Monthly Environmental Monitoring & Auditing Report for

Drainage Diversion Works for the Comprehensive Residential Development at Various Lots in DD227 & DD229, Tai Po Tsai, Sai Kung

November 2012

Environmental Pioneers & Solutions Limited

Flat A, 19/F, Chaiwan Industrial Building, 20 Lee Chung Street, Chai Wan, Hong Kong

Tel: 2556 9172 Fax: 2856 2010

Date: 17-12-12

Date: 17 Dec 2012

APPROVAL SHEET

The Contents of this report have been

Certified by:

Signature:

ETL (Environmental Pioneers & Solution Limited)

Ms. Goldie Fung

(Environmental Team Leader)

and Verified by:

IEC (ENVIRON Hong Kong Limited)

Mr. Tony Cheng

(IEC)

P.ii

TABLE OF CONTENT

1	Intr	oduction	1
2	Proj	ject Information	1
3	Proj	ject Organization	2
	3.1	Key personal contact information chart	2
4	Con	struction Stage	3
	4.1	Construction Activities in Reporting Period	3
	4.2	Construction Activities for Coming Months	3
	4.3	Environmental Status	3
5	Nois	se Monitoring	4
	5.1	Monitoring Parameters and Methodology	4
	5.2	Monitoring Equipment	4
	5.3	Monitoring Locations	5
	5.4	Monitoring Frequency	7
	5.5	Monitoring Results and Interpretation	7
	5.6	Action and Limit Level for Construction noise	8
	5.7	Monitoring Schedule for the next reporting period	13
6	Wat	ter Monitoring	13
	6.1	Water Quality Monitoring Parameters and Methodology	13
	6.2	Monitoring Equipment	13
	6.3	Monitoring Locations	14
	6.4	Monitoring Frequency	17
	6.5	Monitoring Results and Interpretation	17
	6.6	Action and Limit Level for Water Quality	18
	6.7	Monitoring Schedule for Next Reporting Period	23
7	Air	Quality Monitoring	24
	7.1	Monitoring Methodology and Parameters	24
	7.2	Monitoring Equipment	24
	7.3	Monitoring Locations	25
	7.4	Monitoring Frequency	27
	7.5	Monitoring Results and Interpretation	27
	7.6	Action and Limit Level for 1-hr TSP and 24-hrs TSP	28
	7.7	Monitoring Schedule for Next Reporting Period	31
8	Eco	logy	31
9	Acti	ion Taken in Event of Exceedance	32
10	Con	struction Waste Disposal	32
11	Stat	us of Permits and Licenses	34
			~

12	Compliant Log	35
13	Site Environmental Audits	35
	13.1 Site Inspection	35
	13.2 Compliance with Legal and Contractual Requirement	36
	13.3 Implementation Status and Effectiveness of Mitigation Measures.	36
14	Future Key Issues and Recommendations	37
Con	clusions	38

LIST OF APPENDIXES

- Appendix A: Construction Master Programme and Site Location Plan
- Appendix B: Key Personal Contact Information Chart
- Appendix C: Calibration Certificates for Measuring Instruments
- Appendix D: Construction Noise Monitoring Data
- Appendix E: Water Quality Monitoring Data
- Appendix F: Air Quality Monitoring Data

EXECUTIVE SUMMARY

This is the third monthly Environmental Monitoring and Audit (EM&A) Report for Drainage Diversion Works for the Comprehensive Residential Development at Various Lots in DD227 & DD229, Tai Po Tsai, Sai Kung under New World Project Management Ltd. This report concludes the impact monitoring for the activities undertaken during the period from 1st of November 2012 to 30th November 2012. The major site activities in this reporting period were mainly stream course diversion works, open channel construction and manhole construction & concrete pipe installation.

The Environmental Team (ET) is responsible for the EM&A works required in the Particular Specifications (PS). Site inspections were carried out on weekly basis to investigate and audit the equipment and work methodologies with respect to pollution control and environmental mitigation. The weekly inspections and photos records were kept.

Noise, water quality and air quality monitoring were performed during the reporting period. Results were compared with the established Action/Limit (A/L) level.

In general, waste management was satisfactory during the reporting period.

Impact monitoring for construction noise and air quality was conducted in the reporting period. No exceedance of A/L level was reported.

Furthermore, impact monitoring for water quality was conducted. Total 2 non-compliance events of water quality criteria were recorded in this reporting period. For the non-compliance events, no particular observation of defective site activity causing water contamination was found and the exceedance records were believed to be mainly caused by the adverse weather condition.

There was no complaint, notification of any summons and successful prosecutions against the project received during the reporting period.

It is expected that noise, water quality and air quality impacts may be resulted

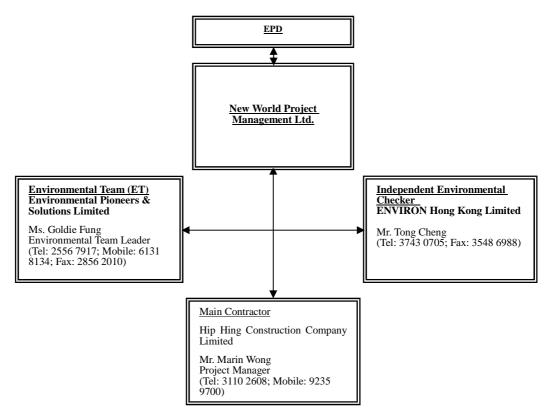
from the site works. ET has reminded the contractor to provide environmental pollution control measures wherever necessary and to keep a good environmental management at site practice. The recommended mitigation measures proposed for the project as well as implementation status can refer to section 13.3.

The ET will continue to implement the environmental monitoring & audit programme in accordance with the PS and Environmental Permit requirement.

1 Introduction

This is the third monthly Environmental Monitoring and Audit (EM&A) Report for Drainage Diversion Works for the Comprehensive Residential Development at Various Lots in DD227 & DD229, Tai Po Tsai, Sai Kung under New World Project Management Ltd.. The site layout plan is shown in **Appendix A**. The Environmental Team, Environmental Pioneers & Solutions Limited was appointed by Hip Hing Construction Co.Ltd. to prepare the report. The report is to be submitted to the Contractor, the Engineer and the IEC.

This report presents the results of the environmental monitoring of the project activities conducted within the reporting period from 1st November 2012 to 30th November 2012. This report included the noise monitoring, water quality monitoring, air quality monitoring and regular site inspections for verification of implementation of the mitigation measures as recommended in the Environmental Permit (FEP-01/428/2011/A)) (EP), PS and the Contractor's Environmental Management Plan (EMP).


2 Project Information

Construction works of "Drainage Diversion Works for the Comprehensive Residential Development at Various Lots in DD227 & DD229, Tai Po Tsai, Sai Kung" project has been commenced in Sep 2012 and is expected to completed by July 2013. Construction master program is shown in **Appendix A**.

3 Project Organization

The Main Contractor, Hip Hing Construction Company Limited, has commissioned Environmental Pioneers & Solutions Limited as the Environmental Team, which comprises the environmental team leader, the environmental technicians to undertake the environmental monitoring and audit work for this project.

The Environmental management structure is shown in Fig. 3.1

*Remark:

The Project Proponent stated in previous Monthly Environmental Monitoring and Audit Reports (Sep & Oct 2012) should be New World Project Management Ltd..

3.1 Key personal contact information chart

Detail contact of key persons involved in environmental aspect of the project is shown in **Appendix B**.

4 Construction Stage

4.1 Construction Activities in Reporting Period

Major activities in the reporting period included the followings:

- Formwork erection and concreting for box culvert base
- Open Channel Construction
- Manhole Construction & Concrete Pipe Installation

4.2 Construction Activities for Coming Months

Proposed key construction works in the coming month will include:

- Excavation
- Tree Transplant
- Formwork fixing, reinforcement fixing & concreting
- Sheet piling

4.3 Environmental Status

The site layout plan is shown in **Appendix A**.

Locations of the monitoring and control stations with environmental sensitive receivers are presented in Section 5.3, 6.3, and 7.3 for noise monitoring, water quality monitoring, and air quality monitoring respectively.

5 Noise Monitoring

5.1 Monitoring Parameters and Methodology

The construction noise level was measured in terms of the A-weighted equivalent continuous sound pressure level (L_{eq}). $L_{eq~(30minutes)}$ was used as the monitoring parameter for the impact monitoring in the time period between 0700 to 1900 hours on normal weekdays. For all other time period, $L_{eq~(5minutes)}$ was employed for comparison with the Noise Control Ordinance (NCO) criteria.

Noise measurement results obtained from each monitoring location were recorded in the Construction Noise Monitoring Data Sheet immediately after the measurement. As supplementary information for data auditing, statistical results L_{10} and L_{90} were also be recorded for reference.

In case of non-compliance with the construction noise criteria, more frequent monitoring, as specified in the Action plan in Table 5.7.2, shall be carried out. This additional monitoring shall be carried out until the recorded noise levels are rectified or proved to be irrelevant to the construction activities.

5.2 Monitoring Equipment

The sound level meters and calibrators comply with the International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) specifications as referred to in the Technical Memorandum (TM) to the Noise Control Ordinance was deployed as monitoring equipment for noise measurement.

Noise measurement was not be made in the presence of fog, rain, wind with a steady speed exceeding 5ms⁻¹ or wind with gust exceeding 10ms⁻¹. Thus wind speed was checked by the portable wind speed indicator capable of measuring the wind speed in m/s. Table 4.2.1 summarizes the equipment list for noise monitoring

Table 5.2.1 Equipment List for Noise Monitoring

Equipment	Manufacturer & Model No.	Precision Grade	Qty
Integrated sound	Svantek 949	IEC 651 Type 1	2
level meter	Svantek 955	IEC 804 Type 1	
Acoustical	Svantek SV30A	IEC 942 Type 1	1
calibrator			

Remarks: Calibration details of the sound level meter and acoustical calibrator are given in **Appendix C** for reference

5.3 Monitoring Locations

According to the PS, impact noise monitoring was undertaken at four locations during the construction phase of the project. The monitoring locations are summarized in Table 5.3.1 and are shown in Figure 5.3.1.

Noise measurement for N4 location was taken at a point 1m from the exterior of the selected premises and at a height with no disturbance to the dweller and least obstructed view, so that façade measurement was made for monitoring location N4 and the free field measurements were made for monitoring locations N1, N2 and N3.

Table 5.3.1 Noise Monitoring Locations during Construction Phase

Identification No.	Noise Monitoring Locations
N1	Staff Quarters 1-12, HKUST
N2	174, Lots in DD227 & DD229, Tai Po Tsai, Sai Kung
N3	152A, Lots in DD227 & DD229, Tai Po Tsai, Sai Kung
N4	109, Lots in DD227 & DD229, Tai Po Tsai, Sai Kung

In accordance with the requirements in the PS, weekly impact monitoring was conducted. For the time period between 0700 and 1900 hours on normal weekdays, and noise parameter of $L_{eq~(30minutes)}$ was measured. As if the construction works were carried out during restricted period (i.e. 1900-2300, 2300-0700 of next day and Sundays / general holiday), impact monitoring that comprises 3 consecutive $L_{eq~(5minutes)}$ would be carried out.

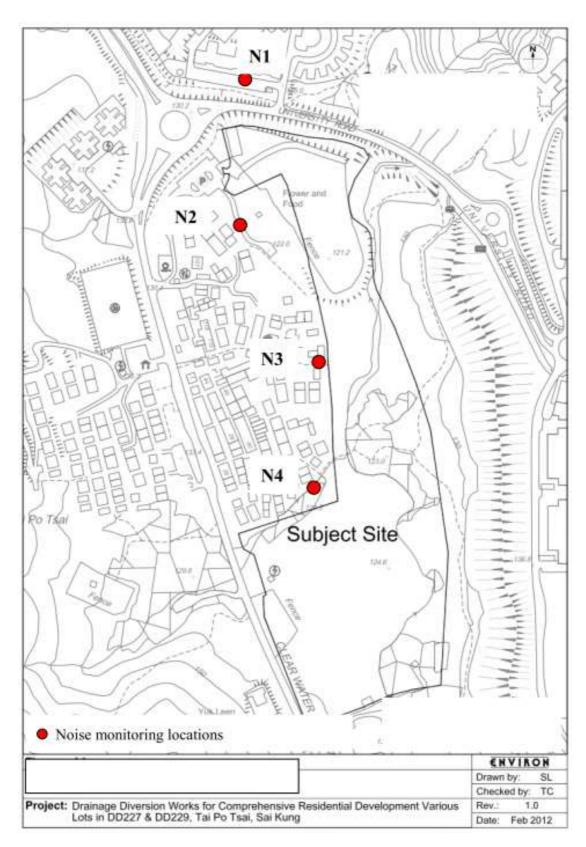


Figure 5.3.1 Impact noise monitoring locations

5.4 Monitoring Frequency

The regular monitoring for each location was performed on a basis of once in every 6 days.

Monitoring was carried out on 2nd, 8th, 14th, 20th and 26th of November 2012.

5.5 Monitoring Results and Interpretation

Relevant details of the noise monitoring results are presented in Table 5.5.1. The results of N1 ranged between 58.7dB (A) and 63.3dB (A), N2 ranged between 57.8dB (A) and 61.9dB (A), N3 ranged between 51.9dB (A) and 64.6dB (A) and N4 ranged between 60.1dB (A) and 62.3dB (A) were within the limit levels and therefore no exceedance was found.

Table 5.5.1 Noise Monitoring Results for the reporting month									
Location Parameter		Date	Time	L _{Aeq} dB(A)	Limit dB(A)	Exceedance	Weather		
*N1	Leq30min	2-Nov-12	13:40	58.7	75	N	Sunny		
*N1	Leq30min	8-Nov-12	13:38	58.9	75	N	Sunny		
*N1	Leq30min	14-Nov-12	13:41	60.9	75	N	Sunny		
*N1	Leq30min	20-Nov-12	13:55	63.3	75	N	Overcast		
*N1	Leq30min	26-Nov-12	13:41	60.1	75	N	Overcast		
*N2	Leq30min	2-Nov-12	13:02	61.1	75	N	Sunny		
*N2	Leq30min	8-Nov-12	13:01	60.9	75	N	Sunny		
*N2	Leq30min	14-Nov-12	13:05	57.8	75	N	Sunny		
*N2	Leq30min	20-Nov-12	13:07	61.9	75	N	Overcast		
*N2	Leq30min	26-Nov-12	13:07	61.5	75	N	Overcast		
*N3	Leq30min	2-Nov-12	10:35	58.9	75	N	Sunny		
*N3	Leq30min	8-Nov-12	10:01	57.9	75	N	Sunny		
*N3	Leq30min	14-Nov-12	10:43	61.4	75	N	Sunny		
*N3	Leq30min	20-Nov-12	10:44	64.6	75	N	Overcast		
*N3	Leq30min	26-Nov-12	10:05	51.9	75	N	Overcast		
N4	Leq30min	2-Nov-12	11:08	61.2	75	N	Sunny		
N4	Leq30min	8-Nov-12	09:08	62.3	75	N	Sunny		
N4	Leq30min	14-Nov-12	11:17	61.0	75	N	Sunny		

N4	Leq30min	20-Nov-12	11:17	60.4	75	N	Overcast
N4	Leq30min	26-Nov-12	10:41	60.1	75	N	Overcast

^{*}The equivalent noise level of N1, N2 and N3 is corrected by +3dB(A).

Remarks: Raw datasheet for noise monitoring are attached in **Appendix D** for reference.

5.6 Action and Limit Level for Construction noise

The Action and Limit (A/L) levels for construction noise are defined in Table 5.6.1. Should non-compliance of the criteria occur, action in accordance with the Action Plan in Table 5.6.2 should be carried out.

There was no exceedance recorded in the reporting period.

Table 5.6.1 Action and Limit Levels for Construction Noise at All Sensitive										
Receivers										
Time Period	Action	Limit								
Daytime		75 dB(A)*								
0700 – 1900 hrs on normal	X71									
weekdays	When one									
1900 – 2300 on all days and 0700 –	documented	60/65/70 dB(A)**								
2300 on general holidays (including	complaint is received									
Sundays)	received									
2300 – 0700 on all days		45/50/55 dB(A)**								

Table 5.6.2 Event / Action Plan for Construction Noise

EVENT	ET Leader	IEC	ER	CONTRACTOR
EXCENT Exceedance for one sample in Action Level	ET Leader 1. Identify source, investigate the causes of exceedance and propose remedial measures. 2. Inform ER, IEC and Contractor. 3. Repeat measurement to confirm finding. 4. Increase monitoring frequency to daily.	Check monitoring data submitted by ET. Check Contractor's working method.	ER 1. Notify Contractor.	1. Rectify any unacceptable practice. 2. Amend working methods if appropriate.

Exceedance for two or more consecutive samples in Action Level.	 Identify source, investigate the causes of exceedance and propose remedial measures. Inform IEC and Contractor. Repeat measurements to 		Checking monitoring data submitted by ET. Check Contractor's working method. Discuss with ET and Contractor on possible remedial	2.	Confirm receipt of notification of failure in writing. Notify Contractor. Ensure remedial measures properly implemented.	2.	Submit proposals for remedial actions to IEC within three working days of notification. Implement the agreed proposals. Amend proposals if appropriate.
	confirm findings. 4. Increase monitoring frequency to daily. 5. Discuss with IEC and Contractor on remedial actions. 6. If exceedance continues, arrange meeting with IEC and ER. 7. If exceedance stops, cease additional monitoring.	5.	measures. Advise the ER on the effectiveness of the proposed remedial measures. Supervisor implementation of remedial measures.				

Exceedance for on sample in Limit Level	inv cat	vestigate the uses lof ceedance and		Checking monitoring data submitted by ET Check	Confirm receipt of notification of failure in writing. Notify	1.	Take immediate action to avoid further exceedance.
sample in	2. Info Co EP 3. Remoder dail 5. As eff Co remand EP info	uses lof ceedance and opose remedial easures. form ER, ontractor and PD. epeat easurement to infirm finding. crease onitoring equency to ily.	3.	submitted by ET	failure in writing.	 3. 4. 	further

Exceedance
for two or
more
consecutive
samples in
Limit Level

- Identify source, investigate the causes of exceedance and prpose remedial measures.
- Notify IEC, ER, Contractor and EPD.
- Repeat measurement to confirm findings.
- 4. Increase monitoring frequency to daily.
- 5. Carry out
 analysis of
 Contractor's
 working
 procedures to
 determine
 possible
 mitigation to be
 implemented.
- 6. Arrange meeting with IEC and ER to discuss the remedial actions to be taken.
- 7. Assess
 effectiveness of
 Contractor's
 remedial actions
 and keep IEC,
 EPD and ER

- Discuss amongst ER, ET and Contractor on the potential remedial actions.
- 2. Review
 Contractor's
 remedial actios
 whenever
 necessary to
 assure their
 effectiveness and
 advise the ER
 accordingly.
- Supervise the implementation of remedial measures.

- Confirm receipt
 of notification of
 failure in writing.
- NotifyContractor.
- 3. In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented.
- 4. Ensure remedial measures properly implemented
- 5. If exceedance continues consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated remedial actions.

- 1. Take immediate action to avoid further exceedance.
- 2. Submit proposals for remedial actions to IEC within three working days of notification.
- 3. Implement the agreed proposals.
- 4. Resubmit proposals if problem still not under control.
- 5. Stop the relevant portion of works as determined by the ER until the exceedance is abated.

	informed of the results		
8	8. If exceedance		
	stops, cease additional		
	monitoring		

5.7 Monitoring Schedule for the next reporting period

Noise monitoring schedule is proposed to be carried out on 1st, 7th, 13th, 19th, 24th and 29th of December 2012.

