Agreement No. CE 30/2018 (EP) Environmental Team for Kai Tak Sports Park Design and Construction

Monthly EM\&A Report for May 2022

June 2022

Home Affairs Bureau
1/F, Block A, Kai Tak Sports Park Site Office, Muk Tai Street, Kai Tak, Kowloon

Agreement No. CE 30/2018 (EP)
 Environmental Team for Kai Tak Sports Park Design and Construction

Monthly EM\&A Report for May 2022

June 2022

Contents

Executive summary 1
1 Introduction 4
1.1 Background 4
1.2 Project Organisation 5
1.3 Works Area and Construction Programme 5
1.4 Construction Works undertaken during the Reporting Period 6
2 Air Quality Monitoring 7
2.1 Introduction 7
2.2 Monitoring Parameters, Frequency and Duration 7
2.3 Monitoring Locations 7
2.4 Monitoring Action and Limit Levels 7
2.5 Monitoring Schedule for the Reporting Period 8
2.6 Monitoring Equipment 8
2.7 Monitoring Methodology 8
2.8 Monitoring Results 9
2.9 Wind Data 9
3 Noise Monitoring 10
3.1 Introduction 10
3.2 Monitoring Parameters, Frequency and Duration 10
3.3 Monitoring Locations 10
3.4 Action and Limit Levels 11
3.5 Monitoring Schedule for the Reporting Period 11
3.6 Monitoring Equipment 11
3.7 Monitoring Methodology 11
3.8 Monitoring Results 12
4 Environmental Site and Audit 13
4.1 Site Inspection 13
4.2 Advice on the Solid and Liquid Waste Management Status 15
4.3 Environmental Licenses and Permits 15
4.4 Implementation Status of Environmental Mitigation Measures 15
4.5 Summary of Exceedance of the Environmental Quality Performance Limit 16
4.6 Summary of Complaints, Notification of Summons and Successful Prosecution 16
5 Future Key Issues 17
5.1 Construction Programme for the Coming Months 17
5.2 Environmental Site Inspection and Monitoring Schedule for the Next Reporting Period 17
6 Conclusions 18
6.1 Conclusions 18

Figures

Figure 2.1: Location of Air Quality Monitoring Stations
Figure 3.1: Location of Noise Monitoring Stations

Appendices
 Appendix A. Project Organization for Environmental Works
 Appendix B. Location of Works Areas
 Appendix C. Construction Programme
 Appendix D. Event and Action Plan
 Appendix E. Environmental Site Inspection and Monitoring Schedule
 Appendix F. Calibration Certificates
 Appendix G. Monitoring Data and Graphical Plots (Air Quality and Noise)
 Appendix H. Wind Data
 Appendix I. Waste Flow Table
 Appendix J. Environmental Licences and Permits
 Appendix K. Environmental Mitigation Measures Implementation Status
 Appendix L. Statistics on Environmental Complaints, Notification of Summons and Successful Prosecutions

Tables

Table 1.1: Contact Information of Key Personnel 5
Table 2.1: Air Quality Monitoring Parameters, Frequency and Duration 7
Table 2.2: Construction Dust Monitoring Locations 7
Table 2.4: Action and Limit Levels for 1-hour TSP 8
Table 2.5: 1-hour TSP Monitoring Equipment 8
Table 2.6: Summary of 1-hour TSP Monitoring Results During the Reporting Period 9
Table 3.1: Noise Monitoring Parameters, Frequency and Duration 10
Table 3.2: Construction Noise Monitoring Locations 10
Table 3.4: Action and Limit Level for Construction Noise 11
Table 3.5: Noise Monitoring Equipment 11
Table 3.6: Summary of Construction Noise Monitoring Results During the Reporting Period 12
Table 4.1: Summary of Site Inspections and Recommendations 14
Table 5.1: Construction Activities for the Next Reporting Period 17
Table D.1: Event and Action Plan for Construction Air Quality (Action Level)
Table D.2: Event and Action Plan for Construction Air Quality (Limit Level)
Table D.3: Event and Action Plan for Construction Noise
Table E.1: Site Inspection and Monitoring Schedule for May 2022

Table E.2: Tentative Site Inspection and Monitoring Schedule for June 2022
Table J.1: Summary of Environmental Licences and Permits Status (KTSP)
Table J.2: Summary of Environmental Licences and Permits Status (H/O Development)
Table L.1: Statistics on Environmental Complaints, Notifications of Summons and Successful Prosecutions

Executive summary

The Project - hereby meaning the Designated Project (Items O. 6 and O. 7 Part I, Schedule 2 of the Environmental Impact Assessment Ordinance (EIAO)), comprising the "Kai Tak Sports Park" (KTSP) project and the Hotel and Office (H/O) Development of NKIL 6607 adjoining the KTSP is located in the Kai Tak Development (KTD) area in Kowloon.

An EIA Report for the Project (Register No. AEIAR-204/2017) was approved by the Environmental Protection Department (EPD) on 6 January 2017. The current Environmental Permit (EP) for the Project, namely No. EP-544/2017, was issued on 8 September 2017. These documents are available through the EIA Ordinance Register. The Project construction works commenced on 8 April 2019.

In February 2019, Mott MacDonald Hong Kong Limited was appointed by the Home Affairs Bureau (HAB) as the Environmental Team (ET) to implement the Environmental Monitoring \& Audit (EM\&A) programme for the construction phase and first year of operation of the Project in accordance with the approved EM\&A Manual.

This is the $38^{\text {th }}$ Monthly EM\&A Report for the construction phase of the Project which summaries findings of the EM\&A programme during the reporting period from 1 to 31 May 2022.

Key Construction Works in the Reporting Period

A summary of construction activities undertaken during the reporting period is presented below:

KTSP

- Rebar fixing;
- Mobilization and lifting;
- Concreting;
- Excavation; and
- Main Stadium pre-cast material delivery.

H/O Development

- Excavation;
- Rebar fixing; and
- Concreting.

Environmental Monitoring and Audit Progress

The monthly EM\&A programme was undertaken by ET in accordance with the approved EM\&A Manual. A summary of the monitoring activities during the reporting period is presented below:

Activity	Monitoring Locations	Date
Air Quality Monitoring (1-hour TSP)	AMS1, AMS2	5, 11, 17, 23, 27 May 2022
Noise Monitoring ($\mathrm{L}_{\text {eq (}}^{\text {(} 30 \mathrm{~min} \text {) }}$)	NMS1, NMS2	5, 11, 17, 23 May 2022
Weekly environmental site inspections	-	4, 11, 18, 24 May 2022
Landscape and visual site inspections	-	4, 18 May 2022

Breaches of Action and Limit Levels

Air Quality

There was no breach of Action or Limit Levels for Air Quality (1-hr TSP) during the reporting month.

Noise
There was no breach of Action or Limit Levels for noise level during the reporting month.

Complaint Log

There were no complaints in relation to the environmental impact received during the reporting month.

Notifications of Summons and Successful Prosecutions

There were no notifications of summons or prosecutions received during this reporting period.

Reporting Changes

There was no reporting change during the reporting period.

Future Key Issues

The future key issues to be undertaken in the upcoming month are:

KTSP

- Rebar fixing;
- Mobilization and lifting;
- Concreting;
- Excavation; and
- Main Stadium pre-cast material delivery.

H/O Development

- Excavation;
- Rebar fixing; and
- Concreting.

1 Introduction

1.1 Background

The Project - hereby meaning the Designated Project (Items O. 6 and O. 7 Part I, Schedule 2 of the Environmental Impact Assessment Ordinance (EIAO)), comprising the "Kai Tak Sports Park" (KTSP) project and the Hotel and Office (H/O) Development of NKIL 6607 adjoining the KTSP is located in the Kai Tak Development (KTD) area in Kowloon.

The key construction works of the Project include:

(i) KTSP project

a. a multi-purpose Main Stadium with a spectator capacity of around 50,000;
b. a Public Sports Ground, with a spectator capacity of around 5,000;
c. an Indoor Sports Centre with a multi-purpose main arena with a seating capacity of up to 10,000 and an ancillary sports hall with a seating capacity of 500;
d. retail and dining outlets with a gross floor area (GFA) of about 57,000 square metres $\left(\mathrm{m}^{2}\right)$, a bowling centre with 40 lanes and a health and wellness centre with about 2,500 m^{2} GFA;
e. more than 8 hectares of public open space including landscaped deck structures across Shing Kai Road, passive amenities and park features, outdoor ball courts; and
f. ancillary facilities such as car parks, toilets, changing rooms, etc.
(ii) H/O Development
g. an office development;
h. a 300 -room hotel with a GFA of about $16,000 \mathrm{~m}^{2}$; and
i. ancillary facilities such as retails, car parks, etc.

In February 2019, Mott MacDonald Hong Kong Limited (MMHK) was commissioned by the Home Affairs Bureau (HAB) under Agreement No. CE 30/2018 (EP) to undertake the Environmental Team (ET) services for carrying out the Environmental Monitoring \& Audit (EM\&A) programme during the construction phase and first year of operation of the Project in accordance with the approved Environmental Impact Assessment (EIA) Report (Register No.: AEIAR-204/2017), EM\&A Manual (including any subsequent amendments) and EP (including any subsequent variations of it and/or any further environmental permit issued under the EIAO).
The current EP (No. EP-544/2017) was issued by EPD on 8 September 2017.
This is the $38^{\text {th }}$ Monthly EM\&A Report summarising the key findings of the construction phase EM\&A programme from 1 to 31 May 2022 (the "reporting period") and is submitted to fulfil Condition 3.4 of the EP.

1.2 Project Organisation

The organisation chart and lines of communication with respect to the on-site environmental management structure of the key personnel are shown in Appendix A. The key personnel contact names and numbers are summarized in Table 1.1.

Table 1.1: Contact Information of Key Personnel

Party	Position	Name	Telephone	Fax
Project Proponent (Home Affairs Bureau)	Project Director (Sports Park)	Edwin Wong	35863403	35860591
Supervising Officer's Representative (Home Affairs Bureau)	Senior Engineer	Keith Man	35863149	35860591
Environmental Team (Mott MacDonald Hong Kong Limited)	Environmental Team Leader	Sunny Chan	28285962	28271823
	Deputy Environmental Team Leader	Ken Wong	28285757	28271823
Independent Environmental Checker (ERM Hong Kong Limited)	Independent Environmental Checker	Mandy To	22713000	30158052
Contracted Party (Kai Tak Sports Park Limited)	Assistant Contract Manager	Eric Chung	35525003	28459295
	Environmental Officer	Gary Yim	35525013	35525099
Hotel and Office Development				
Project Manager (Sanon Limited)	Senior Group Project Director	David Lee	29108368	28159949
	Project Manager	William Chan	29108363	28159949
Project Architect Engineers Limited)	Project Architect	Patrick Chan	28327205	-
Contractor (Hip Hing Construction Co., Ltd.	Project Manager	Ian Ku	60999686	-
24-hour Community Liaison Hotline	-	-	55876112	-

1.3 Works Area and Construction Programme

The construction works commenced on 8 April 2019. The works area of the Project is shown in Appendix B. The Construction Works Programme of the Project is provided in Appendix C.

