Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0389A

Quarterly EM&A Report

September 2019 - November 2019

Client: China International Water & Electric Corporation

Project: Providing Sufficient Water Depth for Kwai Tsing Container Basin

and its Approach Channel – CV/2013/04

Report No.: 0394/13/ED/0389A

Project Proponent: Prepared by: Andy Choi

Civil Engineering & Development Department 101 Princess Margaret Road, Homantin, Kowloon, Hong Kong.

Reviewed by: Cyrus Lai

Certified by:

Colin Yung

Environmental Team Leader for Fugro Technical Services Limited

Ref.: CEDDWKTBEM00 0 0394L.19

27 April 2020 By Post

Mott MacDonald Hong Kong Ltd. 3/F Mapletree Bay Point, 348 Kwun Tong Road Kwun Tong, Kowloon

Attention: Mr. C M Howley

Dear Mr. Howley,

Re: Agreement No. CE 63/2008 (CE)

Dredging Works in Kwai Tsing Container Basin and its Approach Channel

Investigation, Design and Construction)

Contract No. CV/2013/04

Dredging Works in Kwai Tsing Container Basin and its Approach Channel <u>Verification of Quarterly EM&A Report for September 2019 to November 2019</u>

Reference is made to the Environmental Team's submission of the Quarterly Environmental Monitoring & Audit Report for September 2019 to November 2019 (ET's Report No. 0394/13/ED/0389A) received by e-mail on 23 April 2019.

We write to verify the captioned report in accordance with Section 12.4 iii of EM&A Manual (AEIAR-156/2010).

Thank you very much for your kind attention and please do not hesitate to contact our Mr. Theo Chan or the undersigned should you have any queries.

Yours faithfully, For and on behalf of Ramboll Hong Kong Limited

J.

Y H Hui Independent Environmental Checker

MateriaLab Mr. Colin Yung

Cc:

MMHK

Mr. Jason Chan

(by post and email)

(by email)

CIWE

Mr. K.O. Leung

(by email)

Q:\Projects\CEDDWKTBEM00\02 Project Management\02 Corr\CEDDWKTBEM00_0_0394L.19.docx

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0394/13/ED/0389A

TABLE OF CONTENTS

EXEC	CUTIVE SUMMARY	1
1.	INTRODUCTION	4
2.	BASIC PROJECT INFORMATION	6
3.	EM&A REQUIREMENTS – ROUTINE IMPACT MONITORING	7
4.	EM&A REQUIREMENTS – 24-HR WATER QUALITY MONITORING	12
5.	ENVIRONMENTAL SITE INSPECTION AND AUDIT	14
6.	NON-COMPLIANCE, COMPLAINTS, NOTIFICATION OF SUMMONS AND PROSECUTION	22
7.	CONCLUSIONS	23

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0389A

TABLES:

Table I	Summary of Water Quality Exceedances – Routine Impact Monitoring (In-situ)	1
Table II	Summary of Water Quality Exceedances – Routine Impact Monitoring (Laboratory Analysis)	2
Table III	Summary of the Exceedances Recorded in Reporting Period – 24-hr Monitoring	2
Table 2-1	Key Personnel Contact of the Contract	6
Table 2-2	Detail Dredging Quantity	6
Table 3-1	Monitoring Parameters and Frequency	7
Table 3-2	Water Quality Monitoring Parameters	8
Table 3-3	Summary of Water Quality Exceedance (In-situ Measurement)	10
Table 3-4	Summary of Water Quality Exceedance (Laboratory Analysis)	11
Table 4-1	24-hr Water Quality Monitoring Parameters	12
Table 4-2	Summary of Water Quality Exceedance (24-hr Monitoring)	13
Table 5-1	Waste Quantities of Dredging Works	15
Table 5-2	Comparison of Quarterly Mean to Baseline Mean	17
Table 5-3	Summary of Statistical Analysis	20
Table 6-1	Environmental Complaints Log	22
Table 6-2	Cumulative Statistics on Complaints	22
Table 6-3	Cumulative Statistics on Successful Prosecutions	22

FIGURES:

Figure 1 Project General Layout

Figure 2 Locations of Water Quality Monitoring Stations

APPENDICES:

Appendix A	Project Organization Chart
Appendix B	Construction Programme
Appendix C	Action and Limit Levels
Appendix D	Graphical Presentation – Routine Impact Monitoring Results
Appendix E	Graphical Presentation – 24-hr Monitoring Results
Appendix F	Environmental Mitigation Implementation Schedule
Appendix G	Waste Generation in Reporting Period
Appendix H	Quarterly Assessment of Construction Impacts
Appendix I	Weather Conditions and Red Tide Occurrences for the Reporting Period

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0389A Page 1

EXECUTIVE SUMMARY

i. This is the eighteenth Quarterly Environmental Monitoring Audit (EM&A) Report – September 2019 – November 2019 for Contract No. CV/2013/04 – Dredging Works in Kwai Tsing and its Approach Channel (CE63/2008 – Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel). The dredging works commenced on 23 April 2014. This report presents the environmental monitoring and audit works conducted from 23 September 2019 to 22 November 2019.

ii. Construction Activities for the Reporting Period During this reporting period, the principal work activities included:

September 2019	October 2019	November 2019					
Preparation Works of Dredging at Portion A / Zone 2B1, 2B2 and 2C1 in EP.	 Preparation Works of Dredging at Portion A / Zone 2B1, 2B2 and 2C1 in EP Dredging at Portion A/ Zone 2B2 in EP 	 Preparation Works of Dredging at Portion A / Zone 2B1, 2B2 and 2C1 in EP. Dredging at Portion A/ Zone 2B2 in EP 					

iii. Water Quality Monitoring

Routine impact water quality monitoring at 7 designated monitoring stations namely C1A, C2A, G2, SR4, SR5, SR12, SR13 were conducted during the reporting period. Exceedances of NH3-N (insitu & lab), UIA (in-situ & lab), TIN (in-situ & lab), Suspended solid and *E.coli* were recorded at various monitoring stations, detail of exceedance are summarized in **Table I and II**. However, investigation indicated these exceedances were not related to the Project works.

Table I Summary of Water Quality Exceedances – Routine Impact Monitoring (In-situ)

Station	Exceedance Level	DO (S&M)		DO (B)		Turbidity		NH ₃ -N		UIA		TIN		Total	
		E	F	Е	F	Е	F	Е	F	Е	F	Е	F	Е	F
SR4	Action	0	0	0	0	0	0	0	0	0	0	-	-	0	0
SK4	Limit	0	0	0	0	0	0	0	0	12	14	-	-	12	14
SR5	Action	0	0	0	0	0	0	-	-	-	-	4	2	4	2
SKS	Limit	0	0	0	0	0	0	-	-	-	-	13	15	13	15
SR12	Action	0	0	0	0	0	0	0	0	0	0	-	-	0	0
SKIZ	Limit	0	0	0	0	0	0	1	1	15	15	-	-	16	16
SR13	Action	0	0	0	0	0	0	-	-	-	-	-	-	0	0
SKIS	Limit	0	0	0	0	0	0	-	-	-	-	-	-	0	0
Tatal	Action	0	0	0	0	0	0	0	0	0	0	4	2	6	6
Total	Limit	0	0	0	0	0	0	1	1	27	29	13	15	8	6

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0389A Page 2

Table II Summary of Water Quality Exceedances – Routine Impact Monitoring (Laboratory Analysis)

Station	Exceedance Suspended Level Solids		BOD₅		E. (E. coli		NH ₃ -N		UIA		Synthetic Detergent		TIN		Total	
		Е	F	Е	F	Е	F	Е	F	Ε	F	Е	F	Е	F	Е	F
SR4	Action	0	0	0	0	0	0	0	0	0	0	0	0	-	-	0	0
SR4	Limit	2	3	0	0	0	0	0	0	12	13	0	0	-	-	14	16
SR5	Action	1	1	-	-	-	-	-	-	-	-	-	-	4	2	5	3
SKS	Limit	0	0	-	-	-	-	-	-	-	-	-	-	13	15	13	15
SR12	Action	0	0	0	0	0	0	0	0	0	0	0	0	-	-	0	0
SKIZ	Limit	5	4	0	0	1	0	1	1	15	15	0	0	-	-	22	20
CD42	Action	0	0	-	-	-	-	-	-	-	-	-	-	-	-	0	0
SR13	Limit	0	0	-	-	-	-	-	-	-	-	-	-	-	-	0	0
Total	Action	1	1	0	0	0	0	0	0	0	0	0	0	4	2	8	3
Total	Limit	7	7	0	0	1	0	1	1	27	28	0	0	13	15	10	00

Among the 7 monitoring stations, supplementary 24-hr water quality monitoring was also conducted at 4 of the stations, which are SR4, SR5, SR12 and SR13. No exceedance was recorded in the reporting period. Number of exceedances recorded in the reporting period at each impact station is summarized in **Table III**.

Table III Summary of the Exceedances Recorded in Reporting Quarter – 24-hr Monitoring

4510 III		D EXCOCUANTOCC TROOP	a a a a a a a a a a a a a a a a a a a	=	
Station	Exceedance Level	Turbidity	DO	NH ₃ -N	Total
SR4	Action	0	0	0	0
3K4	Limit	0	0	0	0
SR5	Action	0	0	-	0
SKO	Limit	0	0	-	0
SR12	Action	0	0	0	0
SKIZ	Limit	0	0	0	0
SR13	Action	0	0	-	0
3113	Limit	0	0	-	0
Total	Action	0	0	0	0
Total	Limit	0	0	0	0

iv. Waste Management

There was marine sediment Type 2 sediment (Confined Marine Disposal) disposed to East of Sha Chau Contaminated Mud Pit. No general refuse were disposed off site in the reporting month.

v. Non-Compliance, Complaints, Notifications of Summons and Successful Prosecutions No complaint, notification of prosecutions or summons was received in the reporting period.

vi. Site Inspections and Audit

The Environmental Team conducted 13 site inspections in the reporting period. No particular observation was recorded in the reporting month except oil stain was found on the deck. The

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0389A

Page 3

Contractor was reminded to wash the desk regularly and ensure no leakage of oil into the sea. The waste shall be treated and disposed properly as chemical waste.

According to Contractor, no archaeological deposit was found during reporting period.

vii. Compliance with Specific EP conditions

Implementation of contractor's mitigation for dredging work and the associated dredging records were checked. It was concluded that the dredging is conducted orderly in compliance with the EP requirements on site mitigation measures in general.

viii. Construction Activities for the Coming Reporting Period

During the coming reporting period, the principal work activities included:

- Preparation Works of Dredging at Portion A / Zone 2B1, 2B2 and 2C1 in EP
- Dredging at Portion A / Zone 2B1, 2B2 and 2C1 in EP

Future Key Issues include:

- · Regular inspection on silt curtain deployment
- Regular inspection on silt screen deployment
- Implementation of EM&A Programme
- Maintain dredging below allowable dredging rate in EP.
- Cleaning of excess material from the decks and exposed fittings of barges and dredgers before the vessel is moved.
- Barge loading shall be monitored to ensure material is not lost during transportation.
- Conditions in dumping permit shall be followed strictly.

According to information provided by the Contractor, the upcoming dredging works will only be carried out at sub-zone Z2B1, Z2B2 and Z2C1 will be approximately 5200 m³ (in-situ volume) in total, which is far below than the dredging scale which was mentioned in the EP. Refer to Section 2.1.4 of the EM&A Manual, routine water quality monitoring stations at SR2 (Casam, Gazetted Beach) and SR3 (Approach, Gazetted Beach) were proposed to be removed as according to the Proposal of Scale down for the Water Quality Monitoring Stations during High Spots Removal at Sub-zone Z2B1, Z2B2 and Z2C1 (Ref.: 0394/13/ED/0370G). The proposal was justified by ET and verified by IEC, also no objection was received from other parties. The proposal was approved by EPD as per EPD's memo (Ref. (6) in Ax(1) to EP2/N3/C/57 Pt.10) dated 20 August 2019. The removal of the water quality monitoring at SR2 and SR3 will be effective from 23 August 2019.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0394/13/ED/0389A Page 4

1. INTRODUCTION

1.1 Background

- 1.1.1 The Project objective is to dredge approximately 4.0 million cubic metres of sediment from the seabed of Kwai Tsing Container Basin, as well as portions of Northern Fairway and Western Fairway, to provide sufficient depth of container basin and approach channel to Kwai Tsing Container Terminal (KTCT) for the safe navigation of Ultra Large Container Ships (ULCS).
- 1.1.2 The environmental monitoring and audit works of this Project is governed by Environmental Permit (EP) No. EP-426/2011/A, EM&A Manual (AEIAR-156/2010) and EM&A TIN (EPD Letter Ref: (34) in Ax(1) to EP2/N3/C/57Pt.7)).
- 1.1.3 The project proponent was the Civil Engineering & Development Department, HKSAR (CEDD). The Project General Layout is shown in **Figure 1**.
- 1.1.4 Mott MacDonald Hong Kong Ltd. (MMHK) was commissioned by CEDD as the Engineer for the Project. Ramboll Hong Kong Limited (RHK) was employed as the Independent Environmental Checker (IEC) in the Project.
- 1.1.5 China International Water & Electric Corporation Limited (CIWE) was appointed as the main contractor for the dredging works.
- 1.1.6 Fugro Technical Services Limited (FTS) was appointed as the Environmental Team (ET) to implement the Environmental Monitoring and Audit (EM&A) programme for the Project.
- 1.1.7 The construction phase of the Project under the EP was commenced on 23 April 2014. The impact EM&A programme of the Project commenced on 23 April 2014.

1.2 Purpose of the Report

1.2.1 This eighteenth Quarterly EM&A Report is prepared by FTS. This report presents a summary of the environmental monitoring and audit works, list of activities and mitigation measures proposed by the ET for the Project in 23 September 2019 to 22 November 2019.

1.3 Structure of the Report

- 1.3.1 The structure of this report is as follows:
 - Section 1: Introduction, including background, purpose and structure of the report
 - Section 2: Basic Project Information summaries background and scope of the Contract, site description, project organization and contract details, construction programme, the construction works undertaken and the status of Environmental Permits/Licenses during the reporting period.
 - Section 3: Routine Impact Water Quality Monitoring summaries the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency,

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0389A

Page 5

- monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
- Section 4: 24-hr Water Quality Monitoring summaries the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
- Section 5: Environmental Site Inspection summaries the audit findings of the weekly site inspections undertaken within the reporting period.
- Section 6: Non-Compliance, Complaints, notifications of summons and Prosecution summaries any environmental complaints, environmental summons and successful prosecutions within the reporting period.
- Section 7: Conclusions and Recommendation

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0389A Page 6

2. BASIC PROJECT INFORMATION

2.1 Project Organizations

2.1.1 The Project Organization structure is shown in **Appendix A**. The key personnel contact names and numbers are summarized in **Table 2.1**.

Table 2-1 Key Personnel Contact of the Contract

Party	Position	Name	Telephone	Fax
Engineer's	Resident Engineer	Mr. Jason Chan	2585 8595	2827 1823
Representative (MMHK)	Project Engineer	Ms. Sunny Zhao	2828 5908	2827 1823
Independent Environmental Checker (RHK)	Independent Environmental Checker	Mr. YH Hui	3465 2888	3465 2899
Contractor (CIWE)	Site Agent	Mr. KO Leung	2508 0983	2508 0987
Environmental Team (FTS)	Environmental Team Leader	Mr. Colin Yung	3565 4114	3565 4160

- **2.2** Construction Programme and Synopsis of Work
- 2.2.1 The construction phase of the Project under the EP commenced on 23 April 2014.
- 2.2.2 The construction programme of the Project is shown in **Appendix B**.
- 2.2.3 The environmental mitigation measures implementation schedule is presented in **Appendix F**.
- 2.3 Works undertaken during the quarter

During the reporting period, according to the Contractor, the principal work activities include:

September 2019	October 2019	November 2019					
Preparation Works of Dredging at Portion A / Zone 2B1, 2B2 and 2C1 in EP.	 Preparation Works of Dredging at Portion A / Zone 2B1, 2B2 and 2C1 in EP. Dredging at Portion A/ Zone 2B2 in EP. 	 Preparation Works of Dredging at Portion A / Zone 2B1, 2B2 and 2C1 in EP. Dredging at Portion A/ Zone 2B2 in EP. 					

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0389A Page 7

3. EM&A REQUIREMENTS - ROUTINE IMPACT MONITORING

3.1 Monitoring Parameters

3.1.1 The monitoring parameters and frequency for both in-situ measurement and laboratory analysis are summarised in **Table 3.1**. Parameters for each monitoring station are specified in **Table 3.2**.

Table 3-1 Monitoring Parameters and Frequency

Parameters	Monitoring Frequency
In-situ Measurement Turbidity (in NTU), pH, Dissolved Oxygen (in mg/L and %), Temperature (in °C), Salinity (in ppt), ¹Ammonia-N (in mg/L-N and UIA); ²TIN: Ammonia-N (in mg/L), Nitrite (in mg/L), Nitrate (in mg/L) Laboratory Analysis ¹Ammonia-N (in mg/L-N and UIA), Suspended Solids (SS), ³BOD₅, ³E.coli, ³Synthetic Detergent; ²TIN: Ammonia-N (in mg/L), Nitrite (in mg/L), Nitrate (in mg/L)	3 days per week, at mid-flood and mid- ebb tides (except ³ detergent which shall be taken one day per month, at mid-flood and mid-ebb) 36 hours interval was allowed between subsequent sets of measurement.

Notes:

- 1. Ammonia measurements and samples were taken at SR4, SR12, C1A, C2A only; UIA: In-situ unionized ammonia was calculated from in-situ measurement of NH₃-N, temperature, pH and salinity; Laboratory determined unionized ammonia was calculated from analysed NH₃-N from water samples and in-situ measurement of temperature, pH and salinity;
- 2. Total Inorganic Nitrogen (TIN) measurements and samples were taken at SR5, G2, C1A and C2A only;
- 3. BOD₅, *E.coli* and Synthetic Detergent samples were taken at SR4, SR12, C1A, C2A only.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0389A Page 8

Table 3-2 Water Quality Monitoring Parameters

		ı	n-situ l	Measur		<u> </u>			Lak	orator	y Analy	sis	
ID	Нф	Temperature	Salinity	Turbidity	Dissolved Oxygen / Dissolved Oxygen%	NH3-N / UIA	TIN (NH ₃ -N, NO ₂ & NO ₃)	Suspended Solids	BOD ₅	E. coli	NH ₃ -N / UIA	Synthetic Detergent	TIN (NH ₃ -N, NO ₂ & NO ₃)
SR4	0	0	0	0	0	0		0	0	0	0	0	
SR5	0	0	0	0	0		0	0					0
SR12	0	0	0	0	0	0		0	0	0	0	0	
SR13	0	0	0	0	0			0					
G2	0	0	0	0	0		0	0					0
C1A	0	0	0	0	0	0	0	0	0	0	0	0	0
C2A	0	0	0	0	0	0	0	0	0	0	0	0	0

Note:

3.2 Monitoring Locations

- 3.2.1 Referring to the Proposal for Temporary Suspension of Impact Water Quality Monitoring (0394_13_ED_0326F) which was submitted to EPD in August 2016 with no objection was received from EPD; removal of routine water quality monitoring stations at SR1 was effective on 24 December 2016.
- 3.2.2 Referring to the *Proposal on Removal of Some Water Quality Monitoring Stations After Resumption of Marine Construction Works (Dredging Works and Marine Works of the Northern Part of Kwai Tsing Container Basin Only)* (0394_13_ED_0332I) which has been submitted to EPD and relevant parties in December 2016 with no objection, removal of routine water quality monitoring stations at SR6, SR7, SR8, SR9, SR10 and SR11 was effective from 23 January 2017. Due to removal of some sensitive receivers in routine water quality monitoring, gradient stations G3, G5 and G6 were also be removed and gradient stations G1 and G4 replaced the previous control stations C1, C2 and C3 as C1A and C2A with reference to the approved proposal (0394_13_ED_0332I) which was effective from 23 January 2017.
- 3.2.3 Referring to the *Proposal of Scale down for the Water Quality Monitoring Stations during High Spots Removal at Sub-zone Z2B1, Z2B2 and Z2C1* (Ref.: 0394/13/ED/0370G), routine water quality monitoring stations at SR2 (Casam, Gazetted Beach) and SR3 (Approach, Gazetted Beach) were removed. The proposal was justified by ET and verified by IEC, also no objection was received from other parties. The proposal was approved by EPD as per EPD's memo (Ref. (6) in Ax(1) to EP2/N3/C/57 Pt.10) dated 20 August 2019. The removal of the water quality monitoring at SR2 and SR3 was effective from 23 August 2019.

^{1.} UIA: In-situ unionized ammonia was calculated from in-situ measurement of NH₃-N, temperature, pH and salinity; laboratory determined unionized ammonia was calculated from analysed NH₃-N from water samples taken and in-situ measurement of temperature, pH and salinity.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0389A

Page 9

3.2.4 Impact water quality monitoring was conducted at 7 locations, including 4 sensitive receivers (SR4, SR5, SR12 and SR13), 1 gradient station (G2) and 2 control stations (C1A and C2A). The locations of the stations are also shown in **Figure 2**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0389A Page 10

3.3 Results and Observations

- 3.3.1 Impact water quality monitoring was conducted at all designated monitoring stations in the reporting quarter. Impact water quality monitoring results graphical presentations are provided in **Appendix D**.
- 3.3.2 During the monitoring period, some adverse weather conditions, including Rainstorm Warning Signals, Thunderstorm Warning and Tropical Cyclone Warning Signals were reported. Heavy marine traffic (not associated with the Project) was commonly observed nearby the Project site and its vicinity, that the propeller wash from vessels could lead to potential disturbance of seabed sediment and affect the water quality. The above conditions may affect monitoring results. Summary of weather condition is provided in **Appendix I**.
- 3.3.3 Exceedances were recorded for NH3-N (in-situ & lab), UIA (in-situ & lab), TIN (in-situ & lab), Suspended solid and *E. coli*. Number of exceedances recorded in the reporting quarter at each impact station is summarized in **Table 3-3 and 3-4**.

Table 3-3 Summary of Water Quality Exceedance (In-situ Measurement)

Station	Exceedance Level	DO (S&M)		DO (B)		Turbidity		NH ₃ -N		UIA		TIN		Total	
		Е	F	Е	F	Е	F	Е	F	Е	F	Е	F	Е	F
SR4	Action	0	0	0	0	0	0	0	0	0	0	-	-	0	0
SK4	Limit	0	0	0	0	0	0	0	0	12	14	-	-	12	14
SR5	Action	0	0	0	0	0	0	-	-	-	-	4	2	4	2
SKO	Limit	0	0	0	0	0	0	-	-	-	-	13	15	13	15
SR12	Action	0	0	0	0	0	0	0	0	0	0		-	0	0
SKIZ	Limit	0	0	0	0	0	0	1	1	15	15	-	-	16	16
SR13	Action	0	0	0	0	0	0	-	-	-	-	-	-	0	0
SKIS	Limit	0	0	0	0	0	0	-	-	-	-	-	-	0	0
Total	Action	0	0	0	0	0	0	0	0	0	0	4	2	(3
Tolai	Limit	0	0	0	0	0	0	1	1	27	29	13	15	8	6

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0389A Page 11

Table 3-4 Summary of Water Quality Exceedance (Laboratory Analysis)

Station	Exceedance Level	Suspe Sol		ВС)D ₅	E. 0	coli	NH	3 -N	U	IA		hetic rgent	TI	IN	То	tal
		Е	F	Е	F	Е	F	Е	F	Е	F	Е	F	Е	F	Е	F
SR4	Action	0	0	0	0	0	0	0	0	0	0	0	0		-	0	0
SK4	Limit	2	3	0	0	0	0	0	0	12	13	0	0	-	-	14	16
SR5	Action	1	1	-	-	-	-	-	-	-	-	-	-	4	2	5	3
SKS	Limit	0	0	-	-	-	-	-	-	-	-	-	-	13	15	13	15
SR12	Action	0	0	0	0	0	0	0	0	0	0	0	0	-	-	0	0
SKIZ	Limit	5	4	0	0	1	0	1	1	15	15	0	0	-	-	22	20
CD40	Action	0	0	-	-	-	-	-	-	-	-	-	-	-	-	0	0
SR13	Limit	0	0	-	-	-	-	-	-	-	-	-	-	-	-	0	0
Total	Action	1	1	0	0	0	0	0	0	0	0	0	0	4	2	8	3
Total	Limit	7	7	0	0	1	0	1	1	27	28	0	0	13	15	10	00

- 3.3.4 During the reporting period, 2 LL exceedances for NH3-N (in-situ); 56 LL exceedances for UIA (in-situ); 6 AL and 28 LL exceedances for TIN (in-situ); 2 AL and 14 LL for Suspended Solids; 1 LL exceedance for E. coli; 2 LL exceedances for NH3-N (lab); 55 LL exceedances for UIA (lab); 6 AL and 28 LL exceedances for TIN (lab).
- 3.3.5 According to the investigations, the exceedances were considered caused by influences in the vicinity of the station or changes in ambient conditions and not related to the Project.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0394/13/ED/0389A Page 12

4. EM&A REQUIREMENTS – 24-HR WATER QUALITY MONITORING

- **4.1** Monitoring Parameters
- 4.1.1 Dissolved oxygen, temperature and turbidity are recorded every 5 minutes, 24 hours a day 7 days a week during dredging works.
- 4.1.2 In-situ NH₃-N at WSD Flushing Water Intake is measured every 20 minutes, 24 hours a day 7 days a week during works.
- 4.1.3 The water quality parameters measured at particular locations are shown in **Table 4.1**.

Table 4-1 24-hr Water Quality Monitoring Parameters

			Parameters					
ID	Description	Temperature	Turbidity	DO (mg/L)	%OG	NH3-N		
SR4	Tsuen Wan, WSD Flushing Water Intake	0	0	0	0	0		
SR5	Ma Wan, Fish Culture Zone	0	0	0	0			
SR12	Tsing Yi, WSD Flushing Water Intake	0	0	0	0	0		
SR13	EMSD Cooling Water Intake for Kwai Chung Hospital	0	0	0	0			

4.2 Monitoring Locations

- 4.2.1 Referring to the *Proposal on Removal of Some Water Quality Monitoring Stations After Resumption of Marine Construction Works (Dredging Works and Marine Works of the Northern Part of Kwai Tsing Container Basin Only)* (0394_13_ED_0332I) which has been submitted to EPD and relevant parties in December 2016 with no objection, removal of 24 hour monitoring stations at SR9, SR10 and SR11 was effective from 23 January 2017. The setups of 24 hour monitoring stations at SR9, SR10 and SR11 were removed on 7 February 2017.
- 4.2.2 As shown in Table 4.1, the 24 hours water quality monitoring works are performed at SR4, SR5, SR12 and SR13.
- 4.2.3 Revisions on monitoring locations were proposed in previous submission (MateriaLab Report No. Ref: 0394/13/ED/0103 – WATER QUALITY MONITORING LOCATION) and were agreed among AFCD, EMSD, WSD and EPD.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0389A Page 13

4.3 Results and Observations

- 4.3.1 24-hr water quality monitoring was conducted at all designated monitoring stations in the reporting quarter. Monitoring result graphical presentations are provided in **Appendix E**.
- 4.3.2 During the reporting period, some adverse weather conditions, including Rainstorm Warning Signals, Thunderstorm Warning and Tropical Cyclone Warning Signals were reported. Heavy marine traffic (not associated with the Project) was commonly observed nearby the Project site and its vicinity, that the propeller wash from vessels could lead to potential disturbance of seabed sediment and affect the water quality. The above conditions may affect monitoring results. Furthermore, the fish culturing or other activities occurring on the fish rack may cause adverse impact on the receiving water. Summary of weather condition is provided in **Appendix**
- 4.3.3 Number of exceedances recorded in the reporting period at each impact station is summarized in Table 4.2.

