

Maeda Corporation

MTRCL Contract C3840-13C Tsim Sha Tsui Station Carnarvon Road Subway and Entrances Modification Works

Monthly EM&A Report (August 2015)

AECOM 8/F Grand Central Plaza, Tower 2 138 Shatin Rural Committee Road

Shatin, Hong Kong 香港新界沙田鄉事會路138號 新城市中央廣場第2座8樓

www.aecom.com

15 September 2015

By Email and Post

MTR Corporation Limited Fo Tan Railway House No. 9, Lok King Street, Fo Tan Shatin, N.T., Hong Kong Our Ref.: 40032976/445231

+852 3922 9000 tol.

+852 3922 9797 fax

Attention: Mr Kenneth Chow / Environmental Engineer II

Dear Sir

Consultancy Agreement A130-13
Independent Environmental Checker for CRS and LTS
CRS - Verification for 18th Monthly Environmental Monitoring and Audit (EM&A) Report (August 2015) (Report No.: EB001340R00251)

We refer to the 18th Monthly EM&A Report (August 2015) received under cover of the email from the Environmental Team, Hyder Consulting Limited (HCL), dated on 9 September 2015.

Further to our comments provided on 11 September and subsequent revision of the Report by HCL on 14 September 2015, we have no further comment and have verified the captioned report (Report No.: EB001340R00251).

Should you have any queries, please feel free to contact the undersigned at 3922 9529 or our Dr. Alex Cheung at 3922 9397.

Yours faithfully

AECOM Consulting Services Ltd

Rodney Ip

Independent Environmental Checker

ACWH/wwsc

cc Hyder Consulting Limited Maeda Corporation (Attn.: Mr. F. N. Wong) (Attn.: Ms. Cecilia Lee) via email via email

Hyder Consulting Limited

Company Number 126012

47th Floor, Hopewell Centre 183 Queen's Road East Wanchai Hong Kong

Tel: +852 2911 2233 Fax: +852 2805 5028

hyder.hk@hyderconsulting.com www.hyderconsulting.com

Date

Maeda Corporation

MTRCL Contract C3840-13C Tsim Sha Tsui Station Carnarvon Road Subway and Entrances Modification Works

Monthly EM&A Report (August 2015)

Author Tung Chi Sun

Checker Fu Nam Wong

Approver John Berry

Report No EB001340R00251

This **Monthly EM&A Report (August 2015)** is prepared for Maeda Corporation in accordance with the terms and conditions of appointment dated 30 October 2013. Hyder Consulting Limited (Company Number 126012) cannot accept any responsibility for any use of or reliance on the contents of this report by any third party.

Hyder

14 September 2015

CONTENTS

EXE	CUTIV	/E SUMMARY	ES 1
1	INTE	RODUCTION	1
	1.1	The Reporting Period	1
	1.2	Project Background	1
	1.3	Environmental Status	1
	1.4	Construction Activities	2
2	EM8	A REQUIREMENTS	3
	2.1	Air Quality	3
	2.2	Construction Noise	7
3	MON	NITORING RESULTS	10
	3.1	Air Quality	10
	3.2	Construction Noise	10
	3.3	Conclusions and Recommendations	11
4	ENV	IRONMENTAL AUDIT	12
	4.1	Site Inspection	12
	4.2	Compliance with Legal/Contractual Requirement	13
	4.3	Environmental Complaints	13
	4.4	Notification of Summons/Successful Prosecutions	13
5	CON	ISTRUCTION WASTE	14
	5.1	Waste Management	14
	5.2	Waste Management Status and Record	14
6	FUT	URE ENVIRONMENTAL ISSUES	15
	6.1	Key Environmental Issues	15
	6.2	Mitigation Measures	15
7	CON	ICLUSIONS & RECOMMENDATIONS	16
	7.1	Conclusions	16
	72	Recommendations	16

TABLES

Table 1-3-1	Summary of Status of Environmental Licenses and Permits
Table 1-4-1	Excavation of vertical Shaft during the Reporting Period and Up-Coming Month
Table 2-1-1	Air Quality Monitoring Location
Table 2-1-2	Air Quality Monitoring Equipment
Table 2-1-3	Derivation of Action and Limit Levels for Air Quality at K11, µg/m³
Table 2-1-4	Action & Limit Levels for Air Quality at K11, μg/m³
Table 2-2-1	Noise Monitoring Parameters and Frequency
Table 2-2-2	Construction Noise Monitoring Equipment
Table 2-2-3	Noise Monitoring Location
Table 2-2-4	Action and Limit Levels for Construction Noise
Table 3-1-1	Summary of 24-Hr TSP Monitoring Results, μg/m³
Table 3-2-1	Summary of Construction Noise Monitoring Results at K11, dB(A)
Table 4-1-1	Summary of Findings and Follow-Up Actions of the Site Inspection
Table 4-2-1	Summary of Breaches of Legal and Contractual Requirements
Table 4-3-1	Summary of Complaint
Table 4-4-1	Summary of Summon and Successful Prosecutions

APPENDICES

Appendix A	Site Location Plan
Appendix B	Management Structure
Appendix C	Construction Programme
Appendix D	Implementation Schedule
Appendix E	Status of Environmental Licenses and Permits
Appendix F	Event and Action Plan
Appendix G	Monitoring Schedule
Appendix H	Weather Information Extracted from HK Observatory
Appendix I	Certificate of Laboratory and Equipment Calibration
Appendix J	Sample Data Record Sheet
Appendix K	Monitoring Results and Plots
Appendix L	Flow Chart for Handling Environmental Complaints
Appendix M	Waste Management Record

EXECUTIVE SUMMARY

Breaches of Action and Limit Levels

- ES01 No Notice of Exceedance and the associated investigation and follow-up actions were required as the environmental monitoring results registered no exceedances of Action/ Limit Levels of air quality and construction noise during the Reporting Period.
- ES02 No corrective action were required as the environmental audit during the Reporting Period observed:
 - 1) No deficiencies with major environmental significance of the required environmental mitigation measures;
 - 2) No non-compliance with the required waste management; and
 - 3) No adverse environmental impacts on the sensitive receivers environed with the site of the Project.

Environmental Complaints

ES03 No environmental complaints were recorded during the Report Period.

Notification of Summons & Successful Prosecutions

ES04 No notification of summons and successful prosecutions were recorded during the Reporting Period.

Reporting Changes

ES05 No major reporting changes were made during the Reporting Period.

Future Key Issues

General

ES06 Full implementations of the environmental mitigation measures, which are required in the EM&A Plan and summarised in the Implementation Schedule, are recommended. Whenever necessary, proper maintenance and improvement of the implemented mitigation measures are reminded.

Construction Noise

ES07 Particular attention should be paid to construction noise mitigation measures, especially during piling works during the coming construction period to ensure full compliance with statutory and non-statutory requirements and guidelines. Proactive review of working methods, careful selection and arrangement of the noisy equipment as well as effective noise mitigation measures are strongly recommended.

Water Quality

ES08 In addition, compliance with water quality mitigation measures remains one of the key environmental issues within the construction period, especially when water usage is high.

Air quality

- ES09 Furthermore, implying of construction dust suppression measures are recommended during dusty activities under dry and windy conditions.
- ES10 Where appropriate, construction dust suppression measures including decking over the excavation areas, watering of exposed site surface and covering of all excavated and stockpiles of dusty material by impervious sheeting or similar materials are reminded.

1 INTRODUCTION

1.1 The Reporting Period

- 1.1.1 This is the 18th monthly EM&A report (hereinafter referred as 'This Report') covering construction period from 1 to 31 August 2015 (hereinafter referred as 'the Reporting Period').
- 1.1.2 This Report has been written in accordance with the *Environmental Monitoring and Audit Plan* (hereinafter referred as 'the EM&A Plan') enclosed in the *Project Profile MTR Tsim Sha Tsui Station Carnarvon Road Subway and Entrances Modification Works*, which is registered in the Environmental Permit No. EP-440/2012 (hereinafter referred as 'the EP') (Register No.: PP-462/2012).

1.2 Project Background

- 1.2.1 In order to improve the appearance of Carnarvon Road Entrance D1 and D2 of Tsim Sha Tsui (hereafter referred as 'TST') Station and to provide a more comfortable walking environment nearby, MTR Corporation Limited (hereafter referred as 'MTRC' or 'the Corporation') has commissioned Meada Corporation (hereinafter referred as 'MC') the contract MTR Tsim Sha Tsui Station Carnarvon Road Subway and Entrances Modification Works (hereafter referred as 'the Project'). The Project is proposed to rebuild the existing Entrance D1 and D2 and construct a new Entrance D3 at the basement B2 level of the K11 Art Mall to connect to the TST station by a subway, which extends from the Entrance D1 and D2 and runs approximately 80m along Carnarvon Road and across the Bristol Avenue to the Entrance D3. The Project was commenced in March 2014 and is anticipated to be completed in September 2017.
- 1.2.2 The existing TST Station had been in operation before the *Environmental Impact Assessment Ordinance* (hereafter referred as 'EIAO') comes into effect on 1 April 1998. It constitutes an exempted Designated Project (hereinafter referred as 'DP') according to Section 9(2) (g) of the EIAO (Cap. 499). As the Project involves a material change to an exempted DP which may have potential environmental impacts, an environmental permit is required prior to the commencement of the modification works. The Project Profile has been developed to provide information for direct application of an environmental permit. The EP has been granted since 18 July 2012, after the Project Profile and the associated *EM&A Plan* were registered.
- 1.2.3 Site map, works area and locations of the environmental monitoring under the Project are illustrated in *Figure 1.1 Site Location Plan* of *Appendix A*.
- 1.2.4 Management structure of the Project, including organization chart, lines of communication and contact names and telephone numbers of key personnel, is demonstrated in *Appendix B*.
- 1.2.5 Construction programme is shown in *Appendix C*, whereas implementation schedule for the recommended environmental mitigation measures (hereinafter referred as 'the Implementation Schedule') are summarised in *Appendix D*, which fine tunes the construction activities and shows inter-relationships with the environmental protection / mitigation measures for the construction period.

1.3 Environmental Status

- 1.3.1 As required in the EP, AECOM Consulting Services Limited has been appointed as the Independent Environmental Checker under the Project (hereinafter referred as 'the IEC'), whereas Hyder Consulting Limited has been appointed as the Environmental Team under the Project (hereinafter referred as 'Hyder' or 'the ET').
- 1.3.2 According to the EP Condition 3.2 (a) under Environmental Monitoring and Audit (EM&A) during the Construction Period, baseline monitoring has been completed and the required

Baseline Monitoring Report has been submitted to EPD on 14 February 2014 prior to commencement of the works under the Project.

1.3.3 Status of relevant environmental permits, licences, and/or notifications on environmental protection for the Project is summarised in *Table 1-3-1* below. They are detailed in *Appendix E*.

Table 1-3-1 Summary of Status of Environmental Licenses and Permits

Item	Description	License/Permit Status
1	Air Pollution Control (Construction Dust)	Notification Ref. 365953 acknowledged on 21 Oct 2013.
2	Water Pollution Control Ordinance (Discharge License)	The discharge license (Ref No. WT00019722-2014) was granted on 01 Sep 2014 superseding the previous license (Ref No. WT00018229-2014).
3	Billing Account for Disposal of Construction Waste	A/C Ref. 7018523 granted on 25 Oct 2013
4	Chemical Waste Producer Registration	Registration Ref. 5213-2214-M2446-16 granted on 4 Mar 2014
5	Noise Control Ordinance	The Noise Permit Ref No.GW-RE0558-15 granted on 3 June 2015 which is in effective on 23 June 2015 superseded the Noise Permit GW-RE1475-14.

1.4 Construction Activities

1.4.1 Construction activities undertaken during the Reporting Period and the following month are summarised in *Table 1-4-1*:

Table 1-4-1 Construction Activities Undertaken during the Reporting Period and Up-Coming Month

Item	Description		
	Construction Activities Undertaken during the Reporting Period		
1	Installation and construction of steel decking		
2	Removal of unforeseen obstruction object		
3	Excavation for the temporary staircase		
4	Installation of waling and strut for construction of temporary staircase and cut and cover tunnel		
5	Construction of the temporary staircase		
6	Horizontal pipe piling for the mined tunnel		
	Construction Activities to be Undertaken in the Up-Coming Month		
1	Removal of unforeseen obstruction object		
2	Excavation for the temporary staircase		
3	Installation of waling and strut for construction of temporary staircase and cut and cover tunnel		
4	Construction of the temporary staircase		
5	Installation and construction of steel decking		
6	Horizontal pipe piling for the mined tunnel		
7	Excavation of vertical shaft		

2 EM&A REQUIREMENTS

2.1 Air Quality

Monitoring Parameters and Frequency

- 2.1.1 24-Hour Total Suspended Particulates (hereinafter referred as '24-Hr TSP') is required to be monitored once a week during construction period of the Project.
- 2.1.2 1-Hour Total Suspended Particulates (hereinafter referred as '1-Hr TSP') is required to be monitored when exceedances of 24-Hr TSP occur, following the Event and Action Plan presented in *Appendix F*.
- 2.1.3 Schedules for 24-Hr TSP monitoring for the Reporting Period and the next month were prepared and submitted to MTRC, IEC and MC prior to implementation via e-mail and / or facsimile for ease of necessary inspection. If amendment is necessary under ad hoc conditions, including actual and broadcast adverse weather, accidental instrument failures, etc., notification will be given at least 24 hours prior to implementation or as practical as possible. The monitoring schedules are enclosed in *Appendix G*.

Monitoring Location

- 2.1.4 According to the EM&A Plan, Mirador Mansion was designated to be the air quality monitoring station of the Project. As the access to the air monitoring location designated in the EM&A Plan has been denied by the owner of the property, the ET proposes an alternative monitoring location on the roof-top above the 4/F of the commercial complex of K11 (hereinafter referred as 'K11'), which has been agreed among MTRC, IEC and MC, and the associated access to K11 has been granted by the management office of K11 prior to the commencement of the baseline monitoring in January 2014.
- 2.1.5 Air quality monitoring location is summarised in *Table 2-1-1* below and illustrated in *Appendix A*.

Table 2-1-1 Air Quality Monitoring Location

Location ID	Name of Premises	Description
K11	K11 Art Mall	Rooftop, 4/F

Monitoring Equipment

2.1.6 The air quality monitoring equipment to be used for construction air impact monitoring is shown in *Table 2-1-2* below:

Table 2-1-2 Air Quality Monitoring Equipment

Equipment Type	Model	Serial Number	Calibration Orifice Number	Location
High Volume Air Sampler	TE5005X	1713	1785	K11
Sibata Digital Dust Monitor	LD-3B	296098	Not Applicable	K11

2.1.7 High Volume Air Sampler (hereinafter referred as 'the HVAS') is used for monitoring 24-Hr TSP, following the standard sampling method set out in High Volume Method for Total Suspended Particulates, Part 50 Chapter 1 Appendix B, Title 40 of the Code of Federal Regulations of the USEPA (hereinafter referred as 'the USEPA High Volume Method').

2.1.8 Weather information including wind speeds and wind directions is obtained from King's Park Weather Station, which is about 1.7 m/s to the north of the monitoring station K11. The weather information is used as weather conditions during the Reporting Period. They are presented in *Appendix H*.

