average 9.88	Value 7.0	Average 6.78	Value 6.1	Average 5.89
Date 21-Oct-09	Value 8.4 8.4	8.36	Value 6.5 6.8	6.65	Value 7.7 8.0	7.85	Value 6.6 6.7	6.65	Value 8.6 8.6	8.61	Value 9.8 10.0	9.88	7.0 6.6	<mark>6.78</mark>	Value 6.1 5.7	5.89
Date	Value 8.4 8.4 6.2		Value 6.5 6.8 7.0		Value 7.7 8.0 7.6		Value 6.6 6.7 8.9		Value 8.6 8.6 6.8		9.8 10.0 6.7		Value 7.0 6.6 7.1		Value 6.1 5.7 4.8	
Date 21-Oct-09 23-Oct-09	Value 8.4 8.4 6.2 6.3	8.36 6.27	Value 6.5 6.8 7.0 7.3	6.65 7.16	Value 7.7 8.0 7.6 6.8	7.85 7.22	Value 6.6 6.7 8.9 8.4	6.65 8.61	Value 8.6 8.6 6.8 6.8	8.61 6.84	Value 9.8 10.0 6.7 7.0	9.88 6.84	Value 7.0 6.6 7.1 7.1	7.09	Value 6.1 5.7 4.8 5.1	(5.89) (4.94)
Date 21-Oct-09	Value 8.4 8.4 6.2 6.3 7.5	8.36	Value 6.5 6.8 7.0 7.3 10.6	6.65	Value 7.7 8.0 7.6 6.8 6.5	7.85	Value 6.6 6.7 8.9 8.4 6.8	6.65	Value 8.6 8.6 6.8 6.8 8.4	8.61	Value 9.8 10.0 6.7 7.0 8.0	9.88	Value 7.0 6.6 7.1 7.1 7.9	<mark>6.78</mark>	Value 6.1 5.7 4.8 5.1 7.1	5.89
Date 21-Oct-09 23-Oct-09 27-Oct-09	Value 8.4 8.4 6.2 6.3 7.5 7.5	8.36 6.27 7.47	Value 6.5 6.8 7.0 7.3 10.6 10.5	6.65 7.16 10.57	Value 7.7 8.0 7.6 6.8 6.5 6.6	7.85 7.22 6.52	Value 6.6 6.7 8.9 8.4 6.8 6.8	6.65 8.61 6.84	Value 8.6 8.6 6.8 6.8 8.4 8.0	8.61 6.84 8.17	Value 9.8 10.0 6.7 7.0 8.0 7.9	9.88 6.84 7.92	Value 7.0 6.6 7.1 7.1 7.9 8.0	7.09 7.92	Value 6.1 5.7 4.8 5.1 7.1	(5.89) (4.94) (7.09)
Date 21-Oct-09 23-Oct-09	Value 8.4 8.4 6.2 6.3 7.5 7.5	8.36 6.27	Value 6.5 6.8 7.0 7.3 10.6 10.5 7.6	6.65 7.16	Value 7.7 8.0 7.6 6.8 6.5 6.6 6.2	7.85 7.22	Value 6.6 6.7 8.9 8.4 6.8 6.8	6.65 8.61	Value 8.6 8.6 6.8 6.8 8.4 8.0 6.3	8.61 6.84	Value 9.8 10.0 6.7 7.0 8.0 7.9 6.5	9.88 6.84	Value 7.0 6.6 7.1 7.1 7.9 8.0 6.1	7.09	Value 6.1 5.7 4.8 5.1 7.1 7.1 5.4	(5.89) (4.94)
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09	Value 8.4 8.4 6.2 6.3 7.5 7.5 6.1	8.36 6.27 7.47 6.08	Value 6.5 6.8 7.0 7.3 10.6 10.5 7.6 7.9	6.65 7.16 10.57 7.73	Value 7.7 8.0 7.6 6.8 6.5 6.6 6.2 6.2	7.85 7.22 6.52 6.21	Value 6.6 6.7 8.9 8.4 6.8 6.8 6.0	6.65 8.61 6.84 5.89	Value 8.6 8.6 6.8 6.8 8.4 8.0 6.3 6.1	8.61 6.84 8.17 6.21	Value 9.8 10.0 6.7 7.0 8.0 7.9 6.5 6.3	9.88 6.84 7.92 6.40	Value 7.0 6.6 7.1 7.1 7.9 8.0 6.1 6.1	7.09 7.92 6.08	Value 6.1 5.7 4.8 5.1 7.1 5.4 5.4	(5.89) (4.94) (7.09) (5.45)
Date 21-Oct-09 23-Oct-09 27-Oct-09	Value 8.4 8.4 6.2 6.3 7.5 7.5 6.1 6.1 5.8	8.36 6.27 7.47	Value 6.5 6.8 7.0 7.3 10.6 10.5 7.6 7.9 6.2	6.65 7.16 10.57	Value 7.7 8.0 7.6 6.8 6.5 6.6 6.2 6.2 5.2	7.85 7.22 6.52	Value 6.6 6.7 8.9 8.4 6.8 6.0 5.8	6.65 8.61 6.84	Value 8.6 8.6 6.8 6.8 8.4 8.0 6.3 6.1 5.6	8.61 6.84 8.17	Value 9.8 10.0 6.7 7.0 8.0 7.9 6.5 6.3 6.1	9.88 6.84 7.92	Value 7.0 6.6 7.1 7.1 7.9 8.0 6.1 6.1 7.3	7.09 7.92	Value 6.1 5.7 4.8 5.1 7.1 7.1 5.4 5.4 5.1	(5.89) (4.94) (7.09)
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09	Value 8.4 8.4 6.2 6.3 7.5 7.5 6.1 6.1 5.8 5.8	8.36 6.27 7.47 6.08 5.79	Value 6.5 6.8 7.0 7.3 10.6 10.5 7.6 7.9 6.2 6.0	7.16 10.57 7.73 6.08	Value 7.7 8.0 7.6 6.8 6.5 6.6 6.2 6.2 5.2	7.85 7.22 6.52 6.21 5.45	Value 6.6 6.7 8.9 8.4 6.8 6.8 6.0 5.8 4.8	6.65 8.61 6.84 5.89 4.88	Value 8.6 8.6 6.8 6.8 8.4 8.0 6.3 6.1 5.6 5.1	8.61 6.84 8.17 6.21 5.32	Value 9.8 10.0 6.7 7.0 8.0 7.9 6.5 6.3 6.1 6.0	9.88 6.84 7.92 6.40 6.02	Value 7.0 6.6 7.1 7.1 7.9 8.0 6.1 6.1 7.3	7.09 7.92 6.08 7.54	Value 6.1 5.7 4.8 5.1 7.1 7.1 5.4 5.4 5.1 4.7	7.09 5.45 4.88
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09	Value 8.4 8.4 6.2 6.3 7.5 7.5 6.1 6.1 5.8 5.8 3.9	8.36 6.27 7.47 6.08	Value 6.5 6.8 7.0 7.3 10.6 10.5 7.6 7.9 6.2 6.0 5.7	6.65 7.16 10.57 7.73	Value 7.7 8.0 7.6 6.8 6.5 6.6 6.2 6.2 5.2 5.7 7.6	7.85 7.22 6.52 6.21	Value 6.6 6.7 8.9 8.4 6.8 6.0 5.8 4.8 4.9	6.65 8.61 6.84 5.89	Value 8.6 8.6 6.8 6.8 8.4 8.0 6.3 6.1 5.6 5.1	8.61 6.84 8.17 6.21	Value 9.8 10.0 6.7 7.0 8.0 7.9 6.5 6.3 6.1 6.0 5.3	9.88 6.84 7.92 6.40	Value 7.0 6.6 7.1 7.1 7.9 8.0 6.1 6.1 7.3 7.7	7.09 7.92 6.08	Value 6.1 5.7 4.8 5.1 7.1 7.1 5.4 5.4 5.1 4.7 3.7	(5.89) (4.94) (7.09) (5.45)
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09	Value 8.4 8.4 6.2 6.3 7.5 7.5 6.1 6.1 5.8 5.8 3.9 3.8	8.36 6.27 7.47 6.08 5.79 3.86	Value 6.5 6.8 7.0 7.3 10.6 10.5 7.6 7.9 6.2 6.0 5.7 4.8	7.16 10.57 7.73 6.08 5.26	Value 7.7 8.0 7.6 6.8 6.5 6.6 6.2 6.2 5.2 5.7 7.6 7.3	7.85 7.22 6.52 6.21 5.45 7.47	Value 6.6 6.7 8.9 8.4 6.8 6.0 5.8 4.8 4.9 8.4	6.65 8.61 6.84 5.89 4.88 8.23	Value 8.6 8.6 6.8 6.8 8.4 8.0 6.3 6.1 5.6 5.1 7.7	8.61 6.84 8.17 6.21 5.32 7.35	Value 9.8 10.0 6.7 7.0 8.0 7.9 6.5 6.3 6.1 6.0 5.3 5.2	9.88 6.84 7.92 6.40 6.02 5.26	Value 7.0 6.6 7.1 7.1 7.9 8.0 6.1 6.1 7.3 7.7 4.8 4.9	6.78 7.09 7.92 6.08 7.54 4.88	Value 6.1 5.7 4.8 5.1 7.1 7.1 5.4 5.4 5.1 4.7 3.7 3.3	5.89 4.94 7.09 5.45 4.88
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09	Value 8.4 8.4 6.2 6.3 7.5 7.5 6.1 6.1 5.8 5.8 3.9 3.8 6.6	8.36 6.27 7.47 6.08 5.79	Value 6.5 6.8 7.0 7.3 10.6 10.5 7.6 7.9 6.2 6.0 5.7 4.8 5.8	7.16 10.57 7.73 6.08	Value 7.7 8.0 7.6 6.8 6.5 6.6 6.2 6.2 5.2 5.7 7.6 7.3	7.85 7.22 6.52 6.21 5.45	Value 6.6 6.7 8.9 8.4 6.8 6.0 5.8 4.8 4.9 8.4	6.65 8.61 6.84 5.89 4.88	Value 8.6 8.6 6.8 6.8 8.4 8.0 6.3 6.1 5.6 5.1 7.7 7.0 8.4	8.61 6.84 8.17 6.21 5.32	Value 9.8 10.0 6.7 7.0 8.0 7.9 6.5 6.3 6.1 6.0 5.3 5.2 6.2	9.88 6.84 7.92 6.40 6.02	Value 7.0 6.6 7.1 7.1 7.9 8.0 6.1 6.1 7.3 7.7 4.8 4.9 6.8	7.09 7.92 6.08 7.54	Value 6.1 5.7 4.8 5.1 7.1 7.1 5.4 5.4 5.1 4.7 3.7 3.3 3.5	7.09 5.45 4.88
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09	Value 8.4 6.2 6.3 7.5 7.5 6.1 6.1 5.8 3.9 3.8 6.6 6.5	8.36 6.27 7.47 6.08 5.79 3.86 6.55	Value 6.5 6.8 7.0 7.3 10.6 10.5 7.6 7.9 6.2 6.0 5.7 4.8 5.8 6.1	6.65 7.16 10.57 7.73 6.08 5.26 5.95	Value 7.7 8.0 7.6 6.8 6.5 6.6 6.2 6.2 5.7 7.6 7.3 5.1 4.9	7.85 7.22 6.52 6.21 5.45 7.47 5.00	Value 6.6 6.7 8.9 8.4 6.8 6.0 5.8 4.9 8.4 8.1 7.9 7.6	6.65 8.61 6.84 5.89 4.88 8.23 7.73	Value 8.6 8.6 6.8 6.8 8.4 8.0 6.3 6.1 5.6 5.1 7.7 7.0 8.4 7.9	8.61 6.84 8.17 6.21 5.32 7.35 8.11	Value 9.8 10.0 6.7 7.0 8.0 7.9 6.5 6.3 6.1 6.0 5.3 5.2 6.2 6.8	9.88 6.84 7.92 6.40 6.02 5.26 6.52	Value 7.0 6.6 7.1 7.1 7.9 8.0 6.1 6.1 7.3 7.7 4.8 4.9 6.8 6.3	6.78 7.09 7.92 6.08 7.54 4.88 6.59	Value 6.1 5.7 4.8 5.1 7.1 7.1 5.4 5.4 5.1 4.7 3.7 3.3 3.5 3.7	5.89 4.94 7.09 5.45 4.88 3.48
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09	Value 8.4 6.2 6.3 7.5 7.5 6.1 6.1 5.8 5.8 3.9 3.8 6.6 6.5 5.3	8.36 6.27 7.47 6.08 5.79 3.86	Value 6.5 6.8 7.0 7.3 10.6 10.5 7.6 7.9 6.2 6.0 5.7 4.8 5.8 6.1 6.1	7.16 10.57 7.73 6.08 5.26	Value 7.7 8.0 7.6 6.8 6.5 6.6 6.2 6.2 5.7 7.6 7.3 5.1 4.9 4.6	7.85 7.22 6.52 6.21 5.45 7.47	Value 6.6 6.7 8.9 8.4 6.8 6.8 6.0 5.8 4.9 8.4 7.9 7.6 5.7	6.65 8.61 6.84 5.89 4.88 8.23	Value 8.6 8.6 6.8 6.8 8.4 8.0 6.3 6.1 5.6 5.1 7.7 7.0 8.4 7.9 5.2	8.61 6.84 8.17 6.21 5.32 7.35	Value 9.8 10.0 6.7 7.0 8.0 7.9 6.5 6.3 6.1 6.0 5.3 5.2 6.2 6.8 9.4	9.88 6.84 7.92 6.40 6.02 5.26	Value 7.0 6.6 7.1 7.1 7.9 8.0 6.1 6.1 7.3 7.7 4.8 4.9 6.8 6.3 5.1	6.78 7.09 7.92 6.08 7.54 4.88	Value 6.1 5.7 4.8 5.1 7.1 7.1 5.4 5.4 5.1 4.7 3.7 3.3 3.5 3.7 4.3	5.89 4.94 7.09 5.45 4.88
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09	Value 8.4 6.2 6.3 7.5 7.5 6.1 6.1 5.8 5.8 3.9 3.8 6.6 6.5 5.3	8.36 6.27 7.47 6.08 5.79 3.86 6.55 5.41	Value 6.5 6.8 7.0 7.3 10.6 10.5 7.6 7.9 6.2 6.0 5.7 4.8 5.8 6.1 6.1 6.0	6.65 7.16 10.57 7.73 6.08 5.26 5.95 6.02	Value 7.7 8.0 7.6 6.8 6.5 6.6 6.2 6.2 5.2 5.7 7.6 7.3 5.1 4.9 4.6	7.85 7.22 6.52 6.21 5.45 7.47 5.00 4.62	Value 6.6 6.7 8.9 8.4 6.8 6.8 6.0 5.8 4.9 8.4 7.9 7.6 5.7	6.65 8.61 6.84 5.89 4.88 8.23 7.73 5.64	Value 8.6 8.6 6.8 6.8 8.4 8.0 6.3 6.1 5.6 5.1 7.7 7.0 8.4 7.9 5.2 5.4	8.61 6.84 8.17 6.21 5.32 7.35 8.11 5.32	Value 9.8 10.0 6.7 7.0 8.0 7.9 6.5 6.3 6.1 6.0 5.3 5.2 6.2 6.8 9.4 9.8	9.88 6.84 7.92 6.40 6.02 5.26 6.52 9.56	Value 7.0 6.6 7.1 7.1 7.9 8.0 6.1 6.1 7.3 7.7 4.8 4.9 6.8 6.3 5.1 5.1	6.78 7.09 7.92 6.08 7.54 4.88 6.59 5.07	Value 6.1 5.7 4.8 5.1 7.1 7.1 5.4 5.4 5.1 4.7 3.7 3.3 3.5 3.7 4.3 4.2	5.89 4.94 7.09 5.45 4.88 3.48 3.61 4.24
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09	Value 8.4 8.4 6.2 6.3 7.5 7.5 6.1 5.8 5.8 3.9 3.8 6.6 6.5 5.3 5.5 4.8	8.36 6.27 7.47 6.08 5.79 3.86 6.55	Value 6.5 6.8 7.0 7.3 10.6 10.5 7.6 7.9 6.2 6.0 5.7 4.8 5.8 6.1 6.1 6.0 5.8	6.65 7.16 10.57 7.73 6.08 5.26 5.95	Value 7.7 8.0 7.6 6.8 6.5 6.6 6.2 6.2 5.2 5.7 7.6 7.3 5.1 4.9 4.6 4.7 5.1	7.85 7.22 6.52 6.21 5.45 7.47 5.00	Value 6.6 6.7 8.9 8.4 6.8 6.8 6.0 5.8 4.8 4.9 8.4 5.7 5.6 5.6	6.65 8.61 6.84 5.89 4.88 8.23 7.73	Value 8.6 8.6 6.8 6.8 8.4 8.0 6.3 6.1 5.6 5.1 7.7 7.0 8.4 7.9 5.2 5.4 6.5	8.61 6.84 8.17 6.21 5.32 7.35 8.11	Value 9.8 10.0 6.7 7.0 8.0 7.9 6.5 6.3 6.1 6.0 5.3 5.2 6.2 6.8 9.4 9.8 5.6	9.88 6.84 7.92 6.40 6.02 5.26 6.52	Value 7.0 6.6 7.1 7.1 7.9 8.0 6.1 6.1 7.3 7.7 4.8 4.9 6.8 6.3 5.1 5.1 6.3	6.78 7.09 7.92 6.08 7.54 4.88 6.59	Value 6.1 5.7 4.8 5.1 7.1 7.1 5.4 5.4 5.1 4.7 3.7 3.3 3.5 3.7 4.3 4.2 6.1	5.89 4.94 7.09 5.45 4.88 3.48
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09 10-Nov-09	Value 8.4 6.2 6.3 7.5 7.5 6.1 6.1 5.8 5.8 3.9 3.8 6.6 6.5 5.3 5.5 4.8	8.36 6.27 7.47 6.08 5.79 3.86 6.55 5.41 4.94	Value 6.5 6.8 7.0 7.3 10.6 10.5 7.6 7.9 6.2 6.0 5.7 4.8 6.1 6.1 6.0 5.8 5.7	6.65 7.16 10.57 7.73 6.08 5.26 5.95 6.02 5.76	Value 7.7 8.0 7.6 6.8 6.5 6.6 6.2 6.2 5.2 5.7 7.6 7.3 5.1 4.9 4.6 4.7 5.1 4.8	7.85 7.22 6.52 6.21 5.45 7.47 5.00 4.62 4.94	Value 6.6 6.7 8.9 8.4 6.8 6.0 5.8 4.8 4.9 8.4 7.9 7.6 5.7 5.6 5.6	6.65 8.61 6.84 5.89 4.88 8.23 7.73 5.64 5.45	Value 8.6 8.6 6.8 6.8 8.4 8.0 6.3 6.1 5.6 5.1 7.7 7.0 8.4 7.9 5.2 5.4 6.5 6.1	8.61 6.84 8.17 6.21 5.32 7.35 8.11 5.32 6.27	Value 9.8 10.0 6.7 7.0 8.0 7.9 6.5 6.3 6.1 6.0 5.3 5.2 6.2 6.8 9.4 9.8 5.6 5.6	9.88 6.84 7.92 6.40 6.02 5.26 6.52 9.56 5.57	Value 7.0 6.6 7.1 7.1 7.9 8.0 6.1 6.1 7.3 7.7 4.8 4.9 6.8 6.3 5.1 6.1 6.3 6.1	6.78 7.09 7.92 6.08 7.54 4.88 6.59 5.07 6.21	Value 6.1 5.7 4.8 5.1 7.1 5.4 5.4 5.1 4.7 3.7 3.3 4.2 6.1 5.4	5.89 4.94 7.09 5.45 4.88 3.48 3.61 4.24 5.76
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09	Value 8.4 6.2 6.3 7.5 7.5 6.1 6.1 5.8 5.8 3.9 3.8 6.6 6.5 5.3 5.5 4.8 5.1	8.36 6.27 7.47 6.08 5.79 3.86 6.55 5.41	Value 6.5 6.8 7.0 7.3 10.6 10.5 7.6 7.9 6.2 6.0 5.7 4.8 5.8 6.1 6.1 6.0 5.8	6.65 7.16 10.57 7.73 6.08 5.26 5.95 6.02	Value 7.7 8.0 7.6 6.8 6.5 6.6 6.2 6.2 5.2 5.7 7.6 7.3 5.1 4.9 4.6 4.7 5.1 4.8 4.1	7.85 7.22 6.52 6.21 5.45 7.47 5.00 4.62	Value 6.6 6.7 8.9 8.4 6.8 6.8 6.0 5.8 4.8 4.9 8.4 8.1 7.9 7.6 5.7 5.6 5.3 3.5	6.65 8.61 6.84 5.89 4.88 8.23 7.73 5.64	Value 8.6 8.6 6.8 6.8 8.4 8.0 6.3 6.1 5.6 5.1 7.7 7.0 8.4 7.9 5.2 5.4 6.5 6.1 3.5	8.61 6.84 8.17 6.21 5.32 7.35 8.11 5.32	Value 9.8 10.0 6.7 7.0 8.0 7.9 6.5 6.3 6.1 6.0 5.3 5.2 6.2 6.8 9.4 9.8 5.6 6.2	9.88 6.84 7.92 6.40 6.02 5.26 6.52 9.56	Value 7.0 6.6 7.1 7.1 7.9 8.0 6.1 6.1 7.3 7.7 4.8 4.9 6.8 6.3 5.1 5.1 6.3 6.1 5.4	6.78 7.09 7.92 6.08 7.54 4.88 6.59 5.07	Value 6.1 5.7 4.8 5.1 7.1 7.1 5.4 5.4 5.1 4.7 3.7 3.3 3.5 3.7 4.3 4.2 6.1 5.4 3.4	5.89 4.94 7.09 5.45 4.88 3.48 3.61 4.24
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09 10-Nov-09	Value 8.4 6.2 6.3 7.5 7.5 6.1 6.1 5.8 5.8 3.9 3.8 6.6 6.5 5.3 5.5 4.8 5.1 5.8 5.7	8.36 6.27 7.47 6.08 5.79 3.86 6.55 5.41 4.94 5.76	Value 6.5 6.8 7.0 7.3 10.6 10.5 7.6 7.9 6.2 6.0 5.7 4.8 5.8 6.1 6.0 5.8 5.7 5.8	6.65 7.16 10.57 7.73 6.08 5.26 5.95 6.02 5.76 5.70	Value 7.7 8.0 7.6 6.8 6.5 6.6 6.2 6.2 5.2 5.7 7.6 7.3 5.1 4.9 4.6 4.7 5.1 4.8 4.1	7.85 7.22 6.52 6.21 5.45 7.47 5.00 4.62 4.94 3.99	Value 6.6 6.7 8.9 8.4 6.8 6.0 5.8 4.8 4.9 7.6 5.7 5.6 5.3 3.5	6.65 8.61 6.84 5.89 4.88 8.23 7.73 5.64 5.45 3.48	Value 8.6 8.6 6.8 6.8 8.4 8.0 6.3 6.1 5.6 5.1 7.7 7.0 8.4 7.9 5.2 5.4 6.5 6.1 3.5 3.8	8.61 6.84 8.17 6.21 5.32 7.35 8.11 5.32 6.27 3.67	Value 9.8 10.0 6.7 7.0 8.0 7.9 6.5 6.3 6.1 6.0 5.3 5.2 6.2 6.8 9.4 9.8 5.6 6.2 6.0	9.88 6.84 7.92 6.40 6.02 5.26 6.52 9.56 5.57 6.08	Value 7.0 6.6 7.1 7.1 7.9 8.0 6.1 6.1 7.3 7.7 4.8 4.9 6.8 6.3 5.1 5.1 6.3 6.1 5.4 5.4	6.78 7.09 7.92 6.08 7.54 4.88 6.59 5.07 6.21 5.45	Value 6.1 5.7 4.8 5.1 7.1 5.4 5.4 5.1 4.7 3.7 3.3 3.5 3.7 4.3 4.2 6.1 5.4 3.4 3.3	5.89 4.94 7.09 5.45 4.88 3.48 3.61 4.24 5.76 3.36
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09 10-Nov-09	Value 8.4 6.2 6.3 7.5 7.5 6.1 6.1 5.8 5.8 3.9 3.8 6.6 6.5 5.3 5.5 4.8 5.1 5.8 5.7	8.36 6.27 7.47 6.08 5.79 3.86 6.55 5.41 4.94	Value 6.5 6.8 7.0 7.3 10.6 10.5 7.6 7.9 6.2 6.0 5.7 4.8 5.8 6.1 6.1 6.0 5.8 5.7 5.8 5.6	6.65 7.16 10.57 7.73 6.08 5.26 5.95 6.02 5.76	Value 7.7 8.0 7.6 6.8 6.5 6.6 6.2 6.2 5.2 5.7 7.6 7.3 5.1 4.9 4.6 4.7 5.1 4.8 4.1	7.85 7.22 6.52 6.21 5.45 7.47 5.00 4.62 4.94	Value 6.6 6.7 8.9 8.4 6.8 6.0 5.8 4.8 4.9 8.4 8.1 7.9 7.6 5.7 5.6 5.3 3.5 3.4	6.65 8.61 6.84 5.89 4.88 8.23 7.73 5.64 5.45	Value 8.6 8.6 6.8 6.8 8.4 8.0 6.3 6.1 5.6 5.1 7.7 7.0 8.4 7.9 5.2 5.4 6.5 6.1 3.5 3.8 6.1	8.61 6.84 8.17 6.21 5.32 7.35 8.11 5.32 6.27	Value 9.8 10.0 6.7 7.0 8.0 7.9 6.5 6.3 6.1 6.0 5.3 5.2 6.2 6.8 9.4 9.8 5.6 6.2 6.0 8.5	9.88 6.84 7.92 6.40 6.02 5.26 6.52 9.56 5.57	Value 7.0 6.6 7.1 7.1 7.9 8.0 6.1 6.1 7.3 7.7 4.8 4.9 6.8 6.3 5.1 5.1 6.3 6.1 5.4 6.7	6.78 7.09 7.92 6.08 7.54 4.88 6.59 5.07 6.21	Value 6.1 5.7 4.8 5.1 7.1 5.4 5.4 5.1 4.7 3.7 3.3 3.5 3.7 4.3 4.2 6.1 5.4 3.4 3.3 4.6	5.89 4.94 7.09 5.45 4.88 3.48 3.61 4.24 5.76
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09 10-Nov-09 12-Nov-09	Value 8.4 8.4 6.2 6.3 7.5 7.5 6.1 5.8 5.8 3.9 3.8 6.6 6.5 5.3 5.5 4.8 5.1 5.8 5.7	8.36 6.27 7.47 6.08 5.79 3.86 6.55 5.41 4.94 5.76 8.01	Value 6.5 6.8 7.0 7.3 10.6 10.5 7.6 7.9 6.2 6.0 5.7 4.8 5.8 6.1 6.1 6.0 5.8 5.7 5.8 5.6 5.6	6.65 7.16 10.57 7.73 6.08 5.26 5.95 6.02 5.76 5.70 5.38	Value 7.7 8.0 7.6 6.8 6.5 6.6 6.2 6.2 5.2 5.7 7.6 7.3 5.1 4.9 4.6 4.7 5.1 4.8 4.1 3.9 5.1	7.85 7.22 6.52 6.21 5.45 7.47 5.00 4.62 4.94 3.99 4.88	Value 6.6 6.7 8.9 8.4 6.8 6.8 6.0 5.8 4.8 4.9 8.4 8.1 7.9 7.6 5.7 5.6 5.3 3.5 3.4 6.0 6.2	6.65 8.61 6.84 5.89 4.88 8.23 7.73 5.64 5.45 3.48 6.08	Value 8.6 8.6 6.8 6.8 8.4 8.0 6.3 6.1 5.6 5.1 7.7 7.0 8.4 7.9 5.2 5.4 6.5 6.1 3.5 3.8 6.1 6.0	8.61 6.84 8.17 6.21 5.32 7.35 8.11 5.32 6.27 3.67 6.02	Value 9.8 10.0 6.7 7.0 8.0 7.9 6.5 6.3 6.1 6.0 5.3 5.2 6.2 6.8 9.4 9.8 5.6 6.2 6.0 8.5 8.1	9.88 6.84 7.92 6.40 6.02 5.26 6.52 9.56 5.57 6.08 8.29	Value 7.0 6.6 7.1 7.1 7.9 8.0 6.1 6.1 7.3 7.7 4.8 4.9 6.8 6.3 5.1 5.1 6.3 6.1 5.4 6.7 6.6	6.78 7.09 7.92 6.08 7.54 4.88 6.59 5.07 6.21 5.45 6.65	Value 6.1 5.7 4.8 5.1 7.1 7.1 5.4 5.4 5.1 4.7 3.7 3.3 3.5 3.7 4.3 4.2 6.1 5.4 3.4 3.3 4.6 4.6	5.89 4.94 7.09 5.45 4.88 3.48 3.61 4.24 5.76 3.36 4.56
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09 10-Nov-09	Value 8.4 6.2 6.3 7.5 7.5 6.1 6.1 5.8 5.8 3.9 3.8 6.6 6.5 5.3 5.5 4.8 5.1 5.8 5.7	8.36 6.27 7.47 6.08 5.79 3.86 6.55 5.41 4.94 5.76	Value 6.5 6.8 7.0 7.3 10.6 10.5 7.6 7.9 6.2 6.0 5.7 4.8 5.8 6.1 6.1 6.0 5.8 5.7 5.8 5.6	6.65 7.16 10.57 7.73 6.08 5.26 5.95 6.02 5.76 5.70	Value 7.7 8.0 7.6 6.8 6.5 6.6 6.2 6.2 5.2 5.7 7.6 7.3 5.1 4.9 4.6 4.7 5.1 4.8 4.1	7.85 7.22 6.52 6.21 5.45 7.47 5.00 4.62 4.94 3.99	Value 6.6 6.7 8.9 8.4 6.8 6.0 5.8 4.8 4.9 8.4 8.1 7.9 7.6 5.7 5.6 5.3 3.5 3.4	6.65 8.61 6.84 5.89 4.88 8.23 7.73 5.64 5.45 3.48	Value 8.6 8.6 6.8 6.8 8.4 8.0 6.3 6.1 5.6 5.1 7.7 7.0 8.4 7.9 5.2 5.4 6.5 6.1 3.5 3.8 6.1	8.61 6.84 8.17 6.21 5.32 7.35 8.11 5.32 6.27	Value 9.8 10.0 6.7 7.0 8.0 7.9 6.5 6.3 6.1 6.0 5.3 5.2 6.2 6.8 9.4 9.8 5.6 6.2 6.0 8.5	9.88 6.84 7.92 6.40 6.02 5.26 6.52 9.56 5.57 6.08	Value 7.0 6.6 7.1 7.1 7.9 8.0 6.1 6.1 7.3 7.7 4.8 4.9 6.8 6.3 5.1 5.1 6.3 6.1 5.4 6.7	6.78 7.09 7.92 6.08 7.54 4.88 6.59 5.07 6.21 5.45	Value 6.1 5.7 4.8 5.1 7.1 5.4 5.4 5.1 4.7 3.7 3.3 3.5 3.7 4.3 4.2 6.1 5.4 3.4 3.3 4.6	5.89 4.94 7.09 5.45 4.88 3.48 3.61 4.24 5.76 3.36

Projected Turbidity Monitoring Data (Wet Season) adjusted with Mean Variation Percentage of EPD Marine Monitoring Data (2006 - 2008)

Mid-flood	C8		C9		RC1		RC5		RC7	
Date	Value	Average								
21-Oct-09	11.0	11.10	10.2	10.11	7.2	7.41	8.1	8.11	6.2	6.21
	11.2		10.0		7.6		8.1		6.2	
23-Oct-09	11.7	12.09	12.6	12.65	7.0	6.97	9.5	9.43	5.1	5.13
	12.5		12.6		7.0		9.4		5.2	
27-Oct-09	12.4	12.46	13.5	13.70	10.0	10.07	9.6	9.56	9.8	9.62
	12.5		13.9		10.1		9.5		9.5	
29-Oct-09	10.7	10.91	12.9	13.14	8.2	7.79	8.1	7.92	7.0	6.84
	11.2		13.4		7.3		7.7		6.7	
31-Oct-09	7.2	7.50	12.3	12.28	6.3	6.52	5.1	5.00	6.1	6.08
	7.8		12.3		6.7		4.9		6.1	
2-Nov-09	6.0	5.95	6.3	6.63	4.3	4.18	5.3	5.38	5.4	5.32
	6.0		6.9		4.1		5.4		5.2	
4-Nov-09	8.1	8.00	9.4	9.55	5.4	5.70	7.7	8.04	6.3	6.40
	7.9		9.7		6.0		8.4		6.5	
6-Nov-09	11.5	11.72	10.4	10.17	7.5	7.35	6.6	6.65	6.6	6.71
	11.9		9.9		7.2		6.7		6.8	
10-Nov-09	9.1	9.30	10.4	10.11	6.3	6.27	6.6	6.65	5.8	5.76
	9.5		9.8		6.2		6.7		5.7	
12-Nov-09	8.1	8.12	9.3	9.05	5.1	5.13	7.9	7.66	4.3	4.24
	8.2		8.8		5.2		7.5		4.2	
14-Nov-09	6.7	6.94	8.7	8.62	7.0	6.84	5.2	5.19	4.3	4.12
	7.2		8.6		6.7		5.2		3.9	
16-Nov-09	14.0	14.14	11.5	11.10	10.5	10.57	11.8	11.84	11.3	11.14
	14.3		10.7		10.6		11.9		11.0	
•	•			•	•	•	•	•		•