Table 4-2 Summary of Water Quality Exceedance (24-hr Monitoring)

Station	Exceedance Level	Turbidity	DO	NH ₃ -N	Total
SR4	Action	0	0	0	0
3N4	Limit	0	0	0	0
SR5	Action	0	0	-	0
SINO	Limit	0	0	-	0
SR12	Action	0	0	0	0
3K12	Limit	0	0	0	0
SR13	Action	0	0	-	0
51(13	Limit	0	0	-	0
Total	Action	0	0	0	0
Total	Limit	0	0	0	0

4.3.4 No exceedance was recorded in the reporting quarter.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0394/13/ED/0389A Page 14

5. ENVIRONMENTAL SITE INSPECTION AND AUDIT

- **5.1** Site Inspections
- 5.1.1 The Environmental Team conducted 13 site inspections in the reporting period. No particular observation was recorded in the reporting month except oil stain was found on the deck. The Contractor was reminded to wash the desk regularly and ensure no leakage of oil into the sea. The waste shall be treated and disposed properly as chemical waste.
- 5.1.2 According to Contractor, no archaeological deposit was found during reporting period.
- **5.2** Implementation Status of Environmental Mitigation Measures
- 5.2.1 A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in **Appendix F**. Most of the necessary mitigation measures were implemented properly.
- 5.2.2 The mitigation measures recommended in the EIA report and required by the EP are considered effective in minimizing environmental impacts. The Contractor has implemented the recommended mitigation measures except those mitigation measures not applicable at this stage.
- **5.3** Summary of Action taken
- 5.3.1 The exceedances recorded were considered not related to the Project, follow-up actions are not required.
- **5.4** Advice on the Solid and Liquid Waste Management Status
- 5.4.1 According to the Contractor, no general refuse were disposed off site in the reporting period. Summary of waste flow table is detailed in **Appendix G**.
- 5.4.2 There was no inert or non-inert C&D material related to dredging works. The details can be referred to the **Table 5-1**.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0389A Page 15

Table 5-1 Waste Quantities of Dredging Works

Month	Marine Sediment Type	Quantity Generated in Reporting Period (m³)	Cumulative-to Reporting Period (m³)	Disposal / Dumping Ground
	Type 1 – Open Sea Disposal	0	1685700	NA
September 2019	Type 2 – Confined Marine Disposal	0	654430	NA
	Type 3 – Special Treatment / Disposal	0	1260	NA
	Type 1 – Open Sea Disposal	0	1685700	NA
October 2019	Type 2 – Confined Marine Disposal	900	655330	NA
	Type 3 – Special Treatment / Disposal	0	1260	NA
	Type 1 – Open Sea Disposal	0	1685700	NA
November 2019	Type 2 – Confined Marine Disposal	1350	656680	NA
	Type 3 – Special Treatment / Disposal	0	1260	NA

Note:

- 1. All the Type 3 (Cat. Hf) sediment dredging and disposal was completed on 18 May 2016.
- 2. No dredging work was carried out and no marine sediment was disposed in the reporting period.
- 5.5 Review of Action and Limit Level
- 5.5.1 Referring to the ER Letter ref. (CV/2013/04)/M45/400/1247 dated 19 March 2015, a Revised Baseline Water Quality Monitoring Test Methodology Review of Action and Limit Levels has been submitted to EPD by ER in March 2015. The Action and Limit Level for the wet season (April October) was effected and applied to the water quality monitoring data from 1 April 2015. The Action and Limit Level is given in **Appendix C**.

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0389A Page 16

- **5.6** Quarterly Review of Constructional Impacts on Water Quality
- 5.6.1 The construction impact on water quality was assessed by comparing the quarterly mean values with the relevant ambient or baseline mean values. Results showed that the mean values of Ammonia (in-situ), TIN (in-situ), TSS and TIN (lab) at all clusters of monitoring stations were below the 1.3 x baseline value. Cluster stations with higher impact data are statistically compared to 1.3 x baseline levels or other relevant levels to assess the constructional impacts.
- 5.6.2 Quarterly means of cluster 1 stations (i.e. SR4 and SR12) of UIA (In-situ) (at mid flood) and UIA (lab) (at mid flood) are compared to their 1.3 x baseline data respectively. Result shows the quarterly mean of cluster 1 (i.e. SR4 and SR12) UIA (In-situ) (at mid flood) and UIA (lab) (at mid flood) is significantly larger than 1.3 x baseline level (p<0.05). They are further compared to the quarterly UIA levels at upstream control station (i.e. C2A (at mid flood)). Result shows UIA (in-situ) and UIA (lab) level of upstream control (i.e. C2A) is not significantly different from that of impact stations (i.e. SR4 and SR12), indicating the background UIA level is high and the contribution from the project is not significant.
- 5.6.3 Quarterly means of cluster 1 stations (i.e. SR4 and SR12) of Ammonia (lab) (at mid flood) are compared to their 1.3 x baseline data. Result shows the quarterly mean of Ammonia (lab) cluster 1 stations (i.e. SR4 and SR12) (at mid flood) is significantly larger than 1.3 x baseline level (p<0.05). Quarterly means of cluster 1 stations (i.e. SR4 and SR12) of Ammonia (lab) (at mid flood) are further compared to the quarterly upstream control level at C2A (at mid flood). Result shows ammonia level at the upstream control station (i.e. C2A) is significantly greater than that of impact stations (i.e. SR4 and SR12), indicating the background ammonia level is high and the contribution from the project is not significant.
- 5.6.4 Quarterly mean of cluster 1 stations (i.e. SR4 and SR12) of *E. coli* (at mid flood) is compared to their 1.3 x baseline data respectively. Result shows the quarterly mean of *E. coli* at cluster 1 stations (i.e. SR4 and SR12) (at mid flood) is significantly larger than 1.3 x baseline level (p<0.05). Quarterly means of cluster 1 stations (i.e. SR4 and SR12) of *E. coli* (at mid flood) are further compared to the quarterly upstream control level at C2A (at mid flood). Result shows *E. coli* at the upstream control station (i.e. C2A) is not significantly different from that of impact stations (i.e. SR4 and SR12), indicating the background *E. coli* is high and the contribution from the project is not significant.
- 5.6.5 Data from ebb tide for Ammonia (lab), UIA (in-situ and lab) and *E.coli* at cluster 1 stations (i.e. SR4 and SR12) were not further compared to their 1.3 x baseline data as SR4 and SR12 were situated at upstream position at ebb tide and not subject to project impact. Comparison between quarterly mean and 1.3 x baseline mean is given in Table 5.2, while the summary of key statistical analysis is provided in Table 5.3. Details of key statistical analysis results are provided in **Appendix H**.
- 5.6.6 As 24-hr monitoring is to supplement the routine WQM activities (EM&A Manual Section 2.1.10) and there is no baseline value and/or control / gradient value for a meaningful statistical analysis. Thus no statistical analysis was done for 24-hr monitoring. Also, statistical analysis was not performed for some parameters without exceedances (DO (S&M), DO (B), Turbidity, BOD5 and Synthetic Detergent) in the reporting quarter.

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0389A Page 17

Table 5-2 Comparison of Quarterly Mean to Baseline Mean

				Ammonia	– In-situ	UIA – In-situ							
		Baseline	Baseline x 1.3	Average	Sep 2019 – Nov 2019	Average	Larger than Baseline x 1.3	Baseline	Baseline x 1.3	Average	Sep 2019 – Nov 2019	Average	Larger than Baseline x 1.3
Control (Flood)	C1A C2A	NA	NA	NA	0.24 0.43	NA	NA	NA	NA	NA	0.020 0.030	NA	NA
Control (Ebb)	C1A C2A	NA	NA	NA	0.24 0.45	NA	NA	NA	NA	NA	0.020 0.030	NA	NA
Gradient (Flood)	G2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gradient (Ebb)	G2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cluster 1	SR4	0.26	0.34		0.27			0.013	0.017		0.021		
(Flood)	SR5	NA	NA	0.35	NA	0.30	no	NA	NA	0.018	NA	0.024	yes
(1 1000)	SR12	0.28	0.36		0.32			0.014	0.018		0.026		
Cluster 1	SR4	0.25	0.33		0.26			0.007	0.009		0.022		
(Ebb)	SR5	NA	NA	0.34	NA	0.29	no	NA	NA	0.009	NA	0.025	yes
` ,	SR12	0.27	0.35		0.31			0.007	0.009		0.027		
Cluster 3 (Flood)	SR13	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cluster 3 (Ebb)	SR13	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

1. NA: Not Applicable

- Control and Gradient stations are compared on individual stations for reference, no clustering analysis was performed. Impact stations are compared in clusters of stations, or
- Parameter is not monitored at the station.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0389A Page 18

			TIN – In-situ							Т	SS		
		Baseline	Baseline x 1.3	Average	Sep 2019 – Nov 2019	Average	Larger than Baseline x 1.3	Baseline	Baseline x 1.3	Average	Sep 2019 – Nov 2019	Average	Larger than Baseline x 1.3
Control	C1A	0.60	0.78	NA	0.47	NA	NA	7	10	NA	6	NA	NA
(Flood)	C2A	0.69	0.90	INA	0.58	INA	INA	8	10	INA	6	INA	INA
Control	C1A	0.57	0.74	NA	0.52	NA	NA	5	7	NA	6	NA	NA
(Ebb)	C2A	0.65	0.85	0.60 NA	INA	7	9	INA	6	INA	INA		
Gradient (Flood)	G2	0.56	0.73	NA	0.47	NA	no	5	7	NA	6	NA	no
Gradient (Ebb)	G2	0.48	0.62	NA	0.51	NA	no	5	7	NA	6	NA	no
Observe 4	SR4	NA	NA		NA			7	9		7		
Cluster 1 (Flood)	SR5	0.49	0.64	0.64	0.50	0.50	no	6	8	9.67	6	6.67	no
(1.1004)	SR12	NA	NA		NA			9	12		7		
Cluster 1	SR4	NA	NA		NA			5	7		6		
Cluster 1 (Ebb)	SR5	0.52	0.68	0.68	0.45	0.45	no	5	6	7.33	6	6.33	no
(200)	SR12	NA	NA		NA			5	9		7		
Cluster 3 (Flood)	SR13	NA	NA	NA	NA	NA	NA	16	21	21.00	6	6.00	no
Cluster 3 (Ebb)	SR13	NA	NA	NA	NA	NA	NA	10	14	14.00	7	7.00	no

Notes:

- 1. NA: Not Applicable
 - Control and Gradient stations are compared on individual stations for reference, no clustering analysis was performed. Impact stations are compared in clusters of stations, or
 - Parameter is not monitored at the station.
- 2. With reference to Review of Action and Limit Levels (0394/13/ED/0175C), the baseline results of TIN (In-sit) in C1A, C2A, G2 and SR5 in dry season are multiplying the relevant wet/dry season ratio to obtain the wet season baseline values

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0394/13/ED/0389A

Page 19

				Ammor	nia – Lab			UIA – Lab					
		Baseline	Baseline x 1.3	Average	Sep 2019 – Nov 2019	Average	Larger than Baseline x 1.3	Baseline	Baseline x 1.3	Average	Sep 2019 – Nov 2019	Average	Larger than Baseline x 1.3
Control	C1A	NA	NA	NA	0.23	NA	NA	NA	NA	NA	0.020	NA	NA
(Flood)	C2A	NA	NA	INA	0.43	INA	INA	NA	NA	INA	0.030	INA	NA
Control	C1A	NA	NA	NA	0.23	NA	NA	NA	NA	NA	0.020	NA	NA
(Ebb)	C2A	NA	NA	INA	0.45	INA	INA	NA	NA	INA	0.030	INA	NA
Gradient (Flood)	G2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gradient (Ebb)	G2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
01 1	SR4	0.13	0.17		0.26			0.006	0.008		0.020		
Cluster 1 (Flood)	SR5	NA	NA	0.19	NA	0.29	yes	NA	NA	0.009	NA	0.023	yes
(11000)	SR12	0.15	0.20		0.31			0.007	0.009		0.025		
Object on 4	SR4	0.14	0.18		0.25			0.007	0.009		0.021		
Cluster 1 (Ebb)	SR5	NA	NA	0.19	NA	0.28	yes	NA	NA	0.009	NA	0.024	yes
(200)	SR12	0.15	0.20		0.30			0.007	0.009		0.026		
Cluster 3 (Flood)	SR13	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cluster 3 (Ebb)	SR13	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

1. NA: Not Applicable

- Control and Gradient stations are compared on individual stations for reference, no clustering analysis was performed. Impact stations are compared in clusters of stations, or
- Parameter is not monitored at the station.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0394/13/ED/0389A

Page 20

				Т	ΓIN – Lab			E. coli						
		Baseline	Baseline x 1.3	Average	Sep 2019 – Nov 2019	Average	Larger than Baseline x 1.3	Baseline	Baseline x 1.3	Average	Sep 2019 – Nov 2019	Average	Larger than Baseline x 1.3	
Control	C1A	0.42	0.55	NA	0.45	NA	NA	NA	NA	NA	71	247	NA	
(Flood)	C2A	0.43	0.56	INA	0.57	INA	INA	NA	NA	INA	861	247	NA	
Control	C1A	0.40	0.52	NA	0.45	NA	NA	NA	NA	NA	68	220	NA	
(Ebb)	C2A	0.42	0.55	INA	0.58	INA	INA	NA	NA	INA	713	220	NA	
Gradient (Flood)	G2	0.39	0.51	NA	0.45	NA	no	NA	NA	NA	NA	NA	NA	
Gradient (Ebb)	G2	0.36	0.47	NA	0.44	NA	no	NA	NA	NA	NA	NA	NA	
Observe 4	SR4	NA	NA		NA			134	174		496			
Cluster 1 (Flood)	SR5	0.37	0.48	0.48	0.48	0.48	no	NA	NA	286	NA	594	yes	
(1 1000)	SR12	NA	NA		NA			360	468		711			
Cluster 1	SR4	NA	NA		NA			281	365		387			
(Ebb)	SR5	0.35	0.46	0.46	0.44	0.44	no	NA	NA	359	NA	477	yes	
, ,	SR12	NA	NA		NA			272	354		588			
Cluster 3 (Flood)	SR13	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Cluster 3 (Ebb)	SR13	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	

Notes:

- 1. NA: Not Applicable
 - Control and Gradient stations are compared on individual stations for reference, no clustering analysis was performed. Impact stations are compared in clusters of stations, or
 - Parameter is not monitored at the station.
- 2. With reference to Review of Action and Limit Levels (0394/13/ED/0175C), the baseline results of TIN (lab) in C1A, C2A, G2 and SR5 in dry season are multiplying the relevant wet/dry season ratio to obtain the wet season baseline values
- 3. E.coli is calculated by taking geometric mean of the readings of monitoring data.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0389A Page 21

Table 5-3 Summary of Statistical Analysis

Parameter	Cluster	Compared against	Results and Conclusions
UIA (Insitu)	Cluster 1	Quarterly Mean at Impact Station (flood tide) against 1.3 x Baseline Level (flood tide) Quarterly Mean at Impact Station (flood tide) against Upstream Control (C2A) Mean (flood tide)	Quarterly mean at Impact Station (flood tide) is significantly higher than 1.3 x Baseline mean (flood tide) (p<0.05). Impact Mean (flood tide) is not significantly different than Upstream Control (C2A) Mean (flood tide) (p>0.05), indicating the project impact is not significant.
Ammonia (lab)	Cluster 1	Quarterly Mean at Impact Stations (flood tide) against 1.3 x Baseline Level (flood tide) Quarterly Mean at Impact Stations (flood tide) against Upstream Control (C2A) Mean (flood tide)	Quarterly mean at Impact Station (flood tide) is significantly higher than 1.3 x Baseline mean (flood tide) (p<0.05). Impact Mean (flood tide) is significantly smaller than Upstream Control (C2A) Mean (flood tide) (p<0.05), indicating the project impact is not significant.
UIA (lab)	Cluster 1	Quarterly Mean at Impact Stations (flood tide) against 1.3 x Baseline Level (flood tide) Quarterly Mean at Impact Stations (flood tide) against Upstream Control (C2A) Mean (flood tide)	Quarterly mean at Impact Station (flood tide) is significantly higher than 1.3 x Baseline mean (flood tide) (p<0.05). Impact Mean (flood tide) is significantly smaller than Upstream Control (C2A) Mean (flood tide) (p<0.05), indicating the project impact is not significant.
E. coli	Cluster 1	Quarterly Mean at Impact Stations (flood tide) against 1.3 x Baseline Level (flood tide) Quarterly Mean at Impact Stations (flood tide) against Upstream Control (C2A) Mean (flood tide)	Quarterly mean at Impact Station (flood tide) is significantly higher than 1.3 x Baseline mean (flood tide) (p<0.05). Impact Mean (flood tide) is not significantly different than Upstream Control (C2A) Mean (flood tide) (p>0.05), indicating the project impact is not significant.

5.6.7 Exceedance are considered to be due to change in ambient conditions or influences in the vicinity of the stations. Mitigation measures for dredging works were implemented in accordance with EP and EIA requirements.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0389A Page 22

6. NON-COMPLIANCE, COMPLAINTS, NOTIFICATION OF SUMMONS AND PROSECUTION

6.1.1 In this reporting period, no complaint, inspection notice, notification of summons or prosecution was received. Cumulative complaint log, summaries of complaints, notification of summons and successful prosecutions are presented in **Tables 6.1**, **6.2 and 6.3**.

Table 6-1 Environmental Complaints Log

Complaint Log No.	Date of Receipt	Received From and Received By	Nature of Complaint	Date Investigated	Outcome	Date of Reply
Nil	-	-	-	-	-	-

Table 6-2 Cumulative Statistics on Complaints

Environmental Parameters	Cumulative No. Brought Forward	No. of Complaints This Period	Cumulative Project- to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Total	0	0	0

Table 6-3 Cumulative Statistics on Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Prosecutions This Period	Cumulative Project- to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Total	0	0	0

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0394/13/ED/0389A Page 23

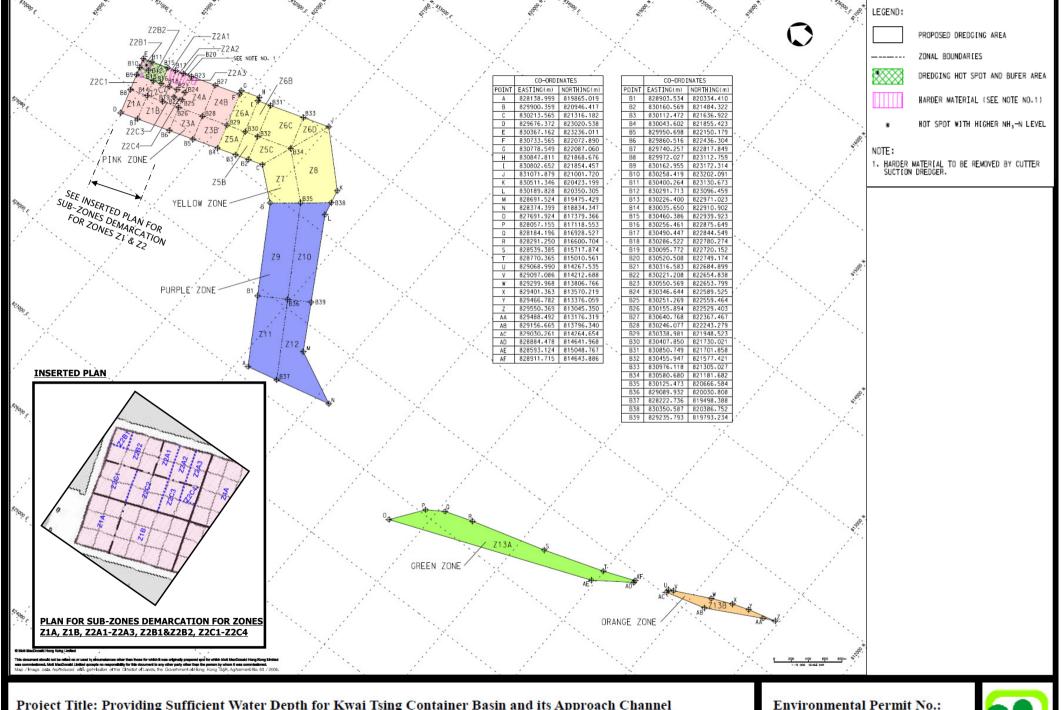
7. CONCLUSIONS

- 7.1.1 The dredging works was commenced on 23 April 2014. The EM&A programme was carried out in accordance with the EM&A Manual requirements. As per the EM&A Manual, water quality impact monitoring was conducted during the dredging works.
- 7.1.2 During the reporting period, exceedances were recorded for NH3-N (in-situ & lab), UIA (in-situ & lab), TIN (in-situ & lab) and E. coli in the routine impact monitoring. No exceedance was recorded in 24-hr monitoring. Investigation found that the exceedances were not project related and were considered caused by influences in the vicinity of the stations or change in ambient conditions.
- 7.1.3 13 environmental site inspections were carried out weekly in the reporting period.
- 7.1.4 No environmental complaint was received and followed up by Environmental Team in the reporting period.
- 7.1.5 No notification of summons and prosecution was received in the reporting period.
- 7.1.6 According to information provided by the Contractor, the upcoming dredging works will only be carried out at sub-zone Z2B1, Z2B2 and Z2C1 will be approximately 5200 m³ (in-situ volume) in total, which is far below than the dredging scale which was mentioned in the EP. Refer to Section 2.1.4 of the EM&A Manual, routine water quality monitoring stations at SR2 (Casam, Gazetted Beach) and SR3 (Approach, Gazetted Beach) were proposed to be removed as according to the Proposal of Scale down for the Water Quality Monitoring Stations during High Spots Removal at Sub-zone Z2B1, Z2B2 and Z2C1 (Ref.: 0394/13/ED/0370G). The proposal was justified by ET and verified by IEC, also no objection was received from other parties. The proposal was approved by EPD as per EPD's memo (Ref. (6) in Ax(1) to EP2/N3/C/57 Pt.10) dated 20 August 2019. The removal of the water quality monitoring at SR2 and SR3 will be effective from 23 August 2019.

