

ATAL-Degremont-China Harbor Joint Venture

Contract No. DC/2013/10 Design, Build and Operate San Wai Sewage Treatment Works

Monthly Operational Phase EM&A Report for June 2021

[07/2021]

	Name	Signature
Prepared & Checked:	Alex Chan	Ah
Reviewed & Certified:	Y W Fung	9/

Version:	Rev. 0	Date: 28 July 2021	

Disclaimer

The information contained in this report is, to the best of our knowledge, correct at the time of printing. The interpretation and recommendations in the report are based on our experience, using reasonable professional skill and judgment, and based upon the information that was available to us. These interpretations and recommendations are not necessarily relevant to any aspect outside the restricted requirements of our brief. This report has been prepared for the sole and specific use of our client and AECOM Environment accepts no responsibility for its use by others.

This report is copyright and may not be reproduced in whole or in part without prior written permission.

AECOM Asia Co. Ltd.

12/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com

CONTENT

			Page
	EXECUTIVE	SUMMARY	3
1	INTRODUCT	TION	5
	1.1 Backgı	round	5
2	AIR QUALIT	Y MONITORING	6
	2.2 Monito2.3 Monito2.4 Monito2.5 Monito2.6 Action2.7 Event	oring Requirement oring Parameters oring Frequency oring Method oring Locations for Impact Monitoring and Limit Levels and Action Plan s and Observation	6 6 6 7 7 8
3	WATER QUA	ALITY MONITORING	9
	3.2 Monito 3.3 Monito 3.4 Monito 3.5 Monito 3.6 Monito 3.7 Monito 3.8 Monito	oring Requirements oring Equipment oring Parameter, Frequency and Duration oring Locations oring Methodology oring Result oring Requirement oring Parameter oring Parameter oring Location	9 9 10 10 11 12 12 12
4	TOXICITY T	EST	13
		oring Requirement oring methodology g result	13 13 13
5	LANDSCAPI	E AND VISUAL AUDITING	13
		oring Requirement and Recommendations	13 13
6	ENVIRONME	ENTAL COMPLAINT, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTION	14
	6.1 Enviro	nmental Complaint, Notification of Summons and Successful Prosecution	14
7	CONCLUSIO	DNS	14
	7.1 Conclu	usions	14

List of Tables

Table 2.1	Parameter and Frequency of Odour monitoring
Table 2.2	Proposed Monitoring Locations for Odour Sampling and H ₂ S Measurement
Table 2.3	Action and Limit Level for Oduor Monitoring
Table 3.1	Marine Water Quality Monitoring Equipment
Table 3.2	Marine Water Quality Monitoring Parameters, Frequency and Duration
Table 3.3	Proposed Marine Water Quality Monitoring Stations
Table 3.4	Summary of Monitoring Results and criteria of WQOs
Table 3.5	Monitoring Result of Effluent Quality Monitoring
Table 4.1	Methodology for Toxicity Testing

Figures

Figure 1.1	Site Layout Plan
Figure 2.1	Location of Odour Monitoring
Figure 2.2	Location of Odour Patrol
Figure 3.1	Locations of Marine Water Quality Monitoring
Figure 3.2	Locations of Effluent Sampling

List of Appendices

Appendix A	Project Organization Structure
Appendix B	Calibration Certificates of Monitoring Equipment
Appendix C	Logsheet of Odour Patrol
Appendix D	Marine Water Quality Monitoring Results
Appendix E	Laboratory Analysis Result for Marine Water Quality Monitoring
Appendix F	Laboratory Analysis Result for Effluent Monitoring
Appendix G	Toxicity Testing Result
Appendix H	Action and Limit Levels
Appendix I	Event and Action Plan

EXECUTIVE SUMMARY

In accordance with the Environmental Monitoring and Audit Manual (EM&A Manual) and the Environmental Permit (EP-464/2013) for the Contract No. DC/2013/10 - Design, Build and Operate San Wai Sewage Treatment Works – Stage 1 (the Project), air quality and water quality monitoring are required during operational phase of the Project. The purpose of operational phase monitoring is to confirm the predictions of mitigation measures advised in the EIA report.

As confirmed by the Contractor, all major construction activities of the Project has been completed in May 2021. The Operational Phase of the Project commenced in March 2021. This Monthly Operational Phase Monitoring Report summarizes monitoring events carried out during period from 6 to 30 June 2021. There were a total of four monitoring events carried out during the reporting period. The exact dates of monitoring carried out in this month are tabulated below:

Monitoring Event	Date
Odour sampling	N/A
H ₂ S measurement	N/A
Odour Patrol	29 June 2021
Marine Water Quality Monitoring	24 June 2021
Effluent Quality Monitoring	23 June 2021
Toxicity Testing	23 June 2021
Landscape and Visual Auditing	N/A

Air Quality Monitoring

No odour sampling and H₂S measurement was conducted in the reporting month.

Odour intensity were recorded from 0 to 1 during odour patrolling in the reporting month.

Water Quality Monitoring

No non-compliance of marine water monitoring was recorded in the reporting month.

No non-compliance of effluent quality monitoring was recorded in the reporting month.

Toxicity Test

Toxicity test was conducted in the reporting month.

Landscape and Visual Auditing

No landscape and visual auditing was conducted in the reporting month.

Environmental complaint, notification of summons and successful prosecution

No environmental complaint, notification of summons and successful prosecution was received in the reporting month.

Reporting Change

There were no reporting changes in the reporting month.

Future Key Issue

The Project has entered the Operation Phase since March 2021 and its normal operation in the reporting month. Mitigation measures as proposed in the approved Environmental Impact Assessment report will be provided and maintained at the Project.

1 INTRODUCTION

1.1 Background

- 1.1.1. This Monthly Operational Phase Environmental Monitoring and Audit (EM&A) Report is prepared for Contract No. DC/2013/10 Design, Build and Operate San Wai Sewage Treatment Works Stage 1 (the Project). The Project was awarded to ATAL-Degremont-China Harbor Joint Venture (ADCJV) by the Drainage Services Department (DSD). AECOM Asia Co. Ltd. was appointed as the Environmental Team (ET) by ADCJV to implement the operational phase EM&A program in compliance with the EP and the EM&A Manuals.
- 1.1.2. The project involves expansion of the preliminary treatment works at San Wai STW from 164,000 m³/d to 200,000 m³/d Average Dry Weather Flow, upgrading the preliminary treatment level to CEPT and adding centralized disinfection. The site layout plan is shown in **Figure1.1**.
- 1.1.3. According to the Section 25 of the Particular Specification (PS) and the Environmental Permit No. EP-464/2013, an EM&A programme should be implemented in accordance with the procedures and requirements in the Environmental Monitoring & Audit Manual (EM&A Manual) of the approved EIA report (Registration No. AEIAR-072/2003). The EM&A Manual and EP provide guidelines for the Operational Phase Monitoring Reports and for preparation of the Operational Phase Monitoring Reports.
- 1.1.4. The operational phase of the Project was commenced in March 2021.
- 1.1.5. As part of the project EM&A program, baseline monitoring was conducted during July 2019 to April 2020 to determine the ambient environmental conditions before the Project commence operation works.
- 1.1.6. This is the 1st Monthly Operational Phase Environmental Monitoring and Audit (EM&A) Report for the Project which summaries the audit findings of the EM&A programme during the reporting month from 06 June to 30 June 2021.

2 AIR QUALITY MONITORING

2.1 Monitoring Requirement

2.1.1 In accordance with Section 2.5 of the EM&A Manual, odour panel tests and H₂S measurement are required to be conducted for one year after commission of the expanded and upgraded Sai Wai STW.

2.2 Monitoring Parameters

- 2.2.1 15-min Hydrogen Sulphide (H₂S) concentration (in parts per million) will be measured at the site boundary, nearby air sensitive receivers and the exhaust of deodourisation units. Meteorological conditions including temperature, wind speed, wind direction and relative humidity will be measured at the time of the monitoring.
- 2.2.2 Approximately 60 litre of gas sample will be collected for a period of 15-mins at the site boundary, nearby air sensitive receivers and the exhaust of deodourisation unit in order to provide sufficient volume for olfactometric analysis. Odour concentration was expressed as OU/m³.
- 2.2.3 Apart from odour monitoring, regular oduor patrolling in the vicinity of the STW will also be conducted in a monthly interval during the operational phase to ensure that prompt action would be taken whenever any excessive odour emissions area detected.

2.3 Monitoring Frequency

2.3.1 The monitoring frequency of each odour parameters are listed in the Table 2.1.

Table 2.1 Parameter and Frequency of Odour monitoring

Monitoring Parameter	Frequency
Odour Panel	Quartarly
H ₂ S Measurement	Quarterly
Odour Patrol	Monthly

2.4 Monitoring Method

H₂S Measurement

- 2.4.1 H₂S concentrations will be measured by using of two H₂S analyzers, which utilizes a gold film sensor for the detection of H₂S. The H₂S analyzers will be controlled by microprocessor and ensuring raid accurate analyses. The H₂S analyzers should be also fitted with Data logger, Interface cable and interface software, and Data download and graphics service.
- 2.4.2 Weather condition including wind direction, wind speed, temperature and humidity will be recorded during H₂S measurement.

Oduour Sampling

- 2.4.3 The odour concentration will be measured by a force-choice dynamic olfactometer in accordance with European Standard Method (EN13725). The Dutch National Standard Method (NVN2820) was superseded by European Standard Method (EN13725).
- 2.4.4 Approximately 60 litre of gas sample will be collected into a Nalophan sampling bag for testing.
- 2.4.5 The collected samples will be transported to an odour laboratory as soon as possible and analyzed within 24 hours. Testing will be performed by at least 5 qualified odour panellists who had been trained and who were complied with the requirement of the n-butanol screening test.
- 2.4.6 Weather condition including wind direction, wind speed, temperature and humidity will be recorded during the oduour sampling.

Odour Patrol

- 2.4.7 The odour patrol was a simple judgement by an observer patrolling and sniffing around the facilities to detect any odour. This observer should be free from any respiratory disease and not normally working at the facilities.
- 2.4.8 The observer followed a predeterminded route which should normally be going from non-odours to odours area. The observer would patrol slowly along the route and use his olfactory sense to detect any odours. The locations listed in the predeterminded route are shown **Figure 2.2**.
- 2.4.9 The observer brough along a logbook to record the findings. The logbook book was kept in the plant office where it could be inspected when necessary. The findings were included the followings:
 - Prevailing weather condition
 - Wind directions
 - · Location where odour spotted
 - · Possible source of odour
 - · Perceived intensity of the odour
 - · Duration of odour

2.5 Monitoring Locations for Impact Monitoring

2.5.1 Odour sampling and H₂S measurements were undertaken at the proposed monitoring locations, the proposed monitoring locations were determined by the ET Leader and agreed with ER and EPD as the request of the Section 2.5.1.25 and 2.5.1.26 of the EM&A Manual. The monitoring locations are presented in **Table 2.2** and shown in **Figure 2.1**.

Table 2.2 Proposed Monitoring Locations for Odour Sampling and H₂S Measurement

Identification of Monitoring Location	Description	
ASR1a	晉榮貨櫃服務有限公司	
ASR2b 永康貨櫃服務有限公司		
Site Boundary, SB1	Site boundary	
OD1	Downwind of the exhaust point	
OD2	of deodorization units	

2.6 Action and Limit Levels

2.6.1 The Action and Limit Levels established from the baseline monitoring are shown in the **Table 2.3** and **Appendix H**.

Table 2.3 Action and Limit Level for Oduor Monitoring

Location of Monitoring	Parameters	Action Level	Limit Level
SB1	H ₂ S concentration, ppm	0.0109	0.0109
ASR1		0.0100	0.0100
ASR2		0.0157	0.0157
OD1	H ₂ S concentration in ppb/ppm, flow rate of exhaust	AL = LL/2 = 139 μg/s of H ₂ S	LL = 277 μg/s of H ₂ S
OD2	in m ³ /s and temperature of exhaust (°C)		

2.7 Event and Action Plan

2.7.1 The Event and Action Plan for the operational phase odour monitoring was annexed in Appendix I.

2.8 Results and Observation

Odour Sampling and H2S Measurement

- 2.8.1 According to the Section 2.5.1.32 of the EM&A Manual, the first set of odour monitoring at monitoring locations mentioned at **Table 2.2** should consist of both odour sampling and H₂S measurement. Sampling at the mentioned locations using olfactometry and H₂S analyzers should be carried out simultaneously using the equipment and methodology described above. The purpose is to establish the correlations between odour level (OU/m⁻³) and H₂S concentration for each measurement position.
- 2.8.2 No odour sampling and H₂S measurement was conducted in the reporting month due to adverse weather condition on the scheduled date in June 2021. The next odour sampling and H₂S measurement are re-scheduled in July 2021 tentatively.

Odour Patrol

- 2.8.3 The odour patrol was carried out on 29 June 2021 at 10:00 and 16:00. The observer was patrolling and sniffing around the facilities to detect the any odour, as required by the EM&A Manual.
- 2.8.4 The weather condition, wind speed and results for odour patrol at each monitoring location are provided in **Appendix C.**
- 2.8.5 During the odour patrol, the odour intensity were recorded from 0(not detectable) to 1(slight). The source and duration of odour recorded during odour patrol can be referred to **Appendix C**.

3 WATER QUALITY MONITORING

Marine Water Quality Monitoring

3.1 Monitoring Requirements

- 3.1.1 In accordance with Section 4.5.1.12 of the EM&A Manual, operational phase marine water quality monitoring is suggested three months after the commissioning of the expanded and upgraded San Wai STW.
- 3.1.2 Marine water samples and in situ measurement should be collected from all the sampling stations on 8 occasions at intervals of approximates 3 months during the operational phase of the Project. On each occasion, marine water samples should be collected every 2 hours for a 12-hour duration. When significant change in the marine water quality are detected, the monitoring frequency should be increase as necessary until the cause for the change is identified.

3.2 Monitoring Equipment

3.2.1 Equipment used in the marine water quality monitoring programme is summarized in **Table 3.1**. A copy of the calibration certificates for the multifunctional meter are attached in **Appendix B**.

Table 3.1 Marine Water Quality Monitoring Equipment

Monitoring Equipment	Equipment Model	
Multifunctional Meter (measurement of Dissolved Oxygen, pH, temperature, salinity and turbidity)	YSI 6820 V2	
Water Depth	Lowrance x-4	
Positioning Equipment	Garmin GPS72H	

3.3 Monitoring Parameter, Frequency and Duration

3.3.1 **Table 3.2** summarises the monitoring parameters, frequency and duration of marine water quality monitoring, as request in Section 4.5.1.13 of the EM&A manual.

Table 3.2 Marine Water Quality Monitoring Parameters, Frequency and Duration

Monitoring Stations	Parameters, unit	Frequency	Duration
W1 to W8	In-situ Measurement: • Temperature, °C • Salinity, ppt • DO, mg/L • DO Saturation, % • Turbidity, NTU Laboratory Analysis: • SS, mg/L • TIN, mg/L • Unionised ammonia, mg/L • BOD ₅ ,mg/L • E. coli, cfu/100mL • Cadmium, Copper, Nickel, Lead, Chromium, Mercury and Zinc, μg/L • PCBs, μg/L • PAHs, μg/L	8 occasions at intervals of approximately 3 months during the operation phase of the upgraded and expanded San Wai STW.	On each occasion, marine water samples will be collected every 2 hours for a 12-hour duration.

3.4 Monitoring Locations

3.4.1 Marine water quality monitoring was undertaken at the proposed monitoring stations set out in the Section 4.5.1.6 of EM&A Manual. The proposed marine water quality stations were presented in **Table 3.3** and shown in **Figure 3.1**.

Table 3.3 Proposed Marine Water Quality Monitoring Stations

Station	Easting	Northing
W1	808231	827494
W2	807469	828888
W3	807221	823737
W4	806309	829988
W5	809062	824638
W6	807066	825034
W7	805592	828162
W8	805412	829400

3.5 Monitoring Methodology

3.5.1 Operating/Analytical Procedures

- (a) Digital Differential Global Positioning System (DGPS) was used to ensure that the correct location was selected prior to sample collection.
- (b) Portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station.
- (c) All in-situ measurements were taken at 3 water depths, 1 m below water surface, mid-depth and 1 m above seabed, except where the water depth was less than 6 m, in which case the mid-depth station was omitted. Should the water depth be less than 3 m, only the mid-depth station was monitored.
- (d) During the marine water quality measurement, a portable multifunctional meter will be used for measurement of pH, dissolved oxygen, water temperature, turbidity and salinity.
- (e) Spare parts of equipment will be maintained for necessary replacement.
- (f) Water samples were collected using the water sampler at the monitoring stations and the samples were stored in high-density polythene bottles and then packed in cool-boxes (cooled at 4oC without being frozen) for carrying out the laboratory analysis. The analysis will be commenced in a HOKLAS accredited laboratory, WELLAB LIMITED. (HOKLAS Registration No. 083) within 24 hours after collection of the samples.
- (g) The laboratory analysis reports for marine water quality monitoring are attached in **Appendix E**.

3.5.2 Maintenance and Calibration

- (a) Before each round of monitoring, the dissolved oxygen probe of YSI 6820 V2 was calibrated by the wet bulb method. A zero check in distilled water was performed with the turbidity probe of YSI 6820 V2 once per monitoring day.
- (b) The monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS before use and subsequently re-calibrated at 3-monthly intervals throughout all stages of the water quality monitoring. The calibration record for each monitoring instrument used in the water quality monitoring process is annexed in **Appendix B**.

3.6 Monitoring Result

3.6.1 The marine water quality monitoring was conducted on 24 June 2021 in the reporting month. The summary of monitoring results and criteria of Water Quality Objectives (WQOs) are summarized in **Table 3.4**. Detail of marine water quality monitoring result is annexed in **Appendix D**.

Table 3.4 Summary of Monitoring Results and criteria of WQOs

Parameter		rage	Mini	mum			Water Quality Objectives
Faranietei	Result	Baseline	Result	Baseline	Result	Baseline	(in marine waters)
Temp. (°C)	24.4	24.1	24.1	18.8	25.0	29.9	Change due to waste discharge < 2 °C
Salinity (ppt)	25.4	25.5	20.8	4.3	28.1	33.1	Change due to waste discharge < 10% of natural ambient level
рН	7.30	7.95	7.21	7.64	7.50	8.38	6.5 – 8.5 and change due to waste discharge < 0.2
DO Depth Average (mg/L)	4.67	6.46	4.32	2.96	5.09	10.14	Depth averaged: > 4 mg/L for 90% samples
Turbidity (NTU)	5.2	7.9	4.1	2.3	6.6	31.9	Not available
SS (mg/L)	6.3	7.6	3.0	<2.5	25.0	29.0	< 30% increase in the natural ambient level
Cadmium (µg/L)	<0.5	0.5	<0.5	<0.5	<0.5	4.2	Not available
Copper (µg/L)	4.3	6.0	2.0	1.0	12.0	119.0	Not available
Nickel (µg/L)	2.0	1.9	1.0	<1.0	7.0	36.0	Not available
Lead (µg/L)	1.0	1.8	<1.0	<1.0	7.0	166.0	Not available
Mercury (µg/L)	0.5	0.6	<0.5	<0.5	1.1	44.0	Not available
Chromium (µg/L)	1.0	1.3	<1.0	<1.0	5.0	50.0	Not available
Zinc (µg/L)	18.6	25.8	5.0	3.0	92.0	871.0	Not available
TIN (mg/L)	0.83	1.20	0.70	0.27	1.29	2.51	< 0.5 mg/L (annual mean depth average)
NH3-N (mg/L)	0.140	0.004	0.090	0.001	0.630	0.031	Not available
BOD ₅ (mg/L)	<2.0	2.6	<2.0	<2.0	<2.0	7.0	Not available
E. coli (cfu/100mL)	38.7	60.3	6.0	<1.0	194.0	980.0	< 610 per 100mL (annual geometric mean)
PAHs (µg/L)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not available
PCBs (µg/L)	<0.02	<0.02	< 0.02	<0.02	< 0.02	<0.02	Not available

- 3.6.2 The weather condition during the monitoring was cloudy. Sea conditions for the majority of monitoring days was moderate. No major water pollution source and no marine construction activities in the vicinity of the stations, which might affect the results was observed during the marine water quality monitoring.
- 3.6.3 The total inorganic nitrogen (TIN) results measured at all monitoring stations were exceeded WQOs criteria in the reporting month. With reviewing the baseline data in **Table 3.4**, except from minimum, the measured data in the reporting month was lower than baseline condition. Since the TIN concentration in baseline condition was higher than the WQOs, and the TIN concentration recorded in the reporting month was lower than the baseline condition, so the TIN concentration recorded in the reporting month was considered acceptable.
- 3.6.4 Since the TIN concentration recorded in the month was lower than the baseline condition, so no non-compliance of the marine water monitoring was recorded in reporting period.

Effluent Quality Monitoring

3.7 Monitoring Requirement

3.7.1 In accordance with Section 4.6.1.1 of the EM&A Manual, in order to ensure the effectiveness of the proposed treatment process, effluent quality monitoring is recommended.

3.8 Monitoring Parameter

- 3.8.1 As recommended by the EM&A Manual, the effluent quality monitoring was included the follows parameters:
 - Ha -
 - BOD (mg/L)
 - SS (mg/L)
 - TIN (µg/L)
 - NH₃-N (mg/L)
 - E. coli (cfu/100mL)
 - Cadmium (µg/L)
 - Copper (µg/L)
 - Nickel (µg/L)
 - Lead (µg/L)
 - Mercury (µg/L)
 - Chromium (µg/L)
 - PCBs (µg/L)
 - PAHs (µg/L)

3.9 Monitoring Location

3.9.1 Effluent quality monitoring was carried out at the effluent outlet of the San Wai STW as shown in Figure 3.2.

3.10 Monitoring Result

3.10.1 The effluent monitoring results during the reporting month is summarized in **Table 3.5**. The laboratory analysis reports for the effluent quality monitoring is presented in **Appendix F**.

Table 3.5 Monitoring Result of Effluent Quality Monitoring

		Limitation o	n Discharge
Parameter	Result	Percentile	Upper
		Standard	Limit
рН	7.2	Not av	ailable
BOD₅ (mg/L)	23	180	360
SS (mg/L)	29	120	240
TIN (μg/L)	26	Not av	ailable
NH ₃ -N (mg/L)	26	Not available	
E. coli (cfu/100mL)	120,000	300,000	20,000#
(Grab sample)	(9,600)	300,000	20,000
Cadmium (µg/L)	<0.5	Not av	ailable
Copper (µg/L)	9	Not av	ailable
Nickel (µg/L)	19	Not av	ailable
Lead (µg/L)	1	Not av	ailable
Mercury (µg/L)	<0.5	Not av	ailable
Chromium (µg/L)	4	Not av	ailable
PCBs (µg/L)	<0.02	Not av	ailable
PAHs (µg/L)	<0.1	Not av	ailable

^{#:} The upper limit is in monthly geometric mean.

3.10.2 No non-compliance of effluent quality was recorded in the reporting month.

4 TOXICITY TEST

4.1 Monitoring Requirement

4.1.1 In accordance with Section 4.6.1.2 of the EM&A Manual, toxicity testing shall be carried out on 8 occasions at intervals of approximately 3 months during the operational phase of the Project for two marine species. One of the two marine species shall be selected from local environment. The representative species that will be chosen for testing and technical details of the testing method should be agreed and approved by the EPD prior to the operation of the sewage treatment works. The testing method for the EPD approval was submitted on 22 April 2021.

4.2 Monitoring methodology

4.2.1 The methodology of the toxicity testing is summarized in the **Table 4.1**.

Table 4.1 Methodology for Toxicity Testing

Types of Respective Species	Diatom	Barnacle larvae
	(Skeletonema costatum)	(Balanus Amphitrite)
Toxicity Testing	Chronic Toxicity	Acute Toxicity
Time requirement	7 days	48 hours
Toxicity testing method	NOEC in 7-day diatom growth	LC50 in 48-hr barnacle larvae
	inhibition test	survival test

4.3 Testing result

- 4.3.1 The NOEC in 7-day diatom growth inhibition test for Diatom was 2.5%
- 4.3.2 The LC50 in 48-hr barnacle larvae survival test for Barnacle larvae was 28.2%
- 4.3.3 The result of toxicity testing is annexed in **Appendix G**.

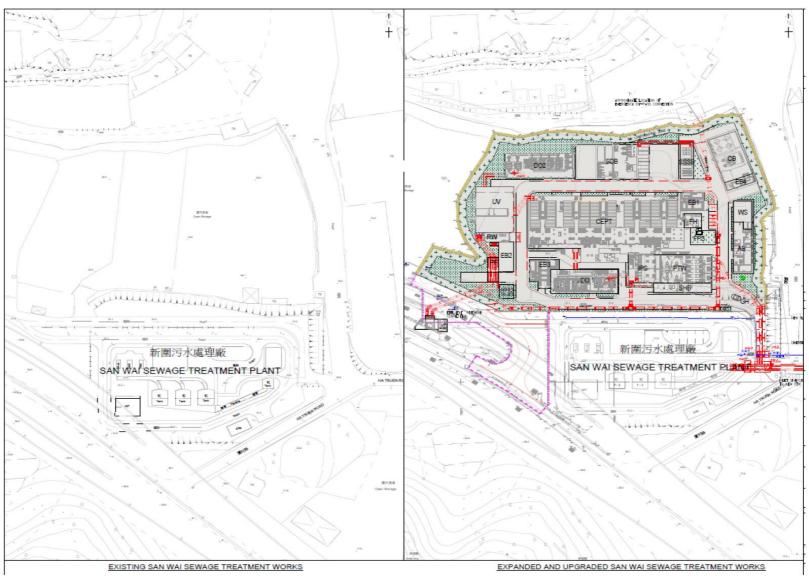
5 LANDSCAPE AND VISUAL AUDITING

5.1 Monitoring Requirement

- 5.1.1 In accordance with Section 6.4 of the EM&A Manual, a competent landscape architect should be employed by the Contractor for the implementation of landscape construction works and subsequent maintenance operations during the 12 months establishment period. The establishment works should be undertaken throughout the Contractor's first year maintenance period which will be within the first operational year of the Project.
- 5.1.2 All measures undertaken by the both Contractor and the Landscape Contractor during the first year of the operational phase should be audited by a Landscape Architect, as a member of the ET, on a regular basis to ensure compliance with the intended aims of the measures. Site inspections should be undertaken at least once every two months during the operational phase.

