香港電燈有限公司 The Hongkong Electric Co., Ltd.

Improvement Dredging for Lamma Power Station Navigation Channel

Final Environmental Monitoring & Audit Review Report

香港電燈有限公司 The Hongkong Electric Co., Ltd.

ENVIRONMENTAL IMPACT ASSESSMENT (EIA) ORDINANCE, CAP. 499

ENVIRONMENTAL PERMIT NO. EP-535/2017

IMPROVEMENT DREDGING FOR LAMMA POWER STATION NAVIGATION CHANNEL

Report Title	Final EM&A Review Report
Date	14 January 2022
Certified by	Valuelle
Verified by	(Mr. Kenneth Fung, Environmental Team Leader) Mr. Y T Tang (AECOM Asia Company Limited, Independent Environmental Checker)

TABLE OF CONTENT

EXECUTIVE SUMMARY

1.	INTRODUCTION	2
1.1	Background	2
1.2	Project Organisation	2
1.3	Construction Works undertaken	2
1.4	Summary of EM&A Requirements	4
2.	WATER QUALITY MONITORING	6
3.	ENVIRONMENTAL AUDIT	7
3.1	Assessment of Environmental Monitoring Results	7
3.2	Site Environmental Audit	8
3.3	Waste Management	9
3.4	Implementation Status of Environmental Mitigation Measures	9
3.5	Implementation Status of Event/Action Plans	9
3.6	Summary of Enquiries/Complaints Received	9
3.7	Summary Record of Notification of Summons and Successful Prosecutions	9
4.	CONCLUSION	10

LIST OF TABLES

- Table 1.1 Construction Activities and Their Corresponding Environmental Mitigation MeasuresTable 3.1 Summary of Alert, Action and Limit Level Exceedances on Monitoring
- Table 3.1
 Summary of Alert, Action and Limit Level Exceedances on Monitoring

 Parameters
 Parameters
- Table 3.2
 Environmental Complaints Received

LIST OF FIGURE

Figure 1.1 Project Area

ANNEX

- Annex A Organisation Chart
- Annex B Amount of Dredged and Dumped Marine Sediment
- Annex C Water Quality Monitoring
- Annex D Alert/Event and Action Plans
- Annex E Site Audit Summary
- Annex F Summary of EMIS

EXECUTIVE SUMMARY

This is the Final Environmental Monitoring and Audit (EM&A) Review Report for the project "Improvement Dredging for Lamma Power Station Navigation Channel" prepared by the Environmental Team (ET). This report presents the environmental mitigation measures and environmental monitoring and audit for the Project, as well as comparing the results of the EM&A data against the prediction of the EIA Report and reviewing the environmental monitoring methodology.

Water Quality Monitoring

Marine water quality monitoring for the dredging works was conducted in three different phases (viz. the baseline, impact and post-dredging monitoring) according to the required standard set out in the EM&A programme. The baseline water quality monitoring was conducted three days per week for four weeks in January 2019 (dry season), and four weeks in July and August 2019 (wet season). The construction phase water quality monitoring commenced in February 2020 and completed in September 2021. Post-dredging monitoring was conducted for four weeks in November 2021.

Environmental Audit

Some of the water quality monitoring results triggered the relevant Action or Limit Levels during the construction phase of the Project, and the corresponding investigations concluded that the cases were not related to the Project. The dredging activities throughout the construction phase did not cause adverse impact to all water quality sensitive receivers. Moreover, relevant water quality mitigation measures had been implemented. The results of the post-dredging water quality monitoring showed no significant changes from baseline, and hence the long-term water quality is considered to be unaffected by the Project.

Routine site audits were carried out by ET on a weekly basis during the course of dredging work to monitor environmental issues at the construction sites to ensure that all mitigation measures were implemented timely and properly. In addition, site inspections were also carried out by IEC on a monthly basis to audit the water quality monitoring and/or site works. The site conditions were generally satisfactory.

Environmental Complaints

No complaint against the Project was received during the entire construction period.

Environmental Summon and Successful Prosecution

No notifications of summon or successful prosecution was received during the entire construction period.

Concluding Remarks

The environmental monitoring was performed to the required standard set out in the EM&A programme. No significant deficiencies of the EM&A methodology and programme were found. The environmental performance of the project was generally satisfactory.

1. INTRODUCTION

1.1 Background

The Environmental Team (hereinafter called the "ET") was formed within the Hongkong Electric Co. Ltd (HK Electric) to undertake Environmental Monitoring and Audit for "Improvement Dredging for Lamma Power Station Navigation Channel" (hereinafter called the "Project"). Under the requirements of Section 3 of Environmental Permit EP-535/2017, an EM&A programme for impact environmental monitoring is required to be implemented. In accordance with the EM&A Manual, environmental monitoring of water quality and regular environmental audits are required for the Project.

The Project involves re-profiling the Lamma Power Station Navigation Channel (the "Channel") to a target depth of -16.5 mPD with an estimated sediment quantity up to approx. 3.2 million m³, subject to fine-tuning against the actual existing seabed profile. The Project Area is shown in Figure 1.1.

The majority of dredging work was carried out by Trailer Suction Hopper Dredger (TSHD) whereas the minority of dredging work for remedial trimming and near the existing jetty structure was carried out by grab dredger. All construction works were completed in September 2021.

The EM&A programme for construction works was commenced in February 2020. The information for the termination proposal of EM&A programme was submitted to EPD on 8 October 2021.

This report presents the environmental mitigation measures and environmental monitoring and audit for the Project, as well as comparing the results of the EM&A data against the prediction of the EIA Report and reviewing the environmental monitoring methodology.

1.2 Project Organisation

The management structure to oversee the Project includes the following:

- Project Proponent (HK Electric);
- Environmental Protection Department (EPD);
- Engineer or Engineer's Representative (ER);
- Independent Environmental Checker (IEC);
- Environmental Team (ET); and
- Contractor.

The project organisation chart and environmental team organisation chart for the construction EM&A programme are shown in Annex A.

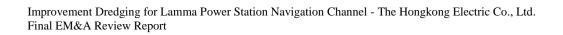
1.3 Construction Works undertaken

The construction works of the Project commenced in February 2020. Construction activities undertaken during the entire construction period were dredging and dumping of dredged mud, and were completed in September 2021.

The main construction activities carried out during the entire construction period and the corresponding environmental mitigation measures are summarized in Table 1.1. The implementation of major mitigation measures in the period is provided in Annex F.

Table 1.1	Construction Activities and Their Corresponding Environmental Mitigation
	Measures

Construction Activities	Environmental Mitigation Measures
Dredging	 Water Quality One number of TSHD was operated for the Project. There was no concurrent or mixed use of grab dredger and TSHD operation. Closed grab capacity was not less than 8m³ (except for dredging works near submarine pipeline). Cage-type silt curtain (at least 10m depth) was used for grab dredger operation. No operation of more than 5 grab dredgers concurrently at any time was allowed. Both maximum total hourly and daily dredging rates as specified in the latest dredging schedule were strictly followed. Vessel speeds within the Project Area were reduced to maximum speed limit. Neither overflow nor using of lean mixture overboard (LMOB) system was occurred. All barges for transportation of dredged materials were fitted with tight bottom seals to prevent leakage. Marine Ecology No dredging on Zone 4 of the navigation channel during the calving season for the Finless Porpoise. All construction related vessels travelled to and from the Project Area followed the designated route to avoid the Finless Porpoise habitat area. The dumping of chemicals, rubbish, oils etc. into the water was strictly prohibited.
	 Marine vessels should avoid traveling during berthing and unberthing of coal vessel. As far as practicable, marine vessels should avoid traveling after sunset or under low visibility when the works area is near submarine pipeline. Working vessel not to stay right above the submarine pipeline unless it is necessary. TSHD should not lower suction pipes in close proximity of the submarine pipeline. TSHD should not stay near the submarine pipeline unless approval is granted.


Construction Activities	Environmental Mitigation Measures
	 Noise General noise mitigation measures were employed at work site throughout the construction phase. The number and type of plants and operation conditions as specified in the CNP were strictly followed.
	 Waste Management All barges for transportation of dredged materials were fitted with tight bottom seals to prevent leakage. All vessels were filled to a level such that dredged materials would not spill over during loading and transportation.
	 Dredged wastes were disposed of at Licensed dumping site. Records of the quantities of waste generated and disposed of off-site were taken.

1.4 Summary of EM&A Requirements

All the EM&A programme/ requirements as stated in the EM&A Manual, EIA and EP were fully implemented for the Project. The EM&A program requires environmental monitoring of water quality. The detailed EM&A monitoring work for water quality is described in Section 2 of this report.

The following environmental audits during the entire construction period are provided in Section 3 of the report:

- Environmental monitoring results;
- Site environmental audit results;
- Records of dredged/dumped mud;
- The implementation status of environmental protection and pollution control/ mitigation measures;
- Implementation status of event/action plans;
- Summary of enquiries/complaints Received; and
- Summary record of notification of summons and successful prosecutions

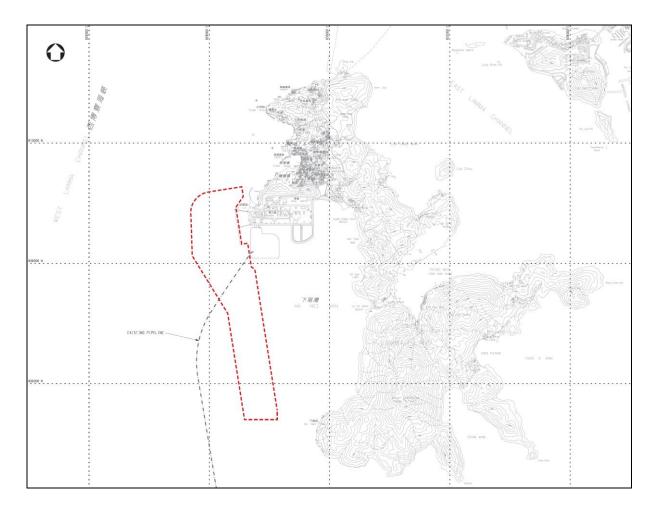


Figure 1.1 Project Area

2. WATER QUALITY MONITORING

The baseline water quality monitoring was conducted three days per week for four weeks in January 2019 (dry season), and four weeks in July and August 2019 (wet season). The construction phase water quality monitoring commenced in February 2020 and completed in September 2021. After the completion of all dredging activities, a post-dredging monitoring was carried out for four weeks in November 2021.

HK Electric commissioned Mott MacDonald Hong Kong Limited to carry out water quality monitoring works of the Project. The results for post-dredging water quality monitoring and statistical analysis of monitoring data for three monitoring phases (viz baseline, impact and post-dredging) is provided in Annex C

3. ENVIRONMENTAL AUDIT

3.1 Assessment of Environmental Monitoring Results

Summary of Exceedances

Some of the testing results triggered the corresponding Action or Limit Levels during the entire construction period as summarised in Table 3.1.

Table 3.1 Su	ummary of Alert, Act	on and Limit Level Exceedances	on Monitoring Parameters
--------------	----------------------	--------------------------------	--------------------------

Item	Parameter Monitored	Monitoring Period	No. of Exceedances			Alert/Event and Action Plans Implementation	
			Alert Level	Action Level	Limit Level	Status and Results	
Water	·						
1	DO (Surface & Middle)	18/02/2020 30/09/2021	0	7	62	Investigation concluded that the exceedances were not related to the Project. Please refer to Section 2 and Annex C of the report for details.	
2	DO (Bottom)	18/02/2020 30/09/2021	0	49	13		
3	Turbidity	18/02/2020 30/09/2021	0	1	0		
4	SS	18/02/2020 30/09/2021	N.A.	45	4		

Review of Reasons for and the Implications of Non-compliance

There were 102 Action Level and 79 Limit Level exceedances during the impact monitoring period. All cases were investigated and the investigations concluded that the cases were not related to the Project with the following reasons:

- The affected SR stations were upstream of the Project during the corresponding tide.
- The exceedance located at a great distance from the Project Site with no evidence of effect from the Project.
- The exceedance appeared to be due to local sources not related to the Project.
- No dredging work was carried out on the dates of exceedance; or no works was carried out around the concerned sampling time.
- Similar low DO levels were recorded at the upstream control stations.
- The active works was far from the affected stations.

Summary of Actions Taken

Relevant water quality mitigation measures had been implemented against the non-compliance are as follows:

- Cage-type silt curtain was deployed for grab dredger in accordance with the Silt Curtain Deployment Plan.
- Dredging rate was subject to a maximum limit specified in the Environmental Permit.
- Vessels had adequate clearance to the seabed during all states of the tide.
- Grab was closed tightly to minimize loss of sediment during dredging.
- Special care was taken during lowering and lifting grabs to minimize unnecessary
- disturbance to the seabed.
- The dredging contractor kept close monitoring of any abnormal water conditions and adjusted its dredging operations to minimize impact to the water quality during its works.
- Full time divers manned on board carrying out maintenance of silt curtain as and when necessary to ensure minimum impact to water quality during dredging.

Corresponding investigations were carried out for the exceedance cases, and the investigations concluded that the dredging activities did not cause adverse impacts on the water quality at the Project site, the cases were more likely due to natural variations instead. Hence, no further action had to be devised. Nevertheless, the marine water quality results had been closely monitored in order to take corresponding actions to ensure the seawater quality during the impact monitoring period.

Comparing EM&A data with EIA Predictions

The review of EM&A data against EIA predictions has shown that the EM&A data during construction phase of the Project are generally in line with the EIA predictions on the associated water quality impacts. This suggests that the recommended water quality mitigation measures are effective to avoid or alleviate the potential environmental impacts arise from the Project. For details, please refer to Section 2 and Annex C of the report.

Review of Environmental Monitoring Methodology

The water quality monitoring methodology has been reviewed and based on the day-to-day operation of the water quality monitoring programme and the obtained monitoring results, the monitoring has achieved the required standard set out in the EM&A programme. In addition, the environmental monitoring methodology is considered technically and cost effective. However, several recommendations have been identified for enhancement the EM&A programme for future implementation during recurrent dredging works, including cancellation of Alert Levels for near stations and cessation of monitoring station SR10. For details, please refer to Section 2 and Annex C of the report.

3.2 Site Environmental Audit

Site audits were carried out by ET on a weekly basis during the course of dredging work to monitor environmental issues at the construction sites to ensure that all mitigation measures were implemented timely and properly. In addition, site inspections were also carried out by IEC on a monthly basis to audit the water quality monitoring and/or site works. The site conditions were generally satisfactory. The site audit findings for the reporting period are summarized in Annex E.

3.3 Waste Management

The daily records of dredged / dumped volume of dredged mud were already provided in the monthly EM&A reports. Dredged materials were disposed to the designated locations within South Cheung Chau Open Sea Sediment Disposal Area, East of Sha Chau Contaminated Mud Pit, East Ninepin Open Sea Sediment Disposal Area. The total bulk volume of dredged material was 4,593,300 m³ with breakdown for each month shown in Annex B.

3.4 Implementation Status of Environmental Mitigation Measures

Mitigation measures detailed in the permits and the EM&A Manual were implemented. A summary of the Environmental Mitigation Implementation Schedule (EMIS) is presented in Annex F.

3.5 Implementation Status of Event/Action Plans

The Alert/Event and Action Plans for water quality extracted from the EM&A Manual are presented in Annex D.

3.6 Summary of Enquiries/Complaints Received

There was no environmental complaint received for the Project.

Table 3.2Environmental Complaints Received

Case Reference / Date, Time Received / Date, Time Concerned	Descriptions / Actions Taken	Conclusion / Status
Nil	N/A	N/A

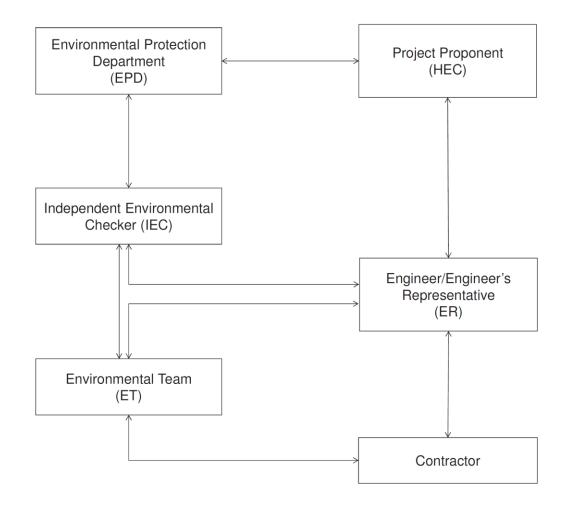
3.7 Summary Record of Notification of Summons and Successful Prosecutions

There was no summon or successful prosecution received for the Project.

4. CONCLUSION

The construction work under the Project commenced in February 2020 and was completed in September 2021. Water quality monitoring and environmental audit works were implemented in accordance with the updated EM&A Manual and the requirement under EP-535/2017.

Some of the water quality monitoring results triggered the relevant Action or Limit Levels during the construction phase of the Project, and the corresponding investigations concluded that the cases were not related to the Project. To conclude, the dredging activities throughout the construction phase did not cause adverse impact to all water quality sensitive receivers. Moreover, relevant water quality mitigation measures had been implemented against the non-compliance. The results of the post-dredging water quality monitoring showed no significant changes from baseline, and hence the long-term water quality is considered to be unaffected by the Project.

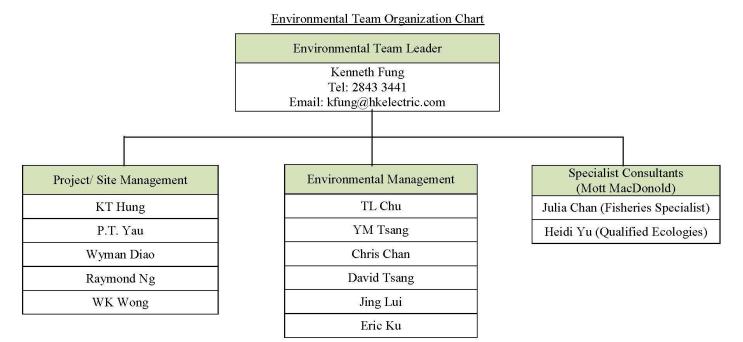

The environmental monitoring was performed to the required standard set out in the EM&A programme and the environmental monitoring methodology is considered technically and cost effective. No significant deficiencies of the EM&A methodology and programme were found. Some recommendations for enhancement of the EM&A programme are suggested for future implementation during recurrent dredging works of the Project where applicable.

The required environmental mitigation measures for water quality were implemented along with construction progress of the Project. No compliant against the Project was received. No prosecution and summons were received for the Project.

In view of the above, it is concluded that the environmental performance of the project was generally satisfactory.

Annex A Organization Chart

A1: Project Organisation Chart



final_emna_channel.doc

A2: Environmental Team Organisation Chart

Improvement Dredging for Lamma Power Station Navigation Channel (EP-535/2017)

Month	Dredged Marine Mud (bulk volume m ³)	Dumped Marine Mud (bulk volume m ³)
February 2020	2,145,000	2,145,000
March 2020	1,963,500	1,963,500
April 2020	0	0
May 2020	0	0
June 2020	0	0
July 2020	43,200	43,200
August 2020	58,200	58,200
September 2020	93,600	93,600
October 2020	95,400	95,400
November 2020	85,200	85,200
December 2020	16,200	16,200
January 2021	0	0
February 2021	0	0
March 2021	0	0
April 2021	1,800	1,800
May 2021	4,200	4,200
June 2021	13,800	13,800
July 2021	6,600	6,600
August 2021	4,200	4,200
September 2021	8,400	8,400
Total	4,593,300	4,593,300

Annex B Amount of Dredged and Dumped Marine Sediment

Note: -

As the bulking factor (i.e. bulking factor of 4 for TSHD & 1.3 for Hopper Barge in accordance with assumptions in the approved dumping permit by EPD) of dredged marine mud is found varying considerably at different locations in the navigation channel depending on the depth of high spots to be removed, the final in-situ as-dredged volume will be determined by swath surveys of the navigation channel before and after the dredging work.

Following the interim survey carried out from 13 to 16 March 2020, the bulking factor for TSHD has been adjusted from 4 to 2.8 as directed by EPD. Form A were revised and resubmitted accordingly. Subsequent planning and control of dredging rates for coming works would be based on the adjusted bulking factor.

Annex C

Water Quality Monitoring

Improvement Dredging for Lamma Power Station Navigation Channel

Final Water Quality Monitoring Report January 2022 Mott MacDonald 3/F Manulife Place 348 Kwun Tong Road Kwun Tong Kowloon Hong Kong

T +852 2828 5757 mottmac.hk

The Hongkong Electric Company Limited

Improvement Dredging for Lamma Power Station Navigation Channel

Final Water Quality Monitoring Report

January 2022

Contents

Exe	cutive	summary	1	
1	Intro	duction Project Background	2 2	
	1.2	Implementation Status of Environmental Mitigation Measures	2	
2	Mon	itoring Methodology	3	
	2.1 2.2	Monitoring Equipment and Methodology Laboratory Measurement / Analysis	3 3	
	2.2 2.3	Monitoring Frequency and Duration	3	
	2.4	Monitoring Locations	4	
	2.5	Monitoring Parameters	5	
3		Action and Limit Levels for Sensitive Receiver Stations, and Alert		
		els for Near Stations	6	
	3.1 3.2	Action and Limit Levels Reduction of Maximum Allowable Dredging Rates	6 7	
	3.3	Alert Levels	7	
	3.4	Review of Alert Levels	7	
4	Mon	itoring Results	9	
	4.1	Summary of the Exceedances	9	
	4.2 4.3	EM&A Data over the Monitoring Period EM&A Data with the EIA Predictions	11 12	
	4.4	Review of Environmental Monitoring Methodology	12	
	4.5	Recommendations on the EM&A Programme	12	
5	Con	clusion	14	
Арр	endic	es	15	
A.	Calib	pration Certificates for Post-dredging Monitoring	16	
B.		lity Assurance and Quality Control (QA&QC) Results for Post- ging Monitoring	17	
C.	Post	-dredging Water Quality Monitoring Results	18	

D.	Graphical Presentations of Post-dredging Water Quality Monitoring Results	19
E.	EM&A Data over the Monitoring Period	20
F.	EM&A Data with the EIA Predictions	21

Tables

Table 2.1: Water Quality Monitoring Equipment	3
Table 2.2: Locations of Water Quality Monitoring Stations	4
Table 3.1: Calculated Action and Limit Levels	6
Table 3.2: Reduction of Maximum Allowable Hourly Dredging Rates due to Exceedances	7
Table 3.3: Calculated Initial Alert Levels	7
Table 4.1: Summary of the Exceedances	9

Figures

Figure 2.1: Water Quality Monitoring Locations

Executive summary

The Project "Improvement Dredging for Lamma Power Station Navigation Channel" commenced in February 2020 and was completed in September 2021. This is the Final Water Quality Monitoring Report, presenting environmental mitigation measures and environmental monitoring and audit on marine water quality for the Project, as well as reviewing the results of the EM&A data against the prediction of the EIA Report. The Project was implemented according to the EP-535/2017. The required environmental mitigation measures for water quality were implemented along with construction progress of the Project.

The baseline water quality monitoring was conducted three days per week for four weeks in January 2019 (dry season), and four weeks in July and August 2019 (wet season). The construction phase water quality monitoring commenced in February 2020 and completed in September 2021. Post-dredging monitoring was conducted for four weeks in November 2021.

Some of the water quality monitoring results triggered the relevant Action or Limit Levels during the construction phase of the Project, and the corresponding investigations concluded that the cases were not related to the Project. To conclude, the dredging activities throughout the construction phase did not cause adverse impact to all water quality sensitive receivers. Moreover, relevant water quality mitigation measures had been implemented. The results of the post-dredging water quality monitoring showed no significant changes from baseline, hence the long term water quality is considered to be unaffected by the Project.

The water quality monitoring was performed according to the required standard set out in the EM&A programme and the monitoring methodology is considered technically and cost effective. No significant deficiencies of the EM&A methodology and programme were found. Some recommendations for enhancement of the EM&A programme are suggested in **Section 4.5** for future implementation during recurrent dredging works of the Project where applicable.

1 Introduction

1.1 Project Background

On 10 October 2017, the Environment Impact Assessment (EIA) Report (Register No.: AEIAR-212/2017) for the "Improvement Dredging for Lamma Power Station Navigation Channel" (the Project) was approved and an Environmental Permit (EP) (No. EP-535/2017) was issued for the construction and operation of the Project. Mott MacDonald Hong Kong Limited was commissioned by The Hongkong Electric Company Limited to carry out the water quality monitoring works of the Project during the construction phase.

The purpose of the Project is to provide and maintain safe clearance for ocean-going marine vessels delivering coal to Lamma Power Station (LPS) via the Lamma Power Station Navigation Channel (the "Channel"), through the dredging of naturally accumulating sediment from the seabed. In order to meet the requirements for continued safe passage, the construction phase of the Project involves improvement dredging of the Channel to a target dredge depth¹ of -16.5 mPD.

The construction phase of the Project commenced on 18 February 2020. This Final Water Quality Monitoring Report summarizes the water quality monitoring before, during and after dredging as part of the EM&A programme for the Project.

1.2 Implementation Status of Environmental Mitigation Measures

The Contractor had implemented environmental mitigation measures and fulfilled requirements as recommended in the approved EIA Report, Environmental Permit and EM&A manual. During the environmental site inspections, all mitigation measures were implemented timely and properly. It is concluded that the environmental mitigation measures as recommended in the EIA Report were implemented satisfactorily.

To minimise the potential water quality impacts associated with the Project, the following major mitigation measures had been applied to all dredging activities:

- There was no concurrent or mixed use of grab dredger and trailing suction hopper dredger (TSHD) operation.
- Closed grab capacity was not less than 8m³ (except for dredging works near submarine pipeline).
- Cage-type silt curtain (at least 10m depth) was used for grab dredger operation.
- No operation of more than 5 grab dredgers concurrently at any time was allowed.
- Both maximum total hourly and daily dredging rates as specified in the latest dredging schedule were strictly followed.
- Vessel speeds within the Project Area were reduced to maximum speed limit.
- Neither overflow nor using of lean mixture overboard (LMOB) system was occurred.
- All barges for transportation of dredged materials were fitted with tight bottom seals to prevent leakage.

¹ While the Project aims to dredge to a target depth of -16.5 mPD, some overdredge may occur due to the limited precision control of dredging depths in practice.

2 Monitoring Methodology

2.1 Monitoring Equipment and Methodology

Water samples for all monitoring parameters were collected, stored, preserved and analysed according to the Standard Methods, APHA 22nd ed. and/or other methods as agreed by the EPD. In-situ measurements at monitoring locations including dissolved oxygen (DO), dissolved oxygen saturation (DO%), pH, temperature, turbidity, salinity and water depth were collected using the equipment listed in **Table 2.1**. Water samples for suspended solids (SS) analysis were stored in high density polythene bottles, packed in ice (cooled to 4 °C without being frozen), and delivered to a HOKLAS laboratory as soon as possible after collection.

Table 2.1: Water Quality Monitoring Equipment

Equipment	Brand and Model
Water Sampler	Van Dorn Water Sampler
Positioning Device (measurement of GPS)	Garmin eTrex Vista HCx
Water Depth Detector (measurement of water depth)	Lowrance Mark 5x
Multifunctional Meter (measurement of DO, DO%, pH, temperature, salinity and turbidity)	YSI ProDSS and YSI 6920V2

Calibration of In-situ Instruments

In-situ monitoring instruments for water quality parameters were checked, calibrated and certified by a laboratory accredited under HOKLAS before use. Responses of sensors and electrodes were checked with certified standard solutions before each use.

Wet bulb calibration for a DO meter was carried out before measurement on each monitoring day. A zero check in distilled water was performed with the turbidity probe at least once per monitoring day. The probe was then calibrated with a solution of known NTU.

Calibration certificates of the monitoring equipment used in the post-dredging monitoring for water quality parameters are provided in **Appendix A**, while the calibration certificates for baseline and construction phase monitoring can be referred to Appendix 2.1 of the Baseline Water Quality Monitoring Report and Appendix A of the corresponding monthly EM&A reports.

2.2 Laboratory Measurement / Analysis

Analysis of SS was carried out in a HOKLAS accredited laboratory, ALS Technichem (HK) Pty Ltd (Reg. No. HOKLAS 066). Sufficient water samples were collected at each of the SR stations and control stations for carrying out the laboratory SS determination.

The SS determination works started within 24 hours after collection of the water samples. The analysis followed the APHA 2540D analytical method. The quality assurance and quality control (QA&QC) results for post-dredging monitoring are presented in **Appendix B**, while the QA/QC results for baseline and construction phase monitoring can be referred to Appendix 2.2. of the Baseline Water Quality Monitoring Report and Appendix B of the corresponding monthly EM&A reports.

2.3 Monitoring Frequency and Duration

The water quality monitoring was conducted three days per week at mid-flood and mid-ebb tides, at 18 water quality monitoring stations during baseline and construction phase monitoring, and

13 water quality monitoring stations (i.e. excluded near stations) during post-dredging monitoring. Samples were taken at three depths (at 1m below surface, at mid-depth, and at 1m above bottom) as all sampling locations had water depth >6m. Duplicate samples were taken and analysed.

The baseline water quality monitoring was conducted for four weeks in January 2019 (dry season), and four weeks in July and August 2019 (wet season). The construction phase water quality monitoring commenced in February 2020 and terminated in September 2021. Post-dredging monitoring was conducted in November 2021.

2.4 Monitoring Locations

The monitoring was conducted at a total of 18 water quality monitoring stations during baseline and construction phase monitoring, comprising 10 SR stations, five near stations and three control stations. Near stations (i.e. 5 water quality monitoring stations) were excluded during post-dredging monitoring. Details of the monitoring locations are shown in **Figure 2.1** and **Table 2.2**. It should be noted that the location of SR8 provided in **Table 2.2** is approximate due to changing location of fish rafts under different tidal and wind condition. Water quality monitoring at SR8 was conducted at the nearest safely accessible location to the Fish Culture Zone.

	-	-		
ID	Station	Easting	Northing	Remarks
SR1	HK Electric Power Station Intake	829194	808600	Monitored for SS only
SR2	Hung Shing Yeh Beach	830200	808700	 Monitored during bathing season only (March to October inclusive)
SR3	Lo So Shing Beach	830450	807300	 Monitored during bathing season only (March to October inclusive)
SR4	Marine Ecological Habitat at Pak Kok	829600	811630	
SR5	Marine Ecological Habitat at Shek Kok Tsui	828560	811100	
SR6	Marine Ecological Habitat at Ha Mei Wan	829760	805520	
SR7	Marine Ecological Habitat at Southwest of Lamma	829590	804520	
SR8	Fish Culture Zone at Lo Tik Wan	831265	809115	
SR9	Fish Culture Zone at Sok Kwu Wan	831600	807765	
SR10	Fish Culture Zone at Cheung Sha Wan	819160	810780	
A1	Near station for Zone 1	828543	809573	 For monitoring potential impacts to SR5 and SR4 during flood tide.
				 Not required in post- dredging monitoring.
A2	Near station for Zone 2	829053	807945	 For monitoring potential impacts to SR1 and SR2 during flood tide.
				 Not required in post- dredging monitoring.

Table 2.2: Locations of Water Quality Monitoring Stations

ID	Station	Easting	Northing	Remarks
A3	Near station for Zone 3	829187	807100	 For monitoring potential impacts to SR3 during both flood and ebb tide.
				 Not required in post- dredging monitoring.
A4	Near station for Zone 4 (east)	829427	805520	 For monitoring potential impacts to SR6 during ebb tide.
				 Not required in post- dredging monitoring.
A5	Near station for Zone 4 (south)	829267	805134	 For monitoring potential impacts to SR7 during ebb tide.
				 Not required in post- dredging monitoring.
C1	Control Station 1	828000	813500	
C2	Control Station 2	825000	808000	
C3	Control Station 3	829000	802000	

2.5 Monitoring Parameters

For the 10 SR stations (SR1 to SR10) and three control stations (C1 to C3), monitoring of DO, DO%, pH, temperature, turbidity, salinity, water depth and SS were undertaken. For monitoring of the five near stations (A1 to A5), only the in-situ parameters (DO, DO%, pH, temperature, turbidity, salinity and water depth) were recorded. Other relevant data were also recorded, including monitoring location, time, tidal stage, weather condition and sea condition.

3 Action and Limit Levels for Sensitive **Receiver Stations, and Alert Levels for Near Stations**

Action and Limit Levels 3.1

The Action and Limit levels are summarised in Table 3.1.

Parameters	Action	Level	Limit Level		
SR1					
SS in mg/L	90)	10	0	
SR2 to SR7					
DO in mg/L	Wet	Dry	Wet	Dry	
Surface & Middle	3.1	5.6	2.6	4	
Bottom	2.4	5.8	1.9	2	
SS in mg/L	9. O/ 120% of upstream c the same tide of	R control station(s) at	12.3 OR 130% of upstream control station(s) at the same tide of the same day,		
Turbidity in NTU	whichever 9.7	is higher	whichever	is higher	
	OR 120% of upstream control station(s) at the same tide of the same day, whichever is higher		OR 130% of upstream control station(s) at the same tide of the same day, whichever is higher		
SR8 to SR10					
DO in mg/L	Wet	Dry	Wet	Dry	
Surface & Middle	5	5.6	5	5	
Bottom	2.4	5.8	2	2	
SS in mg/L	9.5 OR 120% of upstream control station(s) at the same tide of the same day, whichever is higher		12.3 OR 130% of upstream control station(s) the same tide of the same day, whichever is higher		
Turbidity in NTU	9.7 OR 120% of upstream control station(s) at the same tide of the same day, whichever is higher		11.8 OR 130% of upstream control station(s) the same tide of the same day, whichever is higher		

Table 3.1: Calculated Action and Limit Levels

Notes:

1. Wet season: April to September; Dry season: October to March.

 For DO measurement, non-compliance occurs when the monitoring result is lower than the limits.
 For parameters other than DO, non-compliance of water quality occurs when the monitoring result is higher than the limits.

4. Depth-averaged results are used unless specified otherwise.

 SR1 is monitored for SS only.
 All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary.

7. In the event of water quality monitoring results at SR stations exceeding the Action and/or Limit levels for water quality, the actions in accordance with the Event and Action Plan presented in Table 2-4 of the updated EM&A Manual shall be carried out.

3.2 Reduction of Maximum Allowable Dredging Rates

Where exceedances are identified and confirmed by the ET and verified by the IEC as projectrelated, the maximum allowable hourly dredging rates of the Project as specified in Table 2-7 of the updated EM&A Manual shall be reduced according to **Table 3.2**. The reduced rates for the respective zone(s) and season shall apply until completion of the dredging works for the affected zone(s) and season.

Table 3.2: Reduction of Maximum Allowable Hourly Dredging Rates due to Exceedances

No. of Co				onsecutiv	ng Days	
Frequency of Exceedance	Two	Three	Four	Five	Six	More than Six
Action Level	5%	10%	15%	20%	30%	40%
Limit Level			30%	40%	50%	Stop all dredging works for one week. Contractor to propose changes in dredging methods, dredging rates and mitigation measures for agreement with ET and IEC before re-initiating dredging works.

Note: Where action level followed by limit level is exceeded consecutively, the larger percentage reduction shall apply (e.g. if action level is exceeded for four consecutive days, followed immediately by two consecutive days of limit level exceedance, the percentage reduction to be applied between Day 2 and Day 6 shall be 5%, 10%, 15%, 20% and 30% respectively). Similarly, where limit level followed by action level is exceeded consecutively, the larger percentage reduction also applies as action level is inherently exceeded whenever limit level is exceeded.

3.3 Alert Levels

The Initial Alert levels for water quality at near stations are presented in Table 3.3.

Table 3.3: Calculated Initial Alert Levels

Alert Level	A1	A2	A3	A4	A5
Turbidity (NTU)	30.1	18.4	38.8	32.0	24.3
DO (mg/L) – Depth-average, Dry Season	4	4	4	4	4
	OR 0.1 mg/L	less than the	same day co	ntrol, whicheve	er is lower
DO (mg/L) – Bottom, Dry Season	2	2	2	2	2
	OR 0.1 mg/L	less than the	same day co	ntrol, whicheve	er is lower
DO (mg/L) – Depth-average, Wet Season	3	3	3	3	3
	OR 0.1 mg/L	less than the	same day co	ntrol, whicheve	er is lower
DO (mg/L) – Bottom, Wet Season	0.9	0.9	0.9	0.9	0.9
	OR 0.1 mg/L	less than the	same day co	ntrol, whicheve	er is lower

Notes:

1. Wet season: April to September; Dry season: October to March.

2. Upon identification of an exceedance of Alert level at the near stations (A1 to A5), the actions specified in Table 2-6 of the updated EM&A Manual shall be implemented.

3.4 Review of Alert Levels

As stated in the Baseline Water Quality Monitoring Report of the Project (dated October 2019), the Initial Alert Levels should be reviewed when the project has accumulated at least two months' worth of impact monitoring field data.

Impact monitoring data from February to March and July to August 2020 were reviewed. During this period, there were no exceedances of turbidity data at sensitive receiver stations that triggered the relevant Action and/or Limit Levels, nor any exceedances at near stations that triggered the corresponding Alert Level. Impact monitoring data during this period showed no correlation between near stations and sensitive receiver stations, which is to be expected in the absence of any turbidity arising from the dredging activities of the project.

As the purpose of the review is to check the adequacy of the Alert Levels as early indication of potential exceedance of turbidity at sensitive receiver stations, the absence of any exceedance events means that the information is inadequate to derive any updates to the Alert Levels. It is recommended to review the Alert Levels for turbidity once there are adequate exceedance cases for reference.

Since there was only one exceedance case of turbidity in August 2021, which was also the only case between September 2020 and September 2021, no further review of Alert Levels for turbidity was carried out during the remaining construction phase monitoring.

4 Monitoring Results

Marine water quality monitoring was conducted during baseline, construction phase and postdredging phase. All monitoring data and graphical presentation of the monitoring results during baseline and construction phase can be referred to the Baseline Water Quality Monitoring Report and corresponding monthly EM&A reports. **Appendix C** and **Appendix D** presents the postdredging monitoring data and graphical presentation of the monitoring results respectively.

4.1 Summary of the Exceedances

Some of the testing results triggered the corresponding Action or Limit Levels during the construction phase, and investigations were conducted accordingly. **Table 4.1** presents the summary of the exceedances at SR stations during mid-ebb and mid-flood tide for the entire construction phase period.

Date	Parameter(s)	Affected Station(s)	Tide	Exceedance Type
20 Feb 2020	SS	SR5	Ebb tide	Limit Level
22 Feb 2020	SS	SR5	Ebb tide	Action Level
24 Feb 2020	SS	SR6	Flood tide	Action Level
28 Feb 2020	SS	SR6	Flood tide	Limit Level
		SR7, SR10	Flood tide	Action Level
2 Mar 2020	SS	SR2, SR3, SR5	Ebb tide	Action Level
		SR2, SR3	Flood tide	Action Level
4 Mar 2020	SS	SR3, SR6	Ebb tide	Action Level
6 Mar 2020	SS	SR2, SR5, SR10	Ebb tide	Action Level
9 Mar 2020	SS	SR5	Flood tide	Action Level
11 Mar 2020	SS	SR3	Ebb tide	Action Level
18 Mar 2020	SS	SR8	Flood tide	Action Level
8 Apr 2020	SS	SR4	Ebb tide	Action Level
24 Apr 2020	SS	SR7	Flood tide	Action Level
22 May 2020	DO (Surface & Middle)	SR9, SR10	Flood tide	Limit Level
25 May 2020	DO (Surface & Middle)	SR10	Ebb tide	Limit Level
		SR10	Flood tide	Limit Level
27 May 2020	DO (Surface & Middle)	SR8, SR9	Flood tide	Limit Level
8 Jun 2020	DO (Surface & Middle)	SR10	Ebb tide	Limit Level
		SR8, SR9, SR10	Flood tide	Limit Level
10 Jun 2020	DO (Surface & Middle)	SR10	Ebb tide	Limit Level
		SR8, SR9	Flood tide	Limit Level
12 Jun 2020	DO (Surface & Middle)	SR8	Flood tide	Limit Level
15 Jun 2020	DO (Bottom)	SR6, SR7	Flood tide	Action Level
19 Jun 2020	DO (Bottom)	SR2, SR4, SR5	Flood tide	Action Level
29 Jun 2020	DO (Bottom)	SR10	Ebb tide	Action Level
		SR5, SR6	Ebb tide	Limit Level
		SR5	Flood tide	Action Level
		SR10	Flood tide	Limit Level

Table 4.1: Summary of the Exceedances

Date	Parameter(s)	Affected Station(s)	Tide	Exceedance Type
13 Jul 2020	DO (Bottom)	SR2, SR10	Ebb tide	Action Level
31 Aug 2020	SS	SR3, SR4, SR6, SR8, SR10	Ebb tide	Action Level
		SR5	Ebb tide	Limit Level
		SR7	Flood tide	Action Level
30 Sep 2020	SS	SR10	Ebb tide	Action Level
2 Oct 2020	DO (Surface & Middle)	SR4	Ebb tide	Action Level
	DO (Bottom)	SR4, SR5, SR9	Ebb tide	Action Level
	DO (Bottom)	SR2, SR4, SR5, SR8,	Flood tide	Action Level
		SR9, SR10		
5 Oct 2020	DO (Surface & Middle)	SR5	Ebb tide	Action Level
	DO (Bottom)	SR4, SR5, SR8, SR9, SR10	Ebb tide	Action Level
	DO (Surface & Middle)	SR4, SR8, SR9	Flood tide	Action Level
	DO (Bottom)	SR2, SR4, SR5, SR8,	Flood tide	Action Level
		SR9, SR10		
	SS	SR3	Ebb tide	Action Level
7 Oct 2020	DO (Bottom)	SR3, SR9, SR10	Ebb tide	Action Level
	DO (Surface & Middle)	SR5, SR9	Flood tide	Action Level
	DO (Bottom)	SR5, SR8	Flood tide	Action Level
	SS	SR10	Ebb tide	Action Level
9 Oct 2020	DO (Bottom)	SR10	Flood tide	Action Level
12 Oct 2020	DO (Bottom)	SR4	Flood tide	Action Level
16 Oct 2020	SS	SR2, SR5, SR10	Ebb tide	Action Level
27 Oct 2020	SS	SR3, SR4	Ebb tide	Action Level
11 Nov 2020	SS	SR4, SR7, SR9	Flood tide	Action Level
16 Dec 2020	SS	SR10	Ebb tide	Action Level
		SR5, SR6, SR7, SR10	Flood tide	Action Level
		SR8	Flood tide	Limit Level
21 Dec 2020	SS	SR4, SR5, SR10	Ebb tide	Action Level
31 May 2021	DO (Surface & Middle)	SR10	Ebb tide	Limit Level
		SR8, SR9	Flood tide	Limit Level
2 Jun 2021	DO (Surface & Middle)	SR8, SR9	Flood tide	Limit Level
23 Jun 2021	DO (Surface & Middle)	SR8, SR9, SR10	Ebb tide	Limit Level
		SR8, SR9, SR10	Flood tide	Limit Level
	DO (Bottom)	SR8, SR9	Ebb tide	Action Level
		SR8, SR9	Flood tide	Action Level
25 Jun 2021	DO (Surface & Middle)	SR8, SR9, SR10	Ebb tide	Limit Level
		SR8, SR9, SR10	Flood tide	Limit Level
29 Jun 2021	DO (Surface & Middle)	SR8, SR9	Ebb tide	Limit Level
		SR8, SR9	Flood tide	Limit Level
1 Jul 2021	DO (Surface & Middle)	SR8, SR9, SR10	Flood tide	Limit Level
6 Aug 2021	DO (Surface & Middle)	SR9	Ebb tide	Limit Level
	DO (Bottom)	SR2, SR7	Ebb tide	Action Level
		SR4, SR5, SR6	Ebb tide	Limit Level
		SR3	Flood tide	Action Level
		SR2, SR4, SR6, SR7	Flood tide	Limit Level
9 Aug 2021	DO (Surface & Middle)	SR8, SR9	Ebb tide	Limit Level
		SR8	Flood tide	Limit Level
	DO (Bottom)	SR10	Ebb tide	Limit Level

Date	Parameter(s)	Affected Station(s)	Tide	Exceedance Type
		SR7	Flood tide	Action Level
		SR10	Flood tide	Limit Level
	Turbidity	SR8	Flood tide	Action Level
25 Aug 2021	DO (Surface & Middle)	SR8, SR9	Flood tide	Limit Level
27 Aug 2021	DO (Surface & Middle)	SR8, SR9	Flood tide	Limit Level
30 Aug 2021	DO (Bottom)	SR6	Ebb tide	Action Level
		SR6	Flood tide	Action Level
1 Sep 2021	DO (Bottom)	SR7	Ebb tide	Limit Level
13 Sep 2021	DO (Surface & Middle)	SR8, SR9	Ebb tide	Limit Level
		SR8, SR9	Flood tide	Limit Level
	DO (Bottom)	SR5, SR6	Ebb tide	Action Level
		SR6, SR7	Flood tide	Action Level
15 Sep 2021	DO (Surface & Middle)	SR8, SR9, SR10	Ebb tide	Limit Level
		SR8, SR10	Flood tide	Limit Level
27 Sep 2021	DO (Surface & Middle)	SR8	Flood tide	Limit Level
29 Sep 2021	DO (Surface & Middle)	SR8, SR9, SR10	Ebb tide	Limit Level
		SR8, SR9, SR10	Flood tide	Limit Level

All cases were investigated and the investigations concluded that the cases were not related to the Project with the following reasons:

- The affected SR stations were upstream of the Project during the corresponding tide.
- The exceedance located at a great distance from the Project Site with no evidence of effect from the Project.
- The exceedance appeared to be due to local sources not related to the Project.
- No dredging work was carried out on the dates of exceedance; or no works was carried out around the concerned sampling time.
- Similarly low DO levels were recorded at the upstream control stations.
- The active works was far from the affected stations.

Relevant water quality mitigation measures had been implemented against the non-compliance are as follows:

- Cage-type silt curtain was deployed for grab dredger in accordance with the Silt Curtain Deployment Plan.
- Dredging rate was subject to a maximum limit specified in the Environmental Permit.
- Vessels had adequate clearance to the seabed during all states of the tide.
- Grab was closed tightly to minimize loss of sediment during dredging.
- Special care was taken during lowering and lifting grabs to minimize unnecessary disturbance to the seabed.
- The dredging contractor kept close monitoring of any abnormal water conditions and adjusted its dredging operations to minimize impact to the water quality during its works.
- Full time divers manned on board carrying out maintenance of silt curtain as and when necessary to ensure minimum impact to water quality during dredging.

4.2 EM&A Data over the Monitoring Period

The monitoring results obtained during the entire construction phase and post-dredging period are graphically presented in **Appendix E**. In addition, a comparison between the baseline, construction phase and post-dredging monitoring results is presented in **Appendix E**.

The levels of DO measured during the construction phase and post-dredging monitoring at different sampling depths were generally either higher than or similar to those obtained during the baseline monitoring. For the monitoring results of turbidity and SS measured during the construction phase and post-dredging monitoring, it was observed that the interquartile range for turbidity and SS results were lower when compared to those measured during the baseline monitoring. More outliers (i.e. values outside the interquartile range) are apparent during construction phase monitoring, which may be attributed to the unusually high values that were detected and investigated as part of exceedance investigations during construction phase (see **Table 4.1**). However, the post-dredging monitoring did not reveal any long term changes or deterioration overall. Therefore, it was concluded that the dredging works did not cause any long term changes or adverse impacts on the water quality at the Project site.

4.3 EM&A Data with the EIA Predictions

DO and SS levels due to Project activities were predicted at each sensitive receiver stations during the EIA stage. The purpose of this section is to compare the construction phase monitoring data against the EIA predictions. Graphical presentation of the comparison is presented in **Appendix F**.

The majority of DO results (both depth-averaged and bottom) recorded during the construction phase monitoring were higher than the EIA predictions. More DO results were above the EIA prediction during dry season. The monitoring results of SS measured during the construction phase monitoring where generally lower than the EIA predictions. For those results below (i.e. DO) or above (i.e. SS) EIA predictions, most of them were also identified as exceedance cases.

Corresponding investigations were carried out for the exceedance cases, and the investigations concluded that the dredging activities did not cause adverse impacts on the water quality at the Project site, the cases were more likely due to natural variations instead. Summary of investigation findings can be referred to **Section 4.1**.

The review of EM&A data against EIA predictions has shown that the EM&A data during construction phase of the Project are generally in line with the EIA predictions on the associated water quality impacts. This suggests that the recommended water quality mitigation measures are effective to avoid or alleviate the potential environmental impacts arise from the Project.

4.4 Review of Environmental Monitoring Methodology

The water quality monitoring methodology has been reviewed and based on the day-to-day operation of the water quality monitoring programme and the obtained monitoring results, the monitoring has achieved the required standard set out in the EM&A programme. In addition, the environmental monitoring methodology is considered technically and cost effective.

4.5 Recommendations on the EM&A Programme

No significant deficiencies of the EM&A programme were found during the project period. However, several recommendations are identified for the enhancement of the programme in the future.

 Cancellation of Alert Levels for near stations – The purpose of proposing Alert Levels is to identify potential exceedance of DO and turbidity at sensitive receiver stations at an early stage. However, for turbidity, there was only one exceedance case throughout the entire project period, making it impossible to verify the adequacy of the Alert levels for turbidity. Moreover, for DO, values at SR stations that exceeded the Action / Limit Level were frequently lower than the DO level at the corresponding Alert stations. Therefore, the setting up of Alert Levels may not be effective in providing early warning of exceedances at SR stations, though the near stations themselves are useful for providing additional data for comparison during exceedance events. Hence the future EM&A programme may consider retaining the near stations as reference stations only (without associated Alert Levels and Alert Action Plan).


 Cessation of monitoring station SR10 – The project site of Lantau Tomorrow Vision Islands will be in close proximity to SR10 (i.e. Fish Culture Zone at Cheung Sha Wan). In future, the water quality near SR10 will be more likely influenced by the new reclamation project instead of this Project. Therefore, the cessation of SR10 should be considered in future dredging activities within the Lamma Power Station area where applicable.

5 Conclusion

The construction work under the Project was commenced in February 2020 and substantially completed in September 2021. Monitoring work for water quality was implemented in accordance with the updated EM&A Manual and the requirement under EP-535/2017. The required environmental mitigation measures for water quality were implemented along with construction progress of the Project.

Some of the water quality monitoring results triggered the relevant Action or Limit Levels during the construction phase of the Project, and the corresponding investigations concluded that the cases were not related to the Project. To conclude, the dredging activities throughout the construction phase did not cause adverse impact to all water quality sensitive receivers. Moreover, relevant water quality mitigation measures had been implemented against the non-compliance. The results of the post-dredging water quality monitoring showed no significant changes from baseline, hence the long term water quality is considered to be unaffected by the Project.

The water quality monitoring was performed according to the required standard set out in the EM&A programme and the environmental monitoring methodology is considered technically and cost effective. No significant deficiencies of the EM&A methodology and programme were found. Some recommendations for enhancement of the EM&A programme are suggested for future implementation during recurrent dredging works of the Project where applicable.

······································	Notes						_
a start and a start and a start and a start a s							
MENAR PROVINCE							
STORES ST							
新政府和任何							
ATTACK AND							
A REPORT LINES	Key to symbo	ols					_
		HKSAR F	BOUNDARY				
			BOUNDARY				
		- 300m BL					
	¥				OC AT LON		
	*	WATER (DUALITY MO	NITURING L	UCATION		
I WAR							
- 23	1						
Assistence o							
:							
	D (•					_
	Reference dr	awings					_
•							
•							
:							
))({{							
Weng Chuk Kok							
Wang Dua Kak							
teng Dua Ka							
Burg Duk Ka							
and Dan ka	P1 JUN	18 MING	FIRST ISSUE			DC F	EC
the put is							_
I they but it is	P1 JUN Rev Date	18 MING Drawn			Cawloon Town	Ch'k'd Ap	EC op'd
Wing Dat Se					Kowloon Town East	Ch'k'd Ap	_
Yeng Dak Ka				20/F AIA H Landmark 100 How M	East Ving Street	Ch'k'd Ap	_
Wing Dat Sta	Rev Date			20/F AIA K Landmark 100 How M Kwun Ton	East Ving Street g, Kowloon	Ch'k'd Ap	_
Yery Da ta		Drawn		20/F AIA H Landmark 100 How M Kwun Ton Hong Kon T +852 28	East Wing Street g, Kowloon g 828 5757	Ch'k'd Ap	_
Wing Due to	Rev Date	Drawn		20/F AIA H Landmark 100 How M Kwun Ton Hong Kon T +852 28 F +852 28	East Ming Street g, Kowloon g 828 5757 827 1823	Ch'k'd Ap	_
Wing Due to	Rev Date	Drawn		20/F AIA H Landmark 100 How M Kwun Ton Hong Kon T +852 28	East Ming Street g, Kowloon g 828 5757 827 1823	Ch'k'd Ap	_
Wing Due to	Rev Date	Drawn		20/F AIA H Landmark 100 How M Kwun Ton Hong Kon T +852 28 F +852 28	East Ming Street g, Kowloon g 828 5757 827 1823	Ch'k'd Ap	_
	Rev Date	Drawn		20/F AIA H Landmark 100 How M Kwun Ton Hong Kon T +852 28 F +852 28	East Ming Street g, Kowloon g 828 5757 827 1823	Ch'k'd Ap	_
ang Dai ta	Rev Date	Drawn		20/F AIA H Landmark 100 How M Kwun Ton Hong Kon T +852 28 F +852 28	East Ming Street g, Kowloon g 828 5757 827 1823	Ch'k'd Ap	_
and Dra 20	Rev Date	Drawn		20/F AIA I Landmark 100 How I Kwun Ton Hong Kom T +852 24 F +852 24 W mottma	East Wing Street g, Kowloon g 828 5757 827 1823 c.com	Ch'k'd Ap	_
	Rev Date	Drawn		20/F AIA I Landmark 100 How I Kwun Ton Hong Kom T +852 24 F +852 24 W mottma	East Wing Street g, Kowloon g 828 5757 827 1823 c.com	Ch'k'd Ap	_
	Rev Date	Drawn		20/F AIA F Landmark 100 How F Kwun Ton Hong Kon T +852 21 F +852 21 W mottma	East Wing Street g, Kowloon g 228 5757 827 1823 c.com	Ch'k'd Ap	_
The part of the second se	Rev Date	Drawn		20/F AIA I Landmark 100 How I Kwun Ton Hong Kom T +852 24 F +852 24 W mottma	East Wing Street g, Kowloon g 228 5757 827 1823 c.com	Ch'k'd Ap	_
They Due to	Rev Date	Drawn		20/F AIA F Landmark 100 How F Kwun Ton Hong Kon T +852 21 F +852 21 W mottma	East Wing Street g, Kowloon g 228 5757 827 1823 c.com	Ch'k'd Ap	_
They Due to	Rev Date	Drawn Mald	Description	20/F AIA F Landmark 100 How F Kwun Ton Hong Kon T +852 21 F +852 21 W mottma	East Wing Street g, Kowloon g 228 5757 827 1823 ic.com	Ch'k'd Ap	_
	Rev Date		Description	20/F AIA F Landmark 100 How F Kwun Ton Hong Kon T +852 21 F +852 21 W mottma	East Wing Street 9, Kowloon 9 9228 6757 827 1823 c.com	Ch'k'd Ap er	_
	Rev Date		Description	20/F AIA F Landmark 100 How F Kwun Ton Hong Kon T +852 21 F +852 21 W mottma	East Wing Street 9, Kowloon 9 9228 6757 827 1823 c.com	Ch'k'd Ap er	_
	Rev Date		Description	20/F AIA F Landmark 100 How I Kwun Ton Hong Kon T + 852 22 F + 852 22 W mottma 港虎 Lectrin DREDC /ER ST	East Wing Street g, Kowloon g 228 8757 827 1823 c.com	Ch'k'd Ap er	_
	Rev Date		Description	20/F AIA F Landmark 100 How I Kwun Ton Hong Kon T + 852 22 F + 852 22 W mottma 港虎 Lectrin DREDC /ER ST	East Wing Street g, Kowloon g 228 8757 827 1823 c.com	Ch'k'd Ap er	_
	Rev Date		Description	20/F AIA F Landmark 100 How I Kwun Ton Hong Kon T + 852 22 F + 852 22 W mottma 港虎 Lectrin DREDC /ER ST	East Wing Street g, Kowloon g 228 8757 827 1823 c.com	Ch'k'd Ap er	_
	Rev Date		Description	20/F AIA F Landmark 100 How I Kwun Ton Hong Kon T + 852 22 F + 852 22 W mottma 港虎 Lectrin DREDC /ER ST	East Wing Street g, Kowloon g 228 8757 827 1823 c.com	Ch'k'd Ap er	_
	Rev Date	Drawn Madd IPROVE LAMM NAV	Description HK E MENT IA POV IGATIO	20/F AIA F Landmark 100 How F Kwun Ton Hong Kon T + 852 22 F + 852 22 W mottma 港虎 Icchrif DREDC /ER ST N CHAI	East Ving Street g, Kowloon g 228 8757 827 1823 ic.com	Ch'k'd Ap er FOR I	_
	Rev Date		Description HK E MENT IA POV IGATIO	20/F AIA F Landmark 100 How F Kwun Ton Hong Kon T + 852 22 F + 852 22 W mottma 港虎 Icchrif DREDC /ER ST N CHAI	East Ving Street g, Kowloon g 228 8757 827 1823 ic.com	Ch'k'd Ap er FOR I	_
	Rev Date	Drawn Madd IPROVE LAMM NAV	Description HK E MENT IA POV IGATIO	20/F AIA F Landmark 100 How F Kwun Ton Hong Kon T + 852 22 F + 852 22 W mottma 港虎 Icchrif DREDC /ER ST N CHAI	East Ving Street g, Kowloon g 228 8757 827 1823 ic.com	Ch'k'd Ap er FOR I	_
	Rev Date		Description HK E MENT IA POV IGATIO	20/F AIA F Landmark 100 How F Kwun Ton Hong Kon T + 852 22 F + 852 22 W mottma 港虎 Icchrif DREDC /ER ST N CHAI	East Ving Street g, Kowloon g 228 8757 827 1823 ic.com	Ch'k'd Ap er FOR I	_
	Rev Date		Description HK E MENT IA POV IGATIO	20/F AIA F Landmark 100 How I Kwun Ton Hong Kon T + 852 21 F + 852 21 W mottma 港虎 Lectric DREDC / ER ST N CHAI	East Wing Street g, Kowloon g 328 8757 327 1823 c.com E GING F GING F GATION NNEL ITORIN	Ch'k'd Ap er FOR I	_
	Rev Date		Description HK E MENT IA POV IGATIO	20/F AIA F Landmark 100 How I Kwun Ton Hong Kon T + 852 21 F + 852 21 W mottma 港虎 Lectric DREDC / ER ST N CHAI	East Ming Street g, Kowloon g 328 8757 327 1823 c.com E GING F GATION NNEL ITORIN	Ch'k'd Ap er FOR I	_
	Rev Date		Description HK E MENT IA POV IGATIO	20/F AIA F Landmark 100 How I Kwun Ton I Hong Kon T + 852 21 W mottma 港虎 Lectric DREDC /ER ST N CHAI	East Wing Street g, Kowloon g 328 8757 327 1823 c.com E E E E E E E E E E E E E E E E E E E	Ch'k'd Ap er FOR I	_
2000 m	Rev Date MOTT MACDON Client Project IV Title WA LOC Designed Drawn Dwg check		Description HK E MENT IGATIO	20/F AIA F Landmark 100 How I Kwun Ton Hong Kon T + 852 21 F + 852 21 W mottma 港虎 Lectric DREDC / ER ST N CHAI	East Wing Street g, Kowloon g 228 8757 827 1823 c.com E GING F GATION NNEL ITORIN	Ch'k'd Ap er FOR I	_
2000 m	Rev Date MOTT MACDOI Client Project IN Title WA LOC Designed Drawn Dwg check Scale at A1		Description Description HK E MENT IGATIO UALITY IS Status	20/F AIA H Landmark 100 How J Kwun Ton Hong Kom T +852 22 F +852 22 W mottma 港校信 Lectric DREDC VER ST N CHAI	East Wing Street g, Kowloon g 928 5757 327 1823 c.com E GING F GATION NNEL ITORIN	FOR I NG	_
2000 m	Rev Date Mott MOTT MACDOI Client Project IV Title WA LOC Designed Drawn Dwg check Scale at A1 1:25	Drawn Mald IPROVE LAMN NAV TER Q CATION DC MING DC 000	Description HK E MENT IGATIO	20/F AIA H Landmark 100 How J Kwun Ton Hong Kom T +852 22 F +852 22 W mottma 港校信 Lectric DREDC VER ST N CHAI	East Wing Street g, Kowloon g 928 5757 327 1823 c.com E GING F GATION NNEL ITORIN	Ch'k'd Ap er FOR I	_
2000 m	Rev Date MOTT MACDOI Client Project IN Title WA LOC Designed Drawn Dwg check Scale at A1	Drawn Mald IPROVE LAMN NAV TER Q CATION DC MING DC 000	Description Description HK E MENT A POW IGATIO UALITY IS Status PR	20/F AIA F Landmark 100 How F Kwun Ton Hong Kon T +852 21 W mottma Extension DREDC VER ST N CHAI MON	East Wing Street g, Kowloon g 928 5757 327 1823 c.com E GING F GATION NNEL ITORIN	FOR I NG	_
2000 m	Rev Date Mott MOTT MACDOI Client Project IV Title WA LOC Designed Drawn Dwg check Scale at A1 1:25	Drawn Mald IPROVE LAMN NAV TER Q CATION DC MING DC 000	Description Description HK E MENT A POW IGATIO UALITY IS Status PR	20/F AIA H Landmark 100 How J Kwun Ton Hong Kom T +852 22 F +852 22 W mottma 港校信 Lectric DREDC VER ST N CHAI	East Wing Street g, Kowloon g 928 5757 327 1823 c.com E GING F GATION NNEL ITORIN	FOR I NG	

Appendices

Α.	Calibration Certificates for Post-dredging Monitoring	16
В.	Quality Assurance and Quality Control (QA&QC) Results for Post-dredging Monitoring	17
C.	Post-dredging Water Quality Monitoring Results	18
D.	Graphical Presentations of Post-dredging Water Quality Monitoring Results	19
E.	EM&A Data over the Monitoring Period	20
F.	EM&A Data with the EIA Predictions	21

A. Calibration Certificates for Post-dredging Monitoring

Report No.	:
Date of Issue	:
Page No.	:

BA100044 22 October 2021 1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Flat 2207, Yu Fun House, Yu Chui Court, Shatin New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B – DESCRIPTION

Name of Equipment	: YSI ProDSS (Multi-Parameters)
Manufacturer	: YSI (a xylem brand)
Serial Number	: 15M100005
Date of Received	: Oct 22, 2021
Date of Calibration	: Oct 22, 2021
Date of Next Calibration ^(a)	: Jan 21, 2022

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter	Reference Method
pH at 25°C	APHA 21e 4500-H ⁺ B
Dissolved Oxygen	APHA 21e 4500-O G
Conductivity at 25°C	APHA 21e 2510 B
Salinity	APHA 21e 2520 B
Turbidity	APHA 21e 2130 B
Temperature	Section 6 of international Accreditation New Zealand Technical
-	Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS^(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading ^(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	4.09	0.09	Satisfactory
7.42	7.46	0.04	Satisfactory
10.01	10.11	0.10	Satisfactory

Tolerance of pH should be less than ± 0.20 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
10	10.0	0.0	Satisfactory
24	23.8	-0.2	Satisfactory
45	44.9	-0.1	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

Remark(s): -

(a) The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

(b) The results relate only to the calibrated equipment as received

(c) The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

(d) "Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

(e) The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards..

