

Airport City Link

Monthly EM&A Report for December 2023 January 2024

Airport Authority Hong Kong

Mott MacDonald 3/F Manulife Place 348 Kwun Tong Road Kwun Tong Kowloon Hong Kong

T +852 2828 5757 mottmac.hk

Airport Authority Hong Kong

Airport City Link

Monthly EM&A Report for December 2023

January 2024

This Submission of Construction Phase Monthly Environmental Monitoring and Audit (EM&A) Report for December 2023

has been reviewed and certified by

the Environmental Team Leader (ETL) in accordance with

Condition 3.5 of Environmental Permit No. EP-581/2020 and

Section 11.2 of the EM&A Manual of the Project.

Certified by:

Mum Clea

Ir Thomas Chan Environmental Team Leader (ETL) Mott MacDonald Hong Kong Limited

Date

10 January 2024

AECOM 12/F, Grand Central Plaza, Tower 2, 138 Shatin Rural Committee Road, Shatin, Hong Kong 香港新界沙田鄉事會路 138 號

> 新城市中央廣場第2座12樓 www.aecom.com

+852 3922 9000 tel +852 3922 9797 fax

Your Ref: -Our Ref: 60664934/C/FYW2401101

By Email

Capital Works Management Department Level 6, HKIA Tower 2, 15 Cheong Tat Road, Hong Kong International Airport, Lantau, Hong Kong

Attn: Collin Chan (Manager, Civil)

10 January 2024

Dear Sir,

Contract C21C02 – Independent Environmental Checker Consultancy Services for Airport City Link

Monthly Environmental and Audit (EM&A) Report for December 2023

Reference is made to the Environmental Team's submission of Monthly EM&A Report for December 2023 in accordance with Condition 3.5 of the Environmental Permit (No: EP-581/2020) and Section 11.2 of the EM&A Manual of the Project certified by the ET Leader on 10 January 2024.

We would like to inform you that we have verified on the captioned submission in accordance with the requirement stipulated in Condition 1.9 of EP-581/2020.

Should you have any queries, please feel free to contact the undersigned at 3922 9366.

Yours faithfully, AECOM Asia Co. Ltd.

Y W Fung Independent Environmental Checker

Contents

Exe	ecutive	summary	5
1	Intro	duction	7
	1.1	Background	7
	1.2	Project Organisation	7
	1.3	Construction Works Programme and Construction Works Area	8
	1.4	Construction Works undertaken during the Reporting Period	8
2	Wate	er Quality	9
	2.1	Baseline Water Quality Monitoring	9
	2.2	Impact Water Quality Monitoring	9
		2.2.1 Monitoring Requirement	9
		2.2.2 Monitoring Locations	9
		2.2.3 Monitoring Parameters	10
		2.2.4 Monitoring Schedule for the Reporting Period	10
		2.2.5 Monitoring Equipment	10
		2.2.6 Maintenance and Calibration of In-situ Instruments	10
		2.2.7 Laboratory Measurement / Analysis	11
	2.3	Post-construction Water Quality Monitoring	11
		2.3.1 Monitoring Requirement	11
		2.3.2 Monitoring Schedule for the Reporting Period	11
		2.3.3 Monitoring Equipment	11
	2.4	Event and Action Plan	12
		2.4.1 Action and Limit Levels	12
		2.4.2 Event and Action Plan	12
	2.5	Water Quality Monitoring Results	12
		2.5.1 Impact Water Quality Monitoring	12
		2.5.2 Post-construction Water Quality Monitoring	13
	2.6	Conclusion	13
3	Envi	ronmental Site Inspection and Audit	14
	3.1	Environmental Site Inspection	14
	3.2	Advice on the Solid and Liquid Waste Management Status	16
	3.3	Implementation Status of Environmental Mitigation Measures	16
	3.4	Summary of Exceedance of the Environmental Quality Performance Limit	17
	3.5	Summary of Complaints, Notifications of Summons and Successful Prosecutions	17
4	Futu	ire Key Issues	18
1			18
	4.1	Construction Programme for the Coming Month	10

	4.2	Environmental Site Inspection and Monitoring Schedule for the Next Reporting Period	18
5	Concl	usions	19
Figur	е		

Figure 2.1 Water Quality Monitoring Locations

Appendices

- Appendix A. Project Organisation
- Appendix B. Construction Works Programme
- Appendix C. Construction Works Area
- Appendix D. Environmental Site Inspection and Monitoring Schedule
- Appendix E. Calibration Certificates
- Appendix F. Event and Action Plan
- Appendix G. Monitoring Data and Graphical Plots
- Appendix H. Waste Flow Table
- Appendix I. Status of Environmental Permits and Licences

Appendix J. Environmental Mitigation Measures Implementation Status

Tables

Table 1.1: Contact Information of Key Personnel	7
Table 2.1: Locations of Marine Water Quality Monitoring Stations	9
Table 2.2: Impact Water Quality Monitoring Equipment	10
Table 2.3: Impact Water Quality Monitoring Equipment	11
Table 2.3: Derived Action and Limit Levels	12
Table 2.4: Summary of Exceedances	12
Table 3.1: Summary of Site Inspections and Recommendations	14
Table 3.2: Statistics on Environmental Complaints, Notifications of Summons and	
Successful Prosecutions	17

Table 4.1: Construction Activities for the Next Reporting Period

Executive summary

In July 2020, a Project Profile (PP) (Register No.: PP-606/2020) of the Airport City Link (ACL) (hereinafter as "the Project") was submitted for the application for permission to apply directly for an Environmental Permit (EP), which was approved by Environmental Protection Department (EPD) in August 2020. The EP of the Project (EP No.: EP-581/2020) was obtained in October 2020.

On 10 June 2021, Mott MacDonald Hong Kong Limited (MMHK) was commissioned by Airport Authority Hong Kong (AAHK) to provide Environmental Team (ET) consultancy services for the implementation of an Environmental Monitoring and Audit (EM&A) programme of the Project in accordance with the EP requirements throughout the Pre-construction, Construction and Post-construction phases.

The construction phase EM&A programme of the Project started on 26 July 2022. The construction of marine section was commenced on 26 July 2022, while the construction of the land section was commenced on 20 February 2023.

This is the 17th Monthly EM&A Report for the construction phase of the Project which summaries findings of the EM&A programme during the reporting period from 1 to 31 December 2023.

Key Construction Works in the Reporting Period

A summary of construction activities undertaken during the reporting period is presented below:

Marine Section

- Plant mobilization and material delivery for works
- Marine substructure works
- Marine pier construction works
- Segment construction works

Land Section

- GI works
- Underground utilities diversion work
- Bored pile work
- Socketed H-Pile
- Pile cap
- ELS
- Water mains installation

Environmental Monitoring and Audit Progress

The monthly EM&A programme was undertaken by ET in accordance with the approved EM&A Manual. A summary of the monitoring activities during the reporting period is presented below:

Table I: Summary Table for EM&A Activities in the Reporting Period

EM&A Activities	Number of Sessions	
Impact water quality monitoring	6	
Post-construction water quality monitoring	7	
Weekly environmental site inspections (Marine Section)	4	

EM&A Activities	Number of Sessions
Weekly environmental site inspections (Land Section)	4

Breaches of Action and Limit Levels

Water Quality

The water quality monitoring results for dissolved oxygen (DO), turbidity and suspended solids (SS) obtained during the reporting period were within the corresponding Action and Limit Levels.

Complaint Log

There was no complaint in relation to the environmental impact received during the reporting period.

Notifications of Summons and Successful Prosecutions

There was no notifications of summons or successful prosecutions received during this reporting period.

Reporting Changes

There was no reporting change during the reporting period.

Future Key Issues

The future key issues to be undertaken in the upcoming month are:

Marine Section

- Plant mobilization and material delivery
- Marine substructure works
- Marine pier construction works
- Segment construction works
- Bridge deck construction works

Land Section

- GI works
- Underground utilities diversion work
- Bored pile work
- Socketed H-Pile
- Pile cap
- ELS
- Water mains installation
- Tower crane installation

1 Introduction

1.1 Background

In July 2020, a Project Profile (PP) (Register No.: PP-606/2020) of the Airport City Link (ACL) (hereinafter as "the Project") was submitted for the application for permission to apply directly for an Environmental Permit (EP), which was approved by Environmental Protection Department (EPD) in August 2020. The EP of the Project (EP No.: EP-581/2020) was obtained in October 2020.

The Project is situated between the Airport Island and Hong Kong Port (HKP) Island, at the south of existing SkyPier on the Airport Island. To enhance vehicular mobility and walkability between HKP Island and the SKYCITY, the Project serves as a connection bridge providing shuttle services and pedestrian pathway.

The construction for the Project consists of a marine section in a marine area between the Airport Island and HKP Island, and a land section on the Airport Island and HKP Island. The connection bridge comprises of approximately 400m long marine section and 450m long land section. The construction works of marine section will be carried out by marine works Contractor, while the construction works of land section will be carried out by land works Contractor.

On 10 June 2021, Mott MacDonald Hong Kong Limited (MMHK) was commissioned by Airport Authority Hong Kong (AAHK) to provide Environmental Team (ET) consultancy services for the implementation of an Environmental Monitoring and Audit (EM&A) programme in accordance with the EP requirements throughout the Pre-construction, Construction and Post-construction phases.

The construction phase EM&A programme of the Project started on 26 July 2022. The construction of marine section was commenced on 26 July 2022, while the construction of the land section was commenced on 20 February 2023.

This is the 17th Monthly EM&A report summarising the key findings of the construction phase EM&A programme from 1 to 31 December 2023 (the reporting period) and is submitted to fulfil requirements in Condition 3.5 of EP and Section 11.2 of EM&A Manual of the Project.

1.2 Project Organisation

The organisation chart and lines of communication with respect to the on-site environmental management structure of the key personnel are shown in **Appendix A**. The key personnel contact names and numbers are summarized in **Table 1.1**.

Party	Position	Name	Telephone
Project Manager's Representative (Airport Authority Hong Kong)	Senior Project Engineer, Environment	Becky Yan	2183 2773
Environmental Team (ET)	Environmental Team Leader	Thomas Chan	2828 5967
(Mott MacDonald Hong Kong Limited)	Deputy Environmental Team Leader	Gary Chow	2828 5874

Table 1.1: Contact Information of Key Personnel

Party	Position	Name	Telephone
Independent Environmental Checker (IEC)	Independent Environmental Checker	Y W Fung	3922 9366
(AECOM Asia Company Limited)	Deputy Independent Environmental Checker	Lemon Lam	3922 9381
Main Contractor – Marine Section (Gammon Engineering & Construction Company Limited)	Senior Project Manager	Brian Ho	9041 7535
	Environmental Officer	Elena Lai	6841 3324
Main Contractor – Land Section (China State Construction Engineering (HK) Ltd.)	Project Manager	Kingsley Chiang	9424 8437
	Senior Environmental Officer	William Chan	5408 3045

1.3 Construction Works Programme and Construction Works Area

The construction phase EM&A programme of the Project started on 26 July 2022. The construction of marine section was commenced on 26 July 2022, while the construction of the land section was commenced on 20 February 2023.

The construction works programme and the construction works area of the Project are shown in **Appendix B** and **Appendix C** respectively.

1.4 Construction Works undertaken during the Reporting Period

A summary of construction activities undertaken during this reporting period is presented below:

Marine Section

- Plant mobilization and material delivery for works
- Marine substructure works
- Marine pier construction works
- Segment construction works

Land Section

- GI works
- Underground utilities diversion work
- Bored pile work
- Socketed H-Pile
- Pile cap
- ELS
- Water mains installation

2 Water Quality

2.1 Baseline Water Quality Monitoring

As stipulated in the EM&A Manual, the construction activities under sea water level for the Project will commence in a month after completion of that of Intermodal Transfer Terminal Bonded Vehicular Bridge (ITT-BVB). Therefore, it is likely that the period for baseline monitoring would overlap with the construction activities under sea water level of ITT-BVB, which may influence the baseline water quality for the Project.

Since the baseline monitoring of ITT-BVB project has been carried out at the same proposed baseline monitoring locations of the Project during 15 August 2019 – 10 September 2019, and 28 November 2019 – 24 December 2019 covering both dry and wet seasons, which was carried out before any marine construction activities in the vicinity of the Project. Hence, the baseline monitoring data from ITT-BVB would be the most recent and representative to the baseline condition of the water quality in the vicinity of the Project without any interference. Thus, the baseline monitoring data from ITT-BVB would be adopted for the Project.

ET submitted the baseline monitoring report of the Project on 12 November 2021 and EPD expressed no comment on 24 November 2021.

2.2 Impact Water Quality Monitoring

2.2.1 Monitoring Requirement

The impact water quality monitoring was conducted three days per week at mid-flood and midebb tides, at 5 water quality monitoring stations. Samples were taken at three depths, namely, 1m below water surface, mid-depth and 1m above sea bed, except where the water depth less than 6m, the mid-depth station was omitted. For locations with water depth less than 3m, only the mid-depth station was monitored. Duplicate in-situ measurements and water samples were collected from each independent monitoring event for all parameters to ensure a robust statistically interpretable dataset.

2.2.2 Monitoring Locations

The water quality monitoring was conducted at three locations in the sea channel between the HKIA and the HKBCF (M1, M2 and M3) and two control stations (C1 and C2), locations are shown in **Figure 2.1** and summarized in **Table 2.1**.

ID	Monitoring Station	Easting	Northing
M1	Impact Station	812423	819635
M2 ⁽¹⁾	Impact Station	812629	819845
M3 ⁽²⁾	Impact Station	812586	820069
C1	Control Station - West	812419	820670
C2	Control Station - East	813072	820595

Table 2.1: Locations of Marine Water Quality Monitoring Stations

Notes:

1. As updated in the baseline monitoring report, the water quality monitoring at M2 station was shifted to bring it closer to the Project site and away from the SkyPier ferry movements for better representation.

2. As updated in the baseline monitoring report, the water quality monitoring at M3 station was shifted to the location near the seawater intake of HKBCF to better represent the potential water quality impacts at the nearby sensitive receiver

2.2.3 Monitoring Parameters

For the 3 impact stations (M1 to M3) and 2 control stations (C1 and C2), monitoring of DO, DO%, pH, temperature, turbidity, salinity, SS and water depth were undertaken.

Other relevant data were also recorded, including monitoring location, time, tidal stages, weather conditions and any special phenomena or work during the monitoring.

2.2.4 Monitoring Schedule for the Reporting Period

Construction impact monitoring for water quality was undertaken in compliance with the EM&A Manual during the reporting period.

The schedule for water quality monitoring of the reporting period is presented in Appendix D.

2.2.5 Monitoring Equipment

Water samples for all monitoring parameters were collected, stored, preserved and analysed according to the Standard Methods, APHA 21st ed. and/or other methods as agreed by the EPD. In-situ measurements at monitoring locations including dissolved oxygen (DO), dissolved oxygen saturation (DO%), pH, temperature, turbidity, salinity and water depth were collected using the equipment listed in **Table 2.2**.

Water samples for suspended solids (SS) analysis were stored in suitable containers provided by the HOKLAS laboratory with no preservative added, packed in ice (cooled to 4°C without being frozen) and delivered to the HOKLAS laboratory as soon as possible after collection.

Equipment	Brand and Model	Quantity
Water Sampler	Van Dorn Water Sampler	2
Monitoring Position Equipment (measurement of DGPS)	Garmin eTrex 20x	1
Water Depth Detector (measurement of water depth)	Garmin STRIKER [™] Series	1
Multifunctional Meter (measurement of DO, DO%, temperature, turbidity, salinity and pH)	YSI ProDSS (Multiparameter Sampling Instrument)	1

Table 2.2: Impact Water Quality Monitoring Equipment

2.2.6 Maintenance and Calibration of In-situ Instruments

In-situ monitoring instruments for water quality parameters were checked, calibrated and certified by a laboratory accredited under HOKLAS before use. Responses of sensors and electrodes were checked with certified standard solutions before each use.

Wet bulb calibration for DO measurement was carried out before commencement of monitoring and after completion of all measurements each day. The turbidity meter was calibrated in order to establish the relationship between NTU units and the levels of suspended solids. A zero check in distilled water was performed with the turbidity probe at least once per monitoring day. The probe was then calibrated with a solution of known NTU. Standard buffer solutions of at least pH 7 and pH 10 was used for calibration of the pH instrument before and after use on each monitoring day.

Calibration certificates of the monitoring equipment used in the monitoring for water quality parameters are provided in **Appendix E**.

2.2.7 Laboratory Measurement / Analysis

Analysis of SS was out in a HOKLAS accredited laboratory, ALS Technichem (HK) Pty Ltd (Reg. No. HOKLAS 066). Sufficient water samples were collected at each of the control stations and impact stations for carrying out the laboratory SS determination.

The SS determination works started within 24 hours after collection of the water samples. The analysis followed the APHA 2540D analytical method with a detection limit of 1 mg/L.

2.3 **Post-construction Water Quality Monitoring**

2.3.1 Monitoring Requirement

As stipulated in Section 6.3.1.11 in the Approved EM&A Manual, the post-construction monitoring will be undertaken upon completion of all marine works below seawater level for 4 weeks in the same manner as the impact monitoring.

On 24 November 2023, notification was made to the EPD on the termination of Impact Water Quality Monitoring and implementation of post-construction monitoring, with further update sent on 5 December 2023. With the completion of marine works below seawater level on 15 December 2023, the impact water quality monitoring was terminated after 15 December 2023 and the post-construction water quality monitoring has been conducted from 16 December 2023 and will be completed on 12 January 2024.

The monitoring locations, monitoring parameters, maintenance and calibration of in-situ instruments, and laboratory measurement / analysis are in the same manner as the impact monitoring, and details could be referred to **Section 2.2**.

2.3.2 Monitoring Schedule for the Reporting Period

Post-construction monitoring for water quality was undertaken in compliance with the EM&A Manual during the reporting period.

The schedule for water quality monitoring of the reporting period is presented in Appendix D.

2.3.3 Monitoring Equipment

Water samples for all monitoring parameters were collected, stored, preserved and analysed according to the Standard Methods, APHA 21st ed. and/or other methods as agreed by the EPD. In-situ measurements at monitoring locations including dissolved oxygen (DO), dissolved oxygen saturation (DO%), pH, temperature, turbidity, salinity and water depth were collected using the equipment listed in **Table 2.3**.

Water samples for suspended solids (SS) analysis were stored in suitable containers provided by the HOKLAS laboratory with no preservative added, packed in ice (cooled to 4°C without being frozen) and delivered to the HOKLAS laboratory as soon as possible after collection.

Table 2.3: Impact Water Quality Monitoring Equipment

Equipment	Brand and Model	Quantity
Water Sampler	Van Dorn Water Sampler	2
Monitoring Position Equipment (measurement of DGPS)	Garmin eTrex 20x	1
Water Depth Detector (measurement of water depth)	Garmin STRIKER [™] Series	1
Multifunctional Meter (measurement of DO, DO%, temperature, turbidity, salinity and pH)	YSI ProDSS (Multiparameter Sampling Instrument)	2

2.4 **Event and Action Plan**

2.4.1 **Action and Limit Levels**

The Action and Limit Levels for the impact monitoring stations were extracted from Table 2.8 of the Baseline Monitoring Report of ITT-BVB. The derived Action and Limit Levels are summarized in Table 2.4.

Table 2.4: Derived Action	and Limit Levels
---------------------------	------------------

Parameters	Action Level	Limit Level
Impact Stations M1 and M2		
DO in mg/L		
Surface & Middle	4.3	4.0
Bottom	3.8	3.0
SS in mg/L	14.2	17.4
	AND	AND
	120% of upstream control station at the same tide of the same day	130% of upstream control station at the same tide of the same day
Turbidity in NTU	11.0	16.3
	AND	AND
	120% of upstream control station at the same tide of the same day	130% of upstream control station at the same tide of the same day
Impact Station M3		
SS in mg/L	33	42

Notes:

1. For DO measurement, non-compliance occurs when the monitoring result is lower than the limits.

2. For parameters other than DO, non-compliance of water quality occurs when the monitoring result is higher than the limits.

3.

Depth-averaged results are used unless specified otherwise. Impact station M3 is represents the impact station SR1A of "*Expansion of Hong Kong International Airport into* 4. a Three-Runway System". The AL levels for M3 in Table 2.4 is referencing the agreed and adopted AL levels of SR1A from the Updated EM&A Manual for Expansion of Hong Kong International Airport into a Three-Runway System.

Event and Action Plan 2.4.2

In the event of water quality monitoring results at impact stations exceeding the Action and/or Limit levels for water quality as defined in Table 2.4, the actions in accordance with the Event and Action Plan presented in Appendix F shall be carried out.

2.5 Water Quality Monitoring Results

Impact Water Quality Monitoring 2.5.1

The water quality monitoring results for dissolved oxygen (DO), turbidity and suspended solids (SS) obtained during the reporting period were within the corresponding Action and Limit Levels.

Table 2.4 presents the summary of exceedances during the reporting period. Detailed impact monitoring results and relevant graphical plots are presented in Appendix G1.

Date	Parameter(s)	Affected Station(s)	Tide	Exceedance Type
N/A	N/A	N/A	N/A	N/A

Table 2.5: Summary of Exceedances

2.5.2 Post-construction Water Quality Monitoring

The post-construction water quality monitoring results for dissolved oxygen (DO), turbidity and suspended solids (SS) were obtained during the reporting period, detailed post-construction monitoring results and relevant graphical plots are presented in **Appendix G2**.

2.6 Conclusion

The impact water quality monitoring results for dissolved oxygen (DO), turbidity and suspended solids (SS) obtained during the reporting period were within the corresponding Action and Limit Levels.

The post-construction water quality monitoring results for dissolved oxygen (DO), turbidity and suspended solids (SS) were also obtained during the reporting period,

In the meantime, the Contractor was reminded to implement and maintain all mitigation measures during weekly site inspection and regular environmental management meetings. These include maintaining mitigation measures properly as recommended in the EM&A Manual.

3 Environmental Site Inspection and Audit

3.1 Environmental Site Inspection

Site inspections for marine and land section were carried out by ET on a weekly basis to monitor the implementation of proper environmental pollution control mitigation measures for the Project. Key observations were recorded in the site inspection checklist and passed to the Contractors together with the appropriate recommended mitigation measures where necessary.

Marine Section

During the reporting period, site inspections were carried out on 6, 12, 19 and 27 December 2023 for marine section. Joint IEC site inspection for marine section was carried out on 12 December 2023. Monthly landscape and visual site audit was carried out on 12 December 2023.

Land Section

During the reporting period, site inspections were carried out on 4, 11, 18 and 29 December 2023 for land section. Joint IEC site inspection for land section was carried out 11 December 2023. Monthly landscape and visual site audit was carried out on 11 December 2023.

Key observations and reminders during the site inspections and landscape and visual site audit are described in **Table 3.1**.

Marine Section	on		
Inspection Date	Key Observations / Reminders	Recommendations / Actions	Close-Out Date
28 Nov 2023	Construction debris were observed on the pile cap of Pier 5.	The Contractor should clear the materials and prevent any materials from falling into the sea to minimise potential floating refuse.	6 Dec 2023
12 Dec 2023	Chemical containers were observed without drip tray at Gammon No. 38.	The Contractor should provide a drip tray or a chemical storage cabinet for the chemical containers to prevent any potential spillage.	19 Dec 2023
12 Dec 2023	Construction debris were observed on the pile cap of Pier 6.	The Contractor should clear the debris and prevent any materials from falling into the sea to minimise potential floating refuse.	19 Dec 2023
19 Dec 2023	Chemical containers were observed without drip tray at Gammon No. 23.	The Contractor should provide a drip tray or a chemical storage cabinet for the chemical containers to prevent any potential spillage.	27 Dec 2023
19 Dec 2023	Oil spillage was observed in the drip tray for machinery. (Reminder)	The Contractor was reminded to retain sufficient capacity of the drip tray for the machinery to prevent any potential oil spillage.	19 Dec 2023

Table 3.1: Summary of Site Inspections and Recommendations

nspection Date	Key Observations / Reminders	Recommendations / Actions	Close-Out Date
27 Nov 2023	Silt was deposited at the public drain.	The Contractor should provide cleaning for the drain and intercept the public drain to prevent any site runoff from entering the public drainage system.	4 Dec 2023
27 Nov 2023	General refuse was found in the skip for storage of excavated materials.	The Contractor should provide waste sorting and avoid mixing general refuse with the inert materials.	4 Dec 2023
4 Dec 2023	Mud vehicle tracks were observed at the vehicular exit.	The Contractor should clean up the road surface and provide proper wheel washing to prevent mud from deposition on the public road.	11 Dec 2023
4 Dec 2023	The exposed site area was observed dry.	The Contractor should provide regular water spraying to minimise fugitive dust emission during vehicular movement.	11 Dec 2023
11 Dec 2023	No Environmental Permit was displayed at site entrance.	The Contractor should display a copy of the valid Environmental Permit at the site entrance for public information.	18 Dec 2023
11 Dec 2023	Vehicle tracks were observed at the vehicular site exit.	The Contractor should clean up the road surface and provide proper wheel washing for vehicles leaving the site.	18 Dec 2023
11 Dec 2023	Oil stain was observed underneath the piling head of piling machine.	The Contractor should remove the oil stain and treat as chemical waste disposal.	18 Dec 2023
11 Dec 2023	NRMM label on the generator was found faded, and NRMM label on the piling machine was found missing.	The Contractor should replace the NRMM labels and display valid NRMM labels on the regulated machinery.	18 Dec 2023
11 Dec 2023	Oil stain was observed underneath the oil drums.	The Contractor should remove the oil stain and treat as chemical waste disposal.	18 Dec 2023
11 Dec 2023	Vehicular site exit was observed dry.	The Contractor should provide sufficient water spraying to prevent dusty materials from carrying to the public road.	18 Dec 2023
11 Dec 2023	Sand was deposited at the public drain.	The Contractor should provide cleaning for the public drain and clear the sand.	18 Dec 2023
11 Dec 2023	No protection measure was provided for the road drain.	The Contractor should cover the road drain to prevent any construction debris and soil from entering the public drainage system.	18 Dec 2023
18 Dec 2023	Tire track was observed at the site entrance/exit.	The Contractor should provide proper wheel washing for all vehicles leaving the site and keep public road clear of dust.	29 Dec 2023

Land Sectior	1		
18 Dec 2023	No protection measure was provided for the gully.	The Contractor should cover the gully to prevent any construction debris and wastewater from entering the public drainage system.	29 Dec 2023
18 Dec 2023	Mud were accumulated at the cut off drain and the sump pit, and overflowing to the nearby grassland was observed.	The Contractor should provide regular clearance for the cut off drain and the sump pit to allow adequate capacity for collection of wastewater from wheel washing activity.	29 Dec 2023
29 Dec 2023	Wastewater in settling chamber was observed turbid. No discharge was observed during site inspection.	The Contractor should retreat the wastewater in settling chamber and ensure discharge quality could meet the discharge licence requirement.	Ongoing
29 Dec 2023	Seepage of wastewater from cement truck washing operation to the covered gully was observed.	The Contractor should enhance the protection measure and properly cover the gully to prevent any wastewater from entering the public drain. Also, the Contractor should review the arrangement of wastewater collection from cement truck washing operation.	Ongoing
29 Dec 2023	Oil stain was observed at which oil drums were removed.	The Contractor should remove the oil stain and treat as chemical waste disposal.	Ongoing
29 Dec 2023	The haul road was observed dry.	The Contractor should provide regular water spraying to prevent fugitive dust emission during vehicular movement.	Ongoing

3.2 Advice on the Solid and Liquid Waste Management Status

The Contractors were registered as chemical waste producers for the Project. Construction and demolition (C&D) material sorting was carried out on site. Sufficient numbers of receptacles were provided for general refuse collection and sorting. Excavated inert C&D materials were reused to minimise the disposal of C&D waste to public fill. The Contractors were reminded to maintain on site waste sorting and recording system and maximize reuse / recycling of C&D wastes, whenever these are generated.

The monthly summary of waste flow table for marine and land section are detailed in Appendix Н.

The valid environmental licenses and permits for the Project during the reporting period are summarized in Appendix I.

3.3 Implementation Status of Environmental Mitigation Measures

424529 | 17 | A | December 2023

A/ACL_EM&A_202312_Rev A.docx

In response to the site audit findings, the Contractors carried out corrective actions.

A summary of the environmental mitigation measures implementation status is presented in Appendix J. Necessary mitigation measures were implemented properly, observations and reminders were issued to the Contractors where actions were taken by the Contractors to rectify the identified issues.

3.4 Summary of Exceedance of the Environmental Quality Performance Limit

Water Quality

The water quality monitoring results for dissolved oxygen (DO), turbidity and suspended solids (SS) obtained during the reporting period were within the corresponding Action and Limit Levels.

Detailed impact monitoring results and relevant graphical plots are presented in Appendix G.

3.5 Summary of Complaints, Notifications of Summons and Successful Prosecutions

Complaint Log

There was no complaint received in relation to the environmental impact during the reporting period.

Notifications of Summons or Status of Prosecution

There was no notification of summons or prosecutions received during the reporting period.

Cumulative Statistics

Statistics on complaints, notifications of summons and successful prosecutions are summarized in **Table 3.2.**

Table 3.2: Statistics on Environmental Complaints, Notifications of Summons and Successful Prosecutions

Reporting Period	Environmental Complaints	Notifications of Summons	Successful Prosecutions
This reporting period (Dec 2023)	0	0	0
From commencement date of construction to end of reporting period	0	0	0

4 Future Key Issues

4.1 Construction Programme for the Coming Month

As informed by the Contractors, the major construction activities for the next reporting period (January 2024) are summarized in **Table 4.1**.

Marine Section	
Period	Description of Activities
Jan 2024	 Plant mobilization and material delivery Marine substructure works Marine pier construction works Segment construction works Bridge deck construction works
Land Section	
Period	Description of Activities
Jan 2024	 GI works Underground utilities diversion work Bored pile work Socketed H-Pile Pile cap ELS Water mains installation Tower crane installation

4.2 Environmental Site Inspection and Monitoring Schedule for the Next Reporting Period

The tentative schedule for weekly site inspection and water quality monitoring for the next reporting period is provided in **Appendix D**.

5 Conclusions

General

The construction works for the Project commenced on 26 July 2022. The ET of the Project has undertaken environmental site inspections and water quality monitoring under the construction phase EM&A programme during the reporting period.

Water Quality Monitoring

The impact water quality monitoring results for dissolved oxygen (DO), turbidity and suspended solids (SS) obtained during the reporting period were within the corresponding Action and Limit Levels.

The post-construction water quality monitoring results for dissolved oxygen (DO), turbidity and suspended solids (SS) were obtained during the reporting period.