Mid-Ebb	C8		C9		RC1		RC5		RC7	
Date	Value	Average								
21-Oct-09	8.2	8.31	12.0	11.90	6.3	6.27	7.7	7.73	7.0	7.09
	8.4		11.8		6.2		7.7		7.2	
23-Oct-09	8.7	8.80	10.7	10.73	6.0	5.89	5.3	5.32	5.6	5.51
	8.9		10.8	1	5.8	1	5.3		5.4	1
27-Oct-09	9.2	9.18	10.0	9.98	6.5	6.59	7.5	7.47	11.8	10.95
	9.2		9.9	1	6.7	1	7.5		10.1	1
29-Oct-09	7.4	7.56	7.9	7.81	7.9	7.85	6.3	6.27	6.3	6.02
	7.7		7.7	1	7.9	1	6.2		5.7	1
31-Oct-09	6.6	6.32	6.9	7.32	5.6	5.51	4.9	5.26	5.4	5.38
	6.1		7.7		5.4		5.6		5.3	
2-Nov-09	8.2	7.81	8.1	8.06	5.6	5.51	5.8	6.46	5.7	5.51
	7.4		8.1		5.4		7.1		5.3	
4-Nov-09	7.2	7.19	9.9	9.67	4.9	5.07	6.1	5.89	6.8	6.52
	7.2		9.4	1	5.2	1	5.7		6.2	1
6-Nov-09	5.6	5.52	6.4	6.63	5.4	5.45	6.2	6.08	6.2	5.95
	5.5		6.8	1	5.4	1	6.0		5.7	1
10-Nov-09	6.3	6.32	6.4	6.45	5.6	5.51	4.7	4.75	7.7	8.17
	6.3		6.4	1	5.4	1	4.8		8.6	1
12-Nov-09	7.8	8.06	7.3	7.32	3.2	3.17	4.7	4.88	4.4	4.43
	8.3		7.3		3.2		5.1		4.4	
14-Nov-09	6.9	7.07	7.2	7.38	5.4	5.38	5.7	5.64	5.3	5.45
	7.2		7.6		5.3		5.6		5.6	
16-Nov-09	12.3	12.28	10.0	10.29	12.3	12.09	10.6	10.64	11.3	11.27
	12.3		10.5		11.9	1	10.6		11.3	

Mid-flood	WSD7			WSD9			WSD10			WSD15			WSD17		
Date	Value	Value	Average												
21-Oct-09	4.40	4.40	4.40	4.70	4.82	4.76	5.14	5.10	5.12	5.14	5.17	5.16	5.38	5.20	5.29
23-Oct-09	4.91	4.38	4.65	4.27	4.40	4.34	4.51	4.47	4.49	4.68	4.60	4.64	4.88	4.86	4.87
27-Oct-09	4.20	4.23	4.22	4.96	4.91	4.94	4.68	4.65	4.67	4.44	4.38	4.41	4.92	4.66	4.79
29-Oct-09	4.76	4.63	4.70	4.90	4.89	4.90	6.07	6.01	6.04	4.48	4.37	4.43	4.60	4.52	4.56
31-Oct-09	4.51	4.62	4.57	5.10	5.04	5.07	4.93	4.86	4.90	4.88	4.79	4.84	4.75	4.80	4.78
2-Nov-09	5.14	5.16	5.15	5.26	5.31	5.29	5.42	5.55	5.49	5.68	5.70	5.69	5.85	5.34	5.60
4-Nov-09	6.23	6.12	6.18	6.44	6.34	6.39	6.48	6.46	6.47	6.59	6.45	6.52	6.53	6.62	6.58
6-Nov-09	5.50	5.43	5.47	5.34	5.30	5.32	5.59	5.58	5.59	5.63	5.65	5.64	5.63	5.61	5.62
10-Nov-09	5.18	5.17	5.18	4.67	4.61	4.64	5.13	5.08	5.11	4.89	4.91	4.90	5.21	5.12	5.17
12-Nov-09	3.38	3.63	3.51	3.32	3.41	3.37	3.49	3.68	3.59	3.30	3.63	3.47	3.91	4.06	3.99
14-Nov-09	6.82	6.76	6.79	8.25	8.33	8.29	7.98	8.32	8.15	8.52	8.62	8.57	8.40	8.43	8.42
16-Nov-09	7.45	7.38	7.42	8.58	8.55	8.57	7.48	7.47	7.48	7.43	7.42	7.43	8.90	8.29	8.60

Mid-ebb	WSD7			WSD9			WSD10			WSD15			WSD17		
Date	Value	Value	Average												
21-Oct-09	4.89	4.83	4.86	4.78	4.78	4.78	5.09	5.03	5.06	4.93	4.88	4.91	4.99	4.67	4.83
23-Oct-09	4.07	3.88	3.98	4.44	4.36	4.40	5.56	5.38	5.47	4.65	4.62	4.64	4.33	4.16	4.25
27-Oct-09	4.79	4.57	4.68	4.70	4.64	4.67	4.58	4.66	4.62	4.28	4.23	4.26	5.02	4.72	4.87
29-Oct-09	5.37	5.37	5.37	5.39	5.17	5.28	5.06	4.97	5.02	4.87	4.79	4.83	4.31	4.24	4.28
31-Oct-09	4.50	4.42	4.46	5.22	5.13	5.18	5.83	5.88	5.86	5.14	5.22	5.18	5.07	5.27	5.17
2-Nov-09	5.13	5.06	5.10	5.28	5.21	5.25	5.18	5.14	5.16	4.45	4.32	4.39	4.22	4.29	4.26
4-Nov-09	6.14	6.12	6.13	6.20	6.19	6.20	6.29	6.27	6.28	6.40	6.46	6.43	6.20	6.16	6.18
6-Nov-09	5.31	5.31	5.31	5.66	5.65	5.66	5.79	5.73	5.76	5.75	5.74	5.75	5.55	5.61	5.58
10-Nov-09	6.03	5.97	6.00	5.49	5.38	5.44	4.36	4.29	4.33	4.67	4.64	4.66	5.35	5.41	5.38
12-Nov-09	4.84	4.81	4.83	3.59	3.71	3.65	4.70	4.69	4.70	2.81	3.04	2.93	3.13	3.40	3.27
14-Nov-09	7.12	7.16	7.14	8.57	8.58	8.58	8.57	8.43	8.50	8.54	8.57	8.56	8.45	8.41	8.43
16-Nov-09	7.85	7.72	7.79	8.77	8.76	8.77	6.66	6.61	6.64	6.87	6.80	6.84	7.18	7.09	7.14

Mid-flood	WSD19			WSD20			WSD21			RW1			C1		
Date	Value	Value	Average												
21-Oct-09	4.36	4.45	4.41	5.31	4.78	5.05	4.49	4.49	4.49	4.74	4.66	4.70	4.75	4.52	4.64
23-Oct-09	3.71	3.60	3.66	4.78	4.58	4.68	3.92	3.86	3.89	4.35	4.35	4.35	4.62	4.48	4.55
27-Oct-09	3.94	3.83	3.89	3.82	3.88	3.85	4.45	4.34	4.40	4.35	4.32	4.34	4.64	4.64	4.64
29-Oct-09	4.99	4.92	4.96	4.59	4.55	4.57	4.66	4.61	4.64	4.75	4.71	4.73	4.84	4.82	4.83
31-Oct-09	4.33	4.31	4.32	4.04	4.11	4.08	4.89	4.87	4.88	5.22	5.20	5.21	4.82	4.81	4.82
2-Nov-09	5.57	5.40	5.49	5.30	5.35	5.33	4.90	4.55	4.73	5.28	4.66	4.97	4.80	4.78	4.79
4-Nov-09	6.38	6.31	6.35	6.48	6.41	6.45	4.82	4.76	4.79	4.79	4.96	4.88	4.53	4.60	4.57
6-Nov-09	5.17	5.11	5.14	5.79	5.78	5.79	4.73	4.67	4.70	4.56	4.55	4.56	4.69	4.61	4.65
10-Nov-09	5.54	5.52	5.53	5.38	5.32	5.35	4.50	4.45	4.48	4.59	4.55	4.57	4.68	4.66	4.67
12-Nov-09	3.30	3.42	3.36	3.18	3.51	3.35	3.93	3.86	3.90	4.11	4.05	4.08	3.69	3.64	3.67
14-Nov-09	8.03	7.74	7.89	7.98	7.99	7.99	3.53	3.48	3.51	4.32	4.13	4.23	4.43	4.47	4.45
16-Nov-09	7.36	7.19	7.28	8.55	8.50	8.53	4.66	4.32	4.49	4.58	4.47	4.53	5.33	5.43	5.38

Mid-ebb	WSD19			WSD20			WSD21			RW1			C1		
Date	Value	Value	Average												
21-Oct-09	4.70	4.93	4.82	4.80	4.80	4.80	4.84	4.84	4.84	4.56	4.48	4.52	4.55	4.44	4.50
23-Oct-09	4.04	4.25	4.15	4.52	4.48	4.50	3.67	3.65	3.66	4.93	4.55	4.74	4.38	4.38	4.38
27-Oct-09	4.92	4.99	4.96	4.92	5.05	4.99	4.60	4.41	4.51	4.66	4.46	4.56	4.81	4.64	4.73
29-Oct-09	4.71	4.63	4.67	5.10	5.02	5.06	4.81	4.71	4.76	4.83	4.78	4.81	4.66	4.54	4.60
31-Oct-09	4.07	4.14	4.11	4.69	4.43	4.56	5.22	4.98	5.10	5.06	4.86	4.96	5.20	5.17	5.19
2-Nov-09	4.28	4.43	4.36	4.86	4.94	4.90	4.90	4.79	4.85	5.50	5.62	5.56	4.99	4.82	4.91
4-Nov-09	6.58	6.55	6.57	6.66	6.53	6.60	4.52	4.44	4.48	4.63	4.52	4.58	5.65	5.60	5.63
6-Nov-09	5.78	5.76	5.77	5.93	5.92	5.93	3.96	3.90	3.93	4.01	3.99	4.00	4.79	4.75	4.77
10-Nov-09	5.95	5.93	5.94	5.74	5.67	5.71	4.65	4.55	4.60	4.67	4.62	4.65	4.50	4.38	4.44
12-Nov-09	2.96	3.02	2.99	3.67	3.76	3.72	3.75	3.73	3.74	3.85	3.78	3.82	3.96	3.91	3.94
14-Nov-09	8.39	8.23	8.31	7.91	7.84	7.88	4.62	4.52	4.57	4.63	4.57	4.60	4.55	4.32	4.44
16-Nov-09	8.33	8.20	8.27	8.76	8.70	8.73	6.67	6.49	6.58	6.33	6.22	6.28	4.02	4.05	4.04

Mid-flood	C2			C3			C4			C5			C6		
Date	Value	Value	Average												
21-Oct-09	4.52	4.46	4.49	4.46	4.39	4.43	4.46	4.29	4.38	4.55	4.48	4.52	3.51	3.44	3.48
23-Oct-09	4.23	3.96	4.10	4.22	4.09	4.16	4.22	4.01	4.12	4.88	4.32	4.60	2.83	2.63	2.73
27-Oct-09	4.39	4.25	4.32	4.42	4.36	4.39	4.55	4.45	4.50	4.46	4.36	4.41	3.56	3.29	3.43
29-Oct-09	4.69	4.60	4.65	4.60	4.61	4.61	4.58	4.51	4.55	4.70	4.60	4.65	3.73	3.29	3.51
31-Oct-09	4.87	4.83	4.85	5.05	5.02	5.04	5.12	4.99	5.06	5.03	4.92	4.98	4.03	3.92	3.98
2-Nov-09	4.69	4.59	4.64	5.07	4.85	4.96	4.71	4.66	4.69	5.31	4.65	4.98	3.85	3.76	3.81
4-Nov-09	5.36	5.01	5.19	5.34	5.31	5.33	5.24	5.20	5.22	4.83	4.73	4.78	3.85	3.74	3.80
6-Nov-09	4.70	4.60	4.65	4.61	4.58	4.60	4.58	4.54	4.56	4.74	4.66	4.70	3.46	3.34	3.40
10-Nov-09	4.53	4.44	4.49	4.44	4.45	4.45	4.42	4.35	4.39	4.54	4.44	4.49	3.57	3.13	3.35
12-Nov-09	3.84	3.78	3.81	3.97	3.95	3.96	3.87	3.81	3.84	3.87	3.81	3.84	2.76	2.70	2.73
14-Nov-09	4.47	4.44	4.46	4.27	4.18	4.23	3.97	3.95	3.96	3.81	3.67	3.74	3.16	3.19	3.18
16-Nov-09	3.99	3.91	3.95	4.32	4.25	4.29	4.34	4.26	4.30	4.43	4.33	4.38	3.15	3.20	3.18

Mid-ebb	C2			C3			C4			C5			C6		
Date	Value	Value	Average												
21-Oct-09	4.47	4.47	4.47	4.73	4.64	4.69	4.84	4.83	4.84	4.26	4.26	4.26	3.74	3.71	3.73
23-Oct-09	4.03	3.95	3.99	4.08	4.00	4.04	3.99	3.91	3.95	4.07	3.94	4.01	3.68	3.35	3.52
27-Oct-09	4.75	4.59	4.67	4.53	4.42	4.48	4.58	4.44	4.51	4.31	4.18	4.25	4.29	3.85	4.07
29-Oct-09	5.02	4.97	5.00	4.98	4.84	4.91	4.77	4.76	4.77	4.84	4.79	4.82	3.08	2.98	3.03
31-Oct-09	5.11	5.01	5.06	4.77	4.75	4.76	4.79	4.75	4.77	5.06	4.81	4.94	4.49	3.43	3.96
2-Nov-09	5.16	5.01	5.09	4.74	4.73	4.74	4.84	4.80	4.82	5.19	5.02	5.11	4.46	4.28	4.37
4-Nov-09	5.03	5.01	5.02	4.79	4.79	4.79	4.69	4.61	4.65	4.93	4.58	4.76	4.47	4.28	4.38
6-Nov-09	4.41	4.33	4.37	4.35	4.30	4.33	4.09	4.05	4.07	3.98	3.96	3.97	3.80	3.76	3.78
10-Nov-09	4.86	4.81	4.84	4.82	4.68	4.75	4.61	4.60	4.61	4.68	4.63	4.66	2.92	2.82	2.87
12-Nov-09	3.86	3.83	3.85	4.07	4.00	4.04	3.88	3.83	3.86	3.99	3.92	3.96	2.81	2.77	2.79
14-Nov-09	4.59	4.68	4.64	4.60	4.55	4.58	4.56	4.48	4.52	4.76	4.75	4.76	3.89	3.80	3.85
16-Nov-09	5.75	5.54	5.65	6.22	6.09	6.16	5.58	5.37	5.48	6.11	6.11	6.11	5.64	5.21	5.43

Mid-flood	C7			C8			C9			RC1			RC5		
Date	Value	Value	Average	Value	Value	Average	Value	Value	Average	Value	Value	Average	Value	Value	Average
21-Oct-09	4.07	3.91	3.99	4.96	4.96	4.96	4.93	4.78	4.86	4.15	4.15	4.15	4.54	4.55	4.55
23-Oct-09	3.51	3.38	3.45	4.19	4.07	4.13	3.83	3.81	3.82	4.18	4.18	4.18	3.94	3.92	3.93
27-Oct-09	3.76	3.35	3.56	3.90	3.63	3.77	4.22	3.46	3.84	4.42	4.30	4.36	4.52	4.48	4.50
29-Oct-09	4.23	4.09	<mark>4.16</mark>	4.16	4.04	4.10	3.55	3.45	3.50	4.65	4.62	4.64	4.74	4.72	4.73
31-Oct-09	4.27	4.19	4.23	4.63	4.53	4.58	4.05	3.99	4.02	5.00	4.93	4.97	5.28	5.32	5.30
2-Nov-09	4.32	3.60	3.96	4.03	3.90	3.97	4.90	4.45	4.68	4.53	4.49	4.51	4.42	4.34	4.38
4-Nov-09	3.89	3.82	3.86	4.36	4.32	4.34	4.58	4.47	4.53	5.80	5.77	5.79	4.80	4.76	4.78
6-Nov-09	3.89	3.78	3.84	4.43	4.42	4.43	4.66	4.59	4.63	4.52	4.46	4.49	4.76	4.66	4.71
10-Nov-09	4.07	3.93	4.00	4.00	3.88	3.94	3.39	3.29	3.34	4.49	4.46	4.48	4.58	4.56	4.57
12-Nov-09	2.87	2.82	2.85	3.98	3.94	3.96	3.99	3.92	3.96	3.90	3.82	3.86	3.89	3.85	3.87
14-Nov-09	3.09	3.12	3.11	4.65	4.57	4.61	4.51	4.48	4.50	4.77	4.75	4.76	3.96	3.91	3.94
16-Nov-09	3.97	3.65	3.81	6.37	6.33	6.35	6.33	6.13	6.23	3.62	3.68	3.65	4.32	4.35	4.34

Mid-ebb	C7			C8			C9			RC1			RC5		
Date	Value	Value	Average	Value	Value	Average	Value	Value	Average	Value	Value	Average	Value	Value	Average
21-Oct-09	3.67	3.65	3.66	4.96	4.78	4.87	5.01	5.13	5.07	4.51	4.43	4.47	4.73	4.61	4.67
23-Oct-09	3.79	3.52	3.66	4.64	4.54	4.59	5.43	4.50	4.97	3.91	3.86	3.89	4.05	4.05	4.05
27-Oct-09	3.69	3.71	3.70	4.44	4.44	4.44	4.64	4.45	4.55	4.18	4.06	4.12	4.21	4.16	4.19
29-Oct-09	3.58	3.53	3.56	4.41	4.40	4.41	4.78	4.64	4.71	4.74	4.74	4.74	4.83	4.73	4.78
31-Oct-09	4.09	3.88	3.99	4.73	4.71	4.72	4.88	4.75	4.82	4.58	4.60	4.59	4.92	4.76	4.84
2-Nov-09	4.80	4.56	4.68	4.95	4.90	4.93	3.89	4.03	3.96	4.79	4.70	4.75	5.64	5.58	5.61
4-Nov-09	4.92	4.65	4.79	5.76	5.74	5.75	5.69	5.65	5.67	4.71	4.63	4.67	4.61	4.62	4.62
6-Nov-09	3.98	3.96	3.97	5.42	5.36	5.39	5.31	5.21	5.26	4.18	4.16	4.17	4.13	4.04	4.09
10-Nov-09	3.42	3.37	3.40	4.25	4.24	4.25	4.62	4.48	4.55	4.58	4.58	4.58	4.67	4.57	4.62
12-Nov-09	3.01	2.98	3.00	4.11	4.03	4.07	3.94	3.87	3.91	3.98	3.90	3.94	3.79	3.77	3.78
14-Nov-09	3.94	3.92	3.93	4.39	4.47	4.43	4.54	4.58	4.56	4.61	4.59	4.60	4.58	4.63	4.61
16-Nov-09	5.15	<mark>5.12</mark>	5.14	6.39	6.33	6.36	5.93	5.89	5.91	5.86	5.93	5.90	6.91	6.66	6.79

Mid-flood	RC7		
Date	Value	Value	Average
21-Oct-09	3.53	3.53	3.53
23-Oct-09	3.57	3.17	3.37
27-Oct-09	5.06	3.67	4.37
29-Oct-09	4.16	4.02	4.09
31-Oct-09	4.27	4.14	4.21
2-Nov-09	4.04	3.73	3.89
4-Nov-09	3.88	3.66	3.77
6-Nov-09	3.60	3.51	3.56
10-Nov-09	4.00	3.86	3.93
12-Nov-09	1.71	1.67	1.69
14-Nov-09	2.16	2.12	2.14
16-Nov-09	4.32	4.32	4.32

Mid-ebb	RC7		
Date	Value	Value	Average
21-Oct-09	3.69	3.71	3.70
23-Oct-09	4.17	3.81	3.99
27-Oct-09	4.57	4.07	4.32
29-Oct-09	4.09	3.67	3.88
31-Oct-09	4.16	4.00	4.08
2-Nov-09	4.78	4.54	4.66
4-Nov-09	5.04	4.91	4.98
6-Nov-09	3.94	3.88	3.91
10-Nov-09	3.93	3.51	3.72
12-Nov-09	2.73	2.70	2.72
14-Nov-09	3.58	3.62	3.60
16-Nov-09	5.53	5.53	5.53

Projected DO Monitoring Data (Wet Season) adjusted with Mean Variation Percentage of EPD Marine Monitoring Data (2006 - 2008)