LEE Chun-ning Senior Chemist

Report No.	:	BA100044
Date of Issue	:	22 October 2021
Page No.	:	2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
0.12	0.11	-0.01	Satisfactory
1.77	1.84	0.07	Satisfactory
5.01	5.17	0.16	Satisfactory
8.19	8.19	0.00	Satisfactory

Tolerance limit of dissolved oxygen should be less than ± 0.50 (mg/L)

(4) Conductivity at 25°C

Conc. of KCl (M)	Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)	Results
0.001	146.9	153.2	4.29	Satisfactory
0.01	1412	1371	-2.90	Satisfactory
0.1	12890	12409	-3.73	Satisfactory
0.5	58670	57941	-1.24	Satisfactory
1.0	111900	111932	0.03	Satisfactory

Tolerance limit of conductivity should be less than ± 10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.90	-1.00	Satisfactory
20	19.93	-0.35	Satisfactory
30	30.14	0.47	Satisfactory

Tolerance limit of salinity should be less than ± 10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) . (%)	Results
0	0.10		Satisfactory
10	9.91	-0.9	Satisfactory
20	19.88	-0.6	Satisfactory
100	97.73	-2.3	Satisfactory
800	796.64	-0.4	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

<u>Remark(s): -</u>

⁰ "Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures.

(*) The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

Report No.
Date of Issue
Page No.

BA080092 27 August 2021 1 of 2

:

•

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Flat 2207, Yu Fun House, Yu Chui Court, Shatin New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B – DESCRIPTION

Name of Equipment	: YSI ProDSS (Multi-Parameters)
Manufacturer	: YSI (a xylem brand)
Serial Number	: 16H104233
Date of Received	: Aug 27, 2021
Date of Calibration	: Aug 27, 2021
Date of Next Calibration ^(a)	: Nov 26, 2021

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

ParameterReference MethodpH at 25°CAPHA 21e 4500-H* BDissolved OxygenAPHA 21e 4500-O GConductivity at 25°CAPHA 21e 2510 BSalinityAPHA 21e 2520 BTurbidityAPHA 21e 2130 BTemperatureSection 6 of international Accreditation New Zealand Technical
Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS^(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading ^(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	4.02	0.02	Satisfactory
7.42	7.44	0.02	Satisfactory
10.01	9.96	-0.05	Satisfactory

Tolerance of pH should be less than ± 0.20 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
10	10.0	0.0	Satisfactory
20	20.0	0.0	Satisfactory
45	44.9	-0.1	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

Remark(s): -

(a) The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

(b) The results relate only to the calibrated equipment as received

(c) The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

- (d) "Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.
- (e) The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

LEE Chun-hing

LEE Chun-hing Senior Chemist

Report No.	:	BA080092
Date of Issue	:	27 August 2021
Page No.	:	2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (m	ng/L) Displayed Reading (mg/L)	Tolerance (mg/L)	Results
0.20	0.30	0.10	Satisfactory
2.19	2.27	0.08	Satisfactory
4.99	5.00	0.01	Satisfactory
7.49	7.58	0.09	Satisfactory
	/.38		

Tolerance limit of dissolved oxygen should be less than ± 0.50 (mg/L)

(4) Conductivity at 25°C

Conc. of KCl (M)	Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)	Results
0.001	146.9	137.4	-6.47	Satisfactory
0.01	1412	1336.6	-5.34	Satisfactory
0.1	12890	12567.3	-2.50	Satisfactory
0.5	58670	57933.2	-1.26	Satisfactory
1.0	111900	110783	-1.00	Satisfactory

Tolerance limit of conductivity should be less than ± 10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.94	-0.60	Satisfactory
20	20.11	0.55	Satisfactory
30	30.18	0.60	Satisfactory

Tolerance limit of salinity should be less than ± 10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0.10		Satisfactory
10	9.93	-0.7	Satisfactory
20	20.06	0.3	Satisfactory
100	106.42	6.4	Satisfactory
800	797.21	-0.3	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

<u>Remark(s): -</u>

- "Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures. The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

Report No.	
Date of Issue	
Page No.	

BA080093 27 August 2021 1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Flat 2207, Yu Fun House, Yu Chui Court, Shatin New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B – DESCRIPTION

Name of Equipment	: YSI ProDSS (Multi-Parameters)
Manufacturer	: YSI (a xylem brand)
Serial Number	: 16H104234
Date of Received	: Aug 27, 2021
Date of Calibration	: Aug 27, 2021
Date of Next Calibration ^(a)	: Nov 26, 2021

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter	Reference Method
pH at 25°C	APHA 21e 4500-H ⁺ B
Dissolved Oxygen	APHA 21e 4500-O G
Conductivity at 25°C	APHA 21e 2510 B
Salinity	APHA 21e 2520 B
Turbidity	APHA 21e 2130 B
Temperature	Section 6 of international Accreditation New Zealand Technical
-	Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS^(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading ^(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	4.01	0.01	Satisfactory
7.42	7.45	0.03	Satisfactory
10.01	9.98	-0.03	Satisfactory

Tolerance of pH should be less than ± 0.20 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
10	10.0	0.0	Satisfactory
20	20.0	0.0	Satisfactory
45	44.9	-0.1	Satisfactory

Tolerance limit of temperature should be less than ± 2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

<u>Remark(s): -</u>

(a) The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

(b) The results relate only to the calibrated equipment as received

(c) The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

(d) "Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

(e) The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

LEE Chun-ning Senior Chemist

Report No.	:	BA080093
Date of Issue	÷	27 August 2021
Page No.	:	2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
0.20	0.28	0.08	Satisfactory
2.19	2.30	0.11	Satisfactory
4.99	4.99	0.00	Satisfactory
7.49	7.53	0.04	Satisfactory

Tolerance limit of dissolved oxygen should be less than ± 0.50 (mg/L)

(4) Conductivity at 25°C

Conc. of KCl (M)	Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)	Results
0.001	146.9	138.4	-5.79	Satisfactory
0.01	1412	1339.3	-5.15	Satisfactory
0.1	12890	12663.2	-1.76	Satisfactory
0.5	58670	57882.1	-1.34	Satisfactory
1.0	111900	110653.4	-1.11	Satisfactory

Tolerance limit of conductivity should be less than ± 10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.93	-0.70	Satisfactory
20	19.89	-0.55	Satisfactory
30	30.20	0.67	Satisfactory

Tolerance limit of salinity should be less than ± 10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0.10		Satisfactory
10	9.90	-1.0	Satisfactory
20	19.88	-0.6	Satisfactory
100	107.31	7.3	Satisfactory
800	796.34	-0.5	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

<u>Remark(s): -</u>

⁽⁾ "Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures.

(® The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

Report No. Date of Issue Page No.

BA090071 27 September 2021 1 of 2

:

:

:

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Flat 2207, Yu Fun House, Yu Chui Court, Shatin New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B – DESCRIPTION

Name of Equipment		YSI ProDSS (Multi-Parameters)
Manufacturer		YSI (a xylem brand)
Serial Number	:	18A104824
Date of Received	:	Sep 24, 2021
Date of Calibration	:	Sep 24, 2021
Date of Next Calibration ^(a)	:	Dec 23, 2021

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter	Reference Method
pH at 25°C	APHA 21e 4500-H ⁺ B
Dissolved Oxygen	APHA 21e 4500-O G
Conductivity at 25°C	APHA 21e 2510 B
Salinity	APHA 21e 2520 B
Turbidity	APHA 21e 2130 B
Temperature	Section 6 of international Accreditation New Zealand Technical
-	Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS^(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading ^(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	4.03	0.03	Satisfactory
7.42	7.46	0.04	Satisfactory
10.01	9.96	-0.05	Satisfactory

Tolerance of pH should be less than ± 0.20 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
10	10.0	0.0	Satisfactory
24	24.0	0.0	Satisfactory
48	48.0	0.0	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

<u>Remark(s): -</u>

The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

The results relate only to the calibrated equipment as received

The results relate only to the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source. "Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures. (c)

- (d)
- The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form (e) relevant international standards ...

LEE Chun-hing

Report No.	:	BA090071
Date of Issue	:	27 September 2021
Page No.	:	2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
0.18	0.30	0.12	Satisfactory
2.71	2.66	-0.05	Satisfactory
5.00	5.09	0.09	Satisfactory
7.48	7.48	0.00	Satisfactory

Tolerance limit of dissolved oxygen should be less than ±0.50 (mg/L)

(4) Conductivity at 25°C

Conc. of KCl (M)	Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)	Results
0.001	146.9	147.6	0.48	Satisfactory
0.01	1412	1451	2.76	Satisfactory
0.1	12890	12758	-1.02	Satisfactory
0.5	58670	58927	0.44	Satisfactory
1.0	111900	110688	-1.08	Satisfactory

Tolerance limit of conductivity should be less than ± 10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.98	-0.20	Satisfactory
20	19.87	-0.65	Satisfactory
30	29.80	-0.67	Satisfactory

Tolerance limit of salinity should be less than ± 10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0.17		Satisfactory
10	9.94	-0.6	Satisfactory
20	19.88	-0.6	Satisfactory
100	98.93	-1.1	Satisfactory
800	794.52	-0.7	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

Remark(s): -

- "Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures. The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form (g) relevant international standards.

Report No.			
Date of Issue			
Page No.			

BA090072 27 September 2021 1 of 2

•

PART A – CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Flat 2207, Yu Fun House, Yu Chui Court, Shatin New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B – DESCRIPTION

Name of Equipment : YSI P	roDSS (Multi-Parameters)
Manufacturer : YSI (a	a xylem brand)
Serial Number : 21G10	05356
Date of Received : Sep 24	4, 2021
Date of Calibration : Sep 24	4, 2021
Date of Next Calibration ^(a) : Dec 2	3, 2021

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

<u>Parameter</u>	Reference Method
pH at 25°C	APHA 21e 4500-H ⁺ B
Dissolved Oxygen	APHA 21e 4500-O G
Conductivity at 25°C	APHA 21e 2510 B
Salinity	APHA 21e 2520 B
Turbidity	APHA 21e 2130 B
Temperature	Section 6 of international Accreditation New Zealand Technical Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.
	0

PART D - CALIBRATION RESULTS^(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading ^(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	4.01	0.01	Satisfactory
7.42	7.45	0.03	Satisfactory
10.01	10.05	0.04	Satisfactory

Tolerance of pH should be less than ±0.20 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
10	10.0	0.0	Satisfactory
24	24.0	0.0	Satisfactory
48	48.0	0.0	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

Remark(s): -

(a) The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

(b) The results relate only to the calibrated equipment as received

- (e) The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.
- (d) "Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

(e) The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

LEE Chun-ning

Senior Chemist

Report No.	:	BA090072
Date of Issue	:	27 September 2021
Page No.	:	2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
0.18	0.30	0.12	Satisfactory
2.71	2.60	-0.11	Satisfactory
5.00	5.13	0.13	Satisfactory
7.48	7.49	0.01	Satisfactory

Tolerance limit of dissolved oxygen should be less than ± 0.50 (mg/L)

(4) Conductivity at 25°C

Conc. of KCl (M)	Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)	Results
0.001	146.9	147.5	0.41	Satisfactory
0.01	1412	1466	3.82	Satisfactory
0.1	12890	12747	-1.11	Satisfactory
0.5	58670	59430	1.30	Satisfactory
1.0	111900	110667	-1.10	Satisfactory

Tolerance limit of conductivity should be less than ± 10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.97	-0.30	Satisfactory
20	20.36	1.80	Satisfactory
30	30.77	2.57	Satisfactory

Tolerance limit of salinity should be less than ± 10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0.18		Satisfactory
10	10.13	1.3	Satisfactory
20	19.74	-1.3	Satisfactory
100	102.36	2.4	Satisfactory
800	796.41	-0.4	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

Remark(s): -

- "Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures. The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

B. Quality Assurance and Quality Control (QA&QC) Results for Post-dredging Monitoring

QA&QC Results on 01 November 21

Laboratory Duplicate (DUP) Report

Matrix: WATER						Laboratory Duplicate (DUP) R	Report			
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)		
sample ID										
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 3990717)								
HK2143188-001	C1/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	5.2	5.6	7.6		
HK2143188-011	C2/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.3	3.7	12.5		
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 3990718)								
HK2143188-021	SR1/E/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	5.0	4.7	5.9		
HK2143188-031	SR3/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.4	4.9	9.4		
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 3990719)								
HK2143188-041	SR4/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.0	3.5	13.5		
HK2143188-051	SR6/E/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.8	3.1	11.9		
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 3990720)								
HK2143188-061	SR8/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.2	4.6	7.9		
HK2143188-071	SR9/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.6	4.2	10.0		
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 3990721)								
HK2143188-081	C1/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.2	4.1	2.4		
HK2143188-091	C3/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	6.5	7.0	8.5		
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 3990722)								
HK2143188-101	SR1/F/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.3	2.2	4.4		
HK2143188-111	SR3/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.3	2.6	14.8		
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 3990723)								
HK2143188-121	SR5/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.1	1.8	13.3		
HK2143188-131	SR6/F/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.1	2.6	18.1		
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 3990724)								
HK2143188-141	SR8/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	1.8	2.1	11.5		
HK2143188-151	SR10/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	1.4	1.7	15.4		

Matrix: WATER	Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
				Spike	Spike Rec	overy (%)	Recovery	Limits (%)	RPDs	s (%)
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QCLot: 3990717)										
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	96.0		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 3990718)										
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	110		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 3990719)										
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	95.0		85.9	117		

Matrix: WATER			Method Blank (MB	3) Report		Laboratory Contro	Spike (LCS) and Laborato	ny Control Spi	ike Duplicate (DCS) Report	
					Spike	Spike Re	covery (%)	Recovery	Limits (%)	RPD	s (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QCL	ot: 3990720)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	101		85.9	117		
EA/ED: Physical and Aggregate Properties (QCL	ot: 3990721)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	93.5		85.9	117		
EA/ED: Physical and Aggregate Properties (QCL	ot: 3990722)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	94.5		85.9	117		
EA/ED: Physical and Aggregate Properties (QCL	ot: 3990723)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	95.0		85.9	117		
EA/ED: Physical and Aggregate Properties (QCL	ot: 3990724)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	101		85.9	117		

QA&QC Results on 03 November 21

Laboratory Duplicate (DUP) Report

Matrix: WATER						Laboratory Duplicate (DUP) R	leport	
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
sample ID								
EA/ED: Physical a	and Aggregate Properti	es (QC Lot: 3996932)						
HK2143190-001	C1/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.0	3.3	11.9
HK2143190-011	C2/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.6	3.1	13.5
EA/ED: Physical a	and Aggregate Properti	es (QC Lot: 3996933)						
HK2143190-021	SR1/E/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.7	3.0	12.7
HK2143190-031	SR3/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.0	3.7	6.9
EA/ED: Physical a	and Aggregate Properti	es (QC Lot: 3996934)						
HK2143190-041	SR4/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.5	2.2	9.0
HK2143190-051	SR6/E/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.5	2.9	15.0
EA/ED: Physical a	and Aggregate Properti	es (QC Lot: 3996935)						
HK2143190-061	SR8/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.9	3.2	8.2
HK2143190-071	SR9/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.4	2.0	15.3
EA/ED: Physical a	and Aggregate Properti	es (QC Lot: 3996936)						
HK2143190-081	C1/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.5	3.8	8.3
HK2143190-091	C3/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.6	2.7	5.7
EA/ED: Physical a	and Aggregate Properti	es (QC Lot: 3996937)						
HK2143190-101	SR1/F/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.9	2.5	12.9
HK2143190-111	SR3/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.8	4.2	8.8
EA/ED: Physical a	and Aggregate Properti	es (QC Lot: 3996938)	1					
HK2143190-121	SR5/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.5	3.8	9.2
HK2143190-131	SR6/F/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.8	4.5	8.3
EA/ED: Physical a	and Aggregate Properti	es (QC Lot: 3996939)	1					
HK2143190-141	SR8/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.0	3.5	12.7
HK2143190-151	SR10/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.5	4.0	11.7

Matrix: WATER		Method Blank (MB) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
				Spike	Spike Rec	,		Limits (%)	RPDs	s (%)	
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
EA/ED: Physical and Aggregate Properties (QCLot: 3996932)											
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	96.5		85.9	117			
EA/ED: Physical and Aggregate Properties (QCLot: 3996933)											
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	94.0		85.9	117			
EA/ED: Physical and Aggregate Properties (QCLot: 3996934)											
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	98.5		85.9	117			

Matrix: WATER		Method Blank (Mi	3) Report		Laboratory Contro	l Spike (LCS) and Laborato	ory Control Sp	ike Duplicate ((DCS) Report	
				Spike	Spike Re	covery (%)	Recovery	Limits (%)	RPD	s (%)
Method: Compound CAS NumL	r LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QCLot: 39969	35)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	97.5		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 39969	36)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	95.5		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 39969	37)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	102		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 39969	38)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	93.0		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 39969	39)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	95.5		85.9	117		

QA&QC Results on 05 November 21

Laboratory Duplicate (DUP) Report

Matrix: WATER						Laboratory Duplicate (DUP) R	eport	
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
sample ID								
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4002459)						
HK2143193-001	C1/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.7	4.8	2.3
HK2143193-011	C2/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.4	4.1	6.5
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4002460)						
HK2143193-021	SR1/E/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	5.5	5.3	3.2
HK2143193-031	SR3/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	6.2	6.4	3.6
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4002461)						
HK2143193-041	SR4/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.8	5.1	4.3
HK2143193-051	SR6/E/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.1	4.4	8.8
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4002462)						
HK2143193-061	SR8/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.3	4.5	4.2
HK2143193-071	SR9/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	7.6	7.2	5.6
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4002463)						
HK2143193-081	C1/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.4	4.2	6.1
HK2143193-091	C3/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.9	3.6	7.3
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4002464)						
HK2143193-101	SR1/F/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.0	4.3	5.4
HK2143193-111	SR3/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.0	4.3	7.6
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4002465)						
HK2143193-121	SR5/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.2	4.5	7.1
HK2143193-131	SR6/F/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.2	3.8	9.4
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4002466)						
HK2143193-141	SR8/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.6	4.3	7.0
HK2143193-151	SR10/F/S/1	EA025: Suspended Solids (SS)		0.5	ma/L	3.5	3.2	8.9

Matrix: WATER		Method Blank (MB) Report		Laboratory Contro	l Spike (LCS) and Laborato	ry Control Sp	ike Duplicate (DCS) Report	
				Spike	Spike Re	covery (%)	Recovery	Limits (%)	RPDs	s (%)
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QCLot: 4002459										
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	96.0		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 4002460										
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	93.5		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 4002461										
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	108		85.9	117		

Matrix: WATER		Method Blank (Mi	3) Report		Laboratory Control	Spike (LCS) and Laborato	ry Control Sp.	ike Duplicate ((DCS) Report	
				Spike	Spike Rec	covery (%)	Recovery	Limits (%)	RPD	s (%)
Method: Compound CAS NumL	er LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QCLot: 40024	62)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	102		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 40024	63)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	104		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 40024	64)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	97.5		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 40024	65)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	104		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 40024	66)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	96.0		85.9	117		

QA&QC Results on 08 November 21

Laboratory Duplicate (DUP) Report

Matrix: WATER						Laboratory Duplicate (DUP) R	Report	
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
sample ID								
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4004757)						
HK2143196-001	C1/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	7.1	7.1	0.0
HK2143196-011	C2/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	6.2	6.0	3.1
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4004758)						
HK2143196-021	SR1/E/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	6.2	6.0	3.5
HK2143196-031	SR3/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	6.1	6.1	0.0
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4004759)						
HK2143196-041	SR4/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	6.5	6.5	0.0
HK2143196-051	SR6/E/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	6.9	6.9	0.0
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4004760)						
HK2143196-061	SR8/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	6.8	6.9	0.0
HK2143196-071	SR9/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	5.9	5.7	3.7
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4004761)						
HK2143196-081	C1/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	5.1	5.1	0.0
HK2143196-091	C3/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	5.4	5.6	2.9
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4004762)						
HK2143196-101	SR1/F/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.4	4.2	3.2
HK2143196-111	SR3/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.6	4.8	2.7
EA/ED: Physical a	nd Aggregate Properti							
HK2143196-121	SR5/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	5.4	5.4	0.0
HK2143196-131	SR6/F/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.5	3.5	0.0
FA/FD: Physical a	nd Aggregate Properti						1	
HK2143196-141	SR8/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.9	3.9	0.0
HK2143196-151	SR10/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	5.0	5.0	0.0

Matrix: WATER		Method Blank (MB) Report		Laboratory Control	Spike (LCS) and Laborato	ny Control Sp	ike Duplicate (DCS) Report	
				Spike	Spike Red	covery (%)	Recovery	Limits (%)	RPD	s (%)
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QCLot: 4004757)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	96.5		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 4004758)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	102		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 4004759)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	107		85.9	117		

Matrix: WATER		Method Blank (MB	3) Report		Laboratory Contro	Spike (LCS) and Laborato	ny Control Sp	ike Duplicate ((DCS) Report	
				Spike	Spike Re	covery (%)	Recovery	Limits (%)	RPD	s (%)
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QCLot: 4004760)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	92.0		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 4004761)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	99.5		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 4004762)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	108		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 4004763)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	104		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 4004764)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	97.0		85.9	117		

QA&QC Results on 10 November 21

Laboratory Duplicate (DUP) Report

Matrix: WATER						Laboratory Duplicate (DUP) R	Report	
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
sample ID								
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4010031)						
HK2145081-001	C1/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	6.1	6.0	3.1
HK2145081-011	C2/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.6	4.6	0.0
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4010032)						
HK2145081-021	SR1/E/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.7	4.7	0.0
HK2145081-031	SR3/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.5	4.5	0.0
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4010033)						
HK2145081-041	SR4/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.5	4.6	3.3
HK2145081-051	SR6/E/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.3	3.3	0.0
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4010034)						
HK2145081-061	SR8/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	5.7	5.6	0.0
HK2145081-071	SR9/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	7.4	7.5	1.3
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4010035)						
HK2145081-081	C1/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.5	4.6	2.2
HK2145081-091	C3/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	5.7	5.6	2.4
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4010036)						
HK2145081-101	SR1/F/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	8.4	8.5	1.3
HK2145081-111	SR3/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	7.4	7.3	0.0
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4010037)	1					
HK2145081-121	SR5/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	6.2	6.1	0.0
HK2145081-131	SR6/F/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.8	3.9	2.6
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4010038)						
HK2145081-141	SR8/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.3	3.3	0.0
HK2145081-151	SR10/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.5	3.5	0.0

Matrix: WATER		Method Blank (MB)) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
				Spike	Spike Rec	:overy (%)	Recovery	Limits (%)	RPDs	s (%)	
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
EA/ED: Physical and Aggregate Properties (QCLot: 4010031											
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	106		85.9	117			
EA/ED: Physical and Aggregate Properties (QCLot: 4010032											
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	108		85.9	117			
EA/ED: Physical and Aggregate Properties (QCLot: 4010033											
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	94.5		85.9	117			

Matrix: WATER		Method Blank (Mi	3) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
				Spike	Spike Re	covery (%)	Recovery	Limits (%)	RPD	s (%)
Method: Compound CAS Num	er LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QCLot: 4010)	34)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	99.5		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 40100	35)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	100		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 40100	36)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	105		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 40100	37)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	101		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 40100	38)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	108		85.9	117		

QA&QC Results on 12 November 21

Laboratory Duplicate (DUP) Report

Matrix: WATER					1	aboratory Duplicate (DUP) F	Report	
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
sample ID	-							
A/ED: Physical a	nd Aggregate Propertie	es (QC Lot: 4015477)						
HK2145108-001	C1/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	6.5	7.0	8.1
HK2145108-011	C2/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	5.9	5.6	6.7
EA/ED: Physical a	nd Aggregate Propertie	es (QC Lot: 4015478)						
HK2145108-021	SR1/E/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	5.7	5.1	9.9
HK2145108-031	SR3/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.6	4.5	2.5
EA/ED: Physical a	nd Aggregate Propertie	es (QC Lot: 4015479)						
HK2145108-041	SR4/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.2	5.2	20.6
HK2145108-051	SR6/E/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.9	4.6	17.3
A/ED: Physical a	nd Aggregate Propertie	es (QC Lot: 4015480)						
HK2145108-061	SR8/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.6	3.7	0.0
HK2145108-071	SR9/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.2	3.6	15.8
A/ED: Physical a	nd Aggregate Propertie	es (QC Lot: 4015481)						
HK2145108-081	C1/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.9	3.3	18.4
HK2145108-091	C3/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.5	3.6	22.9
A/ED: Physical a	nd Aggregate Propertie	es (QC Lot: 4015482)						
HK2145108-101	SR1/F/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.6	3.2	9.9
HK2145108-111	SR3/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.0	2.8	9.5
A/ED: Physical a	nd Aggregate Propertie	es (QC Lot: 4015483)						
HK2145108-121	SR5/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.9	3.3	17.2
HK2145108-131	SR6/F/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.0	3.8	6.7
A/ED: Physical a	nd Aggregate Propertie	es (QC Lot: 4015484)						
HK2145108-141	SR8/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.6	3.5	29.8
HK2145108-151	SR10/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.5	4.6	2.2

Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
			Spike	Spike Red	covery (%)	Recovery	Limits (%)	RPDs	; (%)	
LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
0.5	mg/L	<0.5	20 mg/L	88.0		85.9	117			
0.5	mg/L	<0.5	20 mg/L	109		85.9	117			
0.5	mg/L	<0.5	20 mg/L	98.0		85.9	117			
	0.5	LOR Unit 0.5 mg/L 0.5 mg/L	LOR Unit Result 0.5 mg/L <0.5	LOR Unit Result Spike Concentration 0.5 mg/L <0.5	Spike Spike Spike Rec LOR Unit Result Concentration LCS 0.5 mg/L <0.5	Spike Spike Recovery (%) LOR Unit Result Concentration LCS DCS 0.5 mg/L <0.5	Spike Spike Recovery (%) Recovery LOR Unit Result Concentration LCS DCS Low 0.5 mg/L <0.5	Spike Spike Recovery (%) Recovery Limits (%) LOR Unit Result Concentration LCS DCS Low High 0.5 mg/L <0.5	Spike Spike Recovery (%) Recovery Limits (%) RPDs LOR Unit Result Concentration LCS DCS Low High Value 0.5 mg/L <0.5	

Matrix: WATER		Method Blank (ME	3) Report		Laboratory Control	Spike (LCS) and Laborate	ny Control Sp	ike Duplicate (DCS) Report	
				Spike	Spike Red	covery (%)	Recovery	Limits (%)	RPD	s (%)
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QCLot: 4015480)										
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	93.0		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 4015481)										
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	95.5		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 4015482)										
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	93.0		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 4015483)										
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	100		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 4015484)										
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	106		85.9	117		

QA&QC Results on 15 November 21

Laboratory Duplicate (DUP) Report

Matrix: WATER						Laboratory Duplicate (DUP) R	Report	
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
sample ID								
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4018373)						
HK2145684-001	C1/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.8	4.9	3.6
HK2145684-011	C2/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	5.3	5.3	0.0
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4018374)						
HK2145684-021	SR1/E/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.4	2.4	0.0
HK2145684-031	SR3/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	1.9	1.8	5.3
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4018375)						
HK2145684-041	SR4/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.0	3.0	0.0
HK2145684-051	SR6/E/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.8	2.9	4.8
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4018376)						
HK2145684-061	SR8/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.8	2.9	3.9
HK2145684-071	SR9/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.2	2.3	0.0
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4018377)						
HK2145684-081	C1/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.8	2.8	0.0
HK2145684-091	C3/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.9	2.8	0.0
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4018378)						
HK2145684-101	SR1/F/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.9	2.8	0.0
HK2145684-111	SR3/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.7	2.7	0.0
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4018379)						
HK2145684-121	SR5/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.4	4.4	0.0
HK2145684-131	SR6/F/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.7	3.6	0.0
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4018380)						
HK2145684-141	SR8/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.2	3.2	0.0
HK2145684-151	SR10/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.9	3.0	4.3

Matrix: WATER		Method Blank (MB) Report		Laboratory Control	Spike (LCS) and Laborato	ry Control Sp	ike Duplicate ((DCS) Report	
				Spike	Spike Rec	overy (%)	Recovery	Limits (%)	RPDs	s (%)
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QCLot: 4018373)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	95.5		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 4018374)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	97.0		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 4018375)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	94.5		85.9	117		

Matrix: WATER		Method Blank (Mi	3) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
				Spike	Spike Red	covery (%)	Recovery	Limits (%)	RPD	s (%)
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QCLot: 40183)	6)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	94.0		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 40183)	7)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	99.5		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 40183)	8)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	95.0		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 40183)	9)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	99.5		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 401838	0)									
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	106		85.9	117		

QA&QC Results on 17 November 21

Laboratory Duplicate (DUP) Report

Matrix: WATER						Laboratory Duplicate (DUP) R	Report	
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
sample ID								
EA/ED: Physical a	nd Aggregate Propertie	es (QC Lot: 4023978)						
HK2145689-001	C1/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.7	3.6	0.0
HK2145689-011	C2/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.4	2.5	0.0
EA/ED: Physical a	nd Aggregate Propertie	es (QC Lot: 4023979)						
HK2145689-021	SR1/E/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.6	3.7	3.1
HK2145689-031	SR3/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.5	3.4	0.0
EA/ED: Physical a	nd Aggregate Propertie	es (QC Lot: 4023980)						
HK2145689-041	SR4/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.5	3.6	0.0
HK2145689-051	SR6/E/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.8	2.7	3.6
EA/ED: Physical a	nd Aggregate Propertie	es (QC Lot: 4023981)						
HK2145689-061	SR8/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.5	2.5	0.0
HK2145689-071	SR9/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.3	4.4	0.0
EA/ED: Physical a	nd Aggregate Propertie	es (QC Lot: 4023982)						
HK2145689-081	C1/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.6	3.5	0.0
HK2145689-091	C3/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.7	2.8	0.0
EA/ED: Physical a	nd Aggregate Propertie	es (QC Lot: 4023983)						
HK2145689-101	SR1/F/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.0	3.0	0.0
HK2145689-111	SR3/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.2	3.2	0.0
EA/ED: Physical a	nd Aggregate Propertie	es (QC Lot: 4023984)						
HK2145689-121	SR5/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.1	4.1	0.0
HK2145689-131	SR6/F/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.7	3.9	6.3
EA/ED: Physical a	nd Aggregate Propertie	es (QC Lot: 4023985)						
HK2145689-141	SR8/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.8	2.9	0.0
HK2145689-151	SR10/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.4	2.5	5.7

Matrix: WATER		Method Blank (MB) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
				Spike	Spike Rec	overy (%)	Recovery	Limits (%)	RPDs	; (%)	
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
EA/ED: Physical and Aggregate Properties (QCLot: 4023978)	1										
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	96.5		85.9	117			
EA/ED: Physical and Aggregate Properties (QCLot: 4023979)											
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	102		85.9	117			
EA/ED: Physical and Aggregate Properties (QCLot: 4023980)											
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	101		85.9	117			

Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
				Spike	Spike Red	Spike Recovery (%)		Limits (%)	RPDs (%)			
Method: Compound CAS Num	ar LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit		
EA/ED: Physical and Aggregate Properties (QCLot: 4023	81)											
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	100		85.9	117				
EA/ED: Physical and Aggregate Properties (QCLot: 40239	82)											
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	105		85.9	117				
EA/ED: Physical and Aggregate Properties (QCLot: 40239	83)											
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	104		85.9	117				
EA/ED: Physical and Aggregate Properties (QCLot: 40239	84)											
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	109		85.9	117				
EA/ED: Physical and Aggregate Properties (QCLot: 40239	85)											
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	112		85.9	117				

QA&QC Results on 19 November 21

Laboratory Duplicate (DUP) Report

Matrix: WATER					L	aboratory Duplicate (DUP) R	Report	
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
sample ID								
EA/ED: Physical a	nd Aggregate Properti	ies (QC Lot: 4026521)						
HK2145692-001	C1/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	5.9	5.8	1.7
HK2145692-011	C2/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.3	2.4	8.0
EA/ED: Physical a	nd Aggregate Properti	ies (QC Lot: 4026522)						
HK2145692-021	SR1/E/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.3	3.2	0.0
HK2145692-031	SR3/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.1	3.1	0.0
EA/ED: Physical a	nd Aggregate Properti	ies (QC Lot: 4026523)						
HK2145692-041	SR4/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.1	3.1	0.0
HK2145692-051	SR6/E/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	1.6	1.6	0.0
EA/ED: Physical a	nd Aggregate Properti	ies (QC Lot: 4026524)						
HK2145692-061	SR8/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.0	2.1	0.0
HK2145692-071	SR9/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.0	2.9	4.6
EA/ED: Physical a	nd Aggregate Properti	ies (QC Lot: 4026525)						
HK2145692-081	C1/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.1	2.1	0.0
HK2145692-091	C3/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.9	3.0	3.4
EA/ED: Physical a	nd Aggregate Properti	ies (QC Lot: 4026526)						
HK2145692-101	SR1/F/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.2	2.3	4.4
HK2145692-111	SR3/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.3	4.4	0.0
EA/ED: Physical a	nd Aggregate Properti	ies (QC Lot: 4026527)						
HK2145692-121	SR5/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.4	4.3	0.0
HK2145692-131	SR6/F/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.4	2.4	0.0
EA/ED: Physical a	nd Aggregate Properti	ies (QC Lot: 4026528)						
HK2145692-141	SR8/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.8	2.7	0.0
HK2145692-151	SR10/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.0	2.0	0.0

Matrix: WATER	Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
				Spike Spike Rec		overy (%)	Recovery Limits (%)		RPDs	; (%)	
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
EA/ED: Physical and Aggregate Properties (QCLot: 4026521)											
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	100		85.9	117			
EA/ED: Physical and Aggregate Properties (QCLot: 4026522)											
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	97.0		85.9	117			
EA/ED: Physical and Aggregate Properties (QCLot: 4026523)											
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	102		85.9	117			

Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
				Spike	Spike Red	Spike Recovery (%)		Limits (%)	RPDs (%)			
Method: Compound CAS Number	r LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit		
EA/ED: Physical and Aggregate Properties (QCLot: 40265)	4)											
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	106		85.9	117				
EA/ED: Physical and Aggregate Properties (QCLot: 40265)	5)											
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	92.5		85.9	117				
EA/ED: Physical and Aggregate Properties (QCLot: 40265	6)											
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	104		85.9	117				
EA/ED: Physical and Aggregate Properties (QCLot: 40265	7)											
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	94.0		85.9	117				
EA/ED: Physical and Aggregate Properties (QCLot: 40265)	8)											
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	93.5		85.9	117				

QA&QC Results on 22 November 21

Laboratory Duplicate (DUP) Report

Matrix: WATER				Laboratory Duplicate (DUP) Report								
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)				
sample ID	-											
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4032324)										
HK2147312-001	C1/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	5.5	5.6	0.0				
HK2147312-011	C2/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	5.6	5.6	0.0				
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4032325)										
HK2147312-021	SR1/E/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	8.2	8.1	0.0				
HK2147312-031	SR3/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	6.2	6.2	0.0				
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4032326)										
HK2147312-041	SR4/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	5.6	5.7	2.6				
HK2147312-051	SR6/E/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	5.5	5.6	1.8				
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4032327)										
HK2147312-061	SR8/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	6.7	6.6	0.0				
HK2147312-071	SR9/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	6.2	6.3	2.2				
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4032328)										
HK2147312-081	C1/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	5.6	5.6	0.0				
HK2147312-091	C3/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	5.0	5.1	0.0				
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4032329)										
HK2147312-101	SR1/F/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.5	3.4	0.0				
HK2147312-111	SR3/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.2	4.2	0.0				
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4032330)										
HK2147312-121	SR5/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.2	3.1	3.6				
HK2147312-131	SR6/F/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.0	4.0	0.0				
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4032331)										
HK2147312-141	SR8/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	5.5	5.5	0.0				
HK2147312-151	SR10/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	7.4	7.5	1.7				

Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
			Spike	Spike Rec	:overy (%)	Recovery	Limits (%)	RPDs	: (%)	
LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
0.5	mg/L	<0.5	20 mg/L	104		85.9	117			
0.5	mg/L	<0.5	20 mg/L	106		85.9	117			
0.5	mg/L	<0.5	20 mg/L	99.5		85.9	117			
	0.5	LOR Unit 0.5 mg/L 0.5 mg/L	LOR Unit Result 0.5 mg/L <0.5	LOR Unit Result Spike Concentration 0.5 mg/L <0.5	Spike Spike Rec LOR Unit Result Concentration LCS 0.5 mg/L <0.5	Spike Spike Recovery (%) LOR Unit Result Concentration LCS DCS 0.5 mg/L <0.5	Spike Spike Recovery (%) Recovery LOR Unit Result Concentration LCS DCS Low 0.5 mg/L <0.5	Spike Spike Recovery (%) Recovery Limits (%) LOR Unit Result Concentration LCS DCS Low High 0.5 mg/L <0.5	Spike Spike Recovery (%) Recovery Limits (%) RPDs LOR Unit Result Concentration LCS DCS Low High Value 0.5 mg/L <0.5	

Matrix: WATER	Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
				Spike	Spike Recovery (%)		Recovery Limits (%)		RPDs (%)		
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
EA/ED: Physical and Aggregate Properties (QCLot: 403232	7)										
EA025: Suspended Solids (SS)	- 0.5	mg/L	<0.5	20 mg/L	100		85.9	117			
EA/ED: Physical and Aggregate Properties (QCLot: 403232	B)										
EA025: Suspended Solids (SS)	- 0.5	mg/L	<0.5	20 mg/L	96.0		85.9	117			
EA/ED: Physical and Aggregate Properties (QCLot: 403232	9)										
EA025: Suspended Solids (SS)	- 0.5	mg/L	<0.5	20 mg/L	93.5		85.9	117			
EA/ED: Physical and Aggregate Properties (QCLot: 403233	0)										
EA025: Suspended Solids (SS)	- 0.5	mg/L	<0.5	20 mg/L	95.5		85.9	117			
EA/ED: Physical and Aggregate Properties (QCLot: 403233	1)										
EA025: Suspended Solids (SS)	- 0.5	mg/L	<0.5	20 mg/L	93.5		85.9	117			

QA&QC Results on 24 November 21

Laboratory Duplicate (DUP) Report

Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)			
sample ID											
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4038084)									
HK2147313-001	C1/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	6.2	5.9	5.8			
HK2147313-011	C2/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	6.3	6.2	0.0			
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4038085)									
HK2147313-021	SR1/E/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	5.9	5.5	6.4			
HK2147313-031	SR3/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	6.2	6.4	3.8			
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4038086)									
HK2147313-041	SR4/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.9	4.3	12.7			
HK2147313-051	SR6/E/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	5.2	4.9	5.9			
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4038087)									
HK2147313-061	SR8/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	5.4	4.9	9.0			
HK2147313-071	SR9/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.9	4.3	9.1			
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4038088)									
HK2147313-081	C1/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.0	3.7	7.2			
HK2147313-091	C3/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.2	3.6	14.4			
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4038089)									
HK2147313-101	SR1/F/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.0	2.8	4.8			
HK2147313-111	SR3/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.6	4.2	9.6			
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4038090)									
HK2147313-121	SR5/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.4	3.7	10.6			
HK2147313-131	SR6/F/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.5	4.9	9.3			
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4038091)									
HK2147313-141	SR8/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.9	3.4	13.7			
HK2147313-151	SR10/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.5	5.0	12.1			

	Method Blank (MB) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
			Spike	Spike Re	covery (%)	Recovery	Limits (%)	RPD	s (%)	
LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
0.5	mg/L	<0.5	20 mg/L	106		85.9	117			
0.5	mg/L	<0.5	20 mg/L	110		85.9	117			
0.5	mg/L	<0.5	20 mg/L	99.0		85.9	117			
	0.5	LOR Unit 0.5 mg/L 0.5 mg/L	0.5 mg/L <0.5	LOR Unit Result Spike Concentration 0.5 mg/L <0.5	Spike Spike Register LOR Unit Result Concentration LCS 0.5 mg/L <0.5	Spike Spike Recovery (%) LOR Unit Result Concentration LCS DCS 0.5 mg/L <0.5	Spike Spike Recovery (%) Recovery LOR Unit Result Concentration LCS DCS Low 0.5 mg/L <0.5	Spike Spike Recovery (%) Recovery (%) </td <td>Spike Spike Concentration Spike Recovery (%) Recovery Limits (%) RPDs LOR Unit Result Concentration LCS DCS Low High Value 0.5 mg/L <0.5</td> 20 mg/L 106 85.9 117 0.5 mg/L <0.5	Spike Spike Concentration Spike Recovery (%) Recovery Limits (%) RPDs LOR Unit Result Concentration LCS DCS Low High Value 0.5 mg/L <0.5	

Matrix: WATER	[Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
					Spike	Spike Red	:overy (%)	Recovery Limits (%)		RPDs	s (%)	
Method: Compound C	AS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
EA/ED: Physical and Aggregate Properties (QCLot	: 4038087)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	98.5		85.9	117			
EA/ED: Physical and Aggregate Properties (QCLot	: 4038088)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	100		85.9	117			
EA/ED: Physical and Aggregate Properties (QCLot	: 4038089)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	102		85.9	117			
EA/ED: Physical and Aggregate Properties (QCLot	: 4038090)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	94.5		85.9	117			
EA/ED: Physical and Aggregate Properties (QCLot	: 4038091)											
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	20 mg/L	105		85.9	117			

QA&QC Results on 26 November 21

Laboratory Duplicate (DUP) Report

Matrix: WATER						Laboratory Duplicate (DUP) R	leport	
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
sample ID								
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4043999)						
HK2147314-001	C1/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.8	2.8	0.0
HK2147314-011	C2/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.1	3.2	0.0
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4044000)						
HK2147314-021	SR1/E/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	6.4	6.5	1.6
HK2147314-031	SR3/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.4	3.5	0.0
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4044001)						
HK2147314-041	SR4/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.2	2.2	0.0
HK2147314-051	SR6/E/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.8	2.9	4.8
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4044002)						
HK2147314-061	SR8/E/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.0	2.0	0.0
HK2147314-071	SR9/E/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.2	2.1	5.3
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4044003)						
HK2147314-081	C1/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.5	3.5	0.0
HK2147314-091	C3/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.3	4.4	0.0
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4044004)						
HK2147314-101	SR1/F/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.8	2.7	3.6
HK2147314-111	SR3/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.9	2.9	0.0
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4044005)						
HK2147314-121	SR5/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.3	2.4	4.3
HK2147314-131	SR6/F/B/1	EA025: Suspended Solids (SS)		0.5	mg/L	3.2	3.1	0.0
EA/ED: Physical a	nd Aggregate Properti	es (QC Lot: 4044006)					· · ·	
HK2147314-141	SR8/F/M/1	EA025: Suspended Solids (SS)		0.5	mg/L	2.6	2.8	6.1
HK2147314-151	SR10/F/S/1	EA025: Suspended Solids (SS)		0.5	mg/L	4.4	4.4	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER		Method Blank (MB)) Report		Laboratory Control	Spike (LCS) and Laborato	ny Control Sp	ike Duplicate (DCS) Report	
				Spike	Spike Rec	:overy (%)	Recovery	Limits (%)	RPDs	: (%)
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QCLot: 4043999)										
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	94.0		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 4044000)										
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	98.5		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 4044001)										
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	108		85.9	117		

Matrix: WATER		Method Blank (MB) Report		Laboratory Control	Spike (LCS) and Laborato	ny Control Sp.	ike Duplicate (DCS) Report	
				Spike	Spike Rec	:overy (%)	Recovery	Limits (%)	RPD	s (%)
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QCLot: 4044002)										
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	94.5		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 4044003)										
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	105		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 4044004)										
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	95.0		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 4044005)										
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	94.5		85.9	117		
EA/ED: Physical and Aggregate Properties (QCLot: 4044006)										
EA025: Suspended Solids (SS)	0.5	mg/L	<0.5	20 mg/L	104		85.9	117		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

C. Post-dredging Water Quality Monitoring Results

Improvement Dredging for Lamma Power Station Navigatin Channel Water Quality Monitoring Water Quality Monitoring Results on 01 November 21 of

Water Qual	lity Monit	oring Resu	ilts on		01 November 21	during Mid	-Ebb Ti	de															
Monitoring	Weather	Sea	Sampling	Water				emperature (°C)		pН	Salin	ity (ppt)	DO Satur	ration (%)	Dissolve	d Oxygen	(mg/L)	Tur	bidity(NTL)	Suspen	ded Solids	; (mg/L)
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
					Surface	1.0	26.0 26.0	26.0	8.0 8.0	8.0	33.4 33.4	33.4	92.6 92.6	92.6	6.2 6.2	6.2		2.8 2.7	2.8		5.2 4.9	5.1	
C1	Cloudy	Moderate	08:00	10.7	Middle	5.4	26.0	26.0	8.0	8.0	33.4 33.4	33.4	92.6	92.5	6.2	6.2	6.2	3.6	3.6	4.2	4.9	5.0	4.5
01	Cloudy	Woderate	00.00	10.7		5.4 9.7	26.0 26.0		8.0 8.0		33.4 33.5		92.5 93.9		6.2 6.3			3.6 6.2		4.2	5.2 4.0		4.5
					Bottom	9.7	26.0	26.0	8.0	8.0	33.5	33.5	93.9	93.9	6.3	6.3	6.3	6.4	6.3	Ĺ	3.1	3.6	
					Surface	1.0	25.9 25.9	25.9	8.1 8.1	8.1	33.7 33.7	33.7	101.3 101.3	101.3	6.8 6.8	6.8	6.8	5.2 5.3	5.3		4.6 5.4	5.0	
C2	Sunny	Rough	09:25	11.2	Middle	5.6 5.6	25.9 25.9	25.9	8.1 8.1	8.1	33.7 33.7	33.7	100.9 100.6	100.8	6.8 6.8	6.8	0.0	5.3 5.4	5.4	5.4	5.4 4.2	4.8	4.5
					Bottom	10.2	25.9	25.9	8.1	8.1	33.7	33.7	100.0	100.0	6.7	6.7	6.7	5.7	5.7		3.3	3.7	
						10.2 1.0	25.9 25.9	05.0	8.1 8.1		33.7 33.7		100.0 101.1		6.7 6.8		-	5.7 5.1	5.0	<u> </u>	4.0 5.1	4.0	-
					Surface	1.0 11.6	25.9 25.9	25.9	8.1 8.1	8.1	33.7 33.7	33.7	101.1 100.7	101.1	6.8 6.8	6.8	6.8	5.2 5.3	5.2		2.8 4.8	4.0	
C3	Sunny	Rough	08:53	23.1	Middle	11.6	25.9	25.9	8.1	8.1	33.7	33.7	100.7	100.7	6.8	6.8		5.3	5.3	5.7	3.4	4.1	4.0
					Bottom	22.1 22.1	25.9 25.9	25.9	8.1 8.1	8.1	33.7 33.7	33.7	99.8 99.8	99.8	6.7 6.7	6.7	6.7	6.6 6.6	6.6		4.0	3.8	
					Surface	1.0 1.0	26.1 26.1	26.1	8.1 8.1	8.1	33.7 33.7	33.7	98.2 98.2	98.2	6.6 6.6	6.6		5.0 5.0	5.0		5.6 6.1	5.9	
SR1	Sunny	Moderate	07:40	8.3	Middle	4.2	26.0	26.0	8.1	8.1	33.7	33.7	98.6	98.7	6.6	6.6	6.6	5.6	5.6	5.6	5.0	4.7	4.7
-						4.2 7.3	26.0 25.8		8.1 8.1		33.7 33.7		98.7 98.6		6.6 6.6			5.6 6.2			4.4 2.3		
					Bottom	7.3 1.0	25.8 25.9	25.8	8.1	8.1	33.7	33.7	98.7 99.3	98.7	6.6 6.7	6.6	6.6	6.3	6.3	<u> </u>	4.8 4.6	3.6	
					Surface	1.0	25.9	25.9	8.1 8.1	8.1	33.7 33.7	33.7	99.3	99.3	6.7	6.7	6.6	5.5 5.6	5.6		5.3	5.0	
SR2	Sunny	Moderate	07:49	6.1	Middle	3.1 3.1	25.9 25.9	25.9	8.1 8.1	8.1	33.7 33.7	33.7	97.0 97.0	97.0	6.5 6.5	6.5		6.7 6.7	6.7	7.1	4.7 4.3	4.5	4.5
					Bottom	5.1	25.8	25.8	8.1	8.1	33.7	33.7	95.1	95.1	6.4	6.4	6.4	9.0	9.1		3.6	3.9	
					Surface	5.1 1.0	25.8 25.9	25.9	8.1 8.1	8.1	33.7 33.7	33.7	95.1 98.9	98.9	6.4 6.7	6.7		9.1 4.9	5.0	<u> </u>	4.2 4.4	4.6	-
						1.0 4.0	25.9 25.8		8.1 8.1		33.7 33.7		98.8 97.7		6.6 6.6		6.6	5.0 5.4			4.7 4.2		
SR3	Sunny	Moderate	08:01	8.0	Middle	4.0	25.8	25.8	8.1	8.1	33.7	33.7	97.7	97.7	6.6	6.6		5.4	5.4	5.7	3.5	3.9	3.6
					Bottom	7.0 7.0	25.8 25.8	25.8	8.1 8.1	8.1	33.7 33.7	33.7	95.7 95.8	95.8	6.4 6.5	6.5	6.5	6.8 6.8	6.8		2.6 2.1	2.4	
					Surface	1.0	26.0 26.0	26.0	8.1 8.1	8.1	33.4 33.4	33.4	96.9 96.8	96.9	6.5 6.5	6.5		4.2	4.2		2.5 2.1	2.3	
SR4	Sunny	Moderate	08:54	13.6	Middle	6.8	26.0	26.0	8.1	8.1	33.5	33.5	95.7	95.7	6.4	6.4	6.5	4.5	4.5	6.4	2.6	2.7	2.8
					Bottom	6.8 12.6	26.0 26.1	26.1	8.1 8.1	8.1	33.5 33.7	33.7	95.7 96.4	96.4	6.4 6.5	6.5	6.5	4.5 10.7	10.6	ł.	2.7 3.0	3.4	
						12.6 1.0	26.1 26.0		8.1 8.1		33.7 33.4		96.4 95.5		6.5 6.4		0.5	10.5 3.9		—	3.8 3.2		
					Surface	1.0	26.0	26.0	8.1	8.1	33.4	33.4	95.4	95.5	6.4	6.4	6.4	3.9	3.9		2.9	3.1	
SR5	Sunny	Moderate	09:00	9.5	Middle	4.8	26.0 26.0	26.0	8.1 8.1	8.1	33.4 33.4	33.4	95.1 95.1	95.1	6.4 6.4	6.4		4.1 4.1	4.1	4.3	2.4	2.6	2.7
					Bottom	8.5 8.5	26.0 26.0	26.0	8.1 8.1	8.1	33.5 33.5	33.5	94.7 94.7	94.7	6.4 6.4	6.4	6.4	5.0 5.0	5.0		2.3 2.6	2.5	
					Surface	1.0	25.9	25.9	8.1	8.1	33.7	33.7	100.9	100.9	6.8	6.8		5.1	5.1	 	3.0	3.5	
e D c	Sur-	Moderate	00.45	14.0		1.0 7.3	25.9 25.9		8.1 8.1		33.7 33.7		100.9 99.8		6.8 6.7		6.8	5.1 5.7		67	4.0 2.8		
SR6	Sunny	Moderate	08:15	14.6	Middle	7.3 13.6	25.9 25.8	25.9	8.1 8.1	8.1	33.7	33.7	99.8 98.9	99.8	6.7 6.7	6.7		5.8 9.3	5.8	6.7	2.4 2.1	2.6	2.8
					Bottom	13.6	25.8	25.8	8.1	8.1	33.7 33.7	33.7	98.9	98.9	6.7	6.7	6.7	9.2	9.3		2.6	2.4	
					Surface	1.0	25.9 25.9	25.9	8.1 8.1	8.1	33.7 33.7	33.7	100.8 100.9	100.9	6.8 6.8	6.8		5.0 5.0	5.0		5.3 6.0	5.7	
SR7	Sunny	Rough	08:34	21.8	Middle	10.9	25.9	25.9	8.1	8.1	33.7	33.7	100.3	100.3	6.7	6.7	6.8	5.6	5.6	6.4	5.2	4.9	4.8
	-	-			Bottom	10.9 20.8	25.9 25.8	25.8	8.1 8.1	8.1	33.7 33.7	33.7	100.3 99.4	99.4	6.7 6.7	6.7	6.7	5.6 8.4	8.5	1	4.5 4.2	3.9	
					DOTION	20.8	25.8	20.8	8.1	0.1	33.7	33.1	99.4	99.4	6.7	0.7	0.7	8.5	0.0	1	3.6	3.9	

01 November 21 during Mid-Ebb Tide

Water Quality Monitoring Results on 01 N	lovember 21 during Mid-Ebb Tide
--	---------------------------------

valei Qua	ity wornt	offing Rest			UT NOVEITIDET ZT	uuning wild		ue															
Monitoring	Weather	Sea	Sampling	Water			Water Te	emperature (°C)		pН	Salin	ity (ppt)	DO Satu	ration (%)	Dissolved	d Oxygen (mg/L)	Tur	bidity(NTU)	Suspend	led Solids	s (mg/l
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	D
					Surface	1.0	26.0	26.0	8.1	8.1	33.5	33.5	96.6	96.6	6.5	6.5		3.7	3.8		4.2	4.0	
					Sunace	1.0	26.0	20.0	8.1	0.1	33.5	33.5	96.6	30.0	6.5	0.5	6.5	3.8	5.0		3.8	4.0	
SR8	Cloudy	Moderate	08:22	10.3	Middle	5.2	26.0	26.0	8.1	8.1	33.6	33.6	96.3	96.3	6.5	6.5	0.5	4.0	4.0	4.2	3.9	3.9	Ι.
5110	Cibuuy	wouerate	00.22	10.5	Wilddie	5.2	26.0	20.0	8.1	0.1	33.6	55.0	96.3	30.5	6.5	0.5		4.0	4.0	4.2	3.9	3.5	
					Bottom	9.3	26.0	26.0	8.1	8.1	33.6	33.6	95.9	95.9	6.4	6.4	6.4	4.8	4.8		4.5	4.7	
					Doutin	9.3	26.0	20.0	8.1	0.1	33.6	00.0	95.9	00.0	6.4	0.1	0.1	4.8	1.0		4.9		
					Surface	1.0	26.0	26.0	8.1	8.1	33.3	33.3	95.5	95.6	6.4	6.4		3.4	3.4		4.0	3.9	
						1.0	26.0		8.1		33.3		95.6		6.4		6.5	3.3			3.7		_
SR9	Cloudy	Moderate	08:33	9.8	Middle	4.9	26.0	26.0	8.1	8.1	33.4	33.4	96.1	96.1	6.5	6.5		3.4	3.4	3.5	4.1	4.0	
	,					4.9	26.0		8.1		33.4		96.1		6.5			3.4			3.9		_
					Bottom	8.8	26.1	26.1	8.1	8.1	33.5	33.5	96.1	96.1	6.5	6.5	6.5	3.8	3.8		4.6	4.5	
						8.8	26.1		8.1		33.5		96.1		6.5			3.8			4.3		
					Surface	1.0	25.9	25.9	8.1	8.1	33.7 33.7	33.7	100.9	100.9	6.8	6.8		3.2	3.2		2.3	2.2	
						1.0	25.9		8.1				100.9		6.8		6.8	3.2			2.0		
SR10	Sunny	Rough	09:57	6.3	Middle	3.2	25.9	25.9	8.1	8.1	33.7	33.7	100.8	100.8	6.8	6.8		4.4	4.4	4.3	4.2	4.1	
20		ugn	2.5.07	2.0		3.2	25.9	23.0	8.1	2.1	33.7		100.7		6.8	2.0		4.4			4.0		
					Bottom	5.3	25.9	25.9	8.1	8.1	33.7	33.7	100.6	100.6	6.8	6.8	6.8	5.3	5.3		4.3	4.2	
					224011	5.3	25.9	20.0	8.1	2.1	33.7		100.6		6.8	2.0	2.0	5.3	5.0		4.1		

