

Agreement No. CE 60/2017 (EP)

Environmental Team for Tung Chung New Town Extension (East) - Design and Construction

Monthly Environmental Monitoring & Audit Report for December 2021

ERM

2509, 25/F One Harbourfront 18 Tak Fung Street Hunghom, Kowloon Hong Kong T: 2271 3000 F: 3015 8052 www.erm.com

Agreement No. CE60/2017 (EP) Environmental Team for Tung Chung New Town Extension (East) – Design and Construction

Monthly Environmental Monitoring & Audit Report for December 2021

Revision 1

Document Code: 0445700_Monthly EM&A December 2021_v1.docx

Environmental Resources Management

2509, 25/F, One Harbourfront 18 Tak Fung Street Hunghom, Kowloon Hong Kong Telephone: (852) 2271 3000

Facsimile: (852) 3015 8052 E-mail: post.hk@erm.com http://www.erm.com

Client:		Projec	t No:			
Civil Enç	gineering and Development Department	0445	700			
Summary:		Date:				
,		13 Ja	anuary	2022		
			ved by:		'	
This document presents the Monthly EM&A Report for December 2021 for Environmental Team for Tung Chung New Town Extension (East) – Design and Construction (Agreement No. CE 60/2017 [EP]).		Lili				
		Craig A. Reid Partner				
1	Monthly EM&A Report (for December 2021)	Var	R	RC/JT	CAR	13/1/22
Revision	Description	Ву	Ch	necked	Approved	Date
This report has been prepared by Environmental Resources Management the trading name of 'ERM Hong-Kong, Limited', with all reasonable skill, care and diligence within the terms of the Contract with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client.		Distrib	oution Interr	nal		AS 18001:2007 be No. OHS 515956
We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.		\boxtimes	Publi	С	Cestificat	BSI M
This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies on the report at their own risk.			Confi	dentia		9001 : 2008 ate No. FS 32515

Tung Chung New Town Extension

Environmental Certification Sheet for Environmental Permit No. EP-519/2016

Reference Document/Plan

Document/Plan to be Certified: Monthly Environmental Monitoring & Audit Report for

December 2021 (Revision 1)

Date of Report: 13 January 2022

Reference EP Condition

Environmental Permit Condition: Condition 3.5

The Permit Holder shall submit 4 hard copies and 1 electronic copy of Monthly EM&A Reports for the construction stage of the Project to the Director, within 2 weeks after the end of the reporting month. The monthly EM&A Reports shall include an executive summary of all environmental audit results, together with actions taken in the event of non-compliance (exceedances) of the environmental quality performance limits (Action and Limit Levels), complaints received and emergency events relating to violation of environmental legislation (such as illegal dumping and landfilling). The submissions shall be certified by the ET Leader and verified by the IEC as having complied with the requirements as set out in the updated EM&A Manual before submission to the Director. Additional copies of the Monthly EM&A Reports shall be provided upon request by the Director.

ET Certification

I hereby certify that the above referenced document/plan complies with the above referenced condition of EP-519/2016

Ray Yan 13 January 2022 Date: Kan

Environmental Team Leader

Your Ref.

By Post

Our Ref. 198377-0444

Date 13 January 2022

Sustainable Lantau Office Civil Engineering and Development Department 13/F, North Point Government Offices 333 Java Road, North Point Hong Kong

Attention: Mr. Vincent CHOW / Mr. K.T. WO

Dear Sir.

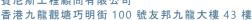
Agreement No. CE 59/2017 (EP)

Independent Environmental Checker for Tung Chung New Town Extension – Investigation Monthly Environmental Monitoring & Audit Report for December 2021 for TCE

We refer to the Monthly Environmental Monitoring & Audit Report for December 2021 for Tung Chung New Town Extension (East) (TCE) dated January 2022 and certified by the Environmental Team (ET) Leader of TCE on 13 January 2022. Please note the submission is hereby verified, in accordance with the requirement stipulated in Condition 3.5 of EP-519/2016.

Should you have any query, please feel free to contact the undersigned at 2608 7314 (chuawo@binnies.com) or our Edward Lau at 6848 5737 (iec.tcnte@gmail.com or lauky@binnies.com).

Yours faithfully, for and on behalf of BINNIES HONG KONG LIMITED


MANUEL CHUA

INDEPENDENT ENVIRONMENTAL CHECKER

ET Leader / TCE – ERM (Attn: Mr. Ray Yan) [by Email: Ray.Yan@erm.com] CC: PM / TCE – AECOM (Attn: Mr. Chris Cheung) [by Email: crec1@tce-aecom.com]

Binnies Hong Kong Limited 43/F, AIA Kowloon Tower, 100 How Ming Street, Kwun Tong, Kowloon, Hong Kong 賓尼斯工程顧問有限公司

CONTENTS

	ABBREVIATIONS	1
	EXECUTIVE SUMMARY	1
1	INTRODUCTION	1
1.1	BACKGROUND	1
1.2	SCOPE OF THE EM&A REPORT	2
1.3	Organization Structure	2
1.4	SUMMARY OF CONSTRUCTION WORKS	5
1.5	SUMMARY OF EM&A PROGRAMME REQUIREMENTS	8
1.6	STATUS OF STATUTORY ENVIRONMENTAL COMPLIANCE WITH THE	
	Environmental Permit	11
1.7	STATUS OF OTHER STATUTORY ENVIRONMENTAL REQUIREMENTS	12
2	EM&A RESULTS FOR TUNG CHUNG EAST	13
2.1	AIR QUALITY	13
2.2	Noise Monitoring	14
2.3	WATER QUALITY MONITORING	17
2.4	SOFT SHORE ECOLOGICAL MONITORING	20
2.5	EM&A SITE INSPECTION	20
2.6	Waste Management Status	25
2.7	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	27
2.8	SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMA	ANCE
	LIMIT	28
2.9	SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFU	L
	Prosecutions	28
3	FUTURE KEY ISSUES	28
3.1	CONSTRUCTION PROGRAMME FOR THE COMING MONTH	30
3.2	MONITORING SCHEDULE FOR THE COMING MONTH	33
4	CONCLUSION AND RECOMMENDATION	34

ANNEXES

ANNEX A	PROJECT ORGANISATION
ANNEX B	ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE
ANNEX C	STATUS OF SUBMISSIONS AND IMPLEMENTATION STATUS OF MITIGATION MEASURES UNDER EP
ANNEX D	STATUS OF STATUTORY ENVIRONMENTAL REQUIREMENTS
ANNEX E	AIR QUALITY
ANNEX E1	CALIBRATION CERTIFICATES
ANNEX E2	MONITORING SCHEDULE
ANNEX E3	MONITORING RESULTS
ANNEX E4	EVENT AND ACTION PLAN
ANNEX F	Noise
ANNEX F1	CALIBRATION CERTIFICATES
ANNEX F2	MONITORING SCHEDULE
ANNEX F3	MONITORING RESULTS
ANNEX F4	EVENT AND ACTION PLAN
ANNEX G	WATER QUALITY
ANNEX G1	CALIBRATION CERTIFICATES
ANNEX G2	MONITORING SCHEDULE
ANNEX G3	MONITORING RESULTS
ANNEX G4	EVENT AND ACTION PLAN
ANNEX H	SOFT SHORE ECOLOGY
ANNEX H1	MONITORING SCHEDULE
ANNEX H2	MONITORING RESULTS
ANNEX H3	EVENT AND ACTION PLAN
ANNEX I	CUMULATIVE STATISTICS ON EXCEEDANCES, ENVIRONMENTAL
	COMPLAINTS, NOTIFICATION OF SUMMONS AND STATUS OF
	PROSECUTIONS
ANNEX J	MONITORING SCHEDULE FOR THE NEXT REPORTING PERIOD

ABBREVIATIONS

C&D	Construction and Demolition
CAP	Contamination Assessment Plan
CEDD	Civil Engineering and Development Department
CWD	Chinese White Dolphin
DCM	Deep Cement Mixing
DO	Dissolved Oxygen
EIA	Environmental Impact Assessment
EIAO	Environmental Impact Assessment Ordinance
EIS	Ecologically Important Stream
EM&A	Environmental Monitoring and Audit
EP	Environmental Permit
EPD	Environmental Protection Department
ER	Engineer's Representative
ERM	ERM-Hong Kong, Limited
ET	Environmental Team
HVS	High Volume Sampler
IEC	Independent Environmental Checker
PDA	Planned Development Area
PME	Powered Mechanical Equipment
QPME	Quality Powered Mechanical Equipment
RAP	Remediation Action Plan
RR	Remediation Report
RTTM	Real Time Tracking and Monitoring
SS	Suspended Solid
TCB	Tung Chung Bay
TCE	Tung Chung East
TCNTE	Tung Chung New Town Extension
TCW	Tung Chung West
The Project	Tung Chung New Town Extension (East)
THW	Tai Ho Wan
TSP	Total Suspended Particulate
	Updated Environmental Monitoring and Audit Manual
Updated	for Tung Chung New Town Extension prepared by ERM
EM&A Manual	under Agreement No. CE 60/2017 (EP) and deposited to
	EPD under Environmental Permit No. EP-519/2016

EXECUTIVE SUMMARY

Tung Chung New Town Extension (TCNTE) is one of the major initiatives under the Government's multi-pronged approach to increase land supply to meet Hong Kong's medium- to long-term needs for housing, economic and social developments. The Environmental Impact Assessment (EIA) Report for TCNTE (Register No. AEIAR-196/2016) was approved on 8 April 2016 and the Environmental Permit (EP) No. EP-519/2016, covering the construction and operation of TCNTE, was granted on 9 August 2016. The EIA Report and EP cover both Tung Chung East (TCE) and Tung Chung West (TCW). ERM-Hong Kong, Limited (ERM) is commissioned to undertake the role of Environmental Team (ET) for the construction and operation of TCE Project ("the Project") in accordance with the requirements specified in the EP, Updated Environmental Monitoring and Audit (EM&A) Manual, EIA Report of the TCNTE project and other relevant statutory requirements.

The construction of the Contract No. NL/2017/03 - Tung Chung New Town Extension - Reclamation and Advance Works ("Contract 1") at TCE commenced on 9 July 2018.

The construction of the Contract No. NL/2020/02 - Tung Chung New Town Extension – Salt Water Supply System ("Contract 2") at TCE commenced on 4 September 2021.

The construction of the Contract No. NL/2020/03 - Tung Chung New Town Extension - Major Infrastructure Works in Tung Chung East ("Contract 3") at TCE commenced on 5 November 2021.

The construction of the Contract No. NL/2020/04 - Tung Chung New Town Extension - Siu Ho Wan Fresh Water Service Reservoir and Associated Mainlaying Works ("Contract 4") at TCE commenced on 2 October 2021.

The contract commencement date of Contract No. NL/2020/07 - Tung Chung New Town Extension – Tai Ho Interchange ("Contract 7") at TCE was 15 October 2021.

This is the Monthly EM&A report presenting the EM&A works carried out during the period from 1 to 31 December 2021 for the TCE Project in accordance with the Updated EM&A Manual.

A summary of monitoring and audit activities conducted in the reporting period is listed below:

Air Quality Monitoring 6 sessions

Noise Monitoring 6 sessions

Water Quality Monitoring 14 sessions

Soft Shore Ecological Monitoring 1 session

Environmental Site Inspection

-	Contract 1	5 sessions
_	Contract 2	5 sessions

- Contract 3 5 sessions

- Contract 4 4 sessions

- Contract 7 4 sessions

Environmental Management Meeting

-	Contract 1	1 session
-	Contract 2	1 session
-	Contract 3	1 session
-	Contract 4	1 session
_	Contract 7	1 session

Environmental auditing works, including weekly site inspections of construction works conducted by the ET, audit of works vessels, audit of implementation of Dolphin Watching Plan, Works Vessel Travel Route Plan, Silt Curtain Deployment Plan, Spill Response Plan and Waste Management Plan were conducted in the reporting period. Based on the audit results and the observation for the reporting period, environmental pollution control and mitigation measures for the Project were properly implemented.

Breaches of Action and Limit Levels for Air Quality

No exceedance of Action and Limit Levels was recorded for construction air quality monitoring in the reporting period.

Breaches of Action and Limit Levels for Noise

No exceedance of Limit Levels was recorded for construction noise monitoring in the reporting period. However, two (2) Action Level were triggered from two (2) environmental complaints related to noise nuisance in the reporting period. Investigations were conducted for the exceedance in accordance with the Event and Action Plan.

Breaches of Action and Limit Levels for Water Quality

Suspended Solids (SS) exceedances were recorded during the reporting period. Relevant investigations and follow-up actions were conducted according to the EM&A programme. The exceedances were considered not related to this Project after investigations.

Soft Shore Ecological Monitoring

Based on the impact monitoring conducted during the reporting period, there was no evidence showing any significant difference in intertidal communities when compared against the data obtained during baseline monitoring. The ET will continue to observe the change in density or the distribution pattern of horseshoe crab, seagrass and intertidal soft shore communities taking into account natural fluctuation in respect of the occurrence and distribution pattern.

Environmental Complaints, Non-compliance & Summons

There was no notification of summons or prosecution recorded in the reporting period.

Two (2) environmental complaints related to Contract 3 were received in the reporting period. Investigations were conducted for the environmental complaints in accordance with the complaint handling process as stated in the Complaint Management Plan.

Reporting Change

There was no reporting change in the reporting period.

Key Issues For The Coming Month

Potential environmental impacts arising from the upcoming construction activities in the next reporting period of January 2022 are mainly associated with dust emission, noise from barge and plant operation during normal working hours and restricted hours, elevation in SS due to sediment loss from laying of sand blanket and marine filling works, disturbance to Chinese White Dolphin (CWD) during marine works, handling and storage of C&D materials generated from construction activities, efficiency of wastewater and drainage management and tree protection. The ET will keep track on the construction works to confirm compliance of environmental requirements and the proper implementation of all necessary mitigation measures. The ET will also recommend to the Contractor about the environmental toolbox topics on the abovementioned key issues for the coming month.

1 INTRODUCTION

1.1 BACKGROUND

Tung Chung New Town Extension (TCNTE) is one of the major initiatives under the Government's multi-pronged approach to increase land supply to meet Hong Kong's medium- to long-term needs for housing, economic and social developments. The Environmental Impact Assessment (EIA) Report for TCNTE (Register No. AEIAR-196/2016) was approved on 8 April 2016 and the Environmental Permit (EP) No. EP-519/2016, covering the construction and operation of TCNTE, was granted on 9 August 2016. The EIA Report and EP cover both Tung Chung East (TCE) and Tung Chung West (TCW).

ERM-Hong Kong, Limited (ERM) is commissioned to undertake the role of Environmental Team (ET) for the construction and operation of TCE Project ("the Project") in accordance with the requirements specified in the EP, Updated Environmental Monitoring and Audit (EM&A) Manual ⁽¹⁾, EIA Report of the TCNTE project ⁽²⁾ and other relevant statutory requirements.

The TCNTE comprises the following elements:

- (a) TCE Project
- 1. Reclamation of the seabed by a non-dredged method at TCE to form a total of about 130 hectares of land;
- 2. Construction of about 4.9 kilometers of seawalls, with an eco-shoreline, three drainage box culvert outfalls, three circulation drains and a seawater intake at TCE:
- 3. Provision of infrastructure for Tung Chung Area 58, including construction of a single two-lane road with a footpath and the associated utility works;
- 4. Construction of proposed open space;
- 5. Construction of roads, footpaths, cycle tracks and the associated junction / road improvement works;
- 6. Engineering infrastructure works covering drainage, sewerage, waterworks (including a fresh water service reservoir, a salt water service reservoir and a salt water pumping station), common utility tunnels and landscaping works; and

ERM (2018a). Updated Environmental Monitoring and Audit Manual for Tung Chung New Town Extension.
 Deposited to EPD under EP-519/2016

⁽²⁾ Arup (2015). Environmental Impact Assessment Report for Tung Chung New Town Extension. Deposited to EPD under Register No. AEIAR-196/2016

- 7. Implementation of environmental mitigation measures and environmental monitoring and audit programme for the works.
- (b) TCW Project
- 1. Site formation works at TCW;
- 2. Construction of proposed open space;
- 3. Construction of the River Park including a visitor centre at TCW; and
- 4. Construction of sustainable urban drainage systems at TCW.

The locations of Contracts 1, 2, 3, 4 and 7 are shown in *Figure 1.1* to *1.5*. The construction and the reclamation related marine works of Contract 1 commenced on 9 and 13 July 2018, respectively. The construction of Contracts 2, 3 and 4 commenced on 4 September 2021, 5 November 2021 and 2 October 2021, respectively. The contract commencement date of Contract 7 was 15 October 2021.

1.2 Scope of the EM&A Report

This is the Monthly EM&A Report for the TCE Project which summarises the key findings of the EM&A programme during the reporting period from 1 to 31 December 2021 for the construction works.

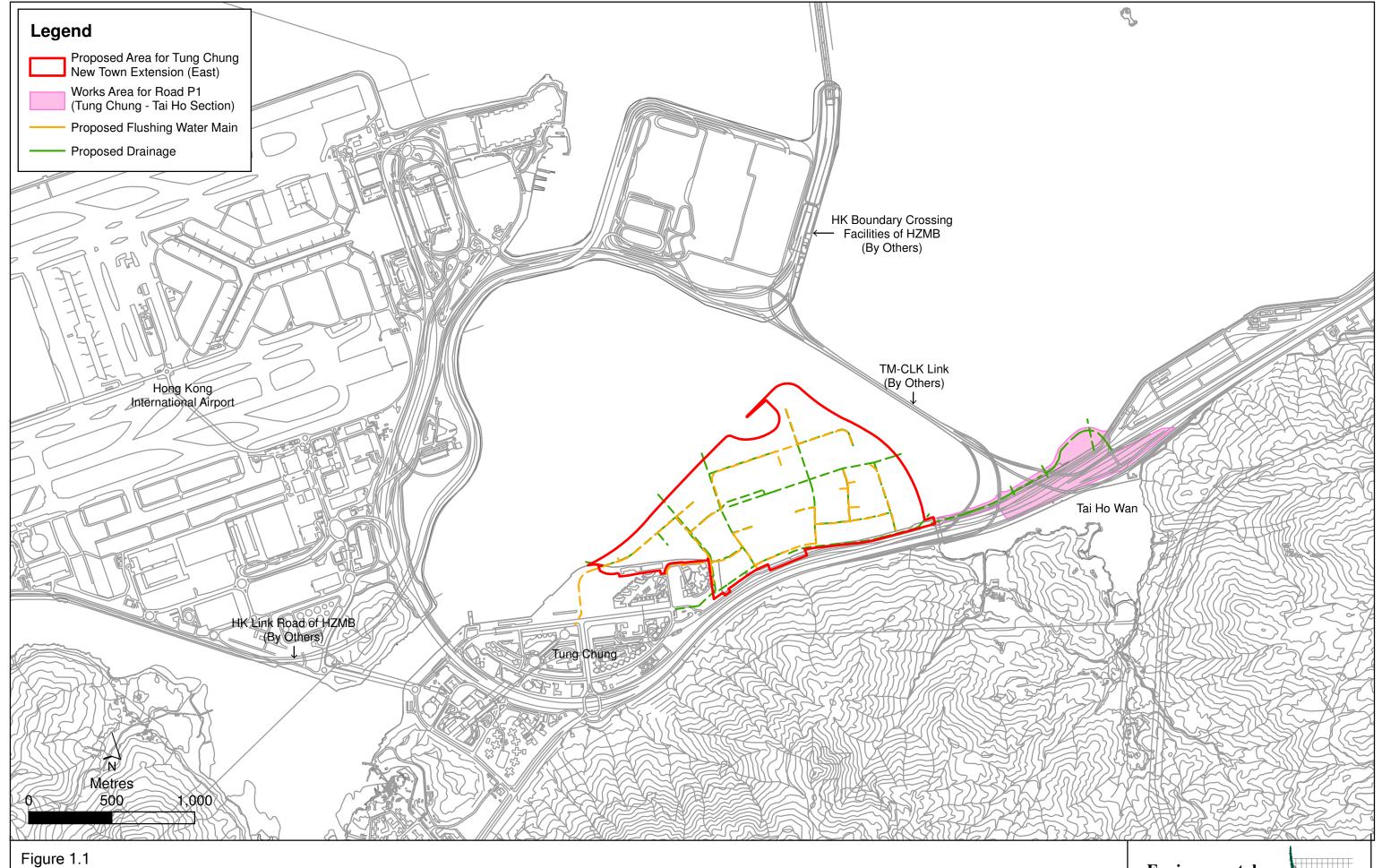
1.3 ORGANIZATION STRUCTURE

The organization structure of the Project is shown in *Annex A*. The key personnel contact names and contact details are summarized in *Table 1.1* below.

Table 1.1 Contact Information of Key Personnel

Party	Position	Name	Telephone
Environmental Team	ET Leader	Ray Yan	3894 9507
		Kay Tan Kelvin So	
(ET)	Deputy ET Leader	Kelvin 50	3894 9504
(ERM-Hong Kong,			
Limited)			
Independent	IEC	Manuel Chua	3894 9501
Environmental Checker	Deputy IEC	Edward Lau	3894 9502
(IEC)	1)		
(Binnies Hong Kong			
Limited)			
,			
Contract No. NL/2017/03	- Tung Chung New To	wn Extension - Recla	mation and Advance
Works (Contract 1)			
Civil Engineering and	Senior Geotechnical	C H Yan	3894 9702
Development	Engineer		
Department			

	Marine Conservation Officer	Wo King Tai	3894 9707
Engineer's Representative	Principal Resident Engineer	Frankie Fan	3894 9603
(ER) (AECOM Asia Company	Chief Resident Engineer	Chris Cheung	3894 9604
Limited)	Resident Engineer	Nelson Ling	3894 9647
,	Senior Inspector of Works		3894 9733
Contractor	Site Agent	Keith Tse	3903 1503
(Build King - SCT Joint Venture)	Construction Team Leader	Dick Ip	9093 2409
	Environmental Officer	Issac Wong	9850 0989
	24-hour Complaint Hotline	-	9862 2910
Contract No. NL/2020/02	- Tung Chung New Tow	n Fytension – Salt Wat	er Sunnly System
(Contract 2)	Tung Chang New Tow	in Extension Suit Vut	er suppry system
Civil Engineering and	Senior Engineer	Bryan H M Ho	2231 4435
Development	Electrical &	Samson K L Yip	2231 4460
Department	Mechanical Engineer	-	
Engineer's Representative	Principal Resident Engineer	Frankie Fan	3894 9603
(ER)	Senior Resident	Sunny Ng	3894 9605
(AECOM Asia Company	Engineer	***	2004.044
Limited)	Senior Resident Engineer	Vincent Leung	3894 9645
	Resident Engineer	Terence Chan	3894 9683
	Senior Inspector of Works	Wong Ting Yu	3894 9706
Contractor	Construction Manager		6198 7787
(China Geo-Engineering	Site Agent	Timothy Lo	9661 2662
Corporation)	Construction Team Leader	Edward Mok	6498 4306
	Environmental Officer	Dixon Lee	6100 1005
	24-hour Complaint	-	5484 9233
	Hotline (a)		
Contract No. NL/2020/03	Tung Chung North Torri	m Extension Maia I	function of the TAT1
in Tung Chung East (Cor	0 0	'n extension - Major Ir	mastructure vvorks
Civil Engineering and	Senior Engineer	Eddie W C Lam	2231 4445
Development Development	Engineer	Timothy H M Chan	2231 4473
Department	Engineer	S C Fung	2231 4461
•	U	O	
	Senior Engineer	S K Lo	2231 4426
	Engineer	Colin K C Wong	2231 4417
	Engineer	Wing Chen	3894 9704
Engineer's	Principal Resident	Frankie Fan	3894 9603
Representative	Engineer		
(ER)	Senior Resident	Boris Lo	3894 9650
(AECOM Asia Company	Engineer	David Li	2804 0694
Limited)	Resident Engineer	David Li	3894 9684
	Resident Engineer	Carl Yu	3894 9671


	Senior Inspector of Works	Douglas Ng	3894 9737
Contractor	Construction Manager	Cheung Siu Lun	2272 3680
(Build King Civil	Site Agent	Paul Lui	2272 3680
,	<u> </u>	Aldous Lo	
Engineering Limited)	Deputy Site Agent		9225 0368
	Construction Team Leader	Ken Yau	9197 2219
	Environmental Officer	Allen Wong	6012 2643
	24-hour Complaint	-	9806 0726
	Hotline (a)		
Contract No. NL/2020/04 Service Reservoir and As			Van Fresh Water
Civil Engineering and	Senior Engineer	Jeffrey S M Lai	2231 4470
8	_	•	
Development Department	Engineer	Eric Leung	2231 4421
Engineer's Representative	Principal Resident Engineer	Frankie Fan	3894 9603
(ER)	Senior Resident	Sunny Ng	3894 9605
(AECOM Asia Company		Suriny 14g	3074 7003
Limited)	Engineer		
	Senior Resident Engineer	Vincent Leung	3894 9645
	Resident Engineer	Terence Chan	3894 9683
	Senior Inspector of	Wong Ting Yu	3894 9706
	Works	0 0	
Contractor	Construction Manager	Ambrose Kwong	6198 7787
(China Geo-Engineering	Site Agent	Esmond Ng	9520 6809
Corporation)	Environmental Officer	· ·	6768 3100
corporation	24-hour Complaint	-	2243 7132
	Hotline		2243 / 132
Contract No. NL/2020/07 (Contract 7)	-Tung Chung New Tow	n Extension – Tai Ho I	nterchange
Civil Engineering and			
0 0	Sonior Engineer	Phoobo Tang	2221 4422
	Senior Engineer	Phoebe Tang	2231 4423
Development	Engineer	Matthew Ng	2231 4449
Department		_	
-	Engineer	Matthew Ng	2231 4449
Department Engineer's Representative	Engineer Engineer	Matthew Ng Candy Lau	2231 4449 2231 4420
Department Engineer's Representative (ER)	Engineer Engineer Principal Resident Engineer	Matthew Ng Candy Lau Frankie Fan	2231 4449 2231 4420 3894 9603
Department Engineer's Representative	Engineer Engineer Principal Resident	Matthew Ng Candy Lau	2231 4449 2231 4420
Department Engineer's Representative (ER) (AECOM Asia Company	Engineer Engineer Principal Resident Engineer Senior Resident Engineer Senior Resident	Matthew Ng Candy Lau Frankie Fan	2231 4449 2231 4420 3894 9603
Department Engineer's Representative (ER) (AECOM Asia Company	Engineer Engineer Principal Resident Engineer Senior Resident Engineer Senior Resident Engineer	Matthew Ng Candy Lau Frankie Fan Kelvin Kwan Brian Li	2231 4449 2231 4420 3894 9603 3894 9641
Department Engineer's Representative (ER) (AECOM Asia Company	Engineer Engineer Principal Resident Engineer Senior Resident Engineer Senior Resident Engineer Resident Engineer Resident Engineer	Matthew Ng Candy Lau Frankie Fan Kelvin Kwan Brian Li Kingsley Ho	2231 4449 2231 4420 3894 9603 3894 9641 3894 9556 3894 9552
Department Engineer's Representative (ER) (AECOM Asia Company	Engineer Engineer Principal Resident Engineer Senior Resident Engineer Senior Resident Engineer Resident Engineer Resident Engineer Resident Engineer	Matthew Ng Candy Lau Frankie Fan Kelvin Kwan Brian Li Kingsley Ho Carl Yu	2231 4449 2231 4420 3894 9603 3894 9641 3894 9556 3894 9552 3894 9671
Department Engineer's Representative (ER) (AECOM Asia Company	Engineer Engineer Principal Resident Engineer Senior Resident Engineer Senior Resident Engineer Resident Engineer Resident Engineer	Matthew Ng Candy Lau Frankie Fan Kelvin Kwan Brian Li Kingsley Ho	2231 4449 2231 4420 3894 9603 3894 9641 3894 9556 3894 9552
Department Engineer's Representative (ER) (AECOM Asia Company Limited)	Engineer Engineer Principal Resident Engineer Senior Resident Engineer Senior Resident Engineer Resident Engineer Resident Engineer Resident Engineer Senior Inspector of Works	Matthew Ng Candy Lau Frankie Fan Kelvin Kwan Brian Li Kingsley Ho Carl Yu Douglas Ng	2231 4449 2231 4420 3894 9603 3894 9641 3894 9556 3894 9552 3894 9671 3894 9554
Department Engineer's Representative (ER) (AECOM Asia Company Limited) Contractor	Engineer Engineer Principal Resident Engineer Senior Resident Engineer Senior Resident Engineer Resident Engineer Resident Engineer Resident Engineer Senior Inspector of Works Site Agent	Matthew Ng Candy Lau Frankie Fan Kelvin Kwan Brian Li Kingsley Ho Carl Yu Douglas Ng Hon Yee	2231 4449 2231 4420 3894 9603 3894 9641 3894 9556 3894 9552 3894 9671 3894 9554
Department Engineer's Representative (ER) (AECOM Asia Company Limited) Contractor (Build King Civil	Engineer Engineer Principal Resident Engineer Senior Resident Engineer Senior Resident Engineer Resident Engineer Resident Engineer Resident Engineer Senior Inspector of Works Site Agent Deputy Site Agent	Matthew Ng Candy Lau Frankie Fan Kelvin Kwan Brian Li Kingsley Ho Carl Yu Douglas Ng Hon Yee Vincent Kwan	2231 4449 2231 4420 3894 9603 3894 9641 3894 9556 3894 9552 3894 9671 3894 9554 9090 3109 9833 1313
Department Engineer's Representative (ER) (AECOM Asia Company Limited) Contractor	Engineer Engineer Principal Resident Engineer Senior Resident Engineer Senior Resident Engineer Resident Engineer Resident Engineer Resident Engineer Senior Inspector of Works Site Agent	Matthew Ng Candy Lau Frankie Fan Kelvin Kwan Brian Li Kingsley Ho Carl Yu Douglas Ng Hon Yee	2231 4449 2231 4420 3894 9603 3894 9641 3894 9556 3894 9552 3894 9671 3894 9554

Note:

(a) The 24-hour complaint hotline is subjected for approval.

1.4 SUMMARY OF CONSTRUCTION WORKS

As informed by the Contractor, details of the major works carried out in this reporting period are listed below:

Location of Contract No. NL/2017/03 - Tung Chung New Town Extension - Reclamation and Advance Works (Contract 1)

File: T:\GIS\CONTRACT\0445700\mxd\0445700_Infrastructure_Works.mxd Date: 11/10/2018

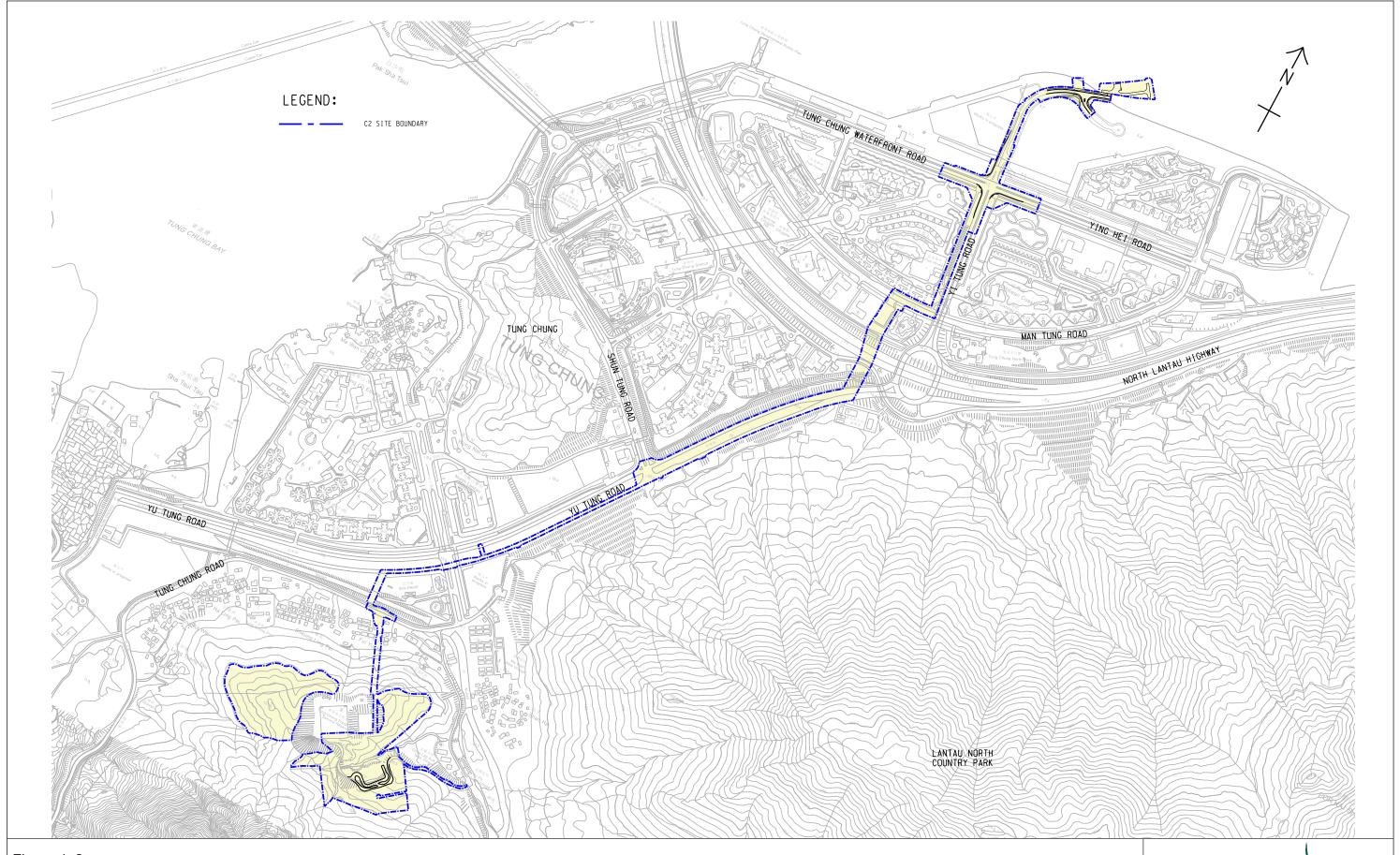


Figure 1.2 Location of Contract No. NL/2020/02 - Tung Chung New Town Extension – Salt Water Supply System (Contract 2)

FILE: 0445700i.cdr DATE: 13/09/2021

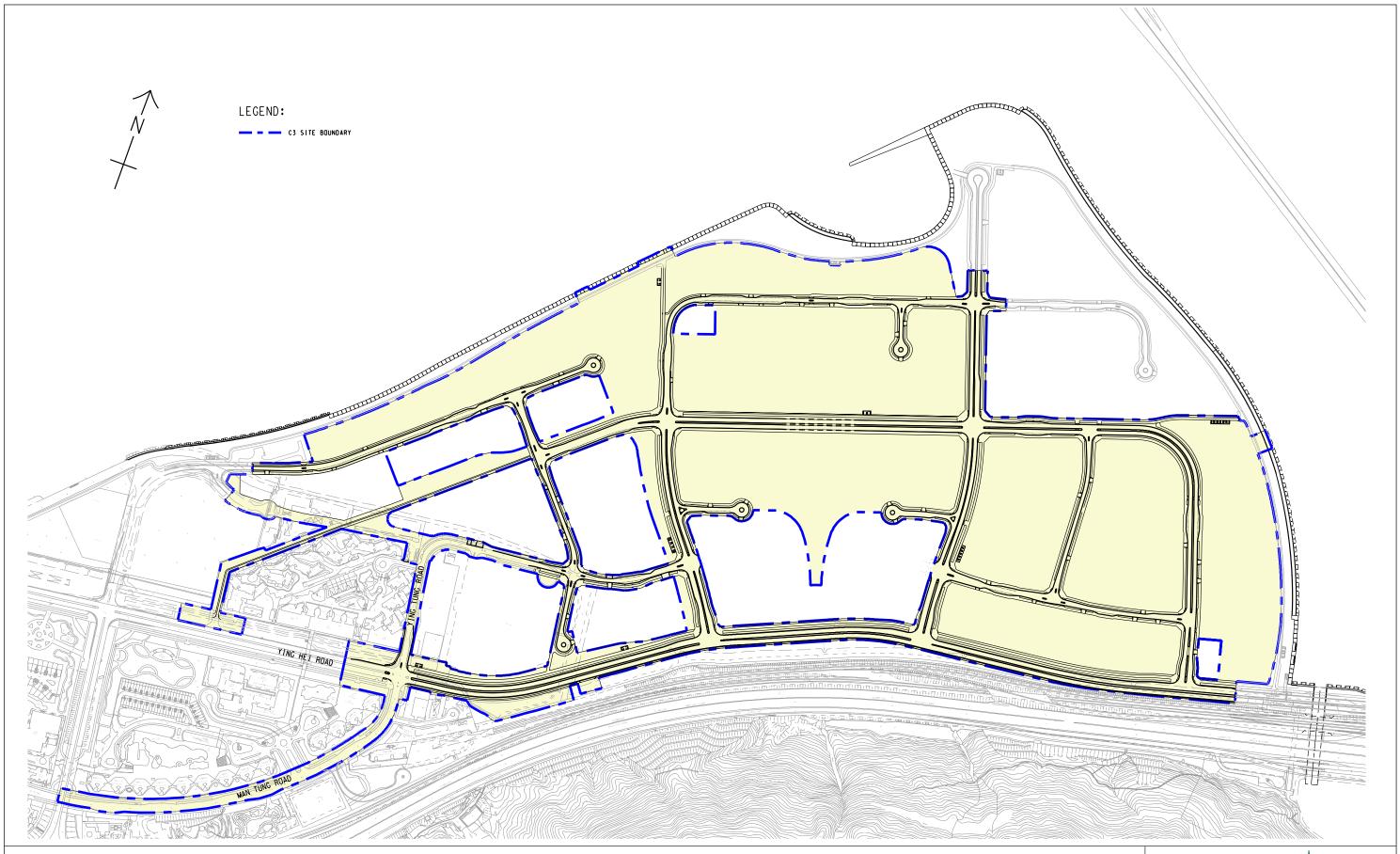


Figure 1.3 Location of Contract No. NL/2020/03 - Tung Chung New Town Extension – Major Infrastructure Works in Tung Chung East (Contract 3)

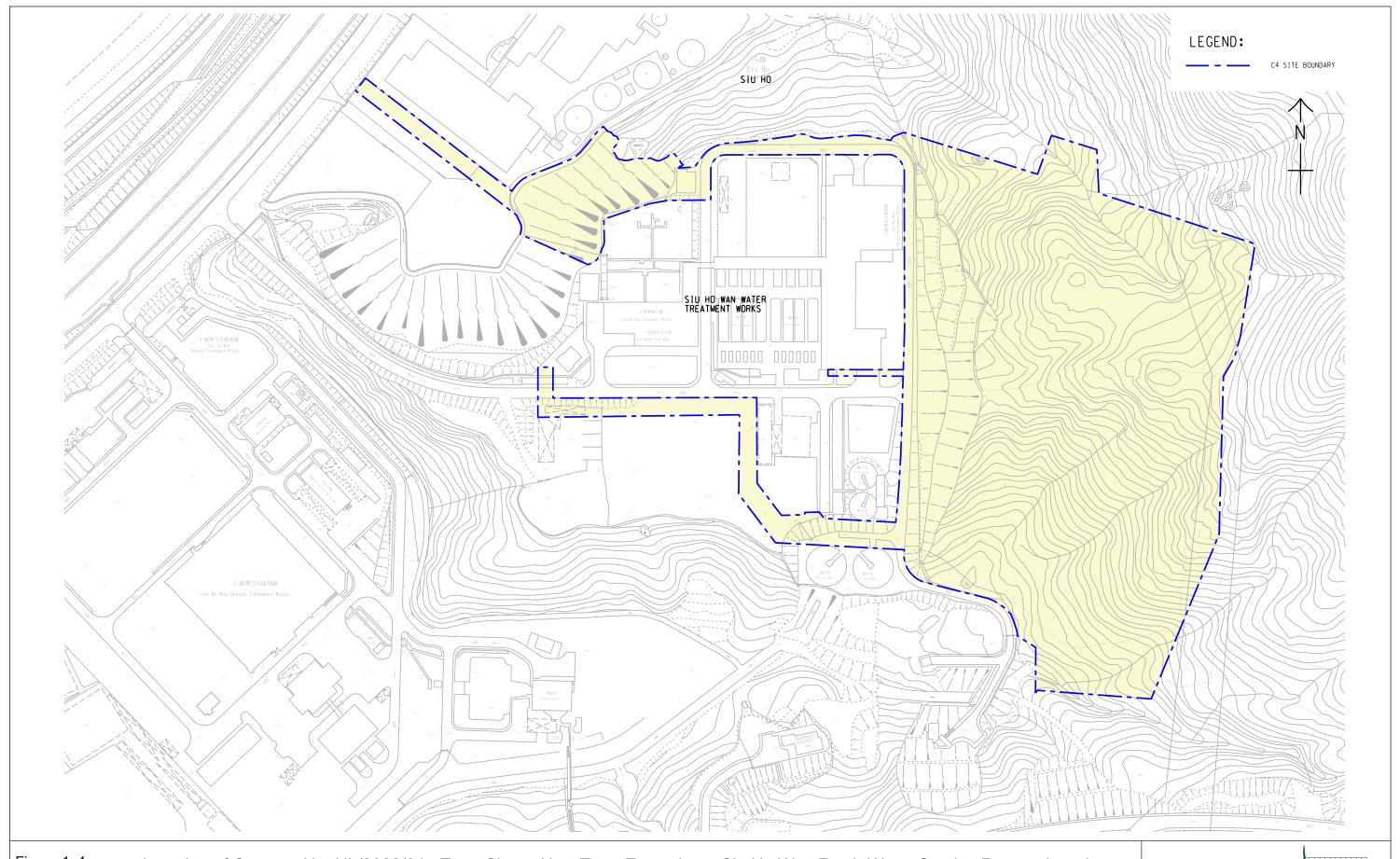
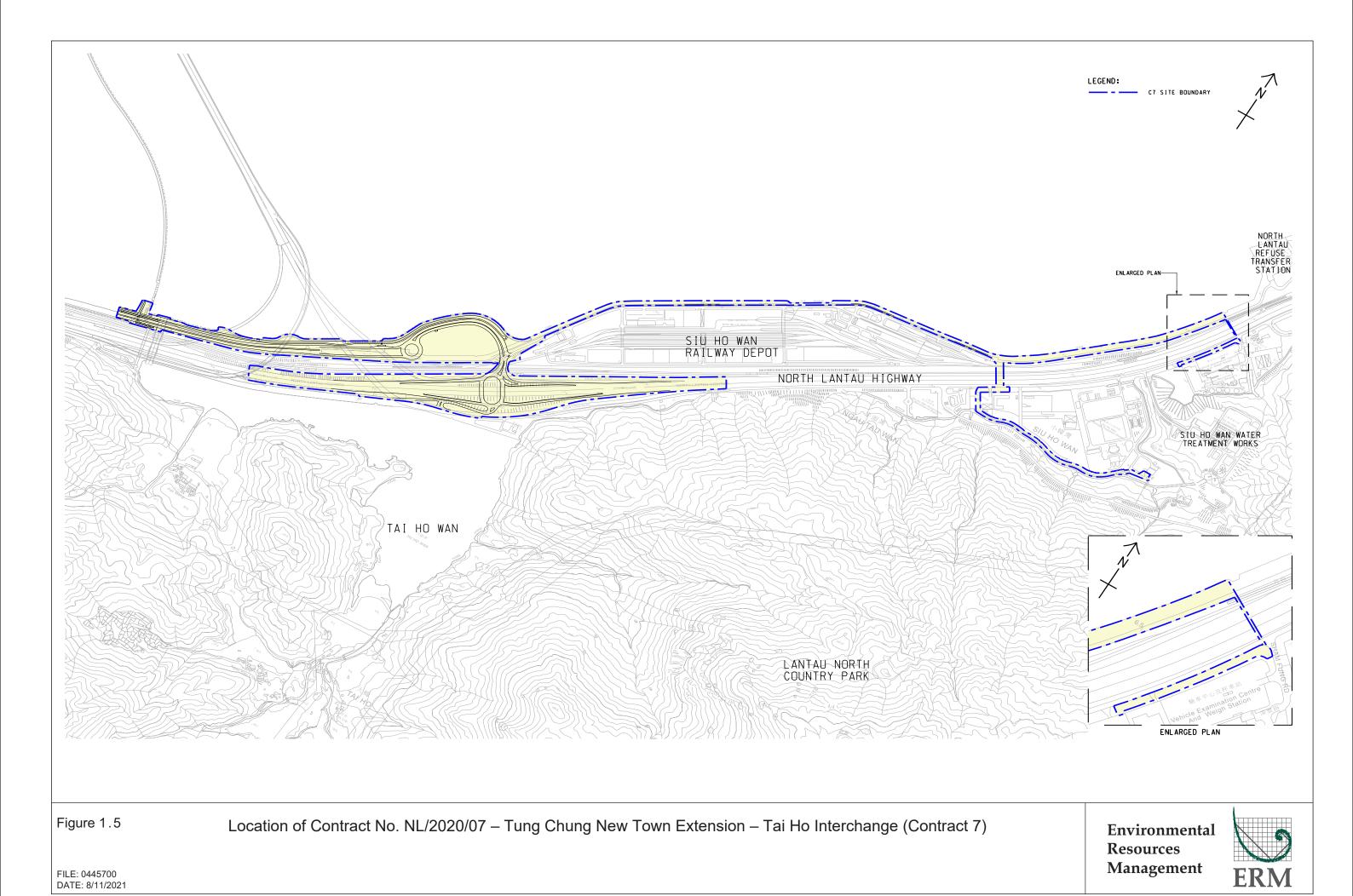



Figure 1.4 Location of Contract No. NL/2020/04 - Tung Chung New Town Extension – Siu Ho Wan Fresh Water Service Reservoir and Associated Mainlaying Works (Contract 4)

FILE: 0445700k.cdr DATE: 13/09/2021

Activities	Key Issues	Key Mitigation Measures
	ng Chung New Town Extension	- Reclamation and Advance
Vorks (Contract 1) and-based Works		
Ground investigation works Land DCM works Jet grouting works Placing of sorted public fill Box culvert construction Installation of PVD	 Dust emission Handling and storage of C&D materials generated from construction activities Noise from plant operation Emission of dark smoke from PMEs Efficiency of wastewater and drainage management 	 Good site practices Regular water spraying on stockpiles, unpaved haul road and land filling area Provide tarpaulin sheets coverage on stockpiles Sorting and reuse of C&E materials as far as practicable Use of QPME and noise barrier/acoustic mat Regular maintenance of PMEs Implementation of wastewater and drainage management
Laying of geotextile for seawall construction Marine-based instruments monitoring works Placing of sorted public fill Seawall construction	 Elevation in impact on Water Quality due to sediment loss from sand blanket laying and marine filling works Potential surface runoff Potential filling material drop from barges Disturbance to Chinese White Dolphin Noise from marine vessels and plant operation during normal working hours or restricted hours 	 Provision of perimeter silcurtain Provision of a leading seawall of at least 200m before marine filling works Regular cleaning of accumulated sand/fill materials at the edge of the barges Implementation of Dolphin Watching for the marine-based works Strictly follow requirement under CNP

Dust emission during

storage and transfer of sand/ sorted public fill

Emission of dark smoke

from marine vessel

for the use of PMEs and

works within restricted

Use of acoustic mat and

other noise mitigation measures when necessary Regular maintenance of engines and mechanical

period

equipment

Contract No. NL/2020/02 - Tung Chung New Town Extension - Salt Water Supply System (Contract 2)

Land-based Works

- Initial survey (land survey prior to the commencement of construction works)
- Hoarding erection at Portion 3
- Piling works at Portion 6
- Utilities detection at Portion 3
- Tree protection and transplanting at Portion 3
- Site clearance at Portion 3
- Trench excavation for watermain laying works at Portion 3 along Yu Tung Road

- Dust emission
- Handling and storage of C&D materials generated from construction activities
- Noise from plant operation
- Emission of dark smoke from PMEs
- Efficiency of wastewater and drainage management
- Tree protection

- Good site practices
- Regular water spraying on stockpiles, unpaved haul road and land filling area
- Provide tarpaulin sheets coverage on stockpiles
- Sorting and reuse of C&D materials as far as practicable
- Use of QPME and noise barrier/acoustic mat
- Regular maintenance of PMEs
- Implementation of wastewater and drainage management
- Retain and protect all existing trees and vegetation within the study area which are not directly affected by the works

Contract No. NL/2020/03 - Tung Chung New Town Extension - Major Infrastructure Works in Tung Chung East (Contract 3)

Land-based Works

- Hoarding erection
- Site access construction at •
 Portion 7
- Installation of sheetpile at Portion 104
- Installation of sheetpile at CUT no.1
- Construction of footing, temporary drainage system and site formation
 at WA6/WA9 and Portion 7
- Dust emission
 - Handling and storage of C&D materials generated from construction activities
- Noise from plant operation
- Emission of dark smoke from PMEs
 - Efficiency of wastewater and drainage management

- Good site practices
- Regular water spraying on stockpiles, unpaved haul road and land filling area
- Provide tarpaulin sheets coverage on stockpiles
- Sorting and reuse of C&D materials as far as practicable
- Use of QPME and noise barrier/acoustic mat
- Regular maintenance of PMEs
- Implementation of wastewater and drainage management

Contract No. NL/2020/04 - Tung Chung New Town Extension - Siu Ho Wan Fresh Water Service Reservoir and Associated Mainlaying Works (Contract 4)

Land-based Works

- Initial survey (land survey prior to the commencement of construction works)
- Earth works at Portion 1
- Predrilling at Portion 1
- Water pipe installation at Portion 2
- Hoarding erection at Portion 2 and 4
- Trench excavation for watermain at Portion 4

- Dust emission
- Handling and storage of C&D materials generated from construction activities
- Noise from plant operation
- Emission of dark smoke from PMEs
- Efficiency of wastewater and drainage management
- Tree protection

- Good site practices
- Regular water spraying on stockpiles, unpaved haul road and land filling area
- Provide tarpaulin sheets coverage on stockpiles
- Sorting and reuse of C&D materials as far as practicable
- Use of QPME and noise barrier/acoustic mat
- Regular maintenance of PMEs
- Implementation of wastewater and drainage management
- Retain and protect all existing trees and vegetation within the study area which are not directly affected by the works

Contract No. NL/2020/07 - Tung Chung New Town Extension - Tai Ho Interchange (Contract 7)

Land-based Works

- Set up the temporary site office
- Tree survey
- Site clearance and tidiness
- Dust emission
- Handling and storage of C&D materials generated from construction activities
- Noise from plant operation
- Emission of dark smoke from PMEs
- Good site practices
- Regular water spraying on stockpiles, unpaved haul road and land filling area
- Provide tarpaulin sheets coverage on stockpiles
- Sorting and reuse of C&D materials as far as practicable
- Use of QPME and noise barrier/acoustic mat
- Regular maintenance of PMEs

The environmental mitigation implementation schedule is presented in *Annex B*.

1.5 SUMMARY OF EM&A PROGRAMME REQUIREMENTS

The status for all environmental aspects are presented in *Table 1.3*. The EM&A requirements remained unchanged during the reporting period.

