

Agreement No. CE 30/2018 (EP) Environmental Team for Kai Tak Sports Park – Design and Construction

Monthly EM&A Report for May 2019

June 2019

Home Affairs Bureau Kai Tak Sports Park Project Office Suite 1801, 18/F Guardian House 32 Oi Kwan Road Wanchai, Hong Kong

Agreement No. CE 30/2018 (EP) Environmental Team for Kai Tak Sports Park – Design and Construction

Monthly EM&A Report for May 2019

June 2019

Environmental Permit No. EP-544/2017

Kai Tak Sports Park - Investigation

Independent Environmental Checker Verification

Reference Document/Plan

Document/Plan to be Certified/ Verified: Monthly EM&A Report No. 2 (May 2019)

Date of Report: June 2019

Date received by IEC: 12 June 2019

Reference EP Condition

Environmental Permit Condition: 3.4

Three hard copies and one electronic copy of the monthly EM&A Report shall be submitted to the Director within 10 working days after the end of each reporting month. The monthly EM&A Reports shall include a summary of all non-compliance with the recommendations in the approved EIA Report (Register No. AEIAR-204/2017) or this Permit. The submissions shall be certified by the ET Leader and verified by the IEC as complying with the requirements as set out in the EM&A Manual before submission to the Director. Additional copies of submission shall be provided upon request by the Director.

IEC Verification

I hereby verify that the above referenced document/plan complies with the above referenced condition of EP-544/2017.

Ms Mandy To

Mondy 20.

Mis Mandy 16 Date: 13 June 2019

Independent Environmental Checker

Our ref: 0500384_IEC Verification Cert_KTSP_Monthly EM&A Rpt No.2.docx

Environmental Permit No. EP- 544/2017

Kai Tak Sports Park - Investigation

Environmental Team Leader Certification

Reference Document /Plan

Document/Plan to be Certified: Monthly EM&A Report for May 2019

Date of Report: June 2019

Date received by ETL: 13 June 2019

Reference EP Condition

Environmental Permit Condition: 3.4

Three hard copies and one electronic copy of the monthly EM&A Report shall be submitted to the Director within 10 working days after the end of each reporting month. The monthly EM&A Reports shall include a summary of all non-compliance with the recommendations in the approved EIA Report (Register No. AEIAR–204/2017) or this Permit. The submissions shall be certified by the ET Leader and verified by the IEC as complying with the requirements as set out in the EM&A Manual before submission to the Director. Additional copies of submission shall be provided upon request by the Director.

ETL Certification

I hereby certify that the above reference document complies with the above referenced condition of EP-544/2017.

Mr Sunny Chan

Sumy Chan

Environmental Team Leader Date: 13 June 2019

Contents

 Introduction 1.1 Background 1.2 Project Organisation 1.3 Works Area and Construction Programme 1.4 Construction Works undertaken during the Reporting Period 	3 3 3 4 4 5 5 5 5
1.2 Project Organisation1.3 Works Area and Construction Programme	3 4 4 5 5 5
1.2 Project Organisation1.3 Works Area and Construction Programme	3 4 4 5 5 5
1.3 Works Area and Construction Programme	4 4 5 5 5
-	5 5 5
	5 5
2 Air Quality Monitoring	5
2.1 Introduction	
2.2 Monitoring Parameters, Frequency and Duration	5
2.3 Monitoring Locations	
2.4 Monitoring Action and Limit Levels	5
2.5 Monitoring Schedule for the Reporting Period	6
2.6 Monitoring Equipment	6
2.7 Monitoring Methodology	6
2.8 Monitoring Results	7
2.9 Wind Data	7
3 Noise Monitoring	8
3.1 Introduction	8
3.2 Monitoring Parameters, Frequency and Duration	8
3.3 Monitoring Locations	8
3.4 Action and Limit Levels	9
3.5 Monitoring Schedule for the Reporting Period	9
3.6 Monitoring Equipment	9
3.7 Monitoring Methodology	9
3.8 Monitoring Results	10
4 Environmental Site and Audit	11
4.1 Site Inspection	11
4.2 Advice on the Solid and Liquid Waste Management Status	11
4.3 Environmental Licenses and Permits	12
4.4 Implementation Status of Environmental Mitigation Measures	12
4.5 Summary of Exceedance of the Environmental Quality Perform	nance Limit 12
4.6 Summary of Complaints, Notification of Summons and Succes	
5 Future Key Issues	13
5.1 Construction Programme for the Coming Months	13

	5.2	Environmental Site Inspection and Monitoring Schedule for the Next Reporting Period	13
6	Conc	lusions	14
	6.1	Conclusions	14
Figu	<u>res</u>		
Figur	e 2.1: L	ocation of Air Quality Monitoring Stations	
-		ocation of Noise Monitoring Stations	
J		5	
Appe	endice	S	
Appe	ndix A.	Project Organization for Environmental Works	
Appe	ndix B.	Location of Works Areas	
Appe	ndix C.	Construction Programme	
Appe	ndix D.	Event and Action Plan	
Appe	ndix E.	Environmental Site Inspection and Monitoring Schedule	
Appe	ndix F.	Calibration Certificates	
<u>Appe</u>	ndix G.	Monitoring Data and Graphical Plots (Air Quality and Noise)	
<u>Appe</u>	ndix H.	Wind Data	
<u>Appe</u>	ndix I.	Waste Flow Table	
<u>Appe</u>	ndix J.	Environmental Licences and Permits	
<u>Appe</u>	ndix K.	Environmental Mitigation Measures Implementation Status	
<u>Appe</u>	ndix L.	Statistics on Environmental Complaints, Notification of Summons and Successful Prosecutions	
Tabl	es		
Table	1 1· C	ontact Information of Key Personnel	4
		r Quality Monitoring Parameters, Frequency and Duration	5
		onstruction Dust Monitoring Locations	5
		ction and Limit Levels for 1-hour TSP	6
Table	2.4: 1-	hour TSP Monitoring Equipment	6
		ummary of 1-hour TSP Monitoring Results During the Reporting Period	7
		oise Monitoring Parameters, Frequency and Duration	8
		onstruction Noise Monitoring Locations	8
Table	3.3: Ad	ction and Limit Level for Construction Noise	9
Table	3.4: N	oise Monitoring Equipment	9
Table	3.5: S	ummary of Construction Noise Monitoring Results During the Reporting Period	10
Table	4.1: S	ummary of Site Inspections and Recommendations	11
Table	5.1: C	onstruction Activities for the Next Reporting Period	13
Table Table	D.2: E	vent and Action Plan for Construction Air Quality (Action Level) vent and Action Plan for Construction Air Quality (Limit Level) vent and Action Plan for Construction Noise ite Inspection and Monitoring Schedule for May 2019	

Mott MacDonald | Agreement No. CE 30/2018 (EP) Environmental Team for Kai Tak Sports Park – Design and Construction Monthly EM&A Report for May 2019

Table E.2: Tentative Site Inspection and Monitoring Schedule for June 2019

Table J.1: Summary of Environmental Licences and Permits Status

Table L.1: Statistics on Environmental Complaints, Notifications of Summons and Successful

Prosecutions

Executive summary

The Project – hereby meaning the Designated Project (Items O.6 and O.7 Part I, Schedule 2 of the Environmental Impact Assessment Ordinance (EIAO)), comprising the "Kai Tak Sports Park" (KTSP) project and the Hotel and Office (H/O) Development of NKIL 6607 adjoining the KTSP – is located in the Kai Tak Development (KTD) area in Kowloon.

An EIA Report for the Project (Register No. AEIAR-204/2017) was approved by the Environmental Protection Department (EPD) on 6 January 2017. The current Environmental Permit (EP) for the Project, namely No. EP-544/2017, was issued on 8 September 2017. These documents are available through the EIA Ordinance Register. The Project construction works commenced on 8 April 2019.

In February 2019, Mott MacDonald Hong Kong Limited was appointed by the Home Affairs Bureau (HAB) as the Environmental Team (ET) to implement the Environmental Monitoring & Audit (EM&A) programme for the construction phase and first year of operation of the Project in accordance with the approved EM&A Manual.

This is the 2nd Monthly EM&A Report for the construction phase of the Project which summaries findings of the EM&A programme during the reporting period from 1 to 31 May 2019.

Key Construction Works in the Reporting Period

A summary of construction activities undertaken during the reporting period is presented below:

- Site Clearance;
- Ground investigation works;
- Trial piling;
- Setting up of temporary site office;
- Mobilization; and
- Hoarding erection.

Environmental Monitoring and Audit Progress

The monthly EM&A programme was undertaken by ET in accordance with the approved EM&A Manual. A summary of the monitoring activities during the reporting period is presented below:

Activity	Monitoring Locations	Date
Air Quality Monitoring (1-hour TSP)	AMS1, AMS2	4, 10, 16, 22, 28 May
Noise Monitoring (L _{eq (30 min)})	NMS1, NMS2	10, 16, 22, 28 May
Weekly environmental site inspections	-	8, 15, 22, 29 May
Landscape and visual site inspections	-	8, 22 May

Breaches of Action and Limit Levels

There was no breach of Action or Limit Levels for Air Quality (1-hr TSP) and Noise level (as $L_{eq30min}$) in the reporting month.

Complaint Log

There were no complaints received during the reporting month.

Notifications of Summons and Successful Prosecutions

There were no notifications of summons or prosecutions received during this reporting period.

Reporting Changes

There was no reporting change during the reporting period.

Future Key Issues

The future key issues to be undertaken in the upcoming month are:

- Site clearance;
- Ground investigation works;
- Piling works (Percussive piling, Socket H piling and Bored piling);
- Setting up of temporary site office;
- Drainage pipe laying works;
- Setting up of wastewater treatment facilities;
- Mobilization; and
- Hoarding erection.

1 Introduction

1.1 Background

The Project – hereby meaning the Designated Project (Items O.6 and O.7 Part I, Schedule 2 of the Environmental Impact Assessment Ordinance (EIAO)), comprising the "Kai Tak Sports Park" (KTSP) project and the Hotel and Office (H/O) Development of NKIL 6607 adjoining the KTSP – is located in the Kai Tak Development (KTD) area in Kowloon.

The key construction works of the Project include:

(i) KTSP project

- a. a multi-purpose Main Stadium with a spectator capacity of around 50,000;
- b. a Public Sports Ground, with a spectator capacity of around 5,000;
- c. an Indoor Sports Centre with a multi-purpose main arena with a seating capacity of up to 10,000 and an ancillary sports hall with a seating capacity of 500;
- d. retail and dining outlets with a gross floor area (GFA) of about 57,000 square metres (m²), a bowling centre with 40 lanes and a health and wellness centre with about 2,500 m² GFA;
- e. more than 8 hectares of public open space including landscaped deck structures across Shing Kai Road, passive amenities and park features, outdoor ball courts; and
- f. ancillary facilities such as car parks, toilets, changing rooms, etc.

(ii) H/O Development

- g. an office development;
- h. a 300-room hotel with a GFA of about 16,000 m²; and
- i. ancillary facilities such as retails, car parks, etc.

In February 2019, Mott MacDonald Hong Kong Limited (MMHK) was commissioned by the Home Affairs Bureau (HAB) under Agreement No. CE 30/2018 (EP) to undertake the Environmental Team (ET) services for carrying out the Environmental Monitoring & Audit (EM&A) programme during the construction phase and first year of operation of the Project in accordance with the approved Environmental Impact Assessment (EIA) Report (Register No.: AEIAR-204/2017), EM&A Manual (including any subsequent amendments) and EP (including any subsequent variations of it and/or any further environmental permit issued under the EIAO). The current EP (No. EP-544/2017) was issued by EPD on 8 September 2017.

This is the 2nd Monthly EM&A Report summarising the key findings of the construction phase EM&A programme from 1 to 31 May 2019 (the "reporting period") and is submitted to fulfil Condition 3.4 of the EP.

1.2 Project Organisation

The organisation chart and lines of communication with respect to the on-site environmental management structure of the key personnel are shown in **Appendix A**. The key personnel contact names and numbers are summarized in **Table 1.1**.

Table 1.1: Contact Information of Key Personnel

Party	Position	Name	Telephone	Fax
Project Proponent (Home Affairs Bureau)	Project Director (Sports Park)	Victor Tai	3586 3403	3586 0591
Supervising Officer's Representative (Home Affairs Bureau)	Senior Engineer	Keith Man	3586 3149	3586 0591
Environmental Team (Mott MacDonald Hong Kong Limited)	Environmental Team Leader	Sunny Chan	2828 5962	2827 1823
	Deputy Environmental Team Leader	Arthur Lo	2828 5994	2827 1823
Independent Environmental Checker (ERM Hong Kong Limited)	Independent Environmental Checker	Mandy To	2271 3000	2723 5660
Contracted Party	Senior Project	Michael Wong	3552 5003	2845 9295
(Kai Tak Sports Park Limited)	Manager Senior Environmental Engineer	Hiko Law	3552 5013	3552 5099
24-hour Community Liaison Hotline	-	-	5587 6112	-

1.3 Works Area and Construction Programme

The construction works commenced on 8 April 2019. The works area of the Project is shown in **Appendix B**. The Construction Works Programme of the Project is provided in **Appendix C**.

1.4 Construction Works undertaken during the Reporting Period

A summary of construction activities undertaken during this reporting period is presented below:

- Site Clearance;
- Ground investigation works;
- Trial piling;
- Setting up of temporary site office;
- Mobilization; and
- Hoarding erection.

2 Air Quality Monitoring

2.1 Introduction

In accordance with the EM&A Manual of the Project, baseline 1-hour Total Suspended Particulates (TSP) levels at air quality monitoring stations AMS1 and AMS2 were established. Impact 1-hour TSP monitoring was conducted for at least three times every 6 days.

2.2 Monitoring Parameters, Frequency and Duration

Table 2.1 summarises the monitoring parameters, frequency and duration of impact noise monitoring.

Table 2.1: Air Quality Monitoring Parameters, Frequency and Duration

Parameter	Frequency and Duration
1-hour TSP	3 times every six-days

2.3 Monitoring Locations

According to the EM&A Manual, a total of five air quality monitoring stations are identified for impact monitoring. Of these, three air sensitive receivers are planned residential use and were not available for baseline monitoring; the same three are also currently not available for impact monitoring.

Table 2.2 describes the impact air quality monitoring stations and <u>Figure 2.1</u> shows their locations.

Table 2.2: Construction Dust Monitoring Locations

Monitoring Station	Location	Status
AMS1	Hong Kong Society for the Blind Workshop, Roof Floor	Existing Air Sensitive Receiver
AMS2	Sky Tower, Podium of Tower 7	Existing Air Sensitive Receiver
AMS3	Kai Tak Area 2B Site 4 (2B4) (residential use)	Planned Air Sensitive Receiver
AMS4	Kai Tak Area 1K Site 3 (1K3) (residential use)	Planned Air Sensitive Receiver
AMS5	Kai Tak Area 1L Site 3 (1L3) (residential use)	Planned Air Sensitive Receiver

During the reporting period, monitoring locations AMS1 and AMS2 were set up at the proposed locations for impact monitoring.

Permission on setting up and carrying out impact monitoring works at AMS3, AMS4 and AMS5 will be sought once each respective development is completed and occupied.

2.4 Monitoring Action and Limit Levels

The Action and Limit Levels for 1-hr TSP are provided in **Table 2.3**.

Table 2.3: Action and Limit Levels for 1-hour TSP

Monitoring Station	Action Level, µg/m³	Limit Level, µg/m³	
AMS1 – Hong Kong Society for the Blind Workshop, Roof Floor	283	500	
AMS2 – Sky Tower, Podium of Tower 7	280	500	
AMS3 - Kai Tak Area 2B Site 4 (2B4) (residential use)	287*	500	
AMS4 - Kai Tak Area 1K Site 3 (1K3) (residential use)	287*	500	
AMS5 - Kai Tak Area 1L Site 3 (1L3) (residential use)	287*	500	

^{*}Remarks: the Action Level for AMS3, AMS4 and AMS5 were derived from an alternative monitoring station AMS3-4-5 during the baseline monitoring.

The event and action plan is provided in **Appendix D**.

If exceedance(s) at these stations is/are recorded by the ET of the Project, it will carry out an investigation and findings will be reported in the monthly EM&A Report.

2.5 Monitoring Schedule for the Reporting Period

The schedule for air quality monitoring at AMS1 and AMS2 in the reporting period is presented in **Appendix E**.

2.6 Monitoring Equipment

Portable direct reading dust meters were used to carry out the 1-hour TSP monitoring. The brand(s) and model(s) of the equipment used for air quality monitoring stations AMS1 and AMS2 under this Project are given in **Table 2.4**.

