

Agreement No. CE 30/2018 (EP) Environmental Team for Kai Tak Sports Park – Design and Construction

Monthly EM&A Report for September 2019

October 2019

Home Affairs Bureau Kai Tak Sports Park Project Office Suite 1801, 18/F Guardian House 32 Oi Kwan Road Wanchai, Hong Kong

Agreement No. CE 30/2018 (EP) Environmental Team for Kai Tak Sports Park – Design and Construction

Monthly EM&A Report for September 2019

October 2019

Environmental Permit No. EP-544/2017

Kai Tak Sports Park - Investigation

Independent Environmental Checker Verification

Reference Document/PlanDocument/Plan to be-Certified/ Verified:Monthly EM&A Report No. 6 (September 2019)Date of Report:October 2019Date received by IEC:11 October 2019

Reference EP Condition

Environmental Permit Condition:

Three hard copies and one electronic copy of the monthly EM&A Report shall be submitted to the Director within 10 working days after the end of each reporting month. The monthly EM&A Reports shall include a summary of all non-compliance with the recommendations in the approved EIA Report (Register No. AEIAR-204/2017) or this Permit. The submissions shall be certified by the ET Leader and verified by the IEC as complying with the requirements as set out in the EM&A Manual before submission to the Director. Additional copies of submission shall be provided upon request by the Director.

3.4

IEC Verification

I hereby verify that the above referenced document/plan complies with the above referenced condition of EP-544/2017.

Mandy 20.

Ms Mandy To Independent Environmental Checker

Date:

11 October 2019

Our ref: 0500384_IEC Verification Cert_KTSP_Monthly EM&A Rpt No.6.docx

Environmental Permit No. EP- 544/2017

Kai Tak Sports Park – Investigation

Environmental Team Leader Certification

Reference Document / Plan

Document/ Plan to be Certified:	Monthly EM&A Report for Sep 2019
Date of Report:	October 2019
Date received by ETL:	11 October 2019

Reference EP Condition

Environmental Permit Condition:

3.4

Three hard copies and one electronic copy of the monthly EM&A Report shall be submitted to the Director within 10 working days after the end of each reporting month. The monthly EM&A Reports shall include a summary of all non-compliance with the recommendations in the approved EIA Report (Register No. AEIAR–204/2017) or this Permit. The submissions shall be certified by the ET Leader and verified by the IEC as complying with the requirements as set out in the EM&A Manual before submission to the Director. Additional copies of submission shall be provided upon request by the Director.

ETL Certification

I hereby certify that the above reference document complies with the above referenced condition of EP-544/2017.

Sumy Chan

Mr Sunny Chan Environmental Team Leader

Date: 11 October 2019

Contents

Exe	ecutive	e summary	1
1	Intro	oduction	3
	1.1	Background	3
	1.2	Project Organisation	3
	1.3	Works Area and Construction Programme	4
	1.4	Construction Works undertaken during the Reporting Period	4
2	Air (Quality Monitoring	5
	2.1	Introduction	5
	2.2	Monitoring Parameters, Frequency and Duration	5
	2.3	Monitoring Locations	5
	2.4	Monitoring Action and Limit Levels	5
	2.5	Monitoring Schedule for the Reporting Period	6
	2.6	Monitoring Equipment	6
	2.7	Monitoring Methodology	6
	2.8	Monitoring Results	7
	2.9	Wind Data	7
3	Nois	se Monitoring	8
	3.1	Introduction	8
	3.2	Monitoring Parameters, Frequency and Duration	8
	3.3	Monitoring Locations	8
	3.4	Action and Limit Levels	9
	3.5	Monitoring Schedule for the Reporting Period	9
	3.6	Monitoring Equipment	9
	3.7	Monitoring Methodology	9
	3.8	Monitoring Results	10
4	Env	ironmental Site and Audit	11
	4.1	Site Inspection	11
	4.2	Advice on the Solid and Liquid Waste Management Status	12
	4.3	Environmental Licenses and Permits	12
	4.4	Implementation Status of Environmental Mitigation Measures	12
	4.5	Summary of Exceedance of the Environmental Quality Performance Limit	12
	4.6	Summary of Complaints, Notification of Summons and Successful Prosecution	12
5	Futu	ire Key Issues	14
	5.1	Construction Programme for the Coming Months	14

	5.2	Environmental Site Inspection and Monitoring Schedule for the Next Reporting Period	14
6	Conc	lusions	15
	6.1	Conclusions	15
<u>Figur</u>	es		
Figure	e 2.1: L	ocation of Air Quality Monitoring Stations	
Figure	e 3.1: L	ocation of Noise Monitoring Stations	
Appe	endice	S	
Apper	ndix A.	Project Organization for Environmental Works	
Apper	ndix B.	Location of Works Areas	
<u>Apper</u>	ndix C.	Construction Programme	
Apper	ndix D.	Event and Action Plan	
<u>Apper</u>	ndix E.	Environmental Site Inspection and Monitoring Schedule	
Apper	ndix F.	Calibration Certificates	
Apper	ndix G.	Monitoring Data and Graphical Plots (Air Quality and Noise)	
<u>Apper</u>	ndix H.	Wind Data	
Apper	ndix I.	Waste Flow Table	
<u>Apper</u>	ndix J.	Environmental Licences and Permits	
Apper	ndix K.	Environmental Mitigation Measures Implementation Status	
<u>Apper</u>	ndix L.	Statistics on Environmental Complaints, Notification of Summons and Successful Prosecutions	
<u>Apper</u>	ndix M.	Complaint Investigation Report	
Table	es		
Table	1.1: Su	Immary of Complaints in the reporting month	2
Table	1.2: Co	ontact Information of Key Personnel	4
Table	2.1: Ai	r Quality Monitoring Parameters, Frequency and Duration	5

Table 2.1: Air Quality Monitoring Parameters, Frequency and Duration	5
Table 2.2: Construction Dust Monitoring Locations	5
Table 2.3: Action and Limit Levels for 1-hour TSP	6
Table 2.4: 1-hour TSP Monitoring Equipment	6
Table 2.5: Summary of 1-hour TSP Monitoring Results During the Reporting Period	7
Table 3.1: Noise Monitoring Parameters, Frequency and Duration	8
Table 3.2: Construction Noise Monitoring Locations	8
Table 3.3: Action and Limit Level for Construction Noise	9
Table 3.4: Noise Monitoring Equipment	9
Table 3.5: Summary of Construction Noise Monitoring Results During the Reporting Period	10
Table 4.1: Summary of Site Inspections and Recommendations	11
Table 5.1: Construction Activities for the Next Reporting Period	14
Table D.1: Event and Action Plan for Construction Air Quality (Action Level)	

Table D.1: Event and Action Plan for Construction Air Quality (Action Level)

Table D.2: Event and Action Plan for Construction Air Quality (Limit Level)

Table D.3: Event and Action Plan for Construction Noise

Table E.1: Site Inspection and Monitoring Schedule for September 2019

Table E.2: Tentative Site Inspection and Monitoring Schedule for October 2019

Table J.1: Summary of Environmental Licences and Permits Status

Table L.1: Statistics on Environmental Complaints, Notifications of Summons and Successful Prosecutions

Executive summary

The Project – hereby meaning the Designated Project (Items O.6 and O.7 Part I, Schedule 2 of the Environmental Impact Assessment Ordinance (EIAO)), comprising the "Kai Tak Sports Park" (KTSP) project and the Hotel and Office (H/O) Development of NKIL 6607 adjoining the KTSP – is located in the Kai Tak Development (KTD) area in Kowloon.

An EIA Report for the Project (Register No. AEIAR-204/2017) was approved by the Environmental Protection Department (EPD) on 6 January 2017. The current Environmental Permit (EP) for the Project, namely No. EP-544/2017, was issued on 8 September 2017. These documents are available through the EIA Ordinance Register. The Project construction works commenced on 8 April 2019.

In February 2019, Mott MacDonald Hong Kong Limited was appointed by the Home Affairs Bureau (HAB) as the Environmental Team (ET) to implement the Environmental Monitoring & Audit (EM&A) programme for the construction phase and first year of operation of the Project in accordance with the approved EM&A Manual.

This is the 6th Monthly EM&A Report for the construction phase of the Project which summaries findings of the EM&A programme during the reporting period from 1 to 30 September 2019.

Key Construction Works in the Reporting Period

A summary of construction activities undertaken during the reporting period is presented below:

- Ground investigation works;
- Piling works (Percussive piling, Socket H piling and Bored piling);
- Setting up of temporary site office;
- Setting up of wastewater treatment facilities;
- Mobilization; and
- Concreting and excavation

Environmental Monitoring and Audit Progress

The monthly EM&A programme was undertaken by ET in accordance with the approved EM&A Manual. A summary of the monitoring activities during the reporting period is presented below:

Activity	Monitoring Locations	Date
Air Quality Monitoring (1-hour TSP)	AMS1, AMS2	5, 11, 17, 23, 27 September
Noise Monitoring (L _{eq (30 min)})	NMS1, NMS2	5, 11, 17, 23 September
Weekly environmental site inspections	-	4, 11, 18, 27 September
Landscape and visual site inspections	-	11, 27 September

Breaches of Action and Limit Levels

Air Quality

There was no breach of Action or Limit Levels for Air Quality (1-hr TSP) during the reporting month.

Noise

One noise related complaint was received during the reporting month. One Action Level for Noise was triggered during the reporting month.

No exceedance of Limit Level of noise at NMS1 and NMS2 was recorded during the reporting month.

Complaint Log

There was one complaint received during the reporting month:

Date of Notification from EPD	Date of Complaint	Description of Complaint	Recommendatio ns / Actions	Close-Out Date / Status
18 Sep 2019	4 Sep 2019	-Complaint of daytime percussive piling noise from the construction site of Kai Tak Sports Park. -Complainant would like precussive piling to be carried out later in the morning, i.e. after 8:30 hrs. -Please ensure the work fulfill the relevant environmental legislation and conditions stipulated in the construction noise permit	 Conduct regular checking to ensure the implementation of noise barrier for all percussive pilling works. Consider to reschedule the percussive pilling works activities to reduce the noise nuisance to nearby sensitive receivers during the 8:00 a.m. to 9:30a.m. session. 	24 Sep 2019

Table 1.1: Summary of Complaints in the reporting month

Notifications of Summons and Successful Prosecutions

There were no notifications of summons or prosecutions received during this reporting period.

Reporting Changes

There was no reporting change during the reporting period.

Future Key Issues

The future key issues to be undertaken in the upcoming month are:

- Ground investigation works;
- Piling works (Percussive piling, Socket H piling and Bored piling);
- Setting up of temporary site office;
- Mobilization; and
- Concreting and excavation.

1 Introduction

1.1 Background

The Project – hereby meaning the Designated Project (Items O.6 and O.7 Part I, Schedule 2 of the Environmental Impact Assessment Ordinance (EIAO)), comprising the "Kai Tak Sports Park" (KTSP) project and the Hotel and Office (H/O) Development of NKIL 6607 adjoining the KTSP – is located in the Kai Tak Development (KTD) area in Kowloon.

The key construction works of the Project include:

(i) KTSP project

- a. a multi-purpose Main Stadium with a spectator capacity of around 50,000;
- b. a Public Sports Ground, with a spectator capacity of around 5,000;
- c. an Indoor Sports Centre with a multi-purpose main arena with a seating capacity of up to 10,000 and an ancillary sports hall with a seating capacity of 500;
- retail and dining outlets with a gross floor area (GFA) of about 57,000 square metres (m²), a bowling centre with 40 lanes and a health and wellness centre with about 2,500 m² GFA;
- e. more than 8 hectares of public open space including landscaped deck structures across Shing Kai Road, passive amenities and park features, outdoor ball courts; and
- f. ancillary facilities such as car parks, toilets, changing rooms, etc.

(ii) H/O Development

- g. an office development;
- h. a 300-room hotel with a GFA of about 16,000 m²; and
- i. ancillary facilities such as retails, car parks, etc.

In February 2019, Mott MacDonald Hong Kong Limited (MMHK) was commissioned by the Home Affairs Bureau (HAB) under Agreement No. CE 30/2018 (EP) to undertake the Environmental Team (ET) services for carrying out the Environmental Monitoring & Audit (EM&A) programme during the construction phase and first year of operation of the Project in accordance with the approved Environmental Impact Assessment (EIA) Report (Register No.: AEIAR-204/2017), EM&A Manual (including any subsequent amendments) and EP (including any subsequent variations of it and/or any further environmental permit issued under the EIAO). The current EP (No. EP-544/2017) was issued by EPD on 8 September 2017.

This is the 6th Monthly EM&A Report summarising the key findings of the construction phase EM&A programme from 1 to 30 September 2019 (the "reporting period") and is submitted to fulfil Condition 3.4 of the EP.

1.2 Project Organisation

The organisation chart and lines of communication with respect to the on-site environmental management structure of the key personnel are shown in <u>Appendix A</u>. The key personnel contact names and numbers are summarized in **Table 1.2**.