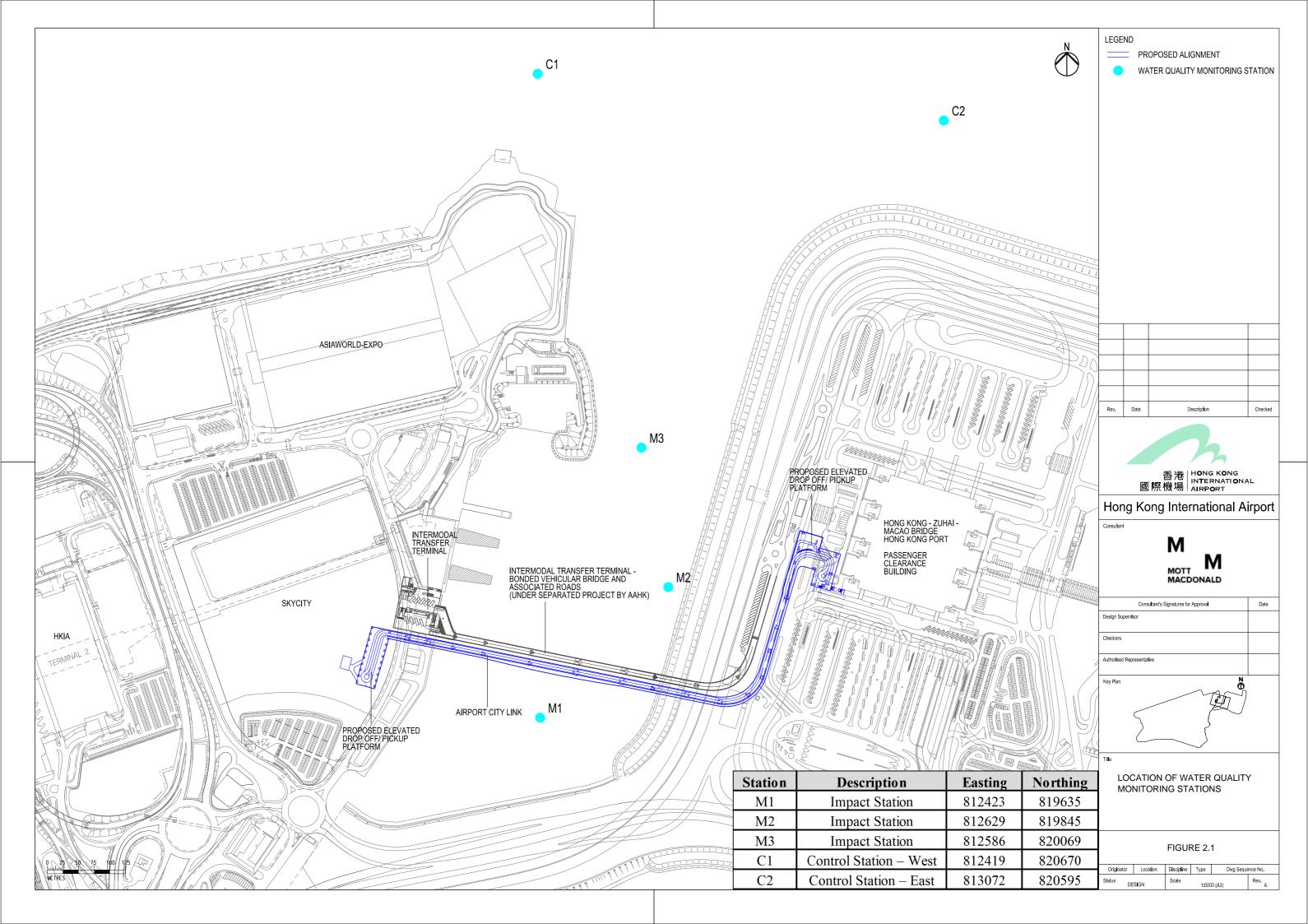
Environmental Site Inspections

Environmental site inspections were carried out 4 times for marine section and 4 times for land section during the reporting period. Recommendations on remedial actions were given to the Contractors for the deficiencies identified during the site inspections.

Complaint Log

There was no complaint received in relation to the environmental impact during the reporting period.

Reporting Changes


There was no reporting change during the reporting period.

Notifications of Summons and Successful Prosecutions

There was no notification of summons or successful prosecutions received during the reporting period.

Figure 2.1 Water Quality Monitoring Locations

Appendices

Appendix A. Project Organisation

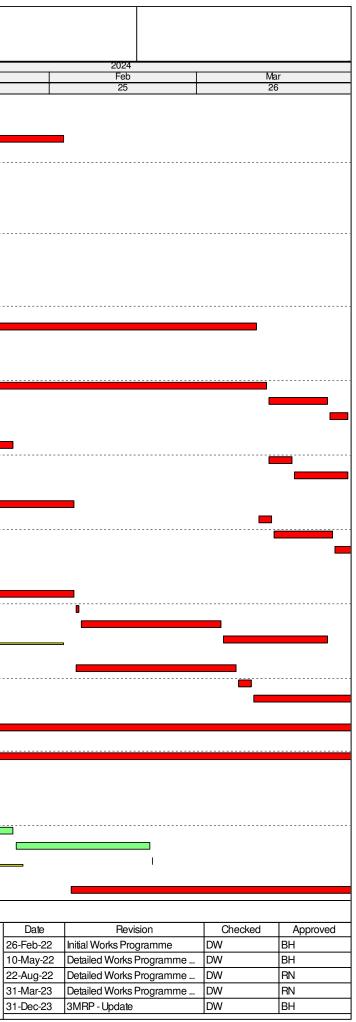
Management Organizations for EP Condition 2.3

Appendix B. Construction Works Programme

Marine Section

D	Activity Name	Orig Dur	BL Project Start	BL Project Finish	Start	Finish	Total Float	Physical % Complete		Jan
/10/01 - ACL - Mitigation	Programme Rev.D Updated as of 31 Dec 2023		I						23	24
ract Dates	· ·									
tutory Submission										
9W10.A.C0W895	Design Preparation, Submissoin and Approval for Navigation Aids	100	02-Feb-23	29-May-23	01-May-23 A	03-Feb-24	-95	50%		
rine Substructure Works										
7 Substructure 19W10.U.SD132	P7 Pier Erection	21	20 May 22	24 Jun 22	21 Aug 22 A	02 lon 24	70	0.5%		
8 Substructure	P7 Pier Election	21	30-May-23	24-Jun-23	21-Aug-23 A	03-Jan-24	-79	95%		
19W10.U.SD192	P8 Pier Erection	21	01-Aug-23	25-Aug-23	17-Nov-23 A	17-Jan-24	-52	50%		
3 Substructure			017 lug 20	20 / 10g 20	11 1107 2017	TT Gall 21	0L	0070		
19W10.U.SD162	P3 Pier Erection	21	30-Jun-23	27-Jul-23	26-Oct-23 A	03-Jan-24	-68	95%		
arine Viaduct Erection						1				
.CL P5 Span										
19W10.U.SD253	Erect Segment N-1	10	15-May-23	27-May-23	21-Nov-23 A	02-Dec-23 A		100%	—	
19W10.U.SD254	Erection of Travelling Formworks TF2 for Segment N+1	5	29-May-23	02-Jun-23	06-Dec-23 A	13-Dec-23 A		100%		
19W10.U.SD255	Erect Segment N+1	10	03-Jun-23	15-Jun-23	14-Dec-23 A	21-Dec-23 A		100%		
19W10.U.SD262	Cantilever Segment Erection (7 Cycles, 10 days per cycle)	58	16-Jun-23	14-Sep-23	02-Jan-24	12-Mar-24	-107	0%		
CL P6 Span										
19W10.U.SD284	Erection of Travelling Formworks TF4 for Segment N+1		27-Apr-23	03-May-23	30-Nov-23 A	07-Dec-23 A		100%		
19W10.U.SD285	Erect Segment N+1		04-May-23	15-May-23	08-Dec-23 A	14-Dec-23 A		100%		
19W10.U.SD292	Cantilever Segment Erection (7 Cycles, 10 days per cycle)	70	16-May-23	14-Aug-23	18-Dec-23 A	14-Mar-24	-117	15%		
19W10.U.SD422	Casting the Stitching Between P5 & P6	10	15-Sep-23	27-Sep-23	15-Mar-24	26-Mar-24	-123	0%		
19W10.U.SD432	Stressing P5 & P6 Bottom Tendon	4	28-Sep-23	05-Oct-23	27-Mar-24	30-Mar-24	-123	0%		
CL P4 Span	Fraction of Hommon Hond	20	25 May 22	20. hup 22	11 Dec 02 A	24 Jan 24	77	200/		
19W10.U.SD302 19W10.U.SD312	Erection of Hammer Head	28	25-May-23	30-Jun-23 04-Oct-23	11-Dec-23 A 15-Mar-24	24-Jan-24 19-Mar-24	-77 -123	20%		
19W10.U.SD312	Erection of Travelling Formworks TF1 for Segment N-1		28-Sep-23		20-Mar-24	30-Mar-24	_	0%		
CL P7 Span	Erect Segment N-1	10	05-Oct-23	17-Oct-23	20-11/121-24	30-IVIAI-24	-123	0%		
19W10.U.SD332	Erection of Hammer Head	28	26-Jun-23	01-Aug-23	04-Jan-24	05-Feb-24	-79	0%		
19W10.U.SD342	Erection of Travelling Formworks TF3 for Segment N-1	3	15-Aug-23	18-Aug-23	13-Mar-24	15-Mar-24	-113	0%		
19W10.U.SD343	Erect Segment N-1	10	19-Aug-23	31-Aug-23	16-Mar-24	27-Mar-24	-113	0%		
19W10.U.SD344	Erection of Travelling Formworks TF4 for Segment N+1	5	01-Sep-23	07-Sep-23	28-Mar-24	02-Apr-24	-113	0%		
ACL P3 Span			0. 00p 20	0. 000 20	20 1101 21	0274721		0,0		
19W10.U.SD367	Fabrication and Delivery of Bearing (for P3 & P8)	200	01-Nov-22	21-Jun-23	15-Feb-23 A	13-Jan-24	-27	90%		
19W10.U.SD362	Erection of Scaffolding Tower	28	28-Jul-23	31-Aug-23	04-Jan-24	05-Feb-24	-68	0%		
19W10.U.SD372	Installation of Permanent Bearing at P3	1	01-Sep-23	01-Sep-23	06-Feb-24	06-Feb-24	-37	0%		
19W10.U.SD382	Erect of Pier Head Diaphragm	21	02-Sep-23	28-Sep-23	07-Feb-24	05-Mar-24	-37	0%		
19W10.U.SD542	Erection of P3 End Span	18	15-Jan-24	03-Feb-24	06-Mar-24	26-Mar-24	-37	0%		Erection of P3 End Span
ACL P8 Span										
19W10.U.SD392	Erection of Scaffolding Tower	25	01-Sep-23	04-Oct-23	06-Feb-24	08-Mar-24	-68	0%		
19W10.U.SD402	Installation of Permanent Bearing at P8		05-Oct-23	06-Oct-23	09-Mar-24	11-Mar-24	-68	0%		
19W10.U.SD412	Erect of Pier Head Diaphragm	25	07-Oct-23	07-Nov-23	12-Mar-24	13-Apr-24	-68	0%		
aduct Parapet Erection							I			
9W10.A.C0W555	Off-site Fabrication and Delivery of Precast Parapet	180	06-May-23	20-Dec-23	11-Dec-23 A	03-Jul-24	-120	5%		
op Railing and Road Light 19W10.A.C0W790	off-site Fabrication and Delivery of Top Railing	100	06-May-23	20 Dec 22	01-Jan-24	27-Jul-24	-108	00/		
ender Installation		180	uu-iviay-23	20-Dec-23	01-Jan-24	∠ <i>1-</i> Jul-24	-100	0%		
9W10.A.C0W865	Fender Installation at P3	0	29-Aug-23	23-Sep-23	02-Jan-24	02-Jan-24	32	0%		1
9W10.A.C0W915	Fender Installation at P4	0	25-Sep-23	20-Oct-23	02-Jan-24	02-Jan-24	32	0%		1
9W10.A.C0W925	Fender Installation at P5	0	21-Oct-23	14-Nov-23	02-Jan-24	02-Jan-24	32	0%		1
9W10.A.C0W935	Fender Installation at P6	20	15-Nov-23	07-Dec-23	02-Jan-24	24-Jan-24	32	0%		
9W10.A.C0W945	Fender Installation at P7	20	08-Dec-23	03-Jan-24	25-Jan-24	20-Feb-24	32		ion at P7	
9W10.A.C0W955	Fender Installation at P8	0	04-Jan-24	26-Jan-24	21-Feb-24	21-Feb-24	32	0%	Fender Installatio	on at P8
vigation Aids Installation								270		
19W10.A.C0W875	Off-site fabrication and delivery	107	30-May-23	16-Oct-23	05-Feb-24	22-Jun-24	-91	0%		

Project Baseline ♦ Baseline Milestone Remaining Work \diamond Critical Remaining Work ₽ Start Constraint


₽ Finish Constraint

Actual Work

Milestone

Three-Month Rolling Programme (as of 31 December 2023)

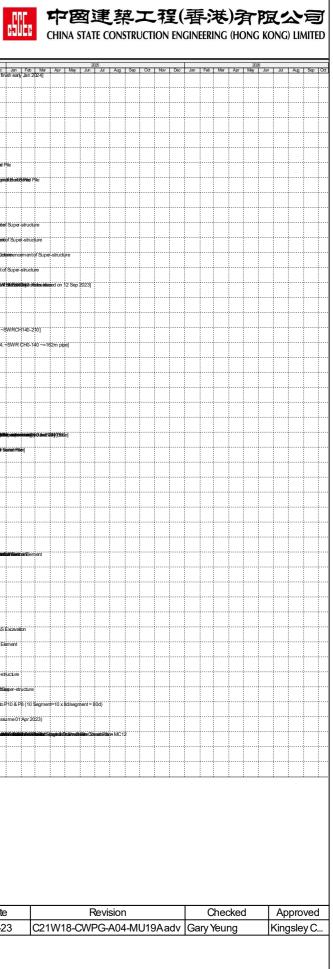
Printed: 26-Dec-23 15:10 Layout: C19W10/01 ACL 3MR M22 TASK filter: 3 Mths Rolling.

Land Section

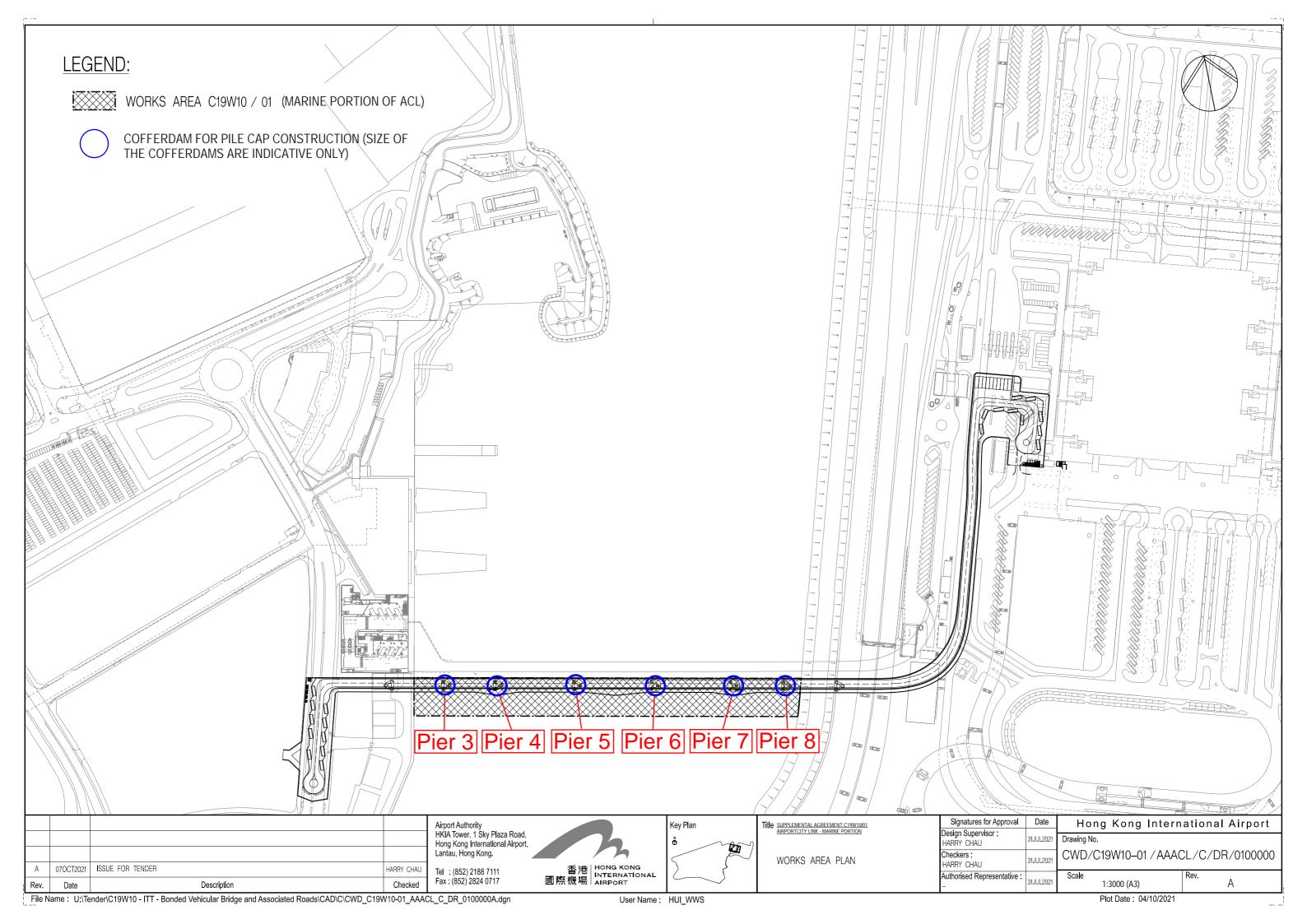
Contract C21W18 - Airportcity Link - Land Viaducts at Hong Kong Port and Airport Island MU19A - Works Programme Update (CWPG-A04) DD 31-Dec-23 (Advanced)

		Start	Finish	Update OD Du	ation San	Finsh	Complete		Apr Mev I	2022 Jun Jui J	Aug Sen I (Oct Nev	Dec Jan F	eb Mar La	pr Mav T	2023 Jun 1 .14	Aug Se	o Oct IN∼	Dec	an Feb M	ar Apr In	20 May Jun	1024 Jul Ave	Seo Cer	Nov Dec	Jan	8 T F
31231 - Airportcity Link	(2023-05-25) - CWPG-A04 MU19A (Revised master programm	746.0 06-Jun-2	2 05-Dec-24	624.0 38	1.0 06-Jun-	22 A 12-Apr-25		-85.0 0.0	- may (3		5 ~~ (,					-
tract Dates		0.0 30-Sep-2	2 30-Sep-22	0.0 0	.0 31-Dec	-23 31-Dec-23		-457.0 157.																		1	Ĩ
Jule of Anticipated BD Appro	oval Dates (PS Appendix C4)	0.0 30-Sep-2	2 30-Sep-22	0.0 0	.0 31-Dec	-23 31-Dec-23		-457.0 157.					1				1									1	1
00	Structural Plans for Miscellaneous Items (including lamp post and signage) - 30 Sep 22	0.0	30-Sep-22	0.0 0	.0	31-Dec-23*	0%	-457.0 157.			^		Ī						• 5	tructural Plans f	or Miscellaneo	us ltems (in	ncluding;lamp	post and signa	ge) - 30 Sep 22		T
ment		624.0 06-Jun-2	2 12-Jul-24	624.0 38	1.0 06-Jun-	22 A 12-Apr-25		-110.0 0.0											-			1040.13		-			
tion						22 A 28-Jun-24		-26.0 126.																			
	ems, Associated Road Works, Facilities & At-Grade Plant Room					22.A 28-Jun-24		-26.0 126.																			
gn & BD Approval - Sky City	& HKP PI le Caps, Lift Pit, Drai nageF uel Tank etc.	28.0 04-Jan-2	3 08-Feb-23		.0 17-Dec-	22 A 01-Feb-23 A																					
ELS_1030	Submit BA8 for Consent for Commencement of ELS Works (Vertical Element Part)	7.0 04-Jan-2	3 11-Jan-23	7.0 0	.0 17-Dec	22 A 24-Dec-22 A	100%	12.0					Subm	nit BA8 for Cons	entfor Com	mencement	f ELS Works	(Vertical Elemer	ttPart)								
_ELS_1040	BD Review & Issue the Consent for ELS (Vertical Element)	28.0 12-Jan-2	3 08-Feb-23	28.0 0	.0 26-Dec	22A 01-Feb-23A	100%	17.0						BD Review & I	issue the Co	msent for ELS	(Vertical Eler	neht)									
ity Platform		649.0 29-Sep-2	2 05-Dec-24	502.0 11	8.0 07-Mar-	23 A 28-May-24		-26.0 128.																			
City Platform - Foundation		224.0 29-Sep-2	2 05-Jul-23		8.0 15-Apr-	23 A 28-May-24																					
Stage 2 - Full Contra-Flow of No	orth Bound Fast Lane to South Bound	179.0 29-Sep-2	2 10-May-23	176.0 7	2.0 15-Apr-	23 A 30-Mar-24		-242.0 158.																			
AStage 2 - North Bound		179.0 29-Sep-2	2 10-May-23	176.0 7	2.0 15-Apr-	23 A 30-Mar-24		-242.0 158.																			
rth Bound - TTA Stage 2 - UU Di	iversion	60.0 29-Sep-2	2 09-Dec-22	124.0 0	.0 15-Apr-	23 A 05-Dec-23 A		158.																			Ĩ
orth Bound - TTA Stage 2 - Bored	d Piling Works	119.0 10-Dec-2	2 10-May-23	79.0 7	2.0 18-Dec	23 A 30-Mar-24		-242.0 302.																			Ť
KD2_SCP_F_1000	TTA Stage 2(NB) Group 1 - Construct Bored Pile S-P9 to S-P12 (4 nox 16d/p = 64d)	64.0 10-Dec-2	2 01-Mar-23	60.0 5	0.0 18-Dec	23A 02-Mar-24	25% #AD - SHP 60d overall (2d/SHP); Group 2 (NB pile S-C10-P3 started on 18Dec23; Drill 6/22+0). 1st -283.0 302. irout					—	-			1		-	т	TA Stage 2 (N	B) Group 1	Construct E	ored Pile S-P9	bS-P12 (4 nox	16d/p =164	I), TT/
							5/22 = 11/44																				
D2_SCP_F_1010	TTA Stage 2(NB) Group 1 - Completion of Bored Piles Pile Group-1 at North Bound	0.0	01-Mar-23		.0	02-Mar-24	0% #AD - SHP; Group 2 (NB)	-349.0 367.						>						1 1				1	lle Group-1 at N	1	
D2_SCP_F_1020	TTA Stage 2(NB) Group 2 - Construct Bored Pile S-P7 to S-P8 (2 no x 16d/p = 32d)	32.0 02-Mar-2	3 12-Apr-23	32.0 3	0.0 30-Dec	23A 05-Feb-24	6.25% #AD - SHP 32d overal (2d/SHP) SS 8d lag afte KD2_SCP_F_1000; Start S-C8-P3 30 Dec 20: 1/8 + Grout 0/8 = 1/16	r -243.0 347. 23. Drill						-						TTASta	ge2(NB)Gro	up 2 - Cans	struct Bored F	nie:S-P71bS-P	8 (2 nox 16d/p	:32d), TTA	.tage 2
02_SCP_F_1012	TTASlage2(NB)Group 1 - 28 days Concrete Cube Strength	28.0 02-Mar-2	2 02 4 6-	28.0 -	3.0 03-Ma	-24 30-Mar-24	1/8 + Grout U/8 = 1/16	-349.0 367.									<u> </u>		ļļ.		T 779 ~	102/41010	mun 4 .00 .		ubje Strenigth, T⊓	TA Start St	UP! C
02_SCP_F_1012	TIA Stage 2(NB) Group 1 - 28 days Concrete Cube Strength TTA Stage 2(NB) Group 2 - Completion of Bored Piles Pile Group-2 at North	28.0 02-Mar-2	3 03-Apr-23		1.0 03-Ma	05-Feb-24	0% #AD - grout cube strength; Group 2 (NB) 0% #AD - SHP; Group 2 (NB)	-349.0 967.												♦ TTA SH~					ube Strength, I up-2 at North B	1	
D2_SCP_F_1130	Bound TTA Stage 2(NB) Group 2 - 28 days Concrete Cube Strength	28.0 13-Apr-2			3.0 06-Feb		0% #AD - grout cube strength	-271.0 9.0						•											rength, TTA Star		roup 2
Stage 3 -Shift Turning Forward	to South Side for Construction of S-P1	23.0 10-Mar-2			.0 30-Jul-			114.														5)(Gloop 1	2000000				
Stage 4 - Resume Two Lanes to	North & South Bound without Central Divider	68.0 13-Apr-2	3 05-Jul-23	68.0 6	3.0 04-Ma	-24 28-May-24		77.0 266.																			
2_SCP_F_1170 2_SCP_F_1180	TTA Stage 4 - Implement TTA	1.0 13-Apr-2				-24 04-Mar-24	0%	77.0 6.0									<u>† </u>			T	TA Stage 4 - In	mplement T	TA, TTA Stag	e 4 - Implemen	TTA - Install Water F	Click Danks	
2_SCP_F_1180 2_SCP_F_1200	TTA Stage4 - Install Water Filled Barriers TTA Stage4 (S/B) - Modify Existing Cooling Mains and Drainage	7.0 14-Apr-2 60.0 22-Apr-2			.0 05-Mar 0.0 13-Mar		0% #Link to suc. S_1140, S_1150 removed 0% #Successor link to KD2_RD_1004 instead of KD2_SCP_S_1170 columns	77.0 6.0 77.0 266.													TIA Stage 4				Gooling Mains		
Submission for Completion of	of Bored PileWorks	57.0 02-Mar-2	3 12-May-23	53.0 5	3.0 07-Nov	23A 06-Mar-24		-221.0 203.																		\mathbf{T}	
4 Submission for Completion	of Bored Pile Works - SCP Group 1 (#AD SB)	37.0 02-Mar-2	3 18-Apr-23	33.0 3	3.0 07-Nov	23A 08-Feb-24		-207.0 203.																		-	
02_SCP_F_1230	Pile Group 1 - Sonic Test, Interfacing Core for Last Completed Bored Pile #->SHP no need] (##->Loading test]	14.0 02-Mar-2	3 17-Mar-23	17.0 1	5.0 29-Dec	23A 18-Jan-24	5% #AD - Loading Test 7d mobilise + 7d test + 3d m Link to suc. KD2 SCP F 1240 removed; to su	aport; -206.0 346.						-					-	Pile Group 1	- Sonic Test, I	Interfacing C	Core for Last C	Completed Bare	DPile[#≫SHPr	to need] [##	>Lbad
	w-Ashrin in neeu (w-Actualing lesg						F_1260 added. Reaction pile started on 29Dec2 (incl. preparation)	023																			
SCP_F_1240	Pile Group 1 - Submit BA14 for Completion of Bored Pile Works [#SHP SB	2.0 18-Mar-2	3 20-Mar-23	30.0 0	.0 07-Nov	23A 07-Dec-23A	100% #Group 1 (SB) submit 2d + 28d BD select test	pile; link 189.						•					Pile Gr	up 1 - Submit I	3A14 for Com	pletion of Bo	dred Pile Worl	ks #SHP SB R	P to BD on 7No	oV23, BD s/	lected .
	RLP to BD on 7Nov23, BD selected 7Dec23]						to suc. KD2_SCP_F_1230 added. [#SHP SB BD on 7Nov23, BD selected 7Dec23]	RLPto																			
_SCP_F_1260	Pile Group 1 - BD Review BA14 and Issue Acknowledgement of Bored Pile Completion	28.0 22-Mar-2	3 18-Apr-23	21.0 2	1.0 19-Jar	-24 08-Feb-24	0% #Group 1 (SB). ack. loading test & BA14 21d	-251.0 303.						+	•					📕 Pile Gro	up 1 - BD Re	view BA14 a	and Issue Ac	knowledgemen	of Bored Pile Co	mpletion, P	le Gro
abmission for Completion	of Bored Pile Works - SCP Group 2 (IIAD NB)	2.0 11-May-2	3 12-May-23	2.0 2	.0 05-Ma	-24 06-Mar-24		-221.0 344.																		++-	
2_SCP_F_1290	Pile Group 2 - Submit 28 days Concrete Cube Result to BD [#->Grout]	2.0 11-May-2	3 12-May-23	2.0 2	.0 05-Ma	-24 06-Mar-24	0% #Group 2 (NB)	-221.0 344.							•						Pile Group 2 -	Submit 28 d	days Concret	e Cube Result I	BD [#->Grout]	Pile Group	2 - Bi
/ Platform - Superstructure		95.0 29-Mar-2	3 26-Jul-23	107.0 10	7.0 01-Dec-	23 A 14-May-24		-154.0 201.																			
y Platform - Superstructure	-BD Submission for Commencement of Works	75.0 29-Mar-2	3 03-Jul-23	42.0 4	2.0 01-Dec	23A 22-Feb-24		-89.0 201.																		1	
ity Platform - Superstructure	e - BA8 & BA10 for Commencement of Works	37.0 29-Mar-23	3 16-May-23	42.0 4	2.0 02-Jan	-24 22-Feb-24		-204.0 225.									<u>+</u>		† h	in the second sec	ikoj£#85i	Scé Bhé Cr	o Gentitie Ope	maheted BopBits	(6dpæs9adpri	éGroup 1	÷
City Platform - Superstructure	e - BA8, BA10, BA14 for ELS Works	66.0 13-Apr-2	3 03-Jul-23	0.0 0	.0 01-Dec	23A 01-Dec-23A		192.									++									\square	Ť
City Platform - Superstructure	-Column	58.0 17-May-2	3 26-Jul-23	65.0 6	5.0 23-Feb	-24 14-May-24		-204.0 230.																			÷
_SCP_S_1140	Group 1 - South Bound - Column S-C3 to S-C6 (4 nos x 9d/column = 28 d)	36.0 17-May-2	3 29-Jun-23	53.0 5	3.0 23-Feb	-24 29-Apr-24	0% #AD - plus pile caps overall 44d + 9d for last col 53d; Link to suc. KD2_SCP_S_1212 added	umn = -204.0 !30.							-	_					-	Group 1 - So	outh Bound - (Calumn S-C3 I	S-C6 (4:nos x	9d/column	28 d
2_SCP_S_1170	Group 2 - South Bound - Column S-C1 to S-C2 (2 nos x 9d/column = 18 d)	18.0 06-Jul-23	3 26 14 22	49.0 4	9.0 13-Ma	-24 14-May-24	53d; Link to suc. KD2_SCP_S_1212 added 0% #AD - plus pile caps overall 40d + last column S	001 0 MC, H04 H									ļ					Gtorin 2	South Pro-	d - Columba S /	11 to S-C2 (2 no	nd y Ord/ord	-
		10.0 00-00F23	20-30-23		(3-Ma		SS 16d lag after KD2_SCP_S_1140. #Link to s KD2_SCV_S_1170 & KD2_SCP_S_1212 add	uc.								-						Soup 2	puun	_ Gauniti 0-1		uruuun	
y Platform - ABWFWorks																											
y Viaduct - Foundation		28.0 30-Dec-2	2 26-Jan-23		.0 03-Aug														•	Sky:City Vedu	t - BD Acknow	wledge tbe©	conficient l	Bored Pile			
Viaduct - Superstructure		151.0 16-Feb-2	3 19-Aug-23		5.0 04-Sep-	23 A 18-Apr-24																					
ity Viaduct - ELS for Pile Cap	P2	94.0 16-Feb-2	3 12-Jun-23	52.0 2	3.0 01-Dec-	23A 02-Feb-24		-70.0 236.											-	E SANGAN	vieto i HOLIber	NONCES	h Chi oth	alingia i al ELS	Bicavation #		Ĩ
Sity Viaduct - Pile Cap P2		86.0 14-Mar-2.	3 29-Jun-23	31.0 2	3.0 04-Sep	23A 23-Feb-24		-71.0 41.													nang mengens			in Rên cement d	Super-structure		
ity Viaduct - Pier P2		43.0 30-Jun-2	3 19-Aug-23	43.0 4	3.0 24-Feb	-24 18-Apr-24		-71.0 195.												-		CUJE COLOR		ijRigtaavist ik			Î
-Platform		374.0 28-Oct-2	2 30-Jan-24	284.0 9	9.0 04-Feb-	23 A 04-May-24		-108.0 79.0																			Ť
latform - Foundation		356.0 28-Oct-2	2 09-Jan-24	249.0 9	9.0 04-Feb	23 A 04-May-24		-81.0 79.0									<u> </u>									\square	Ť
Platform - Bored Piling Works		319.0 28-Oct-22	2 23-Nov-23	240.0 9	0.0 04-Feb	23 A 23-Apr-24		-215.0 79.0																		\square	Ť
																			:						: :	<u>. :</u>	<u>:</u>
A at -	al Work 🔶 🔶 Mile	stone		_								1. 1	4.	_ n-		ate: 3	1 Da-	22							Date	е	Γ
				F	rojec	t ID: N	IU19A-CWPG-A04	D Inter	im Pi	rogre	ess L	Jbgs	ate											3	1-Dec-2		c
	U U	nary Baselin	e		A04	- Worl	ks Programme Upo	date wit	th Vai	riand	ce Re	epor	t	1				16:53					la di	F		-	Ľ
	· · · · · · · · · · ·						J					1		1 1 2	VOUT	· (:21)	vv 18-V	NPU L	avout	n/III10	JAIDT	Det I	indf	1			
Critic	al Remaining Work \land 🔶 Bas	eline Milesto	one				Page 1 of 2 (A	duana	-d/									: C21W									