Table 2.4: 1-hour TSP Monitoring Equipment

Equipment	Brand	Model No.
Portable direct reading dust meter	Sibata Digital Dust Monitor	LD-3B (S/N: 276019 & 456668)

2.7 Monitoring Methodology

Field Monitoring

The measuring procedures of the 1-hour TSP dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

- Turn the power on.
- Close the air collecting opening cover.
- Push the "TIME SETTING" switch to [BG].
- Push "START/STOP" switch to perform background measurement for 6 seconds.
- Turn the knob at SENSI ADJ position to insert the light scattering plate.
- Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- Pull out the knob and return it to MEASURE position.
- Setting time period of 1 hour for the 1-hour TSP measurement.

- Push "START/STOP" to start the 1-hour TSP measurement.
- Regular checking of the time period setting to ensure monitoring time of 1 hour.

Maintenance and Calibration

- The 1-hour dust meter would be checked at 3-month intervals and calibrated at 1-year intervals throughout all stages of the air quality monitoring.
- Calibration records for direct dust meters are given in <u>Appendix F</u>.

2.8 Monitoring Results

The monitoring results for 1-hour TSP at AMS1 and AMS2 are summarized in **Table 2.5**. Detailed impact air quality monitoring results are presented in **Appendix G**.

Table 2.5: Summary of 1-hour TSP Monitoring Results During the Reporting Period

Monitoring Station	Average, μg/m³	Min, μg/m³	Max, μg/m³	Action Level, μg/m³	Limit Level, μg/m³
AMS1	76	45	98	283	500
AMS2	75	40	95	280	500

There was no Action and Limit Level exceedance of 1-hr TSP level recorded at station AMS1 and AMS2 by the ET during the reporting period.

2.9 Wind Data

Wind data at Kai Tak automatic weather station collected from the Hong Kong Observatory (HKO) were used for the air quality monitoring and they are shown in **Appendix H**. It is considered that the wind data obtained at the existing Kai Tak wind station are representative of the Project area and could be used for undertaking the construction phase baseline and impact air quality monitoring programme for the Project.

The proposed use of the existing wind data from Kai Tak automatic weather station collected from HKO for wind data collection instead of setting up wind monitoring equipment near the monitoring stations was proposed by ET and agreed by IEC in accordance with the requirements as stated in Section 3.4.7 of the EM&A Manual of the Project.

3 Noise Monitoring

3.1 Introduction

In accordance with the EM&A Manual, impact noise monitoring was conducted at least once per week for each noise monitoring location during the construction phase of the Project.

3.2 Monitoring Parameters, Frequency and Duration

Table 3.1 summarises the monitoring parameters, frequency and duration of impact noise monitoring.

Table 3.1: Noise Monitoring Parameters, Frequency and Duration

Parameter	Frequency and Duration
30-minutes measurement at each monitoring station between 0700 and 1900 on normal weekdays (Monday to Saturday).	At least once per week
L _{eq} , L ₁₀ and L ₉₀ would be recorded.	

3.3 Monitoring Locations

According to the approved EM&A Manual, a total of seven noise monitoring stations were identified for the impact monitoring locations. Of these, five noise sensitive receivers are planned residential use (NMS1A, NMS2A, NMS3, NMS4 and NMS5) and were not available for baseline monitoring; the same five are also currently not available for impact monitoring.

Table 3.2 describes the details of the monitoring stations and <u>Figure 3.1</u> shows the locations of noise monitoring stations.

Table 3.2: Construction Noise Monitoring Locations

Monitoring Station	Location Description	Status
NMS1	Hong Kong Society for the Blind	Existing Noise Sensitive
	Workshop, Roof Floor	Receiver
NMS2	Sky Tower, Podium of Tower 7	Existing Noise Sensitive
	•	Receiver
NMS1A	Sung Wong Toi Road Public	Planned Noise Sensitive
	Housing Site	Receiver
NMS2A	Sung Wong Toi Road CDA Site	Planned Noise Sensitive
	(mixed use)	Receiver
NMS3	Kai Tak Area 2B Site 4 (2B4)	Planned Noise Sensitive
	(residential use)	Receiver
NMS4	Kai Tak Area 1K Site 3 (1K3)	Planned Noise Sensitive
	(residential use)	Receiver
NMS5	Kai Tak Area 1L Site 3 (1L3)	Planned Noise Sensitive
	(residential use)	Receiver

During the reporting period, monitoring locations NMS1 and NMS2 were set up at the proposed locations for impact monitoring.

Since NMS1A & NMS2A are planned (i.e. not existing) noise sensitive receivers, noise monitoring should be carried out initially at NMS1 and NMS2 respectively before the population intake of the planned developments. Once the planned developments are completed and occupied, NMS1A shall replace NMS1, while NMS2A shall replace NMS2. It is proposed that

the baseline noise level and Limit Level at NMS1A and NMS2A will be the same as those derived from the baseline monitoring data recorded at NMS1 and NMS2 respectively.

Permission on setting up and carrying out impact monitoring works at NMS3, NMS4 and NMS5 will be sought once each respective development is completed and occupied.

3.4 Action and Limit Levels

The Action and Limit Levels for construction noise are defined in **Table 3.3**.

Table 3.3: Action and Limit Level for Construction Noise

Monitoring Station	Time Period	Action Level	Limit Level
NMS1 NMS2	0700 – 1900 hours on normal weekdays	When one documented complaint is received	75 dB(A)

The event and action plan is provided in **Appendix D**.

If exceedance(s) at these stations is/are recorded by the ET of the Project, it will carry out an investigation and findings will be reported in the monthly EM&A Report.

3.5 Monitoring Schedule for the Reporting Period

The schedule for noise monitoring in the reporting period is presented in **Appendix E**.

3.6 Monitoring Equipment

Noise monitoring was performed using sound level meters at each designed monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment used for noise monitoring under this Project is given in **Table 3.4**.

Table 3.4: Noise Monitoring Equipment

Equipment	Brand	Model No.
Integrated Sound Level Meter	Rion	NL-52 (S/N: 00542913)
Acoustic Calibrator	LARSON DAVIS	CAL200 (S/N: 15678)

3.7 Monitoring Methodology

- Façade and Free Field measurements were made at the monitoring locations.
- For Façade measurement, the microphone hear of the head level meter was positioned 1m exterior of the noise sensitive façade and lowered sufficiently so that the building's external wall acts as a reflecting surface.
- For free field, the microphone of the Sound Level Meter was set at least 1.2 m above the ground.
- A correction of +3dB(A) was made for free field measurement.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - frequency weighting: A
 - time weighting: Fast

- time measurement: 30-minute intervals (between 0700-1900 on normal weekdays)
- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94 dB at 1 kHz. If the difference in the calibration level before and after measurement was more than 1 dB, the measurement would be considered invalid and repeated after the recalibration or repair of the equipment.
- During the monitoring period, the L_{eq}, L₁₀ and L₉₀ were recorded. In addition, any site observations and noise sources were recorded on a standard record sheet.
- Noise measurements were not made in presence of fog, rain, wind with a steady speed exceeding 5m/s or wind with gusts exceeding 10m/s.

Maintenance and Calibration

- The microphone head of the sound level meter and calibrator is cleaned with soft cloth at quarterly intervals.
- The sound level meter and calibrator are sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- Calibration records are shown in <u>Appendix F</u>.

3.8 Monitoring Results

The monitoring results for construction noise are summarized in **Table 3.5**. Detailed impact noise monitoring results and relevant graphical plots are presented in **Appendix G**.

Table 3.5: Summary of Construction Noise Monitoring Results During the Reporting Period

		neasurea Moise Le	VET Led (30 mins), GD(A	1)
Monitoring Station	Average	Min	Max	Limit Level
NMS1	68	67	69	75
NMS2	70	69	71	75

Measured Noise Level Lagrage dR(A)

No noise exceedances were recorded at stations NMS1 and NMS2 by the ET during the reporting period.

4 Environmental Site and Audit

4.1 Site Inspection

Site inspections were carried out by ET on a weekly basis to monitor the implementation of proper environmental pollution control mitigation measures for the Project. Key observations were recorded in the site inspection checklist and passed to the Contracted Party together with the appropriate recommended mitigation measures where necessary. During the reporting period, site inspections were carried out on 8, 15, 22 and 29 May 2019. Joint IEC site inspection was carried out on 22 May 2019.

Bi-weekly landscape and visual site audit was carried out on 8 and 22 May 2019. The landscape and visual audit have been audited by Registered Landscape Architect (RLA). No major observations of landscape and visual impact were identified. The result findings were summarised in **Appendix K.**

Key observations during the site inspections are described in **Table 4.1**.

Table 4.1: Summary of Site Inspections and Recommendations

Inspection Date	Key Observations	Recommendations / Actions	Close-Out Date / Status
8 May 2019	Accumulation of stagnant water was observed near the site hoarding area at the southern site area.	The Contractor was reminded to clear the stagnant water as soon as possible.	15 May 2019
15 May 2019	Accumulation of stockpile was observed on site (Northern Site).	The Contractor was reminded to provide cover to the stockpile.	22 May 2019
15 May 2019	Accumulation of stagnant water at the drip tray was observed.	The Contractor was reminded to clear the drip tray water as soon as possible. (Northern Site)	22 May 2019
15 May 2019	Accumulation of stockpile was observed near the tree protection zone.	The Contractor was reminded to remove the stockpile near the tree protection zone. (Southern Site)	22 May 2019
22 May 2019	Accumulation of stockpile at southern site was observed.	The Contractor was reminded to provide cover to the stockpile.	29 May 2019
29 May 2019	A generator with faded colour NRMM label was observed in southern area.	The contractor was reminded to display a new NRMM label for the generator.	5 June 2019

4.2 Advice on the Solid and Liquid Waste Management Status

The Contracted Party was registered as a chemical waste producer for the Project. Sufficient numbers of receptacles were available for general refuse collection and sorting.

The monthly summary of waste flow table is detailed in Appendix I.

The Contracted Party was reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packing, Labelling and Storage of Chemical Waste.

4.3 Environmental Licenses and Permits

The valid environmental licenses and permits for the Project during the reporting period are summarized in **Appendix J**.

4.4 Implementation Status of Environmental Mitigation Measures

In response to the site audit findings, the Contracted Party carried out corrective actions.

A summary of the environmental mitigation measures implementation status is presented in **Appendix K**. Most of the necessary mitigation measures were implemented properly.

4.5 Summary of Exceedance of the Environmental Quality Performance Limit

Air Quality

No Action and Limit Level exceedances of 1-hour TSP level was recorded at AMS1 and AMS2 during the reporting period.

Noise

No Action and Limit Level exceedances were recorded at NMS1 and NMS2 during the reporting period.

4.6 Summary of Complaints, Notification of Summons and Successful Prosecution

Complaints

There were no complaints received in relation to the environmental impact during the reporting period.

Notification of Summons and Successful Prosecution

No notification of summons or prosecutions was received during the reporting period.

Statistics on notifications of summons and successful prosecutions are summarized in **Appendix L**.

5 Future Key Issues

5.1 Construction Programme for the Coming Months

As informed by the Contracted Party, the major construction activities for the next reporting period (June 2019) are summarized in **Table 5.1**.

Table 5.1: Construction Activities for the Next Reporting Period

Site Area	Description of Activities
Kai Tak Sports Park	Site clearance;
	 Ground investigation works;
	 Piling works (Percussive piling, Socket H piling and Bored piling);
	 Setting up of temporary site office;
	 Drainage pipe laying works;
	 Setting up of wastewater treatment facilities;
	Mobilization; and
	 Hoarding erection.

5.2 Environmental Site Inspection and Monitoring Schedule for the Next Reporting Period

The tentative schedule for weekly site inspection and monitoring for air quality and noise for the next reporting period is provided in **Appendix E**.

6 Conclusions

6.1 Conclusions

General

The construction works for the Project commenced on 8 April 2019.

The ET of the Project has implemented the air quality and noise environmental impact monitoring under the construction phase EM&A programme during the reporting period.

Breaches of Action and Limit Levels

Air Quality

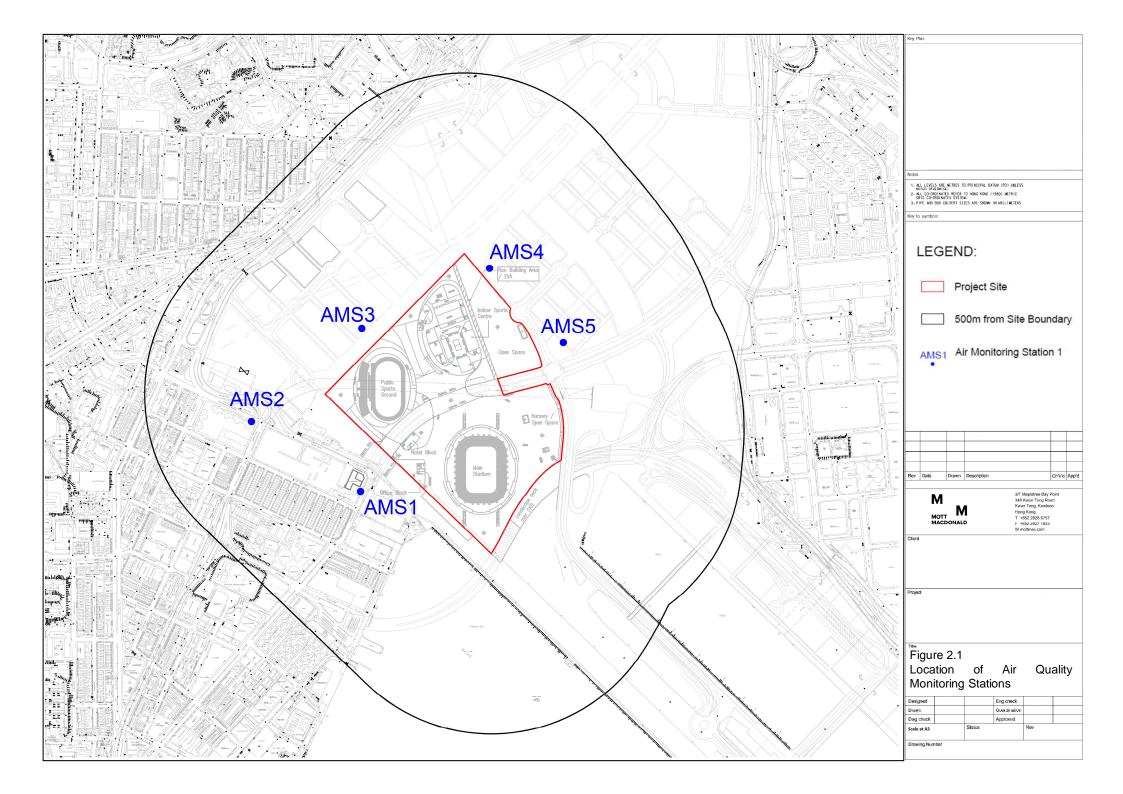
No Action and Limit Level exceedances of 1-hour TSP level was recorded at AMS1 and AMS2 during the reporting period.