[^0]
1.4 Construction Works undertaken during the Reporting Period

A summary of construction activities undertaken during this reporting period is presented below:

KTSP

- Rebar fixing;
- Mobilization and lifting;
- Concreting;
- Excavation; and
- Main Stadium pre-cast material delivery.

H/O Development

- Excavation;
- Rebar fixing; and
- Concreting.

2 Air Quality Monitoring

2.1 Introduction

In accordance with the EM\&A Manual of the Project, baseline 1-hour Total Suspended Particulates (TSP) levels at air quality monitoring stations AMS1 and AMS2 were established. Impact 1-hour TSP monitoring was conducted for at least three times every 6 days.

2.2 Monitoring Parameters, Frequency and Duration

Table 2.1 summarises the monitoring parameters, frequency and duration of impact noise monitoring.

Table 2.1: Air Quality Monitoring Parameters, Frequency and Duration

Parameter	Frequency and Duration
1-hour TSP	3 times every six-days

2.3 Monitoring Locations

According to the EM\&A Manual, a total of five air quality monitoring stations are identified for impact monitoring. Of these, three air sensitive receivers are planned residential use and were not available for baseline monitoring; the same three are also currently not available for impact monitoring.

Table 2.2 describes the impact air quality monitoring stations and Figure 2.1 shows their locations.

Table 2.2: Construction Dust Monitoring Locations

Monitoring Station	Location	Status
AMS1	Hong Kong Society for the Blind Workshop, Roof Floor	Existing Air Sensitive Receiver
AMS2	Sky Tower, Podium of Tower 7	Existing Air Sensitive Receiver
AMS3	Kai Tak Area 2B Site 4 (2B4) (residential use)	Planned Air Sensitive Receiver
AMS4	Kai Tak Area 1K Site 3 (1K3) (residential use)	Planned Air Sensitive Receiver
AMS5	Kai Tak Area 1L Site 3 (1L3) (residential use)	Planned Air Sensitive Receiver

During the reporting period, monitoring locations AMS1 and AMS2 were set up at the proposed locations for impact monitoring.

Permission on setting up and carrying out impact monitoring works at AMS3, AMS4 and AMS5 will be sought once each respective development is completed and occupied.

2.4 Monitoring Action and Limit Levels

The Action and Limit Levels for 1-hr TSP are provided in Table 2.3.

Table 2.3: Action and Limit Levels for 1-hour TSP

Monitoring Station	Action Level, $\mu \mathrm{g} / \mathrm{m}^{3}$	Limit Level, $\mu \mathrm{g} / \mathrm{m}^{3}$
AMS1 - Hong Kong Society for the Blind Workshop, Roof Floor	283	500
AMS2 - Sky Tower, Podium of Tower 7	280	500
AMS3 - Kai Tak Area 2B Site 4 $(2 B 4)$ (residential use)	287^{*}	500
AMS4 - Kai Tak Area 1K Site 3 (1K3) (residential use)	287^{*}	500
AMS5 - Kai Tak Area 1L Site 3 $(1 L 3)$ (residential use)	287^{*}	500

*Remarks: the Action Level for AMS3, AMS4 and AMS5 were derived from an alternative monitoring station AMS3-4-5 during the baseline monitoring.

The event and action plan is provided in Appendix D.
If exceedance(s) at these stations is/are recorded by the ET of the Project, it will carry out an investigation and findings will be reported in the monthly EM\&A Report.

2.5 Monitoring Schedule for the Reporting Period

The schedule for air quality monitoring at AMS1 and AMS2 in the reporting period is presented in Appendix E.

2.6 Monitoring Equipment

Portable direct reading dust meters were used to carry out the 1-hour TSP monitoring. The brand(s) and model(s) of the equipment used for air quality monitoring stations AMS1 and AMS2 under this Project are given in Table 2.4.

Table 2.4: 1-hour TSP Monitoring Equipment

Equipment	Brand	Model No.
Portable direct reading dust meter	Sibata Digital Dust Monitor	LD-3B (S/N: 245834, 436553)

2.7 Monitoring Methodology

Field Monitoring

The measuring procedures of the 1-hour TSP dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

- Turn the power on.
- Close the air collecting opening cover.
- Push the "TIME SETTING" switch to [BG].
- Push "START/STOP" switch to perform background measurement for 6 seconds.
- Turn the knob at SENSI ADJ position to insert the light scattering plate.
- Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- Pull out the knob and return it to MEASURE position.
- Setting time period of 1 hour for the 1-hour TSP measurement.
- Push "START/STOP" to start the 1-hour TSP measurement.
- Regular checking of the time period setting to ensure monitoring time of 1 hour.

Maintenance and Calibration

- The 1-hour dust meter would be checked at 3-month intervals and calibrated at 1-year intervals throughout all stages of the air quality monitoring.
- Calibration records for direct dust meters are given in Appendix F.

2.8 Monitoring Results

The monitoring results for 1-hour TSP at AMS1 and AMS2 are summarized in Table 2.5. Detailed impact air quality monitoring results are presented in Appendix G.

Table 2.5: Summary of 1-hour TSP Monitoring Results During the Reporting Period

Monitoring Station	Average, $\mu \mathrm{g} / \mathrm{m}^{3}$	Min, $\mu \mathrm{g} / \mathrm{m}^{3}$	Max, $\mu \mathrm{g} / \mathrm{m}^{3}$	Action Level, $\mu \mathrm{g} / \mathrm{m}^{3}$	Limit Level, $\mu \mathrm{g} / \mathrm{m}^{3}$
AMS1	41	25	71	283	500
AMS2	39	27	80	280	500

There was no Action and Limit Level exceedance of 1-hr TSP level recorded at station AMS1 and AMS2 by the ET during the reporting period.

2.9 Wind Data

Wind data at Kai Tak automatic weather station collected from the Hong Kong Observatory (HKO) were used for the air quality monitoring and they are shown in Appendix H. It is considered that the wind data obtained at the existing Kai Tak wind station are representative of the Project area and could be used for undertaking the construction phase baseline and impact air quality monitoring programme for the Project.

The proposed use of the existing wind data from Kai Tak automatic weather station collected from HKO for wind data collection instead of setting up wind monitoring equipment near the monitoring stations was proposed by ET and agreed by IEC in accordance with the requirements as stated in Section 3.4.7 of the EM\&A Manual of the Project.

3 Noise Monitoring

3.1 Introduction

In accordance with the EM\&A Manual, impact noise monitoring was conducted at least once per week for each noise monitoring location during the construction phase of the Project.

3.2 Monitoring Parameters, Frequency and Duration

Table 3.1 summarises the monitoring parameters, frequency and duration of impact noise monitoring.

Table 3.1: Noise Monitoring Parameters, Frequency and Duration

Parameter	Frequency and Duration
30-minutes measurement at each monitoring station between 0700 and 1900 on normal weekdays (Monday to Saturday).	At least once per week
$L_{\text {eq }}, L_{10}$ and L_{90} would be recorded.	

3.3 Monitoring Locations

According to the approved EM\&A Manual, a total of seven noise monitoring stations were identified for the impact monitoring locations. Of these, five noise sensitive receivers are planned residential use (NMS1A, NMS2A, NMS3, NMS4 and NMS5) and were not available for baseline monitoring; the same five are also currently not available for impact monitoring.

Table 3.2 describes the details of the monitoring stations and Figure 3.1 shows the locations of noise monitoring stations.

Table 3.2: Construction Noise Monitoring Locations

Monitoring Station	Location Description	Status
NMS1	Hong Kong Society for the Blind Workshop, Roof Floor	Existing Noise Sensitive Receiver
NMS2	Sky Tower, Podium of Tower 7	Existing Noise Sensitive
NMS1A	Sung Wong Toi Road Public Housing Site	Planned Noise Sensitive
NMS2A	Sung Wong Toi Road CDA Site (mixed use)	Receiver

During the reporting period, monitoring locations NMS1 and NMS2 were set up at the proposed locations for impact monitoring.

Since NMS1A \& NMS2A are planned (i.e. not existing) noise sensitive receivers, noise monitoring should be carried out initially at NMS1 and NMS2 respectively before the population intake of the planned developments. Once the planned developments are completed and occupied, NMS1A shall replace NMS1, while NMS2A shall replace NMS2. It is proposed that
the baseline noise level and Limit Level at NMS1A and NMS2A will be the same as those derived from the baseline monitoring data recorded at NMS1 and NMS2 respectively.

Permission on setting up and carrying out impact monitoring works at NMS3, NMS4 and NMS5 will be sought once each respective development is completed and occupied.

3.4 Action and Limit Levels

The Action and Limit Levels for construction noise are defined in Table 3.3.
Table 3.3: Action and Limit Level for Construction Noise

Monitoring Station	Time Period	Action Level	Limit Level
NMS1	$0700-1900$ hours on normal weekdays	When one documented complaint is received	$75 \mathrm{~dB}(\mathrm{~A})$
NMS2			

The event and action plan is provided in Appendix D.
If exceedance(s) at these stations is/are recorded by the ET of the Project, it will carry out an investigation and findings will be reported in the monthly EM\&A Report.

3.5 Monitoring Schedule for the Reporting Period

The schedule for noise monitoring in the reporting period is presented in Appendix E.

3.6 Monitoring Equipment

Noise monitoring was performed using sound level meters at each designed monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment used for noise monitoring under this Project is given in Table 3.4.

Table 3.4: Noise Monitoring Equipment

Equipment	Brand	Modell No.
Integrated Sound Level Meter	Rion	NL-52 (serial no. 00131627)
Acoustic Calibrator	LARSON DAVIS	CAL200 (S/N 10227)

3.7 Monitoring Methodology

- Façade and Free Field measurements were made at the monitoring locations.
- For Façade measurement, the microphone hear of the head level meter was positioned 1 m exterior of the noise sensitive façade and lowered sufficiently so that the building's external wall acts as a reflecting surface.
- For free field, the microphone of the Sound Level Meter was set at least 1.2 m above the ground.
- A correction of $+3 \mathrm{~dB}(\mathrm{~A})$ was made for free field measurement.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
- frequency weighting: A
- time weighting: Fast
- time measurement: 30-minute intervals (between 0700-1900 on normal weekdays)
- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94 dB at 1 kHz . If the difference in the calibration level before and after measurement was more than 1 dB , the measurement would be considered invalid and repeated after the recalibration or repair of the equipment.
- During the monitoring period, the $L_{e q,} L_{10}$ and L_{90} were recorded. In addition, any site observations and noise sources were recorded on a standard record sheet.
- Noise measurements were not made in presence of fog, rain, wind with a steady speed exceeding $5 \mathrm{~m} / \mathrm{s}$ or wind with gusts exceeding $10 \mathrm{~m} / \mathrm{s}$.