 Fugro Development Centre,
 Tel
 : +852 2450 8233

 5 Lok Yi Street, Tai Lam,
 Fax
 : +852 2450 6138

 Tuen Mun, N.T.,
 E-mail
 : matlab@fugro.com


 Hong Kong.
 Website
 : www.fugro.com

Report No.: 0394/13/ED/0389A

Figure 1

Project General Layout

Project Title: Providing Sufficient Water Depth for Kwai Tsing Container Basin and its Approach Channel

Figure 2: Zones and Sub-zone of Dredging Plan Layout (Extracted from Figure 2 of Justification for the Proposed Demarcation of the **Dredging Zones**)

Environmental Permit No.:

EP-426/2011/A

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0389A

Figure 2

Locations of Water Quality Monitoring Stations

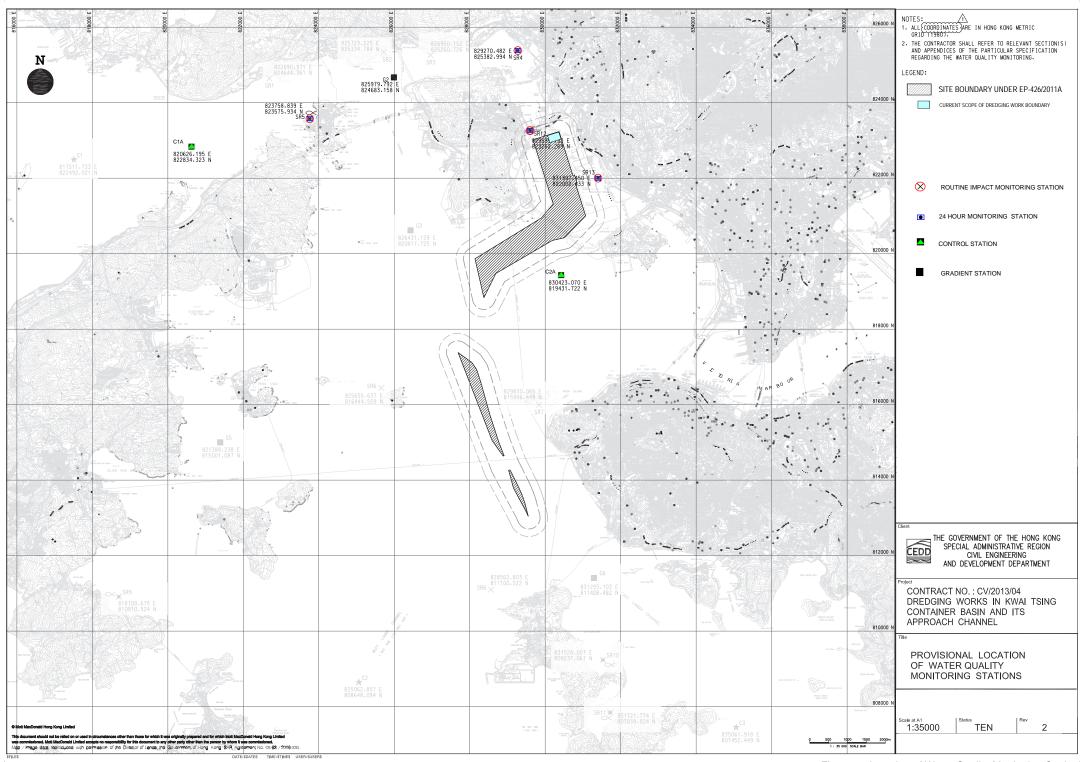
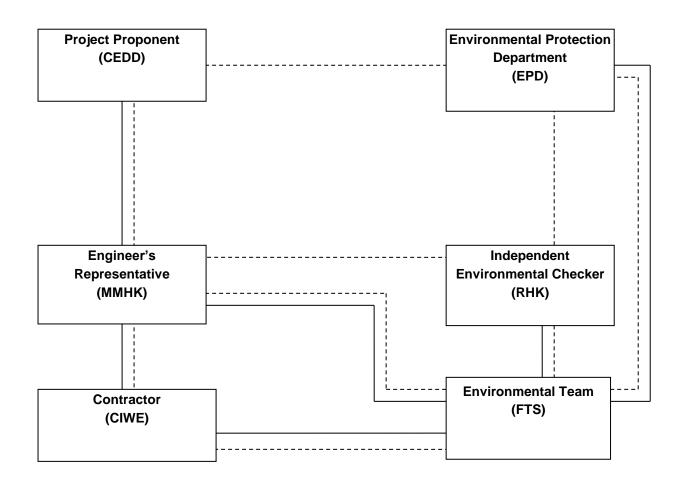
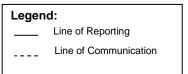


Figure 2 - Location of Water Quality Monitoring Stations

 Fugro Development Centre,
 Tel
 : +852 2450 8233

 5 Lok Yi Street, Tai Lam,
 Fax
 : +852 2450 6138


 Tuen Mun, N.T.,
 E-mail
 : matlab@fugro.com


 Hong Kong.
 Website
 : www.fugro.com

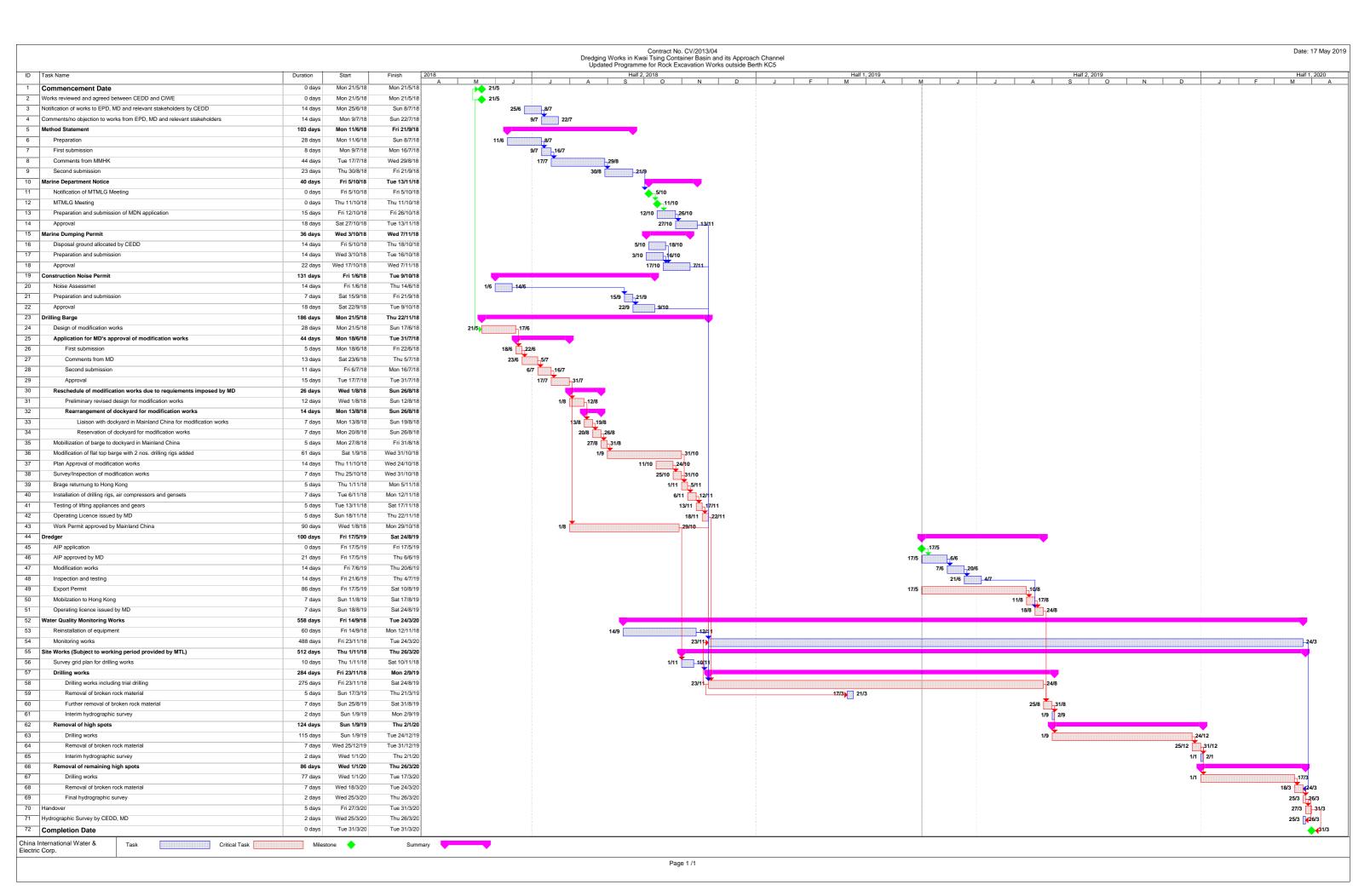
Report No.: 0394/13/ED/0389A

Appendix A
Project Organization Chart

 Fugro Development Centre,
 Tel
 : +852 2450 8233

 5 Lok Yi Street, Tai Lam,
 Fax
 : +852 2450 6138

 Tuen Mun, N.T.,
 E-mail
 : matlab@fugro.com


 Hong Kong.
 Website
 : www.fugro.com

Report No.: 0394/13/ED/0389A

Appendix B

Construction Programme

 Fugro Development Centre,
 Tel
 : +852 2450 8233

 5 Lok Yi Street, Tai Lam,
 Fax
 : +852 2450 6138

 Tuen Mun, N.T.,
 E-mail
 : matlab@fugro.com

 Hong Kong.
 Website
 : www.fugro.com

Report No.: 0394/13/ED/0389A

Appendix C
Action and Limit Levels

Action and Limit Levels for Routine Water Quality Monitoring (Dry Season)

Monitoring Station	O I ROTTOM			Turbidit Depth-A		Suspended Solids (mg/L) Depth- averaged		BOD5(mg/L) Depth- averaged		E.coli (CFU /100mL) Depth- averaged		NH3-N (mg/L) Depth-averaged				Synthetic Detergent as MBAS (mg/L) Depth- averaged				
	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL
	Seawater Intake																			
SR4	2	2	2	2	<10	<10	<10	<10	<10	<10	<20,000	<20,000	<1	<1	0.021	0.021	<5	<5	NA	NA
SR12					_						,	-7								
	Fish Culture Zone																			
SR5	5.45	5.39#	5.43	5.27+	6.7 or 120%C*	10.1 or 130%C^	12 or 120%C*	19 or 130%C^	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.36	0.39
	Gazetted Beach																			
SR2 SR3	5.45	5.39#	5.43	5.27+	6.7 or 120%C*	10.1 or 130%C^	12 or 120%C*	19 or 130%C^	NA	NA	NA	NA	0.21 or 120%C*	0.24 or 130%C^	0.021	0.021	NA	NA	NA	NA
SNS	EMSD Cooling Water Intake																			
			1		12.1 0"	15.7 or	22.0"		COOMIN	vvalei	IIIIane								1	1
SR13	5.31	5.22#	5.29	5.12+	13.1 or 120%C*	13.7 or 130%C^	23 or 120%C*	38 or 130%C^	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Note:

Dry Season: November to March

^{*} Or 120% of upstream control station at the same tide of the day

[^] Or 130% of upstream control station at the same tide of the day

[#] According to EM&A Manual, LL of DO (surface & middle) is 5 mg/L or 1 percentile of baseline data in FCZ; 4 mg/L or 1 percentile of baseline data in other impact monitoring stations.

⁺ According to EM&A Manual, LL of DO (bottom) is 2 mg/L or 1 percentile of baseline data

For DO measurement, non-compliance occurs when monitoring result is lower than the limits;

For TIN, UIA, NH₃-N, SS, BOD₅, E.coli, synthetic detergent and turbidity, non-compliance of water quality results when monitoring results is higher than the limits;

AL/LL of TIN and NH₃-N are determined from laboratory results for better accuracy and reliability. These AL/LL will be applied to both laboratory and in-situ measurements at impact stage.

Action and Limit Levels for Routine Water Quality Monitoring (Wet Season)

Monitoring Station	DO (Surface	mg/L) & Middle	DO (Bo	mg/L) ttom	Turbidit Depth-A	y (NTU) veraged	Suspend (mg/L) aver	Depth-	BOD5 Depth- a	(mg/L) veraged	E.coli /100mL) avera	Depth-		(mg/L) overaged			Deterg MBAS	(mg/L) oth-	De	mg/L) pth aged
	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL	AL	LL
	Seawater Intake																			
SR4 SR12	2	2	2	2	<10	<10	<10	<10	<10	<10	<20,000	<20,000	<1	<1	0.021	0.021	<5	<5	NA	NA
								Fish C	ulture Zo	ne				·						
SR5	5.00#	5.00#	4.11	4.04+	10.8 or 120%C*	15.0 or 130%C^	12 or 120%C*	19 or 130%C^	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.45	0.50
	Gazetted Beach																			
SR2 SR3	4.68	4.62#	4.11	4.04+	10.8 or 120%C*	15.0 or 130%C^	12 or 120%C*	19 or 130%C^	NA	NA	NA	NA	0.21 or 120%C*	-	0.021	0.021	NA	NA	NA	NA
	EMSD Cooling Water Intake																			
SR13	4.24	4.17#	3.70	3.58+	13.1 or 120%C*	15.7 or 130%C^	23 or 120%C*	38 or 130%C^	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Note:

According to EM&A Manual, LL of DO (surface & middle) is 5 mg/L or 1 percentile of baseline data in FCZ; 4 mg/L or 1 percentile of baseline data in other impact monitoring stations. (5%ile & 1 %ile determined from wet season baseline data for cluster 1 (4.68mg/L & 4.62mg/L) and cluster 2 (5.00mg/L & 4.82mg/L) are 5mg/L or below, thus 5mg/L was adopted as the AL & LL for the SR in FCZ)

+ According to EM&A Manual, LL of DO (bottom) is 2 mg/L or 1 percentile of baseline data

Referring to the ER Letter ref. (CV/2013/04)/M45/400/1247 dated 19 March 2015, a Revised Baseline Water Quality Monitoring Test Methodology – Review of Action and Limit Levels has been submitted to EPD by ER in March 2015. The Action and Limit Level for the wet season (April – October) was effected and applied to the water quality monitoring data from 1 April 2015.

For DO measurement, non-compliance occurs when monitoring result is lower than the limits;

For TIN, UIA, NH₃-N, SS, BOD₅, E.coli, synthetic detergent and turbidity, non-compliance of water quality results when monitoring results is higher than the limits;

AL/LL of TIN and NH₃-N are determined from laboratory results for better accuracy and reliability. These AL/LL will be applied to both laboratory and in-situ measurements at impact stage.

Wet season: April to October

^{*} Or 120% of upstream control station at the same tide of the day

[^] Or 130% of upstream control station at the same tide of the day

Action and Limit Levels for 24-hr Water Quality Monitoring (Dry Season)

Monitoring Station	DO (r Surf	ng/L) face		ty (NTU) face	Ammonia-N (mg/L) Surface						
	AL	LL	AL	LL	AL	LL					
WSD Seawater Intake											
SR4	2	2	<10	<10	<1	-1					
SR12	۷	2	<10	<10	< 1	<1					
Fish Culture Zone											
SR5	5.46	5.39	6.0	7.9	NA	NA					
EMSD Cooling Water Intake											
SR13	5.28	5.22	11.9	13.3	NA	NA					

Note: According to EM&A Manual, LL of DO (surface & middle) is 5 mg/L or 1 percentile of baseline data in FCZ; 4 mg/L or 1 percentile of baseline data in other impact monitoring stations.

Dry Season: November to March.

Action and Limit Levels for 24-hr Water Quality Monitoring (Wet Season)

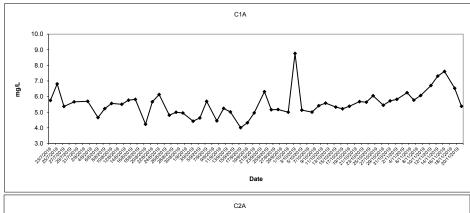
Monitoring Station	DO (r Sur	ng/L) face	Turbidit Sur	y (NTU) face	Ammonia-N (mg/L) Surface							
	AL	LL	AL	LL	AL	LL						
WSD Seawater Intake												
SR4	2	2	<10	<10	<1	<1						
SR12	2	2	<10	<10	7	<u> </u>						
Fish Culture Zone												
SR5	5.24	5.13	9.7	14.4	NA	NA						
EMSD Cooling Water Intake												
SR13	4.23	4.17	11.9	13.3	NA	NA						

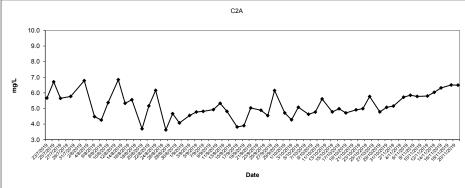
Note: # According to EM&A Manual, LL of DO (surface & middle) is 5 mg/L or 1 percentile of baseline data in FCZ; 4 mg/L or 1 percentile of baseline data in other impact monitoring stations. (1 %ile determined from wet season baseline data for cluster 2 (4.78mg/L) is below 5mg/L, thus 5mg/L was adopted as the DO (surface) LL for the SR in FCZ in cluster 2 stations)

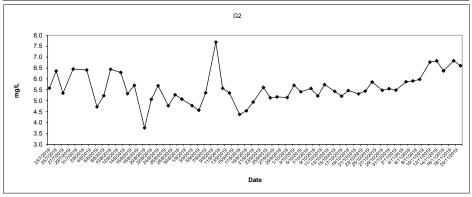
Referring to the ER Letter ref. (CV/2013/04)/M45/400/1247 dated 19 March 2015, a Revised Baseline Water Quality Monitoring Test Methodology – Review of Action and Limit Levels has been submitted to EPD by ER in March 2015. The Action and Limit Level for the wet season (April – October) was effected and applied to the water quality monitoring data from 1 April 2015.

