CONTRACT NO: HK/2011/07

WANCHAI DEVELOPMENT PHASE II AND CENTRAL WANCHAI BYPASS
SAMPLING, FIELD MEASUREMENT AND TESTING WORK (STAGE 2)

ENVIRONMENTAL PERMIT NO. EP- 416/2011 AND FEP- 01/416/2011

SHATIN TO CENTRAL LINK (SCL) PROTECTION WORKS AT CAUSEWAY BAY TYPHOON SHELTER (CBTS)

MONTHLY ENVIRONMENTAL MONITORING & AUDIT REPORT

- JANUARY 2014 -

CLIENTS:

Civil Engineering and Development Department

and

Highways Department

PREPARED BY:

Lam Geotechnics Limited

11/F Centre Point 181-185 Gloucester Road, Wanchai, H.K.

Telephone: (852) 2882-3939
Facsimile: (852) 2882-3331
E-mail: info@lamenviro.com
Website: http://www.lamenviro.com

CERTIFIED BY:

Raymond Dai

Environmental Team Leader

DATE:

10 February 2014

Ref.: AACWBIECEM00_0_4893L.14

10 February 2014

By Post and Fax (2691 2649)

AECOM Asia Company Limited 11/F, Tower 2 Grand Central Plaza 138 Shatin Rural Committee Road Shatin, New Territories Hong Kong

Attention: Mr. Conrad Ng

Dear Sir,

Re: Shatin to Central Link – Protection Works at Causeway Bay Typhoon Shelter Monthly Environmental Monitoring and Audit Report (January 2014) for EP-416/2011 & FEP-01/416/2011

Reference is made to the Environmental Team's submission of the captioned Monthly Environmental Monitoring and Audit (EM&A) Report for January 2014 received by email on 10 February 2014.

Please be informed that we have no adverse comment on the captioned submission. We write to verify the captioned submission in accordance with Condition 3.4 in the captioned Environmental Permit.

Thank you very much for your kind attention and please do not hesitate to contact the undersigned should you have any queries.

Yours sincerely,

David Yeung

Independent Environmental Checker

by fax: 2761 1508 Mr. Cyrus Wong HyD c.c. by fax: 2714 5289 HyD Mr. Jones Lai by fax: 2577 5040 Mr. Robert Tsoi CEDD by fax: 3912 3010 Mr. Peter Poon **AECOM** by fax: 2587 1877 Mr. Frankie Fan **AECOM** by fax: 2993 7577 MTRCL Mr. Richard Kwan by fax: 2882 3331 Mr. Raymond Dai Lam

Q:\Projects\AACWBIECEM00\Corr\AACWBIECEM00_0_4893L.14.doc

TABLE OF CONTENTS

EXE	ECUTIVE SUMMARY	3
1	INTRODUCTION	5
	1.1 Scope of the Report	
2	PROJECT BACKGROUND	7
	Background Scope of the Project and Site Description Project Organization and Contact Personnel	7
3	STATUS OF REGULATORY COMPLIANCE	9
	3.1 Status of Environmental Licensing and Permitting under the Project	10
4	MONITORING REQUIREMENTS	12
	4.1 Noise Monitoring	13
5	MONITORING RESULTS	18
	5.1 Noise Monitoring Results	18 18
6	COMPLIANCE AUDIT	21
	 6.1 Noise Monitoring 6.2 Air quality monitoring 6.3 Water quality monitoring 6.4 Review of the Reasons for and the Implications of Non-compliance 6.5 Summary of action taken in the event of and follow-up on non-compliance 	21 21 21
7	CUMULATIVE CONSTRUCTION IMPACT DUE TO THE CONCURRENT PR	OJECTS 22
8	ENVIRONMENTAL SITE AUDIT	26
9	COMPLAINTS, NOTIFICATION OF SUMMONS AND PROSECUTION	28
10.	CONCLUSION	29

LIST OF TABLES

Table I	Summary of Water Quality Monitoring Exceedances in Reporting Month
Table 2.1	Schedule 2 Designated Projects under this Project
Table 2.2	Contact Details of Key Personnel
Table 3.1	Summary of the current status on licences and/or permits on environmental protection pertinent to the Project
Table 3.2	Cumulative Summary of Valid Licences and Permits under Contract no. HY/2009/15
Table 3.3	Summary of submission status under EP/416/2011 and FEP-01/416/2011
Table 4.1	Noise Monitoring Stations
Table 4.2	Air quality monitoring Stations
Table 4.3	Marine Water Quality Stations for Water Quality Monitoring
Table 4.4	Marine Water Quality Monitoring Frequency and Parameters
Table 5.1	Noise Monitoring Station
Table 5.2	Air quality monitoring Station
Table 5.3	Water quality monitoring Station
Table 5.4	Summary of Water Quality Monitoring Exceedance in Reporting Month
Table 5.5	Details of Waste Disposal
Table 9.1	Cumulative Statistics on Complaints
Table 9.2	Cumulative Statistics on Successful Prosecutions

Table 10.1 Summary of Key Construction Activities of Individual Contract(s) to be commenced in Coming Reporting Month

LIST OF FIGURES

Figure 2.1	Project Layout
Figure 2.2	Project Organization Chart
Figure 2.3	Locations of Environmental Monitoring Stations

LIST OF APPENDICES

Appendix 3.1	Environmental Mitigation Implementation Schedule
Appendix 4.1	Action and Limit Level
Appendix 4.2	Copies of Calibration Certificates
Appendix 5.1	Monitoring Schedule for Reporting Month and Coming month
Appendix 5.2	Noise Monitoring Results and Graphical Presentations
Appendix 5.3	Air Quality Monitoring Results and Graphical Presentations
Appendix 5.4	Water Quality Monitoring Results and Graphical Presentations
Appendix 6.1	Event Action Plans
Appendix 6.2	Summary of Notification of Exceedances
Appendix 7.1	Complaint Log
Appendix 8.1	Construction Programme of Individual Contracts

EXECUTIVE SUMMARY

- i. This is the Environmental Monitoring and Audit (EM&A) Monthly Report January 2014 specific for Environmental Permit no. EP-416/2011 and Further Environmental Permit no. FEP-01/416/2011 on Shatin to Central Link (SCL) Protection Works at Causeway Bay Typhoon Shelter (CBTS). The Shatin to Central Link (SCL) protection works inside the Causeway Bay Typhoon Shelter (CBTS) is entrusted to the Central-Wanchai Bypass (CWB) project and will be carried out concurrently with the construction of the CWB under contract no. HY/2009/15. The construction impact of the SCL protection works on the environment is monitored together with that of the CWB by the Environmental Team (ET) employed under Contractor No. HK/2011/07. This EM&A report captures the environmental monitoring findings and information recorded during the period December 2013 to January 2014. The cut-off date of reporting is on the 27th of each reporting month.
- ii. In the reporting period, the principal work activity is included as follows:
 - Dismantling of struts at ME4
 - Tunnel construction works at ME4

Noise Monitoring

iii. Noise monitoring during daytime was conducted at M2b - Noon-day gun area on a weekly basis. No exceedance was recorded in the reporting period.

Air quality monitoring

iv. 1-hour and 24-hour Total Suspended Particulates (TSP) monitoring were conducted at CMA3a - CWB PRE Site Office Area. No exceedance was recorded in the reporting period.

Water Quality monitoring

v. Water quality monitoring at C7 was conducted three days per week during the reporting period. The action and limit level exceedance of water quality monitoring are summarized in *Table I*. No exceedance was recorded in the reporting period.

Table I Summary of Water Quality Monitoring Exceedances in Reporting Month

3

	Water			Mid-	flood		Mid-ebb						
Contract no.	ct no. quality monitoring Station	D	0	Turb	idity	S	S	D	0	Turb	idity	S	S
		AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL
HY/2009/15	C7	0	0	0	0	0	0	0	0	0	0	0	0
Total		0	0	0	0	0	0	0	0	0	0	0	0

Complaints, Notifications of Summons and Successful Prosecutions

vi. There was no complaint received in this reporting period.

Site Inspections and Audit

vii. The Environmental Team (ET) conducted weekly site inspections for Contract no. HY/2009/15 - Shatin to Central Link (SCL) Protection Works at Causeway Bay Typhoon Shelter (CBTS), in this reporting period. No non-conformance was identified during the site inspections.

Future Key Issues

- viii. In coming reporting month, the principal work activity is anticipated as follows:
 - Dismantling of struts at ME4
 - Tunnel construction works at ME4

1 INTRODUCTION

1.1 Scope of the Report

- 1.1.1. Lam Geotechnics Limited (LGL) has been appointed to work as the Environmental Team (ET) under Environmental Permit no. EP-416/2011 and Further Environmental permit nos. FEP-01/416/2011 to implement the Environmental Monitoring and Audit (EM&A) programme as stipulated in the EM&A Manual of the approved Environmental Impact Assessment (EIA) Report for Shatin to Central Link (SCL) Protection Works at Causeway Bay Typhoon Shelter (CBTS) (Register No.: AEIAR-159/2011) and in the EM&A Manual of the approved EIA Report for Shatin to Central Link Protection Works at Causeway Bay Typhoon Shelter (Register No. AEIAR-159/2011).
- 1.1.2. This report presents the environmental monitoring and auditing work carried out in accordance to the Section 7.5 of EM&A Manual and Environmental Monitoring and Audit Requirements of Environmental permit nos. EP-416/2011 and Further Environmental permit nos. FEP-01/416/2011.
- 1.1.3. This report documents the finding of EM&A works for Environmental Permit (EP) no. EP-416/2011, Further Environmental Permit (FEP) nos. FEP-01-416/2011 during the period December 2013 to January 2014. The cut-off date of reporting is at 27th of each reporting month.

1.2 Structure of the Report

- **Section 1** *Introduction* details the scope and structure of the report.
- **Section 2 Project Background** summarizes background and scope of the project, site description, project organization and contact details of key personnel during the reporting period.
- **Section 3 Status of Regulatory Compliance** summarizes the status of valid Environmental Permits / Licenses during the reporting period.
- **Section 4** *Monitoring Requirements* summarizes all monitoring parameters, monitoring methodology and equipment, monitoring locations, monitoring frequency, criteria and respective event and action plan and monitoring programmes.
- **Section 5 Monitoring Results** summarizes the monitoring results obtained in the reporting period.
- **Section 6 Compliance Audit** summarizes the auditing of monitoring results, all exceedances environmental parameters.

5

EP-416/2011

Section 7	Cumulative Constructio		nstruction	Impact due to the		Concurrent Projects -		ts –	
	summarizes	the	relevant	cumulative	construction	on impact	due	to	the
	concurrent activities of the concurrent Projects.								

Section 8 Site Inspection – summarizes the findings of weekly site inspections undertaken within the reporting period, with a review of any relevant follow-up actions within the reporting period.

Section 9 Complaints, Notification of summons and Prosecution – summarizes the cumulative statistics on complaints, notification of summons and prosecution

Section 10 Conclusion

2 PROJECT BACKGROUND

2.1 Background

- 2.1.1. The "Shatin to Central Link Protection Works at Causeway Bay Typhoon Shelter" (hereafter called "the Project") is a Designed Project (DP) under the Environmental Impact Assessment Ordinance (Cap. 499) (EIAO). The Environmental Impact Assessment (EIA) Reports for Shatin to Central Link Protection Works at CBTS (Register No. AEIAR-159/2011) has been approved on 25 Feb 2011.
- 2.1.2. The key purpose of the SCL Protection Works and associated works at CBTS involves the construction of a 160m tunnel box by cut-and-cover method at the crossing above the Central Wan Chai Bypass (CWB) tunnels. Temporary reclamation is required and has been authorized under the Foreshore and Sea-bed (reclamations) Ordinance. With the presence of the Protection Works, future construction of the SCL on both sides of the CWB tunnels is protected and ensured feasible without damaging or unduly affecting the CWB tunnels which could be operational by then. This arrangement will also minimize public nuisance and impact to the surrounding environment as it can reduce the reclamation area for subsequent construction of the SCL after CWB is completed. Nevertheless, the Protection Works cannot serve to function for any railway service or operation before the completion of SCL.
- 2.1.3. The SCL is strategically important for connecting the existing railway lines into an integrated rail network. The east-west connection will allow the setup of a 57km East-West Corridor across the city connecting Wu Kai Sha with Tuen Mun via Kowloon; whilst the north-south connection will operate over a 41km North-South Corridor with services originating in Lok Ma Chau or Lo Wu travelling via the existing East Rail Line (EAL) to Admiralty. This will enable a direct transportation linkage between Mainland China and Hong Kong Island.

2.2 Scope of the Project and Site Description

- 2.2.1. The study area encompasses existing developments in Causeway Bay Typhoon Shelter as shown in *Figure 2.1*. The scope of the Project includes:
 - Temporary reclamation, which occupies about 0.7ha of Government foreshore and sea-bed (of which 0.3ha is already authorized under CWB project, i.e. additional reclamation of 0.4ha is required).
 - Dredging works at the southeast corner of the CBTS to provide space for temporary relocation of anchorage area due to the additional temporary reclamation for the Project.
 - Construction of a section of the twin track railway tunnel structure (approximately 160m long) above the proposed CWB located entirely offshore within the CBTS.
 - Relocation of the temporary Royal Hong Kong Yacht Club (RHKYC) jetty within the CWB temporary reclamation to a new location.

- Removal of the temporary reclamation, except the small area at the southwest corner
 of the reclamation (which will be removed by the SCL project upon completion of
 the future SCL tunnels connecting to the proposed South Ventilation Building
 (SOV)).
- 2.2.2. The Project contains Schedule 2 DP that, under the EIAO, requires Environmental Permits (EPs) to be granted by the DEP before they may either be constructed or operated. *Table 2.1* summarises the DP under this Project. *Figure 2.1* shows the location of this Schedule 2 DP.

Table 2.1 Schedule 2 Designated Projects under this Project

Item	Designated Project	EIAO Reference	Reason for inclusion
DP1	Temporary reclamation, which occupies about 0.7ha of Government foreshore and sea-bed	Schedule 2, Part I, C.12	A dredging operation which is less than 100m from a seawater intake point

2.3 Project Organization and Contact Personnel

- 2.3.1 Civil Engineering and Development Department and Highways Department are the overall project controllers for the construction phase of the Project, Project Engineer, Contractor(s), Environmental Team and Independent Environmental Checker are appointed to manage and control environmental issues.
- 2.3.2 The proposed project organization and lines of communication with respect to environmental protection works are shown in *Figure 2.2*. Key personnel and contact particulars are summarized in *Table 2.2*

Table 2.2 Contact Details of Key Personnel

Party	Role	Post	Name	Contact No.	Contact Fax
AECOM	Engineer's Representative for WDII	Principal Resident Engineer	Mr. Frankie Fan	2587 1778	2587 1877
	Engineer's Representative for CWB	Principal Resident Engineer	Mr. Peter Poon	3912 3388	3912 3010
MTR Corporation	Permit Holder	Environment Manager	Mr. Richard Kwan	2688 1179	2993 7577
Limited		Environmental Engineer I	Miss. Viola Tong	3127 6296	
		Environmental Engineer II	Mr. Chris Mak	3127 6297	
China State	Contractor	Project Director	Mr. K C Cheung	3557 6399	2566 2192
Construction Engineering	under Contract no. HY/2009/15	Site Manager	Mr. J H Chen	3557 6368	2566 2192
(HK) Ltd.		Contractor's Representative	Mr. Andrew Wong	3557 6407	
		Head of construction	Mr. Roger Cheung	3557 6371	
		Environmental Officer	Mr. Andy Mak	3557 6347	
ENVIRON Hong Kong Limited	Independent Environmental Checker (IEC)	Independent Environmental Checker (IEC)	Mr. David Yeung	3465 2888	3465 2899
Lam Geotechnics Limited	Environmental Team (ET)	Environmental Team Leader (ETL)	Mr. Raymond Dai	2882 3939	2882 3331

- 2.3.3 In this reporting period, the principal work activity is included as follows:
 - Dismantling of struts at ME4
 - Tunnel construction works at ME4
- 2.3.4 In coming reporting month, the principal work activity is anticipated as follows:
 - Dismantling of struts at ME4
 - Tunnel construction works at ME4

3 STATUS OF REGULATORY COMPLIANCE

3.1 Status of Environmental Licensing and Permitting under the Project

3.1.1. A summary of the current status on licences and/or permits on environmental protection pertinent to the Project is shown in *Table 3.1*.

Table 3.1 Summary of the current status on licences and/or permits on environmental protection pertinent to the Project

Permits and/or Licences	Reference No.	Issued Date	Status
Environmental Permit	EP-416/2011	4 April 2011	Valid
Further Environmental Permit	FEP-01/416/2011	11 Nov 2011	Valid

3.1.2. Summary of the current status on licences and/or permits on environmental protection pertinent and submission under FEP-01/416/2011 for contract no. HY/2009/15 showed in Table 3.2 and Table 3.3.