Mid-flood	WSD7		WSD9		WSD10		WSD15		WSD17		WSD19		WSD20		WSD21	
Date	Value	Average	Value	Average	Value	Average	Value	Average								
21-Oct-09	4.01	4.01	4.26	4.31	4.50	4.48	3.80	3.81	4.71	4.63	3.97	4.01	4.53	4.30	4.01	4.01
	4.01		4.37	1	4.47		3.82	1	4.55		4.05	1	4.07	1	4.01	1
23-Oct-09	4.47	4.23	3.87	3.93	3.95	3.93	3.46	3.43	4.27	4.27	3.22	3.17	4.07	3.99	3.51	3.48
	3.99		3.99	1	3.91		3.40	1	4.26		3.13	1	3.90	1	3.45	1
27-Oct-09	3.82	3.84	4.50	4.47	4.10	4.09	3.28	3.26	4.31	4.19	3.42	3.37	3.26	3.28	3.98	3.93
	3.85		4.45	1	4.07	1	3.23	1	4.08		3.33	1	3.31	1	3.88	1
29-Oct-09	4.33	4.27	4.44	4.44	5.32	5.29	3.31	3.27	4.03	3.99	4.33	4.30	3.91	3.89	4.17	4.14
	4.21		4.43	1	5.26		3.23		3.96		4.27	1	3.88		4.12	
31-Oct-09	4.11	4.16	4.62	4.60	4.32	4.29	3.60	3.57	4.16	4.18	3.76	3.75	3.44	3.47	4.37	4.36
	4.21		4.57		4.26		3.54		4.20		3.74		3.50		4.35	
2-Nov-09	4.68	4.69	4.77	4.79	4.75	4.80	4.19	4.20	5.12	4.90	4.84	4.76	4.52	4.54	4.38	4.22
	4.70		4.81		4.86		4.21		4.68		4.69		4.56		4.07	
4-Nov-09	5.67	5.62	5.84	5.79	5.68	5.67	4.87	4.81	5.72	5.76	5.54	5.51	5.52	5.49	4.31	4.28
	5.57		5.75		5.66		4.76		5.80		5.48		5.46		4.26	
6-Nov-09	5.01	4.97	4.84	4.82	4.90	4.89	4.16	4.16	4.93	4.92	4.49	4.46	4.93	4.93	4.23	4.20
	4.94		4.80		4.89		4.17		4.91		4.44		4.93		4.18	
10-Nov-09	4.72	4.71	4.23	4.21	4.49	4.47	3.61	3.62	4.56	4.52	4.81	4.80	4.59	4.56	4.02	4.00
	4.71		4.18		4.45		3.63		4.48		4.79		4.53		3.98	
12-Nov-09	3.08	3.19	3.01	3.05	3.06	3.14	2.44	2.56	3.42	3.49	2.87	2.92	2.71	2.85	3.51	3.48
	3.30		3.09		3.22		2.68		3.56		2.97		2.99		3.45	
14-Nov-09	6.21	6.18	7.48	7.51	6.99	7.14	6.29	6.33	7.36	7.37	6.97	6.85	6.80	6.81	3.16	3.13
	6.15		7.55		7.29		6.37		7.38		6.72		6.81		3.11	
16-Nov-09	6.78	6.75	7.78	7.76	6.55	6.55	5.49	5.48	7.79	7.53	6.39	6.32	7.29	7.27	4.17	4.01
	6.72		7.75		6.54		5.48		7.26		6.24		7.24		3.86	
Mid Ebb	WCD7		Webo		WCD10		WCD1E		WCD17		WCD10		Webso		WCD01	
Mid-Ebb	WSD7	Average	WSD9	Avorago	WSD10	Avorago	WSD15	Avorago	WSD17	Avorago	WSD19	Avorago	WSD20	Avorago	WSD21	Avorago
Date	Value	Average	Value	Average	Value	Average	Value	Average								
	Value 4.45	Average 4.42	Value 4.33	Average 4.33	Value 4.46	Average 4.43	Value 3.64	Average 3.62	Value 4.37	Average 4.23	Value 4.08	Average 4.18	Value 4.09	Average 4.09	Value 4.33	Average 4.33
Date 21-Oct-09	Value 4.45 4.40	4.42	Value 4.33 4.33	4.33	Value 4.46 4.41	4.43	Value 3.64 3.60	3.62	Value 4.37 4.09	4.23	Value 4.08 4.28	4.18	Value 4.09 4.09	4.09	Value 4.33 4.33	4.33
Date	Value 4.45 4.40 3.70		Value 4.33 4.33 4.02		Value 4.46 4.41 4.87	0	Value 3.64 3.60 3.43		Value 4.37 4.09 3.79		Value 4.08 4.28 3.51		Value 4.09 4.09 3.85		Value 4.33 4.33 3.28	
Date 21-Oct-09 23-Oct-09	Value 4.45 4.40 3.70 3.53	4.42 3.62	Value 4.33 4.33 4.02 3.95	4.33 3.99	Value 4.46 4.41 4.87 4.71	4.43 4.79	Value 3.64 3.60 3.43 3.41	3.62 3.42	Value 4.37 4.09 3.79 3.64	4.23 3.72	Value 4.08 4.28 3.51 3.69	4.18 3.60	Value 4.09 4.09 3.85 3.82	4.09 3.84	Value 4.33 4.33 3.28 3.26	4.33 3.27
Date 21-Oct-09	Value 4.45 4.40 3.70 3.53 4.36	4.42	Value 4.33 4.33 4.02 3.95 4.26	4.33	Value 4.46 4.41 4.87 4.71 4.01	4.43	Value 3.64 3.60 3.43 3.41 3.16	3.62	Value 4.37 4.09 3.79 3.64 4.40	4.23	Value 4.08 4.28 3.51 3.69 4.27	4.18	Value 4.09 4.09 3.85 3.82 4.19	4.09	Value 4.33 4.33 3.28 3.26 4.11	4.33
Date 21-Oct-09 23-Oct-09 27-Oct-09	Value 4.45 4.40 3.70 3.53 4.36 4.16	4.42 3.62 4.26	Value 4.33 4.33 4.02 3.95 4.26 4.21	4.33 3.99 4.23	Value 4.46 4.41 4.87 4.71 4.01 4.08	4.43 4.79 4.05	Value 3.64 3.60 3.43 3.41 3.16 3.12	3.62 3.42 3.14	Value 4.37 4.09 3.79 3.64 4.40 4.13	4.23 3.72 4.27	Value 4.08 4.28 3.51 3.69 4.27 4.33	4.18 3.60 4.30	Value 4.09 4.09 3.85 3.82 4.19 4.30	4.09 3.84 4.25	Value 4.33 4.33 3.28 3.26 4.11 3.94	4.33 3.27 4.03
Date 21-Oct-09 23-Oct-09	Value 4.45 4.40 3.70 3.53 4.36 4.16 4.89	4.42 3.62	Value 4.33 4.33 4.02 3.95 4.26 4.21 4.89	4.33 3.99	Value 4.46 4.41 4.87 4.71 4.01 4.08 4.43	4.43 4.79	Value 3.64 3.60 3.43 3.41 3.16 3.12 3.60	3.62 3.42	Value 4.37 4.09 3.79 3.64 4.40 4.13 3.77	4.23 3.72	Value 4.08 4.28 3.51 3.69 4.27 4.33 4.09	4.18 3.60	Value 4.09 4.09 3.85 3.82 4.19 4.30 4.35	4.09 3.84	Value 4.33 4.33 3.28 3.26 4.11 3.94 4.30	4.33 3.27
Date 21-Oct-09 23-Oct-09 27-Oct-09	Value 4.45 4.40 3.70 3.53 4.36 4.16 4.89 4.89	4.42 3.62 4.26 4.89	Value 4.33 4.33 4.02 3.95 4.26 4.21 4.89 4.69	4.33 3.99 4.23 4.79	Value 4.46 4.41 4.87 4.71 4.01 4.08 4.43 4.35	4.43 4.79 4.05 4.39	Value 3.64 3.60 3.43 3.41 3.16 3.12 3.60 3.54	3.62 3.42 3.14 3.57	Value 4.37 4.09 3.79 3.64 4.40 4.13 3.77 3.71	4.23 3.72 4.27 3.74	Value 4.08 4.28 3.51 3.69 4.27 4.33 4.09 4.02	4.18 3.60 4.30 4.06	Value 4.09 4.09 3.85 3.82 4.19 4.30 4.35 4.28	4.09 3.84 4.25 4.31	Value 4.33 4.33 3.28 3.26 4.11 3.94 4.30 4.21	4.33 3.27 4.03 4.26
Date 21-Oct-09 23-Oct-09 27-Oct-09	Value 4.45 4.40 3.70 3.53 4.36 4.16 4.89 4.89 4.10	4.42 3.62 4.26	Value 4.33 4.33 4.02 3.95 4.26 4.21 4.89 4.69 4.73	4.33 3.99 4.23	Value 4.46 4.41 4.87 4.71 4.01 4.08 4.43 4.35 5.11	4.43 4.79 4.05	Value 3.64 3.60 3.43 3.41 3.16 3.12 3.60 3.54 3.80	3.62 3.42 3.14	Value 4.37 4.09 3.79 3.64 4.40 4.13 3.77 3.71 4.44	4.23 3.72 4.27	Value 4.08 4.28 3.51 3.69 4.27 4.33 4.09 4.02 3.53	4.18 3.60 4.30	Value 4.09 4.09 3.85 3.82 4.19 4.30 4.35 4.28 4.00	4.09 3.84 4.25	Value 4.33 4.33 3.28 3.26 4.11 3.94 4.30 4.21 4.67	4.33 3.27 4.03
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09	Value 4.45 4.40 3.70 3.53 4.36 4.16 4.89 4.89 4.10 4.02	4.42 3.62 4.26 4.89 4.06	Value 4.33 4.33 4.02 3.95 4.26 4.21 4.89 4.69 4.73 4.65	4.33 3.99 4.23 4.79 4.69	Value 4.46 4.41 4.87 4.71 4.01 4.08 4.43 4.35 5.11 5.15	4.43 4.79 4.05 4.39 5.13	Value 3.64 3.60 3.43 3.41 3.16 3.12 3.60 3.54 3.80 3.85	3.62 3.42 3.14 3.57 3.83	Value 4.37 4.09 3.79 3.64 4.40 4.13 3.77 3.71 4.44 4.62	4.23 3.72 4.27 3.74 4.53	Value 4.08 4.28 3.51 3.69 4.27 4.33 4.09 4.02 3.53 3.60	4.18 3.60 4.30 4.06 3.57	Value 4.09 4.09 3.85 3.82 4.19 4.30 4.35 4.28 4.00 3.78	4.09 3.84 4.25 4.31 3.89	Value 4.33 4.33 3.28 3.26 4.11 3.94 4.30 4.21 4.67 4.45	4.33 3.27 4.03 4.26 4.56
Date 21-Oct-09 23-Oct-09 27-Oct-09	Value 4.45 4.40 3.70 3.53 4.36 4.16 4.89 4.89 4.10 4.02 4.67	4.42 3.62 4.26 4.89	Value 4.33 4.33 4.02 3.95 4.26 4.21 4.89 4.69 4.73 4.65 4.79	4.33 3.99 4.23 4.79	Value 4.46 4.41 4.87 4.71 4.01 4.08 4.43 4.35 5.11 5.15 4.54	4.43 4.79 4.05 4.39	Value 3.64 3.60 3.43 3.41 3.16 3.12 3.60 3.54 3.80 3.85 3.29	3.62 3.42 3.14 3.57	Value 4.37 4.09 3.79 3.64 4.40 4.13 3.77 3.71 4.44 4.62 3.70	4.23 3.72 4.27 3.74	Value 4.08 4.28 3.51 3.69 4.27 4.33 4.09 4.02 3.53 3.60 3.72	4.18 3.60 4.30 4.06	Value 4.09 4.09 3.85 3.82 4.19 4.30 4.35 4.28 4.00 3.78 4.14	4.09 3.84 4.25 4.31	Value 4.33 4.33 3.28 3.26 4.11 3.94 4.30 4.21 4.67 4.45 4.38	4.33 3.27 4.03 4.26
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09	Value 4.45 4.40 3.70 3.53 4.36 4.16 4.89 4.89 4.10 4.02 4.67 4.61	4.42 3.62 4.26 4.89 4.06 4.64	Value 4.33 4.33 4.02 3.95 4.26 4.21 4.89 4.69 4.73 4.65 4.79 4.72	4.33 3.99 4.23 4.79 4.69 4.75	Value 4.46 4.41 4.87 4.71 4.01 4.08 4.43 4.35 5.11 5.15 4.54 4.50	4.43 4.79 4.05 4.39 5.13 4.52	Value 3.64 3.60 3.43 3.41 3.16 3.12 3.60 3.54 3.80 3.85 3.29 3.19	3.62 3.42 3.14 3.57 3.83 3.24	Value 4.37 4.09 3.79 3.64 4.40 4.13 3.77 3.71 4.44 4.62 3.70 3.76	4.23 3.72 4.27 3.74 4.53 3.73	Value 4.08 4.28 3.51 3.69 4.27 4.33 4.09 4.02 3.53 3.60 3.72 3.85	4.18 3.60 4.30 4.06 3.57 3.78	Value 4.09 4.09 3.85 3.82 4.19 4.30 4.35 4.28 4.00 3.78 4.14 4.21	4.09 3.84 4.25 4.31 3.89 4.18	Value 4.33 4.33 3.28 3.26 4.11 3.94 4.30 4.21 4.67 4.45 4.38 4.28	4.33 3.27 4.03 4.26 4.56 4.33
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09	Value 4.45 4.40 3.70 3.53 4.36 4.16 4.89 4.89 4.10 4.02 4.67 4.61 5.59	4.42 3.62 4.26 4.89 4.06	Value 4.33 4.02 3.95 4.26 4.21 4.89 4.69 4.73 4.65 4.79 4.72 5.62	4.33 3.99 4.23 4.79 4.69	Value 4.46 4.41 4.87 4.71 4.01 4.08 4.43 4.35 5.11 5.15 4.54 4.50 5.51	4.43 4.79 4.05 4.39 5.13	Value 3.64 3.60 3.43 3.41 3.16 3.12 3.60 3.54 3.80 3.85 3.29 3.19 4.73	3.62 3.42 3.14 3.57 3.83	Value 4.37 4.09 3.79 3.64 4.40 4.13 3.77 3.71 4.44 4.62 3.70 3.76 5.43	4.23 3.72 4.27 3.74 4.53	Value 4.08 4.28 3.51 3.69 4.27 4.33 4.09 4.02 3.53 3.60 3.72 3.85 5.71	4.18 3.60 4.30 4.06 3.57	Value 4.09 4.09 3.85 3.82 4.19 4.30 4.35 4.28 4.00 3.78 4.14 4.21 5.68	4.09 3.84 4.25 4.31 3.89	Value 4.33 4.33 3.28 3.26 4.11 3.94 4.30 4.21 4.67 4.45 4.38 4.28 4.04	4.33 3.27 4.03 4.26 4.56
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09	Value 4.45 4.40 3.70 3.53 4.36 4.16 4.89 4.10 4.02 4.67 4.61 5.59 5.57	4.42 3.62 4.26 4.89 4.06 4.64 5.58	Value 4.33 4.33 4.02 3.95 4.26 4.21 4.89 4.69 4.73 4.65 4.79 4.72 5.62 5.61	4.33 3.99 4.23 4.79 4.69 4.75 5.62	Value 4.46 4.41 4.87 4.71 4.01 4.08 4.43 4.35 5.11 5.15 4.54 4.50 5.51 5.49	4.43 4.79 4.05 4.39 5.13 4.52 5.50	Value 3.64 3.60 3.43 3.41 3.16 3.12 3.60 3.54 3.80 3.85 3.29 3.19 4.73 4.77	3.62 3.42 3.14 3.57 3.83 3.24 4.75	Value 4.37 4.09 3.79 3.64 4.40 4.13 3.77 3.71 4.44 4.62 3.70 3.76 5.43 5.39	4.23 3.72 4.27 3.74 4.53 3.73 5.41	Value 4.08 4.28 3.51 3.69 4.27 4.33 4.09 4.02 3.53 3.60 3.72 3.85 5.71 5.69	4.18 3.60 4.30 4.06 3.57 3.78 5.70	Value 4.09 4.09 3.85 3.82 4.19 4.30 4.35 4.28 4.00 3.78 4.14 4.21 5.68 5.57	4.09 3.84 4.25 4.31 3.89 4.18 5.62	Value 4.33 4.33 3.28 3.26 4.11 3.94 4.30 4.21 4.67 4.45 4.38 4.28 4.04 3.97	4.33 3.27 4.03 4.26 4.56 4.33 4.01
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09	Value 4.45 4.40 3.70 3.53 4.36 4.16 4.89 4.10 4.02 4.67 4.61 5.59 5.57 4.83	4.42 3.62 4.26 4.89 4.06 4.64	Value 4.33 4.33 4.02 3.95 4.26 4.21 4.89 4.69 4.73 4.65 4.79 5.62 5.61 5.13	4.33 3.99 4.23 4.79 4.69 4.75	Value 4.46 4.41 4.87 4.71 4.01 4.08 4.43 4.35 5.11 5.15 4.54 4.50 5.51 5.49 5.07	4.43 4.79 4.05 4.39 5.13 4.52	Value 3.64 3.60 3.43 3.41 3.16 3.12 3.60 3.54 3.80 3.85 3.29 3.19 4.73 4.77 4.25	3.62 3.42 3.14 3.57 3.83 3.24	Value 4.37 4.09 3.79 3.64 4.40 4.13 3.77 3.71 4.44 4.62 3.70 3.76 5.43 5.39 4.86	4.23 3.72 4.27 3.74 4.53 3.73	Value 4.08 4.28 3.51 3.69 4.27 4.33 4.09 4.02 3.53 3.60 3.72 3.85 5.71 5.69 5.02	4.18 3.60 4.30 4.06 3.57 3.78	Value 4.09 4.09 3.85 3.82 4.19 4.30 4.35 4.28 4.00 3.78 4.14 4.21 5.68 5.57 5.05	4.09 3.84 4.25 4.31 3.89 4.18	Value 4.33 4.33 3.28 3.26 4.11 3.94 4.30 4.21 4.67 4.45 4.38 4.28 4.04 3.97 3.54	4.33 3.27 4.03 4.26 4.56 4.33
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09	Value 4.45 4.40 3.70 3.53 4.36 4.16 4.89 4.10 4.02 4.67 4.61 5.59 5.57 4.83 4.83	4.42 3.62 4.26 4.89 4.06 4.64 5.58 4.83	Value 4.33 4.33 4.02 3.95 4.26 4.21 4.89 4.69 4.73 4.65 4.79 5.62 5.61 5.13 5.12	4.33 3.99 4.23 4.79 4.69 4.75 5.62 5.13	Value 4.46 4.41 4.87 4.71 4.01 4.08 4.43 4.35 5.11 5.15 4.54 4.50 5.51 5.49 5.07	4.43 4.79 4.05 4.39 5.13 4.52 5.50 5.04	Value 3.64 3.60 3.43 3.41 3.16 3.12 3.60 3.54 3.80 3.85 3.29 3.19 4.73 4.77 4.25 4.24	3.62 3.42 3.14 3.57 3.83 3.24 4.75 4.24	Value 4.37 4.09 3.79 3.64 4.40 4.13 3.77 3.71 4.44 4.62 3.76 5.43 5.39 4.86 4.91	4.23 3.72 4.27 3.74 4.53 3.73 5.41 4.89	Value 4.08 4.28 3.51 3.69 4.27 4.33 4.09 4.02 3.53 3.60 3.72 3.85 5.71 5.69 5.02 5.00	4.18 3.60 4.30 4.06 3.57 3.78 5.70 5.01	Value 4.09 4.09 3.85 3.82 4.19 4.30 4.35 4.28 4.00 3.78 4.14 4.21 5.68 5.57 5.05	4.09 3.84 4.25 4.31 3.89 4.18 5.62 5.05	Value 4.33 4.33 3.28 3.26 4.11 3.94 4.30 4.21 4.67 4.45 4.38 4.28 4.04 3.97 3.54 3.49	4.33 3.27 4.03 4.26 4.56 4.33 4.01 3.51
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09	Value 4.45 4.40 3.70 3.53 4.36 4.16 4.89 4.10 4.02 4.67 4.61 5.59 5.57 4.83 4.83 5.49	4.42 3.62 4.26 4.89 4.06 4.64 5.58	Value 4.33 4.33 4.02 3.95 4.26 4.21 4.89 4.69 4.73 4.65 4.79 4.72 5.62 5.61 5.13 5.12 4.98	4.33 3.99 4.23 4.79 4.69 4.75 5.62	Value 4.46 4.41 4.87 4.71 4.01 4.08 4.43 4.35 5.11 5.15 4.54 4.50 5.51 5.49 5.07 5.02 3.82	4.43 4.79 4.05 4.39 5.13 4.52 5.50	Value 3.64 3.60 3.43 3.41 3.16 3.12 3.60 3.54 3.80 3.85 3.29 3.19 4.73 4.77 4.25 4.24 3.45	3.62 3.42 3.14 3.57 3.83 3.24 4.75	Value 4.37 4.09 3.79 3.64 4.40 4.13 3.77 3.71 4.44 4.62 3.70 3.76 5.43 5.39 4.86 4.91 4.69	4.23 3.72 4.27 3.74 4.53 3.73 5.41	Value 4.08 4.28 3.51 3.69 4.27 4.33 4.09 4.02 3.53 3.60 3.72 3.85 5.71 5.69 5.02 5.00 5.17	4.18 3.60 4.30 4.06 3.57 3.78 5.70	Value 4.09 4.09 3.85 3.82 4.19 4.30 4.35 4.28 4.00 3.78 4.14 4.21 5.68 5.57 5.05 5.05	4.09 3.84 4.25 4.31 3.89 4.18 5.62	Value 4.33 4.33 3.28 3.26 4.11 3.94 4.30 4.21 4.67 4.45 4.38 4.28 4.04 3.97 3.54 3.49 4.16	4.33 3.27 4.03 4.26 4.56 4.33 4.01
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09 10-Nov-09	Value 4.45 4.40 3.70 3.53 4.36 4.16 4.89 4.10 4.02 4.67 4.61 5.59 5.57 4.83 4.83 5.49 5.43	4.42 3.62 4.26 4.89 4.06 4.64 5.58 4.83 5.46	Value 4.33 4.33 4.02 3.95 4.26 4.21 4.89 4.69 4.73 4.65 4.79 4.72 5.62 5.61 5.13 5.12 4.98 4.88	4.33 3.99 4.23 4.79 4.69 4.75 5.62 5.13 4.93	Value 4.46 4.41 4.87 4.71 4.01 4.08 4.43 4.35 5.11 5.15 4.54 4.50 5.51 5.49 5.07 5.02 3.82 3.76	4.43 4.79 4.05 4.39 5.13 4.52 5.50 5.04 3.79	Value 3.64 3.60 3.43 3.41 3.16 3.12 3.60 3.54 3.80 3.85 3.29 3.19 4.73 4.77 4.25 4.24 3.45 3.43	3.62 3.42 3.14 3.57 3.83 3.24 4.75 4.24 3.44	Value 4.37 4.09 3.79 3.64 4.40 4.13 3.77 3.71 4.44 4.62 3.70 3.76 5.43 5.39 4.86 4.91 4.69 4.74	4.23 3.72 4.27 3.74 4.53 3.73 5.41 4.89 4.71	Value 4.08 4.28 3.51 3.69 4.27 4.33 4.09 4.02 3.53 3.60 3.72 3.85 5.71 5.69 5.02 5.00 5.17 5.15	4.18 3.60 4.30 4.06 3.57 3.78 5.70 5.01 5.16	Value 4.09 4.09 3.85 3.82 4.19 4.30 4.35 4.28 4.00 3.78 4.14 4.21 5.68 5.57 5.05 5.05 4.89 4.83	4.09 3.84 4.25 4.31 3.89 4.18 5.62 5.05 4.86	Value 4.33 4.33 3.28 3.26 4.11 3.94 4.30 4.21 4.67 4.45 4.38 4.28 4.04 3.97 3.54 3.49 4.16 4.07	4.33 3.27 4.03 4.26 4.56 4.33 4.01 3.51 4.11
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09	Value 4.45 4.40 3.70 3.53 4.36 4.16 4.89 4.10 4.02 4.67 4.61 5.59 5.57 4.83 4.83 5.49 5.43	4.42 3.62 4.26 4.89 4.06 4.64 5.58 4.83	Value 4.33 4.33 4.02 3.95 4.26 4.21 4.89 4.69 4.73 4.65 4.79 4.72 5.62 5.61 5.13 5.12 4.98 4.88 3.25	4.33 3.99 4.23 4.79 4.69 4.75 5.62 5.13	Value 4.46 4.41 4.87 4.71 4.01 4.08 4.43 4.35 5.11 5.15 4.54 4.50 5.51 5.49 5.07 5.02 3.82 3.76 4.12	4.43 4.79 4.05 4.39 5.13 4.52 5.50 5.04	Value 3.64 3.60 3.43 3.41 3.16 3.12 3.60 3.54 3.80 3.85 3.29 3.19 4.77 4.25 4.24 3.45 3.43 2.07	3.62 3.42 3.14 3.57 3.83 3.24 4.75 4.24	Value 4.37 4.09 3.79 3.64 4.40 4.13 3.77 3.71 4.44 4.62 3.70 3.76 5.43 5.39 4.86 4.91 4.69 4.74 2.74	4.23 3.72 4.27 3.74 4.53 3.73 5.41 4.89	Value 4.08 4.28 3.51 3.69 4.27 4.33 4.09 4.02 3.53 3.60 3.72 3.85 5.71 5.69 5.02 5.00 5.17 5.15 2.57	4.18 3.60 4.30 4.06 3.57 3.78 5.70 5.01	Value 4.09 4.09 3.85 3.82 4.19 4.30 4.35 4.28 4.00 3.78 4.14 4.21 5.68 5.57 5.05 5.05 4.89 4.83 3.13	4.09 3.84 4.25 4.31 3.89 4.18 5.62 5.05	Value 4.33 4.33 3.28 3.26 4.11 3.94 4.30 4.21 4.67 4.45 4.38 4.28 4.04 3.97 3.54 3.49 4.16 4.07 3.35	4.33 3.27 4.03 4.26 4.56 4.33 4.01 3.51
Date 21-Oct-09 23-Oct-09 29-Oct-09 2-Nov-09 4-Nov-09 10-Nov-09 12-Nov-09	Value 4.45 4.40 3.70 3.53 4.36 4.16 4.89 4.10 4.02 4.67 4.61 5.59 5.57 4.83 4.83 5.49 5.43 4.41 4.38	4.42 3.62 4.26 4.89 4.06 4.64 5.58 4.83 5.46 4.39	Value 4.33 4.33 4.02 3.95 4.26 4.21 4.89 4.69 4.73 4.65 4.79 4.72 5.62 5.61 5.13 5.12 4.98 4.88 3.25 3.36	4.33 3.99 4.23 4.79 4.69 4.75 5.62 5.13 4.93	Value 4.46 4.41 4.87 4.71 4.01 4.08 4.43 4.35 5.11 5.15 4.54 4.50 5.51 5.49 5.07 5.02 3.82 3.76 4.12 4.11	4.43 4.79 4.05 4.39 5.13 4.52 5.50 5.04 3.79 4.11	Value 3.64 3.60 3.43 3.41 3.16 3.12 3.60 3.54 3.80 3.85 3.29 3.19 4.77 4.25 4.24 3.45 3.43 2.07 2.24	3.62 3.42 3.14 3.57 3.83 3.24 4.75 4.24 3.44 2.16	Value 4.37 4.09 3.79 3.64 4.40 4.13 3.77 3.71 4.44 4.62 3.70 3.76 5.43 5.39 4.86 4.91 4.69 4.74 2.74 2.98	4.23 3.72 4.27 3.74 4.53 3.73 5.41 4.89 4.71 2.86	Value 4.08 4.28 3.51 3.69 4.27 4.33 4.09 4.02 3.53 3.60 3.72 3.85 5.71 5.69 5.02 5.00 5.17 5.15 2.57 2.62	4.18 3.60 4.30 4.06 3.57 3.78 5.70 5.01 5.16 2.60	Value 4.09 4.09 3.85 3.82 4.19 4.30 4.35 4.28 4.00 3.78 4.14 4.21 5.68 5.57 5.05 5.05 4.89 4.83 3.13 3.20	4.09 3.84 4.25 4.31 3.89 4.18 5.62 5.05 4.86 3.17	Value 4.33 4.33 3.28 3.26 4.11 3.94 4.30 4.21 4.67 4.45 4.38 4.28 4.04 3.97 3.54 3.49 4.16 4.07 3.35 3.34	4.33 3.27 4.03 4.26 4.56 4.33 4.01 3.51 4.11 3.34
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09 10-Nov-09	Value 4.45 4.40 3.70 3.53 4.36 4.16 4.89 4.10 4.02 4.67 4.61 5.59 5.57 4.83 4.83 5.49 5.43 4.41 4.38 6.48	4.42 3.62 4.26 4.89 4.06 4.64 5.58 4.83 5.46	Value 4.33 4.33 4.02 3.95 4.26 4.21 4.89 4.69 4.73 4.65 4.79 4.72 5.62 5.61 5.13 5.12 4.98 4.88 3.25 3.36 7.77	4.33 3.99 4.23 4.79 4.69 4.75 5.62 5.13 4.93	Value 4.46 4.41 4.87 4.71 4.01 4.08 4.43 4.35 5.11 5.15 4.54 4.50 5.51 5.49 5.07 5.02 3.82 3.76 4.12 4.11 7.51	4.43 4.79 4.05 4.39 5.13 4.52 5.50 5.04 3.79	Value 3.64 3.60 3.43 3.41 3.16 3.12 3.60 3.54 3.80 3.85 3.29 3.19 4.73 4.77 4.25 4.24 3.45 3.43 2.07 2.24 6.31	3.62 3.42 3.14 3.57 3.83 3.24 4.75 4.24 3.44	Value 4.37 4.09 3.79 3.64 4.40 4.13 3.77 3.71 4.44 4.62 3.70 3.76 5.43 5.39 4.86 4.91 4.69 4.74 2.74 2.98 7.40	4.23 3.72 4.27 3.74 4.53 3.73 5.41 4.89 4.71	Value 4.08 4.28 3.51 3.69 4.27 4.33 4.09 4.02 3.53 3.60 3.72 3.85 5.71 5.69 5.02 5.00 5.17 5.15 2.57 2.62 7.29	4.18 3.60 4.30 4.06 3.57 3.78 5.70 5.01 5.16	Value 4.09 4.09 3.85 3.82 4.19 4.30 4.35 4.28 4.00 3.78 4.14 4.21 5.68 5.57 5.05 5.05 4.89 4.83 3.13 3.20 6.74	4.09 3.84 4.25 4.31 3.89 4.18 5.62 5.05 4.86	Value 4.33 4.33 3.28 3.26 4.11 3.94 4.30 4.21 4.67 4.45 4.38 4.28 4.04 3.97 3.54 3.49 4.16 4.07 3.35 3.34 4.13	4.33 3.27 4.03 4.26 4.56 4.33 4.01 3.51 4.11
Date 21-Oct-09 23-Oct-09 29-Oct-09 2-Nov-09 6-Nov-09 12-Nov-09 14-Nov-09 14-Nov-09	Value 4.45 4.40 3.70 3.53 4.36 4.16 4.89 4.89 4.10 4.02 4.67 4.61 5.59 5.57 4.83 4.83 5.49 5.43 4.41 4.38 6.48 6.52	4.42 3.62 4.26 4.89 4.06 4.64 5.58 4.83 5.46 4.39 6.50	Value 4.33 4.33 4.02 3.95 4.26 4.21 4.89 4.69 4.73 4.65 4.79 4.72 5.62 5.61 5.13 5.12 4.98 4.88 3.25 3.36 7.77 7.78	4.33 3.99 4.23 4.79 4.69 4.75 5.62 5.13 4.93 3.31 7.77	Value 4.46 4.41 4.87 4.71 4.01 4.08 4.43 4.35 5.11 5.15 4.54 4.50 5.51 5.49 5.07 5.02 3.82 3.76 4.12 4.11 7.51 7.38	4.43 4.79 4.05 4.39 5.13 4.52 5.50 5.04 3.79 4.11 7.44	Value 3.64 3.60 3.43 3.41 3.16 3.12 3.60 3.54 3.80 3.85 3.29 3.19 4.73 4.77 4.25 4.24 3.45 3.43 2.07 2.24 6.31 6.33	3.62 3.42 3.14 3.57 3.83 3.24 4.75 4.24 3.44 2.16 6.32	Value 4.37 4.09 3.79 3.64 4.40 4.13 3.77 3.71 4.44 4.62 3.70 3.76 5.43 5.39 4.86 4.91 4.69 4.74 2.74 2.98 7.40 7.37	4.23 3.72 4.27 3.74 4.53 3.73 5.41 4.89 4.71 2.86 7.38	Value 4.08 4.28 3.51 3.69 4.27 4.33 4.09 4.02 3.53 3.60 3.72 3.85 5.71 5.69 5.02 5.00 5.17 5.15 2.57 2.62 7.29 7.15	4.18 3.60 4.30 4.06 3.57 3.78 5.70 5.01 5.16 2.60 7.22	Value 4.09 4.09 3.85 3.82 4.19 4.30 4.35 4.28 4.00 3.78 4.14 4.21 5.68 5.57 5.05 5.05 4.89 4.83 3.13 3.20 6.74 6.68	4.09 3.84 4.25 4.31 3.89 4.18 5.62 5.05 4.86 3.17 6.71	Value 4.33 4.33 3.28 3.26 4.11 3.94 4.30 4.21 4.67 4.45 4.38 4.28 4.04 3.97 3.54 3.49 4.16 4.07 3.35 3.34 4.13 4.04	4.33 3.27 4.03 4.26 4.56 4.33 4.01 3.51 4.11 3.34 4.09
Date 21-Oct-09 23-Oct-09 29-Oct-09 2-Nov-09 4-Nov-09 10-Nov-09 12-Nov-09	Value 4.45 4.40 3.70 3.53 4.36 4.16 4.89 4.10 4.02 4.67 4.61 5.59 5.57 4.83 4.83 5.49 5.43 4.41 4.38 6.48	4.42 3.62 4.26 4.89 4.06 4.64 5.58 4.83 5.46 4.39	Value 4.33 4.33 4.02 3.95 4.26 4.21 4.89 4.69 4.73 4.65 4.79 4.72 5.62 5.61 5.13 5.12 4.98 4.88 3.25 3.36 7.77	4.33 3.99 4.23 4.79 4.69 4.75 5.62 5.13 4.93	Value 4.46 4.41 4.87 4.71 4.01 4.08 4.43 4.35 5.11 5.15 4.54 4.50 5.51 5.49 5.07 5.02 3.82 3.76 4.12 4.11 7.51	4.43 4.79 4.05 4.39 5.13 4.52 5.50 5.04 3.79 4.11	Value 3.64 3.60 3.43 3.41 3.16 3.12 3.60 3.54 3.80 3.85 3.29 3.19 4.73 4.77 4.25 4.24 3.45 3.43 2.07 2.24 6.31	3.62 3.42 3.14 3.57 3.83 3.24 4.75 4.24 3.44 2.16	Value 4.37 4.09 3.79 3.64 4.40 4.13 3.77 3.71 4.44 4.62 3.70 3.76 5.43 5.39 4.86 4.91 4.69 4.74 2.74 2.98 7.40	4.23 3.72 4.27 3.74 4.53 3.73 5.41 4.89 4.71 2.86	Value 4.08 4.28 3.51 3.69 4.27 4.33 4.09 4.02 3.53 3.60 3.72 3.85 5.71 5.69 5.02 5.00 5.17 5.15 2.57 2.62 7.29	4.18 3.60 4.30 4.06 3.57 3.78 5.70 5.01 5.16 2.60	Value 4.09 4.09 3.85 3.82 4.19 4.30 4.35 4.28 4.00 3.78 4.14 4.21 5.68 5.57 5.05 5.05 4.89 4.83 3.13 3.20 6.74	4.09 3.84 4.25 4.31 3.89 4.18 5.62 5.05 4.86 3.17	Value 4.33 4.33 3.28 3.26 4.11 3.94 4.30 4.21 4.67 4.45 4.38 4.28 4.04 3.97 3.54 3.49 4.16 4.07 3.35 3.34 4.13	4.33 3.27 4.03 4.26 4.56 4.33 4.01 3.51 4.11 3.34

Projected DO Monitoring Data (Wet Season) adjusted with Mean Variation Percentage of EPD Marine Monitoring Data (2006 - 2008)