Party	Position	Name	Telephone	Fax
Project Proponent (Home Affairs Bureau)	Project Director (Sports Park)	Victor Tai	3586 3403	3586 0591
Supervising Officer's Representative (Home Affairs Bureau)	Senior Engineer	Keith Man	3586 3149	3586 0591
Environmental Team (Mott MacDonald Hong Kong Limited)	Environmental Team Leader	Sunny Chan	2828 5962	2827 1823
	Deputy Environmental Team Leader	Arthur Lo	2828 5994	2827 1823
Independent Environmental Checker (ERM Hong Kong Limited)	Independent Environmental Checker	Mandy To	2271 3000	2723 5660
Contracted Party (Kai Tak Sports	Senior Project Manager	Michael Wong	3552 5003	2845 9295
Park Limited)	Senior Environmental Engineer	Hiko Law	3552 5013	3552 5099
24-hour Community Liaison Hotline	-	-	5587 6112	-

Table 1.2: Contact Information of Key Personnel

1.3 Works Area and Construction Programme

The construction works commenced on 8 April 2019. The works area of the Project is shown in **Appendix B**. The Construction Works Programme of the Project is provided in **Appendix C**.

1.4 Construction Works undertaken during the Reporting Period

A summary of construction activities undertaken during this reporting period is presented below:

- Ground investigation works;
- Piling works (Percussive piling, Socket H piling and Bored piling);
- Setting up of temporary site office;
- Setting up of wastewater treatment facilities;
- Mobilization; and
- Concreting and excavation

2 Air Quality Monitoring

2.1 Introduction

In accordance with the EM&A Manual of the Project, baseline 1-hour Total Suspended Particulates (TSP) levels at air quality monitoring stations AMS1 and AMS2 were established. Impact 1-hour TSP monitoring was conducted for at least three times every 6 days.

2.2 Monitoring Parameters, Frequency and Duration

Table 2.1 summarises the monitoring parameters, frequency and duration of impact noise monitoring.

Table 2.1: Air Quality Monitoring Parameters, Frequency and Duration

Parameter	Frequency and Duration
1-hour TSP	3 times every six-days

2.3 Monitoring Locations

According to the EM&A Manual, a total of five air quality monitoring stations are identified for impact monitoring. Of these, three air sensitive receivers are planned residential use and were not available for baseline monitoring; the same three are also currently not available for impact monitoring.

Table 2.2 describes the impact air quality monitoring stations and **Figure 2.1** shows their locations.

Table 2.2: Construction Dust Monitoring Locations

Monitoring Station	Location	Status
AMS1	Hong Kong Society for the Blind Workshop, Roof Floor	Existing Air Sensitive Receiver
AMS2	Sky Tower, Podium of Tower 7	Existing Air Sensitive Receiver
AMS3	Kai Tak Area 2B Site 4 (2B4) (residential use)	Planned Air Sensitive Receiver
AMS4	Kai Tak Area 1K Site 3 (1K3) (residential use)	Planned Air Sensitive Receiver
AMS5	Kai Tak Area 1L Site 3 (1L3) (residential use)	Planned Air Sensitive Receiver

During the reporting period, monitoring locations AMS1 and AMS2 were set up at the proposed locations for impact monitoring.

Permission on setting up and carrying out impact monitoring works at AMS3, AMS4 and AMS5 will be sought once each respective development is completed and occupied.

2.4 Monitoring Action and Limit Levels

The Action and Limit Levels for 1-hr TSP are provided in Table 2.3.

Table 2.3: Action and Limit Levels for 1-hour TSP

Monitoring Station	Action Level, µg/m ³	Limit Level, µg/m³
AMS1 – Hong Kong Society for the Blind Workshop, Roof Floor	283	500
AMS2 – Sky Tower, Podium of Tower 7	280	500
AMS3 - Kai Tak Area 2B Site 4 (2B4) (residential use)	287*	500
AMS4 - Kai Tak Area 1K Site 3 (1K3) (residential use)	287*	500
AMS5 - Kai Tak Area 1L Site 3 (1L3) (residential use)	287*	500

*Remarks: the Action Level for AMS3, AMS4 and AMS5 were derived from an alternative monitoring station AMS3-4-5 during the baseline monitoring.

The event and action plan is provided in Appendix D.

If exceedance(s) at these stations is/are recorded by the ET of the Project, it will carry out an investigation and findings will be reported in the monthly EM&A Report.

2.5 Monitoring Schedule for the Reporting Period

The schedule for air quality monitoring at AMS1 and AMS2 in the reporting period is presented in **<u>Appendix E</u>**.

2.6 Monitoring Equipment

Portable direct reading dust meters were used to carry out the 1-hour TSP monitoring. The brand(s) and model(s) of the equipment used for air quality monitoring stations AMS1 and AMS2 under this Project are given in **Table 2.4**.

Table 2.4: 1-hour TSP Monitoring Equipment

Equipment	Brand	Model No.
Portable direct reading dust meter	Sibata Digital Dust Monitor	LD-3B (S/N: 276019 & 456668)

2.7 Monitoring Methodology

Field Monitoring

The measuring procedures of the 1-hour TSP dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

- Turn the power on.
- Close the air collecting opening cover.
- Push the "TIME SETTING" switch to [BG].
- Push "START/STOP" switch to perform background measurement for 6 seconds.
- Turn the knob at SENSI ADJ position to insert the light scattering plate.
- Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- Pull out the knob and return it to MEASURE position.
- Setting time period of 1 hour for the 1-hour TSP measurement.

- Push "START/STOP" to start the 1-hour TSP measurement.
- Regular checking of the time period setting to ensure monitoring time of 1 hour.

Maintenance and Calibration

- The 1-hour dust meter would be checked at 3-month intervals and calibrated at 1-year intervals throughout all stages of the air quality monitoring.
- Calibration records for direct dust meters are given in Appendix F.

2.8 Monitoring Results

The monitoring results for 1-hour TSP at AMS1 and AMS2 are summarized in **Table 2.5**. Detailed impact air quality monitoring results are presented in **Appendix G**.

Monitoring Station	Average, µg/m³	Min, µg/m³	Max, µg/m³	Action Level, μg/m³	Limit Level, µg/m³
AMS1	68	38	86	283	500
AMS2	68	38	83	280	500

Table 2.5: Summary of 1-hour TSP Monitoring Results During the Reporting Period

There was no Action and Limit Level exceedance of 1-hr TSP level recorded at station AMS1 and AMS2 by the ET during the reporting period.

2.9 Wind Data

Wind data at Kai Tak automatic weather station collected from the Hong Kong Observatory (HKO) were used for the air quality monitoring and they are shown in <u>Appendix H</u>. It is considered that the wind data obtained at the existing Kai Tak wind station are representative of the Project area and could be used for undertaking the construction phase baseline and impact air quality monitoring programme for the Project.

The proposed use of the existing wind data from Kai Tak automatic weather station collected from HKO for wind data collection instead of setting up wind monitoring equipment near the monitoring stations was proposed by ET and agreed by IEC in accordance with the requirements as stated in Section 3.4.7 of the EM&A Manual of the Project.

3 Noise Monitoring

3.1 Introduction

In accordance with the EM&A Manual, impact noise monitoring was conducted at least once per week for each noise monitoring location during the construction phase of the Project.

3.2 Monitoring Parameters, Frequency and Duration

Table 3.1 summarises the monitoring parameters, frequency and duration of impact noise monitoring.

Table 3.1: Noise Monitoring Parameters, Frequency and Duration

Parameter	Frequency and Duration	
30-minutes measurement at each monitoring station between 0700 and 1900 on normal weekdays (Monday to Saturday). L_{eq} , L_{10} and L_{90} would be recorded.	At least once per week	

3.3 Monitoring Locations

According to the approved EM&A Manual, a total of seven noise monitoring stations were identified for the impact monitoring locations. Of these, five noise sensitive receivers are planned residential use (NMS1A, NMS2A, NMS3, NMS4 and NMS5) and were not available for baseline monitoring; the same five are also currently not available for impact monitoring.

Table 3.2 describes the details of the monitoring stations and <u>Figure 3.1</u> shows the locations of noise monitoring stations.

Table 3.2: Construction Noise Monitoring Locations

Monitoring Station	Location Description	Status
NMS1	Hong Kong Society for the Blind	Existing Noise Sensitive
	Workshop, Roof Floor	Receiver
NMS2	Sky Tower, Podium of Tower 7	Existing Noise Sensitive
		Receiver
NMS1A	Sung Wong Toi Road Public	Planned Noise Sensitive
	Housing Site	Receiver
NMS2A	Sung Wong Toi Road CDA Site	Planned Noise Sensitive
	(mixed use)	Receiver
NMS3	Kai Tak Area 2B Site 4 (2B4)	Planned Noise Sensitive
	(residential use)	Receiver
NMS4	Kai Tak Area 1K Site 3 (1K3)	Planned Noise Sensitive
	(residential use)	Receiver
NMS5	Kai Tak Area 1L Site 3 (1L3)	Planned Noise Sensitive
	(residential use)	Receiver

During the reporting period, monitoring locations NMS1 and NMS2 were set up at the proposed locations for impact monitoring.

Since NMS1A & NMS2A are planned (i.e. not existing) noise sensitive receivers, noise monitoring should be carried out initially at NMS1 and NMS2 respectively before the population intake of the planned developments. Once the planned developments are completed and occupied, NMS1A shall replace NMS1, while NMS2A shall replace NMS2. It is proposed that

the baseline noise level and Limit Level at NMS1A and NMS2A will be the same as those derived from the baseline monitoring data recorded at NMS1 and NMS2 respectively.

Permission on setting up and carrying out impact monitoring works at NMS3, NMS4 and NMS5 will be sought once each respective development is completed and occupied.

3.4 Action and Limit Levels

The Action and Limit Levels for construction noise are defined in **Table 3.3**.

Table 3.3: Action and Limit	Level for Construction Noise
-----------------------------	------------------------------

Monitoring Station	Time Period	Action Level	Limit Level
NMS1	0700 – 1900 hours on	When one documented	75 dB(A)
NMS2	normal weekdays	complaint is received	

The event and action plan is provided in Appendix D.

If exceedance(s) at these stations is/are recorded by the ET of the Project, it will carry out an investigation and findings will be reported in the monthly EM&A Report.

3.5 Monitoring Schedule for the Reporting Period

The schedule for noise monitoring in the reporting period is presented in Appendix E.

3.6 Monitoring Equipment

Noise monitoring was performed using sound level meters at each designed monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment used for noise monitoring under this Project is given in **Table 3.4**.

Table 3.4: Noise Monitoring Equipment

Equipment	Brand	Model No.
Integrated Sound Level Meter	Rion	NL-52 (S/N: 00542913)
Acoustic Calibrator	LARSON DAVIS	CAL200 (S/N: 15678)

3.7 Monitoring Methodology

- Façade and Free Field measurements were made at the monitoring locations.
- For Façade measurement, the microphone hear of the head level meter was positioned 1m exterior of the noise sensitive façade and lowered sufficiently so that the building's external wall acts as a reflecting surface.
- For free field, the microphone of the Sound Level Meter was set at least 1.2 m above the ground.
- A correction of +3dB(A) was made for free field measurement.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - frequency weighting: A
 - time weighting: Fast

- time measurement: 30-minute intervals (between 0700-1900 on normal weekdays)
- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94 dB at 1 kHz. If the difference in the calibration level before and after measurement was more than 1 dB, the measurement would be considered invalid and repeated after the recalibration or repair of the equipment.
- During the monitoring period, the L_{eq}, L₁₀ and L₉₀ were recorded. In addition, any site observations and noise sources were recorded on a standard record sheet.
- Noise measurements were not made in presence of fog, rain, wind with a steady speed exceeding 5m/s or wind with gusts exceeding 10m/s.

Maintenance and Calibration

- The microphone head of the sound level meter and calibrator is cleaned with soft cloth at quarterly intervals.
- The sound level meter and calibrator are sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- Calibration records are shown in Appendix F.

3.8 Monitoring Results

The monitoring results for construction noise are summarized in **Table 3.5**. Detailed impact noise monitoring results and relevant graphical plots are presented in <u>Appendix G</u>.

Table 3.5: Summary of Construction Noise Monitoring Results During the ReportingPeriod

	I	Measured Noise Le	vel L _{eq (30 mins)} , dB(A	A)
Monitoring Station	Average	Min	Max	Limit Level
NMS1	69	68	70	75
NMS2	70	67	72	75

One noise related complaint was received during the reporting month. One Action Level for Noise was triggered during the reporting month.

No exceedance of Limit Level of noise at NMS1 and NMS2 was recorded during the reporting month.

4 Environmental Site and Audit

4.1 Site Inspection

Site inspections were carried out by ET on a weekly basis to monitor the implementation of proper environmental pollution control mitigation measures for the Project. Key observations were recorded in the site inspection checklist and passed to the Contracted Party together with the appropriate recommended mitigation measures where necessary. During the reporting period, site inspections were carried out on 4, 11, 18, 27 September 2019. Joint IEC site inspections were carried out on 11 and 27 September 2019.

Bi-weekly landscape and visual site audit was carried out on 11 and 27 September 2019. The landscape and visual audit have been audited by Registered Landscape Architect (RLA). No major observations of landscape and visual impact were identified. The result findings were summarised in **Appendix K**.

Key observations during the site inspections are described in Table 4.1.