Table 3.2 Cumulative Summary of Valid Licences and Permits under Contract no. HY/2009/15

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
Further Environmental Permit	FEP- 01/416/2011	11 Nov 2011	N/A	Valid
Notification of Works Under APCO	321822	24 Sep 2010	N/A	Valid
Construction Noise Permit (CNP) for Pre-treatment, ELS and rock breaking works at TS4/ME4	GW-RS0705-13	28 Jun 2013	02 Jul 2013 to 31 Dec 2013	Expired
Construction Noise Permit (CNP) for Pre-treatment, ELS, rock breaking and concreting works at TS4/ME4	GW-RS1437-13	17 Dec 2013	31 Dec 2013 to 20 Jun 2014	Valid
Registration as a Chemical Waste Producer	WPN: 5213- 147-C1169-35	15 Nov 2010	N/A	Valid
Billing Account under Waste Disposal Ordinance	7011553	30 Sep 2010	27 Sep 2010 to 27 Jan 2016	Valid
Billing Account under Waste Disposal Ordinance (Dumping by Vessel)	7011761	25 Sep 2013	17 Oct 2013 to 16 Jan 2014	Expired

Permits and/or Licences	Reference No.	Issued Date	Valid Period/ Expiry Date	Status
Billing Account under Waste Disposal Ordinance (Disposal by Vessel)	7011761	27 Dec 2013	17 Jan 2014 to 16 Apr 2014	Valid
Water Discharge Licence (Discharge at TS4)	WT00011718- 2012	10 Jan 2013	10 Jan 2013 to 31 Jan 2014	Valid
Dumping Permit (Type 1 – Open Sea Disposal)	EP/MD/14-034	16 Jul 2013	24 Jul 2013 to 23 Jan 2014	Expired
Dumping Permit (Type 1 – Open Sea Disposal)	EP/MD/14-122	23 Jan 2014	23 Jan 2014 to 23 Jul 2014	Valid

Table 3.3 Summary of submission status under EP/416/2011 and FEP-01/416/2011

EP Condition	FEP Condition	Submission	Date of Submission
2.3	2.1	Notification of setting up of ENPC	Submitted to EPD on 21 Nov 2011
2.4	-	Notification of setting up of CLG	Submitted to EPD on 21 Nov 2011
2.5	2.2	Notification of work commencement date	Submitted to EPD on 21 Oct 2011
2.5	-	Organization chart	Submitted to EPD on 17 Oct 2011
2.6	2.2	Work schedule and Location Plans	Submitted to EPD on 27 Oct 2011
2.7	2.3	Silt Curtain Deployment Plan	Re- submitted to EPD on 15 Dec 2011
2.8	2.4	Silt Screen Deployment Plan	Re- submitted to EPD on 15 Dec 2011
3.3	-	Baseline Monitoring Report	Submitted to EPD on 14 Nov 2011

4 Monitoring Requirements

4.1 Noise Monitoring

NOISE MONITORING STATIONS

4.1.1. The noise monitoring stations for the Project are listed and shown in *Table 4.1* and *Figure* **2.3.** *Appendix 4.1* shows the established Action/Limit Levels for the monitoring works.

Table 4.1 Noise Monitoring Stations

Station	Description
M2b	Noon Gun Area

NOISE MONITORING PARAMETERS, FREQUENCY AND DURATION

- 4.1.2. The construction noise level shall be measured in terms of the A-weighted equivalent continuous sound pressure level (Leq). Leq (30 minutes) shall be used as the monitoring parameter for the time period between 0700 and 1900 hours on normal weekdays. For all other time periods, Leq (5 minutes) shall be employed for comparison with the Noise Control Ordinance (NCO) criteria. Supplementary information for data auditing, statistical results such as L₁₀ and L₉₀ shall also be obtained for reference.
- 4.1.3. Noise monitoring shall be carried out at all the designated monitoring stations. The monitoring frequency shall depend on the scale of the construction activities. The following is an initial guide on the regular monitoring frequency for each station on a weekly basis when noise generating activities are underway:
 - One set of measurements between 0700 and 1900 hours on normal weekdays.

MONITORING EQUIPMENT

- 4.1.4. As referred to in the Technical Memorandum (TM) issued under the NCO, sound level meters in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for carrying out the noise monitoring. Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration level from before and after the noise measurement agree to within 1.0 dB.
- 4.1.5. Noise measurements shall not be made in fog, rain, wind with a steady speed exceeding 5 m/s or wind with gusts exceeding 10 m/s. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.

4.2 Air quality monitoring

AIR QUALITY MONITORING STATIONS

4.2.1. The air quality monitoring stations for the Project are listed and shown in *Table 4.2* and *Figure 2.3*. *Appendix 4.1* shows the established Action/Limit Levels for the monitoring works.

Table 4.2 Air quality monitoring Stations

Station ID	Monitoring Location	Description
CMA3a	CWB PRE Site Office	Causeway Bay

AIR QUALITY MONITORING PARAMETERS, FREQUENCY AND DURATION

- 4.2.2. One-hour and 24-hour TSP levels should be measured to indicate the impacts of construction dust on air quality. The 24-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B.
- 4.2.3. All relevant data including temperature, pressure, weather conditions, elapsed-time meter reading for the start and stop of the sampler, identification and weight of the filter paper, and any other local atmospheric factors affecting or affected by site conditions, etc., shall be recorded down in detail.
- 4.2.4. For regular impact monitoring, the sampling frequency of at least once in every six-days, shall be strictly observed at all the monitoring stations for 24-hour TSP monitoring. For 1-hour TSP monitoring, the sampling frequency of at least three times in every six-days should be undertaken when the highest dust impact occurs.

SAMPLING PROCEDURE AND MONITORING EQUIPMENT

- 4.2.5. High volume samplers (HVSs) in compliance with the following specifications shall be used for carrying out the 1-hour and 24-hour TSP monitoring:
 - 0.6 1.7 m3 per minute adjustable flow range;
 - Equipped with a timing / control device with +/- 5 minutes accuracy for 24 hours operation;
 - Installed with elapsed-time meter with +/- 2 minutes accuracy for 24 hours operation;
 - Capable of providing a minimum exposed area of 406 cm2;
 - Flow control accuracy: +/- 2.5% deviation over 24-hour sampling period;
 - Equipped with a shelter to protect the filter and sampler;
 - Incorporated with an electronic mass flow rate controller or other equivalent devices;
 - Equipped with a flow recorder for continuous monitoring;
 - · Provided with a peaked roof inlet;
 - Incorporated with a manometer;
 - Able to hold and seal the filter paper to the sampler housing at horizontal position;
 - Easily changeable filter; and

- Capable of operating continuously for a 24-hour period.
- 4.2.6. Initial calibration of dust monitoring equipment shall be conducted upon installation and thereafter at bi-monthly intervals. The transfer standard shall be traceable to the internationally recognized primary standard and be calibrated annually. The concern parties such as IEC shall properly document the calibration data for future reference. All the data should be converted into standard temperature and pressure condition.

LABORATORY MEASUREMENT / ANALYSIS

- 4.2.7. A clean laboratory with constant temperature and humidity control, and equipped with necessary measuring and conditioning instruments to handle the dust samples collected, shall be available for sample analysis, and equipment calibration and maintenance. The laboratory should be HOKLAS accredited.
- 4.2.8. Filter paper of size 8" x 10" shall be labelled before sampling. It shall be a clean filter paper with no pinholes, and shall be conditioned in a humidity-controlled chamber for over 24-hours and be pre-weighed before use for the sampling.
- 4.2.9. After sampling, the filter paper loaded with dust shall be kept in a clean and tightly sealed plastic bag. The filter paper shall then be returned to the laboratory for reconditioning in the humidity controlled chamber followed by accurate weighing by an electronic balance with readout down to 0.1 mg. The balance shall be regularly calibrated against a traceable standard.
- 4.2.10. All the collected samples shall be kept in a good condition for 6 months before disposal.
- 4.2.11. Current calibration certificates of equipments are presented in *Appendix 4.2*.

4.3 Water Quality Monitoring

4.3.1. The EIA Report has identified that the key water quality impact would be associated with the dredging works during the construction phase. Marine water quality monitoring for dissolved oxygen (DO), suspended solid (SS) and turbidity is therefore recommended to be carried out at selected WSD flushing water intakes. The impact monitoring should be carried out during the proposed dredging works to ensure the compliance with the water quality standards.

Water Quality Monitoring Station

4.3.2. It is proposed to monitor the water quality at one cooling water intakes along the seafront of the Victoria Harbour. The proposed water quality monitoring stations of the Project are shown in *Table 4.3* and *Figure 2.3*. *Appendix 4.1* shows the established Action/Limit Levels for the monitoring works.

Table 4.3 Marine Water Quality Stations for Water Quality Monitoring

Cooling Water Intake					
Station ID	Monitoring Location	Easting	Northing		
C7	Windsor House	837193.7	816150.0		

WATER QUALITY PARAMETERS

- 4.3.3. Monitoring of dissolved oxygen (DO), turbidity and suspended solids (SS) shall be carried out at WSD flushing water intakes and cooling water intakes. DO and Turbidity are measured insitu while SS is determined in laboratory.
- 4.3.4. In association with the water quality parameters, other relevant data shall also be measured, such as monitoring location/position, time, sampling depth, water temperature, pH, salinity, dissolved oxygen (DO) saturation, weather conditions, sea conditions, tidal stage, and any special phenomena and work underway at the construction site etc.

SAMPLING PROCEDURES AND MONITORING EQUIPMENT

4.3.5. The interval between two sets of monitoring should not be less than 36 hours except where there are exceedances of Action and/or Limit Levels, in which case the monitoring frequency will be increased. *Table 4.4* shows the proposed monitoring frequency and water quality parameters. Duplicate in-situ measurements and water sampling should be carried out in each sampling event. For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides should be not less than 0.5m.

Table 4.4 Marine Water Quality Monitoring Frequency and Parameters

Activities	Monitoring Frequency ¹	Parameters ²
During the 4-week baseline monitoring period	Three days per week, at mid- flood and mid-ebb tides	Turbidity, Suspended Solids (SS), Dissolved Oxygen (DO), pH, Temperature, Salinity
During marine construction works	Three days per week, at mid- flood and mid-ebb tides	Turbidity, Suspended Solids (SS), Dissolved Oxygen (DO), pH, Temperature, Salinity
After completion of marine construction works	Three days per week, at mid- flood and mid-ebb tides	Turbidity, Suspended Solids (SS), Dissolved Oxygen (DO), pH, Temperature, Salinity

Notes:

- 1. For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides should be not less than 0.5m.
- 2. Turbidity should be measured in situ whereas SS should be determined by laboratory.

DISSOLVED OXYGEN AND TEMPERATURE MEASURING EQUIPMENT

- 4.3.6. The instrument should be a portable, weatherproof dissolved oxygen measuring instrument complete with cable, sensor, comprehensive operation manuals, and use a DC power source. It should be capable of measuring:
 - a dissolved oxygen level in the range of 0-20 mg/l and 0-200% saturation
 - a temperature of 0-45 degree Celsius
- 4.3.7. It should have a membrane electrode with automatic temperature compensation complete with a cable. Sufficient stocks of spare electrodes and cables should be available for replacement where necessary. (e.g. YSI model 59 meter, YSI 5739 probe, YSI 5795A submersible stirrer with reel and cable or an approved similar instrument).
- 4.3.8. Should salinity compensation not be build-in in the DO equipment, in-situ salinity shall be measured to calibrate the DO equipment prior to each DO measurement.

TURBIDITY MEASUREMENT INSTRUMENT

4.3.9. The instrument should be a portable, weatherproof turbidity-measuring instrument complete with comprehensive operation manual. The equipment should use a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0-1000 NTU and be complete with a cable (e.g. Hach model 2100P or an approved similar instrument).

SAMPLER

4.3.10. A water sampler comprises a transparent PVC cylinder, with a capacity of not less than 2 litres, and can be effectively sealed with latex cups at both ends. The sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth (e.g. Kahlsico Water Sampler or an approved similar instrument).

SAMPLE CONTAINER AND STORAGE

4.3.11. Water samples for suspended solids measurement should be collected in high-density polythene bottles, packed in ice (cooled to 4°C without being frozen), and delivered to ALS Technichem (HK) Pty Ltd. as soon as possible after collection for analysis.

WATER DEPTH DETECTOR

4.3.12. A portable, battery-operated echo sounder shall be used for the determination of water depth at each designated monitoring station. This unit can either be handheld or affixed to the bottom of the workboat, if the same vessel is to be used throughout the monitoring programme.

SALINITY

4.3.13. A portable salinometer capable of measuring salinity in the range of 0-40 ppt shall be provided for measuring salinity of the water at each of monitoring location.

MONITORING POSITION EQUIPMENT

4.3.14. A hand-held or boat-fixed type digital Global Positioning System (GPS) with waypoint bearing indication or other equivalent instrument of similar accuracy shall be provided and used during monitoring to ensure the monitoring vessel is at the correct location before taking measurements.

CALIBRATION OF IN-SITU INSTRUMENTS

- 4.3.15. All in-situ monitoring instrument shall be checked, calibrated and certified by a laboratory accredited under HOKLAS or equivalent before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring. Responses of sensors and electrodes should be checked with certified standard solutions before each use. Wet bulb calibration for a DO meter shall be carried out before measurement at each monitoring location.
- 4.3.16. For the on site calibration of field equipment by the ET, the BS 127:1993, "Guide to Field and on-site test methods for the analysis of waters" should be observed.
- 4.3.17. Sufficient stocks of spare parts should be maintained for replacements when necessary.

 Backup monitoring equipment shall also be made available so that monitoring can proceed uninterrupted even when some equipment is under maintenance, calibration, etc.
- 4.3.18. Current calibration certificates of equipments are presented in **Appendix 4.2**.

LABORATORY MEASUREMENT / ANALYSIS

4.3.19. Analysis of suspended solids has been carried out in a HOKLAS accredited laboratory, ALS Technichem (HK) Pty Ltd. Water samples of about 1L shall be collected at the monitoring stations for carrying out the laboratory SS determination. The SS determination work shall start within 24 hours after collection of the water samples. The SS determination shall follow APHA 19ed or equivalent methods subject to the approval of IEC and EPD.

5 MONITORING RESULTS

- 5.0.1. Overall layout showing work area, latest status of work commencement and monitoring stations is shown in *Figure 2.1* and *Figure 2.3*.
- 5.0.2. The environment monitoring schedules for reporting month and coming month are presented in *Appendix 5.1*.

5.1 Noise Monitoring Results

The noise monitoring station is shown in *Table 5.1* below.

Table 5.1 Noise Monitoring Station

Station	Description
M2b	Noon Gun Area

5.1.1 No action and limit level exceedance was recorded in the reporting month. Noise monitoring results in this reporting period are reviewed and summarized. Details of noise monitoring results and graphical presentation can be referred in <u>Appendix 5.2</u>

5.2 Air quality monitoring Results

The air quality monitoring station is shown in *Table 5.2* below.

Table 5.2 Air quality monitoring Station

Station	Description
CMA3a	CWB PRE Site Office

5.2.2 No action and limit level exceedance was recorded in the reporting month. Air quality monitoring results in this reporting period are reviewed and summarized. Details of air quality monitoring results and graphical presentation can be referred in *Appendix 5.3.*

5.3 Water quality monitoring Results

5.3.1 The water quality monitoring station is summarized in *Table 5.3* below.

Table 5.3 Water quality monitoring Station

Station Ref.	Location	Easting	Northing		
Cooling Water Intake					
C7	Windsor House	837193.7	816150.0		

5.3.2 Water quality monitoring location at C7 was finely adjusted to the outside of the inner silt curtain frame since 31 Dec 2012.

Lam Geotechnics Limited

Contract No. HK/2011/07 Wanchai Development Phase II and Central Wanchai Bypass (Shatin to Central Link (SCL) Protection Works at Causeway Bay Typhoon Shelter)

5.3.3 No action and limit level exceedance was recorded in the reporting month. Water quality monitoring results measured in this reporting period are reviewed and summarized. Details of water quality monitoring results and graphical presentation can be referred in Table 5.4 and *Appendix 5.4.*

Table 5.4 Summary of Water Quality Monitoring Exceedance in Reporting Month

Water		Mid-flood					Mid-ebb						
Contract no. quality monitoring Station	DO Turbidity		SS		DO		Turbidity		SS				
	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	
HY/2009/15	C7	0	0	0	0	0	0	0	0	0	0	0	0
То	tal	0	0	0	0	0	0	0	0	0	0	0	0

5.4 Waste Monitoring Results

5.4.1. Inert C&D wastes were disposed of in this reporting month. Details of the waste flow table are summarized in *Table 5.5*.

Table 5.5 Details of Waste Disposal

Waste Type	Quantity this month	Cumulative Quantity-to-Date	Disposal / Dumping Grounds	Remarks
Inert C&D	NIL	32,670	TM38	N/A
materials disposed, m3	NIL	6,267	TKO137	
	NIL	25,395.7	TS2	N/A
Inert C&D	NIL	1,228	WDII	
materials	NIL	1416	Lun Ku Tan	
recycled, m3	NIL	352	WENT Landfill	
	NIL	1,049	HY/2011/03 (HZM)	
Non-inert C&D materials disposed, m3	NIL	NIL	N/A	N/A
Non-inert C&D materials recycled, m3	NIL	NIL	N/A	N/A
Chemical waste disposed, kg	NIL	NIL	N/A	N/A
Marine Sediment	NIL	10,640	Cheung Chau	Dredging from
(Type 1 – Open Sea Disposal) , m3	(Bulk Volume)	(Bulk Volume)	South	SCL Protection Works (CBTS)
Marine Sediment	NIL	7,500	East of Sha Chau	Dredging from
(Type 1 – Open Sea Disposal (Dedicate Sites) & Type 2 – Confined Marine Disposal), m3	(Bulk Volume)	(Bulk Volume)		SCL Protection Works (CBTS)
Marine Sediment (Type 3 – Special Treatment / Disposal contained in geosynthetic Containers), m3	NIL	NIL	N/A	N/A

6 Compliance Audit

6.0.1. The Event Action Plan for construction noise, air qualities are presented in Appendix 6.1.

6.1 Noise Monitoring

6.1.1. No action and limit exceedance was recorded in the reporting month.

6.2 Air quality monitoring

6.2.1 No action and limit exceedance was recorded in the reporting month.

6.3 Water quality monitoring

6.3.1 No action and limit exceedance was recorded in the reporting month.

6.4 Review of the Reasons for and the Implications of Non-compliance

6.4.1. There was no non-compliance from the site audits in the reporting period. The observations and recommendations made in each individual site audit session were presented in Section 8.

6.5 Summary of action taken in the event of and follow-up on non-compliance

6.5.1 There was no particular action taken since no project-related non-compliance was recorded from the site audits and environmental monitoring in the reporting period.