Table 1.3 Summary of Status for the Environmental Aspects under the Updated EM&A Manual

Parameters	Status
Air Quality	
Baseline Monitoring	The results of baseline air quality monitoring for TCE were reported in Baseline Monitoring Report and submitted to EPD under EP Condition 3.4
Impact Monitoring	On-going for TCE, monitoring conducted three times every six days
Noise Baseline Monitoring	The results of baseline noise monitoring for TCE were reported in Baseline Monitoring Report and submitted to EPD under EP Condition 3.4
Impact Monitoring	On-going for TCE, monitoring conducted once per week
Impact Monitoring for Road Traffic Noise during Operational Phase	To be conducted during operational phase
Fixed Noise Commissioning Test	To be implemented by the Contractor before operation of TCNTE
Water Quality	
Baseline Monitoring	The results of baseline water quality monitoring for TCE were reported in Baseline Monitoring Report and submitted to EPD under EP Condition 3.4
Impact Monitoring	On-going for TCE, monitoring conducted three times per week
Waste Management Waste Monitoring	On-going
Land Contamination Contamination Assessment Plan (CAP), Remediation Action Plan (RAP) and Remediation Report (RR)	To be conducted under TCW. Refer to the EM&A Reports of TCW.
Ecology Monitoring for Compensation Woodland	To be conducted when compensation woodland are planted
Monitoring for Emergent Plant inside the future River Park	To be conducted under TCW. Refer to the EM&A Reports of TCW.
Monitoring for Translocated Amphibians of Conservation Importance	To be conducted under TCW. Refer to the EM&A Reports of TCW.
Monitoring for Preserved/Transplanted Plant Species of Conservation Importance	To be conducted after preservation/ transplantation

Parameters	Status
Monitoring for Tung Chung Stream EIS and Wong Lung Hang EIS	To be conducted under TCW. Refer to the EM&A Reports of TCW. Monitoring for Wong Lung Hang was not required and the proposal was accepted by EPD on 2 September 2021
Eco-shoreline Monitoring	To be conducted when eco-shoreline at TCE PDA and Road P1 is built
Tung Chung Bay and Tai Ho Wan Baseline Monitoring	The results of baseline soft shore ecological monitoring at Tung Chung Bay and Tai Ho Wan were reported in Baseline Monitoring Report and submitted to EPD under EP Condition 3.4
Tung Chung Bay and Tai Ho Wan Impact Monitoring	On-going for TCE, monitoring conducted quarterly
Landscape and Visual Baseline Monitoring	The results of baseline landscape and visual monitoring were reported in Baseline Monitoring Report and
	submitted to EPD under EP Condition 3.4
Site Environmental Audit Regular Site Inspection	On-going
Dolphin Watching Plan implementation measures	Under implementation by the Contractor of Contract 1
Works Vessel Travel Route Plan implementation measures	Under implementation by the Contractor of Contract 1
Silt Curtain Deployment Plan implementation measures	Under implementation by the Contractor of Contract 1
Spill Response Plan implementation measures	Under implementation by the Contractor of Contract 1
Waste Management Plan implementation measures	Under implementation by the Contractor of Contract 1
Complaint Hotline and Email Channel	Under implementation by the Contractor of Contract 1. The 24-hour complaint hotline/email channel under Contracts 2, 3, and 7 are subjected for approval
Environmental Log Book	On-going
	- ~

Taking into account the construction works, impact monitoring of air quality, noise, water quality, soft shore ecological monitoring and waste management were carried out in the reporting period. The monitoring schedule of air quality, noise, water quality monitoring and soft shore ecological monitoring are provided in *Annex E2*, *Annex F2*, *Annex G2* and *Annex H1*, respectively.

The EM&A programme also involved environmental site inspections and related auditing conducted by the ET for checking the implementation of the required environmental mitigation measures recommended in the approved EIA Report and relevant EP submissions, including Dolphin Watching Plan,

Works Vessel Travel Route Plan, Silt Curtain Deployment Plan, Spill Response Plan and Waste Management Plan.

To promote the environmental awareness and enhance the environmental performance of the contractors, environmental trainings and regular environmental management meetings were conducted during the reporting period, which are summarized as below:

- Five (5) environmental management committee meetings were held with the Contractors of Contract 1, 4 and 7 and ER, ET, IEC and CEDD on 23, 13 and 16 December 2021, respectively, and Contractors of Contract 2 and 3 on 15 December 2021;
- Environmental toolbox trainings on housekeeping, restricted area at Tung Chung Road, wastewater handling, wastewater discharge and treatment facilities, Works Vessel Travel Route Plan, chemical labelling, handling and storage, air pollution and noise nuisance and Construction Noise Permit on 1, 8, 10, 22, 29 and 31 December 2021 were conducted for Contract 1;
- Environmental toolbox training on tree protection on 2 December 2021 was conducted for Contract 2;
- Environmental toolbox trainings on tree protection, noise mitigation measures, Construction Noise Permit, air pollution from plant and machinery, air pollution mitigation measures during excavation, breaking, drilling, cutting and polishing, loading, unloading and transfer of material, water pollution mitigation measures during bored piling and grouting on 2, 6, 9, 13, 16, 20, 23, 28 and 31 December 2021 were conducted for Contract 3;
- Environmental toolbox trainings on construction noise, housekeeping, water pollution and air pollution mitigation measures during cement debagging and mixing on 9, 16, 24 and 30 December 2021 were conducted for Contract 4.
- Environmental toolbox training on handling of chemical waste on 21 December 2021 was conducted for Contract 7.

1.6 STATUS OF STATUTORY ENVIRONMENTAL COMPLIANCE WITH THE ENVIRONMENTAL PERMIT

The status of statutory environmental compliance with the EP conditions under the EIAO, submission status under the EP and implementation status of mitigation measures are presented in *Annex C*.

1.7 STATUS OF OTHER STATUTORY ENVIRONMENTAL REQUIREMENTS

The environmental licenses and permits, including environmental permit, waste discharge license, registration as chemical waste producer and construction noise permit, which were valid in the reporting period are presented in *Annex D*. No non-compliance with environmental statutory requirements was recorded.

2 EM&A RESULTS FOR TUNG CHUNG EAST

The EM&A programme for the Project required environmental monitoring for air quality, noise, water quality and marine ecology as well as environmental site inspections for air quality, noise, water quality, waste management, marine ecology and landscape and visual impacts. The EM&A requirements and related findings for each component are summarized in the following sections.

2.1 AIR QUALITY

2.1.1 Monitoring Requirements and Equipment

According to the Updated EM&A Manual of the Project, impact air quality monitoring in terms of 1-hour Total Suspended Particulate (TSP) was conducted three (3) times every six (6) days when the highest dust impact was expected. The Action and Limit Levels of the air quality monitoring is provided in *Table 2.1* below.

Table 2.1 Action and Limit Levels for 1-hour TSP

Location	Action Level, μg/m ³	Limit Level, μg/m ³
Monitoring station for Tung	279	500
Chung East	279	300

Portable direct reading dust meters were used to measure 1-hour TSP levels in undertaking the air quality monitoring for the Project. The proposed use of portable direct reading dust meters was submitted to IEC and obtained agreement from the IEC as stated in Section 5.5 of the Updated EM&A Manual. With the use of direct reading dust meter, it can allow prompt and direct results for the EM&A reporting and the implementation of the event and action plan. The portable direct reading dust meter would be calibrated every year against High Volume Sampler (HVS) to check the validity and accuracy of the results measured by direct reading method.

The monitoring location and equipment used in the impact air quality monitoring programme are summarized in *Table 2.2* and illustrated in *Figure 2.1*. Copies of the calibration certificates for the equipment are presented in *Annex E1*, which showed that the portable direct reading dust meter is capable of providing comparable results with that provided by a HVS.

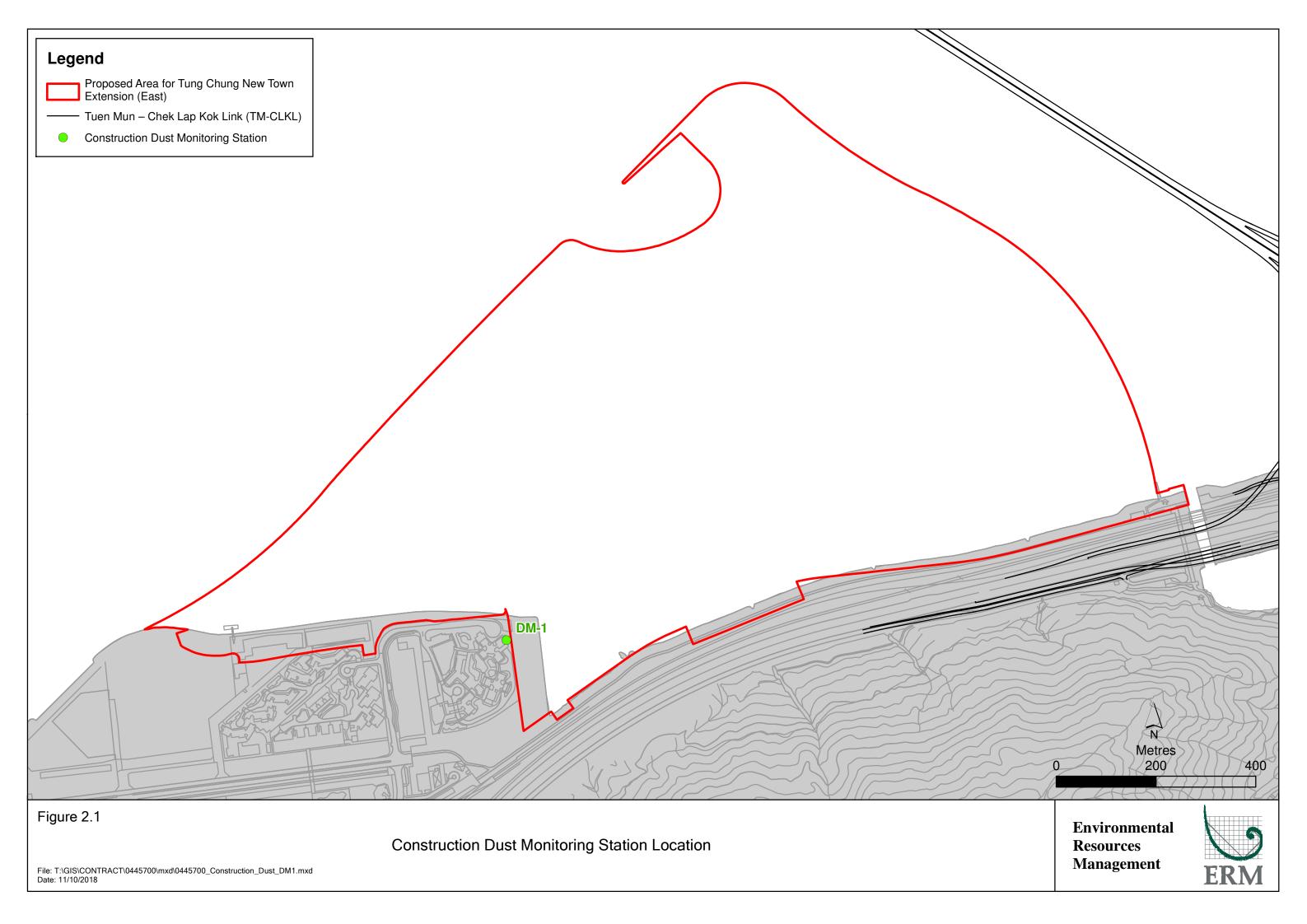


Table 2.2 Air Quality Monitoring Details

Monitoring Station	Location	Parameter	Frequency and Duration	Monitoring Dates	Equipment
DM-1	Tung Chung	1-hour TSP	Three times	2, 8, 14, 20, 24	1-hour TSP
	Area 56 -		per six days	and 30	Dust Meter
	Ying Tung		during the	December	SIBATA LD-
	Estate		construction	2021	3B (S/N:
			period of the		276017)
			Project		

Remark

It should be noted that impact monitoring at other construction dust monitoring locations at TCE as stated in the Updated EM&A Manual will commence after the flat intake (for Monitoring Stations DM-2, DM-3 and DM-4).

2.1.2 Monitoring Schedule for the Reporting Month

The schedule for air quality monitoring during the reporting period is provided in *Annex E2*.

2.1.3 Results and Observations

The monitoring results for 1-hour TSP are summarized in *Table 2.3*. The monitoring data and the graphical presentation are provided in *Annex E3*.

Table 2.3 Summary of 1-hour TSP Monitoring Results in the Reporting Period

Monitoring Station	Average (μg/m³)	Range (µg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
DM-1	39	24-54	279	500

The dust sources in the reporting period included haul road traffic, unloading of sand/fill material, filling works and operation of marine vessels under the Project.

No exceedance of Action and Limit Levels was recorded for construction air quality monitoring in the reporting period. No action was thus required to be undertaken in accordance with the Event and Action Plan presented in *Annex E4*.

2.2 Noise Monitoring

2.2.1 Monitoring Requirements and Equipment

According to the Updated EM&A Manual of the Project, impact noise monitoring was conducted once per week during the construction phase of the Project. The Action and Limit Level for construction noise of the Project is provided in *Table 2.4* below.

Table 2.4 Action and Limit Levels for Construction Noise

Time Period	Action Level	Limit Level
0700 - 1900 hours on normal	When one documented	75 JD(A) *
weekdays	complaint is received	75 dB(A) *

Notes:

Limit level is exceeded when $L_{eq} \ge 75$ dB(A). If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.

Noise monitoring was performed using sound level meter at the designated monitoring stations NMS-CA-1A (1) (2) and NMS-CA-4 (*Figure 2.2; Table 2.5*) in accordance with the requirements stipulated in the Updated EM&A Manual. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Details of the deployed equipment are provided in *Table 2.5*. Copies of the calibration certificates for the equipment are presented in *Annex F1*.

^{*} Reduce to 70 dB (A) for schools and 65 dB (A) during school examination periods.

Impact monitoring at monitoring station NMS-CA-1A commenced on 19 September 2018 in view of the close vicinity of the construction works near the residential area at Century Link.

⁽²⁾ Due to land handover issue, NMS-CA-1A was relocated to Ying Hong Road which is located 60m away from the original location. Proposal on the relocation of NMS-CA-1A was approved by IEC on 23 November 2018. Noise monitoring at the relocated location commenced since 24 November 2018.

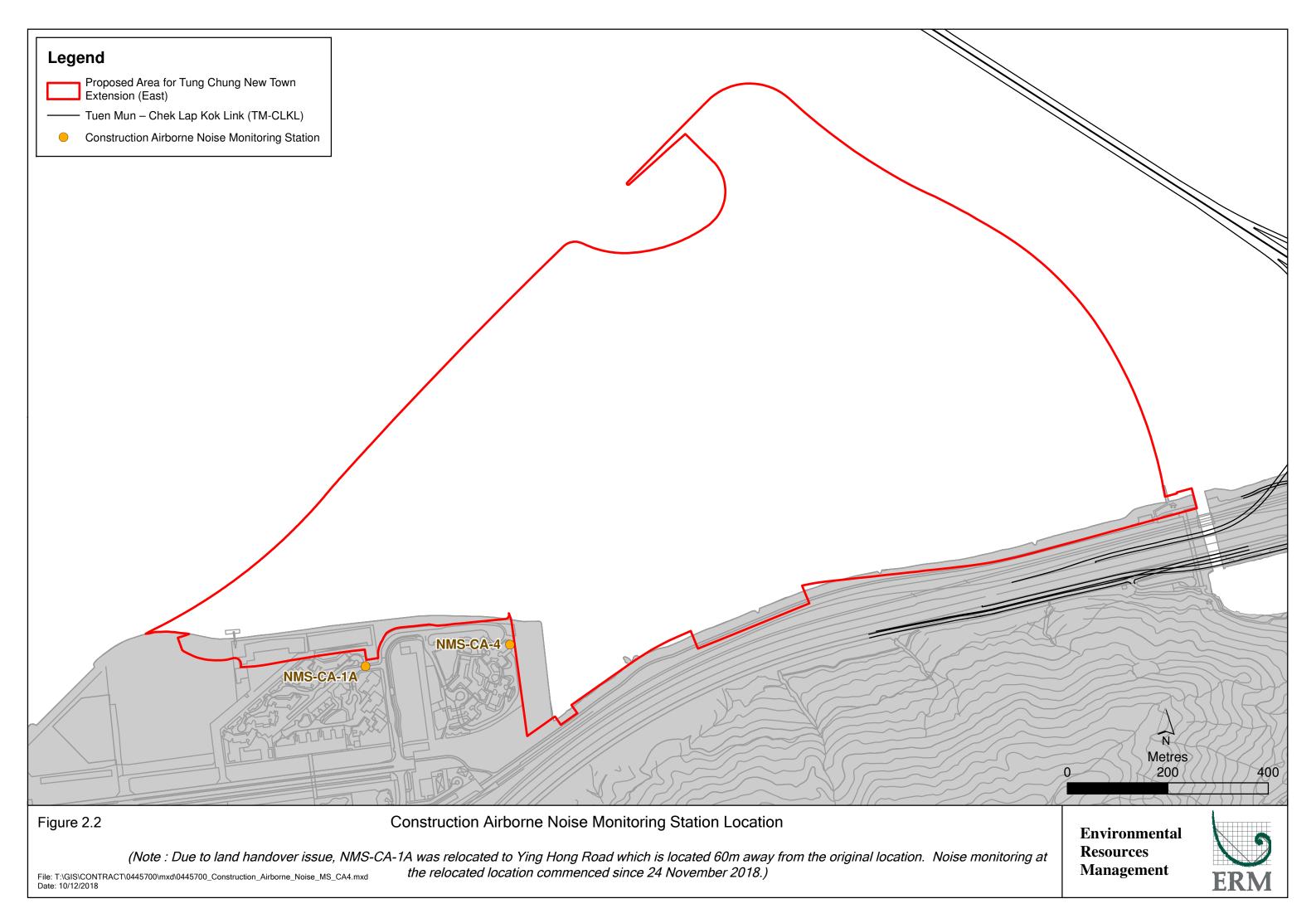


Table 2.5 Noise Monitoring Details

Monitoring Station (a)	Location	Parameter	Frequency and Duration	Monitoring Dates	Equipment
NMS-CA-1A (b)	Tung Chung East - Century	Saturday). L _{eq} , L ₁₀ and L ₉₀	Once per week for 30 mins during the construction period of the Project	2, 8, 14, 20, 24 and 30 December 2021	Sound Level Meter: Rion NL-52 (S/N: 00331805) Acoustic Calibrator: LARSON DAVIS CAL200 (S/N: 11333)

Remarks:

- (a) It should be noted that impact monitoring at other construction noise monitoring locations at TCE as stated in the Updated EM&A Manual will commence after the flat intake of residential premise in TCE (for Monitoring Station NMS-CA-1) and operation of schools (for Monitoring Stations NMS-CA-2 and NMS-CA-3).
- (b) Impact monitoring at monitoring station NMS-CA-1A commenced on 19 September 2018 in view of the close vicinity of the construction works near the residential area at Century Link.
- (c) Due to land handover issue, NMS-CA-1A was relocated to Ying Hong Road which is located 60m away from the original location. Proposal on the relocation of NMS-CA-1A was approved by IEC on 23 November 2018. Noise monitoring at the relocated location commenced since 24 November 2018.

2.2.2 Monitoring Schedule for the Reporting Month

The schedule for noise monitoring during the reporting period is provided in *Annex F2*.

2.2.3 Results and Observations

Results for noise monitoring are summarized in *Table 2.6*. The monitoring data and the graphical presentation are provided in *Annex F3*.

Table 2.6 Summary of Construction Noise Monitoring Results in the Reporting Period

Monitoring Station	Average , dB(A), L _{eq (30mins)}	Range, dB(A), L _{eq (30mins)}	Limit Level, dB(A), L _{eq (30mins)}	
NMS-CA-1A	67.5	64.7-69.4	75	
NMS-CA-4	64.7	63.2-67.1	75	

Major noise sources during the noise monitoring included noise from barge and plant operation, craning, haul road traffic, nearby traffic and aircraft as well as nearby construction sites.

No Limit Level exceedance was recorded for construction noise monitoring in the reporting period. However, two (2) Action Level were triggered from two (2) environmental complaints related to noise nuisance received in the reporting period. Investigations were conducted for the complaints in accordance with the Event and Action Plan (*Annex F4*) and the details were provided in Section 2.9.

2.3 WATER QUALITY MONITORING

2.3.1 Monitoring Requirements and Equipment

Impact water quality monitoring was carried out to ensure that any deterioration of water quality was detected, and that timely action was taken to rectify the situation. Impact water quality monitoring was undertaken three days per week since the commencement of marine works during the reporting period in accordance with the Updated EM&A Manual. Each impact water quality monitoring was scheduled such that the interval between two impact water quality monitoring was more than 36 hours to record representative water quality data throughout the week during the marine works.

Two (2) replicate *in-situ* measurements and samples were collected at each monitored water depth of each designated monitoring stations. Dissolved Oxygen (DO), pH value, salinity, temperature and turbidity were measured *in-situ* whereas the level of suspended solids (SS) were determined by ALS Technichem (HK) Pty Ltd which is a HOKLAS accredited laboratory.

The Action and Limit Levels of the water quality monitoring are provided in *Table 2.7*.

Table 2.7 Action and Limit Levels for Water Quality

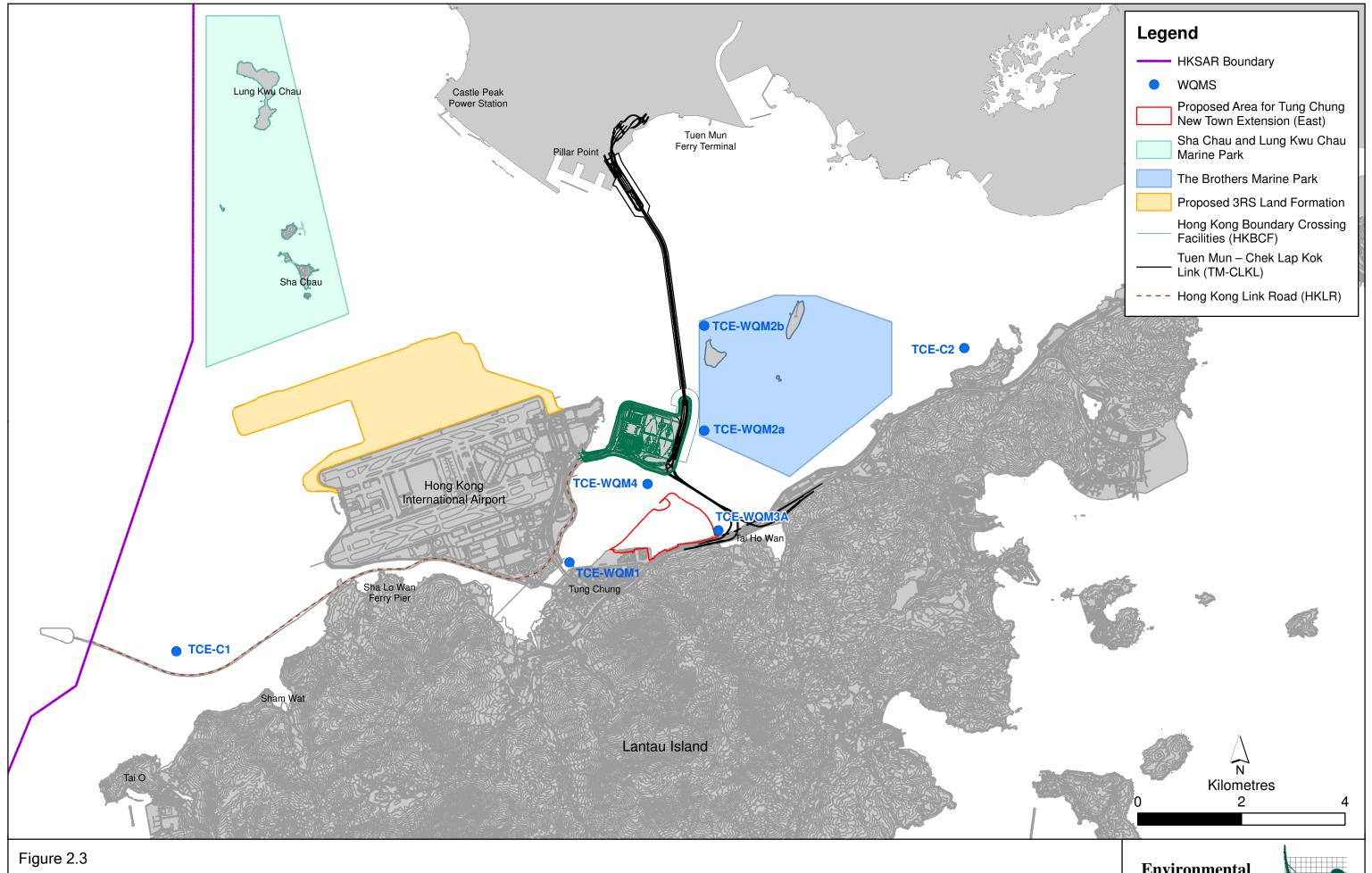
iddle Surface and Middle 4 mg/L [1]
4 mg/L ^[1]
Bottom 2 mg/L
23.5 mg/L or stream control 130% of upstream control same tide of the station at the same tide of the chever is higher.
3

Parameters	Action Level	Limit Level
Turbidity in NTU (Depth-	17.1 NTU	23.5 NTU
averaged)	or	or
	120% of upstream control	130% of upstream control
	station at the same tide of the	station at the same tide of the
	same day, whichever is higher.	same day, whichever is higher.
	[2]	[2]

Notes:

- (1) For DO, non-compliance occurs when monitoring results is lower than the limits.
- (2) For SS and Turbidity, non-compliance occurs when monitoring results is larger than the limits

The locations of the monitoring stations under the Project are shown in *Figure* 2.3 and *Table* 2.8.


Table 2.8 Locations of Impact Water Quality Monitoring Stations and the Corresponding Monitoring Requirements

Monitoring	Description	Coor	dinates		Parameters (a)	Frequency	Monitoring	Depth
Station							Dates	
		Easting	Northing					
TCE-WQM1	Near Airport	811838	817341	•	Dissolved	Impact	1, 3, 6, 8, 10,	3 water
	Channel				Oxygen (DO)	monitoring:	13, 15, 17,	depths: 1m
TCE-WQM2a	Marine Park	814439	819879		(mg/L and %	3 days per	20, 22, 24,	below sea
	1				saturation)	week, at	27, 29 and	surface, mid-
TCE-WQM2b	Marine Park	814439	821905	•	Temperature	mid-flood	31	depth and
	2				(°C)	and mid-ebb	December	1m
TCE-WQM3A	Outlet of Tai	814705	817859	•	Turbidity	tides during	2021	above
	Ho Wan				(NTU)	the		seabed. If
TCE-WQM4	HKBCF	813344	818849	•	Salinity (ppt)	construction		the water
TCE-C1	Control	804247	815620	•	рН	period of the		depth is less
	Station -			•	Water depth	Project		than 3m,
	Outside				(m)			mid-depth
	Airport			•	Suspended			sampling
	Channel				Solid (SS)			only. If
TCE-C2	Control	819460	821473		(mg/L)			water depth
	Station -							less than 6m,
	Sunny Bay							mid-depth
								may be
								omitted
	Notes:							

Table 2.9 summarizes the equipment used in the impact water quality monitoring works. Copies of the calibration certificates are attached in *Annex G1*.

(a) In addition to the abovementioned parameters, other relevant data shall also be recorded, including monitoring location / position, time, water depth, tidal stages, weather conditions and any special phenomena or work underway at the construction

site.

Water Quality Monitoring Locations

Environmental Resources Management

Table 2.9 Water Quality Monitoring Equipment

Equipment	Model
Water Sampler	Kahlsico Water Samplers
Multi-parameter Water	YSI ProDSS (S/N: 16H104233, 16H104234, 18A104824,
Quality System (measurement	21G105356)
of DO, Temperature,	
Turbidity, Salinity and pH)	

2.3.2 Monitoring Schedule for the Reporting Month

The schedule for water quality monitoring during the reporting period was provided in *Annex G2*.

2.3.3 Results and Observations

A total of 14 monitoring events for impact water quality monitoring were conducted at all designated monitoring stations during the reporting period. Impact water quality monitoring results and graphical presentations were provided in *Annex G*3.

Action level and Limit level exceedances were recorded for water quality impact monitoring in the reporting period and the event and action plan (*Annex G4*) was undertaken. Investigations on the action and limit level exceedances were conducted and summarized in *Table 2.10* below.

Table 2.10 Details of Exceedances Recorded for Water Quality Monitoring

Date	Tide	Parameter	Station	Type	Justification
13 December	MF	SS	TCE-WQM4	Action	(a) (b)
2021					
17 December	ME	SS	TCE-WQM2a	Action	(a) (b)
2021	ME	SS	TCE-WQM3A	Limit	
24 December	ME	SS	TCE-WQM3A	Action	(a) (b)
2021	MF	SS	TCE-WQM1	Action	
	MF	SS	TCE-WQM2a	Action	
	MF	SS	TCE-WQM3A	Action	
	MF	SS	TCE-WQM4	Action	
27 December	MF	SS	TCE-WQM3A	Action	(a) (b) (c)
2021					

Remarks:

- (a) The exceedance was not considered as caused by the construction of the Project due to areas of reclamation related marine works undertaken under the Project were surrounded by silt curtain which were inspected daily by the Contractor and inspected periodically by ER. The silt curtain nearby the water quality monitoring stations was observed to be in good condition/well-functioning.
- (b) The exceedance was not considered as caused by the construction of the Project due to no illegal discharge/sediment plume was observed nearby the water quality monitoring station during the sampling in mid-ebb/mid-flood tide.
- (c) The exceedance was not considered as caused by the construction of the Project due to no marine construction activity under the Project was conducted near to the water quality monitoring station.

Based on the investigations conducted for each of the monitoring day with exceedances, the exceedances of SS were not likely caused by the work activities related to the Project.

Nevertheless, the Contractors were reminded to implement all relevant mitigation measures for the marine works, including regular checking of silt curtain integrity, provide periodic maintenance and maintain good site practice. The ET will keep on checking monitoring data, plant, equipment and Contractor's working methods.

2.4 SOFT SHORE ECOLOGICAL MONITORING

2.4.1 Monitoring Requirements

According to the Updated EM&A Manual of the Project, impact soft shore ecological monitoring has to be conducted quarterly at each survey location at Tung Chung Bay (TCB) and Tai Ho Wan (THW) covering wet and dry seasons during the marine construction of the Project. The soft shore ecological monitoring consisted of qualitative walk-through surveys, quantitative transect surveys and sedimentation rate monitoring at the accessible survey locations of TCB and THW.

For qualitative walk-through surveys, the accessible shoreline of TCB and THW at each of the three shore heights: 2 m, 1.5 m and 1 m above Chart Datum was surveyed, and organisms encountered were recorded and their relative abundance noted. In particular, active search of horseshoe crabs and

seagrasses were conducted to confirm whether these species are present along the sites.

For quantitative transect survey, one 50 – 100 m horizontal (belt) transect (actual length subject to the site conditions) was surveyed at each of the three shore heights: 2 m, 1.5 m and 1 m above Chart Datum of each survey location. On each transect, five quadrats (50 cm x 50 cm) were placed randomly in each transect to assess the abundance and distribution of flora and fauna. For each quadrat, surface layer to 5 cm depth was sieved and microbenthic organisms (e.g. crustaceans) were recorded and identified. Density of organisms was expressed as individuals / m². Areas with seagrass were also recorded and identified and other information, such as the percentage cover, were also recorded. Sessile animals such as barnacles and oysters in each quadrat were not counted but estimated as percentage cover on the rock surface. All species of algae (encrusting, foliose and filamentous) were also identified and recorded by estimating the percentage cover on the rock surface. All organisms were identified to the lowest possible taxonomic level (at least Genus level). Species encountered outside the quadrat but in the vicinity of survey transect were also recorded.

For sedimentation rate monitoring, to avoid disturbance to the mudflat and nuisance to navigation, no fixed marker/monitoring rod was installed at the monitoring stations. A high precision Global Navigation Satellite System (GNSS) real time location fixing system was used to locate the station in the precision of 1 mm, which is reasonable under flat mudflat topography with uneven mudflat surface only at micro level.

Measurements were taken directly on the mudflat surface. The Real Time Kinematic GNSS (RTK GNSS) surveying technology was used to measure mudflat surface levels and 3D coordinates of a survey point. The RTK GNSS survey was calibrated against a reference station in the field before and after each survey. The reference station is a survey control point established by the Lands Department of the HKSAR Government using professional surveying instruments such as total station, level and geodetic global navigation satellite system. The coordinates system is in HK1980 GRID system. The reference station was surveyed and established by traditional land surveying methods using professional surveying instruments such as total station, level and geodetic GNSS. The accuracy was down to mm level and higher than the proposed RTK GNSS cm level so that the reference control station has relatively higher accuracy. As the reference control station has higher accuracy, it was set as true evaluation relative to the RTK GNSS measurement. All position and height correction were adjusted and corrected to the reference control station.

The precision of the measured mudflat surface level reading (vertical precision setting) was within 10 mm (standard deviation) after averaging the valid survey records of the XYZ HK1980 GRID coordinates. Each survey record at each station was computed by averaging at least three measurements that are within the above specified precision setting. Both digital data logging and

written records were collected in the field. Field data on station fixing and mudflat surface measurement were recorded.

2.4.2 Monitoring Schedule for the Reporting Month

The schedule for soft shore ecological monitoring during the reporting period is provided in *Annex H1*.

2.4.3 Results and Observations

Impact soft shore ecological monitoring was conducted at three (3) monitoring locations at Tung Chung Bay (TCB), situated in the eastern side (TCB1), southern side (TCB2) and western side (TCB3) as well as one (1) monitoring location at Tai Ho Wan (THW) as shown in *Figure 2.4* during the reporting period. Representative photographs taken during the impact monitoring are presented in *Figure 2.5*.

For qualitative walk-through surveys, horseshoe crabs and intertidal soft shore communities were recorded during the impact monitoring. The survey results for each monitoring location are summarized in *Table 2.11* below and detailed in *Annex H2*.

Table 2.11 Summary of Qualitative Walk-through Surveys

		Horses	shoe Crabs	Sea	ngrass	No. of Other
Location	Date and Time (1)	No. of Species	No. of Individuals	No. of Species	Area Coverage (m²)	Intertidal Species
TCB1	7/12/2021	-	-	-	-	41
	09:00-13:00					
TCB2	23/12/2021	1	1	-	-	42
	08:30-12:30					
TCB3	8/12/2021	-	-	1	191.3	38
	09:00-12:00					
	23/12/2021	1	3	-	-	-
	08:30-10:30					
THW	9/12/2021	1	10	-	-	37
	08:50-12:00					

Note:

For the quantitative transect surveys, a total of 6,058 individuals were recorded from all transects at monitoring stations TCB1, TCB2, TCB3 and THW. The most abundant group of intertidal soft shore communities recorded was gastropods, with a total of 5,888 individuals (relative abundance of 97.2% and density of 392.5 individual m⁻²). The summary of the top three dominant species at each shore height of each monitoring station and the complete list of species and density recorded are presented in *Annex H2*. When compared with the results obtained during the baseline monitoring as

⁽¹⁾ For qualitative walk-through surveys, surveys were conducted on 7 December 2021 at TCB1, 8 December at TCB3, 9 December 2021 at THW and 23 December 2021 at TCB2 and TCB3. For quantitative transect surveys, surveys were conducted on 7 December 2021 at TCB1, 8 December 2021 at TCB3, 9 December 2021 at THW and 23 December 2021 at TCB2.

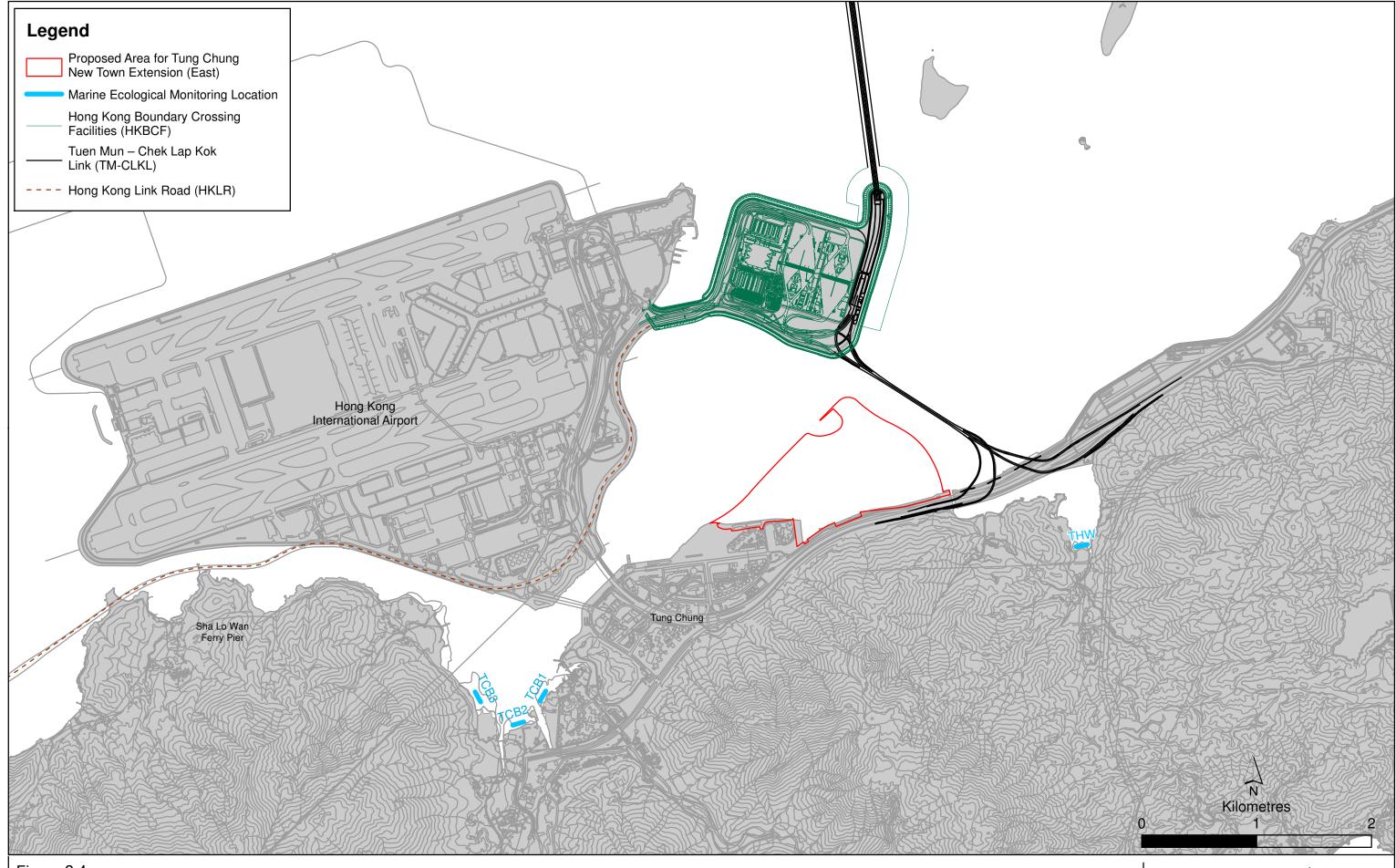


Figure 2.4

Marine Ecological Monitoring (Intertidal Soft-shore Habitats)

Environmental Resources Management

(a) Survey Location at TCB1

(b) Survey Location at TCB2

(c) Survey Location at TCB3

(d) Survey Location at THW

(e) Horseshoe crab *Tachypleus tridentatus* recorded at THW during the Qualitative Walk-through Survey

(f) Seagrass *Halophila ovalis* recorded at TCB3 during the Qualitative Walk-through Survey

Figure 2.5 Representative Photographs Taken during the Impact Soft Shore Ecological Monitoring conducted in December 2021

Environmental Resources Management

presented in the Baseline Monitoring Report ⁽¹⁾, there was no indication of a change in the composition of intertidal communities recorded during the reporting period.

The mudflat surface levels at the four selected monitoring stations in December 2021 and the corresponding XYZ HK1980 GRID coordinates are presented in *Table 2.12*. When compared with the results obtained during the baseline monitoring as presented in the Baseline Monitoring Report ⁽¹⁾, slight changes with <0.03 mPD of sediment levels are recorded for the monitoring stations. The ET will continue to observe the trend of change in sediment levels over time for further comparison and review.

Table 2.12 Results of Sedimentation Rate Monitoring

Monitoring Station	Northing (m)	Easting (m)	Z level at December 2021 (mPD)	Remarks
TCB1	816068.729	811129.226	1.272	Soft mudflat
TCB2	815812.722	810917.378	1.092	Soft mudflat
TCB3	816027.421	810696.193	1.045	Soft mudflat
THW	817470.873	815849.934	1.024	Soft mudflat

Based on the impact monitoring results, there was no evidence showing any significant difference in intertidal communities when compared against the data obtained during baseline monitoring. No action is thus required to be undertaken in accordance with the Event and Action Plan presented in *Annex H3*. The ET will continue to observe the change in density or the distribution pattern of horseshoe crab, seagrass and intertidal soft shore communities taking into account natural fluctuation in respect of the occurrence and distribution pattern.

2.5 EM&A SITE INSPECTION

Site inspections were carried out on a weekly basis with the Contractor and ER to monitor the implementation of proper environmental pollution control and mitigation measures for air quality, noise, water quality, waste management, marine ecology and landscape and visual impacts under the Project. In the reporting period, five (5) site inspections were carried out on 2, 9, 16, 23 and 30 December 2021 for Contract 1, five (5) site inspections were carried out on 1, 8, 15, 22 and 29 December 2021 for Contract 2, five (5) site inspections were carried out on 3, 9, 15, 24 and 31 December 2021 for Contract 3, four (4) site inspections were carried out on 7, 13, 20 and 28 December 2021 for Contract 4 and four (4) site inspections were carried out on 7, 16, 21 and 28 December 2021 for Contract 7.

Key observations during the site inspections are summarized in *Table 2.13*.

ERM (2018b). Baseline Monitoring Report for Tung Chung New Town Extension (East). Submitted to EPD under EP-519/2016

Table 2.13 Key Observations Identified during the Site Inspection in this Reporting Month

Contract No.		Environmental Observations	Recommendations/ Remarks
Contract 1	2 December 2021	Tung Chung Reclamation Area (Near West Entrance and Marina)	Tung Chung Reclamation Area (Near West Entrance and Marina)
		Gaps between silt curtains were	• The Contractor was urged to carry
		observed.	out maintenance.
		Berth 5 and Vertical Seawall 3 (VS3)	Berth 5 and Vertical Seawall 3 (VS3)
		 Cement dust leakage at silo was observed. 	 The Contractor was urged to carry out maintenance and follow the SP license.
	9 December	Area D	Area D
	2021	• Dust was observed from haul road.	 The Contractor was urged to carry out dust mitigation measures.
		 Dark smoke was observed from bulldozer. 	• The Contractor was urged to carry out maintenance.
	16 December 2021	Tung Chung Reclamation Area (Near Berth 3 and Marina)	Tung Chung Reclamation Area (Near Berth 3 and Marina)
		• Silt curtains near Berth 3 were	The Contractor was reminded to
		observed worn out and the	carry out maintenance, replace
		alignment of the silt curtain was deformed.	worn out silt curtain and ensure silt curtain is properly installed.
	23 December 2021	Tung Chung Reclamation Area (Near Marina)	Tung Chung Reclamation Area (Near Marina)
		 Defects in silt curtains were observed. 	 The Contractor was urged to carry out maintenance, replace worn out silt curtain and ensure silt curtain is properly installed.
	30 December 2021	Tung Chung Reclamation Area (Near Pak Mong)	Tung Chung Reclamation Area (Near Pak Mong)
		Overlapping of silt curtain was missing.	The Contractor was reminded to correct silt curtain alignment in accordance with the Silt Curtain Deployment Plan.
		Darrick Barga (May Toam 38)	Deployment Trait. Derrick Barge (Max Team 38)
		Derrick Barge (Max Team 38)Dark smoke was observed.	The Contractor was urged to carry out maintenance.
Contract 2	1 December	Portion 6	Portion 6
	2021	Chemicals were observed not	• The Contractor was reminded to
		placing on drip tray.	place chemicals on drip tray.
	8 December	Portion 3	• Nil
	2021	No deficiency was observed.	
	15 December 2021	Portion 3, Portion 6No deficiency was observed.	• Nil
	22 December	Portion 3	Portion 3
	2021	• Retained water in drip tray should be cleared.	 The Contractor was reminded to remove the water in drip tray.
		No tree protection was observed.	The Contractor was urged to provide tree protection.
	29 December	TTA	TTA
	2021	 Noise mitigation measures were not sufficient. 	 The Contractor was reminded to provide adequate noise mitigation measures i.e. wrap the rig with impervious sheeting.
Contract 3	3 December	Portion 104, 16B-1, WA9, CUT1	Nil.
Contract	2021	No deficiency was observed.	TVII.

Contract No.	Inspection Date	Environmental Observations	Rec	ommendations/ Remarks
	9 December	Portion 12	•	Nil.
	2021	 No deficiency was observed. 		
	15 December	Portion 104, 16B-1, WA9, CUT1	•	Nil
	2021	 No deficiency was observed. 		
	24 December	CUT1	CU	Γ1
	2021	 Accumulated refuse was 	•	The Contractor was reminded to
		observed.		clear accumulated refuse regularly.
	31 December	CUT1	CU	[1
	2021	 Non-road Mobile Machinery 	•	The Contractor was reminded to
		(NRMM) label was not observed		provide NRMM label.
		on generator.		
Contract 4	7 December	WA5	•	Nil.
	2021	 No deficiency was observed. 		
	13 December	Portion 1	•	Nil
	2021	 No deficiency was observed. 		
	20 December	Portion 1	Port	tion 1
	2021	Retained water in drip tray should	•	The Contractor was reminded to
		be cleared.		remove the water in the drip tray.
		Portion 4	Port	tion 4
		 Construction materials were 	•	The Contractor was urged to
		observed placing nearby the		remove the materials and provide
		retained trees and no tree		tree protection.
		protection was observed.		
	28 December	Portion 4	Port	tion 4
	2021	 Chemicals were observed not 	•	The Contractor was reminded to
		placing on drip tray.		provide drip tray for chemicals.
		Portion 1	Port	tion 1
		 Oil stains was observed nearby the 	•	The Contractor was reminded to
		generator.		clear the oil stain in accordance with
				the Spill Response Plan.
		Portion 2	Port	tion 2
		 Retained water in drip tray was 	•	The Contractor was reminded to
		observed.		remove the water in the drip tray.
Contract 7	7 December	WA4, Portion 32, C7 Temporary Site	•	Nil.
	2021	Office		
		 No deficiency was observed. 		
	16 December	WA4, Area E near Pak Mong, Portion 32	•	Nil.
	2021	 No deficiency was observed. 		
	21 and 28	WA4	•	Nil.
	December 2021	 No deficiency was observed. 		

The Contractors have rectified all of the observations identified during environmental site inspections in the reporting period. The Contractors were reminded to implement all relevant mitigation measures related to construction dust, construction noise, water quality and waste management outlined in the EIA Report and EM&A Manual.

2.6 WASTE MANAGEMENT STATUS

The Contractors of Contract 1, 2, 3, 4 and 7 have registered as chemical waste producer. Sufficient numbers of receptacles were available for general refuse collection and sorting.

All dump trucks engaged on site was equipped with RTTM system during the reporting period. The Surveillance Team of the ET conducted regular site inspection on the dump trucks and their track records. No illegal dumping and landfilling of C&D materials was found during the reporting period.

Wastes generated during this reporting period include mainly non-inert construction wastes. Reference has been made to the waste flow tables prepared by the Contractors. The quantities of different types of wastes and imported fill materials are summarised in *Table 2.14*.

Table 2.14 Quantities of Different Waste Generated and Imported Fill Materials

Contract No.	Month/ Year	Inert C&D Materials	Imported Fill (d)	Imported Fill (d)	Inert Construction	Non-inert Construction	Recyclable Materials (c)	Chemical Wastes
		(a) (m^3)	(sand) (m ³)	(public fill) (m ³)	Waste Re-used (m³)	Waste (b) (m³)	(kg)	(kg)
Contract	1 to 31	0	358	332,798 ^(f)	0	137.0 ^(f)	242	4,000
1 (e)	Oct 21			,				,
	1 to 30	0	0	455,612	0	116.0 ^(f)	241	0
	Nov 21							
	1 to 31	0	28,484	704,183	0	80.0	341	6,400
	Dec 21							
Contract	1 to 31	0	0	0	0	7.4 ^(f)	0	0
2	Oct 21							
	1 to 30	0	0	0	272 ^(f)	0	0	0
	Nov 21							
	1 to 31	0	0	0	0	0	0	0
	Dec 21							
Contract		0	0	0	0	1.5	110	0
3	Oct 21							
	1 to 30	0	0	0	0	5.4 ^(f)	0	0
	Nov 21							
	1 to 31	0	0	0	0	2.3	0	0
	Dec 21							
Contract		0	0	0	0	0.134	0	0
4	Oct 21	0. (0.						
	1 to 30	0 (t)	0	0	0	0	0	0
	Nov 21	0	0		0	0	0	0
	1 to 31 Dec 21	0	0	0	0	Ü	0	0
Caratasas		0	0	0	0	0	0	0
Contract 7	Oct 21	U	U	U	U	U	U	0
/	1 to 30	0	0	0	0	0	0	0
	Nov 21	U	U	U	U	U	U	U
	1 to 31	0	0	0	0	0	0	0
	Dec 21	U	U	U	U	U	U	U
Mata	DEC 21							

Notes:

2.7 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

A summary of the Environmental Mitigation Implementation Schedule is presented in *Annex B*. The necessary mitigation measures were implemented properly for the Project.

⁽a) Inert construction wastes include hard rock and large broken concrete, and materials disposed as public fill.

⁽b) Non-inert construction wastes include general refuse disposed at landfill.

⁽c) Recyclable materials include metals, paper, cardboard, plastics and others.

⁽d) Imported fill materials include sand and public fill.

⁽e) Imports fill materials under Contract 1 including mainly sand and public fill. The Project imports fill materials including mainly sand and public fill.

⁽f) Updated figure is presented.

2.8 SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMIT

The monitoring results for air quality monitoring (1-hour TSP) complied with the Action/ Limit levels in the reporting period. No Limit Level exceedance was recorded for construction noise monitoring in the reporting period. However, two (2) Action Level were triggered from two (2) environmental complaints related to noise nuisance received in the reporting period.

Action and limit level exceedances were recorded for water quality impact monitoring in the reporting period. The investigations on the action and limit level exceedances were conducted and the results were summarized in *Section 2.3.3*.

Cumulative statistics on exceedances is provided in *Annex I*.

2.9 SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

There was no notification of summons or prosecution recorded in the reporting period.

Two (2) environmental complaints related to Contract 3 were received in the reporting period. Investigations were conducted for the environmental complaints in accordance with the complaint handling process as stated in the Complaint Management Plan. Environmental complaints in the reporting period are summarized below.

	Complaint(s)	Investigation/Follow up action(s)
1	Environmental complaint related to Contract 3 regarding noise produced during piling works every day from 7am to 6pm was referred by EPD on 3 December 2021.	Based on information provided by the Contractor and regular inspection conducted by ET, the noise mentioned was likely generated by the continuous sheet piling installation work at Portion 104. In order to address the noise issue mentioned, Contractor have implemented mitigation
		measures including erected noise barrier and additional acoustic sheet/mat installed at the pile driver. With reference to data from weekly noise monitoring, no project related exceedance was recorded.

	Complaint(s)	Investigation/Follow up action(s)
2	Environmental complaint related to Contract 3 regarding noise on 30 November 2021 was referred by EPD on 3 December 2021.	Based on information provided by the Contractor and regular inspection conducted by ET, the noise mentioned was likely generated by the continuous sheet piling installation work at Portion 104. In order to address the noise issue mentioned, Contractor have implemented mitigation measures including erected noise barrier and additional acoustic sheet/mat installed at the pile driver. With reference to data from weekly noise monitoring, no project related exceedance was recorded.

Statistics on complaints, notifications of summons, successful prosecutions are summarised in $Annex\ I$.