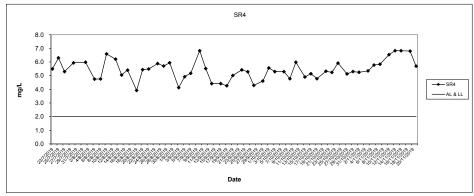
Wet Season: April to October

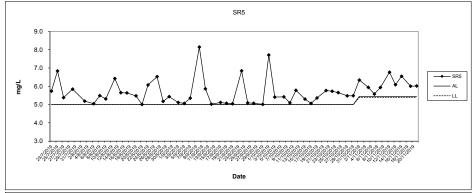
FUGRO TECHNICAL SERVICES LIMITED

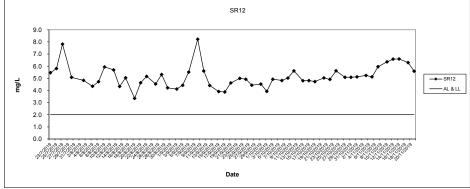

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

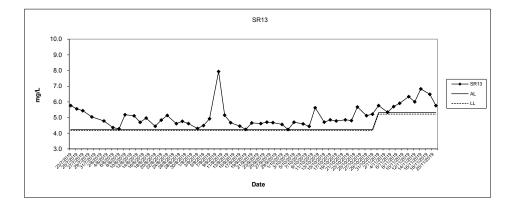


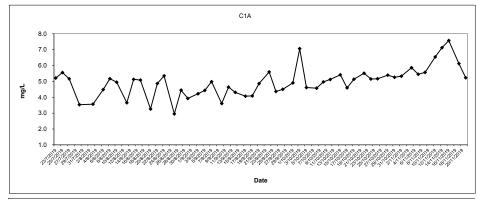

Report No.: 0394/13/ED/0389A

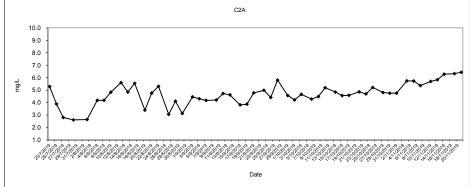

Appendix D

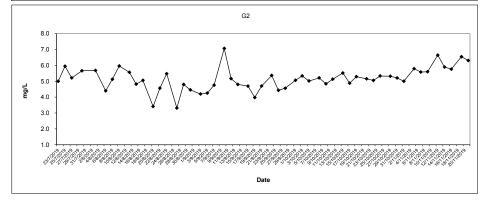

Graphical Presentation - Routine Impact Monitoring Results

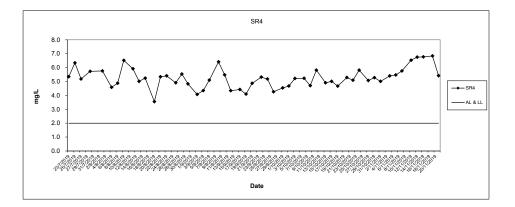


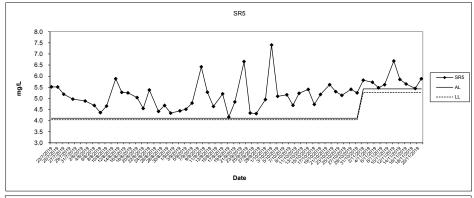


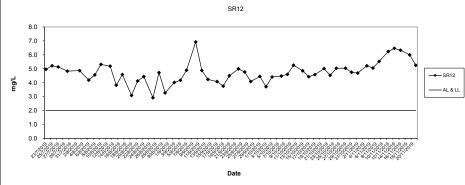


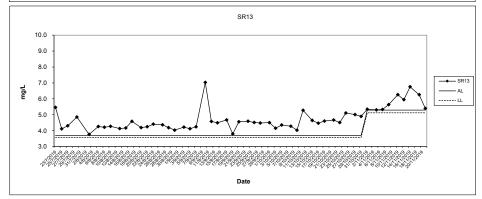


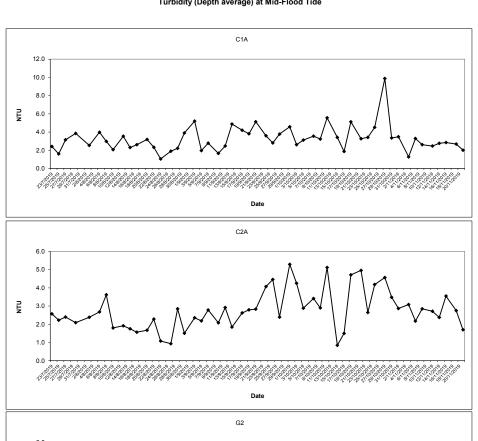

Dissolved Oxygen (Surface and Middle) at Mid-Flood Tide

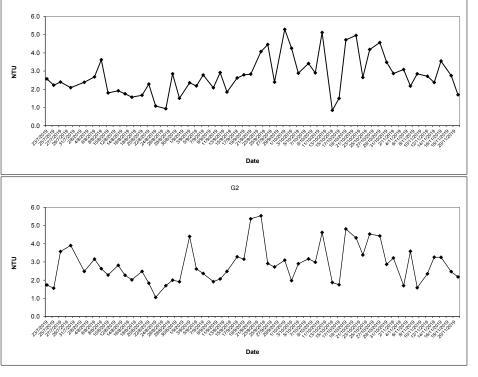

Dissolved Oxygen (Bottom) at Mid-Flood Tide

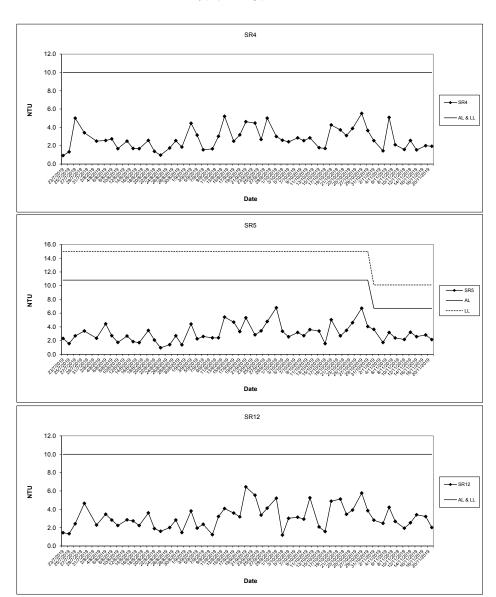


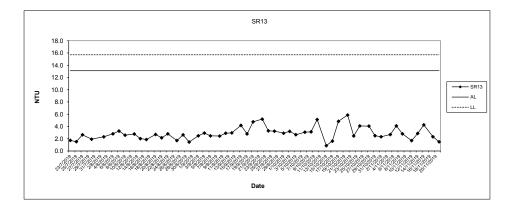


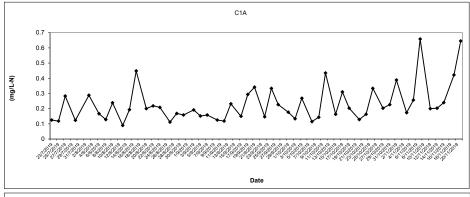

Dissolved Oxygen (Bottom) at Mid-Flood Tide

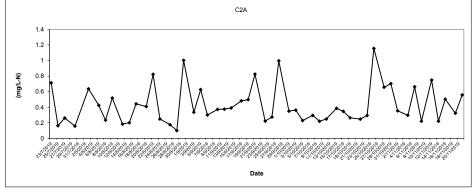


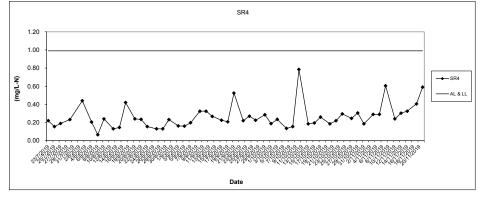

Dissolved Oxygen (Bottom) at Mid-Flood Tide

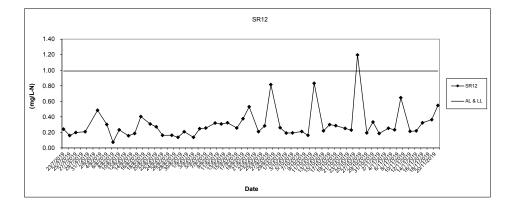


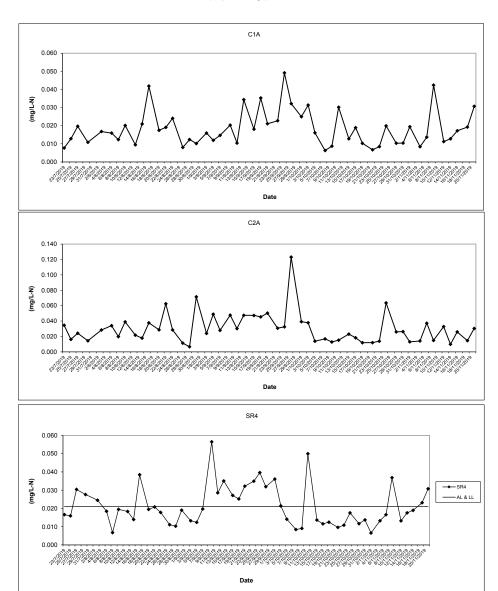


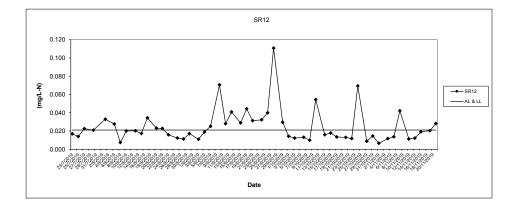


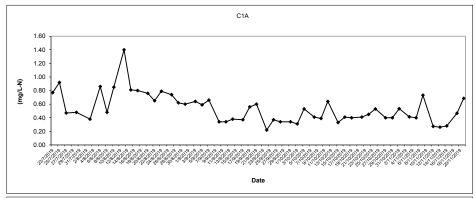


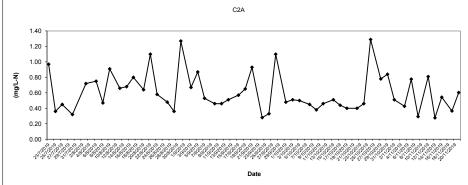

Turbidity (Depth average) at Mid-Flood Tide

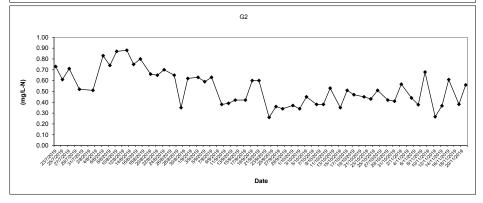

In-situ Ammonia (Depth average) at Mid-Flood Tide

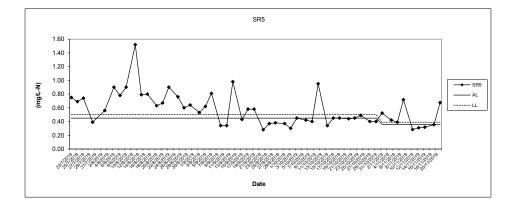


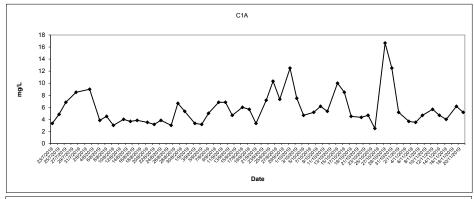

In-situ Ammonia (Depth average) at Mid-Flood Tide

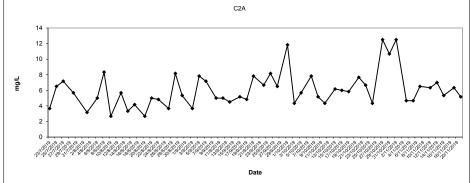

In-situ UIA (Depth average) at Mid-Flood Tide

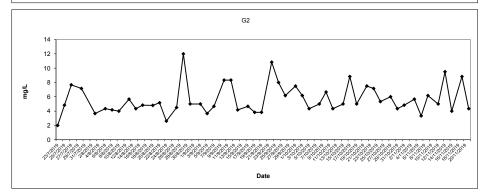


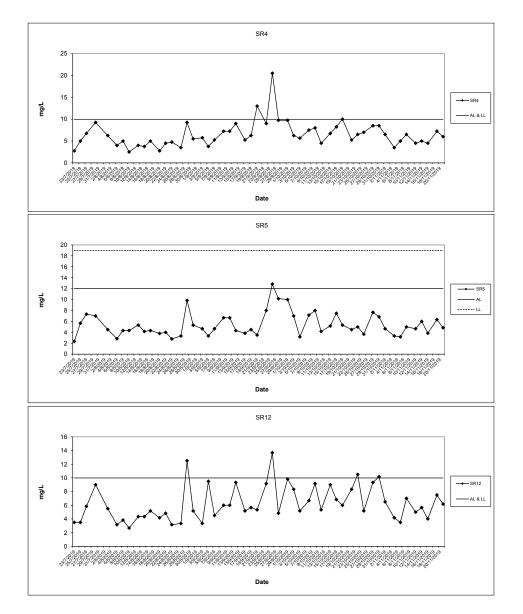

In-situ UIA (Depth average) at Mid-Flood Tide

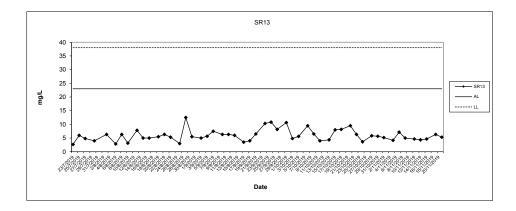

In-situ TIN (Depth average) at Mid-Flood Tide

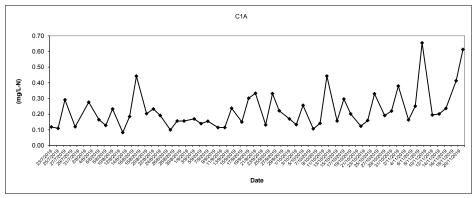


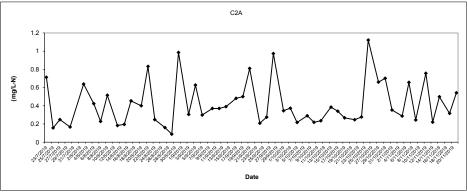


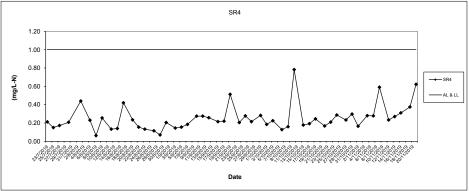

In-situ TIN (Depth average) at Mid-Flood Tide

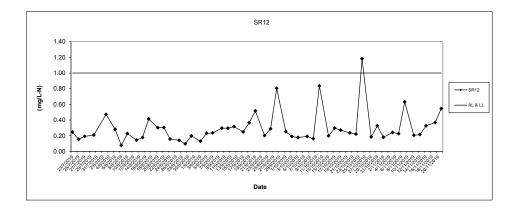

Total Suspended Solids (Depth average) at Mid-Flood Tide

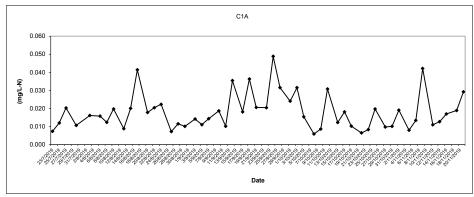


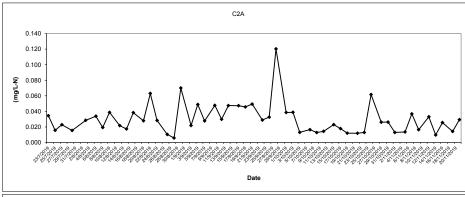

Total Suspended Solids (Depth average) at Mid-Flood Tide

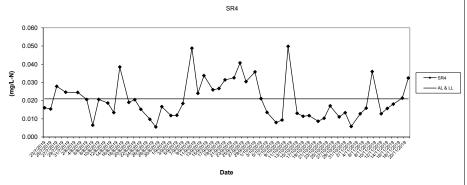


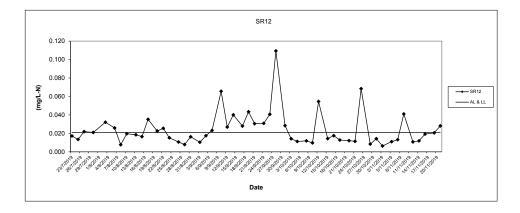

Total Suspended Solids (Depth average) at Mid-Flood Tide

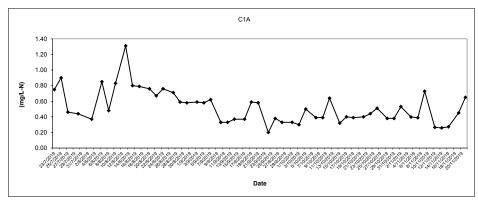

Ammonia Nitrogen (Depth average) at Mid-Flood Tide

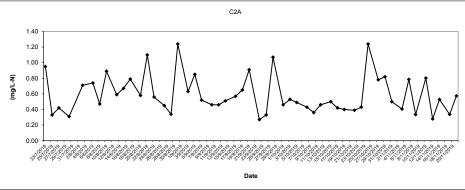


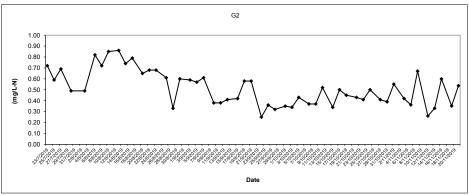


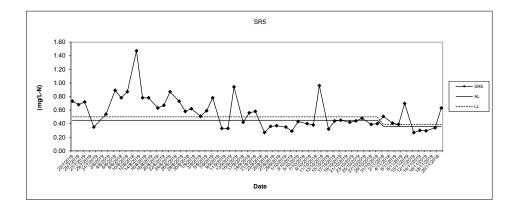

Ammonia Nitrogen (Depth average) at Mid-Flood Tide

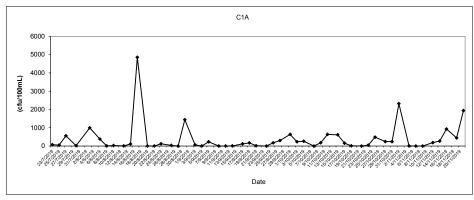

Laboratory Analysis UIA (Depth average) at Mid-Flood Tide

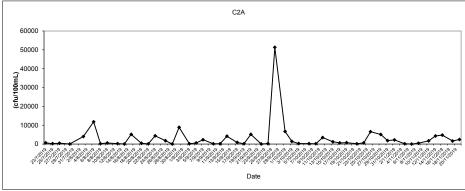


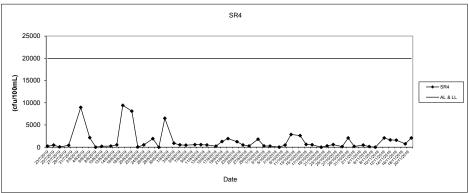


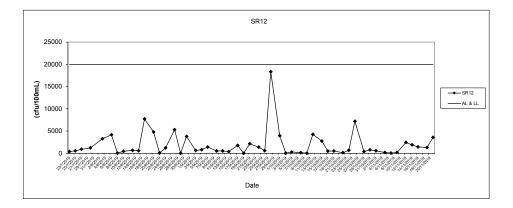

Laboratory Analysis UIA (Depth average) at Mid-Flood Tide

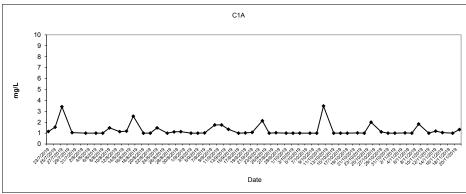

Laboratory Analysis TIN (Depth average) at Mid-Flood Tide

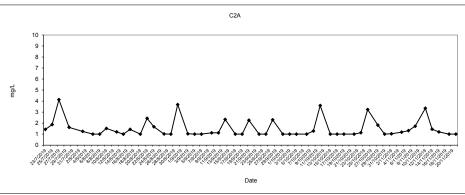


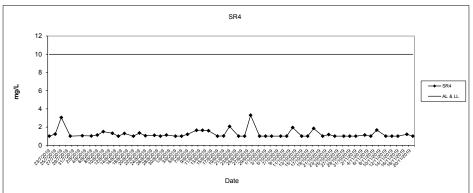


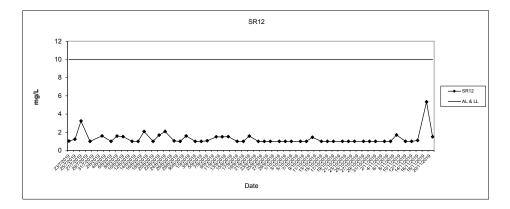

Laboratory Analysis TIN (Depth average) at Mid-Flood Tide

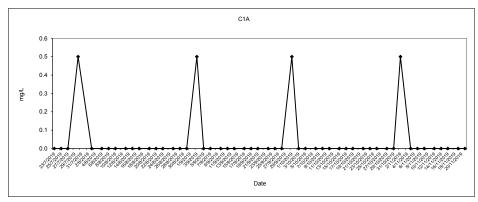

E.coli (Depth average) at Mid-Flood Tide

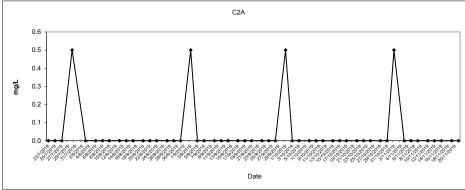


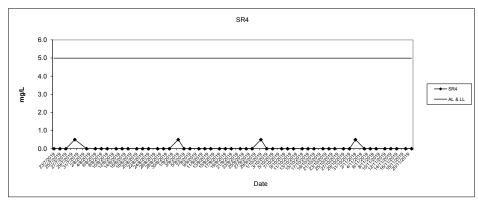


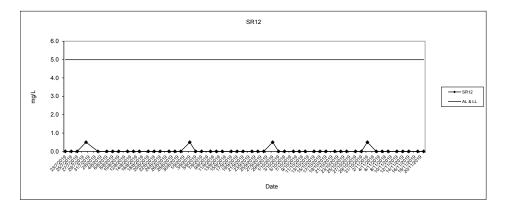

E.coli (Depth average) at Mid-Flood Tide

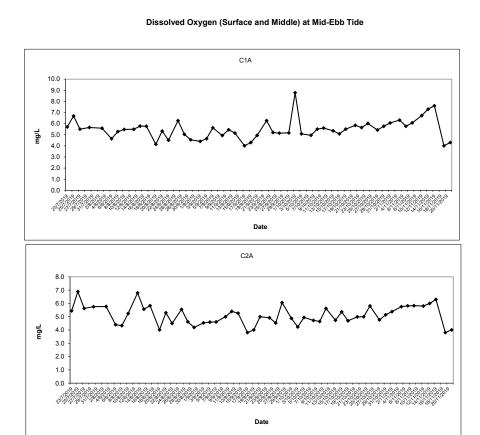

BOD₅ (Depth average) at Mid-Flood Tide

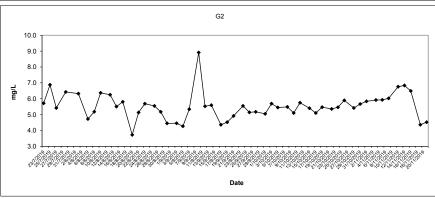


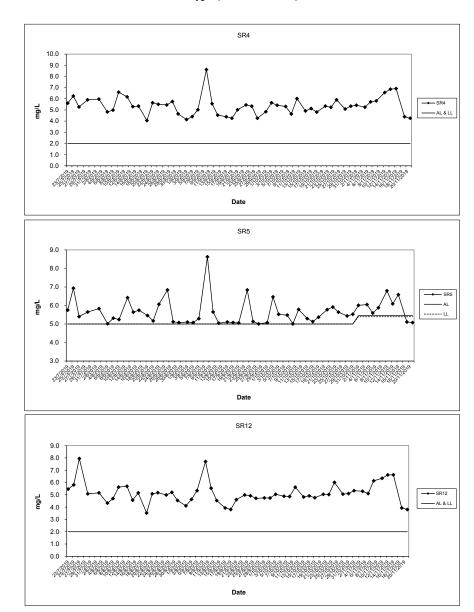



BOD₅ (Depth average) at Mid-Flood Tide

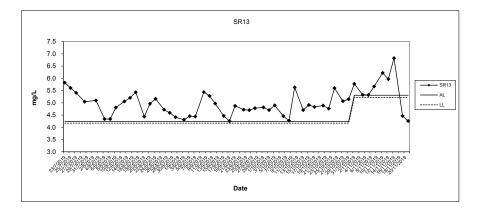

Synthetic Detergent (Depth average) at Mid-Flood Tide

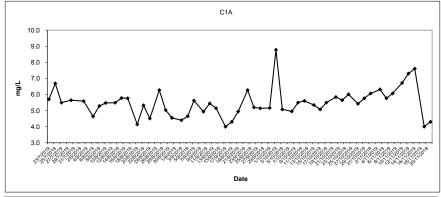


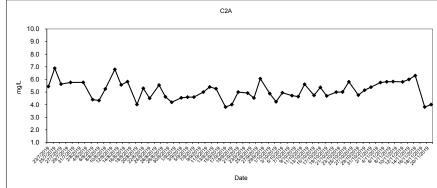


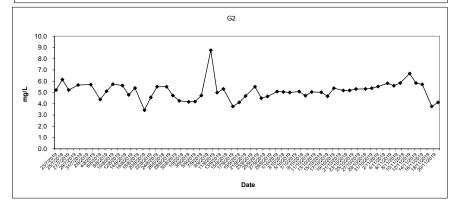


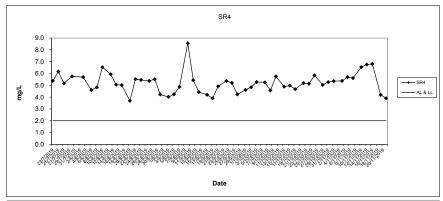
Synthetic Detergent (Depth average) at Mid-Flood Tide

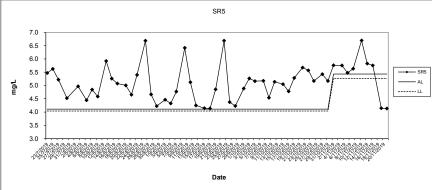


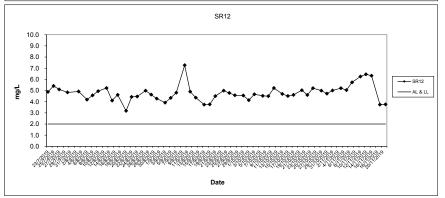


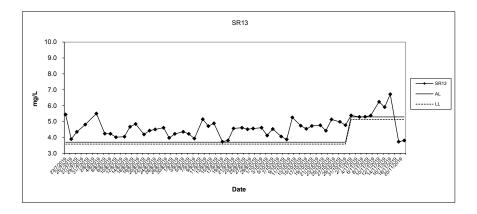


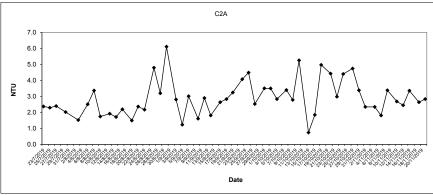

Dissolved Oxygen (Surface and Middle) at Mid-Ebb Tide

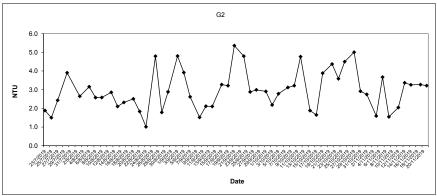

Dissolved Oxygen (Bottom) at Mid-Ebb Tide

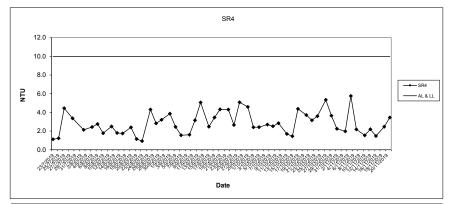


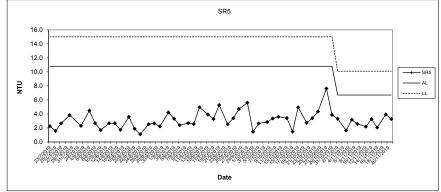


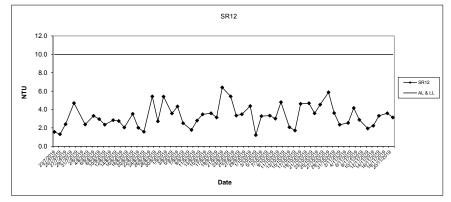

Dissolved Oxygen (Bottom) at Mid-Ebb Tide

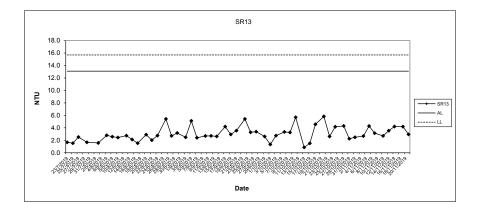


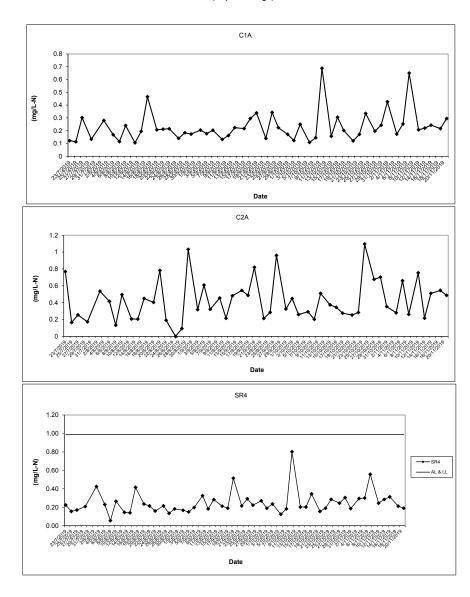

Dissolved Oxygen (Bottom) at Mid-Ebb Tide

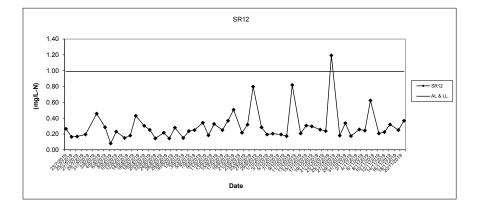

Turbidity (Depth average) at Mid-Ebb Tide

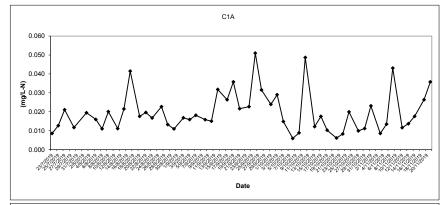

10.0 9.0 8.0 7.0 6.0 P_E 5.0 4.0 3.0 2.0 1.0 0.0 Date

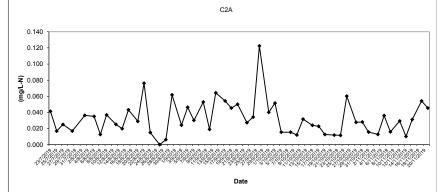


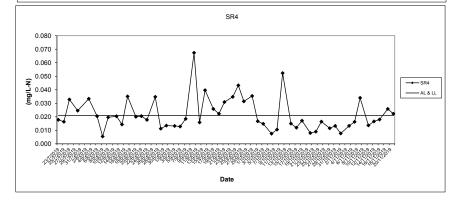

Turbidity (Depth average) at Mid-Ebb Tide

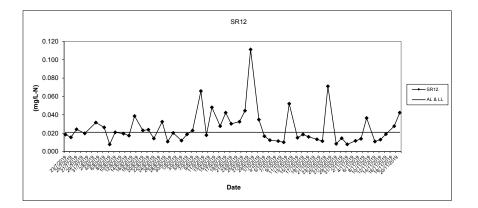


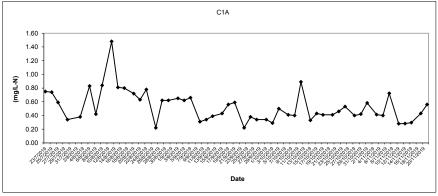

Turbidity (Depth average) at Mid-Ebb Tide

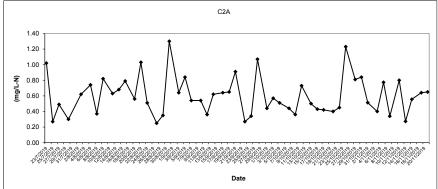

In-situ Ammonia (Depth average) at Mid-Ebb Tide

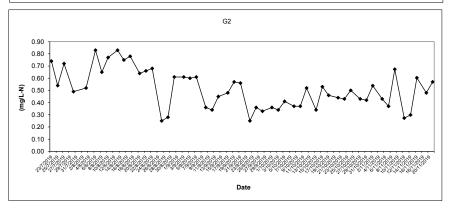


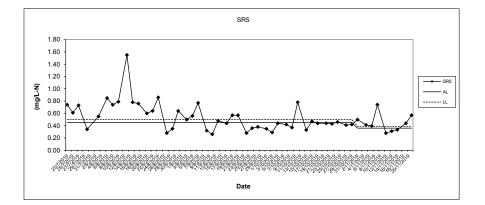

In-situ Ammonia (Depth average) at Mid-Ebb Tide

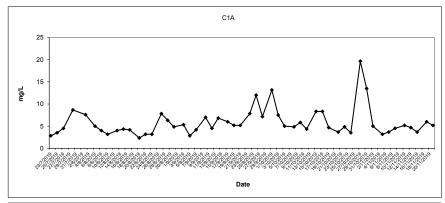

In-situ UIA (Depth average) at Mid-Ebb Tide

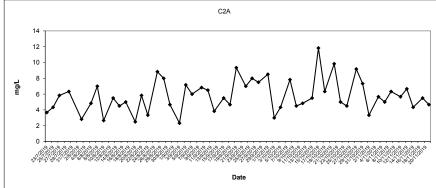


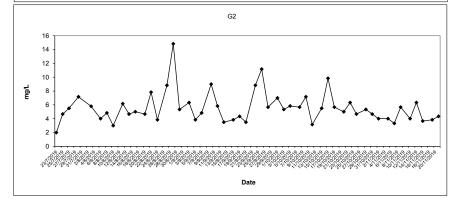


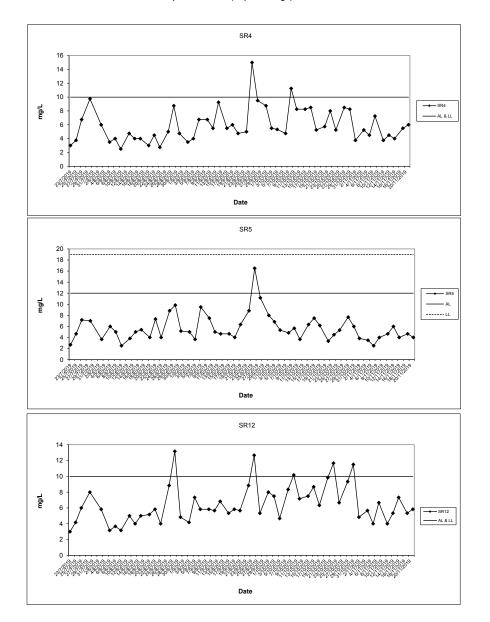

In-situ UIA (Depth average) at Mid-Ebb Tide

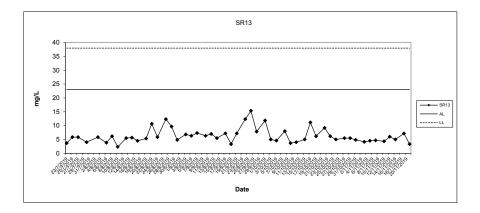

In-situ TIN (Depth average) at Mid-Ebb Tide

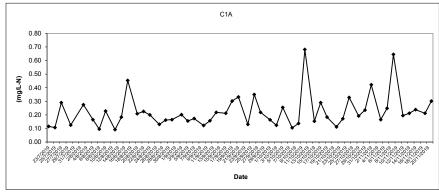


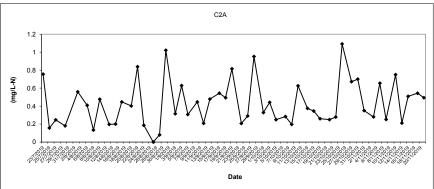


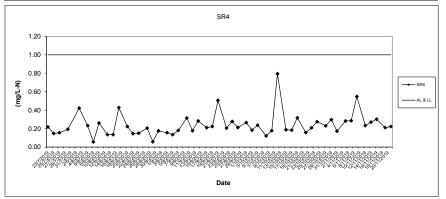

In-situ TIN (Depth average) at Mid-Ebb Tide

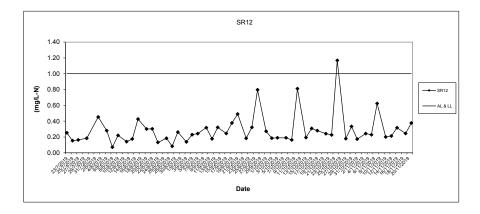

Total Suspended Solids (Depth average) at Mid-Ebb Tide

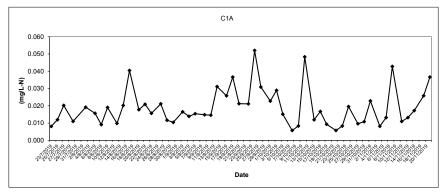


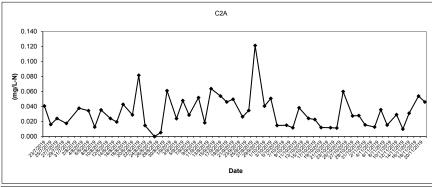

Total Suspended Solids (Depth average) at Mid-Ebb Tide

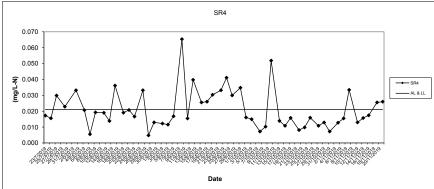


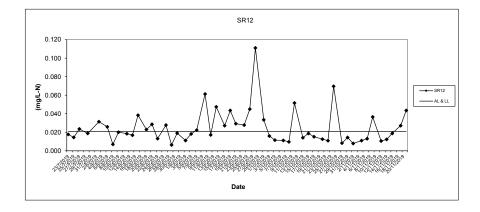

Total Suspended Solids (Depth average) at Mid-Ebb Tide

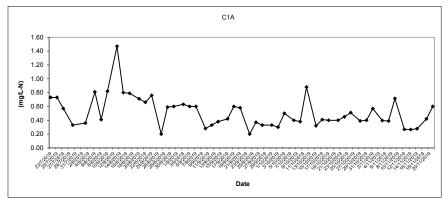

Ammonia Nitrogen (Depth average) at Mid-Ebb Tide

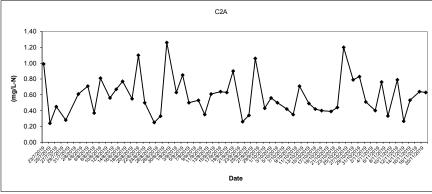


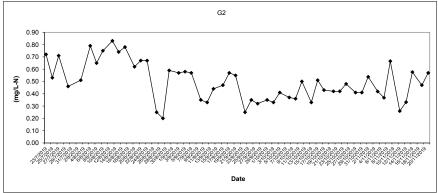


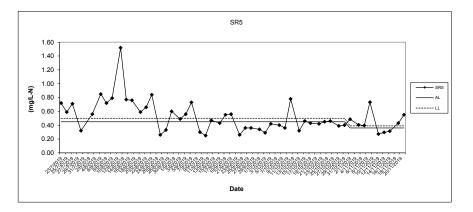

Ammonia Nitrogen (Depth average) at Mid-Ebb Tide

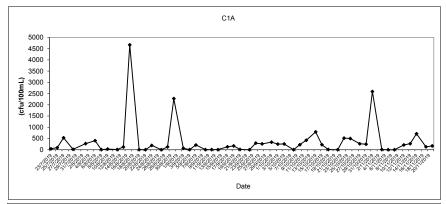

Laboratory Analysis UIA (Depth average) at Mid-Ebb Tide

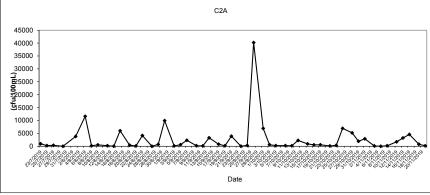




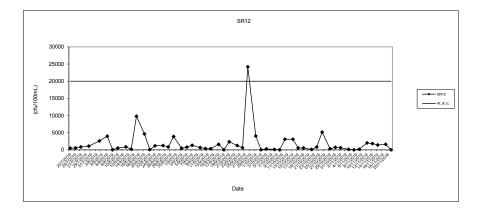

Laboratory Analysis UIA (Depth average) at Mid-Ebb Tide

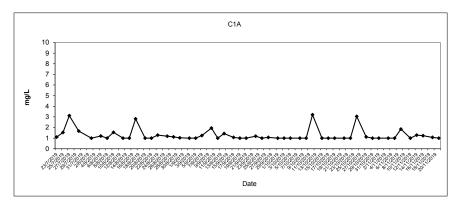

Laboratory Analysis TIN (Depth average) at Mid-Ebb Tide

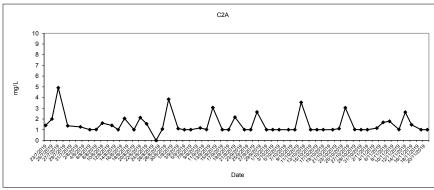




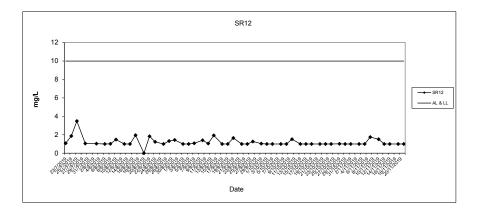
Laboratory Analysis TIN (Depth average) at Mid-Ebb Tide