7 Cumulative Construction Impact due to the Concurrent Projects

- 7.0.1. According to Condition 3.4 of the EP-416/2011, this section addresses the relevant cumulative construction impact due to the concurrent activities of the current projects including the Wan Chai Development Phase II (WDII) and Central-WanChai Bypass (CWB).
- 7.0.2. From the Monthly EM&A report (December 2013) of Wan Chai Development Phase II (WDII) the key works in January 2014 are as follows:

<u>Contract no. HK/2009/01 - Wan Chai Development Phase II - Central -Wanchai Bypass at HKCEC</u>

Marine Works

- Import rock fill from HATS to extend the coastline at East of Area 8.
- The roof slab of bay 8 would be cast. Backfilling works at box culvert bay 8 and bay9 would be carried out for further road diversion works.
- Construction of RC structure proposed box culvert wall and roof slab at bay 8 and bay 9.
- D-wall construction at Stage 3.
- Outfall construction for discharge pipes at Expo Drive East.

Waterworks (Cooling Watermains, Salt Watermains and Sewer)

- Salt watermain laying works for the works area in Zone A1-5B, A1-5C and A1-5A2 near Grand Hyatt hotel.
- Salt watermain laying works at Harbour Road would go further north to Zone A5-3, A5-4 and A5-6.
- Cooling main laying works along Expo Drive East and night works.
- Pedestrian relocation at the temporary steel bridge near junction of Expo Drive East and Convention Ave for cooling main laying works

Tunnel Works

- Stage 3 tunnel works include the installation of pre-bored H-pile and Stage 3
 Southern D-wall construction.
- Demolition of the HKCEC Pump home.
- ELS for Stage 1 CWB.
- Backfilling Temporary Water Channel & Reclaim Land at CH220- CH260.

<u>Contract no. HK/2009/02 - Wan Chai Development Phase II – Central – Wan Chai Bypass at WanChai East</u>

- Special movement joint rectification works for P8 discharge mains at CHBH152m.
- Hatch box replacement for P7 intake mains and cable relocation works for subsequent construction of 8x8 pit.
- All outstanding works for handing over P7, P8 and P9 Cooling Water Pumping Stations.
- The connection with the existing DN600 salt watermains at Hung Hing Road.
- The water tightness test for Salt Water Intake Culvert.
- Removal of temporary bulkhead for commencement of wet test of the WSD Salt Water Pumping Station.
- Wet test of the WSD Salt Water Pumping Station and connection with existing saltwater system at Hung Hing Road.
- Outstanding works at WSD Salt Water Pumping Station.
- Box Culvert N1 & Drain FRP-N and the associated testing for handing over to DSD
- Drainage re-diversion from temp 1800 dia. drain to the completed Box Culvert N1.
- · ABWF works in Ferry Pier.
- Rectifying the defects in movable ramps.
- Most of the individual T&C of E&M equipment at Ferry Pier
- Utility installation works and EVA construction extending from P7 Cooling Water Pumping Station to the Ferry Pier.
- Construction of Temporary Covered Walkway footing at GL5 in the vicinity of Ferry Pier.
- Design verification works of the Eastern Bulkhead by the CSD Designer for substantial handing over to Section IXA of the Works.
- Seawall blocks installation and filling works at WCR4/TWCR4 after abandonment of existing temp 1800 dia. drain at WCR4.

<u>Contract no. HY/2009/15 - Central-Wanchai Bypass - Tunnel (Causeway Bay Typhoon Shelter Section)</u>

Construction of EVA

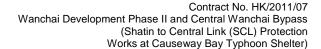
<u>Contract no. HK/2010/06 - Wan Chai Development Phase II - Central - Wan Chai Bypass</u> <u>over MTR Tsuen Wan Line</u>

Sheet piling works

Contract no. HY/2009/19 - Central- Wan Chai Bypass Tunnel (North Point Section) and Island Eastern Corridor Link

- · Removal of strut at ELS will commence
- Construction works for Box Culvert T1
- · Removal of marine platform
- Construction of pile cap, pier & cross head (Marine)
- ELS, EVB and Cut & Cover Tunnel
- Installation of dewatering well
- Launching of segments
- Extraction of temporary pile from marine section
- Construction of bridge truss TA1

Construction of King Post at ELSContract no. HK/2012/08 – Wan Chai Development Phase II – Central- Wan Chai Bypass at Wan Chai West


- Dredging
- ELS for box culvert La at Lung King Street
- Filling for seawall rock mound formation
- Filling for reclamation at sea area of former Expo Drive West Bridge
- Caisson seawall units installation
- · Works for abandoning submarine sewerage outfall

Contract no. HY/2010/08 - Central - Wan Chai Bypass (CWB) - Tunnel (Slip Road 8)

- Dredging works
- 7.0.3. From the Monthly EM&A report (December 2013) of Central-Wan Chai Bypass (CWB) the key works in January 2013 are as follows:

Contract no. HY/2009/18 - Central - Wan Chai Bypass (CWB) - Central Interchange under FEP-05/364/2009/A

- Excavation of trial pit
- Drainage works
- Tunnel works including scaffolding erection, excavation, OHVD installation, roadside barriers, top and base slab construction, extract sheet pile, waterproofing and backfill
- Trough structure construction and associated drilling and grouting
- Road works
- Bridges construction

Contract no. HK/2009/01 - Wan Chai Development Phase II - Central - Wan Chai Bypass at Hong Kong Convention and Exhibition Centre - Tunnel Works under FEP-02/364/2009

- Stage 3 tunnel works including installation of pre-bored H-pile and stage 3 Southern
 D-wall Construction.
- Demolition of the HKCEC Pump house was anticipated.
- ELS for Stage 1 CWB
- Backfilling Temporary Water Channel & Reclaim Land at CH220-CH260.

Contract no. HK/2009/02 - Wan Chai Development Phase II - Central - Wan Chai Bypass at Wan Chai East (CWB Tunnel) under FEP-01/364/2009

- Completed S4 ELS removal.
- Falsework erection and waterproofing installation and commence rebar fixing for OHVD base slab construction at Tunnel Portion 1.
- Upper wall construction at Southern Side Wall Bay 3 to Bay 7.
- OHVD base slab construction at Tunnel Portion 1.
- Pre-drilling at Hung Hing Road slow line and WCR4/TWCR4.
- Bored pile construction (Stage 2) at Tunnel Portion 3 & 4 for areas at WCR4/TWCR4 and original slow lane of Hung Hing Road.
- Partial demolition of Box Culvert O Bay 13 & Bay 14 and commence mini-piling works for bridge 3 foundation of Stage 2 TTA diversion.
- D-Wall construction at Tunnel Portion 6 (Site under possession by HK/2009/01 contractor).

<u>Contract no. HY/2009/15 - Central-Wanchai Bypass - Tunnel (Causeway Bay Typhoon Shelter Section) under FEP-06/364/2009/A</u>

- Breaking of temporary bulkhead between TS1 and TS2
- Construction of binding layer, Tunnel construction at TS2
- Tunnel construction and dismantling of struts at TS4 & TPCWAE
- Mined Tunnel drill-and-break works and installation of steel ribs at East and West Portal
- · Mined tunnel lining construction

Contract no. HY/2009/19 - Central - Wanchai Bypass Tunnel (North Point Section) and Island Eastern Corridor Link under FEP-07/364/2009/A

- · Road works at Watson Road
- Bored piling (Land)
- · Removal of strut at ELS will commence
- Construction works for Box Culvert T1
- · Construction of Pile cap (Land)
- · Removal of marine platform
- Construction of pile cap, pier & cross head (Marine)
- ELS, EVB and Cut & Cover Tunnel
- Installation of dewatering well
- Laying of 1500 pipe

- · Launching of segments
- Extraction of temporary pile from marine section
- Construction of bridge truss TA1

Contract no. HK/2010/06 - Wan Chai Development Phase II - Central - Wan Chai Bypass over MTR Tsuen Wan Line under FEP-08/364/2009/A

- · Stitching Works
- · Grouting Works
- Repair and Installation of Slotted Panels
- In-Filling works

<u>Contract no. HK/2012/08 – Wan Chai Development Phase II – Central- Wan Chai Bypass at</u> Wan Chai West under FEP-09/364/2009B

- Site preparation works
- Site survey

Contract no. HY/2010/08 -Central - Wan Chai Bypass (CWB) -Tunnel (Slip Road 8) under FEP-10/364/2009B

- Tree pruning works
- · Tree removal works,
- · Tree transplanting works,
- · Tree works within off-site nursery compound,
- · Sheet piling works,
- · Demarcation of graphics,
- Pipe pile & pre-boring works, &
- Re-provisional of turtle pond.
- 7.0.4. According to the construction programme of Wan Chai Development Phase II, Central-Wan Chai Bypass and Island Eastern Corridor Link projects, the major construction activity under Wan Chai Development Phase II were marine works at HKCEC areas, cross-harbour Watermains, Fresh Watermains and Cooling Watermains Installations, tunnel works at Wan Chai East. The major construction activities under Central-Wan Chai Bypass and Island Eastern Corridor Link Projects were tunnel construction at TS4 and tunnel construction and dismantling of struts at TPCWAE. Bridge construction and tunnel works at Central Interchange, ELS segment launching works and IEC parapet demolition at North Point area. The major environmental impact was water quality impact at Causeway Bay and Wan Chai. Land-based construction activities were tunnel works at TS2, ELS work and tunnel construction at TS4 and tunnel construction and dismantling of struts at TPCWAE, tunnel works at Central and ELS work at North Point and tunnel works at Wan Chai East in the reporting month.

8 Environmental Site Audit

- 8.0.1. During this reporting period, weekly environmental site audits were conducted for the SCL Protection Works under the Contract no. HY/2009/15. No non-conformance was identified during the site audits.
- 8.0.2. Four site inspections for Contract no. HY/2009/15 was carried out during this reporting period. No finding was observed during the reporting period.

9 COMPLAINTS, NOTIFICATION OF SUMMONS AND PROSECUTION

- 9.0.1. There was no environmental complaint and prosecution recorded in the reporting period.
- 9.0.2. The details of cumulative complaint log and updated summary of complaints are presented in *Appendix 9.1*
- 9.0.3. Cumulative statistic on complaints and successful prosecutions are summarized in *Table 9.1* and *Table 9.2* respectively.

Table 9.1 Cumulative Statistics on Complaints

Reporting Period	No. of Complaints
January 2014	0
November 2011 to December 2013	0
Total	0

Table 9.2 Cumulative Statistics on Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Successful Prosecutions this period (Offence Date)	Cumulative No. Project-to-Date
Air	-	0	0
Noise	-	0	0
Water	-	0	0
Waste	-	0	0
Total	-	0	0

10. CONCLUSION

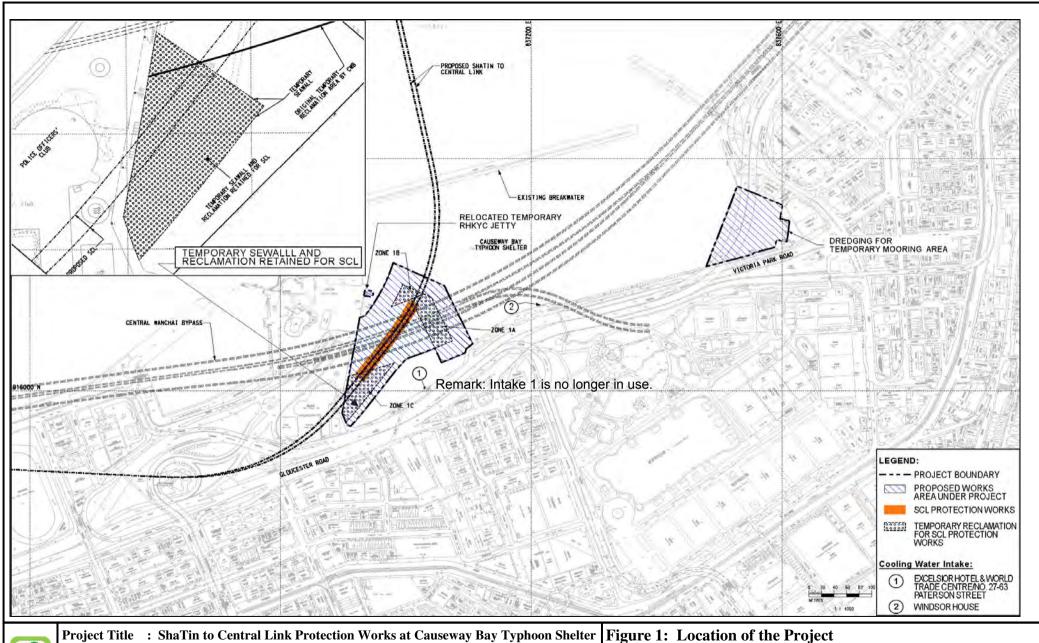

- 10.0.1. The EM&A programme was carried out in accordance with the EM&A Manual requirements, minor alternations to the programme proposed were made in response to changing circumstances.
- 10.0.2. The scheduled construction activities and the recommended mitigation measures for the coming month are listed in *Table 10.1*. The construction programmes of individual contracts are provided in *Appendix 10.1*.

Table 10.1 Summary of Key Construction Activities of Individual Contract(s) to be commenced in Coming Reporting Month

Contract No.	Key Construction Works	Recommended Mitigation Measures			
HY/2009/15	Dismantling of struts at ME4 Tunnel construction works at ME4	Watering for any dust or exposed surface			

Figure 2.1

Project Layout

工程項目名稱:沙田至中環繞位於銅鑼灣避風塘內之保護工程

Environmental Permit No.: EP-416/2011 環境許可證編號 : EP-416/2011

1: 工程項目位置

(This figure was prepared based on Figure NEX2213/C/331/ENS/M50/501 of EIA report (Register No.: AEIAR-159/2011))

(本圖是根據環評報告(登記冊編號 AEIAR-159/2011)圖 NEX2213/C/331/ENS/M50/501 編制)

Figure 2.2

Project Organization Chart

Project Organization Chart

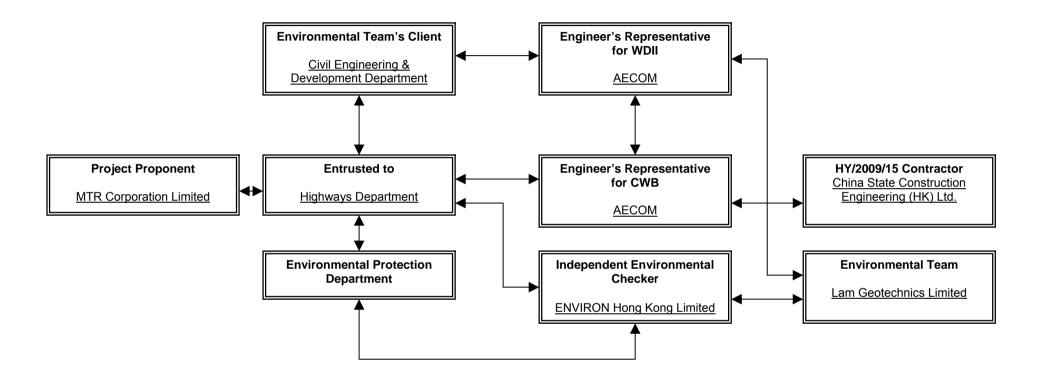
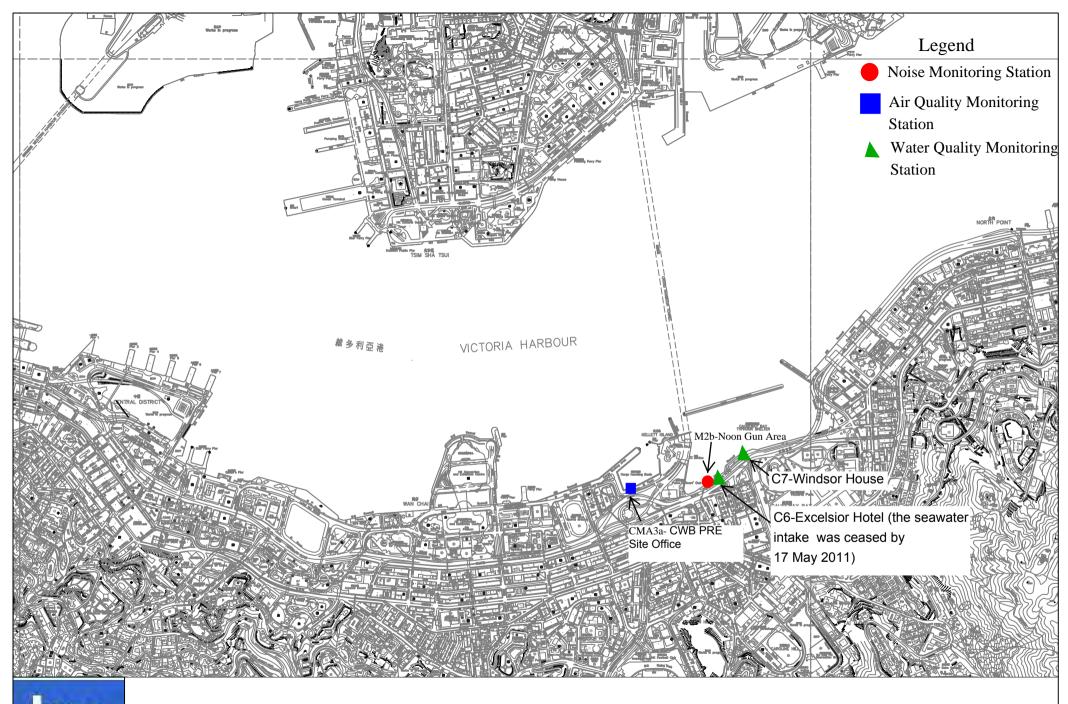



Figure 2.3

Locations of Monitoring Stations

Location Plan of Monitoring Stations

Appendix 3.1

Environmental Mitigation Implementation Schedule

Wanchai Development Phase II and Central Wanchai Bypass (Shatin to Central Link (SCL) Protection

Works at Causeway Bay Typhoon Shelter)