3 FUTURE KEY ISSUES

3.1 CONSTRUCTION PROGRAMME FOR THE COMING MONTH

Works to be undertaken in the next monitoring period of January 2022 are summarized in *Table 3.1* below, together with the key issues and the key mitigation measures:

Table 3.1 Major Activities for the Next Reporting Period

Activities	Key Issues	Key Mitigation Measures
Contract No. NL/2017/03 - Tur	ng Chung New Town Extension	
Works (Contract 1)		
Land-based Works		
 Ground investigation works Land DCM works Jet grouting works Placing of sorted public fill Box culvert construction Installation of PVD 	 Dust emission Handling and storage of C&D materials generated from construction activities Noise from plant operation Emission of dark smoke from PMEs Efficiency of wastewater and drainage management 	 Good site practices Regular water spraying on stockpiles, unpaved haul road and land filling area Provide tarpaulin sheets coverage on stockpiles Sorting and reuse of C&D materials as far as practicable Use of QPME and noise barrier/acoustic mat Regular maintenance of PMEs Implementation of wastewater and drainage management
 Marine-based Works Laying of geotextile for seawall construction Marine-based instruments monitoring works Placing of sand and sorted public fill Seawall construction 	 Elevation in impact on Water Quality due to sediment loss from sand blanket laying and marine filling works Potential surface runoff Potential filling material drop from barges Disturbance to Chinese White Dolphin Noise from marine vessels and plant operation during normal working hours or restricted hours Dust emission during storage and transfer of sand/ sorted public fill Emission of dark smoke from marine vessel 	 Provision of perimeter silt curtain Provision of a leading seawall of at least 200m before marine filling works Regular cleaning of accumulated sand/fill materials at the edge of the barges Implementation of Dolphin Watching for the marine-based works Strictly follow requirement under CNP for the use of PMEs and works within restricted period Use of acoustic mat and other noise mitigation measures when necessary Regular maintenance of engines and mechanical

equipment

Contract No. NL/2020/02 - Tung Chung New Town Extension - Salt Water Supply System (Contract 2)

Land-based Works

- Initial survey (land survey prior to the commencement of construction works)
- Hoarding erection at Portion 3
- Piling works at Portion 6
- Sheet piling works for ELS at Portion 6
- Tree protection and transplanting at Portion 3
- Site formation at Portion 3
- Trench excavation and watermain laying works at Portion 3 along Yu Tung Road
- Trench excavation for drainage works at Portion 5A
- Ground investigation to determine the rockhead for HDD works at Portion

- Dust emission
- Handling and storage of C&D materials generated from construction activities
- Noise from plant operation
- Emission of dark smoke from PMEs
- Efficiency of wastewater and drainage management
- Tree protection

- Good site practices
- Regular water spraying on stockpiles, unpaved haul road and land filling area
- Provide tarpaulin sheets coverage on stockpiles
- Sorting and reuse of C&D materials as far as practicable
- Use of QPME and noise barrier/acoustic mat
- Regular maintenance of PMEs
- Implementation of wastewater and drainage management
- Retain and protect all existing trees and vegetation within the study area which are not directly affected by the works

Contract No. NL/2020/03 - Tung Chung New Town Extension - Major Infrastructure Works in Tung Chung East (Contract 3)

Land-based Works

- Installation of sheetpile at
 Portion 104
- Installation of sheetpile at CUT no.1
- Construction of footing, temporary drainage system and site formation at WA6/WA9 and Portion 7 and construction of temporary transformer building
- Erection of PM office at WA9

- Dust emission
- Handling and storage of C&D materials generated from construction activities
- Noise from plant operation
- Emission of dark smoke from PMEs
- Efficiency of wastewater and drainage management
 - Tree protection

- Good site practices
- Regular water spraying on stockpiles, unpaved haul road and land filling area
- Provide tarpaulin sheets coverage on stockpiles
- Sorting and reuse of C&D materials as far as practicable
- Use of QPME and noise barrier/acoustic mat
- Regular maintenance of PMEs
- Implementation of wastewater and drainage management
- Retain and protect all existing trees and vegetation within the study area which are not directly affected by the works

Contract No. NL/2020/04 - Tung Chung New Town Extension - Siu Ho Wan Fresh Water Service Reservoir and Associated Mainlaying Works (Contract 4)

Land-based Works

- Initial survey (land survey prior to the commencement of construction works)
- Earth works at Portion 1
- Predrilling at Portion 1
- Soil Nail Construction at Portion 1
- Hoarding erection at Portion 2 and 4
- Water pipe installation at Portion 2
- Trench excavation and watermain laying at Portion 4

- Dust emission
- Handling and storage of C&D materials generated from construction activities
- Noise from plant operation
- Emission of dark smoke from PMEs
- Efficiency of wastewater and drainage management
- Tree protection

- Good site practices
- Regular water spraying on stockpiles, unpaved haul road and land filling area
- Provide tarpaulin sheets coverage on stockpiles
- Sorting and reuse of C&D materials as far as practicable
- Use of QPME and noise barrier/acoustic mat
- Regular maintenance of PMEs
- Implementation of wastewater and drainage management
- Retain and protect all existing trees and vegetation within the study area which are not directly affected by the works

Contract No. NL/2020/07 - Tung Chung New Town Extension - Tai Ho Interchange (Contract 7)

Land-based Works

- Installation of chain link fence and access at WA4 and Portion 32
- Inspection pit excavation at Portion 32
- Tree survey
- Site clearance and tidiness
- Dust emission
- Handling and storage of C&D materials generated from construction activities
- Noise from plant operation
- Emission of dark smoke from PMEs
- Good site practices
- Regular water spraying on stockpiles, unpaved haul road and land filling area
- Provide tarpaulin sheets coverage on stockpiles
- Sorting and reuse of C&D materials as far as practicable
- Use of QPME and noise barrier/acoustic mat
- Regular maintenance of PMEs

The ET will keep track on the construction works to confirm compliance of environmental requirements and the proper implementation of all necessary mitigation measures. The ET will also recommend to the Contractors about the environmental toolbox topics on the abovementioned key issues for the next reporting period.

3.2 MONITORING SCHEDULE FOR THE COMING MONTH

The tentative schedules for environmental monitoring in January 2022 are provided in *Annex J*.

4 CONCLUSION AND RECOMMENDATION

This EM&A Report presents the findings of the EM&A activities undertaken for the TCE Project during the period from 1 to 31 December 2021 in accordance with the Updated EM&A Manual and the requirements of the Environmental Permit (*EP-519/2016*).

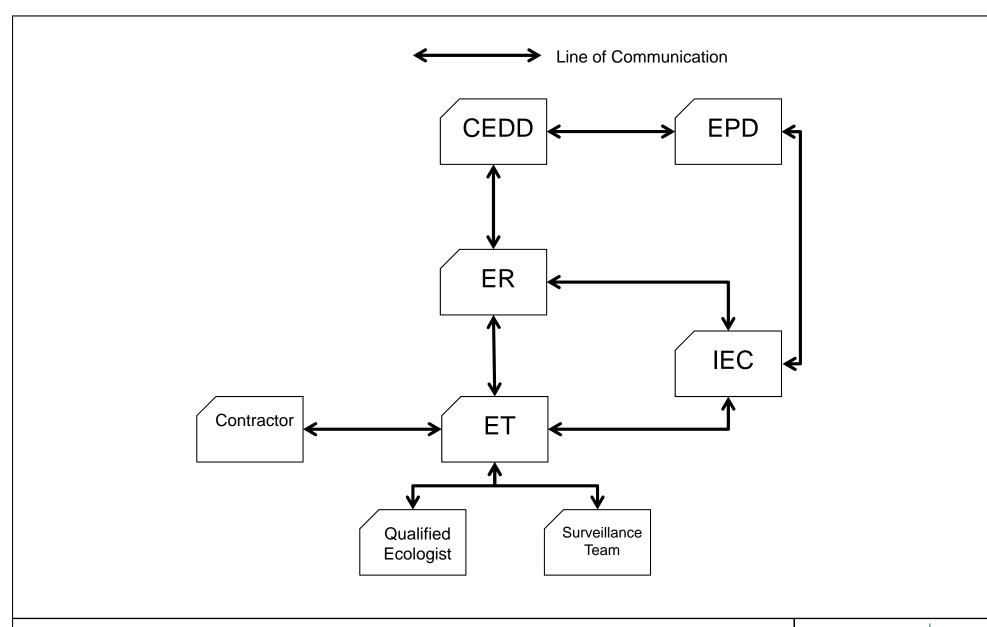
Air quality (1-hour TSP), noise and water quality (DO, turbidity and SS) were carried out in the reporting period.

The monitoring results for air quality monitoring (1-hour TSP) complied with the Action/ Limit levels in the reporting period.

No exceedance of Limit Levels was recorded for construction noise monitoring in the reporting period. However, two (2) Action Level were triggered from two (2) environmental complaints related to noise nuisance in the reporting period.

No Project-related Action/ Limit level exceedances were recorded for water quality after investigation.

Based on the monitoring results for soft shore ecological monitoring, there was no evidence showing any significant difference in intertidal communities when compared against the data obtained during baseline monitoring. The ET will continue to observe the change in density or the distribution pattern of horseshoe crab, seagrass and intertidal soft shore communities taking into account natural fluctuation in respect of the occurrence and distribution pattern.


Environmental site inspections were carried out during the reporting period. Recommendations on remedial actions were given to the Contractors for the deficiencies identified during the site inspections.

There was no notification of summons or prosecution recorded in the reporting period. Two (2) environmental complaints related to Contract 3 were received in the reporting period. Investigations were conducted for the environmental complaints in accordance with the complaint handling process as stated in the Complaint Management Plan.

The ET will keep track on the construction works to confirm compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Annex A

Project Organisation

Annex B

Environmental Mitigation Implementation Schedule

Note: Chapters 1 to 2 of the EIA report present the background information of the Project, identified concurrent projects, objectives and scope for various environmental aspects, and description on alternative options and construction description. Chapters 3 to 12 of the EIA report present the EIA findings and mitigation measures are described below with cross-reference to the EIA report. Chapters 13 to 15 describe the environmental monitoring requirements, summary of environmental outcomes and conclusion.

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved		
Common	mmon Mitigation Measures (Applicable to ALL Project Components, including DPs and Non-DPs)								
Construct	tion Dust In	npact							
S3.4.6	D1	Water spraying every hour on exposed worksites and haul road.	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	APCO To control the dust impact to meet HKAQO and TM-EIAO criteria		
S3.4.6	D2	The contractor shall follow the procedures and requirements given in the Air Pollution Control (Construction Dust) Regulation	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	APCO To control the dust impact to meet HKAQO and TM-EIAO criteria		
S3.4.6	D3	The following dust suppression measures should be incorporated to control the dust nuisance throughout the construction phase: • Any excavated or stockpile of dusty material should be covered entirely by impervious sheeting or sprayed with water to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or unloading; • Any dusty materials remaining after a stockpile is removed should be wetted with water and cleared from the surface of roads;	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	APCO To control the dust impact to meet HKAQO and TM-EIAO criteria		

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		A stockpile of dusty material should not be extended beyond the pedestrian barriers, fencing or traffic cones;					
		• The load of dusty materials on a vehicle leaving a construction site should be covered entirely by impervious sheeting to ensure that the dusty materials do not leak from the vehicle;					
		 Where practicable, vehicle washing facilities with high pressure water jet should be provided at every discernible or designated vehicle exit point. The area where vehicle washing takes place and the road section between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores; 					
		When there are open excavation and reinstatement works, hoarding of not less than 2.4m high should be provided as far as practicable along the site boundary with provision for public crossing. Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period;					
		• The portion of any road leading only to construction site that is within 30m of a vehicle entrance or exit should be kept clear of dusty materials;					
		Surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation takes place should be sprayed with water or a dust suppression chemical continuously;					
		 Any area that involves demolition activities should be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet; 					
		• Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens,					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		sheeting or netting should be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding;					
		• Any skip hoist for material transport should be totally enclosed by impervious sheeting;					
		• Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides;					
		• Cement or dry PFA delivered in bulk should be stored in a closed silo fitted with an audible high level alarm which is interlocked with the material filling line and no overfilling is allowed;					
		• Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust should be fitted with an effective fabric filter or equivalent air pollution control system; and					
		• Exposed earth should be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shortcrete or other suitable surface stabiliser within six months after the last construction activity on the construction site or part of the construction site where the exposed earth lies.					
S3.4.6	D4	Implement regular dust monitoring under EM&A programme during the construction stage.	Monitoring of dust impact	Contractor	Selected dust monitoring stations	Construction stage	• TM-EIAO

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
Construc	ction Noise						
S4.3.4	NI	 Implement the following good site management practices: only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme; machines and plant (such as trucks, cranes) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; plant known to emit noise strongly in one direction, where possible, be orientated so that the noise is directed away from nearby NSRs; silencers or mufflers on construction equipment should be properly fitted and maintained during the construction works; mobile plant should be sited as far away from NSRs as possible and practicable; material stockpiles, site office and other structures should be effectively utilised, where practicable, to screen noise 	Control construction airborne noise	Contractor	All construction sites where practicable	Construction stage	• Annex 5, TM-EIAO
S4.3.4	N2	from on-site construction activities. Use of quiet plant which should be made reference to the Powered Mechanical Equipment (PME) listed in the Technical Memorandum or the Quality Powered Mechanical Equipment (QPME) / other commonly used PME listed in Environmental Protection Department (EPD) web pages as far as possible which includes the Sound Power Level (SWLs) for specific quiet PME.	Reduce the noise levels of plant items	Contractor	All construction sites where practicable	Construction stage	• Annex 5, TM-EIAO
S4.3.4	N3	Install movable temporary noise barriers (typical design is wooden framed barrier with a small-cantilevered upper portion of superficial density no less than 7kg/m² on a skid	Screen the noisy plant items to be used at all	Contractor	All construction sites where	Construction stage	• Annex 5, TM- EIAO

EIA EM&A Ref. Log Ro	Racammandad Mittaatian Magairea	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
	footing with 25mm thick internal sound absorptive lining), and full enclosure, screen the noisy plants including air compressors, generators etc.	construction sites		practicable		
S4.3.4 N4	Implement a noise monitoring under EM&A programme.	Monitor the construction noise levels at the selected representative locations	Contractor	Selected noise monitoring stations	Construction stage	• TM-EIAO
Operational Noise	(Road Traffic Noise)					
S4.5.4 N5	Provide a series of noise mitigation measures including low noise surfacing material, noise barriers, facades with no openable window, school boundary walls and architectural fins before occupation of the protected NSRs. Locations of noise mitigation measures are stated as following: Year 2023: • Facade with no openable window at B1-1 and B1-2 for TCE; TCV-6 for TCW • 1.5m long architectural fin at B1-1 and B1-2 for TCE • Approx. 50m long, 4m high school boundary wall at possible school development near Tung Chung Area 39 • Approx. 120m long, 5m high vertical barrier with 3m cantilevered arm at 45° at the corner at junction between Chung Mun Road and Road L24 • Approx. 210m long LNRS along Chung Mun Road • Approx. 160m long LNRS along Road L24 • Approx. 160m long LNRS along Road L30	from road traffic	Relevant government departments / Private developers	Refer to Figure 6.1, Figure 6.1a- b, Figure 6.2, Figures 6.2a-b, Figure 6.3, Figures 6.3a-d, Figure 6.4, and Figures 6.4a-e	of the Project for existing NSRs. While for mitigation measures to protect planned NSRs, it should be constructed before population intake	
	 Approx. 210m long LNRS along Chung Mun Road Approx. 160m long LNRS along Road L24 					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		D1-2, D2-3 and D2-4 for TCE; TCV-6 for TCW					
		• 1.5m long architectural fin at B1-1, B1-2 and D2-4 for TCE; TCV-1 for TCW					
		• Approx. 60m long, 5m high school boundary wall along Road L3					
		• Approx. 70m long, 5m high school boundary wall with 3m cantilevered arm at 45° along Road L3					
		• Approx. 50m long, 4m high school boundary wall at possible school development near Tung Chung Area 39					
		 Approx. 120m long, 5m high vertical barrier with 3m cantilevered arm at 45° at the corner at junction between Chung Mun Road and Road L24 					
		Approx. 210m long LNRS along Chung Mun Road					
		Approx. 160m long LNRS along Road L24					
		• Approx. 160m long LNRS along Road L30					
		Year 2027:					
		• Facade with no openable window at A1-1, A1-2, A2-1, A2-2, A2-3, A2-4, B1-1, B1-2, D1-1, D1-2, D2-3 and D2-4 for TCE; TCV-6 for TCW					
		• 1.5m long architectural fin at A2-1, A2-4, B1-1, B1-2 and D2-4 for TCE;					
		• 1.8m long architectural fin at A1-1, A1-2, A2-1 and A2-4					
		• Approx. 60m long, 5m high school boundary wall along Road L3					
		• Approx. 70m long, 5m high school boundary wall with 3m cantilevered arm at 45° along Road L3					
		• Approx. 50m long, 4m high school boundary wall at					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		possible school development near Tung Chung Area 39					
		 Approx. 120m long, 5m high vertical barrier with 3m cantilevered arm at 45° at the corner at junction between Chung Mun Road and Road L24 					
		Approx. 210m long LNRS along Chung Mun Road					
		• Approx. 160m long LNRS along Road L24					
		• Approx. 160m long LNRS along Road L30					
		Year 2045:					
		• Facade with no openable window at A1-1, A1-2, A2-1, A2-2, A2-3, A2-4, B1-1, B1-2, C1-1, C2-1, C2-2, D1-1, D1-2, D2-3, D2-4, E1-4 and E1-5 for TCE; TCV-1 and TCV-6 for TCW					
		• 1.5m long architectural fin at A2-1, A2-4, B1-1, B1-2, C1-1 and D2-4 for TCE; TCV-1 for TCW					
		• 1.8m long architectural fin at A1-1, A1-2, A2-1, A2-4 and C1-1					
		• Approx. 100m long, 5m high absorptive vertical barrier along Road D3					
		• Approx. 50m long, 5m high absorptive vertical barrier with 3m cantilevered arm at 45° along Road L7					
		• Approx. 60m long, 5m high school boundary wall along Road L3					
		• Approx. 70m long, 5m high school boundary wall with 3m cantilevered arm at 45° along Road L3					
		• Approx. 80m long, 4m high school boundary wall along Road L2					
		• Approx. 40m long, 3m high school boundary wall along Road L2					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		Approx. 50m long, 4m high school boundary wall at possible school development near Tung Chung Area 39					
		• Approx. 120m long, 5m high vertical barrier with 3m cantilevered arm at 45° at the corner at junction between Chung Mun Road and Road L24					
		Approx. 210m long LNRS along Chung Mun Road					
		Approx. 160m long LNRS along Road L24					
		Approx. 160m long LNRS along Road L30					
Operatio	nal Noise (I	Fixed Noise)					
S4.6.4	N6	For existing and planned NSRs which are located near to the proposed noise sources, the following tentative noise mitigation measures are considered: • All the pumps should be enclosed inside building structures; • Proper selection of quiet plant to reduce the tonality at NSRs; • Installation of silencer / acoustic enclosure / acoustic louvers for the exhaust of ventilation system. • For underground train stations, sound attenuators with sufficient attenuations can be installed to the ventilation shafts. • Openings of ventilation system should be located away from NSRs.	Reduce operation fixed noise	Relevant government departments / Future Operator	All plant rooms where practicable	Prior to operation of the Project	Noise Control Ordinance and its TM, TM- EIAO
On anatio	nal Noise (I	Pail Noise					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
S4.8.4	N7	 Facade with no openable windows for residential block at B1-2 1.5m long architectural fin at B1-2 Before Phase 3 is occupied: It should be noted that Railway Stations at TCE and TCW and its associated railway system is a Designated Project under Item A.2 of Schedule 2 of TM-EIAO. Hence, the proposed mitigation measures are tentative for cumulative assessment purpose in this EIA and all the mitigation measures will be revised by the railway operator during their Schedule 2 EIA. Approx. 325m long, semi enclosure along the tracks of Tung Chung Line facing B0-2 and COM-1 Approx. 210m long, semi enclosure along the tracks of Tung Chung Line facing A1-2 and C1-1 Approx. 390m long, semi enclosure along the track of Tung Chung Line to Tung Chung direction facing C1-1 to C2-1 Approx. 630m long, semi enclosure along the track of Tung Chung Line to Hong Kong direction facing C1-1 and C2-1 		government	Refer to Figure 6.1, Figure 6.1a- b, Figure 6.2, Figures 6.2a-b, Figure 6.3, Figures 6.3a-d, Figure 6.4, and Figures 6.4a-e	population intake	• Noise Control Ordinance and its TM, TM- EIAO

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
Water Q	uality (Const	ruction Phase)					
S5.4.3	W1	General Construction Activities In accordance with the Practice Note for Professional Persons on Construction Site Drainage, Environmental Protection Department, 1994 (ProPECC PN1/94), best management practices should be implemented on site as far as practicable. The best practices are detailed below:	To minimize water quality impact from construction site runoff and general construction activities	Contractor	All construction sites where applicable	Construction stage	 Water Pollution Control Ordinance ProPECC PN1/94 TM-EIAO
		• At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works. Channels, earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities.;					• TM-DSS
		Diversion of natural stormwater should be provided as far as possible. The design of temporary on-site drainage should prevent runoff going through site surface, construction machinery and equipment in order to avoid or minimize polluted runoff. Sedimentation tanks with sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m3 capacities, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity shall be flexible and able to handle multiple inputs from a variety of sources and suited to applications where the influent is pumped;					
		The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a silt/sediment trap. The silt/sediment traps should be incorporated in the permanent drainage channels to enhance deposition rates;					
		• The design of efficient silt removal facilities should be				IOINEEDING AND DEVELO	

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		based on the guidelines in Appendix A1 of ProPECC PN 1/94. The detailed design of the sand/silt traps should be undertaken by the contractor prior to the commencement of construction;					
		Construction works should be programmed to minimize surface excavation works during the rainy seasons (April to September). All exposed earth areas should be completed and vegetated as soon as possible after earthworks have been completed. If excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means;					
		All drainage facilities and erosion and sediment control structures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rainstorms. Deposited silt and grit should be removed regularly and disposed of by spreading evenly over stable, vegetated areas;					
		If the excavation of trenches in wet periods is necessary, it should be dug and backfilled in short sections wherever practicable. Water pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities;					
		All open stockpiles of construction materials (for example, aggregates, sand and fill material) should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system;					
		Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		directed into foul sewers;					
		Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecasted, and actions to be taken during or after rainstorms are summarized in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events;					
		 All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facilities should be provided at every construction site exit where practicable. Wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains; 					
		Oil interceptors should be provided in the drainage system downstream of any oil/fuel pollution sources. The oil interceptors should be emptied and cleaned regularly to prevent the release of oil and grease into the storm water drainage system after accidental spillage. A bypass should be provided for the oil interceptors to prevent flushing during heavy rain;					
		Construction solid waste, debris and rubbish on site should be collected, handled and disposed of properly to avoid water quality impacts;					
		All fuel tanks and storage areas should be provided with locks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank to prevent spilled fuel oils from reaching water sensitive.					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		 Regular environmental audit on the construction site should be carried out in order to prevent any malpractices. Notices should be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the water bodies, mangroves and open sea. 					
S5.4.3	W2	 Sewage from workforce Portable chemical toilets and sewage holding tanks are recommended for handling the construction sewage generated by the workforce. A licensed contractor should be employed to provide appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance; Notices should be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment during the construction phase of the Project; Regular environmental audit on the construction site should be conducted in order to provide an effective control of any malpractices and achieve continual improvement of environmental performance on site. 	To minimize water quality from sewage effluent in construction phase	Contractor	All construction sites where practicable	Construction stage	Water Pollution Control Ordinance TM-DSS
S5.4.3	W3	Construction Works and Bridge Works near Tung Chung Stream • Use precast structures or other similar approaches	To prevent any construction works in river and avoid any direct water quality impact to Tung Chung Stream	Contractor	All construction sites where practicable	Construction stage	• ProPECC PN1/94
S5.4.3	W4	 Construction Works of Sewage Pumping Stations A buffer zone of about 20m or about 30m will be zoned to 	To avoid any direct water quality impact to Tung Chung Stream		All construction sites where	Construction stage	• ProPECC PN1/94

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		prevent any construction works near river.			practicable		
S5.4.3	W5	 Construction Work of Fresh Water and Salt Water Reservoirs Good site management as stipulated in ProPECC PN1/94 will be fully implemented to avoid polluted liquid or solid wastes from falling into the river waters or drainage. 	To avoid water quality impact	Contractor	All construction sites where practicable	Construction stage	• ProPECC PN1/94
S5.4.3	W6	 Construction of Storm Water Management Facilities and Polder Scheme Good site management as stipulated in ProPECC PN1/94 will be fully implemented to avoid polluted liquid or solid wastes from falling into the river waters or drainage. 	To avoid any direct water quality impact to Tung Chung Stream		All construction sites where practicable	Construction stage	• ProPECC PN1/94
S5.4.3	W7	Groundwater and Runoff for Tunnel Works • Cut-and-Cover method for the underpass at Road D1 in Tung Chung East to minimise the intrusion of groundwater. Good site management as stipulated in ProPECC PN1/94 will be fully implemented to avoid polluted liquid or solid wastes from falling into the river waters or drainage.	To avoid water quality impact	Contractor	All construction sites where practicable	Construction stage	• ProPECC PN1/94
S5.5.8	W8	 Good Management Practice in Construction Phase The following good site management practices shall be adopted for the filling works: Water quality monitoring shall be implemented to ensure effective control of water pollution and recommend additional mitigation measures required; The decent speed of grabs shall be controlled to minimize the seabed impact and to reduce the volume of overdredging; A perimeter silt curtain shall be installed during the entire 	To avoid water quality impact	Contractor	All construction sites where practicable	Construction stage	• ProPECC PN1/94

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		reclamation periods;					
		Barges or hoppers shall not be filled to a level which will cause overflow of materials or pollution of water during loading or transportation;					
		• Excess materials shall be cleaned from the decks and exposed fittings of barges before the vessels are moved;					
		• Plants should not be operated with leaking pipes and any pipe leakages shall be repaired quickly;					
		 Adequate freeboard shall be maintained on barges to reduce the likelihood of decks being washed by wave action; 					
		 All vessels should be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; and 					
		• The works shall not cause foam, oil, grease, litter or other objectionable matter to be present in the water within and adjacent to the works site.					
S5.5.8	W9	The recovered C&D materials for filling would be ensured no floating or non-inert material by visual inspection, quality assurance, etc.	To avoid water quality impact	Contractor	All construction sites where practicable	Construction stage	• Waste Disposal Ordinance

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
Water Qu	ality (Opera	tional Phase)					
S5.6.10	W10	 The following mitigation measures will be implemented to TCV East, North and West SPS, upgraded CMRSPS, proposed TCE West SPS and TCE East SPS 100% standby pump capacity with spare pump of 50% pump capacity Dual-feed power supply Wet well storage providing up to 6-hours ADWF capacity (equivalent to about 4 hours of response time during peak flow condition); and Emergency communication mechanism amongst relevant government departments. 	To prevent the impact due to the emergency discharge at TCW and TCE		Proposed Sewage Pumping Station at TCW and TCE	Operational Stage	• DSD's Sewerage Manual
S5.6.10	W11	 The following mitigation measures will be implemented to gravity sewers and rising mains Adopt high density polyethylene (HDPE) pipe for proposed gravity sewers and rising mains. Further protection on proposed rising mains with concrete surround will be provided to mitigate the risk of bursting. 	To minimize the risk of bursting and hence bursting discharge from gravity sewers and rising mains	DSD	Proposed rising mains within TCE and TCW	Operational Stage	-
S5.6.10	W12	Maintenance Dredging for the Proposed Marina Silt curtain should be deployed to reduce the sediment dispersion from the dredging inside the marina.	To reduce the sediment dispersion	Future operator	Proposed marina at TCE	Operational Stage	-

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
Sewage d	and Sewerag	e Treatment Implications					
S6.5.4	SS1	 Emergency Discharge of Proposed TCV West SPS, TCV East SPS, TCV North SPS and Upgraded CMRSPS The following mitigation measures will be implemented to TCV East, North and West SPS, and upgraded CMRSPS: 100% standby pumping capacity within each SPS, with spare pump up to 50% pumping capacity stockpiled in each SPS for any emergency use Twin rising mains Dual-feed power supply Emergency storage facilities up to 6-hours ADWF capacity; and Emergency communication mechanism amongst relevant government departments. 	To prevent the impact due to the emergency discharge at TCW	DSD	Proposed Sewage Pumping Station at TCW	Operational stage	N/A
S6.5.4	SS2	 Emergency Discharge of Proposed TCE West SPS and TCE East SPS In order to minimize the impact due to the emergency discharge, the following precautionary measures shall be included in the design of sewage pumping station: 100% standby pumping capacity within each SPS, with spare pump up to 50% pumping capacity stockpiled in each SPS for any emergency use Twin rising mains Dual-feed power supply Emergency storage facilities up to 6-hours ADWF capacity; and Emergency communication mechanism amongst relevant 	To minimize the impact due to the emergency discharge at TCE	DSD	Proposed Sewage Pumping Station at TCE	Operational stage	N/A

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		government departments.					
S6.5.4	SS3	The following mitigation measures will be implemented to prevent pipe bursting on Rising Mains within TCE and TCW: • Strong pipe – use HDPE pipe with welded joints • Concrete encasement – concrete surround all rising mains	To minimize the risk of bursting and hence bursting discharge from gravity sewers and rising mains		Proposed rising mains within TCE and TCW		N/A

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
Waste Mo	anagement (Construction Waste)					
S7.4.1	WM1	 Good Site Practices The following good site practices are recommended throughout the construction activities: nomination of an approved personnel, such as a site manager, to be responsible for the implementation of good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site; training of site personnel in site cleanliness, appropriate waste management procedures and concepts of waste reduction, reuse and recycling; provision of sufficient waste disposal points and regular collection for disposal; imposition of penalty system on Contractors' improper behaviours when illegal dumping and landfilling outside their respective construction sites, i.e. on nearby farmlands and riverbanks, are reported; appropriate measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers; regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors; and the contractor should prepare a Waste Management Plan (WMP) as part of the Environmental Management Plan (EMP) in accordance with the ETWB TC(W) No. 	Minimize generation during construction	Contractor	All construction sites	Construction stage	• Waste Disposal Ordinance
		19/2005 for construction phase. The EMP should be submitted to the Engineer for approval. Mitigation measures proposed in the EIA Report and the EM&A Manual should be adopted.					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
S7.4.1	WM2	 Waste Reduction Measures Waste reduction is best achieved at the planning and design phase, as well as by ensuring the implementation of good site practices. The following recommendations are proposed to achieve reduction: segregate and store different types of waste in different containers, skip or stockpiles to enhance reuse or recycling of materials and their proper disposal; proper storage and site practices to minimize the potential for damage and contamination of construction materials; plan and stock construction materials carefully to minimize amount of waste generated and avoid unnecessary generation of waste; sort out demolition debris and excavated materials from demolition works to recover reusable/recyclable portions (i.e. soil, broken concrete, metal etc.); provide training to workers on the importance of appropriate waste management procedures, including waste reduction, reuse and recycling. 	Reduce waste generation	Contractor	All construction sites	Construction stage	• Waste Disposal Ordinance
S7.4.1	WM3	 Storage of Waste The following recommendation should be implemented to minimize the impacts: waste such as soil should be handled and stored well to ensure secure containment; and Depends on actual site activities, certain locations within the site area would be used for storage of waste to enhance reuse. However, there would not be any designated location for storage of waste, and the storage locations would need to be adjusted to suite actual site conditions; 	Good site practice to minimize the waste generation and recycle the C&D materials as far as practicable so as to reduce the amount for final disposal		All construction sites	Construction stage	 Land (Miscellaneous Provisions) Ordinance Waste Disposal Ordinance ETWB TCW No. 19/2005

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
S7.4.1	WM4	Collection and Transportation of Waste The following recommendation should be implemented to minimize the impacts: • remove waste in timely manner; • employ the trucks with cover or enclosed containers for waste transportation; • obtain relevant waste disposal permits from the appropriate authorities; and • disposal of waste should be done at licensed waste disposal facilities.	Minimize waste impacts from storage	Contractor	All construction sites	Construction stage	Waste Disposal Ordinance
S7.4.1	WM5	 Excavated and C&D Materials Wherever practicable, C&D materials should be segregated from other wastes to avoid contamination and ensure acceptability at public fill reception facilities or reclamation sites. The following mitigation measures should be implemented in handling the excavated and C&D materials: maintain temporary stockpiles and reuse excavated fill material for backfilling; carry out on-site sorting; make provisions in the Contract documents to allow and promote the use of recycled aggregates where appropriate; and implement a trip-ticket system for each works contract to ensure that the disposal of C&D materials are properly documented and verified, so as to avoid the illegal dumping and landfilling of C&D materials on farmlands/ riverbanks at TCW; The recommended C&D materials handling should include: 	Minimize waste impacts from excavated and C&D materials	Contractor	All construction sites	Construction Stage	 Land (Miscellaneous Provisions) Ordinance Waste Disposal Ordinance ETWB TCW No. 19/2005 Project Administrative Handbook for Civil Engineering Works, 2012 Edition

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		On-site sorting of C&D materials					
		Reuse of C&D materials					
		Use of Standard Formwork and Planning of Construction Materials purchasing					
S7.4.1	WM6	Provision of Wheel Wash Facilities Wheel wash facilities have to be provided at the site entrance before the trucks leaving the works area. Dust disturbance due to the trucks transportation to the public road network could be minimized by such arrangement.	Minimize waste impacts from trucks transportation	Contractor	All construction sites	Construction Stage	N/A
\$7.4.1	WM7	Excavated Contaminated Soil As a precaution, it is recommended that standard good site practice should be implemented during the construction phase to minimize any potential exposure to contaminated soils or groundwater.	Remediate contaminated soil	Contractor	All construction sites where applicable	Construction stage	 Practice Guide for Investigation and Remediation of Contaminated Land
S7.4.1	WM8	 Excavated Marine Sediments Reference has been made to the sediment testing results. Possible mitigation measures to handle the contaminated/uncontaminated sediment are summarized as follows. All construction plant and equipment shall be designed and maintained to minimise the risk of silt, sediments, contaminants or other pollutants being released into the water column or deposited in the locations other than designated location. All vessels shall be sized such that adequate draft is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash. Adequate freeboard shall be maintained on barges to 	Handle excavated sediment	Contractor	All construction sites where applicable	Construction stage	• ETWB-TCW 34/2002

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		ensure that decks are not washed by wave action.					
S7.4.1	WM9	 Dumping of excavated sediment Keep and produce logs and other records to demonstrate compliance and ensure journeys are consistent with designated locations Comply with the conditions in the dumping permit. All bottom dumping vessels (hopper barges) shall be fitted with tight fittings seals to their bottom openings to prevent leakage of material. The excavated sediment shall be placed into the disposal pit by bottom dumping. Contaminated marine mud shall be transported by split barge of not less than 750m³ capacity and capable of rapid opening and discharge at the disposal site. Discharge shall be undertaken rapidly and the hoppers shall be closed immediately. Sediment adhering to the sides of the hopper shall not be washed out of the hopper and the hopper shall remain closed until the barge returns to the disposal site. For Type 3 special disposal treatment, sealing of contaminant with geosynthetic containment before dropping into designated mud pit. A geosynthetic containment method is a method whereby the sediments are sealed in geosynthetic containers and, the containers would be dropped into the designated contaminated mud pit where they would be covered by further mud disposal and later by the mud pit capping at the disposal site, thereby fulfilling the requirements for fully confined mud disposal. 	Handle excavated sediment	Contractor	All construction sites where applicable	Construction stage	• ETWB-TCW 34/2002
S7.4.1	WM10	Chemical Waste	Control the chemical waste and ensure proper	Contractor	All construction	Construction stage	

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		If chemical wastes are produced at the construction site, the Contractors should register with EPD as chemical waste producer. Chemical wastes should be stored in appropriate containers and collected by a licensed chemical waste collector. Chemical wastes (e.g. spent lubricant oil) should be	storage, handling and disposal.		sites		(Chemical Waste) General) Regulation
		recycled at an appropriate facility as far as possible, while the chemical waste that cannot be recycled should be disposed of at either the Chemical Waste Treatment Centre, or another licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.					• Code of Practice on the Packaging, Labelling and Storage of Chemical Waste
S7.4.1	WM11	General Refuse General refuse should be stored in enclosed bins separately from construction and chemical wastes. Recycling bins should also be placed to encourage recycling.	Minimize production of the general refuse and avoid odour, pest and litter impacts		All construction sites	Construction stage	Waste Disposal Ordinance
		 Preferably enclosed and covered areas should be provided for general refuse collection and routine cleaning for these areas should also be implemented to keep areas clean. A reputable waste collector should be employed to remove general refuse on a daily basis. 					
S7.4.1	WM12	Floating Refuse accumulated along the seawall The floating refuse along seawall should be collected to avoid accumulation. In addition, proper seawall design should be employed, and regular checking and cleaning of floating refuse should be implemented.	Control floating refuse and ensure proper disposal	Contractor	Construction sites along seawall	Construction stage	Waste Disposal Ordinance
Waste Ma	ınagement (Operational Waste)					
S7.4.2	WM13	Illegal dumping and landfilling	Prevent waste from	Relevant	All	Operational stage	

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		As a Development Permission Area (DPA) plan will be issued by the Town Planning Board as a temporary measure before the formal Outline Zoning Plan (OZP) for Tung Chung New Town Extension is adopted, statutory right to guide and control the development and use of land would be authorised. Should there be illegal dumping and landfilling observed/ reported on nearby farmlands and riverbanks, the government authority should take all necessary actions including but not limited to prosecution to remediate the circumstances.	illegal dumping and landfilling	government departments	construction		
\$7.4.2	WM14	 Municipal Solid Waste A reputable waste collector should be employed to remove general refuse on a daily basis. A 4-bin recycling system for paper, metals, plastics and glass should be adopted together with a general refuse bin. They should be placed in prominent places to promote waste separation at source. All recyclable materials should be collected by recyclers. 	Remove general refuse generated from the proposed development	FEHD/ Relevant Operators	All construction sites	Operational stage	Waste Disposal Ordinance
S7.4.2	WM15	Chemical Waste Localized chemical waste storage areas should be located close to the source of waste generation for temporary storage. Drum-type containers with proper labelling should be used to collect chemical wastes for storage at the designated areas. A licensed collector should be employed for the chemical waste collection and the chemical wastes	Reduce chemical waste due to waste handling	Contractors/ Relevant Operators	All construction sites	Operational stage	
		 chemical waste collection and the chemical wastes should be disposed at an appropriate facility, such as Chemical Waste Treatment Centre (CWTC) in Tsing Yi. Collection receipts issued by the licensed collector showing the quantities and types of chemical waste taken off-site and details of the treatment facility should be kept for record. 					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
S7.4.2	WM16	 Floating Refuse accumulated along seawall The floating refuse along seawall should be collected to avoid accumulation. 	Control floating refuse and ensure proper disposal		Along seawall	Operational stage	Waste Disposal Ordinance
S7.4.2	WM17	Floating Refuse inside Marina • Floating refuse at the marina will be collected and disposed by the licensed waste collector and as required.	Reduce floating refuse washing up onto marina by currents and wind	-	Marina	Operational stage	Waste Disposal Ordinance

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
Land Con	tamination						
S8.4.1	LCI	Undertaking environmental Site Inspection (SI) for all potentially contaminated sites as listed in the Contamination Assessment Plan (CAP).	contamination potential before the		All potentially contaminate d sites as listed in the CAP	Prior to the construction stage	 Annex 19 of the TM-EIAO, Guidelines for Assessment of Impact On Sites of Cultural Heritage and Other Impacts (Section 3 : Potential Contaminated Land Issues); Guidance Manual for Use of Risk-Based Remediation Goals (RBRGs) for Contaminated Land Management; Guidance Notes for Contaminated Land Assessment and Remediation; and Practice Guide for Investigation and Remediation of Contaminated Land

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
							• Recommendation s in Health Risk Assessment
S8.4.2	LC2	Re-appraisal would be required for the surveyed sites, other remaining areas of the PDAs and the works areas for the associated infrastructures because the development of these sites/ areas would only commence a number of years later, which may allow changes in the land usage of these sites and may give rise to potential land contamination issues. The Project Proponent's appointed consultant would prepare a supplementary CAP presenting the findings of the reappraisal and strategy of the recommended SI, if required, and submit to EPD for review and approval.	J 1		All the surveyed sites as listed in the CAP, other remaining areas of the PDAs and works areas for the associated infrastructur es	Prior to the construction stage	Ditto
S8.5	LC3	After approval of the supplementary CAP and upon completion of the SI works, the PP should prepare and submit a Contamination Assessment Report (CAR) for all potentially contaminated sites listed in the CAP to EPD for agreement.	Present the findings of SI and evaluate the level and extent of potential contamination		All the surveyed sites as listed in the CAP, other remaining areas of the PDAs and works areas for the associated infrastructures	Prior to the construction stage	Ditto
S.8.5	LC4	Preparation and submission of Remediation Action Plan (RAP) to EPD for agreement if land contamination is confirmed.	Recommend appropriate mitigation measures for the contaminated soil and groundwater identified in the	Detailed Design	All the surveyed sites as listed in the CAP, other remaining	Prior to the construction stage	Ditto

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
			assessment if remediation is required		areas of the PDAs and works areas for the associated infrastructu res		
S.8.5	LC5	Preparation and submission of Remediation Report (RR) to EPD for agreement.	Demonstrate that the decontamination work is adequate and is carried out in accordance with the endorsed CAR and RAP	Detailed Design Consultant /	All the surveyed sites as listed in the CAP, other remaining areas of the PDAs and works areas for the associated infrastructures	Prior to the construction stage	Ditto

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
Ecology	(Design Ph	ase)					
S9.8.1	EC1	Development under the Project have avoided all the recognised sites of conservation importance, including Country Parks,	To protect the recognised sites of conservation importance and habitats inside	PlanD	TCW	RODP	Not available
S9.8.1	EC2	About 30m buffer zone at the two main branches and the joined outlet section of Tung Chung Stream; and about 20m buffer for the major tributary at Ngau Au of Tung Chung Stream	To protect the Tung Chung Stream	PlanD	Tung Chung Stream	RODP	Not available
S9.8.2	EC3	Detailed designs should avoid the encroachment of important habitats (e.g. Fung Shui Wood) within the Project Site	To protect the important habitats within Project Site	PlanD	TCW	Design Phase	Not available
S9.8.2	EC4	Detailed designs of noise barriers to prevent bird collision	To prevent bird collision	HyD	Noise barriers	Design Phase	• Guidelines on Design of Noise Barriers
S9.8.2	EC5	Measures and suitable designs of sewage pumping stations to prevent emergency discharge accidents in TCE and TCW 100% standby pumping capacity within each SPS, with spare pump up to 50% pumping capacity stockpiled in each SPS for any emergency use Twin rising mains Dual-feed power supply Emergency storage facilities up to 6-hours ADWF capacity; and Emergency communication mechanism amongst relevant government departments.	To protect the water bodies from impacts due to emergency discharge in TCE and TCW	DSD	Proposed and Upgraded Sewage pumping stations at TCE and TCW	Design Phase	• DSD standards

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
Ecology (Construction	on Phase)					
S9.8.2	EC6	Adoption of non-dredged reclamation method	To maintain the marine water quality	Contractor	Reclamation area of TCE and Road P1	Construction phase	• EIA • Contractual requirements
S9.8.3	EC7	Compensation woodland planting	To compensate loss of woodland, fung shui wood and orchard	Contractor	Uphill of Sheung Lei Pai FSW and Tung Chung Road	Construction phase	EIA Contractual requirements
S9.8.3	EC8	Planting of emergent plant	To provide habitats for this Jhora Scrub Hopper, and to compensate the loss of their habitats (wet abandoned agricultural land) in northern section of Fong Yuen	DSD / Contractor	Inside the future River Park	Construction phase	EIA Contractual requirements
S9.8.3	EC9	Capture-and-translocation exercise	Minimize the potential impact to amphibian species of conservation importance including Romer's Tree Frog and Chinese Bullfrog due to site formation	For public works, provided by the government departments responsible for the construction of those public works or the site formation works. For TCV-1 and	Public works near the eastern branch of Tung Chung Stream, in particular 1) the River Park, 2) the Distributor Road along	Capture-and- translocation exercise before commencement of site formation	 EIA Contractual requirements Explanatory statement of the OZP (for private lots)

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
				TCV-5, where the lands within mostly belong to private lots, the future project proponents of those private lots, via the established mechanism for land transaction application.	branch of Tung Chung Stream, 3) the road		
S9.8.3	EC10	Preservation and/or Transplantation of plant species of conservation importance and the following monitoring of preserved/transplanted plant individuals	Protection of plant species of conservation importance	For public works, provided by the government departments responsible for the construction of those public works or the site formation works.	Within construction sites All areas for public works Also be required in private lands	For preservation and/or transplantation, before commencement of site formation.	Contractual requirements

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
				For TCV-1, where the lands within mostly belong to private lots, the future project proponents of those private lots, via the established mechanism for land transaction application.	in TCV-1.		
S9.8.3	EC11	Defining and maintaining construction site boundaries (including erection of site hoarding, fences etc.)	Screen construction disturbance to the nearby habitats	Contractor	Along the boundary of construction sites and buffer zones of Tung Chung Streams, along the boundary of mature woodland and Fung Shui Wood, and along the boundary between TCV-6 and the middle section of Fong Yuen	Before commencement of site formation	• EIA • Contractual requirements
S9.8.3	EC12	Protection of Tung Chung Stream	Minimize the potential water pollution due to	Contractor	Within construction	Construction	• EIA

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
			construction of road crossings or other works near Tung Chung Stream		sites	phase	• Contractual requirements
S9.8.3	EC13	Implementation of standard site practices	Minimize the potential impact due to dust, noise and runoff during construction phase	Contractor	Within construction sites	Construction phase	• EIA • Contractual requirements
S9.8.4	EC14	Adopting Eco-shoreline design	To mitigate the impact of the marine loss	CEDD	Along future seawall	Construction stage	• EIA • Contractual requirements
S9.8.4	EC15	Strict enforcement on no-dumping	Minimise the potential impact to marine habitats	Contractor	In reclamation area as well as all works area and travel route of works vessels	Before and during construction phase	• EIA • Contractual requirements
S9.8.4	EC16	Spill response plan	Minimise the potential impact to marine habitats	Contractor	In reclamation area as well as all works area and travel route of works vessels	Before and during construction phase	• EIA • Contractual requirements
S.9.8.4	EC17	Control and minimization of marine traffic by including using larger-sized barges, land transportation of materials, reuse of excavation and C&D materials and speed limits &	Reduce marine traffic	Contractor	In reclamation area as well	Construction phase	• EIA • Contractual

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		regular routes of works vessels			as all works area and travel route of works vessels		requirements
S9.8.4	EC18	Dolphin exclusion zone and dolphin watching plan	Protection of CWD	Contractor	In reclamation area as well as all works area	Construction phase	EIA Contractual requirements
S9.8.4	EC19	Speed limits and regular routes of works vessels; Prepare and submit a "Works Vessel Travel Route Plan"	Protection of CWD	Contractor	In reclamation area as well as all works area	Construction phase	• EIA • Contractual requirements
S9.11.1	EC20	Monitoring of compensatory planting woodland	Monitor the survival of trees and establishment of the woodland	CEDD/ Contractor	Areas of compensator y woodland planting	Quarterly for 3 years after completion of planting works	• EIA • Contractual requirements
S9.11.1	EC21	Monitoring of translocated amphibians	Monitor the effectiveness of the translocation programme	Public works: Responsible government departments / Contractor Private lots: Private developers	Release sites for translocated amphibians	After translocation exercise. At least three surveys in each release site during the breeding season, preferably monthly between April and June,	 EIA Contractual requirements Explanatory statement of the OZP (for private lots)
S9.11.1	EC22	Monitoring of preserved / transplanted plant species	Monitor and evaluate	Public works:	Construction	After	• EIA

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
			the effectiveness of the preservation and transplantation programme.	Responsible government departments / Contractor Private lots: Private developers	sites for preserved plants; recipient sites for transplanted plants	transplantation or preservation. For transplanted individuals, for two years, monthly for the first year, and then quarterly for the second year. For the preserved individuals, monthly throughout the construction.	requirements
S9.11.1	EC23	Monitoring of Tung Chung Stream and Wong Lung Hang Stream EISs	Protect the EISs	Contractor	Tung Chung Stream and Wong Lung Hang Stream	Construction phase and post- construction phase	• EIA • Contractual requirements
9.11.2	EC24	Monitoring of Tung Chung Bay and Tai Ho Wan	Protect Tung Chung Bay and Tai Ho Wan	Contractor	Tung Chung Bay and Tai Ho Wan	Construction phase and post- construction phase	• EIA • Contractual requirements
Ecology (Operationa	l Phase)					
S9.11.1	EC25	Monitoring of emergent plant inside River Park	Monitor the survival of emergent plant	DSD/ Contractor	Three months after completion of planting in future River Park	Quarterly for 2 years after completion of planting works	EIA Contractual requirements

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures		Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
9.11.2	EC26	Eco-shoreline monitoring	Monitor the colonisation and establishment of fauna and/or flora, water quality, and recruitments of fisheries species	CEDD/ Contractor	Eco- shoreline at TCE PDA reclamation	phase twice in	• EIA • Contractual requirements

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location	Implementation Stage	Requirements and / or standards to be achieved
Fisheries	3						
S10.8	F1	Good Site Practices	To protect the fisheries resources	Contractor	In reclamation area	Construction phase	• EIA • Contractual requirements
S10.8	F2	No dumping	To protect the fisheries resources	Contractor	In reclamation area	Construction phase	• EIA • Contractual requirements
S10.8	F3	Spill response plan	To protect the fisheries resources	Contractor	In reclamation area	Construction phase	• EIA • Contractual requirements
S10.9	F4	Follow the mitigation measures proposed in the water quality assessment for the construction and operation phases of the project.	To protect the fisheries resources	Contractor	Waters in Northern Lantau	Construction phase and operation phase	
S10.9	F5	Follow the mitigation measure of eco-shoreline in ecology chapter for the construction and operation phases of the project.	To enhance the fisheries resources	Contractor	Eco- shorelines	Construction phase and operation phase	

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementati on Agent	Location	Implementation Stage	Requirements and / or standards to be achieved
Landsca	pe and Visua	d (Construction Phase)					
S11.7 MM1	LV1	Optimisation of Construction Areas & Providing Temporary Landscape on Temporary Construction — Construction areas' control shall be enforced, where possible, to ensure that the landscape and visual impacts arising from the construction activities are minimised. It includes reduction of the extent of working areas and temporary works areas, management on storing and using the construction equipment and materials, and consideration of detailed schedules to shorten the construction period. Temporary landscape treatments are considered to be adopted such as applying hydro-seeding on temporary stockpiles and reclamation areas to alleviate the potential impacts.	Minimise the landscape and visual impacts arising from the construction activities	Relevant Government Departments / Private Sector	Through-out Tung Chung West (TCW) area and Tung Chung East (TCE) area	Construction Phase	
S11.7 MM2	LV2	Minimize Topographical Change – The footprint of construction elements and temporary works areas should be optimised to reduce topographical/ landform changes, as well as reduce land take and interference with natural terrain. Where there is a need to significantly cut into the existing landform, retaining walls and cut slopes should be considered as appropriate. To minimize landform changes and land resumption, earthworks and engineered slopes should be designed to be a visually interesting, compatible with the surrounding landscape and to mimic the natural contouring and terrain as appropriate.	Reduce topographical changes and minimize land resumption	Relevant Government Departments / Private Sector	Through-out TCW area	Prior to Construction & Construction Phase	• GEO Publication No/1/2011, Technical Guidelines on Landscape Treatment for Slopes
S11.7 MM3	LV3	Preservation of Potentially Registerable OVTs, Rare and Protective Vegetation – Exiting trees to be retained within the Project Site should be carefully protected during construction. In particular Potentially Registerable OVTs are considered to be preserved according to ETWB	Protect and Preserve Trees	Relevant Government Departments / Private Sector	Onsite, particularly for TCW area	Prior to Construction & Construction Phase	• ETWB TC(W) No.29/2004 and DEVB TC(W)

