Monthly Environmental Monitoring & Auditing Report for

Drainage Diversion Works for the Comprehensive Residential Development at Various Lots in DD227 & DD229, Tai Po Tsai, Sai Kung

February 2013

Environmental Pioneers & Solutions Limited

Flat A, 19/F, Chaiwan Industrial Centre, 20 Lee Chung Street, Chai Wan, Hong Kong

Tel: 2556 9172 Fax: 2856 2010

APPROVAL SHEET

The Contents of this report have been

Certified by:

ETL (Environmental Pioneers & Solution Limited)

Signature:

Ms. Goldie Fung

(Environmental Team Leader)

Date: 22 - MAR - 2013

and Verified by:

IEC (ENVIRON Hong Kong Limited)

Signature:

Mr. Tony Cheng

(IEC)

Date: 22. Mar. 2013

TABLE OF CONTENT

1	Intr	oduction	1
2	Pro	ject Information	1
3	Pro	ject Organization	2
	3.1	Key personal contact information chart	2
4	Con	struction Stage	3
	4.1	Construction Activities in Reporting Period	3
	4.2	Construction Activities for Coming Months	3
	4.3	Environmental Status	4
5	Noi	se Monitoring	5
	5.1	Monitoring Parameters and Methodology	5
	5.2	Monitoring Equipment	5
	5.3	Monitoring Locations	6
	5.4	Monitoring Frequency	8
	5.5	Monitoring Results and Interpretation	8
	5.6	Action and Limit Level for Construction noise	9
	5.7	Monitoring Schedule for the next reporting period	14
6	Wat	ter Monitoring	15
	6.1	Water Quality Monitoring Parameters and Methodology	15
	6.2	Monitoring Equipment	15
	6.3	Monitoring Locations	16
	6.4	Monitoring Frequency	18
	6.5	Monitoring Results and Interpretation	18
	6.6	Action and Limit Level for Water Quality	18
	6.7	Monitoring Schedule for Next Reporting Period	23
7	Air	Quality Monitoring	24
	7.1	Monitoring Methodology and Parameters	24
	7.2	Monitoring Equipment	24
	7.3	Monitoring Locations	25
	7.4	Monitoring Frequency	27
	7.5	Monitoring Results and Interpretation	27
	7.6	Action and Limit Level for 1-hr TSP and 24-hrs TSP	28
	7.7	Monitoring Schedule for Next Reporting Period	31
8	Eco	logy	32
9	Act	ion Taken in Event of Exceedance	32
10	Con	struction Waste Disposal	32
11	Stat	rus of Permits and Licenses	34

12	Compliant Log	35
13	Site Environmental Audits	35
	13.1 Site Inspection	35
	13.2 Compliance with Legal and Contractual Requirement	36
	13.3 Implementation Status and Effectiveness of Mitigation Measures .	36
14	Future Key Issues and Recommendations	36
15	Conclusions	37

LIST OF APPENDIXES

A	p	pendix A	A: (Construction	Master	Programme	and	Site	Location	Plan

- Appendix B: Key Personal Contact Information Chart
- Appendix C: Calibration Certificates for Measuring Instruments
- Appendix D: Construction Noise Monitoring Data
- Appendix E: Water Quality Monitoring Data
- Appendix F: Air Quality Monitoring Data

EXECUTIVE SUMMARY

This is the sixth monthly Environmental Monitoring and Audit (EM&A) Report for Drainage Diversion Works for the Comprehensive Residential Development at Various Lots in DD227 & DD229, Tai Po Tsai, Sai Kung under New World Project Management Ltd. This report concludes the impact monitoring for the activities undertaken during the period from 1st of February 2013 to 28th February 2013. The major site activities in this reporting period were mainly stream course diversion works, soil nail works and ELS works.

The Environmental Team (ET) is responsible for the EM&A works required in the Particular Specifications (PS). Site inspections were carried out on weekly basis to investigate and audit the equipment and work methodologies with respect to pollution control and environmental mitigation. The weekly inspections and photos records were kept.

Noise, water quality and air quality monitoring were performed during the reporting period. Results were compared with the established Action/Limit (A/L) level.

In general, waste management was satisfactory during the reporting period.

Impact monitoring for construction noise, water quality and air quality was conducted in the reporting period. No exceedance of A/L level was reported.

There was no complaint, notification of any summons and successful prosecutions against the project received during the reporting period.

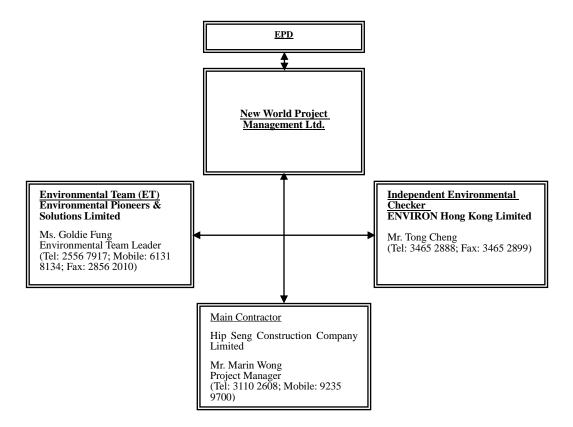
It is expected that noise, water quality and air quality impacts may be resulted from the site works. ET has reminded the contractor to provide environmental pollution control measures wherever necessary and to keep a good environmental management at site practice. The recommended mitigation measures proposed for the project as well as implementation status can refer to section 13.3.

The ET will continue to implement the environmental monitoring & audit programme in accordance with the PS and Environmental Permit requirement.

1 Introduction

This is the sixth monthly Environmental Monitoring and Audit (EM&A) Report for Drainage Diversion Works for the Comprehensive Residential Development at Various Lots in DD227 & DD229, Tai Po Tsai, Sai Kung under New World Project Management Ltd.. The site layout plan is shown in **Appendix A**. The Environmental Team, Environmental Pioneers & Solutions Limited was appointed by Hip Seng Construction Co. Ltd. to prepare the report. The report is to be submitted to the Contractor, the Engineer and the IEC.

This report presents the results of the environmental monitoring of the project activities conducted within the reporting period from 1st February 2013 to 28th February 2013. This report included the noise monitoring, water quality monitoring, air quality monitoring and regular site inspections for verification of implementation of the mitigation measures as recommended in the Environmental Permit (FEP-02/428/2011/A) (EP), PS and the Contractor's Environmental Management Plan (EMP).


2 Project Information

Construction works of "Drainage Diversion Works for the Comprehensive Residential Development at Various Lots in DD227 & DD229, Tai Po Tsai, Sai Kung" project has been commenced in Sep 2012 and is expected to be completed by July 2013. Construction master program is shown in **Appendix A**.

3 Project Organization

The Main Contractor, Hip Seng Construction Company Limited, has commissioned Environmental Pioneers & Solutions Limited as the Environmental Team, which comprises the environmental team leader, the environmental technicians to undertake the environmental monitoring and audit work for this project.

The Environmental management structure is shown in Fig. 3.1

3.1 Key personal contact information chart

Detail contact of key persons involved in environmental aspect of the project is shown in **Appendix B**.

4 Construction Stage

4.1 Construction Activities in Reporting Period

Major activities in the reporting period included the followings:

- Stream course diversion works
 - Excavation works
 - Precast concrete pipe installation
 - Manhole concreting works
 - Sheet pile installation works
- Soil nail works
 - Survey checking and setting out works
 - Excavation of soil nail area
 - Test soil nail works
- ELS works
 - Survey checking and setting of monitoring check point
 - Excavation output for stockpile & ELS Area

4.2 Construction Activities for Coming Months

Proposed key construction works in the coming month will include:

- Site clearance for stream course diversion works
- Excavation at zone B2 and zone A1 soil nail area
- Construction of manhole S5A, S5, S4A, S3A, S1 & sand trap at zone B1
- Construction of outfall at zone A1
- Existing stream diversion for concrete pipe installation from box culvert to manhole S5B
- Concrete pipe installation from manhole S5B to box culvert
- Environmental Monitoring
- Soil nail Installation for 1st layer at zone A1
- Sheet piling and pre-drilling at zone B3

4.3 Environmental Status

The site layout plan is shown in **Appendix A**.

Locations of the monitoring and control stations with environmental sensitive receivers are presented in Section 5.3, 6.3, and 7.3 for noise monitoring, water quality monitoring, and air quality monitoring respectively.

5 Noise Monitoring

5.1 Monitoring Parameters and Methodology

The construction noise level was measured in terms of the A-weighted equivalent continuous sound pressure level (L_{eq}). $L_{eq\,(30minutes)}$ was used as the monitoring parameter for the impact monitoring in the time period between 0700 to 1900 hours on normal weekdays. For all other time period, $L_{eq\,(5minutes)}$ was employed for comparison with the Noise Control Ordinance (NCO) criteria.

Noise measurement results obtained from each monitoring location were recorded in the Construction Noise Monitoring Data Sheet immediately after the measurement. As supplementary information for data auditing, statistical results L_{10} and L_{90} were also be recorded for reference.

In case of non-compliance with the construction noise criteria, more frequent monitoring, as specified in the Action plan in Table 5.7.2, shall be carried out. This additional monitoring shall be carried out until the recorded noise levels are rectified or proved to be irrelevant to the construction activities.

5.2 Monitoring Equipment

The sound level meters and calibrators comply with the International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) specifications as referred to in the Technical Memorandum (TM) to the Noise Control Ordinance was deployed as monitoring equipment for noise measurement.

Noise measurement was not be made in the presence of fog, rain, wind with a steady speed exceeding 5ms⁻¹ or wind with gust exceeding 10ms⁻¹. Thus wind speed was checked by the portable wind speed indicator capable of measuring the wind speed in m/s. Table 5.2.1 summarizes the equipment list for noise monitoring

Table 5.2.1 Equipment List for Noise Monitoring

Equipment	Manufacturer & Model No.	Precision Grade	Qty
Integrated sound	Svan 955	IEC61672 Type 1	1
level meter		IEC 1260 Class 1	
Acoustical calibrator	SV30A	IEC 942 Type 1	1

Remarks: Calibration details of the sound level meter and acoustical calibrator are given in **Appendix C** for reference

5.3 Monitoring Locations

According to the PS, impact noise monitoring was undertaken at four locations during the construction phase of the project. The monitoring locations are summarized in Table 5.3.1 and are shown in Figure 5.3.1.

Noise measurement for N4 location was taken at a point 1m from the exterior of the selected premises and at a height with no disturbance to the dweller and least obstructed view, so that façade measurement was made for monitoring location N4 and the free field measurements were made for monitoring locations N1, N2 and N3.

Table 5.3.1 Noise Monitoring Locations during Construction Phase

Identification No.	Noise Monitoring Locations
N1	Staff Quarters 1-12, HKUST
N2	174, Lots in DD227 & DD229, Tai Po Tsai, Sai Kung
N3	152A, Lots in DD227 & DD229, Tai Po Tsai, Sai Kung
N4	109, Lots in DD227 & DD229, Tai Po Tsai, Sai Kung

In accordance with the requirements in the PS, weekly impact monitoring was conducted. For the time period between 0700 and 1900 hours on normal weekdays, and noise parameter of $L_{\rm eq~(30minutes)}$ was measured. As if the construction works were carried out during restricted period (i.e. 1900-2300, 2300-0700 of next day and Sundays / general holiday), impact monitoring that comprises 3 consecutive $L_{\rm eq~(5minutes)}$ would be carried out.

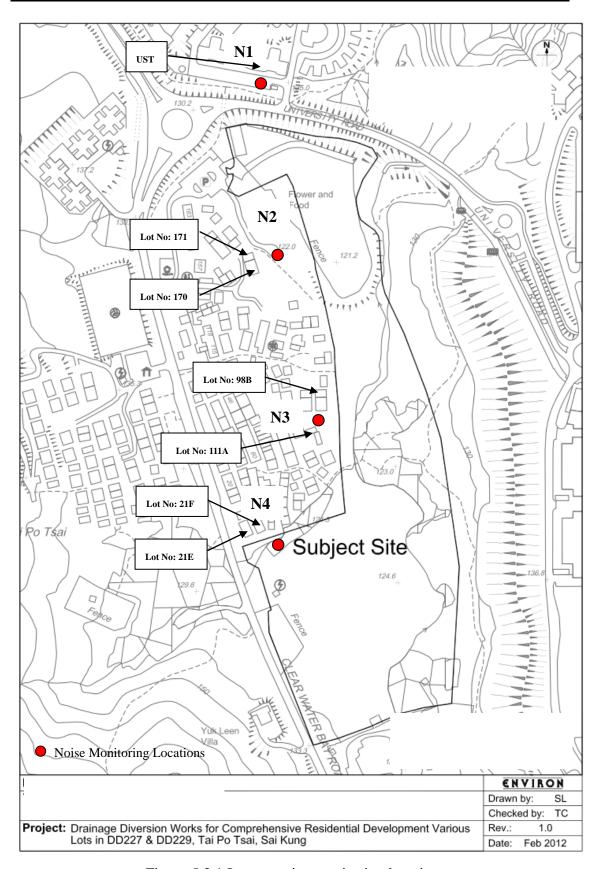


Figure 5.3.1 Impact noise monitoring locations

5.4 Monitoring Frequency

The regular monitoring for each location was performed on a basis of once in every 6 days.

As the construction site was closed during the Chinese New Year Holiday, no noise monitoring was conducted during 8th of February 2013 to 13th February 2013.

Monitoring was carried out on 6th, 14th, 20th and 26th of February 2013.

5.5 Monitoring Results and Interpretation

Relevant details of the noise monitoring results are presented in Table 5.5.1. The results of N1 ranged between 61.2dB (A) and 64.3dB (A), N2 ranged between 60.2dB (A) and 63.9dB (A), N3 ranged between 61.3dB (A) and 63.9dB (A) and N4 ranged between 61.5dB (A) and 65.1dB (A) were within the limit levels and therefore no exceedance was found.

Table 5.5.1 Noise Monitoring Results for the reporting month										
Location	Parameter	Date	Time	L _{Aeq} dB(A)	Limit dB(A)	Exceedance	Weather			
*N1	Leq30min	6-Feb-13	13:02	62.5	75	N	Cloudy			
*N1	Leq30min	14-Feb-13	11:28	63.5	75	N	Cloudy			
*N1	Leq30min	20-Feb-13	14:40	64.3	75	N	Cloudy			
*N1	Leq30min	26-Feb-13	9:30	61.2	75	N	Cloudy			
*N2	Leq30min	6-Feb-13	11:33	60.2	75	N	Cloudy			
*N2	Leq30min	14-Feb-13	13:00	60.2	75	N	Cloudy			
*N2	Leq30min	20-Feb-13	13:02	62.4	75	N	Cloudy			
*N2	Leq30min	26-Feb-13	10:05	63.9	75	N	Cloudy			
*N3	Leq30min	6-Feb-13	9:50	63.9	75	N	Cloudy			
*N3	Leq30min	14-Feb-13	9:15	61.3	75	N	Cloudy			
*N3	Leq30min	20-Feb-13	10:11	61.5	75	N	Cloudy			
*N3	Leq30min	26-Feb-13	10:42	61.6	75	N	Cloudy			
N4	Leq30min	6-Feb-13	10:30	64.1	75	N	Cloudy			
N4	Leq30min	14-Feb-13	10:50	62.6	75	N	Cloudy			

N4	Leq30min	20-Feb-13	9:30	65.1	75	N	Cloudy
N4	Leq30min	26-Feb-13	11:30	61.5	75	N	Cloudy

^{*}The equivalent noise level of N1, N2 and N3 is corrected by +3dB(A).

Remarks: Raw datasheet for noise monitoring is attached in **Appendix D** for reference.

5.6 Action and Limit Level for Construction noise

The Action and Limit (A/L) levels for construction noise are defined in Table 5.6.1. Should non-compliance of the criteria occur, action in accordance with the Action Plan in Table 5.6.2 should be carried out.

There was no exceedance recorded in the reporting period.

Table 5.6.1 Action and Limit Levels for Construction Noise at All Sensitive										
Receivers										
Time Period	Action	Limit								
Daytime		75 dB(A)*								
0700 – 1900 hrs on normal	XX71									
weekdays	When one									
1900 – 2300 on all days and 0700 –	documented	60/65/70 dB(A)**								
2300 on general holidays (including	complaint is received									
Sundays)	received									
2300 – 0700 on all days		45/50/55 dB(A)**								

Table 5.6.2 Event / Action Plan for Construction Noise

EVENT	ET Leader	IEC	ER	CONTRACTOR
EXCEMENT Exceedance for one sample in Action Level	ET Leader 1. Identify source, investigate the causes of exceedance and propose remedial measures. 2. Inform ER, IEC and Contractor. 3. Repeat measurement to confirm finding. 4. Increase monitoring frequency to daily.	 Check monitoring data submitted by ET. Check Contractor's working method. 	ER 1. Notify Contractor.	1. Rectify any unacceptable practice. 2. Amend working methods if appropriate.

Exceedance	1. Identify source,	1.	Checking	1.	Confirm receipt	1.	Submit proposals
for two or	investigate the		monitoring data		of notification of		for remedial
more	causes of		submitted by ET.		failure in writing.		actions to IEC
consecutive	exceedance and	2.	Check	2.	Notify		within three
samples in	propose remedial		Contractor's		Contractor.		working days of
Action	measures.		working method.	3.	Ensure remedial		notification.
Level.	2. Inform IEC and	3.	Discuss with ET		measures	2.	Implement the
	Contractor.		and Contractor		properly		agreed proposals.
	3. Repeat		on possible		implemented.	3.	Amend proposals
	measurements to		remedial				if appropriate.
	confirm findings.		measures.				
	4. Increase	4.	Advise the ER on				
	monitoring		the effectiveness				
	frequency to		of the proposed				
	daily.		remedial				
	5. Discuss with IEC		measures.				
	and Contractor	5.	Supervisor				
	on remedial		implementation				
	actions.		of remedial				
	6. If exceedance		measures.				
	continues,						
	arrange meeting						
	with IEC and ER.						
	7. If exceedance						
	stops, cease						
	additional						
	monitoring.						