5.2 Result and Recommendations

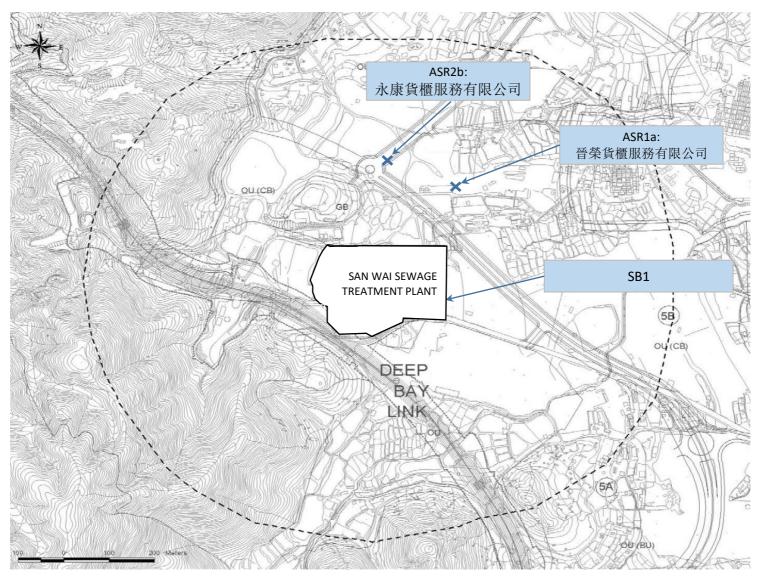
5.2.1 No landscape and visual auditing was conducted in the reporting month. The next landscape and visual auditing is scheduled in July 2021 tentatively.


6 ENVIRONMENTAL COMPLAINT, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTION

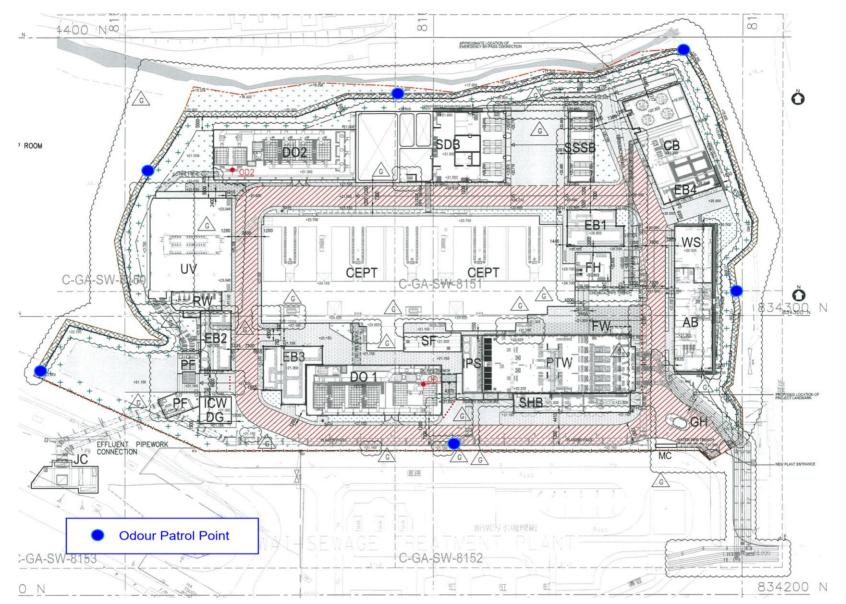
- 6.1 Environmental Complaint, Notification of Summons and Successful Prosecution
- 6.1.1 No environmental complaint, notification of summons and successful prosecution was received in the reporting month.

7 CONCLUSIONS

- 7.1 Conclusions
- 7.1.1 No odour sampling and H₂S measurement was conducted in the reporting month.
- 7.1.2 Odour intensity were recorded from 0 to 1 during odour patrolling in the reporting month.
- 7.1.3 No non-compliance of marine water monitoring was recorded in the reporting month.
- 7.1.4 Toxicity test was conducted in the reporting month.
- 7.1.5 No landscape and visual auditing was conducted in the reporting month.
- 7.1.6 No environmental complaint, notification of summons and successful prosecution was received in the reporting month.


FIGURES

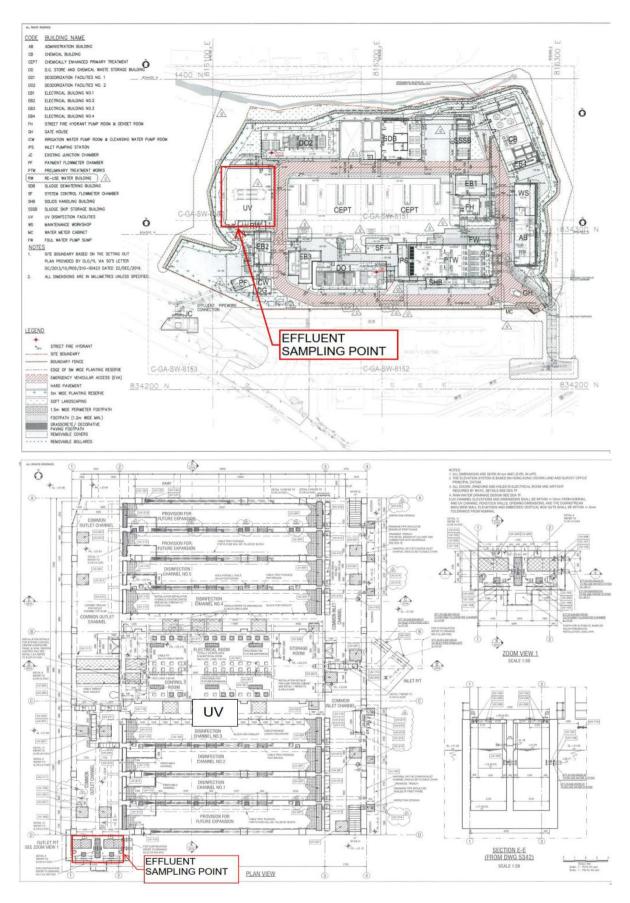
Site Layout Plan


Date: July 2021 Figure 1.1

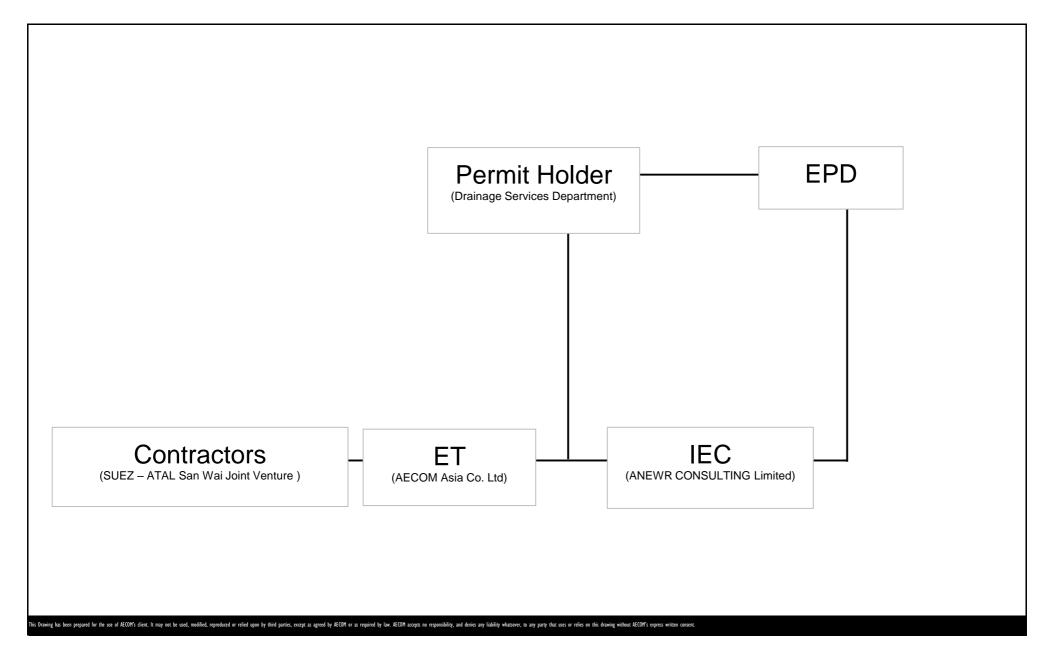
Locations of Odour Monitoring Stations

Date: July 2021 Figure 2.1

Locations of Odour Patrol Point


Date: July 2021 Figure 2.2

Locations of Marine Warer Qaulity Monitoring Stations


Date: July 2021 Figure 3.1

Locations of Effluent Monitoring Stations

Date: July 2021 Figure 3.2

APPENDIX A PROJECT ORGANIZATION STRUCTURE

Contract No. DC/2013/10 Design, Build and Operate San Wai Sewage Treatment Works **Project Organization Structure**

APPENDIX B
CALIBRATION CERTIFICATES OF
MONITORING EQUIPMENT

CERTIFICATE OF CALIBRATION AND TESTING

TSI Instruments Ltd, Stirling Road, Cressex Business Park
High Wycombe Bucks HP12 3ST England
Tel: (Int +44) (UK 0) 1494 459200 Fax: (Int +44) (UK 0) 1494 459700 http://www.airflowinstruments.co.uk

ENVIRONMENT CONDITIONS				
TEMPERATURE	20.5	°C	MODEL	TA410
RELATIVE HUMIDITY	51.91	%RH	CN	W. A.
BAROMETRIC PRESSURE	997.6	hPa	SERIAL NUMBER	TA4102035007
⊠ AS LEFT		⊠1	n Tolerance	
☐ AS FOUND			OUT OF TOLERANCE	

-CALIBRATION VERIFICATION RESULTS-

TE	MPERATURE V	ERIFICATION		SYS	TEM T-200	CONTRACTOR OF THE PARTY AND ADDRESS OF THE PARTY.	Unit: °C
#	STANDARD	MEASURED	ALLOWABLE RANGE	#	STANDARD	MEASURED	ALLOWABLE RANGE
I	0.0	0.1	-0.3~0.3	2	60.0	60.0	59.7~60.3
VE	LOCITY VERI	210					
V E	LOCITI VERI	FICATION		SYST	TEM V-352		Unit: m/s
#	STANDARD	MEASURED	ALLOWABLE RANGE	SYS1	STANDARD	MEASURED	
# 1			ALLOWABLE RANGE -0.03~0.03	71		MEASURED 3.58	Unit: m/s ALLOWABLE RANGE 3.39~3.74

6.12 6.13 5.81~6.42 0.31 0.31 0.28~0.33 9 9.64 9.56 9.15~10.12 4 0.51 0.51 0.48~0.53 10 13.57 13.66 12.89~14.25 1.02 1.00 0.97~1.07 11 19.20 19.32 18.24~20.16 2.05 2.05 1.95~2.16

TSI does hereby certify that the above described instrument conforms to the original manufacturer's specification (not applicable to As Found data) and has been calibrated using standards whose accuracies are traceable to members of the European co-operation for Accreditation (EA) (for example: UKAS, SWEDAC, DAkkS) or has been verified with respect to instrumentation whose accuracy is traceable to some member of EA, or is derived from accepted values of physical constants. TSI's calibration system is registered to ISO-9001:2015.

Measurement Variable Temperature Pressure DC Voltage Pressure	System ID E006020 E006001 E006010 E006059	Last Cal. 26-02-20 28-02-20 28-02-20 28-02-20	Cal. Due 26-02-21 28-02-21 28-02-21 28-02-21	Measurement Variable Temperature Pressure Temp Velocity	System ID E006019 E006038 E006183 E006017	Last Cal. 26-02-20 28-02-20 26-02-20 06-03-20	Cal. Due 26-02-21 28-02-21 26-02-21 06-03-23
---	---	---	--	---	---	---	--

1 8 SEP 2020

DATE

Doc. ID: CERT_GEN_WCC

ALS Technichem (HK) Pty Ltd

11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong

T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:

MR MIKE SHEK

CLIENT:

AECOM ASIA COMPANY LIMITED

ADDRESS:

13/F, TOWER 2, GRAND CENTRAL PLAZA,

138 SHATIN RURAL COMMITTEE ROAD.

SHATIN, HONG KONG

WORK ORDER:

HK2113295

SUB- BATCH:

0

LABORATORY:

HONG KONG

DATE RECEIVED:

08- Apr- 2021

DATE OF ISSUE:

10- Apr- 2021

SPECIFIC COMMENTS

Equipment information (Brand name, Model No., Serial No. and Equipment No.) is provided by client. The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the laboratory or quoted from relevant international standards.

The validity of equipment/ meter performance only applies to the result(s) stated in the report.

Equipment Type:

Multifunctional Meter

Service Nature:

Performance Check

Scope:

Conductivity, Dissolved Oxygen, pH Value, Turbidity, Salinity and Temperature

Brand Name/ Model No.:

[YSI]/ [6820 V2]

Serial No./ Equipment No.:

[12A101545]/ [W.026.35]

Date of Calibration:

08- April- 2021

GENERAL COMMENTS

This is the Final Report and supersedes any preliminary report with this batch number.

Mr Chan Siu Ming, Vico Manager - Inorganic

Ma Sig

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER:

HK2113295

SUB- BATCH:

0

DATE OF ISSUE:

10- Apr- 2021

CLIENT:

AECOM ASIA COMPANY LIMITED

Equipment Type:

Multifunctional Meter

Brand Name/

[YSI]/ [6820 V2]

Model No.: Serial No./

[12A101545]/ [W.026.35]

Equipment No.: Date of Calibration:

08- April- 2021

Date of Next Calibration:

08- July- 2021

PARAMETERS:

Conductivity

Method Ref: APHA (21st edition), 2510B

Expected Reading (µS/cm)	Displayed Reading (μS/cm)	Tolerance (%)
146.9	156.0	+6.2
6667	6672	+ 0.1
12890	13003	+ 0.9
58670	58886	+ 0.4
	Tolerance Limit (%)	± 10.0

Dissolved Oxygen

Method Ref: APHA (21st edition), 45000: G

ction iteliative (Elist continuity)				
Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)		
2.90	2.96	+ 0.06		
5.05	5.19	+ 0.14		
7.55	7.60	+ 0.05		
	Tolerance Limit (mg/L)	±0.20		

pH Value

Method Ref: APHA (21st edition), 4500H: B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.0	4.07	+ 0.07
7.0	7.04	+0.04
10.0	9.98	- 0.02
	Tolerance Limit (pH unit)	±0.20

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Siu Ming, Vico Manager - Inorganic

Ra Si

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER:

HK2113295

SUB- BATCH:

0

DATE OF ISSUE:

10-Apr-2021

CLIENT:

AECOM ASIA COMPANY LIMITED

Equipment Type: Brand Name/

Multifunctional Meter

Brand Name/ Model No.:

[YSI]/ [6820 V2]

Serial No./

[12A101545]/ [W.026.35]

Equipment No.: Date of Calibration:

08- April- 2021

Date of Next Calibration:

08-July-2021

PARAMETERS:

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.1	
4	4.0	+0.0
10	10.4	+4.0
20	20.6	+ 3.0
50	50.5	+1.0
100	97.5	- 2.5
	Tolerance Limit (%)	± 10.0

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.00	9 = /3=
10	10.01	+ 0.1
20	19.38	- 3.1
30	29.86	- 0.5
	Tolerance Limit (%)	± 10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Siu Ming, Vico Manager - Inorganic

Ma Ship

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

WORK ORDER:

HK2113295

SUB- BATCH:

0

DATE OF ISSUE:

10- Apr- 2021

CLIENT:

AECOM ASIA COMPANY LIMITED

Equipment Type:

Multifunctional Meter

Brand Name/ Model No.:

[YSI]/ [6820 V2]

Serial No./

[12A101545]/ [W.026.35]

Equipment No.: Date of Calibration:

08- April- 2021

Date of Next Calibration:

08-July-2021

PARAMETERS:

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.5	10.25	- 0.3
20.0	19.97	- 0.0
40.0	40.04	+0.0
	Tolerance Limit (°C)	± 2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless

of equipment precision or significant figures.

Mr Chan Siu Ming, Vico Manager - Inorganic

Ma Air

APPENDIX C LOGSHEET OF ODOUR PATROL

Contract No. DC/2013/10

Design, Build and Operate San Wai Sewage Treatment Works

Monthly Odour Patrol Record Log Sheet (Operational Phase)

Date: 29 June 2021 Temperature: 30.0°C

Checkpoint ID	Time	Weather Condition	Wind Direction	Odour Intensity	Odour Characteristics	Possible Odour Source	Direction from Source	Duration of Odour		
1	09:55	Sunny	S	1	Vehicle exhaust	Motor service centre	Side-wind	Intermittent / Continuous		
2	10:00	Cloudy	S	1	Vehicle exhaust	Car park	Side-wind	Intermittent / Continuous		
3	10:05	Sunny	S	1	Grassy	Vegetation	Side-wind	Intermittent / Continuous		
4	10:10	Sunny	S	1	Biogas	Ultra-violet (UV) irradiation disinfection system	Downwind	Intermittent / Continuous		
5	10:15	Sunny	S	1	Vehicle exhaust	Traffic Road	Downwind	Intermittent / Continuous		
6	10:20	Sunny	S	1	Vehicle exhaust	Traffic Road	Downwind	Intermittent / Continuous		

Remark for Odour Intensity:-

0: Not detectable (No odour perceived or an odour so weak that it cannot be easily characterised or described)

1: Slight (Slight identifiable odour)
2: Moderate (Moderate identifiable odour)
3: Strong (Strong identifiable odour)
4: Extreme (Extreme severe odour)

Contract No. DC/2013/10

Design, Build and Operate San Wai Sewage Treatment Works

Monthly Odour Patrol Record Log Sheet (Operational Phase)

Date: 29 June 2021 Temperature: 28.1°C

Checkpoint ID	Time	Weather Condition	Wind Direction	Odour Intensity	Odour Characteristics	Possible Odour Source	Direction from Source	Duration of Odour
1	16:20	Sunny	S	0	N/A	N/A	Side-wind	Intermittent / Continuous
2	16:25	Sunny	S	1	Vehicle exhaust	Traffic Road	Side-wind	Intermittent / Continuous
3	16:28	Sunny	S	1	Grassy	Vegetation	Side-wind	Intermittent / Continuous
4	16:33	Sunny	S	1	Biogas	Ultra-violet (UV) irradiation disinfection system	Downwind	Intermittent / Continuous
5	16:38	Sunny	S	1	Vehicle exhaust	Traffic Road	Downwind	Intermittent / Continuous
6	16:42	Sunny	S	1	Vehicle exhaust	Traffic Road	Downwind	Intermittent / Continuous

Remark for Odour Intensity:-

0: Not detectable (No odour perceived or an odour so weak that it cannot be easily characterised or described)

1: Slight (Slight identifiable odour)
2: Moderate (Moderate identifiable odour)
3: Strong (Strong identifiable odour)
4: Extreme (Extreme severe odour)