Maintenance and Calibration

- The microphone head of the sound level meter and calibrator is cleaned with soft cloth at quarterly intervals.
- The sound level meter and calibrator are sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- Calibration records are shown in Appendix F.

3.8 Monitoring Results

The monitoring results for construction noise are summarized in Table 3.5. Detailed impact noise monitoring results and relevant graphical plots are presented in Appendix G.

Table 3.5: Summary of Construction Noise Monitoring Results During the Reporting Period

		Measured Noise Level Leq(30 mins), dB(A)		
Monitoring Station	Average	Min	Max	Limit Level
NMS1	70	70	70	75
NMS2	69	69	70	75

No noise exceedances were recorded at stations NMS1 and NMS2 by ET during the reporting period.

4 Environmental Site and Audit

4.1 Site Inspection

Site inspections were carried out by ET on a weekly basis to monitor the implementation of proper environmental pollution control mitigation measures for the Project. Key observations were recorded in the site inspection checklist and passed to the Contracted Party together with the appropriate recommended mitigation measures where necessary. During the reporting period, site inspections were carried out on 4, 11, 18 and 24 May 2022. Joint IEC site inspections were carried out 18 and 24 May 2022.

Bi-weekly landscape and visual site audit was carried out on 4 and 18 May 2022. The landscape and visual audit have been audited by Registered Landscape Architect (RLA). No major observations of landscape and visual impact were identified. The result findings were summarised in Appendix K.

Key observations during the site inspections are described in Table 4.1.

Table 4.1: Summary of Site Inspections and Recommendations

Inspection Date	Key Observations	Recommendations / Actions	Close-Out Date / Status
Kai Tak Sports Park			
4 May 2022	A chemical container without drip tray was observed at southern site.	The contractor was reminded to provide drip tray for the chemical container.	11 May 2022

Inspection Date	Key Observations	Recommendations / Actions	Close-Out Date / Status
Hotel and Office Development			
11 May 2022	The pH value of the waster water treatment plant was out of the range pH 6-9.	The contractor was reminded to adjust the pH setting of the waste water treatment plant.	18 May 2022
18 May 2022	A chemical container without drip tray was observed.	The contractor was reminded to provide drip tray for the chemical container.	24 May 2022

4.2 Advice on the Solid and Liquid Waste Management Status

KTSP

The Contracted Party was registered as a chemical waste producer for the Project. Construction and demolition (C\&D) material sorting was carried out on site. Sufficient numbers of receptacles were provided for general refuse collection and sorting. Excavated inert C\&D materials were reused to minimise the disposal of C\&D waste to public fill.

The Contracted Party was reminded to maintain on site waste sorting and recording system and maximize reuse / recycling of C\&D wastes, whenever these are generated.

H/O Development

Construction and demolition (C\&D) material sorting was carried out on site. Sufficient numbers of receptacles were provided for general refuse collection and sorting. Excavated inert C\&D materials were designated for on temporary site storage and collected for the disposal to public fill.

The Contractor was reminded to maintain on site waste sorting and maximize reuse / recycling of C\&D wastes, whenever these are generated.

The monthly summary of waste flow table is detailed in Appendix I.

4.3 Environmental Licenses and Permits

The valid environmental licenses and permits for the Project during the reporting period are summarized in Appendix J.

4.4 Implementation Status of Environmental Mitigation Measures

In response to the site audit findings, the Contracted Party carried out corrective actions.
A summary of the environmental mitigation measures implementation status is presented in Appendix K. Most of the necessary mitigation measures were implemented properly.

4.5 Summary of Exceedance of the Environmental Quality Performance Limit

Air Quality

No Action and Limit Level exceedances of 1-hour TSP level was recorded at AMS1 and AMS2 during the reporting period.

Noise

No Action and Limit Level exceedances of noise level was recorded at NMS1 and NMS2 during the reporting period.

4.6 Summary of Complaints, Notification of Summons and Successful Prosecution

Complaints

There were no complaints received in relation to the environmental impact during the reporting month.

Notification of Summons and Successful Prosecution

No notification of summons or prosecutions was received during the reporting period.
Statistics on notifications of summons and successful prosecutions are summarized in Appendix L.

5 Future Key Issues

5.1 Construction Programme for the Coming Months

As informed by the Contracted Party, the major construction activities for the next reporting period (June 2022) are summarized in Table 5.1.

Table 5.1: Construction Activities for the Next Reporting Period

Site Area	Description of Activities
\bullet Kai Tak Sports Park	\bullet Rebar fixing;
	\bullet Mobilization and lifting;
	\bullet Concreting;
	\bullet Excavation; and
	\bullet Main Stadium pre-cast material delivery.
- Hotel and Office Development	- Excavation;
	\bullet Rebar fixing; and
	\bullet Concreting.

5.2 Environmental Site Inspection and Monitoring Schedule for the Next Reporting Period

The tentative schedule for weekly site inspection and monitoring for air quality and noise for the next reporting period is provided in Appendix E.

6 Conclusions

6.1 Conclusions

General

The construction works for the Project commenced on 8 April 2019.
The ET of the Project has implemented the air quality and noise environmental impact monitoring under the construction phase EM\&A programme during the reporting period.

Breaches of Action and Limit Levels

Air Quality

No Action or Limit Level exceedances of 1-hour TSP level was recorded during the reporting period.

Noise
No Action or Limit Level exceedances of noise level was recorded during the reporting period.

Environmental Site Inspections

Environmental site inspections were carried out four times during the reporting period. Recommendations on remedial actions were given to the Contracted Party for the deficiencies identified during the site inspections.

Complaints

There was no complaint received in relation to the environmental impact during the reporting period.

Notifications of Summons and Successful Prosecutions

There were no notifications of summons or prosecutions received during the reporting period.

Figures

Appendix A. Project Organization for Environmental Works

Project Organisation for Environmental Works

Appendix B. Location of Works Areas

Appendix C. Construction Programme

Construction Programme (May 2022 to Aug 2022)

Kai Tak Sports Park

	2022												
Construction Activities	Jan	Feb	Mar	Apr	May	Jun		ul	Aug	Sep	Oct	Nov	Dec
Plants Mobilization													
C\&D Waste Disposal (By vessel)													
Rebar Fixing													
Loading/ Unloading of Materials													
Excavation													
C\&D Waste Disposal													
Concreting													
Lifting													
C\&D Materials Internal Transportation													
Main Stadium Pre-cast Material Delivery													

Hotel and Office Development

	2022											
Construction Activities	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Loading/Unloading of Materials												
Excavation												
Rebar Fixing												
Concreting					-	-						
C\&D Waste Disposal												

Appendix D. Event and Action Plan

Should non-compliance of the air quality criteria occur, actions in accordance with the Event and Action Plan in Table D. 1 and Table D. 2 shall be carried out.

Table D.1: Event and Action Plan for Construction Air Quality (Action Level)

Event	Action			
	ET	IEC	SOR	Contracted Party
Action Level				
Exceedance for one sample	1. Inform IEC, SOR and Contracted Party; 2. Identify source, investigate the causes of exceedance and propose remedial measures; 3. Repeat measurement to confirm finding.	1. Check monitoring data submitted by ET; 2. Check Contracted Party's working method.	1. Notify Contracted Party.	1. Rectify any unacceptable practice; 2. Amend working methods if appropriate.
Exceedance for two or more consecutive samples	1. Inform IEC, SOR and Contracted Party; 2. Identify source; 3. Advise the SOR on the effectiveness of the proposed remedial measures; 4. Repeat measurements to confirm findings; 5. Increase monitoring frequency to daily; 6. Discuss with IEC, SOR and Contracted Party on remedial actions required; 7. If exceedance continues, arrange meeting with IEC and SOR; 8. If exceedance stops, cease additional monitoring.	1. Check monitoring data submitted by ET; 2. Check Contracted Party's working method; 3. Discuss with ET and Contracted Party on possible remedial measures; 4. Advise the ET/SOR on the effectiveness of the proposed remedial measures; 5. Supervise Implementation of remedial measures.	1. Confirm receipt of notification of failure in writing; 2. Notify Contracted Party; 3. Ensure remedial measures properly implemented.	1. Submit proposals for remedial to SOR and IEC within 3 working days of notification; 2. Implement the agreed proposals; 3. Amend proposal if appropriate.

Table D.2: Event and Action Plan for Construction Air Quality (Limit Level)

Event	Action			
	ET	IEC	SOR	Contracted Party
Limit Level				
Exceedance for one sample	1. Inform IEC, SOR, Contracted Party and EPD; 2. Identify source, investigate the causes of exceedance and propose remedial measures; 3. Repeat measurement to confirm finding; 4. Increase monitoring frequency to daily; 5. Assess effectiveness of Contracted Party's remedial actions and keep IEC, EPD and SOR informed of the results.	1. Check monitoring data submitted by ET; 2. Check Contracted Party's working method; 3. Discuss with ET and Contracted Party on possible remedial measures; 4. Advise the SOR on the effectiveness of the proposed remedial measures; 5. Supervise implementation of remedial measures.	1. Confirm receipt of notification of failure in writing; 2. Notify Contracted Party; 3. Ensure remedial measures properly implemented.	1. Take immediate action to avoid further exceedance; 2. Discuss with ET and IEC on remedial actions; 3. Submit proposals for remedial actions to IEC within 3 working days of notification; 4. Implement the agreed proposals; 5. Amend proposal if appropriate.
Exceedance for two or more consecutive samples	1. Notify IEC, SOR, Contracted Party and EPD; 2. Identify source; 3. Repeat measurement to confirm findings; 4. Increase monitoring frequency to daily; 5. Carry out analysis of Contracted Party's working procedures to determine possible mitigation to be implemented; 6. Arrange meeting with IEC and SOR and Contracted Party to discuss the remedial actions to be taken; 7. Assess effectiveness of Contracted Party's remedial actions and keep IEC, EPD and SOR informed of the results; 8. If exceedance stops, cease additional monitoring.	1. Check monitoring data submitted by ET; 2. Check Contracted Party's working method; 3. Discuss amongst SOR, ET, and Contracted Party on the potential remedial actions; 4. Review Contracted Party's remedial actions whenever necessary to assure their effectiveness and advise the SOR accordingly; 5. Supervise the implementation of remedial measures.	1. Confirm receipt of notification of failure in writing; 2. Notify Contracted Party; 3. In consultation with the IEC, agree with the Contracted Party on the remedial measures to be implemented; 4. Ensure remedial measures properly implemented; 5. If exceedance continues, consider what portion of the work is responsible and instruct the Contracted Party to terminate that portion of work until the exceedance ceases.	1. Take immediate action to avoid further exceedance; 2. Discuss with ET and IEC on remedial actions; 3. Submit proposals for remedial actions to SOR and IEC within 3 working days of notification; 4. Implement the agreed proposals; 5. Resubmit proposals if problem still not under control; 6. Stop the relevant portion of works as determined by the SOR until the exceedance ceases.