DA: Depth-averaged

Improvement Dredging for Lamma Power Station Navigatin Channel Water Quality Monitoring Water Quality Monitoring Results on 01 November 21 of

later Qual	ity Monit	oring Resu	Its on		01 November 21	during Mid-	-Flood	Tide															
Monitoring	Weather	Sea	Sampling	Water				emperature (°C)		pН	Salin	ity (ppt)	DO Satur	ration (%)	Dissolved	d Oxygen (mg/L)	Tur	bidity(NTU)	Suspen	ded Solids	s (mg/L
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
						1.0	26.2		8.1		33.3		106.9	400.0	7.2	7.0		3.3		<u> </u>	3.5	0.7	
					Surface	1.0	26.2	26.2	8.1	8.1	33.3	33.3	106.9	106.9	7.2	7.2	7.1	3.3	3.3		3.9	3.7	
C1	Sunny	Moderate	16:46	10.7	Middle	5.4	26.0	26.0	8.1	8.1	33.3	33.3	104.2	104.2	7.0	7.0	7.1	3.5	3.5	3.9	4.2	4.1	4.0
01	ounny	moderate	10.40	10.7	middle	5.4	26.0	20.0	8.1	0.1	33.3	00.0	104.1	104.2	7.0	7.0		3.5	0.0	0.0	4.0	7.1	
					Bottom	9.7 9.7	26.0 26.0	26.0	8.1 8.1	8.1	33.4 33.4	33.4	98.4 98.2	98.3	6.6 6.6	6.6	6.6	4.9 4.8	4.9		4.5	4.3	
						9.7	26.0		8.1 8.1		33.4 33.7		98.2		6.6			4.8		<u> </u>	4.0 7.6		+
					Surface	1.0	25.9	25.9	8.1	8.1	33.8	33.7	100.3	100.3	6.7	6.7		5.3	5.3		6.6	7.1	
C2	Sunny	Rough	15:13	11.2	Ministration	5.6	25.9	25.0	8.1	0.4	33.7	00.7	100.0	400.0	6.7	0.7	6.7	5.7	F 7	5.7	7.0	6.6	6.
02	Sunny	Rough	13.13	11.2	Middle	5.6	25.9	25.9	8.1	8.1	33.8	33.7	100.0	100.0	6.7	6.7		5.7	5.7	5.7	6.2	0.0	0.
					Bottom	10.2 10.2	25.9 25.9	25.9	8.1 8.1	8.1	33.7 33.7	33.7	99.7 99.7	99.7	6.7 6.7	6.7	6.7	6.2 6.2	6.2		6.8 6.2	6.5	
						10.2	25.9		8.1		33.7		99.7 100.1		6.7			5.9		——	6.5		-
					Surface	1.0	25.9	25.9	8.1	8.1	33.7	33.7	100.1	100.1	6.7	6.7	6.7	5.9	5.9		7.4	7.0	
C3	Sunny	Rough	15:16	23.1	Middle	11.6	25.9	25.9	8.1	8.1	33.7	33.7	99.6	99.6	6.7	6.7	0.1	6.3	6.3	6.5	6.7	6.4	6.
		, i i i i i i i i i i i i i i i i i i i				11.6 22.1	25.9 25.9		8.1 8.1		33.7 33.8		99.6 99.4		6.7 6.7			6.3 7.3		1	6.1 6.3		-
					Bottom	22.1	25.9	25.9	8.1	8.1	33.8	33.8	99.4	99.4	6.7	6.7	6.7	7.3	7.3		6.3	6.3	
					Surface	1.0	26.2	26.2	8.1	8.1	33.7	33.7	100.2	100.2	6.7	6.7		4.1	4.1		2.5	2.7	1
					Surface	1.0	26.2	20.2	8.1	0.1	33.7	33.7	100.2	100.2	6.7	0.7	6.7	4.1	4.1		2.9	2.1	
SR1	Sunny	Moderate	16:28	8.3	Middle	4.2	26.0	26.0	8.1	8.1	33.7	33.7	99.9	99.9	6.7	6.7	0.7	5.0	5.0	5.2	2.1	2.2	2.
						4.2	26.0 25.9		8.1 8.1		33.7 33.7	-	99.9 99.2		6.7 6.7			5.0		4	2.3 2.3		-
					Bottom	7.3	25.9	25.9	8.1	8.1	33.7	33.7	99.2	99.2	6.7	6.7	6.7	6.4 6.5	6.5		2.3	2.2	
						1.0	26.0		8.1		33.6		100.9		6.8			6.1		<u> </u>	2.6		1
					Surface	1.0	26.0	26.0	8.1	8.1	33.6	33.6	100.7	100.8	6.8	6.8	6.7	6.2	6.2		2.5	2.6	
SR2	Sunny	Moderate	16:20	6.1	Middle	3.1	25.9	25.9	8.1	8.1	33.7	33.7	98.5	98.5	6.6	6.6	0.7	6.7	6.7	7.2	2.2	2.3	2
0112	Gunny	moderate	10.20	0.1	middic	3.1	25.9	20.0	8.1	0.1	33.7	00.7	98.4	50.5	6.6	0.0		6.7	0.7		2.4	2.0	
					Bottom	5.1 5.1	25.8 25.8	25.8	8.1 8.1	8.1	33.7 33.7	33.7	97.3 97.3	97.3	6.5 6.5	6.5	6.5	8.8 8.9	8.9		1.4 2.1	1.8	
						5.1	25.8		8.1		33.7		97.3		6.7			5.3		<u> </u>	2.1		-
					Surface	1.0	25.9	25.9	8.1	8.1	33.7	33.7	100.0	100.0	6.7	6.7		5.4	5.4		3.0	2.7	
SR3	Sunny	Moderate	16:09	8.0	Middle	4.0	25.8	25.8	8.1	8.1	33.7	33.7	99.2	99.2	6.7	6.7	6.7	6.6	6.8	6.9	2.3	2.7	2
5115	Sunny	Moderate	10.05	0.0	Wilddie	4.0	25.8	23.0	8.1	0.1	33.7	55.7	99.1	33.2	6.7	0.7		6.9	0.0	0.5	3.0	2.1	
					Bottom	7.0	25.8	25.8	8.1	8.1	33.7	33.7	99.1	99.1	6.7	6.7	6.7	8.6	8.6		2.9	3.1	
						7.0	25.8 26.3		8.1 8.1		33.8 33.4		99.1 96.9		6.7 6.5			8.5 3.7		┝──	3.3 3.0		_
					Surface	1.0	26.3	26.3	8.1	8.1	33.4	33.4	96.9	96.9	6.5	6.5		3.7	3.7		2.8	2.9	
0.5.4			15.10	40.0		6.8	26.1	00.4	8.1		33.4		94.7		6.4		6.4	4.6			2.5		1
SR4	Sunny	Moderate	15:49	13.6	Middle	6.8	26.1	26.1	8.1	8.1	33.4	33.4	94.6	94.7	6.3	6.4		4.6	4.6	4.6	2.4	2.5	2
					Bottom	12.6	26.1	26.1	8.1	8.1	33.4	33.4	93.7	93.8	6.3	6.3	6.3	5.5	5.5		2.4	2.3	
						12.6	26.1		8.1		33.4		93.8		6.3			5.4		┝──	2.2		_
					Surface	1.0	26.2 26.2	26.2	8.1 8.1	8.1	33.3 33.3	33.3	92.9 92.9	92.9	6.2 6.2	6.2		4.1 4.1	4.1		2.1 1.4	1.8	
						4.8	26.1		8.0		33.3		91.4		6.1		6.2	5.0			1.5		-
SR5	Sunny	Moderate	15:41	9.5	Middle	4.8	26.1	26.1	8.0	8.0	33.3	33.3	91.5	91.5	6.1	6.1		5.1	5.1	5.3	2.1	1.8	1
					Bottom	8.5	26.0	26.0	8.1	8.1	33.4	33.4	92.6	92.6	6.2	6.2	6.2	6.7	6.7		2.3	1.9	1
					Bottom	8.5	26.0	20.0	8.1	0.1	33.4	00.4	92.6	52.0	6.2	0.2	0.2	6.6	0.7	<u> </u>	1.4	1.5	_
					Surface	1.0 1.0	26.0 25.9	26.0	8.1 8.1	8.1	33.8 33.8	33.8	100.3 100.1	100.2	6.7 6.7	6.7		5.5 5.5	5.5		1.9 1.9	1.9	
						7.3	25.9		8.1		33.8		99.6		6.7		6.7	5.9			2.2		-
SR6	Sunny	Moderate	15:55	14.6	Middle	7.3	25.9	25.9	8.1	8.1	33.7	33.7	99.7	99.7	6.7	6.7		5.8	5.9	6.0	2.4	2.3	2
					Pottom	13.6	25.9	25.0	8.1	0.1	33.7	22.7	99.2	00.2	6.7	6.7	67	6.8	6.9	1	2.1	2.2	1
					Bottom	13.6	25.9	25.9	8.1	8.1	33.7	33.7	99.2	99.2	6.7	6.7	6.7	6.7	6.8		2.5	2.3	
					Surface	1.0	25.9	25.9	8.1	8.1	33.7	33.7	100.2	100.2	6.7	6.7		5.3	5.3		2.6	2.8	Τ
						1.0 10.9	25.9		8.1		33.7		100.2		6.7		6.7	5.3		4	3.0		4
SR7	Sunny	Rough	15:31	21.8	Middle	10.9	25.9 25.9	25.9	8.1 8.1	8.1	33.8 33.7	33.7	99.9 99.8	99.9	6.7 6.7	6.7		5.9 5.8	5.9	6.0	2.2	2.0	2.
					_	20.8	25.9	25.9	8.1	8.1	33.7		99.8 99.5	99.5	6.7	6.7		6.7	1	1	1.6	1.9	1
					Bottom							33.7					6.7		6.7				

01 November 21 during Mid-Flood Tide

DA: Depth-averaged

Water Quality Monitoring	Results on	01 November 21	during Mid	-Flood Tide	

	Weather	Sea	Sampling	Water		aanng ina		emperature (°C)	r –	ρΗ	Salin	ity (ppt)	DO Satur	ation (%)	Dissolver	Ovvaen (ma/L)	Tur	bidity(NTU	1)	Suspend	led Solids	e (ma
Monitoring Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average		Average		,,		Average		Average			Average	ŕ		Average	È
					Surface	1.0	26.2	26.2	8.1	8.1	33.3	33.3	107.1	107.1	7.2	7.2		3.3	3.3		3.2	3.0	T
					Ganace	1.0	26.2	20.2	8.1	0.1	33.3	00.0	107.1	107.1	7.2	1.2	7.2	3.3	0.0		2.8	5.0	
SR8	Sunny	Moderate	16:27	10.3	Middle	5.2	26.1	26.1	8.1	8.1	33.4	33.4	106.6	106.6	7.2	7.2		3.6	3.6	3.8	1.8	2.2	
0.10	ounny	modorato	10.21	10.0	middlo	5.2	26.1	20.1	8.1	0.1	33.4	00.1	106.6	100.0	7.2			3.6	0.0	0.0	2.6		
					Bottom	9.3	26.0	26.0	8.1	8.1	33.5	33.5	100.4	100.5	6.7	6.8	6.8	4.5	4.6		2.3	2.1	
						9.3	26.0		8.1		33.5		100.5		6.8			4.6			1.8		_
					Surface	1.0	26.2	26.2	8.1	8.1	33.6	33.6	101.2	101.2	6.8	6.8		3.1	3.1		2.8	2.5	
						1.0	26.2		8.1		33.6		101.1		6.8		6.8	3.1			2.2		_
SR9	Sunny	Moderate	16:14	9.8	Middle	4.9	26.2	26.2	8.1	8.1	33.5	33.5	101.4	101.4	6.8	6.8		3.7 3.7	3.7	3.9	1.6	2.0	
	-					4.9	26.2		8.1		33.5		101.4		6.8			-			2.4		-
					Bottom	8.8	26.1	26.1	8.1	8.1	33.6	33.6	99.9 99.9	99.9	6.7 6.7	6.7	6.7	4.9	4.9		2.1	1.8	
						8.8	26.1		8.1		33.6							4.9			1.4		┿
					Surface	1.0	25.9 25.9	25.9	8.1 8.1	8.1	33.7 33.7	33.7	100.3 100.4	100.4	6.7	6.7		4.5 4.5	4.5		1.4 2.1	1.8	
						3.2	25.9		8.1		33.7		100.4		6.7		6.7	4.5 5.1			3.2		-
SR10	Sunny	Rough	14:46	6.3	Middle	3.2	25.9	25.9	8.1	8.1	33.7	33.7	100.4	100.4	6.8	6.8		5.2	5.2	5.2	2.5	2.9	
						5.3	25.9		8.1		33.7		100.4		6.8			5.8			2.5		-
			1		Bottom	5.3	25.9	25.9	8.1	8.1	33.7	33.7	100.6	100.6	6.8	6.8	6.8	5.8	5.8		3.6	5.7	
						3.3	20.9		0.1		55.7		100.6	1	0.0	1		3.0			5.0		┶

DA: Depth-averaged

Improvement Dredging for Lamma Power Station Navigatin Channel Water Quality Monitoring Water Quality Monitoring Results on 03 November 21 of

Water Qua	lity Monit	oring Resu	ilts on		03 November 21	during Mid	l-Ebb Tie	de															
Monitoring	Weather	Sea	Sampling	Water			Water Te	emperature (°C)		pН	Salin	ity (ppt)	DO Satur	ation (%)	Dissolve	d Oxygen	(mg/L)	Tur	bidity(NTU)	Suspend	ded Solids	s (mg/L) د
Station	Condition	Condition	Time	Depth (m)	Sampling De	pth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
					Surface	1.0	25.4	25.4	8.1	8.1	32.3	32.3	85.7	85.7	5.9	5.9		6.1	6.1		3.0	3.3	
						1.0	25.4		8.1		32.3		85.6		5.9 5.8		5.9	6.1 5.9			3.6		-
C1	Cloudy	Moderate	09:29	10.7	Middle	5.4	25.4 25.4	25.4	8.1 8.1	8.1	32.3 32.3	32.3	85.4 85.4	85.4	5.8	5.8		5.9	5.9	5.9	3.2 3.6	3.4	3.1
					Bottom	9.7 9.7	25.4 25.4	25.4	8.1 8.1	8.1	32.3 32.3	32.3	85.3 85.3	85.3	5.8 5.8	5.8	5.8	5.7 5.6	5.7		3.0 2.4	2.7	1
					Surface	1.0	25.1	25.1	8.2	8.2	32.6	32.6	95.5	95.5	6.6	6.6		6.1	6.1		2.9	2.9	
C2	Cloudy	Daviah	10:56	11.2	Middle	1.0 5.6	25.1 25.1	25.1	8.2 8.2	8.2	32.6 32.6	32.6	95.5 95.0	95.0	6.6 6.5	6.5	6.6	6.0 5.9	5.9	5.4	2.9 3.5	3.3	3.2
62	Cloudy	Rough	10.56	11.2		5.6 10.2	25.1 25.1		8.2 8.2		32.6 32.6		95.0 94.2		6.5 6.5			5.9 4.2		0.4	3.0 3.6		3.2
					Bottom	10.2 1.0	25.1 25.1	25.1	8.2	8.2	32.6	32.6	94.2 95.2	94.2	6.5 6.5	6.5	6.5	4.4 6.0	4.3		3.3 2.4	3.5	-
					Surface	1.0	25.1	25.1	8.2 8.2	8.2	32.6 32.6	32.6	95.2	95.2	6.5	6.5	6.5	5.9	6.0		2.9	2.7	
C3	Cloudy	Rough	10:31	23.1	Middle	11.6 11.6	25.1 25.1	25.1	8.2 8.2	8.2	32.6 32.6	32.6	94.3 94.3	94.3	6.5 6.5	6.5	0.0	5.1 5.0	5.1	4.3	2.5	2.7	2.9
					Bottom	22.1 22.1	25.1 25.1	25.1	8.2 8.2	8.2	32.6 32.6	32.6	93.5 93.5	93.5	6.4 6.4	6.4	6.4	2.0 1.9	2.0		2.8 3.8	3.3	1
			[Surface	1.0	25.1	25.1	8.2 8.2	8.2	32.6 32.6	32.6	94.1	94.1	6.5 6.5	6.5		5.7	5.7		1.8	2.2	1
SR1	Cloudy	Moderate	09:23	8.3	Middle	4.2	25.1 25.1	25.1	8.2	8.2	32.6	32.6	94.1 93.6	93.6	6.4	6.4	6.5	5.7 5.4	5.4	5.7	2.7	3.0	2.9
						4.2 7.3	25.1 25.1	25.1	8.2 8.2	8.2	32.6 32.6	32.6	93.6 93.5	93.5	6.4 6.4	6.4	6.4	5.3 6.0	6.0		3.3 4.0	3.6	
					Bottom	7.3 1.0	25.1 25.2		8.2 8.2		32.6 32.6		93.4 93.6		6.4 6.4		0.4	6.0 4.4			3.1 4.3		
					Surface	1.0	25.2	25.2	8.2	8.2	32.6	32.6	93.6	93.6	6.4	6.4	6.4	4.4	4.4		3.6	4.0	_
SR2	Cloudy	Moderate	09:31	6.1	Middle	3.1 3.1	25.2 25.2	25.2	8.2 8.2	8.2	32.6 32.6	32.6	93.3 93.3	93.3	6.4 6.4	6.4		4.3 4.3	4.3	4.4	3.6 3.0	3.3	3.5
					Bottom	5.1 5.1	25.2 25.2	25.2	8.2 8.2	8.2	32.6 32.6	32.6	93.4 93.3	93.4	6.4 6.4	6.4	6.4	4.5 4.5	4.5		3.4	3.1	
					Surface	1.0	25.1 25.1	25.1	8.2 8.2	8.2	32.6 32.6	32.6	93.9 93.9	93.9	6.4 6.4	6.4		6.0 5.9	6.0		4.0 3.6	3.8	1
SR3	Cloudy	Moderate	09:43	8.0	Middle	4.0	25.1	25.1	8.2	8.2	32.6	32.6	93.7	93.7	6.4	6.4	6.4	5.8	5.9	5.9	3.8	3.7	3.2
					Bottom	4.0 7.0	25.1 25.1	25.1	8.2 8.2	8.2	32.6 32.6	32.6	93.7 93.5	93.5	6.4 6.4	6.4	6.4	5.9 5.8	5.8		3.5 2.0	2.2	•
						7.0	25.1 25.4		8.2 8.2		32.6 32.6		93.5 94.6		6.4 6.5		0.4	5.8 6.1			2.4 3.8		—
					Surface	1.0 6.8	25.4 25.3	25.4	8.2	8.2	32.6	32.6	94.6 92.5	94.6	6.5 6.3	6.5	6.4	6.1 3.5	6.1		4.2 3.8	4.0	-
SR4	Cloudy	Moderate	10:19	13.6	Middle	6.8	25.3	25.3	8.2 8.2	8.2	32.6 32.6	32.6	92.5	92.5	6.3	6.3		3.5	3.5	4.0	4.0	3.9	3.5
					Bottom	12.6 12.6	25.3 25.3	25.3	8.2 8.2	8.2	32.6 32.6	32.6	92.4 92.4	92.4	6.3 6.3	6.3	6.3	2.3	2.3		2.5 2.5	2.5	
					Surface	1.0	25.4 25.4	25.4	8.2 8.2	8.2	32.6 32.6	32.6	94.6 94.6	94.6	6.5 6.4	6.5		5.9 5.9	5.9		2.7 2.9	2.8	
SR5	Cloudy	Moderate	10:27	9.5	Middle	4.8	25.4	25.4	8.2 8.2	8.2	32.6	32.6	94.1	94.1	6.4	6.4	6.4	5.6	5.6	5.0	3.0	2.9	3.0
					Bottom	4.8 8.5	25.4 25.2	25.2	8.2	8.2	32.6 32.6	32.6	94.0 92.3	92.3	6.4 6.3	6.3	6.3	5.6 3.6	3.6		2.7 3.0	3.2	•
						8.5 1.0	25.2 25.1		8.2 8.2		32.6 32.6		92.3 95.1		6.3 6.5			3.6 6.0			3.4 2.6		—
					Surface	1.0 7.3	25.1 25.1	25.1	8.2 8.2	8.2	32.6 32.6	32.6	95.1 94.1	95.1	6.5 6.5	6.5	6.5	6.0 5.7	6.0		3.0 2.5	2.8	-
SR6	Cloudy	Moderate	09:52	14.6	Middle	7.3	25.1	25.1	8.2	8.2	32.6	32.6	94.1	94.1	6.5	6.5		5.6	5.7	4.8	3.3	2.9	2.9
					Bottom	13.6 13.6	25.1 25.1	25.1	8.2 8.2	8.2	32.6 32.6	32.6	93.2 93.2	93.2	6.4 6.4	6.4	6.4	2.8 2.6	2.7		2.8 3.3	3.1	
					Surface	1.0	25.1 25.1	25.1	8.2 8.2	8.2	32.5 32.5	32.5	95.2 95.2	95.2	6.5 6.5	6.5	0.5	5.9 5.9	5.9		4.1 4.0	4.1	
SR7	Cloudy	Rough	10:12	21.8	Middle	10.9	25.1 25.1	25.1	8.2 8.2	8.2	32.6 32.6	32.6	93.6 93.7	93.7	6.4 6.4	6.4	6.5	3.3 3.2	3.3	4.4	3.8	3.7	3.7
					Bottom	20.8	25.1	25.1	8.2	8.2	32.6	32.6	93.5	93.5	6.4	6.4	6.4	3.9	3.9		3.4	3.5	1
					250011	20.8	25.1	20.1	8.2	5.2	32.6	52.0	93.4	55.5	6.4	5.7	5.4	3.9	0.0		3.6	0.0	1

03 November 21 during Mid-Ebb Tide

	o Tide	during M	03 November 21	y Monitoring Results on	Water Quality Monitorin	
--	--------	----------	----------------	-------------------------	-------------------------	--

Mater Qua		oning Rest			US NOVERIDER 21	uuning Miu-		76															
Monitoring	Weather	Sea	Sampling	Water			Water Te	mperature (°C)		pН	Salin	ity (ppt)	DO Satu	ation (%)	Dissolved	d Oxygen (mg/L)	Tur	bidity(NTU)	Suspend	led Solids	mg/L'
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
					Surface	1.0	25.3	25.3	8.2	8.2	32.6	32.6	93.0	93.0	6.4	6.4		6.1	6.1		2.9	3.2	
					Surface	1.0	25.3	20.5	8.2	0.2	32.6	32.0	93.0	93.0	6.4	0.4	6.4	6.1	0.1	1 1	3.4	3.2	
SR8	Cloudy	Moderate	09:48	10.3	Middle	5.2	25.3	25.3	8.2	8.2	32.5	32.5	92.4	92.4	6.3	6.3	0.4	6.0	6.0	5.8	3.0	3.2	3.
3110	Cloudy	wouerate	03.40	10.5	Wilddie	5.2	25.3	23.5	8.2	0.2	32.5	32.5	92.4	52.4	6.3	0.5		6.0	0.0	5.0	3.4	3.2	5.
					Bottom	9.3	25.3	25.3	8.2	8.2	32.5	32.5	91.9	91.9	6.3	6.3	6.3	5.3	5.3	1 '	3.2	3.6	
					Bollom	9.3	25.3	20.0	8.2	0.2	32.5	02.0	91.8	01.0	6.3	0.0	0.0	5.3	0.0		4.0	0.0	
					Surface	1.0	25.2	25.2	8.2	8.2	32.3	32.3	91.9	91.9	6.3	6.3		7.3	7.3	1 1	2.9	3.2	
						1.0	25.2	-	8.2		32.3		91.9		6.3		6.4	7.3		1 '	3.4		_
SR9	Cloudy	Moderate	09:59	9.8	Middle	4.9	25.4	25.4	8.2	8.2	32.5	32.5	95.1	95.2	6.5	6.5		6.9	6.9	7.0	3.2	3.0	2
						4.9	25.4		8.2		32.5		95.3		6.5			6.9			2.8		
					Bottom	8.8	25.3	25.3	8.2	8.2	32.6	32.6	92.3	92.3	6.3	6.3	6.3	6.8	6.8	1 1	2.4	2.3	
						8.8	25.3		8.2		32.6		92.2		6.3			6.8		<u> </u>	2.1		_
					Surface	1.0	25.1	25.1	8.2	8.2	32.6	32.6	95.6	95.6	6.6	6.6		6.1	6.1	1 '	3.0	3.5	
						1.0	25.1		8.2		32.6		95.6		6.6		6.6	6.1		1 '	3.9		-
SR10	Cloudy	Rough	11:23	6.3	Middle	3.2	25.1	25.1	8.2	8.2	32.6	32.6	95.3	95.3	6.5	6.5		6.0	6.0	6.0	3.2	3.5	3
						3.2	25.1		8.2		32.6		95.3		6.5			6.0		4 '	3.8		-
					Bottom	5.3	25.1	25.1	8.2	8.2	32.6	32.6	95.0	95.0	6.5	6.5	6.5	5.9 6.0	6.0	1 '	2.5	2.6	
						5.3	25.1		8.2		32.6		95.0		6.5			6.0		1	2.7		

DA: Depth-averaged

Improvement Dredging for Lamma Power Station Navigatin Channel Water Quality Monitoring Water Quality Monitoring Results on 03 November 21 of

Nater Quali	ity Monit	oring Resu	ilts on		03 November 21	during Mid-	-Flood	Гide															
Monitoring	Weather	Sea	Sampling	Water				emperature (°C)		pН	Salin	ity (ppt)	DO Satur	ration (%)	Dissolved	d Oxygen (mg/L)	Tur	bidity(NTU)	Suspen	ded Solids	(mg/L)
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
						1.0	25.4	05.4	8.2		32.3		110.5	440.5	7.5	7.5		7.1			3.5		
					Surface	1.0	25.4	25.4	8.2	8.2	32.3	32.3	110.4	110.5	7.5	7.5	7.4	7.1	7.1		3.6	3.6	j
C1	Cloudy	Moderate	17:51	10.7	Middle	5.4	25.4	25.4	8.2	8.2	32.3	32.3	106.3	106.3	7.3	7.3	1.4	7.1	7.1	6.6	3.5	3.4	3.2
	,					5.4 9.7	25.4 25.3	-	8.2 8.2		32.3		106.3 92.3		7.3 6.3			7.0 5.6			3.2 3.0	-	
					Bottom	9.7	25.3	25.3	8.2	8.2	32.5 32.5	32.5	92.3	92.4	6.3	6.3	6.3	5.8	5.7		2.3	2.7	1
					Surface	1.0	25.1	25.1	8.2	8.2	32.6	32.6	95.5	95.5	6.6	6.6		6.1	6.1		2.6	2.6	
					Sunace	1.0	25.1	20.1	8.2	0.2	32.6	32.0	95.5	95.5	6.6	0.0	6.6	6.0	0.1		2.5	2.0	1
C2	Cloudy	Rough	16:12	11.2	Middle	5.6 5.6	25.1 25.1	25.1	8.2 8.2	8.2	32.6 32.6	32.6	95.0 95.0	95.0	6.5 6.5	6.5		5.8 5.8	5.8	5.7	3.1 2.7	2.9	2.8
						10.2	25.1		8.2		32.6		95.0		6.5			5.3			2.7		ł
					Bottom	10.2	25.1	25.1	8.2	8.2	32.6	32.6	94.3	94.3	6.5	6.5	6.5	5.2	5.3		3.1	3.0	
					Surface	1.0	25.1 25.1	25.1	8.2 8.2	8.2	32.6 32.6	32.6	95.2 95.2	95.2	6.5 6.5	6.5		5.9 5.9	5.9		2.6	3.0	
					Mai at atta	11.6	25.1	05.4	8.2		32.6	20.0	95.2	04.0	6.5	0.5	6.5	5.7	5.7		3.4	2.4	1
C3	Cloudy	Rough	16:06	23.1	Middle	11.6	25.1	25.1	8.2	8.2	32.6	32.6	94.9	94.9	6.5	6.5		5.7	5.7	5.7	3.5	3.4	3.2
					Bottom	22.1 22.1	25.1 25.1	25.1	8.2 8.2	8.2	32.6 32.6	32.6	94.4 94.5	94.5	6.5 6.5	6.5	6.5	5.6 5.6	5.6		3.6 3.0	3.3	
						1.0	25.1		8.2		32.6		94.5 93.7		6.4			3.7			3.0		
					Surface	1.0	25.3	25.3	8.2	8.2	32.6	32.6	93.7	93.7	6.4	6.4		3.7	3.7		3.4	3.2	
SR1	Cloudy	Moderate	17:14	8.3	Middle	4.2	25.2	25.2	8.2	8.2	32.6	32.6	93.7	93.7	6.4	6.4	6.4	4.2	4.2	4.1	2.7	3.1	3.0
ORT	Cloudy	Moderate	17.14	0.0	Middle	4.2	25.2	20.2	8.2	0.2	32.6	02.0	93.7	50.1	6.4	0.4		4.2	7.2	7.1	3.4	0.1	0.0
					Bottom	7.3	25.2 25.2	25.2	8.2 8.2	8.2	32.6 32.6	32.6	94.0 94.0	94.0	6.4 6.4	6.4	6.4	4.2	4.3		2.9 2.8	2.9	
						1.0	25.3		8.2		32.6		95.5		6.5			4.4			3.3		
					Surface	1.0	25.3	25.3	8.2	8.2	32.6	32.6	95.4	95.5	6.5	6.5	6.5	4.2	4.2		2.5	2.9	
SR2	Cloudy	Moderate	17:02	6.1	Middle	3.1	25.3	25.3	8.2	8.2	32.6	32.6	95.0	95.1	6.5	6.5	0.0	4.1	4.1	3.7	2.9	2.8	2.7
	,					3.1	25.3		8.2		32.6		95.1		6.5			4.1			2.6		
					Bottom	5.1 5.1	25.2 25.2	25.2	8.2 8.2	8.2	32.6 32.6	32.6	93.8 93.8	93.8	6.4 6.4	6.4	6.4	3.0 2.8	2.9		2.5 2.6	2.6	1
						1.0	25.2	05.0	8.2		32.6		95.3	05.0	6.5			6.2			3.7	4.0	-
					Surface	1.0	25.2	25.2	8.2	8.2	32.6	32.6	95.3	95.3	6.5	6.5	6.5	6.2	6.2		4.7	4.2	
SR3	Cloudy	Moderate	16:52	8.0	Middle	4.0	25.1	25.1	8.2	8.2	32.6	32.6	95.0	95.0	6.5	6.5	0.0	6.4	6.4	6.1	3.8	3.5	3.7
	-					4.0 7.0	25.1 25.1		8.2 8.2		32.6 32.6		95.0 93.9		6.5 6.4			6.4 5.5			3.2 3.0		1
					Bottom	7.0	25.1	25.1	8.2	8.2	32.6	32.6	93.9	93.9	6.4	6.4	6.4	5.6	5.6		3.8	3.4	1
					Surface	1.0	25.6	25.6	8.2	8.2	32.4	32.4	101.3	101.3	6.9	6.9		6.5	6.6		3.2	3.4	
					Suilace	1.0	25.6	20.0	8.2	0.2	32.4	32.4	101.2	101.5	6.9	0.3	6.7	6.6	0.0		3.5	3.4	1
SR4	Cloudy	Moderate	16:49	13.6	Middle	6.8 6.8	25.5 25.5	25.5	8.2 8.2	8.2	32.4 32.4	32.4	96.2 95.8	96.0	6.6 6.5	6.6		6.3 6.3	6.3	4.3	2.7 3.2	3.0	3.0
						12.6	25.3		8.2		32.4		93.3		6.4			0.3			2.5		1
					Bottom	12.6	25.3	25.3	8.2	8.2	32.5	32.5	93.4	93.4	6.4	6.4	6.4	0.1	0.1		2.6	2.6	
					Surface	1.0	25.6	25.6	8.2	8.2	32.4	32.4	101.1	101.1	6.9	6.9		6.6	6.6		3.5	3.4	
						1.0 4.8	25.6 25.4		8.2 8.2		32.4 32.4		101.0 99.2		6.9 6.8		6.9	6.6 6.4			3.3 3.4		1
SR5	Cloudy	Moderate	16:41	9.5	Middle	4.8	25.4 25.4	25.4	8.2	8.2	32.4 32.4	32.4	99.2 99.3	99.3	6.8 6.8	6.8		6.4	6.4	5.5	3.4 2.9	3.2	3.2
					Bo#	8.5	25.3	25.0	8.2	• •	32.5	20.5	93.2	02.2	6.4	6.4	6.4	3.5	25	1	2.8	2.0	1
					Bottom	8.5	25.3	25.3	8.2	8.2	32.5	32.5	93.3	93.3	6.4	6.4	6.4	3.4	3.5		3.2	3.0	1
					Surface	1.0	25.1	25.1	8.2	8.2	32.6	32.6	95.3	95.3	6.5	6.5		6.1	6.1		5.8	5.8	1
						1.0 7.3	25.1 25.1		8.2 8.2		32.6 32.6		95.3 94.5		6.5 6.5		6.5	6.1 5.8			5.7 5.5		1
SR6	Cloudy	Moderate	16:43	14.6	Middle	7.3	25.1	25.1	8.2	8.2	32.6	32.6	94.6	94.6	6.5	6.5		5.6	5.7	5.4	4.8	5.2	5.3
					Bottom	13.6	25.1	25.1	8.2	8.2	32.6	32.6	93.8	93.8	6.4	6.4	6.4	4.6	4.5	1	4.8	4.9	1
					Bollom	13.6	25.1	20.1	8.2	0.2	32.6	52.0	93.8	55.0	6.4	0.4	0.4	4.4	т. Ј	<u> </u>	5.0	7.5	<u> </u>
					Surface	1.0	25.1 25.1	25.1	8.2 8.2	8.2	32.6 32.6	32.6	95.3 95.3	95.3	6.5 6.5	6.5		6.0 6.0	6.0		3.8 4.0	3.9	1
						1.0	25.1		8.2		32.6 32.6		95.3 95.0	ł	6.5 6.5	ł	6.5	6.0 5.9	<u> </u>	1	4.0	ł	1
SR7	Cloudy	Rough	16:23	21.8	Middle	10.9	25.1	25.1	8.2	8.2	32.6	32.6	94.9	95.0	6.5	6.5		5.9	5.9	5.8	3.2	3.4	3.5
					Bottom	20.8	25.1	25.1	8.2	8.2	32.6	32.6	94.1	94.1	6.5	6.5	6.5	5.4	5.4	1	3.0	3.2	1
					Bottom	20.8	25.1	20.1	8.2	0.2	32.6	02.0	94.1		6.5	0.0	0.0	5.4	0.1		3.4	5.2	1

03 November 21 during Mid-Flood Tide

DA: Depth-averaged

Water Quality Monitorin	g Results on	03 November 21	during Mid	-Flood Tide	

Tatel Gau	nty monit	oning Rest			03 NOVEITIBET 21	uuring miu-	11000	inde															
Monitoring	Weather	Sea	Sampling	Water			Water Te	emperature (°C)		pН	Salin	iity (ppt)	DO Satur	ation (%)	Dissolved	l Oxygen (mg/L)	Tur	bidity(NTU)	Suspend	ded Solids	(mg/L)
Station	Condition	Condition	Time	Depth (m)	Sampling Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
					Surface	1.0	25.4	25.4	8.2	8.2	32.3	32.3	108.9	108.9	7.4	7.4		7.2	7.2		5.0	4.9	
					Sunace	1.0	25.4	20.4	8.2	0.2	32.3	52.5	108.8	100.5	7.4	7.4	7.2	7.1	1.2		4.7	4.5	1
SR8	Cloudy	Moderate	17:23	10.3	Middle	5.2	25.4	25.4	8.2	8.2	32.4	32.4	102.2	102.2	7.0	7.0	1.2	7.0	7.0	6.3	4.0	3.8	4.0
3110	Cloudy	wooerate	17.25	10.5	Widdle	5.2	25.4	23.4	8.2	0.2	32.4	32.4	102.1	102.2	7.0	7.0		7.0	7.0	0.5	3.5	5.0	4.0
					Bottom	9.3	25.4	25.4	8.2	8.2	32.5	32.5	90.1	90.2	6.2	6.2	6.2	4.9	4.8		3.0	3.3	
					Dottom	9.3	25.4	20.4	8.2	0.2	32.5	02.0	90.3	50.2	6.2	0.2	0.2	4.6	4.0		3.6	0.0	
					Surface	1.0	25.4	25.4	8.2	8.2	32.3	32.3	108.8	108.8	7.4	7.4		7.1	7.1		4.1	3.6	
					Cundoo	1.0	25.4	20.1	8.2	0.2	32.3	02.0	108.8	100.0	7.4		7.4	7.1			3.1	0.0	
SR9	Cloudy	Moderate	17:13	9.8	Middle	4.9	25.4	25.4	8.2	8.2	32.3	32.3	106.5	106.4	7.3	7.3		7.0	7.1	6.9	3.4	3.1	3.2
	,					4.9	25.4		8.2		32.3		106.3		7.3			7.1			2.8		
					Bottom	8.8	25.3	25.3	8.2	8.2	32.4	32.4	99.1	99.2	6.8	6.8	6.8	6.6	6.6		3.0	2.9	1
						8.8	25.3		8.2		32.4		99.2		6.8			6.6			2.7		
					Surface	1.0	25.1	25.1	8.2	8.2	32.6	32.6	95.5	95.5	6.6	6.6		6.1	6.1		4.5	4.4	
						1.0	25.1	-	8.2		32.6		95.5		6.6		6.6	6.1			4.2		1
SR10	Cloudy	Rough	15:48	6.3	Middle	3.2	25.1	25.1	8.2	8.2	32.6	32.6	95.5	95.5	6.6	6.6		6.0	6.0	6.1	3.2	3.7	3.8
	,					3.2	25.1		8.2		32.6		95.5		6.6			6.0			4.2		
					Bottom	5.3	25.1	25.1	8.2	8.2	32.6	32.6	95.3	95.3	6.5	6.5	6.5	6.1	6.1		3.3	3.5	1
						5.3	25.1		8.2		32.6		95.3		6.5			6.1			3.6		1

DA: Depth-averaged

Improvement Dredging for Lamma Power Station Navigatin Channel Water Quality Monitoring Water Quality Monitoring Results on 05 November 21 of

Water Qua	lity Monit	oring Resu	ilts on		05 November 21	during Mid	-Ebb Tio	le															
Monitoring	Weather	Sea	Sampling	Water			Water Te	mperature (°C)		pН	Salin	ity (ppt)	DO Satur	ration (%)	Dissolve	d Oxygen (mg/L)	Tur	bidity(NTU)	Suspen	ded Solids	(mg/L) s
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
					Surface	1.0	25.3	25.3	8.0	8.0	32.0	32.0	84.3	84.4	5.8	5.8		3.1	3.1		4.7	4.9	1
					Guilade	1.0	25.3	20.0	8.0	0.0	32.0	02.0	84.5	04.4	5.8	0.0	5.9	3.1	0.1		5.1	4.5	_
C1	Fine	Moderate	11:03	11.2	Middle	5.6 5.6	25.4 25.4	25.4	8.0 8.0	8.0	32.0 32.0	32.0	86.1 86.4	86.3	5.9 5.9	5.9		4.1 4.2	4.2	4.2	4.0	4.2	4.3
					Bottom	10.2 10.2	25.4 25.4	25.4	8.0 8.0	8.0	32.0 32.0	32.0	87.4 88.0	87.7	6.0 6.0	6.0	6.0	5.2	5.2		3.7	3.8	
					Surface	1.0	25.1 25.1	25.1	8.2 8.2	8.2	32.5 32.5	32.5	96.6 96.6	96.6	6.6 6.6	6.6		3.6 3.6	3.6		5.2 5.0	5.1	
C2	Fine	Moderate	12:29	10.6	Middle	5.3	25.1	25.1	8.2	8.2	32.5	32.5	96.6	96.6	6.6	6.6	6.6	4.5	4.5	4.4	4.4	4.6	4.6
					Bottom	5.3 9.6	25.1 25.1	25.1	8.2 8.2	8.2	32.5 32.5	32.5	96.6 96.6	96.7	6.6 6.6	6.6	6.6	4.5 5.2	5.2		4.7 4.4	4.2	•
					Surface	9.6 1.0	25.1 25.1	25.1	8.2 8.2	8.2	32.5 32.5	32.5	96.7 96.6	96.7	6.6 6.6	6.6		5.2 3.7	3.7		4.0 3.8	4.0	
00	Fine	Madaata	12:04	23.0		1.0 11.5	25.1 25.1	25.1	8.2 8.2	8.2	32.5 32.5	32.5	96.7 96.8	96.9	6.6 6.6	6.7	6.6	3.7 4.8		4.8	4.2	4.0	4.8
C3	Fine	Moderate	12:04	23.0	Middle	11.5 22.0	25.1 25.1		8.2 8.2		32.5 32.5		96.9 97.0		6.7 6.7			4.8 5.9	4.8	4.8	4.9 5.4		4.8
					Bottom	22.0	25.1	25.1	8.2	8.2	32.5 32.4	32.5	97.1 96.6	97.1	6.7 6.6	6.7	6.7	5.9 5.9	5.9		5.8	5.6	<u> </u>
					Surface	1.0	25.2	25.2	8.2	8.2	32.4	32.4	96.7	96.7	6.6	6.6	6.7	5.9	5.9		4.5	4.3	
SR1	Fine	Moderate	11:01	8.2	Middle	4.1 4.1	25.2 25.2	25.2	8.2 8.2	8.2	32.4 32.4	32.4	97.1 97.2	97.2	6.7 6.7	6.7		6.4 6.4	6.4	6.5	5.5 5.8	5.7	6.2
					Bottom	7.2	25.2 25.2	25.2	8.2 8.2	8.2	32.4 32.4	32.4	97.7 97.8	97.8	6.7 6.7	6.7	6.7	7.1 7.1	7.1		8.4 8.6	8.5	
					Surface	1.0	25.2 25.2	25.2	8.2 8.2	8.2	32.4 32.4	32.4	96.9 96.9	96.9	6.6 6.6	6.6		4.5 4.5	4.5		5.7 5.5	5.6	
SR2	Fine	Moderate	11:10	6.4	Middle	3.2 3.2	25.2 25.2	25.2	8.2 8.2	8.2	32.4 32.4	32.4	97.1 97.1	97.1	6.7 6.7	6.7	6.7	5.7 5.7	5.7	5.6	6.3 5.9	6.1	6.2
					Bottom	5.4 5.4	25.2	25.2	8.2 8.2	8.2	32.4 32.4	32.4	97.2 97.2	97.2	6.7 6.7	6.7	6.7	6.6	6.6		6.7 6.9	6.8	
					Surface	1.0	25.2	25.2	8.2	8.2	32.4	32.4	96.6	96.6	6.6	6.6		6.6 8.0	8.0		6.2	6.1	
SR3	Fine	Moderate	11:19	7.8	Middle	1.0 3.9	25.2 25.2	25.2	8.2 8.2	8.2	32.4 32.4	32.4	96.6 96.9	97.0	6.6 6.6	6.7	6.6	8.0 8.8	8.8	8.7	5.9 6.6	6.4	6.5
0.1to	1 1110	modorato		1.0		3.9 6.8	25.2 25.2		8.2 8.2		32.4 32.4		97.0 97.3		6.7 6.7		0.7	8.8 9.2	9.3	0.7	6.1 7.0		•
					Bottom	6.8 1.0	25.2 25.3	25.2	8.2 8.1	8.2	32.4 32.3	32.4	97.4 88.9	97.4	6.7 6.1	6.7	6.7	9.3 4.3			7.4 7.0	7.2	
					Surface	1.0	25.3	25.3	8.1	8.1	32.3	32.3	89.0	89.0	6.1	6.1	6.1	4.3	4.3		6.9	7.0	
SR4	Fine	Moderate	11:56	12.8	Middle	6.4 6.4	25.3 25.3	25.3	8.1 8.1	8.1	32.3 32.3	32.3	89.0 89.1	89.1	6.1 6.1	6.1		5.3 5.2	5.3	5.3	6.0 6.3	6.2	5.9
					Bottom	11.8 11.8	25.3 25.3	25.3	8.1 8.1	8.1	32.3 32.3	32.3	89.1 89.1	89.1	6.1 6.1	6.1	6.1	6.2 6.2	6.2		4.8 4.4	4.6	
					Surface	1.0 1.0	25.2 25.2	25.2	8.2 8.2	8.2	32.4 32.4	32.4	98.1 98.1	98.1	6.7 6.7	6.7		3.4 3.4	3.4		3.9 4.2	4.1	
SR5	Fine	Moderate	12:06	9.8	Middle	4.9	25.2 25.2	25.2	8.2 8.2	8.2	32.4 32.4	32.4	98.2 98.2	98.2	6.7 6.7	6.7	6.7	4.4	4.4	4.6	4.4	4.5	4.5
					Bottom	8.8	25.2	25.2	8.2 8.2	8.2	32.4 32.4	32.4	98.5 98.7	98.6	6.8 6.8	6.8	6.8	6.0 6.0	6.0		4.7	4.9	
					Surface	1.0	25.2	25.2	8.2 8.2 8.2	8.2	32.4	32.4	99.5	99.6	6.8	6.8		5.3	5.3		3.7	3.6	
SR6	Fine	Moderate	11:29	12.6	Middle	1.0 6.3	25.2 25.0	25.0	8.2	8.2	32.4 32.5	32.5	99.7 100.5	100.7	6.8 6.9	6.9	6.9	5.3 6.7	6.7	6.6	3.5 4.1	4.2	4.2
					Bottom	6.3 11.6	25.0 24.9	24.9	8.2 8.2	8.2	32.5 32.6	32.6	100.9 102.2	102.7	6.9 7.0	7.1	7.1	6.7 7.8	7.8		4.3 4.8	4.7	1
					Surface	11.6 1.0	24.8 25.1	24.5	8.2 8.2	8.2	32.6 32.5	32.5	103.1 98.2	98.3	7.1 6.7	6.8	7.1	7.8 4.6	4.6		4.5 4.6	4.4	<u> </u>
0.07	E.e.	Madaat	44.40	22.2		1.0 11.1	25.1 24.9		8.2 8.2		32.5 32.6		98.4 100.3		6.8 6.9		6.8	4.6 5.6			4.2 3.9		
SR7	Fine	Moderate	11:48	22.2	Middle	11.1 21.2	24.8 24.6	24.9	8.2 8.2	8.2	32.6 32.8	32.6	100.6 101.6	100.5	6.9 7.0	6.9		5.6	5.6	5.5	4.1	4.0	3.9
					Bottom	21.2	24.6	24.6	8.2	8.2	32.8	32.8	101.8	101.7	7.0	7.0	7.0	6.2	6.2		3.3	3.4	

05 November 21 during Mid-Ebb Tide

		Water Quality Monitorin	g Results on	05 November 21	during Mid-Ebb Tide
--	--	-------------------------	--------------	----------------	---------------------

Tatel Gau		oning itest			03 NOVEITIBET 21	aaning inia		40															
Monitoring	Weather	Sea	Sampling	Water			Water Te	emperature (°C)		pН	Salin	ity (ppt)	DO Satur	ation (%)	Dissolved	l Oxygen (mg/L)	Tur	bidity(NTU	I)	Suspend	ded Solids	s (mg/L
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	D
					Surface	1.0	25.3	25.3	8.1	8.1	32.2	32.2	90.3	90.4	6.2	6.2		3.1	3.1		4.3	4.5	
					Sunace	1.0	25.3	20.0	8.1	0.1	32.2	52.2	90.5	50.4	6.2	0.2	6.3	3.0	3.1		4.7	4.5	
SR8	Fine	Moderate	11:26	10.6	Middle	5.3	25.3	25.3	8.1	8.1	32.2	32.2	91.7	91.8	6.3	6.3	0.5	4.3	4.3	4.1	5.2	5.4	5
5110	1 me	Moderate	11.20	10.0	Wildule	5.3	25.3	20.5	8.1	0.1	32.2	52.2	91.9	51.0	6.3	0.5		4.3	4.5	4.1	5.5	3.4	
					Bottom	9.6	25.3	25.3	8.1	8.1	32.2	32.2	92.8	93.1	6.4	6.4	6.4	5.0	5.0		6.8	7.0	
					Dottom	9.6	25.3	20.0	8.1	0.1	32.2	02.2	93.3	55.1	6.4	0.4	0.4	5.0	0.0		7.2	1.0	
					Surface	1.0	25.3	25.3	8.1	8.1	32.2	32.2	89.7	89.7	6.1	6.1		8.0	8.0		3.7	3.9	
					Gundoo	1.0	25.3	20.0	8.1	0.1	32.2	02.2	89.7	00.1	6.1	0.1	6.1	8.0	0.0		4.0	0.0	
SR9	Fine	Moderate	11:38	10.4	Middle	5.2	25.3	25.3	8.1	8.1	32.2	32.2	89.7	89.7	6.1	6.1	0.1	8.3	8.3	8.5	4.7	4.9	4
						5.2	25.3		8.1		32.2		89.7		6.1			8.2			5.0		
					Bottom	9.4	25.3	25.3	8.1	8.1	32.2	32.1	89.6	89.6	6.1	6.1	6.1	9.1	9.1		7.6	7.5	
						9.4	25.3		8.1		32.0		89.6		6.1			9.1			7.4		
					Surface	1.0	25.1	25.1	8.2	8.2	32.5	32.5	96.0	96.0	6.6	6.6		3.6	3.6		5.8	5.8	
						1.0	25.1	-	8.2		32.5		96.0		6.6		6.6	3.6			5.8		
SR10	Fine	Moderate	13:01	6.2	Middle	3.1	25.1	25.1	8.2	8.2	32.5	32.5	96.0	96.1	6.6	6.6		4.9	4.9	4.5	5.4	5.3	5
						3.1	25.1		8.2		32.5		96.1		6.6			4.8			5.1		
					Bottom	5.2	25.1	25.1	8.2	8.2	32.5	32.5	96.4	96.5	6.6	6.6	6.6	5.1	5.1		4.8	4.6	
						5.2	25.1		8.2		32.5		96.5		6.6			5.0			4.4		

DA: Depth-averaged

Improvement Dredging for Lamma Power Station Navigatin Channel Water Quality Monitoring Water Quality Monitoring Results on 05 November 21 of

Nater Quali	ity Monit	oring Resu	lts on		05 November 21	during Mid	-Flood	Tide															
Monitoring	Weather	Sea	Sampling	Water				emperature (°C)		pН	Salin	ity (ppt)	DO Satur	ation (%)	Dissolved	d Oxygen (mg/L)	Tur	bidity(NTU)	Suspend	led Solids	(mg/L)
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	oth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
					Surface	1.0	25.7	25.7	8.1	8.1	32.1	32.1	95.1	95.0	6.5	6.5		4.1	4.2		3.8	3.9	
					Junace	1.0	25.7	23.1	8.1	0.1	32.1	32.1	94.8	33.0	6.5	0.5	6.5	4.2	4.2		4.0	3.5	i
C1	Fine	Moderate	18:32	10.8	Middle	5.4 5.4	25.7 25.7	25.7	8.1 8.1	8.1	32.1 32.1	32.1	94.5 94.7	94.6	6.4 6.4	6.4		5.2 5.1	5.2	5.2	4.4	4.6	4.4
						9.8	25.8		8.1		32.1		95.5		6.5			6.2			4.7		ł
					Bottom	9.8	25.8	25.8	8.1	8.1	32.1	32.1	95.9	95.7	6.5	6.5	6.5	6.2	6.2		4.8	4.8	
					Surface	1.0	25.6 25.6	25.6	8.2 8.2	8.2	32.1 32.1	32.1	104.1 104.0	104.1	7.1	7.1		4.8	4.8		6.2 5.9	6.1	ł
	_					5.6	25.6		8.2		32.1		104.0		7.1 7.1		7.1	4.8 5.8			5.9 4.5		
C2	Fine	Moderate	17:00	11.2	Middle	5.6	25.6	25.6	8.2	8.2	32.1	32.1	104.2	104.1	7.1	7.1		5.8	5.8	5.6	5.0	4.8	5.1
					Bottom	10.2	25.6 25.6	25.6	8.2 8.2	8.2	32.1 32.1	32.1	104.5 104.6	104.6	7.1	7.1	7.1	6.3 6.3	6.3		4.2	4.4	ł
					Surface	1.0	25.6	25.6	8.2	8.2	32.1	32.1	104.6	104.7	7.1	7.1		3.7	3.7		3.9	4.1	<u> </u>
					Surface	1.0	25.6	20.0	8.2	8.2	32.1	32.1	104.6	104.7	7.1	7.1	7.2	3.6	3.7		4.2	4.1	ł
C3	Fine	Moderate	17:16	23.0	Middle	11.5 11.5	25.6 25.6	25.6	8.2 8.2	8.2	32.1 32.1	32.1	105.1 105.2	105.2	7.2	7.2		4.5 4.5	4.5	4.6	4.4	4.2	4.8
					Bottom	22.0	25.7	25.7	8.2	8.2	32.0	32.0	105.6	105.6	7.2	7.2	7.2	5.7	5.7		6.2	6.0	ł
					Bottom	22.0	25.7	20.1	8.2	0.2	32.0	02.0	105.6	100.0	7.2	1.2	1.2	5.6	0.1		5.8	0.0	—
					Surface	1.0	25.5 25.4	25.5	8.3 8.3	8.3	32.5 32.5	32.5	120.9 121.3	121.1	8.2 8.3	8.3		5.4 5.5	5.5		5.9 5.5	5.7	ł
SR1	Fine	Moderate	18:20	9.0	Middle	4.5	25.3	25.3	8.3	8.3	32.5	32.5	121.8	400.0	8.3	8.4	8.3	6.5	0.5	6.5	4.6	4.5	4.7
SKI	Fine	Woderate	18:20	9.0	Middle	4.5	25.3	20.3	8.3	8.3	32.5	32.5	122.1	122.0	8.4	8.4		6.5	6.5	6.5	4.4	4.5	4.7
					Bottom	8.0 8.0	25.3 25.3	25.3	8.3 8.3	8.3	32.5 32.4	32.4	124.2 130.1	127.2	8.5 8.9	8.7	8.7	7.4	7.4		4.0 3.6	3.8	ł
						1.0	25.3		8.2		32.4		103.3		7.1			5.4			4.1		<u> </u>
					Surface	1.0	25.3	25.3	8.2	8.2	32.5	32.5	103.1	103.2	7.1	7.1	7.0	5.4	5.4		4.5	4.3	
SR2	Fine	Moderate	18:11	6.2	Middle	3.1	25.3	25.3	8.2	8.2	32.4	32.4	101.0	101.2	6.9	6.9	7.0	6.5	6.5	6.3	4.9	4.8	4.8
						3.1 5.2	25.3 25.4		8.2 8.2		32.4 32.2		101.3 104.8	-	6.9 7.2	-		6.4 7.1	-		4.6 5.1		ł
					Bottom	5.2	25.4	25.4	8.2	8.2	32.2	32.2	104.8	104.8	7.2	7.2	7.2	7.1	7.1		5.4	5.3	ł
					Surface	1.0	25.3	25.3	8.2	8.2	32.5	32.5	103.5	103.6	7.1	7.1		4.4	4.4		4.4	4.3	
						1.0 3.9	25.3 25.3		8.2 8.2	-	32.5 32.4		103.6 104.2		7.1 7.1		7.1	4.4 5.4			4.2	-	ł
SR3	Fine	Moderate	18:02	7.8	Middle	3.9	25.3	25.3	8.2	8.2	32.4	32.4	104.4	104.3	7.1	7.1		5.5	5.5	5.5	3.8	3.9	3.8
					Bottom	6.8	25.4	25.4	8.2	8.2	32.4	32.4	105.1	105.3	7.2	7.2	7.2	6.5	6.5		3.1	3.3	ł
					Bottom	6.8	25.4	20.1	8.2	0.2	32.4	02.1	105.4	100.0	7.2			6.5	0.0		3.5	0.0	
					Surface	1.0	25.4 25.4	25.4	8.2 8.2	8.2	32.5 32.4	32.4	113.8 113.8	113.8	7.8 7.8	7.8		5.2 5.2	5.2		6.4 6.0	6.2	ł
SR4	Fine	Moderate	17:36	13.0	Middle	6.5	25.6	25.7	8.2	8.2	32.2	32.2	107.5	107.4	7.3	7.3	7.6	6.0	6.1	6.1	5.8	5.7	5.2
3114	i ille	wouerate	17.50	13.0	Wilddie	6.5	25.7	23.1	8.2	0.2	32.1	JZ.Z	107.2	107.4	7.3	1.5		6.1	0.1	0.1	5.5	5.7	J.2
					Bottom	12.0 12.0	25.8 25.8	25.8	8.2 8.2	8.2	32.1 32.1	32.1	108.8 110.5	109.7	7.4 7.5	7.5	7.5	7.1 7.1	7.1		3.4 3.8	3.6	l
					Quitan	1.0	25.5	05.5	8.2		32.5	20.5	116.3	440.0	7.9	7.0		5.3	5.3		4.2	4.4	
					Surface	1.0	25.4	25.5	8.2	8.2	32.5	32.5	116.3	116.3	7.9	7.9	7.9	5.3	5.3		4.6	4.4	ł
SR5	Fine	Moderate	17:30	10.2	Middle	5.1 5.1	25.4 25.4	25.4	8.2 8.2	8.2	32.5 32.5	32.5	116.2 116.1	116.2	7.9 7.9	7.9		6.1 6.1	6.1	6.2	5.3 5.0	5.2	5.2
						9.2	25.4		8.2		32.5		115.9		7.9			7.2			6.2		ł
					Bottom	9.2	25.5	25.5	8.2	8.2	32.5	32.5	115.8	115.9	7.9	7.9	7.9	7.2	7.2		5.8	6.0	
					Surface	1.0	25.2	25.2	8.2	8.2	32.5	32.5	101.5	101.4	7.0	7.0		4.1	4.1		5.6	5.4	
						1.0 6.3	25.2 25.1		8.2 8.2		32.5 32.5		101.3 101.2		6.9 6.9		6.9	4.1 5.5			5.2 4.7		l
SR6	Fine	Moderate	17:50	12.6	Middle	6.3	25.1	25.1	8.2	8.2	32.5	32.5	101.2	101.3	6.9	6.9		5.6	5.6	5.3	4.4	4.6	4.7
					Bottom	11.6	25.1	25.1	8.2	8.2	32.5	32.5	101.8	101.9	7.0	7.0	7.0	6.1	6.1	1	4.2	4.1	ł
					Dottom	11.6	25.1	23.1	8.2	0.2	32.5	J <u>2</u> .J	102.0	101.8	7.0	1.0	1.0	6.1	0.1		3.9	4.1	
					Surface	1.0	25.7 25.7	25.7	8.2 8.2	8.2	32.1 32.1	32.1	108.2 107.8	108.0	7.4	7.4		4.8 4.8	4.8		3.8 4.1	4.0	ł
007	G -	Mad	47.00	04.0		10.9	25.7	05.7	8.2	0.0	32.1	00.4	107.8	400.0	7.3	7.0	7.3	5.7	6.7		4.1	4.5	
SR7	Fine	Moderate	17:29	21.8	Middle	10.9	25.7	25.7	8.2	8.2	32.1	32.1	106.8	106.9	7.3	7.3		5.6	5.7	5.5	4.6	4.5	4.7
					Bottom	20.8	25.7	25.7	8.2	8.2	32.1	32.0	106.3	106.3	7.2	7.2	7.2	6.1	6.1		5.6	5.8	l
A: Depth-avera						20.8	25.7		8.2		32.0		106.2		7.2			6.1	1		6.0		L