Calibration of Monitoring Equipment

- 2.1.9 The HVAS is calibrated before commencement of monitoring using standard orifice 5-points calibration method with orifice calibrator to determine the actual flow rate of each HVAS. A calibration Kit (Model TE5025A) is used for calibration of the HVAS. At least once every 12 months, recalibration of the calibration kit is carried out during its maintenance.
- 2.1.10 Calibration of the HVAS is conducted following the manufacturer's instruction manual. Initial calibration of the equipment is conducted upon installation and thereafter at bi-monthly intervals throughout the period of impact monitoring. The transfer standard should be traceable to the internationally recognised primary standard and be calibrated annually.
- 2.1.11 The Sibata Digital Dust Monitor LD-3B for 1-hour TSP monitoring is calibrated annually and the calibration certificates of the equipment will be presented in *Appendix I* if 1-hour TSP monitoring is conducted.

Monitoring Methodology – 24-Hr TSP

2.1.12 Air quality monitoring (24-Hr TSP) will be conducted once a week under typical weather conditions (with no adverse weather such as typhoon signal or rain storm warning).

Installation of HVAS

- 2.1.13 When positioning the HVAS, the following points will be noted:
 - a) A horizontal platform with appropriate support to secure the samplers against gusty wind will be provided;
 - b) No two samplers will be placed less than 2 m apart;
 - c) The distance between the sampler and an obstacle, such as buildings, must be at least twice the height that the obstacle protrudes above the sampler where possible;
 - d) A minimum of 2 m of separation from walls, parapets and penthouses is required for rooftops samplers;
 - e) A minimum of 2 m of separation from any supporting structure, measured horizontally is required;
 - f) No furnace or incinerator flue or building vent is nearby;
 - g) Airflow around the sampler is unrestricted;
 - h) The sampler is more than 20 m from the drip line:
 - i) Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring;
 - Permission must be obtained to set up the samplers and to obtain access to the monitoring stations; and
 - k) A secured supply of electricity is needed to operate the samplers.

Preparation of Filter Papers and Laboratory Analysis

- 2.1.14 Sufficient pieces of filter paper should be labelled before sampling. It should be a clean filter paper with no pinholes, and should be conditioned in a humidity-controlled chamber for over 24-hour and be pre-weighed before use for the sampling. The preferred room temperature is around 25 °C ±3 °C with relative humidity (hereinafter referred as 'the RH') less than 50% ± 5%, preferably 40%.
- 2.1.15 Preparation of filters and subsequent laboratory analysis of the collected 24-Hr TSP samples were performed by ALS Technetiem (HK) Pty Ltd (hereinafter referred as 'ALS'), a local laboratory which have been accredited under Hong Kong Laboratory Accreditation Scheme (HOKLAS).
- 2.1.16 All the collected samples should be kept by the ET in standard office conditions for 6 months before disposal.

Field Monitoring Procedures

- 2.1.17 Procedures for field monitoring are as follows:
 - a) Check power supply to ensure the HVAS works properly.
 - b) Clean the filter holder and the area surrounding the filter.
 - c) Remove the filter holder by loosening the four bolts and carefully align a new filter, with stamped number upward, on a supporting screen.
 - d) Align the filter properly on the screen so that the gasket forms an airtight seal on the outer edges of the filter.
 - e) Fasten the swing bolts to hold the filter holder down to the frame. The pressure applied should be sufficient to avoid air leakage at the edges.
 - f) Close the shelter lid and secure with the aluminium strip.
 - g) Warmed-up the HVAS for about 5 minutes to establish run-temperature conditions.
 - h) Set a new flow rate record sheet into the flow recorder.
 - i) Checked and adjust the flow rate of the HVAS at around 1.1 m³ per minute. (The range specified in the EM&A Plan is between 0.6-1.7 m³ per minute.)
 - j) Set the programmable timer for a sampling period of 24 hours, and record the starting time, weather condition and the filter number.
 - k) Record the initial elapsed time.
 - At the end of sampling, remove the sampled filter carefully and fold it in half-length so that only surfaces with collected particulate matter are in contact.
 - m) Place the sampled filter in a clean plastic envelope and seal.
 - n) Record all monitoring information on a Field Data Sheet as shown in Appendix J.
 - o) Send the filters to ALS for analysis.

Monitoring Methodology – 1-Hr TSP

Field Monitoring

- 2.1.18 The procedures for measurement of 1-Hr TSP follow Manufacturer's Instruction Manual, which is summarised as follows:
 - a) Set power to "ON", push BATTERY button, make sure that the meter's indicator is in the range with a red line and allow the instrument to stand for about 3 minutes (Then, the air sampling inlet has been capped).

- b) Push the knob at MEASURE position.
- c) Push "O-ADJ" button. (Then meter's indication is 0).
- d) Push the knob at SENSI ADJ position and set the meter's indication to S value described on the Test Report using the trimmer for SENSI ADJ.
- e) Pull out the knob and return it to MEASURE position.
- f) Push "START" button.
- g) Record all monitoring information on a Field Data Sheet as shown in Appendix J.

Maintenance and Calibration

- 2.1.19 The procedures for maintenance and calibration of 1-Hr TSP follow Manufacturer's Instruction Manual as follows:
 - a) The Sibata is checked at 3-month intervals and calibrated at 1-year intervals throughout the whole construction period.
 - b) Calibration records for the Sibata Digital Dust Monitor direct dust meters are shown in **Appendix I**.

Action and Limit Levels

2.1.20 The Action and Limit levels (hereinafter referred as 'the A/L Levels) at K11 have been established in the Baseline Monitoring Report in accordance with the derivation criteria specified in Section 3.7 of the EM&A Plan, which are summarised in **Table 2-1-3** as follows:

Table 2-1-3 Derivation of Action and Limit Levels for Air Quality at K11, μg/m³

Parameter	Action Level	Limit Level
24-Hr TSP	For baseline level \leq 200 µg/m³, Action level = (130% of baseline level +	260
24-01 15P	Limit level)/2; For baseline level >200 μg/m³, Action level = Limit level	260
1-Hr TSP	For baseline level ≤384 µg/m³, Action level = (130% of baseline level +	500
1-HI 13F	Limit level)/2; For baseline level >384 μ g/m³, Action level = Limit level	

2.1.21 The established A/L Levels for 24-Hr and 1-Hr TSP are summarised in **Table 2-1-4** as follows:

Table 2-1-4 Action & Limit Levels for Air Quality at K11, µg/m³

Parameter	Action Level	Limit Level
24-Hr TSP	222	260
1-Hr TSP	373	500

Event and Action Plan

2.1.22 In case exceedances of Action and/or Limit levels for air quality occur, Event and Action Plan for Air Quality enclosed in *Appendix F* will be implemented.

Environmental Mitigation Measures for Air Quality

- 2.1.23 Although most of the construction works would be carried out underground, appropriate dust mitigation measures as stipulated in the EP, Project Profile, related environmental regulation including Air Pollution Control (Construction Dust) Regulation as well as those recommended in the Implementation Schedule should be implemented to control fugitive dust emission. The following key dust suppression measures are recommended:
 - a) Decking over the excavation areas;
 - b) Regular watering to reduce dust emissions from all exposed site surface, particularly during dry weather;
 - c) Frequent watering for particularly dusty construction areas and areas close to air sensitive receivers;
 - d) Cover all excavated or stockpiles of dusty material by impervious sheeting or spraying with water to maintain the entire surface wet;
 - e) Provision of vehicle washing facilities at the exit points of the site; and
 - f) Provision of tarpaulin covering for any dusty materials on a vehicle leaving the site.
- 2.1.24 Details of the implementation schedule for the required environmental mitigation measures are presented in *Appendix D*.

2.2 Construction Noise

Monitoring Parameters and Frequency

2.2.1 *Table 2-2-1* summarizes the monitoring parameters and frequency for construction noise:

Table 2-2-1	Noise Monitoring Parameters and Frequence	٧

Parameters Parameters	Frequency
L _{eq} in 30 minutes	Once a week

2.2.2 Monitoring schedules for construction noise for the Reporting Period and the next Reporting Period are prepared and submitted to MTRC, IEC and MC prior to implementation via e-mail and / or facsimile for ease of necessary inspection. Where amendment is necessary under ad hoc conditions, including actual and broadcast adverse weather, accidental instrument failures, etc., advanced notification is given at least 24 hours prior to implementation or as practical as possible.

Monitoring Equipment

2.2.3 With reference to the Technical Memorandum (TM) issued under the Noise Control Ordinance (NCO), sound level meters in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications (both publications have been withdrawn and replaced by 61672:2003) are used for carrying out the noise monitoring. The equipment used in the construction noise monitoring is summarized in the following *Table 2-2-2* and the associated certificates of the calibration of the sound level meters and their respective calibrators are as shown in *Appendix I*:

Table 2-2-2 Construction Noise Monitoring Equipment

Item	Equipment Name	Model
1	Sound Level Meter	B&K 2238 (Serial no. 2562782)
2	Acoustic Calibrator	B&K 4231 (Serial no. 409134)

Monitoring Location

- 2.2.4 As stated in previous **Section 2.1.4**, the alternative air quality monitoring location K11 which is proposed by the ET and agreed among MTRC, IEC and MC, i.e. on the roof-top above the 4/F of the commercial complex of K11, is used for the construction noise monitoring location. The access to K11 has been granted by the management office of the K11 prior to the commencement of the baseline monitoring in January 2014.
- 2.2.5 **Table 2-2-3** summarizes the recommended alternative noise monitoring location, which is illustrated in **Appendix A**.

Table 2-2-3 Noise Monitoring Location

Location ID	Name of Premises	Description
K11	K11 Art Mall	Rooftop, 4/F

Monitoring Methodology

Field Monitoring

- 2.2.6 Procedures for noise monitoring summarised as follows:
 - a) The microphones of the Sound Level Meter are about 1 m from the exterior of the building façade.
 - b) The battery condition is checked to ensure the correct functioning of the meter.
 - c) Parameters such as frequency weighting, the time weighting, the measurement time and monitoring frequency are set as follows:
 - i. Frequency weighting: A
 - ii. Time weighting: Fast
 - iii. Time measurement: 30 minutes intervals (between 0700-1900 on normal weekdays)
 - iv. Monitoring frequency: one set of measurement on a weekly basis
 - d) Prior to and after each noise measurement, the meter is calibrated using a Calibrator for 94 dB at 1 kHz. If the difference in the calibration level before and after measurement is more than 1 dB, the measurement should be considered invalid and the measurement repeated after re-calibration or repair of the equipment.
 - e) During the monitoring period, the Leq (30 min) are recorded.
 - f) Record all monitoring information on a Field Data Sheet as shown in Appendix J.
 - g) Maintenance and Calibration.
 - h) The meter and calibrator are sent to the supplier or HOKLAS laboratory to check and calibrate prior to the monitoring. Calibration records are presented in *Appendix I*.

Weather Condition

2.2.7 The wind speeds and directions during the monitoring period are recorded and shown in **Appendix H.**

Action and Limit Levels

2.2.8 The Action and Limit levels (hereinafter referred as 'the A/L Levels) at K11 have been established in the Baseline Monitoring Report. They are summarised in *Table 2-2-4* as follows:

Table 2-2-4 Action and Limit Levels for Construction Noise

Time Period	Action Level	Limit Level
0700-1900 hours on normal weekdays	When one valid documented complaint is received.	75*

Note: *70 dB(A) for schools and 65 dB(A) during school examination periods. If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed.

Event and Action Plan

2.2.9 In case exceedances of Action and/or Limit levels for construction noise occur, the Event and Action Plan enclosed in *Appendix F* will be triggered.

Mitigation Measures for Construction Noise

- 2.2.10 Although no residual noise impact would be generated after the proposed mitigation measures are in place, the general construction noise control measures stipulated in the EP, Project Profile as well as those recommended in the Implementation Schedule should be fully implemented in order to minimise noise impacts during the construction phase. They are summarised as follows:
 - The Code of Practice on Good Management Practice to Prevent Violation of the Noise Control Ordinance (Chapter 400) (for Construction Industry) published by EPD shall be adopted;
 - i) The statutory and non-statutory requirements and guidelines shall be complied with;
 - Approval for the method of working, equipment and noise mitigation measures intended to be used at the site shall be granted from the Project Engineer before commencing any work;
 - Working methods to minimize the noise impact on the surrounding NSRs shall be formulated and executed, and the implementation of these methods shall be monitored by experienced personnel with suitable training;
 - m) Noisy equipment and noisy activities shall be located as far away from the NSRs as is practical;
 - n) Unused equipment shall be turned off;
 - o) PME should be kept to a minimum and the parallel use of noisy equipment / machinery should be avoided:
 - p) All plant and equipment shall be maintained regularly;
 - Material stockpiles and other structures shall be effectively utilised as noise barriers, whenever practicable; and
- 2.2.11 Details of the implementation schedule for the mitigation measures are presented in *Appendix D*.

3 MONITORING RESULTS

3.1 Air Quality

Monitoring Results

- 3.1.1 24-Hr TSP monitoring during the Reporting Period was conducted following the agreed monitoring schedule.
- 3.1.2 24-Hr TSP results of the Reporting Period are summarised in the following *Table 3-1-1*. Graphical plots of the parameter are illustrated in *Appendix K*.

Table 3-1-1 Summary of 24-Hr TSP Monitoring Results, ug/m³

Monitoring Date	24-Hr TSP	Action Level	Limit Level		
03-August-2015	19.5				
10-August-2015	32.8				
17-August-2015	19.9				
24-August-2015	50.8	222	260		
31-August-2015	29.5	_			
Mean (Min – Max)	30.5 (19.5-50.8)				

Discussion

- 3.1.3 **Table 3-1-1** demonstrates that all 24-Hr TSP results of the Reporting Period fluctuated well below the A/L Levels of the parameter, i.e. neither Action Level nor Limit Level exceedances were recorded.
- 3.1.4 No Notice of Exceedances (thereinafter referred as 'NOE') and the associated NOE Investigation as well as remedial actions was required during the Reporting Period.

3.2 Construction Noise

Monitoring Results

- 3.2.1 Construction noise monitoring during the Reporting Period was conducted following the agreed monitoring schedule.
- 3.2.2 Construction noise monitoring results of the Reporting Period are summarised in the following *Table 3-2-1*. Graphical plots of the parameter are illustrated in *Appendix K*.

Table 3-2-1 Summary of Construction Noise Monitoring Results at K11, dB(A)

Monitoring Date	L _{eq (30 min)}	A/L Levels				
04-August-2015	69.2	- Limit Level: 75				
11-August-2015	68.2	Ellin Ecvel. 70				
18-August-2015	68.6	_				
25-August-2015	67.5	_ Action Level:				
Mean (Min – Max), <i>Leq</i> (30 min)	68.4 (67.5 – 69.2)	Any documented complaint against construction noise.				

Discussion

- 3.2.3 No environmental complaint against construction noise was registered during the Reporting Period, whereas *Table 3-2-1* demonstrates that all construction noise results of the Reporting Period were fell below the Limit Level of the parameter. Neither exceedances of Action Level nor exceedances of Limit Level were recorded.
- 3.2.4 Neither NOE nor NOE investigation and the associated remedial actions were required during the Reporting Period.
- 3.2.5 The Contractor's attention is drawn to certain noisy construction activities, which were scheduled to be conducted during the coming month as listed in *Table 1-4-1* under *Section 1.4:* Construction Activities Undertaken during the Reporting Period and Up-Coming Month.
- 3.2.6 It is re-instated that adequate mitigation measures should be implemented during the noisy construction activities in order to alleviate noise nuisance generated from the Project related construction activities.