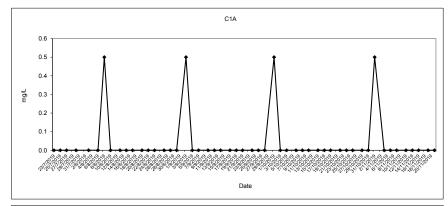

E.coli (Depth average) at Mid-Ebb Tide

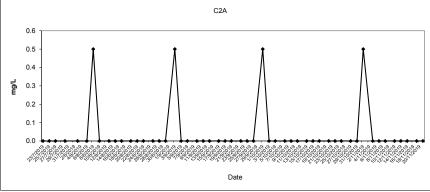


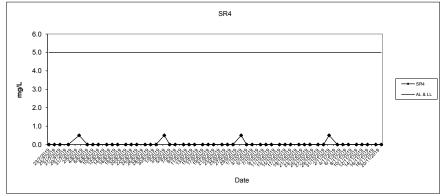


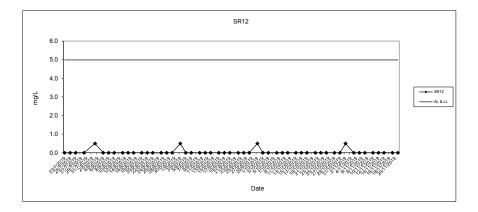

E.coli (Depth average) at Mid-Ebb Tide


BOD₅ (Depth average) at Mid-Ebb Tide






BOD₅ (Depth average) at Mid-Ebb Tide


Synthetic Detergent (Depth average) at Mid-Ebb Tide

Synthetic Detergent (Depth average) at Mid-Ebb Tide

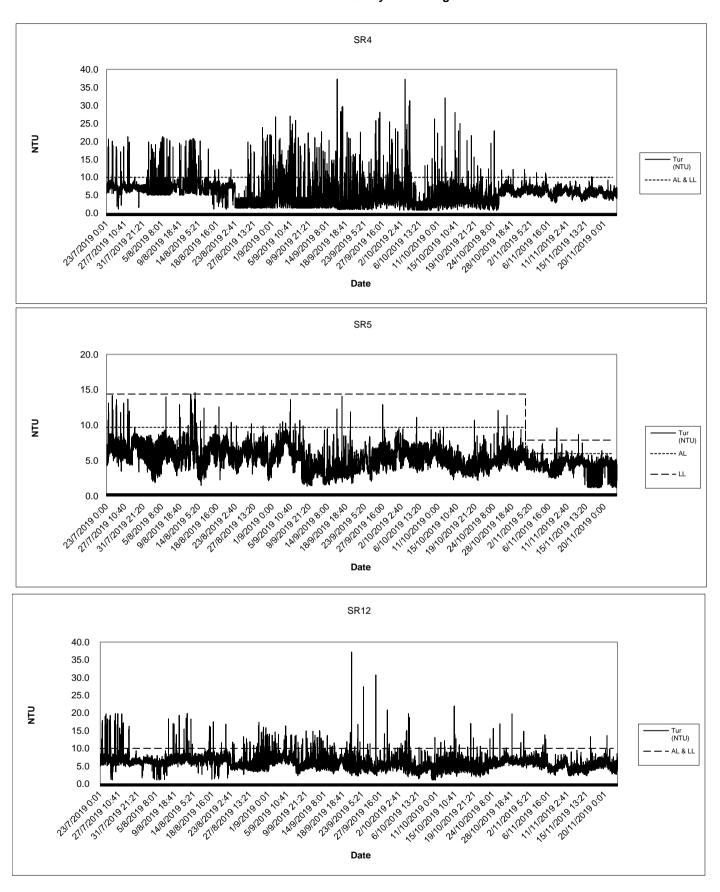
FUGRO TECHNICAL SERVICES LIMITED

 Fugro Development Centre,
 Tel
 : +852 2450 8233

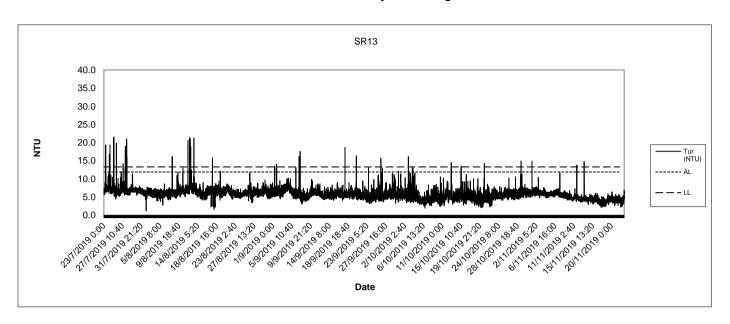
 5 Lok Yi Street, Tai Lam,
 Fax
 : +852 2450 6138

 Tuen Mun, N.T.,
 E-mail
 : matlab@fugro.com

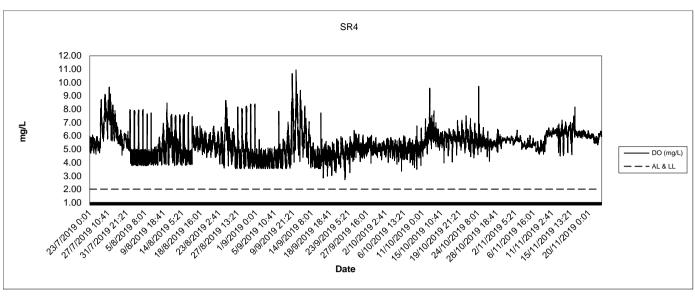
 Hong Kong.
 Website
 : www.fugro.com

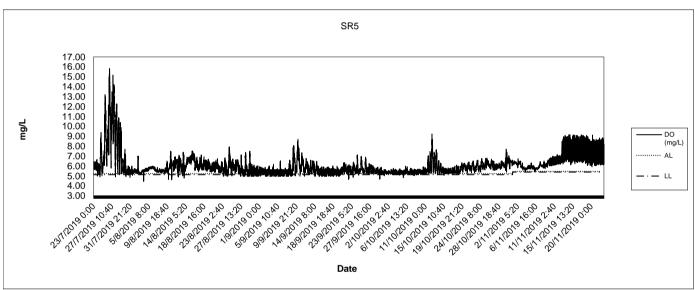


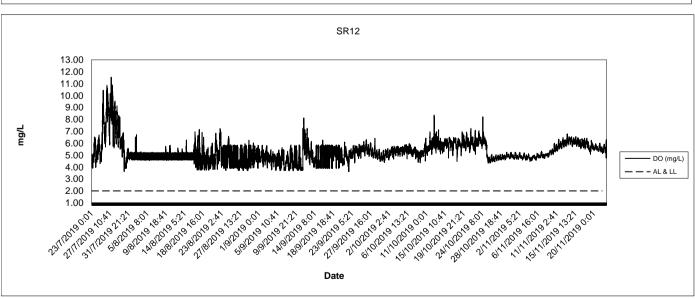
Report No.: 0394/13/ED/0389A

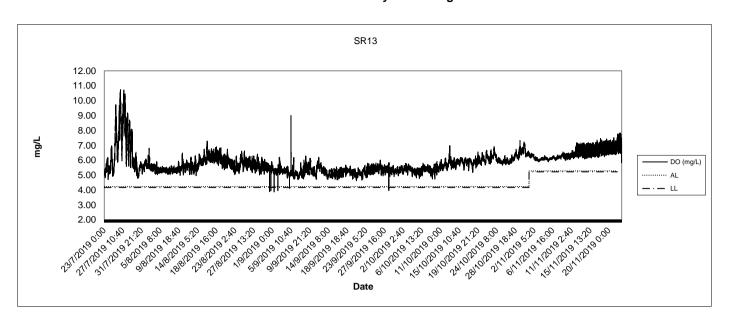

Appendix E

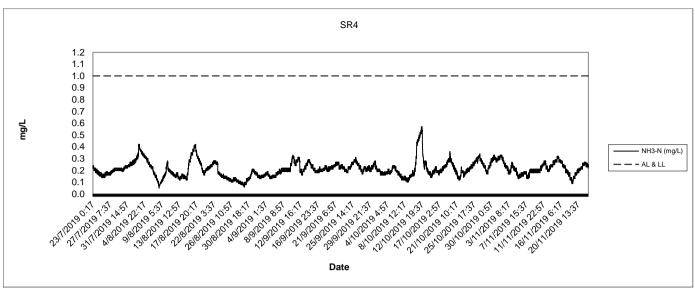
Graphical Presentation – 24-hr Monitoring Results

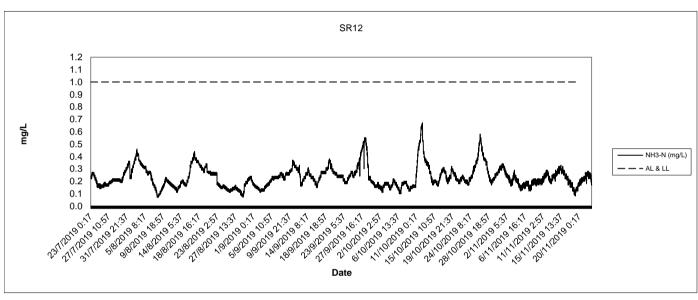

Turbidity 24-hr Water Quality Monitoring




Turbidity 24-hr Water Quality Monitoring


Dissolved Oxygen 24-hr Water Quality Monitoring





Dissolved Oxygen 24-hr Water Quality Monitoring

Ammonia-N 24-hr Water Quality Monitoring

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0389A

Appendix F

Environmental Mitigation Implementation Schedule

EIA Ref	EM& A Ref	No.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to Address	Who to implement the measure	Location of the measure	When to implement the measure?	Implementation Status
		Α	Water Quality					
3.8	2.9	A1	Use of Silt Screens Silt Screens shall be installed at the flushing water intakes WSRs WSD1, WSD8, WSD9 and EMSD1 to minimise the effect of potential increase in SS levels at the seawater intakes.	Minimize the effect of potential increase in SS levels at the seawater intakes	Contractor	WSD8, WSD9 and EMSD1	Construction Phase	Implemented
3.8	2.9		Use of Silt Curtains	Minimize the release	Contractor	Construction	Construction	
		A2	To minimize the potential SS impact from dredging, deployment of silt curtains around the grab dredgers is recommended; and	of suspended soil from the dredging area		Work Sites	Phase	Implemented
			Before commencement of dredging works, the holder of the Environmental Permit shall submit detailed proposal of the design and arrangement of the frame type silt curtain to EPD for approval.					
3.10	2.9	А3	Water Quality Monitoring Program	Perform water quality	ET	Monitoring	Construction	
			Water quality monitoring shall be carried out in accordance with Section 2 of the Environmental Monitoring and Audit (EM&A) Manual. Event and Action Plan (EAP) for water quality shall be followed in case of any exceedance in action and limit level.	monitoring at sensitive receivers during construction phase		Locations as stated in Table 2.1 of the EM&A Manual	Phase	Implemented
3.8	-		Dredging Operation	Minimize potential	Contractor	Construction	Construction	
(EP Ref 3)		A4	Only two types of dredgers are allowed for this Project: (a) grab dredger with closed grab, and (b) cutter suction dredger spud pole grab dredger.	adverse effect as a result of dredging		Work Sites	Phase	Implemented
		A5	The speed of any construction vessels shall not exceed 10 knots when passing through the area of the Project.	activities				Implemented
		A6	No more than-three two grab dredgers with closed grab (or one cutter suction dredger with two closed grab dredgers) shall be operated within the Project Area at any one time for the Project.					Implemented
		A7	Only one closed grab dredger or one cutter suction dredger shall be operated in Zone 2B and during which no other closed grab dredger shall be allowed in other zones within the Project Area.					Implemented
		A8	No more than one grab dredger with closed grab (or one cutter suction dredger) shall be operated within each of the five main zones at any one time for the Project in which the cutter suction dredger shall only be operated in Zones 2 and 4 with maximum dredging rate of 700 m³ in 30 minutes in any given hour (max. 8,400 m³/day, based on a 12-hour operation per day).					Implemented
		A9	The maximum dredging rate for closed grab dredger at Rambler Channel – Zones 1 to 2 (subzones Z1A, Z1B, Z2A, Z2B and Z2C) shall follow the Dredging Plan for the Hotspot, as shown in EP-426/2011/A.					Implemented
		A10	Zones 3 to 4 (subzones Z3A to Z4B) shall not exceed 1,600 m³ per day during dry season or 3,440 m³ per day during wet season as shown in EP-426/2011/A.					NA – No work in such area
		A11						NA – No work in such area

EIA Ref	EM& A Ref	No.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to Address	Who to implement the measure	Location of the measure	When to implement the measure?	Implementation Status
		A12	Zones 5 to 8 (subzones Z5C, Z6B, Z6C, Z6D, Z7 and Z8) shall not exceed 4,000 m³ per day during both dry and wet seasons as shown in EP-426/2011/A.					NA – No work in such area
		A13	The maximum dredging rate for closed grab dredger at Northern Fairway – Zones 9 to 12 shall not exceed 4,000 m³ per day during both dry and wet seasons as shown in EP-426/2011/A.					NA – No work in such area
		A14	The maximum dredging rate for closed grab dredger at Western Fairway – Zone 13A shall not exceed 4,000 m³ per day during both dry and wet seasons as shown in EP-426/2011/A.					NA – No work in such area
		A15	The maximum dredging rate for closed grab dredger at Western Fairway – Zone 13B shall not exceed 4,000 m³ per day during both dry and wet seasons as shown in EP-426/2011/A.					NA – No dredging was carried out
		A16	The dredging pump of cutter suction dredger shall be operated during cutting to reduce the sediment loss to water body.					NA-no CSD employed
		A17	Project dredging works within Zone 1 to 6 (including sub-zones) of the Container Basin shall not be carried out at the same time with Terminal Operator's maintenance dredging activities.					NA-No Terminal Operator's maintenance dredging carried out
		A18	Cutter suction dredger is only to be deployed for the removal of harder material during daytime only (07:00 to 19:00) in Zone 2 (including subzones) of the Container Basin.					NA-no CSD employed
		A19	In case of rainstorm warning in effect during dredging works, the dredged material on barge shall be covered properly before transportation to disposal site.					Implemented
		A20	In case of exceedance of SS and NH3-N at the Tsing Yi WSD flushing intake due to dredging operation is evidenced, the Contractor shall propose mitigation measures not limited to reducing dredging rate. If exceedance persists, the Contractor shall propose not to undertake dredging operation in close proximity to the Tsing Yi flushing water intake during flood tide. The Contractor shall liaise with the ETL, IEC, ER, EPD and WSD for the proposed mitigation measures.					NA-no exceedance due to dredging operation
		A21	If further mitigation measures are required due to continuous exceedance of SS and NH ₃ -N, consideration shall then be given to dredge only on the state of the tide which would avoid migration of SS towards the WSD and EMSD intakes.					NA-no exceedance due to dredging operation
		A22						Implemented
		A23						Implemented
		A24	Field trials shall be carried out to propose the most effective dredging process and rate to control the release of ammoniacal nitrogen and UIA into the water column and achieve compliance at the WSD1 seawater intake (NH ₃ -N) and at the beaches for UIA.					Implemented

EIA Ref	EM& A Ref	No.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to Address	Who to implement the measure	Location of the measure	When to implement the measure?	Implementation Status
			Capital dredging works in dredging sub-zone Z2B (Figure 1.2h refers) should not therefore be carried out until the proposed method and rate are confirmed.					
		A25	Detailed dredging plan shall be prepared providing details of individual dredging subzones and dredging rate taking into account of the field trial results.					Implemented
3.8	-	A26	Other Good Site Practices for Dredging All vessels should be sized so that adequate clearance is maintained	Minimize potential adverse effect as a	Contractor	Construction Work Sites	Construction Phase	Implemented
			between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash.	result of dredging activities				
		A27	The speed of all Contractor's vessels should be controlled within the works area to prevent propeller wash from stirring up the seabed sediments.					Implemented
		A28	All barges / dredgers used should be fitted with tight fitting seals to their bottom openings to prevent leakage of material.					Implemented
		A29	Construction activities should not cause foam, oil, grease, scum, litter or other objectionable matter to be present on the water within the site or dumping grounds.					Implemented
		A30	No overflow of dredged mud should be allowed. Barges or hopper should not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation.					Implemented
		В	Waste Management					
			Good Site Practices	Minimize potential	Contractor	Construction	Construction	
4.5	3.3	B1	Obtain the profile of different sediment categories and careful planning of sediment removal.	adverse effect arising from the handling of		Work Sites (General)	Phase	Implemented
		B2	Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site.	dredged material				Implemented
		В3	Training of site personnel in proper waste management and chemical handling procedures.					Implemented
		B4	Provision of sufficient waste disposal points and regular collection of waste.					Implemented
		B5	Well planned delivery programme for offsite disposal such that adverse environmental impact from transporting sediment material is not anticipated.					Implemented
		B6	Use well maintained PME on site.					Implemented
			General Refuse	Minimize the adverse	Contractor	Construction	Construction	
4.5	3.3	B7	General refuse should be stored in enclosed bins. A reputable waste collector should be employed by the contractor to remove general refuse	effect arising from the handling of		Work Sites (General)	Phase	Implemented
			from the site.	site general refuse		(Scrioidi)		
			Chemical Waste	Minimize the adverse	Contractor	Construction	Construction	
4.5	3.3	B8	If chemical wastes are produced at the construction site, the Contractor shall be required to register with the EPD as a chemical waste producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Good quality containers compatible with the chemical wastes shall be used, and incompatible	effect arising from the handling of site chemical waste		Work Site	Phase	Partially Implemented
			Compandio With the chemical Wacted Chair de acea, and incompandio					

EIA Ref	EM& A Ref	No.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to Address	Who to implement the measure	Location of the measure	When to implement the measure?	Implementation Status
			chemical characteristics of the chemical waste, such as explosive, flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The Contractor shall use a licensed collector to transport and dispose of the chemical wastes, to either the approved Chemical Waste Treatment Centre, or another licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.					
4.5	3.3	B9	Marine Dredged Sediment Control of transportation and disposal of dredged material in a manner to minimize potential impacts on water quality.	Control of transportation and disposal of dredged	Contractor	Construction Work Site	Construction Phase	Implemented
		B10	Bottom opening of barges will be fitted with tight fitting seals to prevent leakage of material. Excess material shall be cleaned from the decks and exposed fittings of barges and dredgers before the vessel is moved.	material in a manner to minimize potential impacts on water				Implemented
		B11	Monitoring of the barge loading shall be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels shall be equipped with automatic selfmonitoring devices as specified by the EPD.	quality				Implemented
	B1:		Barges or hopper barges shall not be filled to a level that would cause the overflow of materials or sediment laden water during loading or transportation.					Implemented
		B13 B14	Sediment Quality Report shall be prepared and submit to EPD under DASO. If disposal of Type 3 sediment is identified, agreement with EPD shall be reached regarding the treatment of sediment before disposal.					Implemented NA – no type 3 material disposed
		B15	Project works shall not be carried out before obtaining confirmation from MFC on disposal option.					Implemented
		B16	Follow strictly all conditions stipulated in the dumping permit.					Implemented
		С	Marine Ecology	Review and assess	Contractor	Construction	Construction	
5.7	4.1	C1	Water quality monitoring results shall be reviewed from time to time to assess if there were any impact to marine ecology due to dredging operation.	the potential adverse effect on marine ecology		Work Sites	Phase	Implemented
		D	Fisheries	Review and assess	Contractor	Construction	Construction	
6.7	5.1	D1	Water quality monitoring results shall be reviewed from time to time to assess if there were any impact to fisheries due to dredging operation.	the potential adverse effect on fisheries		Work Sites	Phase	Implemented
		E	Hazard to Life		Contractor	Construction	Construction	
7.8.2	6.2	E1	Sound communication channel shall be established with the oil companies, Marine Department, and Fire Services Department for effective notification and emergency evacuation in case of accidents.			Work Sites (General)	Phase	Implemented
		E2	Proper safety and emergency training shall be given to the relevant operation staff at the dredging site. Emergency plans and procedures should be prepared and drills should be performed periodically.					Implemented
		F	Landscape Visual and Glare	Minimize landscape	Contractor	Construction	Throughout	
8.9	7.2	F1	Visa shields to the lights of dredgers shall be provided.	and visual impacts	Contractor	activities'	design,	Implemented
Table	1.2	F1 Visa shields to the lights of dredgers shall be provided. F2 The light source shall not point directly to any VSRs.		during construction		area	construction	Implemented
8-3 & 8-6		F3	Lights shall be switched off if they are not in use.	phase			phase	Implemented
		G	Cultural Heritage		Contractor		During	

EIA Ref	EM& A Ref	No.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to Address	Who to implement the measure	Location of the measure	When to implement the measure?	Implementation Status
9.5	8	G1	Monitoring Brief A monitoring brief shall be conducted during the dredging. It shall only be required during dredging at the locations of the 20 unidentified sonar contacts and masked areas and does not need to cover all of the dredging activities. Dredging staff should be briefed about the possibility of locating archaeological objects and a marine archaeologist shall be available to monitor the dredged spoil and provide advice. If material indicative of archaeological remains is retrieved, the AMO should be contacted as soon as possible.	Minimize potential marine archaeological impact during dredging activities		Locations of the 20 unidentified sonar contacts and masked areas	Construction works	NA- no archaeological deposit was found during reporting period.
		Н	Noise					
10.8	9	H1	Good Site Practices Only well-maintained plant shall be operated on-site and plant should be serviced regularly during the construction program.	Control and minimize the generation of undue noise	Contractor	Construction Work Sites (Along the	Construction Phase	Implemented
		H2	Machines and plant that may be in intermittent use should be shut down between works periods or should be throttled down to a minimum.	nuisance		alignment of dredging		Implemented
		НЗ	Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from nearby NSRs.					Implemented
		H4	If dredging is to be carried out during restricted hours, work locations close to NSRs shall be avoided.					Implemented
		1	Construction Dust					
11.7	10	I1	Dust Control Requirements of the Air Pollution Control (Construction Dust) Regulation, where relevant, shall be adhered to during the construction period.	Good site practice to control dust and odour impact to the nearby sensitive receivers	Contractor	Construction Work Sites (General)	Construction Phase	Implemented
		I2	Odour To minimize potential odour emissions, if dredged sediment is anticipated to be placed on barge for more than a day the load shall be properly covered as far as practicable to minimise the exposed area and potential odour.		Contractor	Construction Work Sites (General)	Construction Phase	NA-no work in such condition
		13	If dredged sediment is found to be malodorous it shall be removed from site as soon as possible within one hour after the barge being filled up.					NA-no work in such condition

 Fugro Development Centre,
 Tel
 : +852 2450 8233

 5 Lok Yi Street, Tai Lam,
 Fax
 : +852 2450 6138

 Tuen Mun, N.T.,
 E-mail
 : matlab@fugro.com

 Hong Kong.
 Website
 : www.fugro.com

Report No.: 0394/13/ED/0389A

Appendix G
Waste Generation in Reporting Period

Name of Department : Civil Engineering and Development Department

Contract No.: CV/2013/04

Monthly Summary Waste Flow Table for <u>2019</u> (year)

Year	Actu	ual Quantities of I	nert C&D Material	ls Generated Mon	thly		Actual Quantities	of C&D Wastes G	enerated Monthly	/
2019	Total Quantity Generated	Broken Concrete (see Note 3)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Metals	Paper/cardbo ard packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse
	(in '000 m ₃)	(in '000 m ₃)	(in '000 m ₃)	(in '000 m ₃)	(in '000 m ₃)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 m ₃)
Jan	nil	nil	nil	nil	nil	nil	nil	nil	nil	nil
Feb	nil	nil	nil	nil	nil	nil	nil	nil	nil	nil
Mar	nil	nil	nil	nil	nil	nil	nil	nil	nil	nil
Apr	nil	nil	nil	nil	nil	nil	nil	nil	nil	nil
May	nil	nil	nil	nil	nil	nil	nil	nil	nil	nil
Jun	nil	nil	nil	nil	nil	nil	nil	nil	nil	nil
Jul	nil	nil	nil	nil	nil	nil	nil	nil	nil	nil
Aug	nil	nil	nil	nil	nil	nil	nil	nil	nil	nil
Sep	nil	nil	nil	nil	nil	nil	nil	nil	nil	nil
Oct	nil	nil	nil	nil	nil	nil	nil	nil	nil	nil
Nov	nil	nil	nil	nil	nil	nil	nil	nil	nil	nil
Dec										
Total	nil	nil	nil	nil	nil	nil	nil	nil	nil	nil

Notes:

- (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
- (2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.
- (3) Broken concrete for recycling into aggregates

Yearly Summary Waste Flow Table

Year		Estimated Annual Quantities of Inert C&D Materials (in '000m ₃)								Estimated Annual of C&D Wastes										
	Total Quantity Generated		Broken Concrete (see Note 3)			ed in ontract	oth	ed in ner ects		sed as ic Fill	Me	tals		ardboard aging		stics lote 2)		mical aste	Others general	
	(a	a)	(b	p)	(0	c)	(0	d)	(a-b	-c-d)	(in '00	00 kg)	(in '00	00 kg)	(in '00	00 kg)	(in '0	00 kg)	(in '00	0 m ₃)
	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.	Est.	Act.
2013	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	0.003	0.01
2014	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	0.2	0.16
2015	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	13	14.4	0.2	0.12
2016	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	17	Nil	0.2	0.12
2017	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	10	Nil	0.15	0.12
2018	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil
2019	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2020																				
2021																				
Grand Total	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Nil	40	14.4	0.753	0.53

Notes:

- (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
- (2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material
- (3) Broken concrete for recycling into aggregates.