6 Water Monitoring

6.1 Water Quality Monitoring Parameters and Methodology

Turbidity in Nephelometric Turbidity Unit (NTU), and Dissolved Oxygen (DO) in mg/L, temperature, water depth and pH measurements were in-situ measurements and suspended solids measurements were performed by a HOKLAS accredited laboratory using recommended reference method APHA 2540D.

6.2 Monitoring Equipment

Turbidity, DO, Salinity, pH and temperature was measured by an instrument complied with the following requirements:

The instrument is a portable as well as weatherproof multimeter complete with cable and uses a DC power source. It is capable of measuring:

- A turbidity between 0-1000NTU;
- A dissolved Oxygen level in the range of 0-20mg/L and 0-200%

saturation;

- A temperature of 0-50°C;
- pH in the range of 0-14.

The measurements were performed by a portable and weatherproof multi-meter, model TOA-DKK WQC-24. The equipment was calibrated and verified by certified laboratory every 3 months to ensure they perform to the same level of accuracy as stated in the manufacturer's specification. Detailed calibration records of the multi-meter were shown in Appendix C for reference

Suspended solids were determined by the water samples collected from the monitoring locations for further analysis in accredited HOKLAS laboratory. Water samples were contained by polythene bottles, packed in ice (cooled in 4°C without frozen) and delivered to the laboratory for analysis as soon as possible after collection.

Since water depths for all monitoring stations were less than 0.5m during the impact measurement period, only mid-depth level was monitored. The monitoring parameters and measurement methods of water quality monitoring are summarized in Table 6.2.1.

Table 6.2.1 – Water Quality Monitoring Parameters and Measurement				
Methods				
Parameter	Measurement Method			
Temperature (°C)				
Turbidity (NTU)				
рН	in-situ			
Dissolved Oxygen (mg/L and %)				
Suspended Solids (mg/L)	Reference method APHA 2540D			

6.3 Monitoring Locations

In accordance with the PS, monitoring stations were established at two locations, which are summarized in Table 6.3.1.

Table 6.3.1 – Water Quality Monitoring Locations				
Manitaring Station	Coordinates			
Monitoring Station	Easting	Northing		
W1 (upstream)	E:844944	N:821720		
W2 (downstream)	E:844959	N:822249		

As illustrated in Figure 6.3.1, W1 served as the control station while W2 was the monitoring location of water quality.

In accordance with the PS, measurements shall be taken at 3 water depths, namely, 1m below water surface, mid-depth and 1m above river bed, except where the water depth less than 6m, the mid-depth station may be omitted. Should the water depth be less than 3m, only the mid-depth station will be monitored.

As the depth of water was less than 3m, water samples were collected at mid-depth of each monitoring stations for measurements and sample collection.

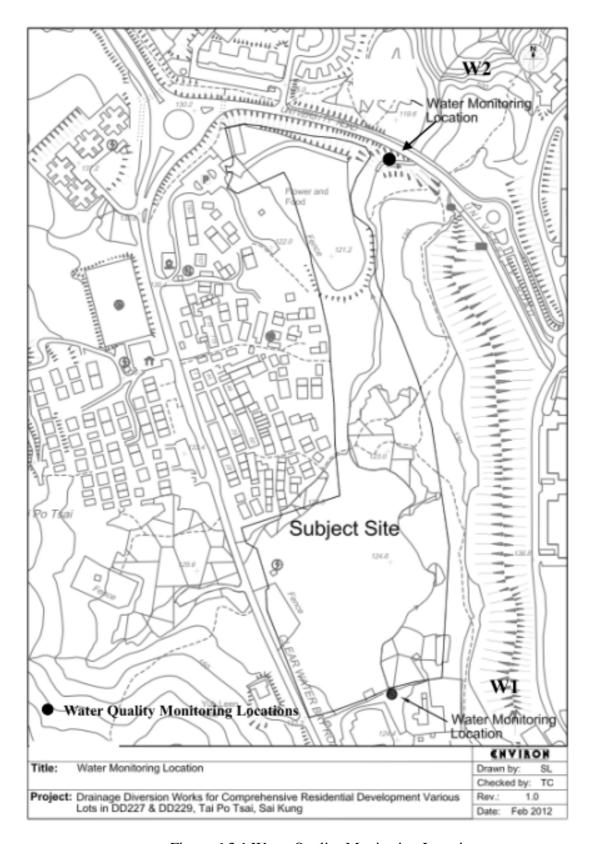


Figure 6.3.1 Water Quality Monitoring Locations

6.4 Monitoring Frequency

Water quality monitoring for each monitoring station was performed at mid-flood or mid-ebb tides for 3 days per week during the course of the construction river works.

Monitoring was carried out on 2nd, 5th, 7th, 9th, 12th, 14th, 16th, 19th, 21st, 23rd, 26th, 28th and 30th of November 2012.

6.5 Monitoring Results and Interpretation

Water quality monitoring was carried out thirteen times in this reporting month. Detailed on-site measurements are shown in **Appendix E**. Table 6.5.1 presents consolidated results throughout the reporting month.

There were 2 abnormal incidents of water quality (Turbidity & SS) was record in this reporting period as shown in table 6.5.2. ET has arranged site investigations for the abnormal incidents on same day and found that no construction activities had been carried out at the river bed. It was believed that the exceedances of water quality were not affected by the construction activities. Besides, the turbid water was observed at control station (W1) and the results of SS and Turbidity at the control station were also recorded relatively high. Therefore, the exceedances were believed to be mainly caused by adverse weather condition and natural fluctuation.

Table 6.5.1 S	Table 6.5.1 Summary of Water Quality Monitoring Results of this reporting month					
	Average of M	onitoring l	Results			
	Temperature (°C)	Turbidity (NTU)	рН	Dissolved Oxygen (mg/L)	Dissolved Oxygen (%)	Suspended Solids (mg/L)
W1	25.2	13.5	7.35	7.41	78.8	7.62
W2	25.1	13.5	7.26	7.72	84.4	6.62

Table 6.5.2 Interpretations of abnormal incidents recorded in the reporting month

		Parai	neter	
Date	Location	Turbidity (NTU)	SS (mg/l)	Interpretations
23/11/2012	W1	82.5	27.0	Exceedances were caused by
23/11/2012	W2	92.5	27.0	adverse weather
26/11/2012	W1	41.0	18.0	Exceedances were caused by
20/11/2012	W2	57.0	19.0	adverse weather

6.6 Action and Limit Level for Water Quality

Based on the criteria stipulated in PS and baseline water quality monitoring data obtained, the A/L levels are shown in Table 6.6.1. The A/L levels for W1 were ignored since W1 functions as the control station for the project. If the water quality monitoring results at any impact stations exceeded the criteria, the actions in accordance with the Event and Action Plan in Table 6.6.3 should be taken.

Table 6.6.1 Act	Table 6.6.1 Action and Limit Levels for Water Quality at All Monitoring				
Stations					
Parameters	Action	Limit			
DO in ma/I	5 paraantila of basalina data	4 mg/L or 1 percentile of			
DO in mg/L	5 percentile of baseline data	baseline data			
	95 percentile of baseline data	99 percentile of baseline data or			
SS in mg/I	or 120% of upstream control	130% of upstream control			
SS in mg/L	station's SS recorded on the	station's SS recorded on the			
	same day	same day			
	95 percentile of baseline data	99 percentile of baseline data or			
Turbidity in	or 120% of upstream control	130% of upstream control			
NTU	station's Turbidity recorded on	station's Turbidity recorded on			
	the same day	the same day			
	<6.5 or >8.4 or > the upstream				
рН	control station's pH recorded	<6.0 or >9.0			
	on the same day				

Table 6.6.2 Action and Limit Levels for Water Quality at All Monitoring				
Stations				
	Monitor	ing Stations		
Parameters	,	W2		
rarameters	Action	Limit		
	Level	Level		
DO in mg/L	6.42	6.24		
SS in mg/L	18.9	19.8		
Turbidity in	6.2	6.2		
NTU	0.2	0.2		
рН	<6.5 or >8.4	<6.0 or >9.0		

Remarks:

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits
- 2. For SS and Turbidity, non-compliance of the water quality limits occurs when monitoring results is higher than the limits.
- 3. For pH, for the action level, reference is made to the data recorded at EPD' river monitoring stations at the nearby Tseng Lan Shue Stream (JR3, JR6 and JR22) from year 2006 to 2010; while the limit level is referring to the water quality objective for Inland Water of Junk Bay Water Control Zone.

Table 6.6.3 Event and action Plan for Water Quality

Event	ET Leader	IEC	ER	Contractor
ACTION LEV	EL			
Exceedance	1. Repeat in-site	1. Discuss with ET	1. Discuss with	1. Inform the ER
for one	measurement to	and Contractor	IEC on the	and confirm
sample day	confirm findings.	on the	proposed	notification of the
	2. Identify source(s)	mitigation	mitigation	non-compliance
	of impact.	measures.	measures.	in writing.
	3. Inform IEC and	2. Review	2. Make	2. Rectify
	Contractor.	proposals on	agreement on	unacceptable
	4. Check monitoring	mitigation	mitigation	practice.
	data, all plant,	measures	measures to	3. Check all plant
	equipment and	submitted by	be	and equipment.
	Contractor's	Contractor and	implemented.	4. Consider changes
	working methods.	advise the ER	3. Assess	of working
	5. Discuss mitigation	accordingly;	effectiveness	methods.
	measures with	3. Assess	of	5. Discuss with ET,
	IEC and	effectiveness of	implemented	IEC and propose
	Contractor.	the implemented	mitigation	mitigation
	6. Repeat	mitigation	measures.	measures to IEC
	measurement on	measures.		and ER.
	next day of			6. Implement the
	exceedance.			agreed mitigation
				measures.

Exceedance	1. Repeat in-situ	1. Discuss with ET	1. Discuss with 1.	. Inform the ER
for more than	measurements to	and Contractor	IEC on the	and confirm
one	confirm findings.	on the	proposed	notification of the
consecutive	2. Identify source(s)	mitigation	mitigation	non-compliance
sampling	of impact.	measures.	measures.	in writing.
days	3. Inform IEC and	2. Review	2. Make 2.	. Rectify
	Contractor.	proposals on	agreement on	unacceptable
	4. Check monitoring	mitigation	the mitigation	practice.
	data, all plant,	measures	measures to 3.	. Check all plant
	equipment and	submitted by	be	and equipment.
	Contractor's	Contractor and	implemented. 4.	. Consider changes
	working methods.	advise the ER	3. Assess	of working
	5. Discuss mitigation	accordingly.	effectiveness	methods.
	measures with	3. Assess	of the 5.	. Discuss with ET
	IEC and	effectiveness of	implemented	and IEC and
	Contractor.	the implemented	mitigation	propose
	6. Ensure mitigation	mitigation	measures.	mitigation
	measures are	measures.		measures within
	implemented.			three working
	7. Prepare to increase			days.
	the monitoring		6.	. Implement the
	frequency to daily.			agreed mitigation
	8. Repeat			measures.
	measurement on			
	next day of			
	exeedance.			
LIMIT LE	VEL			
Exceedance	1. Repeat in-situ	1. Discuss with ET	1. Discuss with 1.	. Inform the ER
for one	measurements to	and Contractor	IEC, ET and	and confirm
sampling	confirm findings.	on the	Contractor on	notification of the
day	2. Identify source(s) of	mitigation	the proposed	non-compliance
	impact.	measures.	mitigation	in writing.
	3. Inform EPD, IEC,	2. Review	measures. 2.	. Rectify
	Contractor.	proposals on	2. Request	unacceptable
	4. Check monitoring	mitigation	Contractor to	practice.
	data, all plant,	measures	critically 3.	. Check all plant
	equipment and	submitted by	review the	and equipment.

	Contractor's	Contractor and	working	4. Consider changes
	working methods;	advise the ER	methods.	of working
	5. Discuss mitigation	accordingly.	3. Make	methods.
	measures with IEC,	3. Assess	agreement on	5. Discuss with ET,
	ER and Contractor.	effectiveness of	the mitigation	IEC and ER and
	6. Ensure mitigation	the implemented	measures to	propose
	measures are	mitigation	be	mitigation
	implemented.	measures.	implemented.	measures to IEC
	7. Increase the		4. Assess the	and ER within
	monitoring		effectiveness	three working
	frequency to daily		of the	days.
	until no exceedance		implemented	6. Implement the
	of Limit level.		mitigation	agreed mitigation
			measures.	measures.
			mousures.	mousures.
Exceedance	1. Repeat in-situ	1. Discuss with ET	1. Discuss with	1. Inform the ER
for more	measurements to	and Contractor	IEC, ET and	and confirm
than on	confirm findings.	on the	Contractor on	notification of the
consecutive	2. Identify source(s) of	mitigation	the proposed	non-compliance
sampling	impact.	measures.	mitigation	in writing.
days	3. Inform EPD, IEC	2. Review	measures.	2. Rectify
	and Contractor.	proposals on	2. Request	unacceptable
	4. Check monitoring	mitigation	Contractor to	practice.
	data, all plant,	measures	critically	3. Check all plant
	equipment and	submitted by	review the	and equipment.
	Contractor's	Contractor and	working	4. Consider changes
	working methods.	advise the ER	methods.	of working
	5. Discuss mitigation	accordingly.	3. Make	methods.
	measures with IEC,	3. Assess the	agreement on	5. Discuss with ET,
	ER and Contractor.	effectiveness of	the mitigation	IEC and ER and
	6. Ensure mitigation	the implemented	•	propose
	measures are	mitigation	be	mitigation
	implemented.	measures.	implemented.	measures to IEC
	7. Increase the		4. Assess the	and ER within
	monitoring		effectiveness	three working
	frequency to daily		of the	days.

until no exceedance	implemented	6.	Implement the
of Limit level for	mitigation		agreed mitigation
two consecutive	measures.		measures.
days.	5. Consider and	7.	As directed by
	instruct, if		the ER, to slow
	necessary, the		down or to stop
	Contractor to		all or part of the
	slow down or		work or
	to stop all or		construction
	part of the		activities.
	work until no		
	exceedance of		
	Limit Level.		

6.7 Monitoring Schedule for Next Reporting Period

Water quality monitoring schedule is proposed to be carried out on 3^{rd} , 5^{th} , 7^{th} , 10^{th} , 12^{th} , 14^{th} , 17^{th} , 19^{th} , 21^{st} , 24^{th} , 27^{th} , 29^{th} and 31^{st} of December 2012.

7 Air Quality Monitoring

7.1 Monitoring Methodology and Parameters

1-hr and 24-hrs air quality monitoring have been carried out during the reporting period.

Measurements of 1-hr TSP monitoring were taken by a Dust Trak aerosol monitor or its equivalent that is a portable and battery-operated laser photometer capable of performing real time 1-hr TSP measurements.

24-hrs TSP was measured by the High Volume Sampler. The filter papers for each monitoring locations were sent to the accredited HOKLAS laboratory for further analysis.

Other relevant data such as monitoring location, time, weather conditions and any other special phenomena at the construction site were recorded during the measurement period.

7.2 Monitoring Equipment

24-hrs TSP was measured by the High Volume Sampler. And the 3 sets of 1-hr TSP were carried out by the portable dust meter. The measurement equipments are listed in Table 7.2.1 and Calibration Certificates of the equipments are shown in **Appendix C**.

Table 7.2.1 Air Quality Monitoring Equipments

Equipment	Manufacturer & Model No.	Parameter	Qty
Laser Dust Monitor	SIBATA/LD-3B	1-hr TSP	2
High Volume	TE-5025A	24-hrs TSP	4
Sampler			

7.3 Monitoring Locations

Monitoring locations were established at 4 locations, which are summarized in Table 7.3.1 and are shown in Figure 7.3.1

Table 7.3.1 Air Quality Monitoring Locations

Identification No.	TSP Monitoring Locations	
D1	Staff Quarters 1-12, HKUST	
D2	174, Lots in DD227 & DD229, Tai Po Tsai, Sai Kung	
D3	152A, Lots in DD227 & DD229, Tai Po Tsai, Sai Kung	
D4	109, Lots in DD227 & DD229, Tai Po Tsai, Sai Kung	

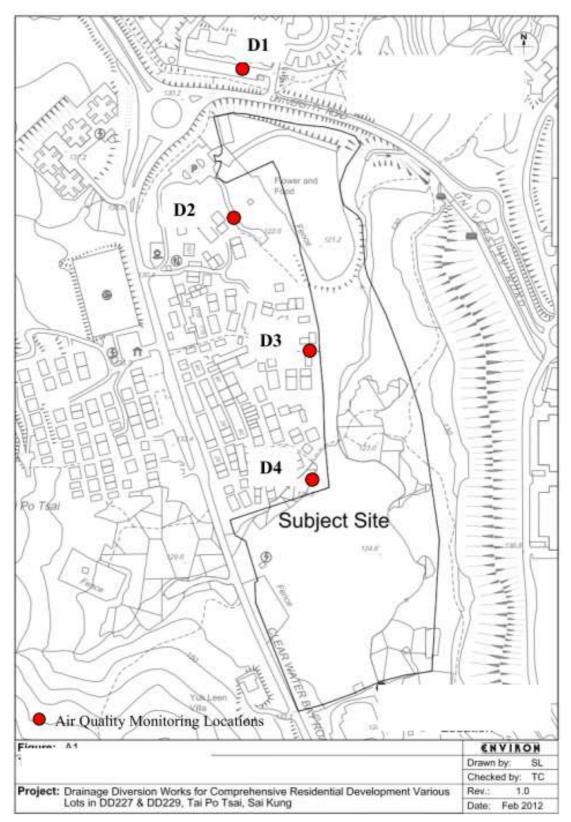


Figure 7.3.1 Air Quality Monitoring Locations

7.4 Monitoring Frequency

For 1-hr and 24-hr TSP monitoring, the sampling frequency of at least once in every six days.

Monitoring was carried out on 2nd, 8th, 14th, 20th and 26th of November 2012.

7.5 Monitoring Results and Interpretation

1-hr TSP and 24-hrs TSP were carried out during this reporting. And, no exceedance was recorded.

1-hr TSP monitoring was conducted at four designated monitoring locations. The monitoring results are summarized in Table 7.5.1.

Table 7.5.1 A summarized of average 1-hr TSP monitoring data						
Location	Range (µg/m3) (Min – Max)	Average (μg/m3)				
D1	18-138	84.7				
D2	32-103	71.6				
D3	15-179	95.6				
D4	11-162	96.5				

24-hrs TSP monitoring data was obtained at four designated monitoring locations. The monitoring results are summarized in Table 7.5.2.

Table 7.5.2 A summarized of average 24-hrs TSP monitoring data						
Location	Location Range (µg/m3) (Min – Max)					
D1	26.9-100.0	54.4				
D2	22.9-102.0	51.0				
D3	23.3-92.0	47.4				
D4	24.0-101.9	53.0				

Details of the monitoring data were presented in **Appendix F**.

7.6 Action and Limit Level for 1-hr TSP and 24-hrs TSP

The Action and Limit levels for all monitoring stations are summarized in Table 7.6.1 and Table 7.6.2, which would be applied for compliance assessment of air quality for this project. If the air quality monitoring results at any impact stations exceeded the criteria, the actions in accordance with the Event and Action Plan in Table 7.6.3 should be taken.

