Dragages-Nishimatsu Joint Venture

Contract No. DC/2007/10 Design and Construction of Hong Kong West Drainage Tunnel

Monthly EM&A Report (version 1.0)

September 2008

Approved By

(Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: info@cinotech.com.hk

TABLE OF CONTENTS

EX	ECUTIVE SUMMARY	1
	Introduction Environmental Monitoring Works Environmental Licenses and Permits Key Information in the Reporting Month	1
1.	INTRODUCTION	5
	Background. Project Organizations Construction Programme Summary of EM&A Requirements	5 6
2.	AIR QUALITY	9
	Monitoring Requirements Monitoring Locations Monitoring Equipment Monitoring Parameters, Frequency and Duration Monitoring Methodology and QA/QC Procedure Results and Observations	9 9 9
3.	NOISE	14
	Monitoring Requirements Monitoring Locations Monitoring Equipment Monitoring Parameters, Frequency and Duration Monitoring Methodology and QA/QC Procedures Maintenance and Calibration Results and Observations	14 14 14 15
4.	WATER QUALITY	18
	Monitoring Requirements Monitoring Locations Monitoring Equipment Monitoring Parameters, Frequency and Duration Monitoring Methodology, Calibration Details and QA/QC Procedures Results and Observations Underground water level	18 19 19 20
5.	ENVIRONMENTAL AUDIT	22
	Site Audits Review of Environmental Monitoring Procedures Status of Environmental Licensing and Permitting Status of Waste Management Implementation Status of Environmental Mitigation Measures Non-compliance Recorded during Site Inspections Summary of Mitigation Measures Implemented Implementation Status of Event Action Plans Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution.	22 22 24 26 26
6.	FUTURE KEY ISSUES	28

	es for the Coming Month	
	ng Schedule for the Next Month	
	tion Program for the Next Month	
7. CONCI	LUSIONS AND RECOMMENDATIONS	.30
	onsendations	
Reconni	iendations	.50
LIST OF TA	ABLES	
Table I	Summary Table for Non-compliance Recorded in the Reporting Month	
Table II	Summary Table for Key Information in the Reporting Month	
Table 1.1	Key Project Contacts	
Table 1.2	Construction programme showing the inter-relationship with environmental protection/mitigation measures	
Table 2.1	Locations for Air Quality Monitoring	
Table 2.2	Air Quality Monitoring Equipment	
Table 2.3	Impact Dust Monitoring Parameters, Frequency and Duration	
Table 2.4	Summary Table of Air Quality Monitoring Results during the reporting month	
Table 3.1	Noise Monitoring Stations	
Table 3.2	Noise Monitoring Equipment	
Table 3.3	Noise Monitoring Parameters, Frequency and Duration	
Table 3.4	Baseline Noise Level and Noise Limit Level for Monitoring Stations	
Table 3.5	Summary Table of Noise Monitoring Results during the reporting month.	
Table 4.1	Locations for Water Quality Monitoring	
Table 4.2	Water Quality Monitoring Equipment	
Table 4.3	Frequency and Parameters of Water Quality Monitoring	
Table 4.4	Ground Water Level Monitoring Data at Location ADH48	
Table 5.1	Summary of Environmental Licensing and Permit Status	
Table 5.2	Observations and Recommendations of Site Inspections	
LIST OF FI	GURES	
Figure 1.1	Layout Plan of the Project Site	
Figure 2.1	ET's Organization Chart	
Figure 3.1a	Locations of Air Quality and Construction Noise Monitoring Stations at Eastern Portal	•
Figure 3.1b	Locations of Air Quality and Construction Noise Monitoring Stations at Western Portal	
Figure 4.1a-l	Locations of Water Quality Monitoring Stations	
Figure 4.2	Location of Ground Water Level Monitoring Stations	

LIST OF APPENDICES

A	Action and Limit Levels for Air Quality and Noise
В	Copies of Calibration Certificates
C	Quality Control Reports for SS Laboratory Analysis
D	Environmental Monitoring Schedules
E	1-hour TSP Monitoring Results, Graphical Presentations
F	24-hour TSP Monitoring Results, Graphical Presentations
G	Noise Monitoring Results and Graphical Presentations
Н	Water Quality Monitoring Results and Graphical Presentations
I	Summary of Exceedance
J	Wind Data
K	Site Audit Summary
L	Environmental Mitigation Implementation Schedule (EMIS)
M	Event Action Plans
N	Complaint Logs
O	Construction Programme
P	Waste Generated Quantity

ABBREVIATION AND ACRONYM

AL Levels Action and Limit Levels

CEDD Civil Engineering & Development Department

E / ER Engineer/Engineer's Representative

EIA Environmental Impact Assessment

EM&A Environmental Monitoring and Audit

EMIS Environmental Mitigation Implementation Schedule

EP Environmental Permit

EPD Environmental Protection Department

ET Environmental Team

HVS High Volume Sampler

IEC Independent Environmental Checker

RE Resident Engineer

RH Relative Humidity

TSP Total Suspended Particulates

QA/QC Quality Assurance / Quality Control

SLM Sound Level Meter

WMP Waste Management Plan

Monthly EM&A Report – September 2008

EXECUTIVE SUMMARY

Introduction

- 1. This is the 6th Environmental Monitoring and Audit (EM&A) Report prepared by Cinotech Consultants Limited for the "Drainage Improvement in Northern Hong Kong Island Hong Kong West Drainage Tunnel" (the Project). This report documents the findings of EM&A Works conducted in September 2008.
- 2. The site activities undertaken in the reporting month included:
 - Further establishment of project organization and staffing;
 - Boulder stabilization, initial tunnel excavation and installation of temporary facilities at Eastern Portal;
 - Installation of temporary facilities, slope works, shallow & deep excavation works, marine works and arch tunnel excavation at Western Portal;
 - Utilities trial pits and additional ground investigation works at 10 nos. Intakes;
 - Approved in Principle (AIP) & Detailed Design Approval (DDA) submissions for temporary works at both portals;
 - AIP & DDA submissions for temporary and permanent works for 16 nos. Intakes;
 - AIP & DDA submissions for Pre-cast Segmental Lining at Adit Junction;
 - Environmental impact monitoring; and
 - TBM design and fabrication overseas.

Environmental Monitoring Works

3. Environmental monitoring for the Project was performed in accordance with the updated EM&A Manual and the monitoring results were checked and reviewed. Site audits were conducted once per week. The implementation of the environmental mitigation measures, Event Action Plans and environmental complaint handling procedures were also checked.

4. Summary of the non-compliance of the reporting month is tabulated in Table I.

Table I Summary Table for Non-compliance Recorded in the Reporting Month

Parameter	No. of Exceedance		No. of Exceedance Due to the Project		Action	
	Action Level	Limit Level	Action Level	Limit Level	Taken	
Eastern Porta	al					
1-hr TSP	0	0	0	0	N/A	
24-hr TSP	0	0	0	0	N/A	
Noise	0	1	0	1	N/A	
Western Port	Western Portal					
1-hr TSP	0	0	0	0	N/A	
24-hr TSP	0	0	0	0	N/A	
Noise	0	0	0	0	N/A	
Water	0	18	0	0	N/A	

Eastern Portal

1-hour TSP Monitoring

5. All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

24-hour TSP Monitoring

6. All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise

7. All construction noise monitoring was conducted as scheduled in the reporting month. One Action/Limit Level exceedance was recorded at NC1. The exceedance is considered due to the rock breaking works at Eastern Portal Site.

Western Portal

1-hour TSP Monitoring

8. All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

24-hour TSP Monitoring

9. All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise

10. All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Water Quality

11. All water quality monitoring was conducted as scheduled in the reporting month except the monitoring at mid-ebb tide on 24 September 2008 was cancelled due to the adverse weather. Eighteen Action/Limit Level exceedances were recorded. The exceedances are considered due to the natural fluctuations and also the adverse weather and natural algae but not due to the Project.

Environmental Licenses and Permits

- 12. Licenses/Permits granted to the Project include the Environmental Permit (EP) for the Project, An Environmental Permit No. EP-272/2007 was issued on 26 April 2007 and Environmental Permit No. EP-272/2007/A was issue on 26 October 2007. Later, the further Environmental Permit (FEP-01/272/2007/A) was issued on 28 January 2008 to Dragages-Nishimatsu Joint Venture as the Permit Holder.
- 13. Registration of Chemical Waste Producer (License: 5213-148-D2393-02 for Eastern Portal and No. 5213-172-D2393-01 for Western Portal), Water Discharge License (License No.: EP860/W10/XY0175 for Area of Mount Butler Office, EP860/W10/XY0177 for Eastern Portal and EP820/W9/XT086 for Western Portal) and Construction Noise Permit (License No.: GW-RS0612-08 for Eastern Portal and GW-RS0611-08 for Western Portal)

Key Information in the Reporting Month

14. Summary of key information in the reporting month is tabulated in Table II.

Table II Summary Table for Key Information in the Reporting Month

Event	Event Details		Action Taken	Status	Remark
	Number	Nature			
Complaint received	0		N/A	N/A	
Changes to the assumptions and key construction / operation activities recorded	0		N/A	N/A	

Event	Event Details		Action Taken	Status	Remark
	Number	Nature			
Status of submissions under EP	1	Monthly EM&A Report (August 08)	Submitted to EPD on 12 September 2008 (EP condition 3.3)	Verified by IEC	
Notifications of any summons & prosecutions received	0		N/A	N/A	

Future Key Issues:

Major site activities for the coming month include:

- Tunnel excavation works and intake cofferdam works at Eastern Portal;
- Shallow and deep excavation works, marine works and arch tunnel excavation works at Western Portal; and
- Utilities trial pits and additional ground investigation works at 15 nos. Intake sites.

1. INTRODUCTION

Background

- 1.1 Drainage Improvement in Northern Hong Kong Island Hong Kong West Drainage Tunnel is a Designated Project (hereafter referred to as "the Project") under the Environmental Impact Assessment Ordinance (Cap. 449). A study of environmental impact assessment (EIA) was undertaken to consider the key issues of air quality, noise, water quality, ecological, construction waste, landscape and visual, land use, cultural impacts, and identify possible mitigation measures associated with the works. An EIA Report was approved by the Environmental Protection Department (EPD) on 7 April 2006.
- 1.2 The project comprises the construction of a drainage tunnel deep into the ground in Midlevels of the Northern Hong Kong Island from Tai Hang to Pokfulam to intercept and convey the stormwater from the upper catchment directly to the sea near Cyberport. The Drainage tunnel alignment starts from the Eastern Portal near Haw Par Mansion in Tai Hang and ends at the Western Portal located to the north of Cyberport running underneath the Pok Fu Lam, Tai Tam, Aberdeen and Lung Fu Shan Country Parks. The underground main drainage tunnel is 6.25m-7.25m in diameter and about 11km long. Two portals and a series of connecting adits and drop shafts are also been constructed. The general layout of the Project is shown in **Figure 1.1**.
- 1.3 An Environmental Permit (EP) No. EP-272/2007 was issued on 26 April 2007 for Drainage Improvement in Northern Hong Kong Island Hong Kong West Drainage Tunnel to Drainage Services Department as the Permit Holder. Later, the further Environmental Permit (FEP-01/272/2007/A) was issued on 28 January 2008 to Dragages-Nishimatsu Joint Venture as the Permit Holder.
- 1.4 Cinotech Consultants Limited was commissioned by the Dragages-Nishimatsu Joint Venture (the Contractor) to undertake the Environmental Monitoring and Audit (EM&A) works for the Project. The Updated EM&A Manual was prepared by Cinotech to fulfill the requirements of the EP. The construction commencement of this Contract at Eastern portal was on 17th April 2008 and 2nd May 2008 at Western Portal (land-based). The marine construction works was commenced on 30 May 2008. This is the 6th monthly EM&A report summarizing the EM&A works for the Project in September 2008 at Eastern and Western Portals.

Project Organizations

- 1.5 Different parties with different levels of involvement in the project organization include:
 - Project Proponent Drainage Services Department (DSD).
 - The Supervising Officer or Supervising Officer's Representative (SO or SOR) Ove Arup & Partners (ARUP).
 - Environmental Team (ET) Cinotech Consultants Limited (CCL).
 - Independent Environmental Checker (IEC) Allied Environmental Consultants Limited (AEC).
 - Contractor Dragages-Nishimatsu Joint Venture (DNJV).

- 1.6 The responsibilities of respective parties are detailed in Sections 1.14 to 1.28 of the updated EM&A Manual of the Project.
- 1.7 The key contacts of the Project are shown in Table 1.1 and the organization chart of ET is shown in **Figure 2.1**.

Table 1.1 Key Project Contacts

Party	Role	Name	Position	Phone No.	Fax No.
DNJV	Permit Holder	Mr. ALTIER Daniel	Project Manager	2671 7333	2671 9300
Division	Territe Fronce	Mr. UETAKE H.	Deputy Project Manager	20/1/333	20/1/300
		Mr. Ted Tang	CRE	6117 6639	
	Supervising	Mr. Jackson Wong	SRE	6117 6636	2436 1012
ARUP	Officer M.	Mr. Alan Ng	RE	9668 8350	
		Mr. Bernard Cheng	RE	98614939	
		Dr. Priscilla Choy	ET Leader	2151 2089	
Cinotech	Environmental	Mr. Alex Ngai	Project Coordinator	2151 2076	3107 1388
Cinoteen	Team	Ms. Ivy Tam	Audit Team Leader	2151 2095	3107 1300
		Mr. Henry Leung	Monitoring Team Leader	2151 2087	
AEC	Independent Environmental Checker	Ms. Claudine Lee	Independent Environmental Checker	2815 7028	2815 5399
DNJV	Contractor	Mr. Ben Ho	Environmental Officer	2671 7333	2671 9300

Construction Programme

- 1.8 The site activities undertaken in the reporting month included:
 - Further establishment of project organization and staffing;
 - Boulder stabilization, initial tunnel excavation and installation of temporary facilities at Eastern Portal:
 - Installation of temporary facilities, slope works, shallow & deep excavation works, marine works and arch tunnel excavation at Western Portal;
 - Utilities trial pits and additional ground investigation works at 10 nos. Intakes;
 - Approved in Principle (AIP) & Detailed Design Approval (DDA) submissions for temporary works at both portals;

- AIP & DDA submissions for temporary and permanent works for 16 nos. Intakes;
- AIP & DDA submissions for Pre-cast Segmental Lining at Adit Junction;
- Environmental impact monitoring; and
- TBM design and fabrication overseas.

Table 1.2 Construction programme showing the inter-relationship with environmental protection/mitigation measures

Construction Works	Major Environmental Impact	Control Measures
Further establishment of project organization and staffing	Nil	Nil
Boulder stabilization, initial tunnel excavation and installation of temporary facilities at Eastern Portal	Noise and dust impact	Provided water spraying during the excavation works Provided temporary noise barriers.
Installation of temporary facilities, slope works, shallow & deep excavation works, marine works and arch tunnel excavation at Western Portal	Noise, dust, water quality impact and waste generation	Provided water spraying during slope and excavation works Provided silt curtain during the marine works On-site waste sorting and implementation of trip ticket system
Utilities trial pits and additional ground investigation works at 10 nos. Intakes	Nil	Nil
Approved in Principle (AIP) & Detailed Design Approval (DDA) submissions for temporary works at both portals	Nil	Nil
AIP & DDA submissions for temporary and permanent works for 16 nos. Intakes	Nil	Nil
AIP & DDA submissions for Pre-cast Segmental Lining at Adit Junction		
Environmental impact monitoring	Nil	Nil
TBM design and fabrication overseas	Noise Impact and ground water	Double-shielded Tunnel Boring Machine to minimize seepage of groundwater

Summary of EM&A Requirements

- 1.9 The EM&A programme requires construction phase monitoring construction noise, air quality and water quality and environmental site audit. The EM&A requirements for each parameter are described in the following sections, including:
 - All monitoring parameters;
 - Action and Limit levels for all environmental parameters;
 - Event Action Plans;
 - Environmental mitigation measures, as recommended in the project EIA study final

report; and

- Environmental requirements in contract documents.
- 1.10 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarized in Section 5 of this report.
- 1.11 This report presents the monitoring results, observations, locations, equipment, period, methodology and QA/QC procedures of the required monitoring parameters, namely air quality, water quality and noise levels and audit works for the Project in September 2008.

2. AIR QUALITY

Monitoring Requirements

2.1 1-hour and 24-hour TSP monitoring were conducted to monitor the air quality at Eastern and Western Portals. **Appendix A** shows the established Action/Limit Levels for the environmental monitoring works.

Monitoring Locations

2.2 Three designated monitoring stations, AQ1, AQ2 and AQ3 were selected for impact dust monitoring. Table 2.1 describes the air quality monitoring locations, which are also depicted in **Figure 3.1a-b.**

Table 2.1 Locations for Air Quality Monitoring

Monitoring Stations	Locations	
AQ1	True Light Middle School of Hong Kong	
AQ2	Outside Aegean Terrace	
AQ3	Outside The Site Office at Western Portal	

Monitoring Equipment

2.3 Table 2.2 summarizes the equipment used in the impact air monitoring programme. Copies of calibration certificates are attached in **Appendix B**.

Table 2.2 Air Quality Monitoring Equipment

Equipment	Model and Make	Quantity
Calibrator	G25A; S/N: 1536	1
1-hour TSP Dust Meter	Laser Dust Monitor – Model LD3	1
HVS Sampler	GMWS 2310 c/w of TSP sampling inlet	2

Monitoring Parameters, Frequency and Duration

2.4 Table 2.3 summarizes the monitoring parameters and frequencies of impact dust monitoring for the whole construction period. The air quality monitoring schedule for the reporting month is shown in **Appendix D**.

 Table 2.3
 Impact Dust Monitoring Parameters, Frequency and Duration

Parameters	Frequency	
1-hr TSP	Three times / 6 days	
24-hr TSP	Once / 6 days	

Monitoring Methodology and QA/QC Procedure

1-hour TSP Monitoring

Measuring Procedures

- 2.5 The measuring procedures of the 1-hour dust meters were in accordance with the Manufacturer's Instruction Manual as follows:
 - Pull up the air sampling inlet cover
 - Change the Mode 0 to BG with once
 - Push Start/Stop switch once
 - Turn the knob to SENSI.ADJ and press it
 - Push Start/Stop switch once
 - Return the knob to the position MEASURE slowly
 - Push the timer set switch to set measuring time
 - Remove the cap and make a measurement

Maintenance/Calibration

- 2.6 The following maintenance/calibration was required for the direct dust meters:
 - Check the meter at a 3-month interval and calibrate the meter at a 1-year interval throughout all stages of the air quality monitoring.

24-hour TSP Monitoring

Instrumentation

2.7 High volume (HVS) samplers (Model GMWS-2310 Accu-Vol) completed with appropriate sampling inlets were employed for 24-hour TSP monitoring. The sampler was composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complied with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50). Moreover, the HVS also met all the requirements in section 2.5 of the updated EM&A Manual.

Operating/Analytical Procedures

- 2.8 Operating/analytical procedures for the operation of HVS were as follows:
 - A horizontal platform was provided with appropriate support to secure the samplers against gusty wind.
 - No two samplers were placed less than 2 meters apart.
 - The distance between the sampler and an obstacle, such as buildings, was at least twice the height that the obstacle protrudes above the sampler.
 - A minimum of 2 meters of separation from walls, parapets and penthouses was required for rooftop samples.
 - A minimum of 2 meters separation from any supporting structure, measured horizontally was required.
 - No furnaces or incineration flues were nearby.
 - Airflow around the sampler was unrestricted.

Monthly EM&A Report – September 2008

- The sampler was more than 20 meters from the drip line.
- Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.
- 2.9 Prior to the commencement of the dust sampling, the flow rate of the high volume sampler was properly set (between 1.1 m³/min. and 1.4 m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
- 2.10 For TSP sampling, fiberglass filters (G810) were used [Note: these filters have a collection efficiency of > 99% for particles of 0.3 mm diameter].
- 2.11 The power supply was checked to ensure the sampler worked properly. On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air monitoring station.
- 2.12 The filter holding frame was then removed by loosening the four nuts and a weighted and conditioned filter was carefully centered with the stamped number upwards, on a supporting screen.
- 2.13 The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- 2.14 The shelter lid was closed and secured with the aluminum strip.
- 2.15 The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- 2.16 After sampling, the filter was removed and sent to the HOKLAS laboratory (Wellab Ltd.) for weighing. The elapsed time was also recorded.
- 2.17 Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ±3°C; the relative humidity (RH) should be < 50% and not vary by more than ±5%. A convenient working RH is 40%.

Maintenance/Calibration

- 2.18 The following maintenance/calibration was required for the HVS:
 - The high volume motors and their accessories were properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipment and necessary power supply are in good working condition.
 - High volume samplers were calibrated at bi-monthly intervals using GMW-25 Calibration Kit throughout all stages of the air quality monitoring.

Results and Observations

Eastern Portal (AQ1)

- 2.19 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 2.20 All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Western Portal (AQ2)

2.21 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Western Portal (AQ3)

- 2.22 All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 2.23 Wind data was obtained from the Meteorological Observations for King's Park Automatic Weather Station for Eastern Portal and Wong Chuk Hang Automatic Weather Station for Western Portal. These wind data for the reporting period is summarized in **Appendix J.**
- 2.24 The monitoring data and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendices E and F** respectively.
- 2.25 In accordance with Condition 4.2 of the EP, all environmental monitoring data was made available to the public via internet access at the website http://www.cinotech.com.hk/projects/WestDrainageTunnel/.
- 2.26 According to our field observations, the identified dust sources at the monitoring stations were mainly from the excavation works and the road traffic for Eastern and Western Portals.

Table 2.4 Summary Table of Air Quality Monitoring Results during the reporting month

Parameter	Date	Concentration (µg/m3)	Action Level, μg/m3	Limit Level, µg/m3
Eastern Porta	ıl			
	1-Sep-08	283.2		
	2-Sep-08	172.5		
	5-Sep-08	275.6		
	8-Sep-08	167.2		
	9-Sep-08	111.6		
	11-Sep-08	199.2		
1-hr TSP	17-Sep-08	122.1	345	500
(AQ1)	18-Sep-08	24.5		300
	19-Sep-08	177.6		
	23-Sep-08	144.3		
	24-Sep-08	167.4		
	25-Sep-08	124.0		
	29-Sep-08	120.4		
	30-Sep-08	134.3		
	4-Sep-08	68.0		
24.1 TGD	10-Sep-08	16.4		260
24-hr TSP	16-Sep-08	184.9	201	
(AQ1)	22-Sep-08	188.8		
	27-Sep-08	89.8		
Western Port			-	
	1-Sep-08	45.2		
	2-Sep-08	30.4		
ĺ	5-Sep-08	29.5		
	8-Sep-08	41.7		
	9-Sep-08	35.8		
	11-Sep-08	29.2		
1-hr TSP	17-Sep-08	45.5	221	500
(AQ2)	18-Sep-08	48.5	321	
	19-Sep-08	52.6		
ĺ	23-Sep-08	25.2		
	24-Sep-08	29.4		
	25-Sep-08	37.5		
	29-Sep-08	41.3		
}	30-Sep-08	37.2		
	4-Sep-08	20.8		
	10-Sep-08	49.1		
24-hr TSP	16-Sep-08	146.1	156	260
(AQ3)	22-Sep-08	138.3	130	200
	27-Sep-08	41.7		

3. NOISE

Monitoring Requirements

3.1 Three noise monitoring stations, namely NC1, NC2 and NC3 were selected for impact monitoring. **Appendix A** shows the established Action and Limit Levels for the environmental monitoring works.

Monitoring Locations

3.2 Noise monitoring was conducted at three designated monitoring stations as listed in Table 3.1. **Figure 3.1a-b** shows the locations of these stations.

Table 3.1 Noise Monitoring Stations

Monitoring Stations	Locations	
NC1	True Light Middle School of Hong Kong	
NC2	The Legend	
NC3	Outside Aegean Terrace	

Monitoring Equipment

3.3 Table 3.2 summarizes the noise monitoring equipment. Copies of calibration certificates are provided in **Appendix B**.

Table 3.2 Noise Monitoring Equipment

Equipment	Model and Make	Qty.
Integrating Sound Level Meter	B&K Model 2238	1
Calibrator	B&K 4231	1

Monitoring Parameters, Frequency and Duration

3.4 Table 3.3 summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D.**

Monitoring Stations	Parameter	Period	Frequency	Measurement
NC1 NC2 NC3	L ₁₀ (30 min.) dB(A) L ₉₀ (30 min.) dB(A) L _{eq} (30 min.)	0700-1900 hrs on normal weekdays	Once per week	Façade

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Monitoring Methodology and QA/QC Procedures

dB(A)

- The Sound Level Meter was set on a tripod at a height of 1.2 m above the ground.
- For free field measurement, the meter was positioned away from any nearby reflective surfaces. All records for free field noise levels were adjusted with a correction of +3 dB(A).
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:

frequency weightingtime weightingFast

time measurement : 30 minutes / 5 minutes

- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- The wind speed was frequently checked with the portable wind meter.
- At the end of the monitoring period, the L_{eq} , L_{90} and L_{10} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- Noise measurement was paused temporarily during periods of high intrusive noise if possible and observation was recorded when intrusive noise was not avoided.
- Noise monitoring was cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s.

Maintenance and Calibration

- 3.5 The microphone head of the sound level meter and calibrator were cleaned with a soft cloth at quarterly intervals.
- 3.6 The sound level meter and calibrator were checked and calibrated at yearly intervals.
- 3.7 Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

Results and Observations

3.8 Noise monitoring at the three designated locations was conducted as scheduled in the reporting month.

Eastern Portal (NC1 & NC2)

3.9 One Action/Limit Level exceedance was recorded at NC1. The exceedance is considered due to the rock breaking works. Repeat measurement has also been conducted and the result was within the limit level. Details of the Exceedance Report are shown in **Appendix I**

Western Portal (NC3)

- 3.10 No Action/Limit Level exceedance was recorded.
- 3.11 All the Construction Noise Levels (CNLs) reported in this report were adjusted with the corresponding baseline level (i.e. Measured Leq Baseline Leq = Measured CNL), in order to facilitate the interpretation of the noise exceedance. The baseline noise level and the Noise Limit Level at each designated noise monitoring station are presented at Table 3.4.
- 3.12 Noise monitoring results and graphical presentations are shown in **Appendix G**. In accordance with Condition 4.2 of the EP, all environmental monitoring data was made available to the public via internet access at the website http://www.cinotech.com.hk/projects/WestDrainageTunnel/.
- 3.13 The major noise source identified at the designated noise monitoring stations was the traffic noise along the Tai Hang Road and the rock breaking and excavation works.

Table 3.4 Baseline Noise Level and Noise Limit Level for Monitoring Stations

Station	Baseline Noise Level, dB (A)	Noise Limit Level, dB (A)
NC1 – True Light Middle School of Hong Kong	70.2 (at 0700 – 1900 hrs on normal weekdays)	70* (at 0700 – 1900 hrs on normal weekdays)
NC2 – The Legend	64.8 (at 0700 – 1900 hrs on normal weekdays)	75 (at 0700 – 1900 hrs on normal weekdays)
NC3 – Outside Aegean Terrace	57.7 (at 0700 – 1900 hrs on normal weekdays)	75 (at 0700 – 1900 hrs on normal weekdays)

^(*) reduce to 65 dB(A) during school examination periods.

Table 3.5 Summary Table of Noise Monitoring Results during the reporting month

Parameter	Date	Construction Noise Level : Leq(30min) dB (A)	Action Level	Limit Level,	
Eastern Porta	al				
	1-Sep-08	68.7, Measured ≤ Baseline			
NC1	8-Sep-08	69.4, Measured ≤ Baseline		70*dB(A)	
INCI	18-Sep-08	72.2	When one	/0 · ub(A)	
	25-Sep-08	67.8, Measured ≤ Baseline	documented		
	1-Sep-08	72.5	compliant is	75dB(A)	
NC2	8-Sep-08	69.5	received		
NC2	18-Sep-08	72.9			
	25-Sep-08	64.6			
Western Port	tal				
	1-Sep-08	49.4	When one		
NC3	8-Sep-08	56.4	documented	75 dD(A)	
INCS	18-Sep-08	51.8	compliant is	75dB(A)	
	25-Sep-08	56.6	received		

^(*) reduce to 65 dB(A) during school examination periods.

4. WATER QUALITY

Monitoring Requirements

4.1 Dissolved oxygen (DO concentration in mg/L and DO saturation in percentage), Turbidity (Tby in NTU), Suspended Solid (SS in mg/L), pH, salinity and both water and ambient temperature monitoring were conducted to monitor the water quality. **Appendix A** shows the established Action/Limit Levels for the environmental monitoring works.

Monitoring Locations

4.2 Locations of designated Water Quality Monitoring Stations are shown in **Figure 4.1a-b** and described in Table 4.1. Samples shall be taken at all designated Monitoring and Control Stations.

Table 4.1 Locations for Water Quality Monitoring

Manitaning Stations	Coord	inates
Monitoring Stations	Northing	Easting
Control Stations		
CE (Ebb)	814956	830026
CF (Flood)	812420	831778
Impact Stations		
I1	813654	831088
I2	813582	831105
Intake A	813044	831603
Intake B	814583	830606

Monitoring Equipment

4.3 Table 4.2 summarizes the equipment used in the water quality monitoring program. All the monitoring equipment complied with the specifications stipulated in the Updated EM&A Manual. Copies of the calibration certificates of the equipment are shown in **Appendix B**.

Table 4.2 Water Quality Monitoring Equipment

Equipment	Model and Make	Qty.
Water Sampler	Kahlsico Water-Bottle Model 135DW 150	1
Multi-parameter Water Quality System	YSI 6820	2
Monitoring Position Equipment	"Magellan" Handheld GPS Model GPS- 320	1

Monitoring Parameters, Frequency and Duration

4.4 Table 4.3 summarizes the monitoring parameters, monitoring period and frequencies of water quality monitoring.

Table 4.3 Frequency and Parameters of Water Quality Monitoring

Station	Parameters	Frequency	No. of depth sampled	Depth	No. of samples events														
CE			3	• 3 water depths: 1m below water															
CF	 Temperature (°C) pH (pH unit) 		2	surface, mid-depth and 1m above sea															
I1	turbidity (NTU)water depth (m)salinity (mg/L)	3 times per week during the	3	bed.If the water depth is	2 per monitoring day														
I2	• dissolved oxygen (DO) (mg/L and % of saturation)	during the course of the marine works	course of the marine	the marine	the marine	the marine	the marine	the marine	the marine	the marine	the marine	the marine	the marine	the marine	the marine	the marine	3	less than 3m, mid- depth sampling	(1 for mid-ebb and 1 for mid-flood)
Intake A	• suspended solids (SS) (mg/L)		3	only.If the water depth is less than															
Intake B			3	6m, omit mid-depth sampling.															

Monitoring Methodology, Calibration Details and QA/QC Procedures

Instrumentation

4.5 A multi-parameter meter (Model YSI 6820 C-M) was used to measure DO, DO saturation, turbidity, salinity and temperature.

Operating/Analytical Procedures

- 4.6 At each measurement, two consecutive measurements of DO concentration, DO saturation, salinity, turbidity and temperature were taken. Where the difference in the value between the first and second readings of each set was more than 25% of the value of the first reading, the reading was discarded and further readings were taken.
- 4.7 For SS measurement, duplicate water samples for SS were taken and analysed at each monitoring station at each sample depth. The sample bottles were then packed in cool-

boxes (without being frozen), and delivered to a HOKLAS accredited laboratory for analysis of suspended solids concentrations within 24 hours.

Maintenance and Calibration

- 4.8 Before each round of monitoring, a zero check in distilled water was performed with the turbidity probe of YSI 6820-C-M. The probe was then calibrated with a solution of known NTU.
- 4.9 QA/QC procedures as attached in **Appendix C** are available for the SS analyzed in the HOKLAS-accredited laboratory, WELLAB Ltd.

Results and Observations

- 4.10 All water quality monitoring was conducted as scheduled in the reporting month except the monitoring at mid-ebb tide on 24 September 2008 was cancelled due to the adverse weather. Eighteen Action/Limit Level exceedances were recorded. The monitoring data and graphical presentations of the monitoring results are shown in **Appendix H**. Details of the Exceedance Report are shown in **Appendix I**.
- 4.11 In accordance with Condition 4.2 of the EP, all environmental monitoring data was made available to the public via internet access at the website http://www.cinotech.com.hk/projects/WestDrainageTunnel/.
- 4.12 During the water quality monitoring, the areas of inspection included the general environmental conditions in the vicinity of the site, pollution control and mitigation measures within the site; and also review on the environmental conditions outside the site area that are likely to be affected, directly or indirectly, by site activities. The findings have been recorded in our Field Record Sheets.
- 4.13 A total of 18 Limit Level exceedances including SS and DO were recorded in the reporting month. The exceedances are considered due to the natural fluctuations, adverse weather and natural algae but not due to the Project. The rationales are detailed below:-
 - The control station value *(Note1) already exceeded either the baseline action or limit Levels.
 - Based on the field records, no non-compliance or mal-practice (such as plume) of marine construction activities was observed.
 - No pollution discharge from construction activity was observed.
 - Silt curtain deployed during the course of marine works.
 - No construction activity was observed.
 - Natural algae were observed at all monitoring stations.
 - Poor water quality was observed at all monitoring stations after the typhoon.

Note 1 – CE: Control Station (Ebb) CF: Control Station (Flood)

4.14 As shown in the Graphical presentation, there is no significant difference in water quality during the reporting month. Those fluctuations are considered due to the natural variation.

Underground water level

- 4.15 Ground water levels were measured once per month during the construction phase in order to ensure the water levels at those intakes near to the natural stream courses and thus on the surrounding habitats will not be significantly affected.
- 4.16 Locations of designated ground water level (borehole with piezometer) monitoring station UC1 at Eastern Portal has been changed to ADH48 which was verified by IEC on 5th June 2008. Ground water level monitoring location is shown in **Figure 4.2** and the Monitoring data are shown in Table 4.4

Table 4.4 Ground Water Level Monitoring Data at Location ADH48

Date	Water Level (from ground)/m
16 September 2008	7.87
25 September 2008	7.80

5. ENVIRONMENTAL AUDIT

Site Audits

- 5.1 Site audits were carried out on a weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in **Appendix K.**
- 5.2 Site audits were conducted on 3rd, 17th, 22nd, 24th and 29th September 2008. IEC site inspections were conducted on 29th September 2008. No non-compliance was observed during the site audits.

Review of Environmental Monitoring Procedures

5.3 The monitoring works conducted by the monitoring team were inspected regularly. The following observations have been recorded for the monitoring works:

Air Quality Monitoring

- The monitoring team recorded all observations around the monitoring stations within and outside the construction site.
- The monitoring team recorded the temperature and weather conditions on the monitoring days.

Noise Monitoring

- The monitoring team recorded all observations around the monitoring stations, which might affect the monitoring result.
- Major noise sources were identified and recorded. Other intrusive noise attributing to the result was trimmed off by pausing the monitoring temporarily.

Water Quality Monitoring

- The monitoring team recorded all observations around the monitoring stations, which might affect the monitoring result.
- The monitoring team recorded the weather condition on the monitoring day.

Status of Environmental Licensing and Permitting

5.4 All permits/licenses obtained for the Project are summarized in Table 5.1.

Status of Waste Management

5.5 The waste management of the Project has to follow the requirements and procedures stated in the Waste Management Plan which was prepared by the Contractor.

- During this reporting period, a total 4 nos. of dump trucks of waste were delivered to SENT landfill and 13 nos. of C&D waste was delivered to Public Fill Reception Facilities. Both the trip ticket system and chit accounting system for disposal of waste were operating smoothly to date. No overloading case was recorded during this reporting period. No disposal of inert C&D material to public sorting facilities and no dump truck without cover were reported from CEDD. In respect of the dump truck cover, DNJV keeps on take record photos and inspection to ensure that all dump trucks have fully covered the skip before leaving the site.
- 5.7 The amount of wastes generated by the activities of the Project during the reporting month is shown in **Appendix P**.

Table 5.1 Summary of Environmental Licensing and Permit Status

D 'AN	Valid 1	Period	D. (1)	G4 4
Permit No.	From	To	Details	Status
Environmental Permit (EP)				
FEP-01/272/2007/A	28/1/08	N/A	Construction of a 6.25m-7.25m in diameter and about 11 km long underground main drainage tunnel, 2 portals and a series of connecting adits and drop shafts.	Valid
Effluent Discharge Lie	cense	I		
EP860/W10/XY0175	23/06/08	30/06/13	Industrial discharge (Area of Mount Butler Office)	Valid
EP860/W10/XY0177	23/06/08	30/06/13	Industrial discharge (Eastern Portal Site)	Valid
EP820/W9/XT086	22/07/08	31/07/13	Industrial discharge (Western Portal Site)	Valid
Registration of Chemi	cal Waste Pi		,	
5213-148-D2393-02		N/A	Chemical waste types: Spent oil	Valid
5213-172-D2393-01		N/A	Chemical waste types: Spent oil	Valid
Construction Noise Pe	rmit (CNP)	l.		
GW-RS0114-08	08/03/08	06/09/08	Construction Noise Permit for the use of powered mechanical equipment for carrying out construction work at Hong Kong West Drainage Tunnel (Eastern Portal) (DSD Contract No. DC/2007/10), Tai Hang Road, Causeway Bay, Hong Kong.	Expired after 06/09/08
GW-RS0363-08	10/06/08	23/08/08	Construction Noise Permit for the use of powered mechanical equipment for carrying out construction work at Cyberport Road near Cyberport Sewage Treatment Plant, Cyberport, Hong Kong.	Expired
GW-RS0612-08	07/09/08	06/03/09	Construction Noise Permit for the use of powered mechanical equipment for carrying out construction work at Hong Kong West Drainage Tunnel (Eastern Portal) (DSD Contract No. DC/2007/10), Tai Hang Road, Causeway Bay, Hong Kong.	Valid
GW-RS0611-08	01/09/08	28/02/09	Construction Noise Permit for the use of powered mechanical equipment for carrying out construction work at Cyberport Road near Cyberport Sewage Treatment Plant, Cyberport, Hong Kong.	Valid

Implementation Status of Environmental Mitigation Measures

5.8 During site inspections in the reporting month, no non-conformance was identified. ET weekly site inspections were carried out during the reporting month and the observations and recommendations are summarized in Table 5.2.

 Table 5.2
 Observations and Recommendations of Site Inspections

Parameters	Date	Observations and Recommendations	Follow-up	
Water Quality	03/09/2008	Uneven areas that retain the standing water	*Follow-up action was needed	
		were observed at Western Portal. The	for the item.	
		Contractor was reminded to pave them.		
	03/09/2008	Stagnant water was observed at the items on	Rectification/improvement	
		Eastern Portal site which may retain water.	was observed during the	
	12/00/2000	The Contractor was reminded to dry it out.	follow-up audit session.	
	12/09/2008	Uneven areas that retain the stagnant water	Rectification/improvement	
		were observed at Western Portal. The	was observed during the follow-up audit session.	
	17/09/2008	Contractor was reminded to pave them.	·	
	1//09/2008	Standing water was observed at underneath the plant equipment at Western Portal. The	Rectification/improvement was observed during the	
		Contractor was reminded to dry it out.	follow-up audit session.	
	17/09/2008	Marine Works	Rectification/improvement	
	17/07/2008	Debris was observed around the barge. The	was observed during the	
		Contractor was reminded to clean them up.	follow-up audit session.	
	17/09/2008	Standing water with oil leakage in the drip	Rectification/improvement	
		tray at M3. The Contractor was reminded to	was observed during the	
		clear them and disposed by licensed	follow-up audit session.	
		collector.		
	24/09/2008	Sediment was observed accumulate at the	Rectification/improvement	
		drainage channel to the outfall at Western	was observed during the	
		Portal. The Contractor was reminded to clear	follow-up audit session.	
	24/00/2000	them.		
	24/09/2008	Standing water in the drip tray at M3 was	The item was not observed	
		observed. The Contractor was reminded to dry it out.	during the follow-up audit session.	
	29/09/2008	Stagnant water was observed at underneath		
	of plants at Western Portal. The Contractor		Rectification/improvement was observed during the	
	was reminded to dry it out more frequently.		follow-up audit session.	
	29/09/2008	Standing water in the drip tray at M3 was	Rectification/improvement	
	23,03,2000	observed. The Contractor was reminded to	was observed during the	
		dry it out.	follow-up audit session.	
Air Quality	17/09/2008	Black smoke emission was observed from	Rectification/improvement	
		plants were observed at Western Portal. The	was observed during the	
		Contractor was reminded to provide well	follow-up audit session.	
		maintenance of the plants.		
Waste / Chemical	03/09/2008	Chemical containers were observed standing	Rectification/improvement	
Management		on the bare ground at Western Portal. The	was observed during the	
		Contractor was reminded to provide the drip	follow-up audit session.	
	02/00/2000	tray or store it properly.	D CC C	
	03/09/2008	Uncover container with chemical oil was	Rectification/improvement	
		observed at Eastern Portal. The Contractor was reminded to clear them as soon as	was observed during the follow-up audit session.	
		possible to prevent overflow during the	10110w-up audit session.	
		rainstorm.		
	12/09/2008	A part of plant equipment with chemical oil	Rectification/improvement	
	12/09/2000	was observed standing on the bare ground at	was observed during the	
		was observed standing on the bare ground at	was observed during the	

Parameters	Date	Observations and Recommendations	Follow-up
		Western Portal. The Contractor was reminded to remove it to prevent land contamination.	follow-up audit session.
	12/09/2008	Oil leakage was observed from the drilling rig at Eastern Portal. The Contractor was reminded clear them and provide well maintenance.	*Follow-up action was needed for the item.
	17/09/2008	Vegetation debris was observed accumulate at MB16 and M3. The Contractor was reminded to clean them up.	*Follow-up action was needed for the item.
	17/09/2008	Oil leakage was observed on the paved road at Eastern Portal. The Contactor was reminded to clear them.	Rectification/improvement was observed during the follow-up audit session.
	17/09/2008	Standing water with oil leakage in the drip tray at M3. The Contractor was reminded to clear them and disposed by licensed collector.	*Follow-up action was needed for the item.
	24/09/2008	Vegetation debris was observed around the site M3. The Contractor was reminded to clear them more frequently.	The item was not observed during the follow-up audit session.
	29/09/2008	Vegetation debris was observed around the site M3. The Contractor was reminded to clear them more frequently.	Rectification/improvement was observed during the follow-up audit session.
Marine Ecology	17/09/2008	Opening of silt curtain was observed at Western Portal. The Contractor was reminded to check it more frequently.	Rectification/improvement was observed during the follow-up audit session.
Reminders	12/09/2008	The Contractor was reminded of the followings: - Opening of silt curtain was observed at Western Portal. The Contractor was reminded to make sure no marine works were conducted during the silt curtain opened for the barge to pass in and out.	*Follow-up action was needed for the item.
	17/09/2008	The Contractor was reminded of the followings: - Water regularly on the unpaved area at Western Portal to prevent dust generation.	Rectification/improvement was observed during the follow-up audit session.
	24/09/2008	The Contractor was reminded of the followings: - C&D waste was observed accumulate at the material skip at Eastern Portal. Regular clear the waste is needed.	*Follow-up action was needed for the item.
	29/09/2008	The Contractor was reminded of the followings: - Regular clear the C&D waste at the material skip at Eastern Portal is necessary.	Rectification/improvement was observed during the follow-up audit session.

Note: (*) The Environmental deficiencies have been rectified by the Contractor. However, the item was reoccurred during the follow-up site audit due to construction activities/rainstorm. The Contractor was reminded to rectify the deficiencies more frequently.

- 5.9 The monthly IEC audit was carried out on 29th September 2008, the observations were recorded and they are presented as follows:
- 5.10 Follow-up and rectification works in response to IEC observations on 26 August 2008 were satisfied.

29th September 2008

Western Portal

- Bare ground was dry. More frequent watering the exposed surface and haul road is necessary.
- Stagnant water was observed holding in a drip tray of a generator and under equipment near the slope. Prompt removal of stagnant water is necessary and larvicide should be applied to avoid mosquito breeding.

Non-compliance Recorded during Site Inspections

5.11 No non-compliance was recorded in the reporting month.

Summary of Mitigation Measures Implemented

- 5.12 The Contractor has implemented the mitigation measures as recommended in the EIA and the updated EM&A Manual in the reporting period except those mitigation measures not applicable at this stage. Status of the implementation of mitigation measures is presented in Table 1.2 and **Appendix L**.
- 5.13 According to the updated EM&A Manual and EP condition, mitigation measures such as noise enclosure and use of quiet PME are required to be implemented.
- 5.14 The actual implementation status of major mitigation measures required under the EP is as follows:
 - Installation of silt curtain during the course of marine works.
 - Design of noise enclosure at Eastern Portal.
 - Submitted the Alternative Plant Inventory (EP condition 2.8(c)).
- 5.15 An updated summary of the EMIS is provided in **Appendix L**.

Implementation Status of Event Action Plans

5.16 The Event Action Plans for air quality and noise are presented in **Appendix M.**

Eastern Portal

1-hr TSP Monitoring

5.17 No Action/Limit Level exceedance was recorded in the reporting month.

24-hr TSP Monitoring

5.18 No Action/Limit Level exceedance was recorded in the reporting month.

Construction Noise

5.19 One Action/Limit Level exceedance was recorded for construction noise.

Western Portal

1-hr TSP Monitoring

5.20 No Action/Limit Level exceedance was recorded in the reporting month.

24-hr TSP Monitoring

5.21 No Action/Limit Level exceedance was recorded in the reporting month.

Construction Noise

5.22 No Action/Limit Level exceedance was recorded for construction noise.

Water Quality

5.23 Eighteen Action/Limit Level exceedances were recorded for water quality.

Summary of Complaint, Warning, Notification of any Summons and Successful Prosecution

- 5.24 No environmental complaint was received in the reporting month.
- 5.25 No warning, summon and notification of successful prosecution was received in the reporting month.
- 5.26 There were a total of 3 environmental complaints, no warning, summons and successful prosecution received since the commencement of the Project. The Complaint Log is attached in **Appendix N**.

6. FUTURE KEY ISSUES

Key Issues for the Coming Month

6.1 Key environmental issues at both Eastern and Western Portals in the coming month include:

Both Eastern and Western Portal

- Noise from operation of the equipment, especially for rock-breaking activities and machinery on-site;
- Dust generation from stockpiles of dusty materials, excavation works and rock breaking activities;
- Runoff from exposed slope;
- Wastewater and runoff discharge from site;
- Regular removal of silt, mud and sand along u-channels and sedimentation tanks;
- Review and implementation of temporary drainage system for the surface runoff;
- Proper storage of construction materials on site;
- Storage of chemicals/fuel and chemical waste/waste oil on site;
- Watering for rock breaking activity, soil nailing and on haul road;
- Accumulation of general and construction waste on site.

Only at Western Portal

- Contamination of marine water.
- 6.2 The tentative program of major site activities and the impact prediction and control measures for the coming two month, i.e. October 2008 to November 2008 are summarized as follows:

Construction Works	Major Impact Prediction	Control Measures
- Main tunnel excavation and intake cofferdam works at Eastern	xcavation and (dust) (dust) (dust)	a) Frequent watering of haul road and unpaved/exposed areas;b) Frequent watering or covering stockpiles with tarpaulin or similar means; andc) Watering of any earth moving activities.
Portal. - ELS works at Western Portal - Marine works and arch tunnel excavation works at Western Portal.	Water quality impact (surface run-off)	 d) Diversion of the collected effluent to de-silting facilities for treatment prior to discharge to public storm water drains; e) Provision of adequate de-silting facilities for treating surface run-off and other collected effluents prior to discharge; f) Provision of perimeter protection such as sealing of hoarding footings to avoid run-off from entering the existing storm water drainage system via public road; and g) Provision of measures to prevent discharge into the stream.

Construction Works	Major Impact Prediction	Control Measures
- Utilities trial pits and additional ground investigation works at 19 nos. Intake sites.	Marine Water Quality and Noise Impact	h) Scheduling of noisy construction activities if necessary to avoid persistent noisy operation; i) Controlling the number of plants use on site; j) Regular maintenance of machines; and k) Use of acoustic barriers if necessary. l) Installation and maintenance of silt curtain.

Monitoring Schedule for the Next Month

6.3 The tentative environmental monitoring schedules for the next month are shown in **Appendix D.**

Construction Program for the Next Month

6.4 The tentative construction program for the Project is provided in **Appendix O**.

7. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

7.1 Environmental monitoring works were performed in the reporting period and all monitoring results were checked and reviewed.

1-hr TSP Monitoring

7.2 All 1-hr TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

24-hr TSP Monitoring

7.3 All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise Monitoring

7.4 All construction noise monitoring was conducted as scheduled in the reporting month. One Action/Limit Level exceedance was recorded at NC1 (Eastern Portal).

Water Quality

7.5 All water quality monitoring was conducted as scheduled in the reporting month except the monitoring at mid-ebb tide on 24 September 2008 was cancelled due to adverse weather. Eighteen Action/Limit Level exceedances were recorded.