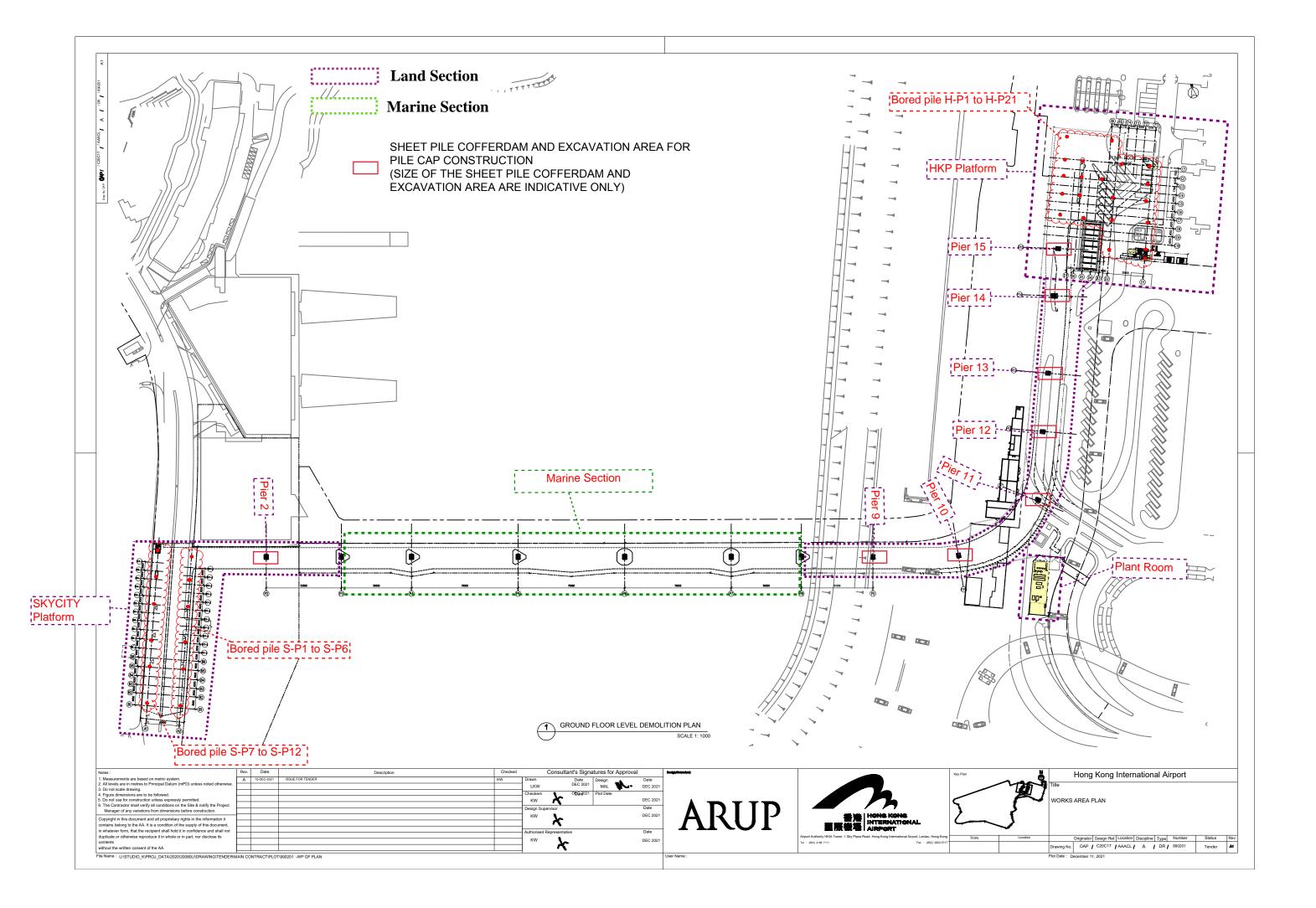
	E	स्र	1	Į		T	₹	₽(萔		萩)3	F	BF	7	~	Ē	7
				ONS														
		2	125										202 May	6				
Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Ацд	Sep	Oc
	Ngaala	t aligibad	labbier	ittinen by	FSD 16	r At Gra	de Plan	t Room										
<u>.</u>																		
ge 2(N/	B) Grou	¢p1-C	onstruc	t Bored	Pile S-F	9 to S-I	P12 (4 i	io x 16	1/p = 64	d)								
ಚ) Grou	p2-C	anstruc	Bored	Pile S-P	∕ to S-I	8 (2 nc	x 16d/	p = 32d	,									
1 - 28	ays Co	ncrete	Cube S	frength														
idays C	oncrete	Cube	Strengti	h														
ge 4 (S/	B) - Mo	ify Exis	ling Ca	фiing Ma	ins and	Draina	ge											
test], Pi	e Group	1 - Sa	hic Test	Interfac	ing Cor	e for La	st Com	pleted B	ared Pil	e[#->S	HPno	heed] (#	#->Loa	ding te	#]			
d23]																		
-BD R	eview B	A14 an	d Issue	Acknow	ledgen	ent of E	ored P	e Cam	pletion									
28 day	s Conc	rete Cut	e Resi	at to BD	#.>Gr	aufi												
20 day					(ii Gi													
oup 1 -	South B	ound -	Colum	1 S-C3 I	o S-C6	(4 nos	(9d/col	umn = 1	28 d)									
Group	2 - Sou	th Bour	id - Col	umn S-(C1 to S	C2 (2 r	as x 9d	colum	i = 18 d)								
		_													A -			
W1	8-0			sior A04		U10	Aa	dv	Ga		heo íeui		1	-		pro jsle		_
	5.0		0.	0-		- 10	., .d			y	.54	.9				-0.C	, 0	



Contract C21W18 - Airportcity Link - Land Viaducts at Hong Kong Port and Airport Island MU19A - Works Programme Update (CWPG-A04) DD 31-Dec-23 (Advanced)


	Stat				Complete	PG A	pr May J	2022 Jun Jul Aug	Sep Oct	Nov Dec J	an Feb 1	Mar Apr 1	20 Vay Jun	3 Jul Aug	Sep Oct	Nov Dec J	an Feb	Mar Ap	r May Ju	2024 n Jul A	ug Sep Oct	Nov Dec	Jan Feb	Mar
Stage A TTA at Grid R19 & R20 - Pile H-P1 - H-P5, H-P6 - H-P9	151.0 29-Mar-2	3 29-Sep-23 131	.0 30.0	19-Apr-23 A 05	eb-24	-158.0 14.0											1					12-21: expect fi	nish early, Jan 2	(124]
Stage B TTA from Grid R21 to R26	319.0 28-Oct-2	2 23-Nov-23 237	.0 24.0	04-Feb-23 A 29	an-24	-215.0 79.0					ÌÌ					-	HKP P	latform Gro	up 2 - Constru	d Bored Pile i	(P13			
Reprovision of Vertical Circulation - Staircase	73.0 24-May-	3 19-Aug-23 114	.0 60.0	05-Oct-23 A 23	pr-24	-215.0 110.											-		Ct Claned (Pale)	o nd 120 m - H-	P206		1	1
HKP Platform - Statutory Submission for Completion	251.0 07-Mar-2	3 09-Jan-24 123	.0 99.0	24-Apr-23 A 04-	lay-24	-158.0 37.0																		
HKPP - Group 1 Completion of BP (H-P6 to H-P8, 10, 12, 16, 17) #> New Group 1: 6,7,10,12,16,17	36.0 07-Mar-2	3 21-Apr-23 87.	0 7.0	24-Apr-23 A 09	an-24	-149.0 37.0										•	HKP Platfor	m Pile Grou	ip 1 - BD Ackr	owjedge for C	ompletion of Bore	Pile	1	1
HKPP - Group 2 Completion of BP (H-P11,13,18,19) #>New Batch 2: H-P1,3,18	37.0 08-Sep-	3 24-Oct-23 72	0 12.0	10-Sep-23A 15	an-24	-154.0 -2.0											THKP Plat	orm Pile Gri	oup 2 - BD Ack	nowledge for	Completion of Bor	ad Pile	1	
HKPP - Group 3 Completion of BP (H-P14, H-P15) #>New Batch 3: H-P2,14,15	37.0 24-Nov-	3 09-Jan-24 61.	0 54.0	01-Nov-23A 07	tar-24	-196.0 20.0										•••			nali-isalaisina		ao Rég Con Quela	1006018790	Pile	1
HKPP - Group 4 Completion of BP (H-P9) #->New Batch 4: H-P4,5,8,13,19	39.0 30-Sep-	3 17-Nov-23 69	0 69.0	15-Dec-23A 04-	lay-24	-158.0 62.0														a concept		in film	nidikiBookB6Pied F	Pile
HKP Platform - Tower Crane Installation	17.0 13-Dec-	3 04-Jan-24 17.	0 17.0	08-Jan-24 26	an-24	-4.0 19.0										•			o me nere	ing Bgnstruct				
KP Platform - Superstructure	246.0 03-Apr-2	3 30-Jan-24 134	.0 75.0	30-Nov-23 A 05	pr-24	-108.0 196.																		
IKP Platform - Superstructure Portion 1 #->New Deck Zone A	36.0 03-Apr-2	3 19-May-23 34.	0 34.0	02-Jan-24 09-	eb-24	-149.0 221.												PSHARUSS	haikan Félikah	n 1 3 8 8 1 1 1 1	VetClensent Vort Gt	Birpenstructut	e(Super-struct	цre
IKP Platform - Superstructure Portion 2#->New Deck Zone B	38.0 07-Oct-2	3 21-Nov-23 36.	0 36.0	02-Jan-24 15-	eb-24	-151.0 70.0										n		(1881alonis	8016467966	nii:1549.lbad	Bérjüncsen tintel	Superstucien	neof Super-struc	clure
IKP Platform - Suparstructure Portion 3#>New Deck Zone C	32.0 21-Dec-	3 30-Jan-24 63.	0 63.0	16-Jan-24 05	xpr-24	-196.0 19.(I HKP Plat	a n a ich	KATTBallor(3-3	nuista in 1348 lia	GolBEblesterile	lót6epet kstrGc	dumencom ent	lof Super-s
KP Platform - Superstructure Portion 4#-New Deck Zone E		3 13-Jan-24 77.				-108.0 26.(THKPR	atform Structu	e Portion 4 - S	ubmit BA8 for Co	mmencemento	of Super-struct	ure
CP Platform - External Works at Ground Level		3 31-Oct-23 194				25.0 105																ENROPEN	N HE CHOILE A G	Series stores
						54.0 100.																		
er viaduat KP Viaduat Pile Group 1 & 3 - UU Diversion - Water Mai'n Diversion		2 08-Apr-24 251 2 26-Nov-22 69.				51.0 224.																		ļļ.
						153.0 327.											_				ımPE)⊯~midP1			
Watermain Diversion - Stage 1 (#> fresh water + saltwater clashed with piles)		2 12-Oct-22 14				191.0 354.														T T				
Watermain Diversion - Stage 2(#>fresh water + saltwater clashed with piles)		2 31-Oct-22 41.				191.0 310.										•	Stage 2 - Lay	yWaterMai			nmPE) ⊯P11 to -	mid P13&P14	+SWR CH0-1	40~=162r
Watermain Diversion - Connection of Water Supply (#>fresh water + saltwater clashed with piles)	23.0 01-Nov-3	2 26-Nov-22 30.	0 30.0	05-Jan-24 08-	eb-24	153.0 349.										•	C. C		awaang Rup	p§:(Bynal\$E)	Road Surface			
Watermain Diversion - Stage 3 Remaining fresh water main not clashing with piles	0.0	29.	0 29.0	17-Jan-24 22-	eb-24	153.0																		
KP Viaduct Pile Group 1 & 3 - UU Diversion - LV, ELV, CT Cable Duct Diversion	64.0 24-Sep-1	2 09-Dec-22 96.	0 19.0	28-Jun-23 A 28-	far-24	71.0 222.																		1
KP Viaduct - Foundation				28-Jun-23 A 09		-66.0 117.																		
HKP Viaduct - Bored Pile Group 1 & 3 - P11 to P15	236.0 03-Feb-4	3 17-Nov-23 207	.0 78.0	28-Jun-23 A 09	pr-24	-99.0 117.																	1	
HKP Viaduct Pile Group 1- Pile P12 to P15	236.0 03-Feb-2	3 17-Nov-23 207	.0 74.0	28-Jun-23 A 03	pr-24	-95.0 117.											I HRP Ver	-	-				Nipadastaij)	.¢0 au208)
HKP Viaduct Pile Group 3 - Pier P11	147.0 03-Feb-2	3 02-Aug-23 97.	0 65.0	29-Jul-23A 09	pr-24	-189.0 43.														tahan ya Kan	anique ante	Geri dskjöcher i	Byarted (Ribler)	1
HKP Viaduct - Bored Pile Group 2 - P9, P10	79.0 13-Jun-2	3 14-Sep-23 96	0 45.0	11-Od-23A 26	eb-24	-33.0 99.1																		
HKP Viaduct Pile Group 2 - Bored Pile Construction - Pile P9 to P10	30.0 13-Jun-2	3 19-Jul-23 30.	0 0.0	11-Od-23A 11-	w-23A	1.99																	+	÷
HKP Viaduct Pile Group 2 - Statutory Submission for Completion of Bored Pile Works (P9 to P10)	49.0 20-Jul-2	3 14-Sep-23 69	0 45.0	09-Nov-23A 26	eb-24	-33.0 93.1													+				+	++
HKP Viaduct Pile Group 2 - BA14 for P9	29.0 05-Aug-	3 07-Sep-23 52	0 28.0	09-Nov-23A 02-	eb-24	-16.0 79.0											- Haker	Mai(Rid) (PS) (BD/Acknow	edge ji di Eldini	Mettinistof Borred P	e(BA14)		
HKP Viaduct Pile Group 2 - BA14 for P10	49.0 20-Jul-2	3 14-Sep-23 69	0 45.0	12-Nov-23A 26	eb-24	-130.0 96.0			······									(MI()-80			a Biarotinici 82	and iPie		
KP Viaduct - Super-structure	255.0 30-Mav-	3 08-Apr-24 144	.0 144.0	01-Dec-23A 28-	un-24	-16.0 154.																		
HKP Viaduct - Span Portion 1 - P12 to P15		3 15-Nov-23 41.				-58.0 221.											_						Reference Eler	ment
HKP Viaduct - Potion 2 - Span from P8 to P11		3 08-Apr-24 144				-16.0 124.																		
HKP Visduct Potion 2-Statutory submission for Commencement of Superstructure		3 20-Nov-23 91.				-73.0 124.																		ļļ.
HKP Viaduct Potion 2-ELS Submission & Approval																								ļļ.
	115.0 06-Jui=2	3 20-Nov-23 91.				-73.0 124.			ļļ.												nationer to ELS			ļļ.
HKP Viaduct Potion 2 - ELS Submission & Approval - P9	103.0 20-Jul-2	3 20-Nov-23 28.			86-24	-10.0 112.											- Paronae	anan (adala) a	ia mana mana		Sentement of ELS			
HKP Viaduct Potion 2 - ELS Submission & Approval - P 10	96.0 20-Jul-2	3 11-Nov-23 91.	0 91.0	24-Dec-23A 24	pr-24	-154.0 32.										_			(444)) (4640)				SiÈxcavation	
HKP Viaduct Potion 2 - ELS Submission & Approval - P 11	29.0 06-Jul-2		0 29.0	24-Feb-24 28	tar-24	-191.0 91.												Vieiti	Rti(Rtit);⊧(Rist	# 1923 Addition	Hendy eldtion Coli fylpid	bah Editivisetistal E	lement	
HKP Viaduct Potion 2 - BD Submission for Commencement of Superstructure Works	60.0 02-Aug-	3 12-Oct-23 68	0 68.0	29-Dec-23A 28	tar-24	-54.0 123.																		
HKP Viaduct - Portion 2 - Pile Group 3 - P11	1.0 02-Aug-	3 02-Aug-23 1.	0 1.0	28-Mar-24 28	far-24	-183.0 196.												I HK	P Waduct (P11) - Submit BA	8 for Commencer	nentof Super-s	tructure	
HKP Viaduct - Portion 2 - Pile Group 2 - P9, P10	48.0 16-Aug-:	3 12-Oct-23 65.	0 65.0	29-Dec-23A 25	far-24	-51.0 111.										•		n vin bije js	D ARA (RARA)DA	98 0	Octobility (conduct)	1 1	Bieper-strücture	1
HKP Viaduct Potion 2 - Span P8 to P11	110.0 21-Nov-	3 08-Apr-24 110	.0 110.0	14-Feb-24 28-	un-24	-16.0 67.(-			-	aan 2001ar 319	nce from P9 to	P10&P8 (10	Segment=
						0.0 151.										-		Inte	rfacing Contra	tor Start Marin	ne Vladuct Deck c	nstruction (As	sume 01 Apr 20	J23)
						123.0 131.										-	680, 100			+ +	-			Area She
						166.0 24.0																		
3 - Statutory Submission & Approval for Completion of Testing & Commissioning	110.0 06-Jun-2	2 15-Oct-22 35	0 35.0	01-Jan-24 14-	eb-24	94.0 169.																		
																				1			<u> </u>	1

Actual Work Milestone Primary Baseline Critical Remaining Work Baseline Mileston 	Project ID: MU19A-CWPG-A04D Interim Progress Update A04 - Works Programme Update with Variance Report Page 2 of 2 (Advanced)	Data Date: 31-Dec-23 Printed: 08-Jan-2416:53 Layout: C21W18-WPU Layout_MU19A.Latest Updt. Filter: TASK filters: C21W18 - 3 M, without LOE, Without	Date 31-Dec-23	C21W
---	--	---	-------------------	------



Appendix C. Construction Works Area

Marine Section

Land Section

Appendix D. Environmental Site Inspection and Monitoring Schedule

ACL Environmental Monitoring and Site Inspection Schedule for Dec 2023

Dec-23 Sunday Monday Tuesday Wednesda Thursday Friday Saturday 1 2 Impact WQM mid- ebb: 03:44 nid- flood: 16:01 3 4 5 6 7 8 9 ACL (Land) Environmental Site Inspection ACL (Marine) Environmental Site Inspection Impact WQM Impact WQM Impact WQM mid- ebb: 05:49 mid- ebb: 08:06 mid- ebb: 10:22 nid- flood: mid- flood: nid- flood: 18:21 15:27 16:14 12 14 15 16 10 11 13 ACL (Land) Environmental Site Inspection ACL (Marine) Environmental Site Inspection Impact WQM Impact WQM Post-construction WQM mid- ebb: 12:41 mid- ebb: 14:06 mid- ebb: 15:39 mid- flood: 07:24 nid- flood: 08:58 nid- flood: 10:36 23 17 18 19 20 21 22 ACL (Land) Environmental Site Inspection ACL (Marine) Environmental Site Inspection Post-construction WQM Post-construction WQM Post-construction WQM mid- ebb: 19:06 nid- ebb: 07:40 mid- ebb: 10:03 nid- flood: nid- flood: 15:58 mid- flood: 13:21 14:48 24 25 26 30 27 28 29 ACL (Marine) Environmental Site Inspection ACL (Land) Environmental Site Inspection Post-construction WQM Post-construction WQM Post-construction WQM mid- ebb: mid- ebb: 12:43 nid- ebb: 13:54 15:04 mid- flood: mid- flood: 07:40 nid- flood: 09:01 10:13 31 Notes: (1) With the completion of marine works below seawater level on 15 December 2023, the impact water quality monitoring was terminated after 15 December 2023 and the post-construction water quality monitoring has been conducted from 16 December 2023 and will be completed on 12 January 2024.

ACL Environmental Monitoring and Site Inspection Schedule for Jan 2024

Jan-24

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1	2	3	4	5	6
		ACL (Land) Environmental Site Inspection				
		ACL (Marine) Environmental Site Inspection				
		Post-construction WQM ⁽¹⁾		Post-construction WQM ⁽¹⁾		Post-construction WQM ⁽¹⁾
		mid- ebb: 17:11		mid- ebb: 19:24		mid- ebb: 07:54
		mid-flood: 11:58		mid-flood: 13:09		mid-flood: 14:20
7	8	9	10	11	12	13
	ACL (Land) Environmental Site Inspection	ACL (Marine) Environmental Site Inspection		(1)		
		Post-construction WQM ⁽¹⁾		Post-construction WQM (1)		
		mid- ebb: 11:41		mid- ebb: 13:13		
		mid-flood: 16:28	47	mid- flood: 08:09		
14	15	16	17	18	19	20
	ACL (Land) Environmental Site Inspection	ACL (Marine) Environmental Site Inspection				
21	22	23	24	25	26	27
21	ACL (Land) Environmental Site Inspection	ACL (Marine) Environmental Site Inspection	24	25	20	21
	/ top (Land) Environmental ene mepoeten					
28	29	30	31			
-	ACL (Land) Environmental Site Inspection	ACL (Marine) Environmental Site Inspection	-			
		Notes:				
		(1) The post-construction water	quality monitoring will be termin	nated on 12 January 2024.		

Appendix E. Calibration Certificates

專業化驗有限公司 QUALITY PRO TEST-CONSULT LIMITED Unit 10, 5/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong

Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No. Date of Issue Page No. : R-BC090046 : 15 September 2023 : 1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Flat 2207, Yu Fun House Yu Chui Court, Shatin New Territories (HK) Hong Kong

PART B - SAMPLE INFORMATION

Name of Equipment :	YSI ProDSS (Multi-Parameters)
Manufacturer :	YSI (a xylem brand)
Serial Number :	16H104233
Date of Received :	15 September 2023
Date of Calibration :	15 September 2023
Date of Next Calibration :	14 December 2023
Request No. :	D-BC090046

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Test Parameter	Reference Method
pH value	APHA 21e 4500-H ⁺ B
Temperature	Section 6 of international Accreditation New Zealand Technical Guide no. 3 Second edition March
	2008: Working Thermometer Calibration Procedure
Salinity	APHA 21e 2520 B
Dissolved oxygen	APHA 23e 4500-O G (Membrane Electrode Method)
Turbidity	APHA 21e 2130 B (Nephelometric Method)
Conductivity	APHA 21e 2510 B

PART D - CALIBRATION RESULT

(1) pH value

Target (pH unit)	Display Reading (pH unit)	Tolerance	Result
4.00	4.06	0.06	Satisfactory
7.42	7.48	0.06	Satisfactory
10.01	10.09	0.08	Satisfactory

Tolerance of pH value should be less than \pm 0.2 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Display Reading (°C)	Tolerance	Result
12	12.0	0.0	Satisfactory
26	26.1	0.1	Satisfactory
39	38.9	-0.1	Satisfactory

Tolerance of Temperature should be less than $\pm \ 2.0$ ($^{\circ}C$)

(3) Salinity

Expected Reading (g/L)	Display Reading (g/L)	Tolerance (%)	Result
10	10.10	1.00	Satisfactory
20	19.91	-0.45	Satisfactory
30	29.88	-0.40	Satisfactory

Tolerance of Salinity should be less than \pm 10.0 (%)

--- CONTINUED ON NEXT PAGE ---

AUTHORIZED SIGNATORY:

LEE Chun-ning

Assistant Manager

This report shall not be reproduced unless with prior written approval from this laboratory

Test Report No.	:R-
Date of Issue	:15
Page No.	:20

: R-BC090046 : 15 September 2023 : 2 of 2

(4) Dissolved oxygen

Expected Reading (mg/L)	Display Reading (mg/L)	Tolerance	Result
7.97	8.21	0.24	Satisfactory
6.81	6.47	-0.34	Satisfactory
4.65	4.59	-0.06	Satisfactory
0.17	0.40	0.23	Satisfactory

Tolerance of Dissolved oxygen should be less than $\pm \mbox{ 0.5 (mg/L)}$

(5) Turbidity

Expected Reading (NTU)	Display Reading (NTU)	Tolerance (%)	Result
0	0.05		Satisfactory
10	9.88	-1.20	Satisfactory
20	19.9	-0.50	Satisfactory
100	97.3	-2.70	Satisfactory
800	818.84	2.40	Satisfactory

Tolerance of Turbidity should be less than \pm 10.0 (%)

(6) Conductivity

Expected Reading (µS/cm at 25°C)	Display Reading	Tolerance (%)	Result
146.9	150	2.11	Satisfactory
1412	1281	-9.28	Satisfactory
12890	12796	-0.73	Satisfactory
58670	57983	-1.17	Satisfactory
111900	113907	1.79	Satisfactory

Tolerance of Conductivity should be less than \pm 10.0 (%)

Remark(s)

•The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards. •The results relate only to the calibrated equipment as received

•The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

"Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

•The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

--- END OF REPORT ----

Test Report No. Date of Issue Page No. : R-BC090045 : 15 September 2023 : 1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Flat 2207, Yu Fun House Yu Chui Court, Shatin New Territories (HK) Hong Kong

PART B - SAMPLE INFORMATION

Name of Equipment :	YSI ProDSS (Multi-Parameters)
Manufacturer :	YSI (a xylem brand)
Serial Number :	21K101468
Date of Received :	15 September 2023
Date of Calibration :	15 September 2023
Date of Next Calibration :	14 December 2023
Request No. :	D-BC090045

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

<u>Test Parameter</u>	Reference Method
pH value	APHA 21e 4500-H ⁺ B
Temperature	Section 6 of international Accreditation New Zealand Technical Guide no. 3 Second edition March
	2008: Working Thermometer Calibration Procedure
Salinity	APHA 21e 2520 B
Dissolved oxygen	APHA 23e 4500-O G (Membrane Electrode Method)
Turbidity	APHA 21e 2130 B (Nephelometric Method)
Conductivity	APHA 21e 2510 B

PART D - CALIBRATION RESULT

(1) pH value

Target (pH unit)	Display Reading (pH unit)	Tolerance	Result
4.00	4.04	0.04	Satisfactory
7.42	7.50	0.08	Satisfactory
10.01	10.07	0.06	Satisfactory

Tolerance of pH value should be less than \pm 0.2 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Display Reading (°C)	Tolerance	Result
12	12.0	0.0	Satisfactory
26	26.1	0.1	Satisfactory
39	38.9	-0.1	Satisfactory

Tolerance of Temperature should be less than \pm 2.0 ($^{\circ}C$)

(3) Salinity

Expected Reading (g/L)	Display Reading (g/L)	Tolerance (%)	Result
10	9.94	-0.60	Satisfactory
20	20.09	0.45	Satisfactory
30	30.16	0.53	Satisfactory

Tolerance of Salinity should be less than \pm 10.0 (%)

--- CONTINUED ON NEXT PAGE ----

AUTHORIZED SIGNATORY:

LEE Chun-ning

Assistant Manager

This report shall not be reproduced unless with prior written approval from this laboratory

Test Report No.	: R-BC090045
Date of Issue	: 15 September 2023
Page No.	: 2 of 2

(4) Dissolved oxygen

Expected Reading (mg/L)	Display Reading (mg/L)	Tolerance	Result
7.97	8.27	0.30	Satisfactory
6.81	6.47	-0.34	Satisfactory
4.65	4.60	-0.05	Satisfactory
0.17	0.40	0.23	Satisfactory

Tolerance of Dissolved oxygen should be less than $\pm\,0.5$ (mg/L)

(5) Turbidity

Expected Reading (NTU)	Display Reading (NTU)	Tolerance (%)	Result
0	0.10		Satisfactory
10	10.09	0.90	Satisfactory
20	18.88	-5.60	Satisfactory
100	96.8	-3.20	Satisfactory
800	820.31	2.50	Satisfactory

Tolerance of Turbidity should be less than \pm 10.0 (%)

(6) Conductivity

Expected Reading (µS/cm at 25°C)	Display Reading	Tolerance (%)	Result
146.9	151	2.79	Satisfactory
1412	1278	-9.49	Satisfactory
12890	12906	0.12	Satisfactory
58670	59334	1.13	Satisfactory
111900	112867	0.86	Satisfactory

Tolerance of Conductivity should be less than \pm 10.0 (%)

Remark(s)

•The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards. •The results relate only to the calibrated equipment as received

•The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

• "Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures. • The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

---- END OF REPORT ----

Test Report No.	
Date of Issue	
Page No.	

