Civil Engineering and Development Department

Trunk Road T2
 Monthly Environmental Monitoring and Audit Report (under EP-451/2013)

September 2022
(Version 1.0)

REMARKS:
The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong
Tel: (852) 21512083 Fax: (852) 31071388
Email: info@cinotech.com.hk

RAMBCLL

Ref．：CEDKTDT2EM00＿0＿0387L． 22
14 October 2022
Hyder－Meinhardt Joint Venture
By Post and Email
17／F，Two Harbour Square
180 Wai Yip Street，Kwun Tong
Kowloon，Hong Kong
Attention：Mr．Edwin Ching

Dear Mr．Ching，

Re：Agreement No．EDO 01／2019

Independent Environmental Checker for
Contract No．ED／2018／04－Trunk Road T2 and Infrastructure Works for Developments at the Former South Apron

Monthly EM\＆A Report（September 2022）for EP－451／2013

Reference is made to the Environmental Team＇s submission of the Monthly EM\＆A Report for September 2022 （Version 1．0）certified by the ET Leader and provided to us via e－mail on 14 October 2022．We are pleased to inform you that we have no adverse comment on the captioned submission．We write to verify the captioned submission in accordance with Condition 3.4 of EP－451／2013．

The ET Leader is reminded that it is the ET＇s responsibility to ensure the report be timely submitted to the Director of Environmental Protection as per Condition 3.4 of EP－451／2013．

Thank you for your attention．Please do not hesitate to contact the undersigned should you have any queries．

Yours sincerely，
For and on behalf of
Ramboll Hong Kong Limited

Y H Hui
Independent Environmental Checker

C．C．
CEDD
BTP
Cinotech

Attn．：Mr．Tommy Wong
Attn．：Mr．Ivan Chau
Attn．：Mr．K．S．Lee

Fax： 27390076
By email
Fax： 31071388

Q：\Projects \CEDKTDT2EM00\02 Proj＿Mgt\02 Corr\CEDKTDT2EM00＿0＿0387L．22．doc

Table of contents

Page
EXECUTIVE SUMMARY 1
Introduction 1
Summary of Main Works Undertaken and Key Measures Implemented 1
Summary of Exceedances, Investigation and Follow-up 2
Complaint Handling, Prosecution and Public Engagement 3
Reporting Changes 3
Future Key Issues. 3
Review of Status and Location of Monitoring Stations 4
1 INTRODUCTION 5
Background 5
Purpose of the Report 6
Project Organizations 6
Construction Activities undertaken during the Reporting Month 7
Status of Environmental Licensing and Permitting 8
2 AIR QUALITY 10
Monitoring Requirement. 10
Monitoring Locations 10
Monitoring Parameters and Frequency 10
Monitoring Equipment 11
Monitoring Methodology 11
Results and Observations 14
Comparison of EM\&A Result with EIA Prediction 15
3 NOISE 16
Monitoring Requirements 16
Monitoring Locations 16
Monitoring Parameters, Frequency and Duration 16
Monitoring Equipment 17
Monitoring Methodology and QA/QC Procedure 17
Maintenance and Calibration 18
Results and Observations 18
Comparison of EM\&A Result with EIA Prediction 19
4 WATER QUALITY 20
Monitoring Requirement. 20
5 MARINE ECOLOGY 20
6 FISHERIES 20
7 LANDSCAPE AND VISUAL 21
8 CULTURAL HERITAGE 24
9 WASTE MANAGEMENT 24
10 ENVIRONMENTAL AUDIT 25
Site Audits. 25
Implementation Status of Environmental Mitigation Measures 25
Implementation Status of Event and Action Plans 26
Status of Required Submission under Environmental Permit 26
11 ENVIRONMENTAL NON-CONFORMANCE 28
Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution28 Summary of Exceedance. 28
12 FUTURE KEY ISSUES 28
Monitoring Schedule 29
13 CONCLUSIONS AND RECOMMENDATIONS 30
Conclusions 30
Recommendations 30

LIST OF TABLES

Table I Summary of Key Construction Work in the Reporting Month
Table II Summary of Key Mitigation Measures Implemented in the Reporting Month
Table III Summary of Complaint/Summons/Prosecution in the Reporting Month
Table IV Summary Table for Site Activities in the next Reporting Period
Table V Summary Table for Review of Status and Location of Monitoring Stations
Table 1.1 Key Project Contacts
Table 1.2 Summary of Key Construction Work in the Reporting Month
Table 1.3 Summary of Environmental License and Permit
Table 2.1 Air Quality Monitoring Locations
Table 2.2 Frequency and Parameters of Air Quality Monitoring
Table 2.3 Air Quality Monitoring Equipment
Table 2.4 Major Dust Source during Air Quality Monitoring
Table 2.5 Comparison of 1-hr TSP Monitoring Data with Predictions in EIA Report (not used)
Table 2.6 Comparison of 24-hr TSP Monitoring Data with Predictions in EIA Report
Table $3.1 \quad$ Noise Monitoring Stations
Table 3.2 Frequency and Parameters of Noise Monitoring
Table 3.3 Noise Monitoring Equipment
Table 3.4 Major Noise Source during Noise Monitoring
Table 3.5 Baseline Noise Level and Noise Limit Level for Monitoring Stations
Table 3.6 Comparison of Noise Monitoring Data with Predictions in EIA Report
Table 3.7 Additional Noise Monitoring Results
Table 7.1 Construction Phase Landscape and Visual Mitigation Measures
Table 7.2 Construction Phase Audit Checklist for Landscape and Visual Mitigation Measures
Table 10.1 Observations and Recommendations of Site Audit
Table 10.2 Status of Required Submission under Environmental Permit
Table 12.1 Summary Table for Site Activities and the Key Environmental Issues in the next Reporting Period

LIST OF FIGURES

Figure 1.1 Layout Plan of the Project Site
Figure 1.2 Project Organisation for Environmental Monitoring and Audit
Figure 2 Locations of Air Quality and Construction Noise Monitoring Stations

LIST OF APPENDICES

Appendix A Action and Limit Levels
Appendix B Environmental Monitoring Schedules
Appendix C Copies of Calibration Certificates for Air Quality Monitoring
Appendix D Weather Information
Appendix E 1-hour TSP Monitoring Results and Graphical Presentations (not used)
Appendix F \quad 24-hour TSP Monitoring Results and Graphical Presentations
Appendix G Copies of Calibration Certificates for Noise Monitoring
Appendix H Noise Monitoring Results and Graphical Presentations
Appendix I Site Audit Summary
Appendix J Event and Action Plans
Appendix K Environmental Mitigation Implementation Schedule (EMIS)
Appendix L Summaries of Environmental Complaint, Warning, Summon and Notification of Successful Prosecution
Appendix M Summary of Exceedance
Appendix N Tentative Construction Programme
Appendix O Waste Generated in the Reporting Month

EXECUTIVE SUMMARY

Introduction

1. This is the $31^{\text {th }}$ Environmental Monitoring and Audit (EM\&A) Report prepared by the Environmental Team (ET), Cinotech Consultants Ltd., for "Trunk Road T2". This report summarized the monitoring results and audits findings of the EM\&A programme under the issued Environmental Permit (EP) No. EP-451/2013 and in accordance with the EM\&A Manual (AEIAR-174/2013) during the reporting month of September 2022.

Summary of Main Works Undertaken and Key Measures Implemented

2. The main works of each works contracts undertaken during the reporting period are as follows:

Table I Summary of Key Construction Work in the Reporting Month

Contract No.	Project Title	Site Activities
ED/2018/04	Trunk Road T2 and Infrastructure Works for Developments at South Apron	- Depressed Road - Portal Structure, Capping Beam - Depressed Road - DPR/SUS connection - West Ventilation Building - Basement 2 Construction - Launching Shaft / Cut \& Cover RC Structure - Westbound TBM Tunnelling - Eastbound TBM Tunnelling - EB Service Gallery Installation - WB Service Gallery Installation - CP Tympanum construction - SUS Remaining Internal Wall - SUS OHVB In-situ Slab - Tunnel Segment delivery
ED/2020/03	Trunk Road T2 - Traffic Control And Surveillance System (TCSS) and Associated Works ${ }^{(1)}$	N/A

3. Implementation of the key mitigation measures during the reporting period are as follows:

Table II Summary of Key Mitigation Measures Implemented in the Reporting Month

Contract No. and Project Title	Key Mitigation Measures Implemented
ED/2018/04 - Trunk Road T2 and Infrastructure Works for Developments at South Apron	Air Quality - Water spraying regularly on construction site area to avoid dust generation. - Excavated dusty materials were covered by impervious sheets. Noise - Air compressor was operated with door closed and have valid noise labels. - Use of Quality Powered Mechanical Equipment (QPME) - Erecting noise barriers on site to minimize noise impact generated from breaking activities. Water Quality - WetSep was constructed to treat the surface runoff prior to discharge. Landscape and Visual - Tree protection zone were fenced off to protect the existing tree.
ED/2020/03 - Trunk Road T2 Traffic Control And Surveillance System (TCSS) and Associated Works ${ }^{(1)}$	N/A

Notes:
(1): No major construction work was undertaken during reporting month.

N/A: Not applicable

Summary of Exceedances, Investigation and Follow-up

4. Exceedance of Action/Limit levels during the reporting month (September 2022) and the investigation results and/or follow-up actions:

Air Quality Monitoring

- No Action Level exceedance for 24-hour TSP was recorded.
- No Limit Level exceedance for 24-hour TSP was recorded.

Construction Noise Monitoring

- No Limit Level exceedance for day time construction noise was recorded in this reporting month.
- No Action Level exceedance was recorded in this reporting month.

Landscape and Visual Monitoring and Audit

- No non-compliance of the landscape and visual impact was recorded in the reporting month. The implementation of landscape and visual and mitigation measures was checked by a Registered Landscape Architect (RLA) during the environmental site inspections.

Complaint Handling, Prosecution and Public Engagement

Table III Summary of Complaint/Summons/Prosecution in the Reporting Month

Event	Event Details		Follow-up/ Remedial Actions	Status/ Remarks
	Number	Brief Description	-	-
Complaints Received	0	-	-	-
Notification of Summons and Prosecutions Received	0	-	-	-
Public Engagement Activities	0	-	-	-

Reporting Changes

5. No reporting change in this reporting month.

Future Key Issues

6. The key works or activities will be anticipated in the next reporting period are as follows:

Table IV Summary Table for Site Activities in the next Reporting Period

Contract No. and Project Title	Site Activities (October 2022)	Key Environmental Issues
ED/2018/04 - Trunk Road T2 and Infrastructure Works for Developments at South Apron	1) Depressed Road - Portal Structure, Capping Beam 2) Depressed Road - DPR/SUS connection 3) West Ventilation Building - Basement 2 Construction 4) Westbound TBM Tunnelling 5) Eastbound TBM Tunnelling 6) EB Service Gallery installation 7) WB Service Gallery installation 8) CP Tympanum construction 9) SUS Remaining Internal Wall 10) SUS OHVD in-situ Slab 11) Tunnel Segment delivery	(A) $/(\mathrm{B}) /(\mathrm{C}) /(\mathrm{D})$
ED/2020/03 - Trunk Road T2 - Traffic Control And Surveillance System	N/A	

(TCSS) and	
Associated Works ${ }^{(1)}$	

Notes:
(1): No major construction work was undertaken during reporting month.

N/A: Not applicable
(A) Dust generation from haul road, stockpile of dusty materials, exposed site area, excavation works and rock breaking activities;
(B) Noisy construction activity such as rock-breaking activities and piling works
(C) Runoff from exposed slope or site area; and
(D) Wastewater and runoff discharge from site.

Review of Status and Location of Monitoring Stations

7. According to the EM\&A Manual (AEIAR-174/2013), the number and location of the monitoring stations and parameters should be reviewed in every six months, or on as -needed basis, in order to cater for any changes in the surrounding environmental and the nature of works in progress. The latest review was conducted in August 2022 and the review of status and location of monitoring stations are summarized as follow:

Table V Summary Table for Review of Status and Location of Monitoring Stations

Monitoring Station ID	Review Status	Follow-up Action/ Recommendation
KTD 2d	ET has reviewed the status and location of KER1, KTD 1, KTD2d, CKL1 and CKL2. To conclude, the environmental	
KER1		monitoring conducted at KER1, KTD 1, KTD2d, CKL 1 and CKL 2 are appropriate, and the monitoring results reflect how the sensitive receiver(s) is/are impacted by the construction activities of the Project.
CKL 1	N/A	
CKL 2		

N/A: Not Applicable

1 INTRODUCTION

Background

1.1 In 2009, Civil Engineering and Development Department (CEDD) commissioned a Kai Tak Development (KTD) - Trunk Road T2 and Infrastructure at South Apron Investigation. The assignment covers the provision of the Trunk Road T2 and its connections with the Central Kowloon Route (CKR) at the north apron area and the Tseung Kwan O - Lam Tin Tunnel (TKOLTT) to the south in the Cha Kwo Ling area.
1.2 The Trunk Road T2 Project is one of the designated Projects under Schedule 2 of the EIAO proposed in the KTD. CEDD submitted the Project Profile (No. PP-379/2009) on 24 March 2009 for application for an EIA study brief for the Trunk Road T2 Project under the EIAO. Accordingly, an EIA Study Brief (ESB-203/2009) for the Trunk Road T2 Project was issued on 30 April 2009. The Environmental Impact Assessment (EIA) Report for the Trunk Road T2 Project was approved under the Environmental Impact Assessment Ordinance (EIAO) on 19 September 2013. The corresponding Environmental Permit (EP) was issued on 19 September 2013 (EP no.: EP-451/2013).
1.3 The Contract No. ED/2018/04 is the main contract of Trunk Road T2 ("T2 Main Works") which comprises mainly the design and construction of a dual two-lane trunk road of approximately 3.4 km long with about 3.1 km of the trunk road in form of tunnel; ventilation and administration buildings, environmental protection and mitigation works and etc. Moreover, the Contract No. ED/2020/03 is the other contract under Truck Road T2 Project which comprises mainly design and construction of the TCSS for this Project. The EM\&A programme at Kai Tak area under the Contract ED/2018/04 and ED/2020/03 are governed by the EP-451/2013 and EM\&A Manual (AEIAR-174/2013). The work areas of the Trunk Road T2 Project are shown in Figure 1 and the works to be executed under each Contract and corresponding EP are summarized as follows:

Environmental Permit	Works Description
EP-451/2013 - Trunk Road T2	ED/2018/04 - Construction of highway and sub-sea tunnel connecting between Central Kowloon Route and Cha Kwo Ling Tunnel - Western \& Eastern Ventilation Buildings ED/2020/03 - Design and construction of TCSS for Trunk Road T2

Monitoring Works in Kai Tak under EP-451/2013

1.4 Under Contract No. KL/2014/03 - Kai Tak Development - Stage 3 Infrastructure Works for Development at the Southern Part of the Former Runway ("T2 Advance Works"), the baseline monitoring works in Kai Tak under the EM\&A Manual (AEIAR-174/2013) were conducted by the Environmental Team (ET) for the Contract No. KL/2014/03 at the approved relocated monitoring locations (EPD reference: EP2/K19/A/21 pt.5), namely KTD1a, KTD2a \& KER1a During the impact monitoring period, monitoring locations KTD 2a and KER 1a were relocated to new locations, i.e. KTD 2b and KER 1 b (EPD reference: () in EP2/K19/A/21 pt. 6 and () in $\mathrm{EP} 2 / \mathrm{K} 19 / \mathrm{A} / 21 \mathrm{pt}$. 5) respectively. Location KTD2b was then further relocated to location KTD2c, the proposal of such relocation was submitted to EPD on 24 March 2020 and was approved by EPD on 6 April 2020 (EPD reference: () in EP2/K19/A/21 pt.7). The aforementioned relocation was effective from 9 April 2020. Since the major part of work under

Contract No. KL/2014/03 has been completed and monitoring works conducted by the ET of Contract No. KL/2014/03 was determined to be ceased, the impact monitoring within the Kai Tak area was then handed over to the ET of Contract No. ED/2018/04 on 1 August 2020.The monitoring location has been reviewed and updated to obtain the data with higher representative based on several conditions, such as distance between monitoring location and the sensitive receiver, non-project related interference, obstruction to the construction works on site and the power supply problem. The monitoring location KTD1a and KER1b has been updated to the monitoring location KTD1 and KER1 on 3 August 2020, where are the original location as proposed in the EM\&A manual (AEIAR-174/2013). And the monitoring location KTD2c was remained unchanged after the aforementioned review. Location KTD2c was then further relocated to location KTD2d, the proposal of such relocation was submitted on 9 March 2021 and was approved by EPD on $327^{\text {th }} 2021$ (EPD reference: () in EP2/K19/A/21 pt.8). The aforementioned relocation was effective from 24 May 2021. The impact monitoring for the three stations KTD1, KTD2d and KER1 are currently conducted by the ET of T2 Main Works

Monitoring Works in Cha Kwo Ling under EP-451/2013

1.5 The environmental impact of the remaining works in Cha Kwo Ling, under EP-451/2013, shall be monitored at the two proposed stations, namely CKL1, CKL2, in accordance to the EM\&A Manual (AEIAR-174/2013). The impact monitoring for the two proposed stations shall be conducted by the ET of T2 Main Works.
1.6 Cinotech Consultants Ltd. Was designated as the Environmental Team (ET) to undertake the EM\&A works for "Trunk Road T2 and Infrastructure Works for Developments at the Former South Apron" (hereinafter called the "Project") and "Trunk Road T2 -Traffic Control \& Surveillance System (TCSS) and Associated Works".

Purpose of the Report

1.7 This is the $31^{\text {th }}$ Monthly EM\&A Report which summarises the impact monitoring results and audit findings for the EM\&A programme during the reporting period in September 2022

Project Organizations

1.8 Different Parties with different levels of involvement in the Project organization include:

- Permit Holder - Civil Engineering and Development Department (CEDD)
- Supervisor Representative - Hyder-Meinhardt Joint Venture (HMJV)
- Environmental Team (ET) - Cinotech Consultants Limited (Cinotech)
- Independent Environmental Checker (IEC) - Ramboll Hong Kong Limited (Ramboll)
- Contractor - Bouygues Travaux Publics (BTP) (For ED/2018/04) \& GTECH Services (Hong Kong) Limited (For ED/2020/03)
1.9 The key contacts of the Project are shown in Table 1.1.

Table 1.1 Key Project Contacts

Party	Role	Contact Person	Phone No.
CEDD	Permit Holder	Mr. Wong Chi Wai, Tommy	38427111
HMJV	Supervisor Representative	Ms. Hazel Tang	21498524
Cinotech	Environmental Team	Mr. KS Lee (ETL)	21512091
	Ms. Karina Chan	21573880	
Ramboll	Independent Environmental Checker	Mr. YH Hui	34652850
BTP	Contractor (ED/2018/04)	Ms. Ality Chan	51854462
GTECH	Contractor (ED/2020/03)	Mr. Terry Leung	21230848

1.10 The Organizational Structure for Environmental Management is shown in Figure 1.2.

Construction Activities undertaken during the Reporting Month

1.11 The major site activities undertaken in the reporting month included:

Table 1.2 Summary of Key Construction Work in the Reporting Month

Contract No.	Project Title	Site Activities
ED/2018/04	Trunk Road T2 and Infrastructure Works for Developments at South Apron	- Depressed Road - Portal Structure, Capping Beam - Depressed Road - DPR/SUS connection - West Ventilation Building - Basement 2 Construction - Launching Shaft / Cut \& Cover RC Structure - Westbound TBM Tunnelling - Eastbound TBM Tunnelling - EB Service Gallery Installation - WB Service Gallery Installation - CP Tympanum construction - SUS Remaining Internal Wall - SUS OHVB In-situ Slab - Tunnel Segment delivery
ED/2020/03	Trunk Road T2 - Traffic Control And Surveillance System (TCSS) and Associated Works ${ }^{(1)}$	N/A

[^0]1.12 The EM\&A programme requires construction noise, air quality monitoring and environmental site audit, etc. The EM\&A requirements for each parameter are described in the following sections, including:

- All monitoring parameters;
- Action and Limit levels for all environmental parameters;
- Event Action Plans;
- Environmental mitigation measures, as recommended in the Project EIA Report.
1.13 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 10 of this report.
1.14 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the monitoring parameters of the required environmental monitoring works and audit works for the Project in September 2022.

Status of Environmental Licensing and Permitting

1.15 All permits/licenses obtained for the Project are summarized in Table 1.3.

Table 1.3 Summary of Environmental License and Permit

Contract No.	Permit / License No.	Valid Period		Status
		From	To	
Environmental Permit (EP)				
N/A	EP-451/2013	19 Sep 2013	N/A	Valid
Notification pursuant to Air Pollution (Construction Dust) Regulation				
ED/2018/04	Ref. No.: 451120	20 Nov 2019	N/A	Valid
ED/2020/03	Ref. No.: 483143	15 Aug 2022	N/A	Valid
Billing Account for Construction Waste Disposal				
ED/2018/04	A/C No.: 7036016	09 Dec 2019	N/A	Valid
ED/2020/03	A/C No.: 7043158	31 Jan 2022	N/A	Valid
Billing Account for Vessel Disposal				
ED/2018/04	A/C No.: 7037747 (Application No.: CEDD01161)	12 Jul 2022	25 Oct 2022	Valid
Construction Noise Permit				
ED/2018/04	CNP No. (For Depressed Road and Support Area): GW-RE0220-22	26 Mar 2022	25 Sep 2022	$\begin{gathered} \text { Expired on } \\ 25 \mathrm{Sep} 2022 \\ \hline \end{gathered}$
	CNP No. (For Depressed Road): GW-RE0936-22	26 Sep 2022	25 Mar 2023	Valid
	CNP No. (For Launching Shaft and Barging Point): GW- RE0817-22	24 Aug 2022	23 Feb 2023	Valid

Contract No.	Permit / License No.	Valid Period		Status
		From	To	
ED/2018/04	WT00036183-2020 (For Depressed Road Area)	27 Jul 2020	31 Jul 2025	Valid
	WT00036228-2020 (For Launching Shaft)	10 Nov 2021	31 Jul 2025	Valid
	WT00039117-2021 (For Site Office and Support Area)	28 Sep 2021	30 Sep 2026	Valid
Chemical Waste Producer License				
ED/2018/04	WPN: 5213-286-B2557-03	09 Mar 2020	N/A	Valid

2. AIR QUALITY

Monitoring Requirement

2.1 According to the EM\&A Manual (AEIAR-174/2013), 24-hour Total Suspended Particulates (TSP) monitoring was conducted to monitor the air quality for this Project. For regular impact monitoring, a sampling frequency of at least once in every six days at all of the monitoring stations for 24 -hour TSP monitoring. In case of complaints, 1-hour TSP monitoring should be conducted at least three times in every six days when the highest dust impacts are likely to occur. Appendix A shows the established Action/Limit Levels for the environmental monitoring works.

Monitoring Locations

2.2 Five designated monitoring stations were selected for air quality monitoring programme. Table $\mathbf{2 . 1}$ describes the air quality monitoring locations, which are also depicted in Figure 2.
2.3 The monitoring location at Kai Tak area has been reviewed and updated to obtain the data with higher representative based on several conditions, such as distance between monitoring location and the sensitive receiver, non-project related interference, obstruction to the construction works on site and the power supply problem. The monitoring location KTD1a and KER1b has been updated to KTD1 and KER1 respectively, where are the original location as proposed in the EM\&A manual (AEIAR-174/2013). And the monitoring location KTD2c was remained unchanged after the aforementioned review. Monitoring location KTD2c was then further relocated to KTD2d after the review of status and location of monitoring station conducted in between February and March 2021.

Table 2.1 Air Quality Monitoring Locations

Monitoring Stations	Location
KTD1	Centre of Excellence in Paediatrics (Children's Hospital)
KTD2d	Next to the SOR Office of Trunk Road T2 in Kai Tak Area
KER1	Future Residential Development at Kerry Godown
CKL1	Flat 121 Cha Kwo Ling Village
CKL2	Flat 103 Cha Kwo Ling Village

Monitoring Parameters and Frequency

2.4 Table 2.2 summarizes the monitoring parameters, monitoring period and frequencies of impact air quality monitoring. The monitoring schedule is shown in Appendix B.

Table 2.2 Frequency and Parameters of Air Quality Monitoring

Monitoring Stations	Parameter	Period	Frequency
KTD1, KTD2d, KER1, CKL1 \& CKL2	1-hour TSP	$0700-1900$	3 times per 6 days (as required in case of complaints)
KTD1, KTD2d, KER1, CKL1 \& CKL2	24-hour TSP	24 hours	Once every 6 days

Monitoring Equipment

2.5 High Volume Samplers (HVS) in compliance with the specification stipulated in the EM\&A Manual (AEIAR-174/2013), Section 2.2.1.4, were used to carry out 24-hour TSP monitoring. Direct reading dust meter were also used to measure 1-hour average TSP levels. The 1 -hour sampling was determined by HVS to check the validity and accuracy of the results measured by direct reading method.
2.6 Wind data monitoring equipment was set at rooftop (about 41/F) of Yau Lai Estate Bik Lai House, Lam Tin for logging wind speed and wind direction such that the wind sensors were clear of obstructions or turbulence caused by building. The wind data monitoring equipment was recalibrated at least once every six months and the wind directions were divided into 16 sectors of 22.5 degrees each. Wind data is attached in Appendix D.
2.7 Table 2.3 summarizes the equipment used for air quality monitoring. Copies of calibration certificates are attached in Appendix C.

Table 2.3 Air Quality Monitoring Equipment

Equipment	Model	Quantity
HVS Sampler	TISCH Model: TE-5170 (Serial no. 0723, 1956, 10595, 1316, 5280)	5
Calibrator	TISCH Model: TE-5025A (Serial no. 3864)	1
Wind Anemometer	Davis Weather Monitor II, Model no. 7440 (Serial no. MC01010A44)	1

Monitoring Methodology

1-hour TSP Monitoring

Measuring Procedures

2.8 The measuring procedures of the 1-hour dust meter are in accordance with the Manufacturer's Instruction Manual as follows:
(Sibata Model No.: LD-3B/LD-5R)

- The 1 -hour dust meter is placed at least 1.3 meters above ground.
- Set POWER to "ON" and make sure that the battery level was not flash or in low level.
- Allow the instrument to stand for about 3 minutes and then the cap of the air sampling inlet has been released.
- Push the knob at MEASURE position.
- Set time/mode setting to [BG] by pushing the time setting switch. Then, start the background measurement by pushing the start/stop switch once. It will take 6 sec . to complete the background measurement.
- Push the time setting switch to change the time setting display to [MANUAL] at the bottom left of the liquid crystal display. Finally, push the start/stop switch to stop the measuring after 1 hour sampling.
- Information such as sampling date, time, count value and site condition were recorded during the monitoring period.

Maintenance/Calibration

2.9 The following maintenance/calibration is required for the 1-hour dust meter:

- Check and calibrate the meter by HVS to check the validity and accuracy of the results measured by direct reading method at 2-month intervals throughout all stages of the air quality monitoring.

24-hour TSP Monitoring

Instrumentation
2.10 High volume samplers (HVS) (TISCH Model: TE-5170) complete with appropriate sampling inlets was employed for 24 -hour TSP monitoring. The sampler was composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complied with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50). Moreover, the HVS also met all the requirements in Section 2.2 of the Annex II Specification.
2.11 The positioning of the HVS samplers are as follows:

- A horizontal platform with appropriate support to secure the samplers against gusty wind shall be provided;
- No two samplers shall be placed less than 2 meter apart;
- The distance between the sampler and an obstacle, such as buildings, must be at least twice the height that the obstacle protrudes above the sampler;
- A minimum of 2 metres of separation from walls, parapets and penthouses is required for rooftop samplers;
- A minimum of 2 metres of separation from any supporting structure, measured horizontally is required;
- No furnace or incinerator flue is nearby;
- Airflow around the sampler is unrestricted;
- The sampler is more than 20 metres from the dripline;
- Any wire fence and gate, to protect the sampler, shall not cause any obstruction during monitoring;
- Permission must be obtained to set up the samplers and to obtain access to the monitoring stations; and
- A secured supply of electricity is needed to operate the samplers.