Complaint and Prosecution

7.6 No environmental complaints and environmental prosecution were received in the reporting month

Recommendations

7.7 According to the environmental audit performed in the reporting period, the following recommendations were made:

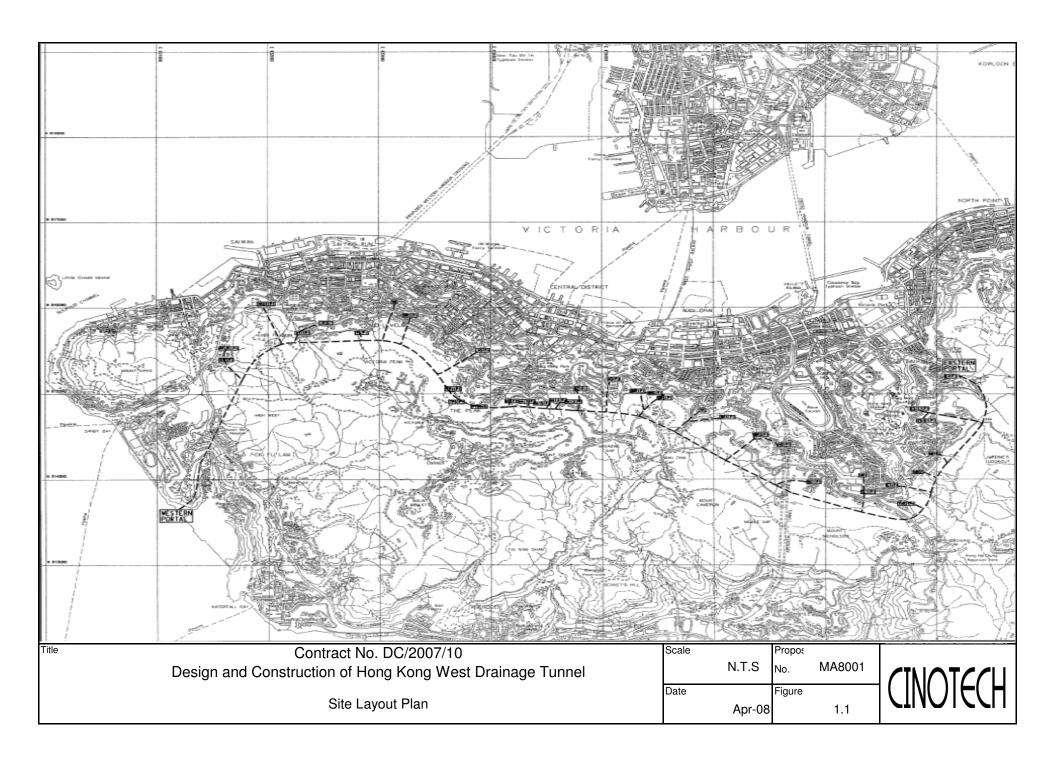
Air Quality Impact

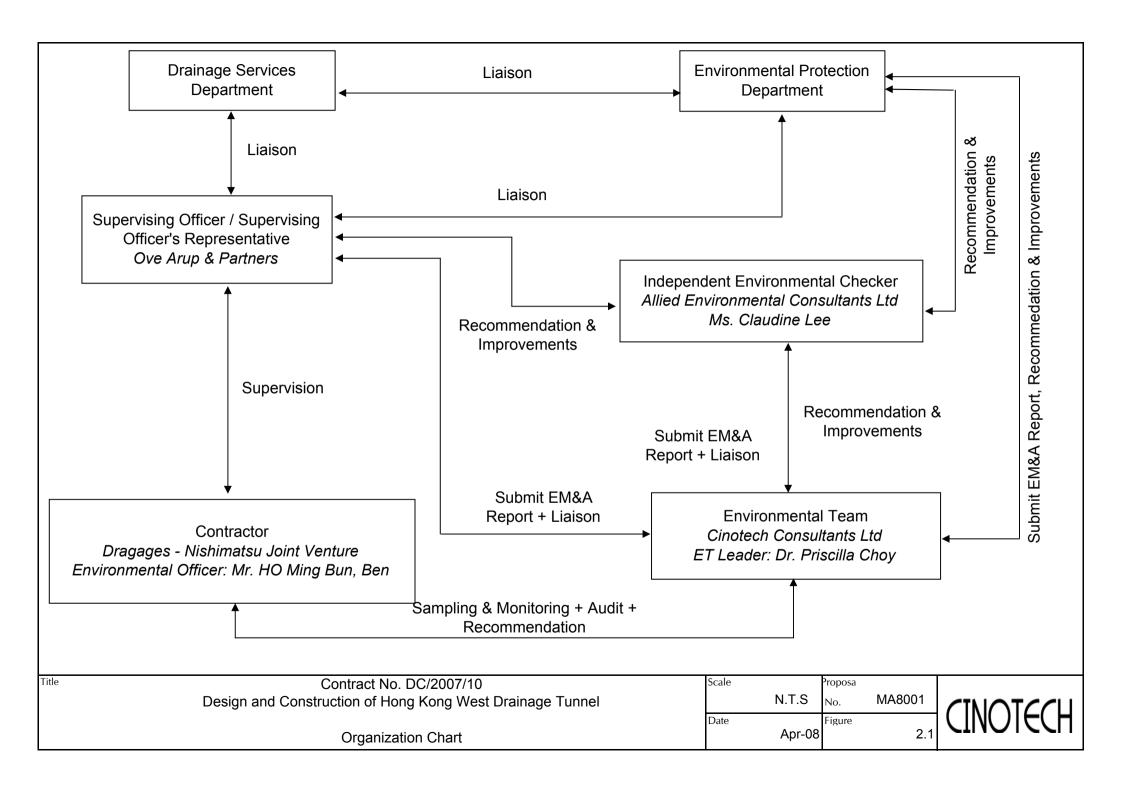
- To prohibit any open burning on site.
- To regularly maintain the machinery and vehicles on site.
- To implement dust suppression measures on all haul roads, stockpiles, dry surfaces and excavation works.
- To provide hoarding

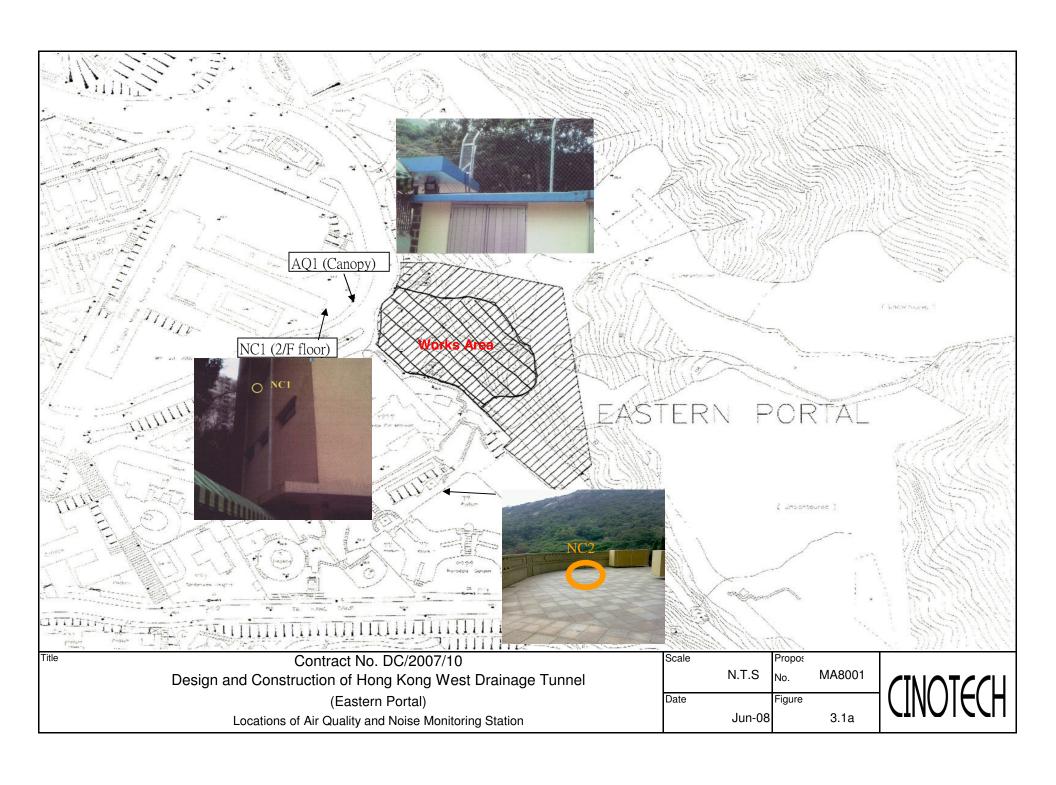
Monthly EM&A Report - September 2008

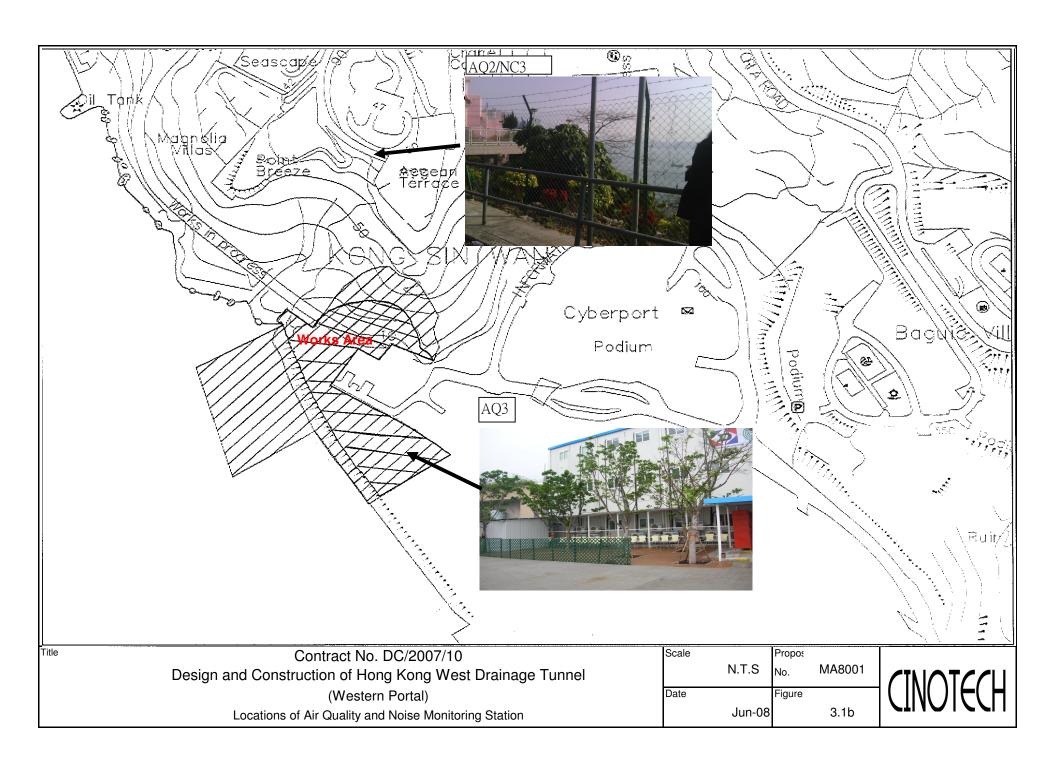
Noise Impact

- To inspect the noise sources inside the site.
- To space out noisy equipment and position the equipment as far away as possible from sensitive receivers.
- To provide temporary noise barriers for operations of noisy equipment near the noise sensitive receivers in an appropriate location.

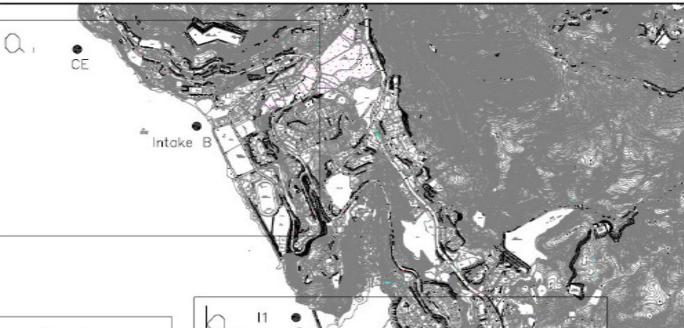

Water Impact


- To prevent any surface runoff discharge into any stream course.
- To review and implement temporary drainage system.
- To identify any wastewater discharges from site.
- To ensure properly maintenance for de-silting facilities.
- To clear the silt and sediment in the sedimentation tanks.
- To review the capacity of de-silting facilities for discharge.
- To divert all the water generated from construction site to de-silting facilities with enough handling capacity before discharge.
- To avoid accumulation of stagnant and ponding water on site.


Waste/Chemical Management

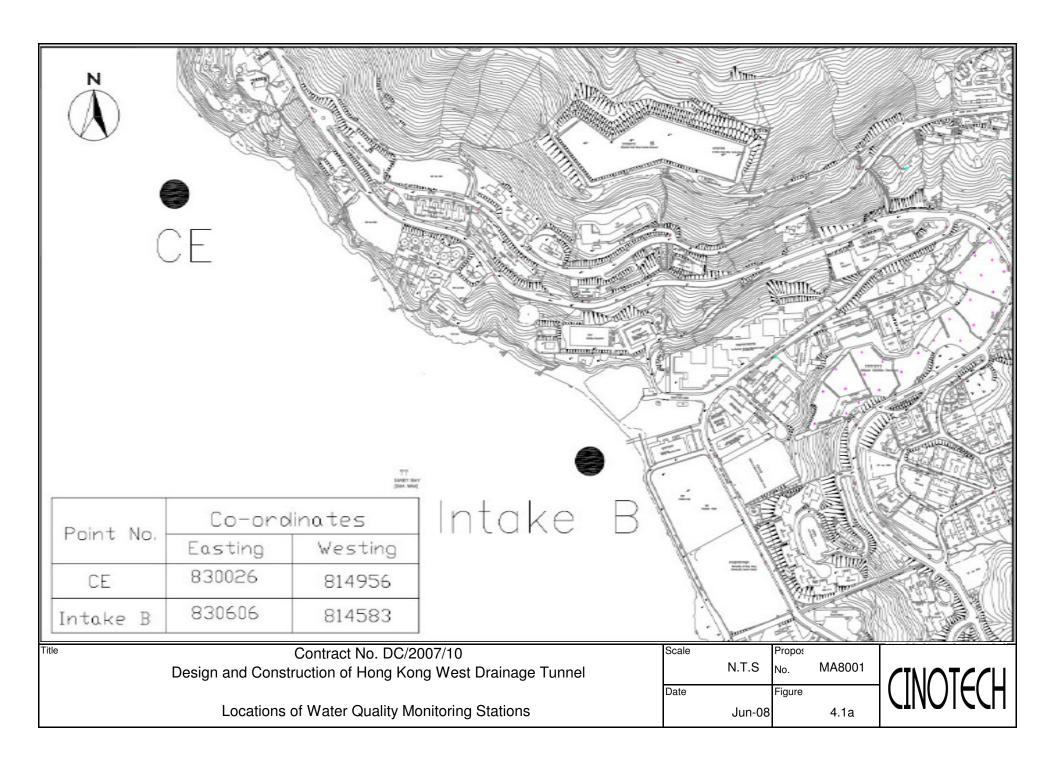

- To check for any accumulation of waste materials or rubbish on site.
- To ensure the performance of sorting of C&D materials at source (during generation);
- To carry out inspection of dump truck at site exit to ensure inert and non-inert C&D materials are properly segregated before removing off site.
- To avoid any discharge or accidental spillage of chemical waste or oil directly from the site.
- To avoid improper handling or storage of oil drum on site.

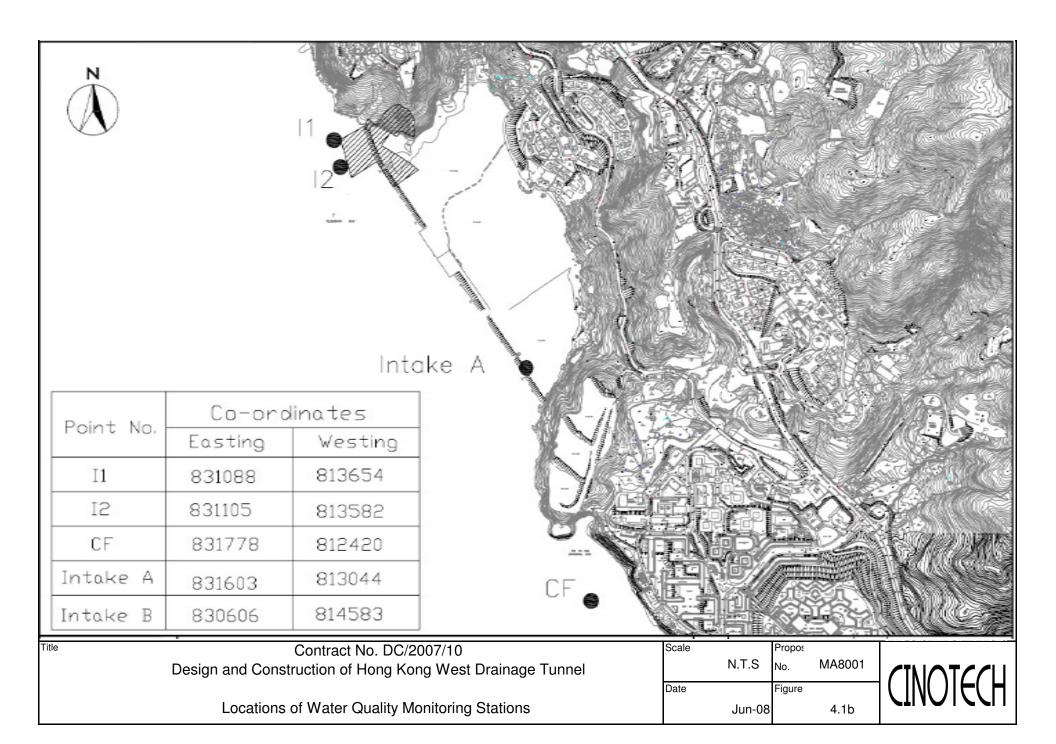
FIGURES

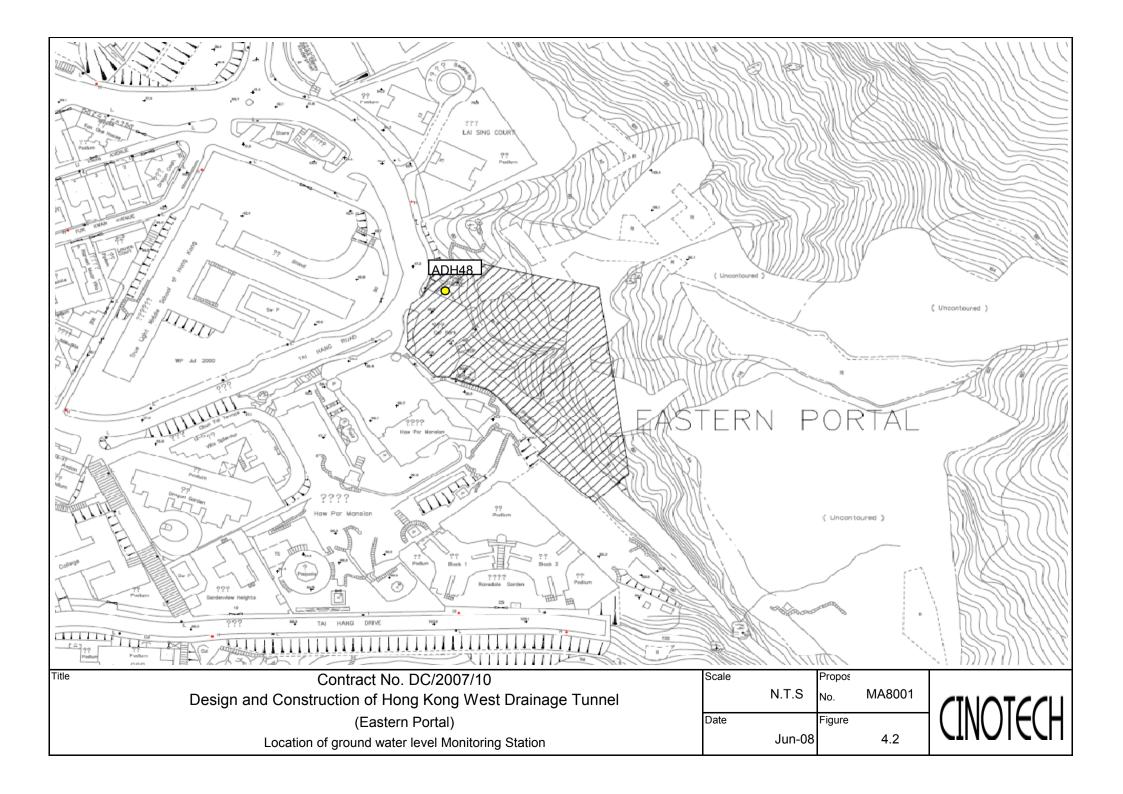


Point No.	Co-ordinates		
POINT NO.	Easting	Westing	
CE	830026	814956	
I1	831088	813654	
I2	831105	813582	
CF	831778	812420	
Intake A	831603	813044	
Intake B	830606	814583	

Title


Contract No. DC/2007/10


Design and Construction of Hong Kong West Drainage Tunnel


Locations of Water Quality Monitoring Stations

Scale		Propos	
	N.T.S	No.	MA8001
Date		Figure	
	Jun-08		4.1

APPENDIX A ACTION AND LIMIT LEVELS

Appendix A - Action and Limit Levels

Table A-1 **Action and Limit Levels for 1-Hour TSP**

Location	Action Level, μg/m ³	Limit Level, μg/m ³
AQ1	345	500
AQ2	321	300

Table A-2 **Action and Limit Levels for 24-Hour TSP**

Location	Action Level, μg/m ³	Limit Level, μg/m ³
AQ1	201	260
AQ3	156	200

Table A-3 **Action and Limit Levels for Construction Noise**

Time Period	Action Level	Limit Level
0700-1900 hrs on normal weekdays		75* dB(A)
0700-2300 hrs on holidays; and 1900-2300 hrs on all other days	When one documented complaint is received	60/65/70** dB(A)
2300-0700 hrs of next day	1	45/50/55** dB(A)

^(*) reduce to 70 dB(A) for schools and 65 dB(A) during school examination periods. (**) to be selected based on Area Sensitivity Rating.

Table A-4 **Action and Limit Levels for Water Quality**

Parar	neter	Action	Limit
DO, mg/L	Surface and Middle	6.3	6.2
Bottom		6.0	5.8
SS, mg/L		or 120% of upstream control station's SS at the same tide of the same day	or 130% of SS readings at the upstream control station at the same tide of same day and specific sensitive receiver water quality requirements
Turbidity, NTU		or 120% of upstream control station's turbidity at the same tide of the same day	or 130% of turbidity at the upstream control station at the same tide of same day

APPENDIX B COPIES OF CALIBRATION CERTIFCATES

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

File No. MA8001/44/0004 Station AQ1 - True Light Middle School of Hong Kong WK Operator: Date: 14-Oct-08 15-Aug-08 Next Due Date: Equipment No.: A-01-44 1316 Serial No. Ambient Condition Temperature, Ta (K) 302.6 Pressure, Pa (mmHg) 756 Orifice Transfer Standard Information Intercept, be Equipment No.: A-04-06 Slope, mc me x Qstd + be = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 10-Mar-08 Qstd = $\{ |\Delta H \times (Pa/760) \times (298/Ta) |^{1/2} -bc \} / mc$ Next Calibration Date: 9-Mar-09 Calibration of TSP Sampler Orfice HVS Calibration [AW x (Pa/760) x (298/Ta)] 1/2 Y-ΔH (orifice), Qstd (CFM) ΔW Point [\Delta H x (Pa/760) x (298/Ta)]1/2 in. of water X - axis (HVS), in. of oil axis 12.2 3.46 59.44 8.7 2.92 2 10.2 3.16 54.29 7.2 2.66 7.0 2.62 44.85 5.0 2.21 4 2.24 38.19 3.1 1.74 5.1 5 3.1 1.74 1.8 29.62 1.33 By Linear Regression of Y on X Slope, mw = 0.0540 Intercept, bw :____ -0.2741 Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ Remarks: Date: Date:

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

File No. MA8001/18/0003 Operator: Station Outside Site Office (Western Portal) WK Next Due Date: 11-Oct-08 Date: 12-Aug-08 Serial No. 0723 A-01-18 Equipment No.: **Ambient Condition** 760.2 299 Pressure, Pa (mmHg) Temperature, Ta (K) Orifice Transfer Standard Information 0.0395 A-04-06 Slope, mc 0.0575 Intercept, bc Equipment No.: mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 13-Mar-06 Qstd = $\{[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} - bc\} / mc$ Next Calibration Date: 12-Mar-07 Calibration of TSP Sampler Orfice HVS Calibration [AW x (Pa/760) x (298/Ta)]1/2 Y-Qstd (CFM) ΔH (orifice), ΔW [ΔH x (Pa/760) x (298/Ta)]^{1/2} Point (HVS), in. of oil in. of water X - axis 11.6 3.40 58.45 2,70 1 2,34 2 9.5 3.08 52.83 5.5 2.07 2.68 45.91 4.3 3 7.2 2.7 1.64 4 4.5 2.12 36.15 1.26 5 2.9 1.70 28.88 1.6 By Linear Regression of Y on X Intercept, bw: -0.0820 Slope, mw = 0.0469 Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; $W = (mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) = 3.76$ Remarks: Checked by: 12 Signature: Signature: Date:

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

perator	Tisch	Orifice I.	D	0999	Pa (mm) -	746.76
					METER	ORFICE
LATE	VOLUME	VOLUME	DIFF	DIFF	DIFF	DIFF
OR "	START	STOP	VOLUME	TIME	Hg	H20
lun #	(m3)	(m3)	(m3)	(min)	(mm)	(in.)
7	NIN	NTD	1 00	1 2000	2.0	0.0
T	NA	NA	1.00	1.3890	3.2	2.00
2	NA	NA	1.00	0.9850	6.3	4.00
3	NA	NA	1.00	0.8810	7.8	5.00
4	NA	NA	1.00	0.8410	8.6	5.50
5	NA	NA	1.00	0.6950	12.5	8.00

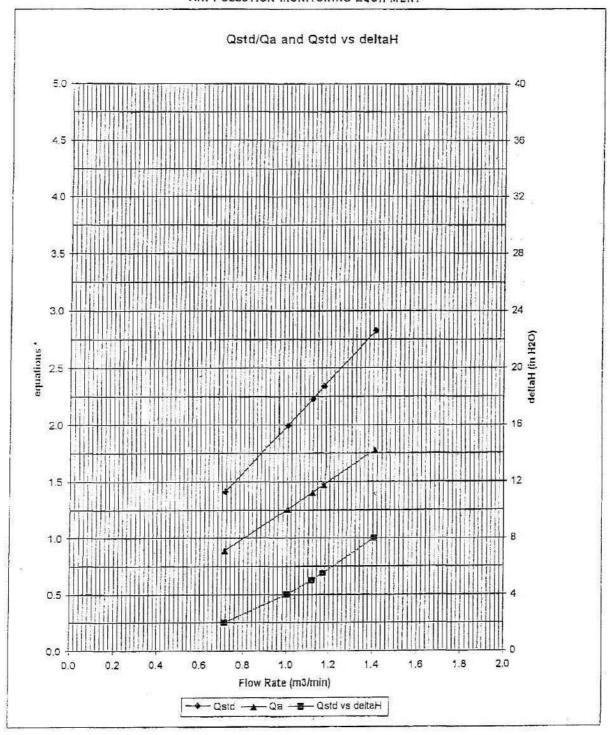
DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
0.9917 0.9876 0.9854 0.9844 0.9792	0.7139 1.0026 1.1185 1.1706 1.4090	1.4113 1.9959 2.2315 2.3405 2.8227		0.9957 0.9916 0.9894 0.9884 0.9832	0.7168 1.0067 1.1231 1.1753 1.4147	0.8874 1.2549 1.4030 1.4715 1.7747
Ostd slo intercep coeffici y axis =	t (b) = ent (r) =	2.03154 -0.03970 0.99999	Ta)]	Qa slop intercep coeffici y axis =	ent (b) = ent (r) =	1.27212 -0.02496 0.99999

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time


For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

* y-axis equations:

Qstd series:

$$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$$

Qa series:

$$\sqrt{(\Delta H (Ta / Pa))}$$

Unit C, 1/F., Goldlion Holdings Center. 13-15 Yuen Shun Circuit, Shatin, NT, HK. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.:	C/07/80502
Date of Issue:	2008-05-03
Date Received:	2008-05-02
Date Tested:	2008-05-02
Date Completed:	2008-05-03
Next Due Date:	2009-05-02

1 of 1

ATTN:

Mr. Henry Leung

Certificate of Calibration

Page:

Item for calibration:

Description : RS232 Integral Vane Digital Anemometer

Manufacturer : AZ Instrument

Model No. : 451104 Serial No. : 9020746 Equipment No. : A-03-01

Test conditions:

Room Temperature : 21 degree Celsius

Relative Humidity : 65%
Pressure : 101.3 kPa

Methodology:

The anemometer has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

1254 - 34 - 43140	Reference Set Point	Instrument Readings
Measuring Air Velocity, m/s	2.00	2.00
Temperature, °C	21.0	21.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE
Laboratory Manager

ATTN:

Room 1516 & 816, Technology Park 13 On Lai Street, Statin, N.T., Hong Kong, Tel: 2898 7388 Fax: 2898 7076 Website, http://www.wellub.com.ldt B-mail: wellub@wellub.com.ldt

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Mr. Henry Leung

Shatin, NT, Hong Kong

Test Report No.: C/080823/1B

Date of Issue: 2008-08-23

Date Received: 2008-08-22

Date Tested: 2008-08-23 Date Completed: 2008-08-23

Next Due Date: 2008-10-22

1 of 1

Next Due Date:

Page:

Certificate of Calibration

Item for Calibration:

Description : Laser Dust Monitor

Manufacturer : Sibata

Model No. : LD-3

Serial No. : 281835

Sensitivity (K) 1 CPM : 0.001 mg/m³ Sen. Adjustment Scale Setting : 666 CPM

Equipment No.

Test Conditions:

Room Temperature : 21 degree Celsius

Relative Humidity : 62%

Test Specifications & Methodology:

- 1. Instruction and Operation Manual High Volume Sampler, Andersen Samplers, Inc.
- 2. In-house method in according to the instruction manual: The Laser Dust Monitor was compared with a calibrated High Volume Sampler and the result was used to generate the Correlation Factor (CF) between the Laser Dust Monitor and High Volume Sampler.

: A-02-02

Results:

Correlation Factor (CF) 0.0037

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

TEST REPORT

APPLICANT: Cinotech Consultants Limited

1602-1610 Delta House,

3 On Yiu Street, Shatin, N.T.

 Test Report No.:
 C/N/70903-2

 Date of Issue:
 2007-09-03

 Date Received:
 2007-09-01

 Date Tested:
 2007-09-03

 Date Completed:
 2007-09-03

 Next Due Date:
 2008-09-02

ATTN: Mr. Henry Leung Page: 1 of 1

Certificate of Calibration

Item for calibration:

Description : Integrating Sound Level Meter

Manufacturer : Brüel & Kjær Model No. : B&K 2238 Serial No. : 2359303 Equipment No. : N-01-04

Test conditions:

Room Temperatre : 22 degree Celsius

Relative Humidity : 62%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Senior Chemist

WELLAB E Testing and Research カ Room 1516 & 816, Technology Park 18 On Lai Street, Shatin, N.T., Hong Kong Tel: 2898 7388 Fee: 2898 7076 Website: http://www.wellab.com.hk E-mail: wellab/gwellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/80903-2
Date of Issue: 2008-09-03
Date Received: 2008-09-02
Date Tested: 2008-09-02

Date Completed:

2008-09-02

Next Due Date:

2009-09-02

ATTN:

Mr. Henry Leung

Page:

1 of 1

Certificate of Calibration

Item for calibration:

Description

: Integrating Sound Level Meter

Manufacturer

: Brüel & Kjær

Model No.

: B&K 2238 : 2359303

Serial No. Equipment No.

: N-01-04

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 61%

Test Specifications:

Performance checking at 94 and 114 dB

Methodology:

In-house method, according to manufacturer instruction manual

Results:

Reference Set Point, dB	Instrument Readings, dB
94	94.0
114	114.0

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

APPLICANT: Cinotech Consultants Limited

1602-1610 Delta House,

3 On Yiu Street, Shatin, N.T.

Test Report No.:	C/N/70903-3
Date of Issue:	2007-09-03
Date Received:	2007-09-01
Date Tested:	2007-09-03
Date Completed:	2007-09-03
Next Due Date:	2008-09-02

ATTN:

Mr. Henry Leung

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: Brüel & Kjær

Model No.

: 4231

Serial No.

: 2412367

Equipment No.

: N-02-03

Test conditions:

Room Temperatre

: 22 degree Celsius

Relative Humidity

: 62%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE Senior Chemist

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/N/80903-3
Date of Issue: 2008-09-03
Date Received: 2008-09-02
Date Tested: 2008-09-02
Date Completed: 2008-09-03
Next Due Date: 2009-09-02

ATTN:

Mr. Henry Leung

Page:

1 of 1

Item for calibration:

Description

: Acoustical Calibrator

Manufacturer

: Brüel & Kjær

Model No.

: 4231

Serial No.

: 2412367

Equipment No.

: N-02-03

Test conditions:

Room Temperatre

: 21 degree Celsius

Relative Humidity

: 61%

Methodology:

The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard(s) and instrument(s) which are recommended by the manufacturer, or equivalent.

Results:

Sound Pressure Level (1kHz)	Measured SPL	Tolerance
At 94 dB SPL	94.0	94.0 ± 0.1 dB
At 114 dB SPL	114.0	114.0 ± 0.1 dB

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Room 1516 & 816, Technology Park 18 Cn Lai Street, Shatin, N.T., Hong Kong Tel: 2898 7538 Fax: 2898 7076 Website: http://www.wellab.com.hk B-mail: wellab@wellab.com.hk

TEST REPORT

APPLICANT: Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/W/80805-1
Date of Issue: 2008-08-06
Date Received: 2008-08-05
Date Tested: 2008-08-05
Date Completed: 2008-08-06
Next Due Date: 2008-11-05

ATTN:

Mr. Henry Leung

Page:

1 of 2

Certificate of Calibration

Item for calibration:

Description

: Sonde Environmental Monitoring System

Manufacturer

: YSI

Model No.

: 6820-C-M

Serial No.

: 02D0126AA

Equipment No.

: W.03.01

Project No.

: C013

Test conditions:

Room Temperature

: 23 degree Celsius

Relative Humidity

: 63%

Test Specifications:

Conductivity & Salinity Sensor, Model: 6560, S/N: 05A1209

1. Conductivity performance check with Potassium Chloride standard solution

2. Salinity performance check with Sodium Chloride standard solution

Dissolved Oxygen Sensor, Model: 6562, S/N: 04A0145

1. Performance check against Winkler titration

Turbidity Sensor, Model: 6136, S/N: 05A1610AJ

1. Calibration check with Formazin standard solution

pH Meter, Model: 6561, S/N: 01J

1. Calibration check with standard pH buffer

Depth Meter

1. Calibration check at 1m water level depth

Methodologies:

- 1. YSI 6-Series Sonde Environmental Monitoring System Instruction Manual
- 2. In-house method with reference to APHA and ISO standards

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

Test Report No.: C/W/80805-1
Date of Issue: 2008-08-06
Date Received: 2008-08-05
Date Tested: 2008-08-05
Date Completed: 2008-08-06
Next Due Date: 2008-11-05

Page:

2 of 2

Results:

1. Conductivity performance check

Specific Conductivity, µS/cm Salinity Meter (C1) Theoretical Value (C2)		Correction, µS/cm	Acceptable range
		D = C1 - C2	VATA:7 AAA774
1421	1420	2	1420 ± 20

2. Salinity Performance check

Salini	Salinity, ppt		Acceptable range
Instrument Reading	Theoretical Value		
30.0	30.0	0.0	30.0 ± 3

3. Dissolved Oxygen check

Oxygen level in	Dissolved Oxygen, mg O ₂ /L		Correction, mg	Acceptable
water at 20°C	D.O. Meter	Winkler Titration	O ₂ /L	range
Saturated	9.1	9.1	0.0	± 0.2
Half-saturated	5.6	5.6	0.0	± 0.2
Zero	0.0	0.0	0.0	± 0.2

4. Turbidity check

Turbidity value in solution, NTU	Calibration Value, NTU	Correction, NTU	Acceptable range
0.00	0.00	0.00	0.00 ± 0.05
100	100	0	100 ± 5

5. pH Meter check

Test Parameters	Performance characteristic	Acceptable range
Liquid junction error ΔpH _i , pH unit	0.01	Less than 0.05
Shift on stirring ΔpH _s , pH unit	0.01	Less than 0.02
Noise ΔpH _n , pH unit	0.00	Less than 0.02

6. Depth Meter check

Instrument Reading, m	Calibration Value, m	Correction, m	Acceptable range
1.0	1.00	0.00	1.00 ± 0.05

Room 1516 & 816, Technology Park 18 On Lai Street, Shatin, N.T., Hong Keng Tel: 2898 7388 Fax: 2898 7076 Website: http://www.wellab.com.hk B-mail: wellab@wellab.com.hk

TEST REPORT

Cinotech Consultants Limited APPLICANT:

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/W/80805-2 Date of Issue: 2008-08-06 Date Received: 2008-08-05 Date Tested: 2008-08-05 2008-08-06 Date Completed: Next Due Date:

ATTN:

Mr. Henry Leung

Page:

1 of 2

2008-11-05

Certificate of Calibration

Item for calibration:

Description

: Sonde Environmental Monitoring System

Manufacturer

: YSI

Model No.

: 6820-C-M

Serial No.

: 02D0293AA

Equipment No.

: W.03.02

Project No.

: C013

Test conditions:

Room Temperature

: 23 degree Celsius

Relative Humidity

: 63%

Test Specifications:

Conductivity & Salinity Sensor, Model: 6560, S/N: 02C0886

1. Conductivity performance check with Potassium Chloride standard solution

2. Salinity performance check with Sodium Chloride standard solution

Dissolved Oxygen Sensor, Model: 6562, S/N: 0261137

1. Performance check against Winkler titration

Turbidity Sensor, Model: 6136, S/N: 05F2030AQ

1. Calibration check with Formazin standard solution

pH Meter, Model: 6561, S/N: 02A

1. Calibration check with standard pH buffer

Depth Meter

1. Calibration check at 1m water level depth

Methodologies:

- 1. YSI 6-Series Sonde Environmental Monitoring System Instruction Manual
- 2. In-house method with reference to APHA and ISO standards

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT

Test Report No.: C/W/80805-2
Date of Issue: 2008-08-06
Date Received: 2008-08-05
Date Tested: 2008-08-05
Date Completed: 2008-08-06
Next Due Date: 2008-11-05

Page:

2 of 2

Results:

1. Conductivity performance check

Specific Conductivity, μS/cm		Correction, µS/cm	Acceptable range
Salinity Meter (C1)	Theoretical Value (C2)	D = C1 - C2	50/4
1420	1420	0	1420 ± 20

2. Salinity Performance check

Salini	c, ppt Correction, ppt		Acceptable range	
Instrument Reading	Theoretical Value	Action to the state of the stat		
30,1	30.0	0.1	30.0 ± 3	

3. Dissolved Oxygen check

Oxygen level in	Dissolved Oxygen, mg O ₂ /L		Correction, mg	Acceptable
water at 20°C	D.O. Meter	Winkler Titration	O ₂ /L	range
Saturated	9.0	9.0	0.0	± 0.2
Half-saturated	5.8	5.8	0.0	± 0.2
Zero	0.0	0.0	0.0	± 0.2

4. Turbidity check

Turbidity value in solution, NTU	Calibration Value, NTU	Correction, NTU	Acceptable range
0.00	0.00	0.00	0.00 ± 0.05
100	100	0	100 ± 5

5. pH Meter check

Test Parameters	Performance characteristic	Acceptable range
Liquid junction error ΔpH_i , pH unit	0.01	Less than 0.05
Shift on stirring ΔpH _s , pH unit	0.01	Less than 0.02
Noise ΔpH _n , pH unit	0.01	Less than 0.02

6. Depth Meter check

Instrument Reading, m	Calibration Value, m	Correction, m	Acceptable range
1.0	1.00	0.00	1.00 ± 0.05

APPENDIX C QUALITY CONTROL REPORTS FOR SS LABORATORY ANALYSIS

APPLICANT: Cinotech Consultants Limited

Rm1710, Technology Park,

18 On Lai Street, Shatin, N.T.

Laboratory No.: 07222

Date of Issue: 2008/09/02

Date Received: 2008/09/01 Date Tested: 2008/09/01

1 of 1

Date Completed: 2008/09/02

Page:

ATTN: Mr. Henry Leung

Sampling Site: Design and Construction of Hong Kong West Drainage Tunnel

Project No.: MA8001 Sampling Date: 2008/09/01

Number of Sample: 58

Custody No.: MA8001/80901

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1, Trial 2, Difference,			
	mg/L	mg/L	%	
Ceme	7	7	2	93

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

APPLICANT: Cinotech Consultants Limited

Rm1710, Technology Park,

18 On Lai Street, Shatin, N.T.

Laboratory No.: 07229

Date of Issue: 2008/09/04

Date Received: 2008/09/03

Date Tested: 2008/09/03 Date Completed: 2008/09/04

ATTN: Mr. Henry Leung Page: 1 of 1

Sampling Site: Design and Construction of Hong Kong West Drainage Tunnel

Project No.: MA8001 Sampling Date: 2008/09/03

Number of Sample: 58

Custody No.: MA8001/80903

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1, Trial 2, Difference,			
	mg/L mg/L %			
Ceme	4	4	13	96

PREPARED AND CHECKED BY:

atiral le

For and On Behalf of WELLAB Ltd.

PATRICK TSE

ATTN: Mr. Henry Leung

TEST REPORT QC REPORT

APPLICANT: Cinotech Consultants Limited

Rm1710, Technology Park,

18 On Lai Street, Shatin, N.T.

Laboratory No.: 07244

Date of Issue: 2008/09/08

Date Received: 2008/09/05

Date Tested: 2008/09/05 Date Completed: 2008/09/08

Page: 1 of 1

Sampling Site: Design and Construction of Hong Kong West Drainage Tunnel

Project No.: MA8001 Sampling Date: 2008/09/05

Number of Sample: 58

Custody No.: MA8001/80905

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1, Trial 2, Difference,			
	mg/L	mg/L	%	
CEse	19	20	6	93

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

APPLICANT: Cinotech Consultants Limited

Rm1710, Technology Park,

18 On Lai Street, Shatin, N.T.

Laboratory No.: 07256

Date of Issue: 2008/09/09

Date Received: 2008/09/08

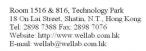
Date Tested: 2008/09/08 Date Completed: 2008/09/09

ATTN: Mr. Henry Leung Page: 1 of 1

Sampling Site: Design and Construction of Hong Kong West Drainage Tunnel

Project No.: MA8001 Sampling Date: 2008/09/08

Number of Sample: 58


Custody No.: MA8001/80908

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1, Trial 2, Difference,			
	mg/L	mg/L	%	
CEse	9	10	8	102

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

APPLICANT: Cinotech Consultants Limited

Rm1710, Technology Park,

18 On Lai Street, Shatin, N.T.

Laboratory No.: 07269

Date of Issue: 2008/09/11

Date Received: 2008/09/10

Date Tested: 2008/09/10 Date Completed: 2008/09/11

Page: 1 of 1

ATTN: Mr. Henry Leung

Sampling Site: Design and Construction of Hong Kong West Drainage Tunnel

Project No.: MA8001 Sampling Date: 2008/09/10

Number of Sample: 58

Custody No.: MA8001/80910

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1, Trial 2, Difference,			
	mg/L mg/L %			
I1mf	12	11	9	109

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

APPLICANT: Cinotech Consultants Limited

Rm1710, Technology Park,

18 On Lai Street, Shatin, N.T.

Laboratory No.: 07280

Date of Issue: 2008/09/16

Date Received: 2008/09/12

Date Tested: 2008/09/12 Date Completed: 2008/09/16

1 of 1

ATTN: Mr. Henry Leung

Sampling Site:

Design and Construction of Hong Kong West Drainage Tunnel

Page:

Project No.: MA8001 Sampling Date: 2008/09/12

Number of Sample: 58

Custody No.: MA8001/80912

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1, Trial 2, Difference,			
	mg/L	mg/L	%	
CEbe	38	39	1	109

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

APPLICANT: Cinotech Consultants Limited

Rm1710, Technology Park,

18 On Lai Street, Shatin, N.T.

Laboratory No.: 07292

Date of Issue: 2008/09/17

Date Received: 2008/09/16

Date Tested: 2008/09/16 Date Completed: 2008/09/17

ATTN: Mr. Henry Leung Page: 1 of 1

Sampling Site: Design and Construction of Hong Kong West Drainage Tunnel

Project No.: MA8001 Sampling Date: 2008/09/16

Number of Sample: 58

Custody No.: MA8001/80916

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1, Trial 2, Difference,			
	mg/L	mg/L	%	
Intake A se	9	8	8	107

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

ATTN: Mr. Henry Leung

TEST REPORT OC REPORT

APPLICANT: Cinotech Consultants Limited

Rm1710, Technology Park,

18 On Lai Street, Shatin, N.T.

Laboratory No.: 07302

Date of Issue: 2008/09/19

Date Received: 2008/09/18

Date Tested: 2008/09/18 Date Completed: 2008/09/19

Page: 1 of 1

Sampling Site: Design and Construction of Hong Kong West Drainage Tunnel

Project No.: MA8001 Sampling Date: 2008/09/18

Number of Sample: 58

Custody No.: MA8001/80916

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1, Trial 2, Difference,			
	mg/L	mg/L	%	
Intake A se	16	18	17	99

PREPARED AND CHECKED BY:
For and On Behalf of WELLAB Ltd.

PATRICK TSE

APPLICANT: Cinotech Consultants Limited

Rm1710, Technology Park,

18 On Lai Street, Shatin, N.T.

Laboratory No.: 07318

Date of Issue: 2008/09/23

Date Received: 2008/09/20 Date Tested: 2008/09/20

Date Completed: 2008/09/23

ATTN: Mr. Henry Leung Page: 1 of 1

Sampling Site: Design and Construction of Hong Kong West Drainage Tunnel

Project No.: MA8001 Sampling Date: 2008/09/20

Number of Sample: 58

Custody No.: MA8001/80920

Total Suspended Solids	Duplicate Analysis			QC Recovery, %
Sampling Point	Trial 1, Trial 2, Difference,			
	mg/L	mg/L	%	
Intake A se	12	13	6	103

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT **QC REPORT**

APPLICANT: Cinotech Consultants Limited

Rm1710, Technology Park,

18 On Lai Street, Shatin, N.T.

Laboratory No.: 07319

Date of Issue: 2008/09/23

Date Received: 2008/09/22

Date Tested: 2008/09/22

Date Completed: 2008/09/23

1 of 1

ATTN: Mr. Henry Leung

Sampling Site:

Sampling Date:

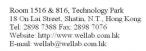
Design and Construction of Hong Kong West Drainage Tunnel

Page:

MA8001 Project No.: 2008/09/22

Number of Sample: 58

Custody No.: MA8001/80922



Total Suspended Solids	Duj	QC Recovery, %		
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
Intake A se	10	10	7	98

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT QC REPORT

APPLICANT: Cinotech Consultants Limited

Rm1710, Technology Park,

18 On Lai Street, Shatin, N.T.

Laboratory No.: 07329

Date of Issue: 2008/09/25

Date Received: 2008/09/24

Date Tested: 2008/09/24 Date Completed: 2008/09/25

ATTN: Mr. Henry Leung Page: 1 of 1

Sampling Site: Design and Construction of Hong Kong West Drainage Tunnel

Project No.: MA8001 Sampling Date: 2008/09/24

Number of Sample: 28

Custody No.: MA8001/80924

Total Suspended Solids	Duj	QC Recovery, %		
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
I2bf	46	43	6	91

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

ATTN: Mr. Henry Leung

TEST REPORT QC REPORT

APPLICANT: Cinotech Consultants Limited

Rm1710, Technology Park,

18 On Lai Street, Shatin, N.T.

Laboratory No.: 07349

Date of Issue: 2008/09/29

Date Received: 2008/09/26

Date Tested: 2008/09/26 Date Completed: 2008/09/29

Page: 1 of 1

Sampling Site: Design and Construction of Hong Kong West Drainage Tunnel

Project No.: MA8001 Sampling Date: 2008/09/26

Number of Sample: 58

Custody No.: MA8001/80926

Total Suspended Solids	Duj	olicate Analy	QC Recovery, %	
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
Intake A se	11	12	15	101

PREPARED AND CHECKED BY:
For and On Behalf of WELLAB Ltd.