Inspection Date Key Observations		Recommendations / Actions	Close-Out Date / Status
4 September 2019	Loose general refuse was observed on the ground	The contractor was reminded to clear the drip tray.	11 September 2019
4 September 2019	Stagnant water with oil was observed near existing tree protection zone at southern site area.	The contractor was reminded to clear the oil and stagnant water as soon as possible.	11 September 2019
4 September 2019	The tree protection zone does not cover the area under the dripline of T19 at southern site.	The contractor was reminded to properly implement the tree protection zone of T19.	11 September 2019
11 September 2019	Loose general refuse on the ground was observed near temporary site office area.	The contractor was reminded to dispose the general refuse into enclosed rubbish bin.	18 September 2019
18 September 2019	Blockage of drainage channel near southern gate no.3 was observed.	The contractor was reminded to clear the drainage channel.	27 September 2019
18 September 2019	Untreated site runoff at the northern gate no.3 was observed.	The contractor was reminded to clear the site runoff as soon as possible.	27 September 2019
27 September 2019	Accumulation of muddy water was observed inside tree protection zone at southern site area.	The contractor was reminded to clear the muddy water as soon as possible.	2 October 2019
27 September 2019	Accumulated stockpile without covering was observed at northern site area.	The contractor was reminded to provide covering for the stockpile on site.	2 October 2019
27 September 2019	The pH setting for the wastewater treatment plant at northern gate	The contractor was reminded to adjust the pH	2 October 2019

Table 4.1: Summary of Site Inspections and Recommendations

Inspection Date	Key Observations	Recommendations / Actions	Close-Out Date / Status
	no.3 was out of range pH 6-9.	setting for the wastewater treatment plant.	
27 September 2019	Chemical containers without drip tray were observed at southern site area.	The contractor was reminded to provide drip tray for the chemical containers.	2 October 2019
27 September 2019	Site runoff running into nearby stormwater drainage was observed near northern gate no. 3.	The contractor was reminded to prevent site runoff running into nearby stormwater drainage.	2 October 2019

4.2 Advice on the Solid and Liquid Waste Management Status

The Contracted Party was registered as a chemical waste producer for the Project. Sufficient numbers of receptacles were available for general refuse collection and sorting.

The monthly summary of waste flow table is detailed in Appendix I.

The Contracted Party was reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packing, Labelling and Storage of Chemical Waste.

4.3 Environmental Licenses and Permits

The valid environmental licenses and permits for the Project during the reporting period are summarized in **Appendix J**.

4.4 Implementation Status of Environmental Mitigation Measures

In response to the site audit findings, the Contracted Party carried out corrective actions.

A summary of the environmental mitigation measures implementation status is presented in **Appendix K**. Most of the necessary mitigation measures were implemented properly.

4.5 Summary of Exceedance of the Environmental Quality Performance Limit

Air Quality

No Action and Limit Level exceedances of 1-hour TSP level was recorded at AMS1 and AMS2 during the reporting period.

Noise

One noise related complaint was received during the reporting month. One Action Level for Noise was triggered during the reporting month.

No exceedance of Limit Level of noise at NMS1 and NMS2 was recorded during the reporting month.

4.6 Summary of Complaints, Notification of Summons and Successful Prosecution

Complaints

There was one complaint received during the reporting month:

Date of Notification from EPD	Date of Complaint	Description of Complaint	Recommendatio ns / Actions	Close-Out Date / Status
18 Sep 2019	4 Sep 2019	-Complaint of daytime percussive piling noise from the construction site of Kai Tak Sports Park. -Complainant would like to precussive piling to be carried out later in the morning, i.e. after 8:30 hrs. -Please ensure the work fulfill the relevant environmental legislation and conditions stipulated in the construction noise permit	 Conduct regular checking to ensure the implementation of noise barrier for all percussive pilling works. Consider to reschedule the percussive pilling works activities to reduce the noise nuisance to nearby sensitive receivers during the 8:00 a.m. to 9:30a.m. session. 	24 Sep 2019

Table 4.2: Summary of Complaints in the reporting month

Details of the complaint investigation is shown in Appendix M.

Notification of Summons and Successful Prosecution

No notification of summons or prosecutions was received during the reporting period.

Statistics on notifications of summons and successful prosecutions are summarized in **Appendix L**.

5 Future Key Issues

5.1 Construction Programme for the Coming Months

As informed by the Contracted Party, the major construction activities for the next reporting period (October 2019) are summarized in **Table 5.1**.

Table 5.1: Construction Activities for the Next Reporting Period

Site Area	Description of Activities
 Kai Tak Sports Park 	 Ground investigation works;
	 Piling works (Percussive piling, Socket H piling and Bored piling);
	 Setting up of temporary site office;
	 Mobilization; and
	 Concreting and excavation

5.2 Environmental Site Inspection and Monitoring Schedule for the Next Reporting Period

The tentative schedule for weekly site inspection and monitoring for air quality and noise for the next reporting period is provided in <u>Appendix E</u>.

6 Conclusions

6.1 Conclusions

General

The construction works for the Project commenced on 8 April 2019.

The ET of the Project has implemented the air quality and noise environmental impact monitoring under the construction phase EM&A programme during the reporting period.

Breaches of Action and Limit Levels

Air Quality

No Action and Limit Level exceedances of 1-hour TSP level was recorded at AMS1 and AMS2 during the reporting period.

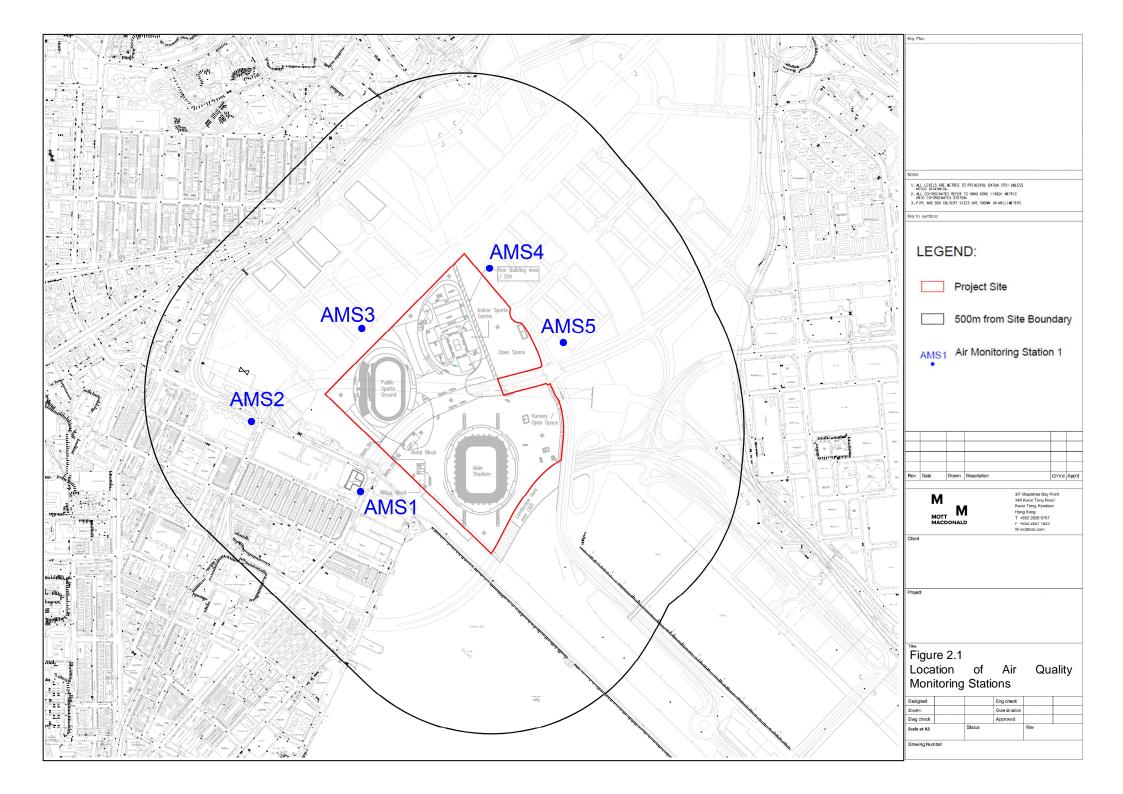
Noise

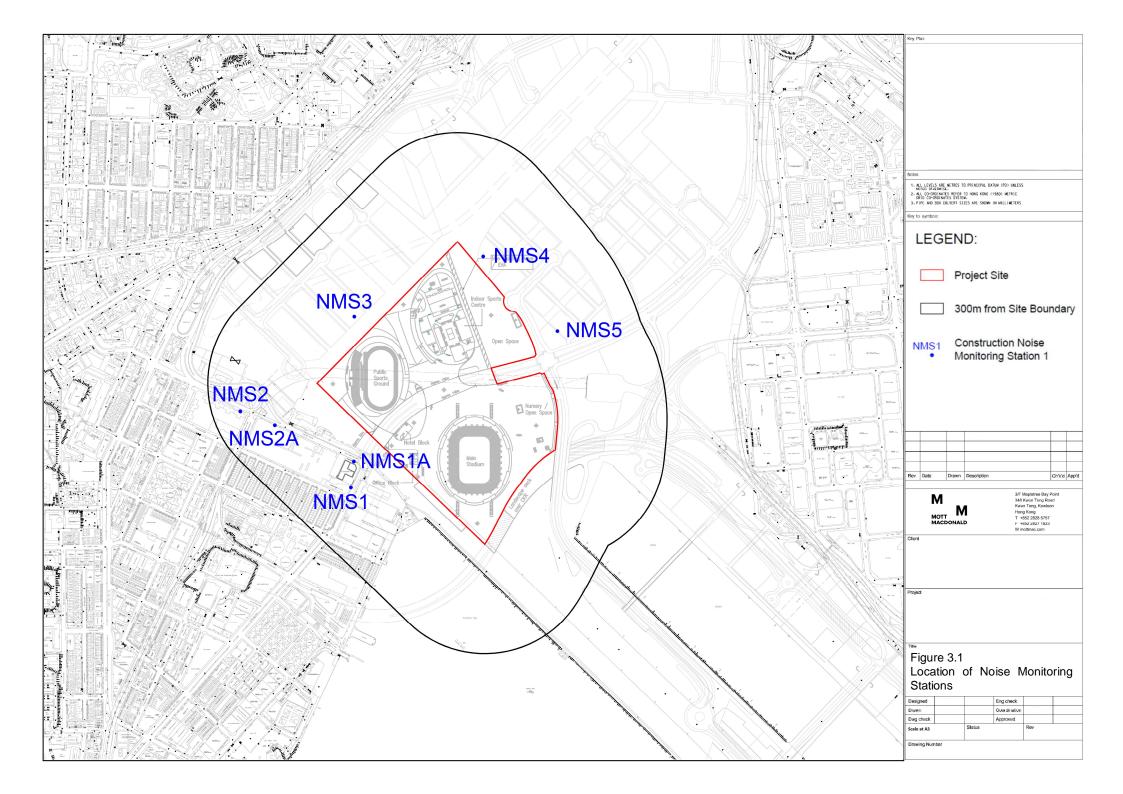
One noise related complaint was received during the reporting month. One Action Level for Noise was triggered during the reporting month.

No exceedance of Limit Level of noise at NMS1 and NMS2 was recorded during the reporting month.

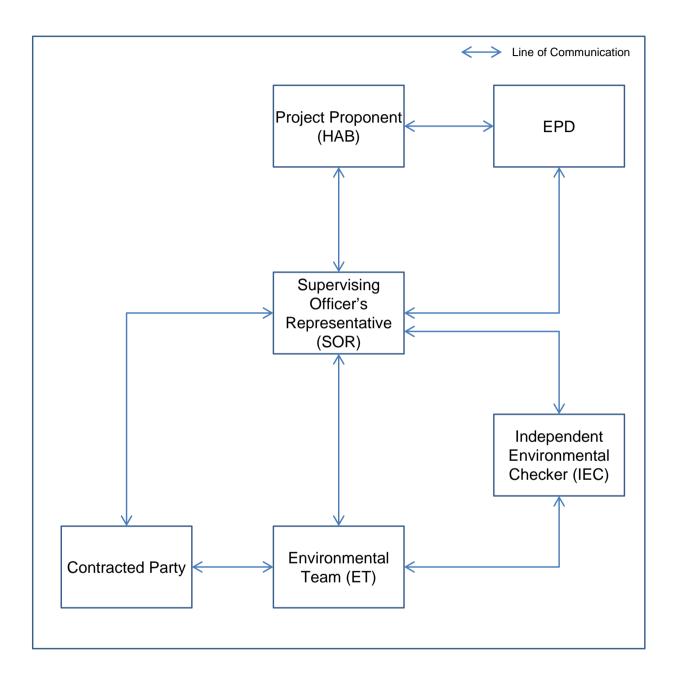
Environmental Site Inspections

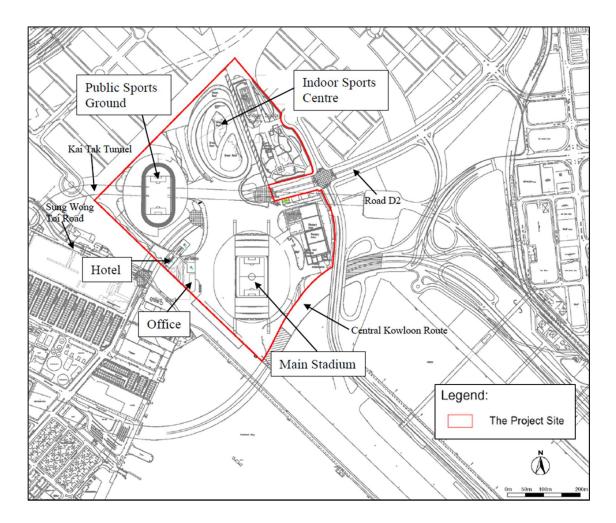
Environmental site inspections were carried out four times during the reporting period. Recommendations on remedial actions were given to the Contracted Party for the deficiencies identified during the site inspections.


