

Proposed Road Improvement Works in

West Kowloon Reclamation Development – Phase 1

Environmental Monitoring & Audit Report

01/07/2018 - 31/7/2018

Prepared by:	Andy Tsang
Certificated by:	Goldie Fung
	(Environmental Team Leader)

Environmental Pioneers & Solutions Limited

Flat A, 8/F, Chaiwan Industrial Centre, 20 Lee Chung Street, Chai Wan, Hong Kong Tel: 2556 9172 Fax: 2856 2010

TABLE OF CONTENT

Exe	cutive	e Summary	3
1	Intr	oduction	5
	1.1	The Project	5
	1.2	Construction Programme and Activities	6
	1.3	Project Organization	6
	1.4	Status of Environmental Licences, Notification and Permits	6
2	Air	Quality Monitoring	8
	2.1	Monitoring Locations	8
	2.2	Monitoring Frequency	. 10
	2.3	Monitoring Equipment	. 10
	2.4	Monitoring Methodology and Parameters	11
	2.5	Maintenance and Calibration	. 12
	2.6	Quality Assurance / Quality Control Results and Detection Limits	. 12
	2.7	Action and Limit Level for 1-hr TSP and 24-hr TSP	. 13
	2.8	Monitoring Results and Observations	. 14
	2.9	Monitoring Schedule for Next Reporting Month	. 15
3	Nois	se Monitoring	. 16
	3.1	Monitoring Locations	. 16
	3.2	Monitoring Frequency	
	3.3	Monitoring Equipment	. 16
	3.4	Monitoring Methodology and Parameters	. 17
	3.5	Maintenance and Calibration	. 18
	3.6	Quality Assurance / Quality Control Results and Detection Limits	. 18
	3.7	Action and Limit Level for Construction Noise	. 19
	3.8	Monitoring Results and Observations	. 20
	3.9	Monitoring Schedule for Next Reporting Month	. 21
4	Soli	d and Liquid Waste Management Status	. 22
5	Lan	dscape and Visual Impact	. 23
6	Env	ironmental Site Inspection	. 24
	6.1	Site Audit	. 24
	6.2	Implementation Status of Environmental Mitigation Measures	. 24
7	Env	ironmental Non-Conformance	
	7.1	Summary of Environmental Exceedances	. 27
	7.2	Summary of Environmental Non-Compliance	. 27
	7.3	Summary of Environmental Complaint	. 27
	7.4	Summary of Notification of Summons and Successful Prosecution	. 27
8	Fut	ıre Key Issues	. 28

9	Con	nment, Recommendations and Conclusions	. 29
	9.1	Comment	. 29
	9.2	Recommendations	. 29
	9.3	Conclusions	. 30

LIST OF APPENDICES

Appendix A: Construction Programme and Project Layout Plan

Appendix B: Project Organization Chart

Appendix C: Monitoring Locations

Appendix D: Calibration Certification

Appendix E: TSP Monitoring Data

Appendix F1: Noise Monitoring Data

Appendix F2: School Schedule

Appendix G: Waste Management Record

Appendix H: Environmental Mitigation Implementation Schedule

Appendix I: Cumulative Log for Environmental Exceedance, Complaints, Notification of Summons and Successful Prosecutions

LIST OF TABLES

Table 1.4.1: Summary of the Status of Environmental Licences, Notification and Permits

Table 2.1.1: Air Quality Monitoring Locations

Table 2.1.2: Air Quality Monitoring Locations

Table 2.3.1: Air Quality Monitoring Equipment

Table 2.7.1: Established TSP Actions and Limit Level

Table 2.7.2: Event and action Plan for Air Quality

Table 2.8.1: Summary of average 1-hr TSP monitoring data

Table 2.8.2: Summary of average 24-hr TSP monitoring data

Table 3.1.1: Noise Monitoring Locations

Table 3.3.1: Equipment List for Noise Monitoring

Table 3.7.1: Action and Limit Levels for Construction Noise at all Sensitive Receivers

Table 3.7.2: Event / Action Plan for Construction Noise

Table 3.8.1: Summary of average noise monitoring data

Table 4.1: Quantities of Waste Disposed from the Project

Table 5.1: Proposed Monitoring Program

Table 5.2: Event / Action Plan for Landsscape and Visual Impact

Table 6.1: Summary results of site inspections findings

Executive Summary

This is the thirty monthly Environmental Monitoring and Audit (EM&A) Report for Proposed Road Improvement Works in West Kowloon Reclamation Development – Phase 1. The project commenced on 6 February 2016. This report documents the finding of EM&A Works conducted from 1 July 2018 to 31 July 2018.

Environmental Monitoring and Audit Progress

Air Quality Monitoring

1-hr Total Suspended Particulates (TSP) monitoring and 24-hr TSP monitoring were carried out on 4, 10, 16, 21 and 27 July 2018.

Noise Monitoring

30-min LAeq noise monitoring was carried out on 4, 10, 16, 21 and 27 July 2018.

Waste Management

According to Contractor's waste flow data, 2986.5 tonnes of inert C&D materials and 50.88 tonnes of general refuse were generated and disposed.

Landscape and Visual Impact

Bi-weekly inspections were conducted on 11 and 25 July 2018. Most of the necessary mitigation measures have been implemented. Details of the audit findings and implementation status are presented in Section 6.

Environmental Site Inspection

Joint weekly inspections were conducted by representatives of the Contract Administrator, Engineer, Contractor and ET on 4, 13, 18 and 25 July 2018. The representative of the IEC conducted the site inspection on 25 July 2018. Details of the audit findings and implementation status are presented in Section 6.

Environmental Exceedance / Non-compliance / Compliant / Summons and Successful Prosecution

No exceedance of action level and limit level was recorded for TSP. Five exceedances were recorded at NM4 on 4, 10, 16, 21 and 27 July 2018 for Noise. No Non-compliance

event, environmental complaint, notification of summons and successful prosecution against the Project were received in this reporting month.

Variation in Construction Method

No variation in construction method from the proposed construction programme was made and affected the EM&A.

Future Key Issues

The major construction works to be undertaken in the next reporting month include:

- Portion I Pile Cap, Pier and Bridge Deck Construction Works
- Portion I E&M Installation and Road Works
- Portion Q Road Works
- Portion HA Pile Cap, Pier and Bridge Deck Construction Works
- Portion HA E&M Installation and Road Works
- Portion J Street Furniture Installation

Potential environmental impacts arising from the above construction activities are mainly associated with dust, construction noise, water quality and waste management. The Contractor has been reminded to properly implement dust, construction noise and water quality control measures as well as proper waste management in order to minimize the potential environmental impacts due to the construction works of this Project.

1 Introduction

1.1 The Project

This is a road improvement project in West Kowloon Reclamation Development (WKRD) for completing the developments and the commissioning of the new transport facilities.

Apart from the additional traffic impacts arising from the major development and transport facilities in WKRD, several major junctions in the area are currently operating with insufficient capacity causing serious congestion to some existing major road corridors such as Jordan Road (JRD), Ferry Street (FST) and Canton Road (CRD).

To enhance the road network of the area, Transport Department commissioned the "West Kowloon Reclamation Development Traffic Study" which identified and recommended Core and Additional Schemes together with the improvement works at the junction of CRD/FST/JRD. Implementation of these schemes would enable most of the key road junctions in the study area to operate with spare capacity, and the traffic queue length would also be reduced avoiding blockage to the upstream junctions

The Environmental Team (ET), Environmental Pioneers & Solutions Limited (EPSL), was appointed by Vibro Construction Co. Ltd. to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the Proposed Road Improvement Works in West Kowloon Reclamation Development – Phase 1. The project proponent is Highways Department. This is a Designated Project under the Environmental Impact Assessment Ordinance (Cap.499). The No. of Environment Permit is EP-455/2013.

The construction works and EM&A programme of this project was commenced on 6 February 2016. The construction programme and project layout plan are shown in **Appendix A**.

1.2 Construction Programme and Activities

A summary of the major construction activities undertaken in this reporting period is shown as follows.

- Portion I Underground Investigation Works
- Portion I Utilities Diversion Works
- Portion I Piling Construction Works
- Portion I Pile Cap, Pier and Bridge Deck Construction Works
- Portion Q Road Works
- Portion HA Underground Investigation Works
- Portion HA Utilities Diversion Works
- Portion HA Piling Construction Works
- Portion HA Pile Cap, Pier and Bridge Deck Construction Works
- Portion HA E&M Installation and Road Works
- Portion J Street Furniture Installation

1.3 Project Organization

The project organization chart and contact details are shown in Appendix B.

1.4 Status of Environmental Licences, Notification and Permits

A summary of the relevant permits, licences, and notifications on environmental protection for this Project is presented in <u>Table 1.4.1.</u>

	Valid Period				
Permit / License No.	From	То	Status	Remark	
Notification pursuant to Air	Pollution Co	ntrol (Constr	ruction Dust) Reg	gulation	
Ref. No. 386894	23/03/2015	N/A	Valid	/	
Effluent Discharge License					
WT00021818-2015	18/06/2015	30/06/2020	Valid	Portion I	
WT00021822-2015	18/06/2015	30/06/2020	Valid	Portion HA	
WT00021825-2015	18/06/2015	30/06/2020	Valid	Portion J	
WT00021826-2015	18/06/2015	30/06/2020	Valid	Portion Q	
WT00021903-2015	26/06/2015	30/06/2020	Valid	Works area 1	

Waste Disposal (Charges for Disposal of Construction Waste) Regulation					
Billing Account No.7022012	31/03/2015	N/A	Valid	/	
Registration of Chemical Waste Producer					
WPN5213-229-V2215-01	01/06/2015	N/A	Valid	/	
Construction Noise Permit					
GW-RE1183-15	04/12/2015	03/06/2016	Expire	Portion HA	
GW-RE0469-16	04/06/2016	03/12/2016	Expire	Portion HA	
GW-RE0330-17	25/04/2017	23/10/2017	Expire	Portion HA	
PP-RE0029-17	18/10/2017	16/04/2018	Expire	Portion HA	

2 Air Quality Monitoring

2.1 Monitoring Locations

According to the EM&A Manual Section 3.5, four impact monitoring locations have been established for air quality monitoring, which are summarized in <u>Table 2.1.1</u>.

Identification	Monitoring Location	Description	Parameter
No.			
AM1	Marine Department New	Ground Floor	1-hr TSP
	Yau Ma Tei Public Cargo	Face to Hoi Po Road	24-hr TSP
	Working Area		
	Administrative Building		
AM2	Garden Building	Ground Floor	1-hr TSP
		Face to Canton Road	24-hr TSP
AM3	The Cullinan I	Ground Floor	1-hr TSP
		Face to Nga Cheung Road	24-hr TSP
AM4	Lai Chack Middle School	Ground Floor	1-hr TSP
		Face to Canton Road	24-hr TSP

 Table 2.1.1 Air Quality Monitoring Locations

Due to the rejection from the representatives/ property management of the premises, high volume samplers are not feasible to be installed at AM3 and AM4 for the 24-hr TSP monitoring. Alternative locations AM3-B and AM4-A are proposed accordingly. The monitoring locations are summarized in <u>Table 2.1.2</u>. The details of monitoring location plan are shown in <u>Appendix C</u>.

Alternative monitoring location AM4-A is adjacent to the construction site of Xiqu Centre. Power supply for AM4-A was temporarily provided by the Main Contractor of Xiqu Centre, Hip Hing Engineering Co. Ltd.. Due to the outside surface works and drainage works of Xiqu Centre, the power distribution box under Hip Hing Engineering Co. Ltd. was relocated. The power supply to AM4-A has been cut off from early August 2017. 24hr-TSP monitoring at AM4-A was ceased from August 2017. The Contractor and ET are keeping in search of another alternative location to install the HVS and the power supply for AM4-A. On the other hand, major road works (excavation and utilities diversion) are approximately to be completed in Portion Q (close to AM4-A). The Contractor will review the construction works with ET and ER to deliberate on the

possibility of suspending 24-hr TSP monitoring at AM4/AM4-A.

ID No.	Monitoring Location	Description	Coordinates	Parameter
AM1	Marine Department New	Ground Floor	22°18'44.8''N	1-hr TSP
	Yau Ma Tei Public Cargo	Face to Hoi Po	114°09'37.4"E	
	Working Area	Road		
	Administrative Building			
AM2	Garden Building	Ground Floor	22°18'12.7"N	1-hr TSP
		Face to Canton	114°10'05.7"E	
		Road		
AM3	The Cullinan I	Ground Floor	22°18'22.0"N	1-hr TSP
		Face to Nga	114°09'39.3"E	
		Cheung Road		
AM4	Lai Chack Middle	Ground Floor	22°18'05.4"N	1-hr TSP
	School	Face to Canton	114°10'05.3"E	
		Road		
AM1	Marine Department New	Rooftop Face to	22°18'44.8''N	24-hr TSP
	Yau Ma Tei Public Cargo	Hoi Po Road	114°09'37.4"E	
	Working Area			
	Administrative Building			
AM2	Garden Building	Ground Floor	22°18'12.7"N	24-hr TSP
		Face to Canton	114°10'05.7"E	
		Road		
AM3-B ^{*1}	The Cullinan II	Ground Floor	22°18'16.3"N	24-hr TSP
	(W Hong Kong)	Face to The	114°09'34.5"E	
		Cullinan II		
AM4-A	Tsim Sha Tsui Fire	Ground Floor	22°18'05.5"N	24-hr TSP
	Station	Face to Canton	114°10'04.0"E	
		Road		

Table 2.1.2 Air Quality Monitoring Locations

Remark:

*1 Monitoring station was amended from AM3-A to AM3-B from October 2016. AM3-B is located at the site boundary of Scheme I. There is no obstacle between the site (dust emission source) and monitoring point. It is more representative for monitoring the dust impact caused by the construction activities.

2.2 Monitoring Frequency

For 1-hr TSP monitoring, the sampling frequency is at least three times in every six days when the highest dust impact occurs.

For 24-hr TSP monitoring, the sampling frequency is once in every six days when the highest dust impact occurs.

Monitoring was carried out on 4, 10, 16, 21 and 27 July 2018.

2.3 Monitoring Equipment

1-hr TSP monitoring was carried out by the portable dust meters. A comparison test for the portable dust meters with the HVS was carried out to ensure the accuracy for direct reading of the portable dust meter. 24-hr TSP monitoring was carried out by the high volume samplers. The monitoring equipment is listed in <u>Table 2.3.1</u> and Calibration Certificates of the equipment are shown in <u>Appendix D</u>.

Equipment	Manufacturer & Model No.	Serial No.	Latest Calibration Date	Next Calibration Date
		5201750009	15/12/2017	14/12/2018
Portable Dust	TSI AM520	5201750010	15/12/2017	14/12/2018
Meter		5201750011	15/12/2017	14/12/2018
		5201750012	15/12/2017	14/12/2018
		0001	06/06/2018	05/08/2018
High Volume Sampler	Tisch TE-5170	0002	06/06/2018	05/08/2018
Sumpton		0003	06/06/2018	05/08/2018
Calibration Kit	Tisch TE-5028A	2137	01/05/2018	30/04/2019

Table 2.3.1 Air Quality Monitoring Equipment

2.4 Monitoring Methodology and Parameters

Measurements of 1-hr TSP monitoring were taken by a Dust Trak aerosol monitor or its equivalent that is a portable and battery-operated laser photometer capable of performing real time 1-hr TSP measurements.

Field monitoring procedures are as follows:

- The monitoring station was set at a point 1m from the exterior of the sensitive receivers building façade and set at a position 1.2m above the ground.
- The battery condition was checked to ensure good functioning of the dust monitor.
- Zero Cal was conducted to the dust monitor to each test for ensuring more accurate data.
- Logging setup and Instrument setup such as log interval, test length, number of test and impactor adaptor will set as follows:
 - log interval : 1min
 - test length : 60mins
 - number of test : 3
 - Impactor adaptor: 100µ
- Start the monitoring lasting 3 hours for each monitoring location
- At the end of the monitoring period, the Average, Maximum and Minimum of each TSP test shall be recorded. In addition on a standard record sheet.

Measurements of 24-hr TSP monitoring were taken by High Volume Samplers (HVSs).

HVSs fitted with appropriate sampling inlets were employed for air quality monitoring. Each sampler was composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complies with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50).

Installation of HVSs:

- A horizontal platform with appropriate support to secure the samplers against gusty wind should be provided;
- No two samplers should be placed less than 2 meters apart;
- The distance between the sampler and an obstacle, such as buildings, must be at least twice the height that the obstacle protrudes above the sampler;

- A minimum of 2 meters of separation from walls, parapets and penthouses is required for rooftop samplers;
- A minimum of 2 meters separation from any supporting structure, measured horizontally is required;
- No furnace or incinerator flue is nearby;
- Airflow around the sampler is unrestricted;
- The sampler is more than 20 meters from the dripline;
- Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring;
- Permission must be obtained to set up the samplers and to obtain access to the monitoring stations; and
- A secured supply of electricity is needed to operate the samplers.

Data of wind speed and wind direction was extracted from King's Park Meteorological Station of Hong Kong Observatory. The collection of wind data meets the prescribed criteria in S.3.4.3 of the EM&A Manual.

Other relevant data such as monitoring location, time, weather conditions and any other special phenomena at the construction site were recorded during the measurement period.

2.5 Maintenance and Calibration

Dust Trak aerosol monitors were calibrated by the manufacturer or a HOKLAS Laboratory for every year and on-site Zero Cal before every monitoring. HVSs were calibrated after installation and re-calibrated on bi-monthly basis.

2.6 Quality Assurance / Quality Control Results and Detection Limits

The portable dust meter was calibrated annually by the manufacturer or a HOKLAS laboratory. HVSs were first been calibrated after installation and repeated on bi-monthly basis. Calibration Kit for HVSs was calibrated annually by the manufacturer or a HOKLAS laboratory. The detection limits of the HVSs meet with the prescribed standard. Calibration details and current Calibration Certificates are shown in <u>Appendix D</u>.

2.7 Action and Limit Level for 1-hr TSP and 24-hr TSP

The Action and Limit levels for air quality impact monitoring results at all monitoring locations are summarized in <u>Table 2.7.1</u>, which would be applied for compliance assessment of air quality for this project. If the air quality monitoring results at any monitoring stations exceeded the criteria, the actions in accordance with the Event and Action Plan in <u>Table 2.7.2</u> shall be taken.

Monitoring Locations	Monitoring Parameter	Action Level (µg/m ³)	Limit Level (µg/m ³)
AM1		288	500
AM2	1 5. TOD	299	500
AM3	1-hr TSP -	299	500
AM4		303	500
AM1		157	260
AM2	24-hr TSP	183	260
AM3-B		177	260
AM4-A		176	260

Table 2.7.1 Established TSP Actions and Limit Level

Table 2.7.2 Event and action	Plan for Air Quality
------------------------------	----------------------

EVENT	ACTION				
EVENI	ET	IEC	ER	CONTRACTOR	
ACTION LEVEL					
1. Exceedance for one	1. Inform IEC, ER and Contractor;	1. Check monitoring data	1. Notify Contractor.	1. Rectify any unacceptable practice;	
sample	2. Identify source, investigate the causes	submitted by ET;		2. Amend working methods if appropriate.	
	of exceedance and propose remedial	2. Check Contractor's working			
	measures;	method.			
	3. Repeat measurement to confirm				
	finding.				
2. Exceedance for	1. Inform IEC, ER and Contractor;	1. Check monitoring data	1. Confirm receipt of	1. Submit proposals for remedial to ER and IEC	
two or more	2. Identify source;	submitted by ET;	notification of failure in	within 3 working days of notification;	
consecutive samples	3. Advise the ER on the effectiveness of	2. Check Contractor's working	writing;	2. Implement the agreed proposals;	
	the proposed remedial measures;	method;	2. Notify Contractor;	3. Amend proposal if appropriate.	
	4. Repeat measurements to confirm	3. Discuss with ET and	3. Ensure remedial measures		
	findings;	Contractor on possible remedial	properly implemented.		
	5. Increase monitoring frequency to	measures;			
	daily;	4. Advise the ET/ER on the			
	6. Discuss with IEC, ER and Contractor	effectiveness of the proposed			
	on remedial actions required;	remedial measures;			
	7. If exceedance continues, arrange	5. Supervise Implementation of			
	meeting with IEC and ER;	remedial measures.			
	8. If exceedance stops, cease additional				
	monitoring.				

LIMIT LEVEL				
LExceedance for one	1. Inform IEC, ER, Contractor and EPD;	1. Check monitoring data	1. Confirm receipt of	1. Take immediate action to avoid further
sample	2. Identify source, investigate the causes	submitted by ET;	notification of failure in	exceedance;
	of exceedance and propose remedial	2. Check Contractor's working	writing;	2. Discuss with ET and IEC on remedial actions
	measures;	method;	2. Notify Contractor;	3. Submit proposals for remedial actions to IEC
	3. Repeat measurement to confirm	3. Discuss with ET and	3. Ensure remedial measures	within 3 working days of notification;
	finding;	Contractor on possible remediat	properly implemented.	4. Implement the agreed proposals;
	4. Increase monitoring frequency to	measures;		5. Amend proposal if appropriate.
	daily;	4. Advise the ER on the		
	5. Assess effectiveness of Contractor's	effectiveness of the proposed		
	remedial actions and keep IEC, EPD and	remedial measures;		
	ER informed of the results.	5. Supervise implementation		
		of remedial measures.		
2.Exceedance for two	1. Notify IEC, ER, Contractor and EPD;	1. Check monitoring data	1. Confirm receipt of	1. Take immediate action to avoid further
or more consecutive	2. Identify source;	submitted by ET;	notification of failure in	exceedance;
samples	3. Repeat measurement to confirm	2. Check Contractor's working	writing;	2. Discuss with ET and IEC on remedial actions
	tindings;	method;	2. Notify Contractor;	3. Submit proposals for remedial actions to ER an
	4. Increase monitoring frequency to	3. Discuss amongst ER, ET,	3. In consultation with the	IEC within 3 working days of notification;
	daily;	and Contractor on the potential	IEC, agree with the Contractor	4. Implement the agreed proposals;
	5. Carry out analysis of Contractor's	remedial actions;	on the remedial measures to	5. Resubmit proposals if problem still not under
	working procedures to determine	4. Review Contractor's	be implemented;	control;
	possible mitigation to be implemented;	remedial actions whenever	4. Ensure remedial measures	6. Stop the relevant portion of works as determine
	6. Arrange meeting with IEC and ER and	necessary to assure their	properly implemented;	by the ER until the exceedance creases.
	Contractor to discuss the remedial	effectiveness and advise the ER	5. If exceedance continues,	
	actions to be taken;	accordingly;	consider what portion of the	
	7. Assess effectiveness of Contractor's	5. Supervise the implementation	work is responsible and	
	remedial actions and keep IEC, EPD and	of remedial measures.	instruct the Contractor to	
	ER informed of the results;		terminate that portion of work	
	8. If exceedance stops, cease additional		until the exceedance ceases,	
	monitoring.			