PATRICK TSE

TEST REPORT QC REPORT

APPLICANT: Cinotech Consultants Limited

Rm1710, Technology Park,

18 On Lai Street, Shatin, N.T.

Laboratory No.: 07359

Date of Issue: 2008/09/30

Date Received: 2008/09/29

Date Tested: 2008/09/29 Date Completed: 2008/09/30

ATTN: Mr. Henry Leung Page: 1 of 1

Sampling Site: Design and Construction of Hong Kong West Drainage Tunnel

Project No.: MA8001 Sampling Date: 2008/09/29

Number of Sample: 58

Custody No.: MA8001/80929

Total Suspended Solids	Duj	QC Recovery, %		
Sampling Point	Trial 1,	Trial 2,	Difference,	
	mg/L	mg/L	%	
Intake A se	6	6	2	98

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

Drainage Improvement in Northern Hong Kong Island - Hong Kong West Drainage Tunnel Impact Air and Noise Monitoring Schedule for September 2008 (Eastern Portal)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-Sep	2-Sep	3-Sep	4-Sep	5-Sep	6-Sep
	1 hr TSP Noise	1 hr TSP			1 hr TSP	
				24 hrs TSP		
7-Sep	8-Sep	9-Sep	10-Sep	11-Sep	12-Sep	13-Sep
	1 hr TSP Noise	1 hr TSP	24 km, TSD	1 hr TSP		
	1.7 0		24 hrs TSP			
14-Sep	15-Sep	16-Sep	17-Sep	18-Sep	19-Sep	20-Sep
			1 hr TSP	1 hr TSP Noise	1 hr TSP	
		24 hrs TSP				
21-Sep	22-Sep	23-Sep	24-Sep	25-Sep	26-Sep	27-Sep
	24 hrs TSP	1 hr TSP	1 hr TSP	1 hr TSP Noise		24 hrs TSP
28-Sep	29-Sep	30-Sep	1-Oct	2-Oct	3-Oct	4-Oct
	1 hr TSP	1 hr TSP			1 hr TSP Noise 24 hrs TSP	

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Station

Noise Monitoring Station

AQ1 - True Light Middle School of HK

NC1 - True Light Middle School of HK

NC2 - The Legend

Drainage Improvement in Northern Hong Kong Island - Hong Kong West Drainage Tunnel Impact Air and Noise Monitoring Schedule for September 2008 (Western Portal)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-Sep	2-Sep	3-Sep	4-Sep	5-Sep	6-Sep
	1 hr TSP Noise	1 hr TSP			1 hr TSP	
				24 hrs TSP		
7-Sep	8-Sep	9-Sep	10-Sep	11-Sep	12-Sep	13-Sep
	1 hr TSP Noise	1 hr TSP	24 km, TSD	1 hr TSP		
	1.7 0		24 hrs TSP			
14-Sep	15-Sep	16-Sep	17-Sep	18-Sep	19-Sep	20-Sep
			1 hr TSP	1 hr TSP Noise	1 hr TSP	
		24 hrs TSP				
21-Sep	22-Sep	23-Sep	24-Sep	25-Sep	26-Sep	27-Sep
	24 hrs TSP	1 hr TSP	1 hr TSP	1 hr TSP Noise		24 hrs TSP
28-Sep	29-Sep	30-Sep	1-Oct	2-Oct	3-Oct	4-Oct
	1 hr TSP	1 hr TSP			1 hr TSP Noise 24 hrs TSP	

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Station

Noise Monitoring Station

AQ2 - Outside Aegean Terrace (1 hour TSP)

NC3 - Outside Aegean Terrace

AQ3 - Outside Site Office at Western Portal (24 hours TSP)

Drainage Improvement in Northern Hong Kong Island - Hong Kong West Drainage Tunnel Impact Water Quality Monitoring Schedule for September 2008

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
31-Aug	1-Se	2-Sep	3-Sep	4-Sep	5-Sep	6-Sep
	Mid-Flood 08:00 Mid-Ebb 13:19		Mid-Flood 08:13 Mid-Ebb 14:25		Mid-Flood 09:41 Mid-Ebb 15:27	
7-Sep	8-Se	9-Sep	10-Sep	11-Sep	12-Sep	13-Sep
	Mid-Ebb 08:00 Mid-Flood 16:30		Mid-Ebb 08:00 Mid-Flood 17:00		Mid-Ebb 10:28 Mid-Flood 17:59	
14-Sep	15-Sej	16-Sep	17-Sep	18-Sep	19-Sep	20-Sep
		Mid-Flood 08:00 Mid-Ebb 12:53		Mid-Flood 08:08 Mid-Ebb 14:07		Mid-Flood 09:57 Mid-Ebb 15:30
21-Sep	22-Se	23-Sep	24-Sep	25-Sep	26-Sep	27-Sep
	Mid-Ebb 08:00 Mid-Flood 16:00		(cancelled) Mid-Ebb 08:12 Mid-Flood 16:24		Mid-Ebb 10:16 Mid-Flood 17:18	
28-Sep	29-Se	30-Sep	1-Oct	2-Oct	3-Oct	4-Oct
	Mid-Ebb 12:20 Mid-Flood 18:00			Mid-Flood 08:05 Mid-Ebb 13:57		Mid-Flood 09:32 Mid-Ebb 14:52

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

NA indicated favourable tide occurs during non-working hours

Drainage Improvement in Northern Hong Kong Island - Hong Kong West Drainage Tunnel Tentative Impact Air and Noise Monitoring Schedule for October 2008 (Eastern Portal)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	29-Sep	30-Sep	1-Oct	2-Oct	3-Oct	4-Oct
	1 hr TSP	1 hr TSP			1 hr TSP Noise 24 hrs TSP	
5-Oct	6-Oct	7-Oct	8-Oct	9-Oct	10-Oct	11-Oct
	1 hr TSP			1 hr TSP Noise 24 hrs TSP	1 hr TSP	
12-Oct	13-Oct	14-Oct	15-Oct	16-Oct	17-Oct	18-Oct
		1 hr TSP Noise	1 hr TSP 24 hrs TSP	1 hr TSP		
19-Oct	20-Oct	21-Oct	22-Oct	23-Oct	24-Oct	25-Oct
		1 hr TSP 24 hrs TSP	1 hr TSP	1 hr TSP Noise		
26-Oct	27-Oct	28-Oct	29-Oct	30-Oct	31-Oct	1-Nov
	24 hrs TSP	1 hr TSP	1 hr TSP		1 hr TSP Noise	

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Station

Noise Monitoring Station

AQ1 - True Light Middle School of HK

NC1 - True Light Middle School of HK

NC2 - The Legend

Drainage Improvement in Northern Hong Kong Island - Hong Kong West Drainage Tunnel Tentative Impact Air and Noise Monitoring Schedule for October 2008 (Western Portal)

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	29-Sep	30-Sep	1-Oct	2-Oct	3-Oct	4-Oct
	1 hr TSP	1 hr TSP			1 hr TSP Noise 24 hrs TSP	
5-Oct	6-Oct	7-Oct	8-Oct	9-Oct	10-Oct	11-Oct
	1 hr TSP			1 hr TSP Noise 24 hrs TSP	1 hr TSP	
12-Oct	13-Oct	14-Oct	15-Oct	16-Oct	17-Oct	18-Oct
		1 hr TSP Noise	1 hr TSP 24 hrs TSP	1 hr TSP		
19-Oct	20-Oct	21-Oct	22-Oct	23-Oct	24-Oct	25-Oct
		1 hr TSP 24 hrs TSP	1 hr TSP	1 hr TSP Noise		
26-Oct	27-Oct	28-Oct	29-Oct	30-Oct	31-Oct	1-Nov
	24 hrs TSP	1 hr TSP	1 hr TSP		1 hr TSP Noise	

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Station

Noise Monitoring Station

AQ2 - Outside Aegean Terrace (1 hour TSP)

NC3 - Outside Aegean Terrace

AQ3 - Outside Site Office at Western Portal (24 hours TSP)

Drainage Improvement in Northern Hong Kong Island - Hong Kong West Drainage Tunnel Tentative Impact Water Quality Monitoring Schedule for October 2008

Sunday	Monday		Tuesday	Wednesday	Thursday	Friday	Saturday
28-Sep		29-Sep	30-Sep	1-Oct	2-Oct	3-Oct	4-Oc
					Mid-Flood 08:05		Mid-Flood 09:32
					Mid-Ebb 13:57		Mid-Ebb 14:52
					13.37		11.02
5-Oct		6-Oct	7-Oct	8-Oct	9-Oct	10-Oct	11-Oct
		- 1					
	Mid-Flood	08:00		Mid-Ebb 08:00		Mid-Ebb 08:52	
	Mid-Ebb	17:00		Mid-Flood N/A		Mid-Flood 16:39	
		- 1					
12-Oct		13-Oct	14-Oct	15-Oct	16-Oct	17-Oct	18-Oct
	Mid-Ebb	11:04		Mid-Ebb 12:26		Mid-Flood 08:08	
	Mid-Flood	17:24		Mid-Flood 18:00		Mid-Ebb 13:48	
19-Oct		20-Oct	21-Oct	22-Oct	23-Oct	24-Oct	25-Oct
	Mid-Flood	11:35		Mid-Ebb 08:00		Mid-Ebb 08:49	
	Mid-Ebb	16:02		Mid-Flood N/A		Mid-Flood 15:53	
26-Oct		27-Oct	28-Oct	29-Oct	30-Oct	31-Oct	1-Nov
	Mid-Ebb	11:16		Mid-Ebb 12:26		Mid-Flood 08:00	
	Mid-Flood	17:09		Mid-Flood 17:51		Mid-Ebb 13:27	
İ							

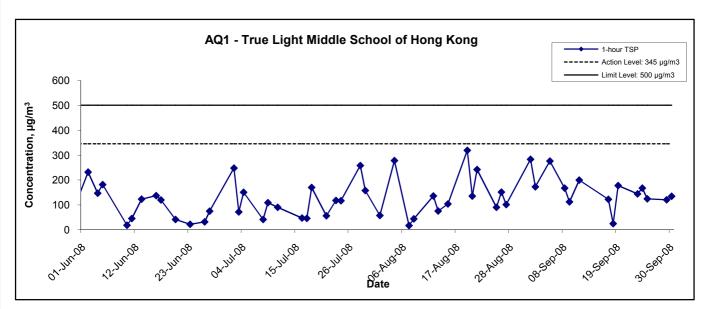
The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

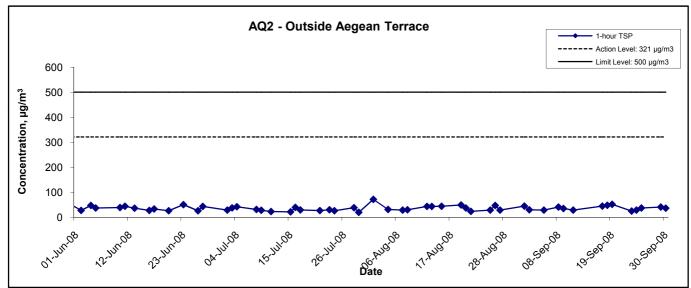
NA indicated favourable tide occurs during non-working hours

APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix E - 1-hour TSP Monitoring Results

Station AQ1 (True Light Middle School of Hong Kong)


Date	Sampling	Weather	Air	Atmospheric	Filter We	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Date	Time	Condition	Temp. (K)	Pressure (Pa)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m^3)	(µg/m ³)
1-Sep-08	13:45	Sunny	306.0	758.8	2.8936	2.9142	0.0206	1879.2	1880.2	1.0	1.21	1.21	1.21	72.7	283.2
2-Sep-08	09:00	Cloudy	300.3	761.0	2.8986	2.9113	0.0127	1880.2	1881.2	1.0	1.23	1.23	1.23	73.6	172.5
5-Sep-08	16:00	Cloudy	299.7	759.9	2.8401	2.8606	0.0205	1905.2	1906.3	1.0	1.23	1.23	1.23	74.4	275.6
8-Sep-08	09:00	Sunny	301.3	762.4	2.9137	2.9260	0.0123	1906.3	1907.3	1.0	1.23	1.23	1.23	73.6	167.2
9-Sep-08	09:00	Sunny	301.9	761.1	2.8684	2.8766	0.0082	1907.3	1908.3	1.0	1.22	1.22	1.22	73.4	111.6
11-Sep-08	15:00	Sunny	306.4	757.1	2.8095	2.8240	0.0145	1932.3	1933.3	1.0	1.21	1.21	1.21	72.8	199.2
17-Sep-08	14:00	Sunny	305.7	757.3	2.8676	2.8765	0.0089	1957.3	1958.3	1.0	1.21	1.21	1.21	72.9	122.1
18-Sep-08	09:00	Sunny	300.1	760.2	2.8672	2.8690	0.0018	1958.3	1959.3	1.0	1.23	1.23	1.23	73.6	24.5
19-Sep-08	09:00	Sunny	299.3	761.5	2.8757	2.8888	0.0131	1959.3	1960.3	1.0	1.23	1.23	1.23	73.7	177.6
23-Sep-08	13:00	Cloudy	299.8	756.3	2.8434	2.8540	0.0106	1984.3	1985.3	1.0	1.22	1.22	1.22	73.5	144.3
24-Sep-08	09:00	Cloudy	299.7	756.2	2.8245	2.8368	0.0123	1985.3	1986.3	1.0	1.23	1.22	1.22	73.5	167.4
25-Sep-08	09:00	Cloudy	302.0	760.1	2.8994	2.9085	0.0091	1986.3	1987.3	1.0	1.22	1.22	1.22	73.4	124.0
29-Sep-08	15:00	Sunny	303.8	756.9	2.8617	2.8705	0.0088	2011.3	2012.3	1.0	1.22	1.22	1.22	73.1	120.4
30-Sep-08	09:00	Sunny	299.7	761.8	2.8626	2.8725	0.0099	2012.3	2013.3	1.0	1.23	1.23	1.23	73.7	134.3
														Min	24.5
														Max	283.2
														Average	158.9


MA8001/App E - 1hr TSP Cinotech

Appendix E - 1-hour TSP Monitoring Results

station AQ2 (Out	side Aegean	Terrace)	
Date	Time	Weather	Particulate Concentration (µg/m³)
1-Sep-08	16:15	Sunny	45.2
2-Sep-08	15:20	Cloudy	30.4
5-Sep-08	16:25	Cloudy	29.5
8-Sep-08	13:00	Sunny	41.7
9-Sep-08	15:00	Sunny	35.8
11-Sep-08	11:00	Sunny	29.2
17-Sep-08	15:10	Sunny	45.5
18-Sep-08	13:00	Sunny	48.5
19-Sep-08	13:00	Sunny	52.6
23-Sep-08	11:00	Cloudy	25.2
24-Sep-08	13:00	Cloudy	29.4
25-Sep-08	16:00	Cloudy	37.5
29-Sep-08	16:15	Sunny	41.3
30-Sep-08	15:00	Sunny	37.2
		Average	37.8
		Maximum	52.6
		Minimum	25.2

1-hr TSP Concentration Levels

Title Contract No. DC/2007/10
Design and Construction of Hong Kong West Drainage Tunnel
Graphical Presentation of 1-hour TSP Monitoring Results

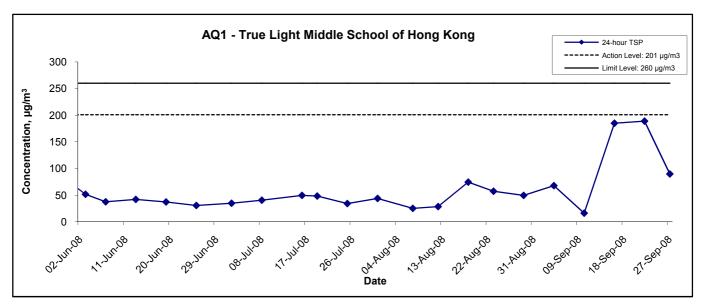
Scale N.T.S Project No. MA8001

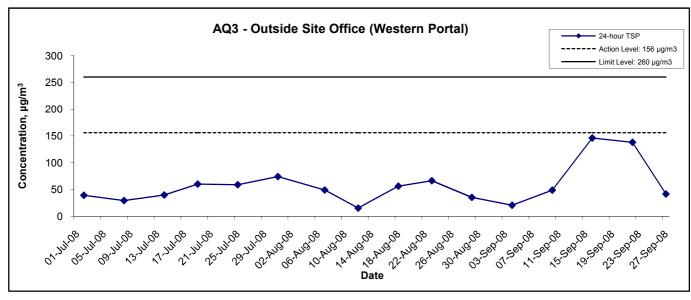
Date Sep 08 Appendix E

APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix F - 24-hour TSP Monitoring Results

Station AQ1 - True Light Middle School of Hong Kong


Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure (Pa)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	$(\mu g/m^3)$
4-Sep-08	Cloudy	300.9	760.8	2.8747	2.9948	0.1201	1881.2	1905.2	24.0	1.23	1.23	1.23	1765.0	68.0
10-Sep-08	Sunny	302.6	760.3	2.8564	2.8853	0.0289	1908.3	1932.3	24.0	1.22	1.22	1.22	1760.1	16.4
16-Sep-08	Sunny	303.2	757.5	2.8547	3.1793	0.3246	1933.3	1957.3	24.0	1.22	1.22	1.22	1755.7	184.9
22-Sep-08	Cloudy	303.9	756.1	2.8495	3.1804	0.3309	1960.3	1984.3	24.0	1.22	1.22	1.22	1752.5	188.8
27-Sep-08	Sunny	302.6	760.7	2.8315	2.9896	0.1581	1987.3	2011.3	24.0	1.22	1.22	1.22	1760.5	89.8
													Min	16.4
													Max	188.8
													Average	109.6


Station AQ3 - Outside Site Office (Western Portal)

Start Date	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Start Date	Condition	Temp. (K)	Pressure (Pa)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	$(\mu g/m^3)$
4-Sep-08	Cloudy	300.9	760.8	2.8816	2.9182	0.0366	6083.2	6107.2	24.0	1.22	1.22	1.22	1757.7	20.8
10-Sep-08	Sunny	302.6	760.3	2.8360	2.9221	0.0861	6107.2	6131.2	24.0	1.22	1.22	1.22	1752.5	49.1
16-Sep-08	Sunny	303.2	757.5	2.8279	3.0833	0.2554	6131.2	6155.2	24.0	1.21	1.21	1.21	1747.7	146.1
22-Sep-08	Cloudy	303.9	756.1	2.8483	3.0895	0.2412	6155.2	6179.2	24.0	1.21	1.21	1.21	1744.2	138.3
27-Sep-08	Sunny	302.6	760.7	2.8536	2.9267	0.0731	6179.2	6203.2	24.0	1.22	1.22	1.22	1752.9	41.7
													Min	20.8
													Max	146.1
													Average	79.2

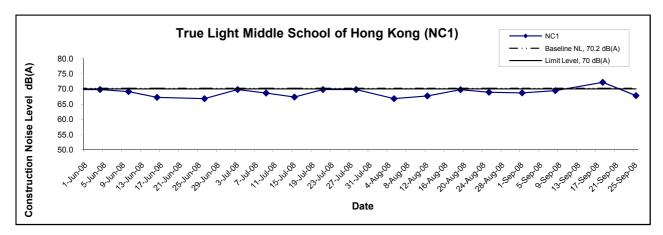
MA8001/App F - 24hr TSP

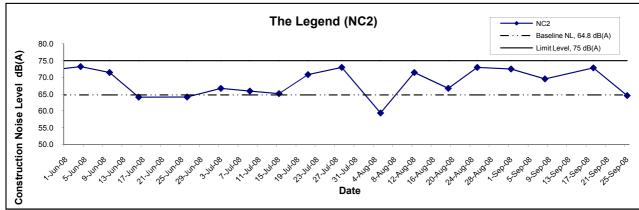
24-hr TSP Concentration Levels

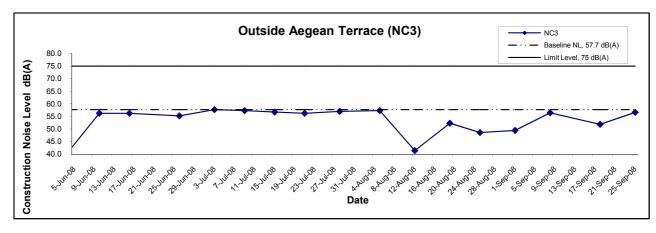
Title	Contract No. DC/2007/10
	Design and Construction of Hong Kong West Drainage Tunnel
	Graphical Presentation of 24-hour TSP Monitoring Results

Scale	N.T.S	Project No.	MA800
Date	Sep 08	Appendi	x F

APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATION


Appendix G - Noise Monitoring Results


Location NC1	- True Light	t Middle Scho	ol of Hong I	Kong			
					Unit:	dB (A) (30-min)	
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}
1-Sep-08	13:45	Sunny	68.7	71.0	65.5		68.7, Measured ≤ Baseline
8-Sep-08	15:00	Sunny	69.4	72.5	66.5	70.2	69.4, Measured ≤ Baseline
18-Sep-08	16:00	Sunnu	74.3	75.5	72.0	70.2	72.2
25-Sep-08	13:00	Cloudy	67.8	69.5	65.0		67.8, Measured ≤ Baseline


Location NC2	- The Lege	nd					
					Unit:	dB (A) (30-min)	
Date	Time	Weather	Meas	sured Noise	Level	Baseline Level	Construction Noise Level
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}
1-Sep-08	08 15:05 S		73.2	75.5	66.0		72.5
8-Sep-08	15:45	Sunny	70.8	74.5	64.5	64.8	69.5
18-Sep-08	16:45	Sunny	73.5	75.0	71.0	04.0	72.9
25-Sep-08	13:45	Cloudy	67.7	68.5	66.0		64.6

Location NC3	- Outside A	Aegean Terra	се				
					Unit:	dB (A) (30-min)	
Date	Time	Weather	Meas	sured Noise I	Level	Baseline Level	Construction Noise Level
			L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}
1-Sep-08	16:15	Sunny	58.3	60.0	56.5		49.4
8-Sep-08	13:00	Sunny	60.1	61.5	52.5	57.7	56.4
18-Sep-08	13:00	Sunny	58.7	60.5	55.0	57.7	51.8
25-Sep-08	16:00	Cloudy	60.2	62.5	57.5		56.6

Noise Levels

Title Contract No. DC/2007/10
Design and Construction of Hong Kong West Drainage Tunnel
Graphical Presentation of Construction Noise Monitoring
Results

 Scale
 Project

 N.T.S
 No.
 MA8001

 Date
 Appendix
 G

APPENDIX H
WATER QUALITY MONITORING
RESULTS AND GRAPHICAL
PRESENTATION

Water Quality Monitoring Results at CE - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	th (m)	Water Temp	erature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	1	Γurbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	ui (iii <i>)</i>	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA⁺
				Surface	1	26.7 26.7	26.7	7.2 7.3	7.3	28.4 28.4	28.4	97.3 96.9	97.1	7.0 6.9	7.0		4.0 4.1	4.1		5.0 5.0	5.0	
1-Sep-08	Sunny	Calm	13:33	Middle	5.5	26.8 26.8	26.8	7.8 8.1	8.0	29.0 29.0	29.0	89.8 91.5	90.7	6.1 6.2	6.2	6.6	3.3	3.3	3.5	7.0 7.0	7.0	7.0
				Bottom	10	26.9 26.9	26.9	7.7 6.9	7.3	29.0 29.0	29.0	96.6 96.8	96.7	6.6 6.6	6.6	6.6	3.3 3.1	3.2		9.0 9.0	9.0	
				Surface	1	27.9	27.9	7.7	7.6	26.9	26.9	98.7	102.5	7.7	7.8		4.4	4.4		5.0	5.0	
2 0 00	Common	Calm	14:00	Middle	5.5	27.9 27.7	27.7	7.5 8.2	8.1	26.9 27.1	27.1	106.2 112.9	112.8	7.8 8.3	8.3	8.1	4.4 3.0	3.0	3.5	5.0 4.0	4.0	5.0
3-Sep-08	Sunny	Caim	14:00			27.7 27.7		7.9 7.3		27.1 27.1		112.7 112.3		8.3 8.3			3.0 2.9		3.5	4.0 6.0		5.0
				Bottom	10	27.7	27.7	7.3	7.3	27.1	27.1	112.3	112.3	8.3	8.3	8.3	3.0	3.0		6.0	6.0	
				Surface	1	27.4 27.6	27.5	7.8 6.9	7.4	28.4 28.3	28.4	99.1 99.5	99.3	6.8 6.9	6.9	7.2	3.1 3.2	3.2		19.0 19.0	19.0]
5-Sep-08	Rainy	Calm	16:01	Middle	5.5	26.9 26.8	26.9	8.4 8.4	8.4	28.9 29.1	29.0	110.2 108.5	109.4	7.5 7.2	7.4		3.8 4.0	3.9	3.9	22.0 22.0	22.0	20.3
				Bottom	10	26.3 26.2	26.3	7.1 8.0	7.6	29.5 29.5	29.5	90.8 90.1	90.5	6.8 6.6	6.7	6.7	4.8 4.6	4.7		20.0 20.0	20.0	
				Surface	1	27.5 27.8	27.7	8.2 7.4	7.8	28.7 28.4	28.6	99.3 111.8	105.6	6.9 8.1	7.5		3.2 3.5	3.4		9.0 9.0	9.0	
8-Sep-08	Sunny	Calm	08:34	Middle	5.5	27.0 27.0 27.0	27.0	8.8 8.8	8.8	29.0 29.2	29.1	122.5 118.8	120.7	8.6 8.3	8.5	8.0	4.0 4.2	4.1	4.1	11.0 11.0	11.0	10.8
				Bottom	10	26.5	26.5	7.5	8.0	29.7	29.7	91.1	90.7	6.3	6.3	6.3	4.9	4.8		13.0	12.5	
				Surface	1	26.4 27.7	27.8	8.4 8.1	7.7	29.6 28.7	28.7	90.3 99.3	105.5	6.2 7.1	7.6		4.7 3.3	3.4		12.0 11.0	11.0	
10-Sep-08	Sunny	Calm	08:34	Middle	5.5	27.8 27.2	27.2	7.2 8.7	8.8	28.6 29.2	29.3	111.7 122.3	120.5	8.0 8.8	8.6	8.1	3.4 4.1	4.2	4.2	11.0 13.0	13.0	13.0
10-Зер-06	Sullily	Callii	06.34			27.1 26.6		8.9 7.5		29.4 29.8		118.6 80.9		8.3 6.1		0.0	4.3 4.9		4.2	13.0 15.0		13.0
				Bottom	10	26.5 27.4	26.6	8.3 7.8	7.9	29.6 28.5	29.7	80.3 110.1	80.6	5.9 7.4	6.0	6.0	4.9 3.3	4.9		15.0 32.0	15.0	—
				Surface	1	27.4	27.4	7.0	7.4	28.5	28.5	108.8	109.5	7.3	7.4	6.9	3.3	3.3		32.0	32.0	ļ
12-Sep-08	Sunny	Calm	11:06	Middle	5.5	25.5 25.4	25.5	8.3 8.4	8.4	31.2 31.3	31.3	98.9 85.7	92.3	6.8 5.9	6.4		4.0 4.1	4.1	4.1	22.0 22.0	22.0	30.7
				Bottom	10	25.3 25.3	25.3	7.2 8.0	7.6	31.5 31.5	31.5	71.2 71.4	71.3	4.9 4.9	4.9	4.9	4.9 4.8	4.9		38.0 38.0	38.0	
				Surface	1	27.2 27.4	27.3	7.7 6.8	7.3	28.2 28.2	28.2	98.8 111.2	105.0	6.7 7.8	7.3	7.7	2.9 2.9	2.9		13.0 13.0	13.0	
16-Sep-08	Sunny	Calm	13:29	Middle	5.5	26.8 26.6	26.7	8.3 8.5	8.4	28.7 28.9	28.8	122.0 118.3	120.2	8.3 7.9	8.1	7.7	3.7 3.9	3.8	3.7	14.0 14.0	14.0	13.7
				Bottom	10	26.0 25.9	26.0	7.1 8.0	7.6	29.4 29.3	29.4	91.7 91.4	91.6	6.2	6.2	6.2	4.5 4.3	4.4		14.0 14.0	14.0	
				Surface	1	28.0	28.0	8.2	7.8	30.2	30.2	103.4	102.7	6.8	6.8		3.2	3.3		13.0	13.0	
18-Sep-08	Sunny	Calm	14:46	Middle	5.5	28.0 27.2	27.2	7.4 8.8	8.9	30.2 30.6	30.6	101.9 91.2	91.5	6.7 6.1	6.2	6.5	3.4	4.1	4.1	13.0 7.0	7.0	12.3
	,			Bottom	10	27.1 26.9	27.0	8.9 7.6	8.1	30.6 30.7	30.7	91.8 87.7	87.4	6.2 6.1	6.1	6.1	4.3 4.9	4.8		7.0 17.0	17.0	1
						27.0 28.0		8.5 9.0	-	30.7 30.1		87.0 97.8		6.0 6.8		0.1	4.7 4.3			17.0 7.0		
				Surface	1	28.0 27.5	28.0	8.1 8.1	8.6	30.2 30.6	30.2	97.9 92.6	97.9	6.8	6.8	6.7	4.9	4.6		7.0	7.0	
20-Sep-08	Sunny	Calm	15:24	Middle	5.5	27.5	27.5	8.1	8.1	30.6	30.6	91.8	92.2	6.4	6.5		4.5	4.4	4.2	8.0	8.0	10.7
				Bottom	10	27.1 27.1	27.1	8.4 8.1	8.3	30.9 30.8	30.9	86.2 87.3	86.8	6.0 6.1	6.1	6.1	3.7 3.5	3.6		17.0 17.0	17.0	<u> </u>

Water Quality Monitoring Results at CE - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	th (m)	Water Temp	perature (°C)	F	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	1	Turbidity(NTU	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	ai (iii <i>)</i>	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.5 27.9	27.7	8.4 7.7	8.1	28.7 28.5	28.6	99.2 111.6	105.4	7.1 8.0	7.6	8.2	3.3 3.3	3.3		12.0 12.0	12.0	
22-Sep-08	Sunny	Moderate	08:36	Middle	5.5	27.0 27.1	27.1	9.0 9.0	9.0	29.2 29.2	29.2	122.3 118.6	120.5	8.8 8.5	8.7	0.2	4.1 4.2	4.2	4.1	8.0 8.0	8.0	9.7
				Bottom	10	26.6 26.4	26.5	7.7 8.6	8.2	29.8 29.7	29.8	82.9 80.3	81.6	6.1 5.8	6.0	6.0	4.9 4.7	4.8		9.0 9.0	9.0	
				Surface	1	27.2 27.2	27.2	8.2 8.6	8.4	31.4 31.4	31.4	102.5 103.8	103.2	7.8 7.9	7.9	7.8	3.1 3.8	3.5		19.0 19.0	19.0	
26-Sep-08	Sunny	Calm	10:19	Middle	5.5	27.1 27.1	27.1	8.9 8.5	8.7	31.5 31.5	31.5	101.1 100.7	100.9	7.7 7.7	7.7	7.0	4.1 4.4	4.3	4.0	12.0 13.0	12.5	15.5
				Bottom	10	27.1 27.1	27.1	8.9 8.0	8.5	31.5 31.5	31.5	100.2 99.9	100.1	7.7 7.7	7.7	7.7	4.1 4.1	4.1		15.0 15.0	15.0	
				Surface	1	27.5 27.5	27.5	8.3 7.6	8.0	31.9 31.9	31.9	83.1 78.7	80.9	6.5 6.2	6.4	6.3	6.5 6.3	6.4		5.0 5.0	5.0	
29-Sep-08	Sunny	Calm	13:07	Middle	5.5	27.4 27.3	27.4	8.9 8.9	8.9	32.2 32.3	32.3	78.2 78.7	78.5	6.2 6.2	6.2	0.3	6.0 5.8	5.9	7.0	8.0 8.0	8.0	8.7
				Bottom	10	27.3 27.3	27.3	7.8 8.5	8.2	32.3 32.3	32.3	79.0 78.9	79.0	6.2 6.2	6.2	6.2	8.6 8.5	8.6		13.0 13.0	13.0	

Water Quality Monitoring Results at CF - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dont	th (m)	Water Temp	perature (°C)	ţ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	ui (iii)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	26.9 26.9	26.9	7.9 8.1	8.0	28.0 28.0	28.0	97.3 97.5	97.4	6.6 6.7	6.7		4.0 3.7	3.9		14.0 14.0	14.0	
1-Sep-08	Sunny	Calm	08:15	Middle	-	-	-	-	-	-	-	-	-	-	-	6.7	-	-	3.5	-	-	11.3
				Bottom	3	26.9	26.9	8.0	8.1	28.1	28.1	89.5	89.5	6.1	6.1	6.1	3.0	3.0		9.0	8.5	1
						26.9 27.7		8.2 7.7	1	28.1 25.5		89.5 116.1		6.1 8.5			3.0			8.0 5.0		
				Surface	1	27.7	27.7	7.9	7.8	25.6	25.6	119.8	118.0	8.7	8.6	8.6	3.4	3.6		5.0	5.0	1
3-Sep-08	Sunny	Calm	08:18	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	3.2	-	-	7.0
				Bottom	3	27.6 27.5	27.6	7.8 8.0	7.9	25.9 26.0	26.0	126.1 126.4	126.3	9.1 9.2	9.2	9.2	2.8 2.7	2.8		9.0 9.0	9.0	
				Surface	1	27.8 27.9	27.9	7.4 7.9	7.7	27.4 27.5	27.5	115.9 115.8	115.9	7.1 7.1	7.1	7.1	2.5 2.4	2.5		15.0 15.0	15.0	
5-Sep-08	Rainy	Calm	09:45	Middle	-	-	-	-	-	-	-	-	-	-	-	7.1	-	-	3.5	-	-	16.0
				Bottom	3	27.8 27.6	27.7	8.3 7.9	8.1	27.6 27.5	27.6	112.6 111.5	112.1	6.8 6.8	6.8	6.8	4.3 4.4	4.4		17.0 17.0	17.0	1
				Surface	1	27.9 28.1	28.0	7.8 8.4	8.1	27.7 27.6	27.7	146.1 146.1	146.1	10.3 10.4	10.4		2.6 2.5	2.6		5.0 5.0	5.0	
8-Sep-08	Sunny	Calm	16:36	Middle	-	-	-	-	-		-	-	-	-	-	10.4	-	-	3.1	-	-	0.0
				Bottom	4	27.9 27.8	27.9	8.8 8.4	8.6	27.8 27.7	27.8	142.8 141.7	142.3	9.9 10.0	10.0	10.0	3.5 3.6	3.6		15.0 15.0	15.0	1
				Surface	1	28.1	28.2	7.9	8.1	27.6	27.7	146.2	146.1	10.4	10.4		2.7	2.7		9.0	9.5	
10-Sep-08	Sunny	Calm	17:03	Middle	_	28.2	_	8.2		27.8	_	146.0		10.4	<u> </u>	10.4	2.7	_	3.7	10.0	_	12.0
10 COP CC	ou,	ou		Bottom	4	27.9	27.8	8.7	8.5	27.9	27.8	142.8	142.3	9.9	9.9	9.9	4.6	4.6	0.7	14.0	14.5	12.0
					1	27.7 27.8	27.9	8.2 7.5	1	27.7 28.2		141.8 134.7		9.9 9.1		9.9	4.6 4.8			15.0 29.0		<u> </u>
40.0		0.1	40.05	Surface	<u> </u>	27.9	27.9	8.0	7.8	28.1	28.2	132.5	133.6	8.9	9.0	9.0	4.6	4.7		29.0	29.0	
12-Sep-08	Sunny	Calm	18:05	Middle	-	27.0	-	8.3	-	28.9	-	- 114.9	-	7.8	-		3.6	-	4.2	19.0	-	24.0
				Bottom	3	27.0 27.6	27.0	7.8 7.2	8.1	28.9 27.2	28.9	113.8 145.6	114.4	7.7	7.8	7.8	3.7	3.7		19.0	19.0	—
				Surface	1	27.6	27.6	7.9	7.6	27.4	27.3	145.7	145.7	10.0	10.0	10.0	2.3	2.3		10.0	10.0	1
16-Sep-08	Sunny	Calm	08:05	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	2.2	-	-	12.8
				Bottom	3	27.5 27.4	27.5	8.3 7.9	8.1	27.5 27.3	27.4	142.5 141.2	141.9	9.5 9.5	9.5	9.5	2.1 2.1	2.1		15.0 16.0	15.5	
				Surface	1	27.9 28.0	28.0	7.9 8.2	8.1	30.4 30.4	30.4	96.2 95.9	96.1	6.4 6.3	6.4	0.4	2.8 2.6	2.7		11.0 11.0	11.0	
18-Sep-08	Fine	Calm	08:10	Middle	-	-	-	-	-	-	-	-	-	-	-	6.4	-	-	2.7	-	-	12.5
				Bottom	3	27.9 27.9	27.9	8.6 8.3	8.5	30.4 30.4	30.4	95.2 95.0	95.1	6.3 6.3	6.3	6.3	2.4 2.7	2.6		14.0 14.0	14.0	1
				Surface	1	27.2 27.2	27.2	8.5 8.7	8.6	30.5 30.7	30.6	94.6 94.6	94.6	6.6 6.6	6.6		3.6 3.6	3.6		9.0	9.0	
20-Sep-08	Sunny	Calm	10:13	Middle	-	-	-	-	-	-	-	-	-	-	-	6.6	-	-	3.9	-	-	12.5
				Bottom	3	26.8	26.8	8.3	8.5	30.0	30.0	95.8	95.3	6.7	6.7	6.7	4.0	4.1		16.0	16.0	İ
			l			26.8		8.7		30.0		94.7		6.6			4.1			16.0		

Water Quality Monitoring Results at CF - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Water Temp	erature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolv	ed Oxygen	(mg/L)	T	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.0 28.0	28.0	8.1 8.5	8.3	27.7 27.7	27.7	119.6 120.9	120.3	8.2 8.3	8.3	8.3	2.9 3.0	3.0		11.0 10.0	10.5	
22-Sep-08	Sunny	Moderate	16:03	Middle	-	-	i	-	-	-	-	-	-	-	-	0.5	-	-	3.6		-	11.8
				Bottom	4	28.0 27.7	27.9	9.0 8.6	8.8	27.7 27.8	27.8	142.9 141.6	142.3	9.9 9.9	9.9	9.9	4.2 4.2	4.2		13.0 13.0	13.0	
				Surface	1	26.4 26.4	26.4	8.7 9.0	8.9	30.8 30.8	30.8	118.9 116.8	117.9	8.1 7.9	8.0	8.0	3.5 3.5	3.5		18.0 18.0	18.0	
24-Sep-08	Fine	Moderate	17:00	Middle	-	-	i	-	-		-		-	-	-	0.0	-	-	3.6		-	19.5
				Bottom	3	26.4 26.4	26.4	8.0 8.7	8.4	31.1 31.1	31.1	112.8 111.4	112.1	7.6 7.5	7.6	7.6	3.7 3.5	3.6		21.0 21.0	21.0	
				Surface	1	27.1 27.0	27.1	9.1 9.2	9.2	31.4 31.4	31.4	80.1 80.3	80.2	6.3 6.4	6.4	6.4	2.5 2.5	2.5		14.0 14.0	14.0	
26-Sep-08	Fine	Calm	18:04	Middle	-	-	i	-	-	-	-	-	-	-	-	0.4	-	-	3.1		-	12.0
				Bottom	3	27.0 27.0	27.0	7.8 8.8	8.3	31.5 31.5	31.5	77.7 77.7	77.7	6.3 6.3	6.3	6.3	3.7 3.7	3.7		10.0 10.0	10.0	
				Surface	1	27.3 27.3	27.3	8.1 8.6	8.4	32.5 32.5	32.5	113.6 111.8	112.7	8.5 8.4	8.5	8.5	8.5 8.4	8.5		7.0 7.0	7.0	
29-Sep-08	Fine	Calm	17:58	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	9.0	-	-	10.0
				Bottom	3	27.3 27.3	27.3	9.0 8.4	8.7	32.5 32.5	32.5	109.0 108.0	108.5	8.2 8.1	8.2	8.2	9.4 9.4	9.4		13.0 13.0	13.0	

Water Quality Monitoring Results at I1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Water Temp	erature (°C)	ŗ	Н	Salin	ty ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	(!!!)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.1 27.0	27.1	8.3 7.9	8.1	28.6 28.7	28.7	100.0 100.4	100.2	6.8 6.8	6.8		2.7 2.7	2.7		6.0 5.0	5.5	
1-Sep-08	Sunny	Calm	13:51	Middle	4.5	26.9 26.9	26.9	7.9 7.5	7.7	28.8	28.8	97.9 98.0	98.0	6.7 6.7	6.7	6.8	2.7	2.8	2.8	6.0 6.0	6.0	5.7
				Bottom	8	26.6 26.6	26.6	8.2 7.9	8.1	29.0 29.0	29.0	97.0 97.0	97.0	6.6 6.6	6.6	6.6	2.9 2.9	2.9		5.0 6.0	5.5	
				Surface	1	28.2	28.2	8.1	7.9	26.3	26.4	102.3	104.9	7.6	7.8		5.5	5.1		5.0	5.0	
3-Sep-08	Sunny	Calm	13:43	Middle	4.5	28.1 27.7	27.7	7.7 7.7	7.5	26.4 26.9	26.9	107.5 113.6	112.8	7.9 8.4	8.4	8.1	4.6 3.2	3.2	3.8	5.0 4.0	4.0	4.0
3 3 3 4 3 3				Bottom	8	27.6 26.8	26.8	7.3 8.0	7.9	26.9 28.6	28.7	111.9 90.6	89.5	8.3 6.9	6.8	6.8	3.1	3.0		3.0	3.0	
				Surface	1	26.7 27.7	27.7	7.7 7.4	7.7	28.7 27.6	27.6	88.4 103.4	106.1	6.7 7.1	7.3	0.0	3.0 2.4	2.4		3.0 11.0	11.5	
5-Sep-08	Rainy	Calm	15:47	Middle	4.5	27.7 26.9	27.0	8.0 7.3	7.4	27.6 28.0	28.0	108.7 95.6	95.2	7.5 6.2	6.2	6.8	2.4	2.7	2.8	12.0 18.0	18.0	19.2
5-3ep-08	Railly	Callii	15.47		8	27.1 26.6		7.5 7.9	7.4	28.0 28.8	29.1	94.8 98.1	98.1	6.1 6.7	-	6.5	2.6 3.0		2.0	18.0 28.0	28.0	19.2
				Bottom		26.3 27.8	26.5	7.9 7.9		29.4 27.8		98.1 133.6		6.2 9.2	6.5	0.5	3.5 2.7	3.3		28.0 9.0		
		0.1	00.40	Surface	1	27.9 27.2	27.9	8.5 7.6	8.2	27.7 28.1	27.8	139.0 117.9	136.3	9.8 8.4	9.5	9.0	2.7 3.0	2.7		8.0 14.0	8.5	40.0
8-Sep-08	Sunny	Calm	08:19	Middle	4.5	27.2 26.7	27.2	8.0 8.4	7.8	28.3 28.9	28.2	114.9 107.3	116.4	8.4 8.0	8.4		2.7 3.2	2.9	3.0	14.0 16.0	14.0	12.8
				Bottom	8	26.6 27.9	26.7	8.4 7.9	8.4	29.6	29.3	100.3	103.8	7.5 9.2	7.8	7.8	3.8	3.5		16.0 7.0	16.0	
				Surface	1	27.9 27.0	27.9	8.3 7.7	8.1	27.7	27.8	139.0 117.7	136.3	9.7	9.5	9.0	2.6	2.6		7.0	7.0	
10-Sep-08	Sunny	Calm	08:20	Middle	4.5	27.3 26.8	27.2	7.9 8.3	7.8	28.1	28.2	117.7 114.9 107.4	116.3	8.3 7.9	8.4		2.9 3.2	3.0	3.0	8.0 15.0	8.0	10.2
				Bottom	8	26.6	26.7	8.2	8.3	29.7	29.3	100.2	103.8	7.4	7.7	7.7	3.6	3.4		16.0	15.5	
				Surface	1	28.0 28.0	28.0	7.4 8.0	7.7	27.5 27.5	27.5	124.6 125.0	124.8	8.4 8.4	8.4	8.4	2.5 2.5	2.5		26.0 26.0	26.0	
12-Sep-08	Sunny	Calm	10:52	Middle	4.5	27.7 27.5	27.6	7.2 7.4	7.3	28.0 28.3	28.2	124.5 120.0	122.3	8.4 8.1	8.3		3.0 2.9	3.0	3.0	29.0 29.0	29.0	24.3
				Bottom	8	26.2 26.0	26.1	8.0 7.9	8.0	30.2 30.5	30.4	109.9 104.5	107.2	7.5 7.1	7.3	7.3	3.3 3.6	3.5		18.0 18.0	18.0	
				Surface	1	27.6 27.4	27.5	7.3 7.8	7.6	27.3 27.4	27.4	133.3 138.5	135.9	9.0 9.2	9.1	8.5	2.1 2.3	2.2		17.0 17.0	17.0	
16-Sep-08	Sunny	Calm	13:16	Middle	4.5	26.7 26.9	26.8	7.1 7.6	7.4	27.8 27.8	27.8	117.3 114.5	115.9	8.0 7.8	7.9		2.4 2.3	2.4	2.6	7.0 7.0	7.0	12.7
				Bottom	8	26.4 26.1	26.3	7.8 7.8	7.8	28.5 29.3	28.9	100.9 99.8	100.4	7.0 6.9	7.0	7.0	2.9 3.4	3.2		14.0 14.0	14.0	
				Surface	1	27.9 27.9	27.9	7.9 8.3	8.1	30.2 30.2	30.2	101.7 97.2	99.5	6.7 6.5	6.6	6.4	2.5 2.6	2.6		7.0 8.0	7.5	
18-Sep-08	Sunny	Calm	14:32	Middle	4.5	27.6 27.6	27.6	7.6 7.8	7.7	30.3 30.3	30.3	93.6 92.8	93.2	6.2 6.2	6.2	0.4	2.9 2.7	2.8	3.0	14.0 14.0	14.0	12.3
				Bottom	8	27.3 27.3	27.3	8.2 8.3	8.3	30.4 30.5	30.5	91.6 91.6	91.6	6.1 6.1	6.1	6.1	3.2 3.8	3.5		16.0 15.0	15.5	
				Surface	1	27.7 27.6	27.7	8.8 8.3	8.6	30.5 30.5	30.5	96.2 96.3	96.3	6.9 6.9	6.9	6.6	4.5 4.6	4.6		9.0 9.0	9.0	
20-Sep-08	Sunny	Calm	15:55	Middle	4.5	27.1 27.1	27.1	8.9 8.5	8.7	30.2 30.2	30.2	86.9 85.8	86.4	6.2 6.2	6.2	0.0	4.4 4.2	4.3	4.4	8.0 8.0	8.0	10.2
				Bottom	8	26.5 26.5	26.5	8.1 7.9	8.0	30.3 30.3	30.3	81.9 80.1	81.0	6.0 6.1	6.1	6.1	4.2 4.4	4.3		13.0 14.0	13.5	
					•				<u> </u>				•		•							

Water Quality Monitoring Results at I1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Water Temp	perature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.0 28.0	28.0	8.1 8.7	8.4	27.7 27.8	27.8	133.5 139.0	136.3	9.3 9.6	9.5	9.0	2.7 2.7	2.7		11.0 11.0	11.0	
22-Sep-08	Sunny	Moderate	08:22	Middle	4.5	27.2 27.4	27.3	8.0 8.2	8.1	28.2 28.1	28.2	117.7 115.0	116.4	8.5 8.2	8.4	9.0	3.0 2.9	3.0	3.1	9.0 9.0	9.0	11.2
				Bottom	8	26.9 26.6	26.8	8.5 8.6	8.6	28.9 29.6	29.3	107.3 100.3	103.8	7.9 7.5	7.7	7.7	3.3 3.8	3.6		13.0 14.0	13.5	
				Surface	1	27.3 27.3	27.3	8.8 8.9	8.9	31.5 31.4	31.5	96.1 95.0	95.6	7.4 7.3	7.4	7.3	2.4 2.3	2.4		12.0 12.0	12.0	
26-Sep-08	Sunny	Calm	10:39	Middle	4.5	27.3 27.3	27.3	8.3 8.3	8.3	31.5 31.5	31.5	92.1 92.2	92.2	7.1 7.1	7.1	7.5	2.4 2.3	2.4	2.3	11.0 11.0	11.0	11.7
				Bottom	8	27.1 27.0	27.1	8.8 8.3	8.6	31.5 31.6	31.6	91.0 90.8	90.9	7.1 7.1	7.1	7.1	2.2 2.2	2.2		12.0 12.0	12.0	
				Surface	1	27.4 27.3	27.4	8.1 8.7	8.4	32.1 32.1	32.1	90.1 89.1	89.6	7.0 6.9	7.0	6.9	5.3 5.4	5.4		6.0 6.0	6.0	
29-Sep-08	Sunny	Calm	12:43	Middle	4.5	27.2 27.2	27.2	7.8 8.1	8.0	32.2 32.2	32.2	86.8 86.6	86.7	6.8 6.8	6.8	0.9	5.6 5.7	5.7	5.6	8.0 8.0	8.0	7.3
				Bottom	8	27.2 27.2	27.2	8.4 8.6	8.5	32.3 32.3	32.3	86.2 86.2	86.2	6.7 6.7	6.7	6.7	5.6 5.8	5.7		8.0 8.0	8.0	

Water Quality Monitoring Results at I1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Water Temp	perature (°C)		рΗ	Salini	ty ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity(NTU	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.1 27.1	27.1	7.5 8.1	7.8	28.6 28.7	28.7	98.0 98.8	98.4	6.6 6.7	6.7		2.8 2.9	2.9		7.0 7.0	7.0	1
1-Sep-08	Sunny	Calm	08:52	Middle	4.5	27.0 27.0	27.0	7.4 7.3	7.4	28.7	28.7	99.7 99.4	99.6	6.8 6.8	6.8	6.8	2.9 2.9	2.9	2.9	7.0 7.0 7.0	7.0	8.3
				Bottom	8	26.6 26.5	26.6	8.3 8.4	8.4	29.1 29.2	29.2	97.6 97.7	97.7	6.7 6.7	6.7	6.7	2.9 3.1	3.0		11.0 11.0	11.0	1
				Surface	1	27.3	27.3	7.9	7.6	26.3	26.3	96.3	100.0	7.2	7.4		2.9	2.9		6.0	5.5	
3-Sep-08	Sunny	Calm	08:38	Middle	4.5	27.3 27.6	27.6	7.2	7.6	26.3	27.1	103.6 112.5	112.6	7.6 8.3	8.3	7.9	2.8	2.7	2.9	5.0 5.0	5.0	5.8
				Bottom	8	27.6 27.0 26.9	27.0	8.1 8.2 8.1	8.2	27.1 28.4 28.4	28.4	112.6 102.5 97.9	100.2	8.3 7.7 7.3	7.5	7.5	2.7 3.0 3.0	3.0		7.0 7.0	7.0	
				Surface	1	27.6 27.6	27.6	7.3 7.5	7.4	27.9 27.7	27.8	110.6 108.6	109.6	8.0 7.7	7.9		2.9 2.7	2.8		13.0 13.0	13.0	
5-Sep-08	Rainy	Calm	10:11	Middle	4.5	26.8 26.5	26.7	8.0 7.3	7.7	28.6 28.9	28.8	125.2 106.9	116.1	8.7 7.7	8.2	8.1	2.8 3.0	2.9	3.1	22.0 22.0	22.0	15.0
				Bottom	8	26.1 26.1	26.1	7.4 8.2	7.8	29.5 29.7	29.6	88.9 85.3	87.1	6.5 6.2	6.4	6.4	3.3 3.8	3.6		10.0	10.0	
				Surface	1	27.8 27.7	27.8	7.6 7.9	7.8	28.0 27.9	28.0	108.7 108.7	108.7	7.8 7.8	7.8	2.4	3.2 2.9	3.1		11.0 11.0	11.0	
8-Sep-08	Sunny	Calm	17:02	Middle	4.5	26.9 26.6	26.8	8.5 7.6	8.1	28.7 29.0	28.9	125.3 107.2	116.3	9.0 7.8	8.4	8.1	2.9 3.1	3.0	3.3	10.0	10.0	12.8
				Bottom	8	26.4 26.3	26.4	7.8 8.7	8.3	29.7 29.8	29.8	89.2 72.6	80.9	6.8 5.5	6.2	6.2	3.4 4.1	3.8		7.0 7.0	7.0	
				Surface	1	27.8 27.8	27.8	7.8 7.8	7.8	28.1 28.0	28.1	108.7 108.7	108.7	8.0 8.0	8.0	8.2	3.0 2.8	2.9		14.0 13.0	13.5	
10-Sep-08	Sunny	Calm	17:28	Middle	4.5	26.9 26.7	26.8	8.4 7.6	8.0	28.9 29.2	29.1	125.5 107.1	116.3	8.9 7.9	8.4	0.2	3.1 3.2	3.2	3.3	12.0 11.0	11.5	13.7
				Bottom	8	26.4 26.2	26.3	7.8 8.7	8.3	29.8 29.8	29.8	89.0 72.5	80.8	6.8 5.5	6.2	6.2	3.4 3.9	3.7		16.0 16.0	16.0	<u> </u>
				Surface	1	27.8 27.8	27.8	7.4 7.6	7.5	27.8 27.9	27.9	109.2 112.2	110.7	7.3 7.6	7.5	7.8	3.0 3.0	3.0		15.0 16.0	15.5	
12-Sep-08	Sunny	Calm	18:31	Middle	4.5	27.4 26.8	27.1	8.0 7.4	7.7	28.7 29.3	29.0	118.0 115.9	117.0	8.0 7.9	8.0		2.9 3.2	3.1	3.3	26.0 26.0	26.0	22.2
				Bottom	8	26.2 26.1	26.2	7.4 8.3	7.9	30.2 30.3	30.3	101.5 97.9	99.7	6.9 6.7	6.8	6.8	3.5 4.0	3.8		25.0 25.0	25.0	
				Surface	1	27.4 27.5	27.5	7.4 7.4	7.4	27.8 27.6	27.7	108.4 108.4	108.4	7.6 7.6	7.6	7.8	2.0 2.0	2.0		4.0 4.0	4.0	
16-Sep-08	Sunny	Calm	08:28	Middle	4.5	26.6 26.2	26.4	8.0 7.2	7.6	28.4 28.7	28.6	125.1 106.8	116.0	8.4 7.6	8.0	7.0	2.3 2.4	2.4	2.5	11.0 12.0	11.5	8.0
				Bottom	8	25.9 25.9	25.9	7.4 8.1	7.8	29.3 29.4	29.4	88.6 87.3	88.0	6.2 6.0	6.1	6.1	3.1 3.1	3.1		9.0 8.0	8.5	<u> </u>
		_		Surface	1	27.8 27.8	27.8	7.8 7.9	7.9	30.2 30.2	30.2	98.6 98.1	98.4	6.6 6.5	6.6	6.5	2.3 2.3	2.3	•	14.0 14.0	14.0	
18-Sep-08	Fine	Calm	08:36	Middle	4.5	27.7 27.6	27.7	8.4 7.6	8.0	30.3 30.3	30.3	92.5 92.0	92.3	6.3 6.3	6.3	0.0	3.0 3.2	3.1	3.0	10.0	10.0	14.8
				Bottom	8	27.5 27.4	27.5	7.7 8.6	8.2	30.4 30.4	30.4	90.6 90.7	90.7	6.2 6.2	6.2	6.2	3.5 3.9	3.7		20.0 21.0	20.5	<u> </u>
				Surface	1	26.7 26.7	26.7	8.8 8.4	8.6	31.2 31.2	31.2	91.8 91.7	91.8	6.5 6.5	6.5	6.4	3.2 3.4	3.3		7.0 7.0	7.0	
20-Sep-08	Sunny	Calm	09:55	Middle	4.5	26.0 26.0	26.0	7.6 8.6	8.1	30.1 30.2	30.2	85.4 78.7	82.1	6.2 6.2	6.2		5.1 5.3	5.2	4.6	6.0 7.0 9.0	6.5	7.5
				Bottom	8	25.4 25.3	25.4	8.7 8.1	8.4	30.5 30.5	30.5	80.4 80.4	80.4	6.1 6.1	6.1	6.1	5.7 5.1	5.4		9.0	9.0	l