Should non-compliance of the noise criteria occur, actions in accordance with the Event and Action Plan in Table D. 3 shall be carried out.

Table D.3: Event and Action Plan for Construction Noise

Event	Action			
	ET	IEC	SOR	Contracted Party
Action Level	1. Notify IEC, SOR and Contracted Party of exceedance; 2. Identify source; 3. Investigate the causes of exceedance and propose remedial measures; 4. Report the results of investigation to the IEC, SOR and Contracted Party; 5. Discuss with the IEC, SOR and Contracted Party and formulate remedial measures; 6. Increase monitoring frequency to check mitigation effectiveness.	1. Review the analysed results submitted by the ET; 2. Review the proposed remedial measures by the Contracted Party and advise the SOR accordingly; 3. Supervise the implementation of remedial measures.	1. Confirm receipt of notification of failure in writing; 2. Notify Contracted Party; 3. Require Contracted Party to propose remedial measures for the analysed noise problem; 4. Ensure remedial measures are properly implemented	1. Submit noise mitigation proposals to SOR with copy to ET and IEC; 2. Implement noise mitigation proposals.
Limit Level	1. Inform IEC, SOR, EPD and Contracted Party; 2. Identify source; 3. Repeat measurements to confirm findings; 4. Increase monitoring frequency; 5. Carry out analysis of Contracted Party's working procedures to determine possible mitigation to be implemented; 6. Inform IEC, SOR and EPD the causes and actions taken for the exceedances; 7. Assess effectiveness of Contracted Party's remedial actions and keep IEC, EPD and SOR informed of the results; 8. If exceedance stops, cease additional monitoring.	1. Discuss amongst SOR, ET, and Contracted Party on the potential remedial actions; 2. Review Contracted Party's remedial actions whenever necessary to assure their effectiveness and advise the SOR accordingly; 3. Supervise the implementation of remedial measures.	1. Confirm receipt of notification of failure in writing; 2. Notify Contracted Party; 3. Require Contracted Party to propose remedial measures for the analysed noise problem; 4. Ensure remedial measures are properly implemented; 5. If exceedance continues, investigate what portion of the work is responsible and instruct the Contracted Party to terminate that portion of work until the exceedance ceases.	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to SOR with copy to ET and IEC within 3 working days of notification; 3. Implement the agreed proposals; 4. Resubmit proposals if problem still not under control; 5. Terminate the relevant portion of works as determined by the SOR until the exceedance ceases.

Appendix E. Environmental Site Inspection and Monitoring Schedule

Table E.1: Site Inspection and Monitoring Schedule for May 2022

Sun	Mon	Tue	Wed	Thu	Fri	Sat
1	2	3	4	5	6	7
			site inspection	AMS1, NMS1		
	The day following Labour		landscape and visual audit	AMS2, NMS2		
8	9	10	11	12	13	14
			site inspection			
	The day following the Birthday of the Buddha		AMS1, NMS 1 AMS2 NMS2			
15	16	17	18	19	20	21
		AMS1, NMS1	site inspection			
		AMS2, NMS2	landscape and visual audit			
22	23	24	25	26	27	28
	AMS1, NMS1	site inspection			AMS1	
	AMS2, NMS2				AMS2	
29	30	31				

[^1]Table E.2: Tentative Site Inspection and Monitoring Schedule for June 2022

Sun	Mon	Tue	Wed	Thu	Fri	Sat
			1	2	3	4
			site inspection	AMS1, NMS1		
				AMS2, NMS2	Tuen Ng Festival	
5	6	7	8	9	10	11
			site inspection			
			landscape and visual audit			
			AMS1, NMS1			
			AMS2, NMS2			
12	13	14	15	16	17	18
		AMS1, NMS1 AMS2, NMS2	site inspection			
19	20	21	22	23	24	25
	AMS1, NMS1		site inspection		AMS1	
	AMS2, NMS2		landscape and visual audit			
26	27	28	29	30		
			site inspection	AMS1, NMS1		
				AMS2, NMS2		

Air QualityNoise Monitoring
Remark: The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Appendix F. Calibration Certificates

ALS Technichem (HK)Pty Ltd

ALS Laboratorபு Graup

ANALYTICAL CHEMISTRY \& TESTING SERVICES

SUB-CONTRACTING REPORT

CONTACT	MR K.W. FAN	work Order : HK2144583
CLIENT	ENVIROTECH SERVICES CO.	
ADDRESS	RM113, 1/F, MY LOFT, 9 HOI WING ROAD, TUEN MUN, N.T. HONG KONG	SUB-BATCH $: 1$ DATE RECEIVED $:$ DATE OF ISSUE $:$ 11-NOV-2021
PROJECT	----	NO. OF SAMPLES : 1 CLIENT ORDER :---

General Comments

- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition. The result(s) related only to the item(s) tested.
- Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.
- Calibration was subcontracted to and analysed by Action-United Environmental Services \& Consulting.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories
Signatories Position

R: Chad tiong
Richard Fung
Managing Director

[^2]ALS Technichem (HK) Ptu Ltd
Part of the ALS Laboratarப Graup

WORK ORDER	$:$ HK2144583
SUB-BATCH	$: 1$
CLIENT	$:$ ENVIROTECH SERVICES CO.
PROJECT	$:---$

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK2144583-001	$\mathrm{S} / \mathrm{N}: 245834$	Equipments	02-Nov-2021	245834

Equipment Calibrated:

Equipment Verification Results:

Verification Date:
5 November 2021

Hour	Time	Mean Temp ${ }^{\circ} \mathrm{C}$	Mean Pressure (hPa)	Concentration in ug/m 3 (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/min)
$2 h r 01 \min$	$09: 11 \sim 11: 12$	25.6	1012.5	51.2	4570	37.7
$2 h r 01 \min$	$11: 15 \sim 13: 16$	25.6	1012.5	47.8	3735	30.8
$2 h r 02 \min$	$13: 20 \sim 15: 22$	25.6	1012.5	50.4	4022	33.0

Linear Regression of \mathbf{Y} or \mathbf{X}

Slope (K-factor):
$1.4416\left(\mathrm{mg} / \mathrm{m}^{3}\right) / \mathrm{CPM}$

Correlation Coefficient (R) 0.9927

Date of Issue
8 November 2021

1. Strong Correlation ($\mathrm{R}>0.8$)
2. Factor $1.4416\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right) / \mathrm{CPM}$ should be applied for TSP monitoring
*|f $R<0.5$, repair or reverification is required for the equipment

Operator : \qquad Signature \qquad Date : \qquad 8 November 2021

QC Reviewer : \qquad Signature :

Date : \qquad

SUB-CONTRACTING REPORT

CONTACT	$:$ MR K.W. FAN	WORK ORDER $:$ HK2141279
CLIENT	$:$ ENVIROTECH SERVICES CO.	
ADDRESS	$:$ RM113, 1/F, MY LOFT, 9 HOI WING ROAD,	SUB-BATCH $: 1$
	TUEN MUN, N.T. HONG KONG	DATE RECEIVED $: 11-$ OCT-2021
RROJECT	$:---$	DATE OF ISSUE $: 21-O C T-2021$
		NO. OF SAMPLES : 1

General Comments

- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition. The result(s) related only to the item(s) tested.
- Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.
- Calibration was subcontracted to and analysed by Action-United Environmental Services \& Consulting.

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories
Signatories Position

Rubac tog
Richard Fung

This is the Final Report and supersedes any preliminary report with this batch number.
All pages of this report have been checked and approved for release.

WORK ORDER	$:$ HK2141279
SUB-BATCH	$: 1$
CLIENT	$:$ ENVIROTECH SERVICES CO.
PROJECT	$:---$

ALS Lab ID	Clients Sample ID	Sample Type	Sample Date	External Lab Report No.
HK2141279-001	SN: 436553	Equipments	11-Oct-2021	SN: 436553

Equipment Calibrated:

Type:
Manufacturer:
Serial No.
Equipment Ref:
Job Order

Laser Dust monitor
Sibata LD-3B
436553
Nil
HK2141279

Standard Equipment:

Standard Equipment:	Higher Volume Sampler (TSP)
Location \& Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	2 August 2021

Equipment Verification Results:

Verification Date: 18 October 2021

Hour	Time	Mean Temp $^{\circ} \mathrm{C}$	Mean Pressure (hPa)	Concentration in ug/m 3 (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/min)
$2 \mathrm{hr01min}$	$09: 16 \sim 11: 17$	23.9	1018.3	40.5	2344	19.3
$2 \mathrm{hr01min}$	$11: 20 \sim 13: 21$	23.9	1018.3	44.4	2391	19.8
2 hr	$13: 25 \sim 15: 25$	23.9	1018.3	48.0	2447	20.4

Linear Regression of Y or X	
Slope (K-factor):	$\underline{2.2416\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right) / \mathrm{CPM}}$
Correlation Coefficient (R) 0.9956 Date of Issue 20 October 2021	

Remarks:

1. Strong Correlation ($\mathrm{R}>0.8$)
2. Factor $2.2416\left(\mu \mathrm{~g} / \mathrm{m}^{3}\right) / \mathrm{CPM}$ should be applied for TSP monitoring
*If $R<0.5$, repair or re-verification is required for the equipment

輝創工程有限公司
Sun Creation Engineering Limited
Calibration \＆Testing Laboratory

Certificate of Calibration校正證書

Certificate No．：C217234
證書編號

ITEM TESTED／送檢項目（Job No．／序引編號：IC21－2432 ）Date of Receipt／收件日期：25 November 2021
Description／儀器名稱 ：Precision Acoustic Calibrator
Manufacturer／製造商：LARSON DAVIS
Model No．／型號 ：CAL200
Serial No．／編號： 10227
Supplied By／委託者 ：Envirotech Services Co．
Room 113，1／F，My Loft， 9 Hoi Wing Road，Then Mun， New Territories，Hong Kong

TEST CONDITIONS／測試條件

Temperature／溫度 ：$(23 \pm 2)^{\circ} \mathrm{C} \quad$ Relative Humidity／相對濕度 ：（50 $\left.\pm 25\right) \%$
Line Voltage／電壓 ：－－－

TEST SPECIFICATIONS／測試規範

Calibration check

DATE OF TEST／測試日期 ： 16 December 2021

TEST RESULTS／測試結果

The results apply to the particular unit－under－test only
The results are detailed in the subsequent pages）
The test equipment used for calibration are traceable to National Standards via ：
－The Government of The Hong Kong Special Administrative Region Standard \＆Calibration Laboratory
－Agilent Technologies／Keysight Technologies
－Fluke Everett Service Center，USA