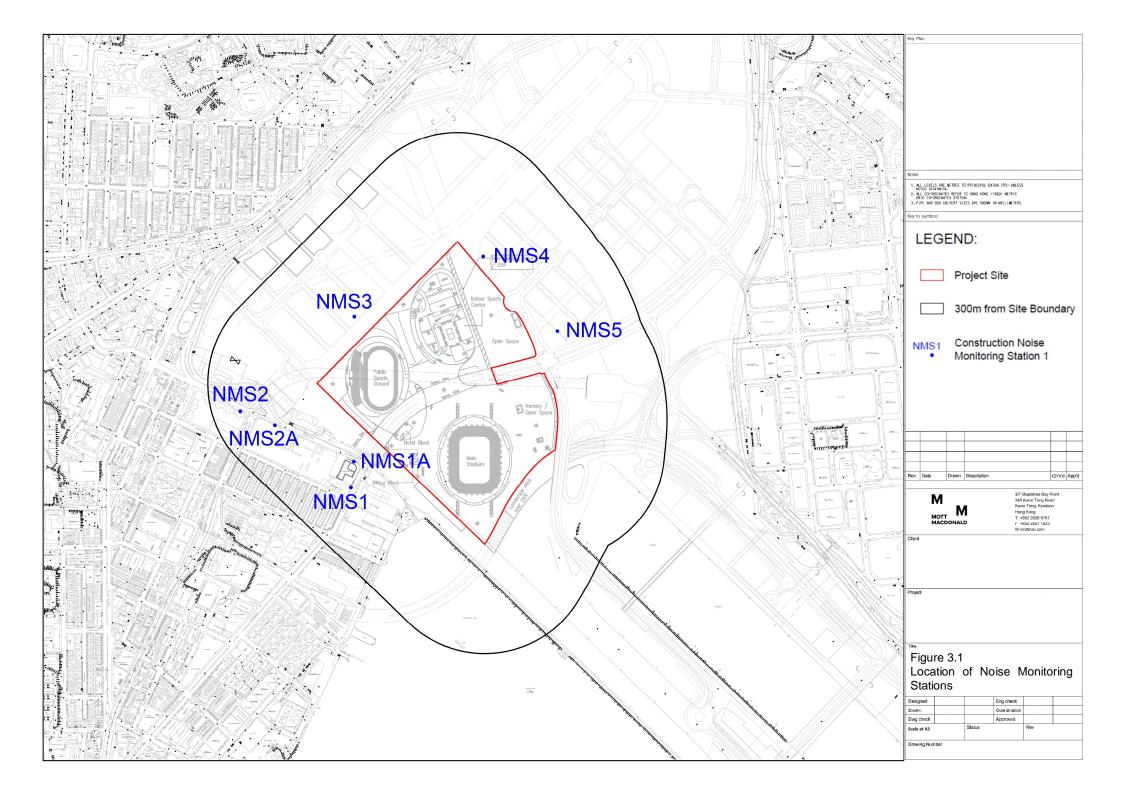
Noise

No Action and Limit Level exceedances were recorded at NMS1 and NMS2 during the reporting period.

Environmental Site Inspections

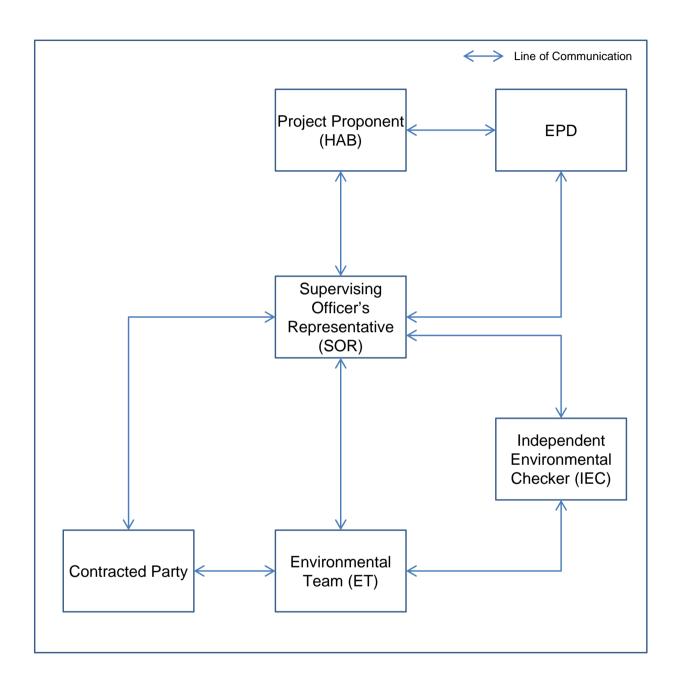
Environmental site inspections were carried out four times during the reporting period. Recommendations on remedial actions were given to the Contracted Party for the deficiencies identified during the site inspections.

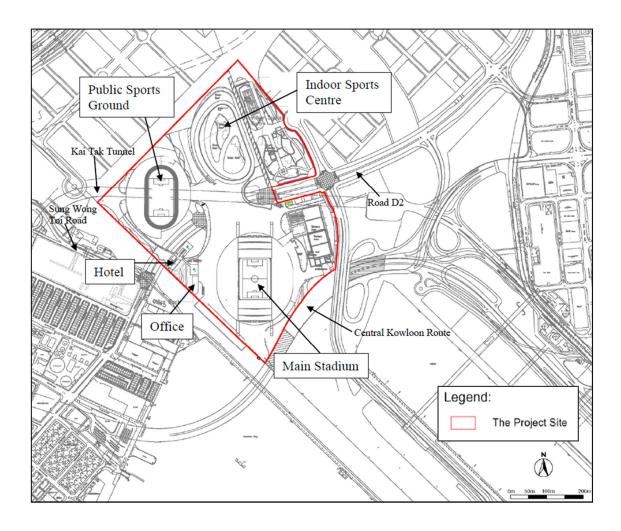

Complaints


There were no complaints received in relation to the environmental impact during the reporting period.

Notifications of Summons and Successful Prosecutions

There were no notifications of summons or prosecutions received during the reporting period.


Figures



Appendix A. Project Organization for Environmental Works

Project Organisation for Environmental Works

Appendix B. Location of Works Areas

Appendix C. Construction Programme

Kai Tak Sports Park Limited 啟德體育園有限公司

30/F, New World Tower 1, 18 Queen's Road Central, Hong Kong 香港中環皇后大道中18號新世界大廈1期30樓

Tel 電話: (852) 2523 1056 Fax 傳真: (852) 3723 6622

KAI TAK SPORTS PARK 啟德體育園

Your Ref:

Our Ref: S00143-KTSP02/T01/SL/DW

8th April 2019

DELIVERED:

BY EMAIL

BY FAX

Supervising Officer's Representative

Leigh & Orange Ltd. 801, Dorset House, TaiKoo Place, 979 King's Road, Hong Kong. BY COURIER

Attention:

Mr. Alan Li

Dear Sir,

Contract No. HAB/KTSP/01 <u>Design, Construction and Operation of the Kai Tak Sports Park</u> <u>At Kai Tak, Kowloon City District, Hong Kong</u>

(Programme No. 3272RS)

Submission of Contracted Party's Three Month Rolling Works Programme

We refer to the clauses 43.9 of the Conditions of Contract, we would like to submit the contracted party's three month rolling works programme for your approval.

Thank you for your attention.

For and On Behalf of Kai Tak Sports Park Limited

Mr. Simon Lee

Director (Design Management)

.../Page 2

Kai Tak Sports Park Limited 啟德體育園有限公司

30/F, New World Tower 1, 18 Queen's Road Central, Hong Kong 香港中環皇后大道中18號新世界大廈1期30樓

Tel 電話: (852) 2523 1056 Fax 傳真: (852) 3723 6622

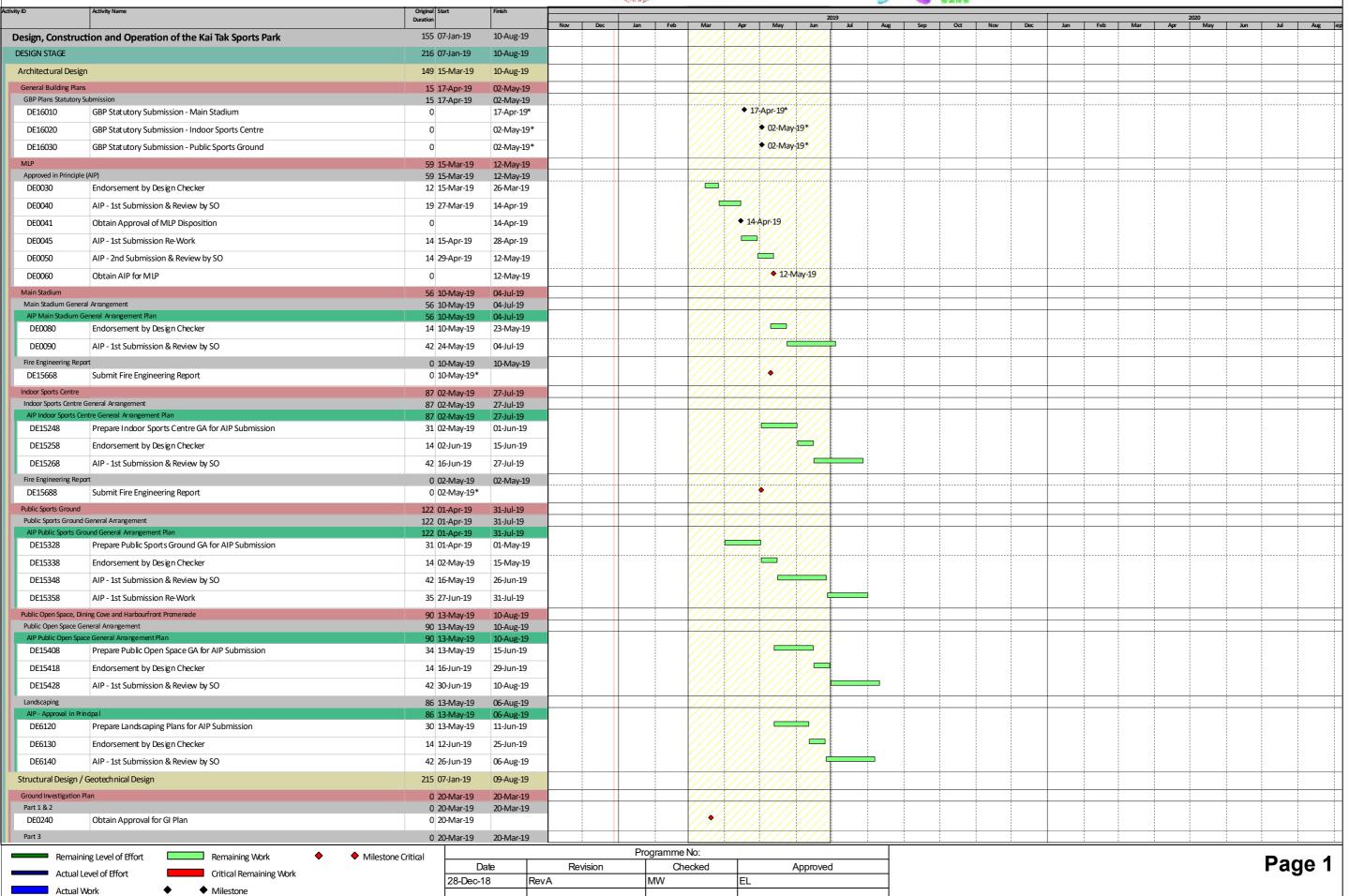
KAI TAK SPORTS PARK 啟德體育園

Page 2

Our Ref: S00143-KTSP02/T01/SL/DW

Encl.

c.c.	SO	_	Mr. Victor Tai) w/ encl.
	KTSPL	-	Ms. Lam Lit Kwan) w/ encl.
	SOR/ Senior Architect	-	Mr. Michael Mak) by email only
	SOR/ Senior Engineer (2)	-	Mr. Michael Chu) by email only
	SOR/ Architect (2)	-	Mr. Ray Lau) by email only
	SOR/ Structural Engineer	-	Mr. Steven Leung) by email only
	SOR/ BS Engineer (2)	-	Mr. Eric Poon) by email only
	SOR/ Quantity Surveyor (2)	-	Mr. Philip Choi) by email only
	SOR/STO (Architectural, RS)	-	Ms. Viola Siu) by email only
	SOR/ STO (Structural, RS)	_	Mr. C C Lau) by email only
	SOR/ STO (BS, RS)	-	Ms. Jess Yu) by email only
	SOR/ Senior Clerk of Works	-	Mr. K F Lai) by email only
	SOR/ Senior BS Inspector	-	Mr. W C Li) by email only
	SOR/TS (3)	-	Mr. Ignacio Diez-Aguirre) by email only
	SOR/TS (4)	-	Mr. Dennis Lee) by email only
	WSP (Principal Engineer)	-	Mr. Stephen Tsang) by email only

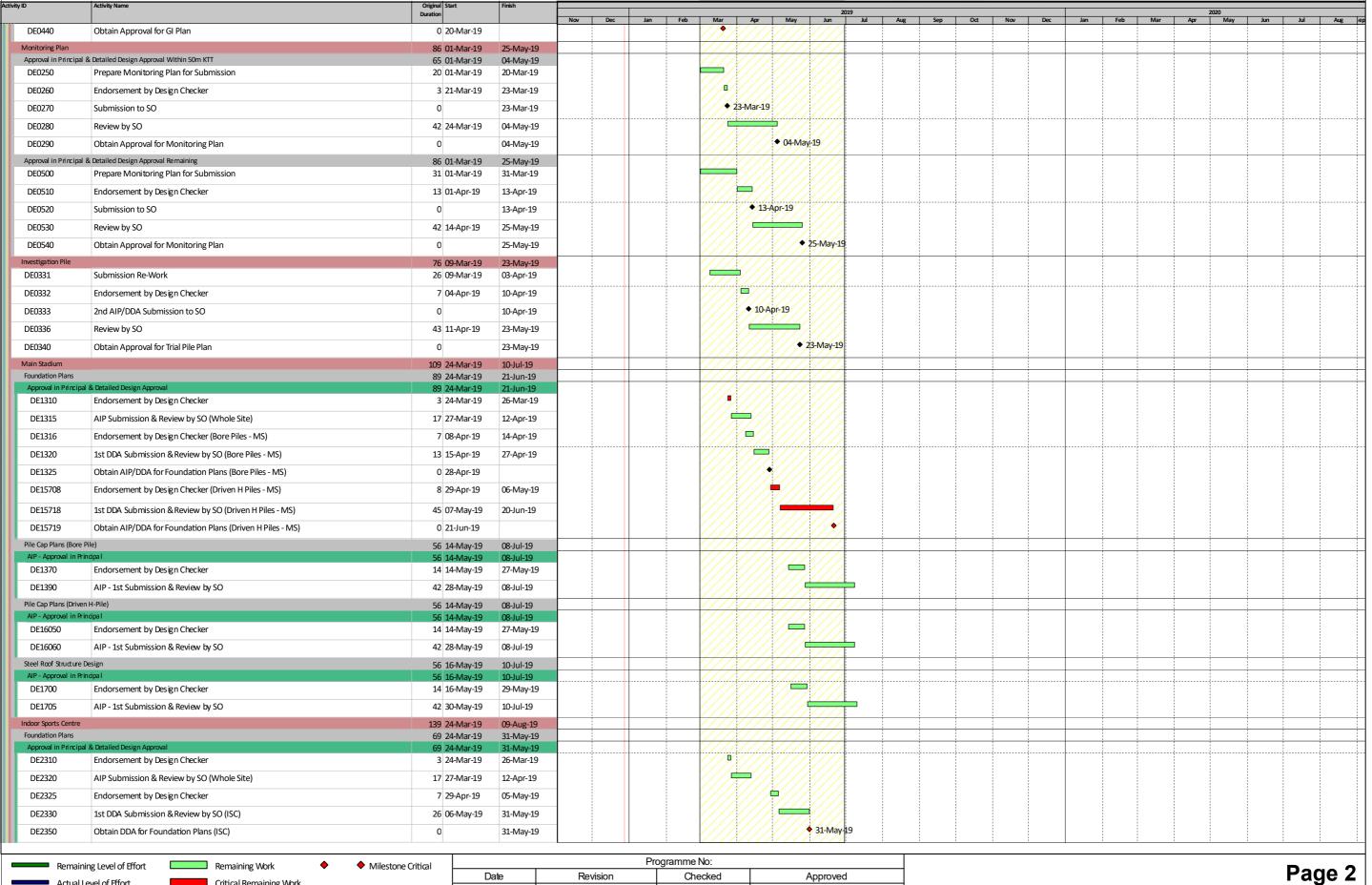

SL/EL/WW/GS/TS/DW/dw

Design, Construction and Operation of the Kai Tak Sports Park Contract No. HAB/KTSP/01 (PROGRAMME NO. 3272RS) KTSP - 3 Month Rolling Master Programme - Data Date 28 December 2018

Design, Construction and Operation of the Kai Tak Sports Park Contract No. HAB/KTSP/01 (PROGRAMME NO. 3272RS) KTSP - 3 Month Rolling Master Programme - Data Date 28 December 2018