APPENDIX D
MARINE WATER QUALITY
MONITORING RESULTS

Appendix D - Marine Water Quality Monitoring Results

Operational Phase Marine Water Quality Monitoring Results on 6/24/2021

Round	Location	Weather Condition	Sea Condition*	Sampling Time	Water Depth (m)	Sampling Depth (m)	Temperatu	ıre (°C)	рН	Salinity (ppt)		aturation (%)	Diss Oxy (m	gen	Turb (N		Suspended Solids (mg/L)	Cadmium (μg/L)	Copper (μg/L)	Nickel (μg/L)	Lead (μg/L)	Mercury (μg/L)	Chromium (µg/L)	Zinc (μg/L)	Total Inorganic Nitrogen, TIN (mg/L)	Ammonia- Nitrogen, NH ₃ -N (mg/L)	Biochemical Oxygen Demand, BOD ₅ (mg/L)	E. coli (cfu/100m L)	PAHs (μg/L)	PCBs (μg/L)
		Condition	Condition	Time	Depth (m)	Depth (m)	Value A	Average Va	lue Average	Value Average	e Value	Average	Value	Average	Value	Average	Value Avera	ge Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
R1	W1	Cloudy	Moderate	5:19	14.1	Surface 1.0 Middle 7.1 Bottom 13.1	24.8 24.3 24.2	24.4 7.	42 41 7.4 41	23.8 27.2 27.8 26.3	68.8 65.6 62.0	65.5	5.0 4.7 4.4	4.7	5.5 5.6 5.9	5.7	6 6 5.7	<0.5 <0.5 <0.5	6 4 4	2 2 2	<1 <1 <1	<0.5 <0.5 <0.5	1 <1 1	8 50 11	0.92 0.92 0.91	0.15 0.15 0.14	2 2 2	18 18 194	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R2	W1	Cloudy	Moderate	7:19	14.2	Surface 1.0 Middle 7.1 Bottom 13.2	24.7 24.2	24.3 7.		20.9 27.6 25.4 27.7	72.2	65.9	5.3 4.7 4.3	4.8	4.5 4.5 4.5	4.5	8 9 7.7	<0.5	4	2 2	<1 <1 <1	<0.5 <0.5 <0.5	1 <1 <1	19 27 57	0.88 0.91 0.88	0.15 0.17 0.15	-2 -2 -2	12 14 30	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R3	W1	Cloudy	Moderate	9:24	14.3	Surface 1.0 Middle 7.2	24.7 24.2	7. 24.4 7.	33 29 7.3	21.9 27.0 25.4	64.6 58.2	60.1	4.7 4.2	4.3	5.5 5.6	5.6	6 7 9.0	<0.5 <0.5	10 4	4	7 <1	<0.5 <0.5	2	92 19	0.85 0.83	0.14 0.14	<2 <2	12 8	<0.1 <0.1	<0.02 <0.02
R4	W1	Cloudy	Moderate	11:22	14.4	Bottom 13.3 Surface 1.0 Middle 7.2	24.7 24.3	7. 24.4 7.	29 30 26 7.3	27.2 22.8 27.2 25.8		66.3	5.0 4.9	4.8	5.6 5.4 5.5	5.5	8 6 8.0		4 4	2 2	<1 2 <1	0.8 1.1 <0.5	1 1 <1	9 10 9	0.84 0.89 0.88	0.14 0.18 0.17	-2 -2 -2	52 82	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R5	W1	Cloudy	Moderate	13:20	14.5	Middle 7.3	24.6 24.3	7. 24.4 7.	25 30 26 7.3	27.3 23.0 26.8 25.6		61.1	4.5 4.5 4.4	4.4	5.5 5.3 5.2	5.2	10 4 7 5.0		4 4	5 2 1	<1 <1 <1	<0.5 <0.5 <0.5	1 <1 1	53 6 7	0.81 0.80	0.11 0.12 0.12	<2 <2 <2	34 30 42	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R6	W1	Cloudy	Moderate	15:21	14.1	Bottom 13.5 Surface 1.0 Middle 7.1	25.0 24.3	7. 24.5 7.	26 29 24 7.3	27.0 22.1 26.7 25.3		66.5	5.0 4.8	4.8	5.1 5.2 5.4	5.3	7 7 7.0		4 4	3 2	<1 <1 <1	<0.5 <0.5 <0.5	<1 <1 <1	13 6 11	0.82 0.74 0.79	0.15 0.11 0.15	-2 -2 -2	42 28 48	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R1	W2	Cloudy	Moderate	5:30	16.0	Bottom 13.1 Surface 1.0 Middle 8.0	24.7 24.2	24.3 7.	23 43 37 7.4	26.9 23.9 27.8 26.5		61.9	4.6 4.5	4.5	5.2 5.6	5.5	7 4 4 4.3		4 4	2 2	<1 <1 <1	<0.5 <0.5 <0.5	<1 1 1	38 14 8	0.80 0.92 0.91	0.17 0.15 0.15	2 2 2	74 14	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R2	W2	Cloudy	Moderate	7:30	16.2	Middle 8.1	24.8 24.2	7. 24.4 7.	37 34 30 7.3	27.9 24.1 27.5 26.4	70.0 65.0	65.9	5.0 4.7	4.7	5.7 4.5 4.4	4.4	5 6 8 7.7	<0.5 <0.5 <0.5	5 4	2 2 2	<1 <1 <1	<0.5 <0.5 <0.5	1 <1 <1	7 10 9	0.92 0.85 0.83	0.15 0.14 0.13	<2 <2 <2	12 8 12	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R3	W2	Cloudy	Moderate	9:33	16.3	Bottom 15.2 Surface 1.0 Middle 8.2	24.7 24.3		34 29 7.3	27.6 22.0 26.7 25.3		64.8	4.5 4.9 4.7	4.7	5.2 5.4	5.3	9 8 4 5.7		4 12	2 5	<1 <1 <1	<0.5 <0.5 <0.5	1 <1 <1	8 8 66	0.83 0.82 1.29	0.12 0.14 0.63	<2 <2 <2	16 44 22	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R4	W2	Cloudy	Moderate	11:32	16.6	Bottom 15.3 Surface 1.0 Middle 8.3	24.7 24.3	24.4 7.	29 34 27 7.3	27.2 21.9 26.9 25.4		63.8	4.5 4.7 4.6	4.6	5.4 5.2 5.4	5.4	5 4 4 4.0		4 4	3 2	<1 <1 <1	<0.5 <0.5 <0.5	<1 <1 <1	7 10 8	0.86 0.85 0.81	0.17 0.15 0.12	<2 <2 <2	36 64 34	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R5	W2	Cloudy	Moderate	13:29	16.4	Bottom 15.6 Surface 1.0 Middle 8.2	24.6 24.3	7. 24.4 7.	27 29 26 7.3	27.3 23.9 26.3 25.6		61.6	4.4 4.5 4.5	4.5	5.6 5.2 5.5	5.4	4 7 5.7		5 4	2 2 2	<1 <1 <1	<0.5 <0.5 <0.5	<1 <1 <1	7 10 7	0.82 0.78 0.78	0.14 0.14 0.14	-2 -2 -2	46 44 72	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R6	W2	Cloudy	Moderate	15:33	16.2	Bottom 15.4 Surface 1.0 Middle 8.1	25.0 24.3	24.6 7.	27 29 24 7.3	26.6 22.2 26.7 25.2		66.9	5.0 4.9	4.8	5.4 4.8 4.9	4.9	6 7 8 7.7		4 4 4	1 2 3	<1 <1 1	0.6 <0.5 <0.5	<1 <1 3	6 14 84	0.81 0.77 0.73	0.15 0.15 0.10	<2 <2 <2	42 60 50	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R1	W3	Cloudy	Moderate	6:35	8.0	Bottom 15.2 Surface 1.0 Middle 4.0	24.7	7.	23 42 35 7.4	26.9 21.2 26.0 24.9	71.2 64.7	66.0	5.2 4.6	4.8	4.9 4.1 4.3	4.3	6 6 7.0	<0.5 <0.5 <0.5	4 4 4	2 2 2	<1 <1 <1	<0.5 <0.5 <0.5	<1 1 1	33 7	0.76 0.90 0.88	0.13 0.16 0.14	<2 <2 <2	46 18 40	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
						Bottom 7.0		7.		27.5	62.2		4.5		4.4		9	<0.5	4	2	<1	<0.5	1	18	0.94	0.18	<2	88	<0.1	< 0.02
R2	W3	Cloudy	Moderate	8:38	8.2			24.4 7.	33 29 7.3 28	23.4 26.5 25.8 27.4	65.0 64.1 62.2	63.8	4.7 4.7 4.5	4.6	4.6 4.8 4.8	4.7	5 4 7.0 12	<0.5 <0.5 <0.5	5 4 4	2 2 2	\ \ \	1.1 <0.5 <0.5	1 <1 1	16 12 35	0.84 0.86 0.86	0.14 0.14 0.14	42 42 42	24 16 10	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R3	W3	Cloudy	Moderate	10:38	8.2	Surface 1.0 Middle 4.1 Bottom 7.2		24.4 7.	30 28 7.3 29	24.2 26.3 26.3 25.6	62.1 61.7 61.0	61.6	4.5 4.4 4.4	4.4	4.8 4.8 4.8	4.8	5 7 5.3 4	<0.5 <0.5 <0.5	9 3 4	3 2 1	6 <1 <1	<0.5 <0.5 0.6	<1 1 1	51 73 11	0.87 0.79 0.81	0.17 0.10 0.12	<2 <2 <2	6 16 38	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R4	W3	Cloudy	Moderate	12:39	8.2	Surface 1.0 Middle 4.1 Bottom 7.2	24.2	24.3 7.	30 25 7.3 25	23.0 27.1 25.8 27.4	62.7 62.4 60.4	61.8	4.6 4.5 4.3	4.5	4.4 4.5 4.5	4.5	4 8 5.7 5	<0.5 <0.5 <0.5	4 4 2	2 1 1	<1 <1 <1	<0.5 <0.5 <0.5	<1 <1 <1	62 9 6	0.81 0.80 0.83	0.11 0.12 0.15	-22 -22 -22	28 40 42	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R5	W3	Cloudy	Moderate	14:38	8.0	Surface 1.0 Middle 4.0 Bottom 7.0		24.5 7.	28 23 7.2 23	23.5 25.4 25.8 24.9	65.0 64.6 63.4		4.7 4.7 4.6	4.7	5.7 5.9 6.2	5.9	6 4 6.7	<0.5 <0.5 <0.5	4 4 4	2 2 2	<1 <1 <1	<0.5 <0.5 <0.5	<1 1 <1	9 14 14	0.79 0.77 0.80	0.14 0.10 0.13	-22 -22 -22	32 54 44	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R6	W3	Cloudy	Moderate	16:37	7.7	Surface 1.0 Middle 3.9 Bottom 6.7	24.4	24.5 7. 7.	22 7.2	22.2 25.0 24.7 26.8	67.5 66.5 64.9	66.3	4.9 4.9 4.7	4.8	5.2 5.5 5.5	5.4	9 6 7.3 7	<0.5 <0.5 <0.5	8 8 4	3 2 1	6 4 <1	<0.5 <0.5 <0.5	<1 <1 <1	36 36 11	0.74 0.76 0.77	0.10 0.13 0.14	<2 <2 <2	36 52 42	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R1	W4	Cloudy	Moderate	5:40	20.6	Surface 1.0 Middle 10.3 Bottom 19.6	24.3	24.4 7.	40 36 7.4 36	22.4 26.9 25.6 27.6	68.2 64.3 60.8	64.4	5.0 4.6 4.4	4.7	4.8 5.2 5.8	5.3	8 6 6.0 4	<0.5 <0.5 <0.5	5 5 4	2 2 3	1 1 2	0.5 0.5 <0.5	1 2 2	10 48 25	0.91 0.94 0.88	0.15 0.17 0.13	<2 <2 <2	26 28 38	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R2	W4	Cloudy	Moderate	7:42	20.1	Surface 1.0 Middle 10.1 Bottom 19.1	24.8 24.2	7. 24.4 7.		22.1 27.4 25.6 27.5	67.3	62.6	4.9 4.4 4.2	4.5	5.1 5.4 5.5	5.3	6 5 5.0 4	<0.5 <0.5 <0.5	4 4 4	2 1 1	<1 <1 <1	<0.5 <0.5 <0.5	<1 1 <1	19 5 7	0.86 0.90 0.85	0.18 0.17 0.12	-2 -2 -2	10 8 8	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R3	W4	Cloudy	Moderate	9:45	20.1	Surface 1.0 Middle 10.1 Bottom 19.1	24.8	7.	32 27 7.3	23.0 27.1 25.7 27.1	66.4	64.0	4.8 4.7 4.4	4.6	5.5 5.6 5.5	5.5	5 4 4.0	<0.5	4 6 4	1 2	<1 <1 <1	<0.5 <0.5 <0.5	1 5 <1	10 5 10	0.81 0.86 0.84	0.12 0.13 0.17 0.15	2 2	24 70 40	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02 <0.02
R4	W4	Cloudy	Moderate	11:43	20.5	Surface 1.0 Middle 10.3 Bottom 19.5	24.6 24.3	24.4 7.	32 26 7.3	21.3 27.3 25.3 27.4	66.1	63.2	4.7 4.6 4.4	4.6	5.5 5.4 5.5	5.5	3 5 5.0 7	<0.5	4 5 4	2 2 2	<1 1 1	0.7 <0.5 <0.5	<1 <1 <1	14 9 13	0.86 0.82 0.80	0.17 0.12 0.11	2 2	32 68 50	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02 <0.02
R5	W4	Cloudy	Moderate	13:41	20.1		24.6 24.4	7. 24.4 7.	29 26 7.3 27	24.1 26.0 25.5 26.3	63.1	62.2	4.6 4.5 4.4	4.5	5.2 5.1 5.1	5.1	8 5 6.3	<0.5	4 4	2 2 2	<1 <1 <1	<0.5 <0.5 <0.5 <0.5	<1 <1 <1	14 8 9	0.80 0.83 0.81	0.14 0.17 0.15	-22 -22 -22 -22	40 32 50	<0.1 <0.1 <0.1 <0.1	<0.02 <0.02 <0.02 <0.02
R6	W4	Cloudy	Moderate	15:42	20.1	Surface 1.0 Middle 10.1 Bottom 19.1	25.0 24.3	24.6 7.	31 25 7.3 24	22.1 26.8 25.3 26.9	69.5	67.0	5.0 5.0 4.6	4.8	4.4 4.8 4.8	4.7	9 8 8.3	<0.5	4 4 4	2 1 2	<1 <1 <1	<0.5 <0.5 <0.5	1 <1 <1	12 7 9	0.72 0.72 0.72 0.76	0.10 0.11 0.13	42 42 42	46 38 48	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02 <0.02

Remark: * DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Appendix D - Marine Water Quality Monitoring Results

Operational Phase Marine Water Quality Monitoring Results on 6/24/2021

Round	Location	Weather Condition	Sea Condition*	Sampling Time	Water Depth (m)	Sampling Depth (m)	Temperat	ure (°C)	рН	Salinity (ppt)	y D	OO Satura (%)	ation	Dissolv Oxyge (mg/l	en	Turb (N7		Suspended Solids (mg/L)	Cadmium (μg/L)	Copper (µg/L)	Nickel (μg/L)	Lead (μg/L)	Mercury (μg/L)	Chromium (μg/L)	Zinc (μg/L)	Total Inorganic Nitrogen, TIN (mg/L)	Ammonia- Nitrogen, NH ₃ -N (mg/L)	Biochemical Oxygen Demand, BOD ₅ (mg/L)	E. coli (cfu/100m L)	PAHs (μg/L)	PCBs (μg/L)
		Condition	Condition	Time	Depth (m)	Depth (m)	Value	Average \	alue Averag	e Value Av	verage V	/alue Av	verage	Value A	verage	Value	Average	Value Average	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value	Value
R1	W5	Cloudy	Moderate	5:04	18.6	Surface 1.0 Middle 9.3 Bottom 17.6	24.8 24.3 24.1	24.4	7.50 7.47 7.5	23.5 27.2 28.1	26.3	71.7 64.4 61.4	65.8	5.2 4.6 4.4	4.7	5.4 5.8 5.5	5.6	5 6 6.3	<0.5 <0.5	6 4	3 1	3 1	<0.5 <0.5	2 <1 3	19 12 50	0.90 0.89 0.90	0.15 0.14 0.16	2 2 2	48 64 24	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R2	W5	Cloudy	Moderate	7:03	18.5	Surface 1.0 Middle 9.3	24.8 24.2	24.4	7.37 7.32 7.3	22.9 27.6	26.1 6	66.5 65.0	64.0	4.8 4.7	4.6	4.6 4.5	4.5	4 9 7.3	<0.5 <0.5	9	5 2	6 <1	<0.5 <0.5	<1 1	45 45 45	0.85 0.91	0.13 0.17	-22 -22	8 14	<0.1 <0.1	<0.02 <0.02
R3	W5	Cloudy	Moderate	9:03	18.8	Bottom 17.5 Surface 1.0 Middle 9.4	24.7 24.2	24.3	7.32 7.32 7.28 7.3		25.9 6		61.3	4.3 4.7 4.4	4.4	5.3 5.8	5.6	5 4 4.7	<0.5 <0.5 <0.5	5 4	3 2	<1 <1 1	<0.5 <0.5 <0.5	<1 1 <1	34 17	0.90 0.83 0.82	0.19 0.12 0.12	<2 <2 <2	10 58 50	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R4	W5	Cloudy	Moderate	11:03	18.6	Bottom 17.8 Surface 1.0 Middle 9.3	24.7 24.3	24.4	7.28 7.33 7.26 7.3		25.2 6		67.4	5.2 4.9	4.9	5.8 5.4 5.6	5.9	5 7 6 6.0	<0.5 <0.5 <0.5	5 5	2 3 2	3 <1	<0.5 <0.5 <0.5	2 <1	14 15 14	0.80 0.83 0.78	0.11 0.15 0.10	<2 <2 <2	76 52 40	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R5	W5	Cloudy	Moderate	13:02	18.5	Bottom 17.6 Surface 1.0 Middle 9.3	24.6	24.4	7.27 7.31 7.26 7.3	27.5 22.0 27.0	6	62.7 64.4 62.2	62.3	4.5 4.6 4.6	4.5	6.6 5.6 5.8	5.7	5 7 13 8.0	<0.5 <0.5 <0.5	5 4	1 2 1	<1 <1 <1	<0.5 <0.5 <0.5	<1 <1 <1	15 62 11	0.82 0.80 0.76	0.14 0.14 0.12	<2 <2 <2	28 38 40	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R6	W5	Cloudy	Moderate	15:03	18.1	Bottom 17.5 Surface 1.0 Middle 9.1			7.26 7.31 7.26 7.3	27.2 22.1 26.7	7	60.2 70.9 68.4	67.6	5.1 5.0	4.9	5.8 5.9 5.6	5.7	7 7 6.7	<0.5 <0.5 <0.5	5 4 4	2 2 2	<1 <1 <1	<0.5 <0.5 <0.5	<1 <1 <1	17 23 22	0.77 0.76 0.77	0.12 0.11 0.14	<2 <2 <2	48 36 48	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R1	W6	Cloudy	Moderate	6:22	9.1	Bottom 17.1 Surface 1.0 Middle 4.6	24.3 24.7	-	7.25 7.38 7.35 7.4	27.0 23.9	6	63.5 66.6 64.1	64.3	4.6 4.8 4.7	4.6	5.6 5.7 5.7	5.8	6 5 6 6.0	<0.5 <0.5 <0.5	4 4	2 2	<1 <1 1	<0.5 <0.5 <0.5	<1 1 1	6 18 18	0.74 0.89 0.90	0.13 0.16 0.16	<2 <2 <2	48 32 16	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R2	W6	Cloudy	Moderate	8:27	9.3	Bottom 8.1	24.2 24.7		7.33 7.35 7.29 7.3	27.5	6	62.3 69.1		4.5 5.0 4.8	4.8	5.9 4.4 4.5	4.5	7 7 4 5.0	<0.5 <0.5 <0.5	4 4	1 2	- <1 1 <1	<0.5 <0.5 <0.5	1 1 <1	14 10 19	0.91 0.88 0.81	0.17 0.16 0.12	-2 -2 -2	42 12 10	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R3	W6	Cloudy	Moderate	10:28	9.1	Bottom 8.3 Surface 1.0	24.3		7.30 7.29 7.27 7.3	26.9 25.4	6	65.5 60.4		4.7 4.3 4.3	4.3	4.5 5.4 5.4	5.4	5 4 4.7	<0.5 <0.5 <0.5	3 4 4	1 2 2	<1 <1	<0.5 <0.5 <0.5	<1 <1 1	13 7 10	0.81 0.88 0.82	0.12 0.11 0.17 0.11	2 2	6 66 50	<0.1 <0.1 <0.1 <0.1	<0.02 <0.02 <0.02 <0.02
R4	W6	Cloudy	Moderate	12:28	9.2	Bottom 8.1	24.3 24.6		7.28 7.31 7.26 7.3	26.7 22.0	5	59.6 65.3		4.3 4.7 4.6	4.6	5.5 4.8 4.8	4.8	5 5 5 7.3	<0.5 <0.5 <0.5	5 5	2 2 2	2 <1 3	<0.5 <0.5 <0.5	1 <1 1	14 56 54	0.85 0.80 0.81	0.14 0.13 0.13	2 2	56 42 48	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02 <0.02
R5	W6	Cloudy	Moderate	14:27	9.1	Bottom 8.2 Surface 1.0	24.2 24.6	-	7.26 7.32	27.5 22.5	7	61.9 71.5	68.5	5.2	5.0	4.9 5.8	5.7	12 6 4 5.3	<0.5 <0.5	4 4	2	<1 <1	<0.5	<1 <1	14	0.79 0.78	0.11 0.13	<2 <2	46 46	<0.1 <0.1	<0.02 <0.02
R6	W6	Cloudy	Moderate	16:26		Middle 4.6 Bottom 8.1 Surface 1.0	24.4 25.0	-	7.28 7.28	25.6 22.1	6	66.8 69.7	67.7	4.9 4.8 5.0		5.7 5.7 4.6		6	<0.5 <0.5 <0.5	4	2 1 2	<1 <1 1	<0.5 <0.5 <0.5	<1 <1 5	10 6 7	0.81 0.78 0.73	0.17 0.13 0.12	<2 <2 <2	42 34 50	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R1	W7	Cloudy	Moderate	6:02	9.2	Middle 4.6 Bottom 8.2 Surface 1.0	24.3 24.7		7.23 7.2 7.22 7.41	27.0	6	66.2 64.5		4.9 4.8	4.9	4.7 4.7 5.2	4.7	6 6.7 8	<0.5 <0.5 <0.5	4 3 4	2 1 2	<1 <1 <1	<0.5 <0.5 <0.5	<1 <1 1	10 16 11	0.70 0.75 0.86	0.10 0.14 0.13	<2 <2 <2	54 32 12	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R2	W7	Cloudy	Moderate	8:04	6.8	Middle 3.4 Bottom 5.8 Surface 1.0	24.3		7.36 7.4 7.35 7.36	27.4	7	61.1 70.8		4.6 4.4 5.1	4.6	5.4 5.8 4.4	5.5	7 7.7 7 4	<0.5 <0.5 <0.5	4 4	2 2	1 1	<0.5 <0.5	1 1	16 7 9	0.90 0.91 0.85	0.17 0.17 0.14	<2 <2 <2	32 20 18	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R3	W7	Cloudy	Moderate	10:07	6.5	Middle 3.3 Bottom 5.5 Surface 1.0			7.31 7.3 7.30 7.30	25.4 27.0 25.6	6	65.3 62.8 63.9	66.3	4.8 4.5 4.6	4.8	4.3 4.4 5.1	4.4	4 4.0 4 5	<0.5 <0.5	3 3	2 1 2	<1 <1	0.5 <0.5 <0.5	1 1	7 37	0.88 0.85 0.85	0.16 0.15 0.15	<2 <2	20 14 42	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R4	W7	Cloudy	Moderate	12:07	7.0	Middle 3.5 Bottom 6.0 Surface 1.0	24.4 24.3	24.4	7.28 7.3 7.28		26.3 6 6		63.0	4.6 4.4 4.8	4.5	5.3 5.3 5.2	5.2	8 6.3 6	<0.5 <0.5 <0.5	4 4 5	1 2	<1 <1 <1	<0.5 <0.5 <0.5	<1 2 <1	11 20 10	0.86 0.81 0.83	0.14 0.11 0.15	<2 <2 <2	50 42 172	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R5			Moderate		6.9	Middle 3.5 Bottom 5.9	24.4 24.3	24.4	7.26 7.3 7.25	26.3 27.3	25.3 6 6		62.9	4.5 4.4	4.6	5.1 5.1	5.1	4 6.7 10	<0.5 <0.5	4	2 2	1 <1	0.8 <0.5	<1 3	10 10	0.83 0.78	0.16 0.10	<2 <2	48 52	<0.1 <0.1	<0.02 <0.02
	W7	Cloudy		14:03	7.0	Middle 3.5 Bottom 6.0	24.4	24.5	7.31 7.27 7.3 7.26	26.0	24.5 6	63.6 62.6	64.6	5.0 4.6 4.5	4.7	5.5 5.5 5.5	5.5	5 4.3 4	<0.5 <0.5 <0.5	6 4 3	2 2 2	2 <1 <1	<0.5 <0.5 <0.5	<1 <1	28 6 9	0.76 0.75 0.80	0.12 0.10 0.15	-2 -2 -2	44 46 32	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R6	W7	Cloudy	Moderate	16:04	6.9	Middle 3.5 Bottom 5.9	24.4	24.7	7.29 7.26 7.3 7.25	25.9	24.1 6 6	67.8	69.3	5.1 5.0 4.9	5.0	4.5 4.6 4.6	4.6	25 9 14.0 8	<0.5 <0.5 <0.5	4 4 4	2 2 2	<1 <1 <1	<0.5 <0.5 <0.5	<1 <1 <1	12 9 12	0.75 0.72 0.71	0.13 0.12 0.10	<2 <2 <2	32 50 40	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R1	W8	Cloudy	Moderate	5:51	6.0	Middle 3.0 Bottom 5.0		24.6	7.40 7.37 7.4 7.36	26.5	24.5 6	65.6	67.1	5.0 4.9 4.8	4.9	5.7 5.6 5.6	5.6	6 9 7.7 8	<0.5 <0.5 <0.5	5 4 4	2 2 2	1 <1 <1	<0.5 <0.5 1	1 1	19 16 8	0.92 0.90 0.86	0.17 0.17 0.13	42 42 42	22 14 14	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R2	W8	Cloudy	Moderate	7:53	6.1	Middle 3.1 Bottom 5.1	24.4	24.5	7.38 7.31 7.3 7.31	27.0	24.9 6 6	63.7	68.9	5.4 5.0 4.6	5.0	4.9 5.5 5.0	5.1	10 4 6.0 4	<0.5 <0.5 <0.5	5 5 4	2 3 2	<1 <1 <1	<0.5 <0.5 <0.5	1 1 <1	19 30 39	0.85 0.82 0.84	0.14 0.12 0.12	2 2 2	18 18 14	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R3	W8	Cloudy	Moderate	9:56	6.3	Surface 1.0 Middle 3.2 Bottom 5.3	24.5	24.5	7.32 7.29 7.3 7.28	22.9 26.3 26.8	25.3 6	66.0 64.5 62.7	64.4	4.8 4.6 4.5	4.7	5.1 5.4 5.4	5.3	5 6 5.0 4	<0.5 <0.5 <0.5	4 5 4	2 2 2	1 2 <1	<0.5 0.5 <0.5	1 1 1	14 17 9	0.83 0.84 0.82	0.13 0.14 0.12	42 42 42	60 46 56	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R4	W8	Cloudy	Moderate	11:55	6.2	Surface 1.0 Middle 3.1 Bottom 5.2	24.3	24.4	7.31 7.26 7.3 7.25	22.5 27.0 27.3	25.6	63.2 62.6 61.7	62.5	4.6 4.5 4.4	4.5	5.2 5.3 5.3	5.3	6 5 5 5 0	<0.5 <0.5 <0.5	4 4 4	2 2 2	1 <1 <1	<0.5 <0.5 <0.5	1 <1 <1	13 13 10	0.78 0.81 0.83	0.12 0.14 0.15	2 2 2	54 28 48	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R5	W8	Cloudy	Moderate	13:52	6.1		24.6	24.5	7.29 7.26 7.3 7.26	23.8 25.3 26.0	25.1 6	63.6 62.3 61.9	62.6	4.6 4.5 4.5	4.5	5.4 5.5 5.6	5.5	8 4 5.7 5	<0.5 <0.5 <0.5	4 4 4	2 2 2	<1 <1 <1	<0.5 <0.5 <0.5	<1 <1 <1	8 26 26	0.75 0.76 0.77	0.10 0.11 0.12	2 2 2	30 68 60	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02
R6	W8	Cloudy	Moderate	15:53	6.2	Surface 1.0	24.9 24.7	24.7	7.31 7.29 7.3 7.26	21.6	23.5 7	70.7	70.0	5.1 5.1 5.0	5.1	4.5 4.8 4.8	4.7	7 6 6.3	<0.5 <0.5 <0.5	4 3 4	2 2 1	<1 <1 <1	0.8 <0.5 <0.5	<1 1 <1	6 10 7	0.70 0.73 0.71	0.09 0.11 0.09	2 2	46 52 38	<0.1 <0.1 <0.1	<0.02 <0.02 <0.02 <0.02

Remark: * DA: Depth-Averaged

^{**} Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

APPENDIX E LABORATORY ANALYIS RESULTS FOR MARINE WATER QUALITY MONITORING

TEST REPORT

APPLICANT:

SUEZ NWS Limited

Room 702, 7/F, Lee Garden Two,

28 Yun Ping Road, Causeway Bay, Hong Kong

Report No.: 35301

Date of Issue: 2021-07-06

Date Received: 2021-06-24 Date Tested: 2021-06-24

Date Completed: 2021-07-06

ATTN:

Mr. Cyrus Fung

Page:

1 of 3

Sample Description:

144 liquid samples as received from customer said to be seawater

Laboratory No. :

35301

Sampling Date :

2021-06-24

Test Requested & Methodology:

Item	Parameters	Ref. Method	Limit of Reporting	
1	Suspended Solids (SS)	APHA 17ed 2540 D	2.5 mg/L	

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

General Manager

TEST REPORT

Report No.:

35301

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:

2021-06-24

Date Completed:

2021-07-06

Page:

2 of 3

Results:

Sample ID Sample No.		Suspended Solids	Sample ID	Sample No.	Suspended Solids
		(mg/L)		APP CONTRACT CONTRACT TO SECURITY	(mg/L)
W1-S R1	35301-1	6	W5-M R2	35301-38	9
W1-M R1	35301-2	6	W5-B R2	35301-39	9
W1-B R1	35301-3	5	W6-S R2	35301-40	7
W2-S R1	35301-4	4	W6-M R2	35301-41	4
W2-M R1	35301-5	4	W6-B R2	35301-42	4
W2-B R1	35301-6	5	W7-S R2	35301-43	4
W3-S R1	35301-7	6	W7-M R2	35301-44	4
W3-M R1	35301-8	6	W7-B R2	35301-45	4
W3-B R1	35301-9	9	W8-S R2	35301-46	10
W4-S R1	35301-10	8	W8-M R2	35301-47	4
W4-M R1	35301-11	6	W8-B R2	35301-48	4
W4-B R1	35301-12	4	W1-S R3	35301-49	6
W5-S R1	35301-13	5	W1-M R3	35301-50	7
W5-M R1	35301-14	6	W1-B R3	35301-51	14
W5-B R1	35301-15	8	W2-S R3	35301-52	8
W6-S R1	35301-16	5	W2-M R3	35301-53	4
W6-M R1	35301-17	6	W2-B R3	35301-54	5
W6-B R1	35301-18	7	W3-S R3	35301-55	5
W7-S R1	35301-19	9	W3-M R3	35301-56	7
W7-M R1	35301-20	7	W3-B R3	35301-57	4
W7-B R1	35301-21	7	W4-S R3	35301-58	5
W8-S R1	35301-22	6	W4-M R3	35301-59	4
W8-M R1	35301-23	9	W4-B R3	35301-60	3
W8-B R1	35301-24	8	W5-S R3	35301-61	5
W1-S R2	35301-25	8	W5-M R3	35301-62	4
W1-M R2	35301-26	9	W5-B R3	35301-63	5
W1-B R2	35301-27	6	W6-S R3	35301-64	5
W2-S R2	35301-28	6	W6-M R3	35301-65	4
W2-M R2	35301-29	8	W6-B R3	35301-66	5
W2-B R2	35301-30	9	W7-S R3	35301-67	5
W3-S R2	35301-31	5	W7-M R3	35301-68	8
W3-M R2	35301-32	4	W7-B R3	35301-69	6
W3-B R2	35301-33	12	W8-S R3	35301-70	5
W4-S R2	35301-34	6	W8-M R3	35301-71	6
W4-M R2	35301-35	5	W8-B R3	35301-72	4
W4-M R2	35301-36	4	W1-S R4	35301-73	8
W5-S R2	35301-37	4	W1-M R4	35301-74	6

Remarks: $1) \le less than$

TEST REPORT

Report No.:

35301

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:

2021-06-24

Date Completed:

2021-07-06

Page:

3 of 3

Sample ID	Sample No.	Suspended Solids (mg/L)	Sample ID	Sample No.	Suspended Solids (mg/L)
W1-B R4	35301-75	10	W5-M R5	35301-110	13
W2-S R4	35301-76	4	W5-B R5	35301-111	4
W2-M R4	35301-77	4	W6-S R5	35301-112	6
W2-B R4	35301-78	4	W6-M R5	35301-113	4
W3-S R4	35301-79	4	W6-B R5	35301-114	6
W3-M R4	35301-80	8	W7-S R5	35301-115	4
W3-B R4	35301-81	5	W7-M R5	35301-116	5
W4-S R4	35301-82	3	W7-B R5	35301-117	4
W4-M R4	35301-83	5	W8-S R5	35301-118	8
W4-B R4	35301-84	7	W8-M R5	35301-119	4
W5-S R4	35301-85	7	W8-B R5	35301-120	5
W5-M R4	35301-86	6	W1-S R6	35301-121	7
W5-B R4	35301-87	5	W1-M R6	35301-122	7
W6-S R4	35301-88	5	W1-B R6	35301-123	7
W6-M R4	35301-89	5	W2-S R6	35301-124	7
W6-B R4	35301-90	12	W2-M R6	35301-125	8
W7-S R4	35301-91	6	W2-B R6	35301-126	8
W7-M R4	35301-92	4	W3-S R6	35301-127	9
W7-B R4	35301-93	10	W3-M R6	35301-128	6
W8-S R4	35301-94	6	W3-B R6	35301-129	7
W8-M R4	35301-95	5	W4-S R6	35301-130	9
W8-B R4	35301-96	4	W4-M R6	35301-131	8
W1-S R5	35301-97	4	W4-B R6	35301-132	8
W1-M R5	35301-98	7	W5-S R6	35301-133	7
W1-B R5	35301-99	4	W5-M R6	35301-134	7
W2-S R5	35301-100	4	W5-B R6	35301-135	6
W2-M R5	35301-101	7	W6-S R6	35301-136	6
W2-B R5	35301-102	6	W6-M R6	35301-137	6
W3-S R5	35301-103	6	W6-B R6	35301-138	8
W3-M R5	35301-104	4	W7-S R6	35301-139	25
W3-B R5	35301-105	10	W7-M R6	35301-140	9
W4-S R5	35301-106	8	W7-B R6	35301-141	8
W4-M R5	35301-107	5	W8-S R6	35301-142	7
W4-B R5	35301-108	6	W8-M R6	35301-143	6
W5-S R5	35301-109	7	W8-B R6	35301-144	6

Remarks: 1) \leq = less than

Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

SUEZ NWS Limited

Room 702, 7/F, Lee Garden Two,

28 Yun Ping Road, Causeway Bay, Hong Kong

Report No.: 35301A

Date of Issue: 2021-07-06

Date Received: 2021-06-24 Date Tested: 2021-06-24

Date Completed: 2021-07-06

ATTN:

Mr. Cyrus Fung

Page:

1 of 13

Sample Description :

144 liquid samples as received from customer said to be seawater

Laboratory No. : 35301A Sampling Date:

2021-06-24

Test Requested & Methodology:

Item	Parameters	Ref. Method	Limit of Reporting
1	Cadmium	In-house method SOP039 (ICP/MS)	0.5 μg/L
2	Copper		1.0 μg/L
3	Nickel		1.0 μg/L
4	Lead		1.0 μg/L
5	Mercury		0.5 μg/L
6	Chromium		1.0 μg/L
8	Zinc		1.0 μg/L
9	Total Inorganic Nitrogen	In-house method SOP163 (By calculation)	0.04 mg N/L
10	Ammonia	In-house method SOP157 (FIA)	0.02 mg NH ₃ -N/L
11	Biochemical Oxygen Demand	APHA 19ed 5210B	2 mg-O ₂ /L

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

ATRICK TSE

General Manager

TEST REPORT

Report No .:

35301A

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:

2021-06-24

Date Completed:

2021-07-06

Page:

2 of 13

Results:

ixesuits.				112		
Sample ID	W1-S R1	W1-M R1	W1-B R1	W2-S R1	W2-M R1	W2-B R1
Sample No.	35301-1	35301-2	35301-3	35301-4	35301-5	35301-6
Cadmium (µg/L)	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Copper (µg/L)	6	4	4	4	4	4
Nickel (µg/L)	2	2	2	2	2	2
Lead (µg/L)	<1	<1	<1	<1	<1	<1
Mercury (μg/L)	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Chromium (µg/L)	1	<1	1	1	1	1
Zinc (µg/L)	8	50	11	14	8	7
Total Inorganic Nitrogen (mg/L)	0.92	0.92	0.91	0.92	0.91	0.92
Ammonia (mg/L)	0.15	0.15	0.14	0.15	0.15	0.15
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Sample ID	W3-S R1	W3-M R1	W3-B R1	W4-S R1	W4-M R1	W4-B R1
Sample No.	35301-7	35301-8	35301-9	35301-10	35301-11	35301-12
Cadmium (µg/L)	< 0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.5
Copper (µg/L)	4	4	4	5	5	4
Nickel (µg/L)	2	2	2	2	2	3
Lead (µg/L)	<1	<1	<1	1	1	2
Mercury (µg/L)	< 0.5	< 0.5	< 0.5	0.5	0.5	< 0.5
Chromium (µg/L)	1	1	1	1	2	2
Zinc (µg/L)	33	7	18	10	48	25
Total İnorganic Nitrogen (mg/L)	0.90	0.88	0.94	0.91	0.94	0.88
Ammonia (mg/L)	0.16	0.14	0.18	0.15	0.17	0.13
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Remarks: 1) <= less than

Website: www.wellab.com.hk

TEST REPORT

Report No.:

35301A

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:

2021-06-24

Date Completed:

2021-07-06

Page:

3 of 13

Results:

Kesuits:				in(
Sample ID	W5-S R1	W5-M R1	W5-B R1	W6-S R1	W6-M R1	W6-B R1
Sample No.	35301-13	35301-14	35301-15	35301-16	35301-17	35301-18
Cadmium (µg/L)	< 0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5
Copper (µg/L)	6	4	4	4	4	4
Nickel (µg/L)	3	1	2	2	2	2
Lead (µg/L)	3	1	<1	<1	1	<1
Mercury (μg/L)	< 0.5	<0.5	0.9	< 0.5	< 0.5	< 0.5
Chromium (µg/L)	2	<1	3	1	1	1
Zinc (µg/L)	19	12	50	18	18	14
Total Inorganic Nitrogen (mg/L)	0.90	0.89	0.90	0.89	0.90	0.91
Ammonia (mg/L)	0.15	0.14	0.16	0.16	0.16	0.17
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Sample ID	W7-S R1	W7-M R1	W7-B R1	W8-S R1	W8-M R1	W8-B R1
Sample No.	35301-19	35301-20	35301-21	35301-22	35301-23	35301-24
Cadmium (µg/L)	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5
Copper (µg/L)	4	4	4	5	4	4
Nickel (µg/L)	2	2	2	2	2	2
Lead (μg/L)	<1	1	1	1	<1	<1
Mercury (µg/L)	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	1.0
Chromium (µg/L)	1	1	1	1	1	1
Zinc (µg/L)	11	16	7	19	16	8
Total Inorganic Nitrogen (mg/L)	0.86	0.90	0.91	0.92	0.90	0.86
Ammonia (mg/L)	0.13	0.17	0.17	0.17	0.17	0.13
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Remarks: 1) <= less than

TEST REPORT

Report No.:

35301A

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:

2021-06-24

Date Completed:

2021-07-06

Page:

4 of 13

Posulte.

Results:						
Sample ID	W1-S R2	W1-M R2	W1-B R2	W2-S R2	W2-M R2	W2-B R2
Sample No.	35301-25	35301-26	35301-27	35301-28	35301-29	35301-30
Cadmium (µg/L)	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5
Copper (µg/L)	4	4	4	5	4	4
Nickel (µg/L)	2	2	2	2	2	2
Lead (µg/L)	<1	<1	<1	<1	<1	<1
Mercury (μg/L)	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Chromium (μg/L)	1	<1	<1	<1	<1	1
Zinc (μg/L)	19	27	57	10	9	8
Total Inorganic Nitrogen (mg/L)	0.88	0.91	0.88	0.85	0.83	0.83
Ammonia (mg/L)	0.15	0.17	0.15	0.14	0.13	0.12
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Sample ID	W3-S R2	W3-M R2	W3-B R2	W4-S R2	W4-M R2	W4-B R2
Sample No.	35301-31	35301-32	35301-33	35301-34	35301-35	35301-36
Cadmium (µg/L)	< 0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5
Copper (µg/L)	5	4	4	4	4	4
Nickel (μg/L)	2	2	2	2	1	1
Lead (μg/L)	<1	<1	<1	<1	<1	<1
Mercury (µg/L)	1.1	< 0.5	<0.5	< 0.5	<0.5	< 0.5
Chromium (µg/L)	1	<1	1	<1	1	<1
Zinc (µg/L)	16	12	35	19	5	7
Total Inorganic Nitrogen (mg/L)	0.84	0.86	0.86	0.86	0.90	0.85
Ammonia (mg/L)	0.14	0.14	0.14	0.18	0.17	0.12
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Remarks: 1) \leq less than

Website: www.wellab.com.hk

TEST REPORT

Report No.:

35301A

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:

2021-06-24

Date Completed:

2021-07-06

Page:

5 of 13

Results:

e e com e co						
Sample ID	W5-S R2	W5-M R2	W5-B R2	W6-S R2	W6-M R2	W6-B R2
Sample No.	35301-37	35301-38	35301-39	35301-40	35301-41	35301-42
Cadmium (µg/L)	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5
Copper (µg/L)	9	4	3	4	4	3
Nickel (µg/L)	5	2	2	1	2	1
Lead (μg/L)	6	<1	<1	1	<1	<1
Mercury (µg/L)	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5
Chromium (µg/L)	<1	1	<1	1	<1	<1
Zinc (µg/L)	45	45	9	10	19	13
Total Inorganic Nitrogen (mg/L)	0.85	0.91	0.90	0.88	0.81	0.81
Ammonia (mg/L)	0.13	0.17	0.19	0.16	0.12	0.11
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Sample ID	W7-S R2	W7-M R2	W7-B R2	W8-S R2	W8-M R2	W8-B R2
Sample No.	35301-43	35301-44	35301-45	35301-46	35301-47	35301-48
Cadmium (µg/L)	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5
Copper (µg/L)	4	3	3	5	5	4
Nickel (µg/L)	2	2	1	2	3	2
Lead (µg/L)	1	<1	<1	<1	<1	<1
Mercury (μg/L)	0.5	0.5	<0.5	<0.5	<0.5	< 0.5
Chromium (µg/L)	1	1	1	1	1	<1
Zinc (μg/L)	9	7	37	19	30	39
Total Inorganic Nitrogen (mg/L)	0.85	0.88	0.85	0.85	0.82	0.84
Ammonia (mg/L)	0.14	0.16	0.15	0.14	0.12	0.12
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Remarks: 1) \leq = less than

TEST REPORT

Report No.:

35301A

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:

2021-06-24

Date Completed:

2021-07-06

Page:

6 of 13

Results:

Acsults.				112		
Sample ID	W1-S R3	W1-M R3	W1-B R3	W2-S R3	W2-M R3	W2-B R3
Sample No.	35301-49	35301-50	35301-51	35301-52	35301-53	35301-54
Cadmium (µg/L)	< 0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5
Copper (µg/L)	10	4	4	4	12	4
Nickel (µg/L)	4	1	1	2	5	1
Lead (μg/L)	7	<1	<1	<1	<1	<1
Mercury (µg/L)	< 0.5	< 0.5	0.8	< 0.5	<0.5	< 0.5
Chromium (µg/L)	2	1	1	<1	<1	<1
Zinc (µg/L)	92	19	9	8	66	7
Total Inorganic Nitrogen (mg/L)	0.85	0.83	0.84	0.82	1.29	0.86
Ammonia (mg/L)	0.14	0.14	0.14	0.14	0.63	0.17
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Sample ID	W3-S R3	W3-M R3	W3-B R3	W4-S R3	W4-M R3	W4-B R3
Sample No.	35301-55	35301-56	35301-57	35301-58	35301-59	35301-60
Cadmium (µg/L)	< 0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5
Copper (µg/L)	9	3	4	4	6	4
Nickel (µg/L)	3	2	1	2	1	2
Lead (µg/L)	6	<1	<1	<1	<1	<1
Mercury (µg/L)	< 0.5	< 0.5	0.6	< 0.5	< 0.5	< 0.5
Chromium (µg/L)	<1	1	1	1	5	<1
Zinc (µg/L)	51	73	11	10	5	10
Total Inorganic Nitrogen (mg/L)	0.87	0.79	0.81	0.81	0.86	0.84
Ammonia (mg/L)	0.17	0.10	0.12	0.13	0.17	0.15
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Remarks: 1) \leq = less than

TEST REPORT

Report No.:

35301A

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:

2021-06-24

Date Completed:

2021-07-06

Page:

7 of 13

Results:

CKOD WALD!						
Sample ID	W5-S R3	W5-M R3	W5-B R3	W6-S R3	W6-M R3	W6-B R3
Sample No.	35301-61	35301-62	35301-63	35301-64	35301-65	35301-66
Cadmium (µg/L)	< 0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5
Copper (µg/L)	5	4	4	4	4	4
Nickel (µg/L)	3	2	2	2	2	2
Lead (µg/L)	<1	1	1	<1	1	2
Mercury (µg/L)	< 0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.5
Chromium (µg/L)	1	<1	1	<1	1	1
Zinc (µg/L)	34	17	14	7	10	14
Total Inorganic Nitrogen (mg/L)	0.83	0.82	0.80	0.88	0.82	0.85
Ammonia (mg/L)	0.12	0.12	0.11	0.17	0.11	0.14
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Sample ID	W7-S R3	W7-M R3	W7-B R3	W8-S R3	W8-M R3	W8-B R3
Sample No.	35301-67	35301-68	35301-69	35301-70	35301-71	35301-72
Cadmium (µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5
Copper (µg/L)	4	4	4	4	5	4
Nickel (µg/L)	2	1	2	2	2	2
Lead (µg/L)	<1	<1	<1	1	2	<1
Mercury (µg/L)	< 0.5	<0.5	<0.5	<0.5	0.5	< 0.5
Chromium (µg/L)	<1	<1	2	1	1	1
Zinc (µg/L)	9	11	20	14	17	9
Total Inorganic Nitrogen (mg/L)	0.85	0.86	0.81	0.83	0.84	0.82
Ammonia (mg/L)	0.15	0.14	0.11	0.13	0.14	0.12
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Remarks: 1) \leq = less than

TEST REPORT

Report No.:

35301A

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:

2021-06-24

Date Completed:

2021-07-06

Page:

8 of 13

Results:

xesums:						
Sample ID	W1-S R4	W1-M R4	W1-B R4	W2-S R4	W2-M R4	W2-B R4
Sample No.	35301-73	35301-74	35301-75	35301-76	35301-77	35301-78
Cadmium (µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5
Copper (µg/L)	4	4	6	4	4	4
Nickel (µg/L)	2	2	5	3	2	2
Lead (µg/L)	2	<1	<1	<1	<1	<1
Mercury (µg/L)	1.1	<0.5	< 0.5	< 0.5	<0.5	< 0.5
Chromium (µg/L)	1	<1	1	<1	<1	<1
Zinc (µg/L)	10	9	53	10	8	7
Total Inorganic Nitrogen (mg/L)	0.89	0.88	0.81	0.85	0.81	0.82
Ammonia (mg/L)	0.18	0.17	0.11	0.15	0.12	0.14
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Sample ID	W3-S R4	W3-M R4	W3-B R4	W4-S R4	W4-M R4	W4-B R4
Sample No.	35301-79	35301-80	35301-81	35301-82	35301-83	35301-84
Cadmium (μg/L)	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5
Copper (µg/L)	4	4	2	4	5	4
Nickel (µg/L)	2	1	1	2	2	2
Lead (μg/L)	<1	<1	<1	<1	1	1
Mercury (µg/L)	< 0.5	< 0.5	<0.5	0.7	< 0.5	< 0.5
Chromium (µg/L)	<1	<1	<1	<1	<1	<1
Zinc (µg/L)	62	9	6	14	9	13
Total Inorganic Nitrogen (mg/L)	0.81	0.80	0.83	0.86	0.82	0.80
Ammonia (mg/L)	0.11	0.12	0.15	0.17	0.12	0.11
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Remarks: 1) \leq = less than

TEST REPORT

Report No.:

35301A

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:

2021-06-24

Date Completed:

2021-07-06

Page:

9 of 13

Results:

itesuits.						
Sample ID	W5-S R4	W5-M R4	W5-B R4	W6-S R4	W6-M R4	W6-B R4
Sample No.	35301-85	35301-86	35301-87	35301-88	35301-89	35301-90
Cadmium (µg/L)	< 0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5
Copper (µg/L)	5	5	4	5	5	4
Nickel (µg/L)	3	2	1	2	2	2
Lead (μg/L)	3	<1	<1	<1	3	<1
Mercury (µg/L)	< 0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5
Chromium (µg/L)	2	<1	<1	<1	1	<1
Zinc (µg/L)	15	14	15	56	54	14
Total Inorganic Nitrogen (mg/L)	0.83	0.78	0.82	0.80	0.81	0.79
Ammonia (mg/L)	0.15	0.10	0.14	0.13	0.13	0.11
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2 .	<2

Sample ID	W7-S R4	W7-M R4	W7-B R4	W8-S R4	W8-M R4	W8-B R4
Sample No.	35301-91	35301-92	35301-93	35301-94	35301-95	35301-96
Cadmium (µg/L)	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Copper (µg/L)	5	4	4	4	4	4
Nickel (µg/L)	2	2	2	2	2	2
Lead (µg/L)	<1	1	<1	1	<1	<1
Mercury (µg/L)	< 0.5	0.8	< 0.5	< 0.5	<0.5	< 0.5
Chromium (µg/L)	<1	<1	3	1	<1	<1
Zinc (µg/L)	10	10	10	13	13	10
Total Inorganic Nitrogen (mg/L)	0.83	0.83	0.78	0.78	0.81	0.83
Ammonia (mg/L)	0.15	0.16	0.10	0.12	0.14	0.15
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Remarks: 1) \leq = less than

TEST REPORT

Report No.:

35301A

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:

2021-06-24

Date Completed:

2021-07-06

Page:

10 of 13

Results:

acourto.						
Sample ID	W1-S R5	W1-M R5	W1-B R5	W2-S R5	W2-M R5	W2-B R5
Sample No.	35301-97	35301-98	35301-99	35301-100	35301-101	35301-102
Cadmium (µg/L)	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5
Copper (µg/L)	4	4	4	5	4	4
Nickel (µg/L)	2	1	2	2	2	1
Lead (μg/L)	<1	<1	<1	<1	<1	<1
Mercury (μg/L)	<0.5	<0.5	<0.5	< 0.5	< 0.5	0.6
Chromium (µg/L)	<1	1	<1	<1	<1	<1
Zinc (µg/L)	6	7	13	10	7	6
Total Inorganic Nitrogen (mg/L)	0.81	0.80	0.82	0.78	0.78	0.81
Ammonia (mg/L)	0.12	0.12	0.15	0.14	0.14	0.15
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Sample ID	W3-S R5	W3-M R5	W3-B R5	W4-S R5	W4-M R5	W4-B R5
Sample No.	35301-103	35301-104	35301-105	35301-106	35301-107	35301-108
Cadmium (µg/L)	< 0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5
Copper (µg/L)	4	4	4	4	4	4
Nickel (µg/L)	2	2	2	2	2	2
Lead (µg/L)	<1	<1	<1	<1	<1	<1
Mercury (μg/L)	<0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5
Chromium (µg/L)	<1	1	<1	<1	<1	<1
Zinc (µg/L)	9	14	14	14	8	9
Total Inorganic Nitrogen (mg/L)	0.79	0.77	0.80	0.80	0.83	0.81
Ammonia (mg/L)	0.14	0.10	0.13	0.14	0.17	0.15
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Remarks: 1) \leq = less than

TEST REPORT

Report No.:

35301A

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:

2021-06-24

Date Completed:

2021-07-06

Page:

11 of 13

Results:

acourts.						
Sample ID	W5-S R5	W5-M R5	W5-B R5	W6-S R5	W6-M R5	W6-B R5
Sample No.	35301-109	35301-110	35301-111	35301-112	35301-113	35301-114
Cadmium (µg/L)	< 0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5
Copper (µg/L)	5	4	5	4	4	4
Nickel (µg/L)	2	1	2	2	2	1
Lead (µg/L)	<1	<1	<1	<1	<1	<1
Mercury (µg/L)	<0.5	<0.5	<0.5	1.0	< 0.5	< 0.5
Chromium (µg/L)	<1	<1	<1	<1	<1	<1
Zinc (µg/L)	62	11	17	6	10	6
Total Inorganic Nitrogen (mg/L)	0.80	0.76	0.77	0.78	0.81	0.78
Ammonia (mg/L)	0.14	0.12	0.12	0.13	0.17	0.13
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Sample ID	W7-S R5	W7-M R5	W7-B R5	W8-S R5	W8-M R5	W8-B R5
Sample No.	35301-115	35301-116	35301-117	35301-118	35301-119	35301-120
Cadmium (µg/L)	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Copper (µg/L)	6	4	3	4	4	4
Nickel (µg/L)	2	2	2	2	2	2
Lead (µg/L)	2	<1	<1	<1	<1	<1
Mercury (μg/L)	< 0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5
Chromium (µg/L)	1	<1	<1	<1	<1	<1
Zinc (µg/L)	28	6	9	8	26	26
Total Inorganic Nitrogen (mg/L)	0.76	0.75	0.80	0.75	0.76	0.77
Ammonia (mg/L)	0.12	0.10	0.15	0.10	0.11	0.12
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Remarks: 1) \leq = less than

TEST REPORT

Report No.:

35301A

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:

2021-06-24

Date Completed:

2021-07-06

Page:

12 of 13

Results:

ixesuits.				¥		
Sample ID	W1-S R6	W1-M R6	W1-B R6	W2-S R6	W2-M R6	W2-B R6
Sample No.	35301-121	35301-122	35301-123	35301-124	35301-125	35301-126
Cadmium (µg/L)	<0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.5
Copper (µg/L)	4	4	4	4	4	4
Nickel (µg/L)	3	2	5	2	3	2
Lead (µg/L)	<1	<1	<1	<1	1	<1
Mercury (μg/L)	< 0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5
Chromium (µg/L)	<1	<1	<1	<1	3	<1
Zinc (µg/L)	6	11	38	14	84	6
Total Inorganic Nitrogen (mg/L)	0.74	0.79	0.80	0.77	0.73	0.76
Ammonia (mg/L)	0.11	0.15	0.17	0.15	0.10	0.13
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Sample ID	W3-S R6	W3-M R6	W3-B R6	W4-S R6	W4-M R6	W4-B R6
Sample No.	35301-127	35301-128	35301-129	35301-130	35301-131	35301-132
Cadmium (µg/L)	< 0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5
Copper (µg/L)	8	8	4	4	4	4
Nickel (µg/L)	3	2	1	2	1	2
Lead (µg/L)	6	4	<1	<1	<1	<1
Mercury (μg/L)	< 0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5
Chromium (µg/L)	<1	<1	<1	1	<1	<1
Zinc (μg/L)	36	36	11	12	7	9
Total Inorganic Nitrogen (mg/L)	0.74	0.76	0.77	0.72	0.72	0.76
Ammonia (mg/L)	0.10	0.13	0.14	0.10	0.11	0.13
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Remarks: 1) \leq = less than

TEST REPORT

Report No.:

35301A

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:

2021-06-24

Date Completed:

2021-07-06

Page:

13 of 13

Results:

icours.						
Sample ID	W5-S R6	W5-M R6	W5-B R6	W6-S R6	W6-M R6	W6-B R6
Sample No.	35301-133	35301-134	35301-135	35301-136	35301-137	35301-138
Cadmium (µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Copper (µg/L)	4	4	4	4	4	3
Nickel (µg/L)	2	2	1	2	2	1
Lead (µg/L)	<1	<1	<1	1	<1	<1
Mercury (μg/L)	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium (μg/L)	<1	<1	<1	5	<1	<1
Zinc (µg/L)	23	22	6	7	10	16
Total Inorganic Nitrogen (mg/L)	0.76	0.77	0.74	0.73	0.70	0.75
Ammonia (mg/L)	0.11	0.14	0.13	0.12	0.10	0.14
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Sample ID	W7-S R6	W7-M R6	W7-B R6	W8-S R6	W8-M R6	W8-B R6
Sample No.	35301-139	35301-140	35301-141	35301-142	35301-143	35301-144
Cadmium (µg/L)	< 0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5
Copper (µg/L)	4	4	4	4	3	4
Nickel (µg/L)	2	2	2	2	2	1
Lead (µg/L)	<1	<1	<1	<1	<1	<1
Mercury (μg/L)	< 0.5	<0.5	<0.5	0.8	<0.5	< 0.5
Chromium (µg/L)	<1	<1	<1	<1	1	<1
Zinc (μg/L)	12	9	12	6	10	7
Total Inorganic Nitrogen (mg/L)	0.75	0.72	0.71	0.70	0.73	0.71
Ammonia (mg/L)	0.13	0.12	0.10	0.09	0.11	0.09
Biochemical Oxygen Demand (mg-O ₂ /L)	<2	<2	<2	<2	<2	<2

Remarks: 1) \leq = less than

TEST REPORT

APPLICANT:

SUEZ NWS Limited

Room 702, 7/F, Lee Garden Two,

28 Yun Ping Road, Causeway Bay, Hong Kong

Report No.: Date of Issue: 35301B

Date of Issue.