Complaints


There was one complaint received in relation to the environmental impact during the reporting period.

Notifications of Summons and Successful Prosecutions


There were no notifications of summons or prosecutions received during the reporting period.


Figures

Project Organisation for Environmental Works

Appendix B. Location of Works Areas

Construction Programme (Sep to Dec 2019)

	2019											
Construction Activities	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Plants Mobilization												
C&D Waste Disposal (By vessel)												
Erection of Site Hoarding										-		
Loading/ Unloading of Materials												
Excavation												
Ground Investigation												
C&D Waste Disposal												
Setting up of Temporary Office												
Piling (Percussive Piling)												
Piling (Socket H Piling)												
Piling (Bored Piling)												
Concreting												
Lifting												
C&D Materials Internal Transportation												

Appendix D. Event and Action Plan

Should non-compliance of the air quality criteria occur, actions in accordance with the Event and Action Plan in Table D.1 and Table D.2 shall be carried out.

Table D.1: Event and Action Plan for Construction Air Quality (Action Level)

_				
		-	-	
	v			

Event	Action				
	ET	IEC	SOR	Contracted Party	
Action Level					
Exceedance for one sample	 Inform IEC, SOR and Contracted Party; Identify source, investigate the causes of exceedance and propose remedial measures; Repeat measurement to confirm finding. 	 Check monitoring data submitted by ET; Check Contracted Party's working method. 	1. Notify Contracted Party.	 Rectify any unacceptable practice; Amend working methods if appropriate. 	
Exceedance for two or more consecutive samples	 Inform IEC, SOR and Contracted Party; Identify source; Advise the SOR on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC, SOR and Contracted Party on remedial actions required; If exceedance continues, arrange meeting with IEC and SOR; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contracted Party's working method; Discuss with ET and Contracted Party on possible remedial measures; Advise the ET/SOR on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contracted Party; Ensure remedial measures properly implemented. 	 Submit proposals for remedial to SOR and IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 	

Table D.2: Event and Action Plan for Construction Air Quality (Limit Level)

Event	Action				
	ET	IEC	ET	Contracted Party	
Limit Level					
Exceedance for one sample	 Inform IEC, SOR, Contracted Party and EPD; Identify source, investigate the causes of exceedance and propose remedial measures; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contracted Party's remedial actions and keep IEC, EPD and SOR informed of the results. 	 Check monitoring data submitted by ET; Check Contracted Party's working method; Discuss with ET and Contracted Party on possible remedial measures; Advise the SOR on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contracted Party; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Discuss with ET and IEC on remedial actions; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 	
Exceedance for two or more consecutive samples	 Notify IEC, SOR, Contracted Party and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contracted Party's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and SOR and Contracted Party to discuss the remedial actions to be taken; Assess effectiveness of Contracted Party's remedial actions and keep IEC, EPD and SOR informed of the results; I f exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contracted Party's working method; Discuss amongst SOR, ET, and Contracted Party on the potential remedial actions; Review Contracted Party's remedial actions whenever necessary to assure their effectiveness and advise the SOR accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contracted Party; 3. In consultation with the IEC, agree with the Contracted Party on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contracted Party to terminate that portion of work until the exceedance ceases. 	 Take immediate action to avoid further exceedance; Discuss with ET and IEC on remedial actions; Submit proposals for remedial actions to SOR and IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the SOR until the exceedance ceases. 	

Should non-compliance of the noise criteria occur, actions in accordance with the Event and Action Plan in **Table D.3** shall be carried out.

Event	Action				
	ET	IEC	ET	Contracted Party	
Action Level	 Notify IEC, SOR and Contracted Party of exceedance; Identify source; Investigate the causes of exceedance and propose remedial measures; Report the results of investigation to the IEC, SOR and Contracted Party; Discuss with the IEC, SOR and Contracted Party and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness. 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contracted Party and advise the SOR accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contracted Party; Require Contracted Party to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented 	 Submit noise mitigation proposals to SOR with copy to ET and IEC; Implement noise mitigation proposals. 	
Limit Level	 Inform IEC, SOR, EPD and Contracted Party; Identify source; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contracted Party's working procedures to determine possible mitigation to be implemented; Inform IEC, SOR and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contracted Party's remedial actions and keep IEC, EPD and SOR informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst SOR, ET, and Contracted Party on the potential remedial actions; Review Contracted Party's remedial actions whenever necessary to assure their effectiveness and advise the SOR accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contracted Party; Require Contracted Party to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented; If exceedance continues, investigate what portion of the work is responsible and instruct the Contracted Party to terminate that portion of work until the exceedance ceases. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to SOR with copy to ET and IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Terminate the relevant portion of works as determined by the SOR until the exceedance ceases. 	

Table D.3: Event and Action Plan for Construction Noise

Appendix E. Environmental Site Inspection and Monitoring Schedule

Table E.1: Site Inspection and Monitoring Schedule for September 2019

Air Quality/Noise Monitoring Remark: Joint site walk with IEC on 4 and 27 September 2019

Table E.2: Tentative Site Inspection and Monitoring Schedule for October 2019

Air Quality/Noise Monitoring

Remark: The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Appendix F. Calibration Certificates

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CONTACT	: MR K.W. FAN	WORK ORDER	HK1907875
CLIENT	ENVIROTECH SERVICES CO.		
ADDRESS	RM113, 1/F, MY LOFT, 9 HOI WING ROAD, TUEN MUN, N.T. HONG	SUB-BATCH	: 1
	KONG	DATE RECEIVED	: 22-FEB-2019
		DATE OF ISSUE	: 7-MAR-2019
PROJECT	:	NO. OF SAMPLES	: 1
		CLIENT ORDER	:

General Comments

- Sample(s) were received in ambient condition.
- Sample(s) analysed and reported on as received basis.
- Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories	Position	
Richard Juny.		
Richard Fung	General Manager	

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com : HK1907875

SUB-BATCH [:] 1 : ENVIROTECH SERVICES CO. CLIENT : ____ PROJECT

WORK ORDER

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK1907875-001	S/N: 276019	Equipments	22-Feb-2019	S/N: 276019

Equipment Verification Report (TSP)

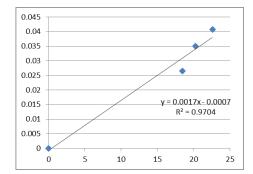
Equipment Calibrated:

Туре:	Laser Dust monitor	
Manufacturer:	Sibata LD-3B	
Serial No.	276019	
Equipment Ref:	Nil	
Job Order	HK1907875	

Standard Equipment:

bration room)
9

Equipment Verification Results:

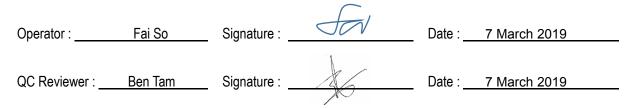

Testing Date:

4 March 2019

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/min)
2hr13min	09:10 ~ 11:23	20.9	1013.7	0.035	2699	20.3
2hr01min	11:30 ~ 13:31	20.9	1013.7	0.026	2235	18.4
2hr01min	13:40 ~ 15:41	20.9	1013.7	0.041	2723	22.6

Linear Regression of Y or X

Slope (K-factor):	0.0017
Correlation Coefficient	0.9851
Date of Issue	7 March 2019



Remarks:

1. **Strong** Correlation (R>0.8)

2. Factor 0.0017 should be applied for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location : Gold King Ind Location ID : Calibration Ro		ng, K	lung		bration: 12-Feb-19 on Date: 12-May-19	
			COND	ITIONS		
Sea Level Pressur Temperature	`´´	1	1024.2 19.0		Corrected Pressure (mr Temperature (K)	2,
		CALI	BRATI	ON ORIFICE	1	
Calibra	Make-> Model-> ation Date->	502	SCH 25A eb-18		Qstd Slope -> Qstd Intercept -> Expiry Date->	2.02017 -0.03691 13-Feb-19
		(CALIB	RATION		
Plate H20 (L)H2O (R) H20 No. (in) (in) (in)	Qstd (m3/min)		I art)	IC corrected	LINEAR REGRESSI	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.738 1.584 1.377 1.097 0.844	60 52 46 38 27		60.94 52.81 46.72 38.59 27.42	*	35.5369 -1.8924 0.9951
Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tst IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart respones I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during cal Pstd = actual pressure during calib For subsequent calculation of sa 1/m((I)[Sqrt(298/Tav)(Pav/760)] m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature	libration (deg ration (mm) m pler flow:		00 00 00 00 00 00 00 00 00 00 00 00	.00	FLOW RATE CHART	1.500 2.000

RECALIBRATION DUE DATE: February 13, 2019

Environmental Certificate of Calibration

			Calibration	Certificatio	on Informat	ion		
Cal. Date:	February 1	3, 2018	Roots	meter S/N:	438320	Ta:	293	°К
Operator:	Jim Tisch					Pa:	763.3	mm Hg
Calibration	Model #:	TE-5025A	Calil	prator S/N:	1612			
			Mal Plant	A) (= 1	ATI	AD	A11	
	Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	∆H (in H2O)	
	1	1	2	(113)	1.3970	3.2	2.00	
	2	3	4	- 1	1.0000	6.3	4.00	
	3	5	6	1	0.8900	7.9	5.00	
	4	7	8	1	0.8440	8.7	5.50	
	5	9	10	1	0.7010	12.6	8.00	
				Data Tabula	tion			
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstc}\right)}$)(<u>Tstd</u>)		Qa	$\sqrt{\Delta H(Ta/Pa)}$	
	(m3)	(x-axis)	(y-axis)		Va	(x-axis)	(y-axis)	
	1.0172	0.7281	1.4293		0.9958	0.7128	0.8762	
	1.0130	1.0130	2.0213		0.9917	0.9917	1.2392	
	1.0109	1.1358	2.2599		0.9896	1.1120	1.3854	
	1.0098	1.1964	2.37	A PERSON NEW YORK OF THE PARTY	0.9886	1.1713	1.4530	
	1.0046	1.4331	2.85		0.9835	1.4030 m=	1.7524 1.26500	4
	m= 2.02017 QSTD b= -0.03691		QA	b=	-0.02263	1		
	QSID	r=	0.999		QA	r=	0.99988	
				Calculatio	ns			1
	Vstd=	∆Vol((Pa-∆P)/Pstd)(Tstd/T			ΔVol((Pa-Δ	P)/Pa)	1
	Qstd=	Vstd/∆Time]			
			For subsequ	uent flow ra	te calculatio	-		
	Qstd=	1/m ((-))-b)	Qa=	$1/m\left(\sqrt{\Delta H}\right)$	H(Ta/Pa))-b)		
	Standard	Conditions						
Tstd		CONTRACTOR AND A CONTRACTOR OF A DATA OF			RECALIBRATION			
Pstd	1	mm Hg			LIS FPA rec	ommends a	nnual recalibrati	on per 1999
AH: calibrat		Key ter reading (in H2O)		US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51,			
		eter reading			1			
Ta: actual a	bsolute tem	perature (°K)		Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in			
		ressure (mm	Hg)		1		ere, 9.2.17, page	
b: intercept	t							
m: slope								

Tisch Environmental, Inc.

145 South Miami Avenue

Village of Cleves, OH 45002

www.tisch-env.cor TOLL FREE: (877)263-761(FAX: (513)467-900

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CONTACT	: MR K.W. FAN WORK		IK1907876
CLIENT	ENVIROTECH SERVICES CO.		
ADDRESS	: RM113, 1/F, MY LOFT, 9 HOI WING ROAD, TUEN MUN, N.T. HONG SUB-B	ATCH : 1	
	KONG	RECEIVED : 2	2-FEB-2019
	DATE	OF ISSUE : 7	7-MAR-2019
PROJECT	: NO. OI	F SAMPLES : 1	
	CLIEN	T ORDER :	

General Comments

- Sample(s) were received in ambient condition.
- Sample(s) analysed and reported on as received basis.
- Calibration was subcontracted to and analysed by Action United Enviro Services.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories	Position
Kichard Jong.	
Richard Fung	General Manager

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group

11/F. Chung Shun Knitting Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com : HK1907876

WORK ORDER SUB-BATCH [:] 1 : ENVIROTECH SERVICES CO. CLIENT : ____ PROJECT

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK1907876-001	S/N: 456668	Equipments	22-Feb-2019	S/N: 456668

Equipment Verification Report (TSP)

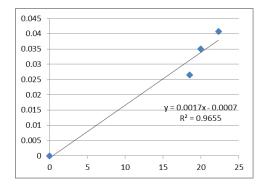
Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	456668
Equipment Ref:	Nil
Job Order	HK1907876

Standard Equipment:

Standard Equipment:	Higher Volume Sampler
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	12 February 2019
Last Calibration Date:	12 February 2019

Equipment Verification Results:


Testing Date:

4 March 2019

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/min)
2hr13min	09:10 ~ 11:23	20.9	1013.7	0.035	2659	20.0
2hr01min	11:30 ~ 13:31	20.9	1013.7	0.026	2241	18.5
2hr01min	13:40 ~ 15:41	20.9	1013.7	0.041	2688	22.3

Linear Regression of Y or X

Slope (K-factor):	0.0017
Correlation Coefficient	0.9826
Date of Issue	7 March 2019

Remarks:

1. **Strong** Correlation (R>0.8)