: R-BC110058 : 20 November 2023 : 1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Flat 2207, Yu Fun House Yu Chui Court, Shatin New Territories (HK) Hong Kong

PART B - SAMPLE INFORMATION

Name of Equipment :	YSI ProDSS (Multi-Parameters)
Manufacturer :	YSI (a xylem brand)
Serial Number :	21G105356
Date of Received :	17 November 2023
Date of Calibration :	17 November 2023
Date of Next Calibration :	16 February 2024
Request No. :	D-BC110058

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Test Parameter	Reference Method
pH value	APHA 21e 4500-H ⁺ B
Temperature	Section 6 of international Accreditation New Zealand Technical Guide no. 3 Second edition March
	2008: Working Thermometer Calibration Procedure
Salinity	APHA 21e 2520 B
Dissolved oxygen	APHA 23e 4500-O G (Membrane Electrode Method)
Turbidity	APHA 21e 2130 B (Nephelometric Method)
Conductivity	APHA 21e 2510 B

PART D - CALIBRATION RESULT

(1) pH value

Target (pH unit)	Display Reading (pH unit)	Tolerance	Result
4.00	4.08	0.08	Satisfactory
7.42	7.50	0.08	Satisfactory
10.01	10.04	0.03	Satisfactory

Tolerance of pH value should be less than \pm 0.2 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Display Reading (°C)	Tolerance	Result
10	10.0	0.0	Satisfactory
22	22.0	0.0	Satisfactory
40	40.0	0.0	Satisfactory

Tolerance of Temperature should be less than \pm 2.0 ($^{\circ}C$)

(3) Salinity

Expected Reading (g/L)	Display Reading (g/L)	Tolerance (%)	Result
10	9.93	-0.70	Satisfactory
20	20.13	0.65	Satisfactory

--- CONTINUED ON NEXT PAGE ---

AUTHORIZED SIGNATORY:

LEE Chun-ning

Assistant Manager

This report shall not be reproduced unless with prior written approval from this laboratory

Test Report	No. : R-BC1	10058
Date of Issue	e : 20 Nov	ember 2023
Page No.	: 2 of 2	
Display Reading (g/L)	Tolerance (%)	Result
30.26	0.87	Satisfactory
	Date of Issue Page No. Display Reading (g/L)	Date of Issue: 20 NovPage No.: 2 of 2Display Reading (g/L)Tolerance (%)

Tolerance of Salinity should be less than \pm 10.0 (%)

(4) Dissolved oxygen

Expected Reading (mg/L)	Display Reading (mg/L)	Tolerance	Result
8.26	8.11	-0.15	Satisfactory
2.46	2.49	0.03	Satisfactory
1.01	1.13	0.12	Satisfactory
0.00	0.10	0.10	Satisfactory

Tolerance of Dissolved oxygen should be less than \pm 0.5 (mg/L)

(5) Turbidity

Expected Reading (NTU)	Display Reading (NTU)	Tolerance (%)	Result
0	0.09		Satisfactory
10	9.92	-0.8	Satisfactory
20	19.83	-0.9	Satisfactory
100	98.45	-1.6	Satisfactory
800	798.20	-0.2	Satisfactory

Tolerance of Turbidity should be less than \pm 10.0 (%)

(6) Conductivity

Expected Reading (µS/cm at 25°C)	Display Reading	Tolerance (%)	Result
146.9	147.0	0.07	Satisfactory
1412	1326	-6.09	Satisfactory
12890	12424	-3.62	Satisfactory
58670	57493	-2.01	Satisfactory
111900	111556	-0.31	Satisfactory

Tolerance of Conductivity should be less than \pm 10.0 (%)

Remark(s)

•The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards. •The results relate only to the calibrated equipment as received

• The performance of the equipment stated is checked with independent reference material and results compared against a calibrated secondary source. • "Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

•The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

--- END OF REPORT ---

Appendix F. Event and Action Plan

		Ac	tion	
Event	ET	IEC	AAHK / PM	Contractor
Action level being exceeded by one sampling day	 Repeat <i>in-situ</i> measurement to confirm findings; Identify reasons for non-compliance and source(s) of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; Repeat measurement on next day of exceedance. 	Contractor on the mitigation measures; 2. Review proposals on mitigation measures submitted by Contractor and advise AAHK / PM accordingly; 3. Assess the effectiveness of the implemented	 Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures. 	 Inform the AAHK / PM and confirm notification of the non-compliance in writing; Rectify unacceptabl practice; Check all plant and equipment; Consider changes c working methods; Discuss with ET and IEC and propose mitigation measures
Action level being exceeded by two or more consecutive sampling days	 Repeat <i>in-situ</i> measurement to confirm findings; Identify reasons for non-compliance and source(s) of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; Repeat measurement on next day of exceedance. 	Contractor on the mitigation measures; 2. Review proposals on mitigation measures submitted by Contractor and advise the AAHK / PM accordingly; 3. Assess the effectiveness of the implemented	 Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures. 	 Inform the AAHK / PM and confirm notification of the non-compliance in writing; Rectify unacceptabl practice; Check all plant and equipment Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and AAHK / PM within 3 working days; Implement the agreed mitigation measures.
Limit level being exceeded by one sampling day	 Repeat <i>in-situ</i> measurement to confirm findings; Identify reasons for non-compliance and source(s) of impact; Inform IEC, Contractor and EPD Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, AAHK / PM and 	 Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the AAHK / PM accordingly; Assess the effectiveness of the implemented 	mitigation measures;2. Request Contractor	 Inform the AAHK / PM and confirm notification of the non-compliance in writing; Rectify unacceptabl practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IEt and AAHK / PM and propose mitigation measures to IEC an AAHK / PM within

Table F.1: Event and Action Plan for Marine Water Quality

		Ac	tion	
Event	ET	IEC	AAHK / PM	Contractor
	Contractor; 6. Ensure mitigation measures are implemented; 7. Increase the monitoring frequency to daily until no exceedance of limit level.	,		three working days; 6. Implement the agreed mitigation measures.
Limit level being exceeded by two or more consecutive sampling days	 Repeat <i>in-situ</i> measurement to confirm findings; Identify reasons for non-compliance and source(s) of impact; Inform IEC, Contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, AAHK / PM and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days. 	PM accordingly; 3. Assess the effectiveness of implemented mitigation measures.	 and Contractor on the proposed mitigation measures Request Contractor to critically review th working methods; Make agreement on the mitigation measures to be implemented; Assess the 	 and confirm notification of non- compliance in writing; e 2. Rectify unacceptabl practices; 3. Check all plant and equipment; 4. Consider changes of working method; 5. Discuss with ET, IE and AAHK / PM and propose mitigation measures to IEC ar AAHK / PM within 3 working days; 6. Implement the agreed mitigation measures:

Appendix G. Monitoring Data and Graphical Plots

Appendix G1. Impact Monitoring

Water Quality Monitoring

Water Quality Monitoring Results on 02 December 23 during Mid-Ebb Tide

Monitoring	Weather	Sea Condition	Sampling		Sampling Dep	th (m)	Water Te	emperature (°C)		pН	Salin	iity (ppt)	DO Satur	ation (%)	Dissolv Oxygen (Turbidity	(NTU)	Suspende (mg	
Station	Condition		Time	(m)		()	Value	Average	Value	Average	Value	Average	Value	Average	Value	DA	Value	DA	Value	DA
					Surface	1.0	22.3	22.3	8.1	8.1	28.6	28.7	87.3	87.1	6.5		2.2		3.5	l
					Cunado	1.0	22.3	22.0	8.1	0.1	28.7	20.7	86.8	07.1	6.4	6.5	2.2		3.6	ł
C1	Cloudy	Moderate	04:13	10.6	Middle	5.3	22.3	22.3	8.1 8.1	8.1	28.7	28.7	87.5	87.1	6.5		2.4	2.4	3.8	3.8
_	,					5.3	22.3	-			28.7	_	86.7	_	6.5		2.6		3.9	1
					Bottom	9.6	22.3	22.3	8.1	8.1	28.7	28.7	88.3	87.8	6.6	6.6	2.5		3.8	ł
						9.6	22.3		8.1		28.7		87.3		6.5		2.6		4.1	<u> </u>
					Surface	1.0	22.5	22.5	8.1 8.1	8.1	28.6	28.7	88.7	88.6	6.6	_	1.7		2.7	ł
						1.0	22.4				28.7		88.4		6.6	6.6	1.9		3.0	ł
C2	Cloudy	Moderate	03:51	10.4	Middle	5.2 5.2	22.4 22.4	22.4	8.1 8.1	8.1	28.7 28.7	28.7	86.9 87.0	87.0	6.5 6.5		2.2 2.2	2.1	2.6 2.4	2.5
						9.4	22.4				28.7		87.0 88.0		6.5				2.4	ł
					Bottom	9.4	22.4	22.4	8.1 8.1	8.1	28.6	28.7	87.5	87.8	6.5	6.5	2.4 2.0		2.2	ł
						9.4 1.0	22.4		8.1		28.4		88.7		6.6		6.2		3.0	
					Surface	1.0	22.1	22.2	8.1	8.1	28.4	28.4	88.4	88.6	6.6	-	5.8		2.8	I
						1.0	-		-		-		- 00.4		-	6.6			-	i
M1	Cloudy	Moderate	04:03	5.2	Middle		-	-	-	-	-	-		-	-		-	6.2	_	2.6
					_	4.2	22.1		8.1		28.3		89.1		6.7		6.9		2.2	i
					Bottom	4.2	22.2	22.2	8.1	8.1	28.4	28.4	88.6	88.9	6.6	6.7	5.7		2.5	Í
					Quinte e e	1.0	22.2	00.0	8.1	0.4	28.4	00.4	88.3	00.4	6.6		3.1		2.3	
					Surface	1.0	22.2	22.2	8.1	8.1	28.4	28.4	88.4	88.4	6.6	6.6	3.0		2.4	İ
M2	Cloudy	Moderate	04:00	5.0	Middle		-		-		-	_	-	_	-	0.0	-	3.1	-	2.6
IVIZ	Cloudy	Moderate	04:00	5.0	Wildule		-	-	-	-	-	-	-	-	-		-	3.1	-	2.0
					Bottom	4.0	22.2	22.2	8.1	8.1	28.3	28.4	88.3	88.5	6.6	6.6	3.3		2.7	l
					Dollom	4.0	22.2	22.2	8.1	0.1	28.4	20.4	88.7	00.5	6.6	0.0	2.9		3.0	<u> </u>
					Surface	1.0	22.4	22.4	8.1 8.1	8.1	28.6	28.6	87.1	87.4	6.5		2.6		2	1
					Gundoo	1.0	22.4	22.7		0.1	28.6	20.0	87.6	07.4	6.5	6.5	2.6		2	ł
M3	Cloudy	Moderate	04:09	7.4	Middle	3.7	22.3	22.3	8.1	8.1	28.6	28.6	86.9	87.2	6.5		2.8	2.9	2	2
	cicacy		000			3.7	22.3		8.1		28.6	_0.0	87.4	0.12	6.5		3.1		2	-
					Bottom	6.4	22.3	22.3	8.1	8.1	28.6	28.6	87.2	87.5	6.5	6.5	3.0		3	ł
						6.4	22.3		8.1		28.6		87.7		6.5		3.0		3	1

DA: Depth-averaged

Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring

Water Quality Monitoring Results on 02 December 23 during Mid-Flood Tide

Monitoring	Weather	Sea Condition	Sampling		Sampling Dec			emperature (°C)		рН	Salin	ity (ppt)	DO Satu	ration (%)	Dissol Oxygen (Turbidity((NTU)	Suspende (mg	
Station	Condition		Time	(m)			Value	Average	Value	Average	Value	Average	Value	Average	Value	DA	Value	DA	Value	DA
					Surface	1.0	23.0	23.0	8.2	8.2	28.4	28.4	86.4	86.1	6.3		2.8		3.8	, i
					Gunace	1.0	23.0	23.0	8.2	0.2	28.4	20.4	85.8	00.1	6.3	6.3	3.4		4.0	l I
C1	Cloudy	Moderate	15:32	10.7	Middle	5.4	23.0	23.0	8.2	8.2	28.5	28.5	86.3	86.1	6.3	0.0	3.5	3.3	4.5	4.5
01	cloudy	moderate	10.02	10.7	Widdle	5.4	23.0	20.0	8.2	0.2	28.4	20.0	85.8	00.1	6.3		3.2	0.0	4.6	1.0
					Bottom	9.7	22.9	23.0	8.2 8.2	8.2	28.5	28.5	87.6	86.8	6.4	6.4	3.7		4.8	ł
					Dettom	9.7	23.0	20.0		0.2	28.4	20.0	86.0	00.0	6.3	0.4	3.2		5.1	<u> </u>
					Surface	1.0	23.0	23.0	8.2 8.2	8.2	28.4	28.4	86.1	86.1	6.3		3.3		3.9	ł
					Canado	1.0	23.0	20.0		0.2	28.4	2011	86.0		6.3	6.3	3.2		3.6	ł
C2	Cloudy	Moderate	15:51	10.5	Middle	5.3	23.0	23.0	8.2 8.2	8.2	28.4 28.4	28.4	85.7	85.5	6.2		2.5	2.9	3.4	3.3
_	,					5.3	23.0						85.3		6.2		2.4		3.1	ł
					Bottom	9.5	23.0	23.0	8.2	8.2	28.5 28.4	28.5	86.1	86.0	6.3	6.3	3.0		2.9	ł
						9.5	23.0		8.2				85.9		6.3		2.9		2.7	
					Surface	1.0	22.8	22.9	8.2	8.2	28.4	28.4	89.0	87.9	6.5	-	3.2		3.2	ł
						1.0	22.9		8.1		28.4		86.7		6.3	6.4	3.0		3.5	ł
M1	Cloudy	Moderate	15:41	5.1	Middle		-	-	-	-	-	-	-		-	-	-	3.2	-	3.9
						4.1	- 22.8		- 8.2		- 28.4		-		-		- 3.4		- 4.8	ł
					Bottom	4.1	22.8	22.9	8.2	8.2	28.4	28.4	90.3 87.4	88.9	6.6 6.4	6.5	3.4		4.0	1
						1.0	22.9		8.2		28.4		86.5		6.3		3.1		4.2	′
					Surface	1.0	22.9	22.9	8.2	8.2	28.4	28.4	87.4	87.0	6.4		3.7		4.2	1
						1.0	-		-		20.4				0.4	6.4	5.7		-	1
M2	Cloudy	Moderate	15:44	5.3	Middle		-	-	-	-	-	-	-		-		_	3.5		4.6
						4.3	22.9		8.2		28.4		86.9		6.3		3.6		5.1	ĺ
					Bottom	4.3	22.8	22.9	8.2	8.2	28.4 28.4	28.4	88.4	87.7	6.5	6.4	3.3		4.7	ĺ
					- <i>i</i>	1.0	22.9		8.1		28.3		87.3		6.4	İ.	2.6		3	
					Surface	1.0	22.9	22.9	8.1	8.1	28.4	28.4	87.9	87.6	6.4		2.7		3	1
		Martanat	45.07	7.0	MC LU.	3.7	22.9	00.0	8.1		28.4	00.4	87.2	07.5	6.4	6.4	3.1		3	
M3	Cloudy	Moderate	15:37	7.3	Middle	3.7	22.8	22.9	8.2	8.2	28.4	28.4	87.8	87.5	6.4	1	3.2	3.0	3	3
					Dattan	6.3	22.9	00.0	8.1	0.0	28.4	00.4	87.9	07.0	6.4	6.4	3.0		2	ł
					Bottom	6.3	22.8	22.9	8.2	8.2	28.4	28.4	87.8	87.9	6.4	6.4	3.5		2	1

DA: Depth-averaged

Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring

Water Quality Monitoring Results on 05 December 23 during Mid-Ebb Tide

Mater Qua		toring Resu			05 December 25			C												
Monitoring	Weather	Sea Condition		Water Depth	Sampling Dep	oth (m)	Water Te	mperature (°C)	р	эH	Salin	ity (ppt)	DO Satur	ation (%)	Dissolved ((mg/l		Turbidity	(NTU)	Suspende (mg	
Station	Condition		Time	(m)			Value	Average	Value	Average	Value	Average	Value	Average	Value	DA	Value	DA	Value	DA
					Surface	1.0	22.6	22.7	8.1	8.1	28.8	28.8	88.9	88.8	6.5		2.2		3.2	
					Sunace	1.0	22.7	22.1	8.0	0.1	28.7	20.0	88.6	00.0	6.5	6.5	2.2		3.2	
C1	Misty	Moderate	06:52	10.0	Middle	5.0	22.6	22.7	8.1	8.1	28.8	28.8	89.1	89.0	6.5	0.0	4.0	3.4	4.0	3.5
01	whicty	modorato	00.02	10.0		5.0	22.7		8.1	0.1	28.7	20.0	88.8	00.0	6.5		4.0	0.1	3.0	0.0
					Bottom	9.0	22.6	22.7	8.1	8.1	28.8	28.8	89.9	89.4	6.6	6.6	4.0		3.8	1
		-	-			9.0	22.7		8.1	-	28.8		88.9		6.5		4.1		3.5	
					Surface	1.0	22.7	22.7	8.1	8.1	28.7	28.7	88.0	87.8	6.4	-	1.8		4.2	4
					-	1.0	22.7		8.0		28.7		87.5		6.4	6.4	1.8		2.9	-
C2	Misty	Moderate	06:35	11.2	Middle	5.6 5.6	22.7	22.7	8.1 8.0	8.1	28.8 28.8	28.8	87.2	87.3	6.4	-	2.1	2.1	2.4 3.3	3.2
						5.6	22.7 22.6						87.3 87.9		6.4 6.4		2.1 2.5		3.3 2.9	-
					Bottom	10.2	22.8	22.7	8.1 8.0	8.1	28.8 28.7	28.8	87.9	88.0	6.4	6.4	2.5		2.9	-
						1.0	22.8		8.1		28.6		88.8		6.5		5.1		3.4	
					Surface	1.0	22.8	22.8	8.0	8.1	28.6	28.6	88.1	88.5	6.4	-	5.1		3.6	
						1.0	-		-		-		-		-	6.5	-		-	1
M1	Misty	Moderate	06:48	5.4	Middle		-	-	-	-	-	-	-	-	-		-	5.6	-	3.6
					D	4.4	22.7		8.1		28.7		90.1		6.6		6.0		3.2	
					Bottom	4.4	22.8	22.8	8.1	8.1	28.6	28.7	88.5	89.3	6.5	6.6	6.0		4.0	
					Surface	1.0	22.8	22.8	8.1	8.1	28.6	28.6	87.9	87.4	6.4		4.1		2.9	
					Sunace	1.0	22.8	22.8	8.0	0.1	28.6	28.0	86.9	87.4	6.3	6.4	4.1		3.2	
M2	Misty	Moderate	06:45	4.2	Middle		-	_	-	_	-	-	-	_	-	0.4	-	4.6	-	2.7
IVIZ	willoty	Moderate	00.40	7.2	Middle		-		-		-		-		-		-	4.0	-	2.1
					Bottom	3.2	22.8	22.8	8.1	8.1	28.6	28.6	88.6	88.1	6.5	6.5	5.1		2.4	_
						3.2	22.8		8.1		28.6		87.5		6.4		5.0		2.1	
					Surface	1.0	22.8	22.9	8.1	8.1	28.6	28.6	87.1	86.6	6.4		3.3		2	4
						1.0	22.9		8.0		28.6		86.0		6.3	6.4	3.4		2	1
M3	Misty	Moderate	06:42	6.0	Middle	3.0	22.8	22.8	8.1	8.1	28.6	28.6	87.2	86.8	6.4		4.3	4.5	3	2
						3.0	22.8		8.0		28.6		86.3		6.3		4.4		2	1
					Bottom	5.0	22.7	22.8	8.1	8.1	28.6	28.6	87.5	87.0	6.4	6.4	5.7		2	1
						5.0	22.8		8.0		28.6		86.5		6.3		5.6		2	1

DA: Depth-averaged

Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring

Water Quality Monitoring Results on 05 December 23 during Mid-Flood Tide

mater add	inty morn	ioning nesu			US December 25	uunng wilu-	11000													
Monitoring	Weather	Sea Condition	Sampling		Sampling Dep	oth (m)	Water T	emperature (°C)	F	ъH	Salin	ity (ppt)	DO Satu	ration (%)	Dissolved ((mg/L		Turbidity	(NTU)	Suspende (mg	
Station	Condition		Time	(m)			Value	Average	Value	Average	Value	Average	Value	Average	Value	DA	Value	DA	Value	DA
					Surface	1.0	22.7	22.7	8.0	8.0	28.8	28.8	88.7	88.4	6.5		1.1		1.8	
					Sunace	1.0	22.7	22.1	8.0	0.0	28.8	20.0	88.1	00.4	6.4	6.5	1.1		2.1	
C1	Misty	Moderate	17:12	10.2	Middle	5.1	22.7	22.7	8.0	8.0	28.8	28.8	89.3	88.8	6.5	0.0	1.9	2.0	2.4	2.4
0.	moty	modelate			Middlo	5.1	22.7		8.0	0.0	28.8	20.0	88.3	00.0	6.5		2.0		3.0	
					Bottom	9.2	22.7	22.7	8.0	8.0	28.8	28.8	89.9	89.3	6.6	6.6	3.0		2.2	
						9.2	22.7		8.0		28.8		88.6		6.5		3.0		3.1	
					Surface	1.0	22.8	22.9	8.1	8.1	28.6	28.6	87.9	87.6	6.4		1.1		2.6	
						1.0	22.9		8.0		28.6		87.2		6.4	6.4	1.1		3.3	
C2	Misty	Moderate	17:27	11.0	Middle	5.5 5.5	22.8 22.9	22.9	8.1 8.0	8.1	28.6 28.6	28.6	88.1 87.4	87.8	6.4 6.4	-	2.4 2.4	2.3	1.5 2.5	2.4
						10.0	22.9		8.1		28.6		88.8		6.5		3.4		2.3	
					Bottom	10.0	22.9	22.9	8.1	8.1	28.6	28.6	87.8	88.3	6.4	6.5	3.5		2.0	
					Surface	1.0	22.9	22.9	8.1	8.1	28.6	28.6	89.4	88.9	6.5		3.1		1.8	
					Sunace	1.0	22.9	22.9	8.1	0.1	28.6	28.0	88.3	60.9	6.4	6.5	3.1		1.9	
M1	Misty	Moderate	17:20	4.2	Middle		-	_	-	_	-	-	-		-	0.5	-	3.8	-	2.1
IVII	wiisty	woderate	17.20	4.2	Widdle		-	_	-		-		-		-		-	5.0	-	2.1
					Bottom	3.2	22.8	22.9	8.1	8.1	28.6	28.6	90.4	89.7	6.6	6.6	4.4		2.8	
						3.2	22.9		8.1		28.6		88.9		6.5		4.4		2.0	
					Surface	1.0	22.9	22.9	8.1	8.1	28.7	28.7	89.9	88.7	6.6		3.2		4.4	
						1.0	22.9		8.1		28.7		87.5		6.4	6.5	3.3		2.0	
M2	Misty	Moderate	17:23	4.0	Middle		-	-	-	-	-	-	-		-	-	-	3.9	-	3.0
						3.0	-		-		-		-		-		-		- 3.1	
					Bottom	3.0	22.8 22.9	22.9	8.1 8.1	8.1	28.6 28.7	28.7	91.9 88.7	90.3	6.8 6.5	6.7	4.5 4.5		2.3	
						1.0	22.9		8.1		28.8		89.9		6.6		1.8		3	
					Surface	1.0	22.0	22.7	8.1	8.1	28.7	28.8	89.2	89.6	6.5		1.9		2	
						3.7	22.6		8.1		28.8		90.1		6.6	6.6	2.1		2	
M3	Misty	Moderate	17:16	7.4	Middle	3.7	22.7	22.7	8.1	8.1	28.7	28.8	89.4	89.8	6.5	1	2.1	2.3	3	2
					Detter	6.4	22.6	22.7	8.1	0.4	28.8	20.0	91.4	00.6	6.7	67	3.0		2	
					Bottom	6.4	22.7	22.7	8.1	8.1	28.7	28.8	89.7	90.6	6.6	6.7	3.0		3	1

DA: Depth-averaged

Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring

Water Quality Monitoring Results on 07 December 23 during Mid-Ebb Tide

Trator Quu					07 December 23										Dissolved				Suspende	ad Solide
Monitoring	Weather	Sea Condition		Water Depth	Sampling Dep	th (m)	Water Te	mperature (°C)	р	Η	Salin	ity (ppt)	DO Satur	ation (%)	(mg/l		Turbidity	(NTU)	(mg	
Station	Condition		Time	(m)		. ,	Value	Average	Value	Average	Value	Average	Value	Average	Value	DA	Value	DA	Value	DA
					Surface	1.0	22.5	22.5	8.1	8.1	29.2	29.2	85.7	85.6	6.3		1.0		2.2	
					0011000	1.0	22.4	22.0	8.1	0	29.1	2012	85.4	0010	6.3	6.3	1.0		2.4	-
C1	Misty	Moderate	08:59	9.8	Middle	4.9	22.5	22.5	8.1	8.1	29.2	29.2	85.9	85.8	6.3		2.8	2.2	2.2	2.1
	· ·					4.9	22.4		8.1		29.1		85.6		6.3		2.8		2.2	-
					Bottom	8.8	22.5	22.5	8.1	8.1	29.2	29.2	86.7	86.2	6.4	6.4	2.8		1.6	-
						8.8	22.4		8.1		29.1 29.1		85.7 84.8		6.3 6.2		2.9 1.0		1.8 3.2	
					Surface	1.0	22.7	22.6	8.1 8.0	8.1	29.1	29.1	84.3	84.6	6.2	-	1.0		3.2	
						4.6	22.4		8.1		29.2		84.0		6.2	6.2	1.1		2.8	•
C2	Misty	Moderate	08:42	9.2	Middle	4.6	22.5	22.6	8.0	8.1	29.2	29.2	84.1	84.1	6.2		1.1	1.1	2.5	2.7
						8.2	22.8		8.1		29.2		84.7		6.2		1.3		2.4	•
					Bottom	8.2	22.5	22.7	8.0	8.1	29.1	29.2	84.8	84.8	6.3	6.3	1.2		2.3	
					Surface	1.0	22.4	22.4	8.1	8.1	29.0	29.0	85.6	85.3	6.3		3.9		3.1	
					Sunace	1.0	22.4	22.4	8.1	0.1	29.0	29.0	84.9	85.3	6.3	6.3	3.9		2.7	
M1	Misty	Moderate	08:55	4.4	Middle	-	-	_	-	-	-	-	-	_	-	0.5	-	4.4	-	2.8
IVI I	wiioty	Woderate	00.00		Middle	-	-		-		-		-		-		-	7.7	-	2.0
					Bottom	3.4	22.4	22.5	8.1	8.1	29.1	29.1	86.9	86.1	6.4	6.4	4.8		2.5	-
						3.4	22.5		8.1	÷	29.0		85.3		6.3		4.8		2.7	
					Surface	1.0	22.4	22.5	8.1	8.1	29.0	29.0	84.7	84.2	6.3	-	2.9		1.6	-
						1.0	22.5		8.0		29.0		83.7		6.2	6.3	2.9		1.9	-
M2	Misty	Moderate	08:52	5.0	Middle		-	-	-	-	-	-	-		-	-	-	3.4	-	2.0
						4.0	22.4		8.1		29.0		85.4		6.3		3.9		2.2	•
					Bottom	4.0	22.4	22.5	8.1	8.1	29.0	29.0	84.3	84.9	6.2	6.3	3.8		2.2	•
						1.0	22.4		8.1		29.0		83.9		6.2		2.1		3	
					Surface	1.0	22.4	22.4	8.0	8.1	29.0	29.0	82.8	83.4	6.1		2.2		3	1
Mo	Mintr	Madarat	09.40	6.0	Middle	3.1	22.7	22.6	8.1	0.4	29.0	20.0	84.0	02.6	6.2	6.2	3.1	2.2	2	
M3	Misty	Moderate	08:49	6.2	Middle	3.1	22.4	22.6	8.0	8.1	29.0	29.0	83.1	83.6	6.2	1	3.2	3.2	2	2
					Bottom	5.2	22.7	22.6	8.1	8.1	29.0	29.0	84.3	83.8	6.2	6.2	4.4		2	
					BUILUITI	5.2	22.4	22.0	8.0	0.1	29.0	29.0	83.3	03.0	6.2	0.2	4.4		2	

DA: Depth-averaged

Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring

Water Quality Monitoring Results on 07 December 23 during Mid-Flood Tide

Monitoring	Weather	Sea Condition	Sampling		Sampling Dep	th (m)		emperature (°C)	P	рН	Salin	ity (ppt)	DO Satu	ation (%)	Dissolved ((mg/l		Turbidity((NTU)	Suspende (mg/	
Station	Condition		Time	(m)	Company 2 op	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	DA	Value	DA	Value	DA
					Surface	1.0	22.5	22.6	8.1	8.1	29.2	29.2	85.5	85.2	6.3		1.0		2.3	
						1.0	22.7		8.1		29.2		84.9		6.3	6.3	0.9		1.8	1
C1	Misty	Moderate	14:16	9.8	Middle	4.9	22.5	22.6	8.1	8.1	29.2	29.2	86.1	85.6	6.4	-	1.3	1.4	1.6	1.8
						4.9	22.7		8.1		29.2		85.1		6.3		1.3		1.8 1.0	1
					Bottom	8.8 8.8	22.5 22.7	22.6	8.1 8.1	8.1	29.2 29.2	29.2	86.7 85.4	86.1	6.4 6.3	6.4	1.8 1.8		2.1	1
						1.0	22.7		8.1		29.2		84.7		6.2		0.9		1.5	
					Surface	1.0	22.7	22.8	8.0	8.1	29.0	29.0	84.0	84.4	6.2		1.0		1.7	1
00	Mater	Madanata	44.04	0.4	N 41 - U -	4.7	22.7	00.7	8.1	8.1	29.0	29.0	84.9	84.6	6.3	6.2	1.2	1.5	2.6	
C2	Misty	Moderate	14:31	9.4	Middle	4.7	22.7	22.7	8.0	8.1	29.0	29.0	84.2	84.6	6.2	1	1.2	1.5	2.4	2.0
					Bottom	8.4	22.6	22.7	8.1	8.1	29.0	29.0	85.6	85.1	6.3	6.3	2.2		2.0	1
		-			Bottom	8.4	22.7	22.1	8.1	0.1	29.0	23.0	84.6	00.1	6.2	0.5	2.2		1.6	<u></u>
					Surface	1.0	22.6	22.7	8.1	8.1	29.0	29.0	86.2	85.7	6.4		1.9		2.4	1
						1.0	22.7		8.1		29.0		85.1		6.3	6.4	1.9		2.2	1
M1	Misty	Moderate	14:24	5.2	Middle	-	-	-	-	-	-	-	-		-		-	2.6	-	2.0
						- 4.2	- 22.6		- 8.1		- 29.0		- 87.2		- 6.4		- 3.2		- 1.8	1
					Bottom	4.2	22.0	22.7	8.1	8.1	29.0	29.0	85.7	86.5	6.3	6.4	3.2		1.6	1
						1.0	22.6		8.1		29.1		86.7		6.4		2.0		1.3	
					Surface	1.0	22.7	22.7	8.1	8.1	29.0	29.1	84.3	85.5	6.2		2.0		1.3	1
			44.07	5.0	N 41 1 11		-		-		-		-		-	6.3	-		-	
M2	Misty	Moderate	14:27	5.0	Middle		-	-	-	-	-	-	-	-	-	1	-	2.7	-	1.6
					Bottom	4.0	22.6	22.7	8.1	8.1	29.0	29.0	88.7	87.1	6.5	6.4	3.3		1.7	1
					Bollom	4.0	22.7	22.1	8.1	0.1	29.0	29.0	85.5	07.1	6.3	0.4	3.3		1.9	. <u> </u>
					Surface	1.0	22.6	22.7	8.1	8.1	29.1	29.1	86.7	86.4	6.4		0.6		2	1
					Guildoo	1.0	22.7		8.1	0.1	29.1	20.1	86.0		6.3	6.4	0.6		2	1
M3	Misty	Moderate	14:20	7.2	Middle	3.6	22.6	22.7	8.1	8.1	29.2	29.2	86.9	86.6	6.4		0.9	1.1	2	2
						3.6	22.7		8.1		29.1		86.2		6.3		0.9		2	1
					Bottom	6.2	22.6	22.7	8.1 8.1	8.1	29.2	29.2	88.2	87.4	6.5	6.5	1.8		3	1
						6.2	22.7		8.1		29.1		86.5		6.4		1.8		2	

DA: Depth-averaged

Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring

 Water Quality Monitoring Results on
 09 December 23
 during Mid-Ebb Tide

		coning Resu			09 December 23	auring mia														
Monitoring	Weather	Sea Condition		Water Depth	Sampling Dep	th (m)	Water Te	emperature (°C)	p	ъH	Salin	ity (ppt)	DO Satur	ation (%)	Dissolved ((mg/L		Turbidity	(NTU)	Suspende (mg	
Station	Condition		Time	(m)	Camping 2 op	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	DA	Value	DA	Value	DA
					Surface	1.0	22.8	22.8	8.1	8.1	29.0	29.0	84.3	84.2	6.2		1.1		2.3	
					Guilace	1.0	22.7	22.0	8.0	0.1	29.0	23.0	84.0	04.2	6.2	6.2	1.1		2.1	
C1	Fine	Moderate	11:07	10.0	Middle	5.0	22.8	22.8	8.1	8.1	29.0	29.0	84.5	84.4	6.2	0.2	2.8	2.3	3.2	3.0
•						5.0	22.7		8.0		29.0		84.2	•	6.2		2.8		2.9	-
					Bottom	9.0	22.8	22.8	8.1	8.1	29.0	29.0	85.3	84.8	6.3	6.3	2.9		3.8	-
	1					9.0	22.7		8.1		29.0		84.3	1	6.2		2.9		3.4	<u> </u>
					Surface	1.0	23.0 22.7	22.9	8.1 8.0	8.1	29.0 29.0	29.0	83.4 82.9	83.2	6.1 6.1		1.2 1.3		2.2 1.8	
						5.4	22.7		8.1		29.0		82.9	-	6.0	6.1	2.5		2.6	
C2	Fine	Moderate	10:51	10.8	Middle	5.4	23.0	22.9	8.0	8.1	29.0	29.0	82.7	82.7	6.1		2.5	2.4	2.0	2.5
						9.8	23.1		8.1		29.1		83.3		6.1		3.3		2.8	
					Bottom	9.8	22.8	23.0	8.0	8.1	28.9	29.0	83.4	83.4	6.1	6.1	3.3		3.4	
					Surface	1.0	22.7	22.7	8.1	8.1	28.9	28.9	84.2	83.9	6.2		4.0		2.3	
					Surface	1.0	22.7	22.7	8.0	8.1	28.9	28.9	83.5	83.9	6.1	6.2	4.0		1.9	
M1	Fine	Moderate	11:03	4.2	Middle	-	-	_	-	_	-	-	-		-	0.2	-	4.5	-	2.4
IVII	1 IIIC	Woderate	11.05	7.2	Middle	-	-		-		-	_	-		-		-	4.5	-	2.4
					Bottom	3.2	22.7	22.8	8.1	8.1	28.9	28.9	85.5	84.7	6.3	6.3	4.9		2.5	-
					2011011	3.2	22.8	22.0	8.1	0.1.	28.9	20.0	83.9	•	6.2	0.0	4.9		3.0	<u> </u>
					Surface	1.0	22.7	22.8	8.1	8.1	28.9	28.9	83.3	82.8	6.1		3.0		2.3	-
						1.0	22.8		8.0		28.9		82.3		6.1	6.1	3.0		2.7	-
M2	Fine	Moderate	11:00	5.0	Middle		-	-	-	-	-	-	-		-		-	3.5	-	3.0
						4.0	22.7		8.1		28.8		- 84.0		6.2		3.9		3.2	•
					Bottom	4.0	22.8	22.8	8.1	8.1	28.9	28.9	82.9	83.5	6.1	6.2	3.9		3.8	1
						1.0	22.7		8.1		28.9		82.5		6.1		2.2		2	
					Surface	1.0	22.7	22.7	8.0	8.1	28.9	28.9	81.4	82.0	6.0		2.2		3	1
M3	Fine	Madarata	10.57	6.4	Middle	3.2	23.0	22.9	8.1	8.1	28.9	28.9	82.6	82.2	6.1	6.1	3.2	3.3	3	
IVI3	Fine	Moderate	10:57	6.4	Middle	3.2	22.7	22.9	8.0	8.1	28.9	28.9	81.7	82.2	6.0		3.2	3.3	3	3
					Bottom	5.4	23.0	22.9	8.1	8.1	28.9	28.9	82.9	82.4	6.1	6.1	4.5		4	
	1				Bollom	5.4	22.7	22.3	8.0	0.1	28.9	20.9	81.9	02.4	6.0	0.1	4.4		3	1