Exceedance for on sample in Limit Level	 Identify source, investigate the causes lof exceedance and propose remedial measures. Inform ER, Contractor and EPD. Repeat measurement to confirm finding. Increase monitoring frequency to daily. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Checking monitoring data submitted by ET Check Contractor's working method Discuss with ET and Contractor on possible remedial measures Advise the ER on the effectiveness of the proposed remedial measures. Supervisor implementation of remedial measures. 	 Confirm receipt of notification of failure in writing. Notify Contractor. Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance. Submit proposals for remedial actions to IEC within three working days of notification. Implement the agreed proposals. Amend proposal if appropriate.
	informed of the			

Exceedance	1.	Identify source,	1.	Discuss amongst	1.	Confirm receipt	1.	Take immediate
for two or		investigate the		ER, ET and		of notification of		action to avoid
more		causes of		Contractor on the		failure in writing.		further
consecutive		exceedance and		potential remedial	2.	Notify		exceedance.
samples in		prpose remedial		actions.		Contractor.	2.	Submit proposals
Limit Level		measures.	2.	Review	3.	In consultation		for remedial
	2.	Notify IEC, ER,		Contractor's		with the IEC,		actions to IEC
		Contractor and		remedial actios		agree with the		within three
		EPD.		whenever		Contractor on the		working days of
	3.	Repeat		necessary to		remedial		notification.
		measurement to		assure their		measures to be	3.	Implement the
		confirm findings.		effectiveness and		implemented.		agreed proposals.
	4.	Increase		advise the ER	4.	Ensure remedial	4.	Resubmit
		monitoring		accordingly.		measures		proposals if
		frequency to	3.	Supervise the		properly		problem still not
		daily.		implementation		implemented		under control.
	5.	Carry out		of remedial	5.	If exceedance	5.	Stop the relevant
		analysis of		measures.		continues		portion of works
		Contractor's				consider what		as determined by
		working				portion of the		the ER until the
		procedures to				work is		exceedance is
		determine				responsible and		abated.
		possible				instruct the		
		mitigation to be				Contractor to stop		
		implemented.				that portion of		
	6.	Arrange meeting				work until the		
		with IEC and ER				exceedance is		
		to discuss the				abated remedial		
		remedial actions				actions.		
		to be taken.						
	7.	Assess						
		effectiveness of						
		Contractor's						
		remedial actions						
		and keep IEC,						
		EPD and ER						

Drainage Diversion Works for the Comprehensive Residential Development at Various Lots in DD227 & DD229, Tai Po Tsai, Sai Kung Monthly EM&A Report for February 2013

informed of the results		
8. If exceedance		
stops, cease		
additional		
monitoring		

5.7 Monitoring Schedule for the next reporting period

Noise monitoring schedule is proposed to be carried out on 4^{th} , 9^{th} , 15^{th} , 21^{st} and 27^{th} of March 2013.

6 Water Monitoring

6.1 Water Quality Monitoring Parameters and Methodology

Turbidity in Nephelometric Turbidity Unit (NTU), and Dissolved Oxygen (DO) in mg/L, temperature, water depth and pH measurements were in-situ measurements and suspended solids measurements were performed by a HOKLAS accredited laboratory using recommended reference method APHA 2540D.

6.2 Monitoring Equipment

Turbidity, DO, Salinity, pH and temperature was measured by an instrument complied with the following requirements:

The instrument is a portable as well as weatherproof multimeter complete with cable and uses a DC power source. It is capable of measuring:

- A turbidity between 0-1000NTU;
- A dissolved Oxygen level in the range of 0-20mg/L and 0-200% saturation;
- A temperature of 0-50°C;
- pH in the range of 0-14.

The measurements were performed by a portable and weatherproof multi-meter, model TOA-DKK WQC-24. The equipment was calibrated and verified by certified laboratory every 3 months to ensure they perform to the same level of accuracy as stated in the manufacturer's specification. Detailed calibration records of the multi-meter were shown in Appendix C for reference

Suspended solids were determined by the water samples collected from the monitoring locations for further analysis in accredited HOKLAS laboratory. Water samples were contained by polythene bottles, packed in ice (cooled in 4°C without frozen) and delivered to the laboratory for analysis as soon as possible after collection.

Since water depths for all monitoring stations were less than 0.5m during the

impact measurement period, only mid-depth level was monitored. The monitoring parameters and measurement methods of water quality monitoring are summarized in Table 6.2.1.

Table 6.2.1 - Water Quality Monitoring Parameters and Measurement				
Methods				
Parameter	Measurement Method			
Temperature (°C)				
Turbidity (NTU)	·			
рН	in-situ			
Dissolved Oxygen (mg/L and %)				
Suspended Solids (mg/L)	Reference method APHA 2540D			

6.3 Monitoring Locations

In accordance with the PS, monitoring stations were established at two locations, which are summarized in Table 6.3.1.

Table 6.3.1 – Water Quality Monitoring Locations				
Monitonina Station	Coordinates			
Monitoring Station	Easting	Northing		
W1 (upstream)	E:844944	N:821720		
W2 (downstream)	E:844959	N:822249		

As illustrated in Figure 6.3.1, W1 served as the control station while W2 was the monitoring location of water quality.

In accordance with the PS, measurements shall be taken at 3 water depths, namely, 1m below water surface, mid-depth and 1m above river bed, except where the water depth less than 6m, the mid-depth station may be omitted. Should the water depth be less than 3m, only the mid-depth station will be monitored.

As the depth of water was less than 3m, water samples were collected at mid-depth of each monitoring stations for measurements and sample collection.

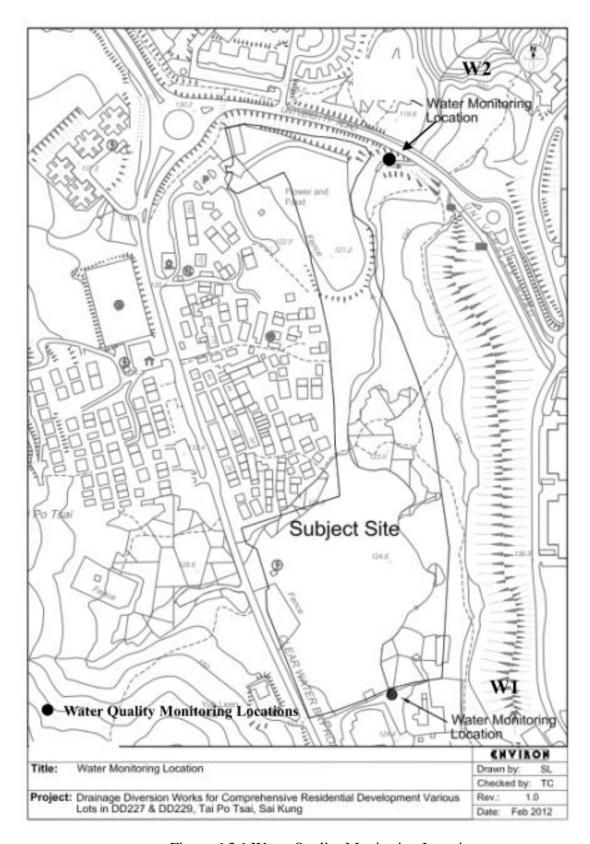


Figure 6.3.1 Water Quality Monitoring Locations

6.4 Monitoring Frequency

Water quality monitoring for each monitoring station was performed at mid-flood or mid-ebb tides for 3 days per week during the course of the construction river works.

As the construction site was closed during the Chinese New Year Holiday, no water quality monitoring was conducted during 8th of February 2013 to 13th February 2013.

Monitoring was carried out on 2nd, 5th, 7th, 14th, 16th, 19th, 21st, 23rd, 26th and 28th of February 2013.

6.5 Monitoring Results and Interpretation

Water quality monitoring was carried out teen times in this reporting month. Detailed on-site measurements are shown in **Appendix E**. Table 6.5.1 presents consolidated results throughout the reporting month.

During the reporting period, no exceedance was recorded.

Table 6.5.1	Table 6.5.1 Summary of Water Quality Monitoring Results of this reporting month					
	Average of Monitoring Results					
	Temperature (°C)	Turbidity (NTU)	рН	Dissolved Oxygen (mg/L)	Dissolved Oxygen (%)	Suspended Solids (mg/L)
W1	22.4	2.8	8.14	10.16	111.1	2.6
W2	22.5	3.0	7.91	10.39	122.2	3.1

6.6 Action and Limit Level for Water Quality

Based on the criteria stipulated in PS (Table 6.6.1) and baseline water quality monitoring data obtained, the A/L levels are shown in Table 6.6.2. The A/L levels for W1 were ignored since W1 functions as the control station for the project. If the water quality monitoring results at any impact stations exceeded the criteria, the actions in accordance with the Event and Action Plan in Table 6.6.3 should be taken.

Table 6.6.1 Action and Limit Levels for Water Quality at All Monitoring				
Stations				
Parameters	Action	Limit		
DO in ma/I	5 nameantile of baseline data	4 mg/L or 1 percentile of		
DO in mg/L	5 percentile of baseline data	baseline data		
	95 percentile of baseline data	99 percentile of baseline data or		
SS in ma/I	or 120% of upstream control	130% of upstream control		
SS in mg/L	station's SS recorded on the	station's SS recorded on the		
	same day	same day		
	95 percentile of baseline data	99 percentile of baseline data or		
Turbidity in	or 120% of upstream control	130% of upstream control		
NTU	station's Turbidity recorded on	station's Turbidity recorded on		
	the same day	the same day		
	<6.5 or >8.4 or > the upstream			
pН	control station's pH recorded	<6.0 or >9.0		
	on the same day			

Table 6.6.2 Action	on and Limit Levels for Water	r Quality at All Monitoring			
Stations	Stations				
	Monitor	ing Stations			
D	W2				
Parameters —	Action	Limit			
	Level	Level			
DO in mg/L	6.42	6.24			
SS in mg/L	18.9	19.8			
Turbidity in	6.2	6.2			
NTU	0.2	0.2			
рН	<6.5 or >8.4	<6.0 or >9.0			

Remarks:

- 1. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the
- 2. For SS and Turbidity, non-compliance of the water quality limits occurs when monitoring results is higher than the limits.
- 3. For pH, for the action level, reference is made to the data recorded at EPD' river monitoring stations at the nearby Tseng Lan Shue Stream (JR3, JR6 and JR22) from year 2006 to 2010; while the limit level is referring to the water quality objective for Inland Water of Junk Bay Water Control Zone.

Table 6.6.3 Event and action Plan for Water Quality

Event	ET Leader	IEC	ER	Contractor
ACTION LEV	EL			
Exceedance	1. Repeat in-site	1. Discuss with ET	1. Discuss with	1. Inform the ER
for one	measurement to	and Contractor	IEC on the	and confirm
sample day	confirm findings.	on the	proposed	notification of the
	2. Identify source(s)	mitigation	mitigation	non-compliance
	of impact.	measures.	measures.	in writing.
	3. Inform IEC and	2. Review	2. Make	2. Rectify
	Contractor.	proposals on	agreement on	unacceptable
	4. Check monitoring	mitigation	mitigation	practice.
	data, all plant,	measures	measures to	3. Check all plant
	equipment and	submitted by	be	and equipment.
	Contractor's	Contractor and	implemented.	4. Consider changes
	working methods.	advise the ER	3. Assess	of working
	5. Discuss mitigation	accordingly;	effectiveness	methods.
	measures with	3. Assess	of	5. Discuss with ET,
	IEC and	effectiveness of	implemented	IEC and propose
	Contractor.	the implemented	mitigation	mitigation
	6. Repeat	mitigation	measures.	measures to IEC
	measurement on	measures.		and ER.
	next day of			6. Implement the
	exceedance.			agreed mitigation
				measures.

Б 1	1 D (1 1)	1 D: :4 ET	1 5: :11	I C 4 ED
Exceedance	1. Repeat in-situ	1. Discuss with ET		I. Inform the ER
for more than		and Contractor	IEC on the	and confirm
one	confirm findings.	on the	proposed	notification of the
consecutive	2. Identify source(s)	mitigation	mitigation	non-compliance
sampling	of impact.	measures.	measures.	in writing.
days	3. Inform IEC and	2. Review	2. Make 2	2. Rectify
	Contractor.	proposals on	agreement on	unacceptable
	4. Check monitoring	mitigation	the mitigation	practice.
	data, all plant,	measures	measures to 3	3. Check all plant
	equipment and	submitted by	be	and equipment.
	Contractor's	Contractor and	implemented. 4	4. Consider changes
	working methods.	advise the ER	3. Assess	of working
	5. Discuss mitigation	accordingly.	effectiveness	methods.
	measures with	3. Assess	of the 5	5. Discuss with ET
	IEC and	effectiveness of	implemented	and IEC and
	Contractor.	the implemented	mitigation	propose
	6. Ensure mitigation	mitigation	measures.	mitigation
	measures are	measures.		measures within
	implemented.			three working
	7. Prepare to increase			days.
	the monitoring		6	6. Implement the
	frequency to daily.			agreed mitigation
	8. Repeat			measures.
	measurement on			
	next day of			
	exeedance.			
LIMIT LE	VEL			
Exceedance	1. Repeat in-situ	1. Discuss with ET	1. Discuss with 1	l. Inform the ER
for one	measurements to	and Contractor	IEC, ET and	and confirm
sampling	confirm findings.	on the	Contractor on	notification of the
day	2. Identify source(s) of	mitigation	the proposed	non-compliance
	impact.	measures.	mitigation	in writing.
	3. Inform EPD, IEC,	2. Review	measures. 2	2. Rectify
	Contractor.	proposals on	2. Request	unacceptable
	4. Check monitoring	mitigation	Contractor to	practice.
	data, all plant,	measures	critically 3	3. Check all plant
	equipment and	submitted by	review the	and equipment.

	Contractor's working methods; 5. Discuss mitigation measures with IEC, ER and Contractor. 6. Ensure mitigation measures are implemented. 7. Increase the monitoring frequency to daily until no exceedance of Limit level.	Contractor and advise the ER accordingly. 3. Assess effectiveness of the implemented mitigation measures.	methods. 3. Make agreement on the mitigation measures to be implemented. 4. Assess the effectiveness of the	 4. Consider changes of working methods. 5. Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within three working days. 6. Implement the agreed mitigation measures.
Exceedance for more than on consecutive sampling days	 Repeat in-situ measurements to confirm findings. Identify source(s) of impact. Inform EPD, IEC and Contractor. Check monitoring data, all plant, equipment and Contractor's working methods. Discuss mitigation measures with IEC, ER and Contractor. Ensure mitigation measures are implemented. Increase the monitoring frequency to daily 	 Discuss with ET and Contractor on the mitigation measures. Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly. Assess the effectiveness of the implemented mitigation measures. 	IEC, ET and Contractor on the proposed mitigation measures. 2. Request Contractor to critically review the working methods. 3. Make agreement on the mitigation	 Inform the ER and confirm notification of the non-compliance in writing. Rectify unacceptable practice. Check all plant and equipment. Consider changes of working methods. Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within three working days.

until no exceedance	implemented	6.	Implement the
of Limit level for	mitigation		agreed mitigation
two consecutive	measures.		measures.
days.	5. Consider and	7.	As directed by
	instruct, if		the ER, to slow
	necessary, the		down or to stop
	Contractor to		all or part of the
	slow down or		work or
	to stop all or		construction
	part of the		activities.
	work until no		
	exceedance of		
	Limit Level.		

6.7 Monitoring Schedule for Next Reporting Period

Water quality monitoring schedule is proposed to be carried out on 2^{nd} , 5^{th} , 7^{th} , 9^{th} , 12^{th} , 14^{th} , 16^{th} , 19^{th} , 21^{st} , 23^{rd} , 26^{th} , 28^{th} and 30^{th} of March 2013.

7 Air Quality Monitoring

7.1 Monitoring Methodology and Parameters

1-hr and 24-hrs air quality monitoring have been carried out during the reporting period.

Measurements of 1-hr TSP monitoring were taken by a Dust Trak aerosol monitor or its equivalent that is a portable and battery-operated laser photometer capable of performing real time 1-hr TSP measurements.

24-hrs TSP was measured by the High Volume Sampler. The filter papers for each monitoring locations were sent to the accredited HOKLAS laboratory for further analysis.

Other relevant data such as monitoring location, time, weather conditions and any other special phenomena at the construction site were recorded during the measurement period.

7.2 Monitoring Equipment

24-hrs TSP was measured by the High Volume Sampler. And the 3 sets of 1-hr TSP were carried out by the portable dust meter. The measurement equipments are listed in Table 7.2.1 and Calibration Certificates of the equipments are shown in **Appendix C**.

Table 7.2.1 Air Quality Monitoring Equipments

Equipment Manufacturer & Model No.		Parameter	Qty
Laser Dust Monitor	1. AM510 1-hr TSP		2
Laser Dust Wollitor	2. SIBATA/LD-3B	1-111 154	2
High Volume	TE 5005 A	24 h TCD	4
Sampler	TE-5025A	24-hrs TSP	4

7.3 Monitoring Locations

Monitoring locations were established at 4 locations, which are summarized in Table 7.3.1 and are shown in Figure 7.3.1

Table 7.3.1 Air Quality Monitoring Locations

Identification No.	TSP Monitoring Locations
D1	Staff Quarters 1-12, HKUST
D2	174, Lots in DD227 & DD229, Tai Po Tsai, Sai Kung
D3	152A, Lots in DD227 & DD229, Tai Po Tsai, Sai Kung
D4	109, Lots in DD227 & DD229, Tai Po Tsai, Sai Kung

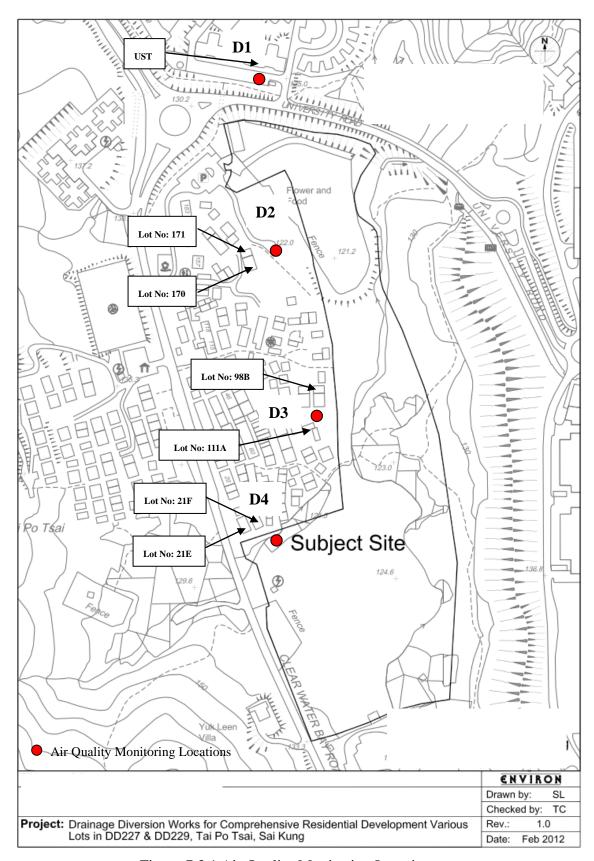


Figure 7.3.1 Air Quality Monitoring Locations

7.4 Monitoring Frequency

For 1-hr and 24-hr TSP monitoring, the sampling frequency of at least once in every six days.

Monitoring was carried out on 6th, 14th, 20th and 26th of February 2013.

7.5 Monitoring Results and Interpretation

1-hr TSP and 24-hrs TSP were carried out during this reporting. And, no exceedance was recorded.

1-hr TSP monitoring was conducted at four designated monitoring locations. The monitoring results are summarized in Table 7.5.1.

Table 7.5.1 A summarized of average 1-hr TSP monitoring data						
Location	Location Range (µg/m3) (Min – Max)					
D1	57-141	(μg/m3) 86.3				
D2	49-119	77.5				
D3	54-104	71.3				
D4	45-105	73.8				

24-hrs TSP monitoring data was obtained at four designated monitoring locations. The monitoring results are summarized in Table 7.5.2.

Table 7.5.2 A summarized of average 24-hrs TSP monitoring data						
Location	Location Range (µg/m3) (Min – Max)					
D1	51.2-89.8	65.7				
D2	23.0-51.9	43.0				
D3	55.1-101.3	68.7				
D4	60.9-137.0	106.8				

Details of the monitoring data were presented in **Appendix F**.

7.6 Action and Limit Level for 1-hr TSP and 24-hrs TSP

The Action and Limit levels for all monitoring stations are summarized in Table 7.6.1 and Table 7.6.2, which would be applied for compliance assessment of air quality for this project. If the air quality monitoring results at any impact stations exceeded the criteria, the actions in accordance with the Event and Action Plan in Table 7.6.3 should be taken.