Date of Issue
16 December 2021簽發日期

The test equipment used for calibration is traceable to the National Standards as specified in this certificate．This certificate shall not be reproduced except in full，without the prior written approval of this laboratory
本證書所載校正用之測試器材均可淜源至國際標準。局部複印本登書需先落本實驗所書面批准。
Sun Creation Engineering Limited Calibration \＆Testing Laboratory
coo 4／F， 1 Hing On Lane，Tuen Mun，New Territories，Hong Kong
輝創工程有限公司－校正及檢測實驗所

輝創工程有限公司

Certificate of Calibration校正證書

1．The unit－under－test（UUT）was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test．

2．The results presented are the mean of 3 measurements at each calibration point．
3．Test equipment ：

Equipment ID	Description	Certificate No．
CL130	Universal Counter	C213954
CL281	Multifunction Acoustic Calibrator	AV210017
TST150A	Measuring Amplifier	C201309

4．Test procedure ：MA100N．

5．Results ：

5．1 Sound Level Accuracy

UUT Nominal Value	Measured Value (dB)	Uncertainty of Measured Value (dB)
$94 \mathrm{~dB}, 1 \mathrm{kHz}$	93.8	± 0.2
$114 \mathrm{~dB}, 1 \mathrm{kHz}$	113.8	

5．2 Frequency Accuracy

UUT Nominal Value (kHz)	Measured Value (kHz)	Uncertainty of Measured Value (Hz)
1	1.000	± 1

Remark ：The uncertainties are for a confidence probability of not less than 95% ．

Note：
Only the original copy or the laboratory＇s certified true copy is valid．
The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift，variations with environment changes， vibration and shock during transportation，overloading，mis－handling，or the capability of any other laboratory to repeat the measurement．Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment．

[^3]輝創工程有限公司
Sun Creation Engineering Limited
Calibration \＆Testing Laboratory

Certificate of Calibration
 校正證書

ITEM TESTED／送檢項目（Job No．／序引編號：IC21－1016）
Description／儀器名稱 ：Sound Level Meter
Manufacturer／製造商 ：Rion
Model No．／型號 ：NL－52
Serial No．／編號： 00131627
Supplied By／委託者 ：Envirotech Services Co．
Room 113，1／F，My Loft， 9 Hoi Wing Road，Tuen Mun， New Territories，Hong Kong

TEST CONDITIONS／測試條件
Temperature／溫度 ：$(23 \pm 2)^{\circ} \mathrm{C} \quad$ Relative Humidity／相對濕度 ：（50 $\left.\pm 25\right) \%$

Certificate No．：C213255
證書編號

Date of Receipt／收件日期：24 May 2021

TEST SPECIFICATIONS／測試規範

Calibration check

DATE OF TEST／測試日期 ：4 June 2021

TEST RESULTS／測試結果

The results apply to the particular unit－under－test only．
The results do not exceed manufacturer＇s specification．
The results are detailed in the subsequent page（s）．
The test equipment used for calibration are traceable to National Standards via ：
－The Government of The Hong Kong Special Administrative Region Standard \＆Calibration Laboratory
－Agilent Technologies／Keysight Technologies
－Fluke Everett Şervice Center，USA

The test equipment used for calibration is traceable to the National Standards as specified in this certificate．This certificate shall not be reproduced except in full，without the prior written approval of this lakoratory．
本證書所載校正用之測試器材均可溯源至國際標準。局部複印本澄書需先獲本實驗所書面批准。
Sun Creation Engineering Limited－Calibration \＆Testing Laboratory
c／o 4F， 1 Hing On Lane，Tuen Mun，New Territories，Hong Kong
輝創工程有限公司－校正及檢測實驗所
c／o 香港新界屯門興安里 號四樓
Tel電話：（852） 29272606 Fax／傳真：（852） 27448986

Certificate of Calibration校正證書

Certificate No．：C213255
證書編號

1．The unit－under－test（UUT）was allowed to stabilize in the laboratory for over 12 hours，and switched on to warm up for over 10 minutes before the commencement of the test．

2．Self－calibration was performed before the test．
3．The results presented are the mean of 3 measurements at each calibration point．
4．Test equipment ：

Equipment ID	Description	Certificate No．
CL280	40 MHz Arbitrary Waveform Generator	C210084
CL281	Multifunction Acoustic Calibrator	AV210017

5．Test procedure ：MA101N．
6．Results ：

6．1 Sound Pressure Level
6．1．1 Reference Sound Pressure Level

UUT Setting				Applied Value		UUT Reading （dB）	IEC 61672 Class 1 Spec． （dB）
Range （dB）	Function	Frequency Weighting	Time Weighting	Level （dB）	Freq． （kHz）		
30－130	$\mathrm{L}_{\text {A }}$	A	Fast	94.00	1	94.2	± 1.1

6．1．2 Linearity

UUT Setting				Applied Value		UUT Reading (dB)
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq． (kHz)	
	$\mathrm{~L}_{\mathrm{A}}$	A	Fast	94.00	1	104.2
				104.00		114.2
			114.00			

IEC 61672 Class 1 Spec．$: \pm 0.6 \mathrm{~dB}$ per 10 dB step and $\pm 1.1 \mathrm{~dB}$ for overall different．
6．2 Time Weighting

UUT Setting				Applied Value		UUT Reading (dB)	IEC 61672 Cláss 1 Spec． (dB)
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq． (kHz)		
$30-130$	$\mathrm{~L}_{\mathrm{A}}$	A	Fast	94.00	1	94.2	Ref．
		Slow			94.2	± 0.3	

The test equipment used for calibration is traceable to the National Standards as specified in this certificate．This certificate shall not be reproduced except in full，without the prior written approval of this laboratory．
本證書所載校正用之測試器材均可溯源至國際標準。局部複印本登書需先獲本實驗所書面批准。

輝 創工程有限公司
Sun Creation Engineering Limited
Calibration \＆Testing Laboratory

Certificate of Calibration校正證書

Certificate No．：C213255
證書編號

6．3 Frequency Weighting
6．3．1 A－Weighting

UUT Setting				Applied Value		UUT Reading （dB）	IEC 61672 Class 1 Spec． （dB）
Range （dB）	Function	Frequency Weighting	Time Weighting	Level （dB）	Freq．		
30－130	$\mathrm{L}_{\text {A }}$	A	Fast	94.00	63 Hz	68.0	-26.2 ± 1.5
			－		125 Hz	78.0	-16.1 ± 1.5
					250 Hz	85.5	-8.6 ± 1.4
					500 Hz	91.0	-3.2 ± 1.4
					1 kHz	94.2	Ref．
					2 kHz	95.4	$+1.2 \pm 1.6$
					4 kHz	95.2	$+1.0 \pm 1.6$
					8 kHz	93.2	－1．1（＋2．1；－3．1）
					16 kHz	86.2	－6．6（＋3．5；－17．0）

6．3．2 C－Weighting

UUT Setting				Applied Value		UUT Reading (dB)	IEC 61672 Class 1 Spec． （dB）
Range （dB）	Function	Frequency Weighting	Time Weighting	Level （dB）	Freq．		
30－130	L_{C}	C	Fast	94.00	63 Hz	93.3	-0.8 ± 1.5
					125 Hz	94.0	-0.2 ± 1.5
					250 Hz	94.2	0.0 ± 1.4
					500 Hz	94.2	0.0 ± 1.4
					1 kHz	94.2	Ref．
					2 kHz	94.0	-0.2 ± 1.6
					4 kHz	93.4	-0.8 ± 1.6
					8 kHz	91.3	－3．0（＋2．1；－3．1）
					16 kHz	84.3	$-8.5(+3.5 ;-17.0)$

Certificate of Calibration
 校正證書

Certificate No．：C213255
證書編號

Remarks ：－UUT Microphone Model No．：UC－59 \＆S／N ： 10446
－Mfr＇s Spec．：IEC 61672 Class 1
－Uncertainties of Applied Value ： $94 \mathrm{~dB}: 63 \mathrm{~Hz}-125 \mathrm{~Hz} \quad: \pm 0.35 \mathrm{~dB}$ $250 \mathrm{~Hz}-500 \mathrm{~Hz} \quad: \pm 0.30 \mathrm{~dB}$ $1 \mathrm{kHz} \quad: \pm 0.20 \mathrm{~dB}$ $2 \mathrm{kHz}-4 \mathrm{kHz} \quad: \pm 0.35 \mathrm{~dB}$ $8 \mathrm{kHz} \quad: \pm 0.45 \mathrm{~dB}$ $16 \mathrm{kHz} \quad: \pm 0.70 \mathrm{~dB}$
$104 \mathrm{~dB}: 1 \mathrm{kHz} \quad: \pm 0.10 \mathrm{~dB}$（Ref． 94 dB ）
$114 \mathrm{~dB}: 1 \mathrm{kHz} \quad: \pm 0.10 \mathrm{~dB}$（Ref． 94 dB ）
－The uncertainties are for a confidence probability of not less than 95% ．
Note ：
Only the original copy or the laboratory＇s certified true copy is valid．
The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift，variations with environment changes，vibration and shock during transportation，overloading，mis－handling，or the capability of any other laboratory to repeat the measurement．Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment．

[^4]
Appendix G. Monitoring Data and Graphical Plots (Air Quality and Noise)

Data for 1-hour TSP Monitoring at Station AMS1 during the Reporting Month

Date	Start Time	Finish Time	Weather	Wind Speed $(\mathbf{m} / \mathbf{s})$	Wind Direction (deg)	1-hour TSP $\left(\boldsymbol{\mu g} / \mathbf{m}^{\mathbf{3}}\right)$
5-May-22	$9: 56$	$10: 56$	Fine	5.8	67	66
5-May-22	$10: 56$	$11: 56$	Fine	4.4	91	69
5-May-22	$11: 56$	$12: 56$	Fine	4.2	120	71
11-May-22	$9: 07$	$10: 07$	Cloudy	0.8	157	27
11-May-22	$10: 07$	$11: 07$	Cloudy	0.3	121	25
11-May-22	$11: 07$	$12: 07$	Cloudy	3.3	118	27
17-May-22	$9: 06$	$10: 06$	Cloudy	2.8	30	27
17-May-22	$10: 06$	$11: 06$	Cloudy	1.4	variable	29
17-May-22	$11: 06$	$12: 06$	Cloudy	0.8	91	30
23-May-22	$9: 12$	$10: 12$	Cloudy	4.7	110	36
23-May-22	$10: 12$	$11: 12$	Cloudy	4.7	102	44
23-May-22	$11: 12$	$12: 12$	Cloudy	5.0	89	46
27-May-22	$9: 05$	$10: 05$	Cloudy	1.7	182	41
27-May-22	$10: 05$	$11: 05$	Cloudy	2.2	variable	35
27-May-22	$11: 05$	$12: 05$	Cloudy	2.2	188	39