Operating/analytical procedures for the operation of HVS
2.12 Operating/analytical procedures for the air quality monitoring are highlighted as follows:

- Prior to the commencement of the dust sampling, the flow rate of the high volume sampler was properly set (between $0.6 \mathrm{~m}^{3} / \mathrm{min}$. and $1.7 \mathrm{~m}^{3} / \mathrm{min}$.) in accordance with the EM\&A manual (AEIAR-174/2013). The flow rate shall be indicated on the flow rate chart.
- For TSP sampling, fiberglass filters with a collection efficiency of $>99 \%$ for particles of $0.3 \mu \mathrm{~m}$ diameter were used.
- The power supply was checked to ensure the sampler worked properly. On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.
- The filter holding frame was then removed by loosening the four nuts and a weighted and conditioned filter was carefully centered with the stamped number upwards, on a supporting screen.
- The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- The shelter lid was closed and secured with the aluminum strip.
- The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- After sampling, the filter was removed and sent to the HOKLAS laboratory (High Precision Chemical Testing Ltd.) for weighing. The elapsed time was also recorded.
- Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between $25^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ and not vary by more than $\pm 3^{\circ} \mathrm{C}$; the relative humidity (RH) should be $<50 \%$ and not vary by more than $\pm 5 \%$. A convenient working RH is 40%.

Maintenance/Calibration

2.13 The following maintenance/calibration is required for the HVS:

- The high volume motors and their accessories were properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipment and necessary power supply are in good working condition.
- High volume samplers were calibrated at bi-monthly intervals using TE-5025A Calibration Kit throughout all stages of the air quality monitoring.

Results and Observations

2.14 Impact air quality monitoring was conducted at five monitoring stations as scheduled. The monitoring schedule is shown in Appendix B.
2.15 No Action and Limit Level exceedance was recorded for 24-hour TSP monitoring in the reporting month. Details of the exceedance are presented in Appendix M.
2.16 The air temperature, relative humidity, and the precipitation data were obtained from daily extracts of Hong Kong Observatory Climate Information Service. This weather information for the reporting month is summarized in Appendix D.
2.17 The monitoring data and graphical presentations of 24-hour TSP monitoring results are shown in Appendix \mathbf{F}.
2.18 According to field observations observed in the reporting period, the major dust source identified at the designated air quality monitoring stations are as follows:

Table 2.4 Major Dust Source during Air Quality Monitoring

Monitoring Stations	Major Dust Source
KTD 1 - Centre of Excellence in Paediatrics (Children's Hospital)	- Project related construction activities (i.e., Loading and unloading of $C \& D$ wastes, drilling, crushing of material); - Vehicle movement in the site; - Construction activities at the nearby construction sites of New Acute Hospital; and, - Road traffic along Shing Fung Road, Shing Cheong Road, Cheung Yip Street, Kai Hing Road and Kwun Tong Bypass.
KER 1 - Future Residential Development at Kerry Godown	
KTD 2d - Next to the SOR Office of Trunk Road T2 in Kai Tak Area	- Project related construction activities (i.e., Loading and unloading of $\mathrm{C} \& \mathrm{D}$ material, crushing of material); - Vehicle movement in the site; and, - Non-project related construction activities
CKL1 - Flat 121 Cha Kwo Ling Village	Road Traffic along Cha Kwo Ling Road
CKL2 - Flat 103 Cha Kwo Ling Village	Road Traffic along Cha Kwo Ling Road

Comparison of EM\&A Result with EIA Prediction

2.19 The air monitoring data was compared with the predictions in Table 4.14 of EIA Report, AEIAR174/2013 (as approved in 2013) as summarised in Table 2.6 for 24-hour TSP.

Table 2.6 Comparison of 24-hr TSP Monitoring Data with Predictions in EIA Report

Monitoring Stations	ASR ID	Predicted Maximum 24-hr TSP Concentration in EIA Report (AEIAR174/2013), $\mu \mathrm{g} / \mathrm{m}^{3}$	Maximum 24-hr TSP Concentration in the Reporting Month (September 2022), $\mu \mathrm{g} / \mathrm{m}^{3}$
KTD 1 - Centre of Excellence in Paediatrics (Children's Hospital)	KTD3	126	92.7
KTD 2d - Next to the SOR Office of Trunk Road T2 in Kai Tak Area	N/ $\mathrm{A}^{(1)}$	$\mathrm{N} / \mathrm{A}^{(1)}$	144.4
KER 1 - Future Residential Development at Kerry Godown	KTD6	169	158.1
CKL1 - Flat 121 Cha Kwo Ling Village	$\mathrm{N} / \mathrm{A}^{(1)}$	$\mathrm{N} / \mathrm{A}^{(1)}$	173.5
CKL2 - Flat 103 Cha Kwo Ling Village	$\mathrm{N} / \mathrm{A}^{(1)}$	$\mathrm{N} / \mathrm{A}^{(1)}$	156.5

Remarks:
(1) No 24-hr TSP concentration was predicted in EIA Report (AEIAR-174/2013)
2.20 In the reporting month the 24 -hour TSP concentration at KTD1 and KER1 were lower than the prediction in the EIA Report, AEIAR-174/2013 (as approved in 2013). No Action and Limit level exceedance for 24 -hour TSP was recorded in the reporting period.

3 NOISE

Monitoring Requirements

3.1 According to the EM\&A Manual (AEIAR-174/2013), construction noise monitoring was conducted to monitor the construction noise arising from the construction activities. The regular monitoring frequency for each monitoring station shall be on a weekly basis and conduct one set of measurements between 0700 and 1900 hours on normal weekdays. Appendix A shows the established Action and Limit Levels for the environmental monitoring works.

Monitoring Locations

3.2 Noise monitoring was conducted at five designated monitoring stations, namely KTD1, KTD2d, KER1, CKL1 and CKL2 in the reporting period. Table 3.1 and Figure 2 show the locations of these stations.
3.3 The monitoring location at Kai Tak area has been reviewed and updated to obtain the data with higher representative based on several conditions, such as distance between monitoring location and the sensitive receiver, non-project related interference, obstruction to the construction works on site and the power supply problem. The monitoring location KTD1a and KER1b has been updated to KTD1 and KER1 respectively, where are the original location as proposed in the EM\&A manual (AEIAR-174/2013). And the monitoring location KTD2c was remained unchanged after the aforementioned review. Monitoring location KTD2c was then further relocated to KTD2d after the review of status and location of monitoring station conducted in between February and March 2021.

Table 3.1 Noise Monitoring Stations

Monitoring Stations	Location
KTD1	Centre of Excellence in Paediatrics (Children's Hospital)
KTD2d	Next to the SOR Office of Trunk Road T2 in Kai Tak Area
KER1	Future Residential Development at Kerry Godown
CKL1	Flat 121 Cha Kwo Ling Village
CKL2	Flat 103 Cha Kwo Ling Village

Monitoring Parameters, Frequency and Duration

3.4 Table 3.2 summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in Appendix B.

Table 3.2 Frequency and Parameters of Noise Monitoring

Monitoring Stations	Time Period	Duration	Frequency	Parameter	Measurement
KTD1	0700-1900 hrs on normal weekdays	30 minutes	Once per week	$\begin{gathered} \mathrm{L}_{10}(30 \mathrm{~min} .) \\ \mathrm{dB}(\mathrm{~A}) \end{gathered}$	Façade Measurement
KTD2d					Free Field Measurement
KER1				$\begin{gathered} \mathrm{L}_{90}(30 \mathrm{~min} .) \\ \mathrm{dB}(\mathrm{~A}) \end{gathered}$	Free Field Measurement
CKL1				$\begin{gathered} \mathrm{L}_{\mathrm{eq}}(30 \mathrm{~min} .) \\ \mathrm{dB}(\mathrm{~A}) \end{gathered}$	Free Field Measurement
CKL2					Free Field Measurement

Monitoring Equipment

3.5 Integrating Sound Level Meter was used for impact noise monitoring. The meters were Type 1 sound level meter capable of giving a continuous readout of the noise level readings including equivalent continuous sound pressure level (L_{eq}) and percentile sound pressure level (L_{x}) that also complied with International Electrotechnical Commission Publications $651: 1979$ (Type 1) and $804: 1985$ (Type 1) specifications. Table 3.3 summarizes the noise monitoring equipment being used within the reporting period. Copies of calibration certificates are attached in Appendix G.
Table 3.3 Noise Monitoring Equipment

Equipment	Model	Quantity
Integrating Sound Level Meter	BSWA 308 (Serial no.	3
	570187,570183,580156)	2
	SVAN 957 (Serial no. 23851,23852)	2

Monitoring Methodology and QA/QC Procedure

3.6 The monitoring procedures are as follows:

- The monitoring station was normally be at a point 1 m from the exterior of the sensitive receivers building façade and be at a position 1.2 m above the ground.
- For free field measurement, the meter was positioned away from any nearby reflective surfaces. All records for free field noise levels were adjusted with a correction of $+3 \mathrm{~dB}(\mathrm{~A})$.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
- Frequency weighting: A
- Time weighting: Fast
- Time measurement: 30 minutes
- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz . If the difference in the calibration level before and after measurement was more than 1.0 dB , the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- The wind speed was frequently checked with the portable wind meter.
- At the end of the monitoring period, the $\mathrm{L}_{\mathrm{eq}}, \mathrm{L}_{90}$ and L_{10} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- Noise monitoring would be cancelled in the presence of fog, rain, and wind with a steady speed exceeding $5 \mathrm{~m} / \mathrm{s}$, or wind with gusts exceeding $10 \mathrm{~m} / \mathrm{s}$. Supplementary monitoring would be provided to ensure sufficient data would be obtained.

Maintenance and Calibration

3.7 The microphone head of the sound level meter and calibrator were cleaned with a soft cloth at quarterly intervals.
3.8 The sound level meter and calibrator were checked and calibrated at yearly intervals.
3.9 Immediately prior to and following each noise measurement the accuracy of the sound level meter was checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements were accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB .

Results and Observations

3.10 Impact noise monitoring was conducted at five monitoring stations as scheduled. The monitoring schedule is shown in Appendix B. No Action/ Limit Level exceedance was recorded for day time construction noise monitoring in the reporting month.

3.11 Noise monitoring results and graphical presentations are shown in Appendix H.

3.12 According to field observations observed in the reporting period, the major noise sources identified at the noise monitoring stations are shown in Table 3.4.

Table 3.4 Other Noise Source Identified during Noise Monitoring

Monitoring Stations	Major Noise Source
KTD 1	- Project related construction activities (Loading and unloading of C\&D waste, travel of vehicles, use of PME and other plants, and other construction activities); - Vehicle movement in the site; - Road traffic along Shing Cheong Road; and, - Non-project related construction activities at the nearby construction site of New Acute Hospital.
KTD 2d	- Project related construction activities (Loading and unloading of C\&D waste, travel of vehicles, use of PME and other plants, and other construction activities); - Vehicle movement in the site; and, - Non-project related construction activities.
KER 1	- Road traffic along Kai Hing Road. - Project related construction activities (Travel of vehicles, use of PME and other plants, and other construction activities)
CKL1	Road traffic along Cha Kwo Ling Road.
CKL2	Road traffic along Cha Kwo Ling Road

3.13 The baseline noise level and the Noise Limit Level at each designated noise monitoring station are presented in Table 3.5.

Table 3.5 Baseline Noise Level and Noise Limit Level for Monitoring Stations

Monitoring Stations	Baseline Noise Level, dB (A) (at 0700 - 1900 hrs on normal weekdays)	Noise Limit Level, dB (A) (at 0700 $\mathbf{1 9 0 0}$ hrs on normal weekdays)
KTD1	78	
KTD2d	64	
KER1	65	
CKL1	72.4	
CKL2	71.4	

Comparison of EM\&A Result with EIA Prediction

3.14 The noise monitoring data was compared with the predictions in Table 5.13 of EIA Report (AEIAR-174/2013) as summarised in Table 3.6.

Table 3.6 Maximum Predicted Mitigated Construction Noise Levels in EIA Report

Monitoring Stations	NSR ID	Maximum Predicted Mitigated Construction Noise Levels in EIA Report (AEIAR- 174/2013), dB(A)	Maximum Construction Noise Levels in the Reporting Month (September 2022), Leq (30min) dB(A)
KTD 1 - Centre of Excellence in Paediatrics (Children's Hospital)	KTD1	74	72.9
KTD2d - Next to the SOR Office of Trunk Road T2 in Kai Tak Area	N/A ${ }^{(1)}$	N/A ${ }^{(1)}$	66.9
KER 1 - Future Residential Development at Kerry Godown	KER1	75	74.2
CKL1 - Flat 121 Cha Kwo Ling Village	CKL4	71	69.8
CKL2 - Flat 103 Cha Kwo Ling Village	CKL5	69	72.0

Remarks:
(1): No Maximum Predicted Mitigated Construction Noise Levels was predicted in EIA Report (AEIAR-174/2013)
3.15 The results at CKL2 were higher than the maximum predicted mitigated construction noise level in the EIA Report, AEIAR-174/2013 (as approved in 2013), this may be due to fluctuations of traffic flow along Cha Kwo Ling Road throughout the day. Besides, the result at CKL1, KTD1 and KER1 were lower than the maximum predicted mitigated construction noise level in the EIA Report. No Action/ Limit Level exceedance were recorded in the reporting period.

4 WATER QUALITY

Monitoring Requirement

4.1 According to Section 4.3.1.1 of EM\&A Manual (AEIAR-174/2013), no water quality monitoring is required during the construction phase.
4.2 According to Section 4.3.1.5 of EM\&A Manual (AEIAR-174/2013), compliance site audits are to be undertaken by the Engineer and ET and escorted by the Contractor to ensure that a valid discharge license has been issued by the EPD prior to the discharge of the effluent from the construction activities of the Project site. Monitoring of the quality of the treated effluent from the works areas should be carried out in accordance with the Water Pollution Control Ordinance (WPCO) license. The audit results reflect whether the effluent quality is in compliance with the discharge license requirements, the summaries of site audits are attached in Appendix I.
4.3 In the event of non-compliance the responsibilities of the relevant parties is detailed in the Event / Action plan attached in Appendix J.

5 MARINE ECOLOGY

5.1 According to Section 5.3.1.1 of EM\&A Manual (AEIAR-174/2013), ET will be required to undertake audit of good site practice for habitat protection as detailed below. The summaries of site audits are attached in Appendix I.

- Avoid damage and disturbance to the remaining and surrounding natural habitat;
- Ensure placement of equipment is within designated areas within the existing disturbed land;
- Ensure construction activities are restricted to within the proposed works boundary;
- Ensure spoil heaps are be covered at all times;
- Ensure that disturbed areas are reinstated immediately after completion of the works; and
- Ensure enhancement planting works undertaken.

6 FISHERIES

6.1 According to Section 6.3.1.2 of EM\&A Manual (AEIAR-174/2013), no specific fisheries monitoring and audit programme is required during the construction phase.
6.2 The implementation of the water quality mitigation measures stated in the Water Quality Impact Assessment (Refer to Section 6 of the EIA Report (AEIAR-174/2013)) will be audited as part of the EM\&A procedures during the construction period and the details are presented in Section 4.2 of this Report. The summaries of site audits are attached in Appendix I.

7 LANDSCAPE AND VISUAL

7.1 According to the EM\&A Manual (AEIAR-174/2013), a series of mitigation measures were recommended to ameliorate the landscape and visual impacts of the Project. The mitigation measures for construction stage are summarized in Table 7.1 below and provided in Appendix K:

Table 7.1 Construction Phase Landscape and Visual Mitigation Measures

ID No.	Landscape and Visual Mitigation Measure
CM1	All works shall be carefully designed to minimize impacts on existing landscape resources and visually sensitive receivers. Existing trees within works area shall be retained and protected.
CM2	Existing trees of good quality and condition that are unavoidably affected by the works should be transplanted.
CM3	Not used.
CM4	Not used.
CM5	Large temporary stockpiles of excavated material shall be covered with unobtrusive sheeting to prevent dust and dirt spreading to adjacent landscape areas and vegetation, and to create a neat and tidy visual appearance.
CM6	Construction plant and building material shall be orderly and carefully stored in order to create a neat and tidy visual appearance
CM7	Erection of decorative screen hoarding should be designed to be compatible with the existing urban context.
CM8	All lighting in construction site shall be carefully controlled to minimize light pollution and night-time glare to nearby residences and GIC user. The contractor shall consider other security measures, which shall minimize the visual impacts.

7.2 A specialist Landscape Sub-Contractor should be employed by the Contractor for the implementation of landscape construction works and subsequent maintenance operations during the establishment period. It is proposed that the planting works will be on-site and the planting should be completed during the construction contract. The monitoring of the planting establishment should be undertaken for a 12 month period which could extend throughout the Contractor's one-year maintenance period, which will be within the first operational year of the Project.
7.3 All measures undertaken by both the Contractor and the specialist Landscape Sub-Contractor during the construction phase and first year of the operational phase shall be audited by a Registered Landscape Architect (RLA), as a member of the Environmental Team (ET), on a regular basis to ensure compliance with the intended aims of the measures. To fulfil the aforementioned requirements, on-site landscape and visual mitigation measures were audited by

RLA in the reporting month.
7.4 According to Section 7.3.1.2 of the EM\&A Manual (AEIAR-174/2013), site audits shall be undertaken at least once every two weeks throughout the construction period to monitor and audit the timely implementation of landscape and visual mitigation measures within the site boundaries of this Project.
7.5 The broad scope of the audit is detailed below but should also be undertaken with reference to the more specific checklist provided in Table 7.2. The summaries of site audits are attached in Appendix I:

- The extent of the agreed works areas should be regularly checked during the construction phase. Any trespass by the Contractor outside the limit of the works, including any damage to existing trees and soft landscape areas shall be prohibited;
- the progress of the engineering works should be regularly reviewed on site to identify the earliest practical opportunities for the landscape works to be undertaken;
- all existing trees and vegetation within the study area which are not directly affected by the works are retained and protected;
- the methods of protecting existing vegetation proposed by the Contractor are acceptable and enforced;
- preparation, lifting transport and re-planting operations for any transplanted trees;
- all landscaping works are carried out in accordance with the specifications;
- the planting of new trees, shrubs, groundcover, climbers, ferns, grasses and other plans, together with the replanting of any transplanted trees are carried out properly and within the right season; and
- all necessary horticultural operations and replacement planting are undertaken throughout the Establishment Period to ensure the healthy establishment and growth of both transplanted trees and all newly established plants.

Table 7.2 Construction Phase Audit Checklist for Landscape and Visual Mitigation Measures

Area of Works	Items to be Monitored
Advance planting	Monitoring of implementation and maintenance of planting, and against possible incursion, physical damage, fire, pollution, surface erosion, etc.

Area of Works	Items to be Monitored
Protection of all trees and existing soft landscape areas to be retained	Identification and demarcation of trees / vegetation to be retained, erection of physical protection (e.g. fencing), monitoring against possible incursion, physical damage, fire, pollution, surface erosion, etc.
Clearance of existing vegetation	Identification and demarcation of trees / vegetation to be cleared, checking of extent of works to minimise damage, monitoring of adjacent areas against possible incursion, physical damage, fire, pollution, surface erosion, etc.
Pruning of trees	Identification and demarcation of trees / vegetation to be pruned, monitoring of extent of pruning to minimise damage, timing of operations, implementation of all stages of preparatory and pruning works, and maintenance of pruned vegetation, etc.
Plant supply	Monitoring of operations relating to the supply of specialist plant material (including the collecting, germination and growth of plants from seed) to ensure that plants will be available in time to be used within the construction works.
Soiling, planting, etc.	Monitoring of implementation and maintenance of soiling and planting works and against possible incursion, physical damage, fire, pollution, surface erosion, etc.
Site fencing and hoarding	Implementation and maintenance, to ensure compliance with agreed designs and check that it matches the surrounding environment and does not cause visual intrusion.
Architectural treatment of engineering works.	Implementation and maintenance of mitigation measures, to ensure compliance with agreed designs as applicable.
Establishment Works	Monitoring of implementation of maintenance operations during Establishment Period.

7.6 In the event of non-compliance the responsibilities of the relevant parties is detailed in the Event / Action plan attached in Appendix J.
7.7 In the reporting month, no non-compliance of the landscape and visual mitigation measures was recorded by RLA.

8 CULTURAL HERITAGE

8.1 According to Section 8.3.1.1 of EM\&A Manual (AEIAR-174/2013), as a precautionary measure, it is recommended that if any antiquity or supposed antiquity is discovered during the course of the excavation works undertaken by the Contractor, the discovery shall be reported to the AMO immediately and all necessary measures taken to preserve it.
8.2 According to Section 8.3.1.2 of EM\&A Manual (AEIAR-174/2013), no EM\&A is required during the construction and operational phase.

9 WASTE MANAGEMENT

9.1 According to Section 9.3.1.1 of EM\&A Manual (AEIAR-174/2013), the effective management of waste arisings during the construction phase will be monitored through the site audit programme. Regular audits and site inspections should be carried out by the Engineer, ET and Contractor to ensure that the recommended good site practices and other mitigation measures are implemented by the Contractor. The summaries of site audits are attached in Appendix I.
9.2 According to Sections 9.3.1.3 and 9.3.1.4 of EM\&A Manual (AEIAR-174/2013), documents including licenses, permits, disposal and recycling records should be reviewed and audited during site audits for the compliance with the legislation and contract requirements to ensure proper records are being maintained and procedures undertaken in accordance with the Waste Management Plan.
9.3 With reference to the relevant handing records of this Project, the quantities of different types of waste generated in the reporting month are summarized and presented in the Appendix \mathbf{O}.

10 ENVIRONMENTAL AUDIT

Site Audits

10.1 Site audits were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in Appendix I.
10.2 Site audits for the each contract were conducted as follows.

- ED/2018/04 - Site audit were conducted on 08, 15, 22 and 29 September 2022 in the reporting month. Site inspection of the IEC was conducted on 15 September 2022. No non-compliance was observed during the site audit.
- ED/2020/03 - Site audit was conducted on 23 September 2022 in the reporting month.

Implementation Status of Environmental Mitigation Measures

10.3 According to Environmental Permits, the approved EIA Reports (Register No.: AEIAR174/2013 and AEIAR-173/2013), and the EM\&A Manuals of the Project (AEIAR-174/2013 and AEIAR-173/2013), the mitigation measures detailed in the documents are recommended to be implemented during the construction phase. An Environmental Mitigation Implementation Schedule (EMIS) is provided in Appendix K.
10.4 The ET weekly site inspections were carried out during the reporting month and the observations and recommendations are summarized in Table 10.1. Refer to Appendix I for the site inspection summary reports in the reporting month.

Table 10.1 Observations and Recommendations of Site Audit

Parameters	Date	Observations and Recommendations	Follow-up
Air Quality	8 Sep 2022	The NRMM label on the forklift was damaged and another forklift has no NRMM label, a valid NRMM label shall be displayed at the conspicuous position on the PME	A valid NRMM label was displayed at the conspicuous position of the PMEs.
	22 Sep 2022	Unclear NRMM on the PME was observed.	The NRMM label has been replaced with the new one.
	29 Sep 2022	The NRMM label on a vehicle was damaged.	To be reported in the next reporting month.
	N/A	There was no observation in the reporting period.	N/A
	N/A	There was no observation in the reporting period.	N/A

Parameters	Date	Observations and Recommendations	Follow-up
Ecology	N/A	There was no observation in the reporting period.	N/A
Landscape and Visual	N/A	There was no observation in the reporting period.	N/A
Waste $/$ Chemical	22 Sep Management	Accumulated waste was observed in the waste skip at the West Ventilation Building area. They should be removed regularly.	The waste in the waste skip has been removed.
	29 Sep	Accumulated waste was observed in the tunnel area.	To be reported in the next

Implementation Status of Event and Action Plans

10.5 The Event and Action Plans for air quality, construction noise, and landscape and visual are presented in Appendix J.

Air Quality Monitoring

- No Action and Limit Level exceedance for 24-hour TSP monitoring was recorded.

Construction Noise Monitoring

- No Action / Limit Level exceedance was recorded in the reporting month.

Landscape and Visual

- No landscape and visual non-conformity was recorded.

Status of Required Submission under Environmental Permit

10.6 According the Section 11.3.2.1 (c) of the EM\&A Manual (AEIAR-174/2013), status of required submission under EP-451/2013 during the reporting period are summarized in Table 10.2.

Table 10.2 Status of Required Submission under Environmental Permit

EP Condition	Submission	Submission Date
EP-451/2013		
Condition 2.3	Management Organization of Main Construction Companies	20 January 2020
Condition 2.4	Design Drawing of the Project	20 January 2020

EP Condition	Submission	Submission Date
Condition 2.5	Landscape Mitigation Plan(s)	7 May 2020
Condition 2.10 (a)	Supplementary Contamination Assessment Plan	18 December 2015
Condition 2.10 (b)	Supplementary Contamination Assessment Report	6 December 2016
Condition 3.3	Updated Baseline Monitoring Report	03 November 2020
Condition 3.4	Monthly EM\&A Report (August 2022)	14 September 2022

11 ENVIRONMENTAL NON-CONFORMANCE

Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution

11.1 The summaries of environmental complaint, warning, summon and notification of successful prosecution for the Project is presented in Appendix L.

Summary of Exceedance

11.2 The summary of exceedance record in the reporting month is shown in Appendix \mathbf{M}.
11.3 No non-conformity was recorded for landscape and visual inspections conducted in the reporting month.

12 FUTURE KEY ISSUES

Tentative construction programmes for the next three months are provided in Appendix \mathbf{N}.
12.1 Major site activities undertaken for the coming months and the key environmental issues are summarized as follows:

Table 12.1 Summary Table for Site Activities and the Key Environmental Issues in the next Reporting Period

Contract No. and Project Title	Site Activities (October 2022)	Key Environmental Issues
ED/2018/04 - Trunk Road T2 and Infrastructure Works for Developments at South Apron	1) Depressed Road - Portal Structure, Capping Beam 2) Depressed Road - DPR/SUS connection 3) West Ventilation Building Basement 2 Construction 4) Westbound TBM Tunnelling 5) Eastbound TBM Tunnelling 6) EB Service Gallery installation 7) WB Service Gallery installation 8) CP Tympanum construction 9) SUS Remaining Internal Wall 10) SUS OHVD in-situ Slab 11) Tunnel Segment delivery	- Wheel washing bay at site exits; - Temporary noise barriers for PMEs; - Sedimentation tank for settling muddy water; and - Make sure open stockpiles are covered during rainstorm.
ED/2020/03 - Trunk Road T2 - Traffic Control And Surveillance System (TCSS) and Associated Works ${ }^{(1)}$	N/A	

Contract No. and Project Title	Site Activities (October 2022)	Key Environmental Issues

Notes:
(1): No major construction work was undertaken during reporting month. N/A: Not applicable

Monitoring Schedule

12.2 The tentative environmental monitoring schedule for the next three months are shown in Appendix B.

13 CONCLUSIONS AND RECOMMENDATIONS

Conclusions

13.1 This is the $31^{\text {th }}$ Monthly EM\&A Report which presents the EM\&A works undertaken during the reporting month in accordance with the EM\&A Manual (AEIAR-174/2013) and the requirement under EP.

Air Quality Monitoring

13.2 No Action and Limit Level exceedance was recorded for 24-hour TSP monitoring in the reporting month.

Construction Noise Monitoring

13.3 No Limit Level exceedance was recorded for day-time construction noise monitoring in the reporting month.
13.4 No Action Level exceedance was recorded in the reporting month.

Site Audit

13.54 (Four) ET joint weekly environmental site inspections were conducted for the Contact No. $\mathrm{ED} / 2018 / 04$ in the reporting month.
13.61 (One) ET joint environmental site inspections were conducted for the Contact No. ED/2020/03 in the reporting month.