Table 7.6.1 Action and Limit Levels for 1-hr TSP at All Monitoring Stations						
Monitoring Station	Monitoring Frequency	Action Level	Limit Level			
D1	1-hr	$285.6 \mu g/m^3$	$500 \mu\text{g/m}^3$			
D2		279.4 μg/m ³	$500 \mu\text{g/m}^3$			
D3		$289.4 \mu \text{g/m}^3$	$500 \mu\mathrm{g/m}^3$			
D4		284.3 μg/m ³	500 μg/m ³			

Table 7.6.2 Action and Limit Levels for 24-hrs TSP at All Monitoring Stations						
Monitoring Station	Monitoring Frequency	Action Level	Limit Level			
D1		156.4 µg/m3	$260 \mu\mathrm{g/m}^3$			
D2	24 hm	153.8 μg/m3	$260 \mu\mathrm{g/m}^3$			
D3	24-hrs	155.2 μg/m3	$260 \mu\mathrm{g/m}^3$			
D4	1	158.0 μg/m ³	260 μg/m ³			

Table 7.6.3 Event and action Plan for Air Quality

Event	ET	Leader	ΙE	C	ER		Con	tractor
ACTION LE	VEI							
Exceedance for one sample	 2. 3. 4. 	Identify source, investigate the cause s of exceedance and propose remedial measures. Inform ER, IEC and Contractor. Repeat measurement to confirm finding. Increase monitoring frequency to daily.	2	. Check monitoring data submitted by ET Check Contractor's working method.	1.	Notify Contractor.		Rectify any unacceptable practice. Amend working methods if appropriate.
Exceedance for two or more consecutive samples		Identify source, investigate the causes of exceedance and propose remedial measures. Inform IEC and Contractor. Repeat measurements to confirm findings Increase monitoring frequency to daily. Discuss with IEC and Contractor on remedial actions. If exceedance continues, arrange meeting with IEC and ER If exceedance stops,	2.	Contractor's working method. Discuss with ET and Contractor on Possible remedial measures. Advise the ER on the effectiveness of the proposed remedial measures.	2.	Confirm receipt of notification of failure in writing. Notify Contractor. Ensure remedial measures properly implemented	2.	Submit proposals for remedial actions to IEC within three working days of notification. Implement the agreed proposals. Amend proposal if appropriate.

		cease additional					
		monitoring.					
LIMIT LEVEL							
Exceedance	1.	Identify source,	1. Checking	1.	Confirm	1.	Take immediate
for one		investigate the	monitoring data		receipt of		action to avoid
sample		causes of	submitted by ET.		notification		further
		exceedance and	2. Check		of failure in		exceedance.
		propose remedial	Contractor's		writing.	2.	Submit proposals
		measures.	working method	2.	Notify		for remedial
	2.	Inform ER,	3. Discuss with ET		Contractor.		actions to IEC
		Contractor and EPD.	and Contractor on	3.	Ensure		within three
	3.	Repeat measurement	possible remedial		remedial		working days of
		to confirm finding.	measures		measures		notification.
	4.	Increase monitoring	4. Advise the ER on		properly	3.	Implement the
		frequency to daily.	the effectiveness		implemented.		agreed proposals.
	5.	Assess effectiveness	of the proposed			4.	Amend proposal if
		of Contractor's	remedial				appropriate.
		remedial actions and	measures.				
		keep IEC, EPD and	5. Supervisor				
		ER informed of the	implementati on				
		result.	of remedial				
			measures.				
Exceedance	1.	Identify source,	1. Discuss amongst	1.	Confirm	1.	Take immediate
for two or		investigate the causes	ER, ET and		receipt of		action to avoid
more		of exceedance and	Contractor on		notification		further
consecutive		propose remedial	the potenrial		of failure in		exceedance.
samples		measures.	remedial		writing.	2.	Submit proposals
	2.	Notify IEC, ER,	actions.	2.	Notify		for remedial
		Contractor and EPD.	2. Reviews		Contractor.		actions to IEC
	3.	Repeat measurement	Contractor's	3.	In		within three
		to confirm findings.	remedial actions		consultation		working days of
	4.	Increase monitoring	whenever		with the IEC,		notification.
		frequency to daily.	necessary to		agree with	3.	Implement the
	5.	Carry out analysis of	assure their		the		agreed proposals
		Contractor's working	effectiveness		Contractor on	4.	Resubmit
		procedures to	and advise the		the remedial		proposals if
		determine possible	ER accordingly.		measures to		problem still not

	mitigation to be	3. Supervisor the		be	under control.
	implemented.	implementati on		implemented.	5. Stop the relevant
		of remedial	4.	Ensure	portion of works
6.	Arrange meeting with	measures.		remedial	as determined by
	IEC and ER to discuss			measures	the ER until the
	the remedial actionsto			properly	exceedance is
	be taken.			implemented.	abated
7.	Assess effectiveness		5.	If exceedance	
	of Contractor's			continues,	
	remedial actions and			consider	
	keep IEC, EPD and			what portion	
	ER informed of the			of the work is	
	results.			responsible	
8.	If exceedance stops,			and instruct	
	cease additional			the	
	monitoring			Contractor to	
				stop that	
				portion of	
				work until	
				the	
				exceedance is	
				abated	
				remedial	
				actions.	

7.7 Monitoring Schedule for Next Reporting Period

1-hr TSP and 24-hrs TSP monitoring schedule is proposed to be carried out on 1nd, 7th, 13th, 19th, 24th and 29th of December 2012.

8 Ecology

During the reporting period, tree protection measures have been implemented by contractor, such as provision of tree protective fencing for the retained trees and transplanted trees. The tree protection zone has enough space to prevent the construction activities to damage the trees. And, the felled trees were also removed accordingly. As the construction activities do not affect the existing river conditions, the water flow in the existing river within the site is maintained.

9 Action Taken in Event of Exceedance

If the measurements (Noise, Water and Air) exceed the action / limit level, exceedance details will be reported and follow-up actions will be taken by relevant parties involved.

During the reporting month there was no exceedance for noise and air measurements recorded; therefore, no actions were taken.

For water quality monitoring, total 2 abnormal incidents of water quality limits (Turbidity & SS) were recorded in this reporting month in accordance with the established level. ET has arranged site investigations for the abnormal incidents on the same day and found that no construction activities had been carried out at the river bed. It was believed that the exceedances of water quality were not affected the construction activities. Besides, the turbid water was observed at control station (W1) and the results of SS and Turbidity at the control station were also recorded relatively high. Therefore, the exceedances were believed to be mainly caused by adverse weather condition and natural fluctuation.

10 Construction Waste Disposal

It is the contractor's responsibility to ensure that all wastes produced during the construction phase for the drainage improvement works are handled, stored and disposed in accordance with good waste management practices and EPD's regulation and requirement. Waste materials generated during construction activities, such as construction and demolition (C&D) material, chemical wastes and general refuse, are recommended to be audited at regular intervals to ensure that proper storage, transportation and disposal practices are being implemented.

Table 9.1 is a summary of figures of the construction wastes disposal provided by Contractor.

Table 9.1 Summary of Construction Waste Disposal

		Actual Quantities of	f Inert C & D M	Iaterials Genera	ted Monthly		Actual Quantities of C & D Wastes Generated Monthly				
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/cardboard packaging	Plastics (see note3)	Chemical Waste	Others, e.g. general refuse
	(in'000m3)	(in'000m3)	(in'000m3)	(in'000m3)	(in'000m3)	(in'000m3)	(in'000kg)	(in'000kg)	(in'000kg)	(in'000kg)	(in'000kg)
Sep 12	0	0	0	0	0	0	0	0	0	0	0
Oct 12	0	0	0	0	0	0	0	0	0	0	0
Nov 12	1.67	0	0	0	1.67	0	0	0	0	0	31
Total	1.67	0	0	0	1.67	0	0	0	0	0	31
		I	Forecast of Tota	al Quantities of	C & D Materi	als to be Gen	erated from	the Contract			
	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/cardboard packaging	note3)	Chemical Waste	Others, e.g. general refuse
	(in'000m3)	(in'000m3)	(in'000m3)	(in'000m3)	(in'000m3)	(in'000m3)	(in'000kg)	(in'000kg)	(in'000kg)	(in'000kg)	(in'000kg)
	348000	1000	108000	0	239000	0	0	0	0	0	240

11 Status of Permits and Licenses

Table 11.1 is the updated status of environmental related permits/ license obtained for the construction activities

Table 11.1 Status of Permits and Licenses Obtained								
Description	License / Permit No.#	Date of Issue	Site	Date of expiry	Status			
EP	EP-428/2011	4 November 2011	Various Lots in		Superseded by VEP			
EP	EP-428/2011/A	1 June 2012	DD227 &		Valid			
*FEP	FEP-01/428/2011/A	9 July 2012	DD229, Tai Po Tsai, Sai		Valid			
*FEP	FEP-02/428/2011/A	26 November 2012	Kung			Valid		
Discharge License	N/A	N/A	N/A		N/A			
Registration as a Chemical Waste Producer	349704	27 Sep 2012	Various Lots in DD227 & DD229, Tai Po Tsai, Sai Kung	N/A	Valid			
Waste Disposal	N/A	N/A	N/A		N/A			
Notification Pursuant to Section 3(1) of The Air Pollution Control (Construction Dust) Regulation	349519	4 Sep 2012	Various Lots in DD227 & DD229, Tai Po Tsai, Sai Kung		Valid			

*As a New Further Environmental Permit (FEP-02/428/2011/A) under Hip Seng Construction Co. Ltd. was issued by EPD on 26 Nov 2012. The FEP(FEP-01/428/2011/A) under Hip Hing Construction Co. Ltd. will be superseded by FEP(FEP-02/428/2011/A) in the coming reporting months.

12 Compliant Log

There was no formal complaint received during the reporting period. Therefore, no follow up actions for the environmental complaint is required.

Table 11.1 Summary of Formal Complaints received							
	Noise Water Air Others						
September 2012	0	0	0	0			
October 2012	0	0	0	0			
November 2012	0	0	0	0			
Total	0	0	0	0			

13 Site Environmental Audits

13.1 Site Inspection

Site inspections were undertaken weekly to inspect the construction activities in active site areas to ensure that appropriate environmental protection and pollution control mitigation measures are properly implemented.

Within this reporting period, site inspections were conducted on 7th, 14th, 21st and 29th of November 2012. A detailed checklist of each site inspection together with comments and relevant photos have been filed and kept. The findings from inspection were summarized in Table 12.1.

Table 12.1 Summary results of site inspections findings

Date	Findings	Identification	Advice from ET	Action taken	Closing date	Remarks
27 Sep 12 3, 10, 17, 26 & 30 Oct 12 7 & 14 Nov 12		works were carried out, excavated material was not covered with tarpaulin.	Contractor was reminded that excavated material should be covered with tarpaulin for the dust suppression after the completion of works of each day.	Dusty materials were covered with tarpaulin sheets by contractor.		N/A

Date	Findings	Identification	Advice from ET	Action taken	Closing date	Remarks
		Tree	Contractor was	Tree protection	21 Nov 12	N/A
26 & 30		protection	reminded that tree	zone was		
Oct 12	Observation	zone for T24	protection zone	provided by		
7 & 14	Observation	was not	should be provided	contractor.		
Nov 12		provided by	as soon as possible.			
		contractor.				
		Damaged tree	Contractor was	To be followed	N/A	N/A
		protective	reminded that	during next		
14, 21	Observation	fencing for	damaged tree	inspection.		
Nov 12	Observation	T106 was	protective fencing			
		observed.	should be replaced			
			as soon as possible.			
		Stockpile of	Contractor was	To be followed	N/A	N/A
29 Nov		C&D material	reminded to cover	during next		
12 Nov	Reminder	was not	the stockpile with	inspection.		
12		covered	tarpaulin sheets.			
		properly.				
		Exposed area	Contractor was	To be followed	N/A	N/A
		observed near	reminded to provide	during next		
29 Nov		the existing	bund near the edge	inspection.		
29 Nov 12	Observation	river.	of exposed area to			
12			prevent the muddy			
			water from entering			
			into the river.			

13.2 Compliance with Legal and Contractual Requirement

There was no non-compliance recorded for the month of November 2012.

13.3 Implementation Status and Effectiveness of Mitigation Measures

Contractor has implemented mitigation measures to address those problems as advised by ET. Some of the measures taken by the contractor were considered as effective to minimize negative impact to the environment. Ongoing investigation will be carried out to observe performance and effectiveness of those measures. Outstanding environmental items will be inspected in next

month.

As there were some ongoing follow up practices, contractor was reminded to regularly review and rectify the discrepancy once found and maintain good site condition. The contractor implemented various environmental mitigation measures as recommended in the Environmental Permit.

14 Future Key Issues and Recommendations

According to the forecasted site activities, key environmental issues to be considered should at least include the following items:

- Site water control and relevant protective measures.
- Dust suppression
- Control and disposal for construction wastes generated from works.

Tree protective measures for tree planting and transplanting should be implemented such as tree protection zone and regular watering.

Stream course diversion works, open channel construction and manhole

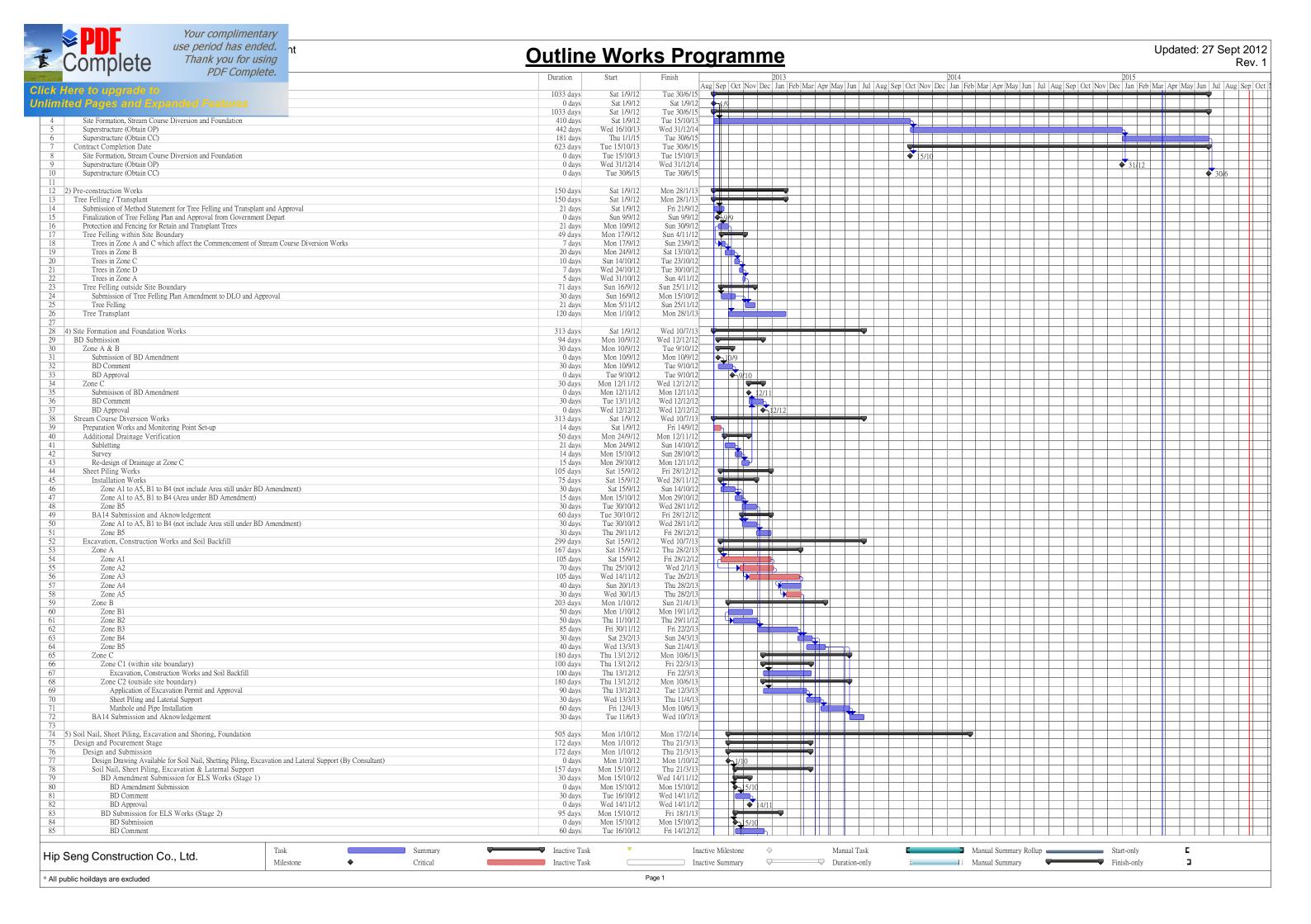
carried out within this reporting period.

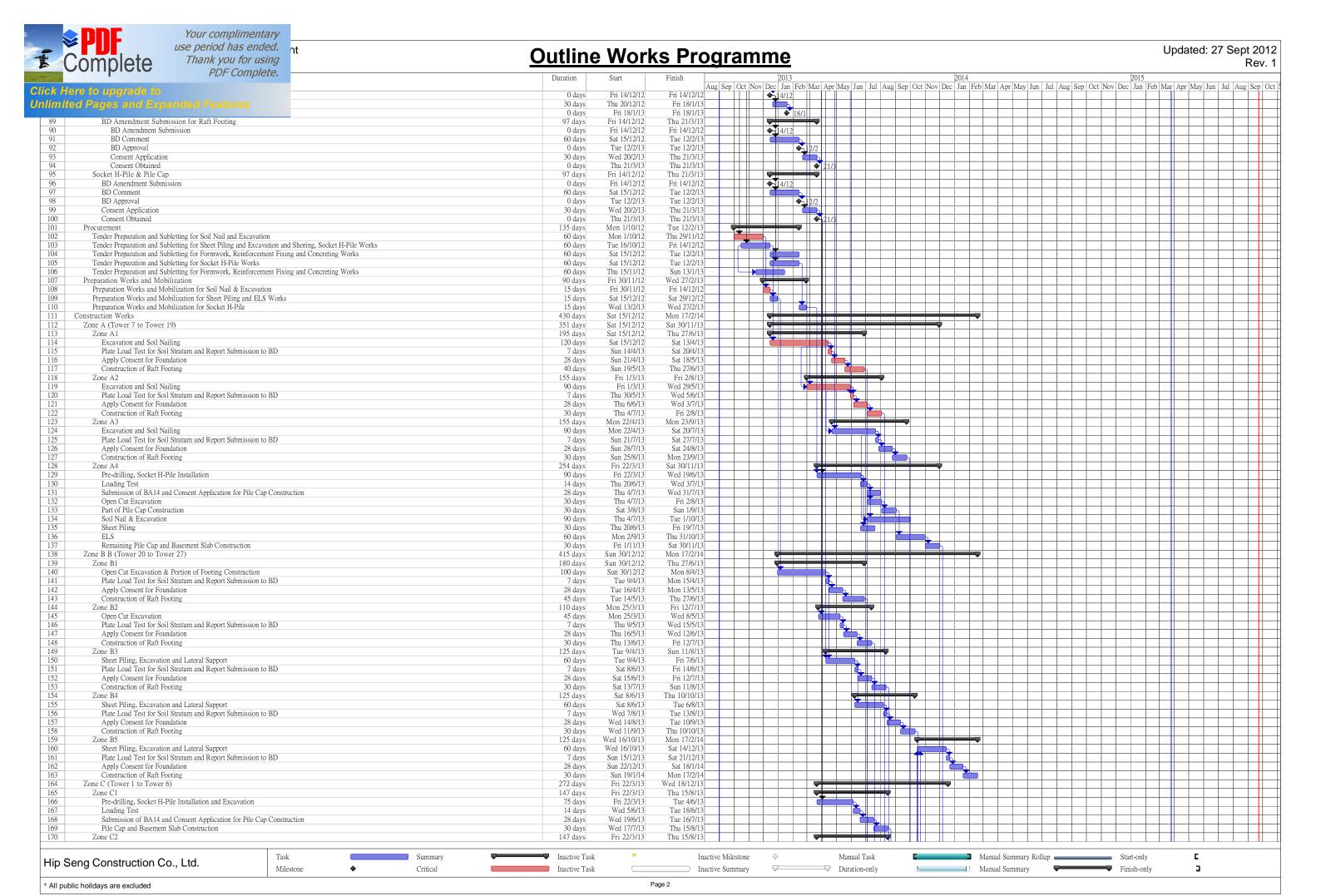
Regular site meetings and inspection audits led by the seniors for discussing site environmental matters were held among Contractor and the ET on weekly basis. Also monthly site meeting and inspection audits with the above parties and IEC were carried out on 29th of Nov 2012.