2.8 Monitoring Results and Observations

1-hr TSP monitoring was conducted at four monitoring locations. The monitoring results are summarized in <u>Table 2.8.1</u>. 24-hr TSP monitoring was conducted at three monitoring locations. The monitoring results are summarized in <u>Table 2.8.2</u>. Detailed impact monitoring data of 1-hr TSP, 24-hr TSP and meteorological data are shown in <u>Appendix E</u>.

Monitoring Locations	Average 1-hr TSP (µg/m ³)	Range 1-hr TSP (µg/m ³)	Action Level (µg/m ³)	Limit Level (µg/m ³)
AM1	38	12 - 71	288	500
AM2	45	31 – 74	299	500
AM3	28	17 - 48	299	500
AM4	35	13 - 61	303	500

Table 2.8.1 Summary of average 1-hr TSP monitoring data

Monitoring Locations	Average 24-hr TSP (µg/m ³)	Range 24-hr TSP (µg/m ³)	Action Level (µg/m ³)	Limit Level (µg/m ³)
AM1	43	32 - 48	157	260
AM2	53	30 - 90	183	260
AM3-B	51	46 - 57	177	260
AM4-A	-	_	176	260

Table 2.8.2 Summary of average 24-hr TSP monitoring data

In accordance with the established action and limited levels for impact monitoring, there was no exceedance recorded in the reporting period.

During the monitoring period, vehicle emissions were identified as one of the dust sources for AM1, AM2, AM3, AM4 and AM3-B. TSP levels of AM2 and AM4 may be affected by the construction activities from other construction sites near Canton Road.

2.9 Monitoring Schedule for Next Reporting Month

TSP monitoring for next reporting month is scheduled on 2, 8, 14, 20, 25 and 31 August 2018.

3 Noise Monitoring

3.1 Monitoring Locations

According to the EM&A Manual Section 4.5, five impact monitoring locations have been established for noise impact monitoring during the construction phase of the project, which are summarized in <u>Table 3.1.1</u>. The details of monitoring location plan are shown in <u>Appendix C</u>.

Identification No.	Noise Monitoring Location	Description	Measurement Type	
NM1	Sorrento - Tower 1 ^{*1}	Podium Level ^{*1}	Essade	
		Face to Nga Cheung Road	Façade	
NM2	Yau Ma Ti Catholic	Ground Floor		
	Primary School (Hoi	Face to Hoi Ting Road	Façade	
	Wang Road)			
NM3	The Cullinan I	Ground Floor	Facada	
		Face to Nga Cheung Road	Façade	
NM4	Lai Chack Middle	Ground Floor	Facada	
	School	Face to Canton Road	Façade	
NM5	Yue Tak Building	Ground Floor	Facada	
		Face to Jordan Road	Façade	

Remark:

*1 According to EPD's comment and requirement for EM&A Report (February 2016) on 7 April 2016, noise measurement at NM1 was relocated from the ground level (roadside) of Nga Cheung Road to podium level of the Sorrenti Tower 1 starting from June 2016.

3.2 Monitoring Frequency

The regular monitoring for each location was performed on a weekly basis.

Monitoring was carried out on 4, 10, 16, 21 and 27 July 2018.

3.3 Monitoring Equipment

Noise monitoring was conducted by using BSWA 806 / SVANTEK 971 which complied with the International Electrotechnical Commission Publications 61672:2002 (Type 1),

60651:1979 (Type 1) and 60804:1985 (Type 1) Specifications as referred to the Technical Memorandum to the Noise Control Ordinance. The equipment was calibrated and verified by certified laboratory to ensure they can perform to the same level of accuracy as stated in the manufacturer's specification. Before and after the baseline measurement, the reading of sound level meter was checked with the acoustic calibrator and the measurements were accepted as valid if the calibration levels before and after the noise measurement agreed to within 1.0 dB. The measurement equipment is listed in Table 3.3.1 and Calibration Certificates of the equipment are shown in Appendix D.

Equipment	Manufacturer	Precision	Serial No.	Latest	Next
	& Model No.	Grade		Calibration	Calibration
				Date	Date
Sound level	SVANTEK	IEC61672	61421	28/09/2017	27/09/2018
meter	971	Type 1			
	SVANTEK	IEC61672	56272	11/12/2017	10/12/2018
	971	Type 1			
Acoustical	SVANTEK	IEC 942	150305805	19/11/2017	18/11/2018
calibrator	ST-120	Type 1			
	SVANTEK	IEC 942	7908	09/12/2017	08/12/2018
	SV30A	Type 1			

 Table 3.3.1 Equipment List for Noise Monitoring

3.4 Monitoring Methodology and Parameters

The construction noise level was measured in terms of the A-weighted equivalent continuous sound pressure level, L_{Aeq} . L_{Aeq} (30minutes) was used as the monitoring parameter for the impact monitoring in the time period between 0700 to 1900 hours on normal weekdays.

In case of non-compliance with the construction noise criteria, more frequent monitoring, as specified in the Action plan in Table 3.6.2, shall be carried out. This additional monitoring shall be carried out until the recorded noise levels are rectified or proved to be irrelevant to the construction activities.

Field monitoring procedures are as follows:

- The monitoring station was set at a point 1m from the exterior of the sensitive receivers building façade and set at a position 1.2m above the ground.
- The battery condition was checked to ensure good functioning of the meter.

- Parameters such as frequency weighting, the time weighting and the measurement time will set as follows:
 - frequency weighting : A
 - time weighting : Fast
- Prior to and after noise measurement, the meter shall be calibrated using the calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement is more than 1.0 dB, the measurement will considered invalid and repeat of noise measurement is required after re-calibration or repair of the equipment.
- The wind speed at the monitoring station shall be checked with the portable wind meter.
- Noise monitoring should be cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s. Noise measurement should be paused during periods of high intrusive noise if possible and observation shall be recorded when intrusive noise is not avoided.
- At the end of the monitoring period, the Leq, L_{10} and L_{90} shall be recorded. In addition, site conditions and noise sources should be recorded on a standard record sheet.

3.5 Maintenance and Calibration

Monitoring equipment was calibrated by the HOKLAS Laboratory for every year and on-site calibrated before and after every monitoring.

3.6 Quality Assurance / Quality Control Results and Detection Limits

The sound level meter and calibrator were calibrated annually by the HOKLAS laboratory. The detection limits of the sound level meter meet with the prescribed standard. Calibration details and current Calibration Certificates are shown in <u>Appendix D</u>.

3.7 Action and Limit Level for Construction Noise

The Action and Limit levels for construction noise are defined in <u>Table 3.7.1</u>. Should exceedance of the criteria occur, action in accordance with the Action Plan in <u>Table 3.7.2</u> shall be carried out.

Monitoring Locations	Building Type	Time Period	Action Level	Limit Level
NM1	Residential			75 dB(A)
NM2	Education	Daytime	When one	70 dB(A) / 65dB(A)*
NM3	Residential	0700 – 1900 hrs on normal	documented complaint is	75 dB(A)
NM4	Education	weekdays	received	70 dB(A) / 65dB(A)*
NM5	Residential			75 dB(A)

Table 3.7.1 Action and Limit Levels for Construction Noise at all Sensitive Receivers

*Remark: 70dB(A) and 65dB(A) for schools during normal teaching periods and school examination periods, respectively.

Table 3.7.2 Event /	Action Pl	an for Cons	truction Noise
Table 5.7.2 Event /	ACTION LT	all for Colls	

EVENT		ACTION		
	DT	IEC	ER	CONTRACTOR
Action	1. Notify IEC, ER and Contractor of exceedance;	1. Review the analysed results	1. Confirm receipt of notification of	1. Submit noise mitigation
Level	2. Identify source	submitted by the ET;	failure in writing;	proposals to ER with copy to
	3. Investigate the causes of exceedance and	2. Review the proposed remedial	2. Notify Contractor;	ET and IEC;
	propose remedial measures;	measures by the Contractor and	3. Require Contractor to propose	2. Implement noise mitigation
	4. Report the results of investigation to the IEC,	advise the ER accordingly;	remedial measures for the analysed	proposals.
	ER and Contractor;	3. Supervise the implementation of	noise problem;	
	5. Discuss with the IEC, ER and Contractor and	remedial measures.	4. Ensure remedial measures are	
	formulate remedial measures;		properly implemented	
	6. Increase monitoring frequency to check			
	mitigation effectiveness.			
Limit	1. Inform IEC, ER, EPD and Contractor;	1. Discuss amongst ER, ET, and	1. Confirm receipt of notification of	1. Take immediate action to
Level	2. Identify source;	Contractor on the potential	failure in writing;	avoid further exceedance;
	3. Repeat measurements to confirm findings;	remedial actions;	2. Notify Contractor;	2. Submit proposals for
	4. Increase monitoring frequency;	2. Review Contractor's remedial	3. Require Contractor to propose	remedial actions to ER with
	5. Carry out analysis of Contractor's working	actions whenever necessary to	remedial measures for the analysed	copy to ET and IEC within 3
	procedures to determine possible mitigation to be	assure their effectiveness and	noise problem;	working days of notification;
	implemented;	advise the ER accordingly;	4. Ensure remedial measures are	3. Implement the agreed
	6. Inform IEC, ER and EPD the causes and	3. Supervise the implementation of	properly implemented;	proposals;
	actions taken for the exceedances;	remedial measures.	5. If exceedance continues,	4. Resubmit proposals if
	7. Assess effectiveness of Contractor's remedial		investigate what portion of the work	problem still not under control;
	actions and keep IEC, EPD and ER informed of		is responsible and instruct the	5. Terminate the relevant
	the results;		Contractor to terminate that portion	portion of works as determined
	8. If exceedance stops, cease additional		of work until the exceedance	by the ER until the exceedance
	monitoring.		ceases.	ceases.

3.8 Monitoring Results and Observations

Noise impact monitoring was conducted at five monitoring locations. The monitoring results are summarized in <u>Table 3.8.1</u>. Detailed impact monitoring data of noise are shown in <u>Appendix F1</u>.

Monitoring Locations	Monitoring Date	Baseline Level (dB(A))	L _{Aeq} * ¹ (dB(A))	Re-M* ² L _{Aeq} (dB(A))	Action Level (dB(A))	Limit Level (dB(A))
	4/7/2018		61.1	N/A	W 71	
	10/7/2018		61.8	N/A	When one documented	
NM1	16/7/2018	75.1	61.0	N/A	complaint is	75 dB(A)
	21/7/2018		62.1	N/A	received	
	27/7/2018		62.5	N/A	leceiveu	
	4/7/2018		64.3	N/A	W/h ere ere e	70 dB(A) $*^3$
	10/7/2018		63.3	N/A	When one	70 dB(A) * ³
NM2	16/7/2018	66.5	63.9	N/A	documented	$70 \text{ dB}(A) *^3$
	21/7/2018		63.5	N/A	complaint is received	$70 \text{ dB}(A) *^3$
	27/7/2018		63.9	N/A	leceiveu	$70 \text{ dB}(A) *^3$
	4/7/2018		74.2	N/A	W/h ere ere e	
	10/7/2018		74.8	N/A	When one documented	
NM3	16/7/2018	74.5	74.0	N/A	complaint is	75 dB(A)
	21/7/2018		74.1	N/A	received	
	27/7/2018		74.4	N/A	Tecciveu	
	4/7/2018		74.7	74.1	W/h ere ere e	70 dB(A) $*^3$
	10/7/2018		73.1	73.8	When one	70 dB(A) $*^3$
NM4	16/7/2018	73.3	73.7	73.6	documented	70 dB(A) * ³
	21/7/2018		74.8	75.1	complaint is received	70 dB(A) $*^3$
	27/7/2018		74.1	74.3	ieceiveu	$70 \text{ dB}(A) *^3$
	4/7/2018		71.3	N/A	When the	
	10/7/2018		71.5	N/A	When one	
NM5	16/7/2018	71.8	72.4	N/A	documented	75 dB(A)
	21/7/2018		71.6	N/A	complaint is received	
	27/7/2018		72.5	N/A	icciveu	

Table 3.8.1 Summary of average noise monitoring data

Remark:

^{*1} Measured result would be rounded down before comparison with the limit level

^{*2} Repeat noise measurement when exceedance is recorded

*³ 70dB(A) for schools during normal teaching periods. School schedule is shown in <u>Appendix F2</u>
 *⁴ 65dB(A) for schools examination periods. School schedule is shown in <u>Appendix F2</u>

In accordance with the established action and limited levels for impact monitoring, five exceedances were recorded NM4 on 4, 10, 16, 21 and 27 July 2018. Noise measurement was repeated for confirming the findings and identifying the noise source for each exceedance according to the event and action plan.

The noise source for causing exceedances at NM4 was from the traffic of Canton Road. The NM4 was directly affected by the noise generated from the traffic. The recorded monitoring results at the NM4 were near the baseline noise level. The exceedances were not caused by the construction works of this project.

During the monitoring period, traffic noise was identified as one of the noise source for NM2, NM3, NM4 and NM5. Noise levels of NM3 may be influenced by the construction activities from other construction sites near Nga Cheung Road. Noise level of NM2 may be influenced by construction activities from other construction sites near Hoi Ting Road. Noise levels of NM4 and NM5 may be influenced by the construction activities from other construction sites near Canton Road.

3.9 Monitoring Schedule for Next Reporting Month

Noise monitoring for next reporting month is scheduled on 2, 8, 14, 20, 25 and 31 August 2018.

4 Solid and Liquid Waste Management Status

With reference to relevant handling records and trip tickets of this Project, the quantities of different types of waste generated in the reporting month are summarised in <u>Table 4.1</u>. During this reporting month, inert C&D materials and general refuse were generated and disposed. No mixed waste was generated. No chemical waste was generated and collected by licensed collector. No paper, plastic and metal was recycled. Detail of waste management data is presented in <u>Appendix G</u>.

		Quantity					
	C&D		C8	bD Material	s (non-inert)	(b)	
Departing	Materials	Conoral	Mixed Waste	Chemical + Waste	Recyc	led mater	ials
Reporting Month	(inert) ^(a)	General Refuse			Paper/ cardboard	Plastics	Metals
	(in	(in	(in	(in	(in	(in	(in
	'000kg)	'000kg)	'000kg)	'000kg)	'000kg)	'000kg)	'000kg)
July 2018	2986.5	50.88	0	0	0	0	0
Notes:							
(a) Inert	C&D materials	include bric	ks, concrete,	building debri	s, rubble and exc	cavated soil.	
(b) Non-inert C&D materials include steel, paper/cardboard packaging waste, plastics and other wastes							
such	such as general refuse and vegetative wastes. Steel metal generated from the Project are grouped						
into n	ion-inert C&D	materials as t	he materials	were not dispo	osed of with othe	er inert C&D	materials.

Table 4.1 Quantities of Waste Disposed from the Project

Waste materials were generated during this reporting period, such as excavated waste, demolition waste and general refuse. Contractor handled, stored and disposed in accordance with good waste management practice and EPD's regulation and requirements.

5 Landscape and Visual Impact

In accordance with the EM&A Manual, the landscape and visual mitigation measures shall be implemented to minimize the landscape and visual impacts during the construction works. The proposed monitoring program for landscape and visual impact is detailed in <u>Table 5.1</u>.

Stage	Monitoring Task	Frequency	Report	Approval
Construction	Mitigation measures	Bi-weekly	Landscape and	Registered
stage	implementation		Visual Impact	Landscape
			Assessment	Architect &
			Checklist	ET Leader

Table 5.1 Proposed Monitoring Program

Bi-weekly site inspections were conducted by representatives of the Engineer, Contractor and ET on 11 and 25 July 2018. The observations, reminders and recommendations made during the site inspections are summarized in Section 6, <u>Table 6.1</u>.

The implementation status of the proposed mitigation measures for landscape and visual impacts is given in <u>Appendix H</u>. Should non-conformity on one occur, action in accordance with the Action Plan in <u>Table 5.2</u> shall be carried out.

ome occasion 2 3 4 c Repeated 1 Non-conformity 2 3 4		АСПОХ													
	ET	IEC	ER	CONTRACTOR											
Non-conformity on	1. Identify Source	1. Check report	1. Notify Contractor	1. Amend working methods											
one occasion	2. Inform IEC and ER	2. Check Contractor's working method	2. Ensure remedial measures are	2. Rectify damage and											
	3. Discuss remedial actions with IEC, ER and	3. Discuss with ET and Contractor on possible	properly implemented	undertake any necessary											
	Contractor	remedial measures		replacement											
	4. Monitor remedial actions until rectification has been	4. Advise ER on effectiveness of proposed													
	completed	remedial measures.													
		5. Check implementation of remedial measures.													
Repeated	1. Identify Source	1. Check monitoring report	1. Notify Contractor	1. Amend working methods											
Non-conformity	2. Inform IEC and ER	2. Check Contractor's working method	2. Ensure remedial measures are	2. Rectify damage and											
	3. Increase monitoring frequency	3. Discuss with ET and Contractor on possible	properly implemented	undertake any necessary											
	4. Discuss remedial actions with IEC, ER and remedial measures			replacement											
	Contractor	4. Advise ER on effectiveness of proposed													
	5. Monitor remedial actions until rectification has been	remedial measures													
	completed	5. Supervise implementation of remedial													
	6. If non-conformity stops, cease additional monitoring	measures.		1											

T11 50 F		DI C		T 77 T T
Table 5.2 Event /	Action	Plan for	Landsscape and	Visual Impact

6 Environmental Site Inspection

6.1 Site Audit

Site audit was carried out by ET on weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site.

Joint weekly inspections were conducted by representatives of the Contract Administrator, Engineer, Contractor and ET on 4, 13, 18 and 25 July 2018. The representative of the IEC conducted the site inspection on 25 July 2018. Observations were recorded and summarized in Table 6.1.

During site inspection in the reporting month, no non-compliance was identified.

6.2 Implementation Status of Environmental Mitigation Measures

According to the EM&A Manual of the Project, the mitigation measures detailed in the documents shall be implemented during the construction phase. Updated status summary of the Environmental Mitigation Implementation Schedule is provided in <u>Appendix H</u>.

The observations, reminders and recommendations made during the audit sessions are summarized in <u>Table 6.1</u>.

	2	1	ections findings.		Closing
Date	Findings	Identification	Advice from ET	Action taken	date
27 Jun 18	Stockpile of construction materials were not properly stored.	Observation	Contractor was advised to allocate the construction materials in designated storage area.	Construction materials were removed to designated storage area.	4 Jul 18
27 Jun 18	Stagnant water was observed in the wastewater water collection tank.	Observation	the collected water to the wastewater treatment plant.	Regular cleaning for the wastewater water collection tank was implemented.	4 Jul 18
4 Jul 18	Construction waste (rebar and debris) were not properly sorted and stored.	Observation	Contractor was advised to sort out the recyclable rebar and properly store the different types of waste in designated areas.	Construction waste was disposed and the rebar was collected for recycling.	13 Jul 18
4 Jul 18	General refuse and construction waste were not properly sorted and stored.	Observation	Contractor was advised to properly maintain waste storage and carry out cleaning for the waste containers.	Waste was properly stored and the container was regularly cleaned.	13 Jul 18
13 Jul 18	Dusty materials were not properly sorted and covered.	Observation	Contractor was advised to cover the dusty materials for preventing dust pollution.	Dusty materials were removed.	18 Jul 18
13 Jul 18	Construction waste was not properly stored.	Observation	Contractor was advised to remove the construction waste for keeping the site clean and tidy.	Construction waste was removed and the site area was kept clean and tidy.	18 Jul 18
18 Jul 18	Fiber filter sheet for protecting the existing gully was broken.	Observation	Contractor was advised to frequently replace the filter sheet.	Fiber filter sheet for protecting the existing gully was replaced.	25 Jul 18
18 Jul 18	Construction wastes were not properly handled and stored.	Observation	Contractor was advised to properly maintain sorting and disposal for the construction waste.	Construction wastes were removed.	25 Jul 18
25 Jul 18	Dusty materials were not covered.	Observation	Contractor was advised to properly cover the dusty materials.	The follow-up status will be reported in the next reporting period.	N/A
25 Jul 18	General refuse was not properly stored.	Observation	Contractor was advised to frequently remove the general refuse and construction waste.	The follow-up status will be reported in the next reporting period.	N/A
25 Jul 18	Debris were not properly handled and stored.	Observation	Contractor was advised to remove the construction debris and maintain proper storage for any reserved materials.	The follow-up status will be reported in the next reporting period.	N/A
Landscape	and Visual Impact				
3 Nov 17	Construction materials were piled within the	Observation	Contractor was reminded to relocate the construction materials which were piled within the TPZ	The follow-up status will be reported in the next reporting period.	N/A

Table 6.1	Summary	results of	site ins	pections	findings.
-----------	---------	------------	----------	----------	-----------

Date	Findings	Identification	Advice from ET	Action taken	Closing date
26 Jan 18 9 Feb 18 23 Feb 18 9 Mar 18 23 Mar 18 6 Apr 18 19 Apr 18 4 May 18 18 May 18 1 Jun 18 15 Jun 18 29 Jun 18 11 Jul 18					date
27 Jul 18 11 Jul 18 27 Jul 18	Construction works were started within Scheme J, Scheme HA and Scheme Q.	Reminder	Contractor was reminded to provide TPZ with robust fence at the dripline of all retained trees in order to avoid damage to the trees and their root zones. No works were allowed to undertake within the TPZ.	N/A	N/A
11 Jul 18 27 Jul 18	WKI421(R), WKI423(R), WKI424(R) and WKI425(R) with construction undergoing nearby by other parties.	Reminder	Contractor should remind Cheung Hing to provide robust TPZ for the trees and to avoid damaging the root zone under the dripline.	N/A	N/A
11 Jul 18 27 Jul 18	Broken branch was found on WKI424(R).	Reminder	Contractor should remind Cheung Hing to fence off the surrounding area and remove the broken branch for the sake of public and workers' safety.	N/A	N/A

7 Environmental Non-Conformance

7.1 Summary of Environmental Exceedances

No exceedance of action level and limit level was recorded for TSP. Five exceedances were recorded at NM4 on 4, 10, 16, 21 and 27 July 2018.