Complaint, Notification of Summons and Successful Prosecution

13.7 No environmental complaint was received in the reporting month. No notifications of summons and successful prosecutions were received in the reporting month.

Recommendations

13.8 According to the environmental audit performed in the reporting month, the following recommendations was made:

ED/2018/04

Air Quality

- NRMM label shall be displayed at a conspicuous position of the regulated machines on site.

Waste / Chemical Management

- The C\&D waste should be segregated and stored in the separate containers or skip, and the site and surrounding should be kept tidy and litter free.

FIGURES
 Civin Engineering and
Development Department
t an

AGREEMENT NO CE $38 / 2008(H Y)$ KAI TAK DEVELOPMENT - TRUNK ROAD T2 AND INFRASTRUCTURE AT SOUTH APRON - INVESTIGATION, DESIGN AND CONSTRUCTION

APPENDIX A
 ACTION AND LIMIT LEVELS

Appendix A - Action and Limit Levels

Table A-1 Action and Limit Levels for 1-hour TSP (in case of complaints)

Location	Action Level, $\boldsymbol{\mu g} / \mathbf{m}^{\mathbf{3}}$	Limit Level, $\boldsymbol{\mu g} / \mathbf{m}^{\mathbf{3}}$
KTD1	285	
KTD2d	279	500
KER1	295	
CKL1	323	
CKL2	327	

Table A-2 Action and Limit Levels for 24-hour TSP

Location	Action Level, $\boldsymbol{\mu g} / \mathbf{m}^{\mathbf{3}}$	Limit Level, $\boldsymbol{\mu g} / \mathbf{m}^{\mathbf{3}}$
KTD1	177	
KTD2d	157	260
KER1	172	
CKL1	191	
CKL2	183	

Table A-3 Action and Limit Levels for Noise during Construction Period

Time Period	Action Level	Limit Level
$0700-1900$ hrs on normal weekdays	When one documented complaint is received	$75 \mathrm{~dB}(\mathrm{~A})^{(1)}$

Note:
(1) If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed.

APPENDIX B
ENVIRONMENTAL MONITORING
SCHEDULES

Contract No. ED/2018/04
Trunk Road T2 and Infrastructure Works for Developments at the Former South Apron Impact Air and Noise Monitoring Schedule (September 2022)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1-Sep	2-Sep	3-Sep
				24-hr TSP		
4-Sep	5-Sep	6-Sep	7-Sep	8-Sep	9-Sep	10-Sep
			24-hr TSP	Noise		
11-Sep	12-Sep	13-Sep	14-Sep	15-Sep	16-Sep	17-Sep
		24-hr TSP	Noise			
18-Sep	19-Sep	20-Sep	21-Sep	22-Sep	23-Sep	24-Sep
	24-hr TSP	Noise				
25-Sep	26-Sep	27-Sep	28-Sep	29-Sep	30-Sep	
	Noise			24-hr TSP		

The schedule may be changed due to unforeseen circumstances (adverse weather, safety concerns, etc.)
*Noise: Noise Monitoring works in both Kai Tak and Cha Kwo Ling (KTD1, KTD2d, KER1, CKL1 and CKL2)
**24-hr TSP:24-hr TSP Monitoring works in both Kai Tak and Cha Kwo Ling (KTD1, KTD2d, KER1, CKL1 and CKL2)

Air Quality Monitoring Station

24-hr TSP
KTD1 - Centre of Excellence in Paediatrics (Children's Hospital)
KTD2d - Next to the SOR Office of Trunk Road T2 in Kai Tak Area
KER1 - Future Residential Development at Kerry Godown
CKL1 - Flat 121 Cha Kwo Ling Village
CKL2 - Flat 103 Cha Kwo Ling Village

Noise Monitoring Station

KTD1 - Centre of Excellence in Paediatrics (Children's Hospital)
KER1 - Future Residential Development at Kerry Godown
KTD2d - Next to the SOR Office of Trunk Road T2 in Kai Tak Area
CKL1 - Flat 121 Cha Kwo Ling Village
CKL2 - Flat 103 Cha Kwo Ling Village

Contract No. ED/2018/04
Trunk Road T2 and Infrastructure Works for Developments at the Former South Apron
Tentative Impact Air and Noise Monitoring Schedule (October 2022)

| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |
| | | | | | | |

he schedule may be changed due to unforeseen circumstances (adverse weather, safety concerns, etc..)
**24-hr TSP:24-hr TSP Monitoring works in both Kai Tak and Cha Kwo Ling (KTD1, KTD2d, KER1, CKL1 and CKL2)

nitoring Station

24-hr TSP

(CD2 Centre of Excellence in Paeciatrics (Children's Hospital)
KTD2d - Next to the SOR Office of Trunk Road T2 in Kai Tak Area
KER1 - Future Residential Development at Kerry Godown
CKL1 - Flat 121 Cha Kwo Ling Village
KL2 - Flat 103 Cha Kwo Ling Village
due to unforeseen circumstances (adyerse weather, safety concerns, etc.,
gorks in both Kai Tak and Cha Kwo Ling (KTD1, KTD2d, KER1, CKL1 and CKL2)
**24-hr TSP:24-hr TSP Monitoring works in both Kai Tak and Cha Kwo Ling (KTD1, KTD2d, KER1, CKL1 and CKL2)

Contract No. ED/2018/04

Trunk Road T2 and Infrastructure Works for Developments at the Former South Apron
Tentative Impact Air and Noise Monitoring Schedule (November 2022)

*Noise: Noise Moy be changed due to unforeseen circumstances (adverse weather, safety concerns, etc.)
**24-hr TSP:24-hr TSP Monitoring works in both Kai Tak and Cha Kwo Ling (KTD1, KTD2d, KER1, CKL1 and CKL2)

Air Quality Monitoring Station

24-hr TSP
KTDI - Centre of Excellence in Paediatrics (Children's Hospital)
KTD2d - Next to the SOR Office of Trunk Road T2 in Kai Tak Area
KER1 - Future Residentil Development at Kerry Godown
CKL1 Flat 121 Ch KwoLing Villag
CKL2 - Flat 103 Cha Kwo Ling Village
The schedule may be changed due to unforeseen circumstances (adverse weather, safety concerns, etc.)
*Noise: Noise Monitoring works in both Kai Tak and Cha Kwo Ling (KTD1, KTD2d, KER1, CKL1 and CKL2)
**24-hr TSP:24-hr TSP Monitoring works in both Kai Tak and Cha Kwo Ling (KTD1, KTD2d, KER1, CKL1 and CKL2)

Contract No. ED/2018/04

Trunk Road T2 and Infrastructure Works for Developments at the Former South Apron
Tentative Impact Air and Noise Monitoring Schedule (December 2022)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1-Dec	2-Dec	3-Dec
				24-hr TSP	Noise	
4-Dec	5-Dec	6-Dec	7-Dec	8-Dec	9-Dec	10-Dec
			24-hr TSP	Noise		
11-Dec	12-Dec	13-Dec	14-Dec	15-Dec	16-Dec	17-Dec
		24-hr TSP	Noise			
18-Dec	19-Dec	20-Dec	21-Dec	22-Dec	23-Dec	24-Dec
	24-hr TSP	Noise			24-hr TSP	
25-Dec	26-Dec	27-Dec	28-Dec	29-Dec	30-Dec	31-Dec
				24-hr TSP	Noise	

The schedule may be changed due to unforeseen circumstances (adverse weather, safety concerns, etc.)
*Noise: Noise Monitoring works in both Kai Tak and Cha Kwo Ling (KTD1, KTD2d, KER1, CKL1 and CKI 2)
**24-hr TSP:24-hr TSP Monitoring works in both Kai Tak and Cha Kwo Ling (KTD1, KTD2d, KER1, CKL1 and CKL2)

Air Quality Monitoring Station

24-hr TSP
KTD1 - Centre of Excellence in Paediatrics (Children's Hospital)
KTD2d - Next to the SOR Office of Trunk Road T2 in Kai Tak Area
KER1 - Future Residential Development at Kerry Godown
CKL1 Flat 121 Cb Kwo Ling Villag
CKL2 Fla 103 Cb Kwo Ling Vill
The schedule may be changed due to unforeseen circumstances (adverse weather, safety concerns, etc.)
*Noise: Noise Monitoring works in both Kai Tak and Cha Kwo Ling (KTD1, KTD2d, KER1, CKL1 and CKL2)
**24-hr TSP:24-hr TSP Monitoring works in both Kai Tak and Cha Kwo Ling (KTD1, KTD2d, KER1, CKL1 and CKL2)

APPENDIX C
COPIES OF CALIBRATION
CERTIFICATES FOR AIR QUALITY MONITORING

High-Volume TSP Sampler
 5-POINT CALIBRATION DATA SHEET

File No. \qquad
Project No. CKL 1 - Flat 121 Cha Kwo Ling Village
Date: \qquad

Next Due Date:	4-Sep-22
Model No.:	TE 5170

Operator: \qquad
Equipment No.: \qquad Model No.: \qquad Serial No. \qquad

Ambient Condition			
Temperature, $\mathrm{Ta}(\mathrm{K})$	302	Pressure, $\mathrm{Pa}(\mathrm{mmHg})$	753.2

Orifice Transfer Standard Information					
Serial No.	3864	Slope, mc	0.05922	Intercept, bc	-0.02420
Last Calibration Date:	31-Jan-22	$\begin{aligned} & \text { mc } \times \text { Qstd + bc }=[\Delta H \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2} \\ & \text { Qstd }=\left\{[\Delta \mathrm{H} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2}-\mathrm{bc}\right\} / \mathrm{mc} \end{aligned}$			
Next Calibration Date:	31-Jan-23				

Remarks:

Conducted by: | Wong Shing Kwai |
| :---: |
| Henry Leung |
| Checked by: |
| Signature: |

Project No. CKL 2 - Flat 103 Cha Kwo Ling Village

Date:	5-Jul-22
Equipment No.:	A-01-55

Next Due Date:	4-Sep-22	Operator:	SK
Model No.:	TE 5170	Serial No.	1956

Ambient Condition			
Temperature, $\mathrm{Ta}(\mathrm{K})$	302	Pressure, $\mathrm{Pa}(\mathrm{mmHg})$	753.2

Remarks:

Conducted by \qquad
Wong Shang Kwai
Signature: \qquad

Date: \qquad

Checked by: \qquad Date: \qquad

High-Volume TSP Sampler
5-POINT CALIBRATION DATA SHEET

File No. MA20003/04/0013
Project No. KER 1 - Future Residential Development at Kerry Godown

Date:	11-Jul-22	Next Due Date:	10-Sep-22	Operator:	SK
Equipment No.:	A-01-04	Model No.:	TE 5170	Serial No.	10595
Ambient Condition					
Temperature, $\mathrm{Ta}(\mathrm{K})$	303.9	Pressure, Pa (mmHg)		755.4	

Orifice Transfer Standard Information					
Serial No.	3864	Slope, mc	0.05922	Intercept, bc	-0.02420
Last Calibration Date:	31-Jan-22	$\begin{aligned} & \mathrm{mc} \times \text { Qstd }+\mathrm{bc}=[\Delta \mathrm{H} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2} \\ & \text { Qstd }=\left\{[\Delta \mathrm{H} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2}-\mathrm{bc}\right\} / \mathrm{mc} \end{aligned}$			
Next Calibration Date:	31-Jan-23				

Calibration of TSP Sampler					
Calibration Point	Orfice			HVS	
	$\Delta \mathrm{H}$ (orifice), in. of water	$[\Delta \mathrm{H} \mathrm{x}(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2}$	$\begin{aligned} & \text { Qstd (CFM) } \\ & \mathbf{X} \text { - axis } \end{aligned}$	$\Delta \mathrm{W}(\mathrm{HVS})$, in. of water	$\begin{gathered} {[\Delta \mathrm{W} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2}} \\ \text { Y-axis } \end{gathered}$
1	13.5	3.63	61.66	9.9	3.11
2	10.8	3.24	55.19	7.5	2.70
3	8.6	2.90	49.30	5.9	2.40
4	5.6	2.34	39.86	3.5	1.85
5	3.4	1.82	31.15	2.2	1.46
$\begin{array}{\|ll} \hline \text { By Linear Regression of Y on X } \\ \text { Slope }, \mathbf{m w}=\frac{\mathbf{0 . 0 5 4 1}}{} & \\ \quad \text { Correlation coefficient }{ }^{*}= & \mathbf{0 . 9 9 8 4} \\ \text { *If Correlation Coefficient }<0.990 \text {, check and recalibrate. } & \end{array}$					
Set Point Calculation					
From the TSP F From the Regre Therefore, S	d Calibration on Equation, Point; $\mathrm{W}=(\mathrm{m}$	ve, take Qstd $=43$ CFM Y" value according to $\mathbf{m w} \mathbf{x} \text { Qstd }+\mathbf{b w}=[\Delta \mathbf{W}$ x Qstd +bw$)^{2} \mathrm{x}(760 / \mathrm{Pa}) \mathrm{x}$	$\begin{aligned} & (\mathbf{P a} / \mathbf{7 6 0}) \times(\mathbf{2} \\ & \Gamma \mathrm{a} / 298)= \end{aligned}$	$8 / T a)]^{1 / 2}$	

Remarks:

Conducted by:	Wong Shing Kwai	Signature:	sen	Date:	11-Jul-22
Checked by:	Henry Leung	Signature:	$\text { l-lim } x_{n}$	Date:	11-Jul-22

High-Volume TSP Sampler
5-POINT CALIBRATION DATA SHEET

File No. MA20003/44/0013

Project No.	KTD1 - Centre of Exc	aediatrics (Childr		Operator:	SK
Date:	11-Jul-22	Next Due Date:	10-Sep-22		
Equipment No.:	A-01-44	Model No.:	TE-5170	Serial No.	1316

Ambient Condition			
Temperature, $\mathrm{Ta}(\mathrm{K})$	303.9	Pressure, $\mathrm{Pa}(\mathrm{mmHg})$	755.4

Orifice Transfer Standard Information					
Serial No.	3864	Slope, mc	0.05922	Intercept, bc	-0.02420
Last Calibration Date:	31-Jan-22	$\begin{aligned} & \text { mc } \times \text { Qstd }+ \text { bc }=[\Delta H \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2} \\ & \text { Qstd }=\left\{[\Delta \mathrm{H} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2}-\mathrm{bc}\right\} / \mathrm{mc} \end{aligned}$			
Next Calibration Date:	31-Jan-23				

Calibration of TSP Sampler					
Calibration Point	Orfice			HVS	
	$\Delta \mathrm{H}$ (orifice), in. of water	$[\Delta \mathrm{H} \mathrm{x}(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2}$	$\begin{aligned} & \text { Qstd (CFM) } \\ & \mathbf{X} \text { - axis } \end{aligned}$	$\begin{aligned} & \Delta \mathrm{W} \text { (HVS), in. } \\ & \text { of water } \end{aligned}$	$\begin{gathered} {[\Delta \mathrm{W} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2}} \\ \text { Y-axis } \end{gathered}$
1	13.4	3.61	61.43	10.1	3.14
2	11.3	3.32	56.45	7.8	2.76
3	8.8	2.93	49.86	5.9	2.40
4	6.0	2.42	41.24	3.7	1.90
5	3.5	1.85	31.60	2.1	1.43
$\begin{array}{\|ll} \hline \text { By Linear Regression of Y on X } \\ \text { Slope }, \mathbf{m w}=\frac{\mathbf{0 . 0 5 6 6}}{} & \\ \quad \text { Correlation coefficient }= & \mathbf{0 . 9 9 7 6} \\ \text { *If Correlation Coefficient }<0.990 \text {, check and recalibrate. } \end{array}$					
Set Point Calculation					
From the TSP F From the Regre Therefore, S	d Calibration on Equation, Point; W = (ve, take Qstd $=43$ CFM ' Y " value according to $\text { mw } \mathbf{x} \text { Qstd }+\mathbf{b w}=[\Delta \mathbf{W}$ x Qstd + bw $)^{2} x(760 / P a) x$	$(\mathrm{Pa} / 760) \times(29$ $\Gamma a / 298)=$	$8 / \mathrm{Ta})]^{1 / 2}$	

Remarks:

Conducted by:	Wong Shing Kwai	Signature:	son	Date:	11-Jul-22
Checked by:	Henry Leung	Signature:	con_{7}	Date:	11-Jul-22

File No. MA20003/41/0013

Ambient Condition			
Temperature, $\mathrm{Ta}(\mathrm{K})$	303.9	Pressure, $\mathrm{Pa}(\mathrm{mmHg})$	755.4

Orifice Transfer Standard Information					
Serial No.	3864	Slope, mc	0.05922	Intercept, bc	-0.02420
Last Calibration Date:	31-Jan-22	$\begin{aligned} & \mathrm{mc} \times \text { Qstd }+\mathrm{bc}=[\Delta \mathrm{H} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2} \\ & \text { Qstd }=\left\{[\Delta \mathrm{H} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2}-\mathrm{bc}\right\} / \mathrm{mc} \end{aligned}$			
Next Calibration Date:	31-Jan-23				

Calibration of TSP Sampler					
Calibration Point	Orfice			HVS	
	$\Delta \mathrm{H}$ (orifice), in. of water	$[\Delta \mathrm{H} \mathrm{x}(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2}$	$\begin{aligned} & \text { Qstd (CFM) } \\ & \text { X - axis } \end{aligned}$	$\begin{gathered} \Delta \mathrm{W}(\mathrm{HVS}), \text { in. } \\ \text { of water } \end{gathered}$	$\begin{gathered} {[\Delta \mathrm{W} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2}} \\ Y \text {-axis } \end{gathered}$
1	13.5	3.63	61.66	10.4	3.18
2	10.7	3.23	54.94	8.6	2.90
3	8.8	2.93	49.86	6.3	2.48
4	6.4	2.50	42.58	4.5	2.09
5	3.6	1.87	32.04	2.4	1.53
$\begin{array}{\|ll} \hline \text { By Linear Regression of Y on X } \\ \text { Slope }, \mathbf{m w}=\frac{\mathbf{0 . 0 5 7 1}}{} & \text { Intercept, bw : } \\ \quad \text { Correlation coefficient } *= & \mathbf{0 . 9 . 3 9 7 2} \\ \text { *If Correlation Coefficient }<0.990 \text {, check and recalibrate. } & \end{array}$					
Set Point Calculation					
From the TSP From the Regre Therefore, S	Id Calibration ion Equation, Point; $\mathrm{W}=(\mathrm{m}$	ve, take Qstd $=43$ CFM Y" value according to $\mathbf{m w} \mathbf{x} \mathbf{Q s t d}+\mathbf{b w}=[\Delta \mathbf{W}$ x Qstd +bw$)^{2} \mathrm{x}(760 / \mathrm{Pa}) \mathrm{x}$	$\begin{aligned} & (\mathbf{P a} / \mathbf{7 6 0}) \times(\mathbf{2 9} \\ & \Gamma \mathrm{a} / 298)= \end{aligned}$	$8 / \mathrm{Ta})]^{1 / 2}$ 4.69	

Remarks:

Conducted by: | Wong Shing Kwai |
| :---: |
| Checked by: \quad Henry Leung |
| Signature: |

Project No.
CKL 1 - Flat 121 Cha Kwo Ling Village
Date:
$\frac{5-S e p-22}{\text { A-01-18 }}$

Next Due Date:	5-Nov-22
Model No.:	TE 5170

Operator:	SK
Serial No.	0723

Ambient Condition			
Temperature, $\mathrm{Ta}(\mathrm{K})$	304.1	Pressure, $\mathrm{Pa}(\mathrm{mmHg})$	753.4

Orifice Transfer Standard Information					
Serial No.	3864	Slope, mc	0.05922	Intercept, bc	-0.02420
Last Calibration Date:	31-Jan-22	$\begin{aligned} & \mathrm{mc} \times \text { Qstd }+\mathrm{bc}=[\Delta \mathrm{H} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2} \\ & \text { Qstd }=\left\{[\Delta \mathrm{H} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2}-\mathrm{bc}\right\} / \mathrm{mc} \end{aligned}$			
Next Calibration Date:	31-Jan-23				

Calibration of TSP Sampler					
Calibration Point	Orfice			HVS	
	$\Delta \mathrm{H}$ (orifice), in. of water	$[\Delta \mathrm{H} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2}$	$\begin{gathered} \hline \text { Qstd (CFM) } \\ \mathbf{X} \text { - axis } \end{gathered}$	$\begin{gathered} \Delta \mathrm{W}(\mathrm{HVS}), \text { in. } \\ \text { of water } \end{gathered}$	$\begin{gathered} {[\Delta \mathrm{W} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2} \mathrm{Y}-} \\ \text { axis } \\ \hline \end{gathered}$
1	12.7	3.51	59.72	9.7	3.07
2	10.0	3.12	53.04	7.7	2.73
3	8.3	2.84	48.36	5.5	2.31
4	6.0	2.41	41.18	3.7	1.90
5	3.3	1.79	30.64	1.7	1.29

By Linear Regression of Y on X

Remarks:

Conducted by: | Wong Shing Kwai |
| :---: |
| Checked by: \quad Henry Leung |
| Signature: |

File No. MA20003/55/0016
Project No. CKL 2 - Flat 103 Cha Kwo Ling Village

Date:	5-Sep-22	Next Due Date:	5-Nov-22	Operator:	SK
Equipment No.:	A-01-55	Model No.:	TE 5170	Serial No.	1956
Ambient Condition					
Temperature, $\mathrm{Ta}(\mathrm{K})$	304.1	Pressure, Pa (mmHg)		753.4	

Orifice Transfer Standard Information					
Serial No.	3864	Slope, mc	0.05922	Intercept, bc	-0.02420
Last Calibration Date:	31-Jan-22	$\begin{aligned} & \text { mc } \times \text { Qstd }+\mathrm{bc}=[\Delta \mathrm{H} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2} \\ & \text { Qstd }=\left\{[\Delta \mathrm{H} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2}-\mathrm{bc}\right\} / \mathrm{mc} \\ & \hline \end{aligned}$			
Next Calibration Date:	31-Jan-23				

Remarks:

High-Volume TSP Sampler

5-POINT CALIBRATION DATA SHEET

File No. MA20003/04/0014
Project No. KER 1 - Future Residential Development at Kerry Godown
Date:
$\frac{10-\text { Sep-22 }}{}$

Next Due Date:	10-Nov-22	Operator:	SK
Model No.:	TE 5170	Serial No.	10595

Ambient Condition			
Temperature, $\mathrm{Ta}(\mathrm{K})$	301.9	Pressure, $\mathrm{Pa}(\mathrm{mmHg})$	758.6

Orifice Transfer Standard Information					
Serial No.	3864	Slope, mc	0.05922	Intercept, bc	-0.02420
Last Calibration Date:	31-Jan-22	$\begin{aligned} & \text { mc } \times \text { Qstd }+\mathrm{bc}=[\Delta \mathrm{H} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2} \\ & \text { Qstd }=\left\{[\Delta \mathrm{H} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2}-\mathrm{bc}\right\} / \mathrm{mc} \end{aligned}$			
Next Calibration Date:	31-Jan-23				

Calibration of TSP Sampler					
Calibration Point	Orfice			HVS	
	$\Delta \mathrm{H}$ (orifice), in. of water	$[\Delta \mathrm{H} \mathrm{x}(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2}$	$\begin{gathered} \text { Qstd (CFM) } \\ \mathbf{X} \text { - axis } \end{gathered}$	$\Delta \mathrm{W}$ (HVS), in. of water	$\begin{gathered} {[\Delta \mathrm{W} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2}} \\ \mathbf{Y} \text {-axis } \end{gathered}$
1	13.7	3.67	62.45	10.1	3.15
2	11.0	3.29	56.00	7.6	2.74
3	8.8	2.94	50.13	6.1	2.45
4	5.8	2.39	40.78	3.7	1.91
5	3.6	1.88	32.21	2.3	1.51
$\begin{array}{\|lll} \text { By Linear Regression of Y on X } \\ \text { Slope }, \text { mw }=\frac{0.0544}{c} & \text { Intercept, bw : } & \\ \quad \text { Correlation coefficient } *= & \mathbf{0 . 9 9 8 8} & \end{array}$					
Set Point Calculation					
From the TSP Field Calibration Curve, take Qstd $=43$ CFM From the Regression Equation, the "Y" value according to $\mathrm{mw} \times \mathrm{Qstd}+\mathrm{bw}=[\Delta \mathrm{W} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2}$					

Remarks:

High-Volume TSP Sampler

5-POINT CALIBRATION DATA SHEET

File No. MA20003/44/0014
Project No. KTD1 - Centre of Excellence in Paediatrics (Children's Hospital)
Date: $\quad 10-$ Sep-22

Next Due Date:	10-Nov-22	Operator:	SK
Model No.:	TE-5170	Serial No.	1316

Ambient Condition				
Temperature, $\mathrm{Ta}(\mathrm{K})$	301.9	Pressure, $\mathrm{Pa}(\mathrm{mmHg})$	758.6	

Orifice Transfer Standard Information					
Serial No.	3864	Slope, mc	0.05922	Intercept, bc	-0.02420
Last Calibration Date:	31-Jan-22	$\begin{aligned} & \mathrm{mc} \times \text { Qstd }+\mathrm{bc}=[\Delta \mathrm{H} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2} \\ & \text { Qstd }=\left\{[\Delta \mathrm{H} \times(\mathbf{P a} / 760) \times(\mathbf{2 9 8} / \mathrm{Ta})]^{1 / 2}-\mathrm{bc}\right\} / \mathrm{mc} \end{aligned}$			
Next Calibration Date:	31-Jan-23				

Remarks:

Ambient Condition			
Temperature, $\mathrm{Ta}(\mathrm{K})$	301.9	Pressure, $\mathrm{Pa}(\mathrm{mmHg})$	758.6

Orifice Transfer Standard Information					
Serial No.	3864	Slope, mc	0.05922	Intercept, bc	-0.02420
Last Calibration Date:	31-Jan-22	$\begin{aligned} & \text { mc } \times \text { Qstd }+ \text { bc }=[\Delta \mathrm{H} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2} \\ & \text { Qstd }=\left\{[\Delta \mathrm{H} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2}-\mathrm{bc}\right\} / \mathrm{mc} \end{aligned}$			
Next Calibration Date:	31-Jan-23				

Calibration of TSP Sampler					
Calibration Point	Orfice			HVS	
	$\Delta \mathrm{H}$ (orifice), in. of water	$[\Delta \mathrm{H} \mathrm{x}(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2}$	$\begin{aligned} & \text { Qstd (CFM) } \\ & \text { X- axis } \end{aligned}$	$\begin{aligned} & \Delta \mathrm{W} \text { (HVS), in. } \\ & \text { of water } \end{aligned}$	$\begin{gathered} {[\Delta \mathrm{W} \times(\mathrm{Pa} / 760) \times(298 / \mathrm{Ta})]^{1 / 2}} \\ \text { Y-axis } \end{gathered}$
1	13.7	3.67	62.45	10.6	3.23
2	10.9	3.28	55.75	8.8	2.94
3	9.0	2.98	50.69	6.5	2.53
4	6.5	2.53	43.14	4.6	2.13
5	3.7	1.91	32.65	2.4	1.54
$\begin{array}{\|ll} \text { By Linear Regression of Y on X } \\ \text { Slope }, \mathbf{m w}=\frac{\mathbf{0 . 0 5 8 0}}{} \\ \quad \text { Correlation coefficient* }= & \text { Intercept, bw : } \\ \text { *If Correlation Coefficient }<0.990 \text {, check and recalibrate. } & \end{array}$					
Set Point Calculation					
From the TSP Fi From the Regre Therefore,	d Calibration on Equation, Point; $\mathrm{W}=(\mathrm{m}$	ve, take Qstd $=43$ CFM Y" value according to $\begin{array}{r} \text { mw x } \mathbf{Q s t d}+\mathbf{b w}=[\Delta \mathbf{W} \\ \times \mathrm{Qstd}+\mathrm{bw})^{2} \times(760 / \mathrm{Pa}) \times(\end{array}$	$\begin{aligned} & (\mathbf{P a} / 760) \times(\mathbf{2} \\ & \Gamma \mathrm{a} / 298)= \end{aligned}$	$8 / \mathrm{Ta})]^{1 / 2}$	