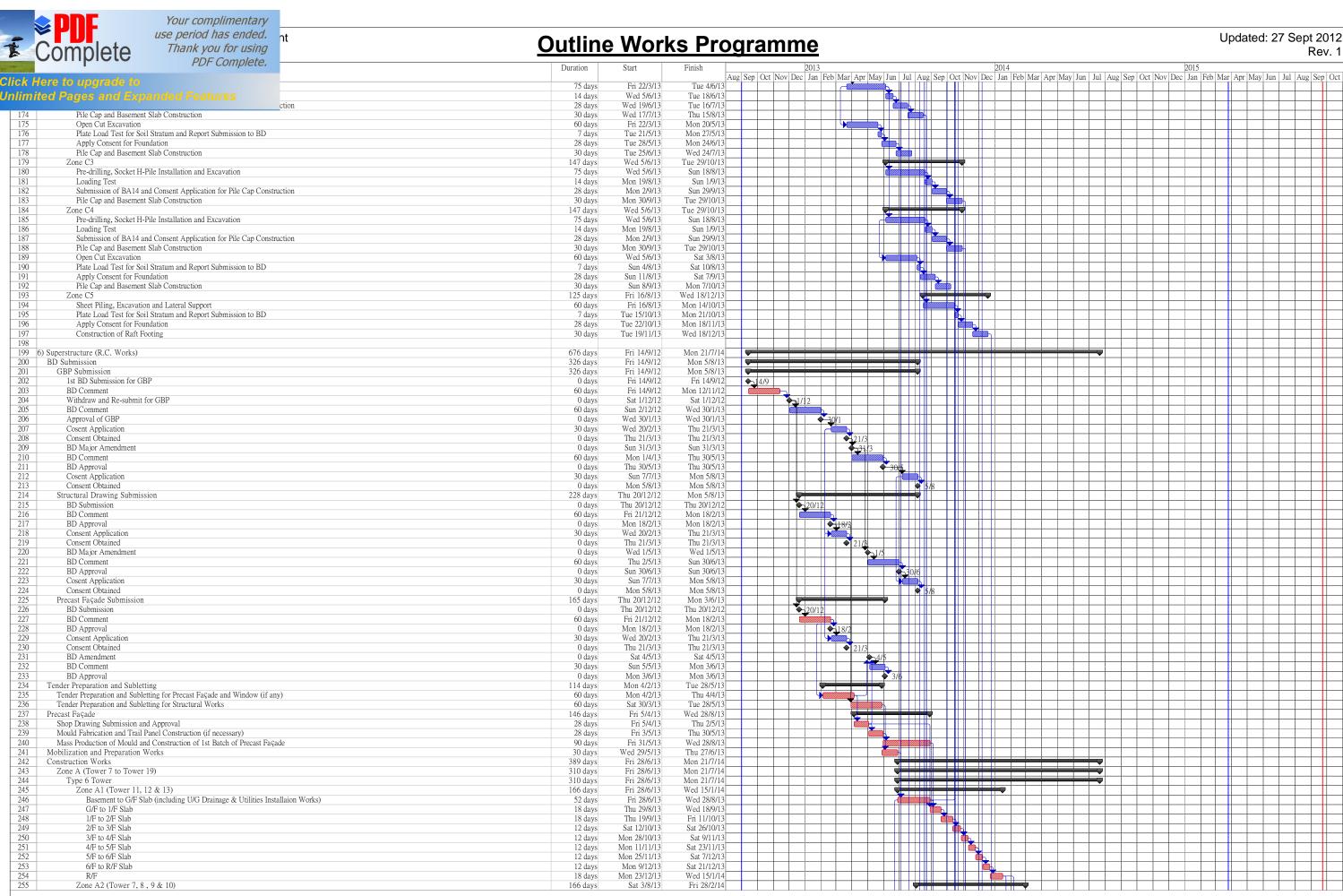
construction & concrete pipe installation were major site activities being

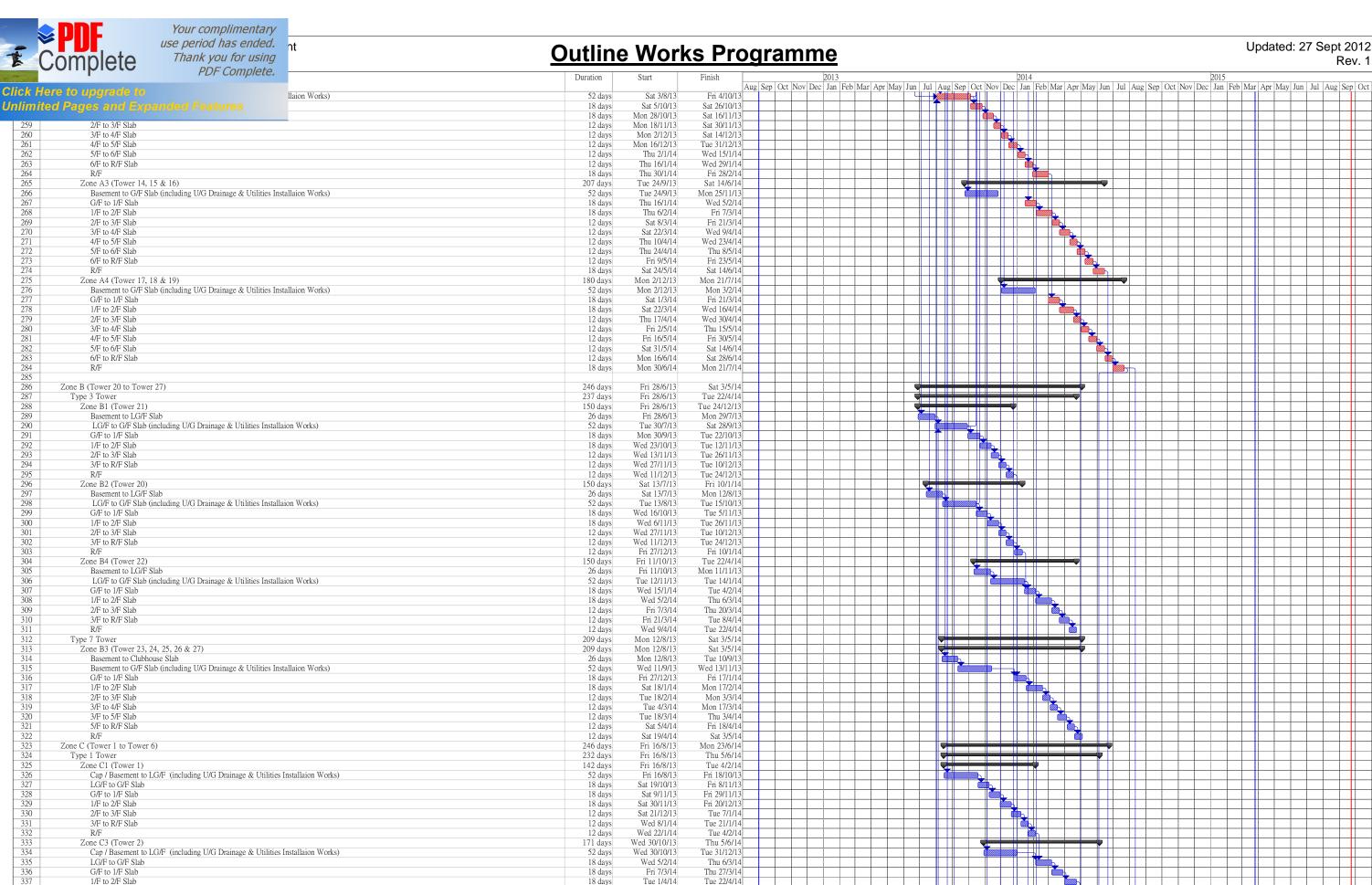
No exceedance was recorded for Noise and Air during the reporting period.

Impact monitoring for water quality was conducted. Total 2 non-compliance events of water quality were recorded in this reporting period. For the non-compliance events, ET has arranged site investigation for the abnormal incidents on the same day and found that no construction activities had been carried out at the river bed and could disturbed the water quality. It was believed that the exceedances of water quality were not affected by construction activities. Besides, the Turbidity and SS were also recorded relatively high at control station. Therefore, the exceedances of Turbidity and SS were believed to be mainly caused by the adverse weather condition and natural fluctuation.

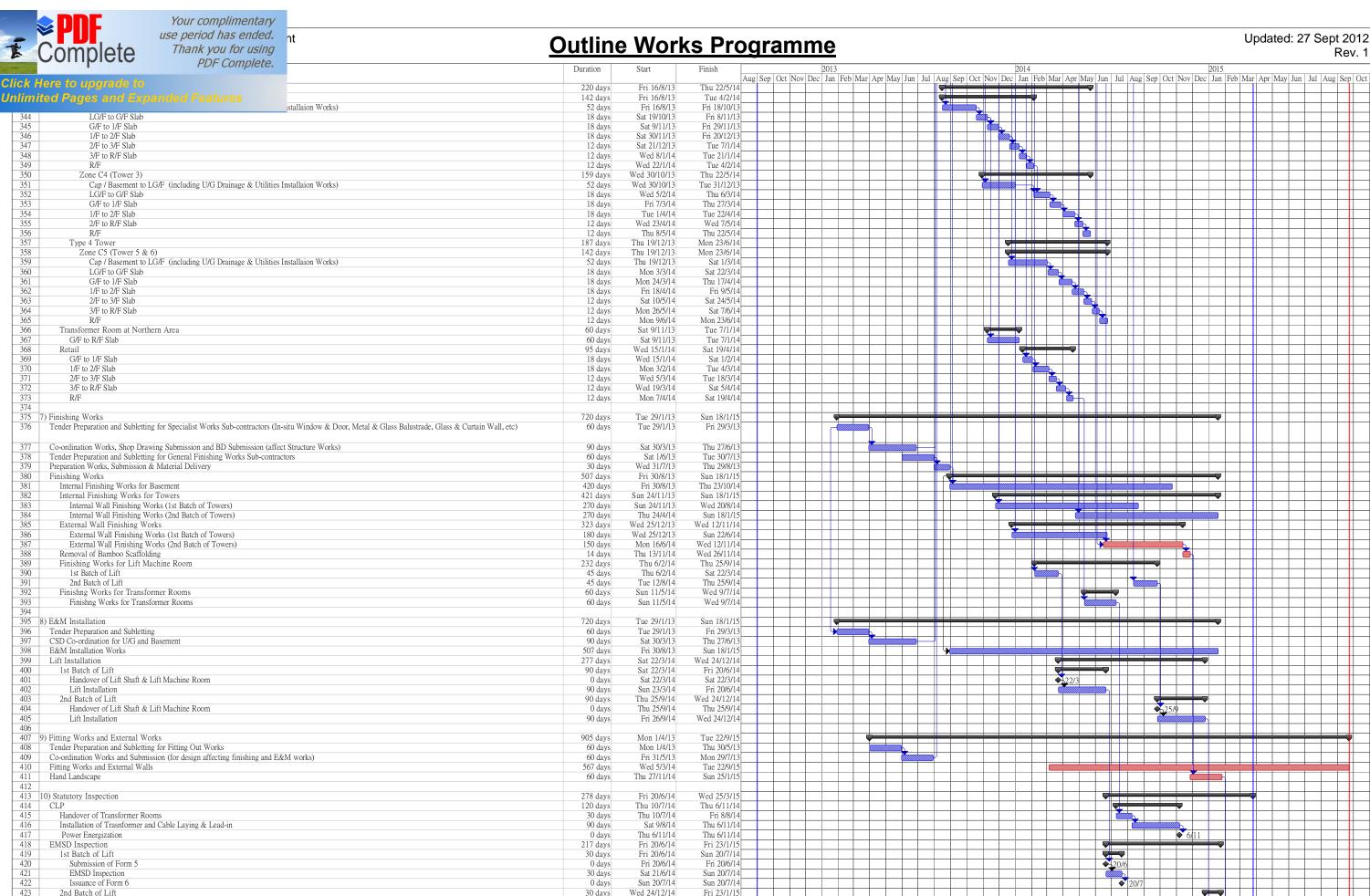

Also, there was no notification of summons, formal prosecution or complaints being recorded during the reporting period.


ET has reminded the contractor to provide environmental pollution control measures wherever necessary, and to keep a good environmental management at site practice.

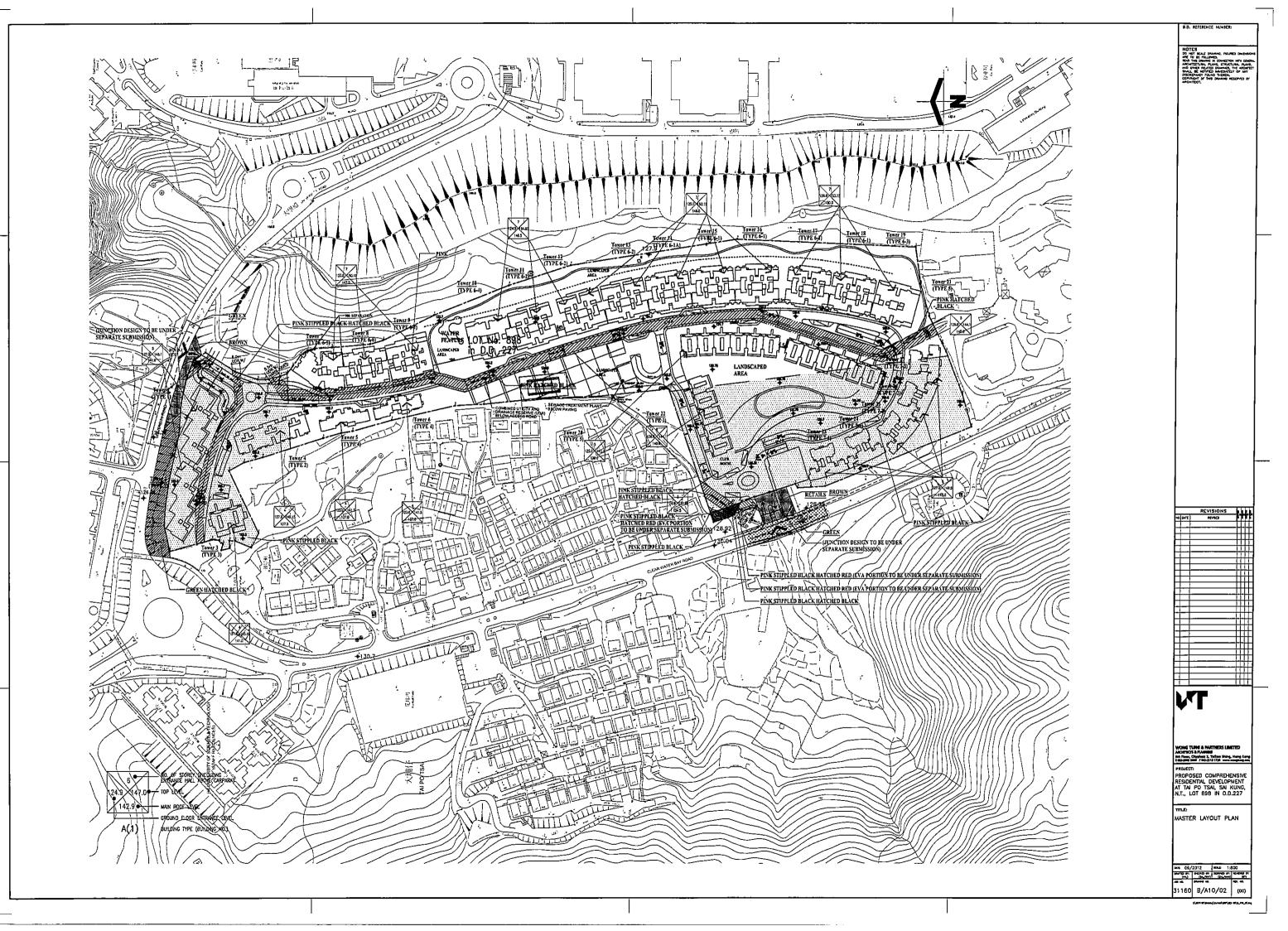

The ET will continue to implement the environmental monitoring & audit programme in accordance with the PS and Environmental Permit requirements.


Appendix A

Construction Master Programme and Site Location Plan



335 336 337 338 2/F to 3/F Slab 12 days Wed 23/4/14 Wed 7/5/14 339 340 3/F to R/F Slab 12 days Thu 8/5/14 Thu 22/5/14 12 days Fri 23/5/14 Thu 5/6/14 Task Inactive Task Manual Task Start-only Hip Seng Construction Co., Ltd. Milestone 3 All public hoildays are excluded



Outline Works Programme

Updated: 27 Sept 2012 Rev. 1

PDI Complete.	Duration	Start	Finish	2013	2014	2015
lick Here to upgrade to			I	Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun	Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun	Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct I
	30 days	Thu 25/12/14	Fri 23/1/15			
Inlimited Pages and Expanded Features	0 days	Fri 23/1/15	Fri 23/1/15			♦ 123/1
	35 days	Sun 25/1/15	Sun 1/3/15			
428 Submission of Form 501	0 days	Sun 25/1/15	Sun 25/1/15			25/1
429 FS Inspection	7 days	Mon 9/2/15	Sun 15/2/15			
430 Issuance of FS Certificate	0 days	Sun 1/3/15	Sun 1/3/15			1/3
431 BD Inspection	38 days	Sun 15/2/15	Wed 25/3/15			
432 Submission of BA13	0 days	Sun 15/2/15	Sun 15/2/15			15/2
433 BD Inspection	7 days	Mon 23/2/15	Sun 1/3/15			
434 Withdraw and Re-submit for BA13	0 days	Sun 1/3/15	Sun 1/3/15			1 3
435 BD Re-inpection	3 days	Mon 9/3/15	Wed 11/3/15			
436 Issuance of OP Certificate	0 days	Wed 25/3/15	Wed 25/3/15			25/3
437						
438 11) Works After OP	181 days	Thu 26/3/15	Tue 22/9/15			
439 Works after OP	181 days	Thu 26/3/15	Tue 22/9/15			

Appendix B

Key Personal Contact Information Chart

Key Personal Contact Information Chart

Organization Name Role		Name	Telephone	Fax
				Number
ENVIRON Hong Kong	Independent	Mr. Tong	3743 0705	3548 6988
Limited	Environmental	Cheng		
	Checker (IEC)			
Hip Hing Construction	Main Contractor	Mr. Martin	3110 2608	3110 2606
Company Limited		Wong		
Environmental Pioneers	Environmental Team	Ms. Goldie	2556 9172	2856 2010
& Solutions Limited	(ET)	Fung		

Appendix C

Calibration Certificates for Measuring Instruments

Certificate No. 21290

Page 1 of 2 Pages

Customer: Environmental Pioneers and Solutions Limited

Address: Flat A, 19/F., Chai Wan Industrial Centre Building, 21 Lee Chung Street, Chai Wan, HK.