05 November 21 during Mid-Flood Tide

DA: Depth-averaged

Improvement Dredging for Lamma Power Station Navigatin Channel Water Quality Monitoring Water Quality Monitoring Results on 05 November 21 during Mid-Flood Tide

-	Water Qua	lity Monit	oring Resu	ilts on		05 November 21	during Mid-	Flood	ide															
	Monitoring	Weather	Sea	Sampling	Water			Water Te	mperature (°C)		pН	Salin	ity (ppt)	DO Satur	ation (%)	Dissolved	Oxygen (I	mg/L)	Turb	idity(NTU)	Suspend	ded Solids ((mg/L)
	Station	Condition	Condition	Time	Depth (m)	Sampling De	oth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA

Station	Condition	Condition	Time	Depth (m)	Sampling Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
					Surface	1.0	25.8	25.8	8.1	8.1	32.1	32.1	99.8	99.8	6.8	6.8		3.1	3.1		2.7	2.9	
					Sunace	1.0	25.8	23.0	8.1	0.1	32.1	32.1	99.8	33.0	6.8	0.0	6.8	3.1	5.1		3.0	2.5	
SR8	Fine	Moderate	18:07	9.6	Middle	4.8	25.8	25.8	8.1	8.1	32.0	32.0	99.1	99.3	6.7	6.8	0.0	4.2	4.2	4.3	4.6	4.7	4.6
0110	1 IIIC	Moderate	10.07	5.0	Middle	4.8	25.8	20.0	8.1	0.1	32.0	02.0	99.4	55.5	6.8	0.0		4.2	7.2	4.0	4.8	4.7	4.0
					Bottom	8.6	25.8	25.9	8.2	8.2	31.9	31.7	99.7	99.8	6.8	6.8	6.8	5.5	5.6		6.4	6.2	
					Bottom	8.6	25.9	20.5	8.2	0.2	31.5	01.7	99.8	55.0	6.8	0.0	0.0	5.6	0.0		6.0	0.2	
					Surface	1.0	25.9	25.9	8.2	8.2	32.1	32.0	104.1	104.2	7.1	7.1		4.5	4.5		4.0	3.9	
					Ganado	1.0	25.9	20.0	8.2	0.2	32.0	02.0	104.3	101.2	7.1		7.1	4.5			3.8	0.0	
SR9	Fine	Moderate	17:55	9.2	Middle	4.6	26.1	26.2	8.2	8.2	31.9	31.8	104.8	104.9	7.1	7.1	7.1	5.3	5.4	5.4	4.4	4.6	4.6
0110	1 110	modorato		0.2	madio	4.6	26.2	20:2	8.2	0.2	31.8	01.0	105.0	101.0	7.1			5.4	0.1	0.1	4.8	1.0	
					Bottom	8.2	26.5	26.6	8.2	8.2	31.6	31.6	107.3	109.8	7.2	7.4	7.4	6.3	6.3		5.4	5.3	
					Bottom	8.2	26.6	20.0	8.2	0.2	31.5	01.0	112.3	100.0	7.6			6.3	0.0		5.1	0.0	
					Surface	1.0	25.6	25.6	8.2	8.2	32.1 32.1	32.1	103.1	103.2	7.0	7.0		3.7	3.7		3.5	3.7	1
					Gunade	1.0	25.6	20.0	8.2	0.2		02.1	103.2	100.2	7.0	1.0	7.1	3.7	0.1		3.8	0.7	
SR10	Fine	Moderate	16:35	6.2	Middle	3.1	25.6	25.6	8.2	8.2	32.1	32.1	103.4	103.4	7.1	7.1	7.1	4.7	4.7	4.7	4.4	4.3	4.2
GITTO	1 IIIC	Moderate	10.00	0.2	Middle	3.1	25.6	20.0	8.2	0.2	32.1	02.1	103.4	100.4	7.1	7.1		4.7	7.7	4.7	4.2	4.0	7.2
					Bottom	5.2	25.6	25.6	8.2	8.2	32.1	32.1	103.8	104.2	7.1	7.1	7.1	5.6	5.6		4.7	4.6	
					Bottom	5.2	25.6	20.0	8.2	0.2	32.1	02.1	104.5	104.2	7.1	7.1	7.1	5.6	0.0		4.5	4.0	

DA: Depth-averaged

Improvement Dredging for Lamma Power Station Navigatin Channel Water Quality Monitoring Water Quality Monitoring Results on 08 November 21 of

Nater Qual	lity Monit	toring Resu	ilts on		08 November 21	during Mid	-Ebb Tie	de															
Monitoring	Weather	Sea	Sampling	Water			Water Te	mperature (°C)		pН	Salin	ity (ppt)	DO Satu	ration (%)	Dissolve	d Oxygen (mg/L)	Tur	bidity(NTL	J)	Suspend	ded Solids	; (mg/L)
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
					Surface	1.0	25.3	25.3	8.1	8.1	31.9	31.9	92.5	92.5	6.3	6.3		5.5	5.5		7.1	7.2	
						1.0 5.6	25.3 25.3		8.1 8.1		31.9 32.0		92.5 93.4		6.3 6.4		6.4	5.4 5.1			7.2		
C1	Cloudy	Rough	15:08	11.2	Middle	5.6	25.3	25.3	8.1	8.1	32.0	32.0	93.5	93.5	6.4	6.4		5.0	5.1	5.2	6.0	6.3	6.3
					Bottom	10.2 10.2	25.3 25.3	25.3	8.1 8.1	8.1	32.0 32.0	32.0	92.9 92.7	92.8	6.4 6.4	6.4	6.4	5.0 5.0	5.0		5.6 5.3	5.5	
					Surface	1.0	25.3 25.3	25.3	8.2 8.2	8.2	32.2 32.2	32.2	96.1 96.1	96.1	6.6 6.6	6.6		4.8	4.8		4.1 3.8	4.0	
C2	Cloudy	Rough	13:46	10.2	Middle	5.1 5.1	25.2 25.2	25.2	8.2 8.2	8.2	32.2 32.2	32.2	95.9 95.9	95.9	6.6 6.6	6.6	6.6	5.1 5.1	5.1	5.0	4.9 5.3	5.1	5.0
					Bottom	9.2 9.2	25.3 25.3	25.3	8.2 8.2	8.2	32.2 32.2	32.2	95.9 95.9	95.9	6.6 6.6	6.6	6.6	5.1 5.1	5.1		6.2 5.6	5.9	
					Surface	1.0 1.0	25.3 25.3	25.3	8.2 8.2	8.2	32.2 32.2	32.2	96.2 96.2	96.2	6.6 6.6	6.6		4.9 4.9	4.9		7.4 7.8	7.6	
C3	Cloudy	Rough	14:07	22.3	Middle	11.2 11.2	25.2 25.2	25.2	8.2	8.2	32.2	32.2	96.2 96.2	96.2	6.6 6.6	6.6	6.6	4.6	4.6	4.6	6.3 6.5	6.4	6.5
					Bottom	21.3	25.2	25.2	8.2 8.2	8.2	32.2	32.2	95.9 95.9	95.9	6.6 6.6	6.6	6.6	4.4	4.4	1	5.5 5.6	5.6	
					Surface	1.0 1.0	25.2 25.2 25.2	25.2	8.2 8.2 8.2	8.2	32.2 32.3	32.3	95.9 98.4 98.3	98.4	6.7 6.7	6.7		4.4 5.8 5.7	5.8		7.2	7.4	<u> </u>
SR1	Cloudy	Moderate	15:22	7.7	Middle	3.9 3.9	25.2 25.1 25.1	25.1	8.2 8.2	8.2	32.3 32.4 32.4	32.4	98.3 97.8 97.7	97.8	6.7 6.7	6.7	6.7	5.7 5.6 5.6	5.6	5.7	6.2 6.0	6.1	6.4
					Bottom	6.7	25.0	25.0	8.2 8.2	8.2	32.4	32.4	97.5	97.5	6.7	6.7	6.7	5.6 5.7 5.7	5.7		5.7	5.7	
					Surface	6.7 1.0	25.0 25.0	25.0	8.2	8.2	32.4 32.4	32.4	97.4 100.0	100.0	6.7 6.9	6.9		4.2	4.2		5.7 6.2	6.3	
SR2	Cloudy	Rough	15:14	6.4	Middle	1.0 3.2	25.0 24.9	24.9	8.2 8.2	8.2	32.4 32.4	32.4	100.0 99.6	99.6	6.9 6.9	6.9	6.9	4.1 3.5	3.5	3.6	6.3 6.0	6.0	5.8
	,				Bottom	3.2 5.4	24.9 24.9	24.9	8.2 8.2	8.2	32.4 32.4	32.4	99.5 99.4	99.4	6.9 6.8	6.8	6.8	3.5 3.2	3.3		6.0 5.3	5.3	
					Surface	5.4 1.0	24.9 25.2	25.2	8.2 8.2	8.2	32.4 32.1	32.1	99.4 99.5	99.5	6.8 6.8	6.8	0.0	3.3 6.0	6.0		5.2 6.1	6.2	
SR3	Claudu	Bough	14:57	7.7	Middle	1.0 3.9	25.2 24.9	24.9	8.2 8.2	8.2	32.2 32.4	32.1	99.5 99.1	99.1	6.8 6.8	6.8	6.8	5.9 5.3	5.3	5.5	6.3 5.9	5.8	5.8
583	Cloudy	Rough	14:57	1.1		3.9 6.7	24.9 24.9		8.2 8.2		32.4 32.4		99.0 98.4		6.8 6.8			5.3 5.2		5.5	5.7 5.7		5.8
					Bottom	6.7	24.9	24.9	8.2	8.2	32.4	32.4	98.4	98.4	6.8	6.8	6.8	5.2	5.2		5.3	5.5	
					Surface	1.0	25.3 25.3	25.3	8.1 8.1	8.1	31.9 31.9	31.9	92.2 92.2	92.2	6.3 6.3	6.3	6.4	5.3 5.3	5.3		5.3 5.0	5.2	
SR4	Cloudy	Rough	14:13	14.5	Middle	7.3	25.3 25.3	25.3	8.1 8.1	8.1	32.0 32.0	32.0	94.1 94.2	94.2	6.5 6.5	6.5	0.4	5.0 4.9	5.0	4.6	5.8 6.0	5.9	5.9
					Bottom	13.5 13.5	25.3 25.3	25.3	8.1 8.1	8.1	32.1 32.1	32.1	93.3 93.2	93.3	6.4 6.4	6.4	6.4	3.5 3.7	3.6		6.5 6.6	6.6	
					Surface	1.0	25.3 25.3	25.3	8.1 8.1	8.1	31.9 31.9	31.9	92.2 92.3	92.3	6.3 6.3	6.3		4.4	4.4	ĺ	6.0 6.3	6.2	
SR5	Cloudy	Rough	14:07	9.0	Middle	4.5	25.3 25.3	25.3	8.1 8.1	8.1	32.0 32.0	32.0	93.9 94.0	94.0	6.4 6.4	6.4	6.4	5.1 5.1	5.1	4.6	6.8 7.1	7.0	7.0
					Bottom	4.3 8.0 8.0	25.3 25.3	25.3	8.1 8.1	8.1	32.0 32.1 32.1	32.1	94.0 94.7 94.8	94.8	6.5 6.5	6.5	6.5	4.5	4.5	1	7.7 7.9	7.8	1
					Surface	1.0	25.3	25.3	8.2 8.2	8.2	32.1 32.2 32.2	32.2	96.5	96.5	6.6	6.6		4.6	4.6		7.7	7.8	
SR6	Cloudy	Rough	14:44	14.7	Middle	1.0 7.4	25.3 25.3	25.3	8.2	8.2	32.2	32.2	96.5 96.0	96.0	6.6 6.6	6.6	6.6	4.6 5.3	5.3	4.5	7.8 6.9	6.7	6.9
		, , , , , , , , , , , , , , , , , , ,			Bottom	7.4 13.7	25.3 25.2	25.2	8.2 8.2	8.2	32.2 32.3	32.2	95.9 95.7	95.8	6.6 6.6	6.6	6.6	5.2 3.5	3.6	1	6.4 6.2	6.2	
					Surface	13.7 1.0	25.2 25.3	25.3	8.2 8.2	8.2	32.2 32.2	32.2	95.8 96.3	96.3	6.6 6.6	6.6		3.6 5.1	- 5.1		6.1 7.8	7.7	<u> </u>
SR7	Cloudy	Rough	14:23	21.6	Middle	1.0 10.8	25.3 25.2	25.2	8.2 8.2	8.2	32.2 32.2	32.2	96.3 95.5	95.5	6.6 6.6	6.6	6.6	5.0 4.2	4.2	4.2	7.5 6.4	6.3	6.3
0.01	oloddy	rtougn	14.20	21.0	Bottom	10.8 20.6	25.2 25.2	25.2	8.2 8.2	8.2	32.2 32.2	32.2	95.5 95.6	95.7	6.6 6.6	6.6	6.6	4.2 3.3	3.2	7.2	6.2 4.7	4.9	0.0
					Dottom	20.6	25.2	20.2	8.2	0.2	32.2	JZ.Z	95.7	33.1	6.6	0.0	0.0	3.1	3.2		5.0	4.3	

08 November 21 during Mid-Ebb Tide

Water Quality Monitoring Results on 08 November 2	1 during Mid-Ebb Tide
---	-----------------------

Tatel Gau		oning Rest			00 NOVember 21	aaning inia		40															
Monitoring	Weather	Sea	Sampling	Water			Water Te	emperature (°C)		pН	Salin	nity (ppt)	DO Satur	ation (%)	Dissolved	l Oxygen (mg/L)	Tur	bidity(NTU	I)	Suspend	ded Solids	mg/l) د
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	D
					Surface	1.0	25.4	25.4	8.2	8.2	32.1	32.1	99.1	99.1	6.8	6.8		7.6	7.6		6.8	6.8	
					Sunace	1.0	25.4	20.4	8.2	0.2	32.1	32.1	99.1	55.1	6.8	0.0	6.8	7.6	7.0		6.8	0.0	
SR8	Cloudy	Rough	14:44	9.8	Middle	4.9	25.4	25.4	8.2	8.2	32.2	32.2	98.9	98.8	6.8	6.8	0.0	6.7	6.6	5.5	6.1	5.9	5
3110	Cloudy	Rough	14.44	5.0	Wildule	4.9	25.4	23.4	8.2	0.2	32.2	J2.2	98.7	30.0	6.7	0.0		6.4	0.0	5.5	5.7	5.5	
					Bottom	8.8	25.5	25.5	8.2	8.2	32.3	32.3	98.2	98.3	6.7	6.7	6.7	2.2	2.3		4.4	4.2	
					Dottom	8.8	25.4	20.0	8.2	0.2	32.2	02.0	98.4	50.5	6.7	0.1	0.7	2.3	2.0		4.0	7.2	
					Surface	1.0	25.4	25.4	8.2	8.2	32.1	32.1	99.0	99.0	6.8	6.8		7.5	7.5		7.0	7.2	
					Gundoo	1.0	25.4	20.1	8.2	0.2	32.1	02.1	98.9	00.0	6.8	0.0	6.8	7.4	1.0		7.3		
SR9	Cloudy	Rough	14:31	11.2	Middle	5.6	25.4	25.4	8.2	8.2	32.3	32.3	97.9	97.9	6.7	6.7	0.0	4.3	4.1	4.7	6.4	6.6	
	,					5.6	25.4		8.2		32.3		97.8		6.7			3.9			6.8		-
					Bottom	10.2	25.4	25.4	8.2	8.2	32.3	32.3	98.2	98.3	6.7	6.7	6.7	2.4	2.5		5.9	5.8	
						10.2	25.4	-	8.2		32.3		98.3		6.7			2.5			5.6		
					Surface	1.0	25.3	25.3	8.1	8.1	32.2	32.2	96.0	96.0	6.6	6.6		4.7	4.7		3.8	3.9	
						1.0	25.3		8.1		32.2		96.0		6.6		6.6	4.7			4.0		
SR10	Cloudy	Rough	13:19	6.5	Middle	3.3	25.3	25.3	8.1	8.1	32.2	32.2	95.7	95.7	6.6	6.6		4.8	4.8	4.8	4.7	4.8	4
	,					3.3	25.3		8.1		32.2		95.7		6.6			4.8			4.9		
			1		Bottom	5.5	25.2	25.2	8.1	8.1	32.2	32.2	95.6	95.6	6.6	6.6	6.6	4.8	4.8		5.6	5.8	
						5.5	25.2		8.1		32.2		95.6		6.6			4.8			5.9		

DA: Depth-averaged

Improvement Dredging for Lamma Power Station Navigatin Channel Water Quality Monitoring Water Quality Monitoring Results on 08 November 21 of

Monitoring Station Cor C1 C1 C2 C1	Veather condition Cloudy Cloudy	Sea Condition Rough Rough	Sampling Time 08:07	Water Depth (m) 10.2	Sampling Dep Surface Middle	th (m) <u>1.0</u> <u>5.1</u>	Value 25.2 25.2	Average	Value	pH Average		ity (ppt) Average	DO Satur Value	ation (%) Average	Dissolved Value	Oxygen (Average	mg/L) DA	Turl Value	oidity(NTU Average) DA	Suspend Value	led Solids Average	(mg/L) DA
C1 C1 C2 C1	Cloudy	Rough			Surface	1.0 1.0	25.2	•		Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
C2 C1			08:07	10.2		1.0																	
C2 C1			08:07	10.2			25.2		8.0	8.0	32.0	32.0	91.4	91.4	6.3	6.3		6.6	6.6		5.8	5.7	
C2 C1			08:07	10.2	Middle	5.1	20.2	25.2	8.0	8.0	32.0	32.0	91.4	91.4	6.3	0.3	6.3	6.6	0.0		5.5	5.7	
C2 C1							25.2	25.2	8.0	8.0	32.0	32.0	91.5	91.5	6.3	6.3	0.0	6.2	6.1	5.9	5.1	5.2	5.2
	Cloudy	Rough				5.1 9.2	25.2	-	8.0		32.0		91.5		6.3			5.9	-		5.3	-	
	Cloudy	Rough			Bottom	9.2	25.2 25.2	25.2	8.0 8.0	8.0	32.0	32.0	91.8 92.0	91.9	6.3 6.3	6.3	6.3	5.0 5.0	5.0		4.4	4.6	ł
	Cloudy	Rough				1.0	25.3	05.0	8.2		32.2		96.6		6.6			5.1	5.4		6.5		<u> </u>
	Cloudy	Rough			Surface	1.0	25.3	25.3	8.2	8.2	32.2	32.2	96.6	96.6	6.6	6.6	6.6	5.1	5.1		6.1	6.3	ł
			09:30	10.2	Middle	5.1	25.3	25.3	8.2	8.2	32.2	32.2	96.2	96.2	6.6	6.6	0.0	5.4	5.4	5.3	5.3	5.6	5.5
C3 CI						5.1 9.2	25.3 25.3		8.2 8.2		32.2		96.2		6.6			5.4			5.8 4.9		ł
C3 CI					Bottom	9.2	25.3	25.3	8.2	8.2	32.2 32.2	32.2	96.3 96.3	96.3	6.6 6.6	6.6	6.6	5.3 5.2	5.3		4.9	4.7	ł
C3 CI					Surface	1.0	25.3	25.3	8.2	8.2	32.2	32.2	96.4	96.4	6.6	6.6		5.2	5.2		5.4	5.5	
C3 CI					Gunade	1.0	25.3	20.0	8.2	0.2	32.2	52.2	96.4	50.4	6.6	0.0	6.6	5.2	0.2		5.6	0.0	l
	Cloudy	Rough	09:11	22.3	Middle	11.2 11.2	25.2 25.2	25.2	8.2 8.2	8.2	32.2 32.2	32.2	96.2 96.2	96.2	6.6 6.6	6.6		5.1 5.0	5.1	5.1	4.7 4.9	4.8	4.6
						21.3	25.2	05.0	8.2		32.2		96.0		6.6			5.0	5.0		3.4	0.5	ł
					Bottom	21.3	25.2	25.2	8.2	8.2	32.2	32.2	96.0	96.0	6.6	6.6	6.6	5.0	5.0		3.6	3.5	
					Surface	1.0	25.1	25.1	8.2	8.2	32.4	32.4	98.5	98.5	6.8	6.8		5.8	5.8		5.1	5.0	
						1.0	25.1		8.2		32.4		98.5		6.8		6.8	5.8			4.9		ł
SR1 CI	Cloudy	Moderate	08:01	7.8	Middle	3.9 3.9	25.0 25.0	25.0	8.2 8.2	8.2	32.5 32.5	32.5	97.3 97.1	97.2	6.7 6.7	6.7		3.0 2.9	3.0	3.3	4.8 4.6	4.7	4.7
						6.8	23.0		8.2		32.5		96.3		6.6			1.1			4.0		ł
					Bottom	6.8	24.9	24.9	8.2	8.2	32.5	32.5	96.3	96.3	6.6	6.6	6.6	1.2	1.2		4.5	4.5	l
					Surface	1.0	25.0	25.0	8.2	8.2	32.5	32.5	96.0	96.0	6.6	6.6		2.4	2.3		5.2	5.2	
					Sullace	1.0	25.0	23.0	8.2	0.2	32.5	32.5	95.9	90.0	6.6	0.0	6.6	2.2	2.3		5.1	5.2	
SR2 CI	Cloudy	Moderate	08:10	6.1	Middle	3.1	25.0	25.0	8.2	8.2	32.5	32.5	95.5	95.5	6.6	6.6	0.0	1.7	1.7	1.7	4.8	4.9	4.5
						3.1 5.1	25.0 25.0		8.2		32.5		95.4		6.6			1.6			4.9 3.5		1
					Bottom	5.1	25.0	25.0	8.1 8.1	8.1	32.4 32.4	32.4	95.1 95.1	95.1	6.5 6.5	6.5	6.5	1.3 1.2	1.3		3.6	3.6	1
						1.0	25.0		8.2		32.4		99.9		6.9			6.1			3.8		
					Surface	1.0	25.0	25.0	8.2	8.2	32.4	32.4	99.8	99.9	6.9	6.9	6.9	6.1	6.1		4.1	4.0	1
SR3 CI	Cloudy	Moderate	08:20	7.5	Middle	3.8	25.0	25.0	8.2	8.2	32.4	32.4	98.9	98.9	6.8	6.8	0.9	5.8	5.8	5.2	4.6	4.6	4.5
0.10	olouuy	modorato	00.20	1.0	middio	3.8	25.0	20.0	8.2	0.2	32.4	02.1	98.8	00.0	6.8	0.0		5.7	0.0	0.2	4.5	1.0	
					Bottom	6.5 6.5	24.8 24.8	24.8	8.2 8.2	8.2	32.5 32.5	32.5	97.6 97.5	97.6	6.7 6.7	6.7	6.7	4.0 3.5	3.8		5.0 5.2	5.1	ł
<u> </u>						1.0	24.0		8.1		32.5		97.5		6.3			2.8			4.6		<u> </u>
					Surface	1.0	25.4	25.4	8.1	8.1	32.1	32.1	92.7	92.7	6.3	6.3		2.8	2.8		4.4	4.5	1
SR4 CI	Claudy	Bough	08:58	13.4	Middle	6.7	25.3	25.2	8.1	8.1	32.1	32.1	92.7	02.7	6.3	6.3	6.3	2.5	2.4	2.3	3.2	2.2	3.4
5R4 CI	Cloudy	Rough	08:58	13.4	Middle	6.7	25.3	25.3	8.1	8.1	32.1	32.1	92.7	92.7	6.3	0.3		2.2	2.4	2.3	3.2	3.2	3.4
					Bottom	12.4	25.3	25.4	8.1	8.1	32.1	32.1	92.8	92.9	6.4	6.4	6.4	1.7	1.7		2.6	2.6	1
						12.4 1.0	25.4 25.4	-	8.1		32.1		92.9		6.4 6.3			1.6 2.5			2.5		—
					Surface	1.0	25.4	25.4	8.1 8.1	8.1	32.1 32.1	32.1	92.7 92.7	92.7	6.3	6.3		2.3	2.5		5.4 5.5	5.5	l
						4.9	25.4		8.1		32.1		92.7		6.3		6.3	1.4			4.1		l
SR5 CI	Cloudy	Rough	09:04	9.8	Middle	4.9	25.4	25.4	8.1	8.1	32.1	32.1	92.7	92.7	6.3	6.3		1.4	1.4	1.9	4.4	4.3	4.4
					Bottom	8.8	25.4	25.4	8.1	8.1	32.1	32.1	92.7	92.7	6.3	6.3	6.3	1.7	1.8		3.3	3.4	1
					Bottom	8.8	25.4	20.4	8.1	0.1	32.1	02.1	92.7	52.1	6.3	0.0	0.0	1.8	1.0		3.4	0.4	L
					Surface	1.0	25.3	25.3	8.1	8.1	32.2	32.2	96.0 96.0	96.0	6.6	6.6		4.8	4.8		5.1	5.1	l
						1.0 7.3	25.3 25.2		8.1 8.1		32.2 32.2		96.0 95.7		6.6 6.6		6.6	4.8 5.0			5.0 4.7		l
SR6 CI	Cloudy	Rough	08:33	14.5	Middle	7.3	25.2	25.2	8.1	8.1	32.2	32.2	95.7	95.7	6.6	6.6		5.0	5.0	4.3	4.5	4.6	4.4
					D	13.5	25.2	05.0	8.1	0.4	32.2	20.0	95.4	05.4	6.5	0.5	0.5	2.9	2.0		3.5	2.4	i
					Bottom	13.5	25.2	25.2	8.1	8.1	32.2	32.2	95.4	95.4	6.5	6.5	6.5	3.0	3.0		3.3	3.4	
	Т				Surface	1.0	25.3	25.3	8.2	8.2	32.2	32.2	96.3	96.3	6.6	6.6		4.8	4.8		2.9	2.9	
						1.0	25.3		8.2	-	32.2	-	96.3		6.6		6.6	4.8	-		2.8		i
SR7 CI	Cloudy	Rough	08:52	21.3	Middle	10.7 10.7	25.2 25.2	25.2	8.2 8.2	8.2	32.2 32.2	32.2	96.1 96.1	96.1	6.6 6.6	6.6		5.0 4.9	5.0	4.3	3.8 3.3	3.6	3.6
						20.3	25.2		8.2		32.2		96.1		6.6			4.9 3.2			4.4		i
					Bottom	20.3	25.2	25.2	8.2	8.2	32.2	32.2	95.7	95.7	6.6	6.6	6.6	3.1	3.2		4.1	4.3	i

08 November 21 during Mid-Flood Tide

DA: Depth-averaged

Improvement Dredging for Lamma Power Station Navigatin Channel Water Quality Monitoring Water Quality Monitoring Results on 08 November 21 during Mid-Flood Tide

_	water Qual	ity Monit	oring Resi	lits on		08 November 21 during Mid-	Flood	lide										
1	Monitoring	Weather	Sea	Sampling	Water		Water Te	emperature (°C)		pН	Salin	ity (ppt)	DO Satur	ation (%)	Dissolved	Oxygen (mg/L)	
	Monitoring Station	Condition	Condition	Time	Depth (m)	Sampling Depth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	V

Station	Condition	Condition	Time	Depth (m)	Sampling Dep	tn (m)	Value	Average	DA	Value	Average	DA	Value	Average	DA								
					Surface	1.0	25.2	25.2	8.0	8.0	32.0	32.0	91.3	91.3	6.3	6.3		6.6	6.6		2.4	2.3	
					Sunace	1.0	25.2	23.2	8.0	0.0	32.0	52.0	91.3	51.5	6.3	0.5	6.3	6.6	0.0		2.2	2.5	
SR8	Cloudy	Rough	08:28	9.4	Middle	4.7	25.2	25.2	8.0	8.0	32.0	32.0	91.1	91.1	6.3	6.3	0.0	6.6	6.6	6.5	3.9	4.2	4.0
0110	olouuy	Rough	00.20	0.4	Middle	4.7	25.2	20.2	8.0	0.0	32.0	52.0	91.1	51.1	6.3	0.0		6.6	0.0	0.0	4.4	7.2	4.0
					Bottom	8.4	25.2	25.2	8.0	8.0	32.1	32.1	91.1	91.1	6.3	6.3	6.3	6.3	6.3		5.3	5.6	
					Bottom	8.4	25.2	20.2	8.0	0.0	32.1	02.1	91.1	51.1	6.3	0.0	0.0	6.3	0.0		5.8	0.0	
					Surface	1.0	25.2	25.2	8.0	8.0	32.1	32.1	91.2	91.2	6.3	6.3		6.6	6.6		3.5	3.3	
					builde	1.0	25.2	20.2	8.0	0.0	32.1	02.1	91.2	51.2	6.3	0.0	6.3	6.6	0.0		3.1	0.0	
SR9	Cloudy	Rough	08:40	9.8	Middle	4.9	25.2	25.2	8.0	8.0	32.1	32.1	91.1	91.1	6.3	6.3	0.5	6.7	6.7	6.7	4.1	4.1	4.1
5135	Cloudy	Rough	00.40	5.0	Middle	4.9	25.2	23.2	8.0	0.0	32.1	32.1	91.1	51.1	6.3	0.5		6.6	0.7	0.7	4.0	4.1	4.1
					Bottom	8.8	25.2	25.2	8.0	8.0	32.1	32.1	91.2	91.2	6.3	6.3	6.3	6.7	6.7		4.9	4.9	
					Bottom	8.8	25.2	20.2	8.0	0.0	32.1	02.1	91.2	51.2	6.3	0.0	0.0	6.7	0.7		4.8	4.5	
					Surface	1.0	25.3	25.3	8.2	8.2	32.2	32.2	96.8	96.8	6.6	6.6		5.1	5.1		5.0	4.9	
					Sunace	1.0	25.3	23.5	8.2	0.2	32.2	J2.2	96.8	30.0	6.6	0.0	6.6	5.1	5.1		4.7	4.5	
SR10	Cloudy	Rough	09:59	6.2	Middle	3.1	25.3	25.3	8.2	8.2	32.2	32.2	96.6	96.6	6.6	6.6	0.0	5.2	5.2	5.1	3.4	3.2	3.5
GITTO	olouuy	Rough	00.00	0.2	Middle	3.1	25.3	20.0	8.2	0.2	32.2	52.2	96.6	50.0	6.6	0.0		5.2	0.2	0.1	3.0	5.2	0.0
					Bottom	5.2	25.3	25.3	8.2	8.2	32.2	32.2	96.5	96.6	6.6	6.6	6.6	5.0	5.0		2.5	2.5	
					Bottom	5.2	25.3	20.0	8.2	0.2	32.2	52.2	96.6	33.0	6.6	0.0	0.0	5.0	0.0		2.4	2.0	

Suspended Solids (mg/L)

Turbidity(NTU)

DA: Depth-averaged

Improvement Dredging for Lamma Power Station Navigatin Channel Water Quality Monitoring Water Quality Monitoring Results on 10 November 21 of

Water Qua	lity Monit	oring Resu	ilts on		10 November 21	during Mid	-Ebb Tie	de															
Monitoring	Weather	Sea	Sampling	Water			Water Te	emperature (°C)		pН	Salin	ity (ppt)	DO Satur	ration (%)	Dissolve	d Oxygen (mg/L)	Tur	bidity(NTU)	Suspen	ded Solids	(mg/L)
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	oth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
					Surface	1.0	25.2 25.2	25.2	8.1 8.1	8.1	33.1 33.1	33.1	94.5 94.5	94.5	6.5 6.5	6.5		1.0 1.1	1.1		6.1 5.8	6.0	
C1	Fine	Moderate	02:29	11.2	Middle	5.6	25.2	25.2	8.1	8.1	33.1	33.1	94.5	94.8	6.5	6.5	6.5	2.4	2.5	2.4	4.8	4.9	5.1
01	1 me	wouerate	02.25	11.2		5.6 10.2	25.2 25.1		8.1 8.1		33.1 33.2		94.8 95.4		6.5 6.5	-		2.5 3.8		2.4	4.9		
					Bottom	10.2	25.1	25.1	8.1	8.1	33.2	33.2	95.6	95.5	6.5	6.5	6.5	3.7	3.8		4.4	4.6	
					Surface	1.0	24.9 24.9	24.9	8.4 8.4	8.4	33.3 33.3	33.3	100.8 100.9	100.9	6.9 6.9	6.9	7.0	2.0 1.9	2.0		5.2 5.1	5.2	
C2	Fine	Moderate	03:58	10.6	Middle	5.3 5.3	24.8 24.8	24.8	8.4 8.4	8.4	33.3 33.3	33.3	101.5 101.9	101.7	7.0 7.0	7.0	7.0	2.1 2.0	2.1	2.1	4.8	4.9	4.9
					Bottom	9.6 9.6	24.9 24.9	24.9	8.4 8.4	8.4	33.2 33.2	33.2	103.1 104.0	103.6	7.1	7.1	7.1	2.2 2.1	2.2		4.6 4.6	4.6	
					Surface	1.0	24.9	24.9	8.3	8.3	33.2	33.2	101.0	101.0	6.9	6.9		1.5	1.5		4.2	4.2	
						1.0 11.5	24.9 24.9		8.3 8.3		33.2 33.2		101.0 101.0		6.9 6.9		6.9	1.5 2.1			4.2		
C3	Fine	Moderate	03:23	23.0	Middle	11.5 22.0	24.9 24.9	24.9	8.3 8.3	8.3	33.2 33.2	33.2	101.1 101.1	101.1	6.9 6.9	6.9		2.1 3.2	2.1	2.3	4.9 5.5	4.9	4.8
					Bottom	22.0	24.9	24.9	8.3	8.3	33.2	33.2	101.1	101.1	6.9	6.9	6.9	3.1	3.2		5.3	5.4	
					Surface	1.0 1.0	25.1 25.1	25.1	8.1 8.1	8.1	32.8 32.7	32.8	91.6 91.6	91.6	6.3 6.3	6.3	6.3	1.4 1.4	1.4		5.2 4.9	5.1	
SR1	Fine	Moderate	02:17	8.2	Middle	4.1 4.1	25.1 25.1	25.1	8.1 8.1	8.1	32.7 32.7	32.7	91.9 91.9	91.9	6.3 6.3	6.3	0.5	2.1 2.0	2.1	2.1	4.7 4.6	4.7	4.5
					Bottom	7.2	25.1	25.1	8.0 8.0	8.0	32.6	32.5	92.2	92.4	6.3	6.4	6.4	2.8	2.9		3.8	3.8	
					Surface	7.2 1.0	25.1 24.8	24.8	8.3	8.3	32.4 33.3	33.3	92.5 100.5	100.7	6.4 6.9	6.9		3.0 1.3	1.3		7.5	7.4	
						1.0 3.2	24.8 24.8		8.3 8.3		33.3 33.3		100.8 101.1		6.9 6.9		6.9	1.3 2.3			7.2 6.2		
SR2	Fine	Moderate	02:24	6.4	Middle	3.2	24.8	24.8	8.3	8.3	33.3	33.3	101.3	101.2	7.0	7.0		2.2	2.3	2.3	5.9	6.1	6.0
					Bottom	5.4 5.4	24.8 24.8	24.8	8.3 8.3	8.3	33.3 33.3	33.3	101.8 102.1	102.0	7.0 7.0	7.0	7.0	3.3 3.3	3.3		4.9 4.4	4.7	
					Surface	1.0	24.9 24.9	24.9	8.2 8.2	8.2	33.2 33.2	33.2	99.1 99.2	99.2	6.8 6.8	6.8		1.3 1.3	1.3		4.5 5.0	4.8	
SR3	Fine	Moderate	02:37	7.8	Middle	3.9 3.9	24.9 24.9	24.9	8.2 8.2	8.2	33.2 33.2	33.2	99.2 99.3	99.3	6.8 6.8	6.8	6.8	2.3 2.3	2.3	2.4	6.0 5.6	5.8	6.0
					Bottom	6.8	24.9	24.9	8.2	8.2	33.2	33.2	99.3	99.3	6.8	6.8	6.8	3.6	3.6		7.4	7.5	
						6.8 1.0	24.9 24.9		8.2 8.2		33.2 32.9		99.3 94.2		6.8 6.5		0.0	3.6 1.1			7.5 5.0		
					Surface	1.0 6.4	24.9 24.8	24.9	8.2 8.2	8.2	32.9 32.9	32.9	97.2 98.3	95.7	6.7 6.8	6.6	6.7	1.0 1.6	1.1		5.3 4.9	5.2	
SR4	Fine	Moderate	03:25	12.8	Middle	6.4	24.8	24.8	8.2	8.2	33.0	32.9	99.0	98.7	6.8	6.8		1.5	1.6	1.4	4.7	4.8	4.8
					Bottom	11.8 11.8	24.9 24.9	24.9	8.2 8.3	8.2	32.9 32.9	32.9	101.1 102.6	101.9	6.9 7.0	7.0	7.0	1.7 1.7	1.7		4.5 4.6	4.6	
					Surface	1.0	25.1 25.1	25.1	8.0 8.0	8.0	32.8 32.8	32.8	91.7 91.8	91.8	6.3 6.3	6.3		1.2	1.2		4.2	4.2	
SR5	Fine	Moderate	03:31	9.8	Middle	4.9	25.0	25.0	8.1	8.1	32.8 32.8	32.8	92.4	92.5	6.3	6.3	6.3	1.3	1.3	1.3	3.5	3.4	3.5
					Bottom	4.9 8.8	25.0 25.0	25.0	8.1 8.1	8.1	32.8	32.8	92.5 92.7	92.8	6.3 6.4	6.4	6.4	1.5	1.5		3.2 2.8	2.9	
						8.8 1.0	25.0 24.8		8.1 8.3		32.8 33.2		92.8 101.4		6.4 7.0		0.4	1.4 1.2			3.0 3.6		
					Surface	1.0 6.3	24.8 24.8	24.8	8.4	8.3	33.2	33.2	101.5	101.5	7.0 7.0	7.0	7.0	1.2	1.2		3.6	3.6	
SR6	Fine	Moderate	02:52	12.6	Middle	6.3	24.8	24.8	8.4 8.4	8.4	33.3 33.3	33.3	102.1 102.1	102.1	7.0	7.0		2.6 2.6	2.6	2.3	3.3 3.3	3.3	3.3
					Bottom	11.6 11.6	24.7 24.7	24.7	8.4 8.4	8.4	33.3 33.3	33.3	102.7 102.9	102.8	7.1 7.1	7.1	7.1	3.0 3.0	3.0		3.1 2.9	3.0	
					Surface	1.0 1.0	24.9 24.9	24.9	8.3 8.3	8.3	33.2 33.2	33.2	101.1 101.1	101.1	6.9 6.9	6.9		1.0 1.1	1.1		3.6 4.0	3.8	
SR7	Fine	Moderate	03:10	22.2	Middle	11.1	24.9	24.9	8.3	8.3	33.2	33.2	101.1	101.1	6.9	6.9	6.9	1.1	1.2	1.5	4.4	4.6	5.0
-						11.1 21.2	24.9 24.9		8.3 8.3	8.3	33.2 33.2	33.1	101.1 101.1		6.9 6.9	-	6.9	1.2 2.2	2.2		4.8 6.4		
					Bottom	21.2	24.9	24.9	8.3	8.3	33.1	33.1	100.8	101.0	6.9	6.9	6.9	2.2	2.2		6.6	6.5	

10 November 21 during Mid-Ebb Tide

Water Quality Monitoring Results on	10 November 21	during Mid-Ebb Tide
-------------------------------------	----------------	---------------------

water Qua	ity wornt	oning Resu			TO NOVEITIBEL Z I	uuning wild		ue															
Monitoring	Weather	Sea	Sampling	Water			Water Te	emperature (°C)		pН	Salin	ity (ppt)	DO Satur	ation (%)	Dissolved	i Oxygen (mg/L)	Tur	bidity(NTU)	Suspend	led Solids	(mg/L) د
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
					Surface	1.0	24.8	24.8	8.4	8.4	33.0	33.0	98.1	98.2	6.7	6.8		1.1	1.1		5.7	5.9	
					Sunace	1.0	24.8	24.0	8.4	0.4	33.0	55.0	98.3	50.2	6.8	0.0	6.8	1.0	1.1		6.1	5.5	
SR8	Fine	Moderate	02:51	10.6	Middle	5.3	24.7	24.7	8.4	8.4	33.1	33.1	99.8	99.9	6.9	6.9	0.0	1.2	1.2	1.4	7.0	7.0	7.0
5110	Tille	Woderate	02.51	10.0	Wilddie	5.3	24.7	24.1	8.4	0.4	33.1	55.1	100.0	33.3	6.9	0.5		1.2	1.2	1.4	7.0	7.0	7.0
					Bottom	9.6	24.7	24.7	8.4	8.4	33.0	33.0	101.0	101.3	7.0	7.0	7.0	2.0	2.0		8.0	8.2	
					Bollom	9.6	24.7	2	8.4	0.1	33.0	00.0	101.5	101.0	7.0	1.0	1.0	2.0	2.0		8.3	0.2	
					Surface	1.0	25.0	25.0	8.3	8.3	33.0	33.0	96.0	96.0	6.6	6.6		1.2	1.2		5.9	6.1	
						1.0	25.0		8.3		33.0		96.0		6.6		6.6	1.2			6.2		_
SR9	Fine	Moderate	03:05	10.4	Middle	5.2	25.0	25.0	8.3	8.3	33.0	33.0	96.2	96.3	6.6	6.6		1.5	1.5	1.9	6.9	6.9	6.8
						5.2	25.0		8.3		33.0		96.3		6.6			1.5			6.8		
					Bottom	9.4	24.9	24.9	8.3	8.3	33.0	33.0	96.4	96.5	6.6	6.6	6.6	3.0	3.0		7.4	7.6	
						9.4	24.9		8.3		33.0		96.5		6.6			3.0			7.7		
					Surface	1.0	25.0	25.0	8.2	8.2	33.3 33.3	33.3	98.3	98.4	6.7	6.7		1.2	1.2		7.2	7.1	
						1.0	25.0		8.2				98.4		6.7		6.7	1.1			7.0		_
SR10	Fine	Moderate	04:28	6.2	Middle	3.1	25.0	25.0	8.3	8.3	33.3	33.3	98.6	98.6	6.7	6.8		1.7	1.7	1.5	6.8	6.7	6.5
				-		3.1	25.0		8.3		33.3		98.6		6.8			1.7			6.6		
					Bottom	5.2	25.0	25.0	8.3	8.3	33.3	33.3	98.8	98.9	6.8	6.8	6.8	1.7	1.7		5.8	5.7	
						5.2	25.0		8.3		33.3		98.9		6.8			1.7			5.6		

DA: Depth-averaged

Improvement Dredging for Lamma Power Station Navigatin Channel Water Quality Monitoring Water Quality Monitoring Results on 10 November 21 of

Vater Qual	ity Monit	oring Resu	lts on		10 November 21	during Mid-	-Flood	Гide															
Monitoring	Weather	Sea	Sampling	Water				emperature (°C)		pН	Salin	ity (ppt)	DO Satur	ration (%)	Dissolved	d Oxygen (mg/L)	Tur	bidity(NTU	J)	Suspend	ded Solids	(mg/L)
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
						1.0	24.6		8.4		33.2		101.2		7.0			1.0			5.2		-
					Surface	1.0	24.6	24.6	8.4	8.4	33.2	33.2	101.3	101.3	7.0	7.0	7.0	1.1	1.1		5.0	5.1	Í
C1	Fine	Moderate	17:06	10.8	Middle	5.4	24.5	24.5	8.4	8.4	33.2	33.2	101.8	101.9	7.0	7.0	7.0	1.4	1.5	1.6	4.5	4.5	4.6
01	1 me	Moderate	17.00	10.0	Middle	5.4	24.5	24.5	8.4	0.4	33.2	55.Z	102.0	101.5	7.0	7.0		1.5	1.5	1.0	4.5	4.5	4.0
					Bottom	9.8	24.5	24.6	8.4	8.4	33.2	33.2	103.2	103.5	7.1	7.2	7.2	2.3	2.4		4.1	4.1	ĺ
						9.8 1.0	24.6 24.9		8.4 8.4		33.2 33.3		103.8 99.9		7.2 6.9			2.4 1.5			4.1 2.7		-
					Surface	1.0	24.8	24.9	8.4	8.4	33.3	33.3	100.4	100.2	6.9	6.9		1.5	1.5		2.4	2.6	ĺ
C2	Fine	Moderate	15:27	11.2	Mi dalla	5.6	24.8	04.0	8.4	8.4	33.3	22.2	101.4	404.5	7.0	7.0	7.0	2.7	0.7	2.6	4.0	4.0	3.
02	1 me	Moderate	13.21	11.2	Middle	5.6	24.8	24.8	8.4	8.4	33.3	33.3	101.6	101.5	7.0	7.0		2.7	2.7	2.0	4.0	4.0	5.
					Bottom	10.2 10.2	24.8 24.8	24.8	8.4 8.4	8.4	33.3 33.3	33.3	102.8 103.8	103.3	7.1	7.1	7.1	3.7 3.6	3.7		4.8	4.8	ĺ
						10.2	24.8		8.3		33.3		98.3		6.7			3.6			4.7		-
					Surface	1.0	24.9	25.0	8.3	8.3	33.3	33.2	98.3	98.3	6.7	6.7	6.7	1.2	1.2		5.8	5.8	1
C3	Fine	Moderate	15:18	23.0	Middle	11.5	24.9	24.9	8.3	8.3	33.3 33.3	33.3	98.4	98.4	6.7	6.7	0.1	2.4	2.4	2.5	5.1	5.0	5.
						11.5 22.0	24.9 24.9		8.3 8.3		33.3		98.4 98.5		6.7 6.8			2.3 4.0	-		4.8 4.4		
					Bottom	22.0	24.9	24.9	8.3	8.3	33.3	33.3	98.5	98.5	6.8	6.8	6.8	3.8	3.9		4.2	4.3	ĺ
					Surface	1.0	24.9	24.9	8.3	8.3	33.2	33.2	100.6	100.6	6.9	6.9		2.8	2.8		5.5	5.4	
					Sunace	1.0	24.9	24.5	8.3	0.5	33.2	55.Z	100.6	100.0	6.9	0.5	6.9	2.8	2.0		5.3	5.4	
SR1	Fine	Moderate	16:38	9.0	Middle	4.5	24.9	24.9	8.3	8.3	33.2	33.2	100.6	100.6	6.9	6.9		3.9	3.9	3.6	7.2	7.1	6
						4.5 8.0	24.9 24.9		8.3 8.3		33.2 33.2		100.6 100.6		6.9 6.9			3.8 4.1			7.0 8.4		1
					Bottom	8.0	24.9	24.9	8.3	8.3	33.2	33.2	100.6	100.6	6.9	6.9	6.9	4.2	4.2		8.2	8.3	İ.
					Quitar	1.0	24.8	04.0	8.3	0.0	33.2	22.0	100.8	400.0	6.9	6.0		2.9			8.9	0.0	
					Surface	1.0	24.8	24.8	8.3	8.3	33.2	33.2	100.8	100.8	6.9	6.9	6.9	2.8	2.9		9.1	9.0	
SR2	Fine	Moderate	16:26	6.2	Middle	3.1	24.8	24.8	8.3	8.3	33.2	33.2	100.9	100.9	6.9	6.9	0.5	3.9	3.9	3.6	8.3	8.3	8
						3.1	24.8	-	8.3		33.2		100.9		6.9			3.9			8.3		
					Bottom	5.2 5.2	24.8 24.8	24.8	8.3 8.3	8.3	33.2 33.0	33.1	100.8 100.6	100.7	6.9 6.9	6.9	6.9	4.1	4.2		7.3	7.2	İ.
						1.0	24.8		8.3		33.2		100.9		6.9			1.1			6.8		-
					Surface	1.0	24.8	24.8	8.3	8.3	33.2	33.2	101.0	101.0	6.9	6.9	6.9	1.0	1.1		6.6	6.7	İ.
SR3	Fine	Moderate	16:10	7.8	Middle	3.9	24.8	24.8	8.3	8.3	33.2	33.2	101.0	101.1	6.9	6.9	6.9	1.4	1.5	1.5	7.4	7.4	7
0110	1	modorato	10.10	1.0	middio	3.9	24.8	21.0	8.3	0.0	33.2	00.2	101.1		6.9	0.0		1.5			7.4		1
					Bottom	6.8 6.8	24.8 24.8	24.8	8.3 8.3	8.3	33.2 33.2	33.2	101.3 101.3	101.3	7.0	7.0	7.0	2.0 1.9	2.0		8.7 8.3	8.5	İ.
						1.0	24.6		8.3		33.2		98.5		6.8			3.6		<u> </u>	6.6		-
					Surface	1.0	24.6	24.6	8.3	8.3	33.2	33.2	98.8	98.7	6.8	6.8		3.6	3.6		6.6	6.6	İ.
SR4	Fine	Moderate	16:05	13.0	Middle	6.5	24.6	24.6	8.3	8.3	33.2	33.2	99.0	99.1	6.8	6.8	6.8	4.0	4.0	4.0	5.7	5.8	5
0114	T IIIC	moderate	10.00	10.0	Mildule	6.5	24.5	24.0	8.3	0.0	33.2	00.2	99.2	55.1	6.8	0.0		4.0	4.0	4.0	5.8	0.0	
					Bottom	12.0 12.0	24.5 24.5	24.5	8.3 8.3	8.3	33.2 33.2	33.2	100.5 101.1	100.8	6.9 7.0	7.0	7.0	4.2	4.3		4.7 5.0	4.9	İ.
						12.0	24.5		8.4		33.2 33.2		101.1		6.9			2.8		<u> </u>	6.2		-
					Surface	1.0	24.9	24.9	8.4	8.4	33.2	33.2	100.1	100.1	6.9	6.9		2.7	2.8		5.7	6.0	İ.
CDE	Fine	Madarata	15.55	10.2	Middle	5.1	24.9	24.0	8.4	0.4	33.2	22.2	100.1	100.2	6.9	6.0	6.9	3.2	2.2	3.4	5.0	E 1	-
SR5	Fine	Moderate	15:55	10.2	Middle	5.1	24.9	24.9	8.4	8.4	33.2	33.2	100.2	100.2	6.9	6.9		3.2	3.2	3.4	5.2	5.1	5
					Bottom	9.2	24.9	24.9	8.3	8.3	33.2	33.2	100.4	100.4	6.9	6.9	6.9	4.3	4.3		4.1	4.0	İ.
						9.2	24.9		8.3		33.1		100.4		6.9			4.3		<u> </u>	3.9		-
					Surface	1.0	24.7 24.7	24.7	8.4 8.4	8.4	33.3 33.3	33.3	102.4 102.5	102.5	7.0	7.0		1.9 1.9	1.9		4.8	4.8	Ì
	_					6.3	24.7		8.4		33.3		102.0		7.1		7.1	2.2			4.3		Ι.
SR6	Fine	Moderate	15:55	12.6	Middle	6.3	24.7	24.7	8.4	8.4	33.3	33.3	102.9	102.8	7.1	7.1		2.2	2.2	2.6	4.4	4.4	4
					Bottom	11.6	24.6	24.7	8.4	8.5	33.3	33.3	103.5	104.2	7.1	7.2	7.2	3.5	3.6	1	3.8	3.7	ĺ
						11.6	24.7		8.5	0.0	33.2	00.0	104.9		7.2			3.6	0.0	Ļ	3.6	0	<u> </u>
					Surface	1.0	25.0 25.0	25.0	8.3 8.3	8.3	33.2 33.2	33.2	98.0 98.0	98.0	6.7 6.7	6.7		1.6 1.6	1.6		5.8 5.9	5.9	1
						10.9	25.0		8.3		33.2 33.2		98.0		6.7		6.7	2.5	+	1	5.9		1
SR7	Fine	Moderate	15:33	21.8	Middle	10.9	25.0	25.0	8.3	8.3	33.2	33.2	98.1	98.1	6.7	6.7		2.6	2.6	2.5	5.0	5.2	5.
					Bottom	20.8	25.0	25.0	8.3	8.3	33.2	33.2	98.2	98.2	6.7	6.7	6.7	3.2	3.2		4.3	4.3	
					DUILUITI	20.8	25.0	20.0	8.3	0.3	33.2	33.2	98.2	90.2	6.7	0.7	0.7	3.2	3.2		4.2	4.3	1

10 November 21 during Mid-Flood Tide

DA: Depth-averaged

Water Quality Monitoring Results on 10 November 21 during Mid-Fl	lood Tide
--	-----------

valei Qua	ity wornt	offing Rest			TO NOVEITIBELZ I	uuning Milu	-1 1000	liue															
Monitoring	Weather	Sea	Sampling	Water			Water Te	emperature (°C)		pН	Salir	nity (ppt)	DO Satu	ration (%)	Dissolved	d Oxygen (mg/L)	Tur	bidity(NTU)	Suspend	led Solids	s (mg/l
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	D
					Surface	1.0	24.8	24.8	8.3	8.3	33.1	33.1	97.9	97.9	6.7	6.7		1.2	1.2		3.5	3.5	1
					Suilace	1.0	24.8	24.0	8.3	0.5	33.1	33.1	97.9	51.5	6.7	0.7	6.7	1.2	1.2		3.5	5.5	
SR8	Fine	Moderate	16:44	9.6	Middle	4.8	24.8	24.8	8.3	8.3	33.1	33.1	98.1	98.2	6.7	6.8	0.7	2.5	2.5	2.5	3.3	3.4	
0110	Tille	wouerate	10.44	5.0	Wilddie	4.8	24.8	24.0	8.3	0.5	33.1	33.1	98.3	30.2	6.8	0.0		2.5	2.5	2.5	3.5	3.4	
					Bottom	8.6	24.8	24.8	8.3	8.3	33.1	33.1	98.7	98.8	6.8	6.8	6.8	3.8	3.8		2.9	2.9	
					Dottom	8.6	24.8	21.0	8.3	0.0	33.1	00.1	98.9	00.0	6.8	0.0	0.0	3.8	0.0		2.8	1.0	
					Surface	1.0	24.8	24.8	8.2	8.2	33.2	33.2	97.9	97.9	6.7	6.7		2.1	2.1		2.7	2.9	
						1.0	24.8		8.2		33.2		97.9		6.7		6.7	2.1			3.1		_
SR9	Fine	Moderate	16:28	9.2	Middle	4.6	24.8	24.8	8.2	8.2	33.1	33.1	98.0	98.0	6.7	6.7	•	2.2	2.2	2.5	4.2	4.1	
						4.6	24.8		8.2		33.1		98.0		6.7			2.2			4.0		_
					Bottom	8.2	24.7	24.7	8.2	8.2	33.1	33.1	98.4	98.6	6.8	6.8	6.8	3.3	3.3		5.0	5.2	
						8.2	24.7		8.2		33.1		98.7		6.8			3.3			5.4		_
					Surface	1.0	25.0	25.0	8.3	8.3	33.2	33.2	98.3	98.4	6.7	6.7		1.0	1.1		3.5	3.5	
						1.0	25.0		8.3		33.2		98.4		6.7		6.7	1.1			3.5		_
SR10	Fine	Moderate	15:00	6.2	Middle	3.1	25.0	25.0	8.3	8.3	33.2	33.2	98.4	98.5	6.7	6.7	•	1.3	1.3	1.6	4.1	4.0	
20			. 5.00			3.1	25.0	25.0	8.3	5.0	33.3		98.5	- 5.0	6.7			1.3			3.9		
					Bottom	5.2	25.0	25.0	8.3	8.3	33.3	33.3	98.7	98.8	6.8	6.8	6.8	2.6	2.6		5.1	5.1	
					204011	5.2	25.0	20.0	8.3	0.0	33.3	00.0	98.9	00.0	6.8	0.0	0.0	2.5	2.0		5.0	0.1	

DA: Depth-averaged

Improvement Dredging for Lamma Power Station Navigatin Channel Water Quality Monitoring Water Quality Monitoring Results on 12 November 21 of