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementati on Agent	Location	Implementation Stage	Requirements and / or standards to be achieved
		Technical Circular (Works) No. 29/2004. Rare and Protective Vegetation shall be protected following Forestry Regulations (Cap.96) and Protection of Endangered Species of Animals and Plants Ordinance (Cap.586). Detailed Tree Protection Specification shall be provided in the Contract Specification according to DEVB TCW No. 10/2013 Tree Preservation. Following DEVB (GLTM) Guidelines for Tree Preservation during Development, the Contractor shall be required to submit, for approval, a detailed working method statement for the protection of trees prior to undertaking any works adjacent to all retained trees, including trees in contractor's works areas. A detailed tree survey will be carried out for the Tree Removal Application (TRA) process which will be carried out at the later detailed design stage of the Project. The detailed tree survey will propose which trees should be retained, transplanted or felled and will include details of tree protection measures for those trees to be retained.					No.10/2013. • Greening, Landscape and Tree Management Section (GLTM) of the Development Bureau, Guidelines on Tree Preservation during Development (April, 2015)
S11.7 MM4	LV4	Transplanting of Existing Trees – Trees unavoidably affected by the Project works should be transplanted where practical. Trees should be transplanted straight to their final receptor locations within the site and not held in a temporary nursery as far as possible. A detailed Tree Transplanting Specification shall be provided in the Contract Specification, where applicable. Sufficient time for necessary tree root and crown preparation periods shall be allowed in the project programme. A detailed transplanting proposal will be submitted to relevant government departments for approval in accordance with DEVB TCW 10/2013 and LAO PN 7/2007 and final locations of transplanted trees should be agreed prior to commencement of the work. For trees associated with highways e.g. roadside planting	Transplant Trees where suitable for transplantation	Relevant Government Departments / Private Sector	Onsite where possible, otherwise consider offsite locations	Prior to Construction & Construction Phase	 DEVB TC(W) No.10/2013 and LAO PN7/2007 HyD HQ/GN/13 Interim Guidelines for Tree Transplanting Works under Highways Department's Vegetation Maintenance

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementati on Agent	Location	Implementation Stage	Requirements and / or standards to be achieved
		along highways, that are unavoidably affected and should be transplanted. HyD HQ/GN/13 'Interim Guidelines for Tree Transplanting Works under Highways Department's Vegetation Maintenance Ambit' should be referred to.					Ambit GLTM of the Development Bureau, Guidelines on Tree Preservation during Development (April, 2015)
S11.7 MM5	LV5	Screen hoarding — To reduce negative visual impact, construction site hoarding should be erected around the site to screen pedestrian level views into the construction area from visual sensitive receivers. Hoarding design should consider greening measures such as colour and form should be adopted to improve its visual appearance.	To screen undesirable views of the work site.	Relevant Government Departments / Private Sector	Through-out TCW and TCE areas	Construction Phase	
S11.7 MM6	LV6	Adopting Non-dredge Method for the Reclamation — In order to minimize the potential adverse impacts caused by the reclamation, a number of alternative construction methodologies has been critically examined. After considering all the options such as fully dredged, partially dredged and non-dredged methods for seawall construction and reclamation, non-dredged method for both the seawall construction and reclamation are recommended so as to minimize the generation of dredged sediment.	Minimize the potential adverse impacts caused by the reclamation	Relevant Government Departments / Private Sector	Through-out TCE area	Construction Phase	• Foreshore and Sea-bed (Reclamations) Ordinance (Cap.127)
S11.7 MM7	LV7	Protection of Natural Rivers and Streams – For all the natural rivers and streams inside the development area, in accordance with ETWB TCW 5/2005, consideration of protection measures should be made to minimize any impacts from the construction works, especially those	Protection of Natural Rivers and Streams Minimize the impacts from the construction works	Relevant Government Departments / Private Sector	Through-out TCW area	Prior to Construction & Construction Phase	 EPD ProPECC PN1/94 Construction Site Drainage. DSD Technical

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementati on Agent	Location	Implementation Stage	Requirements and / or standards to be achieved
		development near Tung Chung Stream. According to the latest RODP, a 30m buffer zone will be zoned as "CA". Precast structures or other similar approaches will be used to prevent / minimise any construction works in river and thus to avoid any direct water quality impact. Good site management as stipulated in ProPECC PN1/94 will be fully implemented to avoid polluted liquid or solid wastes from falling into the river waters.					Circular No. 2/2004. • ETWB TC(W) No.5/2005 Protection of natural streams/rivers from adverse impacts arising from construction works
S11.7 MM8	LV8	Preservation of Natural Coastline – The natural coastline along the proposed "RO" of the RODP in TCW should be preserved. The remaining natural shorelines in Tung Chung Bay including sandy shores close to the Tung Chung old pier will be conserved as a Waterfront Park according to the latest RODP.	Preservation of Natural Coastline	Relevant Government Departments	Onsite where possible	Prior to Construction & Construction Phase	
S11.7 MM9	LV9	Providing Natural Rock Material/ Planting for Artificial Seawall – There would be inevitable permanent losses of marine waters (seabed and water column), and direct impacts on existing artificial seawalls due to the reclamation. To minimize the impacts, the design of the future seawall like 'eco-shoreline' could be improved to provide high ecological functions and mitigate the impact of the loss. An 'eco-shoreline' is any shoreline which provides beneficial functions to the local ecosystem through a range of active or passive solutions, whilst providing coastal protection. By means of using natural rock materials for artificial seawall and considering to introduce a native vegetation buffer directly behind the top of seawalls as appropriate to create habitat, shelter and a source of food	Mitigate the impacts on existing artificial seawalls	Relevant Government Departments	Onsite where possible	Prior to Construction & Construction Phase	

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementati on Agent	Location	Implementation Stage	Requirements and / or standards to be achieved
		for benefiting both terrestrial and aquatic species along the foreshore, these measures can help to enhance the ecological functions and 'natural-look' of the shoreline, and the potential impacts will be mitigated.					
Landscap	e and Visua	d (Operational Phase)					
S11.7 MM10	LV10	Compensatory Planting – Compensatory planting for felled trees shall be provided to the satisfaction of relevant Government departments. Required numbers and locations of compensatory trees shall be determined and agreed separately with Government during the Tree Removal Application process under DEVB TCW No. 10/2013 and LAO PN 7/2007. The location of compensatory planting is proposed at the potential open areas such as open spaces, amenity areas, open areas of the streetscapes including roadside planting, as well as the open areas within development lots. The species to be planted should be all native species, taken "Characteristics of Major Local Tree Species Propagated by AFCD" as a reference. A search of species to be planted will be conducted in a further detailed stage.	Compensate for trees and shrubs lost due to the Project	Relevant Government Departments / Private Sector	Onsite where possible, particular-ly for TCW area	Prior to Construction, Construction Phase & Maintenance in Operation Phase	DEVB TC(W) No.10/2013 and LAO PN 7/2007. GLTM of the Development Bureau, Guidelines on Tree Preservation during Development (April, 2015)
S11.7 MM11	LV11	Woodland Restoration – A search of area to mitigate the loss of woodland has been conducted. Priority has been given to the practicability of compensation of woodland within the boundary of RODP. Given the nature of the project is to provide development opportunities to satisfy the needs for the society in general and the aspirations of local communities, compensation of woodland is only possible for the areas beyond the RODP. It is considered that the areas adjoining the woodlands near the existing services reservoirs, and hillsides to the east of Tung Chung Road, would be suitable locations. The advantage of these locations is that there are existing woodlands immediately	Reprovide areas of woodland to compensate for those areas of quality woodland lost	CEDD/AFCD	In areas identified and as agreed with AFCD	Prior to Construction, Construction Phase & Maintenance in Operation Phase	DEVB Technical Circular Works 10/2013- Tree Preservation GLTM of the Development Bureau, Guidelines on Tree Preservation

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementati on Agent	Location	Implementation Stage	Requirements and / or standards to be achieved
		downhill to the location and the Sheung Ling Pei Fung Shui Wood is further downhill behind Sheung Ling Pei Village, planting new woodland areas adjoining existing woodlands would form an ecological linkage and increase the overall habitat size, and hence would help to enhance the ecological and landscape values in the long run.					during Development (April, 2015)
		It is noted that the compensation trees for landscape impacts will also be planted near the future service reservoirs. The tree species to be planted should be all native species for woodland compensation, and the two areas uphill to Sheung Ling Pei should also make reference to the existing tree species reported in Fung Shui Woods habitat.					
S11.7 MM12	LV12	Screen Planting – Tall screen/buffer trees and shrubs should be planted to screen proposed structures such as roads and buildings. This measure will form part of the compensatory planting and will improve compatibility with the surrounding environment and create a pleasant pedestrian environment.	To screen proposed structures Improve compatibility with the surrounding environment	Relevant Government Departments	Through-out the working sites of the TCW and TCE areas	Prior to Construction, Construction Phase & Maintenance in Operation Phase	• HyD HQ/GN/15— Guidelines for Greening Works along Highways.
S11.7 MM13	LV13	Roadside Planting – Roadside greening is proposed alongside all roads within the possible developments. It will enhance local identity, if theme planting is used, and reduce visual impact through screening. At-grade road planting should be considered along central dividers and on road islands e.g. in the middle of roundabouts.	Soften the hard, straight edges and provide greening along the roads; Improve the visual amenity	Relevant Government Departments	Along new roads, and On appropriate viaducts	Prior to Construction, Construction Phase & Maintenance in Operation Phase	 HyD HQ/GN/15- Guidelines for Greening Works along Highways. Development Bureau Technical Circular Works No.2/2012 - Allocation of Space for Quality

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	-	Location	Implementation Stage	Requirements and / or standards to be achieved
							Greening on Roads

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementati on Agent	Location	Implementation Stage	Requirements and / or standards to be achieved
S11.7 MM14	LV14	Aesthetic Design of Built Development – The planning of the revised RODP has considered reducing potential visual impacts, enhancing visual amenity and keeping visual corridors. The proposed development will ensure the building massing is compatible with its surroundings. To improve visual amenity, natural building materials could be used on building facades. For example, stone and timber should be considered for architectural features; light earthy tone colours such as shades of green, shades of grey, shades of brown and off-white should be considered for the façade treatment to reduce the visibility of the development components. The form, textures, finishes and colours of the proposed development components should aim to be compatible with the existing surroundings. It would only be implemented for public developments/projects.	Improve visual amenity of the new buildings, keep visual corridors and integrate as possible into the surrounding landscape	Relevant Government Departments	Through-out the TCW and TCE areas	Prior to Construction, Maintenance in Operation Phase	 Hong Kong Planning Standards and Guidelines (HKPSG) issued by the Planning Department (As at Aug 2011); PNAP APP-152, Sustainable Building Design Guidelines
S11.7 MM15	LV15	Maximise Greening on Structures – The Government has been actively promoting greening in buildings and structures such as bridges to improve the environment. This includes actively implementing rooftop greening or vertical greening, as where practicable to enhance the cityscape and mitigate the heat island effect in urban areas. For the new built forms in TCW and TCE, it is considered the implementation of the following greening measures could alleviate the landscape and visual impacts of new development and help the development blend in with its surrounding landscape: • Sky Garden: Refuge floors or voids in building mass formed by partial removal of floor plates on certain building storeys or provision of freed up areas on certain building storeys provide opportunities for sky gardens for the proposed built development. It can allow views through the development to the background formed by the natural hillsides and	Maximise Greening coverage Enhance visual amenity, create visual corridors and integrate as possible into the surrounding landscape	Relevant Government Departments	On appropriate buildings and structures	Prior to Construction, Construction Phase & Maintenance in Operation Phase	Development Bureau Technical Circular (Works) No. 3/2012 Site Coverage of Greenery for Government Building Projects PNAP APP- 152, Sustainable Building Design Guidelines

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementati on Agent	Location	Implementation Stage	Requirements and / or standards to be achieved
		enhance the visual amenity effectively. For public developments, relevant technical document Technical Circular (Works) No. 3/2012 Site Coverage of Greenery for Government Building Projects by Development Bureau in 2011 shall be referred to. For private developments, it is only applicable to sites with inadequate greening coverage and should be implemented in accordance with Sustainable Building Design Guidelines PNAP APP-152.					
		• Green Roof: The Architectural Services Department completed the Study on Green Roof Application in Hong Kong in 2007 which reviewed the latest concepts and design technology of green roof and recommended technical guidelines suitable for application in Hong Kong. The study will be taken into account to the new buildings to be built in TCW and TCE. Landscape and visual impact can be alleviated and the landscape and visual value can be enhanced. For private development, it is only applicable to sites with inadequate greening coverage and should be implemented in accordance with Sustainable Building Design Guidelines PNAP APP-152. Relevant technical document Technical Circular (Works) No. 3/2012 Site Coverage of Greenery for Government Building Projects by Development Bureau in 2011 shall be reference. For public developments, relevant technical document Technical Circular (Works) No. 3/2012 Site Coverage of Greenery for Government Building Projects by Development Bureau in 2011 shall be referred to. For private developments, it is only applicable to sites with inadequate greening coverage and should be implemented in accordance with Sustainable Building Design Guidelines PNAP APP-152.					
		Vertical Green: Planting of climbers to grow up					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementati on Agent	Location	Implementation Stage	Requirements and / or standards to be achieved
		vertical surfaces where appropriate (e.g. building edges), to soften hard structures and facilities. Relevant technical document Technical Circular (Works) No. 3/2012 Site Coverage of Greenery for Government Building Projects by Development Bureau in 2011 shall be observed. For public developments, relevant technical document Technical Circular (Works) No. 3/2012 Site Coverage of Greenery for Government Building Projects by Development Bureau in 2011 shall be reference. For private development, it is only applicable to sites with inadequate greening coverage and should be implemented in accordance with Sustainable Building Design Guidelines PNAP APP-152. • Greening on infrastructure: Planting could be provided on infrastructure such as bridges where appropriate to enhance greenery to soften its built edges. Screen planting could be provided near infrastructure to reduce any undesirable visual impacts.					
S11.7 MM16	LV16	Noise barrier design — The visual impact of noise mitigation measures will be mitigated by appropriate detailed design, including suitable combination of transparent and sound absorbent materials, appropriate colour selection of panels and supporting structures, or provision of at-grade planting of trees, shrubs and/or climbers camouflage to the barriers, as well as design of supporting structures to incorporate a high level of quality and aesthetics. A combination of transparent panels at top and solid panels at bottom would lighten the visual impact, and at the same time maintain the attractiveness by using colourful panels. The noise barriers would be implemented for District Distributor Roads and Local Distributor Roads at both TCE and TCW area.	Minimize the visual impact from the structures of noise barriers	HyD	Noise barriers within the TCW and TCE areas	Prior to Construction, Construction Phase & Maintenance in Operation Phase	 GLTM of the Development Bureau's Guidelines on Greening of Noise Barriers (April 2012). Guidelines on Design of Noise Barriers by HyD and EPD in 2003

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementati on Agent	Location	Implementation Stage	Requirements and / or standards to be achieved
S11.7 MM17	LV17	Landscape Treatment for Polders & Attenuation Ponds – There would be polders and attenuation ponds in TCW. While they are primarily used for receiving and treating surface runoff and alleviating the flood risk during heavy rainfall, the design of those has provided an opportunity to have a synergy to enhance both the ecological and landscape values together.	Enhance the landscape and visual value	DSD	Polders & Attenuation Ponds where possible	Prior to Construction, Construction Phase & Maintenance in Operation Phase	
		Depending on detailed design, part of these attenuation ponds (mainly the biofiltration zone) could be refined in an appropriate manner, without compromising its primary functions of treating surface runoff and flood protection, to incorporate ecological and landscape design such as planting of aquatic plants and butterfly foodplant for providing the landscape and ecological enhancement.					
Landscape	e and Visua	l (Construction & Operational Phase)					
S11.7 MM18	LV18	Landscaping on Slopes – Hydro seeding of modified slopes should be done as soon as grading works are completed to prevent erosion and subsequent loss of landscape resources and character. Woodland tree seedlings and/ or shrubs should be planted where gradient and site conditions allow. In addition, landscape planting should be provided for the retaining structures associated with modified slopes where condition allow.	Enhance landscape value, plant diversity and their visual appearance	CEDD	Onsite, particularly in TCW area	Prior to Construction, Construction Phase & Maintenance in Operation Phase	• GEO Publication No.1/2011 Technical Guidelines on Landscape Treatment for Slopes by CEDD in 2011
S11.7 MM19	LV19	Landscape Treatment on Channelized Watercourses – For the channelized watercourses in Tung Chung Stream that will be dechannelized, the Drainage Services Department Practice Note No.1/2005 – Guidelines on Environmental Considerations for River Channel Design, should be considered and appropriate measures included ensuring the new watercourses match the existing as far as possible.	Avoid direct impacts on the watercourse Improve the visual amenity	CEDD	The channelized watercourses throughout the TCW area	Prior to Construction, Construction Phase & Maintenance in Operation Phase	• Drainage Services Department Practice Note No.1/2005 — Guidelines on Environmental

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementati on Agent	Location	Implementation Stage	Requirements and / or standards to be achieved
		Measures can include enhancement planting to upgrade the channels as appropriate, including consideration of wetland planting along embankments where appropriate; as well as consideration of the best materials for the channel lining (e.g. gabion).					Considerations for River Channel Design
S11.7 MM20	LV20	Light Control – Construction day and night time lighting should be controlled to minimize glare impact to adjacent VSRs during the construction stage. Street and night time lighting shall also be controlled to minimize glare impact to adjacent VSRs during the operation phase.	Minimize negative glare impact to adjacent VSRs	Relevant Government Departments / Private Sector	Through-out the TCW and TCE areas	Construction Phase & Operation Phase	

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
Cultural 1	Heritage Im	pact (Construction and Operational Phase)					
S.12.5	СН1	Terrestrial Archaeology • Implement rescue excavations/ survey-cum-rescue excavations/ further surveys after land resumption and prior to any construction works (see Figure 14.1 for the locations of rescue excavations/survey-cum-rescue excavations/further survey)	Rescue excavations to salvage archaeological data and cultural materials Survey-cum-rescue excavations to better locate and design the follow up rescue excavations Further surveys to obtain sufficient data for formulation of appropriate mitigation measures	Future Private Developer	After land resumption and prior to any construction works	resumption and	 Guidelines for Cultural Heritage Impact Assessment TM-EIAO Annex 10 and Annex 19 Antiquities and Monuments Ordinance
S.12.5	CH2	Terrestrial Archaeology Implement watching brief during construction phase (see Figure 14.1 for the locations of watching brief)	To identify and record any archaeological material or features revealed during construction phase	Future Private	During construction phase	During construction phase	

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
EM&A P	roject						
S13.2	EM1	An Independent Environmental Checker needs to be employed as per the EM&A Manual.	Control EM&A Performance	Project Proponent	All constructi on sites	Construction stage	• EIAO Guidance Note No.4/2010 • TM-EIAO
S13.2 – 13.4	EM2	 An Environmental Team needs to be employed as per the EM&A Manual. Prepare a systematic Environmental Management Plan to ensure effective implementation of the mitigation measures. An environmental impact monitoring needs to be implementing by the Environmental Team to ensure all the requirements given in the EM&A Manual are fully complied with. 	Perform environmental monitoring & auditing	Project Proponent	All constructi on sites	Construction stage	• EIAO Guidance Note No.4/2010 • TM-EIAO

Docum ent Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved	
Works Ve	ks Vessel Travel Routes (Extracted from Works Vessel Travel Route Plan submitted under Condition 2.13 of the EP)							
S3.2	WVTR1	All works vessels shall be equipped with Global Positional System (GPS) or equivalent automatic identification system (AIS) for real time tracking and monitoring of their travel routing, speed and anchorage points. The system shall be capable to record and analyse the travel routing, speed and anchorage points.	Control EM&A Performance	Contractor	All marine constructi on sites	Construction stage	EIA Contractual requirements	
S3.3.1	WVTR2	 Once approaching or leaving the entrance of the silt curtain, all vessels will travel at a speed no greater than 8 knots between the site and boundary of The Brothers Marine Park. The vessels can then navigate at normal speed (8-12 knots) after that distance unless other restrictions are imposed. If any dolphins are sighted within 250m of a vessel then the vessel will slow down to a speed no greater than 5 knots for at least 3 minutes after the last sighting. 	Protection of CWD	Contractor	All marine constructi on sites	Construction stage	• EIA • Contractual requirements	
S3.3.2	WVTR3	All captains and the supervising staff should undergo training to learn about local dolphins and porpoises. They should be trained to be aware of the protocol for dolphin friendly" vessel operation (refer to the Code of Conduct for Dolphin Watching Activities from AFCD).	Protection of CWD	Contractor	All marine constructi on sites	Construction stage	• EIA • Contractual requirements	
S3.3.2	WVTR4	Training on the requirements of the WVTRP would be provided for construction vessels' personnel to follow, which should include the details of the normal operational routings of the construction works vessels and reporting of deviations from the normal operational routings of the construction works vessels. The training course will be given to the licensed vessel captains by the trainers before commencement of work and refreshment course will be provided every quarter.	Protection of CWD	Contractor	All marine constructi on sites	Construction stage	EIA Contractual requirements	

Docum ent Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved		
Deploymo	ployment of Silt Curtain(s) (Extracted from Silt Curtain Deployment Plan submitted under Condition 2.16 of the EP)								
S4	SCD1	Before the start of the installation work, Qualified Ecologists with dolphin monitoring experience shall scan the exclusion zone for at least 30 minutes. If dolphins are observed in the exclusion zone, the installation work shall be delayed until the dolphins left the area.	Protection of CWD	Contractor	All marine constructi on sites	Construction stage	• EIA • Contractual requirements		
S4	SCD2	If dolphins are observed within the exclusion zone during the installation work, the relevant part of the work shall cease until the dolphins left the area.	Protection of CWD	Contractor	All marine constructi on sites	Construction stage	• EIA • Contractual requirements		
S5	SCD3	On-board supervisors will be assigned to check the condition of the silt curtain before commencement of works every day. An inspection checklist will be kept on site for record purpose.	Silt Curtain Integrity	Contractor	All marine constructi on sites	Construction stage	• EIA • Contractual requirements		
S5	SCD4	For the tentative arrangement of silt curtain under adverse weather, the silt curtain will not be temporary removed during adverse weather. However, related works will be suspended immediately if silt curtain is found any damaged.	Silt Curtain Integrity	Contractor	All marine constructi on sites	Construction stage	• EIA • Contractual requirements		
S5	SCD5	Diver inspection shall be carried out if necessary to inspect the installation and decommission of silt curtain to ensure proper installation and functioning of the silt curtain according to the design drawings. Nearby marine works will resume after repairing of the damaged silt curtains.	Silt Curtain Integrity	Contractor	All marine constructi on sites	Construction stage	• EIA • Contractual requirements		
S5	SCD6	Refuse around the silt curtain will be collected at regular intervals on a daily basis so that water behind the silt curtains will be kept free from floating debris.	Waste Management	Contractor	All marine constructi on sites	Construction stage	• EIA • Contractual requirements		

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
-------------	-----------------	---------------------------------	---	-------------------------	----------------------	-------------------------	---

Post-planting Monitoring and Maintenance (Details to be provided after the submission of Detailed Compensatory Woodland Planting Plan as required under EP Condition 2.22)

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
-------------	-----------------	---------------------------------	---	-------------------------	----------------------	-------------------------	---

Use of New Low Noise Road Surfacing Material(s) (Details to be provided after the submission of Plan for Review of Use of New Low Noise Road Surfacing Material(s) as required under EP Condition 2.23)

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
	-	be taken by the Contractor and Dump Truck Drivers in case dition 2.24 of the EP)	of Illegal Dumping and La	ndfilling of C&D M	aterials (Ex	tracted from Waste I	Management Plan
S5.4	WM1	Investigation report will be prepared by the Contractor and submit to ER within 2 working days.	Control EM&A Performance		All constructi on sites		EP Contractual requirements
S5.4	WM2	The Contractor will discuss with ER for the follow up actions (e.g. warning letter, cease operation, etc.) if required.	Control EM&A Performance	Contractor	All constructi on sites		• EP • Contractual requirements

Annex C

Status of Submissions and Implementation Status of Mitigation Measures under EP

Annex C Status of Submissions and Implementation Status of Mitigation Measures under EP

EP	Submission/Implementation Status	Status
Condition	=	- Carrad
2.1	Set up of Community and Professional	Community and Professional Liaison
	Liaison Groups	Groups were set up.
2.1	Complaint Management Plan (for Contract 1)	Accepted by EPD
2.5	Employment of Qualified Ecologist(s)	Qualified Ecologists have been
		employed to carry out work relating to ecological aspects.
2.6	Employment of Surveillance Team	Surveillance Team has been employed to conduct regular site inspection.
2.11	Management Organizations (for Contract 1)	Updated Submission was submitted to EPD on 22 June 2021
2.12	Construction Works Schedule and	Updated Plan was submitted on 1
	Location Plans (for Contract 1)	February 2021 and accepted by EPD on 26 February 2021
2.13	Works Vessel Travel Route Plan (for Contract 1)	Accepted by EPD
2.14	Eco-shoreline Implementation Plan (for Contract 1)	The Plan was submitted to EPD on 15 September 2020 and accepted by EPD on 23 November 2020
2.15	Dolphin Watching Plan (for Contract 1)	Updated Plan was submitted on 21 September 2018 and accepted by EPD on 12 October 2018
2.16	Silt Curtain Deployment Plan (for Contract 1)	Updated Plan was submitted to EPD on 15 September 2020 and accepted by EPD on 14 October 2020
2.17	Spill Response Plan (for Contract 1)	Accepted by EPD
2.18	Plan on Provision of Buffer Zones	To be prepared no later than 3 months before the commencement of construction works at Tung Chung Valley. Refer to the EM&A Reports of TCW.
2.19	River Park Plan	To be prepared no later than 3 months before the commencement of construction works at Tung Chung Valley. Refer to the EM&A Reports of TCW.
2.20	Habitat Enhancement and Translocation Plan for Amphibian Species of Conservation Importance	To be prepared no later than 3 months before the commencement of construction works at Tung Chung Valley. Refer to the EM&A Reports of TCW.
2.21	Detailed Preservation and/or Translocation Plan for Plant Species of Conservation Importance	Accepted by EPD on 9 December 2021
2.22	Detailed Compensatory Woodland Planting Plan	The Plan was submitted to EPD on 23 August 2021
2.23	Plan for Review of Use of New Low Noise Road Surfacing Material(s)	To be prepared no later than 3 months before the commencement of roadworks
2.24	Waste Management Plan (for Contract 1)	Accepted by EPD

EP	Submission / Implementation Status	Status
Condition		
2.25	(i) no dredging of marine sediment shall	Under implementation
	be carried out for the Project	
	(ii) all reclamation filling works shall be	Under implementation
	carried out within a leading seawall of	
	at least 200m; and	TT 1 . 1
	(iii) silt curtains surrounding the	Under implementation
	reclamation area shall be deployed in accordance with the Silt Curtain	
	Deployment Plan	
2.26	Implement Silt Curtain Deployment Plan	Under implementation
2.20	and Spill Response Plan	Creat imprementation
2.27	Implement dolphin exclusion zone of	Under implementation
	250m around the reclamation site at Tung	
	Chung East during the installation of the	
	perimeter silt curtains and any re-	
	deployment of the perimeter silt curtains	
	by Qualified Ecologist(s)	
2.28	Once the perimeter silt curtains are	Under implementation
	installed or re-deployed, the Dolphin	
	Watching Plan shall be implemented as	
2.29	part of the EM&A programme	Under implementation
2.29	(i) no underwater blasting and percussive piling shall be carried out for	Under implementation
	the Project; and	
	(ii) air compressors and other noisy	Under implementation
	equipment mounted on works vessels	r
	shall be acoustically-decoupled	
2.30	Implement Works Vessel Travel Route	Under implementation
	Plan	
	Implement Eco-shoreline Implementation	Under implementation
	Plan	
2.24	Implement Dolphin Watching Plan	Under implementation
2.31	Implement Plan on Provision of Buffer	To be implemented
	Zones, River Park Plan, Habitat Enhancement and Translocation Plan for	
	Amphibian Species of Conservation	
	Importance, Detailed Preservation and/or	
	Translocation Plan for Plant Species of	
	Conservation Importance and Detailed	
	Compensatory Woodland Planting Plan	
2.32	Implement Plan for review of the use of	To be implemented
	new road surfacing material(s)	
	Implement Waste Management Plan	Under implementation
2.33	Install noise barriers and low noise road	To be implemented
	surfacing at the extended Chung Mun	
	Road and Road D3	
	All noise mitigation measures	
	implemented shall be properly	
	maintained during the operation of the above roads	
	above rougs	

ED		0
EP	Submission / Implementation Status	Status
Condition		
2.34	Implement a deodouriser with an odour	To be implemented
	removal efficiency of at least 95% shall be	
	installed, operated and maintained within	
	each sewage pumping station. The	
	exhaust of the deodouriser shall be	
	oriented away from sensitive receivers;	
	and all odourous facilities of each	
	sewage pumping station shall be	
	enclosed and negative pressure shall be	
	maintained within the facilities.	
2.35	Enclose all the pumps inside a building structure	To be implemented
2.36	(i) a 100% standby pumping capacity	To be implemented
	shall be installed and maintained	1
	(ii) a 50% spare pumping capacity shall	To be implemented
	be installed and maintained	•
	(iii) dual-feed power supply shall be	To be implemented
	installed and maintained; and	•
	(iv) an emergency facility with a 6-hour	To be implemented
	storage capacity of average dry weather	1
	flow shall be installed and maintained.	

Annex D

Status of Statutory Environmental Requirements

Annex D Status of Statutory Environmental Requirements

Contract No.	Description	Location	Ref No.	Status
General	Environmental Permit	TCNTE Works Area	EP-519/2016	Granted on 9 Aug 2016
Contract No. NL/2017/03 (Contract 1)	Discharge License under Water Pollution Control Ordinance	Area WA1, near Ying Tung Road, Tung Chung	WT00031099-2018	Validity from 19 Jun 2018 to 30 Jun 2023
	Oranian C	Area WA1, near Ying Tung Road, Tung Chung	WT00034715-2019	Validity from 21 Jan 2020 to 31 Jan 2025
	Billing Account for Disposal of Construction Waste	_	Application No. 7029877	Approved on 22 January 2018
	Registration as Chemical Waste Producer	Site Office for TCE	WPN-5213-950- B2528-01	Issued on 28 Feb 2018
	Troducci	TCE Site Area	WPN-5213-950- B2528-02	Issued on 20 Apr 2018
		Area WA3, near To Kau Wan, Tung Chung	WPN-5213-974- B2528-03	Issued on 9 April 2019
	Construction Noise Permit	Reclamation area	GW-RS0855-21	Validity from 17 Nov 2021 to 16 May 2022
		TCE Works Area near Lantau Toll Plaza	GW-RW0299-21	Validity from 15 Aug 2021 to 14 Feb 2022
	Licence for the conduct of a Specified Process (SP Licence)	TCNTE Works Area	L-3-264 (1)	Validity from 12 Aug 2020 to 11 Aug 2024
Contract No. NL/2020/02 (Contract 2)	Billing Account for Disposal of Construction Waste	-	Application No. 7040975	Approved on 29 Jul 2021
	Registration as Chemical Waste Producer	Working site of Contract No. NL/2020/02	WPN-5213-950- C4323-04	Issued on 17 Aug 2021

Contract No.	Description	Location	Ref No.	Status
Contract No. NL/2020/03 (Contract 3)	Billing Account for Disposal of Construction Waste	-	Application No. 7041004	Approved on 13 Jul 2021
	Registration as Chemical Waste Producer	Working site of Contract No. NL/2020/03	WPN-5213-950- B2500-07	Issued on 25 Aug 2021
	Construction Noise Permit	Percussive Piling at Construction Site of Contract No. NL/2020/03 (Portion 8, 8A, 12A, 12, 111A, 111B and 111C-1)	PP-RS0016-21	Validity from 28 Oct 2021 to 27 Apr 2022
		Construction Site of Contract No. NL/2020/03 (Portion 8, 8A, 12A, 12, 111A, 111B and 111C-1)	GW-RS0793-21 (1)	Validity from 2 Nov 2021 to 1 May 2022
		Portion 104	GW-RS0809-21 (1)	Validity from 9 Nov 2021 to 8 May 2022
		Construction Site of Contract No. NL/2020/03 (WA9, WA6, WA4, WA5, WA7, WA2, WA3 & Portion 8, 8A, 12, 12A, 111B, 104)	GW-RS0954-21	Validity from 28 Dec 2021 to 27 Jun 2022
Contract No. NL/2020/04 (Contract 4)	Billing Account for Disposal of Construction Waste	-	Application No. 7041279	Approved on 17 Aug 2021
	Registration as Chemical Waste Producer	Working site of Contract No. NL/2020/04	WPN-5213-961- C3673-03	Issued on 17 Sep 2021
Contract No. NL/2020/07 (Contract 7)	Billing Account for Disposal of Construction Waste	-	Application No. 7041997	Approved on 26 Oct 2021

Note

(1) GW-RS0793-21 and GW-RS0809-21 were superseded by GW-RS0954-21 since 28 December 2021.

Annex E

Air Quality

Annex E1

Calibration Certificates for Air Quality

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT

: MR K.W. FAN

HK2117310

WORK ORDER

CLIENT

: ENVIROTECH SERVICES CO.

SUB-BATCH

: 1

ADDRESS

: RM113, 1/F, MY LOFT, 9 HOI WING ROAD,

DATE RECEIVED : 29-APR-2021

TUEN MUN, N.T. HONG KONG

DATE OF ISSUE : 11-MAY-2021

PROJECT

NO. OF SAMPLES : 1

CLIENT ORDER

General Comments

- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition. The result(s) related only to the item(s) tested.
- Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.
- Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories

Position

Robert Jones

Richard Fung

Managing Director

This is the Final Report and supersedes any preliminary report with this batch number.

All pages of this report have been checked and approved for release.

ALS Technichem (HK) Ptu Ltd Part of the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com

WORK ORDER

: HK2117310

SUB-BATCH

: 1

CLIENT PROJECT : ENVIROTECH SERVICES CO.

: ---

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.	
HK2117310-001	S/N: 276017	Equipments	29-Apr-2021	S/N: 276017	

Equipment Verification Report (TSP)

Equipment Calibrated:

Type:

Laser Dust monitor

Manufacturer:

Sibata LD-3B

Serial No.

276017

Equipment Ref:

Nil

Job Order

HK2117310

Standard Equipment:

Standard Equipment:

Higher Volume Sampler (TSP)

Location & Location ID:

AUES office (calibration room)

Equipment Ref:

HVS 018

Last Calibration Date:

26 April 2021

Equipment Verification Results:

Verification Date:

7 May 2021

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/min)
2hr	09:30 ~ 11:30	26.6	1013.2	0.046	3951	32.9
2hr01min	11:32 ~ 13:33	26.6	1013.2	0.035	3293	27.3
2hr10min	13:35 ~ 15:45	26.6	1013.2	0.036	3519	27.2

0.05

0.045

0.035

0.03 0.025

0.02

0.015

0.01 0.005

0

10

20

y = 0.0014x - 0.0004

 $R^2 = 0.9927$

30

40

Linear Regression of Y or X

Slope (K-factor):

0.0014

Correlation Coefficient

0.9963

Date of Issue

10 May 2021

Remarks:

- 1. Strong Correlation (R>0.8)
- 2. Factor 0.0014 should be applied for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Operator: _____ Fai So ___ Signature: _____ Date: ____ Date: ____ 10 May 2021

QC Reviewer : _____ Ben Tam ___ Signature : _____ Date : ____ Date : ____ 10 May 2021

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location:

Gold King Industrial Building, Kwai Chung

Location ID:

Calibration Room

Date of Calibration: 26-Apr-21

Next Calibration Date: 26-Jul-21

CONDITIONS

1013.7

Sea Level Pressure (hPa)

Temperature (°C)

Corrected Pressure (mm Hg)
Temperature (K)

760.275 296

CALIBRATION ORIFICE

Make-> TISCH Model-> 5025A

Model-> 5025A Calibration Date-> 19-Jan-21 Qstd Slope -> Qstd Intercept ->

Expiry Date->

2.10574 -0.00985 18-Jan-22

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	6.9	6.9	13.8	1.774	56	56.16	Slope = 39.9922
13	5.5	5.5	11.0	1.584	50	50.14	Intercept = -13.7742
10	4.2	4.2	8.4	1.385	42	42.12	Corr. coeff. = 0.9961
8	2.7	2.7	5.4	1.111	32	32.09	
, 5	1.9	1.9	3.8	0.933	22	22.06	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Ostd = standard flow rate

IC = corrected chart respones

I = actual chart response

m = calibrator Qstd slope

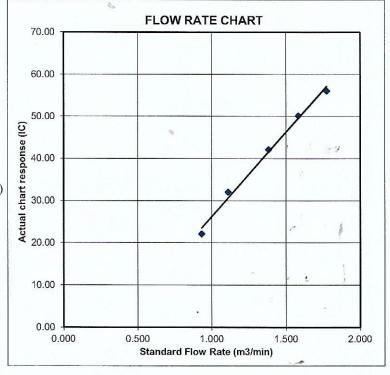
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

RECALIBRATION **DUE DATE:**

January 19, 2022

Calibration Certification Information

Cal. Date: January 19, 2021

Rootsmeter S/N: 438320

Ta: 294

°K

Operator:

Jim Tisch

Pa: 755.1

mm Hg

Calibration Model #: TE-5025A Calibrator S/N: 1941

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. - (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4830	3.2	2.00
2	3	4	1	1.0420	6.4	4.00
3	5	6	1	0.9290	8.0	5.00
4	7	8	1	0.8840	8.8	5.50
5	9	10	1	0.7340	12.9	8.00

	Data Tabulation					
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	$\sqrt{\Delta H (Ta/Pa)}$	
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)	
1.0029	0.6762	1.4192	0.9958	0.6715	0.8824	
0.9986	0.9583	2.0071	0.9915	0.9516	1.2479	
0.9965	1.0726	2.2440	0.9894	1.0650	1.3952	
0.9954	1.1260	2.3535	0.9883	1.1180	1.4633	
0.9899	1.3487	2.8385	0.9829	1.3391	1.7648	
	m=	2.10574		m=	1.31858	
QSTD[b=	-0.00985	QA [b=	-0.00612	
	r=	0.99992		, r=	0.99992	

	Calculation	s	
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)
Qstd= Vstd/ΔTime		Qa=	Va/ΔTime
	For subsequent flow rate	e calculatio	ns:
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$

-	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrator	manometer reading (in H2O)
ΔP: rootsmete	er manometer reading (mm Hg)
Ta: actual abs	olute temperature (°K)
Pa: actual bar	ometric pressure (mm Hg)
b: intercept	
m: slope	

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

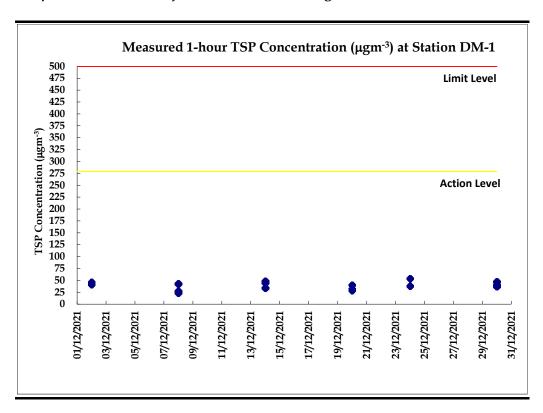
Annex E2

Monitoring Schedule for Air Quality

Tung Chung New Town Extension (East)

Air Quality Monitoring Schedule (December 2021)

Sunday	Monday	Tuesday		Thursday		Saturday
- Canada ,			1-Dec		3-Dec	4-Dec
				Air Quality Monitoring		
5-Dec	6-Dec	7-Dec	8-Dec	9-Dec	10-Dec	11-Dec
			Air Quality Monitoring			
12-Dec	13-Dec	14-Dec	15-Dec	16-Dec	17-Dec	18-Dec
		Air Quality Monitoring				
19-Dec	20-Dec	21-Dec	22-Dec	23-Dec	24-Dec	25-Dec
	Air Quality Monitoring				Air Quality Monitoring	
26-Dec	27-Dec	28-Dec	29-Dec	30-Dec	31-Dec	
				Air Quality Monitoring		


Annex E3

Monitoring Results for Air Quality

Table E3Data for 1-hr TSP Monitoring at Station DM-1

Date	Start Time	Finish Time	Weather	1-hour TSP (μg/m³)
2021-12-02	8:40	9:40	Sunny	42
2021-12-02	9:40	10:40	Sunny	42
2021-12-02	10:40	11:40	Sunny	46
2021-12-08	8:50	9:50	Sunny	24
2021-12-08	9:50	10:50	Sunny	27
2021-12-08	10:50	11:50	Sunny	43
2021-12-14	8:40	9:40	Sunny	48
2021-12-14	9:40	10:40	Sunny	45
2021-12-14	10:40	11:40	Sunny	34
2021-12-20	8:41	9:41	Cloudy	29
2021-12-20	9:41	10:41	Cloudy	32
2021-12-20	10:41	11:41	Cloudy	40
2021-12-24	9:23	10:23	Cloudy	38
2021-12-24	10:23	11:23	Cloudy	38
2021-12-24	11:23	12:23	Cloudy	54
2021-12-30	9:05	10:05	Sunny	47
2021-12-30	10:05	11:05	Sunny	37
2021-12-30	11:05	12:05	Sunny	40

Figure E3 Graphical Presentation for 1-hr TSP Monitoring at Station DM-1

Annex E4

Event and Action Plan for Air Quality

Annex E4 Event and Action Plan for Air Quality

Event		Action	1	
Event	ET	IEC	ER	Contractor
Action level exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate.
Action level exceedance for two or more consecutive samples	 Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	failure in writing;2. Notify Contractor;3. Ensure remedial measures properly implemented.	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.

Frank	Action						
Event	ET	IEC	ER	Contractor			
Limit level exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	failure in writing;2. Notify Contractor;3. Ensure remedial measures properly implemented.	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 			
Limit level exceedance for two or more consecutive samples	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated. 			

Annex F

Noise

Annex F1

Calibration Certificates for Noise

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration

校下證書

Certificate No.:

C213253

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC21-1006)

Date of Receipt / 收件日期: 21 May 2021

Description / 儀器名稱

Precision Acoustic Calibrator

Manufacturer / 製造商 Model No. / 型號

LARSON DAVIS

CAL200

Serial No./編號

11333

Supplied By / 委託者

Envirotech Services Co.

Room 113, 1/F, My Loft, 9 Hoi Wing Road, Tuen Mun,

New Territories, Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

Relative Humidity / 相對濕度 :

 $(50 \pm 25)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST/測試日期

4 June 2021

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Fluke Everett Service Center, USA

Tested By 測試

K P Cheuk

Project Engineer

Certified By

C Lee

Date of Issue 簽發日期

7 June 2021

核證

Engineer

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration

Certificate No.:

C213253

證書編號

The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement ٠1. of the test.

The results presented are the mean of 3 measurements at each calibration point. 2.

3. Test equipment:

Equipment ID

CL130 CL281

TST150A

Description

Universal Counter

Multifunction Acoustic Calibrator Measuring Amplifier

Certificate No.

C203952 AV210017 C201309

4. Test procedure: MA100N.

5. Results:

5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB) _	(dB)	(dB)
94 dB, 1 kHz	93.8	± 0.2	± 0.2
114 dB, 1 kHz	113.8		

Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1 000	1 kHz ± 1 %	+1

Remark: The uncertainties are for a confidence probability of not less than 95 %.

Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C216702

證書編號

·ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC21-2322)

Date of Receipt / 收件日期: 9 November 2021

Description / 儀器名稱

Sound Level Meter

Manufacturer / 製造商

Rion

Model No./型號

NL-52

Serial No./編號

00710259

Supplied By / 委託者

Envirotech Services Co.

Room 113, 1/F, My Loft, 9 Hoi Wing Road, Tuen Mun,

New Territories, Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 温度

Relative Humidity / 相對濕度 :

 $(50 \pm 25)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration

DATE OF TEST / 測試日期

20 November 2021

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification. (after adjustment)

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Fluke Everett Service Center, USA

Tested By 測試

HT Wong

Assistant Engineer

Certified By

K/C Lee

Date of Issue

Website/網址: www.suncreation.com

22 November 2021

核證

Engineer

簽發日期

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 – 校正及檢測實驗所

c/o 香港新界屯門興安里一號四樓

Tel/電話: (852) 2927 2606

Fax/傳真: (852) 2744 8986

E-mail/電郵: callab@suncreation.com

Page 1 of 4

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C216702

證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using the internal standard (After Adjustment) was performed before the test 6.1.1.2 to 6.3.2.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment:

Equipment ID

Description

Certificate No.

CL280 CL281 40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator C210084

AV210017

- 5. Test procedure: MA101N.
- 6. Results:
- 6.1 Sound Pressure Level
 - 6.1.1 Reference Sound Pressure Level

6.1.1.1 Before Adjustment

	UUT	Setting		Applied Value		UUT	IEC 61672
Range	Function	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 130	L_A	A	Fast	94.00	1	* 96.0	± 1.1

^{*} Out of IEC 61672 Class 1 Spec.

· 6.1.1.2 After Adjustment

	UUT	Setting		Applied Value		UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _A	A	Fast	94.00	1	94.0	± 1.1

6.1.2 Linearity

	UU'	T Setting	Applie	d Value	UUT	
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
30 - 130	L_A	A	Fast	94.00 104.00	1	94.0 (Ref.) 104.1
				114.00		114.1

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

Website/網址: www.suncreation.com

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C216702

證書編號

'6.2 Time Weighting

UUT Setting				Applied Value		UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)
30 - 130 L _A	A	Fast	94.00	1	94.0	Ref.	
			Slow			94.0	± 0.3

6.3 Frequency Weighting

6.3.1 A-Weighting

UUT Setting				Applied Value		UUT	IEC 61672
Range	Function	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
30 - 130	L_A	A	Fast	94.00	63 Hz	67.7	-26.2 ± 1.5
					125 Hz	77.7	-16.1 ± 1.5
					250 Hz	85.3	-8.6 ± 1.4
					500 Hz	90.7	-3.2 ± 1.4
		_			1 kHz	94.0	Ref.
		y * .		4	2 kHz	95.2	$+1.2 \pm 1.6$
			1		4 kHz	95.0	$+1.0 \pm 1.6$
					8 kHz	92.9	-1.1 (+2.1; -3.1)
					16 kHz	86.0	-6.6 (+3.5; -17.0)

6.3.2 C-Weighting

UUT Setting			Applied Value		UUT	IEC 61672	
Range	Function	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB) ₄
30 - 130	L_{C}	C	Fast	94.00	63 Hz	93.1	-0.8 ± 1.5
					125 Hz	93.8	-0.2 ± 1.5
					250 Hz	94.0	0.0 ± 1.4
					500 Hz	94.0	0.0 ± 1.4
					1 kHz	94.0	Ref.
					2 kHz	93.8	-0.2 ± 1.6
					4 kHz	93.2	-0.8 ± 1.6
					8 kHz	91.0	-3.0 (+2.1; -3.1)
				94000000	16 kHz	84.1	-8.5 (+3.5; -17.0)

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 - 校正及檢測實驗所 c/o 香港新界屯門興安里一號四樓
Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986 E-mail/

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C216702

證書編號

Remarks: - UUT Microphone Model No.: UC-59 & S/N: 13748

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value : 94 dB : 63 Hz - 125 Hz : \pm 0.35 dB

104 dB: 1 kHz : ± 0.10 dB (Ref. 94 dB) 114 dB: 1 kHz : ± 0.10 dB (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.

Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration is traceable to the National Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Annex F2

Monitoring Schedule for Noise

Tung Chung New Town Extension (East)

Noise Monitoring Schedule (December 2021)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1-Dec		3-Dec	4-Dec
				Noise Monitoring		
5-Dec	6-Dec	7-Dec	8-Dec	9-Dec	10-Dec	11-Dec
		. 500	Noise Monitoring			
12-Dec	13-Dec	14-Dec	15-Dec	16-Dec	17-Dec	18-Dec
		Noise Monitoring				
19-Dec	20-Dec	21-Dec	22-Dec	23-Dec	24-Dec	25-Dec
	Noise Monitoring				Noise Monitoring	
26-Dec	27-Dec	28-Dec	29-Dec	30-Dec	31-Dec	
				Noise Monitoring		

Annex F3

Monitoring Results for Noise

Table F3.1 Data for Noise Monitoring at Station NMS-CA-1A during Normal Working Hours (0700-1900 hours)

Date & Time	L _{eq (5min)}	L ₁₀	L ₉₀	L _{eq (30min)}
2021-12-02 14:25	69.9	72.3	65.6	
2021-12-02 14:30	67.5	69.8	63.4	67.6
2021-12-02 14:35	68.5	71.7	62.7	
2021-12-02 14:40	66.5	68.8	60.3	07.0
2021-12-02 14:45	65.5	68.6	61.5	
2021-12-02 14:50	65.8	67.8	62.6	
2021-12-08 9:22	70.9	72.9	64.3	
2021-12-08 9:27	70.2	73.1	65.6	
2021-12-08 9:32	69.7	71.4	65.8	00.4
2021-12-08 9:37	67.5	69.9	64.4	69.4
2021-12-08 9:42	67.9	69.7	63.7	
2021-12-08 9:47	69.4	71.8	65.4	
2021-12-14 14:52	70.5	73.1	65.5	
2021-12-14 14:57	70.1	71.8	64.6	
2021-12-14 15:02	69.4	70.3	64.3	20.0
2021-12-14 15:07	65.8	68.1	62.4	- - -
2021-12-14 15:12	66.4	68.5	63.6	
2021-12-14 15:17	70.6	72.0	63.6	
2021-12-20 8:03	64.4	66.2	55.1	
2021-12-20 8:08	64.7	68.3	55.9	
2021-12-20 8:13	62.2	65.1	55.6	04.7
2021-12-20 8:18	64.4	67.5	55.3	64.7
2021-12-20 8:23	65.0	66.3	58.2	
2021-12-20 8:28	66.4	69.0	62.0	
2021-12-24 8:20	63.1	65.7	57.7	
2021-12-24 8:25	64.6	67.6	57.8	
2021-12-24 8:30	64.3	66.1	59.8	25.0
2021-12-24 8:35	68.4	70.6	60.9	65.6
2021-12-24 8:40	65.5	68.4	60.0	1
2021-12-24 8:45	65.8	69.2	60.3	1
2021-12-30 15:12	70.9	72.0	59.6	
2021-12-30 15:17	65.4	67.8	59.9	1
2021-12-30 15:22	67.8	70.4	59.5	68.4
2021-12-30 15:27	65.0	67.7	59.4	00.4
2021-12-30 15:32	71.0	72.7	60.7	
2021-12-30 15:37	65.9	68.9	59.9	

Figure F3.1 Graphical Presentation for Noise Monitoring at Station NMS-CA-1A

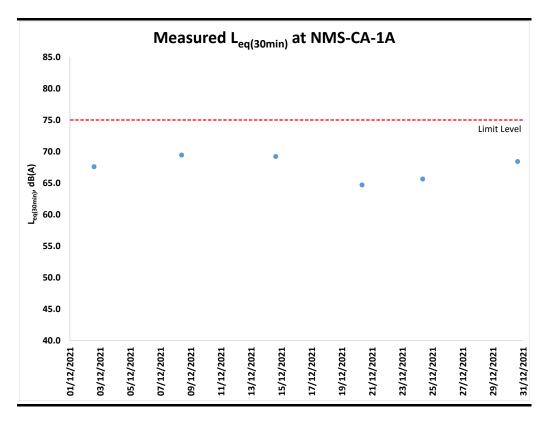
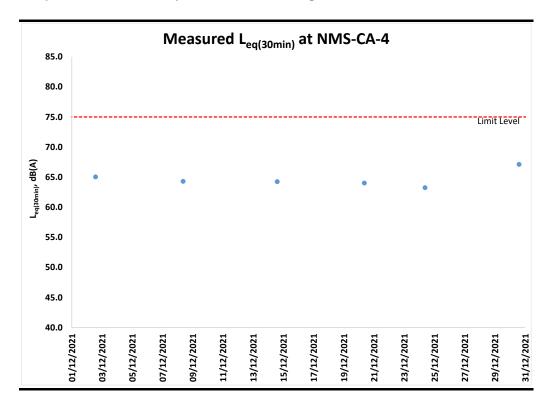



Table F3.2 Data for Noise Monitoring at Station NMS-CA-4 during Normal Working Hours (0700-1900 hours)

Date & Time	L _{eq (5min)}	L ₁₀	L ₉₀	L _{eq (30min)}
2021-12-02 13:37	63.8	67.6	58.7	
2021-12-02 13:42	66.3	69.5	60.7	65.0
2021-12-02 13:47	66.8	67.7	59.7	
2021-12-02 13:52	61.8	64.0	59.2	05.0
2021-12-02 13:57	64.6	68.5	59.2	1
2021-12-02 14:02	65.2	68.3	60.9	1
2021-12-08 8:47	64.8	68.3	59.6	
2021-12-08 8:52	64.6	68.6	59.0	1
2021-12-08 8:57	64.4	68.0	58.3	64.3
2021-12-08 9:02	62.0	64.7	58.4	04.3
2021-12-08 9:07	64.0	67.7	59.4	1
2021-12-08 9:12	65.3	69.2	58.8	
2021-12-14 14:11	64.8	68.4	60.2	
2021-12-14 14:16	63.2	66.0	59.6	
2021-12-14 14:21	62.5	65.3	58.1	64.2
2021-12-14 14:26	63.4	66.6	59.2	04.2
2021-12-14 14:31	65.1	68.1	61.0	1
2021-12-14 14:36	65.6	67.9	61.2	
2021-12-20 8:38	63.8	67.2	59.0	
2021-12-20 8:43	62.9	65.8	58.1	1
2021-12-20 8:48	64.1	68.1	58.6	64.0
2021-12-20 8:53	63.4	66.6	59.6	04.0
2021-12-20 8:58	62.2	64.5	59.6	
2021-12-20 9:03	66.4	69.6	62.5	
2021-12-24 9:00	62.5	65.7	58.5	
2021-12-24 9:05	63.3	65.6	59.1	
2021-12-24 9:10	64.1	67.7	59.2	62.2
2021-12-24 9:15	63.3	66.1	58.9	63.2
2021-12-24 9:20	62.7	65.4	59.3	
2021-12-24 9:25	63.4	65.8	60.2	
2021-12-30 14:26	68.6	72.9	60.7	
2021-12-30 14:31	68.9	71.2	62.3	
2021-12-30 14:36	68.4	73.8	60.3	67.1
2021-12-30 14:41	65.9	69.4	60.2	07.1
2021-12-30 14:46	63.7	66.8	60.0	
2021-12-30 14:51	64.3	67.7	59.6	

Figure F3.2 Graphical Presentation for Noise Monitoring at Station NMS-CA-4

Annex F4

Event and Action Plan for Noise

Annex F4 Event and Action Plan for Construction Noise

Event		Actio	n	
Event	ET	IEC	ER	Contractor
Action Level Exceedance	Notify IEC, ER and Contractor; Carry out investigation;	1. Review the analysed results submitted by the ET;	Confirm receipt of notification of failure in writing;	1. Submit noise mitigation proposals to IEC and ER;
	3. Report the results of investigation to the IEC, ER and Contractor;4. Discuss with the Contractor and formulate remedial measures;5. Increase monitoring frequency to check mitigation effectiveness.	2. Review the proposed remedial measures by the Contractor and advise the ER accordingly;3. Supervise the implementation of remedial measures.	2. Notify Contractor;3. Require Contractor to propose remedial measures for the analysed noise problem;4. Ensure remedial measures are properly implemented	2. Implement noise mitigation proposals.
Limit Level Exceedance	 Identify source; Inform IEC, ER, EPD and Contractor; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IEC, ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

ENVIRONMENTAL RESOURCES MANAGEMENT

CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Water Quality

Calibration Certificates for Water Quality

專業化驗有限公司

QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Report No.