Mid-flood	RW21		C1		C2		C3		C4		C5		C6		C7	
Date	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
21-Oct-09	4.24	4.20	4.25	4.14	4.04	4.01	3.99	3.96	3.99	3.91	4.14	4.11	3.14	3.11	3.64	3.57
	4.17		4.04	1	3.99		3.93		3.84	1	4.08		3.08	1 -	3.50	
23-Oct-09	3.89	3.89	4.13	4.07	3.78	3.66	3.77	3.72	3.77	3.68	4.36	4.11	2.53	2.44	3.14	3.08
	3.89	-	4.01	1	3.54		3.66	1	3.59		3.86	1	2.35	1	3.02	1
27-Oct-09	3.89	3.88	4.15	4.15	3.93	3.86	3.95	3.93	4.07	4.02	3.99	3.94	3.18	3.06	3.36	3.18
	3.86	0.00	4.15	1	3.80	0.00	3.90	0.00	3.98		3.90	0.0.	2.94	1	3.00	1 0
29-Oct-09	4.25	4.23	4.33	4.32	4.19	4.15	4.11	4.12	4.10	4.06	4.20	4.16	3.34	3.14	3.78	3.72
	4.21		4.31	1	4.11	1	4.12	1	4.03		4.11		2.94	1 - 1	3.66	1
31-Oct-09	4.67	4.66	4.31	4.31	4.35	4.34	4.52	4.50	4.58	4.52	4.50	4.45	3.60	3.55	3.82	3.78
	4.65		4.30	1	4.32		4.49		4.46	1	4.40		3.51	1	3.75	
2-Nov-09	4.72	4.44	4.29	4.28	4.19	4.15	4.53	4.44	4.21	4.19	4.75	4.45	3.44	3.40	3.86	3.54
	4.17	1	4.27	1	4.10	1	4.34	1	4.17	1	4.16		3.36	1 1	3.22	
4-Nov-09	4.28	4.36	4.05	4.08	4.79	4.64	4.77	4.76	4.69	4.67	4.32	4.27	3.44	3.39	3.48	3.45
	4.44	1.00	4.11	1	4.48	1.01	4.75	1 0	4.65	1.07	4.23	1	3.34	1 0.00	3.42	0.10
6-Nov-09	4.08	4.07	4.19	4.16	4.20	4.16	4.12	4.11	4.10	4.08	4.24	4.20	3.09	3.04	3.48	3.43
0 1407 00	4.07	4.07	4.12	4.10	4.11	4.10	4.10	1	4.06	4.00	4.17	4.20	2.99	1 0.04	3.38	0.40
10-Nov-09	4.10	4.09	4.18	4.18	4.05	4.01	3.97	3.97	3.95	3.92	4.06	4.01	3.19	3.00	3.64	3.58
10 1107 00	4.07	4.00	4.17	1 4.10	3.97	7.01	3.98	0.57	3.89	0.02	3.97	7.01	2.80	1 0.00	3.51	0.00
12-Nov-09	3.67	3.65	3.30	3.28	3.43	3.41	3.55	3.54	3.46	3.43	3.46	3.43	2.47	2.44	2.57	2.54
12 1107 00	3.62	0.00	3.25	0.20	3.38	0.41	3.53	0.04	3.41	0.40	3.41	0.40	2.41	1 2 1	2.52	1 <u>2.04</u>
14-Nov-09	3.86	3.78	3.96	3.98	4.00	3.98	3.82	3.78	3.55	3.54	3.41	3.34	2.83	2.84	2.76	2.78
14 1107 00	3.69	0.70	4.00	1 0.00	3.97	0.50	3.74	0.70	3.53	0.04	3.28	0.04	2.85	1 2.04	2.79	2.70
16-Nov-09	4.10	4.05	4.77	4.81	3.57	3.53	3.86	3.83	3.88	3.84	3.96	3.92	2.82	2.84	3.55	3.41
10 1404 03		4.00		7.01		0.00		3.03		3.04		0.02		2.04		J. 71
	4 ()()		4 Xh						3 81							
	4.00		4.86		3.50		3.80		3.81		3.87		2.86		3.26	
Mid-Ebb	4.00 RW21					1						<u> </u>				
Mid-Ebb Date	RW21	Average	C1	Average	C2	Average	C3	Average	C4	Average	C5	Average	C6 Value	Average	C7 Value	Average
Date	RW21 Value	Average 4.06	C1 Value	Average 4.02	C2 Value	Average 4.00	C3 Value	Average 4.19	C4 Value	Average 4.32	C5 Value	Average 3.81	C6 Value	Average 3.33	C7 Value	Average 3.27
	RW21	Average 4.06	C1	Average 4.02	C2	Average 4.00	C3	Average 4.19	C4 Value 4.33	Average 4.32	C5 Value 3.81	Average 3.81	C6	Average 3.33	<u>C7</u>	Average 3.27
Date 21-Oct-09	RW21 Value 4.08 4.04	4.06	C1 Value 4.07 3.97	4.02	C2 Value 4.00 4.00	4.00	C3 Value 4.23 4.15	4.19	C4 Value 4.33 4.32	4.32	C5 Value 3.81 3.81	3.81	C6 Value 3.34	3.33	C7 Value 3.28 3.26	3.27
Date	RW21 Value 4.08		C1 Value 4.07 3.97 3.92		C2 Value 4.00		C3 Value 4.23		C4 Value 4.33 4.32 3.57		C5 Value 3.81 3.81 3.64		C6 Value 3.34 3.32		C7 Value 3.28 3.26 3.39	
Date 21-Oct-09 23-Oct-09	RW21 Value 4.08 4.04 4.41 4.24	4.06	C1 Value 4.07 3.97 3.92 3.92	4.02 3.92	C2 Value 4.00 4.00 3.60 3.53	4.00	C3 Value 4.23 4.15 3.65 3.58	4.19	C4 Value 4.33 4.32 3.57 3.50	4.32 3.53	C5 Value 3.81 3.81 3.64 3.52	3.81	C6 Value 3.34 3.32 3.29 3.00	3.33	C7 Value 3.28 3.26 3.39 3.15	3.27
Date 21-Oct-09	RW21 Value 4.08 4.04 4.41 4.24 4.17	4.06	C1 Value 4.07 3.97 3.92 3.92 4.30	4.02	C2 Value 4.00 4.00 3.60 3.53 4.25	4.00 3.57	C3 Value 4.23 4.15 3.65 3.58 4.05	4.19 3.61	C4 Value 4.33 4.32 3.57 3.50 4.10	4.32	C5 Value 3.81 3.81 3.64 3.52 3.85	3.81	C6 Value 3.34 3.32 3.29	3.33	C7 Value 3.28 3.26 3.39 3.15 3.30	3.27
Date 21-Oct-09 23-Oct-09	RW21 Value 4.08 4.04 4.41 4.24	4.06	C1 Value 4.07 3.97 3.92 3.92	4.02 3.92	C2 Value 4.00 4.00 3.60 3.53	4.00 3.57	C3 Value 4.23 4.15 3.65 3.58	4.19 3.61	C4 Value 4.33 4.32 3.57 3.50	4.32 3.53	C5 Value 3.81 3.81 3.64 3.52	3.81	C6 Value 3.34 3.32 3.29 3.00 3.84	3.33	C7 Value 3.28 3.26 3.39 3.15	3.27
Date 21-Oct-09 23-Oct-09 27-Oct-09	RW21 Value 4.08 4.04 4.41 4.24 4.17 4.08 4.32	4.06 4.32 4.12	C1 Value 4.07 3.97 3.92 3.92 4.30 4.15 4.17	4.02 3.92 4.22	C2 Value 4.00 4.00 3.60 3.53 4.25 4.10	4.00 3.57 4.18	C3 Value 4.23 4.15 3.65 3.58 4.05 3.95 4.45	4.19 3.61 4.00	C4 Value 4.33 4.32 3.57 3.50 4.10 3.97 4.27	4.32 3.53 4.03	C5 Value 3.81 3.81 3.64 3.52 3.85 3.74 4.33	3.81 3.58 3.80	C6 Value 3.34 3.32 3.29 3.00 3.84 3.44	3.33 3.14 3.64	C7 Value 3.28 3.26 3.39 3.15 3.30 3.32	3.27 3.27 3.31
Date 21-Oct-09 23-Oct-09 27-Oct-09	RW21 Value 4.08 4.04 4.41 4.24 4.17 4.08	4.06 4.32 4.12	C1 Value 4.07 3.97 3.92 3.92 4.30 4.15	4.02 3.92 4.22	C2 Value 4.00 4.00 3.60 3.53 4.25 4.10 4.49	4.00 3.57 4.18	C3 Value 4.23 4.15 3.65 3.58 4.05 3.95	4.19 3.61 4.00	C4 Value 4.33 4.32 3.57 3.50 4.10 3.97	4.32 3.53 4.03	C5 Value 3.81 3.81 3.64 3.52 3.85 3.74	3.81 3.58 3.80	C6 Value 3.34 3.32 3.29 3.00 3.84 3.44 2.75	3.33 3.14 3.64	C7 Value 3.28 3.26 3.39 3.15 3.30 3.32 3.20	3.27 3.27 3.31
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09	RW21 Value 4.08 4.04 4.41 4.24 4.17 4.08 4.32 4.30	4.06 4.32 4.12 4.31	C1 Value 4.07 3.97 3.92 3.92 4.30 4.15 4.17 4.06 4.65	4.02 3.92 4.22 4.11	C2 Value 4.00 4.00 3.60 3.53 4.25 4.10 4.49	4.00 3.57 4.18 4.47	C3 Value 4.23 4.15 3.65 3.58 4.05 3.95 4.45 4.33	4.19 3.61 4.00 4.39	C4 Value 4.33 4.32 3.57 3.50 4.10 3.97 4.27 4.26	4.32 3.53 4.03 4.26	C5 Value 3.81 3.81 3.64 3.52 3.85 3.74 4.33 4.28	3.81 3.58 3.80 4.31	C6 Value 3.34 3.32 3.29 3.00 3.84 3.44 2.75 2.66	3.33 3.14 3.64 2.71	C7 Value 3.28 3.26 3.39 3.15 3.30 3.32 3.20 3.16	3.27 3.27 3.31 3.18
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09	RW21 Value 4.08 4.04 4.41 4.24 4.17 4.08 4.32 4.30 4.52 4.44	4.06 4.32 4.12 4.31	C1 Value 4.07 3.97 3.92 3.92 4.30 4.15 4.17 4.06	4.02 3.92 4.22 4.11	C2 Value 4.00 4.00 3.60 3.53 4.25 4.10 4.49 4.44 4.57	4.00 3.57 4.18 4.47	C3 Value 4.23 4.15 3.65 3.58 4.05 3.95 4.45 4.33 4.27	4.19 3.61 4.00 4.39	C4 Value 4.33 4.32 3.57 3.50 4.10 3.97 4.27 4.26 4.28 4.25	4.32 3.53 4.03 4.26	C5 Value 3.81 3.81 3.64 3.52 3.85 3.74 4.33 4.28 4.52 4.30	3.81 3.58 3.80 4.31	C6 Value 3.34 3.32 3.29 3.00 3.84 3.44 2.75 2.66 4.01	3.33 3.14 3.64 2.71 3.54	C7 Value 3.28 3.26 3.39 3.15 3.30 3.32 3.20 3.16 3.66	3.27 3.27 3.31 3.18 3.56
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09	RW21 Value 4.08 4.04 4.41 4.24 4.17 4.08 4.32 4.30 4.52	4.06 4.32 4.12 4.31 4.48	C1 Value 4.07 3.97 3.92 3.92 4.30 4.15 4.17 4.06 4.65 4.62	4.02 3.92 4.22 4.11 4.64	C2 Value 4.00 4.00 3.60 3.53 4.25 4.10 4.49 4.44 4.57 4.48	4.00 3.57 4.18 4.47 4.52	C3 Value 4.23 4.15 3.65 3.58 4.05 3.95 4.45 4.33 4.27 4.25 4.24	4.19 3.61 4.00 4.39 4.26	C4 Value 4.33 4.32 3.57 3.50 4.10 3.97 4.27 4.26 4.28	4.32 3.53 4.03 4.26 4.27	C5 Value 3.81 3.81 3.64 3.52 3.85 3.74 4.33 4.28 4.52	3.81 3.58 3.80 4.31 4.41	C6 Value 3.34 3.32 3.29 3.00 3.84 3.44 2.75 2.66 4.01 3.07	3.33 3.14 3.64 2.71	C7 Value 3.28 3.26 3.39 3.15 3.30 3.32 3.20 3.16 3.66 3.47	3.27 3.27 3.31 3.18
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09	RW21 Value 4.08 4.04 4.41 4.24 4.17 4.08 4.32 4.30 4.52 4.44 4.92	4.06 4.32 4.12 4.31 4.48	C1 Value 4.07 3.97 3.92 3.92 4.30 4.15 4.17 4.06 4.65 4.62 4.46	4.02 3.92 4.22 4.11 4.64	C2 Value 4.00 4.00 3.60 3.53 4.25 4.10 4.49 4.44 4.57 4.48 4.61	4.00 3.57 4.18 4.47 4.52	C3 Value 4.23 4.15 3.65 3.58 4.05 3.95 4.45 4.33 4.27 4.25	4.19 3.61 4.00 4.39 4.26	C4 Value 4.33 4.32 3.57 3.50 4.10 3.97 4.27 4.26 4.28 4.25 4.33 4.29	4.32 3.53 4.03 4.26 4.27	C5 Value 3.81 3.81 3.64 3.52 3.85 3.74 4.33 4.28 4.52 4.30 4.64	3.81 3.58 3.80 4.31 4.41	C6 Value 3.34 3.32 3.29 3.00 3.84 3.44 2.75 2.66 4.01 3.07 3.99	3.33 3.14 3.64 2.71 3.54 3.91	C7 Value 3.28 3.26 3.39 3.15 3.30 3.32 3.20 3.16 3.66 3.47 4.29	3.27 3.27 3.31 3.18 3.56 4.18
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09	RW21 Value 4.08 4.04 4.41 4.24 4.17 4.08 4.32 4.30 4.52 4.44 4.92 4.97	4.06 4.32 4.12 4.31 4.48 4.94	C1 Value 4.07 3.97 3.92 3.92 4.30 4.15 4.17 4.06 4.65 4.62 4.46 4.31	4.02 3.92 4.22 4.11 4.64 4.39	C2 Value 4.00 4.00 3.60 3.53 4.25 4.10 4.49 4.44 4.57 4.48 4.61 4.48	4.00 3.57 4.18 4.47 4.52 4.55	C3 Value 4.23 4.15 3.65 3.58 4.05 3.95 4.45 4.33 4.27 4.25 4.24 4.23	4.19 3.61 4.00 4.39 4.26 4.23	C4 Value 4.33 4.32 3.57 3.50 4.10 3.97 4.27 4.26 4.28 4.25 4.33	4.32 3.53 4.03 4.26 4.27 4.31	C5 Value 3.81 3.81 3.64 3.52 3.85 3.74 4.33 4.28 4.52 4.30 4.64 4.49	3.81 3.58 3.80 4.31 4.41 4.56	C6 Value 3.34 3.32 3.29 3.00 3.84 3.44 2.75 2.66 4.01 3.07 3.99 3.83	3.33 3.14 3.64 2.71 3.54	C7 Value 3.28 3.26 3.39 3.15 3.30 3.32 3.20 3.16 3.66 3.47 4.29 4.08	3.27 3.27 3.31 3.18 3.56
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09	RW21 Value 4.08 4.04 4.41 4.24 4.17 4.08 4.32 4.30 4.52 4.44 4.92 4.97 4.14	4.06 4.32 4.12 4.31 4.48 4.94	C1 Value 4.07 3.97 3.92 3.92 4.30 4.15 4.17 4.06 4.65 4.62 4.46 4.31 5.05	4.02 3.92 4.22 4.11 4.64 4.39	C2 Value 4.00 4.00 3.60 3.53 4.25 4.10 4.49 4.44 4.57 4.48 4.61 4.48 4.50 4.48	4.00 3.57 4.18 4.47 4.52 4.55	C3 Value 4.23 4.15 3.65 3.58 4.05 3.95 4.45 4.33 4.27 4.25 4.24 4.23 4.28	4.19 3.61 4.00 4.39 4.26 4.23	C4 Value 4.33 4.32 3.57 3.50 4.10 3.97 4.27 4.26 4.28 4.25 4.33 4.29 4.19	4.32 3.53 4.03 4.26 4.27 4.31	C5 Value 3.81 3.81 3.64 3.52 3.85 3.74 4.33 4.28 4.52 4.30 4.64 4.49 4.41	3.81 3.58 3.80 4.31 4.41 4.56	C6 Value 3.34 3.32 3.29 3.00 3.84 3.44 2.75 2.66 4.01 3.07 3.99 3.83 4.00	3.33 3.14 3.64 2.71 3.54 3.91	C7 Value 3.28 3.26 3.39 3.15 3.30 3.32 3.20 3.16 3.66 3.47 4.29 4.08 4.40	3.27 3.27 3.31 3.18 3.56 4.18 4.28
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09	RW21 Value 4.08 4.04 4.41 4.24 4.17 4.08 4.32 4.30 4.52 4.44 4.92 4.97 4.14 4.10 3.59	4.06 4.32 4.12 4.31 4.48 4.94 4.12	C1 Value 4.07 3.97 3.92 3.92 4.30 4.15 4.17 4.06 4.65 4.62 4.46 4.31 5.05 5.01 4.28	4.02 3.92 4.22 4.11 4.64 4.39 5.03	C2 Value 4.00 4.00 3.60 3.53 4.25 4.10 4.49 4.44 4.57 4.48 4.61 4.48 4.50 4.48	4.00 3.57 4.18 4.47 4.52 4.55 4.49	C3 Value 4.23 4.15 3.65 3.58 4.05 3.95 4.45 4.33 4.27 4.25 4.24 4.23 4.28 3.89	4.19 3.61 4.00 4.39 4.26 4.23 4.28	C4 Value 4.33 4.32 3.57 3.50 4.10 3.97 4.27 4.26 4.28 4.25 4.33 4.29 4.19 4.12 3.66	4.32 3.53 4.03 4.26 4.27 4.31 4.16	C5 Value 3.81 3.81 3.64 3.52 3.85 3.74 4.33 4.28 4.52 4.30 4.64 4.49 4.41 4.10 3.56	3.81 3.58 3.80 4.31 4.41 4.56 4.25	C6 Value 3.34 3.32 3.29 3.00 3.84 3.44 2.75 2.66 4.01 3.07 3.99 3.83 4.00 3.83 3.40	3.33 3.14 3.64 2.71 3.54 3.91 3.91	C7 Value 3.28 3.26 3.39 3.15 3.30 3.32 3.20 3.16 3.66 3.47 4.29 4.08 4.40 4.16 3.56	3.27 3.27 3.31 3.18 3.56 4.18
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09	RW21 Value 4.08 4.04 4.41 4.24 4.17 4.08 4.32 4.30 4.52 4.44 4.92 4.97 4.14	4.06 4.32 4.12 4.31 4.48 4.94 4.12	C1 Value 4.07 3.97 3.92 3.92 4.30 4.15 4.17 4.06 4.65 4.62 4.46 4.31 5.05 5.01	4.02 3.92 4.22 4.11 4.64 4.39 5.03	C2 Value 4.00 4.00 3.60 3.53 4.25 4.10 4.49 4.44 4.57 4.48 4.61 4.48 4.50 4.48	4.00 3.57 4.18 4.47 4.52 4.55 4.49	C3 Value 4.23 4.15 3.65 3.58 4.05 3.95 4.45 4.33 4.27 4.25 4.24 4.23 4.28	4.19 3.61 4.00 4.39 4.26 4.23 4.28	C4 Value 4.33 4.32 3.57 3.50 4.10 3.97 4.27 4.26 4.28 4.25 4.33 4.29 4.19	4.32 3.53 4.03 4.26 4.27 4.31 4.16	C5 Value 3.81 3.81 3.64 3.52 3.85 3.74 4.33 4.28 4.52 4.30 4.64 4.49 4.41	3.81 3.58 3.80 4.31 4.41 4.56 4.25	C6 Value 3.34 3.32 3.29 3.00 3.84 3.44 2.75 2.66 4.01 3.07 3.99 3.83 4.00 3.83	3.33 3.14 3.64 2.71 3.54 3.91 3.91	C7 Value 3.28 3.26 3.39 3.15 3.30 3.32 3.20 3.16 3.66 3.47 4.29 4.08 4.40 4.16	3.27 3.27 3.31 3.18 3.56 4.18 4.28 3.55
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09	RW21 Value 4.08 4.04 4.41 4.24 4.17 4.08 4.32 4.30 4.52 4.44 4.92 4.97 4.14 4.10 3.59 3.58	4.06 4.32 4.12 4.31 4.48 4.94 4.12 3.58	C1 Value 4.07 3.97 3.92 3.92 4.30 4.15 4.17 4.06 4.65 4.62 4.46 4.31 5.05 5.01 4.28 4.25 4.02	4.02 3.92 4.22 4.11 4.64 4.39 5.03 4.27	C2 Value 4.00 4.00 3.60 3.53 4.25 4.10 4.49 4.44 4.57 4.48 4.61 4.48 4.50 4.48 3.94 3.87 4.35	4.00 3.57 4.18 4.47 4.52 4.55 4.49 3.91	C3 Value 4.23 4.15 3.65 3.58 4.05 3.95 4.45 4.33 4.27 4.25 4.24 4.23 4.28 3.89 3.84	4.19 3.61 4.00 4.39 4.26 4.23 4.28 3.87	C4 Value 4.33 4.32 3.57 3.50 4.10 3.97 4.27 4.26 4.28 4.25 4.33 4.29 4.19 4.12 3.66 3.62 4.12	4.32 3.53 4.03 4.26 4.27 4.31 4.16 3.64	C5 Value 3.81 3.81 3.64 3.52 3.85 3.74 4.33 4.28 4.52 4.30 4.64 4.49 4.41 4.10 3.56 3.54 4.18	3.81 3.58 3.80 4.31 4.41 4.56 4.25 3.55	C6 Value 3.34 3.32 3.29 3.00 3.84 3.44 2.75 2.66 4.01 3.07 3.99 3.83 4.00 3.83 3.40 3.36 2.61	3.33 3.14 3.64 2.71 3.54 3.91 3.91 3.38	C7 Value 3.28 3.26 3.39 3.15 3.30 3.32 3.20 3.16 3.66 3.47 4.29 4.08 4.40 4.16 3.56 3.54	3.27 3.27 3.31 3.18 3.56 4.18 4.28
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09	RW21 Value 4.08 4.04 4.41 4.24 4.17 4.08 4.32 4.30 4.52 4.44 4.92 4.97 4.14 4.10 3.59 3.58 4.18	4.06 4.32 4.12 4.31 4.48 4.94 4.12 3.58	C1 Value 4.07 3.97 3.92 3.92 4.30 4.15 4.17 4.06 4.65 4.62 4.46 4.31 5.05 5.01 4.28 4.25	4.02 3.92 4.22 4.11 4.64 4.39 5.03 4.27	C2 Value 4.00 4.00 3.60 3.53 4.25 4.10 4.49 4.44 4.57 4.48 4.61 4.48 4.50 4.48 3.94 3.87	4.00 3.57 4.18 4.47 4.52 4.55 4.49 3.91	C3 Value 4.23 4.15 3.65 3.58 4.05 3.95 4.45 4.33 4.27 4.25 4.24 4.23 4.28 3.89 3.84 4.31	4.19 3.61 4.00 4.39 4.26 4.23 4.28 3.87	C4 Value 4.33 4.32 3.57 3.50 4.10 3.97 4.27 4.26 4.28 4.25 4.33 4.29 4.19 4.12 3.66 3.62	4.32 3.53 4.03 4.26 4.27 4.31 4.16 3.64	C5 Value 3.81 3.81 3.64 3.52 3.85 3.74 4.33 4.28 4.52 4.30 4.64 4.49 4.41 4.10 3.56 3.54	3.81 3.58 3.80 4.31 4.41 4.56 4.25 3.55	C6 Value 3.34 3.32 3.29 3.00 3.84 3.44 2.75 2.66 4.01 3.07 3.99 3.83 4.00 3.83 3.40 3.36	3.33 3.14 3.64 2.71 3.54 3.91 3.91 3.38	C7 Value 3.28 3.26 3.39 3.15 3.30 3.32 3.20 3.16 3.66 3.47 4.29 4.08 4.40 4.16 3.56 3.54 3.06	3.27 3.27 3.31 3.18 3.56 4.18 4.28
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09 6-Nov-09	RW21 Value 4.08 4.04 4.41 4.24 4.17 4.08 4.32 4.30 4.52 4.44 4.92 4.97 4.14 4.10 3.59 3.58 4.18 4.16	4.06 4.32 4.12 4.31 4.48 4.94 4.12 3.58 4.17	C1 Value 4.07 3.97 3.92 3.92 4.30 4.15 4.17 4.06 4.65 4.62 4.46 4.31 5.05 5.01 4.28 4.25 4.02 3.92 3.54	4.02 3.92 4.22 4.11 4.64 4.39 5.03 4.27 3.97	C2 Value 4.00 4.00 3.60 3.53 4.25 4.10 4.49 4.44 4.57 4.48 4.61 4.48 4.50 4.48 3.94 3.87 4.35 4.30	4.00 3.57 4.18 4.47 4.52 4.55 4.49 3.91 4.32	C3 Value 4.23 4.15 3.65 3.58 4.05 3.95 4.45 4.27 4.25 4.24 4.23 4.28 3.89 3.84 4.31 4.18	4.19 3.61 4.00 4.39 4.26 4.23 4.28 3.87 4.25	C4 Value 4.33 4.32 3.57 3.50 4.10 3.97 4.27 4.26 4.28 4.25 4.33 4.29 4.19 4.12 3.66 3.62 4.12 4.11	4.32 3.53 4.03 4.26 4.27 4.31 4.16 3.64 4.12	C5 Value 3.81 3.81 3.64 3.52 3.85 3.74 4.33 4.28 4.52 4.30 4.64 4.41 4.10 3.56 3.54 4.18 4.14	3.81 3.58 3.80 4.31 4.41 4.56 4.25 3.55 4.16	C6 Value 3.34 3.32 3.29 3.00 3.84 3.44 2.75 2.66 4.01 3.07 3.99 3.83 4.00 3.83 3.40 3.36 2.61 2.52 2.51	3.33 3.14 3.64 2.71 3.54 3.91 3.91 3.38 2.57	C7 Value 3.28 3.26 3.39 3.15 3.30 3.32 3.20 3.16 3.66 3.47 4.29 4.08 4.40 4.16 3.56 3.54 3.06 3.01 2.69	3.27 3.27 3.31 3.18 3.56 4.18 4.28 3.55 3.04
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09 10-Nov-09 12-Nov-09	RW21 Value 4.08 4.04 4.41 4.24 4.17 4.08 4.32 4.30 4.52 4.44 4.92 4.97 4.14 4.10 3.59 3.58 4.18 4.16 3.44 3.42	4.06 4.32 4.12 4.31 4.48 4.94 4.12 3.58 4.17 3.43	C1 Value 4.07 3.97 3.92 3.92 4.30 4.15 4.17 4.06 4.65 4.62 4.46 4.31 5.05 5.01 4.28 4.25 4.02 3.92 3.54 3.50	4.02 3.92 4.22 4.11 4.64 4.39 5.03 4.27 3.97 3.52	C2 Value 4.00 4.00 3.60 3.53 4.25 4.10 4.49 4.44 4.57 4.48 4.50 4.48 4.50 4.48 3.94 3.87 4.35 4.30 3.45 3.42	4.00 3.57 4.18 4.47 4.52 4.55 4.49 3.91 4.32 3.44	C3 Value 4.23 4.15 3.65 3.58 4.05 3.95 4.45 4.33 4.27 4.25 4.24 4.23 4.28 3.89 3.84 4.31 4.18 3.64 3.58	4.19 3.61 4.00 4.39 4.26 4.23 4.28 3.87 4.25 3.61	C4 Value 4.33 4.32 3.57 3.50 4.10 3.97 4.27 4.26 4.28 4.25 4.33 4.29 4.19 4.12 3.66 3.62 4.11 3.47	4.32 3.53 4.03 4.26 4.27 4.31 4.16 3.64 4.12 3.45	C5 Value 3.81 3.81 3.64 3.52 3.85 3.74 4.33 4.28 4.52 4.30 4.64 4.41 4.10 3.56 3.54 4.18 4.14 3.57 3.51	3.81 3.58 3.80 4.31 4.41 4.56 4.25 3.55 4.16 3.54	C6 Value 3.34 3.32 3.29 3.00 3.84 3.44 2.75 2.66 4.01 3.07 3.99 3.83 4.00 3.83 3.40 2.61 2.52 2.51 2.48	3.33 3.14 3.64 2.71 3.54 3.91 3.91 3.38 2.57 2.49	C7 Value 3.28 3.26 3.39 3.15 3.30 3.32 3.20 3.16 3.66 3.47 4.29 4.08 4.40 4.16 3.56 3.54 3.06 3.01 2.69 2.66	3.27 3.27 3.31 3.18 3.56 4.18 4.28 3.55 3.04 2.68
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09 6-Nov-09	RW21 Value 4.08 4.04 4.41 4.24 4.17 4.08 4.32 4.30 4.52 4.44 4.92 4.97 4.14 4.10 3.59 3.58 4.18 4.16 3.44 3.42 4.14	4.06 4.32 4.12 4.31 4.48 4.94 4.12 3.58 4.17	C1 Value 4.07 3.97 3.92 3.92 4.30 4.15 4.17 4.06 4.65 4.62 4.46 4.31 5.05 5.01 4.28 4.25 4.02 3.92 3.54 3.50 4.07	4.02 3.92 4.22 4.11 4.64 4.39 5.03 4.27 3.97	C2 Value 4.00 4.00 3.60 3.53 4.25 4.10 4.49 4.44 4.57 4.48 4.61 4.48 4.50 4.48 3.87 4.35 4.30 3.45 3.42 4.10	4.00 3.57 4.18 4.47 4.52 4.55 4.49 3.91 4.32	C3 Value 4.23 4.15 3.65 3.58 4.05 3.95 4.45 4.33 4.27 4.25 4.24 4.23 4.28 4.28 3.89 3.84 4.31 4.18 3.64 3.58 4.11	4.19 3.61 4.00 4.39 4.26 4.23 4.28 3.87 4.25	C4 Value 4.33 4.32 3.57 3.50 4.10 3.97 4.27 4.26 4.28 4.25 4.33 4.29 4.19 4.12 3.66 3.62 4.11 3.47 3.42 4.08	4.32 3.53 4.03 4.26 4.27 4.31 4.16 3.64 4.12	C5 Value 3.81 3.81 3.64 3.52 3.85 3.74 4.33 4.28 4.52 4.30 4.64 4.49 4.41 4.10 3.56 3.54 4.18 4.14 3.57 3.51 4.26	3.81 3.58 3.80 4.31 4.41 4.56 4.25 3.55 4.16	C6 Value 3.34 3.32 3.29 3.00 3.84 3.44 2.75 2.66 4.01 3.07 3.99 3.83 4.00 3.83 3.40 2.52 2.51 2.48 3.48	3.33 3.14 3.64 2.71 3.54 3.91 3.91 3.38 2.57	C7 Value 3.28 3.26 3.39 3.15 3.30 3.32 3.20 3.16 3.66 3.47 4.29 4.08 4.40 4.16 3.56 3.54 3.06 3.01 2.69 2.66 3.52	3.27 3.27 3.31 3.18 3.56 4.18 4.28 3.55 3.04
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09 10-Nov-09 12-Nov-09	RW21 Value 4.08 4.04 4.41 4.24 4.17 4.08 4.32 4.30 4.52 4.44 4.92 4.97 4.14 4.10 3.59 3.58 4.18 4.16 3.44 3.42	4.06 4.32 4.12 4.31 4.48 4.94 4.12 3.58 4.17 3.43	C1 Value 4.07 3.97 3.92 3.92 4.30 4.15 4.17 4.06 4.65 4.62 4.46 4.31 5.05 5.01 4.28 4.25 4.02 3.92 3.54 3.50	4.02 3.92 4.22 4.11 4.64 4.39 5.03 4.27 3.97 3.52	C2 Value 4.00 4.00 3.60 3.53 4.25 4.10 4.49 4.44 4.57 4.48 4.50 4.48 4.50 4.48 3.94 3.87 4.35 4.30 3.45 3.42	4.00 3.57 4.18 4.47 4.52 4.55 4.49 3.91 4.32 3.44	C3 Value 4.23 4.15 3.65 3.58 4.05 3.95 4.45 4.33 4.27 4.25 4.24 4.23 4.28 3.89 3.84 4.31 4.18 3.64 3.58	4.19 3.61 4.00 4.39 4.26 4.23 4.28 3.87 4.25 3.61	C4 Value 4.33 4.32 3.57 3.50 4.10 3.97 4.27 4.26 4.28 4.25 4.33 4.29 4.19 4.12 3.66 3.62 4.11 3.47	4.32 3.53 4.03 4.26 4.27 4.31 4.16 3.64 4.12 3.45	C5 Value 3.81 3.81 3.64 3.52 3.85 3.74 4.33 4.28 4.52 4.30 4.64 4.41 4.10 3.56 3.54 4.18 4.14 3.57 3.51	3.81 3.58 3.80 4.31 4.41 4.56 4.25 3.55 4.16 3.54	C6 Value 3.34 3.32 3.29 3.00 3.84 3.44 2.75 2.66 4.01 3.07 3.99 3.83 4.00 3.83 3.40 2.61 2.52 2.51 2.48	3.33 3.14 3.64 2.71 3.54 3.91 3.91 3.38 2.57 2.49	C7 Value 3.28 3.26 3.39 3.15 3.30 3.32 3.20 3.16 3.66 3.47 4.29 4.08 4.40 4.16 3.56 3.54 3.06 3.01 2.69 2.66	3.27 3.27 3.31 3.18 3.56 4.18 4.28 3.55 3.04 2.68

Projected DO Monitoring Data (Wet Season) adjusted with Mean Variation Percentage of EPD Marine Monitoring Data (2006 - 2008)

Mid-flood	C8		C9		RC1		RC5		RC7	
Date	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
21-Oct-09	4.50	4.50	4.47	4.40	3.71	3.71	4.06	4.06	3.16	3.16
	4.50		4.33		3.71		4.07		3.16	
23-Oct-09	3.80	3.74	3.47	3.46	3.74	3.74	3.52	3.51	3.19	3.01
20 00. 00	3.69	0.7	3.45	0.10	3.74	0.7 .	3.51	0.01	2.83	0.0.
27-Oct-09	3.53	3.41		3.48	3.95	3.90	4.04	4.02	4.52	3.90
27-001-09		3.41	3.83	3.40		3.90		4.02		3.90
00.0-1.00	3.29	0.70	3.14	0.47	3.84	444	4.01	4.00	3.28	0.00
29-Oct-09	3.77	3.72	3.22	3.17	4.16	4.14	4.24	4.23	3.72	3.66
	3.66		3.13		4.13		4.22		3.59	
31-Oct-09	4.20	4.15	3.67	3.64	4.47	4.44	4.72	4.74	3.82	3.76
	4.11		3.62		4.41		4.76		3.70	
2-Nov-09	3.65	3.59	4.44	4.24	4.05	4.03	3.95	3.92	3.61	3.47
	3.53		4.03		4.01		3.88		3.34	
4-Nov-09	3.95	3.93	4.15	4.10	5.19	5.17	4.29	4.27	3.47	3.37
	3.92		4.05		5.16	1	4.26		3.27	1
6-Nov-09	4.02	4.01	4.22	4.19	4.04	4.01	4.26	4.21	3.22	3.18
	4.01	1	4.16	1	3.99	1	4.17	1	3.14	1
10-Nov-09	3.63	3.57	3.07	3.03	4.01	4.00	4.10	4.09	3.58	3.51
10 1101 00	3.52	0.07	2.98	0.00	3.99	4.00	4.08	4.00	3.45	0.01
12-Nov-09	3.61	3.59	3.62	3.58	3.49	3.45	3.48	3.46	1.53	1.51
12-1100-09		3.59		3.30		3.43		3.40		1.51
4.4.N00	3.57	4.40	3.55	4.07	3.42	4.00	3.44	0.50	1.49	4.04
14-Nov-09	4.21	4.18	4.09	4.07	4.27	4.26	3.54	3.52	1.93	1.91
	4.14		4.06		4.25		3.50		1.90	
16-Nov-09	5.77	5.76	5.74	5.65	3.24	3.26	3.86	3.88	3.86	3.86
	5.74		5.56		3.29		3.89		3.86	
Mid-Ebb	C8		C9		RC1		RC5		RC7	
Date	Value	Average	Value	Average				Average	Value	Λιατοσι
	value					Λνωτασο				
21-Oct-09	4.50				Value	Average	Value			
	4.50	4.41	4.54	4.60	4.03	Average 4.00	4.23	4.18	3.30	3.31
•	4.33	4.41	4.54 4.65	4.60	4.03 3.96	4.00	4.23 4.12	4.18	3.30 3.32	3.31
23-Oct-09	4.33 4.21		4.54 4.65 4.92		4.03 3.96 3.50		4.23 4.12 3.62		3.30 3.32 3.73	
23-Oct-09	4.33	4.41	4.54 4.65	4.60 4.50	4.03 3.96	4.00	4.23 4.12	4.18 3.62	3.30 3.32	3.31
23-Oct-09	4.33 4.21	4.41	4.54 4.65 4.92	4.60	4.03 3.96 3.50	4.00	4.23 4.12 3.62	4.18	3.30 3.32 3.73	3.31
23-Oct-09	4.33 4.21 4.12	4.41	4.54 4.65 4.92 4.08	4.60 4.50	4.03 3.96 3.50 3.45	4.00 3.47	4.23 4.12 3.62 3.62	4.18 3.62	3.30 3.32 3.73 3.41	3.31
23-Oct-09 27-Oct-09	4.33 4.21 4.12 4.02	4.41	4.54 4.65 4.92 4.08 4.21	4.60 4.50	4.03 3.96 3.50 3.45 3.74	4.00 3.47	4.23 4.12 3.62 3.62 3.76	4.18 3.62	3.30 3.32 3.73 3.41 4.09	3.31
23-Oct-09 27-Oct-09	4.33 4.21 4.12 4.02 4.02	4.41 4.16 4.02	4.54 4.65 4.92 4.08 4.21 4.03	4.60 4.50 4.12	4.03 3.96 3.50 3.45 3.74 3.63	4.00 3.47 3.68	4.23 4.12 3.62 3.62 3.76 3.72	4.18 3.62 3.74	3.30 3.32 3.73 3.41 4.09 3.64	3.31 3.57 3.86
23-Oct-09 27-Oct-09	4.33 4.21 4.12 4.02 4.02 4.00	4.41 4.16 4.02	4.54 4.65 4.92 4.08 4.21 4.03 4.33	4.60 4.50 4.12	4.03 3.96 3.50 3.45 3.74 3.63 4.24	4.00 3.47 3.68	4.23 4.12 3.62 3.62 3.76 3.72 4.32	4.18 3.62 3.74	3.30 3.32 3.73 3.41 4.09 3.64 3.66	3.31 3.57 3.86
23-Oct-09 27-Oct-09 29-Oct-09	4.33 4.21 4.12 4.02 4.02 4.00 3.99 4.29	4.41 4.16 4.02 3.99	4.54 4.65 4.92 4.08 4.21 4.03 4.33 4.21 4.42	4.60 4.50 4.12 4.27	4.03 3.96 3.50 3.45 3.74 3.63 4.24 4.24 4.10	4.00 3.47 3.68 4.24	4.23 4.12 3.62 3.62 3.76 3.72 4.32 4.23 4.40	4.18 3.62 3.74 4.27	3.30 3.32 3.73 3.41 4.09 3.64 3.66 3.28 3.72	3.31 3.57 3.86 3.47
23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09	4.33 4.21 4.12 4.02 4.02 4.00 3.99 4.29 4.27	4.41 4.16 4.02 3.99 4.28	4.54 4.65 4.92 4.08 4.21 4.03 4.33 4.21 4.42 4.31	4.60 4.50 4.12 4.27 4.36	4.03 3.96 3.50 3.45 3.74 3.63 4.24 4.24 4.10	4.00 3.47 3.68 4.24 4.10	4.23 4.12 3.62 3.62 3.76 3.72 4.32 4.23 4.40 4.26	4.18 3.62 3.74 4.27 4.33	3.30 3.32 3.73 3.41 4.09 3.64 3.66 3.28 3.72 3.58	3.31 3.57 3.86 3.47 3.65
23-Oct-09 27-Oct-09 29-Oct-09	4.33 4.21 4.12 4.02 4.02 4.00 3.99 4.29 4.27 4.49	4.41 4.16 4.02 3.99	4.54 4.65 4.92 4.08 4.21 4.03 4.33 4.21 4.42 4.31 3.53	4.60 4.50 4.12 4.27	4.03 3.96 3.50 3.45 3.74 3.63 4.24 4.24 4.10 4.11 4.28	4.00 3.47 3.68 4.24	4.23 4.12 3.62 3.62 3.76 3.72 4.32 4.23 4.40 4.26 5.04	4.18 3.62 3.74 4.27	3.30 3.32 3.73 3.41 4.09 3.64 3.66 3.28 3.72 3.58 4.27	3.31 3.57 3.86 3.47
23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09	4.33 4.21 4.12 4.02 4.02 4.00 3.99 4.29 4.27 4.49 4.44	4.41 4.16 4.02 3.99 4.28 4.46	4.54 4.65 4.92 4.08 4.21 4.03 4.33 4.21 4.42 4.31 3.53 3.65	4.60 4.50 4.12 4.27 4.36 3.59	4.03 3.96 3.50 3.45 3.74 3.63 4.24 4.24 4.10 4.11 4.28 4.20	4.00 3.47 3.68 4.24 4.10 4.24	4.23 4.12 3.62 3.62 3.76 3.72 4.32 4.23 4.40 4.26 5.04 4.99	4.18 3.62 3.74 4.27 4.33 5.02	3.30 3.32 3.73 3.41 4.09 3.64 3.66 3.28 3.72 3.58 4.27 4.06	3.31 3.57 3.86 3.47 3.65 4.17
23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09	4.33 4.21 4.12 4.02 4.02 4.00 3.99 4.29 4.27 4.49 4.44 5.22	4.41 4.16 4.02 3.99 4.28	4.54 4.65 4.92 4.08 4.21 4.03 4.33 4.21 4.42 4.31 3.53 3.65 5.16	4.60 4.50 4.12 4.27 4.36	4.03 3.96 3.50 3.45 3.74 3.63 4.24 4.24 4.10 4.11 4.28 4.20 4.21	4.00 3.47 3.68 4.24 4.10	4.23 4.12 3.62 3.62 3.76 3.72 4.32 4.23 4.40 4.26 5.04 4.99 4.12	4.18 3.62 3.74 4.27 4.33	3.30 3.32 3.73 3.41 4.09 3.64 3.66 3.28 3.72 3.58 4.27 4.06 4.51	3.31 3.57 3.86 3.47 3.65
23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09	4.33 4.21 4.12 4.02 4.02 4.00 3.99 4.29 4.27 4.49 4.44 5.22 5.20	4.41 4.16 4.02 3.99 4.28 4.46 5.21	4.54 4.65 4.92 4.08 4.21 4.03 4.33 4.21 4.42 4.31 3.53 3.65 5.16 5.12	4.60 4.50 4.12 4.27 4.36 3.59 5.14	4.03 3.96 3.50 3.45 3.74 3.63 4.24 4.24 4.10 4.11 4.28 4.20 4.21	4.00 3.47 3.68 4.24 4.10 4.24 4.18	4.23 4.12 3.62 3.62 3.76 3.72 4.32 4.23 4.40 4.26 5.04 4.99 4.12 4.13	4.18 3.62 3.74 4.27 4.33 5.02 4.13	3.30 3.32 3.73 3.41 4.09 3.64 3.66 3.28 3.72 3.58 4.27 4.06 4.51 4.39	3.31 3.57 3.86 3.47 3.65 4.17
23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09	4.33 4.21 4.12 4.02 4.02 4.00 3.99 4.29 4.27 4.49 4.44 5.22 5.20 4.91	4.41 4.16 4.02 3.99 4.28 4.46	4.54 4.65 4.92 4.08 4.21 4.03 4.33 4.21 4.42 4.31 3.53 3.65 5.16 5.12 4.81	4.60 4.50 4.12 4.27 4.36 3.59	4.03 3.96 3.50 3.45 3.74 3.63 4.24 4.24 4.10 4.11 4.28 4.20 4.21 4.14 3.74	4.00 3.47 3.68 4.24 4.10 4.24	4.23 4.12 3.62 3.62 3.76 3.72 4.32 4.23 4.40 4.26 5.04 4.99 4.12 4.13 3.69	4.18 3.62 3.74 4.27 4.33 5.02	3.30 3.32 3.73 3.41 4.09 3.64 3.66 3.28 3.72 3.58 4.27 4.06 4.51 4.39 3.52	3.31 3.57 3.86 3.47 3.65 4.17
23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09	4.33 4.21 4.12 4.02 4.00 3.99 4.29 4.27 4.49 5.22 5.20 4.91 4.86	4.41 4.16 4.02 3.99 4.28 4.46 5.21 4.89	4.54 4.65 4.92 4.08 4.21 4.03 4.33 4.21 4.42 4.31 3.53 3.65 5.16 5.12 4.81	4.60 4.50 4.12 4.27 4.36 3.59 5.14 4.77	4.03 3.96 3.50 3.45 3.74 3.63 4.24 4.24 4.10 4.11 4.28 4.20 4.21 4.14 3.74 3.72	4.00 3.47 3.68 4.24 4.10 4.24 4.18 3.73	4.23 4.12 3.62 3.62 3.76 3.72 4.32 4.23 4.40 4.26 5.04 4.99 4.12 4.13 3.69 3.61	4.18 3.62 3.74 4.27 4.33 5.02 4.13 3.65	3.30 3.32 3.73 3.41 4.09 3.64 3.66 3.28 3.72 3.58 4.27 4.06 4.51 4.39 3.52 3.47	3.31 3.57 3.86 3.47 3.65 4.17 4.45
23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09	4.33 4.21 4.12 4.02 4.00 3.99 4.29 4.27 4.49 5.22 5.20 4.91 4.86 3.85	4.41 4.16 4.02 3.99 4.28 4.46 5.21	4.54 4.65 4.92 4.08 4.21 4.03 4.33 4.21 4.42 4.31 3.53 3.65 5.16 5.12 4.81	4.60 4.50 4.12 4.27 4.36 3.59 5.14	4.03 3.96 3.50 3.45 3.74 3.63 4.24 4.24 4.10 4.11 4.28 4.20 4.21 4.14 3.74 3.72 4.10	4.00 3.47 3.68 4.24 4.10 4.24 4.18	4.23 4.12 3.62 3.62 3.76 3.72 4.32 4.23 4.40 4.26 5.04 4.99 4.12 4.13 3.69 3.61 4.18	4.18 3.62 3.74 4.27 4.33 5.02 4.13	3.30 3.32 3.73 3.41 4.09 3.64 3.66 3.28 3.72 3.58 4.27 4.06 4.51 4.39 3.52	3.31 3.57 3.86 3.47 3.65 4.17
23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09 6-Nov-09	4.33 4.21 4.12 4.02 4.00 4.00 3.99 4.29 4.27 4.49 4.44 5.22 5.20 4.91 4.86 3.85 3.84	4.41 4.16 4.02 3.99 4.28 4.46 5.21 4.89 3.85	4.54 4.65 4.92 4.08 4.21 4.03 4.33 4.21 4.42 4.31 3.53 3.65 5.16 5.12 4.81	4.60 4.50 4.12 4.27 4.36 3.59 5.14 4.77 4.12	4.03 3.96 3.50 3.45 3.74 3.63 4.24 4.24 4.10 4.11 4.28 4.20 4.21 4.14 3.74 3.72	4.00 3.47 3.68 4.24 4.10 4.24 4.18 3.73 4.10	4.23 4.12 3.62 3.62 3.76 3.72 4.32 4.23 4.40 4.26 5.04 4.99 4.12 4.13 3.69 3.61	4.18 3.62 3.74 4.27 4.33 5.02 4.13 3.65 4.13	3.30 3.32 3.73 3.41 4.09 3.64 3.66 3.28 3.72 3.58 4.27 4.06 4.51 4.39 3.52 3.47 3.51 3.14	3.31 3.57 3.86 3.47 3.65 4.17 4.45 3.50
23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09 6-Nov-09	4.33 4.21 4.12 4.02 4.00 3.99 4.29 4.27 4.49 4.44 5.22 5.20 4.91 4.86 3.85	4.41 4.16 4.02 3.99 4.28 4.46 5.21 4.89	4.54 4.65 4.92 4.08 4.21 4.03 4.33 4.21 4.42 4.31 3.53 3.65 5.16 5.12 4.81 4.72 4.19	4.60 4.50 4.12 4.27 4.36 3.59 5.14 4.77	4.03 3.96 3.50 3.45 3.74 3.63 4.24 4.24 4.10 4.11 4.28 4.20 4.21 4.14 3.74 3.72 4.10	4.00 3.47 3.68 4.24 4.10 4.24 4.18 3.73	4.23 4.12 3.62 3.62 3.76 3.72 4.32 4.23 4.40 4.26 5.04 4.99 4.12 4.13 3.69 3.61 4.18	4.18 3.62 3.74 4.27 4.33 5.02 4.13 3.65	3.30 3.32 3.73 3.41 4.09 3.64 3.66 3.28 3.72 3.58 4.27 4.06 4.51 4.39 3.52 3.47 3.51	3.31 3.57 3.86 3.47 3.65 4.17 4.45
23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09 6-Nov-09	4.33 4.21 4.12 4.02 4.00 4.00 3.99 4.29 4.27 4.49 4.44 5.22 5.20 4.91 4.86 3.85 3.84	4.41 4.16 4.02 3.99 4.28 4.46 5.21 4.89 3.85	4.54 4.65 4.92 4.08 4.21 4.03 4.33 4.21 4.42 4.31 3.53 3.65 5.16 5.12 4.81 4.72 4.19 4.06	4.60 4.50 4.12 4.27 4.36 3.59 5.14 4.77 4.12	4.03 3.96 3.50 3.45 3.74 3.63 4.24 4.10 4.11 4.28 4.20 4.21 4.14 3.74 3.72 4.10 4.10	4.00 3.47 3.68 4.24 4.10 4.24 4.18 3.73 4.10	4.23 4.12 3.62 3.62 3.76 3.72 4.32 4.23 4.40 4.26 5.04 4.99 4.12 4.13 3.69 3.61 4.18 4.09	4.18 3.62 3.74 4.27 4.33 5.02 4.13 3.65 4.13	3.30 3.32 3.73 3.41 4.09 3.64 3.66 3.28 3.72 3.58 4.27 4.06 4.51 4.39 3.52 3.47 3.51 3.14	3.31 3.57 3.86 3.47 3.65 4.17 4.45 3.50
23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09	4.33 4.21 4.12 4.02 4.00 4.00 3.99 4.29 4.27 4.49 4.44 5.22 5.20 4.91 4.86 3.85 3.84 3.73	4.41 4.16 4.02 3.99 4.28 4.46 5.21 4.89 3.85	4.54 4.65 4.92 4.08 4.21 4.03 4.33 4.21 4.42 4.31 3.53 3.65 5.16 5.12 4.81 4.72 4.19 4.06 3.57	4.60 4.50 4.12 4.27 4.36 3.59 5.14 4.77 4.12	4.03 3.96 3.50 3.45 3.74 3.63 4.24 4.10 4.11 4.28 4.20 4.21 4.14 3.74 3.72 4.10 4.10 3.56	4.00 3.47 3.68 4.24 4.10 4.24 4.18 3.73 4.10	4.23 4.12 3.62 3.62 3.76 3.72 4.32 4.23 4.40 4.26 5.04 4.19 4.12 4.13 3.69 3.61 4.18 4.09 3.39	4.18 3.62 3.74 4.27 4.33 5.02 4.13 3.65 4.13	3.30 3.32 3.73 3.41 4.09 3.64 3.66 3.28 3.72 3.58 4.27 4.06 4.51 4.39 3.52 3.47 3.51 3.14 2.44	3.57 3.86 3.47 3.65 4.17 4.45 3.50