7.2 Summary of Environmental Non-Compliance

No environmental non-compliance was recorded in the reporting month.

7.3 Summary of Environmental Complaint

No environment project-related complaint was received in the reporting period.

7.4 Summary of Notification of Summons and Successful Prosecution

There was no successful environmental prosecution or notification of summons received since the Project commencement.

The cumulative log for environmental exceedance, non-compliance, complaint and summon and successful prosecution since the commencement of the Project is presented in <u>Appendix I</u>.

8 Future Key Issues

The major construction activities in the coming month will include:

- Portion I Pile Cap, Pier and Bridge Deck Construction Works
- Portion I E&M Installation and Road Works
- Portion Q Road Works
- Portion HA Pile Cap, Pier and Bridge Deck Construction Works
- Portion HA E&M Installation and Road Works
- Portion J Street Furniture Installation

Potential environmental impacts arising from the above construction activities are mainly associated with dust, construction noise, water quality and waste management. The Contractor has been reminded to properly implement dust, construction noise and water quality control measures as well as proper waste management in order to minimize the potential environmental impacts due to the construction works of this Project.

9 Comment, Recommendations and Conclusions

9.1 Comment

The recommended mitigation measures accordance with the EM&A Manual had been effectively implemented to minimize the environmental impacts due to the construction. The contractor had implemented the mitigation measures to control the dust and noise impacts. No dust and noise impacts obviously affected to the environment and sensitive receivers. The follow up actions were not quickly implemented for environmental observations made during the site inspections. The environmental performance during the reporting period was considered satisfactory.

9.2 Recommendations

According to the environmental audit performed in the reporting month, the following recommendation was made:

Water / Wastewater

- To regularly pump and direct the collected water to the wastewater treatment plant.
- To frequently replace the filter sheet.

Air Quality

- To cover the dusty materials for preventing dust pollution.
- To properly cover the dusty materials.

Chemicals / Chemical waste

• N/A

Waste Management / Materials Storage / Others

- To allocate the construction materials in designated storage area.
- To sort out the recyclable rebar and properly store the different types of waste in designated areas.
- To properly maintain waste storage and carry out cleaning for the waste containers.
- To properly maintain sorting and disposal for the construction waste.
- To frequently remove the general refuse and construction waste.

• To remove the construction debris and maintain proper storage for any reserved materials

Visual and Landscape Impact

- To relocate the construction materials which were piled within the TPZ.
- To provide TPZ with robust fence at the dripline of all retained trees in order to avoid damage to the trees and their root zones. No works were allowed to undertake within the TPZ.
- To provide robust TPZ for the trees and to avoid damaging the root zone under the dripline.
- To fence off the surrounding area and remove the broken branch for the sake of public and workers' safety.

9.3 Conclusions

This is the monthly Environmental Monitoring and Audit (EM&A) Report presenting the EM&A works undertaken from 1 July 2018 to 31 July 2018 in accordance with the EM&A Manual.

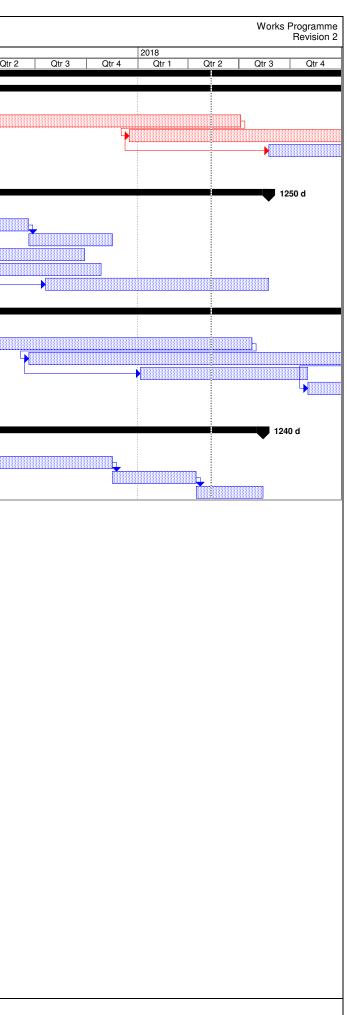
No exceedance of action level and limit level was recorded for TSP. Five exceedances were recorded at NM4 on 4, 10, 16, 21 and 27 July 2018 for Noise. No Non-compliance event, environmental complaint, notification of summons and successful prosecution against the Project were received in this reporting month.

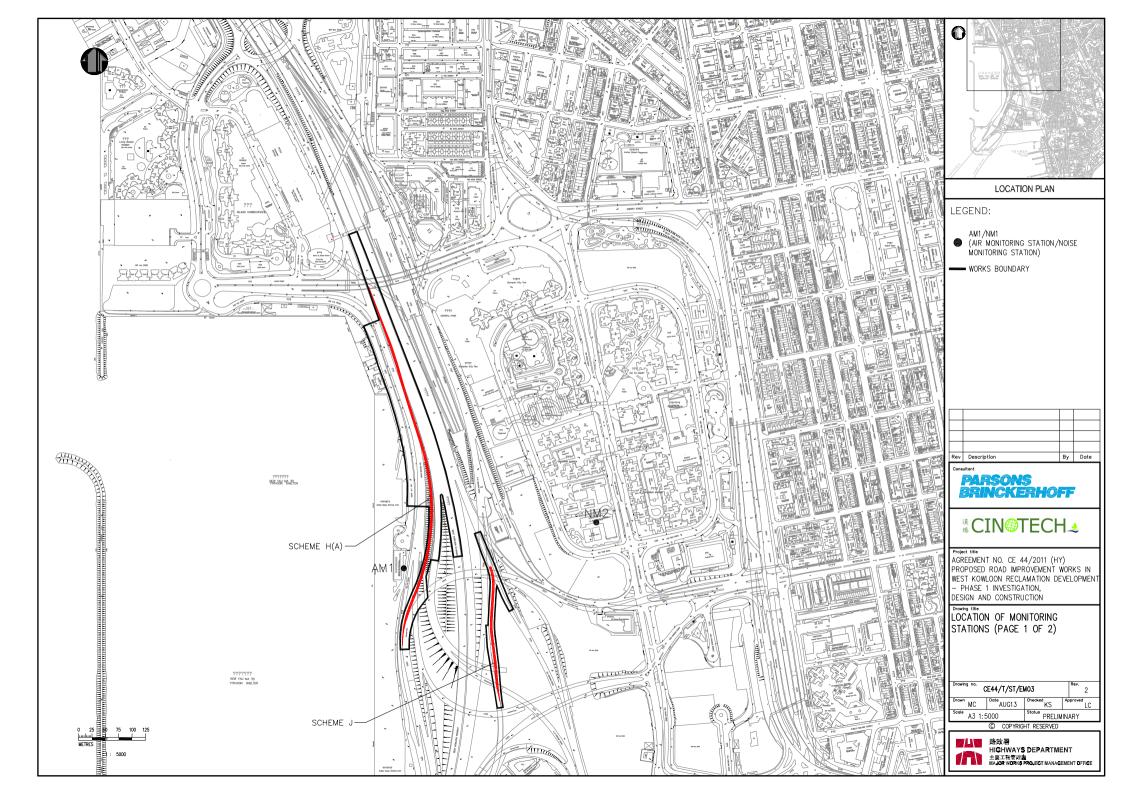
4 nos. of environmental site inspections and 2 nos. of landscape and visual inspections were carried out in this reporting month. Recommendations on remedial actions were given to the Contractor for the deficiencies identified during the site audit.

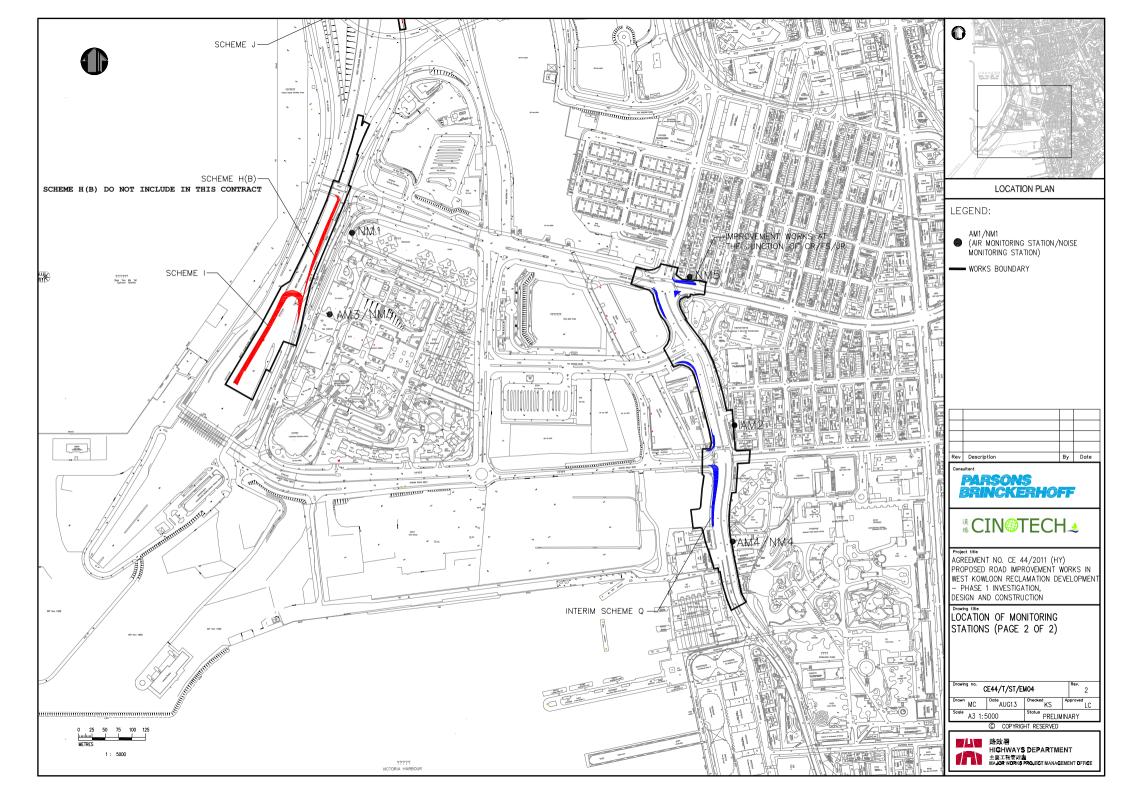
ET has reminded the contractor to provided environmental pollution control measures, waste management measures and good site practice.

ET will keep tracking of the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all the necessary mitigation measures. Appendix A: Construction Programme and Project Layout Plan

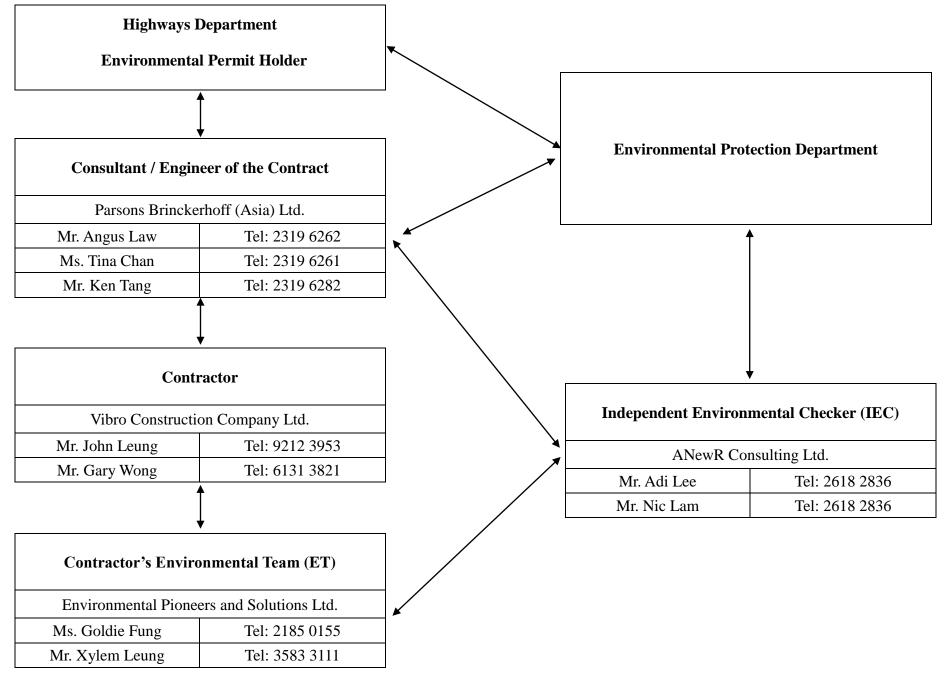
D Task Name		Duration	Start	Finish	2015				2016			2017		
	Development Wester in West Kenderen Devlopmetten Development	4050 1	Mar 00/0/45	E-1 07/0/10	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	
	Road Improvement Works in West Kowloon Reclamation Development	1650 d	Mon 23/3/15	Fri 27/9/19										
	West Kowloon Highway South Bound near Western Harbour Tunnel at Portion I	1650 d	Mon 23/3/15	Fri 27/9/19	_									
	Site Clearance, set TTA	250 d	Mon 23/3/15	Fri 27/11/15	_									
	Underground investigation, utilities diversion and piling construction	950 d	Sat 28/11/15	Wed 4/7/18										
	Pile cap, Pier and Bridge Deck construction	600 d	Sun 17/12/17	Thu 8/8/19										
	E&M installation and roadworks	350 d	Fri 24/8/18	Thu 8/8/19										
	Road Pavement, Street furniture installation	250 d	Mon 21/1/19	Fri 27/9/19	_									
	Canton road at Portion Q	1250 d	Mon 23/3/15	Thu 23/8/18	_									
)	Site Clearance, tree felling, TTA application	320 d	Mon 23/3/15	Fri 5/2/16	_									
	Road works at Canton road footpath and utilities diversion	500 d	Sat 6/2/16	Mon 19/6/17	_									
	Construction of sign gantry	150 d	Tue 20/6/17	Thu 16/11/17	_									
	Road works at Ferry Street and Jordan road	500 d	Mon 16/5/16	Wed 27/9/17	_									
	Road works at Wui Cheung road	450 d	Thu 4/8/16	Fri 27/10/17	_									
-	Road Works at Austin Road junction	400 d	Thu 20/7/17	Thu 23/8/18	_									
_					-									
	Lin Cheung Road North Bound at Portion HA	1620 d	Mon 23/3/15	Wed 28/8/19										
	Site Clearance, tree felling	320 d	Mon 23/3/15	Fri 5/2/16					i L					
	Underground investigation, utilities diversion and piling construction	900 d	Sat 6/2/16	Tue 24/7/18	-									
	Pile cap, Pier and Bridge Deck construction	700 d	Tue 20/6/17	Mon 20/5/19	-				biolini in					
	E&M installation and roadworks	300 d	Sat 6/1/18	Thu 1/11/18	-									
	Road Pavement, Street furniture installation	300 d	Fri 2/11/18	Wed 28/8/19	-									
3					-									
					-									
5	Lin Cheung Road South Bound at Portion J	1240 d	Mon 23/3/15	Mon 13/8/18	╡ ╹									
6	Site Clearance, tree felling	320 d	Mon 23/3/15	Fri 5/2/16										
7	Construction of retaining walls and utilities diversion	650 d	Sat 6/2/16	Thu 16/11/17										
3	Site formation and roadworks	150 d	Fri 17/11/17	Sun 15/4/18					procession and					
)	Street furniture installation	120 d	Mon 16/4/18	Mon 13/8/18										

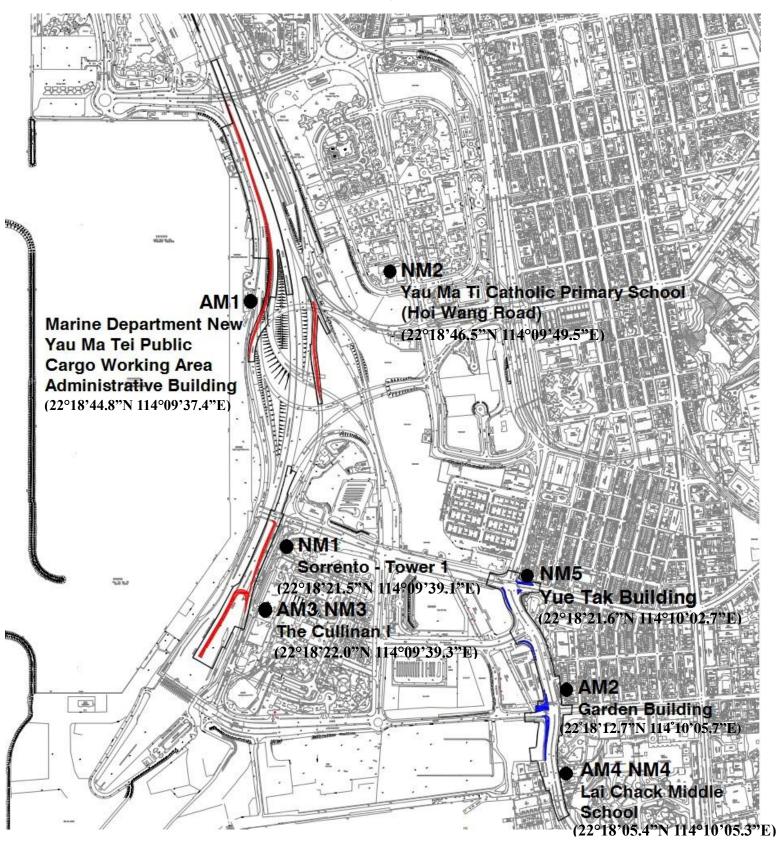

Task													
	_												


Critical Task


Progress

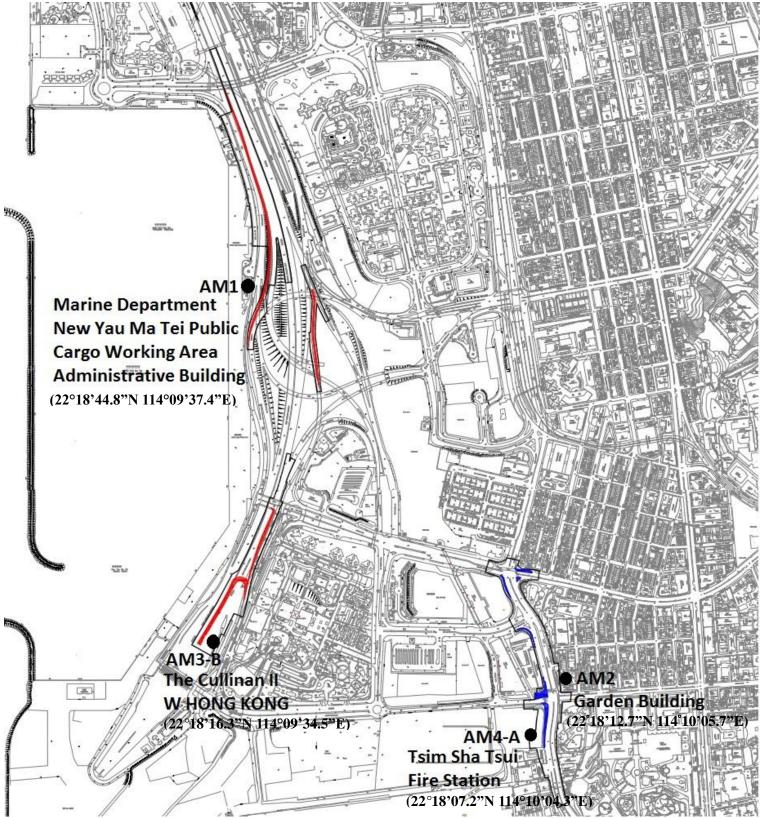
Milestone


Date: 12 May 2018


Appendix B: Project Organization Chart

→ Line of communication

Appendix C: Monitoring Locations


Locations for 1-hr TSP and Noise monitoring

Monitoring Location	Photo Record
AM1 Marine Department New Yau Ma Tei Public Cargo Working Area Administrative Building	
AM2 Garden Building	
AM3 The Cullinan I	
AM4 Lai Chack Middle School	

Monitoring Location	Photo Record
NM1 Sorrento - Tower 1	
NM2 Yau Ma Ti Catholic Primary School (Hoi Wang Road)	
NM3 The Cullinan I	
NM4 Lai Chack Middle School	
NM5 Yue Tak Building	

Locations for 24-hr TSP monitoring

Monitoring Location	Photo Record			
AM1 Marine Department New Yau Ma Tei Public Cargo Working Area Administrative Building				
AM2 Garden Building				
AM3-B The Cullinan II (W Hong Kong)				
AM4-A Tsim Sha Tsui Fire Station				

Appendix D: Calibration Certification

CERTIFICATE OF CALIBRATION AND TESTING TSI Incorporated, 500 Cardigan Road, Shoreview, MIN 55126 USA Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

Environment Conditions					Model		AM520	
Temperature	7	5.7 (24.3)	°F (°C)	711102		AMOLO		
Relative Humidity		26	%RH			5204750000		
Barometric Pressu	re 28	.83 (976.3)	inHg (hPa)		erial Numbe	r	5201750009	
🛛 As Left			×	In To	lerance			
As Found				lOut o	of Tolerance			
			Concentratio	n Li	nearity Plot			
		100	Concentratio		incaring their			
					0			
	Dominia Dominia (martin 2)	2						
		0 10	+		0			
	4				/			
	-			o				
•								
	à	ž	0					
		0.1	-					
	ð	ę				o = In Tolerance		
			1			• = Out of Tolera	nce	
		0.01						
		0.	01 0.1	1	10 10	0		
			Aerosol Conce	ntra	tion (mg/m3)			
							System ID: DTII01-0	
CONCENTRATIO	ON			and the second			Unit: mg/n	
# STANDARD	MEASURED	ALLO	WABLE RANGE	#	STANDARD	MEASURED	ALLOWABLE RANGE	
	0.073		.050~0.094	4	11.745	11.665	10.571~12.919	
1 0.072	0.247	0	213~0.287 321~1.615	5	63.293	62.903	56.964~69.622	
	1.417							

nominally adjusted to respirable mass per standard ISO 12103-1, A1 test dust (Arizona dust). Our calibration ratio is greater than 4:1 <u>Due</u>)-18

Measurement Variable	System ID	Last Cal.	Cal. Due	Measurement Variable	System ID	Last Cal	Cal. Due
Photometer	E003433	09-05-17	03-31-18	Flowmeter	E004570	06-19-17	06-30-18
DC Voltage(Keithley)	E002859	09-21-17	09-30-18	Microbalance	M001324	11-02-16	11-30-18
Temp/Humidity	E005656	03-07-17	03-31-18	Temp/Humidity	E005657	03-06-17	03-31-18
Pressure	E003440	07-27-17	07-31-18				

Bao Lee

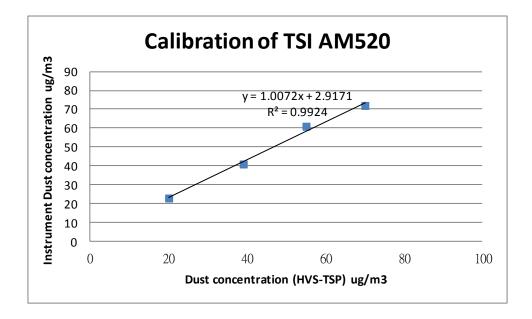
Calibrated

December 15, 2017

Date

REPORT OF EQUIPMENT CALIBRATION

INSTRUMENT DESCRIPTION


It is certified that the calibrated dust meter has been calibrated by the calibrated High Volume Sampler.