R-BA110050

Date of Issue

29 November 2021

Page No.

1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd.

Flat 2207, Yu Fun House,

Yu Chui Court, Shatin

New Territories, Hong Kong

Attn: Mr. Thomas WONG

PART B - DESCRIPTION

Name of Equipment

YSI ProDSS (Multi-Parameters)

Manufacturer

YSI (a xylem brand)

Serial Number

16H104233

Date of Received

Nov 26, 2021

Date of Calibration

Nov 26, 2021

Date of Next Calibration^(a)

Feb 25, 2022

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter

Reference Method

pH at 25°C

APHA 21e 4500-H+ B

Dissolved Oxygen

APHA 21e 4500-O G APHA 21e 2510 B

Conductivity at 25°C Salinity

APHA 21e 2520 B

Turbidity

APHA 21e 2130 B

Temperature

Section 6 of international Accreditation New Zealand Technical

Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	4.09	0.09	Satisfactory
7.42	7.48	0.06	Satisfactory
10.01	10.06	0.05	Satisfactory

Tolerance of pH should be less than ± 0.20 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
10	10.0	0.0	Satisfactory
24	21.9	-0.1	Satisfactory
45	45.0	0.0	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

Remark(s): -

(a) The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

(b) The results relate only to the calibrated equipment as received

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

(d) "Displayed Reading" denotes the figure shown on item under calibration/checking regardless of equipment precision or significant figures.

(e) The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards..

LEE Chun-ning Senior Chemist

專業化驗有限公司 **QUALITY PRO TEST-CONSULT LIMITED**

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Report No.

: R-BA110050

Date of Issue

: 29 November 2021

Page No.

: 2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
8.40	8.60	0.20	Satisfactory
5.34	5.22	-0.12	Satisfactory
2.63	2.47	-0.16	Satisfactory
0.16	0.35	0.19	Satisfactory

Tolerance limit of dissolved oxygen should be less than ± 0.50 (mg/L)

(4) Conductivity at 25°C

Conc. of KCl (M)	Expected Reading (µS/cm)	Displayed Reading (μS/cm)	Tolerance (%)	Results
0.001	146.9	151.0	2.79	Satisfactory
0.01	1412	1309	-7.29	Satisfactory
0.1	12890	12758	-1.02	Satisfactory
0.5	58670	59133	0.79	Satisfactory
1.0	111900	112965	0.95	Satisfactory

Tolerance limit of conductivity should be less than ± 10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.95	-0.50	Satisfactory
20	19.93	-0.35	Satisfactory
30	29.88	-0.40	Satisfactory

Tolerance limit of salinity should be less than ± 10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0.05		Satisfactory
10	9.83	-1.7	Satisfactory
20	19.84	-0.8	Satisfactory
100	97.8	-2.2	Satisfactory
800	796.2	-0.5	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

Remark(s): -

[~] END OF REPORT ~

[&]quot;Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures.
The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

專業化驗有限公司

OUALITY PRO TEST-CONSULT LIMITED

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Report No.

R-BA110051

Date of Issue

29 November 2021

Page No.

1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd.

Flat 2207, Yu Fun House, Yu Chui Court, Shatin

New Territories, Hong Kong

Attn: Mr. Thomas WONG

PART B - DESCRIPTION

Name of Equipment

YSI ProDSS (Multi-Parameters)

Manufacturer

YSI (a xylem brand)

Serial Number

16H104234

Date of Received

Nov 26, 2021

Date of Calibration

Nov 26, 2021

Date of Next Calibration(a)

Feb 25, 2022

PART C – REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter

Reference Method

pH at 25°C

APHA 21e 4500-H⁺ B

Dissolved Oxygen Conductivity at 25°C APHA 21e 4500-O G APHA 21e 2510B

Salinity

APHA 21e 2520B

Turbidity

APHA 21e 2130B

Temperature

Section 6 of international Accreditation New Zealand Technical

Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading ^(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	4.08	0.08	Satisfactory
7.42	7.46	0.04	Satisfactory
10.01	10.10	0.09	Satisfactory

Tolerance of pH should be less than ±0.20 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
10	10.0	0.0	Satisfactory
24	21.9	-0.1	Satisfactory
45	45.0	0.0	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

Remark(s): -

(a) The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

(b) The results relate only to the calibrated equipment as received

(c) The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

(d) "Displayed Reading" denotes the figure shown on item under calibration/checking regardless of equipment precision or significant figures.

(e) The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

LEE Chun-ning Senior Chemist

專業化驗有限公司 **OUALITY PRO TEST-CONSULT LIMITED**

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Report No.

R-BA110051

Date of Issue

29 November 2021

Page No.

2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
8.40	8.58	0.18	Satisfactory
5.34	5.16	-0.18	Satisfactory
2.63	2.50	-0.13	Satisfactory
0.16	0.51	0.35	Satisfactory

Tolerance limit of dissolved oxygen should be less than ±0.50 (mg/L)

(4) Conductivity at 25°C

Conc. of KCl (M)	Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)	Results
0.001	146.9	152.0	3.47	Satisfactory
0.01	1412	1326	-6.09	Satisfactory
0.1	12890	12793	-0.75	Satisfactory
0.5	58670	59086	0.71	Satisfactory
1.0	111900	112741	0.75	Satisfactory

Tolerance limit of conductivity should be less than ±10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	10.08	0.80	Satisfactory
20	20.17	0.85	Satisfactory
30	30,21	0.70	Satisfactory

Tolerance limit of salinity should be less than ± 10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0.05		Satisfactory
10	9.88	-1.2	Satisfactory
20	20.09	0.4	Satisfactory
100	98.8	-1.2	Satisfactory
800	812.3	1.5	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

[&]quot;Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures. The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

專業化驗有限公司 **OUALITY PRO TEST-CONSULT LIMITED**

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Report No.

BA090071

Date of Issue

27 September 2021

Page No.

1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Flat 2207, Yu Fun House, Yu Chui Court, Shatin

New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B - DESCRIPTION

Name of Equipment

YSI ProDSS (Multi-Parameters)

Manufacturer

YSI (a xylem brand)

Serial Number

18A104824

Date of Received

Sep 24, 2021

Date of Calibration

Sep 24, 2021

Date of Next Calibration(a)

Dec 23, 2021

PART C – REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter

Reference Method

pH at 25°C

APHA 21e 4500-H+ B

Dissolved Oxygen Conductivity at 25°C APHA 21e 4500-O G APHA 21e 2510 B

Salinity

APHA 21e 2520 B

Turbidity

APHA 21e 2130 B

Temperature

Section 6 of international Accreditation New Zealand Technical

Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	4.03	0.03	Satisfactory
7.42	7.46	0.04	Satisfactory
10.01	9.96	-0.05	Satisfactory

Tolerance of pH should be less than ±0.20 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
10	10.0	0.0	Satisfactory
24	24.0	0.0	Satisfactory
48	48.0	0.0	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

Remark(s): -

The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

The results relate only to the calibrated equipment as received

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source. "Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards...

> LEE Chun-hing Senior Chemist

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Report No.

BA090071

Date of Issue

27 September 2021

Page No.

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
0.18	0.30	0.12	Satisfactory
2.71	2.66	-0.05	Satisfactory
5.00	5.09	0.09	Satisfactory
7.48	7.48	0.00	Satisfactory

Tolerance limit of dissolved oxygen should be less than ±0.50 (mg/L)

(4) Conductivity at 25°C

Conc. of KCl (M)	Expected Reading (µS/cm)	Displayed Reading (μS/cm)	Tolerance (%)	Results
0.001	146.9	147.6	0.48	Satisfactory
0.01	1412	1451	2.76	Satisfactory
0.1	12890	12758	-1.02	Satisfactory
0.5	58670	58927	0.44	Satisfactory
1.0	111900	110688	-1.08	Satisfactory

Tolerance limit of conductivity should be less than ± 10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.98	-0.20	Satisfactory
20	19.87	-0.65	Satisfactory
30	29.80	-0.67	Satisfactory

Tolerance limit of salinity should be less than ±10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0.17		Satisfactory
10	9.94	-0.6	Satisfactory
20	19.88	-0.6	Satisfactory
100	98.93	-1.1	Satisfactory
800	794.52	-0.7	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

Remark(s): -

[&]quot;Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures.

The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

專業化驗有限公司 QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No.

: R-BA120148

Date of Issue

: 30 December 2021

Page No.

: 1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd.
Flat 2207, Yu Fun House Yu Chui Court, Shatin
New Territories (HK) Hong Kong

Attn:

PART B - SAMPLE INFORMATION

Name of Equipment:

YSI ProDSS (Multi-Parameters)

Manufacturer:

YSI (a xylem brand)

Serial Number:

21G105356

Date of Received:

24 December 202124 December 2021

Date of Calibration :
Date of Next Calibration :

23 March 2022

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Test Parameter

Reference Method

Turbidity

APHA 21e 2130B

Conductivity

APHA 21e 2510B

Dissolved oxygen

APHA 21e 4500 O APHA 21e 4500 H+

pH value Salinity

APHA 21e 2520B

Temperature

Section 6 of international Accreditation New Zealand Technical Guide no. 3 Second edition March

2008: Working Thermometer Calibration Procedure

PART D - CALIBRATION RESULT

(1) Turbidity

EXPECTED READING (NTU)	DISPLAY READING (NTU)	TOLERANCE (%)	RESULT
0	0.10		Satisfactory
10	9.81	-1.9	Satisfactory
20	19.82	-0.9	Satisfactory
100	100.22	0.2	Satisfactory
800	810.23	1.3	Satisfactory

Tolerance of Turbidity should be less than ± 10.0 (%)

(2) Conductivity

EXPECTED READING (MS/CM AT 25°C)	DISPLAY READING (MS/CM AT	TOLERANCE (%	RESULT
	25°C))	
146.9	150.3	2.31	Satisfactory
1412	1369	-3.05	Satisfactory
12890	12488	-3.12	Satisfactory
58670	57746	-1.57	Satisfactory
111900	111426	-0.42	Satisfactory

Tolerance of Conductivity should be less than ± 10.0 (%)

--- CONTINUED ON NEXT PAGE ---

AUTHORIZED SIGNATORY:

LEE Chun-ning
Assistant Manager (Chemical Testing)

專業化驗有限公司 QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No.

: R-BA120148

Date of Issue

: 30 December 2021

Page No.

: 2 of 2

(3) Dissolved oxygen

EXPECTED READING (MG/L)	DISPLAY READING (MG/L)	TOLERANCE (MG/L)	RESULT
7.65	7.80	0.15	Satisfactory
6.09	6.20	0.11	Satisfactory
3.20	3.33	0.13	Satisfactory
0.78	0.56	-0.22	Satisfactory

Tolerance of Dissolved oxygen should be less than \pm 0.5 (mg/L)

(4) pH value

TARGET (PH UNIT)	DISPLAY READING (PH UNIT)	TOLERANCE	RESULT
4.00	4.03	0.03	Satisfactory
7.42	7.45	0.03	Satisfactory
10.01	10.11	0.10	Satisfactory

Tolerance of pH value should be less than ± 0.2 (pH unit)

(5) Salinity

EXPECTED READING (G/L)	DISPLAY READING (G/L)	TOLERANCE (%)	RESULT
10	9.93	-0.70	Satisfactory
20	19.88	-0.60	Satisfactory
30	30.19	0.63	Satisfactory

Tolerance of Salinity should be less than ± 0.0 (%)

(6) Temperature

READING OF REF. THERMOMETER (°C)	DISPLAY READING (°C)	TOLERANCE (°C)	RESULT
10	9.9	-0.1	Satisfactory
20	20.0	0.0	Satisfactory
40	40.0	0.0	Satisfactory

Tolerance of Temperature should be less than ± 2.0 (°C)

Remark(s)

- 'The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.
- ·The results relate only to the calibrated equipment as received
- 'The performance of the equipment stated is checked with independent reference material and results compared against a calibrated secondary source.
- "Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.
- ·The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

--- END OF REPORT ---

Monitoring Schedule for Water Quality

Tung Chung New Town Extension (East) Impact Marine Water Quality Monitoring (WQM) Schedule (December 2021)

Sunday		Tuesday			-	Saturday
			1-Dec	2-Dec	3-Dec	4-Dec
			ebb tide 8:34 - 12:04 flood tide 14:47 - 18:17		ebb tide 10:22 - 13:52 flood tide 15:52 - 19:22	
5-Dec	6-Dec	7-Dec	8-Dec	9-Dec	10-Dec	11-Dec
	ebb tide 12:51 - 16:21 flood tide 7:34 - 11:04		ebb tide 14:43 - 17:51 flood tide 9:27 - 12:57		ebb tide 17:51 - 20:13 flood tide 11:54 - 15:24	
12-Dec	13-Dec	14-Dec	15-Dec	16-Dec	17-Dec	18-Dec
	ebb tide 6:50 - 10:20 flood tide 13:57 - 17:27		ebb tide 8:45 - 12:15 flood tide 14:50 - 18:01		ebb tide 10:15 - 13:45 flood tide 6:01 - 8:31	
19-Dec	20-Dec	21-Dec	22-Dec	23-Dec	24-Dec	25-Dec
	ebb tide 11:57 - 15:23 flood tide 7:00 - 10:30		ebb tide 13:09 - 16:21 flood tide 8:13 - 11:43		ebb tide 14:37 - 17:45 flood tide 9:35 - 13:05	
26-Dec	27-Dec	28-Dec	29-Dec	30-Dec	31-Dec	
	ebb tide 4:15 - 7:45 flood tide 11:54 - 15:24		ebb tide 6:46 - 10:16 flood tide 13:14 - 16:44		ebb tide 9:17 - 12:47 flood tide 14:36 - 18:06	

Remark:

Pickup time and place of 1st tide: 15 min before tidal window at Sham Tseng pier Pickup time and place of 2nd tide: 15 min before tidal window at Tung Chung pier

Monitoring Results for Water Quality

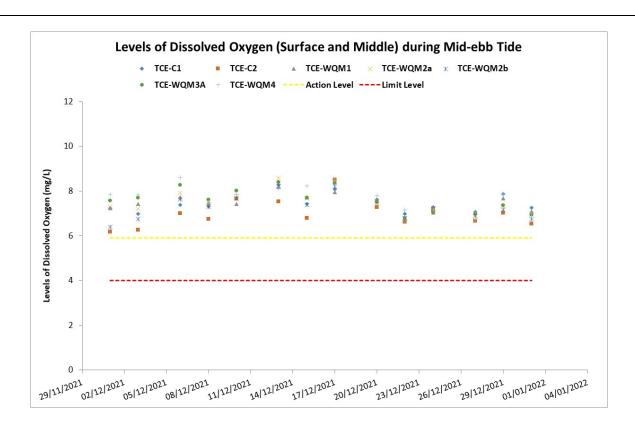


Figure 1: Levels of Dissolved Oxygen (Surface and Middle) (mg/L) recorded at Mid-ebb Tide during the Water Quality Monitoring between 1 to 31 December 2021

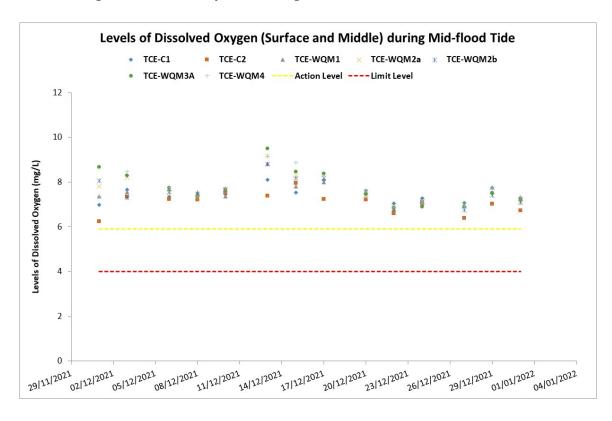


Figure 2: Levels of Dissolved Oxygen (Surface and Middle) (mg/L) recorded at Mid-flood Tide during the Water Quality Monitoring between 1 to 31 December 2021

Source:	P:\Projects\0445700 CEDD ET for Tung Chung.JT\02_Deliverable\10 Monthly EM&A	Environmental	
	Report\	Resources	
Date:	December 2021	Management	ERM
		1	

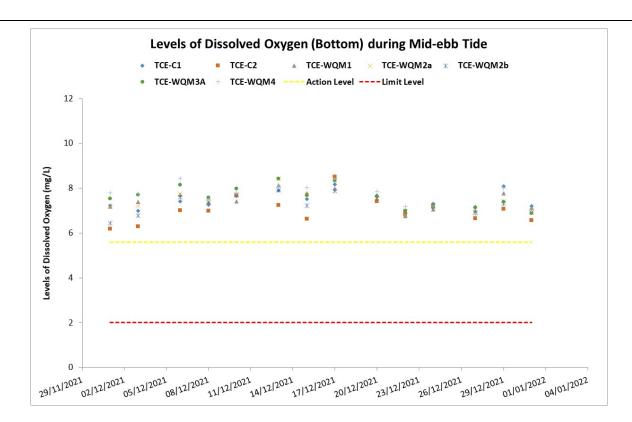


Figure 3: Levels of Dissolved Oxygen (Bottom) (mg/L) recorded at Mid-ebb Tide during the Water Quality Monitoring between 1 to 31 December 2021

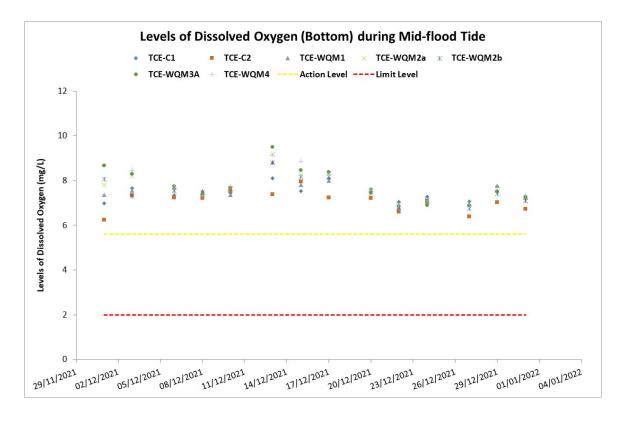


Figure 4: Levels of Dissolved Oxygen (Bottom) (mg/L) recorded at Mid-flood Tide during the Water Quality Monitoring between 1 to 31 December 2021

Source	:: P:\Projects\0445700 CEDD ET for Tung Chung.JT\02_Deliverable\10 Monthly	Environmental	
	EM&A Report\	Resources	9
Date:	December 2021	Management	ERM

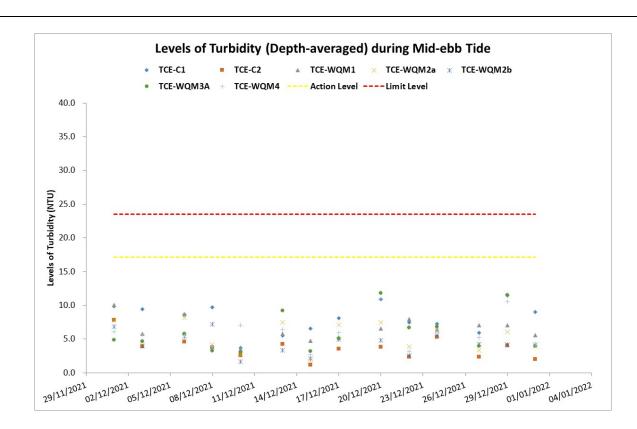


Figure 5: Levels of Turbidity (Depth-averaged) (NTU) recorded at Mid-ebb Tide during the Water Quality Monitoring between 1 to 31 December 2021

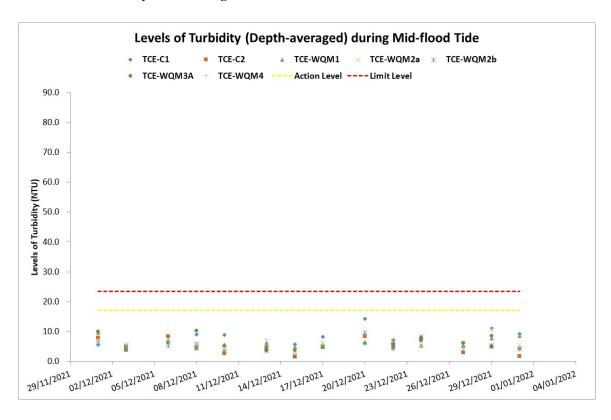


Figure 6: Levels of Turbidity (Depth-averaged) (NTU) recorded at Mid-flood Tide during the Water Quality Monitoring between 1 to 31 December 2021

Source:	P:\Projects\0445700 CEDD ET for Tung Chung.JT\02_Deliverable\10 Monthly EM&A	Environmental	
	Report\	Resources	
Date:	December 2021	Management	ERM
		_	

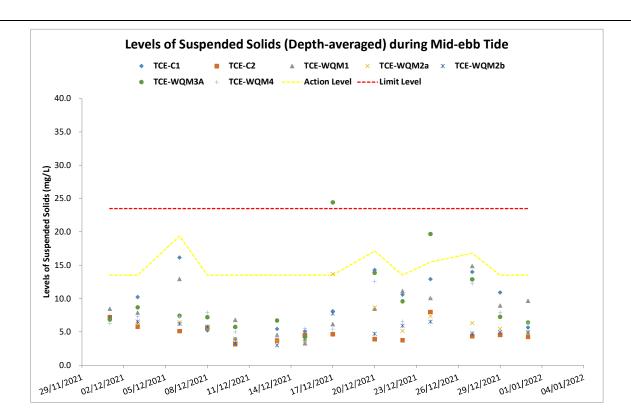


Figure 7: Levels of Suspended Solids (Depth-averaged) (mg/L) recorded at Mid-ebb Tide during the Water Quality Monitoring between 1 to 31 December 2021

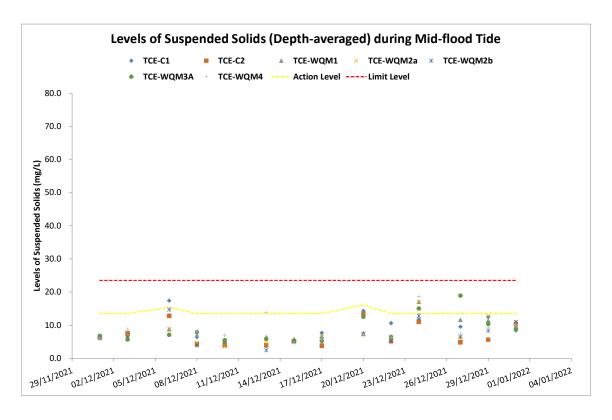


Figure 8: Levels of Suspended Solids (Depth-averaged) (mg/L) recorded at Mid-flood Tide during the Water Quality Monitoring between 1 to 31 December 2021

Source:	P:\Projects\0445700 CEDD ET for Tung Chung.JT\02_Deliverable\10 Monthly	Environmental	
	EM&A Report\	Resources	()
Date:	December 2021	Management	ERM

										Water			Dissolved			Suspended Solids		Depth-averaged	
Date	Tide	Station	Weather Condition	Sea Condition	Sampling Time	Water Depth (m)	Water Level	Sampling depth (m)	Replicate	Temperature (°C)	pН	Salinity (ppt)	Oxygen (DO) (mg/L)	DO Saturation (%)	Turbidity (NTU)	(SS) (mg/L)	DO (mg/L)	Turbidity (NTU)	SS (mg/L)
2021-12-01	Mid-Ebb	TCE-C1	Fine	Rough	10:43	7.8	Surface	1.0	1	21.3 21.3	8.2 8.2	32.3 32.3	7.2 7.2	98.5 98.5	9.6	5.6 5.9			
							Middle	3.9	2	21.3	8.2	32.3	7.2	98.5	9.6 9.7	7.8	7.2		
									2	21.3	8.2	32.3	7.2	98.5	9.7	7.4		9.8	7.3
							Bottom	6.8	1	21.3	8.2	32.2	7.2	98.4	10.1	8.4	7.2		
		TCE-C2	Fine	Rough	8:47	15.1	Surface	1.0	2	21.3 22.1	8.2 8.1	32.2 32.7	7.2 6.2	98.4 85.6	10.1 7.1	8.6 8.1			
		TCL-C2	Thic	Rough	0.47	15.1	Surface	1.0	2	22.1	8.1	32.7	6.2	85.6	7.2	8.5			
							Middle	7.6	1	22.2	8.1	32.7	6.2	85.6	8.1	7.3	6.2	7.8	7.2
							D	14.1	2	22.2	8.1	32.7	6.2	85.6	8.1	7.2		1	
							Bottom	14.1	1 2	22.1 22.1	8.1 8.1	32.7 32.7	6.2	85.7 85.7	8.2 8.3	6.0 5.8	6.2		
		TCE-WQM1	Fine	Moderate	9:54	9.1	Surface	1.0	1	21.3	8.2	32.2	7.2	98.6	10.0	7.4			
									2	21.3	8.2	32.2	7.2	98.5	9.9	7.8	7.2		
							Middle	4.6	1 2	21.3 21.3	8.2 8.2	32.2 32.2	7.2 7.2	98.2 98.2	10.0 10.0	8.5 8.2		10.1	8.5
							Bottom	8.1	2	21.3	8.2 8.2	32.2 32.2	7.2	98.2 97.7	10.0	9.6		1	
							Dottom	0.1	2	21.2	8.2	32.2	7.2	97.7	10.3	9.3	7.2		
		TCE-WQM2a	Fine	Rough	9:24	7.8	Surface	1.0	1	21.5	8.2	32.2	7.3	100.0	6.9	6.1			
							2617		2	21.5	8.2	32.2	7.3	100.0	6.9	6.4	7.3		
							Middle	3.9	2	21.5 21.5	8.2 8.2	32.2 32.2	7.3 7.3	99.2 99.2	7.4 7.5	6.6		7.8	7.1
							Bottom	6.8	1	21.5	8.2	32.2	7.2	98.3	9.1	8.3	7.2	1	
									2	21.5	8.2	32.2	7.2	98.2	9.1	8.2	7.2		
		TCE-WQM2b	Fine	Rough	9:13	10.7	Surface	1.0	1	21.9	8.1	32.5	6.4	88.2	4.3	8.2			
							Middle	5.4	2	21.9 21.9	8.1 8.1	32.5 32.5	6.4	88.2 88.0	4.3 6.9	8.3 6.9	6.4		
							iviidale	5.1	2	21.9	8.1	32.5	6.4	88.0	7.0	6.9		6.8	7.1
							Bottom	9.7	1	21.9	8.1	32.4	6.4	88.6	9.2	6.1	6.4	1	
		mon vivos to i	70	16.1			0.1	1.0	2	21.9	8.1	32.4	6.4	88.7	9.3	6.2	0.4		
		TCE-WQM3A	Fine	Moderate	9:33	4.5	Surface	1.0	2	21.1 21.1	8.2 8.2	32.1 32.1	7.6 7.6	102.6 102.6	4.4 4.4	6.0	7.6		
							Bottom	3.5	1	21.0	8.2	32.0	7.5	102.0	5.3	7.7		4.9	6.8
									2	21.0	8.2	32.0	7.5	102.0	5.3	7.4	7.5		
		TCE-WQM4	Fine	Moderate	9:42	4.0	Surface	1.0	1	21.2	8.3	32.0	7.9	106.7	5.4	6.1	7.9		
							Bottom	3.0	2	21.2 21.1	8.3 8.2	32.0 32.0	7.9 7.8	106.6 105.6	5.5 6.7	5.9 6.8		6.1	6.3
							Dottom	3.0	2	21.1	8.2	32.0	7.8	105.6	6.7	6.3	7.8		
2021-12-01	Mid-Flood	TCE-C1	Fine	Rough	14:48	7.5	Surface	1.0	1	21.3	8.2	32.7	7.0	95.5	4.9	4.6			
									2	21.3	8.2	32.7	7.0	95.5	4.9	4.8	7.0		
							Middle 3.8 1	1	21.3 21.3	8.2 8.2	32.7 32.7	7.0 7.0	95.3 95.3	5.4 5.4	6.1 5.8		5.5	6.0	
							Bottom	6.5	1	21.3	8.2	32.7	7.0	95.3	6.2	7.2		-	
									2	21.3	8.2	32.7	7.0	95.0	6.3	7.4	7.0		
		TCE-C2	Fine	Rough	16:59	14.6	Surface	1.0	1	22.3	8.1	32.6	6.2	86.5	7.4	7.1			
							Middle	7.3	2	22.3 22.2	8.1 8.1	32.6 32.6	6.2	86.5 86.8	7.5 7.9	7.1 6.6	6.2		
							Middle	7.3	2	22.2	8.1	32.6	6.3	86.9	7.9	6.7		8.0	6.3
							Bottom	13.6	1	22.1	8.1	32.5	6.3	87.0	8.5	5.2	6.3	1	
									2	22.1	8.1	32.5	6.3	87.0	8.6	5.2	0.3		
		TCE-WQM1	Fine	Rough	15:30	9.6	Surface	1.0	1 2	21.3 21.3	8.2 8.2	32.2 32.2	7.4 7.4	100.6 100.6	7.9 7.9	8.7 8.5			
							Middle	4.8	1	21.3	8.2	32.2	7.3	100.0	11.1	6.4	7.4		
									2	21.3	8.2	32.2	7.3	100.0	11.1	6.1		9.6	6.9
							Bottom	8.6	1	21.3	8.2	32.2	7.3	99.2	9.9	5.8	7.3		
		TCE-WQM2a	Fine	Rough	16:14	7.1	Surface	1.0	2	21.3 21.3	8.2 8.3	32.2 32.1	7.3 7.9	99.2 108.1	10.0 5.2	5.7 5.6			
		1CL-VVQIVIZA	THE	Kougii	10.14	7.1	Juriace	1.0	2	21.3	8.3	32.1	7.9	108.1	5.2	5.2			
							Middle	3.6	1	21.3	8.2	32.1	7.7	104.5	6.1	6.5	7.8	6.4	6.3
									2	21.3	8.2	32.1	7.7	104.3	6.2	6.3		1 0.4	0.3
							Bottom	6.1	2	21.3 21.3	8.2 8.2	32.1 32.1	7.6 7.6	103.0 103.0	7.8 7.9	7.0 7.0	7.6		
		TCE-WQM2b	Fine	Rough	16:26	10.1	Surface	1.0	1	21.3	8.3	32.1	8.1	110.2	5.5	7.0			
									2	21.3	8.3	32.1	8.1	110.2	5.5	6.9	8.1		
							Middle	5.1	1	21.3	8.3	32.1	8.0	108.9	6.8	6.6	0.1	6.5	6.3
							Bottom	9.1	2	21.3 21.3	8.3 8.3	32.1 32.1	8.0 7.7	108.8 105.2	6.8 7.3	6.5 5.2		1	
							DOHOIN	9.1	2	21.3	8.3	32.1	7.7	105.2	7.3	5.2	7.7		
		TCE-WQM3A	Fine	Moderate	15:57	4.1	Surface	1.0	1	21.2	8.3	32.0	8.7	117.7	8.9	7.2	8.7		
									2	21.2	8.3	32.0	8.7	117.7	9.0	7.4	0.7	10.0	6.8
							Bottom	3.1	1 2	21.1	8.3	32.0	8.5	115.3	11.2	6.1	8.5		
		TCE-WQM4	Fine	Moderate	15:46	3.9	Surface	1.0	1	21.1 21.3	8.3 8.2	32.0 32.2	8.5 7.4	115.3 100.5	11.2 4.9	6.4 7.2			1
		LCL TOUR		Moderate	10.10	5.5	Surnec	1.0	2	21.3	8.2	32.2	7.4	100.4	4.9	7.2	7.4	5.9	6.1
							Bottom	2.9	1	21.3	8.2	32.2	7.4	100.1	6.9	5.0	7.4	3.9	0.1
				1	1				2	21.3	8.2	32.2	7.4	100.1	6.9	4.9		1	1

										Water			Dissolved			Suspended Solids		Depth-averaged			
Date	Tide	Station	Weather Condition	Sea Condition	Sampling Time	Water Depth (m)	Water Level	Sampling depth (m)	Replicate	Temperature (°C)	pН	Salinity (ppt)	Oxygen (DO) (mg/L)	DO Saturation (%)	Turbidity (NTU)	(SS) (mg/L)	DO (mg/L)	Turbidity (NTU)	SS (mg/L)		
2021-12-03	Mid-Ebb	TCE-C1	Sunny	Rough	12:13	7.9	Surface	1.0	1	20.5	8.2	33.0	7.0	94.4	8.1	7.3					
							Middle	4.0	2	20.5 20.5	8.2 8.2	33.0 33.0	7.0 7.0	94.4 94.2	8.1 9.3	7.6 10.7	7.0				
									2	20.5	8.2	33.0	7.0	94.1	9.3	11.1		9.4	10.2		
							Bottom	6.9	1	20.5	8.1	32.9	7.0	94.1	10.8	12.4	7.0				
		TCE-C2	Sunny	Rough	10:25	15.8	Surface	1.0	2	20.5	8.1 8.1	32.9 32.9	7.0 6.3	94.2 86.2	10.7 3.4	12.3 4.6					
		ICE-C2	Sunny	Kougn	10:25	15.6	Surface	1.0	2	21.7	8.1	32.9	6.3	86.2	3.4	4.9					
							Middle	7.9	1	21.7	8.1	32.9	6.3	86.1	4.0	5.4	6.3	3.9	5.8		
									2	21.7	8.1	32.9	6.3	86.2	4.0	5.3		3.9	3.6		
							Bottom	14.8	1	21.6	8.1	32.8	6.3	86.4	4.2	7.1	6.3				
		TCE-WQM1	Sunny	Moderate	11:34	10.8	Surface	1.0	1	21.6	8.1 8.2	32.8 32.6	6.3 7.5	86.4 99.5	4.2 5.1	7.4 6.3					
		Tel rigini	Juliy	Moderate	11.01	10.0	Surface	1.0	2	20.1	8.2	32.6	7.4	99.4	5.1	6.2	7.4				
							Middle	5.4	1	20.1	8.2	32.6	7.4	98.6	6.1	8.3	7.4	5.8	7.9		
									2	20.1	8.2	32.6	7.4	98.6	6.2	7.9		3.0	1.5		
							Bottom	9.8	1 2	20.1	8.2 8.2	32.6 32.6	7.4 7.4	98.7 98.8	6.1	9.1 9.5	7.4				
		TCE-WQM2a	Sunny	Rough	11:02	8.8	Surface	1.0	1	21.1	8.2	32.7	7.2	98.2	3.7	5.3					
			,						2	21.1	8.2	32.7	7.2	98.2	3.7	5.6	7.2				
							Middle	4.4	1	21.0	8.2	32.6	7.2	98.1	3.7	6.5	7.2	4.1	6.3		
							Bottom	7.8	2	21.0 20.8	8.2 8.2	32.6 32.6	7.2 7.2	97.8 97.5	3.7 5.1	6.4 7.0		4			
							bottom	7.0	2	20.8	8.1	32.6	7.2	97.5	5.1	6.9	7.2				
		TCE-WQM2b	Sunny	Rough	10:52	10.5	Surface	1.0	1	21.3	8.1	32.7	6.8	92.5	4.0	5.7					
			,						2	21.3	8.1	32.7	6.8	92.5	4.0	5.9	6.8				
							Middle	5.3	1	21.3	8.1	32.7 32.7	6.7	91.9 91.9	4.0	6.4		4.0	6.5		
							Bottom	9.5	1	21.3 21.3	8.1 8.1	32.7	6.7	91.9	3.9	6.7 7.1		-			
							Dottom	7.5	2	21.3	8.1	32.7	6.8	92.6	4.0	7.4	6.8				
		TCE-WQM3A	Sunny	Moderate	11:13	4.7	Surface	1.0	1	20.7	8.2	32.5	7.7	103.7	4.1	7.6	7.7				
									2	20.7	8.2	32.5	7.7	103.8	4.1	8.0	7.7	4.6	8.7		
							Bottom	3.7	2	20.6	8.2 8.2	32.5 32.5	7.7	103.7 103.6	5.2 5.2	9.8 9.3	7.7				
		TCE-WQM4	Sunny	Moderate	11:23	4.5	Surface	1.0	1	20.7	8.2	32.5	7.7	105.6	4.6	6.8					
				111111111111111111111111111111111111111	11.0				2	20.6	8.2	32.5	7.8	105.6	4.7	7.0	7.8	5.6	7.3		
							Bottom	3.5	1	20.6	8.2	32.4	7.8	104.4	6.6	7.5	7.8	3.6	7.3		
	Mid-Flood	mon or			48.80				2	20.6	8.2	32.4	7.8	104.4	6.6	7.9	7.8	7.8	7.8		
2021-12-03	Mid-Flood	TCE-C1	Sunny	Rough	15:58	7.2	Surface	1.0	1 2	20.2	8.3 8.3	32.7 32.7	7.7 7.7	102.7 102.7	4.1 4.1	6.0 5.9					
							Middle	3.6	1	20.2	8.3	32.7	7.7	102.4	4.3	6.6	7.7	4.1	7.1		
									2	20.2	8.3	32.7	7.7	102.4	4.3	6.8		4.1	7.1		
							Bottom	6.2	1	20.2	8.3	32.7	7.6	102.0	4.1	8.9	7.6				
		TCE-C2	Fine	Rough	17:36	14.6	Surface	1.0	2	20.2 21.0	8.3 8.2	32.7 32.7	7.6 7.4	102.0 100.1	4.1 3.6	8.4 8.3					
		TCE-C2	rnie	Kougii	17.30	14.0	Surface	1.0	2	21.0	8.2	32.7	7.4	100.1	3.6	8.5					
							Middle	7.3	1	21.0	8.2	32.7	7.3	99.4	4.5	7.9	7.3	4.9	7.6		
									2	21.0	8.2	32.7	7.3	99.3	4.5	7.6		4.5	7.6		
							Bottom	13.6	1 2	21.0 21.0	8.2 8.2	32.7 32.7	7.3 7.3	98.9 99.0	6.5 6.5	6.6	7.3				
		TCE-WQM1	Sunny	Rough	16:28	9.5	Surface	1.0	1	20.2	8.2	32.7	7.6	101.4	4.1	8.2					
					10.00				2	20.2	8.2	32.7	7.6	101.3	4.1	8.6	7.0				
				1			Middle	4.8	1	20.2	8.2	32.7	7.5	100.8	4.2	7.2	7.6	3.9	6.9		
				1			Bottom	8.5	2	20.2	8.2 8.2	32.7 32.7	7.5 7.3	100.8 97.6	4.2 3.5	7.1 5.3		4			
							Bottom	8.5	2	20.1	8.2	32.7	7.3	97.6 97.6	3.5	5.3	7.3				
		TCE-WQM2a	Fine	Rough	17:01	7.4	Surface	1.0	1	20.7	8.3	32.5	8.3	112.6	4.6	7.4					
									2	20.7	8.3	32.5	8.3	112.6	4.6	7.3	8.2				
							Middle	3.7	1	20.7	8.2	32.5	8.1	108.9	5.8	6.6	0.2	5.7	6.4		
							Bottom	6.4	2	20.7	8.2 8.2	32.5 32.4	8.1 8.0	108.7 107.7	5.8 6.7	6.3 5.6		+			
							DOROIII	0.4	2	20.6	8.2	32.4	8.0	107.6	6.8	5.2	8.0				
		TCE-WQM2b	Fine	Rough	17:12	9.6	Surface	1.0	1	21.0	8.2	32.6	7.3	99.6	3.3	7.0					
									2	21.0	8.2	32.6	7.3	99.4	3.3	6.8	7.3				
							Middle	4.8	1	21.0	8.2	32.6	7.3	98.9	5.1	6.4		5.2	6.4		
							Bottom	8.6	1	21.0 21.0	8.2 8.2	32.6 32.6	7.3 7.2	98.9 98.2	5.1 7.3	6.2 5.9		+			
							Dottom	0.0	2	21.0	8.2	32.6	7.2	98.2	7.3	5.9	7.2				
		TCE-WQM3A	Sunny	Moderate	16:51	4.2	Surface	1.0	1	20.8	8.3	32.4	8.3	112.0	3.9	6.7	8.3				
				1					2	20.8	8.3	32.4	8.3	111.9	3.9	6.2	0.5	3.7	5.7		
				1			Bottom	3.2	1 2	20.8	8.2	32.4	8.1	109.1	3.6	5.0	8.1				
		TCE-WQM4	Sunny	Moderate	16:41	3.9	Surface	1.0	1	20.8	8.2 8.3	32.4 32.5	8.1 8.5	109.1 114.5	3.6 4.6	4.8 7.4	0 -		-		
		101-110114	Sumiy	Wioderate	10.41	3.5	Surface	1.0	2	20.8	8.3	32.5	8.5	114.4	4.6	7.8	8.5	5.1	0.7		
							Bottom	2.9	1	20.7	8.2	32.5	8.3	112.5	5.5	9.9	8.3	5.1	8.7		
									2	20.7	8.2	32.5	8.3	112.4	5.6	9.7					

										Water			Dissolved			Suspended Solids		Depth-averaged		
Date	Tide	Station	Weather Condition	Sea Condition	Sampling Time	Water Depth (m)	Water Level	Sampling depth (m)	Replicate	Temperature (°C)	pН	Salinity (ppt)	Oxygen (DO) (mg/L)	DO Saturation (%)	Turbidity (NTU)	(SS) (mg/L)	DO (mg/L)	Turbidity (NTU)	SS (mg/L)	
2021-12-06	Mid-Ebb	TCE-C1	Sunny	Rough	12:52	8.2	Surface	1.0	1 2	20.9	8.2 8.2	34.0 34.0	7.4 7.4	101.1 101.0	7.3 7.2	16.7 15.7				
							Middle	4.1	1	20.9	8.2	34.0	7.4	101.0	7.2 8.9	15.7	7.4			
									2	20.8	8.2	34.0	7.4	100.6	9.0	14.9		8.6	16.2	
							Bottom	7.2	1	20.8	8.2	34.0	7.4	101.2	9.7	16.8	7.4			
		TCE-C2	Sunny	Rough	14:32	15.9	Surface	1.0	1	20.8	8.2 8.1	34.0 33.8	7.4 7.1	101.3 98.1	9.7 4.2	17.7 5.2				
		ICL-C2	Summy	Rough	14.52	15.7	Surface	1.0	2	21.7	8.1	33.8	7.1	98.1	4.3	4.3	7.0			
							Middle	8.0	1	21.5	8.1	33.8	6.9	95.5	5.1	5.8	7.0	4.6	5.1	
							D	110	2	21.5	8.1	33.8	6.9	95.6	5.1	4.5		4.0	3.1	
							Bottom	14.9	2	21.5 21.5	8.1 8.1	33.8 33.8	7.0 7.0	96.7 96.8	4.5 4.5	5.2 5.6	7.0			
		TCE-WQM1	Sunny	Moderate	13:25	10.2	Surface	1.0	1	20.6	8.2	33.8	7.7	104.9	7.6	12.1				
									2	20.6	8.2	33.8	7.7	104.9	7.6	12.1	7.7			
							Middle	5.1	2	20.6	8.2 8.2	33.8 33.8	7.7	104.7 104.6	8.8 8.8	13.5 13.4		8.6	13.0	
							Bottom	9.2	1	20.6	8.2	33.7	7.7	104.6	9.5	13.1		+		
									2	20.6	8.2	33.7	7.7	104.5	9.5	13.5	7.7			
		TCE-WQM2a	Sunny	Moderate	13:59	8.5	Surface	1.0	1	21.4	8.2	33.8	7.9	108.6	6.5	6.5				
							Middle	4.3	2	21.4 21.2	8.2 8.2	33.8 33.8	7.9 7.9	108.6 108.7	6.5 8.4	5.8 5.7	7.9			
							Middle	4.3	2	21.2	8.2	33.8	7.9	108.7	8.4	5.7		8.2	6.5	
							Bottom	7.5	1	20.8	8.2	33.8	7.8	105.5	9.6	8.0	7.7	1		
		7000 VIVOV (41			1110	10.7		1.0	2	20.8	8.2	33.8 33.8	7.7	105.4	9.7	7.0	***			
		TCE-WQM2b	Sunny	Rough	14:10	10.6	Surface	1.0	1 2	21.3	8.2 8.2	33.8	7.7	105.7 105.7	4.8 4.8	6.0				
							Middle	5.3	1	21.0	8.2	33.8	7.6	103.8	5.6	6.5	7.6			
									2	21.0	8.2	33.8	7.6	103.8	5.6	6.0		5.4	6.2	
							Bottom	9.6	1	21.0	8.2	33.8	7.6	103.8	5.7	6.3	7.6			
		TCE-WQM3A	Sunny	Moderate	13:48	4.9	Surface	1.0	2	21.0 21.1	8.2 8.2	33.8 33.7	7.6 8.3	103.8 113.1	5.7 5.6	6.2				
		TCE-WQM5A	Summy	Wioderate	13.46	4.7	Surface	1.0	2	21.1	8.2	33.8	8.3	113.0	5.6	6.6	8.3			
							Bottom	3.9	1	20.9	8.2	33.7	8.1	111.2	6.0	7.8	8.1	5.8	7.4	
									2	20.9	8.2	33.7	8.1	111.1	6.1	8.6	0.1			
		TCE-WQM4	Sunny	Moderate	13:39	4.5	Surface	1.0	2	21.1 21.1	8.2 8.2	33.8 33.8	8.6 8.6	118.0 118.0	5.4 5.4	7.2 6.7	8.6			
							Bottom	3.5	1	21.0	8.2	33.8	8.4	115.1	5.7	7.0		5.6	7.3	
									2	21.0	8.2	33.8	8.4	115.0	5.7	8.3	8.4			
2021-12-06	Mid-Flood	TCE-C1	Sunny	Rough	10:20	7.9	Surface	1.0	1	20.8	8.1	34.0 34.0	7.4 7.4	100.6 100.5	8.6	18.5 18.6				
						Middle	4.0	2	20.8	8.1 8.1	34.0	7.4	100.5 99.7	8.6 6.8	18.6 17.6	7.3				
								iviidale	4.0	2	20.7	8.1	34.0	7.3	99.6	6.8	16.3		8.3	17.4
							Bottom	6.9	1	20.7	8.1	34.0	7.3	99.6	9.4	16.2	7.3	7		
		TCE-C2			8:22	14.3		1.0	2	20.7	8.1	34.0	7.3	99.6 98.8	9.4	17.3	7.5			
		TCE-C2	Sunny	Rough	8:22	14.3	Surface	1.0	2	21.2 21.2	8.1 8.1	33.8 33.8	7.2 7.2	98.8 99.0	7.9 7.9	14.0 14.5				
							Middle	7.2	1	21.1	8.1	33.8	7.3	99.4	8.2	12.7	7.2	8.5	12.8	
									2	21.1	8.1	33.8	7.3	99.4	8.2	11.9		8.5	12.8	
							Bottom	13.3	2	21.1	8.1	33.8	7.2	98.9 98.9	9.4	11.9	7.2			
		TCE-WQM1	Sunny	Moderate	9:26	9.8	Surface	1.0	1	21.1	8.1 8.2	33.8 33.7	7.2 7.7	98.9 104.3	9.4 7.0	11.7 9.0				
									2	20.5	8.2	33.7	7.7	104.3	7.0	8.9	7.7			
							Middle	4.9	1	20.5	8.2	33.7	7.7	104.4	6.8	8.8	/./	6.9	8.9	
							Bottom	8.8	2	20.5 20.5	8.2 8.2	33.7 33.7	7.7	104.4 103.8	6.8	8.3 8.6				
							Bottom	0.0	2	20.5	8.2	33.7	7.7	103.7	7.0	9.6	7.7			
		TCE-WQM2a	Sunny	Rough	8:55	7.3	Surface	1.0	1	20.7	8.2	33.8	7.5	102.4	4.8	9.5				
									2	20.7	8.2	33.8	7.5	102.4	4.8	8.1	7.5			
							Middle	3.7	2	20.7	8.2 8.2	33.7 33.7	7.5 7.5	101.8 101.7	6.5 6.6	9.1 9.0	-	6.5	8.8	
							Bottom	6.3	1	20.7	8.2	33.8	7.5	101.7	8.3	8.6		1		
									2	20.7	8.1	33.8	7.5	101.4	8.3	8.6	7.5			
		TCE-WQM2b	Sunny	Rough	8:43	9.6	Surface	1.0	1	20.8	8.2	33.7	7.6	103.0	4.2	15.7				
							Middle	4.8	1	20.8	8.2 8.2	33.7 33.7	7.6 7.6	103.0 102.7	4.2 5.2	14.6 15.9	7.6			
							Middle	4.0	2	20.8	8.2	33.7	7.6	102.7	5.2	15.0		5.2	14.7	
							Bottom	8.6	1	20.8	8.1	33.7	7.5	102.1	6.3	14.4	7.5	1		
				1	0				2	20.8	8.1	33.7	7.5	102.1	6.4	12.6	7.3			
		TCE-WQM3A	Sunny	Moderate	9:05	4.7	Surface	1.0	2	20.8	8.2 8.2	33.7 33.7	7.7	105.2 105.2	6.3	6.6	7.7			
							Bottom	3.7	1	20.7	8.2	33.7	7.7	105.2	6.5	7.9	7.0	6.4	7.1	
									2	20.6	8.2	33.7	7.8	105.5	6.5	7.4	7.8			
		TCE-WQM4	Sunny	Moderate	9:15	4.1	Surface	1.0	1	20.6	8.2	33.7	7.7	105.1	6.5	8.6	7.7			
								1	2	20.6	8.2	33.7	7.7	105.0	6.5	7.8		1	1 0.4	
							Bottom	3.1	1	20.6	8.2	33.8	7.6	102.8	7.2	7.6	7.6	6.8	8.1	