4.10

5.24

5.30

5.27

4.14

6.18 5.96 6.07

3.24

4.94

4.94

4.94

4.05

5.79 5.74

16-Nov-09

5.76

4.15

5.37

5.34

5.36

Mid-flood	WSD7		WSD9		WSD10		WSD15		WSD17		WSD19		WSD20		WSD21		RW1	
Date	Value	Average	Value	Average	Value	Average												
21-Oct-09	11.0	11.5	11.0	10.5	9.0	8.5	7.0	7.5	10.0	10.0	9.0	9.5	11.0	11.5	14.0	14.0	10.0	9.0
	12.0		10.0		8.0		8.0		10.0		10.0		12.0	Ī	14.0] [8.0	1
23-Oct-09	10.0	11.5	6.0	6.0	8.0	7.0	11.0	10.5	9.0	9.5	11.0	11.0	13.0	13.0	14.0	13.0	14.0	13.5
	13.0		6.0		6.0		10.0		10.0		11.0		13.0	Ī	12.0] [13.0	1
27-Oct-09	12.0	12.5	10.0	10.5	9.0	8.5	10.0	10.0	11.0	10.5	12.0	11.0	8.0	8.0	10.0	10.0	10.0	11.0
	13.0		11.0		8.0		10.0		10.0		10.0		8.0		10.0		12.0	
29-Oct-09	14.0	14.0	8.0	8.5	8.0	7.5	9.0	9.0	7.0	7.0	7.0	7.5	7.0	6.5	13.0	12.0	12.0	12.0
	14.0		9.0		7.0		9.0		7.0		8.0		6.0		11.0		12.0	
31-Oct-09	13.0	12.0	8.0	7.0	7.0	7.5	8.0	8.0	12.0	11.0	11.0	12.0	8.0	8.0	11.0	10.0	9.0	9.0
	11.0		6.0		8.0		8.0		10.0		13.0		8.0		9.0		9.0	
2-Nov-09	13.0	12.5	10.0	9.5	11.0	10.0	9.0	8.5	8.0	8.5	11.0	10.0	9.0	10.0	8.0	7.5	9.0	9.0
	12.0		9.0		9.0		8.0		9.0		9.0		11.0		7.0		9.0	
4-Nov-09	12.0	13.0	9.0	8.5	8.0	9.0	10.0	11.0	9.0	8.5	8.0	8.5	10.0	11.5	13.0	12.5	9.0	10.0
	14.0		8.0		10.0		12.0		8.0		9.0		13.0		12.0		11.0	
6-Nov-09	18.0	18.5	8.0	8.0	7.0	8.0	8.0	9.0	9.0	10.0	8.0	9.0	11.0	11.5	10.0	9.5	12.0	12.0
	19.0		8.0		9.0		10.0		11.0		10.0		12.0		9.0		12.0	
10-Nov-09	12.0	13.0	10.0	11.0	13.0	12.5	6.0	6.5	13.0	12.5	14.0	14.5	7.0	8.0	10.0	10.5	10.0	11.0
	14.0		12.0		12.0		7.0		12.0		15.0		9.0		11.0		12.0	
12-Nov-09	11.0	11.0	7.0	8.0	5.0	4.5	8.0	7.5	14.0	13.5	12.0	11.5	6.0	6.5	10.0	9.5	9.0	9.0
	11.0		9.0		4.0		7.0		13.0		11.0		7.0		9.0		9.0	
14-Nov-09	9.0	8.0	7.0	6.0	10.0	9.5	9.0	8.5	8.0	8.0	12.0	11.5	10.0	10.0	11.0	10.5	7.0	7.5
	7.0		5.0		9.0		8.0		8.0		11.0		10.0	<u> </u>	10.0	<u> </u>	8.0	
16-Nov-09	8.0	9.0	6.0	6.5	4.0	4.5	6.0	7.0	6.0	6.0	6.0	6.0	6.0	7.0	6.0	5.0	6.0	6.5
	10.0		7.0		5.0		8.0		6.0		6.0		8.0		4.0		7.0	

Mid-Ebb	WSD7		WSD9		WSD10		WSD15		WSD17		WSD19		WSD20		WSD21		RW1	
Date	Value	Average																
21-Oct-09	9.0	8.5	7.0	7.0	8.0	7.5	6.0	6.5	16.0	15.5	14.0	13.0	9.0	10.0	9.0	9.5	9.0	9.5
	8.0		7.0		7.0		7.0		15.0		12.0		11.0	Ì	10.0		10.0	
23-Oct-09	8.0	8.0	8.0	8.0	8.0	7.0	6.0	5.5	9.0	8.5	10.0	9.5	5.0	6.0	11.0	10.5	10.0	11.0
	8.0		8.0		6.0		5.0		8.0		9.0		7.0		10.0		12.0]
27-Oct-09	10.0	9.5	6.0	5.0	9.0	8.0	7.0	7.5	8.0	7.5	7.0	6.5	7.0	7.5	7.0	8.0	9.0	8.5
	9.0		4.0		7.0		8.0		7.0		6.0		8.0		9.0		8.0	
29-Oct-09	12.0	11.5	8.0	8.0	8.0	8.0	8.0	8.5	8.0	8.5	8.0	9.0	9.0	8.5	8.0	9.0	9.0	9.0
	11.0		8.0		8.0		9.0		9.0		10.0		8.0		10.0		9.0	
31-Oct-09	10.0	9.0	8.0	7.0	9.0	10.0	7.0	6.0	9.0	9.5	9.0	9.0	11.0	11.0	11.0	10.5	10.0	10.0
	8.0		6.0		11.0		5.0		10.0		9.0		11.0		10.0		10.0	
2-Nov-09	12.0	11.5	7.0	8.0	6.0	6.5	12.0	11.0	12.0	12.0	9.0	8.5	8.0	7.5	10.0	10.5	8.0	8.5
	11.0		9.0		7.0		10.0		12.0		8.0		7.0		11.0		9.0	
4-Nov-09	7.0	8.0	7.0	6.5	6.0	7.0	11.0	12.5	5.0	6.0	9.0	8.5	7.0	8.0	10.0	10.5	10.0	9.5
	9.0		6.0		8.0		14.0		7.0		8.0		9.0		11.0		9.0	
6-Nov-09	11.0	10.0	6.0	6.5	7.0	6.5	11.0	10.0	10.0	9.0	10.0	9.0	8.0	9.0	9.0	8.5	11.0	10.0
	9.0		7.0		6.0		9.0		8.0		8.0		10.0		8.0		9.0	
10-Nov-09	8.0	9.0	9.0	9.0	8.0	7.0	6.0	7.0	9.0	8.5	5.0	5.5	7.0	7.0	8.0	8.0	9.0	8.0
	10.0		9.0		6.0		8.0		8.0		6.0		7.0		8.0		7.0	
12-Nov-09	8.0	7.5	6.0	5.5	5.0	5.5	10.0	9.0	9.0	9.0	9.0	9.5	5.0	5.5	11.0	10.5	10.0	10.5
	7.0		5.0		6.0		8.0		9.0		10.0		6.0		10.0		11.0	
14-Nov-09	6.0	6.0	7.0	6.5	8.0	7.5	8.0	8.0	8.0	8.5	9.0	8.0	7.0	7.0	10.0	11.0	11.0	10.5
	6.0		6.0		7.0		8.0		9.0		7.0		7.0		12.0		10.0	
16-Nov-09	7.0	6.5	8.0	8.0	4.0	5.0	6.0	7.0	11.0	9.5	4.0	4.0	8.0	8.5	8.0	8.0	10.0	9.0
	6.0		8.0		6.0		8.0		8.0		4.0		9.0		8.0		8.0	

Mid-flood	C1		C2		C3		C4		C5		C6		C7		C8		C9	
Date	Value	Average	Value	Average	Value	Average	Value	Average										
21-Oct-09	8.0	8.0	9.0	8.5	9.0	9.5	11.0	11.5	14.0	14.5	6.0	6.5	6.0	<mark>6.5</mark>	12.0	11.0	11.0	11.0
	8.0		8.0		10.0		12.0		15.0	1	7.0		7.0		10.0		11.0	1
23-Oct-09	12.0	11.5	12.0	12.5	14.0	12.5	14.0	14.0	15.0	14.0	10.0	9.0	11.0	12.0	21.0	19.5	23.0	21.5
	11.0		13.0		11.0		14.0		13.0	1	8.0		13.0		18.0		20.0	1
27-Oct-09	13.0	12.5	8.0	9.0	9.0	8.0	11.0	10.0	11.0	11.5	10.0	10.5	10.0	9.0	15.0	14.0	23.0	23.0
	12.0		10.0		7.0		9.0		12.0		11.0		8.0		13.0		23.0	
29-Oct-09	18.0	18.5	10.0	11.0	11.0	11.0	15.0	14.5	11.0	11.5	10.0	9.5	12.0	11.5	16.0	16.0	23.0	23.5
	19.0		12.0		11.0		14.0		12.0	1	9.0		11.0		16.0		24.0	1
31-Oct-09	11.0	10.5	10.0	10.0	15.0	15.0	10.0	9.5	9.0	9.5	8.0	7.0	6.0	7.0	14.0	13.5	19.0	18.5
	10.0		10.0		15.0		9.0		10.0	1	6.0		8.0	T	13.0		18.0	1
2-Nov-09	9.0	9.0	8.0	8.0	8.0	8.5	7.0	7.0	5.0	5.5	8.0	9.0	9.0	<mark>9</mark> .0	10.0	10.0	10.0	10.5
	9.0		8.0		9.0		7.0		6.0	1	10.0		9.0	T [10.0		11.0	1
4-Nov-09	10.0	11.5	9.0	9.5	10.0	10.0	9.0	9.5	10.0	10.5	4.0	5.0	8.0	8.0	13.0	12.5	14.0	14.0
	13.0		10.0		10.0		10.0		11.0		6.0		8.0		12.0		14.0	
6-Nov-09	13.0	12.0	9.0	8.5	14.0	13.0	14.0	13.5	16.0	15.0	10.0	9.5	9.0	9.0	19.0	17.5	12.0	12.0
	11.0		8.0		12.0		13.0		14.0		9.0		9.0		16.0		12.0	
10-Nov-09	9.0	8.5	11.0	10.5	12.0	11.5	10.0	10.5	10.0	10.0	7.0	7.0	8.0	7.0	14.0	12.5	13.0	13.0
	8.0		10.0		11.0		11.0		10.0		7.0		6.0		11.0		13.0	
12-Nov-09	10.0	10.0	10.0	10.0	10.0	10.0	11.0	11.0	10.0	9.5	10.0	11.0	8.0	9.0	24.0	22.0	18.0	18.5
	10.0		10.0		10.0		11.0		9.0	1	12.0		10.0	T	20.0		19.0	1 1
14-Nov-09	6.0	7.0	9.0	10.0	12.0	11.0	12.0	13.0	16.0	14.5	8.0	<mark>7.5</mark>	7.0	7.0	14.0	14.5	16.0	15.0
	8.0		11.0		10.0		14.0		13.0		7.0		7.0		15.0		14.0	
16-Nov-09	5.0	5.5	8.0	7.0	6.0	6.5	12.0	11.0	6.0	6.0	6.0	7.0	9.0	9.0	7.0	6.0	6.0	6.0
	6.0		6.0		7.0		10.0		6.0		8.0		9.0		5.0		6.0	

Mid-Ebb	C1		C2		C3		C4		C5		C6		C7		C8		C9	
Date	Value	Average	Value	Average	Value	Average	Value	Average										
21-Oct-09	10.0	10.5	8.0	7.0	8.0	7.0	11.0	11.5	10.0	10.5	7.0	7.5	5.0	<mark>5.5</mark>	10.0	11.0	20.0	18.5
	11.0		6.0		6.0		12.0		11.0		8.0		6.0	ī <u> </u>	12.0		17.0	
23-Oct-09	6.0	5.5	14.0	14.5	10.0	10.0	9.0	9.5	11.0	12.0	10.0	9.0	8.0	7.0	13.0	12.5	10.0	11.5
	5.0		15.0		10.0		10.0		13.0		8.0		6.0		12.0		13.0	
27-Oct-09	4.0	4.5	7.0	6.0	6.0	5.0	8.0	8.0	8.0	8.0	7.0	7.0	5.0	5.0	9.0	9.0	10.0	10.0
	5.0		5.0		4.0		8.0		8.0		7.0		5.0		9.0		10.0	
29-Oct-09	9.0	9.5	10.0	9.0	11.0	10.5	7.0	6.5	9.0	10.0	9.0	<mark>8.5</mark>	8.0	<mark>7.5</mark>	12.0	12.0	13.0	13.0
	10.0		8.0		10.0		6.0		11.0		8.0		7.0		12.0		13.0	
31-Oct-09	10.0	9.5	9.0	8.5	11.0	10.0	10.0	10.0	12.0	11.0	12.0	11.0	6.0	<mark>5.5</mark>	12.0	11.0	13.0	13.5
	9.0		8.0		9.0		10.0		10.0		10.0		5.0		10.0		14.0	
2-Nov-09	11.0	10.0	10.0	10.0	12.0	13.0	13.0	12.5	12.0	12.5	10.0	9.0	9.0	<mark>8.5</mark>	12.0	13.0	13.0	12.0
	9.0		10.0		14.0		12.0		13.0		8.0		8.0		14.0		11.0	
4-Nov-09	6.0	7.0	8.0	8.5	8.0	8.5	13.0	13.5	11.0	12.5	6.0	<mark>6.0</mark>	10.0	9.0	12.0	12.5	14.0	13.5
	8.0		9.0		9.0		14.0		14.0		6.0		8.0		13.0		13.0	
6-Nov-09	6.0	6.0	7.0	8.0	7.0	6.5	9.0	9.5	11.0	11.5	8.0	<mark>8.0</mark>	9.0	<mark>8.0</mark>	9.0	10.0	12.0	13.0
	6.0		9.0		6.0		10.0		12.0		8.0		7.0		11.0		14.0	
10-Nov-09	8.0	8.0	5.0	5.0	6.0	6.0	6.0	6.5	8.0	8.0	9.0	<mark>8.0</mark>	7.0	7.0	10.0	9.5	8.0	8.0
	8.0		5.0		6.0		7.0		8.0		7.0		7.0		9.0		8.0	
12-Nov-09	6.0	7.0	7.0	7.0	7.0	7.5	8.0	9.0	16.0	15.0	7.0	<mark>6.5</mark>	7.0	<mark>5.5</mark>	8.0	8.5	12.0	12.5
	8.0		7.0		8.0		10.0		14.0		6.0		4.0		9.0		13.0	
14-Nov-09	9.0	10.0	10.0	9.5	9.0	9.5	11.0	12.0	11.0	10.5	10.0	9.0	<u>5.0</u>	<mark>5.5</mark>	10.0	10.0	14.0	13.0
	11.0		9.0		10.0		13.0		10.0		8.0		<mark>6.0</mark>		10.0		12.0	
16-Nov-09	6.0	6.5	8.0	7.5	7.0	6.5	8.0	8.5	7.0	7.5	10.0	9.0	8.0	7.0	8.0	8.5	7.0	7.0
	7.0		7.0		6.0		9.0		8.0		8.0		6.0		9.0		7.0	

Mid-flood	RC1		RC5		RC7	
Date	Value	Average	Value	Average	Value	Average
21-Oct-09	7.0	7.0	15.0	14.0	8.0	8.0
21-001-09	7.0	7.0	13.0	14.0	8.0	0.0
23-Oct-09	10.0	10.0	12.0	11.0	11.0	12.0
23-061-09	10.0	10.0	10.0	11.0	13.0	12.0
27-Oct-09		7.5		44.5		00.5
27-Oct-09	8.0	7.5	11.0	11.5	25.0	23.5
	7.0		12.0		22.0	
29-Oct-09	14.0	13.0	12.0	11.5	9.0	9.0
	12.0		11.0		9.0	
31-Oct-09	9.0	9.5	8.0	7.5	7.0	7.0
	10.0		7.0		7.0	
2-Nov-09	8.0	7.5	9.0	8.0	7.0	6.5
	7.0		7.0		6.0	
4-Nov-09	8.0	8.0	10.0	10.0	8.0	7.5
	8.0		10.0		7.0	
6-Nov-09	16.0	15.5	12.0	11.5	9.0	9.0
	15.0		11.0		9.0	
10-Nov-09	9.0	9.5	8.0	8.0	6.0	6.5
	10.0		8.0		7.0	
12-Nov-09	6.0	7.0	10.0	9.5	6.0	6.5
	8.0		9.0		7.0	
14-Nov-09	11.0	12.5	8.0	9.0	10.0	10.0
	14.0	1	10.0	1	10.0	1
16-Nov-09	5.0	6.0	6.0	6.5	7.0	6.5
	7.0		7.0	1	6.0	1

Mid-Ebb	RC1		RC5		RC7	
Date	Value	Average	Value	Average	Value	Average
21-Oct-09	7.0	7.5	8.0	8.5	6.0	5.5
	8.0		9.0		5.0	
23-Oct-09	7.0	6.5	7.0	7.0	13.0	12.5
	6.0		7.0		12.0	
27-Oct-09	6.0	5.0	5.0	5.5	10.0	10.0
	4.0		6.0		10.0	
29-Oct-09	9.0	9.5	10.0	9.5	10.0	9.0
	10.0		9.0		8.0	
31-Oct-09	10.0	9.5	8.0	8.5	10.0	10.0
	9.0		9.0		10.0	
2-Nov-09	10.0	11.0	9.0	9.0	8.0	7.5
	12.0		9.0		7.0	
4-Nov-09	6.0	6.5	10.0	10.0	9.0	9.5
	7.0		10.0		10.0	
6-Nov-09	8.0	8.5	8.0	8.5	9.0	9.0
	9.0		9.0		9.0	
10-Nov-09	7.0	7.0	8.0	7.5	8.0	8.0
	7.0		7.0		8.0	
12-Nov-09	9.0	8.5	11.0	10.5	9.0	8.0
	8.0		10.0		7.0	
14-Nov-09	8.0	7.0	10.0	9.5	10.0	9.0
	6.0		9.0		8.0	
16-Nov-09	6.0	6.5	9.0	9.0	7.0	7.0
	7.0		9.0		7.0	

Projected SS Monitoring Data (Wet Season) adjusted with Mean Variation Percentage of EPD Marine Monitoring Data (2006 - 2008)