Dust Meter							
Manufacturer & Model No.: TSI AM520 Date of Calibration: 30/1/2018							
Serial No.: 5201750009 Date of Next Calibration: 14/12/2018							
High Volume Sampler							

Manufacturer & Model No.: TE-5170 MFC	Date of Calibration: 30/1/2018
Serial No.: 0005	

Manufacturer & Model No.: TE-5028A	Date of Calibration: 30/05/2017
Serial No.: 3371	

HVS - TSP	20	39	55	70
TSI AM520	23	41	61	72

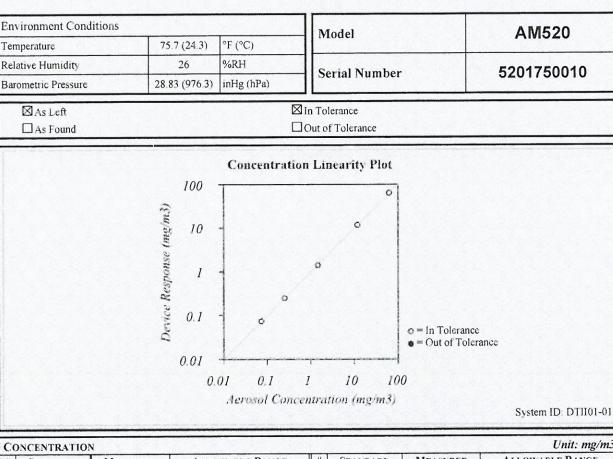
ISSUING ORGANISATION

Environmental Pioneers & Solutions Limited

Flat A 8/F. Chaiwan Industrial Centre 20 Lee Chung Street Chai Wan, Hong Kong

Phone: 852 - 2556 9172 Fax: 852 - 2856 2010

Date of Issue: 31/1/2018


27

Mr. Ip Wing Hong, John Manager

CERTIFICATE OF CALIBRATION AND TESTING

TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

CONCENTRATION Unit: mg									
#	STANDARD	MEASURED	ALLOWABLE RANGE	#	STANDARD	MEASURED	ALLOWABLE RANGE		
1	0.072	0.072	0.050~0.094	4	11.745	11.659	10.571~12.919		
2	0.250	0.242	0.213~0.287	5	63.293	62.717	56.964~69.622		
3	1.468	1.403	1.321~1.615						

TSI Incorporated does hereby certify that all materials, components, and workmanship used in the manufacture of this equipment are in strict accordance with the applicable specifications agreed upon by TSI and the customer and with all published specifications. All performance and acceptance tests required under this contract were successfully conducted according to required specifications. There is no NIST standard for optical mass measurements. Calibration of this instrument performed by TSI has been done using emery oil and has been nominally adjusted to respirable mass per standard ISO 12103-1, Al test dust (Arizona dust). Our calibration ratio is greater than 4:1

Measurement Variable Photometer DC Voltage(Keithley) Temp/Humidity Pressure	System ID E003433 E002859 E005656 E003440	Last Cal 09-05-17 09-21-17 03-07-17 07-27-17	Cal. Due 03-31-18 09-30-18 03-31-18 07-31-18	Measurement Variable Flowmeter Microbalance Temp/Humidity	<u>System ID</u> E004570 M001324 E005657	Last Cal. 06-19-17 11-02-16 03-06-17	<u>Cal. Due</u> 06-30-18 11-30-18 03-31-18
---	---	--	--	--	---	---	---

Bao Lee

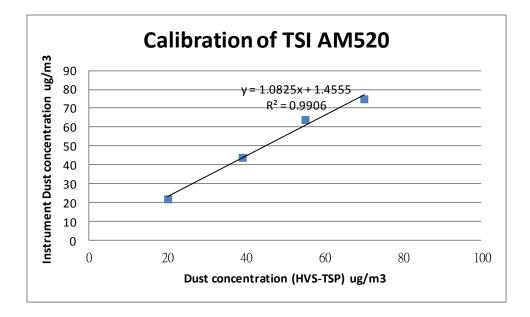
Calibrated

December 15, 2017

Date

REPORT OF EQUIPMENT CALIBRATION

INSTRUMENT DESCRIPTION


It is certified that the calibrated dust meter has been calibrated by the calibrated High Volume Sampler.

Dust Meter						
Manufacturer & Model No.: TSI AM520	Date of Calibration: 30/1/2018					
Serial No.: 5201750010	Date of Next Calibration: 14/12/2018					
High Volume Sampler						

Manufacturer & Model No.: TE-5170 MFC	Date of Calibration: 30/1/2018
Serial No.: 0005	

Manufacturer & Model No.: TE-5028A	Date of Calibration: 30/05/2017
Serial No.: 3371	

HVS - TSP	20	39	55	70
TSI AM520	22	44	64	75

ISSUING ORGANISATION

Environmental Pioneers & Solutions Limited

Flat A 8/F. Chaiwan Industrial Centre 20 Lee Chung Street Chai Wan, Hong Kong

Phone: 852 - 2556 9172 Fax: 852 - 2856 2010

Date of Issue: 31/1/2018

27

Mr. Ip Wing Hong, John Manager

CERTIFICATE OF CALIBRATION AND TESTING

TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

Environment Conditions				Model			AM520	
Temperature	75	.7 (24.3)	°F (°C)			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Relative Humidity	1. D. O	26	%RH	Serial Number 520175001		5201750011		
Barometric Pressure	28.	83 (976.3)	inHg (hPa)			5201750011		
🛛 As Left			×	In Tol	lerance			
As Found			C	Out o	f Tolerance			
	*****		Concentratio	n Lir	iearity Plot			
		100						
	-				0			
	Device Response (maim3)				0			
	m2)	10	1		/			
	9				10 2 2			
	CHO	1	1	0				
	est							
	00 C		•					
	vic	0.1	1 0			o = In Tolerance		
	q					$\bullet = Out of Tolera$	ince	
		0.01	4	-1 -				
			.01 0.1	1	10 10	00		
		0	Aerosol Conc	-				
			nerosot conci	6.7247 64	uon (inginie)		System ID: DTI101-0	
CONCENTRATION		1990					Unit: mg/m	
# STANDARD	MEASURED		OWABLE RANGE	#	STANDARD	MEASURED	ALLOWABLE RANGE	
1 0.072	0.071	a dilla series a	0.050~0.094	4	11.745	11.649	10.571~12.919 56.964~69.622	
2 0.250	0.245		0.213~0.287	5	63.293	62.844	20.904~09.022	

TSI Incorporated does hereby certify that all materials, components, and workinanship used in the manufacture of this equipment are in strict accordance with the applicable specifications agreed upon by TSI and the customer and with all published specifications. All performance and acceptance tests required under this contract were successfully conducted according to required specifications. There is no NIST standard for optical mass measurements. Calibration of this instrument performed by TSI has been done using emery oil and has been nominally adjusted to respirable mass per standard ISO 12103-1, A1 test dust (Arizona dust). Our calibration ratio is greater than 4:1

1.321~1.615

Measurement Variable Photometer DC Voltage(Keithley) Temp/Humidity Pressure	System 1D E003433 E002859 E005656 E003440	Last Cal 09-05-17 09-21-17 03-07-17 07-27-17	Cal Due 03-31-18 09-30-18 03-31-18 07-31-18	Measurement Variable Flowmeter Microbalance Temp/Humidity	<u>System ID</u> E004570 M001324 E005657	Last Cal 06-19-17 11-02-16 03-06-17	<u>Cal Due</u> 06-30-18 11-30-18 03-31-18
---	---	--	---	--	---	--	--

Bao Lee

Calibrated

1.402

1.468

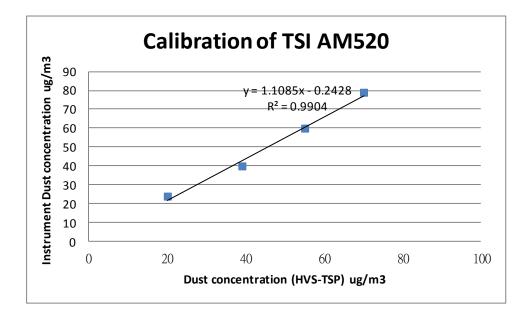
December 15, 2017

Date

REPORT OF EQUIPMENT CALIBRATION

INSTRUMENT DESCRIPTION

It is certified that the calibrated dust meter has been calibrated by the calibrated High Volume Sampler.


Dust Meter						
Manufacturer & Model No.: TSI AM520	Date of Calibration: 30/1/2018					
Serial No.: 5201750011	Date of Next Calibration: 14/12/2018					
High Volum	ne Sampler					

Manufacturer & Model No.: TE-5170 MFC	Date of Calibration: 30/1/2018
Serial No.: 0005	

Manufacturer & Model No.: TE-5028A	Date of Calibration: 30/05/2017
Serial No.: 3371	

Calibration Record

HVS - TSP	20	39	55	70
TSI AM520	24	40	60	79

ISSUING ORGANISATION

Environmental Pioneers & Solutions Limited

Flat A 8/F. Chaiwan Industrial Centre 20 Lee Chung Street Chai Wan, Hong Kong

Phone: 852 - 2556 9172 Fax: 852 - 2856 2010

Date of Issue: 31/1/2018

27

Mr. Ip Wing Hong, John Manager

CERTIFICATE OF CALIBRATION AND TESTING TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

Environment Condit	ions			IM	lodel		AM520
emperature	75	.7 (24.3)	°F (°C)				
Relative Humidity		26	%RH	Serial Number 52017500		5201750012	
arometric Pressure	28.8	33 (976.3)	inHg (hPa)				5201750012
As Left					lerance f Tolerance		
			Concentratio	on Lii	nearity Plot		a an
		100					
	8						
	.m.)	10			0		
	Sim)	10			1 33		
	186			0			
	lods	. 1	1	/			
	Re		0				
	ice.	0.1	1				
Pa					o = In Tolerance		
						• = Out of Toler	ance
		0.01	1				ance
		0.01			10 10		ance
			01 0.1 Aerosol Conci	1 entra			
				T I entra			
CONCENTRATION				1 entra			System ID: DTI101-0
# STANDARD	MEASURED	O.	Aerosol Conc.	#	tion (mg/m3) Standard	00 MEASURED	System ID: DTI101-(Unit: mg/n ALLOWABLE RANGE
1 0.072	0.070	0.1 	Aerosol Conc wable Range	#	tion (mg/m3) Standard 11.745	00 MEASURED 11 612	System ID: DTI101-0 Unit: mg/n ALLOWABLE RANGE 10.571~12.919
STANDARD 0.072 0.250		0.0 ALLO 0 0	Aerosol Conc.	#	tion (mg/m3) Standard	00 MEASURED	System ID: DTI101- Unit: mg/i ALLOWABLE RANGE
STANDARD 0.072 0.250 1.468 TSI Incorporated doe strict accordance with performance and acce NIST standard for opti	0.070 0.246 1.403 The shereby certify the the applicable plance tests required incal mass measures respirable mass able System II E003433	0.1 ALLO 0 0 1 that all m e specifica uired under rements C per standa	Aerosol Conce WABLE RANGE 050-0.094 213-0.287 .321~1.615 aterials, componentions agreed upor r this contract were Calibration of this u rd ISO 12103-1, Au Cal. Cal. Due 5-17 03-31-18	ts, and by Ti succe: succe: test d	tion (mg/m3) STANDARD 11.745 63.293 I workmanship u SI and the cust ssfully conducted ent performed by	MEASURED 11.612 63.376 used in the mamfa omer and with all according to requ TSI has been don t). Our calibration	System ID: DTI101-(<i>Unit: mg/n</i> ALLOWABLE RANGE 10.571~12.919

Bao Lee

Calibrated

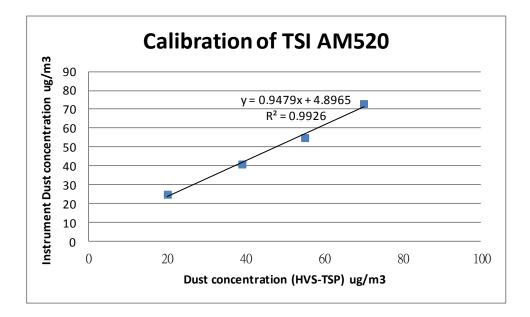
December 15, 2017

Date

REPORT OF EQUIPMENT CALIBRATION

INSTRUMENT DESCRIPTION

It is certified that the calibrated dust meter has been calibrated by the calibrated High Volume Sampler.


Dust Meter					
Manufacturer & Model No.: TSI AM520Date of Calibration: 30/1/2018					
Serial No.: 5201750012	Date of Next Calibration: 14/12/2018				
High Volume Sampler					
Manufacturer & Model No : TE-5170 MEC Date of Calibration: 30/1/2018					

Manufacturer & Model No.: TE-5170 MFC	Date of Calibration: 30/1/2018
Serial No.: 0005	

|--|

Manufacturer & Model No.: TE-5028A	Date of Calibration: 30/05/2017
Serial No.: 3371	

HVS - TSP	20	39	55	70
TSI AM520	25	41	55	73

ISSUING ORGANISATION

Environmental Pioneers & Solutions Limited

Flat A 8/F. Chaiwan Industrial Centre 20 Lee Chung Street Chai Wan, Hong Kong

Phone: 852 - 2556 9172 Fax: 852 - 2856 2010

Date of Issue: 31/1/2018

27

Mr. Ip Wing Hong, John Manager

May 1, 2019

	Ce	rtifi	icate	of.	Car	libri	ation	
		C	alibration (Certificati	on inform	ation		
Cal. Date:	May 1, 201	.8	Roots	meter S/N:	438320	Ta:	294	°K
Operator:	Jim Tisch					Pa:	755.65	mm Hg
Calibration	Calibration Model #: TE-5028A Calibrator S/N: 2137							-
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔΗ	1
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	(113)	1.3280	4.2	1.50	
	2	3	4	1	1.0410	6.8	2.50	
	3	5	6	1	0.9470	8.3	3.00	
	4	7	8	1	0.8710	9.7	3.50	1
	5	9	10	1	0.6640	16.5	6.00	
				Data Tabula]
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$)(<u>Tstd</u>) Ta)		Qa	$\sqrt{\Delta H (Ta/Pa)}$	
	(m3)	(x-axis)	(y-ax		Va	(x-axis)	(y-axis)	
	1.0022	0.7547	1.22		0.9944	0.7488	0.7639	
	0.9987	0.9594	1.58		0.9910	0.9520	0.9862	
	0.9967	1.0525	1.73		0.9890	1.0444	1.0804	
	0.9949	1.1422	1.87		0.9872	1.1334	1.1669	
	0.9858	1.4846	2.45		0.9782	1.4731	1.5279	
	OCTO		m= 1.67739			m=	1.05036	
	QSTD	b=			QA	b=	-0.01916	
		r= 0.99989			r= 0.99989			1
				Calculatio	ns]
	Vstd= ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta) Va= ΔVol((Pa-ΔP)/Pa)					1		
	Qstd= Vstd/ΔTime Qa= Va/ΔTime							
For subsequent flow rate calculations:								
	$\mathbf{Qstd} = \frac{1}{m} \left(\left(\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right) \left(\frac{Tstd}{Ta} \right)} \right) - b \right) \qquad \mathbf{Qa} = \frac{1}{m} \left(\left(\sqrt{\Delta H \left(Ta/Pa \right)} \right) - b \right)$							
	Standard	Conditions	1					,
Tstd: 298.15 °K				1		RECA	LIBRATION	
Pstd: 760 mm Hg Key						ommends a	nnual recalibratio	•
	ΔH: calibrator manometer reading (in H2O) ΔP: rootsmeter manometer reading (mm Hg)				40 Code of Federal Regulations Part 50 to 51,			
		perature (°K)			Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in			
		ressure (mm				-		
b: intercept					the	e Atmosphe	ere, 9.2.17, page	30.
m: slope								

Tisch Environmental, Inc.

m: slope

145 South Miami Avenue

Village of Cleves, OH 45002

www.tisch-env.com TOLL FREE: (877)263-7610 FAX: (513)467-9009

TE-5170 Calibration Worksheet

Site Information				
Location: YMT Public Cargo Working Area				
Location ID: AM1	Date: 6-Jun-18			
Sampler: TE-5170 MFC (0001)	Tech: Hendry Chan			

Sit	e Conditions
Barometric Pressure (in Hg): 29.50	Corrected Pressure (mm Hg): 749
Temperature (deg F): 68	Temperature (deg K): 293
Average Press. (in Hg): 29.65	Corrected Average (mm Hg): 753
Average Temp. (deg F): 68	Average Temp. (deg K): 293

Calibration Orifice						
Make: Tisch	Qstd Slope: 1.67739					
Model: TE-5028A	Qstd Intercept: -0.03083					
Serial#: 2137	Date Certified: 1-May-18					

Calibration Information										
Plate or H2O Qstd I IC										
Test #	(in)	(m3/min)	(chart)	(corrected)	Linear Regression					
1	2.20	0.904	22.0	22.03	Slope: 38.5514					
2	3.40	1.119	32.0	32.04	Intercept: -12.2660					
3	5.00	1.353	40.0	40.05	Corr. Coeff: 0.9948					
4	7.20	1.620	48.0	48.07						
5	8.80	1.789	58.0	58.08	# of Observations: 5					

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

- IC = corrected chart response
- I = actual chart response
- m = calibrator Qstd slope
- b = calibrator Qstd intercept
- Ta = actual temperature during calibration (deg K)
- Pa = actual pressure during calibration (mm Hg)
- Tstd = 298 deg K
- Pstd = 760 mm Hg
- For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

Calculations

m = sampler slope
 b = sampler intercept
 I = chart response
 Tav = daily average temperature
 Pav = daily average pressure

Average I (chart): 50.0 Average Flow Calculation m3/min 1.62021645 Average Flow Calculation in CFM 57.20984284 Sample Time (Hrs): 24.0 Total Flow/Volume in m3 2333.111687 Total Flow in CFM 82382.17369

TE-5170 Calibration Worksheet

Site Information						
Location: Canton Road Garden Building						
Location ID: AM2	Date: 6-Jun-18					
Sampler: TE-5170 MFC (0002)	Tech: Hendry Chan					

Site Cond	ditions
Barometric Pressure (in Hg): 29.50	Corrected Pressure (mm Hg): 749
Temperature (deg F): 68	Temperature (deg K): 293
Average Press. (in Hg): 29.65	Corrected Average (mm Hg): 753
Average Temp. (deg F): 68	Average Temp. (deg K): 293

Calibration Orifice						
Make: Tisch	Qstd Slope: 1.67739					
Model: TE-5028A	Qstd Intercept: -0.03083					
Serial#: 2137	Date Certified: 1-May-18					

Calibration Information										
Plate or H2O Qstd I IC										
Test #	(in)	(m3/min)	(chart)	(corrected)	Linear Regression					
1	2.40	0.943	22.0	22.03	Slope: 51.1070					
2	3.80	1.182	31.0	31.04	Intercept: -27.7123					
3	5.00	1.353	40.0	40.05	Corr. Coeff: 0.9952					
4	6.20	1.505	50.0	50.07						
5	7.80	1.686	59.0	59.08	# of Observations: 5					

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

- IC = corrected chart response
- I = actual chart response
- m = calibrator Qstd slope
- b = calibrator Qstd intercept
- Ta = actual temperature during calibration (deg K)
- Pa = actual pressure during calibration (mm Hg)
- Tstd = 298 deg K
- Pstd = 760 mm Hg
- For subsequent calculation of sampler flow:
- 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