Water Quality Monitoring Results at I1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Water Temp	perature (°C)	1	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бери	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.9 27.7	27.8	7.9 8.3	8.1	28.1 27.8	28.0	108.7 108.7	108.7	7.9 7.9	7.9	8.1	3.2 2.9	3.1		8.0 8.0	8.0	
22-Sep-08	Sunny	Moderate	16:28	Middle	4.5	27.0 26.6	26.8	8.8 8.0	8.4	28.8 29.1	29.0	125.5 107.1	116.3	8.8 7.8	8.3	0.1	2.9 3.1	3.0	3.3	4.0 5.0	4.5	8.5
				Bottom	8	26.3 26.2	26.3	8.2 8.8	8.5	29.7 29.8	29.8	89.2 72.5	80.9	6.6 5.5	6.1	6.1	3.4 4.0	3.7		13.0 13.0	13.0	
				Surface	1	26.4 26.4	26.4	8.3 8.7	8.5	30.7 30.8	30.8	102.7 97.1	99.9	7.0 6.6	6.8	6.5	3.1 3.1	3.1		24.0 24.0	24.0	
24-Sep-08	Fine	Moderate	17:22	Middle	4.5	26.3 26.3	26.3	8.7 7.6	8.2	31.3 31.3	31.3	91.6 90.8	91.2	6.2 6.2	6.2	0.0	4.4 4.5	4.5	4.0	38.0 38.0	38.0	33.5
				Bottom	8	26.3 26.3	26.3	8.2 8.6	8.4	31.3 31.3	31.3	89.5 89.5	89.5	6.0 6.0	6.0	6.0	4.3 4.3	4.3		39.0 38.0	38.5	
				Surface	1	27.4 27.4	27.4	8.2 8.2	8.2	31.5 31.5	31.5	90.3 90.2	90.3	7.0 7.0	7.0	7.0	2.5 2.4	2.5		9.0 9.0	9.0	
26-Sep-08	Fine	Calm	17:42	Middle	4.5	27.2 27.1	27.2	8.4 8.3	8.4	31.5 31.5	31.5	90.0 89.8	89.9	7.0 7.0	7.0	7.0	2.3 2.2	2.3	2.4	13.0 13.0	13.0	11.7
				Bottom	8	27.1 27.1	27.1	8.6 8.9	8.8	31.6 31.5	31.6	87.4 87.4	87.4	6.8 6.8	6.8	6.8	2.2 2.3	2.3		13.0 13.0	13.0	
				Surface	1	27.4 27.3	27.4	8.0 8.2	8.1	32.1 32.1	32.1	84.1 83.1	83.6	6.6 6.5	6.6	6.6	5.5 5.5	5.5		5.0 5.0	5.0	
29-Sep-08	Fine	Calm	18:28	Middle	4.5	27.2 27.2	27.2	8.5 7.8	8.2	32.3 32.3	32.3	83.3 83.3	83.3	6.5 6.5	6.5	0.0	5.8 6.1	6.0	5.7	9.0 10.0	9.5	7.8
				Bottom	8	27.2 27.2	27.2	8.1 8.9	8.5	32.3 32.3	32.3	83.2 83.1	83.2	6.5 6.5	6.5	6.5	5.7 5.5	5.6		9.0 9.0	9.0	

Water Quality Monitoring Results at I2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Water Temp	perature (°C)		Н		ty ppt		ration (%)		ed Oxygen			urbidity(NTL	,		nded Solids	
Date	Condition	Condition**	Time	Бері	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
	-			Surface	1	27.0 27.0	27.0	7.5 8.1	7.8	28.6 28.6	28.6	97.9 97.6	97.8	6.7 6.6	6.7		3.0 3.1	3.1		8.0 8.0	8.0	-
1-Sep-08	Sunny	Calm	13:58	Middle	4.5	26.7 26.7	26.7	8.1 7.4	7.8	28.8 28.8	28.8	96.3 96.1	96.2	6.6 6.6	6.6	6.7	2.8	2.9	3.0	7.0 8.0	7.5	7.2
				Bottom	8	26.5	26.5	7.5	7.9	29.2	29.3	95.5	95.5	6.5	6.5	6.5	2.9	3.0		6.0	6.0	
						26.4 28.4		8.2 7.3		29.3 26.1		95.5 117.8		6.5 8.6		0.0	3.0 2.7			6.0 2.5		
				Surface	1	28.2 27.7	28.3	7.9 7.9	7.6	26.2 26.9	26.2	118.9 114.0	118.4	8.7 8.4	8.7	8.6	2.7	2.7		3.0	2.8	
3-Sep-08	Sunny	Calm	13:39	Middle	4.5	27.7 27.5	27.7	7.2 7.3	7.6	26.9 27.2	26.9	112.8 106.3	113.4	8.3 7.9	8.4		2.8	2.8	2.8	2.5 2.5	2.5	2.7
				Bottom	8	26.5	27.0	8.0	7.7	27.2	27.2	105.8	106.1	7.9	7.9	7.9	2.8	2.8		3.0	2.8	
				Surface	1	27.9 27.8	27.9	8.0 7.6	7.8	27.5 27.6	27.6	119.9 119.8	119.9	8.0 8.0	8.0	7.9	2.5 2.2	2.4		17.0 17.0	17.0	
5-Sep-08	Rainy	Calm	15:41	Middle	4.5	27.4 27.1	27.3	8.1 7.5	7.8	27.8 27.8	27.8	114.3 112.7	113.5	7.9 7.7	7.8	1.5	2.2 2.4	2.3	2.5	19.0 19.0	19.0	19.5
				Bottom	8	26.5 26.5	26.5	8.2 7.6	7.9	28.8 28.8	28.8	96.8 92.5	94.7	6.9 6.3	6.6	6.6	2.9 2.9	2.9		23.0 22.0	22.5	
				Surface	1	28.1 28.1	28.1	8.4 8.0	8.2	27.8 27.8	27.8	130.2 141.9	136.1	9.1 10.0	9.6		2.6 2.4	2.5		8.0 8.0	8.0	
8-Sep-08	Sunny	Calm	08:13	Middle	5	27.6 27.2	27.4	8.5 7.9	8.2	28.1 28.0	28.1	144.5 122.8	133.7	10.2	9.6	9.6	2.4	2.5	2.7	10.0	10.0	12.0
				Bottom	9	26.6	26.6	8.5	8.3	28.9	29.0	111.0	106.9	8.2	7.9	7.9	3.0	3.1		18.0	18.0	
				Surface	1	26.6 28.0	28.1	8.1 8.5	8.2	29.1 27.8	27.8	102.7 130.2	136.2	7.5 9.1	9.6		3.2 2.8	2.7		18.0 5.0	5.0	
10-Sep-08	Sunny	Calm	08:13	Middle	5	28.1 27.7	27.5	7.9 8.6	8.3	27.8 27.9	28.0	142.1 144.5	133.7	10.1 10.1	9.6	9.6	2.5 2.5	2.6	2.8	5.0 10.0	10.0	8.7
.0 000 00	Curry	Juin	00.10	Bottom	9	27.3 26.8	26.8	8.0 8.6	8.3	28.1 29.1	29.1	122.9 110.9	106.8	9.0 8.1	7.9	7.9	2.7 3.1	3.1	2.0	10.0 11.0	11.0	0.7
						26.8 28.1		7.9 8.1		29.1 27.4		102.6 138.8		7.6 9.3		ש. ו	3.1 2.7			11.0 14.0		
				Surface	1	28.0 27.7	28.1	7.7	7.9	27.4	27.4	138.6 130.6	138.7	9.3	9.3	8.9	2.3	2.5		14.0 15.0	14.0	
12-Sep-08	Sunny	Calm	10:45	Middle	4.5	27.5 26.2	27.6	7.4	7.8	28.1	28.1	122.2 114.9	126.4	8.2 7.8	8.5		2.5	2.5	2.7	15.0 16.0	15.0	15.0
				Bottom	8	26.1	26.2	7.6	8.0	30.2	30.2	109.3	112.1	7.5	7.7	7.7	3.2	3.2		16.0	16.0	
				Surface	1	27.6 27.5	27.6	7.9 7.5	7.7	27.4 27.5	27.5	129.8 141.5	135.7	8.8 9.8	9.3	9.3	2.2 2.0	2.1		17.0 17.0	17.0	
16-Sep-08	Sunny	Calm	13:08	Middle	4.5	27.1 26.9	27.0	8.1 7.6	7.9	27.5 27.6	27.6	144.1 122.4	133.3	9.7 8.6	9.2		2.0 2.2	2.1	2.3	9.0 9.0	9.0	12.3
				Bottom	8	26.3 26.2	26.3	8.2 7.4	7.8	28.6 28.6	28.6	110.5 102.4	106.5	7.6 7.1	7.4	7.4	2.8 2.6	2.7		11.0 11.0	11.0	
				Surface	1	28.0 27.9	28.0	8.3 7.9	8.1	30.2 30.2	30.2	99.1 96.5	97.8	6.6 6.4	6.5		2.8 2.3	2.6	_	8.0 8.0	8.0	
18-Sep-08	Sunny	Calm	14:26	Middle	4.5	27.5 27.5	27.5	8.6 7.9	8.3	30.4 30.4	30.4	89.5 89.8	89.7	6.0	6.0	6.3	2.5 2.7	2.6	2.8	15.0 15.0	15.0	14.0
				Bottom	8	27.2 27.2	27.2	8.7 8.0	8.4	30.6 30.6	30.6	89.4 90.1	89.8	6.1 6.2	6.2	6.2	3.0 3.2	3.1		19.0 19.0	19.0	
				Surface	1	27.7 27.7	27.7	8.8 7.9	8.4	31.5 31.6	31.6	100.5 99.8	100.2	7.2	7.2		3.7 3.7	3.7		15.0 15.0	15.0	
20-Sep-08	Sunny	Calm	15:49	Middle	4.5	26.9	26.9	8.6	8.5	30.0	30.0	84.2	83.8	7.2 6.1	6.1	6.7	3.8	3.8	4.1	12.0	12.0	11.7
	Í			Bottom	8	26.9 26.7	26.7	8.3 8.2	8.3	30.0 30.3	30.3	83.3 83.6	83.6	6.1	6.1	6.1	3.8 4.6	4.9		12.0 8.0	8.0	
				Dottom		26.7	20.7	8.4	0.0	30.3	50.0	83.6	00.0	6.1	0.1	0.1	5.2	7.5		8.0	0.0	

Water Quality Monitoring Results at I2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Water Temp	perature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.2 27.9	28.1	8.7 8.4	8.6	27.6 27.9	27.8	130.0 131.9	131.0	9.3 9.0	9.2	9.1	2.7 2.4	2.6		11.0 11.0	11.0	
22-Sep-08	Sunny	Moderate	08:16	Middle	4.5	27.7 27.4	27.6	8.9 8.1	8.5	28.0 28.1	28.1	134.6 123.0	128.8	9.0 9.0	9.0	5.1	2.5 2.6	2.6	2.8	13.0 13.0	13.0	11.0
				Bottom	8	26.6 26.6	26.6	8.9 8.2	8.6	28.9 29.1	29.0	110.9 102.7	106.8	8.0 7.5	7.8	7.8	3.2 3.0	3.1		9.0 9.0	9.0	
				Surface	1	27.3 27.3	27.3	8.9 8.3	8.6	31.3 31.4	31.4	98.3 95.3	96.8	7.5 7.3	7.4	7.3	2.1 2.0	2.1		15.0 15.0	15.0	
26-Sep-08	Sunny	Calm	10:45	Middle	4.5	27.3 27.3	27.3	8.8 8.4	8.6	31.4 31.4	31.4	93.2 92.3	92.8	7.2 7.1	7.2	7.5	2.2 2.3	2.3	2.4	10.0 10.0	10.0	11.5
				Bottom	8	27.0 27.1	27.1	8.2 8.6	8.4	31.5 31.5	31.5	88.1 88.0	88.1	6.9 6.9	6.9	6.9	2.6 2.7	2.7		9.0 10.0	9.5	
				Surface	1	27.4 27.4	27.4	8.7 8.3	8.5	32.3 32.3	32.3	96.1 94.6	95.4	7.4 7.3	7.4	7.2	4.4 4.3	4.4		7.0 7.0	7.0	
29-Sep-08	29-Sep-08 Sunny	Calm	12:33	Middle	4.5	27.3 27.3	27.3	8.1 8.1	8.1	32.5 32.5	32.5	92.4 88.5	90.5	7.1 6.9	7.0	1.2	6.1 6.4	6.3	6.2	10.0 10.0	10.0	9.3
				Bottom	8	27.2 27.2	27.2	8.9 8.1	8.5	32.5 32.5	32.5	91.4 91.1	91.3	7.0 7.0	7.0	7.0	7.4 8.2	7.8		11.0 11.0	11.0	

Water Quality Monitoring Results at I2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dont	th (m)	Water Temp	perature (°C)	ŗ	Н	Salini	ty ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	u (III)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.1 27.1	27.1	7.7 7.5	7.6	28.5 28.6	28.6	96.5 96.9	96.7	6.5 6.6	6.6		3.6 3.6	3.6		9.0 8.0	8.5	
1-Sep-08	Sunny	Calm	09:00	Middle	4.5	26.7 26.7	26.7	8.1 8.1	8.1	28.8 28.8	28.8	96.0 95.7	95.9	6.5 6.5	6.5	6.6	2.8 3.0	2.9	3.1	8.0 8.0	8.0	9.5
				Bottom	8	26.5 26.4	26.5	7.3 7.4	7.4	29.3 29.3	29.3	95.4 95.4	95.4	6.5 6.5	6.5	6.5	2.8 2.7	2.8		12.0 12.0	12.0	
				Surface	1	28.0 28.1	28.1	7.1 7.3	7.2	26.4 26.4	26.4	106.7 110.4	108.6	7.9 8.1	8.0		2.7 2.8	2.8		7.0 7.0	7.0	
3-Sep-08	Sunny	Calm	08:34	Middle	4.5	27.7 27.7	27.7	7.2 7.1	7.2	26.9 26.9	26.9	111.8 111.1	111.5	8.3 8.2	8.3	8.2	3.1 3.0	3.1	2.9	11.0 10.0	10.5	8.2
				Bottom	8	27.6 27.6	27.6	7.2 7.3	7.3	27.0 27.1	27.1	109.9 109.5	109.7	8.1 8.1	8.1	8.1	2.9 2.8	2.9		7.0 7.0	7.0	
				Surface	1	27.8 27.9	27.9	7.5 7.5	7.5	27.5 27.5	27.5	103.9 126.0	115.0	7.3 8.7	8.0		2.6 2.3	2.5		11.0 11.0	11.0	
5-Sep-08	Rainy	Calm	10:06	Middle	4.5	26.7 26.9	26.8	7.2 7.6	7.4	28.3 28.2	28.3	114.3 109.4	111.9	8.1 7.8	8.0	8.0	2.6 2.6	2.6	2.8	14.0 14.0	14.0	15.0
				Bottom	8	26.4 26.2	26.3	7.3 7.4	7.4	29.2 29.2	29.2	86.7 88.7	87.7	6.1 6.2	6.2	6.2	3.1 3.3	3.2		20.0	20.0	
				Surface	1	28.0 28.2	28.1	8.0 7.8	7.9	27.6 27.7	27.7	104.2 126.3	115.3	7.6 9.0	8.3	0.0	2.7 2.4	2.6		3.0 3.0	3.0	
8-Sep-08	Sunny	Calm	16:56	Middle	5	26.8 27.1	27.0	7.6 8.0	7.8	28.4 28.4	28.4	114.5 109.7	112.1	8.2 7.9	8.1	8.2	2.7	2.8	2.9	15.0 15.0	15.0	12.0
				Bottom	9	26.5 26.5	26.5	7.7 7.9	7.8	29.4 29.4	29.4	87.0 78.9	83.0	6.3 5.9	6.1	6.1	3.3 3.5	3.4		12.0 12.0	12.0	
				Surface	1	28.0 28.2	28.1	7.9 7.8	7.9	27.7 27.6	27.7	104.0 126.1	115.1	7.4 8.9	8.2	0.0	2.9 2.5	2.7		11.0 12.0	11.5	
10-Sep-08	Sunny	Calm	17:23	Middle	5	26.9 27.2	27.1	7.7 8.0	7.9	28.4 28.5	28.5	114.5 109.7	112.1	8.2 8.0	8.1	8.2	2.9 2.7	2.8	3.0	10.0 10.0	10.0	13.0
				Bottom	9	26.5 26.4	26.5	7.7 7.8	7.8	29.3 29.4	29.4	86.9 78.9	82.9	6.2 5.9	6.1	6.1	3.2 3.5	3.4		17.0 18.0	17.5	
				Surface	1	28.0 28.0	28.0	7.5 7.6	7.6	27.8 27.8	27.8	124.6 124.6	124.6	8.4 8.4	8.4	8.5	2.7 2.5	2.6		16.0 16.0	16.0	
12-Sep-08	Sunny	Calm	18:26	Middle	4.5	27.6 27.5	27.6	7.1 7.7	7.4	28.1 28.2	28.2	126.7 125.6	126.2	8.5 8.5	8.5	0.0	2.9 2.8	2.9	3.0	39.0 39.0	39.0	27.0
				Bottom	8	26.4 26.3	26.4	7.2 7.3	7.3	29.9 29.9	29.9	117.7 111.5	114.6	8.0 7.6	7.8	7.8	3.3 3.6	3.5		26.0 26.0	26.0	
				Surface	1	27.5 27.8	27.7	7.4 7.3	7.4	27.4 27.2	27.3	103.6 125.8	114.7	7.1 8.5	7.8	7.8	2.2 2.2	2.2		16.0 16.0	16.0	
16-Sep-08	Sunny	Calm	08:21	Middle	4.5	26.5 26.6	26.6	7.0 7.6	7.3	28.1 27.9	28.0	114.2 109.1	111.7	8.0 7.5	7.8	7.0	2.3 2.3	2.3	2.5	15.0 15.0	15.0	14.7
				Bottom	8	26.3 25.9	26.1	7.2 7.4	7.3	28.9 29.1	29.0	90.6 90.8	90.7	6.0 6.1	6.1	6.1	2.9 2.9	2.9		13.0 13.0	13.0	
		_		Surface	1	28.1 28.0	28.1	7.9 7.8	7.9	30.2 30.2	30.2	94.5 94.5	94.5	6.4 6.4	6.4	6.4	2.7 2.4	2.6		14.0 14.0	14.0	
18-Sep-08	Fine	Calm	08:30	Middle	4.5	27.5 27.5	27.5	7.6 8.0	7.8	30.4 30.4	30.4	91.7 91.3	91.5	6.3 6.3	6.3	0.7	2.9 2.7	2.8	2.9	16.0 16.0	16.0	14.3
				Bottom	8	27.3 27.3	27.3	7.8 7.7	7.8	30.6 30.5	30.6	88.4 88.0	88.2	6.0 6.0	6.0	6.0	3.4 3.4	3.4		13.0 13.0	13.0	
				Surface	1	26.7 26.7	26.7	8.8 8.9	8.9	30.8 30.8	30.8	92.8 92.1	92.5	6.5 6.5	6.5	6.4	4.5 4.5	4.5		12.0 12.0	12.0	
20-Sep-08	Sunny	Calm	09:49	Middle	4.5	25.9 25.9	25.9	8.4 8.4	8.4	30.7 30.8	30.8	84.2 84.2	84.2	6.2 6.2	6.2	· · ·	4.5 4.4	4.5	4.5	13.0 13.0	13.0	13.3
				Bottom	8	25.7 25.7	25.7	8.9 7.9	8.4	31.1 31.2	31.2	80.6 80.0	80.3	6.1 6.0	6.1	6.1	4.4 4.4	4.4		15.0 15.0	15.0	

Water Quality Monitoring Results at I2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Water Temp	erature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бери	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.1 28.0	28.1	8.2 8.1	8.2	27.8 27.7	27.8	104.1 126.2	115.2	7.6 8.8	8.2	8.2	2.9 2.6	2.8		13.0 13.0	13.0	
22-Sep-08	Sunny	Moderate	16:23	Middle	5	26.9 27.2	27.1	7.9 8.3	8.1	28.4 28.4	28.4	114.6 109.7	112.2	8.2 8.0	8.1	0.2	2.8 2.7	2.8	3.0	13.0 13.0	13.0	12.0
				Bottom	9	26.5 26.5	26.5	8.1 8.0	8.1	29.4 29.3	29.4	87.0 79.0	83.0	6.3 5.9	6.1	6.1	3.3 3.6	3.5		10.0 10.0	10.0	
				Surface	1	26.4 26.4	26.4	8.2 8.8	8.5	30.8 30.8	30.8	101.3 101.2	101.3	6.9 6.9	6.9	6.8	2.9 3.0	3.0		33.0 33.0	33.0	
24-Sep-08	Fine	Moderate	17:14	Middle	4.5	26.3 26.3	26.3	8.4 8.2	8.3	31.1 31.1	31.1	98.8 98.4	98.6	6.7 6.7	6.7	0.0	3.8 3.8	3.8	3.7	17.0 18.0	17.5	32.2
				Bottom	8	26.3 26.3	26.3	8.8 7.9	8.4	31.2 31.3	31.3	96.5 96.3	96.4	6.5 6.5	6.5	6.5	4.2 4.2	4.2		46.0 46.0	46.0	
				Surface	1	27.3 27.3	27.3	8.1 8.1	8.1	31.4 31.4	31.4	86.9 86.7	86.8	6.8 6.8	6.8	6.8	2.1 2.1	2.1		12.0 12.0	12.0	
26-Sep-08	Fine	Calm	17:50	Middle	4.5	27.3 27.3	27.3	8.0 8.3	8.2	31.4 31.4	31.4	85.8 85.6	85.7	6.7 6.7	6.7	0.0	2.3 2.4	2.4	2.3	10.0 10.0	10.0	9.8
				Bottom	8	27.3 27.3	27.3	8.0 8.1	8.1	31.4 31.4	31.4	85.3 85.3	85.3	6.7 6.7	6.7	6.7	2.4 2.4	2.4		7.0 8.0	7.5	
				Surface	1	27.4 27.4	27.4	8.0 8.0	8.0	32.3 32.3	32.3	90.1 89.2	89.7	7.0 6.9	7.0	7.0	5.8 4.8	5.3		8.0 8.0	8.0	
29-Sep-08	Fine	Calm	12:33	Middle	4.5	27.3 27.3	27.3	8.6 7.8	8.2	32.5 32.5	32.5	92.6 88.6	90.6	7.1 6.9	7.0	7.0	5.7 5.9	5.8	6.1	9.0 10.0	9.5	10.8
				Bottom	8	27.2 27.2	27.2	7.8 7.9	7.9	32.5 32.5	32.5	88.1 87.7	87.9	6.8 6.8	6.8	6.8	6.8 7.7	7.3		15.0 15.0	15.0	

Water Quality Monitoring Results at Intake A - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Water Temp	perature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	Turbidity(NTl	J)	Suspe	nded Solids	(mg/L)
Dute	Condition	Condition**	Time	Бері	(''')	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	26.7 26.7	26.7	7.8 8.1	8.0	28.5 28.5	28.5	94.2 94.2	94.2	6.5 6.5	6.5	6.4	3.0 3.0	3.0		7.0 7.0	7.0	
1-Sep-08	Sunny	Calm	14:07	Middle	5	26.7 26.7	26.7	8.0 7.5	7.8	28.6 28.7	28.7	90.3 90.4	90.4	6.2 6.2	6.2	6.4	3.2 3.9	3.6	3.3	8.0 8.0	8.0	8.0
				Bottom	9	26.5 26.3	26.4	7.8 8.5	8.2	29.2 29.4	29.3	91.6 92.0	91.8	6.3	6.3	6.3	3.5 3.3	3.4		9.0	9.0	ĺ
				Surface	1	28.6	27.5	7.6	7.8	26.2	26.3	108.7	112.1	7.9	8.2		1.6	1.8		8.0	8.0	
3-Sep-08	Cummu	Calm	13:32		5	26.4 27.8	27.8	7.9 7.8	7.6	26.3 26.7	26.7	115.5 113.6	113.1	8.4 8.4	8.4	8.3	2.0	2.6	2.4	8.0 4.0	4.0	5.7
3-Sep-06	Sunny	Califi	13.32	Middle		27.8 27.5		7.3 7.6		26.7 27.1		112.6 107.9		8.3 8.0			2.6 2.7		2.4	4.0 5.0		5.7
				Bottom	9	25.5 27.9	26.5	8.3	8.0	27.1 27.7	27.1	107.9 127.3	107.9	8.0	8.0	8.0	2.7	2.7		5.0	5.0	—
				Surface	1	28.1	28.0	7.3	7.8	27.5	27.6	126.5	126.9	8.5	8.5	8.2	2.4	2.3		24.0	24.0	1
5-Sep-08	Rainy	Calm	15:31	Middle	5	27.1 26.8	27.0	8.0 8.3	8.2	27.7 28.1	27.9	119.2 115.9	117.6	8.0 7.7	7.9		2.4 2.5	2.5	2.7	27.0 27.0	27.0	21.3
				Bottom	9	26.3 26.1	26.2	7.5 7.5	7.5	29.4 29.6	29.5	89.1 89.5	89.3	6.1 6.2	6.2	6.2	3.4 3.4	3.4		13.0 13.0	13.0	
				Surface	1	28.1 28.4	28.3	8.7 7.7	8.2	27.8 27.6	27.7	152.4 151.7	152.1	10.7 10.6	10.7		2.4 2.5	2.5		13.0 13.0	13.0	
8-Sep-08	Sunny	Calm	08:03	Middle	5.5	27.3 27.0	27.2	8.4 8.8	8.6	27.8 28.2	28.0	144.5 125.2	134.9	10.3	9.6	10.2	2.6 2.7	2.7	3.0	9.0	9.0	10.7
				Bottom	10	26.4	26.3	8.0	8.0	29.5	29.7	84.4	82.3	6.3	6.1	6.1	3.7	3.7		10.0	10.0	1
				Surface	1	26.2 28.0	28.1	7.9 8.8	8.2	29.8 27.8	27.7	80.1 152.4	152.1	5.9 10.6	10.7		3.6 2.5	2.6		10.0 9.0	9.5	
10-Sep-08	Sunny	Calm	08:03	Middle	5	28.2 27.4	27.3	7.6 8.3	8.5	27.6 27.8	28.0	151.7 144.3	134.8	10.7 10.1	9.5	10.1	2.7	2.6	2.9	10.0 9.0	10.0	9.7
10-Зер-00	Juliny	Callii	00.03			27.1 26.4		8.6 8.0		28.2 29.6		125.2 84.4		8.9 6.4		0.4	2.6 3.6		2.5	11.0 10.0		9.7
				Bottom	9	26.3 27.9	26.4	7.8 8.3	7.9	29.7 27.9	29.7	80.3 137.0	82.4	5.8 9.2	6.1	6.1	3.5 2.3	3.6		9.0 19.0	9.5	
				Surface	1	27.9	27.9	7.2 8.0	7.8	27.9 29.8	27.9	135.8	136.4	9.1	9.2	7.9	2.6	2.5		19.0	19.0	1
12-Sep-08	Sunny	Calm	10:35	Middle	5	26.3 26.3	26.3	8.4	8.2	29.8	29.8	95.3 94.6	95.0	6.5 6.5	6.5		2.5 2.8	2.7	2.9	35.0	35.0	29.5
				Bottom	9	26.1 26.1	26.1	7.4 7.4	7.4	30.0 30.1	30.1	92.9 92.6	92.8	6.4 6.3	6.4	6.4	3.5 3.6	3.6		34.0 35.0	34.5	L
				Surface	1	27.7 28.0	27.9	8.3 7.3	7.8	27.5 27.4	27.5	152.0 151.3	151.7	10.2 10.2	10.2	0.7	2.1 2.1	2.1		9.0 9.0	9.0	
16-Sep-08	Sunny	Calm	12:56	Middle	5	27.0 26.7	26.9	7.8 8.2	8.0	27.5 27.8	27.7	144.0 124.8	134.4	9.7 8.6	9.2	9.7	2.1 2.3	2.2	2.5	9.0 9.0	9.0	11.0
				Bottom	9	26.0 25.8	25.9	7.6 7.4	7.5	29.1 29.5	29.3	90.8 91.2	91.0	6.0 6.1	6.1	6.1	3.1 3.1	3.1		15.0 15.0	15.0	1
				Surface	1	28.3	28.3	8.7	8.2	30.4	30.4	115.4	113.8	7.6	7.5		2.5	2.6		16.0	16.0	
18-Sep-08	Sunny	Calm	14:16	Middle	5	28.3 28.0	28.0	7.6 8.5	8.6	30.4 30.4	30.5	112.2 105.6	105.3	7.4	7.0	7.3	2.7	2.6	2.9	16.0 13.0	13.5	14.2
2 22, 30	,			Bottom	9	28.0 28.0	28.0	8.7 7.8	7.8	30.5 30.4	30.4	104.9 103.8	103.1	6.9 6.9	6.9	6.9	2.6 3.5	3.6		14.0 13.0	13.0	
						28.0 27.6		7.8 7.9		30.4 30.5		102.3 94.6		6.8 6.7		0.9	3.7			13.0 12.0		
				Surface	1	27.6 27.0	27.6	8.9 8.6	8.4	30.5 30.2	30.5	94.0 83.6	94.3	6.7	6.7	6.4	3.7	3.7		12.0	12.0	ł
20-Sep-08	Sunny	Calm	16:05	Middle	5	27.0	27.0	8.3	8.5	30.2	30.2	83.6	83.6	6.0	6.0		3.6	3.6	4.2	8.0	8.0	9.2
	Juliny Ca			Bottom	9	26.6 26.6	26.6	8.3 8.2	8.3	30.3 30.3	30.3	81.2 81.3	81.3	6.1 6.1	6.1	6.1	4.9 5.8	5.4		7.0 8.0	7.5	

Water Quality Monitoring Results at Intake A - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Water Temp	perature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.1 28.2	28.2	9.0 8.0	8.5	27.8 27.7	27.8	132.5 131.6	132.1	8.8 8.7	8.8	8.5	2.3 2.5	2.4		10.0 10.0	10.0	
22-Sep-08	Sunny	Moderate	08:06	Middle	5	27.4 27.1	27.3	8.7 8.9	8.8	28.0 28.2	28.1	114.4 114.4	114.4	8.2 8.2	8.2	6.5	2.5 2.8	2.7	2.9	6.0 6.0	6.0	10.0
				Bottom	9	26.4 26.3	26.4	8.1 8.2	8.2	29.6 29.7	29.7	84.4 81.3	82.9	6.2 5.9	6.1	6.1	3.7 3.6	3.7		14.0 14.0	14.0	
				Surface	1	27.4 27.4	27.4	8.0 8.3	8.2	31.0 31.0	31.0	92.4 90.9	91.7	7.2 7.1	7.2	7.0	1.8 1.7	1.8		11.0 11.0	11.0	
26-Sep-08	Sunny	Calm	10:53	Middle	5	27.0 26.9	27.0	8.6 8.5	8.6	31.4 31.5	31.5	84.6 84.4	84.5	6.7 6.7	6.7	7.0	2.2 2.2	2.2	2.3	13.0 13.0	13.0	13.3
				Bottom	9	26.8 26.7	26.8	7.8 8.2	8.0	31.6 31.7	31.7	83.7 83.1	83.4	6.6 6.6	6.6	6.6	2.6 3.0	2.8		16.0 16.0	16.0	
				Surface	1	27.4 27.4	27.4	8.8 8.0	8.4	32.5 32.5	32.5	103.0 101.5	102.3	7.8 7.7	7.8	7.7	5.0 5.0	5.0		6.0 6.0	6.0	
29-Sep-08	Sunny	Calm	12:23	Middle	5	27.2 27.2	27.2	8.6 8.9	8.8	32.5 32.5	32.5	97.9 97.8	97.9	7.5 7.5	7.5	1.1	7.9 8.3	8.1	7.4	8.0 8.0	8.0	9.0
				Bottom	9	27.2 27.2	27.2	8.2 8.1	8.2	32.5 32.5	32.5	95.2 95.0	95.1	7.3 7.3	7.3	7.3	9.0 9.1	9.1		13.0 13.0	13.0	

Water Quality Monitoring Results at intake A - Mid-Flood Tide

Date	Weather	Sea	Sampling	Doni	th (m)	Water Temp	perature (°C)	ı	Н	Salini	ity ppt	DO Satu	ıration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	u (III)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	26.7 26.7	26.7	8.3 8.3	8.3	28.6 28.5	28.6	91.6 91.2	91.4	6.3 6.2	6.3		3.1 3.0	3.1		6.0 7.0	6.5	
1-Sep-08	Sunny	Calm	09:09	Middle	5	26.7 26.7	26.7	7.2 7.9	7.6	28.8 28.8	28.8	91.4 91.4	91.4	6.2 6.2	6.2	6.3	3.2 3.2	3.2	3.1	8.0 8.0	8.0	7.5
				Bottom	9	26.1 26.0	26.1	7.4 7.7	7.6	29.6 29.6	29.6	90.6 91.2	90.9	6.2 6.2	6.2	6.2	3.1 3.1	3.1		8.0 8.0	8.0	
				Surface	1	28.3 28.4	28.4	7.0	7.2	26.4 26.4	26.4	105.9 110.9	108.4	7.8 8.1	8.0		2.5 2.6	2.6		8.0	8.0	
3-Sep-08	Sunny	Calm	08:26	Middle	5	27.8 27.7	27.8	8.1 7.9	8.0	26.8 26.8	26.8	121.1 121.2	121.2	8.9 8.9	8.9	8.5	2.7	2.7	2.7	5.0 5.0	5.0	5.7
				Bottom	9	26.5 27.5	27.0	7.3 7.4	7.4	27.1 27.1	27.1	108.0 106.4	107.2	8.0 7.9	8.0	8.0	2.8	2.8		4.0	4.0	
				Surface	1	27.3 27.2	27.3	7.5 7.6	7.6	27.6 27.6	27.6	120.0 122.2	121.1	8.5 8.6	8.6		2.3 2.5	2.4		20.0	20.5	
5-Sep-08	Rainy	Calm	09:57	Middle	5	26.6 26.5	26.6	7.7 7.6	7.7	28.7 28.8	28.8	105.6 109.1	107.4	7.4 7.8	7.6	8.1	2.7	2.8	2.8	15.0 15.0	15.0	16.8
				Bottom	9	26.3 26.0	26.2	8.0 8.1	8.1	29.4 29.7	29.6	85.2 89.0	87.1	6.2 6.7	6.5	6.5	3.2 3.4	3.3		15.0 15.0	15.0	
			1	Surface	1	27.6 27.3	27.5	7.9 7.9	7.9	27.7 27.8	27.8	120.1 122.5	121.3	8.8 8.8	8.8		2.4 2.6	2.5		9.0 10.0	9.5	
8-Sep-08	Sunny	Calm	16:48	Middle	5.5	26.9 26.8	26.9	8.1 7.9	8.0	29.0 29.1	29.1	118.7 109.4	114.1	8.6 7.9	8.3	8.6	2.8 3.0	2.9	3.0	11.0 11.0	11.0	10.7
				Bottom	10	26.5 26.3	26.4	8.4 8.4	8.4	29.6 30.0	29.8	85.4 80.2	82.8	6.4 5.8	6.1	6.1	3.3 3.6	3.5		11.0 11.0	11.0	
				Surface	1	27.5 27.4	27.5	7.8 7.9	7.9	27.8 27.7	27.8	120.2 122.4	121.3	8.8 8.9	8.9		2.6 2.7	2.7		12.0 12.0	12.0	
10-Sep-08	Sunny	Calm	17:15	Middle	5.5	26.7 26.7	26.7	8.2 8.0	8.1	29.0 29.1	29.1	118.9 109.3	114.1	8.5 8.1	8.3	8.6	3.0 2.9	3.0	3.1	12.0 12.0 10.0	11.0	13.3
				Bottom	10	26.6 26.2	26.4	8.5 8.4	8.5	29.7 30.0	29.9	85.5 80.1	82.8	6.4 5.8	6.1	6.1	3.3 3.6	3.5		16.0 18.0	17.0	
				Surface	1	27.3 27.2	27.3	7.4 7.5	7.5	27.6 27.6	27.6	120.0 122.2	121.1	8.5 8.6	8.6		2.6 2.6	2.6		21.0 20.0	20.5	
12-Sep-08	Sunny	Calm	18:17	Middle	5	26.6 26.5	26.6	7.7 7.6	7.7	28.7 28.8	28.8	118.6 109.1	113.9	8.4 7.8	8.1	8.4	3.0 3.0	3.0	3.0	29.0 28.0	28.5	26.7
				Bottom	9	26.3 26.0	26.2	7.9 8.1	8.0	29.4 29.7	29.6	85.2 80.0	82.6	6.2 5.7	6.0	6.0	3.3 3.7	3.5		31.0 31.0	31.0	
				Surface	1	27.1 27.0	27.1	7.4 7.5	7.5	27.4 27.4	27.4	119.9 121.9	120.9	8.3 8.3	8.3		2.0	2.0		8.0 8.0	8.0	
16-Sep-08	Sunny	Calm	08:15	Middle	5	26.5 26.4	26.5	7.5 7.7	7.6	28.4	28.6	118.5 109.0	113.8	8.1 7.6	7.9	8.1	2.4 2.4	2.4	2.5	3.0 3.0	3.0	6.3
				Bottom	9	26.1 25.9	26.0	7.9 8.2	8.1	29.3 29.5	29.4	84.9 85.3	85.1	6.1 6.2	6.2	6.2	3.1 3.1	3.1		8.0 8.0	8.0	
				Surface	1	28.4 28.4	28.4	7.8 8.0	7.9	30.4 30.4	30.4	108.6 108.1	108.4	7.1 7.1	7.1		2.6 2.7	2.7		13.0 13.0	13.0	
18-Sep-08	Fine	Calm	08:22	Middle	5	28.1 28.1	28.1	8.0 8.1	8.1	30.5 30.5	30.5	103.4 101.6	102.5	6.8 6.7	6.8	7.0	2.8	2.9	3.1	23.0	23.0	14.3
				Bottom	9	27.9 27.9	27.9	8.3 8.6	8.5	30.4 30.4	30.4	99.6 97.9	98.8	6.6 6.5	6.6	6.6	3.7 3.7	3.7		7.0 7.0	7.0	
				Surface	1	26.6 26.7	26.7	8.5 8.6	8.6	30.6 30.8	30.7	99.0 98.3	98.7	7.2 7.1	7.2		4.4 4.3	4.4		9.0 9.0	9.0	
20-Sep-08	Sunny	Calm	10:05	Middle	5	26.1 26.1	26.1	8.3 8.0	8.2	30.2 30.2	30.2	85.5 85.4	85.5	6.2 6.2	6.2	6.7	4.6 4.7	4.7	4.6	12.0 12.0	12.0	12.0
				Bottom	9	25.6 25.6	25.6	7.9 8.5	8.2	30.4 30.4	30.4	80.9 81.1	81.0	6.0 6.1	6.1	6.1	4.6 4.5	4.6		15.0 15.0	15.0	

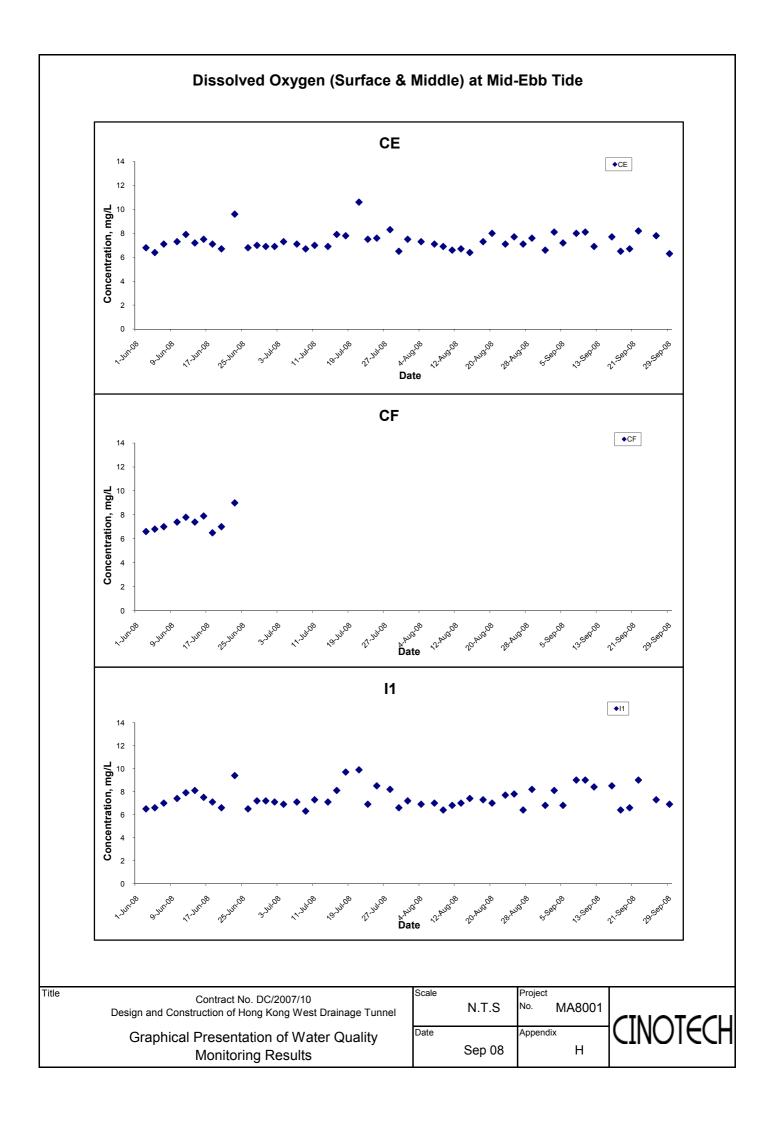
Water Quality Monitoring Results at intake A - Mid-Flood Tide

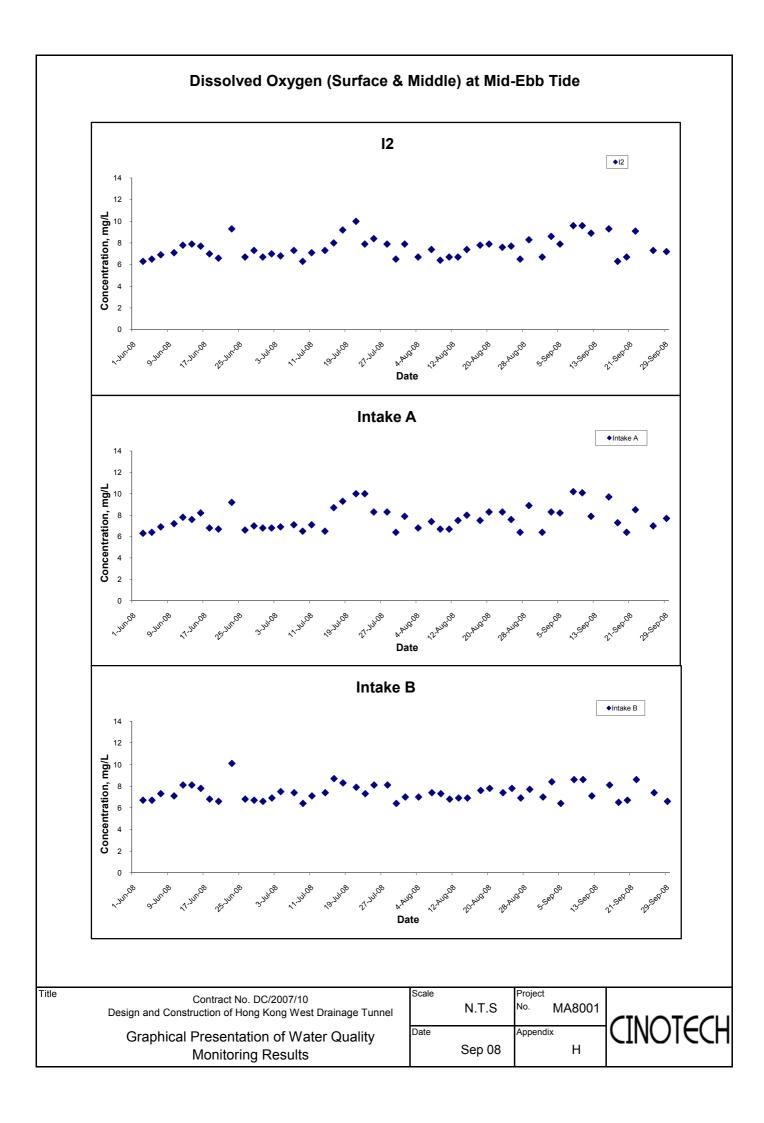
Date	Weather	Sea	Sampling	Dept	h (m)	Water Temp	perature (°C)	F	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTl	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.6 27.4	27.5	8.3 8.3	8.3	27.9 27.7	27.8	120.1 122.4	121.3	8.6 8.9	8.8	8.5	2.6 2.7	2.7		3.0 4.0	3.5	
22-Sep-08	Sunny	Moderate	16:15	Middle	5.5	26.8 26.6	26.7	8.5 8.2	8.4	28.8 28.9	28.9	118.9 109.3	114.1	8.5 7.9	8.2	6.5	3.0 3.1	3.1	3.1	12.0 12.0	12.0	11.2
				Bottom	10	26.5 26.1	26.3	8.7 8.7	8.7	29.5 29.8	29.7	85.4 80.3	82.9	6.3 6.0	6.2	6.2	3.5 3.5	3.5		18.0 18.0	18.0	
				Surface	1	26.4 26.4	26.4	9.1 8.3	8.7	31.0 31.0	31.0	108.2 105.8	107.0	7.3 7.2	7.3	7.1	3.2 3.5	3.4		41.0 41.0	41.0	
24-Sep-08	Fine	Moderate	17:05	Middle	5	26.3 26.3	26.3	8.2 8.7	8.5	31.3 31.3	31.3	102.2 101.0	101.6	6.9 6.8	6.9	7.1	4.0 4.2	4.1	4.0	26.0 25.0	25.5	26.8
				Bottom	9	26.3 26.3	26.3	8.3 8.8	8.6	31.3 31.3	31.3	99.7 99.6	99.7	6.8 6.7	6.8	6.8	4.6 4.6	4.6		14.0 14.0	14.0	
				Surface	1	27.3 27.4	27.4	7.9 8.2	8.1	31.1 31.1	31.1	82.7 83.4	83.1	6.5 6.6	6.6	6.6	2.1 1.7	1.9		9.0 9.0	9.0	
26-Sep-08	Fine	Calm	17:56	Middle	5	27.0 27.1	27.1	8.8 8.0	8.4	31.4 31.4	31.4	82.4 81.8	82.1	6.5 6.5	6.5	0.0	1.9 1.9	1.9	2.4	7.0 7.0	7.0	8.5
				Bottom	9	26.7 26.7	26.7	8.2 8.8	8.5	31.6 31.7	31.7	80.9 80.5	80.7	6.4 6.4	6.4	6.4	3.2 3.4	3.3		9.0 10.0	9.5	
				Surface	1	27.4 27.4	27.4	8.1 8.2	8.2	32.4 32.4	32.4	93.9 93.7	93.8	7.2 7.2	7.2	7.2	6.5 6.4	6.5		7.0 7.0	7.0	
29-Sep-08	Fine	Calm	18:09	Middle	5	27.2 27.2	27.2	8.2 8.3	8.3	32.5 32.5	32.5	92.3 92.0	92.2	7.1 7.1	7.1	7.2	8.5 9.0	8.8	8.4	5.0 5.0	5.0	6.0
				Bottom	9	27.2 27.2	27.2	8.5 8.6	8.6	32.5 32.5	32.5	91.7 91.3	91.5	7.1 7.0	7.1	7.1	9.6 10.2	9.9		6.0 6.0	6.0	

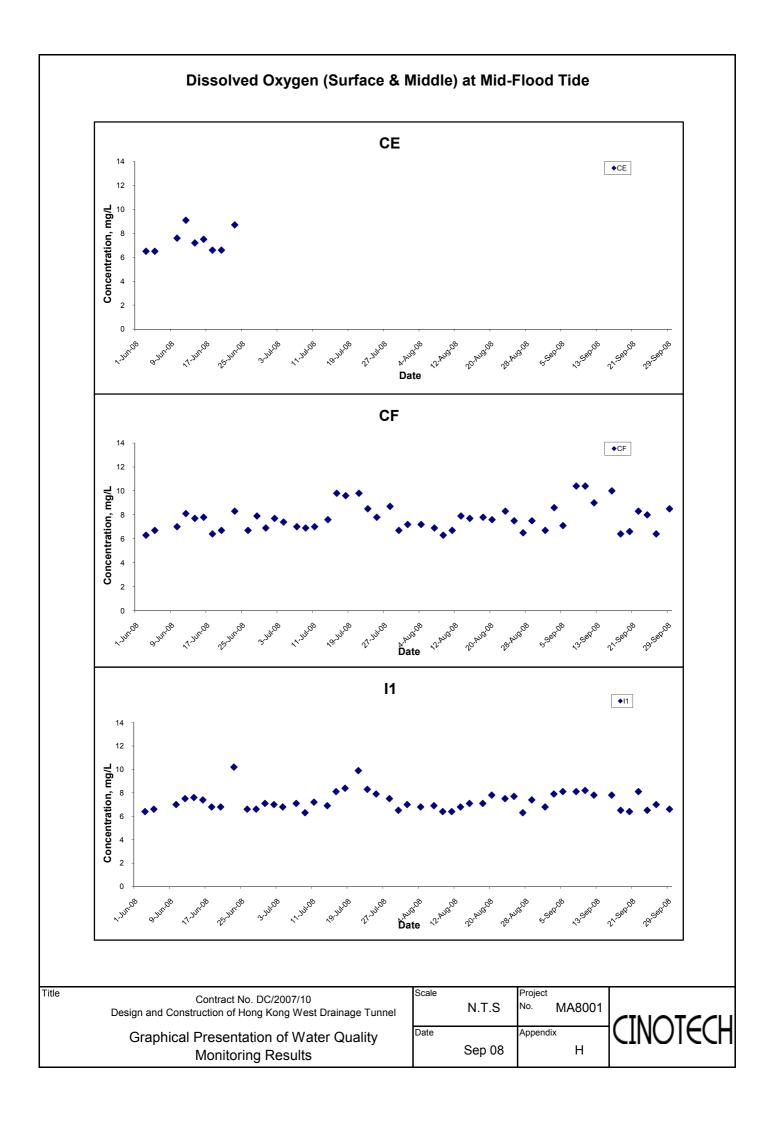
Water Quality Monitoring Results at Intake B - Mid-Ebb Tide

