

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1



# Monthly EM&A Report No.5 (Period from 1 November to 30 November 2018)

(Clause 3.3, Further Environmental Permit FEP-01/429/2012/A)

## **Document No.**

| KSZHJV | / | 312          | / |                         | / |                | / | Α        |
|--------|---|--------------|---|-------------------------|---|----------------|---|----------|
| Issuer |   | Project Code |   | <b>Type of Document</b> |   | Sequential No. |   | Revision |
|        |   |              |   |                         |   |                |   | Index    |

|           | Prepared by:       | Certified by:             | Verified by:                         |
|-----------|--------------------|---------------------------|--------------------------------------|
| Name      | Nelson Tsui        | Gabriel C.K. Lam          | Mandy To                             |
| Position  | Environmental Team | Environmental Team Leader | Independent Environmental<br>Checker |
| Signature | The second         | Cion                      | Mandej2.                             |
| Date:     | 14 December 2018   | 14 December 2018          | 14 December 2018                     |

© This document contains confidential and proprietary information belonging to Keppel Seghers - Zhen Hua Joint Venture and/or its affiliates. The contents of this document shall not be used for any other purpose than that for which they were provided. Any disclosure, copying, distribution or the taking of any action in reliance on the contents of this document is strictly prohibited. This document confers upon the recipient no right or license of whatsoever nature based on the information as described herein. If you have received this document in error, please immediately arrange for the return to Keppel Seghers - Zhen Hua Joint Venture or destruction of this document.

## **Revision History**

| Α    | First Submission                   |      |
|------|------------------------------------|------|
| Rev. | <b>DESCRIPTION OF MODIFICATION</b> | DATE |

© This document contains confidential and proprietary information belonging to Keppel Seghers - Zhen Hua Joint Venture and/or its affiliates. The contents of this document shall not be used for any other purpose than that for which they were provided. Any disclosure, copying, distribution or the taking of any action in reliance on the contents of this document is strictly prohibited. This document confers upon the recipient no right or license of whatsoever nature based on the information as described herein. If you have received this document in error, please immediately arrange for the return to Keppel Seghers - Zhen Hua Joint Venture or destruction of this document.

## CONTENT

| 1.  | Basic Project Information                                                           | 7  |
|-----|-------------------------------------------------------------------------------------|----|
| 2.  | Marine Water Quality Monitoring                                                     | 16 |
| 3.  | Noise Monitoring                                                                    | 29 |
| 4.  | Waste                                                                               | 34 |
| 5.  | Coral                                                                               | 35 |
| 6.  | Marine Mammal                                                                       | 47 |
| 7.  | White-Bellied Sea Eagle                                                             | 58 |
| 8.  | Summary of Monitoring Exceedance, Complaints, Notification of Summo<br>Prosecutions |    |
| 9.  | EM&A Site Inspection                                                                | 67 |
| 10. | Future Key Issues                                                                   | 69 |
| 11. | Conclusion and Recommendations                                                      | 70 |

| Master Programme                                             |
|--------------------------------------------------------------|
| Summary of Implementation Status of Environmental Mitigation |
| Impact Monitoring Schedule of the Reporting Month            |
| Water Quality Monitoring Data                                |
| HOKLAS Laboratory Certificate                                |
| Water Quality Equipment Calibration Certificate              |
| Event/ Action Plan for Water Quality Exceedance              |
| Noise Monitoring Equipment Calibration Certificate           |
| Event/Action Plan for Noise Exceedance                       |
| Noise Monitoring Data                                        |
| Waste Flow Table                                             |
| Event/Action Plan for Coral Monitoring                       |
| Event/Action Plan for White-bellied Sea Eagle Monitoring     |
| Exceedance Report                                            |
| Complaint Log                                                |
| Impact Monitoring Schedule of Next Reporting Month           |
|                                                              |

## **EXECUTIVE SUMMARY**

#### **Introduction**

- A1. The Project, Integrated Waste Management Facility (IWMF), is a Designated Project under the Environmental Impact Assessment Ordinance (Cap. 499) (EIAO) and is currently governed by a Further Environmental Permit (FEP No. FEP-01/429/2012/A) for the construction and operation of the Project.
- A2. In accordance with the Updated Environmental Monitoring and Audit (EM&A) Manual for the Project, EM&A works for marine water quality, noise, waste management and ecology should be carried out by Environmental Team (ET), Acuity Sustainability Consulting Limited (ASCL), during the construction phase of the Project.
- A3. This is the 5<sup>th</sup> Monthly EM&A Report, prepared by ASCL, for the Project summarizing the monitoring results and audit findings of the EM&A programme at and around Shek Kwu Chau (SKC) during the reporting period from 1 November 2018 to 30 November 2018.

#### Summary of Main Works Undertaken & Key Mitigation Measures Implemented

- A4. Key activities carried out in this reporting period for the Project included the following:
- Marine Site Investigation Works
- Coring of DCM samples conducted at site trial location
- Laying of Geotextile and Sand Blanket
- A5. The major environmental impacts brought by the above construction activities include:
- Water quality impact from DCM installation and laying of sand blanket
- Disturbance and possible trapping of Finless Porpoise by silt curtains
- A6. The key environmental mitigation measures implemented for the Project in this reporting period associated with the construction activities include:
- Reduction of noise from equipment and machinery on-site;
- Installation of silt curtains for DCM installation and sand blanket laying works;
- Sorting and storage of general refuse and construction waste;
- Management of chemicals and avoidance of oil spillage on-site; and
- Implementation of MMEZ (Marine Mammal Exclusion Zone) and inspection of enclosed environment within silt curtains as per DMPFP (Detailed Monitoring Programme of Finless Porpoise)

#### Summary of Exceedance & Investigation & Follow-up

- A7. The EM&A works for construction noise, water quality, construction waste, coral, marine mammal and White-Bellied Sea Eagle (WBSE) were conducted during the reporting period in accordance with the Updated EM&A Manual.
- A8. No exceedance of the Action or Limit Levels in relation to the construction noise, construction waste, coral and WBSE monitoring was recorded in the reporting month.
- A9. Forty-eight of the water quality monitoring results for Suspended Solid (SS) obtained during the reporting period had exceeded the relevant Action or Limit Levels, where findings from investigations carried out immediately for each of the exceedance cases had showed that these exceedances were unrelated to the Project.
- A10. No project-related Action Level & Limit Level exceedance was recorded.
- A11. Weekly site inspections of the construction works by ET were carried out on 6, 13, 20 and 27 November to audit the mitigation measures implementation status. Monthly joint site inspection was carried out on 20 November 2018 by ET and IEC. Observations have been recorded in the site inspection checklists and provided to the contractors together with the appropriate follow-up actions where necessary.

#### **Complaint Handling and Prosecution**

- A12. No project-related environmental complaint was received during the reporting period.
- A13. Neither notifications of summons nor prosecution was received for the Project.

#### **Reporting Change**

A14. There were no changes to be reported that may affect the on-going EM&A programme.

#### Summary of Upcoming Key Issues and Key Mitigation Measures

- A15. Key activities anticipated in the next reporting period for the Project will include the following:
- Marine Site Investigation Works
- Coring of DCM samples conducted at site trial location
- Coring of DCM samples conducted at DCM Static Lading Test sites
- Coring for Instrumentation at DCM Static Lading Test sites
- Laying of Geotextile and Sand Blanket for DCM Injection Works
- A16. The major environmental impacts brought by the above construction activities will include:
- Water quality impact from laying of sand blanket
- Disturbance and possible trapping of Finless Porpoise by silt curtains
- A17. The key environmental mitigation measures for the Project in the coming reporting period associated with the construction activities will include:

- Reduction of noise from equipment and machinery on-site;
- Installation of silt curtains for the sand blanket laying works;
- Sorting, recycling, storage and disposal of general refuse and construction waste;
- Management of chemicals and avoidance of oil spillage on-site, especially under heavy rains and adverse weather; and
- Implementation of MMEZ and inspection of enclosed environment within silt curtains as per DMPFP

## 1. BASIC PROJECT INFORMATION

#### 1.1 Background

- 1.1.1 The Government of Hong Kong SAR will develop the Integrated Waste Management Facilities (IWMF) Phase 1 (hereafter "the Project") with incineration to achieve substantial bulk reduction of unavoidable municipal solid waste (MSW) and to recover energy from the incineration process. The IWMF will be on an artificial island to be formed by reclamation at the south-western coast of Shek Kwu Chau. Keppel Seghers Zhen Hua Joint Venture (KSZHJV) was awarded the contract under Contract No. EP/SP/66/12 Integrated Waste Management Facilities Phase 1 to construct and operate the Project.
- 1.1.2 An environmental impact assessment (EIA) study for the Project have been conducted and the EIA Report was approved under the Environmental Impact Assessment Ordinance on 17 January 2012. An Environmental Permit (EP) (EP No.: EP-429/2012) was granted to EPD on 19 January 2012 for the construction and operation of the Project. Subsequently, the EP was amended (EP No.: EP-429/2012/A) and a further EP (FEP) (EP No.: FEP-01/429/2012/A) was granted to the Keppel Seghers Zhen Hua Joint Venture (KSZHJV) on 27 December 2017.
- 1.1.3 The key design and construction elements of the Project include the Design and the Works including but not limited to the design, engineering procurement, construction, testing and commissioning of the Facility including:
- Ground Treatment works;
- Seawall and Breakwater construction;
- Non-dredged Reclamation;
- Other Marine works and Harbour and Port Facilities,
- Site formation,
- Municipal Solid Waste (MSW) Treatment Processes,
- Energy Recovery for Power Generation and Surplus Electricity export,
- Wastewater treatment process,
- Desalination and water treatment process,
- Civil works;
- Building and Structural works,
- Electrical and Mechanical works,
- Building Services,
- Architectural and Landscaping works, and
- All other design and works required for the operation and maintenance of the Facility
- according to the Contract requirements
- 1.1.4 The location of the IWMF near Shek Kwu Chau (SKC) and general layout of IWMF are shown in **Figure 1.1** and **Figure 1.2** respectively.

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1

Keppel Seghers – Zhen Hua Joint Venture

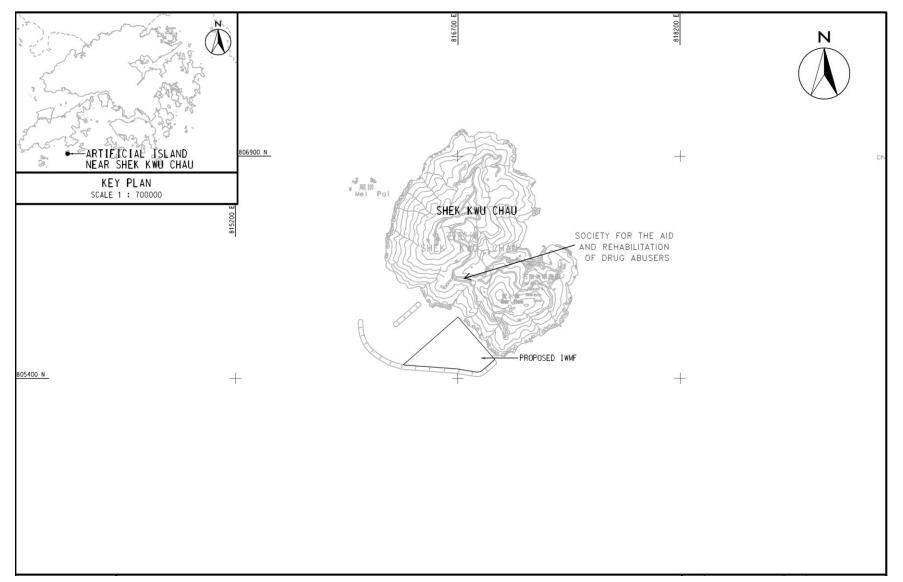



Figure 1.1 Location of the IWMF at the Artificial Island near SKC

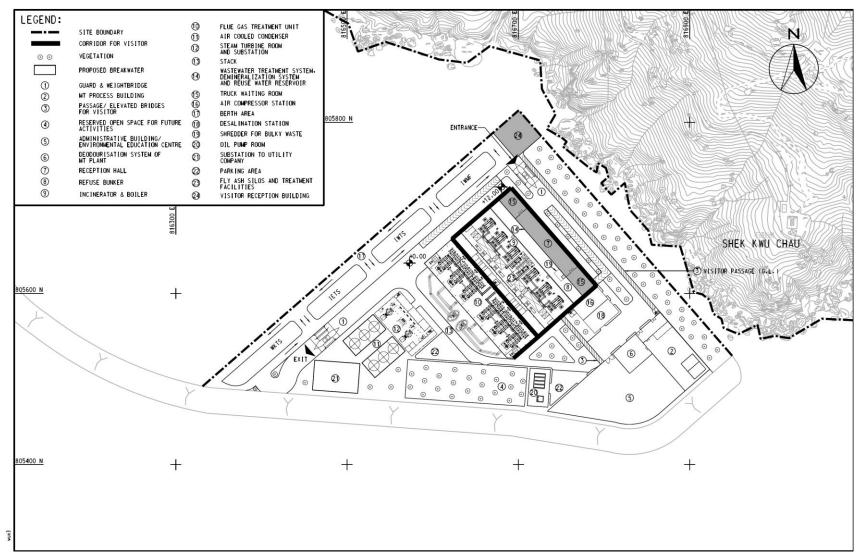
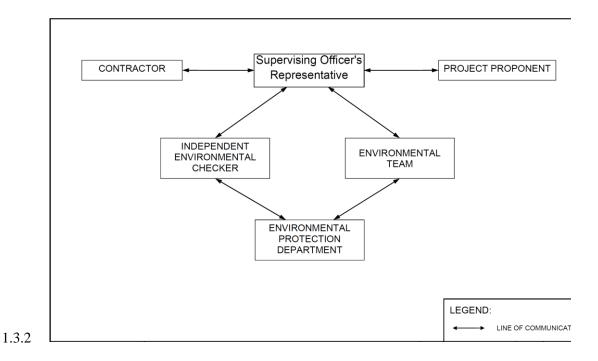




Figure 1.2 General Layout of the IWMF at the Artificial Island near SKC

- 1.2 The Reporting Scope
- 1.2.1 This is the 5<sup>th</sup> Monthly EM&A Report for the Project which summarizes the key findings of the EM&A programme during the reporting period from 1 November 2018 to 30 November 2018.
- 1.3 Project Organization
- 1.3.1 The Project Organization structure for Construction Phase is presented in **Figure 1.3**.



**Figure 1.3 Project Organization Chart** 

1.3.3 Contact details of the key personnel are presented in **Table 1.1** below:

| Party                                         | Position                                | Name        | Telephone no. |  |
|-----------------------------------------------|-----------------------------------------|-------------|---------------|--|
| Keppel Seghers –<br>Zhen Hua Joint<br>Venture | Project Manager                         | Kenny Yu    | 2192-0606     |  |
| Acuity Sustainability<br>Consulting Limited   | Environmental Team<br>Leader            | Gabriel Lam | 2698-6833     |  |
| ERM-Hong Kong,<br>Limited                     | Independent<br>Environmental<br>Checker | Mandy To    | 2271-3000     |  |

**Table 1.1 Contact Details of Key Personnel** 

1.4 Summary of Construction Works

1.4.1 Details of the major construction activities undertaken in this reporting period are shown in **Table 1.2** and **Figure 1.4** below. The construction programme is presented in **Appendix A**.

# Table 1.2 Summary of the Construction Activities Undertaken during the Reporting Month

| Location of works                      | Construction activities undertaken      | Remarks on progress                       |
|----------------------------------------|-----------------------------------------|-------------------------------------------|
| Seawall and breakwater locations       | • Marine site investigation works       | • 51 out of 56 drill holes were completed |
| Location of DCM<br>Site Trial          | • Coring of DCM samples                 | • Completed                               |
| Seawall locations                      | • Collecting of Marine Sediment Samples | • Completed                               |
| Location of DCM<br>Static Loading Test | • DCM installation                      | • Completed                               |
| Seawall and breakwater locations       | • Laying of Geotextile and Sand Blanket | • 42 out of 48 geotextiles were laid      |
|                                        |                                         | • On-going for sand blanket laying        |

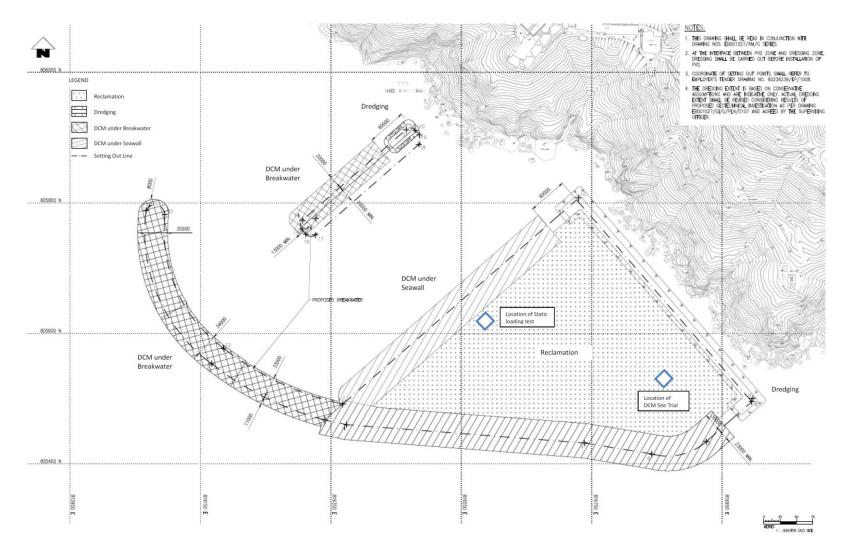



Figure 1.4 Location of Major Construction Activities Undertaken during the Reporting Month

### 1.5 Summary of Environmental Status

1.5.1 A summary of the valid permits, licences, and /or notifications on environmental protection for this Project is presented in **Table 1.3** 

# Table 1.3 Summary of the Status of Valid Environmental Licence, Notification, Permit and Documentations

| Permit/ Licences/       | Reference            | Validity Period       | Remarks     |
|-------------------------|----------------------|-----------------------|-------------|
| Notification            |                      |                       |             |
| Variation of            | EP-429/2012/A        | Throughout the        |             |
| Environmental Permit    |                      | Contract              |             |
| Further Environmental   | FEP-01/429/2012/A    | Throughout the        |             |
| Permit                  |                      | Contract              |             |
| Notification of         | Ref No.: 428778      | 15/12/2017-22/09/2024 |             |
| Construction Works      |                      |                       |             |
| under the Air Pollution |                      |                       |             |
| Control (Construction   |                      |                       |             |
| Dust) Regulation        |                      |                       |             |
| (Form NA)               |                      |                       |             |
| Wastewater Discharge    | -                    | -                     | Under       |
| Licence                 |                      |                       | Application |
|                         | -                    | -                     | Under       |
|                         |                      |                       | Application |
| Chemical Waste          | WPN0017-933-K3301-01 | Throughout the        |             |
| Producer Registration   |                      | Contract              |             |
|                         | WPN5213-961-K3301-02 | Throughout the        |             |
|                         |                      | Contract              |             |
| Construction Noise      | GW-RS0534-18         | 22/6/2018-20/12/2018  |             |
| Permit                  |                      |                       |             |
| Billing Account for     | A/C No.:7029768      | Throughout the        |             |
| Disposal of             |                      | Contract              |             |
| Construction Waste      |                      |                       |             |

1.5.2 The status for all environmental aspects is presented **Table 1.4**.

# Table 1.4 Summary of Status for Key Environmental Aspects under the Updated EM&A Manual

| Parameters                | Status                                                         |  |  |  |
|---------------------------|----------------------------------------------------------------|--|--|--|
| Water Quality             |                                                                |  |  |  |
| Baseline Monitoring under | The baseline water quality monitoring result has been reported |  |  |  |
| Updated EM&A Manual       | in Baseline Monitoring Report and submitted to EPD under FEP   |  |  |  |
| and Detailed Plan on DCM  | Condition 3.4                                                  |  |  |  |
|                           |                                                                |  |  |  |
| Import Monitoring         |                                                                |  |  |  |
| Impact Monitoring         | On-going                                                       |  |  |  |
| Regular DCM Monitoring    | On-going                                                       |  |  |  |
| Initial Intensive DCM     | To be commenced according to the Detailed Plan on DCM          |  |  |  |
| Monitoring                |                                                                |  |  |  |
| Baseline Water Quality of | Being carried out from 13 August 2018 to 7 September 2018      |  |  |  |
| wet season                |                                                                |  |  |  |
| Noise                     |                                                                |  |  |  |
| Baseline Monitoring       | The baseline niose monitoring result has been reported in      |  |  |  |

| Parameters                                                                         | Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                    | Baseline Monitoring Report and submitted to EPD under FEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                                                                    | Condition 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Impact Monitoring                                                                  | On-going                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                    | Waste Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Mitigation Measures in                                                             | On-going                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Waste Monitoring Plan                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                    | Coral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Pre-translocation Survey The Coral Translocation Plan was submitted and approved l |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| and Coral Mapping                                                                  | EPD under EP Condition 2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Coral Translocation                                                                | Completed on 28 March 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Post-Translocation Coral                                                           | On-going, survey affected by missing of translocated and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Monitoring                                                                         | tagged coral colonies after typhoons in September 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Pre-construction Coral                                                             | Completed on 26 June 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Survey and Tagging                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Tagged Coral Monitoring                                                            | Survey obstructed due to missing of tagged coral colonies after                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                    | typhoons in September 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Coral Survey and                                                                   | Re-tagging at Indirect Impact Site was conducted on 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Re-tagging                                                                         | November and Re-tagging at Control Site would be scheduled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                    | on 3 December 2018.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                                                                    | Marine Mammal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Baseline Monitoring                                                                | The baseline marine mammal monitoring result has been                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                                                                    | reported in Baseline Monitoring Report and submitted to EPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                                                                    | under FEP Condition 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Impact Monitoring                                                                  | On-going                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                    | White-bellied Sea Eagle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Baseline Monitoring                                                                | The baseline WBSE monitoring result has been reported in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                    | Baseline Monitoring Report and submitted to EPD under FEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                                                                    | Condition 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Impact Monitoring                                                                  | On-going                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                    | Environmental Audit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Site Inspection covering                                                           | On-going                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Measures of Air Quality,                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Noise Impact, Water                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Quality, Waste, Ecological                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Quality, Fisheries,                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Landscape and Visual                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Mitigation Measures in                                                             | On-going (Contraction of the second s |  |  |
| Marine Mammal Watching                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Plan (MMWP)                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Mitigation Measures in                                                             | On-going (1997)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Detailed Monitoring                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Programme on Finless                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Porpoise (DMPFP)                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Mitigation Measures in                                                             | On-going (1997)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Vessel Travel Details                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |

- 1.5.3 Other than the EM&A works by ET, environmental briefings, trainings and regular environmental management meetings were conducted, in order to enhance environmental awareness and closely monitor the environmental performance of the contractors.
- 1.5.4 The EM&A programme has been implemented in accordance with the recommendations presented in the approved EIA Report and the Updated EM&A

Manual. A summary of implementation status of the environmental mitigation measures for the construction phase of the Project during the reporting period is provided in **Appendix B**.

## 2. MARINE WATER QUALITY MONITORING

- 2.1 Water Quality Requirements
- 2.1.1 To ensure no adverse water quality impact, water quality monitoring is recommended to be carried out at the nearby water sensitive receivers (WSRs) during construction phase including proposed reclamation, breakwater construction, etc.
- 2.1.2 In accordance with the Updated EM&A Manual, impact water quality monitoring were conducted 3 days per week at mid-flood and mid-ebb tide to obtain impact water quality levels at the eleven monitoring stations during general water quality monitoring and fourteen monitoring stations during regular DCM monitoring for the construction period.
- 2.2 Water Quality Parameters, Time, Frequency
- 2.2.1 Dissolved Oxygen (DO), Turbidity, Suspended Solids (SS), Salinity and pH have been undertaken at the eleven monitoring stations during general water quality monitoring. Beside the above parameters, monitoring for Total Alkalinity, Current Velocity and Current Direction have been undertaken at all fourteen monitoring stations (including S1, S2 and S3) during regular DCM monitoring. While the same parameters monitored during regular DCM monitoring would be undertaken at twelve immediate upstream and downstream area to the DCM works location during intensive DCM monitoring. Intensive DCM monitoring was not undertaken during the reporting period.
- 2.2.2 Current velocity and direction, DO, temperature, salinity, turbidity and pH have been measured in-situ and the SS, Total Alkalinity have been assayed in a HOKLAS laboratory.
- 2.2.3 In associate with the water quality parameters, other relevant data were also measured, such as monitoring location/position, time, water depth, sampling depth, tidal stages, weather conditions and any special phenomena or work underway nearby were also recorded. The monitoring schedule is provided in **Appendix C**.
- 2.2.4 Impact water quality monitoring was conducted 3 days per week in the reporting period. All parameters were monitored during mid-flood and mid-ebb tides at three water depths for general water quality monitoring. The interval between two sets of monitoring has not been less than 36 hours.
- 2.2.5 **Table 2.1** summarizes the monitoring parameters, frequency and duration of the impact water quality monitoring during construction phase.

|                                                                                                                             | No. of Depths                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Salinity(ppt)</li> <li>pH (pH unit)</li> <li>Dissolved Oxygen<br/>(DO)(mg/L and % of</li> <li>aturation</li> </ul> | ter depths: 1m below sea<br>face, mid-depth and 1m<br>above sea bed.<br>e water depth is less than<br>nid-depth sampling only.<br>rater depth less than 6m,<br>l-depth may be omitted. |

### Table 2.1 Water Quality Monitoring Parameters, Frequency and Duration

| Parameter, unit  | Frequency | No. of Depths |
|------------------|-----------|---------------|
| mg/L             |           |               |
| Total alkalinity |           |               |
| Current velocity |           |               |
| Direction        |           |               |

- 2.3 Water Quality Monitoring Locations
- 2.3.1 Impact water quality monitoring was conducted at eleven monitoring locations (B1-B4, H1, C1, C2, F1, CR1, CR2 & M1) during general water quality monitoring and was conducted at fourteen water monitoring locations (B1-B4, H1, C1, C2, F1, S1-S3, CR1, CR2 & M1) during regular DCM monitoring, as shown in **Figure 2.1**.

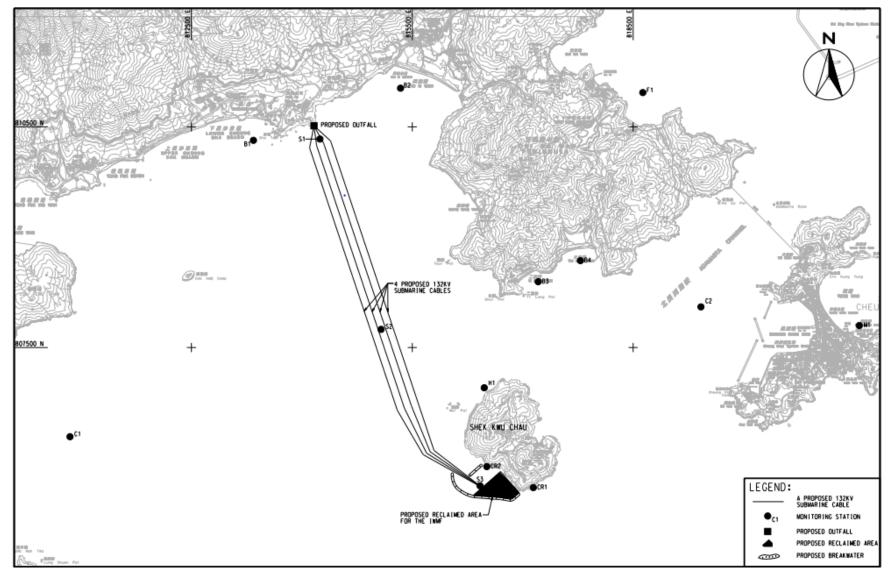



Figure 2.1 Water monitoring locations at Artificial Island near SKC

- 2.3.2 B1 to B4 are located at 4 beaches respectively at the southern shore of Lantau Island. Monitoring station H1 is located at the horseshoe crab habitat at northern SKC, while CR1 and CR2 are located at the coral communities at southwestern shore of SKC. Monitoring station F1 is located at the Cheung Sha Wan Fish Culture Zone while monitoring station M1 is located at Tung Wan at Cheung Chau. S1, S2 and S3 are located at the northern landing site, midway and southern landing site of the proposed submarine cable, respectively. S1, S2 and S3 are required for monitoring due to the laying of submarine cable. Control stations C1 and C2 at far field locations are for comparison.
- 2.3.3 Fourteen monitoring stations are listed in **Table 2.2**:

| Monitoring station | Description                      | Easting | Northing |
|--------------------|----------------------------------|---------|----------|
| B1                 | Beach - Cheung Sha Lower         | 813342  | 810316   |
| B2                 | Beach - Pui O                    | 815340  | 811025   |
| B3                 | Beach - Yi Long Wan              | 817210  | 808395   |
| B4                 | Beach - Tai Long Wan             | 817784  | 808682   |
| H1                 | Horseshoe Crab - Shek Kwu Chau   | 816477  | 806953   |
| C1                 | Control Station                  | 810850  | 806288   |
| C2                 | Control Station                  | 819421  | 808053   |
| F1                 | Cheung Sha Wan Fish Culture Zone | 818631  | 810966   |
| S1                 | Submarine Cable Landing Site     | 814245  | 810335   |
| S2                 | Submarine Cable                  | 815076  | 807747   |
| S3                 | Submarine Cable Landing Site     | 816420  | 805621   |
| CR1                | Coral                            | 817144  | 805597   |
| CR2                | Coral                            | 816512  | 805882   |
| M1                 | Tung Wan                         | 821572  | 807799   |

 Table 2.2 - Locations of Marine Water Quality Stations

- 2.3.4 For initial intensive DCM monitoring, mobile impact monitoring stations shall be located within fixed distances from the DCM group works area to obtain water quality information in the immediate upstream and downstream area. A total of 12 nos. monitoring stations will be deployed with the following arrangement and illustrated in **Figure 2.2**:
- Two monitoring stations upstream and at 150 m envelope of DCM group works area (Representative Control stations).
- Five monitoring stations downstream and at 150 m envelope of DCM group works area (Impact 1 stations).
- Five monitoring stations downstream and at 250 m envelope of DCM group works area (Impact 2 stations).
- Monitoring stations should be at least 50 m apart;
- Downstream monitoring stations should be perpendicular to the tidal direction.

#### Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1

Keppel Seghers – Zhen Hua Joint Venture

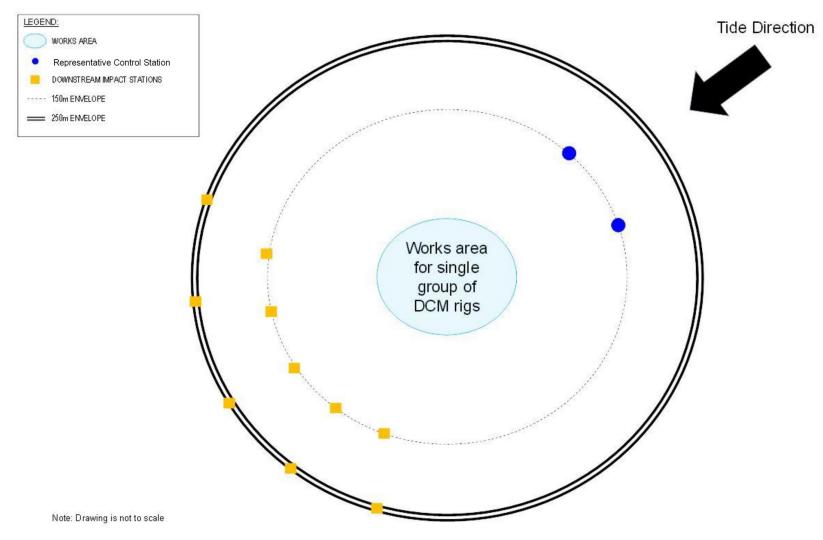



Figure 2.2 Water monitoring locations during intensive DCM monitoring

- 2.4 Impact Monitoring Methodology
- 2.4.1 General water quality monitoring was conducted three days per week, at mid-flood and mid-ebb tides, at the designated water quality monitoring stations during the reporting period.
- 2.4.2 The interval between 2 sets of monitoring was not less than 36 hours. Sampling was collected at three water depths, namely, 1m below water surface, mid-depth and 1m above seabed, except where the water depth is less than 6m, the mid-depth was omitted. If the water depth was less than 3m, only the mid-depth station was monitored.
- 2.4.3 All observations and results were recorded in the data record sheets in **Appendix D**. Duplicate in-situ measurements and water sampling were carried out in each sampling event. The monitoring probes were retrieved out of water after the first measurement and then redeployed for the second measurement. When the difference in value between the first and second readings of DO or turbidity is more than 25% of the value of the first reading, the reading was discarded and further readings were taken.

#### In-situ Measurement

2.4.4 Levels of DO, pH, temperature, turbidity and salinity would be measured in-situ by portable and weatherproof measuring instrument, e.g. YSI ProDSS and Horiba U-53 Multiparameter complete with cable and sensor. (Refer to http://www.ysi.com/ProDSS for YSI ProDSS technical specification and http://www.horiba.com/process-environmental/products/water-treatment-environment /details/u-50-multiparameter-water-quality-checker-368/ for Horiba U-53 technical specification ). Water current velocity and Water Current direction would be measured by portable and weatherproof current meter, e.g. SonTek Hydrosurveyor (Refer to https://www.sontek.com/media/pdfs/riversurveyor-s5-m9-brochure.pdf for SonTek Hydrosurveyor M9 technical specification). Parameters measured by in-situ measurement is tabulated in Table 2.3

| Parameter               | Resolution      | Range           |
|-------------------------|-----------------|-----------------|
| Temperature             | 0.1 °C          | -5-70 °C        |
| Dissolved Oxygen (DO)   | 0.01 mg/L       | 0-50.0 mg/L     |
| Turbidity               | 0.1 NTU         | 0-1000 NTU      |
| pH                      | 0.01 pH         | pH 0-14         |
| Salinity                | 0.01 ppt        | 0-40 ppt        |
| Water Current Velocity  | 0.001m/s        | ±20m/s          |
| Water Current Direction | $\pm 1^{\circ}$ | $\pm 2^{\circ}$ |

Table 2.3 - Parameters Measured by In-situ Measurement

#### Laboratory Analysis

2.4.5 Analysis of Total Alkalinity and SS should be carried out in a HOKLAS accredited laboratory, as shown in **Appendix E**. Sufficient water samples shall be collected at the monitoring stations for carrying out the laboratory determinations. The determination work should be started within 24 hours after collection of the water samples. Analytical methods and detection limits for SS and total alkalinity are present in **Table 2.4**.

| Parameter            | Analytical method        | Detection Level |
|----------------------|--------------------------|-----------------|
| Suspended Solids, SS | APHA 2540 D <sub>i</sub> | 1 mg/L          |
| Total Alkalinity     | APHA 2320                | 0.01 mg/L       |

 Table 2.4 - Analytical Methods Applied to Water Quality Samples

Footnote:

i. "APHA 2540 D" stands for American Public Health Association Standard Methods for the Examination of Water and Wastewater, 23<sup>rd</sup> Edition.

Field Log

- 2.4.6 Other relevant data was recorded, such as: monitoring location / position, time, water depth, weather conditions and any special phenomena underway near the monitoring station.
- 2.5 Monitoring Equipment
- 2.5.1 Equipment used in the impact water quality monitoring programme is summarized in **Table 2.5** below. Calibration certificates for the water quality monitoring equipment are attached in **Appendix F**.

| Monitored Parameter                            | Equipment              | Brand and Model                            |
|------------------------------------------------|------------------------|--------------------------------------------|
| DO, Temperature, Salinity,<br>pH and Turbidity | Multi-functional Meter | YSI ProDSS                                 |
| Coordinates                                    | Positioning Equipment  | Garmin GPSMAP 78s                          |
| Water depth                                    | Water Depth Detector   | Hummingbird 160 Portable                   |
| SS                                             | Water Sampler          | Wildco 2 L Water Sampler<br>with messenger |

**Table 2.5 Impact Water Quality Monitoring Equipment** 

#### 2.5.2 Dissolved Oxygen and Temperature Measuring Equipment

The instrument was a portable and weatherproof DO probe mounted on the multi-functional meter complete with cable and sensor, and use a DC power source. The equipment was capable of measuring:

- A DO level in the range of 0 50 mg/L; and
- Temperature of -5 70 degree Celsius.

#### 2.5.3 Turbidity Measurement Instrument

The instrument was a portable and weatherproof turbidity-measuring probe mounted on the multi-functional meter using a DC power source. It had a photoelectric sensor capable of measuring turbidity between 0 - 1000 NTU.

2.5.4 pH Measurement Instrument

The probe was consisted of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device mounted on the multi-functional meter. It was readable to 0.1 pH in a range of 0 to 14. Standard buffer solutions of at least pH 7 and pH 10 were used for calibration of the instrument before and after use.

#### 2.5.5 Salinity Measurement Instrument

A portable salinometer mounted on the multi-functional meter capable of measuring salinity in the range of 0-40 parts per thousand (ppt) was provided for measuring salinity of the water at each monitoring location.

#### 2.5.6 Sampler

The water sampler comprised a transparent PVC cylinder, with a capacity of not less than 2 litres, which can be effectively sealed with latex cups at both ends. The sampler have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth.

#### 2.5.7 Sample Containers and Storage

Water samples for SS were stored in high density polythene bottles with no preservative added, packed in ice (cooled to 4°C without being frozen) and delivered to the laboratory and analysed as soon as possible after collection. Sufficient volume of samples was collected to achieve the detection limit stated in **Table 2.4**.

#### 2.5.8 Water Depth Detector

A portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station. This unit could either be hand held or affixed to the bottom of the work boat, if the same vessel is to be used throughout the monitoring programme.

#### 2.5.9 Monitoring Position Equipment

Hand-held digital Differential Global Positioning System (DGPS) with way point bearing indication and Radio Technical Commission for maritime (RTCM) Type 16 error message 'screen pop-up' facilities (for real-time auto-display of error messages and DGPS corrections from the Hong Kong Hydrographic Office) was provided and used to ensure that the water sampling locations were correct during the water quality monitoring work.

- 2.6 Maintenance and Calibration
- 2.6.1 The multi-functional meters were checked and calibrated before use. Multi-functional meters were certified by a laboratory accredited under HOKLAS or any other international accreditation scheme, and subsequently re-calibrated at three monthly intervals throughout all stages of the water quality monitoring. Responses of sensors and electrodes were checked with certified standard solutions before each use. Wet bulb calibration for a DO meter was carried out before commencement of monitoring and after completion of all measurements each day. Calibration was not conducted at each monitoring location as daily calibration is adequate for the type of DO meter employed.
- 2.6.2 Sufficient stocks of spare parts were provided and maintained for replacements when necessary. Backup monitoring equipment was prepared for uninterrupted monitoring during equipment maintenance or calibration during monitoring.
- 2.7 Action and Limit Levels

2.7.1 The Action and Limit Levels have been set based on the derivation criteria specified in the Updated EM&A Manual and Detailed DCM Plan, as shown in **Table 2.6** below.

| Parameters                           | Action                                                                                                                                    | Limit                                                                                                                                     |  |  |  |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Construction Phase Impact Monitoring |                                                                                                                                           |                                                                                                                                           |  |  |  |
| DO in mg/L                           | $\leq$ 5 %-ile of baseline data                                                                                                           | ≤ 4                                                                                                                                       |  |  |  |
| SS in mg/L                           | $\geq$ 95 %-ile of baseline data or 120%                                                                                                  | $\geq$ 99 %-ile of baseline data or 130% of                                                                                               |  |  |  |
|                                      | of control station's SS at the same                                                                                                       | control station's SS at the same tide of                                                                                                  |  |  |  |
|                                      | tide of the same day of                                                                                                                   | the same day of measurement,                                                                                                              |  |  |  |
|                                      | measurement, whichever is higher                                                                                                          | whichever is higher                                                                                                                       |  |  |  |
| Turbidity in NTU                     | $\geq$ 95 %-ile of baseline data or 120%                                                                                                  | $\geq$ 99 %-ile of baseline data or 130% of                                                                                               |  |  |  |
|                                      | of control station's turbidity at the                                                                                                     | control station's turbidity at the same                                                                                                   |  |  |  |
|                                      | same tide of the same day of                                                                                                              | tide of the same day of measurement,                                                                                                      |  |  |  |
|                                      | measurement, whichever is higher                                                                                                          | whichever is higher                                                                                                                       |  |  |  |
| Temperature in <sup>o</sup> C        | 1.8°C above the temperature<br>recorded at representative control<br>station at the same tide of the same<br>day                          | 2°C above the temperature recorded at<br>representative control station at the<br>same tide of the same day                               |  |  |  |
| Total Alkalinity<br>in mg/L          | $\geq$ 95 %-ile of baseline data or<br>120% of representative control<br>station at the same tide of the same<br>day, whichever is higher | $\geq$ 99 %-ile of baseline data or 130% of<br>representative control station at the<br>same tide of the same day, whichever is<br>higher |  |  |  |

### Table 2.6 Criteria of Action and Limit Levels for Water Quality

2.7.2 Based on the baseline monitoring data and the derivation criteria specified above, the Action/Limit Levels have been derived and are presented in **Table 2.7** and **Table 2.8** for both dry seasons (October – March) and wet seasons (April – September).

| Parameters                           | Action                                   | Limit                                        |  |  |  |
|--------------------------------------|------------------------------------------|----------------------------------------------|--|--|--|
| Construction Phase Impact Monitoring |                                          |                                              |  |  |  |
| DO in mg/L                           | ≤ 7.13                                   | ≤ 4                                          |  |  |  |
| SS in mg/L                           | $\geq$ 8 or 120% of control station's SS | $\geq$ 10 or 130% of control station's SS at |  |  |  |
|                                      | at the same tide of the same day of      | the same tide of the same day of             |  |  |  |
|                                      | measurement, whichever is higher         | measurement, whichever is higher             |  |  |  |
| Turbidity in NTU                     | $\geq$ 5.6 or 120% of control station's  | $\geq$ 12.8 or 130% of control station's     |  |  |  |
|                                      | turbidity at the same tide of the same   | turbidity at the same tide of the same       |  |  |  |
|                                      | day of measurement, whichever is         | day of measurement, whichever is             |  |  |  |
|                                      | higher                                   | higher                                       |  |  |  |
| Temperature in°C                     | 1.8°C above the temperature              | 2°C above the temperature recorded at        |  |  |  |

| Parameters       | Action                                                                            | Limit                                                           |
|------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------|
|                  | recorded at representative control<br>station at the same tide of the same<br>day | representative control station at the same tide of the same day |
| Total Alkalinity | $\geq$ 116 or 120% of control station's                                           | $\geq$ 118 or 130% of control station's                         |
| in mg/L          | Total Alkalinity at the same tide of                                              | Total Alkalinity at the same tide of the                        |
|                  | the same day of measurement,                                                      | same day of measurement, whichever                              |
|                  | whichever is higher                                                               | is higher                                                       |

Notes:

i. "Depth-averaged" is calculated by taking the arithmetic means of reading of all three depths.

ii. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

iii. For turbidity, SS and Salinity, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

| Parameters                    | Action                                                                                                           | Limit                                                                                                       |  |  |  |  |  |
|-------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Construction Phas             | Construction Phase Impact Monitoring                                                                             |                                                                                                             |  |  |  |  |  |
| DO in mg/L                    | ≤ 5.28                                                                                                           | ≤ 4                                                                                                         |  |  |  |  |  |
| SS in mg/L                    | $\geq$ 12 or 120% of control station's SS                                                                        | $\geq$ 14 or 130% of control station's SS at                                                                |  |  |  |  |  |
|                               | at the same tide of the same day of                                                                              | the same tide of the same day of                                                                            |  |  |  |  |  |
|                               | measurement, whichever is higher                                                                                 | measurement, whichever is higher                                                                            |  |  |  |  |  |
| Turbidity in NTU              | $\geq$ 4.0 or 120% of control station's                                                                          | $\geq$ 4.3 or 130% of control station's                                                                     |  |  |  |  |  |
|                               | turbidity at the same tide of the same                                                                           | turbidity at the same tide of the same                                                                      |  |  |  |  |  |
|                               | day of measurement, whichever is                                                                                 | day of measurement, whichever is                                                                            |  |  |  |  |  |
|                               | higher                                                                                                           | higher                                                                                                      |  |  |  |  |  |
| Temperature in <sup>o</sup> C | 1.8°C above the temperature<br>recorded at representative control<br>station at the same tide of the same<br>day | 2°C above the temperature recorded at<br>representative control station at the<br>same tide of the same day |  |  |  |  |  |
| Total Alkalinity              | $\geq$ 116 mg/L or 120% of                                                                                       | $\geq$ 118 mg/L or 130% of representative                                                                   |  |  |  |  |  |
| in mg/L                       | representative control station at the                                                                            | control station at the same tide of the                                                                     |  |  |  |  |  |
|                               | same tide of the same day,                                                                                       | same day, whichever is higher                                                                               |  |  |  |  |  |
|                               | whichever is higher                                                                                              |                                                                                                             |  |  |  |  |  |

#### Table 2.8 Derived Action and Limit Levels for Water Quality (Wet Season)

Notes:

i. "Depth-averaged" is calculated by taking the arithmetic means of reading of all three depths.

ii. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

iii. For turbidity, SS and Salinity, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

- 2.7.3 If exceedances were found during water quality monitoring, the actions in accordance with the Event and Action Plan shall be carried out according to **Appendix G**.
- 2.8 Monitoring Results and Observations
- 2.8.1 During the reporting period, general water quality monitoring was conducted on 1, 3, 5, 7, 9, 13, 15, 17, 19, 21, 23, 26, 28 & 30 November 2018 at all the eleven monitoring stations. No regular DCM monitoring including monitoring station \$1, \$2

and S3 were conducted during reporting period. Monitoring results of 7 key parameters: Salinity, DO, turbidity, SS, pH, temperature and total alkalinity in this reporting month, are summarized in **Table 2.9**, and details results are presented in **Appendix D**.

|            |      |          | Summar                     |              |              |                    | 0                |               |                     |
|------------|------|----------|----------------------------|--------------|--------------|--------------------|------------------|---------------|---------------------|
|            |      |          |                            |              |              | Parameters         |                  |               |                     |
| Locations  |      | Salinity | Dissolved Oxygen<br>(mg/L) |              |              | T                  | Suspended        | T             | Total<br>Alkalinity |
|            |      | (ppt)    | Surface<br>&<br>Middle     | Bottom       | рН           | Turbidity<br>(NTU) | Solids<br>(mg/L) | Temp.<br>(°C) | (mg/L)              |
|            |      | 20.00    |                            | 8.05         | 0.10         | 2.6                | 0.69             | 22.8          |                     |
| B1         | Avg. | 30.00    | 8.07                       |              | 8.10         | 3.6<br>1.3         | 9.68<br>3.00     | 22.8<br>21.5  | -                   |
| DI         | Min. | 29.04    | 7.44                       | 7.58<br>8.59 | 7.29<br>8.40 |                    |                  |               | -                   |
|            | Max. | 31.19    | 8.86                       |              |              | 6.5                | 24.00            | 24.4          | -                   |
| B2         | Avg. | 30.00    | 8.01                       | 7.99         | 8.08         | 3.6                | 11.63            | 22.8          | -                   |
| D2         | Min. | 29.04    | 7.41                       | 7.55         | 7.15         | 0.9                | 5.00             | 21.5          | -                   |
|            | Max. | 31.20    | 8.60                       | 8.54         | 8.36         | 6.8                | 49.00            | 24.4          | -                   |
| <b>D</b> 2 | Avg. | 30.01    | 8.00                       | 7.96         | 8.08         | 3.7                | 10.54            | 22.8          | -                   |
| B3         | Min. | 29.02    | 7.54                       | 7.59         | 7.25         | 1.0                | 4.00             | 21.5          | -                   |
|            | Max. | 31.20    | 8.60                       | 8.41         | 8.40         | 6.9                | 23.00            | 24.4          | -                   |
| B4         | Avg. | 29.98    | 7.94                       | 7.96         | 8.08         | 3.6                | 10.60            | 22.8          | -                   |
| D4         | Min. | 29.01    | 7.23                       | 7.48         | 7.06         | 1.0                | 4.00             | 21.5          | -                   |
|            | Max. | 31.18    | 8.32                       | 8.29         | 8.40         | 6.6                | 22.00            | 24.4          | -                   |
| <b>C</b> 1 | Avg. | 30.03    | 8.03                       | 8.02         | 8.10         | 3.6                | 10.14            | 22.9          | -                   |
| C1         | Min. | 29.00    | 7.40                       | 7.52         | 7.28         | 1.0                | 4.00             | 21.5          | -                   |
|            | Max. | 31.20    | 8.67                       | 8.38         | 8.40         | 6.3                | 23.00            | 24.4          | -                   |
| <b>C</b> 2 | Avg. | 29.98    | 8.03                       | 8.03         | 8.07         | 3.7                | 11.39            | 22.9          | -                   |
| C2         | Min. | 29.01    | 7.47                       | 7.51         | 7.23         | 0.9                | 4.00             | 21.5          | -                   |
|            | Max. | 31.20    | 8.44                       | 8.49         | 8.36         | 7.0                | 24.00            | 24.4          | -                   |
| CD 1       | Avg. | 30.03    | 8.01                       | 8.00         | 8.08         | 3.7                | 10.77            | 22.9          | -                   |
| CR1        | Min. | 29.03    | 7.33                       | 7.36         | 7.22         | 1.1                | 4.00             | 21.5          | -                   |
|            | Max. | 31.20    | 8.72                       | 8.51         | 8.40         | 6.0                | 26.00            | 24.4          | -                   |
| CDA        | Avg. | 30.00    | 7.96                       | 7.97         | 8.09         | 3.7                | 12.48            | 22.9          | -                   |
| CR2        | Min. | 29.00    | 7.44                       | 7.57         | 7.25         | 1.0                | 5.00             | 21.5          | -                   |
|            | Max. | 31.20    | 8.53                       | 8.49         | 8.40         | 6.6                | 56.00            | 24.4          | -                   |
| Π1         | Avg. | 30.00    | 8.01                       | 8.00         | 8.07         | 3.7                | 10.76            | 22.8          | -                   |
| F1         | Min. | 29.00    | 7.38                       | 7.52         | 7.14         | 1.0                | 4.00             | 21.5          | -                   |
|            | Max. | 31.20    | 8.70                       | 8.53         | 8.39         | 6.9                | 21.00            | 24.4          | -                   |
| TT1        | Avg. | 30.00    | 8.10                       | 8.02         | 8.08         | 3.7                | 10.64            | 22.9          | -                   |
| H1         | Min. | 29.02    | 7.48                       | 7.38         | 7.19         | 1.0                | 4.00             | 21.5          | -                   |
|            | Max. | 31.19    | 8.73                       | 8.54         | 8.38         | 7.0                | 23.00            | 24.4          | -                   |
| MI         | Avg. | 30.02    | 8.03                       | 8.02         | 8.06         | 3.5                | 11.11            | 22.8          | -                   |
| M1         | Min. | 29.01    | 7.28                       | 7.35         | 7.09         | 1.1                | 5.00             | 21.5          | -                   |
|            | Max. | 31.19    | 8.47                       | 8.42         | 8.39         | 6.7                | 26.00            | 24.4          | -                   |
| <b>S</b> 1 | Avg. | -        | -                          | -            | -            | -                  | -                | -             | -                   |
|            | Min. | -        | -                          | -            | -            | -                  | -                | -             | -                   |
|            | Max. | -        | -                          | -            | -            | -                  | -                | -             | -                   |
| <b>S</b> 2 | Avg. | -        | -                          | -            | -            | -                  | -                | -             | -                   |
|            |      | Min      | -                          | -            |              |                    |                  |               |                     |
|            | Max. | -        | -                          | -            | -            | -                  | -                | -             | -                   |
| <b>S</b> 3 | Avg. | -        | -                          | -            | -            | -                  | -                | -             | -                   |
|            | Min. | -        | -                          | -            | -            | -                  | -                | -             | -                   |
| Notes:     | Max. | -        | -                          | -            | -            | -                  | -                | -             | -                   |

 Table 2.9 Summary of Impact Water Quality Monitoring Results

Notes:

i. "Avg", "Min" and "Max" is the average, minimum and maximum respectively of the data from measurements conducted under mid-flood and mid-ebb tides at three water depths, except that of DO where the data for "Surface & Middle" and "Bottom" are calculated separately.

ii. Total alkalinity test only conducted on DCM working day with referring master programme in Appendix A.

iii. Monitoring at S1, S2 and S3 shall only be conducted during DCM work period referring to master programme in **Appendix A**.

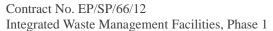
2.8.2 Mid-ebb water monitoring at B1, B2, B3, B4, H1, CR1, CR2, F1 & M1 and whole mid-flood water monitoring originally scheduled on 1 November 2018 were cancelled

due to the issue of Typhoon Signal No.3 during the monitoring event as shown in **Appendix C**.

- 2.8.3 The weather conditions during the monitoring period were mainly sunny and cloudy. Sea conditions for the majority of monitoring days were either light or moderate. No major pollution source and extreme weather which might affect the results were observed during the impact monitoring.
- 2.8.4 During the impact monitoring period for November 2018, forty-eight of the water quality monitoring results for Suspended Solid (SS) obtained during the reporting period had exceeded the relevant Action or Limit Levels, where findings from investigations carried out immediately for each of the exceedance cases had showed that these exceedances were unrelated to the Project, however, environmental deficiencies of the Contractor on the implementation of silt curtain deployment system were spotted. Details of the exceedance are presented in **Section 8**.
- 2.8.5 Implemented mitigation measures minimizing the adverse impacts on water are listed in the implementation schedule given in **Appendix B**.

## 3. NOISE MONITORING

#### 3.1 Monitoring Requirements


- 3.1.1 To ensure no adverse noise impact, noise monitoring is recommended to be carried out at the nearby noise sensitive receivers (NSRs) during construction phase.
- 3.1.2 In accordance with the Updated EM&A Manual, baseline noise level at the noise monitoring stations was established as presented in the Baseline Monitoring Report. Impact nois e monitoring was conducted once per week in the form of 30-minutes measurements Leq, L10 and L90 levels recorded at each monitoring station between 0700 and 1900 on normal weekdays.
- 3.2 Noise Monitoring Parameters, Time, Frequency
- 3.2.1 Impact noise monitoring was conducted weekly in the reporting period between 0700-1900 on normal weekdays.
- 3.2.2 Construction noise level measured in terms of the A-weighted equivalent continuous sound pressure level (LAeq). Leq<sub>30min</sub> was used as the monitoring parameter for the time period between 0700 and 1900 hours on normal weekdays. **Table 3.1** summarizes the monitoring parameters, frequency and duration of the impact noise monitoring. The monitoring schedule is provided in **Appendix C**.

| Monitoring Station                 | Time                                                                                                  | Duration                                                                                    | Parameters                                          |
|------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------|
| M1/ N_S1,<br>M2/ N_S2,<br>M3/ N_S3 | Daytime:<br>0700-1900 hrs<br>(during normal<br>weekdays, not include<br>Sunday or general<br>holiday) | Once per week<br>$L_{eq 5min}/L_{eq 30min}$<br>(average of 6<br>consecutive $L_{eq 5min}$ ) | L <sub>eq</sub> , L <sub>10</sub> & L <sub>90</sub> |

Table 3.1 Noise Monitoring Parameters, Time, Frequency and Duration

#### 3.3 Noise Monitoring Locations

3.3.1 Three noise monitoring locations for impact monitoring at the nearby sensitive receivers are shown in **Figure 3.1** 



Keppel Seghers – Zhen Hua Joint Venture

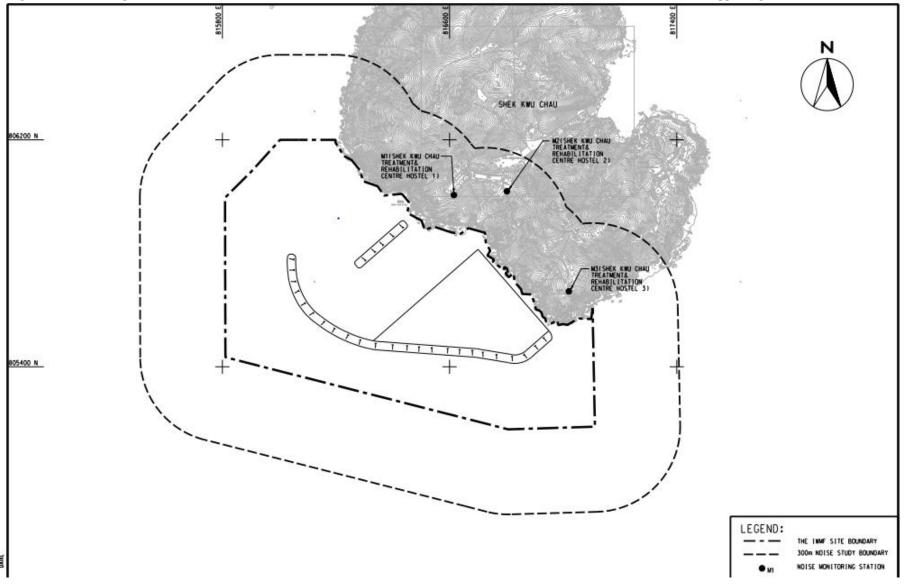



Figure 3.1 Noise monitoring locations at SKC

- 3.3.2 M1, M2 and M3 are Shek Kwu Chau Treatment and Rehabilitation Centre Hostel 1, 2 and 3 respectively of The Society for the Aid and Rehabilitation of Drug Abusers (SARDA) located at southern part of Shek Kwu Chau.
- 3.3.3 Measurement at M1, M2 and M3 were conducted at a point 1m from the exterior of the sensitive receivers building façade and at a position 1.2m above the ground. The noise monitoring stations are summarized in **Table 3.2** below.

| Station | NSR ID in<br>EIA Report | Noise Monitoring Location                                | Type of sensitive<br>receiver(s) | Measurement<br>Type |
|---------|-------------------------|----------------------------------------------------------|----------------------------------|---------------------|
| M1      | N_S1                    | Shek Kwu Chau Treatment & Rehabilitation Centre Hostel 1 | Residential                      | Façade              |
| M2      | N_S2                    | Shek Kwu Chau Treatment & Rehabilitation Centre Hostel 2 | Residential                      | Façade              |
| M3      | N_S3                    | Shek Kwu Chau Treatment & Rehabilitation Centre Hostel 3 | Residential                      | Façade              |

**Table 3.2 Noise Monitoring Location** 

- 3.4 Impact Monitoring Methodology
- 3.4.1 At each designated monitoring location, measurements of six 5-minutes A-weighted equivalent sound pressure level [" $L_{eq 5min}$ "] was carried out between 0700 and 1900 for daytime measurements on a normal weekdays (exclude Sunday or general holiday). The measured six impact noise levels at each monitoring location shall then be averaged in logarithmic scale and expressed in terms of the 30 minutes A-weighted equivalent continuous sound pressure level ( $L_{eq 30min}$ ) for the time period between 0700 and 1900 hours on normal weekdays.
- 3.4.2 The monitoring procedures are as follows:
  - The microphone head of the lead level meter was normally positioned 1m exterior of the noise sensitive façade and lowered sufficiently so that the building's external wall acts as a reflecting surface.
  - The battery condition was checked to ensure good functioning of the meter.
  - Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
    - Frequency weight: A
    - Time weighting: Fast
    - Measurement time: 5 minutes
  - Prior to and after noise measurement, the meter was calibrated using the calibrator for 94.0 dB at 1000Hz. If the difference in the calibration level before and after measurement is more than 1.0 dB, the measurement was considered invalid and repeat of noise measurement was required after re-calibration or repair of the equipment.
  - Noise monitoring was carried out for 30 mins by sound level meter. At the end of the monitoring period, noise levels in term of L<sub>eq</sub>, L<sub>10</sub>, and L<sub>90</sub> were recorded. In addition, site conditions and noise sources were recorded when the equipment were checked and inspected.
  - All the monitoring data within the sound level meter system was downloaded through the computer software.
- 3.5 Monitoring Equipment

- 3.5.1 Integrated sound level meter was used for the noise monitoring. The meter shall be in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications.
- 3.5.2 Equipment used in the impact noise monitoring programme is summarized in Table3.3 below. Calibration certificates for the noise monitoring equipment are attached in Appendix H.

| Equipment                    | Brand and Model |
|------------------------------|-----------------|
| Sound Level Meter            | Nti XL2         |
| Sound Level Meter Calibrator | Pulsar 105      |

 Table 3.3 Impact Noise Monitoring Equipment

#### 3.6 Maintenance and Calibration

- 3.6.1 The maintenance and calibration procedures were as follows:
  - The microphone head of the sound level meter and calibrator were cleaned with a soft cloth at quarterly intervals.
  - The sound level meter and calibrator were checked and calibrated at yearly intervals
  - Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0dB.
- 3.7 Action and Limit Levels
- 3.7.1 The Action/Limit Levels in line with the criteria of Practice Note for Professional Persons (ProPECC PN 2/93) "Noise from Construction Activities – Non-statutory Controls" and Technical Memorandum on Environmental Impact Assessment Process issued by HKSAR Environmental Protection Department ["EPD"] under the Environmental Impact Assessment Ordinance, Cap 499, S.16 are presented in Table 3.4.

| Time Period             | Action                | Limit (dB(A)) |
|-------------------------|-----------------------|---------------|
| 0700-1900 hrs on normal | When one documented   | 75 dB(A)      |
| weekdays                | complaint is received | 73 dB(A)      |

#### Table 3.4 Action and Limit Levels for Noise

- 3.7.2 If exceedances were found during noise monitoring. The actions in accordance with the Event and Action Plan shall be carried out according to **Appendix I**.
- 3.8 Monitoring Results and Observations
- 3.8.1 Impact monitoring for noise impact was carried out on 5, 12, 19 & 26 November 2018. The impact noise levels at Noise Monitoring Stations at SKC (i.e. M1/ N\_S1 to M3/ N\_S3) are summarized in **Table 3.6**. Details of noise monitoring results are presented in **Appendix J**.