Water Qual	lity Monit	oring Resu	ilts on		12 November 21	during Mid	-Ebb Tio	de															
Monitoring	Weather	Sea	Sampling	Water			Water Te	mperature (°C)		pН	Salin	ity (ppt)	DO Satur	ration (%)	Dissolve	d Oxygen (mg/L)	Tur	bidity(NTU)	Suspen	ded Solids	s (mg/L)
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
					Surface	1.0	24.9 24.9	24.9	8.1 8.1	8.1	33.3 33.3	33.3	104.3 104.2	104.3	7.1 7.1	7.1		3.9 3.9	3.9		6.5 4.7	5.6	
C1	Cloudy	Rough	21:08	11.0	Middle	5.5	24.7	24.7	8.1	8.1	33.4	33.4	99.4	99.4	6.8	6.8	7.0	4.4	4.5	4.5	4.5	5.3	4.9
0.	cloudy	rtougn	21.00	11.0		5.5 10.0	24.7 24.7		8.1 8.1		33.4 33.5		99.3 96.7		6.8 6.6			4.5 4.9	-		6.1 4.6		
					Bottom	10.0 1.0	24.7 24.8	24.7	8.1	8.1	33.5	33.5	96.5	96.6	6.6	6.6	6.6	5.2	5.1		3.1 6.0	3.9	
					Surface	1.0	24.8	24.8	8.2 8.2	8.2	33.3 33.3	33.3	112.0 111.9	112.0	7.7 7.7	7.7	7.5	4.4 4.4	4.4		4.9	5.5	
C2	Cloudy	Rough	19:50	10.5	Middle	5.3 5.3	24.3 24.3	24.3	8.2 8.2	8.2	33.3 33.3	33.3	105.6 105.3	105.5	7.3	7.3		4.9 5.0	5.0	5.0	4.3 3.9	4.1	5.0
					Bottom	9.5 9.5	24.2 24.2	24.2	8.2 8.2	8.2	33.3 33.3	33.3	103.2 103.1	103.2	7.2 7.2	7.2	7.2	5.4 5.6	5.5		5.9 5.1	5.5	
					Surface	1.0 1.0	24.6 24.6	24.6	8.2 8.2	8.2	33.7 33.7	33.7	115.7	115.6	8.0	8.0		4.2	4.2		3.6	3.9	
C3	Cloudy	Rough	19:33	22.8	Middle	11.4	24.5	24.5	8.2	8.2	33.7	33.7	107.0	106.9	7.4	7.4	7.7	4.2 4.3	4.3	4.6	4.6	4.4	4.4
00	cloudy	rtougn	10.00	22.0		11.4 21.8	24.5 24.5		8.2 8.2		33.7 33.7		106.7 103.1		7.4 7.1			4.3 5.4	-		4.2		
					Bottom	21.8 1.0	24.5 24.8	24.5	8.2 8.2	8.2	33.7 33.7	33.7	103.0 120.3	103.1	7.1 8.2	7.1	7.1	5.4 4.3	5.4		5.6 3.7	4.9	<u> </u>
					Surface	1.0	24.8	24.8	8.2	8.2	33.7	33.7	120.3	120.3	8.2	8.2	7.9	4.3	4.3		3.9	3.8	-
SR1	Cloudy	Moderate	20:49	7.9	Middle	4.0 4.0	24.4 24.4	24.4	8.2 8.2	8.2	33.7 33.7	33.7	109.9 109.9	109.9	7.6 7.6	7.6		5.6 5.6	5.6	5.4	5.7 4.0	4.9	4.7
					Bottom	6.9 6.9	24.4 24.4	24.4	8.2 8.2	8.2	33.7 33.7	33.7	106.9 106.7	106.8	7.4	7.4	7.4	6.1 6.2	6.2		4.5 6.1	5.3	
					Surface	1.0 1.0	24.7 24.7	24.7	8.2 8.2	8.2	33.6 33.6	33.6	122.8 122.8	122.8	8.4 8.4	8.4		5.8 5.8	5.8		3.2	4.0	
SR2	Cloudy	Rough	20:37	6.5	Middle	3.3	24.7	24.7	8.2	8.2	33.6	33.6	122.0	122.0	8.4	8.4	8.4	5.7	5.8	5.9	3.4	3.4	4.0
					Bottom	3.3 5.5	24.7 24.2	24.2	8.2 8.2	8.2	33.6 33.6	33.5	121.9 103.6	103.6	8.4 7.2	7.2	7.2	5.8 6.0	6.1		3.3 5.1	4.8	•
						5.5	24.2 24.9		8.2 8.2		33.5 33.7		103.6 120.4		7.2		1.2	6.1 4.1			4.5 4.6	1	<u> </u>
					Surface	1.0	24.9	24.9	8.2	8.2	33.7	33.7	120.3	120.4	8.2	8.2	8.1	4.1	4.1		5.2	4.9	-
SR3	Cloudy	Rough	20:20	7.6	Middle	3.8	24.5 24.5	24.5	8.2 8.2	8.2	33.7 33.7	33.7	115.6 115.4	115.5	8.0 7.9	8.0		4.7 4.8	4.8	4.7	5.8 8.3	7.1	6.3
					Bottom	6.6 6.6	24.3 24.3	24.3	8.2 8.2	8.2	33.7 33.7	33.7	105.8 105.7	105.8	7.3 7.3	7.3	7.3	5.3 5.3	5.3		8.0 5.6	6.8	
					Surface	1.0	24.8 24.8	24.8	8.1 8.1	8.1	33.4 33.4	33.4	105.6 105.5	105.6	7.3 7.2	7.3		4.4 4.3	4.4		3.9 4.8	4.4	
SR4	Cloudy	Rough	20:20	13.1	Middle	6.6 6.6	24.6 24.6	24.6	8.1 8.1	8.1	33.5 33.5	33.5	102.5 102.4	102.5	7.0 7.0	7.0	7.1	4.8 5.1	5.0	4.9	4.6	4.7	4.3
					Bottom	12.1	24.6	24.6	8.1	8.1	33.6	33.6	101.7	101.7	7.0	7.0	7.0	5.4	5.4		4.2	4.0	1
					Surface	12.1 1.0	24.6 24.9	24.9	8.1 8.1	8.1	33.6 33.4	33.4	101.6 110.4	110.4	7.0 7.6	7.6		5.4 4.6	4.6		3.7 3.7	4.3	
		_				1.0 4.4	24.9 24.8		8.1 8.1		33.4 33.4		110.3 107.4		7.6 7.4		7.5	4.6 5.2			4.9 5.0		-
SR5	Cloudy	Rough	20:14	8.8	Middle	4.4	24.8 24.8	24.8	8.1 8.2	8.1	33.4	33.4	107.3 104.9	107.4	7.4	7.4		5.2	5.2	5.2	4.6	4.8	4.8
					Bottom	7.8	24.8	24.8	8.2	8.2	33.4 33.4	33.4	104.7	104.8	7.2	7.2	7.2	5.8 5.8	5.8		5.9	5.3	
					Surface	1.0	24.8 24.8	24.8	8.2 8.2	8.2	33.5 33.5	33.5	117.8 117.8	117.8	8.1 8.1	8.1	7.9	3.8 3.8	3.8		4.4	4.1	
SR6	Cloudy	Rough	20:11	14.4	Middle	7.2 7.2	24.6 24.6	24.6	8.2 8.2	8.2	33.7 33.7	33.7	111.6 111.4	111.5	7.7 7.7	7.7	1.9	4.2 4.4	4.3	4.5	3.9 4.7	4.3	4.0
					Bottom	13.4 13.4	24.5	24.5	8.2	8.2	33.7 33.7	33.7	105.3 105.2	105.3	7.3	7.3	7.3	5.4	5.3		3.5	3.6	1
					Surface	1.0	24.7	24.7	8.2	8.2	33.7	33.7	117.0	117.0	8.0	8.0		4.1	4.1		4.3	4.1	
0.07	Olauda	Dauah	40.50	04.4		1.0 10.7	24.7 24.5		8.2 8.2		33.7 33.7		116.9 106.4		8.0 7.3	-	7.7	4.1 5.0		- A	3.8 5.2		
SR7	Cloudy	Rough	19:50	21.4	Middle	10.7 20.4	24.5 24.5	24.5	8.2 8.2	8.2	33.7 33.7	33.7	106.4 106.6	106.4	7.3	7.3		5.1	5.1	5.1	3.9	4.6	4.3
					Bottom	20.4	24.5	24.5	8.2	8.2	33.7	33.7	106.6	106.6	7.3	7.3	7.3	6.0	6.0		4.0	4.3	1

12 November 21 during Mid-Ebb Tide

valer Qua	ity worth	oning Resu			12 November 21	auring wia		ue															
Monitoring	Weather	Sea	Sampling	Water			Water Te	emperature (°C)		pН	Salin	ity (ppt)	DO Satur	ation (%)	Dissolved	d Oxygen (mg/L)	Tur	bidity(NTU)	Suspend	ded Solids	3 (mg/L)
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
					Surface	1.0	25.0	25.0	8.2	8.2	33.6	33.6	112.1	112.2	7.7	7.7		3.8	3.9		3.6	3.4	
					Suilace	1.0	25.0	23.0	8.2	0.2	33.6	33.0	112.2	112.2	7.7	1.1	7.7	3.9	5.5	1	3.2	3.4	
SR8	Cloudy	Moderate	20:50	10.8	Middle	5.4	24.8	24.8	8.2	8.2	33.6	33.6	111.8	111.8	7.7	7.7	1.1	3.8	3.8	4.0	4.2	4.0	3.
0110	Cloudy	Moderate	20.00	10.0	Middle	5.4	24.8	24.0	8.2	0.2	33.6	00.0	111.7	111.0	7.7	1.1		3.8	0.0	4.0	3.8	4.0	0.
					Bottom	9.8	24.8	24.8	8.2	8.2	33.7	33.7	102.2	102.3	7.0	7.0	7.0	4.4	4.4	1	3.9	4.0	
					501011	9.8	24.8	21.0	8.2	0.2	33.7	00	102.3	102.0	7.0	7.0	1.0	4.3			4.1	1.0	
					Surface	1.0	25.0	25.0	8.2	8.2	33.4	33.4	119.1	119.1	8.1	8.1		3.7	3.8	1	4.1	4.2	
						1.0	25.0		8.2		33.4		119.1		8.1	-	8.0	3.8		1	4.2		-
SR9	Cloudy	Moderate	20:40	10.5	Middle	5.3	24.8	24.8	8.2	8.2	33.5	33.5	113.5	113.5	7.8	7.8		3.8	3.8	3.8	4.2	4.1	4
						5.3	24.8		8.2		33.5		113.5		7.8			3.8		1	4.0		-
					Bottom	9.5	24.7	24.7	8.2	8.2	33.6 33.6	33.6	106.4	106.4	7.3	7.3	7.3	3.9	3.9	1	4.2	4.0	
						9.5	24.7		8.2				106.4		7.3			3.8			3.8		_
					Surface	1.0	23.9 23.9	23.9	8.2 8.2	8.2	33.1 33.1	33.1	122.7 122.5	122.6	8.6 8.6	8.6		5.2 5.1	5.2	1	5.3 5.0	5.2	
						3.3	23.9		8.2		33.0		122.5		8.4		8.5	5.1		4	5.0 4.8		-
SR10	Cloudy	Rough	19:22	6.6	Middle	3.3	23.8	23.8	8.2	8.2	33.0	33.0	119.9	119.9	8.4	8.4		5.3	5.2	5.3	4.0 5.2	5.0	5
						5.6	23.6		8.2		33.0		119.8		8.1			5.5		ł	5.1		-
					Bottom	5.6	23.5	23.5	8.2	8.2	32.9	32.9	114.8	112.8	7.8	8.0	8.0	5.7	5.6	1	6.2	5.7	1
						5.0	20.0		0.2		02.3		110.0		7.0			0.1			0.2		

DA: Depth-averaged

Improvement Dredging for Lamma Power Station Navigatin Channel Water Quality Monitoring Water Quality Monitoring Results on 12 November 21 of

Vater Qual	lity Monit	oring Resu	ilts on		12 November 21	during Mid	-Flood	Tide															
Monitoring	Weather	Sea	Sampling	Water			Water Te	emperature (°C)		pН	Salin	ity (ppt)	DO Satur	ation (%)	Dissolve	d Oxygen ((mg/L)	Tu	rbidity(NTL	J)	Suspen	ded Solids	/ (mg/L
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	oth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
					Surface	1.0	24.6	24.6	8.0	8.0	33.3	33.3	97.4	97.4	6.7	6.7		3.5	3.5		4.6	4.1	
					Surface	1.0	24.6	24.0	8.0	8.0	33.3	33.3	97.4	97.4	6.7	0.7	6.7	3.4	3.5		3.5	4.1	
C1	Fine	Rough	13:09	11.0	Middle	5.5	24.7	24.7	8.0	8.0	33.3	33.3	97.6	97.6	6.7	6.7	0.7	3.8	3.8	4.0	3.9	3.9	4.
-						5.5	24.7		8.0		33.3		97.6		6.7			3.8			3.9		
					Bottom	10.0 10.0	24.7 24.7	24.7	8.0 8.0	8.0	33.3 33.3	33.3	97.5 97.5	97.5	6.7 6.7	6.7	6.7	4.6	4.6		4.3	4.5	Í
						1.0	23.6		8.2		33.0		121.7		8.5			4.6			5.0		-
					Surface	1.0	23.6	23.6	8.2	8.2	33.0	33.0	121.6	121.7	8.6	8.6		4.7	4.7		5.8	5.4	ĺ
C2	Fine	Rough	14:34	10.7	Middle	5.4	23.5	23.5	8.2	8.2	33.0	33.0	120.2	120.1	8.5	8.5	8.5	5.0	5.1	5.1	5.7	5.6	5
02	TINC	Rough	14.04	10.7	Wildlie	5.4	23.5	23.5	8.2	0.2	33.0	33.0	119.9	120.1	8.4	0.0		5.2	5.1	0.1	5.5	5.6	Ŭ
					Bottom	9.7 9.7	23.5 23.5	23.5	8.2 8.2	8.2	33.0 33.0	33.0	110.6 110.7	110.7	7.8	7.8	7.8	5.5 5.5	5.5		4.8	4.5	İ.
						9.7	23.5		8.1		33.0		106.6		7.8			5.5 4.8			4.2		-
					Surface	1.0	24.3	24.3	8.1	8.1	33.2	33.2	106.5	106.6	7.4	7.4	7.4	4.8	4.8		5.0	4.8	İ.
C3	Fine	Rough	14:29	22.5	Middle	11.3	24.2	24.2	8.1	8.1	33.2	33.2	105.0	105.0	7.3	7.3	7.4	5.0	5.1	5.3	5.6	4.9	5
						11.3 21.5	24.2 24.1		8.1 8.1		33.2 33.2		105.0 104.7		7.3 7.3			5.2 6.0			4.1 6.0		
					Bottom	21.5	24.1	24.1	8.1	8.1	33.2	33.2	104.6	104.7	7.3	7.3	7.3	6.1	6.1		4.7	5.4	İ.
						1.0	24.6		8.2		33.7	00.7	105.6	105.0	7.3	7.0		4.5	4.5		3.8		
					Surface	1.0	24.6	24.6	8.2	8.2	33.7	33.7	105.6	105.6	7.3	7.3	7.3	4.5	4.5		3.9	3.9	İ.
SR1	Fine	Calm	13:18	7.3	Middle	3.7	24.5	24.5	8.2	8.2	33.7	33.7	105.2	105.1	7.2	7.2	7.5	4.8	4.8	4.9	3.4	3.7	3
						3.7	24.5		8.2		33.7		105.0		7.2			4.8			4.0		1
					Bottom	6.3 6.3	24.4 24.4	24.4	8.2 8.2	8.2	33.7 33.7	33.7	103.5 103.4	103.5	7.1	7.1	7.1	5.5 5.5	5.5		3.6 2.6	3.1	Í.
						1.0	24.4		8.2		33.6		112.6		7.1			5.0	-		2.0		⊢
					Surface	1.0	24.3	24.3	8.2	8.2	33.6	33.6	112.6	112.6	7.8	7.8		5.0	5.0		3.1	2.6	ĺ
0.50	-		10.05			3.1	24.3		8.2		33.5	00.5	111.2		7.7		7.8	5.0	5.0		3.9	0.7	Í.
SR2	Fine	Moderate	13:25	6.1	Middle	3.1	24.3	24.3	8.2	8.2	33.5	33.5	111.1	111.2	7.7	7.7		5.0	5.0	5.1	3.5	3.7	3
					Bottom	5.1	24.2	24.2	8.2	8.2	33.5	33.5	107.9	107.9	7.5	7.5	7.5	5.4	5.4		3.3	3.2	Í.
						5.1	24.2		8.2		33.5		107.8		7.5			5.3			3.1		_
					Surface	1.0	24.4 24.4	24.4	8.2 8.2	8.2	33.7 33.7	33.7	107.5 107.4	107.5	7.4	7.4		5.3 5.3	5.3		4.1 5.1	4.6	İ.
						3.5	24.4		8.2		33.7		107.4		7.4		7.4	5.3		-	3.0		Í
SR3	Fine	Moderate	13:39	6.9	Middle	3.5	24.3	24.3	8.2	8.2	33.7	33.7	105.9	105.9	7.3	7.3		5.3	5.3	5.3	3.3	3.2	3
					Bottom	5.9	24.3	24.3	8.2	8.2	33.7	33.7	102.9	102.9	7.1	7.1	7.1	5.2	5.2		3.8	3.7	İ.
					Dottom	5.9	24.3	24.5	8.2	0.2	33.7	55.7	102.8	102.5	7.1	7.1	7.1	5.2	5.2		3.6	5.7	
					Surface	1.0	24.6	24.6	8.1	8.1	33.3	33.3	102.1	102.1	7.0	7.0		4.4	4.4		3.2	3.8	ĺ
						1.0 6.8	24.6 24.6		8.1		33.3 33.4		102.1 101.0		7.0 7.0		7.0	4.4		-	4.3 2.8		1
SR4	Fine	Rough	14:01	13.5	Middle	6.8	24.6	24.6	8.1 8.1	8.1	33.4	33.4	101.0	101.0	7.0	7.0		4.7	4.7	4.7	3.1	3.0	
						12.5	24.6		8.1		33.4		99.3		6.8			4.9			3.3		Í
					Bottom	12.5	24.6	24.6	8.1	8.1	33.4	33.4	99.2	99.3	6.8	6.8	6.8	5.1	5.0		3.1	3.2	Í
					Surface	1.0	24.6	24.6	8.1	8.1	33.3	33.3	101.1	101.1	7.0	7.0		4.7	4.7		3.9	3.9	
					Gunade	1.0	24.6	24.0	8.1	0.1	33.3	00.0	101.1	101.1	7.0	7.0	7.0	4.7	4.7		3.8	0.0	1
SR5	Fine	Rough	14:08	9.6	Middle	4.8	24.6 24.6	24.6	8.1	8.1	33.3	33.3	100.8 100.8	100.8	6.9 6.9	6.9		4.5	4.6	5.1	3.5	3.6	
						4.8 8.6	24.6		8.1 8.1		33.3 33.3		100.8		6.9			4.6 6.1		-	3.6 4.4		1
					Bottom	8.6	24.6	24.6	8.1	8.1	33.3	33.3	100.0	100.1	6.9	6.9	6.9	6.1	6.1		3.5	4.0	İ.
					Queferer	1.0	24.5	04.5	8.2		33.6	22.0	110.4	110.4	7.6	7.0		4.0	4.0		4.3	2.0	
					Surface	1.0	24.5	24.5	8.2	8.2	33.6	33.6	110.3	110.4	7.6	7.6	7.5	4.0	4.0		3.4	3.9	
SR6	Fine	Rough	13:54	14.0	Middle	7.0	24.5	24.5	8.2	8.2	33.7	33.7	107.7	107.7	7.4	7.4	1.0	5.1	5.1	5.0	3.5	3.7	
						7.0	24.5	_ 1.0	8.2		33.7		107.6		7.4			5.1	5		3.8		1
					Bottom	13.0 13.0	24.4 24.4	24.4	8.2 8.2	8.2	33.7 33.7	33.7	106.0 105.9	106.0	7.3 7.3	7.3	7.3	5.9 6.0	6.0		4.0	3.7	1
			1		1	13.0	24.4		8.2	1	33.7 33.6		105.9	1	7.3			6.0 4.1			3.3	I	⊢
					Surface	1.0	24.4	24.4	8.2	8.2	33.6	33.6	109.8	109.8	7.6	7.6		4.1	4.1	1	3.8	4.7	1
007	F :	D- 1		04.0	A.C. 1.11	10.8	24.5	04.5	8.2		33.7	00.7	105.6	405.0	7.3	7.0	7.5	4.9	5.0	1	3.6		ĺ
SR7	Fine	Rough	14:11	21.6	Middle	10.8	24.5	24.5	8.2	8.2	33.7	33.7	105.6	105.6	7.3	7.3		5.0	5.0	5.0	3.5	3.6	4
					Bottom	20.6	24.4	24.4	8.1	8.1	33.7	33.7	103.4	103.4	7.1	7.1	7.1	5.8	5.8	1	3.7	4.0	Í
					Dottom	20.6	24.4	24.4	8.1	0.1	33.7	55.1	103.3	100.4	7.1	1.1	1.1	5.8	5.0		4.3	u	1

12 November 21 during Mid-Flood Tide

DA: Depth-averaged

|--|

		ering reee				aanng inia																	
Monitoring	Weather	Sea	Sampling	Water			Water Te	emperature (°C)		pН	Salin	iity (ppt)	DO Satu	ation (%)	Dissolved	d Oxygen (mg/L)	Tur	bidity(NTU	J)	Suspend	led Solids	mg/L د
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	e Di
					Surface	1.0	24.6	24.6	8.1	8.1	33.6	33.6	103.4	103.4	7.1	7.1		4.1	4.1		1.8	2.0	
					Sunace	1.0	24.6	24.0	8.1	0.1	33.6	33.0	103.3	103.4	7.1	7.1	7.1	4.1	4.1		2.2	2.0	
SR8	Fine	Calm	13:28	10.5	Middle	5.3	24.7	24.7	8.1	8.1	33.6	33.6	103.1	103.1	7.1	7.1	1.1	4.5	4.5	4.6	2.6	2.7	2
0110	TINC	Gain	10.20	10.0	Widdle	5.3	24.7	24.1	8.1	0.1	33.6	00.0	103.1	100.1	7.1	7.1		4.5	4.0	4.0	2.8	2.1	
					Bottom	9.5	24.7	24.7	8.1	8.1	33.7	33.7	102.8	102.8	7.1	7.1	7.1	5.1	5.1		3.1	3.8	
					Dottom	9.5	24.7	2	8.1	0.1	33.7	00.1	102.7	102.0	7.1			5.1	0.1		4.4	0.0	
					Surface	1.0	24.7	24.7	8.1	8.1	33.6	33.6	100.2	100.3	6.9	6.9		3.9	3.9		5.0	5.7	
						1.0	24.7		8.1		33.6		100.4		6.9		7.0	3.9			6.4		_
SR9	Fine	Calm	13:38	10.2	Middle	5.1	24.7	24.8	8.1	8.1	33.6	33.6	102.6	102.7	7.0	7.0		3.9	3.9	4.3	5.0	4.5	
				-		5.1	24.8		8.1		33.6		102.7		7.0			3.9			3.9	-	_
					Bottom	9.2	24.8	24.8	8.1	8.1	33.7	33.7	102.7	102.7	7.0	7.0	7.0	5.1	5.1		4.3	4.4	
						9.2	24.8		8.1		33.7		102.6		7.0			5.0			4.5		_
					Surface	1.0	23.4	23.4	8.2	8.2	32.9	32.9	113.8	113.8	8.0	8.0		4.9	4.9		4.5	5.0	
						1.0	23.4		8.2		32.9		113.8		8.0		8.1	4.9			5.4		_
SR10	Fine	Moderate	14:58	6.5	Middle	3.3	23.4	23.4	8.2	8.2	32.9	32.9	115.6	115.7	8.1	8.2	••••	4.9	4.9	5.3	4.3	4.0	
20				2.0		3.3	23.4		8.2		32.9	52.0	115.7		8.2			4.9	7.0		3.7		
					Bottom	5.5	23.4	23.4	8.2	8.2	33.0	33.0	112.5	112.6	7.9	7.9	7.9	6.1	6.1		4.5	4.6	
						5.5	23.4		8.2		33.0	20.0	112.6		7.9			6.0	5.1		4.7		

DA: Depth-averaged

Improvement Dredging for Lamma Power Station Navigatin Channel Water Quality Monitoring Water Quality Monitoring Results on 15 November 21 of

Vater Qua	lity Monit	oring Resu	ilts on		15 November 21	during Mid	-Ebb Tio	le															
Monitoring	Weather	Sea	Sampling	Water			Water Te	mperature (°C)		pН	Salini	ity (ppt)	DO Satur	ration (%)	Dissolved	d Oxygen	(mg/L)	Tur	bidity(NTU	J)	Suspend	ded Solids	(mg/L)
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
					Surface	1.0	23.5	23.5	8.0	8.0	32.0	32.0	115.2	115.1	8.1	8.1		3.4	3.4		4.8	4.8	
						1.0 5.2	23.5 23.4		8.0 8.0		32.1 32.4		115.0 101.1		8.1 7.1		7.6	3.3 3.4			4.8		1
C1	Fine	Moderate	08:08	10.4	Middle	5.2	23.4	23.4	8.0	8.0	32.4	32.4	101.1	101.1	7.1	7.1		3.5	3.5	3.3	3.6	3.9	4.0
					Bottom	9.4 9.4	23.3 23.3	23.3	8.0 8.0	8.0	32.7 32.7	32.7	98.9 98.9	98.9	7.0 7.0	7.0	7.0	3.1 3.2	3.2		3.2 3.3	3.3	
					Surface	1.0 1.0	23.6 23.6	23.6	8.1 8.1	8.1	32.1 32.1	32.1	105.9 106.2	106.1	7.4 7.5	7.5		2.8 2.8	2.8		2.9 3.0	3.0	
C2	Fine	Moderate	09:33	10.2	Middle	5.1	23.5	23.5	8.1	8.1	32.8	32.8	101.4	101.4	7.1	7.1	7.3	3.0	3.0	2.9	4.6	4.6	4.
					Bottom	5.1 9.2	23.5 23.5	23.5	8.1 8.1	8.1	32.8 32.8	32.7	101.4 102.9	103.1	7.1 7.2	7.2	7.2	3.0 3.0	3.0		4.6 5.3	5.4	
						9.2 1.0	23.5 23.6		8.1 8.1	8.1	32.6 32.3	32.3	103.2 102.5	102.4	7.2 7.2	7.2		3.0 3.1	3.1	<u> </u>	5.4 2.3	2.4	<u> </u>
					Surface	1.0 11.6	23.5 23.5	23.6	8.1 8.2		32.4 33.3		102.2 102.4		7.2 7.2		7.2	3.1 4.7			2.4 3.7		ł
C3	Fine	Moderate	09:16	23.1	Middle	11.6	23.5	23.5	8.2	8.2	33.3	33.3	102.5	102.5	7.2	7.2		4.7	4.7	4.4	3.4	3.6	3.
					Bottom	22.1 22.1	23.6 23.6	23.6	8.2 8.2	8.2	33.6 33.4	33.5	105.6 105.3	105.5	7.4 7.3	7.4	7.4	5.3 5.4	5.4		4.1 4.5	4.3	
					Surface	1.0	23.5 23.5	23.5	8.1 8.1	8.1	32.2 32.3	32.2	102.3 102.1	102.2	7.2	7.2	7.0	3.3 3.3	3.3		3.8 3.8	3.8	
SR1	Fine	Moderate	08:11	7.6	Middle	3.8 3.8	23.4 23.4	23.4	8.1 8.1	8.1	32.5 32.5	32.5	101.4 101.3	101.4	7.1	7.1	7.2	3.4 3.4	3.4	3.4	2.4 2.1	2.3	2
					Bottom	6.6	23.5	23.5	8.1	8.1	32.5	32.5	101.1	101.1	7.1	7.1	7.1	3.5	3.5		1.8	1.7	
					Surface	6.6 1.0	23.5 23.6	23.6	8.1 8.1	8.1	32.5 32.1	32.1	101.0 103.0	102.9	7.1 7.2	7.2		3.5 3.1	3.2		1.6 1.7	1.8	-
						1.0 3.2	23.5 23.4		8.1 8.1		32.1 32.4		102.7 101.4		7.2		7.2	3.2 3.2			1.8 2.4		
SR2	Fine	Moderate	08:21	6.3	Middle	3.2 5.3	23.4 23.4	23.4	8.1	8.1	32.4	32.4	101.4	101.4	7.1	7.1		3.3	3.3	3.3	2.2	2.3	2
					Bottom	5.3	23.4	23.4	8.1 8.1	8.1	32.4 32.4	32.4	101.5 101.7	101.6	7.1 7.2	7.2	7.2	3.3 3.4	3.4		3.3 3.0	3.2	
					Surface	1.0	23.6 23.6	23.6	8.1 8.1	8.1	32.1 32.1	32.1	102.9 102.6	102.8	7.2	7.2	7.2	3.3 3.2	3.3		1.9 2.0	2.0	ĺ
SR3	Fine	Moderate	08:36	7.8	Middle	3.9 3.9	23.4 23.4	23.4	8.1 8.1	8.1	32.5 32.5	32.5	101.2 101.2	101.2	7.1 7.1	7.1	1.2	3.3 3.3	3.3	3.3	2.7 2.6	2.7	2
					Bottom	6.8	23.5	23.5	8.1	8.1	32.3	32.3	102.8	103.0	7.2	7.2	7.2	3.4	3.4		3.5	3.6	
					Surface	6.8 1.0	23.5 23.6	23.6	8.1 8.1	8.1	32.3 32.2	32.2	103.1 102.6	102.5	7.2 7.2	7.2		3.4 2.8	2.8		3.6 4.7	4.7	-
						1.0 6.8	23.5 23.4		8.1 8.1		32.2 32.8		102.4 101.7		7.2 7.1		7.2	2.8 3.1			4.7 4.3		
SR4	Fine	Moderate	09:01	13.6	Middle	6.8 12.6	23.4 23.5	23.4	8.1 8.1	8.1	32.8 32.8	32.8	101.8 102.3	101.8	7.1 7.2	7.1		3.1 4.0	3.1	3.3	4.1 3.0	4.2	4
					Bottom	12.6	23.5	23.5	8.1	8.1	32.8	32.8	102.3	102.3	7.2	7.2	7.2	4.0	4.0		3.2	3.1	
					Surface	1.0	23.7 23.7	23.7	8.1 8.1	8.1	31.9 31.9	31.9	105.3 105.4	105.4	7.4	7.4	7.0	3.0 3.0	3.0		2.8 3.1	3.0	ĺ
SR5	Fine	Moderate	09:09	9.5	Middle	4.8 4.8	23.4 23.4	23.4	8.1 8.1	8.1	32.6 32.6	32.6	100.9 101.0	101.0	7.1 7.1	7.1	7.3	3.1 3.1	3.1	3.1	2.2 2.1	2.2	2
					Bottom	8.5	23.5	23.5	8.1 8.1	8.1	32.5	32.4	102.4	102.5	7.2	7.2	7.2	3.3	3.3		1.9	1.8	ĺ
					Surface	1.0	23.6	23.6	8.1	8.1	32.4 32.1	32.1	102.6 102.6	102.4	7.2	7.2		3.3 2.8	2.8		1.7 1.7	1.8	-
050	-		00.47			1.0 7.2	23.5 23.5		8.1 8.1		32.2 32.8		102.2 101.2		7.2		7.2	2.8 3.2			1.9 2.8		
SR6	Fine	Moderate	08:47	14.3	Middle	7.2 13.3	23.5 23.5	23.5	8.1 8.1	8.1	32.8 32.9	32.8	101.2 101.5	101.2	7.1 7.1	7.1	<u> </u>	3.3 3.8	3.3	3.3	2.6 3.1	2.7	2
					Bottom	13.3	23.5	23.5	8.1	8.1	32.9	32.9	101.5	101.5	7.1	7.1	7.1	3.7	3.8		3.0	3.1	L
					Surface	1.0 1.0	23.6 23.5	23.6	8.1 8.1	8.1	32.3 32.4	32.3	106.0 102.7	104.4	7.4 7.2	7.3	7.3	3.3 3.4	3.4		2.2 2.0	2.1	
SR7	Fine	Moderate	09:03	22.4	Middle	11.2 11.2	23.5 23.6	23.6	8.2 8.2	8.2	33.4 33.5	33.4	103.0 103.3	103.2	7.2	7.2	1.5	4.2 4.2	4.2	4.1	3.6 3.3	3.5	3
					Bottom	21.4	23.6	23.6	8.2 8.2	8.2	33.6	33.6	106.5	106.4	7.4	7.4	7.4	4.8	4.8		4.0	4.0	1
			1			21.4	23.6		8.Z	1	33.5		106.3	1	1.4	1	1	4.8	1	1	3.9		1

15 November 21 during Mid-Ebb Tide

Water Quality Monitoring Results on 15 November 21 during Mid-Ebb	Tide
---	------

valer Qua	ity worth	oning Resi			15 November 21	uuning wild-		ue															
Monitoring	Weather	Sea	Sampling	Water			Water Te	emperature (°C)		pН	Salin	nity (ppt)	DO Satu	ration (%)	Dissolved	d Oxygen (mg/L)	Tur	bidity(NTU)	Suspend	ded Solids	३ (mg/l
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	D
					Surface	1.0	23.5	23.5	8.0	8.0	32.1	32.2	112.5	112.3	7.9	7.9		3.0	3.0		2.8	2.8	
					Sunace	1.0	23.5	23.5	8.0	0.0	32.2	52.2	112.1	112.5	7.9	1.5	7.5	3.0	3.0	1	2.8	2.0	
SR8	Fine	Moderate	08:27	9.2	Middle	4.6	23.4	23.4	8.0	8.0	32.4	32.4	101.3	101.1	7.1	7.1	1.5	3.2	3.2	3.2	2.9	3.0	
0110	T IIIC	Moderate	00.27	5.2	Mildale	4.6	23.4	20.4	8.0	0.0	32.4	02.4	100.9	101.1	7.1	7.1		3.2	0.2	0.2	3.0	0.0	
					Bottom	8.2	23.3	23.3	8.0	8.0	32.8	32.8	99.9	100.0	7.0	7.0	7.0	3.3	3.3	1 1	3.1	3.1	
					Bollom	8.2	23.3	20.0	8.0	0.0	32.8	02.0	100.1	100.0	7.0	7.0	1.0	3.3	0.0		3.1	0.1	
					Surface	1.0	23.5	23.5	8.0	8.0	32.0	32.0	104.3	104.1	7.3	7.3		3.2	3.2	1 1	3.5	3.5	
						1.0	23.5		8.0		32.1		103.9		7.3		7.2	3.2		1 '	3.4		
SR9	Fine	Moderate	08:39	9.3	Middle	4.7	23.4	23.4	8.0	8.0	32.3	32.4	101.7	101.6	7.2	7.2		3.3	3.3	3.6	3.1	3.1	
						4.7	23.4		8.0		32.4		101.4		7.1			3.3		1 '	3.0		_
					Bottom	8.3	23.4	23.4	8.0	8.0	32.5	32.5	100.4	100.5	7.1	7.1	7.1	4.2	4.2	1 1	2.2	2.3	
						8.3	23.4		8.0		32.5		100.5		7.1			4.2		<u> </u>	2.3		_
					Surface	1.0	23.6	23.6	8.1	8.1	32.1	32.1	105.1	105.2	7.4	7.4		2.7	2.8	1 '	3.0	3.0	
						1.0	23.5		8.1		32.1		105.2		7.4		7.3	2.8		1 '	3.0		_
SR10	Fine	Moderate	09:57	6.2	Middle	3.1	23.5	23.5	8.1	8.1	32.4	32.4	102.2	102.3	7.2	7.2	_	2.9	2.9	2.9	3.3	3.3	
						3.1	23.5		8.1		32.5		102.3		7.2			2.9			3.2		_
					Bottom	5.2	23.6	23.6	8.1	8.1	32.2	32.2	104.4	104.6	7.3	7.4	7.4	3.0	3.0	1 '	3.6	3.5	
					224011	5.2	23.6	_5.0	8.1	2.1	32.2		104.8		7.4			3.0	2.0		3.4	2.0	

DA: Depth-averaged

Improvement Dredging for Lamma Power Station Navigatin Channel Water Quality Monitoring Water Quality Monitoring Results on 15 November 21 of

<table-container> Mathem Mathem Matrix</table-container>	Water Qual	ity Monit	oring Resu	lts on		15 November 21	during Mid-	-Flood	Tide															
	Monitorina	Weather	Sea	Sampling	Water						pН	Salin	ity (ppt)	DO Satur	ation (%)	Dissolved	d Oxygen (mg/L)	Tur	bidity(NTU)	Suspend	ded Solids	(mg/L)
		Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
							1.0	24.7		8.1		32.1		106.7		7.3			2.6			2.7		<u> </u>
						Surface			24.7		8.1		32.2		106.6		7.3	7.0		2.6			2.7	1
	C1	Fino	Modorato	16.39	10.1	Middlo	5.1	24.5	24.5		9.1		32.7	101.2	101.2	7.0	7.0	1.2	3.1	2.1	3.0	2.8	3.0	3.0
····································	U1	1 me	Woderate	10.50	10.1	Wildule			24.5		0.1		52.1		101.2		7.0			3.1	3.0		5.0	5.0
Ref Moderate Index Surface Ta Sufface<						Bottom			24.5		8.1		32.6		102.3		7.0	7.0		3.3			3.4	1
																-								
C2 Fire Modents 15.0 Modents 15.0 Modents 5.4 44.5 24.5						Surface			24.5		8.1		32.5		101.0		7.0			3.7			3.9	1
Image: bolic		-	•• • •	45.00	40.0													7.0						
Image: biol:	62	Fine	Moderate	15:06	10.8	Middle	5.4	24.5	24.5	8.1	8.1	32.4	32.4	101.7	101.7	7.0	7.0		3.8	3.9	3.9	3.1	3.1	3.1
G B						Bottom			24.5		8.1		32.9		101.1		7.0	7.0		4.2	1		2.4	1
A mode with bias																								—
Res Moderate 15.4 23.5 Moderate 17.5 23.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td>Surface</td> <td></td> <td></td> <td>24.5</td> <td></td> <td>8.1</td> <td></td> <td>32.4</td> <td></td> <td>101.4</td> <td></td> <td>7.0</td> <td></td> <td></td> <td>3.7</td> <td></td> <td></td> <td>2.9</td> <td>ł</td>						Surface			24.5		8.1		32.4		101.4		7.0			3.7			2.9	ł
Image: bolic	<u></u>	F in a	Madanata	45-04	00 F	Middlo			24.5	8.2	8.2		33.3		102.1		7.0	7.0		4.4			3.2	2.0
Image: bolic	63	Fine	woderate	15:24	23.5	Wildule		-	24.5		0.2		55.5		102.1		7.0			4.4	4.4		J.2	3.2
SR1 Fine Moderate Fine						Bottom			24.6		8.2		33.5		106.5		7.3	7.3		5.1			3.7	1
Ref Moderale Fiel Moderale Fiel Moderale Fiel Moderale Fiel Moderale Fiel Moderale Fiel Moderale Fiel																								
SR1 Fine Moderate 1633 7.9 Middle 4.40 2.44 2.44 8.1 6.1 2.5 6.00 7.0 7.0 7.0 7.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td>Surface</td> <td></td> <td></td> <td>24.5</td> <td></td> <td>8.1</td> <td></td> <td>32.3</td> <td></td> <td>101.9</td> <td></td> <td>7.0</td> <td></td> <td></td> <td>2.9</td> <td></td> <td></td> <td>1.8</td> <td>1</td>						Surface			24.5		8.1		32.3		101.9		7.0			2.9			1.8	1
set indefinition indefini																		7.0						1
Image: bolic	SR1	Fine	Moderate	16:33	7.9	Middle			24.4		8.1		32.6		100.7		7.0			3.1	3.1		2.4	2.4
RR2 Fine Moderate 16.2 Kardine 10.2 Kardine 10.0 24.7 8.1 8.1 8.2 10.05 10.05 7.3 <td></td> <td></td> <td></td> <td></td> <td></td> <td>Battam</td> <td>6.9</td> <td>24.5</td> <td>24.5</td> <td>8.1</td> <td>0.1</td> <td>32.5</td> <td>22.4</td> <td>100.8</td> <td>100.9</td> <td>7.0</td> <td>7.0</td> <td>7.0</td> <td>3.4</td> <td>2.4</td> <td></td> <td>2.9</td> <td>2.0</td> <td>1</td>						Battam	6.9	24.5	24.5	8.1	0.1	32.5	22.4	100.8	100.9	7.0	7.0	7.0	3.4	2.4		2.9	2.0	1
SR2 Fine Moderate 16.2 6.3 Surface 10 24.7 24.7 24.8 32.3 32.3 32.3 7.3 <th7.3< th=""> <th7.3< th=""> 7.3<td></td><td></td><td></td><td></td><td></td><td>Bollom</td><td></td><td></td><td>24.5</td><td></td><td>0.1</td><td></td><td>32.4</td><td></td><td>100.8</td><td></td><td>7.0</td><td>7.0</td><td></td><td>3.4</td><td></td><td></td><td>2.9</td><td></td></th7.3<></th7.3<>						Bollom			24.5		0.1		32.4		100.8		7.0	7.0		3.4			2.9	
SR2 Fine Moderate 10:2 24.7 6.8 10:2 24.7 6.8 10:2 10:7						Surface			24.7		8.1		32.0		105.6		7.3			3.2			2.9	ł
SR2 Image Moderate 16/2 6.3 Model 3.2 2.4 3.4											-							7.2						1
Image: here Imag	SR2	Fine	Moderate	16:25	6.3	Middle			24.5		8.1		32.3		102.7		7.1			3.4	3.3		2.7	2.6
Image: bolic										_										-				1
SR3 Fine Moderate 16:1 7.8 Surface 10 246 246 81 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>Bottom</td><td></td><td></td><td>24.6</td><td></td><td>8.1</td><td></td><td>32.1</td><td></td><td>104.5</td><td></td><td>7.2</td><td>7.2</td><td></td><td>3.4</td><td></td><td></td><td>2.1</td><td>1</td></t<>						Bottom			24.6		8.1		32.1		104.5		7.2	7.2		3.4			2.1	1
SR3 Fine Moderate 16:1 7.8 Middle 3.9 24.5 8.1						o /									100.0									
SR3 Fine Mederate 16:1 7.8 Middle 3.9 24.5 24.5 8.1 8.1 32.6 100 100 6.9 6.9 6.9 7.0 7.0 7.0 7.0						Surface	1.0	24.6	24.6	8.1	8.1	32.2	32.2	102.7	103.0	7.1	7.1	7.0	3.0	3.0		2.9	3.0	ł
Image: bolic	SR3	Fine	Moderate	16.11	7.8	Middle			24.5		81		32.6		100.7		69	7.0		3.0	3.1		27	2.6
SR4 I	0.10	1	modorato	10.11	1.0	inidato			21.0		0.1		02.0				0.0			0.0	0.1		2	2.0
SR4 Fine Moderate 15:37 13.5 Surface 10 24.5 24.5 8.1 8.1 8.1 32.3 32.3 101.6 7.0						Bottom			24.5		8.1		32.7		101.6		7.0	7.0		3.3			2.2	1
SR4 Fine Moderate 15:37 13:59 Surface 10 24.5 24.5 8.1 8.1 32.3 32.3 101.6 101.8 7.0 7.0 7.0 7.0 3.0 3.0 2.7 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																								
SR4 Fine Moderate 15.37 13.5 Middle 6.8 24.5 24.5 8.1 8.1 8.1 32.8 32.9 101.3 101.4 7.0						Surface			24.5		8.1		32.3		101.8		7.0			2.7			2.7	1
SR4 Fine Moderate 15.7 13.5 Mddle 6.8 24.5 8.1 8.1 32.9 32.9 101.4 101.6 7.0										_								7.0						1
SR5 Fine Moderate 15:29 9.4 Surface 1.0 24.5 24.5 8.1 8.1 33.0 33.0 101.6 101.6 7.0	SR4	Fine	Moderate	15:37	13.5	Middle			24.5		8.1		32.9		101.4		7.0			3.0	2.9		2.6	2.5
SR5 Fine Moderate 15:9 9.4 Surface 10.0 24.5 24.5 8.1 33.0 101.6 7.0 7.0 7.0 7.1						Bottom			24.5		8.1		33.0		101.6		7.0	7.0		3.1	1		23	ł
SR5 Fine Moderate 15:29 9,4 Middle 10 24.5 8.1 8.1 32.3 32.3 102.0 10.2 7.0 7.1 7.0<						BOROTT			24.0		0.1		55.0		101.0		7.0	1.0		J.I			2.3	
SR5 Fine Moderate 15.29 9.4 Middle 4.7 24.5 8.1 8.1 32.3 102.0 7.0 7.0 7.0 7.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td>Surface</td> <td></td> <td></td> <td>24.5</td> <td></td> <td>8.1</td> <td></td> <td>32.3</td> <td></td> <td>102.2</td> <td></td> <td>7.1</td> <td></td> <td></td> <td>2.7</td> <td></td> <td></td> <td>4.6</td> <td>1</td>						Surface			24.5		8.1		32.3		102.2		7.1			2.7			4.6	1
SR5 Fine Moderate 15:29 9.4 Mddle 4.7 24.5 24.5 8.1 8.1 32.6 32.6 100.9 101.0 7.																-		7.0		┨────				ł
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SR5	Fine	Moderate	15:29	9.4	Middle			24.5		8.1		32.6		101.0		7.0			3.1	3.1		3.5	3.5
SR6 Fine Moderate 15:68 Surface 10 24.5 24.5 8.1 8.1 32.4 32.5 102.3 102.2 7.1 7.1 7.1 3.4 3.4 2.4 2.5 SR6 Fine Moderate 15:58 Surface 10 24.6 8.1 8.1 32.2 32.5 102.4 7.1 7.1 7.1 7.1 3.4 3.4 2.4 2.4 2.5 SR6 Fine Moderate 15.58 A Middle 7.2 24.5 24.5 8.1 8.1 33.0 3.0 7.0																				+				ł
SR6 Fine Fine Fine Fine Fine Fine Fine Fine						Bottom	-		24.5		8.1		32.5		102.2		7.1	7.1		3.4			2.5	ł
SR6 Fine Fine Fine Fine Fine Fine Fine Fine						Surface			24.6		0.1	_	22.2		102.4		7.1			25			4.0	
SR6 Fine Moderate 15:8 14.3 Middle 7.2 24.5 24.5 8.1 8.1 33.0 30.0 101.1 101.1 7.0 7.0 3.5 3.5 3.6 4.3 4.4 4.5 4.4 4.6 4.5 4.4 4.6 4.4 4.6 4.4 4.6 4						Surrace			24.0		0.1	32.2	32.2		102.4	-	7.1	70		3.5			4.9	l
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SR6	Fine	Moderate	15:58	14.3	Middle			24.5		8.1		33.0		101.1		7.0	7.0		3.5	3.6		4.4	4.3
SR7 Fine Moderate 15.40 22.1 Bottom 13.3 24.5 24.5 8.1 8.1 32.8 101.9 10.1 7.0 7.0 7.0 7.0 3.8 3.8 3.6 3.7 SR7 Fine Moderate 15.40 22.1 1.0 24.5 24.5 8.1 8.1 32.8 32.4 102.0 101.9 7.0 7.0 7.0 3.8 3.8 3.6 3.7 SR7 Fine Moderate 15.40 22.1 24.5 24.5 8.1 8.1 32.3 32.4 102.0 101.9 7.0 7.0 7.0 3.8 3.8 3.6 3.7 Battom 21.1 24.5 24.5 8.2 8.2 33.2 33.2 103.5 101.8 7.0 7.0 7.1 7.1 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.6 3.7 Battom 21.1 24.5 24.5 8.2 33.5 33.4 105.8 105.8 7.3 7.3 7.3	0.10			.0.00	11.0	middio			21.0		5		00.0					L		0.0	0.0			
SR7 Fine Fine Fine Fine Fine Fine Fine Fine						Bottom			24.5		8.1		32.8		101.8		7.0	7.0		3.8			3.7	i
SR7 Fine Fine Fine Fine Fine Fine Fine Fine															I		I							
SR7 Fine Moderate 15:40 22.1 Middle 11.1 24.5 24.5 8.2 8.2 33.2 103.5 103.7 7.1 7.1 3.9 3.9 4.0 3.7 3.8 3.8 3.8 3.8 3.8 3.9 4.3						Surface			24.5		8.1		32.4		101.9		7.0			3.7			3.5	i i
SR7 Fine Moderate 15:40 22.1 Middle 11.1 24.5 8.2 3.32 33.2 103.9 103.7 7.1 7.1 3.9 3.9 4.0 3.8 3.8 3.9 Bottom 21.1 24.5 24.5 8.2 33.2 33.2 103.9 103.7 7.1 7.1 3.9 4.0 3.8 3.8 3.9																-		7.1		L				1
Bottom 21.1 24.5 24.5 82 82 33.5 33.4 105.8 105.8 7.3 7.3 7.3 7.3 4.3 4.3 4.3 4.3	SR7	Fine	Moderate	15:40	22.1	Middle			24.5		8.2		33.2		103.7		7.1			3.9	4.0		3.8	3.8
DULUIII 21.1 24.5 24.3 8.2 0.2 33.4 105.7 100.0 7.3 7.3 7.3 4.3 4.3 4.3 4.3						Bottom			24.5		8.2		33.4		105.9		7.2	72		4.3	1		4.3	i
						DOLLOIN	21.1	24.5	24.0	8.2	0.2	33.4	33.4	105.7	105.8	7.3	1.5	1.3	4.3	4.3		4.3	4.3	

15 November 21 during Mid-Flood Tide

DA: Depth-averaged

	Water Qualit	y Monitoring Results on	15 November 21	during Mid-Flood Tide	
--	--------------	-------------------------	----------------	-----------------------	--

valei Qua	ity monite	oning Reot			13 NOVEILIDEI 21	auring inia	11000																
Monitoring	Weather	Sea	Sampling	Water			Water Te	emperature (°C)		pН	Salin	nity (ppt)	DO Satur	ation (%)	Dissolved	d Oxygen (mg/L)	Tur	bidity(NTU	l)	Suspend	ded Solids	३ (mg/L
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	D
					Surface	1.0	24.5	24.5	8.1	8.1	32.3	32.3	102.1	102.0	7.0	7.0		2.7	2.7		2.6	2.8	
					Sunace	1.0	24.5	24.5	8.1	0.1	32.3	32.3	101.9	102.0	7.0	7.0	7.0	2.7	2.1		2.9	2.0	
SR8	Fine	Moderate	16:16	10.2	Middle	5.1	24.5	24.5	8.1	8.1	32.7	32.7	101.1	101.1	7.0	7.0	7.0	2.9	2.9	2.9	3.2	3.1	3
0110	T IIIC	Moderate	10.10	10.2	Widdle	5.1	24.5	24.0	8.1	0.1	32.7	52.7	101.1	101.1	7.0	1.0		2.9	2.5	2.5	3.0	0.1	
					Bottom	9.2	24.5	24.5	8.1	8.1	32.5	32.5	102.3	102.4	7.1	7.1	7.1	3.1	3.1		3.9	3.7	
					501011	9.2	24.5	21.0	8.1	0.1	32.4	02.0	102.5	102.1	7.1			3.0	0.1		3.4	0	
					Surface	1.0	24.5	24.5	8.1	8.1	32.3	32.3	102.2	102.1	7.1	7.1		2.9	2.9		4.7	4.8	
						1.0	24.5		8.1		32.3		102.0		7.0		7.0	2.9			4.9		
SR9	Fine	Moderate	16:02	9.5	Middle	4.8	24.5	24.5	8.1	8.1	32.6	32.6	101.4	101.4	7.0	7.0		3.3	3.3	3.3	3.8	3.6	3
						4.8	24.5	-	8.1		32.6		101.4		7.0			3.3			3.4		
					Bottom	8.5	24.5	24.5	8.1	8.1	32.5	32.5	102.4	102.5	7.1	7.1	7.1	3.8	3.8		2.2	2.4	
						8.5	24.5		8.1		32.5		102.6		7.1			3.7			2.5		_
					Surface	1.0	24.5	24.5	8.1	8.1	32.3	32.4	102.0	101.9	7.0	7.0		3.0	3.0		2.9	3.0	
						1.0	24.5		8.1		32.4		101.8		7.0		7.0	3.0			3.0		_
SR10	Fine	Moderate	14:39	6.1	Middle	3.1	24.4	24.4	8.1	8.1	32.5	32.5	101.7	101.9	7.0	7.0		3.1	3.1	3.2	3.2	3.3	3
						3.1	24.4		8.1		32.5		102.0		7.0			3.1			3.4		
					Bottom	5.1	24.6	24.6	8.1	8.1	32.2	32.2	104.2	104.4	7.2	7.2	7.2	3.4	3.4		3.9	3.7	
						5.1	24.6	11.0	8.1		32.2		104.5		7.2			3.4			3.5		

DA: Depth-averaged

Improvement Dredging for Lamma Power Station Navigatin Channel Water Quality Monitoring Water Quality Monitoring Results on 17 November 21 of

Vater Qual	ity Monit	oring Resu	ilts on		17 November 21	during Mid	-Ebb Tio	le															
Monitoring	Weather	Sea	Sampling	Water			Water Te	mperature (°C)		pН	Salin	ity (ppt)	DO Satur	ration (%)	Dissolved	d Oxygen	(mg/L)	Tur	bidity(NTU)	Suspend	ded Solids	; (mg/L)
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
					Surface	1.0	24.4	24.4	8.0	8.0	33.0	33.0	94.0	94.0	6.5	6.5		0.7	0.7		3.7	3.8	
						1.0 5.4	24.4 24.4		8.0 8.0		33.0 33.0		94.0 93.7		6.5 6.5		6.5	0.7		1	3.9 3.0		•
C1	Cloudy	Moderate	09:27	10.7	Middle	5.4	24.4	24.4	8.0	8.0	33.0	33.0	93.7	93.7	6.5	6.5		0.9	0.9	1.0	2.7	2.9	3.0
					Bottom	9.7 9.7	24.4 24.4	24.4	7.9 7.9	7.9	33.1 33.1	33.1	94.1 94.2	94.2	6.5 6.5	6.5	6.5	1.5 1.5	1.5		2.3 2.2	2.3	
					Surface	1.0 1.0	24.1 24.1	24.1	8.1 8.1	8.1	33.3 33.3	33.3	102.1 102.1	102.1	7.1 7.1	7.1		1.6 1.6	1.6		3.9 3.6	3.8	
C2	Cloudy	Rough	10:55	11.2	Middle	5.6 5.6	24.1 24.1	24.1	8.1 8.1	8.1	33.3 33.3	33.3	101.1 101.1	101.1	7.0 7.0	7.0	7.1	2.1 2.1	2.1	2.2	3.2 3.4	3.3	3.2
					Bottom	10.2 10.2	24.2	24.2	8.1 8.1	8.1	33.3 33.4	33.3	100.3 100.4	100.4	7.0	7.0	7.0	3.0	3.0		2.4	2.6	
					Surface	1.0	24.1	24.1	8.1	8.1	33.3	33.3	102.0	102.0	7.1	7.1		1.4	1.4		2.3	2.4	
C3	Cloudy	Rough	10:47	23.1	Middle	1.0 11.6	24.1 24.1	24.1	8.1 8.1	8.1	33.3 33.3	33.3	102.0 101.1	101.1	7.1 7.0	7.0	7.1	1.4 1.7	1.8	2.2	2.4 2.6	2.7	2.7
	,				Bottom	11.6 22.1	24.1 24.2	24.2	8.1 8.1	8.1	33.3 33.4	33.4	101.1 100.2	100.2	7.0 7.0	7.0	7.0	1.8 3.5	3.5		2.7 3.3	3.2	
			1			22.1 1.0	24.2 24.4		8.1 8.2		33.4 33.3		100.2 101.0		7.0		7.0	3.5 1.9		<u> </u>	3.1 2.9		
					Surface	1.0	24.4	24.4	8.2 8.1	8.2	33.3 33.3	33.3	101.0	101.0	7.0	7.0	7.0	1.8	1.9		2.7	2.8	
SR1	Cloudy	Moderate	09:33	8.3	Middle	4.2	24.4	24.4	8.1	8.1	33.3	33.3	100.8	100.8	7.0	7.0		2.2	2.2	2.2	3.8	3.7	3.6
					Bottom	7.3 7.3	24.2 24.2	24.2	8.1 8.1	8.1	33.3 33.3	33.3	100.1 100.1	100.1	6.9 6.9	6.9	6.9	2.6 2.6	2.6		4.0 4.3	4.2	
					Surface	1.0	24.1 24.1	24.1	8.1 8.1	8.1	33.3 33.3	33.3	99.6 99.6	99.6	6.9 6.9	6.9	6.9	2.2	2.2		4.1 4.5	4.3	
SR2	Cloudy	Moderate	09:43	6.1	Middle	3.1 3.1	24.1 24.1	24.1	8.1 8.1	8.1	33.3 33.3	33.3	99.4 99.4	99.4	6.9 6.9	6.9	0.9	2.6 2.6	2.6	3.8	2.6 2.3	2.5	3.0
					Bottom	5.1 5.1	24.0 24.0	24.0	8.0 8.0	8.0	33.3 33.3	33.3	97.4 97.4	97.4	6.8 6.8	6.8	6.8	6.7 6.6	6.7		2.0 2.2	2.1	
					Surface	1.0	24.1	24.1	8.1	8.1	33.3	33.3	100.6	100.6	7.0	7.0		0.7	0.7		3.5	3.5	
SR3	Cloudy	Moderate	09:58	8.0	Middle	1.0 4.0	24.1 24.0	24.0	8.1 8.0	8.0	33.3 33.3	33.3	100.5 97.6	97.6	7.0 6.8	6.8	6.9	0.7	1.4	2.3	3.4 3.1	3.0	3.0
0.10	oloddy	modorato	00.00	0.0		4.0 7.0	24.0 24.0		8.0 8.0		33.3 33.3		97.6 96.2		6.8 6.7		0.7	1.4 5.0		2.0	2.9 2.7		
					Bottom	7.0 1.0	24.0 24.4	24.0	7.9 8.4	7.9	33.3 33.2	33.3	96.4 102.5	96.3	6.7 7.1	6.7	6.7	4.9 1.0	5.0	 	2.6 2.8	2.7	
					Surface	1.0	24.4	24.4	8.4	8.4	33.2	33.2	102.5	102.5	7.1	7.1	7.1	1.0	1.0	l	2.9	2.9	
SR4	Cloudy	Moderate	10:17	13.6	Middle	6.8 6.8	24.4 24.4	24.4	8.4 8.4	8.4	33.2 33.2	33.2	101.8 101.8	101.8	7.0 7.0	7.0		1.5 1.4	1.5	2.0	3.2 3.2	3.2	3.2
					Bottom	12.6 12.6	24.2 24.2	24.2	8.2 8.2	8.2	33.2 33.2	33.2	98.8 98.9	98.9	6.9 6.9	6.9	6.9	3.5 3.4	3.5		3.5 3.6	3.6	
					Surface	1.0	24.2 24.2	24.2	8.4 8.4	8.4	33.2 33.2	33.2	101.8 101.8	101.8	7.1	7.1		0.9	0.9		3.6 3.3	3.5	
SR5	Cloudy	Moderate	10:27	9.5	Middle	4.8	24.2	24.2	8.4 8.4	8.4	33.2 33.2	33.2	101.4 101.4	101.4	7.0	7.0	7.1	1.2	1.2	1.4	2.8	2.7	2.9
					Bottom	8.5	24.2	24.2	8.3 8.3	8.3	33.2 33.2	33.2	100.5	100.5	7.0	7.0	7.0	1.9	2.0		2.6	2.5	
					Surface	1.0	24.1	24.1	8.1	8.1	33.3	33.3	101.9	101.9	7.1	7.1		1.1	1.1		2.0	2.1	
SR6	Cloudy	Moderate	10:08	14.6	Middle	1.0 7.3	24.1 24.1	24.1	8.1 8.0	8.0	33.3 33.3	33.3	101.9 100.6	100.6	7.1 7.0	7.0	7.1	1.0 1.7	1.7	2.1	2.2 2.8	2.9	2.8
					Bottom	7.3 13.6	24.1 24.1	24.1	8.0 7.9	7.9	33.3 33.3	33.3	100.6 98.9	98.9	7.0 6.9	6.9	6.9	1.7 3.5	3.6		3.0 3.2	3.4	
						13.6 1.0	24.1 24.1		7.9 8.1		33.3 33.3		98.8 102.1		6.9 7.1		0.9	3.6 1.2		┝──	3.5 2.2		-
					Surface	1.0	24.1 24.1	24.1	8.1 8.0	8.1	33.3 33.3	33.3	102.1	102.1	7.1	7.1	7.1	1.2	1.2	1	2.3	2.3	
SR7	Cloudy	Rough	10:28	21.8	Middle	10.9	24.1	24.1	8.0	8.0	33.3	33.3	101.1	101.1	7.0	7.0		1.6	1.6	2.1	2.7	2.8	2.7
					Bottom	20.8 20.8	24.1 24.1	24.1	8.0 8.0	8.0	33.3 33.3	33.3	99.5 99.5	99.5	6.9 6.9	6.9	6.9	3.3 3.4	3.4	l	3.3 3.1	3.2	