Monthly Summary of Sediment Disposal (2019)

Marine Sediment Type	Type 1 – Open Sea Disposal	Type 2 – Confined Marine Disposal	Type 3 – Special Treatment / Disposal								
Month	Quantity (m ³)	Quantity (m ³)	Quantity (m ³)								
		2014									
Jan-Dec	549,430	99,660	nil								
	2015										
Jan-Dec	938,560	372,370	nil								
		2016									
Jan-Dec	195,860	153,250	1,260								
		2017									
Jan-Dec	1,850	28,550	nil								
		2018									
Jan-Dec	nil	nil	nil								
		2019									
January	nil	nil	nil								
February	nil	nil	nil								
March	nil	600	nil								
April	nil	nil	nil								
May	nil	nil	nil								
June	nil	nil	nil								
July	nil	nil	nil								
August	nil	nil	nil								
September	nil	nil	nil								
October	nil	900	nil								
November	nil	1350	nil								
Total	1,685,700	656,680	1,260								

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0389A

Appendix H

Quarterly Assessment of Construction Impact

1.3 x	Baseline UIA (in-situ)	(mg/L)
SR4	4/1/2014 Mid-Flood	0.003
SR4	7/1/2014 Mid-Flood	0.004
SR4	9/1/2014 Mid-Flood	0.006
SR4	11/1/2014 Mid-Flood	0.004
SR4	14/1/2014 Mid-Flood	0.005
SR4	16/1/2014 Mid-Flood	0.005
SR4	18/1/2014 Mid-Flood	0.002
SR4	21/1/2014 Mid-Flood	0.005
SR4	23/1/2014 Mid-Flood	0.010
SR4	25/1/2014 Mid-Flood	0.018
SR4	27/1/2014 Mid-Flood	0.012
SR4	29/1/2014 Mid-Flood	0.025
SR12	4/1/2014 Mid-Flood	0.003
SR12	7/1/2014 Mid-Flood	0.004
SR12	9/1/2014 Mid-Flood	0.006
SR12	11/1/2014 Mid-Flood	0.003
SR12	14/1/2014 Mid-Flood	0.004
SR12	16/1/2014 Mid-Flood	0.006
SR12	18/1/2014 Mid-Flood	0.003
SR12	21/1/2014 Mid-Flood	0.017
SR12	23/1/2014 Mid-Flood	0.010
SR12	25/1/2014 Mid-Flood	0.012
SR12	27/1/2014 Mid-Flood	0.016
SR12	29/1/2014 Mid-Flood	0.027

	Impact			
SR4	24/8/2019 Mid-Flood	0.018 SR12		0.016
SR4	27/8/2019 Mid-Flood	0.011 SR12		0.012
SR4	29/8/2019 Mid-Flood	0.010 SR12	-,-,	0.011
SR4	31/8/2019 Mid-Flood	0.019 SR12	2 31/8/2019 Mid-Flood	0.017
SR4	3/9/2019 Mid-Flood	0.013 SR12	-,-,	0.011
SR4	5/9/2019 Mid-Flood	0.012 SR12	2 5/9/2019 Mid-Flood	0.019
SR4	7/9/2019 Mid-Flood	0.020 SR12		0.025
SR4	10/9/2019 Mid-Flood	0.056 SR12		0.071
SR4	12/9/2019 Mid-Flood	0.029 SR12		0.028
SR4	14/9/2019 Mid-Flood	0.035 SR12		0.041
SR4	17/9/2019 Mid-Flood	0.027 SR12		0.029
SR4	19/9/2019 Mid-Flood	0.025 SR12	-,-,	0.044
SR4	21/9/2019 Mid-Flood	0.032 SR12		0.031
SR4	24/9/2019 Mid-Flood	0.035 SR12		0.032
SR4	26/9/2019 Mid-Flood	0.040 SR12		0.040
SR4	28/9/2019 Mid-Flood	0.032 SR12		0.111
SR4	1/10/2019 Mid-Flood	0.036 SR12		0.030
SR4	3/10/2019 Mid-Flood	0.021 SR12		0.014
SR4	5/10/2019 Mid-Flood	0.014 SR12	-, -,	0.012
SR4	8/10/2019 Mid-Flood	0.008 SR12		0.013
SR4	10/10/2019 Mid-Flood	0.009 SR12		0.010
SR4	12/10/2019 Mid-Flood	0.050 SR12		0.054
SR4	15/10/2019 Mid-Flood	0.014 SR12		0.016
SR4	17/10/2019 Mid-Flood	0.012 SR12		0.018
SR4	19/10/2019 Mid-Flood	0.012 SR12		0.013
SR4	22/10/2019 Mid-Flood	0.010 SR12		0.013
SR4	24/10/2019 Mid-Flood	0.011 SR12		0.012
SR4	26/10/2019 Mid-Flood	0.018 SR12		0.069
SR4	29/10/2019 Mid-Flood	0.012 SR12		0.009
SR4	31/10/2019 Mid-Flood	0.014 SR12		0.014
SR4	2/11/2019 Mid-Flood	0.007 SR12	, ,	0.007
SR4	5/11/2019 Mid-Flood	0.013 SR12		0.012
SR4	7/11/2019 Mid-Flood	0.017 SR12	, ,	0.014
SR4	9/11/2019 Mid-Flood	0.037 SR12		0.042
SR4	12/11/2019 Mid-Flood	0.013 SR12		0.011
SR4	14/11/2019 Mid-Flood	0.018 SR12		0.012
SR4	16/11/2019 Mid-Flood	0.019 SR12		0.019
SR4	19/11/2019 Mid-Flood	0.023 SR12	., ,	0.020
SR4	21/11/2019 Mid-Flood	0.031 SR12	2 21/11/2019 Mid-Flood	0.028

1.3 x Baseline UIA (in-situ)		Impact UIA (in-situ)	
Raw Statistics		Raw Statistics	
Number of Valid Observations	24	Number of Valid Observations	78
Number of Distinct Observations	24	Number of Distinct Observations	78
Minimum	0.00473	Minimum	0.00653
Maximum	0.0443	Maximum	0.111
Mean of Raw Data	0.0174	Mean of Raw Data	0.0235
Standard Deviation of Raw Data	0.0129	Standard Deviation of Raw Data	0.0172
Kstar	1.838	Kstar	2.678
Mean of Log Transformed Data	-4.309	Mean of Log Transformed Data	-3.942
Standard Deviation of Log Transformed Data	0.736	Standard Deviation of Log Transformed Data	0.592
Normal Distribution Test Results		Normal Distribution Test Results	
Correlation Coefficient R	0.918	Correlation Coefficient R	0.868
Shapiro Wilk Test Statistic	0.829	Approximate Shapiro Wilk Test Statistic	0.772
Shapiro Wilk Critical (0.95) Value	0.916	Approximate Shapiro Wilk P Value	0
Approximate Shapiro Wilk P Value	6.26E-04	Lilliefors Test Statistic	0.192
Lilliefors Test Statistic	0.263	Lilliefors Critical (0.95) Value	0.1
Lilliefors Critical (0.95) Value	0.177	Data not Normal at (0.05) Significance Level	
Data not Normal at (0.05) Significance Level			

Wilcoxon-Mann-Whitney Site vs Background Comparison Test for Full Data Sets without NDs

User Selected Options

Full Precision OFF
Confidence Coefficient 95%
Substantial Difference 0

Selected Null Hypothesis Site or AOC Mean/Median Less Than or Equal to Background Mean/Median (Form 1)

Alternative Hypothesis Site or AOC Mean/Median Greater Than Background Mean/Median

Area of Concern Data: Impact UIA (in-situ) Background Data: Baseline UIA (in-situ) x 1.3

Raw Statistics

	Site	Background
Number of Valid Observations	78	24
Number of Distinct Observations	78	24
Minimum	0.00653	0.00473
Maximum	0.111	0.0443
Mean	0.0235	0.0174
Median	0.0176	0.00987
SD	0.0172	0.0129
SE of Mean	1.95E-03	2.63E-03

Wilcoxon-Mann-Whitney (WMW) Test

HO: Mean/Median of Site or AOC <= Mean/Median of Background

 Site Rank Sum W-Stat
 4330

 WMW Test U-Stat
 2.465

 WMW Critical Value (0.050)
 1.645

 P-Value
 6.85E-03

Conclusion with Alpha = 0.05

Reject HO, Conclude Site > Background

P-Value < alpha (0.05)

Jpstream	Control UIA (in-situ)	(mg/L		Impact	UIA (in-situ) (mg/L)	
C2A	23/5/2019 Mid-Flood	0.021	SR4	24/8/2019 Mid-Flood	0.018 SR12	24/8/2019 Mid-Flood	0.016
C2A	25/5/2019 Mid-Flood	0.082	SR4	27/8/2019 Mid-Flood	0.011 SR12	27/8/2019 Mid-Flood	0.012
C2A	28/5/2019 Mid-Flood	0.012	SR4	29/8/2019 Mid-Flood	0.010 SR12	29/8/2019 Mid-Flood	0.011
C2A	30/5/2019 Mid-Flood	0.016	SR4	31/8/2019 Mid-Flood	0.019 SR12	31/8/2019 Mid-Flood	0.017
C2A	1/6/2019 Mid-Flood	0.025	SR4	3/9/2019 Mid-Flood	0.013 SR12	3/9/2019 Mid-Flood	0.011
C2A	4/6/2019 Mid-Flood	0.023	SR4	5/9/2019 Mid-Flood	0.012 SR12	5/9/2019 Mid-Flood	0.019
C2A	6/6/2019 Mid-Flood	0.037	SR4	7/9/2019 Mid-Flood	0.020 SR12	7/9/2019 Mid-Flood	0.025
C2A	8/6/2019 Mid-Flood	0.008	SR4	10/9/2019 Mid-Flood	0.056 SR12	10/9/2019 Mid-Flood	0.071
C2A	11/6/2019 Mid-Flood	0.017	SR4	12/9/2019 Mid-Flood	0.029 SR12	12/9/2019 Mid-Flood	0.028
C2A	13/6/2019 Mid-Flood	0.027	SR4	14/9/2019 Mid-Flood	0.035 SR12	14/9/2019 Mid-Flood	0.041
C2A	15/6/2019 Mid-Flood	0.020	SR4	17/9/2019 Mid-Flood	0.027 SR12	17/9/2019 Mid-Flood	0.029
C2A	18/6/2019 Mid-Flood	0.017	SR4	19/9/2019 Mid-Flood	0.025 SR12	19/9/2019 Mid-Flood	0.044
C2A	20/6/2019 Mid-Flood	0.026	SR4	21/9/2019 Mid-Flood	0.032 SR12	21/9/2019 Mid-Flood	0.031
C2A	22/6/2019 Mid-Flood	0.063	SR4	24/9/2019 Mid-Flood	0.035 SR12	24/9/2019 Mid-Flood	0.032
C2A	25/6/2019 Mid-Flood	0.014	SR4	26/9/2019 Mid-Flood	0.040 SR12	26/9/2019 Mid-Flood	0.040
C2A	27/6/2019 Mid-Flood	0.012	SR4	28/9/2019 Mid-Flood	0.032 SR12	28/9/2019 Mid-Flood	0.111
C2A	29/6/2019 Mid-Flood	0.009	SR4	1/10/2019 Mid-Flood	0.036 SR12	1/10/2019 Mid-Flood	0.030
C2A	2/7/2019 Mid-Flood	0.017	SR4	3/10/2019 Mid-Flood	0.021 SR12	3/10/2019 Mid-Flood	0.014
C2A	4/7/2019 Mid-Flood	0.018	SR4	5/10/2019 Mid-Flood	0.014 SR12	5/10/2019 Mid-Flood	0.012
C2A	6/7/2019 Mid-Flood	0.014	SR4	8/10/2019 Mid-Flood	0.008 SR12	8/10/2019 Mid-Flood	0.013
C2A	9/7/2019 Mid-Flood	0.014	SR4	10/10/2019 Mid-Flood	0.009 SR12	10/10/2019 Mid-Flood	0.010
C2A	11/7/2019 Mid-Flood	0.014	SR4	12/10/2019 Mid-Flood	0.050 SR12	12/10/2019 Mid-Flood	0.054
C2A	13/7/2019 Mid-Flood	0.015	SR4	15/10/2019 Mid-Flood	0.014 SR12	15/10/2019 Mid-Flood	0.016
C2A	16/7/2019 Mid-Flood	0.015	SR4	17/10/2019 Mid-Flood	0.012 SR12	17/10/2019 Mid-Flood	0.018
C2A	18/7/2019 Mid-Flood	0.027	SR4	19/10/2019 Mid-Flood	0.012 SR12	19/10/2019 Mid-Flood	0.013
C2A	20/7/2019 Mid-Flood	0.062	SR4	22/10/2019 Mid-Flood	0.010 SR12	22/10/2019 Mid-Flood	0.013
C2A	23/7/2019 Mid-Flood	0.035	SR4	24/10/2019 Mid-Flood	0.011 SR12	24/10/2019 Mid-Flood	0.012
C2A	25/7/2019 Mid-Flood	0.016	SR4	26/10/2019 Mid-Flood	0.018 SR12	26/10/2019 Mid-Flood	0.069
C2A	27/7/2019 Mid-Flood	0.023	SR4	29/10/2019 Mid-Flood	0.012 SR12	29/10/2019 Mid-Flood	0.009
C2A	30/7/2019 Mid-Flood	0.015	SR4	31/10/2019 Mid-Flood		31/10/2019 Mid-Flood	0.014
C2A	3/8/2019 Mid-Flood	0.029	SR4	2/11/2019 Mid-Flood	0.007 SR12	2/11/2019 Mid-Flood	0.007
C2A	6/8/2019 Mid-Flood	0.034	SR4	5/11/2019 Mid-Flood	0.013 SR12	5/11/2019 Mid-Flood	0.012
C2A	8/8/2019 Mid-Flood	0.019	SR4	7/11/2019 Mid-Flood	0.017 SR12	7/11/2019 Mid-Flood	0.014
C2A	10/8/2019 Mid-Flood	0.039	SR4	9/11/2019 Mid-Flood	0.037 SR12	9/11/2019 Mid-Flood	0.042
C2A	13/8/2019 Mid-Flood	0.022	SR4	12/11/2019 Mid-Flood	0.013 SR12	12/11/2019 Mid-Flood	0.011
C2A	15/8/2019 Mid-Flood	0.017	SR4	14/11/2019 Mid-Flood	0.018 SR12	14/11/2019 Mid-Flood	0.012
C2A	17/8/2019 Mid-Flood	0.038	SR4	16/11/2019 Mid-Flood	0.019 SR12	16/11/2019 Mid-Flood	0.019
C2A	20/8/2019 Mid-Flood	0.028	SR4	19/11/2019 Mid-Flood	0.023 SR12	19/11/2019 Mid-Flood	0.020
C2A	22/8/2019 Mid-Flood	0.063	SR4	21/11/2019 Mid-Flood	0.031 SR12	21/11/2019 Mid-Flood	0.028

Upstream Control UIA (in-situ)		Impact UIA (in-situ)	
Raw Statistics		Raw Statistics	
Number of Valid Observations	39	Number of Valid Observations	78
Number of Distinct Observations	26	Number of Distinct Observations	78
Minimum	0.008	Minimum	0.00653
Maximum	0.082	Maximum	0.111
Mean of Raw Data	0.0257	Mean of Raw Data	0.0235
Standard Deviation of Raw Data	0.0166	Standard Deviation of Raw Data	0.0172
Kstar	3.154	Kstar	2.678
Mean of Log Transformed Data	-3.815	Mean of Log Transformed Data	-3.942
Standard Deviation of Log Transformed Data	0.537	Standard Deviation of Log Transformed Data	0.592
Normal Distribution Test Results		Normal Distribution Test Results	
Correlation Coefficient R	0.883	Correlation Coefficient R	0.868
Shapiro Wilk Test Statistic	0.785	Approximate Shapiro Wilk Test Statistic	0.772
Shapiro Wilk Critical (0.95) Value	0.939	Approximate Shapiro Wilk P Value	0
Approximate Shapiro Wilk P Value	4.07E-07	Lilliefors Test Statistic	0.192
Lilliefors Test Statistic	0.191	Lilliefors Critical (0.95) Value	0.1
Lilliefors Critical (0.95) Value	0.14	Data not Normal at (0.05) Significance Level	
Data not Normal at (0.05) Significance Level			

Wilcoxon-Mann-Whitney Site vs Background Comparison Test for Full Data Sets without NDs

User Selected Options

Full Precision OFF
Confidence Coefficient 95%
Substantial Difference 0

Alternative Hypothesis Site Mean/Median > Background Mean/Median

Area of Concern Data: Impact UIA (in-situ) Background Data: Upstream Control UIA (in-situ)

Raw Statistics

	Site	Background
Number of Valid Observations	78	39
Number of Distinct Observations	78	26
Minimum	0.00653	0.008
Maximum	0.111	0.082
Mean	0.0235	0.0257
Median	0.0176	0.02
SD	0.0172	0.0166
SE of Mean	1.95E-03	0.00265

Wilcoxon-Mann-Whitney (WMW) Test

HO: Mean/Median of Site or AOC >= Mean/Median of Background

 Site Rank Sum W-Stat
 4362

 WMW Test U-Stat
 -1.391

 WMW Critical Value (0.050)
 1.645

 P-Value
 9.18E-01

Conclusion with Alpha = 0.05

Do Not Reject HO, Conclude Site <= Background

P-Value < alpha (0.05)

1.3 x	Baseline NH3-N (lab)	(mg/L)
SR4	4/1/2014 Mid-Flood	0.10
SR4	7/1/2014 Mid-Flood	0.11
SR4	9/1/2014 Mid-Flood	0.21
SR4	11/1/2014 Mid-Flood	0.19
SR4	14/1/2014 Mid-Flood	0.14
SR4	16/1/2014 Mid-Flood	0.12
SR4	18/1/2014 Mid-Flood	0.04
SR4	21/1/2014 Mid-Flood	0.06
SR4	23/1/2014 Mid-Flood	0.20
SR4	25/1/2014 Mid-Flood	0.16
SR4	27/1/2014 Mid-Flood	0.10
SR4	29/1/2014 Mid-Flood	0.15
SR12	4/1/2014 Mid-Flood	0.10
SR12	7/1/2014 Mid-Flood	0.12
SR12	9/1/2014 Mid-Flood	0.20
SR12	11/1/2014 Mid-Flood	0.12
SR12	14/1/2014 Mid-Flood	0.13
SR12	16/1/2014 Mid-Flood	0.13
SR12	18/1/2014 Mid-Flood	0.07
SR12	21/1/2014 Mid-Flood	0.21
SR12	23/1/2014 Mid-Flood	0.21
SR12	25/1/2014 Mid-Flood	0.17
SR12	27/1/2014 Mid-Flood	0.13
SR12	29/1/2014 Mid-Flood	0.18

_					
	Impact		(lab)	(mg/L)	
SR4	24/8/2019 Mid-Flood	0.16	SR12	24/8/2019 Mid-Flood	0.16
SR4	27/8/2019 Mid-Flood	0.13	SR12	27/8/2019 Mid-Flood	0.14
SR4	29/8/2019 Mid-Flood	0.13	SR12	29/8/2019 Mid-Flood	0.10
SR4	31/8/2019 Mid-Flood	0.23	SR12	31/8/2019 Mid-Flood	0.20
SR4	3/9/2019 Mid-Flood	0.16	SR12	3/9/2019 Mid-Flood	0.13
SR4	5/9/2019 Mid-Flood	0.16	SR12	5/9/2019 Mid-Flood	0.23
SR4	7/9/2019 Mid-Flood	0.20	SR12	7/9/2019 Mid-Flood	0.24
SR4	10/9/2019 Mid-Flood	0.33	SR12	10/9/2019 Mid-Flood	0.30
SR4	12/9/2019 Mid-Flood	0.33	SR12	12/9/2019 Mid-Flood	0.30
SR4	14/9/2019 Mid-Flood	0.27	SR12	14/9/2019 Mid-Flood	0.32
SR4	17/9/2019 Mid-Flood	0.23	SR12	17/9/2019 Mid-Flood	0.25
SR4	19/9/2019 Mid-Flood	0.21	SR12	19/9/2019 Mid-Flood	0.37
SR4	21/9/2019 Mid-Flood	0.53	SR12	21/9/2019 Mid-Flood	0.52
SR4	24/9/2019 Mid-Flood		SR12	24/9/2019 Mid-Flood	0.20
SR4	26/9/2019 Mid-Flood	0.27	SR12	26/9/2019 Mid-Flood	0.29
SR4	28/9/2019 Mid-Flood		SR12	28/9/2019 Mid-Flood	0.81
SR4	1/10/2019 Mid-Flood		SR12	1/10/2019 Mid-Flood	0.25
SR4	3/10/2019 Mid-Flood		SR12	3/10/2019 Mid-Flood	0.19
SR4	5/10/2019 Mid-Flood		SR12	5/10/2019 Mid-Flood	0.18
SR4	8/10/2019 Mid-Flood	0.14	SR12	8/10/2019 Mid-Flood	0.19
SR4	10/10/2019 Mid-Flood		SR12	10/10/2019 Mid-Flood	0.16
SR4	12/10/2019 Mid-Flood		SR12	12/10/2019 Mid-Flood	0.84
SR4	15/10/2019 Mid-Flood		SR12	15/10/2019 Mid-Flood	0.20
SR4	17/10/2019 Mid-Flood		SR12	17/10/2019 Mid-Flood	0.30
SR4	19/10/2019 Mid-Flood		SR12	19/10/2019 Mid-Flood	0.27
SR4	22/10/2019 Mid-Flood		SR12	22/10/2019 Mid-Flood	0.24
SR4	24/10/2019 Mid-Flood		SR12	24/10/2019 Mid-Flood	0.22
SR4	26/10/2019 Mid-Flood		SR12	26/10/2019 Mid-Flood	1.18
SR4	29/10/2019 Mid-Flood		SR12	29/10/2019 Mid-Flood	0.19
SR4	31/10/2019 Mid-Flood	0.31		31/10/2019 Mid-Flood	0.33
SR4	2/11/2019 Mid-Flood		SR12	2/11/2019 Mid-Flood	0.18
SR4	5/11/2019 Mid-Flood		SR12	5/11/2019 Mid-Flood	0.24
SR4	7/11/2019 Mid-Flood		SR12	7/11/2019 Mid-Flood	0.23
SR4	9/11/2019 Mid-Flood		SR12	9/11/2019 Mid-Flood	0.63
SR4	12/11/2019 Mid-Flood		SR12	12/11/2019 Mid-Flood	0.21
SR4	14/11/2019 Mid-Flood		SR12	14/11/2019 Mid-Flood	0.22
SR4	16/11/2019 Mid-Flood	0.33		16/11/2019 Mid-Flood	0.33
SR4	19/11/2019 Mid-Flood	0.41		19/11/2019 Mid-Flood	0.37
SR4	21/11/2019 Mid-Flood	0.59	SR12	21/11/2019 Mid-Flood	0.55

Baseline NH3-N (lab) x 1.3		Impact NH3-N (lab)	
Raw Statistics		Raw Statistics	
Number of Valid Observations	24	Number of Valid Observations	78
Number of Distinct Observations	21	Number of Distinct Observations	69
Minimum	0.0488	Minimum	0.07
Maximum	0.275	Maximum	1.182
Mean of Raw Data	0.18	Mean of Raw Data	0.286
Standard Deviation of Raw Data	0.065	Standard Deviation of Raw Data	0.186
Kstar	5.717	Kstar	3.611
Mean of Log Transformed Data	-1.794	Mean of Log Transformed Data	-1.389
Standard Deviation of Log Transformed Data	0.437	Standard Deviation of Log Transformed Data	0.497
Normal Distribution Test Results		Normal Distribution Test Results	
Correlation Coefficient R	0.985	Correlation Coefficient R	0.841
Shapiro Wilk Test Statistic	0.958	Approximate Shapiro Wilk Test Statistic	0.727
Shapiro Wilk Critical (0.95) Value	0.916	Approximate Shapiro Wilk P Value	0
Approximate Shapiro Wilk P Value	0.406	Lilliefors Test Statistic	0.258
Lilliefors Test Statistic	0.11	Lilliefors Critical (0.95) Value	0.1
Lilliefors Critical (0.95) Value	0.181	Data not Normal at (0.05) Significance Level	
Data appear Normal at (0.05) Significance Leve	21		

Wilcoxon-Mann-Whitney Site vs Background Comparison Test for Full Data Sets without NDs

User Selected Options

Full Precision OFF
Confidence Coefficient 95%
Substantial Difference 0

Selected Null Hypothesis Site or AOC Mean/Median Less Than or Equal to Background Mean/Median (Form 1)

Alternative Hypothesis Site or AOC Mean/Median Greater Than Background Mean/Median

Area of Concern Data: Impact NH3-N (lab) Background Data: Baseline NH3-N (lab) x 1.3

Raw Statistics

	Site		Background
Number of Valid Observations		78	24
Number of Distinct Observations		69	21
Minimum		0.07	0.0488
Maximum		1.182	0.275
Mean		0.286	0.18
Median		0.233	0.173
SD		0.186	0.065
SE of Mean		0.021	0.0133