Weather Conditions

- 3.2.7 No weather conditions and any other factors were identified to have significant effects on the air and noise monitoring results within the Reporting Period.
- 3.2.8 Weather information during the Reporting Period which is extracted from Hong Kong Observatory King's Park Weather Station and enclosed for reference in *Appendix H*.

3.3 Conclusions and Recommendations

Conclusions

- 3.3.1 No exceedances of A/L Levels of air quality and construction noise were registered during the Reporting Period.
- 3.3.2 No NOE and the associated NOE Investigation and corrected actions were required during the Reporting Period.

Recommendations

- 3.3.3 Full implementation of the environmental mitigation measures, which are required in the EM&A Plan and summarised in Implementation Schedule of *Appendix D*, is recommended. Where necessary, proper maintenance and improvement of the implemented mitigation measures are reminded.
- 3.3.4 Nevertheless, construction dust shall be suppressed during dusty construction activities under dry and windy conditions.
- 3.3.5 In addition, construction noise shall be eliminated to avoid adverse impacts on the nearby sensitive receivers.

4 ENVIRONMENTAL AUDIT

4.1 Site Inspection

- 4.1.1 Weekly site inspections during the Reporting Period were conducted by MTRC, MC and ET, whereas the monthly site inspection of the Reporting Period was jointly conducted by the IEC, MTRC, MC and ET. The site inspection follows strictly to the agreed Site Inspection Checklist, which covers all the site audit requirements stipulated in the EM&A Plan, PS and all relevant environmental laws.
- 4.1.2 The completed Site Inspection Checklists are distributed to relevant parties upon completion of the site inspection for agreement and signature of the relevant parties and, where appropriate, for implementation of the recommended corrected actions to promptly rectify the situation.
- 4.1.3 The site inspections during the Reporting Period were conducted on 4, 11, 18 and 25 August 2015. Deficiencies or findings of the site audit and the associated follow up actions are summarised in the following *Table 4-1-1*:

Table 4-1-1 Summary of Findings and Follow-Up Actions of the Site Inspection

Date	Deficiencies or findings	Follow-Up Action						
	Follow-up item(s)							
04-August-2015	No follow-up item.	Not required.						
	Observation(s) on the day of inspection							
	No deficiency was observed on site.	Not required.						
	Follow-up item(s)							
11-August -2015	No follow-up item.	Not required.						
	Observation(s) on the day of inspection							
	No deficiency was observed on site.	Not required.						
	Follow-up item(s)							
19 August 2015	No follow-up item.	Not required.						
18-August -2015	Observation(s) on the day of inspection							
	No deficiency was observed on site.	Not required.						
	Follow-up item(s)							
25-August -2015	No follow-up item.	Not required.						
	Observation(s) on the day of inspection							
	No deficiency was observed on site.	Not required.						

4.1.4 As shown in *Table 4-1-1*, no major deficiencies or non-compliance of environmental mitigation measures or adverse environmental impacts were observed during the Reporting Period.

4.2 Compliance with Legal/Contractual Requirement

4.2.1 Construction activities under the Project must comply with all environmental protection and pollution control laws in Hong Kong, as well as the contractual requirements of the Project. *Table 4-2-1* summarizes breaches of legal and contractual requirements.

Table 4-2-1	Summary of Breaches of Legal and Contractual Requirements
IUDIO TEI	Odininally of Dicaonico of Logal and Contractad Regalicine

Month	No. of Breach(s)	Cumulative no. from March 2014 to the Reporting Period
August 2015	0	0

4.3 Environmental Complaints

- 4.3.1 Environmental complaints are handled following closely the flow chart of complaint response procedure which is enclosed in *Appendix L*.
- 4.3.2 Environmental complaints registered during the Reporting Period are summarised in *Table* **4-3-1** below:

Table 4-3-1 Summary of Complaint

Month	No. of Complaint(s)	Cumulative no. from March 2014 to the Reporting Period
August 2015	0	4

4.4 Notification of Summons/Successful Prosecutions

4.4.1 Notification of summons and successful prosecutions registered during the Reporting Period are summarised in *Table 4-4-1* below:

Table 4-4-1 Summary of Summon and Successful Prosecutions

Month	No. of Breach(s)	Cumulative no. from March 2014 to the Reporting Period
August 2015	0	0

5 CONSTRUCTION WASTE

5.1 Waste Management

5.1.1 Waste management under the Project is performed in accordance with the Waste Management Plan, which has been prepared for implementation of the construction waste mitigation measures in compliance with the requirements stipulated in the EM&A Plan, PS, Waste Disposal Ordinance and the associated subsidiary regulations.

5.2 Waste Management Status and Record

- 5.2.1 Updated waste management status is detailed in *Appendix M*, where the 3-R status of the construction waste generated from construction of the Project during the Reporting Period is presented.
- 5.2.2 Despite small scale of the Project and the amount of C&D material that needs to be hauled off site and disposed of is anticipated not to be significant, 3-R (Reduce, Reuse and Recycle) waste management has been adopted in order to minimize adverse environmental impacts to be generated from construction of the Project.

6 FUTURE ENVIRONMENTAL ISSUES

6.1 Key Environmental Issues

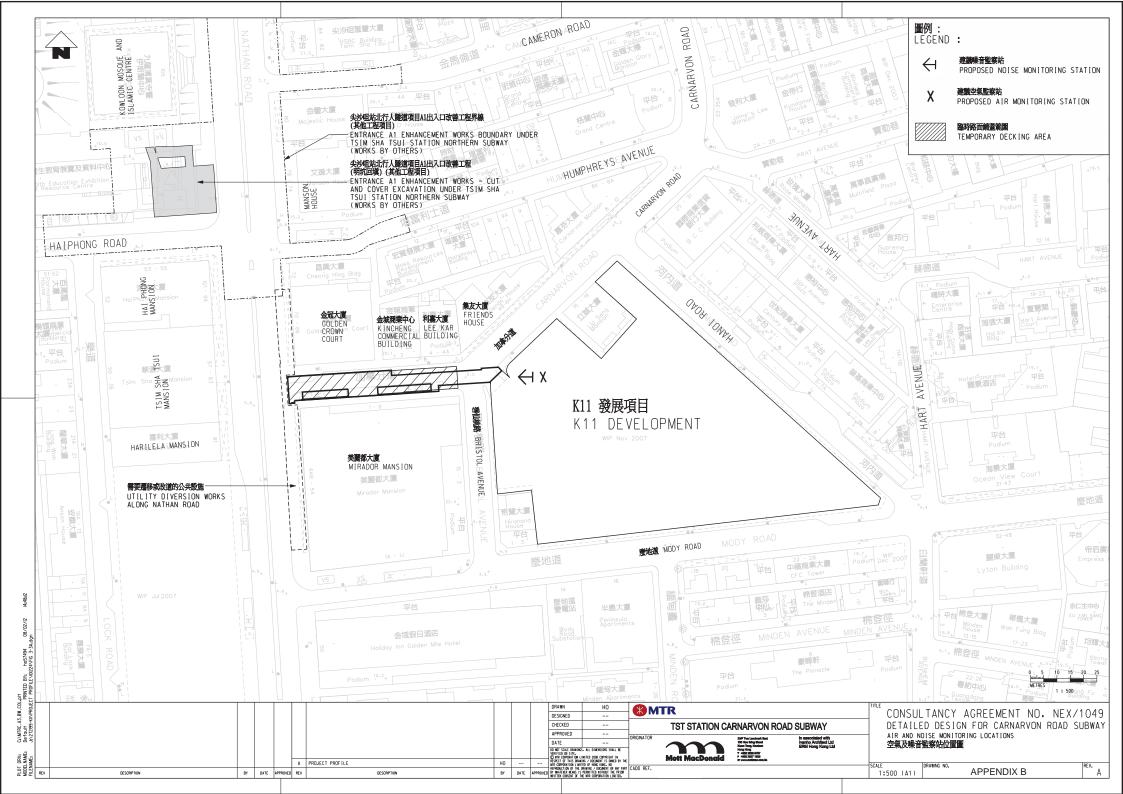
- 6.1.1 Future key environmental issues include:
 - Air quality in particular construction dust during dusty construction activities, e.g. demolishment of the Entrance D2 and excavation works, under dry and windy conditions;
 - 2) Construction noise during noisy activities; and
 - 3) Site surface water run-off and construction wastewater discharge.

6.2 Mitigation Measures

- 6.2.1 To avoid potential adverse environmental impacts of the future key environmental issues stated above, full implementation of the mitigation measures as stipulated in the Implementation Schedule shown in *Appendix D* is required.
- 6.2.2 Mitigation measures for air quality, construction noise and water quality implemented to date shall be properly maintained.
- 6.2.3 Where appropriate, improvement of the implemented mitigation measures is reminded to ensure effectiveness of the mitigation measures.

7 CONCLUSIONS & RECOMMENDATIONS

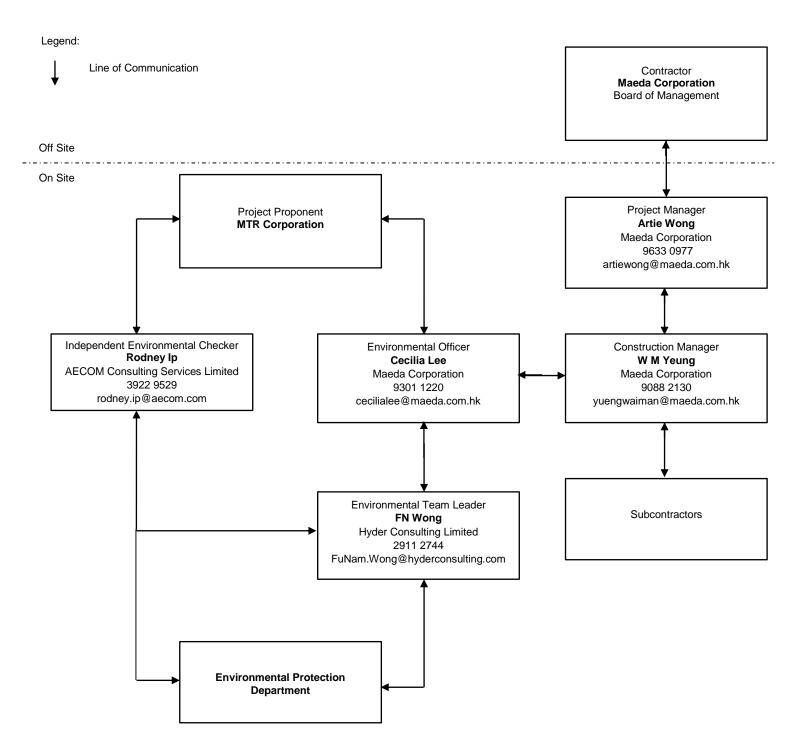
7.1 Conclusions


- 7.1.1 Neither NOE & the associated NOE investigation nor follow-up actions were required as the environmental monitoring results registered no exceedances of A/L Levels of air quality and construction noise during the Reporting Period.
- 7.1.2 No corrective actions were required as the environmental audit during the Reporting Period observed:
 - 1) No deficiencies with major environmental significance of the required environmental mitigation measures;
 - 2) No non-compliance with the required waste management; and
 - 3) No adverse environmental impacts on the sensitive receivers environed with the site of the project.
- 7.1.3 In addition, no remedial actions were required as no notification of summons and successful prosecutions were reported during the Reporting Period.
- 7.1.4 Nevertheless, occasional observations of inadequacies of proactive environmental mitigation measures were recorded during the regular site inspection and audit. They were rectified in situ or before the following site audit upon identification or notification.

7.2 Recommendations

- 7.2.1 Full implementation of the environmental mitigation measures stipulated in the EM&A Plan and summarised in the *Implementation Schedule* of *Appendix D*, are recommended. Where necessary, proper maintenance and improvement of the implemented mitigation measures are reminded.
- 7.2.2 As noisy construction activities such as piling works were being conducted during the Reporting Period, adequate mitigation measures should be implemented in order to alleviate noise nuisance.
- 7.2.3 In addition, suppression of construction dust is reminded during dusty construction activities under dry and windy conditions.
- 7.2.4 Furthermore, monitoring of site water runoff is reminded to prevent any direct water discharge off site, especially when water usage is high during the construction period. When necessary, the Contractor is reminded to apply additional precautionary measures to prevent any possible environmental deficiency.