Order No.: Q20468

Date of receipt

2-Mar-12

Item Tested

Description: Sound Level Calibrator

Manufacturer: Svantek

Model: SV30A

Serial No.

: 7908

Test Conditions

Date of Test: 5-Mar-12

Supply Voltage

Ambient Temperature :

 $(23 \pm 3)^{\circ}C$

Relative Humidity: (50 ± 25) %

Test Specifications

Calibration check.

Ref. Document/Procedure: F21, Z02.

Test Results

All results were within the IEC 942 Class 1 specification.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No.	Description	Cert. No.	Traceable to
S014	Spectrum Analyzer	13535	NIM-PRC & SCL-HKSAR
S024	Sound Level Calibrator	15136	NIM-PRC & SCL-HKSAR
S041	Universal Counter	15610	SCL-HKSAR
S206	Sound Level Meter	16338	SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI). The test results apply to the above Unit-Under-Test only

Calibrated by :

P. F. Wong

Approved by

Dorothy Cheuk

This Certificate is issued by:

Hong Kong Calibration Ltd.

Date:

ar-12

Hong Rong Calibration Etc.

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong.

Tel; 2425 8801 Fax: 2425 8646

Certificate No. 21290

Page 2 of 2 Pages

Results:

1. Level Accuracy

UUT Nominal Value (dB)	Measured Value (dB)	IEC 942 Class 1 Spec.
94	94.10	± 0.3 dB
114	114.18	

Uncertainty: ± 0.1 dB

2. Frequency

UUT Nominal Value	Measured Value	IEC 942 Class 1 Spec.
1 kHz	1.000 kHz	± 2 %

Uncertainty: $\pm 3.6 \times 10^{-6}$

3. Level Stability: 0.0 dB

IEC 942 Class 1 Spec. : ± 0.1 dB

Uncertainty: ± 0.01 dB

4. Total Harmonic Distortion : < 0.8 %

IEC 942 Class 1 Spec. : < 3 % Uncertainty : ± 2.3 % of reading

Remark: 1. UUT: Unit-Under-Test

2. The above measured values are the mean of 3 measurements.

3. The uncertainty claimed is for a confidence probability of not less than 95%.

4. Atmospheric Pressure: 1001 hPa.

----- END -----

Certificate No. 21289 Page 1 of 3 Pages

Customer: Environmental Pioneers and Solutions Limited

Address: Flat A, 19/F., Chai Wan Industrial Centre Building, 21 Lee Chung Street, Chai Wan, HK.

Order No.: Q20468 Date of receipt : 2-Mar-12

Item Tested

Description: Digital Sound Level Meter

Manufacturer: SVAN

Model : 949 Serial No. : 8571

Test Conditions

Date of Test: 5-Mar-12 Supply Voltage : --

Ambient Temperature : $(23 \pm 3)^{\circ}$ C Relative Humidity : (50 ± 25) %

Test Specifications

Calibration check.

Ref. Document/Procedure: Z01.

Test Results

All results were within the IEC 651 Type 1 & IEC 804 Type 1 specification after adjustment.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No. Description Cert. No. Traceable to

S017A Multi-Function Generator 07279 SCL-HKSAR

S024 Sound Level Calibrator 15136 NIM-PRC & SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI).

The test results apply to the above Unit-Under-Test only

Calibrated by :

Approved by .

porotny Cheuk

This Certificate is issued by: Hong Kong Calibration Ltd.

Certificate No. 21289

Page 2 of 3 Pages

Results:

1. SPL Accuracy

	UUT Setting				UUT Reading (dB)		
Level Range	Octave Filter	Weight	Response	Applied Value (dB)	Before	After	
			<u>-</u> I		adjust	adjust	
105 dB	OFF	A	Fast	94.0	*92.0	94.0	
			Slow]		94.0	
		C	Fast			94.0	
130 dB	OFF	A	Fast	94.0		94.0	
			Slow	1		94.0	
		С	Fast			94.0	
	OFF	A	Fast	114.0		114.1	
			Slow			114.1	
		С	Fast			114.1	

IEC 651 Type 1 Spec. : \pm 0.7 dB

Uncertainty: ± 0.1 dB

2. Level Stability: 0.0 dB

IEC 651 Type 1 Spec. : ± 0.3 dB

Uncertainty: ± 0.01 dB

3. Linearity

3.1 Level Linearity

3.1 Level L	incarity			
UUT Range	Applied			IEC 651 Type 1 Spec.
(dB)	Value (dB)	UUT Reading (dB)	Variation (dB)	(inside Primary)
130	114.0	114.0	0.0	± 0.7 dB
	104.0	104.0	0.0	
	94.0	94.0 (Ref.)		
105	84.0	84.0	0.0	
	74.0	74.0	0.0	
	64.0	64.0	0.0	
	54.0	54.0	0.0	<u> </u>

Uncertainty: $\pm 0.1 \text{ dB}$

Certificate No. 21289

Page 3 of 3 Pages

3.2 Differential level linearity

UUT Range (dB)	Applied Value (dB)	UUT Read	ing (dB)	Variation (dB)	IEC 651 Type 1 Spec.
130	84.0	84.0		0.0	± 0.4 dB
	94.0	94.0	(Ref.)	0.0	
	95.0	95.0		0.0	± 0.2 dB

Uncertainty: $\pm 0.1 \text{ dB}$

4. Frequency Weighting

A weighting

A weighting		
Frequency	Attenuation (dB)	IEC 651 Type 1 Spec.
31.5 Hz	-40.4	- 39.4 dB, ± 1.5 dB
63 Hz	-27.2	$-26.2 \text{ dB}, \pm 1.5 \text{ dB}$
125 Hz	-17.0	- 16.1 dB, \pm 1 dB
250 Hz	-9.4	- $8.6 dB, \pm 1 dB$
500 Hz	-2.6	$-3.2 \text{ dB}, \pm 1 \text{ dB}$
1 kHz	0.0 (Ref)	0 dB, ± 1 dB
2 kHz	+1.8	$+ 1.2 \text{ dB}, \pm 1 \text{ dB}$
4 kHz	+1.8	+ 1.0 dB, ± 1 dB
8 kHz	-0.4	$-1.1 \text{ dB}, +1.5 \text{ dB} \sim -3 \text{ dB}$
16 kHz	-6.3	- 6.6 dB, + 3 dB ~ - ∞

Uncertainty: ± 0.1 dB

Time Averaging 5.

Applied Burst duty Factor	Applied Leq. Value (dB)	UUT Reading (dB)	IEC 804 Type 1 Spec.
continuous	50.0		
1/10	50.0	50.2	± 0.5 dB
1/10 ²	50.0	49.8	
1/10 ³	50.0	50.1	± 1.0 dB
1/104	50.0	49.9	

Uncertainty: ± 0.1 dB

Remarks: 1. UUT: Unit-Under-Test

- 2. The uncertainty claimed is for a confidence probability of not less than 95%.
- 3. Atmospheric Pressure: 1 001 hPa.
- 4. *Out of specification.

----- END -----

FACTORY CALIBRATION DATA OF THE SVAN 955 No. 27301

with preamplifier SVANTEK type SV12L No. 25734 and microphone ACO type 7052E No. 49607

1. CALIBRATION

(electrical)

LEVEL METER; Characteristic: Z; fsin=1000Hz

Nominal result [dB]	Indication [dB]	Error [dB]
114.0	114.0	0.0

2. CALIBRATION'

(acoustical)

LEVEL METER; Range: High; Reference frequency: 1000Hz; Sound Pressure Level: 113.89 dB.

Characteristic	Correct value [dB]	Indication [dB]	Error [dB]
Z	113.63	113.56	-0.07
Α	113.63	113.58	-0.05
C	113.63	113.58	-0.05

Calibration measured with the microphone ACO type 7052E No. 49607, Calibration factor: 1.16 dB.

3. LINEARITY TEST* (electrical)

LEVEL METER; Characteristic: A; f sin= 31.5 Hz

Nominal result [dB]	25.0	26.0	28.0	30.0	40.0	60.0	80.0	98.0
Error [dB]	0.2	0.1	0.1	0.1	0.0	0.0	0.0	0.0

LEVEL METER; Characteristic: A; f sin= 1000 Hz

Nominal result [dB]	25.0	26.0	28.0	30.0	40.0	60.0	80.0	100.0	120,0	138.0
Error [dB]	0.1	0.1	0.1	0.0	0.0	-0.1	0.0	0.0	0.0	0.0

LEVEL METER; Characteristic: A; f sin= 8000 Hz

Nominal result [dB]	25.0	26.0	28.0	30.0	40.0	60.0	80.0	100.0	120.0	137.0
Error [dB]	0.2	0.2	0.2	0.1	0.0	0.0	0.0	0.0	0.0	0.0

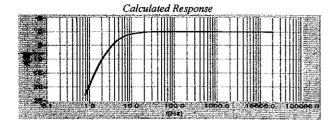
4. TONEBURST RESPONSE* (electrical)

LEVEL METER; Characteristic: A; f sin = 4000 Hz; Burst duration: 2s;

Steady level nominal result = 135dB

Result	Detector	Duration [ms]	1000	500	200	100	50	20	10	5	2	1	0.5	0.25
	Fast	Indication [dB]	135.0	134,9	134.0	132.4	130.2	126.7	123,8	120.9	117.0	113.9	110.9	107.9
MAX.		Error [dB]	0.0	0.0	0.0	0.0	0.0	0.0	-0.I	0.0	0,0	-0.1	-0.1	-0.1
102.54	Slow	Indication [dB]	132.9	130,9	127.5	124.7	121.8	117.9	114,9	111.9	107.9		-	
	01011	Error [dB]	-0.1	0,0	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-		-
SEL	_	Indication [dB]	135.0	132.0	128.0	125.0	122,0	118.0	115.0	112.0	108.0	104.9	101.9	98.9
<u> </u>		Error [dB]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-0.1	-0.1

Steady level nominal result = 55dB


Result	Detector	Duration [ms]	1000	500	200	100	50	20	10	5	2
	Fast	Indication [dB]	55.0	54.9	54.0	52.4	50,1	46.7	43.8	40,9	36.9
MAX	1 ast	Error [dB]	0,0	0.0	0.0	0.0	-0.1	0,0	-0,1	0,0	-0.1
WIT LA	Slow	Indication [dB]	52.9	50.8	47.4	44.6	41.7	37.8	34.8	31,9	27.8
	3104	Error [dB]	-0.1	-0.1	-0.2	-0.2	-0.2	-0.2	-0.2	-0.1	-0.2
SEL	_	Indication [dB]	55,0	51.9	48.0	45.0	42.0	38.0	35,0	32.0	28.0
JEL	i -	Error [dB]	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Steady level nominal result = 35dB

Result	Detector	Duration [ms]	1000	500	200
	Fast	Indication [dB]	35.0	34.9	34.0
MAX		Error [dB]	0,0	-0.0	0.0
IVIAA	Slow	Indication [dB]	32.9	30,8	27.4
	SIUW	Error [dB]	-0.1	-0.1	-0.2
SEL		Indication [dB]	35.0	32.0	28,1
JEL	-	Error [dB]	0.0	0.0	0.1

5. FREQUENCY RESPONSE* (electrical)

LEVEL METER; Characteristic: Z; Nominal result (1kHz)=135 dB;

Measured Response (f-frequency, A-attenuation)

f [Hz]	A [dB]	f [Hz]	A [dB]	f [Hz]	A [dB]
10	0.9	63	0.0	4000	0.0
12.5	0,6	125	0.0	8000	0.1
16	0.4	250	0.0	16000	0.0
20	0,3	500	0.0	.20000	0.2
25	0.2	1000	0,0		
31.5	0.1	2000	0.0		

All frequencies are nominal center values for the 1/3 octave band

6. INTERNAL NOISE LEVEL* (electrical - compensated)

LEVEL METER; Backlight - off; Calibration factor: 0dB

Characteristic	Z	Α	С
Indication [dB]	≤ 25	≤ 14	≤ 15

^{*} measured with preamplifier SVANTEK type SV12L No. 25734.

7. INTERNAL NOISE LEVEL (acoustical - compensated)

LEVEL METER; Range: LOW; Backlight - off

	_	_
Characteristic		Α
Indication [dB]		<15

Noise measured in special chamber, with reference microphone G.R.A.S type 40AN No. 73421

ENVIRONMENTAL CONDITIONS

Temperature	Relative humidity	Ambient pressure
24.2 °C	14 %	1027 hPa

TEST EQUIPMENT

Item	Manufacturer	Model	Serial no.	Description
1.	SVANTEK	SVAN 401	87	Signal generator
2.	SVANTEK	SVAN 912A	6120	Sound & Vibration Analyser
3.	KEITHLEY	2000	0910165	Digital multimeter
4.	SVANTEK	SV30A	5369	Acoustic calibrator
5.	SVANTEK	ST02	-	Microphone equivalent electrical impedance (18pF)

CONFORMITY & TEST DECLARATION

- 1. Herewith Svantek company declares that this instrument has been calibrated and tested in compliance with the internal ISO9001 procedures and meets all specification given in the Manual(s) or respectively surpass them.
- 2. The acoustic calibration was performed using the Sound Calibrator and is traceable to the GUM (Central Office of Measures) reference standard sound level calibrator type 4231 No 2292773.
- 3. The information appearing on this sheet has been compiled specifically for this instrument. This form is produced with advanced equipment & procedures which permit comprehensive quality assurance verification of all data supplied herein.
- 4. This calibration sheet shall not be reproduced except in full, without written permission of the SVANTEK Ltd.

Calibration specialist: Anna Talecka ...

Walecka.

Test date: 2012-01-31

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:

MR ALLEN CHAN

CLIENT:

ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

ADDRESS:

FLAT 19A, CHAI WAN INDUSTRIAL CENTRE BUILDING,

20 LEE CHUNG STREET.

CHAI WAN. HONG KONG.

PROIECT:

WORK ORDER:

HK1227602

LABORATORY:

HONG KONG

DATE RECEIVED:

15/10/2012

DATE OF ISSUE: 16/10/2012

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:

Conductivity, Dissolved Oxygen, pH, Temperature and Turbidity

Description: Brand Name: Multi-meter TOA-DKK WMS-24

Model No.:

685940

Serial No.: Equipment No.:

Date of Calibration: 15 October, 2012

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre

1-3 Wing Yip Street

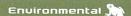
Kwai Chung HONG KONG Phone:

852-2610 1044

Fax:

852-2610 2021

Email:


hongkong@alsglobal.com

Mr Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 3

ADDRESS 11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong PHONE +852 2610 1044 FAX +852 2610 2021 ALS TECHNICHEM (HK) PTY LTD Part of the ALS Laboratory Group A Campbell Brothers Limited Company

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:

HK1227602 16/10/2012

Date of Issue: Client:

ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

Description:

Brand Name:

Multi-meter TOA-DKK

Model No.: Serial No.: WMS-24 685940

Equipment No.:

--

Date of Calibration:

15 October, 2012

Date of next Calibration:

15 January, 2013

Parameters:

Conductivity

Method Ref: APHA (21st edition), 2510B

Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)
146.9	141.0	-4.0
6667	6460	-3.1
12890	12900	0.1
58670	59000	0.6
	Tolerance Limit (%)	10.0

Dissolved Oxygen

Method Ref: APHA (21st edition), 45000: G

	, ,		
	Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
	3.55	3.42	-0.13
- 1	5.01	5.00	-0.01
-	7.95	7.93	-0.02
-			
		Tolerance Limit (±mg/L)	0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

	.,	
Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.00	0.00
7.0	7.00	0.00
10.0	10.03	0.03
	Tolerance Limit (+unit)	0.20

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.0	10.1	0.1
23.5	23.5	0.0
40.5	40.7	0.2
	Tolerance Limit (°C)	2.0

Mr Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:

HK1227602

Date of Issue:

16/10/2012

Client:

ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

Description:

Multi-meter

Brand Name:

TOA-DKK

Model No.: Serial No.: WMS-24 685940

Equipment No.:

Date of Calibration:

15 October, 2012

Date of next Calibration:

15 January, 2013

Parameters:

Turbidity

Method Ref: APHA (21st edition), 2130B

Method Ref. Al IIA (21st edition), 21sob		
Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.0	
4	3.7	-7.5
40	41.8	4.5
80	82.6	3.2
400	432.8	8.2
800	793.6	-0.8
	Tolerance Limit (±%)	10.0

Mr Chan Kwok Fai, Godfrey Laboratory Manager Hong Kong

SIBATA SCIENTIFIC TECHNOLOGY LTD.

1-1-62, Nakane, Soka, Saitama, 340-0005 Japan

TEL: 048-933-1582 FAX: 048-933-1591

CALIBRATION CERTIFICATE

Date: January 11, 2012

Equipment Name

: Laser Dust Monitor, Model LD-3B

Code No.

: 080000-42

Quantity

: 1 unit

Serial No.

: 095027

Sensitivity

: 0.001 mg/m3

Sensitivity Adjustment

: 463 CPM

Scale Setting

: January 5, 2012

We hereby certify that the avobe mentioned instrment has been calibrated satisfactory.

Sincerely

SIBATA SCIENTIFIC TECHNOL

Kentaro Togo

Overseas Sales Division

Certificate No. 24181

Page

1 of 2 Pages

Customer: Environmental Pioneers and Solutions Limited

Address : Flat A, 19/F., Chai Wan Industrial Centre Building, 21 Lee Chung Street, Chai Wan, HK.

Order No.: Q21644

Date of receipt

3-Jul-12

Item Tested

Description: Laser Dust Monitor

Manufacturer: SIBATA

Model

: LD-3B

Serial No.

: 954254

Test Conditions

Date of Test:

5-Jul-12 ~13-Jul-12

Supply Voltage

Ambient Temperature:

 $(23 \pm 3)^{\circ}$ C

Relative Humidity: (50 ± 25) %

Test Specifications

Calibration check.

Ref. Document/Procedure: Manufacturer recommended method (gravimetric), Z28.

Test Results

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No.	Description	Cert. No.	Traceable to
S136B	Stop Watch	13184	NIM-PRC
S156	Analytical Balance	00352	NIM-PRC
S201	Std. Test Dust	61291	NIST
S207B	Std. Flowmeter	20588	NIM-PRC
	•		

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI). The test results apply to the above Unit-Under-Test only

Calibrated by :

Approved by:

23-Jul-12

Date:

This Certificate is issued by:

Hong Kong Calibration Ltd.

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong.

Tel: 2425 8801 Fax: 2425 8646

The copyright of this certificate is owned by Hong Kong Calibration Ltd.. It may not be reproduced except in full.