- 3.8.2 Major construction activity, major noise source and extreme weather which might affect the results were recorded during the impact monitoring.
- 3.8.3 According to our field observations, the major noise source identified at the designated noise monitoring station in the reporting month are summarised in **Table 3.5**:

| Monitoring Station | Major Noise Source                            |
|--------------------|-----------------------------------------------|
| M1                 | Installation of air-conditioning units nearby |
| M2                 | Installation of air-conditioning units nearby |
| M3                 | Air-conditioning units nearby                 |

#### **Table 3.5 Summary of Field Observation**

3.8.4 No data from impact monitoring has exceeded the stipulated limit level at 75 dB(A).

| Location | Noise in dB(A)     |                               |                               |
|----------|--------------------|-------------------------------|-------------------------------|
| Location | Range of Leq 30min | Range of L <sub>10 5min</sub> | Range of L <sub>90 5min</sub> |
| M1       | 48.8 - 60.8        | 48.1 - 63.0                   | 45.2 - 60.3                   |
| M2       | 51.9 - 60.6        | 51.5 - 66.5                   | 44.6 - 55.3                   |
| M3       | 51.1 - 54.7        | 52.4 - 58.4                   | 46.5 - 53.7                   |

#### Table 3.6 Summary of Impact Noise Monitoring Results

## 4. WASTE

- 4.1 The waste generated from this Project includes inert construction and demolition (C&D) materials, and non-inert C&D materials. Non-inert C&D materials are made up of general refuse, vegetative wastes and recyclable wastes such as plastics and paper/cardboard packaging waste. Steel materials generated from the project are also grouped into non-inert C&D materials as the materials were not disposed of with other inert C&D materials.
- 4.2 As advised by the Contractor, 0 tons of C&D material was generated on site in the reporting month. For C&D waste, no metals was generated and collected by registered recycling collector. No paper cardboard packing were generated on site and collected by registered recycling collector. No plastic and chemical waste was collected by registered recycling collector and licensed chemical waste collectors respectively. 0 tons of other types of wastes (e.g. general refuse) were generated on site and disposed of at Landfill.
- 4.3 Chemical waste generated from the cleaning of oil stain and leakage on deck of barges was now stored in the chemical waste storage area on the barges. The Contractor has reported that the chemical waste collection is under arrangement.
- 4.4 With reference to relevant handling records and trip tickets of this Project, the quantities of different types of waste generated in the reporting month are summarised in **Table 4.1**. Details of cumulative waste management data are presented as a waste flow table in **Appendix K**.

|                  | Quantity  |                     |                                                      |                                |                        |                      |
|------------------|-----------|---------------------|------------------------------------------------------|--------------------------------|------------------------|----------------------|
|                  |           |                     | No                                                   | on-inert C&D Mater             | rials                  |                      |
| Reporting period | Inert C&D | Chemical            | Others, e.g.                                         | Recycle                        | d materials            |                      |
|                  |           | Waste<br>(in'000kg) | General Refuse<br>disposed at Landfill<br>(in'000kg) | Paper/card board<br>(in'000kg) | Plastics<br>(in'000kg) | Metals<br>(in'000kg) |
| November 2018    | 0         | 0                   | 0                                                    | 0                              | 0                      | 0                    |

 Table 4.1 Quantities of Waste Generated from the Project

4.5 Although there is not much waste generation anticipated in the coming month from the Project, the Contractor is advised to sort and store any solid and liquid waste on-site properly prior to disposal.

## 5. CORAL

- 5.1 Coral Monitoring Requirements
- 5.1.1 To monitor the health condition of corals during different phases, corals located within areas likely to be affected by the Project, corals located at control sites (areas unlikely to be affected by the Project), the trans-located coral colonies as well as the tagged natural coral colonies at the recipient site were chosen, in order to identify any adverse indirect impact from the marine works. The size, percentage cover and health condition of corals (i.e. any sign of abnormal appearance, such as layer of mucus, bleaching, partial mortality etc.) at representative transects should be recorded during each monitoring.
- 5.2 Coral Monitoring Parameters, Time, Frequency
- 5.2.1 REA survey was conducted at the suggested control site and indirect impact site within two week before commencement of the construction work. One additional REA survey would be scheduled on December 2018 to further assess the seabed condition at Indirect Impact Site after Typhoon Mangkhut. 10 selected hard coral colonies with the similar species were tagged at both control and indirect impact site. Following coral translocation in the recipient site R3, 16 coral colonies attached to rocks less than 50 cm in diameter were translocated and tagged, as well as 10 selected natural coral colonies, at the recipient site.
- 5.2.2 Tagged coral colonies at the suggested control site and indirect impact site are being monitored weekly for the first month and followed by monthly monitoring for two months. Quarterly monitoring will be carried out after the first three-months monthly monitoring for until the end of the construction phase. The selected Control Site is located at Yuen Kong Chau of Soko Islands about 7 km away from the project area. Tagged coral colonies at the proposed recipient site are being monitored quarterly for one year. The selected recipient site R3 is located the opposite side of the Project area at about 2 km away. The detailed survey of the Control Site and Impact Site were conducted before the commencement of the Construction Phase.
- 5.2.3 Monitoring recorded the following parameters (using the same methodology adopted during the pre-translocation survey); the size, presence, health conditions (percentage of mortality/bleaching) and percentage of sediment of each tagged coral colony. The general environmental conditions including weather, sea, and tidal conditions of impact site, control site and recipient site were monitored.
- 5.2.4 **Table 5.1** summarizes the monitoring locations, time and frequency of the tagged coral colonies monitoring. The monitoring schedule is provided in **Appendix C**.

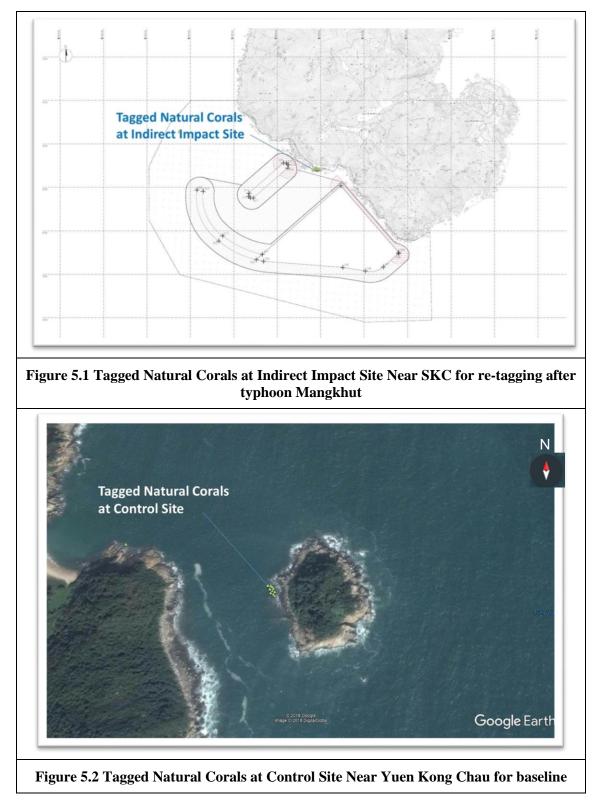

| Monitoring Location        | Monitoring<br>Month/Year         | Frequency                                | No. of Monitoring<br>Survey |  |
|----------------------------|----------------------------------|------------------------------------------|-----------------------------|--|
|                            | 1 <sup>st</sup> Month            | Weekly Survey                            | 4                           |  |
|                            | $2^{nd}$ to $3^{th}$ Months      | Monthly Survey                           | 2                           |  |
| 10 selected hard coral     | 4 <sup>th</sup> Month (postponed | Re-tagging of Coral Colonies in Indirect |                             |  |
| colonies at control site / | to 5 <sup>th</sup> month due to  | Impact Site after Typhoon Mangkhut       |                             |  |
| indirect impact site       | diver accident in Shek           |                                          |                             |  |
|                            | Kwu Chau in October              |                                          |                             |  |
|                            | 2018)                            |                                          |                             |  |

 Table 5.1 Tagged Coral Monitoring Locations, Time and Frequency

| Monitoring Logotics                                                                                              | Monitoring                                                                                                                                                                                                                                                   | Frequency                                  | No. of Monitoring      |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------|
| Monitoring Location                                                                                              | Month/Year                                                                                                                                                                                                                                                   |                                            | Survey                 |
|                                                                                                                  | $4^{th}$ Month (postponed<br>to $5^{th}$ month due to<br>diver accident in Shek<br>Kwu Chau in October<br>2018 and further<br>postpone to $6^{th}$ month<br>due to adverse<br>weather)                                                                       | Re-tagging of Cora<br>Site after Typhoon N | al Colonies in Control |
|                                                                                                                  | 5 <sup>th</sup> Month (postponed<br>to 6 <sup>th</sup> month due to<br>diver accident in Shek<br>Kwu Chau and further<br>postponed to 7 <sup>th</sup><br>month due to delay of<br>re-tagging activities at<br>both Indirect Impact<br>Site and Control Site) | Post Re-tagging<br>Monthly Survey          | 1                      |
|                                                                                                                  | 7 <sup>th</sup> to 76 <sup>th</sup> Months<br>(postponed to 8 <sup>th</sup> to<br>76 <sup>th</sup> month due to<br>diver accident in Shek<br>Kwu Chau in October<br>2018)                                                                                    | Quarterly Survey                           | 23                     |
| 16 translocated hard<br>coral colonies and 10<br>selected natural hard<br>coral colonies at<br>recipient site R3 | 1 <sup>st</sup> Year                                                                                                                                                                                                                                         | Quarterly Survey                           | 4                      |

### 5.3 Coral Monitoring Locations

5.3.1 Location of the ten tagged coral colonies at each of the proposed indirect impact site (re-tagging after typhoon Mangkhut), control site (baseline) and the recipient site R3 are shown in **Figure 5.1**, **Figure 5.2** and **Figure 5.3** respectively:





5.3.2 The GPS coordinates of the tagged coral colonies and retagged coral colonies were shown in **Table 5.2**, **Table 5.3** and **Table 5.4** respectively.

| Coral # | GPS Co         | ordinates      |
|---------|----------------|----------------|
| 1       | N22°09'45.96'' | E113°54'57.81" |
| 2       | N22°09'45.88"  | E113°54'57.89" |
| 3       | N22°09'45.81"  | E113°54'57.78" |
| 4       | N22°09'45.70"  | E113°54'57.95" |
| 5       | N22°09'45.83"  | E113°54'57.81" |
| 6       | N22°09'45.75"  | E113°54'58.02" |
| 7       | N22°09'45.65"  | E113°54'57.94" |
| 8       | N22°09'45.53"  | E113°54'57.90" |
| 9       | N22°09'46.23"  | E113°54'54.70" |
| 10      | N22°09'46.40'' | E113°54'57.79" |

Table 5.2 Tagged Natural Corals during Baseline at Control Site near Yuen Long Chau

Table 5.3 Tagged Natural Corals during Baseline at Indirect Impact Site near SKC

| Coral # | GPS Coo       | ordinates      |
|---------|---------------|----------------|
| 11      | N22°11'29.12" | E113°59'08.98" |
| 12      | N22°11'29.08" | E113°59'09.06" |
| 13      | N22°11'29.01" | E113°59'09.21" |
| 14      | N22°11'29.01" | E113°59'09.29" |
| 15      | N22°11'29.00" | E113°59'09.37" |
| 16      | N22°11'29.00" | E113°59'09.50" |
| 17      | N22°11'28.94" | E113°59'09.48" |
| 18      | N22°11'28.99" | E113°59'09.36" |
| 19      | N22°11'28.95" | E113°59'09.29" |
| 20      | N22°11'29.00" | E113°59'09.18" |

| Coral # | GPS Co        | ordinates      |
|---------|---------------|----------------|
| 11      | N22°11'29.14" | E113°59'08.92" |
| 12      | N22°11'29.12" | E113°59'09.01" |
| 13      | N22°11'29.11" | E113°59'09.07" |
| 14      | N22°11'29.13" | E113°59'09.12" |
| 15      | N22°11'29.10" | E113°59'09.18" |
| 16      | N22°11'29.07" | E113°59'09.23" |
| 17      | N22°11'29.17" | E113°59'08.86" |
| 18      | N22°11'29.14" | E113°59'08.94" |
| 19      | N22°11'29.20" | E113°59'08.81" |
| 20      | N22°11'29.18" | E113°59'08.91" |

## Table 5.4 Re-tagged Natural Corals after Typhoon Manghkut at Indirect Impact Site near SKC

- 5.3.3 The ET leader will review the number and location of monitoring stations and parameters every six months, or on as needed basis, in order to cater for any changes in the surrounding environment and the nature of works in progress.
- 5.4 Impact Monitoring Methodology
- 5.4.1 Health status of coral was assessed by the following criteria:
- Gorgonian coral: Percentage of branches exhibiting partial mortality, secretion of mucus and degree of sedimentation;
- Hard coral: Percentage of surface area exhibiting partial mortality and blanched/bleached area of each coral colony and degree of sedimentation.
- 5.5 Action and Limit Levels
- 5.5.1 Monitoring result was reviewed and compared against the below Action Level and Limit Level (AL/LL) as set with the below **Table 5.5** and **Table 5.6**.

## Table 5.5 Action and Limit Levels for Construction Phase Coral Monitoring

| Parameter | Action Level | Limit Level |
|-----------|--------------|-------------|
|           |              |             |

|           | If during Impact Monitoring    | If during Impact Monitoring a   |  |  |
|-----------|--------------------------------|---------------------------------|--|--|
|           | a 15% increase in the          | 25% increase in the             |  |  |
|           | percentage of partial          | percentage of partial mortality |  |  |
|           | mortality on the corals occurs | on the corals occurs at more    |  |  |
| Mortality | at more than 20% of the        | than 20% of the tagged          |  |  |
| Wortanty  | tagged indirect impact site    | indirect impact site coral      |  |  |
|           | coral colonies that is not     | colonies that is not recorded   |  |  |
|           | recorded on the tagged corals  | on the tagged corals at the     |  |  |
|           | at the control site, then the  | control site, then the Limit    |  |  |
|           | Action Level is exceeded.      | Level is exceeded.              |  |  |

| Parameter | Action Level                                                                                                                                          | Limit Level                                                                                    |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Mortality | Monitoring a 15% increase in<br>the percentage of partial<br>mortality on the corals occurs<br>at more than 20% of the<br>translocated coral colonies | at more than 20% of the<br>translocated coral colonies that<br>is not recorded on the original |

## Table 5.6 Action and Limit Levels for Post-Translocation Coral Monitoring

- 5.5.2 If exceedance was found during coral monitoring. The actions in accordance with the Event and Action Plan should be carried out according to **Appendix L.**
- 5.6 Monitoring Results and Observations
- 5.6.1 The re-tagging activity at Indirect Impact Site was conducted at 23 November 2018 while the re-tagging activity at Control Site was postponed to December 2018 due to adverse weather. After the re-tagging at Indirect Impact Site and Control Site are finished, one more additional monitoring survey will be conducted on the following reporting month. The indirect impact site coral re-tagging activities were performed on 23 November 2018 (**Figure 5.1**); and the weather conditions were summarized in **Table 5.7**.

## Table 5.7 Weather Condition for the Re-tagging Coral Colonies at Indirect Impact Site

| Date             | Condition                                                     | Average Underwater<br>Visibility |
|------------------|---------------------------------------------------------------|----------------------------------|
| 23 November 2018 | <ul><li>Southwest force 4 to 5</li><li>Sunny period</li></ul> | Less than 0.5m                   |

5.6.2 Ten hard coral colonies were re-tagged at Indirect Impact Site (Figure 5.1) and there size and health condition were shown in Table 5.8. The GPS coordinates of the re-tagged coral colonies were shown in Table 5.4. Photographs of each tagged coral colonies were taken and shown in Photo Plate 5.1). All tagged coral are common species in Hong Kong. In general, all tagged colonies are in good condition.

# Table 5.8 Sizes, Condition, Morality, Bleaching and Sediment of 10 Re-tagged Natural Coral Colonies at Indirect Impact Site

| Tag # | Species             | Size (cm) –<br>Max.<br>Diameter | Condition | Mortality<br>(%) | Bleaching<br>(%) | Sediment (%) |
|-------|---------------------|---------------------------------|-----------|------------------|------------------|--------------|
| 11    | Cyphastrea serailia | 48                              | Good      | 0                | 0                | 0            |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1

| 12 | Favites chinensis           | 27 | Good | 0 | 0 | 0 |
|----|-----------------------------|----|------|---|---|---|
| 13 | Turbinaria peltata          | 21 | Good | 0 | 0 | 0 |
| 14 | Favites chinensis           | 8  | Good | 0 | 0 | 0 |
| 15 | Goniopora<br>stutchburyi    | 11 | Good | 0 | 0 | 0 |
| 16 | Psammocora<br>superficialis | 27 | Good | 0 | 0 | 0 |
| 17 | Favites chinensis           | 15 | Good | 0 | 0 | 0 |
| 18 | Psammocora<br>superficialis | 39 | Good | 0 | 0 | 0 |
| 19 | Psammocora<br>superficialis | 42 | Good | 0 | 0 | 0 |
| 20 | Psammocora<br>superficialis | 29 | Good | 0 | 0 | 0 |

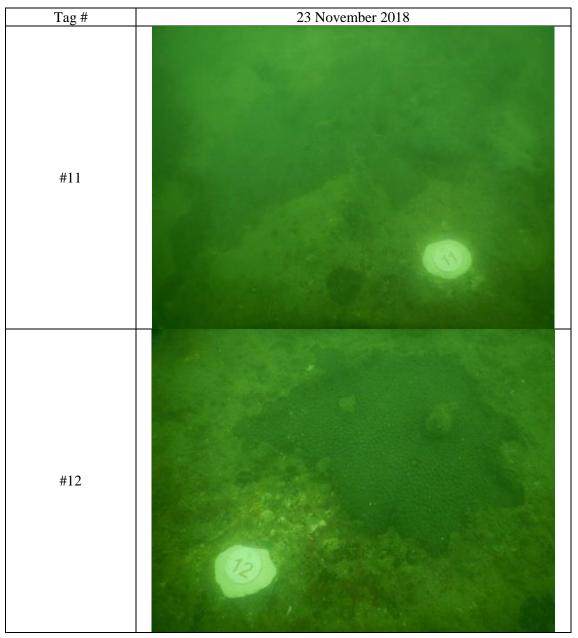
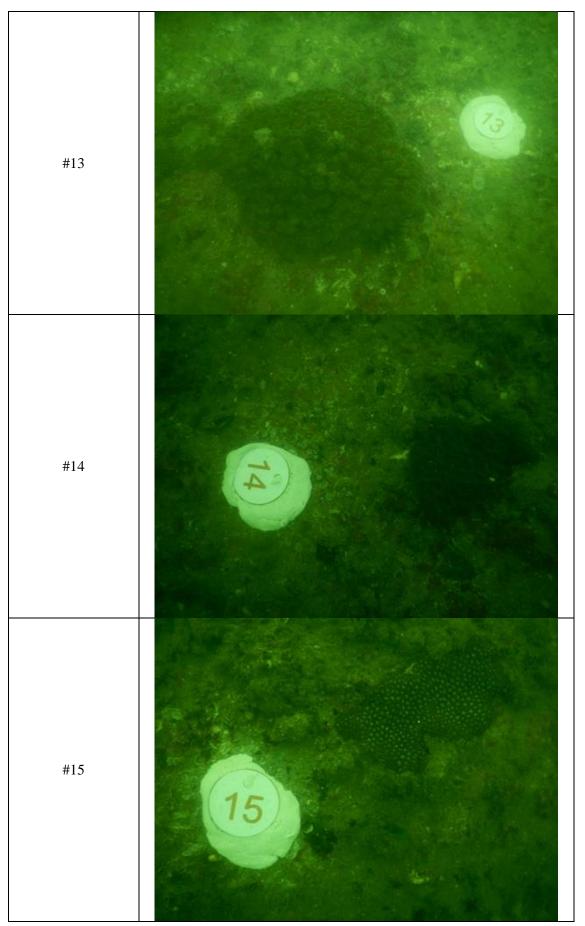
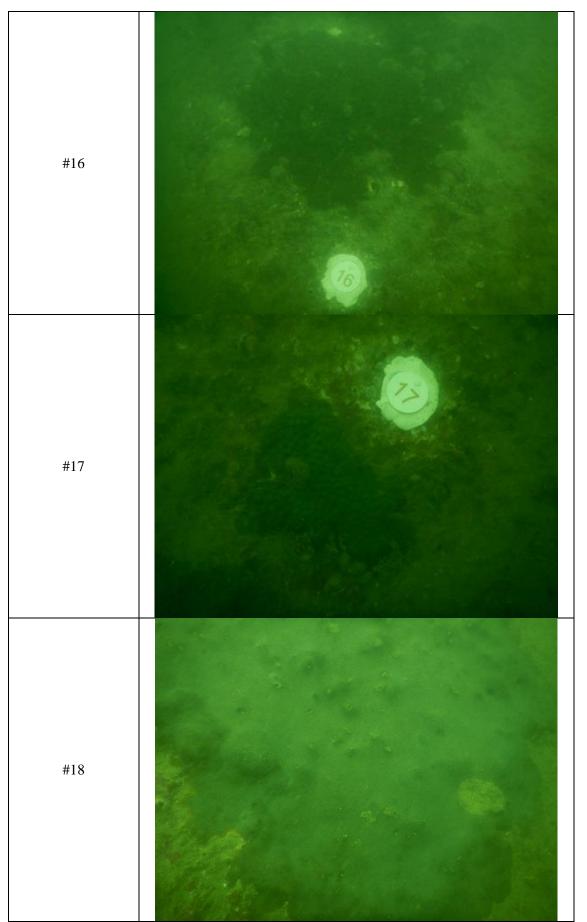
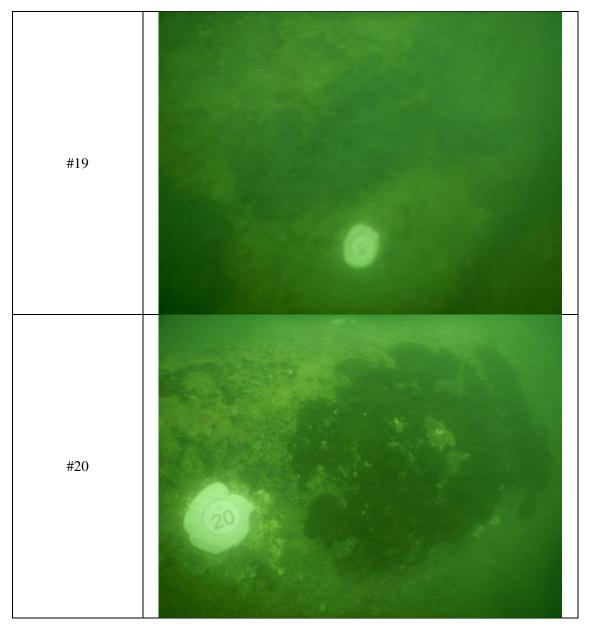





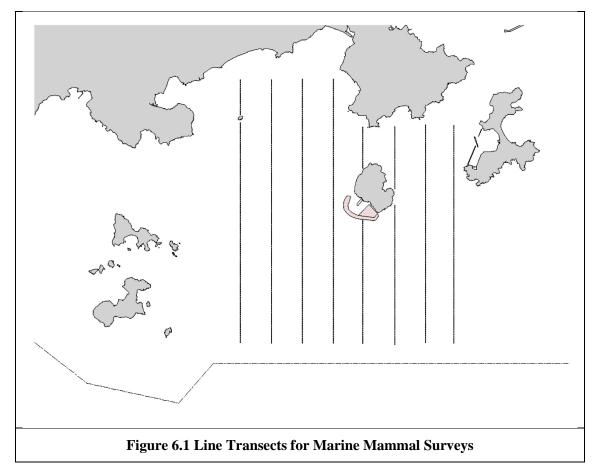

Photo Plate 5.1 Re-tagged Corals at Indirect Impact Site







5.6.3 Construction phase monitoring survey will be carried out to audit any effect to the health of tagged coral colonies during the whole construction period at both sites.


# 6. MARINE MAMMAL

#### 6.1 Monitoring Requirements

- 6.1.1 The marine mammal monitoring programme would focus on Finless Porpoise, as the study area near Shek Kwu Chau has been identified as a hotspot for this species, while the Chinese White Dolphins rarely occurred there in the past.
- 6.1.2 The monitoring would verify the predicted impacts on marine mammals, and examine whether the mitigation measures recommended in the EIA report have been effectively implemented to protect marine mammals from negative impacts from construction activities.
- 6.1.3 The Vessel-based Line-transect Survey, the Passive Acoustic Monitoring and the Land-based Theodolite Tracking will be conducted to provide systematic, quantitative measurements of occurrence, encounter rate, habitat use, movement and behavioural patterns of marine mammals within or near the Project Area during construction and operational phases.
- 6.1.4 The mammal monitoring works during construction consist of the following three survey methods:
- Vessel-based Line-transect Survey to monitor the occurrence of Finless Porpoises (and Chinese White Dolphins) in the study area during construction works, by comparing with the findings of the pre-construction marine mammal monitoring;
- Passive Acoustic Monitoring to study the usage of the Project Area and two control sites in South Lantau Waters by Finless Porpoise during construction works, in reference with the baseline findings of the pre-construction marine mammal monitoring; and
- Land-based Theodolite Tracking to study the movement and behavioral pattern of Finless Porpoise within and around the Project Area during construction works.
- 6.1.5 The marine mammal observation works of Marine Mammal Exclusion Zone (MMEZ) and Marine Mammal Watching as two of the specific mitigation measures recommended in the approved EIA report shall be fully and properly implemented for the Project to minimize disturbance on Finless Porpoise during construction and operational phases.
- 6.2 Survey Methods
- 6.2.1 Vessel-based Line-transect Survey

For the vessel-based marine mammal surveys, the monitoring team adopted the standard line-transect method (Buckland et al. 2001) as same as that adopted during the EIA study and pre-construction phase monitoring to allow fair comparison of marine mammal monitoring results.