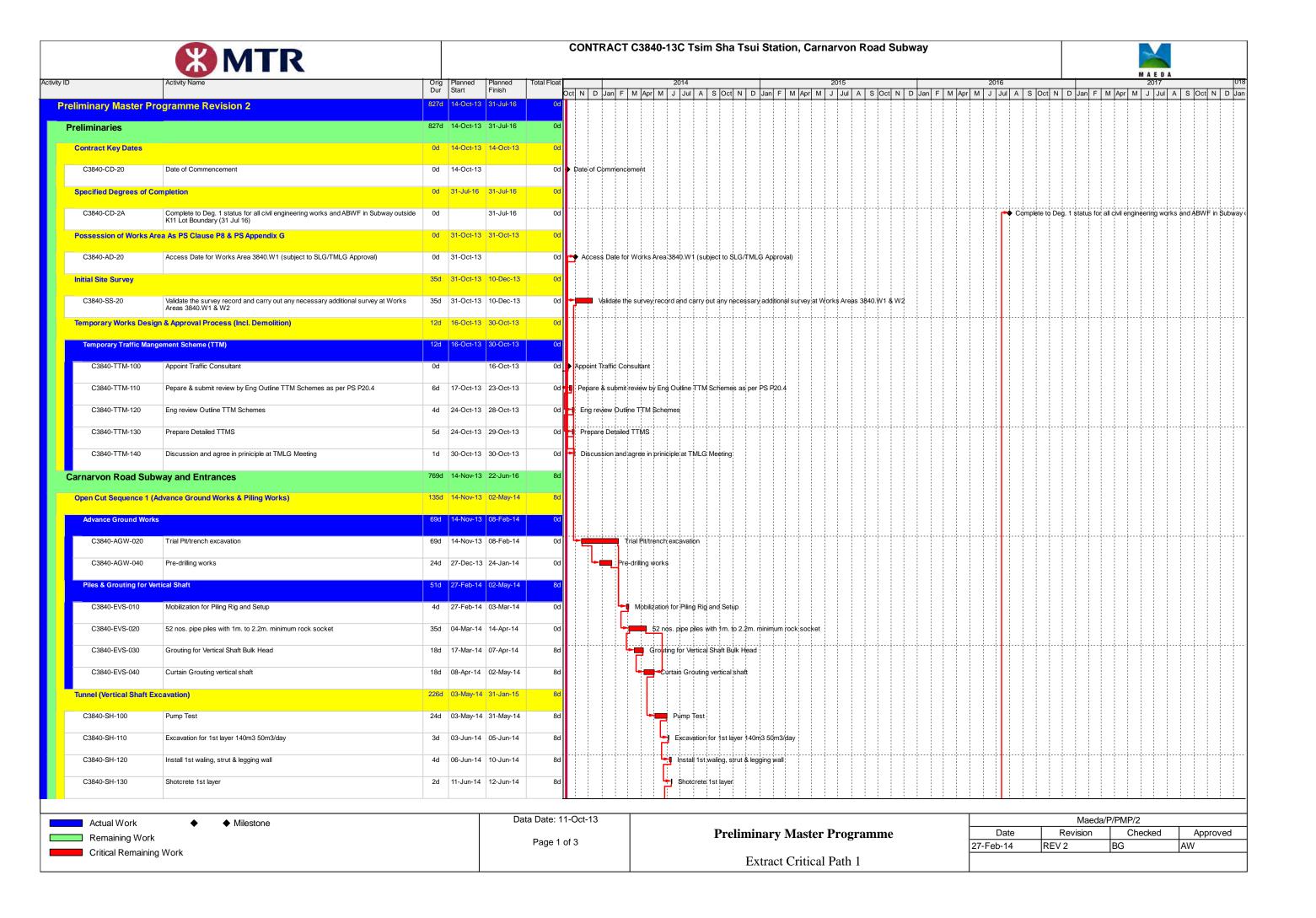
Appendix A

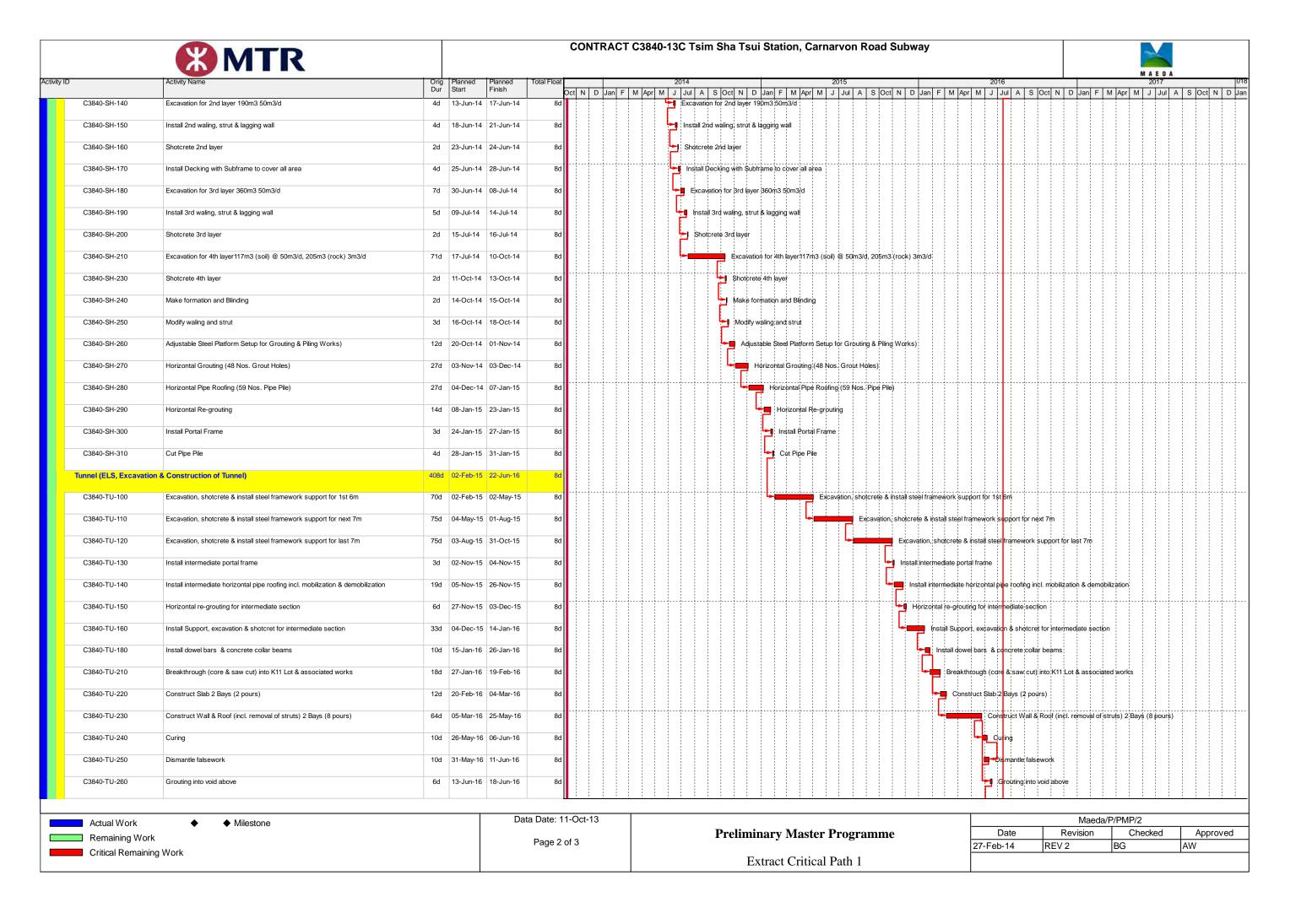

Site Location Plan

Appendix B

Management Structure

Project Organization Chart in Environmental Management (Rev.02)

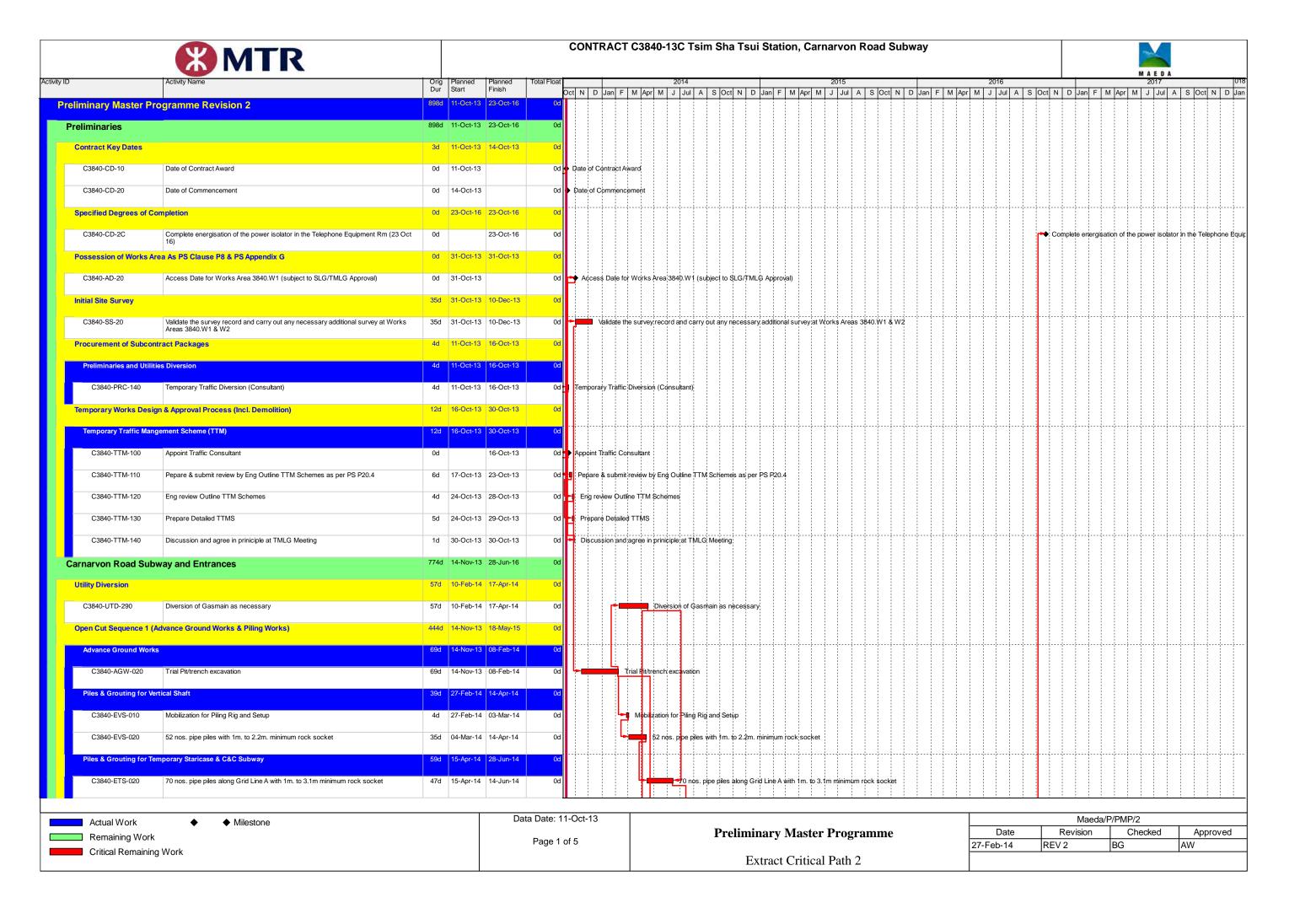


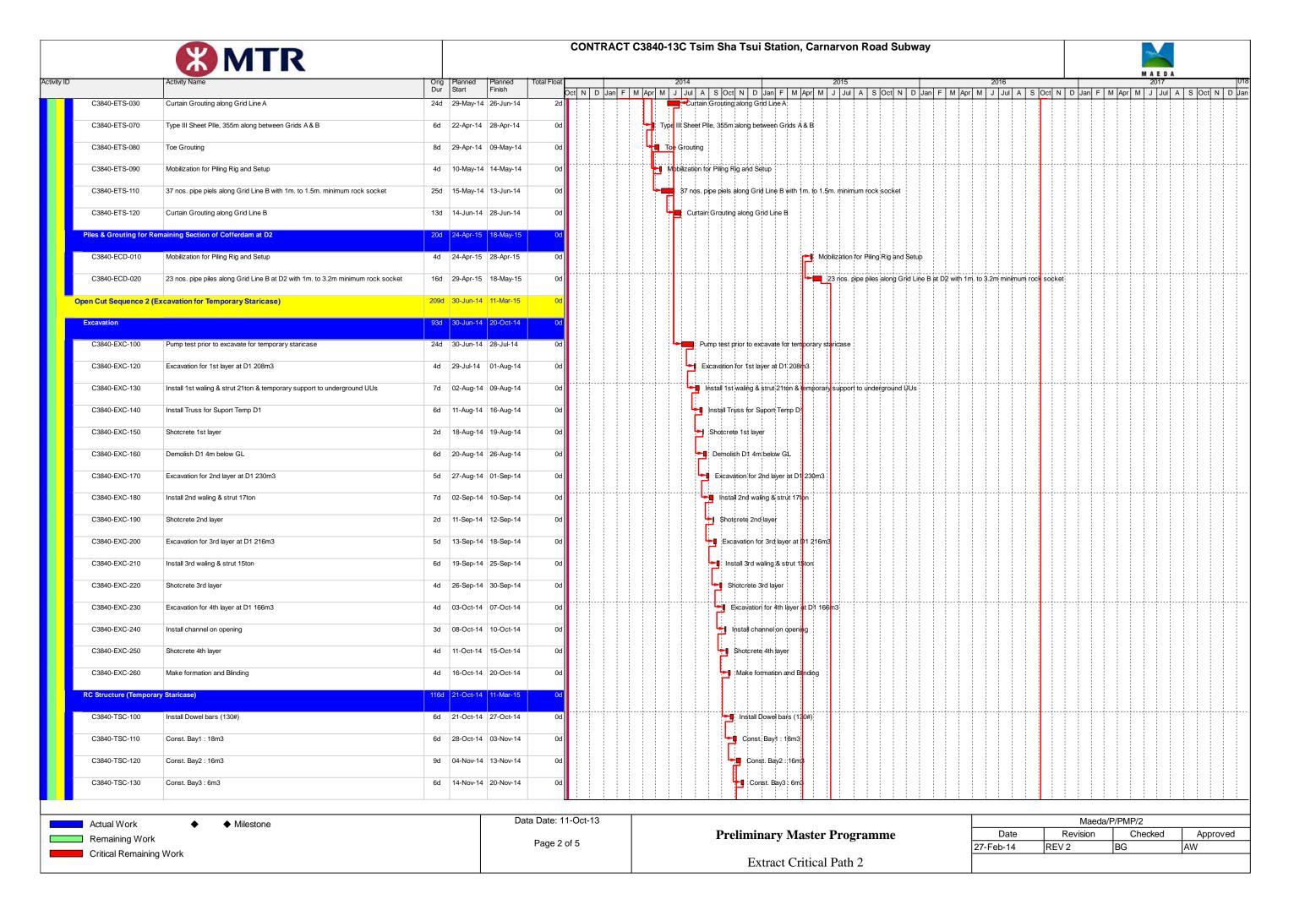

Note: In Compliance with

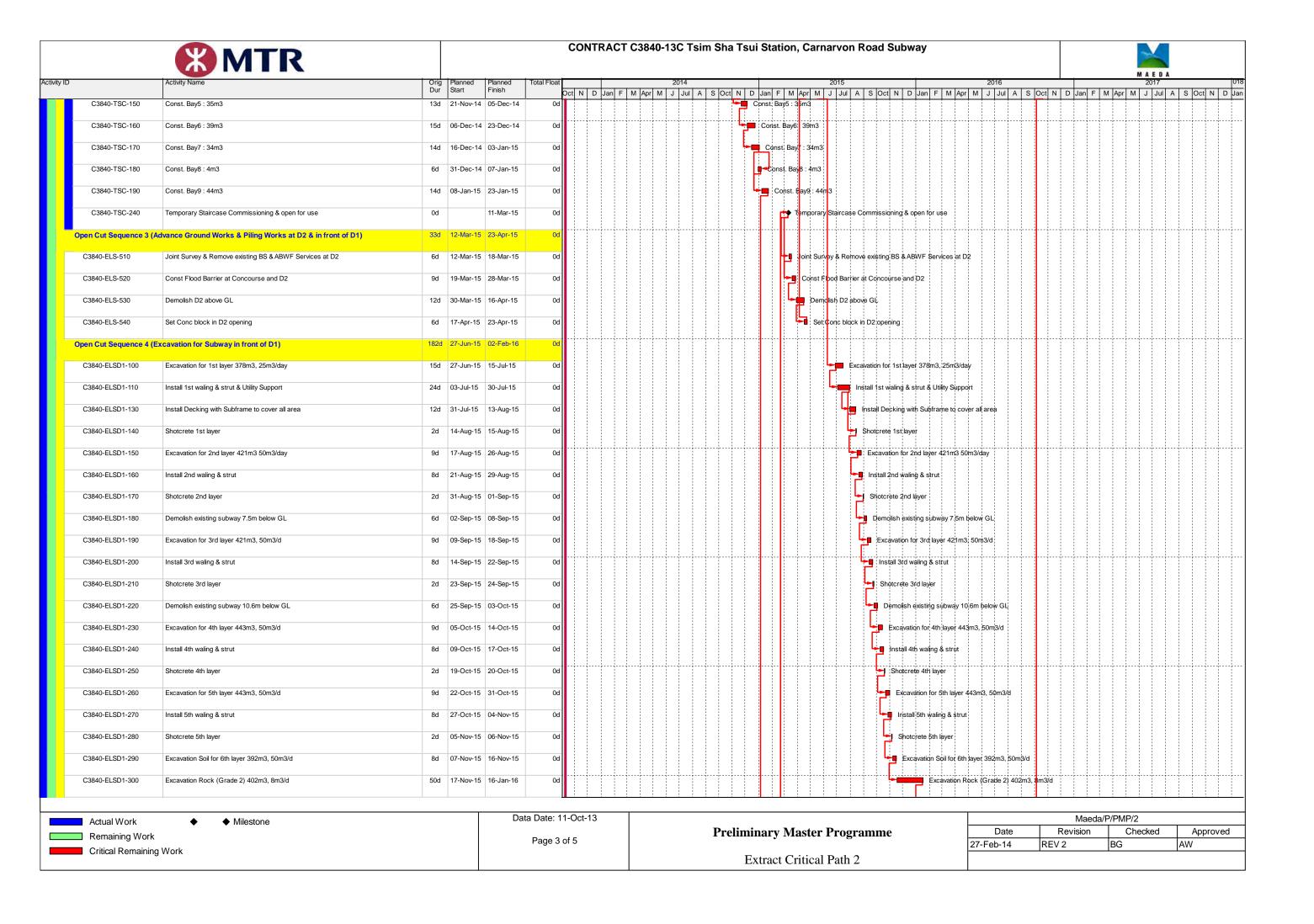
i) Clause.1.3 of Environmental Monitoring and Audit Manual (Appendix VII of Project Profile PP462/2012)