Wilcoxon-Mann-Whitney (WMW) Test

HO: Mean/Median of Site or AOC <= Mean/Median of Background

 Site Rank Sum W-Stat
 4447

 WMW Test U-Stat
 3.388

 WMW Critical Value (0.050)
 1.645

 P-Value
 3.52E-04

Conclusion with Alpha = 0.05

Reject HO, Conclude Site > Background

P-Value < alpha (0.05)

Ups	tream Control NH3-N (lab)	(mg/L)		Impact	NH3-N (lab)	(mg/L)	
C2A	24/8/2019 Mid-Flood	0.25	SR4	24/8/2019 Mid-Flood	0.13 SR12	24/8/2019 Mid-Flood	0.16
C2A	27/8/2019 Mid-Flood	0.16	SR4	27/8/2019 Mid-Flood	0.12 SR12	27/8/2019 Mid-Flood	0.14
C2A	29/8/2019 Mid-Flood	0.09	SR4	29/8/2019 Mid-Flood	0.07 SR12	29/8/2019 Mid-Flood	0.10
C2A	31/8/2019 Mid-Flood	0.99	SR4	31/8/2019 Mid-Flood	0.21 SR12	31/8/2019 Mid-Flood	0.20
C2A	3/9/2019 Mid-Flood	0.31	SR4	3/9/2019 Mid-Flood	0.15 SR12	3/9/2019 Mid-Flood	0.13
C2A	5/9/2019 Mid-Flood	0.63	SR4	5/9/2019 Mid-Flood	0.16 SR12	5/9/2019 Mid-Flood	0.23
C2A	7/9/2019 Mid-Flood	0.30	SR4	7/9/2019 Mid-Flood	0.19 SR12	7/9/2019 Mid-Flood	0.24
C2A	10/9/2019 Mid-Flood	0.37	SR4	10/9/2019 Mid-Flood	0.28 SR12	10/9/2019 Mid-Flood	0.30
C2A	12/9/2019 Mid-Flood	0.37	SR4	12/9/2019 Mid-Flood	0.28 SR12	12/9/2019 Mid-Flood	0.30
C2A	14/9/2019 Mid-Flood	0.39	SR4	14/9/2019 Mid-Flood	0.26 SR12	14/9/2019 Mid-Flood	0.32
C2A	17/9/2019 Mid-Flood	0.48	SR4	17/9/2019 Mid-Flood	0.22 SR12	17/9/2019 Mid-Flood	0.25
C2A	19/9/2019 Mid-Flood	0.50	SR4	19/9/2019 Mid-Flood	0.22 SR12	19/9/2019 Mid-Flood	0.37
C2A	21/9/2019 Mid-Flood	0.81	SR4	21/9/2019 Mid-Flood	0.51 SR12	21/9/2019 Mid-Flood	0.52
C2A	24/9/2019 Mid-Flood	0.21	SR4	24/9/2019 Mid-Flood	0.21 SR12	24/9/2019 Mid-Flood	0.20
C2A	26/9/2019 Mid-Flood	0.28	SR4	26/9/2019 Mid-Flood	0.28 SR12	26/9/2019 Mid-Flood	0.29
C2A	28/9/2019 Mid-Flood	0.97	SR4	28/9/2019 Mid-Flood	0.22 SR12	28/9/2019 Mid-Flood	0.81
C2A	1/10/2019 Mid-Flood	0.35	SR4	1/10/2019 Mid-Flood	0.28 SR12	1/10/2019 Mid-Flood	0.25
C2A	3/10/2019 Mid-Flood	0.37	SR4	3/10/2019 Mid-Flood	0.19 SR12	3/10/2019 Mid-Flood	0.19
C2A	5/10/2019 Mid-Flood	0.22	SR4	5/10/2019 Mid-Flood	0.23 SR12	5/10/2019 Mid-Flood	0.18
C2A	8/10/2019 Mid-Flood	0.29	SR4	8/10/2019 Mid-Flood	0.13 SR12	8/10/2019 Mid-Flood	0.19
C2A	10/10/2019 Mid-Flood	0.22	SR4	10/10/2019 Mid-Flood	0.16 SR12	10/10/2019 Mid-Flood	0.16
C2A	12/10/2019 Mid-Flood	0.24	SR4	12/10/2019 Mid-Flood	0.78 SR12	12/10/2019 Mid-Flood	0.84
C2A	15/10/2019 Mid-Flood	0.39	SR4	15/10/2019 Mid-Flood	0.18 SR12	15/10/2019 Mid-Flood	0.20
C2A	17/10/2019 Mid-Flood	0.34	SR4	17/10/2019 Mid-Flood	0.19 SR12	17/10/2019 Mid-Flood	0.30
C2A	19/10/2019 Mid-Flood	0.27	SR4	19/10/2019 Mid-Flood	0.25 SR12	19/10/2019 Mid-Flood	0.27
C2A	22/10/2019 Mid-Flood	0.25	SR4	22/10/2019 Mid-Flood	0.17 SR12	22/10/2019 Mid-Flood	0.24
C2A	24/10/2019 Mid-Flood	0.28	SR4	24/10/2019 Mid-Flood	0.21 SR12	24/10/2019 Mid-Flood	0.22
C2A	26/10/2019 Mid-Flood	1.12	SR4	26/10/2019 Mid-Flood	0.29 SR12	26/10/2019 Mid-Flood	1.18
C2A	29/10/2019 Mid-Flood	0.66	SR4	29/10/2019 Mid-Flood	0.23 SR12	29/10/2019 Mid-Flood	0.19
C2A	31/10/2019 Mid-Flood	0.70	SR4	31/10/2019 Mid-Flood	0.30 SR12	31/10/2019 Mid-Flood	0.33
C2A	2/11/2019 Mid-Flood	0.35	SR4	2/11/2019 Mid-Flood	0.17 SR12	2/11/2019 Mid-Flood	0.18
C2A	5/11/2019 Mid-Flood	0.29	SR4	5/11/2019 Mid-Flood	0.28 SR12	5/11/2019 Mid-Flood	0.24
C2A	7/11/2019 Mid-Flood	0.66	SR4	7/11/2019 Mid-Flood	0.28 SR12	7/11/2019 Mid-Flood	0.23
C2A	9/11/2019 Mid-Flood	0.24	SR4	9/11/2019 Mid-Flood	0.59 SR12	9/11/2019 Mid-Flood	0.63
C2A	12/11/2019 Mid-Flood	0.76	SR4	12/11/2019 Mid-Flood	0.23 SR12	12/11/2019 Mid-Flood	0.21
C2A	14/11/2019 Mid-Flood	0.22	SR4	14/11/2019 Mid-Flood	0.27 SR12	14/11/2019 Mid-Flood	0.22
C2A	16/11/2019 Mid-Flood	0.50	SR4	16/11/2019 Mid-Flood	0.31 SR12	16/11/2019 Mid-Flood	0.33
C2A	19/11/2019 Mid-Flood	0.32	SR4	19/11/2019 Mid-Flood	0.38 SR12	19/11/2019 Mid-Flood	0.37
C2A	21/11/2019 Mid-Flood	0.54	SR4	21/11/2019 Mid-Flood	0.62 SR12	21/11/2019 Mid-Flood	0.55

Upstream Control NH3-N (lab)		Impact NH3-N (lab)	
Raw Statistics		Raw Statistics	
Number of Valid Observations	39	Number of Valid Observations	78
Number of Distinct Observations	38	Number of Distinct Observations	69
Minimum	0.0883	Minimum	0.07
Maximum	1.122	Maximum	1.182
Mean of Raw Data	0.427	Mean of Raw Data	0.286
Standard Deviation of Raw Data	0.245	Standard Deviation of Raw Data	0.186
Kstar	3.365	Kstar	3.611
Mean of Log Transformed Data	-0.996	Mean of Log Transformed Data	-1.389
Standard Deviation of Log Transformed Data	0.542	Standard Deviation of Log Transformed Data	0.497
Normal Distribution Test Results		Normal Distribution Test Results	
Correlation Coefficient R	0.93	Correlation Coefficient R	0.841
Shapiro Wilk Test Statistic	0.862	Approximate Shapiro Wilk Test Statistic	0.727
Shapiro Wilk Critical (0.95) Value	0.939	Approximate Shapiro Wilk P Value	0
Approximate Shapiro Wilk P Value	9.95E-05	Lilliefors Test Statistic	0.258
Lilliefors Test Statistic	0.226	Lilliefors Critical (0.95) Value	0.1
Lilliefors Critical (0.95) Value	0.142	Data not Normal at (0.05) Significance Level	
Data not Normal at (0.05) Significance Level			

Wilcoxon-Mann-Whitney Site vs Background Comparison Test for Full Data Sets without NDs

User Selected Options

Full Precision OFF
Confidence Coefficient 95%
Substantial Difference 0

Selected Null Hypothesis Site or AOC Mean/Median Less Than or Equal to Background Mean/Median (Form 1)

Alternative Hypothesis Site or AOC Mean/Median Greater Than Background Mean/Median

Area of Concern Data: Impact NH3-N (lab) Background Data: Upstream Control NH3-N (lab)

Raw Statistics

	Site		Background
Number of Valid Observations		78	39
Number of Distinct Observations		69	38
Minimum		0.07	0.0883
Maximum		1.182	1.122
Mean		0.286	0.427
Median		0.233	0.345
SD		0.186	0.245
SE of Mean		0.021	0.0392

Wilcoxon-Mann-Whitney (WMW) Test

HO: Mean/Median of Site or AOC <= Mean/Median of Background

 Site Rank Sum W-Stat
 3885

 WMW Test U-Stat
 -4.149

 WMW Critical Value (0.050)
 1.645

 P-Value
 1.67E-05

Conclusion with Alpha = 0.05

Do Not Reject HO, Conclude Site <= Background

P-Value < alpha (0.05)

1.3	x Baseline UIA (lab) (n	ng/L)
SR4	4/1/2014 Mid-Flood	0.003
SR4	7/1/2014 Mid-Flood	0.004
SR4	9/1/2014 Mid-Flood	0.006
SR4	11/1/2014 Mid-Flood	0.004
SR4	14/1/2014 Mid-Flood	0.005
SR4	16/1/2014 Mid-Flood	0.005
SR4	18/1/2014 Mid-Flood	0.002
SR4	21/1/2014 Mid-Flood	0.005
SR4	23/1/2014 Mid-Flood	0.010
SR4	25/1/2014 Mid-Flood	0.018
SR4	27/1/2014 Mid-Flood	0.012
SR4	29/1/2014 Mid-Flood	0.025
SR12	4/1/2014 Mid-Flood	0.003
SR12	7/1/2014 Mid-Flood	0.004
SR12	9/1/2014 Mid-Flood	0.006
SR12	11/1/2014 Mid-Flood	0.003
SR12	14/1/2014 Mid-Flood	0.004
SR12	16/1/2014 Mid-Flood	0.006
SR12	18/1/2014 Mid-Flood	0.003
SR12	21/1/2014 Mid-Flood	0.017
SR12	23/1/2014 Mid-Flood	0.010
SR12	25/1/2014 Mid-Flood	0.012
SR12	27/1/2014 Mid-Flood	0.016
SR12	29/1/2014 Mid-Flood	0.027

	Impac	t UIA (lab)		
SR4	24/8/2019 Mid-Flood	0.015 SR12	24/8/2019 Mid-Flood	0.015
SR4	27/8/2019 Mid-Flood	0.010 SR12		0.011
SR4	29/8/2019 Mid-Flood	0.006 SR12		0.008
SR4	31/8/2019 Mid-Flood	0.017 SR12	31/8/2019 Mid-Flood	0.016
SR4	3/9/2019 Mid-Flood	0.012 SR12		0.010
SR4	5/9/2019 Mid-Flood	0.012 SR12		0.018
SR4	7/9/2019 Mid-Flood	0.018 SR12	7/9/2019 Mid-Flood	0.023
SR4	10/9/2019 Mid-Flood	0.049 SR12		0.066
SR4	12/9/2019 Mid-Flood	0.024 SR12	12/9/2019 Mid-Flood	0.027
SR4	14/9/2019 Mid-Flood	0.034 SR12		0.040
SR4	17/9/2019 Mid-Flood	0.026 SR12	17/9/2019 Mid-Flood	0.028
SR4	19/9/2019 Mid-Flood	0.027 SR12		0.043
SR4	21/9/2019 Mid-Flood	0.031 SR12	21/9/2019 Mid-Flood	0.031
SR4	24/9/2019 Mid-Flood	0.033 SR12	24/9/2019 Mid-Flood	0.031
SR4	26/9/2019 Mid-Flood	0.041 SR12	26/9/2019 Mid-Flood	0.041
SR4	28/9/2019 Mid-Flood	0.030 SR12	28/9/2019 Mid-Flood	0.109
SR4	1/10/2019 Mid-Flood	0.036 SR12	1/10/2019 Mid-Flood	0.028
SR4	3/10/2019 Mid-Flood	0.021 SR12	3/10/2019 Mid-Flood	0.014
SR4	5/10/2019 Mid-Flood	0.014 SR12	5/10/2019 Mid-Flood	0.011
SR4	8/10/2019 Mid-Flood	0.008 SR12		0.012
SR4	10/10/2019 Mid-Flood	0.009 SR12	10/10/2019 Mid-Flood	0.010
SR4	12/10/2019 Mid-Flood	0.050 SR12		0.055
SR4	15/10/2019 Mid-Flood	0.013 SR12	15/10/2019 Mid-Flood	0.014
SR4	17/10/2019 Mid-Flood	0.011 SR12	17/10/2019 Mid-Flood	0.018
SR4	19/10/2019 Mid-Flood	0.012 SR12	19/10/2019 Mid-Flood	0.013
SR4	22/10/2019 Mid-Flood	0.009 SR12	22/10/2019 Mid-Flood	0.012
SR4	24/10/2019 Mid-Flood	0.010 SR12		0.011
SR4	26/10/2019 Mid-Flood	0.017 SR12		0.068
SR4	29/10/2019 Mid-Flood	0.011 SR12	29/10/2019 Mid-Flood	0.008
SR4	31/10/2019 Mid-Flood	0.013 SR12	31/10/2019 Mid-Flood	0.014
SR4	2/11/2019 Mid-Flood	0.006 SR12		0.006
SR4	5/11/2019 Mid-Flood	0.013 SR12	5/11/2019 Mid-Flood	0.011
SR4	7/11/2019 Mid-Flood	0.016 SR12	7/11/2019 Mid-Flood	0.013
SR4	9/11/2019 Mid-Flood	0.036 SR12	9/11/2019 Mid-Flood	0.041
SR4	12/11/2019 Mid-Flood	0.013 SR12	12/11/2019 Mid-Flood	0.011
SR4	14/11/2019 Mid-Flood	0.016 SR12		0.012
SR4	16/11/2019 Mid-Flood	0.018 SR12		0.019
SR4	19/11/2019 Mid-Flood	0.021 SR12		0.021
SR4	21/11/2019 Mid-Flood	0.032 SR12	21/11/2019 Mid-Flood	0.028

1.3 x Baseline UIA (lab)		Impact UIA (lab)	
Raw Statistics		Raw Statistics	
Number of Valid Observations	24	Number of Valid Observations	78
Number of Distinct Observations	24	Number of Distinct Observations	78
Minimum	0.00172	Minimum	0.00553
Maximum	0.0268	Maximum	0.109
Mean of Raw Data	0.00881	Mean of Raw Data	0.0225
Standard Deviation of Raw Data	0.0071	Standard Deviation of Raw Data	0.0169
Kstar	1.743	Kstar	2.5
Mean of Log Transformed Data	-5.008	Mean of Log Transformed Data	-3.998
Standard Deviation of Log Transformed Data	0.746	Standard Deviation of Log Transformed Data	0.619
Normal Distribution Test Results		Normal Distribution Test Results	
Correlation Coefficient R	0.903	Correlation Coefficient R	0.871
Shapiro Wilk Test Statistic	0.811	Approximate Shapiro Wilk Test Statistic	0.779
Shapiro Wilk Critical (0.95) Value	0.916	Approximate Shapiro Wilk P Value	1.11E-16
Approximate Shapiro Wilk P Value	2.73E-04	Lilliefors Test Statistic	0.186
Lilliefors Test Statistic	0.288	Lilliefors Critical (0.95) Value	0.1
Lilliefors Critical (0.95) Value	0.177	Data not Normal at (0.05) Significance Level	
Data not Normal at (0.05) Significance Level			

Wilcoxon-Mann-Whitney Site vs Background Comparison Test for Full Data Sets without NDs

User Selected Options

Full Precision OFF
Confidence Coefficient 95%
Substantial Difference 0

Selected Null Hypothesis Site or AOC Mean/Median Less Than or Equal to Background Mean/Median (Form 1)

Alternative Hypothesis Site or AOC Mean/Median Greater Than Background Mean/Median

Area of Concern Data: Impact UIA (lab) Background Data: Baseline UIA (lab) x 1.3

Raw Statistics

	Site	Background
Number of Valid Observations	78	24
Number of Distinct Observations	78	24
Minimum	0.00553	0.00172
Maximum	0.109	0.0268
Mean	0.0225	0.00881
Median	0.0161	0.00556
SD	0.0169	0.0071
SE of Mean	1.92E-03	1.45E-03

Wilcoxon-Mann-Whitney (WMW) Test

HO: Mean/Median of Site or AOC <= Mean/Median of Background

 Site Rank Sum W-Stat
 4647

 WMW Test U-Stat
 4.966

 WMW Critical Value (0.050)
 1.645

 P-Value
 3.42E-07

Conclusion with Alpha = 0.05

Reject HO, Conclude Site > Background

P-Value < alpha (0.05)

Upst	ream Control UIA (lab)	(mg/L)		Impac	et UIA (lab)	(mg/L)	
C2A	23/5/2019 Mid-Flood	0.021	SR4	24/8/2019 Mid-Flood	0.015 SR12	5/11/2019 Mid-Flood	0.011
C2A	25/5/2019 Mid-Flood	0.082	SR4	27/8/2019 Mid-Flood	0.010 SR12	7/11/2019 Mid-Flood	0.013
C2A	28/5/2019 Mid-Flood	0.012	SR4	29/8/2019 Mid-Flood	0.006 SR12	9/11/2019 Mid-Flood	0.041
C2A	30/5/2019 Mid-Flood	0.016	SR4	31/8/2019 Mid-Flood	0.017 SR12	12/11/2019 Mid-Flood	0.011
C2A	1/6/2019 Mid-Flood	0.025	SR4	3/9/2019 Mid-Flood	0.012 SR12	14/11/2019 Mid-Flood	0.012
C2A	4/6/2019 Mid-Flood	0.023	SR4	5/9/2019 Mid-Flood	0.012 SR12	16/11/2019 Mid-Flood	0.019
C2A	6/6/2019 Mid-Flood	0.037	SR4	7/9/2019 Mid-Flood	0.018 SR12	19/11/2019 Mid-Flood	0.021
C2A	8/6/2019 Mid-Flood	0.008	SR4	10/9/2019 Mid-Flood	0.049 SR12	21/11/2019 Mid-Flood	0.028
C2A	11/6/2019 Mid-Flood	0.017	SR4	12/9/2019 Mid-Flood	0.024 SR12	24/8/2019 Mid-Flood	0.015
C2A	13/6/2019 Mid-Flood	0.027	SR4	14/9/2019 Mid-Flood	0.034 SR12	27/8/2019 Mid-Flood	0.011
C2A	15/6/2019 Mid-Flood	0.020	SR4	17/9/2019 Mid-Flood	0.026 SR12	29/8/2019 Mid-Flood	0.008
C2A	18/6/2019 Mid-Flood	0.017	SR4	19/9/2019 Mid-Flood	0.027 SR12	31/8/2019 Mid-Flood	0.016
C2A	20/6/2019 Mid-Flood	0.026	SR4	21/9/2019 Mid-Flood	0.031 SR12	3/9/2019 Mid-Flood	0.010
C2A	22/6/2019 Mid-Flood	0.063	SR4	24/9/2019 Mid-Flood	0.033 SR12	5/9/2019 Mid-Flood	0.018
C2A	25/6/2019 Mid-Flood	0.014	SR4	26/9/2019 Mid-Flood	0.041 SR12	7/9/2019 Mid-Flood	0.023
C2A	27/6/2019 Mid-Flood	0.012	SR4	28/9/2019 Mid-Flood	0.030 SR12	10/9/2019 Mid-Flood	0.066
C2A	29/6/2019 Mid-Flood	0.009	SR4	1/10/2019 Mid-Flood	0.036 SR12	12/9/2019 Mid-Flood	0.027
C2A	2/7/2019 Mid-Flood	0.017	SR4	3/10/2019 Mid-Flood	0.021 SR12	14/9/2019 Mid-Flood	0.040
C2A	4/7/2019 Mid-Flood	0.018	SR4	5/10/2019 Mid-Flood	0.014 SR12	17/9/2019 Mid-Flood	0.028
C2A	6/7/2019 Mid-Flood	0.014	SR4	8/10/2019 Mid-Flood	0.008 SR12	19/9/2019 Mid-Flood	0.043
C2A	9/7/2019 Mid-Flood	0.014	SR4	10/10/2019 Mid-Flood	0.009 SR12	21/9/2019 Mid-Flood	0.031
C2A	11/7/2019 Mid-Flood	0.014	SR4	12/10/2019 Mid-Flood	0.050 SR12	24/9/2019 Mid-Flood	0.031
C2A	13/7/2019 Mid-Flood	0.015	SR4	15/10/2019 Mid-Flood	0.013 SR12	26/9/2019 Mid-Flood	0.041
C2A	16/7/2019 Mid-Flood	0.015	SR4	17/10/2019 Mid-Flood	0.011 SR12	28/9/2019 Mid-Flood	0.109
C2A	18/7/2019 Mid-Flood	0.027	SR4	19/10/2019 Mid-Flood	0.012 SR12	1/10/2019 Mid-Flood	0.028
C2A	20/7/2019 Mid-Flood	0.062	SR4	22/10/2019 Mid-Flood	0.009 SR12	3/10/2019 Mid-Flood	0.014
C2A	23/7/2019 Mid-Flood	0.035	SR4	24/10/2019 Mid-Flood	0.010 SR12	5/10/2019 Mid-Flood	0.011
C2A	25/7/2019 Mid-Flood	0.016	SR4	26/10/2019 Mid-Flood	0.017 SR12	8/10/2019 Mid-Flood	0.012
C2A	27/7/2019 Mid-Flood	0.023	SR4	29/10/2019 Mid-Flood	0.011 SR12	10/10/2019 Mid-Flood	0.010
C2A	30/7/2019 Mid-Flood	0.015	SR4	31/10/2019 Mid-Flood	0.013 SR12	12/10/2019 Mid-Flood	0.055
C2A	3/8/2019 Mid-Flood	0.029	SR4	2/11/2019 Mid-Flood	0.006 SR12	15/10/2019 Mid-Flood	0.014
C2A	6/8/2019 Mid-Flood	0.034	SR4	5/11/2019 Mid-Flood	0.013 SR12	17/10/2019 Mid-Flood	0.018
C2A	8/8/2019 Mid-Flood	0.019	SR4	7/11/2019 Mid-Flood	0.016 SR12	19/10/2019 Mid-Flood	0.013
C2A	10/8/2019 Mid-Flood	0.039	SR4	9/11/2019 Mid-Flood	0.036 SR12	22/10/2019 Mid-Flood	0.012
C2A	13/8/2019 Mid-Flood	0.022	SR4	12/11/2019 Mid-Flood	0.013 SR12	24/10/2019 Mid-Flood	0.011
C2A	15/8/2019 Mid-Flood	0.017	SR4	14/11/2019 Mid-Flood	0.016 SR12		0.068
C2A	17/8/2019 Mid-Flood	0.038	SR4	16/11/2019 Mid-Flood	0.018 SR12	29/10/2019 Mid-Flood	0.008
C2A	20/8/2019 Mid-Flood	0.028	SR4	19/11/2019 Mid-Flood	0.021 SR12		0.014
C2A	22/8/2019 Mid-Flood	0.063	SR4	21/11/2019 Mid-Flood	0.032 SR12	2/11/2019 Mid-Flood	0.006

Upstream Control UIA (lab)		Impact UIA (lab)	
Raw Statistics		Raw Statistics	
Number of Valid Observations	39	Number of Valid Observations	78
Number of Distinct Observations	26	Number of Distinct Observations	78
Minimum	0.008	Minimum	0.00553
Maximum	0.082	Maximum	0.109
Mean of Raw Data	0.0257	Mean of Raw Data	0.0225
Standard Deviation of Raw Data	0.0166	Standard Deviation of Raw Data	0.0169
Kstar	3.154	Kstar	2.5
Mean of Log Transformed Data	-3.815	Mean of Log Transformed Data	-3.998
Standard Deviation of Log Transformed Data	0.537	Standard Deviation of Log Transformed Data	0.619
Normal Distribution Test Results		Normal Distribution Test Results	
Correlation Coefficient R	0.883	Correlation Coefficient R	0.871
Shapiro Wilk Test Statistic	0.785	Approximate Shapiro Wilk Test Statistic	0.779
Shapiro Wilk Critical (0.95) Value	0.939	Approximate Shapiro Wilk P Value	1.11E-16
Approximate Shapiro Wilk P Value	4.07E-07	Lilliefors Test Statistic	0.186
Lilliefors Test Statistic	0.191	Lilliefors Critical (0.95) Value	0.1
Lilliefors Critical (0.95) Value	0.14	Data not Normal at (0.05) Significance Level	
Data not Normal at (0.05) Significance Level			

Wilcoxon-Mann-Whitney Site vs Background Comparison Test for Full Data Sets without NDs User Selected Options Full Precision OFF Confidence Coefficient 95% Substantial Difference Alternative Hypothesis Site Mean/Median > Background Mean/Median Area of Concern Data: Impact UIA (lab) Background Data: Upstream Control UIA (lab) Raw Statistics Background Site Number of Valid Observations 78 39 Number of Distinct Observations 78 26 Minimum 0.00553 0.008 Maximum 0.109 0.082 Mean 0.0225 0.0257 0.0161 Median 0.02 0.0169 0.0166 SE of Mean 1.92E-03 0.00265 Wilcoxon-Mann-Whitney (WMW) Test HO: Mean/Median of Site or AOC >= Mean/Median of Background Site Rank Sum W-Stat 4291 WMW Test U-Stat -1.801 WMW Critical Value (0.050) 1.645 P-Value 9.64E-01 Conclusion with Alpha = 0.05 Do Not Reject HO, Conclude Site <= Background P-Value < alpha (0.05)