Mid-flood	WSD7		WSD9		WSD10		WSD15		WSD17		WSD19		WSD20		WSD21	
Date	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
21-Oct-09	10.8	11.3	13.7	13.1	10.6	10.0	12.6	13.6	11.8	11.8	8.4	8.8	7.9	8.3	17.2	17.2
	11.8	1	12.4	1	9.4	1	14.5	1	11.8	1	9.3	1	8.7	1	17.2	1
23-Oct-09	9.9	11.3	7.5	7.5	9.4	8.2	19.9	19.0	10.6	11.2	10.2	10.2	9.4	9.4	17.2	16.0
	12.8	1	7.5	1	7.1	1	18.1	1	11.8	1	10.2	1	9.4	1	14.7	1
27-Oct-09	11.8	12.3	12.4	13.1	10.6	10.0	18.1	18.1	13.0	12.4	11.1	10.2	5.8	5.8	12.3	12.3
	12.8	1	13.7	1	9.4	1	18.1	1	11.8	1	9.3	1	5.8		12.3	
29-Oct-09	13.8	13.8	10.0	10.6	9.4	8.8	16.3	16.3	8.2	8.2	6.5	7.0	5.1	4.7	16.0	14.7
	13.8	1	11.2	1	8.2		16.3	1	8.2	1	7.4	1	4.3	1	13.5	1
31-Oct-09	12.8	11.8	10.0	8.7	8.2	8.8	14.5	14.5	14.1	13.0	10.2	11.1	5.8	5.8	13.5	12.3
	10.8	1	7.5	1	9.4		14.5	1	11.8	1	12.1	1	5.8		11.0	
2-Nov-09	12.8	12.3	12.4	11.8	13.0	11.8	16.3	15.4	9.4	10.0	10.2	9.3	6.5	7.2	9.8	9.2
	11.8	1	11.2	1	10.6	1	14.5	1	10.6	1	8.4		7.9	1	8.6	1
4-Nov-09	11.8	12.8	11.2	10.6	9.4	10.6	18.1	19.9	10.6	10.0	7.4	7.9	7.2	8.3	16.0	15.3
11107 00	13.8	12.0	10.0	1	11.8	10.0	21.7	10.0	9.4	10.0	8.4	1	9.4	0.0	14.7	1 10.0
6-Nov-09	17.7	18.2	10.0	10.0	8.2	9.4	14.5	16.3	10.6	11.8	7.4	8.4	7.9	8.3	12.3	11.7
01107 00	18.7	10.2	10.0	1 10.0	10.6	0.4	18.1	10.0	13.0	11.0	9.3	0.4	8.7	0.0	11.0	1 ''''
10-Nov-09	11.8	12.8	12.4	13.7	15.3	14.7	10.8	11.7	15.3	14.7	13.0	13.5	5.1	5.8	12.3	12.9
10 110 03	13.8	12.0	14.9	1 10.7	14.1	1 '7.,	12.6	1 ''''	14.1	17.7	13.9	10.0	6.5	5.0	13.5	12.0
12-Nov-09	10.8	10.8	8.7	10.0	5.9	5.3	14.5	13.6	16.5	15.9	11.1	10.7	4.3	4.7	12.3	11.7
12 1407 03	10.8	10.0	11.2	10.0	4.7	0.0	12.6	13.0	15.3	10.5	10.2	10.7	5.1	7.7	11.0	1 ''''
14-Nov-09	8.9	7.9	8.7	7.5	11.8	11.2	16.3	15.4	9.4	9.4	11.1	10.7	7.2	7.2	13.5	12.9
14-1100-03	6.9	7.5	6.2	d '.5	10.6	11.2	14.5	13.4	9.4	3.4	10.2	10.7	7.2	1.2	12.3	12.9
16-Nov-09	7.9	8.9	7.5	8.1	4.7	5.3	10.8	12.6	7.1	7.1	5.6	5.6	4.3	5.1	7.4	6.1
10-1107-09	9.9	0.9	8.7	0.1	5.9	5.5	14.5	12.0	7.1	7.1	5.6	5.0	5.8	3.1	4.9	0.1
	3.3		0.7		5.5		14.5		7.1		5.0		5.0		4.5	
Mid-Ebb	WSD7		WSD9		WSD10		WSD15		WSD17		WSD19		WSD20		WSD21	
Mid-Ebb Date	WSD7 Value	Average	WSD9 Value	Average	WSD10 Value	Average	WSD15 Value	Average	WSD17 Value	Average	WSD19 Value	Average	WSD20 Value	Average	WSD21 Value	Average
		Average 8.4		Average 8.7		Average 8.8		Average 11.7		Average 18.3		Average 12.1		Average 7.2		Average 11.7
Date	Value		Value		Value		Value		Value		Value		Value		Value	
Date	Value 8.9		Value 8.7		Value 9.4		Value 10.8		Value 18.9		Value 13.0		Value 6.5		Value 11.0	
Date 21-Oct-09	Value 8.9 7.9	8.4	Value 8.7 8.7	8.7	Value 9.4 8.2	8.8	Value 10.8 12.6	11.7	Value 18.9 17.7	18.3	Value 13.0 11.1	12.1	Value 6.5 7.9	7.2	Value 11.0 12.3	11.7
Date 21-Oct-09	Value 8.9 7.9 7.9	8.4	Value 8.7 8.7 10.0	8.7	Value 9.4 8.2 9.4	8.8	Value 10.8 12.6 10.8	11.7	Value 18.9 17.7 10.6	18.3	Value 13.0 11.1 9.3	12.1	Value 6.5 7.9 3.6	7.2	Value 11.0 12.3 13.5	11.7
Date 21-Oct-09 23-Oct-09	Value 8.9 7.9 7.9 7.9	8.4 7.9	Value 8.7 8.7 10.0 10.0	8.7	Value 9.4 8.2 9.4 7.1	8.8 8.2	Value 10.8 12.6 10.8 9.0	9.9	Value 18.9 17.7 10.6 9.4	18.3 10.0	Value 13.0 11.1 9.3 8.4	12.1 8.8	Value 6.5 7.9 3.6 5.1	7.2	Value 11.0 12.3 13.5 12.3	11.7
Date 21-Oct-09 23-Oct-09	Value 8.9 7.9 7.9 7.9 9.9	8.4 7.9	Value 8.7 8.7 10.0 10.0 7.5	8.7	Value 9.4 8.2 9.4 7.1 10.6	8.8 8.2	Value 10.8 12.6 10.8 9.0 12.6	9.9	Value 18.9 17.7 10.6 9.4 9.4	18.3 10.0	Value 13.0 11.1 9.3 8.4 6.5	12.1 8.8	Value 6.5 7.9 3.6 5.1	7.2	Value 11.0 12.3 13.5 12.3 8.6	11.7
Date 21-Oct-09 23-Oct-09 27-Oct-09	Value 8.9 7.9 7.9 7.9 9.9 8.9	7.9 9.4	Value 8.7 8.7 10.0 10.0 7.5 5.0	8.7 10.0 6.2	Value 9.4 8.2 9.4 7.1 10.6 8.2	8.8 8.2 9.4	Value 10.8 12.6 10.8 9.0 12.6 14.5	9.9 13.6	Value 18.9 17.7 10.6 9.4 9.4 8.2	18.3 10.0 8.8	Value 13.0 11.1 9.3 8.4 6.5 5.6	12.1 8.8 6.0	Value 6.5 7.9 3.6 5.1 5.1 5.8	7.2 4.3 5.4	Value 11.0 12.3 13.5 12.3 8.6 11.0	11.7 12.9 9.8
Date 21-Oct-09 23-Oct-09 27-Oct-09	Value 8.9 7.9 7.9 7.9 9.9 8.9 11.8	7.9 9.4	Value 8.7 8.7 10.0 10.0 7.5 5.0 10.0	8.7 10.0 6.2	Value 9.4 8.2 9.4 7.1 10.6 8.2 9.4	8.8 8.2 9.4	Value 10.8 12.6 10.8 9.0 12.6 14.5	9.9 13.6	Value 18.9 17.7 10.6 9.4 9.4 8.2 9.4	18.3 10.0 8.8	Value 13.0 11.1 9.3 8.4 6.5 5.6 7.4	12.1 8.8 6.0	Value 6.5 7.9 3.6 5.1 5.1 5.8 6.5	7.2 4.3 5.4	Value 11.0 12.3 13.5 12.3 8.6 11.0 9.8	11.7 12.9 9.8
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09	Value 8.9 7.9 7.9 7.9 9.9 8.9 11.8 10.8	7.9 9.4 11.3	Value 8.7 8.7 10.0 10.0 7.5 5.0 10.0 10.0 10.0 7.5	8.7 10.0 6.2	Value 9.4 8.2 9.4 7.1 10.6 8.2 9.4 9.4 9.4	8.8 8.2 9.4 9.4	Value 10.8 12.6 10.8 9.0 12.6 14.5 14.5 16.3 12.6 9.0	9.9 13.6 15.4	Value 18.9 17.7 10.6 9.4 9.4 8.2 9.4 10.6 10.6 11.8	18.3 10.0 8.8 10.0	Value 13.0 11.1 9.3 8.4 6.5 5.6 7.4 9.3	12.1 8.8 6.0 8.4	Value 6.5 7.9 3.6 5.1 5.1 5.8 6.5 5.8 7.9 7.9	7.2 4.3 5.4 6.1	Value 11.0 12.3 13.5 12.3 8.6 11.0 9.8 12.3 13.5 12.3	11.7 12.9 9.8 11.0
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09	Value 8.9 7.9 7.9 7.9 9.9 8.9 11.8 10.8 9.9	7.9 9.4 11.3	Value 8.7 8.7 10.0 10.0 7.5 5.0 10.0 10.0 10.0 10.0	8.7 10.0 6.2	Value 9.4 8.2 9.4 7.1 10.6 8.2 9.4 9.4 10.6	8.8 8.2 9.4 9.4	Value 10.8 12.6 10.8 9.0 12.6 14.5 14.5 16.3 12.6	9.9 13.6 15.4	Value 18.9 17.7 10.6 9.4 9.4 8.2 9.4 10.6 10.6	18.3 10.0 8.8 10.0	Value 13.0 11.1 9.3 8.4 6.5 5.6 7.4 9.3 8.4	8.8 6.0 8.4	Value 6.5 7.9 3.6 5.1 5.1 5.8 6.5 5.8 7.9	7.2 4.3 5.4 6.1	Value 11.0 12.3 13.5 12.3 8.6 11.0 9.8 12.3 13.5	11.7 12.9 9.8 11.0
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09	Value 8.9 7.9 7.9 7.9 9.9 8.9 11.8 10.8 9.9 7.9	7.9 9.4 11.3 8.9	Value 8.7 8.7 10.0 10.0 7.5 5.0 10.0 10.0 10.0 7.5	8.7 10.0 6.2 10.0 8.7	Value 9.4 8.2 9.4 7.1 10.6 8.2 9.4 9.4 10.6 13.0	9.4 9.4 11.8	Value 10.8 12.6 10.8 9.0 12.6 14.5 14.5 16.3 12.6 9.0	9.9 13.6 15.4 10.8	Value 18.9 17.7 10.6 9.4 9.4 8.2 9.4 10.6 10.6 11.8	18.3 10.0 8.8 10.0	Value 13.0 11.1 9.3 8.4 6.5 5.6 7.4 9.3 8.4 8.4	8.8 6.0 8.4 8.4	Value 6.5 7.9 3.6 5.1 5.1 5.8 6.5 5.8 7.9 7.9	7.2 4.3 5.4 6.1 7.9	Value 11.0 12.3 13.5 12.3 8.6 11.0 9.8 12.3 13.5 12.3	11.7 12.9 9.8 11.0
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09	Value 8.9 7.9 7.9 7.9 9.9 8.9 11.8 10.8 9.9 7.9 11.8	7.9 9.4 11.3 8.9	Value 8.7 8.7 10.0 10.0 7.5 5.0 10.0 10.0 7.5 8.7	8.7 10.0 6.2 10.0 8.7	Value 9.4 8.2 9.4 7.1 10.6 8.2 9.4 9.4 10.6 13.0 7.1	9.4 9.4 11.8	Value 10.8 12.6 10.8 9.0 12.6 14.5 14.5 16.3 12.6 9.0 21.7	9.9 13.6 15.4 10.8	Value 18.9 17.7 10.6 9.4 9.4 8.2 9.4 10.6 10.6 11.8 14.1	18.3 10.0 8.8 10.0	Value 13.0 11.1 9.3 8.4 6.5 5.6 7.4 9.3 8.4 8.4 8.4	8.8 6.0 8.4 8.4	Value 6.5 7.9 3.6 5.1 5.1 5.8 6.5 7.9 7.9 7.9	7.2 4.3 5.4 6.1 7.9	Value 11.0 12.3 13.5 12.3 8.6 11.0 9.8 12.3 13.5 12.3 13.5 12.3 13.5	11.7 12.9 9.8 11.0
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09	Value 8.9 7.9 7.9 7.9 9.9 8.9 11.8 10.8 9.9 7.9 11.8 10.8	8.4 7.9 9.4 11.3 8.9	Value 8.7 8.7 10.0 10.0 7.5 5.0 10.0 10.0 7.5 8.7 11.2	8.7 10.0 6.2 10.0 8.7	Value 9.4 8.2 9.4 7.1 10.6 8.2 9.4 9.4 10.6 13.0 7.1 8.2	9.4 9.4 11.8 7.7	Value 10.8 12.6 10.8 9.0 12.6 14.5 14.5 16.3 12.6 9.0 21.7 18.1	11.7 9.9 13.6 15.4 10.8 19.9	Value 18.9 17.7 10.6 9.4 9.4 8.2 9.4 10.6 10.6 11.8	18.3 10.0 8.8 10.0 11.2	Value 13.0 11.1 9.3 8.4 6.5 5.6 7.4 9.3 8.4 8.4 7.4	8.8 6.0 8.4 8.4 7.9	Value 6.5 7.9 3.6 5.1 5.1 5.8 6.5 5.8 7.9 7.9 5.8 5.1	7.2 4.3 5.4 6.1 7.9 5.4	Value 11.0 12.3 13.5 12.3 8.6 11.0 9.8 12.3 13.5 12.3 13.5 12.3	11.7 12.9 9.8 11.0 12.9
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09	Value 8.9 7.9 7.9 7.9 9.9 8.9 11.8 10.8 9.9 7.9 11.8 10.8 6.9	8.4 7.9 9.4 11.3 8.9	Value 8.7 8.7 10.0 10.0 7.5 5.0 10.0 10.0 7.5 8.7 11.2 8.7 7.5	8.7 10.0 6.2 10.0 8.7	Value 9.4 8.2 9.4 7.1 10.6 8.2 9.4 10.6 13.0 7.1 8.2 7.1	9.4 9.4 11.8 7.7	Value 10.8 12.6 10.8 9.0 12.6 14.5 14.5 16.3 12.6 9.0 21.7 18.1 19.9	11.7 9.9 13.6 15.4 10.8 19.9	Value 18.9 17.7 10.6 9.4 9.4 8.2 9.4 10.6 10.6 11.8 14.1 5.9	18.3 10.0 8.8 10.0 11.2	Value 13.0 11.1 9.3 8.4 6.5 5.6 7.4 9.3 8.4 8.4 7.4 8.4 7.4	8.8 6.0 8.4 8.4 7.9	Value 6.5 7.9 3.6 5.1 5.1 5.8 6.5 5.8 7.9 7.9 5.8 5.1 5.1 5.1	7.2 4.3 5.4 6.1 7.9 5.4	Value 11.0 12.3 13.5 12.3 8.6 11.0 9.8 12.3 13.5 12.3 13.5 12.3 12.3	11.7 12.9 9.8 11.0 12.9
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09	Value 8.9 7.9 7.9 7.9 9.9 8.9 11.8 10.8 9.9 7.9 11.8 6.9 8.9 10.8	8.4 7.9 9.4 11.3 8.9 11.3 7.9	Value 8.7 8.7 10.0 10.0 7.5 5.0 10.0 10.0 7.5 8.7 11.2 8.7 7.5 7.5	8.7 10.0 6.2 10.0 8.7 10.0	Value 9.4 8.2 9.4 7.1 10.6 8.2 9.4 10.6 13.0 7.1 8.2 7.1 9.4	8.8 8.2 9.4 9.4 11.8 7.7 8.2	Value 10.8 12.6 10.8 9.0 12.6 14.5 14.5 16.3 12.6 9.0 21.7 18.1 19.9 25.3 19.9	11.7 9.9 13.6 15.4 10.8 19.9 22.6	Value 18.9 17.7 10.6 9.4 9.4 8.2 9.4 10.6 10.6 11.8 14.1 5.9 8.2 11.8	18.3 10.0 8.8 10.0 11.2 14.1 7.1	Value 13.0 11.1 9.3 8.4 6.5 5.6 7.4 9.3 8.4 8.4 8.4 8.4 8.4	12.1 8.8 6.0 8.4 8.4 7.9 7.9	Value 6.5 7.9 3.6 5.1 5.1 5.8 6.5 5.8 7.9 7.9 5.8 5.1 6.5	7.2 4.3 5.4 6.1 7.9 5.4 5.8	Value 11.0 12.3 13.5 12.3 8.6 11.0 9.8 12.3 13.5 12.3 13.5 12.3 13.5 12.3 13.5 11.0	11.7 12.9 9.8 11.0 12.9 12.9
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09	Value 8.9 7.9 7.9 7.9 9.9 8.9 11.8 10.8 9.9 7.9 11.8 10.8 6.9 8.9	8.4 7.9 9.4 11.3 8.9 11.3 7.9	Value 8.7 8.7 10.0 10.0 7.5 5.0 10.0 10.0 7.5 8.7 11.2 8.7 7.5	8.7 10.0 6.2 10.0 8.7 10.0	Value 9.4 8.2 9.4 7.1 10.6 8.2 9.4 10.6 13.0 7.1 8.2 7.1 9.4 8.2	8.8 8.2 9.4 9.4 11.8 7.7 8.2	Value 10.8 12.6 10.8 9.0 12.6 14.5 14.5 16.3 12.6 9.0 21.7 18.1 19.9 25.3	11.7 9.9 13.6 15.4 10.8 19.9 22.6	Value 18.9 17.7 10.6 9.4 9.4 8.2 9.4 10.6 10.6 11.8 14.1 5.9 8.2	18.3 10.0 8.8 10.0 11.2 14.1 7.1	Value 13.0 11.1 9.3 8.4 6.5 5.6 7.4 9.3 8.4 8.4 7.4 9.3	12.1 8.8 6.0 8.4 8.4 7.9 7.9	Value 6.5 7.9 3.6 5.1 5.1 5.8 6.5 5.8 7.9 7.9 5.8 5.1 6.5 5.8 5.1 5.1 6.5	7.2 4.3 5.4 6.1 7.9 5.4 5.8	Value 11.0 12.3 13.5 12.3 8.6 11.0 9.8 12.3 13.5 12.3 13.5 12.3 13.5 12.3 13.5	11.7 12.9 9.8 11.0 12.9 12.9
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09	Value 8.9 7.9 7.9 7.9 9.9 8.9 11.8 10.8 9.9 7.9 11.8 10.8 6.9 8.9 10.8 8.9	8.4 7.9 9.4 11.3 8.9 11.3 7.9 9.9	Value 8.7 8.7 10.0 10.0 7.5 5.0 10.0 10.0 7.5 8.7 11.2 8.7 7.5 8.7 11.2	8.7 10.0 6.2 10.0 8.7 10.0 8.1 8.1	Value 9.4 8.2 9.4 7.1 10.6 8.2 9.4 10.6 13.0 7.1 8.2 7.1 9.4 8.2 7.1	8.8 8.2 9.4 9.4 11.8 7.7 8.2 7.7	Value 10.8 12.6 10.8 9.0 12.6 14.5 14.5 16.3 12.6 9.0 21.7 18.1 19.9 25.3 19.9 16.3 10.8	11.7 9.9 13.6 15.4 10.8 19.9 22.6 18.1	Value 18.9 17.7 10.6 9.4 9.4 8.2 9.4 10.6 11.8 14.1 14.1 5.9 8.2 11.8 9.4 10.6	18.3 10.0 8.8 10.0 11.2 14.1 7.1	Value 13.0 11.1 9.3 8.4 6.5 5.6 7.4 9.3 8.4 8.4 7.4 9.3 7.4 4.6	12.1 8.8 6.0 8.4 8.4 7.9 7.9 8.4	Value 6.5 7.9 3.6 5.1 5.1 5.8 6.5 5.8 7.9 7.9 5.8 5.1 6.5 5.8 7.9 5.8 5.1 5.1 6.5 5.8	7.2 4.3 5.4 6.1 7.9 5.4 5.8 6.5	Value 11.0 12.3 13.5 12.3 8.6 11.0 9.8 12.3 13.5 12.3 13.5 12.3 13.5 12.3 13.5 12.3 13.5 12.3	11.7 12.9 9.8 11.0 12.9 12.9 12.9
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09	Value 8.9 7.9 7.9 7.9 9.9 8.9 11.8 10.8 9.9 11.8 10.8 6.9 8.9 10.8 8.9 7.9 9.9	8.4 7.9 9.4 11.3 8.9 11.3 7.9 9.9	Value 8.7 8.7 10.0 10.0 7.5 5.0 10.0 10.0 7.5 8.7 11.2 8.7 7.5 8.7 11.2 11.2	8.7 10.0 6.2 10.0 8.7 10.0 8.1 8.1 11.2	Value 9.4 8.2 9.4 7.1 10.6 8.2 9.4 10.6 13.0 7.1 8.2 7.1 9.4 8.2 7.1 9.4 7.1	8.8 8.2 9.4 9.4 11.8 7.7 8.2 7.7	Value 10.8 12.6 10.8 9.0 12.6 14.5 14.5 16.3 12.6 9.0 21.7 18.1 19.9 25.3 19.9 16.3 10.8	11.7 9.9 13.6 15.4 10.8 19.9 22.6 18.1	Value 18.9 17.7 10.6 9.4 9.4 8.2 9.4 10.6 11.8 14.1 14.1 5.9 8.2 11.8 9.4 10.6 9.4	18.3 10.0 8.8 10.0 11.2 14.1 7.1 10.6 10.0	Value 13.0 11.1 9.3 8.4 6.5 5.6 7.4 9.3 8.4 8.4 7.4 9.3 7.4 4.6 5.6	12.1 8.8 6.0 8.4 8.4 7.9 7.9 8.4	Value 6.5 7.9 3.6 5.1 5.8 6.5 5.8 7.9 7.9 5.8 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	7.2 4.3 5.4 6.1 7.9 5.4 5.8 6.5	Value 11.0 12.3 13.5 12.3 8.6 11.0 9.8 12.3 13.5 12.3 13.5 12.3 13.5 12.3 13.5 12.3 13.5 12.3 13.5 12.3	11.7 12.9 9.8 11.0 12.9 12.9 12.9
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09 10-Nov-09	Value 8.9 7.9 7.9 7.9 9.9 8.9 11.8 10.8 9.9 7.9 11.8 10.8 6.9 8.9 10.8 8.9	8.4 7.9 9.4 11.3 8.9 11.3 7.9 9.9	Value 8.7 8.7 10.0 10.0 7.5 5.0 10.0 10.0 7.5 8.7 11.2 8.7 7.5 8.7 11.2 11.2 7.5	8.7 10.0 6.2 10.0 8.7 10.0 8.1 8.1	Value 9.4 8.2 9.4 7.1 10.6 8.2 9.4 10.6 13.0 7.1 8.2 7.1 9.4 8.2 7.1	8.8 8.2 9.4 9.4 11.8 7.7 8.2 7.7 8.2	Value 10.8 12.6 10.8 9.0 12.6 14.5 14.5 16.3 12.6 9.0 21.7 18.1 19.9 25.3 19.9 16.3 10.8	11.7 9.9 13.6 15.4 10.8 19.9 22.6 18.1 12.6	Value 18.9 17.7 10.6 9.4 9.4 8.2 9.4 10.6 11.8 14.1 14.1 5.9 8.2 11.8 9.4 10.6	18.3 10.0 8.8 10.0 11.2 14.1 7.1	Value 13.0 11.1 9.3 8.4 6.5 5.6 7.4 9.3 8.4 8.4 7.4 9.3 7.4 9.3 7.4 6.6 5.6 8.4	12.1 8.8 6.0 8.4 8.4 7.9 7.9 8.4 5.1	Value 6.5 7.9 3.6 5.1 5.1 5.8 6.5 5.8 7.9 7.9 5.8 5.1 6.5 5.8 7.9 5.8 5.1 5.1 6.5 5.8	7.2 4.3 5.4 6.1 7.9 5.4 5.8 6.5	Value 11.0 12.3 13.5 12.3 8.6 11.0 9.8 12.3 13.5 12.3 13.5 12.3 13.5 12.3 13.5 12.3 13.5 12.3 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13	11.7 12.9 9.8 11.0 12.9 12.9 12.9 10.4 9.8
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09 10-Nov-09	Value 8.9 7.9 7.9 7.9 9.9 8.9 11.8 10.8 9.9 11.8 10.8 6.9 8.9 10.8 8.9 7.9 9.9 7.9 6.9	8.4 7.9 9.4 11.3 8.9 11.3 7.9 9.9 8.9 7.4	Value 8.7 8.7 10.0 10.0 7.5 5.0 10.0 10.0 7.5 8.7 11.2 8.7 7.5 8.7 11.2 11.2 7.5 6.2	8.7 10.0 6.2 10.0 8.7 10.0 8.1 8.1 11.2 6.8	Value 9.4 8.2 9.4 7.1 10.6 8.2 9.4 10.6 13.0 7.1 8.2 7.1 9.4 8.2 7.1 9.4 7.1 5.9 7.1	8.8 8.2 9.4 9.4 11.8 7.7 8.2 7.7 8.2 6.5	Value 10.8 12.6 10.8 9.0 12.6 14.5 14.5 16.3 12.6 9.0 21.7 18.1 19.9 25.3 10.8 14.5 18.1 14.5	11.7 9.9 13.6 15.4 10.8 19.9 22.6 18.1 12.6 16.3	Value 18.9 17.7 10.6 9.4 9.4 8.2 9.4 10.6 11.8 14.1 14.1 5.9 8.2 11.8 9.4 10.6 9.4 10.6 10.6	18.3 10.0 8.8 10.0 11.2 14.1 7.1 10.6 10.0	Value 13.0 11.1 9.3 8.4 6.5 5.6 7.4 9.3 8.4 8.4 7.4 8.4 7.4 9.3 7.4 4.6 5.6 8.4 9.3	12.1 8.8 6.0 8.4 8.4 7.9 7.9 8.4 5.1 8.8	Value 6.5 7.9 3.6 5.1 5.8 6.5 5.8 7.9 7.9 5.8 5.1 5.1 5.1 5.1 5.1 6.5 5.8 7.2 5.1 5.1 3.6 4.3	7.2 4.3 5.4 6.1 7.9 5.4 5.8 6.5 5.1 4.0	Value 11.0 12.3 13.5 12.3 8.6 11.0 9.8 12.3 13.5 12.3 13.5 12.3 13.5 12.3 13.5 11.0 9.8 9.8 9.8 13.5 12.3	11.7 12.9 9.8 11.0 12.9 12.9 12.9 10.4 9.8
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09 10-Nov-09	Value 8.9 7.9 7.9 7.9 9.9 8.9 11.8 10.8 9.9 11.8 10.8 6.9 8.9 10.8 8.9 7.9 9.9 7.9 6.9 5.9	8.4 7.9 9.4 11.3 8.9 11.3 7.9 9.9	Value 8.7 8.7 10.0 10.0 7.5 5.0 10.0 10.0 7.5 8.7 11.2 8.7 7.5 7.5 8.7 11.2 11.2 7.5 6.2 8.7	8.7 10.0 6.2 10.0 8.7 10.0 8.1 8.1 11.2	Value 9.4 8.2 9.4 7.1 10.6 8.2 9.4 10.6 13.0 7.1 8.2 7.1 9.4 8.2 7.1 9.4 7.1 5.9 7.1	8.8 8.2 9.4 9.4 11.8 7.7 8.2 7.7 8.2	Value 10.8 12.6 10.8 9.0 12.6 14.5 14.5 16.3 12.6 9.0 21.7 18.1 19.9 25.3 19.9 16.3 10.8 14.5 18.1 14.5	11.7 9.9 13.6 15.4 10.8 19.9 22.6 18.1 12.6	Value 18.9 17.7 10.6 9.4 9.4 8.2 9.4 10.6 11.8 14.1 14.1 5.9 8.2 11.8 9.4 10.6 9.4 10.6 9.4	18.3 10.0 8.8 10.0 11.2 14.1 7.1 10.6 10.0	Value 13.0 11.1 9.3 8.4 6.5 5.6 7.4 9.3 8.4 8.4 7.4 8.4 7.4 9.3 7.4 4.6 5.6 8.4 9.3 8.4	12.1 8.8 6.0 8.4 8.4 7.9 7.9 8.4 5.1	Value 6.5 7.9 3.6 5.1 5.8 6.5 5.8 7.9 7.9 5.8 5.1 5.1 6.5 5.1 5.1 6.5 5.8 7.2 5.1 5.1 3.6 4.3	7.2 4.3 5.4 6.1 7.9 5.4 5.8 6.5	Value 11.0 12.3 13.5 12.3 8.6 11.0 9.8 12.3 13.5 12.3 13.5 12.3 13.5 12.3 13.5 11.0 9.8 9.8 9.8 13.5 12.3 13.5	11.7 12.9 9.8 11.0 12.9 12.9 12.9 10.4 9.8
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 6-Nov-09 10-Nov-09 12-Nov-09	Value 8.9 7.9 7.9 7.9 9.9 8.9 11.8 10.8 9.9 11.8 10.8 6.9 8.9 10.8 8.9 7.9 6.9 5.9	8.4 7.9 9.4 11.3 8.9 11.3 7.9 9.9 8.9 7.4 5.9	Value 8.7 8.7 10.0 10.0 7.5 5.0 10.0 10.0 10.0 7.5 8.7 11.2 8.7 7.5 8.7 11.2 11.2 7.5 6.2 8.7 7.5	8.7 10.0 6.2 10.0 8.7 10.0 8.1 8.1 11.2 6.8 8.1	Value 9.4 8.2 9.4 7.1 10.6 8.2 9.4 10.6 13.0 7.1 8.2 7.1 9.4 8.2 7.1 9.4 8.2 7.1 9.4 8.2 7.1 5.9 7.1 9.4 8.2	8.8 8.2 9.4 9.4 11.8 7.7 8.2 7.7 8.2 6.5 8.8	Value 10.8 12.6 10.8 9.0 12.6 14.5 14.5 16.3 12.6 9.0 21.7 18.1 19.9 25.3 19.9 16.3 10.8 14.5 14.5 14.5 14.5	11.7 9.9 13.6 15.4 10.8 19.9 22.6 18.1 12.6 16.3 14.5	Value 18.9 17.7 10.6 9.4 9.4 8.2 9.4 10.6 11.8 14.1 14.1 5.9 8.2 11.8 9.4 10.6 9.4 10.6 10.6	18.3 10.0 8.8 10.0 11.2 14.1 7.1 10.6 10.0 10.6	Value 13.0 11.1 9.3 8.4 6.5 5.6 7.4 9.3 8.4 8.4 7.4 8.4 7.4 9.3 7.4 4.6 5.6 8.4 9.3 8.4 6.5	12.1 8.8 6.0 8.4 8.4 7.9 7.9 8.4 5.1 8.8 7.4	Value 6.5 7.9 3.6 5.1 5.8 6.5 5.8 7.9 7.9 5.8 5.1 6.5 5.1 6.5 5.1 6.5 5.1 6.5 5.1 6.5 5.1 5.1 6.5 5.1 5.1 6.5 5.1 5.1 5.1 5.1 5.1	7.2 4.3 5.4 6.1 7.9 5.4 5.8 6.5 5.1 4.0	Value 11.0 12.3 13.5 12.3 8.6 11.0 9.8 12.3 13.5 12.3 13.5 12.3 13.5 12.3 13.5 11.0 9.8 9.8 9.8 13.5 12.3 14.7	11.7 12.9 9.8 11.0 12.9 12.9 12.9 10.4 9.8 12.9 13.5
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09 10-Nov-09	Value 8.9 7.9 7.9 7.9 9.9 8.9 11.8 10.8 9.9 11.8 10.8 6.9 8.9 10.8 8.9 7.9 9.9 7.9 6.9 5.9	8.4 7.9 9.4 11.3 8.9 11.3 7.9 9.9 8.9 7.4	Value 8.7 8.7 10.0 10.0 7.5 5.0 10.0 10.0 7.5 8.7 11.2 8.7 7.5 7.5 8.7 11.2 11.2 7.5 6.2 8.7	8.7 10.0 6.2 10.0 8.7 10.0 8.1 8.1 11.2 6.8	Value 9.4 8.2 9.4 7.1 10.6 8.2 9.4 10.6 13.0 7.1 8.2 7.1 9.4 8.2 7.1 9.4 7.1 5.9 7.1	8.8 8.2 9.4 9.4 11.8 7.7 8.2 7.7 8.2 6.5	Value 10.8 12.6 10.8 9.0 12.6 14.5 14.5 16.3 12.6 9.0 21.7 18.1 19.9 25.3 19.9 16.3 10.8 14.5 18.1 14.5	11.7 9.9 13.6 15.4 10.8 19.9 22.6 18.1 12.6 16.3	Value 18.9 17.7 10.6 9.4 9.4 8.2 9.4 10.6 11.8 14.1 14.1 5.9 8.2 11.8 9.4 10.6 9.4 10.6 9.4	18.3 10.0 8.8 10.0 11.2 14.1 7.1 10.6 10.0	Value 13.0 11.1 9.3 8.4 6.5 5.6 7.4 9.3 8.4 8.4 7.4 8.4 7.4 9.3 7.4 4.6 5.6 8.4 9.3 8.4	12.1 8.8 6.0 8.4 8.4 7.9 7.9 8.4 5.1 8.8	Value 6.5 7.9 3.6 5.1 5.8 6.5 5.8 7.9 7.9 5.8 5.1 5.1 6.5 5.1 5.1 6.5 5.8 7.2 5.1 5.1 3.6 4.3	7.2 4.3 5.4 6.1 7.9 5.4 5.8 6.5 5.1 4.0	Value 11.0 12.3 13.5 12.3 8.6 11.0 9.8 12.3 13.5 12.3 13.5 12.3 13.5 12.3 13.5 11.0 9.8 9.8 9.8 13.5 12.3 13.5	11.7 12.9 9.8 11.0 12.9 12.9 12.9 10.4 9.8

Projected SS Monitoring Data (Wet Season) adjusted with Mean Variation Percentage of EPD Marine Monitoring Data (2006 - 2008)