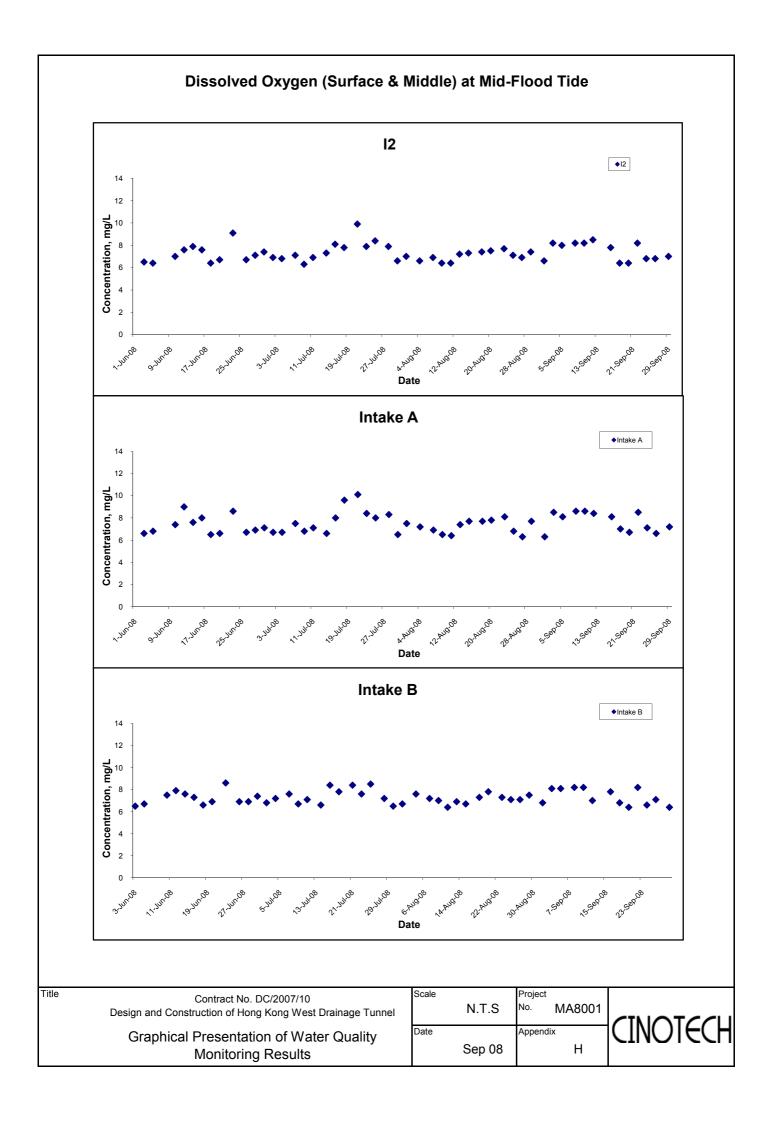
Date	Weather	Sea	Sampling	Dent	h (m)	Water Temp	perature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.0 27.0	27.0	7.3 7.5	7.4	29.0 29.0	29.0	102.8 102.7	102.8	7.0 7.0	7.0	7.0	2.9 2.9	2.9		6.0 6.0	6.0	
1-Sep-08	Sunny	Calm	13:40	Middle	6	26.7 26.7	26.7	7.6 7.5	7.6	29.4 29.4	29.4	101.6 101.5	101.6	6.9 6.9	6.9	7.0	3.3 3.2	3.3	3.1	7.0 8.0	7.5	8.2
				Bottom	11	26.6	26.6	7.5	8.0	29.4 29.4	29.4	98.1 98.1	98.1	6.7 6.7	6.7	6.7	3.0 3.0	3.0		11.0 11.0	11.0	
				Surface	1	26.5 28.3	28.3	7.1	7.2	26.7	26.7	121.5	121.2	8.8	8.8		2.5	2.7		8.0	8.0	
0.0 00	0	0-1	40.50			28.3 27.5		7.3 7.4		26.6 27.6		120.9 107.2	106.4	8.8 7.9		8.4	2.9 3.4		0.0	8.0 6.0		
3-Sep-08	Sunny	Calm	13:52	Middle	6	27.5 27.4	27.5	7.3 7.3	7.4	27.5 27.8	27.6	105.6 106.0		7.8 7.9	7.9		3.9 3.6	3.7	3.3	6.0 3.0	6.0	5.7
				Bottom	11	27.3	27.4	8.2	7.8	28.0	27.9	106.3	106.2	7.9	7.9	7.9	3.5	3.6		3.0	3.0	
				Surface	1	27.1 27.1	27.1	7.0 7.5	7.3	28.4 28.2	28.3	95.9 92.3	94.1	6.6 6.3	6.5	6.4	2.9 3.1	3.0		14.0 14.0	14.0	
5-Sep-08	Rainy	Calm	15:54	Middle	6	26.8 26.7	26.8	8.0 7.2	7.6	28.7 28.7	28.7	91.9 90.4	91.2	6.1 6.2	6.2	0.1	3.6 4.0	3.8	3.8	16.0 15.0	15.5	17.8
				Bottom	11	26.6 26.5	26.6	7.8 8.0	7.9	29.0 29.2	29.1	97.0 93.8	95.4	6.9 6.6	6.8	6.8	4.5 4.8	4.7		24.0 24.0	24.0	
				Surface	1	27.2 27.3	27.3	7.3 7.9	7.6	28.6 28.5	28.6	121.1 117.5	119.3	8.8 8.5	8.7		3.0	3.2		11.0 11.0	11.0	
8-Sep-08	Sunny	Calm	08:26	Middle	6	27.0	27.0	8.3	8.0	28.8	28.9	117.1	116.3	8.3	8.4	8.6	3.8	4.1	4.0	11.0	11.0	11.2
				Bottom	11	26.9 26.8	26.8	7.6 8.2	8.3	28.9 29.1	29.3	115.5 97.1	95.6	8.5 7.1	7.0	7.0	4.3	4.8		11.0 12.0	11.5	İ
				Surface	1	26.8 27.3	27.3	8.3 7.5	7.8	29.5 28.7	28.5	94.1 121.2	119.3	6.8 8.9	8.8		4.9 3.2	3.3		11.0	10.0	
40.0 00	0	0-1	00.00			27.2 26.9		8.0 8.3		28.3 28.9		117.4 117.0		8.6 8.2		8.6	3.4		4.4	10.0 12.0		440
10-Sep-08	Sunny	Calm	08:26	Middle	6.5	26.8 26.9	26.9	7.6 8.3	8.0	28.8 29.1	28.9	115.6 97.2	116.3	8.3 7.0	8.3		4.2 4.6	4.0	4.1	10.0	11.0	14.3
				Bottom	12	26.7	26.8	8.4	8.4	29.5	29.3	94.1	95.7	6.9	7.0	7.0	5.1	4.9		23.0	22.0	<u> </u>
				Surface	1	27.6 27.6	27.6	7.1 7.6	7.4	27.9 27.9	27.9	117.1 115.4	116.3	7.9 7.8	7.9	7.1	3.1 3.2	3.2		36.0 36.0	36.0	
12-Sep-08	Sunny	Calm	10:58	Middle	6	26.3 26.3	26.3	7.9 7.1	7.5	30.0 30.1	30.1	92.6 92.6	92.6	6.3 6.3	6.3		3.7 4.2	4.0	4.1	37.0 37.0	37.0	33.8
				Bottom	11	25.7 25.7	25.7	7.7 8.0	7.9	30.9 30.9	30.9	78.6 78.3	78.5	5.4 5.4	5.4	5.4	4.8 5.1	5.0		29.0 28.0	28.5	
				Surface	1	27.0 27.0	27.0	7.0 7.4	7.2	28.2 27.9	28.1	120.7 117.2	119.0	8.3 8.2	8.3		2.6 2.9	2.8		4.0 4.0	4.0	
16-Sep-08	Sunny	Calm	13:22	Middle	6	26.5 26.6	26.6	7.9 7.0	7.5	28.4 28.6	28.5	116.6 115.2	115.9	7.9 7.9	7.9	8.1	3.5 3.9	3.7	3.7	7.0 6.0	6.5	7.3
				Bottom	11	26.4	26.3	7.6	7.7	28.7	28.9	96.7	95.1	6.6	6.6	6.6	4.3	4.5		11.0	11.5	İ
				Surface	1	26.2 27.5	27.6	7.8 7.5	7.7	29.1 30.3	30.3	93.5 107.9	104.9	7.2	7.0		3.0	3.2		9.0	8.5	
18-Sep-08	Sunny	Calm	14:39	Middle	6	27.6 26.8	26.8	7.9 8.4	8.0	30.3 30.7	30.7	101.9 88.4	87.8	6.8 6.0	6.0	6.5	3.4 3.7	4.0	4.0	8.0 14.0	14.0	14.2
10-3eh-00	Suring	Callii	14.33			26.8 26.7		7.6 8.2		30.6 30.9		87.2 88.8		5.9 6.2			4.3 4.7		4.0	14.0 20.0		14.4
				Bottom	11	26.6 28.1	26.7	8.5 8.0	8.4	30.9 30.4	30.9	88.2 98.7	88.5	6.1	6.2	6.2	5.0	4.9		20.0	20.0	<u> </u>
				Surface	1	28.1	28.1	7.9	8.0	30.4	30.4	98.8	98.8	6.9	6.9	6.7	3.6	3.6		10.0	10.0	
20-Sep-08	Sunny	Calm	15:35	Middle	6	27.2 27.0	27.1	7.9 8.5	8.2	30.7 30.7	30.7	90.9 91.1	91.0	6.3 6.4	6.4		3.6 3.5	3.6	3.7	15.0 15.0	15.0	11.7
				Bottom	11	26.5 26.5	26.5	8.2 7.6	7.9	31.0 31.1	31.1	81.2 81.3	81.3	6.0 6.0	6.0	6.0	3.9 4.0	4.0		10.0 10.0	10.0	
					l	∠0.5	<u> </u>	7.0	<u> </u>	31.1		81.3	<u> </u>	0.0	<u> </u>		4.0			10.0	1	

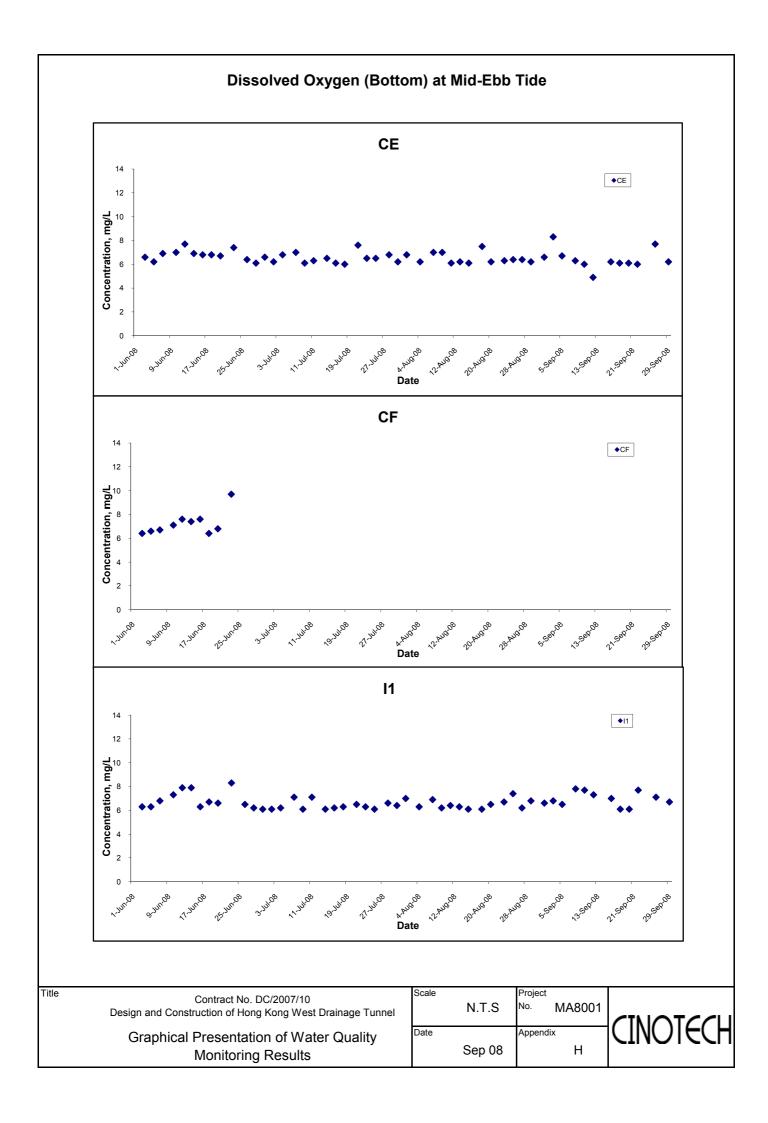
Water Quality Monitoring Results at Intake B - Mid-Ebb Tide

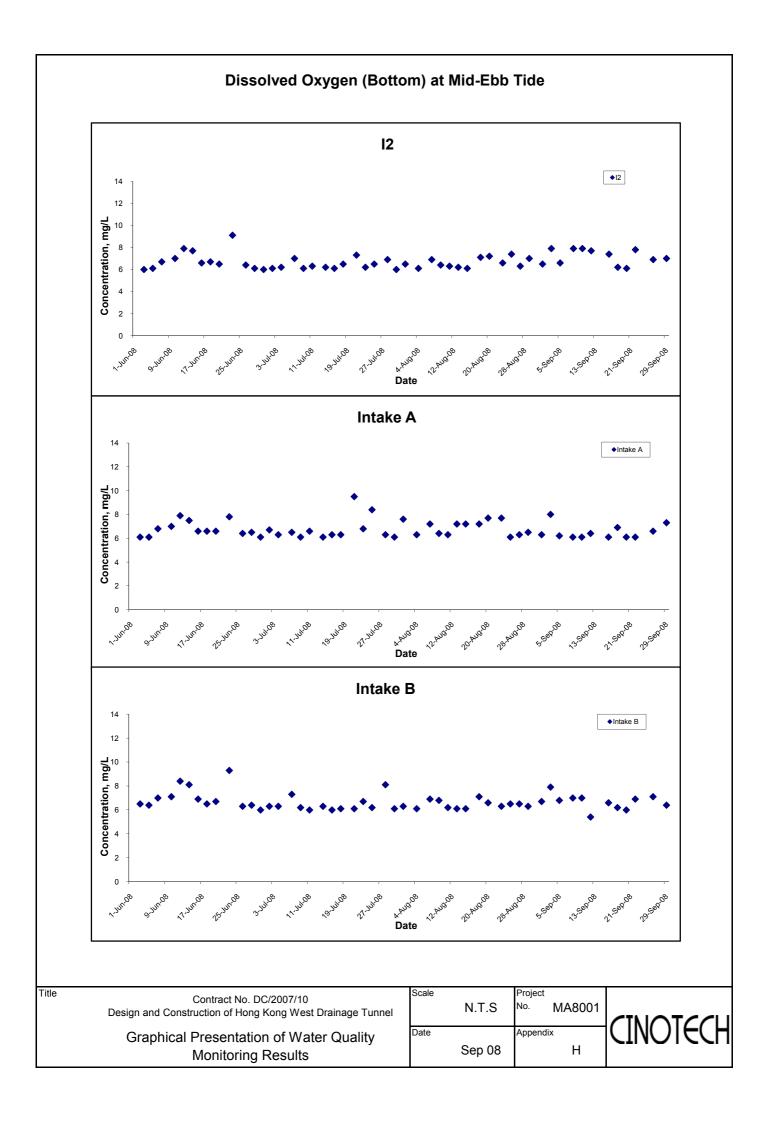

Date	Weather	Sea	Sampling	Dent	h (m)	Water Temp	erature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.2 27.4	27.3	7.8 8.1	8.0	28.5 28.4	28.5	121.1 117.5	119.3	8.7 8.6	8.7	8.6	3.0 3.4	3.2		9.0 9.0	9.0	
22-Sep-08	Sunny	Moderate	08:29	Middle	6	27.0 26.8	26.9	8.7 7.9	8.3	28.9 29.0	29.0	117.2 115.5	116.4	8.2 8.5	8.4	0.0	3.8 4.1	4.0	4.0	6.0 7.0	6.5	7.8
				Bottom	11	26.7 26.8	26.8	8.6 8.8	8.7	29.2 29.5	29.4	97.1 94.1	95.6	7.0 6.8	6.9	6.9	4.7 4.9	4.8		8.0 8.0	8.0	
				Surface	1	27.2 27.2	27.2	8.6 7.8	8.2	31.3 31.3	31.3	99.6 97.6	98.6	7.6 7.5	7.6	7.4	2.8 2.8	2.8		11.0 11.0	11.0	
26-Sep-08	Sunny	Calm	10:25	Middle	6	26.8 26.8	26.8	8.5 8.7	8.6	31.4 31.4	31.4	93.0 92.4	92.7	7.2 7.2	7.2	7.4	3.6 4.1	3.9	3.6	8.0 8.0	8.0	10.7
				Bottom	11	26.7 26.8	26.8	8.4 7.6	8.0	31.5 31.5	31.5	91.1 90.9	91.0	7.1 7.1	7.1	7.1	4.1 4.3	4.2		13.0 13.0	13.0	
				Surface	1	27.4 27.3	27.4	7.5 8.1	7.8	32.1 32.1	32.1	88.4 86.3	87.4	6.9 6.7	6.8	6.6	7.1 7.4	7.3		10.0 10.0	10.0	
29-Sep-08	Sunny	Calm	12:56	Middle	6	27.2 27.2	27.2	8.6 7.8	8.2	32.3 32.3	32.3	80.1 80.3	80.2	6.3 6.3	6.3	0.0	8.5 8.5	8.5	8.3	8.0 8.0	8.0	10.0
				Bottom	11	27.2 27.2	27.2	8.3 8.5	8.4	32.3 32.3	32.3	80.7 80.5	80.6	6.4 6.3	6.4	6.4	9.2 9.1	9.2		12.0 12.0	12.0	

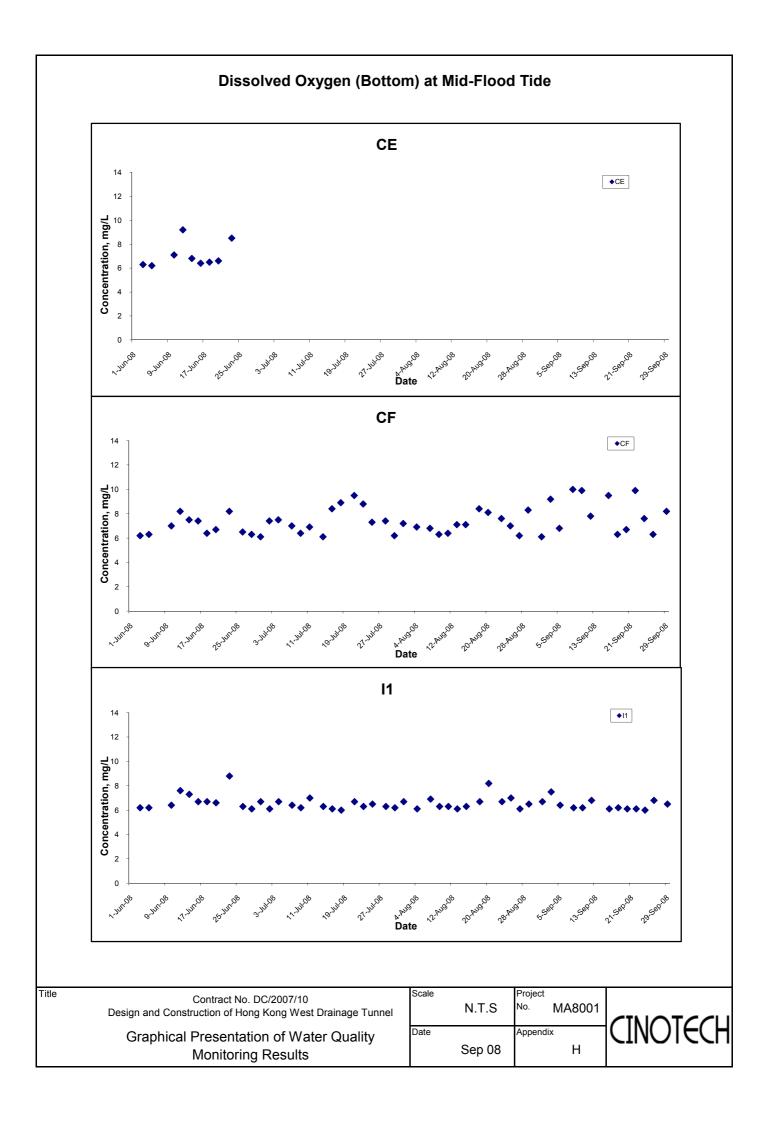

Water Quality Monitoring Results at Intake B - Mid-Flood Tide

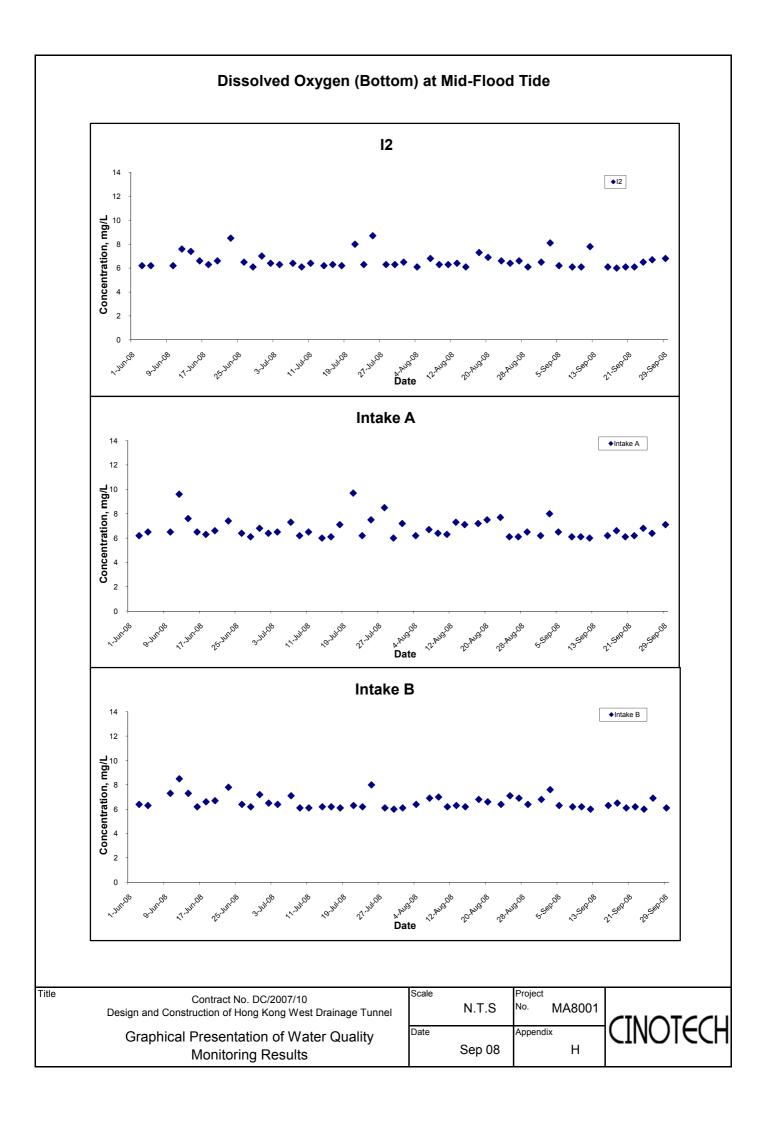

Date	Weather	Sea	Sampling	Doni	th (m)	Water Temp	perature (°C)	ŗ	DΗ	Salini	ity ppt	DO Satu	ıration (%)	Dissol	ved Oxygen	(mg/L)	T	urbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	u (III)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	26.9 27.0	27.0	8.3 7.9	8.1	29.1 29.0	29.1	97.7 99.6	98.7	6.6 6.8	6.7		2.9 2.8	2.9		7.0 7.0	7.0	
1-Sep-08	Sunny	Calm	08:42	Middle	6	26.7 26.7	26.7	7.4 7.5	7.5	29.3 29.3	29.3	100.6 100.6	100.6	6.8 6.8	6.8	6.8	3.0 2.9	3.0	3.0	7.0 7.0	7.0	7.0
				Bottom	11	26.5 26.6	26.6	7.3 7.3	7.3	29.3 29.3	29.3	99.3 98.8	99.1	6.8 6.7	6.8	6.8	3.0 3.0	3.0		7.0 7.0	7.0	
				Surface	1	27.2 27.2	27.2	7.1 7.2	7.2	26.8 26.8	26.8	106.9 110.6	108.8	7.9	8.0		3.0	3.0		6.0	6.0	
3-Sep-08	Sunny	Calm	08:46	Middle	6	27.2 27.5 27.5	27.5	7.2 7.0 8.2	7.6	26.8 27.5 27.6	27.6	110.6 110.3 109.0	109.7	8.1 8.1 8.1	8.1	8.1	3.0 3.3 3.3	3.3	3.2	6.0 10.0 9.0	9.5	8.2
				Bottom	11	27.1 27.1	27.1	8.1 8.3	8.2	28.4 28.5	28.5	103.1 100.2	101.7	7.7 7.5	7.6	7.6	3.3	3.3		9.0	9.0	
				Surface	1	27.5 27.4	27.5	8.5 8.3	8.4	28.1 28.1	28.1	115.1 121.6	118.4	7.9 8.4	8.2		3.6 3.1	3.4		16.0 16.0	16.0	
5-Sep-08	Rainy	Calm	10:18	Middle	6	26.8 26.5	26.7	7.9 7.4	7.7	28.9	28.9	113.7 108.4	111.1	7.9 7.8	7.9	8.1	3.7 3.9	3.8	3.9	19.0 20.0	19.5	19.2
				Bottom	11	26.3 26.3	26.3	7.5 7.3	7.4	29.3 29.4	29.4	88.9 88.9	88.9	6.2 6.3	6.3	6.3	4.3 4.6	4.5		22.0 22.0	22.0	
				Surface	1	27.7 27.5	27.6	8.8 8.7	8.8	28.4 28.4	28.4	115.4 121.9	118.7	8.0 8.5	8.3		2.8 2.9	2.9		5.0 5.0	5.0	
8-Sep-08	Sunny	Calm	17:09	Middle	6	27.1 26.8	27.0	8.3 7.8	8.1	29.2 29.0	29.1	113.9 108.6	111.3	8.1 8.1	8.1	8.2	3.6 3.7	3.7	3.7	16.0 16.0	16.0	11.2
				Bottom	11	26.5 26.5	26.5	7.9 7.8	7.9	29.5 29.5	29.5	84.0 82.1	83.1	6.3 6.0	6.2	6.2	4.4 4.4	4.4		11.0 11.0	11.0	
				Surface	1	27.6 27.6	27.6	8.9 8.6	8.8	28.2 28.4	28.3	115.4 121.9	118.7	8.1 8.6	8.4		3.8 3.4	3.6		10.0	10.0	
10-Sep-08	Sunny	Calm	17:36	Middle	6	26.9 26.8	26.9	8.4 7.7	8.1	29.1 29.0	29.1	113.8 108.7	111.3	8.0 7.9	8.0	8.2	3.9 4.2	4.1	4.1	12.0 13.0	12.5	13.7
				Bottom	11	26.5 26.4	26.5	7.9 7.7	7.8	29.6 29.6	29.6	84.2 82.1	83.2	6.1 6.2	6.2	6.2	4.5 4.8	4.7		18.0 19.0	18.5	
				Surface	1	27.8 27.8	27.8	8.5 8.3	8.4	28.2 28.2	28.2	106.2 106.1	106.2	7.1 7.1	7.1		3.9 3.4	3.7		25.0 25.0	25.0	
12-Sep-08	Sunny	Calm	18:39	Middle	6	26.5 26.2	26.4	7.9 7.3	7.6	29.9 30.2	30.1	103.5 99.2	101.4	7.0 6.8	6.9	7.0	3.8 4.0	3.9	4.1	20.0	20.0	24.7
				Bottom	11	26.1 25.7	25.9	7.6 7.3	7.5	30.5 30.9	30.7	88.1 86.4	87.3	6.0 5.9	6.0	6.0	4.6 4.9	4.8		29.0	29.0	
				Surface	1	27.4 27.2	27.3	8.5 8.2	8.4	27.9 27.9	27.9	114.9 121.4	118.2	7.8 8.2	8.0		2.0	2.1		12.0 13.0	12.5	
16-Sep-08	Sunny	Calm	08:36	Middle	6	26.6 26.3	26.5	7.8 7.4	7.6	28.6 28.6	28.6	113.4 108.2	110.8	7.7 7.5	7.6	7.8	2.3	2.4	2.5	18.0 18.0	18.0	14.8
				Bottom	11	26.2 26.2	26.2	7.5 7.1	7.3	29.1 29.2	29.2	92.8 93.7	93.3	6.2 6.3	6.3	6.3	3.0 3.0	3.0		14.0	14.0	
				Surface	1	27.2 27.2	27.2	8.6 8.6	8.6	30.4 30.4	30.4	96.8 96.5	96.7	6.8 6.8	6.8	0.0	2.0 2.1	2.1		6.0 6.0	6.0	
18-Sep-08	Fine	Calm	08:43	Middle	6	26.9 27.0	27.0	8.2 7.9	8.1	30.5 30.5	30.5	93.9 92.7	93.3	6.7 6.6	6.7	6.8	2.8 2.8	2.8	3.1	6.0 7.0	6.5	7.5
				Bottom	11	26.9 26.9	26.9	8.0 7.8	7.9	30.7 30.7	30.7	91.0 90.5	90.8	6.5 6.4	6.5	6.5	4.4 4.4	4.4		10.0	10.0	
				Surface	1	27.1 27.1	27.1	8.1 8.1	8.1	30.7 31.1	30.9	98.8 99.0	98.9	6.9 6.9	6.9	6.4	3.5 4.1	3.8		10.0 10.0	10.0	
20-Sep-08	Sunny	Calm	09:35	Middle	6	25.9 25.9	25.9	9.1 8.6	8.9	30.4 30.6	30.5	84.0 84.0	84.0	5.9 5.9	5.9	6.4	3.7 4.0	3.9	4.1	5.0 6.0	5.5	8.5
				Bottom	11	25.6 25.7	25.7	8.3 8.8	8.6	30.6 30.6	30.6	81.2 81.6	81.4	6.0 6.1	6.1	6.1	4.7 4.6	4.7		10.0 10.0	10.0	

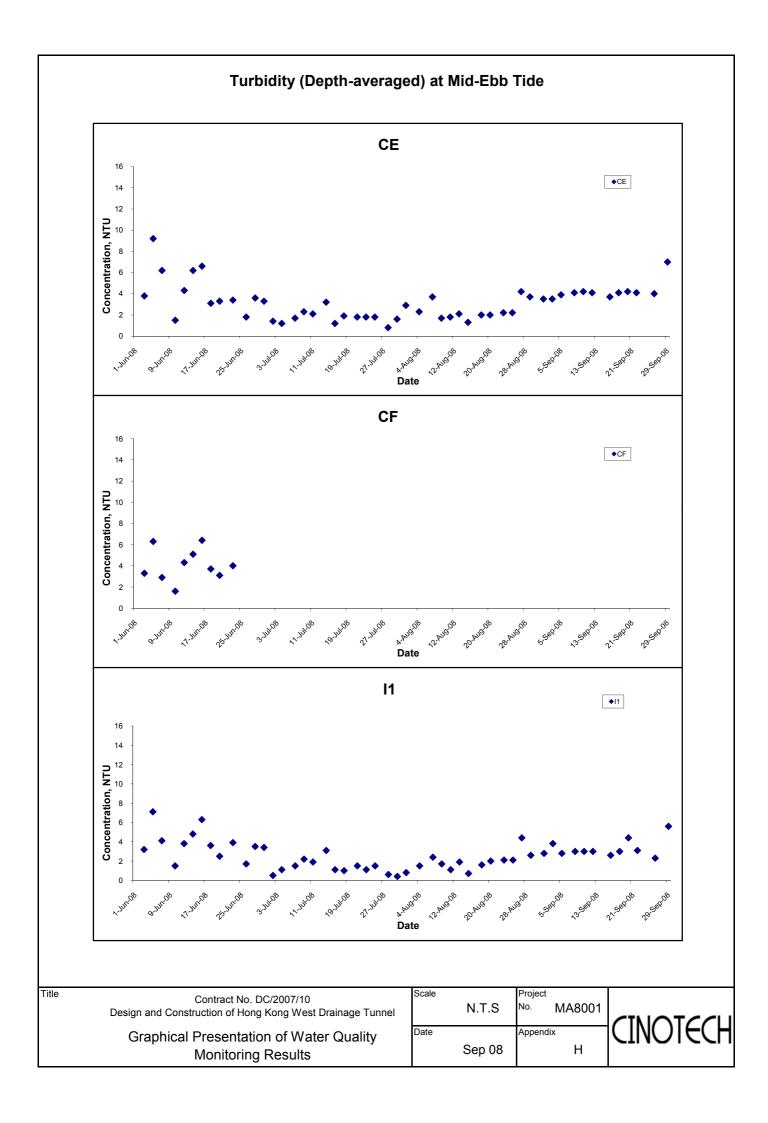

Water Quality Monitoring Results at Intake B - Mid-Flood Tide

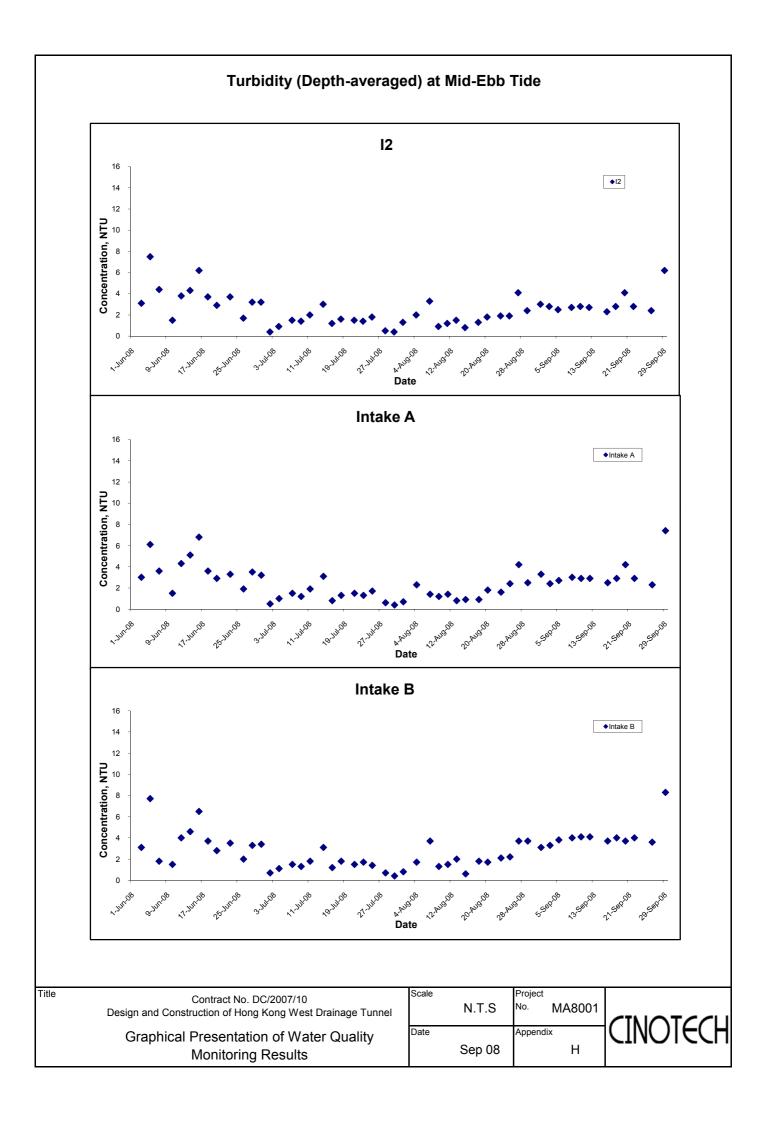

Date	Weather	Sea	Sampling	Dept	h (m)	Water Temp	perature (°C)	1	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	Т	urbidity(NT	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.6 27.5	27.6	9.2 8.9	9.1	28.4 28.2	28.3	115.4 121.8	118.6	8.0 8.7	8.4	8.2	3.9 3.4	3.7		15.0 15.0	15.0	
22-Sep-08	Sunny	Moderate	16:36	Middle	6	27.1 26.7	26.9	8.7 8.1	8.4	29.0 29.0	29.0	113.9 108.6	111.3	8.1 7.9	8.0	0.2	4.0 4.0	4.0	4.1	6.0 6.0	6.0	11.0
				Bottom	11	26.5 26.5	26.5	8.1 8.0	8.1	29.4 29.7	29.6	84.0 82.1	83.1	6.1 6.2	6.2	6.2	4.4 4.9	4.7		12.0 12.0	12.0	
				Surface	1	26.5 26.5	26.5	7.9 8.5	8.2	30.6 30.6	30.6	105.0 101.2	103.1	7.1 6.9	7.0	6.6	3.1 3.6	3.4		23.0 24.0	23.5	
24-Sep-08	Fine	Moderate	17:32	Middle	5.5	26.4 26.4	26.4	8.6 8.5	8.6	31.1 31.1	31.1	90.7 90.5	90.6	6.1 6.1	6.1	0.0	4.0 3.9	4.0	3.8	28.0 28.0	28.0	30.7
				Bottom	10	26.4 26.4	26.4	7.7 9.1	8.4	31.2 31.2	31.2	89.0 88.8	88.9	6.0 6.0	6.0	6.0	3.9 3.8	3.9		41.0 40.0	40.5	
				Surface	1	27.2 27.2	27.2	9.1 8.9	9.0	31.3 31.3	31.3	91.2 91.0	91.1	7.1 7.1	7.1	7.1	2.8 2.7	2.8		10.0 10.0	10.0	
26-Sep-08	Fine	Calm	17:29	Middle	6	26.9 26.8	26.9	8.5 8.2	8.4	31.4 31.4	31.4	89.4 88.7	89.1	7.0 6.9	7.0	7.1	3.4 3.8	3.6	3.6	13.0 13.0	13.0	11.8
				Bottom	11	26.8 26.8	26.8	8.1 8.1	8.1	31.5 31.5	31.5	87.5 87.3	87.4	6.9 6.9	6.9	6.9	4.4 4.5	4.5		12.0 13.0	12.5	
				Surface	1	27.4 27.5	27.5	9.2 8.9	9.1	32.0 32.0	32.0	81.0 81.7	81.4	6.4 6.5	6.5	6.4	7.1 6.4	6.8		4.0 4.0	4.0	
29-Sep-08	Fine	Calm	18:42	Middle	6	27.2 27.2	27.2	8.4 7.9	8.2	32.3 32.3	32.3	78.6 78.5	78.6	6.3 6.2	6.3	5.4	7.3 8.5	7.9	7.8	4.0 5.0	4.5	5.5
				Bottom	11	27.2 27.2	27.2	8.2 7.9	8.1	32.3 32.3	32.3	77.2 77.2	77.2	6.1 6.1	6.1	6.1	8.7 8.5	8.6		8.0 8.0	8.0	

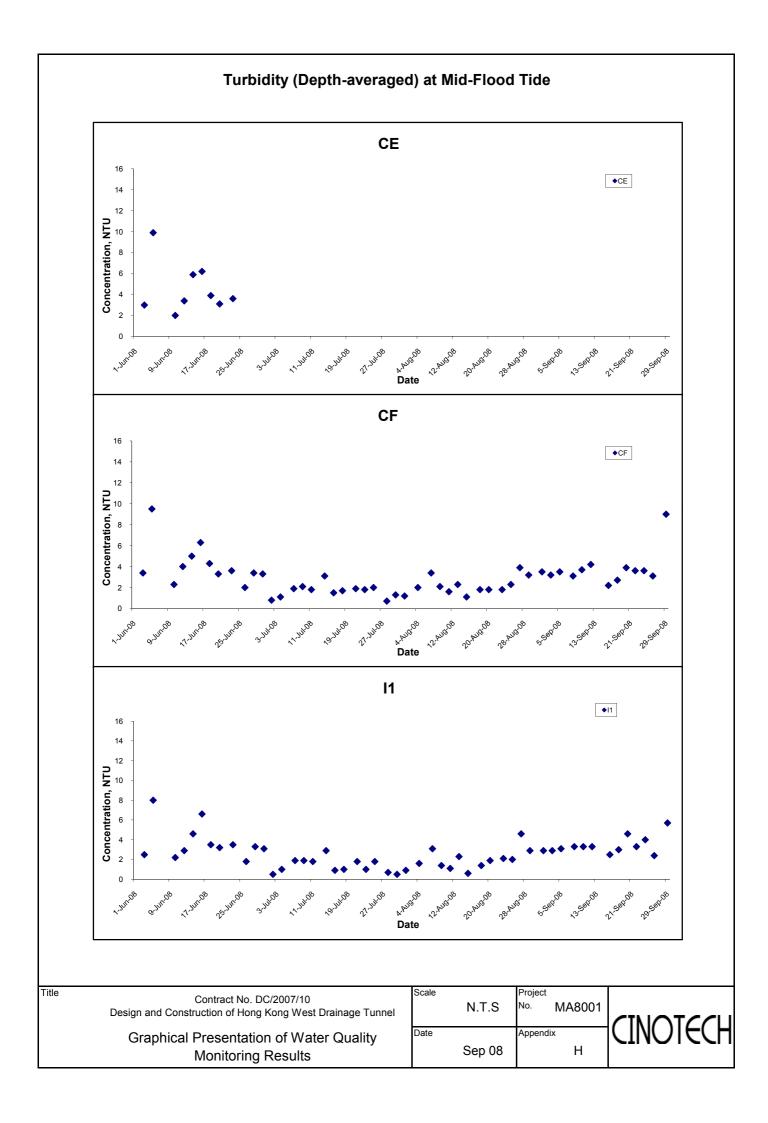


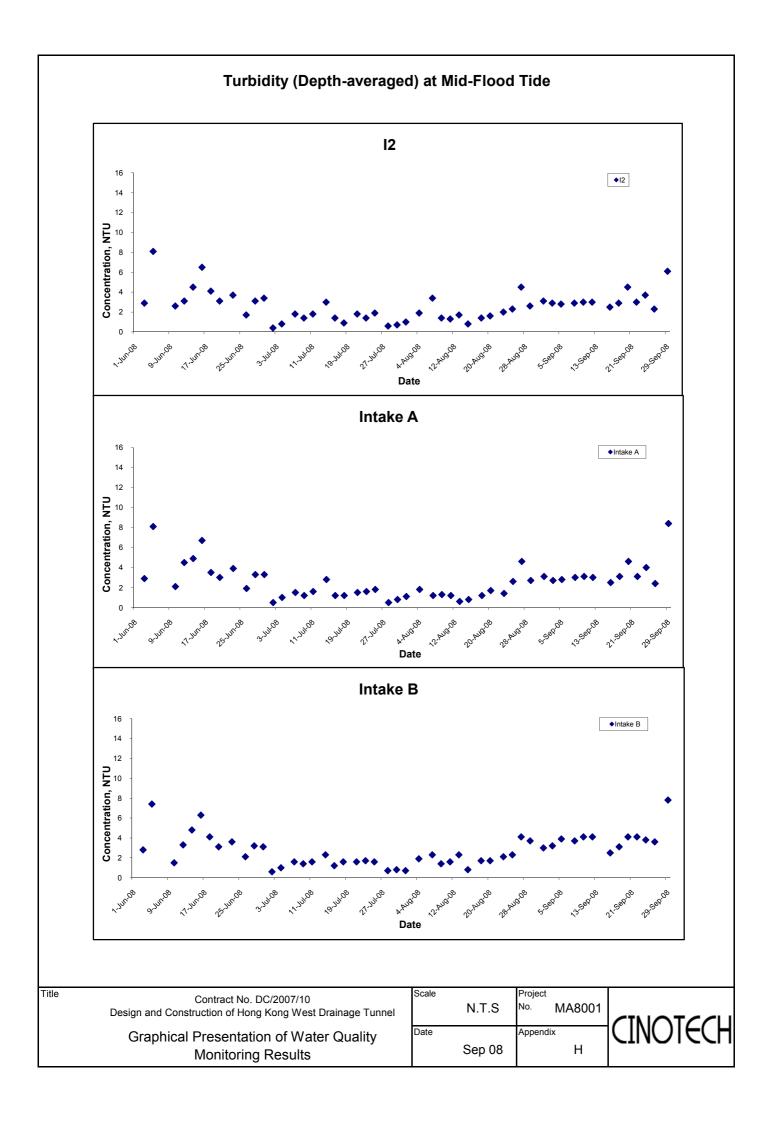


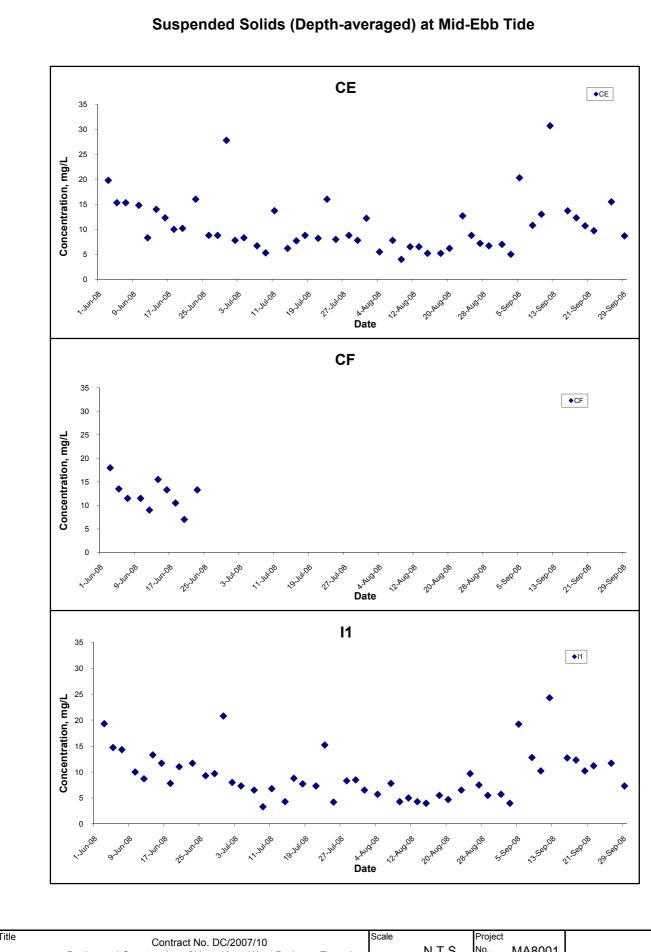




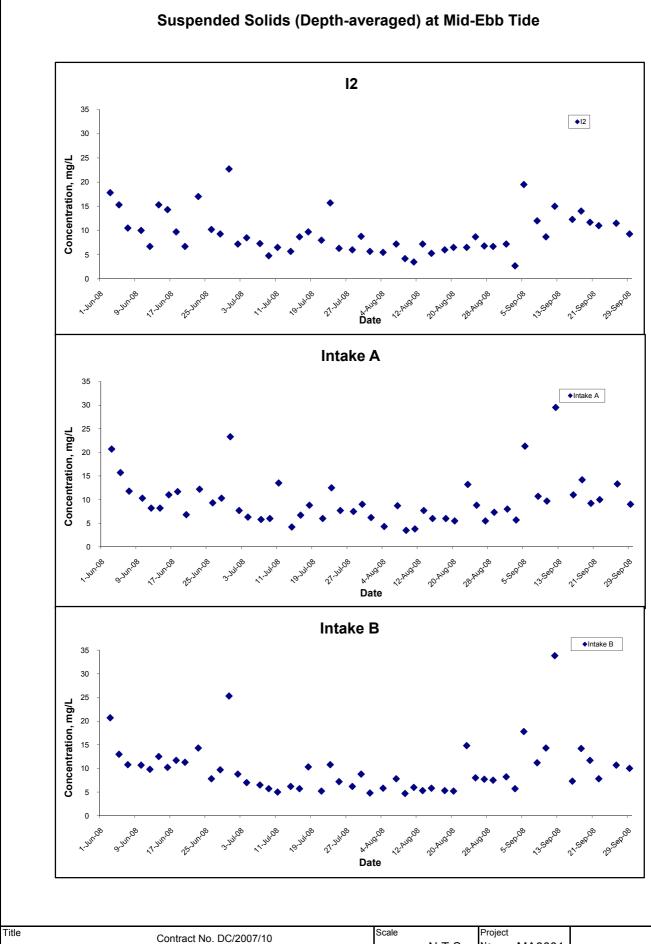








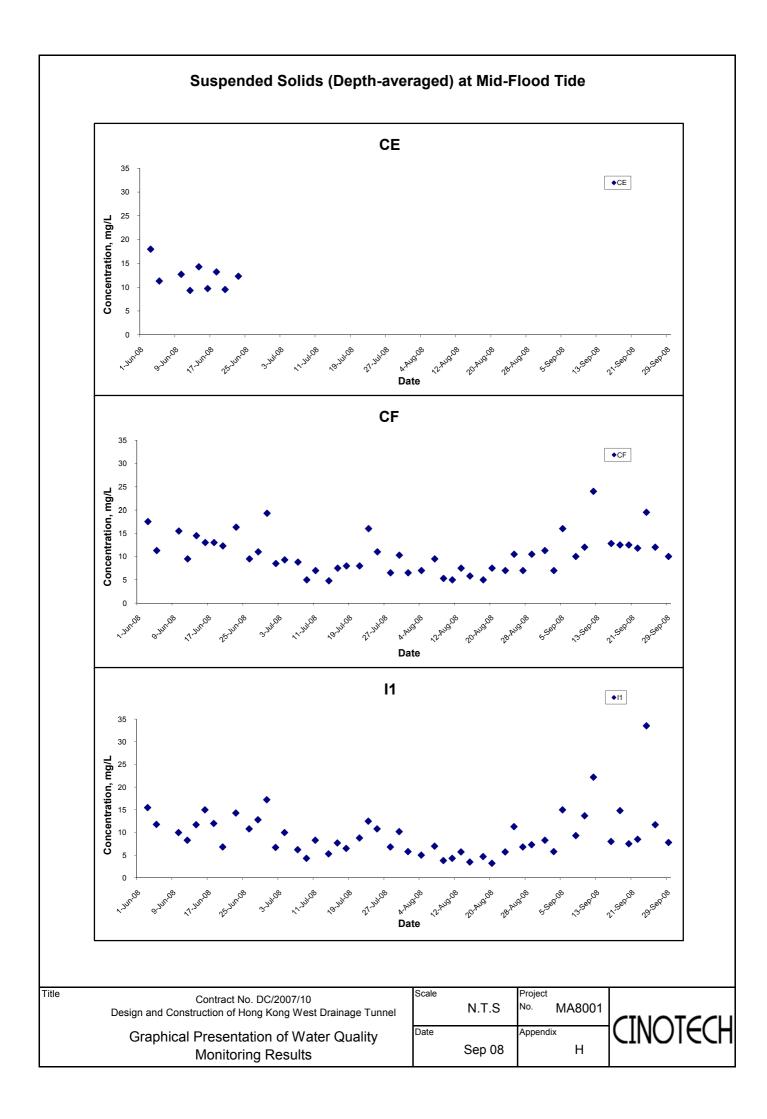
Contract No. DC/2007/10
Design and Construction of Hong Kong West Drainage Tunnel

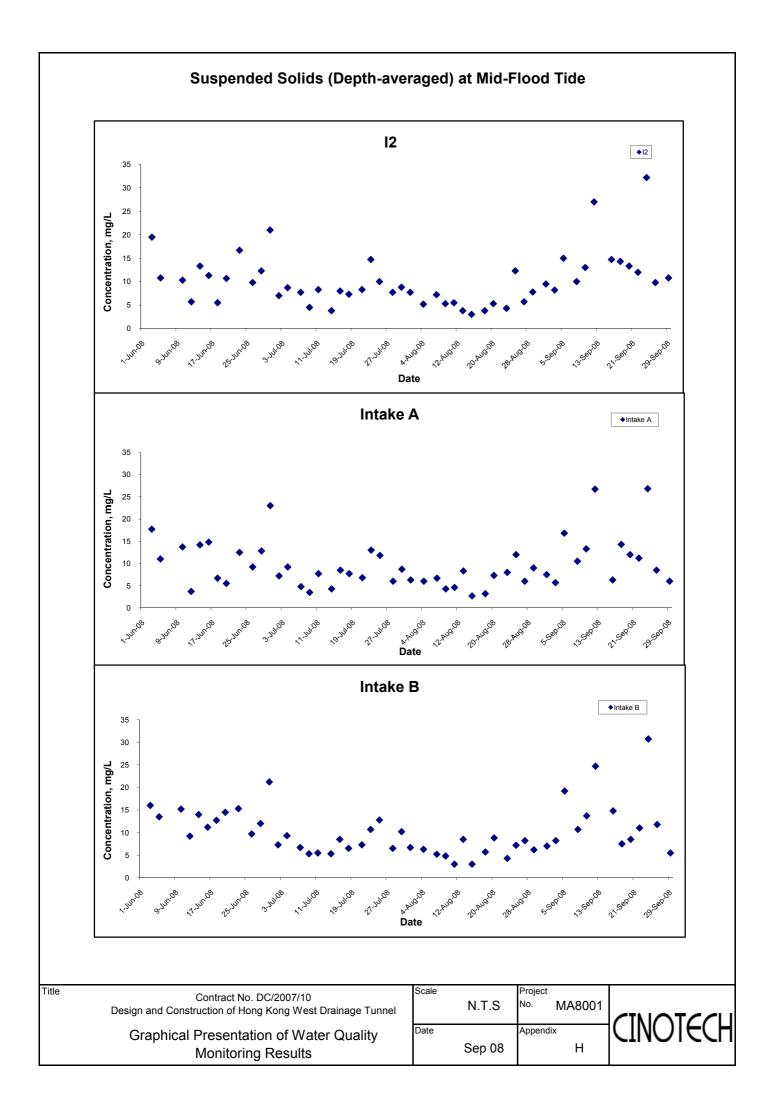

Graphical Presentation of Water Quality
Monitoring Results

Scale
N.T.S

No. MA8001

Date
Sep 08


Appendix
H



Title Contract No. DC/2007/10
Design and Construction of Hong Kong West Drainage Tunnel
Graphical Presentation of Water Quality
Monitoring Results

Scale N.T.S Project
No. MA8001

Date
Sep 08 H

APPENDIX I SUMMARY OF EXCEEDANCE

Contract No. DC/2007/10 – Design and Construction of Hong Kong West Drainage Tunnel

Exceedance Report

Eastern Portal

- (A) Exceedance Report for Air Quality (1 hour TSP) (NIL in the reporting month)
- (B) Exceedance Report for Air Quality (24 hours TSP) (NIL in the reporting month)
- (C) Exceedance Report for Construction Noise (18 September 2008 in the reporting month – NC1)

Western Portal

- (D) Exceedance Report for Air Quality (1 hour TSP) (NIL in the reporting month)
- (E) Exceedance Report for Air Quality (24 hours TSP) (NIL in the reporting month)
- (F) Exceedance Report for Construction Noise (NIL in the reporting month)
- (G) Exceedance Report for Water Quality (5, 12 and 24 September 2008 in the reporting month)

Design and Construction of Hong Kong West Drainage Tunnel - Exceedance Report Report No. $80909W-80905_S$

Part A – Exceedance Summary Tables (5 September 2008)

Table 1: Parameter – Suspended Solids (mg/L)

Station No.	Tide	Baseline Action Level (mg/l)	Baseline Limit Level (mg/l)	Measured value (mg/l)	Control Station(s)	Measured Value at Control Stations (mg/l)	120% of Control Station Action Level (mg/l)	130% of Control Station Limit Level (mg/l)	Level Exceeded	Justification *
II I2				19.2 19.5	-					(2) & (3)
Intake A	Mid-ebb			21.3	CE	20.3	24.4	26.4	Limit	
Intake B	-	15.7	16.4	17.8						(1) & (3)
Intake A	Mid-	13.7	10.4	16.8						
Intake B	flood			19.2	CF	16.0	19.2	20.8	Limit	(1) & (3)

*Remarks

- (1) No construction activity was observed.
- (2) No pollution discharge from construction activity was observed.
- (3) Control Station value already exceeded either the Baseline Action or Limit Levels.