2. Factor 0.0017 should be applied for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Ja Date : <u>7 March 2019</u> Operator : _____ Fai So ____ Signature : ____ Date : 7 March 2019 QC Reviewer : <u>Ben Tam</u> Signature :

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location :Gold King Industrial Building, Kwai ChungLocation ID :Calibration Room						bration: 12-Feb-19 on Date: 12-May-19
CONDITIONS						
Sea Level Pressure (hPa)1024.2Corrected Pressure (mm Hg)768.15Temperature (°C)19.0Temperature (K)292						<u> </u>
CALIBRATION ORIFICE						
Make-> TIS Model-> 502 Calibration Date-> 13-Fe					Qstd Slope -> Qstd Intercept -> Expiry Date->	2.02017 -0.03691 13-Feb-19
		(CALIB	RATION		
Plate H20 (L)H2O (R) H20 No. (in) (in) (in)	Qstd (m3/min)		I art)	IC corrected	LINEAR REGRESSI	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.738 1.584 1.377 1.097 0.844	5 4 3	50 52 56 58 27	60.94 52.81 46.72 38.59 27.42	*	35.5369 -1.8924 0.9951
Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tst IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart respones I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during cal Pstd = actual pressure during calib For subsequent calculation of sa 1/m((I)[Sqrt(298/Tav)(Pav/760)] m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature	libration (deg ration (mm) m pler flow:		00 00 00 00 00 00 00 00 00 00 00 00	.00	FLOW RATE CHART	1.500 2.000

RECALIBRATION DUE DATE: February 13, 2019

Environmental Certificate of Calibration

			Calibration	Certificatio	on Informat	ion		
Cal. Date:	February 1	3, 2018	Roots	meter S/N:	438320	Ta: 293		°К
Operator:	Jim Tisch					Pa: 763.3		mm Hg
Calibration	Model #: TE-5025A Calibrator S/N: 1612							
			Mal Plant	A) (- 1	ATI	AD	A11	
	Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	∆H (in H2O)	
	1	1	2	(113)	1.3970	3.2	2.00	
	2	3	4	- 1	1.0000	6.3	4.00	
	3	5	6	1	0.8900	7.9	5.00	
	4	7	8	1	0.8440	8.7	5.50	
	5	9	10	1	0.7010	12.6	8.00	
				Data Tabula	tion			
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstc}\right)}$)(<u>Tstd</u>)		Qa	$\sqrt{\Delta H(Ta/Pa)}$	
	(m3)	(x-axis)	(y-ax	(is)	Va	(x-axis)	(y-axis)	
	1.0172	0.7281	1.42	93	0.9958	0.7128	0.8762	
	1.0130	1.0130		2.0213		0.9917	1.2392	
	1.0109	1.1358	2.25		0.9896	1.1120	1.3854	
	1.0098	1.1964	2.37	A PERSON NEW YORK OF THE PARTY	0.9886	1.1713	1.4530	
	1.0046	1.4331	2.85 2.02 (0.9835	1.4030 m=	1.7524 1.26500	4
	QSTD	m= b=	-0.03		QA	b=	-0.02263	1
	QSID	r=	0.999		QA	r=	0.99988	
				Calculatio	ns			1
	Vstd=	∆Vol((Pa-∆P)/Pstd)(Tstd/T			ΔVol((Pa-Δ	P)/Pa)	1
	Qstd=	Vstd/∆Time			Qa= Va/ΔTime]
			For subsequ	uent flow ra	te calculatio	ns:		-
	Qstd= $1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$				Qa=	$1/m\left(\sqrt{\Delta H}\right)$	H(Ta/Pa))-b)	
	Standard	Conditions						
Tstd		CONTRACTOR AND A CONTRACTOR OF A DATA OF				RECA	LIBRATION	
Pstd	1	mm Hg			LIS FPA rec	ommends a	nnual recalibrati	on per 1999
AH: calibrat		Key ter reading (in H2O)		US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51,			
		eter reading			1			
Ta: actual a	bsolute tem	perature (°K)		Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in			
		ressure (mm	Hg)		1		ere, 9.2.17, page	
b: intercept	t							
m: slope								

Tisch Environmental, Inc.

145 South Miami Avenue

Village of Cleves, OH 45002

www.tisch-env.cor TOLL FREE: (877)263-761(FAX: (513)467-900

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C185607 證書編號

Description / 儀器名和 Manufacturer / 製造商 Model No. / 型號 Serial No. / 編號 Supplied By / 委託者	新 : LARSON DAVIS : CAL200 : 15678
TEST CONDITION Temperature / 溫度 Line Voltage / 電壓	: (23 ± 2)°C - Relative Humidity / 相對濕度 : (50 ± 25
TEST SPECIFICAT Calibration check	YIONS / 測試規範
DATE OF TEST / 浿	试日期 : 14 October 2018
The results do not excee	间試結果 particular unit-under-test only. ed manufacturer's specification. in the subsequent page(s).
The results apply to the The results do not excee The results are detailed The test equipment used The Government of T The Bruel & Kjaer Ca	particular unit-under-test only. ed manufacturer's specification. in the subsequent page(s). If for calibration are traceable to National Standards via : he Hong Kong Special Administrative Region Standard & Calibration Laboratory dibration Laboratory, Denmark / Keysight Technologies boratory, Germany
The results apply to the The results do not excee The results are detailed The test equipment used - The Government of T - The Bruel & Kjaer Ca - Agilent Technologies - Rohde & Schwarz Lal	particular unit-under-test only. ed manufacturer's specification. in the subsequent page(s). If for calibration are traceable to National Standards via : he Hong Kong Special Administrative Region Standard & Calibration Laboratory dibration Laboratory, Denmark / Keysight Technologies boratory, Germany

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 — 校正及檢測實驗所 c/o 香港新界屯門興安里一號四樓 Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986 E-mail/電

E-mail/電郵: callab@suncreation.com Website/網址:

Website/網址: www.suncreation.com

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C185607 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

Equipment ID	Description	Certificate No.
CL130	Universal Counter	C183775
CL281	Multifunction Acoustic Calibrator	CDK1806821
TST150A	Measuring Amplifier	C181288

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT Nominal Value	Measured Value (dB)	Mfr's Spec. (dB)	Uncertainty of Measured Value (dB)
94 dB, 1 kHz	94.0	± 0.2	± 0.2
114 dB, 1 kHz	113.9		

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000	1 kHz ± 1 %	± 1

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C185972 證書編號

ITEM TESTED Description / 儀 Manufacturer / 導 Model No. / 型勁 Serial No. / 編號 Supplied By / 委	製造商 : Rion 虎 : NL-52 記 : 00542913
TEST CONDIT Temperature / 溫 Line Voltage / 霍	
TEST SPECIFI Calibration	ICATIONS / 測試規範
The results do not The results are det The test equipmen - The Governmen - The Bruel & Kj: - Agilent Technol - Rohde & Schwa	TS / 測試結果 to the particular unit-under-test only. : exceed manufacturer's specification. (after adjustment) tailed in the subsequent page(s). nt used for calibration are traceable to National Standards via : nt of The Hong Kong Special Administrative Region Standard & Calibration Laboratory aer Calibration Laboratory, Denmark logies / Keysight Technologies arz Laboratory, Germany ervice Center, USA
Tested By 測試	K C Lee Engineer
Certified By 核證	: <u>Chun Um</u> <u>C</u> Date of Issue : 7 November 2018 H C Chan 资發日期

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 — 校正及檢測實驗所 c/o 香港新界屯門與安里一號四樓 Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986 E-mail/電郵: callab@suncreation.com

Website/網址: www.suncreation.com

Sun Creation Engineering Limited Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C185972 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using the internal standard (After Adjustment) was performed before the test 6.1.1.2 to 6.3.2.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID	Description	Certificate No.
CL280	40 MHz Arbitrary Waveform Generator	C180024
CL281	Multifunction Acoustic Calibrator	CDK1806821

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

6.1.1.1 Before Adjustment

	UUT	Setting		Applie	d Value	UUT	IEC 61672		
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)		
30 - 130	LA	A	Fast	94.00	1	* 95.9	± 1.1		

*Out of IEC 61672 Class 1 Spec.

6.1.1.2 After Adjustment

	UUT	Setting		Applie	d Value	UUT	IEC 61672		
Range (dB)			Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)		
30 - 130	L _A	A	Fast	94.00	1	94.0	± 1.1		

6.1.2 Linearity

	UU	T Setting	Applied	UUT		
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
30 - 130	L_A	A	Fast	94.00	1	94.0 (Ref.)
				104.00		104.0
				114.00		114.0

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong *輝創工程有限公司 — 校正及檢測實驗所* c/o 香港新界屯門興安里一號四樓 Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986 E-mail/電郵: callab@suncreation.com

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

Sun Creation Engineering Limited Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C185972 證書編號

6.2 Time Weighting

	UUT	Setting		Applie	d Value	UUT	IEC 61672	
Range (dB)			Time Weighting	Level Freq. (dB) (kHz)		Reading (dB)	Class 1 Spec. (dB)	
30 - 130	L _A	A	Fast	94.00	1	94.0	Ref.	
			Slow			94.0	± 0.3	

6.3 Frequency Weighting

6.3.1 A-Weighting

	UUT	Setting		Appl	ied Value	UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _A	A	Fast	94.00	63 Hz	67.8	-26.2 ± 1.5
					125 Hz	77.8	-16.1 ± 1.5
					250 Hz	85.3	-8.6 ± 1.4
					500 Hz	90.7	-3.2 ± 1.4
					1 kHz	94.0	Ref.
					2 kHz	95.2	$+1.2 \pm 1.6$
					4 kHz	95.0	$+1.0 \pm 1.6$
					8 kHz	93.0	-1.1 (+2.1 ; -3.1)
					12.5 kHz	89.6	-4.3 (+3.0 ; -6.0)

6.3.2 C-Weighting

	UUT	Setting		Appli	ied Value	UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _C	C	Fast	94.00	63 Hz	93.1	-0.8 ± 1.5
	l	l	Į.		125 Hz	93.8	-0.2 ± 1.5
					250 Hz	94.0	0.0 ± 1.4
					500 Hz	94.0	0.0 ± 1.4
					1 kHz	94.0	Ref.
					2 kHz	93.8	-0.2 ± 1.6
					4 kHz	93.2	-0.8 ± 1.6
					8 kHz	91.1	-3.0 (+2.1 ; -3.1
					12.5 kHz	87.6	-6.2 (+3.0 ; -6.0

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4/F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 — 校正及檢測實驗所 c/o 香港新界屯門興安里一號四樓 Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986 E-mail/電話

E-mail/電郵: callab@suncreation.com

Sun Creation Engineering Limited Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C185972 證書編號

Remarks : - UUT Microphone Model No. : UC-53A & S/N : 320728

- Mfr's Spec. : IEC 61672 Class 1

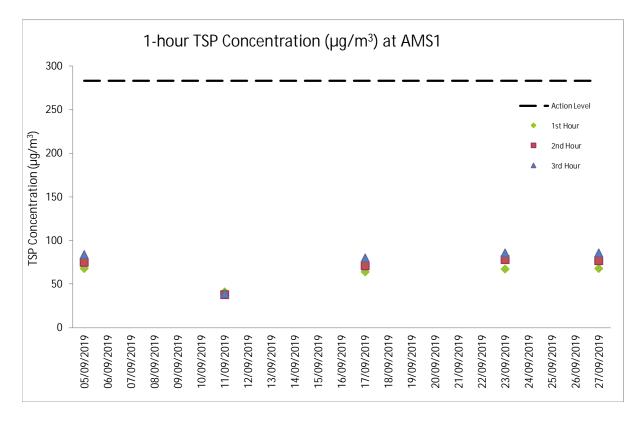
- Uncertainties of Applied Value :	94 dB : 63 H	lz - 125 Hz	: ± 0.35 dB	
	250	Hz - 500 Hz	$: \pm 0.30 \text{ dB}$	
	1 kH	ĺz	$= \pm 0.20 \text{ dB}$	
	2 kH	lz - 4 kHz	$\pm 0.35 \text{ dB}$	
	8 kH	lz	$\pm 0.45 \text{ dB}$	
	12.5	kHz	$\pm 0.70 \text{ dB}$	
	104 dB : 1 kH	ĺz	$: \pm 0.10 \text{ dB}$ (Ref. 9	94 dB)
	114 dB : 1 kH	Íz	$: \pm 0.10 \text{ dB}$ (Ref. 9	

- The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

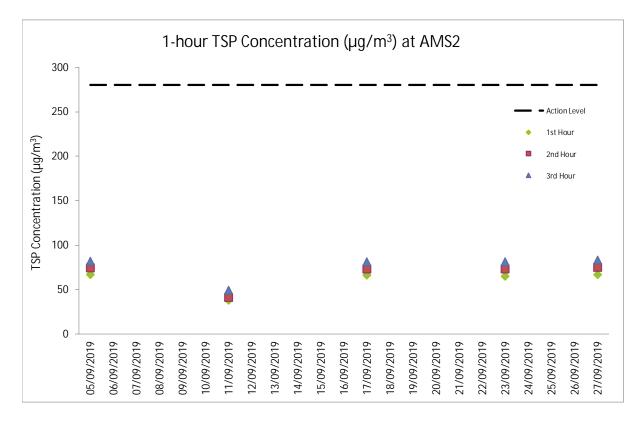
The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.