Table 7.6.1 Action and Limit Levels for 1-hr TSP at All Monitoring Stations							
Monitoring Station	Monitoring Frequency	Action Level	Limit Level				
D1	- 1-hr	$285.6 \mu \text{g/m}^3$	$500 \mu\mathrm{g/m}^3$				
D2		279.4 μg/m ³	$500 \mu\text{g/m}^3$				
D3		$289.4 \mu \text{g/m}^3$	$500 \mu\text{g/m}^3$				
D4		284.3 μg/m ³	500 μg/m ³				

Table 7.6.2 Action and Limit Levels for 24-hrs TSP at All Monitoring Stations							
Monitoring Station	Monitoring Frequency	Action Level	Limit Level				
D1	- 24-hrs	156.4 µg/m3	$260 \mu\text{g/m}^3$				
D2		153.8 μg/m3	$260 \mu\mathrm{g/m}^3$				
D3		155.2 μg/m3	$260 \mu\mathrm{g/m}^3$				
D4		158.0 μg/m ³	260 μg/m ³				

Table 7.6.3 Event and action Plan for Air Quality

Event	ET :	Leader	ΙE	C	ER		Con	tractor
ACTION LE	VEL	_						
Exceedance	1.	Identify source,	1	. Check	1.	Notify	1.	Rectify any
for one		investigate the cause		monitoring data		Contractor.		unacceptable
sample		s of exceedance and		submitted by ET.				practice.
		propose remedial	2	. Check			2.	Amend working
		measures.		Contractor's				methods if
	2.	Inform ER , IEC and		working method.				appropriate.
		Contractor.						
	3.	Repeat measurement						
		to confirm finding.						
	4.	Increase monitoring						
		frequency to daily.						
Exceedance	1.	Identify source,	1.	Checking	1.	Confirm	1.	Submit proposals
for two or		investigate the		monitoring data		receipt of		for remedial
more		causes of		submitted by ET.		notification		actions to IEC
consecutive		exceedance and	2.	Check		of failure in		within three
samples		propose remedial		Contractor's		writing.		working days of
		measures.		working method.	2.	Notify		notification.
	2.	Inform IEC and	3.	Discuss with ET		Contractor.	2.	Implement the
		Contractor.		and Contractor on	3.	Ensure		agreed proposals.
	3.	Repeat		Possible remedial		remedial	3.	Amend proposal
		measurements to		measures.		measures		if appropriate.
		confirm findings	4.	Advise the ER on		properly		
	4.	Increase monitoring		the effectiveness		implemented		
		frequency to daily.		of the proposed				
	5.	Discuss with IEC		remedial				
		and Contractor on		measures.				
			5.	Supervisor				
	6.	If exceedance		implementation				
		continues, arrange		of remedial				
		meeting with IEC		measures.				
		and ER						
	7.	If exceedance stops,						

		cease additional					
		monitoring.					
LIMIT LE	CVE	CL .					
Exceedance	1.	Identify source,	1.Checking	1.	Confirm	1.	Take immediate
for one		investigate the	monitoring data		receipt of		action to avoid
sample		causes of	submitted by ET.		notification		further
		exceedance and	2. Check		of failure in		exceedance.
		propose remedial	Contractor's		writing.	2.	Submit proposals
		measures.	working method	2.	Notify		for remedial
	2.	Inform ER,	3. Discuss with ET		Contractor.		actions to IEC
		Contractor and EPD.	and Contractor on	3.	Ensure		within three
	3.	Repeat measurement	possible remedial		remedial		working days of
		to confirm finding.	measures		measures		notification.
	4.	Increase monitoring	4. Advise the ER on		properly	3.	Implement the
		frequency to daily.	the effectiveness		implemented.		agreed proposals.
	5.	Assess effectiveness	of the proposed			4.	Amend proposal if
		of Contractor's	remedial				appropriate.
		remedial actions and	measures.				
		keep IEC, EPD and	5. Supervisor				
		ER informed of the	implementati on				
		result.	of remedial				
			measures.				
Exceedance	1.	Identify source,	1. Discuss amongst	1.	Confirm	1.	Take immediate
for two or		investigate the causes	ER, ET and		receipt of		action to avoid
more		of exceedance and	Contractor on		notification		further
consecutive		propose remedial	the potenrial		of failure in		exceedance.
samples		measures.	remedial		writing.	2.	Submit proposals
	2.	Notify IEC, ER,	actions.	2.	Notify		for remedial
		Contractor and EPD.	2. Reviews		Contractor.		actions to IEC
	3.	Repeat measurement	Contractor's	3.	In		within three
		to confirm findings.	remedial actions		consultation		working days of
	4.	Increase monitoring	whenever		with the IEC,		notification.
		frequency to daily.	necessary to		agree with	3.	Implement the
	5.	Carry out analysis of	assure their		the		agreed proposals
		Contractor's working	effectiveness		Contractor on	4.	Resubmit
		procedures to	and advise the		the remedial		proposals if
		determine possible	ER accordingly.		measures to		problem still not

	mitigation to be	3. Supervisor the		be		under control.
	implemented.	implementati on		implemented.	5.	Stop the relevant
		of remedial	4.	Ensure		portion of works
6.	Arrange meeting with	measures.		remedial		as determined by
	IEC and ER to discuss			measures		the ER until the
	the remedial actionsto			properly		exceedance is
	be taken.			implemented.		abated
7.	Assess effectiveness		5.	If exceedance		
	of Contractor's			continues,		
	remedial actions and			consider		
	keep IEC, EPD and			what portion		
	ER informed of the			of the work is		
	results.			responsible		
8.	If exceedance stops,			and instruct		
	cease additional			the		
	monitoring			Contractor to		
				stop that		
				portion of		
				work until		
				the		
				exceedance is		
				abated		
				remedial		
				actions.		

7.7 Monitoring Schedule for Next Reporting Period

1-hr TSP and 24-hrs TSP monitoring schedule is proposed to be carried out on 4^{th} , 9^{th} , 15^{th} , 21^{st} and 27^{th} of March 2013.

8 Ecology

During the reporting period, tree protection measures have been implemented by contractor, such as provision of tree protective fencing for the retained trees and transplanted trees. The tree protection zone has enough space to prevent the construction activities to damage the trees. And, the felled trees were also removed accordingly.

As the existing river was diverted temporarily, contractor was reminded that the water flow in the existing river within the site should be maintained.

9 Action Taken in Event of Exceedance

If the measurements (Noise, Water and Air) exceed the action / limit level, exceedance details will be reported and follow-up actions will be taken by relevant parties involved.

During the reporting month there was no exceedance for noise, water and air measurements recorded; therefore, no actions were taken.

10 Construction Waste Disposal

It is the contractor's responsibility to ensure that all wastes produced during the construction phase for the drainage improvement works are handled, stored and disposed in accordance with good waste management practices and EPD's regulation and requirement. Waste materials generated during construction activities, such as construction and demolition (C&D) material, chemical wastes and general refuse, are recommended to be audited at regular intervals to ensure that proper storage, transportation and disposal practices are being implemented.

Table 10.1 is a summary of figures of the construction wastes disposal provided by Contractor.

Table 10.1 Summary of Construction Waste Disposal

	1	Actual Quantities of	Inert C & D M	Iaterials Genera	ted Monthly		Actu	ual Quantities of (C & D Wast	es Generated	Monthly
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/cardboard packaging	Plastics	Chemical Waste	Others, e.g. general refuse
	(in'000m3)	(in'000m3)	(in'000m3)	(in'000m3)	(in'000m3)	(in'000m3)	(in'000kg)	(in'000kg)	(in'000kg)	(in'000kg)	(in'000kg)
Year 2012	3.9	0	0	0	3.9	0	0	0	0	0	0.037
Jan 2013	26.44	0	0	0	26.44	0	0	0	0	0	0
Feb 2013	41.53	0	0	0	41.53	0	0	0	0	0	0.016
Total	71.87	0	0	0	71.87	0	0	0	0	0	0.053
Total	/1.0/	U	U	U	/1.0/	U	U	U	U	U	0.055
		F	Forecast of Tota	al Quantities of O	C & D Materi	als to be Gen	erated from	the Contract			
	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/cardboard packaging	Plastics	Chemical Waste	Others, e.g. general refuse
	(in'000m3)	(in'000m3)	(in'000m3)	(in'000m3)	(in'000m3)	(in'000m3)	(in'000kg)	(in'000kg)	(in'000kg)	(in'000kg)	(in'000kg)
	348	1	108	0	239	0	0	0	0	0	240

11 Status of Permits and Licenses

Table 11.1 is the updated status of environmental related permits/ license obtained for the construction activities

Table 11.1 Status of Permits and Licenses Obtained							
Description	License / Permit No.#	Date of Issue	Site	Date of expiry	Status		
EP	EP-428/2011	4 November 2011			Superseded by VEP		
EP	EP-428/2011/A	1 June 2012			Valid		
FEP	FEP-01/428/2011/A	9 July 2012			Surrendered on 28 Nov 2012		
FEP	FEP-02/428/2011/A	26 November 2012	DD227 & DD229, Tai Po Tsai, Sai		Valid		
Discharge License	WT00014162-2012	18 October 2012	Kung	N/A	Valid		
Registration as a Chemical Waste Producer	349704	27 Sep 2012			Valid		
Waste Disposal	N/A	N/A	N/A		N/A		
Notification Pursuant to Section 3(1) of The Air Pollution Control (Construction Dust) Regulation	349519	4 Sep 2012	Various Lots in DD227 & DD229, Tai Po Tsai, Sai Kung		Valid		

12 Compliant Log

There was no formal complaint received during the reporting period. Therefore, no follow up actions for the environmental complaint is required.

Table 12.1 Summary of Formal Complaints received								
	Noise	Water	Air	Others				
Year 2012	0	0	0	0				
January 2013	0	0	0	0				
February 2013	0	0	0	0				
Total	0	0	0	0				

13 Site Environmental Audits

13.1 Site Inspection

Site inspections were undertaken weekly to inspect the construction activities in active site areas to ensure that appropriate environmental protection and pollution control mitigation measures are properly implemented.

Within this reporting period, site inspections were conducted on 6th, 14th, 20th and 26th of February 2013. A detailed checklist of each site inspection together with comments and relevant photos have been filed and kept. The findings from inspection were summarized in Table 12.1.

Table 12.1 Summary results of site inspections findings

Date	Findings	Identification	Advice from ET	Action taken	Closing date	Remarks
23 & 31 Jan 13	Observation	Haul road was dry and dusty.	Contractor was reminded that routine water spraying should be implemented for dust suppression.	Routine water spraying was implemented by contractor for dust suppression.	6 Feb 13	N/A
20 & 26 Feb 13	Observation	Drip tray was not provided for the power	Contractor was reminded that the drip tray should be	To be followed during next inspection	N/A	N/A

Date	Findings	Identification	Advice from ET	Action taken	Closing date	Remarks
		generator.	provided for the			
			chemical materials			
			for prevention of			
			leakage.			

13.2 Compliance with Legal and Contractual Requirement

There was no non-compliance recorded for the month of February 2013.

13.3 Implementation Status and Effectiveness of Mitigation Measures

Contractor has implemented mitigation measures to address those problems as advised by ET. Some of the measures taken by the contractor were considered as effective to minimize negative impact to the environment. Ongoing investigation will be carried out to observe performance and effectiveness of those measures. Outstanding environmental items will be inspected in next month.

As there were some ongoing follow up practices, contractor was reminded to regularly review and rectify the discrepancy once found and maintain good site condition. The contractor implemented various environmental mitigation measures as recommended in the Environmental Permit.

14 Future Key Issues and Recommendations

According to the forecasted site activities, key environmental issues to be considered should at least include the following items:

- Site water control and relevant protective measures
- Dust suppression
- Noise control
- Control and disposal for construction wastes generated from works

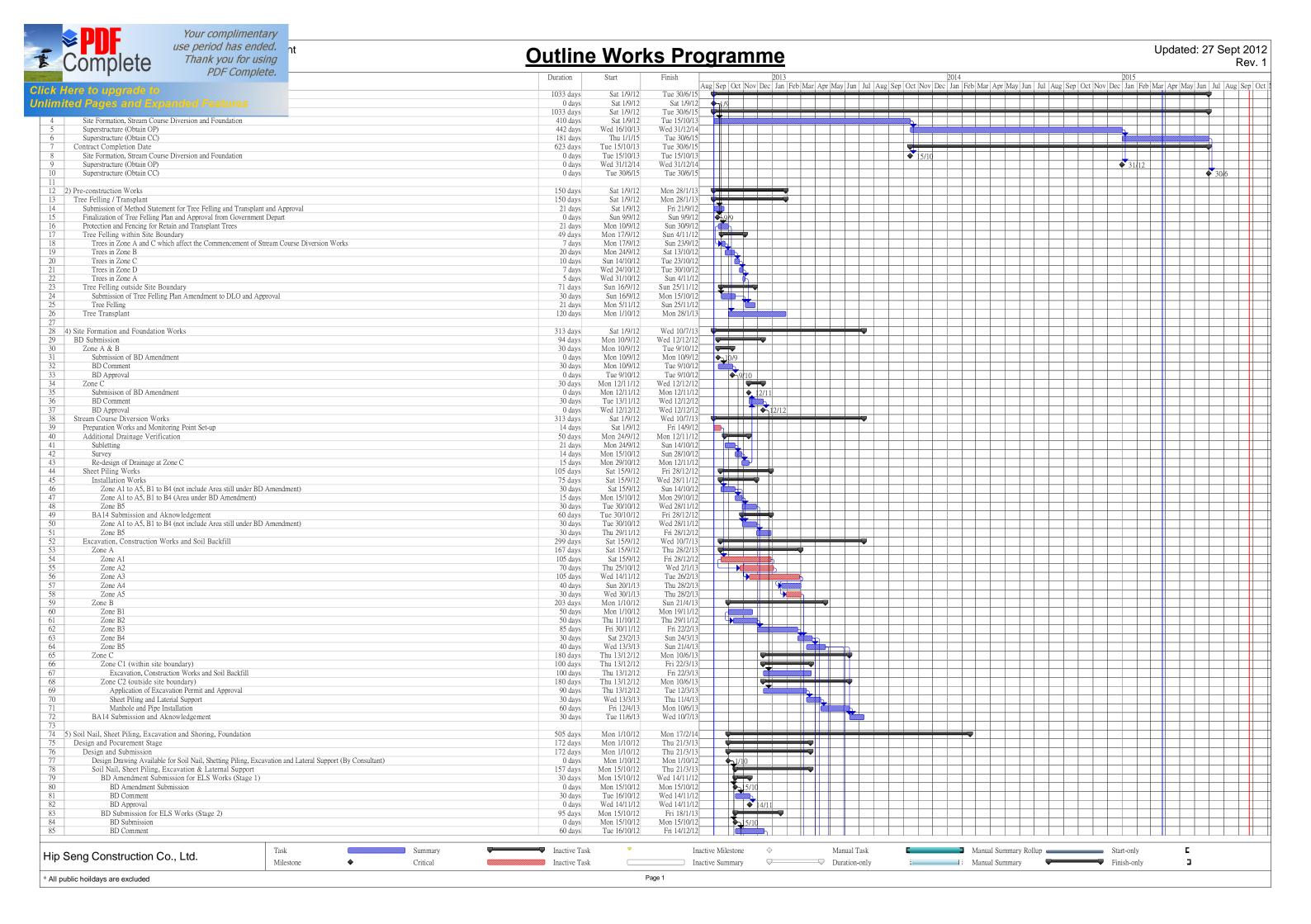
Tree protective measures for tree planting and transplanting should be implemented such as tree protection zone and regular watering.