Design and Construction of Hong Kong West Drainage Tunnel - Exceedance Report Report No. $80916W-80912_DO\&SS$

Part A – Exceedance Summary Tables (12 September 2008)

Table 1: Parameter – Suspended Solids (mg/L)

Station No.	Tide	Baseline Action Level (mg/l)	Baseline Limit Level (mg/l)	Measured value (mg/l)	Control Station(s)	Measured Value at Control Stations (mg/l)	120% of Control Station Action Level (mg/l)	130% of Control Station Limit Level (mg/l)	Level Exceeded	Justification *
I1				24.3						(2), (3) & (4)
Intake A	Mid-ebb			29.5	CE	30.7	36.8	39.9	Limit	(1), (3) & (4)
Intake B		15.7	16.4	33.8						(1), (3) & (4)
I1		15.7	16.4	22.2						(2) (2) 0 (4)
I2	Mid-			27.0	CF	24.0	28.8	31.2	Limit	(2), (3) & (4)
Intake A	flood			26.7	CF	24.0	۷٥.۵	31.2	LIIIII	(1) (2) 8 (4)
Intake B				24.7						(1), (3) & (4)

Table 2: Parameter – Dissolved Oxygen (mg/L)

		DO, mg/L	(Bottom)	Contro	Measured Value at		
Station No.	Measured Value	Action value	Limit Value	Station (s)	Control Stations (mg/L)	Level Exceeded	Justification*
Intake B	5.4	6.0	5.8	CE	4.9	Limit	(1), (3) & (4)

*Remarks

- (1) No construction activity was observed.
- (2) No pollution discharge from construction activity was observed.
- (3) Control Station value already exceeded either the Baseline Action or Limit Levels.
- (4) Natural algae were observed.

Design and Construction of Hong Kong West Drainage Tunnel - Exceedance Report Report No. $80926W-80924_S$

Part A – Exceedance Summary Tables (24 September 2008)

Table 1: Parameter – Suspended Solids (mg/L)

Station No.	Tide	Baseline Action Level (mg/l)	Baseline Limit Level (mg/l)	Measured value (mg/l)	Control Station(s)		120% of Control Station Action Level (mg/l)	130% of Control Station Limit Level (mg/l)	Level Exceeded	Justification *
I1				33.5						
I2	Mid-	15.7	16.4	32.2	CF	19.5	23.4	25.4	Limit	(1) & (3)
Intake A	flood	13.7	10.4	26.8	CF	19.3	23.4	23.4	Lillit	(1) & (5)
Intake B				30.7						

^{*}Remarks

- (1) No construction activity was observed.
- (2) No pollution discharge from construction activity was observed.
- (3) Control Station value already exceeded either the Baseline Action or Limit Levels.

Design and Construction of Hong Kong West Drainage Tunnel

Report No. 80918_noise_NC1

Date of Measurement: 18th September 2008

Time of Measurement: 1st 16:00 (NC1) and 2nd 16:35(NC1)

Location	Parameter	Measured Level (Leq dB(A))	Baseline Level (Leq dB(A))	Actual Construction Noise Level (Leq dB(A))	Action Level (µg/m³)	Limit Level (Leq dB(A))	Level exceede d
NC1(1 st)	Constructi	74.3	70.2	72.2	When one documented	70.0	Limit
NC1 (2 nd)	on Noise	72.8	70.2	69.3	complaint is received	70.0	-

Remark:

(1) Repeated measurement was carried out on the same day to confirm result.

Remarks

(a) Statement of exceedance(s)

Construction noise measured at NC1 – True Light Middle School of Hong Kong

(b) Cause of exceedance(s)

The exceedance was considered related to the Project works:

 According to our field observation, operations of rock breaking works were identified as the dominant noise source.

(c) Event/Action Plan for Construction Noise under Table 3.3 of the Updated EM&A Manual

The Contractor is required to:-

- 1. Take immediate action to avoid further exceedance
- 2. Identify practicable measures to minimize the noise impact. Submit proposals for remedial actions to Supervising Officer's Representative within three working days of notification
- 3. Implement the agreed proposals
- 4. Resubmit proposal if problem still not under control
- 5. Stop the relevant portion of works as determined by the Supervising Officer's Representative until the exceedance is abated
- (d) ET's conclusions and recommendations for mitigation
 - The exceedance was considered related to the Project works.
 - The Contractor is required to implement noise mitigation measures to rectify the problem.
 - The Contractor is recommended to reduce the time of continuous operation of rock breaking works. In addition, concurrent implementation of rock breaking works should be avoided whenever possible.

APPENDIX J WIND DATA

Appendix J - Wind Data (Eastern Portal)

Date	Time	Wind Speed m/s	Direction
1-Sep-2008	00:00	1.4	W
1-Sep-2008	01:00	1.2	W
1-Sep-2008	02:00	0.9	W
1-Sep-2008	03:00	1.1	W
1-Sep-2008	04:00	1.3	W
1-Sep-2008	05:00	1.1	W
1-Sep-2008	06:00	1.3	W
1-Sep-2008	07:00	1.2	WSW
1-Sep-2008	08:00	1.2	SW
1-Sep-2008	09:00	1.3	SW
1-Sep-2008	10:00	2.1	SW
1-Sep-2008	11:00	2.7	SW
1-Sep-2008	12:00	2.8	SW
1-Sep-2008	13:00	2.4	WSW
1-Sep-2008	14:00	2.9	WSW
1-Sep-2008	15:00	2.5	WSW
1-Sep-2008	16:00	2.6	SW
1-Sep-2008	17:00	2.6	SW
1-Sep-2008	18:00	2.1	SW
1-Sep-2008	19:00	2.0	SW
1-Sep-2008	20:00	2.0	WNW
1-Sep-2008	21:00	1.8	WNW
1-Sep-2008	22:00	1.6	W
1-Sep-2008	23:00	1.9	W
2-Sep-2008	00:00	1.7	W
2-Sep-2008	01:00	2.1	WNW
2-Sep-2008	02:00	2.4	WNW
2-Sep-2008	03:00	1.8	WNW
2-Sep-2008	04:00	2.1	W
2-Sep-2008	05:00	2.1	W
2-Sep-2008	06:00	2.7	W
2-Sep-2008	07:00	2.5	WSW
2-Sep-2008	08:00	1.6	W
2-Sep-2008	09:00	1.9	WNW
2-Sep-2008	10:00	2.4	W
2-Sep-2008	11:00	3.9	WNW
2-Sep-2008	12:00	4.2	WNW
2-Sep-2008	13:00	4.1	N
2-Sep-2008	14:00	2.1	N
2-Sep-2008	15:00	2.0	N
2-Sep-2008	16:00	1.9	N
2-Sep-2008	17:00	1.6	N
2-Sep-2008	18:00	1.7	NNE
2-Sep-2008	19:00	1.0	N_
2-Sep-2008	20:00	0.6	NNE
2-Sep-2008	21:00	1.0	NNE
2-Sep-2008	22:00	1.6	NNE
2-Sep-2008	23:00	1.6	NNE
3-Sep-2008	00:00	2.0	NNE
3-Sep-2008	01:00	2.0	NNE
3-Sep-2008	02:00	1.7	NNE
3-Sep-2008	03:00	2.4	NNE
3-Sep-2008	04:00	2.2	NNE
3-Sep-2008	05:00	2.1	NE

Appendix J - Wind Data (Eastern Portal)

Date	Time	Wind Speed m/s	Direction
3-Sep-2008	06:00	1.8	NE
3-Sep-2008	07:00	2.6	NNE
3-Sep-2008	08:00	1.4	NE
3-Sep-2008	09:00	0.5	NE
3-Sep-2008	10:00	0.9	SE
3-Sep-2008	11:00	0.2	SE
3-Sep-2008	12:00	0.6	SW
3-Sep-2008	13:00	1.1	SW
3-Sep-2008	14:00	1.2	SSW
3-Sep-2008	15:00	1.2	SSW
3-Sep-2008	16:00	1.2	S
3-Sep-2008	17:00	1.9	SE
3-Sep-2008	18:00	2.1	SE
3-Sep-2008	19:00	3.5	SE
3-Sep-2008	20:00	2.2	SE
3-Sep-2008	21:00	2.1	SE
3-Sep-2008	22:00	2.2	SE
3-Sep-2008	23:00	1.6	SE
4-Sep-2008	00:00	3.2	SE
4-Sep-2008	01:00	2.8	SW
4-Sep-2008	02:00	2.1	WSW
4-Sep-2008	03:00	2.0	SW
4-Sep-2008	04:00	1.5	SW
4-Sep-2008	05:00	0.8	SW
4-Sep-2008	06:00	1.4	SW
4-Sep-2008	07:00	1.2	SW
4-Sep-2008	08:00	2.4	SW
4-Sep-2008	09:00	2.7	SSW
4-Sep-2008	10:00	2.6	SSW
4-Sep-2008	11:00	3.5	SSW
4-Sep-2008	12:00	3.9	SSW
4-Sep-2008	13:00	3.5	SW
4-Sep-2008	14:00	3.0	W
4-Sep-2008	15:00	3.2	W
4-Sep-2008	16:00	1.7	WSW
4-Sep-2008	17:00	0.7	W
4-Sep-2008	18:00	0.2	W
4-Sep-2008	19:00	0.3	WSW
4-Sep-2008	20:00	0.8	WSW
4-Sep-2008	21:00	1.8	W
4-Sep-2008	22:00	2.6	W
4-Sep-2008	23:00	2.0	WSW
5-Sep-2008	00:00	2.6	SW
5-Sep-2008	01:00	3.1	SW
5-Sep-2008	02:00	3.4	WSW
5-Sep-2008	03:00	1.9	W
5-Sep-2008	04:00	1.9	W
5-Sep-2008	05:00	2.4	W
5-Sep-2008	06:00	1.7	W
5-Sep-2008	07:00	2.7	SSW
5-Sep-2008	08:00	2.5	SSW
5-Sep-2008	09:00	2.5	W
5-Sep-2008	10:00	4.1	W
	10.00		v v

Appendix J - Wind Data (Eastern Portal)

Date	Time	Wind Speed m/s	Direction
5-Sep-2008	12:00	3.3	WNW
5-Sep-2008	13:00	4.2	W
5-Sep-2008	14:00	3.5	WNW
5-Sep-2008	15:00	3.0	WSW
5-Sep-2008	16:00	1.9	SW
5-Sep-2008	17:00	0.8	W
5-Sep-2008	18:00	1.2	SW
5-Sep-2008	19:00	1.1	SW
5-Sep-2008	20:00	1.4	SW
5-Sep-2008	21:00	1.6	WNW
5-Sep-2008	22:00	1.1	WNW
5-Sep-2008	23:00	1.3	W
6-Sep-2008	00:00	1.6	SW
6-Sep-2008	01:00	2.2	W
6-Sep-2008	02:00	2.2	WNW
6-Sep-2008	03:00	2.7	WSW
6-Sep-2008	04:00	3.5	WNW
6-Sep-2008	05:00	3.9	WSW
6-Sep-2008	06:00	3.2	WNW
6-Sep-2008	07:00	3.3	W
6-Sep-2008	08:00	3.2	SW
6-Sep-2008	09:00	3.7	W
6-Sep-2008	10:00	2.6	W
6-Sep-2008	11:00	3.1	W
6-Sep-2008	12:00	3.0	SSW
6-Sep-2008	13:00	4.1	WSW
6-Sep-2008	14:00	3.6	WSW
6-Sep-2008	15:00	2.9	SW
6-Sep-2008	16:00	2.8	SW
6-Sep-2008	17:00	3.0	SW
6-Sep-2008	18:00	2.5	SW
6-Sep-2008	19:00	2.4	SW
6-Sep-2008	20:00	2.5	SW
6-Sep-2008	21:00	1.0	SW
6-Sep-2008	22:00	1.3	WSW
6-Sep-2008	23:00	1.4	WSW
7-Sep-2008	00:00	1.6	WSW
7-Sep-2008	01:00	1.9	W
7-Sep-2008	02:00	2.0	WNW
7-Sep-2008	03:00	2.6	W
7-Sep-2008	04:00	2.2	W
7-Sep-2008	05:00	2.3	SW
7-Sep-2008	06:00	2.1	W
7-Sep-2008	07:00	2.2	WNW
7-Sep-2008	08:00	2.3	WSW
7-Sep-2008	09:00	2.3	S
7-Sep-2008	10:00	2.9	SSW
7-Sep-2008	11:00	2.0	WNW
7-Sep-2008 7-Sep-2008	12:00	2.1	WNW
7-Sep-2008 7-Sep-2008	13:00	1.8	WNW
		2.2	W
7-Sep-2008	14:00 15:00	2.2	WNW
7-Sep-2008	15:00 16:00	2.3	WSW
7-Sep-2008			

Appendix J - Wind Data (Eastern Portal)

Date	Time	Wind Speed m/s	Direction
7-Sep-2008	18:00	2.3	SW
7-Sep-2008	19:00	2.1	WSW
7-Sep-2008	20:00	1.0	WSW
7-Sep-2008	21:00	1.0	SW
7-Sep-2008	22:00	1.2	N
7-Sep-2008	23:00	1.7	NE
8-Sep-2008	00:00	1.7	NE
8-Sep-2008	01:00	1.9	N
8-Sep-2008	02:00	1.6	NE
8-Sep-2008	03:00	1.5	ENE
8-Sep-2008	04:00	1.1	ENE
8-Sep-2008	05:00	1.5	NE
8-Sep-2008	06:00	1.2	NE
8-Sep-2008	07:00	1.2	NE
8-Sep-2008	08:00	1.4	NE
8-Sep-2008	09:00	1.2	ENE
8-Sep-2008	10:00	1.4	ENE
8-Sep-2008	11:00	2.0	ENE
8-Sep-2008	12:00	2.5	NE
8-Sep-2008	13:00	2.2	ENE
8-Sep-2008	14:00	2.5	ENE
8-Sep-2008	15:00	2.5	NE
8-Sep-2008	16:00	1.6	ENE
8-Sep-2008	17:00	1.0	NE NE
8-Sep-2008	18:00	1.2	NE
8-Sep-2008	19:00	2.0	ENE
8-Sep-2008	20:00	2.1	NE
8-Sep-2008	21:00	2.2	ENE
8-Sep-2008	22:00	1.4	ENE
8-Sep-2008	23:00	0.7	ENE
9-Sep-2008	00:00	1.2	NE
9-Sep-2008	01:00	1.1	NE
9-Sep-2008	02:00	0.9	NE
9-Sep-2008	03:00	0.3	ENE
9-Sep-2008	04:00	1.0	ENE
9-Sep-2008	05:00	0.3	NE
9-Sep-2008	06:00	0.5	E
9-Sep-2008	07:00	0.8	NE
9-Sep-2008	08:00	0.8	ENE
9-Sep-2008	09:00	1.6	ENE
9-Sep-2008	10:00	1.8	ENE
9-Sep-2008	11:00	2.2	ENE
9-Sep-2008	12:00	1.4	ENE
9-Sep-2008	13:00	1.5	ENE
9-Sep-2008	14:00	0.7	ENE
9-Sep-2008	15:00	0.9	ENE
9-Sep-2008	16:00	1.0	NE
9-Sep-2008	17:00	1.2	ENE
9-Sep-2008	18:00	0.7	ENE
9-Sep-2008	19:00	0.6	NE NE
9-Sep-2008	20:00	3.1	ENE
9-Sep-2008	21:00	3.5	NE
9-Sep-2008	22:00	3.4	ENE
9-Sep-2008	23:00	3.3	ENE
0 00p-2000	20.00	0.0	L11L

Appendix J - Wind Data (Eastern Portal)

Date	Time	Wind Speed m/s	Direction
10-Sep-2008	00:00	3.3	NE
10-Sep-2008	01:00	3.0	ENE
10-Sep-2008	02:00	2.7	Е
10-Sep-2008	03:00	3.5	ENE
10-Sep-2008	04:00	2.8	SSW
10-Sep-2008	05:00	2.5	W
10-Sep-2008	06:00	3.1	W
10-Sep-2008	07:00	3.0	W
10-Sep-2008	08:00	3.1	WNW
10-Sep-2008	09:00	3.2	WNW
10-Sep-2008	10:00	3.8	WNW
10-Sep-2008	11:00	2.4	WNW
10-Sep-2008	12:00	2.3	WNW
10-Sep-2008	13:00	2.4	WNW
10-Sep-2008	14:00	2.5	WNW
10-Sep-2008	15:00	2.6	WNW
10-Sep-2008	16:00	2.3	WNW
10-Sep-2008	17:00	3.5	WNW
10-Sep-2008	18:00	1.5	WNW
10-Sep-2008	19:00	1.0	SW
10-Sep-2008	20:00	1.9	ENE
10-Sep-2008	21:00	1.1	ENE
10-Sep-2008	22:00	3.9	NNE
10-Sep-2008	23:00	1.0	SW
11-Sep-2008	00:00	4.5	SSW
11-Sep-2008	01:00	1.1	WNW
11-Sep-2008	02:00	1.7	WSW
11-Sep-2008	03:00	1.8	W
11-Sep-2008	04:00	2.1	WNW
11-Sep-2008	05:00	2.3	WNW
11-Sep-2008	06:00	2.3	W
11-Sep-2008	07:00	2.1	W
11-Sep-2008	08:00	2.3	W
11-Sep-2008	09:00	3.2	W
11-Sep-2008	10:00	2.8	W
11-Sep-2008	11:00	2.8	W
11-Sep-2008	12:00	3.3	W
11-Sep-2008	13:00	3.4	WSW
11-Sep-2008	14:00	3.2	SW
11-Sep-2008	15:00	3.4	SW
11-Sep-2008	16:00	3.5	SW
11-Sep-2008	17:00	3.5	SW
11-Sep-2008	18:00	1.3	SW
11-Sep-2008	19:00	1.7	WSW
11-Sep-2008	20:00	1.6	WSW
11-Sep-2008	21:00	2.0	WSW
11-Sep-2008	22:00	1.6	SW
11-Sep-2008	23:00	2.0	SW
12-Sep-2008	00:00	2.0	SW
12-Sep-2008	01:00	1.8	SW
	02:00	2.4	WNW
12-Sep-2008			
12-Sep-2008	03:00	2.9	WNW
12-Sep-2008	04:00	1.8	W
12-Sep-2008	05:00	2.1	W

Appendix J - Wind Data (Eastern Portal)

Date	Time	Wind Speed m/s	Direction
12-Sep-2008	06:00	2.2	W
12-Sep-2008	07:00	2.9	WNW
12-Sep-2008	08:00	2.8	WNW
12-Sep-2008	09:00	2.7	WNW
12-Sep-2008	10:00	3.0	W
12-Sep-2008	11:00	2.8	W
12-Sep-2008	12:00	3.1	W
12-Sep-2008	13:00	2.7	WSW
12-Sep-2008	14:00	3.4	W
12-Sep-2008	15:00	3.2	SSW
12-Sep-2008	16:00	2.6	WSW
12-Sep-2008	17:00	2.0	WSW
12-Sep-2008	18:00	2.2	W
12-Sep-2008	19:00	2.5	W
12-Sep-2008	20:00	2.9	WNW
12-Sep-2008	21:00	2.0	W
12-Sep-2008	22:00	2.1	W
12-Sep-2008	23:00	2.5	W
13-Sep-2008	00:00	2.1	WNW
13-Sep-2008	01:00	2.5	W
13-Sep-2008	02:00	2.1	SW
13-Sep-2008	03:00	1.9	W
13-Sep-2008	04:00	2.3	W
13-Sep-2008	05:00	1.7	WNW
13-Sep-2008	06:00	2.8	W
13-Sep-2008	07:00	2.3	WNW
13-Sep-2008	08:00	2.6	W
13-Sep-2008	09:00	2.4	SSW
		3.4	WSW
13-Sep-2008	10:00 11:00	3.7	WSW
13-Sep-2008			
13-Sep-2008	12:00	3.9	W
13-Sep-2008	13:00	3.8	WSW
13-Sep-2008	14:00	3.5	WSW
13-Sep-2008	15:00	3.5	SW
13-Sep-2008	16:00	2.6	SW
13-Sep-2008	17:00	2.7	SW
13-Sep-2008	18:00	2.3	SW
13-Sep-2008	19:00	2.1	WSW
13-Sep-2008	20:00	1.4	SW
13-Sep-2008	21:00	1.2	SW
13-Sep-2008	22:00	1.5	W
13-Sep-2008	23:00	1.5	SW
14-Sep-2008	00:00	1.5	WSW
14-Sep-2008	01:00	1.0	SSW
14-Sep-2008	02:00	1.3	SW
14-Sep-2008	03:00	1.3	W
14-Sep-2008	04:00	1.3	W
14-Sep-2008	05:00	1.0	SW
14-Sep-2008	06:00	1.1	SW
14-Sep-2008	07:00	1.0	WNW
14-Sep-2008	08:00	1.2	WNW
14-Sep-2008	09:00	2.1	WNW
14-Sep-2008	10:00	3.4	WNW
14-Sep-2008	11:00	4.2	WNW

Appendix J - Wind Data (Eastern Portal)

Date	Time	Wind Speed m/s	Direction
14-Sep-2008	12:00	4.1	WNW
14-Sep-2008	13:00	4.1	W
14-Sep-2008	14:00	4.2	SW
14-Sep-2008	15:00	4.2	W
14-Sep-2008	16:00	4.0	WNW
14-Sep-2008	17:00	4.0	SW
14-Sep-2008	18:00	3.3	SW
14-Sep-2008	19:00	2.7	SW
14-Sep-2008	20:00	1.9	SW
14-Sep-2008	21:00	1.8	SSW
14-Sep-2008	22:00	2.0	SW
14-Sep-2008	23:00	1.7	SW
15-Sep-2008	00:00	1.3	SSW
15-Sep-2008	01:00	1.1	SW
15-Sep-2008	02:00	0.9	SW
15-Sep-2008	03:00	0.9	SSE
15-Sep-2008	04:00	0.9	SE
15-Sep-2008	05:00	1.3	SE
15-Sep-2008	06:00	1.3	SSE
15-Sep-2008	07:00	1.4	SSE
15-Sep-2008	08:00	0.8	SSW
15-Sep-2008	09:00	1.2	SSW
15-Sep-2008	10:00	2.0	SW
15-Sep-2008	11:00	2.0	W
15-Sep-2008	12:00	2.1	WSW
15-Sep-2008	13:00	2.4	WSW
15-Sep-2008	14:00	1.8	N
15-Sep-2008	15:00	3.6	SSW
15-Sep-2008	16:00	2.6	SSW
15-Sep-2008	17:00	2.4	SSW
			NNW
15-Sep-2008	18:00	3.0	WNW
15-Sep-2008	19:00	1.5	
15-Sep-2008	20:00	1.3	N
15-Sep-2008	21:00	2.2	ENE ENE
15-Sep-2008	22:00 23:00		
15-Sep-2008		1.4	ENE
16-Sep-2008	00:00	2.6	NE NE
16-Sep-2008	01:00	1.6	NE NE
16-Sep-2008	02:00	2.2	NE NE
16-Sep-2008	03:00	1.5	ENE
16-Sep-2008	04:00	1.7	ENE
16-Sep-2008	05:00	2.1	NE NE
16-Sep-2008	06:00	1.3	NE NE
16-Sep-2008	07:00	2.5	NE
16-Sep-2008	08:00	1.2	NE
16-Sep-2008	09:00	2.6	NE
16-Sep-2008	10:00	2.7	NE
16-Sep-2008	11:00	3.5	NE
16-Sep-2008	12:00	4.6	NE
16-Sep-2008	13:00	3.1	ENE
16-Sep-2008	14:00	4.8	NE NE
16-Sep-2008	15:00	3.2	NE
16-Sep-2008	16:00	3.4	ENE
16-Sep-2008	17:00	3.7	NE

Appendix J - Wind Data (Eastern Portal)

Date	Time	Wind Speed m/s	Direction
16-Sep-2008	18:00	4.5	ENE
16-Sep-2008	19:00	4.6	NE
16-Sep-2008	20:00	1.8	NE
16-Sep-2008	21:00	2.2	ENE
16-Sep-2008	22:00	1.0	ENE
16-Sep-2008	23:00	1.0	NE
17-Sep-2008	00:00	1.6	ENE
17-Sep-2008	01:00	2.1	NE
17-Sep-2008	02:00	1.9	NE
17-Sep-2008	03:00	2.8	W
17-Sep-2008	04:00	1.2	W
17-Sep-2008	05:00	2.2	W
17-Sep-2008	06:00	4.9	W
17-Sep-2008	07:00	1.9	W
17-Sep-2008	08:00	1.9	W
17-Sep-2008	09:00	2.4	W
17-Sep-2008	10:00	2.4	W
17-Sep-2008	11:00	3.8	SSW
17-Sep-2008	12:00	3.2	W
17-Sep-2008	13:00	2.2	WSW
17-Sep-2008	14:00	2.0	WSW
17-Sep-2008	15:00	2.8	W
17-Sep-2008	16:00	4.4	SW
17-Sep-2008	17:00	2.2	SW
17-Sep-2008	18:00	2.6	SW
17-Sep-2008	19:00	2.3	W
17-Sep-2008	20:00	1.4	SW
17-Sep-2008	21:00	1.8	WSW
17-Sep-2008	22:00	2.0	W
17-Sep-2008	23:00	1.9	WSW
18-Sep-2008	00:00	2.2	W
18-Sep-2008	01:00	3.0	WSW
18-Sep-2008	02:00	2.0	SW
18-Sep-2008	03:00	1.8	SW
18-Sep-2008	04:00	1.8	SW
18-Sep-2008	05:00	2.1	SSW
18-Sep-2008	06:00	1.5	SW
18-Sep-2008	07:00	1.7	SW
18-Sep-2008	08:00	2.5	SW
18-Sep-2008	09:00	3.2	SW
18-Sep-2008	10:00	3.4	W
18-Sep-2008	11:00	3.5	WSW
18-Sep-2008	12:00	4.3	WSW
18-Sep-2008	13:00	4.6	SW
18-Sep-2008	14:00	4.1	SSW
18-Sep-2008	15:00	4.6	SW
18-Sep-2008	16:00	4.0	WSW
18-Sep-2008	17:00	3.5	W
18-Sep-2008	18:00	3.2	WSW
·		3.2	SW
18-Sep-2008	19:00		
18-Sep-2008	20:00	3.5	SW
18-Sep-2008	21:00	3.0	WSW
18-Sep-2008	22:00	4.2	WSW
18-Sep-2008	23:00	3.1	SW

Appendix J - Wind Data (Eastern Portal)

Date	Time	Wind Speed m/s	Direction
19-Sep-2008	00:00	4.0	SW
19-Sep-2008	01:00	3.8	WSW
19-Sep-2008	02:00	4.3	WSW
19-Sep-2008	03:00	3.6	SW
19-Sep-2008	04:00	3.2	WSW
19-Sep-2008	05:00	3.6	SW
19-Sep-2008	06:00	3.6	WSW
19-Sep-2008	07:00	2.9	WSW
19-Sep-2008	08:00	3.2	W
19-Sep-2008	09:00	4.3	W
19-Sep-2008	10:00	3.9	W
19-Sep-2008	11:00	4.8	W
19-Sep-2008	12:00	4.1	W
19-Sep-2008	13:00	3.9	W
19-Sep-2008	14:00	3.3	SW
19-Sep-2008	15:00	4.0	SW
19-Sep-2008	16:00	2.8	W
19-Sep-2008	17:00	2.5	W
19-Sep-2008	18:00	1.8	W
19-Sep-2008	19:00	2.0	W
19-Sep-2008	20:00	2.1	W
19-Sep-2008	21:00	0.4	W
19-Sep-2008	22:00	2.6	W
19-Sep-2008	23:00	2.7	W
20-Sep-2008	00:00	2.2	W
20-Sep-2008	01:00	2.3	WSW
20-Sep-2008	02:00	2.1	W
20-Sep-2008	03:00	3.0	WNW
20-Sep-2008	04:00	2.7	W
20-Sep-2008	05:00	3.4	W
20-Sep-2008	06:00	3.6	W
20-Sep-2008	07:00	1.5	W
20-Sep-2008	08:00	0.4	W
20-Sep-2008	09:00	2.8	W
20-Sep-2008	10:00	1.8	W
20-Sep-2008	11:00	2.8	W
20-Sep-2008	12:00	1.6	W
20-Sep-2008	13:00	2.4	W
20-Sep-2008	14:00	2.5	SSW
20-Sep-2008	15:00	4.9	SSW
20-Sep-2008	16:00	4.3	SW
20-Sep-2008	17:00	4.4	SW
20-Sep-2008	18:00	2.4	WSW
20-Sep-2008 20-Sep-2008	19:00	2.3	WNW
20-Sep-2008	20:00	2.7	W
20-Sep-2008	21:00	2.6	S
20-Sep-2008 20-Sep-2008	22:00	3.6	S
20-Sep-2008	23:00	2.7	S
21-Sep-2008	00:00	3.2	S
21-Sep-2008 21-Sep-2008	01:00	2.7	SW
21-Sep-2008 21-Sep-2008	02:00	2.7	SW
	03:00	3.5	WNW
71_500 7000			VVINVV
21-Sep-2008 21-Sep-2008	04:00	3.0	W

Date	Time	Wind Speed m/s	Direction
21-Sep-2008	06:00	3.1	W
21-Sep-2008	07:00	2.5	WNW
21-Sep-2008	08:00	2.3	W
21-Sep-2008	09:00	0.4	W
21-Sep-2008	10:00	2.6	W
21-Sep-2008	11:00	3.2	WNW
21-Sep-2008	12:00	3.0	W
21-Sep-2008	13:00	2.6	W
21-Sep-2008	14:00	2.0	WSW
21-Sep-2008	15:00	1.0	W
21-Sep-2008	16:00	0.9	W
21-Sep-2008	17:00	0.9	WSW
21-Sep-2008	18:00	1.4	WNW
21-Sep-2008	19:00	2.3	WNW
21-Sep-2008	20:00	1.0	W
21-Sep-2008	21:00	1.8	WNW
21-Sep-2008	22:00	1.1	W
21-Sep-2008	23:00	2.3	W
22-Sep-2008	00:00	2.2	WSW
22-Sep-2008	01:00	0.0	SW
22-Sep-2008	02:00	0.7	SW
22-Sep-2008	03:00	1.7	W
22-Sep-2008	04:00	1.7	WSW
22-Sep-2008	05:00	0.8	SW
22-Sep-2008	06:00	1.4	WSW
22-Sep-2008	07:00	1.8	W
22-Sep-2008	08:00	2.6	W
22-Sep-2008	09:00	2.6	W
22-Sep-2008	10:00	2.6	W
22-Sep-2008	11:00	0.9	W
22-Sep-2008	12:00	1.1	WNW
22-Sep-2008	13:00	0.8	WNW
22-Sep-2008	14:00	1.1	WNW
22-Sep-2008	15:00	0.5	WNW
22-Sep-2008	16:00	0.4	WSW
22-Sep-2008	17:00	0.1	WNW
22-Sep-2008	18:00	1.9	WSW
22-Sep-2008	19:00	1.8	W
22-Sep-2008	20:00	1.5	WNW
22-Sep-2008	21:00	2.3	W
22-Sep-2008	22:00	0.3	WNW
22-Sep-2008	23:00	0.3	WNW
23-Sep-2008	00:00	0.9	N
23-Sep-2008 23-Sep-2008	01:00	1.4	N
23-Sep-2008 23-Sep-2008	02:00	1.1	N N
23-Sep-2008 23-Sep-2008	03:00	1.3	N N
23-Sep-2008	03.00	2.4	N
23-Sep-2008	05:00	3.6	NNE
			NNE N
23-Sep-2008	06:00	4.4	
23-Sep-2008	07:00	3.9	NNE
23-Sep-2008	08:00	4.1	NNE
23-Sep-2008	09:00	4.8	NNE
23-Sep-2008	10:00	3.2	NNE
23-Sep-2008	11:00	3.4	NNE

Date	Time	Wind Speed m/s	Direction
23-Sep-2008	12:00	3.7	NNE
23-Sep-2008	13:00	3.6	NNE
23-Sep-2008	14:00	3.3	NNE
23-Sep-2008	15:00	2.4	NE
23-Sep-2008	16:00	4.7	NE
23-Sep-2008	17:00	6.4	NE
23-Sep-2008	18:00	6.0	NE
23-Sep-2008	19:00	6.2	ENE
23-Sep-2008	20:00	7.9	ENE
23-Sep-2008	21:00	8.4	NE
23-Sep-2008	22:00	8.6	NE
23-Sep-2008	23:00	7.8	NE
24-Sep-2008	00:00	8.1	NE
24-Sep-2008	01:00	7.4	NNE
24-Sep-2008	02:00	8.1	NE
24-Sep-2008	03:00	7.6	NNE
24-Sep-2008	04:00	7.6	NE
24-Sep-2008	05:00	4.5	NNE
24-Sep-2008	06:00	4.3	NE
24-Sep-2008	07:00	4.3	NNE
24-Sep-2008	08:00	3.4	NNE
24-Sep-2008	09:00	3.9	W
24-Sep-2008	10:00	4.4	NNE
24-Sep-2008	11:00	4.6	NNE
24-Sep-2008	12:00	3.8	NNE
24-Sep-2008	13:00	4.1	NNE
24-Sep-2008	14:00	3.4	SSE
24-Sep-2008	15:00	4.1	SSE
24-Sep-2008	16:00	3.6	SSE
24-Sep-2008	17:00	3.6	SSE
24-Sep-2008	18:00	3.0	SE
24-Sep-2008	19:00	2.4	SE
24-Sep-2008	20:00	2.2	SSE
24-Sep-2008	21:00	2.5	SSE
24-Sep-2008	22:00	3.1	SSE
24-Sep-2008	23:00	3.2	SSE
25-Sep-2008	00:00	3.1	SSE
25-Sep-2008	01:00	3.0	SSE
25-Sep-2008	02:00	3.4	SSE
25-Sep-2008	03:00	2.0	SSE
25-Sep-2008	04:00	2.6	SE
25-Sep-2008	05:00	2.9	SE SE
25-Sep-2008	06:00	2.4	SSE
25-Sep-2008	07:00	3.5	SSE
25-Sep-2008	08:00	3.9	SSE
25-Sep-2008	09:00	3.9	SSE
25-Sep-2008	10:00	3.6	SSE
25-Sep-2008	11:00	3.9	ESE
25-Sep-2008	12:00	4.3	NE
25-Sep-2008	13:00	3.1	NE
25-Sep-2008	14:00	3.4	NE
25-Sep-2008	15:00	3.5	ENE
25-Sep-2008	16:00	3.7	NE
25-Sep-2008	17:00	3.5	ENE
20-3ep-2000	17.00	ა.ე	CINC

Date	Time	Wind Speed m/s	Direction
25-Sep-2008	18:00	2.2	ENE
25-Sep-2008	19:00	2.9	ESE
25-Sep-2008	20:00	2.7	WSW
25-Sep-2008	21:00	4.3	SW
25-Sep-2008	22:00	3.9	N
25-Sep-2008	23:00	3.8	N
26-Sep-2008	00:00	3.4	N
26-Sep-2008	01:00	3.4	N
26-Sep-2008	02:00	4.0	NNW
26-Sep-2008	03:00	3.7	N
26-Sep-2008	04:00	1.6	NW
26-Sep-2008	05:00	1.9	N
26-Sep-2008	06:00	2.0	N
26-Sep-2008	07:00	3.4	NNE
26-Sep-2008	08:00	3.4	NNE
26-Sep-2008	09:00	3.4	NE
26-Sep-2008	10:00	4.0	NE
26-Sep-2008	11:00	4.3	NE NE
26-Sep-2008	12:00	3.8	N
26-Sep-2008	13:00	4.8	NNE
26-Sep-2008	14:00	4.3	NE NE
26-Sep-2008	15:00	3.7	NE NE
26-Sep-2008	16:00	4.7	NE
26-Sep-2008	17:00	3.2	NE NE
26-Sep-2008	18:00	2.4	NE NE
26-Sep-2008	19:00	3.8	NNE
26-Sep-2008	20:00	3.6	NE
26-Sep-2008	21:00	4.5	NE
26-Sep-2008	22:00	3.9	NE
26-Sep-2008	23:00	4.1	NE
27-Sep-2008	00:00	4.3	ENE
27-Sep-2008	01:00	3.6	ENE
27-Sep-2008	02:00	3.8	ENE
27-Sep-2008	03:00	2.9	ENE
27-Sep-2008	04:00	2.5	ESE
27-Sep-2008	05:00	2.2	NE
27-Sep-2008	06:00	1.4	NE
27-Sep-2008	07:00	1.9	ENE
27-Sep-2008	08:00	2.8	ENE
27-Sep-2008	09:00	3.4	E
27-Sep-2008	10:00	4.0	ENE
27-Sep-2008 27-Sep-2008	11:00	3.7	N
27-Sep-2008 27-Sep-2008	12:00	3.5	ENE
27-Sep-2008	13:00	3.0	ENE
27-Sep-2008 27-Sep-2008	14:00	4.0	NE
27-Sep-2008 27-Sep-2008	15:00	3.1	NE
27-Sep-2008 27-Sep-2008	16:00	3.4	NE
27-Sep-2008 27-Sep-2008	17:00	4.3	NE
27-Sep-2008	18:00	3.2	NNE NNE
27-Sep-2008 27-Sep-2008	19:00	2.5	NE
	20:00	2.5	NNE
27-Sep-2008 27-Sep-2008	21:00	2.6	NE
27-Sep-2008	22:00	2.0	NNE NNE
27-Sep-2008	23:00	4.0	NE NE
21-Sep-2008	Z3.UU	4.0	INC

Date	Time	Wind Speed m/s	Direction
28-Sep-2008	00:00	3.8	NNE
28-Sep-2008	01:00	3.0	ENE
28-Sep-2008	02:00	3.2	NNE
28-Sep-2008	03:00	3.3	N
28-Sep-2008	04:00	3.2	E
28-Sep-2008	05:00	2.7	N
28-Sep-2008	06:00	1.9	N
28-Sep-2008	07:00	2.1	N
28-Sep-2008	08:00	2.1	N
28-Sep-2008	09:00	2.2	N
28-Sep-2008	10:00	3.2	NNE
28-Sep-2008	11:00	3.0	NNE
28-Sep-2008	12:00	3.0	ENE
28-Sep-2008	13:00	3.6	N
28-Sep-2008	14:00	2.8	NNE
28-Sep-2008	15:00	2.5	N
28-Sep-2008	16:00	2.5	E E
28-Sep-2008	17:00	3.7	NNE
28-Sep-2008	18:00	3.2	NE
28-Sep-2008	19:00	1.9	NE
28-Sep-2008	20:00	1.6	NE NE
28-Sep-2008	21:00	2.8	NE
28-Sep-2008	22:00	2.3	NE NE
28-Sep-2008	23:00	2.7	ENE
29-Sep-2008	00:00	2.5	N
29-Sep-2008	01:00	3.2	NNE
29-Sep-2008	02:00	3.5	N
29-Sep-2008	03:00	2.5	NNE
29-Sep-2008	04:00	2.0	ENE
29-Sep-2008	05:00	2.1	NE
29-Sep-2008	06:00	2.7	NE
29-Sep-2008	07:00	2.2	NNE
29-Sep-2008	08:00	2.8	ENE
29-Sep-2008	09:00	2.8	NE NE
29-Sep-2008	10:00	3.7	E
29-Sep-2008	11:00	3.6	E E
29-Sep-2008	12:00	2.6	ENE
29-Sep-2008	13:00	3.0	E
29-Sep-2008	14:00	2.3	<u> </u>
29-Sep-2008	15:00	3.7	Ē
29-Sep-2008	16:00	3.0	ENE
29-Sep-2008	17:00	1.9	ENE
29-Sep-2008	18:00	2.4	E
29-Sep-2008	19:00	2.4	ENE
29-Sep-2008	20:00	2.3	ENE
29-Sep-2008	21:00	3.6	ENE
29-Sep-2008	22:00	4.2	N
29-Sep-2008	23:00	3.0	NNE
30-Sep-2008	00:00	2.9	N N
30-Sep-2008	01:00	3.1	NNE
30-Sep-2008	02:00	2.9	NE
30-Sep-2008	03:00	2.8	NNE NNE
30-Sep-2008	04:00	2.8	N
30-Sep-2008	05:00	2.5	N N
30-3 c p-2006	03.00	۷.ن	IN

Date	Time	Wind Speed m/s	Direction
30-Sep-2008	06:00	2.2	ENE
30-Sep-2008	07:00	2.5	NE
30-Sep-2008	08:00	2.8	NE
30-Sep-2008	09:00	3.3	ENE
30-Sep-2008	10:00	3.9	ENE
30-Sep-2008	11:00	3.3	ENE
30-Sep-2008	12:00	4.7	NE
30-Sep-2008	13:00	4.3	W
30-Sep-2008	14:00	4.2	W
30-Sep-2008	15:00	4.1	W
30-Sep-2008	16:00	4.1	WNW
30-Sep-2008	17:00	3.2	WNW
30-Sep-2008	18:00	2.8	NNW
30-Sep-2008	19:00	3.4	WNW
30-Sep-2008	20:00	3.7	W
30-Sep-2008	21:00	3.1	W
30-Sep-2008	22:00	3.5	W
30-Sep-2008	23:00	3.3	W

Appendix J - Wind Data (Western Portal)

Date	Time	Wind Speed m/s	Direction
1-Sep-2008	00:00	2.2	SE
1-Sep-2008	01:00	1.9	ESE
1-Sep-2008	02:00	1.2	SSE
1-Sep-2008	03:00	1.0	SSE
1-Sep-2008	04:00	0.7	SSE
1-Sep-2008	05:00	0.9	SSW
1-Sep-2008	06:00	0.6	SSE
1-Sep-2008	07:00	0.7	WNW
1-Sep-2008	08:00	0.9	WNW
1-Sep-2008	09:00	2.1	SSW
1-Sep-2008	10:00	2.6	WSW
1-Sep-2008	11:00	3.0	WSW
1-Sep-2008	12:00	3.3	WSW
1-Sep-2008	13:00	3.5	WSW
1-Sep-2008	14:00	3.8	WSW
1-Sep-2008	15:00	3.9	WSW
1-Sep-2008	16:00	3.9	WSW
1-Sep-2008	17:00	4.1	SW
1-Sep-2008	18:00	2.7	SSW
1-Sep-2008	19:00	1.7	W
1-Sep-2008	20:00	1.5	W
1-Sep-2008	21:00	2.1	SW
1-Sep-2008	22:00	1.8	W
1-Sep-2008	23:00	1.4	W
2-Sep-2008	00:00	0.5	W
2-Sep-2008	01:00	1.8	W
2-Sep-2008	02:00	2.2	SW
2-Sep-2008	03:00	1.6	SW
2-Sep-2008	04:00	1.9	SW
2-Sep-2008	05:00	1.8	SW
2-Sep-2008	06:00	1.9	SW
2-Sep-2008	07:00	1.8	SW
2-Sep-2008	08:00	1.0	W
2-Sep-2008	09:00	1.5	SW
2-Sep-2008	10:00	2.2	SW
2-Sep-2008	11:00	1.4	W
2-Sep-2008	12:00	1.4	W
2-Sep-2008	13:00	1.8	W
		2.3	W
2-Sep-2008	14:00		W
2-Sep-2008	15:00	2.4	W
2-Sep-2008	16:00	2.2	WSW
2-Sep-2008	17:00	1.3	
2-Sep-2008	18:00	1.2	W
2-Sep-2008	19:00	0.2	SW
2-Sep-2008	20:00	0.1	SW
2-Sep-2008	21:00	0.5	SW
2-Sep-2008	22:00	1.1	WSW
2-Sep-2008	23:00	1.1	WSW
3-Sep-2008	00:00	1.6	WSW
3-Sep-2008	01:00	1.6	W
3-Sep-2008	02:00	1.0	W
3-Sep-2008	03:00	1.6	W
3-Sep-2008	04:00	1.7	W
3-Sep-2008	05:00	1.5	W

Appendix J - Wind Data (Western Portal)

Date	Time	Wind Speed m/s	Direction
3-Sep-2008	06:00	3.0	W
3-Sep-2008	07:00	3.7	W
3-Sep-2008	08:00	2.4	WSW
3-Sep-2008	09:00	1.8	SSW
3-Sep-2008	10:00	2.4	WSW
3-Sep-2008	11:00	1.9	SW
3-Sep-2008	12:00	2.5	SSW
3-Sep-2008	13:00	1	SW
3-Sep-2008	14:00	1	SSW
3-Sep-2008	15:00	2	SW
3-Sep-2008	16:00	2	SW
3-Sep-2008	17:00	0.6	SSW
3-Sep-2008	18:00	1.7	W
3-Sep-2008	19:00	2.4	SW
3-Sep-2008	20:00	2.1	WSW
3-Sep-2008	21:00	1.5	WNW
3-Sep-2008	22:00	1.5	WNW
3-Sep-2008	23:00	0.7	W
4-Sep-2008	00:00	2.3	W
4-Sep-2008	01:00	2	WSW
4-Sep-2008	02:00	1	W
4-Sep-2008	03:00	1	W
4-Sep-2008	04:00	1.0	W
4-Sep-2008	05:00	0.4	WNW
4-Sep-2008	06:00	0.9	W
4-Sep-2008	07:00	1.0	W
4-Sep-2008	08:00	1.5	SW
4-Sep-2008	09:00	1.9	W
4-Sep-2008	10:00	1.2	W
4-Sep-2008	11:00	2.2	W
4-Sep-2008	12:00	2.9	W
4-Sep-2008	13:00	2.2	W
4-Sep-2008	14:00	3.5	W
4-Sep-2008	15:00	3.8	WSW
4-Sep-2008	16:00	3.6	SW
4-Sep-2008	17:00	3.1	WSW
4-Sep-2008	18:00	2.5	WSW
4-Sep-2008	19:00	2.4	WSW
4-Sep-2008	20:00	2.2	WNW
4-Sep-2008	21:00	1.5	WNW
4-Sep-2008	22:00	3.0	WNW
4-Sep-2008	23:00	3.0	W
5-Sep-2008	00:00	3.1	W
5-Sep-2008	01:00	4.0	WNW
5-Sep-2008	02:00	3.3	SSE
5-Sep-2008	03:00	2.8	W
5-Sep-2008	04:00	3.0	W
5-Sep-2008	05:00	3.4	W
5-Sep-2008 5-Sep-2008	06:00	2.7	W
5-Sep-2008 5-Sep-2008	07:00	3.7	W
5-Sep-2008	08:00	2.5	WSW
5-Sep-2008	09:00	3.4	SW
5-Sep-2008 5-Sep-2008	10:00	4.2	WSW
J-0 c p-2000	10.00	7.4	VVOVV

Date	Time	Wind Speed m/s	Direction
5-Sep-2008	12:00	3.4	W
5-Sep-2008	13:00	4.2	SSW
5-Sep-2008	14:00	4.4	WSW
5-Sep-2008	15:00	4.6	WSW
5-Sep-2008	16:00	4.3	WSW
5-Sep-2008	17:00	3.2	WSW
5-Sep-2008	18:00	3.1	WSW
5-Sep-2008	19:00	2.5	W
5-Sep-2008	20:00	3.3	W
5-Sep-2008	21:00	3.3	W
5-Sep-2008	22:00	3.0	WSW
5-Sep-2008	23:00	3.1	W
6-Sep-2008	00:00	3.0	W
6-Sep-2008	01:00	3.9	W
6-Sep-2008	02:00	4.0	SSW
6-Sep-2008	03:00	4.0	W
6-Sep-2008	04:00	3.0	W
6-Sep-2008	05:00	3.4	WSW
6-Sep-2008	06:00	2.8	W
6-Sep-2008	07:00	2.8	W
6-Sep-2008	08:00	2.8	W
6-Sep-2008	09:00	2.8	W
6-Sep-2008	10:00	2.4	W
6-Sep-2008	11:00	3.4	W
6-Sep-2008	12:00	3.6	WNW
6-Sep-2008	13:00	4.0	W
6-Sep-2008	14:00	3.1	W
6-Sep-2008	15:00	2.8	W
6-Sep-2008	16:00	3.1	WNW
6-Sep-2008	17:00	3.4	W
6-Sep-2008	18:00	2.8	SW
6-Sep-2008	19:00	3.0	WSW
6-Sep-2008	20:00	3.4	WSW
6-Sep-2008	21:00	2.1	WSW
6-Sep-2008	22:00	3.1	WSW
6-Sep-2008	23:00	1.5	SW
7-Sep-2008	00:00	2.4	WSW
7-Sep-2008	01:00	2.9	WSW
7-Sep-2008	02:00	3.2	WSW
7-Sep-2008	03:00	3.3	SW
7-Sep-2008	04:00	3.0	SSW
7-Sep-2008	05:00	2.9	SSW
7-Sep-2008	06:00	3.0	W
7-Sep-2008	07:00	3.2	WSW
7-Sep-2008	08:00	2.7	WSW
7-Sep-2008	09:00	3.3	SW
7-Sep-2008	10:00	4.5	WSW
7-Sep-2008	11:00	4.3	WSW
7-Sep-2008	12:00	3.9	SW
7-Sep-2008	13:00	2.7	SW
7-Sep-2008	14:00	3.3	E
7-Sep-2008	15:00	3.9	E
7-Sep-2008	16:00	3.6	E

Appendix J - Wind Data (Western Portal)