IMPLEMENTATION SCHEDULE OF THE PROPOSED MITIGATION MEASURES

EIA Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concern to Address	Who to implement the measures?	Location of the measure	When to implement the measures?	What requirements or standards for the measure to achieve?
	uality Impact (Construction Phase)					
3.142	Dredging should be carried out by closed grab dredger.	To minimize release of sediment and contaminants during dredging.	Contractor	Dredging works areas in Causeway Bay Typhoon Shelter (CBTS)	Construction Phase	EIAO-TM, WPCO
S3.142	All temporary reclamation works should adopt an approach where temporary seawalls will first be formed to enclose each phase of the temporary reclamation. Installation of diaphragm wall on temporary reclamation as well as any bulk filling will proceed behind the completed seawall. Any gaps that may need to be provided for marine access should be shielded by silt curtains to control sediment plume dispersion away from the site. Demolition of temporary reclamation including the demolition of the diaphragm wall and dredging to the existing seabed levels	To minimize loss of fines and contaminants during temporary reclamations	Contractor	Temporary reclamation works areas in CBTS	Construction Phase	EIAO-TM, WPCO

Contract No. HK/2011/07 Wanchai Development Phase II and Central Wanchai Bypass (Shatin to Central Link (SCL) Protection

Works at Causeway Bay Typhoon Shelter)

	should be carried out behind the temporary seawall. Temporary seawall should be removed after completion of all excavation and dredging works for demolition of the temporary reclamation.					
S3.142	During construction of the temporary reclamation, temporary seawall should be partially constructed to protect the nearby seawater intakes from further dredging activities. For example, the seawalls along the southeast and northeast boundaries of PW1.1 should be constructed first (above high water mark) so that the seawater intake at the inner water would be protected from the impacts from the remaining dredging activities along the northwest boundary.	To minimize water quality impact upon the cooling water intakes in CBTS from temporary reclamation works	Contractor	Temporary reclamation works areas in CBTS	onstruction Phase	EIAO-TM, WPCO
S3.142	Silt curtains should be deployed to fully enclose the closed grab dredger during any dredging operation within the CBTS.	To minimize loss of fines and contaminants during dredging in CBTS	Contractor	Dredging works areas in CBTS	Construction Phase	EIAO-TM, WPCO
S3.142	Silt screens will be installed at all the cooling water intakes within the CBTS during temporary reclamation and dredging within the typhoon shelter.	To minimize water quality impact upon the cooling water intakes in CBTS from marine construction activities	Contractor	Cooling water intakes inside CBTS	Construction Phase	EIAO-TM, WPCO
S3.143	No more than two closed grab dredgers should be operated for dredging within the CBTS at	To minimize loss of fines and contaminants	Contractor	Temporary reclamation and	Construction Phase	EIAO-TM, WPCO

	any time. Moreover, the combined production rate of all concurrent dredging works to be undertaken within the CBTS shall not exceed 6,000 m ₃ per day at all times throughout the	during dredging in CBTS		dredging works areas in CBTS		
S3.145	entire construction period. The following good site practices should be undertaken during sand filling, public filling and dredging: • mechanical grabs, if used, should be designed and maintained to avoid spillage and sealed tightly while being lifted. For dredging of any contaminated mud, closed watertight grabs must be used; • all vessels should be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; • all hopper barges and dredgers should be fitted with tight fitting seals to their bottom openings to prevent leakage of material; • construction activities should not cause foam, oil, grease, scum, litter or other objectionable matter to be present on the water within the	To minimize loss of fines and contaminants from dredging / filling	Contractor	Temporary reclamation and dredging works areas in CBTS	Construction Phase	EIAO-TM, WPCO

	site or dumping grounds; and • loading of barges and hoppers should be controlled to prevent splashing of dredged material into the surrounding water. Barges or hoppers should not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation.					
S3.146	The following mitigation measures are proposed to minimize the potential water quality impacts from the construction works at or close to the seafront: Temporary storage of construction materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction and demolition materials should be located well away from the seawater front and storm drainage during carrying out of the works. Stockpiling of construction and demolition materials and dusty materials should be covered and located away from the seawater front and storm drainage. Construction debris and spoil should be covered up and/or disposed of as soon as	To minimize release of construction wastes from construction works at or close to the seafront	Contractor	Construction works at or close to the seafront	Construction Phase	EIAO-TM, WPCO

	possible to avoid being washed into the nearby receiving waters.					
S3.147	Silt curtains should be installed around the working area for the marine piling works for construction of the temporary jetty as necessary to minimize the release of sediment and construction wastes. All wastewater generated from the piling activities should be collected by a derrick lighter or other collection system and be treated before controlled discharge. Spoil from the piling activities should be collected by sealed hopper barges for proper disposal.	To minimize water quality impacts from piling works for construction of the temporary jetty	Contractor	Piling area at the piling location	Construction Phase	EIAO-TM, WPCO
S3.148	Regular maintenance of and refuse collection should be performed at the silt screens deployed at the seawater intakes at regular intervals on a daily basis. The Contractor should be responsible for keeping the water behind the silt screen free from floating rubbish and debris during the impact monitoring period.	To avoid the pollutant and refuse entrapment problems at the silt screens to be installed at the water intakes	Contractor	Proposed silt screens at cooling water intakes inside CBTS	Construction Phase	EIAO-TM, WPCO
S3.149	It is recommended that collection and removal of floating refuse should be performed within the marine construction areas at regular intervals on a daily basis. The Contractor should be	To minimize water quality impacts from illegal dumping and littering from marine vessels and runoff from	Contractor	All marine works areas	Construction Phase	EIAO-TM, WPCO, WDO

	responsible for keeping the water within the site boundary and the neighbouring water free from rubbish during the dredging works.	the coastal areas				
S3.150 to 3.169	The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be followed where practicable.	To minimize water quality impacts from construction site runoff and general construction activities	Contractor	All construction works areas	Construction Phase	EIAO-TM, WPCO, TM- DSS, WDO, ProPECC PN 1/94
S3.170	There is a need to apply to EPD for a discharge licence for discharge of effluent from the construction site under the WPCO. The discharge quality must meet the requirements specified in the discharge licence. All the runoff and wastewater generated from the works areas should be treated so that it satisfies all the standards listed in the TM-DSS. Minimum distances of 100 m should be maintained between the discharge points of construction site effluent and the existing seawater intakes. The beneficial uses of the treated effluent for other on-site activities such as dust suppression, wheel washing and general cleaning etc., can minimise water consumption	To minimize water quality impact from effluent discharges from construction sites	Contractor	All construction works areas	Construction Phase	EIAO-TM, WPCO, TM-DSS

	and reduce the effluent discharge volume. If monitoring of the treated effluent quality from the works areas is required during the construction phase of the Project, the monitoring should be carried out in accordance with the WPCO license which is under the ambit of Regional Office (RO) of EPD.					
\$3.171 & 3.172	Construction work force sewage discharges on site are expected to be connected to the existing trunk sewer or sewage treatment facilities. If disposal of sewage to public sewerage system is not feasible, appropriate numbers of portable toilets shall be provided by a licensed contractor to serve the construction workers over the construction site to prevent direct disposal of sewage into the water environment. The Contractor shall also be responsible for waste disposal and maintenance practices. Notices should be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment.	To minimize water quality impacts due to sewage generated from construction workforce	Contractor	All construction works areas	Construction Phase	EIAO-TM, WPCO, TM- DSS, WDO
S3.173	Contractor must register as a chemical waste producer if	To minimize water quality	Contractor	All construction	Construction Phase	EIAO-TM, WPCO, TM-

	chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation should be observed and complied with for control of chemical wastes.	impact from accidental spillage of chemical		works areas		DSS, WDO
S3.174	Any service shop and maintenance facilities should be located on hard standings within a bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should only be undertaken within the areas appropriately equipped to control these discharges.	To minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction Phase	EIAO-TM, WPCO, TM- DSS, WDO
S3.175	Disposal of chemical wastes should be carried out in compliance with the Waste Disposal Ordinance. The "Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes" published under the Waste Disposal Ordinance details the requirements to deal with chemical wastes. General requirements are given as follows: • Suitable containers should	To minimize water quality impact from accidental spillage of chemical	Contractor	All construction works areas	Construction Phase	EIAO-TM, WPCO, TM- DSS, WDO

	be used to hold the chemical wastes to avoid leakage or spillage during storage, handling and transport. • Chemical waste containers should be suitably labelled, to notify and warn the personnel who are handling the wastes, to avoid accidents. • Storage area should be selected at a safe location on site and adequate space should be allocated to the storage area.					
S4. 30	The following good site practices should be implemented: • Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program • Silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction program • Mobile plant, if any, should be sited as far from NSRs as possible • Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum	To reduce construction noise impact	Contractor	All works areas	Construction phase	EIAO-TM, NCO

Contract No. HK/2011/07

Wanchai Development Phase II and Central Wanchai Bypass

(Shatin to Central Link (SCL) Protection

Works at Causeway Bay Typhoon Shelter)

	 Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities. 					
S4.31 – S4.32 & Table 4.7	The following quiet PME are recommended for the construction activities: Air Compressor Bulldozer Concrete Pump Concrete Lorry Mixer Crane Dump Truck Excavator Generator Hand-held Breaker Poker Vibrator Roller Trucks	To reduce construction noise impact	Contractor	All works areas	Construction phase	EIAO-TM, NCO
S4.33 – S4.35 & Table 4.8	Movable noise barrier should be used for following PME: Air Compressor Bar Bender Bentonite Plants Concrete pump Diaphragm Wall Rigs Excavator	theo reduce construction noise impact	Contractor	Affected works areas showing exceedance during un- mitigated scenario	Construction phase	EIAO-TM, NCO

	Poker Vibrator					
_						
	ction Dust Impact					T
S5.43	Watering once on construction areas for every working hour	To minimize dust impact	Contractor	Temporary reclamation area in CBTS	Construction phase	APCO
S5.43	Covering/paving the southwest retained area of temporary reclamation once filling is completed	To minimize dust impact	Contractor	southwest retained area of temporary reclamation	Construction phase	phase APCO
S5.44	Dust suppression measures stipulated in the Air Pollution Control (Construction Dust) Regulation and good site practices: Use of regular watering, with complete coverage, to reduce dust emissions from exposed site surfaces and unpaved roads, particularly during dry weather. Use of frequent watering for particularly dusty cons truction areas and areas close to ASRs. Side enclosure and covering of any aggregate or dusty material storage piles to reduce emissions. Where this is not practicable owing to frequent usage, watering shall be applied to aggregate fines.	To minimize dust impacts	Contractor	Temporary reclamation area in CBTS	Construction phase	APCO and Air Pollution Control (Construction Dust) Regulation

	T	т		1	, ,		_
	Open stockpiles shall be						
	avoided or covered. Where		1				
	possible, prevent placing dusty		ļ				
	material storage piles near		1				
	ASRs.		ļ				
	Tarpaulin covering of all		ļ				
	dusty vehicle loads transported		1				
	to, from and between site		ļ				
	locations.		1				
1	Establishment and use of		ļ				
	vehicle wheel and body		1				
1	washing facilities at the exit		ļ				
	points of the site.		ļ				
	Provision of wind shield and		1				
1	dust extraction units or similar		ļ				
	dust mitigation measures at the		1				
1	loading points, and use of		ļ				
1	water sprinklers at the loading		ļ				
1	area where dust generation is		ļ				
1	likely during the loading		ļ				
1	process of loose material,		ļ				
	particularly in dry seasons/		1				
1	periods.		ļ				
1	Provision of not less than		ļ				
	2.4m high hoarding from		1				
	ground level along site		1				
1	boundary where adjoins a road,		ļ				
	streets or other accessible to		ļ				
	the public except for a site		ļ				
	entrance or exit.		ļ				
	Imposition of speed controls		1				
	for vehicles on site haul roads.		1				
	Where possible, routing of		ļ				
	vehicles and positioning of		ļ				
	construction plant should be at		ļ				
	the maximum possible distance		ļ				
	from ASRs.		1				
	_	L	·			L	

Contract No. HK/2011/07 Wanchai Development Phase II and Central Wanchai Bypass (Shatin to Central Link (SCL) Protection

Works at Causeway Bay Typhoon Shelter)

bags pulve shoul imper in an and t In envir auditi consi enfor meth condi	rery stock of more than 20 of cement or dry rised fuel ash (PFA) d be covered entirely by rvious sheeting or placed area sheltered on the top he 3 sides. stigation of an commental monitoring and ng program to monitor the rruction process in order to ce controls and modify od of work if dusty tions arise. ent implications (Construction Ph	ase)				
6.62 Good Waste - Pree Mana the E Office curre const - Trai site comana hand - Production - App mining dust of waste or by enclo	d Site Practices and the Reduction Measures to the Project based on the project based on the practices on the project based on the practices, which is the personnel in, the project based on the project	To enhance water management practice and achieve waste reduction.	Contractor	All Work Sites	Construction Phase	Waste Disposal Ordinance (Cap. 354) Land (Miscellaneous Provisions) Ordinance (Cap. 28) ETWB TC(W) No.31/2004

	maintenance programme for drainage systems, sumps and oil interceptors; and - Separation of chemical wastes for special handling and appropriate treatment.					
6.63	Good Site Practices and Waste Reduction Measures (con't) - Sorting of demolition debris and excavated materials from demolition works to recover reusable/ recyclable portions (i.e. soil, broken concrete, metal etc.); - Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; - Encourage collection of aluminum cans by providing separate labeled bins to enable this waste to be segregated from other general refuse generated by the workforce; - Proper storage and site practices to minimize the potential for damage or contamination of construction materials; - Plan and stock construction	To achieve waste reduction	Contractor	All Work Sites	Construction Phase	Waste Disposal Ordinance (Cap. 354) Land (Miscellaneous Provisions) Ordinance (Cap. 28)

Contract No. HK/2011/07
Wanchai Development Phase II and Central Wanchai Bypass

EM&A Report for Shatin to Central Link Protection Works at Causeway Bay Typhoon SHelter

(Shatin to Central Link (SCL) Protection Works at Causeway Bay Typhoon Shelter)

	materials carefully to minimize amount of waste generated and avoid unnecessary generation of waste; and - Training should be provided to workers about the concepts of site cleanliness and appropriate waste management procedures, including waste reduction, reuse and recycle.					
6.64	Good Site Practices and Waste Reduction Measures (con't) - The Contractor shall prepare and implement an EMP in accordance with ETWB TCW No. 19/2005. Such management plan should incorporate site specific factors, such as the designation of areas for segregation and temporary storage of reusable and recyclable materials. The EMP should be submitted to the Engineer for approval. The Contractor should implement the waste management practices in the EMP throughout the construction stage of the Project. The EMP should be reviewed regularly and updated by the Contractor, preferably in a monthly basis.	To enhance water management practice and achieve waste reduction.	Contractor	All Work Sites	Construction Phase	ETWB TCW No. 19/2005

6.66	Storage, Collection and Transportation of Waste - Waste, such as soil, should be handled and stored well to ensure secure containment, thus minimizing the potential of pollution; - Maintain and clean storage areas routinely; - Stockpiling area should be provided with covers and water spraying system to prevent materials from wind-blown or being washed away; and - Different locations should be designated to stockpile each material to enhance reuse.	To minimize potential adverse environmental impacts arising from waste storage	Contractor	Work Sites	Construction Phase	
6.67	Storage, Collection and Transportation of Waste (con't) - Waste haulier with appropriate permits should be employed by the Contractor for the collection and transportation of waste from works areas to respective disposal outlets.	To minimize potential adverse environmental impacts arising from waste collection and disposal	Contractor	Waste storage area.	Construction Phase	-
6.68	Storage, Collection and Transportation of Waste (con't) - Implementation of trip ticket system with reference to ETWB TC(W) No.31/2004 to monitor disposal of waste and to control fly-tipping at PFRFs or landfills.	To minimize potential adverse environmental impacts arising from waste collection and disposal	Contractor	Work Sites	Construction Phase	ETWB TC(W) No.31/2004

	A recording system for the amount of waste generated, recycled and disposed (including disposal sites) should be proposed.					
6.70 – 6.73	Sorting of C&D Materials - Sorting to be performed to recover the inert materials, reusable and recyclable materials before disposal offsite Specific areas should be provided by the Contractors for sorting and to provide temporary storage areas for the sorted materials The C&D materials should at least be segregated into inert and non-inert materials, in which the inert portion could be reused and recycled as far as practicable before delivery to PFRFs as mentioned for beneficial use in other projects. While opportunities for reusing the non-inert portion should be investigated before disposal of at designated landfills Possibility of reusing the spoil in the Project will be continuously investigated in the construction stage.	To minimize potential adverse environmental impacts during the handling, transportation and disposal of C&D materials	Contractor	All work Sites	Construction Phase	ETWB TCW No. 31/2004 ETWB TCW No. 33/2002 ETWB TCW No. 19/2005
6.75	Sediments - The basic requirements and procedures for dredged	To ensure the sediment to be disposed of in an	Contractor	All works areas with sediments	Construction Phase	PNAP 252

	sediment disposal specified under PNAP 252 shall be followed. MFC manages disposal facilities in Hong Kong for the dredged sediment, while EPD is the authority issuing marine dumping permits under the <i>Dumping at Sea Ordinance</i> .	authorized and least impacted way		concern		
6.76	Sediments (con't) - The Project Proponent should agree in advance with MFC of CEDD on the site allocation by submitting a Construction & Demolition Material Management Plan. The contractor for the dredging works shall then apply for the site allocations of marine sediment disposal based on the prior agreement with MFC/CEDD. A request for reservation of sediment disposal space has been submitted to MFC for onward discussions of disposal approaches and feasible disposal sites. The Project Proponent is also responsible for application of all necessary permits from the relevant authorities, including the dumping permit as required under DASO from EPD, for the disposal of dredged sediment prior to the commencement of the dredging works.	To determine the best handling and disposal option of the sediments	MTR / Contractor	All works areas with sediments concern	Prior to the start of dredging works	PNAP 252; Dumping at Sea Ordinance