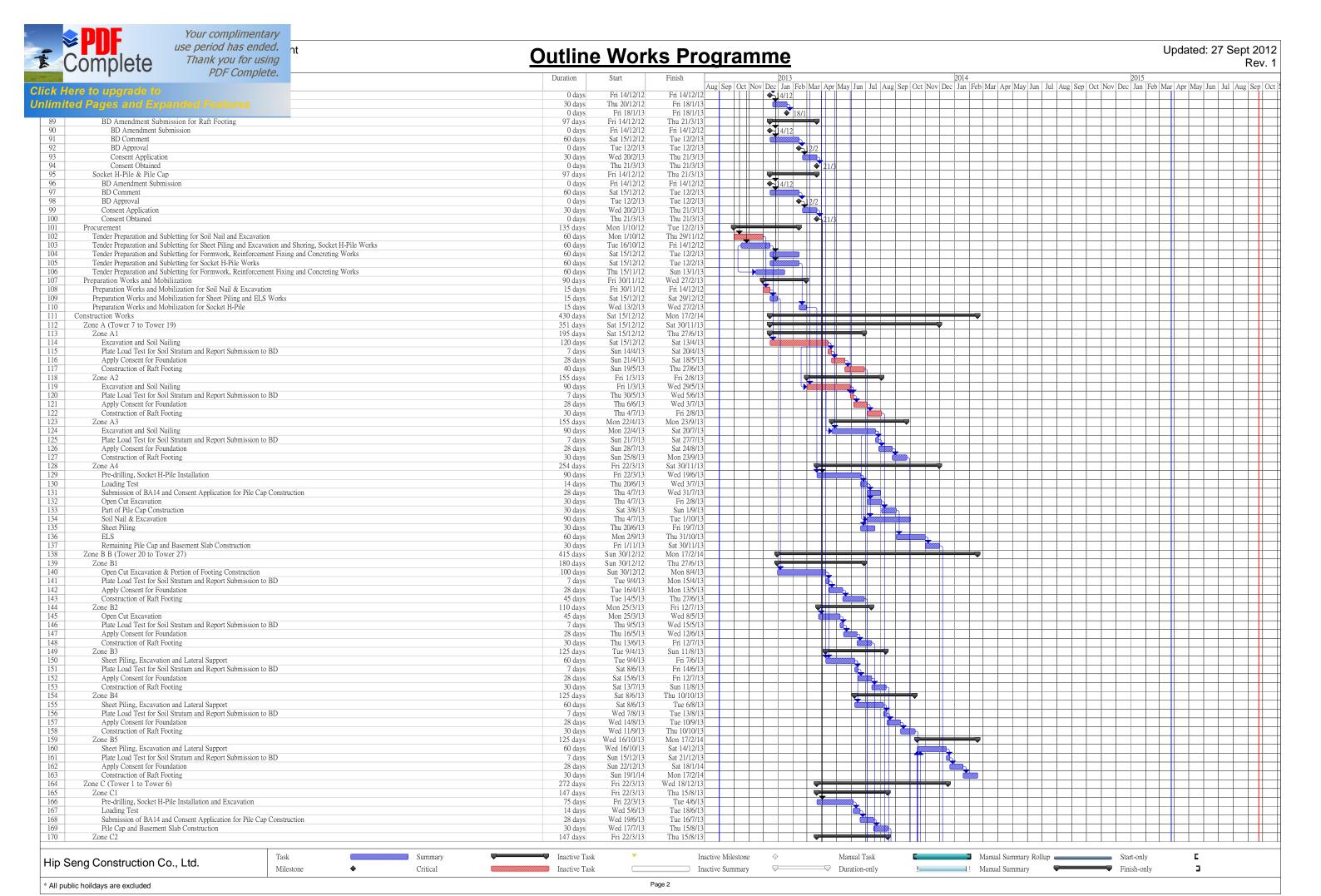
15 Conclusions

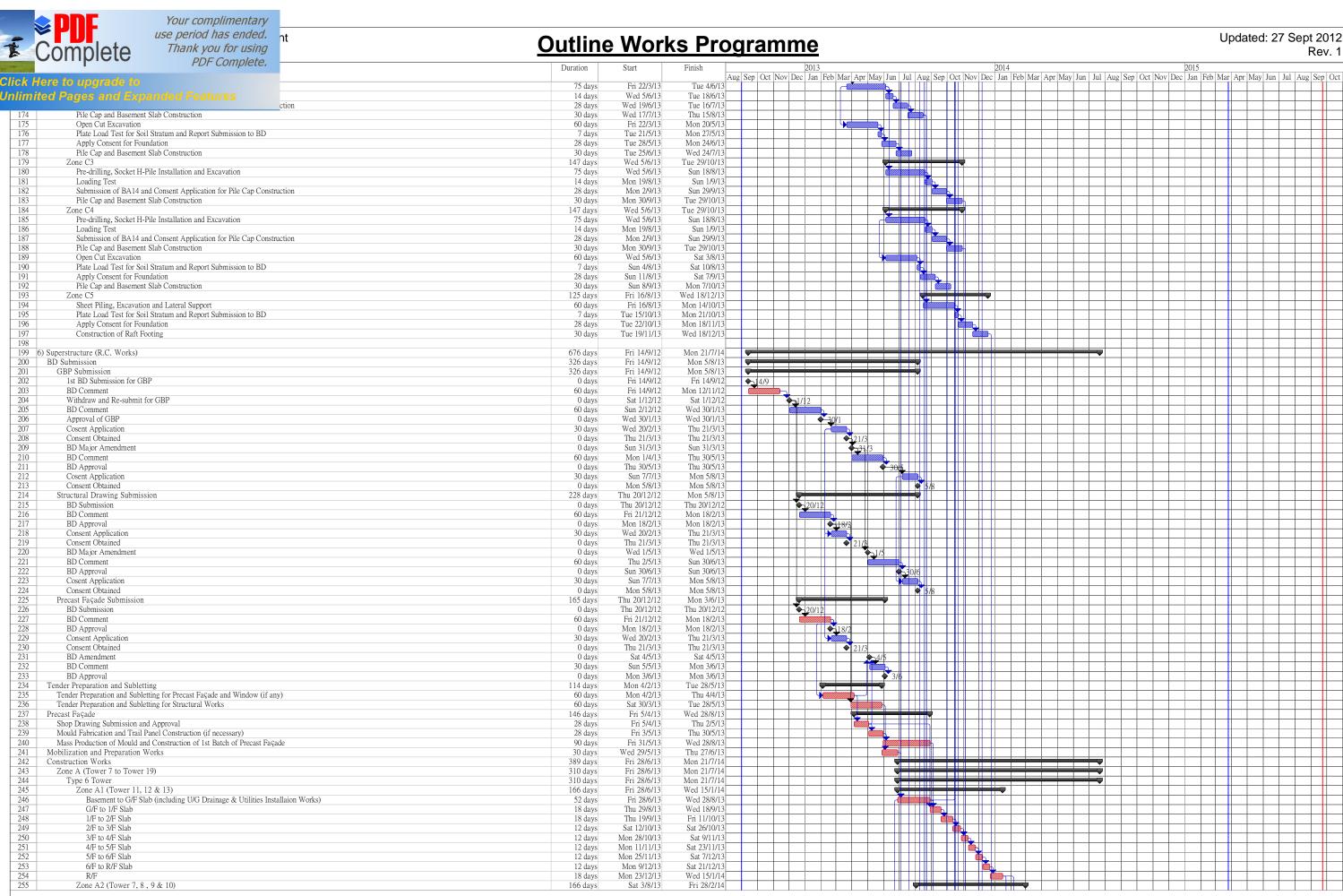
Stream course diversion works, soil nail works and ELS works were major site activities being carried out within this reporting period.

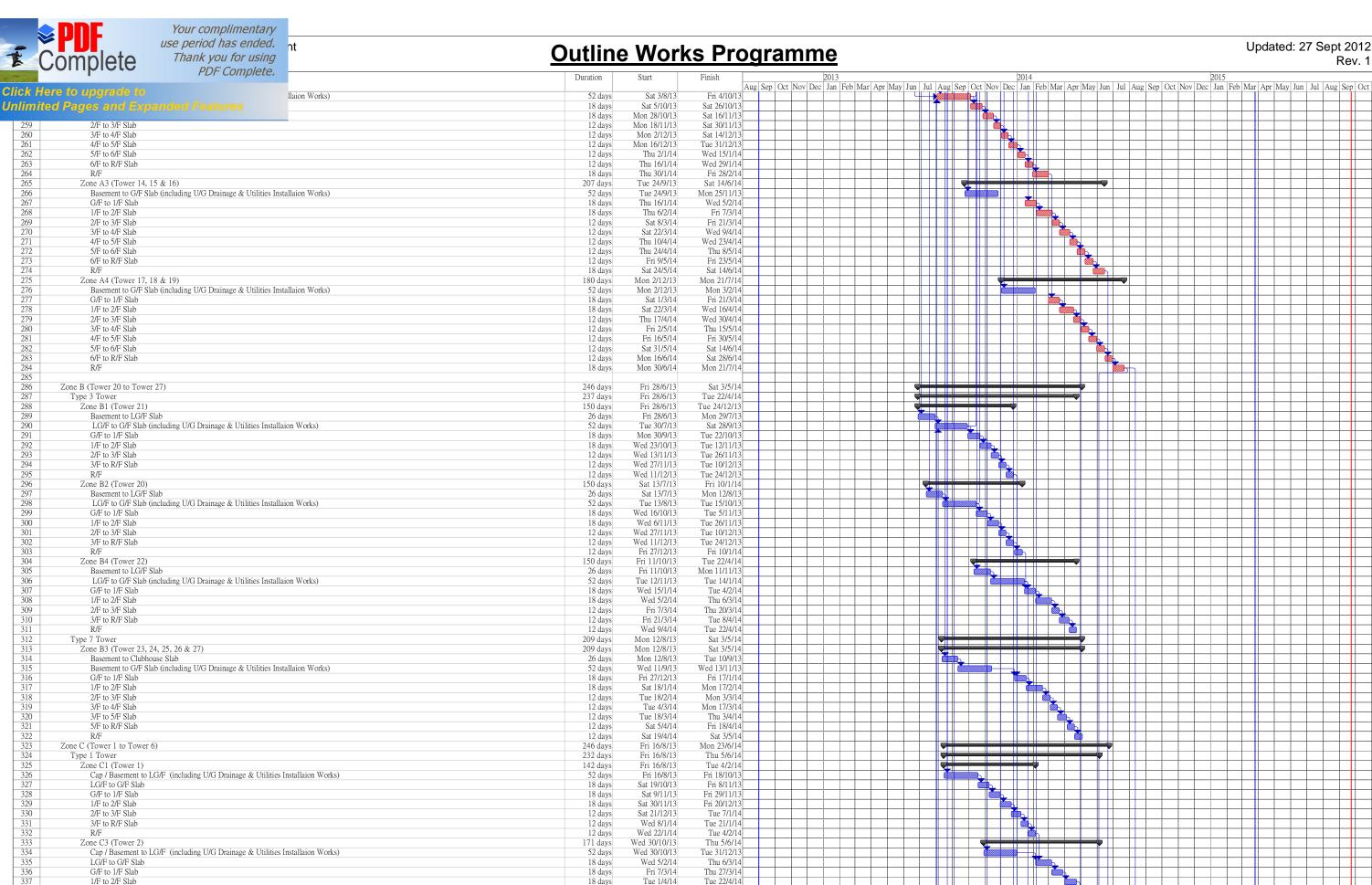
Regular site meetings and inspection audits led by the seniors for discussing site environmental matters were held among Contractor and the ET on weekly basis. Also monthly site meeting and inspection audits with the above parties and IEC were carried out on 20th Feb 2013.

No exceedance was recorded for Noise, Water and Air during the reporting period.

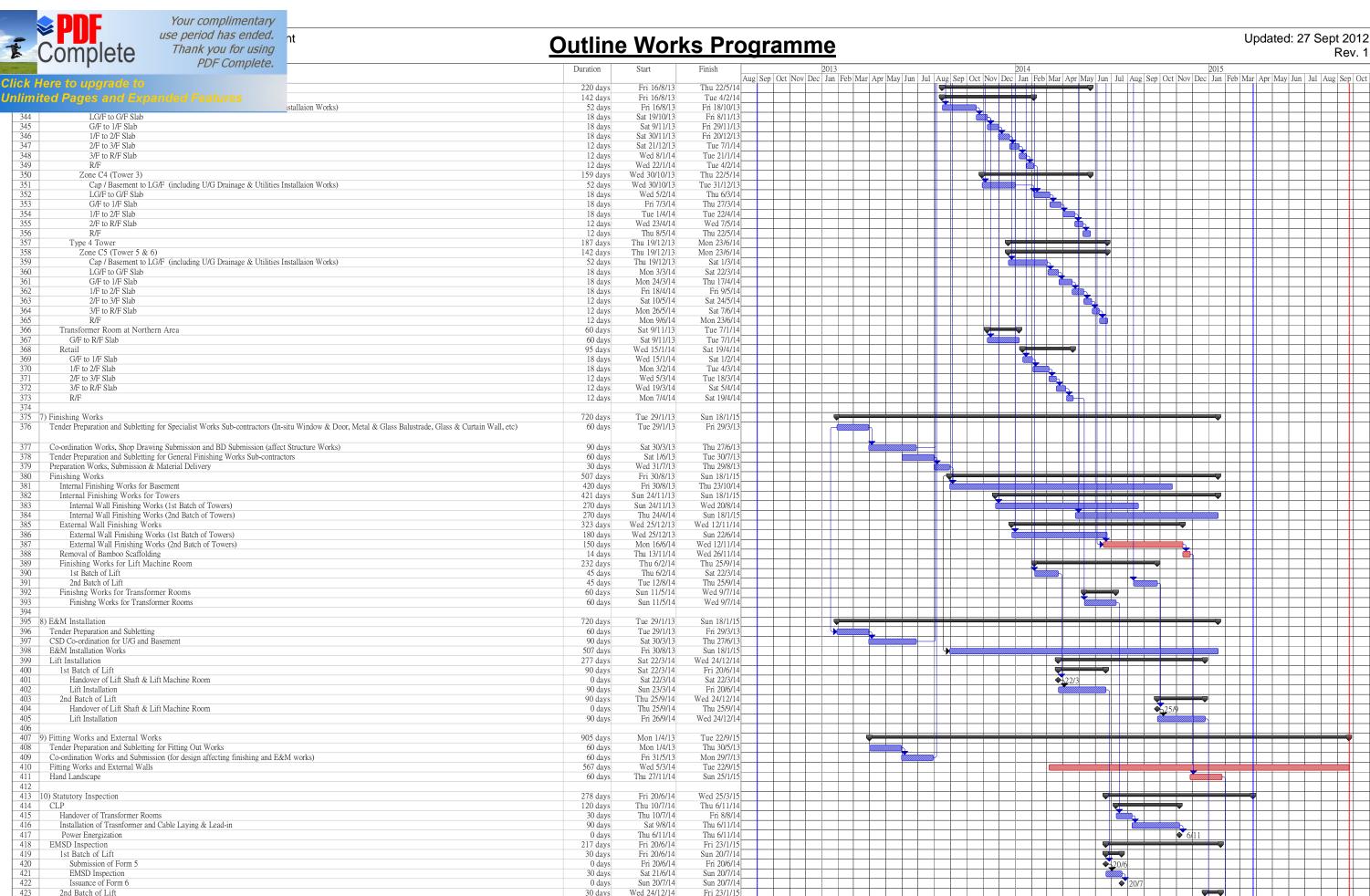

Also, there was no notification of summons, formal prosecution or complaints being recorded during the reporting period.


ET has reminded the contractor to provide environmental pollution control measures wherever necessary, and to keep a good environmental management at site practice.

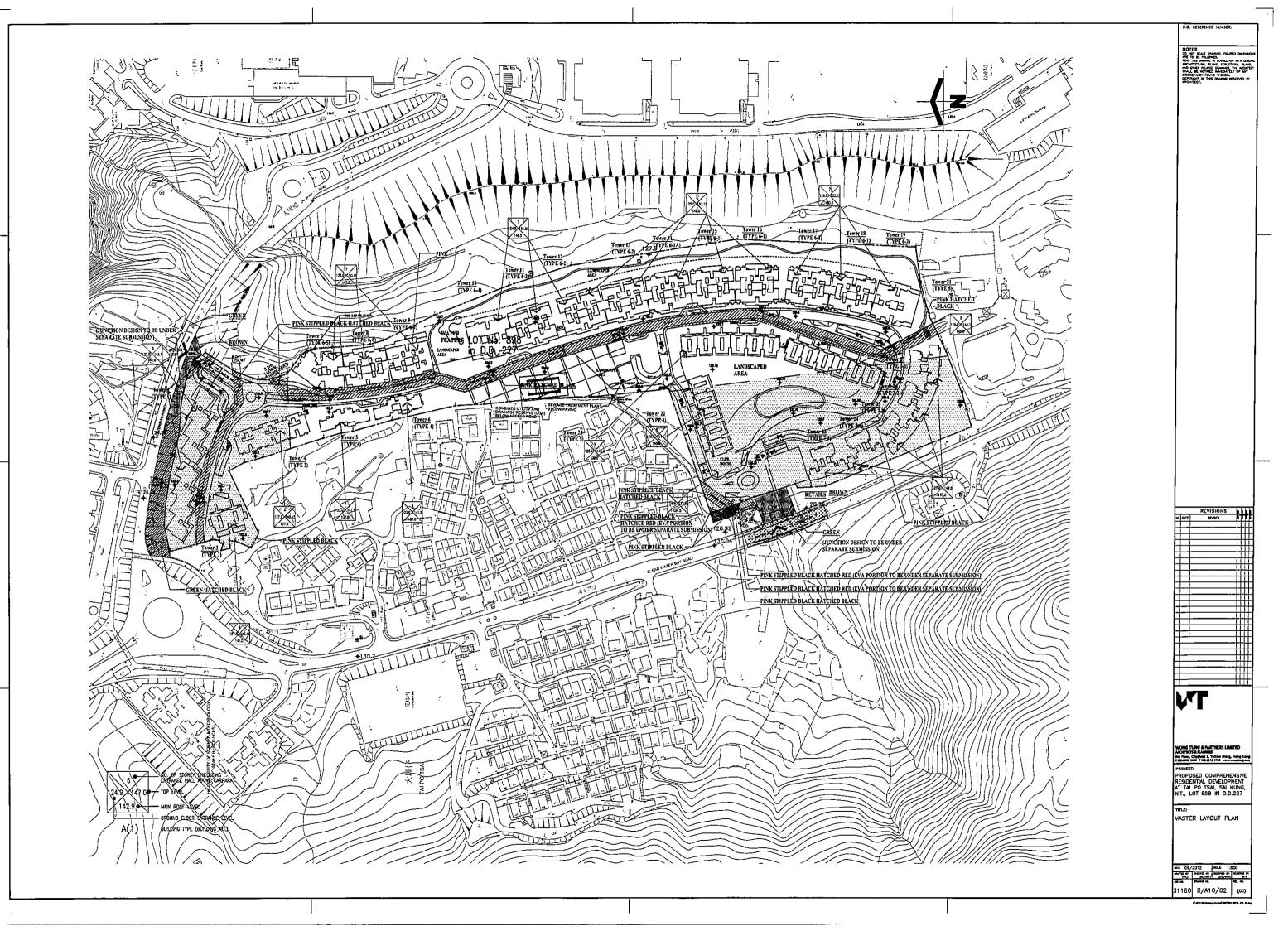

The ET will continue to implement the environmental monitoring & audit programme in accordance with the PS and Environmental Permit requirements.


Appendix A

Construction Master Programme and Site Location Plan



335 336 337 338 2/F to 3/F Slab 12 days Wed 23/4/14 Wed 7/5/14 339 340 3/F to R/F Slab 12 days Thu 8/5/14 Thu 22/5/14 12 days Fri 23/5/14 Thu 5/6/14 Task Inactive Task Manual Task Start-only Hip Seng Construction Co., Ltd. Milestone 3 All public hoildays are excluded



Outline Works Programme

Updated: 27 Sept 2012 Rev. 1

PDI Complete.	Duration	Start	Finish	2013	2014	2015
Click Here to upgrade to			I	Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun	Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun	ı Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct I
	30 days	Thu 25/12/14	Fri 23/1/15			
Inlimited Pages and Expanded Features	0 days	Fri 23/1/15	Fri 23/1/15			23/1
	35 days	Sun 25/1/15	Sun 1/3/15			
428 Submission of Form 501	0 days	Sun 25/1/15	Sun 25/1/15			25/1
429 FS Inspection	7 days	Mon 9/2/15	Sun 15/2/15			
430 Issuance of FS Certificate	0 days	Sun 1/3/15	Sun 1/3/15			
431 BD Inspection	38 days	Sun 15/2/15	Wed 25/3/15			
432 Submission of BA13	0 days	Sun 15/2/15	Sun 15/2/15			15/2
433 BD Inspection	7 days	Mon 23/2/15	Sun 1/3/15			
434 Withdraw and Re-submit for BA13	0 days	Sun 1/3/15	Sun 1/3/15			\$1/3
435 BD Re-inpection	3 days	Mon 9/3/15	Wed 11/3/15			
436 Issuance of OP Certificate	0 days	Wed 25/3/15	Wed 25/3/15			25/3
437						
438 11) Works After OP	181 days	Thu 26/3/15	Tue 22/9/15			
439 Works after OP	181 days	Thu 26/3/15	Tue 22/9/15			

Appendix B

Key Personal Contact Information Chart

Key Personal Contact Information Chart

Organization Name	Role	Name	Telephone	Fax
				Number
ENVIRON Hong Kong	Independent	Mr. Tong	3465 2888	3465 2899
Limited	Environmental	Cheng		
	Checker (IEC)			
Hip Seng Construction	Main Contractor	Mr. Martin	3110 2608	3110 2606
Company Limited		Wong		
Environmental Pioneers	Environmental Team	Ms. Goldie	2556 9172	2856 2010
& Solutions Limited	(ET)	Fung		

Appendix C

Calibration Certificates for Measuring Instruments

28553 Certificate No.

1 of 5 Pages Page

Customer: Environmental Pioneers and Solutions Limited

Address: Flat A, 19/F., Chai Wan Industrial Centre Building, 21 Lee Chung Street, Chai Wan, HK.

Order No.: Q23300

Date of receipt

11-Dec-12

Item Tested

Description: Sound Level Meter

Manufacturer: SVAN

: 955 Model

Serial No.

: 27302

Test Conditions

Date of Test:

8-Jan-13

Supply Voltage

Ambient Temperature:

 $(23 \pm 3)^{\circ}C$

Relative Humidity: (50 ± 25) %

Test Specifications

Calibration check.

Ref. Document/Procedure: Z01.

Test Results

All results were within the IEC 61672 Type1, IEC 1260 Class1 and manufacturer's specification.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No. Description

Cert. No.

Traceable to

S017

Multi-Function Generator

C127181

SCL-HKSAR

S024

Sound Level Calibrator

28588

NIM-PRC & SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI).