Calculations

m = sampler slope
 b = sampler intercept
 I = chart response
 Tav = daily average temperature
 Pav = daily average pressure

Average I (chart): 50.0 Average Flow Calculation m3/min 1.52441014 Average Flow Calculation in CFM 53.82692204 Sample Time (Hrs): 24.0 Total Flow/Volume in m3 2195.150601 Total Flow in CFM 77510.76774

TE-5170 Calibration Worksheet

a .	TC	
N1te	Intor	mation
onu	mon	manon

Location:	Nga	Cheu	ing	Road	Portion	Ι	
Location ID:	AM3-	в					
Sampler.	TE-5	5170	MFC	: (00	03)		

Date: 6-Jun-18 Tech: Hendry Chan

	Site Conditions
Barometric Pressure (in Hg): 29.50	Corrected Pressure (mm Hg): 749
Temperature (deg F): 68	Temperature (deg K): 293
Average Press. (in Hg): 29.65	Corrected Average (mm Hg): 753
Average Temp. (deg F): 68	Average Temp. (deg K): 293

Calibration Orifice						
Make: Tisch	Qstd Slope: 1.67739					
Model: TE-5028A	Qstd Intercept: -0.03083					
Serial#: 2137	Date Certified: 1-May-18					

Calibration Information										
Plate or H2O Qstd I IC										
Test #	(in)	(m3/min)	(chart)	(corrected)	Linear Regression					
1	2.40	0.943	20.0	20.03	Slope: 48.2187					
2	3.20	1.086	30.0	30.04	Intercept: -24.7674					
3	5.00	1.353	38.0	38.05	Corr. Coeff: 0.9912					
4	6.40	1.529	48.0	48.07						
5	7.80	1.686	58.0	58.08	# of Observations: 5					

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

- IC = corrected chart response
- I = actual chart response
- m = calibrator Qstd slope
- b = calibrator Qstd intercept
- Ta = actual temperature during calibration (deg K)
- Pa = actual pressure during calibration (mm Hg)
- Tstd = 298 deg K
- Pstd = 760 mm Hg
- For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

Calculations

m = sampler slope
 b = sampler intercept
 I = chart response
 Tav = daily average temperature
 Pav = daily average pressure

Average I (chart): 50.0 Average Flow Calculation m3/min 1.554647082 Average Flow Calculation in CFM 54.89458848 Sample Time (Hrs): 24.0 Total Flow/Volume in m3 2238.691799 Total Flow in CFM 79048.20741

CERTIFICATE OF CALIBRATION

Certificate No.:	17CA1206 02-01		Page	1	of	2
Item tested						
Description: Manufacturer: Type/Model No.: Serial/Equipment No.: Adaptors used:	Sound Level Meter SVANTEK, Poland 971 56272 -		Microphone ACO, Japan 7052E 65172			
Item submitted by						
Customer Name: Address of Customer: Request No.: Date of receipt:	Environmental Pio Flat A, 19/F, Chaiw - 06-Dec-2017		 ee Chung Street,	Chai V	Van, Hon	g Kong
Date of test:	11-Dec-2017					
Reference equipment	used in the calibr	ration				
Description: Multi function sound calibrator Signal generator Signal generator	Model: B&K 4226 DS 360 DS 360	Serial No. 2288444 33873 61227	Expiry Date: 08-Sep-2018 25-Apr-2018 01-Apr-2018		Traceal CIGISME CEPREI CEPREI	EC
Ambient conditions						
Temperature: Relative humidity: Air pressure:	21 ± 1 °C 50 ± 10 % 1000 ± 5 hPa					

Test specifications

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Fen Jun

11-Dec-2017 Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

Constant Solls & Materials Engineering Co., Ltd

Approved Signatory:

Form No CARP152-1/Issue 1/Rev C/01/02/2007

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 028 - CAL) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

综合試驗 有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

2

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

```
17CA1206 02-01
```

Page 2 of

1, Electrical Tests

The electrical tests were perfomed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	A	Pass	0.3	
	C	Pass	0.8	2.1
	Lin	Pass	1.6	2.2
Linearity range for Leq	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz Weighting A at 8000 Hz	Pass Pass	0.3 0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

Soils & Materials Engineering Co . Ltd

Form No CARP152-2/Issue 1/Rev C/01/02/2007

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 028 - CAL) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

ISO9001 certified

FACTORY CALIBRATION DATA OF THE SVAN 971 No. 61421

with preamplifier SVANTEK type SV18 No. 64658 and with microphone ACO type 7052E No. 67606

1. CALIBRATION* (acoustical)

LEVEL METER function; Range: Low; Reference frequency: 1000Hz; Sound Pressure Level: 113.93 dB.

Characteristic	Correct value [dB]	Indication [dB]	Error [dB]
Z	113.93	113.79	-0.14
Α	113.93	113,79	-0.14
С	113.93	113.79	-0.14

Calibration measured with the microphone ACO type 7052E No. 67606. Calibration factor: 0.77 dB.

2. LINEARITY TEST (electrical)

LEVEL METER function; Range: Low; Characteristic: A; f sin= 31.5 Hz

Error [dB] 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0	Nominal result LEQ [dB]	24.0	25.0	26.0	28.0	30.0	40.0	60.0	83.0
	Error (dB)	0.1	0.1	0.1	01	0.0	0.0	0.0	0.0

LEVEL METER function; Range: Low; Characteristic: A; f sin= 1000 Hz

Nominal result LEQ [dB]	24.0	25.0	26.0	28.0	30.0	40.0	60,0	80.0	100.0	123.0
Error [dB]	0.0	0.1	0.1	0.0	-0.0	-0.0	-0.0	0.0	0.0	0.0
						0.0	0.0	0.0	0.0	-0.0

LEVEL METER function; Range: Low; Characteristic: A; f sin= 8000 Hz

Nominal result LEQ [dB]	24.0	25.0	26.0	28.0	30.0	40.0	60.0	80.0	100.0	122.0
Error (dB)	0.1	0.1	0.0	0.0	0.0	-0.0	-0.0	00.0	-0.0	
				1 0.0	0.0	-0.0	-0.0	-0.0	-0.0	-0.0

LEVEL METER function; Range: High; Characteristic: A; f sin= 31.5 Hz

Maria LEEDO CIDA	1	1		-				
Nominal result LEQ [dB]	34.0	35.0	36.0	38.0	40.0	60.0	80.0	070
Error (dB)	0.0	0.0	0.0		1010	00.0	00.0	97.0
	0.0	0.0	0.0	-0.0	0.0	0.0	-0.0	0.0

LEVEL METER function; Range: High; Characteristic: A; f sin= 1000 Hz

Naminal ALEO (10)	1	1	T				and the second second				
Nominal result LEQ [dB]	34.0	35.0	36.0	38.0	40.0	60.0	80.0	100.0	120.0	1 1270	
Error [dB]	0.0	0.0	0.0				00.0	100.0	120.0	137.0	
[Litter [ub]	0.0	-0.0	0.0	-0.0	-0.0	-00	-0.0	0.0-	-0.0	0.0	

LEVEL METER function; Range: High; Characteristic: A; f sin= 8000 Hz

Nominal result LEQ [dB]	34.0	35.0	36.0	38.0	40.0	60.0	80.0	100.0	120.0	1260
Error [dB]	0.0	0.0	0.0	0.0	-0.0	-0.0	0.0	100.0		136.0
		0.0	0.0	0.0	-0.0	-0.0	0.0	0.0	-0.0	-0.0

1/3 OCTAVE (1kHz); Range: Low; f sin= 1000 Hz

Nominal result [dB]	25.0	30.0	40.0	60.0	80.0	100.0	120.0	122.0
Error [dB]	0.1	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0

3. TONE BURST RESPONSE

LEVEL METER function; Characteristic: A; f_{sin} = 4000 Hz; Burst duration: 2s

Range: Low; Steady level nominal result = 120dB

Result	Detector	Duration [ms]	1000	500	200	100	50	20	10	5	2	1	0.5	0.05
	F	Indication [dB]	120.0	119.9	119.0	117.4	115.1	111.6	108.8	105.9	4	1	0.5	0.25
MAX	Fast	Error (dB)	0.0	0.0	0.0	0.0	-0.0	-0.0	-		101.9	98.9	95.9	92.8
MAX		Indication [dB]	117.9	115.8	112.4	109.6	106.7		-0.1	0.0	-0.0	-0.0	-0.1	-0.1
Slow	Error (dB)	-0.0	-0.0				102.8	99.8	96.8	92.8	-		-	
		Indication [dB]			-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1		-	-
SEL	-		120.0	116.9	113.0	110.0	106.9	103.0	99.9	96.9	92.9	89.9	86.8	83.8
		Error [dB]	0.0	-0.0	0.0	0.0	-0.0	0.0	-0.0	-0.0	-0.0	-0.0	-0.1	-0.1

*** SVAN 971 No 61421 page 1 ***

Range: Low; Steady level nominal result = 60dB

Result	Detector	Duration [ms]	1000	500	200	100	50	20	10	5	2	1	0.5
	-	Indication [dB]	60.0	59.9	59.0	57.4	55.1	51.6	48.8	45.9	41.9	38.9	35.9
000000	Fast	Error [dB]	0.0	0.0	0.0	0.0	-0.0	-0.0	-0.1	0.0	-0.0	-0.0	-0.1
MAX		Indication [dB]	57.9	55.8	52.4	49.6	46.7	42.8	39.8	36.8	32.8	-	-
	Slow	Error [dB]	-0.1	-0.0	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1		-
- 1		Indication [dB]	60.0	56.9	53.0	50.0	46.9	43.0	40.0	36.9	33.0	30.0	27.0
SEL	-	Error [dB]	0.0	-0.0	0.0	0.0	-0.0	0.0	0.0	-0.0	0.0	0.0	0.0

Range: Low; Steady level nominal result = 35dB

Result	Detector	Duration [ms]	1000	500	200	
MAX		Indication [dB]	35.0	34.9	34.0	
	Fast	Error [dB]	0.0	0.0	0.0	
	Slow	Indication [dB]	32.9	30.9	27.5	
		Error [dB]	-0.0	-0.0	-0.1	
			Indication [dB]	35.0	32.0	28.1
	-	Error [dB]	0.0	0.0	0.1	

Range: High; Steady level nominal result = 134dB

Result	Detector	Duration [ms]	1000	500	200	100	50	20	10	5	2	1 -	0.5	0.25
	1.00	Indication [dB]	133.9	133.9	133.0	131.3	129.1	125.6	122.8	119.9	115.9	112.9	109.8	106.8
	Fast	Error [dB]	-0.0	0.0	0.0	0.0	-0.0	-0.0	-0.0	0.0	-0.0	-0.0	-0.1	-0.1
MAX		Indication [dB]	131.9	129.8	126.4	123.6	120.7	116.8	113.8	110.8	106.8		-	-
	Slow	Error [dB]	-0.1	-0.0	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1		-	-
		Indication [dB]	133.9	130.9	127.0	123.9	120.9	116.9	113.9	110.9	106.9	103.9	100.8	97.8
SEL	-	Error [dB]	0.0	-0.0	0.0	0.0	-0.0	0.0	-0.0	-0.0	-0.0	-0.1	-0.1	-0.1

Range: High: Steady level nominal result = 54dB

Result	Detector	Duration [ms]	1000	500	200	100	50
MAX Fast Slow	Indication [dB]	53.9	53.9	53.0	51.4	49.1	
	Fast	Error [dB]	-0.0	0.0	0.0	0.0	-0.0
	Slow	Indication [dB]	51.9	49.8	46.5	43.6	40.8
		Error [dB]	-0.1	-0.0	-0.1	-0.1	-0.1
	-	Indication [dB]	53.9	50.9	47.0	44.0	41.0
		Error [dB]	-0.0	-0.0	0.0	0.0	0.0

Range: High; Steady level nominal result = 45dB

Result	Detector	Duration [ms]	1000	500	200
MAX	-	Indication [dB]	45.0	44.9	44.0
	Fast	Error [dB]	0.0	0.0	0.0
	Slow	Indication [dB]	42.9	40.8	37.4
		Error [dB]	-0.1	-0.0	-0.1
		Indication [dB]	45.0	41.9	38.0
	-	Error [dB]	0.0	-0.0	0.0

4. FREQUENCY RESPONSE^{*} (electrical)

0.1

1991

LEVEL METER function; Characteristic: Z; Range: Low; Input signal =120 dB;

Calculated Filter Response

Measured Filter Response with Preamplifier SV18 (f-frequency, L-level)
 f[Hz]
 L [dB]
 f[Hz]
 L [dB]
 f[Hz]
 L [dB]

 10
 -0.1
 63
 0.0
 4000
 0.0

 12.5
 0.0
 125
 0.6
 8000
 0.0

0.0

0.0 0.0 2000 0.0 All frequencies are nominal center values for the 1/3 octave bands

0.0 16000 0.0

0.0 20000 0.0

0.3-		111111	100 1 [Hz]	1000	10000	100000
0.2-						
01-						
	1					
0.0-	C					

5. INTERNAL NOISE LEVEL (electrical - compensated)

LEVEL METER function; R:	ange: Low; (Back-light	- off) ; Calibratio	n factor: 0dB
Characteristic	Z	A	C
Level [dB]	≤20	≤12	≤12

* measured with preamplifier SVANTEK type SV18 No. 64658.

*** SVAN 971 No. 61421 page 2 ***

6. INTERNAL NOISE LEVEL (acoustical - compensated)

LEVEL METER fu	nction; Characteristic:	A; (Backlight - off)
----------------	-------------------------	----------------------

Range	Low	High
Indication [dB]	≤15	20.7

Noise measured in special chamber, with reference microphone G.R.A.S type 40AN No. 73421

ENVIRONMENTAL CONDITIONS

Temperature	Relative humidity	Ambient pressure
23 °C	36%	1021 hPa

TEST EQUIPMENT

Item	Manufacturer	Model	Serial no.	Description
1.	SVANTEK	SVAN 401	87	Signal generator
2.	SVANTEK	SVAN 912A	6120	Sound & Vibration Analyser
3.	KEITHLEY	2000	0910165	Digital multimeter
4.	SVANTEK	SV33	48878	Acoustic calibrator
5.	SVANTEK	ST02	-	Microphone equivalent electrical impedance (18pF)

CONFORMITY & TEST DECLARATION

I. Herewith Svantek company declares that this instrument has been calibrated and tested in compliance with the internal ISO9001 procedures and meets all specification given in the Manual(s) or respectively surpass them.

2. The acoustic calibration was performed using the Sound Calibrator and is traceable to the GUM (Central Office of Measures) reference standard sound level calibrator type 4231 No 2292773.

3. The vibrational calibration was performed using the Back-to-Back Comparison method and is traceable to the GUM (Central Office of Measures) reference standard - accelerometer type 8305 No 1435233.

4. The information appearing on this sheet has been compiled specifically for this instrument. This form is produced with advanced equipment & procedures which permit comprehensive quality assurance verification of all data supplied herein.

5. This calibration sheet shall not be reproduced except in full, without written permission of the SVANTEK Ltd.

Calibration specialist: Krzysztof Czachor ...

Test date: 2017-09-28

Certificate of Calibration 校正證書

Certificate No.: C176441 證書編號

ITEM TESTED / 送檢項目 Description / 儀器名稱 : Manufacturer / 製造商 : Model No. / 型號 : Serial No. / 編號 : Supplied By / 委託者 :	(Job No. / 序引編號: IC17-2589) Sound Calibrator Soundtek ST-120 150305805 Environmental Pioneers & Solutions Li Flat A, 8/F., Chai Wan Industrial Centre 20 Lee Chung Street, Chai Wan, Hong J	
TEST CONDITIONS / 測記 Temperature / 溫度 : (2: Line Voltage / 電壓 :	$3 \pm 2)^{\circ}C$	Relative Humidity / 相對濕度 : (55 ± 20)%
TEST SPECIFICATIONS	/ 測試規範	

Calibration

DATE OF TEST / 測試日期 : 19 November 2017

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany

1

- Fluke Everett Service Center, USA

Tested By 測試

H T Wong

Technical Officer

K C Lee Engineer

Certified By 核證

Date of Issue 簽發日期 :

22 November 2017

The test equiptient used for entitration are fraceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本設力所並長正用之前試着材均可適等全國際標準。局部後即本許許認先進本實驗所書面批准。

Sun Creation Engineering Limited Californian & Testing Laboratory c/o 4-F, Tsing Shan Wan Exchange Building 1 Hing On Lane. Tuen Mun, New Territories, Hong Kong 种创工程有限公司 - 校正及檢測實驗所 c/o 香港新界屯門與安里一號青山灣機稷四樓 Tel/電話: 2927-2606 Fax 傳真: 2744-8986 Famili 電動 callability uncreation.com Website 制始 www.suncreation.com

Certificate of Calibration 校正證書

Certificate No. : C176441 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

<u>Equipment ID</u> CL130	Description Universal Counter	Certificate No. C173864
CL281	Multifunction Acoustic Calibrator	PA160023
TST150A	Measuring Amplifier	C161175

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy
- 5.1.1 Before Adjustment

UUT	Measured Value	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)
94 dB, 1 kHz	95.0	± 0.2
114 dB, 1 kHz	114.8	± 0.3

5.1.2 After Adjustment

UUT	Measured Value	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)
94 dB, 1 kHz	94.1	± 0.2
114 dB, 1 kHz	114.6	± 0.3

5.2 Frequency Accuracy

5.2.1 Before Adjustment

UUT Nominal Value	Measured Value	Uncertainty of Measured Value
(kHz)	(kHz)	(Hz)
1	1.000	± 1

5.2.2 After Adjustment

-			
	UUT Nominal Value	Measured Value	Uncertainty of Measured Value
	(kHz)	(kHz)	(Hz)
	1	1.000	± 1

The test equipment used for estimation are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior

本治出所根按正用之測試器材均可測原至國際標準。局部幾印本證書出先進本實驗所畫面批准。

E-mail 理解 callable suncreation cont Website/網址: www.suncreation.com

Sun Creation Engineering Limited - Calibration & Testing Laboratory

out of the main shan was Exchange Bailding, I Hing On Lane, Tuen Man, New Territories, Hong Kong 瞬間工程有限公司一校正及機測實驗所 co 香港近常化世門與安里一號消損調機機四機 Tel:電話 2927 2000 Fax 傳貨, 2744 8986 E-mail 電郵 callabor supercation cont Website/

Certificate of Calibration 校正證書

Certificate No. : C176441 證書編號

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test comment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所最校正用之總試器材均可副源至國際標準。局部獲印本證書需先幾本實驗所書面批准。

CERTIFICATE OF CALIBRATION

Certificate No.:	17CA1206 02-02	Page:	1	of	2
Item tested					
Description: Manufacturer: Type/Model No.: Serial/Equipment No.: Adaptors used:	Acoustical Calibrator (Type 1) SVANTEK SV30A 7908 -				
Item submitted by					
Curstomer: Address of Customer: Request No.: Date of receipt:	Environmental Pioneers & Solutions Limited Flat A, 19/F, Chaiwan Industrial Centre, 20 Lee Chu - 06-Dec-2017	ing Street, C	Chai Wa	an, Hong	g Kong

Date of test:

09-Dec-2017

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2341427	11-Apr-2018	SCL
Preamplifier	B&K 2673	2743150	05-May-2018	CEPREI
Measuring amplifier	B&K 2610	2346941	03-May-2018	CEPREI
Signal generator	DS 360	61227	01-Apr-2018	CEPREI
Digital multi-meter	34401A	US36087050	25-Apr-2018	CEPREI
Audio analyzer	8903B	GB41300350	21-Apr-2018	CEPREI
Universal counter	53132A	MY40003662	22-Apr-2018	CEPREI

Ambient conditions

Temperature:	21 ± 1 °C
Relative humidity:	50 ± 10 %
Air pressure:	1000 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Approved Signatory:

Date: 11-Dec-2017

Comments: The results reported in this criticate refer to the conditon of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Soils & Materials Engineering Co . Ltd

Form No CARP156-1 Issue 1/Rev. D/01/03/2007

Company Chop:

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 028 - CAL) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

徐介 民 版 有 限 公 司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong.

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Website: www.cigismec.com

(Continuation Page)

Certificate No.:

17CA1206 02-02

Page: 2 of

of 2

1, Measured Sound Pressure Level

E-mail: smec@cigismec.com

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

			(Output level in dB re 20 µPa)
Frequency Shown	Output Sound Pressure Level Setting	Measured Output Sound Pressure Level	Estimated Expanded Uncertainty
Hz	dB	dB	dB
1000	94.00	94.12	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz	STF = 0.017dB

Estimated expanded uncertainty

3, Actual Output Frequency

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

0.005 dB

At 1000 Hz	Actual Frequency = 1000.0Hz	
Estimated expanded uncertainty	0.1 Hz	Coverage factor k = 2.2

4, Total Noise and Distortion

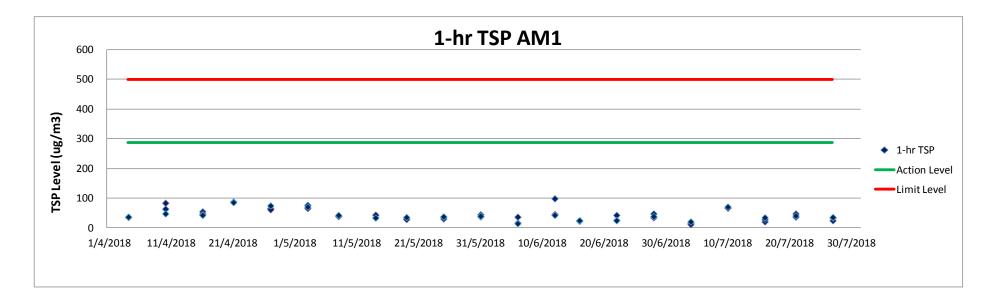
For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz	TND = 0.4 %
Estimated expanded uncertainty	0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

/		- End -	/
Calibrated by:		Checked by:	h
Date:	Fung Chi Yip 09-Dec-2017	Date:	Lam Tze Wai 11-Dec-2017
Date.	ps-Dec-2017V	Date	TI-Dec-2017

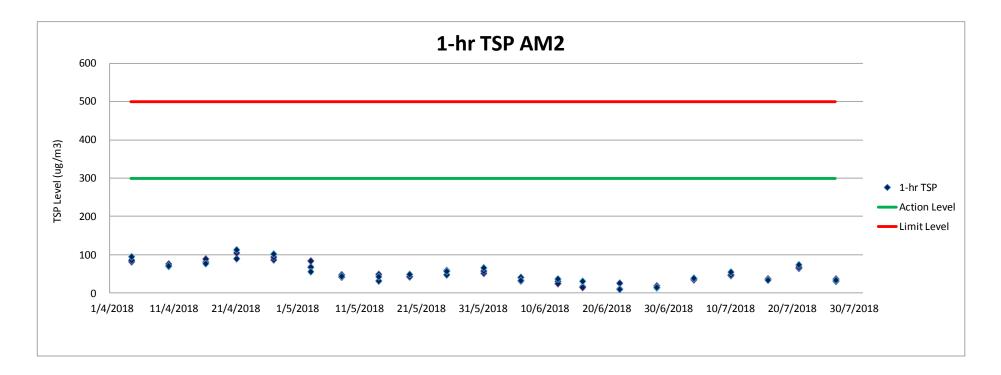
The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.