DA: Depth-averaged

Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring

 Water Quality Monitoring Results on
 09 December 23
 during Mid-Flood Tide

mator que					09 December 25										Dissolved	Oxvaen			Suspende	d Solids
Monitoring	Weather	Sea Condition	Sampling		Sampling Dep	oth (m)	Water Te	emperature (°C)	F	рH	Salin	ity (ppt)	DO Satu	ration (%)	(mg/l		Turbidity	NTU)	(mg/	
Station	Condition		Time	(m)			Value	Average	Value	Average	Value	Average	Value	Average	Value	DA	Value	DA	Value	DA
					Surface	1.0	22.8	22.9	8.1	8.1	29.0	29.0	84.1	83.8	6.2		1.7		2.8	
					Canado	1.0	23.0	22.0	8.1	0.11	29.0	2010	83.5	00.0	6.1	6.2	1.7		2.5	1
C1	Fine	Moderate	14:30	10.0	Middle	5.0	22.8	22.9	8.1	8.1	29.0	29.0	84.7	84.2	6.2	_	2.5	2.3	2.1	2.2
						5.0 9.0	23.0		8.1		29.0		83.7		6.1		2.6		2.4 2.0	1
					Bottom	9.0	22.8 23.0	22.9	8.1 8.1	8.1	29.0 29.0	29.0	85.3 84.0	84.7	6.3 6.1	6.2	2.5 2.5		2.0	1
						1.0	23.0		8.1		28.9		83.3		6.1	1	1.0		1.6	
					Surface	1.0	23.0	23.1	8.1	8.1	28.9	28.9	82.6	83.0	6.0		1.0		1.8	1
00	Fine	Madanata	14:45	40.0	N 4: -1 -11 -	5.1	23.0	23.0	8.1	8.1	28.9	28.9	83.5	83.2	6.1	6.1	1.3	1.6	2.1	
C2	Fine	Moderate	14:45	10.2	Middle	5.1	23.0	23.0	8.1	8.1	28.9	28.9	82.8	83.2	6.1		1.3	1.6	2.4	2.2
					Bottom	9.2	22.9	23.0	8.1	8.1	28.9	28.9	84.2	83.7	6.2	6.2	2.3		2.9	1
					Bottom	9.2	23.0	23.0	8.1	0.1	28.9	20.3	83.2	05.7	6.1	0.2	2.3		2.6	<u> </u>
					Surface	1.0	22.9	23.0	8.1	8.1	28.8	28.8	84.8	84.3	6.2	_	1.9		3.5	1
						1.0	23.0		8.1		28.8		83.7		6.1	6.2	1.9		4.0	
M1	Fine	Moderate	14:39	4.8	Middle	-	-	-	-	-	-	-	-		-	_	-	2.6	-	3.1
						3.8	- 22.9		- 8.1		- 28.8		- 85.8		6.3		- 3.3		- 2.8	
					Bottom	3.8	22.9	23.0	8.1	8.1	28.8	28.8	84.3	85.1	6.2	6.3	3.2		2.0	1
						1.0	22.9		8.1		28.9		85.3		6.3		2.1		2.8	
					Surface	1.0	23.0	23.0	8.1	8.1	28.9	28.9	82.9	84.1	6.1		2.1		2.1	1
M2	Fine	Madanata	14:42	5.0	N 4: -1 -11 -		-		-		-		-		-	6.2	-	0.0	-	
IVIZ	Fine	Moderate	14:42	5.2	Middle		-	-	-	-	-	-	-	-	-		-	2.8	-	3.5
					Bottom	4.2	22.9	23.0	8.1	8.1	28.9	28.9	87.3	85.7	6.4	6.3	3.4		5.0	1
					Bollom	4.2	23.0	23.0	8.1	0.1	28.9	20.3	84.1	05.7	6.2	0.5	3.4		4.1	<u>. </u>
					Surface	1.0	22.9	23.0	8.1	8.1	29.0	29.0	85.3	85.0	6.3		0.7		2	1
					Canado	1.0	23.0	20.0	8.1	0	28.9	_0.0	84.6		6.2	6.3	0.7		2	1
M3	Fine	Moderate	14:34	7.0	Middle	3.5	22.9	23.0	8.1	8.1	29.0	29.0	85.5	85.2	6.3		1.0	1.2	3	3
						3.5	23.0		8.1		29.0		84.8		6.2		1.0		3	1
					Bottom	6.0 6.0	22.9 23.0	23.0	8.1 8.1	8.1	29.0 29.0	29.0	86.8 85.1	86.0	6.4 6.2	6.3	1.9 1.9		3	1
			1			6.0	23.0		8.1		29.0		85.1	1	0.2		1.9		4	

DA: Depth-averaged

Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring

Water Quality Monitoring Results on 12 December 23 during Mid-Ebb Tide

Walei Qua		toring Rest			12 December 23															
Monitoring	Weather	Sea Condition	Sampling		Sampling Dep	oth (m)	Water Te	emperature (°C)		pН	Salin	ity (ppt)	DO Satu	ation (%)	Dissolved ((mg/l		Turbidity	(NTU)	Suspende (mg/	
Station	Condition		Time	(m)			Value	Average	Value	Average	Value	Average	Value	Average	Value	DA	Value	DA	Value	DA
					Surface	1.0	23.6	23.6	8.2	8.2	28.2	28.3	90.8	90.4	6.5		1.1		3.1	
					Sunace	1.0	23.6	23.0	8.1	0.2	28.3	20.3	90.0	90.4	6.5	6.5	1.1		3.0	
C1	Fine	Calm	11:14	10.0	Middle	5.0	23.7	23.7	8.2	8.2	28.2	28.3	91.0	90.4	6.6	0.5	2.0	2.1	3.6	3.5
01	1 1110	Caim	11.14	10.0	Mildule	5.0	23.6	20.1	8.2	0.2	28.3	20.5	89.8	30.4	6.5		2.1	2.1	3.4	5.5
					Bottom	9.0	23.7	23.7	8.2	8.2	28.2	28.3	91.2	90.6	6.6	6.6	3.0		3.8	
					Bottom	9.0	23.6	20.1	8.2	0.2	28.3	20.0	90.0	00.0	6.5	0.0	3.0		3.8	
					Surface	1.0	23.6	23.6	8.1	8.1	28.3	28.3	90.9	90.8	6.6		1.1		3.6	
					Cunado	1.0	23.6	20.0	8.1	0.1	28.3	20.0	90.6	00.0	6.5	6.6	1.1		3.9	
C2	Fine	Calm	11:34	10.0	Middle	5.0	23.6	23.6	8.1	8.1	28.3	28.3	91.1	90.9	6.6	0.0	1.3	1.6	3.3	3.4
02	1	Call		1010	madio	5.0	23.6	2010	8.1	0	28.3	20.0	90.6	00.0	6.5		1.3		3.4	0
					Bottom	9.0	23.6	23.6	8.1	8.1	28.3	28.3	91.1	91.0	6.6	6.6	2.3		3.0	
						9.0	23.6		8.1		28.3		90.8		6.6		2.3		3.3	
					Surface	1.0	23.7	23.7	8.1	8.1	28.2	28.3	90.2	90.1	6.5		1.2		3.7	
						1.0	23.7		8.1		28.3		90.0		6.5	6.5	1.2		3.9	i.
M1	Fine	Calm	11:24	4.8	Middle	-	-	-	-	-	-	-	-	-	-		-	2.1	-	3.5
						-	-		-		-		-		-		-		-	
					Bottom	3.8	23.7	23.7	8.1	8.1	28.2	28.3	90.2	90.2	6.5	6.5	3.0		3.3	
						3.8	23.7		8.1		28.3		90.1		6.5		3.1		3.0	
					Surface	1.0	23.7	23.7	8.1	8.1	28.2	28.3	90.9	91.7	6.5	_	1.2		2.6	
						1.0	23.6		8.1		28.3		92.4		6.7	6.6	1.2		2.6	
M2	Fine	Calm	11:27	5.2	Middle		-	-	-	-	-	-	-		-	-	-	1.7	-	3.2
						4.2	- 23.7		- 8.1		28.2		- 91.0		- 6.6		- 2.2		3.9	
					Bottom	4.2	23.7	23.4	8.1	8.1	28.2	28.4	91.0	92.0	6.8	6.7	2.2		3.9	
						1.0	23.1		8.1		28.4		93.0 89.6		6.5		1.1		3.0	
					Surface	1.0	23.6	23.6	8.1	8.1	28.3	28.4	89.0	89.7	6.5	-	1.1		3	
						3.6	23.6		8.1		28.4		89.9		6.5	6.5	2.2		3	
M3	Fine	Calm	11:19	7.2	Middle	3.6	23.6	23.6	8.1	8.1	28.3	28.4	89.9 89.7	89.8	6.5	-	2.2	2.2	3	3
						6.2	23.6		8.1		28.3		90.2		6.5		3.3		2	
					Bottom	6.2	23.6	23.6	8.1	8.1	28.3	28.3	90.2 89.7	90.0	6.5	6.5	3.4		3	
	1		1			0.2	23.0		0.1		20.3		09.1		0.0	1	3.4		3	

DA: Depth-averaged

Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Water Quality Monitoring

Water Quality Monitoring Results on 12 December 23 during Mid-Flood Tide

					12 December 23	auring wild							20.0	() (0()	Dissolved	Oxygen			Suspende	d Solids
Monitoring	Weather Condition	Sea Condition		Water Depth	Sampling Dep	oth (m)	Water Te	mperature (°C)	F	Hc	Salin	ity (ppt)	DO Satur	ation (%)	(mg/l		Turbidity((NTU)	(mg/	
Station	Condition		Time	(m)			Value	Average	Value	Average	Value	Average	Value	Average	Value	DA	Value	DA	Value	DA
					Surface	1.0	23.6	23.6	8.1	8.1	28.3	28.3	91.6	91.4	6.6		2.0		4.2	
						1.0	23.6		8.1	-	28.3		91.1	-	6.6	6.6	1.9		3.8	1
C1	Fine	Calm	09:03	10.0	Middle	5.0	23.6 23.6	23.6	8.1 8.1	8.1	28.3 28.3	28.3	91.7 91.2	91.5	6.6 6.6		2.2 2.2	2.1	3.6 3.3	3.5
						5.0 9.0	23.6		8.1		28.3		91.2 91.8		6.6		2.2		3.3 2.9	1
					Bottom	9.0	23.6	23.6	8.1	8.1	28.3	28.3	91.4	91.6	6.6	6.6	2.3		2.9	1
				I	Surface	1.0	23.6	23.6	8.1	8.2	28.2	28.2	90.2	90.4	6.5		1.1		4.0	
					Surrace	1.0	23.6	23.6	8.2	8.2	28.2	28.2	90.5	90.4	6.5	6.5	1.1		3.6	1
C2	Fine	Calm	08:43	10.8	Middle	5.4	23.7	23.7	8.1	8.2	28.2	28.2	90.1	90.3	6.5	0.5	1.3	1.5	2.9	3.1
02	1 110	Call	00.10	10.0		5.4	23.6	20.7	8.2	0.2	28.2	20.2	90.5	00.0	6.5		1.3	1.0	3.1	0.1
					Bottom	9.8	23.7	23.7	8.1 8.2	8.2	28.1 28.2	28.2	90.2	90.4	6.5	6.5	2.1		2.7	1
						9.8	23.6 23.4		8.2 8.1		28.2		90.5 93.0		6.5 6.7		2.0 3.0		2.4 3.4	
					Surface	1.0	23.4	23.5	8.1	8.1	28.3	28.4	93.0	92.7	6.7		3.0		3.4	1
• • •						-	-		-		-		-		-	6.7	-		-	
M1	Fine	Calm	08:57	5.6	Middle	-	-	-	-	-	-	-	-	- 1	-	1	-	3.7	-	3.5
					Bottom	4.6	23.2	23.3	8.1	8.1	28.5	28.5	93.1	93.0	6.8	6.8	4.4		4.7	1
					Dottom	4.6	23.4	20.0	8.1	0.1	28.4	20.0	92.9	50.0	6.7	0.0	4.5		2.5	<u> </u>
					Surface	1.0	24.0	23.9	8.1	8.1	28.2	28.3	89.0	89.2	6.4	-	2.4		2.6	1
						1.0	23.7		8.1		28.4		89.3		6.4	6.4	2.4		3.5	1
M2	Fine	Calm	08:54	5.0	Middle		-	-	-	-	-	-	-		-	-	-	2.9	-	2.8
						4.0	- 24.3		- 8.1		28.0		- 89.1		6.4		- 3.4		2.8	1
					Bottom	4.0	23.8	24.1	8.1	8.1	28.3	28.2	89.1	89.1	6.4	6.4	3.4		2.0	1
				I	<u> </u>	1.0	23.6	00.0	8.1		28.4	00.4	89.8		6.5		2.0		4	
					Surface	1.0	23.6	23.6	8.1	8.1	28.4	28.4	89.8	89.8	6.5	6.5	2.0		4	1
M3	Fine	Calm	08:49	7.0	Middle	3.5	23.8	23.7	8.1	8.1	28.3	28.4	91.3	90.5	6.6	0.5	2.1	2.3	3	3
inio		Cann	00.10	1.0		3.5	23.6	20.7	8.1	0.1	28.4	20.1	89.7	00.0	6.5		2.1	2.0	3	Ŭ
					Bottom	6.0	24.0	23.8	8.1	8.1	28.3	28.4	92.2	91.0	6.6	6.6	2.6		3	i
						6.0	23.6		8.1		28.4		89.7		6.5		2.7		3	L

DA: Depth-averaged

Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

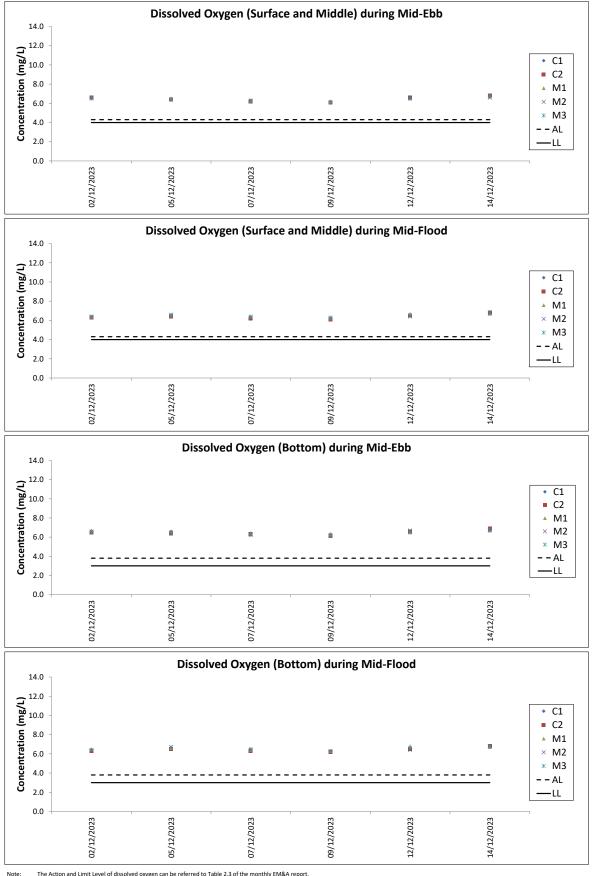
Water Quality Monitoring

Water Quality Monitoring Results on 14 December 23 during Mid-Ebb Tide

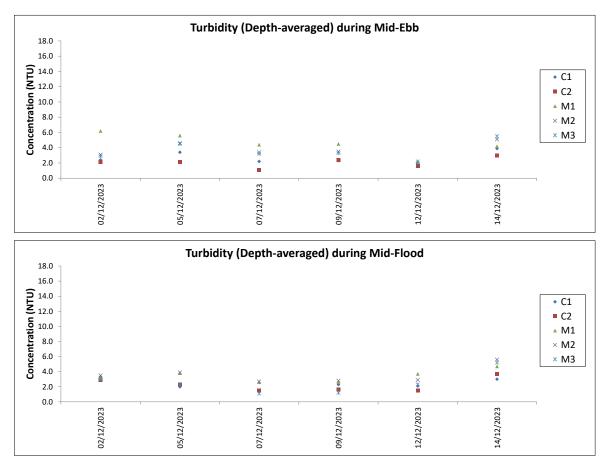
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	The second sec	
Station Condition Description Time (m) Description Value Average Value Value Value Value Va	$ \begin{array}{r} 7.5 \\ \overline{7.2} \\ 8.0 \\ \overline{7.6} \\ \overline{8.3} \\ \overline{7.9} \\ \overline{6.0} \end{array} $	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	7.2 8.0 7.6 8.3 7.9 6.0	- - 7.8 -
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.0 7.6 8.3 7.9 6.0	- 7.8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	7.6 8.3 7.9 6.0	- 7.8 -
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7.6 8.3 7.9 6.0	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	7.9 6.0	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		÷——
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-
C2 Cloudy Moderate 12:53 10.8 Middle 5.4 22.8 7.9 7.9 30.2 94.0 94.2 6.8 3.2 Bottom 9.8 22.7 22.8 7.9 7.9 30.2 94.0 94.2 6.8 3.2 3.2 3.2 30.2 95.1 94.7 6.9 6.9 2.6 30.2 30.2 95.1 94.7 6.9 6.9 2.6 30.2 30.2 30.2 30.2 95.1 94.7 6.9 6.9 2.6 30.2 30.2 30.2 30.2 95.1 94.7 6.9 6.9 2.6 30.2<	5.8	-
Bottom 9.8 22.7 22.8 7.9 7.9 30.2 30.2 95.1 94.7 6.9 6.9 2.6	3.0 <u>6.3</u> 6.6	6.4
	7.1	-
	6.8	-
	6.9	+
Surface 10 22.8 7.0 7.9 20.0 29.9 01.6 91.8 6.6 1.6	6.7	1
M1 Cloudy Moderate 12:44 5.2 Middle	4.2 -	7.0
M1 Cloudy Moderate 12:44 5.2 Middle	4.2 -	- 7.0
Bottom 4.2 22.8 22.8 7.9 7.9 30.0 30.0 92.3 92.0 6.7 6.7 3.9	7.4	
4.2 22.8 7.9 29.9 91.7 6.6 4.3	7.1	1
Surface 1.0 22.8 22.8 7.9 7.9 29.9 91.4 91.4 6.6 4.7	6.0	_
Surface 1.0 22.8 7.9 7.9 29.9 91.4 91.4 6.6 6.6 4.4	5.6	_
M2 Cloudy Moderate 12:47 5.4 Middle	5.1 -	4.6
	-	_
Bottom 4.4 22.8 7.9 7.9 30.0 91.3 91.8 6.6 6.7 5.5	3.7 3.2	-
4.4 22.8 7.9 7.9 29.9 92.2 6.7 6.7 5.8 0.10 0.10 22.7 00.0 7.9 7.9 29.9 93.0 00.0 6.7 5.2	3.2	+
	3	-
	2	-
M3 Cloudy Moderate 12:39 7.2 Middle 3.6 22.7 7.9 7.9 30.1 92.9 93.5 6.7 5.5 5.5 5	5.5 3	3
	4	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		_

DA: Depth-averaged

Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

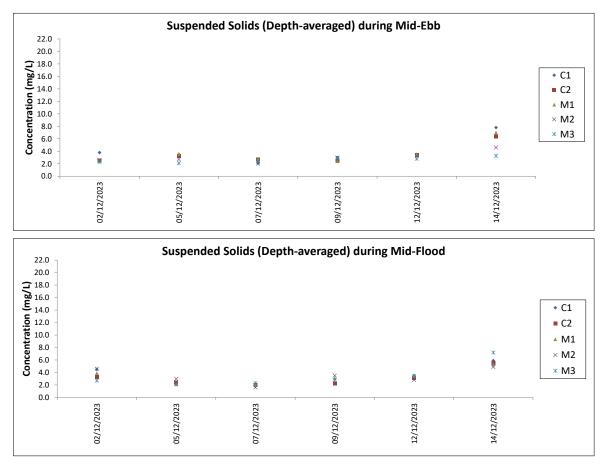

Water Quality Monitoring

Water Quality Monitoring Results on 14 December 23 during Mid-Flood Tide


		toring Resu			14 December 23		-i 100u i	lue												
Monitoring	Weather	Sea Condition	Sampling		Sampling Dep	oth (m)	Water Te	emperature (°C)	p	Η	Salin	ity (ppt)	DO Satu	ation (%)	Dissolved ((mg/l		Turbidity((NTU)	Suspende (mg/	
Station	Condition		Time	(m)			Value	Average	Value	Average	Value	Average	Value	Average	Value	DA	Value	DA	Value	DA
					Surface	1.0	22.8	22.8	7.9	7.9	30.0	30.1	94.0	93.9	6.8		2.8		5.4	
					Gunace	1.0	22.8	22.0	7.9	1.5	30.1	50.1	93.8	33.3	6.8	6.8	2.7		5.4	1
C1	Cloudy	Moderate	10:15	10.5	Middle	5.3	22.8	22.8	7.9	7.9	30.2	30.2	94.0	93.9	6.8	0.0	3.3	3.0	5.7	5.9
	,				madio	5.3	22.8	22.0	7.9		30.1	00.2	93.8	00.0	6.8		3.4		6.0	
					Bottom	9.5	22.8	22.8	7.9	7.9	30.1	30.1	94.4	94.2	6.8	6.8	3.0		6.3	1
						9.5	22.8		7.9		30.0		94.0		6.8		2.9		6.8	
					Surface	1.0	22.8	22.8	7.9	7.9	29.8	29.9	93.8	93.8	6.8		3.0		5.9	1
						1.0	22.8		7.9		29.9		93.7		6.8	6.8	3.1		6.2	1
C2	Cloudy	Moderate	09:55	10.5	Middle	5.3	22.8	22.8	7.9	7.9	30.0	30.0	94.0	93.8	6.8	-	3.5	3.7	5.8	5.5
						5.3	22.8		7.9		30.0		93.6		6.8		4.1		5.3	1
					Bottom	9.5 9.5	22.8 22.8	22.8	7.9 7.9	7.9	30.0 30.0	30.0	93.9 93.5	93.7	6.8 6.8	6.8	4.1 4.2		4.8 5.0	1
						9.5	22.8		7.9		30.0		93.5		6.7	1	4.2		6.7	
					Surface	1.0	22.8	22.8	7.9	7.9	29.9	30.0	92.0	91.9	6.6	-	4.0		6.2	1
						-	-		-		-		-		-	6.7	-		-	1
M1	Cloudy	Moderate	10:05	4.5	Middle	-	-	-	-	-	-	-	-		-	1	-	4.7	-	5.3
					D	3.5	22.8		7.9		30.1		92.5		6.7		4.5		4.3	1
					Bottom	3.5	22.8	22.8	7.9	7.9	30.0	30.1	91.7	92.1	6.6	6.7	4.8		4.1	1
					Surface	1.0	22.8	22.8	7.9	7.9	30.0	30.0	92.6	92.8	6.7		5.6		4.5	
					Sunace	1.0	22.8	22.8	7.9	7.9	29.9	30.0	92.9	92.8	6.7	6.7	5.4		4.2	1
M2	Cloudy	Moderate	10:00	4.3	Middle		-	_	-		-	-	-	_	-	0.7	-	5.6	-	4.9
IVIZ	Cioudy	woderate	10.00	4.3	Midule		-	-	-	-	-	-	-	1 -	-		-	5.0	-	4.9
					Bottom	3.3	22.8	22.8	7.9	7.9	29.9	30.0	92.6	92.9	6.7	6.8	5.4		5.6	1
					Bollom	3.3	22.7	22.0	7.9	1.9	30.0	30.0	93.2	92.9	6.8	0.0	5.9		5.1	
					Surface	1.0	22.8	22.8	7.9	7.9	29.9	29.9	93.0	93.1	6.7		5.1		8	
					Junace	1.0	22.8	22.0	7.9	1.3	29.9	23.3	93.2	33.1	6.8	6.8	4.9		8	1
MЗ	Cloudy	Moderate	10:09	6.7	Middle	3.4	22.8	22.8	7.9	7.9	30.0	30.0	92.8	93.2	6.7	0.0	5.2	5.2	7	7
	cloudy	incadiato				3.4	22.8	0	7.9		30.0	00.0	93.5	55.E	6.8		5.9	0.2	7	
					Bottom	5.7	22.8	22.8	7.9	7.9	30.0	30.0	93.0	93.4	6.7	6.8	5.1		7	1
					_ = = = = = = = = = = = = = = = = = = =	5.7	22.7	22.0	7.9		30.0	2510	93.8	2.5.1	6.8	2.0	4.8		7	

DA: Depth-averaged

Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher



The Action and Limit Level of dissolved oxygen can be referred to Table 2.3 of the monthly EM&A report. Major site activities carried out during the reporting period are summarized in Section 1.4 of the monthly EM&A report. Weather conditions during monitoring are presented in the data tables above. QA/ QC requirements as stipulated in the EM&A Manual were carried out during measurement. With the completion of marine works below seawater level of the Airport City Link Project on 15 December 2023, the impact water quality monitoring was terminated on 15 December 2023, and the 1-month

Note:

The Action and Limit Level of turbidity can be referred to Table 2.3 of the monthly EM&A report. Major site activities carried out during the reporting period are summarized in Section 1.4 of the monthly EM&A report. Weather conditions during monitoring are presented in the data tables above. QA/QC requirements as stipulated in the EM&A Manual were carried out during measurement. With the completion of marine works below seawater level of the Airport City Link Project on 15 December 2023, the impact water quality monitoring was terminated on 15 December 2023, and the 1-month

Note

The Action and Limit Level of suspended solids can be referred to Table 2.3 of the monthly EM&A report. Major site activities carried out during the reporting period are summarized in Section 1.4 of the monthly EM&A report. Weather conditions during monitoring are presented in the data tables above. QA/QC requirements as stipulated in the EM&A Manual were carried out during measurement. With the completion of marine works below seawater level of the Airport City Link Project on 15 December 2023, the impact water quality monitoring was terminated on 15 December 2023, and the 1-month

Appendix G2. Post-construction Monitoring

Airport City Link Post-construction Water Quality Monitoring

 Water Quality Monitoring Results on
 16 December 23
 during Mid-Ebb Tide

Water Qua		toring Resu		1	16 December 23	auring Mia		Je							1		1			
Monitoring	Weather	Sea Condition	Sampling		Sampling Dep	oth (m)	Water Te	emperature (°C)		pН	Salin	ity (ppt)	DO Satu	ation (%)	Dissolved (mg/		Turbidity	(NTU)	Suspende (mg	
Station	Condition		Time	(m)			Value	Average	Value	Average	Value	Average	Value	Average	Value	DA	Value	DA	Value	DA
					Surface	1.0	23.0	23.0	7.9	7.9	29.3	29.8	92.0	92.1	6.7		9.0		12.0	
					Oundee	1.0	23.0	20.0	7.9	7.5	30.3	20.0	92.1	52.1	6.7	6.7	9.3		12.3	1
C1	Cloudy	Moderate	15:00	10.1	Middle	5.1	23.0	23.0	7.9	7.9	29.2	29.1	91.9	92.0	6.7	-	9.6	10.2	12.5	12.7
	,					5.1	23.0		7.9		29.0		92.0	-	6.7		9.8		12.9	4
					Bottom	9.1 9.1	23.0 23.0	23.0	7.9 7.9	7.9	29.3 29.1	29.2	91.8 91.8	91.8	6.7 6.7	6.7	11.7 11.5		13.0 13.5	4
						1.0	23.0		7.9		29.1		91.8		6.7		8.8		13.5	<u> </u>
					Surface	1.0	23.0	23.0	7.9	7.9	29.6	29.5	92.2	92.4	6.7	-	8.7		12.2	1
	- · ·					5.4	23.0		7.9		29.5		92.4		6.7	6.7	9.5		12.6	
C2	Cloudy	Moderate	15:25	10.8	Middle	5.4	23.0	23.0	7.9	7.9	29.0	29.3	92.2	92.3	6.7		9.4	9.2	12.8	12.7
					Detterr	9.8	22.9	23.0	7.9	7.9	29.5	28.8	93.2	92.7	6.8	6.8	9.4		13.1	1
					Bottom	9.8	23.0	23.0	7.9	7.9	28.1	28.8	92.2	92.7	6.7	6.8	9.4		13.4	
					Surface	1.0	22.9	22.9	7.9	7.9	29.8	29.1	92.8	92.4	6.7		9.3		12.6	
						1.0	22.9	22.0	7.9	1.0	28.4	20.1	91.9	02.1	6.7	6.7	9.5		12.4	1
M1	Cloudy	Moderate	15:12	5.2	Middle	-	-	-	-	-	-	-	-		-	0	-	9.5	-	12.0
	,		-			-	-		-		-		-		-		-		-	4
					Bottom	4.2	22.8 22.9	22.9	7.9 7.9	7.9	30.1 29.8	30.0	93.4 92.3	92.9	6.8 6.7	6.8	9.6		11.6 11.5	4
						4.2	22.9		7.9		29.8 29.9		92.3 91.7	1	6.7		9.6 8.9		11.5	┝───
					Surface	1.0	23.0	23.0	7.9	7.9	29.9	29.8	91.7	92.1	6.7	-	8.4		10.8	1
						1.0	-		-		-		-		-	6.7	-		-	1
M2	Cloudy	Moderate	15:16	5.4	Middle		-	-	-	-	-	-	-		-	-	-	8.9	-	11.9
					Dettern	4.4	23.0	23.0	7.9	7.9	30.1	30.1	92.0	92.1	6.7	6.7	8.7		13.0	1
					Bottom	4.4	22.9	23.0	7.9	7.9	30.1	30.1	92.2	92.1	6.7	0.7	9.4		12.6	
					Surface	1.0	23.0	23.0	7.9	7.9	29.7	29.7	92.7	93.0	6.7		8.0		11	
					Cunace	1.0	23.0	20.0	7.9	1.5	29.6	23.1	93.2	55.0	6.7	6.7	7.6		10	1
M3	Cloudy	Moderate	15:06	7.2	Middle	3.6	23.0	23.0	7.9	7.9	29.7	29.8	92.1	92.5	6.7	0.7	8.5	8.5	12	17
						3.6	23.0		7.9		29.8		92.8		6.7		9.0		11	4
					Bottom	6.2	23.0	23.0	7.9	7.9	30.2	30.0	92.1	92.6	6.7	6.7	8.4		12	4
			1			6.2	23.0		7.9		29.8		93.0		6.7	1	9.7		44	1