6.77 – 6.81	Sediments (con't) Requirements of the Air Pollution Ordinance (Construction Dust) Regulation, where relevant, shall be adhered to during dredging, transportation and disposal of sediments. Stockpiling of contaminated sediments should be avoided as far as possible. If temporary stockpiling of contaminated sediments is necessary, the dredged sediment should be covered by tarpaulin and the area should be placed within earth bunds or sand bags to prevent leachate from entering the ground, nearby drains and/or surrounding water bodies. The stockpiling areas should be completely paved or covered by linings in order to avoid contamination to underlying soil or groundwater. Separate and clearly defined areas should be provided for stockpiling of contaminated and uncontaminated materials. Leachate, if any, should be collected and discharged according to the Water Pollution Control Ordinance (WPCO). In order to minimise the potential odour / dust emissions during dredging and	To ensure handling of sediments are in accordance to statutory requirements	Contractor	Work Sites, Sediment disposal sites	Construction Phase	PNAP 252 Dumping at Sea Ordinance
-------------	--	---	------------	--	--------------------	-----------------------------------

		T		
	transportation of the sediment,			
	the dredged sediments should			
	be properly covered when			
	placed on barges. Loading of			
	the dredged sediment to the			
	barge should be controlled to			
	avoid splashing and			
	overflowing of the sediment			
	slurry to the surrounding water.			
	- The barge transporting the			
	sediments to the designated			
	disposal sites should be			
	equipped with tight fitting seals			
	to prevent leakage and should			
	not be filled to a level that			
	would cause overflow of			
	materials or laden water during			
	loading or transportation. In			
	addition, monitoring of the			
	barge loading shall be			
	conducted to ensure that loss			
	of material does not take place			
	during transportation. Transport			
	barges or vessels shall be			
	equipped with automatic self-			
	monitoring devices as specified			
	by the DEP.			
	- In order to minimise the			
	exposure to contaminated			
	materials, workers should wear			
	appropriate personal protective			
	equipments (PPE) when			
	handling contaminated			
	sediments. Adequate washing			
	and cleaning facilities should			
	also be provided on site.			
<u> </u>				

6.82	Sediments (con't) The dredging work and associate sediment handling under this Project will be undertaken together with the CWB project by Highways Department and geosynthetic containment will be adopted to handle Type 3 sediments.	To ensure handling of sediments are in accordance to statutory requirements	Contractor	Work Sites, Sediment disposal sites	Construction Phase	PNAP 252 Dumping at Sea Ordinance
6.86	Containers for Storage of Chemical Waste The Contractor should register with EPD as a chemical waste producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Containers used for storage of chemical waste should: - Be compatible with the chemical wastes being stored, maintained in good condition and securely sealed; - Have a capacity of less than 450 litters unless the specifications have been approved by EPD; and	To register with EPD as a Chemical waste producer and store chemical waste in appropriate containers	Contractor	Chemical waste storage area	Construction Phase	Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes

	- Display a label in English and Chinese in accordance with instructions prescribed in Schedule 2 of the Waste Disposal (Chemical Waste) (General) Regulation.					
6.87	Chemical Waste Storage Area - Be clearly labeled to indicate corresponding chemical characteristics of the chemical waste and used for storage of chemical waste only; - Be enclosed on at least 3 sides; - Have an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in that area, whichever is the greatest; - Have adequate ventilation; - Be covered to prevent rainfall from entering; and - Be properly arranged so that incompatible materials are adequately separated.	To prepare appropriate storage areas for chemical waste at works areas	Contractor	Chemical waste storage area	Construction Phase	Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes
6.88	Labelling of Chemical Waste - Lubricants, waste oils and other chemical wastes would be generated during the maintenance of vehicles and mechanical equipments. Used	To clearly label the chemical waste at works areas	Contractor	Chemical waste storage area	Construction Phase	Code of Practice on the Packaging, Labelling and Storage of Chemical

	lubricants should be collected and stored in individual containers which are fully labeled in English and Chinese and stored in a designated secure place.					Wastes
6.89	Collection and Disposal of Chemical Waste - A trip-ticket system should be operated in accordance with the Waste Disposal (Chemical Waste) (General) Regulation to monitor all movements of chemical waste. The Contractor shall employ a licensed collector to transport and dispose of the chemical wastes, to either the approved CWTC at Tsing Yi, or another licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	To monitor the generation, reuse and disposal of chemical waste	Contractor	Work Sites with chemical waste production	Construction Phase	Waste Disposal (Chemical Waste) (General) Regulation
6.90	General Refuse - General refuse should be stored in enclosed bins or compaction units separate from C&D materials and chemical waste. A reputable waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D materials and chemical wastes. Preferably, an enclosed and	To properly store and separate from other C&D materials for subsequent collection and disposal	Contractor	All Work Sites	Construction Phase	-

	covered area should be provided to reduce the occurrence of windblown light material.					
6.91	General Refuse (con't) - The recyclable component of general refuse, such as aluminum cans, paper and cleansed plastic containers should be separated from other waste. Provision and collection of recycling bins for different types of recyclable waste should be set up by the Contractor. The Contractor should also be responsible for arranging recycling companies to collect these materials.	To facilitate recycling of recyclable portions of refuse	Contractor	All Work Sites	Construction Phase	-
6.92	General Refuse (con't) - The Contractor should carry out an education programme for workers in avoiding, reducing, reusing and recycling of materials generation. Posters and leaflets advising on the use of the bins should also be provided in the sites as reminders.	To raise workers' awareness on recycling issue	Contractor	All Work Sites	Construction Phase	-

Appendix 4.1

Action and Limit Level

Action and Limit Level

Action and Limit Level for Air Quality Monitoring

1-hour TSP Level in μ g/m ³		24-hour TSP Level in μ g/m ³	
Action Level	Limit Level	Action Level	Limit Level
311.3	500	171.0	260

Action and Limit Level for Noise Monitoring

Time Period	Action Level	Limit Level
07:00 – 19:00 hours on normal weekdays	When one documented complaint is received.	75 dB(A)/ 70 dB(A)/ 65 db(A) ^{Note 1}

Note 1:

- 70dB(A) and 65 dB(A) for schools during normal teaching periods and school examination periods, respectively.
- If works are to be carried out during the restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed.

Action and Limit Level for Water Quality Monitoring

Parameters	Dry S	Dry Season		eason	
	Action Level	Limit Level	Action Level	Limit Level	
Cooling Water Inta	Cooling Water Intake				
SS in mg/L	15.00	22.13	18.42	27.54	
Turbidity in NTU	9.10	10.25	11.35	12.71	
DO in mg/L	3.36	2.73	3.02	2.44	

Remarks: - Contractor shall implement additional improvement measures in case of oxygen depletion (i.e. DO level <2 mg/L) detected within CBTS.

Appendix 4.2

Copies of Calibration Certificates

Certificate No. 33624

Page 1 of 4 Pages

Supply Voltage : --

30-May-13

Customer: Lam Geotechnics Limited

Address: 11/F, Centre Point, 181-185 Gloucester Road, Wanchai, Hong Kong.

Order No.: Q31494 Date of receipt

Item Tested

Description : Digital Sound Level Meter

Manufacturer: B&K

Model : Type 2236 Serial No. : 2100736

Test Conditions

Date of Test: 3-Jun-13

Ambient Temperature : (23 ± 3)°C Relative Humidity : (50 ± 25) %

Test Specifications

Calibration check.

Ref. Document/Procedure: Z01.

Test Results

All results were within the IEC 651 Type 1, IEC 804 Type 1 & IEC 1260 Class 1 specification.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No.DescriptionCert. No.Traceable toS017Multi-Function GeneratorC127181SCL-HKSAR

S024 Sound Level Calibrator 30620 NIM-PRC & SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI). The test results apply to the above Unit-Under-Test only

Calibrated by

Liam Wong

Approved by:

3-Jun-13

Date:

orothy Cheuk

This Certificate is issued by:

Hong Kong Calibration Ltd.

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong.

Tel: 2425 8801 Fax: 2425 8646

The copyright of this certificate is owned by Hong Kong Calibration Ltd.. It may not be reproduced except in full.

Certificate No. 33624

Page 2 of 4 Pages

Results:

1. SPL Accuracy

	Ţ	JUT Setting			
Range	Parameter	Frequency Wt.	Freq. Response	Applied Value (dB)	UUT Reading (dB)
20 - 100 SPL	dBA	F	94.0	93.8	
			S		93.8
		dBC	F		93.8
	dBL	F		93.9	
	1 kHz	F		93.8	
40 - 120 SPL SPL	dBA	F	94.0	93.9	
	1 kHz	F		93.9	
	dBA	F	114.0	113.8	
		S		113.8	
	dBC	F		113.9	
	dBL	F		113.9	
	1 kHz	F		113.8	

IEC 651 Type 1 Spec. : \pm 0.7 dB

Uncertainty: ± 0.1 dB

2. Level Stability: 0.0 dB

IEC 651 Type 1 Spec. : ± 0.3 dB

Uncertainty: ± 0.1 dB

3. Linearity

3.1 Level Linearity

UUT Range (dB)	Applied Value (dB)	UUT Reading (dB)	Variation (dB)	IEC 651 Type 1 Spec. (Primary Indicator Range)
140	114.0	113.9	0.0	± 0.7 dB
130	104.0	103.9	0.0	
120	94.0	93.9 (Ref.)	and and	
110	84.0	83.9	0.0	
100	74.0	73.9	0.0	
100	64.0	63.9	0.0	
100	54.0	53.9	0.0	

Uncertainty: ± 0.1 dB

Certificate No. 33624

Page 3 of 4 Pages

3.2 Differential level linearity

UUT Range (dB)	Applied Value (dB)	UUT Reading (dB)	Variation (dB)	IEC 651 Type 1 Spec.
120	84.0	83.9	0.0	± 0.4 dB
	94.0	93.9 (Ref.)		
	95.0	94.9	0.0	± 0.2 dB

Uncertainty: ± 0.1 dB

4. Frequency Weighting

A weighting

Frequency	Attenuation (dB)	IEC 651 Type 1 Spec.
31.5 Hz	-39.6	$-39.4 dB, \pm 1.5 dB$
63 Hz	-26.4	$-26.2 \text{ dB}, \pm 1.5 \text{ dB}$
125 Hz	-16.3	- 16.1 dB, ± 1 dB
250 Hz	-8.8	- 8.6 dB, ± 1 dB
500 Hz	-3.3	- 3.2 dB, ± 1 dB
1 kHz	0.0 (Ref)	0 dB, ± 1 dB
2 kHz	+1.2	+ 1.2 dB, ± 1 dB
4 kHz	+0.9	+ 1.0 dB, ± 1 dB
8 kHz	-1.2	- 1.1 dB, + 1.5 dB ~ -3 dB
16 kHz	-6.8	- 6.6 dB , $+ 3 \text{ dB} \sim -\infty$

Uncertainty: ± 0.1 dB

5. Time Averaging

Applied Burst duty Factor	Applied Leq Value (dB)	UUT Reading (dB)	IEC 804 Type 1 Spec.
continuous	40.0	40.0	-
1/10	40.0	39.9	± 0.5 dB
$1/10^2$	40.0	39.8	
$1/10^3$	40.0	39.7	± 1.0 dB
1/104	40.0	39.5	

Uncertainty: $\pm 0.1 dB$

Certificate No. 33624

Page 4 of 4 Pages

6. Filter Response

Filter Setting	Attenuation (dB)	IEC 1260 Class 1 Spec.
125 Hz	-63.6	<- 61
250 Hz	-44.8	<- 42
500 Hz	-21.0	< - 17.5
707 Hz	-3.7	- 2 ~ - 5
1 kHz (Ref.)	0.0 (Ref.)	
1.414 kHz	-4.1	- 2 ~ - 5
2 kHz	-21.4	< - 17.5
4 kHz	-45.0	< - 42
8 kHz	-63.9	<- 61

Uncertainty: ± 0.2 dB

Remark: 1. UUT: Unit-Under-Test

- 2. The uncertainty claimed is for a confidence probability of not less than 95%.
- 3. Atmospheric Pressure: 996 hPa
- 4. The UUT was adjusted with the laboratory's sound calibrator at the reference sound pressure level before the calibration.

----- END -----

31707 Certificate No.

Page

2 Pages 1 of

Customer: Lam Geotechnics Limited

Address: 11/F, Centre Point, 181-185 Gloucester Road, Wanchai, Hong Kong.

Order No.: Q30699

Date of receipt

13-Mar-13

Item Tested

Description: Sound Level Calibrator

Model

Manufacturer: Cesva

: CB-5

Serial No.

: 0035092

Test Conditions

Date of Test: 20-Mar-13

Supply Voltage

Relative Humidity: (50 ± 25) %

Ambient Temperature:

(23 ± 3)°C

Test Specifications

Calibration check.

Calibration procedure:

F21, Z02.

Test Results

All results were within the IEC 942 Class1 specification.

The results are shown in the attached page(s).

Test equipment used:

Equipment	No. Description	Cert. No.	Traceable to
S014	Spectrum Analyzer	30259	NIM-PRC & SCL-HKSAR
S024	Sound Level Calibrator	30620	NIM-PRC & SCL-HKSAR
S041	Universal Counter	28347	SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI). The test results apply to the above Unit-Under-Test only

Calibrated by :

Liam Wong

20-Mar-13

Date:

Dorothy Cheuk

This Certificate is issued by:

Hong Kong Calibration Ltd.

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong. Tel: 2425 8801 Fax: 2425 8646

Certificate No. 31707

Page 2 of 2 Pages

Results:

1. Level Accuracy

UUT Nominal Value (dB)	Measured Value (dB)	IEC 942 Class 1 Spec.
94	93.94	± 0.3 dB

Uncertainty: ± 0.2 dB

2. Frequency

UUT Nominal Value	Measured Value	IEC 942 Class 1 Spec.
1 kHz	1.001 kHz	± 2 %

Uncertainty: $\pm 3.6 \times 10^{-6}$

3. Level Stability: 0.0 dB

IEC 942 Class 1 Spec. : ± 0.1 dB

Uncertainty: ± 0.01 dB

4. Total Harmonic Distortion : < 0.3 %

IEC 942 Class 1 Spec. : < 3 % Uncertainty : ± 2.3 % of reading

Remark: 1. UUT: Unit-Under-Test

- 2. The above measured values are the mean of 3 measurements.
- 3. The uncertainty claimed is for a confidence probability of not less than 95%.
- 4. Atmospheric Pressure: 1003 hPa.

----- END -----

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Information supplied by customer:

CONTACT: DEREK LO WORK ORDER: HK1310044

CLIENT: LAM GEOTECHNICS LIMITED

DATE RECEIVED: <u>03/12/2013</u> DATE OF ISSUE: <u>10/12/2013</u>

ADDRESS: 11/F, CENTRE POINT, 181-185, GLOUCESTER ROAD,

WANCHAI, HONG KONG

PROJECT: ---

METHOD OF PERFORMANCE CHECK/ CALIBRATION:

Ref: APHA22nd ed 2130B

COMMENTS

It is certified that the item under performance check/calibration has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal acceptance criteria of Pilot Testing Limited will be followed.

Scope of Test:	Turbidity
Equipment Type:	Turbidimeter
Brand Name:	Xin Rui
Model No.:	WGZ-3B
Serial No.:	1203008
Equipment No.:	(-2)
Date of Calibration:	10 December, 2013

Remarks:

This is the Final Report. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr. Peter Lee

Director

WORK ORDER: HK1310044

DATE OF ISSUE: 10th December, 2013

CLIENT: LAM GEOTECHNICS LIMITED

Equipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1203008	
Equipment No.:	-	
Date of Calibration:	10 December, 2013	
Date of next Calibration:	10 March, 2014	

Parameters:

Turbidity

Method Ref: APHA 22nd ed. 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.02	
4	3.68	-8.0
10	10.3	+3.0
40	38.2	-4.5
100	94.0	-6.0
400	416	+4.0
1000	970	-3.0
	Tolerance Limit (±%)	10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

PILOT TESTING LIMTIED

Page 1 / 2

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Information supplied by customer:

CONTACT: KATHIE HO WORK ORDER: HK1310025

CLIENT: LAM GEOTECHNICS LIMITED

DATE RECEIVED: <u>04/11/2013</u> **DATE OF ISSUE:** <u>05/11/2013</u>

ADDRESS: 11/F, CENTRE POINT, 181-185, GLOUCESTER ROAD,

WANCHAI, HONG KONG

PROJECT: ---

METHOD OF PERFORMANCE CHECK/ CALIBRATION:

Ref: APHA22nd ed 2130B

COMMENTS

It is certified that the item under performance check/calibration has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal acceptance criteria of Pilot Testing Limited will be followed.

Scope of Test:	Turbidity	
Equipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1203016	
Equipment No.:		
Date of Calibration:	5 November, 2013	

Remarks:

This is the Final Report. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr. Peter Lee

WORK ORDER: HK1310025

DATE OF ISSUE: 5th November 2013

CLIENT: LAM GEOTECHNICS LIMITED

Equipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1203016	
Equipment No.:		
Date of Calibration:	5 November, 2013	
Date of next Calibration:	5 February, 2014	

Parameters:

Turbidity

Method Ref: APHA 22nd ed. 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.02	+0.2
4	4.27	+6.8
10	10.3	+3.0
40	42.4	+5.2
100	105	+5.0
400	417	+4.2
1000	970	-3.0
	Tolerance Limit (±%)	10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

Mr. Peter Leé

PILOT TESTING LIMTIED

Page 1 / 2

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

<u>Information supplied by customer:</u>

CONTACT: KATHIE HO

WORK ORDER: HK1310026

CLIENT: LAM GEOTECHNICS LIMITED

DATE RECEIVED: <u>04/11/2013</u> DATE OF ISSUE: <u>05/11/2013</u>

ADDRESS: 11/F, CENTRE POINT, 181-185, GLOUCESTER ROAD,

WANCHAI, HONG KONG

PROJECT: ---

METHOD OF PERFORMANCE CHECK/ CALIBRATION:

Ref: APHA22nd ed 2130B

COMMENTS

It is certified that the item under performance check/calibration has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal acceptance criteria of Pilot Testing Limited will be followed.