The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory. 本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

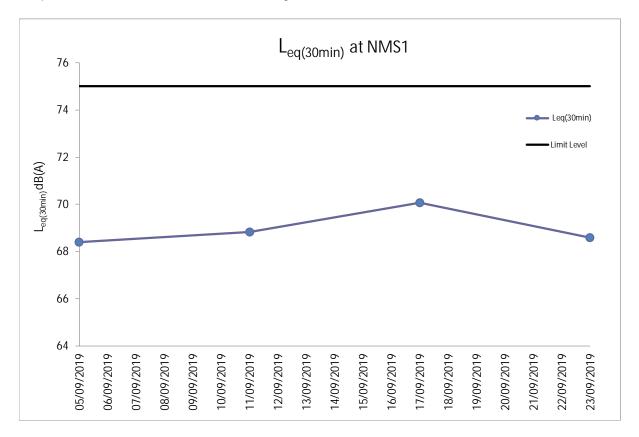
Appendix G. Monitoring Data and Graphical Plots (Air Quality and Noise)

Date	Start Time	Finish Time	Weather	Wind Speed (m/s)	Wind Direction (deg)	1-hour TSP (µ g/m3)
05-Sep-19	8:47	9:47	Sunny	2.7	30	68
05-Sep-19	05-Sep-19 9:47 10:47		Sunny	2.9	73	75
05-Sep-19	10:47	11:47	Sunny	3.4	131	84
11-Sep-19	8:58	9:58	Sunny	1.7	112	41
11-Sep-19	9:58	10:58	Sunny	2.3	65	38
11-Sep-19	10:58	11:58	Sunny	3.7	139	39
17-Sep-19	9:00	10:00	Fine	5.8	104	64
17-Sep-19	10:00	11:00	Fine	2.3	53	71
17-Sep-19	11:00	12:00	Fine	3.8	108	80
23-Sep-19	8:36	9:36	Sunny	2.0	8	67
23-Sep-19	9:36	10:36	Sunny	3.0	54	78
23-Sep-19	10:36	11:36	Sunny	4.2	31	86
27-Sep-19	9:15	10:15	Sunny	1.3	328	68
27-Sep-19	27-Sep-19 10:15 11:15		Sunny	1.2	10	77
27-Sep-19	11:15	12:15	Sunny	0.8	327	86

Data for 1-hour TSP Monitoring at Station AMS1

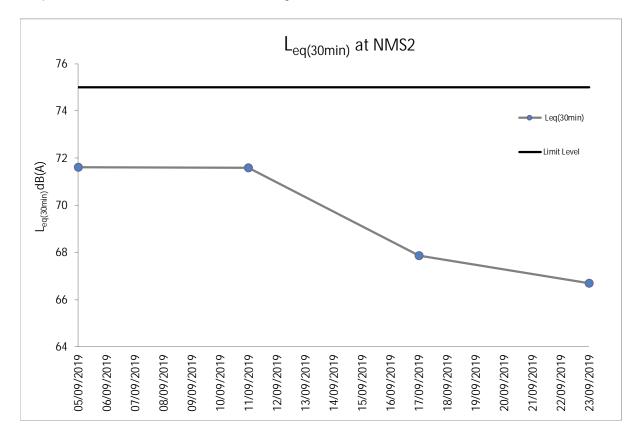

Graphical Presentation for 1-hour TSP Monitoring at AMS1

Date	Start Time	Finish Time	Weather	Wind Speed (m/s)	Wind Direction (deg)	1-hour TSP (µ g/m3)
05-Sep-19	8:02	· · · · · · · · · · · · · · · · · · ·		0.5	Variable	67
05-Sep-19	9:02	1:00	Sunny	2.4	Variable	74
05-Sep-19	05-Sep-19 10:02		Sunny	2.4	Variable	82
11-Sep-19	8:08	1:00	Sunny	2.6	27	38
11-Sep-19	9:08	1:00	Sunny	2.7	115	41
11-Sep-19	10:08	1:00	Sunny	2.4	133	49
17-Sep-19	8:12	1:00	Fine	4.8	95	66
17-Sep-19	9:12	1:00	Fine	5.2	106	73
17-Sep-19	10:12	1:00	Fine	4.1	71	81
23-Sep-19	7:50	1:00	Sunny	2.5	2	65
23-Sep-19	8:50	1:00	Sunny	2.9	2	73
23-Sep-19	9:50	1:00	Sunny	3.2	35	81
27-Sep-19	9:00	1:00	Sunny	0.7	Variable	67
27-Sep-19	10:00	1:00	Sunny	1.9	336	75
27-Sep-19	11:00	1:00	Sunny	2.2	51	83

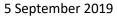

Data for 1-hour TSP Monitoring at Station AMS2

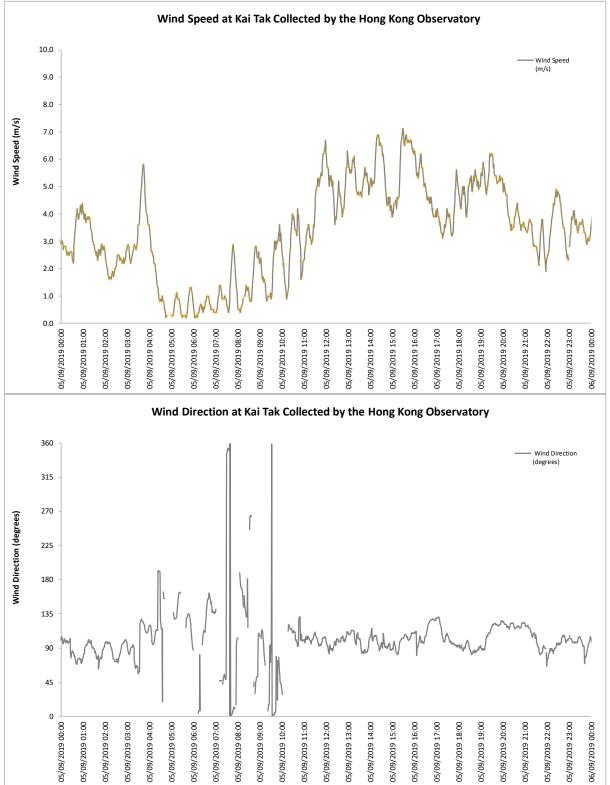
Graphical Presentation for 1-hour TSP Monitoring at AMS2

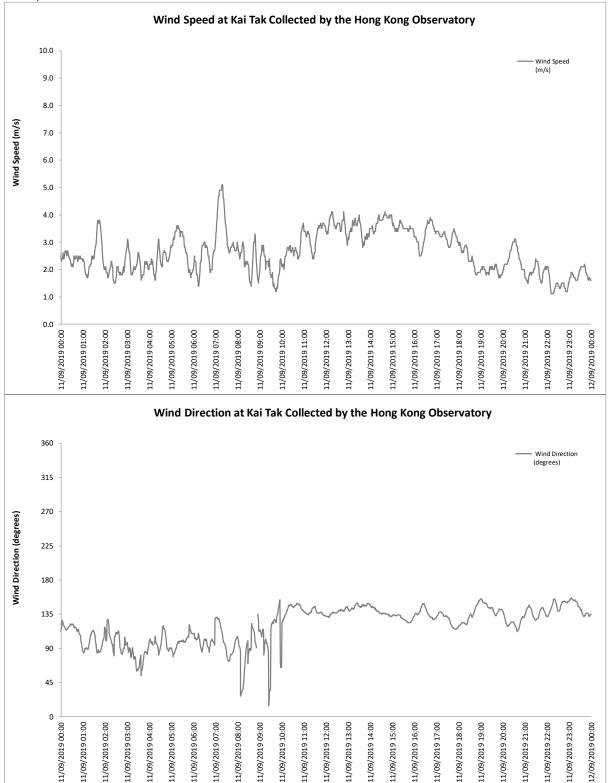
Date	Time	Weather	L _{eq(5min)}	L ₁₀	L ₉₀	Measured L _{eq(30min)}
05-Sep-19	08:05	Sunny	68.2	70.1	63.1	
05-Sep-19	08:10	Sunny	67.9	69.4	62.7	
05-Sep-19	08:15	Sunny	67.7	69.5	62.4	68.4
05-Sep-19	08:20	Sunny	68.2	70.6	63.2	00.4
05-Sep-19	08:25	Sunny	69.0	71.1	64.0	
05-Sep-19	08:30	Sunny	69.2	71.4	63.9	
11-Sep-19	08:12	Sunny	68.2	71.4	62.7	
11-Sep-19	08:17	Sunny	67.9	70.7	61.7	
11-Sep-19	08:22	Sunny	66.2	69.4	61.5	68.8
11-Sep-19	08:27	Sunny	69.7	72.1	63.9	00.0
11-Sep-19	08:32	Sunny	70.1	73.4	63.8	
11-Sep-19	08:37	Sunny	69.7	72.2	63.7	
17-Sep-19	09:03	Fine	70.1	72.1	65.1	
17-Sep-19	09:08	Fine	69.2	71.6	64.9	
17-Sep-19	09:13	Fine	70.9	72.6	65.8	70.1
17-Sep-19	09:18	Fine	71.1	73.7	65.9	70.1
17-Sep-19	09:23	Fine	68.7	70.9	64.5	
17-Sep-19	09:28	Fine	69.9	71.1	65.0	
23-Sep-19	08:39	Sunny	68.2	70.1	63.4	
23-Sep-19	08:44	Sunny	67.1	69.4	62.9	
23-Sep-19	08:49	Sunny	69.0	71.6	64.1	68.6
23-Sep-19	08:54	Sunny	68.4	70.7	63.8	00.0
23-Sep-19	08:59	Sunny	69.7	71.4	64.7	
23-Sep-19	09:04	Sunny	68.7	70.2	63.0	


Data for Noise Monitoring at Station NMS1

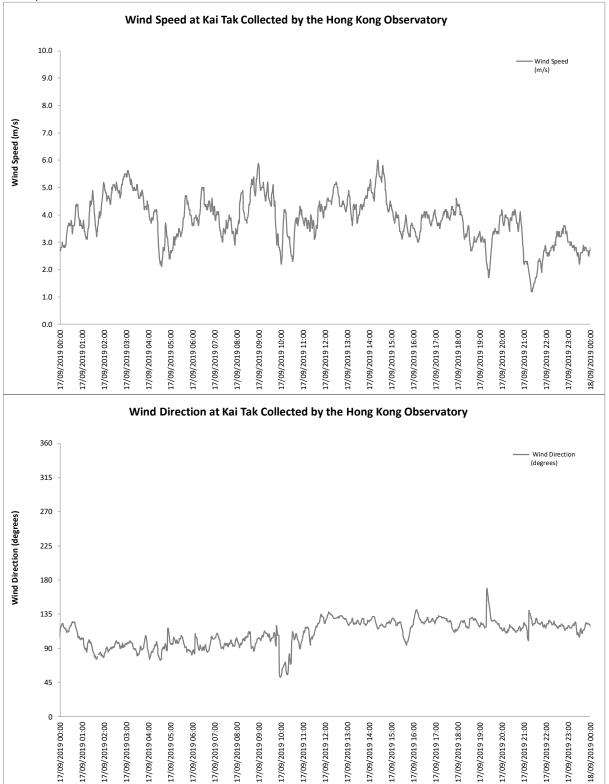
Graphical Presentation for Noise Monitoring at NMS1

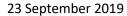

Date	Time	Weather	L _{eq(5min)}	L ₁₀	L ₉₀	Measured L _{eq(30min)}
05-Sep-19	08:51	Sunny	71.1	73.4	64.1	
05-Sep-19	08:56	Sunny	72.1	74.0	65.7	
05-Sep-19	09:01	Sunny	70.9	72.9	64.0	71 /
05-Sep-19	09:06	Sunny	71.1	73.6	64.7	71.6
05-Sep-19	09:11	Sunny	72.2	74.3	65.2	
05-Sep-19	09:16	Sunny	72.1	74.5	65.6	
11-Sep-19	09:00	Sunny	70.1	72.7	64.9	
11-Sep-19	09:05	Sunny	71.2	73.9	65.7	
11-Sep-19	09:10	Sunny	71.9	73.7	65.8	71.6
11-Sep-19	09:15	Sunny	72.4	74.4	64.7	/1.0
11-Sep-19	09:20	Sunny	70.6	73.0	64.5	
11-Sep-19	09:25	Sunny	72.7	74.9	65.8	
17-Sep-19	08:16	Fine	67.9	70.1	64.1	
17-Sep-19	08:21	Fine	66.9	69.4	63.4	
17-Sep-19	08:26	Fine	68.2	71.5	65.2	67.9
17-Sep-19	08:31	Fine	68.0	71.5	65.7	07.9
17-Sep-19	08:36	Fine	67.7	70.6	64.2	
17-Sep-19	08:41	Fine	68.4	71.6	65.0	
23-Sep-19	07:54	Sunny	65.8	67.4	62.1	
23-Sep-19	07:59	Sunny	65.9	68.0	62.4	
23-Sep-19	08:04	Sunny	66.2	68.4	63.1	44 T
23-Sep-19	08:09	Sunny	67.1	69.0	63.9	66.7
23-Sep-19	08:14	Sunny	66.9	68.7	63.4	
23-Sep-19	08:19	Sunny	67.9	69.4	64.0	