17 November 21 during Mid-Ebb Tide

water Qua	ity worth	oning Kest			17 November 21	auring Mia-		76															
Monitoring	Weather	Sea	Sampling	Water			Water Te	emperature (°C)		pН	Salin	ity (ppt)	DO Satur	ation (%)	Dissolved	d Oxygen (mg/L)	Tur	bidity(NTU)	Suspend	ded Solids	; (mg/L)
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
					Surface	1.0	24.3	24.3	8.2	8.2	33.2	33.2	100.4	100.4	7.0	7.0		0.5	0.6		2.5	2.6	
					Suilace	1.0	24.3	24.5	8.2	0.2	33.2	55.2	100.4	100.4	7.0	7.0	7.0	0.6	0.0	1 '	2.6	2.0	
SR8	Cloudy	Moderate	09:47	10.3	Middle	5.2	24.3	24.3	8.2	8.2	33.2	33.2	99.3	99.3	6.9	6.9	7.0	0.9	0.9	0.9	3.1	3.1	3.1
0110	Cloudy	Moderate	00.47	10.0	Middle	5.2	24.3	24.5	8.2	0.2	33.2	00.2	99.3	55.5	6.9	0.5		0.9	0.5	0.0	3.1	0.1	0.1
					Bottom	9.3	24.3	24.3	8.2	8.2	33.2	33.2	98.6	98.6	6.8	6.8	6.8	1.3	1.4	1 '	3.4	3.6	
						9.3	24.3		8.2		33.2		98.6		6.8			1.4		<u> </u>	3.7		
					Surface	1.0	24.4	24.4	8.2	8.2	33.2	33.2	102.6	102.6	7.1	7.1		0.2	0.2	1 '	2.6	2.7	
					-	1.0	24.4		8.2		33.2		102.6		7.1		7.1	0.2		1	2.8		_
SR9	Cloudy	Moderate	09:58	9.8	Middle	4.9	24.4	24.4	8.2	8.2	33.2	33.2	102.7	102.7	7.1	7.1		0.3	0.3	0.9	3.4	3.5	3.5
						4.9	24.4		8.2		33.2		102.6		7.1			0.3		1 '	3.5		_
					Bottom	8.8	24.4	24.4	8.1	8.1	33.3	33.3	99.7	99.7	6.9	6.9	6.9	2.2	2.2	1 '	4.3	4.3	
						8.8	24.4		8.1		33.3		99.7		6.9			2.2		<u> </u>	4.3		
					Surface	1.0	24.2	24.2	8.1	8.1	33.4 33.4	33.4	101.5	101.5	7.0	7.0		1.3 1.3	1.3	1 '	3.6	3.7	
						1.0	24.2		8.1				101.5		7.0		7.0			1 '			-
SR10	Cloudy	Rough	11:25	6.3	Middle	3.2	24.2	24.2	8.1	8.1	33.3	33.3	101.4	101.4	7.0	7.0		1.8	1.8	1.8	4.0	4.1	4.1
						3.2	24.2		8.1		33.3		101.4		7.0			1.8		1 '	4.2		4
					Bottom	5.3 5.3	24.1 24.1	24.1	8.1 8.1	8.1	33.3 33.3	33.3	101.4 101.4	101.4	7.0	7.0	7.0	2.2	2.3	1 '	4.4	4.6	
						5.3	24.1		ö.1		33.3		101.4		1.0			∠.3		L	4./		1

DA: Depth-averaged

Improvement Dredging for Lamma Power Station Navigatin Channel Water Quality Monitoring Water Quality Monitoring Results on 17 November 21 of

Water Qual	<u>ity Mon</u> it	oring Resu	lts on		17 November 21	during Mid	Flood	<u>Fide</u>																		
Monitoring	Weather	Sea	Sampling	Water				emperature (°C)		pН	Salin	ity (ppt)	DO Satur	ation (%)	Dissolved	d Oxygen (mg/L)	Tur	bidity(NTU)	Suspen	ded Solids	(mg/L)			
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA			
						1.0	24.5		8.1		33.2		106.5		7.4			0.4			3.2					
					Surface	1.0	24.5	24.5	8.1	8.1	33.2	33.2	106.5	106.5	7.4	7.4	7.2	0.4	0.4		3.4	3.3				
C1	Cloudy	Moderate	17:35	10.7	Middle	5.4	24.3	24.3	8.1	8.1	33.2	33.2	101.1	101.1	7.0	7.0	1.2	1.1	1.1	1.2	3.6	3.7	3.9			
01	oloudy	Moderate	17.00	10.7	middle	5.4	24.3	24.5	8.1	0.1	33.2	00.2	101.1	101.1	7.0	7.0		1.1	1.1	1.2	3.8	0.1	0.0			
					Bottom	9.7	24.3 24.3	24.3	8.1 8.1	8.1	33.2 33.2	33.2	97.2 97.2	97.2	6.7	6.7	6.7	1.9 2.0	2.0		4.6 4.9	4.8	1			
						9.7 1.0	24.3		8.1		33.2 33.3		97.2		6.7 7.0			2.0			4.9					
					Surface	1.0	24.2	24.2	8.1	8.1	33.3	33.3	101.5	101.5	7.0	7.0		1.6	1.6		3.0	3.1	1			
C2	Cloudy	Rough	16:07	11.2		5.6	24.2		8.1		33.3		100.6	100.0	7.0	7.0	7.0	1.8	4.0	1.9	3.8		3.6			
02	Cloudy	Rough	10.07	11.2	Middle	5.6	24.2	24.2	8.1	8.1	33.3	33.3	100.6	100.6	7.0	7.0		1.9	1.9	1.5	3.5	3.7	3.0			
					Bottom	10.2	24.2	24.2	8.1 8.1	8.1	33.3	33.3	100.2	100.2	7.0	7.0	7.0	2.1	2.1		4.0	4.1	1			
						10.2 1.0	24.2 24.1		8.1		33.3 33.3		100.2 100.6		7.0 7.0			2.1 1.1			4.2					
					Surface	1.0	24.1	24.1	8.1	8.1	33.3	33.3	100.6	100.6	7.0	7.0	7.0	1.1	1.1		2.6	2.7				
C3	Cloudy	Rough	16:07	23.1	Middle	11.6	24.1	24.1	8.1	8.1	33.3	33.3	100.2	100.3	7.0	7.0	7.0	1.5	1.5	1.5	2.5	2.5	2.5			
	,					11.6 22.1	24.1 24.1		8.1 8.1		33.3 33.3		100.3 100.0		7.0 6.9			1.5 1.8			2.5 2.3					
					Bottom	22.1	24.1	24.1	8.1	8.1	33.3	33.3	100.0	100.0	6.9	6.9	6.9	1.8	1.8		2.5	2.4	1			
					Quefera	1.0	24.3	24.2	8.0		33.3	33.3	100.2	400.0	6.9	6.0		1.4			3.6	3.5				
					Surface	1.0	24.3	24.3	8.0	8.0	33.3	33.3	100.3	100.3	6.9	6.9	7.0	1.4	1.4		3.4	3.5				
SR1	Cloudy	Moderate	17:24	8.3	Middle	4.2	24.3	24.3	7.9	7.9	33.3	33.3	100.8	100.8	7.0	7.0	1.0	1.7	1.8	1.9	3.4	3.3	3.2			
						4.2	24.3		7.9 7.9		33.3		100.8		7.0			1.9			3.1 3.0		4			
					Bottom	7.3	24.1 24.1	24.1	7.9	7.9	33.3 33.3	33.3	100.5 100.5	100.5	7.0	7.0	7.0	2.3 2.4	2.4	ł	2.8	2.9	1			
					Surface	1.0	24.2		8.0		33.3		101.5		7.0			3.6			3.7		+			
						1.0	24.2	24.2	7.9	7.9	33.3	33.3	101.4	101.5	7.0	7.0	7.0	3.6	3.6		3.7	3.7	1			
SR2 Clo	Cloudy	Moderate	17:17	6.1	Middle	3.1	24.1	24.1	7.9	7.9	33.3	33.3	99.2	99.2	6.9	6.9	7.0	4.9	4.9	4.6	3.6	3.6	3.3			
	oloudy	Moderate	17.17	0.1	middic	3.1	24.1	27.1	7.9	1.5	33.3	00.0	99.2	55. <u>2</u>	6.9	0.5		4.9	4.5	4.0	3.6	0.0	0.0			
					Bottom	5.1 5.1	24.0 24.0	24.0	7.9 7.9	7.9	33.3 33.3	33.3	97.3 97.2	97.3	6.8 6.8	6.8	6.8	5.3 5.3	5.3		2.5 2.4	2.5	1			
						5.1	24.0		7.9		33.3		97.2		6.9			5.3			4.0					
					Surface	1.0	24.1	24.1	7.9	7.9	33.3	33.3	99.9	99.9	6.9	6.9		1.2	1.3	28	l			4.0	4.0	1
SR3	Cloudy	Moderate	17:00	8.0	Middle	4.0	24.1	24.1	7.9	7.9	33.3	33.3	98.8	98.7	6.9	6.9	6.9	1.5	1.5		3.2	3.1	3.2			
5135	Cloudy	Woderate	17.00	0.0	Wildule	4.0	24.1	24.1	7.9	1.5	33.3	55.5	98.6	30.7	6.9	0.5		1.5	1.5	2.0	2.9	5.1	3.2			
					Bottom	7.0	24.0	24.0	7.8	7.8	33.3	33.3	95.9	95.9	6.7	6.7	6.7	5.6	5.6		2.4	2.5	1			
						7.0	24.0 24.6		7.8 8.0		33.3 33.0		95.9 109.1		6.7 7.5			5.6 0.1			2.6 2.6		 			
					Surface	1.0	24.6	24.6	8.0	8.0	33.0	33.0	109.1	109.1	7.5	7.5		0.1	0.1		2.0	2.5	1			
0.5.4	<u>.</u>	•• • •	40.00	10.0		6.8	24.3		8.0		33.0		102.1	400.4	7.1		7.3	0.6			2.8					
SR4	Cloudy	Moderate	16:38	13.6	Middle	6.8	24.3	24.3	8.0	8.0	33.0	33.0	102.1	102.1	7.1	7.1		0.7	0.7	2.7	2.8	2.8	2.9			
					Bottom	12.6	24.3	24.3	8.0	8.0	33.2	33.2	100.2	100.2	6.9	6.9	6.9	7.3	7.3		3.5	3.4	1			
						12.6	24.3		8.0		33.2		100.2		6.9			7.2			3.2					
					Surface	1.0	24.5 24.5	24.5	8.1 8.1	8.1	33.0 33.0	33.0	115.8 115.8	115.8	8.0 8.0	8.0		0.3	0.3		4.1 3.8	4.0	1			
						4.8	24.4		8.1		33.0		107.1		7.4		7.7	0.6			3.4		1			
SR5	Cloudy	Moderate	16:30	9.5	Middle	4.8	24.4	24.4	8.1	8.1	33.0	33.0	107.1	107.1	7.4	7.4		0.6	0.6	0.5	3.4	3.4	3.4			
					Bottom	8.5	24.3	24.3	8.1	8.1	33.1	33.1	104.2	104.2	7.2	7.2	7.2	0.7	0.7		2.8	2.9	1			
					Bollom	8.5	24.3	21.0	8.1	0.1	33.1	00.1	104.2	101.2	7.2			0.6	0.1		3.0	2.0	1			
					Surface	1.0	24.1 24.1	24.1	8.1 8.1	8.1	33.3	33.3	99.5 99.4	99.5	6.9 6.9	6.9		1.9	1.9		2.8	2.7	1			
						1.0 7.3	24.1		8.1 8.1		33.3 33.3		99.4 98.6		6.9	<u> </u>	6.9	1.9 2.0			3.3		1			
SR6	Cloudy	Moderate	16:45	14.6	Middle	7.3	24.1	24.1	8.1	8.1	33.3	33.3	98.7	98.7	6.9	6.9		2.1	2.1	2.1	3.4	3.4	3.3			
					Bottom	13.6	24.1	2/ 1	8.1	8.1	33.3	32.2	99.2	99.2	6.9	6.0	60	2.5	2.5		3.7	3.8	1			
					Bottom	13.6	24.1	24.1	8.1	0.1	33.3	33.3	99.2	39.2	6.9	6.9	6.9	2.4	2.5		3.8	3.8	<u> </u>			
					Surface	1.0	24.1	24.1	8.1	8.1	33.3	33.3	100.0	100.0	6.9	6.9		1.7	1.7		3.6	3.6				
						1.0 10.9	24.1		8.1 8.1		33.3 33.3		99.9 99.8		6.9 6.9		6.9	1.7	 	2.2	3.6 4.5	<u> </u>	1			
SR7	Cloudy	Rough	16:21	21.8	Middle	10.9	24.1 24.1	24.1	8.1	8.1	33.3	33.3	99.8 99.8	99.8	6.9	6.9		2.2 2.1	2.2		4.5	4.6	4.3			
					D. //	20.8	24.1		8.1		33.3		99.4		6.9			2.7			4.8					
					Bottom	20.8	24.1	24.1	8.1	8.1	33.3	33.3	99.4	99.4	6.9	6.9	6.9	2.7	2.7		4.7	4.8	1			
																							-			

17 November 21 during Mid-Flood Tide

DA: Depth-averaged

Water Quality Monitoring Results on 17 November 21 during Mid-Flood	ide
---	-----

valei Qua	ity worth	oning Rest			17 November 21	uuning Milu	-1 1000	nue															
Monitoring	Weather	Sea	Sampling	Water		Water Te	emperature (°C)	pН		Salinity (ppt)		DO Saturation (%)		Dissolved	mg/L)	Tur	bidity(NTU)	Suspend	ded Solids	l Solids (mg/L		
	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	D
					Surface	1.0	24.5	24.5	8.1	8.1	33.2	33.2	106.3	106.3	7.3	7.3		0.4	0.4		3.5	3.6	
					Surface	1.0	24.5	24.5	8.1	0.1	33.2	33.2	106.2	100.5	7.3	7.5	71	0.4	0.4	1 '	3.6	3.0	
SR8	Cloudy	Moderate	17:15	10.3	Middle	5.2	24.3	24.3	8.1	8.1	33.2	33.2 33.2	100.3	100.3	6.9	7.0	7.1	1.5	1.5	1.3	2.8	3.0	1:
300	Cibudy	Moderate	17.15	10.5	wilddie	5.2	24.3		8.1	0.1			100.3	100.5	7.0	7.0		1.5	1.5	1.5	3.2	3.0	
					Bottom	9.3	24.3	24.3	8.1	8.1	33.2	33.2	33.2 98.3 6.8 6.8 6.8	1.9	1.9	1 '	2.8	2.7					
					Dottom	9.3	24.3	1.0	8.1	0.1	33.2	00.2	98.3	00.0	6.8	0.0	0.0	1.9	1.0		2.6	2	
SR9					Surface	1.0	24.5	24.5	8.3	8.3	8.3 33.2	33.2	107.4	107.4	7.4	7.4		0.3	0.3	1 '	4.2	4.2	
						1.0	24.5		8.3		33.2		107.4		7.4		7.4	0.3		1 '	4.2		3.8
	Cloudy	Moderate	17:00	9.8	Middle	4.9	24.4	24.4	8.4	8.4	33.2	33.2	105.9	105.9	7.3	7.3		0.5	0.5	1.2	3.7	3.8	
	,					4.9	24.4	24.4	8.4		33.2		105.9		7.3			0.5		1	3.9		
					Bottom	8.8	24.4		8.4	8.4	33.3 33.3	99.5	99.6	6.9	6.9 6.9	6.9	2.7	2.7	1 '	3.4	3.4		
						8.8	24.4		8.4		33.3		99.7		6.9			2.6		<u> </u>	3.4		
					Surface	1.0	24.2	24.2	8.1	8.1	33.4 33.4	33.4	101.3	101.3	7.0	7.0		1.9	1.9	1 '	2.4	2.5	
						1.0	24.2		8.1				101.3		7.0		7.0	1.9		1 '	2.5		_
SR10	Cloudy	Rough	15:38	6.3	Middle	3.2	24.2	24.2	8.1	8.1	33.3	33.3	101.0	101.0	7.0	7.0		2.0	2.0	2.0	3.5	3.5	
0.110	,					3.2	24.2		8.1	0.1	33.3		101.0		7.0			2.0			3.4		
					Bottom	5.3	24.2	24.2	8.1	8.1	33.3	33.3	100.5	100.5	7.0	7.0	7.0	2.2	2.2	1 '	3.7	3.9	
						5.3	24.2		8.1		33.3	20.0	100.5		7.0			2.2			4.0	2.0	

DA: Depth-averaged

Improvement Dredging for Lamma Power Station Navigatin Channel Water Quality Monitoring Water Quality Monitoring Results on 19 November 21 of

Water Qua	lity Monit	oring Resu	ilts on		19 November 21	during Mid	-Ebb Tio	de															
Monitoring	Weather	Sea	Sampling	Water			Water Te	mperature (°C)		pН	Salin	ity (ppt)	DO Satur	ration (%)	Dissolve	d Oxygen ((mg/L)	Tur	bidity(NTU)	Suspen	ded Solids	; (mg/L)
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
					Surface	1.0	24.3	24.3	8.2	8.2	33.0	33.0	89.4	89.5	6.2	6.2		1.3	1.3		5.9	6.1	
						1.0 5.8	24.3 24.3		8.2 8.1		33.0 33.1		89.5 91.4		6.2 6.3	-	6.3	1.3 1.3			6.2 5.3		
C1	Sunny	Rough	10:42	11.5	Middle	5.8	24.3	24.3	8.1	8.1	33.1	33.1	91.4	91.4	6.3	6.3		1.3	1.3	1.7	5.1	5.2	5.1
					Bottom	10.5 10.5	24.3 24.3	24.3	8.0 8.0	8.0	33.1 33.1	33.1	91.6 91.6	91.6	6.3 6.3	6.3	6.3	2.6 2.6	2.6		3.9 4.2	4.1	
					Surface	1.0	24.3	24.3	8.0 8.0	8.0	33.2 33.2	33.2	105.0 104.6	104.8	7.3	7.3		1.7	1.7		3.1	3.2	
C2	Sunny	Rough	12:05	11.5	Middle	5.8	24.1	24.1	8.1	8.1	33.2	33.2	102.6	102.7	7.1	7.1	7.2	1.7 1.5	1.5	1.8	2.5	2.7	2.7
					Bottom	5.8 10.5	24.1 24.1	24.1	8.1 8.1	8.1	33.2 33.2	33.2	102.7 100.2	100.3	7.1 7.0	7.0	7.0	1.4 2.3	2.3		2.8 2.3	2.3	
						10.5 1.0	24.1 24.2		8.1 8.1		33.2 33.2		100.3 103.4		7.0 7.2		7.0	2.3 1.2			2.2	-	
					Surface	1.0 11.2	24.2 24.1	24.2	8.1 8.1	8.1	33.2 33.2	33.2	102.9 100.0	103.2	7.1 6.9	7.2	7.0	1.2 3.5	1.2		2.8 2.4	2.8	
C3	Sunny	Rough	11:59	22.3	Middle	11.2	24.1	24.1	8.1	8.1	33.2	33.2	99.9	100.0 6.9	6.9	6.9		3.6	3.6	3.3	2.2	2.3	2.4
					Bottom	21.3 21.3	24.1 24.1	24.1	8.2 8.2	8.2	33.2 33.2	33.2	99.5 99.5	99.5	6.9 6.9	6.9	6.9	5.1 5.1	5.1		1.9 2.1	2.0	
					Surface	1.0	24.3 24.3	24.3	8.1 8.1	8.1	33.2 33.2	33.2	95.8 95.8	95.8	6.6 6.6	6.6	6.7	1.1 1.1	1.1		3.7 3.6	3.7	
SR1	Sunny	Moderate	10:50	8.5	Middle	4.3 4.3	24.3 24.3	24.3	8.1 8.1	8.1	33.2 33.2	33.2	96.2 96.2	96.2	6.7 6.7	6.7	0.7	1.3 1.3	1.3		3.3 3.4	3.4	3.2
					Bottom	7.5	24.3 24.3	24.3	8.1 8.1	8.1	33.3 33.3	33.3	99.5 99.4	99.5	6.9 6.9	6.9	6.9	1.4	1.4		2.3	2.5	
		Moderate			Surface	1.0	24.3	24.3	8.1	8.1	33.1	33.1	96.0	96.0	6.7	6.7		1.9	2.0		1.9	1.8	
SR2	Sunny		10:58	6.9	Middle	1.0 3.5	24.3 24.3	24.3	8.1 8.1	8.1	33.1 33.1	33.1	95.9 95.9	95.9	6.7 6.6	6.7	6.7	2.0 2.6	2.6	2.5	1.7 2.6	2.8	2.7
382	Sunny					3.5 5.9	24.3 24.3		8.1 8.1		33.1 33.2		95.9 96.2		6.7 6.7			2.6 2.8	-	2.0	2.9 3.4		2.1
					Bottom	5.9	24.3	24.3	8.1	8.1	33.2	33.2	96.2	96.2	6.7	6.7	6.7	2.9	2.9		3.4	3.4	
					Surface	1.0 1.0	24.3 24.3	24.3	8.2 8.2	8.2	33.1 33.1	33.1	96.5 96.5	96.5	6.7 6.7	6.7	6.7	1.8 1.8	1.8		3.1	3.1	
SR3	Sunny	Moderate	11:09	6.5	Middle	3.3 3.3	24.3 24.3	24.3	8.2 8.2	8.2	33.1 33.1	33.1	95.7 95.7	95.7	6.6 6.6	6.6	2.2	2.2	2.2	2.3	2.8	2.8	2.7
					Bottom	5.5 5.5	24.3 24.3	24.3	8.2 8.2	8.2	33.2 33.2	33.2	95.8 95.8	95.8	6.6 6.6	6.6		2.8 2.9	2.9]	2.2 2.1	2.2	
					Surface	1.0 1.0	24.2 24.2	24.2	8.2 8.2	8.2	33.2 33.2	33.2	97.5 97.5	97.5	6.8 6.8	6.8		1.6 1.6	1.6	3	2.2 2.4	2.3	
SR4	Sunny	Rough	11:34	10.5	Middle	5.3	24.2 24.0 8.1 24 33.2 20.0 97.7	97.7	6.8	6.8	6.8	1.1	1.1	1.9	2.6	2.5	2.7						
					Bottom	5.3 9.5	24.2 24.3	24.3	8.1 8.1	8.1	33.2 33.2	33.2	97.7 98.5	98.5	6.8 6.8	6.8	6.8	1.1 2.9	2.9		2.4 3.1	3.2	
						9.5 1.0	24.3 24.3		8.1 8.0		33.2 33.2		98.5 97.5		6.8 6.8		0.0	2.9 1.2			3.2 3.2		
					Surface	1.0 5.8	24.3 24.3	24.3	8.0 8.0	8.0	33.2 33.3	33.2	97.7 98.9	97.6	6.8 6.8	6.8	6.8	1.3 1.3	1.3		3.2 2.9	3.2	
SR5	Sunny	Rough	11:41	11.5	Middle	5.8	24.3	24.3	8.0	8.0	33.3	33.3	98.9	98.9	6.8	6.8		1.4	1.4	1.3	2.7	2.8	2.8
					Bottom	10.5 10.5	24.3 24.3	24.3	8.0 8.0	8.0	33.4 33.4	33.4	98.6 98.6	98.6	6.8 6.8	6.8	6.8	1.2 1.2	1.2		2.3 2.4	2.4	
					Surface	1.0 1.0	24.3 24.2	24.3	8.1 8.1	8.1	33.1 33.1	33.1	101.0 100.8	100.9	7.0	7.0	7.0	1.7 1.7	1.7		2.3 2.3	2.3	
SR6	Sunny	Rough	11:24	14.5	Middle	7.3 7.3	24.2 24.2	24.2	8.1 8.1	8.1	33.2 33.2	33.2	99.0 99.0	99.0	6.9 6.9	6.9	1.0	2.9 2.9	2.9	3.0	1.6 1.7	1.7	1.8
					Bottom	13.5 13.5	24.1 24.1	24.1	8.1 8.1	8.1	33.2 33.2	33.2	98.7 98.8	98.8	6.9 6.9	6.9	6.9	4.4	4.5		1.2	1.3	
					Surface	1.0	24.3	24.3	8.2	8.2	33.1	33.1	102.1	102.0	7.1	7.1		1.5	1.6	2.7	1.5	1.5	+
SR7	Sunny	Rough	11:43	21.5	Middle	1.0 10.8	24.3	24.2	8.2 8.2	8.2	33.1 33.1	33.1	101.9 99.7	99.7	7.1 6.9	6.9	7.0	1.6 2.7	2.7		1.5 1.8	- 1.9	1.9
011	Sunny	Rough	11.43	21.0		10.8 20.5	24.2 24.2		8.2 8.1		33.1 33.2		99.7 98.7		6.9 6.9	-		2.7 2.7		2.1	1.9 2.2	-	1.0
					Bottom	20.5	24.2	24.2	8.1	8.1	33.2	33.2	98.8	98.8	6.9	6.9	6.9	3.7	3.7		2.2	2.2	

19 November 21 during Mid-Ebb Tide

Water Quality Monitoring Results on 19 November 21 during Mid-Ebb 1	ſide
---	------

water Qua	ity wornt	oning itest			19 NOVember 21	uuning wild-		ue															
Monitoring	Weather	Sea	Sampling	Water			Water Te	emperature (°C)		pН	Salin	ity (ppt)	DO Satur	ation (%)	Dissolved	i Oxygen (mg/L)	Tur	bidity(NTU)	Suspend	ded Solids	; (mg/L)
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
					Surface	1.0	24.3	24.3	8.2	8.2	33.0	33.0	89.1	89.2	6.2	6.2		1.2	1.3		2.0	2.0	
					Suilace	1.0	24.3	24.5	8.2	0.2	33.0	33.0	89.2	05.2	6.2	0.2	6.3	1.3	1.5		1.9	2.0	
SR8	Sunny	Moderate	11:04	9.9	Middle	5.0	24.3	24.3	8.2	8.2	33.0	33.0	91.0	91.1	6.3	6.3	0.0	1.9	1.9	1.7	3.5	3.4	3.1
0110	ounny	Moderate	11.04	0.0	Middle	5.0	24.3	24.0	8.2	0.2	33.0	00.0	91.1	51.1	6.3	0.0		1.9	1.5	1.7	3.3	0.4	0.1
					Bottom	8.9	24.4	24.4	8.2	8.2	33.1	33.1	91.4	91.4	6.3	6.3	6.3	2.0	2.0		4.1	4.0	
						8.9	24.4		8.2		33.1		91.4		6.3			2.0			3.9		
					Surface	1.0	24.2	24.2	8.1	8.1	33.2	33.2	98.3	98.3	6.8	6.8		1.7	1.7		2.3	2.2	
						1.0	24.2		8.1		33.2		98.3		6.8		6.8	1.7			2.0		
SR9	Sunny	Moderate	11:16	9.7	Middle	4.9	24.2	24.2	8.1	8.1	33.2	33.2	97.8	97.8	6.8	6.8		1.2	1.2	1.9	2.4	2.5	2.5
						4.9	24.2		8.1		33.2		97.8		6.8			1.2			2.6		
					Bottom	8.7	24.2	24.2	8.1	8.1	33.2	33.2	97.8	97.8	6.8	6.8	6.8	2.8	2.8		3.0	2.9	
						8.7	24.2		8.1		33.2		97.8		6.8			2.8			2.8		
					Surface	1.0	24.4 24.4	24.4	8.1 8.1	8.1	33.2 33.2	33.2	109.7 109.6	109.7	7.6 7.6	7.6		5.4 5.4	5.4		2.6	2.6	
						1.0 3.9	24.4						109.6		7.6		7.6	3.0			2.6		-
SR10	Sunny	Sunny Rough	12:37	7.8	Middle		24.3	24.3	8.1	8.1	33.2 33.2	33.2		109.1	7.6	7.6			3.1	4.0		2.6	2.6
						3.9	24.2		8.1				109.0 102.7					3.1			2.6 2.6		
					Bottom	6.8 6.8	24.2	24.2	8.1 8.1	8.1	33.2 33.2	33.2	102.7	102.8	7.1	7.1	7.1	3.4 3.4	3.4		2.6	2.7	
						0.0	Z4.Z		0.1		33.Z		102.9		7.1			3.4			Z.1		

DA: Depth-averaged

Improvement Dredging for Lamma Power Station Navigatin Channel Water Quality Monitoring Water Quality Monitoring Results on 19 November 21 of

<table-container> <th< th=""></th<></table-container>	later Qual	lity Monit	oring Resu	ilts on		19 November 21	during Mid-	-Flood	Tide															
math math math math math math math <th< th=""></th<>	Monitorina	Weather	Sea	Sampling	Water			Water Te	emperature (°C)		pН	Salin	ity (ppt)	DO Satur	ation (%)	Dissolved	d Oxygen ((mg/L)	Tur	bidity(NTU	J)	Suspen	ded Solids	; (mg/L)
		Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
h h <td></td> <td></td> <td></td> <td></td> <td></td> <td>Quitara</td> <td>1.0</td> <td>24.1</td> <td>04.4</td> <td>8.0</td> <td></td> <td>32.7</td> <td>00.7</td> <td>98.8</td> <td>00.0</td> <td>6.9</td> <td>6.0</td> <td></td> <td>3.8</td> <td>2.0</td> <td></td> <td>2.1</td> <td>0.4</td> <td></td>						Quitara	1.0	24.1	04.4	8.0		32.7	00.7	98.8	00.0	6.9	6.0		3.8	2.0		2.1	0.4	
						Surface	1.0	24.1	24.1	8.0	8.0	32.7	32.7	98.8	98.8	6.9	6.9	6.0	3.8	3.8		2.0	2.1	
<td>C1</td> <td>Fine</td> <td>Rough</td> <td>18.10</td> <td>10.1</td> <td>Middle</td> <td></td> <td></td> <td>24.1</td> <td></td> <td>8.0</td> <td></td> <td>32.8</td> <td></td> <td>98.0</td> <td></td> <td>6.8</td> <td>0.5</td> <td></td> <td>3.0</td> <td>3.5</td> <td></td> <td>21</td> <td>1.9</td>	C1	Fine	Rough	18.10	10.1	Middle			24.1		8.0		32.8		98.0		6.8	0.5		3.0	3.5		21	1.9
i i	0.	1.110	riougn	10.10	10.1	midalo			2		0.0		02.0		00.0		0.0			0.0	0.0		2	
R (2) R (3) <th< td=""><td></td><td></td><td></td><td></td><td></td><td>Bottom</td><td></td><td></td><td>24.1</td><td></td><td>8.0</td><td></td><td>32.8</td><td></td><td>98.1</td><td></td><td>6.8</td><td>6.8</td><td></td><td>3.8</td><td></td><td></td><td>1.7</td><td></td></th<>						Bottom			24.1		8.0		32.8		98.1		6.8	6.8		3.8			1.7	
C1 Fire <						Surface			24.3		8.2		33.2		110.0		7.6			2.4			3.0	
Image: bord bord bord bord bord bord bord bord	C2	Fine	Rough	16:43	11.5	Middle	5.8	24.2	24.2			33.3	22.2	99.4	00.2	6.9	6.0	7.3	5.1	5.1	4.5	2.8	2.0	2.7
	02	1.110	riougn	10.10	11.0	Wilddie			24.2		0.2		55.5		33.3		0.5			5.1			2.0	
G me Res Res Res Res Sector <						Bottom			24.2		8.2		33.3		99.1		6.9	6.9		6.0			2.3	
Amplian Amplian <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>100.0</td><td></td><td>7.4</td><td></td><td></td><td>10</td><td></td><td></td><td></td><td></td></t<>															100.0		7.4			10				
Gencir Fine						Surface			24.3		8.1	33.2	33.2	106.9	106.9		7.4	7.4		1.6			2.9	
Image: bolic	C3	Fine	Rough	16:46	21.9	Middle			24.2		8.1		33.2		106.9		7.4			1.7	1.6		2.6	2.6
Image: bolic			-																					
Ref Ref Moderate Fine Middle Air Air Air Middle Air Air Air Air Air Air Air Air Air Air Air <						Bottom			24.2		8.1		33.2		106.6		7.4	7.4		1.6			2.2	
Ref Ref <thref< th=""> <thref< th=""> <thref< th=""></thref<></thref<></thref<>						Surface	1.0	24.5	24.5	8.0	8.0		33.1	100.5	100.6	6.9	69		1.4	1.4		3.2	3.1	
SR1 Fne Medera 17.5 6.5 Medica 3.3 24.5 8.1 8.1 8.1 9.1 9.0 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.						Gunade			24.5		0.0		00.1		100.0		0.5	7.0		1.4			0.1	
Image: boline Image: boline<	SR1	Fine	Moderate	17:51	6.5	Middle			24.5		8.1		33.1		100.7	-	7.0			2.7	2.5		2.8	2.7
Image: biase index																								
SR2 Fine Moderne 17.4 7.4 7.4 <						Bottom			24.5		8.0		33.1		100.3		6.9	6.9		3.5			2.3	
SR2 Fine Modered 17.4						Queferer			24.2				22.0		407.4		7.4			0.7			0.7	
SR2 Fine Moderale 17.4 7.4 7.4 7.4 7.4 7.4 7.4 <th< td=""><td></td><td></td><td></td><td></td><td></td><td>Sunace</td><td></td><td></td><td>24.3</td><td>8.2</td><td>8.2</td><td>33.2</td><td>33.Z</td><td>107.1</td><td>107.1</td><td></td><td>7.4</td><td>74</td><td>2.7</td><td>2.7</td><td></td><td>2.8</td><td>2.1</td><td></td></th<>						Sunace			24.3	8.2	8.2	33.2	33.Z	107.1	107.1		7.4	74	2.7	2.7		2.8	2.1	
Image: bord region and series an	SR2	Fine	Moderate	17:44	7.2	Middle			24.2		8.2		33.2		106.1		7.4	1.4		3.6	3.5		2.5	2.5
Image: bolic																								
SR3 Fine Rough 17.34 7.5 Surface 10 24.3 24.3 62 62 62 32 32 32 107.4 7.4 7.4 <						Bottom			24.1		8.2		33.2		103.7		7.2	7.2		4.2			2.2	
SR3 Fine Rough Rough Rough Rough Rough Rough Rough Rough Rough Rough Rough Rough Rough Rough Rough Rough Rough Rough<																								
SR3 Fine Rough 17.34 7.5 Middle 3.8 24.2 3.2						Surface			24.3		8.2		33.2		107.4		7.4			1.7			5.6	
No.e No.e <th< td=""><td>SR3</td><td>Fine</td><td>Rough</td><td>17:34</td><td>7.5</td><td>Middle</td><td></td><td></td><td>24.2</td><td></td><td>82</td><td></td><td>33.2</td><td></td><td>106.2</td><td></td><td>7.4</td><td>7.4</td><td></td><td>27</td><td>27</td><td></td><td>43</td><td>4.6</td></th<>	SR3	Fine	Rough	17:34	7.5	Middle			24.2		82		33.2		106.2		7.4	7.4		27	27		43	4.6
Image: bolic	0110	TINC	Rough	17.04	1.0	middic			27.2		0.2		00.2		100.2		1.4			2.1	2.1		4.0	4.0
SR4 Fine Rough 17.17 12.5 Surface 10 24.6 24.6 8.1 8.1 33.1 33.1 33.1 100.5 100.6 6.9						Bottom			24.2		8.2		33.2		107.0		7.4	7.4		3.8			3.9	
SR4 Fine Rough 17:17 12:5 Surface 10 24.6 24.4 24.4 8.1 3.1 3.1 100 100.1 6.9 <										_														-
SR4 Fine Rough 17.17 12.5 Middle 63.3 24.4 24.4 8.1 8.1 8.1 9.1 10.0 10.0 6.9 6.9 6.9 6.8						Surface			24.6		8.1		33.1		100.6		6.9			1.4			4.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	CD4	Fine	Baugh	17.17	10.5	Middle	6.3	24.4	24.4	8.1	0.1	33.1	22.4	100.1	100.1	6.9	6.0	6.9	1.6	16	10	3.3	25	3.4
Image: bolic boli	384	Fille	Rough	17.17	12.5	Middle			24.4		0.1		33.1		100.1		0.9			1.0	1.9		3.5	3.4
SR5 Fine Rough 17:11 Base 11.5 24.3 C 82 33.1 33.1 100.3 100.3 6.8 C 2.6 C 2.4 2.4 <th2.4< th=""> 2.4 2.4 2</th2.4<>						Bottom			24.3		8.2		33.1		97.6		6.8	6.8		2.6			2.3	
SR5 Fine Fine Fine Fine Fine Fine Fine Fine																								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						Surface			24.6		8.1		33.1		100.3		6.9			1.4			4.4	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.05	-	_ .									-			00.4			6.9		10				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SR5	Fine	Rough	17:11	9.8	Middle	4.9	24.3	24.3	8.2	8.2	33.1	33.1	97.9	98.1	6.8	6.8		2.0	1.9	1.7	3.2	3.3	3.3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						Bottom			24.3		8.1		33.2		96.8		6.7	6.7		1.9			2.2	
SR6 Fine Fine Fine Fine Fine Fine Fine Fine						Bollom			21.0		0.1	_	00.2		00.0		0.1	0.7						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						Surface			24.3		8.2		33.2		107.0		7.4			1.6			4.5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																		7.4		+	1			1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SR6	Fine	Rough	17:22	13.8	Middle			24.2		8.2		33.2		106.3		7.4			1.8	1.6		3.3	3.4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						Bottom			24.1	8.2	8.2	-	33.2		105.9		73	7.2		14	1		2.5	
SR7 Fine Rough 17:04 Prime 21.2 Prime Rough 17:04 Prime 21.2 Prime 22.2 Prime 21.2 Prime 22.2 Prime 21.2 Prime 22.2 Prime 21.2 Prime 22.2 Pr						DOLLOTT			24.1		0.2		33.Z		103.8		1.3	1.3		1.4			2.0	
SR7 Fine Rough 17:04 21.2 Fine Rough 17:04 21.2 Fine Rough 17:04 21.2 Product 10.6 24.1 24.1 Registration 10.6 24.1 24.1 Registration 10.6 24.1 24.1 Registration 10.6 24.1 24.1 Registration 10.6 Registration 10.6 24.1 Registration 10.6 Registr						Surface			24.2		8.2		33.2		105.8		7.4			1.9			3.8	
SR7 Fine Rough 17:04 21.2 Middle 10.6 24.1 8.1 33.2 104.6 104.7 7.3 1.1 1.1 1.6 2.6 2.6 Bottom 20.2 24.1 24.1 8.1 33.2 104.6 104.7 7.3 1.1 1.1 1.6 2.6 2.6 2.0 2.2 2.1 2.4 8.1 33.2 33.2 104.0 7.2 7.2 7.2 1.8 1.9 2.0 2.0 2.2																-	<u> </u>	7.3		 	ł			1
Bottom 20.2 24.1 24.1 8.1 8.1 33.2 33.2 104.0 104.0 7.2 7.2 7.2 1.8 1.9 2.0 2.2	SR7	Fine	Rough	17:04	21.2	Middle			24.1		8.1		33.2		104.7		7.3			1.1	1.6		2.6	2.9
						D. //									101.5		7.0	7.6		1.0	1			1
						Bottom		24.1	24.1	8.1	8.1		33.2		104.0	7.2	7.2	7.2	1.9	1.9			2.2	

19 November 21 during Mid-Flood Tide

DA: Depth-averaged

Water Quality Monitoring Results on 19 November 21 during Mid-Flood Tide
--

Water Qua		orning record			13 NOVEINDEL 21	auring inia	11004	i lac															
Monitoring	Weather	Sea	Sampling	Water			Water Te	emperature (°C)		pН	Salin	iity (ppt)	DO Satur	ation (%)	Dissolved	d Oxygen (mg/L)	Tur	bidity(NTU	J)	Suspend	ded Solids	s (mg/L
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	e DA
					Surface	1.0	24.4	24.4	8.0	8.0	33.1	33.1	98.0	98.0	6.8	6.8		3.5	3.5		2.6	2.4	
					Sunace	1.0	24.4	24.4	8.0	0.0	33.1	55.1	98.0	30.0	6.8	0.0	6.8	3.5	5.5		2.2	2.4	
SR8	Fine	Moderate	17:51	10.7	Middle	5.4	24.5	24.5	8.0	8.0	33.2	33.2	96.9	96.9	6.7	6.7	0.0	3.5	3.5	3.7	2.8	2.9	3
0110	T IIIC	Moderate	17.01	10.7	Wildlic	5.4	24.5	24.5	8.0	0.0	33.2	00.2	96.9	50.5	6.7	0.7		3.5	0.0	0.7	3.0	2.0	Ŭ
					Bottom	9.7	24.6	24.6	8.0	8.0	33.2	33.2	96.3	96.3	6.6	6.6	6.6	3.9	4.0		3.4	3.6	
					Dottom	9.7	24.6	21.0	8.0	0.0	33.2	00.2	96.3	00.0	6.6	0.0	0.0	4.0	1.0		3.7	0.0	
					Surface	1.0	24.7	24.7	8.2	8.2	33.1	33.1	99.7	99.7	6.9	6.9		3.0	3.0		1.9	2.0	
						1.0	24.7		8.2		33.1		99.7		6.9		6.9	3.0			2.1		
SR9	Fine	Moderate	17:39	9.2	Middle	4.6	24.3	24.3	8.2	8.2	33.1	33.1	97.8	97.8	6.8	6.8	•••	2.8	2.8	3.1	2.2	2.4	2
						4.6	24.3		8.2		33.1		97.8		6.8			2.7			2.5		_
					Bottom	8.2	24.3	24.3	8.2	8.2	33.2	33.2	96.0	96.0	6.7	6.7	6.7	3.4	3.4		2.7	2.7	
						8.2	24.3		8.2		33.2		96.0		6.7			3.4			2.7		_
					Surface	1.0	24.3	24.3	8.2	8.2	33.3	33.3	108.7	108.4	7.5	7.5		3.6	3.7		2.0	1.9	
					-	1.0	24.3		8.2		33.3		108.1		7.5		7.3	3.7			1.8		-
SR10	Fine	Rough	16:12	6.9	Middle	3.5	24.2	24.2	8.1	8.1	33.2	33.2	102.2	102.2	7.1	7.1		4.7	4.7	4.0	2.8	2.6	2
						3.5	24.2		8.1		33.2		102.1		7.1			4.7			2.4		
				Bottom	5.9	24.2	24.2	8.1	8.1	33.3	33.3	100.0	100.1	6.9	7.0	7.0	3.7	3.7		3.2	3.1		
						5.9	24.2		8.1	2.1	33.3	20.0	100.2		7.0			3.7			3.0		

DA: Depth-averaged

Improvement Dredging for Lamma Power Station Navigatin Channel Water Quality Monitoring Water Quality Monitoring Results on 22 November 21 of

Water Qual	lity Monit	oring Resu	ilts on		22 November 21	during Mid	-Ebb Tie	de															
Monitoring	Weather	Sea	Sampling	Water			Water Te	emperature (°C)		pН	Salin	ity (ppt)	DO Satur	ration (%)	Dissolve	d Oxygen (mg/L)	Tur	bidity(NTU)	Suspen	ded Solids	; (mg/L)
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	oth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
					Surface	1.0	23.5 23.5	23.5	8.2 8.2	8.2	32.5 32.5	32.5	90.4 90.4	90.4	6.4 6.4	6.4		2.3 2.3	2.3		5.5 5.4	5.5	
C1	Cloudy	Rough	14:12	10.5	Middle	5.3	23.5	23.5	8.2	8.2	32.5	32.5	89.9	89.9	6.3	6.3	6.4	3.2	3.2	2.9	5.3	5.2	5.1
					Bottom	5.3 9.5	23.5 23.5	23.5	8.2 8.2	8.2	32.5 32.5	32.5	89.9 90.1	90.1	6.3 6.4	6.4	6.4	3.2 3.1	3.1		5.0 4.7	4.7	
						9.5 1.0	23.5 23.5		8.2 8.2		32.5 32.8		90.1 95.6		6.4 6.7		0.4	3.0 4.1			4.7 3.9		
					Surface	1.0	23.5 23.5	23.5	8.2	8.2	32.8	32.8	95.5 95.0	95.6	6.7	6.7	6.7	4.2	4.2		3.7	3.8	
C2	Cloudy	Rough	12:39	10.5	Middle	5.3	23.5	23.5	8.2 8.2	8.2	32.8 32.8	32.8	95.1	95.1	6.7	6.7		4.5	4.5	6.0	4.9	4.8	4.7
					Bottom	9.5 9.5	23.5 23.5	23.5	8.2 8.2	8.2	32.8 32.8	32.8	95.8 96.0	95.9	6.7 6.8	6.8	6.8	9.3 9.3	9.3		5.6 5.6	5.6	
					Surface	1.0	23.5 23.5	23.5	8.2 8.2	8.2	32.7 32.8	32.7	96.3 96.3	96.3	6.8 6.8	6.8		4.2	4.2		5.6 5.4	5.5	
C3	Cloudy	Rough	12:31	23.4	Middle	11.7 11.7	23.5	23.5	8.2	8.2	32.8	32.8	95.8	95.8	6.7	6.7	6.8	5.7	5.9	5.9	5.3	5.4	5.2
					Bottom	22.4	23.5 23.5	23.5	8.2 8.2	8.2	32.8 32.8	32.8	95.8 96.0	96.0	6.7 6.8	6.8	6.8	6.0 7.5	7.7		5.4 4.6	4.7	
					Surface	22.4 1.0	23.5 23.4	23.4	8.2 8.2	8.2	32.8 32.8	32.8	96.0 96.2	96.2	6.8 6.8	6.8	0.0	7.8	3.5		4.8 5.5	5.4	
						1.0 4.1	23.4 23.4		8.2 8.2		32.8 32.8		96.2 96.0		6.8 6.8		6.8	3.6 4.5			5.2 8.2		
SR1	Fine	Moderate	13:52	8.1	Middle	4.1	23.4 23.4	23.4	8.2	8.2	32.8	32.8	95.9	96.0	6.8	6.8		4.6	4.6	4.5	8.3 9.3	8.3	7.7
					Bottom	7.1	23.4	23.4	8.2 8.2	8.2	32.8 32.8	32.8	95.2 95.2	95.2	6.7 6.7	6.7	6.7	5.5 5.5	5.5		9.4	9.4	
					Surface	1.0	23.4 23.4	23.4	8.2 8.2	8.2	32.8 32.8	32.8	94.0 94.0	94.0	6.6 6.6	6.6	6.6	4.4 4.4	4.4		7.7	7.7	
SR2	Cloudy	Moderate	13:44	6.5	Middle	3.3 3.3	23.4 23.4	23.4	8.2 8.2	8.2	32.8 32.8	32.8	93.8 93.8	93.8	6.6 6.6	6.6	0.0	4.5 4.5	4.5	4.5	6.7 6.6	6.7	6.7
					Bottom	5.5	23.3	23.3	8.2	8.2	32.8	32.8	93.7	93.7	6.6	6.6	6.6	4.6	4.6		5.7	5.8	
					Surface	5.5 1.0	23.3 23.5	23.5	8.2 8.2	8.2	32.8 32.8	32.8	93.7 96.5	96.5	6.6 6.8	6.8		4.5 4.1	4.1		5.9 6.2	6.3	
0.50			40.00			1.0 4.2	23.5 23.5		8.2 8.2		32.8 32.8		96.5 96.5		6.8 6.8		6.8	4.1 4.3			6.3 7.3		
SR3	Cloudy	Moderate	13:32	8.3	Middle	4.2 7.3	23.5 23.5	23.5	8.2 8.2	8.2	32.8 32.7	32.8	96.5 96.6	96.5	6.8 6.8	6.8		4.2 4.3	4.3	4.2	7.4 9.3	7.4	7.6
					Bottom	7.3	23.5	23.5	8.2	8.2	32.7	32.7	96.6	96.6	6.8	6.8	6.8	4.1	4.2		9.1	9.2	
					Surface	1.0 1.0	23.5 23.5	23.5	8.2 8.2	8.2	32.4 32.4	32.4	89.3 89.3	89.3	6.3 6.3	6.3	6.3	2.6 2.6	2.6		7.8	7.6	
SR4	Cloudy	Rough	13:13	14.6	Middle	7.3	23.6 23.6	23.6	8.2 8.2	8.2	32.5 32.5	32.5	88.9 88.9	88.9	6.3 6.3	6.3	0.0	4.9 5.3	5.1	5.7	6.2 6.5	6.4	6.5
					Bottom	13.6 13.6	23.6 23.6	23.6	8.2 8.2	8.2	32.5 32.5	32.5	89.0 89.0	89.0	6.3 6.3	6.3	6.3	9.4 9.3	9.4		5.6 5.2	5.4	
					Surface	1.0	23.5	23.5	8.2	8.2	32.4	32.4	89.6	89.6	6.3	6.3		2.5	2.5		5.9	5.8	
SR5	Cloudy	Rough	13:06	9.9	Middle	1.0 5.0	23.5 23.5	23.5	8.2 8.1	8.1	32.4 32.4	32.4	89.5 89.7	89.8	6.3 6.3	6.3	6.3	2.5 2.8	2.8	2.7	5.6 7.2	7.2	6.9
0110	oloudy	Rough	10.00	0.0		5.0 8.9	23.5 23.5		8.1 8.1		32.4 32.4		89.9 90.6		6.3 6.4			2.8 2.8		2.1	7.2		0.0
					Bottom	8.9 1.0	23.5 23.5	23.5	8.1 8.2	8.1	32.4 32.7	32.4	90.7 96.7	90.7	6.4 6.8	6.4	6.4	2.8 3.8	2.8		7.9 5.0	7.8	
					Surface	1.0	23.5	23.5	8.2	8.2	32.7	32.7	96.6	96.7	6.8	6.8	6.8	3.8	3.8		4.8	4.9	
SR6	Cloudy	Rough	13:17	14.6	Middle	7.3 7.3	23.5 23.5	23.5	8.2 8.2	8.2	32.8 32.8	32.8	96.5 96.5	96.5	6.8 6.8	6.8		3.9 3.9	3.9	3.8	5.5 5.6	5.6	5.5
					Bottom	13.6 13.6	23.5 23.5	23.5	8.2 8.2	8.2	32.8 32.8	32.8	96.5 96.5	96.5	6.8 6.8	6.8	6.8	3.8 3.8	3.8		6.0 5.9	6.0	
					Surface	1.0 1.0	23.5 23.5	23.5	8.2 8.2	8.2	32.7 32.7	32.7	96.5 96.4	96.5	6.8 6.8	6.8		3.9 3.9	3.9		5.3 5.4	5.4	
SR7	Cloudy	Rough	12:49	22.1	Middle	11.1	23.5	23.5	8.2	8.2	32.8	32.8	96.1	96.1	6.8	6.8	6.8	5.5	5.5	5.0	5.9	6.1	6.4
-	,				Bottom	11.1 21.1	23.5 23.5	23.5	8.2 8.2	8.2	32.8 32.8	32.8	96.1 96.2	96.2	6.8 6.8	6.8	6.8	5.5 5.5	5.5		6.2 7.8	7.8	
					DOUUIII	21.1	23.5	23.0	8.2	0.2	32.8	32.0	96.2	90.2	6.8	0.0	0.0	5.5	0.0		7.8	1.0	

22 November 21 during Mid-Ebb Tide

Water Quality Monitoring Results on 22 November 21 during Mid-Ebb Tie	de
---	----

water Qua	ity worth	oning Rest			ZZ NOVEIIIDEI ZI	uuning Milu		ue															
Monitoring	Weather	Sea	Sampling	Water			Water Te	emperature (°C)		pН	Salin	nity (ppt)	DO Satu	ration (%)	Dissolved	l Oxygen (mg/L)	Tur	bidity(NTU)	Suspend	led Solids	mg/l) ا
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	D
					Surface	1.0	23.5	23.5	8.2	8.2	32.5	32.5	90.3	90.3	6.4	6.4		2.4	2.5		6.7	6.7	
					Ganace	1.0	23.5	20.0	8.2	0.2	32.5	02.0	90.3	50.5	6.4	0.4	6.4	2.6	2.0		6.7	0.7	
SR8	Fine	Rough	13:51	9.7	Middle	4.9	23.5	23.5	8.2	8.2	32.5	32.5	90.5	90.6	6.4	6.4	0.4	3.5	3.6	3.4	7.7	7.8] .
0110	1 IIIC	rtougn	10.01	5.7	Middle	4.9	23.5	20.0	8.2	0.2	32.5	02.0	90.6	50.0	6.4	0.4		3.6	0.0	0.4	7.9	7.0	
					Bottom	8.7	23.5	23.5	8.2	8.2	32.4	32.4	91.2	91.3	6.4	6.5	6.5	4.2	4.2		8.1	8.0	
						8.7	23.5		8.2		32.4		91.4		6.5			4.1			7.9		
					Surface	1.0	23.5	23.5	8.2	8.2	32.7	32.7	93.6	93.7	6.6	6.6		1.2	1.2		7.8	8.0	
						1.0	23.5		8.2		32.7	-	93.8		6.6		6.6	1.2			8.2		
SR9	Fine	Rough	13:37	9.4	Middle	4.7	23.5	23.5	8.2	8.2	32.7	32.7	94.3	94.4	6.6	6.7		2.2	2.3	2.5	7.4	7.3	
		-				4.7	23.5		8.2		32.7		94.4		6.7			2.3			7.2		-
					Bottom	8.4	23.5	23.5	8.2	8.2	32.7 32.7	32.7	94.4	94.4	6.6	6.7	6.7	3.7	3.9		6.2	6.4	
						8.4	23.5		8.2				94.4		6.7			4.1			6.6		_
					Surface	1.0	23.5 23.5	23.5	8.2 8.2	8.2	32.7 32.7	32.7	96.5 96.4	96.5	6.8 6.8	6.8		4.1 4.1	4.1		7.4	7.5	
						1.0							96.4 96.4				6.8						-
SR10	Cloudy Rough	Rough	12:08	6.3	Middle	3.2	23.5	23.5	8.2	8.2	32.7	32.7		96.4	6.8	6.8		4.2	4.2	4.2	6.8	6.7	
SR10 Cloudy Roug					3.2	23.5		8.2		32.7		96.4		6.8			4.2			6.6		-	
				Bottom	5.3 5.3	23.5	23.5	8.2 8.2	8.2	32.7 32.7	32.7	96.4 96.4	96.4	6.8 6.8	6.8	6.8	4.2	4.2		5.5 5.4	5.5		
						5.3	23.5		ö.2		32.1		96.4		8.0			4.2			D.4		

DA: Depth-averaged

Improvement Dredging for Lamma Power Station Navigatin Channel Water Quality Monitoring Water Quality Monitoring Results on 22 November 21 of

later Qual	ity Monit	oring Resu	lts on		22 November 21	during Mid-	-Flood 1	Гide															
Monitoring	Weather	Sea	Sampling	Water			Water Te	mperature (°C)		pН	Salin	ity (ppt)	DO Satur	ation (%)	Dissolved	d Oxygen	(mg/L)	Tur	bidity(NTU	J)	Suspend	ded Solids	s (mg/
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	e D
					Queferre	1.0	23.5	00 F	8.1	0.4	32.6	22.0	92.3	00.4	6.5	0.5		1.5	4.5		6.8	6.7	┢
					Surface	1.0	23.5	23.5	8.1	8.1	32.6	32.6	92.5	92.4	6.5	6.5	6.6	1.5	1.5		6.6	6.7	
C1	Cloudy	Pough	07:16	11.2	Middle	5.6	23.6	23.6	8.1	8.1	32.8	32.8	95.2	95.2	6.7	6.7	0.0	1.7	1.8	2.1	5.6	5.7	
01	Cloudy	Rough	07.10	11.2	Wilddie	5.6	23.6	23.0	8.1	0.1	32.8	52.0	95.2	55.2	6.7	0.7		1.8	1.0	2.1	5.8	5.7	
					Bottom	10.2	23.5	23.5	8.0	8.0	32.7	32.7	94.6	94.6	6.7	6.7	6.7	3.0	3.0	1	5.2	5.3	
					2010111	10.2	23.5	20.0	8.0	0.0	32.7	02.1	94.6	01.0	6.7	0.1	0.7	3.0	0.0		5.4	0.0	_
					Surface	1.0	23.5	23.5	8.2	8.2	32.7	32.7	95.5	95.4	6.7	6.7		5.0	5.0		5.3	5.2	
						1.0	23.5		8.2		32.8		95.3		6.7		6.7	5.0		-	5.1		_
C2	Cloudy	Moderate	08:39	10.6	Middle	5.3	23.5	23.5	8.2	8.2	32.8	32.8	94.6	94.7	6.7	6.7		5.5	5.7	6.7	6.1	6.3	
						5.3 9.6	23.5 23.5		8.2 8.2		32.8 32.8		94.7 95.2		6.7 6.7			5.8 9.5	-	-	6.4 7.6		-
					Bottom	9.6	23.5	23.5	8.2	8.2	32.8	32.8	95.2	95.3	6.7	6.7	6.7	9.5	9.3		7.0	7.4	
					o /	1.0	23.5	00.5	8.2		32.7	00.7	96.2		6.8			4.5	4.5		5.0	4.0	t
					Surface	1.0	23.5	23.5	8.2	8.2	32.7	32.7	96.1	96.2	6.8	6.8	6.8	4.4	4.5		4.8	4.9	
C3	Cloudy	Moderate	08:27	23.5	Middle	11.8	23.5	23.5	8.2	8.2	32.8	32.8	94.8	94.8	6.7	6.7	0.0	4.2	4.2	5.7	5.8	5.8	
	,					11.8 22.5	23.5 23.5		8.2		32.8		94.8		6.7			4.2		-	5.8		-
					Bottom	22.5	23.5	23.5	8.2 8.2	8.2	32.8 32.7	32.7	95.9 96.0	96.0	6.8 6.8	6.8	6.8	8.2 8.5	8.4		6.2 6.2	6.2	
						1.0	23.3		8.2		32.8		96.0		6.8			4.2	1	<u> </u>	5.8		+
					Surface	1.0	23.3	23.3	8.2	8.2	32.8	32.8	95.8	95.9	6.8	6.8		4.2	4.2		5.7	5.8	
						3.9	23.3		8.2		32.8		95.7		6.8		6.8	4.3		•	5.3		
SR1	Cloudy	Moderate	07:16	7.8	Middle	3.9	23.3	23.3	8.2	8.2	32.8	32.8	95.8	95.8	6.8	6.8		4.3	4.3	4.4	5.1	5.2	
						6.8	23.3		8.2		32.8		95.7		6.8			4.6			3.5		1
					Bottom	6.8	23.3	23.3	8.2	8.2	32.8	32.8	95.7	95.7	6.8	6.8	6.8	4.5	4.6		3.3	3.4	
					Surface	1.0	23.3	22.2	8.2	8.2	32.8	32.8	96.3	96.3	6.8	6.9		3.9	4.0		3.8	3.9	T
					Surface	1.0	23.3	23.3	8.2	0.2	32.8	32.0	96.3	90.5	6.8	6.8	6.8	4.0	4.0		3.9	3.9	
SR2	Cloudy	Moderate	07:24	6.2	Middle	3.1	23.3	23.3	8.2	8.2	32.8	32.8	96.1	96.1	6.8	6.8	0.0	3.9	3.9	3.9	4.4	4.3	1
0112	olouuy	modorato	01.21	0.2	middio	3.1	23.3	20.0	8.2	0.2	32.8	02.0	96.1	00.1	6.8	0.0		3.9	0.0	0.0	4.1	1.0	
					Bottom	5.2	23.3	23.3	8.2	8.2	32.8	32.8	96.0	96.0	6.8	6.8	6.8	3.9	3.9		4.7	4.7	
						5.2	23.3		8.2		32.8		96.0		6.8			3.8		┢───	4.6		╇
					Surface	1.0	23.5 23.5	23.5	8.2 8.2	8.2	32.7 32.7	32.7	95.8 95.7	95.8	6.7 6.7	6.7		4.8 4.9	4.9		5.5 5.2	5.4	
						4.1	23.4	-	8.2		32.8		94.0		6.6		6.7	4.5		-	4.2		-
SR3	Cloudy	Moderate	07:39	8.2	Middle	4.1	23.4	23.4	8.2	8.2	32.8	32.8	93.9	94.0	6.6	6.6		4.5	4.6	4.7	4.2	4.3	
						7.2	23.4		8.2		32.7		93.9		6.6			4.6			3.6		-
					Bottom	7.2	23.4	23.4	8.2	8.2	32.7	32.7	94.1	94.0	6.6	6.6	6.6	4.5	4.6		3.8	3.7	
						1.0	23.5		8.1		32.4		88.4		6.2			4.0			3.9		t
					Surface	1.0	23.5	23.5	8.1	8.1	32.4	32.4	88.4	88.4	6.2	6.2		4.1	4.1		3.7	3.8	
004	Olaudu	Madaata	00.07	10.0	Madalla.	6.6	23.5	00 F	8.1	0.4	32.5	20.5	88.7	00.0	6.3	<u> </u>	6.3	4.9	5.0	1 4 0	4.4	4.5	1
SR4	Cloudy	Moderate	08:07	13.2	Middle	6.6	23.5	23.5	8.1	8.1	32.5	32.5	88.8	88.8	6.3	6.3		5.0	5.0	4.9	4.5	4.5	
					Bottom	12.2	23.5	23.5	8.1	8.1	32.5	32.5	89.2	89.2	6.3	6.3	6.3	5.6	5.8	1	5.6	5.6	1
					Dottom	12.2	23.5	23.5	8.2	0.1	32.5	52.5	89.2	03.2	6.3	0.5	0.5	6.0	5.0		5.5	5.0	
					Surface	1.0	23.6	23.6	8.1	8.1	32.4	32.4	88.1	88.1	6.2	6.2		3.4	3.5		3.2	3.1	
						1.0	23.6		8.1		32.4		88.1		6.2		6.2	3.5		_	3.0		_
SR5	Fine	Rough	08:17	9.9	Middle	5.0	23.6	23.6	8.1	8.1	32.4	32.4	88.2	88.3	6.2	6.2		4.0	4.1	3.9	3.4	3.6	
		-				5.0 8.9	23.6		8.1		32.5		88.3		6.2			4.1		-	3.7		-
					Bottom	8.9	23.6 23.5	23.6	8.1 8.1	8.1	32.5 32.4	32.4	88.2	88.3	6.2	6.2	6.2	4.1	4.1		5.8 5.7	5.8	
						8.9	23.5						88.3		6.2 6.7			4.1					┿
					Surface	1.0	23.5	23.5	8.2 8.2	8.2	32.7 32.7	32.7	95.8 95.7	95.8	6.7	6.7		4.7	4.8		3.0 3.2	3.1	
						7.3	23.5		8.2		32.8		93.9		6.6		6.7	5.4		-	3.7		-
SR6	Cloudy	Rough	07:50	14.5	Middle	7.3	23.5	23.5	8.2	8.2	32.8	32.8	93.8	93.9	6.6	6.6		5.5	5.5	6.6	3.6	3.7	1
						13.5	23.4		8.2		32.8		94.4		6.7	l		9.7	1	1	4.0		1
					Bottom	13.5	23.5	23.5	8.2	8.2	32.8	32.8	94.7	94.6	6.7	6.7	6.7	9.7	9.7	1	4.3	4.2	1
			l I		Queferre	1.0	23.5	00 F	8.2		32.8	22.0	95.8	05.0	6.7	6.7	Ì	4.5	4.5	<u> </u>	2.9		Ť
					Surface	1.0	23.5	23.5	8.2	8.2	32.8	32.8	95.7	95.8	6.7	6.7	0.7	4.5	4.5	1	2.7	2.8	1
SR7	Cloudy	Poursh	08:10	22.3	Middle	11.2	23.5	22 E	8.2	9.2	32.8	32.8	95.1	OF 1	6.7	6.7	6.7	7.3	7 9	6.1	3.3	34	1
55/	Cloudy	Rough	00:10	22.3	Middle	11.2	23.5	23.5	8.2	8.2	32.8	32.8	95.1	95.1	6.7	0.7		7.3	7.3	0.1	3.5	3.4	
					Bottom	21.3	23.5	23.5	8.2	8.2	32.8	32.7	95.8	95.9	6.7	6.8	6.8	6.9	6.6	1	4.2	4.2	1
						21.3	23.5		8.2	0.2	32.7		95.9		6.8			6.2			4.1		