Eight transect lines are set at Southeast Lantau survey area, including Shek Kwu Chau, waters between Shek Kwu Chau and the Soko Islands, inshore waters of Lantau Island (e.g. Pui O Wan) as well as southwest corner of Cheung Chau as shown in **Figure 6.1** below:



The surveys should cover all 4 seasons in order to take natural fluctuation and seasonal variations into account for data analysis of distribution, encounter rate, density and habitat use of both porpoises and dolphins (if any). In comparison to the baseline monitoring results, results from the analysed construction phase monitoring data would allow the detection of any changes of their usage of habitat, in response to the scheduled construction works. The monitoring surveys shall be conducted throughout the entire construction period with the frequency shown in **Table 6.1** below:

| Season          | Months                         | Frequency       |
|-----------------|--------------------------------|-----------------|
| Peak Season     | December, January, February,   | Twice per month |
|                 | March, April & May             |                 |
| Non-peak Season | June, July, August, September, | Once per month  |
|                 | October & November             |                 |

| Table 6.1 | Vessel-based | Line-transect | Survey | Frequency |
|-----------|--------------|---------------|--------|-----------|
|-----------|--------------|---------------|--------|-----------|

For each vessel survey, a 15-m inboard vessel with an open upper deck (about 4.5 m above water surface) would be used to make observations from the flying bridge area. Two experienced marine mammal observers (a data recorder and a primary observer) would make up the on-effort survey team, and the survey vessel would transit different transect lines at a constant speed of 13-15 km per hour. The data recorder shall search with unaided eyes and fill out the datasheets, while the primary observer shall search for dolphins and porpoises continuously through 7 x 50 marine binoculars. Both observers shall search the sea ahead of the vessel, between 270° and 90° (in relation to the bow, which is defined as 0o). Two additional experienced observers shall be available on the boat to work in shift (i.e. rotate every 30 minutes) in order to minimize fatigue of the survey team members. All observers shall be

experienced in small cetacean survey techniques and identifying local cetacean species with extensive training by marine mammal specialist of the ET

During on-effort survey periods, the survey team shall record effort data including time, position (latitude and longitude), weather conditions (Beaufort sea state and visibility), and distance travelled in each series (a continuous period of search effort) with the assistance of a handheld GPS (Garmin eTrex Legend). Data including time, position and vessel speed would also be automatically and continuously logged by handheld GPS throughout the entire survey for subsequent review.

When porpoises or dolphins are sighted, the survey team shall end the survey effort, and immediately record the initial sighting distance and angle of the porpoise or dolphin group from the survey vessel, as well as the sighting time and position. Then the research vessel shall be diverted from its course to approach the animals for species identification, group size estimation, assessment of group composition, behavioural observations, and collection of identification photos (feasible only for Chinese White Dolphin). The perpendicular distance (PSD) of the porpoise or dolphin group to the transect line would then be calculated from the initial sighting distance and angle, which shall be used in the line-transect analysis for density and abundance estimation.

The line-transect survey data shall be integrated with a Geographic Information System (GIS) to visualize and interpret different spatial and temporal patterns of porpoise and dolphin distribution using their sighting positions collected from vessel surveys. Location data of porpoise and dolphin groups would be plotted on map layers of Hong Kong using a desktop GIS (e.g. ArcView© 3.1) to examine their distribution patterns in details. The encounter rate could be used as an indicator to determine areas or time periods of importance to porpoises within the study area. For encounter rate analysis of finless porpoises, only survey data collected under Beaufort 2 or below condition would be used for encounter rate analysis.

To take into account of the variations of survey effort across different sections within survey area, the quantitative grid analysis of habitat use would be conducted to examine finless porpoise usage among 1-km<sup>2</sup> grids within the Southeast Lantau survey area. For the grid analysis, SPSE (sighting density) and DPSE (porpoise density) values would be deduced for evaluation on level of porpoise usage. First, positions of on-effort porpoise sightings from the study period are plotted onto 68 grids (1 km x 1 km each) within the survey area. Sighting density grids and porpoise density grids shall then be normalized with the amount of survey effort conducted within each grid. The total amount of survey effort spent on each grid shall be calculated by examining the survey coverage on each line-transect survey to determine how many times the grid had been surveyed during study period. With the amount of survey effort calculated for each grid, the sighting density and porpoise density of each grid shall be further normalized (i.e. divided by the unit of survey effort).

The newly-derived unit for sighting density was termed SPSE, representing the number of on-effort sightings per 100 units of survey effort. In addition, the derived unit for actual porpoise density was termed DPSE, representing the number of dolphins/porpoise per 100 units of survey effort. Among the 1-km<sup>2</sup> grids that were partially covered by land, the percentage of sea area was calculated using GIS tools, and their SPSE and DPSE values were adjusted accordingly. The following formulae shall be used to estimate SPSE and DPSE in each 1-km<sup>2</sup> grid within the study area:

 $SPSE = ((S / E) \times 100) / SA\%$ 

$$DPSE = ((D / E) \times 100) / SA\%$$

where

S = total number of on-effort sightings D = total number of dolphins/porpoises from on-effort sightings E = total number of units of survey effort SA% = percentage of sea area

#### 6.2.2 Passive Acoustic Monitoring (PAM)

The PAM aims to study the usage of an area by Finless Porpoise by using an array of automated static porpoise detectors (e.g. C-POD) which would be deployed at different locations to detect the unique ultra-high frequency sounds produced by Finless Porpoise. During the construction period, the PAM survey will be conducted including placement of two passive porpoise detectors outside the Project Area as control site (i.e. within Pui O Wan and to the south of Tai A Chau) and one porpoise detector within the Project Area (i.e. near Shek Kwu Chau) as shown in **Figure 6.2** below.



6.2.3 These three detectors will be deployed on-site to carry out 24-hours monitoring for a period listed as **Table 6.2** below during the construction phase.

| Season      | Months                                              | Deployment Period                                                                           |
|-------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------|
| Peak Season | December, January, February,<br>March, April or May | At least 30 days during the peak<br>months of porpoise occurrence<br>in South Lantau waters |

The automated static porpoise detectors shall detect the presence and number of finless porpoise and Chinese White Dolphins respectively over the deployment period, with the false signal such as boat sonar and sediment transport noise distinguished and filtered out. The detectors shall be deployed and retrieved by professional dive

team on the seabed of the three selected location shown in **Figure 6.2**. During each deployment, the C-POD unit serial numbers as well as the time and date of deployments shall be recorded. Information including the GPS positions and water depth at each of the deployment locations shall also be obtained.

The diel patterns (i.e. 24-hour activity pattern) of finless porpoise occurrence among the three sites at Shek Kwu Chau, Tai A Chau and Pui O Wan shall be analyzed. Peaks and troughs of finless porpoise occurrence per hour of day would be identified and compared with the results obtained from pre-construction monitoring.

#### 6.2.4 Land-based Theodolite Tracking

The Land-based Theodolite Tracking study would use the same station as in the AFCD monitoring study(same as the baseline monitoring location), which is situated at the southwest side of Shek Kwu Chau (GPS position: 22°11.47' N and 113°59.33' E) as shown in below **Figure 6.3**. The station was selected based on its height above sea level (at least 20 metres), close proximity to shore, and relatively unobstructed views of the entire Project Area to the southwest of Shek Kwu Chau. The height of the Shek Kwu Chau Station established by the HKCRP team is 74.6 m high at mean low water, and only a few hundred metres to the IWMF reclamation site, which is ideal for the purpose for the present behavioural and movement monitoring of finless porpoises as well during construction phase considering there as an un-obstructed vantage point at a height above the Project Site.

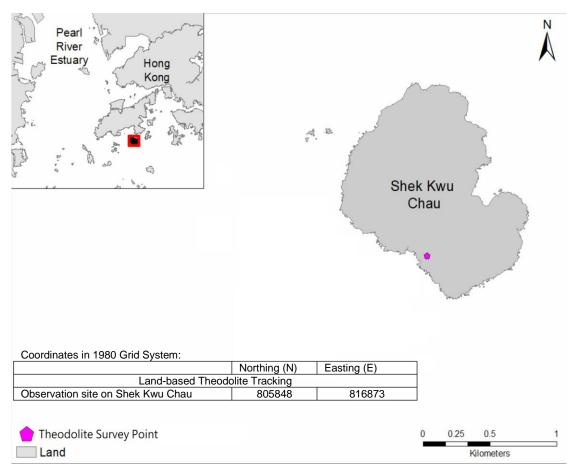



Figure 6.3 Locations of Land-based Theodolite Tracking

During the construction phase, Land-based Theodolite Tracking will be carried out for approximately six hours of tracking for each day of field work for a period listed as **Table 6.3** below, preferably at the initial stage of the construction period (i.e. December 2018 to May 2019).

| Season      | Months                       | Survey Period                   |
|-------------|------------------------------|---------------------------------|
| Peak Season | December, January, February, | 30 days during the peak months  |
|             | March, April or May          | of porpoise occurrence in South |
|             |                              | Lantau waters                   |

| Table 6.3 | Land-based | Theodolite | Tracking | Survey Pe | riod |
|-----------|------------|------------|----------|-----------|------|
|           | Lana-Dascu | Incouonic  | Tracking | Surveyit  | JIUU |

The monitoring period for land-based theodolite tracking will be proposed to be overlapped with the PAM. The monitoring team consists of one experienced theodolite operator and at least two field observers for assistance. To conduct theodolite tracking, our observers will search systematically for Finless Porpoise using the unaided eye and 7 x 50 handheld binoculars on each survey day throughout the study area. When an individual or group of porpoises is located, a theodolite tracking session will be initiated and focal follow methods will be used to track the porpoise(s). Behavioural state data (i.e. resting, milling, travelling, feeding and socializing) shall also be recorded every 5 minutes for the focal individual or group. Positions of porpoises and boats shall be measured using a digital theodolite connected to a laptop computer. This tracking survey will be conducted during the peak season between December 2018 and May 2019 for 30 surveys spanning across 15-16 weeks during the peak season to provide good temporal coverage during the initial stage of the construction period.

#### 6.3 Specific Mitigation Measures

#### 6.3.1 Monitored exclusion zones

During the installation/re-installation/relocation process of floating type silt curtains, in order to avoid the accidental entrance and entrapment of marine mammals within the silt curtains, a monitored exclusion zone of 250 m radius from silt curtain should be implemented. The exclusion zone should be closely monitored by an experienced marine mammal observer (MMO) for at least 30 minutes before the start of installation/re-installation/relocation process. If a marine mammal is noted within the exclusion zone, all marine works should stop immediately and remain idle for 30 minutes, or until the exclusion zone is free from marine mammals. The experienced marine mammal observer should be well trained to detect marine mammals. Binoculars should be used to search the exclusion zone from an elevated platform with unobstructed visibility. The marine mammal observer(s) shall be independent of the construction contractor and shall form part of the Environmental Team and have the power to call-off construction activities.

According to the Condition 2.25 of the FEP, MMEZ should be implemented during the installation/re-installation/relocation process of floating type silt curtains in order to avoid the accidental entrance and entrapment of marine mammals within the silt curtains. Also, marine construction works expected to produce underwater acoustic disturbance as per Condition 2.27 of the FEP, especially within December and May, would require the implementation of MMEZ, which currently all those specific construction activities have been replaced by less acoustically disturbing construction methods such as Deep Cement Mixing (DCM) and Precast Concrete Blocks Installation as discussed in Section 5.3 of the Detailed Monitoring Programme on Finless Porpoise, however, MMEZ would also be implemented for precautionary purpose for DCM works.

A MMEZ with 250 m distance from the boundary of a work area shall be established during the above situation. A typical MMEZ is indicated in **Figure 6.4** for reference. The MMEZ serves as a monitoring approach to provide appropriate and immediate actions once finless porpoise or Chinese White Dolphin is sighted within the MMEZ. All MMEZ will be monitored by competent Marine Mammal Observers (MMOs) to be provided by the Environmental Team (ET) for the IWMF and trained by the Marine Mammal Monitoring Specialist of the ET who is independent from JV.

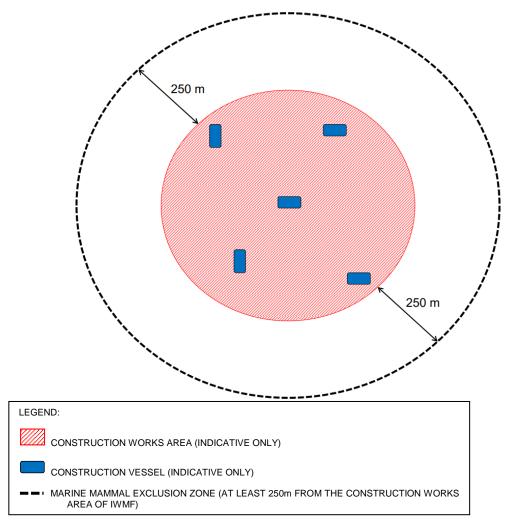



Figure 6.4 Illustration of Typical MMEZ

Prior to the commencement of construction activity, our MMOs shall ensure the boundary of a marine work area and setting up of the MMEZ for the work area and get access to the monitoring location on a barge or a lookout point where there is no obstructed views for monitoring the MMEZ during the construction activity. The MMEZ shall be scanned thoroughly by a MMO for any presence of marine mammal e.g. finless porpoise for an initial period of 30 minutes. Construction activity shall only be commenced after the MMO has confirmed that the MMEZ is clear of the marine mammal for the initial period of 30 minutes. The MMO shall then inform the construction superintendent through mobile phone or handheld transceivers to certify the commencement of construction activity. The MMEZ monitoring shall be carried on throughout the period for all active construction activities requiring implementation of MMEZ.

When any mammal marine, e.g. Finless Porpoise, is detected by the MMO within the MMEZ during construction, the MMO shall inform the construction superintendent immediately through mobile phone or handheld transceivers to cease construction activity within the MMEZ. Construction activity shall not be re-commenced until the MMO confirms that the MMEZ is continuously clear of marine mammal for a period of 30 minutes. The MMO shall then inform the construction superintendent through mobile phone or handheld transceivers to certify the re-commencement of construction activity.

As there could be a number of Contractors working at the same time within a work area for the IWMF project, a full contact list of MMEZ monitoring team members of the ET and the relevant responsible construction superintendents of the Contractor at the site shall be prepared, updated regularly and circulated to all parties involved in the MMEZ monitoring. With a full contact list, our MMOs shall be able to find out the contacts of corresponding persons in case of marine mammal sighting within and near the MMEZ or emergent occurrence of any unpredictable impact on marine mammal.

If a marine mammal is still observed in close vicinity but outside the MMEZ, the MMO shall inform the construction superintendent about the presence of marine mammal. The MMO shall remain in position and closely observe the movement of the marine mammal as well as searching for the appearance of any other marine mammal within the MMEZ. No matter the marine mammal is observed within or in close vicinity but outside the MMEZ, the construction superintendent or relevant persons shall inform all vessel captains involved in construction activities around the MMEZ to pay special attention of the presence of the marine mammal in order to reduce chance of collision with them. In case of injury or live-stranded marine mammal being found within the MMEZ, the marine mammal observer shall immediately inform the construction superintendent to suspend construction activities within the works area and contact AFCD through "1823" marine mammal stranding hotline.

## 6.3.2 Marine mammal watching plan

Upon the completion of silt curtain installation/re-installation/relocation, all marine works would be conducted within a fully enclosed environment within the silt curtain. Hence exclusion zone monitoring would no longer be required. Subsequently, a marine mammal watching plan would be implemented.

Before commencement of dredging/sand blanket laying work at each designated area, a trained MMO shall check whether position frame silt curtains are ready, well prepared and operated without any obvious damage. Also, the MMO shall confirm the presence of the relevant frontline staff of the main contractor or its sub-contractors and engineers on board to ensure the effective communication, coordination and implementation of the response plan in relation to any incidents involving marine mammals within the waters surrounded by the position frame type silt curtains and the work areas. Also, there are lookout points at an elevated level on each barge, clear and safe access at the edges of the derrick lighter/ flag-top barge for inspection during dredging/sand blanket laying works, provision of sufficient lighting is required if working at night.

During the operation, the inspection will be conducted daily. The MMO will walk along the edge of derrick lighter (DL) and flag-top barge (FB) along the position frame silt curtain or proper location without obstacles where appropriate to inspect the position frame silt curtain with naked eyes, the MMO will check that the position frame silt curtains are maintained in the correct positions with no obvious defects / entanglement and there is no observable muddy water passing through the position frame silt curtain system. Any floating refuse trapped by the silt curtain shall be removed as part of the regular inspection. For night inspection, spotlight will be used to provide sufficient brightness to assist the inspection in dark condition.

For the localized silt curtain re-deployment, MMO will conduct visual inspection to confirm that there is no presence of marine mammal within the localized silt curtain. Visual inspection will be conducted every an hour by MMO till confirming that there is not any marine mammal observed in the surrounding area of the frame type silt curtain. The duration will be subject to various conditions, e.g. weather or angle of observation. The works can only commence after confirming that the surrounding waters of the localized silt curtains has not contain any marine mammal. Thereafter, frontline staff, i.e. foremen, site agent, superintendents and engineers will assist our MMO in implementing the plan from the active work fronts within the waters surrounded by the silt curtains throughout the work period. The MMO will conduct regular check every 60 minutes to observe the presence of any marine mammal around the localized silt curtain or being trapped by the localized silt curtain. The MMOs will also check if the localized silt curtains are in correct positions.

The MMO shall fill up our Marine Mammal Sighting Record Sheet. After inspection, those records should be kept properly and submitted to the project team. In case there is any marine mammal being found, the MMO should carry out the response actions and communicate with relevant parties to stop and then resume work after the discovered marine mammal leaves. After lifting up and mobilization of silt curtain, the MMO will repeat the procedures of regular and visual inspection until the end of the construction works.

Details of the lookout points at derrick lighter (DL) and flat-top barge (FB) for dredging/sand blanket filling are shown in **Figure 6.4** and **Figure 2.2** respectively. Each lookout point will have an unobstructed view to waters around the DL and FB. The MMO will move around the DL and FB to establish a clear and unobstructed view as much as they can without compromising the safety concern. When appropriate, the lookout point can be replaced by a proper location if unobstructed view can be assured.

- 6.4 Results and Observations
- 6.4.1 Vessel-based Line-transect Survey

The monthly survey was conducted on 6 November 2018. As this is the designated off-peak season (June-November), only one survey was completed. A total on effort (transects only) survey length of 39.5 km was completed, 16.2 km at Beaufort Sea State 2 or better (**Table 6.4**). One finless porpoise sighting was recorded (**Table 6.5**, **Figure 6.5**).

| Date       | Area* | Beaufort | Effort<br>(km) | Season | Vessel | Effort<br>Type** |
|------------|-------|----------|----------------|--------|--------|------------------|
| 6-Nov-2018 | SEL   | 1        | 4.9            | AUTUMN | SMRUHK | P                |
| 6-Nov-2018 | SEL   | 2        | 11.3           | AUTUMN | SMRUHK | Р                |
| 6-Nov-2018 | SEL   | 3        | 14.1           | AUTUMN | SMRUHK | Р                |
| 6-Nov-2018 | SEL   | 4        | 9.2            | AUTUMN | SMRUHK | Р                |

Table 6.4 Summary of Vessel-based Line-transect Survey Effort

\* As shown in Figure. 6.1

\*\* P (from AFCD) denotes the ON EFFORT survey on the transect line, not the adjoining passages

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1

| Date       | Species             | Sighting<br>No. | Time  | Group<br>Size | PSD | Behaviour | Latitude | Longitude | Area | Effort<br>Type | Season |
|------------|---------------------|-----------------|-------|---------------|-----|-----------|----------|-----------|------|----------------|--------|
| 6-Nov-2018 | Finless<br>Porpoise | 1               | 11:47 | 1             | 139 | Unknown   | 22.18955 | 113.9735  | SEL  | Impact         | AUTUMN |

Table 6.5 Sightings recorded during November 2018 Vessel-based Line-transect Survey

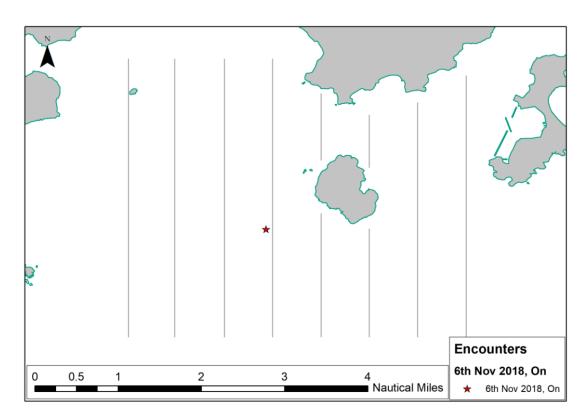



Figure 6.5 Location of sightings recorded during November 2018 Vessel-based Line-transect Survey

A review of the long term AFCD marine mammal monitoring programme, the EIA and the pre-construction baseline monitoring report for this project was conducted. Both the EIA and the pre-construction baseline monitoring were conducted during the peak porpoise months (Dec-May 2008 and Feb-April 2018, respectively), and, as such, these data are not directly comparable to this survey month which is a porpoise off-peak month. Therefore, a comparison can only be made to the AFCD long term marine mammal monitoring data.

A review of the Beaufort Sea state November survey conditions between 2009 and 2017 (only data available from AFCD at time of writing; (AFCD 2018; 2017; 2016; 2015; 2014; 2013; 2012; 2011; 2010)) show that between 35.4% and 81.2% of survey effort has been conducted at Beaufort Sea State 2 or better in the past. For this project in November 2018, 41% of the survey was conducted at Beaufort Sea State 2 or better and, as such, survey conditions in November 2018 were within the % limits of previous AFCD surveys.

A review of all the porpoise sightings in the survey area for November between 2009-2017 indicate that there are fluctuations between the numbers of sightings

usually recorded in November. For all weather conditions, and for the nine years data available, 2 years recorded no (0) sightings (2009 and 2012), 6 years recorded 1 sighting (2010, 2011, 2013, 2014, 2015 and 2017) and 1 year recorded 4 sightings (2016). Effort varied between years and the average number of sightings (per km) varied between 0 and 0.03km<sup>-1</sup>. There is no trend in encounter rates recorded by the AFCD long term monitoring programme, i.e., the highest encounter rate was recorded in 2011, 2014 and 2016 at 0.03 km<sup>-1</sup> (1, 1 and 4 sightings), with encounter rates of 0 sightings km<sup>-1</sup>, in 2009 and 2012. For November 2018, an encounter rate recorded for this month previously, with reference to the AFCD long term marine mammal monitoring data. It must be highlighted that the very small survey area conducted for this monitoring typically result in 0 to 1 sightings per survey.

It is difficult to draw conclusions with regards to impacts on marine mammals as predicted in the EIA and the effectiveness of project mitigation measures during the initial phase of construction activities when porpoise sightings are typically absent or very low during the survey month. As surveys continue for this project, data shall be constantly re-evaluated across survey months to discern trends and impacts, if any.

6.4.2 PAM and Land-based Theodolite Tracking

These tracking surveys will be conducted during the peak season between December 2018 and May 2019 for 30 surveys spanning across 15-16 weeks during the peak season to provide good temporal coverage during the initial stage of the construction period.

6.4.3 Specific Mitigation Measures

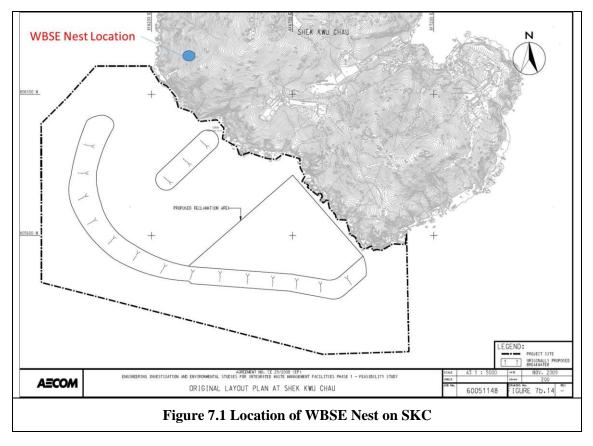
Silt curtains were deployed for sand blanket laying works and DCM trial during the reporting period. At least two MMO were on duty for continuous monitoring of the Marine Mammal Exclusion Zone (MMEZ) for DCM trial works and installation/re-installation/relocation process of silt curtains, and the marine mammal trapping checking and silt curtains inspection in accordance with the Detailed Monitoring Programme of Finless Porpoise and Marine Mammal Watching Plan respectively. Trainings for the MMO were provided by the ET prior to the aforementioned works, with a cumulative total of 32 individuals being trained and the training records kept by the ET. From the Marine Mammal Watching observation records and MMEZ monitoring log records, no Finless Porpoise or other marine mammals were observed within or around the MMEZ and silt curtains in the reporting month.

# 7. WHITE-BELLIED SEA EAGLE

- 7.1 Monitoring Requirement
- 7.1.1 On Shek Kwu Chau Island, a nest of WBSE is located about 60 m above ground within a hillside shrubland habitat, 130 m in-land from shore, about 550 m away from the proposed reclaimed land, with no human access. 3 phases monitoring programme will be comprise including: pre-construction phase, construction phase and operation phase.
- 7.1.2 The Pre-Construction WBSE monitoring was started on 30 January 2018 and the location of WBSE nest was confirmed on 21 February 2018 and it is located at the western part of SKC Island (Figure 1). Two adults and two chicks were also recorded on 5<sup>th</sup> March 2018 survey till the end of the Pre-construction monitoring on 15<sup>th</sup> May 2018. Construction Phase monitoring were carried out followed by the commencement of the Construction Phase on 28<sup>th</sup> June 2018.
- 7.2 WBSE Monitoring Parameters, Time, Frequency
- 7.2.1 The objective of the construction phase monitoring should be to verify the utilisation of the area by WBSE, their responses to construction disturbance, as well as the effectiveness of the proposed mitigation measures. Throughout the construction phase, field surveys should be conducted twice per month during their core breeding season (from December to May), and once per month outside their core breeding season (from June to November). The monitoring frequency should be increased to weekly during the incubation period of each year. In order to confirm their foraging ground near the construction site, it is necessary to conduct daily monitoring during the first week of nestling period in each year and weekly monitoring will be continued for another ten weeks with daily monitoring at first week. The monitoring schedule during the reporting period is provided in **Appendix C**.
- 7.3 Monitoring Location
- 7.3.1 Since there is no suitable land-based along the coast of SKC, only boat surveys were conducted. On Shek Kwu Chau Island, a nest of WBSE is located about 60 m above ground within a hillside shrubland habitat, 130 m in-land from shore, about 550 m away from the proposed reclaimed land, with no human access.
- 7.4 Monitoring Methodology
- 7.4.1 Information to be collected included feeding, perching/rousing, preening, soaring, flying, nesting and territorial guarding and the time spent on each activity. The responses and reactions to any disturbance to the WBSEs were also recorded and examined in conjunction with the construction noise and/or other events in the vicinity. Other disturbances such as weather condition, or invasion by other fauna species were also recorded.
- 7.4.2 Binocular, scope, camera, lens and GPS device used are summarized as **Table 7.1** below:

| Equipment                       | Quantity |
|---------------------------------|----------|
| Swarovski EL 8.5 x 42 Binocular | 1        |

#### Table 7.1 List of Equipment Used during Construction Phase Monitoring


| Equipment                                           | Quantity |
|-----------------------------------------------------|----------|
| Swarovski EL Range 8 x 42 Binocular                 | 1        |
| Swarovski ATX 25-60 x 85 Spotting Scope             | 1        |
| Canon 1Dx Mark II Camera                            | 1        |
| Canon EF300mm F2.8 Lens with Canon 2x Teleconverter | 1        |
| Canon PowerShot G7X Camera                          | 1        |
| Garmin GPSMAP 64S                                   | 1        |

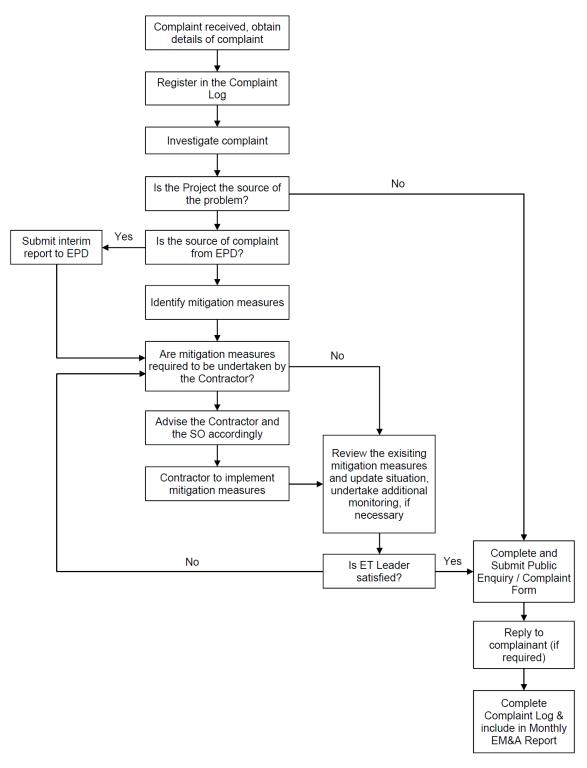
- 7.4.3 If event such as absence of White-bellied Sea Eagle during a whole day of monitoring was found during WBSE monitoring, the actions in accordance with the Event and Action Plan should be carried out according to **Appendix M.**
- 7.5 Results and Observations
- 7.5.1 The fifth monthly construction phase monitoring was conducted on 23 November 2018. Since there is no landing point long the western part of SKC, boat survey were used for the monitoring survey. In order to increase the chance of finding the WBSEs, monitoring survey was carried out early in the morning. The weather conditions of monitoring survey were shown in **Table 7.2**.

| Table 7.2 Weather | Conditions | during the | WBSE Monitoring |
|-------------------|------------|------------|-----------------|
|                   | 001101010  |            |                 |

| Date        | Condition          | Temperature (°C) |
|-------------|--------------------|------------------|
| 23 November | - Southeast 4 to 5 | 77               |
| 2018        | - Sunny periods    | 21               |

- 7.5.2 The new nest was built on the same tree as the old nest after destroyed by the super typhoon Mangkhut. During the monitoring survey, one WBSE was staying in the nest and the other one just left the nest when arrived the survey area and flying around the area next to the nest. Any disturbances from anthropogenic activities on the island were not recorded during the monitoring survey. However, there were fishing boats moving close the shore were recorded. Since the nesting tree is about 160m away from the shore and it is not accessible, fishing boat activities didn't show any direct disturbance to the WBSE nest. No invasion of other faun species was recorded as well. No sign of using the construction site as a foraging ground were recorded.
- 7.5.3 No abnormal behaviour of the recorded adults during the November 2018 construction phase monitoring. Only two adults WBSE were recorded (Figure 7.2). All marine works during the fifth month construction period did not show any affects to the WBSE.
- 7.5.4 A construction phase monitoring will be continued during the non-core breeding season (between June to November) in order to monitor the utilization of the area by WBSE and their responses to construction disturbance.