Appendix C

Construction Programme

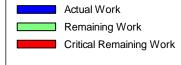





		MTR					CONT	ΓRΑ	CT C384	10-13C T	rsim S	iha Tsu	ii Stat	ion, Ca	narvon	Road	Subw	vay							MAED	A	
Activi	ty ID	Activity Name		Planned	Planned Finish	Total Float				2014					2015					2016					2017		018
1			Dur	Start	Finish		Oct N [) Jan	F M Apr	M J Jul	A S	Oct N D	Jan F	M Apr N	1 J Jul	A S Oct	N D	Jan F N	1 Apr M	J Jul	A S	Oct N	D Jan	F M Ap	r M J Jul	A S Oc	t N D Jar
	C3840-TU-270	Cut Pipe pile at interface	3d	20-Jun-16	22-Jun-16	8d														- I Gu	Pipe pik	le at interfa	ce				
	Building Services &	ABWF Works	70d	27-Apr-16	21-Jul-16	8d																					
	BS & ABWF Works at S	Subway Conc. Level and Plant Room & D3	70d	27-Apr-16	21-Jul-16	8d																					
	C3840-BSS-120	ABWF Works to Deg. 1 Completion	70d	27-Apr-16	21-Jul-16	8d															ABWF	Works to	Deg. 1 Co	ompletion			



		Maeda/F	P/PMP/2	
minary Master Programme	Date	Revision	Checked	Approved
•	27-Feb-14	REV 2	BG	AW
Extract Critical Path 1				



	MTR	CONTRACT C3840-13C Tsim Sha Tsui Station, Carnarvon Road Subway	M A E D A
ctivity ID	Activity Name	Orig Planned Planned Total Float 2014 2015 2015 2016	M A E D A 2017
C3840-BSM-120	Complete all BS works in TER	Orig Dur Planned Start Planned Finish I odd I Float 2014 2015 2016 2016 0d 22-Oct-16 Od Jan F M Apr M J Jul A S Oct N D Jan F M Apr M Jul A S Oct N D Jan F M Apr M Jul A S Oct N D Jan F M Apr M Jul A S Oct N D Jan F M Apr M Jul A S Oct N D Jan F M Apr M Jul A S Oct N D Jan F M Apr M Jul A S Oct N D Jan F M Apr M Jul A S Oct N D Jan F M Apr M Jul A S Oct N D Jan F M Apr M Jul A S Oct N D Jan F M Apr M Jul A S Oct N D Jan F M Apr M Jul A S Oct N D Jan F M Apr M Jul A S Oct N D Jan F M Apr M Jul A S Oct N D Jan F M Apr M Jul A S Oct N D Jan F M Apr M Jul A S Oct N D Jan F M Apr M Jul A S Oct N D	I D Jan F M Apr M J Jul A S Oct N D
03040-BOW-120	Complete all bo works in TER		Shiplete all BO Works III LIX

Page 5 of 5

Data Date: 11-Oct-13

Maeda/P/PMP/2			
Date	Revision	Checked	Approved
27-Feb-14	REV 2	BG	AW

Extract Critical Path 2

Appendix D

Implementation Schedule

Appendix VIII

Implementation Schedule

Project Profile Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Parties	Location of the measure	When to implement the measure	Relevant requirements or standards for the measure to achieve
	Noise Impact					
S.3.1	Use of quieter plant	To minimise construction noise emissions	Contractor	Work site	Construction Stage	ProPECC PN2/93 and Noise Control Ordinance
S.3.1	 Use of noise enclosure and movable barrier movable barrier can achieve a 5 dB(A) reduction for movable PME and 10 dB(A) reduction for stationary PME; noise enclosure can achieve 15dB(A) reduction for PME; A typical design barrier with a steel frame of vertical / cantilever type would be adopted and located close to the noise generating part of PME; Barrier material of surface mass in excess of 7kg/m² shall be required to achieve the maximum screening effect (and minimum 10kg/m² for noise enclosure); The length of barrier should generally be at least five times greater than its height and the minimum height of a barrier should be such that no part of the noise source will be visible from the noise sensitive receiver being protected. 	To minimize construction noise emissions	Contractor	Work site	Construction Stage	ProPECC PN2/93, Noise Control Ordinance and EIAO Guidance Note NO. 9/2010
S.3.1	General Construction Noise Control Measures • The Code of Practice on Good Management Practice	To minimize construction noise	Contractor	Work site	Construction Stage	ProPECC PN2/93 and Noise Control

Project Profile Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Parties	Location of the measure	When to implement the measure	Relevant requirements or standards for the measure to achieve
	to Prevent Violation of the Noise Control Ordinance (Chapter 400) (for Construction Industry) published by EPD shall be adopted; The statutory and non-statutory requirements and guidelines shall be complied with; Approval for the method of working, equipment and noise mitigation measures intended to be used at the site shall be granted from the Project Engineer before commencing any work; Working methods to minimize the noise impact on the surrounding NSRs shall be formulated and executed, and the implementation of these methods shall be monitored by experienced personnel with suitable training; Noisy equipment and noisy activities shall be located as far away from the NSRs as is practical; Unused equipment shall be turned off; PME should be kept to a minimum and the parallel use of noisy equipment / machinery should be avoided; All plant and equipment shall be maintained regularly; and Material stockpiles and other structures shall be effectively utilized as noise barriers, whenever practicable.	emissions				Ordinance
0.0.0	Air Quality Impact	I 	0	14/ - 1 - 1/2	0	A' Dall I'
S.3.2	Construction Dust Control Measures Decking will be provided subsequent to the completion of surface excavation works. The duration	To minimise the dust impacts arising from the	Contractor	Work site	Construction Stage	Air Pollution Control (Construction

Project Profile Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Parties	Location of the measure	When to implement the measure	Relevant requirements or standards for the measure to achieve
	of decking is around 13 months after surface excavation works; Regular watering to reduce dust emissions from all exposed site surface, particularly during dry weather; Frequent watering for particularly dusty construction areas and areas close to air sensitive receivers; Cover all excavated or stockpile of dusty material by impervious sheeting or spraying with water to maintain the entire surface wet; Provision of vehicle washing facilities at the exit points of the site; and Provision of tarpaulin covering of any dusty materials on a vehicle leaving the site.	construction works				Dust) Regulation
	Water Quality Impact					
S.3.3	 Construction Water Quality Impact Measures The Contractor should design and implement all the mitigation measures and practices specified in the ProPECC PN 1/94 "Construction Site Drainage" and "Recommended Pollution Control Clauses for Construction Contracts" issued by EPD. All runoffs arising from the construction site should be properly collected and treated to ensure the discharge standards as stipulated in WPCO are met. Silt trap and oil interceptor should be provided to remove the oil, lubricants, grease, silt, grit and debris from the wastewater before being pumped to the public stormwater drainage system. The silt traps and oil interceptors should be cleaned and maintained regularly. 	To reduce water quality impact induced by the construction work	Contractor	Work Site	Construction Stage	ProPECC PN1/94; Water Pollution Control Ordinance

Project Profile Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Parties	Location of the measure	When to implement the measure	Relevant requirements or standards for the measure to achieve
	 Any foul effluent should not be discharged into any public sewer and stormwater drain, unless an effluent discharge permit is obtained under the WPCO by the Contractor. Site toilet facilities, if needed, should be chemical toilets or should have the foul water effluent directed to a foul sewer. 					
	Waste Management				l	
S.3.4	 Construction Waste Management Measures Excavated material should be reused on site as far as possible to minimise off-site disposal. Scrap metals or abandoned equipment should be recycled if possible. Waste arising should be kept to a minimum and be handled, transported and disposed of in a suitable manner. The Contractor should adopt a trip ticket system for the disposal of C&D materials to any designated public filling facility and/or landfill. Independent audits of the Contractor and resident site staff will be undertaken to ensure that the correct procedures are being followed. Chemical waste shall be handled in accordance with the Code of Practice on the Packaging, Handling and Storage of Chemical Wastes. All general refuse should be segregated and stored in enclosed bins or compaction units and waste separation facilities for paper, aluminium cans, plastic bottles etc. should be provided to facilitate reuse or 	To adopt waste management measures in the way of avoiding, minimising, reusing and recycling so as to reduce waste generation	Contractor	Work Site	Construction Stage	Waste Disposal Ordinance (Cap. 54); Waste Disposal (Chemical Waste) (General) Regulation; ETWB TCW No. 31/2004; ETWB TCW No. 19/2005.

Project Profile Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Parties	Location of the measure	When to implement the measure	Relevant requirements or standards for the measure to achieve	
	recycling of materials and their proper disposal.						
	Landscape and Visual Impact						
S.3.5	Landscape and Visual Measures • Screening of construction works by hoardings/noise barriers around works area with visually unobtrusive colours	To reduce visual impact by construction works.	Contractor	Temporary Storage Area at Salisbury Road	Construction Stage	EIAO	
S.3.5	Reinstating the affected amenity planting area at Salisbury Road after the completion of works	To prevent loss of planter after construction	Contractor	Temporary Storage Area at Salisbury Road	Operation Stage	ETWB TCW No. 2/2004	

Appendix E

Status of Environmental Licenses and Permits

Maeda Corporation

Contract No. C3840-13C
Tsim Sha Tsui Station Carnarvon Road Subway

Last Update: 31-August-2015

Licence Summary

Item No.	Our Ref.	Govt. Ord.	Type? (License / Permit / Account / Notification / Registration & etc.)	Description	Submission	Ref. No	Date of Submission (to EPD) (DD-MM-YYYY)	Date of Approval / Receipt (from EPD) (DD-MM-YYYY)	Date of Activation (DD-MM-YYYY)	Date of Expiry (DD-MM-YYYY) Green = expire next mth; Yellow = expire this wk; Red = Expired	Description	Remarks
000	000	EIAO	Permit	Environmental Permit	N/A	AEP-440/2012	N/A	N/A	18 - 07 - 2012	N/A	Baseline, Air & Noise Impact Monitoring	
001	001	APCO	Notification	Construction Dust Notification	Form NA – Notification S3(1) of APCO (Construction Dust)	365953	18 - 10 - 2013	21 - 10 - 2013	01 - 02 - 2014	01 - 10 - 2016	Demolition of a Building	
001	001	APCO	Notification	Construction Dust Notification	Form NA – Notification S3(1) of APCO (Construction Dust)	365953	18 - 10 - 2013	21 - 10 - 2013	01 - 08 - 2014	01 - 08 - 2016	Work carried out in any part of a tunnel that is within 100m of any exit to the open air	
001	001	APCO	Notification	Construction Dust Notification	Form NA – Notification S3(1) of APCO (Construction Dust)	365953	18 - 10 - 2013	21 - 10 - 2013	01 - 01 - 2016	01 - 03 - 2017	Construction of the Superstructure of a Building	
001	001	APCO	Notification	Construction Dust Notification	Form NA – Notification S3(1) of APCO (Construction Dust)	365953	18 - 10 - 2013	21 - 10 - 2013	01 - 11 - 2016	10 - 09 - 2017	Road Construction Work	
002	002	WDO	Account	Construction Waste Billing Account	EPD-211 (Form 1) Application for a Billing Account for Disposal of Construction Waste	7018523	18 - 10 - 2013	25 - 10 - 2013	25 - 10 - 2013	N/A	Disposal of C&D Waste	Application No. WFG12765
003	003 WPCO #002	WPCO	Licence	Water Discharge Licence	EPD-117 (Form A) Application for a Licence of Water Discharge	WT00019722-2014	24 - 07 - 2014	01 - 09 - 2014	01 - 09 - 2014	31 - 03 - 2019	Quarterly Report FlowRate 25m3/d, pH 6-9, SS 30mg/L, COD 80mg/L	
004	004 CWP#001	WDO	Registration	Chemical Waste Producer	EPD-129 Application for Registration as a Chemical Waste Producer	5213-2214-M2446-16	15 - 01 - 2014	04 - 03 - 2014	04 - 03 - 2014	N/A	Surplus paint, spent lubrucating oil, spent battery	
006	005 CNP#003	NCO	Permit	Construction Noise Permit	EPD74A(s) Form 1 - Application for a Construction Noise Permit	Application: 389338 Permit: GW-RE0558-15	27 - 05 - 2015	03 - 06 - 2015	23 - 06 - 2015	22 - 12 - 2015	Apply for 4nos Submersible Water pump (Electric) w/ new area to be included	

Appendix F

Event and Action Plan

Event and Action Plan for Air Quality

In case the Action and Limit Levels are not complied during construction stage, the Event and Action Plan shown below should be followed.

Event / Action	ET	IEC	ER	Contractor
Action Level				
Exceedance for one sample	 Identify source; If valid, inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor	 Rectify any unacceptable practice; Amend working methods if appropriate
Exceedance for two or more consecutive samples	 Identify source; Inform IEC and EPD; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial action required; If exceedance continues, arrange meeting with IEC and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. Ensure remedial measure properly implemented.	1. Submit proposals for remedial action to IEC within 3 working days of notification; 2. Implement the agreed proposals; 3. Amend proposal if appropriate.
Exceedance for one sample	1. Identify source; 2. Inform ER and EPD; 3. Repeat measurement to confirm finding; 4. Increase	 Check monitoring data submitted by ET; Check Contractor's working 	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. Ensure remedial	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IEC

Event / Action	ET	IEC	ER	Contractor
	monitoring frequency to daily; 5. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results.	method; 4. Discuss with ET and the Contractor on possible remedial measures; 5. Advise the ER on the effectiveness of the proposed remedial measures; 6. Supervise implementation of remedial measures.	measures properly implemented.	within 3 working days of notification; 3. Implement the agreed proposals; 4. Amend proposal if appropriate.
Exceedance for two or more consecutive samples	1. Notify IEC, ER, Contractor and EPD; 2. Identify sources; 3. Repeat measurement to confirm findings; 4. Increase monitoring frequency to daily; 5. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; 6. Arrange meeting with IEC and ER to discuss the remedial actions to be taken; 7. Assess the effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the	1. Discuss amongst ER, ET and Contractor on the potential remedial actions; 2. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ET accordingly. 3. Supervise the implementation of remedial measures.	 Confirm receipt of notification of failure in writing; Notify Contractor; In consultation with IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IEC within 3 working days of notification; 3. Implement the agreed proposals; 4. Resubmit proposals if problem still not under control; 5. Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Event / Action	ET	IEC	ER	Contractor	
	results;				
	8. If exceed stops, ce additiona monitorir	ase I			

Event and Action Plan for Construction Noise

In case the Action and Limit Levels are not complied during the construction stage, the Event and Action Plan shown below should be followed.