Costs & Materials Engineering Co. Ltd
 Form No CARP156-2/Iscue 1/Rev C/01/05/2005
Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 028 - CAL) under the Hong Kong Laboratory Accreditation
Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate
were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be
traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

Appendix E: TSP Monitoring Data

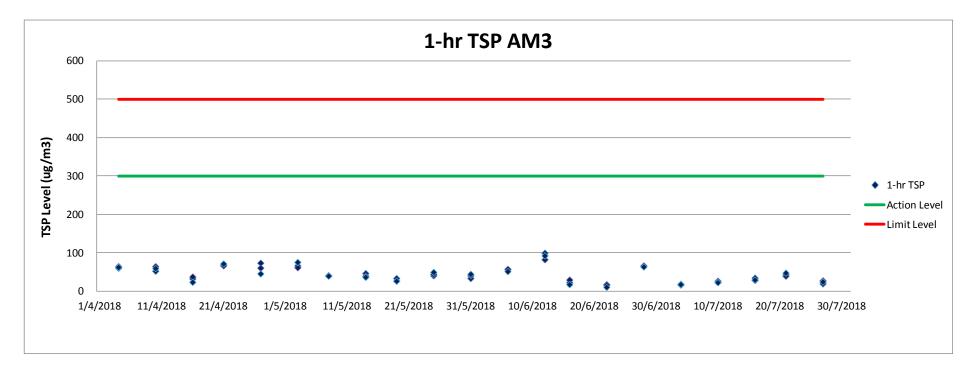
1-hr TSP Monitoring Result for AM1

Date Weather	Temperature (°C)	Wind	Wind Speed	Sampling Time			Reading (µg/m ³)				
	*	Direction *	(m/s) *	1	2	3	1	2	3	Average	
4/7/2018	Sunny	26.0 - 28.4	SE	<5m/s	14:11	15:12	16:13	16	12	21	16
10/7/2018	Sunny	25.2 - 30.1	Е	<5m/s	14:00	15:01	16:02	70	67	71	69
16/7/2018	Sunny	26.9 - 31.5	NE	<5m/s	13:45	14:46	15:47	21	29	35	28
21/7/2018	Sunny	25.4 - 30.4	SW	<5m/s	13:50	14:51	15:52	37	48	41	42
27/7/2018	Sunny	27.7 - 32.6	SW	<5m/s	13:30	14:31	15:32	25	34	36	32


*Remark: Data of temperature, wind direction and wind speed was extracted from King's Park Meteorological Station of HKO

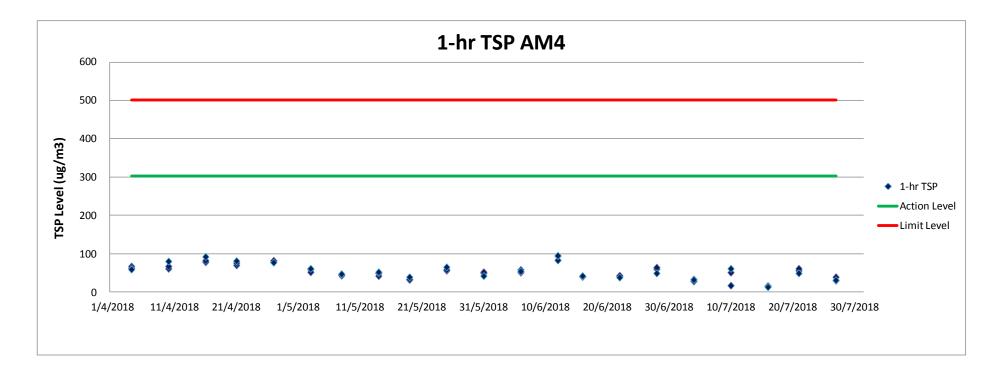
1-hr TSP Monitoring Result for AM2

Date Weather	Temperature (°C)	Wind	Wind Speed	Sampling Time			Reading (µg/m ³)				
	*	Direction *	(m/s) *	1	2	3	1	2	3	Average	
4/7/2018	Sunny	26.0 - 28.4	SE	<5m/s	9:00	10:01	11:02	37	35	39	37
10/7/2018	Sunny	25.2 - 30.1	Е	<5m/s	9:00	10:01	11:02	46	48	55	50
16/7/2018	Sunny	26.9 - 31.5	NE	<5m/s	9:00	10:01	11:02	37	37	34	36
21/7/2018	Sunny	25.4 - 30.4	SW	<5m/s	9:00	10:01	11:02	65	68	74	69
27/7/2018	Sunny	27.7 - 32.6	SW	<5m/s	9:00	10:01	11:02	31	37	34	34


*Remark: Data of temperature, wind direction and wind speed was extracted from King's Park Meteorological Station of HKO

1-hr TSP Monitoring Result for AM3

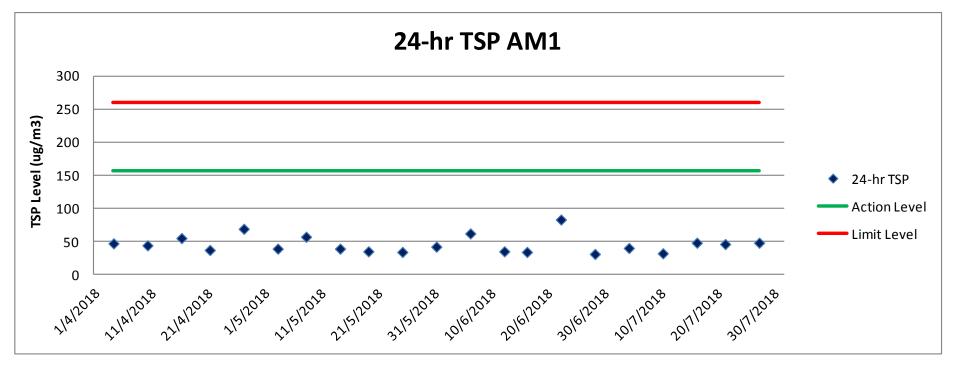
Data	Weather	Temperature (°C)	perature ($^{\circ}$ C) Wind		Sa	mpling Tin	ne	Reading $(\mu g/m^3)$				
Date	weather	*	Direction *	(m/s) *	1	2	3	1	2	3	Average	
4/7/2018	Sunny	26.0 - 28.4	SE	<5m/s	13:57	14:58	15:59	19	17	18	18	
10/7/2018	Sunny	25.2 - 30.1	Е	<5m/s	14:45	15:46	16:47	27	24	23	25	
16/7/2018	Sunny	26.9 - 31.5	NE	<5m/s	14:00	15:01	16:02	35	29	30	31	
21/7/2018	Sunny	25.4 - 30.4	SW	<5m/s	14:05	15:06	16:07	44	40	48	44	
27/7/2018	Sunny	27.7 - 32.6	SW	<5m/s	13:45	14:46	15:47	20	28	25	24	


*Remark: Data of temperature, wind direction and wind speed was extracted from King's Park Meteorological Station of HKO

1-hr TSP Monitoring Result for AM4

Date Weather T		Temperature (°C)	Wind	Wind Speed	Sa	ampling Tin	ne	Reading $(\mu g/m^3)$				
		*	Direction *	(m/s) *	1	2	3	1	2	3	Average	
4/7/2018	Sunny	26.0 - 28.4	SE	<5m/s	9:30	10:31	11:32	28	33	32	31	
10/7/2018	Sunny	25.2 - 30.1	Е	<5m/s	9:30	10:31	11:32	17	51	61	43	
16/7/2018	Sunny	26.9 - 31.5	NE	<5m/s	9:30	10:31	11:32	16	15	13	15	
21/7/2018	Sunny	25.4 - 30.4	SW	<5m/s	9:30	10:31	11:32	56	61	49	55	
27/7/2018	Sunny	27.7 - 32.6	SW	<5m/s	9:30	10:31	11:32	30	39	31	33	

*Remark: Data of temperature, wind direction and wind speed was extracted from King's Park Meteorological Station of HKO

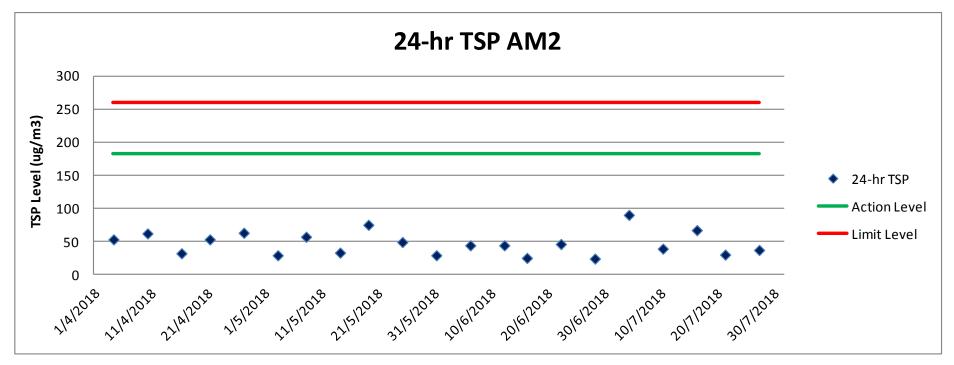


24-hr TSP Monitoring Result for AM1

		Wind	Wind		W	t. of paper	· (g)		Total	TSP
Sampling ID & Paper No.	Temperature (°C) $*^1$	Direction *1		Sampling Date	Initial Wt.	Final Wt.	Wt. of dust	Flow Rate (CFM)	Volume * ² (m ³)	Concentration (µg/m3)
AM10704 204521	26.0 - 28.4	SE	<5m/s	4/7/2018	2.5506	2.6436	0.0930	50.0	2333.11	40
AM10710 204522	25.2 - 30.1	Е	<5m/s	10/7/2018	2.6663	2.7404	0.0741	50.0	2333.11	32
AM10716 205421	26.9 - 31.5	NE	<5m/s	16/7/2018	2.6851	2.7962	0.1111	50.0	2333.11	48
AM10721 204532	25.4 - 30.4	SW	<5m/s	21/7/2018	2.6736	2.7810	0.1074	50.0	2333.11	46
AM10727 205423	27.7 - 32.6	SW	<5m/s	27/7/2018	2.6814	2.7927	0.1113	50.0	2333.11	48

*1 Remark: Data of temperature, wind direction and wind speed was extracted from King's Park Meteorological Station of HKO

*² Remark: Total volume of the 24 hrs sampling was calculated from the Calibration worksheet (refer to Appendix D)

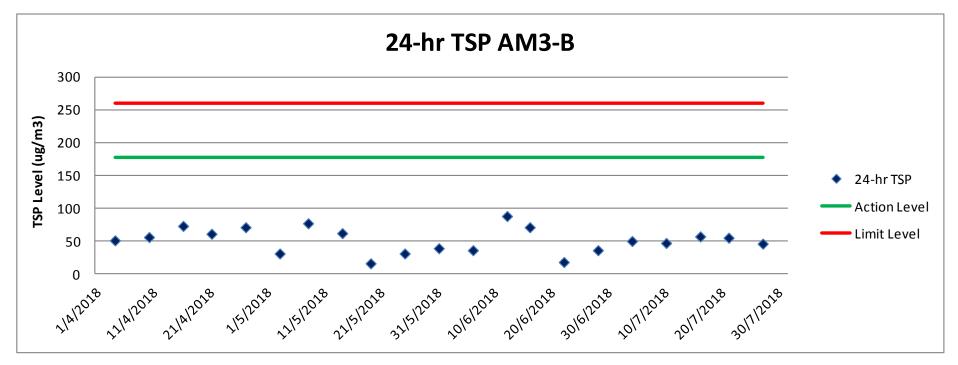


24-hr TSP Monitoring Result for AM2

		Wind	Wind		W	t. of paper	· (g)		Total	TSP
Sampling ID & Paper No.	Temperature (°C) $*^1$	Direction *1		Sampling Date	Initial Wt.	Final Wt.	Wt. of dust	Flow Rate (CFM)	Volume * ² (m ³)	Concentration (µg/m3)
AM20704 203378	26.0 - 28.4	SE	<5m/s	4/7/2018	2.8030	3.0009	0.1979	50.0	2195.15	90
AM20710 205436	25.2 - 30.1	Е	<5m/s	10/7/2018	2.6778	2.7640	0.0862	50.0	2195.15	39
AM20716 205417	26.9 - 31.5	NE	<5m/s	16/7/2018	2.6712	2.8178	0.1466	50.0	2195.15	67
AM20721 205403	25.4 - 30.4	SW	<5m/s	21/7/2018	2.6824	2.7490	0.0666	50.0	2195.15	30
AM20727 205441	27.7 - 32.6	SW	<5m/s	27/7/2018	2.6737	2.7548	0.0811	50.0	2195.15	37

*1 Remark: Data of temperature, wind direction and wind speed was extracted from King's Park Meteorological Station of HKO

*² Remark: Total volume of the 24 hrs sampling was calculated from the Calibration worksheet (refer to Appendix D)



24-hr TSP Monitoring Result for AM3-B

		Wind	Wind	Sampling Date	W	t. of paper	· (g)		Total	TSP
Sampling ID & Paper No.	Temperature (°C) $*^1$	Direction *1			Initial Wt.	Final Wt.	Wt. of dust	Flow Rate (CFM)	Volume * ² (m ³)	Concentration (µg/m3)
AM3-B0704 204527	26.0 - 28.4	SE	<5m/s	4/7/2018	2.5578	2.6707	0.1129	50.0	2238.69	50
AM3-B0710 205420	25.2 - 30.1	E	<5m/s	10/7/2018	2.6679	2.7735	0.1056	50.0	2238.69	47
AM3-B0716 205419	26.9 - 31.5	NE	<5m/s	16/7/2018	2.6752	2.8027	0.1275	50.0	2238.69	57
AM3-B0721 204533	25.4 - 30.4	SW	<5m/s	21/7/2018	2.6778	2.8010	0.1232	50.0	2238.69	55
AM3-B0727 205440	27.7 - 32.6	SW	<5m/s	27/7/2018	2.6608	2.7629	0.1021	50.0	2238.69	46

*1 Remark: Data of temperature, wind direction and wind speed was extracted from King's Park Meteorological Station of HKO

*² Remark: Total volume of the 24 hrs sampling was calculated from the Calibration worksheet (refer to Appendix D)

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

	CERTIFICATE OF ANALYSIS											
Client	: ENVIRONMENTAL PIONEERS & SOLUTION LTD	Laboratory	: ALS Technichem (HK) Pty Ltd	Page	: 1 of 3							
Contact	: MR ANDY TSANG	Contact	: Richard Fung	Work Order	: HK1841188							
Address	: FLAT A, G/F., HOP SHI FTY BUILDING, 22-24 CHEUNG LEE STREET, CHAI WAN HONG KONG	Address	 11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong 									
E-mail	⊹ kytsang@fsenv.com.hk	E-mail	: richard.fung@alsglobal.com									
Telephone	: +852 2185 0159	Telephone	: +852 2610 1044									
Facsimile	: +852 2258 0568	Facsimile	: +852 2610 2021									
Project	: PROPOSED ROAD IMPROVEMENT WORKS IN WE	EST KOWLOON RECLAM	ATION DEVELOPMENT - PHASE 1	Date Samples Received	: 27-Jul-2018							
Order number	:	Quote number	: HKE/3000/2017	Issue Date	: 30-Jul-2018							
C-O-C number	:			No. of samples received	: 5							
Site	:			No. of samples analysed	: 5							

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 27-Jul-2018 to 28-Jul-2018. Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK1841188

Sample(s) were received in ambient condition. Sample(s) analysed and reported on an as received basis.

Analytical Results

-								
Sub-Matrix: FILTER (TSP/RSP)		Clie	ent sample ID	AM10704	AM10710	AM10716	AM10721	AM10727
				204521	205422	205421	205432	205423
Client sampling date / time			ng date / time	04-Jul-2018	10-Jul-2018	16-Jul-2018	21-Jul-2018	27-Jul-2018
Compound	CAS Number	LOR	Unit	HK1841188-001	HK1841188-002	HK1841188-003	HK1841188-004	HK1841188-005
EA/ED: Physical and Aggregate Properties								
HK-TSP: Total Suspended Particulates		0.0010	g	0.0930	0.0741	0.1111	0.1074	0.1113
HK-TSP: Initial Weight		0.0010	g	2.5506	2.6663	2.6851	2.6736	2.6814
HK-TSP: Final Weight		0.0010	g	2.6436	2.7404	2.7962	2.7810	2.7927

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

	CERTIFICATE OF ANALYSIS											
Client	: ENVIRONMENTAL PIONEERS & SOLUTION LTD	Laboratory	: ALS Technichem (HK) Pty Ltd	Page	: 1 of 3							
Contact	: MR ANDY TSANG	Contact	: Richard Fung	Work Order	: HK1841195							
Address	EFLAT A, 8/F, CHAI WAN INDUSTRIAL CENTRE, 20 LEE CHUNG STREET, CHAI WAN HONG KONG	Address	 11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong 									
E-mail	⊹ kytsang@fsenv.com.hk	E-mail	: richard.fung@alsglobal.com									
Telephone	: +852 2185 0159	Telephone	: +852 2610 1044									
Facsimile	: +852 2258 0568	Facsimile	: +852 2610 2021									
Project	: PROPOSED ROAD IMPROVEMENT WORKS IN WEST H	OWLOON RECLAM	ATION DEVELOPMENT - PHASE 1	Date Samples Received	: 27-Jul-2018							
Order number	:	Quote number	: HKE/3000/2017	Issue Date	: 30-Jul-2018							
C-O-C number	:			No. of samples received	: 5							
Site	:			No. of samples analysed	: 5							

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

ALS Technichem (HK) Pty Ltd Partof the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 27-Jul-2018 to 28-Jul-2018. Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK1841195

Sample(s) were received in ambient condition. Sample(s) analysed and reported on an as received basis.

Analytical Results

5								
Sub-Matrix: FILTER (TSP/RSP)		Clie	ent sample ID	AM20704	AM20710	AM20716	AM20721	AM20727
				203378	205436	205417	205403	205441
Client sampling date / time				04-Jul-2018	10-Jul-2018	16-Jul-2018	21-Jul-2018	27-Jul-2018
Compound	CAS Number	LOR	Unit	HK1841195-001	HK1841195-002	HK1841195-003	HK1841195-004	HK1841195-005
EA/ED: Physical and Aggregate Properties								
HK-TSP: Total Suspended Particulates		0.0010	g	0.1979	0.0862	0.1466	0.0666	0.0811
HK-TSP: Initial Weight		0.0010	g	2.8030	2.6778	2.6712	2.6824	2.6737
HK-TSP: Final Weight		0.0010	g	3.0009	2.7640	2.8178	2.7490	2.7548

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

	CERTIFICATE OF ANALYSIS											
Client	ENVIRONMENTAL PIONEERS & SOLUTION LTD	Laboratory	: ALS Technichem (HK) Pty Ltd	Page	: 1 of 3							
Contact	: MR ANDY TSANG	Contact	: Richard Fung	Work Order	: HK1840971							
Address	: FLAT A, 8/F, CHAI WAN INDUSTRIAL CENTRE, 20 LEE CHUNG STREET, CHAI WAN HONG KONG	Address	 11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong 									
E-mail	⊹ kytsang@fsenv.com.hk	E-mail	: richard.fung@alsglobal.com									
Telephone	: +852 2185 0159	Telephone	: +852 2610 1044									
Facsimile	: +852 2258 0568	Facsimile	: +852 2610 2021									
Project	: PROPOSED ROAD IMPROVEMENT WORKS IN \	WEST KOWLOON RECLAM	ATION DEVELOPMENT - PHASE 1	Date Samples Received	: 27-Jul-2018							
Order number	:	Quote number	: HKE/3000/2017	Issue Date	: 30-Jul-2018							
C-O-C number	:			No. of samples received	: 5							
Site	:			No. of samples analysed	: 5							

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

ALS Technichem (HK) Pty Ltd Partof the ALS Laboratory Group

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsglobal.com

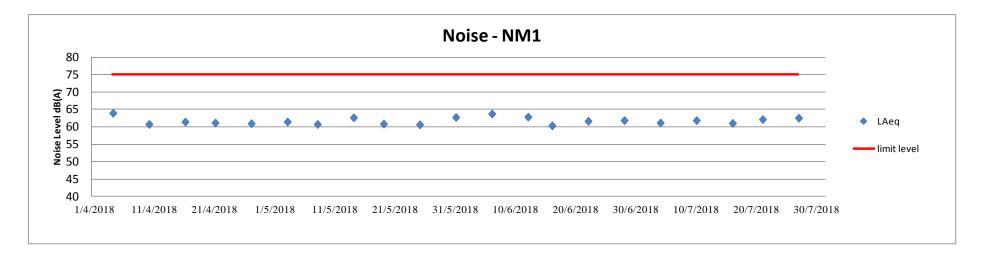
General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 27-Jul-2018 to 28-Jul-2018. Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

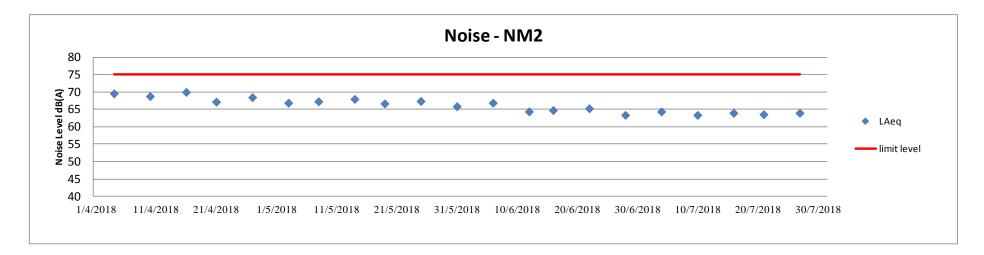
Specific Comments for Work Order: HK1840971

Sample(s) were received in ambient condition.