Mid-flood	RW21		C1		C2		C3		C4		C5		C6		C7	
Date	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
21-Oct-09	12.3	11.0	9.8	9.8	11.0	10.4	11.0	11.7	13.5	14.1	17.2	17.8	7.4	8.0	7.4	8.0
	9.8		9.8		9.8	1	12.3		14.7	1	18.4		8.6	1 -	8.6	1 -
23-Oct-09	17.2	16.6	14.7	14.1	14.7	15.3	17.2	15.3	17.2	17.2	18.4	17.2	12.3	11.0	13.5	14.7
	16.0	1	13.5		16.0	1	13.5		17.2	1	16.0		9.8		16.0	
27-Oct-09	12.3	13.5	16.0	15.3	9.8	11.0	11.0	9.8	13.5	12.3	13.5	14.1	12.3	12.9	12.3	11.0
	14.7	1	14.7		12.3	1	8.6		11.0	1	14.7		13.5		9.8	
29-Oct-09	14.7	14.7	22.1	22.7	12.3	13.5	13.5	13.5	18.4	17.8	13.5	14.1	12.3	11.7	14.7	14.1
	14.7	1	23.3		14.7	1	13.5		17.2	1	14.7		11.0		13.5	
31-Oct-09	11.0	11.0	13.5	12.9	12.3	12.3	18.4	18.4	12.3	11.7	11.0	11.7	9.8	8.6	7.4	8.6
	11.0	1	12.3		12.3	1	18.4		11.0	1	12.3		7.4		9.8	
2-Nov-09	11.0	11.0	11.0	11.0	9.8	9.8	9.8	10.4	8.6	8.6	6.1	6.8	9.8	11.0	11.0	11.0
	11.0	1	11.0		9.8	1	11.0		8.6	1	7.4		12.3		11.0	
4-Nov-09	11.0	12.3	12.3	14.1	11.0	11.7	12.3	12.3	11.0	11.7	12.3	12.9	4.9	6.1	9.8	9.8
	13.5	1	16.0		12.3	1	12.3		12.3	1	13.5		7.4		9.8	
6-Nov-09	14.7	14.7	16.0	14.7	11.0	10.4	17.2	16.0	17.2	16.6	19.6	18.4	12.3	11.7	11.0	11.0
	14.7	1	13.5	1	9.8	1	14.7	1	16.0	1	17.2	1	11.0	1	11.0	1
10-Nov-09	12.3	13.5	11.0	10.4	13.5	12.9	14.7	14.1	12.3	12.9	12.3	12.3	8.6	8.6	9.8	8.6
	14.7		9.8	1	12.3	1	13.5		13.5	1	12.3		8.6		7.4	
12-Nov-09	11.0	11.0	12.3	12.3	12.3	12.3	12.3	12.3	13.5	13.5	12.3	11.7	12.3	13.5	9.8	11.0
	11.0		12.3		12.3	1	12.3	1	13.5	1	11.0		14.7		12.3	
14-Nov-09	8.6	9.2	7.4	8.6	11.0	12.3	14.7	13.5	14.7	16.0	19.6	17.8	9.8	9.2	8.6	8.6
	9.8	0.2	9.8	-	13.5	1 .2.0	12.3		17.2	1 .0.0	16.0		8.6	<u> </u>	8.6	0.0
16-Nov-09	7.4	8.0	6.1	6.8	9.8	8.6	7.4	8.0	14.7	13.5	7.4	7.4	7.4	8.6	11.0	11.0
101101 00	8.6	0.0	7.4	- o.o	7.4	0.0	8.6	0.0	12.3	10.0	7.4	1	9.8	0.0	11.0	11.0
<u> </u>				•												
Mid-Ebb	RW21		C1		C2		C3		C4		C5		C6		C7	
Mid-Ebb Date	RW21 Value	Average		Average	C2 Value	Average		Average		Average		Average	C6 Value	Average	C7 Value	Average
Date		Average 11.7	Value	Average 12.9	Value	Average 8.6	Value	Average 8.6	Value	Average 14.1	Value	Average 12.9			Value	
	Value 11.0		Value 12.3	Average 12.9	Value 9.8			Average 8.6	Value 13.5	Average 14.1	Value 12.3		Value	Average 9.2		Average 6.8
Date	Value 11.0 12.3		Value 12.3 13.5		Value		Value 9.8		Value 13.5 14.7		Value 12.3 13.5		Value 8.6		Value 6.1	6.8
Date 21-Oct-09	Value 11.0 12.3 12.3	11.7	Value 12.3 13.5 7.4	12.9	Value 9.8 7.4 17.2	8.6	9.8 7.4 12.3	8.6	Value 13.5 14.7 11.0	14.1	Value 12.3 13.5 13.5	12.9	Value 8.6 9.8	9.2	Value 6.1 7.4 9.8	
Date 21-Oct-09	Value 11.0 12.3 12.3 14.7	11.7	Value 12.3 13.5 7.4 6.1	12.9	Value 9.8 7.4	8.6	Value 9.8 7.4 12.3 12.3	8.6	Value 13.5 14.7 11.0 12.3	14.1	Value 12.3 13.5 13.5 16.0	12.9	Value 8.6 9.8 12.3	9.2	Value 6.1 7.4 9.8 7.4	(6.8) (8.6)
Date 21-Oct-09 23-Oct-09	Value 11.0 12.3 12.3	11.7	Value 12.3 13.5 7.4	12.9	Value 9.8 7.4 17.2 18.4	8.6 17.8	9.8 7.4 12.3	8.6	Value 13.5 14.7 11.0 12.3 9.8	14.1	Value 12.3 13.5 13.5	12.9	Value 8.6 9.8 12.3 9.8	9.2	Value 6.1 7.4 9.8	6.8
Date 21-Oct-09 23-Oct-09	Value 11.0 12.3 12.3 14.7 11.0 9.8	11.7 13.5 10.4	Value 12.3 13.5 7.4 6.1 4.9 6.1	12.9	Value 9.8 7.4 17.2 18.4 8.6 6.1	8.6 17.8	Value 9.8 7.4 12.3 12.3 7.4 4.9	8.6	Value 13.5 14.7 11.0 12.3 9.8 9.8	14.1 11.7 9.8	Value 12.3 13.5 13.5 16.0 9.8 9.8	12.9	Value 8.6 9.8 12.3 9.8 8.6	9.2	Value 6.1 7.4 9.8 7.4 6.1	6.8 8.6 6.1
Date 21-Oct-09 23-Oct-09 27-Oct-09	Value 11.0 12.3 12.3 14.7 11.0	11.7	Value 12.3 13.5 7.4 6.1 4.9 6.1 11.0	12.9 6.8 5.5	Value 9.8 7.4 17.2 18.4 8.6	8.6 17.8 7.4	Value 9.8 7.4 12.3 12.3 7.4	8.6 12.3 6.1	Value 13.5 14.7 11.0 12.3 9.8 9.8 8.6	14.1	Value 12.3 13.5 13.5 16.0 9.8 9.8 11.0	12.9 14.7 9.8	Value 8.6 9.8 12.3 9.8 8.6 8.6	9.2	Value 6.1 7.4 9.8 7.4 6.1	(6.8) (8.6)
Date 21-Oct-09 23-Oct-09 27-Oct-09	Value 11.0 12.3 12.3 14.7 11.0 9.8 11.0 11.0	11.7 13.5 10.4 11.0	Value 12.3 13.5 7.4 6.1 4.9 6.1 11.0 12.3	12.9 6.8 5.5	Value 9.8 7.4 17.2 18.4 8.6 6.1 12.3	8.6 17.8 7.4	Value 9.8 7.4 12.3 12.3 7.4 4.9 13.5 12.3	8.6 12.3 6.1	Value 13.5 14.7 11.0 12.3 9.8 9.8 8.6 7.4	14.1 11.7 9.8 8.0	Value 12.3 13.5 13.5 16.0 9.8 9.8 11.0 13.5	12.9 14.7 9.8	Value 8.6 9.8 12.3 9.8 8.6 8.6 11.0 9.8	9.2 (11.0 (8.6) (10.4)	Value 6.1 7.4 9.8 7.4 6.1 6.1 9.8 8.6	6.8 8.6 6.1
Date 21-Oct-09 23-Oct-09 27-Oct-09	Value 11.0 12.3 12.3 14.7 11.0 9.8 11.0	11.7 13.5 10.4	Value 12.3 13.5 7.4 6.1 4.9 6.1 11.0	12.9 6.8 5.5	Value 9.8 7.4 17.2 18.4 8.6 6.1 12.3 9.8	7.4 11.0	Value 9.8 7.4 12.3 12.3 7.4 4.9 13.5	8.6 12.3 6.1 12.9	Value 13.5 14.7 11.0 12.3 9.8 9.8 8.6	14.1 11.7 9.8	Value 12.3 13.5 13.5 16.0 9.8 9.8 11.0	12.9 14.7 9.8 12.3	Value 8.6 9.8 12.3 9.8 8.6 8.6 11.0	9.2	Value 6.1 7.4 9.8 7.4 6.1 6.1 9.8	6.8 8.6 6.1
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09	Value 11.0 12.3 12.3 14.7 11.0 9.8 11.0 11.0 12.3 12.3	11.7 13.5 10.4 11.0 12.3	Value 12.3 13.5 7.4 6.1 4.9 6.1 11.0 12.3 12.3 11.0	12.9 6.8 5.5 11.7	Value 9.8 7.4 17.2 18.4 8.6 6.1 12.3 9.8 11.0	7.4 11.0	Value 9.8 7.4 12.3 12.3 7.4 4.9 13.5 12.3 13.5	8.6 12.3 6.1 12.9	Value 13.5 14.7 11.0 12.3 9.8 9.8 8.6 7.4 12.3 12.3	14.1 11.7 9.8 8.0 12.3	Value 12.3 13.5 13.5 16.0 9.8 9.8 11.0 13.5 14.7 12.3	12.9 14.7 9.8 12.3	Value 8.6 9.8 12.3 9.8 8.6 11.0 9.8 14.7	9.2 (11.0) (8.6) (10.4) (13.5)	Value 6.1 7.4 9.8 7.4 6.1 6.1 9.8 8.6 7.4	6.8 8.6 6.1 9.2 6.8
Date 21-Oct-09 23-Oct-09 27-Oct-09	Value 11.0 12.3 12.3 14.7 11.0 9.8 11.0 11.0 12.3	11.7 13.5 10.4 11.0	Value 12.3 13.5 7.4 6.1 4.9 6.1 11.0 12.3 12.3	12.9 6.8 5.5	Value 9.8 7.4 17.2 18.4 8.6 6.1 12.3 9.8 11.0 9.8	8.6 17.8 7.4 11.0	Value 9.8 7.4 12.3 12.3 7.4 4.9 13.5 12.3 13.5 11.0	8.6 12.3 6.1 12.9 12.3	Value 13.5 14.7 11.0 12.3 9.8 9.8 8.6 7.4 12.3 12.3 16.0	14.1 11.7 9.8 8.0	Value 12.3 13.5 13.5 16.0 9.8 9.8 11.0 13.5 14.7	12.9 14.7 9.8 12.3	Value 8.6 9.8 12.3 9.8 8.6 8.6 11.0 9.8 14.7 12.3	9.2 (11.0 (8.6) (10.4)	Value 6.1 7.4 9.8 7.4 6.1 6.1 9.8 8.6 7.4 6.1	6.8 8.6 6.1
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09	Value 11.0 12.3 12.3 14.7 11.0 9.8 11.0 11.0 12.3 12.3 9.8	11.7 13.5 10.4 11.0 12.3	Value 12.3 13.5 7.4 6.1 4.9 6.1 11.0 12.3 12.3 11.0 13.5	12.9 6.8 5.5 11.7	Value 9.8 7.4 17.2 18.4 8.6 6.1 12.3 9.8 11.0 9.8 12.3	8.6 17.8 7.4 11.0	Value 9.8 7.4 12.3 12.3 7.4 4.9 13.5 12.3 13.5 11.0 14.7	8.6 12.3 6.1 12.9 12.3	Value 13.5 14.7 11.0 12.3 9.8 9.8 8.6 7.4 12.3 12.3 16.0 14.7	14.1 11.7 9.8 8.0 12.3	Value 12.3 13.5 13.5 16.0 9.8 9.8 11.0 13.5 14.7 12.3 14.7 16.0	12.9 14.7 9.8 12.3	Value 8.6 9.8 12.3 9.8 8.6 8.6 11.0 9.8 14.7 12.3 12.3	9.2 (11.0) (8.6) (10.4) (13.5)	Value 6.1 7.4 9.8 7.4 6.1 6.1 9.8 8.6 7.4 6.1 11.0	6.8 8.6 6.1 9.2 6.8
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09	Value 11.0 12.3 12.3 14.7 11.0 9.8 11.0 11.0 12.3 12.3 9.8 11.0	11.7 13.5 10.4 11.0 12.3	Value 12.3 13.5 7.4 6.1 4.9 6.1 11.0 12.3 12.3 11.0 13.5 11.0 7.4	12.9 6.8 5.5 11.7 11.7	Value 9.8 7.4 17.2 18.4 8.6 6.1 12.3 9.8 11.0 9.8 12.3 12.3	8.6 17.8 7.4 11.0 10.4 12.3	Value 9.8 7.4 12.3 12.3 7.4 4.9 13.5 12.3 13.5 11.0 14.7 17.2	8.6 12.3 6.1 12.9 12.3 16.0	Value 13.5 14.7 11.0 12.3 9.8 9.8 8.6 7.4 12.3 12.3 16.0	14.1 11.7 9.8 8.0 12.3 15.3	Value 12.3 13.5 13.5 16.0 9.8 9.8 11.0 13.5 14.7 12.3	12.9 14.7 9.8 12.3 13.5	Value 8.6 9.8 12.3 9.8 8.6 8.6 11.0 9.8 14.7 12.3 12.3 9.8	9.2 (11.0) (8.6) (10.4) (13.5) (11.0)	Value 6.1 7.4 9.8 7.4 6.1 6.1 9.8 8.6 7.4 6.1 11.0 9.8 12.3	6.8 8.6 6.1 9.2 6.8
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09	Value 11.0 12.3 12.3 14.7 11.0 9.8 11.0 12.3 12.3 12.3 12.3 12.3 12.3 11.0	11.7 13.5 10.4 11.0 12.3	Value 12.3 13.5 7.4 6.1 4.9 6.1 11.0 12.3 12.3 11.0 7.4 9.8	12.9 6.8 5.5 11.7 11.7	Value 9.8 7.4 17.2 18.4 8.6 6.1 12.3 9.8 11.0 9.8 12.3 9.8	8.6 17.8 7.4 11.0 10.4 12.3	Value 9.8 7.4 12.3 12.3 7.4 4.9 13.5 12.3 13.5 11.0 14.7 17.2 9.8	8.6 12.3 6.1 12.9 12.3 16.0	Value 13.5 14.7 11.0 12.3 9.8 9.8 8.6 7.4 12.3 12.3 16.0 14.7 16.0 17.2	14.1 11.7 9.8 8.0 12.3 15.3	Value 12.3 13.5 13.5 16.0 9.8 9.8 11.0 13.5 14.7 12.3 14.7 16.0 13.5 17.2	12.9 14.7 9.8 12.3 13.5	Value 8.6 9.8 12.3 9.8 8.6 8.6 11.0 9.8 14.7 12.3 12.3 9.8 7.4	9.2 (11.0) (8.6) (10.4) (13.5) (11.0) (7.4)	Value 6.1 7.4 9.8 7.4 6.1 6.1 9.8 8.6 7.4 6.1 11.0 9.8	6.8 8.6 6.1 9.2 6.8 10.4
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09	Value 11.0 12.3 12.3 14.7 11.0 9.8 11.0 12.3 12.3 12.3 12.3 12.3 12.3 12.3 13.5	11.7 13.5 10.4 11.0 12.3 10.4	Value 12.3 13.5 7.4 6.1 4.9 6.1 11.0 12.3 12.3 11.0 13.5 11.0 7.4 9.8 7.4	12.9 6.8 5.5 11.7 11.7 12.3 8.6	Value 9.8 7.4 17.2 18.4 8.6 6.1 12.3 9.8 11.0 9.8 11.0 8.6	8.6 17.8 7.4 11.0 10.4 12.3	Value 9.8 7.4 12.3 12.3 7.4 4.9 13.5 12.3 13.5 11.0 14.7 17.2 9.8 11.0 8.6	8.6 12.3 6.1 12.9 12.3 16.0	Value 13.5 14.7 11.0 12.3 9.8 9.8 8.6 7.4 12.3 12.3 16.0 14.7 16.0 17.2 11.0	14.1 11.7 9.8 8.0 12.3 15.3	Value 12.3 13.5 13.5 16.0 9.8 9.8 11.0 13.5 14.7 12.3 14.7 16.0 13.5 17.2 13.5	12.9 14.7 9.8 12.3 13.5 15.3	Value 8.6 9.8 12.3 9.8 8.6 8.6 11.0 9.8 14.7 12.3 9.8 7.4 7.4	9.2 (11.0) (8.6) (10.4) (13.5) (11.0)	Value 6.1 7.4 9.8 7.4 6.1 6.1 9.8 8.6 7.4 6.1 11.0 9.8 12.3 9.8 11.0	6.8 8.6 6.1 9.2 6.8
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09	Value 11.0 12.3 12.3 14.7 11.0 9.8 11.0 11.0 12.3 12.3 12.3 13.5 11.0 13.5 11.0	11.7 13.5 10.4 11.0 12.3 10.4 11.7	Value 12.3 13.5 7.4 6.1 4.9 6.1 11.0 12.3 12.3 11.0 13.5 11.0 7.4 9.8 7.4 7.4	12.9 6.8 5.5 11.7 11.7 12.3 8.6 7.4	Value 9.8 7.4 17.2 18.4 8.6 6.1 12.3 9.8 11.0 9.8 11.0 8.6 11.0	8.6 17.8 7.4 11.0 10.4 12.3 10.4 9.8	Value 9.8 7.4 12.3 12.3 7.4 4.9 13.5 12.3 13.5 11.0 14.7 17.2 9.8 11.0 8.6 7.4	8.6 12.3 6.1 12.9 12.3 16.0 10.4	Value 13.5 14.7 11.0 12.3 9.8 9.8 8.6 7.4 12.3 16.0 14.7 16.0 17.2 11.0 12.3	14.1 11.7 9.8 8.0 12.3 15.3 16.6	Value 12.3 13.5 13.5 16.0 9.8 9.8 11.0 13.5 14.7 12.3 14.7 16.0 13.5 17.2 13.5 14.7	12.9 14.7 9.8 12.3 13.5 15.3 15.3	Value 8.6 9.8 12.3 9.8 8.6 8.6 11.0 9.8 14.7 12.3 12.3 9.8 7.4 7.4 9.8 9.8	9.2 (11.0) (8.6) (10.4) (13.5) (11.0) (7.4) (9.8)	Value 6.1 7.4 9.8 7.4 6.1 6.1 9.8 8.6 7.4 6.1 11.0 9.8 12.3 9.8 11.0 8.6	6.8 8.6 6.1 9.2 6.8 10.4 11.0 9.8
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09	Value 11.0 12.3 14.7 11.0 9.8 11.0 11.0 12.3 12.3 14.7 11.0 11.0 11.0 12.3 11.0 13.5 11.0 11.0	11.7 13.5 10.4 11.0 12.3 10.4	Value 12.3 13.5 7.4 6.1 4.9 6.1 11.0 12.3 12.3 11.0 13.5 11.0 7.4 9.8 7.4 9.8	12.9 6.8 5.5 11.7 11.7 12.3 8.6	Value 9.8 7.4 17.2 18.4 8.6 6.1 12.3 9.8 11.0 9.8 12.3 12.3 9.8 11.0 6.1	8.6 17.8 7.4 11.0 10.4 12.3	Value 9.8 7.4 12.3 12.3 7.4 4.9 13.5 12.3 13.5 11.0 14.7 17.2 9.8 11.0 8.6 7.4 7.4	8.6 12.3 6.1 12.9 12.3 16.0	Value 13.5 14.7 11.0 12.3 9.8 9.8 8.6 7.4 12.3 12.3 16.0 14.7 16.0 17.2 11.0 12.3 7.4	14.1 11.7 9.8 8.0 12.3 15.3	Value 12.3 13.5 13.5 16.0 9.8 9.8 11.0 13.5 14.7 12.3 14.7 16.0 13.5 17.2 13.5 14.7 9.8	12.9 14.7 9.8 12.3 13.5 15.3	Value 8.6 9.8 12.3 9.8 8.6 8.6 11.0 9.8 14.7 12.3 12.3 9.8 7.4 7.4 9.8	9.2 (11.0) (8.6) (10.4) (13.5) (11.0) (7.4)	Value 6.1 7.4 9.8 7.4 6.1 6.1 9.8 8.6 7.4 6.1 11.0 9.8 12.3 9.8 11.0 8.6 8.6	6.8 8.6 6.1 9.2 6.8 10.4
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09 10-Nov-09	Value 11.0 12.3 12.3 14.7 11.0 9.8 11.0 12.3 12.3 12.3 12.3 12.3 11.0 12.3 11.0 12.3 11.0 13.5 11.0 13.6	11.7 13.5 10.4 11.0 12.3 10.4 11.7 12.3 9.8	Value 12.3 13.5 7.4 6.1 4.9 6.1 11.0 12.3 12.3 11.0 13.5 11.0 7.4 9.8 7.4 9.8 9.8	12.9 6.8 5.5 11.7 11.7 12.3 8.6 7.4 9.8	Value 9.8 7.4 17.2 18.4 8.6 6.1 12.3 9.8 11.0 9.8 12.3 12.3 12.3 9.8 11.0 6.1 6.1	8.6 17.8 7.4 11.0 10.4 12.3 10.4 9.8 6.1	Value 9.8 7.4 12.3 12.3 7.4 4.9 13.5 12.3 13.5 11.0 14.7 17.2 9.8 11.0 8.6 7.4 7.4 7.4	8.6 12.3 6.1 12.9 12.3 16.0 10.4 8.0 7.4	Value 13.5 14.7 11.0 12.3 9.8 9.8 8.6 7.4 12.3 12.3 16.0 14.7 16.0 17.2 11.0 12.3 7.4 8.6	14.1 11.7 9.8 8.0 12.3 15.3 16.6 11.7	Value 12.3 13.5 13.5 16.0 9.8 9.8 11.0 13.5 14.7 12.3 14.7 16.0 13.5 17.2 13.5 14.7 9.8 9.8	12.9 14.7 9.8 12.3 13.5 15.3 15.3 14.1 9.8	Value 8.6 9.8 12.3 9.8 8.6 8.6 11.0 9.8 14.7 12.3 12.3 9.8 7.4 7.4 9.8 9.8 11.0 8.6	9.2 11.0 8.6 10.4 13.5 11.0 7.4 9.8 9.8	Value 6.1 7.4 9.8 7.4 6.1 6.1 9.8 8.6 7.4 6.1 11.0 9.8 12.3 9.8 11.0 8.6 8.6 8.6	6.8 8.6 6.1 9.2 6.8 10.4 11.0 9.8 8.6
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09	Value 11.0 12.3 12.3 14.7 11.0 9.8 11.0 12.3 12.3 12.3 12.3 12.3 12.3 11.0 12.3 11.0 12.3 11.0 12.3 11.0 12.3	11.7 13.5 10.4 11.0 12.3 10.4 11.7	Value 12.3 13.5 7.4 6.1 4.9 6.1 11.0 12.3 12.3 11.0 13.5 11.0 7.4 9.8 9.8 7.4 7.4	12.9 6.8 5.5 11.7 11.7 12.3 8.6 7.4	Value 9.8 7.4 17.2 18.4 8.6 6.1 12.3 9.8 11.0 9.8 12.3 12.3 12.3 9.8 11.0 6.1 6.1 8.6	8.6 17.8 7.4 11.0 10.4 12.3 10.4 9.8	Value 9.8 7.4 12.3 12.3 7.4 4.9 13.5 12.3 13.5 11.0 14.7 17.2 9.8 11.0 8.6 7.4 7.4 8.6	8.6 12.3 6.1 12.9 12.3 16.0 10.4	Value 13.5 14.7 11.0 12.3 9.8 9.8 8.6 7.4 12.3 12.3 16.0 14.7 16.0 17.2 11.0 12.3 7.4 8.6 9.8	14.1 11.7 9.8 8.0 12.3 15.3 16.6	Value 12.3 13.5 13.5 16.0 9.8 9.8 11.0 13.5 14.7 12.3 14.7 16.0 13.5 17.2 13.5 14.7 9.8 9.8 19.6	12.9 14.7 9.8 12.3 13.5 15.3 15.3	Value 8.6 9.8 12.3 9.8 8.6 8.6 11.0 9.8 14.7 12.3 12.3 9.8 7.4 7.4 9.8 9.8 11.0 8.6 8.6	9.2 (11.0) (8.6) (10.4) (13.5) (11.0) (7.4) (9.8)	Value 6.1 7.4 9.8 7.4 6.1 6.1 9.8 8.6 7.4 6.1 11.0 9.8 12.3 9.8 11.0 8.6 8.6 8.6	6.8 8.6 6.1 9.2 6.8 10.4 11.0 9.8
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09 10-Nov-09	Value 11.0 12.3 12.3 14.7 11.0 9.8 11.0 12.3 12.3 9.8 11.0 12.3 11.0 12.3 11.0 12.3 11.0 13.5 11.0 13.5 11.0 11.0 8.6 12.3 13.5	11.7 13.5 10.4 11.0 12.3 10.4 11.7 12.3 9.8	Value 12.3 13.5 7.4 6.1 4.9 6.1 11.0 12.3 12.3 11.0 13.5 11.0 7.4 9.8 7.4 9.8 9.8	12.9 6.8 5.5 11.7 11.7 12.3 8.6 7.4 9.8 8.6	Value 9.8 7.4 17.2 18.4 8.6 6.1 12.3 9.8 11.0 9.8 12.3 12.3 9.8 11.0 6.1 6.1 8.6 8.6	8.6 17.8 7.4 11.0 10.4 12.3 10.4 9.8 6.1 8.6	Value 9.8 7.4 12.3 12.3 7.4 4.9 13.5 12.3 13.5 11.0 14.7 17.2 9.8 11.0 8.6 7.4 7.4 7.4 8.6 9.8	8.6 12.3 6.1 12.9 12.3 16.0 10.4 8.0 7.4 9.2	Value 13.5 14.7 11.0 12.3 9.8 9.8 8.6 7.4 12.3 16.0 14.7 16.0 17.2 11.0 12.3 7.4 8.6 9.8 12.3	14.1 11.7 9.8 8.0 12.3 15.3 16.6 11.7 8.0	Value 12.3 13.5 13.5 16.0 9.8 9.8 11.0 13.5 14.7 12.3 14.7 16.0 13.5 17.2 13.5 14.7 9.8 9.8 19.6 17.2	12.9 14.7 9.8 12.3 13.5 15.3 15.3 14.1 9.8	Value 8.6 9.8 12.3 9.8 8.6 8.6 11.0 9.8 14.7 12.3 12.3 9.8 7.4 7.4 9.8 9.8 11.0 8.6 8.6 7.4	9.2 11.0 8.6 10.4 13.5 11.0 7.4 9.8 9.8 8.0	Value 6.1 7.4 9.8 7.4 6.1 6.1 9.8 8.6 7.4 6.1 11.0 9.8 12.3 9.8 11.0 8.6 8.6 8.6 4.9	6.8 8.6 6.1 9.2 6.8 10.4 11.0 9.8 8.6 6.8
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09 10-Nov-09	Value 11.0 12.3 12.3 14.7 11.0 9.8 11.0 12.3 12.3 9.8 11.0 12.3 11.0 12.3 11.0 12.3 11.0 13.5 11.0 13.5 13.5	11.7 13.5 10.4 11.0 12.3 10.4 11.7 12.3 9.8	Value 12.3 13.5 7.4 6.1 4.9 6.1 11.0 12.3 12.3 11.0 13.5 11.0 7.4 9.8 7.4 9.8 9.8 7.4 9.8 11.0	12.9 6.8 5.5 11.7 11.7 12.3 8.6 7.4 9.8	Value 9.8 7.4 17.2 18.4 8.6 6.1 12.3 9.8 11.0 9.8 12.3 12.3 9.8 11.0 6.1 6.1 8.6 8.6 12.3	8.6 17.8 7.4 11.0 10.4 12.3 10.4 9.8 6.1	Value 9.8 7.4 12.3 12.3 7.4 4.9 13.5 12.3 13.5 11.0 14.7 17.2 9.8 11.0 8.6 7.4 7.4 8.6 9.8 11.0	8.6 12.3 6.1 12.9 12.3 16.0 10.4 8.0 7.4	Value 13.5 14.7 11.0 12.3 9.8 9.8 8.6 7.4 12.3 16.0 14.7 16.0 17.2 11.0 12.3 7.4 8.6 9.8 12.3 13.5	14.1 11.7 9.8 8.0 12.3 15.3 16.6 11.7	Value 12.3 13.5 13.5 16.0 9.8 9.8 11.0 13.5 14.7 12.3 14.7 16.0 13.5 17.2 13.5 14.7 9.8 9.8 19.6 17.2 13.5	12.9 14.7 9.8 12.3 13.5 15.3 15.3 14.1 9.8	Value 8.6 9.8 12.3 9.8 8.6 8.6 11.0 9.8 14.7 12.3 12.3 9.8 7.4 7.4 9.8 9.8 11.0 8.6 8.6 7.4 12.3	9.2 11.0 8.6 10.4 13.5 11.0 7.4 9.8 9.8	Value 6.1 7.4 9.8 7.4 6.1 6.1 9.8 8.6 7.4 6.1 11.0 9.8 12.3 9.8 11.0 8.6 8.6 8.6 4.9 6.1	6.8 8.6 6.1 9.2 6.8 10.4 11.0 9.8 8.6
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 6-Nov-09 10-Nov-09 12-Nov-09	Value 11.0 12.3 12.3 14.7 11.0 9.8 11.0 12.3 12.3 9.8 11.0 12.3 11.0 12.3 11.0 13.5 11.0 8.6 12.3 13.5 13.5	11.7 13.5 10.4 11.0 12.3 10.4 11.7 12.3 9.8 12.9	Value 12.3 13.5 7.4 6.1 4.9 6.1 11.0 12.3 12.3 11.0 7.4 9.8 7.4 9.8 9.8 7.4 9.8 11.0 13.5	12.9 6.8 5.5 11.7 11.7 12.3 8.6 7.4 9.8 8.6	Value 9.8 7.4 17.2 18.4 8.6 6.1 12.3 9.8 11.0 9.8 12.3 12.3 9.8 11.0 8.6 11.0 6.1 8.6 12.3 11.0	8.6 17.8 7.4 11.0 10.4 12.3 10.4 9.8 6.1 8.6	Value 9.8 7.4 12.3 12.3 7.4 4.9 13.5 12.3 13.5 11.0 14.7 17.2 9.8 11.0 8.6 7.4 7.4 8.6 9.8 11.0 12.3	8.6 12.3 6.1 12.9 12.3 16.0 10.4 8.0 7.4 9.2	Value 13.5 14.7 11.0 12.3 9.8 9.8 8.6 7.4 12.3 16.0 14.7 16.0 17.2 11.0 12.3 7.4 8.6 9.8 12.3 13.5 16.0	14.1 11.7 9.8 8.0 12.3 15.3 16.6 11.7 8.0 11.0 14.7	Value 12.3 13.5 13.5 16.0 9.8 9.8 11.0 13.5 14.7 12.3 14.7 16.0 13.5 17.2 13.5 14.7 9.8 9.8 19.6 17.2 13.5 12.3	12.9 14.7 9.8 12.3 13.5 15.3 15.3 14.1 9.8 18.4	Value 8.6 9.8 12.3 9.8 8.6 8.6 11.0 9.8 14.7 12.3 9.8 7.4 7.4 9.8 9.8 11.0 8.6 8.6 7.4 12.3 9.8	9.2 11.0 8.6 10.4 13.5 11.0 7.4 9.8 9.8 8.0 11.0	Value 6.1 7.4 9.8 7.4 6.1 6.1 9.8 8.6 7.4 6.1 11.0 9.8 12.3 9.8 11.0 8.6 8.6 8.6 4.9 6.1 7.4	6.8 8.6 6.1 9.2 6.8 10.4 11.0 9.8 8.6 6.8
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09 10-Nov-09	Value 11.0 12.3 12.3 14.7 11.0 9.8 11.0 12.3 12.3 9.8 11.0 12.3 11.0 12.3 11.0 12.3 11.0 13.5 11.0 13.5 13.5	11.7 13.5 10.4 11.0 12.3 10.4 11.7 12.3 9.8	Value 12.3 13.5 7.4 6.1 4.9 6.1 11.0 12.3 12.3 11.0 13.5 11.0 7.4 9.8 7.4 9.8 9.8 7.4 9.8 11.0	12.9 6.8 5.5 11.7 11.7 12.3 8.6 7.4 9.8 8.6	Value 9.8 7.4 17.2 18.4 8.6 6.1 12.3 9.8 11.0 9.8 12.3 12.3 9.8 11.0 6.1 6.1 8.6 8.6 12.3	8.6 17.8 7.4 11.0 10.4 12.3 10.4 9.8 6.1 8.6	Value 9.8 7.4 12.3 12.3 7.4 4.9 13.5 12.3 13.5 11.0 14.7 17.2 9.8 11.0 8.6 7.4 7.4 8.6 9.8 11.0	8.6 12.3 6.1 12.9 12.3 16.0 10.4 8.0 7.4 9.2	Value 13.5 14.7 11.0 12.3 9.8 9.8 8.6 7.4 12.3 16.0 14.7 16.0 17.2 11.0 12.3 7.4 8.6 9.8 12.3 13.5	14.1 11.7 9.8 8.0 12.3 15.3 16.6 11.7 8.0	Value 12.3 13.5 13.5 16.0 9.8 9.8 11.0 13.5 14.7 12.3 14.7 16.0 13.5 17.2 13.5 14.7 9.8 9.8 19.6 17.2 13.5	12.9 14.7 9.8 12.3 13.5 15.3 15.3 14.1 9.8	Value 8.6 9.8 12.3 9.8 8.6 8.6 11.0 9.8 14.7 12.3 12.3 9.8 7.4 7.4 9.8 9.8 11.0 8.6 8.6 7.4 12.3	9.2 11.0 8.6 10.4 13.5 11.0 7.4 9.8 9.8 8.0	Value 6.1 7.4 9.8 7.4 6.1 6.1 9.8 8.6 7.4 6.1 11.0 9.8 12.3 9.8 11.0 8.6 8.6 8.6 4.9 6.1	6.8 8.6 6.1 9.2 6.8 10.4 11.0 9.8 8.6 6.8

Projected SS Monitoring Data (Wet Season) adjusted with Mean Variation Percentage of EPD Marine Monitoring Data (2006 - 2008)