Remarks:

Conducted by: | Wong Shing Kwai |
| :---: |
| Henry Leung |
| Checked by: \quad Signature: |

RECALIBRATION
DUE DATE:
January 31, 2023

Calibration Certification Information				
Cal. Date: January 31, 2022	Rootsmeter S/N: 438320	Ta: 294	${ }^{\circ} \mathrm{K}$	
Operator: Jim Tisch		Pa: 752.6	mm Hg	
Calibration Model \#:	TE-5025A	Calibrator S/N: 3864		

Run	Vol. Init $(\mathrm{m} 3)$	Vol. Final $(\mathrm{m} 3)$	Δ Vol. $(\mathrm{m} 3)$	$\Delta T i m e$ $(\mathrm{~min})$	ΔP $(\mathrm{~mm} \mathrm{Hg})$	ΔH (in H2O)
1	1	2	1	1.4490	3.2	2.00
2	3	4	1	1.0320	6.4	4.00
3	5	6	1	0.9160	7.9	5.00
4	7	8	1	0.8730	8.8	5.50
5	9	10	1	0.7230	12.7	8.00

Data Tabulation					
$\begin{aligned} & \text { Vstd } \\ & \text { (m3) } \end{aligned}$	$\begin{gathered} \text { Qstd } \\ \text { (x-axis) } \end{gathered}$	$\begin{gathered} \sqrt{\Delta H\left(\frac{P a}{P s t d}\right)\left(\frac{T s t d}{T a}\right)} \\ (y \text {-axis) } \end{gathered}$	Va	$\begin{gathered} \text { Qa } \\ (x \text {-axis) } \end{gathered}$	$\begin{gathered} \sqrt{\Delta H(\mathrm{Ta} / \mathrm{Pa})} \\ (y \text {-axis) } \end{gathered}$
0.9995	0.6898	1.4169	0.9957	0.6872	0.8839
0.9952	0.9643	2.0037	0.9915	0.9608	1.2500
0.9932	1.0843	2.2402	0.9895	1.0802	1.3976
0.9920	1.1363	2.3496	0.9883	1.1321	1.4658
0.9868	1.3649	2.8337	0.9831	1.3598	1.7678
QSTD	m=	2.09281	QA	$\mathrm{m}=$	1.31048
	$\mathrm{b}=$	-0.02426		$\mathrm{b}=$	-0.01514
	r=	0.99993		r=	0.99993

Calculations	
Vstd= V $^{\text {Vol }}((\mathrm{Pa}-\Delta \mathrm{P}) / \mathrm{Pstd})(\mathrm{Tstd} / \mathrm{Ta})$	$\mathrm{Va}=\Delta \mathrm{Vol}((\mathrm{Pa}-\Delta \mathrm{P}) / \mathrm{Pa})$
Qstd $=$ Vstd/ $/ \Delta$ Time	$\mathbf{Q}=$ = Va/ Δ Time
For subsequent flow rate calculations:	
Qstd $\left.=1 / m\left(\left(\sqrt{\Delta H\left(\frac{P_{\text {a }}}{P_{s t d}}\right)\left(\frac{\text { Tstd }}{T a}\right.}\right)\right)-\mathrm{b}\right)$	$Q a=1 / m((\sqrt{\Delta H(T a / P a)})-b)$

Standard Conditions	
Tstd:	$298.15{ }^{\circ} \mathrm{K}$
Pstd:	760 mm Hg
Key	
$\Delta \mathrm{H}$: calibrator manometer reading (in $\mathrm{H2O})$	
$\Delta \mathrm{P}:$ rootsmeter manometer reading $(\mathrm{mm} \mathrm{Hg})$	
Ta: actual absolute temperature $\left({ }^{\circ} \mathrm{K}\right)$	
Pa: actual barometric pressure $(\mathrm{mm} \mathrm{Hg})$	
b: intercept	
m : slope	

RECALIBRATION
US EPA recommends annual recalibration per 1998
40 Code of Federal Regulations Part 50 to 51,
Appendix B to Part 50, Reference Method for the
Determination of Suspended Particulate Matter in
the Atmosphere, 9.2.17, page 30

Certificate of Calibration - Wind Monitoring Station

Description:	$\underline{\text { Yau Lai Estate, Bik Lai House }}$
Manufacturer:	$\underline{\text { Davis Instruments }}$
Model No.:	$\underline{\text { Davis7440 }}$
Serial No.:	$\underline{\text { MC01010A44 }}$
Equipment No.:	$\underline{\text { SA-03-04 }}$
Date of Calibration	$\underline{\text { 19-Aug-2022 }}$
Next Due Date	$\underline{\text { 19-Feb-2023 }}$

1. Performance check of Wind Speed

Wind Speed, m/s		Difference D (m/s)
Wind Speed Reading (V1)	Anemometer Value (V2)	$\mathrm{D}=\mathrm{V} 1-\mathrm{V} 2$
0.0	0.0	0.0
1.5	1.5	0.0
2.5	2.6	-0.1
4.0	4.0	0.0

2. Performance check of Wind Direction

Wind Direction $\left({ }^{\circ}\right)$		Difference D (${ }^{\circ}$)
Wind Direction Reading $(\mathrm{W} 1)$	Marine Compass Value (W2)	$\mathrm{D}=\mathrm{W} 1-\mathrm{W} 2$
0	0	0.0
90	90	0.0
180	180	0.0
270	270	0.0

Test Specification:

1. Performance Wind Speed Test - The wind meter was on-site calibrated against the anemometer
2. Performance Wind Direction Test - The wind meter was on-site calibrated against the marine compass at four direction

Calibrated by:
 Approved by:

APPENDIX D
WEATHER INFORMATION

Appendix D - Weather Conditions
Appendix D - Weather Conditions During Impact Monitoring Period

Date	Mean Air Temperature ($\left.{ }^{\circ} \mathrm{C}\right)^{\mathbf{1}}$	Mean Relative Humidity $(\%)^{2}$	Precipitation (mm) ${ }^{3}$
1-Sep-22	29.4	78	2.8
2-Sep-22	29.5	63	0.0
3-Sep-22	30.0	54	0.0
4-Sep-22	30.8	55	0.0
5-Sep-22	31.1	52	0.0
6-Sep-22	30.8	61	0.0
7-Sep-22	28.4	81	8.6
8-Sep-22	29.5	70	Trace
9-Sep-22	29.6	55	0.0
10-Sep-22	28.9	76	Trace
11-Sep-22	29.4	78	0.0
12-Sep-22	30.8	66	0.0
13-Sep-22	31.7	56	0.0
14-Sep-22	31.7	46	0.0
15-Sep-22	31.3	52	0.0
16-Sep-22	30.8	63	Trace
17-Sep-22	31.1	69	Trace
18-Sep-22	30.1	77	20.3
19-Sep-22	28.8	77	3.3
20-Sep-22	28.9	79	3.5
21-Sep-22	28.1	72	8.5
22-Sep-22	28.5	73	0.0
23-Sep-22	28.5	77	13.4
24-Sep-22	28.3	71	0.0
25-Sep-22	28.8	71	0.0
26-Sep-22	29.4	70	0.0
27-Sep-22	29.2	72	Trace

Appendix D - Weather Conditions

28-Sep-22	28.8	73	0.0
29-Sep-22	28.0	81	8.1
30-Sep-22	26.4	91	102.7

(Reporting Month:September 2022)
Remarks:
Source - Hong Kong Observatory
${ }^{1-3}$ Retrieved from Manned Weather Station (Hong Kong Observatory) ($22^{\circ} 18^{\prime} 07^{\prime \prime}$ N, $114^{\circ} 10^{\prime} 27^{\prime \prime}$ E)

Appendix D-Weather Conditions

Appendix D - Weather Conditions During Impact Monitoring Period			
Wind Speed and Directions			
Date	Time	Direction	Wind Speed m-s
1 Sep 2022	12:00 AM	ESE	1.8
1 Sep 2022	1:00 AM	E	1.8
1 Sep 2022	2:00 AM	E	1.8
1 Sep 2022	3:00 AM	E	0.9
1 Sep 2022	4:00 AM	NW	0.9
1 Sep 2022	5:00 AM	W	1.3
1 Sep 2022	6:00 AM	W	1.3
1 Sep 2022	7:00 AM	NW	1.3
1 Sep 2022	8:00 AM	NW	1.3
1 Sep 2022	9:00 AM	NW	1.8
1 Sep 2022	10:00 AM	WNW	0.9
1 Sep 2022	11:00 AM	NW	1.3
1 Sep 2022	12:00 PM	W	0.9
1 Sep 2022	1:00 PM	ESE	1.8
1 Sep 2022	2:00 PM	E	3.6
1 Sep 2022	3:00 PM	WSW	3.1
1 Sep 2022	4:00 PM	E	3.1
1 Sep 2022	5:00 PM	ESE	3.6
1 Sep 2022	6:00 PM	W	1.3
1 Sep 2022	7:00 PM	WSW	1.3
1 Sep 2022	8:00 PM	W	1.3
1 Sep 2022	9:00 PM	WSW	0.9
1 Sep 2022	10:00 PM	W	0.9
1 Sep 2022	11:00 PM	WNW	0.9
2 Sep 2022	12:00 AM	W	0.9
2 Sep 2022	1:00 AM	SSW	1.3
2 Sep 2022	2:00 AM	WSW	0.9
2 Sep 2022	3:00 AM	S	0.9

Appendix D-Weather Conditions

Appendix D - Weather Conditions During Impact Monitoring Period			
Wind Speed and Directions			
Date	Time	Direction	Wind Speed m-s
2 Sep 2022	4:00 AM	WSW	0.4
2 Sep 2022	5:00 AM	WNW	0.9
2 Sep 2022	6:00 AM	SSW	1.8
2 Sep 2022	7:00 AM	SW	0.9
2 Sep 2022	8:00 AM	SW	1.8
2 Sep 2022	9:00 AM	WSW	1.3
2 Sep 2022	10:00 AM	WSW	0.4
2 Sep 2022	11:00 AM	WNW	0.4
2 Sep 2022	12:00 PM	WNW	0.9
2 Sep 2022	1:00 PM	S	0.9
2 Sep 2022	2:00 PM	ESE	1.8
2 Sep 2022	3:00 PM	SE	0.9
2 Sep 2022	4:00 PM	SE	0.9
2 Sep 2022	5:00 PM	SSW	1.8
2 Sep 2022	6:00 PM	SSW	1.8
2 Sep 2022	7:00 PM	SSE	1.3
2 Sep 2022	8:00 PM	SSE	1.3
2 Sep 2022	9:00 PM	---	1.3
2 Sep 2022	10:00 PM	SSE	0.9
2 Sep 2022	11:00 PM	SSW	1.3
3 Sep 2022	12:00 AM	SSW	0.4
3 Sep 2022	1:00 AM	SSW	0.0
3 Sep 2022	2:00 AM	SSW	0.0
3 Sep 2022	3:00 AM	SSW	0.4
3 Sep 2022	4:00 AM	WNW	0.4
3 Sep 2022	5:00 AM	WNW	0.4
3 Sep 2022	6:00 AM	WNW	0.4
3 Sep 2022	7:00 AM	WNW	0.4

Appendix D-Weather Conditions

Appendix D - Weather Conditions During Impact Monitoring Period			
Wind Speed and Directions			
Date	Time	Direction	Wind Speed m-s
3 Sep 2022	8:00 AM	SW	0.4
3 Sep 2022	9:00 AM	WNW	0.4
3 Sep 2022	10:00 AM	SSW	1.3
3 Sep 2022	11:00 AM	SSW	1.3
3 Sep 2022	12:00 PM	SSW	2.2
3 Sep 2022	1:00 PM	WSW	1.3
3 Sep 2022	2:00 PM	WSW	0.4
3 Sep 2022	3:00 PM	W	0.9
3 Sep 2022	4:00 PM	SSW	0.4
3 Sep 2022	5:00 PM	SSW	0.4
3 Sep 2022	6:00 PM	SSW	0.4
3 Sep 2022	7:00 PM	SSW	0.4
3 Sep 2022	8:00 PM	SSW	0.4
3 Sep 2022	9:00 PM	SW	0.9
3 Sep 2022	10:00 PM	SW	0.9
3 Sep 2022	11:00 PM	SW	0.0
4 Sep 2022	12:00 AM	NW	0.4
4 Sep 2022	1:00 AM	NW	0.0
4 Sep 2022	2:00 AM	NW	0.4
4 Sep 2022	3:00 AM	NW	0.4
4 Sep 2022	4:00 AM	NW	0.4
4 Sep 2022	5:00 AM	NW	0.4
4 Sep 2022	6:00 AM	NW	0.0
4 Sep 2022	7:00 AM	NW	0.4
4 Sep 2022	8:00 AM	WNW	0.4
4 Sep 2022	9:00 AM	NW	0.4
4 Sep 2022	10:00 AM	NW	0.4
4 Sep 2022	11:00 AM	SSW	0.4

Appendix D-Weather Conditions

Appendix D - Weather Conditions During Impact Monitoring Period			
Wind Speed and Directions			
Date	Time	Direction	Wind Speed m-s
4 Sep 2022	12:00 PM	SW	0.4
4 Sep 2022	1:00 PM	SE	0.4
4 Sep 2022	2:00 PM	SE	0.4
4 Sep 2022	3:00 PM	SE	0.4
4 Sep 2022	4:00 PM	SSE	1.3
4 Sep 2022	5:00 PM	SSW	1.3
4 Sep 2022	6:00 PM	SSW	2.2
4 Sep 2022	7:00 PM	SW	1.3
4 Sep 2022	8:00 PM	SW	0.4
4 Sep 2022	9:00 PM	WNW	0.9
4 Sep 2022	10:00 PM	ESE	0.4
4 Sep 2022	11:00 PM	E	0.4
5 Sep 2022	12:00 AM	E	0.4
5 Sep 2022	1:00 AM	E	0.4
5 Sep 2022	2:00 AM	NW	0.4
5 Sep 2022	3:00 AM	W	0.4
5 Sep 2022	4:00 AM	W	0.4
5 Sep 2022	5:00 AM	NW	0.4
5 Sep 2022	6:00 AM	NW	0.9
5 Sep 2022	7:00 AM	ESE	0.4
5 Sep 2022	8:00 AM	E	0.9
5 Sep 2022	9:00 AM	E	0.4
5 Sep 2022	10:00 AM	E	0.9
5 Sep 2022	11:00 AM	NW	1.3
5 Sep 2022	12:00 PM	W	1.3
5 Sep 2022	1:00 PM	W	1.8
5 Sep 2022	2:00 PM	NW	1.8
5 Sep 2022	3:00 PM	NW	2.2

Appendix D-Weather Conditions

Appendix D - Weather Conditions During Impact Monitoring Period			
Wind Speed and Directions			
Date	Time	Direction	Wind Speed m-s
5 Sep 2022	4:00 PM	NW	1.3
5 Sep 2022	5:00 PM	WNW	0.4
5 Sep 2022	6:00 PM	NW	0.9
5 Sep 2022	7:00 PM	W	0.9
5 Sep 2022	8:00 PM	ESE	0.9
5 Sep 2022	9:00 PM	E	1.3
5 Sep 2022	10:00 PM	WSW	2.2
5 Sep 2022	11:00 PM	E	2.7
6 Sep 2022	12:00 AM	ESE	1.3
6 Sep 2022	1:00 AM	W	1.3
6 Sep 2022	2:00 AM	WSW	1.8
6 Sep 2022	3:00 AM	W	1.3
6 Sep 2022	4:00 AM	SW	1.3
6 Sep 2022	5:00 AM	SSW	0.9
6 Sep 2022	6:00 AM	SSW	0.9
6 Sep 2022	7:00 AM	SSW	0.4
6 Sep 2022	8:00 AM	SSW	0.0
6 Sep 2022	9:00 AM	SSW	0.4
6 Sep 2022	10:00 AM	SW	0.0
6 Sep 2022	11:00 AM	WNW	0.0
6 Sep 2022	12:00 PM	WNW	0.0
6 Sep 2022	1:00 PM	WNW	0.0
6 Sep 2022	2:00 PM	W	0.4
6 Sep 2022	3:00 PM	WSW	0.4
6 Sep 2022	4:00 PM	WSW	0.4
6 Sep 2022	5:00 PM	WSW	0.4
6 Sep 2022	6:00 PM	WNW	1.3
6 Sep 2022	7:00 PM	ENE	1.3

Appendix D-Weather Conditions

Appendix D - Weather Conditions During Impact Monitoring Period			
Wind Speed and Directions			
Date	Time	Direction	Wind Speed m-s
6 Sep 2022	8:00 PM	WNW	1.3
6 Sep 2022	9:00 PM	WNW	0.9
6 Sep 2022	10:00 PM	WNW	1.8
6 Sep 2022	11:00 PM	WNW	1.3
7 Sep 2022	12:00 AM	WNW	2.2
7 Sep 2022	1:00 AM	WNW	1.8
7 Sep 2022	2:00 AM	WNW	2.2
7 Sep 2022	3:00 AM	NNE	1.3
7 Sep 2022	4:00 AM	WNW	0.4
7 Sep 2022	5:00 AM	WNW	0.9
7 Sep 2022	6:00 AM	WNW	0.4
7 Sep 2022	7:00 AM	WNW	0.4
7 Sep 2022	8:00 AM	WNW	0.9
7 Sep 2022	9:00 AM	WNW	0.4
7 Sep 2022	10:00 AM	WNW	0.4
7 Sep 2022	11:00 AM	WNW	0.9
7 Sep 2022	12:00 PM	WNW	0.0
7 Sep 2022	1:00 PM	WNW	0.9
7 Sep 2022	2:00 PM	WNW	0.9
7 Sep 2022	3:00 PM	WNW	0.9
7 Sep 2022	4:00 PM	WNW	0.4
7 Sep 2022	5:00 PM	WNW	0.9
7 Sep 2022	6:00 PM	WNW	0.9
7 Sep 2022	7:00 PM	W	0.0
7 Sep 2022	8:00 PM	WNW	0.4
7 Sep 2022	9:00 PM	WNW	0.0
7 Sep 2022	10:00 PM	WNW	0.4
7 Sep 2022	11:00 PM	WNW	0.4

Appendix D-Weather Conditions

Appendix D - Weather Conditions During Impact Monitoring Period			
Wind Speed and Directions			
Date	Time	Direction	Wind Speed m-s
8 Sep 2022	12:00 AM	NW	0.4
8 Sep 2022	1:00 AM	ESE	0.4
8 Sep 2022	2:00 AM	ESE	0.0
8 Sep 2022	3:00 AM	NW	0.4
8 Sep 2022	4:00 AM	WNW	0.4
8 Sep 2022	5:00 AM	WNW	0.4
8 Sep 2022	6:00 AM	WNW	0.4
8 Sep 2022	7:00 AM	WNW	0.4
8 Sep 2022	8:00 AM	WNW	0.4
8 Sep 2022	9:00 AM	WNW	0.4
8 Sep 2022	10:00 AM	WNW	0.4
8 Sep 2022	11:00 AM	WNW	0.4
8 Sep 2022	12:00 PM	WNW	1.3
8 Sep 2022	1:00 PM	WSW	1.3
8 Sep 2022	2:00 PM	WSW	0.9
8 Sep 2022	3:00 PM	WNW	1.3
8 Sep 2022	4:00 PM	WNW	0.9
8 Sep 2022	5:00 PM	WNW	1.3
8 Sep 2022	6:00 PM	WSW	0.9
8 Sep 2022	7:00 PM	W	0.4
8 Sep 2022	8:00 PM	WNW	0.9
8 Sep 2022	9:00 PM	W	0.9
8 Sep 2022	10:00 PM	WNW	1.3
8 Sep 2022	11:00 PM	NNE	1.3
9 Sep 2022	12:00 AM	W	1.8
9 Sep 2022	1:00 AM	WNW	1.3
9 Sep 2022	2:00 AM	WNW	1.8
9 Sep 2022	3:00 AM	WNW	1.8

Appendix D-Weather Conditions

Appendix D - Weather Conditions During Impact Monitoring Period			
Wind Speed and Directions			
Date	Time	Direction	Wind Speed m-s
9 Sep 2022	4:00 AM	WNW	0.9
9 Sep 2022	5:00 AM	WNW	0.9
9 Sep 2022	6:00 AM	WNW	1.3
9 Sep 2022	7:00 AM	WNW	1.8
9 Sep 2022	8:00 AM	WNW	0.9
9 Sep 2022	9:00 AM	WNW	0.4
9 Sep 2022	10:00 AM	WNW	0.4
9 Sep 2022	11:00 AM	WSW	0.4
9 Sep 2022	12:00 PM	WSW	0.4
9 Sep 2022	1:00 PM	WSW	1.3
9 Sep 2022	2:00 PM	WSW	0.4
9 Sep 2022	3:00 PM	W	0.4
9 Sep 2022	4:00 PM	NE	0.4
9 Sep 2022	5:00 PM	ENE	0.0
9 Sep 2022	6:00 PM	NE	0.4
9 Sep 2022	7:00 PM	NE	0.9
9 Sep 2022	8:00 PM	WSW	0.0
9 Sep 2022	9:00 PM	W	0.4
9 Sep 2022	10:00 PM	WSW	0.9
9 Sep 2022	11:00 PM	WSW	1.8
10 Sep 2022	12:00 AM	WSW	1.3
10 Sep 2022	1:00 AM	WSW	2.2
10 Sep 2022	2:00 AM	WNW	2.7
10 Sep 2022	3:00 AM	WNW	2.7
10 Sep 2022	4:00 AM	WSW	1.3
10 Sep 2022	5:00 AM	WNW	1.8
10 Sep 2022	6:00 AM	WSW	1.3
10 Sep 2022	7:00 AM	WNW	0.9

Appendix D-Weather Conditions

Appendix D - Weather Conditions During Impact Monitoring Period			
Wind Speed and Directions			
Date	Time	Direction	Wind Speed m-s
10 Sep 2022	8:00 AM	WNW	0.4
10 Sep 2022	9:00 AM	WNW	0.4
10 Sep 2022	10:00 AM	ESE	0.9
10 Sep 2022	11:00 AM	E	0.9
10 Sep 2022	12:00 PM	E	0.4
10 Sep 2022	1:00 PM	E	0.4
10 Sep 2022	2:00 PM	NW	0.4
10 Sep 2022	3:00 PM	W	0.9
10 Sep 2022	4:00 PM	W	0.9
10 Sep 2022	5:00 PM	NW	0.4
10 Sep 2022	6:00 PM	NW	0.4
10 Sep 2022	7:00 PM	NW	0.4
10 Sep 2022	8:00 PM	WNW	0.9
10 Sep 2022	9:00 PM	NW	1.3
10 Sep 2022	10:00 PM	W	1.3
10 Sep 2022	11:00 PM	ESE	0.0
11 Sep 2022	12:00 AM	E	0.0
11 Sep 2022	1:00 AM	WSW	0.4
11 Sep 2022	2:00 AM	E	0.9
11 Sep 2022	3:00 AM	ESE	0.9
11 Sep 2022	4:00 AM	W	1.8
11 Sep 2022	5:00 AM	WSW	1.8
11 Sep 2022	6:00 AM	W	0.9
11 Sep 2022	7:00 AM	ESE	0.9
11 Sep 2022	8:00 AM	E	1.3
11 Sep 2022	9:00 AM	ENE	0.9
11 Sep 2022	10:00 AM	ESE	0.4
11 Sep 2022	11:00 AM	ENE	0.4

Appendix D-Weather Conditions

Appendix D - Weather Conditions During Impact Monitoring Period			
Wind Speed and Directions			
Date	Time	Direction	Wind Speed m-s
11 Sep 2022	12:00 PM	SE	0.4
11 Sep 2022	1:00 PM	ENE	0.9
11 Sep 2022	2:00 PM	ENE	0.9
11 Sep 2022	3:00 PM	ESE	0.9
11 Sep 2022	4:00 PM	E	0.9
11 Sep 2022	5:00 PM	ENE	1.3
11 Sep 2022	6:00 PM	ENE	1.3
11 Sep 2022	7:00 PM	ESE	1.3
11 Sep 2022	8:00 PM	SE	1.3
11 Sep 2022	9:00 PM	ENE	0.9
11 Sep 2022	10:00 PM	SW	0.9
11 Sep 2022	11:00 PM	ENE	0.9
12 Sep 2022	12:00 AM	E	0.9
12 Sep 2022	1:00 AM	SW	0.9
12 Sep 2022	2:00 AM	ENE	0.9
12 Sep 2022	3:00 AM	ENE	0.9
12 Sep 2022	4:00 AM	SW	1.3
12 Sep 2022	5:00 AM	SW	1.8
12 Sep 2022	6:00 AM	SSW	1.3
12 Sep 2022	7:00 AM	SW	1.8
12 Sep 2022	8:00 AM	SW	1.8
12 Sep 2022	9:00 AM	SW	2.2
12 Sep 2022	10:00 AM	SW	1.8
12 Sep 2022	11:00 AM	SW	2.2
12 Sep 2022	12:00 PM	SSE	1.8
12 Sep 2022	1:00 PM	NE	0.9
12 Sep 2022	2:00 PM	NE	0.4
12 Sep 2022	3:00 PM	NE	0.0

Appendix D-Weather Conditions

Appendix D - Weather Conditions During Impact Monitoring Period			
Wind Speed and Directions			
Date	Time	Direction	Wind Speed m-s
12 Sep 2022	4:00 PM	NE	0.4
12 Sep 2022	5:00 PM	SE	1.8
12 Sep 2022	6:00 PM	ENE	1.3
12 Sep 2022	7:00 PM	ENE	0.9
12 Sep 2022	8:00 PM	ENE	0.4
12 Sep 2022	9:00 PM	ENE	0.4
12 Sep 2022	10:00 PM	ENE	0.4
12 Sep 2022	11:00 PM	ENE	0.9
13 Sep 2022	12:00 AM	ENE	0.9
13 Sep 2022	1:00 AM	ENE	1.3
13 Sep 2022	2:00 AM	ENE	0.4
13 Sep 2022	3:00 AM	ENE	0.9
13 Sep 2022	4:00 AM	ENE	1.8
13 Sep 2022	5:00 AM	ENE	0.4
13 Sep 2022	6:00 AM	ENE	0.9
13 Sep 2022	7:00 AM	ENE	0.9
13 Sep 2022	8:00 AM	ENE	3.6
13 Sep 2022	9:00 AM	ENE	3.1
13 Sep 2022	10:00 AM	ENE	3.1
13 Sep 2022	11:00 AM	ENE	1.8
13 Sep 2022	12:00 PM	ENE	1.3
13 Sep 2022	1:00 PM	ENE	0.4
13 Sep 2022	2:00 PM	E	0.9
13 Sep 2022	3:00 PM	ESE	0.9
13 Sep 2022	4:00 PM	ENE	0.9
13 Sep 2022	5:00 PM	ENE	0.4
13 Sep 2022	6:00 PM	E	0.4
13 Sep 2022	7:00 PM	SE	0.4