										Water			Dissolved			Suspended Solids		Depth-averaged	
Date	Tide	Station	Weather Condition	Sea Condition	Sampling Time	Water Depth (m)	Water Level	Sampling depth (m)	Replicate	Temperature (°C)	pH	Salinity (ppt)	Oxygen (DO) (mg/L)	DO Saturation (%)	Turbidity (NTU)	(SS) (mg/L)	DO (mg/L)	Turbidity (NTU)	SS (mg/L)
2021-12-08	Mid-Ebb	TCE-C1	Fine	Moderate	14:45	8.4	Surface	1.0	1	19.9	8.3	32.3	7.4	98.5	9.7	4.4			
							Middle	4.2	2	19.9 19.9	8.3 8.3	32.3 32.6	7.4 7.2	98.5 96.0	9.7 9.9	5.1 5.2	7.3		
									2	19.9	8.3	32.6	7.2	96.0	10.0	5.7		9.7	5.2
							Bottom	7.4	1	19.9	8.3	32.6	7.3	96.6	9.5	5.8	7.3		
		TCE-C2	Fine	Moderate	16:37	13.4	Surface	1.0	2	19.9 20.6	8.3 8.2	32.6 32.9	7.3 6.8	96.7 91.4	9.5 3.0	5.2 6.2			
		ICE-C2	rine	woderate	10:57	15.4	Surface	1.0	2	20.6	8.2	32.9	6.7	91.4	3.0	6.0			
							Middle	6.7	1	20.7	8.2	32.9	6.7	91.0	3.9	5.2	6.7	3.7	5.6
									2	20.7	8.2	32.9	6.7	91.1	4.0	5.4		3.7	3.0
							Bottom	12.4	1	20.7	8.2	32.9	6.9	92.8	4.2	5.6	7.0		
		TCE-WQM1	Fine	Moderate	15:23	8.1	Surface	1.0	1	20.7	8.2 8.3	32.9 32.8	7.1 7.6	95.8 101.5	4.3 3.5	5.2 6.4			
		Tel rigini	1	Moderate	10.20	0.1	Surface	1.0	2	20.2	8.3	32.8	7.6	101.4	3.6	7.0	7.5		
							Middle	4.1	1	20.1	8.2	32.8	7.4	98.5	3.9	5.5	7.5	3.8	5.7
									2	20.1	8.2	32.8	7.4	98.5	3.9	6.0		3.0	3.7
							Bottom	7.1	1 2	20.1	8.2 8.2	32.8 32.8	7.4 7.4	98.3 98.3	3.9 3.9	5.0 4.4	7.4		
		TCE-WQM2a	Fine	Moderate	15:55	6.8	Surface	1.0	1	20.2	8.3	32.7	7.4	99.2	4.0	6.0			
									2	20.2	8.3	32.7	7.4	99.2	4.0	6.8	7.4		
							Middle	3.4	1	20.1	8.3	32.7	7.4	98.9	4.2	5.5	7.4	4.2	5.6
							Bottom	5.8	2	20.1	8.2 8.2	32.7 32.7	7.4 7.4	98.8 99.0	4.3 4.3	5.6 4.6		-	
							bottom	5.6	2	20.1	8.2	32.7	7.4	99.0	4.3	5.0	7.4		
		TCE-WQM2b	Fine	Moderate	16:07	11.7	Surface	1.0	1	20.2	8.2	32.6	7.3	97.7	5.7	6.0			
									2	20.2	8.2	32.6	7.3	97.7	5.8	6.6	7.3		
							Middle	5.9	1	20.2	8.3 8.3	32.6 32.6	7.3 7.3	97.7 97.8	7.1 7.3	5.5 5.9		7.2	5.8
							Bottom	10.7	2	20.2	8.3	32.6 32.6	7.3	97.8 98.8	7.3 8.4	5.9		-	
							Dottom	10.7	2	20.2	8.3	32.6	7.4	98.9	8.7	5.4	7.4		
		TCE-WQM3A	Fine	Moderate	15:45	4.5	Surface	1.0	1	20.5	8.3	32.8	7.6	102.6	3.3	8.0	7.6		
									2	20.5	8.3	32.8	7.6	102.5	3.3	8.5	7.0	3.3	7.2
							Bottom	3.5	2	20.5	8.3 8.3	32.8 32.8	7.6 7.6	102.0 102.0	3.2 3.2	5.8 6.5	7.6		
		TCE-WQM4	Fine	Moderate	15:34	3.2	Surface	1.0	1	20.3	8.3	32.7	7.5	102.0	3.8	7.5			
		100.11		111111111111111111111111111111111111111					2	20.3	8.3	32.7	7.5	100.5	3.9	8.2	7.5	3.9	8.0
							Bottom	2.2	1	20.3	8.2	32.7	7.5	100.4	3.9	8.5	7.5	3.9	8.0
	Mid-Flood	mon or	70			0.5			2	20.3	8.2	32.7	7.5	100.4	4.0	7.6			
2021-12-08	Mid-Flood	TCE-C1	Fine	Moderate	11:44	8.5	Surface	1.0	1 2	20.0	8.3 8.3	32.2 32.2	7.5 7.5	99.4 99.2	7.1 7.2	5.0 5.9			
							Middle	4.3	1	19.9	8.3	32.3	7.3	97.0	8.6	7.0	7.4		
									2	19.9	8.3	32.4	7.3	96.8	8.7	6.7		9.1	6.4
							Bottom	7.5	1	19.9	8.2	32.6	7.2	95.9	11.5	6.6	7.2		
		TCE-C2	Fine	Moderate	9:56	13.8	Surface	1.0	2	19.9 20.1	8.2 8.2	32.6 32.7	7.2 7.2	96.1 96.5	11.4 3.2	7.2 4.7			
		TCE-C2	rnie	Wioderate	9.36	13.6	Surface	1.0	2	20.1	8.2	32.7	7.2	96.5	3.3	4.4			
							Middle	6.9	1	20.1	8.2	32.7	7.2	96.0	5.3	4.4	7.2	4.7	4.3
									2	20.1	8.2	32.7	7.2	96.0	5.3	4.4		4/	4.5
							Bottom	12.8	1 2	20.1 20.1	8.2 8.2	32.7 32.7	7.2 7.2	96.5 96.6	5.5 5.4	4.2 3.8	7.2		
		TCE-WQM1	Fine	Moderate	11:05	8.1	Surface	1.0	1	20.1	8.2	32.8	7.6	101.1	4.1	7.3			
									2	20.1	8.2	32.8	7.6	101.0	4.1	8.2	7.5		
							Middle	4.1	1	20.0	8.2	32.8	7.5	100.2	4.4	7.5	7.5	4.4	7.0
				1			Bottom	7.1	1	20.0 20.0	8.2 8.2	32.8 32.8	7.5 7.5	100.1 99.7	4.6 4.6	6.8		1	
				1			Dottom	/.1	2	20.0	8.2	32.8	7.5	99.7	4.6	6.4	7.5		
		TCE-WQM2a	Fine	Moderate	10:32	6.8	Surface	1.0	1	19.9	8.2	32.7	7.4	98.2	5.3	4.7			
				1					2	19.9	8.2	32.7	7.4	98.2	5.3	4.5	7.3		
							Middle	3.4	1	19.9	8.2 8.2	32.7	7.3 7.3	97.5	5.8	4.6	1.000	5.6	4.8
							Bottom	5.8	2	19.9 19.9	8.2	32.7 32.7	7.3	97.5 97.1	5.7 5.6	4.6 5.2		+	
				1			- DOLLOIN	5.0	2	19.9	8.2	32.7	7.3	97.1	6.1	5.0	7.3		
		TCE-WQM2b	Fine	Moderate	10:19	11.6	Surface	1.0	1	19.9	8.3	32.6	7.5	100.3	3.5	3.2			
				1					2	19.9	8.3	32.6	7.5	100.3	3.6	3.8	7.5		
				1			Middle	5.8	1	19.9 19.9	8.3 8.3	32.6 32.6	7.4 7.4	98.8 98.5	4.7 5.2	3.6 3.8		5.8	3.9
				1			Bottom	10.6	1	19.9	8.3	32.7	7.4	97.9	9.0	4.3		1	
									2	19.9	8.3	32.7	7.4	98.1	9.0	4.6	7.4		<u> </u>
		TCE-WQM3A	Fine	Moderate	10:43	4.1	Surface	1.0	1	20.4	8.2	32.9	7.4	98.9	8.1	7.7	7.4		
				1			Bottom	3.1	2	20.4	8.2 8.2	32.9 32.9	7.4 7.3	98.8 98.2	8.3 12.0	8.2 7.7		10.3	7.9
				1			Dottom	3.1	1 2	20.2	8.2	32.9	7.3	98.2 98.3	12.0	8.0	7.3		
		TCE-WQM4	Fine	Moderate	10:54	3.2	Surface	1.0	1	20.2	8.2	32.8	7.4	98.5	5.8	7.6	7.4		
		12							2	20.2	8.2	32.8	7.4	98.5	5.8	8.4	7.4	5.8	8.2
				1			Bottom	2.2	1	20.1	8.2	32.9	7.4	98.9	5.8	8.9	7.4	3.0	0.2
		1	l .	1	1	l	1		2	20.1	8.2	32.8	7.4	99.0	5.7	7.8		1	1

										Water			Dissolved			Suspended Solids		Depth-averaged	
Date	Tide	Station	Weather Condition	Sea Condition	Sampling Time	Water Depth (m)	Water Level	Sampling depth (m)	Replicate	Temperature (°C)	pH	Salinity (ppt)	Oxygen (DO) (mg/L)	DO Saturation (%)	Turbidity (NTU)	(SS) (mg/L)	DO (mg/L)	Turbidity (NTU)	SS (mg/L)
2021-12-10	Mid-Ebb	TCE-C1	Fine	Calm	18:27	8.0	Surface	1.0	1	20.2	8.3 8.3	31.8 31.8	7.7	102.7	2.7 2.8	4.0 4.2			
							Middle	4.0	2	20.2	8.3	31.8	7.7	102.6 102.3	3.8	4.2	7.7		
									2	20.2	8.3	31.8	7.7	102.2	3.7	3.8		3.7	3.9
							Bottom	7.0	1	20.2	8.3	31.8	7.7	101.9	4.5	3.8	7.7		
		TCE-C2	Fine	Calm	20:08	12.4	Surface	1.0	2	20.2	8.3 8.3	31.7 32.2	7.7	101.7 102.9	4.5 1.4	3.7 2.9			
		101.02	1110	Cum	20.00	12.1		1.0	2	20.3	8.3	32.2	7.7	102.8	1.3	2.7	7.7		
							Middle	6.2	1	20.3	8.3	32.3	7.6	102.0	2.5	3.1	7.7	2.5	3.2
							Bottom	11.4	2	20.3 20.3	8.3 8.3	32.3 32.3	7.6 7.7	102.0 102.3	2.5 3.8	3.2 3.4		-	
							bottom	11.4	2	20.3	8.3	32.3	7.7	102.5	3.8	3.7	7.7		
		TCE-WQM1	Fine	Calm	19:00	8.6	Surface	1.0	1	20.4	8.3	32.5	7.4	99.8	2.5	6.5			
									2	20.4	8.3	32.5	7.4	99.8	2.6	6.5	7.4		
							Middle	4.3	2	20.4	8.3 8.3	32.5 32.5	7.4 7.4	99.6 99.6	3.0	6.7		3.5	6.8
							Bottom	7.6	1	20.4	8.3	32.5	7.4	99.6	4.8	7.0		+	
									2	20.4	8.3	32.5	7.4	99.6	4.8	7.4	7.4		
		TCE-WQM2a	Fine	Calm	19:32	8.2	Surface	1.0	1	20.3	8.3	32.1	7.8	104.5	1.6	5.0			
							Middle	4.1	2	20.3	8.3 8.3	32.1 32.1	7.8 7.8	104.5 103.7	1.6 2.6	4.6 4.1	7.8		
							Middle	4.1	2	20.3	8.3	32.1	7.8	103.5	2.5	4.3		2.7	4.0
							Bottom	7.2	1	20.3	8.3	32.1	7.7	102.7	3.9	3.0	7.7		
									2	20.3	8.3	32.1	7.7	102.6	3.8	2.7	7.7		
		TCE-WQM2b	Fine	Calm	19:42	10.8	Surface	1.0	1 2	20.3 20.3	8.3 8.3	32.1 32.1	7.7	103.4 103.2	1.0 1.1	2.6 2.5			
							Middle	5.4	1	20.3	8.3	32.3	7.6	103.2	1.5	2.9	7.7		
									2	20.3	8.3	32.3	7.6	101.8	1.4	3.1		1.7	3.3
							Bottom	9.8	1	19.8	8.3	32.6	7.7	102.1	2.4	4.3	7.7		
		TCE-WQM3A	Fine	Calm	19:25	4.0	Surface	1.0	2	19.7 20.5	8.3 8.3	32.7 32.4	7.7 8.0	102.2 107.7	2.5 2.1	4.3 4.8			
		TCE-WQM5A	rine	Caim	19:25	4.0	Surrace	1.0	2	20.5	8.3	32.4	8.0	107.6	2.1	5.0	8.0		
							Bottom	3.0	1	20.5	8.3	32.4	8.0	107.2	3.9	6.6	8.0	3.0	5.7
									2	20.5	8.3	32.4	8.0	107.1	3.9	6.5	8.0		
		TCE-WQM4	Fine	Calm	19:12	4.4	Surface	1.0	2	20.5 20.5	8.3 8.3	32.4 32.4	7.9 7.9	105.7 105.5	6.5 6.4	4.6 4.6	7.9		
							Bottom	3.4	1	20.5	8.3	32.4	7.9	105.5	7.9	5.5		7.0	5.0
									2	20.5	8.3	32.4	7.8	104.7	7.4	5.2	7.8		
2021-12-10	Mid-Flood	TCE-C1	Fine	Calm	13:50	8.0	Surface	1.0	1	20.2	8.3	32.0	7.5	99.7	7.1	4.7			
							Middle	4.0	2	20.2 20.2	8.3 8.3	32.1 32.2	7.5 7.4	99.5 99.3	7.2 9.2	4.6 4.9	7.5		
							Middle	4.0	2	20.2	8.3	32.2	7.4	99.3	9.4	5.1		8.8	5.2
							Bottom	7.0	1	20.2	8.3	32.2	7.5	99.4	10.0	5.6	7.5		
									2	20.2	8.3	32.2	7.5	99.4	10.0	6.1	7.3		
		TCE-C2	Fine	Calm	11:55	12.8	Surface	1.0	2	20.2	8.3 8.3	32.2 32.2	7.6 7.6	101.5 101.3	1.8	3.5 3.2			
							Middle	6.4	1	20.1	8.3	32.2	7.5	99.7	2.5	3.6	7.5		
									2	20.1	8.3	32.2	7.5	99.6	2.6	4.0		2.7	3.9
							Bottom	11.8	1	20.1	8.3	32.2	7.5	99.5	3.6	4.6	7.5		
		TCE-WQM1	Fine	Calm	13:06	8.2	Surface	1.0	2	20.1	8.3 8.2	32.2 32.5	7.5 7.4	99.5 99.5	3.7 4.5	4.7 4.6			
		TCL-WQWII	Thic	Cann	15.00	0.2	Surface	1.0	2	20.4	8.2	32.5	7.4	99.3	4.5	4.4	7.4		
							Middle	4.1	1	20.3	8.2	32.6	7.3	98.3	5.1	5.4	7.4	5.5	5.2
							Bottom	7.2	2	20.3	8.2 8.2	32.6 32.6	7.3 7.3	98.2 98.3	5.2 6.8	5.4 5.6		4 5.5	
							Dottom	1.2	2	20.3	8.2	32.6	7.3	98.3 98.4	6.8	6.0	7.3		
		TCE-WQM2a	Fine	Calm	12:33	7.0	Surface	1.0	1	20.2	8.3	32.2	7.6	101.7	3.3	3.4			
									2	20.2	8.3	32.2	7.6	101.7	3.3	3.4	7.6		
							Middle	3.5	2	20.2	8.3 8.3	32.3 32.3	7.6 7.6	101.1 101.0	4.4 4.5	3.6 3.6	-	4.4	3.6
							Bottom	6.0	1	20.2	8.2	32.5	7.5	100.0	5.6	4.0		-	
									2	20.1	8.2	32.5	7.5	99.8	5.5	3.8	7.5		
		TCE-WQM2b	Fine	Calm	12:21	10.4	Surface	1.0	1	20.2	8.3	31.9	7.8	103.4	2.8	4.1			
							Middle	5.2	2 1	20.2	8.3 8.3	31.9 32.0	7.7 7.6	103.1 100.8	2.9 3.8	4.0 5.3	7.7		
							wiiddie	3.2	2	20.1	8.3	32.0	7.6	100.8	4.0	5.3		3.7	5.0
							Bottom	9.4	1	20.1	8.3	32.1	7.6	100.6	4.3	5.6	7.6	7	
									2	20.1	8.3	32.1	7.6	100.5	4.3	6.0	7.0		
		TCE-WQM3A	Fine	Calm	12:44	4.0	Surface	1.0	1 2	20.5 20.5	8.3 8.3	32.5 32.5	7.7	103.1	4.5 4.8	4.8	7.7		
							Bottom	3.0	2 1	20.5	8.3	32.5	7.7	103.0	5.8	6.2		5.3	5.5
	1								2	20.4	8.3	32.6	7.7	102.9	6.1	6.5	7.7		<u> </u>
			T:	0.1	10.54	3.6	Surface	1.0	1	20.3	8.3	32.5	7.7	103.5	3.6	7.6	7.7		
		TCE-WQM4	Fine	Calm	12:54	5.0	Durrace										1./		
		TCE-WQM4	rine	Calm	12:54	3.0	Bottom	2.6	2	20.3 20.5	8.3 8.2	32.5 32.3	7.7 7.4	103.5 99.0	3.5 3.7	7.6 6.7	7.4	3.6	7.0

										Water			Dissolved			Suspended Solids		Depth-averaged	
Date	Tide	Station	Weather Condition	Sea Condition	Sampling Time	Water Depth (m)	Water Level	Sampling depth (m)	Replicate	Temperature (°C)	pН	Salinity (ppt)	Oxygen (DO) (mg/L)	DO Saturation (%)	Turbidity (NTU)	(SS) (mg/L)	DO (mg/L)	Turbidity (NTU)	SS (mg/L)
2021-12-13	Mid-Ebb	TCE-C1	Sunny	Rough	9:58	7.5	Surface	1.0	1	21.1	8.2	33.2	8.3	113.4	4.5	4.7			
							Middle	3.8	2	21.1 21.1	8.2 8.2	33.2 33.2	8.3 8.3	113.3 112.6	4.6 5.9	4.6 5.0	8.3		
									2	21.1	8.2	33.2	8.3	112.6	5.9	5.3		5.5	5.4
							Bottom	6.5	1	21.0	8.2	33.4	7.9	107.8	6.1	6.6	7.9	1	
		TCE-C2	Sunny	Rough	7:54	13.4	Surface	1.0	2	21.0 21.0	8.2 8.1	33.4 33.1	7.9 7.8	107.9 106.0	6.2 5.5	6.4			+
		TCE-C2	Sunny	Kougn	7:54	15.4	Surrace	1.0	2	21.0	8.1	33.1	7.8	106.0	5.5	3.9			
							Middle	6.7	1	21.2	8.0	33.4	7.3	99.4	3.4	3.9	7.5	4.2	3.7
									2	21.2	8.0	33.4	7.3	99.3	3.5	3.9		4.2	3.7
							Bottom	12.4	2	21.2 21.2	8.0 8.0	33.4 33.4	7.2 7.2	99.0 99.0	3.7 3.8	3.4 3.2	7.2		
		TCE-WQM1	Sunny	Moderate	9:05	9.5	Surface	1.0	1	21.5	8.2	32.8	8.2	112.8	5.2	4.3			+
			,						2	21.5	8.2	32.8	8.2	112.8	5.2	4.3	8.2		
							Middle	4.8	1	21.4	8.2	32.8	8.1	111.5	5.6	4.4	0.2	5.8	4.5
							Bottom	8.5	2	21.4 21.4	8.2 8.2	32.9 32.9	8.1 8.1	111.3 111.3	5.6 6.7	4.7 4.7		4	
							Dottom	6.5	2	21.4	8.2	32.9	8.1	111.3	6.7	4.8	8.1		
		TCE-WQM2a	Sunny	Rough	8:31	7.1	Surface	1.0	1	21.2	8.2	32.8	8.7	118.7	4.3	3.3			
							Middle		2	21.2	8.2	32.8	8.7	118.7	4.3	3.4	8.6		
							Middle	3.6	2	21.1 21.1	8.2 8.2	32.8 32.8	8.5 8.5	115.5 115.4	6.9	3.6 3.5		7.4	3.6
							Bottom	6.1	1	21.1	8.2	32.8	8.4	114.8	11.0	3.7	8.4	†	
									2	21.1	8.2	32.8	8.4	114.8	11.1	4.0	8.4		
		TCE-WQM2b	Sunny	Rough	8:19	11.3	Surface	1.0	1	20.8	8.2	32.9	8.4	113.9	2.9	2.3			
							Middle	5.7	2	20.8	8.2 8.2	32.9 33.0	8.4 8.1	113.8 109.2	2.9 3.1	2.3	8.2		
							Middle	0.3	2	20.9	8.2	33.0	8.0	109.1	3.1	2.8		3.3	3.0
							Bottom	10.3	1	20.9	8.2	33.0	7.9	107.5	3.9	4.0	7.9	7	
		TCE-WQM3A) () (8:42	4.9	0.6	1.0	2	20.9	8.2 8.2	33.0 32.6	7.9	107.5 114.4	4.0 8.5	3.8 5.4	7.5		
		TCE-WQM3A	Sunny	Moderate	8:42	4.9	Surface	1.0	2	21.2	8.2 8.2	32.6	8.4 8.4	114.4 114.4	8.5 8.5	5.4	8.4		
							Bottom	3.9	1	21.0	8.2	32.7	8.4	114.1	9.9	8.3	8.4	9.2	6.7
									2	20.9	8.2	32.8	8.4	114.2	10.0	7.8	8.4		
		TCE-WQM4	Sunny	Moderate	8:53	4.2	Surface	1.0	1	21.4	8.2 8.2	32.9 32.9	8.1	111.0	6.3	3.9	8.1		
							Bottom	3.2	2	21.4	8.2	32.9	8.1 8.1	111.0 110.6	6.4	4.0		6.4	4.3
							Dottom	3.2	2	21.3	8.2	32.9	8.1	110.7	6.4	4.5	8.1		
2021-12-13	Mid-Flood	TCE-C1	Sunny	Rough	14:58	7.8	Surface	1.0	1	21.1	8.2	33.1	8.5	115.5	4.3	4.0			
									2	21.1	8.2	33.2	8.5	115.4	4.3	4.4	8.1		
							Middle	3.9	2	21.1 21.1	8.2 8.2	33.5 33.5	7.8 7.7	106.1 105.9	5.0 5.1	3.6 3.7		5.1	3.7
							Bottom	6.8	1	21.3	8.2	33.6	7.6	104.4	6.0	3.3	7.6	+	
									2	21.3	8.2	33.6	7.6	104.4	6.0	3.2	7.6		
		TCE-C2	Sunny	Rough	17:01	14.8	Surface	1.0	1	21.3	8.1	33.5	7.5	102.9	3.5	3.2			
							Middle	7.4	2	21.3 21.3	8.1 8.1	33.5 33.5	7.5 7.3	102.9 99.9	3.5 3.3	3.5 4.1	7.4		
							Middle	7.4	2	21.3	8.1	33.5	7.3	99.8	3.3	4.1		3.8	4.0
							Bottom	13.8	1	21.3	8.1	33.6	7.2	98.5	4.5	4.6	7.2	7	
		TOT WOLF		N. 1	15:43	9.3	0.6	1.0	2	21.3	8.1	33.6 32.9	7.2	98.5 120.7	4.6	4.3	7.2		
		TCE-WQM1	Sunny	Moderate	15:43	9.3	Surface	1.0	2	21.5 21.5	8.3 8.3	32.9	8.8 8.8	120.7	5.7 5.7	5.7 5.9			
							Middle	4.7	1	21.4	8.3	32.9	8.8	121.1	6.4	6.3	8.8	6.3	
				1					2	21.4	8.3	32.9	8.8	121.1	6.4	6.6		6.3	6.4
							Bottom	8.3	1 2	21.3	8.3	32.9	8.8 8.8	120.4	6.8	7.0	8.8	1	
		TCE-WQM2a	Sunny	Moderate	16:20	7.6	Surface	1.0	1	21.3 21.4	8.3 8.3	32.9 32.8	9.2	120.4 126.3	6.8 3.5	6.9 5.4		+	+
									2	21.4	8.3	32.8	9.2	126.3	3.5	5.2	9.2	1	
				1			Middle	3.8	1	21.3	8.3	32.8	9.1	124.6	3.6	4.4	9.2	5.0	4.6
				1			P		2	21.3	8.2	32.8	9.1	124.6	3.6	4.3		4	
							Bottom	6.6	2	21.1 21.1	8.2 8.2	32.8 32.8	8.6 8.6	116.8 116.8	7.9 7.9	4.4	8.6	1	
		TCE-WQM2b	Sunny	Rough	16:32	11.3	Surface	1.0	1	21.3	8.3	33.0	9.4	129.0	2.7	1.8		<u> </u>	
			,						2	21.3	8.3	33.0	9.4	128.7	2.7	1.5	8.8		
							Middle	5.7	1	21.1	8.2	33.2	8.2	111.5	3.7	2.6	0.0	3.4	2.5
							Bottom	10.3	1	21.1 21.1	8.2 8.2	33.2 33.2	8.2 8.1	111.4 110.4	3.7 3.9	2.4 3.4		+	
							Dottom	10.5	2	21.1	8.2	33.2	8.1	110.4	3.9	3.0	8.1	1	
		TCE-WQM3A	Sunny	Moderate	16:09	4.2	Surface	1.0	1	21.3	8.3	32.6	9.5	129.6	4.7	5.5	9.5		1
									2	21.3	8.3	32.6	9.5	129.6	4.7	5.5	2.5	4.8	5.9
				1			Bottom	3.2	2	21.1 21.1	8.3 8.3	32.6 32.6	9.1 9.0	123.1 122.9	4.9 4.9	6.3	9.0		
		TCE-WQM4	Sunny	Moderate	15:57	3.7	Surface	1.0	1	21.1	8.3	32.5	9.0	124.3	5.7	20.3	9.1	+	+
		" " "	,						2	21.1	8.3	32.5	9.1	124.2	5.7	20.9	9.1	7.3	13.8
							Bottom	2.7	1	21.1	8.3	32.6	8.8	119.8	8.9	7.0	8.8	1	10.0
	1	1		1	1			1	2	21.1	8.3	32.6	8.8	119.7	9.0	6.9		1	1

										Water			Dissolved			Suspended Solids		Depth-averaged	
Date	Tide	Station	Weather Condition	Sea Condition	Sampling Time	Water Depth (m)	Water Level	Sampling depth (m)	Replicate	Temperature (°C)	pН	Salinity (ppt)	Oxygen (DO) (mg/L)	DO Saturation (%)	Turbidity (NTU)	(SS) (mg/L)	DO (mg/L)	Turbidity (NTU)	SS (mg/L)
2021-12-15	Mid-Ebb	TCE-C1	Fine	Moderate	11:16	8.1	Surface	1.0	1	20.6	8.1	33.2	7.5	101.3	3.6	4.5			
			['			Middle	4.1	1	20.6	8.1 8.1	33.2 33.2	7.5 7.4	101.1 99.8	3.6 6.6	4.6	7.4		
			['			madic	1.1	2	20.6	8.1	33.2	7.4	99.8	6.8	4.7	1	6.6	5.1
			['			Bottom	7.1	1	20.6	8.1	33.3	7.5	101.6	9.4	5.7	7.5	1	
		TCE-C2	Fine	Moderate	9:09	13.1	Surface	1.0	2	20.6	8.1 8.0	33.3 32.7	7.5 7.0	101.7 94.8	9.6 1.1	6.2 4.8		-	
		TCE-C2	rine	Wioderate	9.09	15.1	Surface	1.0	2	20.6	8.0	32.7	7.0	94.3	1.1	5.1	1		
			['			Middle	6.6	1	20.7	8.0	32.9	6.6	89.2	1.0	5.0	6.8	1.1	4.5
			['					2	20.7	8.0	32.9	6.6	89.1	0.9	4.0		1	4.5
			['			Bottom	12.1	2	20.7	8.0 8.0	33.0 33.0	6.6	89.6 89.7	1.3	3.9 4.2	6.6		
		TCE-WQM1	Fine	Moderate	10:35	8.4	Surface	1.0	1	20.8	8.1	32.3	7.7	104.5	4.2	3.0			+
			['					2	20.8	8.1	32.3	7.7	104.4	4.4	2.8	7.7		
			['			Middle	4.2	2	20.8	8.1	32.3	7.7	104.4	4.9	3.2	1	4.7	3.3
			['			Bottom	7.4	1	20.8 20.8	8.1 8.1	32.3 32.3	7.7 7.8	104.5 104.9	5.0 5.0	3.1 4.0		+	
			['			Dottom	7.4	2	20.8	8.1	32.3	7.8	104.9	4.9	3.6	7.8		
		TCE-WQM2a	Fine	Moderate	9:54	7.2	Surface	1.0	1	20.5	8.1	32.4	7.7	103.6	1.7	4.2			
			['			Middle	3.6	2	20.5	8.1 8.1	32.4 32.4	7.7	103.6 102.9	1.7 1.8	2.7 3.4	7.7		
			['			Middle	3.6	2	20.5	8.1	32.4	7.7	102.9	1.8	3.4	ł	1.8	3.6
			['			Bottom	6.2	1	20.5	8.1	32.4	7.7	103.2	1.8	3.0	7.7	†	
				<u> </u>					2	20.5	8.1	32.4	7.7	103.3	1.8	5.2	7.7		
		TCE-WQM2b	Fine	Moderate	9:40	11.2	Surface	1.0	1	20.5	8.1	32.4	7.6	102.7	1.9	4.6	1		
			['			Middle	5.6	1	20.5	8.1 8.1	32.4 32.6	7.6 7.1	102.5 96.2	1.8 2.1	4.4 3.9	7.4		
			['			Wildelle	5.0	2	20.6	8.1	32.6	7.1	96.0	2.2	4.2	1	2.1	3.9
			['			Bottom	10.2	1	20.6	8.1	32.6	7.2	97.0	2.3	2.8	7.2	1	
				<u> </u>					2	20.6	8.1	32.6	7.2	97.4	2.2	3.3	/.2		
		TCE-WQM3A	Fine	Moderate	10:12	3.9	Surface	1.0	1 2	20.6	8.1 8.1	32.2 32.2	7.7	103.5 103.5	2.9 2.9	4.1 3.0	7.7		
			['			Bottom	2.9	1	20.6	8.1	32.3	7.7	103.3	3.5	4.7		3.2	4.3
			['					2	20.6	8.1	32.2	7.7	103.3	3.5	5.2	7.7		
		TCE-WQM4	Fine	Moderate	10:23	3.2	Surface	1.0	1	20.7	8.2	32.2	8.3	111.0	2.7	5.3	8.2		
			['			Bottom	2.2	2	20.7 21.0	8.2 8.1	32.2 31.9	8.2 8.0	110.7 108.8	2.7 2.6	6.0 5.8		2.7	5.5
			['			Bottom	2.2	2	21.1	8.1	31.9	8.0	108.6	2.7	4.8	8.0		
2021-12-15	Mid-Flood	TCE-C1	Fine	Moderate	14:54	8.4	Surface	1.0	1	20.6	8.1	33.2	7.5	101.4	4.2	5.4			1
			['					2	20.6	8.1	33.2	7.5	101.4	4.3	5.2	7.5		
			['			Middle	4.2	1 2	20.6	8.1 8.1	33.2 33.2	7.6 7.6	102.1 102.2	5.1 5.6	4.6 5.2	1	5.7	5.2
			['			Bottom	7.4	1	20.6	8.1	33.2	7.7	103.4	7.6	5.1		+	
			['					2	20.6	8.1	33.2	7.7	103.6	7.7	5.4	7.7		
		TCE-C2	Fine	Moderate	16:55	14.1	Surface	1.0	1	20.7	8.2	32.3	8.9	119.7	1.4	5.8			
			['		ļ	Middle	7.1	2	20.7	8.2 8.1	32.3 32.6	8.9 7.0	119.7 95.0	1.3 1.5	5.3 5.3	8.0		
			['			Middle	7.1	2	20.7	8.1	32.6	7.0	95.1	1.6	4.8	İ	1.7	5.2
			['			Bottom	13.1	1	20.7	8.0	32.7	7.2	96.6	2.1	4.9	7.2	1	
				<u> </u>					2	20.7	8.0	32.7	7.2	96.9	2.1	4.8	/.2		
		TCE-WQM1	Fine	Moderate	15:48	8.1	Surface	1.0	2	20.9 20.9	8.1 8.1	32.2 32.2	7.8 7.8	106.0 105.7	3.5 3.7	5.6 5.2	1		
			[1 '			Middle	4.1	1	20.9	8.1	32.3	7.8	105.7	5.1	5.7	7.8		1
			1	1 '					2	20.9	8.1	32.3	7.8	105.6	5.2	6.0		5.0	5.8
			1	1 '			Bottom	7.1	1	20.9	8.1	32.3	7.9	106.5	6.0	6.3	7.9		
		TCE-WQM2a	Fine	Moderate	16:20	7.1	Surface	1.0	2	20.9	8.1 8.2	32.3 32.2	7.9 8.6	106.8 115.5	6.2 2.2	5.9 5.9		+	+
		101-11011124	I III	Woderate	10.20	, I	Juriace	1.0	2	20.7	8.2	32.2	8.6	115.5	2.2	5.0			
			1	1 '			Middle	3.6	1	20.5	8.1	32.3	8.0	106.9	2.3	5.2	8.3	2.4	5.3
			1	1 '					2	20.5	8.1	32.3	8.0	106.9	2.4	5.9			3.3
			1	1 '			Bottom	6.1	1 2	20.6 20.6	8.1 8.1	32.3 32.3	8.0 8.0	107.0 107.1	2.7 2.7	4.8 5.0	8.0		
		TCE-WQM2b	Fine	Moderate	16:30	12.1	Surface	1.0	1	20.6	8.1	32.3	8.5	114.5	1.5	4.5			+
			1						2	20.7	8.1	32.3	8.5	114.2	1.6	4.7	8.2		
			[1 '			Middle	6.1	1	20.6	8.1	32.4	7.8	105.4	1.9	4.9	1 0.2	1.8	5.0
			[1 '			Bottom	11.1	2 1	20.6	8.1 8.1	32.4 32.4	7.8 8.0	105.4 107.8	1.9 2.0	4.9 5.5		+	
			[1 '			DOUGH	11.1	2	20.6	8.1	32.4	8.0	108.0	2.0	5.6	8.0		
		TCE-WQM3A	Fine	Moderate	16:09	4.1	Surface	1.0	1	20.7	8.2	32.1	8.5	114.1	3.3	5.8	8.5	1	
			1	1 '					2	20.7	8.2	32.2	8.5	113.9	3.4	5.2	-	3.6	5.3
			[1 '			Bottom	3.1	2	20.7	8.2 8.2	32.3 32.3	8.1 8.1	108.7 108.5	4.0 3.8	5.4 4.7	8.1		
		TCE-WQM4	Fine	Moderate	15:59	3.7	Surface	1.0	1	20.7	8.2	32.3	8.9	108.5	2.6	5.2			+
		1			1				2	21.0	8.2	32.1	8.9	120.0	2.6	4.4	8.9	2.8	4.5
			ļ			ļ	Bottom	2.7	1 2	20.9	8.2 8.2	32.2 32.2	8.7 8.7	118.0 117.8	3.0 3.0	4.5 4.0	8.7	1 2.8	4.5

										Water			Dissolved			Suspended Solids		Depth-averaged	
Date	Tide	Station	Weather Condition	Sea Condition	Sampling Time	Water Depth (m)	Water Level	Sampling depth (m)	Replicate	Temperature (°C)	pH	Salinity (ppt)	Oxygen (DO) (mg/L)	DO Saturation (%)	Turbidity (NTU)	(SS) (mg/L)	DO (mg/L)	Turbidity (NTU)	SS (mg/L)
2021-12-17	Mid-Ebb	TCE-C1	Misty	Calm	10:16	8.0	Surface	1.0	1	21.4	8.2	33.2	8.2	111.9	7.1	6.9			
							Middle	4.0	2	21.4 21.4	8.2 8.2	33.2 33.7	8.1 8.0	111.6 110.2	7.0 8.2	7.3 8.3	8.1		
									2	21.4	8.2	33.7	8.0	110.3	8.2	8.6	1	8.1	8.1
							Bottom	7.0	1	21.4	8.2	33.6	8.2	112.2	9.0	8.9	8.2		
		TCE-C2	Misty	Calm	12:04	12.4	Surface	1.0	2	21.4 21.5	8.2 8.2	33.5 33.0	8.2 8.5	112.4 116.9	9.1 2.4	8.6 5.1			
		TCE-C2	Wilsty	Califi	12.04	12.4	Surface	1.0	2	21.5	8.2	33.0	8.5	116.9	2.5	5.2			
							Middle	6.2	1	21.5	8.2	33.0	8.5	116.8	3.5	4.6	8.5	3.5	4.7
							70		2	21.5	8.2	33.0	8.5	116.8	3.6	4.9			4.7
							Bottom	11.4	2	21.5 21.5	8.2 8.2	33.0 33.0	8.5 8.5	116.7 116.7	4.6 4.6	4.1 4.1	8.5		
		TCE-WQM1	Misty	Calm	10:52	8.6	Surface	1.0	1	21.7	8.2	33.3	8.0	109.9	4.1	6.7			
									2	21.7	8.2	33.3	8.0	109.9	4.1	6.5	7.9		
							Middle	4.3	1 2	21.7 21.7	8.2 8.2	33.3 33.3	7.9 7.9	109.7 109.7	5.1 5.1	6.0		5.2	6.2
							Bottom	7.6	1	21.7	8.2	33.3	8.0	110.1	6.6	5.7			
									2	21.8	8.2	33.3	8.0	110.2	6.5	5.7	8.0		
		TCE-WQM2a	Misty	Calm	11:24	8.0	Surface	1.0	1	21.5	8.2	32.9	8.5	117.0	6.2	14.4			
							Middle	4.0	2	21.5 21.5	8.2 8.2	32.9 33.0	8.5 8.4	117.0 115.2	6.2 7.0	14.1 13.5	8.5		
							Middle	4.0	2	21.5	8.2	33.0	8.4	115.0	7.1	13.5	-	7.1	13.7
							Bottom	7.0	1	21.6	8.2	32.9	8.4	114.8	8.1	13.4	8.4		
		7000 VIVOV (81	20.		11.05	10.0		1.0	2	21.6	8.2	32.9	8.4	114.8	8.2	13.2	0.4		
		TCE-WQM2b	Misty	Calm	11:35	10.8	Surface	1.0	1 2	21.5 21.5	8.2 8.2	33.0 33.0	8.5 8.5	116.2 116.1	3.7 3.6	5.2 5.0	-		
							Middle	5.4	1	21.5	8.2	33.2	8.0	109.3	4.8	7.2	8.2	4.9	7.8
									2	21.5	8.2	33.2	7.9	108.8	4.8	7.9		4.9	7.8
							Bottom	9.8	1 2	21.5 21.5	8.2 8.2	33.2 33.2	7.9 7.9	108.0 108.4	6.2	10.9 10.3	7.9		
		TCE-WQM3A	Misty	Calm	11:14	4.0	Surface	1.0	1	21.6	8.2	33.0	8.4	114.9	4.6	19.0			
						-10			2	21.6	8.2	33.0	8.3	114.8	4.7	19.6	8.3	5.0	24.4
							Bottom	3.0	1	21.6	8.3	33.0	8.3	114.7	5.4	29.2	8.3] 3.0	24.4
		TCE-WQM4	Misty	Calm	11:04	4.0	Surface	1.0	2	21.6 21.7	8.3 8.3	33.0 33.1	8.3 8.5	114.7 117.1	5.5 5.8	29.9 4.7			
		TCE-WQIVI4	Wilsty	Callii	11.04	4.0	Surrace	1.0	2	21.7	8.3	33.1	8.5	116.8	5.7	4.5	8.5		
							Bottom	3.0	1	21.8	8.3	32.9	8.4	116.1	6.1	6.0	8.4	5.9	5.4
2021-12-17	Mid-Flood	TCE-C1	26.4	0.1	0.27	0.0	0 (1.0	2	21.9	8.3 8.2	32.9 33.2	8.4 8.1	116.1 111.6	6.1 7.3	6.5 7.2	0.4		
2021-12-17	Mid-Flood	ICE-CI	Misty	Calm	8:27	8.0	Surface	1.0	2	21.4 21.4	8.2	33.2	8.1 8.1	111.6 111.2	7.3	7.2	-		
							Middle	4.0	1	21.4	8.2	33.8	8.0	110.3	8.4	7.6	8.1	8.3	7.7
									2	21.4	8.2	33.8	8.0	110.6	8.5	7.5		8.3	/./
							Bottom	7.0	1 2	21.4 21.3	8.2 8.2	33.9 33.9	8.1 8.1	111.7	9.0 9.1	8.4	8.1		
		TCE-C2	Misty	Calm	6:40	12.8	Surface	1.0	1	21.3	8.0	33.5	7.3	111.8 100.8	4.0	8.4 4.6			
			,						2	21.4	8.0	33.5	7.3	100.4	4.1	4.8	7.2		
							Middle	6.4	1	21.5	8.0	33.6	7.2	98.7	4.8	3.5) /·· <u>·</u>	4.8	3.9
							Bottom	11.8	2	21.5 21.5	8.0 8.0	33.6 33.6	7.2 7.2	98.7 99.1	4.8 5.6	3.6 3.4		-	
							Dottom	11.0	2	21.5	8.0	33.6	7.2	99.2	5.6	3.2	7.2		
		TCE-WQM1	Misty	Calm	7:45	8.2	Surface	1.0	1	21.7	8.2	33.2	8.0	109.7	4.3	6.0			
			1	1			Middle	4.1	2	21.7 21.7	8.2 8.2	33.2 33.3	8.0 8.0	109.7 110.6	4.3 5.2	6.1	8.0		
			1	1			iviidale	4.1	2	21.7	8.2	33.3	8.0	110.6	5.2	6.6	1	5.3	6.7
			1				Bottom	7.2	1	21.2	8.2	33.6	8.1	111.3	6.4	7.1	8.1	1	
		TOT WOLES	M: ·	6.1	7:14	70	Co. C	1.0	2	21.1 21.5	8.2	33.7 32.9	8.1	111.3	6.5	7.3 5.5	0.1		
		TCE-WQM2a	Misty	Calm	7:14	7.0	Surface	1.0	1 2	21.5 21.5	8.2 8.2	32.9 32.9	8.3 8.3	114.3 114.3	5.1 5.1	5.5	1		
			1	1			Middle	3.5	1	21.5	8.2	32.9	8.3	113.7	6.6	6.7	8.3	6.2	
			1	1					2	21.5	8.2	32.9	8.3	113.7	6.7	6.5		6.3	6.7
			1				Bottom	6.0	1 2	21.5	8.2 8.2	32.9 32.9	8.3	113.9	7.0	7.8	8.3		
		TCE-WQM2b	Misty	Calm	7:04	10.4	Surface	1.0	2	21.5 21.4	8.2 8.2	32.9 32.9	8.3 8.2	114.0 112.8	7.1 4.1	7.8 4.9			
		102.110.1120			1.01	10.1			2	21.4	8.2	32.9	8.2	112.6	4.1	4.9	8.2		
			1	1			Middle	5.2	1	21.4	8.2	33.1	8.2	111.8	5.1	5.0		5.1	5.8
			1	1			Bottom	9.4	2	21.4 21.4	8.2 8.2	33.1 33.1	8.2 8.2	111.7 111.9	5.2 6.1	5.5 7.1		+	
			1	1			Dottom	7.4	2	21.4	8.2	33.1	8.2	111.9	6.1	7.1	8.2		
		TCE-WQM3A	Misty	Calm	7:24	4.0	Surface	1.0	1	21.5	8.2	33.1	8.4	114.9	4.4	5.8	8.4		
			1	1			n ::		2	21.5	8.2	33.1	8.4	114.8	4.4	5.4		5.1	5.3
			1				Bottom	3.0	1 2	21.5 21.4	8.2 8.2	33.1 33.1	8.4 8.4	114.7 114.7	5.7 5.8	5.0	8.4		
		TCE-WQM4	Misty	Calm	7:34	3.6	Surface	1.0	1	21.4	8.2	33.1	8.3	114.0	5.2	4.9	8.3		
			1						2	21.6	8.2	33.1	8.3	114.0	5.1	4.5	0.5	5.6	5.7
			1	1			Bottom	2.6	2	21.1 21.0	8.3 8.3	33.5 33.6	8.4 8.4	114.2 114.2	6.1	6.5	8.4		1
									2	21.0	0.3	J35.b	8.4	114.2	0.1	0./			

										Water			Dissolved			Suspended Solids		Depth-averaged	
Date	Tide	Station	Weather Condition	Sea Condition	Sampling Time	Water Depth (m)	Water Level	Sampling depth (m)	Replicate	Temperature (°C)	рН	Salinity (ppt)	Oxygen (DO) (mg/L)	DO Saturation (%)	Turbidity (NTU)	(SS) (mg/L)	DO (mg/L)	Turbidity (NTU)	SS (mg/L)
2021-12-20	Mid-Ebb	TCE-C1	Cloudy	Moderate	11:58	8.0	Surface	1.0	1 2	20.3	8.2 8.2	34.1 34.1	7.6 7.6	103.0 103.0	10.3 10.3	15.2 15.5			
							Middle	4.0	1	20.3	8.2	34.1	7.6	103.0	10.3	14.3	7.6		
									2	20.3	8.2	34.1	7.6	102.9	10.7	14.0		10.9	14.3
							Bottom	7.0	1	20.3	8.2	34.0	7.6	102.9	11.8	13.2	7.6		
		TCE-C2	Cloudy	Moderate	13:52	14.8	Surface	1.0	2	20.3	8.2 8.1	34.0 33.7	7.6 7.3	102.9 99.4	11.7 3.5	13.4 3.3			
		TCL-C2	Cloudy	Wiodelate	15.52	14.0	Surface	1.0	2	20.7	8.1	33.7	7.3	99.3	3.5	3.6	7.0		
							Middle	7.4	1	20.7	8.1	33.8	7.3	98.8	3.7	4.0	7.3	3.8	3.9
							D. (1	13.8	2	20.7	8.1	33.8	7.3	98.8	3.8	3.9		-	
							Bottom	13.8	1 2	20.7	8.1 8.1	33.8 33.8	7.4 7.4	100.8 101.1	4.1 4.1	4.5 4.2	7.4		
		TCE-WQM1	Cloudy	Moderate	12:40	7.9	Surface	1.0	1	20.0	8.2	33.6	7.5	101.0	6.3	7.1			
									2	20.0	8.2	33.6	7.6	101.1	6.4	7.0	7.6		
							Middle	4.0	1 2	19.9 19.9	8.2 8.2	33.5 33.5	7.6 7.6	101.6 101.7	6.6	8.6 8.3		6.6	8.5
							Bottom	6.9	1	19.9	8.2	33.5	7.6	101.7	6.7	10.0		-	
							Dottom	0.5	2	19.9	8.2	33.5	7.7	103.0	6.7	9.8	7.7		
		TCE-WQM2a	Cloudy	Moderate	13:16	7.2	Surface	1.0	1	20.2	8.2	33.5	7.6	101.7	6.5	9.8			
							Middle	3.6	2	20.2	8.2 8.2	33.5 33.5	7.6	101.7 101.7	6.5 7.4	9.9 8.7	7.6		
							Middle	3.6	2	20.2	8.2	33.5	7.6 7.6	101.7	7.4	8.6		7.4	8.7
							Bottom	6.2	1	20.2	8.2	33.5	7.6	101.5	8.2	7.6	7.6	1	
									2	20.2	8.2	33.5	7.6	101.5	8.6	7.4	7.6		
		TCE-WQM2b	Cloudy	Moderate	13:27	12.7	Surface	1.0	1	20.4	8.2	33.6	7.5	101.0	4.4	5.5			
							Middle	6.4	2	20.4	8.2 8.2	33.6 33.6	7.5 7.5	101.0 101.3	4.4 4.6	5.7 5.2	7.5		
							- Madic		2	20.4	8.2	33.6	7.5	101.4	4.6	5.2		4.8	4.7
							Bottom	11.7	1	20.3	8.2	33.6	7.6	102.0	5.4	3.4	7.6		
		mor vivos ra i			12.07	3.9			2	20.3	8.2 8.2	33.6 33.4	7.6 7.5	102.2 101.1	5.5 10.7	3.2 12.1	7.0		
		TCE-WQM3A	Cloudy	Moderate	13:06	3.9	Surface	1.0	2	20.4	8.2 8.2	33.4	7.5	101.1	10.7	12.1	7.5		
							Bottom	2.9	1	20.3	8.2	33.4	7.6	102.8	12.8	15.2	7.0	11.8	13.9
									2	20.3	8.2	33.4	7.7	103.1	13.0	15.7	7.6		
		TCE-WQM4	Cloudy	Moderate	12:56	3.8	Surface	1.0	1	20.1	8.2	33.4	7.8	104.5	10.5	13.3	7.8		
							Bottom	2.8	2	20.1	8.2 8.2	33.4 33.3	7.8 7.8	104.8 105.2	10.6 11.2	13.0 11.9		11.0	12.6
							Dottoni	2.0	2	20.1	8.2	33.3	7.9	105.3	11.6	12.0	7.8		
2021-12-20	Mid-Flood	TCE-C1	Cloudy	Moderate	10:26	8.0	Surface	1.0	1	20.2	8.2	34.1	7.6	102.8	14.8	16.6			
									2	20.2	8.2	34.1	7.6	102.7	15.2	16.2	7.6		
							Middle	4.0	1 2	20.2	8.2 8.2	34.1 34.1	7.6 7.6	102.7 102.7	15.6 15.4	14.4 14.0		14.3	14.3
							Bottom	7.0	1	20.2	8.2	34.0	7.6	102.9	12.4	12.1	7.0	1	
									2	20.2	8.2	34.0	7.6	103.0	12.2	12.6	7.6		
		TCE-C2	Cloudy	Moderate	8:20	13.6	Surface	1.0	1	20.7	8.1	33.7	7.2	98.2	5.7	5.5			
							Middle	6.8	2	20.7	8.1 8.1	33.7 33.6	7.2 7.2	98.2 97.9	5.7 9.1	5.4 17.2	7.2		
							Middle	0.0	2	20.7	8.1	33.6	7.2	97.9	9.2	17.1		8.5	13.5
							Bottom	12.6	1	20.7	8.1	33.7	7.2	98.0	10.4	17.6	7.2		
		TCE-WQM1	Cl. I	N. 1 .	9:27	7.8		1.0	2	20.7	8.1	33.7	7.2	98.0 100.7	10.8	17.9	7.2		
		ICE-WQM1	Cloudy	Moderate	9:27	7.8	Surface	1.0	2	20.1	8.2 8.2	33.5 33.5	7.5 7.5	100.7	6.3	8.3 8.3			
							Middle	3.9	1	20.1	8.2	33.5	7.5	100.9	6.5	7.1	7.5		7.5
									2	20.1	8.2	33.5	7.5	100.9	6.4	7.4		6.5	7.5
							Bottom	6.8	1 2	20.1	8.2	33.5	7.6	101.4	6.7	6.9	7.6		
		TCE-WQM2a	Cloudy	Moderate	8:55	7.0	Surface	1.0	1	20.1	8.2 8.2	33.5 33.4	7.6 7.6	101.4 102.1	6.7 7.1	7.0 6.6			
									2	20.2	8.2	33.4	7.6	102.1	7.1	6.4	7.6		
							Middle	3.5	1	20.2	8.2	33.5	7.6	101.7	8.8	7.0	7.6	8.7	7.1
							P		2	20.2	8.2	33.5	7.6	101.7	9.1 9.9	7.1 7.9		-	"-
							Bottom	6.0	2	20.2	8.2 8.2	33.5 33.5	7.6 7.6	102.2 102.3	9.9	7.9	7.6		
		TCE-WQM2b	Cloudy	Moderate	8:44	11.7	Surface	1.0	1	20.2	8.1	33.6	7.4	100.4	7.1	4.8			
									2	20.4	8.1	33.6	7.4	100.4	7.2	4.8	7.4		
							Middle	5.9	1	20.4	8.1	33.6	7.4	100.2	9.9	7.8		9.6	7.4
							Bottom	10.7	2	20.4	8.1 8.1	33.6 33.6	7.4 7.4	100.2 100.2	10.1 11.7	8.0 9.8		+	
							Dottoni	10.7	2	20.4	8.1	33.6	7.4	100.2	11.7	9.4	7.4		
		TCE-WQM3A	Cloudy	Moderate	9:06	4.7	Surface	1.0	1	20.4	8.1	33.4	7.5	100.8	5.4	16.3	7.5		
									2	20.4	8.1	33.4	7.5	100.9	5.4	16.1		6.0	12.5
							Bottom	3.7	1 2	20.4	8.1	33.4 33.4	7.6	101.9	6.5 6.7	8.8	7.6		
		TCE-WQM4	Cloudy	Moderate	9:16	3.4	Surface	1.0	1	20.4	8.1 8.2	33.4	7.6 7.6	102.2 102.3	5.6	8.9 5.8			
		101.110.114	Cioucy		7.20	5.1	- Junior	2.0	2	20.1	8.2	33.4	7.6	102.3	5.5	6.1	7.6	5.7	7.2
							Bottom	2.4	1	20.1 20.1	8.2 8.2	33.3 33.3	7.7 7.7	102.6 102.8	5.7 5.8	8.6 8.1	7.7	3.7	/.2
)										