Mid-flood	C8		C9		RC1		RC5		RC7	
Date	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
21-Oct-09	14.9	13.7	13.7	13.7	8.6	8.6	18.4	17.2	9.8	9.8
ľ	12.4	1	13.7	1	8.6		16.0		9.8	
23-Oct-09	26.1	24.3	28.6	26.8	12.3	12.3	14.7	13.5	13.5	14.7
l t	22.4	1	24.9	1	12.3	1	12.3	1	16.0	
27-Oct-09	18.7	17.4	28.6	28.6	9.8	9.2	13.5	14.1	30.7	28.9
	16.2	1	28.6		8.6	1	14.7	1	27.0	
29-Oct-09	19.9	19.9	28.6	29.2	17.2	16.0	14.7	14.1	11.0	11.0
	19.9	1	29.9	1	14.7	1	13.5	1	11.0	1
31-Oct-09	17.4	16.8	23.6	23.0	11.0	11.7	9.8	9.2	8.6	8.6
	16.2	1	22.4	1	12.3	1	8.6	I	8.6	1
2-Nov-09	12.4	12.4	12.4	13.1	9.8	9.2	11.0	9.8	8.6	8.0
	12.4		13.7	1	8.6	V	8.6	0.0	7.4	0.0
4-Nov-09	16.2	15.6	17.4	17.4	9.8	9.8	12.3	12.3	9.8	9.2
1100 00	14.9	10.0	17.4	1	9.8	5.0	12.3	12.0	8.6	J.2
6-Nov-09	23.6	21.8	14.9	14.9	19.6	19.0	14.7	14.1	11.0	11.0
0-1404-09	19.9	21.0	14.9	14.5	18.4	19.0	13.5	14.1	11.0	11.0
10-Nov-09	17.4	15.6	16.2	16.2	11.0	11.7	9.8	9.8	7.4	8.0
10-1104-09	13.7	13.0	16.2	10.2	12.3	' ' ' '	9.8	9.0	8.6	0.0
12-Nov-09	29.9	27.4	22.4	23.0	7.4	8.6	12.3	11.7	7.4	8.0
12-1100-09	24.9	27.4	23.6	23.0	9.8	0.0	11.0	11.7	8.6	0.0
14-Nov-09	17.4	18.0	19.9	18.7	13.5	15.3	9.8	11.0	12.3	12.3
14-1100-09	18.7	16.0		10.7		15.5		11.0		12.3
16-Nov-09		7.5	17.4	7.5	17.2	7.4	12.3	0.0	12.3	0.0
16-NOV-09	8.7	7.5	7.5	7.5	6.1	7.4	7.4	8.0	8.6	8.0
	6.2		7.5		8.6		8.6		7.4	J
Mid-Ebb	C8		C9		RC1		RC5		RC7	
Mid-Ebb Date	C8 Value	Average	C9 Value	Average	RC1 Value	Average	RC5 Value	Average	RC7 Value	Average
		Average 13.7		Average 23.0		Average 9.2		Average 10.4		Average 6.8
Date	Value		Value		Value		Value		Value	
Date	Value 12.4		Value 24.9 21.2		Value 8.6		Value 9.8		Value 7.4	
Date 21-Oct-09	Value 12.4 14.9	13.7	Value 24.9	23.0	Value 8.6 9.8	9.2	Value 9.8 11.0	10.4	Value 7.4 6.1	6.8
Date 21-Oct-09	Value 12.4 14.9 16.2	13.7	Value 24.9 21.2 12.4	23.0	Value 8.6 9.8 8.6	9.2	9.8 11.0 8.6	10.4	7.4 6.1 16.0	6.8
Date 21-Oct-09 23-Oct-09	Value 12.4 14.9 16.2 14.9	13.7 15.6	Value 24.9 21.2 12.4 16.2	23.0	Value 8.6 9.8 8.6 7.4	9.2 8.0	Value 9.8 11.0 8.6 8.6	10.4 8.6	Value 7.4 6.1 16.0 14.7	6.8 15.3
Date 21-Oct-09 23-Oct-09	Value 12.4 14.9 16.2 14.9 11.2	13.7 15.6	Value 24.9 21.2 12.4 16.2 12.4	23.0	Value 8.6 9.8 8.6 7.4 7.4	9.2 8.0	Value 9.8 11.0 8.6 8.6 6.1	10.4 8.6	Value 7.4 6.1 16.0 14.7 12.3	6.8 15.3
Date 21-Oct-09 23-Oct-09 27-Oct-09	Value 12.4 14.9 16.2 14.9 11.2	13.7 15.6 11.2	Value 24.9 21.2 12.4 16.2 12.4 12.4	23.0 14.3 12.4	Value 8.6 9.8 8.6 7.4 7.4 4.9 11.0	9.2 8.0 6.1	Value 9.8 11.0 8.6 8.6 6.1 7.4	8.6 6.8	Value 7.4 6.1 16.0 14.7 12.3 12.3	6.8 15.3 12.3
Date 21-Oct-09 23-Oct-09 27-Oct-09	Value 12.4 14.9 16.2 14.9 11.2 11.2 14.9	13.7 15.6 11.2	Value 24.9 21.2 12.4 16.2 12.4 16.2 16.2 16.2	23.0 14.3 12.4	Value 8.6 9.8 8.6 7.4 7.4 4.9 11.0 12.3	9.2 8.0 6.1	Value 9.8 11.0 8.6 8.6 6.1 7.4 12.3 11.0	8.6 6.8	Value 7.4 6.1 16.0 14.7 12.3 12.3 12.3 9.8	6.8 15.3 12.3
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09	Value 12.4 14.9 16.2 14.9 11.2 11.2 14.9 14.9	13.7 15.6 11.2 14.9	Value 24.9 21.2 12.4 16.2 12.4 16.2 16.2 16.2 16.2	23.0 14.3 12.4 16.2	Value 8.6 9.8 8.6 7.4 7.4 4.9 11.0	9.2 8.0 6.1 11.7	Value 9.8 11.0 8.6 8.6 6.1 7.4 12.3 11.0 9.8	10.4 8.6 6.8	Value 7.4 6.1 16.0 14.7 12.3 12.3	6.8 15.3 12.3
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09	Value 12.4 14.9 16.2 14.9 11.2 11.2 14.9 14.9 14.9 14.9	13.7 15.6 11.2 14.9	Value 24.9 21.2 12.4 16.2 12.4 16.2 16.2 16.2 17.4	23.0 14.3 12.4 16.2 16.8	Value 8.6 9.8 8.6 7.4 7.4 4.9 11.0 12.3 12.3	9.2 8.0 6.1 11.7	Value 9.8 11.0 8.6 8.6 6.1 7.4 12.3 11.0 9.8 11.0	10.4 8.6 6.8 11.7	Value 7.4 6.1 16.0 14.7 12.3 12.3 12.3 9.8 12.3 12.3	6.8 15.3 12.3 11.0 12.3
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09	Value 12.4 14.9 16.2 14.9 11.2 11.2 14.9 14.9 14.9 14.9 14.9 12.4	13.7 15.6 11.2 14.9	Value 24.9 21.2 12.4 16.2 12.4 16.2 16.2 16.2 16.2 17.4 16.2	23.0 14.3 12.4 16.2	Value 8.6 9.8 8.6 7.4 7.4 4.9 11.0 12.3 12.3 11.0 12.3	9.2 8.0 6.1 11.7	Value 9.8 11.0 8.6 8.6 6.1 7.4 12.3 11.0 9.8 11.0 11.0	10.4 8.6 6.8	Value 7.4 6.1 16.0 14.7 12.3 12.3 12.3 9.8 12.3 12.3 9.8	6.8 15.3 12.3
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09	Value 12.4 14.9 16.2 14.9 11.2 11.2 14.9 14.9 14.9 14.9 12.4 14.9 17.4	13.7 15.6 11.2 14.9 13.7	Value 24.9 21.2 12.4 16.2 12.4 16.2 16.2 16.2 16.2 17.4 16.2 13.7	23.0 14.3 12.4 16.2 16.8 14.9	Value 8.6 9.8 8.6 7.4 7.4 4.9 11.0 12.3 12.3 11.0 12.3 14.7	9.2 8.0 6.1 11.7	Value 9.8 11.0 8.6 8.6 6.1 7.4 12.3 11.0 9.8 11.0 11.0 11.0	10.4 8.6 6.8 11.7 10.4 11.0	Value 7.4 6.1 16.0 14.7 12.3 12.3 12.3 9.8 12.3 12.3	6.8 15.3 12.3 11.0 12.3 9.2
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09	Value 12.4 14.9 16.2 14.9 11.2 11.2 14.9 14.9 14.9 14.9 14.9 12.4	13.7 15.6 11.2 14.9	Value 24.9 21.2 12.4 16.2 12.4 16.2 16.2 16.2 16.2 17.4 16.2	23.0 14.3 12.4 16.2 16.8	Value 8.6 9.8 8.6 7.4 7.4 4.9 11.0 12.3 12.3 11.0 12.3	9.2 8.0 6.1 11.7 11.7 13.5	Value 9.8 11.0 8.6 8.6 6.1 7.4 12.3 11.0 9.8 11.0 11.0	10.4 8.6 6.8 11.7	Value 7.4 6.1 16.0 14.7 12.3 12.3 12.3 9.8 12.3 12.3 9.8 8.6	6.8 15.3 12.3 11.0 12.3
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09	Value 12.4 14.9 16.2 14.9 11.2 11.2 14.9 14.9 14.9 14.9 17.4 14.9 16.2	13.7 15.6 11.2 14.9 13.7	Value 24.9 21.2 12.4 16.2 12.4 16.2 16.2 16.2 16.2 17.4 16.2 13.7 17.4 16.2	23.0 14.3 12.4 16.2 16.8 14.9	Value 8.6 9.8 8.6 7.4 7.4 4.9 11.0 12.3 12.3 11.0 12.3 14.7 7.4 8.6	9.2 8.0 6.1 11.7 11.7 13.5	Value 9.8 11.0 8.6 8.6 6.1 7.4 12.3 11.0 9.8 11.0 11.0 11.0 12.3 12.3	10.4 8.6 6.8 11.7 10.4 11.0	Value 7.4 6.1 16.0 14.7 12.3 12.3 12.3 9.8 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3	6.8 15.3 12.3 11.0 12.3 9.2
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09	Value 12.4 14.9 16.2 14.9 11.2 11.2 14.9 14.9 14.9 14.9 12.4 14.9 16.2 11.2	13.7 15.6 11.2 14.9 13.7 16.2	Value 24.9 21.2 12.4 16.2 12.4 16.2 16.2 16.2 17.4 16.2 17.4 16.2 17.4 16.2 14.9	23.0 14.3 12.4 16.2 16.8 14.9	Value 8.6 9.8 8.6 7.4 7.4 4.9 11.0 12.3 12.3 11.0 12.3 14.7 7.4 8.6 9.8	9.2 8.0 6.1 11.7 13.5 8.0	Value 9.8 11.0 8.6 8.6 6.1 7.4 12.3 11.0 9.8 11.0 11.0 12.3 12.3 9.8	10.4 8.6 6.8 11.7 10.4 11.0	Value 7.4 6.1 16.0 14.7 12.3 12.3 12.3 9.8 12.3 12.3 9.8 12.3 12.3 12.3 12.3 12.3 11.0	6.8 15.3 12.3 11.0 12.3 9.2 11.7
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09	Value 12.4 14.9 16.2 14.9 11.2 11.2 14.9 14.9 14.9 14.9 12.4 14.9 16.2 11.2 13.7	13.7 15.6 11.2 14.9 13.7 16.2 15.6	Value 24.9 21.2 12.4 16.2 12.4 16.2 16.2 16.2 17.4 16.2 13.7 17.4 16.2 14.9 17.4	23.0 14.3 12.4 16.2 16.8 14.9 16.8	Value 8.6 9.8 8.6 7.4 7.4 4.9 11.0 12.3 12.3 11.0 12.3 14.7 7.4 8.6 9.8 11.0	9.2 8.0 6.1 11.7 13.5 8.0 10.4	Value 9.8 11.0 8.6 8.6 6.1 7.4 12.3 11.0 9.8 11.0 11.0 12.3 12.3 9.8 11.0	10.4 8.6 6.8 11.7 10.4 11.0 12.3 10.4	Value 7.4 6.1 16.0 14.7 12.3 12.3 12.3 9.8 12.3 12.3 9.8 12.3 12.3 12.3 12.3 11.0 11.0	6.8 15.3 12.3 11.0 12.3 9.2 11.7
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09	Value 12.4 14.9 16.2 14.9 11.2 11.2 14.9 14.9 14.9 14.9 12.4 14.9 17.4 14.9 16.2 11.2 13.7	13.7 15.6 11.2 14.9 13.7 16.2	Value 24.9 21.2 12.4 16.2 12.4 16.2 16.2 16.2 17.4 16.2 13.7 17.4 16.2 14.9 17.4 10.0	23.0 14.3 12.4 16.2 16.8 14.9	Value 8.6 9.8 8.6 7.4 7.4 4.9 11.0 12.3 12.3 11.0 12.3 14.7 7.4 8.6 9.8 11.0 8.6	9.2 8.0 6.1 11.7 13.5 8.0	Value 9.8 11.0 8.6 8.6 6.1 7.4 12.3 11.0 9.8 11.0 11.0 12.3 12.3 9.8 11.0 9.8	10.4 8.6 6.8 11.7 10.4 11.0	Value 7.4 6.1 16.0 14.7 12.3 12.3 12.3 9.8 12.3 12.3 9.8 12.3 12.3 9.8 11.0 11.0 9.8	6.8 15.3 12.3 11.0 12.3 9.2 11.7
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09 10-Nov-09	Value 12.4 14.9 16.2 14.9 11.2 11.2 14.9 14.9 14.9 14.9 12.4 14.9 17.4 14.9 16.2 11.2 13.7 12.4 11.2	13.7 15.6 11.2 14.9 13.7 16.2 15.6 12.4	Value 24.9 21.2 12.4 16.2 12.4 16.2 16.2 16.2 17.4 16.2 13.7 17.4 16.2 14.9 17.4 10.0 10.0	23.0 14.3 12.4 16.2 16.8 14.9 16.8 16.2	Value 8.6 9.8 8.6 7.4 7.4 4.9 11.0 12.3 12.3 11.0 12.3 14.7 7.4 8.6 9.8 11.0 8.6 8.6	9.2 8.0 6.1 11.7 13.5 8.0 10.4 8.6	Value 9.8 11.0 8.6 8.6 6.1 7.4 12.3 11.0 9.8 11.0 11.0 12.3 12.3 9.8 11.0 9.8 8.6	10.4 8.6 6.8 11.7 10.4 11.0 12.3 10.4 9.2	Value 7.4 6.1 16.0 14.7 12.3 12.3 12.3 9.8 12.3 9.8 8.6 11.0 12.3 11.0 9.8 9.8	6.8 15.3 12.3 11.0 12.3 9.2 11.7 11.0 9.8
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09	Value 12.4 14.9 16.2 14.9 11.2 11.2 14.9 14.9 14.9 14.9 12.4 14.9 17.4 14.9 16.2 11.2 13.7 12.4 11.2 10.0	13.7 15.6 11.2 14.9 13.7 16.2 15.6	Value 24.9 21.2 12.4 16.2 12.4 16.2 16.2 16.2 17.4 16.2 13.7 17.4 16.2 14.9 17.4 10.0 10.0 14.9	23.0 14.3 12.4 16.2 16.8 14.9 16.8	Value 8.6 9.8 8.6 7.4 7.4 4.9 11.0 12.3 12.3 11.0 12.3 14.7 7.4 8.6 9.8 11.0 8.6 11.0	9.2 8.0 6.1 11.7 13.5 8.0 10.4	Value 9.8 11.0 8.6 8.6 6.1 7.4 12.3 11.0 9.8 11.0 11.0 12.3 12.3 9.8 11.0 9.8 11.0 12.3	10.4 8.6 6.8 11.7 10.4 11.0 12.3 10.4	Value 7.4 6.1 16.0 14.7 12.3 12.3 12.3 9.8 12.3 9.8 8.6 11.0 12.3 11.0 9.8 9.8 11.0	6.8 15.3 12.3 11.0 12.3 9.2 11.7
Date 21-Oct-09 23-Oct-09 29-Oct-09 2-Nov-09 6-Nov-09 12-Nov-09	Value 12.4 14.9 16.2 14.9 11.2 11.2 14.9 14.9 14.9 12.4 14.9 17.4 14.9 16.2 11.2 13.7 12.4 11.2 10.0 11.2	13.7 15.6 11.2 14.9 13.7 16.2 15.6 12.4 11.8	Value 24.9 21.2 12.4 16.2 12.4 16.2 16.2 16.2 17.4 16.2 13.7 17.4 16.2 14.9 17.4 10.0 10.0 14.9 16.2	23.0 14.3 12.4 16.2 16.8 14.9 16.8 16.2 10.0 15.6	Value 8.6 9.8 8.6 7.4 7.4 4.9 11.0 12.3 12.3 11.0 12.3 14.7 7.4 8.6 9.8 11.0 8.6 11.0 9.8	9.2 8.0 6.1 11.7 11.7 13.5 8.0 10.4 8.6	Value 9.8 11.0 8.6 8.6 6.1 7.4 12.3 11.0 9.8 11.0 11.0 12.3 12.3 9.8 11.0 9.8 11.0 12.3	10.4 8.6 6.8 11.7 10.4 11.0 12.3 10.4 9.2 12.9	Value 7.4 6.1 16.0 14.7 12.3 12.3 12.3 9.8 12.3 9.8 12.3 9.8 11.0 11.0 9.8 9.8 11.0 8.6	6.8 15.3 12.3 11.0 12.3 9.2 11.7 11.0 9.8
Date 21-Oct-09 23-Oct-09 27-Oct-09 29-Oct-09 31-Oct-09 2-Nov-09 4-Nov-09 10-Nov-09	Value 12.4 14.9 16.2 14.9 11.2 11.2 14.9 14.9 12.4 14.9 17.4 14.9 16.2 11.2 13.7 12.4 11.2 10.0 11.2	13.7 15.6 11.2 14.9 13.7 16.2 15.6 12.4	Value 24.9 21.2 12.4 16.2 12.4 16.2 16.2 16.2 17.4 16.2 13.7 17.4 16.2 14.9 17.4 10.0 10.0 14.9 16.2 17.4	23.0 14.3 12.4 16.2 16.8 14.9 16.8 16.2	Value 8.6 9.8 8.6 7.4 7.4 4.9 11.0 12.3 12.3 11.0 12.3 14.7 7.4 8.6 9.8 11.0 8.6 11.0 9.8 9.8	9.2 8.0 6.1 11.7 13.5 8.0 10.4 8.6	Value 9.8 11.0 8.6 8.6 6.1 7.4 12.3 11.0 9.8 11.0 11.0 12.3 12.3 9.8 11.0 9.8 11.0 12.3 12.3	10.4 8.6 6.8 11.7 10.4 11.0 12.3 10.4 9.2	Value 7.4 6.1 16.0 14.7 12.3 12.3 12.3 9.8 12.3 9.8 12.3 9.8 11.0 11.0 9.8 9.8 11.0 8.6 12.3	6.8 15.3 12.3 11.0 12.3 9.2 11.7 11.0 9.8
Date 21-Oct-09 23-Oct-09 27-Oct-09 31-Oct-09 4-Nov-09 10-Nov-09 12-Nov-09 14-Nov-09	Value 12.4 14.9 16.2 14.9 11.2 11.2 14.9 14.9 12.4 14.9 17.4 14.9 16.2 11.2 13.7 12.4 11.2 10.0 11.2 12.4 12.4	13.7 15.6 11.2 14.9 13.7 16.2 15.6 12.4 11.8 10.6	Value 24.9 21.2 12.4 16.2 12.4 16.2 16.2 16.2 17.4 16.2 13.7 17.4 16.2 14.9 17.4 10.0 10.0 14.9 16.2 17.4 14.9	23.0 14.3 12.4 16.2 16.8 14.9 16.8 16.2 10.0 15.6 16.2	Value 8.6 9.8 8.6 7.4 7.4 4.9 11.0 12.3 12.3 11.0 12.3 14.7 7.4 8.6 9.8 11.0 8.6 11.0 9.8 9.8 7.4	9.2 8.0 6.1 11.7 11.7 13.5 8.0 10.4 8.6	Value 9.8 11.0 8.6 8.6 6.1 7.4 12.3 11.0 9.8 11.0 12.3 12.3 9.8 11.0 9.8 11.0 12.3 12.3 13.5 12.3 12.3 11.0	10.4 8.6 6.8 11.7 10.4 11.0 12.3 10.4 9.2 12.9 11.7	Value 7.4 6.1 16.0 14.7 12.3 12.3 12.3 9.8 12.3 9.8 12.3 12.3 9.8 8.6 11.0 12.3 11.0 9.8 9.8 11.0 9.8 9.8 11.0 9.8 9.8	6.8 15.3 12.3 11.0 12.3 9.2 11.7 11.0 9.8 9.8
Date 21-Oct-09 23-Oct-09 29-Oct-09 2-Nov-09 6-Nov-09 12-Nov-09	Value 12.4 14.9 16.2 14.9 11.2 11.2 14.9 14.9 12.4 14.9 17.4 14.9 16.2 11.2 13.7 12.4 11.2 10.0 11.2	13.7 15.6 11.2 14.9 13.7 16.2 15.6 12.4 11.8	Value 24.9 21.2 12.4 16.2 12.4 16.2 16.2 16.2 17.4 16.2 13.7 17.4 16.2 14.9 17.4 10.0 10.0 14.9 16.2 17.4	23.0 14.3 12.4 16.2 16.8 14.9 16.8 16.2 10.0 15.6	Value 8.6 9.8 8.6 7.4 7.4 4.9 11.0 12.3 12.3 11.0 12.3 14.7 7.4 8.6 9.8 11.0 8.6 11.0 9.8 9.8	9.2 8.0 6.1 11.7 11.7 13.5 8.0 10.4 8.6	Value 9.8 11.0 8.6 8.6 6.1 7.4 12.3 11.0 9.8 11.0 11.0 12.3 12.3 9.8 11.0 9.8 11.0 12.3 12.3	10.4 8.6 6.8 11.7 10.4 11.0 12.3 10.4 9.2 12.9	Value 7.4 6.1 16.0 14.7 12.3 12.3 12.3 9.8 12.3 9.8 12.3 9.8 11.0 11.0 9.8 9.8 11.0 8.6 12.3	6.8 15.3 12.3 11.0 12.3 9.2 11.7 11.0 9.8

Contract no. HK/2009/05 WanChai Development Phase II and Central-Wanchai Bypass Sampling, Field Measurement, Testing Works (Stage 1)

Existing Action and Limit Levels for Water Quality proposed as Dry Season AL & LL

Parameters	Action	Limit					
WSD Salt Water Intakes							
SS in mg/L	13.00	14.43					
Turbidity in NTU	8.04	9.49					
DO in mg/L	3.66	3.28					
Cooling Water Intakes							
SS in mg/L	15.00	22.13					
Turbidity in NTU	9.10	10.25					
DO in mg/L	3.36	2.73					

Proposed Action and Limit Levels for Water Quality in Wet Season (with projection using EPD data)

Parameters	Action	Limit				
WSD Salt Water Intakes						
SS in mg/L	16.26	19.74				
Turbidity in NTU	10.01	11.54				
DO in mg/L	3.17	2.63				
Cooling Water Intakes						
SS in mg/L	18.42	27.54				
Turbidity in NTU	11.35	12.71				
DO in mg/L	3.02	2.44				

Appendix I

Response-to-Comment on EPD's Comments On Baseline Monitoring Report 本者植號 OUR REF: 來函構號 YOUR REF:

(45) in AX(5) to EP2/G/A/124 Pt.2

Environmental Protection Department
4 Pt 2 Branch Office

28th Floor, Southorn Centre, 130 Hennessy Road, Wan Chai, Hong Kong.

環境保護署分處 香港灣仔

香港灣仔 軒尼詩道 一百三十號 修頓中心什八樓

TEL. NO.: 獨文傳為 2835 2390 FAX NO.: 電子郵件 2591 0558

E-MAIL:

網 址 HOMEPAGE: http://www.epd.gov.hk By Post & Fax: 2993 7577 (total page:5)

25 October 2011

MTR Corporation Limited 8/F, Fo Tan Railway House, No. 9, Lok King Street, Fo Tan, New Territories, Hong Kong.

(Attn: Mr. Richard Kwan, Environmental Manager)

Dear Mr. Kwan,

Environmental Impact Assessment (EIA) Ordinance, Cap.499,
Shatin to Central Link Protection Works at Causeway Bay Typhoon Shelter
(Environmental Permit No. EP-416/2011)

Baseline Monitoring Report (Oct 2011)

I refer to your letter dated 21 October 2011, enclosing the above Baseline Monitoring Report as per Condition 3.3 of EP416/2011.

Please find in attached <u>Annex</u> our initial comments on the submission. Please be noted that the submitted report did not fully meet some requirements in the EM&A Manual (Nov 2010) (as part of the above SCL EIA Report). Please provide clarifications and revised submissions to address the initial comments.

By copy of this letter, the Environmental Team (ET) Leader and the Independent Environmental Checker (IEC) shall carefully review any submission prior to certifying or verifying it under the permit requirements. It is expected a certified/verified submission should not contain obvious/major deficiency to meet the corresponding permit requirements and should conform to the relevant information and recommendations in the approved EIA report.

MTR - Environment						
Ref. No.	194070	2_				
Rec'd On:	25 001	2011	Encl 🕡			
Сору То:						
Cir To:						
File Ref:						

Yours sincerely,

(Billy C.W. MA)

Environmental Protection Officer for Director of Environmental Protection

- 2

c.c. (with encl.)

HyD/RDO	(Attn: Mr. Cyrus Wong	Fax: 2761 1508)
HyD/MWPMO	(Attn: Mr. Jones Lai	Fax: 2714 5289)
RSS/CWB	(Attn: Mr. Eric Wong	Fax: 3529 2829)
RSS/WDII	(Attn: Gloria Tang	Fax: 2587 1877)
ET Leader	(Attn: Mr. Raymond Dai	Fax: 2882 3331)
IEC	(Attn: David Yeung	Fax: 3548 6988)

c.c.internal (with encl.)

S[RS]2, S[RS]4, S[MA]3 & E[MA]31.

98%

Annex

Environmental Impact Assessment (EIA) Ordinance, Cap 499

Shatin to Central Link Protection Works at Causeway Bay Typhoon Shelter

Environmental Permit: EP-416/2011

Baseline Monitoring Report (Oct 2011)

Initial Comments:

A. General Comment:

- Baseline Monitoring Data Validity: It is noted that baseline monitoring for water, noise
 and air were conducted between October and December 2009, which were conducted
 about 2 years ago. The Permit holder should either i) conduct a new set of baseline
 monitoring; or ii) conduct further monitoring to show that the original set of baseline
 monitoring data are still valid.
- 2. <u>Inconsistency on the codes for monitoring stations</u>. It is noted that the codes used for monitoring stations in the EM&A are different from those in the baseline report. Some examples are as follows:

		Base in expectation at the
Air	Either AM1 or CHA4 for station	CMA3 for station at Royal
Quality	at "Royal Hong Kong Yacht	Hong Kong Yacht Club, [pages
	Club", [page 4-3, EM&A	1 & 5, baseline report]
	Manual].	
Noise	Either NM1 or CH4 for station	M2 for station at Marco Polo
Impact	at Marco Polo Mansion [page	Mansion [pages 12, baseline
	3-1, EM&A Manual]	report] ,

If Permit Holder wishes to change the codes, please clearly mention those changes in the baseline monitoring report.

B. Specific Comments:

Air Quality

1. Section 2.2.1 & 2.5.2, 1-hour TSP Monitoring: It is noted that Portable direct reading dust meter is used for 1-hour TSP. According to Section 4.6 of approved EM&A Manual (http://www.epd.gov.hk/cio/register/report/ela_1877010/EM&A%20Manual/pdf/Seck204%20-%20Alick20Quality.pdf.), and "Guidelines for Development project in Hong Kong — Environmental Monitoring and Audit" (http://www.epd.gov.hk/cio/hb/materials/guidelines.htm), High volume sampler (HVS) should be used for carrying out the 1-hour and 24-hour monitoring. The 1-hour TSP monitoring shall be conducted using HVSs rather than portable direct reading dust meter. If alternative dust monitoring equipment / methodology (e.g. direct reading methods) is proposed after the EM&A manual is issued, Section 4.10 of the approved EM&A Manual should be followed.

1

Annex

2. Section 2.6.1 – 2.62, Results and Observation, [page 8], it states that "No major changes in the environment settings are identified except that the CWB works have commenced in 2010 which may generate fugitive dust. Nonetheless, mitigation measures have been fully implemented on site that the dust level is unlikely to be varied; the baseline monitoring results of CWB are considered applicable to represent the baseline conditions of the Project". As the baseline air quality was carried out between 4 & 17 Dec 2009, there is a big time gap of about 2 years between the baseline monitoring and the proposed commencement of work, are there any updated data/information to support the above statements?

Noise

- Section 3.3, Alternative Baseline Noise Monitoring Location [page 12]: It is noted an alternative baseline noise monitoring location is proposed. According to \$2.3.2, Appendix D2, "Guidelines for Development Project in Hong Kong Environmental Monitoring and Audit", when alternative manitoring locations are proposed, the monitoring locations shall be chosen based on the following criteria:
 - (a) at locations close to the major site activities which are likely to have noise impacts;
 - (b) close to the noise sensitive receivers (N.B. For the purposes of this section, any domestic premises, hotel, hostel, temporary housing accommodation, hospital, medical clinic, educational institution, place of public worship, library, court of law, performing art centre shall be considered as a noise sensitive receiver); and
 - (c) for monitoring locations located in the vicinity of the sensitive receivers, care shall be taken to cause minimal disturbance to the occupants during monitoring.

The Condition 3.1 of the EP 416/2011 also stipulates that: ".... Any major changes to the programme shall be justified by the ET Leader and verified by the IEC as conforming to the information and requirements contained in the EM&A Manual before submission to the <u>Director for approval</u>"ET justification and IEC verification is required ". Therefore, approval from Director of Environmental Protection is needed.

2. Noise, [page 1] & Section 3.6, Results and Observation for noise impact, [page 14]: The baseline noise monitoring was carried out between 4 Dec and 17 Dec 2009. There is a big time gap of about 2 years between the baseline monitoring and the proposed commencement of work. Sufficient monitoring data are required to support using the original set of baseline monitoring data.

Annex

C. Water Quality

- Water Quality, [page 2] & Results and Observation, [pages 18&19]: The baseline water quality monitoring was conducted between 21 Oct and 16 Nov 2009, which was 2 years ago. In this regard, the project proponent should [i] conduct a new set of baseline monitoring; or [ii] conduct further monitoring to show that the original set of baseline monitoring do represent the prevailing water quality.
- 2. Results of Water Quality [page 19] & Figure 4.1: Please clarify if there are any control stations.
- 3. <u>Table 4.7, [page 20]:</u> The Dissolved Oxygen (DO) level should be measured at 3 depths i.e. surface, middle, bottom.

-END-

97%

Responses to EPD's Comments on SCL Protection Works Baseline Monitoring Report (Letter Reference: (45) in AX(5) to EP2/G/A/124 Pt. 2 dated 25 October 2011):

(I) Baseline Monitoring Data Validity (Comment Nos. A1, B2 & C1 of EPD's letter):

In order to minimize the extent and duration of temporary reclamation under the SCL project for compliance with the Protection of Harbour Ordinance, the construction of the 160m SCL tunnel box at the crossing over CWB tunnels and the associated works, including temporary reclamation has to be constructed in conjunction with the CWB construction works in around late 2011 to early 2014. Subsequently, the SCL Protection Works has been entrusted to the CWB. The Contractor of CWB will undertake construction works for both the Project and CWB. The locations of the temporary reclamation works area and duration of the construction works for the two projects are overlapped. In order to ensure better site management and environmental compliance, the environmental monitoring stations and results of CWB would be shared for this project in avoidance of inconsistency.

Baseline on air, noise and water quality in Causeway Bay area and typhoon shelter has been conducted in December 2009 for the Central-Wan Chai Bypass (CWB). It has been revealed that no major changes in the environmental settings are identified in the area with the exception of commencement of CWB works in 2010. The CWB construction works could have potential environmental impacts that may elevate the baseline levels. However, mitigation measures have been fully implemented on-site and the environmental conditions are unlikely to be varied. The baseline monitoring results of CWB are considered applicable to represent the baseline conditions of the SCL Protection Works. Nonetheless, in light of the 2-years gap between the baseline monitoring (2009) and the proposed commencement date of works for SCL Protection Works (2011), supplementary information/data have been collaborated and reviewed to examine if the baseline are valid. Detailed discussions are as the followings:-

Water Quality:

The water quality monitoring stations C6 and C7 for SCL Protection Works are located within the Causeway Bay Typhoon Shelter. While the construction works for CWB has commenced, it would not be practicable for further baseline water quality monitoring. The marine water quality monitoring data of 2009 and 2010 at the EPD Monitoring Station VT2 in the Causeway Bay Typhoon Shelter (CBTS) have been examined instead. It can be seen from **Table 1** that the water quality within the Causeway Bay Typhoon Shelter at VT2 for Year 2009 and 2010 are very similar. The salinity, DO, DO(bottom), pH and turbidity are roughly the same whilst the SS level is slightly increased in 2010. Moreover, the baseline data at C6 and C7 are comparable to the monitoring

data at Station VT2. Therefore, it can be concluded that the baseline monitoring data obtained in 2009 are still valid and could represent the baseline for SCL Protection Works.

Table 1 Water Quality at EPD Monitoring Station VT2 and Baseline Monitoring Station

Parameter	EPD Monitori	ng Station VT2	Baseline Mon	itoring Station
	Year 2009	Year 2010	С6	C7
Salinity	31.7	30.9	32.69	32.86
	(29.2 - 33.0)	(29.2 - 31.8)	(31.91 - 33.38)	(31.79 - 33.59)
Dissolved Oxygen	4.3	4.4	3.6	3.84
(mg/L)	(3.6 - 4.7)	(2.6 - 5.2)	(2.63 - 5.64)	(2.82 - 5.15)
Dissolved Oxygen	5.7	5.7	-	-
(mg/L - bottom)	(3.9 - 6.7)	(3.9 - 6.7)		
pН	7.8	7.8	6.85	6.86
	(7.6 - 8.0)	(7.6 - 7.9)	(5.90 - 8.19)	(5.94 - 8.23)
Turbidity (NTU)	8.2	8.1	5.31	4.78
	(4.0 - 13.0)	(2.5 - 24.5)	(3.20 - 8.90)	(2.60 - 8.20)
Suspended Solid	12.4	14.1	8.21	7.71
(mg/L)	(3.4 - 40.0)	(2.9 - 62.0)	(4.0 - 12.0)	(4.00 - 13.00)

Source: http://www.epd.gov.hk/epd/english/environmentinhk/water/marine_quality/mwq_report.html

Air Quality:

Similar to water quality, monitoring data from EPD's monitoring station should be made reference to as far as possible. However, all the nearby monitoring stations are located at the road side which the air quality would be dominant by localised road traffic and would not represent the environment in the Causeway Bay Typhoon Shelter area. Therefore, the recent 1-hr and 24-hr TSP impact dust monitoring results obtained for CWB project are used to verify if the 2009 baseline monitoring data represent the existing baseline conditions.

Figure 1 Comparison of 24-hour TSP Baseline and CWB Impact Monitoring Data

Figure 2 Comparison of 1-hour TSP Baseline and CWB Impact Monitoring Data

It can be seen from Figures 1 and 2 on the comparison of the CWB impact monitoring data and SCL Protection Works baseline monitoring data that both levels are in the same magnitude. Despite the averages of 1-hour and 24-hour TSP impact levels are slightly higher, the 2009 baseline monitoring data could represent the baseline condition for the SCL Protection Works as a conservative approach.

Noise:

Irrespective to water and air quality, environmental compliance regarding construction noise is evaluated against complaint and criterion of 75 dB(A). The baseline noise condition is for reference and to account for cases in which ambient noise levels approach or exceed the stipulated criterion of 75 dB. The baseline level for CWB/SCL Protection Works is measured at below 75dB(A) and no correction to the impact monitoring results is made. Thus, it is suggested that the baseline monitoring data obtained in late Year 2009 would be the baseline reference for the SCL Protection Works and the action and limit level remain as "when one documented complaint is received" and "75dB(A)".

(II) Other EPD's comments:

1. Inconsistency on the codes for monitoring station (Comment No. A2 of EPD's letter)

The ID codes for the air quality and noise impact monitoring stations in the EM&A Manual of WDII/CWB will be adopted for the SCL Protection Works. Cross-reference of both ID systems will be clearly indicated in the revised Baseline Monitoring Report and they are as following:

Aspect	ID in EM&A Manual of SCL Protection Work	ID in EM&A Manual of WDII/CWB	Description
Air Quality	AM1	CMA3	Causeway Bay – Royal Hong Kong Yacht Club
Noise	NM1	M2	Marco Polo Mansion

2. <u>1-hour TSP Monitoring by Portable direct reading dust meter (Comment No. B1-Air of EPD's letter)</u>

HVS are used for both 24-hour TSP baseline and impact monitoring for the CWB whilst direct reading dust meter (Sibata Digital Dust Monitor – Model No. LD-3) and HVS were used for 1-hour TSP baseline and impact monitoring respectively. With reference to Figures 1 and 2, the baseline 1-hour TSP monitoring data obtained using portable direct reading dust meter generally agree with the 1-Hour and 24-hour TSP impact data obtained using HVS; therefore, it can prove that the direct reading dust meter is capable of achieving a comparable results to the HVS. Also, this supporting information has been reviewed and certified by IEC to fulfil 4.10 of the EM&A Manual.

3. Alternative Baseline Noise Monitoring Location (Comment No. B1-Noise of EPD's letter)

The alternative baseline noise monitoring location proposal has been submitted on 20 October 2011 and approved on 27 October 2011.

4. Control Station (Comment No. C2 of EPD's letter)

Please be clarified that there are no control stations.

5. Monitoring Depth (Comment No. C3 of EPD's letter)

According to the EM&A Manual, measurement shall be undertaken at the seawater intakes for all parameters, including Dissolved Oxygen (DO) level. Therefore, sampling at surface, middle and bottom is not necessary.