The test results apply to the above Unit-Under-Test only

Calibrated by :

8-Jan-13

This Certificate is issued by:

Hong Kong Calibration Ltd.

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Te Chuen Ping Street, Kwai Chung, NT, Hong Kong.

Tel: 2425 8801 Fax: 2425 8646

Certificate No. 28553

Page 2 of 5 Pages

Results:

1. Self-generated noise: 2.0 dBA (Mfr's Spec (Electrical) ≤14 dBA)

2. Acoustical signal test

Z. Acoustica	il signai test					
	UUT S	Setting				
	Frequency	Time	1/1	Applied	U	
Range (dB)	Weighting	Weighting	Octave	Value (dB)	Readin	T-3
			Filter		Before adjust	After adjust
25-120	A	F	OFF	94.0		93.5
		S	OFF			93.5
	C	F	OFF			93.5
	A	F	OFF	114.0		113.9
		S	OFF			113.9
	С	F	OFF			113.9
	A	F	ON	94.0		93.5
	A	F	ON	114.0		113.9
45-139	A	F	OFF	94.0	*91.6	93.5
12 227		s	OFF	1		93.5
	С	F	OFF	1		93.5
	A	F	OFF	114.0		113.9
		s	OFF	1		113.9
	C	F	OFF	1		113.9
	A	F	ON	94.0		93.5
	A	F	ON	114.0		113.9

Mfr's Spec. : $\pm 0.7 \text{ dB}$ Uncertainty : $\pm 0.1 \text{ dB}$

3 Electrical signal tests of frequency weightings (A weighting)

Frequency	Attenuation (dB)	IEC 61672 Type 1 Spec.
31.5 Hz	-39.5	$-39.4 dB, \pm 2 dB$
63 Hz	-26.5	- 26.2 dB, ± 1.5 dB
125 Hz	-16.2	- 16.1 dB, ± 1.5 dB
250 Hz	-8.7	- 8.6 dB, ± 1 dB
500 Hz	-3.3	- $3.2 dB, \pm 1.4 dB$
1 kHz	0.0 (Ref)	$0 \text{ dB}, \pm 1.1 \text{ dB}$
2 kHz	+1.2	+ 1.2 dB, ± 1.6 dB
4 kHz	+1.0	+ 1.0 dB, ± 1.6 dB
8 kHz	-1.1	- 1.1 dB , + $2.1 \text{ dB} \sim -3.1 \text{ dB}$
16 kHz	-6.9	$-6.6 \text{ dB}, +3.5 \text{ dB} \sim -17.0 \text{ dB}$

Uncertainty: ± 0.1 dB

Certificate No. 28553

Page 3 of 5 Pages

4. Frequency & Time weightings at 1 kHz

4.1 Frequency Weighting (Fast)

	··· +- <u>8</u> 8 (** *** **)			
UUT	Applied	UUT	Difference	IEC 61672
Setting	Value (dB)	Reading (dB)	(dB)	Type 1 Spec.
A	94.0	93.5 (Ref.)		± 0.4 dB
С	94.0	93.5	0.0	

4.2 Time Weighting (A-weighted)

T.Z 111110 W 015111111	5 (1. 4. 1. 4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		_	
UUT	Applied	UUT	Difference	IEC 61672
Setting	Value (dB)	Reading (dB)	(dB)	Type 1 Spec.
Fast	94.0	93.5 (Ref.)		± 0.3 dB
Slow	94.0	93.5	0.0	
Time-averaging	94.0	93.5	0.0	

Uncertainty: ± 0.1 dB

5. Level linearity on the reference level range

	Applied		Dice (ID)	IEC (1672 True 1 See
UUT Range	Value (dB)	UUT Reading (dB)	Difference (dB)	IEC 61672 Type 1 Spec.
140 dB	137.0	136.5	0.0	± 1.1 dB
(Ref Level)	136.0	135.5	0.0	
	135.0	134.5	0.0	_
1	134.0	133.5	0.0]
	129.0	128.5	0.0	
	124.0	123.5	0.0	
	119.0	118.5	0.0	
	114.0	113.5	0.0	
	109.0	108.5	0.0	
	104.0	103.5	0.0	_
·	99.0	98.5	0.0	
	94.0	93.5 (Ref)		
	89.0	88.5	0.0	
	84.0	83.5	0.0	
	79.0	78.5	0.0	
	74.0	73.5	0.0	
	69.0	68.5	0.0	
	64.0	63.5	0.0	
	59.0	58.5	0.0	
	54.0	53.5	0.0	_
	49.0	48.4	0.1	_
	48.0	47.4	0.1	

Uncertainty: ± 0.1 dB

Certificate No. 28553

Page 4 of 5 Pages

6. Toneburst response (4kHz)

UUT	Tone Burst	UUT	Difference	IEC 61672
Setting	Duration(ms)	Reading(dB)	(dB)	Type 1 Spec.
Fast	Steady	137.0(Ref)		
	200	136.0	-1.0	-1.0 ± 0.8 dB
	2	118.9	-18.1	-18.0, +1.3 dB ~ -1.8 dB
	0.25	109.9	-27.1	-27.0, +1.3 dB ~ -3.3 dB
Slow	Steady	137.0(Ref)		
	200	129.5	-7.5	-7.4 ± 0.8 dB
	2	109.9	-27.1	-27.0, +1.3 dB ~ -3.3 dB
Time	Steady	137.0(Ref)		
averaging	200	130.0	-7.0	-7.0±0.8dB
	2	110.8	-26.2	-27.0, +1.3 dB ~ -1.8 dB
	0.25	102.0	-35.0	-36.0, +1.3 dB ~ -3.3 dB

Uncertainty: ± 0.1 dB

7. Peak C sound level (140 dB Range, C-weighted, Fast)

Freq(Hz)	Signal Type	Indication of overload	UUT reading (dB)	Difference (dB)	IEC 61672 Type 1 Spec.
8000	Steady		132.0		$3.2 \pm 2.4 dB$
	Complete-cycle	No	135.3	3.3 dB	
500	Steady		132.0		$2.4 \pm 1.4 dB$
[+ve half-cycle	No	129.3	2.7 dB	
	-ve half-cycle	No	129.1	2.9 dB	

Uncertainty: ± 0.1 dB

Certificate No. 28553

Page 5 of 5 Pages

8. Overload indication (140 dB range, A-weighted, Time-average, 4kHz)

UUT Reading	at overload (dB)		
+ ve one half cycle	- ve one half cycle	Difference (dB)	IEC 61672 Type 1 Spec.
137.0	138.5	1.5	< 1.8 dB

The overload indicator latched on until reset

Uncertainty: ± 0.1 dB

9. Filter Characteristics

9.1 1/1 – Octave Filter

Frequency	Attenuation (dB)	IEC 1260 Class 1 (dB)
125 Hz	-76.4	<- 61
250 Hz	-70.5	< - 42
500 Hz	-36.3	<- 17.5
707 Hz	-4.3	- 2 ~ - 5
1 kHz (Ref)		
1.414 kHz	-2.1	- 2~- 5
2 kHz	-50.6	< - 17.5
4 kHz	-82.3	<- 42
8 kHz	-82.5	<- 61

Uncertainty: ± 0.25 dB

Remarks: 1. UUT: Unit-Under-Test

- 2. The uncertainty claimed is for a confidence probability of not less than 95%.
- 3. Atmospheric Pressure: 1010 hPa.
- 4. Preamplifier model: SV 12L, S/N: 25732
- 5. Firmware Version: 6.12.4
- 6. Power Supply Check: OK
- 7. The UUT was adjusted with the supplied sound calibrator at the reference sound pressure level before the calibration.
- 8. *Out of specification.

	END	
--	------------	--

Certificate No. 21290

Page 1 of 2 Pages

Customer: Environmental Pioneers and Solutions Limited

Address: Flat A, 19/F., Chai Wan Industrial Centre Building, 21 Lee Chung Street, Chai Wan, HK.

Order No.: Q20468

Date of receipt

2-Mar-12

Item Tested

Description: Sound Level Calibrator

Manufacturer: Svantek

Model: SV30A

Serial No.

: 7908

Test Conditions

Date of Test: 5-Mar-12

Supply Voltage

Ambient Temperature :

 $(23 \pm 3)^{\circ}C$

Relative Humidity: (50 ± 25) %

Test Specifications

Calibration check.

Ref. Document/Procedure: F21, Z02.

Test Results

All results were within the IEC 942 Class 1 specification.

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No.	Description	Cert. No.	Traceable to
S014	Spectrum Analyzer	13535	NIM-PRC & SCL-HKSAR
S024	Sound Level Calibrator	15136	NIM-PRC & SCL-HKSAR
S041	Universal Counter	15610	SCL-HKSAR
S206	Sound Level Meter	16338	SCL-HKSAR

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI). The test results apply to the above Unit-Under-Test only

Calibrated by :

P. F. Wong

Approved by

Dorothy Cheuk

This Certificate is issued by:

Hong Kong Calibration Ltd.

Date:

ar-12

Hong Rong Calibration Etc.

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong.

Tel; 2425 8801 Fax: 2425 8646

Certificate No. 21290

Page 2 of 2 Pages

Results:

1. Level Accuracy

UUT Nominal Value (dB)	Measured Value (dB)	IEC 942 Class 1 Spec.
94	94.10	± 0.3 dB
114	114.18	

Uncertainty: ± 0.1 dB

2. Frequency

UUT Nominal Value	Measured Value	IEC 942 Class 1 Spec.
1 kHz	1.000 kHz	± 2 %

Uncertainty: $\pm 3.6 \times 10^{-6}$

3. Level Stability: 0.0 dB

IEC 942 Class 1 Spec. : ± 0.1 dB

Uncertainty: ± 0.01 dB

4. Total Harmonic Distortion : < 0.8 %

IEC 942 Class 1 Spec. : < 3 % Uncertainty : ± 2.3 % of reading

Remark: 1. UUT: Unit-Under-Test

2. The above measured values are the mean of 3 measurements.

3. The uncertainty claimed is for a confidence probability of not less than 95%.

4. Atmospheric Pressure: 1001 hPa.

----- END -----

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:

MR ALLEN CHAN

CLIENT:

ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

ADDRESS:

FLAT 19A, CHAI WAN INDUSTRIAL CENTRE BUILDING,

20 LEE CHUNG STREET,

CHAI WAN, HONG KONG.

PROIECT:

DATE OF ISSUE: 20/11/2012

WORK ORDER:

LABORATORY:

DATE RECEIVED:

HK1230632

HONG KONG 19/11/2012

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:

Conductivity, Dissolved Oxygen, pH, Temperature and Turbidity

Description: Brand Name: Multi-meter TOA-DKK

Model No.:

WMS-24

Serial No.:

682337

Equipment No.:

Date of Calibration: 20 November, 2012

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung HONG KONG Phone:

852-2610 1044

Fax:

852-2610 2021

Email:

hongkong@alsglobal.com

aboratory Manager - Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 3

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: Date of Issue: HK1230632 20/11/2012

Client:

ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

Description: Brand Name: Multi-meter TOA-DKK

Model No.: Serial No.: WMS-24 682337

Equipment No.:

Date of Calibration:

20 November, 2012

Date of next Calibration:

20 February, 2013

Parameters:

Conductivity

Method Ref: APHA (21st edition), 2510B

Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)
146.9	152.0	3.5
6667	7030	5.4
12890	13600	5.5
58670	60400	2.9
	Tolerance Limit (%)	10.0

Dissolved Oxygen

Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
177		
4.83	4.82	-0.01
6.76	6.65	-0.11
8.89	8.79	-0.10
	Tolerance Limit (±mg/L)	0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

MCCHOO RCH ATTA (E130 Cardon), 13001115				
Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)		
4.0	4.01	0.01		
7.0	7.02	0.02		
10.0	10.07	0.07		
	Tolerance Limit (±unit)	0.20		

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
15.5	15.7	0.2
24.0	24.2	0.2
42.0	40.0	-2.0
	Tolerance Limit (°C)	2.0

Mr Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: HK1230632 **Date of Issue:** 20/11/2012

Client: ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

Description: Multi-meter
Brand Name: TOA-DKK
Model No.: WMS-24
Serial No.: 682337

Equipment No.: -

Date of Calibration: 20 November, 2012 Date of next Calibration: 20 February, 2013

Parameters:

Turbidity Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
İ		
0	0.0	
4	3.8	-5.0
40	40.1	0.3
80	76.7	-4 <i>.</i> 1
400	392.6	-1.8
800	732.7	-8.4
	Tolerance Limit (±%)	10.0

Mr Chan Kwok Fai, Godfrey Laborator Manager - Hong Kong

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:

MR ALLEN CHAN

CLIENT: ADDRESS:

ENVIRONMENTAL PIONEERS & SOLUTIONS LIMITED FLAT A, 19/F, CHAI WAN INDUSTRIAL BUILDING,

20 LEE CHUNG STREET.

CHAI WAN, HONG KONG WORK ORDER:

HK1302895

LABORATORY:

HONG KONG

DATE RECEIVED: DATE OF ISSUE:

01/02/2013 15/02/2013

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:

Conductivity, Dissolved Oxygen, pH, Temperature and Turbidity

Description:

WATER OUALITY MULTI-METER

Brand Name: Model No :

TOA DKK WMS-24

Serial No.:

685940

Equipment No.:

Date of Calibration: 08 February, 2013

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung HONG KONG Phone:

852-2610 1044

Fax: Email: 852-2610 2021

hongkong@alsglobal.com

Mr Chan Kwok Fai, Godfrey

Laboratory Manager - Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

ADDRESS 11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong | PHONE +852 2610 1044 | FAX +852 2610 2021 ALS TECHNICHEM (HK) PTY LTD An ALS Limited Company

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: Date of Issue: HK1302895

Date o

15/02/2013

Client:

ENVIRONMENTAL PIONEERS & SOLUTIONS LIMITED

Description:

WATER QUALITY MULTI-METER

Brand Name:

TOA DKK

Model No.: Serial No.: WMS-24 685940

Equipment No.:

--

Date of Calibration:

08 February, 2013

Date of next Calibration:

08 May, 2013

Parameters:

Conductivity

Method Ref: APHA (21st edition), 2510B

Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)
146.9	143.0	-2.7
6667	7100	6.5
12890	13100	1.6
58670	60400	2.9
	Tolerance Limit (±%)	10.0

Dissolved Oxygen

Method Ref: APHA (21st edition), 45000: G

Method Ren / II / (225t edition), 155551 C						
Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)				
3.14	3.07	-0.07				
6.20	6.29	0.09				
8.54	8.60	0.06				
	19					
	Tolerance Limit (±mg/L)	0.20				

pH Value

Method Ref: APHA 21st Ed. 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)	
4.0	4.00	0.00	
7.0	6.89	-0.11	
10.0	9.91	-0.09	
	Tolerance Limit (±pH unit)	0.20	

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)					
10.0	10.3	0.3					
22.0	21.3	-0.7					
38.0	37.9	-0.1					
0.000 (No. 20.00)							
	Tolerance Limit (+°C)	2.0					

Turbidity

Method Ref: APHA (21st edition), 2130B

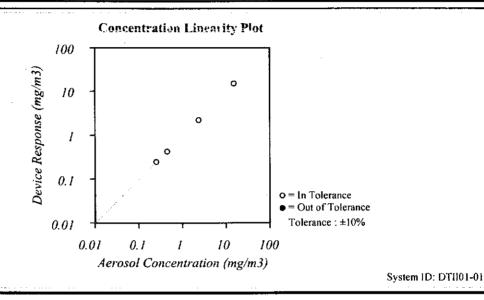
Method Ref: APHA (21st edition), 21sub						
Expected Reading (NTU)	Displayed Reading (NTU) Tolerance (%)					
0	0.0					
4	4.3	7.5				
40	38.9	-2.8				
80	84.4	5.5				
400	391.0	-2.3				
800	782.5	-2.2				
	Tolerance Limit (±%)	10.0				

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

Page 2 of 2

ALS Technichem (HK) Pty Ltd
ALS Environmental



CERTIFICATE OF CALIBRATION AND TESTING

TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

Environment Condition			Model	AM510
Temperature	66.6 (19.2)	°F (°C)	Through the second seco	ANUTO
Relative Humidity	54	%RH	Carial Number	11208034
Barometric Pressure	29.08 (984.8)	inHg (hPa)	Serial Number	11200034

☐ As Left ☐ ☐ Out of Tolerance ☐ Out of Tolerance

TSI Incorporated does hereby certify that all materials, components, and workmanship used in the manufacture of this equipment are in strict accordance with the applicable specifications agreed upon by TSI and the customer and with all published specifications. All performance and acceptance tests required under this contract were successfully conducted according to required specifications. There is no NIST standard for optical mass measurements. Calibration of this instrument performed by TSI has been done using emery oil and has been nominally adjusted to respirable mass of standard ISO 12103-1, Al test dust (Arizona dust). Our calibration ratio is greater than 1.2:1

Measarement Variable	System ID	Lasi Çaf	Cal, Duc	Measurement Variable	System (D	Cast Cal.	Cal Due
Photometer	E003433	04-11-12	10-11-12	Flow and temperature	E002371	03-06-12	03-06-13
DC Voltage(Keithley)	E002859	01-18-12	01-18-13	Microbalance	M001324	01-04-11	01-04-13
Barometric Pressure	E003733	02-25-12	02-25-13	Temperature	E002873	11-14-11	11-14-12
Humidity	E002873	11-14-11	11-14-12	Pressure	E003440	08-17-12	08-17-13

Calibrated Final Function Check

August 27, 2012

Date

SI P/N 2300157

Certificate No. 24181

Page

1 of 2 Pages

Customer: Environmental Pioneers and Solutions Limited

Address : Flat A, 19/F., Chai Wan Industrial Centre Building, 21 Lee Chung Street, Chai Wan, HK.

Order No.: Q21644

Date of receipt

3-Jul-12

Item Tested

Description: Laser Dust Monitor

Manufacturer: SIBATA

Model

: LD-3B

Serial No.

: 954254

Test Conditions

Date of Test:

5-Jul-12 ~13-Jul-12

Supply Voltage

Ambient Temperature:

 $(23 \pm 3)^{\circ}$ C

Relative Humidity: (50 ± 25) %

Test Specifications

Calibration check.

Ref. Document/Procedure: Manufacturer recommended method (gravimetric), Z28.

Test Results

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No.	Description	Cert. No.	Traceable to
S136B	Stop Watch	13184	NIM-PRC
S156	Analytical Balance	00352	NIM-PRC
S201	Std. Test Dust	61291	NIST
S207B	Std. Flowmeter	20588	NIM-PRC
	•		

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI). The test results apply to the above Unit-Under-Test only

Calibrated by :

Approved by:

23-Jul-12

Date:

This Certificate is issued by:

Hong Kong Calibration Ltd.

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong.

Tel: 2425 8801 Fax: 2425 8646

The copyright of this certificate is owned by Hong Kong Calibration Ltd.. It may not be reproduced except in full.