Cluster 1 E. coli 1.3 x Baseline vs Impact

1.3 x	Baseline <i>E. coli</i> (cfu/ 10	0mL)
SR4	4/1/2014 Mid-Flood	374
SR4	7/1/2014 Mid-Flood	302
SR4	9/1/2014 Mid-Flood	448
SR4	11/1/2014 Mid-Flood	96
SR4	14/1/2014 Mid-Flood	272
SR4	16/1/2014 Mid-Flood	419
SR4	18/1/2014 Mid-Flood	322
SR4	21/1/2014 Mid-Flood	325
SR4	23/1/2014 Mid-Flood	178
SR4	25/1/2014 Mid-Flood	52
SR4	27/1/2014 Mid-Flood	30
SR4	29/1/2014 Mid-Flood	47
SR12	4/1/2014 Mid-Flood	1488
SR12	7/1/2014 Mid-Flood	951
SR12	9/1/2014 Mid-Flood	619
SR12	11/1/2014 Mid-Flood	264
SR12	14/1/2014 Mid-Flood	319
SR12	16/1/2014 Mid-Flood	422
SR12	18/1/2014 Mid-Flood	757
SR12	21/1/2014 Mid-Flood	329
SR12	23/1/2014 Mid-Flood	340
SR12	25/1/2014 Mid-Flood	206
SR12	27/1/2014 Mid-Flood	312
SR12	29/1/2014 Mid-Flood	653

	Imp	pact <i>E. co</i>	oli (cfu/ 10	00mL)	
SR4	24/8/2019 Mid-Flood	526	SR12	24/8/2019 Mid-Flood	1211
SR4	27/8/2019 Mid-Flood	1924	SR12	27/8/2019 Mid-Flood	5300
SR4	31/8/2019 Mid-Flood	6502	SR12	31/8/2019 Mid-Flood	3787
SR4	3/9/2019 Mid-Flood	892	SR12	3/9/2019 Mid-Flood	627
SR4	5/9/2019 Mid-Flood	527	SR12	5/9/2019 Mid-Flood	812
SR4	7/9/2019 Mid-Flood	458	SR12	7/9/2019 Mid-Flood	1396
SR4	10/9/2019 Mid-Flood	564	SR12	10/9/2019 Mid-Flood	525
SR4	12/9/2019 Mid-Flood	564	SR12	12/9/2019 Mid-Flood	525
SR4	14/9/2019 Mid-Flood	506	SR12	14/9/2019 Mid-Flood	379
SR4	17/9/2019 Mid-Flood	237	SR12	17/9/2019 Mid-Flood	1762
SR4	19/9/2019 Mid-Flood	1274	SR12	19/9/2019 Mid-Flood	14
SR4	21/9/2019 Mid-Flood	1938	SR12	21/9/2019 Mid-Flood	2133
SR4	24/9/2019 Mid-Flood	1245	SR12	24/9/2019 Mid-Flood	1384
SR4	26/9/2019 Mid-Flood	503	SR12	26/9/2019 Mid-Flood	580
SR4	28/9/2019 Mid-Flood	264	SR12	28/9/2019 Mid-Flood	18334
SR4	1/10/2019 Mid-Flood	1791	SR12	1/10/2019 Mid-Flood	3928
SR4	3/10/2019 Mid-Flood	293	SR12	3/10/2019 Mid-Flood	29
SR4	5/10/2019 Mid-Flood	248	SR12	5/10/2019 Mid-Flood	283
SR4	8/10/2019 Mid-Flood	19	SR12	8/10/2019 Mid-Flood	151
SR4	10/10/2019 Mid-Flood	480	SR12	10/10/2019 Mid-Flood	19
SR4	12/10/2019 Mid-Flood	2863	SR12	12/10/2019 Mid-Flood	4252
SR4	15/10/2019 Mid-Flood	2616	SR12	15/10/2019 Mid-Flood	2749
SR4	17/10/2019 Mid-Flood	616	SR12	17/10/2019 Mid-Flood	497
SR4	19/10/2019 Mid-Flood	551	SR12	19/10/2019 Mid-Flood	533
SR4	22/10/2019 Mid-Flood	9	SR12	22/10/2019 Mid-Flood	131
SR4	24/10/2019 Mid-Flood	282	SR12	24/10/2019 Mid-Flood	682
SR4	26/10/2019 Mid-Flood	587	SR12	26/10/2019 Mid-Flood	7201
SR4	29/10/2019 Mid-Flood	132	SR12	29/10/2019 Mid-Flood	380
SR4	31/10/2019 Mid-Flood	2085	SR12	31/10/2019 Mid-Flood	783
SR4	2/11/2019 Mid-Flood	182	SR12	2/11/2019 Mid-Flood	559
SR4	5/11/2019 Mid-Flood	483	SR12	5/11/2019 Mid-Flood	176
SR4	7/11/2019 Mid-Flood	140	SR12	7/11/2019 Mid-Flood	55
SR4	9/11/2019 Mid-Flood	1	SR12	9/11/2019 Mid-Flood	182
SR4	12/11/2019 Mid-Flood	2081	SR12	12/11/2019 Mid-Flood	2435
SR4	14/11/2019 Mid-Flood	1640	SR12	14/11/2019 Mid-Flood	1900
SR4	16/11/2019 Mid-Flood	1584	SR12	16/11/2019 Mid-Flood	1435
SR4	19/11/2019 Mid-Flood	753	SR12	19/11/2019 Mid-Flood	1309
SR4	21/11/2019 Mid-Flood	2087	SR12	21/11/2019 Mid-Flood	3584

Cluster 1 E. coli 1.3 x Baseline vs Impact

1.3 x Baseline <i>E. coli</i>		Impact <i>E. coli</i>	
Raw Statistics		Raw Statistics	
Number of Valid Observations	24	Number of Valid Observations	76
Number of Distinct Observations	24	Number of Distinct Observations	74
Minimum	30.18	Minimum	1
Maximum	1488	Maximum	18334
Geometric Mean of Raw Data	286	Geometric Mean of Raw Data	594
Standard Deviation of Raw Data	321.1	Standard Deviation of Raw Data	2439
Kstar	1.48	Kstar	0.655
Mean of Log Transformed Data	5.653	Mean of Log Transformed Data	6.387
Standard Deviation of Log Transformed Data	0.929	Standard Deviation of Log Transformed Data	1.633
Normal Distribution Test Results		Normal Distribution Test Results	
Correlation Coefficient R	0.896	Correlation Coefficient R	0.711
Shapiro Wilk Test Statistic	0.818	Approximate Shapiro Wilk Test Statistic	0.548
Shapiro Wilk Critical (0.95) Value	0.916	Approximate Shapiro Wilk P Value	0
Approximate Shapiro Wilk P Value	3.79E-04	Lilliefors Test Statistic	0.274
Lilliefors Test Statistic	0.228	Lilliefors Critical (0.95) Value	0.102
Lilliefors Critical (0.95) Value	0.181	Data not Normal at (0.05) Significance Level	
Data not Normal at (0.05) Significance Level			

User Selected Options Full Precision OFF Confidence Coefficient 95% Substantial Difference Selected Null Hypothesis Site or AOC Mean/Median Less Than or Equal to Background Mean/Median (Form 1) Alternative Hypothesis Site or AOC Mean/Median Greater Than Background Mean/Median Area of Concern Data: Impact *E. coli* Background Data: 1.3 x Baseline *E. coli* Raw Statistics Site Background Number of Valid Observations 76 24 Number of Distinct Observations 74 24 Minimum 1 30.18 Maximum 18334 1488 Geometric Mean 594 286 Median 583.2 323.8 2439 321.1 SE of Mean 65.54 279.7

Wilcoxon-Mann-Whitney Site vs Background Comparison Test for Full Data Sets without NDs

Wilcoxon-Mann-Whitney (WMW) Test

HO: Mean/Median of Site or AOC <= Mean/Median of Background

 Site Rank Sum W-Stat
 4217

 WMW Test U-Stat
 3.055

 WMW Critical Value (0.050)
 1.645

 P-Value
 1.13E-03

Conclusion with Alpha = 0.05

Reject HO, Conclude Site > Background

P-Value < alpha (0.05)

Cluster 1 E. coli 1.3 x Baseline vs Impact

Upst	ream Control E. coli (cfu/	100mL)		Im	pact <i>E. c</i> o	oli (cfu/ 10	00mL)	
C2A	24/8/2019 Mid-Flood	4347	SR4	24/8/2019 Mid-Flood	526	SR12	24/8/2019 Mid-Flood	1211
C2A	27/8/2019 Mid-Flood	1772	SR4	27/8/2019 Mid-Flood	1924	SR12	27/8/2019 Mid-Flood	5300
C2A	31/8/2019 Mid-Flood	8854	SR4	31/8/2019 Mid-Flood	6502	SR12	31/8/2019 Mid-Flood	3787
C2A	3/9/2019 Mid-Flood	127	SR4	3/9/2019 Mid-Flood	892	SR12	3/9/2019 Mid-Flood	627
C2A	5/9/2019 Mid-Flood	545	SR4	5/9/2019 Mid-Flood	527	SR12	5/9/2019 Mid-Flood	812
C2A	7/9/2019 Mid-Flood	2287	SR4	7/9/2019 Mid-Flood	458	SR12	7/9/2019 Mid-Flood	1396
C2A	10/9/2019 Mid-Flood	124	SR4	10/9/2019 Mid-Flood	564	SR12	10/9/2019 Mid-Flood	525
C2A	12/9/2019 Mid-Flood	124	SR4	12/9/2019 Mid-Flood	564	SR12	12/9/2019 Mid-Flood	525
C2A	14/9/2019 Mid-Flood	4138	SR4	14/9/2019 Mid-Flood	506	SR12	14/9/2019 Mid-Flood	379
C2A	17/9/2019 Mid-Flood	830	SR4	17/9/2019 Mid-Flood	237	SR12	17/9/2019 Mid-Flood	1762
C2A	19/9/2019 Mid-Flood	162	SR4	19/9/2019 Mid-Flood	1274	SR12	19/9/2019 Mid-Flood	14
C2A	21/9/2019 Mid-Flood	5106	SR4	21/9/2019 Mid-Flood	1938	SR12	21/9/2019 Mid-Flood	2133
C2A	24/9/2019 Mid-Flood	28	SR4	24/9/2019 Mid-Flood	1245	SR12	24/9/2019 Mid-Flood	1384
C2A	26/9/2019 Mid-Flood	225	SR4	26/9/2019 Mid-Flood	503	SR12	26/9/2019 Mid-Flood	580
C2A	28/9/2019 Mid-Flood	51311	SR4	28/9/2019 Mid-Flood	264	SR12	28/9/2019 Mid-Flood	18334
C2A	1/10/2019 Mid-Flood	6662	SR4	1/10/2019 Mid-Flood	1791	SR12	1/10/2019 Mid-Flood	3928
C2A	3/10/2019 Mid-Flood	1394	SR4	3/10/2019 Mid-Flood	293	SR12	3/10/2019 Mid-Flood	29
C2A	5/10/2019 Mid-Flood	247	SR4	5/10/2019 Mid-Flood	248	SR12	5/10/2019 Mid-Flood	283
C2A	8/10/2019 Mid-Flood	197	SR4	8/10/2019 Mid-Flood	19	SR12	8/10/2019 Mid-Flood	151
C2A	10/10/2019 Mid-Flood	162	SR4	10/10/2019 Mid-Flood	480	SR12	10/10/2019 Mid-Flood	19
C2A	12/10/2019 Mid-Flood	3430	SR4	12/10/2019 Mid-Flood	2863	SR12	12/10/2019 Mid-Flood	4252
C2A	15/10/2019 Mid-Flood	1195	SR4	15/10/2019 Mid-Flood	2616	SR12	15/10/2019 Mid-Flood	2749
C2A	17/10/2019 Mid-Flood	609	SR4	17/10/2019 Mid-Flood	616	SR12	17/10/2019 Mid-Flood	497
C2A	19/10/2019 Mid-Flood	708	SR4	19/10/2019 Mid-Flood	551	SR12	19/10/2019 Mid-Flood	533
C2A	22/10/2019 Mid-Flood	126	SR4	22/10/2019 Mid-Flood	9	SR12	22/10/2019 Mid-Flood	131
C2A	24/9/2019 Mid-Flood	28	SR4	24/10/2019 Mid-Flood	282	SR12	24/10/2019 Mid-Flood	682
C2A	26/9/2019 Mid-Flood	225	SR4	26/10/2019 Mid-Flood	587	SR12	26/10/2019 Mid-Flood	7201
C2A	28/9/2019 Mid-Flood	51311	SR4	29/10/2019 Mid-Flood	132	SR12	29/10/2019 Mid-Flood	380
C2A	1/10/2019 Mid-Flood	6662	SR4	31/10/2019 Mid-Flood	2085	SR12	31/10/2019 Mid-Flood	783
C2A	3/10/2019 Mid-Flood	1394	SR4	2/11/2019 Mid-Flood	182	SR12	2/11/2019 Mid-Flood	559
C2A	5/10/2019 Mid-Flood	247	SR4	5/11/2019 Mid-Flood	483	SR12	5/11/2019 Mid-Flood	176
C2A	8/10/2019 Mid-Flood	197	SR4	7/11/2019 Mid-Flood	140	SR12	7/11/2019 Mid-Flood	55
C2A	10/10/2019 Mid-Flood	162	SR4	9/11/2019 Mid-Flood	1	SR12	9/11/2019 Mid-Flood	182
C2A	12/10/2019 Mid-Flood	3430	SR4	12/11/2019 Mid-Flood	2081	SR12	12/11/2019 Mid-Flood	2435
C2A	12/10/2019 Mid-Flood	3430	SR4	14/11/2019 Mid-Flood	1640	SR12	14/11/2019 Mid-Flood	1900
C2A	15/10/2019 Mid-Flood	1195	SR4	16/11/2019 Mid-Flood	1584	SR12	16/11/2019 Mid-Flood	1435
C2A	17/10/2019 Mid-Flood	609	SR4	19/11/2019 Mid-Flood	753	SR12	19/11/2019 Mid-Flood	1309
C2A	19/10/2019 Mid-Flood	708	SR4	21/11/2019 Mid-Flood	2087	SR12	21/11/2019 Mid-Flood	3584

Cluster 1 E. coli 1.3 x Baseline vs Impact

Upstream Control E. coli		Impact <i>E. coli</i>	
Raw Statistics		Raw Statistics	
Number of Valid Observations	38	Number of Valid Observations	76
Number of Distinct Observations	25	Number of Distinct Observations	72
Minimum	28	Minimum	1
Maximum	51311	Maximum	18334
Geometric Mean of Raw Data	247	Geometric Mean of Raw Data	594
Standard Deviation of Raw Data	11435	Standard Deviation of Raw Data	2439
Kstar	0.381	Kstar	0.655
Mean of Log Transformed Data	6.699	Mean of Log Transformed Data	6.387
Standard Deviation of Log Transformed Data	1.812	Standard Deviation of Log Transformed Data	1.632
Normal Distribution Test Results		Normal Distribution Test Results	
Correlation Coefficient R	0.602	Correlation Coefficient R	0.711
Shapiro Wilk Test Statistic	0.383	Approximate Shapiro Wilk Test Statistic	0.548
Shapiro Wilk Critical (0.95) Value	0.938	Approximate Shapiro Wilk P Value	0
Approximate Shapiro Wilk P Value	8.88E-16	Lilliefors Test Statistic	0.274
Lilliefors Test Statistic	0.354	Lilliefors Critical (0.95) Value	0.102
Lilliefors Critical (0.95) Value	0.142	Data not Normal at (0.05) Significance Level	
Data not Normal at (0.05) Significance Level			

,	Wilcoxon-Mann-Whitne	y Site vs l	Background Comparison Test for Full Data Sets without NDs					
User Selected Options								
	OFF							
Confidence Coefficient	95%							
Substantial Difference	0							
		ite Mean/Median <= Background Mean/Median (Form 1)						
Alternative Hypothesis	Site Mean/Median > E	Background l	Mean/Median					
Area of Concern Data: Impac	t E. coli							
Background Data: Upstream Co	ontrol <i>E. coli</i>							
Raw Statistics								
		ckground						
Number of Valid Observations		38						
Number of Distinct Observat:		25						
Minimum	1	28						
Maximum	18334	51311						
Geometric Mean	594	247						
Median	583.5	708.3						
SD	2439	11435						
SE of Mean	279.7	1855						
Wilcoxon-Mann-Whitney (WMW)	Test							
HO: Mean/Median of Site or	AOC = Mean/Median o	f Backgroun	nd					
Site Rank Sum W-Stat	4309							
Standardized WMW U-Stat	-0.37							
Mean (U)	1444							
SD(U) - Adj ties	1.66E+02							
Approximate U-Stat Critical	Value 1.645							
P-Value (Adjusted for Ties)	0.644							
Conclusion with Alpha = 0.03	5							
Do Not Reject HO, Conclu	ıde Site <= Backgrou	nd						
P-Value >= alpha (0.05)								

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0389A

Appendix I

Weather Conditions and Red Tide Occurrences for the Reporting Period

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0389A

Date	A	ir Temperatu	Mean Relative Humidity	Total Rainfall (mm)	
	Maximum (deg. C)	Mean (deg. C)	Minimum (deg. C)	(%)	,
		Augus	st 2019		
23	31.4	29.4	28.2	80	0.7
24	33.9	30.9	27.7	75	0
25	32.6	27.2	25.1	89	88.4
26	28.7	25.7	22.9	95	178.3
27	31.4	28.6	26.9	88	2.9
28	33.8	29.9	27.2	77	0
29	30.7	29	27.8	83	5.9
30	30.1	27.7	25	86	8.5
31	30.3	26.9	25	91	43.7
		Septem	ber 2019		
1	31	28.2	26.2	82	8.5
2	28.1	26.9	25.2	90	38.4
3	30.9	28.4	26.2	80	12.9
4	28.3	26.8	25.5	91	62.2
5	29.3	27.2	25.4	88	31.8
6	32.4	28.9	26.8	79	0.2
7	33.3	29.8	27.5	79	0.4
8	33	30	28	80	0.4
9	33.3	30	28.3	78	0
10	33.3	30.1	28.2	76	0
11	33.3	30.2	28.4	73	Trace
12	33.5	30.3	28.3	73	0
13	33	30.1	28.7	77	Trace
14	32.3	29.8	28.4	78	Trace
15	32.2	29.2	25.9	76	11
16	32.3	29.3	26.3	76	4.3
17	31.8	29.2	27.9	76	2.1
18	32	28.8	25.8	79	18
19	32.4	28	24.9	74	8.7
20	32.6	29	26.2	52	0
21	32.5	29.2	26.5	42	0
22	31.3	28.3	25.9	40	0

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0394/13/ED/0389A

Date	A	ir Temperatu	Mean Relative Humidity	Total Rainfall (mm)	
	Maximum (deg. C)	Mean (deg. C)	Minimum (deg. C)	(%)	
			ber 2019		
23	30.7	27.7	25.4	57	0
24	30.3	27.5	26.3	70	0
25	30.8	27.3	25.7	71	Trace
26	30.8	27.5	25.5	71	0
27	30.6	27.6	25.7	72	Trace
28	32.2	28.2	25.9	71	0
29	31.7	28.7	26.6	75	0
30	33.4	30.1	27.2	64	0
	•	Octob	er 2019		
1	33.2	30.3	28.4	59	0
2	32.1	29.5	27.9	71	0
3	31.8	29	27.4	67	0
4	31.3	28.6	26.9	70	0
5	32.3	29.1	26.8	69	0
6	29.1	26.3	23.1	81	46.8
7	28.3	26.3	23.2	86	17.9
8	30.4	27.7	25.3	79	4.9
9	29.8	27.8	26.7	75	Trace
10	30.3	27.9	26.6	76	0
11	31.1	28.5	26.3	75	0
12	31.5	28.6	27.4	78	0.3
13	30.8	27.2	24.5	84	13.6
14	28.9	25.8	24.2	86	52.1
15	29.7	26	23.1	74	10.4
16	28.9	25.5	23.2	67	0
17	29.7	26.2	23.9	70	0
18	29	26.5	24.7	70	Trace
19	29.6	26.2	24.2	72	0
20	28.3	25.4	23.4	76	3.5
21	28.8	25.3	23.5	72	0
22	28	25	23.4	68	0

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0394/13/ED/0389A

Date	A	ir Temperatu	Mean Relative Humidity	Total Rainfall (mm)	
	Maximum	Mean	Minimum	(%)	
	(deg. C)	(deg. C)	(deg. C)		
		Octob	er 2019		
23	28.7	25.5	23.5	71	0
24	29.5	26.2	24.5	71	0
25	28.3	25.8	24.3	75	0
26	28.3	25.9	24.7	75	Trace
27	29.0	25.7	24.0	76	Trace
28	29.0	25.2	22.4	77	Trace
29	24.7	22.7	20.3	65	0
30	26.4	24.0	21.5	60	0
31	27.2	24.8	23.2	68	0
	-	Novem	per 2019	-	
1	29.3	25.7	24.0	73	0
2	28.2	25.3	23.9	74	0
3	28.8	25.7	23.8	74	0
4	28.6	25.0	22.8	56	0
5	27.4	23.9	21.6	56	0
6	26.5	23.8	22.3	69	0
7	26.9	23.8	21.4	56	0
8	26.8	23.3	20.8	51	0
9	26.0	22.7	20.4	62	0
10	26.7	22.7	20.6	70	0
11	26.8	23.1	20.9	72	0
12	25.2	23.3	22.3	78	0
13	26.8	24.1	22.3	75	0
14	25.9	23.0	21.1	64	0
15	25.7	22.8	21.5	70	0
16	25.6	22.5	21.5	76	0
17	26.5	23.4	21.4	79	0
18	28.4	24.3	20.6	69	0
19	22.7	20.5	17.9	63	0
20	24.0	21.1	19.4	66	0
21	25.2	21.7	19.2	66	Trace
22	26.3	22.3	19.6	66	0

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0389A Rainstorm Warning Signals

	Start Time		Enc	Duration	
Color	hh mm	dd/mon/yyyy	hh mm	dd/mon/yyyy	hh mm
Amber	0:50	25-Aug-19	2:40	25-Aug-19	01 50
Amber	11:30	25-Aug-19	14:45	25-Aug-19	03 15
Amber	23:55	25-Aug-19	0:40	26-Aug-19	00 45
Red	0:40	26-Aug-19	3:25	26-Aug-19	02 45
Amber	3:25	26-Aug-19	5:00	26-Aug-19	01 35
Amber	12:25	2-Sep-19	14:00	2-Sep-19	01 35
Amber	23:00	6-Oct-19	0:30	7-Oct-19	01 30
Amber	3:15	14-Oct-19	10:00	14-Oct-19	06 45

Source: Hong Kong Observatory

Thunderstorm Warning

Start Time		End	Duration	
hh mm	dd/mon/yyyy	hh mm	dd/mon/yyyy	hh mm
7:00	23-Aug-19	14:30	23-Aug-19	07 30
15:20	23-Aug-19	17:00	23-Aug-19	01 40
23:55	24-Aug-19	2:45	25-Aug-19	02 50
10:55	25-Aug-19	15:00	25-Aug-19	04 05
21:40	25-Aug-19	15:30	26-Aug-19	17 50
0:50	27-Aug-19	2:00	27-Aug-19	01 10
3:15	29-Aug-19	7:30	29-Aug-19	04 15
10:55	29-Aug-19	16:30	29-Aug-19	05 35
5:35	30-Aug-19	10:30	30-Aug-19	04 55
1:30	31-Aug-19	6:00	31-Aug-19	04 30
14:55	31-Aug-19	19:45	31-Aug-19	04 50
9:45	1-Sep-19	10:45	1-Sep-19	01 00
13:45	1-Sep-19	21:00	1-Sep-19	07 15
23:20	1-Sep-19	3:00	2-Sep-19	03 40
4:35	2-Sep-19	19:30	2-Sep-19	14 55
20:25	2-Sep-19	22:30	2-Sep-19	02 05
5:47	3-Sep-19	7:15	3-Sep-19	01 28
22:55	3-Sep-19	19:00	4-Sep-19	20 05

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report No.: 0394/13/ED/0389A

Start Time		End	Duration	
hh mm	dd/mon/yyyy	hh mm	dd/mon/yyyy	hh mm
2:15	5-Sep-19	7:00	5-Sep-19	04 45
15:35	7-Sep-19	17:20	7-Sep-19	01 45
13:30	8-Sep-19	15:00	8-Sep-19	01 30
13:50	9-Sep-19	15:00	9-Sep-19	01 10
14:05	14-Sep-19	15:45	14-Sep-19	01 40
17:55	14-Sep-19	19:00	14-Sep-19	01 05
21:10	14-Sep-19	23:00	14-Sep-19	01 50
5:25	15-Sep-19	9:30	15-Sep-19	04 05
1:15	16-Sep-19	7:00	16-Sep-19	05 45
17:25	16-Sep-19	18:45	16-Sep-19	01 20
2:45	17-Sep-19	3:45	17-Sep-19	01 00
13:05	17-Sep-19	20:00	17-Sep-19	06 55
20:30	18-Sep-19	3:00	19-Sep-19	06 30

Source: Hong Kong Observatory

Thunderstorm Warning

Start Time		End	Duration	
hh mm	dd/mon/yyyy	hh mm	dd/mon/yyyy	hh mm
0:20	6-Oct-19	4:30	6-Oct-19	04 10
13:30	6-Oct-19	17:00	6-Oct-19	03 30
20:15	6-Oct-19	1:20	7-Oct-19	05 05
2:35	7-Oct-19	9:30	7-Oct-19	06 55
12:55	12-Oct-19	17:15	12-Oct-19	04 20
2:25	13-Oct-19	7:30	13-Oct-19	05 05
18:00	13-Oct-19	11:30	14-Oct-19	17 30

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233
Fax : +852 2450 6138
E-mail : matlab@fugro.com
Website : www.fugro.com

Report No.: 0394/13/ED/0389A

Tropical Cyclone Warning Signals

			Start Time		End Time		Duration
Intensity	Name	Signal	hh mm	dd/mon/yyyy	hh mm	dd/mon/yyyy	hh mm
Severe Tropical Storm	BAILU	1	14:40	24-Aug-19	19:20	25-Aug-19	28 40
Tropical Storm	PODUL	1	14:40	28-Aug-19	12:20	29-Aug-19	21 40
Tropical Depression	KAJIKI	1	8:40	1-Sep-19	16:20	1-Sep-19	07 40
Tropical Depression	KAJIKI	3	16:20	1-Sep-19	10:40	2-Sep-19	18 20
Tropical Depression	KAJIKI	1	10:40	2-Sep-19	9:20	3-Sep-19	22 40

Source: Hong Kong Observatory

Strong Monsoon Signals

	Start Time		E	Duration	
Direction	hh mm	dd/mon/yyyy	hh mm dd/mon/yyyy		hh mm
North	9:05	21-Sep-19	12:00	21-Sep-19	02 55
North	5:30	22-Sep-19	13:30	22-Sep-19	08 00
East	14:00	6-Oct-19	14:15	7-Oct-19	24 15
East	4:10	15-Oct-19	11:40	16-Oct-19	31 30