Actual Level of Effort

Actual Work


Critical Remaining Work

Milestone

Checked

EL

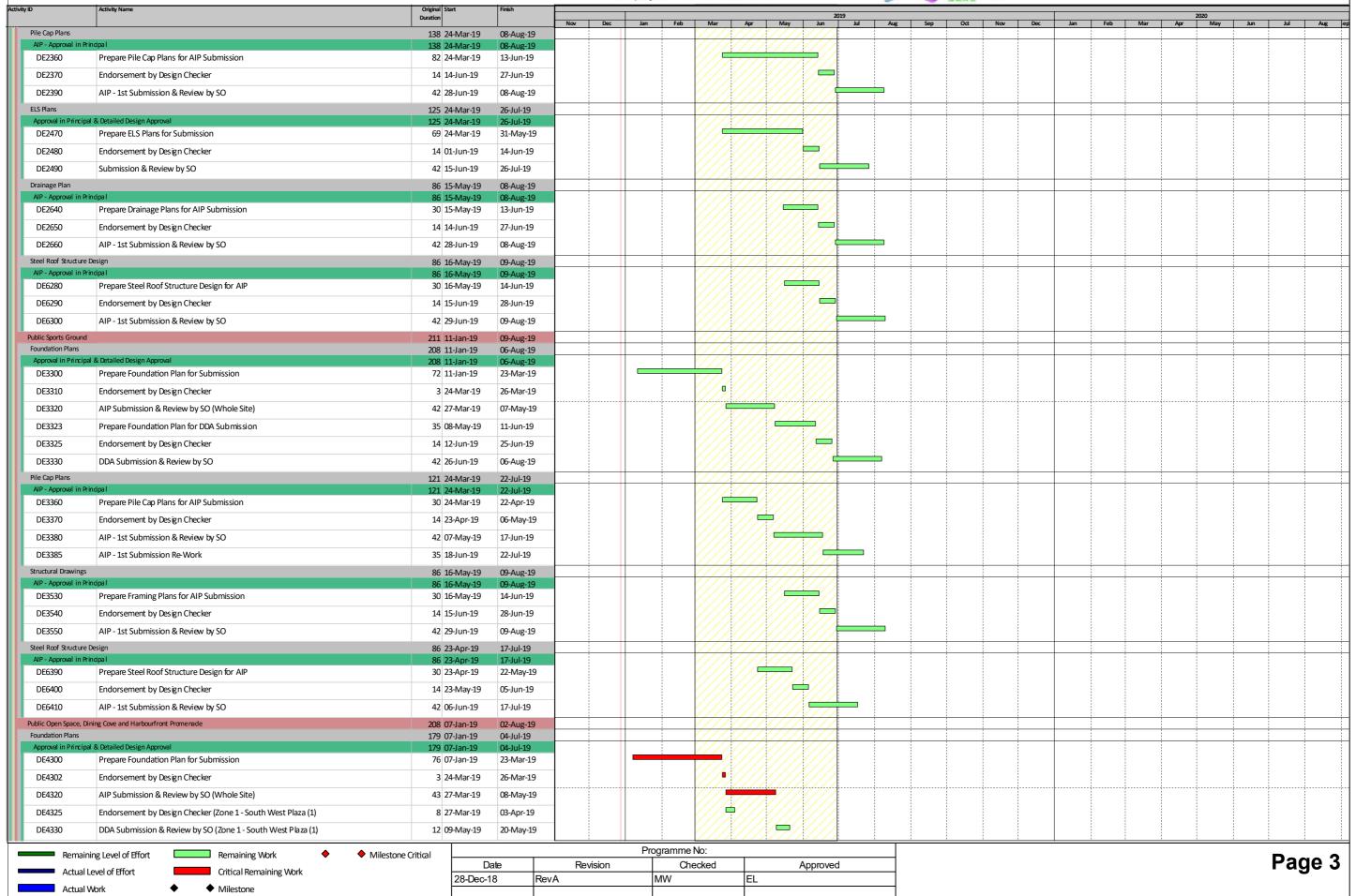
MW

Approved

Date

28-Dec-18

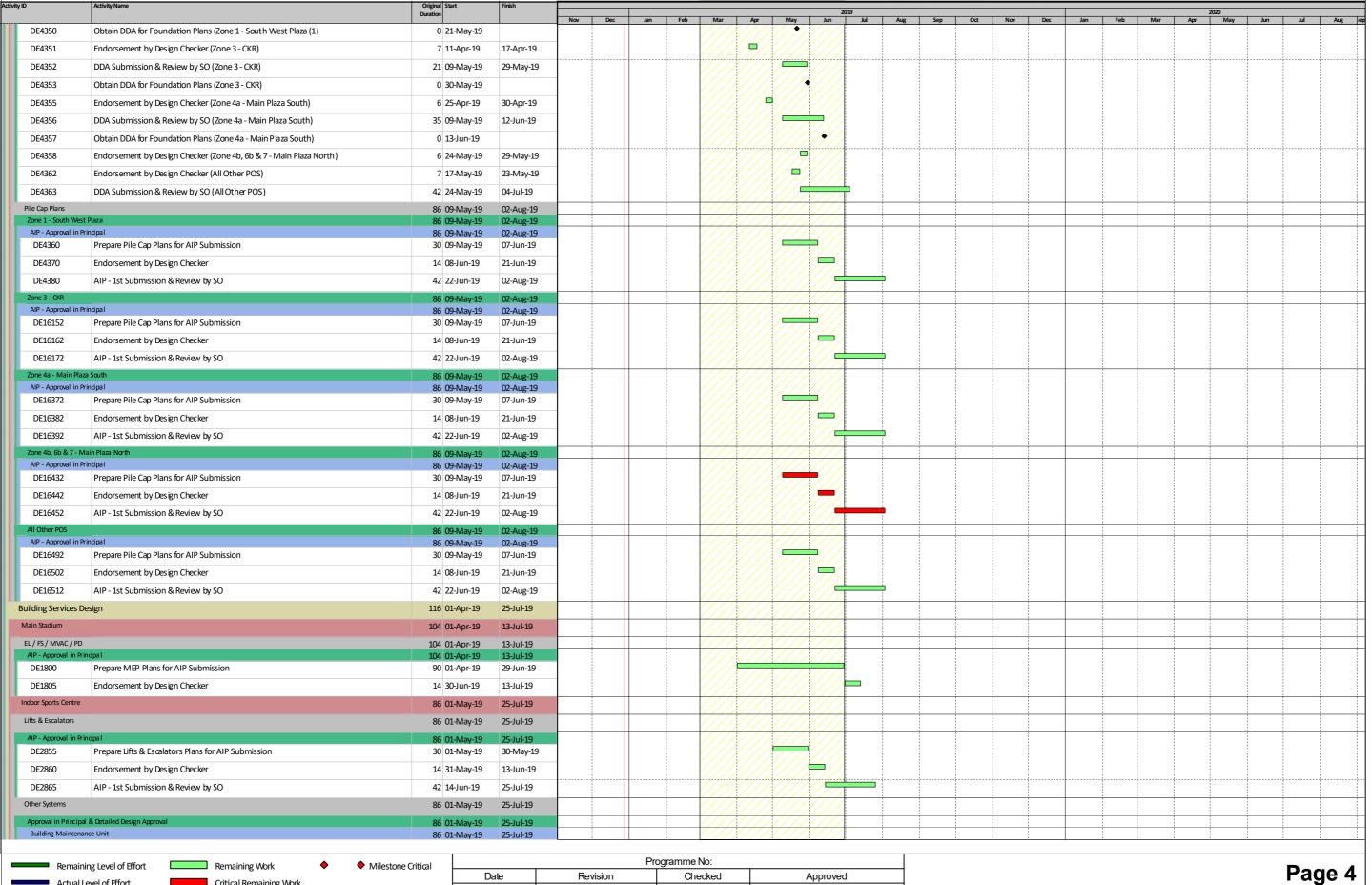
Revision


RevA

Design, Construction and Operation of the Kai Tak Sports Park Contract No. HAB/KTSP/01 (PROGRAMME NO. 3272RS) KTSP - 3 Month Rolling Master Programme - Data Date 28 December 2018

Actual Level of Effort

Actual Work


Critical Remaining Work

Milestone

Checked

MW

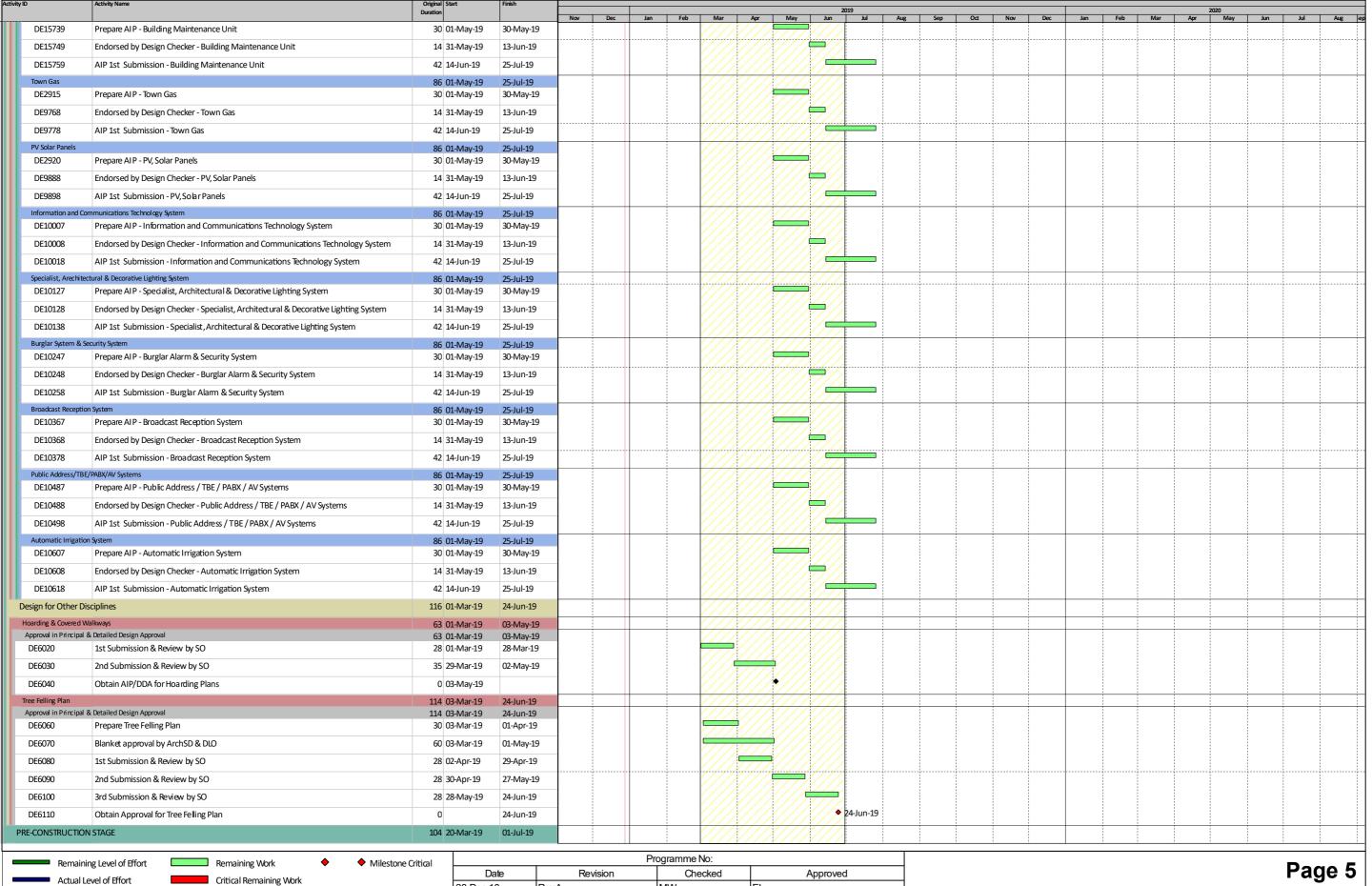
Approved

Date

28-Dec-18

Revision

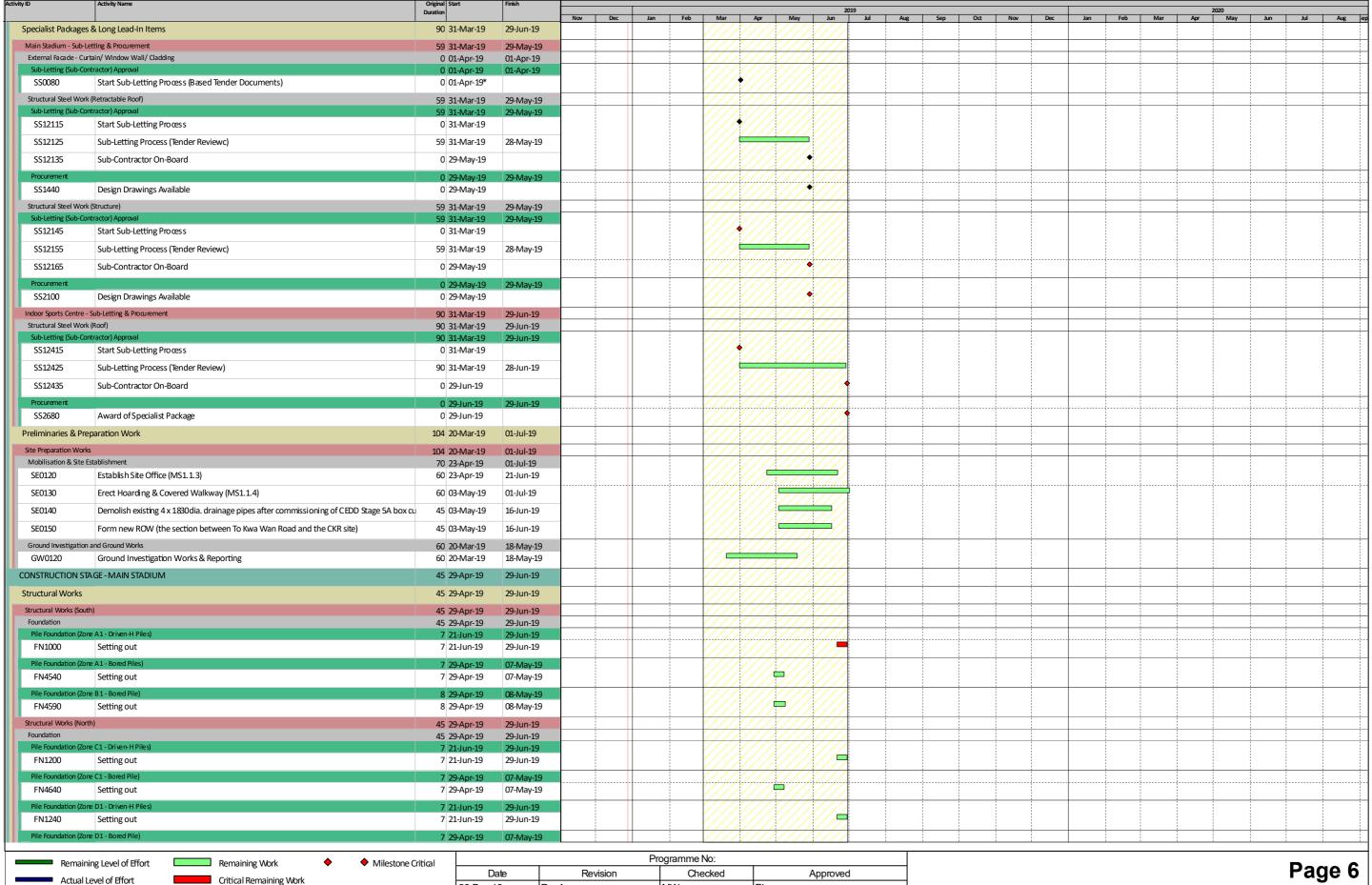
RevA


Actual Work

Milestone

MW

EL


28-Dec-18

RevA

MW

EL

28-Dec-18

Actual Work

Milestone

RevA

						danage.										M 46 10 M										
Activity ID	Activity Name	Original Start	Finish	2019																						
		Duration		Nov	Dec	Jan	Feb	Mar	Ap	y	May	Jun		Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr		Jun	Jul	Aug ie
FN4690	Setting out	7 29-Apr-19	07-May-19									///														
CONSTRUCTION	STAGE-INDOOR SPORTS CENTRE	7 01-Jun-19	11-Jun-19																							
Structural Work		7 01-Jun-19	11-Jun-19									////			1											
Foundation (Socke	• -	7 01-Jun-19	11-Jun-19					1///																		
Pile Foundation (Zone 1A - ISC West)	7 01-Jun-19	11-Jun-19								////															
FN2000	Setting out	7 01-Jun-19	11-Jun-19									-///														
Pile Foundation (Zone 1B - ISC West)	7 01-Jun-19	11-Jun-19						///	////	////															
FN2040	Setting out	7 01-Jun-19	11-Jun-19									-///														
Pile Foundation (Zone 2 - ISC Main Arena & ASH)	7 01-Jun-19	11-Jun-19					////	////	////	////	///														
FN2100	Setting out	7 01-Jun-19	11-Jun-19									-///	1													
CONSTRUCTION	STA GE - PUBLIC OP EN SPACE, DINING COVE AND HARBOURFRONT PROMENADE	48 17-Apr-19	22-Jun-19									///														
Structural Work	s	24 21-May-19	22-Jun-19					////				///														
Foundation (Socker	-H piling)	24 21-May-19	22-Jun-19								////	///	1													
Pile Foundation (Zone E3 - Main Plaza (South)) - Stage 2	7 13-Jun-19	22-Jun-19		:			1///					1							!	:	-				
FN4240	Setting out	7 13-Jun-19	22-Jun-19																							
Pile Foundation (Zone E1 - South West Plaza (1)) - Stage 4	21 21-May-19	18-Jun-19					////	///		////	////														
FN4730	Setting out	7 21-May-19	29-May-19		:												:	:		!			!			
FN4740	Trial Pile	14 30-May-19	18-Jun-19																							
Pile Foundation (Zone CKR - Harbour Terrace - Southern end) - Stage 5	14 30-May-19	18-Jun-19					////	////	////	////	////														
FN4300	Setting out	7 30-May-19	08-Jun-19									1///														
FN4310	Trial Pile	14 30-May-19	18-Jun-19									// //														
BS Installations	ABWF and Fitting Out Works	60 17-Apr-19	15-Jun-19					1///		////		///														
External Works		60 17-Apr-19	15-Jun-19					1///	////		////	////														
Works Outside Si	te Boundary	60 17-Apr-19	15-Jun-19					1///	///	////	////															
EX4060	TTM Application Submission & Approval	60 17-Apr-19	15-Jun-19							///	////	7//		:	:											

Critical Remaining Work

	Programme No:										
Date	Revision	Checked	Approved								
28-Dec-18	RevA	MW	EL								
	-										

Appendix D. Event and Action Plan

Should non-compliance of the air quality criteria occur, actions in accordance with the Event and Action Plan in **Table D.1** and **Table D.2** shall be carried out.