2021-07-06

Date Received:

2021-06-24

Date Tested:
Date Completed:

2021-06-24 2021-07-06

ATTN:

Mr. Cyrus Fung

Page:

1 of 3

Sample Description :

144 liquid samples as received from customer said to be seawater

Laboratory No.

35301B

Sampling Date :

2021-06-24

Test Requested & Methodology:

Item	Parameters	Ref. Method	Limit of Reporting
1	E. coli	DoE (1983) The Bacteriological Examination of Drinking Water Supplies, 1982 (Membrane Filtration Procedure: Sections 7.8, 7.9.4.2; Bacterial Confirmation: Section 7.9.4.3 for coliform, 7.9.4.4 for E. coli)	1 cfu/100mL

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

General Manager

Website: www.wellab.com.hk

TEST REPORT

 Report No.:
 35301B

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

 Date Tested:
 2021-06-24

 Date Completed:
 2021-07-06

Page:

2 of 3

Results:

Sample ID	Sample No.	<i>E.coli</i> (cfu/100mL)	Sample ID	Sample No.	<i>E.coli</i> (cfu/100mL)
W1-S R1	35301-1	18	W5-M R2	35301-38	14
W1-5 R1	35301-2	18	W5-B R2	35301-39	10
W1-B R1	35301-3	194	W6-S R2	35301-40	12
W2-S R1	35301-4	74	W6-M R2	35301-41	10
W2-M R1	35301-5	14	W6-B R2	35301-42	6
W2-B R1	35301-6	12	W7-S R2	35301-43	18
W3-S R1	35301-7	18	W7-M R2	35301-44	20
W3-M R1	35301-8	40	W7-B R2	35301-45	14
W3-B R1	35301-9	88	W8-S R2	35301-46	18
W4-S R1	35301-10	26	W8-M R2	35301-47	18
W4-M R1	35301-11	28	W8-B R2	35301-48	14
W4-B R1	35301-12	38	W1-S R3	35301-49	12
W5-S R1	35301-13	48	W1-M R3	35301-50	8
W5-M R1	35301-14	64	W1-B R3	35301-51	22
W5-B R1	35301-15	24	W2-S R3	35301-52	44
W6-S R1	35301-16	32	W2-M R3	35301-53	22
W6-M R1	35301-17	16	W2-B R3	35301-54	36
W6-B R1	35301-18	42	W3-S R3	35301-55	6
W7-S R1	35301-19	12	W3-M R3	35301-56	16
W7-M R1	35301-20	32	W3-B R3	35301-57	38
W7-B R1	35301-21	20	W4-S R3	35301-58	24
W8-S R1	35301-22	22	W4-M R3	35301-59	70
W8-M R1	35301-23	14	W4-B R3	35301-60	40
W8-B R1	35301-24	14	W5-S R3	35301-61	58
W1-S R2	35301-25	12	W5-M R3	35301-62	50
W1-M R2	35301-26	14	W5-B R3	35301-63	76
W1-B R2	35301-27	30	W6-S R3	35301-64	66
W2-S R2	35301-28	8	W6-M R3	35301-65	50
W2-M R2	35301-29	12	W6-B R3	35301-66	56
W2-B R2	35301-30	16	W7-S R3	35301-67	42
W3-S R2	35301-31	24	W7-M R3	35301-68	50
W3-M R2	35301-32	16	W7-B R3	35301-69	42
W3-B R2	35301-33	10	W8-S R3	35301-70	60
W4-S R2	35301-34	10	W8-M R3	35301-71	46
W4-M R2	35301-35	8	W8-B R3	35301-72	56
W4-B R2	35301-36	8	W1-S R4	35301-73	52
W5-S R2	35301-37	8	W1-M R4	35301-74	82

Remarks: 1) \leq less than

TEST REPORT

Report No.: 3
Date of Issue: 2
Date Received: 2

35301B 2021-07-06 2021-06-24

Date Tested: Date Completed:

2021-06-24 2021-07-06

Page:

3 of 3

Results.

Sample ID	Sample No.	<i>E.coli</i> (cfu/100mL)	Sample ID	Sample No.	<i>E.coli</i> (cfu/100mL)
W1-B R4	35301-75	34	W5-M R5	35301-110	40
W2-S R4	35301-76	64	W5-B R5	35301-111	48
W2-M R4	35301-77	34	W6-S R5	35301-112	46
W2-B R4	35301-78	46	W6-M R5	35301-113	42
W3-S R4	35301-79	28	W6-B R5	35301-114	34
W3-M R4	35301-80	40	W7-S R5	35301-115	44
W3-B R4	35301-81	42	W7-M R5	35301-116	46
W4-S R4	35301-82	32	W7-B R5	35301-117	32
W4-M R4	35301-83	68	W8-S R5	35301-118	30
W4-B R4	35301-84	50	W8-M R5	35301-119	68
W5-S R4	35301-85	52	W8-B R5	35301-120	60
W5-M R4	35301-86	40	W1-S R6	35301-121	28
W5-B R4	35301-87	28	W1-M R6	35301-122	48
W6-S R4	35301-88	42	W1-B R6	35301-123	38
W6-M R4	35301-89	48	W2-S R6	35301-124	60
W6-B R4	35301-90	46	W2-M R6	35301-125	50
W7-S R4	35301-91	172	W2-B R6	35301-126	46
W7-M R4	35301-92	48	W3-S R6	35301-127	36
W7-B R4	35301-93	52	W3-M R6	35301-128	52
W8-S R4	35301-94	54	W3-B R6	35301-129	42
W8-M R4	35301-95	28	W4-S R6	35301-130	46
W8-B R4	35301-96	48	W4-M R6	35301-131	38
W1-S R5	35301-97	30	W4-B R6	35301-132	48
W1-M R5	35301-98	42	W5-S R6	35301-133	36
W1-B R5	35301-99	42	W5-M R6	35301-134	48
W2-S R5	35301-100	44	W5-B R6	35301-135	48
W2-M R5	35301-101	72	W6-S R6	35301-136	50
W2-B R5	35301-102	42	W6-M R6	35301-137	54
W3-S R5	35301-103	32	W6-B R6	35301-138	32
W3-M R5	35301-104	54	W7-S R6	35301-139	32
W3-B R5	35301-105	44	W7-M R6	35301-140	50
W4-S R5	35301-106	40	W7-B R6	35301-141	40
W4-M R5	35301-107	32	W8-S R6	35301-142	46
W4-B R5	35301-108	50	W8-M R6	35301-143	52
W5-S R5	35301-109	38	W8-B R6	35301-144	38

Remarks: 1) <= less than

TEST REPORT

APPLICANT: SUEZ NWS Limited

Room 702, 7/F, Lee Garden Two,

28 Yun Ping Road, Causeway Bay, Hong Kong

Report No.: 35301C

Date of Issue: 2021-07-06

Date Received: 2021-06-24

Date Tested: 2021-06-24 Date Completed: 2021-07-06

Page: 1 of 25

ATTN:

Mr. Cyrus Fung

Sample Description :

144 liquid samples as received from customer said to be seawater

Laboratory No. : 3

35301C 2021-06-24

Test Requested & Methodology:

Item	Parameters	Ref. Method	Limit of Reporting
1	Naphthalene (NAP)	In-house method SOP 087 (GC/MSD)	0.1 μg/L
2	Acenaphthylene (ANY)		0.1 μg/L
3	Acenaphthene (ANA)		0.1 μg/L
4	Fluorene (FLU)		0.1 μg/L
5	Phenanthrene (PHE)		0.1 μg/L
6	Anthracene (ANT)		0.1 μg/L
7	Fluoranthene (FLT)		0.1 μg/L
8	Benzo(a)Anthracene (BaA)		0.1 μg/L
9	Chrysene (CHR)		0.1 μg/L
10	Pyrene (PYR)		0.1 μg/L
11	Benzo(b)Fluoranthene (BbF)		0.1 μg/L
12	Benzo(a)Pyrene (BaP)		0.1 μg/L
13	Benzo(k) Fluoranthene (BkF)	,	0.1 μg/L
14	Indeno(1,2,3-cd)pyrene (IPY)		0.1 μg/L
15	Dibenz(a,h)anthracene (DBA)		0.1 μg/L
16	Benzo(g,h,i)Perylene (BPE)		$0.1~\mu g/L$

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

General Manager

TEST REPORT

Report No.:

35301C

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:
Date Completed:

2021-06-24

None and the second

2021-07-06

Page:

2 of 25

Results:

Results:						
Sample ID	W1-S R1	W1-M R1	W1-B R1	W2-S R1	W2-M R1	W2-B R1
Sample No.	35301-1	35301-2	35301-3	35301-4	35301-5	35301-6
Naphthalene (NAP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene (ANY), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene (ANA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene (FLU), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene (PHE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene (ANT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene (FLT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene (BaA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene (CHR), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene (PYR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)Fluoranthene (BbF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene (BaP) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k) Fluoranthene (BkF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene (IPY), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene (DBA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene (BPE) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Remarks: 1) \leq less than

Website: www.wellab.com.hk

TEST REPORT

Report No .: Date of Issue: 35301C

Date Received:

2021-07-06 2021-06-24

Date Tested: Date Completed: 2021-06-24 2021-07-06

Page:

3 of 25

Results:			WL.			
Sample ID	W3-S R1	W3-M R1	W3-B R1	W4-S R1	W4-M R1	W4-B R1
Sample No.	35301-7	35301-8	35301-9	35301-10	35301-11	35301-12
Naphthalene (NAP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene (ANY), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene (ANA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene (FLU), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene (PHE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene (ANT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene (FLT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene (BaA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene (CHR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene (PYR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)Fluoranthene (BbF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene (BaP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k) Fluoranthene (BkF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene (IPY), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene (DBA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene (BPE) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Remarks: 1) \leq = less than

TEST REPORT

Report No.:

35301C

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:
Date Completed:

2021-06-24 2021-07-06

Page:

4 of 25

Results:

Results:						
Sample ID	W5-S R1	W5-M R1	W5-B R1	W6-S R1	W6-M R1	W6-B R1
Sample No.	35301-13	35301-14	35301-15	35301-16	35301-17	35301-18
Naphthalene	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
(NAP), μg/L	0.1				7	
Acenaphthylene	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
(ANY), μg/L	15.175.	12,052	3-73-ha-			
Acenaphthene	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
(ANA), μg/L	Market II.	200au 200 Ma	in and the second	News 13-4-7		
Fluorene	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1
(FLU), μg/L			VIAGORIA		MANUFACTOR (I)	
Phenanthrene	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1
(PHE), μg/L						
Anthracene	< 0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1
(ANT), μg/L	7.4	15155				
Fluoranthene	<0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1
(FLT), μg/L	0.1				891	
Benzo(a)Anthracene	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1
(BaA) , μg/L	0.1			10000000	N. 1994	
Chrysene	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
(CHR), μg/L						
Pyrene	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1
(PYR) , μg/L	0.1	****				
Benzo(b)Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
(BbF) , $\mu g/L$		-0.1	0.1.	3.53		
Benzo(a)Pyrene	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1
(BaP), μg/L	70.1	.0.1		33.5	75.5	
Benzo(k) Fluoranthene	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BkF) , $\mu g/L$	50.1	30.1	.0.1	0.1		
Indeno(1,2,3-cd)pyrene	<0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1
(IPY) , μg/L	~0.1	×0.1	30.1	-0.1	0.1	
Dibenz(a,h)anthracene	<0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1
(DBA) , $\mu g/L$	70.1	-0.1	-5.1		3.1	0.1
Benzo(g,h,i)Perylene	<0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1
(BPE) , μg/L	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	.0.1	.0.1	V.1		3.5

Remarks: 1) \leq less than

Website: www.wellab.com.hk

TEST REPORT

Report No .: Date of Issue: 35301C

Date Received:

2021-07-06 2021-06-24

Date Tested:

Date Completed:

2021-06-24 2021-07-06

Page:

5 of 25

Results:			<u> </u>		The state of the s	Photography Body (Photography)
Sample ID	W7-S R1	W7-M R1	W7-B R1	W8-S R1	W8-M R1	W8-B R1
Sample No.	35301-19	35301-20	35301-21	35301-22	35301-23	35301-24
Naphthalene	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1
(NAP), μg/L			*			
Acenaphthylene	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
(ANY), μg/L						
Acenaphthene	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
(ANA), μg/L						
Fluorene	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
(FLU), μg/L	3					
Phenanthrene	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
(PHE) , μg/L						
Anthracene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
(ANT) , μg/L					×	
Fluoranthene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
(FLT), μg/L	New York					
Benzo(a)Anthracene	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1
(BaA) , μg/L	ASSATVES S	30010000	A 2000			
Chrysene	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
(CHR), μg/L			500m001 5000°			
Pyrene	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1
(PYR), μg/L						
Benzo(b)Fluoranthene	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1
(BbF) , μg/L	553.70					
Benzo(a)Pyrene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
(BaP) , μg/L		24,75.4			*	
Benzo(k) Fluoranthene	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1
(BkF), μg/L		000000	125/2004-2-0	Service State Stat		
Indeno(1,2,3-cd)pyrene	<0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1
(IPY) , $\mu g/L$				1,200,000	SHNDE	1,03,070
Dibenz(a,h)anthracene	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1
(DBA), μg/L						-ATTACAST II.
Benzo(g,h,i)Perylene	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1
(BPE) , $\mu g/L$	V.1	212				

Remarks: 1) <= less than

TEST REPORT

Report No.:

35301C

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:

2021-06-24

Date Completed:

2021-07-06

Page:

6 of 25

Results:						
Sample ID	W1-S R2	W1-M R2	W1-B R2	W2-S R2	W2-M R2	W2-B R2
Sample No.	35301-25	35301-26	35301-27	35301-28	35301-29	35301-30
Naphthalene	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1
(NAP), μg/L	<0.1	<0.1	~0.1	\0.1	~0.1	\0.1
Acenaphthylene	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
(ANY), μg/L		-0.1				
Acenaphthene	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1
(ANA), μg/L	0.12			numero.	500 September 1	200
Fluorene	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
(FLU), μg/L						
Phenanthrene	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
(PHE), μg/L						
Anthracene	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
(ANT) , μg/L Fluoranthene						
(FLT), μg/L	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene				22.3	-0.1	-0.1
(BaA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene		-0.1	z0 1	<0.1	<0.1	<0.1
(CHR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(PYR) , μg/L	<0.1	<0.1	<0.1	\\0.1	\0.1	~0.1
Benzo(b)Fluoranthene	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1
(BbF), μg/L	~0.1	~0.1	~0.1	30.1	30.1	
Benzo(a)Pyrene	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1
(BaP) , $\mu g/L$	50.1	50.1	30.1	5.1	0.1	2.15
Benzo(k) Fluoranthene	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1
(BkF) , μg/L		*				
Indeno(1,2,3-cd)pyrene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
(IPY), μg/L			7.7			X-
Dibenz(a,h)anthracene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
(DBA), µg/L						
Benzo(g,h,i)Perylene	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1
(BPE) , μg/L						

Remarks: 1) \leq = less than

TEST REPORT

Report No.:

35301C

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:

2021-06-24

Date Completed:

2021-07-06

Page:

7 of 25

Results:		act in				
Sample ID	W3-S R2	W3-M R2	W3-B R2	W4-S R2	W4-M R2	W4-B R2
Sample No.	35301-31	35301-32	35301-33	35301-34	35301-35	35301-36
Naphthalene	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
(NAP), μg/L	<0.1	\0.1	٧٥.1	١٠.١	50.1	.0.1
Acenaphthylene	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
(ANY), μg/L		0.1	1			
Acenaphthene	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1
(ANA), μg/L		11 1.3000,7731.31	SSERVELLOV	(C)	ST VAN Province	
Fluorene	< 0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1
(FLU), μg/L						
Phenanthrene	< 0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1
(PHE) , μg/L Anthracene						
Anthracene (ANT), μg/L	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1
Fluoranthene	E					
(FLT), µg/L	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1
Benzo(a)Anthracene			-0.1		<0.1	<0.1
(BaA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(CHR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	\0.1
Pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(PYR), μg/L	<0.1	\0.1	\0.1	NO.1	VO.1	50.1
Benzo(b)Fluoranthene	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
(BbF) , μg/L	VO.1	-0.1	-0.1	-0.1	3011	0.12
Benzo(a)Pyrene	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
(BaP) , μg/L	50.1	-0.1				
Benzo(k) Fluoranthene	<0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1
(BkF), μg/L						
Indeno(1,2,3-cd)pyrene	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1
(IPY), μg/L	5050350	330.50				
Dibenz(a,h)anthracene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1
(DBA), μg/L		1944 1945				
Benzo(g,h,i)Perylene	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1
(BPE) , μg/L				31		

Remarks: 1) \leq less than

TEST REPORT

Report No.:

35301C

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:

2021-06-24

Date Completed:

0021-00-24

Page:

2021-07-06 8 of 25

Results:

Results:						
Sample ID	W5-S R2	W5-M R2	W5-B R2	W6-S R2	W6-M R2	W6-B R2
Sample No.	35301-37	35301-38	35301-39	35301-40	35301-41	35301-42
Naphthalene	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
(NAP), μg/L				11.000.000		
Acenaphthylene	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
(ANY), μg/L	* ***					
Acenaphthene	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
(ANA) , μg/L	SANCAT LAND.	1900/01/02				
Fluorene	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
(FLU), μg/L						
Phenanthrene	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1
(PHE), μg/L						
Anthracene	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
(ANT), µg/L						
Fluoranthene	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1
(FLT), µg/L		-				
Benzo(a)Anthracene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1
(BaA) , μg/L Chrysene					2700 7002	5162-31-
(CHR), µg/L	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
Pyrene					27 27	
(PYR), μg/L	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)Fluoranthene						
(BbF), μg/L	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene		100 100	2014 0			
(BaP), μg/L	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k) Fluoranthene			200	0.1	.0.1	10.1
(BkF), μg/L	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene			-0.1	-0.1	-0.1	-0.1
(IPY), μg/L	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene	0.1	-0.1	40 I	z0 1	<0.1	z0.1
(DBA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene	-0.1	z0 1		-0.1	40.1	<0.1
(BPE) , μg/L	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
(- /) [-0 -	1	4				

Remarks: 1) \leq less than

TEST REPORT

Report No.:

35301C

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:
Date Completed:

2021-06-24 2021-07-06

Page:

9 of 25

Results:

Results:			als.			
Sample ID	W7-S R2	W7-M R2	W7-B R2	W8-S R2	W8-M R2	W8-B R2
Sample No.	35301-43	35301-44	35301-45	35301-46	35301-47	35301-48
Naphthalene (NAP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene (ANY), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene (ANA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene (FLU), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene (PHE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene (ANT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene (FLT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene (BaA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene (CHR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene (PYR) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)Fluoranthene (BbF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene (BaP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k) Fluoranthene (BkF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene (IPY), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene (DBA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene (BPE) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Remarks: 1) \leq = less than

TEST REPORT

Report No.: 3.
Date of Issue: 2

35301C 2021-07-06

Date Received:

2021-06-24

Date Tested:
Date Completed:

2021-06-24 2021-07-06

Page:

10 of 25

Results:						
Sample ID	W1-S R3	W1-M R3	W1-B R3	W2-S R3	W2-M R3	W2-B R3
Sample No.	35301-49	35301-50	35301-51	35301-52	35301-53	35301-54
Naphthalene	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
(NAP), μg/L	7.504 p.200.1					
Acenaphthylene	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
(ANY) , μg/L						
Acenaphthene	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
(ANA) , μg/L						
Fluorene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
(FLU), μg/L		*				3
Phenanthrene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
(PHE), μg/L	25/2/204					
Anthracene	< 0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1
(ANT) , $\mu g/L$	35.45	1201-25				
Fluoranthene	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1
(FLT) , μg/L	-0.1		NO. 17-1			
Benzo(a)Anthracene	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BaA) , μg/L	30.1					
Chrysene	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1
(CHR), μg/L	NO.1	30.1			* 15.00	20.35.25
Pyrene	<0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1
(PYR), μg/L	\0.1	×0.1	30.1	30.1		
Benzo(b)Fluoranthene	<0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1
(BbF), μg/L	~0.1	~0.1	~0.1	30.1	30.1	
Benzo(a)Pyrene	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1
(BaP), μg/L	\\\ \O.1	\\0.1	\\0.1	\0.1		
Benzo(k) Fluoranthene	-0 1	<0.1	<0.1	< 0.1	<0.1	< 0.1
(BkF), μg/L	<0.1	<0.1	\0.1	~0.1	~0.1	40.1
Indeno(1,2,3-cd)pyrene	40.1	c0 1	<0.1	< 0.1	<0.1	< 0.1
(IPY), μg/L	<0.1	<0.1	<0.1	~0.1	~0.1	\0.1
Dibenz(a,h)anthracene	40 t	-0.1	-0 1	<0.1	<0.1	<0.1
(DBA), µg/L	<0.1	<0.1	<0.1	<0.1	\0.1	~0.1
Benzo(g,h,i)Perylene	-0.1	-0.1	c0 1	<0.1	<0.1	<0.1
(BPE) , μg/L	<0.1	<0.1	< 0.1	< 0.1	<0.1	\0.1
(), [-6-				× -		

TEST REPORT

Report No.:

35301C

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested: Date Completed: 2021-06-24 2021-07-06

Page:

11 of 25

Results:				The second of th	Control of the second	sergement errormonism
Sample ID	W3-S R3	W3-M R3	W3-B R3	W4-S R3	W4-M R3	W4-B R3
Sample No.	35301-55	35301-56	35301-57	35301-58	35301-59	35301-60
Naphthalene (NAP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene (ANY), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene (ANA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene (FLU), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene (PHE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene (ANT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene (FLT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene (BaA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene (CHR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene (PYR) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)Fluoranthene (BbF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene (BaP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k) Fluoranthene (BkF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene (IPY), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene (DBA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene (BPE) , µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Remarks: 1) \leq = less than

Website: www.wellab.com.hk

TEST REPORT

Report No.:

35301C

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:

2021-06-24

Date Completed:

2021-07-06

Page:

12 of 25

Results:

W5-S R3	W5-M R3	W5-B R3	W6-S R3	W6-M R3	W6-B R3
35301-61	35301-62	35301-63	35301-64	35301-65	35301-66
<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
30.1	30.1	30.1		38.64	
<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
2.1.0	3.3.3				
<0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1
30,74		N3.323	20" 22" 2		
<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
	0.12			***********************************	. ELEVER
<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
				3100003-00	
<0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1
	011	1			
<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
~0.1	-	0.11	0,1		
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
30.1			9.1-		
<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
30.1	-0.1				50,420
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
NO.1	50.1	30.1		3011	0.12
<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
~0.1	30.1	-0.1	-0.1		
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
~0.1	~0.1	-0.1	-0.1	-0.1	0.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
~0.1	~0.1	~0.1	~0.1	70.1	
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
~0.1	50.1	\\0.1	VO.1	30.1	30.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
~ 0.1	~ 0.1	~0.1	NO.1	50.1	50.1
<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
~0.1	~0.1	~0.1	~0.1	~0.1	-5.1
	SPANNESS THOUSENESSES	35301-61 35301-62 <0.1	35301-61 35301-62 35301-63 <0.1	35301-61 35301-62 35301-63 35301-64 <0.1	35301-61 35301-62 35301-63 35301-64 35301-65 <0.1

Remarks: 1) <= less than

TEST REPORT

Report No.: Date of Issue: 35301C

Date Received:

2021-07-06 2021-06-24

Date Tested:

2021-06-24

Date Completed:

2021-07-06

Page:

13 of 25

Results:						
Sample ID	W7-S R3	W7-M R3	W7-B R3	W8-S R3	W8-M R3	W8-B R3
Sample No.	35301-67	35301-68	35301-69	35301-70	35301-71	35301-72
Naphthalene (NAP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene (ANY), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene (ANA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene (FLU), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene (PHE) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene (ANT), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene (FLT) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene (BaA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene (CHR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene (PYR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)Fluoranthene (BbF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene (BaP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k) Fluoranthene (BkF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene (IPY), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene (DBA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene (BPE) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Remarks: 1) \leq less than

TEST REPORT

Report No .:

35301C

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:
Date Completed:

2021-06-24

Date Con

2021-07-06

Page:

14 of 25

Results:

Results:					Children and American	PRINCE AND DESCRIPTION OF THE
Sample ID	W1-S R4	W1-M R4	W1-B R4	W2-S R4	W2-M R4	W2-B R4
Sample No.	35301-73	35301-74	35301-75	35301-76	35301-77	35301-78
Naphthalene	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
(NAP), μg/L	~0.1	₹0.1	٧٥.1	٦٥.1	-0.1	
Acenaphthylene	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
(ANY) , μg/L				5.5.4 (47.4 (
Acenaphthene	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
(ANA) , μg/L	16 635AH-0343	Vitaria				
Fluorene	< 0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1
(FLU), μg/L						
Phenanthrene	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1
(PHE) , μg/L Anthracene						-0.0 To - 200
Anthracene (ANT), μg/L	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.1
Fluoranthene						2.2
(FLT), μg/L	<0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene	121 121	<0.1		.0.1	<0.1	<0.1
(BaA), μg/L	<0.1		<0.1	<0.1		
Chrysene	c0 1	<0.1	<0.1	<0.1	<0.1	<0.1
(CHR), μg/L	<0.1	<0.1	<0.1	\\0.1	<0.1	SU.1
Pyrene	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1
(PYR) , $\mu g/L$	NO.1	\0.1	~0.1	~0.1		-0.1
Benzo(b)Fluoranthene	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1
(BbF) , μg/L	~0.1	30.1				
Benzo(a)Pyrene	<0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1
(BaP) , μg/L	-0.1	V.1.	51.20			
Benzo(k) Fluoranthene	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1
(BkF), μg/L			A 10000 (1000)	510000000	22.500	
Indeno(1,2,3-cd)pyrene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
(IPY), μg/L						
Dibenz(a,h)anthracene	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
(DBA), µg/L	water street is					
Benzo(g,h,i)Perylene	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1
(BPE) , μg/L						

Remarks: 1) <= less than

TEST REPORT

Report No.:

35301C

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:

2021-06-24

Date Completed:

2021-07-06

Page:

15 of 25

Results:

Results:						
Sample ID	W3-S R4	W3-M R4	W3-B R4	W4-S R4	W4-M R4	W4-B R4
Sample No.	35301-79	35301-80	35301-81	35301-82	35301-83	35301-84
Naphthalene	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
(NAP), μg/L	~0.1	₹0.1	~0.1			-0.1
Acenaphthylene	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
(ANY), μg/L			*			V. 962, YEROS
Acenaphthene	<0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1
(ANA), μg/L	2000		8 2 2 2 2			
Fluorene	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
(FLU), μg/L						
Phenanthrene (PLUE)	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
(PHE), μg/L						
Anthracene (ANT), μg/L	< 0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1
Fluoranthene						
(FLT), μg/L	<0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene	201 201	0.1			<0.1	<0.1
(BaA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	z0 1	c0 1	<0.1	<0.1	<0.1	<0.1
(CHR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
(PYR) , $\mu g/L$	\0.1	√ 0.1	~0.1	~0.1	٧٥.1	
Benzo(b)Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BbF) , $\mu g/L$	NO.1	50.1	30.1	-0.1		
Benzo(a)Pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BaP), μg/L	-0.1		75.5			
Benzo(k) Fluoranthene	<0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1
(BkF), μg/L			Control of the Contro	Sweet Michigan (1997)		
Indeno(1,2,3-cd)pyrene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
(IPY), μg/L						
Dibenz(a,h)anthracene	< 0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1
(DBA), µg/L						
Benzo(g,h,i)Perylene	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1
(BPE) , μg/L						

Remarks: 1) <= less than

TEST REPORT

Report No.: Date of Issue: 35301C 2021-07-06

Date Received:

2021-06-24

Date Tested:

2021-06-24

Date Completed:

2021-07-06

Page:

16 of 25

Results:					-	ii .
Sample ID	W5-S R4	W5-M R4	W5-B R4	W6-S R4	W6-M R4	W6-B R4
Sample No.	35301-85	35301-86	35301-87	35301-88	35301-89	35301-90
Naphthalene (NAP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene (ANY), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene (ANA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene (FLU) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene (PHE) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene (ANT), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene (FLT) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene (BaA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene (CHR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene (PYR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)Fluoranthene (BbF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene (BaP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k) Fluoranthene (BkF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene (IPY), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene (DBA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene (BPE) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Remarks: 1) \leq = less than

Website: www.wellab.com.hk

TEST REPORT

Report No.:

35301C

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:

2021-06-24

Date Completed:

2021-07-06

Page:

17 of 25

Results:

Results:						
Sample ID	W7-S R4	W7-M R4	W7-B R4	W8-S R4	W8-M R4	W8-B R4
Sample No.	35301-91	35301-92	35301-93	35301-94	35301-95	35301-96
Naphthalene	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
(NAP), μg/L	NO.1	30.1		0,1		2 1/2
Acenaphthylene	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
(ANY), μg/L				52740799045	(1/40/40.75)	640 (1000)
Acenaphthene	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
(ANA), μg/L	A2007-1994	Essell World A				
Fluorene	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
(FLU), µg/L						
Phenanthrene	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
(PHE), μg/L						
Anthracene	< 0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1
(ANT) , μg/L Fluoranthene						24 5
	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
(FLT) , μg/L Benzo(a)Anthracene	200 720		Yes as	SHOOKS Allaha	-0.1	¿O 1
(BaA), μg/L	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
Chrysene					-0.1	c0 1
(CHR), μg/L	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	-0.1	40 I	20 1	<0.1	<0.1	<0.1
(PYR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	\0.1
Benzo(b)Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BbF), μg/L	<0.1	<0.1	\0.1	~0.1	\0.1	30.1
Benzo(a)Pyrene	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1
(BaP), μg/L	~0.1	~0.1	30.1		0.1	
Benzo(k) Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BkF), μg/L	30.1	30.1	0.1		2100	
Indeno(1,2,3-cd)pyrene	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1
(IPY) , $\mu g/L$				1300	MOMMACS	***************************************
Dibenz(a,h)anthracene	<0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1
(DBA) , μg/L						
Benzo(g,h,i)Perylene	<0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1
(BPE), μg/L		PATTA SECUR	505401300			

Remarks: 1) <= less than

TEST REPORT

Report No.:

35301C

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:

2021-06-24

Date Completed:

2021-07-06

Page:

18 of 25

Results:

Results:				110-100-100 Transport		MATERIAL STREET, MATERIAL STREET, SALES
Sample ID	W1-S R5	W1-M R5	W1-B R5	W2-S R5	W2-M R5	W2-B R5
Sample No.	35301-97	35301-98	35301-99	35301-100	35301-101	35301-102
Naphthalene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(NAP), μg/L	30.1	٦٥.1		-0.1		0.11
Acenaphthylene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANY), μg/L			wednesdays to	PRODUCTOR	44 VX/ACT/ST 8	10000FC200
Acenaphthene	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1
(ANA), μg/L						
Fluorene	<0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1
(FLU), μg/L		50-00-10-10-10-10-10-10-10-10-10-10-10-10	Output City			
Phenanthrene	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
(PHE) , μg/L				ja:		
Anthracene	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1
(ANT), μg/L						
Fluoranthene	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(FLT) , μg/L Benzo(a)Anthracene						
(BaA), μg/L	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1
Chrysene	200	N.75. april	10H 10S	Tellinger (2)		2000
(CHR), μg/L	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
Pyrene		2.9		0.1	.0.1	-0.1
(PYR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)Fluoranthene	40 I	z0.1	<0.1	<0.1	<0.1	<0.1
(BbF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
(BaP), μg/L	\0.1	~0.1	NO.1	\0.1	30.1	30.1
Benzo(k) Fluoranthene	< 0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1
(BkF) , μg/L	50.1	30.1	10.1		0.1	
Indeno(1,2,3-cd)pyrene	<0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1
(IPY) , $\mu g/L$	-0.1	3011	STATES AND STATES		20.0	25-36-50
Dibenz(a,h)anthracene	<0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1
(DBA), μg/L				- Andrewson		with the control of
Benzo(g,h,i)Perylene	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1
(BPE), μg/L		*****				

Remarks: 1) \leq = less than

Website: www.wellab.com.hk

TEST REPORT

Report No.:

35301C

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:
Date Completed:

2021-06-24

Date Co.

2021-07-06

Page:

19 of 25

Results:

Results:						
Sample ID	W3-S R5	W3-M R5	W3-B R5	W4-S R5	W4-M R5	W4-B R5
Sample No.	35301-103	35301-104	35301-105	35301-106	35301-107	35301-108
Naphthalene (NAP), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANY), µg/L Acenaphthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(ANA), μg/L Fluorene (FLU), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene (PHE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene (ANT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene (FLT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene (BaA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene (CHR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene (PYR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)Fluoranthene (BbF), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene (BaP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k) Fluoranthene (BkF), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene (IPY), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene (DBA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene (BPE) , µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Remarks: 1) <= less than

calibrated or tested. ONLY the laboratory's certified true copy is valid.

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items

Website: www.wellab.com.hk

TEST REPORT

Report No.:

35301C

Date of Issue: Date Received: 2021-07-06

2021-06-24

Date Tested: Date Completed: 2021-06-24 2021-07-06

Page:

20 of 25

Results:						
Sample ID	W5-S R5	W5-M R5	W5-B R5	W6-S R5	W6-M R5	W6-B R5
Sample No.	35301-109	35301-110	35301-111	35301-112	35301-113	35301-114
Naphthalene	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
(NAP), μg/L	30.1	50.1			0.1	*
Acenaphthylene	<0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1
(ANY) , μg/L						
Acenaphthene	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1
(ANA), μg/L				v		
Fluorene	< 0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1
(FLU) , μg/L Phenanthrene				0000 40	2000 2004	
(PHE), μg/L	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1
Anthracene						0.1
(ANT), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	-0.1	-0.1	c0 1	<0.1	<0.1	<0.1
(FLT), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BaA), μg/L	<0.1	~0.1	<0.1	~0.1	~0.1	VO.1
Chrysene	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1
(CHR), μg/L	30.1	-0.1		3		E 76%
Pyrene	<0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1
(PYR), μg/L					1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Benzo(b)Fluoranthene	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1
(BbF), μg/L	39,000,000	wide in				
Benzo(a)Pyrene	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
(BaP), μg/L Benzo(k) Fluoranthene				1005 M	9900 1100	
(BkF), μg/L	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene					0.1	-0.1
(IPY) , μg/L	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene	-C 1	<0.1	<0.1	ZO 1	<0.1	<0.1
(DBA) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	\\0.1
Benzo(g,h,i)Perylene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BPE) , $\mu g/L$	~0.1	~0.1	~0.1	×0.1	30.1	30.1

Remarks: 1) \leq = less than

Website: www.wellab.com.hk

TEST REPORT

Report No.:

35301C

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:

2021-06-24

Date Completed:

2021-07-06

Page:

21 of 25

Results:

Results:			<u> </u>	76		
Sample ID	W7-S R5	W7-M R5	W7-B R5	W8-S R5	W8-M R5	W8-B R5
Sample No.	35301-115	35301-116	35301-117	35301-118	35301-119	35301-120
Naphthalene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(NAP), μg/L	30.1	-0.1			3.4	*
Acenaphthylene	<0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1
(ANY), μg/L						
Acenaphthene	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1
(ANA) , μg/L	Artista.	1-500				
Fluorene	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1
(FLU) , μg/L Phenanthrene		2007			2004A 17775	- Constitution
(PHE), μg/L	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1
Anthracene				0.1	0.1	.0.1
(ANT), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(FLT) , $\mu g/L$	<0.1	<0.1	<0.1	<0.1	\0.1	~0.1
Benzo(a)Anthracene	< 0.1	<0.1	<0.1	<0.1	< 0.1	<0.1
(BaA) , μg/L	70.1	~0.1			-0.1	
Chrysene	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
(CHR), μg/L		5-11-20-12-14-200	restaurion	MANAGERIA	SCANIFICS S	West-Sec.
Pyrene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
(PYR), μg/L						
Benzo(b)Fluoranthene	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1
(BbF) , μg/L Benzo(a)Pyrene						
(BaP), μ g/L	< 0.1	<0.1	<0.1	<0.1	< 0.1	<0.1
Benzo(k) Fluoranthene	- 2		.0.1	-0.1	-0.1	-0.1
(BkF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(IPY), μg/L	<0.1	<0.1	<0.1	~0.1	₹0.1	₹0.1
Dibenz(a,h)anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(DBA), μg/L				J.1	7.1	3.2
Benzo(g,h,i)Perylene	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BPE) , μg/L						

Remarks: 1) <= less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

TEST REPORT

Report No.: Date of Issue: 35301C 2021-07-06

Date Received:

2021-06-24

Date Tested:

Date Completed:

2021-06-24 2021-07-06

Page:

22 of 25

Results:						
Sample ID	W1-S R6	W1-M R6	W1-B R6	W2-S R6	W2-M R6	W2-B R6
Sample No.	35301-121	35301-122	35301-123	35301-124	35301-125	35301-126
Naphthalene	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1
(NAP), μg/L	70.1	-0.1				
Acenaphthylene	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
(ANY) , μg/L		, a sacratical				
Acenaphthene	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
(ANA), μg/L Fluorene					82 34	2007 23
(FLU), μg/L	<0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1
Phenanthrene						0.1
(PHE), μg/L	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
Anthracene		0.1	.0.1	.0.1	c0 1	<0.1
(ANT), μg/L	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	c0 1	<0.1	<0.1	<0.1	<0.1	<0.1
(FLT), μg/L	<0.1	<0.1	<0.1	<0.1	~0.1	~0.1
Benzo(a)Anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(BaA) , μg/L	\\0.1	\0.1	NO.1	30.1		
Chrysene	<0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1
(CHR), μg/L		0,1				3
Pyrene	<0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1
(PYR), μg/L		177030,741,3894	\$1000 A 440000	1.550		
Benzo(b)Fluoranthene	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1
(BbF), μg/L						
Benzo(a)Pyrene	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1
(BaP), μg/L Benzo(k) Fluoranthene			3770			0.1
(BkF), μg/L	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	12.10			.0.1	e0.1	z0 1
(IPY), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
(DBA), µg/L	<0.1	<0.1	<0.1	~0.1	~0.1	>0.1
Benzo(g,h,i)Perylene	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1
(BPE) , μg/L	50.1	50.1	.0.1	.0.1		

Remarks: 1) \leq less than

TEST REPORT

Report No .:

35301C

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:

2021-06-24

Date Completed:

2021-07-06

Page:

23 of 25

Results:						
Sample ID	W3-S R6	W3-M R6	W3-B R6	W4-S R6	W4-M R6	W4-B R6
Sample No.	35301-127	35301-128	35301-129	35301-130	35301-131	35301-132
Naphthalene	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
(NAP), μg/L	~0.1	\0.1	~0.1	٧٥.1	30.1	50.1
Acenaphthylene	<0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1
(ANY), μg/L		-0.1	0.1			
Acenaphthene	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1
(ANA), μg/L	30.1				Sapata Maria	
Fluorene	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
(FLU), μg/L						
Phenanthrene	<0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
(PHE), μg/L	2.480					
Anthracene	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
(ANT), μg/L	VIII-1-17.00A.15	B35044 (20%)				
Fluoranthene	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1
(FLT), μg/L						
Benzo(a)Anthracene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1
(BaA) , μg/L						
Chrysene	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1
(CHR), μg/L			+			
Pyrene	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1
(PYR), μg/L						
Benzo(b)Fluoranthene	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1
(BbF), μg/L						
Benzo(a)Pyrene	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1
(BaP), μg/L Benzo(k) Fluoranthene						
200 100 100 100 100	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1
(BkF), μg/L Indeno(1,2,3-cd)pyrene					1	
The state of the s	< 0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1
(IPY), μg/L Dibenz(a,h)anthracene				9,000		
(DBA), µg/L	< 0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1
Benzo(g,h,i)Perylene			Venez Title	ata tar	Carl In	Police Carl
(BPE), μg/L	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1
(DI E), μg/L				1		

Remarks: 1) \leq = less than

TEST REPORT

Report No.:

35301C

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:

2021-06-24

Date Completed:

2021-07-06

Page:

24 of 25

Results:

Results:						
Sample ID	W5-S R6	W5-M R6	W5-B R6	W6-S R6	W6-M R6	W6-B R6
Sample No.	35301-133	35301-134	35301-135	35301-136	35301-137	35301-138
Naphthalene (NAP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene (ANY), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene (ANA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene (FLU), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene (PHE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene (ANT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene (FLT) , µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene (BaA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene (CHR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene (PYR) , μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)Fluoranthene (BbF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene (BaP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k) Fluoranthene (BkF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene (IPY), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene (DBA), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene (BPE) , µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Remarks: 1) < = less than

TEST REPORT

Report No .:

35301C

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:

2021-06-24

Date Completed:

2021-07-06

Page:

25 of 25

Results:				-		7
Sample ID	W7-S R6	W7-M R6	W7-B R6	W8-S R6	W8-M R6	W8-B R6
Sample No.	35301-139	35301-140	35301-141	35301-142	35301-143	35301-144
Naphthalene (NAP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene (ANY), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene (ANA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene (FLU), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene (PHE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene (ANT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene (FLT), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene (BaA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene (CHR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene (PYR), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)Fluoranthene (BbF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene (BaP), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k) Fluoranthene (BkF), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene (IPY), μg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene (DBA), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)Perylene (BPE), µg/L	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Remarks: 1) \leq = less than

TEST REPORT

APPLICANT:

SUEZ NWS Limited

Room 702, 7/F, Lee Garden Two,

28 Yun Ping Road, Causeway Bay, Hong Kong

Report No.: Date of Issue:

35301D 2021-07-06

Date Received:

2021-06-24

Date Tested:

2021-06-24

Date Completed:

2021-07-06

ATTN:

Mr. Cyrus Fung

Page:

1 of 49

 $0.02 \mu g/L$

 ample Description

144 liquid samples as received from customer said to be seawater

Laboratory No.

35301D

Sampling Date

2021-06-24 Test Requested & Methodology:

Item	Parameters	Ref. Method	Limit of Reporting
1	2,4'-Dichlorobiphenyl (PCB8)	In-house method SOP 087	0.02 μg/L
2	2,2',5-Trichlorobiphenyl (PCB18)	(GC/MSD)	0.02 μg/L
3	2,4,4'-Trichlorobiphenyl (PCB28)		0.02 μg/L
4	2,2',3,5'-Tetrachlorobiphenyl (PCB44)		0.02 μg/L
5	2,2',5,5'-Tetrachlorobiphenyl (PCB52)		0.02 μg/L
6	2,3',4,4'-Tetrachlorobiphenyl (PCB66)		0.02 μg/L
7	3,3',4,4'-Tetrachlorobiphenyl (PCB77)		0.02 μg/L
8	3,4,4',5-Tetrachlorobiphenyl (PCB81)		0.02 μg/L
9	2,2',4,5,5'-Pentachlorobiphenyl (PCB101)		0.02 μg/L
10	2,3,3',4,4'-Pentachlorobiphenyl (PCB105)		0.02 μg/L
11	2,3,4,4',5-Pentachlorobiphenyl (PCB114)		0.02 μg/L
12	2,3',4,4',5-Pentachlorobiphenyl (PCB118)		0.02 μg/L
13	2',3,4,4',5-Pentachlorobiphenyl (PCB123)		0.02 μg/L
14	3,3',4,4',5-Pentachlorobiphenyl (PCB126)		0.02 μg/L
15	2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128)		0.02 μg/L
16	2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138)		0.02 μg/L
17	2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153)		0.02 μg/L
18	2,3,3',4,4',5-Hexachlorobiphenyl (PCB156)		0.02 μg/L
19	2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157)		0.02 μg/L
20	2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167)		0.02 μg/L

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169)

2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170)

2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180)

2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187)

2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189)

PATRICK TSE General Manager

21

22

23

24

25

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

Website: www.wellab.com.hk

TEST REPORT

 Report No.:
 35301D

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

Date Tested: 2021-06-24
Date Completed: 2021-07-06

Page: 2 of 49

Results:			li
Sample ID	W1-S R1	W1-M R1	W1-B R1
Sample No.	35301-1	35301-2	35301-3
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18) , μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52) , μg/L	< 0.02	< 0.02	< 0.02
2,3°,4,4°-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), μg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), μg/L	< 0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than

TEST REPORT

Report No.:
Date of Issue:

35301D 2021-07-06

Date Received: Date Tested: 2021-06-24 2021-06-24

Date Completed:

2021-07-06

Page:

3 of 49

Results:

Sample ID	W2-S R1	W2-M R1	W2-B R1
Sample No.	35301-4	35301-5	35301-6
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), μg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157) , μg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than

TEST REPORT

Report No.: 35301D Date of Issue: Date Received:

2021-07-06 2021-06-24

Date Tested: Date Completed: 2021-06-24 2021-07-06

Page:

4 of 49

Results:

Sample ID	W3-S R1	W3-M R1	W3-B R1
Sample No.	35301-7	35301-8	35301-9
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	<0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	<0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	<0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167) , μg/L	<0.02	<0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	< 0.02	< 0.02	< 0.02
$2,2',3,4',5,5',6$ -Heptachlorobiphenyl (PCB187), μ g/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq less than

TEST REPORT

Report No.: 35301D Date of Issue: 2021-07-06 Date Received: 2021-06-24

Date Received: 2021-06-24
Date Tested: 2021-06-24
Date Completed: 2021-07-06

Page: 5 of 49

Results:	W4-S R1	W4-M R1	W4-B R1
Sample ID	35301-10	35301-11	35301-12
Sample No.	<0.02	<0.02	<0.02
2,4'-Dichlorobiphenyl (PCB8), μg/L	<0.02	<0.02	<0.02
2,2°,5-Trichlorobiphenyl (PCB18), µg/L	<0.02	<0.02	<0.02
2,4,4'-Trichlorobiphenyl (PCB28) , μg/L			<0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	<0.02	<0.02	
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	<0.02	<0.02	<0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	<0.02	<0.02	<0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	<0.02	<0.02	<0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	<0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than

TEST REPORT

Report No.: 35301D Date of Issue: 2021-07-06 Date Received: 2021-06-24

Date Received: 2021-06-24
Date Tested: 2021-06-24
Date Completed: 2021-07-06

Page: 6 of 49

Regulte

Results:			ř
Sample ID	W5-S R1	W5-M R1	W5-B R1
Sample No.	35301-13	35301-14	35301-15
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18) , μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), μg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) <= less than

TEST REPORT

Report No .: Date of Issue: 35301D 2021-07-06

Date Received:

2021-06-24

Date Tested: Date Completed: 2021-06-24 2021-07-06

Page:

7 of 49

Results:			
Sample ID	W6-S R1	W6-M R1	W6-B R1
Sample No.	35301-16	35301-17	35301-18
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18) , μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), μg/L	< 0.02	<0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	<0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	<0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than

Website: www.wellab.com.hk

TEST REPORT

Report No.: 35301D Date of Issue: 2021-07-06 Date Received:

2021-06-24 Date Tested: 2021-06-24

Date Completed:

Page:

2021-07-06 8 of 49

Results:			
Sample ID	W7-S R1	W7-M R1	W7-B R1
Sample No.	35301-19	35301-20	35301-21
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	<0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) <= less than

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

Website: www.wellab.com.hk

TEST REPORT

Report No.: Date of Issue: 35301D 2021-07-06

Date Received:

2021-06-24

Date Tested:
Date Completed:

2021-06-24 2021-07-06

Page:

9 of 49

Results:

Results:			
Sample ID	W8-S R1	W8-M R1	W8-B R1
Sample No.	35301-22	35301-23	35301-24
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), μg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	<0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	< 0.02	<0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	<0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138) , μg/L	< 0.02	<0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
$2,2',3,3',4,4',5$ -Heptachlorobiphenyl (PCB170), μ g/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	< 0.02	< 0.02
$2,2',3,4',5,5',6$ -Heptachlorobiphenyl (PCB187), μ g/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

Website: www.wellab.com.hk

TEST REPORT

Report No.: Date of Issue: 35301D 2021-07-06

Date Received:

2021-06-24

Date Tested:

2021-06-24

Date Completed:

Page:

2021-07-06 10 of 49

Results:			
Sample ID	W1-S R2	W1-M R2	W1-B R2
Sample No.	35301-25	35301-26	35301-27
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), μg/L	< 0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) <= less than

TEST REPORT

Report No.: Date of Issue: 35301D 2021-07-06

Date Received:

2021-06-24

Date Tested:
Date Completed:

2021-06-24 2021-07-06

Page:

11 of 49

Results:	T	*****	Wa D Da
Sample ID	W2-S R2	W2-M R2	W2-B R2
Sample No.	35301-28	35301-29	35301-30
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2°,5-Trichlorobiphenyl (PCB18) , μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), μg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	<0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

This report may not be reproduced, except in full, without prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested. ONLY the laboratory's certified true copy is valid.