Certificate No. 24181

Page 2 of 2 Pages

Results:

Applied Value (µg/m³)	UUT Measured Value (K=1.3) (μg/m³), (cpm)
1225.3	1266.2

Remarks: 1. UUT: Unit-Under-Test

- 2. Uncertainty \pm 15 %, for a confidence probability of not less than 95%.
- 3. The results were the mean of 3 measurements,
- 4. ISO 12103-1 A1 respirable standard test dust was used for the calibration.
- 5. The K-Factor had been adjusted from 2.0 to 1.3

TISCH ENVIROMENTAL, INC.
145 SOUTH MIAMI AVE.
VILLAGE OF CLEVES, ÖH 45002
513.467.9000
877.263.7610 TOLL FREE
513.467.9009 FAX
WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Ma		Rootsmeter S/N		138320	Ta (K) -	294
Operator		Orifice I.D		1483	Pa (mm) -	754.38
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1	NA	NA	1.00	1.4140	3.2	2.00
2	NA	NA	1.00	0.9960	6.4	4.00
3	NA	NA	1.00	0.8910	7.9	5.00
4	NA	NA	1.00	0.8510	8.7	5.50
5	NA	NA	1.00	0.7020	12.8	8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
1.0018 0.9976 0.9955 0.9945 0.9890	0.7085 1.0016 1.1173 1.1686 1.4088	1.4185 2.0061 2.2429 2.3524 2.8371		0.9957 0.9915 0.9894 0.9884 0.9830	0.7042 0.9955 1.1105 1.1615 1.4003	0.8829 1.2486 1.3959 1.4641 1.7657
Qstd slo intercep coeffici v axis =	t (b) = ent (r) =	2.02742 -0.02027 0.99996 	 	Qa slope intercept coefficient v axis =	t (b) =	1.26953 -0.01262 0.99996

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa]

Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{ [SQRT H2O(Ta/Pa)] - b\}$

TSP Sampler Calibration

SITE

Location: Tai Po Tsai Sampler: TE-5170 MFC Date: October 31, 2012 (Serial # : 2039) Tech: Sam Wong

CONDITIONS Barometric Pressure (in Hg): 40.10 Corrected Pressure (mm Hg): 1019 Temperature (deg F): Temperature (deg K): 295 Average Press. (in Hg): 40.10 Corrected Average (mm Hg): 1019 Average Temp. (deg F): Average Temp. (deg K):

CALIBRATION ORIFICE

Make: Tisch Qstd Slope: 2.02742 Model: TE-5025A Qstd Intercept: -0.02027 Serial#: 1483 Date Certified: May 17, 2012

CALIBRATIONS							
Plate or Test #	H2O (in)	Qstd (m3/min)	I (chart)	IC (corrected)	LINEAR REGRESSION		
1	12.00	1.997	60.0	69.79	Slope =	35.9930	
2	10.20	1.842	54.0	62.81	Intercept =	-2.8377	
3	8.00	1.633	48.0	55.83	Corr. coeff.=	0.9991	
4	5.20	1.318	38.0	44.20			
5	3.20	1.036	30.0	34.89	<pre># of Observations:</pre>	5	

Calculations

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

= sampler slope = sampler intercept m

b

= chart response

Tav = daily average temperature Pav = daily average pressure

TSP Sampler Calibration

SITE

Location: Tai Po Tsai Date: October 31, 2012 Sampler: TE-5170 MFC (Serial # : 1959) Tech: Sam Wong

CONDITIONS Barometric Pressure (in Hg): 40.10 Corrected Pressure (mm Hg): 1019 Temperature (deg F): 72 Temperature (deg K): 295 Average Press. (in Hg): 40.10 Corrected Average (mm Hg): 1019 Average Temp. (deg F): 72 Average Temp. (deg K): 295

CALIBRATION ORIFICE Make: Tisch Qstd Slope: 2.02742 Model: TE-5025A Qstd Intercept: -0.02027 Serial#: 1483 Date Certified: May 17, 2012

CALIBRATIONS							
Plate or Test #	H2O (in)	Qstd (m3/min)	I (chart)	IC (corrected)	LINEAR REGRESSION		
1	12.40	2.030	60.0	69.79	Slope =	34.8244	
2	10.60	1.878	54.0	62.81	Intercept =	-1.8685	
3	8.30	1.663	48.0	55.83	Corr. coeff.=	0.9985	
4	5.40	1.343	38.0	44.20			
5	3.20	1.036	30.0	34.89	# of Observations:	5	

Calculations

```
Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]
IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]
Qstd = standard flow rate
IC = corrected chart response
I = actual chart response
m = calibrator Qstd slope
b = calibrator Qstd intercept
Ta = actual temperature during calibration (deg K)
Pa = actual pressure during calibration (mm Hg)
Tstd = 298 \text{ deg K}
Pstd = 760 mm Hg
For subsequent calculation of sampler flow:
1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)
   = sampler slope
= sampler intercept
m
b
   = chart response
Tav = daily average temperature
Pav = daily average pressure
```

TSP Sampler Calibration

SITE

Location: Tai Po Tsai Date: October 31, 2012 Sampler: TE-5170 MFC (Serial # : 2042) Tech: Sam Wong

CONDITIONS Barometric Pressure (in Hg): 40.10 Corrected Pressure (mm Hg): 1019 Temperature (deg F): 72 Temperature (deg K): 295 Average Press. (in Hg): 40.10 Corrected Average (mm Hg): 1019 Average Temp. (deg F): 72 Average Temp. (deg K): 295

CALIBRATION ORIFICE Make: Tisch Qstd Slope: 2.02742 Model: TE-5025A Qstd Intercept: -0.02027 Serial#: 1483 Date Certified: May 17, 2012

CALIBRATIONS							
Plate or Test #	H2O (in)	Qstd (m3/min)	I (chart)	IC (corrected)	LINEAR REGRESSION		
1	12.40	2.030	57.0	66.30	Slope =	32.5711	
2	10.20	1.842	51.0	59.32	Intercept =	0.0922	
3	7.90	1.622	46.0	53.50	Corr. coeff.=	0.9985	
4	5.30	1.331	38.0	44.20			
5	3.30	1.052	29.0	33.73	# of Observations:	5	

Calculations

```
Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]
IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]
Qstd = standard flow rate
IC = corrected chart response
I = actual chart response
m = calibrator Qstd slope
b = calibrator Qstd intercept
Ta = actual temperature during calibration (deg K)
Pa = actual pressure during calibration (mm Hg)
Tstd = 298 \text{ deg K}
Pstd = 760 mm Hg
For subsequent calculation of sampler flow:
1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)
   = sampler slope
= sampler intercept
m
b
   = chart response
Tav = daily average temperature
Pav = daily average pressure
```

TSP Sampler Calibration

SITE

Location: Tai Po Tsai Date: October 31, 2012 Sampler: TE-5170 MFC (Serial # : 2040) Tech: Sam Wong

CONDITIONS Barometric Pressure (in Hg): 40.10 Corrected Pressure (mm Hg): 1019 Temperature (deg F): 72 Temperature (deg K): 295 Average Press. (in Hg): 40.10 Corrected Average (mm Hg): 1019 Average Temp. (deg F): 72 Average Temp. (deg K): 295

CALIBRATION ORIFICE Make: Tisch Qstd Slope: 2.02742 Model: TE-5025A Qstd Intercept: -0.02027 Serial#: 1483 Date Certified: May 17, 2012

CALIBRATIONS						
Plate or Test #	H2O (in)	Qstd (m3/min)	I (chart)	IC (corrected)	LINEAR REGRESSION	
1	12.20	2.014	58.0	67.46	Slope =	32.7409
2	10.20	1.842	52.0	60.48	Intercept =	0.8828
3	7.80	1.612	46.0	53.50	Corr. coeff.=	0.9993
4	5.20	1.318	38.0	44.20		
5	3.20	1.036	30.0	34.89	<pre># of Observations:</pre>	5

Calculations

```
Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]
IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]
Qstd = standard flow rate
IC = corrected chart response
I = actual chart response
m = calibrator Qstd slope
b = calibrator Qstd intercept
Ta = actual temperature during calibration (deg K)
Pa = actual pressure during calibration (mm Hg)
Tstd = 298 \text{ deg K}
Pstd = 760 mm Hg
For subsequent calculation of sampler flow:
1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)
   = sampler slope
= sampler intercept
m
b
  = chart response
Tav = daily average temperature
Pav = daily average pressure
```

Appendix D

Construction Noise Monitoring Data

大成環境科技拓展有限公司

Environmental Pioneers and Solutions Limited

Noise Monitoring Data Sheet

Monitoring Loca	tion	N1	N2	N3	N4
Monitoring Method		Freefield	Freefield	Freefield	Façade
Date of Monitori	ng	2/11/2012	2/11/2012	2/11/2012	2/11/2012
Weather Conditi	ion	Sunny	Sunny	Sunny	Sunny
Measurement S	tart Time (hh:mm)	13:40	13:02	10:35	11:08
Measurement T	ime Length (mins)	30 r	nins	30 r	nins
SLM Model & S	/N	SVAN	N 955	SVAN	N 955
Wind Speed (m/	/s)	<5, South	<5, South	<5, North	<5, Northeast
	L _{eq} (dB(A))	58.7	61.1	58.9	61.2
Measurement Results	L ₁₀ (dB(A))	62.2	63.7	61.0	64.4
- too and	L ₉₀ (dB(A))	49.6	55.8	54.4	53.8
Major Construct During Monitorir	ion Noise Source(s) ng	Nil	Nil	Nil	Nil
Other Noise Sou Monitoring	urce(s) During	Background noise	Background noise	Background noise	Background noise Traffic noise

<u>Name</u>

<u>Signature</u>

<u>Date</u>

Perpared by:

Lai Chi Hang

2/11/2012

大成環境科技拓展有限公司 Environmental Pioneers and Solutions Limited

Noise Monitoring Data Sheet

Monitoring Location		N1	N2	N3	N4
Monitoring Method		Freefield	Freefield	Freefield	Façade
Date of Monitori	ng	8/11/2012	8/11/2012	8/11/2012	8/11/2012
Weather Conditi	ion	Sunny	Sunny	Sunny	Sunny
Measurement S	tart Time (hh:mm)	13:38	13:01	10:01	9:08
Measurement T	ime Length (mins)	30 r	nins	30 r	nins
SLM Model & S	/N	SVAI	N 955	SVAI	N 955
Wind Speed (m/	/s)	<5, East	<5, East	<5, East	<5, East
	L _{eq} (dB(A))	58.9	60.9	57.9	62.3
Measurement Results	L ₁₀ (dB(A))	62.4	64.1	61.5	63.9
. too and	L ₉₀ (dB(A))	49.1	55.9	55.0	53.9
Major Construct During Monitorir	ion Noise Source(s) ng	Nil	Nil	Nil	Nil
Other Noise Source(s) During Monitoring		Background noise	Background noise	Background noise	Background noise Traffic noise

Name Signature Date

Perpared by: Lai Chi Hang 8/11/2012

大成環境科技拓展有限公司

Environmental Pioneers and Solutions Limited

Noise Monitoring Data Sheet

Monitoring Location		N1	N2	N3	N4
Monitoring Method		Freefield	Freefield	Freefield	Façade
Date of Monitori	ng	14/11/2012	14/11/2012	14/11/2012	14/11/2012
Weather Conditi	ion	Sunny	Sunny	Sunny	Sunny
Measurement S	tart Time (hh:mm)	13:41	13:05	10:43	11:17
Measurement T	ime Length (mins)	30 r	nins	30 r	nins
SLM Model & S	/N	SVAN	N 955	SVAN	N 955
Wind Speed (m/	/s)	<5, East	<5, East	<5, East	<5, East
	L _{eq} (dB(A))	60.9	57.8	61.4	61.0
Measurement Results	L ₁₀ (dB(A))	64.2	59.3	62.9	63.7
rtodulto	L ₉₀ (dB(A))	51.9	53.0	56.4	54.1
Major Construct During Monitorir	ion Noise Source(s) ng	Nil	Nil	Nil	Nil
Other Noise Sou Monitoring	urce(s) During	Background noise	Background noise	Background noise	Background noise Traffic noise

<u>Name</u> <u>Signature</u> <u>Date</u>

Perpared by: Lai Chi Hang 14/11/2012

大成環境科技拓展有限公司

Environmental Pioneers and Solutions Limited

Noise Monitoring Data Sheet

Monitoring Location		N1	N2	N3	N4
Monitoring Method		Freefield	Freefield	Freefield	Façade
Date of Monitori	ng	20/11/2012	20/11/2012	20/11/2012	20/11/2012
Weather Conditi	ion	Overcast	Overcast	Overcast	Overcast
Measurement S	tart Time (hh:mm)	13:55	13:07	10:44	11:17
Measurement Ti	ime Length (mins)	30 r	nins	30 r	mins
SLM Model & S/	/N	SVAN	N 955	SVAN	N 955
Wind Speed (m/	/s)	<5, NorthEast	<5, NorthEast	<5, NorthEast	<5, NorthEast
	L _{eq} (dB(A))	63.3	61.9	64.6	60.4
Measurement Results	L ₁₀ (dB(A))	65.3	64.1	67.9	63.1
. roound	L ₉₀ (dB(A))	60.3	55.6	55.6	50.9
Major Construct During Monitorin	ion Noise Source(s) ng	Nil	Nil	Nil	Nil
Other Noise Sou Monitoring	urce(s) During	Background noise	Background noise	Background noise	Background noise Traffic noise

<u>Name</u>

<u>Signature</u>

<u>Date</u>

Perpared by:

Lai Chi Hang

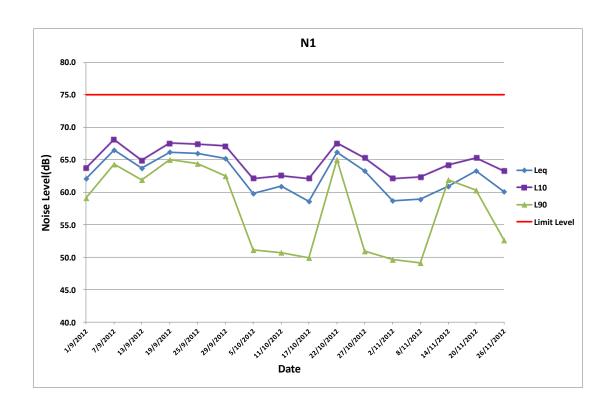
20/11/2012

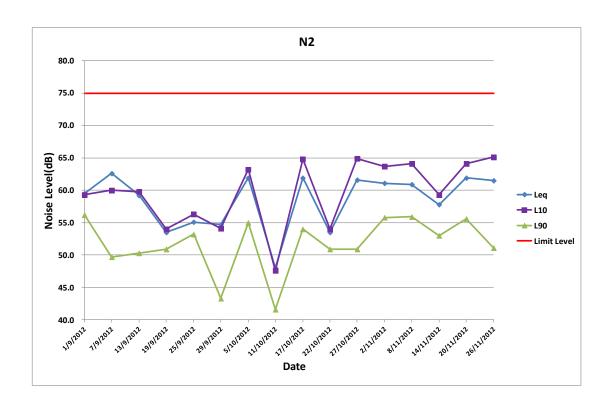
大成環境科技拓展有限公司 Environmental Pioneers and Solutions Limited

Noise Monitoring Data Sheet

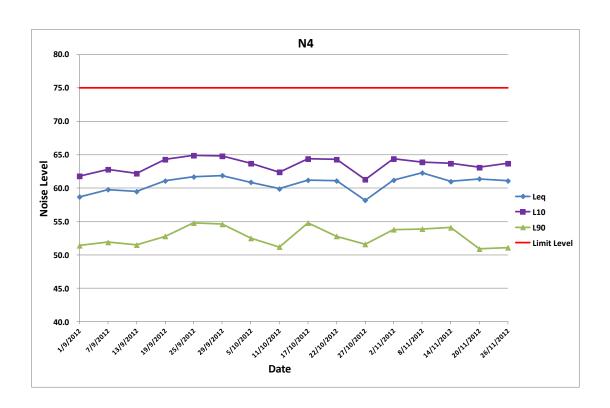
Monitoring Loca	tion	N1	N2	N3	N4
Monitoring Method		Freefield	Freefield	Freefield	Façade
Date of Monitori	ng	26/11/2012	26/11/2012	26/11/2012	26/11/2012
Weather Conditi	ion	Overcast	Overcast	Overcast	Overcast
Measurement S	tart Time (hh:mm)	13:41	13:07	10:05	10:41
Measurement Ti	ime Length (mins)	30 r	nins	30 r	nins
SLM Model & S/	/N	SVAN	N 955	SVAN	N 955
Wind Speed (m/	/s)	<5,North	<5,North	<5,North	<5,North
	L _{eq} (dB(A))	60.1	61.5	51.9	60.1
Measurement Results	L ₁₀ (dB(A))	63.3	65.1	53.9	63.7
rtodulto	L ₉₀ (dB(A))	52.6	51.1	48.2	51.1
Major Construct During Monitorir	ion Noise Source(s) ng	Nil	Nil	Nil	Nil
Other Noise Source(s) During Monitoring		Background noise	Background noise	Background noise	Background noise Traffic noise

<u>Name</u>


<u>Signature</u>


<u>Date</u>


Perpared by:


Lai Chi Hang

26/11/2012

Appendix E

Water Quality Monitoring Data

Date of Sampling: 2/11/2012

Weather: Sunny

Monitoring Location	W1	W2
Time (hhmm)	11:00	11:30
Water Depth (m)	<1	<1
pH value	7.40	7.00
Temperature (°C)	24.7	24.1
Turbidity (NTU)	4.0	2.3
DO (mg/L)	6.57	7.00
DO Saturation (%)	69%	95%
Suspended Solids (mg/L)	3.0	2.0

Remark or Observation :			
- -			
-			
-			
-			
	<u>Name</u>	<u>Signature</u>	<u>Date</u>
		Andry Trant	
Prepared By :	Tsang King Yeun	78)	2/11/2012

Date of Sampling :	5/11/2012
Weather:	Sunny

Monitoring Location	W1	W2
Time (hhmm)	10:00	10:30
Water Depth (m)	<1	<1
pH value	7.40	7.40
Temperature (°C)	25.1	24.9
Turbidity (NTU)	4.7	2.9
DO (mg/L)	6.40	7.30
DO Saturation (%)	68%	78%
Suspended Solids (mg/L)	4.0	3.0

Remark or Observation:			
-			
-			
-			
	<u>Name</u>	<u>Signature</u>	<u>Date</u>
		Andy Trant	
Prepared By :	Tsang King Yeun	<i>J</i>	5/11/2012

Date of Sampling :	7/11/2012
Weather:	Sunny

Monitoring Location	W1	W2
Time (hhmm)	10:00	10:30
Water Depth (m)	<1	<1
pH value	7.10	7.30
Temperature (°C)	25.6	25.9
Turbidity (NTU)	2.90	1.1
DO (mg/L)	7.10	7.60
DO Saturation (%)	70%	79%
Suspended Solids (mg/L)	6.0	2.0

Remark or Observation :			
-			
-			
-			
	<u>Name</u>	<u>Signature</u>	<u>Date</u>
		Andy Trant	
Prepared By :	Tsang King Yeun	<i>y</i> .	7/11/2012

Date of Sampling: 9/11/2012

Weather: Sunny

Monitoring Location	W1	W2
Time (hhmm)	10:00	10:30
Water Depth (m)	<1	<1
pH value	7.50	7.30
Temperature (°C)	24.2	24.7
Turbidity (NTU)	4.2	2.3
DO (mg/L)	7.90	7.60
DO Saturation (%)	78%	72%
Suspended Solids (mg/L)	8.0	3.0

Remark or Observation :			
- -			
-			
-			
-			
	<u>Name</u>	<u>Signature</u>	<u>Date</u>
		Andry Tranto	
Prepared By :	Tsang King Yeun	<i>J</i>	9/11/2012