Graphical Presentation for 1-hour TSP Monitoring at AMS1/AMS1-T

Data for 1-hour TSP Monitoring at Station AMS2 during the Reporting Month

Date	Start Time	Finish Time	Weather	Wind Speed $(\mathrm{m} / \mathrm{s})$	Wind Direction (deg)	1-hour TSP $\left(\boldsymbol{\mu g} / \mathrm{m}^{3}\right)$
5-May-22	$9: 06$	$10: 06$	Fine	5.3	99	80
5-May-22	$10: 06$	$11: 06$	Fine	5.3	79	61
5-May-22	$11: 06$	$12: 06$	Fine	3.9	75	65
11-May-22	$8: 20$	$9: 20$	Cloudy	1.9	112	27
11-May-22	$9: 20$	$10: 20$	Cloudy	1.4	131	29
11-May-22	$10: 20$	$11: 20$	Cloudy	0.3	104	31
17-May-22	$8: 23$	$9: 23$	Cloudy	3.3	16	8
17-May-22	$9: 23$	$10: 23$	Cloudy	2.2	29	
17-May-22	$10: 23$	$11: 23$	Cloudy	0.3	variable	27
23-May-22	$8: 25$	$9: 25$	Cloudy	3.9	105	39
23-May-22	$9: 25$	$10: 25$	Cloudy	3.9	104	33
23-May-22	$10: 25$	$11: 25$	Cloudy	4.4	98	29
27-May-22	$8: 45$	$9: 45$	Cloudy	0.8	variable	32
27-May-22	$9: 45$	$10: 45$	Cloudy	1.9	188	29
27-May-22	$10: 45$	$11: 45$	Cloudy	1.7	197	39

Graphical Presentation for 1-hour TSP Monitoring at AMS2

Data for Noise Monitoring at Station NMS1 during the Reporting Month

Date	Time	Weather	$\mathrm{L}_{\text {eq(} 5 \text { min) }}$	L_{10}	L_{90}	Measured $\mathrm{L}_{\text {eq(30min) }}$
5-May-22	9:58	Fine	70.6	72.2	64.3	69.8
5-May-22	10:03	Fine	70.1	73.1	66.0	
5-May-22	10:08	Fine	69.0	71.5	65.6	
5-May-22	10:13	Fine	69.0	71.5	64.7	
5-May-22	10:18	Fine	69.2	71.8	64.2	
5-May-22	10:23	Fine	70.5	72.1	66.2	
11-May-22	9:10	Cloudy	69.2	72.8	64.0	70.8
11-May-22	9:15	Cloudy	70.7	73.1	65.9	
11-May-22	9:20	Cloudy	71.2	74.3	66.1	
11-May-22	9:25	Cloudy	71.6	74.4	66.5	
11-May-22	9:30	Cloudy	70.7	73.6	65.2	
11-May-22	9:35	Cloudy	71.2	74.7	66.8	
17-May-22	9:08	Cloudy	69.0	72.1	63.4	70.0
17-May-22	9:13	Cloudy	71.5	74.7	64.6	
17-May-22	9:18	Cloudy	70.4	73.2	64.6	
17-May-22	9:23	Cloudy	69.3	72.4	63.6	
17-May-22	9:28	Cloudy	69.1	72.5	63.7	
17-May-22	9:33	Cloudy	69.9	72.8	63.2	
23-May-22	9:14	Cloudy	69.6	72.0	62.1	70.3
23-May-22	9:19	Cloudy	70.4	73.2	63.7	
23-May-22	9:24	Cloudy	71.3	74.9	64.6	
23-May-22	9:29	Cloudy	70.8	73.5	63.2	
23-May-22	9:34	Cloudy	69.6	72.7	62.5	
23-May-22	9:39	Cloudy	69.7	72.1	62.9	

Graphical Presentation for Noise Monitoring at NMS1/NMS1-T

Data for Noise Monitoring at Station NMS2 during the Reporting Month

Date	Time	Weather	$L_{\text {eq(} 5 \text { min) }}$	L_{10}	L_{90}	Measured $\mathrm{L}_{\text {eq(} 30 \mathrm{~min} \text {) }}$
5-May-22	9:09	Fine	69.1	71.4	65.6	69.1
5-May-22	9:14	Fine	69.0	72.2	64.6	
5-May-22	9:19	Fine	69.3	72.4	63.6	
5-May-22	9:24	Fine	68.5	71.3	64.5	
5-May-22	9:29	Fine	68.8	71.5	65.1	
5-May-22	9:34	Fine	69.6	72.2	65.9	
11-May-22	8:22	Cloudy	68.8	70.4	64.0	69.6
11-May-22	8:27	Cloudy	69.2	71.3	65.7	
11-May-22	8:32	Cloudy	70.2	72.1	65.6	
11-May-22	8:37	Cloudy	68.7	70.8	64.4	
11-May-22	8:42	Cloudy	70.6	72.5	66.1	
11-May-22	8:47	Cloudy	69.7	71.9	65.2	
17-May-22	8:25	Cloudy	68.2	70.7	64.1	69.6
17-May-22	8:30	Cloudy	70.1	72.0	65.2	
17-May-22	8:35	Cloudy	69.7	71.4	65.6	
17-May-22	8:40	Cloudy	68.4	70.3	64.7	
17-May-22	8:45	Cloudy	69.5	71.8	65.2	
17-May-22	8:50	Cloudy	70.9	72.1	65.6	
23-May-22	8:28	Cloudy	68.2	70.0	64.6	69.7
23-May-22	8:33	Cloudy	69.1	71.7	64.1	
23-May-22	8:38	Cloudy	69.9	71.4	64.3	
23-May-22	8:43	Cloudy	68.8	70.4	64.5	
23-May-22	8:48	Cloudy	70.7	72.6	65.3	
23-May-22	8:53	Cloudy	70.7	72.2	65.6	

Graphical Presentation for Noise Monitoring at NMS2

Appendix H. Wind Data

5 May 2022

11 May 2022

Appendix I. Waste Flow Table

2019-2022

Monthly Waste Flow Table

Month	$\begin{gathered} \text { Total } \\ \text { Quantity } \\ \text { Generated } \end{gathered}$	Total Quantity Generated (Excluded Excavated Material)	Actual Quantities of Inert C\&D Materials Generated Monthly								Actual Quantities of C\&D Materials Generated Monthly						Remarks
			Excavated Materials			Non-excavated Materials					$\begin{array}{\|\|c\|} \hline \text { Metals } \\ \text { (steel bar / } \\ \text { metal } \\ \text { strip) } \end{array}$	Metals(aluminum can)${ }^{(1)}$	Paper Icardboardpackaging	$\begin{aligned} & \text { Plastics } \\ & \text { (1) } 8(4) \end{aligned}$	Chemical waste (wasted lubricant oil/ oil container)$\|$	Other,e.g. generalrefuse	
			Disposed in Public Fill	Disposed in Sorting Facilities	Others (e.g Reused in the Contract $/$ Other Projects)	Broken Concrete or Construction Waste Collected by Recycled Company	$\begin{array}{\|c\|} \hline \text { Reused in the } \\ \text { Contract } \end{array}$	$\begin{array}{c\|} \text { Reused in } \\ \text { other Projects } \end{array}$	Disposed in Public Fill	Disposed in Sorting Facilities							
	(in ${ }^{\prime} 000 \mathrm{~kg}$)	(in ${ }^{\prime} 000 \mathrm{~kg}$)	(in '000kg)	(in '000kg)	(${ }^{\prime}$ ' 000 kg)	(in ${ }^{\prime} 000 \mathrm{~kg}$)	(${ }^{\prime}$ ' 000 kg)	(in '000kg)	(in '000kg)	(${ }^{\prime}$ '000 ${ }^{\text {g }}$)	(in '000kg)	(in '000kg)	(in '000kg)	(${ }^{\prime}$ ' 000 kg)	(in '000kg)	(in '000kg)	
	a1	a2	b	b	b	-	d	e	f	g	-	i	j	k	1	m	
Jan-19																	
Feb-19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mar-19	4960.89	4741.39	219.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	11.84	0.00	0.00	0.00	0.00	4729.55	
Apr-19	1218.47	1211.81	6.66	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.00	1211.75	
May-19	87.29	87.29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	87.28	
Jun-19	80.77	80.77	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.67	0.00	0.08	0.42	0.00	79.61	
Jul-19	2302.16	614.79	1687.37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	0.95	0.00	613.54	
Aug-19	3619.81	280.59	3339.22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.77	0.00	0.00	1.29	0.60	276.93	
Sep-19	9840.16	349.65	9490.51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.04	0.60	348.01	
Oct-19	11505.06	543.69	10961.37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	81.95	0.00	1.43	1.15	0.00	459.16	
Nov-19	4718.13	313.84	4404.29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	69.84	0.00	0.24	1.37	0.00	242.39	
Dec-19	5185.14	102.48	5082.66	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.63	0.80	100.05	
Jan-20	12107.08	127.05	11980.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	16.32	0.00	0.57	1.36	0.00	108.80	
Feb-20	18104.96	100.58	13459.32	0.00	4545.06	0.00	0.00	0.00	0.00	0.00	23.64	0.00	0.00	0.96	0.00	75.98	
Mar-20	35699.19	235.99	6615.03	0.00	28848.17	0.00	0.00	0.00	0.00	0.00	90.73	0.00	0.50	1.33	0.80	142.63	
Apr-20	42587.03	137.90	0.00	0.00	42449.13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.10	0.00	136.80	
May-20	64506.51	218.89	0.00	0.00	64287.62	0.00	0.00	0.00	0.00	0.00	47.41	0.00	0.40	1.61	0.00	169.47	
Jun-20	44983.53	337.20	6519.25	0.00	38127.08	0.00	0.00	0.00	0.00	0.00	171.56	0.00	0.58	2.55	0.80	161.71	
Jul-20	43468.97	602.89	0.00	0.00	42866.08	0.00	0.00	0.00	0.00	0.00	377.41	0.01	1.03	2.16	0.00	222.28	
Aug-20	61609.05	1121.82	3771.32	0.00	56715.91	0.00	0.00	0.00	0.00	0.00	861.33	0.35	1.58	2.35	0.00	256.21	
Sep-20	111046.04	730.59	0.00	0.00	110315.45	0.00	0.00	0.00	0.00	0.00	443.46	0.01	1.39	1.87	0.00	283.86	
Oct-20	109678.75	712.61	0.00	0.00	108966.14	0.00	0.00	0.00	0.00	0.00	385.68	0.02	1.00	1.64	0.00	324.27	
Nov-20	135055.14	852.56	0.00	0.00	134202.58	0.00	0.00	0.00	0.00	0.00	362.36	0.01	0.86	2.12	0.60	486.61	
Dec-20	132183.00	1163.51	6981.13	0.00	124038.36	0.00	0.00	0.00	0.00	0.00	390.22	0.08	2.19	1.66	0.00	769.36	
Jan-21	78129.57	1315.84	4253.06	0.00	72560.67	0.00	0.00	0.00	0.00	0.00	393.38	0.05	2.68	1.96	0.00	917.77	
Feb-21	70013.03	912.17	10767.60	0.00	58333.26	0.00	0.00	0.00	0.00	0.00	386.46	0.07	1.24	0.64	0.00	523.76	
Mar-21	51743.65	1314.82	18740.08	0.00	31688.75	0.00	0.00	0.00	0.00	0.00	320.13	0.12	2.08	2.45	0.00	990.03	
Apr-21	16431.34	1411.19	0.00	0.00	15020.15	0.00	0.00	0.00	0.00	0.00	467.54	0.02	1.84	1.70	0.00	940.09	
May-21	39675.06	1610.42	0.00	0.00	38064.64	0.00	0.00	0.00	0.00	0.00	442.35	0.00	1.31	2.81	0.00	1163.95	
Jun-21	56589.31	1812.39	0.00	0.00	54776.92	0.00	0.00	0.00	0.00	0.00	353.07	0.02	1.10	1.37	0.00	1456.83	
Jul-21	18264.19	2544.22	0.00	0.00	15719.97	0.00	0.00	0.00	0.00	0.00	383.64	0.00	1.55	3.36	0.00	2155.67	
Aug-21	7959.53	2028.39	4150.75	0.00	1780.39	0.00	0.00	0.00	0.00	0.00	326.91	0.00	1.28	1.40	0.00	1698.80	
Sep-21	32389.58	2259.89	30129.69	0.00	0.00	0.00	0.00	0.00	0.00	0.00	269.75	0.00	1.99	2.68	0.00	1985.47	
Oct-21	34559.10	2034.74	17144.35	0.00	15380.01	0.00	0.00	0.00	0.00	0.00	289.21	0.00	1.04	2.83	0.00	1741.66	
Nov-21	34821.07	2353.58	6551.45	0.00	25916.04	0.00	0.00	0.00	0.00	0.00	164.09	0.00	1.27	3.80	0.60	2183.82	
Dec-21	10648.02	2282.17	8365.85	0.00	0.00	0.00	0.00	0.00	0.00	0.00	125.27	0.00	1.54	0.69	0.00	2154.67	
Jan-22	6238.85	2367.85	3871.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	130.89	0.00	1.43	1.76	0.00	2233.77	
Feb-22	6654.84	1294.33	5360.51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	158.11	0.00	0.51	0.00	0.00	1135.71	
Mar-22	27279.95	1820.78	25459.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	162.33	0.00	0.81	0.85	0.00	1656.79	
Apr-22	15402.21	1792.21	13610.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	36.78	0.00	0.62	3.11	0.00	1751.70	
May-22	8371.41	2097.57	6273.84	0.00	0.00	0.00	0.00	0.00	0.00	0.00	28.99	0.00	0.61	1.47	0.00	2066.50	
Total	1369717.82	45920.43	239195.01	0.00	1084602.38	0.00	0.00	0.00	0.00	0.00	7775.10	0.75	35.04	61.51	4.80	38043.24	