Certificate No. 24181

Page 2 of 2 Pages

Results:

Applied Value (µg/m³)	UUT Measured Value (K=1.3) (μg/m³), (cpm)
1225.3	1266.2

Remarks: 1. UUT: Unit-Under-Test

- 2. Uncertainty \pm 15 %, for a confidence probability of not less than 95%.
- 3. The results were the mean of 3 measurements,
- 4. ISO 12103-1 A1 respirable standard test dust was used for the calibration.
- 5. The K-Factor had been adjusted from 2.0 to 1.3

TISCH ENVIROMENTAL, INC.
145 SOUTH MIAMI AVE.
VILLAGE OF CLEVES, ÖH 45002
513.467.9000
877.263.7610 TOLL FREE
513.467.9009 FAX
WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Ma Operator		Rootsmeter Orifice I.I	1 700000	138320 1483	Ta (K) - Pa (mm) -	294 754.38
PLATE OR	VOLUME START	VOLUME STOP	DIFF VOLUME	DIFF TIME	METER DIFF Hg	ORFICE DIFF H2O
Run # 1 2 3 4 5	(m3) NA NA NA NA NA NA	(m3) NA NA NA NA NA	(m3) 1.00 1.00 1.00 1.00	(min) 1.4140 0.9960 0.8910 0.8510 0.7020	(mm) 3.2 6.4 7.9 8.7 12.8	(in.) 2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
1.0018 0.9976 0.9955 0.9945 0.9890	0.7085 1.0016 1.1173 1.1686 1.4088	1.4185 2.0061 2.2429 2.3524 2.8371		0.9957 0.9915 0.9894 0.9884 0.9830	0.7042 0.9955 1.1105 1.1615 1.4003	0.8829 1.2486 1.3959 1.4641 1.7657
Qstd slop intercept coefficient y axis =	t (b) = ent (r) =	2.02742 -0.02027 0.99996 	Qa slope intercept coefficient y axis =	t (b) =	1.26953 -0.01262 0.99996	

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa]

Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{ [SQRT H2O(Ta/Pa)] - b\}$

TSP Sampler Calibration

SITE

Location: Tai Po Tsai Date: December 31, 2012 Sampler: TE-5170 MFC (Serial # : 2039) Tech: Sam Wong

CONDITIONS Barometric Pressure (in Hg): 40.28 Corrected Pressure (mm Hg): 1023 Temperature (deg F): 48 Temperature (deg K): 282 Average Press. (in Hg): 40.28 Corrected Average (mm Hg): 1023 Average Temp. (deg F): 48 Average Temp. (deg K): 282

CALIBRATION ORIFICE Make: Tisch Qstd Slope: 2.02742 Model: TE-5025A Qstd Intercept: -0.02027 Serial#: 1483 Date Certified: May 17, 2012

CALIBRATIONS							
Plate or Test #	H2O (in)	Qstd (m3/min)	I (chart)	IC (corrected)	LINEAR REGRESSION		
1	11.90	2.040	59.0	70.38	Slope =	33.4033	
2	10.20	1.889	54.0	64.42	Intercept =	1.7899	
3	8.00	1.674	48.0	57.26	Corr. coeff.=	0.9991	
4	5.20	1.352	40.0	47.72			
5	3.20	1.063	31.0	36.98	# of Observations:	5	

Calculations

```
Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]
IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]
Qstd = standard flow rate
IC = corrected chart response
I = actual chart response
m = calibrator Qstd slope
b = calibrator Qstd intercept
Ta = actual temperature during calibration (deg K)
Pa = actual pressure during calibration (mm Hg)
Tstd = 298 \text{ deg K}
Pstd = 760 mm Hg
For subsequent calculation of sampler flow:
1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)
   = sampler slope
= sampler intercept
m
b
   = chart response
Tav = daily average temperature
Pav = daily average pressure
```

TSP Sampler Calibration

SITE

Location: Tai Po Tsai Date: December 31, 2012 Sampler: TE-5170 MFC (Serial # : 1959) Tech: Sam Wong

CONDITIONS Barometric Pressure (in Hg): 40.28 Corrected Pressure (mm Hg): 1023 Temperature (deg F): 48 Temperature (deg K): 282 Average Press. (in Hg): 40.28 Corrected Average (mm Hg): 1023 Average Temp. (deg F): 48 Average Temp. (deg K): 282

CALIBRATION ORIFICE Make: Tisch Qstd Slope: 2.02742 Model: TE-5025A Qstd Intercept: -0.02027 Serial#: 1483 Date Certified: May 17, 2012

CALIBRATIONS								
Plate or Test #	H2O (in)	Qstd (m3/min)	I (chart)	IC (corrected)	LINEAR REGRESSION			
1	12.40	2.082	60.0	71.58	Slope =	34.8414		
2	10.60	1.926	54.0	64.42	Intercept =	-1.8511		
3	8.20	1.695	48.0	57.26	Corr. coeff.=	0.9984		
4	5.40	1.377	38.0	45.33				
5	3.40	1.095	31.0	36.98	# of Observations:	5		

Calculations

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]Qstd = standard flow rate IC = corrected chart response I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pa = actual pressure during calibration (mm Hg) Tstd = 298 deg KPstd = 760 mm Hg For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) = sampler slope = sampler intercept m b = chart response Tav = daily average temperature Pav = daily average pressure

TSP Sampler Calibration

SITE

Location: Tai Po Tsai Date: December 31, 2012 Sampler: TE-5170 MFC (Serial # : 2042) Tech: Sam Wong

CONDITIONS Barometric Pressure (in Hg): 40.28 Corrected Pressure (mm Hg): 1023 Temperature (deg F): 48 Temperature (deg K): 282 Average Press. (in Hg): 40.28 Corrected Average (mm Hg): 1023 Average Temp. (deg F): 48 Average Temp. (deg K): 282

Make: Tisch Qstd Slope: 2.02742 Model: TE-5025A Qstd Intercept: -0.02027 Serial#: 1483 Date Certified: May 17, 2012

CALIBRATIONS								
Plate or Test #	H2O (in)	Qstd (m3/min)	I (chart)	IC (corrected)	LINEAR REGRESSION			
1	12.40	2.082	58.0	69.19	Slope =	32.6158		
2	10.20	1.889	52.0	62.03	Intercept =	0.7018		
3	8.00	1.674	46.0	54.88	Corr. coeff.=	0.9994		
4	5.40	1.377	38.0	45.33				
5	3.20	1.063	30.0	35.79	# of Observations:	5		

Calculations

```
Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]
IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]
Qstd = standard flow rate
IC = corrected chart response
I = actual chart response
m = calibrator Qstd slope
b = calibrator Qstd intercept
Ta = actual temperature during calibration (deg K)
Pa = actual pressure during calibration (mm Hg)
Tstd = 298 \text{ deg K}
Pstd = 760 mm Hg
For subsequent calculation of sampler flow:
1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)
   = sampler slope
= sampler intercept
m
b
   = chart response
Tav = daily average temperature
Pav = daily average pressure
```

TSP Sampler Calibration

SITE

Location: Tai Po Tsai Date: December 31, 2012 Sampler: TE-5170 MFC (Serial # : 2040) Tech: Sam Wong

CONDITIONS Barometric Pressure (in Hg): 40.28 Corrected Pressure (mm Hg): 1023 Temperature (deg F): 48 Temperature (deg K): 282 Average Press. (in Hg): 40.28 Corrected Average (mm Hg): 1023 Average Temp. (deg F): 48 Average Temp. (deg K): 282

CALIBRATION ORIFICE Make: Tisch Qstd Slope: 2.02742 Model: TE-5025A Qstd Intercept: -0.02027 Serial#: 1483 Date Certified: May 17, 2012

CALIBRATIONS						
Plate or Test #	H2O (in)	Qstd (m3/min)	I (chart)	IC (corrected)	LINEAR REGRESSION	
1	12.20	2.065	57.0	68.00	Slope =	30.4947
2	10.20	1.889	52.0	62.03	Intercept =	4.8672
3	8.00	1.674	47.0	56.07	Corr. coeff.=	0.9996
4	5.20	1.352	39.0	46.53		
5	3.20	1.063	31.0	36.98	# of Observations:	5

Calculations

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]Qstd = standard flow rate IC = corrected chart response I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pa = actual pressure during calibration (mm Hg) Tstd = 298 deg KPstd = 760 mm Hg
For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) = sampler slope = sampler intercept m b = chart response Tav = daily average temperature Pav = daily average pressure

Appendix D

Construction Noise Monitoring Data

大成環境科技拓展有限公司

Environmental Pioneers and Solutions Limited

Noise Monitoring Data Sheet

Monitoring Location		N1	N2	N3	N4
Monitoring Meth	od	Freefield	Freefield	Freefield	Façade
Date of Monitori	ng	6/2/2013	6/2/2013	6/2/2013	6/2/2013
Weather Conditi	ion	Cloudy	Cloudy	Cloudy	Cloudy
Measurement S	tart Time (hh:mm)	13:02	11:33	9:50	10:30
Measurement T	ime Length (mins)	30 r	nins	30 r	nins
SLM Model & S	/N	SVAN	N 955	SVAN	N 955
Wind Speed (m/	/s)	<5, North	<5, North	<5, North	<5, North
	L _{eq} (dB(A))	62.5	60.2	63.9	64.1
Measurement Results	L ₁₀ (dB(A))	65.1	61.9	64.5	66.1
- too and	L ₉₀ (dB(A))	56.2	56.3	58.6	58.2
Major Construct During Monitorir	ion Noise Source(s) ng	Nil	Nil	Nil	Nil
Other Noise Source(s) During Monitoring		Background noise	Background noise	Background noise	Background noise Traffic noise

<u>Name</u>

<u>Signature</u>

Andry Trants

<u>Date</u>

Perpared by:

Tsang King Yuen

6/2/2013

大成環境科技拓展有限公司

Environmental Pioneers and Solutions Limited

Noise Monitoring Data Sheet

Monitoring Location		N1	N2	N3	N4
Monitoring Method		Freefield	Freefield	Freefield	Façade
Date of Monitori	ng	14/2/2013	14/2/2013	14/2/2013	14/2/2013
Weather Conditi	ion	Cloudy	Cloudy	Cloudy	Cloudy
Measurement S	tart Time (hh:mm)	11:28	13:00	9:15	10:50
Measurement T	ime Length (mins)	30 r	nins	30 r	nins
SLM Model & S	/N	SVAN	N 955	SVAN	N 955
Wind Speed (m/	/s)	<5, Northeast	<5, Northeast	<5, Northeast	<5, Northeast
	L _{eq} (dB(A))	63.5	60.2	61.3	62.6
Measurement Results	L ₁₀ (dB(A))	64.2	61.9	62.9	65.1
- too and	L ₉₀ (dB(A))	58.3	56.9	56.3	59.3
Major Construct During Monitorir	ion Noise Source(s) ng	Nil	Nil	Nil	Nil
Other Noise Source(s) During Monitoring		Background noise	Background noise	Background noise	Background noise Traffic noise

Name Signature Date

Perpared by: Tsang King Yuen 14/2/2013

大成環境科技拓展有限公司

Environmental Pioneers and Solutions Limited

Noise Monitoring Data Sheet

Monitoring Location		N1	N2	N3	N4
Monitoring Method		Freefield	Freefield	Freefield	Façade
Date of Monitori	ng	20/2/2013	20/2/2013	20/2/2013	20/2/2013
Weather Conditi	ion	Cloudy	Cloudy	Cloudy	Cloudy
Measurement S	tart Time (hh:mm)	14:40	13:02	10:11	9:30
Measurement T	ime Length (mins)	30 r	nins	30 r	nins
SLM Model & S	/N	SVAI	N 955	SVAN	N 955
Wind Speed (m/	/s)	<5, East	<5, East	<5, East	<5, East
	L _{eq} (dB(A))	64.3	62.4	61.5	65.1
Measurement Results	L ₁₀ (dB(A))	65.6	64.1	62.4	66.2
. rooune	L ₉₀ (dB(A))	58.3	57.7	59.2	58.7
Major Construct During Monitorir	ion Noise Source(s) ng	Nil	Nil	Nil	Nil
Other Noise Sou Monitoring	urce(s) During	Background noise	Background noise	Background noise	Background noise Traffic noise

Name Signature Date

Perpared by: Tsang King Yuen 20/2/2013

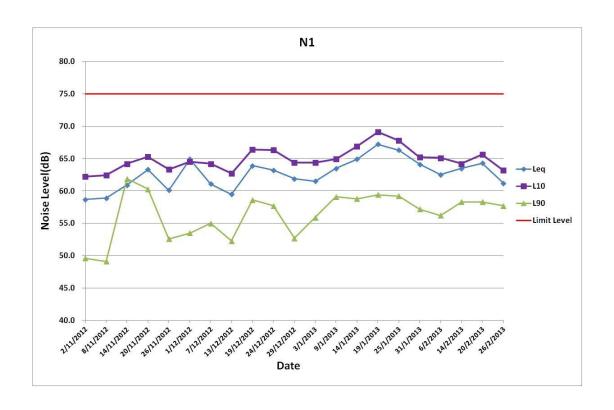
大成環境科技拓展有限公司 Environmental Pioneers and Solutions Limited

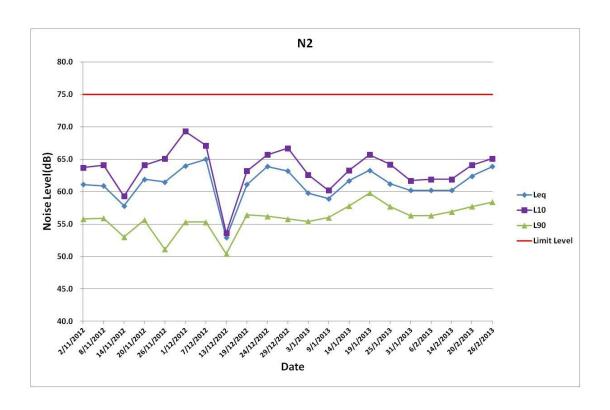
Noise Monitoring Data Sheet

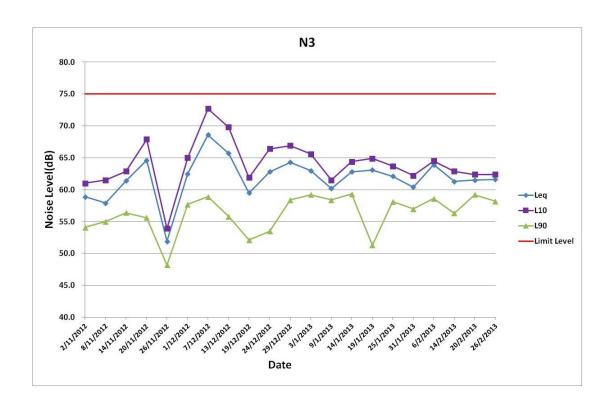
Monitoring Loca	tion	N1	N2	N3	N4
Monitoring Method		Freefield	Freefield	Freefield	Façade
Date of Monitori	ng	26/2/2013	26/2/2013	26/2/2013	26/2/2013
Weather Conditi	on	Cloudy	Cloudy	Cloudy	Cloudy
Measurement St	tart Time (hh:mm)	9:30	10:05	10:42	11:30
Measurement Ti	me Length (mins)	30 r	nins	30 r	nins
SLM Model & S/	'N	SVAN	N 955	SVAN	N 955
Wind Speed (m/	(s)	<5, Northeast	<5, Northeast	<5, Northeast	<5, Northeast
	L _{eq} (dB(A))	61.2	63.9	61.6	61.5
Measurement Results	L ₁₀ (dB(A))	63.2	65.1	62.4	62.9
recounts	L ₉₀ (dB(A))	57.7	58.4	58.2	58.4
Major Constructi During Monitorin	ion Noise Source(s) ng	Nil	Nil	Nil	Nil
Other Noise Sou Monitoring	urce(s) During	Background noise	Background noise	Background noise	Background noise Traffic noise

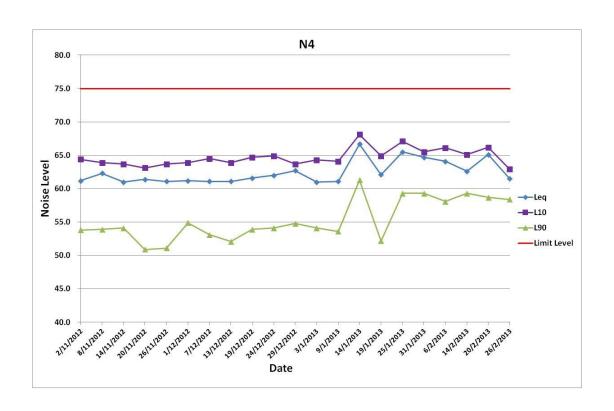
<u>Name</u>

<u>Signature</u>


Andy Trant


<u>Date</u>


Perpared by:


Tsang King Yuen

26/2/2013

Appendix E

Water Quality Monitoring Data

Date of Sampling: 2/2/2013

Weather: Sunny

Monitoring Location	W1	W2
Time (hhmm)	10:00	10:30
Water Depth (m)	<1	<1
pH value	8.10	7.82
Temperature (°C)	22.54	23.87
Turbidity (NTU)	4.2	3.6
DO (mg/L)	9.76	8.32
DO Saturation (%)	116%	101%
Suspended Solids (mg/L)	4.0	4.0

Remark or Observation :			
- -			
- -			
-			
	<u>Name</u>	<u>Signature</u>	<u>Date</u>
		Andy Trant	
Prepared By :	Tsang King Yeun	<u> </u>	2/2/2013

Date of Sampling: 5/2/2013

Weather: Sunny

Monitoring Location	W1	W2
Time (hhmm)	11:00	11:30
Water Depth (m)	<1	<1
pH value	8.20	7.64
Temperature (°C)	23.93	23.46
Turbidity (NTU)	3.6	2.7
DO (mg/L)	7.03	7.08
DO Saturation (%)	84%	85%
Suspended Solids (mg/L)	2.0	3.0

Remark or Observation :			
-			
-			
- -			
	<u>Name</u>	Signature	<u>Date</u>
		Andy Trant	
Prepared Ry:	Tsang King Yeun		5/2/2013

Date of Sampling :	7/2/2013
Weather:	Sunny

Monitoring Location	W1	W2
Time (hhmm)	10:00	10:30
Water Depth (m)	<1	<1
pH value	8.10	7.72
Temperature (°C)	21.86	22.02
Turbidity (NTU)	2.40	3.7
DO (mg/L)	10.70	7.30
DO Saturation (%)	125%	86%
Suspended Solids (mg/L)	2.0	4.0

Remark or Observation :			
-			
-			
-			
	<u>Name</u>	<u>Signature</u>	<u>Date</u>
		Andy Trant	
Prepared By :	Tsang King Yeun	<i>j</i> .	7/2/2013

Date of Sampling: 14/2/2013

Weather: Sunny

Monitoring Location	W1	W2
Time (hhmm)	10:00	10:30
Water Depth (m)	<1	<1
pH value	7.89	8.00
Temperature (°C)	21.3	21.34
Turbidity (NTU)	2.8	3.6
DO (mg/L)	9.70	11.88
DO Saturation (%)	100%	138%
Suspended Solids (mg/L)	2.0	4.0

Remark or Observation :			
	<u>Name</u>	<u>Signature</u>	<u>Date</u>
		Andy Tranta	
Prepared By :	Tsang King Yeun	<i></i>	14/2/2013

Date of Sampling :	16/2/2013	
Weather:	Sunny	

Monitoring Location	W1	W2
Time (hhmm)	10:00	10:30
Water Depth (m)	<1	<1
pH value	8.29	7.88
Temperature (°C)	20.13	20.12
Turbidity (NTU)	2.5	1.5
DO (mg/L)	9.81	13.02
DO Saturation (%)	100%	148%
Suspended Solids (mg/L)	3.0	2.0