Date	Time	Wind Speed m/s	Direction
7-Sep-2008	18:00	3.3	E
7-Sep-2008	19:00	3.3	ENE
7-Sep-2008	20:00	2.7	ESE
7-Sep-2008	21:00	2.4	E
7-Sep-2008	22:00	2.1	SSE
7-Sep-2008	23:00	3.5	WSW
8-Sep-2008	00:00	3.3	SW
8-Sep-2008	01:00	3.7	WSW
8-Sep-2008	02:00	3.5	ENE
8-Sep-2008	03:00	3.1	ENE
8-Sep-2008	04:00	3.1	N
8-Sep-2008	05:00	4.0	NE
8-Sep-2008	06:00	3.3	SW
8-Sep-2008	07:00	3.4	SE
8-Sep-2008	08:00	3.7	S
8-Sep-2008	09:00	3.3	SW
8-Sep-2008	10:00	3.2	S
8-Sep-2008	11:00	3.7	WSW
8-Sep-2008	12:00	4.0	NE
8-Sep-2008	13:00	3.9	NE NE
			SW
8-Sep-2008	14:00	4.0	
8-Sep-2008	15:00	4.6	SW
8-Sep-2008	16:00	4.2	SW
8-Sep-2008	17:00	4.0	SSE
8-Sep-2008	18:00	4.1	<u>E</u>
8-Sep-2008	19:00	3.9	SE
8-Sep-2008	20:00	3.7	ESE
8-Sep-2008	21:00	3.8	E
8-Sep-2008	22:00	3.4	ENE
8-Sep-2008	23:00	2.8	N NE
9-Sep-2008	00:00	2.8	NE
9-Sep-2008	01:00	3.0	NNE
9-Sep-2008	02:00	2.5	<u>N</u>
9-Sep-2008	03:00	2.5	N
9-Sep-2008	04:00	2.5	ENE
9-Sep-2008	05:00	1.9	ENE
9-Sep-2008	06:00	1.5	ESE
9-Sep-2008	07:00	2.1	ESE
9-Sep-2008	08:00	2.2	SE
9-Sep-2008	09:00	2.8	SE
9-Sep-2008	10:00	3.7	SSE
9-Sep-2008	11:00	4.3	SSE
9-Sep-2008	12:00	4.2	SE
9-Sep-2008	13:00	4.3	SSE
9-Sep-2008	14:00	3.6	SE
9-Sep-2008	15:00	4.2	S
9-Sep-2008	16:00	3.7	ESE
9-Sep-2008	17:00	3.6	ESE
9-Sep-2008	18:00	2.8	SE
9-Sep-2008	19:00	2.7	SSE
9-Sep-2008	20:00	1.8	S
9-Sep-2008	21:00	1.9	NNE
9-Sep-2008	22:00	1.8	N
9-Sep-2008	23:00	1.5	ENE

Date	Time	Wind Speed m/s	Direction
10-Sep-2008	00:00	1.6	ENE
10-Sep-2008	01:00	2.1	N
10-Sep-2008	02:00	1.0	E
10-Sep-2008	03:00	1.5	NNE
10-Sep-2008	04:00	1.2	SE
10-Sep-2008	05:00	1.3	NNE
10-Sep-2008	06:00	1.8	E
10-Sep-2008	07:00	1.5	W
10-Sep-2008	08:00	1.5	NW
10-Sep-2008	09:00	2.2	NE
10-Sep-2008	10:00	3.0	NE
10-Sep-2008	11:00	1.9	ENE
10-Sep-2008	12:00	2.1	W
10-Sep-2008	13:00	2.7	SW
10-Sep-2008	14:00	2.2	NE
10-Sep-2008	15:00	2.5	SW
10-Sep-2008	16:00	2.7	W
10-Sep-2008	17:00	3.7	NE NE
10-Sep-2008	18:00	1.3	NE NE
10-Sep-2008	19:00	0.4	W
10-Sep-2008	20:00	1.2	NW
10-Sep-2008	21:00	1.2	ESE
10-Sep-2008	22:00	3.4	ESE
10-Sep-2008	23:00	0.4	ESE
11-Sep-2008	00:00	3.7	SW
11-Sep-2008	01:00	-0.2	WSW
11-Sep-2008	02:00	0.7	SW
11-Sep-2008	03:00	2.7	SW
11-Sep-2008	04:00	2.4	SW
11-Sep-2008	05:00	2.4	NE NE
11-Sep-2008	06:00	2.2	E
11-Sep-2008	07:00	1.8	ENE
11-Sep-2008	08:00	2.4	WSW
11-Sep-2008	09:00	3.4	ESE
11-Sep-2008	10:00	2.2	NE NE
11-Sep-2008	11:00	2.3	E
11-Sep-2008	12:00	2.7	SW
11-Sep-2008	13:00	2.9	SW
11-Sep-2008 11-Sep-2008	14:00	2.6	SW
11-Sep-2008 11-Sep-2008	15:00	2.9	SW
11-Sep-2008	16:00	2.7	N N
11-Sep-2008	17:00	5.0	WNW
11-Sep-2008	18:00	1.3	WNW
11-Sep-2008	19:00	0.8	W
		0.8	W
11-Sep-2008	20:00		W
11-Sep-2008	21:00	1.0	W
11-Sep-2008	22:00	1.1	W
11-Sep-2008	23:00	0.7	W
12-Sep-2008	00:00	0.5	
12-Sep-2008	01:00	0.4	W
12-Sep-2008	02:00	1.1	W
12-Sep-2008	03:00	1.4	W
12-Sep-2008	04:00	1.0	W
12-Sep-2008	05:00	3.1	NNW

Date	Time	Wind Speed m/s	Direction
12-Sep-2008	06:00	3.0	W
12-Sep-2008	07:00	3.3	SW
12-Sep-2008	08:00	2.2	SW
12-Sep-2008	09:00	3.2	SW
12-Sep-2008	10:00	3.5	SSW
12-Sep-2008	11:00	3.5	SSW
12-Sep-2008	12:00	4.0	WSW
12-Sep-2008	13:00	4.3	W
12-Sep-2008	14:00	4.8	WSW
12-Sep-2008	15:00	4.7	SE
12-Sep-2008	16:00	4.2	N
12-Sep-2008	17:00	3.5	SW
12-Sep-2008	18:00	3.7	SW
12-Sep-2008	19:00	3.0	SSW
12-Sep-2008	20:00	2.4	WNW
12-Sep-2008	21:00	2.1	WSW
12-Sep-2008	22:00	3.3	SW
12-Sep-2008	23:00	3.9	NW
13-Sep-2008	00:00	3.3	W
13-Sep-2008	01:00	3.7	SW
13-Sep-2008	02:00	3.4	S
13-Sep-2008	03:00	3.0	WSW
13-Sep-2008	04:00	3.9	WSW
13-Sep-2008	05:00	2.8	WSW
13-Sep-2008	06:00	3.4	W
13-Sep-2008	07:00	2.7	W
13-Sep-2008	08:00	2.8	W
13-Sep-2008	09:00	3.0	W
13-Sep-2008	10:00	2.4	W
13-Sep-2008	11:00	2.6	W
13-Sep-2008	12:00	3.3	W
13-Sep-2008	13:00	1.3	WSW
13-Sep-2008	14:00	3.3	W
13-Sep-2008	15:00	3.2	W
13-Sep-2008	16:00	2.6	SW
13-Sep-2008	17:00	1.8	SSW
13-Sep-2008	18:00	1.7	SW
13-Sep-2008	19:00	1.7	SW
13-Sep-2008	20:00	1.1	SW
13-Sep-2008	21:00	0.3	SW
13-Sep-2008	22:00	1.5	SSW
13-Sep-2008	23:00	1.9	SW
14-Sep-2008	00:00	1.2	W
14-Sep-2008	01:00	0.9	NE NE
14-Sep-2008	02:00	1.2	WNW
14-Sep-2008	03:00	0.9	SW
14-Sep-2008	04:00	0.9	NE NE
14-Sep-2008	05:00	0.4	WNW
14-Sep-2008	06:00	0.9	ENE
14-Sep-2008	07:00	0.9	SE
14-Sep-2008	08:00	1.2	SE
14-Sep-2008	09:00	1.1	N
14-Sep-2008	10:00	1.6	ENE
14-Sep-2008	11:00	2.5	ENE
14-36h-2000	11.00	۷.ن	CINC

Appendix J - Wind Data (Western Portal)

14-Sep-2008 14-Sep-2008	12:00	Wind Speed m/s	NI .
			N
17-00D-2000	13:00	2.6	E
14-Sep-2008	14:00	3.1	N
14-Sep-2008	15:00	2.6	NNE
14-Sep-2008	16:00	2.6	NE
14-Sep-2008	17:00	2.3	N
14-Sep-2008	18:00	2.5	N
14-Sep-2008	19:00	1.9	NNE
14-Sep-2008	20:00	1.6	N
14-Sep-2008	21:00	1.6	N
14-Sep-2008	22:00	1.7	N
14-Sep-2008	23:00	0.8	N
15-Sep-2008	00:00	1.1	WSW
15-Sep-2008	01:00	0.2	SW
15-Sep-2008	02:00	1.9	WSW
15-Sep-2008	03:00	1.8	WSW
15-Sep-2008	04:00	2.1	WSW
15-Sep-2008	05:00	1.9	W
15-Sep-2008	06:00	2.1	WNW
15-Sep-2008	07:00	2.1	W
15-Sep-2008	08:00	1.8	WSW
15-Sep-2008	09:00	2.5	SW
15-Sep-2008	10:00	3.0	E
15-Sep-2008	11:00	3.0	<u>=</u> E
15-Sep-2008	12:00	3.7	Ē
15-Sep-2008	13:00	3.9	ENE
15-Sep-2008	14:00	3.4	NE NE
15-Sep-2008	15:00	4.6	NE
15-Sep-2008	16:00	3.7	ENE
15-Sep-2008	17:00	3.5	NE
15-Sep-2008	18:00	4.2	ENE
15-Sep-2008	19:00	2.7	NE
15-Sep-2008	20:00	2.4	ENE
15-Sep-2008	21:00	2.9	ENE
15-Sep-2008	22:00	2.2	ENE
15-Sep-2008	23:00	2.4	ENE
16-Sep-2008	00:00	3.4	NNE
16-Sep-2008	01:00	2.2	NNE
16-Sep-2008	02:00	2.7	S
16-Sep-2008	03:00	2.2	WNW
16-Sep-2008	04:00	2.8	E
16-Sep-2008	05:00	3.3	NW
16-Sep-2008	06:00	2.4	WNW
16-Sep-2008	07:00	3.7	NNE
16-Sep-2008	08:00	2.5	SW
16-Sep-2008	09:00	3.7	WSW
16-Sep-2008	10:00	3.9	WSW
16-Sep-2008	11:00	2.6	WSW
16-Sep-2008	12:00	3.9	W
16-Sep-2008	13:00	4.6	WNW
16-Sep-2008	14:00	4.5	W
	15:00	4.9	WSW
16-Sep-2008			
16-Sep-2008 16-Sep-2008	16:00	2.9	SW

Appendix J - Wind Data (Western Portal)

Date	Time	Wind Speed m/s	Direction
16-Sep-2008	18:00	3.9	SSE
16-Sep-2008	19:00	4.2	SSE
16-Sep-2008	20:00	0.6	SSW
16-Sep-2008	21:00	3.4	SW
16-Sep-2008	22:00	2.4	WSW
16-Sep-2008	23:00	3.0	WSW
17-Sep-2008	00:00	3.4	SSW
17-Sep-2008	01:00	3.1	SSW
17-Sep-2008	02:00	3.6	WNW
17-Sep-2008	03:00	4.3	SW
17-Sep-2008	04:00	2.2	WNW
17-Sep-2008	05:00	3.1	WSW
17-Sep-2008	06:00	2.1	WSW
17-Sep-2008	07:00	3.3	W
17-Sep-2008	08:00	3.1	WSW
17-Sep-2008	09:00	4.2	W
17-Sep-2008	10:00	4.2	W
17-Sep-2008	11:00	3.4	SW
17-Sep-2008	12:00	2.9	WNW
17-Sep-2008	13:00	4.8	WSW
17-Sep-2008	14:00	4.3	WSW
17-Sep-2008	15:00	4.5	WNW
17-Sep-2008	16:00	3.6	W
17-Sep-2008	17:00	3.6	NW
17-Sep-2008	18:00	3.7	N
17-Sep-2008	19:00	3.4	NNE
17-Sep-2008	20:00	2.5	WNW
17-Sep-2008	21:00	2.4	SW
17-Sep-2008	22:00	3.0	SW
17-Sep-2008	23:00	2.8	SW
18-Sep-2008	00:00	2.8	WSW
18-Sep-2008	01:00	4.0	WSW
18-Sep-2008	02:00	2.5	WSW
18-Sep-2008	03:00	2.5	WSW
18-Sep-2008	04:00	3.3	WSW
18-Sep-2008	05:00	3.6	SW
18-Sep-2008	06:00	2.8	WSW
18-Sep-2008	07:00	2.4	SW
18-Sep-2008	08:00	2.1	WSW
18-Sep-2008	09:00	2.8	SW
18-Sep-2008	10:00	3.4	W
18-Sep-2008	11:00	3.3	WNW
18-Sep-2008	12:00	3.3	WNW
18-Sep-2008	13:00	3.9	WNW
18-Sep-2008	14:00	2.7	WNW
18-Sep-2008	15:00	3.7	WSW
18-Sep-2008	16:00	3.0	WSW
18-Sep-2008	17:00	2.1	WNW
•	18:00		WNW
18-Sep-2008	19:00	1.8	WNW
18-Sep-2008			W
18-Sep-2008	20:00	3.4	
18-Sep-2008	21:00	3.1	WSW
18-Sep-2008	22:00	3.6	WSW
18-Sep-2008	23:00	3.3	WNW

Date	Time	Wind Speed m/s	Direction
19-Sep-2008	00:00	4.1	WNW
19-Sep-2008	01:00	3.9	W
19-Sep-2008	02:00	4.0	W
19-Sep-2008	03:00	3.4	W
19-Sep-2008	04:00	3.0	WNW
19-Sep-2008	05:00	2.8	W
19-Sep-2008	06:00	2.7	WNW
19-Sep-2008	07:00	2.2	W
19-Sep-2008	08:00	2.5	W
19-Sep-2008	09:00	3.3	W
19-Sep-2008	10:00	3.7	WNW
19-Sep-2008	11:00	4.4	WNW
19-Sep-2008	12:00	4.9	W
19-Sep-2008	13:00	3.4	WNW
19-Sep-2008	14:00	3.1	WNW
19-Sep-2008	15:00	4.5	SW
19-Sep-2008	16:00	4.2	W
19-Sep-2008	17:00	3.6	W
19-Sep-2008	18:00	3.3	WNW
19-Sep-2008	19:00	3.1	WNW
19-Sep-2008	20:00	2.8	WNW
19-Sep-2008	21:00	1.3	WNW
19-Sep-2008	22:00	3.7	WNW
19-Sep-2008	23:00	3.3	WNW
20-Sep-2008	00:00	2.4	W
20-Sep-2008	01:00	2.4	SSW
20-Sep-2008	02:00	2.4	WSW
20-Sep-2008	03:00	3.1	WSW
20-Sep-2008	04:00	3.1	WNW
20-Sep-2008	05:00	3.9	WSW
20-Sep-2008	06:00	4.0	WSW
20-Sep-2008	07:00	2.5	WSW
20-Sep-2008	08:00	1.5	WSW
20-Sep-2008	09:00	3.6	WSW
20-Sep-2008	10:00	2.1	WSW
20-Sep-2008	11:00	2.5	WSW
20-Sep-2008	12:00	2.1	WNW
20-Sep-2008	13:00	2.8	WSW
20-Sep-2008	14:00	2.8	WNW
20-Sep-2008	15:00	3.7	WSW
20-Sep-2008	16:00	3.4	WSW
20-Sep-2008	17:00	3.7	WNW
20-Sep-2008	18:00	2.1	WNW
20-Sep-2008	19:00	1.9	WNW
20-Sep-2008	20:00	1.9	W
20-Sep-2008	21:00	1.9	WNW
20-Sep-2008	22:00	2.5	WNW
20-Sep-2008	23:00	4.4	WNW
21-Sep-2008	00:00	1.8	WNW
21-Sep-2008	01:00	1.5	WNW
21-Sep-2008	02:00	1.6	WNW
21-Sep-2008	03:00	2.5	W
21-Sep-2008	04:00	1.6	WSW
21-Sep-2008	05:00	3.0	SW
21-3 c p-2006	03.00	3.0	300

Date	Time	Wind Speed m/s	Direction
21-Sep-2008	06:00	1.9	SW
21-Sep-2008	07:00	1.5	SW
21-Sep-2008	08:00	1.8	WSW
21-Sep-2008	09:00	3.3	SW
21-Sep-2008	10:00	3.2	WSW
21-Sep-2008	11:00	3.3	WSW
21-Sep-2008	12:00	3.4	SW
21-Sep-2008	13:00	2.8	WSW
21-Sep-2008	14:00	2.2	WSW
21-Sep-2008	15:00	1.6	WSW
21-Sep-2008	16:00	1.1	WSW
21-Sep-2008	17:00	1.3	WSW
21-Sep-2008	18:00	1.6	WSW
21-Sep-2008	19:00	2.5	WSW
21-Sep-2008	20:00	1.3	WSW
21-Sep-2008	21:00	2.3	WSW
21-Sep-2008	22:00	1.7	WSW
21-Sep-2008	23:00	2.8	WSW
22-Sep-2008	00:00	4.6	WSW
22-Sep-2008	01:00	3.1	WSW
22-Sep-2008	02:00	3.1	WSW
22-Sep-2008	03:00	3.3	WSW
22-Sep-2008	04:00	3.9	WSW
22-Sep-2008	05:00	2.8	WSW
22-Sep-2008	06:00	3.3	SW
22-Sep-2008	07:00	3.4	WSW
22-Sep-2008	08:00	2.0	WSW
22-Sep-2008	09:00	1.1	WSW
22-Sep-2008	10:00	2.0	SW
22-Sep-2008	11:00	2.3	WSW
22-Sep-2008	12:00	3.5	WSW
22-Sep-2008	13:00	3.8	WSW
22-Sep-2008	14:00	4.1	WSW
22-Sep-2008	15:00	3.7	WSW
22-Sep-2008	16:00	3.4	WSW
22-Sep-2008	17:00	3.1	WSW
22-Sep-2008	18:00	2.8	WNW
22-Sep-2008	19:00	2.6	WNW
22-Sep-2008	20:00	4.3	WNW
22-Sep-2008	21:00	4.0	WNW
22-Sep-2008	22:00	2.7	WNW
22-Sep-2008	23:00	3.6	W
23-Sep-2008	00:00	3.6	W
23-Sep-2008	01:00	2.4	WNW
23-Sep-2008	02:00	3.3	W
23-Sep-2008	03:00	3.6	WNW
23-Sep-2008	04:00	3.3	W
23-Sep-2008	05:00	2.8	SW
23-Sep-2008	06:00	3.1	W
23-Sep-2008	07:00	3.0	ESE
23-Sep-2008	08:00	3.1	SSE
23-Sep-2008	09:00	3.6	WSW
23-Sep-2008	10:00	4.6	SW
20 OCP 2000			

Date	Time	Wind Speed m/s	Direction
23-Sep-2008	12:00	4.0	W
23-Sep-2008	13:00	4.6	WNW
23-Sep-2008	14:00	4.0	WNW
23-Sep-2008	15:00	4.0	W
23-Sep-2008	16:00	4.5	SSW
23-Sep-2008	17:00	3.9	SW
23-Sep-2008	18:00	5.0	SW
23-Sep-2008	19:00	5.1	ESE
23-Sep-2008	20:00	8.2	ESE
23-Sep-2008	21:00	7.6	ESE
23-Sep-2008	22:00	7.8	NW
23-Sep-2008	23:00	8.2	NNE
24-Sep-2008	00:00	9.5	NE
24-Sep-2008	01:00	9.8	NE
24-Sep-2008	02:00	5.6	E
24-Sep-2008	03:00	5.2	ESE
24-Sep-2008	04:00	7.9	ENE
24-Sep-2008	05:00	7.9	NE
24-Sep-2008	06:00	7.9	ENE
24-Sep-2008	07:00	7.4	ENE
24-Sep-2008	08:00	4.1	ENE
24-Sep-2008	09:00	3.4	Е
24-Sep-2008	10:00	3.9	Е
24-Sep-2008	11:00	4.8	ENE
24-Sep-2008	12:00	4.6	ENE
24-Sep-2008	13:00	5.2	ENE
24-Sep-2008	14:00	5.1	ENE
24-Sep-2008	15:00	4.9	ENE
24-Sep-2008	16:00	6.0	ENE
24-Sep-2008	17:00	2.2	N
24-Sep-2008	18:00	1.5	NE
24-Sep-2008	19:00	2.1	NNE
24-Sep-2008	20:00	1.6	NNE
24-Sep-2008	21:00	1.8	NE
24-Sep-2008	22:00	2.8	NNE
24-Sep-2008	23:00	3.8	NNE
25-Sep-2008	00:00	3.2	NNE
25-Sep-2008	01:00	3.5	NE
25-Sep-2008	02:00	2.9	NNE
25-Sep-2008	03:00	1.7	NNE
25-Sep-2008	04:00	2.0	NNE
25-Sep-2008	05:00	2.3	NNE
25-Sep-2008	06:00	1.8	NNE
25-Sep-2008	07:00	1.7	NNE
25-Sep-2008	08:00	2.6	NE
25-Sep-2008	09:00	2.4	NNE
25-Sep-2008	10:00	1.8	NNE
25-Sep-2008	11:00	4.5	NNE
25-Sep-2008	12:00	4.5	NNE
25-Sep-2008	13:00	2.2	NNE
25-Sep-2008	14:00	3.9	NNE
25-Sep-2008	15:00	3.8	NE
25-Sep-2008	16:00	4.0	NE
25-Sep-2008	17:00	3.7	E

Date	Time	Wind Speed m/s	Direction
25-Sep-2008	18:00	2.8	NE
25-Sep-2008	19:00	3.2	NE
25-Sep-2008	20:00	2.8	NE
25-Sep-2008	21:00	2.5	NNE
25-Sep-2008	22:00	2.5	NNE
25-Sep-2008	23:00	2.1	NNE
26-Sep-2008	00:00	2.3	NE
26-Sep-2008	01:00	2.0	NE
26-Sep-2008	02:00	2.3	NE
26-Sep-2008		3.1	ENE
	03:00		
26-Sep-2008	04:00	1.2	ENE
26-Sep-2008	05:00	1.5	NE NE
26-Sep-2008	06:00	1.2	NNE
26-Sep-2008	07:00	1.3	ESE
26-Sep-2008	08:00	0.5	NE
26-Sep-2008	09:00	1.0	SE
26-Sep-2008	10:00	0.8	SE
26-Sep-2008	11:00	2.6	SE
26-Sep-2008	12:00	2.9	SE
26-Sep-2008	13:00	2.2	NE
26-Sep-2008	14:00	2.6	NE
26-Sep-2008	15:00	2.0	NE
26-Sep-2008	16:00	3.4	NNE
26-Sep-2008	17:00	1.9	NE
26-Sep-2008	18:00	1.7	NE
26-Sep-2008	19:00	1.6	NE
26-Sep-2008	20:00	1.4	NE
26-Sep-2008	21:00	2.5	NNE
26-Sep-2008	22:00	4.1	NE
26-Sep-2008	23:00	4.0	NNE
27-Sep-2008	00:00	4.2	NNE
27-Sep-2008	01:00	3.3	NE
27-Sep-2008	02:00	3.1	NNE
27-Sep-2008	03:00	2.4	NNE
27-Sep-2008	04:00	1.9	NNE
27-Sep-2008	05:00	1.6	NNE
27-Sep-2008	06:00	1.0	NNE
27-Sep-2008	07:00	1.6	NNE
27-Sep-2008	08:00	2.1	NNE
27-Sep-2008	09:00	2.5	NNE
27-Sep-2008	10:00	3.6	ENE
27-Sep-2008 27-Sep-2008	11:00	3.0	ENE
27-Sep-2008 27-Sep-2008	12:00	4.0	ENE
27-Sep-2008	13:00	3.7	ENE
27-Sep-2008 27-Sep-2008	14:00	4.2	ENE
	15:00		NE
27-Sep-2008		4.0	ENE
27-Sep-2008	16:00	3.1	
27-Sep-2008	17:00	4.0	<u>E</u>
27-Sep-2008	18:00	3.0	E
27-Sep-2008	19:00	2.1	NE
27-Sep-2008	20:00	1.9	ENE
27-Sep-2008	21:00	1.9	ESE
27-Sep-2008	22:00	1.3	NE
27-Sep-2008	23:00	3.1	ENE

Date	Time	Wind Speed m/s	Direction
28-Sep-2008	00:00	3.0	NE
28-Sep-2008	01:00	2.7	NE
28-Sep-2008	02:00	2.5	NE
28-Sep-2008	03:00	2.2	NE
28-Sep-2008	04:00	3.0	NE
28-Sep-2008	05:00	2.4	NE
28-Sep-2008	06:00	1.5	NE
28-Sep-2008	07:00	1.9	NE
28-Sep-2008	08:00	2.1	ENE
28-Sep-2008	09:00	2.4	E
28-Sep-2008	10:00	3.3	ENE
28-Sep-2008	11:00	3.4	E
28-Sep-2008	12:00	3.3	 E
28-Sep-2008	13:00	2.2	 E
28-Sep-2008	14:00	2.2	<u>=</u> E
28-Sep-2008	15:00	2.7	N
28-Sep-2008	16:00	1.5	ENE
28-Sep-2008	17:00	3.1	ENE
28-Sep-2008	18:00	2.2	ENE
28-Sep-2008	19:00	1.0	E
28-Sep-2008	20:00	1.3	E E
28-Sep-2008	21:00	2.1	E E
28-Sep-2008	22:00	1.5	ENE
28-Sep-2008	23:00	1.9	ENE
29-Sep-2008	00:00	2.1	N
29-Sep-2008	01:00	2.5	N
29-Sep-2008	02:00	3.0	N N
29-Sep-2008	03:00	4.8	WNW
29-Sep-2008	04:00	1.5	N
29-Sep-2008	05:00	1.5	WNW
29-Sep-2008	06:00	1.6	W
29-Sep-2008	07:00	0.7	W
29-Sep-2008	08:00	0.9	W
29-Sep-2008	09:00	0.9	WNW
29-Sep-2008	10:00	2.1	WNW
29-Sep-2008	11:00	2.7	WNW
29-Sep-2008	12:00	1.8	W
29-Sep-2008	13:00	2.5	N
29-Sep-2008	14:00	1.6	WNW
29-Sep-2008	15:00	3.0	E
29-Sep-2008	16:00	2.8	SSE
29-Sep-2008	17:00	1.3	S
29-Sep-2008	18:00	0.9	SSW
29-Sep-2008	19:00	1.6	N
29-Sep-2008	20:00	1.3	WNW
29-Sep-2008	21:00	1.8	W
29-Sep-2008	22:00	2.8	
29-Sep-2008	23:00	1.8	SSW
30-Sep-2008	00:00	1.6	WSW
30-Sep-2008	01:00	1.8	WNW
30-Sep-2008	02:00	1.2	WNW
30-Sep-2008	03:00	1.0	WNW
30-Sep-2008	04:00	1.2	WNW
30-Sep-2008	05:00	1.2	WNW
30-3ep-2000	05.00	1.4	VVINVV

Date	Time	Wind Speed m/s	Direction
30-Sep-2008	06:00	0.7	WNW
30-Sep-2008	07:00	0.9	W
30-Sep-2008	08:00	1.6	WNW
30-Sep-2008	09:00	2.7	W
30-Sep-2008	10:00	2.8	W
30-Sep-2008	11:00	2.8	W
30-Sep-2008	12:00	3.6	ENE
30-Sep-2008	13:00	3.7	W
30-Sep-2008	14:00	4.0	WNW
30-Sep-2008	15:00	4.2	W
30-Sep-2008	16:00	3.1	W
30-Sep-2008	17:00	2.4	W
30-Sep-2008	18:00	2.4	WSW
30-Sep-2008	19:00	2.1	WSW
30-Sep-2008	20:00	1.9	SSW
30-Sep-2008	21:00	1.5	W
30-Sep-2008	22:00	1.8	W
30-Sep-2008	23:00	1.3	WSW

APPENDIX K SITE AUDIT SUMMARY

Checklist Reference Number	80903
Date	3 September 2008 (Wednesday)
Time	15:00 – 17:30

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	A. Water Quality	
80903-O02	• Uneven areas that retain the standing water were observed at Western Portal. The Contractor was reminded to pave them.	B15
80903-O03	Stagnant water was observed at the items on Eastern Portal site which may retain water. The Contractor was reminded to dry it out.	B15
	B. Air Quality	
	No environmental deficiency was identified during site inspection.	
	C. Noise	
	No environmental deficiency was identified during site inspection.	
	D. Waste / Chemical Management	
80903-O01	• Chemical containers were observed standing on the bare ground at Western Portal. The Contractor was reminded to provide the drip tray or store it properly.	F3i.
80903-O04	Uncover container with chemical oil was observed at Eastern Portal. The Contractor was reminded to clear them as soon as possible to prevent overflow during the rainstorm.	F3i.
	E. Ecology	
	No environmental deficiency was identified during site inspection.	
	F. Reminders	
	No environmental deficiency was identified during site inspection.	
	G. Others	
	• Follow-up on previous audit section (Ref. No.:80826), all environmental deficiencies were improved/rectified by contractor.	

	Name	Signature	Date
Recorded by	Ivy Tam	In	3 September 2008
Checked by	Dr. Priscilla Choy	WI	3 September 2008

Checklist Reference Number	80912
Date	12 September 2008 (Friday)
Time	15:30 – 18:00

Ref. No.	Non-Compliance	Related Item No.
_	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	A. Water Quality	
80912-O01	Uneven areas that retain the stagnant water were observed at Western Portal. The Contractor was reminded to pave them.	B15
	B. Air Quality	
w	No environmental deficiency was identified during site inspection.	
	C. Noise	
	No environmental deficiency was identified during site inspection.	
	D. Waste / Chemical Management	
80912-O02	• A part of plant equipment with chemical oil was observed standing on the bare ground at Western Portal. The Contractor was reminded to remove it to prevent land contamination.	F2ii.
80912-O03	Oil leakage was observed from the drilling rig at Eastern Portal. The Contractor was reminded clear them and provide well maintenance.	F8
	E. Ecology	
	No environmental deficiency was identified during site inspection.	
	F. Reminders	
80912-R04	 Opening of silt curtain was observed at Western Portal. The Contractor was reminded to make sure no marine works were conducted during the silt curtain opened for the barge to pass in and out. 	C2
	G. Others	
	• Follow-up on previous audit section (Ref. No.:80903), all environmental deficiencies were improved/rectified by contractor except items (80903-O02). Follow-up action is needed for the outstanding items.	

	Name	Signature	Date
Recorded by	Ivy Tam	Zu	12 September 2008
Checked by	Dr. Priscilla Choy	With	12 September 2008

Inspection into interest		
Checklist Reference Number	80917	<u></u> -
Date	17 September 2008 (Wednesday)	
Time	16:00 – 18:30	

~ a N	N. C. Williams	Related Item No.
Ref. No.	Non-Compliance None identified	-
	Notic idelititied	Related
Ref. No.	Remarks/Observations	Item No.
Kei, Ivo.	A Water Quality	
80917-O01	Standing water was observed at underneath the plant equipment at Western Portal. The Contractor was reminded to dry it out.	B15
80917-O03	Marine Works • Debris was observed around the barge. The Contractor was reminded to clean them up.	B22
80917-O07	Standing water with oil leakage in the drip tray at M3. The Contractor was reminded to clear them and disposed by licensed collector.	B15
	B. Air Quality	
80917-O02	Black smoke emission was observed from plants were observed at Western Portal. The Contractor was reminded to provide well maintenance of the plants.	D13
	C. Noise	
	No environmental deficiency was identified during site inspection.	
	D. Waste / Chemical Management	
80917-O05	Vegetation debris was observed accumulate at MB16 and M3. The Contractor was reminded to clean them up.	F5ii.
80917-O06	Oil leakage was observed on the paved road at Eastern Portal. The Contactor was reminded to clear them.	F8
80917-007	Standing water with oil leakage in the drip tray at M3. The Contractor was reminded to clear them and disposed by licensed collector.	F8
	E. Ecology	
	No environmental deficiency was identified during site inspection.	
	F. Marine Ecology	
80917-O04	Opening of silt curtain was observed at Western Portal. The Contractor was reminded to check it more frequently.	C2
	G. Reminders	De
80917-R08	Water regularly on the unpaved area at Western Portal to prevent dust generation.	D5
	H. Others	
	 Follow-up on previous audit section (Ref. No.:80912), all environmental deficiencies were improved/rectified by contractor except items (80912-O03 and R04). Follow-up action is needed for the outstanding items. 	

	Name	Signature	Date
Recorded by	Ivy Tam	Two	17 September 2008
Checked by	Dr. Priscilla Choy	61	17 September 2008

THIS PECTION XIXON MINERON	
Checklist Reference Number	80924
Date	24 September 2008 (Wednesday)
Time	16:00 – 18:15

		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	Deleted
		Related Item No.
Ref. No.	Remarks/Observations	Hem No.
	A. Water Quality	B14
80924-O01	Sediment was observed accumulate at the drainage channel to the outfall at Western Portal. The	D14
	Contractor was reminded to clear them.	B15
80924-O02	Standing water in the drip tray at M3 was observed. The Contractor was reminded to dry it out.	
	B. Air Quality	
	No environmental deficiency was identified during site inspection.	
	C. Noise	
****	No environmental deficiency was identified during site inspection.	
	 D. Waste / Chemical Management Vegetation debris was observed around the site M3. The Contractor was reminded to clear them 	
80924-O03	more frequently.	F5ii.
	•	
	E. Ecology	
	No environmental deficiency was identified during site inspection.	
	F. Marine Ecology	
	No environmental deficiency was identified during site inspection.	
	G. Reminders G. Reminders December De	
80924-R04	C&D waste was observed accumulate at the material skip at Eastern Portal. Regular clear the waste is needed.	F5ii.
	H. Others	
	 Follow-up on previous audit section (Ref. No.:80917), all environmental deficiencies were improved/rectified by contractor except items (80917-O05 and O07). Follow-up action is needed for the outstanding items. 	

	Name	Signature	Date
Recorded by	Ivy Tam	Iw	24 September 2008
Checked by	Dr. Priscilla Choy	WIL	24 September 2008

Inspection into matter		
Checklist Reference Number	80929	
Date	29 September 2008 (Monday)	
Time	14:00 – 17:15	

		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	
		Related
Ref. No.	Remarks/Observations	Item No.
1027110	A. Water Quality	77.16
80929-O01	• Stagnant water was observed at underneath of plants at Western Portal. The Contractor was	B15
80929-O03	Standing water in the drip tray at M3 was observed. The Contractor was reminded to dry it out.	B15
	B. Air Quality	-
	No environmental deficiency was identified during site inspection.	
	C. Noise	
	No environmental deficiency was identified during site inspection.	
<u> </u>	D. Waste / Chemical Management	
80929-O03	Vegetation debris was observed around the site M3. The Contractor was reminded to clear them more frequently.	F5ii.
	•	
	E. Ecology	
	No environmental deficiency was identified during site inspection.	
	F. Marine Ecology	
	No environmental deficiency was identified during site inspection.	
	G. Reminders	F5ii.
80929-R02	Regular clear the C&D waste at the material skip at Eastern Portal is necessary.	
	H. Others	
	Follow-up on previous audit section (Ref. No.:80924), all environmental deficiencies were improved/rectified by contractor except items (80924-O02 and O03). Follow-up action is needed for the outstanding items as the site of Intakes M3 was not observed during the site audit.	

	Name	Signature	Date
Recorded by	Ivy Tam	Jul	29 September 2008
Checked by	Dr. Priscilla Choy	W.	29 September 2008

APPENDIX L ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

Appendix L - Summary of Environmental Mitigation Implementation Schedule

Types of Impacts

Types of Impacts	Mitigation Measures	Status
-	No vehicle exhausts shall be directed towards the ground or downwards to minimize dust nuisance.	*
	• Ventilation system, equipped with proprietary filters, should be provided to ensure the safe working environment inside the tunnel. Particular attention should be paid to the location and direction of the ventilation exhausts. The exhausts should not be allowed to face any sensitive receivers directly. Consideration should also be given to the location of windows, doors and direction of prevailing winds in relation to the nearby sensitive receivers.	^
	• In the event of any spoil or debris from construction works being deposited on adjacent land, or stream, or any silt being washed down to any area, then all such spoil, debris or material and silt shall be immediately removed and the affected land and areas restored to their natural state by the Contractor to the satisfaction of the Engineers.	۸
	In addition, based on the Air Pollution Control (Construction Dust) Regulation, any works involved regulatory and notifiable works, such as stockpiling, loading and unloading of dusty materials, shall take precautions to suppress dust nuisance.	
	• The working area of any excavation or earthmoving operation shall spray with water or a dust suppression chemical immediately before, during and immediately after the operation so as to maintain the entire surface wet;	*
	• Exposed earth shall be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen or other suitable surface stabiliser within six months after the last construction activity on the construction site or part of the construction site where the exposed earth lies; and	٨
	• Any stockpile of dusty materials (greater than 20m³) shall be either covered entirely by impervious sheeting or placed in an area sheltered on the top and three sides; and sprayed with water or a dust suppression chemical so as to maintain the entire surface wet.	۸
	• Other suitable dust control measures as stipulated in Air Pollution Control (Construction Dust). Regulation, where appropriate, should be adopted.	۸

Types of Impacts	Mitigation Measures	Status
•	Air borne noise	
	In general, potential construction noise impact can be minimized or avoided by imposing a combination of the following mitigation measures:	
	 Noisy equipment and activities should be sited by the Contractor as far from close-proximity sensitive receivers as practical. Prolonged operation of noisy equipment close to dwellings should be avoided. 	^
	• The Contractor should minimise construction noise exposure to the schools (especially during examination periods). The Contractor should liaise with the school and the Examination Authority to ascertain the exact dates and times of all examination periods during the course of the works contract and to avoid noisy activities during these periods.	٨
	 Noisy plant or processes should be replaced by quieter alternatives. Silenced diesel and gasoline generators and power units, as well as silenced and super-silenced air compressor, can be readily obtained. 	N/A
	• Noisy activities should be scheduled to minimise exposure of nearby sensitive receivers to high levels of construction noise. For example, noisy activities can be scheduled for midday, or at times coinciding with periods of high background noise (such as during peak traffic hours).	٨
	 Idle equipment should be turned off of throttled down. Noisy equipment should be properly maintained and used no more often than is necessary. 	^
Construction	• The power units of non-electric stationary plant and earth-moving plant should be quietened by vibration isolation and partial or full acoustic enclosures for individual noise-generating components.	^
Noise	• Construction activities should be planned so that parallel operation of several sets of equipment close to a given receiver is avoided, thus reducing the cumulative impacts between operations. The numbers of operating items of powered mechanical equipment should be minimised. Noise can be reduced by increasing the distance between the operating equipment and the NSRs or by reducing the number of items of equipment and/or construction activity in the area at any one time.	^
	• The use of quiet plant working methods can further reduce noise level. Quiet plant is defined as Powered Mechanical Equipment (PME) whose actual sound power level is less than the value specified in the TMs for the same piece of equipment. To allow the Contractor some flexibility to select equipment to suit his needs, it is considered too restrictive to specify which specific items of silenced equipment to be used for the construction operations. It should be noted that various types of silenced equipment can be found in Hong Kong and are readily available on the market. BS 5228 also provides examples of quiet construction plant and their SWL.	۸
	• Construction plant should be properly maintained (well-greased, damage and worn parts promptly replaced) and operated. Construction equipment often has silencing measures built in or added on, e.g. bulldozer silencers, compressor panels, and mufflers. Silencing measures should be properly maintained and utilised. Rubber or damping materials should be introduced between metal panels to avoid rattle and reverberation of noise.	^
	 Equipment known to emit sound strongly in one direction should be oriented so that the noise is directed away from nearby NSRs. 	^
	Materials stockpile and other structures (such as site offices) should be effectively utilised to shield construction noise. Noise	٨

N/A Not Applicable at this stage; • Non-compliance of mitigation measure;

* Recommendation was made during site audit but improved/rectified by the contractor;

* Non-compliance but rectified by the contractor;

* Non-compliance but rectified/improved by the contractor and awaiting IEC's further comment.

Types of Impacts	Mitigation Measures	Status
	can also be reduced by construction of temporary noise barriers which screen the lower floors from viewing the sites. Temporary noise barriers should be installed at active parts of construction areas where construction equipment is being operated in close proximity to NSRs.	
	• It is noted that under the WBTC No. 19/2001, all construction sites are required to use metallic site hoarding can be slightly modified (with the addition of steel backings) into temporary noise barriers. These barriers should be gap free and have a surface mass density of at least 7kg/m ² .	۸
	• All hand-held percussive breakers and air compressors should comply the Noise Control (Hand-held Percussive Breakers) Regulations respectively under the NCO (Ordinance No. 75/88, NCO Amendment 1992 No.6).	٨
	The Contractor shall devise, arrange methods of working and carry out the works in such manner as to minimise noise impacts on the surrounding environment, and shall provide experienced personnel with suitable training to ensure that these measures are implemented properly.	٨
	<u>Level 2 Use of Barriers</u>	
	Level 2 mitigation measures include providing movable barriers for sites which have sufficient space for installation, full enclosures during the drilling activities at Eastern Portal and at muck pit areas for Eastern portals and cantilever-typed high rise noise barrier for intake W5 (P) and W8.	٨
	Before construction of the full enclosure at muck pit area, the use of full enclosure noise barrier (Stage A) for the drilling activities at the Eastern Portal area is required. A full enclosure for the muck pit area will then be constructed at this later stage (Stage B). The full enclosure shall be gap free apart from necessary entrance/exits, which shall face towards the entrance of eastern portal to minimize the amount of noise generated from affecting the nearest RNSRs especially school (True Light Middle School of Hong Kong).	N/A
	5m high cantilever-typed hoarding barrier to be built at W5 (P) and W8. These enclosures/barriers should have no gaps and have a superficial surface density of at least 10kg/m^2 . Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period. To schedule the noise barrier erection and dismantling to the non sensitive periods of school to avoid adverse impact to W8/3.	٨
	Movable barriers of 3 to 5m height with a small cantilevered upper portion and skid footing to be located within about 5 m or more for mobile equipment such that the line of sight is blocked. To provide purposes-built noise barriers or screens constructed of appropriate materials (minimum superficial density of 10kg/m^2) located close to the operating PME.	۸
	Pre-drilling following by chemical splitting instead of using large excavator mounted breaker should be used as mitigation measure for rock breaking and rock drilling.	^

Types of Impacts	Mitigation Measures	Status
	No construction activity is recommended during the examination period.	٨
	Ground borne noise	
	The noise level should be measured on the ground floor inside the nearest building during the TBM construction work in the daytime. If the daytime monitored ground borne noise exceeds the relevant evening/night ground borne noise criteria, evening/night construction work would not be carried out for the concerned tunnel section. Evening/night time construction work is subject to CNP application under the control of NCO.	N/A
	Public relationship strategy with 24-hour hotline system.	

Types of Impacts	Mitigation Measures	Status
Water Quality	Precautionary measures for construction work near natural streams The government provides guidelines (ETWB TCW NO. 5/2005 and DSD TC 2/2004) are providing guidelines to minimize impacts when there is construction work carried out at near natural streams course. Relevant mitigation measures for the intakes are summarised as follows: • Temporary site access to the work sites should be carefully planned and located to minimize disturbance caused to the substrates of streams/rivers and riparian vegetation by construction plant. • Locations well away from the rivers/streams for temporary storage of materials (e.g equipment, filling materials, chemicals and fuel) and temporary stockpile of construction debris and spoil should be identified before commencement of works. • Proposed works site areas inside, or in the proximity of, natural rivers and streams should be temporarily isolated to prevent adverse impacts on the stream water qualities. • Stockpiling of construction materials, if necessary, should be completely properly covered and located away from any natural stream/river. • Construction debris and spoil should be covered up and/or properly disposed of as soon as possible to avoid being washed into nearby rivers/streams by rain and local runoff. Construction of temporary berthing point at the Western Portal A refuse collection vessel shall be provided to collect refuse or materials lost into the sea. The respective areas of the marine works will be completely enclosed by the silt curtain. The curtain shall be extended from water surface down to the seabed where it is anchored using sinker blocks. The Contractor shall inspect the silt curtain on regular basis to ensure its integrity and it is serviceable for all times.	^ ^ ^ *

Remarks: ^ Compliance of mitigation measure; X Non-compliance of mitigation measure;
N/A Not Applicable at this stage; • Non-compliance but rectified by the contractor;

* Recommendation was made during site audit but improved/rectified by the contractor;

Non-compliance but rectified/improved by the contractor and awaiting IEC's further comment.

Types of Impacts	Mitigation Measures	Status
	Transfer of armour rock onto the seabed from barge at the temporary pier location should be conducted by careful grabbing and unloading to the seabed (to minimize sediment migration).	٨
	The conveyor belt should be completely covered and muddy effluent from the temporary barge should be contained, treated and disposed. Where there is transfer of excavated wastes, the Contractor should provide appropriate measures to ensure that the waste is free from floatables, putrescibes, organic wastes and toxic materials and when required a refuse collection vessel be provided to collect float refuse.	N/A
	Construction of stilling basin at Western Portal outfall	
	All construction for the basin should be carried out inside the temporary cofferdam which is a temporary watertight enclosure built in the water and pumped dry to expose the bottom so that construction of stilling basin can be undertaken.	٨
	During the dewatering process, appropriate desilting/sedimentation devices should be provided on site for treatment before discharge. The Contractor should ensure discharge water from the sedimentation tank meet the WPCO/TM requirements before discharge.	N/A
	The cofferdam will remain on site until after the construction of stilling basin has been completed. The coffer dam shall be regularly inspected and maintained to ensure no spillage of waste or wastewater into the sea. Conveyance of dredged materials from the coffer dam shall be carried out cautiously to avoid spillage into the sea.	N/A
	The filled material for the stilling basin should be contained inside the temporary cofferdam. The top level of the cofferdam shall be constructed higher than the final backfilled level.	۸
	The Contractor shall be responsible for the design, installation and maintenance of the silt curtains to minimize the impacts on the water quality and the protection of water quality. The design and specification of the silt curtains shall be submitted by the Contractor to the Engineer for approval.	*
	Silt curtains shall be formed from tough, abrasion resistant, permeable membranes, suitable for the purpose, supported on floating booms in such a way as to ensure that the sediment plume shall be restricted to within the limit of the works area. The silt curtain shall be formed and installed in such a way that tidal rise and fall are accommodated, with the silt curtains always extending from the surface to the bottom of the water column and held with anchor blocks. The removal and reinstallation of such curtains during typhoon conditions shall be as agreed with the Director of Marine Department. The contractor shall regularly inspect the silt curtains and check that they are moored and marked to avoid danger to marine traffic. Any damage to the silt curtain shall be repaired by the Contractor promptly and the works shall be stopped until the repair is fixed to the satisfaction of the Engineer.	*

Remarks: ^ Compliance of mitigation measure; X Non-compliance of mitigation measure;
N/A Not Applicable at this stage; • Non-compliance but rectified by the contractor;

* Recommendation was made during site audit but improved/rectified by the contractor;

Non-compliance but rectified/improved by the contractor and awaiting IEC's further comment.