22 November 21 during Mid-Flood Tide

DA: Depth-averaged

Water Quality Monitoring	Results on	22 November 21	during Mid	-Flood Tide	

	<u> </u>		Wator		aanng ma			r –	nН	Salin	ity (ppt)	DO Satur	ation (%)	Dissolver		ma/L)	Tur	hidity(NTL	0	Suspen	hed Solide	s (ma/l
Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average				,,				1				Ĺ			<u> </u>
				Surface	1.0	23.5	23.6	8.1	9.1	32.7	32.7	94.4	04.5	6.6	67		1.3	13		3.6	37	
				Surface	1.0	23.6	23.0	8.1	0.1	32.8	52.1	94.6	54.5	6.7	0.7	67	1.3	1.5		3.7	5.7	
Cloudy	Moderate	07:36	9.8	Middle	4.9	23.6	23.6	8.1	81	32.8	32.8	94.9	94.9	6.7	67	0.7	1.5	15	16	5.5	55	5
olouuy	modorato	01.00	0.0	middio	-		20.0		0.1		02.0		01.0		0.1			1.0			0.0	Ì
				Bottom			23.5		8.1		32.8		93.4		6.6	6.6		2.0			6.6	
																	_	-				
				Surface			23.5		8.1		32.7		93.8		6.6			1.2			5.3	
																6.7						_
Cloudy	Moderate	07:49	10.4	Middle			23.6		8.1		32.8		94.8		6.7			2.5	2.2		4.8	
					-															-		-
				Bottom			23.6		8.1		32.8		94.1		6.6	6.6		2.8			4.5	
																						-
				Surface			23.5		8.2		32.7		96.4		6.8			4.3			7.4	
																6.8						-
SR10 Cloudy Rough	Rough	09:05	6.2	Middle			23.5		8.2		32.7		96.2		6.8			4.4	4.4		6.5	6
								-														-
				Bottom	5.2	23.5	23.5	8.2	8.2	32.7	32.7	96.1	96.1	6.8	6.8	6.8	4.5	4.5		5.7	5.8	
	Weather Condition Cloudy Cloudy	Weather Sea Condition Condition Cloudy Moderate Cloudy Moderate	Condition Condition Cloudy Moderate 07:36 Cloudy Moderate 07:49	Weather Sea Sampling Water Condition Condition Time Depth (m) Cloudy Moderate 07:36 9.8 Cloudy Moderate 07:49 10.4	Weather Sea Sampling Water Sampling Dep Condition Condition Time Depth (m) Sampling Dep Cloudy Moderate 07:36 9.8 Middle Cloudy Moderate 07:49 10.4 Surface Cloudy Moderate 07:49 10.4 Middle Cloudy Moderate 07:49 10.4 Surface Cloudy Moderate 07:49 10.4 Middle Cloudy Moderate 07:49 10.4 Middle Cloudy Rough 09:05 6.2 Middle	Weather Condition Sea Condition Sampling Time Water Depth (m) Sampling Depth (m) Cloudy Moderate 07:36 9.8 Surface 1.0 Cloudy Moderate 07:36 9.8 Middle 4.9 Cloudy Moderate 07:36 9.8 Surface 1.0 Cloudy Moderate 07:49 10.4 Surface 1.0 Cloudy Moderate 07:49 10.4 Middle 5.2 Bottom 9.4 9.4 1.0 1.0 1.0 Cloudy Rough 09:05 6.2 Middle 3.1 Cloudy Rough 09:05 6.2 Middle 3.1	Weather Condition Sea Condition Sampling Time Water Depth (m) Sampling Depth (m) Water Te Value Cloudy Time Depth (m) Surface 1.0 23.5 Cloudy Moderate 07:36 9.8 Surface 1.0 23.6 Middle 4.9 23.6 4.9 23.6 23.6 23.5 Bottom 8.8 23.5 8.8 23.5 23.6 23.5 Cloudy Moderate 07:49 10.4 Surface 1.0 23.5 Middle 5.2 23.6 1.0 23.5 23.6 Bottom 5.2 23.6 1.0 23.5 Cloudy Moderate 07:49 10.4 Surface 1.0 23.5 Bottom 9.4 23.6 1.0 23.6 1.0 23.6 Bottom 9.4 23.6 1.0 23.5 1.0 23.5 Cloudy Rough 09:05 6.2 Middle 3.1	Weather Sea Sampling Water Sampling Depth (m) Water Temperature (°C) Condition Time Depth (m) Sampling Depth (m) Value Average Cloudy Moderate 07:36 9.8 Surface 1.0 23.6 23.6 Cloudy Moderate 07:36 9.8 Middle 4.9 23.6 23.6 Bottom 8.8 23.5 23.5 23.5 23.5 Cloudy Moderate 07:39 10.4 Surface 1.0 23.5 23.5 Bottom 8.8 23.5 23.5 23.5 23.5 Cloudy Moderate 07:49 10.4 Middle 5.2 23.6 23.6 Bottom 9.4 23.6 23.6 23.6 23.6 23.6 Cloudy Moderate 07:49 10.4 Middle 5.2 23.6 23.6 Bottom 9.4 23.6 23.6 23.6 23.6 23.6 23.6 </td <td>Weather Condition Sea Condition Sampling Time Water Depth (m) Sampling Depth (m) Water Temperature (°C) Value Cloudy Moderate 07:36 9.8 Surface 1.0 23.6 23.6 8.1 Cloudy Moderate 07:36 9.8 Surface 1.0 23.6 23.6 8.1 Middle 4.9 23.6 23.6 8.1 8.1 Bottom 8.8 23.5 23.5 8.1 Middle 5.2 23.6 8.1 8.1 Cloudy Moderate 07:49 10.4 Surface 1.0 23.5 23.5 8.1 Bottom 6.2 23.6 23.6 8.1 8.1 8.1 Cloudy Moderate 07:49 10.4 Surface 1.0 23.5 23.6 8.1 Bottom 9.4 23.6 23.6 8.1 8.1 Bottom 9.4 23.6 23.5 8.2 8.2 <td< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>Weather Condition Sampling Time Water Depth (m) Sampling Depth (m) Water Temperature (°C) pH Salinity (pp) DO Saturation (%) Dissolved Oxygen (mgL) Condition Time Depth (m) Sampling Depth (m) Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Valu</td><td>Weather Condition Sampling Water Depth (m) Water Sampling Depth (m) Water Temperature (°C) PH Salinity (pp) DO Sturation (%) Dissolved Oxygen (mg/L) Tur Condition Time Depth (m) Sampling Depth (m) Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Value Value Value Value Value Value Value Value Value Value Value</td><td>Weather Condition Sampling Water Depth (m) Water Sampling Depth (m) Water Temperature (°C) μ Salinity (ppt) DO Saturation (%) Dissolved Oxygen (mg.) Turbidity(NTU Condition Time Depth (m) Sampling Depth (m) Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Value Value Value Value Value Value Val</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>Weather Condition Sampling Water Time Water Depth (m) Mater Temperature (°C) pH Salinity (pt) DO Saturation (%) Dissolved Oxygen (mgL) Turbidity(NTU) Support Support Condition Time Depth (m) Sampling Depth (m) Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Value Average Value</td><td>Weather Sea Sampling Depth (m) Sampling Depth (m) Water Temperature (C) pH Salinity (pt) DO Saturation (%) Dissolved Oxygen (mgL) Turbidity(NU) Suspended Solid Condition Time Depth (m) Sampling Depth (m) Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value</td></td<></td>	Weather Condition Sea Condition Sampling Time Water Depth (m) Sampling Depth (m) Water Temperature (°C) Value Cloudy Moderate 07:36 9.8 Surface 1.0 23.6 23.6 8.1 Cloudy Moderate 07:36 9.8 Surface 1.0 23.6 23.6 8.1 Middle 4.9 23.6 23.6 8.1 8.1 Bottom 8.8 23.5 23.5 8.1 Middle 5.2 23.6 8.1 8.1 Cloudy Moderate 07:49 10.4 Surface 1.0 23.5 23.5 8.1 Bottom 6.2 23.6 23.6 8.1 8.1 8.1 Cloudy Moderate 07:49 10.4 Surface 1.0 23.5 23.6 8.1 Bottom 9.4 23.6 23.6 8.1 8.1 Bottom 9.4 23.6 23.5 8.2 8.2 <td< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>Weather Condition Sampling Time Water Depth (m) Sampling Depth (m) Water Temperature (°C) pH Salinity (pp) DO Saturation (%) Dissolved Oxygen (mgL) Condition Time Depth (m) Sampling Depth (m) Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Valu</td><td>Weather Condition Sampling Water Depth (m) Water Sampling Depth (m) Water Temperature (°C) PH Salinity (pp) DO Sturation (%) Dissolved Oxygen (mg/L) Tur Condition Time Depth (m) Sampling Depth (m) Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Value Value Value Value Value Value Value Value Value Value Value</td><td>Weather Condition Sampling Water Depth (m) Water Sampling Depth (m) Water Temperature (°C) μ Salinity (ppt) DO Saturation (%) Dissolved Oxygen (mg.) Turbidity(NTU Condition Time Depth (m) Sampling Depth (m) Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Value Value Value Value Value Value Val</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>Weather Condition Sampling Water Time Water Depth (m) Mater Temperature (°C) pH Salinity (pt) DO Saturation (%) Dissolved Oxygen (mgL) Turbidity(NTU) Support Support Condition Time Depth (m) Sampling Depth (m) Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Value Average Value</td><td>Weather Sea Sampling Depth (m) Sampling Depth (m) Water Temperature (C) pH Salinity (pt) DO Saturation (%) Dissolved Oxygen (mgL) Turbidity(NU) Suspended Solid Condition Time Depth (m) Sampling Depth (m) Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value</td></td<>	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Weather Condition Sampling Time Water Depth (m) Sampling Depth (m) Water Temperature (°C) pH Salinity (pp) DO Saturation (%) Dissolved Oxygen (mgL) Condition Time Depth (m) Sampling Depth (m) Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Valu	Weather Condition Sampling Water Depth (m) Water Sampling Depth (m) Water Temperature (°C) PH Salinity (pp) DO Sturation (%) Dissolved Oxygen (mg/L) Tur Condition Time Depth (m) Sampling Depth (m) Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Value Value Value Value Value Value Value Value Value Value Value	Weather Condition Sampling Water Depth (m) Water Sampling Depth (m) Water Temperature (°C) μ Salinity (ppt) DO Saturation (%) Dissolved Oxygen (mg.) Turbidity(NTU Condition Time Depth (m) Sampling Depth (m) Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Value Value Value Value Value Value Val	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Weather Condition Sampling Water Time Water Depth (m) Mater Temperature (°C) pH Salinity (pt) DO Saturation (%) Dissolved Oxygen (mgL) Turbidity(NTU) Support Support Condition Time Depth (m) Sampling Depth (m) Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Value Average Value	Weather Sea Sampling Depth (m) Sampling Depth (m) Water Temperature (C) pH Salinity (pt) DO Saturation (%) Dissolved Oxygen (mgL) Turbidity(NU) Suspended Solid Condition Time Depth (m) Sampling Depth (m) Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value Average Value

DA: Depth-averaged

Improvement Dredging for Lamma Power Station Navigatin Channel Water Quality Monitoring Water Quality Monitoring Results on 24 November 21 of

Company Moderable Company Moderable	Nater Qual	lity Monit	oring Resu	ilts on		24 November 21	during Mid	-Ebb Ti	de															
3 biti Condit Conditi Conditi <	Monitoring	Weather	Sea	Sampling	Water			Water Te	emperature (°C)		pН	Salini	ity (ppt)	DO Satur	ration (%)	Dissolve	d Oxygen ((mg/L)	Tur	bidity(NTU)	Suspend	ded Solids	. (mg/L)
		Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
Image: base index i						Surface			22.9		8.2		32.7		90.7		6.5			2.0			5.9	
I clash i clash <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6.5</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																		6.5						
Image: bolim Image: bolim	C1	Cloudy	Moderate	00:38	10.7	Middle	5.4	22.9	22.9	8.2	8.2	32.7	32.7	90.6	90.6	6.5	6.5		2.6	2.7	3.4	5.0	5.5	5.4
Alt Alt <td></td> <td></td> <td></td> <td></td> <td></td> <td>Bottom</td> <td></td> <td></td> <td>22.9</td> <td></td> <td>8.2</td> <td></td> <td>32.7</td> <td></td> <td>90.5</td> <td></td> <td>6.4</td> <td>6.4</td> <td></td> <td>5.5</td> <td></td> <td></td> <td>4.8</td> <td></td>						Bottom			22.9		8.2		32.7		90.5		6.4	6.4		5.5			4.8	
C2 Sumy Rough D20 D11 Mode Sol C20 <thc20< th=""> C20 C20 <th< td=""><td></td><td></td><td></td><td></td><td></td><td>Surface</td><td></td><td></td><td>22.6</td><td>8.2</td><td>8.2</td><td>32.9</td><td>32.9</td><td></td><td>94.4</td><td></td><td>6.7</td><td></td><td></td><td>4.5</td><td></td><td></td><td>5.6</td><td></td></th<></thc20<>						Surface			22.6	8.2	8.2	32.9	32.9		94.4		6.7			4.5			5.6	
Image: bolim Image: bolim<	C2	Sunny	Rough	02:09	11.2	Middle	5.6	22.6	22.6	8.2	8.2	32.9	32.9	94.0	94.0	6.7	6.7	6.7	4.5	4.6	4.6	5.5	5.9	6.0
Suny Reach Ind 226 120<						Bottom	10.2	22.6	22.6	8.2	8.2	32.9	32.9	93.5	93.5	6.7	6.7	6.7	4.9	4.9		6.3	6.6	
Buny Rough 104 201 100 200 400 400 600 70 400 70 400 70 400 70 400 70						Surface	1.0	22.6	22.6	8.3	83	32.9	32.9	94.4	94.4	6.7	67		4.3	44		5.0	5.0	
Image: bolic	C 2	Suppu	Bough	01:40	22.1													6.7			4.0			57
Image: bial bial bial bial bial bial bial bial	03	Sunny	Rough	01.49	23.1																4.9			5.7
Serie Auge						Bottom	22.1	22.6		8.3		32.9		93.5		6.7		6.7	5.8			7.0		
Serie Sump Moderale 0.07 6.3 Modele 4.2 2.25 8.2 6.2						Surface	1.0	22.5	22.5	8.2	8.2	32.9	32.9	92.7	92.8	6.6	6.6	6.6	3.7	3.7		7.1	7.6	
Image: bolic	SR1	Sunny	Moderate	00:47	8.3	Middle	4.2	22.5	22.5	8.2	8.2	32.9	32.9	92.6	92.6	6.6	6.6		4.8	4.8	4.7	5.4	5.7	6.2
SR2 Sum Moderate 0.053 0.10 0.10 0.253 0.25						Bottom			22.5		8.2		32.9		92.8		6.7	6.7		5.5			5.3	
SR2 Suny Moderate 00.5 6.1 Middle 3.1 22.5 8.2 8.2 8.2 9.27 9.27 6.6 <td></td> <td></td> <td></td> <td></td> <td></td> <td>Surface</td> <td></td> <td></td> <td>22.5</td> <td></td> <td>8.2</td> <td></td> <td>32.9</td> <td></td> <td>92.8</td> <td></td> <td>6.6</td> <td></td> <td></td> <td>4.8</td> <td></td> <td></td> <td>6.4</td> <td></td>						Surface			22.5		8.2		32.9		92.8		6.6			4.8			6.4	
Image: bolin bit bit bit bit bit bit bit bit bit bit	SR2	Sunny	Moderate	00:53	6.1	Middle	3.1	22.5	22.5	8.2	8.2	32.9	32.9	92.7	92.7	6.6	6.6	6.6	5.9	5.9	6.3	6.7	6.4	6.5
SR3 Sumy Moderate 01:05 8.0 Surface 10 225 225 8.2 8.2 9.2 6.6						Bottom	5.1	22.5	22.5	8.2	8.2	32.9	32.9	92.5	92.5	6.6	6.6	6.6	8.2	8.3		6.9	6.7	
SR3 Suny Moderate 01:0 8.0 Midie 1.0 22.5 22.5 82 32.9 92.9 92.6 6.6 <td></td> <td></td> <td></td> <td></td> <td></td> <td>Surface</td> <td>1.0</td> <td>22.5</td> <td>22.5</td> <td>8.2</td> <td>82</td> <td>32.9</td> <td>32.9</td> <td>93.0</td> <td>93.0</td> <td>6.7</td> <td>67</td> <td></td> <td>4.1</td> <td>42</td> <td> </td> <td>6.2</td> <td>62</td> <td></td>						Surface	1.0	22.5	22.5	8.2	82	32.9	32.9	93.0	93.0	6.7	67		4.1	42		6.2	62	
Normal Problem Normal	682	Suppu	Madarata	01:05	8.0													6.7			4.0			7.9
Image: bolic	383	Sunny	wouerate	01.05	0.0			-											-		4.9	-		1.5
SR4 Cloudy Moderate 01:35 13.6 10.6 10.228 22.8 82 82 82 82 82.7 82.7 87.6 87.5 62.2 62 62 62 63 33.7 37.						Bottom	7.0	22.5	22.5	8.2	8.2	32.9	32.9	92.6	92.6	6.6	6.6	6.6	6.0	6.0		8.0	8.2	
SR4 Cloudy Moderate 01:35 13.6 Middle 6.8 22.8 22.8 22.8 22.7 32.7 37.4 67.4 62.2 62.2 62.2 62.7 37.7 37.7 37.7 57.6 58.7 58.7 58.7 59.7 57.7 57.7 57.7						Surface	1.0	22.8	22.8	8.2	8.2	32.7	32.7	87.5	87.5	6.2	6.2	62	3.3	3.4		5.6	5.8	
Key Key <td>SR4</td> <td>Cloudy</td> <td>Moderate</td> <td>01:35</td> <td>13.6</td> <td>Middle</td> <td></td> <td></td> <td>22.8</td> <td></td> <td>8.2</td> <td></td> <td>32.7</td> <td></td> <td>87.4</td> <td></td> <td>6.2</td> <td>0.2</td> <td></td> <td>3.7</td> <td>5.6</td> <td></td> <td>5.6</td> <td>5.4</td>	SR4	Cloudy	Moderate	01:35	13.6	Middle			22.8		8.2		32.7		87.4		6.2	0.2		3.7	5.6		5.6	5.4
$ SR5 \ SR6 \ Sunny \ Noderate \ 01:45 \ 9.5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$						Bottom			22.8		8.2		32.7		88.5		6.3	6.3		9.8			4.7	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						Surface	1.0		22.8	8.2	8.2		32.7	87.3	87.3	6.2	6.2			2.1			4.7	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SR5	Cloudy	Moderate	01:45	9.5	Middle	4.8	22.8	22.8	8.2	8.2	32.7	32.7	87.6	87.6	6.3	6.3	6.3	3.3	3.3	3.2	4.7	4.8	4.7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						Bottom	8.5	22.9	22.9	8.2	8.2	32.7	32.7	88.4	88.3	6.3	6.3	6.3	4.2	4.2		4.7	4.6	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																		0.0						
SR0 Sunny Moderate 01:14 14.6 Middle 7.3 22.6 22.6 8.3 8.3 32.9 32.9 93.6 6.7 6.														-		-		6.7						
Series Sunny Rough 01:32 21.8 Bottom 13.6 22.6 22.6 8.2 32.9 32.9 93.5 6.7 6.7 6.7 8.4 8.5 5.0 4.9 SR7 Sunny Rough 01:32 21.8 Surface 1.0 22.7 22.7 8.3 32.9 94.4 94.4 6.7 6.7 6.7 4.2	SR6	Sunny	Moderate	01:14	14.6		7.3	22.6		8.3		32.9		93.6		6.7			5.0		5.9	5.0		5.1
$ SR7 Sunny Rough 01:32 21.8 10 22.7 22.7 8.3 8.3 32.9 32.9 94.4 94.4 6.7 5.7 \\ \hline Middle 10.9 22.6 22.6 8.3 8.3 32.9 32.9 93.7 93.7 6$						Bottom	13.6	22.6	22.6	8.2	8.2	32.9	32.9	93.5	93.5	6.7	6.7	6.7	8.4	8.5		5.0	4.9	
SR7 Sunny Rough 01:32 21.8 Middle 10.9 22.6 22.6 8.3 8.3 32.9 93.7 93.7 6.7 6.7 6.7 4.8 4.8 5.6 5.1 4.9 5.0 4.9 Bottom 20.8 22.6 22.6 8.3 8.3 32.9 32.9 93.7 93.7 6.7 6.7 6.7 4.8 4.8 5.6 4.9 5.0 4.9 Bottom 20.8 22.6 22.6 8.3 8.3 32.9 32.9 93.7 6.						Surface	1.0	22.7	22.7	8.3	8.3	32.9	32.9	94.4	94.4	6.7	6.7	6.7	4.2	4.2		5.3	5.7	
	SR7	Sunny	Rough	01:32	21.8	Middle			22.6		8.3		32.9		93.7		6.7	0		4.8	5.6		5.0	5.2
						Bottom			22.6		8.3		32.9		93.3		6.7	6.7		7.7	1		4.8	

24 November 21 during Mid-Ebb Tide

Water Quality Monitoring Results on	24 November 21	during Mid-Ebb Tide
-------------------------------------	----------------	---------------------

Tator Gaa		oning Rest			24 NOVEITIBET 21	uuring iniu																	
Monitoring	Weather	Sea	Sampling	Water			Water Te	mperature (°C)		pН	Salin	nity (ppt)	DO Satur	ation (%)	Dissolved	Oxygen (mg/L)	Tur	bidity(NTU	i)	Suspen	ded Solids	፥ (mg/L
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
					Surface	1.0	22.6	22.6	8.2	8.2	32.7	32.7	90.2	90.2	6.5	6.5		2.9	3.0		5.4	5.3	
					Surface	1.0	22.6	22.0	8.2	0.2	32.7	32.1	90.2	90.2	6.5	0.0	6.5	3.0	3.0		5.1	0.5	
SR8	Cloudy	Moderate	01:01	10.3	Middle	5.2	22.6	22.6	8.2	8.2	32.8	32.8	91.3	91.2	6.5	6.5	0.5	3.2	3.2	3.4	5.2	4.8	4
5110	Cloudy	wooerate	01.01	10.5	Wilddie	5.2	22.6	22.0	8.2	0.2	32.8	52.0	91.1	51.2	6.5	0.5		3.2	5.2	3.4	4.3	4.0	4.
					Bottom	9.3	22.6	22.6	8.2	8.2	32.9	32.9	89.2	89.3	6.4	6.4	6.4	4.0	4.0		4.0	4.2	
					Dottom	9.3	22.6	22.0	8.2	0.2	32.9	02.0	89.3	00.0	6.4	0.4	0.4	4.0	4.0		4.3	ч. ∠	
					Surface	1.0	22.6	22.6	8.2	8.2	32.7	32.7	81.6	81.6	5.8	5.8		2.0	2.0		5.0	5.4	
					Guildoo	1.0	22.6	22.0	8.2	0.2	32.7	02	81.6	01.0	5.8	0.0	5.8	1.9	2.0		5.8	0.1	
SR9	Cloudy	Moderate	01:12	9.8	Middle	4.9	22.6	22.6	8.2	8.2	32.7	32.7	80.6	80.6	5.8	5.8	0.0	2.6	2.6	2.5	4.6	4.2	4
	,					4.9	22.6		8.2		32.7		80.6		5.8			2.6			3.8		_ `
					Bottom	8.8	22.6	22.6	8.2	8.2	32.7	32.7	82.1	82.1	5.9	5.9	5.9	3.0	3.0		3.9	4.2	
						8.8	22.6	-	8.2		32.7		82.1		5.9			3.0			4.5		
					Surface	1.0	22.6	22.6	8.2	8.2	32.9	32.9	94.5	94.5	6.8	6.8		2.4	2.4		4.4	4.6	
						1.0	22.6		8.2		32.9		94.5		6.8		6.8	2.4			4.8		_
SR10	Sunny	Rough	02:37	6.3	Middle	3.2	22.6	22.6	8.2	8.2	32.9	32.9	94.3	94.3	6.7	6.7		3.6	3.6	3.5	3.8	4.1	4
	,			7 6.3		3.2	22.6		8.2		32.9		94.3		6.7			3.6			4.3		
					Bottom	5.3	22.6	22.6	8.2	8.2	32.9	32.9	93.9	93.9	6.7	6.7	6.7	4.5	4.5		3.6	3.8	
						5.3	22.6		8.2		32.9		93.9		6.7			4.5			4.0		

DA: Depth-averaged

Improvement Dredging for Lamma Power Station Navigatin Channel Water Quality Monitoring Water Quality Monitoring Results on 24 November 21 of

Water Qual	ity Monit	oring Resu	ilts on		24 November 21	during Mid	-Flood	Tide															
Monitoring	Weather	Sea	Sampling	Water				emperature (°C)		pН	Salin	ity (ppt)	DO Satur	ation (%)	Dissolved	l Oxygen (mg/L)	Tur	bidity(NTU)	Suspen	ded Solids	; (mg/L)
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
					Surface	1.0	22.7	22.7	8.2	8.2	32.7	32.7	86.3	86.3	6.2	6.2		2.5	2.5		3.9	3.8	<u> </u>
					Sullace	1.0	22.7	22.1	8.2	0.2	32.7	32.1	86.3	00.3	6.2	0.2	6.2	2.5	2.5		3.6	3.0	
C1	Sunny	Moderate	14:56	10.7	Middle	5.4	22.7	22.7	8.2	8.2	32.7	32.7	85.7	85.8	6.1	6.1		2.7	2.7	3.1	4.0	3.8	4.0
	-					5.4 9.7	22.7 22.8		8.2 8.2		32.7 32.8		85.8 86.0		6.1 6.1			4.1			3.5 4.1		
					Bottom	9.7	22.8	22.8	8.2	8.2	32.8	32.8	86.0	86.0	6.1	6.1	6.1	4.0	4.1		4.9	4.5	
					Surface	1.0	22.6	22.6	8.3	8.3	32.9	32.9	94.6	94.6	6.8	6.8		4.5	4.5		4.0	4.3	
						1.0	22.6		8.3		32.9		94.6		6.8		6.8	4.5			4.5		
C2	Sunny	Rough	13:25	11.2	Middle	5.6 5.6	22.6 22.6	22.6	8.3 8.3	8.3	32.9 32.9	32.9	93.8 93.8	93.8	6.7 6.7	6.7		4.9 4.9	4.9	4.9	3.1 4.0	3.6	3.7
					Bottom	10.2	22.6	22.6	8.3	8.3	32.9	32.9	93.4	93.4	6.7	6.7	6.7	5.4	5.4		3.1	3.4	
					Bottom	10.2	22.6 22.6	22.0	8.3 8.3	0.0	32.9	02.0	93.3 94.8	50.4	6.7 6.8	0.1	0.7	5.4 5.1	0.4		3.6 4.2	0.4	
					Surface	1.0	22.6	22.6	8.3	8.3	32.9 32.9	32.9	94.8	94.8	6.8	6.8		5.1	5.1		4.2	4.4	
C3	Sunny	Rough	13:36	23.1	Middle	11.6	22.6	22.6	8.3	8.3	32.9	32.9	94.1	94.1	6.7	6.7	6.8	5.5	5.5	5.7	4.4	4.0	3.9
00	Guility	Rough	10.00	20.1		11.6 22.1	22.6 22.6		8.3 8.3		32.9 32.9		94.1 93.4		6.7 6.7			5.5 6.5		0.7	3.6 3.0		0.0
					Bottom	22.1	22.0	22.6	8.3	8.3	32.9	32.9	93.4	93.4	6.7	6.7	6.7	6.5	6.5		3.5	3.3	
					Surface	1.0	22.7	22.7	8.3	8.3	32.9	32.9	95.0	05.0	6.8	6.8		3.3	3.3		3.5	3.9	
					Sullace	1.0	22.7	22.1	8.3	0.3	32.9	32.9	94.9	95.0	6.8	0.0	6.8	3.3	3.3		4.2	3.9	
SR1	Sunny	Moderate	14:43	8.3	Middle	4.2	22.6 22.6	22.6	8.3 8.3	8.3	32.9 32.9	32.9	94.4 94.4	94.4	6.8 6.8	6.8		4.2	4.2	4.4	4.5 6.4	5.5	4.1
						4.2	22.6		8.3		32.9		94.4 94.3		6.7			4.2			3.0		
					Bottom	7.3	22.6	22.6	8.3	8.3	32.9	32.9	94.3	94.3	6.7	6.7	6.7	5.7	5.7		3.2	3.1	
					Surface	1.0	22.7	22.7	8.3	8.3	32.9	32.9	95.2	95.2	6.8	6.8		5.3	5.4		4.9	4.6	
					Guildoo	1.0	22.7		8.3	0.0	32.9	02.0	95.2	00.2	6.8	0.0	6.8	5.4	0.1		4.2	1.0	
SR2	Sunny	Moderate	14:32	6.1	Middle	3.1 3.1	22.6 22.6	22.6	8.3 8.3	8.3	32.9 32.9	32.9	94.9 94.9	94.9	6.8 6.8	6.8		5.9 5.9	5.9	6.4	4.2	4.1	4.2
					_	5.1	22.0		8.3		32.9		94.3		6.7			8.0			4.0		
					Bottom	5.1	22.6	22.6	8.3	8.3	32.9	32.9	94.3	94.3	6.7	6.7	6.7	8.1	8.1		3.8	4.0	
					Surface	1.0	22.7	22.7	8.3	8.3	32.9	32.9	95.1	95.1	6.8	6.8		4.5	4.6		5.1	4.8	
						1.0 4.0	22.7 22.6		8.3 8.3		32.9 32.9		95.0 94.3		6.8 6.7		6.8	4.6 5.8			4.5 4.6	-	
SR3	Sunny	Moderate	14:22	8.0	Middle	4.0	22.0	22.6	8.3	8.3	32.9	32.9	94.3	94.3	6.7	6.7		6.1	6.0	6.1	3.7	4.2	4.3
					Bottom	7.0	22.6	22.6	8.3	8.3	32.9	32.9	94.1	94.1	6.7	6.7	6.7	7.8	7.8		4.1	3.9	1
					Bottom	7.0	22.6	22.0	8.3	0.5	32.9	32.5	94.1	34.1	6.7	0.7	0.7	7.7	7.0		3.7	3.3	
					Surface	1.0	22.7 22.7	22.7	8.2 8.2	8.2	32.6 32.6	32.6	83.8 83.8	83.8	6.0 6.0	6.0		2.9 2.9	2.9		3.9 3.6	3.8	
						6.8	22.7		8.2		32.0		86.0		6.0		6.1	3.8			4.0		4
SR4	Sunny	Moderate	13:57	13.6	Middle	6.8	22.7	22.7	8.2	8.2	32.7	32.7	86.0	86.0	6.1	6.1		3.8	3.8	3.8	3.8	3.9	3.9
					Bottom	12.6	22.8	22.8	8.2	8.2	32.8	32.8	86.1	86.1	6.1	6.1	6.1	4.7	4.7	1	4.2	4.1	1
			ļ		Soutin	12.6	22.8	-2.0	8.2	5.2	32.8	52.0	86.1	55.1	6.1	0.1	0.1	4.6	~~		3.9		L
					Surface	1.0	22.8 22.8	22.8	8.2 8.2	8.2	32.7 32.7	32.7	86.9 87.0	87.0	6.2 6.2	6.2		3.3 3.3	3.3		3.4 4.5	4.0	
0.0.5	0	Mad	40.50	0.5	N.41 - 11	4.8	22.8	00.0	8.2		32.7	00.7	88.6	00.0	6.3		6.3	4.2	4.2	4.5	4.7	5.0	
SR5	Sunny	Moderate	13:50	9.5	Middle	4.8	22.8	22.8	8.2	8.2	32.7	32.7	88.6	88.6	6.3	6.3		4.3	4.3	4.5	5.2	5.0	4.6
					Bottom	8.5	22.7	22.7	8.2	8.2	32.7	32.7	86.7	86.8	6.2	6.2	6.2	5.9	5.9		4.6	5.0	1
						8.5 1.0	22.7		8.2		32.7		86.8		6.2			5.8			5.3		
					Surface	1.0	22.6 22.6	22.6	8.3 8.3	8.3	32.9 32.9	32.9	94.8 94.8	94.8	6.8 6.8	6.8		4.7	4.7		4.0 4.7	4.4	1
e D c	Sur	Moderate	14:00	14.0	Mid-U-	7.3	22.6	20.0	8.3	• •	32.9	20.0	93.9	02.0	6.7	67	6.8	5.1	5.4		4.2	45	4.0
SR6	Sunny	Moderate	14:08	14.6	Middle	7.3	22.6	22.6	8.3	8.3	32.9	32.9	93.9	93.9	6.7	6.7		5.0	5.1	5.2	4.7	4.5	4.6
					Bottom	13.6	22.6	22.6	8.2	8.2	32.9	32.9	92.9	92.9	6.6	6.6	6.6	6.0	6.0		4.5	4.9	
			1		<u> </u>	13.6 1.0	22.6 22.6	1	8.2 8.3		32.9 32.9		92.9 94.8		6.6 6.8	1		5.9 4.5	1		5.2 3.0		<u> </u>
					Surface	1.0	22.6	22.6	8.3	8.3	32.9	32.9	94.8	94.8	6.8	6.8		4.5	4.5		3.0	3.1	
SR7	Suppy	Pough	13:49	21.8	Middlo	10.9	22.6	22.6	8.2	8.2	32.9	32.0	93.7	03.7	6.7	6.7	6.8	5.1	5.1	5.2	3.2	2.2	3.5
or i	Sunny	Rough	13.49	21.0	Middle	10.9	22.6	22.6	8.2	8.2	32.9	32.9	93.7	93.7	6.7	0.7		5.0	5.1	5.2	3.4	3.3	3.5
					Bottom	20.8 20.8	22.6	22.6	8.3	8.3	32.9 32.9	32.9	94.1	94.1	6.7	6.7	6.7	5.9	5.9		4.1 4.0	4.1	1
						20.8	22.6		8.3		32.9		94.1		6.7			5.9			4.0		

24 November 21 during Mid-Flood Tide

DA: Depth-averaged

Water Quality Monitoring Results on	24 November 21	during Mid-Flood Tide	

valei Qua	ity worth	oning Rest			24 NOVEINDEL 21	uuning Milu	-1 1000	liue															
Monitoring	Weather	Sea	Sampling	Water			Water Te	emperature (°C)		pН	Salin	nity (ppt)	DO Satu	ration (%)	Dissolved	l Oxygen (mg/L)	Tur	bidity(NTU	I)	Suspend	ded Solids	s (mg/
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	; C
					Surface	1.0	22.7	22.7	8.2	8.2	32.7	32.7	85.4	85.4	6.1	6.1		2.5	2.5		3.0	2.6	
					Sunace	1.0	22.7	22.1	8.2	0.2	32.7	52.1	85.4	00.4	6.1	0.1	6.2	2.5	2.5		2.1	2.0	
SR8	Sunny	Moderate	14:29	10.3	Middle	5.2	22.7	22.7	8.2	8.2	32.7	32.7	87.0	87.0	6.2	6.2	0.2	2.8	2.8	3.0	3.9	4.3	
0110	ounny	Moderate	14.20	10.0	Mildale	5.2	22.7	22.1	8.2	0.2	32.7	02.1	87.0	07.0	6.2	0.2		2.8	2.0	0.0	4.6	4.0	
					Bottom	9.3	22.7	22.7	8.2	8.2	32.7	32.7	85.8	85.8	6.1	6.1	6.1	3.7	3.8		3.7	4.3	
					Bollom	9.3	22.7		8.2	0.2	32.7	02.1	85.8	00.0	6.1	0.1	0.1	3.8	0.0		4.8	1.0	
					Surface	1.0	22.8	22.8	8.2	8.2	32.7	32.7	87.2	87.2	6.2	6.2		2.3	2.3		4.2	4.0	
						1.0	22.8		8.2		32.7		87.2		6.2		6.2	2.3			3.8		_
SR9	Sunny	Moderate	14:19	9.8	Middle	4.9	22.7	22.7	8.2	8.2	32.7	32.7	86.5	86.5	6.2	6.2		2.9	2.9	3.1	4.0	4.3	
						4.9	22.7		8.2		32.7		86.4		6.2			2.9			4.5		_
					Bottom	8.8	22.8	22.8	8.2	8.2	32.8	32.8	85.7	85.7	6.1	6.1	6.1	4.1	4.1		4.2	4.4	
						8.8	22.8		8.2		32.8		85.7		6.1			4.1			4.6		_
					Surface	1.0	22.6	22.6	8.2	8.2	32.8	32.8	95.0	95.0	6.8	6.8		3.7	3.7		4.5	4.4	
						1.0	22.6	-	8.2		32.8		95.0		6.8		6.8	3.7			4.2		_
SR10	Sunny	Rough	12:57	6.3	Middle	3.2	22.6	22.6	8.3	8.3	32.8	32.8	94.9	94.9	6.8	6.8		4.3	4.4	4.4	3.8	4.0	
	,			6.3		3.2	22.6		8.3		32.8		94.9		6.8			4.4			4.2		_
					Bottom	5.3	22.6	22.6	8.3	8.3	32.9	32.9	94.3	94.4	6.7	6.8	6.8	5.0	5.0		2.8	3.2	
			1		2240111	5.3	22.6		8.3	2.0	32.9		94.4		6.8	2.0		5.0	5.0		3.5		1

DA: Depth-averaged

Improvement Dredging for Lamma Power Station Navigatin Channel Water Quality Monitoring Water Quality Monitoring Results on 26 November 21 of

Water Qual	lity Monit	oring Resu	ilts on		26 November 21	during Mid	-Ebb Tie	de															
Monitoring	Weather	Sea	Sampling	Water			Water Te	emperature (°C)		pН	Salin	ity (ppt)	DO Satur	ration (%)	Dissolve	d Oxygen (mg/L)	Tur	bidity(NTU)	Suspen	ded Solids	s (mg/L)
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	oth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
					Surface	1.0	22.7	22.7	8.0	8.0	32.7	32.7	86.4	86.4	6.2	6.2		1.4	1.4		2.8	2.8	1
						1.0	22.7 22.7		8.0 8.0		32.7 32.7		86.4 86.2		6.2 6.2	-	6.2	1.4 1.6	-		2.8 2.9		4
C1	Cloudy	Moderate	02:09	10.7	Middle	5.4	22.7	22.7	8.0	8.0	32.7	32.7	86.2	86.2	6.2	6.2		1.6	1.6	1.7	3.0	3.0	3.0
					Bottom	9.7 9.7	22.7 22.7	22.7	8.0 8.0	8.0	32.7 32.7	32.7	86.0 86.0	86.0	6.1 6.1	6.1	6.1	2.2 2.2	2.2		3.1 3.2	3.2	
					Surface	1.0 1.0	22.6 22.6	22.6	8.2 8.2	8.2	32.9 32.9	32.9	94.3 94.3	94.3	6.7 6.7	6.7	0.7	2.1 2.1	2.1		4.0	3.9	
C2	Sunny	Rough	03:34	11.2	Middle	5.6 5.6	22.5 22.5	22.5	8.2 8.2	8.2	32.9 32.9	32.9	94.0 94.0	94.0	6.7 6.7	6.7	6.7	2.6 2.5	2.6	2.7	3.2 3.4	3.3	3.4
					Bottom	10.2 10.2	22.5 22.5	22.5	8.2 8.2	8.2	32.9 32.9	32.9	93.9 93.9	93.9	6.7 6.7	6.7	6.7	3.5 3.5	3.5		3.1 3.2	3.2	
					Surface	1.0 1.0	22.6 22.6	22.6	8.2 8.2	8.2	32.9 32.9	32.9	94.4 94.4	94.4	6.8 6.8	6.8		2.0 2.1	2.1		4.5 4.2	4.4	
C3	Sunny	Rough	03:27	23.1	Middle	11.6 11.6	22.6 22.6	22.6	8.2 8.2	8.2	32.9 32.9	32.9	94.0 94.0	94.0	6.7 6.7	6.7	6.8	2.5 2.4	2.5	2.9	3.1 3.4	3.3	3.5
					Bottom	22.1	22.5	22.5	8.2	8.2	32.9 32.9	32.9	93.3 93.3	93.3	6.7	6.7	6.7	4.2	4.2		2.8	2.8	
					Surface	1.0	22.6 22.6	22.6	8.2 8.2	8.2	32.9 32.9	32.9	90.8 90.8	90.8	6.5 6.5	6.5		2.2 2.3	2.3		5.8 5.7	5.8	
SR1	Sunny	Moderate	02:24	8.3	Middle	4.2	22.4 22.4	22.4	8.2 8.2	8.2	32.9 32.9	32.9	91.8 91.8	91.8	6.6 6.6	6.6	6.6	2.8 2.8	2.8	2.8	6.4 6.4	6.4	6.4
					Bottom	7.3 7.3	22.4 22.4	22.4	8.2 8.2	8.2	32.9 32.9	32.9	93.9 93.9	93.9	6.7 6.7	6.7	6.7	3.3 3.2	3.3		7.2	7.2	
					Surface	1.0 1.0	22.5 22.5	22.5	8.2 8.2	8.2	32.9 32.9	32.9	91.4 91.4	91.4	6.6 6.6	6.6		2.9 2.9	2.9		2.2 2.1	2.2	
SR2	Sunny	Moderate	02:33	6.1	Middle	3.1	22.5	22.5	8.2	8.2	32.9 32.9	32.9	92.3 92.3	92.3	6.6 6.6	6.6	6.6	3.2	3.2	4.5	2.6	2.5	2.7
					Bottom	5.1	22.5	22.5	8.2	8.2	32.9 32.9	32.9	94.2 94.1	94.2	6.7 6.7	6.7	6.7	7.4	7.4		3.5	3.6	1
					Surface	1.0	22.5	22.5	8.2	8.2	32.9 32.9	32.9	91.4 91.3	91.4	6.5 6.5	6.5		1.4	1.4		3.4	3.3	
SR3	Sunny	Moderate	02:46	8.0	Middle	4.0	22.5	22.5	8.2	8.2	32.9 32.9	32.9	93.3 93.3	93.3	6.7 6.7	6.7	6.6	2.0	2.0	3.0	2.1	2.1	2.4
					Bottom	7.0	22.5	22.5	8.2	8.2	33.0 33.0	33.0	94.3 94.3	94.3	6.8 6.8	6.8	6.8	5.6	5.6		1.9	1.8	
					Surface	1.0	22.7	22.7	8.1 8.1	8.1	32.5 32.5	32.5	78.6 78.6	78.6	5.6 5.6	5.6		1.7	1.7		2.9	2.9	
SR4	Sunny	Moderate	03:00	13.6	Middle	6.8 6.8	22.7	22.7	8.1 8.1	8.1	32.6 32.6	32.6	81.9 81.8	81.9	5.9 5.9	5.9	5.8	2.1	2.2	2.7	2.6	2.5	2.5
					Bottom	12.6	22.6	22.6	8.1 8.1	8.1	32.7	32.7	84.0 84.0	84.0	6.0	6.0	6.0	4.2	4.2		2.2	2.2	
					Surface	1.0	22.7	22.7	8.1 8.1	8.1	32.5 32.5	32.5	78.7	78.8	5.6 5.6	5.6		1.3	1.3		4.0	4.0	
SR5	Sunny	Moderate	03:10	9.5	Middle	4.8	22.7	22.7	8.1 8.1	8.1	32.6 32.6	32.6	80.3 80.3	80.3	5.7	5.7	5.7	1.8	1.8	1.9	3.5	3.6	3.5
					Bottom	8.5	22.6	22.6	8.1 8.1	8.1	32.7	32.7	82.8 82.8	82.8	5.9	5.9	5.9	2.6	2.6		2.9	2.9	
					Surface	1.0	22.6	22.6	8.2 8.2	8.2	32.9 32.9	32.9	95.2 95.2	95.2	6.8 6.8	6.8		1.7	1.7		2.4	2.5	
SR6	Sunny	Moderate	02:56	14.6	Middle	7.3	22.5 22.5	22.5	8.2	8.2	32.9 32.9	32.9	93.4 93.4	93.4	6.7	6.7	6.8	2.3	2.3	2.7	2.8	2.9	3.0
					Bottom	13.6 13.6	22.5 22.5	22.5	8.2	8.2	32.9 32.9	32.9	92.8 92.8	92.8	6.6 6.6	6.6	6.6	4.1 4.1	4.1	1	3.7	3.7	
					Surface	1.0	22.6	22.6	8.2 8.2	8.2	32.9 32.9	32.9	94.9 94.8	94.9	6.8 6.8	6.8		1.8	1.8		2.3	2.4	
SR7	Sunny	Rough	03:12	21.8	Middle	10.9 10.9	22.5	22.5	8.2	8.2	32.9 32.9	32.9	94.0 94.0	94.0	6.7 6.7	6.7	6.8	2.3	2.3	2.7	2.4	2.5	2.5
					Bottom	20.8	22.6	22.6	8.2	8.2	32.9 32.9	32.9	93.2 93.3	93.3	6.7 6.7	6.7	6.7	4.0	4.0		2.6	2.6	1
			1		1	20.0	22.0		0.2		32.3		33.3	1	0.7	1		4.0	1		2.0		1

26 November 21 during Mid-Ebb Tide

	Water Qualit	y Monitoring Results on	26 November 21	during Mid-Ebb Tide
--	--------------	-------------------------	----------------	---------------------

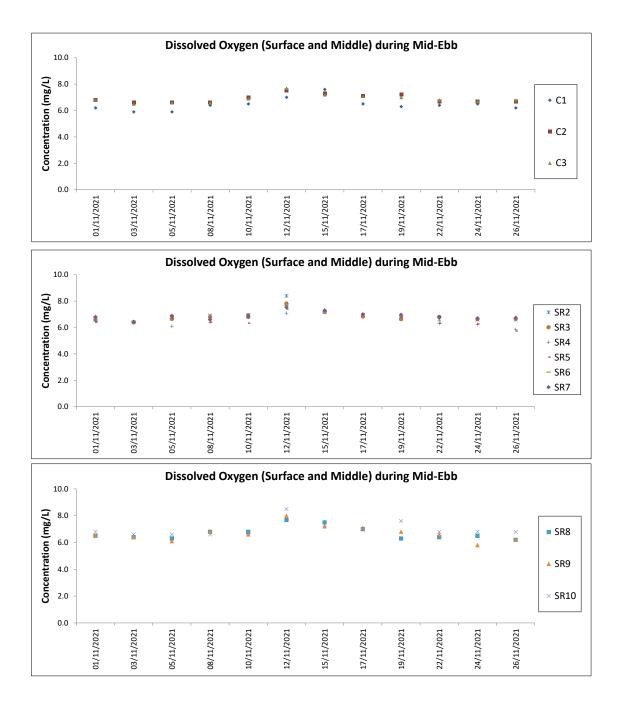
	Weather	Sea	Sampling	Water	20 NOVEIIIDEI 21	auning inia		emperature (°C)	1	pН	Salin	nity (ppt)	DO Satur	ation (%)	Dissolved	Oxvaen (ma/L)	Tur	bidity(NTU	n.	Suspen	ded Solids	s (ma/l
Monitoring Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average				Average		Average		Average			Average	1	· · ·	Average	
					Surface	1.0	22.7	22.7	8.0	8.0	32.7	32.7	86.2	86.2	6.2	6.2		1.2	1.2		2.0	2.0	
					Garrace	1.0	22.7	22.1	8.0	0.0	32.7	02.1	86.2	00.2	6.2	0.2	6.2	1.2	1.2		2.0	2.0	
SR8	Cloudy	Moderate	02:30	10.3	Middle	5.2	22.7	22.7	8.0	8.0	32.7	32.7	86.0	86.0	6.1	6.1	0.2	1.6	1.6	1.6	2.8	2.8	2
0110	olouuy	Moderate	02.00	10.0	Wildlic	5.2	22.7	22.1	8.0	0.0	32.7	02.1	86.0	00.0	6.1	0.1		1.6	1.0	1.0	2.7	2.0	
					Bottom	9.3	22.7	22.7	8.0	8.0	32.7	32.7	85.8	85.8	6.1	6.1	6.1	2.1	2.1		3.0	3.0	
					501011	9.3	22.7		8.0	0.0	32.7	02.1	85.8	00.0	6.1	0.1	0.1	2.0	2		3.0	0.0	
					Surface	1.0	22.7	22.7	8.1	8.1	32.7	32.7	86.2	86.2	6.2	6.2		0.8	0.8		3.7	3.6	
						1.0	22.7		8.1		32.7		86.2		6.2		6.2	0.8			3.5		_
SR9	Cloudy	Moderate	02:41	9.8	Middle	4.9	22.7	22.7	8.1	8.1	32.7	32.7	86.1	86.1	6.2	6.2		0.9	1.0	1.5	2.5	2.5	2
	,					4.9	22.7		8.1		32.7		86.1		6.2			1.0			2.5		_
					Bottom	8.8	22.7	22.7	8.1	8.1	32.7	32.7	86.3	86.4	6.2	6.2	6.2	2.8	2.8		2.2	2.3	
						8.8	22.7		8.1		32.7		86.4		6.2			2.8			2.4		
					Surface	1.0	22.5	22.5	8.2	8.2	32.9	32.9	94.2	94.2	6.8	6.8		1.8	1.8		3.1	3.0	
						1.0	22.5	-	8.2		32.9		94.2		6.8		6.8	1.8			2.8		_
SR10	Sunny	Rough	04:03	6.3	Middle	3.2	22.5	22.5	8.2	8.2	32.9	32.9	94.0	94.0	6.8	6.8		2.2	2.3	2.3	2.6	2.5	2
onno	ounny	riougn	01.00	3 6.3	inidato	3.2	22.5	22.0	8.2	0.2	32.9	02.0	94.0	01.0	6.8	0.0		2.3	2.0	2.0	2.4	2.0	
					Bottom	5.3	22.6	22.6	8.2	8.2	33.0	33.0	94.4	94.4	6.8	6.8	6.8	2.7	2.8		2.3	2.2	
						5.3	22.6		8.2		33.0	2.5.0	94.3		6.7	2.0	2.0	2.8			2.0		

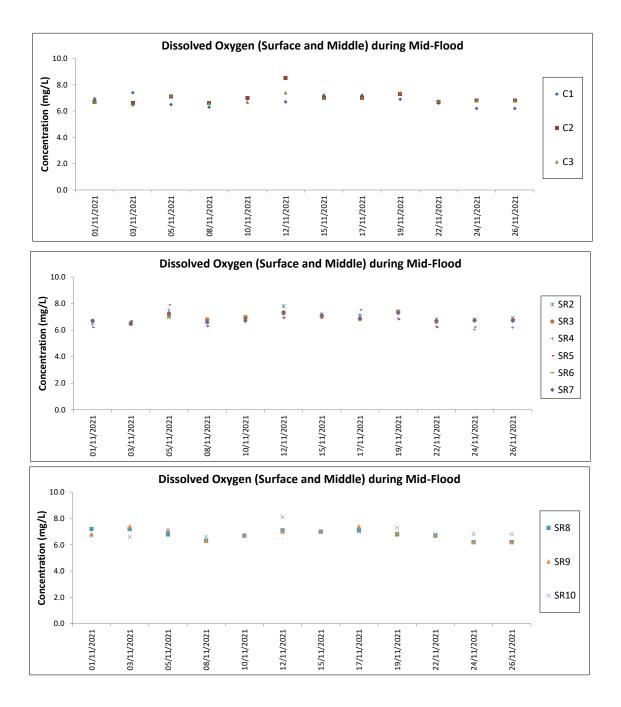
DA: Depth-averaged

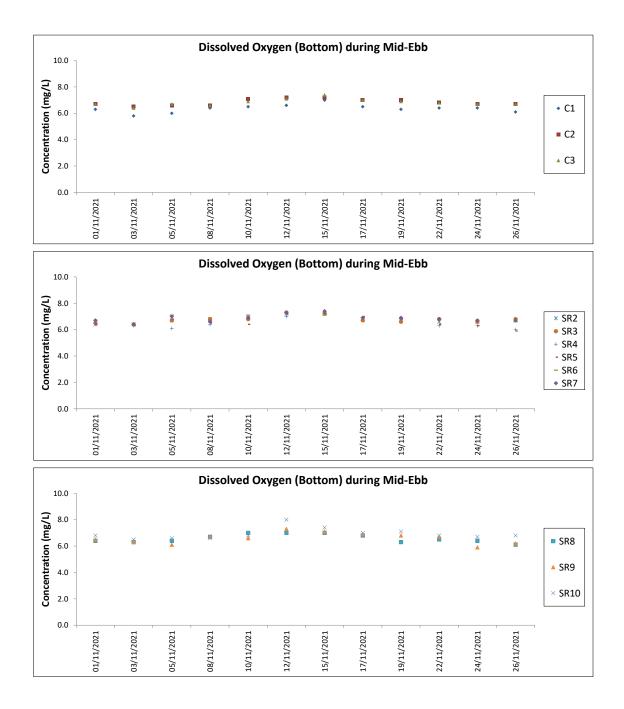
Improvement Dredging for Lamma Power Station Navigatin Channel Water Quality Monitoring Water Quality Monitoring Results on 26 November 21 of

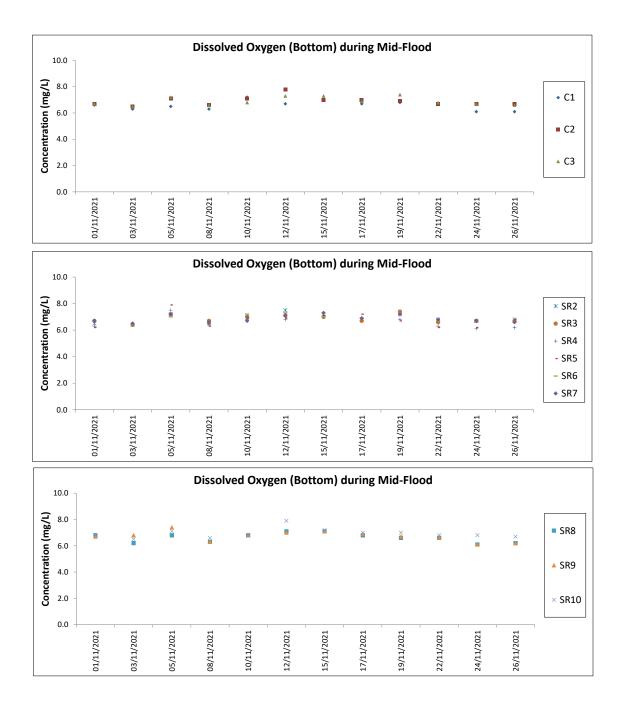
Monitoring	ity monit	oring Resu	lits on		26 November 21	during Mid-	-F100a	lide															
	Weather	Sea	Sampling	Water			Water Te	emperature (°C)		pН	Salin	ity (ppt)	DO Satur	ation (%)	Dissolved	d Oxygen	(mg/L)	Tur	bidity(NTL	J)	Suspend	ded Solids	s (mg/L
Station	Condition	Condition	Time	Depth (m)	Sampling Dep	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
					Surface	1.0	22.8	22.8	8.2	8.2	32.7	32.7	86.7	86.7	6.2	6.2		0.9	0.9		2.2	2.3	1
						1.0 5.4	22.8 22.7		8.2 8.2		32.7		86.7		6.2		6.2	0.9			2.3		-
C1	Sunny	Moderate	16:39	10.7	Middle	5.4	22.7	22.7	8.2	8.2	32.7 32.7	32.7	86.9 86.9	86.9	6.2 6.2	6.2		1.6 1.6	1.6	1.7	3.5 3.9	3.7	3.6
						9.7	22.7		8.2		32.7		86.4		6.1			2.5			5.1		-
					Bottom	9.7	22.7	22.7	8.2	8.2	32.7	32.7	86.4	86.4	6.1	6.1	6.1	2.5	2.5		4.8	5.0	
					Surface	1.0	22.6	22.6	8.2	8.2	32.9	32.9	95.3	95.3	6.8	6.8		2.1	2.1		4.6	4.7	1
					Gunade	1.0	22.6	22.0	8.2	0.2	32.9	02.0	95.2	50.0	6.8	0.0	6.8	2.1	2.1		4.7	4.7	
C2	Sunny	Rough	15:01	11.2	Middle	5.6	22.5	22.5	8.2	8.2	32.9	32.9	93.7	93.7	6.7	6.7	0.0	2.3	2.3	3.0	4.5	4.5	4
						5.6 10.2	22.5 22.5		8.2 8.2		32.9		93.7 93.1		6.7 6.7			2.3 4.6	-		4.5 4.1		-
					Bottom	10.2	22.5	22.5	8.2	8.2	32.9 32.9	32.9	93.1	93.1	6.7	6.7	6.7	4.6	4.6		4.1	4.1	
					Surface	1.0	22.6	22.6	8.2	8.2	32.9	32.9	95.1	95.1	6.8	6.8		1.6	1.6		4.3	4.4	Î
					Sunace	1.0	22.6	22.0	8.2	0.2	32.9	32.3	95.1	33.1	6.8	0.0	6.8	1.6	1.0		4.4	4.4	_
C3	Sunny	Rough	15:06	23.1	Middle	11.6 11.6	22.5 22.5	22.5	8.2 8.2	8.2	32.9 32.9	32.9	93.4 93.4	93.4	6.7 6.7	6.7		2.0 2.0	2.0	2.0	4.5 4.4	4.5	4
						22.1	22.5		8.2		32.9		92.7		6.6			2.3			4.8		-
					Bottom	22.1	22.5	22.5	8.2	8.2	32.9	32.9	92.7	92.7	6.6	6.6	6.6	2.3	2.3		4.7	4.8	
					Surface	1.0	22.6	22.6	8.2	8.2	32.9	32.9	94.7	94.7	6.8	6.8		1.9	1.9		4.0	4.0	1
					Sunace	1.0	22.6	22.0	8.2	0.2	32.9	32.3	94.7	34.1	6.8	0.0	6.8	1.8	1.5		3.9	4.0	
SR1	Sunny	Moderate	16:13	8.3	Middle	4.2	22.4	22.4	8.2	8.2	32.9	32.9	94.9	94.9	6.8	6.8	0.0	2.2	2.3	2.3	3.0	3.2	3
						4.2	22.4		8.2		32.9		94.9		6.8			2.4			3.3		-
					Bottom	7.3 7.3	22.4 22.4	22.4	8.2 8.2	8.2	32.9 32.9	32.9	94.9 94.9	94.9	6.8 6.8	6.8	6.8	2.8	2.8		2.8 2.6	2.7	
						1.0	22.4		8.2		32.9		95.8		6.9			4.1		<u> </u>	4.0		┿
					Surface	1.0	22.6	22.6	8.2	8.2	32.9	32.9	95.8	95.8	6.9	6.9		4.1	4.1		3.8	3.9	
0.50						3.1	22.6		8.2		32.9		95.6	05.0	6.8		6.9	5.4			3.7		1
SR2	Sunny	Moderate	16:04	6.1	Middle	3.1	22.6	22.6	8.2	8.2	32.9	32.9	95.6	95.6	6.8	6.8		5.4	5.4	5.1	3.4	3.6	3
					Bottom	5.1	22.6	22.6	8.2	8.2	32.9	32.9	94.7	94.8	6.8	6.8	6.8	5.7	5.8		3.1	2.9	1
						5.1	22.6		8.2		32.9		94.8		6.8			5.8			2.6		_
					Surface	1.0	22.6 22.6	22.6	8.2 8.2	8.2	32.9 32.9	32.9	95.7 95.7	95.7	6.8 6.8	6.8		1.8 1.7	1.8		3.6 3.7	3.7	
						4.0	22.6		8.2		32.9		95.3		6.8		6.8	1.7			2.9		-
SR3	Sunny	Moderate	15:55	8.0	Middle	4.0	22.6	22.6	8.2	8.2	32.9	32.9	95.3	95.3	6.8	6.8		1.9	1.9	3.3	2.9	2.9	3
						7.0	22.6		8.2		32.9		94.1		6.7	0.7		6.1			2.6		1
					Bottom	7.0	22.6	22.6	8.2	8.2	32.9	32.9	94.1	94.1	6.7	6.7	6.7	6.1	6.1		2.4	2.5	
-					Surface	1.0	22.8	22.8	8.2	8.2	32.7	32.7	86.5	86.5	6.2	6.2		1.7	1.7		2.8	2.8	
					Gundoo	1.0	22.8	22.0	8.2	0.2	32.7	02.1	86.5	00.0	6.2	0.2	6.2	1.6			2.8	2.0	_
SR4	Sunny	Moderate	15:37	13.6	Middle	6.8 6.8	22.7 22.7	22.7	8.2 8.2	8.2	32.7 32.7	32.7	86.8 86.8	86.8	6.2 6.2	6.2		3.1 3.2	3.2	4.2	3.3 3.4	3.4	3
						6.8 12.6	22.7		8.2		32.7		86.8 86.8		6.2			3.2	-		3.4		-
					Bottom	12.6	22.0	22.6	8.1	8.1	32.7	32.7	86.8	86.8	6.2	6.2	6.2	7.7	7.7		3.6	3.7	
						1.0	22.5		8.2		32.9		94.7		6.8			0.8			2.3		+
					Surface	1.0	22.5	22.5	8.2	8.2	32.9	32.9	94.7	94.7	6.8	6.8	6.8	0.8	0.8		2.2	2.3	
SR5	Sunny	Moderate	15:27	9.5	Middle	4.8	22.4	22.5	8.2	8.2	32.9	32.9	94.6	94.6	6.8	6.8	0.0	1.1	1.1	1.0	2.8	2.7	2
0.10	Gainty	modorato	10.27	0.0	middlo	4.8	22.5	22.0	8.2	0.2	32.9	02.0	94.6	01.0	6.8	0.0		1.0			2.6	2	_ `
					Bottom	8.5	22.4	22.4	8.2	8.2	32.9	32.9	94.9	94.9	6.8	6.8	6.8	1.1	1.1		2.9	3.0	
						8.5 1.0	22.4 22.6		8.2		32.9		94.9		6.8			1.1 2.5		<u> </u>	3.0 2.4		+
					Surface	1.0	22.6	22.6	8.2 8.2	8.2	32.9 32.9	32.9	95.6 95.5	95.6	6.8 6.8	6.8		2.3	2.5		2.4	2.4	
						7.3	22.6		8.2		32.9		93.4		6.7	l .	6.8	2.4	<u> </u>		2.4		1
SR6	Sunny	Moderate	15:43	14.6	Middle	7.3	22.6	22.6	8.2	8.2	32.9	32.9	93.4	93.4	6.7	6.7		2.6	2.6	2.7	2.7	2.7	2
					Bottom	13.6	22.6	22.6	8.2	8.2	32.9	32.9	92.8	92.8	6.6	6.6	6.6	3.0	3.0		3.2	3.1	1
					DUILUITI	13.6	22.6	22.0	8.2	0.2	32.9	32.9	92.7	92.0	6.6	0.0	0.0	2.9	3.0		2.9	3.1	
						1.0	22.6	22.6	8.2	8.2	32.9	32.9	95.4	95.4	6.8	6.8		2.2	2.2		2.9	3.0	Τ
					Surface																		
					Surface	1.0	22.6	22.0	8.2	0.2	32.9		95.4		6.8		6.8	2.2	2.2		3.0		-
SR7	Sunny	Rough	15:23	21.8	Surface Middle	10.9	22.5	22.5	8.2	8.2	32.9	32.9	93.5	93.5	6.7	6.7	6.8	2.7	2.7	2.7	2.6	2.6	2.
SR7	Sunny	Rough	15:23	21.8													6.8 6.6			2.7			2.