Remark or Observation:			
_			
_			
-			
-			
	<u>Name</u>	<u>Signature</u>	<u>Date</u>
		Andy Tranta	
Prenared By:	Tsang King Yeun	194000	16/2/2013

Date of Sampling: 19/2/2013

Weather: Sunny

Monitoring Location	W1	W2
Time (hhmm)	10:00	10:30
Water Depth (m)	<1	<1
pH value	8.31	8.10
Temperature (°C)	25.79	25.81
Turbidity (NTU)	2.5	2.0
DO (mg/L)	10.48	12.48
DO Saturation (%)	113%	156%
Suspended Solids (mg/L)	2.0	4.0

Remark or Observation:			
_			
_			
-			
_			
	<u>Name</u>	<u>Signature</u>	<u>Date</u>
		Andry Tranta	
Prenared Ry :	Tsang King Veun	70)'	19/2/2013

Date of Sampling: 21/2/2013

Weather: Sunny

Monitoring Location	W1	W2
Time (hhmm)	10:00	10:30
Water Depth (m)	<1	<1
pH value	7.96	7.94
Temperature (°C)	21.98	22.18
Turbidity (NTU)	2.2	4.9
DO (mg/L)	9.80	8.17
DO Saturation (%)	110%	96%
Suspended Solids (mg/L)	2.0	3.0

Remark or Observation :			
-			
-			
- -			
	<u>Name</u>	<u>Signature</u>	<u>Date</u>
		Andy Trant	
Prepared By :	Tsang King Yeun	J.	21/2/2013

Date of Sampling :	23/2/2013	
Weather:	Sunny	

Monitoring Location	W1	W2
Time (hhmm)	10:00	10:30
Water Depth (m)	<1	<1
pH value	8.21	7.86
Temperature (°C)	22	21.33
Turbidity (NTU)	2.5	3.7
DO (mg/L)	9.84	8.65
DO Saturation (%)	101%	96%
Suspended Solids (mg/L)	2.0	2.0

Remark or Observation:			
- -			
-			
-			
	<u>Name</u>	<u>Signature</u>	<u>Date</u>
		Andry Trant	
Prepared By :	Tsang King Yeun	<i>j</i> .	23/2/2013

Date of Sampling :	26/2/2013
•	
Weather:	Sunny

Monitoring Location	W1	W2
Time (hhmm)	10:00	10:30
Water Depth (m)	<1	<1
pH value	8.21	8.16
Temperature (°C)	22.34	22.22
Turbidity (NTU)	2.8	2.6
DO (mg/L)	11.71	12.67
DO Saturation (%)	134%	149%
Suspended Solids (mg/L)	3.0	2.0

Remark or Observation :			
-			
-			
-			
	<u>Name</u>	<u>Signature</u>	<u>Date</u>
		Andy Trant	
Prepared Ry :	Tsang King Yeun	j.	26/2/2013

Date of Sampling :	28/2/2013
Weather:	Sunny

Monitoring Location	W1	W2
Time (hhmm)	10:00	10:30
Water Depth (m)	<1	<1
pH value	8.13	7.96
Temperature (°C)	22.13	22.21
Turbidity (NTU)	2.8	1.8
DO (mg/L)	12.80	14.33
DO Saturation (%)	129%	169%
Suspended Solids (mg/L)	4.0	3.0

Remark or Observation:			
- -			
-			
- -			
	<u>Name</u>	<u>Signature</u>	<u>Date</u>
		Andy Trant	
Prepared By :	Tsang King Yeun	<i>y</i> .	28/2/2013

ALS Technichem (HK) Pty Ltd

ALS

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client Page Laboratory : ALS Technichem HK Pty Ltd : ENVIRONMENTAL PIONEERS & SOLUTIONS : 1 of 3 LTD Work Order Contact Contact : MR ALLEN CHAN : Chan Kwok Fai, Godfrey : HK1303236 Address Address : 11/F., Chung Shun Knitting Centre, 1 - 3 Wing : FLAT A, 19/F, CHAI WAN INDUSTRIAL CENTRE BUILDING, Yip Street, Kwai Chung, N.T., Hong Kong 20 LEE CHUNG STREET, **CHAI WAN HONG KONG** E-mail F-mail : allenchan@epsl.com.hk : Godfrev.Chan@alsglobal.com Telephone Telephone : +852 2558 7699 : +852 2610 1044 Facsimile Facsimile : +852 2610 2021 : ----Date Samples Received Proiect Quote number : TAI PO TSAI . ____ : 05-FEB-2013 Issue Date Order number : 18-FEB-2013 C-O-C number No. of samples received : 4 No. of samples analysed : 4 . ____

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is:

15-FFR-2013

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: **HK1303236**

Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Water sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories Position Authorised results for

Fung Lim Chee, Richard General Manager Inorganics

Page Number : 2 of 3

Client : ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

Work Order HK1303236

ALS

Analytical Results

Sub-Matrix: WATER	Client sample ID		W1	W2	W1	W2		
	Client sampling date / time		[02-FEB-2013]	[02-FEB-2013]	[05-FEB-2013]	[05-FEB-2013]		
Compound	CAS Number	LOR	Unit	HK1303236-001	HK1303236-002	HK1303236-003	HK1303236-004	
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		2	mg/L	4	4	2	3	

Page Number : 3 of 3

Client : ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

Work Order HK1303236

Laboratory Duplicate (DUP) Report

Matrix: WATER					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)			
EA/ED: Physical and Aggregate Properties (QC Lot: 2730098)					_			_			
HK1303234-001	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	1290	1260	2.4			
HK1303236-004	W2	EA025: Suspended Solids (SS)		2	mg/L	3	3	0.0			

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
			Spike	Spike Red	covery (%)	Recovery	Limits (%)	RPI	D (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (C											
EA025: Suspended Solids (SS)		2	mg/L	<2	10 mg/L	92.5		85	115		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client Page Laboratory : ALS Technichem HK Pty Ltd : ENVIRONMENTAL PIONEERS & SOLUTIONS : 1 of 3 LTD Work Order Contact Contact : MR ALLEN CHAN : Chan Kwok Fai, Godfrey HK1303567 Address Address : 11/F., Chung Shun Knitting Centre, 1 - 3 Wing : FLAT A, 19/F, CHAI WAN INDUSTRIAL CENTRE BUILDING, Yip Street, Kwai Chung, N.T., Hong Kong 20 LEE CHUNG STREET, **CHAI WAN HONG KONG** E-mail F-mail : allenchan@epsl.com.hk : Godfrev.Chan@alsglobal.com Telephone Telephone : +852 2558 7699 : +852 2610 1044 Facsimile Facsimile : +852 2610 2021 : ----Date Samples Received Proiect Quote number : TAI PO TSAI . ____ : 07-FEB-2013 Issue Date Order number : 20-FEB-2013 C-O-C number No. of samples received : 2 No. of samples analysed : 2 . ____

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is:

19.FFR-2013

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: **HK1303567**

Sample(s) were received in an ambient condition.

Water sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories Position Authorised results for

Fung Lim Chee, Richard General Manager Inorganics

Page Number : 2 of 3

Client : ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

Work Order HK1303567

ALS

Analytical Results

, in any trous recounts							
Sub-Matrix: WATER	Client sample ID		W1	W2			
		Client sa	mpling date / time	[07-FEB-2013]	[07-FEB-2013]		
Compound	CAS Number	LOR	Unit	HK1303567-001	HK1303567-002		
EA/ED: Physical and Aggregate Properties							
EA025: Suspended Solids (SS)		2	mg/L	<2	4		

Page Number : 3 of 3

Client : ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

Work Order HK1303567

Laboratory Duplicate (DUP) Report

Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)		
EA/ED: Physical and	Aggregate Properties (QC	Lot: 2735692)								
HK1302897-013	Anonymous	EA025: Suspended Solids (SS)		2.0	mg/L	12.0	11.1	8.1		
HK1303564-001	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	4	4	0.0		

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
			Spike	Spike Red	covery (%)	Recovery	Limits (%)	RPI	D (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QC Lot: 2735692))									
EA025: Suspended Solids (SS)		2	mg/L	<2	10 mg/L	101		85	115		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client Page Laboratory : ALS Technichem HK Pty Ltd : ENVIRONMENTAL PIONEERS & SOLUTIONS : 1 of 3 LTD Work Order Contact Contact : MR ALLEN CHAN : Chan Kwok Fai, Godfrey HK1304155 Address Address : 11/F., Chung Shun Knitting Centre, 1 - 3 Wing : FLAT A, 19/F, CHAI WAN INDUSTRIAL CENTRE BUILDING, Yip Street, Kwai Chung, N.T., Hong Kong 20 LEE CHUNG STREET, **CHAI WAN HONG KONG** E-mail F-mail : allenchan@epsl.com.hk : Godfrev.Chan@alsglobal.com Telephone Telephone : +852 2558 7699 : +852 2610 1044 Facsimile Facsimile : +852 2610 2021 : ----Date Samples Received Proiect Quote number : TAI PO TSAI . ____ : 16-FEB-2013 Issue Date Order number : 26-FEB-2013 C-O-C number No. of samples received : 4 No. of samples analysed : 4 . ____

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is:

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: **HK1304155**

Sample(s) were received in an ambient condition.

Water sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories Position Authorised results for

Fung Lim Chee, Richard General Manager Inorganics

Page Number : 2 of 3

Client : ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

Work Order HK1304155

Analytical Results

Analytical Nesulis								
Sub-Matrix: WATER			Client sample ID	W1	W1	W2	W2	
		Client sa	mpling date / time	[14-FEB-2013]	[16-FEB-2013]	[14-FEB-2013]	[16-FEB-2013]	
Compound	CAS Number	LOR	Unit	HK1304155-001	HK1304155-002	HK1304155-003	HK1304155-004	
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		2	mg/L	<2	3	4	2	

Page Number : 3 of 3

Client : ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

Work Order HK1304155

ALS

Laboratory Duplicate (DUP) Report

Matrix: WATER			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	
EA/ED: Physical and	Aggregate Properties (QC	Lot: 2741280)							
HK1303411-001	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	82	80	1.8	
HK1304144-001	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	19	18	0.0	

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (MB) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
					Spike	Spike Red	covery (%)	Recovery	Limits (%)	RPI	D (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
EA/ED: Physical and Aggregate Properties (QC Lot: 2741280)											
EA025: Suspended Solids (SS)		2	mg/L	<2	10 mg/L	99.5		85	115			

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client Page Laboratory : ALS Technichem HK Pty Ltd : ENVIRONMENTAL PIONEERS & SOLUTIONS : 1 of 3 LTD Work Order Contact Contact : MR ALLEN CHAN : Fung Lim Chee, Richard : HK1304748 Address Address : 11/F., Chung Shun Knitting Centre, 1 - 3 Wing : FLAT A, 19/F, CHAI WAN INDUSTRIAL CENTRE BUILDING, Yip Street, Kwai Chung, N.T., Hong Kong 20 LEE CHUNG STREET, **CHAI WAN HONG KONG** E-mail F-mail : allenchan@epsl.com.hk : Richard.Fung@alsglobal.com Telephone Telephone : +852 2558 7699 : +852 2610 1044 Facsimile Facsimile : +852 2610 2021 : ----Date Samples Received Proiect Quote number : TAI PO TSAI . ____ : 21-FEB-2013 Issue Date Order number : 04-MAR-2013 C-O-C number No. of samples received : 4 No. of samples analysed : 4 . ____

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is:
28-FFB-2013

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: **HK1304748**

Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Water sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories Position Authorised results for

Fung Lim Chee, Richard General Manager Inorganics

Page Number : 2 of 3

Client : ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

Work Order HK1304748

ALS

Analytical Results

Analytical Nesulis								
Sub-Matrix: WATER			Client sample ID	W1	W2	W1	W2	
		Client sa	mpling date / time	[19-FEB-2013]	[19-FEB-2013]	[21-FEB-2013]	[21-FEB-2013]	
Compound	CAS Number	LOR	Unit	HK1304748-001	HK1304748-002	HK1304748-003	HK1304748-004	
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		2	mg/L	2	4	2	3	

Page Number : 3 of 3

Client : ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

Work Order HK1304748

Laboratory Duplicate (DUP) Report

Matrix: WATER			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	
EA/ED: Physical and	Aggregate Properties	(QC Lot: 2745877)							
HK1304524-015	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	4	3	0.0	
HK1304720-001	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	6	7	0.0	
EA/ED: Physical and	Aggregate Properties	(QC Lot: 2749927)							
HK1304678-001	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	21	21	0.0	
HK1304719-004	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	7	8	0.0	

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (Mi	B) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
						Spike Recovery (%)		Recovery Limits (%)		RPD (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
EA/ED: Physical and Aggregate Propertie	es (QC Lot: 2745877)											
EA025: Suspended Solids (SS)		2	mg/L	<2	10 mg/L	100		85	115			
EA/ED: Physical and Aggregate Propertie	es (QC Lot: 2749927)											
EA025: Suspended Solids (SS)		2	mg/L	<2	10 mg/L	97.0		85	115			

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client Page Laboratory : ALS Technichem HK Pty Ltd : ENVIRONMENTAL PIONEERS & SOLUTIONS : 1 of 3 LTD Work Order Contact Contact : MR ALLEN CHAN : Fung Lim Chee, Richard HK1305297 Address Address : 11/F., Chung Shun Knitting Centre, 1 - 3 Wing : FLAT A, 19/F, CHAI WAN INDUSTRIAL CENTRE BUILDING, Yip Street, Kwai Chung, N.T., Hong Kong 20 LEE CHUNG STREET, **CHAI WAN HONG KONG** E-mail F-mail : allenchan@epsl.com.hk : Richard.Fung@alsglobal.com Telephone Telephone : +852 2558 7699 : +852 2610 1044 Facsimile Facsimile : +852 2610 2021 : ----Date Samples Received Proiect Quote number : TAI PO TSAI . ____ : 26-FEB-2013 Issue Date Order number : 07-MAR-2013 C-O-C number No. of samples received : 4 No. of samples analysed : 4 . ____

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is:

05-MAR-2013

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: **HK1305297**

Sample(s) were picked up from client by ALS Technichem (HK) staff in a chilled condition.

Water sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories Position Authorised results for

Fung Lim Chee, Richard General Manager Inorganics

Page Number : 2 of 3

Client : ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

Work Order HK1305297

ALS

Analytical Results

Sub-Matrix: WATER			Client sample ID	W1	W2	W1	W2	
		Client sa	mpling date / time	[23-FEB-2013]	[23-FEB-2013]	[26-FEB-2013]	[26-FEB-2013]	
Compound	CAS Number	LOR	Unit	HK1305297-001	HK1305297-002	HK1305297-003	HK1305297-004	
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		2	mg/L	<2	<2	3	2	

Page Number : 3 of 3

Client : ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

Work Order HK1305297

Laboratory Duplicate (DUP) Report

Matrix: WATER			Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)		
EA/ED: Physical ar	nd Aggregate Properties	s (QC Lot: 2751832)								
HK1305103-017	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	11	10	10.3		
HK1305358-001	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	6	7	21.3		
EA/ED: Physical ar	nd Aggregate Properties	s (QC Lot: 2756932)								
HK1305146-001	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	6	5	0.0		
HK1305308-001	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	<2	<2	0.0		

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (ME	3) Report	Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report							
					Spike	Spike Spike Red		Recovery Limits (%)		RPD (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit	
EA/ED: Physical and Aggregate Properties	(QC Lot: 2751832)											
EA025: Suspended Solids (SS)		2	mg/L	<2	10 mg/L	99.0		85	115			
EA/ED: Physical and Aggregate Properties	(QC Lot: 2756932)											
EA025: Suspended Solids (SS)		2	mg/L	<2	10 mg/L	87.0		85	115			

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client Page Laboratory : ALS Technichem HK Pty Ltd : ENVIRONMENTAL PIONEERS & SOLUTIONS : 1 of 3 LTD Work Order Contact Contact : MR ALLEN CHAN : Fung Lim Chee, Richard HK1305763 Address Address : 11/F., Chung Shun Knitting Centre, 1 - 3 Wing : FLAT A, 19/F, CHAI WAN INDUSTRIAL CENTRE BUILDING, Yip Street, Kwai Chung, N.T., Hong Kong 20 LEE CHUNG STREET, **CHAI WAN HONG KONG** E-mail F-mail : allenchan@epsl.com.hk : Richard.Fung@alsglobal.com Telephone Telephone : +852 2558 7699 : +852 2610 1044 Facsimile Facsimile : +852 2610 2021 : ----Date Samples Received Proiect Quote number : TAI PO TSAI . ____ : 04-MAR-2013 Issue Date Order number : 13-MAR-2013 C-O-C number No. of samples received : 4 No. of samples analysed : 4 . ____

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is:

08-MAR-2013

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: **HK1305763**

Sample(s) were received in an ambient condition.