Table D.1: Event and Action Plan for Construction Air Quality (Action Level)

Event	Action									
	ET	IEC	SOR	Contracted Party						
Action Level										
Exceedance for one sample	Inform IEC, SOR and Contracted Party; Identify source, investigate the causes of exceedance and propose remedial measures; Repeat measurement to confirm finding.	Check monitoring data submitted by ET; Check Contracted Party's working method.	Notify Contracted Party.	Rectify any unacceptable practice; Amend working methods if appropriate.						
Exceedance for two or more consecutive samples	1. Inform IEC, SOR and Contracted Party; 2. Identify source; 3. Advise the SOR on the effectiveness of the proposed remedial measures; 4. Repeat measurements to confirm findings; 5. Increase monitoring frequency to daily; 6. Discuss with IEC, SOR and Contracted Party on remedial actions required; 7. If exceedance continues, arrange meeting with IEC and SOR; 8. If exceedance stops, cease additional monitoring.	1. Check monitoring data submitted by ET; 2. Check Contracted Party's working method; 3. Discuss with ET and Contracted Party on possible remedial measures; 4. Advise the ET/SOR on the effectiveness of the proposed remedial measures; 5. Supervise Implementation of remedial measures.	1. Confirm receipt of notification of failure in writing; 2. Notify Contracted Party; 3. Ensure remedial measures properly implemented.	1. Submit proposals for remedial to SOR and IEC within 3 working days of notification; 2. Implement the agreed proposals; 3. Amend proposal if appropriate.						

Table D.2: Event and Action Plan for Construction Air Quality (Limit Level)

Event		Action	ı	
	ET	IEC	ET	Contracted Party
Limit Level				
Exceedance for one sample	1. Inform IEC, SOR, Contracted Party and EPD; 2. Identify source, investigate the causes of exceedance and propose remedial measures; 3. Repeat measurement to confirm finding; 4. Increase monitoring frequency to daily; 5. Assess effectiveness of Contracted Party's remedial actions and keep IEC, EPD and SOR informed of the results.	1. Check monitoring data submitted by ET; 2. Check Contracted Party's working method; 3. Discuss with ET and Contracted Party on possible remedial measures; 4. Advise the SOR on the effectiveness of the proposed remedial measures; 5. Supervise implementation of remedial measures.	1. Confirm receipt of notification of failure in writing; 2. Notify Contracted Party; 3. Ensure remedial measures properly implemented.	1. Take immediate action to avoid further exceedance; 2. Discuss with ET and IEC on remedial actions; 3. Submit proposals for remedial actions to IEC within 3 working days of notification; 4. Implement the agreed proposals; 5. Amend proposal if appropriate.
Exceedance for two or more consecutive samples	1. Notify IEC, SOR, Contracted Party and EPD; 2. Identify source; 3. Repeat measurement to confirm findings; 4. Increase monitoring frequency to daily; 5. Carry out analysis of Contracted Party's working procedures to determine possible mitigation to be implemented; 6. Arrange meeting with IEC and SOR and Contracted Party to discuss the remedial actions to be taken; 7. Assess effectiveness of Contracted Party's remedial actions and keep IEC, EPD and SOR informed of the results; 8. If exceedance stops, cease additional monitoring.	1. Check monitoring data submitted by ET; 2. Check Contracted Party's working method; 3. Discuss amongst SOR, ET, and Contracted Party on the potential remedial actions; 4. Review Contracted Party's remedial actions whenever necessary to assure their effectiveness and advise the SOR accordingly; 5. Supervise the implementation of remedial measures.	1. Confirm receipt of notification of failure in writing; 2. Notify Contracted Party; 3. In consultation with the IEC, agree with the Contracted Party on the remedial measures to be implemented; 4. Ensure remedial measures properly implemented; 5. If exceedance continues, consider what portion of the work is responsible and instruct the Contracted Party to terminate that portion of work until the exceedance ceases.	1. Take immediate action to avoid further exceedance; 2. Discuss with ET and IEC on remedial actions; 3. Submit proposals for remedial actions to SOR and IEC within 3 working days of notification; 4. Implement the agreed proposals; 5. Resubmit proposals if problem still not under control; 6. Stop the relevant portion of works as determined by the SOR until the exceedance ceases.

Should non-compliance of the noise criteria occur, actions in accordance with the Event and Action Plan in **Table D.3** shall be carried out.

Table D.3: Event and Action Plan for Construction Noise

Event		Action		
	ET	IEC	ET	Contracted Party
Action Level	1. Notify IEC, SOR and Contracted Party of exceedance; 2. Identify source; 3. Investigate the causes of exceedance and propose remedial measures; 4. Report the results of investigation to the IEC, SOR and Contracted Party; 5. Discuss with the IEC, SOR and Contracted Party and formulate remedial measures; 6. Increase monitoring frequency to check mitigation effectiveness.	1. Review the analysed results submitted by the ET; 2. Review the proposed remedial measures by the Contracted Party and advise the SOR accordingly; 3. Supervise the implementation of remedial measures.	1. Confirm receipt of notification of failure in writing; 2. Notify Contracted Party; 3. Require Contracted Party to propose remedial measures for the analysed noise problem; 4. Ensure remedial measures are properly implemented	Submit noise mitigation proposals to SOR with copy to ET and IEC; Implement noise mitigation proposals.
Limit Level	1. Inform IEC, SOR, EPD and Contracted Party; 2. Identify source; 3. Repeat measurements to confirm findings; 4. Increase monitoring frequency; 5. Carry out analysis of Contracted Party's working procedures to determine possible mitigation to be implemented; 6. Inform IEC, SOR and EPD the causes and actions taken for the exceedances; 7. Assess effectiveness of Contracted Party's remedial actions and keep IEC, EPD and SOR informed of the results; 8. If exceedance stops, cease additional monitoring.	1. Discuss amongst SOR, ET, and Contracted Party on the potential remedial actions; 2. Review Contracted Party's remedial actions whenever necessary to assure their effectiveness and advise the SOR accordingly; 3. Supervise the implementation of remedial measures.	1. Confirm receipt of notification of failure in writing; 2. Notify Contracted Party; 3. Require Contracted Party to propose remedial measures for the analysed noise problem; 4. Ensure remedial measures are properly implemented; 5. If exceedance continues, investigate what portion of the work is responsible and instruct the Contracted Party to terminate that portion of work until the exceedance ceases.	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to SOR with copy to ET and IEC within 3 working days of notification; 3. Implement the agreed proposals; 4. Resubmit proposals if problem still not under control; 5. Terminate the relevant portion of works as determined by the SOR until the exceedance ceases.

Appendix E. Environmental Site Inspection and Monitoring Schedule

Table E.1: Site Inspection and Monitoring Schedule for May 2019

Sun	Mon	Tue	Wed	Thu	Fri	Sat
			1	2	3	
			Labour Day			AMS1
						AMS2
5	6	7	8	9	10	1
			site inspection		AMS1, NMS1	
			landscape and visual audit		AMS2, NMS2	
12	13	14	15	16	17	1
	The day following the Birthday of Buddha		site inspection	AMS1, NMS1		
	Dirtiday of Duddila			AMS2, NMS2	5	
19	20	21	22	23	24	2
19	20	21	AMS1, NMS1	23	24	2
			AMS2, NMS2			
			site inspection*			
			landscape and visual			
		II WAS	audit		55-97	
26	27	28	29	30	31	
		AMS1, NMS1	site inspection			
		AMS2, NMS2				

Air Quality/Noise Monitoring
Remarks:*Joint site walk with IEC on 22 May 2019

Table E.2: Tentative Site Inspection and Monitoring Schedule for June 2019

Sun	Mon	Tue	Wed	Thu	Fri	Sat	
Juli		1.00	1100				- 8
2	3	4	5	6	7		
_	AMS1, NMS1		site inspection		Tuen Ng Festival	AMS1	- 13
	AMS2, NMS2		landscape and visual		The state of the s	AMS2	
	AWIOZ, WWIOZ		audit	ia .		AWI32	
				No.			103
9	10	. 11	12	13	14		1
			site inspection	AMS1, NMS1			
				AMS2, NMS2			
16	17	18	19	20	21		2
			AMS1, NMS1				
			AMS2, NMS2				
			site inspection				
			landscape and visual audit				
23	24	25	26	27	28	J.	2
		AMS1, NMS1				AMS1	
		AMS2, NMS2				AMS2	
			site inspection		Ì		
30							

Air Quality/Noise Monitoring

Remark: The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Appendix F. Calibration Certificates

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

HK1907875 WORK ORDER CONTACT : MR K.W. FAN

: ENVIROTECH SERVICES CO. **CLIENT**

ADDRESS : RM113, 1/F, MY LOFT, 9 HOI WING ROAD, TUEN MUN, N.T. HONG SUB-BATCH : 1

> : 22-FEB-2019 DATE RECEIVED **KONG**

DATE OF ISSUE : 7-MAR-2019

PROJECT NO. OF SAMPLES : 1

> CLIENT ORDER : ----

General Comments

Sample(s) were received in ambient condition.

Sample(s) analysed and reported on as received basis.

Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories **Position**

Richard Fung

General Manager

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

: HK1907875 WORK ORDER

SUB-BATCH

: 1 : ENVIROTECH SERVICES CO. CLIENT

PROJECT

ALS Lab	Client's Sample ID	Sample	Sample Date	External Lab Report No.
ID		Туре		
HK1907875-001	S/N: 276019	Equipments	22-Feb-2019	S/N: 276019

Equipment Verification Report (TSP)

Equipment Calibrated:

Type: Laser Dust monitor

Manufacturer: Sibata LD-3B

Serial No. 276019

Equipment Ref: Nil

Job Order HK1907875

Standard Equipment:

Standard Equipment: Higher Volume Sampler

Location & Location ID: AUES office (calibration room)

Equipment Ref: HVS 018

Last Calibration Date: 12 February 2019

Equipment Verification Results:

Testing Date: 4 March 2019

Hour	Time	Time Mean Pressu Temp °C (hPa		Concentration in mg/m³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/min)
2hr13min	09:10 ~ 11:23	20.9	1013.7	0.035	2699	20.3
2hr01min	11:30 ~ 13:31	20.9	1013.7	0.026	2235	18.4
2hr01min	13:40 ~ 15:41	20.9	1013.7	0.041	2723	22.6

0.045

0.04 0.035

0.03

0.025

0.015 0.01 0.005

Linear Regression of Y or X

Slope (K-factor): 0.0017

Correlation Coefficient 0.9851

Date of Issue 7 March 2019

Remarks:

- 1. **Strong** Correlation (R>0.8)
- 2. Factor 0.0017 should be applied for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

0 5 10 15 20 25

v = 0.0017x - 0.0007

Operator : Fai So Signature : Date : 7 March 2019

QC Reviewer : Ben Tam Signature : Date : 7 March 2019

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Gold King Industrial Building, Kwai Chung Date of Calibration: 12-Feb-19

Location ID: Calibration Room Next Calibration Date: 12-May-19

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1024.2 19.0 Corrected Pressure (mm Hg)
Temperature (K)

768.15 292

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Calibration Date-> 13-Feb-18

Qstd Slope -> Qstd Intercept -> Expiry Date-> 2.02017 -0.03691 13-Feb-19

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	4	7.7	11.7	1.738	60	60.94	Slope = 35.5369
13	2.8	6.9	9.7	1.584	52	52.81	Intercept = -1.8924
10	1.9	5.4	7.3	1.377	46	46.72	Corr. coeff. = 0.9951
8	0.6	4	4.6	1.097	38	38.59	
5 -0.4 3.1		2.7	0.844	27	27.42		

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

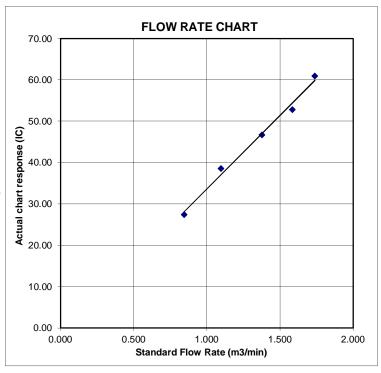
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

RECALIBRATION DUE DATE:

February 13, 2019

Certificate of Calibration

Calibration Certification Information

Cal. Date: February 13, 2018

Rootsmeter S/N: 438320

°K

Operator: Jim Tisch

Ta: 293 **Pa:** 763.3

mm Hg

Calibration Model #: TE-5025A

Calibrator S/N: 1612

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.3970	3.2	2.00
2	3	4	1	1.0000	6.3	4.00
3	5	6	1	0.8900	7.9	5.00
4	7	8	1	0.8440	8.7	5.50
5	9	10	1	0.7010	12.6	8.00

		Data Tabula	tion		
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	$\sqrt{\Delta H \Big(Ta/Pa \Big)}$
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)
1.0172	0.7281	1.4293	0.9958	0.7128	0.8762
1.0130	1.0130	2.0213	0.9917	0.9917	1.2392
1.0109	1.1358	2.2599	0.9896	1.1120	1.3854
1.0098	1.1964	2.3702	0.9886	1.1713	1.4530
1.0046	1.4331	2.8586	0.9835	1.4030	1.7524
	m=	2.02017		m=	1.26500
QSTD	b=	-0.03691	QA	b=	-0.02263
	r=	0.99988		r=	0.99988

Calculations						
$Vstd = \Delta Vol((Pa-\Delta P)/Pstd)(Tstd/Ta)$ $Va = \Delta Vol((Pa-\Delta P)/Pa)$						
Qstd=	Vstd/ΔTime	Qa=	Va/ΔTime			
For subsequent flow rate calculations:						
Qstd=	Qstd= $1/m \left(\left(\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right) \left(\frac{Tstd}{Ta} \right)} \right) - b \right)$ Qa= $1/m \left(\left(\sqrt{\Delta H \left(Ta/Pa \right)} \right) - b \right)$					

Standard Conditions						
Tstd:	298.15 °K					
Pstd: 760 mm Hg						
Key						
ΔH: calibrator manometer reading (in H2O)						
ΔP: rootsmeter manometer reading (mm Hg)						
Ta: actual absolute temperature (°K)						
Pa: actual barometric pressure (mm Hg)						
b: intercept						
m: slope						

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 www.tisch-env.cor

TOLL FREE: (877)263-761(

FAX: (513)467-900

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

HK1907876 WORK ORDER CONTACT : MR K.W. FAN

: ENVIROTECH SERVICES CO. **CLIENT**

ADDRESS : RM113, 1/F, MY LOFT, 9 HOI WING ROAD, TUEN MUN, N.T. HONG SUB-BATCH : 1

> : 22-FEB-2019 DATE RECEIVED **KONG**

DATE OF ISSUE : 7-MAR-2019

PROJECT NO. OF SAMPLES : 1

CLIENT ORDER : ----

General Comments

Sample(s) were received in ambient condition.

Sample(s) analysed and reported on as received basis.

Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories **Position**

Richard Fung

General Manager

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

: HK1907876 WORK ORDER

SUB-BATCH

: 1 : ENVIROTECH SERVICES CO. CLIENT

PROJECT

ALS Lab	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK1907876-001	S/N: 456668	Equipments	22-Feb-2019	S/N: 456668

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Gold King Industrial Building, Kwai Chung Date of Calibration: 12-Feb-19

Location ID: Calibration Room Next Calibration Date: 12-May-19

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1024.2 19.0 Corrected Pressure (mm Hg)
Temperature (K)

768.15 292

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Calibration Date-> 13-Feb-18

Qstd Slope -> Qstd Intercept -> Expiry Date-> 2.02017 -0.03691 13-Feb-19

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	4	7.7	11.7	1.738	60	60.94	Slope = 35.5369
13	2.8	6.9	9.7	1.584	52	52.81	Intercept = -1.8924
10	1.9	5.4	7.3	1.377	46	46.72	Corr. coeff. = 0.9951
8	0.6	4	4.6	1.097	38	38.59	
5	-0.4	3.1	2.7	0.844	27	27.42	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

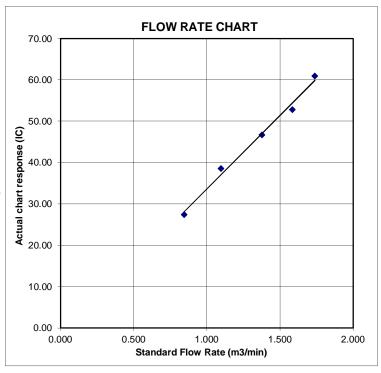
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

Equipment Verification Report (TSP)

Equipment Calibrated:

Type: Laser Dust monitor

Manufacturer: Sibata LD-3B

Serial No. 456668

Equipment Ref: Nil

Job Order HK1907876

Standard Equipment:

Standard Equipment: Higher Volume Sampler

Location & Location ID: AUES office (calibration room)

Equipment Ref: HVS 018

Last Calibration Date: 12 February 2019

Equipment Verification Results:

Testing Date: 4 March 2019

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/min)
2hr13min	09:10 ~ 11:23	20.9	1013.7	0.035	2659	20.0
2hr01min	11:30 ~ 13:31	20.9	1013.7	0.026	2241	18.5
2hr01min	13:40 ~ 15:41	20.9	1013.7	0.041	2688	22.3

0.04 0.035

0.03

0.025

0.015

0.01

y = 0.0017x - 0.0007

 $R^2 = 0.9655$

20

25

10

15

Linear Regression of Y or X

Slope (K-factor): 0.0017

Correlation Coefficient 0.9826

Date of Issue 7 March 2019

Remarks:

- 1. **Strong** Correlation (R>0.8)
- 2. Factor 0.0017 should be applied for TSP monitoring

QC Reviewer : Ben Tam Signature : Date : 7 March 2019

^{*}If R<0.5, repair or re-verification is required for the equipment

RECALIBRATION DUE DATE:

February 13, 2019

Certificate of Calibration

Calibration Certification Information

Cal. Date: February 13, 2018

Rootsmeter S/N: 438320

°K

Operator: Jim Tisch

Ta: 293 **Pa:** 763.3

mm Hg

Calibration Model #: TE-5025A

Calibrator S/N: 1612

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.3970	3.2	2.00
2	3	4	1	1.0000	6.3	4.00
3	5	6	1	0.8900	7.9	5.00
4	7	8	1	0.8440	8.7	5.50
5	9	10	1	0.7010	12.6	8.00

	Data Tabulation									
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	$\sqrt{\Delta H \Big(Ta/Pa \Big)}$					
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)					
1.0172	0.7281	1.4293	0.9958	0.7128	0.8762					
1.0130	1.0130	2.0213	0.9917	0.9917	1.2392					
1.0109	1.1358	2.2599	0.9896	1.1120	1.3854					
1.0098	1.1964	2.3702	0.9886	1.1713	1.4530					
1.0046	1.4331	2.8586	0.9835	1.4030	1.7524					
	m=	2.02017		m=	1.26500					
QSTD	b=	-0.03691	QA	b=	-0.02263					
~	r=	0.99988		r=	0.99988					

Calculations						
$Vstd = \Delta Vol((Pa-\Delta P)/Pstd)(Tstd/Ta)$ $Va = \Delta Vol((Pa-\Delta P)/Pa)$						
Qstd=	Vstd/ΔTime	Qa=	Va/ΔTime			
For subsequent flow rate calculations:						
Qstd=	Qstd= $1/m \left(\left(\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right) \left(\frac{Tstd}{Ta} \right)} \right) - b \right)$ Qa= $1/m \left(\left(\sqrt{\Delta H \left(Ta/Pa \right)} \right) - b \right)$					

Standard Conditions						
Tstd:	298.15 °K					
Pstd: 760 mm Hg						
Key						
ΔH: calibrator manometer reading (in H2O)						
ΔP: rootsmeter manometer reading (mm Hg)						
Ta: actual absolute temperature (°K)						
Pa: actual barometric pressure (mm Hg)						
b: intercept						
m: slope						

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 www.tisch-env.cor

TOLL FREE: (877)263-761(

FAX: (513)467-900

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.:

C185607

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC18-1968) Date of Receipt / 收件日期: 27 September 2018

Description / 儀器名稱 :

Precision Acoustic Calibrator

Manufacturer / 製造商

LARSON DAVIS

Model No. / 型號 Serial No. / 編號

CAL200 15678

Supplied By / 委託者

Envirotech Services Co.

Room 113, 1/F, My Loft, 9 Hoi Wing Road, Tuen Mun,

New Territories, Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 温度 :

Relative Humidity / 相對濕度 :

 $(50 \pm 25)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

14 October 2018

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- The Bruel & Kjaer Calibration Laboratory, Denmark
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

K ∉ Lee Engineer

Certified By

H C Chan

Date of Issue 簽發日期

19 October 2018

核證

Engineer

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 — 校正及檢測實驗所 c/o 香港新界屯門興安里一號四樓

Tel/電話: (852) 2927 2606

Fax/傳真: (852) 2744 8986

E-mail/電郵: callab@suncreation.com

Website/網址: www.suncreation.com

Page 1 of 2

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.:

C185607

證書編號

1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.

2. The results presented are the mean of 3 measurements at each calibration point.

3. Test equipment:

Equipment ID CL130 CL281

Description

Measuring Amplifier

Universal Counter
Multifunction Acoustic Calibrator

Certificate No.

C183775 CDK1806821 C181288

TST150A

Test procedure: MA100N.

5. Results:

4.

5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.0	± 0.2	± 0.2
114 dB, 1 kHz	113.9		

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000	1 kHz ± 1 %	+1

Remark: The uncertainties are for a confidence probability of not less than 95 %.

Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Website/網址: www.suncreation.com

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C185972

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC18-2180)

Date of Receipt / 收件日期: 24 October 2018

Description / 儀器名稱 :

Sound Level Meter

Manufacturer / 製造商

Rion

Model No. / 型號

NL-52

Serial No./編號

00542913

Supplied By / 委託者

Envirotech Services Co.

Room 113, 1/F, My Loft, 9 Hoi Wing Road, Tuen Mun,

New Territories, Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(50 \pm 25)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration

DATE OF TEST / 測試日期

4 November 2018

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

The results do not exceed manufacturer's specification. (after adjustment)

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- The Bruel & Kjaer Calibration Laboratory, Denmark
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

K C Lee Engineer

Certified By 核證 m Um C

Date of Issue 簽發日期 7 November 2018

H C Chan

Engineer

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 — 校正及檢測實驗所 c/o 香港新界屯門與安里一號四樓

Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986

E-mail/電郵: callab@suncreation.com

Website/網址: www.suncreation.com

Sun Creation Engineering Limited Calibration & Testing Laboratory

Certificate of Calibration

Certificate No.:

C185972

證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- Self-calibration using the internal standard (After Adjustment) was performed before the test 6.1.1.2 to 6.3.2. 2.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment:

Equipment ID

Description

Certificate No.

CL280 CL281

40 MHz Arbitrary Waveform Generator

C180024

Multifunction Acoustic Calibrator

CDK1806821

- 5. Test procedure: MA101N.
- 6. Results:
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

6.1.1.1 Before Adjustment

	UUT Setting				d Value	UUT	IEC 61672
Range	Function	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 130	L_A	A	Fast	94.00	1	* 95.9	± 1.1

^{*}Out of IEC 61672 Class 1 Spec.

6.1.1.2 After Adjustment

UUT Setting				Applied Value		UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _A	A	Fast	94.00	1	94.0	± 1.1

6.1.2 Linearity

UUT Setting				Applied Value		UUT
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
30 - 130	L_{A}	A	Fast	94.00	1	94.0 (Ref.)
				104.00		104.0
		1-4-3		114.00		114.0

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Fax/傳真: (852) 2744 8986

Sun Creation Engineering Limited Calibration & Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.:

C185972

證書編號

6.2 Time Weighting

UUT Setting				Applied Value		UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L_A	A	Fast	94.00	1	94.0	Ref.
			Slow			94.0	± 0.3

6.3 Frequency Weighting

6.3.1 A-Weighting

	UUT	Setting		Appl	ied Value	UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L_A	A	Fast	94.00	63 Hz	67.8	-26.2 ± 1.5
					125 Hz	77.8	-16.1 ± 1.5
					250 Hz	85.3	-8.6 ± 1.4
					500 Hz	90.7	-3.2 ± 1.4
					1 kHz	94.0	Ref.
					2 kHz	95.2	$+1.2 \pm 1.6$
					4 kHz	95.0	$+1.0 \pm 1.6$
					8 kHz	93.0	-1.1 (+2.1; -3.1)
					12.5 kHz	89.6	-4.3 (+3.0; -6.0)

6.3.2 C-Weighting

	UUT	Setting		Appli	ied Value	UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130	$L_{\rm C}$	C	Fast	94.00	63 Hz	93.1	-0.8 ± 1.5
30 - 130	LC		rasi	94.00	125 Hz	93.8	-0.8 ± 1.5 -0.2 ± 1.5
					250 Hz	94.0	0.0 ± 1.4
					500 Hz	94.0	0.0 ± 1.4
	and the same				1 kHz	94.0	Ref.
					2 kHz	93.8	-0.2 ± 1.6
					4 kHz	93.2	-0.8 ± 1.6
					8 kHz	91.1	-3.0 (+2.1; -3.1)
					12.5 kHz	87.6	-6.2 (+3.0 ; -6.0)

Website/網址: www.suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C185972

證書編號

Remarks: - UUT Microphone Model No.: UC-53A & S/N: 320728

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value : 94 dB : 63 Hz - 125 Hz : \pm 0.35 dB

104 dB: 1 kHz : ± 0.10 dB (Ref. 94 dB) 114 dB: 1 kHz : ± 0.10 dB (Ref. 94 dB)

Website/網址: www.suncreation.com

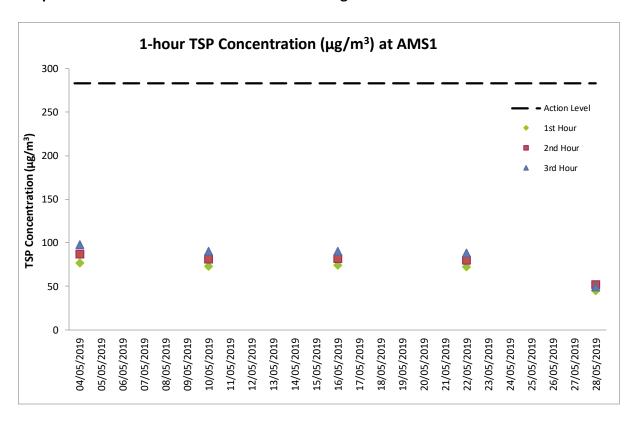
Note:

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

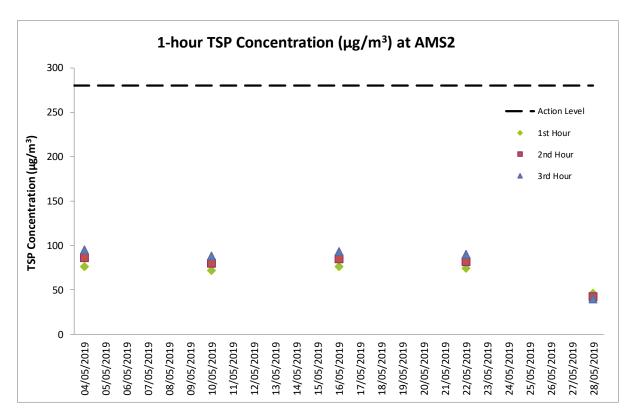
本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。


⁻ The uncertainties are for a confidence probability of not less than 95 %.

Appendix G. Monitoring Data and Graphical Plots (Air Quality and Noise)

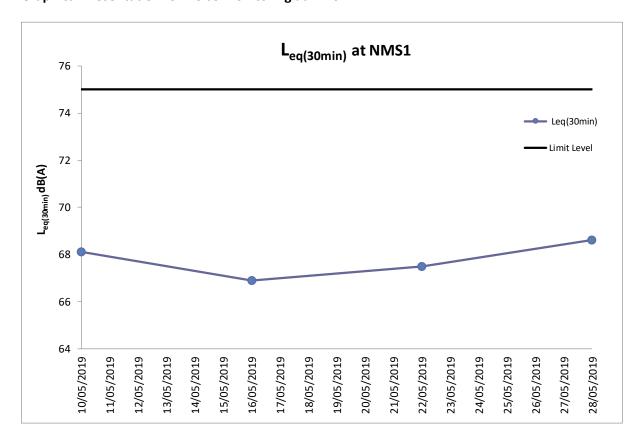
Data for 1-hour TSP Monitoring at Station AMS1

Date	Start Time	Finish Time	Weather	Wind Speed (m/s)	Wind Direction (deg)	1-hour TSP (μg/m3)
04-May-19	13:00	14:00	Cloudy	4.8	104	77
04-May-19	14:00	15:00	Cloudy	5.3	108	87
04-May-19	15:00	16:00	Cloudy	4.9	100	98
10-May-19	9:02	10:02	Cloudy	2.8	137	73
10-May-19	10:02	11:02	Cloudy	2.6	142	81
10-May-19	11:02	12:02	Cloudy	4.6	136	90
16-May-19	9:05	10:05	Fine	3.5	246	74
16-May-19	10:05	11:05	Fine	3.8	231	82
16-May-19	11:05	12:05	Fine	3.6	249	90
22-May-19	9:09	10:09	Fine	3.4	100	72
22-May-19	10:09	11:09	Fine	2.9	117	80
22-May-19	11:09	12:09	Fine	4.2	128	88
28-May-19	9:02	10:02	Cloudy	2.1	144	45
28-May-19	10:02	11:02	Cloudy	0.3	variable	52
28-May-19	11:02	12:02	Cloudy	3.0	269	49


Graphical Presentation for 1-hour TSP Monitoring at AMS1

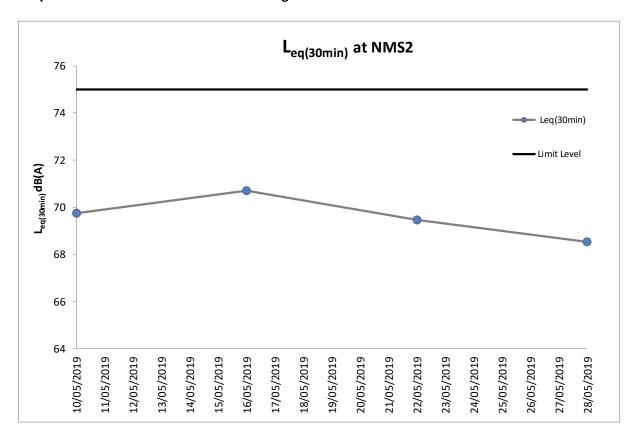
Data for 1-hour TSP Monitoring at Station AMS2

Date	Start Time	Finish Time	Weather	Wind Speed (m/s)	Wind Direction (deg)	1-hour TSP (μg/m3)
04-May-19	13:10	1:00	Cloudy	4.5	111	76
04-May-19	14:10	1:00	Cloudy	4.7	111	86
04-May-19	15:10	1:00	Cloudy	5.2	107	95
10-May-19	7:50	1:00	Cloudy	2.1	132	72
10-May-19	8:50	1:00	Cloudy	2.3	139	80
10-May-19	9:50	1:00	Cloudy	2.3	147	88
16-May-19	8:00	1:00	Fine	3.0	238	76
16-May-19	9:00	1:00	Fine	3.5	240	85
16-May-19	10:00	1:00	Fine	3.7	236	93
22-May-19	8:25	1:00	Fine	4.9	110	74
22-May-19	9:25	1:00	Fine	3.5	114	82
22-May-19	10:25	1:00	Fine	5.2	96	90
28-May-19	9:15	1:00	Cloudy	1.5	171	46
28-May-19	10:15	1:00	Cloudy	0.3	variable	42
28-May-19	11:15	1:00	Cloudy	1.6	265	40