Event / Action	ET	IEC	ER	Contractor
Action Level	 Notify IEC and Contractor. Carry out investigation. Report the results of investigation to the IEC and Contractor. Discuss with the Contractor and formulate remedial measures Increase monitoring frequency to check mitigation effectiveness. 	 Review the analyzed result submitted by ET. Review the proposed remedial measures by the Contractor and advise the ER accordingly. Supervise the implementation of remedial measures. 	 Confirm receipt of notification of exceedance Notify Contractor Require Contractor to propose remedial measures for the analysed noise problem Ensure remedial measures are properly implemented. 	Submit noise mitigation proposals to IEC Implement noise mitigation proposals
Limit Level	1. Notify IEC, ER, EPD and Contractor, and follow other actions 2. Identify source 3. Repeat measurement to confirm findings 4. Increase monitoring frequency 5. Check Contractor's working procedures to determine possible mitigation to be implemented 6. Inform IEC, ER and EPD the causes and actions taken for the exceedances 7. Assess effectiveness of	1. Discuss amongst ER, ET and Contractor on the potential remedial actions 2. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ET accordingly 3. Supervise the implementation of remedial measures	1. Confirm receipt of notification of exceedances 2. Notify Contractor 3. Require Contractor to propose remedial measures 4. Ensure remedial measures are properly implemented 5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	1. Take immediate action to avoid further exceedance 2. Submit proposals for remedial actions to IEC within 3 working days of notifications 3. Implement the agreed proposals 4. Revise and resubmit proposals if problem still not under control 5. Stop the relevant portion of works as determined by the ER until the exceedance is abated
	7. Assess			

Event / Action	ET	IEC	ER	Contractor	
	remedial actions and keep IEC, EPD, ER informed of the results 8. If exceedance stops, cease additional monitoring				

Appendix G

Monitoring Schedule

C3840-13C MTRCL Tsim Sha Tsui Station Carnarvon Road Subway and Entrances Modification Works Tentative Monitoring Schedule for August 2015

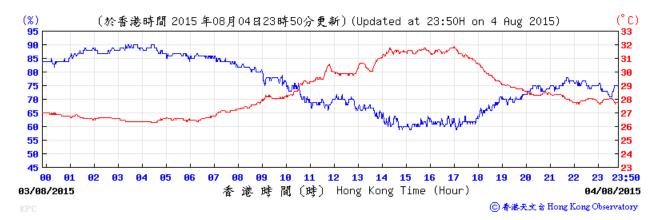
August 2015

01	M- 1	7	W7 - 4 1	/N1 1	D.::1	0-41
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
						1
2	3 24-hr TSP	Noise Weekly Site Audit	5	6	7	8
9	10 24-hr TSP	Noise Weekly Site Audit	12	13	14	15
16	17 24-hr TSP	Noise Weekly Site Audit	19	20	21	22
23	24 24-hr TSP	Noise Weekly Site Audit	26	27	28	29
This schedule may be	31 24-hr TSP	to unexpected circums	tances (e.g. adverse w	eather)		

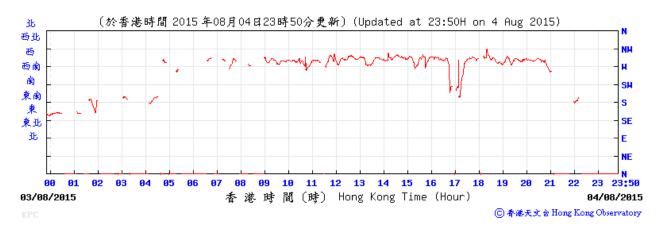
C3840-13C MTRCL Tsim Sha Tsui Station Carnarvon Road Subway and Entrances Modification Works
Tentative Monitoring Schedule for September 2015

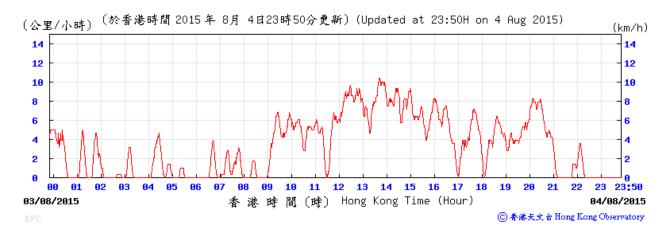
September 2015

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		Noise Weekly Site Audit	2	³ Hoilday	4	5
6	7 24-hr TSP	8 Noise Weekly Site Audit	9	10	11	12
13	14 24-hr TSP	Noise Weekly Site Audit	16	17	18	19
20	21 24-hr TSP	Noise Weekly Site Audit	23	24	25	26
This askedula may be	Hoilday subject to change due	Noise Weekly Site Audit 24-hr TSP	30	oothor)		



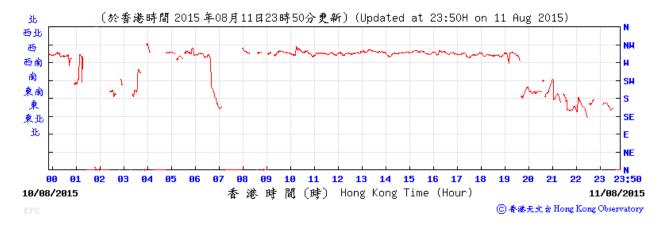
Appendix H


Weather Information Extracted from HK Observatory


King's Park Weather Station - 03 August 2015

Temperature and Humidity:

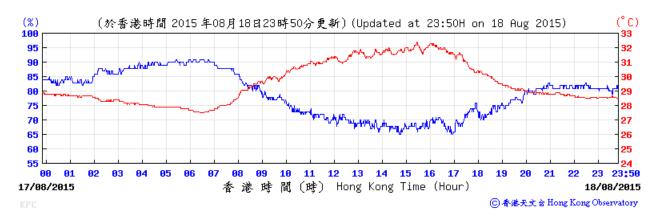
Wind Direction:

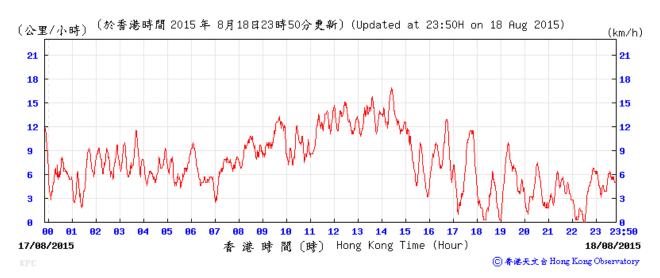




King's Park Weather Station - 10 August 2015

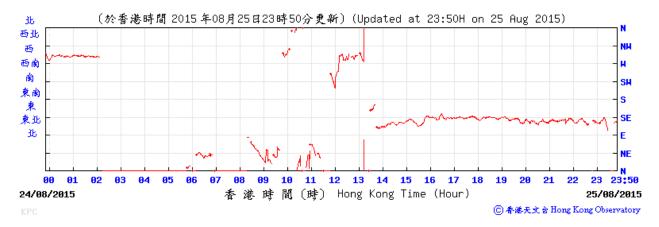
Temperature and Humidity:

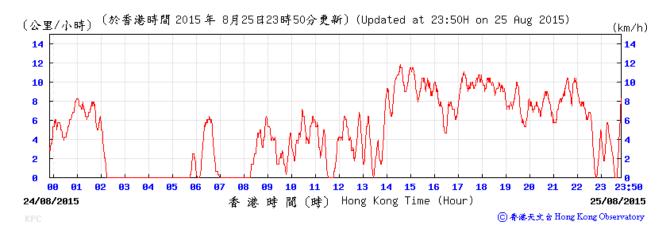

Wind Direction:


King's Park Weather Station – 17 August 2015

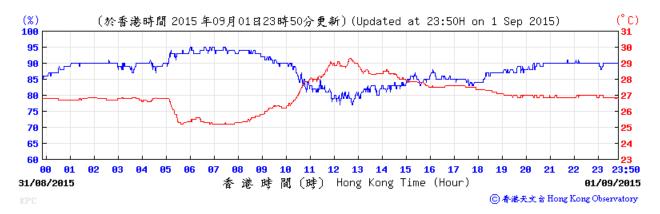
Temperature and Humidity:

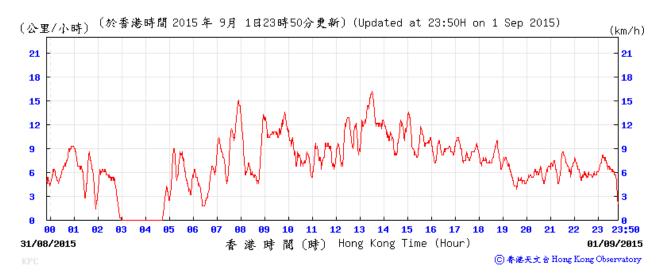
Wind Direction:




King's Park Weather Station – 24 August 2015

Temperature and Humidity:


Wind Direction:


King's Park Weather Station - 31 August 2015

Temperature and Humidity:

Wind Direction:

Daily Total Rainfall (mm) at King's Park HKO Weather Monitoring Station in August 2015

Day	August	24-hr TSP	Noise	Remarks
1	-			
2	-			
3	-	✓		
4	-		✓	No rainfall recorded on site during Noise Monitoring
5	-			
6	-			
7	-			
8	-			
9	17.5			
10	27.3	✓		
11	19.8		✓	No rainfall recorded on site during Noise Monitoring
12	-			
13	42.5			
14	19.9			
15	23.1			
16	2.0			
17	-	✓		
18	-		✓	No rainfall recorded on site during Noise Monitoring
19	-			
20	7.2			
21	-			
22	-			
23	5.7			
24	-	✓		
25	-		✓	No rainfall recorded on site during Noise Monitoring
26	0.6			
27	-			
28	0.1			
29	2.5			
30	6.6			
31	0.2	✓		
Total	175.0			

Appendix I

Certificate of Laboratory and Equipment Calibration

TISCH ENVIRONMENTAL, INC. 145 SOUTH MIAMI AVE VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

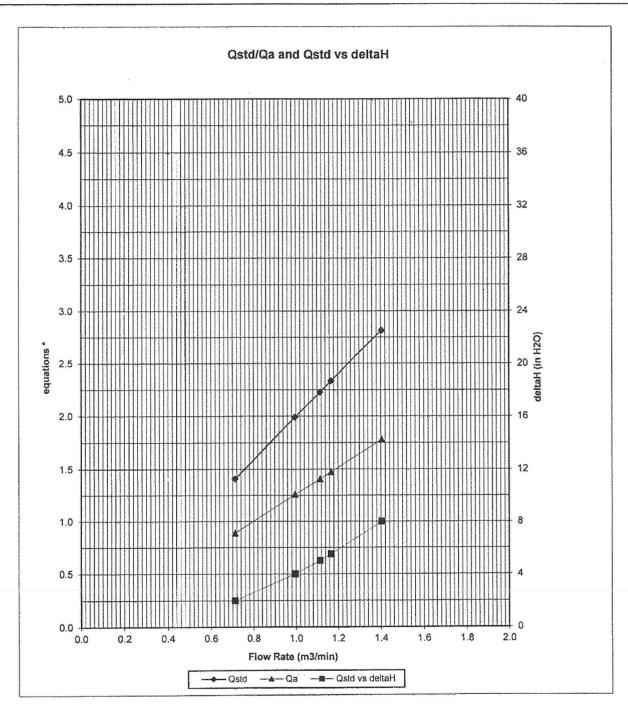
Date - May 11, 2015 Rootsmeter S/N 0438320 Ta (K) - 297 Operator Tisch Orifice I.D 1785 Pa (mm) - 750.57						
PLATE OR Run # 1 2 3 4 5	VOLUME START (m3) NA NA NA NA NA	VOLUME STOP (m3) NA NA NA NA NA	DIFF VOLUME (m3) 1.00 1.00 1.00 1.00	DIFF TIME (min) 1.3860 0.9870 0.8800 0.8390 0.6940	METER DIFF Hg (mm) 3.2 6.4 7.9 8.7 12.6	ORFICE DIFF H2O (in.) 2.00 4.00 5.00 5.50 8.00

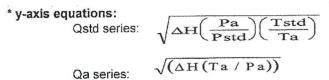
DATA TABULATION

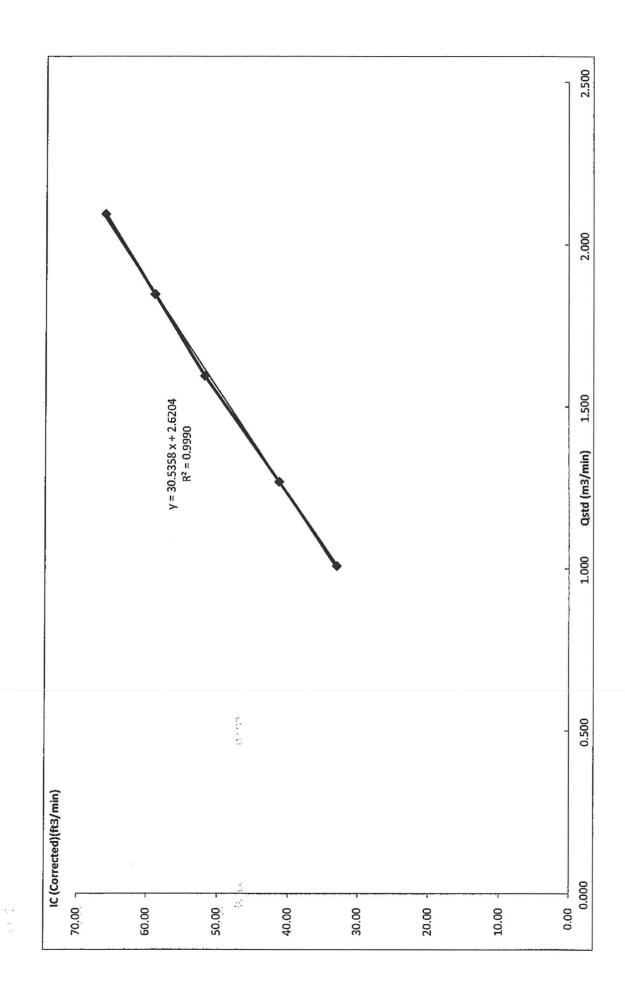
Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
0.9867 0.9825 0.9804 0.9794 0.9742	0.7119 0.9954 1.1141 1.1674 1.4038	1.4078 1.9909 2.2259 2.3345 2.8156	man mari	0.9957 0.9915 0.9894 0.9884 0.9832	0.7184 1.0045 1.1243 1.1781 1.4167	0.8896 1.2581 1.4066 1.4752 1.7792
Qstd slop	(b) = ent (r) =	2.03254 -0.03728 0.99997		Qa slope intercept coefficie	= (b) $=$	1.27274 -0.02356 0.99997
y axis =	SQRT[H20(F	Pa/760) (298/1	[a)]	y axis =	SQRT[H2O(T	[a/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta) Qstd = Vstd/Time


Va = Diff Vol [(Pa-Diff Hg)/Pa]


Qa = Va/Time


For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT(H2O(Pa/750)(298/Ta))] - b \}$

 $Qa = 1/m\{[SQRT H2O(Ta/Pa)] - b\}$

High Volume Air Sampler Calibration Worksheet

Project Title:

MTR Tsim Sha Tsui Station Carnarvon Road Subway and Entrances Modification Works

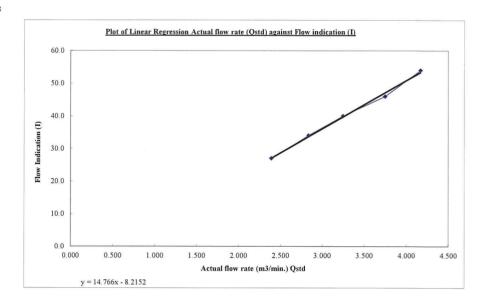
Monitoring Location:

K11 Commercial Complex

Calibration Date: Calibration Due Date 11-May-15 11-Aug-15

Time:

15:23


Sampler Model:	BM2000HX
Serial No.:	587
Calibrator Orifice no.:	1785
Slope (m):	1.27274
Intercept (b):	-0.02356
Correction coeff. (r)	0.99997

$$Flow(corrected) = \sqrt{H \times \frac{Pa}{Pstd}} \times \frac{Tste}{Ta}$$

$$Qstd = \frac{1}{m} \times (\sqrt{H \times \frac{Pa}{Pstd} \times \frac{Tstd}{Ta}} - b)$$

Sample no.	Pressure Drop (H), inch	Flow (corrected), m3/min	Actual flow rate (Qstd), m³/min	Flow indication (I), arbitrary
1	10.4	5.282	4.169	54.0
2	8.4	4.747	3.748	46.0
3	6.3	4.111	3.249	40.0
4	4.8	3.588	2.838	34.0
5	3.4	3.020	2.391	27.0

Correlation Coefficient: 0.9978

Remark 1 hPa = 0.750062 mmHg

Calibrated by:

C. S. Tung

SUV

Date: 11 May 2015

Checked by:

F. N. Wong

Date: 11 May 2015

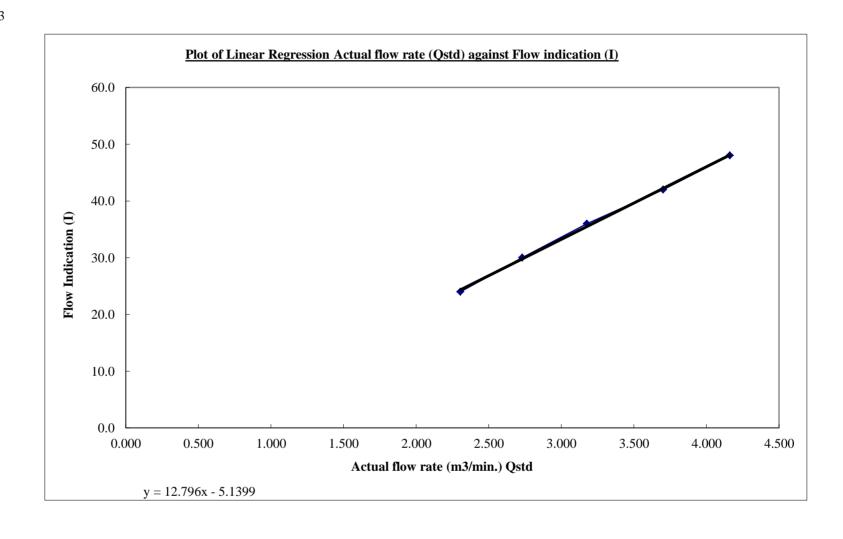
High Volume Air Sampler Calibration Worksheet

Project Title: MTR Tsim Sha Tsui Station Carnarvon Road Subway and Entrances Modification Works

Monitoring Location: K11 Commercial Complex

Calibration Date: 11-Aug-15
Calibration Due Date 11-Nov-15
Time: 10:11

Sampler Model:	BM2000HX
Serial No.:	587
Calibrator Orifice no.:	1785
Slope (m):	1.27274
Intercept (b):	-0.02356
Correction coeff. (r)	0.99997


Standard pressure (mmHg) Pstd:	276.0
Standard temp. (K) Tstd:	298.0
Calibration pressure (mmHg) Pa:	755.3
Calibration temp. (K) Ta:	308.0

$$Flow(corrected) = \sqrt{H \times \frac{Pa}{Pstd} \times \frac{Tstd}{Ta}}$$

$$Qstd = \frac{1}{m} \times (\sqrt{H \times \frac{Pa}{Pstd} \times \frac{Tstd}{Ta}} - b)$$

Sample no.	Pressure Drop (H), inch	Flow (corrected), m ³ /min	Actual flow rate (Qstd), m ³ /min	Flow indication (I), arbitrary
1	10.5	5.273	4.161	48.0
2	8.3	4.688	3.702	42.0
3	6.1	4.019	3.176	36.0
4	4.5	3.452	2.731	30.0
5	3.2	2.911	2.306	24.0

Correlation Coefficient: 0.9993

Remark

1 hPa = 0.750062 mmHg

Calibrated by: C. S. Tung

C. S. Tung

Date: 11 August 2015

Checked by: F. N. Wong

(

Date: 11 August 2015

Certificate No. 501362

Page 1 of 3 Pages

Customer: Hyder Consulting Limited

Address: 47/F., Hopewell Centre, 183 Queens Road East, Wanchai, Hong Kong

Order No.: Q50521

Date of receipt

26-Feb-15

Item Tested

Description: Sound Level Meter

Manufacturer: B&K

Model : 2238

Serial No.

: 2562782

Test Conditions

Date of Test: 28-Feb-15

Supply Voltage : -

Ambient Temperature:

 $(23 \pm 3)^{\circ}C$

Relative Humidity: (50 ± 25) %

Test Specifications

Calibration check.

Ref. Document/Procedure: Z01, IEC 651, IEC 804.

Test Results

All results were within the IEC 651 Type 1, IEC 804 Type 1 specification.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No. Description

<u>ion</u> <u>Cert. No.</u>

Traceable to

S017

Multi-Function Generator

C147450

SCL-HKSAR

S240

Sound Level Calibrator

500563

NIM-PRC & SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI). The test results apply to the above Unit-Under-Test only

Calibrated by

Dorothy Cheuk

Approved by:

28-Feb-15

Date:

Steve Kwan

This Certificate is issued by:

Hong Kong Calibration Ltd.

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong.

Tel: 2425 8801 Fax: 2425 8646

Certificate No. 501362

Page 2 of 3 Pages

Results:

1. SPL Accuracy

	UUT Setting			Applied Value	UUT Reading
Range	Freq. Wgt.	Bandwith	Center Freq.	(dB)	(dB)
20 ~ 100	A	BB/F		94.0	94.3
	A	BB/S			94.3
	С	BB/F			94.3
40 ~ 120	A	BB/F		94.0	94.3
	A	BB/F		114.0	114.3

IEC 651 Type 1 Spec. : ± 0.7 dB

Uncertainty: ± 0.1 dB

2. Level Stability: 0.0 dB

IEC 651 Type 1 Spec. : \pm 0.3 dB

Uncertainty: ± 0.1 dB

3. Linearity

3.1 Level Linearity

UUT Range	Applied	UUT Reading	Variation	IEC 651 Type 1 Spec.
(dB)	Value (dB)	(dB)	(dB)	(Primary Indicator Range)
140	114.0	114.3	0.0	± 0.7 dB
130	104.0	104.3	0.0	
120	94.0	94.3 (Ref.)		
110	84.0	84.3	0.0	
100	74.0	74.4	+0.1	
90	64.0	64.4	+0.1	
80	54.0	54.3	0.0	

Uncertainty: $\pm 0.1 \text{ dB}$

Certificate No. 501362

Page 3 of 3 Pages

3.2 Differential level linearity

UUT Range	Applied	UUT Reading		
(dB)	Value (dB)	(dB)	Variation (dB)	IEC 651 Type 1 Spec.
120	84.0	84.3	0.0	± 0.4 dB
	94.0	94.3 (Ref.)		
	95.0	95.3	0.0	± 0.2 dB

Uncertainty: $\pm 0.1 \text{ dB}$

4. Frequency Weighting

A weighting

Frequency	Attenuation (dB)	IEC 651 Type 1 Spec.
31.5 Hz	- 39.4	- 39.4 dB, ± 1.5 dB
63 Hz	- 26.2	- 26.2 dB, ± 1.5 dB
125 Hz	- 16.2	- 16.1 dB, ± 1 dB
250 Hz	- 8.7	- 8.6 dB, ± 1 dB
500 Hz	- 3.2	- 3.2 dB, ± 1 dB
1 kHz	0.0 (Ref)	$0 \text{ dB}, \pm 1 \text{ dB}$
2 kHz	+ 1.2	+ 1.2 dB, ± 1 dB
4 kHz	+ 0.9	$+ 1.0 \text{ dB}, \pm 1 \text{ dB}$
8 kHz	- 1.2	- 1.1 dB, + 1.5 dB ~ -3 dB
16 kHz	- 6.7	- 6.6 dB, + 3 dB \sim - ∞

Uncertainty: ± 0.1 dB

5. Time Averaging

Applied Burst duty Factor	Applied Leq Value (dB)	UUT Reading (dB)	IEC 804 Type 1 Spec.
continuous	40.0	40.0	
1/10	40.0	39.9	± 0.5 dB
$1/10^2$	40.0	39.9	
$1/10^3$	40.0	39.8	± 1.0 dB
1/10 ⁴	40.0	39.8	

Uncertainty: ± 0.1 dB

Remarks: 1. UUT: Unit-Under-Test

- 2. The uncertainty claimed is for a confidence probability of not less than 95%.
- 3. Atmospheric pressure: 1 010 hPa.
- 4. The UUT was adjusted with the supplied sound calibrator at the reference sound pressure level before the calibration.

Certificate No. 409134

Page 1 of 2 Pages

Customer: Hyder Consulting Limited

Address: 47/F., Hopewell Centre, 183 Queens Road East, Wanchai, Hong Kong

Order No.: Q43957 Date of receipt

Item Tested

Description: Sound Level Calibrator

Manufacturer: B&K

Model: Type 4231

Serial No.

: 2699361

8-Dec-14

Test Conditions

Date of Test: 30-Dec-14

Supply Voltage : --

Ambient Temperature :

 $(23 \pm 3)^{\circ}C$

Relative Humidity : $(50 \pm 25) \%$

Test Specifications

Calibration check.

Ref. Document/Procedure: F21, Z02, IEC 942.

Test Results

All results were within the IEC 942 Class 1 specification.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No.	<u>Description</u>	Cert. No.	<u>Traceable to</u>
S014	Spectrum Analyzer	405316	NIM-PRC & SCL-HKSAR
S205	Ref. Sound Level Calibrator	PHCO40002	SCL-HKSAR
S041	Universal Counter	405317	SCL-HKSAR
S206	Sound Level Meter	405322	SCL-HKSAR
S031	6½ dgt. Multimeter	39256	NIM-PRC

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI). The test results apply to the above Unit-Under-Test only

Calibrated by :

Oorothy Cheuk

Approved by:

Date:

30-Dec-14

Steve Kwan

This Certificate is issued by:

Hong Kong Calibration Ltd.

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong.

Tel: 2425 8801 Fax: 2425 8646

Certificate No. 409134

Page 2 of 2 Pages

Results:

1. Level Accuracy

UUT Nominal Value	Measured Value (dB)		IEC 942
(dB)	Before Adjust.	After Adjust.	Class 1 Spec.
94	94.3	94.0	± 0.3 dB
114	114.3	114.0	

Uncertainty: $\pm 0.1 \text{ dB}$

2. Frequency

UUT Nominal Value	Measured Value	IEC 942 Class 1 Spec.
1 kHz	1.000 kHz	± 2 %

Uncertainty: $\pm 3.6 \times 10^{-6}$

3. Level Stability: 0.0 dB

IEC 942 Class 1 Spec. : ± 0.1 dB

Uncertainty: ± 0.01 dB

4. Total Harmonic Distortion : < 0.4 %

IEC 942 Class 1 Spec. : < 3 % Uncertainty : \pm 2.3 % of reading

Remark: 1. UUT: Unit-Under-Test

2. The uncertainty claimed is for a confidence probability of not less than 95%.

3. Atmospheric Pressure: 1010 hPa.

----- END -----

Appendix J

Field Record Sheets

Monitoring Location		K11		
Details of Location		4/F Roof top, K11		
Sampler Identificati	on	,* 1713		
Date & Time of San	npling	03/08/2015, 00:00 a.m.		
Elapsed-time	Start (hrs)	8501.00		
Meter Reading	Stop (hrs)	3525,00		
Total Sampling Time	e (hrs)	24		
Weather Conditions	3	Sunny		
Site Conditions		Nil		
	Pi (mm Hg)	757.3		
Initial Flow	Ti (°C)	27.0		
Rate, Qsi	Hi (in.)			
	Qsi (Std. m³/min)	7.07		
	Pf (mm Hg)	757.3		
Final Flow	Tf (°C)	27.0		
Rate, Qsf	Hf (in.)			
	Qsf (Std. m³/min)	202		
Average Flow Rate (Std. m³/min)		2.07		
Total Volume (Std. m ³)		2905		
Filter Identification No.		034106		
Initial Weight. of Filter (g)		2.8874		
Final Weight of Filter (g)		2,9441		
Measured TSP Level (μg/m ³)		19.5		

Conducted by:	C. S. Tung	Signature:	De
Checked by:	F. N. Wong	Signature:	
			ATT I

	K11		
	4/F Roof top, K11		
n	1713		
pling	10/8/2015,00:00a.m.		
Start (hrs)	10/8/2015,00:00am. 8525,00		
Stop (hrs)	2548.00		
(hrs)	24		
	Overcast		
	Nil		
Pi (mm Hg)	155.3		
Ti (°C)	78.0		
Hi (in.)			
Qsi (Std. m³/min)	1.15		
Pf (mm Hg)	755.3		
Tf (°C)	28.2		
Hf (in.)			
Qsf (Std. m³/min)	1.75		
Std. m³/min)	1,15		
n ³)	2515		
0.	034107		
er (g)	2.8925		
· (g)	29750		
l (μg/m³)	32.8		
	Start (hrs) Stop (hrs) (hrs) Pi (mm Hg) Ti (°C) Hi (in.) Qsi (Std. m³/min) Pf (mm Hg) Tf (°C) Hf (in.) Qsf (Std. m³/min) Std. m³/min) std. m³/min) o. er (g)		

Conducted by:	C. S. Tung	Signature:	
Checked by:	F. N. Wong	Signature:	
			ALI .