Scope of Test:	Turbidity	
Equipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1203025	
Equipment No.:		
Date of Calibration:	5 November, 2013	

Remarks:

This is the Final Report. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr. Peter Lee

Tunan

WORK ORDER: HK1310026

DATE OF ISSUE: 5th November, 2013

CLIENT: LAM GEOTECHNICS LIMITED

Equipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1203025	
Equipment No.:		
Date of Calibration:	5 November, 2013	
Date of next Calibration:	5 February, 2014	

Parameters:

Turbidity

Method Ref: APHA 22nd ed. 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.02	
4	4.20	+5.0
10	10.4	+4.0
40	42.0	+5.0
100	102	+2.0
400	400	0
1000	980	+2.0
	Tolerance Limit (±%)	10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

Mr. Peter Lee

Information supplied by customer:

CONTACT: KATHIE HO WORK ORDER: HK1310039

CLIENT: LAM GEOTECHNICS LIMITED

DATE RECEIVED: <u>21/11/2013</u>
DATE OF ISSUE: 28/11/2013

ADDRESS: 11/F, CENTRE POINT, 181-185, GLOUCESTER ROAD,

WANCHAI, HONG KONG

PROJECT: ---

METHOD OF PERFORMANCE CHECK/ CALIBRATION:

Ref: APHA22nd ed 2130B

COMMENTS

It is certified that the item under performance check/calibration has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal acceptance criteria of Pilot Testing Limited will be followed.

Scope of Test:	Turbidity	
Equipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1203010	
Equipment No.:		
Date of Calibration:	28 November, 2013	

Remarks:

This is the Final Report. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr. Peter Lee

WORK ORDER: HK1310039

DATE OF ISSUE: 28th November, 2013

CLIENT: LAM GEOTECHNICS LIMITED

Equipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1203010	
Equipment No.:		
Date of Calibration:	28 November, 2013	
Date of next Calibration:	28 February, 2014	

Parameters:

Turbidity

Method Ref: APHA 22nd ed. 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.02	
4	4.23	+5.8
10	10.2	+2.0
40	38.6	-3.5
100	106	+6.0
400	420	+5.0
1000	983	-1.7
	Tolerance Limit (±%)	10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:

MR DEREK LO

CLIENT:

LAM GEOTECHNICS LIMITED

ADDRESS:

11/F., CENTRE POINT,

181-185 GLOUCESTER ROAD,

WAN CHAI, HONG KONG

PROJECT:

WORK ORDER: HK1327829

LABORATORY:

HONG KONG

DATE RECEIVED:

09/10/2013

DATE OF ISSUE:

17/10/2013

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:

Dissolved Oxygen, pH, Salinity and Temperature

Equipment Type:

Multimeter

Brand Name:

YSI

Model No.:

Professional plus

Serial No.:

11F100597

Equipment No.:

Date of Calibration: 15 October, 2013

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Ptv Ltd

11/F Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung HONG KONG Phone:

852-2610 1044

Fax:

852-2610 2021

Email:

hongkong@alsglobal.com

Mr. Fung Lim Chee General Manager

Greater China & Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

Work Order: Date of Issue: HK1327829 17/10/2013

Client:

LAM GEOTECHNICS LIMITED

Equipment Type:

Multimeter

Brand Name:

YSI

Model No.:

Professional plus

Serial No.:

11F100597

Equipment No.:

--

Date of Calibration:

15 October, 2013

Date of next Calibration:

15 January, 2014

Parameters:

Dissolved Oxygen

Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
1.05	1.00	0.04
1.85 5.22	1.89 5.37	0.04 0.15
7.95	7.96	0.01
	Tolerance Limit (±mg/L)	0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.01	0.01
7.0	6.98	-0.02
10.0	10.02	0.02
	Tolerance Limit (±pH unit)	0.20

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.02	.,.
10	9.61	-3.9
20	19.65	-1.8
30	29.86	-0.5
	Tolerance Limit (± ppt)	10.0

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
11.0	11.5	0.5
25.0	23.8	-1.2
38.0	37.1	-0.9
	Tolerance Limit (±°C)	2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee, Richard

General Manager -

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung, N.T., Hong Kong

T: +852 2610 1044 F: +852 2610 2021 www.alsglobal.com

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR DEREK LO

CLIENT: LAM GEOTECHNICS LIMITED ADDRESS: 11/F., CENTRE POINT,

181-185 GLOUCESTER ROAD,

WAN CHAI, HONG KONG

PROJECT: --

WORK ORDER: HK1401751 LABORATORY: HONG KONG DATE RECEIVED: 15/01/2014 DATE OF ISSUE: 24/01/2014

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test: Dissolved Oxygen, pH, Salinity and Temperature

Equipment Type: Multimeter

Brand Name: YSI

and Name. 151

Model No.: YSI Professional plus

Serial No.: 11F100597

Equipment No.:

Date of Calibration: 20 January, 2014

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

> Mr. Fung Lim Chee, Richard General Manager -

Work Order: HK1401751 **Date of Issue:** 24/01/2014

Client: LAM GEOTECHNICS LIMITED

Equipment Type: Multimeter

Brand Name: YSI

Model No.: YSI Professional plus

Serial No.: 11F100597

Equipment No.: -

Date of Calibration: 20 January, 2014 Date of next Calibration: 20 April, 2014

Parameters:

Dissolved Oxygen Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
4.31	4.34	0.03
7.01	7.02	0.01
9.54	9.40	-0.14
	Tolerance Limit (±mg/L)	0.20

pH Value Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.10	0.10
7.0	7.01	0.01
10.0	10.05	0.05
	Tolerance Limit (±pH unit)	0.20

Salinity Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0	4
10	9.44	-5.6
20	19.37	-3.2
30	29.87	-0.4
	Tolerance Limit (±%)	10.0

Temperature Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
9.0	9.7	0.7
18.5	18.6	0.1
38.5	38.6	0.1
	Tolerance Limit (±°C)	2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee, Richard

General Manager

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR DEREK LO

LAM GEOTECHNICS LIMITED CLIENT: ADDRESS: 11/F., CENTRE POINT,

181-185 GLOUCESTER ROAD,

WAN CHAI, HONG KONG

PROJECT:

WORK ORDER: HK1326638 LABORATORY: HONG KONG 27/09/2013 DATE RECEIVED: DATE OF ISSUE: 07/10/2013

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Dissolved Oxygen, pH, Salinity and Temperature Scope of Test:

Equipment Type: Multimeter

Brand Name: YSI

Model No.: Professional plus Serial No .: 11F100420

Equipment No.:

Date of Calibration: 07 October, 2013

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung HONG KONG

852-2610 1044 Phone: Fax: 852-2610 2021

hongkong@alsglobal.com Email:

> Mr. Fung Lim Chee. General Manager -Greater China & Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

Work Order: HK1326638

Date of Issue: 07/10/2013

Client: LAM GEOTECHNICS LIMITED

Equipment Type: Multimeter

Brand Name: YSI

Model No.: Professional plus Serial No.: 11F100420

Equipment No.: --

Date of Calibration: 07 October, 2013 Date of next Calibration: 07 January, 2014

Parameters:

Dissolved Oxygen Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
2.32	2.33	0.01
4.36	4.32	-0.04
6.30	6.29	-0.01
	Tolerance Limit (±mg/L)	0.20

pH Value Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.17	0.17
7.0	7.19	0.19
10.0	9.96	-0.04
	Tolerance Limit (±pH unit)	0.20

Salinity Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.03	
10	9.94	-0.6
20	19.49	-2.6
30	29.55	-1.5
	Tolerance Limit (±%)	10.0

Temperature Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.0	9.8	-0.2
24.0	23.1	-0.9
41.0	40.4	-0.6
	Tolerance Limit (±°C)	2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee, Richard

General Manager

Greater China & Hong Kong

ALS Technichem (HK) Pty Ltd

ALS Environmental

Page 2 of 2

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung, N.T., Hong Kong

T: +852 2610 1044 F: +852 2610 2021 www.alsglobal.com

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MS EMILY KONG

CLIENT: LAM GEOTECHNICS LIMITED ADDRESS: 11/F., CENTRE POINT,

181-185 GLOUCESTER ROAD,

WAN CHAI, HONG KONG

PROJECT: -

WORK ORDER: HK1400734 LABORATORY: HONG KONG DATE RECEIVED: 08/01/2014 DATE OF ISSUE: 14/01/2014

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test: Dissolved Oxygen, pH, Salinity and Temperature

Equipment Type: Multimeter

Brand Name: YSI

Model No.: YSI Professional plus

Serial No.: 11F100420

Equipment No.:

Date of Calibration: 13 January, 2014

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr. Fung Lim Chee, Richard

General Manager -

Work Order: Date of Issue: HK1400734 14/01/2014

Client:

LAM GEOTECHNICS LIMITED

Equipment Type:

Multimeter

Brand Name:

YSI

Model No.:

YSI Professional plus

Serial No.:

11F100420

Equipment No.:

--

Date of Calibration:

13 January, 2014

Date of next Calibration:

13 April, 2014

Parameters:

Dissolved Oxygen

Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.27	3.16	-0.11
6.58	6.73	0.15
9.37	9.34	-0.03
	Tolerance Limit (±mg/L)	0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	3.98	-0.02
7.0	6.96	-0.04
10.0	10.08	0.08
	Tolerance Limit (±pH unit)	0.20

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.00	
10	9.85	-1.5
20	18.35	-8.2
30	27.53	-8.2
50	27.55	-0.2
	Tolerance Limit (+%)	10.0

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.0	10.2	0.2
20.0	19.6	-0.4
39.0	39.7	0.7
	Tolerance Limit (±°C)	2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee, Richard

General Manager -

ALS Technichem (HK) Ptv Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street

Kwai Chung, N.T., Hong Kong

T: +852 2610 1044 F: +852 2610 2021 www.alsglobal.com

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR DEREK LO

CLIENT: LAM GEOTECHNICS LIMITED ADDRESS: 11/F., CENTRE POINT,

181-185 GLOUCESTER ROAD.

WAN CHAI, HONG KONG

PROJECT:

WORK ORDER: HK1334576 LABORATORY: HONG KONG DATE RECEIVED: 12/12/2013 DATE OF ISSUE: 17/12/2013

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:

Dissolved Oxygen, pH, Salinity and Temperature

Equipment Type:

Multimeter YSI

Brand Name:

Professional plus

Model No.: Serial No.: 13A100242

Equipment No.:

Date of Calibration: 16 December, 2013

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

> Mr. Fung Lim Chee/Richard General Manager

Work Order: HK1334576 **Date of Issue:** 17/12/2013

Client: LAM GEOTECHNICS LIMITED

Equipment Type: Multimeter

Brand Name: YSI

Model No.: Professional plus Serial No.: 13A100242

Equipment No.:

Date of Calibration: 16 December, 2013 Date of next Calibration: 16 March, 2014

Parameters:

Dissolved Oxygen Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
1.93	2.07	0.14
4.72	4.83	0.14
8.61	8.74	0.13
- 4 1 1	Tolerance Limit (±mg/L)	0.20

pH Value Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.05	0.05
7.0	6.94	-0.06
10.0	9.92	-0.08
	Tolerance Limit (±pH unit)	0.20

Salinity Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)		
0	0.00			
10	9.99	-0.1		
20	20.35	1.8		
30	30.73	2.4		
	Tolerance Limit (±%)	10.0		

Temperature Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.0	10.7	0.7
18.5	18.2	-0.3
38.0	37.6	-0.4
	Tolerance Limit (±°C)	2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee, Richard

General Manager

Calibration Data for High Volume Sampler (TSP Sampler)

Location :		CMA3a				Calbratio	on Date	:	18-Dec-13
Equipment no. :		EL333				Calbratio	on Due Dat	:	18-Feb-14
CALIBRATION OF CON	ITINUOUS	FLOW RE	CORDER						
SALIBITATION OF GOIN	111110000	T LOW ICE		mbient Co	ndition				
Temperature, T _a		284			Pressure, P	a		1020	mmHg
			Orifice Tra	nsfer Stan	dard Informa	ation			
Equipment No.		EL086		Slope, m _c	2.019	68 I	ntercept, be	С	-0.02746
Last Calibration Date		15-Jul-1	3		(HxI	P _a / 1013	3.3 x 298	/ T _a) 1/2
Next Calibration Date		15-Jul-1	4			$m_c \times G$			
			C	alibration	of RSP				
Calibration	Mar	nometer R	eading	C	std	Continuo	us Flow		IC
Point	Н (inches of	water)	(m ³	/ min.)	Record	ler, W	(W(P _a	/1013.3x298/T _a) ^{1/2} /35.31)
	(up)	(down)	(difference)	X-	axis	(CF	M)		Y-axis
1	6.1	6.1	12.2	1.5	7910	62	2		63.7194
2	5.0	5.0	10.0	1.6	6227	52	2		53.4421
3	4.0	4.0	8.0	1.4	1529	42	2		43.1648
4	2.6	2.6	5.2	1.1	1740	25	5		25.6933
5	1.6	1.6	3.2	0.9	9239	12	2		12.3328
By Linear Regression of	Y on X								
	Slope, m	=	59.7	145	Int	ercept, b =	-4	13.504	<u> </u>
Correlation C	oefficient*	=	0.99	96					
Calibration	Accepted	=	Yes/ I	\0 **					
* if Correlation Coefficier	nt < 0.990,	check and	recalibration	again.					
** Delete as appropriate.									
Remarks :									
Calibrated by		Henry				Checked	l by	:	Derek Lo
Date :	1	8-Dec-13				Date		:	18-Dec-13

Appendix 5.1

Monitoring Schedules for Reporting Month and Coming Reporting Month

Contract No. HK/2011/07 Wan Chai Development Phase II and Central-Wan Chai Bypass Sampling, Field Measurement and Testing Works (Stage 2)

Environmental Monitoring Schedule January 2014

Sunday	Monday	,	Tuesday	Wednesday		Thursday		Friday		Saturo	
											28-Dec
										24hr TSP	
										24111 101	
										Impact WQM	
										Mid-flood	14:
										Mid-ebb	21:
29-Dec		30-Dec	31-Dec	;	1-Jan		2-Jan		3-Jan		4-J
	1hr TSP							24hr TSP		1hr TSP	
			Noise (Daytime)								
			,								
	Impact WQM					Impact WQM				Impact WQM	
	Mid-flood	15:53				Mid-ebb	13:07			Mid-flood	9:
	Mid-ebb	22:53				Mid-flood	18:25			Mid-ebb	14:
5-Jai		6-Jan	7-Jar	<u> </u>	8-Jan		9-Jan		10-Jan		11-\
										l	
						041- TOD		1hr TSP			
			Noise (Daytime)			24hr TSP		IIII 15P			
			Noise (Daytine)								
	Impact WQM			Impact WQM				Impact WQM			
	Mid-flood	10:34		Mid-flood	12:07			Mid-flood	13:42	l	
	Mid-ebb	16:26		Mid-ebb	18:41			Mid-ebb	21:18		
12-Jai		13-Jan	14-Jar		15-Jan		16-Jan		17-Jan		18-J
				L							
			Noise (Daytime)	24hr TSP		1hr TSP					
			Noise (Daytime)								
	Impact WQM			Impact WQM		Impact WQM				Impact WQM	
	Mid-flood	16:02		impact vv aim		impact 17 gm				Mid-ebb	1:
	Mid-ebb	23:24		Mid-flood	17:20	Mid-ebb	0:28			Mid-flood	8:
19-Jar		20-Jan	21-Jar		22-Jan		23-Jan		24-Jan		25-J
	24hr TSP		1hr TSP					24hr TSP		1hr TSP	
				Noise (Daytime)							
	I			I WOM				I		İ	
	Impact WQM Mid-flood	9:08		Impact WQM Mid-flood	10:21			Impact WQM Mid-flood	11:47		
	Mid-ebb	14:47		Mid-ebb	16:18			Mid-ebb	18:28		
26-Jai		27-Jan		1	.0.10	1		3 000	10.20	1	
20 00.		27 001									
	Impact WQM										
	Mid-flood Mid-ebb	14:28 21:51									

Wan Chai Development Phase II and Central-Wan Chai Bypass Sampling, Field Measurement and Testing Works (Stage 2)

Tentative Environmental Monitoring Schedule February 2014

Sunday	Monday		Tuesday		Wednesday		Thursday		Friday		Saturda	
				28-Jan		29-Jan		30-Jan		31-Jan		1-Fel
			Noise (Daytime)		24hr TSP		1hr TSP					
					Impact WQM Mid-flood	16:31			Impact WQM Mid-ebb	12:53		
					Mid-ebb	23:29			Mid-flood	18:21		
2-Fi	èb	3-Feb		4-Feb		5-Feb		6-Feb		7-Feb		8-Fel
			24hr TSP Noise (Daytime)		1hr TSP Noise (Daytime)		Impact WQM				Impact WQM	
			Mid-flood	9:49			Mid-flood	11:13			Mid-flood	12:42
	ac	10-Feb	Mid-ebb	15:54 11-Feb		12-Feb	Mid-ebb	17:54 13-Feb		14-Feb	Mid-ebb	20:50 15-Feb
9-Fi	30	10-Feb		II-Feb		12-Fe0		13-Feb		14-Feb		15-ге
	24hr TSP Noise (Daytime)		1hr TSP				Noise (Daytime)				24hr TSP	
	Impact WQM Mid-flood Mid-ebb	10:08 22:27			Impact WQM Mid-flood Mid-ebb	16:29 23:36			Impact WQM Mid-flood	17:50	Impact WQM Mid-ebb	0:37
16-F		17-Feb		18-Feb	Wild-CDD	19-Feb		20-Feb	Wild-Hood	21-Feb	Wild-CDD	22-Fel
	1hr TSP		Noise (Daytime)				Noise (Daytime)		24hr TSP		1hr TSP	
	Impact WQM Mid-ebb Mid-flood	13:46 19:45			Impact WQM Mid-flood Mid-ebb	8:57			Impact WQM Mid-flood Mid-ebb	10:05 16:30		
23-F		24-Feb		25-Feb	Mid-ebb	15:00 26-Feb		27-Feb	Mid-epp	10.30		
	Noise (Daytime)		Noise (Daytime)				24hr TSP					
	Impact WQM				Impact WQM							
	Mid-flood Mid-ebb	12:46 20:26			Mid-flood Mid-ebb	15:23 22:24						
	IVIIU-EDD	20.20			IVIIU-EDD	22.24						