Graphical Presentation for 1-hour TSP Monitoring at AMS2

Data for Noise Monitoring at Station NMS1

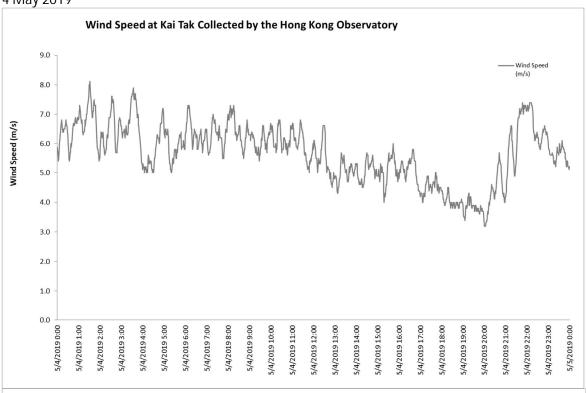
Date	Time	Weather	L _{eq(5min)}	L ₁₀	L ₉₀	Measured L _{eq(30min)}
10-May-19	09:02	Cloudy	67.1	69.3	62.7	
10-May-19	09:07	Cloudy	68.4	70.1	62.8	
10-May-19	09:12	Cloudy	67.9	69.2	62.3	68.1
10-May-19	09:17	Cloudy	69.2	71.4	62.9	00.1
10-May-19	09:22	Cloudy	68.2	70.6	62.6	
10-May-19	09:27	Cloudy	67.5	69.5	62.2	
16-May-19	09:08	Fine	67.1	69.4	62.7	
16-May-19	09:13	Fine	66.2	68.3	62.9	
16-May-19	09:18	Fine	67.2	69.5	63.4	66.0
16-May-19	09:23	Fine	67.9	69.8	63.7	66.9
16-May-19	09:28	Fine	65.8	67.7	62.7	
16-May-19	09:33	Fine	66.9	68.6	62.8	
22-May-19	09:11	Fine	67.7	69.7	62.7	
22-May-19	09:16	Fine	68.1	70.0	63.1	
22-May-19	09:21	Fine	66.9	68.8	62.4	67.5
22-May-19	09:26	Fine	67.7	69.5	62.8	67.5
22-May-19	09:31	Fine	68.2	70.1	63.4	
22-May-19	09:36	Fine	65.9	67.7	62.0	
28-May-19	11:20	Cloudy	67.9	69.4	63.1	
28-May-19	11:25	Cloudy	69.0	71.1	64.1	
28-May-19	11:30	Cloudy	68.2	70.6	62.7	68.6
28-May-19	11:35	Cloudy	68.7	70.8	63.6	0.0
28-May-19	11:40	Cloudy	69.1	71.6	67.4	
28-May-19	11:45	Cloudy	68.6	70.9	62.9	

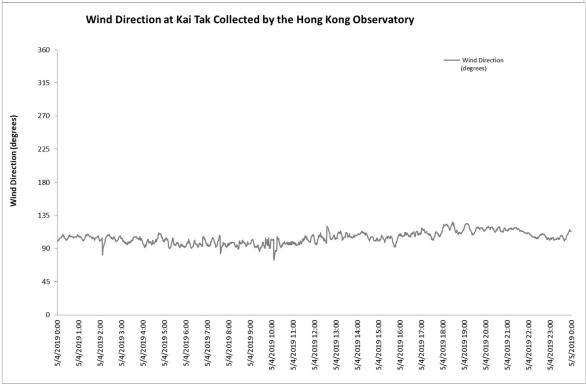

Graphical Presentation for Noise Monitoring at NMS1

Data for Noise Monitoring at Station NMS2

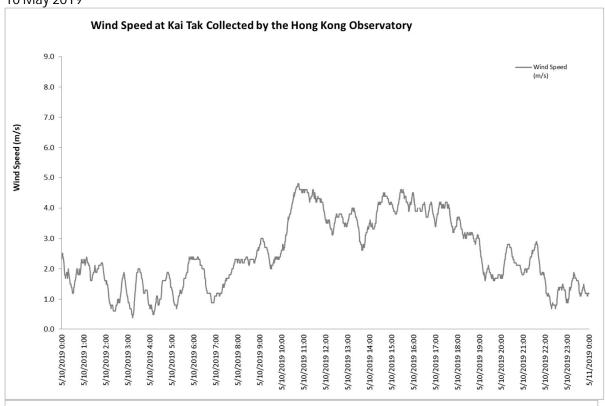
Date	Time	Weather	L _{eq(5min)}	L ₁₀	L ₉₀	Measured L _{eq(30min)}
10-May-19	07:52	Cloudy	71.7	74.7	65.0	
10-May-19	07:57	Cloudy	68.6	71.3	64.0	
10-May-19	08:02	Cloudy	69.0	72.8	63.3	69.8
10-May-19	08:07	Cloudy	69.5	73.2	62.9	09.0
10-May-19	08:12	Cloudy	70.1	73.4	64.9	
10-May-19	08:17	Cloudy	68.8	71.2	63.9	
16-May-19	08:03	Fine	70.7	74.3	65.6	
16-May-19	08:08	Fine	69.9	72.7	64.2	
16-May-19	08:13	Fine	71.6	74.1	66.1	70.7
16-May-19	08:18	Fine	70.7	73.8	65.7	70.7
16-May-19	08:23	Fine	71.2	74.1	65.9	
16-May-19	08:28	Fine	69.9	72.9	64.8	
22-May-19	08:28	Fine	67.7	70.4	62.0	
22-May-19	08:33	Fine	70.1	73.2	63.1	
22-May-19	08:38	Fine	68.9	71.6	62.7	60 F
22-May-19	08:43	Fine	70.1	73.5	63.4	69.5
22-May-19	08:48	Fine	68.2	71.6	62.9	
22-May-19	08:53	Fine	70.9	73.5	63.8	
28-May-19	09:46	Cloudy	67.1	70.1	63.1	
28-May-19	09:51	Cloudy	68.2	71.4	64.2	
28-May-19	09:56	Cloudy	69.7	72.6	64.6	60 E
28-May-19	10:01	Cloudy	70.1	73.1	65.2	68.5
28-May-19	10:06	Cloudy	68.7	71.6	64.1	
28-May-19	10:11	Cloudy	66.2	69.5	63.2	

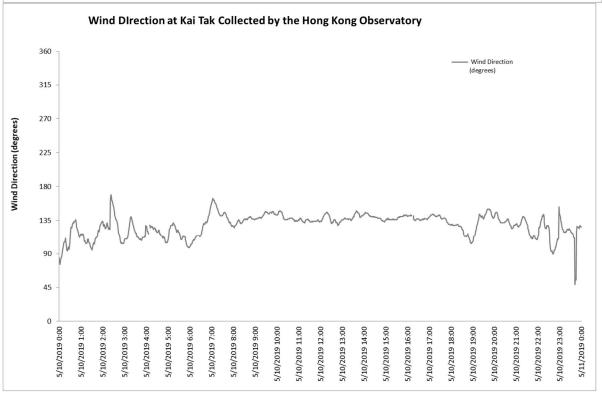
Graphical Presentation for Noise Monitoring at NMS2

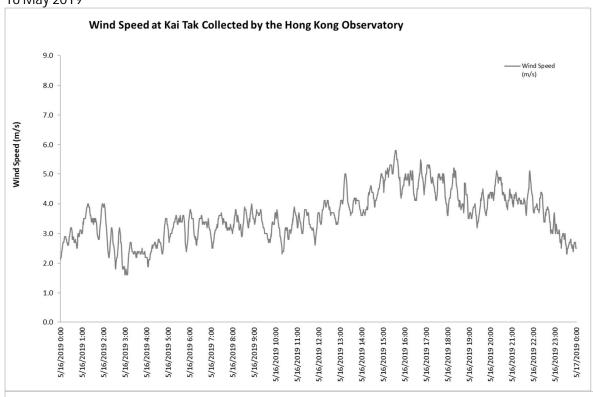


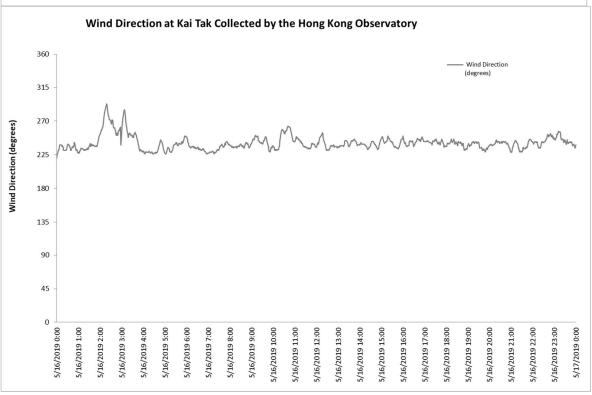

Appendix H. Wind Data

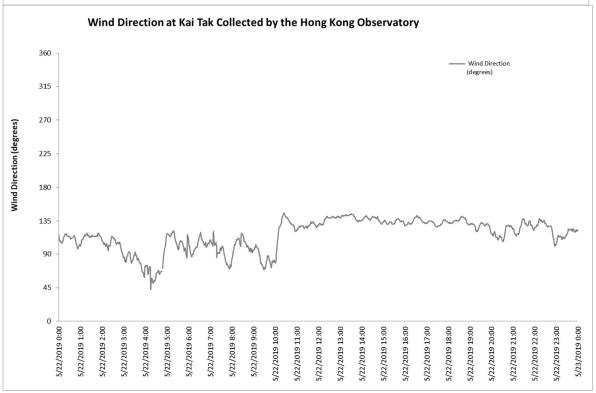
Wind Data at Kai Tak Collected by the Hong Kong Observatory in May 2019

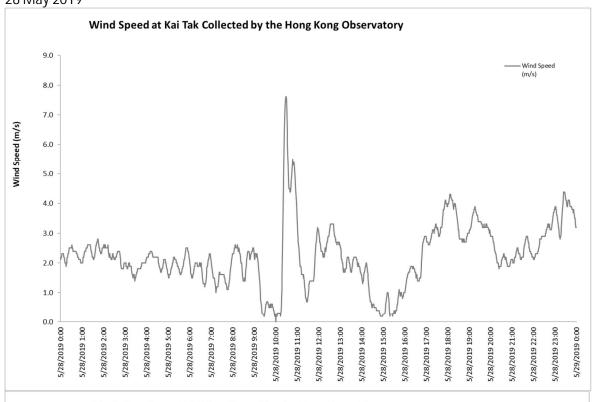

Date & Time	Wind Speed (km/h)	Wind Speed (m/s)	Wind Direction
04/05/2019 13:00	17.3	4.8	104
04/05/2019 13:10	16.2	4.5	111
04/05/2019 14:10	16.9	4.7	111
04/05/2019 14:00	19.1	5.3	108
04/05/2019 15:00	17.6	4.9	100
04/05/2019 15:10	18.7	5.2	107
10/05/2019 07:50	7.6	2.1	132
10/05/2019 08:50	8.3	2.3	139
10/05/2019 09:02	10.1	2.8	137
10/05/2019 09:50	8.3	2.3	147
10/05/2019 10:02	9.4	2.6	142
10/05/2019 11:02	16.6	4.6	136
16/05/2019 08:00	10.8	3.0	238
16/05/2019 09:00	12.6	3.5	240
16/05/2019 09:05	12.6	3.5	246
16/05/2019 10:00	13.3	3.7	236
16/05/2019 10:05	13.7	3.8	231
16/05/2019 11:05	13.0	3.6	249
22/05/2019 08:25	17.6	4.9	110
22/05/2019 09:09	12.2	3.4	100
22/05/2019 09:25	12.6	3.5	114
22/05/2019 10:09	10.4	2.9	117
22/05/2019 10:25	18.7	5.2	96
22/05/2019 11:09	15.1	4.2	128
28/05/2019 09:02	7.6	2.1	144
28/05/2019 09:15	5.4	1.5	171
28/05/2019 10:02	1.0	0.3	variable
28/05/2019 10:15	1.1	0.3	variable
28/05/2019 11:02	10.8	3.0	269
28/05/2019 11:15	5.8	1.6	265

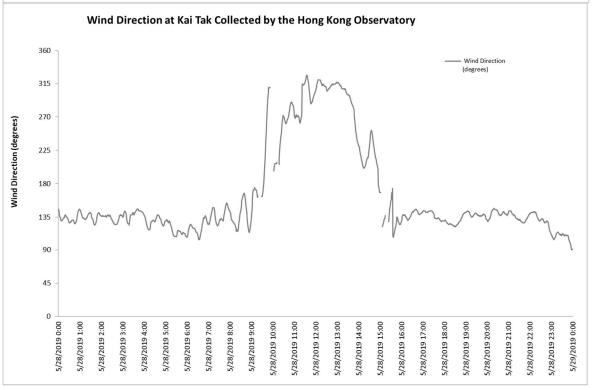





10 May 2019




16 May 2019



Appendix I. Waste Flow Table

Project: Kai Tak Sport Park Contract No.: HAB/ KTSP/ 01

Contract Title: Design, Construction and Operation of the Kai Tak Sports Park at Kai Tak, Kowloon City District, Hong Kong

Year of Record: 2019

Monthly Waste Flow Table

Month	Quantity													Total	Actual Quantities of Inert C&D Materials Generated Monthly							Actual Quantities of C&D Materials Generated Monthly				nthly	Remarks
		Quantity	Exc	cavated Mater	rials		Non-e	excavated Mat	erials		Metals	Metals	Paper /	Plastics	Chemical	Other,											
		Generated (Excluded Excavated Material)	Disposed in Public Fill	Disposed in Sorting Facilities	Others (e.g Reused in the Contract / Other Projects)	or Construction	Reused in the Contract	Reused in other Projects	Disposed in Public Fill	Disposed in Sorting Facilities	(steel bar / metal strip) ⁽¹⁾	(aluminum can) ⁽¹⁾	cardboard packaging ⁽¹⁾	(1) & (4)	waste (wasted lubricant oil/ oil container)	e.g. general refuse											
	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)											
	a1	a2	b	b	b	С	d	е	f	g	h	i	j	k	I	m											
Jan-19																											
Feb-19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0											
Mar-19	4960.89	4741.39	219.50	0	0	0	0	0	0	0	11.84	0	0	0	0	4729.55											
Apr-19	1218.41	1211.75	6.66	0	0	0	0	0	0	0	0	0	0	0	0	1211.75											
May-19	87.28	87.28	0	0	0	0	0	0	0	0	0	0	0	0	0	87.28											
Jun-19																											
Jul-19																											
Aug-19																											
Sep-19																											
Oct-19		-	·																								
Nov-19																											
Dec-19		-																									
Total	6266.58	6040.42	226.16	0	0	0	0	0	0	0	11.84	0	0	0	0	6028.58											

Total C&D waste generated

Total C&D waste generated (excluding excavated materials)

Total recycled C&D waste

% of recycled C&D waste for BEAM Plus MA10 or MA11

6266.58 tonne

a1 = b + c + d + e + f + g + h + i + j + k + l + m

6040.420 tonne

a2=c+d+e+f+g+h+i+j+k+l+m

11.84 tonne 0.20 % a3=c+d+e+h+i+j+k a4=a3/a2 x 100%

Notes: (1) Metal, paper & plastic were collected by recycler.

(2) The performance target of waste recycling are specified in the Contract.

- (3) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
- (4) Plastics refer to plastic bottles/ containers, plastic/ foam from packaging material.
- (5) Broken concrete for recycling into aggregates.
- (6) Excavated materials/waste will NOT be considered as part of construction waste. It should be excluded in the calculation.
- (7) Disposal of inert waste to public fill or sorting facilities will NOT be considered as recycled waste.
- (8) Disposal record for March 2019 has been updated according to the latest information from contractor.