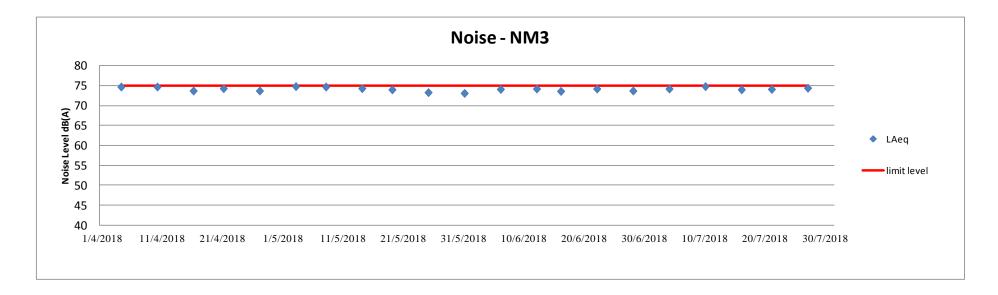
Sample(s) analysed and reported on an as received basis.



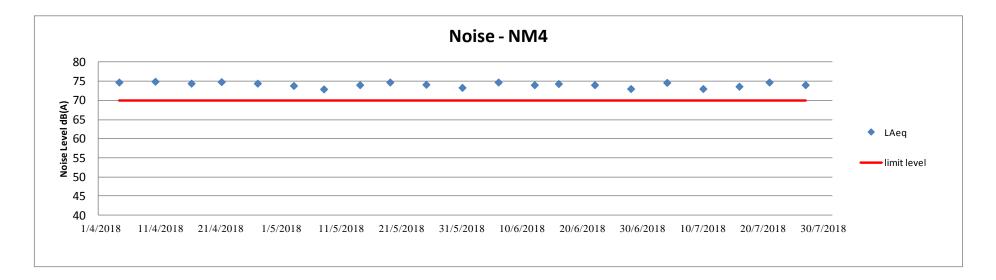
Analytical Results


-								
Sub-Matrix: FILTER (TSP/RSP)		Clie	ent sample ID	AM3-B0704	AM3-B0710	AM3-B0716	AM3-B0721	AM3-B0727
				204527	205420	205419	205433	205440
	Cli	ent samplir	ng date / time	04-Jul-2018	10-Jul-2018	16-Jul-2018	21-Jul-2018	27-Jul-2018
Compound	CAS Number	LOR	Unit HK1840971-001		HK1840971-002	HK1840971-003	HK1840971-004	HK1840971-005
EA/ED: Physical and Aggregate Properties								
HK-TSP: Total Suspended Particulates		0.0010	g	0.1129	0.1056	0.1275	0.1232	0.1021
HK-TSP: Initial Weight		0.0010	g	2.5578	2.6679	2.6752	2.6778	2.6608
HK-TSP: Final Weight		0.0010	g	2.6707	2.7735	2.8027	2.8010	2.7629

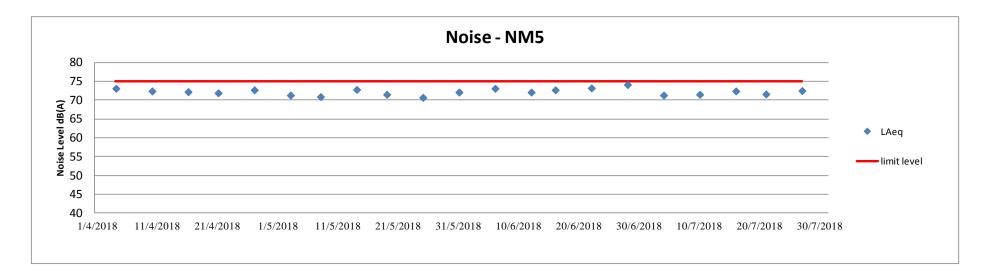
Appendix F1: Noise Monitoring Data


Location	NM1									
Date	4/7/2018	10/7/2018	16/7/2018	21/7/2018	27/7/2018					
Weather Condition	Sunny	Sunny	Sunny	Sunny	Sunny					
Start Time	14:47	15:36	11:00	11:00	11:00					
Measurement Period	30min	30min	30min	30min	30min					
Baseline Level			75.1							
L _{Aeq}	61.1	61.8	61.0	62.1	62.5					
L ₁₀	61.9	63.4	62.5	63.9	64.4					
L ₉₀	59.8	60.0	58.7	58.8	59.3					

Location	NM2									
Date	4/7/2018	10/7/2018	16/7/2018	21/7/2018	27/7/2018					
Weather Condition	Sunny	Sunny	Sunny	Sunny	Sunny					
Start Time	9:00	9:00	9:00	9:00	9:00					
Measurement Period	30min	30min	30min	30min	30min					
Baseline Level			66.5							
L _{Aeq}	64.3	63.3	63.9	63.5	63.9					
L ₁₀	65.8	64.7	65.8	65.4	65.8					
L ₉₀	61.1	60.0	60.3	60.8	60.3					



Location	NM3									
Date	4/7/2018	10/7/2018	16/7/2018	21/7/2018	27/7/2018					
Weather Condition	Sunny	Sunny	Sunny	Sunny	Sunny					
Start Time	14:09	14:55	11:30	13:20	13:50					
Measurement Period	30min	30min	30min	30min	30min					
Baseline Level			74.5							
L _{Aeq}	74.2	74.8	74.0	74.1	74.4					
L ₁₀	77.2	78.3	76.9	76.7	77.2					
L ₉₀	68.5	69.0	68.7	67.8	67.9					



Location			NM4			NM4 (Re-measurement) *				
Date	4/7/2018	10/7/2018	16/7/2018	21/7/2018	27/7/2018	4/7/2018	10/7/2018	16/7/2018	21/7/2018	27/7/2018
Weather Condition	Sunny	Sunny	Sunny	Sunny	Sunny	Sunny	Sunny	Sunny	Sunny	Sunny
Start Time	13:00	13:00	13:00	13:00	13:00	13:31	13:31	13:31	13:31	13:31
Measurement Period	30min	30min	30min	30min	30min	30min	30min	30min	30min	30min
Baseline Level			73.3			73.3				
L _{Aeq}	74.7	73.1	73.7	74.8	74.1	74.1	73.8	73.6	75.1	74.3
L ₁₀	76.8	75.6	76.3	77.1	76.9	75.9	75.4	76.8	77.5	76.2
L ₉₀	69.6	65.0	66.2	68.5	68.0	69.8	66.1	66.8	68.9	68.7

* Repeat noise measurement when exceedance is recorded. The result is used to confirm the findings and it would not be showed on the graph plot

Location	NM5									
Date	4/7/2018	10/7/2018	16/7/2018	21/7/2018	27/7/2018					
Weather Condition	Sunny	Sunny	Sunny	Sunny	Sunny					
Start Time	15:00	15:00	15:00	15:00	15:00					
Measurement Period	30min	30min	30min	30min	30min					
Baseline Level			71.8							
L _{Aeq}	71.3	71.5	72.4	71.6	72.5					
L ₁₀	74.8	74.3	74.7	74.5	74.7					
L ₉₀	68.8	66.4	68.5	67.1	68.2					

Appendix F2: School Schedule

	油蔴地天主教小學 (海泓道)
二零一七	至二零一八年度校曆表 (三月至八月)

_												-		及权盾衣 (二月主八月)
									1	S	2	S	3	1/3-6/3 J.1-6 第二段考(J.6星分試)
Ξ	牛岛	4	5	S	6	S	7	D	8	E	9	F	10	7/3-9/3 J.5教育營 7/3-16/3 全方位學習周
	廿五	11	12	A	13	В	14	С	15	D	16	E	17	
月	廿六	18	19	F	20	A	21		22	В	23	С	24	21/3教師發展日(2)
	#+	25	26	D	27	E	28	F	29		30		31	28/3四 自期祈禱聚會暨頒獎禮 29/3-8/4復活節假期 30/3耶稣受難節
		1	2		3		4		5		6		7	1/4復活主日 5/4 清明節
四	廿八	8	9	A	10	в	11	С	12	S	13		14	12/4 陸運會 13/4 陸運會翌日 14/4 成長見證日及J6升中座談會(2)
	廿九	15	16	D	17	E	18	F	19	A	20	в	21	
月	卅	22	23	С	24	D	25	E	26	F	27	A	28	
	#-	29	30	В										
					1		2	С	3	D	4	E	5	1/5勞動節 4/5 J.5升中座談會
五	卅二	6	7	F	8	A	9	В	10	С	11	D	12	9/5或10/5 J.6說話及視訊評估
-	卅三	13	14	E	15	F	16	S	17	S	18		19	16/5 50周年匯演絲排 17/5 50周年匯演 18/5 匯演翌日 假期
月	卅四	20	21	A	22		23	в	24	С	25	D	26	22/5佛诞
	卅五	27	28	E	29	F	30	S	31	S		Ĩ.		31/5-5/6 J.1-4 期终考(J.5呈分試/J.6畢業試)
											1	S	2	
六	卅六	3	4	S	5	S	6	Α	7	В	8	С	9	
	卅七	10	11	D	12	E	13	F	14	A	15	В	16	12/6及13/6J.6TSA紙筆評估15/6J.6畢業感恩祭
月	卅八	17	18		19	S	20	S	21	S	22	S	23	18/6端午節 21/6-22/6 畢業營 23/6 小一面見及聖保祿堂主保瞻禮
	卅九	24	25		26	S	27	S	28	S	29	S	30	25/6主保瞻禮假期 28/6 畢業禮採排 29/6 畢業禮暨晚宴
-	四十	1	2		3	S	4	S	5	S	6	S	1	2/7 香港特區成立紀念日翌日 6/7 散學祈禱聚會 7/7 J1新生家長會、編班試、J2-J6 插班試
t	四-	8	9	S	10	S	11	S	12	S	13	S	14	9/7 頒獎禮 10/7 升中派位 12/7-13/7 中學註冊
		15	16		17		18		19		20		21	16/7-31/8 暑假
月		22	23		24		25		26		27		28	
		29	30		31									
							1		2		3		4	16/7-31/8 暑假
л		5	6		7		8		9		10		11	
		12	13		14		15		16		17		18	
月		19	20		21		22		23		24		25	
		26	27		28		29		30		31			
八月		5 12 19	6 13 20		7 14 21		8 15 22		9 16 23		10 17 24		11 18	16/7-31/8 暑假

麗澤中學7月校曆表

Appendix G: Waste Management Record

Monthly Summary Waste Flow Table for <u>2016</u> (year)

	<u>Actual Qua</u>	antities of Ine	rt C&D Mate	rials Generate	ed Monthly	Actua	<u>ll Quantities o</u>	of Non-inert C	&D Wastes G	enerated Mor	<u>nthly</u>
Month	Total Quantity Generated	Hard Rocks & Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Mixed Waste Disposal at Sorting Facility	Metals	Paper / cardboard packaging	Plastics	Chemical Waste	Others (general refuse)
	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)
Jan											
Feb	521.76	0	0	0	521.76	0	0	0	0	0	38.34
Mar	1527.37	0	0	0	1527.37	0	0	0	0	0	188.63
Apr	2676.73	0	0	0	2676.73	0	0	0	0	0	87.72
May	2028.43	0	0	0	2028.43	0	0	0	0	0	47.78
Jun	2058.16	0	0	0	2058.16	0	0	0	0	0	81.13
Sub-total	8812.45	0	0	0	8812.45	0	0	0	0	0	443.6
Jul	5031.54	0	0	0	5031.54	0	0	0	0	0	17.12
Aug	1026.39	0	0	0	1026.39	0	0	0	0	0	52.44
Sep	1833.94	0	0	0	1833.94	0	0	0	0	0	7.14
Oct	785.58	0	0	0	785.58	0	0	0	0	0	16.77
Nov	832.23	0	0	0	832.23	0	0	0	0	0	48.09
Dec	2183.48	0	0	0	2183.48	0	0	0	0	0	19.96
Total	20505.61	0	0	0	20505.61	0	0	0	0	0	605.12

Monthly Summary Waste Flow Table for <u>2017</u> (year)

	<u>Actual Qua</u>	ntities of Iner	t C&D Mate	rials Generat	ed Monthly	<u>Actua</u>	l Quantities o	<u>f Non-inert C&</u>	&D Wastes (Generated Mo	<u>nthly</u>
Month	Total Quantity Generated	Hard Rocks & Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Mixed Waste Disposal at Sorting Facility	Metals	Paper / cardboard packaging	Plastics	Chemical Waste	Others (general refuse)
	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)
Jan	717.69	0	0	0	717.69	0	0	0	0	0	7.57
Feb	2721.53	0	0	0	2721.53	0	0	0	0	0	13.08
Mar	2504.26	0	0	0	2504.26	0	0	0	0	0	5.55
Apr	2006.4	0	0	0	2006.4	0	0	0	0	0	10.43
May	1083.4	0	0	0	1083.4	0	0	0	0	0	10.04
Jun	840.63	0	0	0	840.63	0	0	0	0	0	12.53
Sub-total	9873.91	0	0	0	9873.91	0	0	0	0	0	59.2
Jul	1115.46	0	0	0	1115.46	0	0	0	0	0	19.58
Aug	1061.18	0	0	0	1061.18	0	0	0	0	0	25.19
Sep	3410.43	0	0	0	3410.43	0	0	0	0	0	30.62
Oct	2213.94	0	0	0	2213.94	0	0	0	0	0	30.56
Nov	2961.95	0	0	0	2961.95	0	0	0	0	0	26.85
Dec	3174.36	0	0	0	3174.36	0	0	0	0	0	35.72
Total	23811.23	0	0	0	23811.23	0	0	0	0	0	227.72
Grand Total (2016&2017)	44316.84	0	0	0	44316.84	0	0	0	0	0	832.84

Monthly Summary Waste Flow Table for <u>2018</u> (year)

	Actual Qua	ntities of Iner	t C&D Mate	rials Generat	ed Monthly	Actual Quantities of Non-inert C&D Wastes Generated Monthly						
Month	Total Quantity Generated	Hard Rocks & Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Mixed Waste Disposal at Sorting Facility	Metals	Paper / cardboard packaging	Plastics	Chemical Waste	Others (general refuse)	
	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	
Jan	3371.25	0	0	0	3371.25	0	0	0	0	0	31.67	
Feb	1886.48	0	0	0	1886.48	0	0	0	0	0	11.76	
Mar	2844.68	0	0	0	2844.68	0	0	0	0	0	14.42	
Apr	3279.44	0	0	0	3279.44	0	0	0	0	0	23.84	
May	2375.34	0	0	0	2375.34	0	0	0	0	0	26.76	
Jun	2833.19	0	0	0	2833.19	0	0	0	0	0	20.63	
Sub-total	16590.38	0	0	0	16590.38	0	0	0	0	0	129.08	
Jul	2986.5	0	0	0	2986.5	0	0	0	0	0	50.88	
Aug												
Sep												
Oct												
Nov												
Dec												
Total	19576.88	0	0	0	19576.88	0	0	0	0	0	179.96	
Grand Total (2016-2018)	63863.72	0	0	0	63863.72	0	0	0	0	0	1012.8	

Appendix H: Environmental Mitigation Implementation Schedule

EIA	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of	When to	What	Implementation
Ref.	Ref.		Recommended	Implement	the measure	implement	requirements or	Status
			Measure &	the measure		the measure	standard for the	
			Main Concerns to				measure to	
			address				achieve	
Air Qua	lity Impact (Construction Phase)						
4.8	A1	Good housekeeping to minimize dust	To minimize dust	HyD's	Whole	Throughout	EIAO-TM,	*
		generation, e.g. by properly handling and	generation	Contractor	construction	construction	APCO	
		storing dusty materials			site	phase		
4.8	A2	Adopt dust control measures, such as dust	To minimize dust	HyD's	Whole	Throughout	EIAO-TM,	~
		suppression using water spray on exposed	generation	Contractor	construction	construction	APCO	
		soil (at least 8 times per day), in areas with	due to erosion		site	phase		
		dusty construction activities and during						
		material handling						
4.8	A3	Store cement bags in shelter with 3 sides	To prevent leakage of	HyD's	Whole	Throughout	EIAO-TM,	~
		and the top covered by impervious materials	cement	Contractor	construction	construction	APCO	
		if the stack exceeds 20 bags			site	phase		
4.8	A4	Maintain a reasonable height when dropping	To minimize dust	HyD's	Whole	Throughout	EIAO-TM,	~
		excavated materials to limit dust generation	generation	Contractor	construction	construction	APCO	
			during movement of		site	phase		
			excavated materials					
4.8	A5	Limit vehicle speed within site to 10km/hr	To minimize dust	HyD's	Whole	Throughout	EIAO-TM,	 ✓
		and confine vehicle movement in haul road	generation	Contractor	construction	construction	APCO	
			due to traffic		site	phase		
			movement					

4.8	A6	Minimize exposed earth after completion of	To minimize dust	HyD's	Whole	Throughout	EIAO-TM,	~
		work in a certain area by hydroseeding,	generation	Contractor	construction	construction	APCO	
		vegetating, soil compacting or covering with	due to erosion		site	phase		
		bitumen						
4.8	A7	Provide wheel washing at site exit to clean	To prevent dust from	HyD's	Whole	Throughout	EIAO-TM,	v
		the vehicle body and wheel	being	Contractor	construction	construction	APCO	
			brought offsite		site	phase		
4.8	A8	Hard pave the area at site exit with concrete,	To prevent dust from	HyD's	Whole	Throughout	EIAO-TM,	v
		bitumen or hardcores	being	Contractor	construction	construction	APCO	
			brought offsite		site	phase		
4.8	A9	Cover materials on trucks before leaving the	To prevent falling of	HyD's	Whole	Throughout	EIAO-TM,	~
		site to prevent debris from dropping during	debris during traffic	Contractor	construction	construction	APCO	
		traffic movement or being blown away by	movement and by		site	phase		
		wind	wind					
4.8	A11	Regular maintenance of plant equipment to	To minimize black	HyD's	Whole	Throughout	EIAO-TM,	v
		prevent black smoke emission	smoke emission	Contractor	construction	construction	APCO	
					site	phase		
4.8	A12	Throttle down or switch off unused	To minimize	HyD's	Whole	Throughout	EIAO-TM,	v
		machines or machine in intermittent use	unnecessary emission	Contractor	construction	construction	APCO	
					site	phase		
4.8	A13	Carry out regular site inspection to audit the	To check the	HyD's	Whole	Throughout	EIAO-TM,	<i>v</i>
		implementation of mitigation measures	implemenation	Contractor	construction	construction	APCO	
			status and		site	phase		
			effectiveness of					
			mitigation measures					

4.8	A14	Carry out air quality monitoring throughout	To monitor	HyD's	At representative	Prior to and	EIAO-TM	~
		the construction period	construction dust	Contractor	ASRs	throughout		
			level			construction		
						phase		
Noise I	mpact (Con	istruction Phase)	•		·	·	· ·	
3.8	N1	Adopt good site practice, such as regular	To minimize	HyD's	Whole	Throughout	NCO,EIAO-TM	v
		maintenance of plant equipment, throttle	construction	Contractor	construction	construction		
		down unused machines	noise level		site	phase		
3.8	N2	Use Quality Powered Mechanical	To minimize	HyD's	Whole	Throughout	NCO,EIAO-TM	v
		Equipment (QPME) which produces lower	construction	Contractor	construction	construction		
		noise level (e.g. Excavator/Loader	noise level		site	phase		
		(EPD-01431), Asphalt Paver (EPD-01226),						
		Road Roller						
		(EPD-00244) and Mobile Crane						
		(EPD-01477))						
3.8	N3	Erect movable noise barrier at significant	To lower noise	HyD's	Whole	Throughout	NCO,EIAO-TM	v
		noise source(e.g. Concrete Pump, Concrete	transmission	Contractor	construction	construction		
		Lorry Mixer, Excavator/Loader, Road			site	phase		
		Sweeper, Asphalt Paver, Road						
		Roller, Lorry, Breaker and Poker)						
3.8	N5	Regular maintenance of plant equipment to	To prevent noise	HyD's	Whole	Throughout	NCO,EIAO-TM	v
		prevent noise emission due to impair	emission	Contractor	construction	construction		
			due to impair		site	phase		
3.8	N6	Position mobile noisy equipment in location	To minimize noise	HyD's	Whole	Throughout	NCO,EIAO-TM	N/A
		and direction away from NSR	transmission to NSR	Contractor	construction	construction		
					site	phase		