7.5.5 Photo record of WBSE from the survey this month is shown below:





# 8. SUMMARY OF MONITORING EXCEEDANCE, COMPLAINTS, NOTIFICATION OF SUMMONS AND PROSECUTIONS

8.1 The Environmental Complaint Handling Procedure is shown in below Figure 8.1:



**Figure 8.1 Environmental Complaint Handling Procedure** 

- 8.2 No exceedance of the Action and Limit Levels of the regular construction noise, coral and WBSE monitoring was recorded during the reporting period.
- 8.3 Forty-eight of the water quality monitoring results for Suspended Solid (SS) obtained during the reporting period had exceeded the relevant Action or Limit Levels as summarized in **Table 8.1** and **Table 8.2**, where findings from investigations carried out immediately for the reporting period, had showed that these exceedances were unrelated to the Project as shown in **Appendix N**, however, environmental deficiencies of the Contractor on the implementation of silt curtain deployment system were spotted.
- 8.4 The Contractor has been reminded to facilitate the ET's investigation in the time frame stated at Event and Action plan under the updated EM&A Manual by promptly providing site records and information.

| Date                     | <b>B</b> 1 | B2                               | <b>B3</b> | B4 | CR1 | CR2 | F1 | H1 | <b>S1</b> | S2 | <b>S</b> 3    | M1 |
|--------------------------|------------|----------------------------------|-----------|----|-----|-----|----|----|-----------|----|---------------|----|
| 1-11-2018                |            | Cancelled due to<br>Typhoon YUTU |           |    |     |     |    |    |           |    | ed du<br>n YU |    |
| 3-11-2018                |            |                                  |           |    |     |     |    |    |           |    |               |    |
| 5-11-2018                |            |                                  |           |    |     |     |    |    |           |    |               |    |
| 7-11-2018                |            |                                  |           |    |     |     |    |    |           |    |               |    |
| 9-11-2018                |            |                                  |           |    |     |     |    |    |           |    |               |    |
| 13-11-2018               |            |                                  |           |    |     |     |    |    |           |    |               |    |
| 15-11-2018               |            |                                  |           |    |     |     |    |    |           |    |               |    |
| 17-11-2018               |            |                                  |           |    |     |     |    |    |           |    |               |    |
| 19-11-2018               |            |                                  |           |    |     |     |    |    |           |    |               |    |
| 21-11-2018               |            |                                  |           |    |     |     |    |    |           |    |               |    |
| 23-11-2018               |            |                                  |           |    |     |     |    |    |           |    |               |    |
| 26-11-2018               |            |                                  |           |    |     |     |    |    |           |    |               |    |
| 28-11-2018               |            |                                  |           |    |     |     |    |    |           |    |               |    |
| 30-11-2018               |            |                                  |           |    |     |     |    |    |           |    |               |    |
| No. of SS<br>Exceedances | 2          | 4                                | 2         | 5  | 2   | 4   | 4  | 5  | 0         | 0  | 0             | 2  |

Table 8.1 Summary of SS Compliance Status at Impact Stations (Mid-Ebb Tide)

Note 1: Detailed results are presented in **Appendix D** 

## Legend:

| No exceedance of Action Level and Limit Level                                        |
|--------------------------------------------------------------------------------------|
| Exceedance of Action Level recorded at monitoring station located downstream of the  |
| Project based on dominant tidal flow                                                 |
| Exceedance of Action Level recorded at monitoring station located upstream/unrelated |
| stream (neither upstream nor downstream, far away) of the Project based on dominant  |
| tidal flow                                                                           |
| Exceedance of Limit Level recorded at monitoring station located downstream of the   |
| Project based on dominant tidal flow                                                 |
| Exceedance of Limit Level recorded at monitoring station located upstream/unrelated  |
| stream of the Project based on dominant tidal flow                                   |
| Upstream/unrelated stream station with respect to IWMF Project during the respective |
| tide based on dominant tidal flow                                                    |
| Downstream station with respect to IWMF Project during the respective tide based on  |
| dominant tidal flow/station within the Project site                                  |
| NA for measurement                                                                   |
| Cancelled due to incident or adverse weather                                         |
|                                                                                      |

| Date                     | <b>B</b> 1 | B2 | <b>B3</b> | <b>B4</b> | CR1                         | CR2 | F1 | H1 | <b>S1</b> | S2 | <b>S</b> 3 | M1 |
|--------------------------|------------|----|-----------|-----------|-----------------------------|-----|----|----|-----------|----|------------|----|
| 1-11-2018                |            | Ca |           |           | ncelled due to Typhoon YUTU |     |    |    |           |    |            |    |
| 3-11-2018                |            |    |           |           |                             |     |    |    |           |    |            |    |
| 5-11-2018                |            |    |           |           |                             |     |    |    |           |    |            |    |
| 7-11-2018                |            |    |           |           |                             |     |    |    |           |    |            |    |
| 9-11-2018                |            |    |           |           |                             |     |    |    |           |    |            |    |
| 13-11-2018               |            |    |           |           |                             |     |    |    |           |    |            |    |
| 15-11-2018               |            |    |           |           |                             |     |    |    |           |    |            |    |
| 17-11-2018               |            |    |           |           |                             |     |    |    |           |    |            |    |
| 19-11-2018               |            |    |           |           |                             |     |    |    |           |    |            |    |
| 21-11-2018               |            |    |           |           |                             |     |    |    |           |    |            |    |
| 23-11-2018               |            |    |           |           |                             |     |    |    |           |    |            |    |
| 26-11-2018               |            |    |           |           |                             |     |    |    |           |    |            |    |
| 28-11-2018               |            |    |           |           |                             |     |    |    |           |    |            |    |
| 30-11-2018               |            |    |           |           |                             |     |    |    |           |    |            |    |
| No. of SS<br>Exceedances | 3          | 4  | 2         | 0         | 1                           | 4   | 1  | 0  | 0         | 0  | 0          | 3  |

Note 1: Detailed results are presented in Appendix D

## Legend:

| Lugu | nu.                                                                                                                                                                                 |  |  |  |  |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|      | No exceedance of Action Level and Limit Level                                                                                                                                       |  |  |  |  |  |  |
|      | Exceedance of Action Level recorded at monitoring station located downstream of the                                                                                                 |  |  |  |  |  |  |
|      | Project based on dominant tidal flow                                                                                                                                                |  |  |  |  |  |  |
|      | Exceedance of Action Level recorded at monitoring station located upstream/unrelated stream (neither upstream nor downstream, far away) of the Project based on dominant tidal flow |  |  |  |  |  |  |
|      | Exceedance of Limit Level recorded at monitoring station located downstream of the                                                                                                  |  |  |  |  |  |  |
|      | Project based on dominant tidal flow                                                                                                                                                |  |  |  |  |  |  |
|      | Exceedance of Limit Level recorded at monitoring station located upstream/unrelated                                                                                                 |  |  |  |  |  |  |
|      | stream of the Project based on dominant tidal flow                                                                                                                                  |  |  |  |  |  |  |
|      | Upstream/unrelated stream station with respect to IWMF Project during the respective                                                                                                |  |  |  |  |  |  |
|      | tide based on dominant tidal flow                                                                                                                                                   |  |  |  |  |  |  |
|      | Downstream station with respect to IWMF Project during the respective tide based on                                                                                                 |  |  |  |  |  |  |
|      | dominant tidal flow/station within the Project site                                                                                                                                 |  |  |  |  |  |  |
|      | NA for measurement                                                                                                                                                                  |  |  |  |  |  |  |
|      | Cancelled due to adverse weather                                                                                                                                                    |  |  |  |  |  |  |
|      |                                                                                                                                                                                     |  |  |  |  |  |  |

- 8.5 No project-related Action Level & Limit Level exceedance was recorded from 1 to 30 November 2018, however, environmental deficiencies of the Contractor on the implementation of silt curtain deployment system were spotted.
- 8.6 The Contractor has been reminded that all measures recommended in the deposited Silt Curtain Deployment Plan shall be fully and properly implemented for the Project as per Clause 2.6A of the FEP.
- 8.7 No notification of summons and prosecution was received in the reporting period.
- 8.8 Statistics on complaints, notifications of summons and successful prosecutions are summarized in **Appendix O**.

# 9. EM&A SITE INSPECTION

9.1 Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures under the Contract. In the reporting period, site inspections were carried out on 6, 13, 20 and 27 November 2018 at the site portions list in **Table 9.1** below.

| Date             | Inspected Site Portion        | Time        |
|------------------|-------------------------------|-------------|
| 6 November 2018  | Portion 1, 1A & 1B (near SKC) | 10:30-11:40 |
| 13 November 2018 | Portion 1, 1A & 1B (near SKC) | 10:20-11:40 |
| 20 November 2018 | Portion 1, 1A & 1B (near SKC) | 10:40-11:40 |
| 27 November 2018 | Portion 1, 1A & 1B (near SKC) | 10:30-11:25 |

- 9.2 One joint site inspection with IEC was carried out on 20 November 2018.
- 9.3 Environmental deficiencies were observed during weekly site inspection. Key observations during the site inspections and water monitoring events are summarized in **Table 9.2**.

| Date                                  | <b>Environmental Observations</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Follow-up Status                                                                                                                                                                            |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 November 2018<br>(Site inspection)  | <ul> <li><u>Observation(s) and Recommendation(s)</u></li> <li>1. On FTB 16, no major observation was observed.</li> <li>2. On Eun Sung 750, no major observation was observed.</li> </ul>                                                                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                          |
| 13 November 2018<br>(Site inspection) | <ul> <li><u>Observation(s) and Recommendation(s)</u><br/>Reminder:</li> <li>1. Disposal record should be provided of<br/>sediment collected from</li> <li>2. General refuse should be disposed of</li> <li>3. On FTB 16, housekeeping should be<br/>maintained.</li> </ul>                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                          |
| 20 November 2018<br>(Site inspection) | <ul> <li><u>Observation(s) and Recommendation(s)</u><br/>Reminder:</li> <li>1. Before receiving the approved water<br/>discharge license, please be reminded<br/>not to discharge any treated or<br/>untreated sewage waste.</li> <li>2. On FTB 20, please be reminded that<br/>paint cans in use should be put on<br/>drip tray.</li> <li>3. On FTB 22, sand was used as<br/>absorbent for absorbing oily water on<br/>drip tray. Please be reminded that<br/>sand absorbed oily water should be<br/>treated as chemical waste.</li> </ul> | NA                                                                                                                                                                                          |
| 27 November 2018<br>(Site inspection) | <ul> <li><u>Observation(s) and Recommendation(s)</u></li> <li>1. Undefined container and unlabelled bottles were found in chemical waste storage cabinet.</li> <li>2. On FTB 16, oily water was observed near a drip tray.</li> </ul>                                                                                                                                                                                                                                                                                                       | <ol> <li>The chemical waste label<br/>had been displayed on<br/>chemical waste container.</li> <li>The oily water was removed<br/>as chemical waste by<br/>absorbent pad and the</li> </ol> |

#### **Table 9.2 Site Observations**

| Date | <b>Environmental Observations</b>     | Follow-up Status             |  |  |  |
|------|---------------------------------------|------------------------------|--|--|--|
|      | Reminders:                            | absorbent pad was then       |  |  |  |
|      | 1. On FTB 16, housekeeping should be  | stored in the chemical waste |  |  |  |
|      | maintained.                           | storage area.                |  |  |  |
|      | Reminded by SO:                       | -                            |  |  |  |
|      | 1. Chemical waste should be collected |                              |  |  |  |
|      | and disposed of in middle of          |                              |  |  |  |
|      | December, 2018.                       |                              |  |  |  |
|      | 2. Sewage from chemical toilet should |                              |  |  |  |
|      | be collected weekly.                  |                              |  |  |  |

- 9.4 The Contractor has rectified all of the observations identified during environmental site inspections in the reporting period. Yet, the Contractor has been reminded to suspend the related works immediately if silt curtain is found any damage in the future, until fixing of damaged silt curtain is completed.
- 9.5 As deficiency of Silt Curtain system was spotted, the Contractor has been reminded that all measures recommended in the deposited Silt Curtain Deployment Plan shall be fully and properly implemented for the Project as per Clause 2.6A of the FEP.
- 9.6 According to the EIA Study Report, Environmental Permit, contract documents and Updated EM&A Manual, the mitigation measures detailed in the documents are implemented as much as practical during the reporting period, except for the outstanding on-site checking record for the verification of implementation status on the deployed silt curtains. An updated Implementation Status of Environmental Mitigation Measures (EMIS) is provided in **Appendix B**.

# **10. FUTURE KEY ISSUES**

- 10.1 Works to be undertaken in the next reporting month are:
- Marine Site Investigation Works
- Coring of DCM samples conducted at site trial location
- Coring of DCM samples conducted at DCM Static Lading Test sites
- Coring for Instrumentation at DCM Static Lading Test sites
- Laying of Geotextile and Sand Blanket for DCM Injection Works
- DCM Injection Works
- 10.2 Potential environmental impacts arising from the above construction activities are mainly associated with water quality, construction noise, waste management and ecology.
- 10.3 The key environmental mitigation measures for the Project in the coming reporting period expected to be associated with the construction activities include:
- Reduction of noise from equipment and machinery on-site;
- Installation of silt curtains for the sand blanket laying works;
- Sorting, recycling, storage and disposal of general refuse and construction waste;
- Management of chemicals and avoidance of oil spillage on-site, especially under heavy rains and adverse weather; and
- Implementation of MMEZ and inspection of enclosed environment within silt curtains as per DMPFP
- 10.4 The tentative schedule of regular construction noise, water quality and ecology monitoring in the next reporting period is presented in **Appendix P**. The regular construction noise, water quality and ecology monitoring will be conducted at the same monitoring locations in the next reporting period.

# **11.** CONCLUSION AND RECOMMENDATIONS

- 11.1 This 5<sup>th</sup> monthly Environmental Monitoring and Audit (EM&A) Report presents the EM&A works undertaken during the period from 1 November 2018 to 30 November 2018, in accordance with the Updated EM&A Manual and the requirement under EP-429/2012/A and FEP-01/429/2012/A.
- 11.2 Construction noise, water quality, construction waste, marine mammal and WBSE monitoring were carried out in the reporting period. No project-related exceedance of the Action and Limit Level was recorded during the reporting period, however, environmental deficiencies of the Contractor on the implementation of silt curtain deployment system were spotted.
- 11.3 The Contractor has been reminded to facilitate the ET's investigation in the time frame stated at Event and Action plan under the updated EM&A Manual by promptly providing site records and information.
- 11.4 Weekly environmental site inspection was conducted during the reporting period. Environmental deficiencies were observed during site inspection and were rectified. Yet, the Contractor has been reminded to suspend the related works immediately if silt curtain is found any damage in the future, until fixing of damaged silt curtain is completed.
- 11.5 According to the environmental site inspections performed in the reporting month, the Contractor is reminded to pay attention on maintaining site tidiness and avoidance of oil spillage on-site, especially under heavy rains and adverse weather.
- 11.6 Regarding to the deployment of silt curtains as a principal water quality impact mitigation measures on various marine works, the Contractor has been reminded to follow strictly to the design and checking procedure as specified in the Silt Curtain Deployment Plan. The Contractor is reminded that all measures recommended in the deposited silt curtain deployment plan shall be fully and properly implemented for the Project as per EP condition 2.6 of the FEP.
- 11.7 Concern was raised by ET wherever sandy water would not be blocked effectively by silt curtain at the bottom similar as it shown in the surface observed on 30 October 2018; the Contractor has been reminded to check if the particular silt curtain was defective or consider strengthening the silt curtain. Follow-up actions for this observation are under-going.
- 11.8 No environmental complaint was received in the reporting period.
- 11.9 No notification of summons or prosecution was received since commencement of the Contract.
- 11.10 The ET will keep track on the construction works to confirm compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Appendix A Master Programme

| Activity Name                                                                                                                                                          | Remaining Start<br>Duration      | Finish                 | 2019<br>N D J F M A M J J A S O N I |             |           |                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------|-------------------------------------|-------------|-----------|-----------------------------|
| SP_66_12-WP-2-M0 Programme for Design and Construction Works                                                                                                           | 2835 22-Nov-17 A                 | 26-Aug-25              |                                     |             |           |                             |
| P_SP_66_12-WP-2-M0.01 Key Dates                                                                                                                                        | 2496 22-Nov-17                   | 21-Sep-24              |                                     |             |           |                             |
| P_SP_66_12-WP-2-M0.02 Contract Preliminaries                                                                                                                           | 2807 19-Dec-17                   | 26-Aug-25              |                                     |             |           |                             |
| P_SP_66_12-WP-2-M0.03 Licence/Permit Applications                                                                                                                      | 2252 15-Dec-17                   | 13-Feb-24              |                                     |             |           |                             |
| P_SP_66_12-WP-2-M0.04 General Submissions                                                                                                                              | 1320 22-Nov-17                   | 03-Jul-21              |                                     |             |           | <u> </u>                    |
| P_SP_66_12-WP-2-M0.05 Design Submissions                                                                                                                               | 1724 22-Nov-17 A                 | 11-Aug-22              |                                     |             |           |                             |
| P_SP_66_12-WP-2-M0.06 Procurement of Major Equipment                                                                                                                   | 1903 13-Sep-18<br>1708 05-Jan-18 | 28-Nov-23<br>09-Sep-22 |                                     |             |           |                             |
| P_SP_66_12-WP-2-M0.07 Environmental Works P_SP_66_12-WP-2-M0.08 Maritime Works                                                                                         | 1277 29-Dec-17                   | 27-Jun-21              |                                     |             |           |                             |
| P SP 66 12-WP-2-M0.08.3 Submissions                                                                                                                                    | 196 29-Dec-17                    | 12-Jul-18              |                                     |             |           |                             |
| P_SP_66_12-WP-2-M0.08.1 Marine Construction                                                                                                                            | 1265 10-Jan-18                   | 27-Jun-21              |                                     |             |           |                             |
| EP_SP_66_12-WP-2-M0.08.1.1 Phase I - Construction of Perimeter Seawalls EP_SP_66_12-WP-2-M0.08.1.1.3 Marine Works Preparations                                         | 740 10-Jan-18<br>274 10-Jan-18   | 19-Jan-20<br>10-Oct-18 |                                     |             |           |                             |
| 08-0900 Carry out hydrographic survey                                                                                                                                  | 14 10-Jan-18                     | 23-Jan-18              |                                     |             |           |                             |
| 08-1005 Ground Investigation for DCM Design                                                                                                                            | 180 13-Feb-18                    | 11-Aug-18              |                                     |             | ······    | ·····                       |
| 08-1010         Mobilization of DCM Barge for Load Test           08-1020         Mobilization of Remaining DCM Barge for Construction                                 | 30 14-May-18<br>30 11-Sep-18     | 12-Jun-18<br>10-Oct-18 |                                     |             |           |                             |
| 08-1340(2)         Sediment Sample collection and testing Dumping Permit Application                                                                                   | 21 05-Sep-18*                    | 25-Sep-18              |                                     |             |           |                             |
| EP_SP_66_12-WP-2-M0.08.1.1.1 Seawall and Berth at DCM Area                                                                                                             | 676 15-Mar-18                    | 19-Jan-20              |                                     | •           |           |                             |
| 08-1030         DCM Mix Trial (incl. Bench-scale testing and Lab Tests)           08-1040         DCM Pre-construction Site Trial and testing                          | 106 15-Mar-18<br>43 29-Jun-18    | 28-Jun-18<br>10-Aug-18 |                                     |             |           |                             |
| 08-1050         Static Load Test Preparation                                                                                                                           | 31 11-Aug-18                     | 10-Sep-18              |                                     |             |           |                             |
| 08-1060 Carry out static loading test                                                                                                                                  | 22 11-Sep-18                     | 02-Oct-18              |                                     |             |           |                             |
| 08-1065(2) Static load test report submission                                                                                                                          | 8 03-Oct-18                      | 10-Oct-18<br>09-Oct-18 |                                     |             |           |                             |
| 08-1070 Geotextile Laying<br>08-1075(2) Sand Blanket Laying                                                                                                            | 60 11-Aug-18<br>60 11-Aug-18     | 09-Oct-18              |                                     |             |           |                             |
| 08-1080 DCM Injection Works (575,000m3, approx 6300 nr.)                                                                                                               | 120 11-Oct-18                    | 07-Feb-19              |                                     |             |           |                             |
| 08-1090 DCM Final Completion Tests                                                                                                                                     | 180 10-Nov-18                    | 08-May-19              |                                     |             |           |                             |
| 08-1100         Rubble Mound Laying (100,000m3 approx, @550m3/d)           08-1105(1)         Prefabrication for Caission                                              | 180 09-Jan-19<br>282 24-Nov-18   | 07-Jul-19<br>01-Sep-19 |                                     |             |           |                             |
| 08-1110 Caisson Laying (Total 50nrs, @2 nrs/week)                                                                                                                      | 182 24-Mar-19                    | 21-Sep-19              |                                     |             |           |                             |
| 08-1120 Wave Wall Construction                                                                                                                                         | 120 22-Sep-19                    | 19-Jan-20              |                                     | •           |           |                             |
| EP_SP_66_12-WP-2-M0.08.1.1.2         Seawall at Dredging Area           08-1130         Dredging Works (26,000m3 @ 285m3/d avg. to comply EP Conditions 2.18)          | 295 25-Dec-18<br>110 25-Dec-18   | 15-Oct-19<br>13-Apr-19 |                                     |             |           |                             |
| 08-1140 Lay Rock & Sand Fill                                                                                                                                           | 50 15-Mar-19                     | 03-May-19              |                                     |             |           |                             |
| 08-1150 Place Rubble Mound (35,000m3 approx., @550m3/d)                                                                                                                | 88 30-Mar-19                     | 25-Jun-19              |                                     |             |           |                             |
| D8-1155(2)         Fabrication and delivery of Precast Seawall Blocks (12,000nr. approx)           D8-1160         Lay Concrete Block Wals (300m length approx. @4m/d) | 90 15-Mar-19<br>80 29-Apr-19     | 12-Jun-19<br>17-Jul-19 |                                     |             |           |                             |
| 8-1170 Insitu Concrete Wall Construction                                                                                                                               | 90 18-Jul-19                     | 15-Oct-19              |                                     |             |           |                             |
| P_SP_66_12-WP-2-M0.08.1.2 Phase II - Reclamation, Breakwater and Berth Construction                                                                                    | 999 03-Oct-18<br>999 03-Oct-18   | 27-Jun-21              |                                     |             |           |                             |
| EP_SP_66_12-WP-2-M0.08.1.2.1     Reclamation       08-1180     Geotextile Laying                                                                                       | 100 03-Oct-18                    | 27-Jun-21<br>10-Jan-19 |                                     |             |           |                             |
| 08-1185(2) Sand Blanket Laying                                                                                                                                         | 100 03-Oct-18                    | 10-Jan-19              |                                     |             |           |                             |
| 08-1190         Install Vertical Band Drain by Barge           08-1200         Reclamation fill up to +2.5mPD                                                          | 160 10-Feb-19<br>375 22-Sep-19   | 19-Jul-19<br>30-Sep-20 |                                     |             |           |                             |
| 08-1210 Reclamation fill from +2.5 to Formation Level                                                                                                                  | 120 03-Jul-20                    | 30-Oct-20              |                                     |             |           |                             |
| 08-1220 Lay Surcharge                                                                                                                                                  | 80 11-Sep-20                     | 29-Nov-20              |                                     |             |           |                             |
| 08-1230         Surcharge Period           08-1240         Remove Surcharge                                                                                            | 180 30-Nov-20<br>85 04-Apr-21    | 28-May-21<br>27-Jun-21 |                                     |             |           |                             |
| EP_SP_66_12-WP-2-M0.08.1.2.2 Breakwater                                                                                                                                | 583 02-Sep-19                    | 06-Apr-21              |                                     |             |           |                             |
| 08-1250 Geotextile and Sand Blanket Laying                                                                                                                             | 45 22-Sep-19                     | 05-Nov-19              | <u> </u>                            |             |           |                             |
| 08-1260         DCM Injection Works (290,000m3, approx 3200 nr.)           08-1270         DCM Final Completion Test                                                   | 65 06-Nov-19<br>71 05-Jan-20     | 09-Jan-20<br>15-Mar-20 |                                     |             |           |                             |
| 08-1270 Dovi Final Completion lest<br>08-1280 Rubble Mound Laying (100,000m3 approx, @550m3/d)                                                                         | 188 05-Mar-20                    | 08-Sep-20              |                                     |             |           |                             |
| 08-1285(1) Prefabrication for Caission                                                                                                                                 | 411 02-Sep-19                    | 16-Oct-20              |                                     | · · · · · · |           |                             |
| 08-1290 Caisson Laying (Total 43nrs, @2 nrs/week) 08-1300 Wate Wall Construction                                                                                       | 150 11-Jul-20                    | 07-Dec-20              |                                     |             |           |                             |
| 08-1300 Wave Wall Construction EP_SP_66_12-WP-2-M0.08.1.2.3 Seawall and Berth at Marine Access                                                                         | 120 08-Dec-20<br>150 03-Jul-20   | 06-Apr-21<br>29-Nov-20 |                                     |             |           |                             |
| 08-1310(2) Prefabrication for Caission (4nrs)                                                                                                                          | 90 03-Jul-20                     | 30-Sep-20              |                                     |             |           |                             |
| 08-1320(2) Caisson Laying (4nrs)                                                                                                                                       | 30 01-Oct-20                     | 30-Oct-20              | <br>                                | <b>P</b>    |           |                             |
| 08-1330(2) Wave Wall Construction P_SP_66_12-WP-2-M0.09 Foundation Works                                                                                               | 30 31-Oct-20<br>397 12-Apr-21    | 29-Nov-20<br>13-May-22 |                                     |             |           |                             |
| P SP 66 12-WP-2-M0.09.0 Site Investigation and Preliminary Pile                                                                                                        | 46 12-Apr-21                     | 27-May-21              |                                     |             |           |                             |
| P_SP_66_12-WP-2-M0.09.1 Administration Bld Foundation                                                                                                                  | 138 25-Nov-21                    | 11-Apr-22              |                                     |             | -         |                             |
| P_SP_66_12-WP-2-M0.09.2 Waste Bunker & Tipping Hall Bid Foundation                                                                                                     | 203 13-May-21                    | 01-Dec-21              |                                     |             |           |                             |
| P_SP_66_12-WP-2-M0.09.3 Boiler & Flue Gas Bid Foundation P_SP_66_12-WP-2-M0.09.4 ACC Area Foundation P_SP_66_12-WP-2-M0.09.4 ACC Area Foundation                       | 331 12-Apr-21<br>129 20-Sep-21   | 08-Mar-22<br>26-Jan-22 |                                     |             |           |                             |
| P_SP_66_12-WP-2-M0.09.5 Turbine Hall Bid Foundation                                                                                                                    | 142 28-Jun-21                    | 16-Nov-21              |                                     |             |           |                             |
| P_SP_66_12-WP-2-M0.09.6 Air Compressor Bid Foundation                                                                                                                  | 28 17-Nov-21                     | 14-Dec-21              |                                     |             |           |                             |
|                                                                                                                                                                        |                                  |                        |                                     |             | Date      | F                           |
|                                                                                                                                                                        |                                  | 1                      |                                     |             |           |                             |
| garmme for Design and Construction Wo                                                                                                                                  | orks                             |                        |                                     |             | 04-Dec-17 | Rev.0 - 1st Issue           |
| _                                                                                                                                                                      | orks                             |                        |                                     |             | 16-Jul-18 | Rev. 1 - Revised to SO's co |
| Jarmme for Design and Construction Wo<br>mary Progarmme<br>of 2                                                                                                        | orks                             |                        |                                     |             |           |                             |