Total C\&D waste generated
(excluding excavated materials)
\% of recycled C\&D waste for BEAM Plus MA10 or MA11

1369717.82 tonne
 5920.43 tonne 7872.39 tonne

17.14 \%
$1=b+c+d+e+f+g+h+i+j+k+1+m$
$2=c+d+e+f+g+h+i+i+k+1+m$
a3 $=c+d+e+h+i+j+k$
a4=a3/a2 $\times 100 \%$

Noes. (1) Meal, paper a plastic were collected by reybler
2) The performance target of wasterycling are specified in the Contrac
3) The waste flow table shall also include C\&D materials that are specified in the Contract to be imported for use at the Site.
(4) Plastics refer to plastic bottles/ containers, plastic/ foam from packaging material.
(5) Broken concrete for recycling into aggregates.
(6) Excavated materials/waste win
(7) Disposal of inert waste te maste will NOT be considered as part of construction waste. It should be excluded in the calculation.
(8)Disposal record for April 2022 and May 2022 have been updated according to the latest informate
2022.

Project: Proposed Composite Development at NKIL 6607,Shing Kai Road, Kai Tak, Kowloon

Company: Hip Hing Construction Co., Ltd.
 \section*{Monthly Summary Waste Flow Table}

Month	Total Quantities Generated	Total Quantities Generated (excluded excavated material)	Accumulated Quantities of Inert C\&D Materials Generated Monthly					Accumulated Quantities of Non-inert C\&D Wastes Generated Monthly						
			(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)
			Broken Concrete Recycled	Broken Concrete Diverted to Public Fill	Excavated Materials Reused in this Project	Excavated Materials Reused in other Projects	Excavated Materials Disposed as Public Fill	Mixed Wastes Diverted to Sorting Facility	Metals Recycled	Paper/ Cardboard Packaging Recycled	Timber/Wood Pallet Recycled	Plastics Recycled	Chemical Waste Collected	Others, e.g. General Refuse Disposed at Landfill
			(in'000 kg)											
Aug-21	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sep-21	1550.68	0	0	0	0	1550.68	0	0	0	0	0	0	0	0
Oct-21	3694.29	30.52	0	0	0	3663.77	0	0	13.17	0	0	0	0	17.35
Nov-21	5447.65	68.57	0	0	0	5309.2	69.88	6.05	32.4	0	0	0	0	30.12
Dec-21	401.83	181.38	0	0	0	63.2	157.25	0	138.58	0	0	0	0	42.8
Jan-22	1487.95	321.73	0	0	0	493.4	672.82	27.52	278.943	0	0	0	0	15.27
Feb-22	193.97	160.16	0	0	0	0	33.81	4.65	130.393	0.045	0	0	0	25.07
Mar-22	1793.62	450.14	0	0	0	0	1343.48	89.56	342.35	0	0	0	0	18.23
Apr-22	978.44	110.3	0	0	0	0	868.14	87.83	5.79	0	0	0	0	16.68
May-22	1243.2	106.86	0	0	0	0	1136.34	102.49	4.37	0	0	0	0	0
Total	16791.6331	1429.6631	0	0	0	11080.25	4281.72	318.1	945.9981	0.045	0	0	0	165.52

Total C\&D Waste generated
Total C\&D waste generated (Excluded excavated materials)
Total C\&D waste recycled

$$
\text { Waste Recycling Rate }=\quad(\mathrm{a})+(\mathrm{g})+(\mathrm{h})+(\mathrm{i})+(\mathrm{j})
$$

$$
(\mathrm{a})+(\mathrm{b})+(\mathrm{f})+(\mathrm{g})+(\mathrm{h})+(\mathrm{i})+(\mathrm{j})+(\mathrm{l})
$$

16791.6331 Tons
1429.6631 Tons 946.0431 Tons
66.17\%

Note:
For BEAM Plus certification scheme, excavated materials are excluded from the calculation of the waste reduction rate Record with Underlined indicated updated content

Appendix J. Environmental Licences and Permits

Table J.1: Summary of Environmental Licences and Permits Status (KTSP)

Item No.	Type of Permit / Licence	Reference No.	Application Date	Valid from	Valid until	Remark
1	Environmental Permit under EIAO	EP-544/2017	21 Aug 2017	8 Sep 2017	N/A	Issued
2	Construction Dust Notification under APCO	441733	25 Jan 2019	29 Jan 2019	N/A	N/A
3	Construction Waste Disposal Account (Main)	7033182	12 Feb 2019	12 Feb 2019	N/A	N/A
4	Construction Waste Disposal Account (Vessel)	7033555	6 Oct 2021	25 Oct 2021	10 Feb 2022	Issued
5	Registration as a Chemical Waste Producer	WPN5213-286-H3906-02	29 Jan 2019	12 Feb 2019	N/A	N/A
6	Discharge Licence under WPCO	$\begin{aligned} & \text { WT00034082- } \\ & 2019 \end{aligned}$	12 Jun 2019	26 Jun 2019	30 Jun 2024	Issued
7	Construction Noise Permit (Construction Works, Barging Point)	GW-RE1158- 21	8 Nov 2021	2 Dec 2021	21 May 2022	Superseded by GW-RE-0339-22 on 22 May 2022
8	Construction Noise Permit (Construction Works, Shing Kai Road)	GW-RE0073- 22	26 Jan 2022	7 Feb 2022	6 May 2022	Superseded by GW-RE-0371-22 on 10 May 2022
9	Construction Noise Permit (Construction Works, Northern Site)	GW-RE0205- 22	22 Feb 2022	30 Apr 2022	29 Oct 2022	Issued
10	Construction Noise Permit (Special Truss Delivery Port)	GW-RE0323- 22	21 Mar 2022	13 Apr 2022	5 Jul 2022	Issued
11	Construction Noise Permit (Construction Works, Southern Site)	$\begin{aligned} & \text { GW-RE0338- } \\ & 22 \end{aligned}$	30 Mar 2022	21 Apr 2022	17 Oct 2022	Issued

Item No.	Type of Permit / Licence	Reference No.	Application Date	Valid from	Valid until	Remark
12	Construction Noise Permit (Construction Works, Barging Point)	GW-RE033922	30 Mar 2022	22 May 2022	20 Nov 2022	Issued
13	Construction Noise Permit (Construction Works, Shing Kai Road)	$\begin{aligned} & \text { GW-RE0371- } \\ & 22 \end{aligned}$	6 Apr 2022	10 May 2022	5 Aug 2022	Issued

Table J.2: Summary of Environmental Licences and Permits Status (H/O Development)

Item No.	Type of Permit / Licence	Reference No.	Application Date	Valid from	Valid until	Remark
1	Environmental Permit under EIAO	EP-544/2017	21 Aug 2017	8 Sep 2017	N/A	Issued
2	Construction Dust Notification under APCO	458255	17 Jul 2020	17 Jul 2020	N/A	N/A
		470045	29 Jul 2021	29 Jul 2021	N/A	N/A
3	Construction Waste Disposal Account (Main)	7041267	29 Jul 2021	11 Aug 2021	N/A	Issued
4	Registration as a Chemical Waste Producer	$\begin{aligned} & \text { WPN5211- } \\ & 286-\mathrm{H} 1103- \\ & 23 \end{aligned}$	29 Jul 2021	24 Aug 2021	N/A	Issued
5	Discharge Licence under WPCO	$\begin{aligned} & \text { WT00039490 } \\ & -2021 \end{aligned}$	6 Aug 2021	9 Nov 2021	30 Nov 2026	Issued
6	Construction Noise Permit	GW-RE118621	16 Nov 2021	7 Dec 2021	1 Jun 2022	Issued