Appendix D-Weather Conditions

Appendix D - Weather Conditions During Impact Monitoring Period			
Wind Speed and Directions			
Date	Time	Direction	Wind Speed m-s
13 Sep 2022	8:00 PM	N	0.4
13 Sep 2022	9:00 PM	NNW	0.4
13 Sep 2022	10:00 PM	NNW	1.3
13 Sep 2022	11:00 PM	NW	1.3
14 Sep 2022	12:00 AM	NNW	2.2
14 Sep 2022	1:00 AM	NNE	1.3
14 Sep 2022	2:00 AM	NNE	0.4
14 Sep 2022	3:00 AM	NNW	0.9
14 Sep 2022	4:00 AM	ENE	0.4
14 Sep 2022	5:00 AM	NNW	0.4
14 Sep 2022	6:00 AM	NNW	0.4
14 Sep 2022	7:00 AM	NNW	0.4
14 Sep 2022	8:00 AM	NNW	0.4
14 Sep 2022	9:00 AM	NNW	0.9
14 Sep 2022	10:00 AM	N	0.0
14 Sep 2022	11:00 AM	NNW	0.4
14 Sep 2022	12:00 PM	NNW	1.3
14 Sep 2022	1:00 PM	NE	0.4
14 Sep 2022	2:00 PM	NE	0.4
14 Sep 2022	3:00 PM	E	0.4
14 Sep 2022	4:00 PM	N	0.0
14 Sep 2022	5:00 PM	E	0.4
14 Sep 2022	6:00 PM	E	0.9
14 Sep 2022	7:00 PM	ESE	0.0
14 Sep 2022	8:00 PM	ESE	0.4
14 Sep 2022	9:00 PM	SE	0.9
14 Sep 2022	10:00 PM	NW	1.8
14 Sep 2022	11:00 PM	WNW	1.3

Appendix D-Weather Conditions

Appendix D - Weather Conditions During Impact Monitoring Period			
Wind Speed and Directions			
Date	Time	Direction	Wind Speed m-s
15 Sep 2022	12:00 AM	WNW	2.2
15 Sep 2022	1:00 AM	WNW	2.7
15 Sep 2022	2:00 AM	ESE	2.7
15 Sep 2022	3:00 AM	E	1.3
15 Sep 2022	4:00 AM	E	1.8
15 Sep 2022	5:00 AM	E	0.0
15 Sep 2022	6:00 AM	NW	0.9
15 Sep 2022	7:00 AM	W	1.3
15 Sep 2022	8:00 AM	W	0.4
15 Sep 2022	9:00 AM	NW	0.4
15 Sep 2022	10:00 AM	NW	0.4
15 Sep 2022	11:00 AM	NW	0.4
15 Sep 2022	12:00 PM	WNW	0.4
15 Sep 2022	1:00 PM	NW	1.3
15 Sep 2022	2:00 PM	W	1.3
15 Sep 2022	3:00 PM	ESE	2.2
15 Sep 2022	4:00 PM	E	1.3
15 Sep 2022	5:00 PM	WSW	0.4
15 Sep 2022	6:00 PM	E	0.9
15 Sep 2022	7:00 PM	ESE	0.4
15 Sep 2022	8:00 PM	W	0.4
15 Sep 2022	9:00 PM	WSW	0.4
15 Sep 2022	10:00 PM	W	0.4
15 Sep 2022	11:00 PM	NNW	0.4
16 Sep 2022	12:00 AM	NNW	0.4
16 Sep 2022	1:00 AM	WNW	0.9
16 Sep 2022	2:00 AM	NNW	1.3
16 Sep 2022	3:00 AM	WNW	1.3

Appendix D-Weather Conditions

Appendix D - Weather Conditions During Impact Monitoring Period			
Wind Speed and Directions			
Date	Time	Direction	Wind Speed m-s
16 Sep 2022	4:00 AM	NNW	0.9
16 Sep 2022	5:00 AM	WNW	0.9
16 Sep 2022	6:00 AM	WNW	0.9
16 Sep 2022	7:00 AM	WNW	2.7
16 Sep 2022	8:00 AM	WNW	0.4
16 Sep 2022	9:00 AM	WNW	0.4
16 Sep 2022	10:00 AM	WNW	0.4
16 Sep 2022	11:00 AM	NW	0.4
16 Sep 2022	12:00 PM	WNW	0.4
16 Sep 2022	1:00 PM	NNW	1.3
16 Sep 2022	2:00 PM	NW	1.3
16 Sep 2022	3:00 PM	NW	2.2
16 Sep 2022	4:00 PM	NNW	1.3
16 Sep 2022	5:00 PM	NNW	0.4
16 Sep 2022	6:00 PM	NNW	0.9
16 Sep 2022	7:00 PM	NNW	0.4
16 Sep 2022	8:00 PM	NNW	0.4
16 Sep 2022	9:00 PM	NNW	0.4
16 Sep 2022	10:00 PM	NNW	0.4
16 Sep 2022	11:00 PM	NNW	0.4
17 Sep 2022	12:00 AM	NNW	0.9
17 Sep 2022	1:00 AM	NNW	0.4
17 Sep 2022	2:00 AM	NNW	0.4
17 Sep 2022	3:00 AM	NNW	0.4
17 Sep 2022	4:00 AM	NNW	0.9
17 Sep 2022	5:00 AM	NNW	0.9
17 Sep 2022	6:00 AM	NNW	1.3
17 Sep 2022	7:00 AM	NW	0.4

Appendix D-Weather Conditions

Appendix D - Weather Conditions During Impact Monitoring Period			
Wind Speed and Directions			
Date	Time	Direction	Wind Speed m-s
17 Sep 2022	8:00 AM	NW	0.9
17 Sep 2022	9:00 AM	ESE	1.8
17 Sep 2022	10:00 AM	E	0.4
17 Sep 2022	11:00 AM	E	0.9
17 Sep 2022	12:00 PM	E	0.9
17 Sep 2022	1:00 PM	NW	0.9
17 Sep 2022	2:00 PM	W	1.8
17 Sep 2022	3:00 PM	W	0.9
17 Sep 2022	4:00 PM	NW	0.4
17 Sep 2022	5:00 PM	NW	0.0
17 Sep 2022	6:00 PM	NW	0.9
17 Sep 2022	7:00 PM	WNW	0.4
17 Sep 2022	8:00 PM	NW	0.4
17 Sep 2022	9:00 PM	W	0.4
17 Sep 2022	10:00 PM	ESE	0.4
17 Sep 2022	11:00 PM	E	0.4
18 Sep 2022	12:00 AM	WSW	0.4
18 Sep 2022	1:00 AM	E	1.3
18 Sep 2022	2:00 AM	ESE	1.3
18 Sep 2022	3:00 AM	W	2.2
18 Sep 2022	4:00 AM	WSW	1.3
18 Sep 2022	5:00 AM	W	0.4
18 Sep 2022	6:00 AM	NW	0.9
18 Sep 2022	7:00 AM	NW	0.4
18 Sep 2022	8:00 AM	WNW	0.4
18 Sep 2022	9:00 AM	NW	0.4
18 Sep 2022	10:00 AM	NW	0.4
18 Sep 2022	11:00 AM	SSW	0.4

Appendix D-Weather Conditions

Appendix D - Weather Conditions During Impact Monitoring Period			
Wind Speed and Directions			
Date	Time	Direction	Wind Speed m-s
18 Sep 2022	12:00 PM	SW	1.3
18 Sep 2022	1:00 PM	SE	0.9
18 Sep 2022	2:00 PM	SE	1.8
18 Sep 2022	3:00 PM	SE	0.9
18 Sep 2022	4:00 PM	SSE	0.9
18 Sep 2022	5:00 PM	SSW	0.9
18 Sep 2022	6:00 PM	SSW	0.9
18 Sep 2022	7:00 PM	SW	0.9
18 Sep 2022	8:00 PM	SW	1.3
18 Sep 2022	9:00 PM	WNW	0.9
18 Sep 2022	10:00 PM	WNW	0.0
18 Sep 2022	11:00 PM	W	0.9
19 Sep 2022	12:00 AM	W	0.4
19 Sep 2022	1:00 AM	W	0.0
19 Sep 2022	2:00 AM	W	0.9
19 Sep 2022	3:00 AM	ESE	0.4
19 Sep 2022	4:00 AM	E	0.9
19 Sep 2022	5:00 AM	E	0.9
19 Sep 2022	6:00 AM	E	1.3
19 Sep 2022	7:00 AM	NW	2.7
19 Sep 2022	8:00 AM	W	0.9
19 Sep 2022	9:00 AM	W	0.9
19 Sep 2022	10:00 AM	NW	1.3
19 Sep 2022	11:00 AM	NW	2.7
19 Sep 2022	12:00 PM	NW	1.3
19 Sep 2022	1:00 PM	WNW	1.8
19 Sep 2022	2:00 PM	NW	0.9
19 Sep 2022	3:00 PM	W	1.3

Appendix D-Weather Conditions

Appendix D - Weather Conditions During Impact Monitoring Period			
Wind Speed and Directions			
Date	Time	Direction	Wind Speed m-s
19 Sep 2022	4:00 PM	ESE	0.9
19 Sep 2022	5:00 PM	E	1.3
19 Sep 2022	6:00 PM	WSW	2.7
19 Sep 2022	7:00 PM	E	2.2
19 Sep 2022	8:00 PM	ESE	2.2
19 Sep 2022	9:00 PM	W	0.9
19 Sep 2022	10:00 PM	WSW	0.4
19 Sep 2022	11:00 PM	W	0.4
20 Sep 2022	12:00 AM	SW	0.4
20 Sep 2022	1:00 AM	SSW	0.9
20 Sep 2022	2:00 AM	SSW	0.9
20 Sep 2022	3:00 AM	SSW	0.9
20 Sep 2022	4:00 AM	SW	0.4
20 Sep 2022	5:00 AM	SSW	0.4
20 Sep 2022	6:00 AM	SSW	0.4
20 Sep 2022	7:00 AM	SSW	0.4
20 Sep 2022	8:00 AM	SSW	0.4
20 Sep 2022	9:00 AM	SSW	1.3
20 Sep 2022	10:00 AM	SW	1.3
20 Sep 2022	11:00 AM	WNW	2.2
20 Sep 2022	12:00 PM	WNW	1.3
20 Sep 2022	1:00 PM	WNW	0.4
20 Sep 2022	2:00 PM	W	0.9
20 Sep 2022	3:00 PM	WSW	0.4
20 Sep 2022	4:00 PM	WSW	0.4
20 Sep 2022	5:00 PM	WSW	0.4
20 Sep 2022	6:00 PM	WNW	0.4
20 Sep 2022	7:00 PM	ENE	0.4

Appendix D-Weather Conditions

Appendix D - Weather Conditions During Impact Monitoring Period			
Wind Speed and Directions			
Date	Time	Direction	Wind Speed m-s
20 Sep 2022	8:00 PM	WNW	0.9
20 Sep 2022	9:00 PM	WNW	0.4
20 Sep 2022	10:00 PM	WNW	0.9
20 Sep 2022	11:00 PM	WNW	0.4
21 Sep 2022	12:00 AM	WNW	0.9
21 Sep 2022	1:00 AM	WNW	0.9
21 Sep 2022	2:00 AM	WNW	0.9
21 Sep 2022	3:00 AM	NNE	1.3
21 Sep 2022	4:00 AM	WNW	0.4
21 Sep 2022	5:00 AM	WNW	0.4
21 Sep 2022	6:00 AM	WNW	0.9
21 Sep 2022	7:00 AM	WNW	0.4
21 Sep 2022	8:00 AM	WNW	0.4
21 Sep 2022	9:00 AM	WNW	0.4
21 Sep 2022	10:00 AM	WNW	0.4
21 Sep 2022	11:00 AM	WNW	0.9
21 Sep 2022	12:00 PM	WNW	0.9
21 Sep 2022	1:00 PM	ESE	0.4
21 Sep 2022	2:00 PM	E	0.4
21 Sep 2022	3:00 PM	E	0.4
21 Sep 2022	4:00 PM	E	0.9
21 Sep 2022	5:00 PM	NW	1.3
21 Sep 2022	6:00 PM	W	1.3
21 Sep 2022	7:00 PM	W	1.3
21 Sep 2022	8:00 PM	NW	1.3
21 Sep 2022	9:00 PM	NW	0.9
21 Sep 2022	10:00 PM	NW	1.3
21 Sep 2022	11:00 PM	WNW	1.8

Appendix D-Weather Conditions

Appendix D - Weather Conditions During Impact Monitoring Period			
Wind Speed and Directions			
Date	Time	Direction	Wind Speed m-s
22 Sep 2022	12:00 AM	NW	1.3
22 Sep 2022	1:00 AM	W	1.3
22 Sep 2022	2:00 AM	ESE	1.3
22 Sep 2022	3:00 AM	E	1.3
22 Sep 2022	4:00 AM	WSW	1.3
22 Sep 2022	5:00 AM	E	0.9
22 Sep 2022	6:00 AM	ESE	0.0
22 Sep 2022	7:00 AM	W	0.0
22 Sep 2022	8:00 AM	WSW	0.0
22 Sep 2022	9:00 AM	W	0.0
22 Sep 2022	10:00 AM	WNW	0.4
22 Sep 2022	11:00 AM	WNW	1.3
22 Sep 2022	12:00 PM	WNW	2.2
22 Sep 2022	1:00 PM	WSW	3.6
22 Sep 2022	2:00 PM	WSW	3.6
22 Sep 2022	3:00 PM	WNW	3.1
22 Sep 2022	4:00 PM	WNW	3.1
22 Sep 2022	5:00 PM	WNW	1.8
22 Sep 2022	6:00 PM	WSW	1.3
22 Sep 2022	7:00 PM	W	0.4
22 Sep 2022	8:00 PM	WNW	0.9
22 Sep 2022	9:00 PM	W	0.9
22 Sep 2022	10:00 PM	WNW	0.9
22 Sep 2022	11:00 PM	NNE	0.9
23 Sep 2022	12:00 AM	W	1.3
23 Sep 2022	1:00 AM	WNW	0.9
23 Sep 2022	2:00 AM	WNW	0.9
23 Sep 2022	3:00 AM	WNW	0.9

Appendix D-Weather Conditions

Appendix D - Weather Conditions During Impact Monitoring Period			
Wind Speed and Directions			
Date	Time	Direction	Wind Speed m-s
23 Sep 2022	4:00 AM	WNW	1.3
23 Sep 2022	5:00 AM	WNW	1.8
23 Sep 2022	6:00 AM	WNW	1.3
23 Sep 2022	7:00 AM	WNW	1.3
23 Sep 2022	8:00 AM	ESE	1.3
23 Sep 2022	9:00 AM	E	1.3
23 Sep 2022	10:00 AM	E	0.4
23 Sep 2022	11:00 AM	E	0.9
23 Sep 2022	12:00 PM	NW	0.9
23 Sep 2022	1:00 PM	W	1.3
23 Sep 2022	2:00 PM	W	1.3
23 Sep 2022	3:00 PM	NW	0.9
23 Sep 2022	4:00 PM	NW	0.9
23 Sep 2022	5:00 PM	NW	0.9
23 Sep 2022	6:00 PM	WNW	0.4
23 Sep 2022	7:00 PM	NW	0.9
23 Sep 2022	8:00 PM	W	0.4
23 Sep 2022	9:00 PM	ESE	0.9
23 Sep 2022	10:00 PM	E	0.9
23 Sep 2022	11:00 PM	WSW	0.9
24 Sep 2022	12:00 AM	E	1.3
24 Sep 2022	1:00 AM	ESE	0.4
24 Sep 2022	2:00 AM	W	0.4
24 Sep 2022	3:00 AM	WSW	0.9
24 Sep 2022	4:00 AM	W	0.4
24 Sep 2022	5:00 AM	WNW	0.4
24 Sep 2022	6:00 AM	WSW	0.4
24 Sep 2022	7:00 AM	WNW	0.9

Appendix D-Weather Conditions

Appendix D - Weather Conditions During Impact Monitoring Period			
Wind Speed and Directions			
Date	Time	Direction	Wind Speed m-s
24 Sep 2022	8:00 AM	WNW	0.9
24 Sep 2022	9:00 AM	WNW	0.4
24 Sep 2022	10:00 AM	WNW	0.4
24 Sep 2022	11:00 AM	WNW	0.4
24 Sep 2022	12:00 PM	ENE	0.9
24 Sep 2022	1:00 PM	WSW	0.4
24 Sep 2022	2:00 PM	WSW	0.4
24 Sep 2022	3:00 PM	SW	0.4
24 Sep 2022	4:00 PM	E	0.4
24 Sep 2022	5:00 PM	ENE	0.4
24 Sep 2022	6:00 PM	ENE	1.3
24 Sep 2022	7:00 PM	ENE	1.3
24 Sep 2022	8:00 PM	E	2.2
24 Sep 2022	9:00 PM	ENE	1.3
24 Sep 2022	10:00 PM	ENE	0.4
24 Sep 2022	11:00 PM	ENE	0.9
25 Sep 2022	12:00 AM	ENE	0.4
25 Sep 2022	1:00 AM	E	0.4
25 Sep 2022	2:00 AM	ESE	0.4
25 Sep 2022	3:00 AM	E	0.4
25 Sep 2022	4:00 AM	ENE	0.4
25 Sep 2022	5:00 AM	ESE	1.3
25 Sep 2022	6:00 AM	ENE	1.8
25 Sep 2022	7:00 AM	ESE	1.8
25 Sep 2022	8:00 AM	E	2.2
25 Sep 2022	9:00 AM	ENE	1.3
25 Sep 2022	10:00 AM	ESE	1.8
25 Sep 2022	11:00 AM	E	1.3

Appendix D-Weather Conditions

Appendix D - Weather Conditions During Impact Monitoring Period			
Wind Speed and Directions			
Date	Time	Direction	Wind Speed m-s
25 Sep 2022	12:00 PM	E	0.9
25 Sep 2022	1:00 PM	E	0.9
25 Sep 2022	2:00 PM	NW	1.3
25 Sep 2022	3:00 PM	W	1.3
25 Sep 2022	4:00 PM	W	0.9
25 Sep 2022	5:00 PM	NW	1.3
25 Sep 2022	6:00 PM	NW	0.9
25 Sep 2022	7:00 PM	NW	1.3
25 Sep 2022	8:00 PM	WNW	1.3
25 Sep 2022	9:00 PM	NW	1.8
25 Sep 2022	10:00 PM	W	0.9
25 Sep 2022	11:00 PM	ESE	1.3
26 Sep 2022	12:00 AM	E	1.3
26 Sep 2022	1:00 AM	WSW	2.2
26 Sep 2022	2:00 AM	E	1.8
26 Sep 2022	3:00 AM	ESE	1.8
26 Sep 2022	4:00 AM	W	1.8
26 Sep 2022	5:00 AM	WSW	1.8
26 Sep 2022	6:00 AM	W	0.9
26 Sep 2022	7:00 AM	SW	0.9
26 Sep 2022	8:00 AM	SW	1.3
26 Sep 2022	9:00 AM	SW	1.3
26 Sep 2022	10:00 AM	SW	1.3
26 Sep 2022	11:00 AM	SW	1.3
26 Sep 2022	12:00 PM	SSE	1.8
26 Sep 2022	1:00 PM	NE	0.9
26 Sep 2022	2:00 PM	NE	1.3
26 Sep 2022	3:00 PM	NE	0.9

Appendix D-Weather Conditions

Appendix D - Weather Conditions During Impact Monitoring Period			
Wind Speed and Directions			
Date	Time	Direction	Wind Speed m-s
26 Sep 2022	4:00 PM	NE	1.8
26 Sep 2022	5:00 PM	SE	3.6
26 Sep 2022	6:00 PM	ENE	3.1
26 Sep 2022	7:00 PM	ENE	3.1
26 Sep 2022	8:00 PM	ENE	3.6
26 Sep 2022	9:00 PM	ENE	1.3
26 Sep 2022	10:00 PM	ENE	1.3
26 Sep 2022	11:00 PM	ENE	1.3
27 Sep 2022	12:00 AM	ENE	0.9
27 Sep 2022	1:00 AM	ENE	0.9
27 Sep 2022	2:00 AM	ENE	0.9
27 Sep 2022	3:00 AM	ENE	0.9
27 Sep 2022	4:00 AM	ENE	1.3
27 Sep 2022	5:00 AM	ENE	0.9
27 Sep 2022	6:00 AM	ENE	0.9
27 Sep 2022	7:00 AM	ENE	0.4
27 Sep 2022	8:00 AM	ENE	0.9
27 Sep 2022	9:00 AM	ENE	1.8
27 Sep 2022	10:00 AM	ENE	0.9
27 Sep 2022	11:00 AM	ENE	1.8
27 Sep 2022	12:00 PM	ENE	1.3
27 Sep 2022	1:00 PM	ENE	0.4
27 Sep 2022	2:00 PM	E	0.4
27 Sep 2022	3:00 PM	ESE	0.4
27 Sep 2022	4:00 PM	ENE	0.4
27 Sep 2022	5:00 PM	ENE	0.4
27 Sep 2022	6:00 PM	E	0.4
27 Sep 2022	7:00 PM	SE	0.4

Appendix D - Weather Conditions

Appendix D - Weather Conditions During Impact Monitoring Period			
Date			
Time	Direction	Wind Speed m-s	
27 Sep 2022	$8: 00$ PM	ESE	1.3
27 Sep 2022	$9: 00$ PM	E	1.3
27 Sep 2022	$10: 00 \mathrm{PM}$	ESE	2.2
27 Sep 2022	$11: 00 \mathrm{PM}$	ESE	1.3
$28 \operatorname{Sep} 2022$	$12: 00 \mathrm{AM}$	ESE	0.4
$28 \operatorname{Sep} 2022$	$1: 00 \mathrm{AM}$	ENE	0.9
$28 \operatorname{Sep} 2022$	$2: 00 \mathrm{AM}$	ENE	0.4
$28 \operatorname{Sep} 2022$	$3: 00 \mathrm{AM}$	ENE	0.4
$28 \operatorname{Sep} 2022$	$4: 00 \mathrm{AM}$	ENE	0.4
$28 \operatorname{Sep} 2022$	$5: 00 \mathrm{AM}$	SW	0.4
$28 \operatorname{Sep} 2022$	$6: 00 \mathrm{AM}$	SW	0.4
$28 \operatorname{Sep} 2022$	$7: 00 \mathrm{AM}$	E	0.4
$28 \operatorname{Sep} 2022$	$8: 00 \mathrm{AM}$	E	0.9
$28 \operatorname{Sep} 2022$	$9: 00 \mathrm{AM}$	ESE	1.3
$28 \operatorname{Sep} 2022$	$10: 00 \mathrm{AM}$	E	0.9
$28 \operatorname{Sep} 2022$	$11: 00 \mathrm{AM}$	E	0.9
$28 \operatorname{Sep} 2022$	$12: 00 \mathrm{PM}$	ENE	0.9
$28 \operatorname{Sep} 2022$	$1: 00 \mathrm{PM}$	ENE	0.4
$28 \operatorname{Sep} 2022$	$2: 00 \mathrm{PM}$	NNE	0.9

Appendix D-Weather Conditions

Appendix D - Weather Conditions During Impact Monitoring Period			
Wind Speed and Directions			
Date	Time	Direction	Wind Speed m-s
28 Sep 2022	3:00 PM	ENE	1.3
28 Sep 2022	4:00 PM	ENE	1.8
28 Sep 2022	5:00 PM	ENE	1.8
28 Sep 2022	6:00 PM	ENE	0.9
28 Sep 2022	7:00 PM	WNW	1.3
28 Sep 2022	8:00 PM	E	1.3
28 Sep 2022	9:00 PM	ENE	0.9
28 Sep 2022	10:00 PM	E	2.7
28 Sep 2022	11:00 PM	E	1.3
29 Sep 2022	12:00 AM	ESE	0.9
29 Sep 2022	1:00 AM	E	0.9
29 Sep 2022	2:00 AM	E	0.0
29 Sep 2022	3:00 AM	ENE	0.4
29 Sep 2022	4:00 AM	ENE	0.0
29 Sep 2022	5:00 AM	NNE	0.4
29 Sep 2022	6:00 AM	ENE	0.4
29 Sep 2022	7:00 AM	ENE	0.4
29 Sep 2022	8:00 AM	ENE	0.4
29 Sep 2022	9:00 AM	ENE	0.0
29 Sep 2022	10:00 AM	WNW	0.4
29 Sep 2022	11:00 AM	E	0.4
29 Sep 2022	12:00 PM	ENE	0.4
29 Sep 2022	1:00 PM	E	0.4
29 Sep 2022	2:00 PM	E	0.4
29 Sep 2022	3:00 PM	E	0.4
29 Sep 2022	4:00 PM	NW	0.4
29 Sep 2022	5:00 PM	W	0.4
29 Sep 2022	6:00 PM	W	0.4

Appendix D-Weather Conditions

Appendix D - Weather Conditions During Impact Monitoring Period			
Wind Speed and Directions			
Date	Time	Direction	Wind Speed m-s
29 Sep 2022	7:00 PM	NW	1.3
29 Sep 2022	8:00 PM	NW	1.3
29 Sep 2022	9:00 PM	NW	2.2
29 Sep 2022	10:00 PM	WNW	1.3
29 Sep 2022	11:00 PM	NW	0.4
30 Sep 2022	12:00 AM	W	0.9
30 Sep 2022	1:00 AM	ESE	0.4
30 Sep 2022	2:00 AM	E	0.4
30 Sep 2022	3:00 AM	E	0.4
30 Sep 2022	4:00 AM	E	0.4
30 Sep 2022	5:00 AM	NW	0.4
30 Sep 2022	6:00 AM	W	0.4
30 Sep 2022	7:00 AM	W	0.4
30 Sep 2022	8:00 AM	NW	1.3
30 Sep 2022	9:00 AM	NW	1.3
30 Sep 2022	10:00 AM	NW	2.2
30 Sep 2022	11:00 AM	WNW	1.3
30 Sep 2022	12:00 PM	NW	0.4
30 Sep 2022	1:00 PM	W	0.9
30 Sep 2022	2:00 PM	ESE	0.4
30 Sep 2022	3:00 PM	E	0.4
30 Sep 2022	4:00 PM	WSW	0.4
30 Sep 2022	5:00 PM	E	0.4
30 Sep 2022	6:00 PM	ESE	0.4
30 Sep 2022	7:00 PM	W	1.3
30 Sep 2022	8:00 PM	WSW	2.7
30 Sep 2022	9:00 PM	W	2.2
30 Sep 2022	10:00 PM	ESE	2.2

Appendix D - Weather Conditions

Appendix D - Weather Conditions During Impact Monitoring Period			
Wpeed and Directions			
Date	Time	Direction	Wind Speed m-s
30 Sep 2022	$11: 00$ PM	ENE	1.3

```
APPENDIX F
24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATIONS
```

Appendix F-24-hour TSP Impact Monitoring Results

Location CKL1 - Flat 121 Cha Kwo Ling Village

Location CKL2 - Flat 103 Cha Kwo Ling Village

Start Date	Weather Condition	Air Temp. (K)	Atmospheric Pressure, $\mathrm{Pa}(\mathrm{mmHg})$	Filter Weight (g)		Particulate weight (g)	Elapse Time		Sampling Time (hrs.)	Flow Rate (m³/min.)		Av. Flow ($\mathrm{m}^{3} / \mathrm{min}$)	Total vol. (m)	Conc. $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	$\begin{gathered} \text { Action } \\ \text { Level } \\ (\mu \mathrm{g} / \mathrm{m} 3) \end{gathered}$		
				Initial	Final		Initial	Final		Initial	Final						
1-Sep-22	Sunny	302.5	756.2	3.3321	3.4834	0.1513	16983.7	17007.7	24.0	1.22	1.22	1.22	1754.5	86.2	183.0	260.0	
7-Sep-22	Sunny	302.0	761.3	3.3733	3.6077	0.2345	17007.7	17031.7	24.0	1.23	1.23	1.23	1766.2	132.7			
13-Sep-22	Sunny	304.7	756.4	3.2975	3.5721	0.2746	17031.7	17055.7	24.0	1.22	1.22	1.22	1754.6	156.5			
19-Sep-22	Cloudy	301.9	756.3	3.3207	3.5119	0.1912	17055.7	17079.7	24.0	1.22	1.22	1.22	1762.3	108.5			
24-Sep-22	Sunny	301.6	759.1	3.2895	3.5429	0.2534	17079.7	17103.7	24.0	1.23	1.23	1.23	1765.1	143.6			
29-Sep-22	Rainy	300.2	759.4	3.3400	3.4957	0.1557	17103.7	17127.7	24.0	1.23	1.23	1.23	1768.7	88.0			
Note:		ction Level exce											Min	86.2			
Bold Italic with underline means Limit Level exceedance													Max	156.5			
													Average	119.3			

Location KTD1 - Centre of Excellence in Paediatrics (Children's Hospital)

Location KER1 - Future Residential Development at Kerry Godown

Start Date	Weather Condition	Air Temp.(K)	Atmospheric Pressure, $\mathrm{Pa}(\mathrm{mmHg})$	Filter Weight (g)		Particulate weight (g)	Elapse Time		Sampling Time (hrs.)	Flow Rate ($\mathrm{m}^{3} / \mathrm{min}$.)		Av. Flow ($\mathrm{m}^{3} / \mathrm{min}$)	Total vol. (m)	Conc. $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$	Action Level ($\mu \mathrm{g} / \mathrm{m} 3$)	Limit Level ($\mu \mathrm{g} / \mathrm{m} 3$)
				Initial	Final		Initial	Final		Initial	Final					
1-Sep-22	Sunny	302.5	756.2	3.3059	3.4797	0.1738	13919.9	13943.9	24.0	1.22	1.22	1.22	1755.3	99.0	172.0	260.0
7-Sep-22	Sunny	302.0	761.3	3.2991	3.4299	0.1308	13943.9	13967.9	24.0	1.22	1.22	1.22	1761.9	74.2		
13-Sep-22	Sunny	304.7	756.4	3.3474	3.6230	0.2756	13967.9	13992.0	24.0	1.21	1.21	1.21	1743.6	158.1		
19-Sep-22	Sunny	301.9	756.3	3.2828	3.4569	0.1740	13992.0	14016.0	24.0	1.21	1.22	1.22	1750.0	99.4		
24-Sep-22	Sunny	301.6	759.1	3.4045	3.6247	0.2203	14016.0	14040.0	24.0	1.22	1.22	1.22	1753.7	125.6		
29-Sep-22	Rainy	300.2	759.4	3.3559	3.5478	0.1918	14040.0	14064.0	24.0	1.22	1.22	1.22	1757.4	109.2		
Note:	Bold Italic means Action Level exceedance Bold Italic with underline means Limit Level exceedance												Min	74.2		
													Max	158.1		
													Average	110.9		

Location KTD2d - Next to the SOR Office of Trunk Road T2 in Kai Tak Area

(

24-hr TSP Concentration Levels

24-hr TSP Concentration Levels

APPENDIX G
COPIES OF CALIBRATION
CERTIFICATES FOR NOISE MONITORING

High Precision Chemical Testing Ltd.