TEST REPORT

Report No.: Date of Issue: 35301D 2021-07-06

Date Received:

2021-06-24

Date Tested:
Date Completed:

2021-06-24 2021-07-06

Page:

12 of 49

Results:

Results:		1	
Sample ID	W3-S R2	W3-M R2	W3-B R2
Sample No.	35301-31	35301-32	35301-33
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	<0.02	< 0.02
2,2°,5-Trichlorobiphenyl (PCB18) , μg/L	< 0.02	< 0.02	<0.02
2,4,4'-Trichlorobiphenyl (PCB28) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), μg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169) , μg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187) , μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189) , μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) <= less than

TEST REPORT

Report No.:
Date of Issue:

35301D 2021-07-06

Date Received:

2021-06-24

Date Tested:
Date Completed:

2021-06-24 2021-07-06

Page:

13 of 49

Results:

Sample ID	W4-S R2	W4-M R2	W4-B R2
Sample No.	35301-34	35301-35	35301-36
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

TEST REPORT

Report No.: Date of Issue: 35301D 2021-07-06

Date Received:

2021-06-24

Date Tested:
Date Completed:

2021-06-24 2021-07-06

Page:

14 of 49

Results:

Results:	W5-S R2	W5-M R2	W5-B R2
Sample ID		AND THE SHALL SHELLING STREET	35301-39
Sample No.	35301-37	35301-38	THE COURSE OF THE COURSE
2,4'-Dichlorobiphenyl (PCB8), μg/L	<0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	<0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	< 0.02	<0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than

TEST REPORT

Report No.: Date of Issue:

35301D 2021-07-06

Date Received:

2021-06-24

Date Tested:
Date Completed:

2021-06-24 2021-07-06

Page:

15 of 49

Results:

Results:	W6-S R2	W6-M R2	W6-B R2
Sample ID	35301-40	35301-41	35301-42
Sample No.			<0.02
2,4'-Dichlorobiphenyl (PCB8), μg/L	<0.02	<0.02	
2,2',5-Trichlorobiphenyl (PCB18), μg/L	<0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	<0.02	<0.02	<0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	<0.02	<0.02	<0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	<0.02	<0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), μg/L	< 0.02	<0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

Website: www.wellab.com.hk

TEST REPORT

 Report No.:
 35301D

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

 Date Tested:
 2021-06-24

Date Completed: 2021-07-06

Page: 16 of 49

Results:

Results:			
Sample ID	W7-S R2	W7-M R2	W7-B R2
Sample No.	35301-43	35301-44	35301-45
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) < = less than

TEST REPORT

Report No.: 35301D Date of Issue: 2021-07-06 Date Received: 2021-06-24

Date Tested: 2021-06-24
Date Completed: 2021-07-06

Page: 17 of 49

Results:			<u> </u>
Sample ID	W8-S R2	W8-M R2	W8-B R2
Sample No.	35301-46	35301-47	35301-48
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	<0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	<0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), μg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than

TEST REPORT

 Report No.:
 35301D

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

 Date Tested:
 2021-06-24

Date Tested: 2021-06-24

Date Completed: 2021-07-06

Page: 18 of 49

Results:

Results:	T	W 1 1 D 2	WII D DA
Sample ID	W1-S R3	W1-M R3	W1-B R3
Sample No.	35301-49	35301-50	35301-51
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28) , μg/L	< 0.02	< 0.02	< 0.02
2,2°,3,5°-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	<0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157) , μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	<0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	< 0.02	<0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	<0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189) , μg/L	< 0.02	< 0.02	< 0.02

Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

 Report No.:
 35301D

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

 Date Tested:
 2021-06-24

Date Completed: 2021-07-06

Page:

19 of 49

Results:

Sample ID	W2-S R3	W2-M R3	W2-B R3
Sample No.	35301-52	35301-53	35301-54
2,4'-Dichlorobiphenyl (PCB8), µg/L	<0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	<0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	<0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than

TEST REPORT

 Report No.:
 35301D

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

 Date Tested:
 2021-06-24

Date Completed: 2021-07-06

Page: 20 of 49

Results:		ľ	
Sample ID	W3-S R3	W3-M R3	W3-B R3
Sample No.	35301-55	35301-56	35301-57
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), μg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	<0.02	< 0.02

Remarks: 1) \leq = less than

Website: www.wellab.com.hk

TEST REPORT

 Report No.:
 35301D

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

 Date Tested:
 2021-06-24

Date Completed: 2021-07-06

Page:

21 of 49

Results:

Results: Sample ID	W4-S R3	W4-M R3	W4-B R3
Sample No.	35301-58	35301-59	35301-60
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than

TEST REPORT

Report No.: 35301D Date of Issue: 2021-07-06 Date Received: 2021-06-24 2021-06-24 Date Tested:

Date Completed:

2021-07-06

Page:

22 of 49

Results:			
Sample ID	W5-S R3	W5-M R3	W5-B R3
Sample No.	35301-61	35301-62	35301-63
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than

TEST REPORT

 Report No.:
 35301D

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

 Date Tested:
 2021-06-24

Date Tested: 2021-06-24 Date Completed: 2021-07-06

Page: 23 of 49

Results:	200 AND 200 TO	assumation environment	T
Sample ID	W6-S R3	W6-M R3	W6-B R3
Sample No.	35301-64	35301-65	35301-66
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2°,5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28) , μg/L	< 0.02	< 0.02	< 0.02
2,2°,3,5°-Tetrachlorobiphenyl (PCB44) , μg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3°,4,4°-Tetrachlorobiphenyl (PCB66) , μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156) , μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189) , μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than

TEST REPORT

Report No.: Date of Issue: 35301D 2021-07-06

Date Received:

2021-06-24 2021-06-24

Date Tested: Date Completed:

2021-07-06

Page:

24 of 49

Results:			
Sample ID	W7-S R3	W7-M R3	W7-B R3
Sample No.	35301-67	35301-68	35301-69
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	<0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	<0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	<0.02	<0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than

TEST REPORT

Report No.: 35301D Date of Issue: 2021-07-06 Date Received:

2021-06-24 Date Tested: 2021-06-24 2021-07-06

Date Completed: 25 of 49 Page:

Results:			
Sample ID	W8-S R3	W8-M R3	W8-B R3
Sample No.	35301-70	35301-71	35301-72
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq less than

Website: www.wellab.com.hk

TEST REPORT

Report No.:

35301D

Date of Issue:

2021-07-06

Date Received:
Date Tested:

2021-06-24

Date Completed:

2021-06-24

Page:

2021-07-06 26 of 49

Results:			
Sample ID	W1-S R4	W1-M R4	W1-B R4
Sample No.	35301-73	35301-74	35301-75
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	. <0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than

TEST REPORT

Report No.: Date of Issue:

35301D 2021-07-06

Date Received:

2021-06-24 2021-06-24

Date Tested: Date Completed:

2021-07-06

Page:

27 of 49

Results:		r	
Sample ID	W2-S R4	W2-M R4	W2-B R4
Sample No.	35301-76	35301-77	35301-78
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18) , μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), μg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than

Website: www.wellab.com.hk

TEST REPORT

Report No.: Date of Issue:

35301D 2021-07-06

Date Received:
Date Tested:

2021-06-24 2021-06-24

Date Tested:

Date Completed:

2021-07-06

Page:

28 of 49

Results:

Results:			
Sample ID	W3-S R4	W3-M R4	W3-B R4
Sample No.	35301-79	35301-80	35301-81
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	<0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than

TEST REPORT

Report No .: Date of Issue:

35301D 2021-07-06

Date Received: Date Tested:

2021-06-24 2021-06-24

Date Completed:

2021-07-06

Page:

29 of 49

Results:			WII D D I
Sample ID	W4-S R4	W4-M R4	W4-B R4
Sample No.	35301-82	35301-83	35301-84
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	<0.02	< 0.02
2,2°,5-Trichlorobiphenyl (PCB18) , μg/L	< 0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28) , μg/L	< 0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	<0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than

TEST REPORT

Report No.: 3
Date of Issue: 2

35301D 2021-07-06

Date Received: Date Tested:

2021-06-24 2021-06-24

Date Completed:

2021-07-06

Page:

30 of 49

Results:

Sample ID	W5-S R4	W5-M R4	W5-B R4
Sample No.	35301-85	35301-86	35301-87
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2°,5-Trichlorobiphenyl (PCB18), μg/L	<0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28) , μg/L	<0.02	< 0.02	< 0.02
2,2°,3,5°-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	< 0.02	< 0.02
2,2°,5,5°-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66) , μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77) , μg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153) , μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156) , μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187) , μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189) , μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq less than

TEST REPORT

Report No.: 35301D Date of Issue: 2021-07-06 Date Received: 2021-06-24

Date Tested: 2021-06-24
Date Completed: 2021-07-06

Page: 31 of 49

Results:

Results:	W6-S R4	W6-M R4	W6-B R4
Sample ID			35301-90
Sample No.	35301-88	35301-89	
2,4'-Dichlorobiphenyl (PCB8), μg/L	<0.02	<0.02	<0.02
2,2',5-Trichlorobiphenyl (PCB18) , μg/L	< 0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28) , μg/L	<0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), μg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	<0.02	< 0.02

Remarks: 1) \leq = less than

TEST REPORT

 Report No.:
 35301D

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

 Date Tested:
 2021-06-24

Date Completed: 2021-07-06

Page: 32 of 49

Results:

Sample ID	W7-S R4	W7-M R4	W7-B R4
Sample No.	35301-91	35301-92	35301-93
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

TEST REPORT

 Report No.:
 35301D

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

 Date Tested:
 2021-06-24

Date Completed: 2021-07-06

Page:

33 of 49

Results:

Results:	_		
Sample ID	W8-S R4	W8-M R4	W8-B R4
Sample No.	35301-94	35301-95	35301-96
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	<0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	<0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), μg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than

TEST REPORT

 Report No.:
 35301D

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

 Date Tested:
 2021-06-24

Date Completed: 20

2021-07-06

Page:

34 of 49

Results:

Sample ID	W1-S R5	W1-M R5	W1-B R5
Sample No.	35301-97	35301-98	35301-99
2,4'-Dichlorobiphenyl (PCB8), μg/L	<0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	<0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28) , μg/L	<0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq less than

TEST REPORT

Report No.: 35301D Date of Issue: 2021-07-06 Date Received: 2021-06-24 2021-06-24 Date Tested:

2021-07-06 Date Completed:

35 of 49 Page:

Results:			The same of the same
Sample ID	W2-S R5	W2-M R5	W2-B R5
Sample No.	35301-100	35301-101	35301-102
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2°,5-Trichlorobiphenyl (PCB18) , μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	<0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156) , μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167) , μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than **************************************

TEST REPORT

 Report No.:
 35301D

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

 Date Tested:
 2021-06-24

 Date Completed:
 2021-07-06

Page:

36 of 49

Results:

Sample ID	W3-S R5	W3-M R5	W3-B R5
Sample No.	35301-103	35301-104	35301-105
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

TEST REPORT

 Report No.:
 35301D

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

 Date Tested:
 2021-06-24

Date Tested: 2021-06-24 Date Completed: 2021-07-06

Page: 37 of 49

Results:			
Sample ID	W4-S R5	W4-M R5	W4-B R5
Sample No.	35301-106	35301-107	35301-108
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), μg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	<0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	<0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	<0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156) , μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than

TEST REPORT

Report No.: Date of Issue: 35301D 2021-07-06

Date Received:

2021-06-24

Date Tested:
Date Completed:

2021-06-24 2021-07-06

Page:

38 of 49

Results:

Results: Sample ID	W5-S R5	W5-M R5	W5-B R5
Sample No.	35301-109	35301-110	35301-111
2,4'-Dichlorobiphenyl (PCB8), μg/L	<0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), µg/L	<0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), µg/L	< 0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	<0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), µg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), µg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	<0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), µg/L	<0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), μg/L	< 0.02	< 0.02	< 0.02
$2,2',3,3',4,4',5$ -Heptachlorobiphenyl (PCB170), μ g/L	< 0.02	< 0.02	< 0.02
$2,2',3,4,4',5,5'$ -Heptachlorobiphenyl (PCB180), μ g/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq less than

TEST REPORT

 Report No.:
 35301D

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

 Date Tested:
 2021-06-24

 Date Completed:
 2021-07-06

Page:

39 of 49

Results:

Sample ID	W6-S R5	W6-M R5	W6-B R5
Sample No.	35301-112	35301-113	35301-114
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), µg/L	< 0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
$2,2^{\circ},3,3^{\circ},4,4^{\circ},5$ -Heptachlorobiphenyl (PCB170) , μ g/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

TEST REPORT

 Report No.:
 35301D

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

 Date Tested:
 2021-06-24

 Date Completed:
 2021-07-06

Page:

40 of 49

Results:

Results:			ľ
Sample ID	W7-S R5	W7-M R5	W7-B R5
Sample No.	35301-115	35301-116	35301-117
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	<0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	<0.02	<0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

TEST REPORT

Report No.: 35301D Date of Issue: 2021-07-06

Date Received: 2021-06-24 Date Tested: 2021-06-24

Date Completed: 2021-07-06

Page:

41 of 49

Results:

Sample ID	W8-S R5	W8-M R5	W8-B R5
Sample No.	35301-118	35301-119	35301-120
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138) , μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153) , μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

TEST REPORT

 Report No.:
 35301D

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

 Date Tested:
 2021-06-24

 Date Completed:
 2021-07-06

Page:

42 of 49

Results:

Sample ID	W1-S R6	W1-M R6	W1-B R6
Sample No.	35301-121	35301-122	35301-123
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	<0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	<0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than

TEST REPORT

 Report No.:
 35301D

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

 Date Tested:
 2021-06-24

 Date Completed:
 2021-07-06

Page: 43 of 49

Results:

Sample ID	W2-S R6	W2-M R6	W2-B R6
Sample No.	35301-124	35301-125	35301-126
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	<0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), μg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	<0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

TEST REPORT

 Report No.:
 35301D

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

Date Tested: 2021-06-24 Date Completed: 2021-07-06

Page: 44 of 49

Results:

Results:	1110 C D C	Wa M D C	Wa D D C
Sample ID	W3-S R6	W3-M R6	W3-B R6
Sample No.	35301-127	35301-128	35301-129
2,4'-Dichlorobiphenyl (PCB8), μg/L	<0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18) , μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44) , μg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), μg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	<0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156) , μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076

Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

Report No.: 35301D Date of Issue: 2021-07-06 Date Received: 2021-06-24

Date Received: 2021-06-24
Date Tested: 2021-06-24
Date Completed: 2021-07-06

Date Completed: 2021-07-Page: 45 of 49

Results:

Sample ID	W4-S R6	W4-M R6	W4-B R6
Sample No.	35301-130	35301-131	35301-132
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), μg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138) , μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153) , μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167) , μg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than

TEST REPORT

 Report No.:
 35301D

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

 Date Tested:
 2021-06-24

Date Completed: 2021-07-06

Page: 46 of 49

Results:

Sample ID	W5-S R6	W5-M R6	W5-B R6
Sample No.	35301-133	35301-134	35301-135
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	<0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), µg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq less than

TEST REPORT

 Report No.:
 35301D

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

 Date Tested:
 2021-06-24

Date Tested: 2021-06-24
Date Completed: 2021-07-06

Page: 47 of 49

Results:

Sample ID	W6-S R6	W6-M R6	W6-B R6
Sample No.	35301-136	35301-137	35301-138
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18) , μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), µg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), µg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

TEST REPORT

Report No.: 35301D Date of Issue: 2021-07-06 Date Received: 2021-06-24

Date Tested: 2021-06-24
Date Completed: 2021-07-06

Page: 48 of 49

Results:

Sample ID	W7-S R6	W7-M R6	W7-B R6
Sample No.	35301-139	35301-140	35301-141
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	<0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18), μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02	< 0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), μg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	< 0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101) , μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	<0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	<0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), μg/L	<0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	<0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180), μg/L	<0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), µg/L	< 0.02	< 0.02	< 0.02

TEST REPORT

Report No.: 35301D Date of Issue: 2021-07-06 Date Received: 2021-06-24 Date Tested: 2021-06-24 2021-07-06

Page:

Date Completed:

49 of 49

Results.

Results:	Marketonia nele senerale		
Sample ID	W8-S R6	W8-M R6	W8-B R6
Sample No.	35301-142	35301-143	35301-144
2,4'-Dichlorobiphenyl (PCB8), μg/L	< 0.02	< 0.02	< 0.02
2,2',5-Trichlorobiphenyl (PCB18) , μg/L	< 0.02	< 0.02	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28) , μg/L	< 0.02	<0.02	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44) , μg/L	< 0.02	<0.02	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), μg/L	< 0.02	<0.02	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), μg/L	< 0.02	< 0.02	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02	<0.02	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02	< 0.02	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02	< 0.02	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02	< 0.02	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02	< 0.02	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02	< 0.02	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), μg/L	< 0.02	< 0.02	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), μg/L	< 0.02	< 0.02	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L	< 0.02	< 0.02	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187), μg/L	<0.02	< 0.02	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02	< 0.02	< 0.02

Remarks: 1) \leq = less than

APPENDIX F
LABORATORY ANALYIS RESULTS FOR
EFFLUENT MONITORING

TEST REPORT

APPLICANT: SUEZ

SUEZ NWS Limited

Room 702, 7/F, Lee Garden Two,

28 Yun Ping Road, Causeway Bay, Hong Kong

Report No.: 35328

Date of Issue: 2021-06-30

Date Received: 2021-06-24

Date Tested: 2021-06-24 Date Completed: 2021-06-30

ATTN:

Mr. Cyrus Fung

age:

1 of 1

Sample Description:

1 liquid sample as received from customer said to be wastewater

Laboratory No. Sampling Date

35328 2021-06-24

Test Requested & Methodology:

	questeu et memodology.		
Item	Parameters	Ref. Method	Limit of Reporting
1	E. coli	DoE (1983) The Bacteriological Examination of Drinking Water Supplies, 1982 (Membrane Filtration Procedure: Sections 7.8, 7.9.4.2; Bacterial Confirmation: Section 7.9.4.3 for coliform, 7.9.4.4 for E. coli)	1 cfu/100mL

Results:

G I ID	C I. N.	E.coli
Sample ID Sa	Sample No.	(cfu/100mL)
Effluent	35328-1	9,600

Remarks: 1) \leq = less than

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

General Manager

TEST REPORT

APPLICANT:

SUEZ NWS Limited

Room 702, 7/F, Lee Garden Two,

28 Yun Ping Road, Causeway Bay, Hong Kong

Report No.: 35329

Date of Issue: 2021-07-06

Date Received: 2021-06-24 Date Tested: 2021-06-24

Date Completed: 2021-07-06

ATTN:

Mr. Cyrus Fung

Page:

1 of 2

Sample Description:

Flow-weighted Composite Water Sample (which was composited by Wellab

Staff, from 24 water samples as received from customer said to be effluent

samples from San Wai Sewage Treatment Works (SWSTW)

Laboratory No.

35329

Sampling Date

2021-06-24

Test Requested & Methodology:

Item	Parameters	Ref. Method	Limit of Reporting
1	Cadmium	In-house method SOP039 (ICP/MS)	0.5 μg/L
2	Copper		1.0 μg/L
3	Nickel		1.0 μg/L
4	Lead		1.0 μg/L
5	Mercury		0.5 μg/L
6	Chromium		1.0 μg/L
8	Zinc		1.0 μg/L
9	Total Inorganic Nitrogen	In-house method SOP163 (By calculation)	0.04 mg N/L
10	Ammonia	In-house method SOP157 (FIA)	0.02 mg NH ₃ -N/L
11.	Biochemical Oxygen Demand	APHA 19ed 5210B	$2 \text{ mg-O}_2/L$
12	Suspended Solids (SS)	APHA 17ed 2540 D	2.5 mg/L
13	pH value at 25°C	APHA 19ed 4500-H ⁺ B	2.0-12.0 pH unit
14	E. coli	DoE (1983) The Bacteriological Examination of Drinking Water Supplies, 1982 (Membrane Filtration Procedure: Sections 7.8, 7.9.4.2; Bacterial Confirmation: Section 7.9.4.3 for coliform, 7.9.4.4 for E. coli)	1 cfu/100mL

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE General Manager

TEST REPORT

Report No.: 35329
Date of Issue: 2021-07-06
Date Received: 2021-06-24

Date Received: 2021-06-24
Date Tested: 2021-06-24
Date Completed: 2021-07-06

Page: 2 of 2

Results:

Sample ID	Effluent
Sample No.	35329-1
Cadmium (µg/L)	< 0.5
Copper (µg/L)	9
Nickel (µg/L)	19
Lead (μg/L)	1
Mercury (µg/L)	< 0.5
Chromium (µg/L)	4
Zinc (µg/L)	50
Total Inorganic Nitrogen (mg/L)	26
Ammonia (mg/L)	26
Biochemical Oxygen Demand (mg-O ₂ /L)	23
Suspended Solids (mg/L)	29
pH value at 25°C (pH unit)	7.2
E.coli (cfu/100mL)	120,000

Remarks: 1) \leq = less than

TEST REPORT

APPLICANT: SUEZ NWS Limited

Room 702, 7/F, Lee Garden Two,

28 Yun Ping Road, Causeway Bay, Hong Kong

Report No.: 35329A
Date of Issue: 2021-07-06
Date Received: 2021-06-24
Date Tested: 2021-06-24

Page:

Date Completed:

1 of 2

2021-07-06

ATTN:

Mr. Cyrus Fung

Sample Description : Flow-weighted Composite Water Sample (which was composited by Wellab

Staff, from 24 water samples as received from customer said to be effluent

samples from San Wai Sewage Treatment Works (SWSTW)

Laboratory No. : Sampling Date :

35329A 2021-06-24

Test Requested & Methodology:

Item	Parameters	Ref. Method	Limit of Reporting
1	2,4'-Dichlorobiphenyl (PCB8)	In-house method SOP 087	0.02 μg/L
2	2,2',5-Trichlorobiphenyl (PCB18)	(GC/MSD)	0.02 μg/L
3	2,4,4'-Trichlorobiphenyl (PCB28)		0.02 μg/L
4	2,2',3,5'-Tetrachlorobiphenyl (PCB44)		0.02 μg/L
5	2,2',5,5'-Tetrachlorobiphenyl (PCB52)	2	$0.02~\mu g/L$
6	2,3',4,4'-Tetrachlorobiphenyl (PCB66)		$0.02~\mu g/L$
7	3,3',4,4'-Tetrachlorobiphenyl (PCB77)		$0.02~\mu g/L$
8	3,4,4',5-Tetrachlorobiphenyl (PCB81)	-=	$0.02~\mu g/L$
9	2,2',4,5,5'-Pentachlorobiphenyl (PCB101)		0.02 μg/L
10	2,3,3',4,4'-Pentachlorobiphenyl (PCB105)		$0.02~\mu g/L$
11	2,3,4,4',5-Pentachlorobiphenyl (PCB114)		$0.02~\mu \mathrm{g/L}$
12	2,3',4,4',5-Pentachlorobiphenyl (PCB118)		$0.02~\mu g/L$
13	2',3,4,4',5-Pentachlorobiphenyl (PCB123)	*	$0.02~\mu \mathrm{g/L}$
14	3,3',4,4',5-Pentachlorobiphenyl (PCB126)		0.02 μg/L
15	2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128)		$0.02~\mu \mathrm{g/L}$
16	2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138)		$0.02~\mu \mathrm{g/L}$
17	2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153)		$0.02~\mu \mathrm{g/L}$
18	2,3,3',4,4',5-Hexachlorobiphenyl (PCB156)		0.02 μg/L
19	2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157)		$0.02~\mu \mathrm{g/L}$
20	2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167)		$0.02~\mu g/L$
21	3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169)		0.02 μg/L
22	2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170)		0.02 μg/L
23	2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180)		0.02 μg/L
24	2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187)	ωt	0.02 μg/L
25	2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189)		0.02 μg/L

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE General Manager

TEST REPORT

Report No.:

35329A

Date of Issue:

2021-07-06

Date Received:

2021-06-24

Date Tested:

2021-06-24

Date Completed:

2021-07-06

Page:

2 of 2

Results:

Sample ID	Effluent
Sample No.	35329-1
2,4'-Dichlorobiphenyl (PCB8), µg/L	< 0.02
2,2',5-Trichlorobiphenyl (PCB18) , μg/L	< 0.02
2,4,4'-Trichlorobiphenyl (PCB28) , μg/L	< 0.02
2,2',3,5'-Tetrachlorobiphenyl (PCB44), μg/L	< 0.02
2,2',5,5'-Tetrachlorobiphenyl (PCB52), µg/L	< 0.02
2,3',4,4'-Tetrachlorobiphenyl (PCB66), µg/L	< 0.02
3,3',4,4'-Tetrachlorobiphenyl (PCB77), µg/L	< 0.02
3,4,4',5-Tetrachlorobiphenyl (PCB81), µg/L	< 0.02
2,2',4,5,5'-Pentachlorobiphenyl (PCB101), μg/L	< 0.02
2,3,3',4,4'-Pentachlorobiphenyl (PCB105), μg/L	< 0.02
2,3,4,4',5-Pentachlorobiphenyl (PCB114), µg/L	< 0.02
2,3',4,4',5-Pentachlorobiphenyl (PCB118), μg/L	< 0.02
2',3,4,4',5-Pentachlorobiphenyl (PCB123), μg/L	< 0.02
3,3',4,4',5-Pentachlorobiphenyl (PCB126), μg/L	< 0.02
2,2',3,3',4,4'-Hexachlorobiphenyl (PCB128), μg/L	< 0.02
2,2',3,4,4',5'-Hexachlorobiphenyl (PCB138), μg/L	< 0.02
2,2',4,4',5,5'-Hexachlorobiphenyl (PCB153), μg/L	< 0.02
2,3,3',4,4',5-Hexachlorobiphenyl (PCB156), μg/L	< 0.02
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB157), μg/L	< 0.02
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB167), µg/L	< 0.02
3,3',4,4'5,5'-Hexachlorobiphenyl (PCB169), μg/L	< 0.02
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB170) , μg/L	< 0.02
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB180) , μg/L	< 0.02
2,2',3,4',5,5',6-Heptachlorobiphenyl (PCB187) , μg/L	< 0.02
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB189), μg/L	< 0.02

Remarks: 1) \leq = less than

TEST REPORT

APPLICANT:

SUEZ NWS Limited

Room 702, 7/F, Lee Garden Two,

28 Yun Ping Road, Causeway Bay, Hong Kong

Report No.: 35329B

Date of Issue: 2021-07-06

Date Received: 2021-06-24 Date Tested: 2021-06-24

Date Completed: 2021-07-06

ATTN:

Mr. Cyrus Fung

Page:

1 of 2

Sample Description:

Flow-weighted Composite Water Sample (which was composited by Wellab

Staff, from 24 water samples as received from customer said to be effluent

samples from San Wai Sewage Treatment Works (SWSTW)

Laboratory No.