Date of Sampling: 12/11/2012

Weather: Sunny

Monitoring Location	W1	W2
Time (hhmm)	10:00	10:30
Water Depth (m)	<1	<1
pH value	7.10	7.10
Temperature (°C)	25.7	25.2
Turbidity (NTU)	4.0	2.9
DO (mg/L)	8.00	7.80
DO Saturation (%)	84%	82%
Suspended Solids (mg/L)	2.0	2.0

Remark or Observation :			
-			
-			
-			
	<u>Name</u>	<u>Signature</u>	<u>Date</u>
		Andy Trant	
Prepared By :	Tsang King Yeun	<i>J</i> '	12/11/2012

Date of Sampling: 14/11/2012

Weather: Sunny

Monitoring Location	W1	W2
Time (hhmm)	10:00	10:30
Water Depth (m)	<1	<1
pH value	7.70	7.00
Temperature (°C)	25.1	25.3
Turbidity (NTU)	4.1	1.0
DO (mg/L)	6.10	7.07
DO Saturation (%)	69%	79%
Suspended Solids (mg/L)	3.0	2.0

Remark or Observation:			
•			
	<u>Name</u>	<u>Signature</u>	<u>Date</u>
		Andy Trant	
Prepared By :	Tsang King Yeun	<i>J</i>	14/11/2012

Date of Sampling: 16/11/2012

Weather: Sunny

Monitoring Location	W1	W2
Time (hhmm)	10:00	10:30
Water Depth (m)	<1	<1
pH value	7.30	7.40
Temperature (°C)	25.1	25.3
Turbidity (NTU)	5.2	3.7
DO (mg/L)	6.50	7.40
DO Saturation (%)	74%	81%
Suspended Solids (mg/L)	18.0	3.0

Remark or Observation:			
_			
_			
-			
_			
	<u>Name</u>	<u>Signature</u>	<u>Date</u>
Prenared Ry .	Tsang King Valin	Andy Trant	16/11/2012

Date of Sampling :	19/11/2012	
Weather:	Sunny	

Monitoring Location	W1	W2
Time (hhmm)	10:00	10:30
Water Depth (m)	<1	<1
pH value	7.00	7.40
Temperature (°C)	25.7	25.9
Turbidity (NTU)	7.6	1.9
DO (mg/L)	6.90	8.50
DO Saturation (%)	79%	95%
Suspended Solids (mg/L)	3.0	10.0

Remark or Observation :			
- -			
-			
-			
-			
	<u>Name</u>	<u>Signature</u>	<u>Date</u>
		Andy Trant	
Prepared By :	Tsang King Yeun		19/11/2012

Date of Sampling :	21/11/2012	
Weather:	Sunny	

Monitoring Location	W1	W2
Time (hhmm)	10:00	10:30
Water Depth (m)	<1	<1
pH value	7.50	7.20
Temperature (°C)	24.3	24.9
Turbidity (NTU)	6.2	4.2
DO (mg/L)	8.90	7.90
DO Saturation (%)	97%	89%
Suspended Solids (mg/L)	2.0	2.0

Remark or Observation:			
- -			
-			
-			
	<u>Name</u>	<u>Signature</u>	<u>Date</u>
		Andy Tranto	
Prepared By :	Tsang King Yeun	<i>J</i>	21/11/2012

Date of Sampling: 23/11/2012

Weather: Sunny

Monitoring Location	W1	W2
Time (hhmm)	10:00	10:30
Water Depth (m)	<1	<1
pH value	7.50	7.00
Temperature (°C)	25.8	25.9
Turbidity (NTU)	82.5	92.5
DO (mg/L)	7.70	8.10
DO Saturation (%)	80%	89%
Suspended Solids (mg/L)	27.0	27.0

Remark or Observation:			
- -			
-			
-			
-			
	<u>Name</u>	<u>Signature</u>	<u>Date</u>
		Andy Tranto	
Prepared By :	Tsang King Yeun	<i>J</i>	23/11/2012

Date of Sampling: 26/11/2012

Weather: Sunny

Monitoring Location	W1	W2
Time (hhmm)	10:00	10:30
Water Depth (m)	<1	<1
pH value	7.40	7.50
Temperature (°C)	25.9	25.4
Turbidity (NTU)	41.0	57.0
DO (mg/L)	7.90	8.30
DO Saturation (%)	84%	92%
Suspended Solids (mg/L)	18.0	19.0

Remark or Observation:			
-			
-			
-			
	<u>Name</u>	<u>Signature</u>	<u>Date</u>
		Andy Trant	
Prepared By :	Tsang King Yeun	<i>J</i>	26/11/2012

Date of Sampling: 28/11/2012

Weather: Sunny

Monitoring Location	W1	W2
Time (hhmm)	10:00	10:30
Water Depth (m)	<1	<1
pH value	7.10	7.40
Temperature (°C)	25.6	24.3
Turbidity (NTU)	7.0	2.7
DO (mg/L)	8.30	8.00
DO Saturation (%)	88%	87%
Suspended Solids (mg/L)	2.0	2.0

Remark or Observation :			
-			
-			
-			
-			
	<u>Name</u>	<u>Signature</u>	<u>Date</u>
		Andy Trant	
Prepared By :	Tsang King Yeun	<u> </u>	28/11/2012

Date of Sampling : 30/11/2012

Weather : Rainny

Monitoring Location	W1	W2
Time (hhmm)	10:00	10:30
Water Depth (m)	<1	<1
pH value	7.50	7.40
Temperature (°C)	25.2	24.7
Turbidity (NTU)	2.6	1.4
DO (mg/L)	8.12	7.80
DO Saturation (%)	84%	79%
Suspended Solids (mg/L)	3.0	9.0

Remark or Observation:			
-			
-			
-			
	<u>Name</u>	<u>Signature</u>	<u>Date</u>
		Andry Trant	
Prepared By :	Tsang King Yeun	<i>J</i>	30/11/2012

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client Page Laboratory : ENVIRONMENTAL PIONEERS & SOLUTIONS : ALS Technichem HK Pty Ltd : 1 of 3 LTD Work Order Contact Contact : MR ALLEN CHAN : Chan Kwok Fai, Godfrey : HK1229369 Address Address : FLAT A, 19/F, CHAI WAN INDUSTRIAL CENTRE : 11/F., Chung Shun Knitting Centre, 1 - 3 Wing BUILDING, Yip Street, Kwai Chung, N.T., Hong Kong 20 LEE CHUNG STREET, **CHAI WAN HONG KONG** E-mail E-mail : allenchan@epsl.com.hk : Godfrev.Chan@alsglobal.com Telephone Telephone : +852 2558 7699 : +852 2610 1044 Facsimile Facsimile : +852 2610 2021 ----Date Samples Received Project Quote number : TAI PO TSAI . ____ : 05-NOV-2012 Issue Date Order number : 13-NOV-2012 C-O-C number No. of samples received : 4 Site No. of samples analysed : 4 . ----

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is:

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: **HK1229369**

Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Water sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories Position Authorised results for

Fung Lim Chee, Richard General Manager Inorganics

Page Number : 2 of 3

Client : ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

Work Order HK1229369

ALS

Analytical Results

Sub-Matrix: WATER	Client sample ID		Client sample ID	W1	W2	W1	W2	
		Client sa	mpling date / time	[02-NOV-2012]	[02-NOV-2012]	[05-NOV-2012]	[05-NOV-2012]	
Compound	CAS Number	LOR	Unit	HK1229369-001	HK1229369-002	HK1229369-003	HK1229369-004	
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		2	mg/L	3	<2	4	3	

Page Number : 3 of 3

Client : ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

Work Order HK1229369

Laboratory Duplicate (DUP) Report

Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)			
EA/ED: Physical and	d Aggregate Properties (QC	Lot: 2589022)									
HK1229242-002	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	<2	<2	0.0			
HK1229369-004	W2	EA025: Suspended Solids (SS)		2	mg/L	3	3	0.0			

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (MB) Report		Laboratory Con	trol Spike (LCS) and Labor	atory Control S _i	oike Duplicate (D	CS) Report	
					Spike Spike Recovery (%)		Recovery Limits (%)		RP	D (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties	(QC Lot: 2589022))									
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	100		85	113		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client Page Laboratory : ENVIRONMENTAL PIONEERS & SOLUTIONS : ALS Technichem HK Pty Ltd : 1 of 3 LTD Work Order Contact Contact : MR ALLEN CHAN : Chan Kwok Fai, Godfrey : HK1229902 Address Address : FLAT A, 19/F, CHAI WAN INDUSTRIAL CENTRE : 11/F., Chung Shun Knitting Centre, 1 - 3 Wing BUILDING, Yip Street, Kwai Chung, N.T., Hong Kong 20 LEE CHUNG STREET, **CHAI WAN HONG KONG** E-mail E-mail : allenchan@epsl.com.hk : Godfrev.Chan@alsglobal.com Telephone Telephone : +852 2558 7699 : +852 2610 1044 Facsimile Facsimile : +852 2610 2021 ----Date Samples Received Project Quote number : TAI PO TSAI . ____ : 09-NOV-2012 Issue Date Order number : 19-NOV-2012 C-O-C number No. of samples received : 4 Site No. of samples analysed : 4 . ----

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is:

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: **HK1229902**

Sample(s) were received in an ambient condition.

Water sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories Position Authorised results for

Fung Lim Chee, Richard General Manager Inorganics

Page Number : 2 of 3

Client : ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

Work Order HK1229902

ALS

Analytical Results

Sub-Matrix: WATER			Client sample ID	W1	W2	W1	W2	
		Client sa	mpling date / time	[07-NOV-2012]	[07-NOV-2012]	[09-NOV-2012]	[09-NOV-2012]	
Compound	CAS Number	LOR	Unit	HK1229902-001	HK1229902-002	HK1229902-003	HK1229902-004	
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		2	mg/L	6	<2	8	3	

Page Number : 3 of 3

Client : ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

Work Order HK1229902

Laboratory Duplicate (DUP) Report

Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)		
EA/ED: Physical ar	nd Aggregate Properties	s (QC Lot: 2596102)								
HK1229688-002	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	<2	<2	0.0		
HK1229861-004	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	71	73	2.4		
EA/ED: Physical ar	nd Aggregate Properties	s (QC Lot: 2596103)								
HK1229902-002	W2	EA025: Suspended Solids (SS)		2	mg/L	<2	<2	0.0		
HK1230089-010	Anonymous	EA025: Suspended Solids (SS)		2.0	mg/L	<2.0	<2.0	0.0		
EA/ED: Physical ar	nd Aggregate Properties	s (QC Lot: 2600763)								
HK1229863-006	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	47	47	0.0		
HK1229907-001	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	31	32	0.0		

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (MB) Report			Laboratory Con	trol Spike (LCS) and Labo	ratory Control Sp	oike Duplicate (DC	S) Report	
					Spike	Spike Re	covery (%)	Recovery	Limits (%)	RF	PD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QC	C Lot: 2596102)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	96.5		85	113		
EA/ED: Physical and Aggregate Properties (QC	C Lot: 2596103)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	99.0		85	113		
EA/ED: Physical and Aggregate Properties (QC	C Lot: 2600763)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	97.5		85	113		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client Page Laboratory : ENVIRONMENTAL PIONEERS & SOLUTIONS : ALS Technichem HK Pty Ltd : 1 of 3 LTD Work Order Contact Contact : MR ALLEN CHAN : Chan Kwok Fai, Godfrey : HK1230354 Address Address : FLAT A, 19/F, CHAI WAN INDUSTRIAL CENTRE : 11/F., Chung Shun Knitting Centre, 1 - 3 Wing BUILDING, Yip Street, Kwai Chung, N.T., Hong Kong 20 LEE CHUNG STREET, **CHAI WAN HONG KONG** E-mail E-mail : allenchan@epsl.com.hk : Godfrev.Chan@alsglobal.com Telephone Telephone : +852 2558 7699 : +852 2610 1044 Facsimile Facsimile : +852 2610 2021 ----Date Samples Received Project Quote number : TAI PO TSAI . ____ : 14-NOV-2012 Issue Date Order number : 22-NOV-2012 C-O-C number No. of samples received : 4 Site No. of samples analysed : 4 . ----

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is:

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: **HK1230354**

Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Water sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories Position Authorised results for

Fung Lim Chee, Richard General Manager Inorganics

Page Number : 2 of 3

Client : ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

Work Order HK1230354

ALS

Analytical Results

Sub-Matrix: WATER			Client sample ID	W1	W2	W1	W2	
		Client sa	mpling date / time	[12-NOV-2012]	[12-NOV-2012]	[14-NOV-2012]	[14-NOV-2012]	
Compound	CAS Number	LOR	Unit	HK1230354-001	HK1230354-002	HK1230354-003	HK1230354-004	
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		2	mg/L	<2	<2	3	<2	

Page Number : 3 of 3

Client : ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

Work Order HK1230354

Laboratory Duplicate (DUP) Report

Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)			
EA/ED: Physical and	d Aggregate Properties (QC	Lot: 2603493)									
HK1230272-001	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	<2	<2	0.0			
HK1230354-002	W2	EA025: Suspended Solids (SS)		2	mg/L	<2	<2	0.0			

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (MB) Report		Laboratory Cont	trol Spike (LCS) and Labor	atory Control Sp	oike Duplicate (D	CS) Report	
					Spike	Spike Recovery (%)		Recovery Limits (%)		RPD (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (Q	C Lot: 2603493)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	94.5		85	113		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client Page Laboratory : ENVIRONMENTAL PIONEERS & SOLUTIONS : ALS Technichem HK Pty Ltd : 1 of 3 LTD Work Order Contact Contact : MR ANDY TSANG : Chan Kwok Fai, Godfrey : HK1230631 Address Address : FLAT A, 19/F, CHAI WAN INDUSTRIAL CENTRE : 11/F., Chung Shun Knitting Centre, 1 - 3 Wing BUILDING, Yip Street, Kwai Chung, N.T., Hong Kong 20 LEE CHUNG STREET, **CHAI WAN HONG KONG** E-mail E-mail : KYTsang@epsl.com.hk : Godfrev.Chan@alsglobal.com Telephone Telephone : +852 2610 1044 Facsimile Facsimile : +852 2610 2021 Date Samples Received Project Quote number : TAI PO TSAI . ____ : 19-NOV-2012 Issue Date Order number : 27-NOV-2012 C-O-C number No. of samples received : 4 Site No. of samples analysed : 4 . ----

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is:

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: **HK1230631**

Sample(s) were received in an ambient condition.

Water sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories Position Authorised results for

Fung Lim Chee, Richard General Manager Inorganics

Page Number : 2 of 3

Client : ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

Work Order HK1230631

ALS

Analytical Results

Sub-Matrix: WATER			Client sample ID	W1	W2	W1	W2
		Client sa	ampling date / time	[16-NOV-2012]	[16-NOV-2012]	[19-NOV-2012]	[19-NOV-2012]
Compound	CAS Number	LOR	Unit	HK1230631-001	HK1230631-002	HK1230631-003	HK1230631-004
EA/ED: Physical and Aggregate Properties							
EA025: Suspended Solids (SS)		2	mg/L	18	3	3	10

Page Number : 3 of 3

Client : ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

Work Order HK1230631

Laboratory Duplicate (DUP) Report

Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)			
EA/ED: Physical and	Aggregate Properties (QC I	Lot: 2612993)									
HK1230631-001	W1	EA025: Suspended Solids (SS)		2	mg/L	18	19	5.9			
HK1230648-006	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	30	33	8.6			

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (MB) Report		Laboratory Cont	trol Spike (LCS) and Labor	atory Control Sp	oike Duplicate (D	CS) Report	
					Spike	Spike Recovery (%)		Recovery Limits (%)		RPD (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (Q	C Lot: 2612993)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	99.0		85	113		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client Page Laboratory : ENVIRONMENTAL PIONEERS & SOLUTIONS : ALS Technichem HK Pty Ltd : 1 of 3 LTD Work Order Contact Contact : MR ANDY TSANG : Chan Kwok Fai, Godfrey : HK1231144 Address Address : FLAT A, 19/F, CHAI WAN INDUSTRIAL CENTRE : 11/F., Chung Shun Knitting Centre, 1 - 3 Wing BUILDING, Yip Street, Kwai Chung, N.T., Hong Kong 20 LEE CHUNG STREET, **CHAI WAN HONG KONG** E-mail E-mail : KYTsang@epsl.com.hk : Godfrev.Chan@alsglobal.com Telephone Telephone : +852 2610 1044 Facsimile Facsimile : +852 2610 2021 Date Samples Received Project Quote number : TAI PO TSAI . ____ : 23-NOV-2012 Issue Date Order number : 04-DEC-2012 C-O-C number No. of samples received : 4 Site No. of samples analysed : 4 . ----

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is:

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: **HK1231144**

Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Water sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories Position Authorised results for

Fung Lim Chee, Richard General Manager Inorganics

Page Number : 2 of 3

Client : ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

Work Order HK1231144

ALS

Analytical Results

Sub-Matrix: WATER			Client sample ID	W1	W2	W1	W2	
		Client sa	mpling date / time	[21-NOV-2012]	[21-NOV-2012]	[23-NOV-2012]	[23-NOV-2012]	
Compound	CAS Number	LOR	Unit	HK1231144-001	HK1231144-002	HK1231144-003	HK1231144-004	
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		2	mg/L	2	<2	27	27	

Page Number : 3 of 3

Client : ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

Work Order HK1231144

Laboratory Duplicate (DUP) Report

Matrix: WATER					Lat	ooratory Duplicate (DUP) Re	port	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical and	Aggregate Properties (QC	Lot: 2615742)						
HK1231130-001	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	2	2	0.0
HK1231132-003	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	7	6	16.0
EA/ED: Physical and	Aggregate Properties (QC	Lot: 2624706)						
HK1231080-055	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	7	8	17.0
HK1231093-001	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	<2	<2	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (ME	3) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
					Spike	Spike Re	covery (%)	Recovery	Limits (%)	RF	PD (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
EA/ED: Physical and Aggregate Propert	ties (QC Lot: 2615742)											
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	98.0		85	113			
EA/ED: Physical and Aggregate Propert	ties (QC Lot: 2624706)											
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	99.5		85	113			

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client Page Laboratory : ENVIRONMENTAL PIONEERS & SOLUTIONS : ALS Technichem HK Pty Ltd : 1 of 3 LTD Work Order Contact Contact : MR ANDY TSANG : Chan Kwok Fai, Godfrey : HK1231496 Address Address : 11/F., Chung Shun Knitting Centre, 1 - 3 Wing : FLAT A, 19/F, CHAI WAN INDUSTRIAL CENTRE BUILDING, Yip Street, Kwai Chung, N.T., Hong Kong 20 LEE CHUNG STREET, **CHAI WAN HONG KONG** E-mail E-mail : KYTsang@epsl.com.hk : Godfrev.Chan@alsglobal.com Telephone Telephone : +852 2610 1044 Facsimile Facsimile : +852 2610 2021 Date Samples Received Project Quote number : TAI PO TSAI . ____ : 28-NOV-2012 Issue Date Order number : 06-DEC-2012 C-O-C number No. of samples received : 4 Site No. of samples analysed : 4 . ----

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is:

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: **HK1231496**

Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Water sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories Position Authorised results for

Fung Lim Chee, Richard General Manager Inorganics

Page Number : 2 of 3

Client : ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

Work Order HK1231496

ALS

Analytical Results

Sub-Matrix: WATER			Client sample ID	W1	W2	W1	W2	
		Client sa	mpling date / time	[26-NOV-2012]	[26-NOV-2012]	[28-NOV-2012]	[28-NOV-2012]	
Compound	CAS Number	LOR	Unit	HK1231496-001	HK1231496-002	HK1231496-003	HK1231496-004	
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		2	mg/L	18	19	2	2	