3.8	N7	Use silencer or muffler on plant equipment	To minimize noise	HyD's	Whole	Throughout	NCO,EIAO-TM	v
		and should be properly maintained	transmission	Contractor	construction	construction		
					site	phase		
3.8	N8	Throttle down or switch off unused	To mimize noise	HyD's	Whole	Throughout	NCO,EIAO-TM	v
		machines or machine in intermittent use	production	Contractor	construction	construction		
		between work			site	phase		
3.8	N9	Make good use of stockpiles or other	To minimize noise	HyD's	Whole	Throughout	NCO,EIAO-TM	N/A
		structures for noise screening	transmission	Contractor	construction	construction		
					site	phase		
3.8	N10	Avoid carrying out noisy activities at the	To mimize noise	HyD's	Whole	Throughout	NCO,EIAO-TM	v
		same time	production	Contractor	construction	construction		
					site	phase		
3.8	N11	Reduce the percentage on-time for some	To mimize noise	HyD's	Whole	Throughout	NCO,EIAO-TM	v
		noisy PMEs	production	Contractor	construction	construction		
					site	phase		
3.8	N12	Carry out noise monitoring	To monitor	HyD's	At representative	Prior to and	EIAO-TM	~
			construction	Contractor	NSRs	throughout		
			noise level			construction		
						phase		
Water I	mpact (Con	struction Phase)						
5.8	W1	Recirculate settled water for ground boring	To minimize	HyD's	Whole	Throughout	ProPECC PN	~
		and drilling	wastewater	Contractor	construction	construction	1/94, EIAO-TM	
		during site investigation or rock/soil	generation		site	phase		
		anchoring.						
5.8	W2	Set up sedimentation tank for settling	To reduce the amount	HyD's	Whole	Throughout	ProPECC PN	~
		suspended solids in wastewater before	of suspended solid in	Contractor	construction	construction	1/94, EIAO-TM	
		discharge into storm drains. Sand/silt	wastewater		site	phase		

		removal facilities such as sand traps, silt						
		traps and sedimentation basin should be						
		provided with adequate capacity.						
5.8	W3	Pave the construction road between the	To prevent soil and	HyD's	Whole	Throughout	ProPECC PN	~
		wheel washing bay and the public road with	site	Contractor	construction	construction	1/94, EIAO-TM	
		backfall	runoff from leaving		site	phase		
			the site					
5.8	W4	Follow ProPECC PN 1/94 "Construction	To minimize surface	HyD's	Whole	Throughout	ProPECC PN	~
		Site Drainage" as far as practicable	runoff and chance of	Contractor	construction	construction	1/94, EIAO-TM	
			erosion		site	phase		
5.8	W5	Provide perimeter channels at site	To stop offsite storm	HyD's	Whole	Throughout	ProPECC PN	~
		boundaries.	runoff from entering	Contractor	construction	construction	1/94, EIAO-TM	
			the site		site	phase		
5.8	W6	Construct catchpits and perimeter channels	To stop runoff from	HyD's	Whole	Throughout	ProPECC PN	~
		prior to commencement of site formation	flowing across the site	Contractor	construction	construction	1/94, EIAO-TM	
		works and earthworks.			site	phase		
5.8	W7	Maintain silt removal facilities, channels,	To prevent failure that	HyD's	Whole	Throughout	ProPECC PN	~
		manholes before and after rainstorm.	may lead to flooding	Contractor	construction	construction	1/94, EIAO-TM	
					site	phase		
5.8	W8	Remove sediment from silt and grit at	To prevent blockage	HyD's	Whole	Throughout	ProPECC PN	v
		regular interval.	the may lead to	Contractor	construction	construction	1/94, EIAO-TM	
			flooding		site	phase		
5.8	W9	Consider environmental requirements when	To ensure adequate	HyD's	Whole	Throughout	ProPECC PN	~
		diverting or realigning drainage.	hydraulic capacity of	Contractor	construction	construction	1/94, EIAO-TM	
			all drains		site	phase		

5.8	W10	Maintain a minimum distance of 100m	To prevent mixing	HyD's	Whole	Throughout	ProPECC PN	~
		between discharge point of construction site		Contractor	construction	construction	1/94, EIAO-TM	
		runoff and the existing saltwater intakes. No			site	phase		
		effluent will be discharged into typhoon						
		shelter. (for loations of seawater intakes,						
		please refer to Figure 5.1 in EIA Report)						
5.8	W11	Arrange soil excavation works outside rainy	To minimize surface	HyD's	Whole	Throughout	ProPECC PN	
		seasons (April to September) as far as	runoff	Contractor	construction	construction	1/94, EIAO-TM	
		possible. If this cannot beachieved, the	and chance of erosion		site	phase		
		following measures should be implemented:						
		-Cover temporary exposed slope surfaces						 ✓
		with impermeable materials, e.g. tarpaulin						
		- Protect temporary access roads by crushed	-					N/A
		stone or gravel						
		- Proved intercepting channels along	-					 ✓
		crest/edge of excavation						
		- Carry out adequate surface protection						v
		measures well before the arrival of a						
		rainstorm						
5.8	W12	Compact soil after earthwork. Provide	To prevent soil erosion	HyD's	Whole	Throughout	ProPECC PN	~
		permanent work or surface protection with	under rainstorm	Contractor	construction	construction	1/94, EIAO-TM	
		appropriate drainage channels immediately			site	phase		
		after forming the final surfaces.						
5.8	W13	Prevent rainwater from entering trenches.	To prevent soil erosion	HyD's	Whole	Throughout	ProPECC PN	~
		Excavation of trenches should be dug and	under rainstorm	Contractor	Construction site	construction	1/94, EIAO-TM	
		backfilled in short sections during rainy				phase		

		seasons. Remove silt in rainwater collected						
		from the trenches or foundation excavations						
		prior to discharge to storm drains.						
5.8	W14	Cover open stockpiles of construction	To prevent soil erosion	HyD's	Whole	Throughout	ProPECC PN	#
		materials (e.g. aggregates, sand and fill	under rainstorm	Contractor	construction	construction	1/94, EIAO-TM	
		materials) with impermeable materials such			site	phase		
		as tarpaulin during rainstorms.						
5.8	W15	Cover and temporary seal manholes	To prevent	HyD's	Whole	Throughout	ProPECC PN	*
		(including newly constructed ones) to	overloading of foul	Contractor	construction	construction	1/94, EIAO-TM	
		prevent silt, construction materials or debris	sewers		site	phase		
		and surface runoff from entering foul						
		sewers.						
5.8	W16	Remove waste from the site regularly.	To prevent waste	HyD's	Whole	Throughout	ProPECC PN	#
			accumulation	Contractor	construction	construction	1/94, EIAO-TM	
					site	phase		
5.8	W17	Apply discharge license for effluent	To ensure compliance	HyD's	Whole	Throughout	WPCO,TM-DSS,	~
		discharge. Treat the discharge to comply	with effluent discharge	Contractor	construction	construction	EIAO-TM	
		with the requirement in TM-DSS.	requirement		site	phase		
5.8	W18	Reuse treated effluent onsite, e.g. dust	To minimize	HyD's	Whole	Throughout	Waste Disposal	~
		suppression, wheel washing and general	wastewater	Contractor	construction	construction	Ordinance,	
		cleaning.	generation		site	phase	EIAO-TM	
5.8	W19	Monitor effluent water quality.	To ensure compliance	HyD's	Whole	Throughout	WPCO,	~
			with effluent discharge	Contractor	construction	construction	EIAO-TM	
			requirement		site	phase		
5.8	W20	Register as chemical waste producer if	To control chemical	HyD's	Whole	Throughout	Waste Disposal	~
		chemical waste will be generated.	waste	Contractor	construction	construction	(Chemical	
					site	phase	Waste) (General)	

5.8	W21	Perform maintenance of vehicles and equipment that have oil leakage and spillage potential on hard standings within a bunded area with sumps and oil interceptors.	To prevent oil leakage or spillage	HyD's Contractor	Whole construction site	Throughout construction phase	Regulation, EIAO-TM Waste Disposal (Chemical Waste) (General) Regulation, EIAO-TM	V
5.8	W22	 Dispose chemical waste in accordance to Waste Disposal Ordinance. Follow the <i>Code</i> of Practice on the Packaging, Labelling and Storage of Chemical Wastes ,examples as follows: Store chemical wastes with suitable containers to avoid leakage or spillage during storage, handling and transport Label chemical waste containers according to the CoP to notify and warn the waste handlers Store chemical wastes at designated safe 	To avoid accident in waste storage and handling	HyD's Contractor	Whole construction site	Throughout construction phase	Waste Disposal Ordinance, EIAO-TM	

5.8	W23	Provide sufficient chemical toilets with	To proper collection of	HyD's	Whole	Throughout	Waste Disposal	v
		regular maintenance by licensed chemical	taskforce waste	Contractor	construction	construction	Ordinance,	
		waste collector			site	phase	EIAO-TM	
Water In	mpact (Oper	ational Phase)	I	I				1
5.8	W24	Direct surface runoff for silt removal	To remove silt in	HyD	Whole	Throughout	WPCO,	~
		through silt trap	surface runoff		construction	construction	EIAO-TM	
		before flowing to public storm water			site	phase		
		drainage system						
5.8	W25	Regularly maintain the silt traps	To prevent blockage	HyD	Whole	Throughout	WPCO,	~
					construction	construction	EIAO-TM	
					site	phase		
Waste N	/anagement	(Construction Phase)						
6.5	WM1	Allocate an area for waste sorting and	To minimize waste	HyD's	Whole	Throughout	Waste Disposal	#
		storage of C&D materials into the following	generation	Contractor	construction	construction	Ordinance,	
		categories for reuse, recycle or disposal:			site	phase	EIAO-TM	
		- excavated material suitable for reuse						
		- inert C&D material for disposal offsite						
		- non-inert C&D materials for disposal at						
		landfills						
		- chemical waste						
		- general refuse						
6.5	WM2	Adopt good site practice as follows:	To proper handling of	HyD's	Whole	Throughout	Waste Disposal	~
		- Provide training to workers on site	waste	Contractor	construction	construction	Ordinance,	
		cleanliness, waste management (waste			site	phase	EIAO-TM	

		reduction, reuse and recycle) and chemical handling procedures - Provide sufficient waste collection points and regular removal - Cover waste materials with tarpaulin or in enclosure during transportation - Maintain drainage systems, sumps and oil interceptors - Sort out chemical waste for proper handling and treatment						
6.5	WM3	Adopt waste reduction measures as follows:- Allocate area/containers for sorting,recovering and storing waste for reuse,recycle or disposal (e.g. demolitiondebris and excavated materials, generalrefuse like aluminium cans)- Allocate area for proper storage ofconstruction materialsto prevent contamination- Minimize wastage through carefulplanning and avoiding over-purchase ofconstruction materials	To minimize waste generation	HyD's Contractor	Whole construction site	Throughout construction phase	Waste Disposal Ordinance, EIAO-TM	#
6.5	WM4	 Prepare and implement a site specific Waste Management Plan (WMP) as part of Environmental Management Plan (EMP) in accordance with ETWB TCW No. 19/25. Detail waste management method in the form of avoidance, reuse, recoverery, 	To provide guidance to waste management	HyD's Contractor	Whole construction site	Throughout construction phase	ETWB TCW No. 19/2005, EIAO-TM	~

		recycling, storage, collection, treatment						
		and disposal according to the						
		recommendations on the EIA						
		and EM&A Manual. It should be approved						
		by the ER and						
6.5	WM5	Store waste materials properly as follows:	To properly store	HyD's	Whole	Throughout	ProPECC PN	*
		- Avoid contamination by proper handling	waste	Contractor	construction	construction	1/94, EIAO-TM	
		and storing waste			site	phase		
		- Prevent erosion by covering waste or						
		applying water spray						
		- Maintain and clean storage area regularly						
		- Sort and stockpile different materials at						
		designated location to enhance reuse						
6.5	WM6	Apply for relevant waste disposal permits in	To properly dispose	HyD's	Whole	Throughout	Waste Disposal	v
		accordance with the Waste Disposal	waste	Contractor	construction	construction	Ordinance	
		Ordinance (Cap. 354), Waste			site	phase	(Cap. 354),	
		Disposal (Charges for Disposal of					Waste Disposal	
		Construction Waste)					(Charges for	
		Regulation (Cap. 345) and the Land					Disposal of	
		(Miscellaneous					Construction	
		Provisions) Ordinance (Cap. 28).					Waste)	
							Regulation	
							(Cap. 345) and	
							the Land	
							(Miscellaneous	
							Provisions)	
							Ordinance (Cap.	
							28), EIAO-TM	

6.5	WM7	Hire licensed waste disposal contractors for	To properly dispose	HyD's	Whole	Throughout	Waste Disposal	v
		waste collection and removal. Dispose waste	waste	Contractor	construction	construction	Ordinance,	
		at licensed waste disposal facilities			site	phase	EIAO-TM	
6.5	WM8	Implement trip-ticket system for recording	To monitor movement	HyD's	Whole	Throughout	Waste Disposal	v
		the amount of waste generated, recycled and	of waste	Contractor	construction	construction	(Chemical	
		disposed, including chemical wastes			site	phase	Waste) (General)	
							Regulation,	
							Waste Disposal	
							Ordinance,	
							EIAO-TM	
6.5	WM9	Provide wheel washing bay at site exit to	To prevent dust from	HyD's	Whole	Throughout	ProPECC PN	v
		clean the vehicle body and wheel	being	Contractor	construction	construction	1/94, EIAO-TM	
			brought offsite		site	phase		
6.5	WM10	Reduce water content in wet spoil generated	To minimize load to	HyD's	Whole	Throughout	Waste Disposal	~
		from piling work by mixing with dry	reception facilities	Contractor	construction	construction	Ordinance,	
		materials. Only dispose treated spoil with			site	phase	EIAO-TM	
		less than 25% dry density to Public Fill						
		Reception Facilities						
6.5	WM11	Dispose dry waste or waste with less than	To minimize load to	HyD's	Whole	Throughout	Waste Disposal	~
		70% water content by weight to landfill	reception facilities	Contractor	construction	construction	Ordinance,	
					site	phase	EIAO-TM	
6.5	WM12	Follow the Code of Practice on the	To avoid accident in	HyD's	Whole	Throughout	Waste Disposal	v
		Packaging, Labelling and Storage of	waste	Contractor	construction	construction	Ordinance,	
		Chemical Waste as follows:	storage and handling		site	phase	EIAO-TM	
		- Store chemical wastes with suitable						

								1
		containers. Seal and maintain the container						
		to avoid leakage or spillage during						
		storage, handling and transport						
		- Label chemical waste containers in both						
		English and Chinese with instructions in						
		accordance to Schedule 2 of						
		the Waste Disposal (Chemical Waste)						
		(General) Regulation						
		- The container capacity should be smaller						
		than 450 litres						
		unless agreed by the EPD						
6.5	WM13	Comply with the requirement of the	To ensure proper	HyD's	Whole	Throughout	Waste Disposal	~
		chemical storage area:	storage of chemical	Contractor	construction	construction	Ordinance,	
		- Store only chemical waste and label	waste		site	phase	EIAO-TM	
		clearly the chemical characters of the waste						
		- Have at least 3 sides enclosed and						
		protected from rainfall with cover						
		- Provide sufficient ventilation						
		- Have impermeable floor and has bunds to						
		contain 110% of the capacity of the largest						
		container or 20% of the total volume of the						
		stored waste in the area, whichever is larger						
		- Adequately spaced incompatible materials						
6.5	WM14	Transfer used lubricants, waste oils and	To ensure proper	HyD's	Whole	Throughout	Waste Disposal	N/A
		other chemicals to oil recycling companies,	disposal of	Contractor	construction	construction	(Chemical	
		if possible, and empty oil drums for reuse or	chemical waste		site	phase	Waste) (General)	
		refill. No direct or indirect discharge is					Regulation,	
		permitted					EIAO-TM	

6.5	WM15	Hire licensed chemical waste disposal	To ensure proper	HyD's	Whole	Throughout	Waste Disposal	N/A
		contractors for waste collection and	disposal of	Contractor	construction	construction	(Chemical	
		removal. Dispose chemical waste at the	chemical waste		site	phase	Waste) (General)	
		approved CWTC at Tsing Yi or other					Regulation,	
		licensed facility					EIAO-TM	
6.5	WM16	Hire reputable waste collector to separately	To ensure proper	HyD's	Whole	Throughout	Waste Disposal	~
		collect and dispose general refuse from	disposal of	Contractor	construction	construction	(Chemical	
		other wastes. Cover the waste to prevent	general refuse		site	phase	Waste) (General)	
		being blown away					Regulation,	
							EIAO-TM	
6.5	WM17	Provide recycling bins for sorting out	To ensure proper	HyD's	Whole	Throughout	Waste Disposal	~
		recyclables for collection by recycling	recycling	Contractor	construction	construction	Ordinance,	
		companies. Non-recyclables should be	and disposal of general		site	phase	EIAO-TM	
		removed to designated landfills every day	refuse					
		by licensed collectors to prevent						
		environmental and health nuisance.						
6.5	WM18	Organize training and reminders to site staff	To ensure proper	HyD's	Whole	Throughout	EIAO-TM	~
		on waste minimization through avoidance	management of	Contractor	construction	construction		
		and reduction, reusing and recycling	general		site	phase		
			refuse					
6.5	WM19	Carry out testing to verify sediment quantity	To verify the	HyD's GI	Drillholes	Throughout	ETWB TC(W)	~
		and quality	categories of sediment	Contractor	CB1 to 5 as shown	construction	No. 34/2002	
			to be disposed in		in Sediment	phase		
			accordance with		Sampling and			
			ETWB		Testing Plan			
			TC(W) No. 34/2002					

Landscap	be and Visu	ıal						
7.9.3	CM1	Shorten the construction period	To minimize duration	HyD's	Whole	Throughout	EIAO-TM	N/A
			of	Contractor	construction	construction		
			landscape and visual		site	phase		
			impact					
7.9.3	CM2	Limit work within site area without	To minimize landscape	HyD's	Whole	Throughout	EIAO-TM	v
		encroaching into the landscape resources	and visual impact	Contractor	construction	construction		
		offsite.			site	phase		
7.9.3	CM3	Protect retained trees from damage during	To maintain and	HyD's	Whole	Throughout	ETWB TCW	v
		construction work according to the	minimize damage to	Contractor	construction	construction	3/2006,	
		recommended in the detailed tree	existing greenery		site	phase	EIAOTM	
		assessment report and the approval of Tree						
		Removal Application under ETWB TCW						
		No. 3/2006 Tree Preservation						
7.9.3	CM4	Transplant unavoidably affected trees	To minimize tree loss	HyD's	Whole	Throughout	ETWB TCW	N/A
		wherever possible in accordance with	and ensure survival of	Contractor	construction	construction	3/2006,	
		ETWB TCW No. 3/2006 Tree Preservation.	transplanted trees		site	phase	EIAOTM	
		Maintain transplanted trees to ensure						
		healthy development during the						
		establishment period						
7.9.2.6	OM1	Carry out compensatory planting in areas	To compensate for loss	HyD's	Whole	Construction	ETWB TCW	N/A
		proposed in the Tree Survey and Landscape	greenery	Contractor	construction	phase	3/2006,	
		and Greening Study Report in accordance to			site/Offsite		EIAOTM	
		ETWB TCW 3/2006, which will be						
		subjected to refinement in detailed design						
		stage. Compensatory planting of a ratio no						
		less than 1:1 in terms of quality and quantity						
		will be provided for any potential tree						

		felling within the site. Offsite planting may be required due to land constraint. 410 nos. of compensatory trees have been proposed						
7.9.2.6	OM2	Provide vertical greening at piers of elevated roads and shrub planting near amenity planting strips to soften the hard landscape (e.g. climber and shrub for hiding central divider and enclosures). Early comments from the ACABAS and relevant departments, implementation and maintenance agents shall be sought at the earlier stage.	To soften hard landscape	HyD's Contractor	Whole construction site	Construction phase	ETWB TCW 36/2004	N/A
7.9.2.6	OM3	Match the design and materials of road structure with the surrounding environment and with the schematic theme paving of the future West Kowloon Reclamation Development and the Advisory Committee on the Appearance of Bridges and Associated Structures (ACABAS)	To match with existing landscape character	HyD's Contractor	Whole construction site	Construction phase	ETWB TCW 36/2004	N/A

Remarks:

- ✓ Compliance of mitigation measure
- X Non-compliance of mitigation measure
- Non-compliance but rectified by the contractor
- * Recommendation was made during site audit but improved/rectified by the contractor
- # Waiting for improving/rectifying by the contractor
- N/A Not Applicable

Appendix I: Cumulative Log for Environmental Exceedance, Complaints, Notification of Summons and Successful Prosecutions

Reporting	Number of	Number of	Number of Environmental	Number of Notification	Number of Successful
Month	Exceedance	Non-Compliance	Complaints	of Summons	Prosecutions
February 2016	0	0	0	0	0
March 2016	0	0	0	0	0
April 2016	0	0	2	0	0
May 2016	7	0	0	0	0
June 2016	11	0	0	0	0
July 2016	6	0	0	0	0
August 2016	6	0	0	0	0
September 2016	5	0	0	0	0
October 2016	6	1	0	0	0
November 2016	5	0	0	0	0
December 2016	5	0	0	0	0
January 2017	5	0	0	0	0
February 2017	5	0	0	0	0
March 2017	6	0	0	0	0
April 2017	6	0	1	0	0
May 2017	5	0	0	0	0
June 2017	6	0	0	0	0
July 2017	5	0	0	0	0
August 2017	5	0	0	0	0
September 2017	6	0	0	0	0

Cumulative Log for Environmental Exceedance, Non-Compliance, Complaints, Notification of Summons and Successful Prosecution

October 2017	5	0	0	0	0
November 2017	6	0	0	0	0
December 2017	5	0	0	0	0
January 2018	5	0	0	0	0
February 2018	5	0	0	0	0
March 2018	6	0	0	0	0
April 2018	5	0	0	0	0
May 2018	7	0	1	0	0
June 2018	5	0	0	0	0
July 2018	5	0	0	0	0
Grand Total	154	1	4	0	0