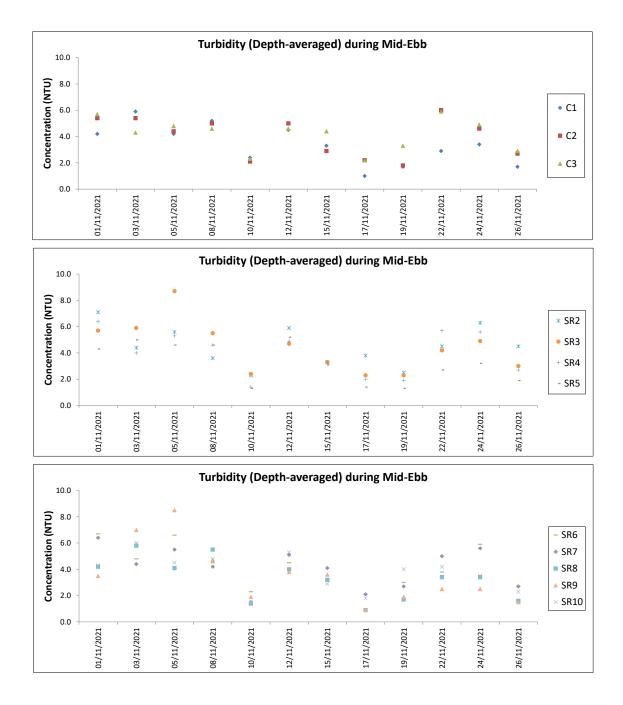
26 November 21 during Mid-Flood Tide

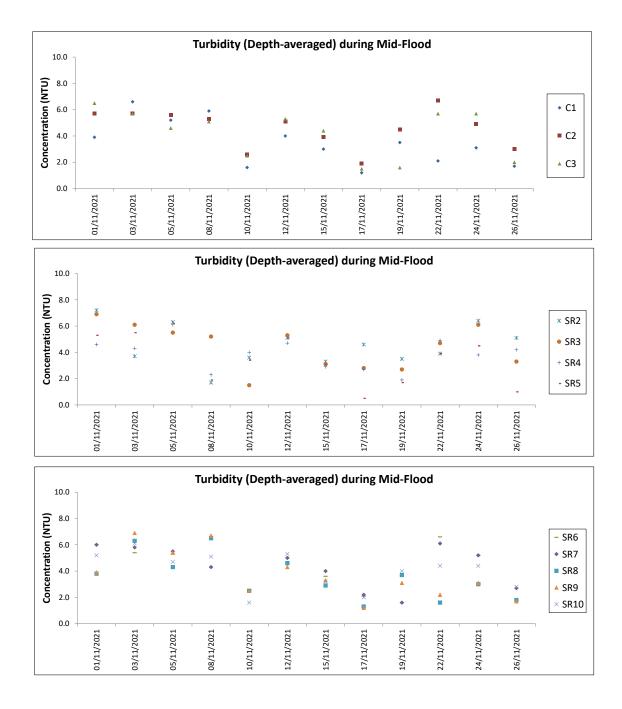

DA: Depth-averaged

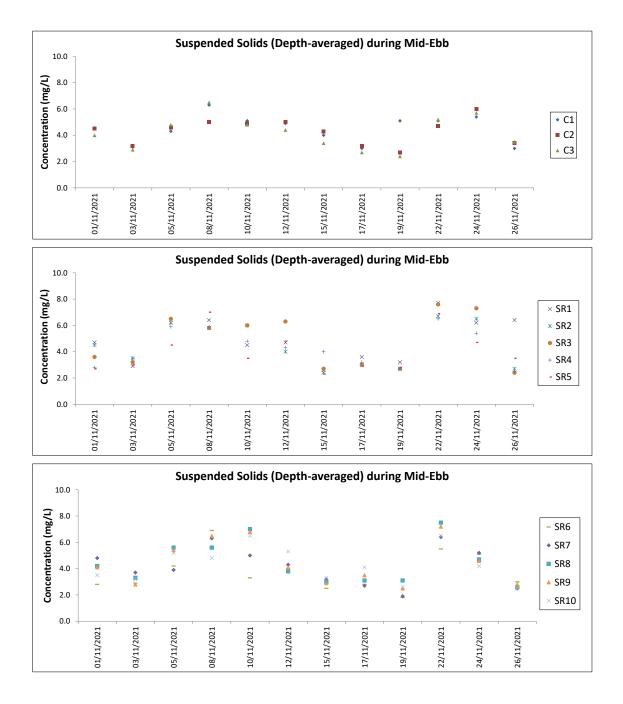

Water Qua	lity Moni	toring Resu	ults on		26 November 21	during Mid-	Flood 1	Гide				
Monitoring	Weather	Sea	Sampling	Water			Water Te	emperature (°C)	I	ρΗ	Salini	ty (ppt)
Monitoring					Sampling Do	oth (m)						

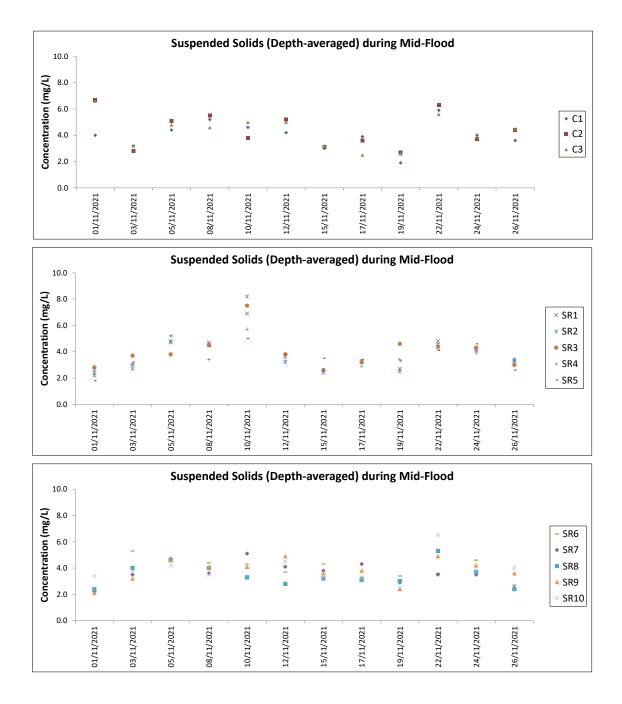

water Qua	ity monit	orning recot			20 NOVEITIBET 21	auring inia	11004																
Monitoring	Weather	Sea	Sampling	Water			Water Te	emperature (°C)		pН	Salin	iity (ppt)	DO Satur	ation (%)	Dissolved	l Oxygen (mg/L)	Tur	bidity(NTU)	Suspend	ded Solids	ኔ (mg/L)
Station	Condition	Condition	Time	Depth (m)	Sampling Dept	th (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA	Value	Average	DA	Value	Average	DA
					Surface	1.0	22.8	22.8	8.2	8.2	32.7	32.7	86.8	86.8	6.2	6.2		0.9	0.9		2.7	2.8	
					Ganace	1.0	22.8	22.0	8.2	0.2	32.7	52.1	86.8	00.0	6.2	0.2	6.2	0.9	0.5		2.8	2.0	
SR8	Sunny	Moderate	16:11	10.3	Middle	5.2	22.7	22.7	8.2	8.2	32.7	32.7	86.8	86.8	6.2	6.2	0.2	2.0	2.0	1.8	2.6	2.5	2.4
0.10	ounny	modorato	10.11	10.0	madio	5.2	22.7		8.2	0.2	32.7	02.1	86.8	00.0	6.2	0.2		2.0	2.0		2.4	2.0	2
					Bottom	9.3	22.7	22.7	8.2	8.2	32.7	32.7	86.4	86.4	6.2	6.2	6.2	2.4	2.4		2.1	2.0	
						9.3	22.7		8.2		32.7		86.4		6.2			2.4			1.9		
					Surface	1.0	22.8	22.8	8.2	8.2	32.7	32.7	86.7	86.7	6.2	6.2		0.8	0.8		2.4	2.3	
						1.0	22.8		8.2		32.7		86.7		6.2		6.2	0.8			2.1		_
SR9	Sunny	Moderate	15:57	9.8	Middle	4.9	22.8	22.8	8.2	8.2	32.7	32.7	86.6	86.6	6.2	6.2		1.0	1.0	1.7	3.3	3.3	3.6
						4.9	22.8		8.2		32.7		86.6		6.2			1.0			3.3		-
					Bottom	8.8	22.7	22.7	8.2	8.2	32.7	32.7	86.4	86.4	6.2	6.2	6.2	3.2	3.2		5.3	5.2	
						8.8	22.7		8.2		32.7		86.4		6.2			3.1			5.0		
					Surface	1.0	22.6	22.6	8.2	8.2	32.9 32.9	32.9	95.6	95.6	6.8	6.8		2.0	2.1		4.4	4.6	
						1.0	22.6		8.2				95.6		6.8		6.8	2.1			4.8		_
SR10	Sunny	Rough	14:34	6.3	Middle	3.2	22.6	22.6	8.2	8.2	32.9	32.9	95.4	95.4	6.8	6.8		2.5	2.6	2.8	3.6	3.8	4.0
						3.2	22.6		8.2		32.9		95.3		6.8			2.6	<u> </u>		3.9		-
					Bottom	5.3	22.5	22.5	8.2	8.2	32.9	32.9	93.6	93.6	6.7	6.7	6.7	3.7	3.7		3.5	3.5	
						5.3	22.5		8.2		32.9		93.6		6.7			3.7			3.5		

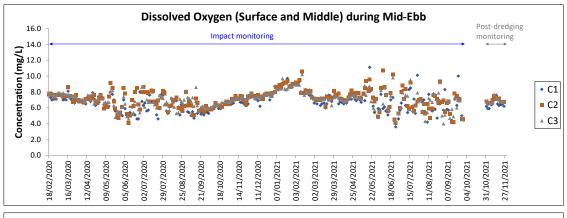

DA: Depth-averaged

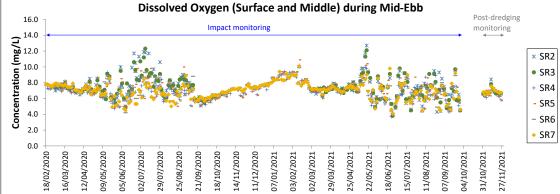

D. Graphical Presentations of Post-dredging Water Quality Monitoring Results

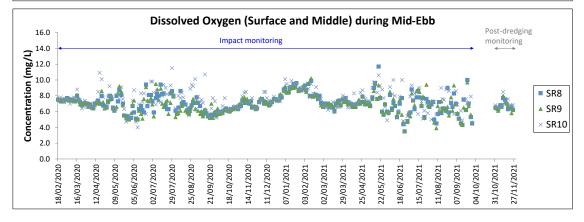


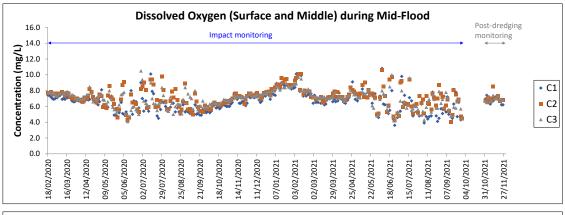


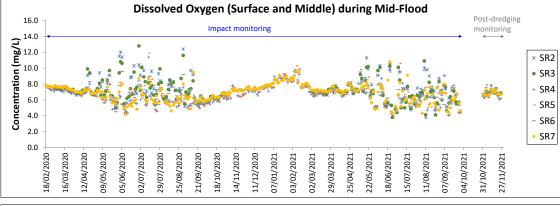


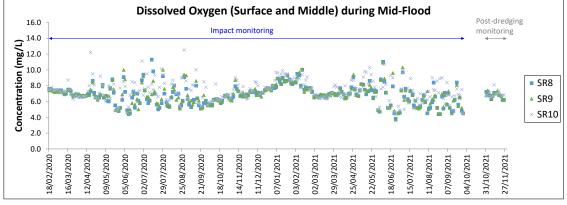


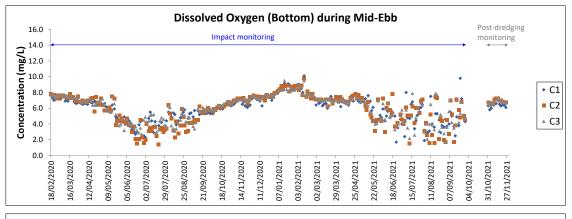


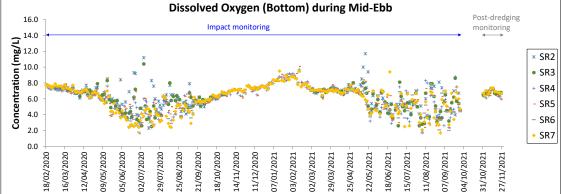


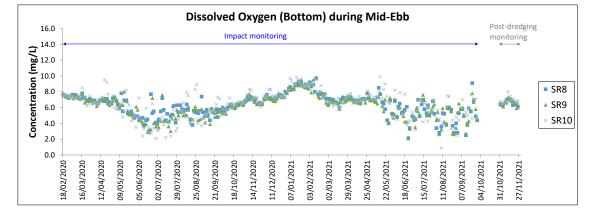


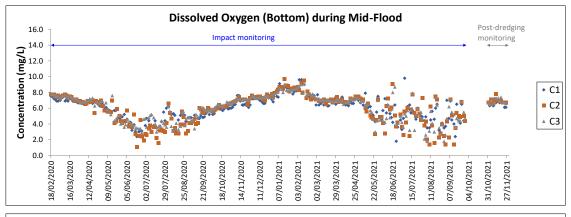

E. EM&A Data over the Monitoring Period

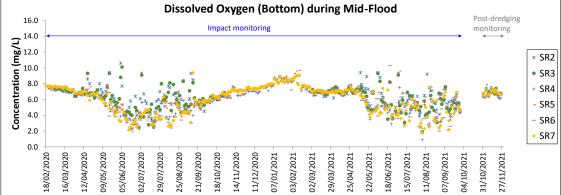


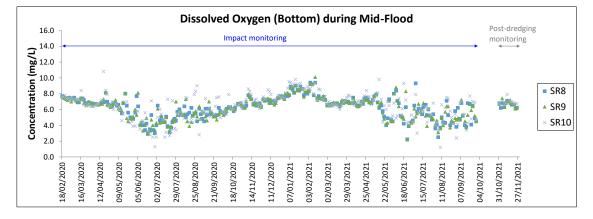


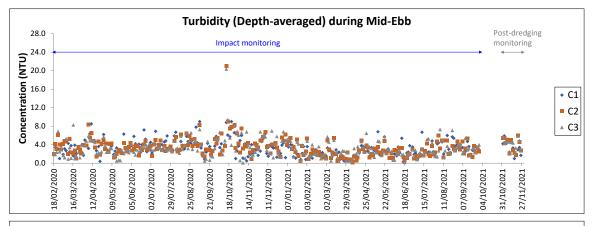


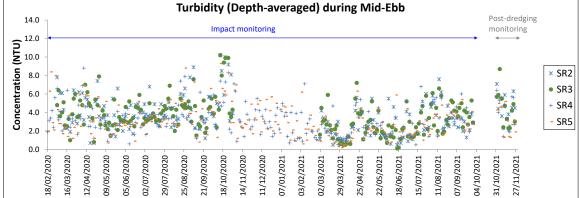


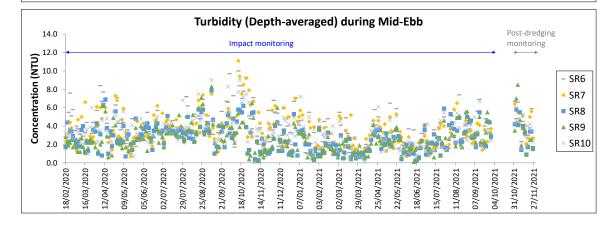


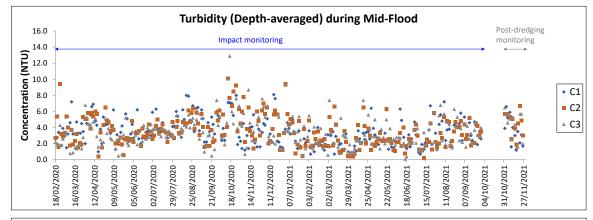


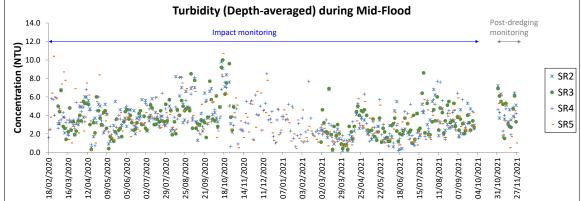


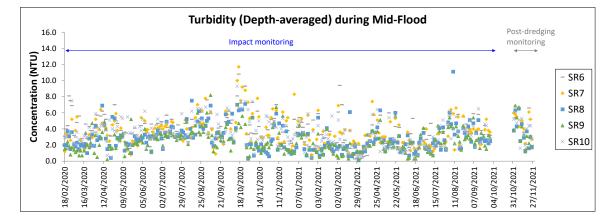


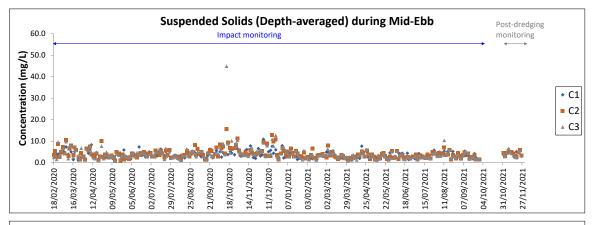




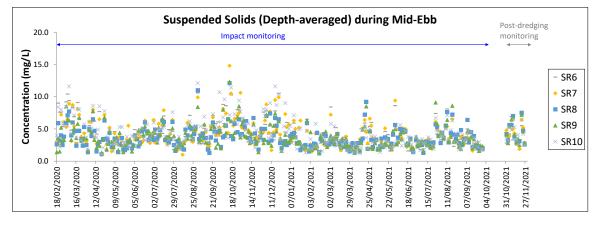


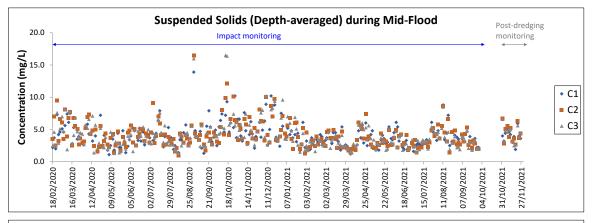


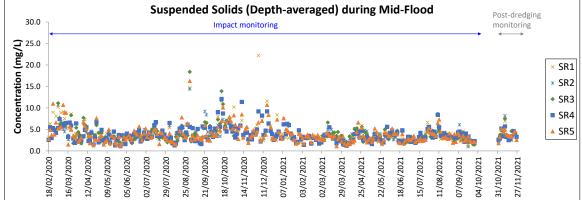


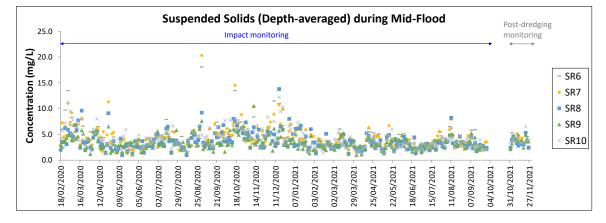


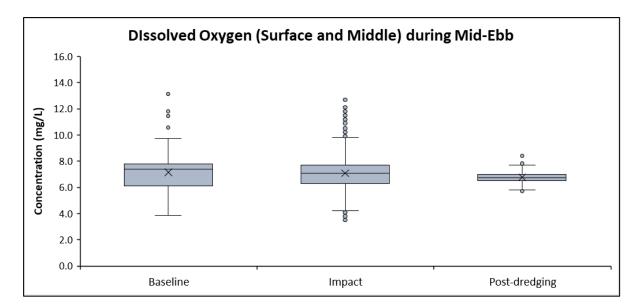


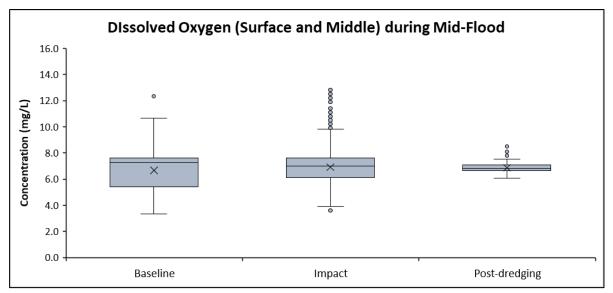


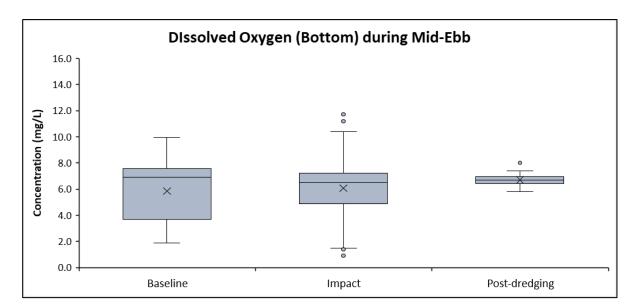


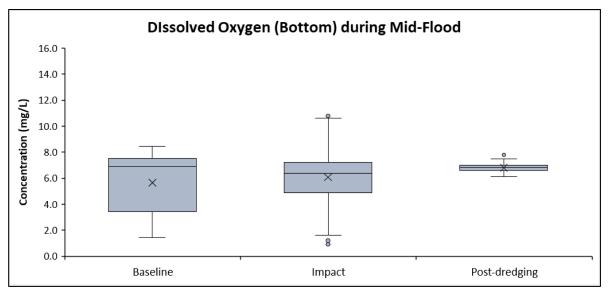


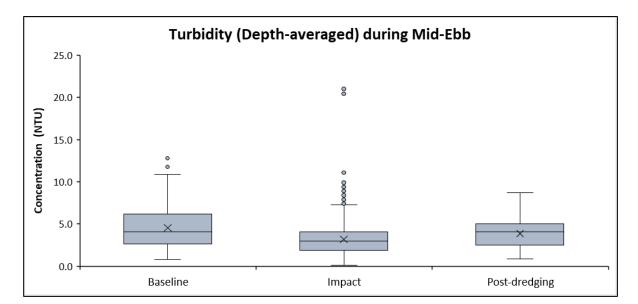


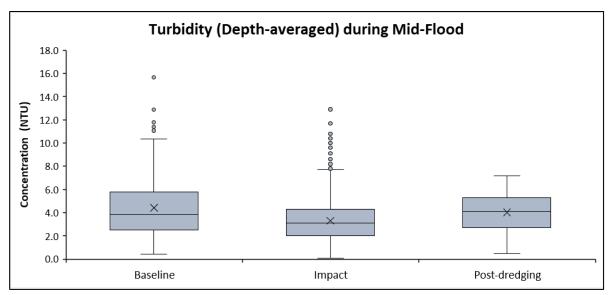


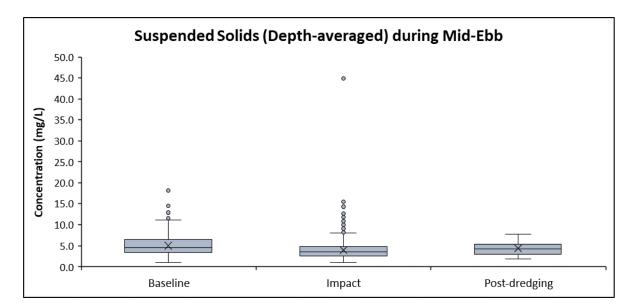


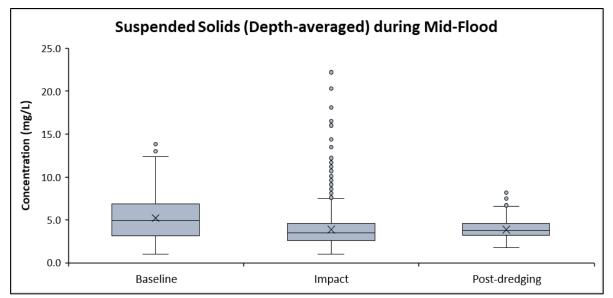


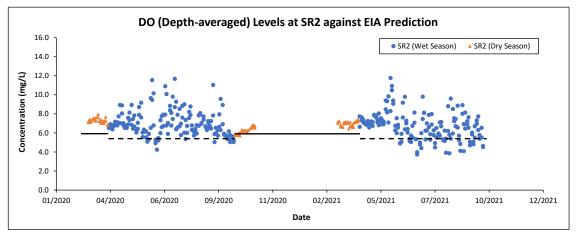


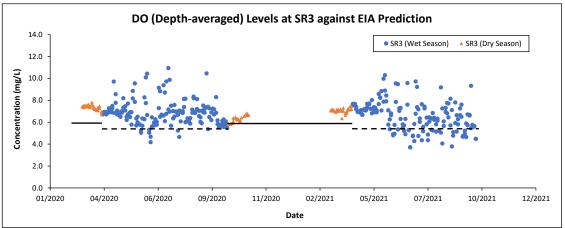


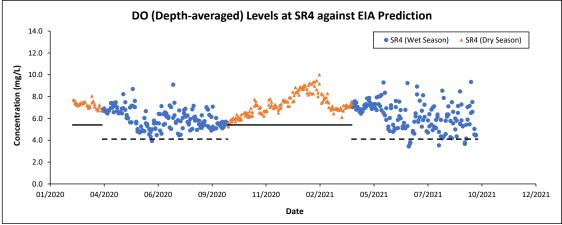


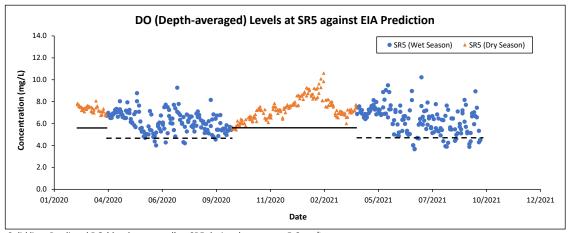


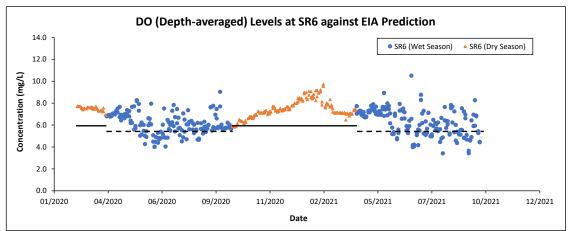


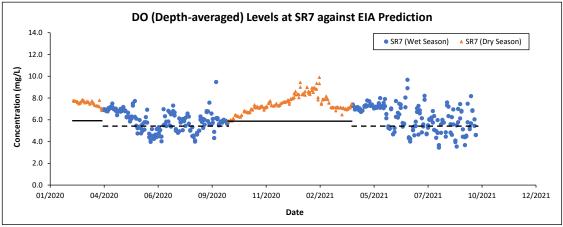


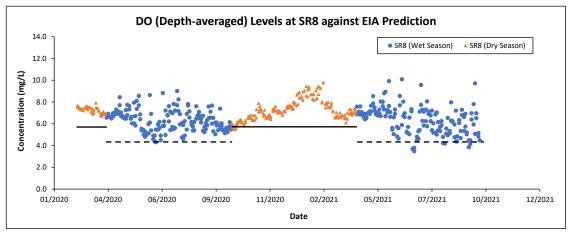


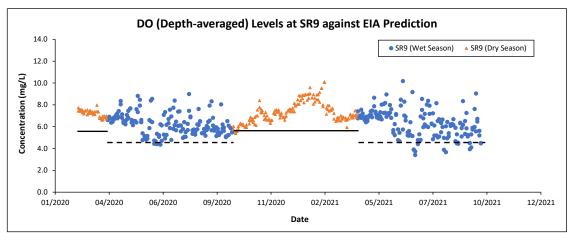

F. EM&A Data with the EIA Predictions

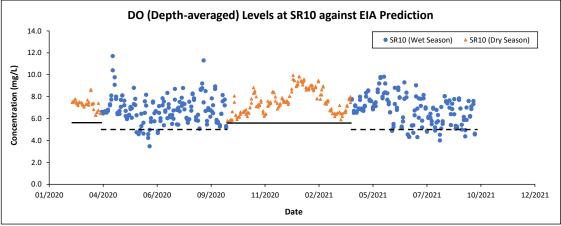

Solid line: Predicted DO (depth-averaged) at SR2 during dry season - 5.9 mg/L Dashed line: Predicted DO(depth-averaged) at SR2 during wet season - 5.4 mg/L Monitored during bathing season only (March to October inclusive)

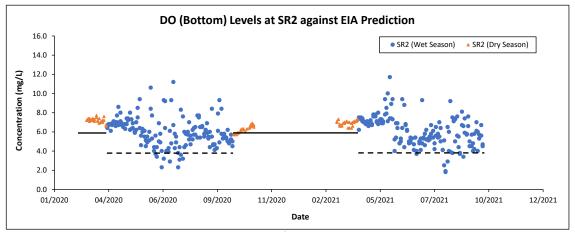

Solid line: Predicted DO (depth-averaged) at SR3 during dry season - 5.9 mg/L Dashed line: Predicted DO (depth-averaged) at SR3 during wet season - 5.4 mg/L Monitored during bathing season only (March to October inclusive)

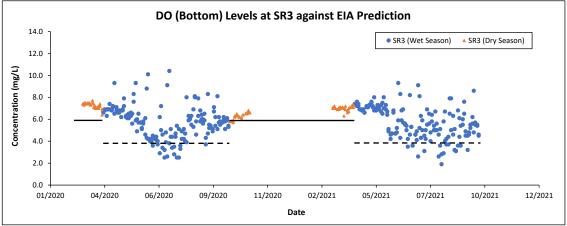

Solid line: Predicted DO (depth-averaged) at SR4 during dry season - 5.4 mg/L Dashed line: Predicted DO (depth-averaged) at SR4 during wet season - 4.1 mg/L

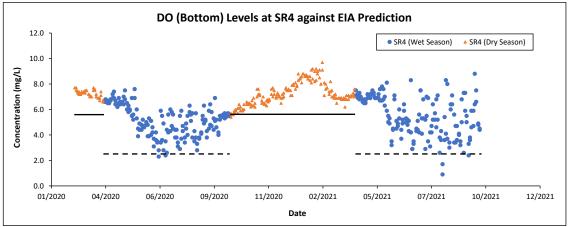

Solid line: Predicted DO (depth-averaged) at SR5 during dry season - 5.6 mg/L Dashed line: Predicted DO (depth-averaged) at SR5 during wet season - 4.7 mg/L

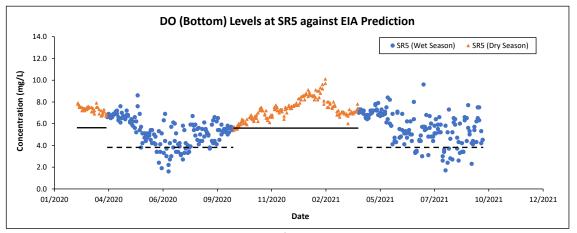

Solid line: Predicted DO (depth-averaged) at SR6 during dry season - 5.9 mg/L Dashed line: Predicted DO (depth-averaged) at SR6 during wet season - 5.4 mg/L

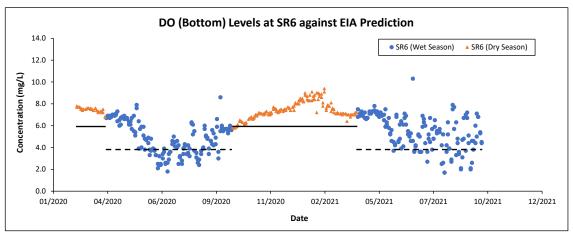

Solid line: Predicted DO (depth-averaged) at SR7 during dry season - 5.9 mg/L Dashed line: Predicted DO (depth-averaged) at SR7 during wet season - 5.4 mg/L

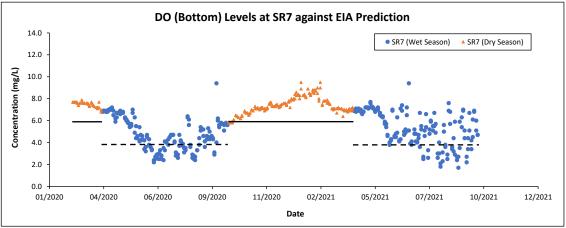

Solid line: Predicted DO (depth-averaged) at SR8 during dry season - 5.7 mg/L Dashed line: Predicted DO (depth-averaged) at SR8 during wet season - 4.3 mg/L

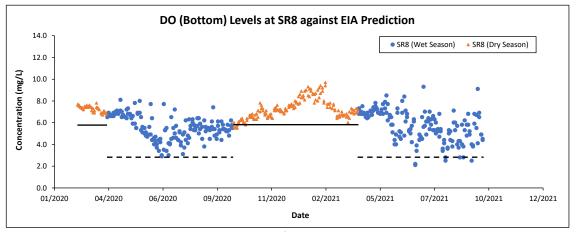

Solid line: Predicted DO (depth-averaged) at SR9 during dry season - 5.6 mg/L Dashed line: Predicted DO (depth-averaged) at SR9 during wet season - 4.6 mg/L

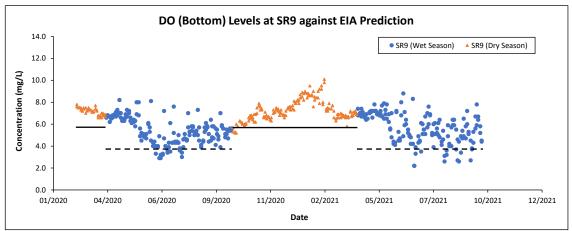

Solid line: Predicted DO (depth-averaged) at SR10 during dry season - 5.6 mg/L Dashed line: Predicted DO (depth-averaged) at SR10 during wet season - 5.0 mg/L

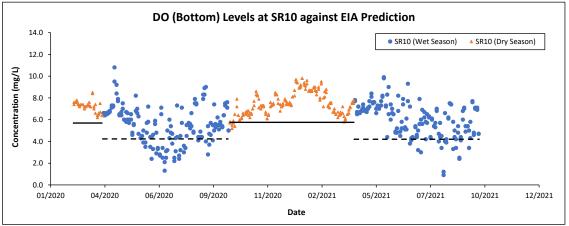

Solid line: Predicted DO (bottom) at SR2 during dry season - 5.9 mg/L Dashed line: Predicted DO(bottom) at SR2 during wet season - 3.8 mg/L Monitored during bathing season only (March to October inclusive)

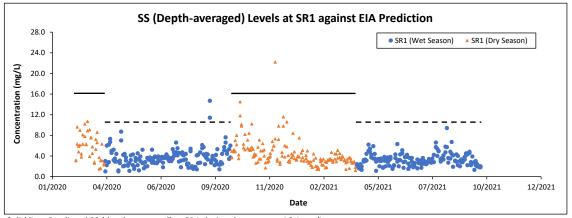

Solid line: Predicted DO (bottom) at SR3 during dry season - 5.9 mg/L Dashed line: Predicted DO(bottom) at SR3 during wet season - 3.8 mg/L Monitored during bathing season only (March to October inclusive)

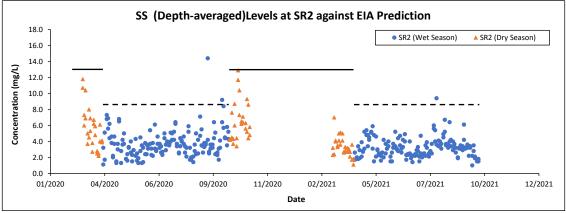

Solid line: Predicted DO (bottom) at SR4 during dry season - 5.6 mg/LDashed line: Predicted DO(bottom) at SR4 during wet season - 2.5 mg/L

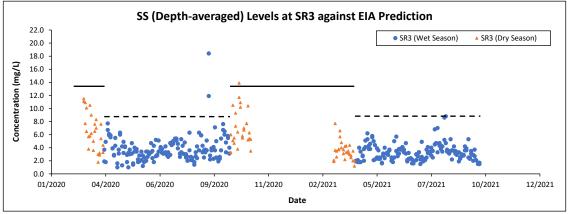

Solid line: Predicted DO (bottom) at SR5 during dry season - 5.6 mg/L Dashed line: Predicted DO(bottom) at SR5 during wet season - 3.8 mg/L

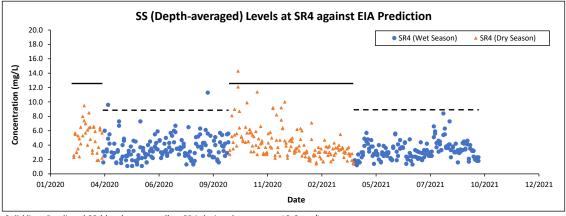

Solid line: Predicted DO (bottom) at SR6 during dry season - 5.9 mg/L Dashed line: Predicted DO(bottom) at SR6 during wet season - 3.8 mg/L

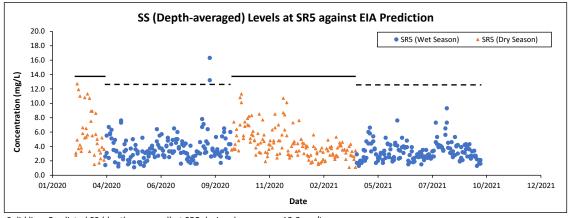

Solid line: Predicted DO (bottom) at SR7 during dry season - 5.9 mg/L Dashed line: Predicted DO(bottom) at SR7 during wet season - 3.8 mg/L

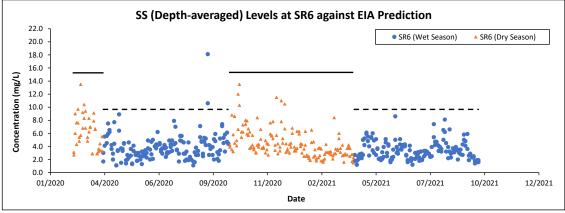

Solid line: Predicted DO (bottom) at SR8 during dry season - 5.8 mg/L Dashed line: Predicted DO(bottom) at SR8 during wet season - 2.8 mg/L

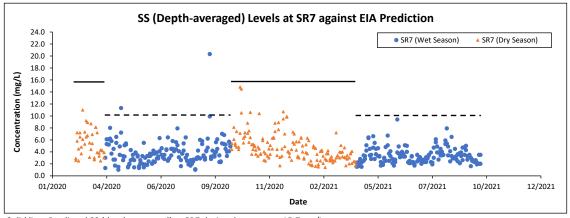

Solid line: Predicted DO (bottom) at SR9 during dry season - 5.7 mg/L Dashed line: Predicted DO(bottom) at SR9 during wet season - 3.7 mg/L

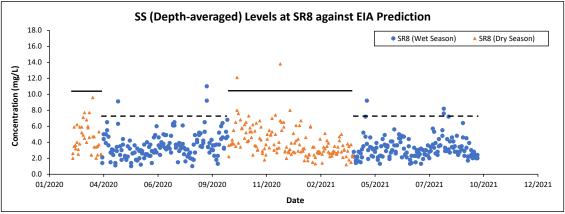

Solid line: Predicted DO (bottom) at SR10 during dry season - 5.8 mg/L Dashed line: Predicted DO(bottom) at SR10 during wet season - 4.2 mg/L

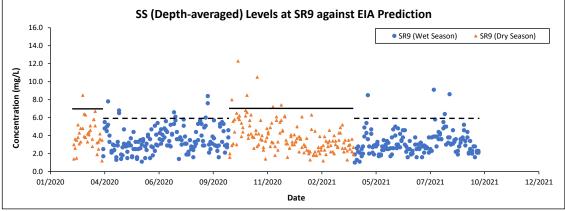

Solid line: Predicted SS (depth-averaged) at SR1 during dry season - 16.1 mg/L Dashed line: Predicted SS (depth-averaged) at SR1 during wet season - 10.5 mg/L Monitored for SS only

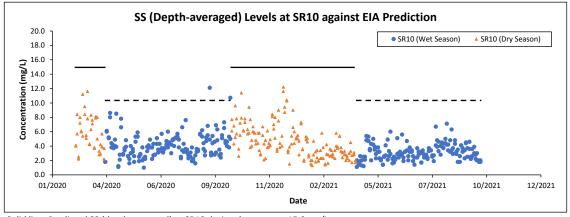

Solid line: Predicted SS (depth-averaged) at SR2 during dry season - 13.0 mg/L Dashed line: Predicted SS (depth-averaged) at SR2 during wet season - 8.6 mg/L Monitored during bathing season only (March to October inclusive)


Solid line: Predicted SS (depth-averaged) at SR3 during dry season - 13.4 mg/L Dashed line: Predicted SS (depth-averaged) at SR3 during wet season - 8.8 mg/L Monitored during bathing season only (March to October inclusive)


Solid line: Predicted SS (depth-averaged) at SR4 during dry season - 12.6 mg/L Dashed line: Predicted SS (depth-averaged) at SR4 during wet season - 8.9 mg/L


Solid line: Predicted SS (depth-averaged) at SR5 during dry season - 13.8 mg/L Dashed line: Predicted SS (depth-averaged) at SR5 during wet season - 12.6 mg/L


Solid line: Predicted SS (depth-averaged) at SR6 during dry season - 15.3 mg/L Dashed line: Predicted SS (depth-averaged) at SR6 during wet season - 9.7 mg/L


Solid line: Predicted SS (depth-averaged) at SR7 during dry season - 15.7 mg/L Dashed line: Predicted SS (depth-averaged) at SR7 during wet season - 10.1 mg/L

Solid line: Predicted SS (depth-averaged) at SR8 during dry season - 10.4 mg/L Dashed line: Predicted SS (depth-averaged) at SR8 during wet season - 7.3 mg/L

Solid line: Predicted SS (depth-averaged) at SR9 during dry season - 7.0 mg/L Dashed line: Predicted SS (depth-averaged) at SR9 during wet season - 5.9 mg/L

Solid line: Predicted SS (depth-averaged) at SR10 during dry season - 15.0 mg/L Dashed line: Predicted SS (depth-averaged) at SR10 during wet season - 10.3 mg/L

Annex D Alert/Event and Action Plans

	Action								
Event	ET Leader	IEC	Engineer	Contractor					
Action level being exceeded by one sampling day	 Repeat in-situ measurements to confirm findings; Inform IEC, Contractor and Engineer; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, Engineer and Contractor; Repeat in-situ measurement on next day of exceedance. 	 Discuss with ET, Engineer and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise Engineer accordingly; Verify the effectiveness of the implemented mitigation measures. 	 Discuss with IEC, ET and Contractor on the mitigation measures; Make agreement on the mitigation measures to be implemented; Supervise the implemented of agreed mitigation measures. 	 Identify source(s) of impact; Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and Engineer and propose mitigation measures; Implement the agreed mitigation measures. 					
Action Level being exceeded on more than one consecutive sampling day	 Repeat in-situ measurement to confirm findings; Inform IEC, Contractor and Engineer; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, Engineer and Contractor; Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; Confirm the need for reducing dredging rates as per G2. 	 Discuss with ET, Engineer and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise Engineer accordingly; Verify the effectiveness of the implemented mitigation measures; Verify the need for reducing dredging rates as per G2. 	 Discuss with IEC, ET and Contractor on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Discuss with ET, IEC and Contractor on the effectiveness of the implemented mitigation measures; Instruct the Contractor to reduce dredging rates as per G2 if confirmed by ET and verified by IEC. 	• Identify the					

C1: Event and Action Plan for Water Quality at SR Stations

	Action							
Event	ET Leader	IEC	Engineer	Contractor				
Limit Level being exceeded by one sampling day	 Repeat in-situ measurement to confirm findings; Inform IEC, Contractor and Engineer; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, Engineer and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of limit level. 	 Discuss with ET, Engineer and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise Engineer accordingly; Verify the effectiveness of the implemented mitigation measures. 	 Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Discuss with ET, IEC and Contractor on the effectiveness of the implemented mitigation measures. 	 Identify the source(s) of impact; Inform the Engineer and confirm notification of the noncompliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and Engineer and propose mitigation measures to Engineer and IEC within 3 working days of notification; Implement the agreed mitigation measures. 				
Limit Level being exceeded by more than one consecutive sampling days	 Inform IEC, Contractor and Engineer; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, Engineer and Contractor; Ensure mitigation measures are implemented; Confirm the need for reducing dredging rates as per D2; Increase the monitoring frequency to daily until no exceedance of limit level for two consecutive days. 	 Discuss with ET, Engineer and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise Engineer accordingly; Verify the effectiveness of the implemented mitigation measures; Verify the need for reducing dredging rates as per D2. 	 Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Discuss with ET, IEC and Contractor on the effectiveness of the implemented mitigation measures; Instruct the Contractor to reduce dredging rates as per D2 if confirmed by ET and verified by IEC. 	 Identify the source(s) of impact; Inform the Engineer and confirm notification of the noncompliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEC and Engineer and propose mitigation measures to Engineer and IEC within 3 working days of notification; Implement the agreed mitigation measures; As directed by the Engineer, reduce dredging rates as per D2. 				

Frequency of	No. of Consecutive Sampling Days					
Exceedance	Two	Three	Four	Five	Six	More than Six
Action Level	5%	10%	15%	20%	30%	40%
Limit Level	10%	20%	30%	40%	50%	Stop all dredging works for one week. Contractor to propose changes in dredging methods, dredging rates and mitigation measures for agreement with ET and IEC before re-initiating dredging works.

C2. Reduction of Maximum Allowable Hourly Dredging Rates due to Exceedances

Note: Where action level followed by limit level is exceeded consecutively, the larger percentage reduction shall apply (e.g. if action level is exceeded for four consecutive days, followed immediately by two consecutive days of limit level exceedance, the percentage reduction to be applied between Day 2 and Day 6 shall be 5%, 10%, 15%, 20% and 30% respectively). Similarly, where limit level followed by action level is exceeded consecutively, the larger percentage reduction also applies as action level is inherently exceeded whenever limit level is exceeded.

C3. Alert Action Plan

The Alert Action Plan applies to exceedances of Alert levels at the near stations (A1 to A5) only. Upon identification of an exceedance of Alert level, the actions as in Alert Action Plan shall be implemented. Where applicable, the alert related actions shall proceed in parallel with the Event and Action Plan.

Action		Action By	Outcome	Follow Up Action	Follow Up Action By
1.	Repeat in-situ measurement	ET	No exceedance in repeat measurement	No further action required	
	to confirm findings		Exceedance identified in repeat measurement	Proceed to Action 2	
2.	Check relevant SR station	ET	No exceedance of Action or Limit Level	Notify IEC, Engineer and Contractor	ET
	results			Obtain and record Contractor's working methods and the status of existing mitigation measures implemented	ET
				Identify any unacceptable practice	ET, IEC, Engineer
				Rectify any unacceptable practice	Contractor
				Proceed to Action 3	
			Exceedance of Action or Limit Level	Initiate Event and Action Plan in Action or Limit Level	ET, IEC, Engineer, Contractor
				Proceed to Action 3	
3.	Check for repeated cases	ET	No consecutive repeats of Outcome 2a or 2b	No further action required	
of	of Outcome 2a or 2b		Consecutive repeats of Outcome 2a	Review Contractor's working methods / mitigation measures and discuss with IEC, Engineer and Contractor	ET
				Identify and agree on improvements such as changes in working methods and/or additional mitigation measures	ET, IEC, Engineer, Contractor
				Implement the recommended improvements	Contractor
			Consecutive repeats of Outcome 2b	Review Alert levels and propose revised Alert levels where necessary to prevent exceedances at SR stations (due to project activities)	ET
				Verify the revised Alert levels	IEC
				Notify and agree with EPD on revised Alert levels	ET, Project Proponent

Annex E Site Audit Summary

Site audits were carried out by ET on a weekly basis to monitor environmental issues at the construction sites to ensure that all mitigation measures were implemented timely and properly.

Summary of Findings

General

- No environmental deficiency identified.

Water Quality & Marine Ecology

- Silt plume was observed during the course of dredging by TSHD in February and March 2020. Additional mitigation measures were implemented as follows:
 - 1. TSHD will keep close monitoring of any abnormal water conditions and adjust its dredging operations to minimize impact to the water quality during its works.
 - 2. TSHD will control its trail pipe raising operation more carefully to minimize impact to water quality by this operation. Raising will be done slowly and steadily.
 - 3. Close monitoring will be carried out by trail pipe operators to ensure such mitigation measures will minimize impact to water quality during trail pipe raising.

Hazard to Life

- No environmental deficiency identified.

Waste Management

- No environmental deficiency identified.

Noise

- No environmental deficiency identified.

Annex F Summary of EMIS

EM&A Log Ref.	Mitigation Measures	Implementation Status	
EM&A: 2.10	Dredging shall be conducted by either closed grab dredgers and/or TSHDs. The grab dredgers shall not be operating at the same time as the TSHDs.	С	
EM&A: 2.10	The dredging rates for the Project shall not exceed the maximum allowable dredging rates for each respective working zone and for the respective dredging method.	С	
EM&A: 2.10	Adequate clearance to the seabed shall be provided to vessel at all states of tide.	C	
EM&A: 2.10	No overflow is permitted and use of lean mixture overboard (LMOB) system is prohibited.	C	
EM&A: 2.10	Closed grab capacity of grab dredger should not be less than 8m ³ (except near the submarine pipeline where smaller grabs may be used).	С	
EM&A: 2.10	Cage-type silt curtains (at least 10m depth) shall be deployed for grab dredgers in accordance with the Silt Curtain Deployment Plan	С	
EM&A: 3.2	No dredging shall be carried out at Zone 4 of the navigation channel during the calving season for the Finless Porpoise from February to April.	С	
EM&A: 3.2	As far as practicable, vessel movements to disposal grounds bypass the Finless Porpoise habitat area in southwest and east Lamma.	С	
EM&A: 3.2	Implement a maximum speed limit of 10 knots in south and east Lamma waters.	С	
EM&A: 3.2	All vessel operators working on the Project should be thoroughly briefed on the possible occurrence of Finless Porpoise within and in the vicinity of the Project Area and along routes to the Project Area, as well as rules for safe vessel operation around cetaceans.	C	
EM&A: 5.2 & 5.3	Marine vessels should avoid traveling during berthing and unberthing of coal vessel.	С	
EM&A: 5.2 & 5.3	As far as practicable, marine vessels should avoid traveling after sunset or under low visibility when the works area is near submarine pipeline.	C	
EM&A: 5.2 & 5.3	Working vessel not to stay right above the submarine pipeline unless it is necessary.	С	
EM&A: 5.2 & 5.3	TSHD should not lower suction pipes in close proximity of the submarine pipeline.	С	
EM&A: 5.2 & 5.3	TSHD should not stay near the submarine pipeline unless approval is granted.	С	
EM&A: 6.1	The number of dredgers and operation conditions specified in the applicable CNPs should be strictly followed.	С	
EM&A: 7.2 & 7.3	Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation.	С	
EM&A: 7.2 & 7.3	All barges and hoppers shall be fitted with tight fitting seals to their bottom openings to prevent leakage of material.	C	

EM&A Log Ref.	6	Implementation Status
	The Real Time Tracking and Monitoring of Vessel (RTTMV) system should be installed in hoppers/ TSHD for monitoring the mud dumping activities.	С

Remarks:

С	-	Compliance with mitigation measure
NC	-	Non-compliance with mitigation measure
N/A	-	Not Applicable