DA: Depth-averaged

Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Airport City Link Post-construction Water Quality Monitoring

Water Quality Monitoring Results on 16 December 23 during Mid-Flood Tide

Waler Qua		toring Rest			16 December 23	auring Mia	FIOOU	lue												
Monitoring	Weather	Sea Condition		Water Depth	Sampling Dep	oth (m)	Water Te	emperature (°C)		pН	Salin	ity (ppt)	DO Satu	ation (%)	Dissolved (mg/l		Turbidity((NTU)	Suspende (mg/	
Station	Condition		Time	(m)			Value	Average	Value	Average	Value	Average	Value	Average	Value	DA	Value	DA	Value	DA
					Surface	1.0	23.0	23.0	7.9	7.9	29.4	29.3	92.4	92.3	6.7		10.2		10.6	
					Sullace	1.0	23.0	23.0	7.9	7.9	29.2	29.3	92.2	92.3	6.7	6.7	9.7		10.8	Í
C1	Cloudy	Moderate	10:44	11.2	Middle	5.6	23.0	23.0	7.9	7.9	29.3	30.0	92.6	92.4	6.7	0.7	12.0	11.1	11.2	10.9
01	cloudy	modorato	10.11	11.2		5.6	23.0	20.0	7.9	7.5	30.6	00.0	92.2	52.4	6.7		10.6		10.8	10.0
					Bottom	10.2	22.9	23.0	7.9	7.9	29.3	29.4	92.6	92.5	6.7	6.7	12.6		11.0	1
				-	Dettom	10.2	23.0	20.0	7.9	7.5	29.4	20.4	92.3	52.5	6.7	0.7	11.4		11.2	<u> </u>
					Surface	1.0	23.0	23.0	7.8	7.8	29.3	29.4	93.0	93.3	6.7		7.7		14.3	1
						1.0	23.0		7.8		29.4		93.5		6.8	6.8	8.4		14.6	1
C2	Cloudy	Moderate	10:20	10.4	Middle	5.2	23.0	23.0	7.7	7.8	29.4	29.4	93.8	93.9	6.8		9.7	9.2	13.6	13.9
	-					5.2	23.0		7.8		29.4		93.9		6.8		9.7		13.9	4
					Bottom	9.4 9.4	23.0 23.0	23.0	7.7	7.8	29.5 29.5	29.5	93.5	93.3	6.8 6.7	6.8	9.8 9.8		13.4 13.3	1
													93.0		-		9.8			
					Surface	1.0	22.9 22.9	22.9	7.9 7.9	7.9	29.7 29.8	29.8	91.3 91.1	91.2	6.6 6.6	-	8.4		11.2 11.0	Í
						-	-		-		29.0		-		0.0	6.6	-		-	i
M1	Cloudy	Moderate	10:31	5.6	Middle	-	-	-	-	-	-	-	-		-			10.0		10.8
						4.6	22.9		7.9		30.0		91.6		6.6		10.0		10.3	Í
					Bottom	4.6	22.9	22.9	7.9	7.9	30.0	30.0	91.1	91.4	6.6	6.6	11.5		10.7	Í
					<u> </u>	1.0	22.9		7.9	7.0	31.2		92.8	00.4	6.7		8.0		11.6	
					Surface	1.0	22.9	22.9	7.9	7.9	29.9	30.6	93.9	93.4	6.8		6.6		11.8	1
M2	Claudy	Madarata	10.20	5.4	Middle		-		-		-		-		-	6.8	-	7.8	-	11.0
IVIZ	Cloudy	Moderate	10:26	5.4	IVIIddie		-	-	-	-	-	-	-	-	-		-	7.8	-	11.0
					Bottom	4.4	23.0	23.0	7.9	7.9	30.3	30.1	93.3	94.3	6.7	6.8	8.3		10.5	Í
					Bollom	4.4	22.9	23.0	7.9	7.9	29.8	30.1	95.3	94.5	6.9	0.0	8.4		10.2	1
					Surface	1.0	23.0	23.0	7.9	7.9	29.4	29.5	93.5	93.6	6.8		8.4		12	_
					Suilace	1.0	23.0	23.0	7.9	1.3	29.6	29.0	93.7	93.0	6.8	6.8	8.8		12	1
M3	Cloudy	Moderate	10:36	6.8	Middle	3.4	23.0	23.0	7.9	7.9	29.0	29.3	92.7	93.1	6.7	0.0	9.2	9.3	13	13
1110	Cioudy	moderate	10.00	0.0		3.4	23.0	20.0	7.9	1.0	29.5	20.0	93.4	00.1	6.8		9.5	0.0	13	
					Bottom	5.8	23.0	23.0	7.9	7.9	29.7	29.8	92.8	92.9	6.7	6.7	9.9		14	1
						5.8	23.0		7.9		29.8		93.0		6.7		9.9		13	1

DA: Depth-averaged

Calm: Small or no wave; Moderate: Between calm and rough; Rough: White capped or rougher

Airport City Link Post-construction Water Quality Monitoring Water Quality Monitoring Results on

onitoring Results on 19 December 23 during Mid-Ebb Tide

Waler Qua		toring Resu			19 December 23	auring Mia									Dissolved	Oxvaen			Suspende	d Solids
Monitoring	Weather	Sea Condition	Sampling		Sampling Dep	oth (m)	Water Te	emperature (°C)	I	рH	Salin	ity (ppt)	DO Satu	ration (%)	(mg/		Turbidity	(NTU)	(mg	
Station	Condition		Time	(m)		()	Value	Average	Value	Average	Value	Average	Value	Average	Value	DA	Value	DA	Value	DA
					Surface	1.0	20.8	20.8	8.0	8.0	31.1	31.1	96.7	96.7	7.3		2.1		2.7	
						1.0	20.8	2010	8.0	0.0	31.0	0	96.7	00	7.3	7.2	2.0		3.1	1
C1	Cloudy	Rough	17:27	10.9	Middle	5.5	20.6	20.6	8.0	8.0	31.1	31.1	95.2	95.2	7.1	-	2.5	2.5	3.4	3.4
		U				5.5	20.6		8.0		31.1		95.2		7.1		2.6		3.7	l
					Bottom	9.9 9.9	20.6	20.6	8.0 8.0	8.0	31.2 31.2	31.2	92.4 92.4	92.4	6.9 6.9	6.9	2.9 2.9		3.5 3.7	1
						9.9	20.6		8.0		31.2		92.4		6.9		4.3		3.7	
					Surface	1.0	20.7	20.7	8.0	8.0	32.0	32.0	91.6	91.6	6.8	-	4.3		3.9	1
	- · ·					5.3	20.8		8.0		31.2		91.5		6.9	6.9	4.4		3.6	1
C2	Cloudy	Rough	17:57	10.5	Middle	5.3	20.8	20.8	8.0	8.0	31.2	31.2	91.5	91.5	6.8		4.4	4.3	3.3	3.3
					Detterre	9.5	20.7	00.7	8.0	8.0	32.4	32.4	92.1	92.1	6.9	6.9	4.1		2.6	ł
					Bottom	9.5	20.7	20.7	8.0	8.0	32.4	32.4	92.1	92.1	6.9	6.9	4.1		2.9	1
					Surface	1.0	20.6	20.6	7.9	7.9	30.3	30.3	89.4	89.4	6.7		4.4		4.6	1
					Odnace	1.0	20.6	20.0	7.9	7.5	30.3	00.0	89.3	05.4	6.7	6.7	4.4		4.3	1
M1	Cloudy	Rough	17:47	5.2	Middle	-	-	-	-	-	-	-	-		-	0.7	-	4.0	-	3.9
	,					-	-		-		-		-		-		-		-	1
					Bottom	4.2	20.6	20.6	7.9 7.9	7.9	30.9	30.9	88.9	88.9	6.7	6.7	3.6		3.5	ł
						4.2	20.6				30.8		88.9		6.7		3.6		3.1	
					Surface	1.0	20.6	20.6	7.9 7.9	7.9	31.1 31.1	31.1	90.6 90.6	90.6	6.8 6.8		6.2 6.3		2.7 3.0	ł
						1.0	-		-		-		-		-	6.8	-		-	ł
M2	Cloudy	Rough	17:52	4.8	Middle	-	-	-	-	-	-	-	-	-	-	-	-	7.0	-	3.8
					D //	3.8	20.6	00.0	8.0		30.4	00.5	92.8	00.0	7.0	7.0	7.8		4.4	ł
					Bottom	3.8	20.6	20.6	8.0	8.0	30.5	30.5	92.7	92.8	7.0	7.0	7.8		4.9	ł
					Surface	1.0	20.7	20.7	7.9	7.9	30.6	30.6	91.5	91.5	6.9		4.3		3	
					Sunace	1.0	20.7	20.7	7.9	1.3	30.6	50.0	91.5	91.5	6.9	7.0	4.3		3	l
M3	Cloudy	Rough	17:35	6.9	Middle	3.5	20.6	20.6	8.0	8.0	31.1	31.2	93.2	93.2	7.0	7.0	8.5	6.5	3	3
	c.suuy	lough		0.0		3.5	20.6	23.0	8.0	0.0	31.2	02	93.2	55.L	7.0		8.4	0.0	4	Ĭ
					Bottom	5.9	20.5	20.5	8.0	8.0	30.7	30.9	93.9	93.9	7.0	7.0	6.8		4	ł
						5.9	20.5	,	8.0		31.0		93.8		7.0		6.8		4	1

DA: Depth-averaged

Water Quality Monitoring Results on 19 December 23 during Mid-Flood Tide

		toring Resu			19 December 23	auring Mia		emperature (°C)		pН	Salin	ity (ppt)	DO Satur	ation (%)	Dissolved		Turbidity	(NTU)	Suspende	
Monitoring Station	Weather Condition	Sea Condition	Sampling Time	Water Depth (m)	Sampling Dep	oth (m)									(mg/		-		(mg	1
							Value	Average	Value	Average	Value	Average	Value	Average	Value	DA	Value	DA	Value	DA
					Surface	1.0	20.7	20.7	7.9	7.9	30.9	30.9	93.2	93.2	7.0		2.1		4.2	
						1.0	20.7		7.9		30.9		93.2		7.0	7.0	2.1		4.1	1
C1	Cloudy	Rough	12:08	9.6	Middle	4.8	20.6	20.6	8.0	8.0	31.1	31.1	93.2	93.3	7.0		2.3	2.3	3.5	3.6
	-	_				4.8	20.6		8.0		31.1		93.3		7.0		2.3		3.8	1
					Bottom	8.6	20.6	20.6	8.0 8.0	8.0	31.2 31.1	31.2	93.2	93.2	7.0	7.0	2.5		2.8	1
						8.6	20.6 20.8		8.0		31.1		93.2 91.6		7.0 6.8		2.5 2.0		3.2 4.8	<u> </u>
					Surface	1.0	20.8	20.8	7.9	7.9	30.8	30.8	91.6	91.6	6.8	_	2.0		4.0	1
						4.6	20.6		7.9		31.1		94.0		7.0	6.9	2.4		3.4	1
C2	Cloudy	Rough	11:38	9.2	Middle	4.6	20.6	20.6	7.9	7.9	31.1	31.1	94.0	94.0	7.0		2.4	2.7	3.7	3.8
					D	8.2	20.6		7.9		31.2		93.5		7.0		3.7		3.0	
					Bottom	8.2	20.6	20.6	7.9	7.9	31.2	31.2	93.5	93.5	7.0	7.0	3.7		3.2	
					Surface	1.0	20.6	20.6	7.9	7.9	30.5	30.5	92.3	92.3	6.9		5.9		4.2	
					Gunace	1.0	20.6	20.0	7.9	1.5	30.5	30.5	92.3	32.5	6.9	6.9	5.9		3.8	
M1	Cloudy	Moderate	11:53	4.2	Middle	-	-	-	-	-	-	-	-	-	-	0.5	-	6.1	-	4.7
	,					-	-		-		-		-		-		-		-	
					Bottom	3.2	20.6	20.6	7.9	7.9	30.6	30.6	92.6	92.6	7.0	7.0	6.2		5.7	1
						3.2	20.6		7.9		30.5		92.5		6.9		6.2		5.2	<u> </u>
					Surface	1.0 1.0	20.8 20.8	20.8	7.9 7.9	7.9	30.8 30.8	30.8	91.5 91.5	91.5	6.8 6.8	-	1.8 1.9		2.6 2.2	1
						1.0	20.0		7.9		30.0		91.5		0.0	6.8	1.9		2.2	1
M2	Cloudy	Moderate	11:49	3.9	Middle		-	-	-	-	-	-	-	-	-	-	-	2.1	-	3.1
						2.9	20.6		7.9		31.0		93.8		7.0		2.4		3.9	1
					Bottom	2.9	20.6	20.6	7.9	7.9	31.0	31.0	93.8	93.8	7.0	7.0	2.4		3.5	1
						1.0	20.6		7.9		30.7		91.8		6.9		4.4		2	
					Surface	1.0	20.6	20.6	7.9	7.9	30.7	30.7	91.8	91.8	6.9		4.3		3	
M3	Claudu	Daugh	11.50	6.7	Middle	3.4	20.7	20.7	7.9	7.9	30.9	30.9	92.3	92.3	6.9	6.9	5.3	5.3	3	3
IVI3	Cloudy	Rough	11:59	6.7	iviidaie	3.4	20.7	20.7	7.9	7.9	30.9	30.9	92.3	92.3	6.9		5.3	5.3	3	3
					Bottom	5.7	20.6	20.6	7.9	7.9	31.2	31.2	92.6	92.7	6.9	6.9	6.3		3]
					Bollom	5.7	20.6	20.0	7.9	1.5	31.2	51.2	92.7	52.1	6.9	0.9	6.2		3	

DA: Depth-averaged

 Water Quality Monitoring Results on
 21 December 23
 during Mid-Ebb Tide

Monitoring	Weather	Sea Condition	Sampling		Sampling Dep	auring ivita		emperature (°C)		рH	Salin	ity (ppt)	DO Satu	ration (%)	Dissolved (mg/		Turbidity	(NTU)	Suspende (mg/	
Station	Condition		Time	(m)	Camping 2 op	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	DA	Value	DA	Value	DA
					Surface	1.0	20.1	20.1	8.1	8.1	31.5	31.5	93.1	92.5	7.0		2.4		5.2	
					Canado	1.0	20.1	2011	8.0	0.1.	31.5	0.110	91.8	02.0	6.9	7.0	2.2		4.9	ł
C1	Cloudy	Moderate	08:36	10.8	Middle	5.4	19.5	19.6	8.1	8.1	31.5	31.5	92.6	91.9	7.1	_	2.8	2.6	4.4	4.6
	-					5.4	19.7		8.1		31.5		91.2		6.9		2.5			ł
					Bottom	9.8 9.8	19.3 20.0	19.7	8.1 8.0	8.1	31.5 31.4	31.5	92.7 89.6	91.2	7.1 6.8	7.0	3.1 2.7		4.2 3.9	ł
						1.0	20.0		8.0		31.6		89.7		6.7		1.7		3.3	
					Surface	1.0	20.5	20.5	8.0	8.0	31.6	31.6	90.1	89.9	6.7		1.7		3.6	I
C2	Cloudy	Moderate	08:11	10.8	Middle	5.4	20.5	20.2	8.0	8.0	31.6	31.6	90.5	91.0	6.8	6.8	2.0	2.2	4.4	4.1
02	Cloudy	woderate	00.11	10.0	Wildule	5.4	19.9	20.2	8.0	0.0	31.5	31.0	91.4	91.0	6.9		2.1	2.2	4.0	4.1
					Bottom	9.8	19.5	19.5	8.0	8.0	31.4	31.5	92.4	91.4	7.1	7.0	3.0		4.8	1
					Bottom	9.8	19.5		8.0	0.0	31.5	0.110	90.3	•	6.9		2.8		4.4	
					Surface	1.0	19.7	19.7	8.0 8.0	8.0	31.0	31.0	89.6	90.0	6.8	_	7.1		3.4	ł
						1.0	19.7				31.0		90.3		6.9	6.9	7.4		3.8	ł
M1	Cloudy	Moderate	08:28	5.8	Middle	-		-	-	-	-	-	-		-	-	-	7.5	-	4.5
					_	4.8	19.7		8.0		31.0		90.0		6.9		7.7		5.2	ł
					Bottom	4.8	19.7	19.7	8.0	8.0	31.0	31.0	90.6	90.3	6.9	6.9	7.6		5.6	ł
					Surface	1.0	19.8	19.9	8.0	8.0	31.1	31.1	90.0	90.1	6.8		2.4		3.4	
					Sunace	1.0	19.9	19.9	8.0	0.0	31.1	31.1	90.2	30.1	6.8	6.8	2.2		3.9	1
M2	Cloudy	Moderate	08:23	5.7	Middle		-	-	-	-	-	-	-		-	0.0	-	2.4	-	4.0
	,			-			-		-		-		-		-		-		-	1
					Bottom	4.7	20.2	20.1	8.0 8.0	8.0	31.3 31.1	31.2	91.0 90.5	90.8	6.9 6.9	6.9	2.4 2.4		4.2 4.5	ł
						4.7	19.9		8.0		31.1		90.5 88.9		6.8		2.4		4.5	
					Surface	1.0	20.1	20.0	8.0	8.0	31.2	31.2	89.7	89.3	6.8		1.7		3	I
	<u></u>		00.40		NC LU	3.4	20.3		8.0		31.4		90.3	00 F	6.8	6.8	2.0		4	Ι.
M3	Cloudy	Moderate	08:19	6.8	Middle	3.4	20.3	20.3	8.0	8.0	31.4	31.4	90.7	90.5	6.8		2.0	2.1	4	4
					Bottom	5.8	20.2	20.2	8.0	8.0	31.3	31.3	91.4	91.5	6.9	6.9	2.7		5	I
					BUILUIII	5.8	20.2	20.2	8.0	0.0	31.3	31.3	91.5	91.5	6.9	0.9	2.3		4	i

DA: Depth-averaged

Water Quality Monitoring Results on 21 December 23 during Mid-Flood Tide

Water Qua		toring Resu			21 December 23	auring Mia-	11000	lue					1		1		1		1	
Monitoring	Weather	Sea Condition		Water Depth	Sampling Dep	oth (m)	Water Te	emperature (°C)	F	эΗ	Salin	ity (ppt)	DO Satur	ation (%)	Dissolved ((mg/L		Turbidity((NTU)	Suspende (mg	
Station	Condition		Time	(m)			Value	Average	Value	Average	Value	Average	Value	Average	Value	DA	Value	DA	Value	DA
					Surface	1.0	20.1	20.1	8.0	8.0	31.5	31.5	91.9	91.8	6.9		2.2		4.4	
					Sunace	1.0	20.1	20.1	8.0	0.0	31.5	51.5	91.7	91.0	6.9	6.9	2.4		4.7	l
C1	Cloudy	Moderate	13:07	10.1	Middle	5.1	19.6	19.6	8.1	8.1	31.5	31.5	90.8	90.3	6.9	0.0	2.5	2.5	4.0	4.3
					inidalo	5.1	19.6	1010	8.0	0.1	31.4	0.10	89.8	00.0	6.8		2.7		4.4	1
					Bottom	9.1	19.7	19.8	8.0	8.0	31.4	31.4	89.7	89.9	6.8	6.8	2.6		3.8	1
					Dottom	9.1	19.9		8.0	0.0	31.4	•	90.0	00.0	6.8	0.0	2.5		4.2	<u> </u>
					Surface	1.0	20.5	20.6	8.1	8.1	31.6	31.6	90.8	89.9	6.8		1.6		5.8	4
						1.0	20.6		8.0		31.6		89.0		6.7	6.8	1.5		5.4	4
C2	Cloudy	Moderate	13:38	10.6	Middle	5.3	20.3	20.3	8.1 8.1	8.1	31.6	31.6	91.6	90.9	6.9		1.9	1.9	4.7	4.9
						5.3 9.6	20.2				31.6		90.1		6.8		1.9		5.1	1
					Bottom	9.6	20.3 20.1	20.2	8.1 8.1	8.1	31.6 31.5	31.6	91.8 89.5	90.7	6.9 6.7	6.8	2.1 2.1		4.5 4.1	1
						1.0	19.7		8.0		31.0		90.5		6.9		5.3		4.1	<u> </u>
					Surface	1.0	19.7	19.7	8.0	8.0	31.0	31.0	90.9	90.7	6.9		4.8		3.9	1
	- · ·					-	-		-		-		-		-	6.9	-		-	
M1	Cloudy	Moderate	13:26	5.8	Middle	-	-	-	-	-	-	-	-	-	-		-	5.2	-	3.9
					Dettern	4.8	19.7	19.7	8.0	8.0	31.0	31.0	90.7	91.2	6.9	7.0	4.9		3.7	1
					Bottom	4.8	19.7	19.7	8.0	8.0	31.0	31.0	91.6	91.2	7.0	7.0	5.7		3.7	1
					Surface	1.0	19.9	20.0	8.0	8.0	31.2	31.2	90.4	90.6	6.9		2.1		3.4	
					Guilace	1.0	20.0	20.0	8.0	0.0	31.2	51.2	90.8	30.0	6.9	6.9	2.2		3.8	j
M2	Cloudy	Moderate	13:31	5.5	Middle		-	_	-	_	-	_	-	_	-	0.9	-	2.5	-	4.1
IVIZ	Cloudy	Moderate	10.01	5.5	Widdle		-	-	-	-	-	-	-	_	-		-	2.5	-	4.1
					Bottom	4.5	19.9	20.1	8.0	8.0	31.2	31.3	90.9	91.3	6.9	6.9	2.8		4.4	1
					Bottom	4.5	20.3	20.1	8.0	0.0	31.4	01.0	91.6	51.0	6.9	0.5	2.9		4.8	<u> </u>
					Surface	1.0	20.2	20.2	8.0	8.0	31.3	31.3	90.8	91.3	6.8		2.8		3	4
						1.0	20.1	23.2	8.0	0.0	31.3	01.0	91.8	01.0	6.9	6.9	2.4		2	1
M3	Cloudy	Moderate	13:21	6.8	Middle	3.4	20.3	20.3	8.0	8.0	31.4	31.4	91.6	92.3	6.9		2.2	2.4	3	3
-	,		-			3.4	20.3		8.0		31.4	-	92.9		7.0		2.5		3	4
					Bottom	5.8	20.1	20.2	8.0	8.1	31.3	31.4	91.5	92.6	6.9	7.0	2.5		4	4
						5.8	20.3		8.1		31.4		93.7		7.1		2.2		4	L

DA: Depth-averaged

Airport City Link Post-construction Water Quality Monitoring Water Quality Monitoring Results on

Monitoring Results on 23 December 23 during Mid-Ebb Tide

Water Qua		toring Resu		1	23 December 23	auring Mid		le	<u> </u>		1					-				
Monitoring	Weather	Sea Condition	Sampling		Sampling Dep	oth (m)	Water Te	emperature (°C)		рН	Salin	ity (ppt)	DO Satu	ration (%)	Dissolved (mg/		Turbidity	(NTU)	Suspende (mg	
Station	Condition		Time	(m)			Value	Average	Value	Average	Value	Average	Value	Average	Value	DA	Value	DA	Value	DA
					Surface	1.0	19.9	19.9	8.1	8.1	32.3	32.3	91.9	91.9	7.0		1.2		2.4	
					Cundoo	1.0	19.9	10.0	8.1	0.1	32.3	02.0	91.9	01.0	7.0	7.1	1.2		2.3	ł
C1	Cloudy	Moderate	11:21	10.8	Middle	5.4	19.9	19.9	8.1 8.1	8.1	32.3	32.3	92.2	92.2	7.1	-	1.3	1.2	2.6	2.6
						5.4 9.8	19.9 19.5		-		32.3		92.1 92.3		7.1 7.1		1.3		2.4 2.8	l
					Bottom	9.8	19.5	19.5	8.1 8.1	8.1	32.3 32.3	32.3	92.3	92.3	7.1	7.1	1.0 1.1		3.1	ł
						1.0	20.2		8.0		32.3		91.3		7.0		1.1		2.5	
					Surface	1.0	20.2	20.2	8.0	8.0	32.3	32.3	91.3	91.3	7.0	7.0	1.2		2.3	ł
C2	Cloudy	Moderate	10:56	10.6	Middle	5.3	19.7	19.7	8.0	8.0	32.3	32.3	90.8	90.9	7.0	7.0	8.7	6.4	2.8	2.6
02	Cloudy	Woderate	10.50	10.0	WILdue	5.3	19.7	19.7	8.0	0.0	32.3	32.3	90.9	90.9	7.0		8.6	0.4	2.6	2.0
					Bottom	9.6	19.5	19.5	8.0	8.0	32.2	32.2	90.2	90.2	6.9	6.9	9.5		2.6	1
		1				9.6	19.5		8.0		32.2		90.2		6.9		9.4		3.0	
					Surface	1.0 1.0	18.1 18.1	18.1	8.0 8.0	8.0	31.6 31.6	31.6	93.4 93.4	93.4	7.4		2.1 2.1		3.8 3.4	l
						1.0	-		8.0		31.0		93.4		7.4	7.4	2.1		- 3.4	1
M1	Cloudy	Moderate	11:09	4.9	Middle	-	-	-	-	-	-	-	-		-	-	-	2.0	-	3.3
					D. //	3.9	18.1	10.1	8.0		31.6		93.8		7.4		1.9		3.2	ł
					Bottom	3.9	18.1	18.1	8.0	8.0	31.6	31.6	93.8	93.8	7.4	7.4	1.9		2.8	
					Surface	1.0	18.3	18.3	8.0	8.0	31.7	31.7	93.4	93.4	7.3		2.0		3.0	1
					Gunade	1.0	18.3	10.5	8.0	0.0	31.7	01.7	93.4	55.4	7.3	7.3	2.0		3.3	1
M2	Cloudy	Moderate	11:06	4.6	Middle		-	-	-	-	-	-	-		-	-	-	2.6	-	3.5
						2.6	- 18.5		-		-		-		-		-		-	
					Bottom	3.6 3.6	18.5	18.5	8.1 8.1	8.1	31.8 31.8	31.8	94.4 94.3	94.4	7.4	7.4	3.1 3.1		3.7 4.1	ł
						1.0	18.5		8.1		31.6		92.7		7.3		2.8		3	
					Surface	1.0	18.5	18.5	8.1	8.1	31.6	31.6	92.7	92.7	7.3		2.8		3	ł
M3	Cloudy	Moderate	11:15	6.7	Middle	3.4	18.9	18.9	8.1	8.1	32.0	32.0	93.4	93.4	7.4	7.4	3.9	3.1	3	3
IVI3	Cloudy	wouerate	11:15	0.7	ivildale	3.4	18.8	10.9	8.1	0.1	32.0	32.0	93.3	93.4	7.4		3.9	3.1	3	3
					Bottom	5.7	19.0	19.0	8.1	8.1	32.1	32.1	94.4	94.4	7.4	7.4	2.7		4	1
			1		Bottom	5.7	19.0	10.0	8.1	0.1	32.1	02.1	94.3	07	7.4		2.7		4	i

DA: Depth-averaged

 Water Quality Monitoring Results on
 23 December 23
 during Mid-Flood Tide

Water Qua		toring Resu			23 December 23		FIOOU	lue			1				Disaster	0			0	1.0-16-2
Monitoring	Weather	Sea Condition		Water Depth	Sampling Dep	oth (m)	Water T	emperature (°C)		pН	Salin	ity (ppt)	DO Satur	ation (%)	Dissolved (mg/l		Turbidity(NTU)	Suspende (mg/	
Station	Condition		Time	(m)			Value	Average	Value	Average	Value	Average	Value	Average	Value	DA	Value	DA	Value	DA
					Surface	1.0	19.2	19.3	8.1	8.1	32.2	32.2	93.3	93.3	7.2		1.6		2.0	
					Guilade	1.0	19.3	10.0	8.1	0.1	32.2	02.2	93.3	00.0	7.2	7.3	1.6		2.5	
C1	Fine	Rough	14:22	10.3	Middle	5.2	19.2	19.2	8.1	8.1	32.1	32.2	94.5	94.5	7.4		5.4	4.5	3.0	3.1
		U				5.2	19.2	-	8.1	-	32.2		94.4		7.3		5.4		3.4	
					Bottom	9.3	19.3	19.3	8.1	8.1	32.2	32.2	98.9	98.9	7.6	7.6	6.5		3.9	
			1			9.3	19.3		8.1		32.2		98.9	1	7.6		6.4		3.6	
					Surface	1.0 1.0	20.6 20.6	20.6	8.1 8.1	8.1	32.4 32.4	32.4	91.9 91.9	91.9	6.9 6.9		3.7 3.7		2.8 3.1	
						5.2	20.6		8.1		32.4		91.9		6.9	6.9	2.9		2.8	
C2	Fine	Rough	14:54	10.4	Middle	5.2	20.0	20.6	8.1	8.1	32.4	32.4	92.3	92.3	6.9		3.0	3.5	2.5	2.6
						9.4	20.6		8.1		32.4		92.8		7.0		3.9		2.3	
					Bottom	9.4	20.6	20.6	8.1	8.1	32.4	32.4	92.7	92.8	7.0	7.0	3.9		2.1	
					Surface	1.0	20.0	20.0	8.1	8.1	32.3	32.3	93.5	93.5	7.2		1.1		2.0	
					Sunace	1.0	20.0	20.0	8.1	0.1	32.3	32.3	93.4	93.5	7.1	7.2	1.1		2.3	
M1	Fine	Moderate	14:40	4.3	Middle	-	-	_	-	-	-	-	-		-	1.2	-	1.2	-	2.5
	1 110	modorato	11.10	1.0		-	-		-		-		-		-		-	1.2	-	2.0
					Bottom	3.3	19.9	20.0	8.1	8.1	32.3	32.3	96.4	96.4	7.3	7.3	1.3		2.9	
			1			3.3	20.0		8.1		32.3		96.4	1	7.3		1.3		2.6	
					Surface	1.0 1.0	20.0	20.0	8.1 8.1	8.1	32.3 32.3	32.3	92.1 92.1	92.1	7.0	-	1.2 1.3		2.5 2.5	
						1.0	20.0		0.1		32.3		92.1		7.0	7.0	1.3			
M2	Fine	Moderate	14:46	4.1	Middle		-	-	-	-	-	-	-		-	-	-	1.2	-	2.6
						3.1	20.0		8.1		32.3		92.6		7.1		- 1.1		2.5	
					Bottom	3.1	20.0	20.0	8.1	8.1	32.3	32.3	92.5	92.6	7.0	7.1	1.1		2.7	
						1.0	18.9		8.1		32.0		92.9		7.3	<u> </u>	3.3		2	
					Surface	1.0	18.9	18.9	8.1	8.1	32.0	32.0	92.9	92.9	7.2	-	3.3		2	
M3	Fina	Moderate	14:31	6.2	Middlo	3.1	19.0	19.0	8.1	0.1	32.1	32.1	93.3	93.3	7.2	7.2	2.0	2.2	3	3
IVI3	Fine	Moderate	14:31	6.2	Middle	3.1	19.0	19.0	8.1	8.1	32.1	32.1	93.3	93.3	7.2	1	1.8	Z.Z	3	3
					Bottom	5.2	19.1	19.1	8.1	8.1	32.1	32.1	94.7	94.7	7.4	7.4	1.5		4	
					Bottom	5.2	19.1	13.1	8.1	0.1	32.1	JZ. 1	94.6	34.7	7.4	7.4	1.5		3	