Types of Impacts	Mitigation Measures	Status
•	Transfer of rock fill material (armour rock) from the barge onto the site location should be conducted by grabbing and placement on the seabed to minimize sediment migration. No free dropping of the material will be allowed.	٨
	Prior to the construction of armor rock based panel, a silt curtain shall also be installed prior to carry out any marine works as a preventive mitigation measure.	٨
	Construction of TBM tunnel at both portals and intakes	
	Recycled water will be used at the cutter face for cooling purposes. Used water will be collected and discharged to a settling tank for settlement. Excess water from the settling tank will be transferred to the water treatment plant on site where the addition of flocculants will assist in settlement of solids. The Contractor should ensure discharge water from the sedimentation tank meet the WPCO/TM requirements before discharge.	N/A
	During the drilling process, all flushing water will be recycled for use. Discharge of the treated water to nearby drainage system shall be allowed provided that it has been treated to a level meeting with statutory requirements.	٨
	Water flow at streams should be maintained by a temporary diversion system during the construction phase of intakes and manhole drop shafts.	N/A
	General Construction Activities and Workforce	
	A. Surface runoff	
	Effluent produced from construction activities are subjected to WPCO control. Effluent produced from sites should be diverted away from stream courses. Construction works near stream course should be scheduled in the dry season as far as practical to avoid excessive site runoff discharge.	٨
	Under the <i>Water Pollution Control Ordinance</i> (WPCO), turbid water from construction sites must be treated to minimize the solids content before being discharged into storm drains. The suspended solids load can be reduced by directing the runoff into temporary sand traps or other silt-removal facilities, and other good and appropriate site management practices. Advice on the handling and disposal of construction site discharge is provided in the ProPECC Paper (PN 1/94) on Construction Site Drainage.	۸
	A drainage system layout should be prepared by the Contractor for each of the works areas (portals and intakes), detailing the facilities and measures to manage pollution arising from surface runoff from those works areas. The drainage layout and an associated drainage management plan to reduce surface runoff sediments and pollutants entering watercourses, should be submitted to the Engineer for approval and to EPD for agreement.	۸

Types of Impacts	Mitigation Measures	Status			
•	The system should be capable of handling stormwater from the site and directing it to sediment removal facilities before discharge. It oil and grease is used on the site or brought to the site, the stormwater should pass through oil interceptors before discharge. The interceptors should have a bypass to prevent washout in heavy storms.				
	A temporary channel system or earth bunds or sand barriers should be provided in works areas on site to direct stormwater to silt-removal facilities. Stockpiled materials, if susceptible to erosion of rain or wind, should be covered with tarpaulins (or/similar fabric0 or hydroseedings as far as practicable especially during the wet season.	۸			
	Silt removal facilities should be checked and the deposited silt and grit should be removed regularly to ensure these facilities are in good working condition and to prevent blockages.	٨			
	Vehicle washing areas should be drained into a settlement into a settlement basin to settle out the suspended solid before discharge to storm water drains. The water should be recycled on site whenever possible. It is suggested that the wash water from the wheel was basin is either reused for road watering or pumped to the on-site settling tanks for treatment. Water used for dust depression purpose should be minimized and an alternative soil holding agent should be considered.				
	B. Spillage, Oil and Solvents Any contractor generating waste oil or other chemicals as a result of his activities should register as a chemical waste producer and provide a safe storage area for chemicals on site. Oil interceptors need to be regularly inspected and cleaned to avoid wash-out of oil during storm conditions. A bypass should be provided to avoid overload of the interceptor's capacity.	٨			
	Any spillage should be cleaned up immediately and the resulting contaminated absorbent material should be properly managed according to Waste Disposal Regulations. Spills should be contained to avoid spreading and contaminating the water resources.	*			
	Oil and fuels should be used and stored properly in designated area. All fuel tanks and storage areas should be provided with locks and be sited on within sealed areas within surrounded by bunds of with a capacity equal to 110% of the storage capacity of the largest tank.	*			
	Good housekeeping practices are required to minimize careless spillage and keep the work space in a tidy and clean condition. Appropriate training, including safety codes and relevant manuals, should be given to the personnel who regularly handle the chemicals on site.	*			

Types of Impacts	Mitigation Measures	Status
	C. On-Site Effluent Generation Sewage arising from the additional population of workers on site should be collected in a suitable storage facility (chemical mobile toilets). Most of the work site locations are close to the public sewerage system, and therefore the use of septic tanks isare, therefore, not encouraged. Portable toilets should be used coupled with tickering away services provided by a licensed collector. They should be positioned at appropriate locations across the site to ensure no direct discharge of foul water off-site.	٨
	D. Protection of Existing Flora and Fauna	
	The Contractor should provide details of the plant and operation plans at each site for approval by the Engineer before commencing construction. The plans should include how the existing flora and fauna will be protected. Locations required for groundwater levels monitoring are Eastern Portal, PFLR1(P), THR2(P), TP5, TP789 and W12.	۸
	The construction and demolition of the temporary pier may create short term impacts on the local marine water quality. The situation will be restored once the work is finished by proper phasing of the works programme and implementation of the adequate mitigation measures (e.g. silt curtain) the impacts will be minimized.	
	Maintaining Baseflow in Downstream Watercourses	
	The final design will be developed during the detailed design stage. The exact base flow rates to be maintained at each of the intakes will be subject to detailed site investigation at design stage.	
	 Purpose of the by-pass device is to maintain the base-flow of the affected stream course. The by-pass system comprises an approach link and a trapezoidal channel. The approach link is section with inclined profiled surface at a gradient of 1 in 100. It is used to direct the base flow to the bypass trapezoidal channel at its down stream end during the normal days. The trapezoidal channel is sized such that it could handle the base flow in the affected stream course which is estimated to be no more than 20 l/s. Whenever the flow in the stream course exceeding the base flow rate, the excessive flow will overflow into the intake structure via the bottom rack structure. The bottom rack structure has bar screen on the top and inclined channel at the bottom. The top level of the bar screen is level with the by-pass channel with an aim to receive the overflow from the by-pass channel. The by-pass channel is designed requiring minimum maintenance. However, it is recommended that the maintenance authority carry out regular maintenance inspection prior to onset of seasons and after significant rainstorm event to prevent blockage of the by-pass and bottom rack structure. 	N/A N/A N/A N/A N/A

Types of Impacts	Mitigation Measures	Status
	<u>General</u>	
	A proper waste management plan should be implemented to promote waste minimisation at source. Where waste generation is unavoidable then the potential for recycling or reuse should be explored and opportunities taken. If wastes cannot be recycled then the recommended disposal routes should be followed.	*
	All waste materials shall be segregated into categories covering:	
	• Excavated material or construction waste suitable for reuse on-site	۸
	 Excavated material or construction waste suitable for public filling areas 	^
	 Remaining C&D waste for landfill 	^
	Chemical waste, and	^
	General refuse	Λ
Waste/Chemical	Proper segregation and disposal of construction waste should be implemented. Separate containers for inert and non-inert wastes should be provided. The inert waste should be taken to public filling area and the non-inert waste should be transported to strategic landfills.	۸
	A trip-ticket system on the solid waste transfer/disposal operations should be included as one of the contractual requirements (ETWB TCW No. 31/2004). The Independent Environmental Checker (IEC) should responsible for auditing this system.	۸
	IEC should also responsible for auditing the well-documented record system which includes: (i) quantity of waste generation, (ii) quantity of recycled material, (iii) quantity of disposed material, (iv) disposal methods and (v) sites should be implemented during construction phase.	۸
	Regular cleaning and maintenance of the waste storage area should be conducted throughout the construction stage.	٨
	Excavated spoil	
	Control measures for soil temporarily stockpiled on-site should be taken in order to minimize the noise, generation of dust, pollution of water and visual impact. Key impacts include:	^

Types of Impacts	Mitigation Measures	Status
	 Surface of stockpiled soil should be wetted with water when necessary especially during dry season 	٨
	Disturbance of stockpiled soil should be minimized	٨
	Stockpiled soil should be properly covered with tarpaulins especially heavy rain storms	٨
	Stockpiling areas should be enclosed if possible	٨
	 Stockpiling location should be away from the shoreline 	٨
	 An independent surface water drainage system equipped with silt traps should be installed at the stockpiling area 	٨
	<u>Chemical wastes</u>	
	For those processes that generate chemical waste, it may be possible to find alternatives which generate reduced quantities or even no chemical waste, or less dangerous types of chemical waste.	۸
	Construction processes produce chemical waste, the contractor must register with EPD as a Chemical Waste Producer. Wastes classified as chemical wastes are listed in the Waste Disposal (Chemical Waste) (General) Regulation (CWR). It should be handled in accordance with the Code of Practice on the Packaging, Handling and Storage of Chemical Waste published by the EPD. A producer of chemical wastes should be registered as chemical waste producer and registered with EPD.	۸
	The chemical waste generated shall be properly labelled, stored and disposed of according to the CWR. Proper storage area shall be allocated on site for storage of chemical waste. The chemical waste should only be collected by a licensed collector. An updated list of licensed chemical waste collector can be obtained from EPD.	*
	In case of spillage, spill absorbent material and emulsifiers should be available on site. This material should be replaced on a regular basis and the contaminated material stored in a designated, secure place.	*
	General refuse A reputable waste collector should be employed by the contractor to remove general refuse from the site, separate from C&DM and chemical wastes, and on regular basis in order to minimize odour, pest and litter impacts. The burning of refuse at site is not permitted under the Air Pollution Control Ordinance (Cap 311).	٨
	Office waste can be reduced through recycling of paper if volumes are large enough to warrant collection.	٨
	Good management practices should be implemented to ensure that refuse is properly stored and is transported for disposal of at licensed landfills.	۸

Remarks: ^

Types of Impacts	Mitigation Measures	Status
Terrestrial Ecology	 During the detailed design stage, the following issues should also be considered as possible to further minimise the impacts: Adjustment of site boundary to minimise temporary loss of natural stream habitat during construction. Adjustment of site boundary to minimise use of mixed woodland as temporary works area. In particular, the woodland habitat in temporary works area of the Eastern Portal will be avoided, thereby greatly reducing the area of temporary loss of woodland habitat. Minimizing felling of large trees. About 20% of trees within the works area will be transplanted. The individual of Artocarpus hypargyreus recorded within the temporary works area of HKU1, if to be encroached, would also be transplanted. Standard site practices including the following, should be enforced to minimise the disturbance to the surroundings: Treat any damage that may occur to large individual trees in the adjacent area using materials and methods appropriate for tree surgery. Reinstate work sites/disturbed areas immediately after completion of the construction works, in particular, through on-site tree/shrub planting along the woodland and shrubland section within the temporary works area. Tree/shrub species used should make reference from those in the surrounding area. Regularly check the work site boundaries to ensure that they are not exceeded and that no damage occurs to surrounding areas. A total of 1.02 ha would be replanted with woodland species, reaching almost a 1.5:1 ratio for compensatory planting. Tree/shrub species used should be based on those in the surrounding areas, including those which are commonly recorded during the baseline surveys. A low-flow channel would be provided within the channelised section to maintain a deeper water depth in the expanded channel, in particular during dry season as well as a basin at the end of the channelised section to provide living space for aquatic	^ ^ ^

Types of Impacts	Mitigation Measures	Status			
	Surveys of amphibians at E4(P), PFLR1(P), W12(P), MB16, E5(B)(P), TP789(P) and P5(P) prior to commencement of construction is recommended. Frogs, including Hong Kong Cascade Frog and Lesser Spiny Frog, and tadpoles found at work areas of these proposed intake points will be collected and translocated to nearby streams that will not be affected by the project. These procedures should be performed by experienced herpetologists. A detailed translocation proposal will be submitted during the detailed design stage.	٨			
	Measures should also be taken to avoid runoff to streams and marine habitats. Stream/channel which could potentially be affected during construction should be prevented from sedimentation by erection of sediment barriers. Site runoff should be desilted by siltation traps in streams/channels or diverted, to reduce the potential for suspended sediments, organics and other contaminants to enter the local stream environment.				
Marine Ecology	Silt curtains will be deployed during the construction and demolition of the temporary berthing point. Deployment of silt curtains around the berthing point area would effectively avoid adverse water quality impacts due to barge filling. No significant ecological impact is anticipated.	*			
	The invert of the stilling basin would be at -5.4 mPD. A cofferdam in the form of pipe-pile wall is to be constructed outside the stilling basin prior to the construction of basin. The cofferdam will be dewatered to provide a working area for construction of the stilling basin. The boulders from the seawall will then be removed by landbased grabs.	N/A			
	Although the speed of the working vessels to be used in the Project (mainly barges) would not be high, a speed limit for marine traffic is proposed as a precautionary measure. A speed limit of 10 knots should be strictly enforced in the works area, in particular in the waters between the outfall location and the navigation channel in East Lamma Channel.	۸			

Types of Impacts	Mitigation Measures	Status
Landscape and Visual	The proposed landscape and visual mitigation measures during the construction phase include: CM1 - Topsoil, where identified, should be stripped and stored for re-use in the construction of the soft landscape works, where practical. CM2 - Existing trees to be retained on site should be carefully protected during construction. The detailed proposal for any trees felling and transplantation is subject to Lands Department's approval on tree felling application at the detailed design stage. CM3 - Trees unavoidably affected by the works should be transplanted where practical. CM4 - Compensatory tree planting should be provided to compensate for felled trees. CM5 - The extent of disturbance on the existing stream course should be minimized. Any temporary works areas within the stream course shall be reinstated after construction. CM7 - Control of night-time lighting CM8 - Erection of decorative screen hoarding	^ ^ ^

Types of Impacts	Mitigation Measures	Status
	The Cultural Heritage Impact Assessment has identified the following resources which will require mitigation measures during the construction stage;	
	Haw Par Mansion (including boundary wall and gate) A condition survey must be undertaken by a qualified professional prior to the commencement of construction works for the tunnel portal in order to assess the structural integrity of the mansion, wall and gate (with special attention paid to any fragile architectural features). A report containing description of the types of construction, identification of fragile elements, an appraisal of the condition and a photographic record must be prepared. The report must also provide an assessment indicating whether further precautionary measures will be necessary during the construction phase, and if so provide details for sufficient protective measures, including monitoring for vibration control to ensure that no damage to the structure and fabric of the house, wall and gate results from the construction works. The report must be submitted to AMO for approval before construction activities commence. Upon approval the appropriate monitoring and precautionary measures shall be put into place.	۸
Cultural Heritage	A buffer zone with a minimum width of 3 metres and an obstruction free access point must be maintained between the boundary wall/gate and the temporary works area (during construction works associated for both the tunnel portal and the permanent vehicle access ramp). This is to enable access for routine maintenance works on the wall and to ensure that the wall is not damaged by machinery operation or related construction activities. The temporary works area will be enclosed by standard DSD site hoarding.	۸
	Former Explosive Magazine of Victoria Barracks	
	A condition survey must be undertaken by a qualified professional prior to the commencement of construction works in order to assess the structural integrity of the retaining wall and the extent of damage from cracks and vegetation growth. A report containing a description of the wall's construction materials, identification of fragile and/or endangered elements, an appraisal of the condition and a photographic record of the retaining wall must be prepared. The report must also provide an assessment indicating whether further precautionary measures will be necessary during the construction phase, and if so provide details for sufficient protective measures, such as monitoring for vibration control, to ensure that no damage to the retaining wall results from the construction works. The report must be submitted to AMO for approval before construction activities commence. Upon approval the appropriate monitoring and precautionary measures shall be put into place.	۸
	A buffer zone with a minimum width of 3 metres and an obstruction free access point must be maintained between the retaining wall and the temporary works area (for the duration of the construction phase). The works area will be enclosed by standard DSD site hoarding.	٨

Types of Impacts	Mitigation Measures	Status
Fisheries	Silt curtain will be deployed during the construction and demolition of the temporary berthing point. With the deployment of silt curtains around the berthing point area, adverse water quality impact associated with the filling would not be anticipated. No significant fisheries impact is anticipated.	۸
	The invert of stilling basin will be found at -5.4 mPD. A cofferdam in the form of pipe-pipe wall is to be constructed outside the stilling basin prior to the construction of basin. The cofferdam will be dewatered to provide a working space for the construction of stilling basin. The boulders from the seawall will then be removed by landbased grabs.	N/A
Hazard to Life	There will be no overnight storage of explosives for this project. Transportation of explosives to site for the construction of adit will be undertaken on a daily basis. The contractor is required to destroy any unused explosives before nightfall. If contractor wishes to set up magazines for overnight storage of explosives, it is necessary to carry out risk assessment and seek the relevant approval following the EIAO process.	٨

APPENDIX M EVENT ACTION PLANS

Appendix M - Event Action Plans

Event/Action Plan for Air Quality

	ACTION			
EVENT	ET	IEC	SUPERVISING OFFICER'S REPRESENTATIVE	CONTRACTOR
ACTION LEVEL				
1.Exceedance for one sample	 Identify the source and investigate the causes and propose remedial measures Inform Supervising Officer's Representative & IEC Repeat measurement to confirm finding Increase monitoring frequency to daily 	Check monitoring data submitted by ET Check Contractor's working methods	1.Notify Contractor	1.Rectify any unacceptable practice 2.Amend working methods if appropriate
2.Exceedance for two or more consecutive samples	1. Identify the source 2. Inform Supervising Officer's Representative & IEC 3. Repeat measurements to confirm findings 4. Increase monitoring frequency to daily 5. Discuss with Supervising Officer's Representative & IEC for remedial actions required 6. If exceedance continues, arrange meeting with Supervising Officer's Representative & IEC 7. If exceedance stops, cease additional monitoring	1. Checking monitoring data submitted by ET 2. Check Contractor's working methods 3. Discuss with ET, IEC and Contractor on proposed remedial actions 4. Advise the Supervising Officer's Representative & ET on the effectiveness of the proposed remedial measures 5. Supervise the implementation of the remedial measures	1.Confirm receipt of notification of failure in writing 2.Notify Contractor 3.Ensure remedial actions properly implemented	1.Submit proposals for remedial actions to Supervising Officer's Representative within 3 working days of notification 2.Implement the agreed proposals 3.Amend proposal if appropriate
LIMIT LEVEL				
1.Exceedance for one sample	I. Identify source, investigate the causes and propose remedial measures Inform Supervising Officer's Representative & IEC and EPD Repeat measurement to confirm finding Increase monitoring frequency to daily Assess effectiveness of Contractor's remedial actions and keep EPD and Supervising Officer's Representative & IEC informed of the results	 Check monitoring data submitted by ET Check Contractor's working methods Discuss with ET and Contractor on proposed remedial actions Advise the Supervising Officer's Representative on the effectiveness of the proposed remedial measures Supervise the implementation of the remedial measures 	1.Confirm receipt of notification of failure in writing 2.Notify Contractor 3.Ensure remedial actions properly implemented	1.Take immediate action to avoid further exceedance 2.Submit proposals for remedial actions to Supervising Officer's Representative within 3 working days of notification 3.Implement the agreed proposals 4.Amend proposal if appropriate
2.Exceedance for two or more consecutive samples	I. Identify source Inform Supervising Officer's Representative, IEC and EPD the causes & actions taken for the exceedances Repeat measurement to confirm findings	1.Discuss amongst Supervising Officer's Representative, ET and Contractor on the potential remedial actions 2.Review Contractor's remedial actions to assure their effectiveness and advise the	1.Confirm receipt of notification of failure in writing 2.Notify Contractor 3.In consultation with the IEC, agree with the Contractor on the remedial measures to be	Take immediate action to avoid further exceedance Submit proposals for remedial actions to Supervising Officer's Representative within 3 working

	ACTION			
EVENT	ET	IEC	SUPERVISING OFFICER'S	CONTRACTOR
			REPRESENTATIVE	
ACTION LEVEL				
	4. Increase monitoring frequency to daily 5. Investigate the causes of exceedance 6. Arrange meeting with & IEC and Supervising Officer's Representative to discuss the remedial actions to be taken 7. Assess effectiveness of Contractor's remedial actions and keep ER, IEC and EPD informed of the results 8. If exceedance stops, cease additional monitoring	Supervising Officer's Representative accordingly 3. Supervise the implementation of the remedial measures	implemented 4.Ensure remedial measure are properly implemented 5.If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated	days of notification 3. Implement the agreed proposals 4. Resubmit proposals if problem still not under control 5. Stop the relevant portion of works as determined by the ER until the exceedance is abated

Event/Action Plan for Construction Noise

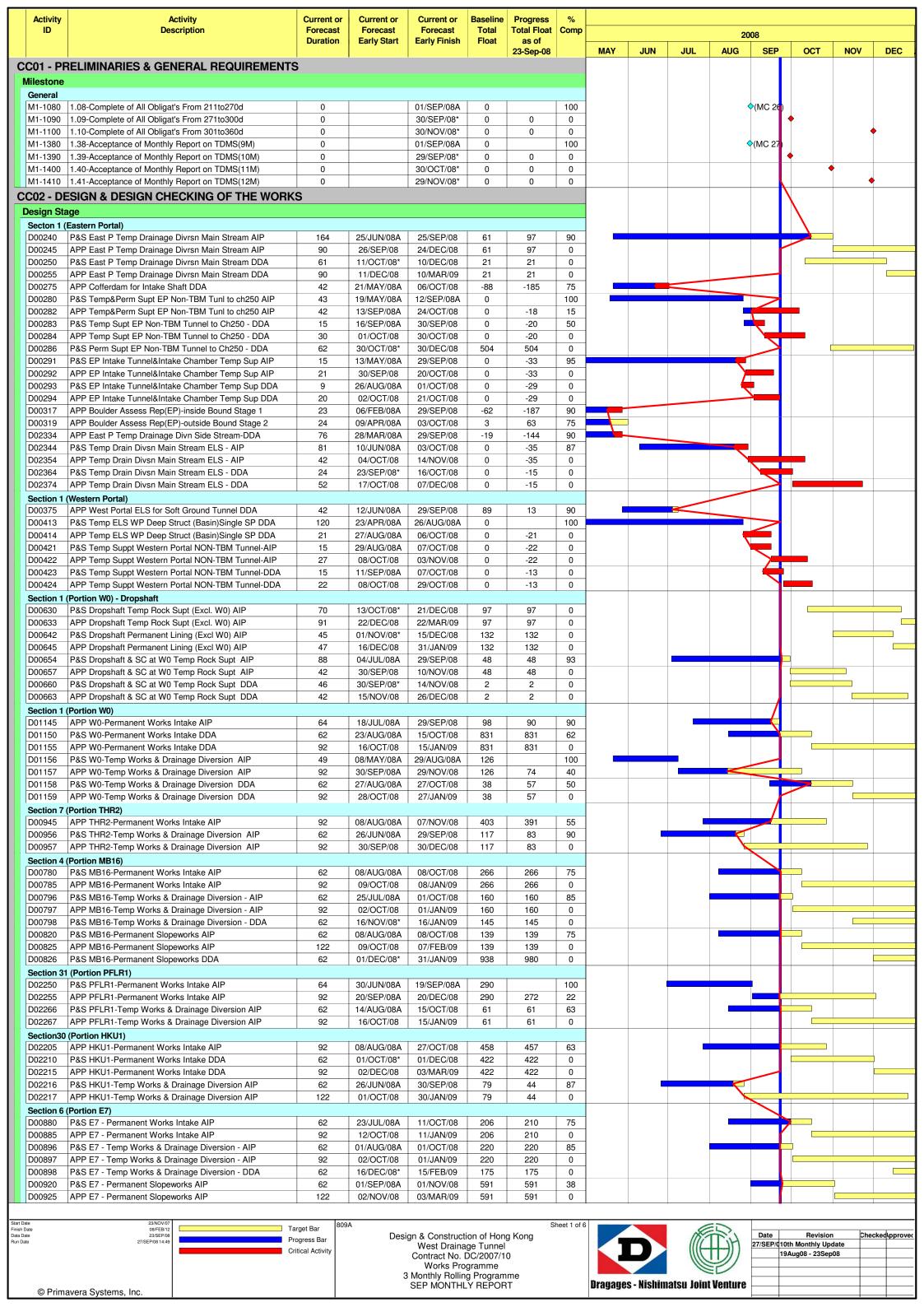
EVENT				
	ET	IEC	SUPERVISING OFFICER'S REPRESENTATIVE	Contractor
Action Level	 Notify IEC, Supervising Officer's Representative and Contractor carry our investigation by reviewing all the relevant monitoring data and the corresponding construction activities. Exceedances should also be confirmed by immediate verification in the field as far as practical. Report the results of investigation to the IEC, Supervising Officer's Representative and Contractor Discuss with the Contractor and formulate remedial measures increase monitoring frequency to check mitigation effectiveness 	1.Review the analysed results submitted by the ET 2. Review the proposed remedial measures by the Contractor and advise the Supervising Officer's Representative & ET accordingly 3.Supervise the implementation of remedial measures	Confirm receipt of notification of complaint in writing Notify Contractor require Contractor to proposed remedial measures for analyzed noise problem Ensure remedial measures are properly implemented	I. Identify practicable measures to minimize the noise impact. Submit noise mitigation proposals to ET, IEC and ET. Implement noise mitigation proposals
Limit Level	 Notify IEC, Supervising Officer's Representative, EPD and Contractor Identify the source(s) of impact by reviewing all the relevant monitoring data and the corresponding construction activities. Exceedances should also be confirmed by immediate verification in the field as far as practical. Repeat measurement to confirm findings Increase monitoring frequency Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented. inform IEC, Supervising Officer's Representative and EPD the cause & actions taken for the exceedances Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and Supervising Officer's Representative informed of the results If exceedance stops, cease additional monitoring. 	Discuss amongst Supervising Officer's Representative, ET, and Contractor on the potential remedial actions Review Contractor's remedial actions to assure their effectiveness and advise the Supervising Officer's Representative &ET accordingly Supervise the implementation of the remedial measures	Confirm receipt of notification of exceedance in writing Notify Contractor Require Contractor to propose remedial measures for the analyzed noise problem Ensure remedial measures are properly implemented If exceedance continuous, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is aborted	Take immediate action to avoid further exceedance Identify practicable measures to minimize the noise impact. Submit proposals for remedial actions to Supervising Officer's Representative within three working days of notification Implement the agreed proposals Resubmit proposal if problem still not under control Stop the relevant portion of works as determined by the Supervising Officer's Representative until the exceedance is abated

Event/Action Plan for Water Quality

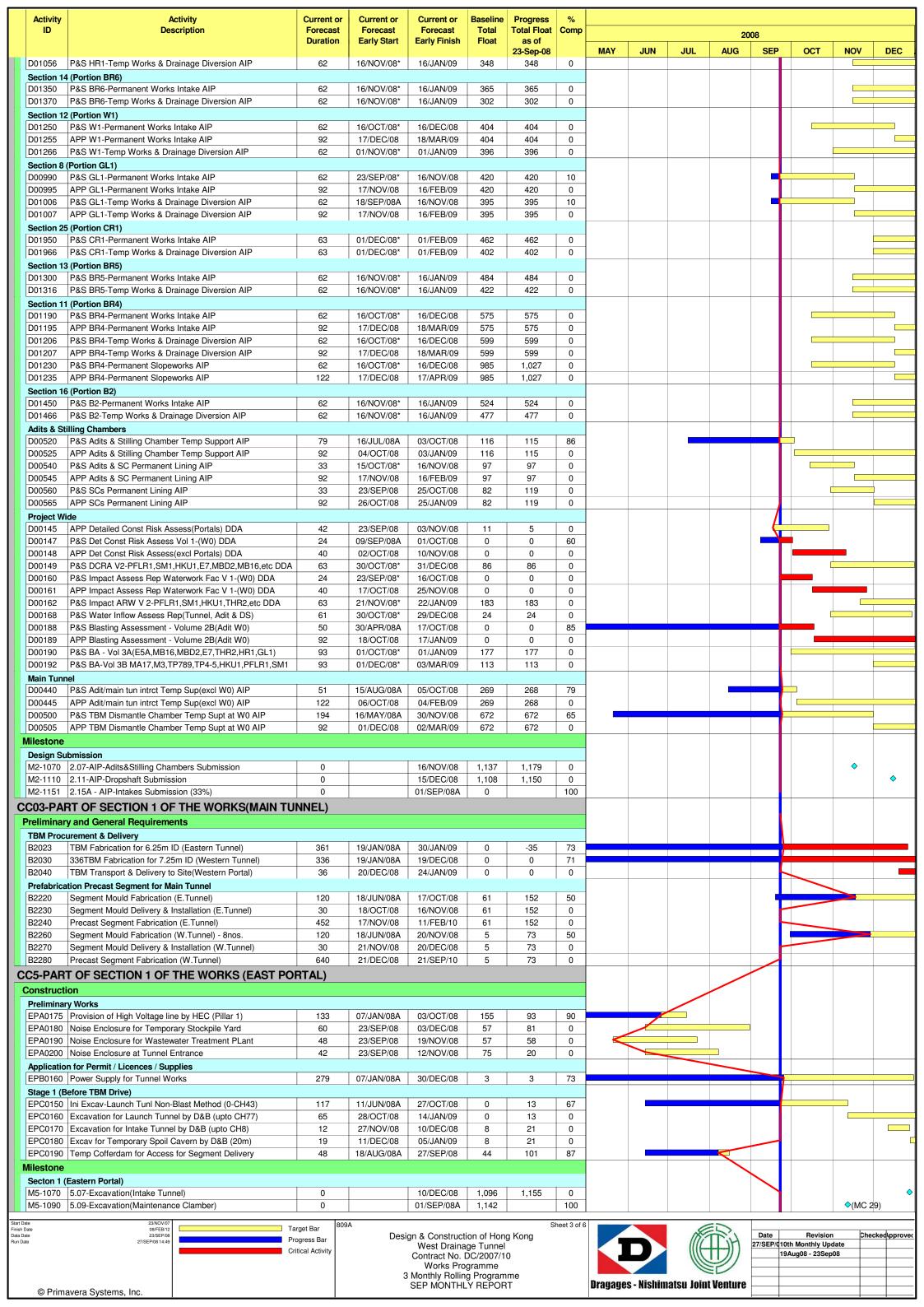
	ACTION									
EVENT	ET	IEC	SUPERVISING OFFICER'S REPRESENTATIVE	CONTRACTOR						
ACTION LEVEL										
Action level being exceeded by one sampling day	Repeat in situ measurement to confirm findings; Identify source(s) of impact; Inform IEC, contractor and Supervising Officer's Representative; Check monitoring data, all plant, equipment and Contractor's working methods. Discuss mitigation measures with IEC and Contractor Repeat measurement on next day of exceedance.	Discuss with ET and Contractor on the mitigation measures. Review proposals on mitigation measures submitted by Contractor and advise the Supervising Officer's Representative accordingly; and Assess the effectiveness of the implemented mitigation measures.	Discuss with IEC on the proposed mitigation measures; and Make agreement on the mitigation measures to be implemented.	I. Inform the Supervising Officer's Representative and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and Supervising Officer's Representative; Implement the agreed mitigation measures.						
Action level being exceeded by more than one consecutive sampling days	1. Repeat in-situ measurement to confirm findings; 2. Identify source(s) of impact; 3. Inform IEC, contractor; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC, Supervising Officer's Representative and Contractor; 6. Ensure mitigation measures are implemented; 7. Prepare to increase the monitoring frequency to daily; 8. Repeat measurement on next day of exceedance.	Discuss with ET and Contractor on the mitigation measures. Review proposals on mitigation measures submitted by Contractor and advise the Supervising Officer's Representative accordingly; and Assess the effectiveness of the implemented mitigation measures.	Discuss with IEC on the proposed mitigation measures; and Make agreement on the mitigation measures to be implemented. Assess the effectiveness of the implemented mitigation measures.	I. Inform the Supervising Officer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and Supervising Officer's Representative within 3 working days; Implement the agreed mitigation measures.						
LIMIT LEVEL										
Limit level being exceeded by one sampling day	Repeat measurement on next of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, contractor, Supervising Officer's Representative and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, Supervising Officer's Representative and Contractor.	Check monitoring data submitted by ET and Contractor's working methods. Discuss with ET and Contractor on possible mitigation measures; Review the proposed mitigation measures submitted by Contractor and advise the Supervising Officer's Representative accordingly;	Confirm receipt of notification of failure in writing Discuss with IEC, ET and Contractor on the proposed mitigation. Request Contractor to view the working methods. Ensure mitigation measures are properly implemented.	Inform the Supervising Officer's Representative and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Discuss with ET, IEC and Supervising Officer's Representative and propose mitigation measures to Supervising Officer's Representative and IEC within 3 working days;						

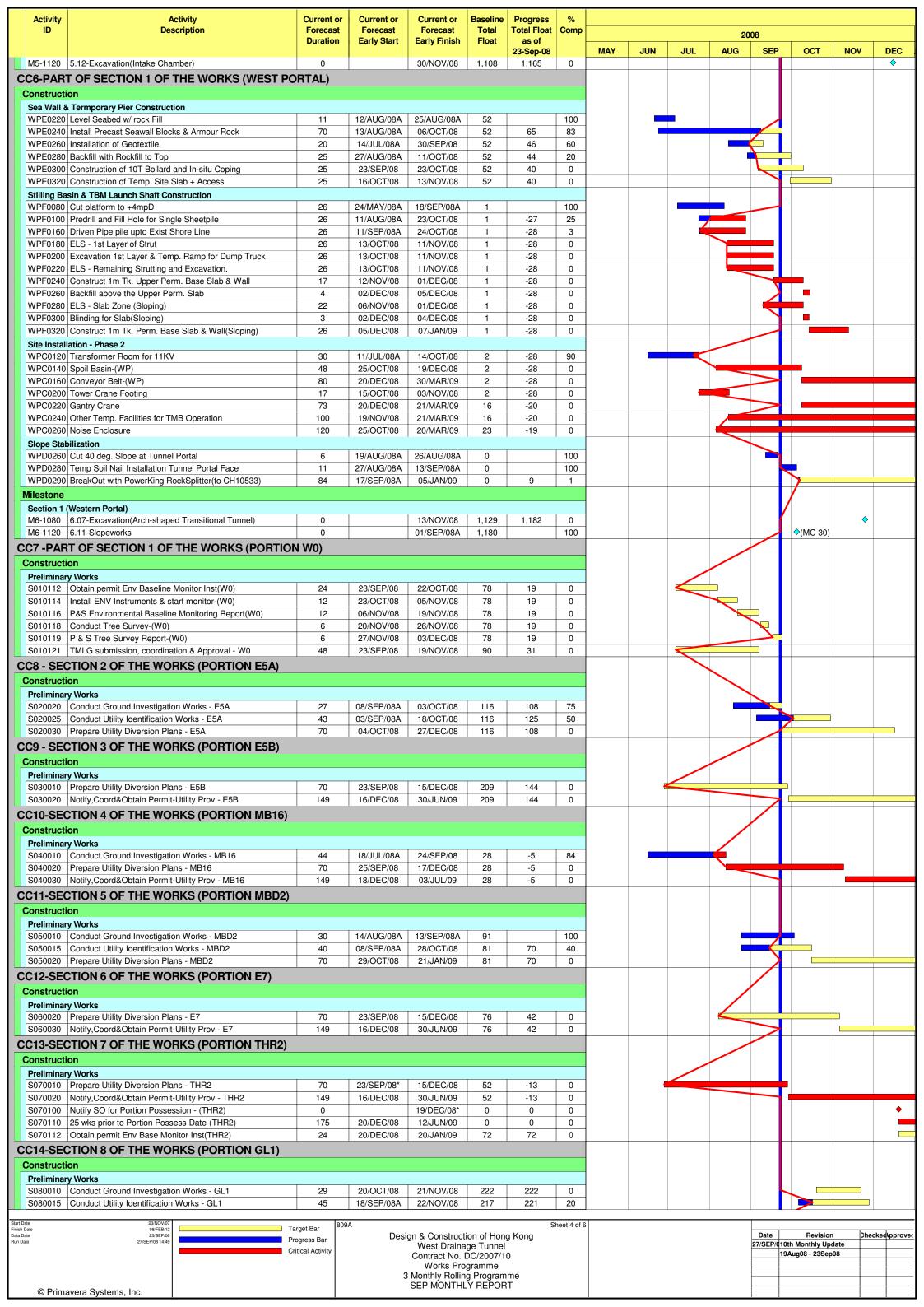
	ACTION								
EVENT	ET	IEC	SUPERVISING OFFICER'S REPRESENTATIVE	CONTRACTOR					
				5. Implement the agreed mitigation measures.					
Limit level being exceeded by more than one consecutive sampling days	1. Repeat measurement on next of exceedance to confirm findings; 2. Identify source(s) of impact; 3. Inform IEC, contractor, Supervising Officer's Representative and EPD; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC, Supervising Officer's Representative and Contractor; 6. Ensure mitigation measures are implemented; 7. Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days.	Check monitoring data submitted by ET and Contractor's working methods. Discuss with ET and Contractor on possible mitigation measures; Review the proposed mitigation measures submitted by Contractor and advise the Supervising Officer's Representative accordingly; Supervise the implementation of mitigation measures.	Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Ensure mitigation measures are properly implemented; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit level	1. Take immediate action to avoid further exceedance 2. Discuss with ET, IEC and Supervising Officer's Representative and propose mitigation measures to Supervising Officer's Representative and IEC within 3 working days; 3. Implement the agreed mitigation measures; 4. Resubmit proposals of mitigation measures if problem still not under control; 5. As directed by the Supervising Officer, to slow down or to stop all or part of the construction activities until no exceedance of Limit level.					

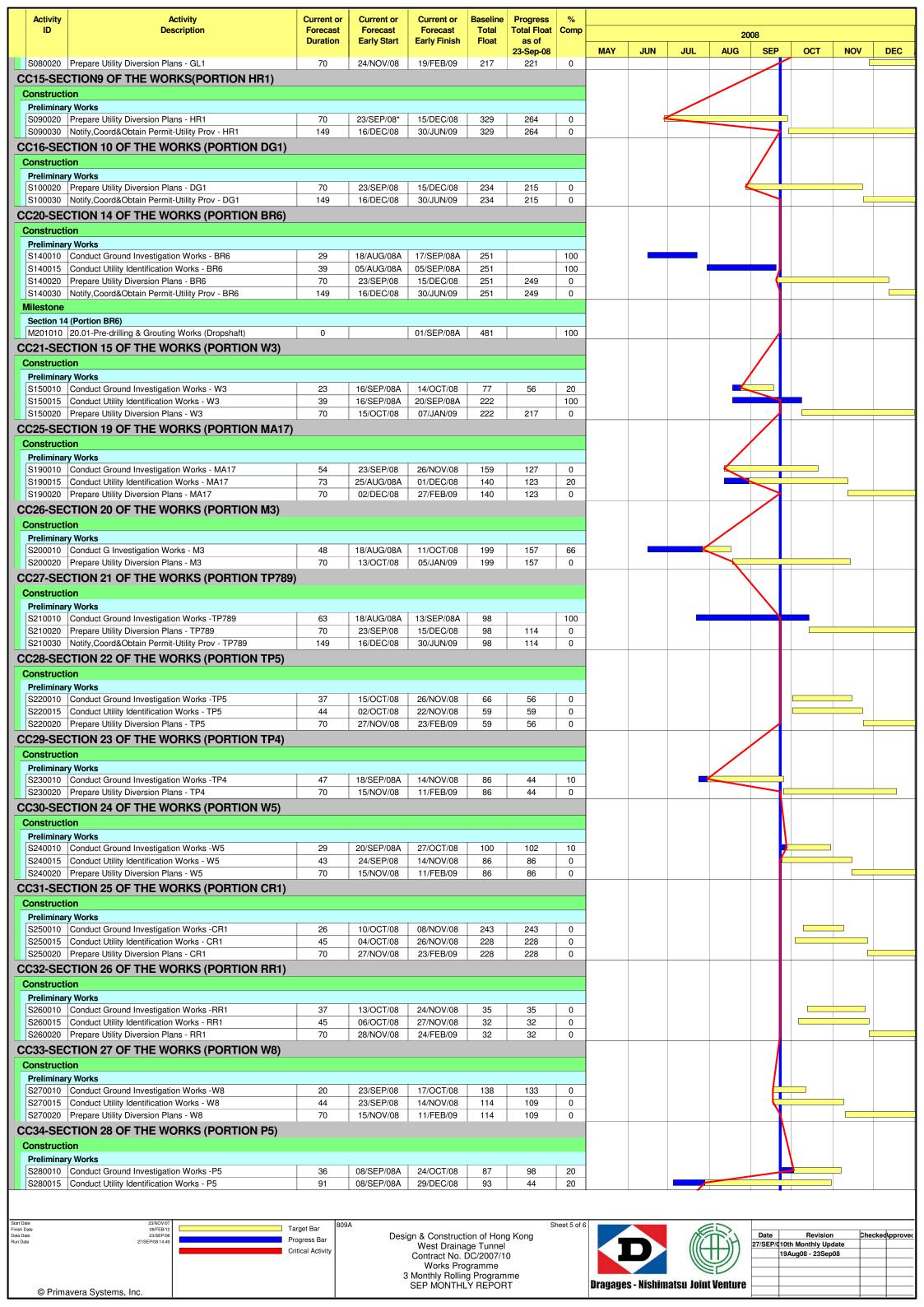
APPENDIX N COMPLAINT LOG

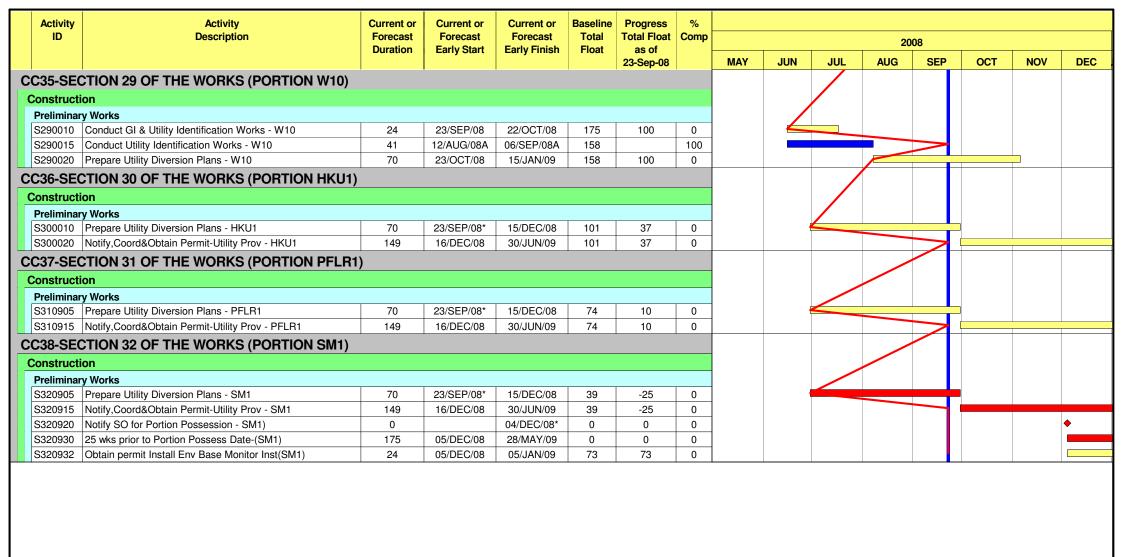

APPENDIX N – COMPLAINT LOG

Log Ref.	Location	Received Date	Details of Complaint	Investigation/Mitigation Action	Status
Com-2008-05-003	Construction site at Eastern Portal	22 May 2008	The complaint was lodged by Ms. Ng on 22 May 2008 regarding noise nuisance generated from the construction activities at the construction site of Eastern Portal	According to the Contractor, only one excavator and one generator were operated for the excavation works around 8 am on 22 May 2008 at the Eastern portal. No other construction activities were conducted. In response to the complaint, The Contractor agreed to reschedule their current works activities, with immediate effect from 23 May 2008, that only site preparation works without noise nuisance to the nearby residents will be carried out from 7:00 am to 8:00 am at the Eastern Portal area. Base on the information collected and the monitoring results, the complaint was considered not justifiable since (1) no exceedance of the noise monitoring results was recorded in May and (2) no non-compliance or observation on noise was recorded.	Closed
Com-2008-05-004	Construction site at Western Portal (Marine Works)	31 May 2008	The complaint was lodged by one of the local resident on 31 May 2008 regarding the noise nuisance generated from the marine works at Western Portal.	According to the Contractor, only two derrick barges and one tug boat were operated for the seabed formation works around 18:00 hrs on 31 May 2008 at the Western Portal. No other construction activities were conducted. Base on the information collected and the monitoring results, the complaint was considered not justifiable since (1) no exceedance of the	Closed


MA8001\App N - complaint N-1 Cinotech


Log Ref.	Location	Received Date	Details of Complaint	Investigation/Mitigation Action	Status
				noise monitoring results was recorded in May and (2) no non-compliance or observation on noise was recorded.	
Com-2008-07-007	Construction site at Eastern Portal	2 July 2008	The complaint was lodged by a resident of The Legend on 2 July 2008 regarding noise nuisance generated from the construction activities at the construction site of Eastern Portal	According to the Contractor, only one generator and one drilling rig (Jumbo) were operated for the preparation works around 7:30a.m on 2 July 2008 at the Eastern portal. Construction noise was found from other construction site (Gammon Construction Limitied) adjacent to Eastern Portal area. In response to the complaint, The Contractor review his forthcoming operations within the Eastern Portal site as previous they agreed, reschedule their current works activities, with immediate effect from 23 May 2008, that only site preparation works without noise nuisance to the nearby residents will be carried out from 7:00 am to 8:00 am at the Eastern Portal area. Additional noise monitoring was conducted on 16 and 17 July 2008 during the drilling rig (Jumbo), excavator and wheel loader were operated for drilling works. Base on the information collected and the monitoring results, the complaint was considered not justifiable since (1) no exceedance of the noise monitoring results was recorded in June	Closed
				and July 2008 and additional noise monitoring (2) no non-compliance or observation on noise was recorded.	


APPENDIX O CONSTRUCTION PROGRAMME



Activity	Activity Current or Current or Current or Baseline Progress %														
ID	Description	Forecast Duration		Forecast Early Finish	Total Float	Total Float as of	'	MAY	JUN	2008				NOV	DEC
	(Portion W10)					23-Sep-08		WAT	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
	P&S W10-Permanent Works Intake AIP APP W10-Permanent Works Intake AIP	62 92	23/AUG/08A 16/OCT/08	15/OCT/08 15/JAN/09	430 430	430 430	62 0								
D02166	P&S W10-Temp Works & Drainage Diversion AIP	62	01/OCT/08*	01/DEC/08	75	75	0								
	APP W10-Temp Works & Drainage Diversion AIP (Portion SM1)	122	02/DEC/08	02/APR/09	75	75	0								
D02300 I	P&S SM1-Permanent Works Intake AIP	62	30/JUN/08A	19/SEP/08A	270		100								
	APP SM1-Permanent Works Intake AIP P&S SM1-Permanent Works Intake DDA	92 63	20/SEP/08A 01/NOV/08*	20/DEC/08 02/JAN/09	270 237	250 237	10								
	P&S SM1-Temp Works & Drainage Diversion AIP	62	25/JUL/08A	01/OCT/08	238	238	85								
	APP SM1-Temp Works & Drainage Diversion AIP P&S SM1-Temp Works & Drainage Diversion DDA	92 62	02/OCT/08 22/DEC/08*	01/JAN/09 21/FEB/09	238 187	238 187	0								
1	(Portion RR1)	02	22/DLO/00	21/1 LD/09	107	107									
	P&S RR1-Permanent Works Intake AIP	62	01/OCT/08*	01/DEC/08	644	644	0								
	APP RR1-Permanent Works Intake AIP P&S RR1-Temp Works & Drainage Diversion AIP	92 62	02/DEC/08 01/NOV/08*	03/MAR/09 01/JAN/09	644 112	644 112	0								
	Portion MBD2)														
	P&S MBD2-Permanent Works Intake AIP APP MBD2-Permanent Works Intake AIP	62 92	01/OCT/08* 02/DEC/08	01/DEC/08 03/MAR/09	274 274	274 274	0								
D00850 I	P&S MBD2-Temp Works & Drainage Diversion AIP	62	16/OCT/08*	16/DEC/08	166	166	0								
	APP MBD2-Temp Works & Drainage Diversion AIP (Portion TP4)	92	17/DEC/08	18/MAR/09	166	166	0								
	P&S TP4-Permanent Works Intake AIP	62	16/AUG/08A	15/OCT/08	358	359	60								
	APP TP4-Permanent Works Intake AIP	92 62	16/OCT/08	15/JAN/09 01/NOV/08	358	359	0								
	P&S TP4-Temp Works & Drainage Diversion AIP APP TP4-Temp Works & Drainage Diversion AIP	92	04/SEP/08A 02/NOV/08	01/NOV/08 01/FEB/09	190 190	190 190	38								
D01880 I	P&S TP4-Permanent Slopeworks AIP	62	30/AUG/08A	27/OCT/08	130	135	50								
	APP TP4-Permanent Slopeworks AIP (Portion P5)	122	28/OCT/08	26/FEB/09	130	135	0								
D02100	P&S P5-Permanent Works Intake AIP	62	03/SEP/08A	01/NOV/08	323	323	35								
	APP P5-Permanent Works Intake AIP P&S P5-Temp Works & Drainage Diversion AIP	92 62	02/NOV/08 16/SEP/08A	01/FEB/09 16/NOV/08	323 248	323 248	10								
	APP P5-Temp Works & Drainage Diversion AIP	122	17/NOV/08	18/MAR/09	248	248	0								
	(Portion TP5) P&S TP5-Permanent Works Intake AIP	62	04/SEP/08A	01/NOV/08	426	426	35								
	APP TP5-Permanent Works Intake AIP	92	02/NOV/08	01/NOV/08 01/FEB/09	426	426	0								
	P&S TP5-Temp Works & Drainage Diversion AIP	62 92	23/SEP/08*	23/NOV/08	206	203	0					\ \ \			
	APP TP5-Temp Works & Drainage Diversion AIP (Portion TP789)	92	24/NOV/08	23/FEB/09	206	203	0								
-	P&S TP789-Permanent Works Intake AIP	62	16/SEP/08A	16/NOV/08	295	310	15								
	APP TP789-Permanent Works Intake AIP P&S TP789-Temp Works & Drainage Diversion AIP	92 62	17/NOV/08 04/SEP/08A	16/FEB/09 01/NOV/08	295 325	310 325	35								
D01747	APP TP789-Temp Works & Drainage Diversion AIP	92	02/NOV/08	01/FEB/09	325	325	0								
	(Portion W5) P&S W5-Permanent Works Intake AIP	62	16/OCT/08*	16/DEC/08	496	496	0								
D01905	APP W5-Permanent Works Intake AIP	92	17/DEC/08	18/MAR/09	496	496	0								
	P&S W5-Temp Works & Drainage Diversion AIP	63	01/NOV/08*	02/JAN/09	221	221	0								
	Portion E5A) P&S E5A-Permanent Works Intake AIP	62	19/SEP/08A	16/NOV/08	370	370	10								
	APP E5A-Permanent Works Intake AIP	92	17/NOV/08	16/FEB/09	370	370	0								
	P&S E5A-Temp Works & Drainage Diversion AIP APP E5A-Temp Works & Drainage Diversion AIP	62 92	16/SEP/08A 17/NOV/08	16/NOV/08 16/FEB/09	243 243	243 243	10								
Section 27	(Portion W8)														
 	P&S W8-Permanent Works Intake AIP APP W8-Permanent Works Intake AIP	62 92	01/OCT/08* 02/DEC/08	01/DEC/08 03/MAR/09	605 605	605 605	0								
-	P&S W8-Temp Works & Drainage Diversion AIP	62	01/NOV/08*	03/MAN/09	226	226	0								
	Portion E5B) P&S E5B-Permanent Works Intake AIP	62	01/SEP/08A	23/OCT/08	427	436	50								
	APP E5B-Permanent Works Intake AIP	92	24/OCT/08	23/JAN/09	427	436	0								
	P&S E5B-Temp Works & Drainage Diversion AIP APP E5B-Temp Works & Drainage Diversion AIP	62 92	09/SEP/08A 06/NOV/08	05/NOV/08 05/FEB/09	334 334	334 334	27 0								
1	(Portion M3)	92	00/1907/08	∪5/Γ⊏Β/09	J 334) 334	U								
D01670 I	P&S M3-Permanent Works Intake AIP	62	01/OCT/08*	01/DEC/08	306	306	0								
	APP M3-Permanent Works Intake AIP P&S M3-Temp Works & Drainage Diversion AIP	92 62	02/DEC/08 01/OCT/08*	03/MAR/09 01/DEC/08	306 306	306 306	0								
D01687	APP M3-Temp Works & Drainage Diversion AIP	92	02/DEC/08	03/MAR/09	306	306	0								
	P&S M3-Permanent Slopeworks AIP APP M3-Permanent Slopeworks AIP	62 122	01/OCT/08* 02/DEC/08	01/DEC/08 02/APR/09	246 246	246 246	0								
Section 19	(Portion MA17)			1											
-	P&S MA17-Permanent Works Intake AIP APP MA17-Permanent Works Intake AIP	62 92	16/OCT/08* 17/DEC/08	16/DEC/08 18/MAR/09	252 252	252 252	0								
	P&S MA17-Temp Works & Drainage Diversion AIP	63	01/NOV/08*	02/JAN/09	235	235	0								
	P&S MA17-Permanent Slopeworks AIP	62	01/OCT/08*	01/DEC/08	269	269	0								
	APP MA17-Permanent Slopeworks AIP (Portion W3)	122	UZ/DEC/08	02/APR/09	269	269	U								
D01400 I	P&S W3-Permanent Works Intake AIP	62	01/NOV/08*	01/JAN/09	472	472	0								
	P&S W3-Temp Works & Drainage Diversion AIP (Portion MA14)	62	01/NOV/08*	01/JAN/09	534	534	0								
D01500 I	P&S MA14-Permanent Works Intake AIP	62	01/NOV/08*	01/JAN/09	413	413	0								<u></u>
	P&S MA14-Temp Works & Drainage Diversion AIP P&S MA14-Permanent Slopeworks AIP	62 62	01/NOV/08* 01/NOV/08*	01/JAN/09 01/JAN/09	344 323	344 323	0								
Section 18	(Portion MA15)		01/140 V/00	01/0/N(N/US	020	J 525									
	P&S MA15-Permanent Works Intake AIP P&S MA15-Temp Works & Drainage Diversion AIP	62	01/NOV/08*	01/JAN/09	402	402 286	0								
	P&S MA15-Temp Works & Drainage Diversion AIP (Portion DG1)	62	01/NOV/08*	01/JAN/09	286	286	0								
D01090 I	P&S DG1-Permanent Works Intake AIP	62	16/OCT/08*	16/DEC/08	350	350	0								
	APP DG1-Permanent Works Intake AIP P&S DG1-Temp Works & Drainage Diversion AIP	92 62	17/DEC/08 16/OCT/08*	18/MAR/09 16/DEC/08	350 319	350 319	0								
D01107	APP DG1-Temp Works & Drainage Diversion AIP	92	17/DEC/08	18/MAR/09	319	319	0								-
	Portion HR1) P&S HR1-Permanent Works Intake AIP	62	19/SEP/08A	16/NOV/08	607	607	10								
	APP HR1-Permanent Works Intake AIP	92	19/SEP/08A 17/NOV/08	16/NOV/08 16/FEB/09	607	607	0								
late Date	23/NOV/07 08/FEB/12	arget Bar 809	9A	_		S	heet 2 of 6								
Date ate ste	23/SEP/08 27/SEP/08 14:49	rogress Bar		gn & Construct West Draina								Date 27/SEP/0	Revision 10th Monthly Up	n Che	cked\pprove
	Cr	ritical Activity	West Drainage Tunnel Contract No. DC/2007/10 Works Programme										19Aug08 - 23Sep		
			3	Monthly Rollin	g Progran	nme									
© Prima	vera Systems, Inc.			SEP MONTHL	Y KEPOF	ন ।									

Target Bar

Progress Bar

Critical Activity

Sheet 6 of 6

APPENDIX P WASTE GENERATED QUANTITY

Monthly Waste Flow Table

		Actual Q	uantities of Ine	ert C&D Mater	ials Generated	Actual Quantities of C&D Wastes Generated Monthly					
Quarter ending	Total Quantity Generated	Broken Concrete (see Note 3)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see notes 2)	Chemical Waste	Others, e.g. general refuse
	(in ' 000 m ³)	(in ' 000 m ³)	(in ' 000 m ³)	(in ' 000 m ³)	(in'000 m ³)	(in'000 m ³)	(in ' 000 m ³)	(in ' 000 m ³)	(in ' 000 m ³)	(in '000 m ³)	(in ' 000 m ³)
Feb-08											40 m ³
Mar-08					6 m ³						84 m ³
Apr-08					34 m3						$34 \mathrm{m}^3$
May-08					566 m3			2 m3			39 m3
Jun-08					486 m3	30 m3				0.4 m3	6 m3
Jul-08					1311 m3	3004 m3				0.2 m3	45 m3
Aug-08			1100 m3		904 m3	2404 m3		2 m3		0.2 m3	34 m3
Sep-08			1620 m3		64 m3	11504 m3					11 m3
Oct-08											
Nov-08											
Dec-08											
Total	0	0	2720 m3	0	3371 m ³	16942 m3	0	4 m3	0	0.8 m3	293 m ³

Notes:

- (1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
- (2) Plastics refer to plastic bottles/containers, plastic/foam from packaging material.
- (3) Broken concrete for recycling into aggregates.
- (4) The Figures for September 2008 are as of 30-09-08.