35329B

Sampling Date

2021-06-24

Test Requested & Methodology:

Item	Parameters	Ref. Method	Limit of Reporting
1			1 0
1	Naphthalene (NAP)	In-house method SOP 087 (GC/MSD)	0.1 μg/L
2	Acenaphthylene (ANY)		0.1 μg/L
3	Acenaphthene (ANA)		0.1 μg/L
4	Fluorene (FLU)		0.1 μg/L
5	Phenanthrene (PHE)		0.1 μg/L
6	Anthracene (ANT)		0.1 μg/L
7	Fluoranthene (FLT)		0.1 μg/L
8	Benzo(a)Anthracene (BaA)	*	0.1 μg/L
9	Chrysene (CHR)		0.1 μg/L
10	Pyrene (PYR)		0.1 μg/L
11	Benzo(b)Fluoranthene (BbF)		0.1 μg/L
12	Benzo(a)Pyrene (BaP)		0.1 μg/L
13	Benzo(k) Fluoranthene (BkF)		0.1 μg/L
14	Indeno(1,2,3-cd)pyrene (IPY)	2	0.1 μg/L
15	Dibenz(a,h)anthracene (DBA)		0.1 μg/L
16	Benzo(g,h,i)Perylene (BPE)		0.1 μg/L

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
General Manager

General Manager

TEST REPORT

 Report No.:
 35329B

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

 Date Tested:
 2021-06-24

Date Completed:

2021-07-06

Page:

2 of 2

Results:

Sample ID	Effluent
Sample No.	35329-1
Naphthalene (NAP), μg/L	0.2
Acenaphthylene (ANY), µg/L	<0.1
Acenaphthene (ANA), µg/L	< 0.1
Fluorene (FLU), µg/L	<0.1
Phenanthrene (PHE), µg/L	<0.1
Anthracene (ANT), µg/L	<0.1
Fluoranthene (FLT), µg/L	<0.1
Benzo(a)Anthracene(BaA), μg/L	<0.1
Chrysene (CHR), µg/L	<0.1
Pyrene(PYR), µg/L	<0.1
Benzo(b)Fluoranthene (BbF), μg/L	<0.1
Benzo(a)Pyrene (BaP), μg/L	<0.1
Benzo(k) Fluoranthene (BkF), μg/L	<0.1
Indeno(1,2,3-cd)pyrene (IPY), μg/L	< 0.1
Dibenz(a,h)anthracene (DBA), μg/L	<0.1
Benzo(g,h,i)Perylene (BPE), μg/L	< 0.1

Remarks: 1) \leq = less than

APPENDIX G TOXICITY TESTING RESULT

TEST REPORT

APPLICANT:

SUEZ NWS Limited

Room 702, 7/F, Lee Garden Two,

28 Yun Ping Road, Causeway Bay, Hong Kong

Report No.: 35329C Date of Issue: 2021-07-06 Date Received: 2021-06-24

Date Tested: 2021-06-24 Date Completed: 2021-07-06

1 of 13

ATTN:

Mr. Cyrus Fung

Sample Description: Flow-weighted Composite Water Sample (which was composited by Wellab

Staff, from 24 water samples as received from customer said to be effluent samples

Page:

from Pillar Point Wastewater Treatment Plant)

Laboratory No.: 35329

Sampling Date: Effluent water samples were collected between 2021-06-23 and 2021-06-24

Sample Received Date: 2021-06-24

Sample No.: 35329-1

Test Requested & Methodology:

Item	Parameter	Ref. Method	Limit of Reporting
I	7-Days Diatom (<i>Skeletonema</i> costatum) Growth Inhibition Test	EPD (2009), Standard Operating Procedures for Whole Effluent Toxicity Test, February 2009	N/A
II	48-hr Barnacle Larvae (<i>Balanus</i> amphitrite) survival test		N/A

Remarks: 1) Uncertainty is calculated as 2S.D.

2) N/A = Not Applicable

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE General Manager

TEST REPORT

 Report No.:
 35329C

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

 Date Tested:
 2021-06-24

 Date Completed:
 2021-07-06

Page:

2 of 13

1. SAMPLE INFORMATION

1.1 Sample Information, Receiving and Storage Conditions

Sample Description:		amples as received from	customer sa	id to be effluent
Sampling Date	2016-05-19	9 and 2021-06-24		
Sample Receive Date	2021-06-24			
Sample Pretreatment		amples were composited	l in Wellab	
Sample Composite Date:	2021-06-24	4		
Sample No. & Sample ID:	1)	2021/06/23 11:00	13)	2021/06/23 23:00
	2)	2021/06/23 12:00	14)	2021/06/24 00:00
	3)	2021/06/23 13:00	15)	2021/06/24 01:00
	4)	2021/06/23 14:00	16)	2021/06/24 02:00
	5)	2021/06/23 15:00	17)	2021/06/24 03:00
	6)	2021/06/23 16:00	18)	2021/06/24 04:00
	7)	2021/06/23 17:00	19)	2021/06/24 05:00
	8)	2021/06/23 18:00	20)	2021/06/24 06:00
	9)	2021/06/23 19:00	21)	2021/06/24 07:00
	10)	2021/06/23 20:00	22)	2021/06/24 08:00
	11)	2021/06/23 21:00	23)	2021/06/24 09:00
	12)	2021/06/23 22:00	24)	2021/06/24 10:00
Temperature of Sample(s)	2-6°C			
at Receipt:			· ·	
Sampling Container:	1L plastic	bottle		
Composite Sample Volume:	14L			
Composite Sample No	35329-1			(S)
& Sample ID:	Effluent			
Sample Storage Condition	Store in da	ark at $4 \pm 2^{\circ}$ C until testi	ing	
after Receipt:				

TEST REPORT

 Report No.:
 35329C

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

 Date Tested:
 2021-06-24

 Date Completed:
 2021-07-06

Page:

3 of 13

2. 7-Days Diatom (Skeletonema costatum) Growth Inhibition Test

2.1 Test Method

This 7-day toxicity test on water sample with *Skeletonema costatum* was conducted using the EPD WETT Standard Operating Procedure (2009) "Standard Operating Procedures for Whole Effluent Toxicity Test (WETT)". *Skeletonema costatum* exposed to the five concentrations of test sample for a 7-day test period. The endpoints were cell density and specific growth rate.

2.2 <u>Summary of Test Sample - Diatom7-Days Growth Inhibition Test Particulars</u>

Type of Test	Static Non-Renewal		
Test Start and End Date (Time)	Start: 2021-06-24 (13:00) End: 2021-07-01 (13:00)		
Test Organism:	Skeletonema costatum		
Source:	Purchase, Use log phase growing culture		
Stock Culture Cultivation:	Stock Culture were Cultured in Same Conditions as Testing Conditions		
Test Duration:	7Days		
Temperature:	22 ± 1°C		
Salinity:	30± 1ppt		
Dissolved Oxygen:	>5mg/L		
pH:	8.0±2		
Lightand Light Intensity:	3000±500 lux light density		
Light Cycle:	12h Light, 12h Dark		
Test Chambers:	100mL glass beaker		
Test Solution Volume:	25mL		
Dilution Water:	Seawater purchased from Kwun Tong Wholesale Fish Market.		
	Adjusted to 30 ± 12 ppt, filter through a $0.22\mu m$ filter and UV sterilized		
Age of Test Organisms:	Log Phase Growing Cell at Density of 10 ⁶ cell/ mL		
Initial Density of Test Organisms per Chamber:	$5.1 \times 10^4 \text{ cell /mL}$		
Number of Replicate Chambers per Treatment:	4		
Renewal of Test Solution:	None		
Aeration:	Orbital shaker (120 revolution per minute)		

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

 Report No.:
 35329C

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

Date Tested: 2021-06-24
Date Completed: 2021-07-06

Date Completed: Page:

4 of 13

2.3 Summary of Test Sample Diatom 7-Days Growth Inhibition Test Particulars (Cont.)

Observations:	Colour and Appearance of Culture
Physical / Chemical	Temperature, Dissolved Oxygen, pH, Salinity
Data:	
Nutrient Regime:	f/2 Medium
Effect:	Cell density and Specific Growth Rate
Endpoints:	NOEC, LOEC and EC50
Test Acceptability	Negative control cell density shall have increased by 16 times in 7 days
Criteria:	Coefficient of variation of average growth in control replicate <20%
Deviation from Test	No Deviation from Test Method
Method:	
Statistical Analysis	Comparisons were made according to EPD (2009), Standard Operating Procedures for Whole Effluent Toxicity Test. Data reported as percentages were transformed using an arcsine square root transformation prior to statistical analysis. All data were tested for normality using the Shapiro-Wilk test and equality of variance using Barlett's test. Determinations of statistical significance were based on one-tailed Student's t-tests
2	with an alpha of 0.05. Calculate EC50 using CETIS, data were analyzed according to USEPA requirement (version1.8.7.16)

2.4 <u>Summary of Reference Toxicant Diatom 7-Days Growth Inhibition Test Particulars</u>

Reference Toxicant	Cadmium ion (from Anhydrous Cadmium Chloride)
Statistical Analysis	7-Day EC50 for Cadmium ion determined by CETIS (version1.8.7.16)
Number of Replicate	4
Chambers per Treatment:	
Other Test Conditions	Same as Test Sample Toxicity Test

TEST REPORT

 Report No.:
 35329C

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

 Date Tested:
 2021-06-24

 Date Completed:
 2021-07-06

Page:

5 of 13

2.5 <u>Test Results (Diatom 7-Days Growth Inhibition Test</u> - Cell Density on Day 0, Day 1, Day 3 and Day 7

35329-1	D 11	Cell Density (cell/mL)	
Test Concentration (%)	Replicate	Day 0	Day 7
,	1	51,000	1,900,000
0	2	51,000	1,800,000
(Negative Control)	3	51,000	1,500,000
(4-8	4	51,000	1,400,000
	1	51,000	2,100,000
	2	51,000	2,000,000
2.5	3	50,000	2,200,000
	4	50,000	2,300,000
	1	51,000	2,100,000
_	2	51,000	1,800,000
5	3	50,000	2,100,000
	4	50,000	2,200,000
,	1	51,000	1,100,000
10	2	51,000	990,000
10	3	50,000	1,000,000
	4	50,000	960,000
	1	50,000	590,000
	2	50,000	550,000
25	3	51,000	620,000
	4	51,000	720,000
	1	51,000	<50,000
	2	51,000	<50,000
50	3	50,000	<50,000
	4	50,000	<50,000

Remark: <=less than

Condin. ~ 1055 than

TEST REPORT

Report No.: Date of Issue: 35329C 2021-07-06

Date Received: Date Tested:

2021-06-24 2021-06-24

Date Tested:

Date Completed:

2021-07-06

Page:

6 of 13

2.6 Test Result Summary (Diatom 7-Days Growth Inhibition Test)

35329-1	Replicate	Day 7	Mean
Test Concentration (%)	Replicate	Specific Growth Rate	1,10011
	1	0.52	
0	2 3	0.51	0.50
(Negative Control)	3	0.49	0.50
	4	0.48	
	1	0.54	
2.5	2	0.53	0.54
2.5	3	0.54	0.54
	4	0.54	
· ·	1	0.53	
_	2	0.51	0.53
5	3	0.53	0.33
*	4	0.54	х.
	1	0.45	
10	2	0.43	0.43
10	3	0.43	0.43
	4	0.42	
×	1	0.35	
25	2	0.34	0.36
25	3	0.36	0.30
	4	0.36	
	1	0.00	
50	2	0.00	0.00
50	3	0.00	0.00
	4	0.00	

TEST REPORT

 Report No.:
 35329C

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

 Date Tested:
 2021-06-24

 Date Completed:
 2021-07-06

Page:

7 of 13

2.7 Test Result Summary and Interpretation of Diatom 7-Days Growth Inhibition Test

Parameter	35329-1
No Observable Effect Concentration (NOEC)	2.5%
Lowest Observed Effect Concentration (LOEC)	25%
EC50	31.7%
(Upper, Lower Confidence Level)	(32.0, 31.4)
**************************************	*************

TEST REPORT

 Report No.:
 35329C

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

 Date Tested:
 2021-06-24

 Date Completed:
 2021-07-06

Page:

8 of 13

2.8 <u>QC Records - Diatom 7-Days Growth Inhibition Test, Test Sample and Reference Toxicant Test</u> Validity Criteria

- Test Organism Performance

	Results	Control Limit	
Diotom 7 Dava Growth	Negative Control 7-Days Growth Rate	0.50	>0.4
	Coefficient of variation of Average Growth of Negative Control	2.7%	<20%
	96-h EC50	0.15 mg/L	0.11-0.16 mg/L
	95% Confidence Interval	0.10-0.18 mg/L	N/A

2.9 <u>Diatom 7-Days Growth Inhibition Test Validity Criteria (Water Quality)</u>

35329-1 Test	Salii (pp		Oxy	Dissolved Oxygen (mg/L)		pH (pH unit)		Temperature (°C)	
Concentration (%)	Max	Min	Max	Min	Max	Min	Max	Min	
0 (Negative Control)	30.6	29.4	7.4	6.8	7.2	6.9			
6.25	30.5	29.5	7.3	7.0	7.2	6.9	20		
12.5	30.5	29.3	7.1	6.8	7.1	6.9	22	21	
25	30.4	29.4	7.1	6.9	7.2	6.9			
50	30.5	29.4	7.4	6.8	7.2	6.9	12 1		
100	30.8	29.5	7.1	7.0	7.1	6.9			
Acceptance Criteria	29-	31	>5r	ng/L	6.0	-10.0	21-2	23°C	

35329-1 Test	Ammonia (mg NH ₃ -N/L)			ohide S ²⁻ /L)	Total Suspended Solids (mg/L)		
Concentration (%)	Max	Min	Max	Min	Max	Min	
0 (Negative Control)	< 0.05	<0.05	<0.1	<0.1	<2.5	<2.5	
6.25	1.2	< 0.05	< 0.1	< 0.1	<2.5	<2.5	
12.5	3.1	0.11	0.1	< 0.1	4	3	
25	6.7	0.22	0.4	< 0.1	8	7	
50	12	0.56	0.4	< 0.1	15	14	
100	27	0.90	0.6	< 0.1	30	28	
Acceptance Criteria	N/A		N/A		N/A		

Remarks: 1) \leq less than, \geq more than

2) N/A = Not Applicable

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

 Report No.:
 35329C

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

 Date Tested:
 2021-06-24

 Date Completed:
 2021-07-06

Page:

9 of 13

3. 48-hr Barnacle Larvae (Balanus amphitrite) survival test

3.1 Test Method

This 48-hr toxicity test on water sample with *Balanus amphitrite* was conducted using the EPD WETT Standard Operating Procedure (2009) "Standard Operating Procedures for Whole Effluent Toxicity Test (WETT)". *Balanus amphitrite* was exposed to the five concentrations of test sample for a 48-hr test period. The endpoints were survival.

3.2 <u>Summary of Test Sample 48-hr Settlement Barnacle Larvae Test</u>

Type of Test	Static Renewal
Test Start and End Date (Time)	Start: 2021-06-24 (13:00) End: 2021-06-26 (13:00)
Test Organism:	Balanus amphirite
Source:	Collect adult barnacle from Ma Liu Shui and Shatin, dissect their brood sac to get larvae
Test Duration:	48-hr
Temperature:	22 ± 1°C
Salinity:	30± 1ppt
Dissolved Oxygen:	>5mg/L
pH:	8.0± 2
Light and light intensity:	3000±500 lux light density
Light Cycle:	Continuous
Test Chambers:	50mL glass beaker
Test Solution Volume:	20mL
Dilution Water:	Seawater purchased from Kwun Tong Wholesale Fish Market Adjusted to 30 ± 1 ppt, filter through a 0.22μm filter and UV sterilized
Age of Test Organisms:	Gather stage II nauplii larvae that are positive phototactic, actively swimming
Number of Test Organisms per Chamber:	20
Number of Replicate Chambers per Treatment:	4
Renewal of Test Solution:	None
Aeration:	Orbital shaker (120 revolution per minute)

TEST REPORT

 Report No.:
 35329C

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

 Date Tested:
 2021-06-24

 Date Completed:
 2021-07-06

Page:

10 of 13

3.3 Summary of Test Sample 48-hr Barnacle Larvae Test (Cont.)

Physical / Chemical Data:	Temperature, Dissolved Oxygen, pH, Salinity
Feeding	None
Effect:	Survival
Endpoints:	NOEC, LOEC and EC50
Test Acceptability Criteria:	Mortality of negative control not exceed 10%
Deviation from Test Method:	No Deviation from Test Method
Statistical Analysis	Comparisons were made according to EPD (2009), Standard Operating Procedures for Whole Effluent Toxicity Test. Data reported as percentages were transformed using an arcsine square root transformation prior to statistical analysis. All data were tested for normality using the Shapiro-Wilk test and equality of variance using Barlett's test. Determinations of statistical significance were based on one-tailed Student's t-tests with an alpha of 0.05. Calculate EC50 using CETIS (version1.8.7.16), data were analyzed according to USEPA requirement

3.4 Summary of Reference Toxicant 48-hr Barnacle Larvae Test

Reference Toxicant	Cadmium ion (from Anhydrous Cadmium Chloride)
Stock Solution Concentration	20000mg/L Cd ²⁺
Statistical Analysis	48-hr EC50 for Cadmium ion Determined by CETIS (version1.8.7.16)
Number of Replicate	4
Chambers per Treatment:	
Other Test Conditions	Same as Test Sample Toxicity Test

TEST REPORT

Report No.: 35329C Date of Issue: 2021-07-06 Date Received: 2021-06-24

Date Received: 2021-06-24
Date Tested: 2021-06-24
Date Completed: 2021-07-06

Page:

11 of 13

3.5 Test Results

- Test Result Summary (48-hr Settlement Barnacle Larvae Test)

35329-1 Test Concentration (%)	Replicate	Number Exposed	No. of Living Barnacle Larvae	Percentage survival (%)	Mean Percentage (%)
	1	20	20	100	
0	2	20	19	95	97.5
(Negative Control)	3	20	20	100	97.3
Control	4	20	19	95	- 8
	1	20	20	100	
	2	20	17	85	92.5
6.5	3	20	17	85	92.3
	4	20	20	100	
	1	20	16	80	
12.5	2	20	16	80	73.8
	3	20	14	70	/3.8
	4	20	13	65	
	1	20	12	60	
	2	20	11	55	55.0
25	3	20	12	60	33.0
	4	20	9	45	
	1	20	1	5	
	2	20	2	10	6.3
50	3	20	1	5	0.3
	4	20	1	5	
	1	20	0	0	
	2	20	0	0	
100	3	20	0	0	0.0
ŀ	4	20	0	0	

TEST REPORT

 Report No.:
 35329C

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

 Date Tested:
 2021-06-24

 Date Completed:
 2021-07-06

Page:

12 of 13

3.6 <u>Test Result Summary and Interpretation of 48-hr Barnacle Larvae Test</u>

Parameter	35329-1
LC50	28.2%
(Upper, Lower Confidence Level)	(29.3%, 27.1%)

WELLAB LIMITED Room 1714, Technology Park 18 On Lai Street, Shatin New Territories, Hong Kong

Tel: 2898 7388 Fax: 2898 7376 Website: www.wellab.com.hk

TEST REPORT

 Report No.:
 35329C

 Date of Issue:
 2021-07-06

 Date Received:
 2021-06-24

 Date Tested:
 2021-06-24

 Date Completed:
 2021-07-06

Page:

13 of 13

3.7 QC Records (48-hr Barnacle Larvae Test)

- 48-hr Barnacle Larvae Test, Test Sample and Reference Toxicant Test Validity Criteria (Test Organism Performance)

	Parameters	Results	Control Limit
48-hr Barnacle	Negative Control 48-hr Mean Survival Percentage	97.5	>50%
Larvae Test	96-h EC50	1.10 mg/L	1.00-1.14 mg/L
	95% Confidence Interval	0.97-1.12mg/L	N/A

3.8 48-hr Barnacle Larvae Test (Water Quality)

35329-1 Test	Salinity (ppt)		Dissolved Oxygen (mg/L)		pH (pH unit)		Temperature (°C)	
Concentration (%)	Max	Min	Max	Min	Max	Min	Max	Min
0 (Negative Control)	30.8	29.2	7.5	6.8	7.2	6.9		
6.5	30.7	29.5	7.4	7.0	7.0	6.9		
12.5	30.9	29.1	7.4	6.8	7.0	6.9	22	21
25	30.6	29.2	7.5	6.9	7.2	6.9		
50	30.9	29.4	7.5	6.8	7.2	6.9		
100	30.8	29.5	7.4	7.0	7.1	6.9		
Acceptance Criteria	29-	31	>5r	ng/L	6.0-	10.0	21-2	3°C

35329-1 Test	Ammonia (mg NH ₃ -N/L)			ohide S ²⁻ /L)	Total Suspended Solids (mg/L)		
Concentration (%)	Max	Min	Max	Min	Max	Min	
0 (Negative Control)	<0.05	<0.05	<0.1	<0.1	<2.5	<2.5	
6.5	1.2	0.56	< 0.1	< 0.1	<2.5	<2.5	
12.5	3.1	0.62	0.1	< 0.1	4	3	
25	6.5	1.2	0.4	< 0.1	8	8	
50	12	1.6	0.4	< 0.1	15	14	
100	26	2.1	0.6	< 0.1	32	29	
Acceptance Criteria	N/A		N/A		N/A		

Remarks: 1) > = more than

2) N/A = Not Applicable

APPENDIX H ACTION AND LIMIT LEVELS

Appendix H - Action and Limit Levels

Action and Limit Levels for Operational Phase Odour Monitoring

Location of Monitoring	Parameters	Action Level	Limit Level
SB1	H ₂ S concentration, ppm	0.0109	0.0109
ASR1		0.0100	0.0100
ASR2		0.0157	0.0157
OD1	H ₂ S concentration in ppb/ppm, flow rate of	$AL = LL/2 = 139$ $\mu g/s \text{ of } H_2S$	LL = 277 μ g/s of H ₂ S
OD2	exhaust in m ³ /s and temperature of exhaust (°C)	μ ₀ , υ 01 1120	1120

APPENDIX I EVENT AND ACTION PLAN

Appendix I - Event and Action Plan

Event / Action Plant for the Operational Phase Odour Monitoring

Event	Action Action				
	ET	IEC	ER	Contractor	
Exceedance of Action Level for one sample at site houndary, ASRs or exhaust of deodourisation unit	Identify source/ reason of exceedance; Inform IEC and ER; Repeat measurement to confirm finding.	Check with Contractor on the operating activities and implementation of odour mitigation measures; Discuss with ET and Contractor on the possible remedial actions; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures.	Confirm receipt of notification of exceedance in writing; Notify Contractor; Ensure remedial actions properly implemented.	Carry out investigation to identify the source/reason of exceedance or complaints. Investigation shall be completed within 1 week; Rectify any unacceptable practice; Amend working methods as required; Inform ET and EPD if the cause of exceedance is considered to be caused by the project; Implement amended working methods	
Exceedance of Limit Level for one or more samples at site boundary, ASRs or exhaust of deodourisation unit	 Notify IEC, ER, Contractor and EPD; Identify source of odour; Increase monitoring frequency; Carry out analysis of the operating activities and implementation of odour mitigation measures to determine possible mitigation to be implemented Arrange meeting with IEC and ER to discuss the remedial actions to be taken; Assess effectiveness of the remedial actions and keep IEC, EPD and ER informed of the results; Carry out odour measurement using dynamic olfactometry after implementation of remedial measures to confirm their 	Discuss amongst ET, ER and the Contractor on the potential remedial actions; Review the proposed remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise implementation of remedial measures.	Confirm receipt of notification of exceedance in writing; Notify Contractor; In consultation with the ET, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	Carry out investigation to identify the source/reason of exceedance. Investigation shall be completed within 1 week; Rectify any unacceptable practice; Amend working methods as required; Inform ET and EPD; Formulate remedial actions; Ensure amended working methods and remedial actions properly implemented. If exceedance continues, consider what portion of the work is responsible and stop that portion of work until the exceedance is abated.	