Water sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories Position Authorised results for

Fung Lim Chee, Richard General Manager Inorganics

Page Number : 2 of 3

Client : ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

Work Order HK1305763

ALS

Analytical Results

Sub-Matrix: WATER			Client sample ID	W1	W2	W1	W2	
	Client sampling date / time			[28-FEB-2013]	[28-FEB-2013]	[02-MAR-2013]	[02-MAR-2013]	
Compound	CAS Number	LOR	Unit	HK1305763-001	HK1305763-002	HK1305763-003	HK1305763-004	
EA/ED: Physical and Aggregate Properties								
EA025: Suspended Solids (SS)		2	mg/L	4	3	5	5	

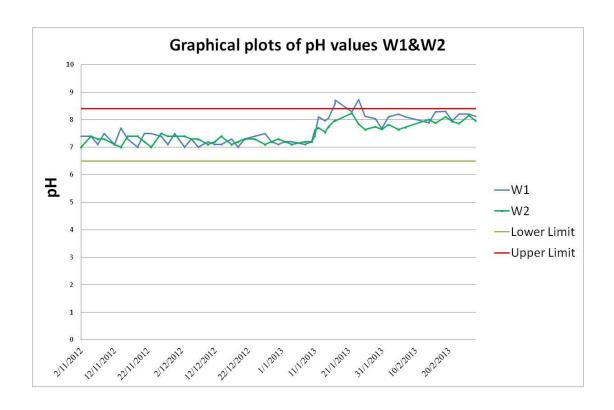
Page Number : 3 of 3

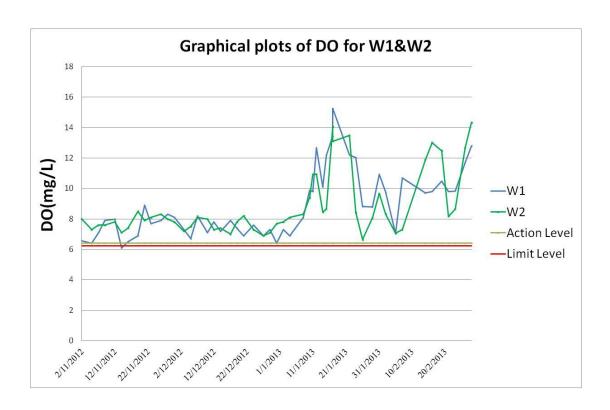
Client : ENVIRONMENTAL PIONEERS & SOLUTIONS LTD

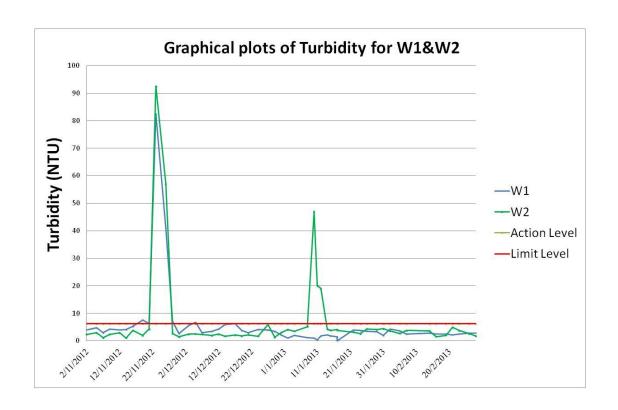
Work Order HK1305763

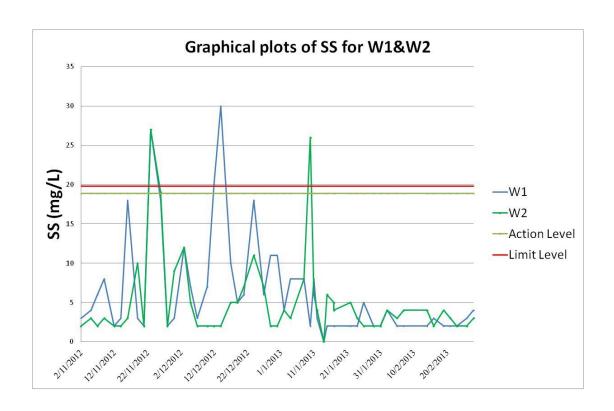
ALS

Laboratory Duplicate (DUP) Report

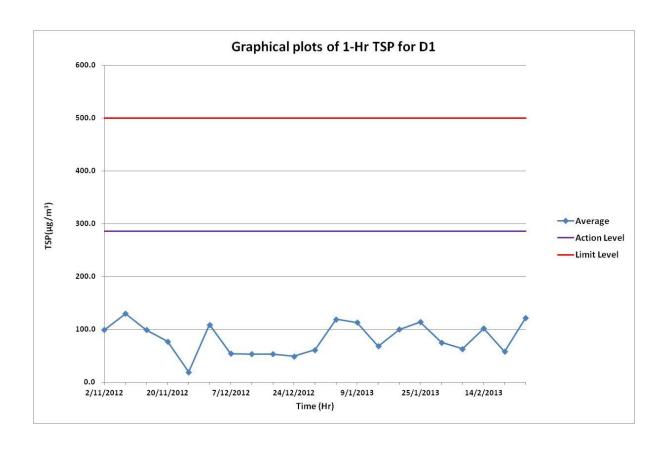

Matrix: WATER					La	boratory Duplicate (DUP) Re	port	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)
EA/ED: Physical an	d Aggregate Propertie	s (QC Lot: 2761218)						
HK1305505-001	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	96	97	1.0
HK1305603-002	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	12	13	8.6
EA/ED: Physical an	d Aggregate Propertie	s (QC Lot: 2763855)						
HK1305716-007	Anonymous	EA025: Suspended Solids (SS)		2	mg/L	22	22	0.0
HK1305929-013	Anonymous	EA025: Suspended Solids (SS)		1	mg/L	2	3	0.0

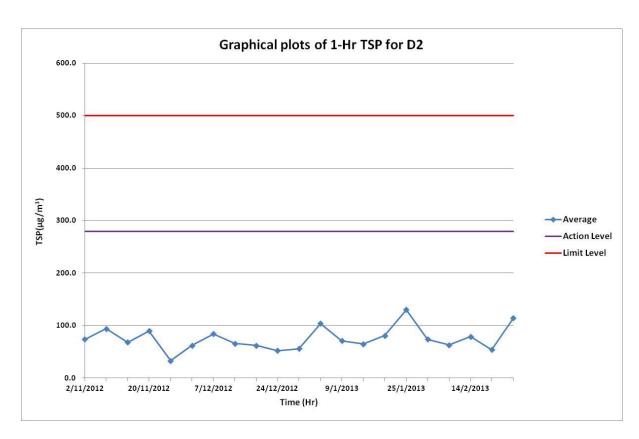

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

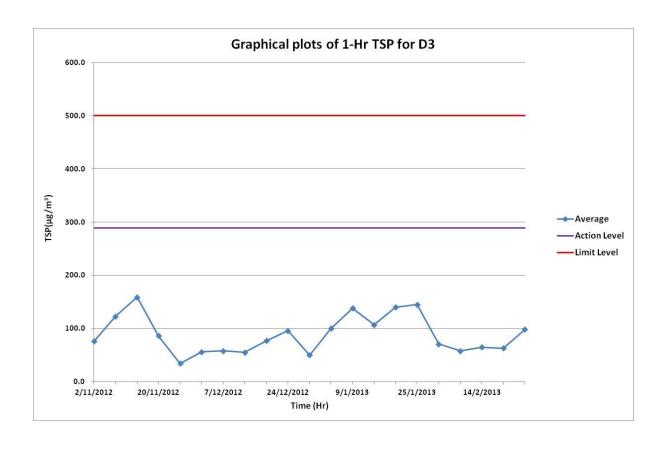

Matrix: WATER			Method Blank (MB) Report		Laboratory Com	trol Spike (LCS) and Labo	ratory Control Sp	oike Duplicate (DC	CS) Report	
					Spike	Spike Red	covery (%)	Recovery	Limits (%)	RF	PD (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properti	es (QC Lot: 2761218)										
EA025: Suspended Solids (SS)		2	mg/L	<2	10 mg/L	100		85	115		
EA/ED: Physical and Aggregate Properti	es (QC Lot: 2763855)										
EA025: Suspended Solids (SS)		2	mg/L	<2	10 mg/L	85.5		85	115		

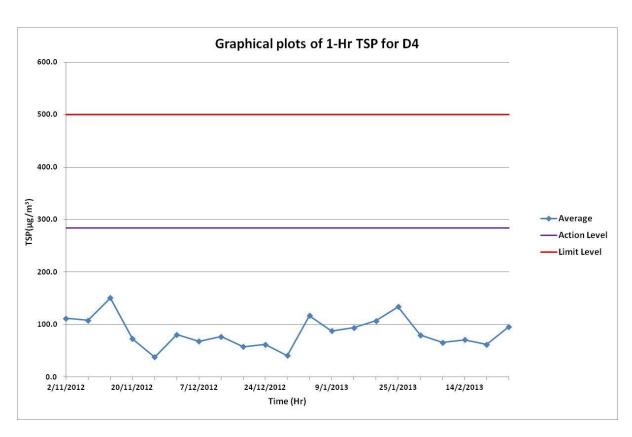

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.




Appendix F


Air Quality Monitoring Data


1-Hr TSP Monitoring Results

							Locatio	ons					
			D1			D2			D3			D4	
Date	Duration	Start Time	TSP Level (ug/m3)	Average (ug/m3)	Start Time	TSP Level (ug/m3)	Average (ug/m3)	Start Time	TSP Level (ug/m3)	Average (ug/m3)	Start Time	TSP Level (ug/m3)	Average (ug/m3)
		13:34	59		9:01	56		8:50	54		13:05	61	
6/2/2013	1 Hour	14:34	61	63	10:01	65	63	9:50	59	58	14:05	63	66
		15:34	70		11:01	69		10:50	62		15:05	74	
		9:00	107		13:00	93		8:45	60		8:27	75	
14/2/2013	1 Hour	10:00	103	102	14:00	75	79	9:45	67	65	9:27	71	71
		11:00	96		15:00	68		10:45	69		10:27	67	
		8:30	58		11:46	49		12:38	57		8:31	45	
20/2/2013	1 Hour	9:30	57	58	12:46	53	54	13:38	63	63	9:31	66	62
		10:30	58		13:46	59		14:38	69		10:31	76	
		8:30	113		12:36	117		12:00	104		8:40	90	
26/2/2013	1 Hour	9:30	141	122	13:36	107	114	13:00	100	98	9:40	92	96
		10:30	113		14:36	119		14:00	91		10:40	105	

D1 24-Hrs TSP Monitoring Results

		W	t. of paper	(g)		Elapse 7	Time	Flo	w Rat	te (CFM)	Total Volume	TSP Concentration	Weather
Sampling Date	Paper No.	Initial Wt.	Final Wt.	Wt. of dust	Initial	Final	Sampling Hour	Initial	Final	Avg Flow Rate	(m³)	(µg/m3)	
06/02/13	204518	2.8830	2.9707	0.0877	1025.27	1049.29	24.02	42	42	42.0	1714.03	51.1660	Cloudy
14/02/13	204522	2.8897	2.9807	0.0910	1049.29	1073.32	24.03	42	42	42.0	1714.74	53.0692	Sunny
20/02/13	204526	2.8734	2.9911	0.1177	1073.32	1097.36	24.04	42	42	42.0	1715.46	68.6115	Cloudy
26/02/13	204530	2.8960	3.0498	0.1538	1097.36	1121.37	24.01	42	42	42.0	1713.32	89.7674	Sunny

D2 24-Hrs TSP Monitoring Results

		W ⁻	t. of paper	· (g)	E	lapse Ti				te (CFM)	Total Volume	TSP Concentration	Weather
Sampling Date	Paper No.	Initial Wt.	Final Wt.	Wt. of dust	Initial	Final	Sampling Hour	Initial	Final	Avg Flow Rate	(m³)	(µg/m3)	
06/02/13	204519	2.8889	2.9772	0.0883	1334.62	1358.65	24.03	42	42	42.0	1714.74	51.4946	Cloudy
14/02/13	204523	2.8963	2.9743	0.0780	1358.65	1382.67	24.02	42	42	42.0	1714.03	45.5068	Sunny
20/02/13	204527	2.8686	2.9575	0.0889	1382.67	1406.68	24.01	42	42	42.0	1713.32	51.8877	Cloudy
26/02/13	204531	2.9027	2.9421	0.0394	1406.68	1430.73	24.05	42	42	42.0	1716.17	22.9581	Sunny

D3 24-Hrs TSP Monitoring Results

		W ⁻	t. of paper	(g)	E	Elapse Tii				te (CFM)	Total Volume	TSP Concentration	Weather
Sampling Date	Paper No.	Initial Wt.	Final Wt.	Wt. of dust	Initial	Final	Sampling Hour	Initial	Final	Avg Flow Rate	(m³)	(µg/m3)	
06/02/13	204520	2.8837	2.9783	0.0946	1363.64	1387.68	24.04	42	42	42.0	1715.46	55.1457	Cloudy
14/02/13	204524	2.8909	2.9861	0.0952	1387.68	1411.69	24.01	42	42	42.0	1713.32	55.5648	Sunny
20/02/13	204528	2.8683	2.9760	0.1077	1411.69	1435.73	24.04	42	42	42.0	1715.46	62.7821	Cloudy
26/02/13	204532	2.8994	3.0731	0.1737	1435.73	1459.75	24.02	42	42	42.0	1714.03	101.3401	Sunny

D4 24-Hrs TSP Monitoring Results

		W ⁻	t. of paper	(g)	E	Elapse Ti				te (CFM)	Total Volume	TSP Concentration	Weather
Sampling Date	Paper No.	Initial Wt.	Final Wt.	Wt. of dust	Initial	Final	Sampling Hour	Initial	Final	Avg Flow Rate	(m^3)	(µg/m3)	
06/02/13	204521	2.8919	3.1065	0.2146	1354.59	1378.66	24.07	42	42	42.0	1717.60	124.9419	Cloudy
14/02/13	204525	2.8830	3.1177	0.2347	1378.66	1402.67	24.01	42	42	42.0	1713.32	136.9858	Sunny
20/02/13	204529	2.8780	3.0567	0.1787	1402.67	1426.71	24.04	42	42	42.0	1715.46	104.1705	Cloudy
26/02/13	204533	2.8701	2.9745	0.1044	1426.71	1450.73	24.02	42	42	42.0	1714.03	60.9091	Sunny

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

· ENOVATIVE ENVIRONMENTAL SERVICE LTD Client

Laboratory

: ALS Technichem HK Pty Ltd

: 1 of 2

: MR SAM WONG Contact Address

: Fung Lim Chee, Richard Contact Address : 11/F., Chung Shun Knitting Centre, 1 - 3 Wing Work Order HK1305584

: ROOM 3, 12/F,

Yip Street, Kwai Chung, N.T., Hong Kong

Page

NEW CITY CENTRE.

: sam.wong@eno.com.hk

KWUN TONG, KOWLOON HONG KONG

E-mail

: Richard.Fung@alsglobal.com

Telephone

· +852 2610 1044

Facsimile

+852 2610 2021

Quote number

Date received

· 06-FEB-2013

· 05-MAR-2013

Date of issue No. of samples

Received

Analysed

16

16

Report Comments

E-mail

Telephone

Facsimile

Order number

C-O-C number

Project

Site

This report for ALS Technichem (HK) Pty Ltd work order reference HK1305584 supersedes any previous reports with this reference. The completion date of analysis is 05-MAR-2013. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for process purposes. Abbreviations: CAS number = Chemical Abstract Services number. LOR = Limit of reporting.

Specific comments for Work Order HK1305584:

: ----

Sample(s) were received in an ambient condition.

Sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the 'Electronic Transactions Ordinance' of Hong Kong, Chapter 553, Section 6.

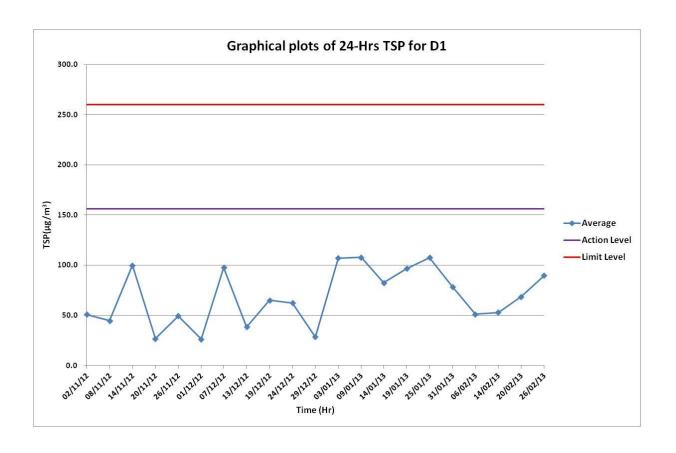
Signatory Position Authorised results for:-

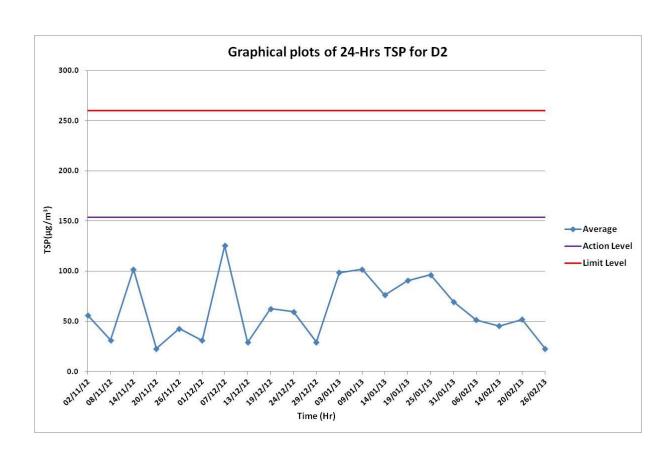
Fung Lim Chee, Richard

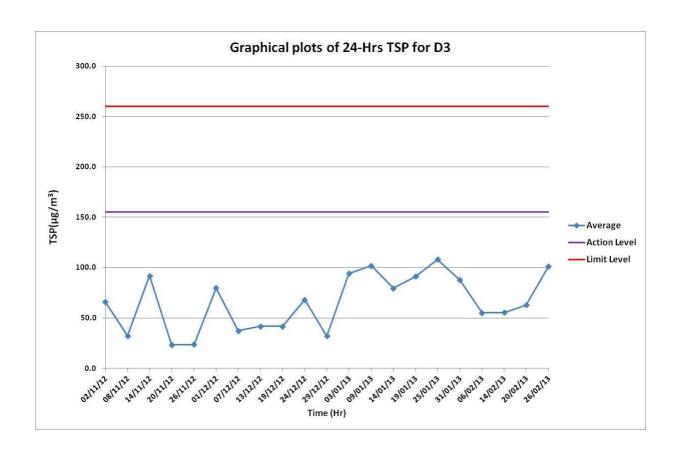
General Manager

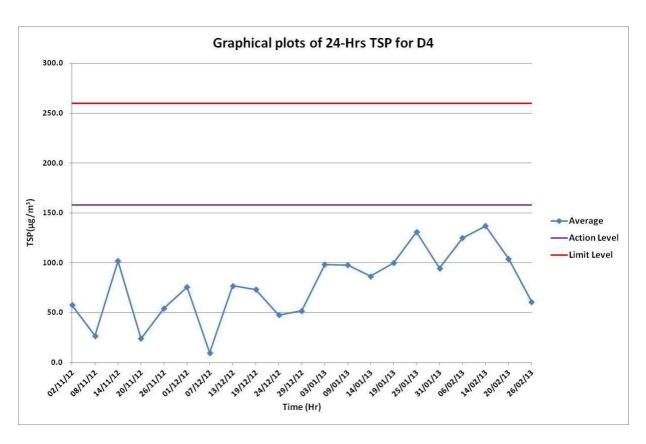
Inorganics

Page Number : 2 of 2


Client : ENOVATIVE ENVIRONMENTAL SERVICE LTD


Work Order HK1305584


ALS


Analytical Results

sub-Matrix: FILTER (TSP/RSP)		Compound	HK-TSP: Total	HK-TSP: Initial Weight	HK-TSP: Final Weight	
			Suspended			
		LOR Unit	Particulates 0.0010 g	0.0010 g	0.0010 g	
Oliant samula ID						
Client sample ID	Client sampling date / time	Laboratory sample ID	EA/ED: Physical and	EA/ED: Physical and	EA/ED: Physical and	
204540	******	HK1305584-001	Aggregate Properties 0.0877	Aggregate Properties 2.8830	Aggregate Properties 2.9707	
204518	[06-FEB-2013]					
204519	[06-FEB-2013]	HK1305584-002	0.0883	2.8889	2.9772	
204520	[06-FEB-2013]	HK1305584-003	0.0946	2.8837	2.9783	
204521	[06-FEB-2013]	HK1305584-004	0.2146	2.8919	3.1065	
204522	[14-FEB-2013]	HK1305584-005	0.0910	2.8897	2.9807	
204523	[14-FEB-2013]	HK1305584-006	0.0780	2.8963	2.9743	
204524	[14-FEB-2013]	HK1305584-007	0.0952	2.8909	2.9861	
204525	[14-FEB-2013]	HK1305584-008	0.2347	2.8830	3.1177	
204526	[20-FEB-2013]	HK1305584-009	0.1177	2.8734	2.9911	
204527	[20-FEB-2013]	HK1305584-010	0.0889	2.8686	2.9575	
204528	[20-FEB-2013]	HK1305584-011	0.1077	2.8683	2.9760	
204529	[20-FEB-2013]	HK1305584-012	0.1787	2.8780	3.0567	
204530	[26-FEB-2013]	HK1305584-013	0.1538	2.8960	3.0498	
204531	[26-FEB-2013]	HK1305584-014	0.0394	2.9027	2.9421	
204532	[26-FEB-2013]	HK1305584-015	0.1737	2.8994	3.0731	
204533	[26-FEB-2013]	HK1305584-016	0.1044	2.8701	2.9745	