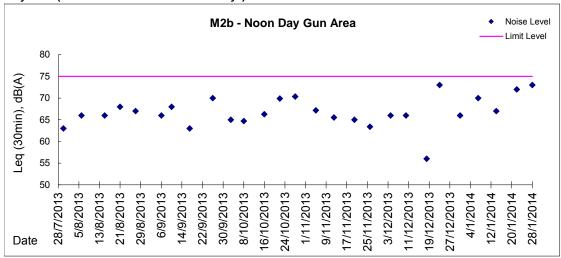
Appendix 5.2

Noise Monitoring Results and Graphical Presentations

Noise Monitoring Result

Day Time (0700 - 1900hrs on normal weekdays)

Location: M2b - Noon-day gun area


			Measur	ement Noi	se Level	Baseline Level	Construction Noise Level	Limit Level				
Date	Time	Weather	Leq	L10	L90	Leq	Leq	Leq				
				Unit: dB(A), (30-min)								
31/12/2013	9:00	Fine	69.7	71.0	67.5	68	66	75				
7/1/2014	13:25	Fine	71.7	73.5	68.5	68	70	75				
14/1/2014	9:55	Fine	70.3	71.0	69.0	68	67	75				
22/1/2014	15:35	Fine	73.3	73.3 75.0		68	72	75				
28/1/2014	11:11	Fine	74.0	77.5	68.0	68	73	75				

Wanchai Development Phase II and Central Wanchai Bypass (Shatin to Central Link (SCL) Protection Works at Causeway Bay Typhoon Shelter)

Graphic Presentation of Noise Monitoring Result

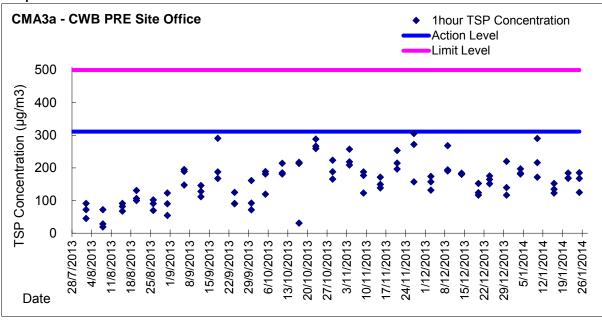
Day Time (0700 - 1900hrs on normal weekdays)

Appendix 5.3 Air Quality Monitoring Results and Graphical Presentations

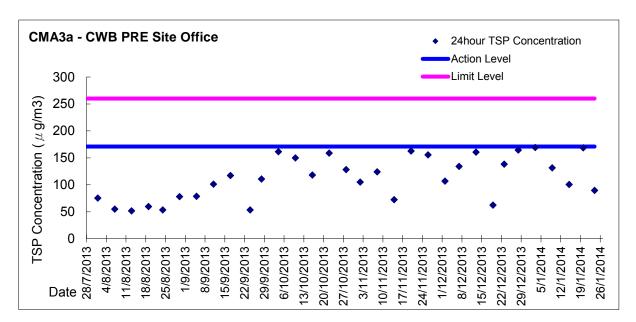
Location: CMA3a - CWB PRE Site Office Area

Report on 24-hour TSP monitoring Action Level (µg/m3) - 171 Limit Level (µg/m3) - 260

Date	Sampling	Weather	Filter paper	Filter Weight, g		Elapse Time, hr		Sampling	Flow Rate, m ³ /min			Total	TSP Level,
	Time	Condition	no.	Initial	Final	Initial	Final	Time, hr	Initial, Q _{si}	Final, Q _{sf}	Average	Volume, m ³	μg/m³
28-Dec-13	8:00	Fine	006471	2.7317	3.0684	1033.87	1057.87	24.00	1.42	1.42	1.42	2047	164
3-Jan-14	8:00	Fine	007525	2.6233	2.9673	1060.87	1084.87	24.00	1.41	1.41	1.41	2032	169
9-Jan-14	8:00	Cloudy	007512	2.6455	2.9139	1087.87	1111.87	24.00	1.42	1.42	1.42	2042	131
15-Jan-14	8:00	Fine	007572	2.6320	2.8376	1114.87	1138.87	24.00	1.42	1.42	1.42	2045	101
20-Jan-14	8:00	Fine	007768	2.6637	3.0081	1141.87	1165.87	24.00	1.42	1.42	1.42	2042	169
24-Jan-14	8:00	Fine	007773	2.6478	2.8303	1168.87	1192.87	24.00	1.42	1.41	1.41	2037	90


Report on 1-hour TSP monitoring
Action Level (µg/m3) - 311.3
Limit Level (µg/m3) - 500

Date	Sampling	Weather	Filter paper	Filter Weigh	nt, g	Elapse Time	e, hr	Sampling	Flo	w Rate, m³/ı	min	Total	TSP Level,
	Time	Condition	no.	Initial	Final	Initial	Final	Time, hr	Initial, Q _{si}	Final, Q _{sf}	Average	Volume, m ³	μg/m³
30-Dec-13	9:17	Fine	007530	2.6326	2.6423	1057.87	1058.87	1.00	1.39	1.39	1.39	83	117
30-Dec-13	10:23	Fine	007529	2.6328	2.6447	1058.87	1059.87	1.00	1.42	1.42	1.42	85	140
30-Dec-13	13:00	Fine	007527	2.6136	2.6319	1059.87	1060.87	1.00	1.39	1.39	1.39	83	220
4-Jan-14	8:20	Fine	006443	2.7984	2.8136	1084.87	1085.87	1.00	1.38	1.38	1.38	83	184
4-Jan-14	9:25	Fine	006447	2.7478	2.7645	1085.87	1086.87	1.00	1.41	1.41	1.41	85	197
4-Jan-14	10:30	Fine	007756	2.6570	2.6720	1086.87	1087.87	1.00	1.38	1.38	1.38	83	181
10-Jan-14	8:45	Cloudy	006392	2.6917	2.7164	1111.87	1112.87	1.00	1.42	1.42	1.42	85	290
10-Jan-14	9:49	Cloudy	006389	2.7026	2.7210	1112.87	1113.87	1.00	1.42	1.42	1.42	85	216
10-Jan-14	10:55	Cloudy	006387	2.6205	2.6351	1113.87	1114.87	1.00	1.42	1.42	1.42	85	172
16-Jan-14	9:20	Fine	007776	2.6274	2.6389	1138.87	1139.87	1.00	1.42	1.42	1.42	85	135
16-Jan-14	10:25	Fine	006388	2.6044	2.6174	1139.87	1140.87	1.00	1.42	1.42	1.42	85	153
16-Jan-14	13:00	Fine	007770	2.6388	2.6493	1140.87	1141.87	1.00	1.42	1.42	1.42	85	123
21-Jan-14	8:25	Fine	007772	2.6416	2.6573	1165.87	1166.87	1.00	1.42	1.42	1.42	85	184
21-Jan-14	9:30	Fine	007777	2.6457	2.6601	1166.87	1167.87	1.00	1.42	1.42	1.42	85	169
21-Jan-14	10:40	Fine	007778	2.6229	2.6372	1167.87	1168.87	1.00	1.42	1.42	1.42	85	168
25-Jan-14	8:25	Cloudy	004929	2.7857	2.7999	1192.87	1193.87	1.00	1.41	1.41	1.41	85	167
25-Jan-14	10:55	Cloudy	005934	2.6477	2.6634	1193.87	1194.87	1.00	1.41	1.41	1.41	85	185
25-Jan-14	13:00	Cloudy	007690	2.6509	2.6615	1194.87	1195.87	1.00	1.41	1.41	1.41	85	125


(Shatin to Central Link (SCL) Protection Works at Causeway Bay Typhoon Shelter)

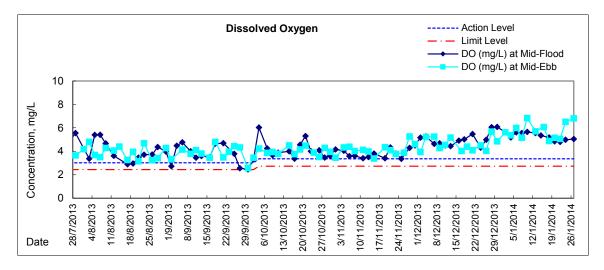
Graphic Presentation of 1 hour TSP Result

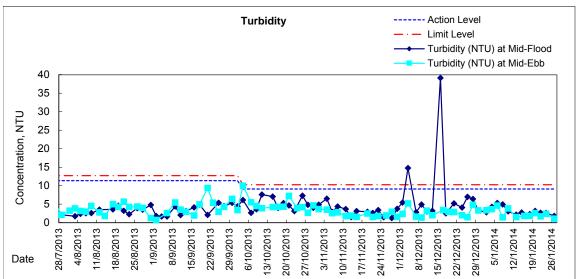
Graphic Presentation of 24 hour TSP Result

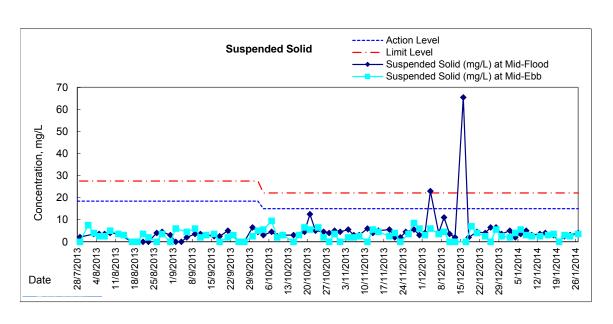
Appendix 5.4 Water Quality Monitoring Results and Graphical Presentation

Water Monitoring Result at C7 - Windsor House Mid-Flood Tide

Date	Time	Weater	Samplir	ng Depth	Wat	er Temp	erature		рН			Salinit	у	D	O Satur	ation		DO		Turbidity NTU			Suspended Solids	
54.0		Condition	r	m	Va	°C lue	Average	Va	lue -	Average	Va	ppt lue	Average	Va	% lue	Average	Va	mg/L lue	Average	Va	alue	Average		g/L Average
28/12/2013	15:37	Fine	Middle	1.5	17.20	17.20	17.20	8.56	8.56	8.56	35.38	35.38	35.48	76.5	77.4	77.7	5.95	6.04	6.05	6.41	6.41	6.41	6	6.50
20/12/2013	15:39	rille	Middle	1.5	17.20	17.20	17.20	8.55	8.55	0.50	35.57	35.57	35.46	78.3	78.6	11.1	6.10	6.12	6.05	6.41	6.42	0.41	7	0.50
30/12/2013	14:46	Fine	Middle	1.5	17.60	17.60	17.60	8.56	8.56	8.56	35.08	35.08	35.08	78.0	78.9	78.6	6.04	6.08	6.08	3.30	3.30	3.28	4	3.50
30/12/2013	14:47	Tille	Middle	1.5	17.60	17.60	17.00	8.56	8.56	0.50	35.08	35.08	33.00	78.8	78.6	70.0	6.11	6.09	0.00	3.28	3.25	3.20	3	3.30
2/1/2014	17:52	Cloudy	Middle	1.5	18.10	18.10	18.10	8.23	8.23	8.23	33.03	33.03	33.06	72.8	73.2	72.6	5.64	5.67	5.63	2.85	2.83	2.82	4	5.00
2/1/2014	17:53	Cloudy	Middle	1.5	18.10	18.10	10.10	8.23	8.23	0.23	33.08	33.08	33.00	73.1	71.4	72.0	5.64	5.58	5.05	2.79	2.81	2.02	6	5.00
4/1/2014	10:59	Fine	Middle	1.5	17.80	17.80	17.80	8.39	8.39	8.39	34.81	34.81	34.81	66.8	67.2	67.2	5.15	5.19	5.18	4.30	4.30	4.26	2	2.00
4/1/2014	11:01	rille	Middle	1.5	17.80	17.80	17.00	8.39	8.39	0.39	34.81	34.81	34.61	67.4	67.2	07.2	5.20	5.18	5.16	4.22	4.23	4.20	2	2.00
6/1/2014	12:17	Fine	Middle	1.5	17.50	17.50	17.50	8.43	8.43	8.43	35.04	35.04	35.04	71.9	72.7	72.4	5.58	5.63	5.61	5.40	5.30	5.31	3	3.50
0/1/2014	12:19	rille	Middle	1.5	17.50	17.50	17.50	8.43	8.43	0.43	35.04	35.04	33.04	72.8	72.3	72.4	5.64	5.60	5.01	5.30	5.24	5.51	4	3.50
8/1/2014	12:20	Fine	Middle	1.5	18.40	18.40	18.40	8.40	8.40	8.40	35.06	35.06	35.06	72.4	73.3	73.2	5.51	5.57	5.56	4.90	4.95	4.95	5	5.00
0/1/2014	12:22	rille	Middle	1.5	18.40	18.40	10.40	8.40	8.40	0.40	35.05	35.05	33.00	73.3	73.7	73.2	5.57	5.60	5.50	4.97	4.98	4.55	5	5.00
10/1/2014	15:17	Cloudy	Middle	1.5	17.10	17.10	17.10	8.45	8.45	8.45	35.02	35.02	35.02	72.7	72.6	72.6	5.64	5.67	5.66	3.01	3.02	3.04	3	3.00
10/1/2014	15:19	Cloudy	Middle	1.5	17.10	17.10	17.10	8.44	8.44	0.45	35.02	35.02	33.02	72.6	72.5	72.0	5.67	5.65	5.00	3.06	3.08	3.04	3	3.00
13/1/2014	15:07	Fine	Middle	1.5	17.10	17.10	17.15	8.45	8.45	8.45	34.85	34.85	34.85	70.5	71.2	71.3	5.51	5.56	5.56	2.14	2.14	2.15	4	3.50
13/1/2014	15:09	rille	Middle	1.5	17.20	17.20	17.15	8.45	8.45	0.45	34.85	34.85	34.65	71.8	71.5	71.5	5.60	5.58	3.30	2.14	2.17	2.15	3	3.50
15/1/2014	17:45	Fine	Middle	1.5	15.80	15.80	15.80	8.56	8.56	8.56	35.15	35.15	35.16	67.4	67.2	66.9	5.39	5.38	5.36	2.75	2.75	2.74	4	4.00
13/1/2014	17:47	Tille	Middle	1.5	15.80	15.80	10.00	8.56	8.56	0.50	35.16	35.16	33.10	66.5	66.6	00.9	5.32	5.33	3.30	2.74	2.71	2.14	4	4.00
18/1/2014	10:12	Fine	Middle	1.5	16.20	16.20	16.20	8.48	8.48	8.48	34.79	34.79	34.79	64.9	65.3	65.1	5.17	5.20	5.19	2.31	2.31	2.31	3	3.00
16/1/2014	10:14	rille	Middle	1.5	16.20	16.20	10.20	8.48	8.48	0.40	34.79	34.79	34.79	65.1	65.1	05.1	5.18	5.19	5.19	2.30	2.30	2.51	3	3.00
20/1/2014	11:02	Fine	Middle	1.5	16.70	16.70	16.45	8.47	8.47	8.47	34.92	34.92	34.92	61.9	62.1	62.0	4.87	4.80	4.86	3.26	3.14	3.16	<2	<2
20/1/2014	11:04	Tille	Middle	1.5	16.20	16.20	10.43	8.47	8.47	0.47	34.92	34.92	34.92	62.1	62.0	02.0	4.88	4.87	4.00	3.13	3.11	3.10	<2	
22/1/2014	12:07	Fine	Middle	1.5	15.70	15.70	15.70	8.41	8.41	8.41	34.56	34.56	34.56	59.2	56.6	58.9	4.76	4.80	4.80	2.67	2.66	2.65	3	2.50
22/1/2017	12:09	I IIIG	Middle	1.5	15.70	15.70	15.70	8.40	8.40	0.41	34.56	34.56	34.30	59.9	60.0	30.3	4.82	4.82	7.00	2.65	2.61	2.00	2	2.00
24/1/2014	12:23	Fine	Middle	1.5	16.40	16.40	16.40	8.42	8.42	8.42	34.69	34.69	34.69	62.4	62.9	63.0	4.95	4.99	4.99	2.66	2.61	2.64	3	3.00
27/1/2014	12:25	1 1110	Middle	1.5	16.40	16.40	10.40	8.42	8.42	0.42	34.69	34.69	57.05	63.2	63.3	03.0	5.01	5.01	7.33	2.68	2.60	2.04	3	3.00
27/1/2014	15:15	Fine	Middle	1.5	17.70	17.70	17.75	8.40	8.40	8.40	34.66	34.66	34.66	65.1	65.3	65.4	5.03	5.04	5.05	1.80	1.81	1.82	4	4.00
211112014	15:17	FIIIE	Middle	1.5	17.80	17.80	11.15	8.39	8.39	0.40	34.66	34.66	J 4 .00	65.6	65.4	03.4	5.06	5.05	5.05	1.83	1.83	1.02	4	4.00