Monitoring Location		K11		
Details of Location		4/F Roof top, K11		
Sampler Identificat	ion	1713		
Date & Time of Sar	npling	17/8/2015,00:00 a.m		
Elapsed-time	Start (hrs)	8549.00		
Meter Reading	Stop (hrs)	\$513.00		
Total Sampling Tim	e (hrs)	24		
Weather Conditions	S	Sunny		
Site Conditions		Nil		
	Pi (mm Hg)	156.6		
Initial Flow	Ti (°C)	29.0		
Rate, Qsi	Hi (in.)			
	Qsi (Std. m³/min)	2.15		
	Pf (mm Hg)	7566		
Final Flow	Tf (°C)	28.8		
Rate, Qsf	Hf (in.)			
	Qsf (Std. m ³ /min)	2.15		
Average Flow Rate (Std. m ³ /min)		2,15		
Total Volume (Std. m ³)		3100		
Filter Identification No.		034/08		
Initial Weight. of Filter (g)		2.8782		
Final Weight of Filter (g)		2,9563		
Measured TSP Level (μg/m³)		19.9		

Checked by: F. N. Wong Signature:	Conducted by:	C. S. Tung	Signature:	
	Checked by:	F. N. Wong	Signature:	

Monitoring Location		K11
Details of Location		4/F Roof top, K11
Sampler Identificati	on	1713
Date & Time of San	npling	24/8/2015, 00:00 a.m.
Elapsed-time	Start (hrs)	8573.00
Meter Reading	Stop (hrs)	7597.00
Total Sampling Time	e (hrs)	24
Weather Conditions	3	Sunny
Site Conditions		Ni l
	Pi (mm Hg)	153.4
Initial Flow	Ti (°C)	29.0
Rate, Qsi	Hi (in.)	
	Qsi (Std. m³/min)	2.26
	Pf (mm Hg)	753.4
Final Flow	Tf (°C)	29.0
Rate, Qsf	Hf (in.)	
	Qsf (Std. m ³ /min)	2,33
Average Flow Rate (Std. m ³ /min)		2.19
Total Volume (Std. m ³)		3304
Filter Identification No.		034/09
Initial Weight. of Filter (g)		2.8677
Final Weight of Filter (g)		3.0356
Measured TSP Level (μg/m³)		50.8
		9

Conducted by:	C. S. Tung	Signature:	
Checked by:	F. N. Wong	Signature:	

Monitoring Location		K11	
Details of Location		4/F Roof top, K11	
Sampler Identificati	ion	1713	
Date & Time of Sar	mpling	31/8/2015,00200am-	
Elapsed-time	Start (hrs)	8597.00	
Meter Reading	Stop (hrs)	8621.00	
Total Sampling Tim	e (hrs)	24	
Weather Conditions	6	cloudy	
Site Conditions		Ni l	
	Pi (mm Hg)	755.8	
Initial Flow	Ti (°C)	25.5	
Rate, Qsi	Hi (in.)		
	Qsi (Std. m³/min)	2.72	
Pf (mm Hg)		755.8 1	
Final Flow	Tf (°C)	26.8 €	
Rate, Qsf	Hf (in.)		
	Qsf (Std. m³/min)	2.88	
Average Flow Rate (Std. m³/min)		2.80	
Total Volume (Std. m ³)		4036	
Filter Identification No.		034110	
Initial Weight. of Filter (g)		2.8706	
Final Weight of Filter (g)		2.9896	
Measured TSP Level (μg/m³)		29.5	

Conducted by:	C. S. Tung	Signature:	
Checked by:	F. N. Wong	Signature:	JAM)

Monitoring Location		K11
Description of Location		4/F Roof top, K11
Date of Monitoring	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	04/08/2015
Measurement Start Time	(hh:mm)	10:18
Measurement Time Length	(min.)	30
Noise Meter Model / Identifi	cation	B & K 2238
Calibrator Model / Identifica	tion	B & K 4231
	L _{eq} (dB (A))	69.2
Measurement Results	L ₁₀ (dB (A))	70.0
L ₉₀ (dB (A))		61.5
Major Construction Noise Source(s) during Monitoring		On-site powered mechanical equipment
Other Noise Source(s) during Monitoring		Traffic Noise
Remarks		Weather Condition: Fine Wind Speed: 0-8 m/S

Conducted by:	C. S. Tung	Signature:	
Checked by:	F. N. Wong	Signature:	

Monitoring Location		K11				
Description of Location		4/F Roof top, K11				
Date of Monitoring		1118/2015				
Measurement Start Time	(hh:mm)	10:09				
Measurement Time Length	(min.)	30				
Noise Meter Model / Identif	ication	B & K 2238				
Calibrator Model / Identifica	ıtion	B & K 4231				
	L _{eq} (dB (A))	68.2				
Measurement Results	L ₁₀ (dB (A))	(,), 0				
	L ₉₀ (dB (A))	66.5				
Major Construction Noise S during Monitoring	Source(s)	On-site powered mechanical equipment				
Other Noise Source(s) duri	ng Monitoring	Traffic Noise				
Remarks		Weather Condition: Sun of Wind Speed: 0.4 m/s				

Conducted by:	C. S. Tung	Signature:	
Checked by:	F. N. Wong	Signature:	

Monitoring Location		K11				
Description of Location		4/F Roof top, K11				
Date of Monitoring		18/8/2015				
Measurement Start Time	(hh:mm)	11:28				
Measurement Time Length	(min.)	30				
Noise Meter Model / Identifi	cation	B & K 2238				
Calibrator Model / Identifica	tion	B & K 4231				
	L _{eq} (dB (A))	68.6				
Measurement Results	L ₁₀ (dB (A))	70.0				
	L ₉₀ (dB (A))	66,5				
Major Construction Noise S during Monitoring	ource(s)	On-site powered mechanical equipment				
Other Noise Source(s) during	ng Monitoring	Traffic noise				
Remarks		Traffic noise Weather Condition: Sunny Wind Speed: 0.4m/S				

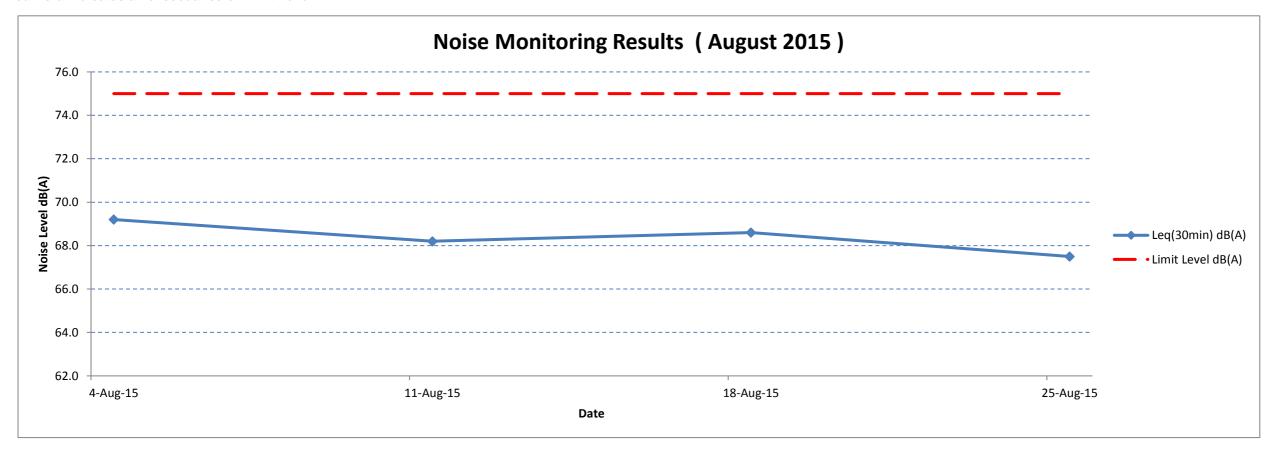
Conducted by:	C. S. Tung	Signature:	
Checked by:	F. N. Wong	Signature:	

Monitoring Location		K11				
Description of Location		4/F Roof top, K11				
Date of Monitoring		25/8/2015				
Measurement Start Time	(hh:mm)	09:53				
Measurement Time Length	(min.)	30				
Noise Meter Model / Identif	ication	B & K 2238				
Calibrator Model / Identifica	ıtion	B & K 4231				
	L _{eq} (dB (A))	67.5				
Measurement Results	L ₁₀ (dB (A))	0,80				
	L ₉₀ (dB (A))	65.5				
Major Construction Noise S during Monitoring	Source(s)	On-site powered mechanical equipmen				
Other Noise Source(s) during	ng Monitoring	Pircraft and Traffic noise Weather Condition: Sunny				
Remarks						
		Wind Speed : Onlm (S				

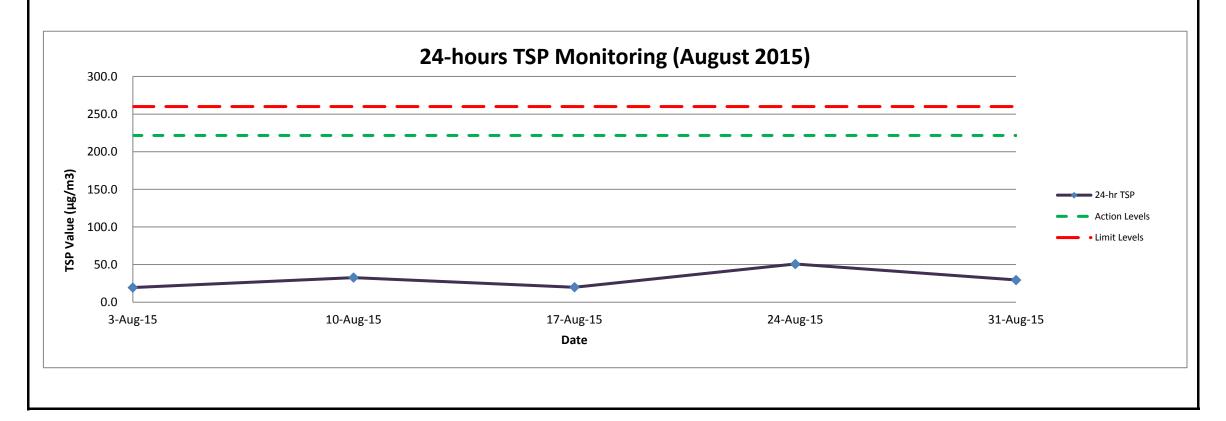
Conducted by:	C. S. Tung	Signature:	2
Checked by:	F. N. Wong	Signature:	

Appendix K

Monitoring Results and Plots

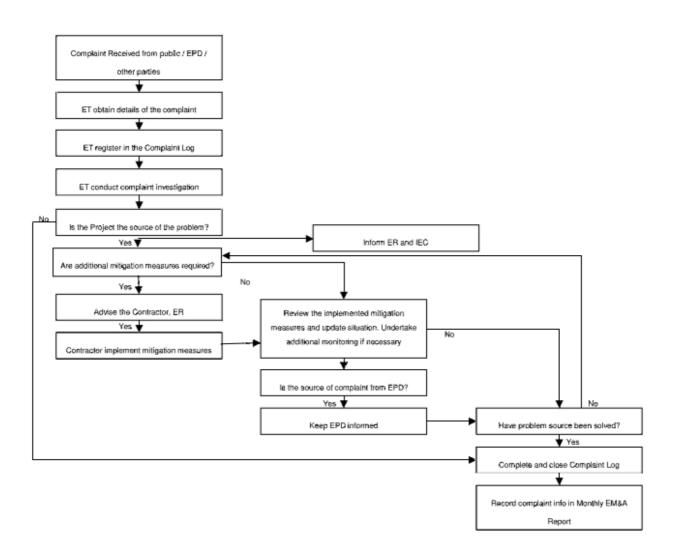

Noise Impact Monitoring Results at K11

Monitoring Locations	Date		Wind Speed (m/s)	Start Time	End Time	Background Level dB(A)	Limit Level dB(A)	Leq(30min) dB(A)	11 10/30min) dR/A)	L90(30min) dB(A)
K11 Art Mall	4-Aug-15	Fine	0.8	10:18	10:48	65.3	75	69.2	70.0	67.5
	11-Aug-15	Sunny	0.4	10:09	10:39	65.3	75	68.2	69.0	66.5
	18-Aug-15	Sunny	0.4	11:28	11:58	65.3	75	68.6	70.0	66.5
	25-Aug-15	Sunny	0.1	9:53	10:23	65.3	75	67.5	69.0	65.5


Note:

The limit level of NSR1 is 65dB(A) during school examination period.

Red Bold indicates an exceedance of Limit Level


Impact Air Quality Monitoring : 24-hour TSP at K11												
Location	Monitoring Date	Start Time	Weather Conditions	Temperature	Elapse Time		Flow Rate (CFM)		Average	TSP Concentration	Antinull imit I amb	
					Initial	Final	Sampling Hours	Initial	Final	Flow Rate	(µg/m3)	Action/Limit Levels
	3-Aug-15	0:00	Sunny	27.0	850100	852500	24	38	38	38	19.5	221.6/260
	10-Aug-15	0:00	Overcast	28.0	852500	854900	24	34	34	34	32.8	221.6/260
K11 Art Mall	17-Aug-15	0:00	Sunny	29.0	854900	857300	24	40	40	40	19.9	221.6/260
	24-Aug-15	0:00	Sunny	29.0	857300	859700	24	34	35	35	50.8	221.6/260
	31-Aug-15	0:00	Cloudy	25.5	859700	862100	24	40	42	41	29.5	221.6/260

Appendix L

Flow Chart for Handling Environmental Complaints

Complaint Response Procedure

Appendix M

Waste Management Records

Monthly Summary Waste Flow Table for 2015 (year)

Contract No: C3840-13C Tsim Sha Tsui Station Carnarvon Road Subway

Date Reported: 2-September-2015

		Actual Qua	ntities of Inert C&I	Materials Generate	ed Monthly		Actual Quantities of Non-inert C&D Wastes Generated Monthly					
Month	Total Quantity Generated	Hard Rocks and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics	Chemical Waste	Others, e.g.	
		(See Note 3)							(see Note 2)			
	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000m³)	(in '000kg)	(in '000kg)	(in '000kg)	(in'000kg)	(in '000m³/tonne)	
Carried from 2014	0.9342	-	-	-	0.9342	-	-	-	-	-	0.0035	
Jan	0.0682	-	-	=	0.0682	-	ı	-	-	-	-	
Feb	0.0418	-	-	-	0.0418	-	-	-	-	-	-	
Mar	0.2563	-	-	-	0.2563	-	-	-	-	-	0.0020	
Apr	0.2182	-	-	-	0.2182	-	-	-	-	-	-	
May	0.1011	-	-	-	0.1011	-	-	-	-	-	-	
June	0.2604	-	-	-	0.2604	-	-	-	-	-	-	
Sub-total	0.9460	-	-	-	0.9460	-	ı	-	-	-	0.0020	
July	0.1806	-	-	-	0.1806	-	ı	-	-	-	-	
Aug	0.1006	-	-	=	0.1006	-	ı	-	-	-	-	
Sept	-	-	-	-	-	-	-	-	-	-	-	
Oct	-	-	-	-	-	-	1	-	-	-	-	
Nov	-	-	-	-	-	-	-	-	-	-	-	
Dec	-	-	-	-	-	-	-	-	-	-	-	
Total	1.2272	-	-	-	1.2272	-	-	-	-	-	0.0020	
Acc. Total	2.1614	(accumulated quar	ntity of the project =	= carried amount + t	his year amount)						0.0055	

Notes:

- (1) The performance targets are given below:
 - All excavated materials to be sorted for recovering the inert portion of C&D materials, e.g. hard rocks, soil and broken concrete, for reuse on the Site or disposal to designated outlets;
 - All metallic waste to be recovered for collection by recycling contractors;
 - All cardboard and paper packaging (for plant, equipment and materials) to be recovered, properly stockpiled in dry and covered condition to prevent cross contamination;
 - All chemical wastes to be collected and properly disposed of by specialist contractors; and
 - All demolition debris to be stored to recover broken concrete, reinforcement bars, mechanical and electrical fittings, hardware as well as other fitting / materials that have established recycling outlets.
- (2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.
- 3) Broken concrete for recycling into aggregates.
- (4) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.