DA: Depth-averaged

 Water Quality Monitoring Results on
 26 December 23
 during Mid-Ebb Tide

waler wua		toring Resu			26 December 23	auring Mia		Je					•							
Monitoring	Weather	Sea Condition	Sampling		Sampling Dep	oth (m)	Water Te	emperature (°C)		pН	Salir	iity (ppt)	DO Satu	ration (%)	Dissolved (mg/l		Turbidity((NTU)	Suspende (mg/	
Station	Condition		Time	(m)			Value	Average	Value	Average	Value	Average	Value	Average	Value	DA	Value	DA	Value	DA
					Surface	1.0	18.7	18.7	8.1	8.1	32.4	32.4	93.7	93.7	7.2		5.7		3.2	
					Guilace	1.0	18.7	10.7	8.1	0.1	32.4	52.4	93.7	35.7	7.2	7.2	5.7		3.5	1
C1	Cloudy	Moderate	11:04	10.4	Middle	5.2	18.6	18.6	8.1	8.1	32.4	32.4	93.3	93.3	7.2	1.2	2.1	3.3	3.7	3.9
0.	cicuuy	moderate			maalo	5.2	18.6		8.1	0.1	32.4	02.11	93.3	00.0	7.2		2.1	0.0	4.1	0.0
					Bottom	9.4	18.6	18.6	8.1	8.1	32.4	32.4	93.8	93.8	7.2	7.2	2.1		4.7	1
			1			9.4	18.6		8.1		32.4		93.8		7.2		2.1		4.3	
					Surface	1.0 1.0	18.7 18.7	18.7	8.1 8.1	8.1	32.5 32.5	32.5	94.0 92.9	93.5	7.2	-	2.9 2.5		3.0 2.6	1
						5.2	18.7		8.1		32.5		92.9 94.5		7.1	7.2	2.3		3.4	1
C2	Cloudy	Moderate	11:25	10.4	Middle	5.2	18.7	18.7	8.1	8.1	32.5	32.5	94.5	93.7	7.1		2.4	2.8	3.4	3.6
						9.4	18.7		8.1		32.5		95.2		7.3		2.9		4.2	1
					Bottom	9.4	18.7	18.7	8.1	8.1	32.5	32.5	92.9	94.1	7.2	7.3	3.5		4.7	1
					Quarter e e	1.0	18.4	18.4	8.1	8.1	32.3	32.3	93.7	93.5	7.3		2.8		4.0	
					Surface	1.0	18.4	18.4	8.1	8.1	32.3	32.3	93.3	93.5	7.2	7.3	3.2		4.4	1
M1	Cloudy	Moderate	11:14	5.6	Middle	-	-	_	-	_	-	-	-		-	1.5	-	2.6	-	4.7
IVII	Cloudy	woderate	11.14	5.0	IVIIdule	-	-		-	_	-	_	-		-		-	2.0	-	
					Bottom	4.6	18.4	18.4	8.1	8.1	32.3	32.3	93.8	93.6	7.3	7.3	2.2		5.3	1
						4.6	18.4		8.1		32.3		93.4		7.2		2.0		4.9	
					Surface	1.0	18.4	18.5	8.1	8.1	32.4	32.4	93.7	94.1	7.3	-	2.4		3.0	1
						1.0	18.5		8.1		32.3		94.4		7.3	7.3	2.0		3.2	1
M2	Cloudy	Moderate	11:19	5.4	Middle		-	-	-	-	-	-	-	-	-	-	-	2.5	-	3.4
						4.4	18.5		8.1		32.3		93.9		7.3		3.0		3.6	1
					Bottom	4.4	18.3	18.4	8.1	8.1	32.3	32.3	94.6	94.3	7.3	7.3	2.7		3.9	1
					o /	1.0	18.3	10.0	8.1		32.3		93.5		7.3		1.5		4	
					Surface	1.0	18.3	18.3	8.1	8.1	32.3	32.3	94.1	93.8	7.3	7.3	1.8		4	
M3	Cloudy	Moderate	11:10	7.0	Middle	3.5	18.3	18.3	8.1	8.1	32.4	32.4	93.3	93.7	7.2	1.3	2.6	2.3	4	4
IVIO	Cioudy	wouerate	11.10	7.0	wildule	3.5	18.3	10.3	8.1	0.1	32.3	32.4	94.0	93.7	7.3		2.9	2.3	4	4
					Bottom	6.0	18.3	18.3	8.1	8.1	32.3	32.3	93.4	93.8	7.2	7.3	2.5		3	l
					Dottom	6.0	18.2	10.0	8.1	0.1	32.3	02.0	94.1	55.0	7.3	1.5	2.7		3	i

DA: Depth-averaged

Water Quality Monitoring Results on 26 December 23 during Mid-Flood Tide

Water Qua		toring Resu			26 December 23	auring Mia-	11000	lue					-		1					
Monitoring	Weather	Sea Condition		Water Depth	Sampling Dep	oth (m)	Water Te	emperature (°C)	F	bН	Salin	ity (ppt)	DO Satur	ation (%)	Dissolved ((mg/L		Turbidity	(NTU)	Suspende (mg	
Station	Condition		Time	(m)			Value	Average	Value	Average	Value	Average	Value	Average	Value	DA	Value	DA	Value	DA
					Surface	1.0	18.6	18.7	8.1	8.1	32.4	32.4	93.7	93.8	7.2		1.9		3.1	
					Guilace	1.0	18.7	10.7	8.1	0.1	32.4	52.4	93.8	33.0	7.2	7.2	1.7		3.5]
C1	Cloudy	Moderate	08:46	10.8	Middle	5.4	18.6	18.6	8.1	8.1	32.4	32.4	93.5	93.4	7.2		2.1	1.9	4.0	3.9
_	,					5.4	18.6		8.1		32.4		93.3		7.2		1.9	-	3.8	
					Bottom	9.8	18.6	18.6	8.1	8.1	32.4	32.4	93.8	93.7	7.2	7.2	2.0		4.3	1
			-			9.8	18.6		8.1	_	32.4	_	93.5		7.2		1.8		4.8	<u> </u>
					Surface	1.0 1.0	18.7 18.7	18.7	8.0 8.0	8.0	32.5 32.4	32.5	92.1 92.1	92.1	7.1		2.2 2.2		3.4 3.7	4
						5.3	18.7						-		7.1	7.1			-	4
C2	Cloudy	Moderate	08:23	10.6	Middle	5.3	18.6	18.6	8.0 8.0	8.0	32.5 32.5	32.5	91.6 91.7	91.7	7.1	-	2.7 2.7	2.6	4.1 3.8	4.0
						9.6	18.6		8.0		32.5		91.5		7.1		3.0		4.6	1
					Bottom	9.6	18.6	18.6	8.0	8.0	32.5	32.5	91.7	91.6	7.1	7.1	3.0		4.2	
					Ourfaire	1.0	18.4	18.4	8.1	0.4	32.3	32.3	93.0	92.9	7.2		1.8		3.6	
					Surface	1.0	18.4	18.4	8.1	8.1	32.3	32.3	92.8	92.9	7.2	7.2	1.9		3.8	
M1	Cloudy	Moderate	08:35	5.5	Middle	-	-	_	-	_	-	_	-	_	-	1.2	-	1.8	-	4.0
1011	Cloudy	woderate	00.00	5.5	Wildlie	-	-	_	-		-		-		-		-	1.0	-	4.0
					Bottom	4.5	18.3	18.4	8.1	8.1	32.3	32.3	93.1	93.0	7.2	7.2	1.6		4.5	1
						4.5	18.4		8.1		32.3		92.9		7.2		1.9		4.1	<u> </u>
					Surface	1.0	18.4	18.4	8.1	8.1	32.3	32.3	93.5	93.8	7.2	-	2.3		4.9	1
						1.0	18.4		8.1		32.3		94.1		7.3	7.3	2.7		4.7	4
M2	Cloudy	Moderate	08:31	5.5	Middle		-	-	-	-	-	-	-	-	-	-	-	2.5	-	4.5
						4.5	- 18.3		-		-		- 93.5		-		-		- 4.2	4
					Bottom	4.5 4.5	18.3	18.3	8.1 8.1	8.1	32.3 32.3	32.3	93.5 94.4	94.0	7.3 7.3	7.3	2.5 2.5		4.2	1
						1.0	18.3		8.1		32.3		93.5		7.3		1.5		4.0	
					Surface	1.0	18.3	18.3	8.1	8.1	32.3	32.3	93.8	93.7	7.3	1	1.3		4	1
						3.8	18.3		8.1		32.4		93.4		7.2	7.3	1.9		3	
M3	Cloudy	Moderate	08:40	7.6	Middle	3.8	18.3	18.3	8.1	8.1	32.4	32.4	93.8	93.6	7.3	1	2.1	1.8	3	3
					Dettern	6.6	18.3	10.2	8.1	0.4	32.4	22.4	93.6	02.0	7.3	7.0	2.0		3	1
					Bottom	6.6	18.3	18.3	8.1	8.1	32.4	32.4	93.9	93.8	7.3	7.3	2.1		2	1

DA: Depth-averaged

 Water Quality Monitoring Results on
 28 December 23
 during Mid-Ebb Tide

Water Qua		toring Resu			28 December 23	auring Mia-		le			1				1				r	
Monitoring	Weather	Sea Condition	Sampling		Sampling Dep	oth (m)	Water Te	emperature (°C)		pН	Salin	ity (ppt)	DO Satu	ation (%)	Dissolved (mg/		Turbidity((NTU)	Suspende (mg	
Station	Condition		Time	(m)			Value	Average	Value	Average	Value	Average	Value	Average	Value	DA	Value	DA	Value	DA
					Surface	1.0	18.5	18.5	8.0	8.0	32.1	32.1	93.6	93.6	7.2		3.9		5.1	
					Gunade	1.0	18.5	10.0	8.0	0.0	32.1	02.1	93.6	55.0	7.2	7.2	3.8		4.8	1
C1	Cloudy	Moderate	12:17	10.7	Middle	5.4	18.5	18.5	8.0	8.0	32.1	32.1	93.5	93.5	7.2		3.7	3.9	4.5	4.2
	,			-		5.4	18.5		8.0		32.1	-	93.5		7.2		3.9		4.0	ł
					Bottom	9.7	18.5	18.5	8.0 8.0	8.0	32.1 32.1	32.1	93.5	93.6	7.2	7.2	3.9		3.6	ł
						9.7	18.5 18.6				-		93.6 94.0		7.2 7.3		3.9 3.4		3.3 6.6	
					Surface	1.0	18.6	18.6	8.1 8.1	8.1	32.1 32.0	32.1	94.0 93.9	94.0	7.3	-	3.4		7.0	ł
						5.3	18.6		8.1		32.0		93.9		7.3	7.3	3.4		5.9	ł
C2	Cloudy	Moderate	12:50	10.6	Middle	5.3	18.6	18.6	8.1	8.1	32.1	32.1	93.9	94.0	7.3		3.0	3.1	6.2	6.1
					_	9.6	18.6		8.1		32.1		94.2		7.3		2.7		5.2	ł
					Bottom	9.6	18.6	18.6	8.1	8.1	32.1	32.1	94.0	94.1	7.3	7.3	3.1		5.6	ł
					Surface	1.0	18.9	18.9	8.1	8.1	32.3	32.3	96.4	96.3	7.4		1.8		4.6	Í
					Sunace	1.0	18.9	16.9	8.1	0.1	32.3	32.3	96.1	90.3	7.4	7.4	1.6		4.2	ł
M1	Cloudy	Moderate	12:41	5.7	Middle	-	-	-	-	_	-	-	-	_	-	7.4	-	1.9	-	4.5
IVII	Cloudy	Woderate	12.71	0.1	Wilddie	-	-		-		-		-		-		-	1.5	-	4.0
					Bottom	4.7	18.8	18.9	8.1	8.1	32.3	32.3	96.5	96.4	7.4	7.4	2.3		4.8	ł
				 		4.7	18.9		8.1		32.3		96.2		7.4		2.0		4.5	┝────
					Surface	1.0	18.9 18.9	18.9	8.1	8.1	32.3	32.3	96.4	96.5	7.4	-	2.3		4.6	ł
						1.0			8.1		32.3		96.6		7.4	7.4	2.7		5.0	ł
M2	Cloudy	Moderate	12:45	5.4	Middle	-	-	-	-	-	-	-	-		-		-	2.7	-	5.0
						4.4	18.9		8.1		32.3		96.5		7.4		3.0		5.4	ł
					Bottom	4.4	18.8	18.9	8.1	8.1	32.3	32.3	96.7	96.6	7.4	7.4	2.9		5.1	ł
					o /	1.0	18.8	10.0	8.1		32.2		95.7		7.4		2.7		4	1
					Surface	1.0	18.8	18.8	8.1	8.1	32.2	32.2	95.8	95.8	7.4	7.4	2.9		4	ł
M3	Cloudy	Moderate	12:34	6.7	Middle	3.4	18.8	18.8	8.1	8.1	32.3	32.3	95.7	95.8	7.4	1.4	3.1	3.0	5	5
IVIO	Cioudy	wouerate	12.34	0.7	IVIIGUIE	3.4	18.8	10.0	8.1	0.1	32.3	32.3	95.8	90.0	7.4		3.1	3.0	5	5
					Bottom	5.7	18.8	18.8	8.1	8.1	32.2	32.3	95.7	95.8	7.4	7.4	2.9		5	I
	1				Dottom	5.7	18.8	10.0	8.1	0.1	32.3	02.0	95.9	55.0	7.4	1.4	3.3		6	i

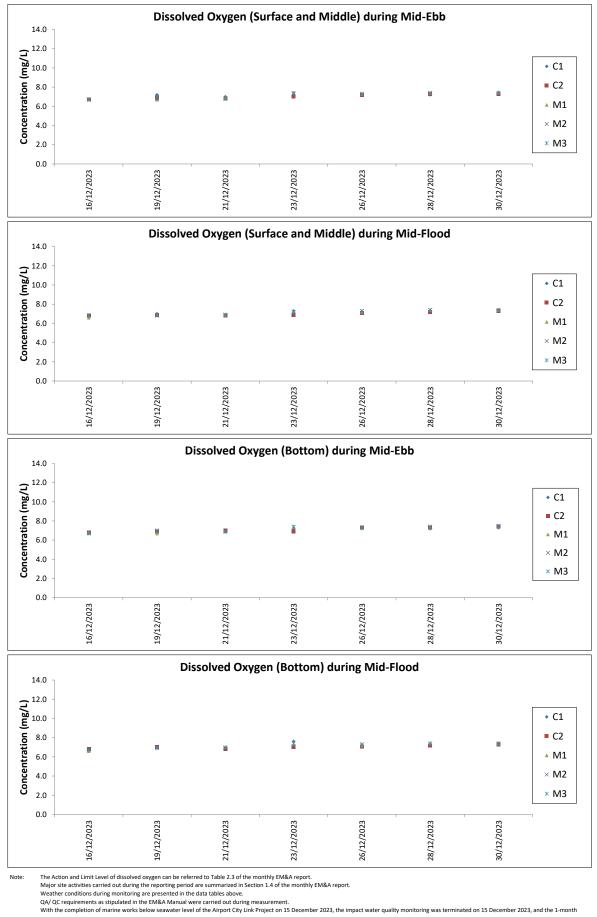
DA: Depth-averaged

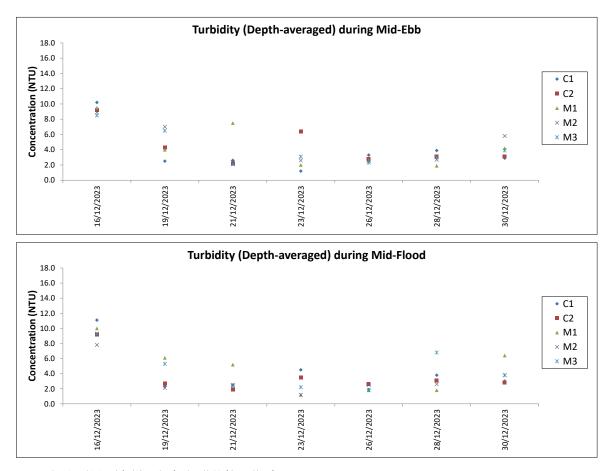
Water Quality Monitoring Results on 28 December 23 during Mid-Flood Tide

water Qua		toring Resi			28 December 23	auring Mia-	FIOOU	lue												
Monitoring	Weather	Sea Condition		Water Depth	Sampling Dep	oth (m)	Water Te	emperature (°C)	F	ъH	Salin	ity (ppt)	DO Satu	ration (%)	Dissolved (mg/l		Turbidity	(NTU)	Suspende (mg	
Station	Condition		Time	(m)			Value	Average	Value	Average	Value	Average	Value	Average	Value	DA	Value	DA	Value	DA
					Surface	1.0	18.5	18.5	8.1	8.1	32.1	32.1	94.1	94.0	7.3		3.7		4.8	
					Sunace	1.0	18.5	10.5	8.1	0.1	32.1	32.1	93.8	94.0	7.3	7.3	4.1		5.0	
C1	Cloudy	Moderate	10:26	10.8	Middle	5.4	18.5	18.5	8.1	8.1	32.1	32.1	94.1	93.9	7.3	7.5	3.6	3.8	4.2	4.3
01	cloudy	modorato	10.20	10.0	Widdle	5.4	18.5	10.0	8.1	0.1	32.1	02.1	93.7	00.0	7.3		4.0	0.0	4.4	1.0
					Bottom	9.8	18.5	18.5	8.1	8.1	32.1	32.1	94.3	94.1	7.3	7.3	3.6		3.6	1
					Bottom	9.8	18.5	10.0	8.1	0.1	32.1	02.1	93.9	01.1	7.3	7.0	3.9		3.9	<u> </u>
					Surface	1.0	18.6	18.6	8.0	8.0	32.1	32.1	93.0	93.1	7.2		3.2		3.3	1
						1.0	18.6		8.0		32.1		93.1		7.2	7.2	3.0		3.5	1
C2	Cloudy	Moderate	10:03	10.3	Middle	5.2	18.6	18.6	8.0	8.0	32.2	32.2	92.6	92.7	7.2		3.7	3.1	4.8	4.5
						5.2	18.6		8.0		32.2		92.8		7.2		3.2		4.4	4
					Bottom	9.3 9.3	18.6 18.6	18.6	8.0 8.0	8.0	32.2 32.2	32.2	92.4 92.7	92.6	7.1	7.2	2.6 3.0		5.7 5.3	1
						9.3	18.6				-		-				3.0		5.3 4.5	┝───
					Surface	1.0	18.8	18.8	8.0 8.0	8.0	32.3 32.3	32.3	95.9 95.7	95.8	7.4	-	1.7		4.5	1
						-	-				32.3				-	7.4	-		-	1
M1	Cloudy	Moderate	10:16	5.4	Middle	-	-	-		-		-					-	1.8		4.8
						4.4	18.8		8.0		32.3		96.1		7.4		2.1		4.9	1
					Bottom	4.4	18.8	18.8	8.0	8.0	32.3	32.3	95.8	96.0	7.4	7.4	1.7		5.3	1
					<u> </u>	1.0	18.8	40.0	8.0		32.3	00.0	95.7	05.0	7.4		2.8		4.1	<u> </u>
					Surface	1.0	18.8	18.8	8.0	8.0	32.3	32.3	95.9	95.8	7.4		2.7		4.4	1
140	Olevely	Madausta	40.40	5.0	Mistella		-		-		-		-		-	7.4	-	0.0	-	10
M2	Cloudy	Moderate	10:13	5.6	Middle		-	-	-	-	-	-	-	-	-		-	2.6	-	4.6
					Bottom	4.6	18.8	18.8	8.0	8.0	32.3	32.3	95.7	95.9	7.4	7.4	2.6		4.8	1
					Bollom	4.6	18.8	10.0	8.0	8.0	32.3	32.3	96.0	95.9	7.4	7.4	2.3		5.1	
					Surface	1.0	18.8	18.8	8.1	8.1	32.2	32.2	95.5	95.6	7.4		8.1		4	
					Sunace	1.0	18.7	10.0	8.1	0.1	32.2	52.2	95.7	95.0	7.4	7.4	7.0		4	1
M3	Cloudy	Moderate	10:21	6.5	Middle	3.3	18.8	18.8	8.1	8.1	32.3	32.3	95.6	95.7	7.4	,.4	7.8	6.8	4	4
WIG	Cioudy	moderate	10.21	0.0	Wildlic	3.3	18.8	10.0	8.1	0.1	32.2	02.0	95.8	55.7	7.4		7.8	0.0	4	-
					Bottom	5.5	18.8	18.8	8.1	8.1	32.3	32.3	95.7	95.9	7.4	7.4	5.1		5	1
					2500	5.5	18.8	. 5.0	8.1	0.1	32.3	52.0	96.1	00.0	7.4		5.2		4	

DA: Depth-averaged

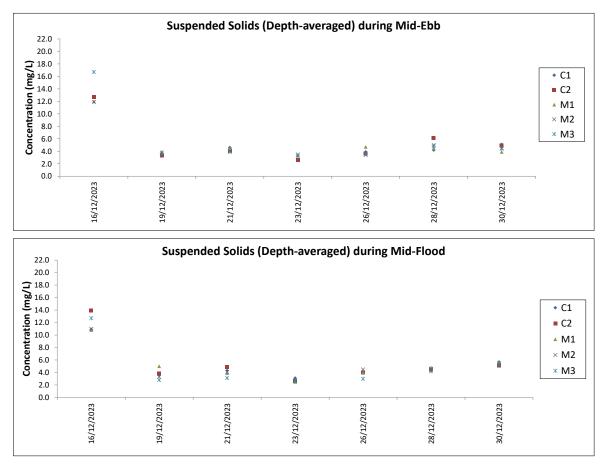
 Water Quality Monitoring Results on
 30 December 23
 during Mid-Ebb Tide


Monitoring	Weather	oring Resu	Sompling	Water Depth	30 December 23	auring wia		emperature (°C)	F	ъН	Salin	ity (ppt)	DO Satu	ration (%)	Dissolved (mg/		Turbidity	(NTU)	Suspende (mg/	
Station	Condition	Sea Condition	Time	(m)	Sampling Dep	oth (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	DA	Value	DA	Value	DA
					Surface	1.0	18.9	18.9	8.0	8.0	31.3	31.3	94.9	94.9	7.3		3.0		5.7	
					Cunado	1.0	18.8	10.0	8.0	0.0	31.3	01.0	94.8	01.0	7.3	7.3	2.8		5.4	4
C1	Cloudy	Moderate	13:36	11.1	Middle	5.6	18.8	18.8	8.0	8.0	31.3	31.3	94.6	94.7	7.3	_	2.9	2.9	5.3	5.1
	-					5.6	18.8		8.0		31.3		94.7		7.3		2.9		5.0	1
					Bottom	10.1	18.8 18.9	18.9	8.0 8.0	8.0	31.3 31.3	31.3	94.6 94.8	94.7	7.3	7.3	2.7 2.9		4.8 4.6	i
						1.0	18.9		8.0		31.4		95.1		7.3		3.6		4.4	
					Surface	1.0	18.9	18.9	8.0	8.0	31.4	31.4	95.1	95.1	7.3	7.0	3.7		4.0	1
C2	Cloudy	Moderate	13:59	10.6	Middle	5.3	18.9	18.9	8.0	8.0	31.4	31.4	95.1	95.0	7.3	7.3	3.1	3.1	5.1	4.9
02	Cloudy	MODELATE	13.59	10.6	Wildule	5.3	18.9	10.9	8.0	8.0	31.4	31.4	94.8	95.0	7.3		2.7	3.1	5.6	4.9
					Bottom	9.6	18.9	18.9	8.0	8.0	31.4	31.4	95.3	95.2	7.4	7.4	2.4		6.5	1
					2011011	9.6	18.9	1010	8.0	0.0	31.4	0	95.0	00.2	7.3		2.8		3.9	<u> </u>
					Surface	1.0	19.1	19.1	8.0	8.0	31.7	31.7	97.1	97.0	7.5	-	4.2		3.9	ł
						1.0	19.1		8.0		31.7		96.8		7.4	7.5	4.4		3.7	i i
M1	Cloudy	Moderate	13:49	5.8	Middle	-	-	-	-	-	-	-	-		-	_	-	4.2	-	3.9
						4.8	19.0		8.0		31.8		97.2		7.5		4.0		3.9	i i
					Bottom	4.8	19.1	19.1	8.0	8.0	31.7	31.8	96.9	97.1	7.4	7.5	4.3		4.1	i i
					Surface	1.0	19.1	19.1	8.0	8.0	31.5	31.6	96.3	96.5	7.4		4.9		3.9	1
					Surface	1.0	19.0	19.1	8.0	8.0	31.6	31.0	96.6	90.5	7.4	7.4	6.1		4.2	l
M2	Cloudy	Moderate	13:53	5.9	Middle		-	-	-	-	-	-	-	_	-	7.4	-	5.8	-	4.4
	cloudy	moderate	10.00	0.0			-		-		-		-		-		-	0.0	-	4
					Bottom	4.9	19.0	19.0	8.0	8.0	31.5	31.6	96.4	96.7	7.4	7.5	5.8		4.9	4
						4.9	19.0		8.0		31.6		96.9		7.5		6.3 3.6		4.5	<u> </u>
					Surface	1.0	19.0 19.0	19.0	8.0 8.0	8.0	31.4 31.5	31.5	95.6 95.5	95.6	7.4 7.4	-	3.6		4	i i
						3.4	19.0		8.0		31.6		95.5		7.4	7.4	4.2		5	1
M3	Cloudy	Moderate	13:44	6.7	Middle	3.4	19.0	19.0	8.0	8.0	31.6	31.6	95.4	95.5	7.3		4.1	3.9	4	4
					Detterre	5.7	19.0	40.0	8.0	0.0	31.4	04.5	95.8	05.7	7.4	7.4	3.6		5	i
					Bottom	5.7	19.0	19.0	8.0	8.0	31.6	31.5	95.6	95.7	7.4	7.4	4.1		5	i i


DA: Depth-averaged

 Water Quality Monitoring Results on
 30 December 23
 during Mid-Flood Tide

Monitoring	Weather	Sea Condition	Sampling	Water Depth	30 December 23 Sampling Dep	th (m)		emperature (°C)	F	рН	Salin	ity (ppt)	DO Satur	ation (%)	Dissolved (mg/l		Turbidity	(NTU)	Suspende (mg/	
Station	Condition		Time	(m)	Camping Dop		Value	Average	Value	Average	Value	Average	Value	Average	Value	DA	Value	DA	Value	DA
					Surface	1.0	18.8	18.9	8.0	8.0	31.3	31.3	95.3	95.2	7.4		2.9		5.0	
						1.0	18.9		8.0	0.0	31.3	0.10	95.1	00.2	7.4	7.4	3.0		5.3	
C1	Cloudy	Moderate	11:07	11.0	Middle	5.5	18.8	18.8	8.0	8.0	31.3	31.3	95.3	95.1	7.4		3.2	3.0	5.7	5.7
	-					5.5	18.8 18.8		8.0		31.3		94.9		7.3		2.9		5.6 8.7	1
					Bottom	10.0	18.8	18.8	8.0 8.0	8.0	31.3 31.3	31.3	95.6 94.9	95.3	7.4 7.3	7.4	2.9 3.1		8.7 3.6	1
						1.0	18.9		8.0		31.4		94.9		7.3		2.7		5.4	
					Surface	1.0	18.9	18.9	8.0	8.0	31.4	31.4	94.9	94.9	7.3		2.4		5.8	1
C2	Cloudy	Moderate	10:44	10.4	Middle	5.2	18.9	18.9	8.0	8.0	31.4	31.4	94.1	94.3	7.3	7.3	2.3	2.8	4.8	5.1
62	Cloudy	woderate	10:44	10.4	Middle	5.2	18.8	16.9	8.0	8.0	31.4	31.4	94.4	94.3	7.3		2.8	2.8	5.0	5.1
					Bottom	9.4	18.9	18.9	8.0	8.0	31.4	31.4	94.1	94.3	7.3	7.3	3.6		4.8	l l
					Bottom	9.4	18.8	10.5	8.0	0.0	31.4	01.4	94.5	54.0	7.3	7.0	3.1		4.6	I
					Surface	1.0	19.1	19.1	8.0	8.0	31.7	31.7	95.8	95.9	7.4		6.7		5.4	۱ ۱
						1.0	19.1	-	8.0		31.7	-	95.9		7.4	7.4	5.5		5.8	l l
M1	Cloudy	Moderate	10:56	5.3	Middle	-	-	-	-	-	-	-	-		-	-	-	6.4	-	5.7
						- 4.3	- 19.0		- 8.0		- 31.6		- 95.7		- 7.4		- 7.3		- 5.7	l l
					Bottom	4.3	19.0	19.1	8.0	8.0	31.0	31.7	95.8	95.8	7.4	7.4	6.0		5.8	, I
						1.0	19.0		8.0		31.5		95.6		7.4		3.8		4.1	ł
					Surface	1.0	19.0	19.0	8.0	8.0	31.5	31.5	95.9	95.8	7.4	1	3.6		6.9	1
	0		40.50	- 4	NAL 1 II		-		-		-		-		-	7.4	-	~ ~	-	
M2	Cloudy	Moderate	10:52	5.4	Middle		-	-	-	-	-	-	-	1 -	-		-	3.8	-	5.4
					Bottom	4.4	19.0	19.0	8.0	8.0	31.5	31.5	95.7	95.7	7.4	7.4	3.9		5.0	, I
					Bollom	4.4	18.9	19.0	8.0	0.0	31.5	31.5	95.7	95.7	7.4	7.4	3.7		5.5	ļ
					Surface	1.0	19.0	19.0	8.0	8.0	31.3	31.3	96.3	96.3	7.4		3.3		5	1
					Cundoo	1.0	19.0	10.0	8.0	0.0	31.3	01.0	96.3	00.0	7.4	7.4	3.2		6	ļ
M3	Cloudy	Moderate	11:01	6.6	Middle	3.3	19.0	19.0	8.0	8.0	31.5	31.5	96.2	96.1	7.4		3.8	3.8	6	5
	Í					3.3	19.0		8.0		31.5		96.0		7.4		4.4		6	l
					Bottom	5.6	19.0	19.0	8.0 8.0	8.0	31.4	31.5	96.5	96.5	7.4 7.4	7.4	3.5		4	ļ
						5.6	18.9		8.0		31.6		96.4		7.4		4.3		5	


DA: Depth-averaged

Note:

The Action and Limit Level of turbidity can be referred to Table 2.3 of the monthly EM&A report. Major site activities carried out during the reporting period are summarized in Section 1.4 of the monthly EM&A report. Weather conditions during monitoring are presented in the data tables above. QA/QC requirements as stipulated in the EM&A Manual were carried out during measurement. With the completion of marine works below seawater level of the Airport City Link Project on 15 December 2023, the impact water quality monitoring was terminated on 15 December 2023, and the 1-month

Note

The Action and Limit Level of suspended solids can be referred to Table 2.3 of the monthly EM&A report. Major site activities carried out during the reporting period are summarized in Section 1.4 of the monthly EM&A report. Weather conditions during monitoring are presented in the data tables above. QA/QC requirements as stipulated in the EM&A Manual were carried out during measurement. With the completion of marine works below seawater level of the Airport City Link Project on 15 December 2023, the impact water quality monitoring was terminated on 15 December 2023, and the 1-month