Contract No. EP/SP/66/12 gement Facilities, Phase 1 電境保護署



| _   | 2023<br>D J F M A M J J A S O N D J F M A |     |     |     |     | 20  | 2024<br>MJJJASOND |       |     | 2025 |               |    |
|-----|-------------------------------------------|-----|-----|-----|-----|-----|-------------------|-------|-----|------|---------------|----|
| D   | JF                                        | M   | AMJ | JAS | OND | JFM | 20<br>[A[M]J      | JAS   | OND | JFM  | 2025<br>A M J | JA |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     | :                                         |     |     |     |     |     |                   |       |     |      |               |    |
|     | :                                         |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           | _   |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
| • • |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
| • • |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
| • • |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
| • • |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |
|     | Re                                        | vis | ion |     |     |     |                   | Check | ed  | aA   | proved        |    |
|     |                                           |     |     |     |     |     |                   |       |     | r    |               |    |
| (   | comr                                      | me  | nts |     |     |     |                   |       |     |      |               |    |
| -   | comr                                      |     |     |     |     |     | -                 |       |     |      |               |    |
|     |                                           |     |     |     |     |     | -                 |       |     |      |               |    |
|     |                                           |     |     |     |     |     |                   |       |     |      |               |    |

| Keppel Seghers<br>吉寶西格斯-張華聯登公司<br>KEPPEL SEGHERS-ZHEN HUA JOINT VENTURE                                                          |                                 |                        |   |          |                                       |   | Conti<br>Integrated Waste Manageme |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------|---|----------|---------------------------------------|---|------------------------------------|
| Activity ID Activity Name                                                                                                        | Remaining Start<br>Duration     | Finish                 |   |          |                                       |   | 2022<br>DNDJFMAMJJASONDJFM         |
| EP_SP_66_12-WP-2-M0.09.7 Chimney Foundation                                                                                      | 198 23-Jul-21                   | 05-Feb-22              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.09.8 MT Plant & Desalination Bld Foundation                                                                  | 168 22-Jul-21                   | 05-Jan-22              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.09.9 IWMF Substation Building Foundation                                                                     | 94 13-May-21                    | 14-Aug-21              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.09.10 Access Ramp Bld Foundation                                                                             | 133 13-Nov-21                   | 25-Mar-22              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.09.11 Reception Bld Foundation                                                                               | 49 26-Mar-22                    | 13-May-22              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.09.12 Pipe Bridge Foundation                                                                                 | 397 12-Apr-21                   | 13-May-22              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.10 Superstructural Works                                                                                     | 519 12-Aug-21                   | 12-Jan-23              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.10.1 Administration Bld Structure                                                                            | 267 12-Apr-22                   | 03-Jan-23              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.10.2 Waste Bunker & Tipping Hall Bld Sturcture                                                               | 384 12-Aug-21                   | 30-Aug-22              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.10.3 Boiler & Flue Gas Treatment Bld Structure                                                               | 441 29-Oct-21                   | 12-Jan-23              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.10.5 Turbine Hall Bid Structure                                                                              | 262 17-Nov-21                   | 05-Aug-22              |   | <u> </u> |                                       |   | <br>                               |
| EP_SP_66_12-WP-2-M0.10.6 Air Compressor Bid Structure                                                                            | 63 04-May-22                    | 05-Jul-22              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.10.7 Chimney Structure                                                                                       | 145 10-Jul-22<br>196 06-Jan-22  | 01-Dec-22<br>20-Jul-22 |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.10.8 MT Plant & Desalination Bld Structure                                                                   | 84 15-Aug-21                    | 20-Jui-22<br>06-Nov-21 |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.10.9 IWMF Substation Structure                                                                               | 135 26-Mar-22                   | 07-Aug-22              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.10.10 Access Ramp Bld Structure<br>EP_SP_66_12-WP-2-M0.10.11 Reception Bld Structure                         | 150 14-May-22                   | 10-Oct-22              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.10.11 Reception Bid Structure                                                                                | 130 144 way-22<br>180 06-Jul-22 | 01-Jan-23              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.11 Architectual Builders Works & Finishes                                                                    | 672 07-Nov-21                   | 09-Sep-23              |   |          |                                       |   |                                    |
|                                                                                                                                  | 180 04-Jan-23                   | 02-Jul-23              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.11.1 Administration Bid ABWF Works                                                                           | 225 21-Jul-22                   | 02-Jui-23<br>02-Mar-23 |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.11.2 Weste Bunker & Tipping Hall Bld ABWF Works<br>EP_SP_66_12-WP-2-M0.11.3 Boiler & Flue Gas Bld ABWF Works | 225 21-Jui-22<br>240 13-Jan-23  | 02-Wai-23              |   | ÷        |                                       |   | <br>                               |
| EP_SP_66_12-WP-2-W0.11.5 Turbine Hall Bid ABWF Works                                                                             | 299 23-Mar-22                   | 15-Jan-23              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.11.6_Air Compress Bld ABWF Works                                                                             | 105 03-Aug-22                   | 15-Nov-22              |   |          |                                       |   |                                    |
| EP SP 66 12-WP-2-M0.11.7 Chimney ABWF Works                                                                                      | 105 02-Dec-22                   | 16-Mar-23              |   |          |                                       |   |                                    |
| EP SP 66 12-WP-2-M0.11.8 MT Plant & Desalination Bid ABWF Works                                                                  | 165 28-Jul-22                   | 08-Jan-23              |   |          |                                       |   |                                    |
| EP SP 66 12-WP-2-M0.11.9 IWMF Substation ABWF Works                                                                              | 120 07-Nov-21                   | 06-Mar-22              |   | ÷        |                                       |   |                                    |
| EP SP 66 12-WP-2-M0.11.10 Access Ramp Bid ABWF Works                                                                             | 165 05-Sep-22                   | 16-Feb-23              |   |          |                                       |   |                                    |
| EP SP 66 12-WP-2-M0.11.11 Reception Bld ABWF Works                                                                               | 135 11-Oct-22                   | 22-Feb-23              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.12_Building Services Installation                                                                            | 581 09-Feb-22                   | 12-Sep-23              |   |          |                                       |   |                                    |
| EP SP 66 12-WP-2-M0.12.1 Administration Eld BS Works                                                                             | 180 03-Feb-23                   | 01-Aug-23              |   |          |                                       |   |                                    |
| EP SP 66 12-WP-2-M0.12.2 Weste Bunker & Tipping Hall Bld BS Works                                                                | 210 04-Oct-22                   | 01-May-23              |   |          |                                       | · |                                    |
| EP_SP_66_12-WP-2-M0.12.3 Boiler & Flue Gas Bld BS Works                                                                          | 210 29-Dec-22                   | 26-Jul-23              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.12.5 Turbine Hall Bld BS Works                                                                               | 344 07-Apr-22                   | 16-Mar-23              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.12.6 Air Compressor Bid BS Works                                                                             | 135 02-Sep-22                   | 14-Jan-23              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.12.4 Chimney BS Works                                                                                        | 210 15-Feb-23                   | 12-Sep-23              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.12.8 MT Plant & Desalination Bld BS Works                                                                    | 180 11-Oct-22                   | 08-Apr-23              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.12.9 IWMF Substation BS Works                                                                                | 241 09-Feb-22                   | 07-Oct-22              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.12.10 Access Ramp Bld BS Works                                                                               | 180 19-Nov-22                   | 17-May-23              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.12.11 Reception Bld BS Works                                                                                 | 120 24-Jan-23                   | 23-May-23              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.13 Process Equipment Installation                                                                            | 677 28-Dec-21                   | 04-Nov-23              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.13.2 Waste Bunker & Tipping Hall Bld Process Equipment Installation                                          | 233 01-Aug-22                   | 21-Mar-23              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.13.3 Boiler House & Flue Gas Treatment Bld Process Equipment Installa                                        |                                 | 19-Jun-23              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.13.4 ACC Area Equipment Installation                                                                         | 375 23-Apr-22                   | 02-May-23              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.13.5 Turbine Hall Bld Equipment Installation                                                                 | 335 02-Jun-22                   | 02-May-23              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.13.6 Air Compressor Bid Equipment Installation                                                               | 150 17-Sep-22                   | 13-Feb-23              |   |          |                                       |   | <br>·····                          |
| EP_SP_66_12-WP-2-M0.13.8a MT Process Bld Process Equipment Installation                                                          | 330 10-Dec-22                   | 04-Nov-23              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.13.8b Desalination Bid Process Equipment Installation                                                        | 210 24-Aug-22                   | 21-Mar-23              | _ |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.13.09 IWMF Substation Bid Equipment Installation                                                             | 450 22-Feb-22<br>150 19-Dec-22  | 17-May-23              | _ |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.13.10 Ramp & Storage Bid Process Equipment Installation                                                      | 240 15-Sep-22                   | 17-May-23<br>12-May-23 |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.13.12 Equipment Installaion at External Area<br>EP_SP_66_12-WP-2-M0.13.13 External Process Pipe Works        | 240 15-Sep-22<br>271 03-Oct-22  | 30-Jun-23              |   | ······   | · · · · · · · · · · · · · · · · · · · |   | <br>                               |
|                                                                                                                                  | 872 07-Nov-21                   | 27-Mar-24              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.14 Landscape, External Road and Drains Works                                                                 | 633 04-Feb-22                   |                        |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.15 Works By CLP                                                                                              |                                 | 30-Oct-23              |   |          |                                       |   |                                    |
| EP_SP_66_12-WP-2-M0.16 Testing & Commissioning                                                                                   | 591 15-Dec-22                   | 27-Jul-24              |   |          |                                       |   |                                    |

| Dreaman of an Design and Construction Marks | Date      | Revi                          |
|---------------------------------------------|-----------|-------------------------------|
| Progarmme for Design and Construction Works | 04-Dec-17 | Rev.0 - 1stlssue              |
| Summary Progarmme                           | 16-Jul-18 | Rev. 1 - Revised to SO's comm |
|                                             | 03-Sep-18 | Rev. 2 - Revised to SO's comm |
| Page 2 of 2                                 |           |                               |
|                                             |           |                               |



| 00              | 200 |   | r   |              | 04    |         |       | 0005          |          |
|-----------------|-----|---|-----|--------------|-------|---------|-------|---------------|----------|
| 20<br>F[M[A[M[J |     |   | JEM | 20<br>[A[M]J |       |         | JIFIM | 2025<br>A M J | JA       |
|                 |     |   |     |              |       |         | ויין  |               | <u> </u> |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
| -               |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 | _   |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
| -               |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 | _   |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 | _   |   |     |              |       |         |       |               |          |
| <u></u>         |     |   |     |              |       |         |       |               |          |
| _               |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
| <u></u>         |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
| 1               |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       | ·             |          |
|                 |     | _ |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       | <b></b> |       |               |          |
|                 | 1   |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
| :               |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
| ·               |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
| evision         |     |   |     |              | Check | ed      | Ар    | proved        |          |
|                 |     |   |     |              |       |         |       |               |          |
| ments           |     |   |     |              |       |         |       |               |          |
|                 |     |   |     | 1            |       |         |       |               |          |
| nments          |     |   |     |              |       |         |       |               |          |
|                 |     |   |     |              |       |         |       |               |          |
|                 |     |   |     | _            |       |         |       |               |          |

# Appendix B Summary of Implementation Status of Environmental Mitigation

# <u>Appendix B</u>

| Table B.1 Implementation Schedule for Air Quality Measures for the IWWF at the artificial Island hear SK | Table B.1 | Implementation Schedule for Air Quality Measures for the IWMF at the artificial island near SKC |
|----------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------|

|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |                         | Imp | lementa | ation St | ages* | Relevant                                                      | Implementati             |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------|-----|---------|----------|-------|---------------------------------------------------------------|--------------------------|
| EIA Ref | Environmental Protection Measures /<br>Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Location /<br>Timing                 | Implementation<br>Agent | Des | С       | 0        | Dec   | Legislation<br>and<br>Guidelines                              | on Status<br>and Remarks |
| S3b.8.1 | <ul> <li><u>Air</u> Pollution Control (Construction Dust)<br/><u>Regulation &amp; Good Site Practices</u></li> <li>Use of regular watering, with<br/>complete coverage, to reduce dust<br/>emissions from exposed site<br/>surfaces and unpaved roads,<br/>particularly during dry weather.</li> <li>Use of frequent watering for<br/>particularly dusty construction areas<br/>and areas close to ASRs.</li> <li>Side enclosure and covering of any<br/>aggregate or dusty material storage<br/>piles to reduce emissions. Where this<br/>is not practicable owing to frequent<br/>usage, watering shall be applied to<br/>aggregate fines.</li> <li>Open stockpiles shall be avoided or<br/>covered. Where possible, prevent<br/>placing dusty material storage piles<br/>near ASRs.</li> <li>Tarpaulin covering of all dusty<br/>vehicle loads transported to, from and<br/>between site locations.</li> <li>Establishment and use of vehicle<br/>wheel and body washing facilities at<br/>the exit points of the site.</li> <li>Provision of wind shield and dust<br/>extraction units or similar dust<br/>mitigation measures at the loading</li> </ul> | During the<br>construction<br>period | Contractor              |     |         |          |       | Air Pollution<br>Control<br>(Construction<br>Dust) Regulation | N/A                      |

|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |                         | Imp      | lementa | ation St | ages* | Relevant                                                                                                  | Implementati             |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------|----------|---------|----------|-------|-----------------------------------------------------------------------------------------------------------|--------------------------|
| EIA Ref | Environmental Protection Measures /<br>Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Location /<br>Timing                                                  | Implementation<br>Agent | Des      | С       | ο        | Dec   | Legislation<br>and<br>Guidelines                                                                          | on Status<br>and Remarks |
|         | <ul> <li>points, and use of water sprinklers at the loading area where dust generation is likely during the loading process of loose material, particularly in dry seasons/ periods.</li> <li>Imposition of speed controls for vehicles on unpaved site roads. Ten kilometers per hour is the recommended limit.</li> <li>Where possible, routing of vehicles and positioning of construction plant should be at the maximum possible distance from ASRs</li> <li>Instigation of an environmental monitoring and auditing program to monitor the construction process in order to enforce controls and modify method of work if dusty conditions arise.</li> </ul> |                                                                       |                         |          |         |          |       |                                                                                                           |                          |
| S3b.6.3 | <ul> <li>Odour Removal by Deodorizers</li> <li>Deodorizers with 95% odour removal<br/>efficiency would be installed for the air<br/>ventilated from the mechanical<br/>treatment plant before discharge to the<br/>atmosphere</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                           | Waste<br>reception halls,<br>the waste<br>storage area,               | IWMF Operator           | ~        |         | ✓        |       | EIAO-TM                                                                                                   | N/A                      |
| S3b.8.2 | <ul> <li><u>Air Pollution Control and Stack Monitoring</u></li> <li>Air pollution control and stack<br/>monitoring system will be installed for<br/>the IWMF to ensure that the<br/>emissions from the IWMF stack will<br/>meet the proposed target emission<br/>limits.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                | IWMF stack<br>emissions /<br>During<br>design &<br>operation<br>phase | IWMF Operator           | <b>·</b> |         | V        |       | EIAO-TM,<br>Supporting<br>Document for<br>Application for<br>Variation of<br>Environmental<br>Permit (EP- | N/A                      |

|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                            |                         | Imp | lementa | ation St | tages* | Relevant                                                                       | Implementati             |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------|-----|---------|----------|--------|--------------------------------------------------------------------------------|--------------------------|
| EIA Ref | Environmental Protection Measures /<br>Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Location /<br>Timing                                         | Implementation<br>Agent | Des | С       | Ο        | Dec    | Legislation<br>and<br>Guidelines                                               | on Status<br>and Remarks |
|         | <ul> <li>Voluntary Enhancement Measures in Flue Gas Cleaning and Emission Monitoring:         <ol> <li>Two-stage bag filter system with reagent recirculation;</li> <li>In addition to SCR, provide SNCR for removal of NO<sub>x</sub>; tighten emission limit for half-hourly and daily NO<sub>x</sub> to 160 mg/m<sup>3</sup> and 80 mg/m<sub>3</sub> respectively;</li> <li>Well-mixed feed waste: to minimize the fluctuation of pollutant loading on the flue gas treatment system;</li> <li>Two more AQMSs would be set up at South Lantau and Shek Kwu Chau respectively;</li> <li>Limit levels will be set under the IWMF DBO contract to require that waste feed shall cease if any of the air pollutant has exceeded 95% of the emission concentration limit as stipulated in the Special Process license; and</li> <li>Each incineration chamber shall be fitted with auxiliary burners to ensure complete burn out of the combustion gases.</li> </ol> </li> </ul> |                                                              |                         |     |         |          |        | 429/2012)                                                                      |                          |
| -       | <ul> <li><u>Treated Fly Ash and Air Pollution Control</u><br/><u>Residues:</u></li> <li>During testing and commissioning, the<br/>Contractor shall sample and test every<br/>container of treated fly ash and air</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IWMF stack<br>emissions /<br>During<br>design &<br>operation | IWMF Operator           | ~   |         | ✓        |        | Supporting<br>Document for<br>Application for<br>Variation of<br>Environmental | N/A                      |

|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                         | Implementation Stages' |   | tages* | Relevant | Implementati                           |                          |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|------------------------|---|--------|----------|----------------------------------------|--------------------------|
| EIA Ref E | invironmental Protection Measures /<br>Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Location /<br>Timing | Implementation<br>Agent | Des                    | С | 0      | Dec      | Legislation<br>and<br>Guidelines       | on Status<br>and Remarks |
|           | <ul> <li>pollution control residues for conformance to the Incineration Residue Pollution Control Limits and leachability criteria shown in Table 2 of the Environmental Permit. If a test result confirms that any one of the samples does not conform to the limits and the criteria, the Contractor shall be required to sample and test every container of treated fly ash and air pollution control residues for conformance to the Incineration Residue Pollution Control Limits and leachability criteria for the next six months.</li> <li>During the first six months of operation, if the requirements in (a) could be fully conformed with, the Contractor shall sample and test every shipload of treated fly ash and air pollution control residues for conformance to the Incineration Residue Pollution Control Limits and leachability criteria for the next six months.</li> <li>During the first six months of operation, if the requirements in (a) could be fully conformed with, the Contractor shall sample and test every shipload of treated fly ash and air pollution control residues for conformance to the Incineration Residue Pollution Control Limits and leachability criteria shown in Table 2 of the Environmental Permit. The Contractor shall take two samples from each shipload for testing and the Contractor shall not dispose of any of that shipload of treated fly ash and air pollution control residues until the test</li> </ul> | phase                |                         |                        |   |        |          | Guidelines<br>Permit (EP-<br>429/2012) |                          |

|         |                                                                         |                      |                         | Imp | lementa | ation St | ages* | Relevant                         | Implementati             |
|---------|-------------------------------------------------------------------------|----------------------|-------------------------|-----|---------|----------|-------|----------------------------------|--------------------------|
| EIA Ref | Environmental Protection Measures /<br>Mitigation Measures              | Location /<br>Timing | Implementation<br>Agent | Des | С       | ο        | Dec   | Legislation<br>and<br>Guidelines | on Status<br>and Remarks |
|         | the two samples does not conform to                                     |                      |                         |     |         |          |       |                                  |                          |
|         | the limits and the criteria, the                                        |                      |                         |     |         |          |       |                                  |                          |
|         | Contractor shall be required to sample                                  |                      |                         |     |         |          |       |                                  |                          |
|         | and test every shipload of treated fly                                  |                      |                         |     |         |          |       |                                  |                          |
|         | ash and air pollution control residues                                  |                      |                         |     |         |          |       |                                  |                          |
|         | for conformance to the Incineration                                     |                      |                         |     |         |          |       |                                  |                          |
|         | Residue Pollution Control Limits and                                    |                      |                         |     |         |          |       |                                  |                          |
|         | leachability criteria for the next six                                  |                      |                         |     |         |          |       |                                  |                          |
|         | months. The Contractor shall make                                       |                      |                         |     |         |          |       |                                  |                          |
|         | due allowance in the Design and the                                     |                      |                         |     |         |          |       |                                  |                          |
|         | Operation for the time to sample and                                    |                      |                         |     |         |          |       |                                  |                          |
|         | test treated fly ash and air pollution                                  |                      |                         |     |         |          |       |                                  |                          |
|         | control residues before disposal.                                       |                      |                         |     |         |          |       |                                  |                          |
|         | Provided that there is no non-                                          |                      |                         |     |         |          |       |                                  |                          |
|         | conformance to the Incineration<br>Residue Pollution Control Limits and |                      |                         |     |         |          |       |                                  |                          |
|         |                                                                         |                      |                         |     |         |          |       |                                  |                          |
|         | leachability criteria shown in Table 2<br>of the Environmental Permit   |                      |                         |     |         |          |       |                                  |                          |
|         | throughout a continuous sixmonth                                        |                      |                         |     |         |          |       |                                  |                          |
|         | period in the Operation Period, the                                     |                      |                         |     |         |          |       |                                  |                          |
|         | testing frequency shall be reduced to                                   |                      |                         |     |         |          |       |                                  |                          |
|         | monthly interval. Two samples from                                      |                      |                         |     |         |          |       |                                  |                          |
|         | one shipload of treated fly ash and air                                 |                      |                         |     |         |          |       |                                  |                          |
|         | pollution control residues shall be                                     |                      |                         |     |         |          |       |                                  |                          |
|         | collected and tested for conformance                                    |                      |                         |     |         |          |       |                                  |                          |
|         | to the Incineration Residue Pollution                                   |                      |                         |     |         |          |       |                                  |                          |
|         | Control Limits and leachability criteria.                               |                      |                         |     |         |          |       |                                  |                          |
|         | The Contractor shall not dispose of                                     |                      |                         |     |         |          |       |                                  |                          |
|         | any of the treated fly ash and air                                      |                      |                         |     |         |          |       |                                  |                          |
|         | pollution control residues in the                                       |                      |                         |     |         |          |       |                                  |                          |
|         | shipload which the samples are taken                                    |                      |                         |     |         |          |       |                                  |                          |
|         | until the test results confirm that the                                 |                      |                         |     |         |          |       |                                  |                          |
|         | samples conform to the limits and the                                   |                      |                         |     |         |          |       |                                  |                          |

|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                        |                         | Imp | lement | ation St | ages* | Relevant                                                                                                   | Implementati                             |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------|-----|--------|----------|-------|------------------------------------------------------------------------------------------------------------|------------------------------------------|
| EIA Ref | Environmental Protection Measures /<br>Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Location /<br>Timing                                                   | Implementation<br>Agent | Des | С      | ο        | Dec   | Legislation<br>and<br>Guidelines                                                                           | Implementati<br>on Status<br>and Remarks |
|         | criteria. If the test result confirm that<br>any one of the samples does not<br>conform to the limits and the criteria,<br>the Contractor shall be required to<br>sample and test every shipload of<br>treated fly ash and air pollution control<br>residues for conformance to the<br>Incineration Residue Pollution Control<br>Limits and leachability criteria shown<br>in Table 2 of the Environmental Permit<br>for the next six months.                                                                                                                                                                                                                                                                                                                                   |                                                                        |                         |     |        |          |       |                                                                                                            |                                          |
| -       | <ul> <li>Bottom Ash:</li> <li>During testing and commissioning, the Contractor shall sample and test every container of bottom ash for conformance to the leachability criteria shown in Table 2 of the Environmental Permit. If a test result confirms that any one of the samples does not conform to the criteria, the Contractor shall be required to sample and test every container of bottom ash for conformance to the leachability criteria for the next six months.</li> <li>During the first six months of operation, if the requirements in (d) could be fully conformed with, the Contractor shall sample and test one shipload of bottom ash each month for conformance to the leachability criteria shown in Table 2 of the Environmental Permit. The</li> </ul> | IW MF stack<br>emissions /<br>During<br>design &<br>operation<br>phase | IWMF Operator           |     |        |          |       | Supporting<br>Document for<br>Application for<br>Variation of<br>Environmental<br>Permit (EP-<br>429/2012) | N/A                                      |

|         |                                                            |                      |                         | Imp | lement | ation S | tages* | Relevant                         | Implementati             |
|---------|------------------------------------------------------------|----------------------|-------------------------|-----|--------|---------|--------|----------------------------------|--------------------------|
| EIA Ref | Environmental Protection Measures /<br>Mitigation Measures | Location /<br>Timing | Implementation<br>Agent | Des | С      | 0       | Dec    | Legislation<br>and<br>Guidelines | on Status<br>and Remarks |
|         | Contractor shall take two samples                          |                      |                         |     |        |         |        |                                  |                          |
|         | from the shipload for testing and the                      |                      |                         |     |        |         |        |                                  |                          |
|         | Contractor shall not dispose of any of                     |                      |                         |     |        |         |        |                                  |                          |
|         | that shipload of bottom ash until the                      |                      |                         |     |        |         |        |                                  |                          |
|         | test results confirm that the two                          |                      |                         |     |        |         |        |                                  |                          |
|         | samples conform to the criteria. If a                      |                      |                         |     |        |         |        |                                  |                          |
|         | test result confirms that any one of                       |                      |                         |     |        |         |        |                                  |                          |
|         | the two samples does not conform to                        |                      |                         |     |        |         |        |                                  |                          |
|         | the criteria, the Contractor shall be                      |                      |                         |     |        |         |        |                                  |                          |
|         | required to sample and test each                           |                      |                         |     |        |         |        |                                  |                          |
|         | shipload of bottom ash for                                 |                      |                         |     |        |         |        |                                  |                          |
|         | conformance to the leachability                            |                      |                         |     |        |         |        |                                  |                          |
|         | criteria for the next six months. The                      |                      |                         |     |        |         |        |                                  |                          |
|         | Contractor shall make due allowance                        |                      |                         |     |        |         |        |                                  |                          |
|         | in the Design and the Operation for                        |                      |                         |     |        |         |        |                                  |                          |
|         | the time to sample and test bottom                         |                      |                         |     |        |         |        |                                  |                          |
|         | ash before disposal.                                       |                      |                         |     |        |         |        |                                  |                          |
|         | <ul> <li>Provided that there is no non-</li> </ul>         |                      |                         |     |        |         |        |                                  |                          |
|         | conformance to the leachability                            |                      |                         |     |        |         |        |                                  |                          |
|         | criteria shown in Table 2 of the                           |                      |                         |     |        |         |        |                                  |                          |
|         | Environmental Permit throughout a                          |                      |                         |     |        |         |        |                                  |                          |
|         | continuous sixmonth period in the                          |                      |                         |     |        |         |        |                                  |                          |
|         | Operation Period, the Contractor                           |                      |                         |     |        |         |        |                                  |                          |
|         | shall be allowed to take two samples                       |                      |                         |     |        |         |        |                                  |                          |
|         | from any one shipload of bottom ash                        |                      |                         |     |        |         |        |                                  |                          |
|         | once every six months for                                  |                      |                         |     |        |         |        |                                  |                          |
|         | conformance to the leachability                            |                      |                         |     |        |         |        |                                  |                          |
|         | criteria. The Contractor shall not                         |                      |                         |     |        |         |        |                                  |                          |
|         | dispose of any of the bottom ash in                        |                      |                         |     |        |         |        |                                  |                          |
|         | the shipload which the samples are                         |                      |                         |     |        |         |        |                                  |                          |
|         | taken until the test results confirm                       |                      |                         |     |        |         |        |                                  |                          |
|         | that the samples conform to the                            |                      |                         |     |        |         |        |                                  |                          |
|         | criteria. If the test result confirm that                  |                      |                         |     |        |         |        |                                  |                          |

Keppel Seghers – Zhen Hua Joint Venture

|  |         |                                                                                                                                                                                                                                                                                                                |                      |                         | Imp | lement | ation S | tages* | Relevant                         | Implementati             |
|--|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|-----|--------|---------|--------|----------------------------------|--------------------------|
|  | EIA Ref | Environmental Protection Measures /<br>Mitigation Measures                                                                                                                                                                                                                                                     | Location /<br>Timing | Implementation<br>Agent | Des | С      | ο       | Dec    | Legislation<br>and<br>Guidelines | on Status<br>and Remarks |
|  |         | any one of the samples does not<br>conform to the criteria, the Contractor<br>shall be required to sample and test<br>one shipload of bottom ash each<br>month for conformance to the<br>leachability criteria shown in Table 2<br>of the Environmental Permit for the<br>next six months as stipulated above. |                      |                         |     |        |         |        |                                  |                          |