										Water			Dissolved			Suspended Solids		Depth-averaged	
Date	Tide	Station	Weather Condition	Sea Condition	Sampling Time	Water Depth (m)	Water Level	Sampling depth (m)	Replicate	Temperature (°C)	pH	Salinity (ppt)	Oxygen (DO) (mg/L)	DO Saturation (%)	Turbidity (NTU)	(SS) (mg/L)	DO (mg/L)	Turbidity (NTU)	SS (mg/L)
2021-12-22	Mid-Ebb	TCE-C1	Misty	Calm	13:10	8.0	Surface	1.0	1 2	19.2 19.2	8.2 8.2	33.3 33.3	7.0 7.0	92.0 92.0	6.1 6.2	9.8 9.8			
							Middle	4.0	1	19.2	8.2	33.3	7.0	92.0	7.8	9.8	7.0		
									2	19.2	8.2	33.2	7.0	91.9	7.8	10.2		7.4	10.6
							Bottom	7.0	2	19.2 19.2	8.2 8.2	33.2 33.2	7.0 7.0	92.2 92.2	8.4 8.4	11.2 11.6	7.0		
		TCE-C2	Misty	Calm	15:07	12.4	Surface	1.0	1	19.2	8.2	33.0	6.6	88.2	1.7	2.7			
									2	19.8	8.2	33.0	6.6	88.1	1.7	3.3	6.6		
							Middle	6.2	2	19.8 19.8	8.2 8.2	33.0 33.0	6.6	88.2 88.3	2.3	4.2 3.7		2.3	3.8
							Bottom	11.4	1	19.8	8.2	33.0	6.8	90.9	3.0	4.1		1	
									2	19.8	8.2	33.0	6.9	91.1	2.9	4.5	6.8		
		TCE-WQM1	Misty	Calm	13:47	8.6	Surface	1.0	2	19.1 19.1	8.2 8.2	32.7 32.7	6.7	88.2 88.2	7.5 7.5	11.7 11.6			
							Middle	4.3	1	19.1	8.3	32.7	6.7	88.3	8.0	11.7	6.7		
									2	19.1	8.3	32.7	6.7	88.3	8.1	10.8		7.9	11.1
							Bottom	7.6	1	19.1	8.3 8.3	32.7 32.7	6.8	88.5 88.5	8.3 8.3	10.6	6.8		
		TCE-WQM2a	Misty	Calm	14:29	8.0	Surface	1.0	1	19.1 19.4	8.2	32.8	6.8	89.8	3.2	10.4			
									2	19.4	8.2	32.8	6.8	89.8	3.2	4.5	6.8		
							Middle	4.0	1	19.3 19.3	8.2 8.2	32.8 32.8	6.8	89.0 89.1	3.6 3.7	5.5	0.0	3.9	5.1
							Bottom	7.0	2	19.3	8.2 8.2	32.8 32.9	6.8	89.1 89.8	4.9	5.4		-	
									2	19.3	8.2	32.9	6.8	89.9	4.8	4.6	6.8		
		TCE-WQM2b	Misty	Calm	14:42	10.8	Surface	1.0	1	19.7	8.2	32.9	6.8	90.2	1.8	4.3			
							Middle	5.4	2	19.7 19.6	8.2 8.2	32.9 32.9	6.8	90.1 90.2	1.8 2.2	4.3 6.2	6.8		
							iviidale	5.1	2	19.6	8.2	32.9	6.8	90.3	2.2	7.0		2.5	5.9
							Bottom	9.8	1	19.6	8.2	32.9	7.0	92.1	3.6	6.3	7.0	1	
		TCE-WQM3A	Minter	Calm	14:18	4.0	Surface	1.0	2	19.6 19.5	8.2 8.2	32.9 32.5	7.0	92.3 89.7	3.5 5.9	7.4 7.9			
		ICE-WQM3A	Misty	Caim	14:18	4.0	Surrace	1.0	2	19.5	8.2	32.5	6.8	89.7	6.0	8.4	6.8		
							Bottom	3.0	1	19.4	8.2	32.5	7.0	92.0	7.4	11.4	7.0	6.7	9.6
									2	19.3	8.2	32.5	7.0	92.1	7.5	10.6	7.0		
		TCE-WQM4	Misty	Calm	14:07	4.0	Surface	1.0	2	19.6 19.6	8.2 8.2	32.7 32.7	7.1 7.2	94.5 94.5	2.6 2.6	5.2 4.6	7.1		
							Bottom	3.0	1	19.4	8.2	32.7	7.2	94.9	3.8	5.7	7.2	3.2	6.6
									2	19.4	8.2	32.6	7.2	94.8	3.8	10.7	7.2		
2021-12-22	Mid-Flood	TCE-C1	Misty	Calm	11:38	8.0	Surface	1.0	2	19.2 19.2	8.2 8.2	33.3 33.3	7.0	92.6 92.6	6.1	11.6 10.9			
							Middle	4.0	1	19.2	8.2	33.3	7.1	93.0	7.1	10.9	7.0	7.0	40.5
									2	19.2	8.2	33.3	7.1	93.2	7.1	10.2		7.2	10.6
							Bottom	7.0	2	19.1 19.1	8.2 8.2	33.3 33.3	7.1 7.1	93.8 93.9	8.4 8.4	10.2 10.0	7.1		
		TCE-C2	Misty	Calm	9:49	12.8	Surface	1.0	1	19.7	8.2	33.0	6.6	87.8	3.7	4.8			
									2	19.7	8.2	33.0	6.6	87.8	3.9	5.0	6.6		
							Middle	6.4	1	19.6	8.2 8.2	33.0 33.0	6.6	87.8 87.8	6.4	4.5 5.2	0.0	5.7	5.2
							Bottom	11.8	1	19.6 19.6	8.2	33.0	6.6	87.8 88.0	6.4 7.0	5.2		-	
									2	19.6	8.2	33.0	6.6	88.1	7.1	6.4	6.6		
		TCE-WQM1	Misty	Calm	10:56	8.2	Surface	1.0	1	19.0	8.2	32.7	6.7	87.7	4.0	4.6			
							Middle	4.1	2	19.0 19.0	8.2 8.2	32.7 32.7	6.7	87.8 89.6	4.1 5.1	5.2 5.5	6.8		
									2	18.9	8.2	32.7	6.9	89.9	5.2	5.8		5.3	6.4
							Bottom	7.2	1	18.9	8.2	32.7	7.0	91.1	6.8	9.0	7.0	1	
		TCE-WQM2a	Misty	Calm	10:23	7.0	Surface	1.0	2	18.9 19.3	8.2 8.2	32.7 33.0	7.0 6.9	91.3 90.4	6.8 5.6	8.2 5.5	-		
		101.11011124	isty	Cann	10.20	7.0			2	19.3	8.2	33.0	6.9	90.4	5.6	5.3	6.9		
							Middle	3.5	1	19.3	8.2	33.0	6.9	91.2	7.2	5.6	6.9	7.1	5.8
							Bottom	6.0	2	19.3 19.3	8.2 8.2	33.0 33.0	7.0 7.0	91.6 92.5	7.8 8.1	5.8		1	3.0
							Bottom	6.0	2	19.3	8.2 8.2	33.0	7.0	92.5 92.7	8.1 8.0	6.1	7.0		
		TCE-WQM2b	Misty	Calm	10:12	10.4	Surface	1.0	1	19.3	8.2	33.0	6.8	89.6	4.6	5.2			
							26111		2	19.3	8.2	33.0	6.8	89.6	4.7	5.1	6.8		
							Middle	5.2	2	19.3 19.3	8.2 8.2	33.0 33.0	6.8	89.6 89.6	5.8 5.8	5.1 5.4		5.5	5.4
							Bottom	9.4	1	19.2	8.2	33.0	6.9	91.3	6.1	5.5	6.9	1	
			3.5		10.11				2	19.2	8.2	33.0	6.9	91.3	6.1	5.8	0.5		
		TCE-WQM3A	Misty	Calm	10:34	4.0	Surface	1.0	2	19.2 19.2	8.2 8.2	32.7 32.7	6.8	89.9 90.1	3.8	5.7 6.8	6.9		
							Bottom	3.0	1	19.2	8.2	32.7	7.0	90.1	4.8	6.4	7.0	4.3	6.5
									2	19.3	8.2	32.6	7.0	91.8	5.0	7.0	7.0		
		TCE-WQM4	Misty	Calm	10:44	3.6	Surface	1.0	1	19.2	8.2	32.8	6.9	90.2	3.5	6.0	6.9		
	1			1					2	19.2	8.2	32.8	6.9	90.4	3.4	5.6		4.1	6.2
							Bottom	2.6	1	19.2	8.2	32.8	7.0	91.6	4.8	6.9	7.0		1

No.											Water			Dissolved			Suspended Solids		Depth-averaged	
Part									Sampling depth (m)	Replicate	Temperature (°C)			Oxygen (DO) (mg/L)			(SS) (mg/L)			SS (mg/L)
Part	2021-12-24	Mid-Ebb	TCE-C1	Misty	Calm	14:38	8.0	Surface	1.0											
Vicinity								Middle	4.0				32.9	7.3	97.3	6.5 7.2		7.3		
No. Property Pro								Madic	1.0									1	7.3	12.9
No.								Bottom	7.0				33.0	7.3		8.2		7.3		
Part			TCE C2	Mister	C-1	16.27	12.4	C	1.0											
Part			ICE-C2	Misty	Caim	10:27	12.4	Surface	1.0									-		
Martin M								Middle	6.2		20.1	8.1	33.4	7.2	96.2	5.1	8.7	7.2	E 2	
Marting Mart								_		2									3.5	8.0
No.								Bottom	11.4	1				7.2				7.2		
			TCE-WQM1	Misty	Calm	15:15	8.6	Surface	1.0											-
Marie Mari				,									33.5	7.1		5.7		7.0		
								Middle	4.3										6.4	10.1
TCLPRQSE Mail								Bottom	7.6										-	
Part											20.2	8.2	33.5	7.0	94.7	7.5	10.6	7.0		
Martin M			TCE-WQM2a	Misty	Calm	15:46	8.0	Surface	1.0				33.5	7.2						
Marie Mari								Middle	4.0	_			33.5	7.2	97.1	5.1		7.2		
Part								Middle	4.0									-	6.3	7.4
No. Proceedings Mary Color 1528 118 Solato 12 128 12								Bottom	7.0		20.3	8.0	33.3	7.2	96.5	7.1	9.0	7.2		
Part			7000 11103 fee	20.			10.0		1.0									7.2		
A			TCE-WQM2b	Misty	Calm	15:57	10.8	Surface	1.0					7.2				-		
Part								Middle	5.4	_			33.3	7.2		5.7	7.3	7.2		6.5
Part																			3.3	0.5
Figure F								Bottom	9.8	•	20.6		33.1	7.2	97.8	6.9	7.9	7.2		
Rotton State Rotton State St			TCE-WOM3A	Mistv	Calm	15:37	4.2	Surface	1.0											
FE-WQM4										2	20.5	8.1	33.5	7.1	95.4	6.2	22.7	7.1	6.8	19.7
TCE-WCM1 Missy Calm 1527 40 Surface 10 1 203 81 33.0 72 96.7 54 107 72 72 72 72 73 74 75 75 75 75 75 75 75								Bottom	3.2	-								7.1	0.0	13.7
Part			TCE-WOM4	Michy	Calm	15.27	4.0	Surface	1.0											
Mid-Flood Fig. Mish Solution Solut			TCL TTQ.III	Misty	Cann	10.27	1.0	Juriace	1.0	2			33.6	7.2		5.5		7.2		10.1
Nath-Hook Tele Miny Calm 1125 8.0 Surface 1.0 2 30 8.1 30 73 97 43 160 100 1126 12								Bottom	3.0					7.2	97.2			7.2	1 6.0	10.1
Middle	2021 12 24	M:J ElJ	TCE C1	Mister	C-l	11.25	0.0	Conform	1.0				33.4	7.2		6.5				
Middle	2021-12-24	Mid-Fiood	ICE-CI	Misty	Caim	11:25	6.0	Surrace	1.0	-										
Rotion 7.0 1 193								Middle	4.0		19.9	8.1	33.3	7.3	97.2	8.1	11.5	7.3	8.1	11.7
TCE-C2 Missy Calm 9.35																			J 5.1	12.7
TCE-VQMI								Bottom	7.0	2			33.4	7.3	97.1			7.3		
TCE-WQMED Misty Calm 10.04 7.0 Surface 1.0 1.0 2.01 8.0 8.1 33.6 7.1 94.8 7.4 10.2 7.1 7.6 1.0			TCE-C2	Misty	Calm	9:35	12.8	Surface	1.0	1			33.4	7.1	95.2	6.7				
Mistry Calm 10:39 R2 Surface 10 1 20:1 8:1 33.6 7:1 94.8 7.4 10:2 7.6 11:4 7.6 11:4 7.6 11:4 7:4 7:5				,														7.1		
Bottom 11.8 1 20.1 8.0 33.5 7.1 94.9 8.7 10.0 7.1								Middle	6.4				33.5	7.1	94.8	7.4		-	7.6	11.0
TCE-WCMI Misty Calm 10.39								Bottom	11.8										-	
Middle										2	20.1	8.0	33.5	7.1	94.9	8.5	10.0	7.1		
Middle			TCE-WQM1	Misty	Calm	10:39	8.2	Surface	1.0	-										
Bottom 72 1 2 20.1 8.1 33.6 7.1 94.8 5.7 16.6 19.9 7.1 7.2 1 20.0 8.1 33.6 7.1 95.8 6.1 19.9 7.1 7.1 7.2				1	1			Middle	4.1							4.3 5.7		7.1		
TCE-WQM2b Misty Calm 10:04 7.0 Surface 1.0 1 20.1 8.1 33.6 7.2 95.9 6.2 19.9 7.1 17. Middle 3.5 1 20.1 8.1 33.5 7.1 95.3 4.1 12.4				1	1					•	20.1	8.1	33.6	7.1	94.8	5.7	16.6	1	5.4	17.1
TCE-WQM2a Misty Calm 10:04 7.0 Surface 1.0 1 20:1 8.1 33.5 7.1 95.3 4.1 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12				1				Bottom	7.2				33.6	7.1				7.1		
TCE-WQM2b Misty Calm 10:16 4.0 Surface 1.0 1 20.1 8.1 33.5 6.9 92.8 6.8 12.4 6.9 Bottom 3.0 1 20.3 8.1 33.5 6.9 93.4 7.1 7.7 6.9 TCE-WQM4 Misty Calm 10:27 3.6 Surface 1.0 1 20.1 8.1 33.5 7.1 95.3 4.1 12.4 7.1			TCF_WOM2	Michy	Calm	10:04	7.0	Surface	10	-			33.6	7.2						+
Middle 3.5 1 20.1 8.1 33.5 7.1 95.3 5.1 18.6 7.1 18.6 7.1 17.5 18.6 7.1 7.2			1 CL-VVQIVIZA	iviiSty	Caiiii	10.04	7.0	Juliace	1.0	-								1		
Bottom Column Post Col				1				Middle	3.5	1	20.1	8.1	33.5	7.1	95.3	5.1	18.6	7.1	5.3	17.0
TCE-WQM2b Misty Calm 9:52 10.4 Surface 1.0 1 20.0 8.1 33.7 7.2 96.2 6.6 20.2 7.2 11.8 7.1 11.				1	1			D					33.5			5.2			1 3.3	17.0
TCE-WQM2b Misty Calm 9.52 10.4 Surface 1.0 1 20.0 8.1 33.4 7.1 95.5 7.0 11.4 95.5 7.1 11.8 7.1 Middle 5.2 1 20.0 8.1 33.4 7.1 95.5 8.7 13.2 12. Middle 5.2 1 20.0 8.1 33.4 7.1 95.5 8.7 13.2 13.2 12. Bottom 9.4 1 20.0 8.1 33.4 7.1 95.5 8.7 13.0 14.0 14.0 7.2 14.0 14.0 7.2 14.0 14.0 7.2 14.0 14.0 7.2 14.0 14.0 7.2 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0				1				Bottom	6.0									7.2		
Middle S.2 1 20.0 8.1 33.4 7.1 95.5 7.1 11.8 7.1 Middle S.2 1 20.0 8.1 33.4 7.1 95.5 8.7 13.2 7.1 11.8 7.1 Middle S.2 1 20.0 8.1 33.4 7.1 95.5 8.7 13.0 7.2 95.8 9.1 13.7 7.2 95.8 9.1 13.7 7.2 95.8 9.1 13.7 7.2 95.8 9.1 13.7 7.2 95.8 9.1 13.7 7.2 95.8 9.1 13.7 7.2 95.8 9.1 13.7 7.2 95.8 9.1 13.7 7.2 95.8 9.1 13.7 7.2 95.8 9.1 13.7 7.2 95.8 9.1 13.7 7.2 95.8 9.1 13.7 7.2 95.8 9.1 13.7 95.5 9.1 13.7 9.1 9.			TCE-WQM2b	Misty	Calm	9:52	10.4	Surface	1.0		20.0	8.1	33.4	7.1	95.5	7.0	11.4			
Middle 5.2 1 200 8.1 33.4 7.1 95.5 8.7 13.2 8.3 12.				1	1					2		8.1	33.4			7.1	11.8	7.1		
Bottom 9.4 1 20.0 8.1 33.4 7.2 95.8 9.1 14.0 7.2				1	1			Middle	5.2	1			33.4	7.1	95.5	8.7		-	8.3	12.9
TCE-WQM3A Misty Calm 10:16 4.0 Surface 1.0 1 20.3 8.1 33.4 7.2 95.8 9.1 13.7 7.2 Column				1				Bottom	9.4			8.1						7.0	1	
CE-WQM4 Misty Calm 10:27 3.6 Surface 1.0 1 120.1 8.1 33.5 6.9 92.8 6.7 12.0 6.9 15.										2	20.0	8.1	33.4	7.2	95.8	9.1	13.7	/.2		1
Bottom 3.0 1 20.3 8.1 33.5 6.9 93.4 7.1 17.7 6.9 15.			TCE-WQM3A	Misty	Calm	10:16	4.0	Surface	1.0									6.9		
TCE-WQM4 Misty Calm 10:27 3.6 Surface 1.0 1 20.1 8.1 33.5 6.9 93.5 7.1 18.1 0.9 Calm				1	1			Bottom	3.0	1									6.9	15.1
TCE-WQM4 Misty Calm 10:27 3.6 Surface 1.0 1 20.1 8.1 33.5 7.1 95.3 4.2 13.6 7.1 8.0 13.5 7.1 95.4 4.2 13.6 7.1 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4										2	20.3	8.1	33.5	6.9	93.5	7.1	18.1	6.9		
Bottom 2.6 1 19.7 8.1 33.9 7.2 95.8 5.5 23.6 72			TCE-WQM4	Misty	Calm	10:27	3.6	Surface	1.0									7.1		
				1	1			Battam	26										4.9	18.7
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1	1			DOHOIII	2.0	2	19.6	8.1	33.9	7.2	95.7	5.6	23.8	7.2		

										Water			Dissolved			Suspended Solids		Depth-averaged	
Date	Tide	Station	Weather Condition	Sea Condition	Sampling Time	Water Depth (m)	Water Level	Sampling depth (m)	Replicate	Temperature (°C)	pH	Salinity (ppt)	Oxygen (DO) (mg/L)	DO Saturation (%)	Turbidity (NTU)	(SS) (mg/L)	DO (mg/L)	Turbidity (NTU)	SS (mg/L)
2021-12-27	Mid-Ebb	TCE-C1	Rainy	Rough	7:40	7.5	Surface	1.0	1	18.5	8.2	32.3	7.1	89.6	5.1	15.9			
							Middle	3.8	1	18.5 18.4	8.2 8.2	32.3 32.3	7.1 7.0	89.6 89.7	5.1 5.8	15.4 14.2	7.1	5.0	
									2	18.4	8.2	32.3	7.0	89.7	5.8	13.8		5.9	14.0
							Bottom	6.5	2	18.3 18.3	8.2 8.2	32.3 32.3	7.2 7.2	91.0 91.3	6.8	12.4 12.2	7.2		
		TCE-C2	Fine	Rough	6:10	14.6	Surface	1.0	1	18.8	8.1	32.8	6.7	86.7	2.2	4.9			+
									2	18.8	8.1	32.8	6.7	86.6	2.2	4.5	6.7		
							Middle	7.3	1 2	18.8 18.8	8.1 8.1	32.8 32.8	6.7	86.5 86.5	2.2	4.4 4.2		2.3	4.4
							Bottom	13.6	1	18.9	8.1	32.9	6.6	86.5	2.6	4.2	6.6	1	
									2	18.9	8.1	32.9	6.6	86.5	2.6	4.0	6.6		
		TCE-WQM1	Rainy	Rough	7:18	9.7	Surface	1.0	1 2	18.4 18.4	8.1 8.1	32.3 32.3	7.1 7.1	89.2 89.2	5.2 5.2	13.4 13.6	1		
							Middle	4.9	1	18.4	8.1	32.3	7.0	89.1	6.4	15.2	7.0	7.0	14.9
									2	18.4	8.1	32.3	7.0	89.1	6.4	15.4		7.0	14.5
							Bottom	8.7	1 2	18.2 18.2	8.1 8.1	32.3 32.3	7.0	89.0 89.0	9.5 9.5	15.6 16.1	7.0		
		TCE-WQM2a	Fine	Rough	6:47	6.8	Surface	1.0	1	18.4	8.1	32.4	6.9	89.0	3.5	5.1			
							Middle		2	18.4	8.1	32.4	6.9	89.0	3.5	5.5	6.9		
							Middle	3.4	1 2	18.5 18.5	8.1 8.1	32.4 32.4	6.9	88.4 88.4	3.2 3.2	6.5 6.7	-	3.3	6.3
							Bottom	5.8	1	18.4	8.1	32.4	6.9	88.5	3.3	7.2	6.9		
		mon 11101 (21	70					1.0	2	18.4	8.1	32.4	6.9	88.5	3.3	6.9	0.5		
		TCE-WQM2b	Fine	Rough	6:33	11.4	Surface	1.0	1 2	18.4 18.4	8.1 8.1	32.4 32.4	6.9	88.5 88.5	3.1 3.1	5.6 5.3	1		
							Middle	5.7	1	18.4	8.1	32.4	6.9	88.2	3.3	4.9	6.9	4.2	4.8
								10.1	2	18.4	8.1	32.4	6.9	88.1	3.3	4.5		4.2	4.0
							Bottom	10.4	1 2	18.4 18.4	8.1 8.1	32.3 32.3	6.9	88.6 88.6	6.2	4.2 4.0	6.9		
		TCE-WQM3A	Rainy	Moderate	6:58	3.8	Surface	1.0	1	18.1	8.1	32.1	6.9	87.9	3.9	13.7	7.0		
									2	18.1	8.1	32.1	7.0	88.1	3.9	13.5	7.0	4.0	12.9
							Bottom	2.8	1 2	18.1 18.1	8.1 8.1	32.1 32.1	7.1 7.2	89.9 90.1	4.1 4.1	12.0 12.3	7.1		
		TCE-WQM4	Rainy	Moderate	7:06	4.1	Surface	1.0	1	18.1	8.1	32.2	6.7	85.4	4.1	11.9	6.7		
									2	18.1	8.1	32.2	6.7	85.4	4.1	11.8	0.7	5.2	12.2
							Bottom	3.1	1 2	18.2 18.2	8.1 8.1	32.2 32.2	6.8	86.7 86.6	6.2	12.6 12.6	6.8		
2021-12-27	Mid-Flood	TCE-C1	Cloudy	Rough	11:55	9.3	Surface	1.0	1	18.4	8.1	32.2	7.0	90.5	4.6	4.9			
							Middle	4.7	2	18.4	8.1	32.2 32.2	7.0	90.5	4.7	4.4	7.1		
							Middle	4./	2	18.0 18.0	8.1 8.1	32.2	7.1 7.1	90.8 90.8	5.0 5.0	5.7 5.8	-	4.8	9.6
							Bottom	8.3	1	17.8	8.1	32.2	7.1	90.7	4.6	18.5	7.1		
		TCE-C2	Cloudy	Rough	13:57	13.6	Surface	1.0	2	17.8 19.3	8.1 8.1	32.2 33.0	7.2 6.4	90.9 84.3	4.7 1.9	18.0 5.9	7.12		
		ICE-C2	Cloudy	Kougn	15:57	15.6	Surface	1.0	2	19.3	8.1	33.0	6.4	84.3	2.0	5.8	·		
							Middle	6.8	1	19.3	8.1	33.0	6.4	84.3	3.0	4.8	6.4	3.0	4.9
							Bottom	12.6	2	19.3 19.3	8.1 8.1	33.0 32.9	6.4	84.3 84.5	3.0 4.1	4.7 3.9		-	
							Dottom	12.0	2	19.3	8.1	32.9	6.4	84.6	4.1	4.0	6.4		
		TCE-WQM1	Cloudy	Rough	12:29	9.8	Surface	1.0	1	18.5	8.2	32.2	6.9	89.3	4.6	8.0			
							Middle	4.9	2	18.5 18.4	8.2 8.2	32.2 32.2	6.9 7.0	89.3 89.9	4.7 5.2	8.4 9.2	6.9		
									2	18.4	8.2	32.2	7.0	89.9	5.1	9.1	1	5.2	11.6
							Bottom	8.8	1 2	18.2	8.2	32.3 32.3	7.0 7.0	89.6	5.7 5.7	17.5	7.0		
		TCE-WQM2a	Cloudy	Rough	13:04	7.1	Surface	1.0	2	18.2 18.1	8.2 8.2	32.3 32.2	7.0	89.5 88.2	5.7 6.9	17.6 7.9			
									2	18.1	8.2	32.2	7.0	88.2	6.9	7.2	7.0		
							Middle	3.6	1	18.1	8.2	32.2	7.0	88.2	4.1	6.2	,.0	6.4	6.1
							Bottom	6.1	2	18.1 18.1	8.2 8.2	32.2 32.2	7.0 6.9	88.2 88.3	4.1 8.1	6.0 4.6		+	
									2	18.2	8.2	32.2	6.9	88.3	8.2	4.5	6.9		
		TCE-WQM2b	Cloudy	Rough	13:19	10.5	Surface	1.0	1 2	18.8 18.8	8.2 8.2	32.5 32.5	6.7	87.8 87.8	3.8 3.7	7.8 7.6			
							Middle	5.3	1	18.8	8.2	32.5	6.8	87.8 88.2	7.5	6.1	6.8		
									2	18.8	8.1	32.5	6.8	88.2	7.5	6.1		5.8	6.5
							Bottom	9.5	1 2	18.7 18.7	8.1 8.1	32.5 32.5	7.0	88.5 88.5	6.1 6.1	5.9 5.7	7.0		
		TCE-WQM3A	Cloudy	Moderate	12:49	5.2	Surface	1.0	1	18.7	8.1	32.5	6.9	88.5	4.7	18.1	6.9		<u> </u>
									2	18.1	8.1	32.2	6.9	88.6	4.7	18.4	0.9	6.2	18.9
							Bottom	4.2	2	18.1 18.1	8.1 8.1	32.2 32.2	7.0	89.1 89.1	7.6 7.6	19.4 19.7	7.0		
		TCE-WQM4	Cloudy	Moderate	12:38	4.4	Surface	1.0	1	18.4	8.1	32.2	6.9	89.1	4.7	7.4	6.9		<u> </u>
									2	18.4	8.2	32.2	6.9	89.1	4.7	7.5	0.9	4.8	7.4
							Bottom	3.4	2	18.4 18.4	8.2 8.2	32.2 32.2	6.9	89.0 89.0	4.8 4.9	7.2 7.4	6.9		
										16.4	0.2	32.2	6.9	69.0	4.9	/.4		1	

										Water			Dissolved			Suspended Solids		Depth-averaged	
Date	Tide	Station	Weather Condition	Sea Condition	Sampling Time	Water Depth (m)	Water Level	Sampling depth (m)	Replicate	Temperature (°C)	рН	Salinity (ppt)	Oxygen (DO) (mg/L)	DO Saturation (%)	Turbidity (NTU)	(SS) (mg/L)	DO (mg/L)	Turbidity (NTU)	SS (mg/L)
2021-12-29	Mid-Ebb	TCE-C1	Cloudy	Moderate	10:11	7.8	Surface	1.0	1	18.8	8.2	34.1	7.8	101.6	9.7	8.2			
							Middle	3.9	1	18.8 18.8	8.2 8.2	34.1 34.1	7.8 7.9	101.6 102.2	10.0 11.2	8.7 11.7	7.9		40.0
									2	18.8	8.2	34.1	7.9	102.4	11.4	12.1		11.4	10.9
							Bottom	6.8	2	18.7 18.7	8.2 8.2	34.1 34.1	8.1 8.1	104.4 104.6	13.2 13.1	12.4 12.4	8.1		
		TCE-C2	Cloudy	Moderate	8:23	12.8	Surface	1.0	1	19.6	8.1	33.9	7.0	92.3	3.5	5.5			+
,			Ť						2	19.6	8.1	33.9	7.0	92.3	3.5	4.6	7.0		
							Middle	6.4	1 2	19.7 19.7	8.0 8.0	33.9 33.9	7.0 7.0	92.4 92.5	4.1 4.2	4.6 5.2		4.0	4.5
							Bottom	11.8	1	19.7	8.0	34.0	7.1	93.0	4.4	3.3	7.1	1	
		mon 11101 fr		16.1					2	19.7	8.0	34.0	7.1	93.1	4.3	4.0	7.1		
,		TCE-WQM1	Cloudy	Moderate	9:32	8.4	Surface	1.0	1 2	18.5 18.5	8.1 8.1	33.6 33.6	7.7 7.7	98.3 98.3	6.8 6.8	6.8 7.4			
,							Middle	4.2	1	18.5	8.1	33.6	7.7	98.6	7.2	7.8	7.7	7.0	9.0
							P. 11	7.4	2	18.5	8.1	33.6	7.7	98.7	7.2	7.5		1 7.0	5.0
							Bottom	7.4	2	18.5 18.5	8.1 8.1	33.6 33.6	7.8 7.8	99.7 99.9	7.2 7.1	9.6 14.6	7.8		
,		TCE-WQM2a	Cloudy	Moderate	9:00	6.6	Surface	1.0	1	19.1	8.1	33.6	7.3	94.9	5.2	3.7			+
							Middle	3.3	2	19.1	8.1 8.1	33.6 33.6	7.3 7.3	94.9 95.3	5.2 6.5	4.6 4.7	7.3		
							Middle	3.3	2	19.2 19.2	8.1	33.6	7.3	95.3	6.7	5.8		6.1	5.5
,							Bottom	5.6	1	19.2	8.1	33.6	7.4	96.4	6.4	6.7	7.4	1	
		TCE WOMAL	Clt	Madanata	0.40	11.0	Confess	1.0	2	19.2	8.1	33.6	7.4	96.5	6.5	7.2	***		
		TCE-WQM2b	Cloudy	Moderate	8:49	11.8	Surface	1.0	2	19.5 19.5	8.1 8.1	33.8 33.8	7.1 7.1	93.6 93.6	3.9 3.9	5.9 4.8			
							Middle	5.9	1	19.5	8.1	33.8	7.2	94.2	4.3	5.2	7.2	4.2	4.9
							D-11	10.8	2	19.5	8.1	33.8 33.8	7.2 7.3	94.3	4.3	4.6			4.5
							Bottom	10.8	2	19.5 19.5	8.1 8.1	33.8	7.3	95.7 95.8	4.4 4.4	4.5 4.6	7.3		
		TCE-WQM3A	Cloudy	Moderate	9:11	4.4	Surface	1.0	1	18.8	8.1	33.3	7.4	94.9	10.3	7.6	7.4		+
							Bottom	3.4	2	18.8 18.8	8.1 8.1	33.4 33.4	7.4 7.4	95.0 95.3	10.5 12.8	7.2 6.8		11.5	7.3
,							Bottom	3.4	2	18.8	8.1	33.4	7.4	95.5	12.6	7.4	7.4		
		TCE-WQM4	Cloudy	Moderate	9:20	3.3	Surface	1.0	1	18.3	8.1	33.2	7.8	100.1	11.1	6.4	7.9		
							Bottom	2.3	2	18.3 18.3	8.1 8.1	33.2 33.2	7.9 8.0	100.3 102.0	10.8 10.3	6.1 11.6		10.5	8.0
							Bottom	2.3	2	18.3	8.1	33.2	8.0	102.3	9.9	7.7	8.0		
2021-12-29	Mid-Flood	TCE-C1	Cloudy	Moderate	13:16	8.0	Surface	1.0	1	18.9	8.2	34.1	7.7	100.4	9.7	12.2			
							Middle	4.0	2	18.8 18.8	8.2 8.2	34.1 34.1	7.8 7.7	100.4 100.3	9.8 11.2	11.1 13.1	7.7		
							Middle	4.0	2	18.8	8.2	34.1	7.7	100.3	11.2	12.5		11.1	12.5
							Bottom	7.0	1	18.8	8.2	34.1	7.8	100.8	12.4	13.5	7.8	1	
		TCE-C2	Cloudy	Moderate	15:02	13.8	Surface	1.0	2	18.8 19.5	8.2 8.1	34.1 33.7	7.8 7.1	100.8 93.9	12.4 3.6	12.4 7.6			+
		I ICL-C2	Cloudy	Wiodelate	15.02	15.0		1.0	2	19.5	8.1	33.7	7.1	93.9	3.6	8.0	7.0		
							Middle	6.9	1	19.4	8.1	33.7 33.7	7.0 7.0	92.8 92.7	4.4	7.1	7.0	4.9	5.6
,							Bottom	12.8	2	19.4 19.4	8.1 8.1	33.7	7.0	92.7	4.6 6.6	4.0 3.6		-	
,									2	19.4	8.1	33.8	7.2	94.0	6.8	3.4	7.2		
		TCE-WQM1	Cloudy	Moderate	13:55	8.2	Surface	1.0	1	18.7	8.1	33.4	7.7	99.5	7.9	13.4			
ļ							Middle	4.1	2	18.7 18.6	8.1 8.2	33.4 33.6	7.7 7.8	99.5 100.2	7.9 8.1	12.1 11.0	7.8		
,									2	18.6	8.2	33.5	7.8	100.4	8.1	11.2		7.7	11.5
,							Bottom	7.2	1	18.6 18.6	8.2 8.2	33.5 33.6	7.9 7.9	101.6 101.8	7.2 7.4	10.8 10.2	7.9		
ļ		TCE-WQM2a	Cloudy	Moderate	14:26	6.4	Surface	1.0	1	18.6	8.2	33.4	7.5	97.3	9.2	11.0			+
ļ									2	18.9	8.1	33.4	7.5	97.3	9.2	10.6	7.5		
ļ							Middle	3.2	2	18.8 18.8	8.1 8.1	33.4 33.4	7.5 7.5	97.3 97.4	10.2 10.3	13.6 14.0		10.6	12.7
							Bottom	5.4	1	18.7	8.1	33.4	7.7	98.8	12.4	14.0	7.7	1	
				1					2	18.7	8.1	33.4	7.7	99.0	12.2	13.0	7.7		
ļ		TCE-WQM2b	Cloudy	Moderate	14:36	11.6	Surface	1.0	2	19.2 19.2	8.1 8.1	33.6 33.6	7.4 7.4	96.1 96.1	5.1 5.1	11.0 10.7			
ļ							Middle	5.8	1	19.2	8.1	33.7	7.4	96.8	5.4	10.0	7.4	5.4	8.4
								10.6	2	19.2	8.1	33.7	7.4	96.9	5.4	5.9		3.4	8.4
							Bottom	10.6	2	19.2 19.2	8.1 8.1	33.6 33.6	7.6 7.6	98.9 99.2	5.6 5.6	6.7	7.6		
		TCE-WQM3A	Cloudy	Moderate	14:16	4.2	Surface	1.0	1	18.9	8.1	33.3	7.5	97.1	7.7	10.2	7.5		
İ			· '	1	1				2	18.9	8.1	33.3	7.5	97.2	7.8	9.4	1.3	8.6	10.4
							Bottom	3.2	2	18.9 18.9	8.1 8.1	33.4 33.4	7.6	98.0 98.3	9.7 9.1	11.2	7.6		
		TCE-WQM4	Cloudy	Moderate	14:06	3.1	Bottom Surface	3.2 1.0	1 2 1		8.1 8.1 8.1	33.4 33.2	7.6 7.7	98.0 98.3 98.7	9.7 9.1 9.7				
		TCE-WQM4	Cloudy	Moderate	14:06	3.1				18.9	8.1	33.4	7.6	98.3	9.1	10.8	7.6 7.7 7.8	11.1	9.2

										Water			Dissolved			Suspended Solids		Depth-averaged	
Date	Tide	Station	Weather Condition	Sea Condition	Sampling Time	Water Depth (m)	Water Level	Sampling depth (m)	Replicate	Temperature (°C)	pH	Salinity (ppt)	Oxygen (DO) (mg/L)	DO Saturation (%)	Turbidity (NTU)	(SS) (mg/L)	DO (mg/L)	Turbidity (NTU)	SS (mg/L)
2021-12-31	Mid-Ebb	TCE-C1	Cloudy	Rough	11:44	7.3	Surface	1.0	1	18.7	8.3	33.0	7.3	95.4	6.3	6.2			
							Middle	3.7	2	18.7 18.7	8.3 8.3	33.0 33.2	7.3 7.2	95.4 94.0	6.2 9.7	5.5 5.2	7.3		
							Middle	5.5	2	18.7	8.3	33.2	7.2	94.0	9.8	6.0		9.0	5.7
							Bottom	6.3	1	18.8	8.3	33.2	7.2	94.2	11.0	5.1	7.2		
		TCE-C2	Cloudy	Rough	9:36	14.2	Surface	1.0	2	18.8 19.3	8.3 8.1	33.2 33.3	7.2 6.5	94.3 86.5	11.0 1.8	5.9 4.1			
		103-02	Cloudy	Kougn	9.30	14.2	Surface	1.0	2	19.3	8.1	33.3	6.6	86.5	1.9	3.7			
							Middle	7.1	1	19.3	8.1	33.3	6.5	86.5	2.1	4.6	6.5	2.0	4.3
							70		2	19.3	8.1	33.3	6.5	86.5	2.1	3.9			1.5
							Bottom	13.2	2	19.3 19.3	8.1 8.1	33.3 33.3	6.6	86.8 86.8	2.0	4.3	6.6		
		TCE-WQM1	Cloudy	Moderate	10:47	9.4	Surface	1.0	1	18.4	8.2	33.0	7.1	91.7	5.1	8.5			
									2	18.4	8.2	33.0	7.1	91.7	5.1	9.3	7.1		
							Middle	4.7	1 2	18.4 18.4	8.2 8.2	33.0 33.0	7.1 7.1	91.9 91.9	5.2 5.2	8.6 9.8		5.6	9.7
							Bottom	8.4	1	18.4	8.2	33.0	7.1	92.3	6.5	11.0			
									2	18.4	8.2	33.0	7.1	92.3	6.5	10.8	7.1		
		TCE-WQM2a	Cloudy	Rough	10:14	6.9	Surface	1.0	1	18.6	8.2	33.0	6.9	90.3	3.8	5.4			
							Middle	3.5	2	18.6 18.6	8.2 8.2	33.0 33.0	6.9 7.0	90.3 90.9	3.8 3.5	5.4 5.2	7.0		
							iviidate	3.5	2	18.6	8.2	33.0	7.0	90.9	3.5	4.4	1	3.9	4.8
							Bottom	5.9	1	18.6	8.2	33.0	7.0	91.3	4.4	4.1	7.0	1	
		TOT WOLKS	Cl. I	P 1	10.00	0.1	0.6	1.0	2	18.6	8.2	33.0	7.0	91.4	4.4	4.1			
		TCE-WQM2b	Cloudy	Rough	10:03	9.1	Surface	1.0	1 2	19.1 19.1	8.2 8.2	33.2 33.2	6.7	88.6 88.6	3.6 3.5	4.9 4.3	-		
							Middle	4.6	1	19.1	8.2	33.2	6.8	88.8	4.7	4.5	6.8	4.2	4.9
									2	19.1	8.2	33.2	6.8	88.9	4.7	5.4		4.2	4.9
							Bottom	8.1	1 2	19.1 19.1	8.2 8.2	33.2 33.2	6.9	90.8 91.0	4.3 4.4	5.0 5.5	6.9		
		TCE-WQM3A	Cloudy	Moderate	10:25	3.9	Surface	1.0	1	18.8	8.2	32.8	7.0	90.7	2.8	6.8			
				111111111111111111111111111111111111111	10.00				2	18.8	8.2	32.8	6.9	90.7	2.8	5.6	6.9	3.9	6.4
							Bottom	2.9	1	18.9	8.2	32.9	6.9	90.0	5.0	7.0	6.9] 3.3	0.4
		TCE-WQM4	Cloudy	Moderate	10:35	3.6	Surface	1.0	2	18.9 18.8	8.2 8.2	32.9 32.9	6.9 7.0	90.1 91.2	5.1 3.7	6.3 7.0			
		TCE-WQWI4	Cloudy	Wioderate	10.33	3.0	Surrace	1.0	2	18.8	8.2	32.9	7.0	91.2	3.7	6.2	7.0		
							Bottom	2.6	1	18.8	8.2	32.9	7.0	91.1	4.5	6.1	7.0	4.0	6.5
2021-12-31	Mid-Flood	TCE-C1	Fine	P 1	14:43	0.6	0 (1.0	2	18.8 18.8	8.2 8.3	32.9 33.1	7.0	91.2 94.9	4.3 7.2	6.6 9.6	7.0		
2021-12-31	Mid-Flood	ICE-CI	rine	Rough	14:43	8.6	Surface	1.0	2	18.8	8.3	33.1	7.3	94.9	7.2	10.4	-		
							Middle	4.3	1	18.8	8.3	33.2	7.2	94.2	7.7	8.8	7.2	9.1	8.5
									2	18.8	8.3	33.2	7.2	94.1	7.6	9.9		9.1	8.5
							Bottom	7.6	1 2	18.9 18.9	8.3 8.3	33.3 33.3	7.2 7.2	93.7 93.7	12.5 12.5	6.2 5.8	7.2		
		TCE-C2	Fine	Moderate	16:46	15.3	Surface	1.0	1	19.6	8.2	33.3	6.8	90.0	1.9	10.6			
									2	19.6	8.2	33.3	6.8	90.0	1.9	11.0	6.7		
							Middle	7.7	1	19.5	8.2	33.3	6.7	88.8	2.0	9.9	0,	1.8	10.3
							Bottom	14.3	2	19.5 19.4	8.2 8.2	33.3 33.3	6.7	88.8 88.2	2.0 1.6	10.5 10.2		-	
							Dottom	14.5	2	19.4	8.2	33.3	6.7	88.2	1.6	9.7	6.7		
		TCE-WQM1	Fine	Calm	15:41	10.6	Surface	1.0	1	18.8	8.3	33.1	7.3	95.0	7.4	11.0			
				1			Middle	5.3	2	18.8 18.8	8.3 8.3	33.1 33.2	7.3 7.2	95.0 94.2	7.4	10.3 8.8	7.2		
				1			iviidale	5.3	2	18.8	8.3	33.2	7.2	94.2 94.1	8.4 8.5	9.3	1	8.5	9.5
							Bottom	9.6	1	18.8	8.3	33.3	7.2	93.8	9.7	9.1	7.2	1	
		mon 11101 f	71	1	1110				2	18.8	8.3	33.3	7.2	93.8	9.7	8.7	1.2		
		TCE-WQM2a	Fine	Moderate	16:10	7.7	Surface	1.0	2	19.0 19.0	8.2 8.2	32.9 32.9	7.2 7.2	94.2 94.2	4.4 4.4	11.0 11.6	-		
							Middle	3.9	1	18.8	8.2	32.9	7.2	94.2	4.4	10.8	7.1		
				1					2	18.8	8.2	32.9	7.0	91.5	4.7	11.3		5.5	10.8
							Bottom	6.7	1	18.8	8.2	33.0	7.0	91.5	7.4	9.7	7.0		
		TCE-WQM2b	Fine	Moderate	16:23	10.1	Surface	1.0	2	18.8 19.1	8.2 8.2	33.0 32.8	7.0 7.2	91.5 94.3	7.4 3.5	10.4 11.7			
		101-11011120	Time	Wiodelate	10.25	10.1	Surface	1.0	2	19.1	8.2	32.8	7.2	94.2	3.6	11.6	7.		
				1			Middle	5.1	1	18.9	8.2	32.9	7.0	91.5	4.0	11.0	7.1	4.2	11.0
				1			Bottom	9.1	2	18.9 18.8	8.2 8.2	32.9 33.0	7.0 6.9	91.5 90.6	4.1 4.9	10.3 11.1		1	
				1			bottom	9.1	2	18.8	8.2 8.2	33.0	6.9	90.6	4.9	11.1	6.9		
		TCE-WQM3A	Fine	Calm	16:02	4.4	Surface	1.0	1	19.2	8.2	32.9	7.3	95.5	2.8	9.2	7.3		
				1					2	19.2	8.2	32.9	7.3	95.5	2.8	8.4		4.2	8.9
				1			Bottom	3.4	2	18.8 18.8	8.2 8.2	32.9 32.9	7.1 7.1	92.4 92.4	5.6 5.7	8.4 9.5	7.1		
		TCE-WQM4	Fine	Calm	15:51	4.1	Surface	1.0	1	19.1	8.2	32.9	7.1	96.2	3.0	9.6	7.3		
		"~"							2	19.1	8.2	32.9	7.3	96.1	3.0	10.5	1.3	4.4	10.2
							Bottom	3.1	1 2	18.8	8.2	32.9	7.1	92.4	5.8	10.8 9.7	7.1		
		1		1					2	18.8	8.2	32.9	7.1	92.4	5.8	9.7			

Annex G4

Event and Action Plan for Water Quality

Annex G4 Event and Action Plan for Water Quality

Event			Action	
Event	ET	IEC	ER	Contractor
Action level exceedance for	1. Inform IEC, Contractor and ER;	1. Discuss with ET, ER and	1. Discuss with IEC, ET and	1. Identify source(s) of impact;
one sampling day	Check monitoring data, all plant, equipment and	Contractor on the implemented mitigation measures;	Contractor on the implemented mitigation measures;	2. Inform the ER and confirm notification of the non-compliance in writing;
	Contractor's working methods;	2. Review proposals on remedial	2. Make agreement on the remedial	3. Rectify unacceptable practice;
	and	measures submitted by Contractor	measures to be implemented;	4. Check all plant and equipment;
	3. Discuss remedial measures	and advise the ER accordingly;	3. Supervise the implementation of	5. Consider changes of working methods;
	with IEC and Contractor and ER.	and 3. Review and advise the ET and ER	agreed remedial measures.	6. Discuss with ER, ET and IEC and purpose remedial measures to IEC and ER; and
	EK.	on the effectiveness of the		7. Implement the agreed mitigation
		implemented mitigation measures.		measures.
Action level exceedance for more than one consecutive sampling days	 Repeat in-situ measurement on next day of exceedance to confirm findings; Inform IEC, contractor and ER; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss remedial measures with IEC, contractor and ER Ensure remedial measures are 	ER on the implemented mitigation measures; 2. Review the proposed remedial measures submitted by Contractor and advise the ER accordingly;	mitigation measures; 2. Make agreement on the remedial	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET, IEC and ER and submit proposal of remedial measures to ER and IEC within 3 working days of notification; and
	implemented	measures.		Implement the agreed mitigation measures.