Rm 1904, Technology Park
18 On Lai Street, Shatin
NT, Hong Kong
Tel: +852 38414388 Website: https://www.hpct.com.hk

Report No.	$: 00168$	
Application No.	$:$	HP00044

Certificate of Calibration

Applicant	Cinotech Consultant RM 1710, Technology 18 On Lai Street, Shatin, N.T., Hong K	imited Park,	
Sample Description	Submitted equipment stated to be Integrating Sound Level Meter.		
	Equipment No.:	N-08-11	
	Manufacturer:	SVANTEK	
	Other information	Model No.	SVAN 957
		Serial No.	23852
		Microphone No.	22454

Date Received	$: 20$ Jan 2022
Test Period	$: 21$ Jan 2022 to 21 Jan 2022
Test Requested	$:$ Performance checking for Sound Level Meter
Test Method	$:$The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard and instrument which are recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius Relative Humidity: 35-70\%

Test Result : Refer to the test result(s) on page 2.

Remark : 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of
HIGH PRECISION CHEMICAL TESTING LIMITED

High Precision Chemical Testing Ltd.
Rm 1904, Technology Park
18 On Lai Street, Shatin
NT, Hong Kong
Tel: +852 38414388 Website: https://www.hpct.com.hk
Report No. : 00168 Issue Date : 25 Jan 2022
Application No. : HP00044

Certificate of Calibration

| Measuring |
| :--- | :--- | :--- |
| equipment |$:$| Description | Sound Calibrator |
| :--- | :--- |
| | Manufacturer |
| | Brüel \& Kjær |
| Model No. | TYPE 4231 |
| Serial No. | 2326353 |
| | Equipment No. |

Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	94.1	+0.1	± 1.5
114.0	114.2	+0.2	± 1.5

Note : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
2. The indication value was obtained from the average of ten replicated measurement.

- End of report -

High Precision Chemical Testing Ltd.

Rm 1904, Technology Park
18 On Lai Street, Shatin
NT, Hong Kong
Tel: +852 38414388 Website: https://www.hpct.com.hk
Report No. : $00164 \quad$ Issue Date : 25 Jan 2022

Application No. : HP00042

Certificate of Calibration

Applicant	Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong		
Sample Description	Submitted equipment stated to be Integrating Sound Level Meter.		
	Equipment No.:	N-08-12	
	Manufacturer:	SVANTEK	
	Other information	Model No.	SVAN 957
		Serial No.	23851
		Microphone No.	17204

Date Received	$: 19$ Jan 2022
Test Period	$: 21$ Jan 2022 to 21 Jan 2022
Test Requested	$:$ Performance checking for Sound Level Meter
Test Method	$:$The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard and instrument which are recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius Relative Humidity: 35-70\%

Test Result : Refer to the test result(s) on page 2.

Remark : 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of
HIGH PRECISION CHEMICAL TESTING LIMITED

High Precision Chemical Testing Ltd.
Rm 1904, Technology Park
18 On Lai Street, Shatin
NT, Hong Kong
Tel: +852 38414388 Website: https://www.hpct.com.hk
Report No. : 00164 Issue Date : 25 Jan 2022
Application No. : HP00042

Certificate of Calibration

Measuring equipment	Description	Sound Calibrator
	Manufacturer	Brüel \& Kjær
Model No.	TYPE 4231	
	Serial No.	2326353
	Equipment No.	N-02-01

Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	94.1	+0.1	± 1.5
114.0	114.2	+0.2	± 1.5

Note : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
2. The indication value was obtained from the average of ten replicated measurement.

- End of report -

High Precision Chemical Testing Ltd.

Rm 1904, Technology Park
18 On Lai Street, Shatin
NT, Hong Kong
Tel: +852 38414388 Website: https://www.hpct.com.hk
Report No. : $00159 \quad$ Issue Date : 30 Dec 2021

Application No. : HP00039

Certificate of Calibration

Applicant	Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong		
Sample Description	Submitted equipment stated to be Integrating Sound Level Meter.		
	Equipment No.:	N-12-02	
	Manufacturer:	BSWA Technology	
	Other information	Model No.	BSWA 308
		Serial No.	570187
		Microphone No.	570610

Date Received	$: 29$ Dec 2021
Test Period	$: 30$ Dec 2021 to 30 Dec 2021
Test Requested	$:$ Performance checking for Sound Level Meter
Test Method	$:$The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard and instrument which are recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius Relative Humidity: 35-70\%

Test Result : Refer to the test result(s) on page 2.

Remark : 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of
HIGH PRECISION CHEMICAL TESTING LIMITED

High Precision Chemical Testing Ltd.
Rm 1904, Technology Park
18 On Lai Street, Shatin
NT, Hong Kong
Tel: +852 38414388 Website: https://www.hpct.com.hk
Report No. : $00159 \quad$ Issue Date : 30 Dec 2021
Application No. : HP00039

Certificate of Calibration

| Measuring |
| :--- | :--- | :--- |
| equipment |$:$| Description | Sound Calibrator |
| :--- | :--- |
| | Manufacturer |
| | Brüel \& Kjær |
| Model No. | TYPE 4231 |
| Serial No. | 2326353 |
| | Equipment No. |

Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	94.0	0.0	± 1.5
114.0	114.1	0.0	± 1.5

Note : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
2. The indication value was obtained from the average of ten replicated measurement.

- End of report -

High Precision Chemical Testing Ltd.

Rm 1904, Technology Park
18 On Lai Street, Shatin
NT, Hong Kong
Tel: +852 38414388 Website: https://www.hpct.com.hk

Report No.	$: 00181$	Issue Date : 24 May 2022
Application No.	$:$ HP00060	

Certificate of Calibration			
Applicant	Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong		
Sample Description	Submitted equipment stated to be Integrating Sound Level Meter.		
	Equipment No.:	N-12-06	
	Manufacturer:	BSWA Technology	
	Other information	Model No.	BSWA 308
		Serial No.	580156
		Microphone No.	580804

Date Received	$: 16$ May 2022
Test Period	$: 24$ May 2022 to 24 May 2022
Test Requested	$:$ Performance checking for Sound Level Meter
Test Method	$:$The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard and instrument which are recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius Relative Humidity: 35-70\%

Test Result : Refer to the test result(s) on page 2.

Remark : 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of
HIGH PRECISION CHEMICAL TESTING LIMITED

High Precision Chemical Testing Ltd.
Rm 1904, Technology Park
18 On Lai Street, Shatin
NT, Hong Kong
Tel: +852 38414388 Website: https://www.hpct.com.hk
Report No. : 00181 Issue Date : 24 May 2022
Application No. : HP00060

Certificate of Calibration

Measuring equipment	Description	Sound Calibrator
	Manufacturer	Brüel \& Kjær
Model No.	TYPE 4231	
	Serial No.	2326353
	Equipment No.	N-02-01

Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	93.9	-0.1	± 1.5
114.0	114.1	+0.1	± 1.5

Note : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
2. The indication value was obtained from the average of ten replicated measurement.

- End of report -

High Precision Chemical Testing Ltd.
Rm 1904, Technology Park
18 On Lai Street, Shatin
NT, Hong Kong
Tel: +852 38414388 Website: https://www.hpct.com.hk

Report No.	$: 00150$	Issue Date $: 16$ Nov 2021
Application No.	$: ~ H P 00032$	

Certificate of Calibration

Applicant	Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong		
Sample Description	Submitted equipment stated to be Sound Level Calibrator.		
	Equipment No.:	N-13-01	
	Manufacturer:	SOUNDTEK	
	Other information	Model No.	ST-120
		Serial No.	181001608

Date Received : 05 Nov 2021
Test Period : 08 Nov 2021 to 12 Nov 2021
Test Requested : Performance checking for Sound Level Calibrator
Test Method : The Sound Level Meter and Calibrator has been calibrated in accordance with the documented procedures and using standard and instrument which are recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius Relative Humidity: 35-70\%

Test Result : Refer to the test result(s) on page 2.

Remark : 1. Information of the sample description provided by the Applicant.
2. The result(s) relate only to the items tested or calibrated.

For and on behalf of
HIGH PRECISION CHEMICAL TESTING LIMITED

High Precision Chemical Testing Ltd.
Rm 1904, Technology Park
18 On Lai Street, Shatin
NT, Hong Kong
Tel: +852 38414388 Website: https://www.hpct.com.hk
Report No. : $00150 \quad$ Issue Date : 16 Nov 2021
Application No. : HP00032

Certificate of Calibration

Measuring equipment

Description	Sound Calibrator
Manufacturer	Brüel \& Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01

Description	Sound Meter
Manufacturer	BSWA Technology
Model No.	BSWA 308
Serial No.	570188
Microphone No.	570608
Equipment No.	N-12-03

Test Result :

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	94.1	+0.1	± 0.3
114.0	114.0	0.0	± 0.5

Note : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
2. The indication value was obtained from the average of ten replicated measurement.

- End of report -

High Precision Chemical Testing Ltd.

Rm 1904, Technology Park
18 On Lai Street, Shatin
NT, Hong Kong
Tel: +852 38414388 Website: https://www.hpct.com.hk

Report No.	$: 00152$	Issue Date $: 19$ Nov 2021
Application No.	$: ~ H P 00034$	

Application No. : HP00034

Certificate of Calibration

Applicant	Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong		
Sample Description	Submitted equipment stated to be Integrating Sound Level Meter.		
	Equipment No.:	N-12-01	
	Manufacturer:	BSWA Technology	
	Other information	Model No.	BSWA 308
		Serial No.	570183
		Microphone No.	570605

Date Received	$: 10$ Nov 2021
Test Period	$: 10$ Nov 2021 to 17 Nov 2021
Test Requested	$:$ Performance checking for Sound Level Meter
Test Method	$:$The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard and instrument which are recommended by the manufacturer, or equivalent.

Test conditions : Room Temperature: 22-25 degree Celsius Relative Humidity: 35-70\%

Test Result : Refer to the test result(s) on page 2.

Remark : 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of
HIGH PRECISION CHEMICAL TESTING LIMITED

High Precision Chemical Testing Ltd.
Rm 1904, Technology Park
18 On Lai Street, Shatin
NT, Hong Kong
Tel: +852 38414388 Website: https://www.hpct.com.hk
Report No. : 00152 Issue Date : 19 Nov 2021
Application No. : HP00034

Certificate of Calibration

Measuring equipment	Description	Sound Calibrator
	Manufacturer	Brüel \& Kjær
Model No.	TYPE 4231	
	Serial No.	2326353
	Equipment No.	N-02-01

Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	94.1	+0.1	± 1.5
114.0	114.0	0.0	± 1.5

Note : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
2. The indication value was obtained from the average of ten replicated measurement.

- End of report -

Appendix H-Noise Monitoring Results

(0700-1900 hrs on Normal Weekdays)

cation C	$t 12$	ko L					Construction Noise Level
Date	Time	Weather	Unit: dB (A) (30-min)				
			Measured Noise Level			Baseline Level	
			$\mathrm{L}_{\text {eq }}$	L_{10}	L_{90}	$\mathrm{L}_{\text {eq }}$	$\mathrm{L}_{\text {eq }}$
8-Sep-22	13:02	Sunny	69.3	72.3	59.5	72.4	69.3 Measured \leqq Baseline
14-Sep-22	15:00	Sunny	69.8	72.6	61.1	72.4	69.8 Measured \leqq Baseline
20-Sep-22	14:50	Cloudy	69.8	73.2	60.6	72.4	69.8 Measured \leqq Baseline
26-Sep-22	14:03	Sunny	69.8	72.6	60.5	72.4	69.8 Measured \leqq Baseline

Location CKL2 - Flat 103 Cha Kwo Ling Village

Date	Time	Weather	Unit: dB (A) (30-min)				
			Measured Noise Level			Baseline Level	Construction Noise Level
			$\mathrm{L}_{\text {eq }}$	L_{10}	L_{90}	$\mathrm{L}_{\text {eq }}$	$L_{\text {eq }}$
8-Sep-22	13:33	Sunny	71.8	75.1	62.8	71.4	61
14-Sep-22	16:30	Sunny	72.0	75.1	61.4	71.4	63
20-Sep-22	15:00	Cloudy	70.6	73.0	64.7	71.4	70.6 Measured § Baseline
26-Sep-22	15:50	Sunny	70.0	72.7	65.7	71.4	70 Measured \leqq Baseline

Location KTD1 - Centre of Excellence in Paediatrics (Rooftop of Children's Hospital)

Date	Time	Weather	Unit: dB (A) (30-min)				
			Measured Noise Level			Baseline Level	Construction Noise Level
			$L_{\text {eq }}$	L_{10}	L_{90}	$\mathrm{L}_{\text {eq }}$	$L_{\text {eq }}$
8-Sep-22	10:08	Sunny	69.3	71.1	66.7	78.0	69.3 Measured \leqq Baseline
14-Sep-22	13:10	Sunny	72.9	75.3	70.1	78.0	72.9 Measured \leqq Baseline
20-Sep-22	10:00	Sunny	70.1	73.3	68.9	78.0	70.1 Measured \leqq Baseline
26-Sep-22	10:43	Sunny	66.8	67.9	64.3	78.0	66.8 Measured \leqq Baseline

Location KER1 - Future Residential Development at Kerry Godown

Date	Time	Weather	Unit: dB (A) (30-min)				
			Measured Noise Level			Baseline Level	Construction Noise Level
			$\mathrm{L}_{\text {eq }}$	L_{10}	L_{90}	$\mathrm{L}_{\text {eq }}$	$\mathrm{L}_{\text {eq }}$
8-Sep-22	9:26	Sunny	65.7	68.8	56.8	65.0	57
14-Sep-22	14:00	Sunny	74.2	76.1	68.4	65.0	74
20-Sep-22	9:00	Sunny	70.9	73.9	68.8	65.0	70
26-Sep-22	9:44	Sunny	69.2	70.2	59.5	65.0	67

Location KTD2d - Next to the SOR Office of Trunk Road T2 in Kai Tak Area

Date	Time	Weather	Unit: dB (A) (30-min)				
			Measured Noise Level			Baseline Level	Construction Noise Level
			$L_{\text {eq }}$	L_{10}	L_{90}	$\mathrm{L}_{\text {eq }}$	$L_{\text {eq }}$
8-Sep-22	11:04	Sunny	59.8	61.2	56.5	64.0	60 Measured \leqq Baseline
14-Sep-22	11:30	Sunny	65.5	67.7	61.6	64.0	60
20-Sep-22	11:00	Sunny	66.9	68.6	65.1	64.0	64
26-Sep-22	11:33	Sunny	64.6	68.2	56.3	64.0	56

Noise Levels

Title	Kai Tak Development - Trunk Road T2 and Infrastructure Works at the Former South Apron	Date	Project	
		Sep 22	No. MA20003	
	Graphical Presentation of Construction Noise Monitoring Results		Appendix H	

Noise Levels

Title	Kai Tak Development - Trunk Road T2 and Infrastructure Works at the	Date	Project	
		Sep 22	No. MA20003	
	Graphical Presentation of Construction Noise Monitoring Results		Appendix H	

APPENDIX I
SITE AUDIT SUMMARY

Environmental Team for Trunk Road T2 and Infrastructure Works at the Former South Apron

Weekly Site Inspection Record Summary
Inspection Information

Checklist Reference Number	220908
Date	08 September 2022 (Thursday)
Time	$09: 30-12: 00$

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-

	Name	Signature	Date
Recorded by	Tim Lui		08 September 2022
Checked by	Karina Chan		08

Environmental Team for Trunk Road T2 and Infrastructure Works at the Former South Apron

Weekly Site Inspection Record Summary

Inspection Information

Checklist Reference Number	220915
Date	15 September 2022 (Thursday)
Time	$09: 20-12: 00$

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality - No environmental deficiency was identified during site inspection. C. Air Quality - No environmental deficiency was identified during site inspection. D. Construction Noise Impact - No environmental deficiency was identified during site inspection. E. Waste/Chemical Management - No environmental deficiency was identified during site inspection. F. Visual and Landscape - No environmental deficiency was identified during site inspection. G. Permits/Licences - No environmental deficiency was identified during site inspection. H. Marine Ecology - No environmental deficiency was identified during site inspection. I. Others - Follow up on the previous session (Ref No.:220908), all item has been rectified.	

	Name	Signature	Date
Recorded by	Tim Lui		15 September 2022
Checked by	Karina Chan		15 September 2022

Environmental Team for Trunk Road T2 and Infrastructure Works at the Former South Apron

Weekly Site Inspection Record Summary

Inspection Information

Checklist Reference Number	220922
Date	22 September 2022 (Thursday)
Time	$09: 20-12: 00$

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-

	Name	Signature	Date
Recorded by	Tim Lui	2	2 September 2022
Checked by	Karina Chan		22 September 2022

Environmental Team for Trunk Road T2 and Infrastructure Works at the Former South Apron

Weekly Site Inspection Record Summary

Inspection Information

Checklist Reference Number	220929
Date	29 September 2022 (Thursday)
Time	$09: 20-12: 00$

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-

	Name	Signature	Date
Recorded by	William Yeung	William Yeung	29 September 2022
Checked by	Karina Chan	29	2 September 2022

Contract No. ED/2020/03
Environmental Team for Trunk Road T2 - Traffic Control and Surveillance System (TCSS) and Associated Works

Site Inspection Record Summary
Inspection Information

Checklist Reference Number	220923
Date	23 September 2022 (Friday)
Time	$09: 30-12: 00$

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-

Ref. No.	Remarks/Observations	Related Item No.
	B. Water Quality - No environmental deficiency was identified during site inspection. C. Air Quality - No environmental deficiency was identified during site inspection. D. Construction Noise Impact - No environmental deficiency was identified during site inspection. E. Waste/Chemical Management - No environmental deficiency was identified during site inspection. F. Visual and Landscape - No environmental deficiency was identified during site inspection. G. Permits/Licences - No environmental deficiency was identified during site inspection. I. Others - Follow up on the previous session (Ref No.:220826), no major environmental deficiency was identified during site inspection.	

	Name	Signature	Date
Recorded by	Alex Ng	Alex NG	23 September 2022
Checked by	Karina Chan	23 September 2022	

Appendix J - Event Action Plans

Table J-1 Event/Action Plan for Air Construction Dust Monitoring

Event	Action			
	ET	IEC	ER	Contractor
Action Level				
1. Exceedance for one sample	1. Identify source, investigate the causes of complaint and propose remedial measures; 2. Inform IEC and ER; 3. Repeat measurement to confirm finding; 4. Increase monitoring frequency.	1. Check monitoring data submitted by ET; 2. Check Contractor's working method.	1. Notify Contractor.	1. Rectify any unacceptable practice; 2. Amend working methods agreed with the ER as appropriate.
2. Exceedance by two or more consecutive samples	1. Identify source; 2. Inform IEC and ER; 3. Advise the ER on the effectiveness of the proposed remedial measures; 4. Repeat measurements to confirm findings; 5. Increase monitoring frequency to daily; 6. Discuss with IEC, ER and Contractor on remedial actions required;	1. Check monitoring data submitted by ET; 2. Check Contractor's working method; 3. Discuss with ET, ER and Contractor on possible remedial measures if required; 4. Advise the ER on the effectiveness of the proposed remedial measures;	1. Notify Contractor; 2. Ensure remedial measures properly implemented.	1. Submit proposals for remedial actions to IEC within three working days of notification; 2. Implement the agreed proposals; 3. Amend proposal if appropriate.

Appendix J - Event Action Plans

Event	Action			
	ET	IEC	ER	Contractor
	7. If exceedance continues, arrange meeting with IEC, Contractor and ER; 8. If exceedance stops, cease additional monitoring.			
Limit level				
1. Exceedance for one sample	1. Identify source, investigate the causes of exceedance and propose remedial measures; 2. Inform the IEC, ER, and Contractor; 3. Repeat measurement to confirm finding; 4. Increase monitoring frequency to daily; 5. Assess effectiveness of Contractor's remedial actions and keep IEC and ER informed of the results.	1. Check monitoring data submitted by ET; 2. Check Contractor's working method; 3. Discuss with ET, ER and Contractor on possible remedial measures; 4. Advise the ER and ET on the effectiveness of the proposed remedial measures; 5. Supervise implementation of remedial measures.	1. Confirm receipt of notification of exceedance in writing; 2. Notify Contractor; 3. Ensure remedial measures properly implemented.	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to the ER and copy to the ET and IEC within three working days of notification; 3. Implement the agreed proposals; 4. Amend proposal if appropriate.
2. Exceedance for two or more consecutive	1. Notify IEC, ER and Contractor; 2. Identify source;	1. Discuss amongst ER, ET, and Contractor on the potential remedial actions;	1. Confirm receipt of notification of exceedance in writing;	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial

Appendix J - Event Action Plans

Event	Action			
	ET	IEC	ER	Contractor
samples	3. Repeat measurement to confirm findings; 4. Increase monitoring frequency to daily; 5. Carry out analysis of Contractor's working procedures with the ER to determine possible mitigation to be implemented; 6. Arrange meeting with IEC and ER to discuss the remedial actions to be taken; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; 8. If exceedance stops, cease additional monitoring.	2. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER and ET accordingly; 3. Supervise the implementation of remedial measures.	2. Notify Contractor; 3. In consolidation with the IEC and ET, agree with the Contractor on the remedial measures to be implemented; 4. Ensure remedial measures properly implemented; 5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	actions to ER and copy to the IEC and ET within three working days of notification; 3. Implement the agreed proposals; 4. Resubmit proposals if problem still not under control; 5. Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Appendix J - Event Action Plans

Table J-2 Event/Action Plan for Construction Noise Monitoring

Event	Action			
	ET	IEC	ER	Contractor
Action Level	1. Notify IEC, ER and Contractor; 2. Carry out investigation; 3. Report the results of investigation to the IEC and Contractor; 4. Discuss jointly with the ER and formulate remedial measures; 5. Increase monitoring frequency to check mitigation effectiveness.	1. Review the monitoring data submitted by the ET; 2. Review the construction methods and proposed redial measures by the Contractor, and advise the ET and ER if the proposed remedial measures would be sufficient.	1. Notify Contractor; 2. Require Contractor to propose remedial measures for implementation if required.	1. Submit noise mitigation proposals to the ER and copy to the IEC and ET; 2. Implement noise mitigation proposals.
Limit Level	1. Notify IEC, ER and Contractor; 2. Identify source; 3. Repeat measurements to confirm findings; 4. Carry out analysis of Contractor's working	1. Discuss amongst ER, ET, and Contractor on the potential remedial actions; 2. Review the Contractor's remedial actions whenever necessary to assure their effectiveness and advise the	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. Require Contractor to propose remedial measures for the analysed noise	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to the ER and copy to the ET and IEC within 3 working days of notification;

Appendix J - Event Action Plans

Event	Action			
	ET	IEC	ER	Contractor
	procedures to determine possible mitigation to be implemented; 5. Record the causes and action taken for the exceedances; 6. Increase the monitoring frequency; 7. Assess the effectiveness of the Contractor's remedial action with the ER and keep the IEC informed of the results; 8. If exceedance stops, cease additional monitoring.	ER accordingly; 3. Supervise the implementation of remedial measures.	problem; 4. Ensure remedial measures properly implemented; 5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	3. Implement the agreed proposals; 4. Resubmit proposals if problem still not under control; 5. Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Appendix J - Event Action Plans

Table J-3 Event/Action Plan for Landscape and Visual

Event	Action			
	ET	IEC	ER	Contractor
Non-conformity on one occasion	1. Identify Source; 2. Inform the IEC and the ER; 3. Discuss remedial actions with IEC, ER and Contractor 4. Monitor remedial actions until rectification has been completed.	1. Check report; 2. Check Contractor's working method; 3. Discuss with ET and the Contractor on possible remedial measures; 4. Advise ER on effectiveness of proposed remedial measures; 5. Check implementation of remedial measures	1. Notify Contractor; 2. Ensure remedial measures are properly implemented.	1. Amend working methods; 2. Rectify damage and undertake any necessary replacement.

Appendix J - Event Action Plans

Event	Action			
	ET	IEC	ER	Contractor
Repeated Non-conformity	1. Identify source; 2. Inform the IEC and the ER; 3. Increase monitoring frequency; 4. Discuss remedial actions with the IEC, the ER and the Contractor; 5. Monitor remedial actions until rectification has been completed; 6. If exceedance stops, cease additional monitoring.	1. Check monitoring report; 2. Check Contractor's working method; 3. Discuss with ET and the Contractor on possible remedial measures; 4. Advise ER on effectiveness of proposed remedial measures; 5. Check implementation of remedial measures	1. Notify Contractor; 2. Ensure remedial measures are properly implemented.	1. Amend working methods; 2. Rectify damage and undertake any necessary replacement.