\* Des - Design, C - Construction, O – Operation, and Dec - Decommissioning

#### Table B.2 Implementation Schedule for Noise Impact Measures for the IWMF at the artificial island near SKC

|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                         | Impler | ment | ation | Stages* | Relevant                         | Implementatio           |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------|--------|------|-------|---------|----------------------------------|-------------------------|
| EIA Ref          | Environmental Protection Measures /<br>Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Location / Timing                               | Implementation<br>Agent | Des    | С    | 0     | Dec     | Legislation<br>and<br>Guidelines | n Status and<br>Remarks |
| S4b.8            | Good site practices to limit noise emissions at<br>source and<br>use of quiet plant and working<br>methods, whenever practicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Construction                                    | EPD and its contractors |        | ~    |       |         | EIAO-TM                          | Implemented             |
| S4b.6<br>& S4b.8 | <ul> <li>All the ventilation fans installed in the below will be provided with silencers or acoustics treatment.</li> <li>(i) Stack of the incinerator</li> <li>(ii) Ventilation systems within the IWMF Enclosure and discharge silencer or other acoustic treatment equipment should be installed in the air-cooled chillers</li> <li>Other than provision of silencer or other acoustic treatment equipment for the stack of the incinerator and ventilation system, the detailed design should incorporate the following good practice in order to minimize the nuisance on the neighboring NSRs.</li> <li>(i) The exhaust of the ventilation system and any opening of the building should be located facing away from any NSRs; and</li> <li>(ii) Louver or other acoustic treatment equipment could also be applied to the exhaust of the ventilation system.</li> </ul> | Within IWMF<br>area /<br>Construction<br>Period | EPD and its contractors |        |      |       |         | EIAO-TM                          | N/A                     |

Contract No. EP/SP/66/12

Integrated Waste Management Facilities, Phase 1

Keppel Seghers – Zhen Hua Joint Venture

| <ul> <li><u>Voluntary Enhancement Measure</u></li> <li>Provision of air-conditioner and double glazed windows to nearby NSR at Shek Kwu Chau (i.e. SARDA) as precautionary measures.</li> </ul> |  | Design team,<br>contractor, IWMF<br>operator | • | × |  | Supporting<br>Document for<br>Application for<br>Variation of<br>Environmental<br>Permit (EP-<br>429/2012) | Implemented |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|----------------------------------------------|---|---|--|------------------------------------------------------------------------------------------------------------|-------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|----------------------------------------------|---|---|--|------------------------------------------------------------------------------------------------------------|-------------|

\* Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

#### Table B.3 Implementation Schedule for Water Quality Measures for the Artificial Island near SKC

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Imple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ementa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tion S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tages*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Relevant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Environmental Protection<br>Measures / Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Location /<br>Timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Implementation<br>Agent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Legislation<br>and<br>Guidelines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Status and<br>Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Drainage and Construction Site Runoff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Work site /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EIAO-TM;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. These practices include the following items:                                                                                                                                                                                                                                                                                                                                    | During the<br>construction<br>period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ProPECC PN 1/94;<br>WPCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| • At the start of site establishment,<br>perimeter cut-off drains to direct off-<br>site water around the site should<br>be constructed with internal drainage<br>works and erosion and sedimentation<br>control facilities implemented<br>to the commencement of construction.                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Boundaries of earthworks should be<br>surrounded by dykes or embankments for<br>flood protection, as necessary.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>Sand/silt removal facilities such as<br/>sand/silt traps and sediment basins<br/>should be provided to remove sand/silt<br/>particles from runoff to meet the<br/>requirements of the TM-DSS. The<br/>design of efficient silt removal facilities<br/>should be based on the guidelines in<br/>Appendix A1 of ProPECC PN 1/94,<br/>which states that the retention time for<br/>silt/sand traps should be 5 minutes<br/>under maximum flow conditions. The<br/>detailed design of the sand/silt traps shall<br/>be undertaken by the contractor</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>Measures / Mitigation Measures</li> <li>Drainage and Construction Site Runoff</li> <li>The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. These practices include the following items:</li> <li>At the start of site establishment, perimeter cut-off drains to direct offsite water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented to the commencement of construction.</li> <li>Boundaries of earthworks should be surrounded by dykes or embankments for flood protection, as necessary.</li> <li>Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM-DSS. The design of efficient silt removal facilities in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. The detailed design of the sand/silt traps shall</li> </ul> | Measures / Mitigation MeasuresTimingDrainage and Construction Site RunoffWork site /The site practices outlined in ProPECC PN1/94 "Construction Site Drainage" should be<br>followed as far as practicable in order to<br>minimise surface runoff and the chance of<br>erosion. These practices include the following<br>items:Work site /• At the start of site establishment,<br>perimeter cut-off drains to direct off-<br>site water around the site should<br>be constructed with internal drainage<br>works and erosion and sedimentation<br>control facilities implemented<br>to the commencement of construction.Boundaries of earthworks should be<br>surrounded by dykes or embankments for<br>flood protection, as necessary.• Sand/silt removal facilities such as<br>sand/silt traps and sediment basins<br>should be provided to remove sand/silt<br>particles from runoff to meet the<br>requirements of the TM-DSS. The<br>design of efficient silt removal facilities<br>should be based on the guidelines in<br>Appendix A1 of ProPECC PN 1/94,<br>which states that the retention time for<br>silt/sand traps should be 5 minutes<br>under maximum flow conditions. The<br>detailed design of the sand/silt traps shall<br>be undertaken by the contractor | Timing     Imperimentation       Measures / Mitigation Measures     Timing     Agent       Drainage and Construction Site Runoff     The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. These practices include the following items:     Work site / During the construction period       • At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented to the commencement of construction.     Boundaries of earthworks should be surrounded by dykes or embankments for flood protection, as necessary.     Sand/silt removal facilities such as sand/silt traps and sediment basins should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. The detailed design of the sand/silt traps shall be undertaken by the contractor | Environmental Protection<br>Measures / Mitigation MeasuresLocation /<br>TimingImplementation<br>AgentDrainage and Construction Site Runoff<br>The site practices outlined in ProPECC PN<br>1/94 "Construction Site Drainage" should be<br>followed as far as practicable in order to<br>minimise surface runoff and the chance of<br>erosion. These practices include the following<br>items:Work site /<br>During the<br>construction<br>periodContractor• At the start of site establishment,<br>perimeter cut-off drains to direct off-<br>site water around the site should<br>be constructed with internal drainage<br> | Environmental Protection<br>Measures / Mitigation MeasuresLocation /<br>TimingImplementation<br>AgentDesCDrainage and Construction Site Runoff<br>The site practices outlined in ProPECC PN<br>1/94 "Construction Site Drainage" should be<br>followed as far as practicable in order to<br>minimise surface runoff and the chance of<br>erosion. These practices include the following<br>items:Work site /<br>During the<br>construction<br>periodContractor✓• At the start of site establishment,<br>perimeter cut-off drains to direct off-<br>site water around the site should<br>be constructed with internal drainage<br>works and erosion and sedimentation<br>control facilities implemented<br>to the commencement of construction.Sond/site requirements of the TM-DSS. The<br>design of efficient silt removal facilities<br>should be provided to remove sand/silt<br>papendix A1 of ProPECC PN 1/94,<br>which states that the retention time for<br>silf/sand traps should be 5 minutes<br>under maximum flow conditions. The<br>detailed design of the sand/silt traps shall<br>be undertaken by the contractorImplementation<br>ContractorImplementation<br>contractor | Environmental Protection<br>Measures / Mitigation MeasuresLocation /<br>TimingImplementation<br>AgentDesCODrainage and Construction Site Runoff<br>The site practices outlined in ProPECC PN<br>1/94 "Construction Site Drainage" should be<br>followed as far as practicable in order to<br>minimise surface runoff and the chance of<br>erosion. These practices include the following<br>items:Work site /<br>During the<br>construction<br>periodContractor✓• At the start of site establishment,<br>perimeter cut-off drains to direct off-<br>site water around the site should<br>be constructed with internal drainage<br>works and erosion and sedimentation<br>control facilities implemented<br>to the commencement of construction.ConstructionImplementation<br>Agent• Boundaries of earthworks should be<br>surrounded by dykes or embankments for<br>flood protection, as necessary.Sand/silt removal facilities usch as<br>sand/silt removal facilities in<br>Appendix A1 of ProPECC PN 1/94,<br>which states that the retention time for<br>silf/sand traps should be 5 minutes<br>under maximum flow conditions. The<br>detailed design of the sand/silt traps shall<br>be undertaken by the contractorLocation /<br>TimingImplementation<br>contractor• At the start of site establishment,<br>perimeter cut-off drains to direct off-<br>site water around the site should be<br>surrounded by dykes or embankments for<br>flood protection, as necessary.Construction<br>site removal facilities<br>should be provided to remove sand/silt<br>particles from runoff to meet the<br>requirements of the TM-DSS. The<br>design of efficient silt removal facilities<br>should be be sound/silt traps should<br>be or maximum flow conditions. The<br>detailed design of the sand/silt traps shall<br>be undertaken by the contractor< | Environmental Protection<br>Measures / Mitigation MeasuresLocation /<br>TimingImplementation<br>AgentDesCODecDrainage and Construction Site Runoff<br>The site practices outlined in ProPECC PN<br>1/94 "Construction Site Drainage" should be<br>followed as far as practicable in order to<br>minimise surface runoff and the chance of<br>erosion. These practices include the following<br>items:Work site /<br>During the<br>construction<br>periodContractor✓• At the start of site establishment,<br>perimeter cut-off drains to direct off-<br>site water around the site should<br>be construction.Work site /<br>periodContractor• Boundaries of earthworks should be<br>surrounded by dykes or embankments for<br>flood protection, as necessary.Sand/silt removal facilities such as<br>sand/silt removal facilities such as<br>sand/silt removal facilities intermed facilities<br>should be provided to remove sand/silt<br>particles from runoff to meet the<br>requirements of the TM-DSS. The<br>design of efficient silt removal facilities<br>is should be based on the guidelines in<br>Appendix A1 of ProPECC PN 1/94,<br>which states that the retention time for<br>sulf/sand traps should be 5 minutes<br>under maximum flow conditions. The<br>detailed design of the sand/silt traps should<br>be oundertaken by the contractorImplementation<br>contractor | Environmental Protection<br>Measures / Mitigation MeasuresLocation /<br>TimingImplementation<br>AgentDesC0DecLegislation<br>and<br>GuidelinesDrainage and Construction Site Runoff<br>The site practices outlined in ProPECC PN<br>1/94 "Construction Site Drainage' should be<br>proindWork site /<br>During the<br>construction<br>periodContractorVEIAO-TM;<br>ProPECC PN 1/94;010wed as far as practices include the chance of<br>minimise surface runoff and the chance of<br>resion. These practices include the following<br>items:Work site /<br>bring the<br>construction<br>periodContractorVEIAO-TM;<br>ProPECC PN 1/94;• At the start of site establishment,<br>perimeter cut-off drains to direct off-<br>site water around the site should<br>be constructed<br>to the commencement of construction.Soundaries of earthworks should be<br>surrounded by dykes or embankments for<br>flood protection, as necessary.Sand/silt removal facilities such as<br>sand/silt removal facilities in<br>Appendix A1 of ProPECC PN 1/94,<br>which states that the retention time for<br>sill/sand traps should be 5 minutes<br>under maximum flow conditions. The<br>detailed design of the sand/silt traps shall<br>be undertaken by the contractorImplementation<br>sill/sand traps should be 5 minutes<br>under maximum flow conditions. The<br>detailed design of the sand/silt traps shall<br>be undertaken by the contractorImplementation<br>sill/sand traps should be 5 minutes<br>under maximum flow conditions. The<br>detailed design of the contractor |

|           |                                                                                                                                                                                                                                                              |                                                      |                         | Impler | nenta | tion S | tages* | Relevant                             | Implementation<br>Status and<br>Remarks |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------|--------|-------|--------|--------|--------------------------------------|-----------------------------------------|
| EIA Ref   | Environmental Protection<br>Measures / Mitigation Measures                                                                                                                                                                                                   | Location /<br>Timing                                 | Implementation<br>Agent | Des    | С     | Ο      | Dec    | Legislation<br>and<br>Guidelines     |                                         |
|           | piles must be discharged into silt removal facilities.                                                                                                                                                                                                       |                                                      |                         |        |       |        |        |                                      |                                         |
|           | <ul> <li>Measures should be taken to minimize the<br/>ingress of site runoff and drainage into<br/>excavations. Drainage water pumped out<br/>from excavations should be discharged<br/>into storm drains via silt removal facilities.</li> </ul>            |                                                      |                         |        |       |        |        |                                      |                                         |
|           | • During rainstorms, exposed slope/soil<br>surfaces should be covered by a<br>tarpaulin or other means, as far as<br>practicable. Other measures that need to<br>be implemented before, during and after<br>rainstorms are summarized in ProPECC<br>PN 1/94. |                                                      |                         |        |       |        |        |                                      |                                         |
|           | • Exposed soil areas should be minimized to reduce potential for increased siltation and contamination of runoff.                                                                                                                                            |                                                      |                         |        |       |        |        |                                      |                                         |
|           | • Earthwork final surfaces should be well compacted and subsequent permanent work or surface protection should be immediately performed.                                                                                                                     |                                                      |                         |        |       |        |        |                                      |                                         |
|           | Open stockpiles of construction<br>materials or construction wastes on-site<br>should be covered with tarpaulin or<br>similar fabric during rainstorms.                                                                                                      |                                                      |                         |        |       |        |        |                                      |                                         |
| S5b.8.1.2 | General Construction Activities<br>Construction solid waste should be<br>collected, handled and disposed of<br>properly to avoid entering to the<br>nearby watercourses and public drainage                                                                  | Work site /<br>During the<br>constr<br>uction period | Contractor              |        | ✓     |        |        | EIAO-TM;<br>ProPECC PN 1/94;<br>WPCO | Reminders provided to the Contractor    |

|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |                         | Imple | ementa | tion S | tages* | Relevant                                  | Implementation<br>Status and<br>Remarks  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------|-------|--------|--------|--------|-------------------------------------------|------------------------------------------|
| EIA Ref   | Environmental Protection<br>Measures / Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Location /<br>Timing                                | Implementation<br>Agent | Des   | С      | 0      | Dec    | Legislation<br>and<br>Guidelines          |                                          |
|           | system. Rubbish and litter from construction<br>sites should also be collected to prevent<br>spreading of rubbish and litter from the<br>site area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                         |       |        |        |        |                                           |                                          |
| S5b.8.1.3 | There is a need to apply to EPD for a discharge license for discharge of effluent from the construction site under the WPCO. The discharge quality must meet the requirements specified in the discharge license. All the run-off and wastewater generated from the works areas should be treated so that it satisfies all the standards listed in the TM-DSS. The beneficial uses of the treated effluent for other on-site activities such as dust suppression and general cleaning etc., can minimize water consumption and reduce the effluent discharge volume. If monitoring of the treated effluent quality from the works areas is required during the construction phase of the Project, the monitoring should be carried out in accordance with the relevant WPCO license which is under the ambit of regional office of EPD. | During the construction                             | Contractor              |       |        |        |        | EIAO-TM;<br>ProPECC PN 1/94;<br>WPCO      | Under application o<br>Discharge License |
| S5b.8.1.4 | Accidental Spillage<br>Contractor must register as a chemical<br>waste producer if chemical wastes would<br>be produced from construction activities.<br>The Waste Disposal Ordinance (Cap 354)<br>and its subsidiary regulations in particular<br>the Waste Disposal (Chemical Waste)<br>(General) Regulation should be observed<br>and complied with for control of chemical<br>wastes.                                                                                                                                                                                                                                                                                                                                                                                                                                               | Work site /<br>During the<br>construction<br>period | Contractor              |       | ✓      |        |        | EIAO-TM;<br>ProPECC PN 1/94;<br>WPCO; WDO | Implemented                              |

|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |                         | Implen | nenta | tion S | tages* |                                           | Implementation                                                          |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------|--------|-------|--------|--------|-------------------------------------------|-------------------------------------------------------------------------|
| EIA Ref   | Environmental Protection<br>Measures / Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                  | Location /<br>Timing                 | Implementation<br>Agent | Des    | С     | 0      | Dec    | Legislation<br>and<br>Guidelines          | Status and<br>Remarks                                                   |
| S5b.8.1.5 | Maintenance of vehicles and equipment<br>involving activities with potential for<br>leakage and spillage should only be<br>undertaken within the areas which<br>appropriately equipped to control these<br>discharges.                                                                                                                                                                                                                                      | During the construction              | Contractor              |        | ✓     |        |        | EIAO-TM;<br>ProPECC PN 1/94;<br>WPCO; WDO | Implemented                                                             |
| S5b.8.1.6 | Oils and fuels should only be used and<br>stored in designated areas which have<br>pollution prevention facilities. All fuel tanks<br>and storage areas should be sited on sealed<br>areas in order to prevent spillage of fuels<br>and solvents to the nearby<br>watercourses. All waste oils and fuels<br>should be collected in designated tanks prior<br>to disposal.                                                                                   | During the<br>construction<br>period | Contractor              |        | ~     |        |        | EIAO-TM;<br>ProPECC PN 1/94;<br>WPCO; WDO | Deficiency of Mitigation<br>Measures but rectified<br>by the Contractor |
| S5b.8.1.7 | Disposal of chemical wastes should be<br>carried out in compliance with the Waste<br>Disposal Ordinance. The Code of Practice<br>on the Packaging, Labelling and<br>Storage of Chemical Wastes published<br>under the Waste Disposal Ordinance<br>details the requirements to deal with<br>chemical wastes. General requirements are<br>given as follows:                                                                                                   | During the<br>construction           | Contractor              |        | ~     |        |        | EIAO-TM;<br>ProPECC PN 1/94;<br>WPCO; WDO | Deficiency of Mitigation<br>Measures but rectified<br>by the Contractor |
|           | <ul> <li>Suitable containers should be used<br/>to hold the chemical wastes to<br/>avoid leakage or spillage during<br/>storage, handling and transport.</li> <li>Chemical waste containers should be<br/>suitably labelled, to notify and warn<br/>the personnel who are handling<br/>the wastes, to avoid accidents.</li> <li>Storage area should be selected at a<br/>safe location on site and adequate<br/>space should be allocated to the</li> </ul> |                                      |                         |        |       |        |        |                                           |                                                                         |

|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                         | Imple | ementa   | tion S | tages* | Relevant                                                                                                                                                                                     | Implementation                                                                                                               |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------|-------|----------|--------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| EIA Ref   | Environmental Protection<br>Measures / Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Location /<br>Timing                                | Implementation<br>Agent | Des   | С        | 0      | Dec    | Legislation<br>and<br>Guidelines                                                                                                                                                             | Status and<br>Remarks                                                                                                        |
|           | storage area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |                         |       |          |        |        |                                                                                                                                                                                              |                                                                                                                              |
| S5b.8.1.8 | Sewage Effluent<br>Temporary sanitary facilities, such as<br>portable chemical toilets, should be<br>employed on-site where necessary to<br>handle sewage from the workforce. A<br>licensed contractor would be responsible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Work site /<br>During the<br>construction<br>period | Contractor              |       | ✓<br>    |        |        | EIAO-TM;<br>ProPECC PN 1/94;<br>WPCO                                                                                                                                                         | N/A                                                                                                                          |
| S5b.8.1.9 | <ul> <li>Reclamation and Construction of Breakwaters</li> <li>The proposed dredging and reclamation should be commenced in phases. The breakwaters and seawalls should be constructed and the reclamation should be started within the enclosed breakwaters after the completion of the breakwater. Silt curtain should be applied around caissons / blockwork during the filling of the cell to prevent the loss of fine in the filling material.</li> <li>The maximum production rate for dredging for the anti-scouring protection layer shall not exceed the permitted maximum daily dredging rate and carried out within its respective distance from the nearest non-translocatable coral community by the dredging contractor as specified in S.2.18 of the Further Environmental Permit (no.:FEP-01/429/2012/A). It is recommended to employ closed grab with small capacity of 2 m<sup>3</sup> to control the dredging rate.</li> <li>Any gap that may need to be provided for marine access will be located at the middle of the North Western seawall, away from the identified coral communities and will be</li> </ul> | During the<br>marine<br>construction<br>period      | Contractor              |       | <b>√</b> |        |        | EIAO-TM; WPCO,<br>Supporting<br>Document for<br>Application for<br>Variation of<br>Environmental<br>Permit (EP-<br>429/2012)<br>Further<br>Environmental<br>Permit No. FEP-<br>01/429/2012/A | Reminder was given to<br>Contractor on proper<br>silt curtains checking<br>and reinforcement of<br>silt curtains efficiency. |

|         |                                                                                                                                                                                                                                                                                                                                                             |                      |                         | Imple | menta | tion S | tages* | Relevant                         | Implementation        |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|-------|-------|--------|--------|----------------------------------|-----------------------|
| EIA Ref | Environmental Protection<br>Measures / Mitigation Measures                                                                                                                                                                                                                                                                                                  | Location /<br>Timing | Implementation<br>Agent | Des   | С     | 0      | Dec    | Legislation<br>and<br>Guidelines | Status and<br>Remarks |
|         | sediment plume dispersion.                                                                                                                                                                                                                                                                                                                                  |                      |                         |       |       |        |        |                                  |                       |
|         | • The silt curtain system at marine access<br>opening should be closed as soon as the<br>barges passes through the marine access<br>opening in order to minimize the period of<br>curtain opening. Filling should only be carried<br>out behind the silt curtain when the silt<br>curtain is completely closed.                                             |                      |                         |       |       |        |        |                                  |                       |
|         | • To enhance the effectiveness of the silt<br>curtain at the marine access, the northern<br>breakwater would be built before the<br>commencement of the reclamation to reduce<br>the current velocity towards the marine<br>access opening.                                                                                                                 |                      |                         |       |       |        |        |                                  |                       |
|         | <ul> <li>The silt curtain system at marine access<br/>opening should be regularly checked and<br/>maintained to ensure proper functioning.</li> </ul>                                                                                                                                                                                                       |                      |                         |       |       |        |        |                                  |                       |
|         | • Where public fill is proposed for filling below +2.5mPD, the fine content in the public fill will be controlled to 25% which is in line with the CEDD's General Specification;                                                                                                                                                                            |                      |                         |       |       |        |        |                                  |                       |
|         | • The filling for reclamation should be<br>carried out behind the seawall. The filling<br>material should only consist of public fill, rock<br>and sand. The filling composition and filling<br>rates at each filling area should follow those<br>delineated in Table 1 of the FEP-<br>01/429/2012/. The filling above high<br>watermark is not restricted; |                      |                         |       |       |        |        |                                  |                       |
|         | <ul> <li>No dredging should be carried out within<br/>16m to the nearest non-translocatable coral<br/>community;</li> </ul>                                                                                                                                                                                                                                 |                      |                         |       |       |        |        |                                  |                       |

|         |                                                                                                                                                                                                                                                                                                                                                                                               |                      |                         | Imple | ementa | tion S | tages* | Relevant                         | Implementation        |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|-------|--------|--------|--------|----------------------------------|-----------------------|
| EIA Ref | Environmental Protection<br>Measures / Mitigation Measures                                                                                                                                                                                                                                                                                                                                    | Location /<br>Timing | Implementation<br>Agent | Des   | С      | 0      | Dec    | Legislation<br>and<br>Guidelines | Status and<br>Remarks |
|         | • Daily site audit including full-time on-site<br>monitoring by the ET is recommended during<br>the dredging for anti-scouring protection layer<br>for checking the compliance with the<br>permitted no. of grab;                                                                                                                                                                             |                      |                         |       |        |        |        |                                  |                       |
|         | <ul> <li>Closed grab dredger should be used to<br/>minimize the loss of sediment during the<br/>raising of the loaded grabs through the water<br/>column;</li> </ul>                                                                                                                                                                                                                          |                      |                         |       |        |        |        |                                  |                       |
|         | <ul> <li>Frame-type silt curtains should be<br/>deployed around the dredging operations;</li> </ul>                                                                                                                                                                                                                                                                                           |                      |                         |       |        |        |        |                                  |                       |
|         | <ul> <li>Floating-type silt curtains should be used<br/>to surround the circular cell during the<br/>sheetpiling work;</li> </ul>                                                                                                                                                                                                                                                             |                      |                         |       |        |        |        |                                  |                       |
|         | <ul> <li>The descent speed of grabs should be<br/>controlled to minimize the seabed impact<br/>speed;</li> </ul>                                                                                                                                                                                                                                                                              |                      |                         |       |        |        |        |                                  |                       |
|         | <ul> <li>Barges should be loaded carefully to avoid<br/>splashing of material;</li> </ul>                                                                                                                                                                                                                                                                                                     |                      |                         |       |        |        |        |                                  |                       |
|         | <ul> <li>All barges used for the transport of<br/>dredged materials should be fitted with tight<br/>bottom seals in order to prevent leakage of<br/>material during loading and transport;</li> </ul>                                                                                                                                                                                         |                      |                         |       |        |        |        |                                  |                       |
|         | <ul> <li>No concurrence works between laying of<br/>submarine cables and dredging/reclamation<br/>works within the same location is allowed.</li> <li>For works close to each other, the<br/>construction program should be arranged so<br/>that the dredging/reclamation works within<br/>area bounded by the breakwaters and the<br/>laying of cables would not operate within a</li> </ul> |                      |                         |       |        |        |        |                                  |                       |

Keppel Seghers – Zhen Hua Joint Venture

|            |                                                                                                                                                                                                                                                                                                                                                            |                                                             |                         | Imple | menta | tion St | tages* | Relevant                         | Implementation        |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------|-------|-------|---------|--------|----------------------------------|-----------------------|
| EIA Ref    | Environmental Protection<br>Measures / Mitigation Measures                                                                                                                                                                                                                                                                                                 | Location /<br>Timing                                        | Implementation<br>Agent | Des   | С     | 0       | Dec    | Legislation<br>and<br>Guidelines | Status and<br>Remarks |
|            | distance of 80m from each other to avoid any accumulative impact on the environment (in case if such tight schedule is necessary).                                                                                                                                                                                                                         |                                                             |                         |       |       |         |        |                                  |                       |
|            | • All barges should be filled to a level which<br>ensures that material does not spill over<br>during loading and transport to the disposal<br>site and that adequate freeboard is<br>maintained to ensure that the decks are not<br>washed by wave action.                                                                                                |                                                             |                         |       |       |         |        |                                  |                       |
|            | • No DCM works should be carried out within 100m to the nearest non-translocatable coral colony / colonies.                                                                                                                                                                                                                                                |                                                             |                         |       |       |         |        |                                  |                       |
|            | • Silt curtains should be employed to<br>enclose DCM field trial and any full scale<br>DCM work to minimize the potential impacts<br>on water aspect.                                                                                                                                                                                                      |                                                             |                         |       |       |         |        |                                  |                       |
|            | • A sand blanket is to be placed on top of<br>the marine deposit using tremie pipes prior to<br>the DCM ground treatment to avoid seabed<br>sediment disturbance.                                                                                                                                                                                          |                                                             |                         |       |       |         |        |                                  |                       |
| \$5b.8.2.3 | Operational Phase Discharges<br>A pipeline drainage system will serve the<br>development area collecting surface<br>runoff from paved areas, roof, etc.<br>Sustainable drainage principle would be<br>adopted in the drainage system design to<br>minimize peak surface runoff, maximize<br>permeable surface and maximize beneficial<br>use of rainwater. | Within IWMF<br>site / During<br>the<br>operational<br>phase | IWMF Operator           | ✓     |       | ✓       | V      | VPCO                             | N/A                   |
| \$5b.8.2.4 | Oil interceptors should be provided in the<br>drainage system of any potentially<br>contaminated areas (such as truck parking<br>area and maintenance workshop) and                                                                                                                                                                                        | site / During<br>the                                        | IWMF Operator           | ~     |       | ~       | V      | VPCO; WDO                        | N/A                   |

Keppel Seghers – Zhen Hua Joint Venture

|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                         | Imple | ementa | tion S | tages* | Relevant                         | Implementation        |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------|-------|--------|--------|--------|----------------------------------|-----------------------|
| EIA Ref   | Environmental Protection<br>Measures / Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Location /<br>Timing                                                                 | Implementation<br>Agent | Des   | С      | Ο      | Dec    | Legislation<br>and<br>Guidelines | Status and<br>Remarks |
|           | regularly cleaned to prevent the release<br>of oil products into the storm water<br>drainage system in case of accidental<br>spillages. Accidental spillage should be<br>cleaned up as soon as practicable and all<br>waste oils and fuels should be collected<br>and handled in compliance with the Waste<br>Disposal Ordinance.                                                                                                                                                                                                                                                                                                                                                                              | phase                                                                                |                         |       |        |        |        |                                  |                       |
| S5b.8.2.5 | Refuse Entrapment<br>Collection and removal of floating refuse<br>should be performed at regular intervals for<br>keeping the water within the Project site<br>boundary and the neighboring water free from<br>rubbish.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Within the<br>Project site /<br>During the<br>operational<br>phase                   | IWMF Operator           |       |        | ✓      |        | WPCO                             | N/A                   |
| S5b.8.2.6 | Transportation of bottom ash, fly ash and<br>APC residues to WENT Landfill for disposal<br>Covered container should be used in the<br>shipping of the incineration waste to<br>limit the contact between the<br>incineration waste and the marine water. A<br>comprehensive emergency response plan<br>for any accidental spillage should be<br>submitted by the operation contractor to<br>the EPD for agreement before the<br>operation of the facilities. Salvage and<br>cleanup action to recover the spilled<br>incineration waste containers following the<br>spillage should be carried out according<br>to the emergency response plan to<br>mitigate the environmental impact in case of<br>spillage. | Transportat<br>ion of<br>Incineration<br>Ash /<br>During the<br>operational<br>phase | IWMF Operator           |       |        |        |        |                                  | N/A                   |