Page Number : 3 of 3

Client : ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

Work Order HK1231496

Laboratory Duplicate (DUP) Report

Matrix: WATER					Lai	boratory Duplicate (DUP) Re	port	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical and	I Aggregate Propertie	s (QC Lot: 2627220)						
HK1231423-003	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	26	26	0.0
HK1231440-006	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	7	8	20.1
EA/ED: Physical and	l Aggregate Propertie	s (QC Lot: 2629409)						
HK1231440-003	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	51	54	5.2
HK1231476-001	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	<2	<2	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (Mi	B) Report		Laboratory Con	trol Spike (LCS) and Lab	oratory Control Sp	ike Duplicate (DC	S) Report	
					Spike	Spike Red	covery (%)	Recovery	Limits (%)	RI	PD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties	(QC Lot: 2627220)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	100		85	113		
EA/ED: Physical and Aggregate Properties	(QC Lot: 2629409)										
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	95.5		85	113		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client Page Laboratory : ENVIRONMENTAL PIONEERS & SOLUTIONS : ALS Technichem HK Pty Ltd : 1 of 3 LTD Work Order Contact Contact : MR ALLEN CHAN : Chan Kwok Fai, Godfrey : HK1231804 Address Address : FLAT A, 19/F, CHAI WAN INDUSTRIAL CENTRE : 11/F., Chung Shun Knitting Centre, 1 - 3 Wing BUILDING, Yip Street, Kwai Chung, N.T., Hong Kong 20 LEE CHUNG STREET, **CHAI WAN HONG KONG** E-mail E-mail : allenchan@epsl.com.hk : Godfrev.Chan@alsglobal.com Telephone Telephone : +852 2558 7699 : +852 2610 1044 Facsimile Facsimile : +852 2610 2021 : ----Date Samples Received Project Quote number : TAI PO TSAI . ____ : 03-DEC-2012 Issue Date Order number : 11-DEC-2012 C-O-C number No. of samples received : 4 Site No. of samples analysed : 4 . ----

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is:

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: **HK1231804**

Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Water sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories Position Authorised results for

Fung Lim Chee, Richard General Manager Inorganics

Page Number : 2 of 3

Client : ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

Work Order HK1231804

ALS

Analytical Results

Sub-Matrix: WATER			Client sample ID	W1	W2	W1	W2	
		Client sa	mpling date / time	[30-NOV-2012]	[30-NOV-2012]	[03-DEC-2012]	[03-DEC-2012]	
Compound	CAS Number	LOR	Unit	HK1231804-001	HK1231804-002	HK1231804-003	HK1231804-004	
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		2	mg/L	3	9	12	12	

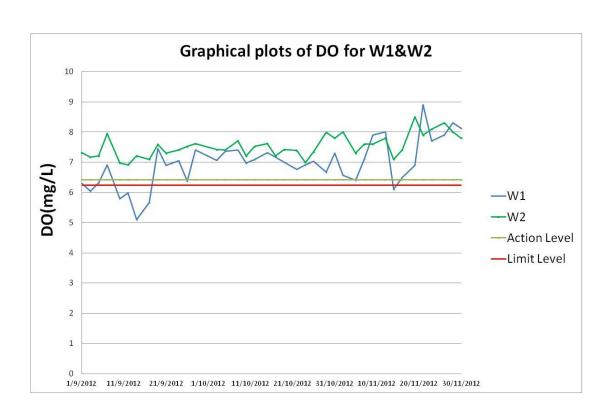
Page Number : 3 of 3

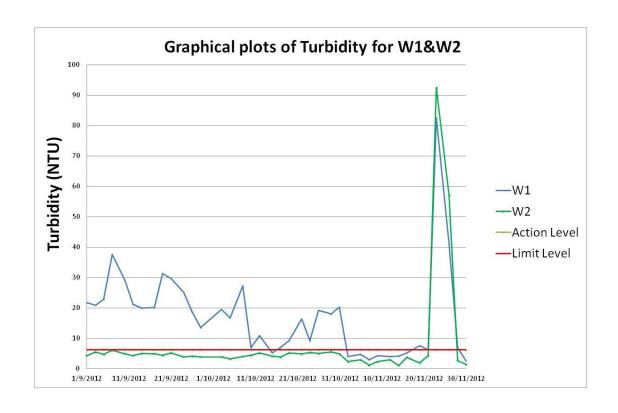
Client : ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

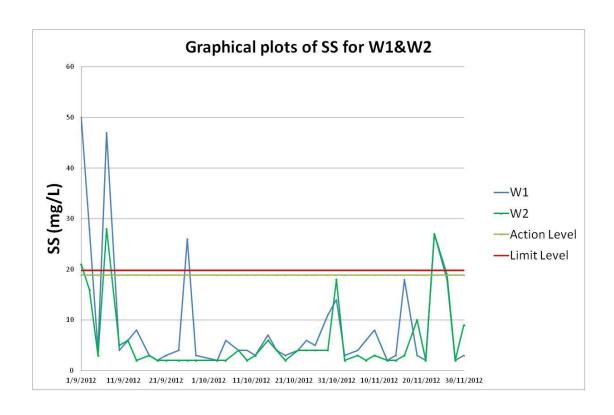
Work Order HK1231804

Laboratory Duplicate (DUP) Report

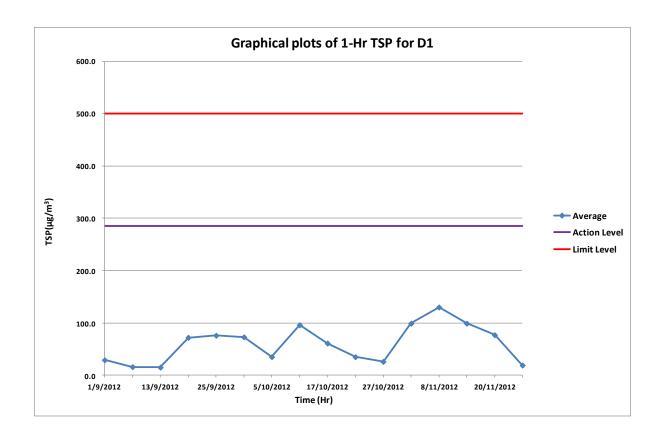
Matrix: WATER					Lai	ooratory Duplicate (DUP) Rep	port	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical and	d Aggregate Properties (QC	Lot: 2634200)						
HK1231776-002	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	6	4	40.0
HK1231804-003	W1	EA025: Suspended Solids (SS)		2	mg/L	12	13	9.3

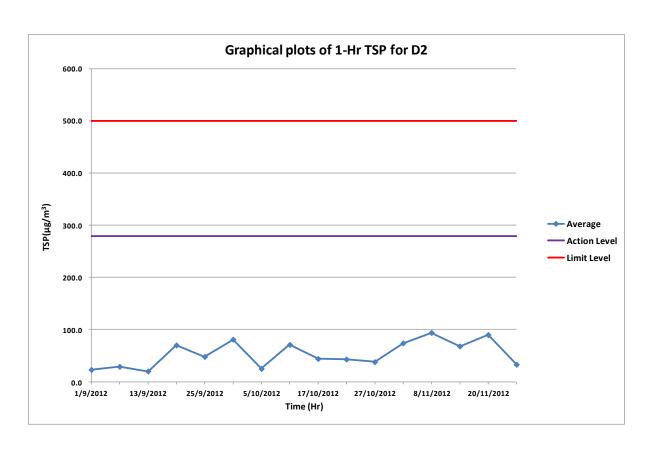

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

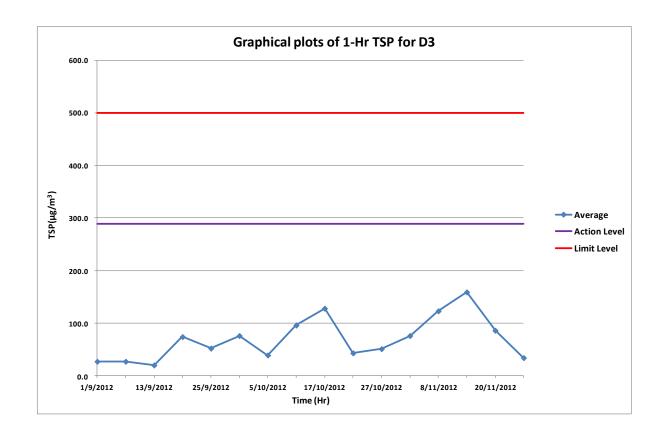

Matrix: WATER			Method Blank (MB) Report		Laboratory Cont	trol Spike (LCS) and Labora	atory Control Sp	oike Duplicate (D	CS) Report	
					Spike	Spike Recovery (%)		Recovery Limits (%)		RPD (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties	(QC Lot: 2634200))									
EA025: Suspended Solids (SS)		2	mg/L	<2	20 mg/L	95.5		85	113		

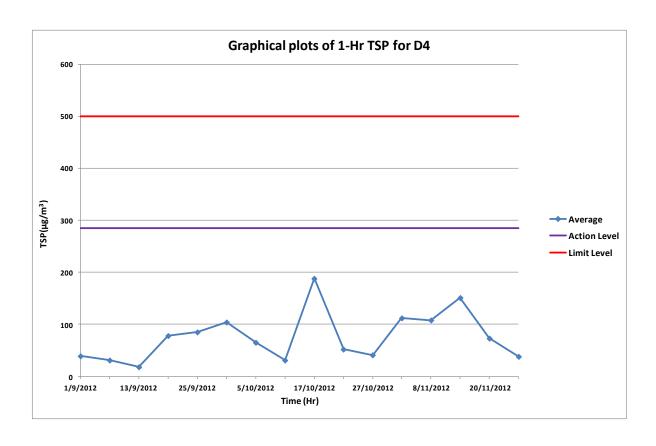

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.




Appendix F


Air Quality Monitoring Data

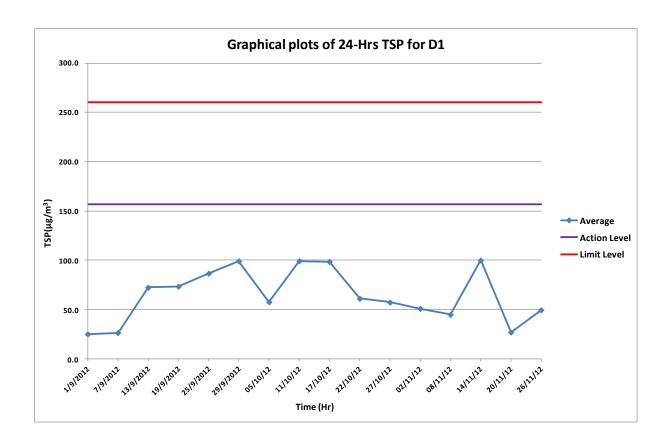

1-Hr TSP Monitoring Results

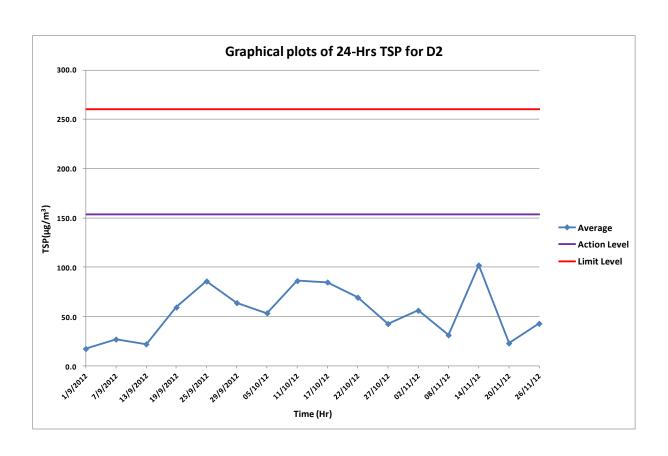
							Loca	tions					
			D1			D2			D3			D4	
Date	Duration	Start Time	TSP Level (µg/m3)	Average (µg/m3)									
		13:00	87		13:08	64		8:46	85		8:37	109	
2/11/2012	1 Hour	14:00	107	99	14:08	100	74	9:46	75	76	9:37	134	112
		15:00	104		15:08	59		10:46	67		10:37	92	
		13:05	135		13:02	102		8:39	115		8:29	99	
8/11/2012	1 Hour	14:05	138	130	14:02	103	94	9:39	129	123	9:29	115	108
		15:05	117		15:02	76		10:39	124		10:29	111	
		13:15	83		13:10	62		8:46	166		8:37	162	
14/11/2012	1 Hour	14:15	102	99	14:10	66	68	9:46	179	159	9:37	160	151
		15:15	112		15:10	75		10:46	133		10:37	131	
		13:07	77		13:02	90		8:48	91		8:36	79	
20/11/2012	1 Hour	14:07	76	77	14:02	88	90	9:48	86	86	9:36	75	73
		15:07	77		15:02	91		10:48	81		10:36	66	
		13:18	20		13:10	32		9:00	67		8:51	82	
26/11/2012	1 Hour	14:18	18	19	14:10	32	33	10:00	15	34	9:51	22	38
	20/11/2012 1 110th	15:18	18		15;10	34		11:00	21		10:51	11	

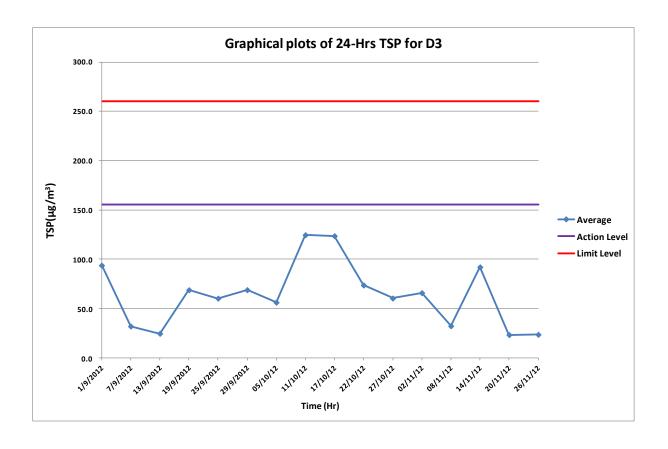
D1 24-Hrs TSP Monitoring Results

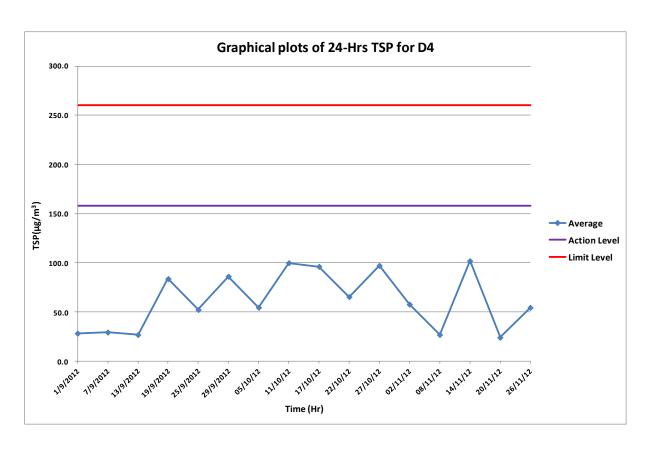
	Wt. of paper (g)]	Elapse '	Time	Flow	Rate	(CFM)	Total	TSP	Weather		
Sampling Date	Paper No.	Initial Wt.	Final Wt.	Wt. of dust	Initial	Final	Sampling Hour	Initial	Final	Avg Flow Rate	Volume (m³)	Concentration (μg/m3)	
02/11/12	204011	2.7174	2.8091	0.0917	615.76	639.85	24.09	44	44	44.0	1800.88	50.9195	Sunny
08/11/12	204015	2.6984	2.7796	0.0812	639.85	664.10	24.25	44	44	44.0	1812.84	44.7915	FINE
14/11/12	204367	2.7722	2.9495	0.1773	664.10	688.38	24.28	43	43	43.0	1773.84	99.9529	FINE
20/11/12	204371	2.7786	2.8266	0.0480	688.38	712.82	24.44	43	43	43.0	1785.52	26.8829	Cloudy
26/11/12	204375	2.7998	2.8867	0.0869	712.82	736.87	24.05	43	43	43.0	1757.03	49.4584	Rainy

D2 24-Hrs TSP Monitoring Results


		Wi	t. of paper	r (g)	I	Elapse T	ime	Flow	Rate	(CFM)	Total	TSP	Weather
Sampling Date	Paper No.	Initial Wt.	Final Wt.	Wt. of dust	Initial	Final	Sampling Hour	Initial	Final	Avg Flow Rate	Volume (m³)	Concentration (μg/m3)	
02/11/12	204012	2.7387	2.8363	0.0976	927.59	951.97	24.38	42	42	42.0	1739.72	56.1010	Sunny
08/11/12	204016	2.7009	2.7554	0.0545	951.97	976.43	24.46	42	42	42.0	1745.43	31.2244	FINE
14/11/12	204368	2.7860	2.9620	0.1760	976.43	1000.61	24.18	42	42	42.0	1725.45	102.0025	FINE
20/11/12	204372	2.7860	2.8260	0.0400	1000.61	1025.10	24.49	42	42	42.0	1747.57	22.8889	Cloudy
26/11/12	204376	2.8074	2.8810	0.0736	1025.10	1049.15	24.05	42	42	42.0	1716.17	42.8862	Rainy


D3 24-Hrs TSP Monitoring Results


		Wt. of paper (g)			Elapse Time			Flow Rate (CFM)			Total	TSP	Weather
Sampling Date	Paper No.	Initial Wt.	Final Wt.	Wt. of dust	Initial	Final	Sampling Hour	Initial	Final	Avg Flow Rate	Volume (m³)	Concentration (μg/m3)	
02/11/12	204013	2.7164	2.8324	0.1160	915.48	940.15	24.67	42	42	42.0	1760.41	65.8936	Sunny
08/11/12	204017	2.7526	2.8086	0.0560	941.52	965.83	24.31	42	42	42.0	1734.72	32.2818	FINE
14/11/12	204369	2.7660	2.9237	0.1577	965.83	989.84	24.01	42	42	42.0	1713.32	92.0437	FINE
20/11/12	204373	2.7921	2.8322	0.0401	989.84	1013.95	24.11	42	42	42.0	1720.45	23.3078	Cloudy
26/11/12	204377	2.8113	2.8528	0.0415	1013.95	1038.61	24.66	42	42	42.0	1759.70	23.5836	Rainy


D4 24-Hrs TSP Monitoring Results

		Wt. of paper (g)			Elapse Time			Flow Rate (CFM)			Total	TSP	Weather
Sampling Date	Paper No.	Initial Wt.	Final Wt.	Wt. of dust	Initial	Final	Sampling Hour	Initial	Final	Avg Flow Rate	Volume (m³)	Concentration (μg/m3)	
02/11/12	204014	2.6867	2.7929	0.1062	943.25	967.87	24.62	44	44	44.0	1840.50	57.7016	Sunny
08/11/12	204018	2.7335	2.7818	0.0483	969.54	993.64	24.10	44	44	44.0	1801.63	26.8090	FINE
14/11/12	204370	2.7879	2.9674	0.1795	993.64	1017.76	24.12	43	43	43.0	1762.15	101.8644	FINE
20/11/12	204374	2.7801	2.8227	0.0426	1017.76	1042.04	24.28	43	43	43.0	1773.84	24.0158	Cloudy
26/11/12	204378	2.8156	2.9113	0.0957	1042.04	1066.10	24.06	43	43	43.0	1757.76	54.4442	Rainy