APPENDIX K
ENVIRONMENTAL MITIGATION
IMPLEMENTATION SCHEDULE (EMIS)

EM\&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concern to Address	Location/Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
						D	C	0	
Air Quality Impact									
S2.3.1.1									\wedge
									N/A(1)
									\wedge
S2.3.1.2									\wedge
									\wedge
									\wedge

EM\&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concern to Address	Location/Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
						D	C	0	
Noise Impact									
S3.4.1.1	The use of quieter plant, including Quality Powered Mechanical Equipment (QPME) is specified for the list of equipment: - Concrete lorry mixer - Dump Truck, 5.5 tonne < gross vehicle weight ≤ 38 tonne - Generator, Super Silenced, $70 \mathrm{~dB}(\mathrm{~A})$ at 7 m - Poker, vibratory, Hand-held (electric) - Water Pump, Submersible (Electric) - Mobile Crane - KOBELCO CKS900 - Excavator, wheeled/tracked - HYUNDAI R80CR-9	To minimise airborne noise impacts	All relevant works sites	Contractor and Subcontractors	NCO / EIAO		Y		\wedge
S3.4.1.1	Use of temporary or fixed noise barriers with a surface density of at least $10 \mathrm{~kg} / \mathrm{m}^{2}$ to screen noise from movable and stationary plant.	To minimise airborne noise impacts	All relevant works sites	Contractor and Subcontractors	NCO / EIAO		Y		\wedge
S3.4.1.1	Use of enclosures with covers at top and three sides and a surface density of at least $10 \mathrm{~kg} / \mathrm{m}^{2}$ to screen noise from generally static noisy plant such as air compressors.	To minimise airborne noise impacts	All relevant works sites	Contractor and Subcontractors	NCO / EIAO		Y		N/A(1)
S3.4.1.1	Use of acoustic fabric for the silent piling system, drill rigs, rock drills etc.	To minimise airborne noise impacts	All relevant works sites	Contractor and Sub-contractors	NCO / EIAO		Y		\wedge
S3.4.1.1	Proper fitting of silencers and mufflers on the ventilation fans.	To minimise airborne noise impacts	All relevant works sites	Contractor and Sub-contractors	NCO / EIAO		Y		N/A(1)
S3.4.1.1			All relevant works sites	Contractor and Subcontractors	NCO / EIAO		Y		\wedge
								\wedge	
								\wedge	

EM\&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concern to Address	Location/Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
						D	C	O	
	Use of site hoarding as a noise barrier to screen noise at low level NSRs;								\wedge
	Machines and plant that may be in intermittent use should be shut down between works periods or should be throttled down to a minimum; and								\wedge
	Any material stockpiles and other structures should be effectively utilised, wherever practicable, to screen the noise from on-site construction activities.								\wedge
	The advancing speed of the TBM should be restricted to $2 \mathrm{~m} / \mathrm{hr}$ in order to ensure compliance with the daytime ground-borne noise limits.								N/A
Water Quality									
S4.2.1.1	In accordance with the Practice Note for Professional Persons on Construction Site Drainage, Environmental Protection Department, 1994 (ProPECC PN 1/94), construction phase mitigation measures shall include the following: Surface run-off from the construction site, including all Works Areas, will be discharged into storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sedimentation basins. At the establishment of works sites and works areas including the barging point, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided to divert the storm water to the silt removal facilities. The design of the temporary on-site drainage system will be undertaken by the Contractor prior to the commencement of construction and the catch-pits and perimeter channels would be constructed in advance of site formation works and earthworks;	To control water quality impact from construction site runoff and general construction activities	All works sites	Contractor and Subcontractors	Water Pollution Control Ordinance / ProPECC PN 1/94		Y		\wedge
	Dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas and Works Areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a site/sediment trap;								\wedge

EM\&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concern to Address	Location/Timing	$\begin{gathered} \text { Implementation } \\ \text { Agent } \end{gathered}$	Relevant Standard or Requirement	Implementation Stages			Status
						D	C	0	
	The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN $1 / 94$, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. The sizes may vary depending upon the flow rate, but for a flow rate of $0.1 \mathrm{~m}^{3} / \mathrm{s}$, a sedimentation basin of $30 \mathrm{~m}^{3}$ would be required and for a flow rate of $0.5 \mathrm{~m}^{3} / \mathrm{s}$ the basin would be $150 \mathrm{~m}^{3}$. All effluent discharged from the construction site should comply with the standards stipulated in the TM-DSS. The detailed design of the sand/silt traps shall be undertaken by the Contractor prior to the commencement of construction;								N/A(1)
	In accordance with ProPECC PN 1/94, the construction works should be programmed to minimise surface excavation works during rainy seasons (April to September), as far as practicable. All exposed earth areas should be completed and vegetated as soon as possible after the earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks where practicable. If excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means;								\wedge
	The overall slope of works sites should be kept to a minimum to reduce the erosive potential of surface water flows, and all trafficked areas and access roads should be protected by coarse stone ballast. An additional advantage accruing from the use of crushed stone is the positive traction gained during the prolonged periods of inclement weather and the reduction of surface sheet flows;								\wedge
	All drainage facilities and erosion and sediment control structures should be regularly inspected and maintained to ensure their proper and efficient operation at all times particularly following rainstorms. Deposited silts and grits should be removed regularly and disposed of by spreading evenly over stable, vegetated areas;								\wedge
	Measures should be taken to minimise the ingress of site drainage into excavations. If the excavation of trenches in wet season is inevitable, they should be dug and backfilled in short sections wherever practicable. The water pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities;								\wedge

EM\&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concern to Address	Location/Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
						D	C	0	
	Open stockpiles of construction materials (for example, aggregates, sand and fill material) should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system;								\wedge
	Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers;								\wedge
	Precautions to be taken at any time of the year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecasted and during or after rainstorms, are summamirsed in Appendix A2 of ProPECC PN 1/194. Particular attention should be paid to the control of silty surface runoff during storm events;								N/A(1)
	All vehicles and plant should be cleaned before leaving a construction site to ensur no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facilities should be provided at the exit of every construction site where practicable. Wash- water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheelwashing bay to public roads should be paved with sufficient backfall toward the wheel- washing bay to prevent vehicle tracking of soil and silty water to public roads and drains;								\wedge
	Oil interceptors should be provided in the drainage system downstream of any oil/fuel pollution sources, specifically Works Areas WA1, WA2, WA4 and WA5 where plant maintenance is proposed. Oil interceptors should be emptied and cleaned regularly to prevent the release of oil and grease into the storm water drainage system after accidental spillage. A bypass should be provided for oil interceptors to prevent flushing during heavy rain;								N/A(1)
	The construction solid waste, debris and rubbish on-site should be collected, handled and disposed of properly to avoid causing any water quality impacts. The requirements for solid waste management are detailed in Section 11 Waste Management of this EIA report; and								\wedge
	All fuel tanks and storage areas should be provided with locks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank to prevent spilled fuel oils from reaching the nearby WSRs.								*

EM\&A Ref.	Recommended Mitigation Measures	Objectives of theRecommendedMeasures \& MainConcern to Address	Location/Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
						D	C	0	
$\begin{gathered} \hline \text { S4.2.1.1 and } \\ 4.3 .1 .5 \end{gathered}$	There is a need to apply to the EPD for a discharge licence for discharge of effluent from the construction site under the WPCO. The discharge quality must meet the requirements specified in the discharge licence. All the runoff and wastewater generated from the works areas should be treated so that it satisfies all the standards listed in the TM-DSS. Minimum distances of 100 m should be maintained between the discharge points of construction site effluent and the existing seawater intakes. The beneficial uses of the treated effluent for other onsite activities such as dust suppression, wheel washing and general cleaning etc, can minimise water consumption and reduce the effluent discharge volume. If monitoring of the treated effluent quality from the works areas is required during the construction phase of the Project, the monitoring should be carried out in accordance with the WPCO license	To control water quality impact from effluent discharge from construction site	All works sites	Contractor and Subcontractors	Water Pollution Control Ordinance		Y		N/A(1)
S4.2.1.1					$\left.\begin{array}{\|l\|l\|l\|l}\begin{array}{l}\text { Specific mitigation measures for the tunnelling works using TBM, soft ground and } \\ \text { mechanical excavation techniques should include the following: }\end{array} & \begin{array}{l}\text { To minimize } \\ \text { construction water } \\ \text { quality impact from }\end{array} & \begin{array}{l}\text { All tunnelling and } \\ \text { excavation portion }\end{array} & \begin{array}{l}\text { Contractor and Sub- } \\ \text { contractors }\end{array} \\ \text { The cut-and-cover tunnelling and works should be conducted sequentially as far as } \\ \text { excavation works } \\ \text { practicable to limit the amount of construction wastewater generated from the } \\ \text { exposed areas during the wet season (April to September); }\end{array} \quad \begin{array}{l}\text { TMwater ProPECC PN } \\ \text { TM } \\ 1 / 94 \\ \text { WPCO }\end{array}\right]$		Y		N/A
									N/A
									N/A
									N/A

EM\&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concern to Address	Location/Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
						D	C	0	
	The handling and disposal of bentonite slurries should be undertaken in accordance within ProPECC PN 1/94. Surplus bentonite slurries used in construction works shall be reconditioned and reused wherever practicable. Residual bentonite slurry shall be disposed of from the site as soon as possible as stipulated in Clause 8.56 of the General Specification for Civil Engineering Works. The Contractor should explore alternative disposal outlets for the residual bentonite slurry (dewatered bentonite slurry to be disposed to a public filling area and liquid bentonite slurry, if mixed with inert fill material, to be disposed to a public filling area) and disposal at landfill should be the last resort.								N/A(1)
S4.2.1.1	The proposed barging point at South Apron will not involve marine works like dredging or modifying the submerged portion of the existing seawall. As such, no direct adverse water quality impacts are anticipated during its construction or operation. However, mitigation measures as outlined above should be applied to minimise water quality impacts from site run-off and temporary open stockpiles of spoil at the proposed barging point, where appropriate. Other good site practices include: All vessels should be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not	To minimize construction water quality impact from barging point	Barging Point	Contractor and Subcontractors	EIAO-TM WPCO		Y		N/A(1)
	All hopper barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material;								\wedge
	Construction activities should not cause foam, oil, grease, scum, litter or other objectionable matter to be present on the water within the site; and								N/A(1)
	Loading of barges and hoppers should be controlled to prevent splashing of material into the surrounding water. Barges or hoppers should not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation.								N/A
S4.2.1.1	If chemical toilets and sewage holding tanks are required for handling sewage generated by the construction workforce, a licensed contractor should be employed to provide appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance.	To minimize construction water quality impact from sewage and effluent	All works sites	Contractor	WPCO		Y		\wedge

EM\&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concern to Address	Location/Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
						D	C	O	
S4.2.1.1	In order to protect against impacts to the surrounding marine waters of the KTTS and Victoria Harbour in the event of an accidental spillage of fuel or oil, the Contractor will be required to prepare a spill response plan to the satisfaction of AFCD, EPD, FSD, Police, TD and WSD to define procedures for the control, containment and clean-up of any spillage that could occur on the construction site.	To control water quality impact from accidental chemical spillage	All works sites	Contractor	EIAO-TM WPCO WDO		Y		N/A(1)
S4.2.1.1	The Contractor must, also, register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation should be observed and complied with for control of chemical wastes.	To control water quality impact from accidental chemical spillage	All works sites	Contractor	$\begin{aligned} & \text { EIAO-TM WPCO } \\ & \text { WDO } \end{aligned}$		Y		N/A(1)
S4.2.1.1	Any service shop and maintenance facilities should be located on hard standings within a bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should only be undertaken within the areas appropriately equipped to control these discharges.	To control water quality impact from accidental chemical spillage	All works sites	Contractor	$\begin{aligned} & \text { EIAO-TM WPCO } \\ & \text { WDO } \end{aligned}$		Y		N/A(1)
S4.2.1.1	Disposal of chemical wastes should be carried out in compliance with the Waste Disposal Ordinance. The Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes published under the Waste Disposal Ordinance details the requirements to deal with chemical wastes. General requirements are given as follows: Suitable containers should be used to hold the chemical wastes to avoid leakage or spillage during storage, handling and transport;	To control water quality impact from accidental chemical spillage	All works sites	Contractor	$\begin{aligned} & \text { EIAO-TM WPCO } \\ & \text { WDO } \end{aligned}$		Y		${ }^{\wedge}$
	Chemical waste containers should be suitably labelled, to notify and warn the personnel who are handling the wastes, to avoid accidents; and								N/A(1)
	Storage area should be selected at a safe location on site and adequate space should be allocated to the storage area.								\wedge

EM\&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concern to Address	Location/Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
						D	C	0	
Landscape and Visual									
S7.2.1.2	All works shall be carefully designed to minimize impacts on existing landscape resources and visually sensitive receivers. Existing trees within works area shall be retained and protected.	To minimise impact on existing trees	All relevant works sites	$\begin{array}{\|l\|} \hline \text { CEDD's } \\ \text { Contractor } \end{array}$	EIAO TM	Y	Y		\wedge
S7.2.1.2	Existing trees of good quality and condition that are unavoidably affected by the works should be transplanted.	To minimise impact on existing trees	All relevant works sites	$\begin{aligned} & \hline \text { CEDD's } \\ & \text { Contractor } \end{aligned}$	EIAO TM	Y	Y		N/A
S7.2.1.2	Large temporary stockpiles of excavated material shall be covered with unobtrusive sheeting to prevent dust and dirt spreading to adjacent landscape areas and vegetation, and to create a neat and tidy visual appearance.	To prevent unnecessary dust and dirt contaminating the air and adjacent areas.	All relevant works sites	$\begin{aligned} & \hline \text { CEDD's } \\ & \text { Contractor } \end{aligned}$	EIAO TM		Y		\wedge
S7.2.1.2	Construction plant and building material shall be orderly and carefully stored in order to create a neat and tidy visual appearance.	To mitigate potential visually obtrusive areas	All relevant works sites	$\begin{aligned} & \hline \text { CEDD's } \\ & \text { Contractor } \end{aligned}$	EIAO TM		Y		\wedge
S7.2.1.2	Erection of decorative screen hoarding should be designed to be compatible with the existing urban context.	To mitigate and screen any potential visually obtrusive areas and enhance urban environment	All relevant works sites	$\begin{aligned} & \hline \text { CEDD's } \\ & \text { Contractor } \end{aligned}$	EIAO TM		Y		\wedge
S7.2.1.2	All lighting in construction site shall be carefully controlled to minimize light pollution and night-time glare to nearby residences and GIC user. The contractor shall consider other security measures, which shall minimize the visual impacts.	To mitigate light pollution and adverse visual impacts on surrounding environment	All relevant works sites	$\begin{aligned} & \hline \text { CEDD's } \\ & \text { Contractor } \end{aligned}$	EIAO TM		Y		\wedge
S7.2.1.2	Compensatory tree planting shall be incorporated along all roadside amenity areas affected by the construction works. The required numbers and locations of compensatory trees shall be determined and agreed with the Government during Tree Removal Application process under ETWB TCW No. 3/2006.	To reinstate and maximise compensatory tree numbers to equal or greater conditions	All relevant works sites	$\begin{aligned} & \hline \text { CEDD's } \\ & \text { Contractor } \end{aligned}$	EIAO TM		Y		N/A(1)

EM\&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concern to Address	Location/Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
						D	C	0	
S7.2.1.2	Compensatory tree planting shall be incorporated by the Project. The required numbers of compensatory trees shall follow the requirements of ETWB TCW No. 3/2006. Loss of amenity area adjacent to the Kwun Tong By-pass and planting areas in KTD South Apron will be mitigated by the creation of the Kai Tak South Apron: Amenity Area, which will be equal to or larger than the current provision.	To reinstate and maximise compensatory tree	All relevant works sites	$\begin{aligned} & \hline \text { CEDD's } \\ & \text { Contractor } \end{aligned}$	EIAO TM		Y		N/A(1)
S7.2.1.2	Trees and shrubs and climbers etc. shall be planted to soften and screen proposed roads, central strip and associated structure, and to enhance streetscape greening effect where appropriate.	To mitigate hard surfaces and hard standing landscape areas and to soften and enhance proposed design features	All relevant works sites	CEDD's Contractor	EIAO TM	Y		Y	N/A
S7.2.1.2	All works area, excavated area and disturbed area for tunnel construction and temporary road diversion or any other proposed works shall be reinstated to former conditions or better, with reasonable landscape treatment and to the satisfaction of the relevant Government departments.	To reinstate and maximise hard and soft landscape areas to equal or greater conditions	All relevant works sites	CEDD's Contractor	EIAO TM	Y		Y	N/A
S7.2.1.2	Tunnel portals and all above ground structures shall be sensitively designed to ensure the element with colour, texture and tonal quality being compatible to the existing urban context. Trees and shrub planting to minimize the potential adverse landscape and visual impacts shall be included where space permits. Roof top greening and vertical greening shall also be provided.	To mitigate hard surfaces and hard standing landscape areas and to soften and enhance proposed design features	All relevant works sites	$\begin{aligned} & \hline \text { CEDD's } \\ & \text { Contractor } \end{aligned}$	EIAO TM	Y		Y	N/A
S7.2.1.2	All works shall be carefully designed to minimize impacts on existing landscape resources and visually sensitive receivers. Existing trees within works area shall be retained and protected.	To minimise impact on existing trees	All relevant works sites	$\begin{array}{\|l\|} \hline \text { CEDD's } \\ \text { Contractor } \end{array}$	EIAO TM	Y		Y	N/A
S7.2.1.2	Existing trees of good quality and condition that are unavoidably affected by the works should be transplanted.	To minimise impact on existing trees	All relevant works sites	$\begin{aligned} & \text { CEDD's } \\ & \text { Contractor } \end{aligned}$	EIAO TM	Y		Y	N/A
Cultural Heritage									
$\begin{gathered} \hline \text { S8.2.1.1 and } \\ 8.2 .1 .2 \end{gathered}$	No culture heritage specific mitigation measures								

EM\&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concern to Address	Location/Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
						D	C	0	
Waste Management Implication									
S9.2.1.2	The requirements as stipulated in the ETWB TC(W) No.19/2005 Environmental Management on Construction Sites and the other relevant guidelines should be included in the Particular Specification for the future contractor as appropriate.	To keep trace of the generation, minimization, reuse and disposal of C\&D materials	All areas / throughout construction period	Contractor	$\begin{array}{\|l} \hline \text { ETWB TC(W) } \\ \text { No.19/2005 } \end{array}$		Y		N/A
S9.2.1.2	The future contractor should be requested to submit an outline Waste Management Plan (WMP) prior to the commencement of construction work, in accordance with the ETWB TC(W) No.19/2005 so as to provide an overall framework of waste management and reduction. The WMP should include: - Waste management policy; - Record of generated waste; - Waste reduction target; - Waste reduction programme; - Role and responsibility of waste management team; - Benefit of waste management; - Analysis of waste materials; - Reuse, recycling and disposal plans; - Transportation process of waste products; and - Monitoring and action plan.	To keep trace of the generation, minimization, reuse and disposal of C\&D	All areas / throughout construction period	Contractor	$\begin{aligned} & \text { ETWB TC(W) } \\ & \text { No.19/2005 } \end{aligned}$		Y		N/A(1)
S9.2.1.2	The waste management hierarchy should be strictly followed. This hierarchy should be adopted to evaluate the waste management options in order to maximise the extent of waste reduction and cost reduction. The records of quantities of waste generated, recycled and disposed (locations) should be properly documented.	To keep trace of the generation, minimization, reuse and disposal of C\&D	All areas / throughout construction period	Contractor	$\begin{aligned} & \hline \text { ETWB TC(W) } \\ & \text { No.19/2005 } \end{aligned}$		Y		N/A(1)
S9.2.1.2	A trip-ticket system should be established in accordance with DevB TC(W) No. 6/2010 and Waste Disposal (Charges for Disposal of Construction Waste) Regulation to monitor the disposal of public fill and solid wastes at public filling facilities and landfills, and to control fly-tipping. A trip-ticket system would be included as one of the contractual requirements for the future contractor to strictly implement. The Engineer would also regularly audit the effectiveness of the system.	To monitor disposal of waste and control fly-tipping	All areas / throughout construction period	Contractor	$\begin{aligned} & \text { DEVB TC(W) No. } \\ & 6 / 2010 \end{aligned}$		Y		N/A(1)

EM\&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concern to Address	Location/Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
						D	C	O	
S9.2.1.2	A recording system for the amount of waste generated, recycled and disposed (locations) should be established. The future contractor should also provide proper training to workers regarding the appropriate concepts of site cleanliness and waste management procedures, e.g. waste reduction, reuse and recycling all the time.	To monitor disposal of waste and control fly-tipping	All areas / throughout construction period	Contractor	$\begin{aligned} & \text { DEVB TC(W) No. } \\ & 6 / 2010 \end{aligned}$		Y		N/A(1)
S9.2.1.2	The CEDD should be timely notified of the estimated spoil volumes to be generated and the PFC should be notified and agreement sort on the disposal of surplus inert C\&D materials e.g. good quality rock during detailed design of the Trunk Road T2 Project. Wherever practicable, C\&D materials should be segregated from other wastes to avoid contamination and to ensure acceptability at public filling areas or reclamation sites.	To monitor disposal of waste and control fly-tipping	All areas / throughout construction period	Contractor	$\begin{aligned} & \text { DEVB TC(W) No. } \\ & 6 / 2010 \end{aligned}$		Y		N/A(1)
S9.2.1.2	The extent of cutting operation should be optimised where possible. Earth retaining structures and bored pile walls should be proposed to minimise the extent of cutting.	To minimize, reuse and disposal of C\&D materials	All areas / throughout construction period	Contractor	$\begin{aligned} & \text { DevB TC(W) } \\ & \text { No.6/2010 } \end{aligned}$		Y		N/A(1)
S9.2.1.2	Inert C\&D materials from road pavement would be reused for backfilling where possible	To minimize, reuse and disposal of C\&D materials	All areas / throughout construction period	Contractor	$\begin{aligned} & \text { DevB TC(W) } \\ & \text { No.6/2010 } \end{aligned}$		Y		N/A(1)
S9.2.1.2	TBM generated alluvium and other $\mathrm{C} \& \mathrm{D}$ materials should be treated at a slurry treatment plant prior to transferring to Public Fill Reception Facilities.	To minimize, reuse and disposal of C\&D materials	TMB works area / during TBM works	Contractor	$\begin{aligned} & \text { DevB TC(W) } \\ & \text { No.6/2010 } \end{aligned}$		Y		N/A
S9.2.1.2	The site and surroundings should be kept tidy and litter free.	To implement good site practice for handling, sorting reuse and recycling of wastes	All areas / throughout construction period	Contractor	WDO, Land (Miscellaneous Provisions) Ordinance, DevB TC(W) No. 6/2010		Y		*

EM\&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concern to Address	Location/Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
						D	C	O	
S9.2.1.2	No waste is allowed to be burnt on site.	To implement good site practice for handling, sorting reuse and recycling of wastes	All areas / throughout construction period	Contractor	WDO, Land (Miscellaneous Provisions) Ordinance, DevB TC(W) No. 6/2010		Y		\wedge
S9.2.1.2	Make provisions in contract documents to allow and promote the use of recycled aggregates where appropriate.	To implement good site practice for handling, sorting reuse and recycling of wastes	Detailed Design	Design Consultant	WDO, Land (Miscellaneous Provisions) Ordinance, DevB TC(W) No. 6/2010	Y			N/A(1)
S9.2.1.2	Prohibit the future contractor to dispose of C\&D materials at any sensitive locations e.g. natural habitat, etc. The future contractor should propose the final disposal sites in the WMP for approval before implementation.	To implement good site practice for handling, sorting reuse and recycling of wastes	All areas / throughout construction period	Contractor	WDO, Land (Miscellaneous Provisions) Ordinance, DevB TC(W) No. 6/2010		Y		N/A(1)
S9.2.1.2	Stockpiled C\&D materials should be covered by tarpaulin and/or watered as appropriate to prevent windblown dust and surface run off.	To implement good site practice for handling, sorting reuse and recycling of wastes	All areas / throughout construction period	Contractor	WDO, Land (Miscellaneous Provisions) Ordinance, DevB TC(W) No. 6/2010		Y		\wedge
S9.2.1.2	Excavated C\&D materials in trucks should be covered by tarpaulins to reduce the potential for spillage and dust generation.	To implement good site practice for handling, sorting reuse and recycling of wastes	All areas / throughout construction period	Contractor	WDO, Land (Miscellaneous Provisions) Ordinance, DevB TC(W) No. 6/2010		Y		\wedge
S9.2.1.2	Wheel washing facilities should be used by all trucks leaving the site to prevent transferring mud trails onto public roads.	To implement good site practice for handling, sorting reuse and recycling of wastes	All areas / throughout construction period	Contractor	WDO, Land (Miscellaneous Provisions) Ordinance, DevB TC(W) No. 6/2010		Y		\wedge
S9.2.1.2	Excavated marine deposit (sediment) should be disposed of in a gazetted marine disposal ground under the requirements of the DASO or treated for backfilling.	To ensure proper disposal of marine sediment	All areas / throughout construction period	Contractor	ETWB TC(W) No.34/2002		Y		N/A(1)

EM\&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concern to Address	Location/Timing	Implementation Agent	Relevant Standard or Requirement	Impl	tat	ages	Status
						D	C	0	
S9.2.1.2	Standard formwork or pre-fabrication should be used as far as practicable to minimise the C\&D materials arising. The use of more durable formwork or plastic facing for construction works should also be considered. The use of wooden hoardings should be avoided and metal hoarding should be used to facilitate recycling. Purchasing of construction materials should be carefully planned in order to avoid over-ordering and wastage.	To minimize, reuse and disposal of C\&D materials	All areas / throughout construction period	Contractor	WDO, Land (Miscellaneous Provisions) Ordinance, DevB TC(W) No. 6/2010		Y		N/A(1)
S9.2.1.2	The future contractor should recycle as many $\mathrm{C} \& \mathrm{D}$ materials as possible on-site. The public fill and C\&D waste should be segregated and stored in separate containers or skips to facilitate the reuse or recycling of materials and proper disposal. Where practicable, the concrete and masonry should be crushed and used as fill materials. Steel reinforcement bar should be collected for use by scrap steel mills. Different areas of the sites should be considered for segregation and storage activities.	To minimize, reuse and disposal of C\&D materials	All areas / throughout construction period	Contractor	WDO, Land (Miscellaneous Provisions) Ordinance, DevB TC(W) No. 6/2010		Y		\wedge
S9.2.1.2	All falsework should be steel instead of wood as far as practicable.	To minimize, reuse and disposal of C\&D materials	All areas / throughout construction period	Contractor	DevB TC(W) No.6/2010		Y		N/A(1)

EM\&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concern to Address	Location/Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
						D	C	O	
S9.2.1.2	Chemical waste producers should register with the EPD and chemical waste should be handled in accordance with the Code of Practice on the Packaging, Handling and Storage of Chemical Wastes as follows: - Suitable for the substance to be held, resistant to corrosion, maintained in good conditions and securely closed; - Having a capacity of <450L unless the specifications have been approved by the EPD; and - Displaying a label in English and Chinese according to the instructions prescribed in Schedule 2 of the Regulations. - Clearly labelled and used solely for the storage of chemical wastes; - Enclosed with at least 3 sides; - Impermeable floor and bund with capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in the area whichever is greatest; - Adequate ventilation; - Sufficiently covered to prevent rainfall entering (water collected within the bund must be tested and disposed of as chemical waste, if necessary); and - Incompatible materials are adequately separated.	To properly store the chemical waste within works sites and works areas	All areas / throughout construction period	Contractor	Code of Practice on the Packaging, Handling and Storage of Chemical Wastes		Y		\wedge
S9.2.1.2	Waste oils, chemicals or solvents should not be disposed of to drain.	To implement good site practice for handling, sorting reuse and recycling of wastes	All areas / throughout construction period	Contractor	EIAO TM		Y		\wedge

EM\&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concern to Address	Location/Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
						D	C	O	
S9.2.1.2	Adequate numbers of portable toilets should be provided for on-site workers. Portable toilets should be maintained in reasonable states, which will not deter the workers from utilising them. Night soil should be regularly collected by licensed collectors.	To ensure proper disposal of sewage sludge	All areas / throughout construction period	Contractor	WDO, Land (Miscellaneous Provisions) Ordinance, DevB TC(W) No. 6/2010		Y		N/A(1)
S9.2.1.2	General refuse arising on-site should be stored in enclosed bins or compaction units separately from C\&D and chemical wastes. Sufficient dustbins should be provided for storage of waste as required under the Public Cleansing and Prevention of Nuisances By- laws. In addition, general refuse should be cleared daily and disposed of to the nearest licensed landfill. Burning of refuse on construction sites is prohibited.	To separate the general refuse from other waste types and proper disposal of the refuse	All areas / throughout construction period	Contractor	WDO, Land (Miscellaneous Provisions) Ordinance		Y		${ }^{\wedge}$
S9.2.1.2	All waste containers should be in a secure area on hardstanding.	To implement good site practice for handling, sorting reuse and recycling of wastes	All areas / throughout construction period	Contractor	WDO, Land (Miscellaneous Provisions) Ordinance		Y		\wedge
S9.2.1.2	Aluminium cans should be collected and recovered from the waste stream by reputable collectors if they are segregated and easily accessible. Separately labelled bins for their deposition should be provided as far as practicable.	To implement on-site sorting facilitating reuse and recycling of materials as well as proper disposal of waste	All areas / throughout construction period	Contractor	WDO, Land (Miscellaneous Provisions) Ordinance		Y		N/A(1)
S9.2.1.2	Office wastes can be reduced by recycling of paper if such volume is sufficiently large to warrant collection. Participation in a local collection scheme by the future contractor should be advocated. Waste separation facilities for paper, aluminium cans, plastic bottles, etc should be provided on-site.	To separate the general refuse from other waste types and proper disposal of the refuse	Site Offices / throughout construction period	Contractor	WDO, Land (Miscellaneous Provisions) Ordinance		Y		N/A(1)

Appendix K - Environmental Mitigation Implementation Schedule (EMIS)

EM\&A Ref.	Recommended Mitigation Measures	Objectives of the Recommended Measures \& Main Concern to Address	Location/Timing	Implementation Agent	Relevant Standard or Requirement	Implementation Stages			Status
						D	C	0	
S9.2.1.2	Training should be provided to workers about the concepts of site cleanliness and appropriate waste management procedure, including waste reduction, reuse and recycling.	To implement good site practice for handling, sorting reuse and recycling of wastes	Contract Mobilisation	Contractor	WDO, Land (Miscellaneous Provisions) Ordinance		Y		N/A(1)
S9.2.1.2	During construction phase, regular site inspections and supervision of the waste management procedures shall be undertaken as part of the EM\&A procedures.	To ensure proper control, all waste is removed from site areas as appropriate and illegal disposal of waste is not being undertaken	All areas / throughout construction period	Contractor	EIAO TM		Y		\wedge

Remarks: EM\&A Programme under EP-451/2013	
D	Design
C	lonstruction
Y	Yes
O	Operation
\wedge	Compliance of mitigation measure;
N/A	Not applicable at this stage; N/A(1)
$*$	Recommendation was made during site audit but improved/retified by the contractor;
\#	Recommendation was made during site audit but not yet improved/retified by the contractor;
X	Non-compliance of mitigation measure;
\bullet	Non-compliance but rectified by the contractor.