ENVIRONMENTAL RESOURCES MANAGEMENT

CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Event			Action	
Event	ET	IEC	ER	Contractor
Limit level exceedance for one sampling day	 Repeat measurement on next day of exceedance to confirm findings; Inform IEC, contractor and ER; Rectify unacceptable practice; Check monitoring data, all plant, equipment and Contractor's working methods; Consider changes of working methods; Discuss mitigation measures with IEC, ER and Contractor; 	Discuss with ET, Contractor and ER on the implemented mitigation measures; Review the proposed remedial measures submitted by Contractor and advise the ER accordingly; and	remedial measures; 2. Request Contractor to critically	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET, IEC and ER and submit proposal of additional mitigation measures to ER and IEC within 3 working days of notification; and Implement the agreed remedial measures.
Limit level exceedance for more than one consecutive sampling days	and 7. Ensure the agreed remedial measures are implemented 1. Inform IEC, contractor and ER; 2. Check monitoring data, all plant, equipment and Contractor's working methods; 3. Discuss mitigation measures with IEC, ER and Contractor; and	 Discuss with ET, Contractor and ER on the implemented mitigation measures; Review the proposed remedial measures submitted by Contractor and advise the ER accordingly; and Review and advise the ET and ER on the effectiveness of the implemented mitigation measures. 	remedial measures; 2. Request Contractor to critically	-

ENVIRONMENTAL RESOURCES MANAGEMENT

CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Soft Shore Ecology

Monitoring Schedule for Soft Shore Ecology

Tung Chung New Town Extension (East) Soft Shore Ecological Monitoring Schedule (December 2021)

Sunday	Monday		Wednesday	Thursday		Saturday
Sulluav	INIOTICAY	Tuesuav	1-Dec	2-Dec	3-Dec	
			1-Dec	Z-Dec	3- <u>Dec</u>	4-Dec
5-Dec	6-Dec	7-Dec	8-Dec	9-Dec	10-Dec	11-Dec
		Soft Shore Monitoring at	Soft Shore Monitoring at	Soft Shore Monitoring at		
		Tung Chung Bay	Tung Chung Bay	Tai Ho Bay		
12-Dec	13-Dec	14-Dec	15-Dec	16-Dec	17-Dec	18-Dec
12-Dec	13-Dec	14-Dec	13-Бес	10-Вес	17-Dec	16-Бес
19-Dec	20-Dec	21-Dec	22-Dec	23-Dec	24-Dec	25-Dec
				Ooft Obana Manitania aa at		
				Soft Shore Monitoring at		
				Tung Chung Bay		
26-Dec	27-Dec	28-Dec	29-Dec	30-Dec	31-Dec	
20-000	21-500	20-000	25-000	00-BCC	31-000	

Monitoring Results for Soft Shore Ecology

Table H2.1 Results for Horseshoe Crabs during Qualitative Walk-through Surveys in December 2021

Sighting #	Species	Prosomal Width (cm)	Total Length (cm)
Monitoring	Date: 9 December 2021		
Monitoring	Station: THW		
1	Tachypleus tridentatus	5.6	11.7
2	Tachypleus tridentatus	4.6	9.5
3	Tachypleus tridentatus	4.1	8.1
4	Tachypleus tridentatus	4.3	9.1
5	Tachypleus tridentatus	3.8	7.4
6	Tachypleus tridentatus	2.6	4.9
7	Tachypleus tridentatus	2.5	5.7
8	Tachypleus tridentatus	4.1	8.3
9	Tachypleus tridentatus	4.7	10.0
10	Tachypleus tridentatus	4.7	10.4
	Mean (Range)	4.1 (2.5 – 5.6)	8.5 (4.9 - 11.7)
Monitoring	Date: 23 December 2021		
	Station: TCB2		
1	Tachypleus tridentatus	3.6	7.1
	Mean	3.6	7.1
Monitoring	Date: 23 December 2021		
Monitoring	Station: TCB3		
1	Tachypleus tridentatus	3.6	5.7
2	Tachypleus tridentatus	7.1	15.3
3	Tachypleus tridentatus	5.6	8.6
	Mean (Range)	5.4 (3.6 - 7.1)	9.9 (5.7 - 15.3)

Table H2.2 Results for Seagrass during Qualitative Walk-through Surveys in December 2021

Sighting #	Species	Area (m2)	Area Coverage (%)	Seagrass Area (m2)
Monitoring	Date: 8 December 202	21		
Monitoring	Station: TCB3			
1	Halophila ovalis	120	60%	72
2	Halophila ovalis	9	35%	3.2
3	Halophila ovalis	3	20%	0.6
4	Halophila ovalis	115	70%	80.5
5	Halophila ovalis	70	50%	35

Table H2.3 Results for Other Intertidal Soft Shore Communities during Qualitative Walk-through Surveys in December 2021

Monitoring Station	Shore Height *	No. of Species
TCB1	Н	34
	M	32
	L	28
	Overall	41
TCB2	Н	28
	M	28
	L	31
	Overall	42
TCB3	Н	27
	M	30
	L	33
	Overall	38
THW	Н	30
	M	30
	L	27
	Overall	37

^{*} H: +2mCD; M: +1.5mCD; L: +1mCD

Table H2.4 Results for Other Intertidal Soft Shore Communities during Quantitative Transect Surveys in December 2021

Monitoring Station	Shore Height *	Top Three Dominant Species	Density (ind./m²)
TCB1	Н	1 Batillaria multiformis	112.8
		2 Cerithidea diadjariensis	71.2
		3 Monodonta labio	54.4
	M	1 Monodonta labio	64.8
		2 Cerithidea diadjariensis	50.4
		3 Batillaria multiformis	49.6
	L	1 Batillaria zonalis	44
		2 Batillaria multiformis	39.2
		3 Monodonta labio	36.8
TCB2	Н	1 Cerithidea diadjariensis	231.2
		2 Cerithidea cingulata	52.8
		3 Batillaria zonalis	12.8
	M	1 Cerithidea diadjariensis	20
		2 Batillaria multiformis	12.8
		3 Monodonta labio	10.4
	L	1 Batillaria zonalis	24.8
		2 Cerithidea diadjariensis, Lunella coronate and Monodonta labio	4
		3 Nerita albicilla	1.6
TCB3	Н	1 Batillaria zonalis	1780.8
		2 Cerithidea diadjariensis	309.6
		3 Nassarius festivus	94.4
	M	1 Cerithidea diadjariensis	278.4
		2 Batillaria zonalis	196
		3 Cerithidea cingulata	45.6
	L	1 Batillaria zonalis	81.6
		2 Cerithidea diadjariensis	73.6
		3 Cerithidea cingulata	14.4
THW	Н	1 Cerithidea diadjariensis	143.2
		2 Geloina erosa	20.8
		3 Cerithidea cingulata	9.6
	M	1 Cerithidea diadjariensis	126.4
		2 Batillaria zonalis	64
		3 Cerithidea cingulata	23.2
	L	1 Cerithidea diadjariensis	144
		2 Batillaria zonalis	39.2
		3 Cerithidea cingulata	14.4

^{*} H: +2mCD; M: +1.5mCD; L: +1mCD

Anemone Hali Barnacle Balc Bivalve Ano Bivalve Bart Bivalve Core Bivalve Core Bivalve Ervi Bivalve Gelc Bivalve Gelc Bivalve Glat Bivalve Gelc Bivalve Grab Bivalve Hari Bivalve Grab Bivalve Hari Bivalve Perr Bivalve Perr Bivalve Proper Bivalve Tapp Chiton Aca Crab Hen Crab Met Crab Met Crab Met Crab Met Crab Perr Crab Perr Crab Perr Crab Perr Crab Perr Crab Perr Crab Perr Crab Perr Crab Perr Crab Perr Crab Perr Crab Perr Crab Perr Crab Perr Crab Perr Crab Perr Crab Vca Crab Vca Crab Vca Crab Vca Crab Vca Crab Vca Crab Vca Crab Vca Crab Vca Crab Vca Crab Vca Crab Vca Crab Vca Crab Vca	aliplanella lineata alanus amphitrite nomalocardia squamosa nomalocardia flexuosa arbatia virescens pecella chinensis vilia sp. eloina erosa lauconome chinensis atternula anatina terna viridis acamen lamellatum accostrea cucullata eptifer virgatus apes philippinarum apes variegatus canthopleura japonica temigrapsus sanguineus temigrapsus sanguineus temigrapsus frontalis letapograpsus quadridemtatus arasesarma pictum erisesarma bidens topimera globosa ca borealis	+ (Qual) + + + + + + + + + + + + + + +	TCB1 M (Qual) + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ (Qual) + + + + + + + + + + +	TCB2 M (Qual) + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	TCB3 M (Qual) + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ (Qual) + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +
Barnacle Balde Bivalve Ano Bivalve Bari Bivalve Bari Bivalve Core Bivalve Core Bivalve Ervi Bivalve Gelde Bivalve Gelde Bivalve Gelde Bivalve Gelde Bivalve Gelde Bivalve Gelde Bivalve Froi Bivalve Gelde Bivalve Flace Bivalve Flace Bivalve Flace Bivalve Flace Cabivalve Tapp Chiton Aca Crab Hen Crab Met Crab Met Crab Met Crab Met Crab Peri Crab Peri Crab Peri Crab Peri Crab Peri Crab Peri Crab Peri Crab Peri Crab Crab Peri Crab Crab Licator Crab Peri Crab Crab Met Crab Met Crab Met Crab Peri Crab Crab Vica Crab Uca Crab Uca	aliplanella lineata planus amphitrite nomalocardia squamosa nomalocardia flexuosa probatia virescens pocella chinensis probula erythrodon velina sinensis vilia sp. eloina erosa lauconome chinensis peternula anatina perna viridis procestrea cucullata peptifer virgatus papes philippinarum propes variegatus canthopleura japonica pemigrapsus sanguineus pemigrapsus takanoi lacrophthalmus sp. letaplazx longipes letapograpsus quadridemtatus persesarma pictum perisesarma pidens perisesarma pidens perisesarma bidens penomando polica perisesarma pidens perisesarma bidens penomando polica perisesarma pidens perisesarma pidens perisesarma pidens	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + +		+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + +	+ + + + + + + + + + + + + + + + + + + +
Barnacle Balde Bivalve Ano Bivalve Barl Bivalve Barl Bivalve Core Bivalve Core Bivalve Core Bivalve Cycl Bivalve Gelce Bivalve Glat Bivalve Glat Bivalve Glat Bivalve Harde Bivalve Harde Core Bivalve Glat Bivalve Core Bivalve Glat Bivalve Core Bivalve Ferri Bivalve Flace Bivalve Flace Bivalve Sacce Bivalve Tapp Bivalve Tapp Chiton Aca Crab Hen Crab Met Crab Met Crab Met Crab Met Crab Parc Crab Peri Crab Scopi Crab Uca Crab Uca Crab Uca Crab Uca	nomalocardia squamosa nomalocardia flexuosa arbatia virescens pecella chinensis probula erythrodon voclina sinensis vivilia sp. peloina erosa lauconome chinensis pernula anatina perna viridis acamen lamellatum accostrea cucullata petifer virgatus papes philippinarum appes variegatus canthopleura japonica pemigrapsus sanguineus pemigrapsus takanoi lacrophthalmus sp. letaplograpsus frontalis petapograpsus quadridemtatus prasesarma pictum perisesarma pidens perisesarma pidens propimera globosa	+ + + + + + + + + + + + + + + + + + + +	+	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +			+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +
Bivalve Ano Bivalve Bari Bivalve Bari Bivalve Coe Bivalve Cycl Bivalve Ervi Bivalve Geld Bivalve Geld Bivalve Geld Bivalve Geld Bivalve Geld Bivalve Geld Bivalve Cycl Bivalve Geld Bivalve Geld Bivalve Perr Bivalve Plac Bivalve Sacci Bivalve Tapp Bivalve Tapp Chiton Aca Crab Hen Crab Met Crab Met Crab Met Crab Met Crab Met Crab Perr Crab Perr Crab Perr Crab Perr Crab Perr Crab Met Crab Met Crab Met Crab Perr Crab Scop Crab Uca Crab Uca Crab Uca	nomalocardia squamosa nomalocardia flexuosa arbatia virescens pecella chinensis probula erythrodon voclina sinensis vivilia sp. peloina erosa lauconome chinensis pernula anatina perna viridis acamen lamellatum accostrea cucullata petifer virgatus papes philippinarum appes variegatus canthopleura japonica pemigrapsus sanguineus pemigrapsus takanoi lacrophthalmus sp. letaplograpsus frontalis petapograpsus quadridemtatus prasesarma pictum perisesarma pidens perisesarma pidens propimera globosa	+ + + + + + + + + + + + + + + + + + + +	+	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +			+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++
Bivalve Ano Bivalve Barl Bivalve Coe Bivalve Coe Bivalve Ervi Bivalve Ervi Bivalve Ervi Bivalve Geld Bivalve Glad Bivalve Glad Bivalve Hard Bivalve Perr Bivalve Perr Bivalve Plac Bivalve Tap Bivalve Tap Chiton Aca Crab Hen Crab Met Crab Met Crab Met Crab Met Crab Met Crab Perr Crab Perr Crab Perr Crab Met Crab Met Crab Met Crab Perr Crab Perr Crab Perr Crab Perr Crab Met Crab Uca Crab Uca	nomalocardia flexuosa pribatia virescens precella chinensis probula erythrodon viclina sinensis vivilia sp. eloina erosa lauconome chinensis pernula anatina perna viridis pacamen lamellatum procostrea cucullata priffer virgatus papes philippinarum papes variegatus pamigrapsus sanguineus pemigrapsus takanoi lacrophthalmus sp. letaplazx longipes letapograpsus frontalis letapograpsus quadridemtatus prasesarma pictum prisesarma pidens prisesarma bidens propositia virescenta propriora perisesarma pidens prisesarma bidens propriora propriora perisesarma pidens prisesarma bidens propriora globosa	+ + + + + + + + + + + + + + + + + + + +	+	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+			+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +
Bivalve Bari Bivalve Coel Bivalve Coel Bivalve Cycl Bivalve Ervi Bivalve Gelc Bivalve Gelc Bivalve Glat Bivalve Glat Bivalve Perr Bivalve Plac Bivalve Plac Bivalve Tap Bivalve Tap Chiton Acad Crab Hen Crab Met Crab Met Crab Met Crab Met Crab Met Crab Perr Crab Perr Crab Perr Crab Perr Crab Met Crab Met Crab Met Crab Perr Crab Perr Crab Scool Crab Uca Crab Uca Crab Uca	arbatia virescens pecella chinensis probla erythrodon viclina sinensis vilia sp. eleloina erosa lauconome chinensis aternula anatina erna viridis acamen lamellatum accostrea cucullata eptifer virgatus appes philippinarum appes variegatus canthopleura japonica emigrapsus stakanoi lacrophthalmus sp. eletapograpsus frontalis eletapograpsus quadridemtatus arasesarma pictum erisesarma bidens eropimera globosa	+ + + + + + + + + + + + + + + + + + + +	+	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +			+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +
Bivalve Cort Bivalve Cycl Bivalve Ervi Bivalve Geld Bivalve Glaw Bivalve Perr Bivalve Perr Bivalve Sacc Bivalve Sepi Bivalve Tap Bivalve Tap Crab Hen Crab Hen Crab Met Crab Met Crab Met Crab Peri Crab Peri Crab Uca Crab Uca Crab Uca Crab Uca Crab Uca	orbula erythrodon vclina sinensis vvilia sp. eleinia erosa lauconome chinensis aternula anatina erna viridis acamen lamellatum accostrea cucullata eptifer virgatus apes philippinarum apes variegatus canthopleura japonica emigrapsus sanguineus emigrapsus takanoi lacrophthalmus sp. letaplazx longipes letapograpsus quadridemtatus arasesarma pictum erisesarma bidens erolina sinensis	+ + + + + + + + + + + + + + + + + + + +	+	+	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+			+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +
Bivalve Cycl Bivalve Ervi Bivalve Geld Bivalve Glat Bivalve Late Bivalve Perr Bivalve Perr Bivalve Sacc Bivalve Tap Bivalve Tap Bivalve Tap Crab Hen Crab Hen Crab Met Crab Met Crab Met Crab Peri Crab Peri Crab Uca Crab Uca Crab Uca Crab Uca Crab Uca	inclina sinensis rvilia sp. eloina erosa lauconome chinensis elerna viridis erosa lamenta lamellatum elerna viridis elerna vi	+ + + + + + + + + + + + + + + + + + + +	+	+	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+			+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +
Bivalve Ervi. Bivalve Geld Bivalve Geld Bivalve Glat Bivalve Late Bivalve Perri Bivalve Plac Bivalve Sacci Bivalve Sacci Bivalve Tapp Bivalve Tapp Chiton Aca. Crab Hen Crab Met Crab Met Crab Met Crab Met Crab Met Crab Perci Crab Perci Crab Perci Crab Met Crab Met Crab Met Crab Met Crab Description Crab Met C	eloina erosa lauconome chinensis lauconome chinensis lauconome chinensis lauconome chinensis lauconome chinensis lauconome chinensis lauconome chinensis lauconome lamellatum lauconome lamellatum lauconome lamellatum lauconome la lauconome la lauc	+ + + + + + + + + + + + + + + + + + + +	+	+	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+	+			+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +
Bivalve Ervi. Bivalve Geld Bivalve Geld Bivalve Glat Bivalve Late Bivalve Perri Bivalve Plac Bivalve Sacci Bivalve Sacci Bivalve Tapp Bivalve Tapp Chiton Aca. Crab Hen Crab Met Crab Met Crab Met Crab Met Crab Met Crab Perci Crab Perci Crab Perci Crab Met Crab Met Crab Met Crab Met Crab Description Crab Met C	eloina erosa lauconome chinensis lauconome chinensis lauconome chinensis lauconome chinensis lauconome chinensis lauconome chinensis lauconome chinensis lauconome lamellatum lauconome lamellatum lauconome lamellatum lauconome la lauconome la lauc	+ + + + + + + + + + + + + + + + + + + +	+	+	+ + + + + + + + + + + + + + + + + + + +	++++	+ + + + + + + + + + + + + + + + + + + +	+			+ +++++++++++++++++++++++++++++++++++++	+ +++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + + +
Bivalve Geld Bivalve Glau Bivalve Late Bivalve Perr Bivalve Plac Bivalve Sacu Bivalve Sacu Bivalve Sacu Bivalve Tap Bivalve Tap Chiton Aca Crab Hen Crab Met Crab Met Crab Met Crab Met Crab Met Crab Perr Crab Perr Crab Perr Crab Crab Crab Crab Crab Crab Met Crab Met Crab Met Crab Met Crab Perr Crab Perr Crab Crab Crab Crab Crab Crab Uca Crab Uca	eloina erosa lauconome chinensis nternula anatina erna viridis laccmen lamellatum laccostrea cucullata erptifer virgatus expes philippinarum lapes variegatus canthopleura japonica emigrapsus sanguineus emigrapsus takanoi lacrophthalmus sp. letaplazx longipes letapograpsus quadridemtatus erasesarma pictum erisesarma bidens eropimera globosa	+ + + + + + + + + + + + + + + + + + + +	+	+	+ + + + + + + + + + + + + + + + + + + +	+++	+ + ++	+			++	++ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +
Bivalve Glau Bivalve Late Bivalve Perr Bivalve Plac Bivalve Sepi Bivalve Tapp Bivalve Tapp Chiton Aca Crab Hen Crab Hen Crab Met Crab Met Crab Met Crab Peri Crab Peri Crab Scop Crab Uca Crab Uca Crab Uca Crab Uca Crab Uca	lauconome chinensis nternula anatina perna viridis acamen lamellatum accostrea cucullata petifer virgatus appes philippinarum appes variegatus canthopleura japonica pemigrapsus sanguineus pemigrapsus takanoi lacrophthalmus sp. letaplazx longipes letapograpsus frontalis letapograpsus quadridemtatus arasesarma pictum perisesarma bidens copimera globosa	+ + + + + + + + + + + + + + + + + + + +	+	+	+	++	+++	+			+	+	+ + + + + + + + + + + + + + + + + + + +
Bivalve Late Bivalve Perr Bivalve Perr Bivalve Plac Bivalve Sacc Bivalve Sepi Bivalve Tapp Bivalve Tapp Chiton Aca Crab Hen Crab Met Crab Met Crab Met Crab Met Crab Met Crab Perc Crab Perc Crab Perc Crab Vaca Crab Vaca Crab Vaca Crab Vaca Crab Vaca Crab Vaca Crab Vaca Crab Vaca Crab Vaca Crab Vaca Crab Vaca Crab Vaca Crab Vaca Crab Vaca	nternula anatina perna viridis acamen lamellatum accostrea cucullata peptifer virgatus appes philippinarum appes variegatus canthopleura japonica pemigrapsus sanguineus pemigrapsus takanoi lacrophthalmus sp. detaplazx longipes letapograpsus frontalis letapograpsus quadridemtatus arasesarma pictum perisesarma bidens copimera globosa	+ + + + + + + + + + + + + + + + + + + +	+	+	+	++	++	+			+	+	+ + + +
Bivalve Perr Bivalve Place Bivalve Sacce Bivalve Tap Bivalve Tap Bivalve Tap Bivalve Tap Criton Aca Crab Hen Crab Hen Crab Met Crab Met Crab Met Crab Peri Crab Peri Crab Uca Crab Uca Crab Uca Crab Uca Crab Uca	erna viridis acamen lamellatum accostrea cucullata eptifer virgatus apes philippinarum apes variegatus canthopleura japonica emigrapsus sanguineus emigrapsus takanoi lacrophthalmus sp. letaplazx longipes letapograpsus frontalis letapograpsus quadridemtatus arasesarma pictum erisesarma bidens copimera globosa	+ + + + + + + + + + + + + + + + + + + +	+	+	+	++	++	+			+	+	+ + + +
Bivalve Place Bivalve Sacce Bivalve Sepi Bivalve Tap Bivalve Tap Chiton Aca Crab Hen Crab Met Crab Met Crab Met Crab Met Crab Perio Crab Perio Crab Uca Crab Uca Crab Uca Crab Uca Crab Uca	acamen lamellatum accostrea cucullata eptifer virgatus apes philippinarum apes variegatus canthopleura japonica emigrapsus sanguineus emigrapsus takanoi lacrophthalmus sp. letaplazx longipes letapograpsus frontalis letapograpsus quadridemtatus arasesarma pictum erisesarma bidens copimera globosa	+ + + + + + + + + + + + + + + + + + + +	+	+	+	++	++	+			+	+	+ + + +
Bivalve Sacce Bivalve Sepi Bivalve Tap Bivalve Tap Bivalve Tap Bivalve Tap Chiton Aca Crab Hen Crab Met Crab Met Crab Met Crab Met Crab Peri Crab Vca Crab Uca Crab Uca Crab Uca Crab Uca	petifer virgatus peptifer virgatus peptifer virgatus peps philippinarum pes variegatus canthopleura japonica emigrapsus sanguineus emigrapsus takanoi lacrophthalmus sp. letaplazx longipes letapograpsus frontalis letapograpsus quadridemtatus perisesarma pictum erisesarma bidens copimera globosa	+ + + + + + + + + + + + + + + + + + + +	+	+	+	++	++	+			+	+	+
Bivalve Sepi Bivalve Tap Bivalve Tap Bivalve Tap Chiton Aca Crab Hen Crab Mat Crab Met Crab Met Crab Parc Crab Peri Crab Uca Crab Uca Crab Uca Crab Uca Crab Uca Crab Uca	eptifer virgatus apes philippinarum apes variegatus canthopleura japonica emigrapsus sanguineus emigrapsus takanoi lacrophthalmus sp. letaplazx longipes letapograpsus frontalis letapograpsus quadridemtatus arasesarma pictum erisesarma bidens copimera globosa	+ + + + + + + + + + + + + + + + + + + +		+	+				+	+			+
Bivalve Tap Bivalve Tap Bivalve Tap Chiton Aca Crab Hen Crab Mac Crab Met Crab Met Crab Met Crab Parc Crab Peri Crab Uca	apes philippinarum apes variegatus canthopleura japonica emigrapsus sanguineus emigrapsus takanoi lacrophthalmus sp. letaplazx longipes letaplazx longipes letapograpsus frontalis letapograpsus quadridemtatus arasesarma pictum erisesarma bidens copimera globosa	+ + + + + + + + + + + + + + + + + + + +		+	+					+			+
Bivalve Tap Chiton Acar Crab Hen Crab Hen Crab Mat Crab Met Crab Met Crab Met Crab Parc Crab Peri Crab Uca Crab Uca Crab Uca Crab Uca Crab Uca	apes variegatus canthopleura japonica emigrapsus sanguineus emigrapsus takanoi lacrophthalmus sp. letaplazx longipes letapograpsus frontalis letapograpsus quadridemtatus arasesarma pictum erisesarma bidens copimera globosa	+ + + +		+ +	+					+			
Chiton Aca Crab Hen Crab Hen Crab Mac Crab Met Crab Met Crab Met Crab Parc Crab Peri Crab Scop Crab Uca Crab Uca Crab Uca Crab Uca	canthopleura japonica emigrapsus sanguineus emigrapsus takanoi lacrophthalmus sp. letaplazx longipes letapograpsus frontalis letapograpsus quadridemtatus arasesarma pictum erisesarma bidens copimera globosa	+ + + +		+ +	+								, !
Crab Hen Crab Hen Crab Mac Crab Met Crab Met Crab Met Crab Perc Crab Perc Crab Perc Crab Uca Crab Uca Crab Uca Crab Uca	emigrapsus sanguineus emigrapsus takanoi lacrophthalmus sp. letaplazx longipes letapograpsus frontalis letapograpsus quadridemtatus arasesarma pictum erisesarma bidens	+ + +		+	+								
Crab Hen Crab Mac Crab Met Crab Met Crab Met Crab Pari Crab Peri Crab Scop Crab Uca Crab Uca Crab Uca Crab Uca	emigrapsus takanoi lacrophthalmus sp. letaplazx longipes letapograpsus frontalis letapograpsus quadridemtatus arasesarma pictum erisesarma bidens copimera globosa	+	+				+	+	+	+	+	+	+
Crab Mac Crab Met Crab Met Crab Met Crab Parc Crab Peri Crab Scop Crab Uca Crab Uca Crab Uca Crab Uca	lacrophthalmus sp. letaplazx longipes letapograpsus frontalis letapograpsus quadridemtatus arasesarma pictum erisesarma bidens copimera globosa	+	+			+							
Crab Met Crab Met Crab Met Crab Parc Crab Peri Crab Uca Crab Uca Crab Uca Crab Uca	letaplazx longipes letapograpsus frontalis letapograpsus quadridemtatus arasesarma pictum erisesarma bidens copimera globosa	+	+					+	+	+			
Crab Met Crab Met Crab Parc Crab Peri Crab Scop Crab Uca Crab Uca Crab Uca Crab Uca	letapograpsus frontalis letapograpsus quadridemtatus arasesarma pictum erisesarma bidens copimera globosa	+	+										
Crab Met Crab Parc Crab Peri Crab Scop Crab Uca Crab Uca Crab Uca	letapograpsus quadridemtatus arasesarma pictum erisesarma bidens copimera globosa	+		+	+		+		+	+	+	+	+
Crab Parc Crab Peri Crab Scop Crab Uca Crab Uca Crab Uca	arasesarma pictum erisesarma bidens copimera globosa		+	+	+	+	+				+	+	+
Crab Peri Crab Scop Crab Uca Crab Uca Crab Uca	erisesarma bidens copimera globosa										+	+	
Crab Scop Crab Uca Crab Uca Crab Uca Crab Uca	copimera globosa	+	+	++	+	+	+	+	+	+		+	+
Crab Uca Crab Uca Crab Uca Crab Uca	. •	+			+								
Crab Uca Crab Uca		+			+	+	+				++	+	+
	ca lactea	+	+		+	+	+	+	+		+	+	+
	ca splendida										+	+	
	eriophthalmus modestus (Periopht	+				++	++	+	+	+	+		+
		+++	+++	++	+	++	+	+	+	+	+	+	+
Gastropod Bati	atillaria zonalis	++	+	++	+	+	++	+++	++	++	+	+++	++
	ellana toreuma					+							
	erithidea cingulata	+	+	+	++		+	++	++	+	+	++	++
Gastropod Ceri	erithidea diadjariensis	+++	+++	+	+++	++	+	+++	+++	++	++	+++	+++
Gastropod Ceri	erithidea microptera										+		
Gastropod Clith	ithon spp.		+	+		+	+	+	+	+	+	+	+
Gastropod Echi	chinolittorina radiata	+	+	+	+	+							
	ttoraria articulata				+		+	+	+	+			
	ttoraria melanostoma				+			+	+				
Gastropod Lune	ınella coronata	++	++	+		+	+		+	+	+	+	+
Gastropod Mor	lonodonta labio	+++	+++	++	+	+	+	+	+	+	+	+	+
Gastropod Nas.	assarius festivus	+	+	+	+	+	+	++	+	+	+	+	+
Gastropod Neri	erita albicilla	+	+	+		+	+	+	+	+	+		
	erita chamaeleon									+			
	erita polita				+		+	+			+	+	+
Gastropod Nipp	ipponacmea concinna	+	+	+									
	atelloida pygmaea	+	+			++							
	anaxis sulcatus	+	+										
Gastropod Tere	erebralia sulcata	+	+	+	+			+	+	+	++		
Gastropod Tha	nais clavigera	+	+	+	+								
	ibanarius sp.	+	+	+		+	+	+	+	+		+	+
	iogenes sp.	+	+	+		+	+			+			
	agrurus sp.					+	+	+	+	+		+	+
Horseshoe Crab Tack	achypleus tridentatus						+	++	++	++		+	++
	enaeus sp.		+										
Seagrass Halo	alophila ovalis							+	++	++			
	gia oceanica	+			+	+					+	+	
Seaslug Onc	nchidium sp.	+										+	
	chiura spp.				+								
	chetostoma erythrogrammon							+					
Worm Olig	ligochaete sp.			+	+	+	+	+	+	+	+	+	+
Worm Siph	phonosoma sp.							+	+	+			
	punculus sp.	+	+	+		+	+	+	+	+			
	bbon Worm sp.				+		+			+	+	+	+

											TC	B1							
Group	Species	H1	H2	нз	Н4	Н5	Density (ind. / m ² or % cover)	M1	M2	М3	M4	M5	Density (ind. / m ² or % cover)	L1	L2	L3	L4	L5	Density (ind. / m ² or % cover)
Barnacle Be	Balanus amphitrite						0						0			<5%			<5%
Bivalve A	Anomalocardia squamosa						0		1				0.8	1					8.0
Bivalve Bi	Barbatia virescens				<5%	<5%	<5%	<5%		<5%			<5%	<5%		<5%			<5%
Bivalve Co	Coecella chinensis						0						0						0
Bivalve Co	Corbula erythrodon						0						0						0
Bivalve C	Cyclina sinensis	1					0.8			1			0.8						0
Bivalve G	Geloina erosa					1	0.8						0						0
Bivalve Lo	aternula anatina						0						0						0
Bivalve Pi	Placamen lamellatum	5			1		1.2						0						<5%
Bivalve So	accostrea cucullata	<5%	<5%	<5%	<5%	<5%	<5%	20%	10%	20%	10%	5%	0.13	5%	10%	20%	25%	30%	18%
Bivalve Se	eptifer virgatus				<5%		0						0						0%
Bivalve To	apes philippinarum						0					4	3.2			2	2	1	4
	apes variegatus						0						0						0
Chiton A	Acanthopleura japonica						0						0				2		1.6
	lemigrapsus sanguineus						0						0						0
	Hemigrapsus takanoi						0						0						0
	Aacrophthalmus sp.						0						0						0
	Metapograpsus quadridemtatus						0				1	1	1.6						0
	Perisesarma bidens						0						0				4		3.2
	copimera globosa	_	1				0.8						0						0
	Jca lactea	1					0						0						0
	Batillaria multiformis	2	1	59	53	26	112.8	13	1	5	35	8					25	24	39.2
	Batillaria zonalis	13	_		-		16	6	4	Ť		_	8	20	13	20		2	44
	Cellana grata	 -					0	Ť					0	<u> </u>				1	0.8
	Cellana toreuma						0						0					_	0
	Cerithidea cingulata	1	5	1			4.8		7				5.6	<u> </u>		1			0.8
	Cerithidea diadjariensis	53	_		1		71.2	16	37	1	1	8		_		3	2		4
	Clithon spp.	1 3	<u> </u>		-		0					Ŭ	0	_					0
	chinolittorina radiata	1			1	7	6.4			1	9	1	8.8	_			3		2.4
	ittoraria melanostoma	_			_		0					_	0	_					0
	unella coronata	6	1	2	5	4	14.4	9	1	7	6	1	19.2	_		5	10	5	16
	Monodonta labio	6	_		_	24	54.4	9	3	14	40	15		2		2	16	26	36.8
	lassarius festivus	╁	1			24	0.8	1	2	17		13	2.4	┝		4	4	20	6.4
	Verita albicilla	1	<u> </u>			1	1.6				2	1	2.4	 		 	1	5	4.8
	Verita chamaeleon	┢	 			_	0	\vdash				_	0	\vdash					0
	Verita polita	\vdash	_				0	\vdash					0	 					0
	lipponacmea concinna	-				1	0.8	_		1	1		1.6	_			2		1.6
	Patelloida pygmaea	1					0.8	_					0						0
	erebralia sulcata	+					0	\vdash					0	\vdash					0
	Clibanarius sp.	1					0	$\vdash \vdash$					0	\vdash					0
	Diogenes sp.	+					0						0	-		-			0
	Pagrurus sp.	\vdash					0						0	 					0
	achypleus tridentatus	+-	 		\vdash		0	\vdash					0	\vdash	 	<u> </u>			0
		+-	 		\vdash		0	1					0.8	\vdash	-	 			0
	Penaeus sp.	\vdash	\vdash		-		0	1				-	0.8	\vdash	-	-			0
	Onchidium sp.	-	 		-		0	\vdash		-			0	\vdash	-				0%
	Chiura spp.	\vdash	-				0						0	-		-	1		0%
	Oligochaete sp.	5			9	2	12.8		1		1		1.6	2			2		3.2
	ipunculus sp.	1 -	1		1 9	2	0		1		1		0	 _		-			0
vvoiiti Ri	Ribbon Worm sp.	ь	ь	Ц	Ь	L	U	L				L	U	L	L	Ь			U

											TC	B2							
Group	Species	Н1	H2	нз	Н4	Н5	Density (ind. / m ² or % cover)	М1	M2	М3	M4	M5	Density (ind. / m ² or % cover)	L1	L2	L3	L4	L5	Density (ind. / m ² or % cover)
Barnacle	Balanus amphitrite						0						0%					<5%	<5%
Bivalve	Anomalocardia squamosa						0						0						0
Bivalve	Barbatia virescens						0				0.05	0.05	0.02			<5%		<5%	<5%
Bivalve	Coecella chinensis						0						0						0
Bivalve	Corbula erythrodon						0					1	0.8						0
Bivalve	Cyclina sinensis						0		1	1			1.6	1					0.8
Bivalve	Geloina erosa						0		1		3		3.2						0
Bivalve	Laternula anatina						0						0						0
Bivalve	Placamen lamellatum						0						0						0
Bivalve	Saccostrea cucullata	1		<5%	<5%		<5%		<5%	<5%	5%	10%	3%	<5%	<5%	10%	10%	<5%	4%
Bivalve	Septifer virgatus						0						0						0
Bivalve	Tapes philippinarum						0						0						0
Bivalve	Tapes variegatus	1					0						0						0
Chiton	Acanthopleura japonica	t					0						0						0
Crab	Hemigrapsus sanguineus						0	l					0						0
Crab	Hemigrapsus takanoi	\vdash					0				3		2.4						0
Crab	Macrophthalmus sp.	\vdash					0				_		0						0
Crab	Metapograpsus quadridemtatus	\vdash					0	\vdash			1	1	1.6	\vdash					0
Crab	Perisesarma bidens	╁					0	-					0						0
Crab	Scopimera globosa	1					0	-					0						0
Crab	Uca lactea	 					0						0						0
Gastropod	Batillaria multiformis	\vdash					0	12		3		1	12.8	_	1				0.8
Gastropod	Batillaria zonalis	╁		8	5	3		6		٦		Ė	4.8	\vdash	9			19	24.8
Gastropod	Cellana grata	╁		-			0	H					0	-		-		13	0
Gastropod	Cellana toreuma	 					0	-				3	2.4						0
Gastropod	Cerithidea cingulata	3	12	7	12	32	52.8	-				3	0	_					0
Gastropod	Cerithidea diadjariensis	17	_	88		32	231.2	23	2				20	_	5				4
Gastropod	·		120	- 00	20	32	0	23					0	\vdash	- 3	-			0
Gastropod	Clithon spp.	├					0	-				8		-					0
Gastropod	Echinolittorina radiata	-					0	-				°	0.4	-					0
	Littoraria melanostoma	├					0				-	_	-			4	1		4
Gastropod	Lunella coronata	 		_	_		-	_		_	5	1		_	_		1		
Gastropod	Monodonta labio	1		2	1	_	3.2	_		1	4 2	_		-	5	_			4
Gastropod	Nassarius festivus	├				1	0.8	-				1	2.4	_	1	-			0.8
Gastropod	Nerita albicilla	├					0	-				9		_		2			1.6
Gatropod	Nerita chamaeleon	-					0						0						0
Gastropod	Nerita polita	-		2			1.6	_					0	_					0
Gastropod	Nipponacmea concinna	┢					0	-				- 20	0	-					0
Gastropod	Patelloida pygmaea		-		-	-	0	├				20	_	<u> </u>	-	-			0
Gastropod	Terebralia sulcata	₩				_	0	<u> </u>					0	<u> </u>	-	-			0
Hermit Crab	Clibanarius sp.	₩	-		-	_	0	 				<u> </u>	0	<u> </u>	1	1			0
Hermit Crab	Diogenes sp.	⊢					0					9		_		_			0
Hermit Crab	Pagrurus sp.	⊢			_	_	0	<u> </u>					0		ļ	-			0
Horseshoe Crab	Tachypleus tridentatus	⊢			_		0	Ь—					0	<u> </u>	-	_			0
Prawn	Penaeus sp.	ـــــ					0	<u> </u>					0	<u> </u>	1	_			0
Seaslug	Onchidium sp.	<u> </u>					0						0			_			0
Worm	Echiura spp.	<u> </u>		100%			0.8						0%			_			0%
Worm	Oligochaete sp.	Ь				2	1.6	Ь			1		0.8		<u> </u>	_			0
Worm	Sipunculus sp.	<u> </u>					0					3	2.4						0
Worm	Ribbon Worm sp.	<u> </u>					0	<u> </u>					0						0

			TCB3																
Group	Species	H1	H2	НЗ	Н4	Н5	Density (ind. / m ² or % cover)	М1	M2	МЗ	M4	M5	Density (ind. / m ² or % cover)	L1	L2	L3	L4	L5	Density (ind. / m ² or % cover)
Barnacle	Balanus amphitrite						0						0	0.05					0.01
Bivalve	Anomalocardia squamosa						0						0			1	1		1.6
Bivalve	Barbatia virescens						0						0						0
Bivalve	Coecella chinensis						0						0	2					1.6
Bivalve	Corbula erythrodon						0						0						0
Bivalve	Cyclina sinensis				2		1.6						0		1				0.8
Bivalve	Geloina erosa					1	0.8					2	1.6						0
Bivalve	Laternula anatina						0						0				2		1.6
Bivalve	Placamen lamellatum						0						0						0
Bivalve	Saccostrea cucullata		<5%	<5%			<5%	<5%	5%	<5%	<5%	<5%	1%	15%	20%	10%	10%	5%	12%
Bivalve	Septifer virgatus						0					5%	0.04						0
Bivalve	Tapes philippinarum						0						0						0
Bivalve	Tapes variegatus						0						0				1		0.8
Chiton	Acanthopleura japonica						0						0						0
Crab	Hemigrapsus sanguineus						0					1	0.8		2		2	1	4
Crab	Hemigrapsus takanoi						0						0						0
Crab	Macrophthalmus sp.		1				0.8						0						0
Crab	Metapograpsus quadridemtatus						0						0						0
Crab	Perisesarma bidens						0						0						0
Crab	Scopimera globosa						0						0						0
Crab	Uca lactea						0		1				0.8						0
Gastropod	Batillaria multiformis	8	6		10	2	20.8	1	4	7	21	22	44	4				3	5.6
Gastropod	Batillaria zonalis	780	537	576		100	1780.8	53	23	29	73	67	196	10	20	34	13	25	81.6
Gastropod	Cellana grata	1					0						0			-			0
Gastropod	Cellana toreuma						0						0	4					3.2
Gastropod	Cerithidea cingulata	16	12	4	18	6		27	10	11	6	3		10	5	3			14.4
Gastropod	Cerithidea diadjariensis	48	-	92		22	309.6	53	61	163	44	27	278.4	38	13	25	3	13	73.6
Gastropod	Clithon spp.	Ť	3				2.4	<u> </u>				1	0.8				1		0.8
Gastropod	Echinolittorina radiata	_					0						0.0						0.0
Gastropod	Littoraria melanostoma	_					0		1				0.8						0
Gastropod	Lunella coronata	_					0				1	1	1.6	4	5		3		9.6
Gastropod	Monodonta labio					1	0.8			1	-	10	-	11	3			1	12
Gastropod	Nassarius festivus	40	5	68		5	94.4	4				10	3.2	1	7	3		1	9.6
Gastropod	Nerita albicilla	+		4			3.2	Ť		1			0.8		1	Ť			0.8
Gatropod	Nerita chamaeleon	\vdash		-			0						0.0		1				0.8
Gastropod	Nerita polita	\vdash	1		\vdash	-	0.8						0			<u> </u>			0.8
Gastropod	Nipponacmea concinna	\vdash			\vdash		0.8						0			\vdash			0
Gastropod	Patelloida pygmaea	\vdash					0						0						0
Gastropod	Terebralia sulcata	\vdash		_			0	\vdash					0						0
Hermit Crab	Clibanarius sp.	 					0		1			1	1.6				1		0.8
Hermit Crab	Diogenes sp.	1		-			0		1				0						0.8
Hermit Crab	Pagrurus sp.	 	1	-			0.8	\vdash					0						0
Horseshoe Crab	Tachypleus tridentatus	\vdash	1	_	\vdash		0.8	\vdash					0			_			0
Prawn		\vdash	1	_	\vdash		0.8	\vdash					0	H		_			0
	Penaeus sp.	\vdash		-	-		0	\vdash					0						0
Seaslug Worm	Onchidium sp.	├		-			0	\vdash					0						0
	Echiura spp.	├		-			0						0						0
Worm	Oligochaete sp.	├	-	-	<u> </u>	-			-				-			_			
Worm	Sipunculus sp.	├			_		0	\vdash	1				0.8			_	_		0
Worm	Ribbon Worm sp.						0						0				1		0.8

	THW																		
Group	Species	H1	Н2	нз	Н4	Н5	Density (ind. / m ² or % cover)	М1	M2	МЗ	M4	M5	Density (ind. / m ² or % cover)	L1	L2	L3	L4	L5	Density (ind. / m ² or % cover)
Barnacle	Balanus amphitrite						0						0						0
Bivalve	Anomalocardia squamosa						0						0						0
Bivalve	Barbatia virescens						0						0						0
Bivalve	Coecella chinensis						0						0						0
Bivalve	Corbula erythrodon						0						0						0
Bivalve	Cyclina sinensis		1				0.8					1	0.8						0
Bivalve	Geloina erosa	12	5	4	1	4	20.8	5	2	1	5	2	12		2	1	2		4
Bivalve	Laternula anatina						0						0						0
Bivalve	Placamen lamellatum						0						0			1			0.2
Bivalve	Saccostrea cucullata						0%		<5%	10%			2%						0%
Bivalve	Septifer virgatus						0						0						0
Bivalve	Tapes philippinarum						0						0		1				0.8
Bivalve	Tapes variegatus						0						0						0
Chiton	Acanthopleura japonica						0						0						0
Crab	Hemigrapsus sanguineus						0						0						0
Crab	Hemigrapsus takanoi	\vdash					0						0						0
Crab	Macrophthalmus sp.	<u> </u>					0						0						0
Crab	Metapograpsus quadridemtatus	 					0						0						0
Crab	Perisesarma bidens	—					0						0	_					0
Crab	Scopimera globosa	 					0						0	_					0
Crab	Uca lactea	\vdash					0						0	_					0
Gastropod	Batillaria multiformis	 					0	1	6				5.6	3				1	3.2
Gastropod	Batillaria zonalis	_					0		48		14	18		8	10	2	5	24	39.2
Gastropod	Cellana grata	-					0	-	40		14	10	0		10		3	24	0
Gastropod	Cellana toreuma	-					0	-					0	_					0
Gastropod		-			1	11	9.6			17	7	5		10	1		2	5	14.4
Gastropod	Cerithidea cingulata	69	31	1	26		143.2	7		4		83	126.4	77	22	26	12	43	14.4
	Cerithidea diadjariensis	09	31	1	20	32	0	<u> </u>		4	04	03	0			20	12	43	0
Gastropod	Clithon spp. Echinolittorina radiata	-					0						0	_					0
Gastropod	Littoraria melanostoma	_					0	_					0	_					0
Gastropod		_					0	_					0	_					0
Gastropod	Lunella coronata	_						_					-	_					-
Gastropod	Monodonta labio	<u> </u>					0	_					0						0
Gastropod	Nassarius festivus	١.					0	-					0	_					0
Gastropod	Nerita albicilla	1					0.8						0	_					0
Gatropod	Nerita chamaeleon	_					0						0	_					0
Gastropod	Nerita polita	_					0						0	_					0
Gastropod	Nipponacmea concinna	_					0						0	_					0
Gastropod	Patelloida pygmaea	_				_	0						0	_					0
Gastropod	Terebralia sulcata					6	4.8						0						0
Hermit Crab	Clibanarius sp.						0						0						0
Hermit Crab	Diogenes sp.	_					0						0	_					0
Hermit Crab	Pagrurus sp.	<u> </u>			_	_	0	Ь					0	<u> </u>	\vdash				0
Horseshoe Crab	Tachypleus tridentatus						0	<u> </u>					0	L					0
Prawn	Penaeus sp.						0	<u> </u>					0	L					0
Seaslug	Onchidium sp.						0	<u> </u>	1				0.8	_					0
Worm	Echiura spp.						0						0						0
Worm	Oligochaete sp.						0	1			1		1.6		1		6		5.6
Worm	Sipunculus sp.	<u> </u>					0						0						0
Worm	Ribbon Worm sp.	1		1			0	ı					0						0

Event and Action Plan for Soft Shore Ecology

Annex H3 Event and Action Plan for Soft Shore Ecological Monitoring

Errort	Action									
Event	ET	IEC	ER	Contractor						
Density or the distribution pattern of horseshoe crab, seagrass and intertidal soft shore communities recorded in the impact or post-construction monitoring are significantly lower than or different from those recorded in the baseline monitoring.	differences are as a result of natural variation or previously observed seasonal differences; 2. Identify source(s) of impact; 3. Inform the IEC, ER and Contractor;	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review proposals for additional monitoring and any other measures submitted by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Discuss with the IEC additional monitoring requirements and any other measures proposed by the ET; Make agreement on the measures to be implemented. 	 Inform the ER and in writing; Discuss with the ET and the IEC and propose measures to the IEC and the ER; Implement the agreed measures; Resubmit proposals of remedial actions if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated. 						

Annex I

Cumulative Statistics on Exceedances, Environmental Complaints, Notification of Summons and Status of Prosecutions

 Table I1
 Cumulative Statistics on Exceedances

		Total No. recorded in this reporting period	Total No. recorded since project commencement
Air Quality (1-hr TSP)	Action	0	0
	Limit	0	0
Noise	Action	2	54
	Limit	0	0
Water Quality	Action	0	0
	Limit	0	0
Marine Ecology	Action	0	0
	Limit	0	0

Remark:

Table I2 Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

Contract No.	Reporting Period	Cumulative Statistics							
	<u> </u>	Complaints	Notifications of	Prosecutions					
			Summons						
Contract 1	This Reporting	0	0	0					
	Period (1 - 31								
	December 2021)								
	Total no. received since project commencement	106	0	0					
Contract 2	This Reporting	0	0	0					
	Period (1 – 31								
	December 2021)								
	December 2021)								
	Total no. received since project commencement	0	0	0					
Contract 3	This Reporting	2	0	0					
	Period (1 – 31 December 2021)								
	Total no. received since project commencement	4	0	0					
Contract 4	This Reporting Period (1 – 31 December 2021)	0	0	0					
	Total no. received since project commencement	0	0	0					

⁽¹⁾ Exceedances, which are not project related, are not shown in this table.

Contract No.	Reporting Period	(Cumulative Statistic	S
Contract 7	This Reporting	0	0	0
	Period (1 - 31			
	December 2021)			
	Total no. received since project	0	0	0
	commencement			

Annex J

Monitoring Schedule for the Next Reporting Period

Tung Chung New Town Extension (East)

Air Quality and Noise Monitoring Schedule (January 2022)

Manadan			The second secon	Filder	Ontorelan
wonday	Tuesday	weanesaay	Inursday	Friday	Saturday
					1-Jan
3- lan	4- Jan	5- lan	6- lan	7 ₋ lan	8-Jan
o dan	+ 0di1	o dan	o dan	7 0411	o dan
		Air Quality and Noise			
		Worldoning			
10-Jan	11-Jan	12-Jan	13-Jan	14-Jan	15-Jan
	Air Quality and Noise				
	Monitoring				
<u>17-Jan</u>	18-Jan	19-Jan	20-Jan	21-Jan	22-Jan
Air Orralitar and Naiss					Ain Occalites and Nation
					Air Quality and Noise
Monitoring					Monitoring
24-Jan	25-Jan	26-Jan	27-Jan	28-Jan	29-Jan
				Air Quality and Noise	
				3	
31-Jan					
Air Quality and Noise					
	3-Jan 10-Jan Air Quality and Noise Monitoring 24-Jan	3-Jan 4-Jan 10-Jan 11-Jan Air Quality and Noise Monitoring 17-Jan 18-Jan Air Quality and Noise Monitoring 24-Jan 25-Jan	3-Jan 4-Jan 5-Jan Air Quality and Noise Monitoring 10-Jan 11-Jan 12-Jan Air Quality and Noise Monitoring 17-Jan 18-Jan 19-Jan Air Quality and Noise Monitoring	Monday Tuesday Wednesday Thursday 3-Jan 4-Jan 5-Jan 6-Jan Air Quality and Noise Monitoring 10-Jan 11-Jan 12-Jan 13-Jan Air Quality and Noise Monitoring 17-Jan 18-Jan 19-Jan 20-Jan Air Quality and Noise Monitoring 24-Jan 25-Jan 26-Jan 27-Jan	3-Jan 4-Jan 5-Jan 6-Jan 7-Jan Air Quality and Noise Monitoring Air Quality and Noise Monitoring 10-Jan 11-Jan 12-Jan 13-Jan 14-Jan Air Quality and Noise Monitoring 17-Jan 18-Jan 19-Jan 20-Jan 21-Jan Air Quality and Noise Monitoring 24-Jan 25-Jan 26-Jan 27-Jan 28-Jan Air Quality and Noise Monitoring

Tung Chung New Town Extension (East) Impact Marine Water Quality Monitoring (WQM) Schedule (January 2022)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
						1-Jar
2-Jan	3-Jan	4-Jan	5-Jan	6-Jan	7-Jan	8-Jan
	ebb tide 11:55 - 15:25		ebb tide 13:27 - 16:57		ebb tide 15:07 - 18:37	
	flood tide 6:42 - 10:12		flood tide 8:15 - 11:45		flood tide 9:45 - 13:15	
9-Jan	10-Jan	11-Jan	12-Jan	13-Jan	14-Jan	15-Jan
3-Jan	10-5aii	TT-Jail		13-3411	14-5411	13-3411
	ebb tide 4:29 - 7:59		ebb tide 6:49 - 10:19		ebb tide 9:41 - 12:08	
	flood tide 11:59 - 15:29		flood tide 13:04 - 16:34		flood tide 14:08 - 17:38	
16-Jan	17-Jan	18-Jan	19-Jan	20-Jan	21-Jan	22-Jan
	ebb tide 11:12 - 14:31		ebb tide 12:16 - 15:46		ebb tide 13:29 - 16:59	
	flood tide 6:14 - 9:44		flood tide 7:16 - 10:46		flood tide 8:16 - 11:46	
	0.14		10.40		11.40	
23-Jan	24-Jan	25-Jan	26-Jan	27-Jan	28-Jan	29-Jan
	ebb tide 15:46 - 19:16		ebb tide 18:03 - 20:33		ebb tide 8:33 - 11:31	
	flood tide 9:57 - 13:27		flood tide 11:19 - 14:49		flood tide 13:03 - 16:33	
30-Jan	31-Jan					
30-3aii	31-Jaii					
	ebb tide 11:03 - 14:33					
	flood tide 5:49 - 9:19					
Remark:						I .

Remark:

Pickup time and place of 1st tide: 15 min before tidal window at Sham Tseng pier Pickup time and place of 2nd tide: 15 min before tidal window at Tung Chung pier