Water Monitoring Result at C7 - Windsor House Mid-Ebb Tide


Date	Time	Weater	Samplin	ıg Depth	Wat	er Temp	erature		рН			Salinit	ty	С	O Satur	ation		DO		Turbidity		Suspended Solids		
Bute		Condition	r	n	Va	°C lue	Average	Va	lue -	Average	Va	ppt lue	Average	Va	llue	Average	Va	mg/L lue	Average	Va	NTU alue	Average	mç Value	g/L Average
00/40/0040	19:53	-	Middle	2	15.10	15.10	45.40	8.27	8.27	0.07	32.80	32.80	00.04	68.7	69.2	00.0	5.66	5.70	5.00	4.81	4.78	4.00	6	5.50
28/12/2013	19:54	Fine	Middle	2	15.10	15.10	15.10	8.27	8.27	8.27	32.81	32.81	32.81	69.1	68.8	69.0	5.69	5.66	5.68	4.87	4.85	4.83	5	5.50
30/12/2013	1:00	Fine	Middle	1	15.80	15.80	15.80	8.33	8.33	8.33	30.79	30.81	30.81	58.9	59.1	59.0	4.85	4.86	4.85	3.26	3.33	3.32	3	2.50
30/12/2013	1:01	riile	Middle	1	15.80	15.80	15.60	8.32	8.32	0.55	30.82	30.82	30.61	59.0	58.9	58.0	4.85	4.84	4.00	3.28	3.39	3.32	2	2.50
2/1/2014	14:57	Fine	Middle	2	18.30	18.30	18.35	8.45	8.45	8.45	35.67	35.67	35.67	73.3	73.9	74.0	5.57	5.60	5.62	3.36	3.42	3.37	2	2.00
2/1/2014	14:59	rille	Middle	2	18.40	18.40	10.35	8.45	8.45	0.45	35.67	35.67	35.07	74.4	74.3	74.0	5.65	5.64	5.02	3.37	3.33	3.31	2	2.00
4/1/2014	15:02	Fine	Middle	2	18.80	18.80	18.80	8.40	8.40	8.40	35.31	35.31	35.31	69.8	71.1	71.0	5.28	5.38	5.37	3.67	3.68	3.66	3	4.00
4/1/2014	15:04	riile	Middle	2	18.80	18.80	10.00	8.40	8.40	0.40	35.30	35.30	35.51	71.3	71.6	71.0	5.39	5.41	5.57	3.66	3.64	3.00	5	4.00
6/1/2014	15:55	Fine	Middle	2	17.60	17.60	17.60	8.44	8.44	8.44	35.39	35.39	35.39	77.6	77.9	77.9	5.98	6.00	6.00	4.64	4.63	4.65	5	5.50
0/1/2014	15:57	Tille	Middle	2	17.60	17.60	17.00	8.44	8.44	0.44	35.38	35.38	00.00	78.0	78.2	77.0	6.00	6.01	0.00	4.62	4.69	4.00	6	0.00
8/1/2014	20:07	Cloudy	Middle	1	18.00	18.00	18.03	7.87	7.87	7.87	33.54	33.53	33.53	66.9	66.6	66.7	5.18	5.15	5.16	1.50	1.46	1.45	2	3.00
0/1/2014	20:08	Oloudy	Middle	1	18.10	18.00	10.00	7.87	7.87	7.07	33.53	33.53	00.00	66.6	66.5	00.1	5.15	5.14	0.10	1.44	1.40	1.40	4	0.00
10/1/2014	19:57	Cloudy	Middle	2	16.70	16.70	16.70	7.97	7.97	7.97	33.64	33.64	33.64	86.0	86.0	86.1	6.83	6.83	6.84	3.79	3.89	3.87	3	2.50
10/1/2014	19:58	Oloudy	Middle	2	16.70	16.70	10.70	7.96	7.96	7.07	33.64	33.64	00.04	86.1	86.1	00.1	6.84	6.84	0.04	3.94	3.86	0.01	2	2.00
13/1/2014	0:59	Cloudy	Middle	1	14.30	14.30	14.30	7.98	7.98	7.97	32.41	32.41	32.41	68.6	68.3	67.7	5.76	5.73	5.70	1.51	1.49	1.50	2	2.50
10/ 1/2011	1:00	Cidady	Middle	1	14.30	14.30		7.96	7.96	7.07	32.40	32.40	02	67.0	66.8	01	5.72	5.60	00	1.53	1.46	1.00	3	2.00
16/1/2014	2:15	Fine	Middle	1	14.00	14.00	14.00	8.06	8.06	8.05	32.33	32.33	32.33	73.3	72.1	72.3	6.02	6.10	6.07	1.84	1.89	1.84	3	3.00
	2:16		Middle	1	14.00	14.00		8.04	8.04		32.32	32.32		71.9	71.7	_	6.08	6.06		1.82	1.79		3	
18/1/2014	2:28	Fine	Middle	1	15.50	15.50	15.50	8.07	8.07	8.06	31.59	31.58	31.57	59.9	59.5	59.5	4.93	4.90	4.87	1.88	1.86	1.85	3	3.50
	2:29		Middle	1	15.50	15.50		8.05	8.05		31.55	31.55		58.6	59.8		4.82	4.84	_	1.84	1.80		4	
20/1/2014	15:02	Fine	Middle	2	17.70	17.70	17.70	8.43	8.43	8.43	34.98	34.98	34.98	65.8	66.6	67.0	5.07	5.15	5.16	2.57	2.59	2.59	<2	<2
	15:04		Middle	2	17.70	17.70		8.43	8.43		34.98	34.98		67.4	68.3		5.17	5.25		2.59	2.60		<2	
22/1/2014	15:32	Fine	Middle	2	16.00	16.00	16.00	8.42	8.42	8.42	34.39	34.39	34.39	62.4	63.0	63.1	4.99	5.05	5.06	1.71	1.71	1.71	3	3.00
	15:34		Middle	2	16.00	16.00		8.42	8.42		34.39	34.39		63.5	63.6		5.09	5.09		1.71	1.70		3	
24/1/2014	19:17	Fine	Middle	1	17.30	17.30	17.30	8.16	8.16	8.16	31.29	31.29	31.29	82.1	82.0	82.0	6.52	6.52	6.52	2.29	2.72	2.40	3	2.50
	19:18		Middle	1	17.30	17.30		8.16	8.16		31.29	31.29		81.8	82.0		6.50	6.52		2.27	2.30		2	
27/1/2014	20:33	Fine	Middle	2	17.50	17.50	17.45	8.21	8.21	8.20	31.67	31.67	31.67	86.3	86.0	86.1	6.83	6.81	6.81	1.04	1.07	1.08	3	3.50
225	20:34		Middle	2	17.40	17.40		8.19	8.20	5.25	31.67	31.67	0 ::01	86.1	85.8	55	6.81	6.80	5.5	1.08	1.11		4	0.00

Graphic Presentation of Water Quality Result of C7 - Windsor House

Appendix 6.1

Event Action Plans

Contract No. HK/2011/07 Wanchai Development Phase II and Central Wanchai Bypass (Shatin to Central Link (SCL) Protection Works at Causeway Bay Typhoon Shelter)

Event/Action Plan for Construction Noise

EVENT		A	CTION	
	ET	IEC	ER	CONTRACTOR
Action Level	Notify IEC, ER and Contactor Carry out investigation Report the results of investigation to the IEC, ER and Contactor Discuss with the IEC and Contractor on remedial measures required Increase monitoring frequency to check mitigation effectiveness (The above actions should be taken within 2 working days after the exceedance is identified)	Review the investigation results submitted by the ET Review the proposed remedial measures by the Contractor and advise the ER accordingly Advise the ER on the effectiveness of the proposed remedial measures (The above actions should be taken within 2 working days after theexceedance is identified)	Confirm receipt of notification of failure in writing Notify Contractor In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented Supervise the implementation of remedial measures (The above actions should be taken within 2 working days after theexceedance is identified)	Submit noise mitigation proposals to IEC and ER Implement noise mitigation proposals (The above actions should be taken within 2 working days after theexceedance is identified)
Limit Level	Inform IEC, ER, EPD and Contractor Repeat measurement to confirm findings Increase monitoring frequency Identify source and investigate the cause of exceedance Carry out analysis of Contractor's working procedures. Discuss with the IEC, Contractor and ER on remedial measures require Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results If exceedance stops, cease additional monitoring (The above actions should be taken within 2 working days after the exceedance is identified)	Discuss amongst ER, ET and Contractor on the potential remedial actions Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly (The above actions should be taken within 2 working days after theexceedance is identified)	Confirm receipt of notification of failure in writing Notify Contractor In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented Supervise the implementation of remedial measures If exceedance continues, consider stopping the Contractor to continue working on that portion of work which causes the exceedance until the exceedance is abated (The above actions should be taken within 2 working days after the exceedance is identified)	Take immediate action to avoid further exceedance Submit proposals for remedial actions to IEC and ER within 3 working days of notification Implement the agreed proposals Submit further proposal if problem still not under control Stop the relevant portion of works as instructed by the ER until the exceedance is abated (The above actions should be taken within 2 working days after the exceedance is identified)

Contract No. HK/2011/07 Wanchai Development Phase II and Central Wanchai Bypass (Shatin to Central Link (SCL) Protection Works at Causeway Bay Typhoon Shelter)

Event / Action Plan for Construction Air Quality

EVENT		ACTION		
EVENI	ET	IEC	ER	CONTRACTOR
ACTION LEVEL				
Exceedance for one sample	Identify source, investigate the causes of complaint and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. (The above actions should be taken within 2 working days after the exceedance is identified.)	Check monitoring data submitted by ET; Check Contractor's working method. (The above actions should be taken within 2 working days after the exceedance is identified.)	Notify Contractor. (The above actions should be taken within 2 working days after theexceedance is identified.)	Rectify any unacceptable practice; Amend working methods if appropriate. (The above actions should be taken within 2 working days after the exceedance is identified.)
Exceedance for two or more consecutive samples	Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; If exceedance stops, cease additional monitoring. (The above actions should be taken within 2 working days after the exceedance is identified.)	Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified.)	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. (The above actions should be taken within 2 working days after theexceedance is identified.)	Submit proposals for remedial to ER within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate. (The above actions should be taken within 2 working days after the exceedance is identified.)
LIMIT LEVEL				
Exceedance for one sample	Identify source, investigate the causes ofexceedance and propose remedial measures; Inform IEC, ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. (The above actions should be taken within 2 working days after the exceedance is identified.)	Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified.)	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. (The above actions should be taken within 2 working days after theexceedance is identified.)	Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate. (The above actions should be taken within 2 working days after the exceedance is identified.)

Contract No. HK/2011/07 Wanchai Development Phase II and Central Wanchai Bypass (Shatin to Central Link (SCL) Protection Works at Causeway Bay Typhoon Shelter)

Exceedance for	 Notify IEC, ER, Contractor and EPD; 	 Discuss amongst ER, ET, and Contractor 	 Confirm receipt of notification of 	 Take immediate action to avoid
two or more	Identify source;	on the potential remedial actions;	failure in writing;	further exceedance;
consecutive samples	Repeat measurement to confirm findings;	Review Contractor's remedial actions	Notify Contractor;	Submit proposals for remedial
·	4. Increase monitoring frequency to daily;	whenever necessary to assure their	3. In consultation with the IEC, agree	actions to IEC within three working
	5. Carry out analysis of Contractor's working	effectiveness and advise the ER	with the Contractor on the remedial	days of notification;
	procedures to determine possible mitigation	accordingly;	measures to be implemented;	Implement the agreed proposals;
	to be implemented:	3. Supervise the implementation of remedial	4. Ensure remedial measures properly	Resubmit proposals if problem still
	Arrange meeting with IEC and ER to discuss	measures.	implemented;	not under control:
	the remedial actions to be taken:	(The above actions should be taken within 2	If exceedance continues, consider	Stop the relevant portion of works as
	7. Assess effectiveness of Contractor's remedial	working days after the exceedance is	what portion of the work is	determined by the ER until
	actions and keep IEC, EPD and ER informed	identified.)	responsible and instruct the	the exceedance is abated.
	of the results:	, , , , , , , , , , , , , , , , , , , ,	Contractor to stop that portion of	(The above actions should be taken
	8. If exceedance stops, cease additional		work until the exceedance is	within 2 working days after
	monitoring.		abated.	the exceedance is identified.)
	(The above actions should be taken within 2		(The above actions should be taken	the executance is facilitied.)
	working days after the exceedance is identified.)		within 2 working days after	
	working days after the exceedance is identified.)		theexceedance is identified.)	
			theexocedance is identified.)	

Contract No. HK/2011/07
Wanchai Development Phase II and Central Wanchai Bypass
(Shatin to Central Link (SCL) Protection
Works at Causeway Bay Typhoon Shelter)

Event and Action Plan for Marine Water Quality

EVENT		ACTION		
	ET	IEC	ER	CONTRACTOR
Action level being exceeded by one sampling day	Repeat in-situ measurement to confirm findings; Identify source(s) of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; (The above actions should be taken within 1 working day after the exceedance is identified) Repeat measurement on next day of exceedance.	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented. (The above actions should be taken within 1 working day after the exceedance is identified)	Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER; Implement the agreed mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)
Action level being exceeded by more than one consecutive sampling days	Identify source(s) of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; (The above actions should be taken within 1 working day after the exceedance is identified) Repeat measurement on next working day of exceedance.	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)

Contract No. HK/2011/07 Wanchai Development Phase II and Central Wanchai Bypass (Shatin to Central Link (SCL) Protection Works at Causeway Bay Typhoon Shelter)

EVENT		ACTION		
	ET	IEC	ER	CONTRACTOR
Limit level being exceeded by one sampling day	Repeat in-situ measurement to confirm findings; Identify source(s) of impact; Inform IEC and Contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)
Limit level being exceeded by more than one consecutive sampling days	Identify source(s) of impact; Inform IEC, contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the marine work until no exceedance of Limit level. (The above actions should be taken within 1 working day after the exceedance is identified)	Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3working days; Implement the agreed mitigation measures; As directed by the Engineer, to slow down or to stop all or part of the marine work or construction activities. (The above actions should be taken within 1 working day after the exceedance is identified)

Appendix 6.2

Summary of Notification of Exceedances

Ref no.	Date	Tidal	Location	Parameters (Unit)	Measured	Action Leve	Limit Level	Follow-up action	
-	-	-	-	-	-	-	-	-	-

Appendix 7.1

Complaint Log

Environmental Complaints Log

Complaint Log No.	Date of Complaint	Received From and Received By	Nature of Complaint	Outcome	Status
-			 	-	

Appendix 8.1

Construction Programme of Individual Contracts

Activity ID	Activity Name	Calendar	Original Duration	Start	Finish	Late Start	Late Finish	Total Float	
-			Durauni						Q3 Q4 Q1 Q2 Q3 Q
	CCT RC Structure								
S26740	TS4/ME4 - CWB CCT (+ STITCHING) SUMMARY	7d/wk-1	93	25-Aug-13	28-Nov-13	22-Mar-13	29-Jul-13	-119	TS4/ME4 - ¢WB ¢CT (+ STITCHING) SLIMMARY
S26735	TS4/ME4 - SCL CCT SUMMARY	7d/wk-1	67	22-Oct-13	29-Dec-13,	22-May-13	29-Jul-13	-148	TS4/ME4 SCLCCT SUMMARY
CCT (Hal	- near Mined Tunnel) (Total 11 bays, at 5m/bay)		E						
S26765	TS4 Construct tunnel base slab	7d/wk-1	24	17-Sep-13*	12-Oct-13	18-Apr-13	12-May-13	-148	TS4 Construct tunnel base slab
S26770	TS4 Construct tunnel wall & roof slab	7d/wk-1	36	30-Sep-13*	06-Nov-13*	30-Apr-13	06-Jun-13	-148	TS4 Construct tunnel wall & roof slab
826780	TS4 King post load transfer	7d/wk-1	24	20-Oct-13	12-Nov-13	20-May-13	13-Jun-13	-148	■ TS4 King post load:transfer
S26785	TS4 waterproofing	7d/wk-1	26	23-Oct-13	17-Nov-13	23-May-13	18-Jun-13	-148	■ 1S4 waterproofing
S26775	TS4 fill to underside of SCL turnel	7d/wk-1	6	15-Nov-13	20-Nov-13	16-Jun-13	21-Jun-13	-148	I TS4 fill to uniderside of SCL turinel
Stitching	(MT Lining connects with CCT)								
S26825	WB - stitching (wall & roof)	7d/wk-1	48	17-Sep-13	06-Nov-13	10-Jun-13	29-Jul-13	-97	V/B - stitching (wall & roof)
\$26835	SR8 - stitching (wall & roof)	7d/wk-1	48	03-Oct-13	20-Nov-13	10-Jun-13	29-Jul-13	-111	SRB - stitching (wall & roof)
826830	EB - stitching (wall & roof)	7d/wk-1	48	11-Oct-13	28-Nov-13	10-Jun-13	29-Jul-13	-119	EB - stitching (wall & root)
CCT (Rer	naining Half- East Side) (Total 11 bays, at 5m/bay)					T			
S26815	TS4 Construct tunnel base slab (after -35)	7d/wk-1	24	25-Aug-13	17-Sep-13	22-Mar-13	18-Apr-13	-148	■ TS4 Constluct tunnel blase slab (after -35)
S26820	TS4 Construct tunnel wall & roof slab	7d/wk-1	36	13-Sep-13	21-Oct-13*	09-May-13	15-Jun-13	-124	TS4 Construct tunnel wall & roof; slab
	RC Structure		TE SE						
S26745	ME4 - SCL tunnel, base slab	7d/wk-1	48	22-Oct-13	08-Dec-13	22-May-13	10-Jul-13	-148	ME4 - SCL lunnel; base slab
S26750	ME4 - SCL tunnel, wall and roof slab	7d/wk-1	48	01-Nov-13	18-Dec-13	01-Jun-13	20-Jul-13	-148	ME4:- SCL tunnel, wall and roof slab
S26760	TS4/ME4 - external waterproofing on top of completed CCT box (incl. screeding)	7d/wk-1	24	30-Nov-13	23-Dec-13	02-Jul-13	25-Jul-13	-148	TS4/ME4 - external waterproofing on top of completed CCT box (in
S26755	TS4/ME4 - Backfilling works on top of completed CCT box (incl. screeding)	7d/wk-1	26	02-Dec-13	29-Dec-13	04-Jul-13	29-Jul-13	-148	TS4/ME4 Backfilling works on top of completed CCT box (incl. sci
	Actual Work 7 of 22								Prepared by William Caluza
	Trouble Trois								Date Revision Chec App
	Remaining Work								09-Nov-12 WP Rev. I DL
	Critical Remaini China State Const	ruction E	nginee	ring (Hon	g Kong) L	.ta			
	Summary								中国道察工程(事法)者[22]
	Summay Contract No. HY/2009/15 - Central Wan Cha	i By Pass	- Tunr	nel (Caus	eway Bay	Typhoon	Shelter S	Section)	OHMASTATE CONSTRUCTION ENGIG. HONG HONG
• •	Remaining Work								
	Milestone WORKS	PROG	RAN	IME RE	EV. I				
* *	Milestone WORKS	PROG	RAN	IME RE	EV. I				