APPENDIX L
 SUMMARIES OF ENVIRONMENTAL
 COMPLAINT, WARNING, SUMMON
 AND NOTIFICATION OF SUCCESSFUL
 PROSECUTION

Environmental Permit No.: EP-451/2013

Environmental Team for Trunk Road T2

Appendix L - Summary of environmental complaint, warning, summon and notification of successful prosecution

Reporting Month: September 2022

Log Ref.	Location	Received Date	Details of Complaint/war ning/summon and prosecution	Investigation/Mitigation Action	Status
-	-	-	-	-	-

Remarks:
No environmental complaint/warning/summon and prosecution were received in the reporting period.

APPENDIX M
SUMMARY OF EXCEEDANCE

Environmental Permit No.: EP-451/2013

Environmental Team for Trunk Road T2

Appendix M - Summary of Exceedance

Reporting Month: September 2022
(A) Exceedance Report for Air Quality

No Action Level and Limit Level exceedance of 24 hr TSP monitoring was recorded in this reporting month.
(B) Exceedance Report for Construction Noise

Action Level for Construction Noise

No Action Level exceedance was recorded due to the documented complaint received in this reporting month.

Limit Level for Construction Noise

No exceedance for daytime construction noise monitoring was recorded in the reporting month.
(C) Summary of Landscape and Visual Non-Conformity (NIL in the reporting month)

APPENDIX N
TENTATIVE CONSTRUCTION
PROGRAMME

ED/2018/04 - Trunk Road T2

DAP - WVB
DDA - Dratt - Final Review and prepare for 1st Sub
DDA - Dratt - Final Review and prepare for 1st Sub

$$
\begin{array}{|c|c|}
\hline \text { 21-Dec-22 } & 06 \text {-Jan-23 } \\
\hline \text { 22-Dec-21A } & 20-\mathrm{Mar-22A} \\
\hline
\end{array}
$$

DDA - 7th Review by SO

$$
\frac{22-D e c-21 A}{22-\operatorname{Dec}-21 A}
$$

DDA - Further information required by So

$$
\begin{array}{|c|c}
\hline 08-J a n-22 A & 27-J a n-22 A \\
\hline
\end{array}
$$

27-Jan-22A

DDA - 8th Review by so
28-Jan-22A 20-Mar-22A
PDA-8th Reviev by so

	$20-\mathrm{Mar-22A}$
$10-\mathrm{Sep}-21 \mathrm{~A}$	$15-\mathrm{Oct}-22$

10-Sep-21A 05-Jan-22A

06-Jan-22A
06-Jan-22A 14-Mar-22A
15-Mar-22A 25 -May-22A siew by 50
26-May-22A

25-May-22A
10-Sep-22
.

10-Sep-22

09-Sep-21A O4-May-22A

09-Sep-21A 004 -May-22A 09-Sep-21A 04-May-22A | $09-S e p-21 A$ | $07-J a n-22 A$ |
| :---: | :---: |
| $06-O c t-21 A$ | $07-J a n-22 A$ |

> 08-Jan-22A

07-Jan-22A
21-reb-22A

22 -Feb-22A	$10-\mathrm{Mar}-22 \mathrm{~A}$
	$10-\mathrm{Mar}-22 \mathrm{~A}$

11-Mar-22A

$10-\mathrm{Mar}-22 \mathrm{~A}$
$31-\mathrm{Mar}-22 \mathrm{~A}$

$01-A p r-22 A \quad 00-A p r-22 A$
06 -Apr-22A
07-Apr-22A
04-May-22A
O4-May-22A $\quad \cdots \quad-\quad-\quad$ DDA- soconsent for constuction
O4-may-22A $\quad \cdots \quad-\quad$ stage 1 ACompletion

14-May-21A $\quad 2$-Nov-22

11-Sep-21A $\quad 2$-Nov-22
11-Sep-21A 09-Sep-22
11-Sep-21A
09-Sep-22

- DDA - SOConsent for Construction

Page 1 of 34 Data Date: 03-Sep-22	

ED/2018/04 Trunk Road T2 and Infrastructure Works for Developments at South Apron Three Months Rolling Programme (Aug-22)

Date	Revision	Checked	Approved
18-Dec-19	00V1	WYu	
22-Feb-20	01V0	SPa/LLo	WYu
09-Apr-20	01V1	SPa/LLo	WYu
17-Jul-20	01V2	SPa/LLo	WYu
09-Oct-20	01V3	SPa/LLo	WYu
02-Jul-21	02V0	SPa/LLo	WYu

Adivity Name	Dr
DDA - Further infomation required by SO	30
DDA - 2nd Sub	0
DDA - 2nd Review by 50	35
DDA - SO Consent for Construction	0
DDA WVB - Aesthetic Design	407
DDA - Reviewby IP / DC	28
DDA - 2nd Review by So	35
DDA - 2nd Review by IP	35
DDA - Further infomation required by So	24
DDA - 3rd Sub	0
DDA - 3rd Reviewby So	35
DDA - SOConsent for Construction	0
SOUTH APRON ROAD WORKS	319
DDA Røad L10 (S) - Alignment, Traffic Sign, Road Marking and Traffic	172
DDA - Further infomation required by So	12
DDA - 6th Sub	0
DDA- 6th Reviev by So	35
DDA - SOConsent for Construction	0
DDA Road L10 (\mathbf{S}) - Roadworks and Street Fumiture	209
DDA - Further infomation required by SO	12
DDA - 7 th Sub	0
DDA - 7th Review by so	35
DDA - Further information required by So	13
DDA - 8th Sub	0
DDA - 8th Review by SO	35
DDA - SO Consent for Construction	0
AIP - Kiosk	21
AIP - 3d Review by So	28
AIP - SO Consent for DDA Subrission	0
DDA-Kiosk	244
DDA - Dratt - Preparation by Designer	36
DDA - Draft - Final Review and prepare for 1 st Sub	14
DDA-1stSub	0
DDA - Reviewby 50	28
DDA - Reviewby IP / DC	28
DDA - Further information required by So	12
DDA - 2nd Sub	0
DDA - 2nd Review by So	35
DDA - SO Consert for Construction	0
[STE] AIP Kai Hing Road/ Lam Chak Street Modification	115

Data Date: 03-Sep-22

| Stat | Fnish |
| :---: | :---: | :---: |
| 10 -Sep-22 | 18 -Oct-22 |

\square

- 18 -Ot-22

14-May-21A ${ }^{19}$-Nov-22

- DDA- 2nd sub

DDA- 2nd Review by 50

- DDA- SO Consert for Construx 14-May-21A $\quad 09-$ Sep-22 20-Jun-21A 15-Sep-22

 $5-\mathrm{Oct}-22$ $15-\mathrm{Oct}-22$
19-Nov-22

20-OCt-21 A 26 -Nov-22

 11-Nov-21A $\quad 08$-Jun-22A$$
01-A \mathrm{~A}-22 \mathrm{~A}
$$

DDA-Further intomation required by SO
DDA- 6 th sub

$02-A p-22 A \quad 08-J u n-22 A$

08 -Jun-22A

$$
\begin{array}{|l|l}
\hline \text { 18-Nov-21A } & 27-J u n-22 A \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|}
\hline \text { 18-Nov-21A } & 31-\mathrm{Mar}-22 \mathrm{~A} \\
\hline
\end{array}
$$

DDA-Further information required by $S 0$

01-Apr-22 A 0
07-may-22A May-22A 01-Jur-22A

:

DDA-Further infomation required by 30

- DDA- 8th Suib

27-Jur-22A
27-Jur-22A
04-Dec-21A $\quad 03$-Jan-22A 04-Dec-21A @-Jan-22A

ED/2018/04 Trunk Road T2 and Infrastructure Works for Developments at South Apron

BOUYGUES
TRAVAUX PUBLCS
travaux pubics

BOUYGUES travaux pubics	Dade	Revision	Checked	Approe
		Oov1	${ }_{\text {Wru }}^{\text {SPallo }}$	mu
	09 Ap-20	O1v1	SPallo	uru
		${ }^{0172}$	SPallo	wr
	$02 \cdot \mathrm{~J} / 22$	02vo	spallo	Wru

tivity Name	Dur	Stat	Fnish
17.5.29 Complete lit shatt A And B 0.5	0		27-Sep-22
17.5.21 Complete concrete works of deck 0.25	0		05-Oct-22
17.5.25 Complete prestressing warks of deck 0.25	0		05-Oct-22
17.5.12 Complete concrete works of pile caps 0.8	0		18-Oct-22
17.5.30 Complet lift shatt Aand B 1	0		19-Oct-22
17.5.13 Complete concrete works of pile caps 1	0		23-Nov-22
17.5.22 Complete concrete works of deck 0.5	0		14-Dec-22
17.5.26 Complete prestressing warks of deck 0.5	0		14-Dec-22
21.3 Establishment Works for Improvement Works at the Junction of H	0	16-Dec-22	16-Dec-22
21.3.2 Complete estabishment works for 6 mths completion of softworks	0		16-Dec-22
21.5 Establishment Works for Improvement Works at the Junctions of	72	13-Ap-22 A	13-Ap-22 A
21.5.3 Complete estabishment works for 9 mths completion of softworks	0		13-Ap-22 A
21.5.4 Complete whole activities of this cost centre	0		13-Ap-22 A
22.1 Pipelines for District Cooling System for Commissioning of AMAV	415	13-Jan-22A	13-Jul-22A
22.1.3 Complete DCS installation lengh 0.8	0		13-Jan-22A
22.1.5 Complete T\&C of DCS System 1	0		13-Jun-22A
22.1.6 Complete unole activities of this cost centre 1	0		13-ul-22A
34.1 Common Utilities Enclosure (CUE) under Section 6A of the Works	0	14-Dec-22	14-Dec-22
34.1.19 Complete whde activities of this cost centre 1	0		14-Dec-22
34.2 Common Utilities Enclosure (CUE) under Section 13 of the Works	78	13-Aug-22A	22-Dec-22
34.2.4 Complete concete works of base slab of CUE 0.5	0		13-Aug-22A
34.2.8 Complete concere works of walls of CUE 0.5	0		30-Sep-22
34.2.12 Complet concrete waks of top slab of OUE 0.5	0		26-Oct-22
34.2.2 Complete excavation of CUE	0		23-Nov-22
34.2.9 Complete concree works of walls of CUE 0.75	0		22-Dec-22
35 Services Gallery	167	13-Apr-22 A	2-Dec-22
35.16 Complete 20\% of total length (measured on plan) of SG strucures in Dill-and-Break and Drill-and-Blas T Tinnel	0		13-Apr-22 A
35.32 Complete 50\% of total volume (measured on plan) of excavation for Lower Basement of East Ventilation Buildinc	0		13-Ap-22 A
35.33 Complete 75\% of total volume (measured on plan) of excavation for Lover Basement of East Ventilation Buildina	0		13-Jun-22A
35.34 Complete 100\% of total volume (measured on plan) of excavation for Lower Basement of East Ventilation Buildind	0		©3-Sep-22
35.21 Complete 10\% of total length (measured on plan) of Services Gallery structures and ancillaries in TBMTumed	0		13-Oct-22
35.14 Complete 80% of total length (measured on plan) of SG excavation in Dill-and-Break and Drill-and-Blast Tunnel	0		20-Oct-22
35.35 Complete concreting works of 25% of the total gross plan area for the Lower Basement of East Ventiation Buildna	0		31-Oct-22
35.22 Complete 20\% of total length (measured on plan) of Senvices Gallery structures and ancillaries in TBMTunnel	0		11-Nov-22
35.23 Complete 30% of total length (measured on plan) of Services Gall ery structures and ancillaries in TBMTume	0		10-Dec-22
35.15 Complete 100% of total length (measured on plan) of SG excavation in Dill Break and Dill and Elast Tume	0		21-Dec-22
SOUTH APRON EXTERNAL WORKS	892	21-0ct-2 A	24-OC-24
Road S20	708	21-0ct-2 A	11-Mar-24
CUE (Section 6A)	213	28-Dec-21A	17-Aug-22A
CKR Crossing	40	30-May-22A	05-Jul-22A
BS/E\&M	40	$30-\mathrm{May} 22 \mathrm{~A}$	05-ul-22 A

17.5. 25 Complete prestressing works of deck 0.25
-17.5.12 Complete concrete works of pile caps 0.8

- 17.5 .30 Complee liit shatt A and B
17.5.13 Complete concrete wc
- 21.5.3 Complete estabishment works for 9 mth completion of softwor
- 21.5.4 Complete whole activities of this cost centrie
- 22.1 .5 Complete T\&C of DCSsystem 1
-22.1.6 Complete vhole activities of this cost centre 1
- 34.2 . 12 Complefe concrete works of top slab of CE
- 35.16 Complete 20\% of total length (measured on plan) of SG structures in Diill-and-Break and Dill-and-Blast Turne
- 35.32 Complete 50% of toal vodume (meastred on pan) of excavation for LoverBasement of East ventilation Buiding
- 35.33 Complexe 75% of total volume (neasured on plan) of excavation for Lower Basement of East Ventilation Building
- 35.34 Complete 100% of toà volume (measured on plan) of excavation for Lover Basement of East v
- 35.2 Complete 10% of total lengh (measured on plan) of Senices
\qquad
- 35.35 Complete concreting works of 25% of the tot
- 35.22 Complee 20% of total lengh (meas

Data Date: 03-Sep-22

ED/2018/04 Trunk Road T2 and Infrastructure Works for Developments at South Apron

BOUYGUES

Date	Revision	Checked	Approved
18-Dec-19	00 V 1	WYu	
$22-$ Feb-20	01 V 0	SPa/LLo	WYu
O9-Apr-20	01 V 1	SPa/LLo	WYu
$17-$ Jul-20	01 V 2	SPa/LLo	WYu
$09-O c t-20$	01 V 3	SPa/LLo	WYu
02-Jul-21	02V0	SPa/LLo	WYu

Adivit Name	Dr	Stat	Fnish
Excavation	108	13-Jun-22A	09-Nov-22
DCS - L10(S) 1 Excavation (1109m3, 40m3/c)	28	13-Jur-22A	17-Aug-22A
DCS - L10(S) 2 Excavation (1109m3, 40m3/c)	28	13-Jur-22A	25-Aug-22A
DCS - L10(S) 3 Excavation (1920m3, 40m3/c)	48	13-Jur-22A	15-Sep-22
DCS - L10(S) 4 Excavation ($564 \mathrm{m3}$, 40m3/d)	15	16-Sep-22	05-Oct-22
DCS - L10(S) 5 Excavation ($564 \mathrm{m3}$, 40m3/d)	15	$06-\mathrm{Oct}-22$	2--Oct-22
DCS - L10(S) 6 Excavation ($564 \mathrm{m3}$, 40m3/d)	15	24-Oct-22	09-Nov-22
DCS Set up	58	26-Aug-22 A	14-Nov-22
DCS - L10(S) 1 Pipe Installation - Set up	4	26-Aug-22A	00 -Sep-22
DCS - L10(S) 2 Pipe Instalation - Set up	4	07-Sep-22	10-Sep-22
DCS - L10(S) 3 Pipe Installation - Pit	12	16-Sep-22	20-Sep-22
DCS - L10(S) 3 Pipe Installaion - Set up	4	30-Sep-22	06-Oct-22
DCS - L10(S) 4 Pipe Installaion - Set up	4	07-Oct-22	11-Oct-22
DCS - L10(S) 5 Pipe Installaion - Set ip	4	24-Oct-22	27-OCt-22
DCS - L10(S) 6 Pipe Installaion - Set up	4	10-Nov-22	14-Nov-22
DCS welding	60	07-Sep-22	18-Nov-22
DCS - L10(S) 1 Pipe Installation - Pipe welding (3nos/d)	4	07-Sep-22	10-Sep-22
DCS - L10(S) 2 Pipe Installation - Pipe welding (3nos/d)	4	13-Sep-22	16-Sep-22
DCS - L10(S) 3 Pipe Installation - Pipe welding (3nos/d)	4	07-Oct-22	11-OCt-22
DCS - L10(S) 4 Pipe Installation - Pipe welding (3nos/d)	4	$12-\mathrm{Oct}-22$	15-Oct-22
DCS - L10(S) 5 Pipe Installation - Pipe welding (3nos/d)	4	$28-\mathrm{Oct}-22$	01-Nov-22
DCS - L10(S) 6 Pipe Installation - Pipe welding (3nos/d)	4	15-Nov-22	18-Nov-22
Electrofusion	64	13-Sep-22	28-Nov-22
DCS - Lio(S) 1 Pipe Installation - Elearrofision joirt (1.5nos/d)	8	13-Sep-22	21-Sep-22
DCS - L10(S) 2 Pipe Installation-Eledroftsion joint (15nos/d)	8	22-Sep-22	30-Sep-22
DCS - L10(S) 3 Pipe Installation - Elearrofusion joint (1.5nos/d)	8	12-OCt-22	20-OCt-22
DCS - L10(S) 4 Pipe Installation - Elearrofision joint (15nos/d)	8	21-Oct-22	20-Oct-22
DCS - L10(S) 5 Pipe Installation - Elearrofusion joint (15nos/d)	8	02-Nov-22	10-Nov-22
DCS - L10(S) 6 Pipe Installation - Eledrofision joirt (15nos/d)	8	19-Nov-22	28-Nov-22
Backfill	72	22-Sep-22	16-Dec-22
DCS - L10(S) 1 Bacfill	12	22-Sep-22	07-Oct-22
DCS-L10(S) 2 Bacfill	12	$08-\mathrm{Oct}-22$	21-Oct-22
DCS - L10(S) 3 Backill	12	$22-\mathrm{Oct}-22$	04-Nov-22
DCS - L10(S) 4 Backfill	12	05-Nov-22	18-Nov-22
DCS-L10(S) 5 Backill	12	19-Nov-22	©2-Dec-22
DCS - L10(S) 6 Backfill	12	@3-Dec-22	16-Dec-22
Steel platform area	188	08 -Apr-22 A	06-Jan-23
Steed platiorm	22	08 -Apr-22 A	11-May-22A
DCS - L10(S) C-1228-252 Sheet pile (505m2, 55m2d)	10	15-Sep-22	26 -Sep-22
DCS - L10(S) C-1228-252 Excavation ($576 \mathrm{m3}$, 40m3/d)	15	17-Dec-22	06-Jan-23

DCS-L10(S) 1Excavation (1109m3,40m3(c)
DCS L10(s) 2 Excavation (1109m3, $40 \mathrm{~m} 3 / \mathrm{c})$
-. DCS LLO(\$) 3Exavation (1920 13 , 40m3/d)

DCs-L10(S) 4 Excavation (564ms, 40m3d)

DCS-L10(S) 5 Excavation ($564 \mathrm{m3}$, 40m3/d)
DCS - L10(S) 6 Excavation ($564 \mathrm{~m}, 40 \mathrm{m3i}$
\square DCS-L10(S) 1 Pipe Installation- Set 4 p

- DCS - LIO(S) 2 Pipe installation- Se up
\square DCS L10(\$) 3 Pipe Instalation- Pit
-DCS LIO(S) 3 Pipe installation - Se 4
\square DCS-L10(S) 4 Pipe installaion- Set ip
- DCS LLIO(S) 5 Pipe Installation- Se u
- DCS-LIO(S) 6 Pipe Installation Set

DCS - Lio(S) 1 Pipe installation - Pipe welding'(3nossd)

- DCS-L Lio(s) 2 Pipe installation - Pipe wéd ding (3nos(d)
\square DCS - L10(S) 3 Pipe Installation:- Pipe wedang (3nos/a)
D DCS - LIO(S) 4 Pipe installation - Pipe wed ding:(3nosid)
\square DCS-L10(S) 5 Pipe installation- Pipe wedang (3)
DCS-LIO(S) 6 Pipe instalation

DCS-L10(S) 1 Pipe Installation - Elearofusion joint (15nossd)
DCS-LIO(S) 2Pipe Instalation Eledrotusion joint (1.5nosid)
DCS L10(S) 3 Pipe Installation - Elearofusion joint (1.5nosil
DCS - LIO(S) 4Pipe Installation - Eledroftisionjoint
DCS-L10(\$) 5 Pipe Installation - Eledrofil
\square DCS-Lio(S) 6 Pipe insta
DCS- L10(s) 1 Backifil
\square DCS- L10(S) 2 Backfili
DCS-LIO(S) 3 Backilil
\longrightarrow DCS - LIO(S) 4 Backiil
\square DCS LLo(s) 5 Backfil
\longrightarrow DCS- L10
\square DCS L-10(S) C-1228-252 shee pile (505 m, ,55m2/()

ED/2018/04 Trunk Road T2 and Infrastructure Works for Developments at South Apron

BOUYGUES
TRAVAUX PUBLICS

Date	Revision	Checked	Approved
18-Dec-19	00V1	WYu	
22-Feb-20	01V0	SPa/LLo	WYu
09-Apr-20	01V1	SPa/LLo	WYu
17-Jul-20	01V2	SPa/LLo	WYu
09-Oct-20	01V3	SPa/LLo	WYu
02-Jul-21	02V0	SPa/LLo	WYu

Page 34 of 34 Data Date: 03-Sep-22	Milestone \square Planned Bar \square CriticalActivisy Actual Milestone \square Actual Work	ED/2018/04 Trunk Road T2 and Infrastructure Works for Developments at South Apron Three Months Rolling Programme (Aug-22)	BOUYGUES TRAVAUX PUBLICS	Date	Revision	Checked	Approved
				$\frac{18-\mathrm{Dec}-19}{22}$	Oov1	WYu	
				$\frac{22-\text {-eb- } 20}{\text { O-Apr-20 }}$	01V0	SPa/LIo	WYu
				09-Apr-20	01V2	SPalLLo	WYu
				年 $\frac{09-\text {-ct-20 }}{02-\mathrm{Jul}-21}$	01V3	SPa/LIo	WYu

APPENDIX 0
WASTE GENERATED IN THE REPORTING MONTH

Trunk Road T2 and Infrastructure Works for Developments at the Former South Apron
Name of Department: CEDD
Monthly Summary Waste Flow Table for 2022 (KT)

Month	Actual Quantities of Inert C\&D Materials Generated Monthly						Actual Quantities of C\&D Wastes Generated Monthly				
	a.Total Quantity Generated $(a=c+d+e)$	b. Hard Rock and Large Broken Concrete	c. Reused in the Contract	d. Reused in Other Projects	e. Disposed as Public Fill	f. Imported Fill	g. Metals	h. Paper / Cardboard Packaging	i. Plastics	j. Chemical Waste	k. Others, e.g. general refuse
	(in ${ }^{\text {2 }} 000 \mathrm{~m}^{3}$)	(in $0000 \mathrm{~m}^{3}$)	(in ${ }^{\text {c }} 000 \mathrm{~m}^{3}$)	(in $000 \mathrm{~m}^{3}$)	(in ${ }^{\text {2 }} 000 \mathrm{~m}^{3}$)	(in $000 \mathrm{~m}^{3}$)	(in ${ }^{\text {2 }} 000 \mathrm{~kg}$)	(in ${ }^{\text {2 }} 000 \mathrm{~kg}$)	(in 0000 kg)	(in '000kg)	(in ${ }^{\prime} 000 \mathrm{~m}^{3}$)
January	10.929	2.331	0.000	10.914	0.015	0.000	94.890	0.460	0.000	11.000	0.068
February	7.698	0.114	0.000	7.601	0.097	0.000	41.250	0.280	0.000	0.000	0.087
March	19.029	1.628	0.000	19.019	0.010	0.000	17.310	0.000	0.000	0.000	0.086
April	11.801	0.247	0.000	11.774	0.027	0.000	3.250	0.700	0.000	0.000	0.120
May	20.116	0.240	0.000	20.107	0.009	0.000	83.570	0.000	0.000	8.000	0.070
June	62.161	0.310	0.000	25.999	36.162	0.000	68.180	0.260	0.000	4.800	0.069
Sub-total	131.734	4.871	0.000	95.413	36.320	0.000	308.450	1.700	0.000	23.800	0.500
July	23.738	0.000	0.000	0.883	22.855	0.000	0.000	0.700	0.000	7.000	0.060
August	30.429	0.225	0.000	4.037	26.392	0.000	0.000	0.000	0.000	6.000	0.070
September	80.500	0.035	0.000	52.715	27.784	0.000	0.000	0.760	0.000	9.800	0.071
October											
November											
December											
Total	266.401	5.130	0.000	153.049	113.352	0.000	308.450	3.160	0.000	46.600	0.701

Monthly Summary Waste Flow Table
Notes:
(1)The performance targets are given in ER Appendix 8 I Clause 14 and the EM\&A Manual(s)
(2)The waste flow table shall also include C\&D materials to be imported for use at the Site
(3)Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.
(4)The Contractor shall also submit the latest forecast of the total amount of C\&D materials expected to be generated from the Works, together with a breakdown of the nature where the total amount of C\&D materials expected to be generated from the Works is equal to or exceeding $50,000 \mathrm{~m} 3$. (ER Part 8 Clause 8.8 .5 (d) (ii) refers).

[^0]: Notes:
 (1): No major construction work was undertaken during reporting month.

 N/A: Not applicable