Appendix H. Waste Flow Table

Marine Section

		Actual Quar	Actual Quantities of Inert C&D Materials (excluding excavated waste) (tonnes) <i>e.g. broken concrete</i> Actual Quantities of Non-inert C&D Waste (tonnes)							es)			
Month	Excavated Waste (tonnes)	(a) Total inert C&D material generated (a) = (b) + (c)	(b) Reused in contract	(c) Reused in other projects	(d) Sent to recycling company	(e) Disposed to public fill	(f) Recycled scrap metal	(g) Reused / recycled timber	(h) Chemical waste	(i) Other waste disposed to landfill	(j) Total non- inert C&D material generated	(k) Total recyclable waste (k) = (b) + (c)	(I) Total construction waste generated
		+ (d) + (e)									(j) = (f) + (g) + (h) + (i)	+ (d) + (f) + (g)	(I) = (a) + (j)
Apr-22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
May-22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Jun-22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Jul-22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Aug-22	2591.67	2591.67	0.00	0.00	1584.00	1007.67	0.00	0.00	0.00	0.00	0.00	1584.00	2591.67
Sep-22	1340.00	1340.00	0.00	0.00	1340.00	0.00	0.00	0.00	0.36	0.00	0.36	1340.00	1340.36
Oct-22	1385.00	1385.00	0.00	0.00	1385.00	0.00	0.00	0.00	0.00	0.00	0.00	1385.00	1385.00
Nov-22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Dec-22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Jan-23	1814.47	1814.47	0.00	0.00	1814.47	0.00	0.00	0.00	0.36	0.00	0.36	1814.47	1814.83
Feb-23	761.45	761.45	0.00	0.00	0.00	761.45	0.00	0.00	0.00	0.00	0.00	0.00	761.45
Mar-23	939.46	939.46	0.00	0.00	939.46	0.00	0.00	0.00	0.25	0.00	0.25	939.46	939.71
Apr-23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
May-23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Jun-23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Jul-23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.99	2.99	0.00	2.99
Aug-23	16.16	16.16	0.00	0.00	0.00	16.16	0.00	0.00	0.00	16.83	16.83	0.00	32.99
Sep-23	95.49	95.49	0.00	0.00	0.00	95.49	0.00	0.00	0.00	4.25	4.25	0.00	99.74
Oct-23	69.96	69.96	0.00	0.00	0.00	69.96	0.00	0.00	0.00	15.83	15.83	0.00	85.79
Nov-23	29.24	29.24	0.00	0.00	0.00	29.24	0.00	0.00	0.00	10.57	10.57	0.00	39.81
Dec-23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.64	17.64	0.00	17.64
Total	9042.90	9042.90	0.00	0.00	7062.93	1979.97	0.00	0.00	0.97	68.11	69.08	7062.93	9111.98

AAHK Supplemental Contract No. C19W10/01 Airport City Link - Marine Portion Monthly Waste Flow Table

*Chemical waste, Wasted oil density 0.9kg/L

Land Section

C21W18 Monthly Waste Flow Table

		Actual Quantities of Inert Construction Waste Generated Monthly			Actual Quantities of Non-inert Construction Waste Generated Monthly						
	Month	(a)=(b)+(c)	(b)	(c)	Recycled	Recycled	Recycled	Recycled		General Refuse	
		Total Quantity Generated	Reused in other Projects	Disposed of as Public Fill	Timber	Metals	Paper/ cardboard	Plastic	Chemical Waste	disposed of at Landfill	
Year		(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	
	Jan	-	-	-	-	-	-	-	-	-	
	Feb	754.38	0	754.38	0	0.017	0.129	0.038	0	22.27	
	Mar	1464.86	0	1464.86	0	0.014	0.087	0.024	0	13.51	
	Apr	1005.98	0	1005.98	0	0.007	0.025	0.013	0	11.94	
	May	1723.58	0	1723.58	0	0.008	0.039	0.018	0	14.46	
	Jun	944.13	0	944.13	0	0.025	0.022	0.102	0	14.01	
2023	Sub-total	5892.93	0	5892.93	0	0.071	0.302	0.195	0	76.19	
2023	Jul	1174.60	0	1174.60	0	0.012	0.044	0.012	0	31.92	
	Aug	2287.72	0	2287.72	0	0.023	0.075	0.02	0	37.33	
	Sep	2404.54	0	2404.54	0	0.007	0.022	0.015	0	10.12	
	Oct	4354.08	0	4354.08	0	0.007	0.015	0.021	0	8.9	
	Nov	3550.04	0	3550.04	0	0.010	0.025	0.020	0	19.84	
	Dec	4333.88	0	4333.88	0	0.010	0.008	0.015	0	118.82	
	Sub-total	18104.86	0	18104.86	0	0.069	0.189	0.103	0	226.93	
Г	otal	23997.79	0.00	23997.79	0.00	0.140	0.491	0.298	0.00	303.12	

Appendix I. Status of Environmental Permits and Licences

Type of Licence / Permit	Reference No.	Valid From	Valid Until	Remark
Environmental Permit	EP-581/2020	5 Oct 2020	End of Project	N/A
Billing Account for Disposal of Construction Waste	7043487	18 Mar 2022	End of Project	N/A
Construction Dust Notification under APCO	477560	10 Mar 2022	N/A	N/A
Construction Noise Permit	GW-RS0644-23	15 Aug 2023	14 Feb 2024	N/A
Construction Noise Permit	GW-RS0895-23	20 Oct 2023	17 Apr 2024	N/A
Chemical Waste Producer	5213-951-G2961-01	19 Apr 2022	End of Project	N/A
Water Discharge License – Marine	WT00044182-2023	23 Aug 2023	31 Aug 2028	N/A

Table I.1: Summary of Environmental Licenses and Permits - Marine Section (December 2023)

Table I.2: Summary of Environmental Licenses and Permits - Land Section (December 2023)

Type of Licence / Permit	Reference No.	Valid From	Valid Until	Remark
Environmental Permit	EP-581/2020	5 Oct 2020	End of Project	N/A
Billing Account for Disposal of Construction Waste	7044291	27 Jun 2022	End of Project	N/A
Construction Dust Notification under APCO	480843	10 Jun 2022	N/A	N/A
Construction Noise Permit	GW-RS0630-23	31 Jul 2023	30 Jan 2024	N/A
Chemical Waste Producer	5213-951-C1169-68	23 Jun 2022	End of Project	N/A
Water Discharge Lissage	WT00042879-2022	17 Apr 2023	31 Jan 2028	Variation of discharge license WT00042879-2022 granted on 4 Jan 2023.
Water Discharge License	WT00042680-2022	29 Aug 2023	31 Jan 2028	Variation of discharge license WT00042680-2022 granted on 9 Jan 2023.

Appendix J. Environmental Mitigation Measures Implementation Status

Environmental Mitigation Measures Implementation Status (December 2023)

Recommended Mitigation Measures for Air Quality Impact

PP Ref.	EM&A Ref.	Recommended Mitigation Measures	Mitigation Measures Implemented? ^ (Marine Section)	Mitigation Measures Implemented? ^ (Land Section)
		 Relevant control measures as required in the Air Pollution Control (Construction Dust) Regulation shall be implemented to minimise dust impact. 	N/A	Obs
		Skip hoist for material transport should be totally enclosed by impervious sheeting.	N/A	Yes
		• All dusty materials should be sprayed with water prior to any loading, unloading or transfer operation to maintain the dusty materials wet.	N/A	Yes
		 All stockpiles of aggregate or spoil should be covered and/or water applied. 	N/A	Yes
S6.1.1	S4.2.1	 The height from which excavated materials are dropped should be controlled to a minimum practical height to limit fugitive dust generation from unloading. 	N/A	Yes
		 Immediately before leaving a construction site, every vehicle shall be washed to remove any dusty materials from its body and wheels. 	N/A	Obs
		• The load of dusty materials carried by a vehicle leaving a construction site should be covered entirely by clean impervious sheeting to ensure dust materials do not leak from the vehicle.	N/A	Yes
		• All NRMMs operated on-site are approved or exempted (as the case may be) and affixed with the requisite approval/exemption labels under the Air Pollution Control (Non-road Mobile Machinery) (Emission) Regulation, or are in the process of application for such approval/exemption during the relevant grace period.	Yes	Obs
ecomme	ended Mitig	gation Measures for Noise Impact		
PP Ref.	EM&A Ref.	Recommended Mitigation Measures	Mitigation Measures Implemented? ^	Mitigation Measures Implemented? ^
			(Marine Section)	(Land Section)
		Only well-maintained plant should be operated on-site and plant should be serviced regularly.	Yes	Yes
6.2.1	S5.2.1	Silencers or mufflers on construction plant should be utilised.	Yes	N/A
		 Mobile plant should be sited as far away from sensitive uses as possible. 	Yes	Yes

		 Machines and plant that may be in intermittent use should be shut down between works periods or should be throttled down to a minimum. 	Yes	Yes
		• Plant known to emit noise strongly in one direction should, where possible, be orientated so that noise is directed away from the nearby sensitive uses.	Yes	Yes
		• Material stockpiles and other structures such as site hoarding should be effectively utilised to screen noise from on-site construction activities.	N/A	Yes
		 Noisy construction activities such as road breaking, should be scheduled to less sensitive hours during the day, e.g. midday. 	Yes	Yes
Recomm	ended Miti	gation Measures for Water Quality Impact		
PP Ref.	EM&A Ref.	Recommended Mitigation Measures	Mitigation Measures Implemented? ^ (Marine Section)	Mitigation Measures Implemented? ^ (Land Section)
S6.3.1	S6.2.1	 Steel pile casing and watertight cofferdam should be installed at the pier site and seawater trapped inside the casing and cofferdam should be pumped out to generate a dry working environment prior to carrying out sediment excavation. 	Yes	N/A
S6.3.1	S6.2.1	• During dewatering of the cofferdam, appropriate desilting or sedimentation device should be provided on site for treatment before discharge. The Contractor should ensure discharge water from the sedimentation tank meeting the WPCO / TM-DSS requirements before discharge.	Yes	N/A
S6.3.1- S6.3.2	S6.2.1	• To minimise any adverse water quality impact during the excavation of sediment, a funnel should be placed at the top of pile casing during excavation and silt curtains should be deployed to completely enclose the cofferdam and steel pile casing. Silt curtains should be deployed prior to installation of temporary platform on barge, cofferdam and steel pile casing. Silt curtains should be responsible for the design, installation and maintenance of the silt curtain to minimise the impacts on water quality. The design and specification of the silt curtains should be submitted by the Contractor to the Project Manager or Project Manager's Representative of AAHK for approval. The marine bridge piers should not be constructed at the same time to avoid adverse hydrodynamic impact due to flow blockage increase during the interim construction stages. All vessels should be sized such that adequate clearance is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash.	Yes	N/A
S6.3.1	S6.2.1	• For in-situ construction method, concrete would be delivered from existing concrete batching plants off-site to avoid on site concrete batching activity. During the in-situ bridge deck concreting, the concrete should be pumped or lifted inside an enclosed container for concreting the deck. Tarpaulin plastic sheet should be mounted at the bottom of the temporary working platform for concreting to prevent concrete from falling to the sea.	Yes	N/A

PP Ref.	EM&A Ref.	Recommended Mitigation Measures	Mitigation Measures Implemented? ^ (Marine Section)	Mitigation Measures Implemented? ^ (Land Section)
S6.3.1	S6.2.1	 The marine works of the Project should be proactively planned and coordinated to avoid any concurrent marine works below seawater level with those of ITT-BVB to minimise cumulative water quality impact during construction phase. 	Yes	N/A
S6.3.1	S6.2.1	• Surface run-off from construction sites should be discharged into storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sedimentation basins. Channels or earth bunds or sand bag barriers should be provided on site to properly direct stormwater to such silt removal facilities. Perimeter channels at site boundaries should be provided on site boundaries where necessary to intercept storm run-off from outside the site so that it will not wash across the site. Catchpits and perimeter channels should be constructed in advance of site formation works and earthworks.	Yes	Obs
S6.3.1	S6.2.1	• Silt removal facilities, channels and manholes should be maintained and the deposited silt and grit should be removed regularly, at the onset of and after each rainstorm to prevent local flooding. Before disposal at the public fill reception facilities, the deposited silt and grit should be solicited in such a way that it can be contained and delivered by dump truck instead of tanker truck. Any practical options for the diversion and re-alignment of drainage should comply with both engineering and environmental requirements in order to provide adequate hydraulic capacity of all drains.	Yes	Obs
S6.3.1	S6.2.1	• Construction works should be programmed to minimise soil excavation works in rainy seasons (April to September). If excavation in soil cannot be avoided in these months or at any time of year when rainstorms are likely, for the purpose of preventing soil erosion, temporary exposed slope surfaces should be covered e.g. by tarpaulin, and temporary access roads should be protected by crushed stone or gravel, as excavation proceeds. Intercepting channels should be provided (e.g. along the crest / edge of excavation) to prevent storm runoff from washing across exposed soil surfaces. Arrangements should always be in place in such a way that adequate surface protection measures can be safely carried out well before the arrival of a rainstorm.	N/A	Yes
S6.3.1	S6.2.1	• Earthworks final surfaces should be well compacted and the subsequent permanent work or surface protection should be carried out immediately after the final surfaces are formed to prevent erosion caused by rainstorms. Appropriate drainage like intercepting channels should be provided where necessary.	N/A	Yes
S6.3.1	S6.2.1	 Measures should be taken to minimise the ingress of rainwater into trenches. If excavation of trenches in wet seasons is necessary, they should be dug and backfilled in short sections. Rainwater pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities. 	N/A	Yes
S6.3.1	S6.2.1	 Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system, and 	N/A	Obs

PP Ref.	EM&A Ref.	Recommended Mitigation Measures	Mitigation Measures Implemented? ^ (Marine Section)	Mitigation Measures Implemented? ^ (Land Section)
		to prevent storm run-off from getting into foul sewers. Discharge of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system.		
S6.3.1	S6.2.1	 Good site practices should be adopted to remove rubbish and litter from construction sites so as to prevent the rubbish and litter from spreading from the site area. It is recommended to clean the construction sites on a regular basis. Also, the following mitigation measures related to the transportation of the sediment should be implemented to minimise the potential water quality impact: Loading of the excavated marine-based sediment to the barge shall be controlled to avoid splashing and overflowing of the sediment slurry to the surrounding water/ storm drains; The barge/ dump truck transporting the excavated marine-based sediment/ land-based sediment to the designated disposal sites shall be equipped with tight fitting seals to prevent leakage and shall not be filled to a level that would cause overflow of materials or laden water during loading or transportation; and Monitoring of the barge/ dump truck loading shall be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels/ dump truck shall be equipped with automatic self-monitoring devices as specified by the Director of Environmental Protection (DEP). 	N/A	Yes
S6.3.1	S6.2.1	• Water used in ground boring and drilling for site investigation or rock/soil anchoring should as far as practicable be re-circulated after sedimentation. When there is a need for final disposal, the wastewater should be discharged into storm drains via silt removal facilities.	Yes	Yes
S6.3.1	S6.2.1	• All vehicles and plant should be cleaned before they leave a construction site to minimise the deposition of earth, mud, debris on roads. A wheel washing bay should be provided at every site exit if practicable and wash-water should have sand and silt settled out or removed before discharging into storm drains. The section of construction road between the wheel washing bay and the public road should be paved with backfall to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains.	N/A	Obs
S6.3.1	S6.2.1	• There is a need to apply to EPD for a discharge licence for discharge of effluent from the construction site under the WPCO. The discharge quality must meet the requirements specified in the discharge licence. All the runoff and wastewater generated from the works areas should be treated so that it satisfies all the standards listed in the TM-DSS. The beneficial uses of the treated effluent for other on-site activities such as dust suppression, wheel washing and general cleaning etc., can minimise water consumption and reduce the effluent discharge volume. If monitoring of the treated effluent quality from the works areas is required during the construction phase of the Project, the monitoring should be carried out in accordance with the relevant WPCO license.	Yes	Obs
S6.3.1	S6.2.1	 No discharge of sewage to the storm water system and marine water will be allowed. Sufficient chemical toilets should be provided in the works areas to handle the sewage generated from the 	Yes	Yes

PP Ref.	EM&A Ref.	Recommended Mitigation Measures	Mitigation Measures Implemented? ^ (Marine Section)	Mitigation Measures Implemented? ^ (Land Section)
		construction workforce. A licensed waste collector should be deployed to clean the chemical toilets on a regular basis.		
S6.3.1	S6.2.1	 Notices should be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the surrounding environment. Regular environmental audit of the construction site will provide an effective control of any malpractices and can encourage continual improvement of environmental performance on site. It is anticipated that sewage generation during the construction phase of the project would not cause water pollution problem after undertaking all required measures. 	Yes	Yes
S6.3.1	S6.2.1	 Contractor must register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation, should be observed and complied with for control of chemical wastes. 	Yes	Yes
S6.3.1	S6.2.1	• Any service shop and maintenance facilities should be located on hard standings within a bonded area, and sumps should be provided. Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should only be undertaken within the areas appropriately equipped to control these discharges.	Yes	Yes
S6.3.1	S6.2.1	• Suitable containers should be used to hold the chemical wastes to avoid leakage or spillage during storage, handling and transport. Chemical waste containers should be suitably labelled, to notify and warn the personnel who are handling the wastes, to avoid accidents. Storage area should be selected at a safe location on site and adequate space should be allocated to the storage area.	Obs / Rem	Obs
ecomm	ended Miti	gation Measures for Waste Management		
PP Ref.	EM&A Ref.	Recommended Mitigation Measures	Mitigation Measures Implemented? ^ (Marine Section)	Mitigation Measures Implemented? ^ (Land Section)
S6.4.1-	07.0.4	 <u>Good Site Practices:</u> Nomination of approved personnel, such as a site manager, to be responsible for implementation of good site practices, arrangements for waste collection and effective disposal to an appropriate facility. 	Yes	Yes
S6.4.2	S7.2.1	• Training of site personnel in site cleanliness, concepts of waste reduction, reuse and recycling, proper waste management and chemical waste handling procedures.	Yes	Yes
		Provision of sufficient waste reception/ disposal points, and regular collection of waste.	Yes	Yes

PP Ref.	EM&A Ref.	Recommended Mitigation Measures	Mitigation Measures Implemented? ^ (Marine Section)	Mitigation Measures Implemented? ^ (Land Section)			
		 Adoption of appropriate measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers. 	Yes	Yes			
		• Provision of regular cleaning and maintenance programme for drainage systems and sumps.	Yes	Yes			
		• Adoption of a recording system for the amount of wastes generated, recycled and disposed (including the disposal sites).	Yes	Yes			
		• Preparation of Waste Management Plan (WMP), as part of the Environmental Management Plan (EMP).	Yes	Yes			
	S7.2.1				 Waste Reduction Measures: Segregate and store different types of construction related waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal. 	Yes	Yes
		• Provide separate labelled bins to segregate recyclable waste such as aluminium cans from other general refuse generated by the work force, and to encourage collection by individual collectors.	N/A	N/A			
		Recycle any unused chemicals or those with remaining functional capacity.	N/A	N/A			
S6.4.1		Maximise the use of reusable steel formwork to reduce the amount of C&D materials.	Yes	N/A			
		• Adopt proper storage and site practices to minimise the potential for damage to, or contamination of construction materials.	Yes	Yes			
		• Plan the delivery and stock of construction materials carefully to minimise the amount of waste generated.	Yes	Yes			
		Minimise over ordering and wastage through careful planning during purchasing of construction materials.	Yes	Yes			
S6.4.1	S7.2.1	 <u>C&D materials:</u> The C&D materials generated should be sorted on-site into inert C&D materials (that is, public fill) and non-inert (C&D waste). 	Yes	Yes			
S6.4.1	S7.2.1	 To minimise the impact resulting from collection and transportation of C&D materials as far as practicable, C&D waste, such as wood, plastic, steel and other metals should be reused or recycled and, as a last resort, disposed to landfill. 	N/A	N/A			
S6.4.1	S7.2.1	 Proper handling and storage of waste such as soil by means of covers and/or water spraying system to minimise the potential environmental impact and to prevent materials from wind-blown or being washed away. 	Yes	Yes			
	•···	Covering materials during heavy rainfall.	N/A	Yes			
		Locating stockpiles to minimise potential visual impacts.	Yes	Yes			

PP Ref.	EM&A Ref.	Recommended Mitigation Measures	Mitigation Measures Implemented? ^ (Marine Section)	Mitigation Measures Implemented? ^ (Land Section)
		Minimising land intake of stockpile areas as far as possible.	N/A	Yes
		 Adopting GPS or equivalent system for tracking and monitoring of all dump trucks engaged for the Project in recording their travel routings and parking locations to prohibit illegal dumping and landfilling of C&D materials. 	N/A	N/A
		• Keeping record and analysis of data collected by GPS or equivalent system related to travel routings and parking locations of dump trucks engaged on site.	Yes	N/A
		<u>General Refuse:</u> • General refuse should be stored in covered bins or compaction units separately from C&D materials. A reputable waste collector should be employed by the Contractor to remove general refuse from the site regularly, separately from C&D materials. An enclosed and covered area is preferred to reduce the occurrence of "wind blown" light materials.	Yes	Yes
S6.4.1	S7.2.1	• The recyclable component of general refuse, such as aluminium cans, paper and cleansed plastic containers shall be separated from other waste. Provision and collection of recycling bins for different types of recyclable waste shall be set up by the Contractor. The Contractor shall also be responsible for arranging recycling companies to collect these materials.	N/A	N/A
		• The Contractor should carry out an education programme for workers in avoiding, reducing, reusing and recycling of materials generation. Posters and leaflets advising on the use of the bins should also be provided in the site as reminders.	N/A	Yes
		<u>Chemical Waste:</u> • If chemical wastes were to be produced, the Contractor would be required to register with the EPD as a Chemical Waste Producer, and to follow the guidelines stated in the <i>Code of Practice on the</i> <i>Packaging, Labelling and Storage of Chemical Wastes.</i>	Yes	Yes
S6.4.1- S6.4.2	S7.2.1	• Appropriate containers with proper labels should be used for storage of chemical wastes. Chemical wastes should be collected and delivered to designated outlet by a licensed collector. Chemical wastes (e.g. spent lubricant oil) should be recycled at an appropriate facility as far as possible, while the chemical waste that cannot be recycled should be disposed of at either the CWTC, or another licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	Yes	Yes
		• Any unused chemicals or those with remaining functional capacity should be collected for reuse as far as practicable.	Yes	N/A
		• Trip ticket system shall be implemented to prevent illegal dumping in accordance with the "Trip Ticket System for Disposal of Construction and Demolition Materials'.	Yes	Yes

PP Ref.	EM&A Ref.	Recommended Mitigation Measures	Mitigation Measures Implemented? ^ (Marine Section)	Mitigation Measures Implemented? ^ (Land Section)
		 <u>Sediment:</u> The sediment should be excavated, handled, treated, transported and/or disposed of in a manner that would minimise adverse environmental impacts. 	N/A	Yes
		• Relevant ordinances (such as Waste Disposal Ordinance, Air Pollution Ordinance (Construction Dust) Regulation and Water Pollution Control Ordinance) shall be complied with during the excavation and handling of the sediment.	N/A	Yes
S6.4.1 & S6.4.3	S7.2.1	• The temporary stockpiling area should be placed within earth bunds or sand bags to prevent leachate from entering the ground, nearby drains and surrounding water bodies. The temporary stockpiling area should be completely paved in order to avoid contamination to underlying soil or groundwater. Separate and clearly defined areas should be provided for stockpiling of contaminated and uncontaminated materials. Leachate, if any, should be collected, treated and discharged according to the Water Pollution Control Ordinance (WPCO). In order to minimise the exposure to contaminated materials, workers shall, if necessary, wear appropriate personal protective equipments (PPE) when handling contaminated sediments. Adequate washing and cleaning facilities shall also be provided on site.	N/A	Obs
S6.4.1	S7.2.1	• For off-site disposal, the basic requirements and procedures specified under PNAP No. 252 (ADV-21) shall be followed. Marine Fill Committee (MFC) of CEDD is managing the disposal facilities in Hong Kong for the excavated sediment, while EPD is the authority of issuing marine dumping permit under the Dumping at Sea Ordinance (DASO).	N/A	N/A
S6.4.1, 6.4.3	S7.2.1	• For the purpose of site allocation and application of marine dumping permit and if considered necessary by Dumping at Sea Ordinance (DASO) Team/EPD, separate submissions (e.g. SSTP/SQR) shall be submitted to DASO team/EPD for agreement under DASO. Additional SI works, based on the SSTP, shall then be carried out in order to confirm the disposal arrangements of the excavated sediment. A Sediment Quality Report (SQR), reporting the chemical and biological screening results and the estimated quantities of sediment under different disposal options, shall then be submitted to DASO team/EPD for agreement under different disposal options, shall then be submitted to DASO team/EPD for agreement under DASO.	N/A	N/A
		• To ensure disposal space is allocated for the Project, the Project Proponent should be responsible for obtaining agreement from MFC on the allocation of the disposal site. The contractor(s), on the other hand, should be responsible for the application of the marine dumping permit under DASO from EPD for the sediment disposal.	N/A	N/A
S6.4.1	S7.2.1	• The excavated sediments is expected to be loaded onto the barge and transported to the designated disposal sites allocated by MFC. The excavated sediment would be disposed of according to its determined disposal options and PNAP No. 252 (ADV-21).	N/A	N/A
		 Stockpiling of contaminated sediments should be avoided as far as possible. If temporary stockpiling of contaminated sediments is necessary, the excavated sediment should be covered and the area 	N/A	Obs

EM&A Ref.	Recommended Mitigation Measures	Mitigation Measures Implemented? ^ (Marine Section)	Mitigation Measures Implemented? ^ (Land Section)
	should be placed within earth bunds or sand bags to prevent leachate from entering the ground, nearby drains and surrounding water bodies. The stockpiles area should be completely paved in order to avoid contamination to underlying soil or groundwater. Separate and clearly defined areas should be provided for stockpiling of contaminated and uncontaminated materials. Leachate, if any, should be collected and discharged according to the Water Pollution Control Ordinance (WPCO).		
	• In order to minimise the potential odour / dust emissions during excavation and transportation of the sediment, the excavated sediments shall be wetted during excavation / material handling and shall be properly covered when placed on trucks or barges. Loading of the excavated sediment to the barge/ dump truck shall be controlled to avoid splashing and overflowing of the sediment slurry to the surrounding water/ storm drains.	N/A	Yes
	• The barge/ dump truck transporting the sediments to the designated disposal sites shall be equipped with tight fitting seals to prevent leakage and shall not be filled to a level that would cause overflow of materials or laden water during loading or transportation. In addition, monitoring of the barge/ dump truck loading shall be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels/ dump truck shall be equipped with automatic self-monitoring devices as specified by the DEP.	N/A	Yes
S7.2.1	 Potential Floating Refuse: Proper management and education should be given to construction site workers such that accidental release or intentional disposal would be avoided. The refuse should be stored in enclosed bin to avoid adverse impacts to the surroundings including marine environment. Regular checking should also be carried out to ensure that the refuse is stored properly. 	Obs	N/A
ended Miti	gation Measures for Marine Ecological Impact		
EM&A Ref.	Recommended Mitigation Measures	Mitigation Measures Implemented? ^ (Marine Section)	Mitigation Measures Implemented? ^ (Land Section)
-	 No underwater percussive piling shall be conducted in this Project 	Yes	N/A
S8.2.1	 Based upon a precautionary approach, a speed limit of 10 knots should be strictly enforced on all construction-related vessels. 	Yes	N/A
S8.2.1	 Good site practices, guidelines and mitigation measures detailed in Water Quality Sections 6.3.1 of the Project Profile should be adopted to further alleviate water quality impacts. 	Yes	N/A
	Ref. S7.2.1 Ended Mitig EM&A Ref. - S8.2.1	Ref. Recommended Mitigation Measures should be placed within earth bunds or sand bags to prevent leachate from entering the ground, nearby drains and surrounding water bodies. The stockpiles area should be completely paved in order to avoid contamination to underlying soil or groundwater. Separate and clearly defined areas should be collected and discharged according to the Water Pollution Control Ordinance (WPCO). • In order to minimise the potential odour / dust emissions during excavation and transportation of the sediment, the excavated sediments shall be wetted during excavation / material handling and shall be properly covered when placed on trucks or barges. Loading of the excavated sediment to the barge/ dump truck shall be controlled to avoid splashing and overflowing of the sediment slurry to the surrounding water 'storm drains. • The barge/ dump truck transporting the sediments to the designated disposal sites shall be equipped with tight fitting seals to prevent leakage and shall not be filled to a level that would cause overflow of materials or laden water during loading or transportation. In addition, monitoring of the barge/ dump truck loading shall be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels/ dump truck shall be equipped with automatic self-monitoring devices as specified by the DEP. Potential Floating Refuse: Proper management and education should be given to construction site workers such that accidental release or intentional disposal would be avoided. The refuse should be stored in enclosed bin to avoid adverse impacts to the surroundings including marine environment. Regular checking should also be carried out to ensure that the refuse is stored properly. S7	EM&A Ref. Recommended Mitigation Measures Measures Implemented? ^ (Marine Section) should be placed within earth bunds or sand bags to prevent leachate from entering the ground, nearby drains and surrounding water bodies. The stockplies area should be completely paved in order to avoid contamination to underlying soil or groundwater. Separate and clearly defined areas should be provided for stockpling of contaminated and uncontaminated materials. Leachate, if any, should be collected and discharged according to the Water Pollution Control Ordinance (WPCO). N/A • In order to minimise the potential dodur / dust emissions during excavation and transportation of the sediment, the excavated sediments shall be wetted during excavation and transportation of the surrounding water/ storm drains. N/A • The barge/ dump truck transporting the sediments to the designated disposal sites shall be equipped with tight fitting seals to prevent leakage and shall not be filled to a level that would cause overflow of materials or laden water during loading or transportation. In addition, monitoring of the barge/ dump truck loading shall be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels/ dump truck shall be equipped with tight fitting seals to prevent leakage and shall not be filled to a level that would cause overflow of monitoring devices as specified by the DEP. N/A \$7.2.1 Proper management and education should be given to construction site workers such that accidental release or intentional disposal would be avoided. The refuse should be stored in enclosed bin to avoid adverse impacts to the surroundings including marine environment. Regular checking should also be carried out to ensure that the refu

PP Ref.	EM&A Ref.	Recommended Mitigation Measures	Mitigation Measures Implemented? ^ (Marine Section)	Mitigation Measures Implemented? ^ (Land Section)
S6.6.1	S9.3.1	All affected trees will be felled and compensated, no transplantation is required.	N/A	Yes
S6.6.1	S9.3.1	 Optimising construction activities, e.g. minimising extent of temporary works area, installing site hoardings and minimising illumination on non-target areas. 	Yes	Yes
S6.6.1	S9.3.1	Minimise construction periods where possible.	Yes	Yes
S6.6.1	S9.3.1	Early establishment of planting areas as far as appropriate.	N/A	Yes
S6.6.1	S9.3.1	Erection of decorative mesh screen or construction hoardings.	N/A	Yes
S6.6.1	S9.3.1	Control of night-time lighting.	N/A	N/A
S6.6.1	S9.3.1	• Temporary vertical greening, screen / buffer at-grade planting to soften the engineering structure of construction works.	N/A	N/A
S6.6.1	S9.3.1	Tree preservation in accordance with Development Bureau Technical Circular (Works) No. 4/2020 (ref: DEVB(GLTM) 200/2/1/1).	N/A	Yes
S6.6.1	S9.3.1	Proposed tree felling / tree compensation.	N/A	Yes
Others				
			Mitigation	Mitigation

Recommended Mitigation Measures for Landscape and Visual Impact

PP Ref.	EM&A Ref.	Recommended Mitigation Measures	Mitigation Measures Implemented? ^ (Marine Section)	Mitigation Measures Implemented? ^ (Land Section)
-	-	 A copy of the valid Environmental Permit shall be displayed conspicuously on the Project site(s) at all vehicular site entrances/exits or at a convenient location for public's information at all times. The most updated information about the Permit, including any amended Permit, shall be displayed at such locations. If the Permit Holder surrenders a part or whole of the Permit, the notice he send to the Director shall also be displayed at the same locations as the original Permit. The suspended, varied or cancelled Permit shall be removed from display at the Project site(s). 	Yes	Obs
-	-	 The required licences should be obtained by the Contractor (including CNP (if any), WPCO licence, etc. 	Yes	Yes

Notes:

- Yes = Implemented where applicable
- Obs/Rem = Observations or reminders were issued, and items were rectified
- N/A = Not applicable to the construction works implemented during the reporting period
- ^ = Checked by ET through site inspection and record provided by the Contractor