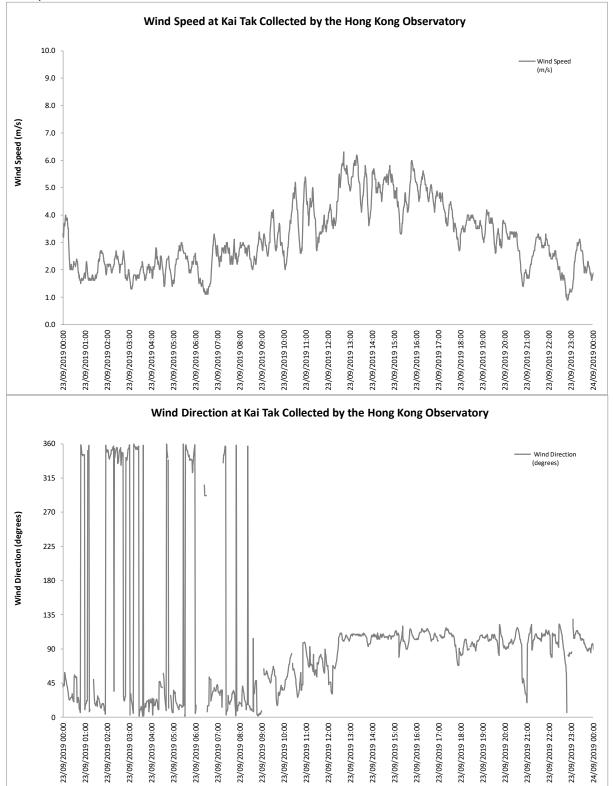

Data for Noise Monitoring at Station NMS2

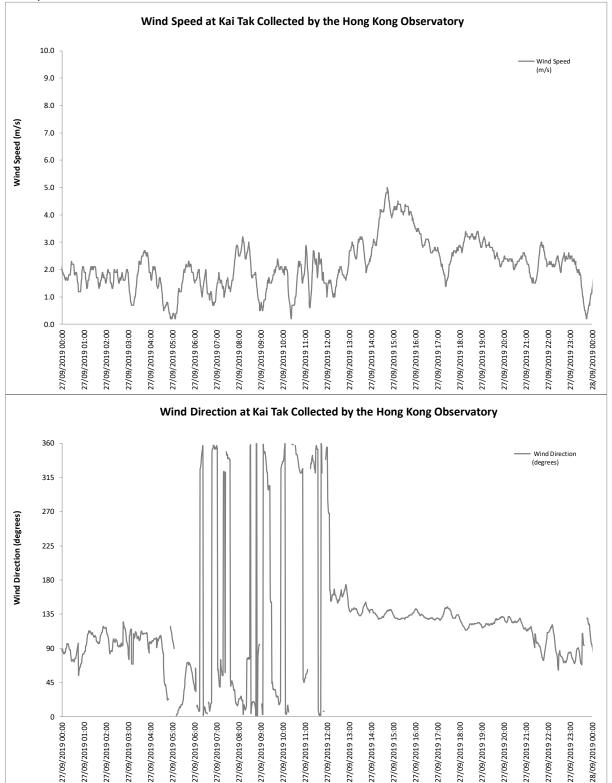

Graphical Presentation for Noise Monitoring at NMS2

Appendix H. Wind Data









Appendix I. Waste Flow Table

 Project:
 Kai Tak Sport Park

 Contract No.:
 HAB/ KTSP/ 01

 Contract Title:
 Design, Construction and Operation of the Kai Tak Sports Park at Kai Tak, Kowloon City District, Hong Kong

 Year of Record:
 2019

Monthly Waste Flow Table

Month	Total	Total		A	ctual Quantitie	s of Inert C&D	Materials Ge	enerated Montl	nly		Actu	ual Quantiti	es of C&D N	laterials Ge	nerated Mor	nthly	Remarks
	Quantity	Quantity Generated	Exc	cavated Mate	rials		Non-e	excavated Mat	erials		Metals	Metals	Paper /	Plastics	Chemical	Other,	
	Generated	(Excluded Excavated Material)	Disposed in Public Fill	Disposed in Sorting Facilities	Other Projects)	Collected by Recycled Company		Reused in other Projects	Disposed in Public Fill	Disposed in Sorting Facilities	(steel bar / metal strip) ⁽¹⁾	(aluminum can) ⁽¹⁾	cardboard packaging ⁽¹⁾	(1) & (4)	waste (wasted lubricant oil/ oil container)		
	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	
	a1	a2	b	b	b	С	d	е	f	g	h	i	j	k	I	m	
Jan-19																	
Feb-19	0.00	0.00	0.00	0	0	0	0	0	0	0	0	0	0	0	0	0	
Mar-19	4960.89	4741.39	219.50	0	0	0	0	0	0	0	11.84	0	0	0	0	4729.55	
Apr-19	1218.47	1211.81	6.66	0	0	0	0	0	0	0	0	0	0	0.06	0	1211.75	
May-19	87.29	87.29	0	0	0	0	0	0	0	0	0	0	0	0.01	0	87.28	
Jun-19	80.78	80.78	0	0	0	0	0	0	0	0	0.67	0	0.08	0.42	0	79.61	
Jul-19	2302.12	614.75	1687.37	0	0	0	0	0	0	0	0	0	0.26	0.95	0	613.54	
Aug-19	3619.81	280.59	3339.22	0	0	0	0	0	0	0	1.77	0	0	1.29	0.6	276.93	
Sep-19	10077.26	350.02	9727.24	0	0	0	0	0	0	0	0	0	0	1.41	0.6	348.01	
Oct-19																	
Nov-19																	
Dec-19																	
Total	22346.62	7366.63	14979.99	0	0	0	0	0	0	0	14.28	0	0.34	4.14	1.2	7346.67	

Total C&D waste generated Total C&D waste generated (excluding excavated materials) Total recycled C&D waste % of recycled C&D waste for BEAM Plus MA10 or MA11

Notes: (1) Metal, paper & plastic were collected by recycler.

(2) The performance target of waste recycling are specified in the Contract.

(3) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(4) Plastics refer to plastic bottles/ containers, plastic/ foam from packaging material.

(5) Broken concrete for recycling into aggregates.

(6) Excavated materials/waste will NOT be considered as part of construction waste. It should be excluded in the calculation.

(7) Disposal of inert waste to public fill or sorting facilities will NOT be considered as recycled waste.

(8)Disposal record for Sep 2019 has been updated according to the latest information from contractor.

22346.62 tonne 7366.627 tonne 18.76 tonne 0.25 % a1=b+c+d+e+f+g+h+i+j+k+l+m a2=c+d+e+f+g+h+i+j+k+l+m a3=c+d+e+h+i+j+k a4=a3/a2 x 100%

Appendix J. Environmental Licences and Permits

Item No. **Type of Permit** Reference **Application** Valid from Valid until Remark / Licence No. Date 1 Environmental EP-544/2017 21 Aug 2017 8 Sep 2017 N/A Issued Permit under EIAO 2 **Construction Dust** 441733 25 Jan 2019 29 Jan 2019 N/A N/A Notification under APCO 3 Construction 7033182 12 Feb 2019 12 Feb 2019 N/A N/A Waste Disposal Account (Main) 4 Construction 8 Jul 2019 7 Nov 2019 7033555 7 Aug 2019 N/A Waste Disposal Account (Vessel) 5 Registration as a WPN5213-12 Feb 2019 N/A 29 Jan 2019 N/A 286-H3906-**Chemical Waste** Producer 02 6 Discharge WT00034082 15 Feb 2019 26 Jun 2019 30 Jun 2024 Issued Licence under -2019 WPCO 7 Construction PP-RE0023-26 Apr 2019 18 May 2019 8 Oct 2019 Issued Noise Permit 19 (Percussive Piling) Construction GW-RE0654-8 1 Aug 2019 19 Aug 2019 14 Feb 2020 Issued Noise Permit 19 (Construction Works)

Table J.1: Summary of Environmental Licences and Permits Status

Appendix K. Environmental Mitigation Measures Implementation Status

Air Quality – Recommended Mitigation Measures

Air Quality Mitigation Measures during construction	Implementation Status
 Good housekeeping to minimize dust generation, e.g. by properly handling and storing dusty materials 	\checkmark
 Store cement in shelter with 3 sides and the top covered by impervious materials if the stack exceeds 20 bags 	\checkmark
 Cement delivered in bulk should be stored in a closed silo fitted with an audible high level alarm which is interlocked with the material filling line and no overfilling is allowed 	\checkmark
 Loading, unloading, transfer, handling or storage of bulk cement should be carried out in a totally enclosed system or facility, and any vent or exhaust should be fitted with an effective fabric filter or equivalent air pollution control system 	✓
 Dusty materials (e.g. debris) should be wetted by misting / water-spraying before any loading, unloading, transfer or transport operation 	\checkmark
 Any skip hoist for material transport should be fully enclosed by impervious sheeting 	✓
 Surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation takes place should be sprayed with water or a dust suppression chemical continuously 	~
 Any area that involves demolition activities should be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities to maintain the entire surface wet 	√
 Excavation area should be minimized as far as possible 	\checkmark
 Stockpile of dusty materials should not be extended beyond the pedestrian barriers, fencing or traffic cones 	\checkmark
 Excavated or stockpile of dusty material should be covered entirely by impervious sheeting or sprayed with water to maintain the entire surface wet, and then removed, backfilled or reinstated where practicable within 24 hours of the excavation or unloading 	Р
 Dusty materials remaining after a stockpile is removed should be wetted with water and cleared from the surface of roads 	\checkmark
 Properly fitted side and tail boards are necessary for any vehicle with open load area 	✓
 While transporting materials that potentially create dust (e.g. debris), materials should not be loaded higher than side and tail boards, and should be fully covered by tarpaulin or similar materials which extent at least 300 mm over the edges of the side and tail boards to prevent leakage. 	✓
Limit the maximum vehicle speed within the site to 10km/hr	✓
 Haulage and delivery vehicles should be confined to designated roads 	✓
 Every main haul road should either be 1.) paved with concrete and kept clear of dusty materials, or 2.) sprayed or watered to maintain the entire road surface wet 	√
All on-site unpaved roads should be compacted and kept free of lose materials as possible	\checkmark
 Provide vehicle washing (e.g. wheel washing bay & high pressure water jet where practicable) at every vehicle exit point for cleaning vehicle body and wheels 	\checkmark
• The vehicle washing area and the road between washing area and site exit should be paved with concrete, bituminous or other hardcores	\checkmark
 The portion of any road leading only to construction site that is within 30m of a vehicle entrance or exit should be kept clear of dusty materials. 	\checkmark
 Dusty materials on every vehicle's body and wheels should be removed in washing area before leaving the site 	\checkmark

Air Quality Mitigation Measures during construction	Implementation Status
Regular maintenance of all plant equipment	\checkmark
 Throttle down or switch off unused machines or machine in intermittent use 	✓
 If the site is adjacent to area where accessible to the public (e.g. road and service lane etc.), hoarding of not less than 2.4 m high from ground level should be erected along the adjoining the entire length of that portion of the site boundary, except for a site entrance or exit. The hoarding should be well maintained throughout the construction period. 	~
 Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting should be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding 	N/A
• Exposed earth should be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shortcrete or other suitable surface stabiliser within six months after the last construction activity on the construction site or part of the construction site where the exposed earth lies	✓
 Carry out air quality monitoring throughout the construction period 	\checkmark
 Carry out weekly site inspection to audit the implementation of mitigation measures 	✓
 Regular watering once per hour on exposed worksites and haul road with an equivalent intensity of not less than 1.3L/m3 to achieve 91.7% dust removal efficiency. 	\checkmark
 Provision of electrical vehicle (EV) charging facilities in at least one-third of the car parking spaces for private cars. Provision of EV charging enabling facilities in all car parking spaces provided for private cars. 	N/A
Non-Road Mobile Machinery (NRMMs)	\checkmark
 All NRMMs operated on-site are approved or exempted (as the case may be) and affixed with the requisite approval/exemption labels under the Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation or are in the process of application for such approval/exemption during the relevant grace period. 	√

Noise – Recommended Mitigation Measures

Noise Mitigation Measures during construction	Implementation Status
 Adopt good site practice, such as throttle down or switch off equipment unused or intermittently used between works 	\checkmark
Regular maintenance of equipment to prevent noise emission due to impair	\checkmark
 Position mobile noisy equipment in locations away from NSRs and point the noise sources to directions away from NSRs 	\checkmark
Use silencer or muffler for equipment	√
Make good use structures for noise screening	✓
 Use Quality Powered Mechanical Equipment (QPME) and quiet equipment which produces lower noise level. 	\checkmark
• Erect movable noise barrier of 3m height to shed large plant equipment (e.g. breaker, backhoe & mobile crane) or hand-held items (e.g. poker, wood saw, power rammer & compactor) near low-rise NSR. Where necessary, special design (e.g. with noise absorbing material or bend top) should be adopted. The barrier's length should be at least five times greater than its height, and the minimum surface density is 10 kg/m2. Alternatively, acoustic shed, enclosure or silencer (for generator, air compressor and concrete pump) or acoustic mat (for piling) can be adopted.	✓
Carry out regular site inspection to audit the implementation of mitigation measures	√
Carry out noise monitoring throughout the construction period	✓