Appendix J. Environmental Licences and Permits

Table J.1: Summary of Environmental Licences and Permits Status

Item No.	Type of Permit / Licence	Reference No.	Application Date	Valid from	Valid until	Remark
1	Environmental Permit under EIAO	EP-544/2017	21 Aug 2017	8 Sep 2017	N/A	Issued
2	Construction Dust Notification under APCO	441733	25 Jan 2019	29 Jan 2019	N/A	N/A
3	Construction Waste Disposal Account	7033182	12 Feb 2019	12 Feb 2019	N/A	N/A
4	Registration as a Chemical Waste Producer	WPN5213- 286-H3906- 02	29 Jan 2019	12 Feb 2019	N/A	N/A
5	Discharge Licence under WPCO	N/A	15 Feb 2019	N/A	N/A	N/A
6	Construction Noise Permit	PP-RE0023- 19	26 Apr 2019	18 May 2019	8 Oct 2019	Issued
7	Construction Noise Permit	GW-RE0395- 19	6 May 2019	22 May 2019	21 Nov 2019	Issued

Appendix K. Environmental Mitigation Measures Implementation Status

Air Quality - Recommended Mitigation Measures

Air Quality Mitigation Measures during construction	Implementation Status
 Good housekeeping to minimize dust generation, e.g. by properly handling and storing dusty materials 	√
 Store cement in shelter with 3 sides and the top covered by impervious materials if the stack exceeds 20 bags 	✓
 Cement delivered in bulk should be stored in a closed silo fitted with an audible high level alarm which is interlocked with the material filling line and no overfilling is allowed 	N/A
 Loading, unloading, transfer, handling or storage of bulk cement should be carried out in a totally enclosed system or facility, and any vent or exhaust should be fitted with an effective fabric filter or equivalent air pollution control system 	N/A
 Dusty materials (e.g. debris) should be wetted by misting / water-spraying before any loading, unloading, transfer or transport operation 	✓
Any skip hoist for material transport should be fully enclosed by impervious sheeting	✓
 Surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation takes place should be sprayed with water or a dust suppression chemical continuously 	✓
 Any area that involves demolition activities should be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities to maintain the entire surface wet 	N/A
Excavation area should be minimized as far as possible	✓
 Stockpile of dusty materials should not be extended beyond the pedestrian barriers, fencing or traffic cones 	✓
 Excavated or stockpile of dusty material should be covered entirely by impervious sheeting or sprayed with water to maintain the entire surface wet, and then removed, backfilled or reinstated where practicable within 24 hours of the excavation or unloading 	Р
 Dusty materials remaining after a stockpile is removed should be wetted with water and cleared from the surface of roads 	✓
Properly fitted side and tail boards are necessary for any vehicle with open load area	✓
 While transporting materials that potentially create dust (e.g. debris), materials should not be loaded higher than side and tail boards, and should be fully covered by tarpaulin or similar materials which extent at least 300 mm over the edges of the side and tail boards to prevent leakage. 	~
Limit the maximum vehicle speed within the site to 10km/hr	✓
Haulage and delivery vehicles should be confined to designated roads	✓
 Every main haul road should either be 1.) paved with concrete and kept clear of dusty materials, or 2.) sprayed or watered to maintain the entire road surface wet 	✓
All on-site unpaved roads should be compacted and kept free of lose materials as possible	✓
 Provide vehicle washing (e.g. wheel washing bay & high pressure water jet where practicable) at every vehicle exit point for cleaning vehicle body and wheels 	✓
The vehicle washing area and the road between washing area and site exit should be paved with concrete, bituminous or other hardcores	✓
 The portion of any road leading only to construction site that is within 30m of a vehicle entrance or exit should be kept clear of dusty materials. 	✓
Dusty materials on every vehicle's body and wheels should be removed in washing area before leaving the site	✓

Air Quality Mitigation Measures during construction	Implementation Status
Regular maintenance of all plant equipment	✓
Throttle down or switch off unused machines or machine in intermittent use	✓
 If the site is adjacent to area where accessible to the public (e.g. road and service lane etc.), hoarding of not less than 2.4 m high from ground level should be erected along the adjoining the entire length of that portion of the site boundary, except for a site entrance or exit. The hoarding should be well maintained throughout the construction period. 	~
 Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting should be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding 	N/A
 Exposed earth should be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shortcrete or other suitable surface stabiliser within six months after the last construction activity on the construction site or part of the construction site where the exposed earth lies 	~
Carry out air quality monitoring throughout the construction period	✓
Carry out weekly site inspection to audit the implementation of mitigation measures	✓
 Regular watering once per hour on exposed worksites and haul road with an equivalent intensity of not less than 1.3L/m3 to achieve 91.7% dust removal efficiency. 	✓
 Provision of electrical vehicle (EV) charging facilities in at least one-third of the car parking spaces for private cars. Provision of EV charging enabling facilities in all car parking spaces provided for private cars. 	N/A
Non-Road Mobile Machinery (NRMMs)	Р
 All NRMMs operated on-site are approved or exempted (as the case may be) and affixed with the requisite approval/exemption labels under the Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation or are in the process of application for such approval/exemption during the relevant grace period. 	✓

Noise – Recommended Mitigation Measures

Noise Mitigation Measures during construction	Implementation Status
 Adopt good site practice, such as throttle down or switch off equipment unused or intermittently used between works 	✓
Regular maintenance of equipment to prevent noise emission due to impair	✓
 Position mobile noisy equipment in locations away from NSRs and point the noise sources to directions away from NSRs 	✓
Use silencer or muffler for equipment	✓
Make good use structures for noise screening	✓
 Use Quality Powered Mechanical Equipment (QPME) and quiet equipment which produces lower noise level. 	✓
• Erect movable noise barrier of 3m height to shed large plant equipment (e.g. breaker, backhoe & mobile crane) or hand-held items (e.g. poker, wood saw, power rammer & compactor) near low-rise NSR. Where necessary, special design (e.g. with noise absorbing material or bend top) should be adopted. The barrier's length should be at least five times greater than its height, and the minimum surface density is 10 kg/m2. Alternatively, acoustic shed, enclosure or silencer (for generator, air compressor and concrete pump) or acoustic mat (for piling) can be adopted.	~
Carry out regular site inspection to audit the implementation of mitigation measures	✓
Carry out noise monitoring throughout the construction period	✓

Water Quality - Recommended Mitigation Measures

Water Quality Mitigation Measures during construction	Implementation Status
Practices outlined in ProPECC PN 1/94 Construction Site Drainage should be adopted.	✓
 Install perimeter channels in the works areas to intercept runoff from boundary prior to the commencement of any earthwork 	✓
 To prevent storm runoff from washing across exposed soil surfaces, intercepting channels should be provided. 	✓
 Drainage channels are required to convey site runoff to sand/silt traps and oil interceptors. Provision of regular cleaning and maintenance to ensure the normal operation of these facilities throughout the construction period. 	✓
 Any practical options for the diversion and realignment of drainage should comply with both engineering and environmental requirements 	✓
 Minimum distances of 100 m should be maintained between the discharge points of construction site runoff and the existing WSD saltwater intake and EMSD cooling water intake. 	✓
 The following good site measures should be adopted for the use of the existing barging facilities being operated by the MTR SCL Project: - All vessels should be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash. - All hopper barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material. - Construction activities should not cause foam, oil, grease, scum, litter or other objectionable matter to be present on the water within the site. 	N/A
 Loading of barges and hoppers should be controlled to prevent splashing of material into the surrounding water. Barges or hoppers should not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation. Whole construction site Contractor P WPCO, EIAO-TM Page 	
 The runoff and wastewater generated from the works areas should be treated so that it satisfies all the standards listed in the TM-DSS. 	✓
 Reuse and recycling of the treated effluent from construction site runoff. 	N/A
 Weekly site audit should be carried out to check the implementation status of the recommended water quality impact mitigation measures throughout construction period. 	√
 The construction programme should be properly planned to minimise soil excavation, if any, in rainy seasons. 	✓
 Any exposed soil surfaces should be properly protected to minimise dust emission. 	✓
 In areas where a large amount of exposed soils exist, earth bunds or sand bags should be provided. 	✓
Exposed stockpiles should be covered with tarpaulin or impervious sheets at all times.	✓
 The stockpiles of materials should be placed at locations away from any stream courses so as to avoid releasing materials into the water bodies. 	✓
 Final surfaces of earthworks should be compacted and protected by permanent work. 	✓
 Haul roads should be paved with concrete and the temporary access roads protected using crushed stone or gravel, wherever practicable. 	√
 Wheel washing facilities should be provided at all site exits to ensure that earth, mud and debris would not be carried out of the works areas by vehicles. 	✓
 Good site practices should be adopted to keep the site dry and tidy, such as clean the rubbish and litter on the construction sites. 	✓
Adequate temporary site drainage and pumping should be provided, if necessary.	✓
 Provide sufficient temporary toilets in the works areas. The toilet facilities should be more than 30 m from any watercourse. A licensed waste collector should be deployed to clean the temporary toilets on a regular basis. 	✓
 Notices should be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment during the construction phase of the Project. 	✓

Water Quality Mitigation Measures during construction	Implementation Status
 Contractor must register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation should be observed and complied with for control of chemical wastes. 	~
 Any service shop and maintenance facilities should be located on hard standings within a bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should only be undertaken within the areas appropriately equipped to control these discharges. 	~
Clean the construction sites on a regular basis.	✓
 Oil interceptor in car parking area shall be designed and constructed according to Practice Note for Authorized Persons, Registered Structural Engineers and Registered Geotechnical Engineers, APP-46 (PNAP 124) 	N/A
 Provide two sequential storage tanks to contain surface water with residual fertilizers and pesticides and third holding tank for incidental rainstorm 	N/A
Sewerage and Sewage Treatment Implications	
 Implementation of Sewer No. 1 and Sewer No.2 as proposed in Sections 7.2.2 - 7.2.3 of the EIA Report 	✓

Waste Management – Recommended Mitigation Measures

Waste Management Mitigation Measures during construction	Implementation Status
 Inert C&D materials (or public fills) will be used to form the ramps and other filling area as far as civil engineering design permits. 	✓
 The contractor should formulate waste management measures on waste minimization, storage, handling and disposal in a Waste Management Plan as part of Environmental Management Plan. 	✓
 Adopt good site practice as follows: Provide training to workers on site cleanliness, waste management (waste reduction, reuse and recycle) and chemical handling procedures Provide sufficient waste collection points and regular removal Cover waste materials with tarpaulin or in enclosure during transportation Maintain drainage systems, sumps and oil interceptors Sort out chemical waste for proper handling and treatment onsite or offsite 	~
 Adopt waste reduction measures as follows: - Allocate area/containers for sorting, recovering and storing waste for reuse, recycle or disposal (e.g. demolition debris and excavated materials, general refuse like aluminium cans.) Remove waste from the Site for sorting once generated if no suitable space can be identified. - Allocate area for proper storage of construction materials to prevent contamination - Minimize wastage through careful planning and avoiding over-purchase of construction materials 	✓
 Store waste materials properly as follows: Avoid contamination by proper handling and storing waste Prevent erosion by covering waste Apply water spray on excavated materials Maintain and clean storage area regularly Sort and stockpile different materials at designated location to enhance reuse 	*
 Apply for relevant waste disposal permits in accordance with the Waste Disposal Ordinance (Cap. 354), Waste Disposal (Charges for Disposal of Construction Waste) Regulation (Cap. 345) and the Land (Miscellaneous Provisions) Ordinance (Cap. 28), Dumping at Sea Ordinance (Cap. 466). 	✓
 Hire licensed waste disposal contractors for waste collection and removal. Dispose waste at licensed waste disposal facilities. 	✓
 Implement trip-ticket system for recording the amount of waste generated, recycled and disposed, including chemical wastes 	✓

Waste Management Mitigation Measures during construction	Implementation Status
Reduce water content in wet spoil generated from piling work by mixing with dry materials. Only dispose treated spoil with less than 25% dry density to Public Fill Reception Facilities	✓
Dispose dry waste or waste with less than 70% water content by weight to landfill	✓
Follow the Code of Practice on the Packaging, Labelling and Storage of Chemical Waste as follows:	✓
 Store chemical wastes with suitable containers. Seal and maintain the container to avoid leakage or spillage during storage, handling and transport Label chemical waste containers in both English and Chinese with instructions in accordance to 	
Schedule 2 of the Waste Disposal (Chemical Waste) (General) Regulation - The container capacity should be smaller than 450 litres unless agreed by the EPD	
, , , , , , , , , , , , , , , , , , ,	✓
Comply with the requirement of the chemical storage area:	•
 Store only chemical waste and label clearly the chemical characters of the waste Have at least 3 sides enclosed and protected from rainfall with cover 	
- Provide sufficient ventilation	
 Have impermeable floor and has bunds to contain 110% of the capacity of the largest container or 20% of the total volume of the stored waste in the area, whichever is larger Adequately spaced incompatible materials 	
Transfer used lubricants, waste oils and other chemicals to oil recycling companies, if possible, and empty oil drums for reuse or refill. No direct or indirect discharge is permitted	✓
Hire licensed chemical waste disposal contractors for waste collection and removal. Dispose chemical waste at the approved Chemical Waste Treatment Centre at Tsing Yi or other licensed facility	√
Hire reputable waste collector to separately collect and dispose general refuse from other wastes. Cover the waste to prevent being blown away	✓
The hauling of C&D materials shall follow established environmental mitigation measures as stated in Practice Note for Registered Contractors No. 17 "Control of Environmental Nuisance from Construction Sites" issued by the Buildings Department	√
Provide recycling bins for sorting out recyclables for collection by recycling companies. Non- recyclables should be removed to designated landfills every day by licensed collectors to prevent environmental and health nuisance.	√
Organize training and reminders to site staff on waste minimization through avoidance and reduction, reusing and recycling	✓
Bentonite slurry which will not be reused shall be disposed of from the Site as soon as possible. Residual used dewatered bentonite slurry should be disposed to a public filling area and liquid bentonite slurry if mixed with inert fill material should be disposed to a public filling area.	N/A
If chemical wastes were to be produced at the construction site, the Contractor would be required to register with the EPD as a Chemical Waste Producer, and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Good quality containers compatible with the chemical wastes should be used, and incompatible chemicals should be stored separately. Appropriate labels should be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the waste such as explosive, flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The Contractor shall use a licensed collector to transport the chemical wastes.	√
The licensed collector shall deliver the waste to the Chemical Waste Treatment Centre at Tsing Yi, or other licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation	
Carry out weekly site inspection to check the implementation status of the recommended waste management measures.	✓
The barging of C&DM for this Project shall use the existing Kai Tak Barging Facility (KTBF), or otherwise approved by the Director.	N/A

Ecology – Recommended Mitigation Measures

Ecology Mitigation Measures during construction	Implementation Status
Erection of hoarding, fencing or provision of clear demarcation of work zone	✓

Ecology Mitigation Measures during construction	Implementation Status
 Designate areas for placement of equipment, building materials and wastes away from drainage channels 	✓
 Carry out weekly site inspection to check the implementation status and the effectiveness of the proposed mitigation measures 	✓
andscape and Visual – Recommended Mitigation Measures	
Landscape and Visual Mitigation Measures during construction	Implementation Status
 Construction Lighting Control All security floodlights for construction sites should be equipped with adjustable shields, frosted diffusers and reflective covers, and be controlled to minimize light pollution and night-time glare to the visual sensitive receivers (VSRs). 	√
 Temporary Landscape Treatments Including vertical greening, pot planting and application of green roofing to site offices, Hydroseeding of site formation areas and short term greening of site boundaries and land not immediately developed. 	✓
 Decoration of Hoarding Erection of screen hoardings should be designed appropriately to be compatible with the existing urban context, either brightly and imaginatively or with visually unobtrusive design and colours where more appropriate. 	✓
All security floodlights for construction sites shall be equipped with adjustable shield, frosted diffusers and reflective covers, and be carefully controlled to minimize light pollution and night-time glare to nearby receivers	✓
Site inspection should be undertaken once every two weeks.	✓
 Compensatory Tree Planting A new parkland area is created in the project development to be used for the implementation of compensatory tree planting to offset the net loss of key landscape resources. It is recommended that 340 trees be planted in this regard and a compensatory tree planting proposal outlining the locations of tree compensation will be submitted separately in seeking relevant government department's approval in accordance with DEVB TC No.7/2015. 	N/A
other – Recommended Mitigation Measures	
Relevant environmental permits/licences should be posted at all vehicle entrances/exits.	✓

Legend: ✓

Implemented x P Not implemented
Partially implemented N/A Not applicable

Appendix L. Statistics on Environmental Complaints, Notification of Summons and Successful Prosecutions

Table L.1: Statistics on Environmental Complaints, Notifications of Summons and Successful Prosecutions

Reporting Period	Complaints	Notifications of Summons	Successful Prosecutions	
This reporting period (May 2019)	0	0	0	
From commencement data of construction to end of reporting month	2	0	0	