Appendix K. Environmental Mitigation Measures Implementation Status

Air Quality - Recommended Mitigation Measures

Air Quality Mitigation Measures during construction		Implementation

Air Quality Mitigation Measures during construction	Implementation Status	
	KTSP	H/O
- Regular maintenance of all plant equipment	\checkmark	\checkmark
- Throttle down or switch off unused machines or machine in intermittent use	\checkmark	\checkmark
If the site is adjacent to area where accessible to the public (e.g. road and service lane etc.), hoarding of not less than 2.4 m high from ground level should be erected along the adjoining the entire length of that portion of the site boundary, except for a site entrance or exit. The hoarding should be well maintained throughout the construction period.	\checkmark	\checkmark
Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens, sheeting or netting should be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding	\checkmark	\checkmark
Exposed earth should be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shortcrete or other suitable surface stabiliser within six months after the last construction activity on the construction site or part of the construction site where the exposed earth lies	\checkmark	\checkmark
- Carry out air quality monitoring throughout the construction period	\checkmark	\checkmark
- Carry out weekly site inspection to audit the implementation of mitigation measures	\checkmark	\checkmark
Regular watering once per hour on exposed worksites and haul road with an equivalent intensity of not less than 1.3L/m3 to achieve 91.7\% dust removal efficiency.	\checkmark	\checkmark
Provision of electrical vehicle (EV) charging facilities in at least one-third of the car parking spaces for private cars. Provision of EV charging enabling facilities in all car parking spaces provided for private cars.	\checkmark	N/A
Non-Road Mobile Machinery (NRMMs)		
All NRMMs operated on-site are approved or exempted (as the case may be) and affixed with the requisite approval/exemption labels under the Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation or are in the process of application for such approval/exemption during the relevant grace period.	\checkmark	\checkmark

Noise - Recommended Mitigation Measures

Noise Mitigation Measures during construction	Implementation Status	
	KTSP	H/O
Adopt good site practice, such as throttle down or switch off equipment unused or intermittently used between works	\checkmark	\checkmark
- Regular maintenance of equipment to prevent noise emission due to impair	\checkmark	\checkmark
Position mobile noisy equipment in locations away from NSRs and point the noise sources to directions away from NSRs	\checkmark	\checkmark
- Use silencer or muffler for equipment	\checkmark	\checkmark
- Make good use structures for noise screening	\checkmark	\checkmark
- Use Quality Powered Mechanical Equipment (QPME) and quiet equipment which produces lower noise level.	\checkmark	\checkmark
Erect movable noise barrier of 3 m height to shed large plant equipment (e.g. breaker, backhoe \& mobile crane) or hand-held items (e.g. poker, wood saw, power rammer \& compactor) near low-rise NSR. Where necessary, special design (e.g. with noise absorbing material or bend top) should be adopted. The barrier's length should be at least five times greater than its height, and the minimum surface density is $10 \mathrm{~kg} / \mathrm{m} 2$. Alternatively, acoustic shed, enclosure or silencer (for generator, air compressor and concrete pump) or acoustic mat (for piling) can be adopted.	\checkmark	N/A
- Carry out regular site inspection to audit the implementation of mitigation measures	\checkmark	\checkmark
- Carry out noise monitoring throughout the construction period	\checkmark	\checkmark

Water Quality - Recommended Mitigation Measures

Water Quality Mitigation Measures during construction	Implementation Status	
	KTSP	H/O
- Practices outlined in ProPECC PN 1/94 Construction Site Drainage should be adopted.	\checkmark	\checkmark
Install perimeter channels in the works areas to intercept runoff from boundary prior to the commencement of any earthwork	\checkmark	\checkmark
To prevent storm runoff from washing across exposed soil surfaces, intercepting channels should be provided.	\checkmark	\checkmark
Drainage channels are required to convey site runoff to sand/silt traps and oil interceptors. Provision of regular cleaning and maintenance to ensure the normal operation of these facilities throughout the construction period.	\checkmark	\checkmark
Any practical options for the diversion and realignment of drainage should comply with both engineering and environmental requirements	\checkmark	\checkmark
Minimum distances of 100 m should be maintained between the discharge points of construction site runoff and the existing WSD saltwater intake and EMSD cooling water intake.	\checkmark	\checkmark
The following good site measures should be adopted for the use of the existing barging facilities being operated by the MTR SCL Project: - All vessels should be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash. - All hopper barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material. - Construction activities should not cause foam, oil, grease, scum, litter or other objectionable matter to be present on the water within the site. - Loading of barges and hoppers should be controlled to prevent splashing of material into the surrounding water. - Barges or hoppers should not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation. Whole construction site Contractor P WPCO, EIAO-TM Page	N/A	N/A
The runoff and wastewater generated from the works areas should be treated so that it satisfies all the standards listed in the TM-DSS.	P	P
- Reuse and recycling of the treated effluent from construction site runoff.	\checkmark	\checkmark
- Weekly site audit should be carried out to check the implementation status of the recommended water quality impact mitigation measures throughout construction period.	\checkmark	\checkmark
- The construction programme should be properly planned to minimise soil excavation, if any, in rainy seasons.	\checkmark	\checkmark
- Any exposed soil surfaces should be properly protected to minimise dust emission.	\checkmark	\checkmark
- In areas where a large amount of exposed soils exist, earth bunds or sand bags should be provided.	\checkmark	\checkmark
- Exposed stockpiles should be covered with tarpaulin or impervious sheets at all times.	\checkmark	\checkmark
The stockpiles of materials should be placed at locations away from any stream courses so as to avoid releasing materials into the water bodies.	\checkmark	\checkmark
- Final surfaces of earthworks should be compacted and protected by permanent work.	\checkmark	\checkmark
Haul roads should be paved with concrete and the temporary access roads protected using crushed stone or gravel, wherever practicable.	\checkmark	\checkmark
- Wheel washing facilities should be provided at all site exits to ensure that earth, mud and debris would not be carried out of the works areas by vehicles.	\checkmark	\checkmark
Good site practices should be adopted to keep the site dry and tidy, such as clean the rubbish and litter on the construction sites.	P	\checkmark
- Adequate temporary site drainage and pumping should be provided, if necessary.	\checkmark	\checkmark
- Provide sufficient temporary toilets in the works areas. The toilet facilities should be more than 30 m from any watercourse. A licensed waste collector should be deployed to clean the temporary toilets on a regular basis.	\checkmark	\checkmark
- Notices should be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment during the construction phase of the Project.	\checkmark	\checkmark

Water Quality Mitigation Measures during construction	Implementation Status	
Contractor must register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation should be observed and complied with for control of chemical wastes.	\checkmark	\checkmark
- Any service shop and maintenance facilities should be located on hard standings within a bunded		
area, and sumps and oil interceptors should be provided. Maintenance of vehicles and equipment		
involving activities with potential for leakage and spillage should only be undertaken within the areas		
appropriately equipped to control these discharges.		

Waste Management - Recommended Mitigation Measures

Waste Management Mitigation Measures during construction	Implementation Status	
	KTSP	H/O
- Inert C\&D materials (or public fills) will be used to form the ramps and other filling area as far as civil engineering design permits.	\checkmark	\checkmark
- The contractor should formulate waste management measures on waste minimization, storage, handling and disposal in a Waste Management Plan as part of Environmental Management Plan.	\checkmark	\checkmark
- Adopt good site practice as follows: - Provide training to workers on site cleanliness, waste management (waste reduction, reuse and recycle) and chemical handling procedures - Provide sufficient waste collection points and regular removal - Cover waste materials with tarpaulin or in enclosure during transportation - Maintain drainage systems, sumps and oil interceptors - Sort out chemical waste for proper handling and treatment onsite or offsite	P	P
- Adopt waste reduction measures as follows: - Allocate area/containers for sorting, recovering and storing waste for reuse, recycle or disposal (e.g. demolition debris and excavated materials, general refuse like aluminium cans.) Remove waste from the Site for sorting once generated if no suitable space can be identified. - Allocate area for proper storage of construction materials to prevent contamination - Minimize wastage through careful planning and avoiding over-purchase of construction materials	\checkmark	\checkmark
- Store waste materials properly as follows: - Avoid contamination by proper handling and storing waste - Prevent erosion by covering waste - Apply water spray on excavated materials - Maintain and clean storage area regularly - Sort and stockpile different materials at designated location to enhance reuse	P	P
- Apply for relevant waste disposal permits in accordance with the Waste Disposal Ordinance (Cap. 354), Waste Disposal (Charges for Disposal of Construction Waste) Regulation (Cap. 345) and the Land (Miscellaneous Provisions) Ordinance (Cap. 28), Dumping at Sea Ordinance (Cap. 466).	\checkmark	\checkmark
- Hire licensed waste disposal contractors for waste collection and removal. Dispose waste at licensed waste disposal facilities.	\checkmark	\checkmark
- Implement trip-ticket system for recording the amount of waste generated, recycled and disposed, including chemical wastes	\checkmark	\checkmark

Waste Management Mitigation Measures during construction		

Ecology - Recommended Mitigation Measures

Ecology Mitigation Measures during construction	Implementation Status	
	KTSP	H/O
- Erection of hoarding, fencing or provision of clear demarcation of work zone	\checkmark	\checkmark
- Designate areas for placement of equipment, building materials and wastes away from drainage channels	\checkmark	\checkmark
- Carry out weekly site inspection to check the implementation status and the effectiveness of the proposed mitigation measures	\checkmark	\checkmark

Landscape and Visual - Recommended Mitigation Measures

Landscape and Visual Mitigation Measures during construction		Implementation
- Construction Lighting Control	Status	
- All security floodlights for construction sites should be equipped with adjustable shields, frosted		
diffusers and reflective covers, and be controlled to minimize light pollution and night-time glare to the		
visual sensitive receivers (VSRs).		
- Temporary Landscape Treatments	N/A	

Other - Recommended Mitigation Measures

- Relevant environmental permits/licences should be posted at all vehicle entrances/exits.
$\checkmark \quad \checkmark$

```
Legend:
\(\checkmark\)
Implemented
\(\times \quad\) Not implemented
\(\mathrm{P} \quad\) Partially implemented
N/A Not applicable
```


Appendix L. Statistics on Environmental Complaints, Notification of Summons and Successful Prosecutions

Table L.1: Statistics on Environmental Complaints, Notifications of Summons and Successful Prosecutions

Reporting Period	Complaints	Notifications of Summons	Successful Prosecutions
This reporting period (May 2022)	0	0	0
From commencement data of construction to end of reporting month	21	0	0

[^0]: 403329/04/01/11.01/A | June 2022
 https://mottmac.sharepoint.com/teams/pj-c7400/do/04 Deliverables/01 EP submissions/11 EP 3.4 Monthly EM\&A Report/(38) May 2022/KTSP Monthly EM\&A (38) May 2022.docx

[^1]: Remark: Joint site walk with IEC on 18 and 24 May 2022

[^2]: This is the Final Report and supersedes any preliminary report with this batch number
 All pages of this report have been checked and approved for release.

[^3]: The test equipment used for calibration is traceable to the National Standards as specified in this certificate．This certificate shall not be reproduced except in full，without the prior written approval of this laboratory．
 本證書所載校正用之測試器材均可潮源至國際標準。局部複印本證書需先獲本賢驗所書面批准。

[^4]: The test equipment used for calibration is traceable to the National Standards as specified in this certificate．This certificate shall not be reproduced except in full，without the prior written approval of this laboratory．
 本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本賽驗所書面批准。