Water Quality – Recommended Mitigation Measures

Water Quality Mitigation Measures during construction	Implementation Status
 Practices outlined in ProPECC PN 1/94 Construction Site Drainage should be adopted. 	Р
 Install perimeter channels in the works areas to intercept runoff from boundary prior to the commencement of any earthwork 	\checkmark
 To prevent storm runoff from washing across exposed soil surfaces, intercepting channels should be provided. 	\checkmark
 Drainage channels are required to convey site runoff to sand/silt traps and oil interceptors. Provision of regular cleaning and maintenance to ensure the normal operation of these facilities throughout the construction period. 	Р
 Any practical options for the diversion and realignment of drainage should comply with both engineering and environmental requirements 	\checkmark
 Minimum distances of 100 m should be maintained between the discharge points of construction site runoff and the existing WSD saltwater intake and EMSD cooling water intake. 	\checkmark
 The following good site measures should be adopted for the use of the existing barging facilities being operated by the MTR SCL Project: - All vessels should be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash. 	N/A
- All hopper barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material.	
- Construction activities should not cause foam, oil, grease, scum, litter or other objectionable matter to be present on the water within the site.	
- Loading of barges and hoppers should be controlled to prevent splashing of material into the surrounding water.	
 Barges or hoppers should not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation. Whole construction site Contractor P WPCO, EIAO- TM Page 	
 The runoff and wastewater generated from the works areas should be treated so that it satisfies all the standards listed in the TM-DSS. 	\checkmark
 Reuse and recycling of the treated effluent from construction site runoff. 	N/A
 Weekly site audit should be carried out to check the implementation status of the recommended water quality impact mitigation measures throughout construction period. 	\checkmark
 The construction programme should be properly planned to minimise soil excavation, if any, in rainy seasons. 	\checkmark
 Any exposed soil surfaces should be properly protected to minimise dust emission. 	\checkmark
 In areas where a large amount of exposed soils exist, earth bunds or sand bags should be provided. 	\checkmark
 Exposed stockpiles should be covered with tarpaulin or impervious sheets at all times. 	\checkmark
 The stockpiles of materials should be placed at locations away from any stream courses so as to avoid releasing materials into the water bodies. 	\checkmark
 Final surfaces of earthworks should be compacted and protected by permanent work. 	\checkmark
 Haul roads should be paved with concrete and the temporary access roads protected using crushed stone or gravel, wherever practicable. 	\checkmark
 Wheel washing facilities should be provided at all site exits to ensure that earth, mud and debris would not be carried out of the works areas by vehicles. 	✓
• Good site practices should be adopted to keep the site dry and tidy, such as clean the rubbish and litter on the construction sites.	✓
 Adequate temporary site drainage and pumping should be provided, if necessary. 	✓
• Provide sufficient temporary toilets in the works areas. The toilet facilities should be more than 30 m from any watercourse. A licensed waste collector should be deployed to clean the temporary toilets on a regular basis.	~
 Notices should be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment during the construction phase of the Project. 	\checkmark

Water Quality Mitigation Measures during construction	Implementation Status
 Contractor must register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation should be observed and complied with for control of chemical wastes. 	×
 Any service shop and maintenance facilities should be located on hard standings within a bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should only be undertaken within the areas appropriately equipped to control these discharges. 	✓
Clean the construction sites on a regular basis.	\checkmark
 Oil interceptor in car parking area shall be designed and constructed according to Practice Note for Authorized Persons, Registered Structural Engineers and Registered Geotechnical Engineers, APP-46 (PNAP 124) 	N/A
 Provide two sequential storage tanks to contain surface water with residual fertilizers and pesticides and third holding tank for incidental rainstorm 	N/A
Sewerage and Sewage Treatment Implications	
 Implementation of Sewer No. 1 and Sewer No.2 as proposed in Sections 7.2.2 - 7.2.3 of the EIA Report 	~

Waste Management – Recommended Mitigation Measures

Waste Management Mitigation Measures during construction	Implementation Status
 Inert C&D materials (or public fills) will be used to form the ramps and other filling area as far as civil engineering design permits. 	\checkmark
• The contractor should formulate waste management measures on waste minimization, storage, handling and disposal in a Waste Management Plan as part of Environmental Management Plan.	\checkmark
Adopt good site practice as follows:	\checkmark
 Provide training to workers on site cleanliness, waste management (waste reduction, reuse and recycle) and chemical handling procedures 	
- Provide sufficient waste collection points and regular removal	
- Cover waste materials with tarpaulin or in enclosure during transportation	
- Maintain drainage systems, sumps and oil interceptors	
- Sort out chemical waste for proper handling and treatment onsite or offsite	
Adopt waste reduction measures as follows:	Р
 Allocate area/containers for sorting, recovering and storing waste for reuse, recycle or disposal (e.g. demolition debris and excavated materials, general refuse like aluminium cans.) Remove waste from the Site for sorting once generated if no suitable space can be identified. 	
- Allocate area for proper storage of construction materials to prevent contamination	
- Minimize wastage through careful planning and avoiding over-purchase of construction materials	
Store waste materials properly as follows:	\checkmark
- Avoid contamination by proper handling and storing waste	
- Prevent erosion by covering waste	
- Apply water spray on excavated materials	
- Maintain and clean storage area regularly	
- Sort and stockpile different materials at designated location to enhance reuse	
 Apply for relevant waste disposal permits in accordance with the Waste Disposal Ordinance (Cap. 354), Waste Disposal (Charges for Disposal of Construction Waste) Regulation (Cap. 345) and the Land (Miscellaneous Provisions) Ordinance (Cap. 28), Dumping at Sea Ordinance (Cap. 466). 	✓
 Hire licensed waste disposal contractors for waste collection and removal. Dispose waste at licensed waste disposal facilities. 	✓
 Implement trip-ticket system for recording the amount of waste generated, recycled and disposed, including chemical wastes 	\checkmark

Mott MacDonald | Agreement No. CE 30/2018 (EP) Environmental Team for Kai Tak Sports Park – Design and Construction Monthly EM&A Report for September 2019

Vaste Management Mitigation Measures during construction	Implementation Status
Reduce water content in wet spoil generated from piling work by mixing with dry materials. Only dispose treated spoil with less than 25% dry density to Public Fill Reception Facilities	\checkmark
Dispose dry waste or waste with less than 70% water content by weight to landfill	✓
Follow the Code of Practice on the Packaging, Labelling and Storage of Chemical Waste as follows:	Р
- Store chemical wastes with suitable containers. Seal and maintain the container to avoid leakage or spillage during storage, handling and transport	
- Label chemical waste containers in both English and Chinese with instructions in accordance to Schedule 2 of the Waste Disposal (Chemical Waste) (General) Regulation	
- The container capacity should be smaller than 450 litres unless agreed by the EPD	
Comply with the requirement of the chemical storage area:	\checkmark
 Store only chemical waste and label clearly the chemical characters of the waste Have at least 3 sides enclosed and protected from rainfall with cover Provide sufficient ventilation 	
- Have impermeable floor and has bunds to contain 110% of the capacity of the largest container or 20% of the total volume of the stored waste in the area, whichever is larger	
- Adequately spaced incompatible materials	
 Transfer used lubricants, waste oils and other chemicals to oil recycling companies, if possible, and empty oil drums for reuse or refill. No direct or indirect discharge is permitted 	\checkmark
 Hire licensed chemical waste disposal contractors for waste collection and removal. Dispose chemical waste at the approved Chemical Waste Treatment Centre at Tsing Yi or other licensed facility 	✓
Hire reputable waste collector to separately collect and dispose general refuse from other wastes. Cover the waste to prevent being blown away	\checkmark
The hauling of C&D materials shall follow established environmental mitigation measures as stated in Practice Note for Registered Contractors No. 17 "Control of Environmental Nuisance from Construction Sites" issued by the Buildings Department	~
Provide recycling bins for sorting out recyclables for collection by recycling companies. Non- recyclables should be removed to designated landfills every day by licensed collectors to prevent environmental and health nuisance.	✓
Organize training and reminders to site staff on waste minimization through avoidance and reduction, reusing and recycling	\checkmark
Bentonite slurry which will not be reused shall be disposed of from the Site as soon as possible. Residual used dewatered bentonite slurry should be disposed to a public filling area and liquid bentonite slurry if mixed with inert fill material should be disposed to a public filling area.	N/A
If chemical wastes were to be produced at the construction site, the Contractor would be required to register with the EPD as a Chemical Waste Producer, and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Good quality containers compatible with the chemical wastes should be used, and incompatible chemicals should be stored separately. Appropriate labels should be securely attached on each chemical waste container indicating the corresponding chemical characteristics of the waste such as explosive, flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The Contractor shall use a licensed collector to transport the chemical wastes.	~
 The licensed collector shall deliver the waste to the Chemical Waste Treatment Centre at Tsing Yi, or other licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation 	
Carry out weekly site inspection to check the implementation status of the recommended waste management measures.	\checkmark
The barging of C&DM for this Project shall use the existing Kai Tak Barging Facility (KTBF), or otherwise approved by the Director.	N/A

Ecology – Recommended Mitigation Measures

Ecology Mitigation Measures during construction	Implementation Status
 Erection of hoarding, fencing or provision of clear demarcation of work zone 	\checkmark

Ecology Mitigation Measures during construction	Implementation Status
 Designate areas for placement of equipment, building materials and wastes away from drainage channels 	\checkmark
 Carry out weekly site inspection to check the implementation status and the effectiveness of the proposed mitigation measures 	\checkmark

Landscape and Visual – Recommended Mitigation Measures

Landscape and Visual Mitigation Measures during construction	Implementation Status
Construction Lighting Control	\checkmark
 All security floodlights for construction sites should be equipped with adjustable shields, frosted diffusers and reflective covers, and be controlled to minimize light pollution and night-time glare to the visual sensitive receivers (VSRs). 	
Temporary Landscape Treatments	\checkmark
 Including vertical greening, pot planting and application of green roofing to site offices, Hydroseeding of site formation areas and short term greening of site boundaries and land not immediately developed. 	
Decoration of Hoarding	✓
 Erection of screen hoardings should be designed appropriately to be compatible with the existing urban context, either brightly and imaginatively or with visually unobtrusive design and colours where more appropriate. 	
 All security floodlights for construction sites shall be equipped with adjustable shield, frosted diffusers and reflective covers, and be carefully controlled to minimize light pollution and night-time glare to nearby receivers 	\checkmark
Site inspection should be undertaken once every two weeks.	✓
Compensatory Tree Planting	N/A
- A new parkland area is created in the project development to be used for the implementation of compensatory tree planting to offset the net loss of key landscape resources. It is recommended that 340 trees be planted in this regard and a compensatory tree planting proposal outlining the locations of tree compensation will be submitted separately in seeking relevant government department's approval in accordance with DEVB TC No.7/2015.	

Other – Recommended Mitigation Measures

• Relevant environmental permits/licences should be posted at all vehicle entrances/exits.

Legend:

✓ Implemented

- × Not implemented
- P Partially implemented
- N/A Not applicable

 \checkmark

Appendix L. Statistics on Environmental Complaints, Notification of Summons and Successful Prosecutions

 Table L.1: Statistics on Environmental Complaints, Notifications of Summons and

 Successful Prosecutions

Reporting Period	Complaints	Notifications of Summons	Successful Prosecutions
This reporting period (September 2019)	1	0	0
From commencement data of construction to end of reporting month	3	0	0

Appendix M. Complaint Investigation Report

Environmental Monitoring and Audit

RECEIPT OF	COMPLAINT		Ref: COM_0003	
Date:	18 September 2019			
Time:	14:19			
From:	PS Chan (Hip Hing Construction Limited))		
Via:	Email			
Contact no.:	98699982			
COMPLAINAN	NT			
Name:	Mr. W.K. Tse	Address: -		
Contact no.:	2117 7572			
DETAILS OF O	COMPLAINT			
Date:	4 September 2019			
Time:	-			
Parameter:*	Dust Noise Water Other (specif	fy):		
-Complaint of d -Complainant we -Please ensure th	 Description: EPD notified Contractor of complaint on 17 September 2019. (EPD Ref: 19-24781) -Complaint of daytime percussive piling from the construction site of Kai Tak Sports Park. -Complainant would like percussive piling to be carried out later in the morning, i.e. after 08:30 hrs. -Please ensure the work fulfil the relevant environmental legislation and conditions stipulated in the construction noise permit. 			
INVESTIGATI	ON RESULT & RESPONSE			
ET, IEC and SOR	notified on: 18 September 2019			
Investigation cond	lucted on: 20 September 2019			
Result of investiga	ation:			
(see attached phot	or percussive piling works had been used to re- o record for 4 September 2019)			
2. The percussive piling activities was carried out on 4 September 2019, between 8:00 a.m. and 9:30 a.m., fulfilling the construction noise permit requirement (Ref. No. PP-RE0023-19)				
RECOMMENI	DATIONS / MITIGATION MEASURES	/ ACTIONS		
 Conduct regular checking to ensure the implementation of noise barrier for all percussive pilling works. Consider to reschedule the percussive pilling works activities to be carried out later in the morning, e.g. after 8:30 a.m. as far as possible to reduce the noise nuisance to nearby sensitive receivers during the morning session. Consider to revise the CNP so as to start the piling works at 0830 with total daily piling duration unchanged. 				
Prepared by:	Sunny Chan	Title: E	nvironmental Team Leader	
Signature:	umy Chan	Date: 2	24 September 2019	

Interim Report on Complaint Investigation

Environmental Monitoring and Audit

ATTACHMENTS 1)Photos of noise barrier on 4 September 2019

* Delete where inappropriate

Photo of Investigation Record

1. Noise barrier for percussive piling had been used to reduce the noise nuisance to sensitive receivers.