\* Des - Design, C - Construction, O – Operation, and Dec - Decommissioning

#### Table B.4 Implementation Schedule for Waste Management Measures for the IWMF at the artificial island near SKC

|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                              |                         | Imple | menta | tion S | tages* | Relevant                         | Implementation                                                                                    |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------|-------|-------|--------|--------|----------------------------------|---------------------------------------------------------------------------------------------------|
| EIA Ref  | Environmental Protection<br>Measures / Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Location /<br>Timing                           | Implementation<br>Agent | Des   | С     | 0      | Dec    | Legislation<br>and<br>Guidelines | Status and<br>Remarks                                                                             |
| 6b.5.1.2 | <ul> <li><u>Good Site Practices</u></li> <li>Adverse environmental impacts in relation to waste management are not expected, provided that good site practices are strictly followed. Recommendations for good site practices during the construction activities would include:</li> <li>Obtain relevant waste disposal permits from appropriate authorities, in accordance with the Waste Disposal Ordinance (Cap. 354) and subsidiary Regulations and the Land (Miscellaneous Provisions) Ordinance (Cap. 28);</li> <li>Provide staff training for proper waste management and chemical handling procedures;</li> <li>Provide sufficient waste disposal points and regular waste collection;</li> <li>Provide sufficient guare to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers; and</li> <li>Carry out regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors;</li> <li>Separate chemical wastes for special handling and disposed of to licensed facility for treatment; and</li> <li>Employ licensed waste collector to collect waste.</li> </ul> | Work Site/<br>During<br>Construction<br>Period | Contractor              |       |       |        |        |                                  | Implemented; N/A<br>for some as no<br>chemical waste was<br>generated in the<br>reporting period. |

# Keppel Seghers – Zhen Hua Joint Venture

|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                         | Imple | ementa | ation S | tages* |                                  | Implementation                                             |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------|-------|--------|---------|--------|----------------------------------|------------------------------------------------------------|
| EIA Ref  | Environmental Protection<br>Measures / Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Location /<br>Timing   | Implementation<br>Agent | Des   | С      | 0       | Dec    | Legislation<br>and<br>Guidelines | Status and<br>Remarks                                      |
| 6b.5.1.3 | <ul> <li>Waste Reduction Measures</li> <li>Good management and control can prevent<br/>the generation of a significant amount of<br/>waste. Waste reduction is best achieved<br/>at the planning and design stage, as well<br/>as by ensuring the implementation of<br/>good site practices.</li> <li>Recommendations to achieve waste<br/>reduction include:</li> <li>Design foundation works that could<br/>minimize the amount of excavated<br/>material to be generated.</li> <li>Provide training to workers on the<br/>importance of site cleanliness and<br/>appropriate waste management<br/>procedures, including waste reduction,<br/>reuse and recycling;</li> <li>Sort out demolition debris and excavated<br/>materials from demolition works to recover<br/>reusable/recyclable portions (i.e. soil,<br/>broken concrete, metal etc.);</li> <li>Segregate and store different types of<br/>waste in different containers, skips or<br/>stockpiles to enhance reuse or recycling of<br/>materials and their proper disposal;</li> <li>Encourage the collection of aluminum<br/>cans by providing separate labelled bins to<br/>enable this waste to be segregated from<br/>other general refuse generated by the<br/>work force;</li> <li>Proper storage and site practices to<br/>minimize the potential for damage or<br/>contamination of construction materials;</li> </ul> | Construction<br>Period | Contractor              |       |        |         |        |                                  | Implemented; N/A for<br>foundation and<br>demolition items |

# Keppel Seghers – Zhen Hua Joint Venture

|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                       |     | Imple | menta | tion S | tages* | Relevant                         | Implementation                                                  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------|-----|-------|-------|--------|--------|----------------------------------|-----------------------------------------------------------------|
| EIA Ref  | Environmental Protection<br>Measures / Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Location /<br>Timing                  | Implement<br>Agent    |     | Des   | С     | 0      | Dec    | Legislation<br>and<br>Guidelines | Status and<br>Remarks                                           |
|          | <ul> <li>Plan and stock construction materials<br/>carefully to minimize amount of waste to<br/>be generated and to avoid unnecessary<br/>generation of waste.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                       |     |       |       |        |        |                                  |                                                                 |
| 6b.5.1.7 | Dredged Sediment – Application of Dumping<br>Permit<br>The project proponent should agree in<br>advance with MFC of CEDD on the site<br>allocation. The project proponent or<br>contractor for the dredging works shall then<br>apply for the site allocations of marine<br>sediment disposal based on the prior<br>agreement with MFC/CEDD. The<br>project proponent or contractor should also<br>be responsible for the application of all<br>necessary permits from relevant authorities,<br>including the dumping permit as required<br>under DASO from EPD, for the disposal of<br>dredged sediment prior to the<br>commencement of the dredging works. |                                       | EPD and<br>contractor | its | ×     | ✓     |        |        | DASO<br>ETWB<br>TCW<br>34/2002   | Implemented, marine<br>sediment samples have<br>been collected. |
| 6b.5.1.8 | Dredged Sediment – Sediment Quality Report<br>The project proponent or contractor will<br>need to satisfy the appropriate authorities<br>that the quality of the marine sediment to<br>be dredged has been identified<br>according to the requirements of ETWB<br>TCW 34/2002. This should be completed<br>well before the dredging works and would<br>include at least the submission of a formal<br>Sediment Quality Report under Tier I of<br>ETWB TCW No. 34/2002 to DEP for<br>approval. Subject to advice from DEP, it is<br>possible that further marine SI in<br>accordance with ETWB TCW 34/2002                                                    | Reclamation<br>site /<br>Construction | EPD and<br>contractor | its | •     |       |        |        | DASO<br>ETWB<br>TCW<br>34/2002   | Undergoing                                                      |

|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |                         | Imple    | ementa | tion S | tages* |                                  | Implementation<br>Status and<br>Remarks |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------|----------|--------|--------|--------|----------------------------------|-----------------------------------------|
| EIA Ref   | Environmental Protection<br>Measures / Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Location /<br>Timing                                       | Implementation<br>Agent | Des      | С      | 0      | Dec    | Legislation<br>and<br>Guidelines |                                         |
|           | might be necessary for the application of<br>dumping permit under DASO. In such case,<br>a sediment sampling and testing proposal<br>shall be submitted to and approved by DEP<br>before the additional marine SI works.                                                                                                                                                                                                                                                                                                                                                                                  |                                                            |                         |          |        |        |        |                                  |                                         |
| 6b.5.1.9  | Dredged Sediment – Sediment Transportation<br>The barge transporting the sediments to<br>the designated disposal sites should be<br>equipped with tight fitting seals to prevent<br>leakage and should not be filled to a level<br>that would cause overflow of materials or<br>laden water during loading or transportation.<br>In addition, monitoring of the barge loading<br>shall be conducted to ensure that loss of<br>material does not take place during<br>transportation. Transport barges or vessels<br>shall be equipped with automatic self-<br>monitoring devices as specified by the DEP. | Reclamation<br>site /<br>Construction                      | EPD and its contractor  |          | V      |        |        | DASO<br>ETWB<br>TCW<br>34/2002   | N/A                                     |
| 6b.5.1.10 | <ul> <li><u>Construction and Demolition Materials</u></li> <li>In order to minimize the impact resulting from collection and transportation of C&amp;D materials for off-site disposal, the excavated material arising from site formation and foundation works should be reused on-site as backfilling material and for landscaping works as far as practicable. Other mitigation requirements are listed below:</li> <li>A Waste Management Plan (WMP), which becomes part of the Environmental Management Plan (EMP), should be prepared in accordance with ETWB TCW No.19/2005;</li> </ul>            | Work Site/<br>During Design<br>&<br>Construction<br>Period | Contractor              | <i>✓</i> | ✓      |        |        | ETWB TCW No.<br>19/2005          | Implemented                             |

|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                         | Imple | ementa | tion S | tages* | Relevant                         | Implementation        |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------|-------|--------|--------|--------|----------------------------------|-----------------------|
| EIA Ref                     | Environmental Protection<br>Measures / Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Location /<br>Timing               | Implementation<br>Agent | Des   | С      | 0      | Dec    | Legislation<br>and<br>Guidelines | Status and<br>Remarks |
|                             | <ul> <li>A recording system for the amount of wastes generated, recycled and disposed (including the disposal sites) should be adopted for easy tracking; and</li> <li>In order to monitor the disposal of C&amp;D materials at public filling facilities and landfills and to control fly-tipping, a tripticket system should be adopted (refer to</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                         |       |        |        |        |                                  |                       |
| 6b.5.1.11<br>-<br>6b.5.1.12 | ETWB TCW No. 31/2004).<br>The Contactor should prepare and<br>implement an EMP in accordance with<br>ETWB TCW No.19/2005, which describes<br>the arrangements for avoidance, reuse,<br>recovery, recycling, storage, collection,<br>treatment and disposal of different<br>categories of waste to be generated<br>from construction activities. Such a<br>management plan should incorporate site<br>specific factors, such as the<br>designation of areas for segregation and<br>temporary storage of reusable and recyclable<br>materials. The EMP should be submitted to<br>the Engineer for approval. The Contractor<br>All surplus C&D materials arising from or in<br>connection with construction works should<br>become the property of the Contractor when<br>it is removed unless otherwise stated. The<br>Contractor would be responsible for devising<br>a system to work for on-site sorting of C&D<br>materials and promptly removing all sorted<br>and process materials arising from the<br>construction activities to minimize temporary<br>stockpiling on-site. The system should be | During Design<br>&<br>Construction | Contractor              |       |        |        |        | ETWB TCW No.<br>19/2005          | Implemented           |

|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                         | Imple | ementa | tion Sta | ages* | Relevant                                                      | Implementation                       |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------|-------|--------|----------|-------|---------------------------------------------------------------|--------------------------------------|
| EIA Ref   | Environmental Protection<br>Measures / Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Location /<br>Timing                           | Implementation<br>Agent | Des   | С      | 0        | Dec   | Legislation<br>and<br>Guidelines                              | Status and<br>Remarks                |
|           | included in the EMP identifying the source of<br>generation, estimated quantity, arrangement<br>for on-site sorting, collection, temporary<br>storage areas and frequency of collection by<br>recycling Contractors or frequency of removal<br>off-site.                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |                         |       |        |          |       |                                                               |                                      |
| 6b.5.1.13 | <u>Chemical Wastes</u><br>Should chemical wastes be produced at the construction site, the Contractor would be required to register with EPD as a Chemical Waste Producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Good quality containers compatible with the chemical wastes should be used, and incompatible corrosive). The Contractor should employ a licensed collector to transport and dispose of the chemical wastes, to either the Chemical Waste Treatment Centre at Tsing Yi, or another licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation. | Work Site/<br>During<br>Construction<br>Period | Contractor              |       | ✓      |          |       | Waste Disposal<br>(Chemical<br>Waste) (General)<br>Regulation | Implemented                          |
| 6b.5.1.14 | General Refuse<br>General refuse should be stored in<br>enclosed bins or compaction units<br>separate from C&D materials. A licensed<br>waste collector should be employed by the<br>Contractor to remove general refuse from the<br>site, separately from C&D materials.<br>Preferably an enclosed and covered area<br>should be provided to reduce the occurrence<br>of 'wind blown' light material.                                                                                                                                                                                                                                                                              | Work Site/<br>During<br>Construction<br>Period | Contractor              |       | V      |          |       |                                                               | Reminders provided to the Contractor |

|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                  |                            | Imple | ementa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tion Stages | * Relevant                                                                                                                            | Implementation        |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| EIA Ref                | Environmental Protection<br>Measures / Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Location /<br>Timing                                                                                                             | Implementation<br>Agent    | Des   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | O Dec       | Legislation<br>and<br>Guidelines                                                                                                      | Status and<br>Remarks |
| 6b.5.1.16<br>6b.5.1.33 | <ul> <li><u>Biogas Generation</u></li> <li>The Contractor shall review the data and analysis results, and the data from further Site Investigation, if any. Subject to the review findings, the following gas protection measures may be considered if necessary: <ul> <li>gas monitoring after reclamation;</li> <li>passive ventilation;</li> <li>gas impermeable membrane;</li> <li>ventilation with "at risk" rooms;</li> <li>protection of utilities or below ground services;</li> <li>precautions during construction works;</li> <li>precautions prior to entry of belowground services</li> </ul> </li> </ul> | Reclamation<br>site (if<br>dredging at<br>the<br>reclamation<br>site is not<br>required) /<br>Design &<br>Construction<br>Period | Designer and/or contractor | ×     | Image: A state of the state |             | EPD/TR8/97                                                                                                                            | N/A                   |
| 6b.5.2.1               | <u>Good Site Practices</u><br>It is recommended that the following<br>good operational practices should be<br>adopted to minimise waste management<br>impacts:<br>• Obtain the necessary waste disposal<br>permits from the appropriate<br>authorities, in accordance with the<br>Waste Disposal Ordinance (Cap.<br>354) and Waste Disposal (Chemical                                                                                                                                                                                                                                                                  | IWMF<br>Site/During<br>Operation<br>Period                                                                                       | IWMF Operator              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×           | Waste Disposal<br>Ordinance<br>(Cap.354);<br>Waste Disposal<br>(Chemical Waste)<br>(General)<br>Regulation;<br>ETWB TCW No.<br>1/2004 | N/A                   |

# Keppel Seghers – Zhen Hua Joint Venture

|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                         | Imple | ementa | tion S | tages* | Relevant                         | Implementation        |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|-------|--------|--------|--------|----------------------------------|-----------------------|
| EIA Ref | Environmental Protection<br>Measures / Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Location /<br>Timing | Implementation<br>Agent | Des   | С      | Ο      | Dec    | Legislation<br>and<br>Guidelines | Status and<br>Remarks |
|         | <ul> <li>Waste) (General) Regulation;</li> <li>Nomination of an approved person to<br/>be responsible for good site practice,<br/>arrangements for collection and<br/>effective disposal to an appropriate<br/>facility of all wastes generated at the<br/>site;</li> <li>Use of a waste haulier licensed to<br/>collect specific category of waste;</li> <li>A trip-ticket system should be included<br/>as one of the contractual requirements<br/>and implemented by the Environmental<br/>Team to monitor the disposal of solid<br/>wastes at landfills, and to control fly<br/>tipping. Reference should be made to<br/>ETWB TCW No. 31/2004.</li> <li>Training of site personnel in proper<br/>waste management and chemical<br/>waste handling procedures;</li> <li>Separation of chemical wastes for<br/>special handling and appropriate<br/>treatment at a licensed facility;</li> <li>Routine cleaning and maintenance<br/>programme for drainage systems,<br/>sumps and oil interceptors;</li> <li>Provision of sufficient waste disposal<br/>points and regular collection for<br/>disposal;</li> <li>Adoption of appropriate measures to<br/>minimize windblown litter and dust<br/>during transportation of waste, such as<br/>covering trucks or transporting wastes<br/>in enclosed containers; and</li> <li>Implementation of a recording system<br/>for the amount of wastes generated,<br/>and disposed of (including recycled</li> </ul> |                      |                         |       |        |        |        |                                  |                       |

|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |                         | Imple | ementa | tion S   | tages* | Relevant                                           | Implementation        |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------|-------|--------|----------|--------|----------------------------------------------------|-----------------------|
| EIA Ref  | Environmental Protection<br>Measures / Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Location /<br>Timing                        | Implementation<br>Agent | Des   | С      | 0        | Dec    | Legislation<br>and<br>Guidelines                   | Status and<br>Remarks |
|          | the disposal sites).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             |                         |       |        |          |        |                                                    |                       |
| 6b.5.2.2 | Waste Reduction MeasuresGood management and control can prevent<br>the generation of significant amounts of waste.It is recommended that the following good<br>operational practices should be adopted to<br>ensure waste reduction:                                                                                                                                                                                                                                                                                                                                                                 | IWMF Site/<br>During<br>Operation<br>Period | IWMF Operator           |       |        | <b>√</b> |        |                                                    | Implemented           |
|          | <ul> <li>Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal;</li> <li>Encourage collection of aluminum cans, plastic bottles and packaging material (e.g. carton boxes) and office paper by individual collectors. Separate labelled bins should be provided to help segregate this waste from other general refuse generated by the work force; and</li> <li>Any unused chemicals or those with remaining functional capacity should be reused as far as practicable.</li> </ul> |                                             |                         |       |        |          |        |                                                    |                       |
| 6b.5.2.3 | Storage, Handling, Treatment, Collection<br>and Disposal of Incineration By-ProductsThe following measures are recommended<br>for the storage, handling and collection of the<br>incineration by-products:•Ash should be stored in storage silos;                                                                                                                                                                                                                                                                                                                                                    | IWMF Site/<br>During<br>Operation<br>Period | IWMF Operator           |       |        | ×        | F      | ncineration<br>Residue Pollution<br>Control Limits | N/A                   |
|          | <ul> <li>Ash should be stored in storage slos,</li> <li>Ash should be handled and<br/>conveyed in closed systems fully</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             |                         |       |        |          |        |                                                    |                       |

#### Keppel Seghers – Zhen Hua Joint Venture

|          |                                                                                                                                                                                                                                                                                  |                                                                                               |                         | Imple | menta | tion S | tages* |                                  | Implementation        |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------|-------|-------|--------|--------|----------------------------------|-----------------------|
| EIA Ref  | Environmental Protection<br>Measures / Mitigation Measures                                                                                                                                                                                                                       | Location /<br>Timing                                                                          | Implementation<br>Agent | Des   | С     | 0      | Dec    | Legislation<br>and<br>Guidelines | Status and<br>Remarks |
|          | segregatedfrom the ambient environment;                                                                                                                                                                                                                                          |                                                                                               |                         |       |       |        |        |                                  |                       |
|          | <ul> <li>Ash should be wetted with water to<br/>control fugitive dust, where necessary;</li> </ul>                                                                                                                                                                               |                                                                                               |                         |       |       |        |        |                                  |                       |
|          | <ul> <li>All fly ash and APC residues should<br/>be treated, e.g. by cement<br/>solidification or chemical<br/>stabilization, for compliance with<br/>the proposed Incineration Residue<br/>Pollution Control Limits and<br/>leachability criteria prior to disposal;</li> </ul> |                                                                                               |                         |       |       |        |        |                                  |                       |
|          | • The ash should be transported in covered trucks or containers to the designated landfill site.                                                                                                                                                                                 |                                                                                               |                         |       |       |        |        |                                  |                       |
|          | The Contractor should provide EPD with<br>chemical analysis results of the bottom<br>ash, and treated fly ash and APC<br>residues to confirm that the<br>ash/residue can comply with the<br>proposed Incineration Residue<br>Pollution Control Limits before<br>disposal.        |                                                                                               |                         |       |       |        |        |                                  |                       |
| 6b.6.3.1 | <ul> <li>Fuel Oil Tank Construction and Test</li> <li>The fuel tank to be installed should<br/>be of specified durability.</li> <li>Double skin tanks are preferred.</li> <li>Underground fuel storage tank should</li> </ul>                                                    | Fuel Oil<br>Storage<br>Tank/ During<br>Design,<br>Construction<br>and<br>Operation<br>Periods | IWMF Contractor         | ~     | ~     | ✓      |        |                                  | N/A                   |
|          | <ul><li>be placed within a concrete pit.</li><li>The concrete pit shall be accessible</li></ul>                                                                                                                                                                                  |                                                                                               |                         |       |       |        |        |                                  |                       |

|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                         | Imple    | menta | tion S | tages* | Relevant                         | Implementation        |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------|----------|-------|--------|--------|----------------------------------|-----------------------|
| EIA Ref  | Environmental Protection<br>Measures / Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Location /<br>Timing                          | Implementation<br>Agent | Des      | С     | 0      | Dec    | Legislation<br>and<br>Guidelines | Status and<br>Remarks |
|          | to allow regular tank integrity tests to be carried out at regular intervals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                               |                         |          |       |        |        |                                  |                       |
|          | <ul> <li>Tank integrity tests should be<br/>conducted by an independent<br/>qualified surveyor or structural<br/>engineer.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |                         |          |       |        |        |                                  |                       |
|          | <ul> <li>Any potential problems identified in<br/>the test should be rectified as soon as<br/>possible.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |                         |          |       |        |        |                                  |                       |
| 6b.6.3.1 | <ul> <li>Fuel Oil Pipeline Construction and Test</li> <li>Installation of aboveground fuel<br/>oil pipelines is preferable; if<br/>underground pipelines are<br/>unavoidable, concrete lined<br/>trenches should be constructed to<br/>contain the pipelines.</li> <li>Double skin pipelines are preferred.</li> <li>Distance between the fuel oil<br/>refuelling points and the fuel oil<br/>storage tank shall be minimized.</li> <li>Integrity tests for the pipelines should<br/>be conducted by an independent<br/>qualified surveyor or structural<br/>engineer at regular intervals.</li> <li>Any potential problems identified in<br/>the test should be rectified as soon as<br/>possible.</li> </ul> | Design,<br>Construction                       | IWMF Contractor         | ✓        | ✓     | ×      |        |                                  | N/A                   |
| 6b.6.3.1 | Fuel Oil Leakage Detection     Installation of leak detection device at storage tank and pipelines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fuel Oil<br>Storage<br>Tank and<br>Pipelines/ | IWMF Contractor         | <b>√</b> | ~     | ~      |        |                                  | N/A                   |

|          |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                  |                         | Imple | menta | tion S | tages* | Relevant                         | Implementation<br>Status and<br>Remarks |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------|-------|-------|--------|--------|----------------------------------|-----------------------------------------|
| EIA Ref  | Environmental Protection<br>Measures / Mitigation Measures                                                                                                                                                                                                                                                                                                                         | Location /<br>Timing                                             | Implementation<br>Agent | Des   | С     | ο      | Dec    | Legislation<br>and<br>Guidelines |                                         |
|          | <ul> <li>Installation and use of pressure<br/>gauges (e.g. at the two ends of a<br/>filling line) in fuel filling, which<br/>allows unexpected pressure drop or<br/>difference and sign of leakage to be<br/>detected.</li> </ul>                                                                                                                                                  | During<br>Design,<br>Construction<br>and<br>Operation<br>Periods |                         |       |       |        |        |                                  |                                         |
| 6b.6.3.1 | <ul> <li>Fuel Oil Storage Tank Refuelling</li> <li>Storage tank refuelling (from road tanker) should only be conducted by authorized staff of the oil company using the company's standard procedures.</li> </ul>                                                                                                                                                                  | During<br>Operation                                              | IWMF Operator           |       |       | ✓      |        |                                  | N/A                                     |
| 6b.6.3.1 | Fuel Oil Spillage ResponseAn Oil Spill Response Plan should be<br>prepared by the operator to document the<br>appropriate response procedures for oil<br>spillage incidents in detail. General<br>procedures to be taken in case of fuel oil<br>spillage are presented below.• Training- Training on oil spill response actions should<br>be given to relevant staff. The training |                                                                  | IWMF Operator           |       |       | ~      |        |                                  | N/A                                     |
|          | <ul> <li>shall cover the followings:</li> <li>&gt;Tools &amp; resources to combat oil spillage and fire, e.g. locations of oil spill handling equipment and fire fighting equipment;</li> <li>&gt;General methods to deal with oil spillage and fire incidents;</li> <li>&gt;Procedures for emergency drills in the event of oil spills and fire; and</li> </ul>                   |                                                                  |                         |       |       |        |        |                                  |                                         |

|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                         | Imple | menta | tion S | tages* | Relevant                         | Implementation<br>Status and<br>Remarks |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|-------|-------|--------|--------|----------------------------------|-----------------------------------------|
| EIA Ref | Environmental Protection<br>Measures / Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                | Location /<br>Timing | Implementation<br>Agent | Des   | С     | 0      | Dec    | Legislation<br>and<br>Guidelines |                                         |
|         | ➢Regular drills shall be carried out.                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                         |       |       |        |        |                                  |                                         |
|         | Communication                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                         |       |       |        |        |                                  |                                         |
|         | -Establish communication channel<br>with the Fire Services Department<br>(FSD) and EPD to report any oil<br>spillage incident so that necessary<br>assistance from relevant department<br>can be quickly sought.                                                                                                                                                                                                                                          |                      |                         |       |       |        |        |                                  |                                         |
|         | Response Procedures                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                         |       |       |        |        |                                  |                                         |
|         | -Any fuel oil spillage within the IWMF<br>site should be immediately<br>reported to the Plant Manager<br>with necessary details including<br>location, source, possible cause and<br>extent of the spillage.                                                                                                                                                                                                                                              |                      |                         |       |       |        |        |                                  |                                         |
|         | <ul> <li>Plant Manager should immediately attend to the spillage and initiate any appropriate action to confine and clean up the spillage. The response procedures shall include the following:</li> <li>&gt;Identify and isolate the source of spillage as soon as possible.</li> <li>&gt;Contain the oil spillage and avoid infiltration into soil/ groundwater and discharge to storm water channels.</li> <li>&gt;Remove the oil spillage.</li> </ul> |                      |                         |       |       |        |        |                                  |                                         |
|         | ≻Clean up the contaminated area.                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                         |       |       |        |        |                                  |                                         |
|         | If the oil spillage occurs during<br>storage tank refuelling, the refueling<br>operation should immediately be                                                                                                                                                                                                                                                                                                                                            |                      |                         |       |       |        |        |                                  |                                         |

| EIA Ref  | Environmental Protection<br>Measures / Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Location /<br>Timing                                                                         | Implementation<br>Agent | Implementation Stages* |   |   |     | Relevant                         | Implementation        |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------|------------------------|---|---|-----|----------------------------------|-----------------------|
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                              |                         | Des                    | С | 0 | Dec | Legislation<br>and<br>Guidelines | Status and<br>Remarks |
|          | stopped.<br>>Recovered contaminated fuel oil<br>and the associated material to<br>remove the spilled oil should be<br>considered as chemical waste. The<br>handling and disposal procedures<br>for chemical wastes are discussed<br>in the following paragraphs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                              |                         |                        |   |   |     |                                  |                       |
| 6b.6.3.2 | <ul> <li><u>Chemicals and Chemical Wastes Handling &amp;</u><br/><u>Storage</u></li> <li>Chemicals and chemical wastes<br/>should only be stored in suitable<br/>containers in purpose-built areas.</li> <li>The storage of chemical wastes should<br/>comply with the requirements of<br/>the Code of Practice on the<br/>Packaging, Labelling and<br/>Storage of Chemical Wastes.</li> <li>The storage areas for chemicals and<br/>chemical wastes shall have an<br/>impermeable floor or surface. The<br/>impermeable floor/ surface shall<br/>possess the following properties:         <ul> <li>Not liable to chemically react with<br/>the materials and their containers to<br/>be stored.</li> <li>Able to withstand normal<br/>loading and physical damage</li> </ul> </li> </ul> | Chemicals<br>and<br>Chemical<br>Wastes<br>Storage<br>Area /<br>During<br>Operation<br>Period | IWMF Operator           |                        |   |   |     |                                  | N/A                   |
|          | be stored.<br>- Able to withstand normal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                              |                         |                        |   |   |     |                                  |                       |

| EIA Ref  | Environmental Protection<br>Measures / Mitigation Measures                                                                                                                                                                                                                                                                                                                                 | Location /<br>Timing                        |                         | Implementation Stages* |   |   |     | Relevant                         | Implementation        |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------|------------------------|---|---|-----|----------------------------------|-----------------------|
|          |                                                                                                                                                                                                                                                                                                                                                                                            |                                             | Implementation<br>Agent | Des                    | С | 0 | Dec | Legislation<br>and<br>Guidelines | Status and<br>Remarks |
|          | be inspected at regular intervals to<br>ensure that it is satisfactorily<br>maintained                                                                                                                                                                                                                                                                                                     |                                             |                         |                        |   |   |     |                                  |                       |
|          | For liquid chemicals and<br>chemical wastes storage, the<br>storage area should be bunded to<br>contain at least 110% of the storage<br>capacity of the largest containers<br>or 20% of the total quantity of<br>the chemicals/chemical wastes<br>stored, whichever is the greater.                                                                                                        |                                             |                         |                        |   |   |     |                                  |                       |
|          | Storage containers shall be<br>checked at regular intervals for<br>their structural integrity and to<br>ensure that the caps or fill points<br>are tightly closed.                                                                                                                                                                                                                         |                                             |                         |                        |   |   |     |                                  |                       |
|          | Chemical handling shall be<br>conducted by trained workers<br>under supervision.                                                                                                                                                                                                                                                                                                           |                                             |                         |                        |   |   |     |                                  |                       |
| 6b.6.3.2 | Chemicals and Chemical Wastes Spillage<br>ResponseA Chemicals and/ or Chemical Wastes<br>Spillage Response Plan shall be prepared<br>by the operator to document in detail the<br>appropriate response procedures for<br>chemicals or chemical wastes spillage<br>incidents. General procedures to be<br>undertaken in case of chemicals/ chemical<br>waste spillages are presented below. | IWMF Site/<br>During<br>Operation<br>Period | IWMF Operator           |                        |   |   |     |                                  | N/A                   |
|          | Training                                                                                                                                                                                                                                                                                                                                                                                   |                                             |                         |                        |   |   |     |                                  |                       |
|          | - Training on spill response actions                                                                                                                                                                                                                                                                                                                                                       |                                             |                         |                        |   |   |     |                                  |                       |

|         | Environmental Protection<br>Measures / Mitigation Measures                                                                                                                                                                                   |                      | Implementation<br>Agent | Imple | ementa | tion S | tages* | Relevant                         | Implementation<br>Status and<br>Remarks |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|-------|--------|--------|--------|----------------------------------|-----------------------------------------|
| EIA Ref |                                                                                                                                                                                                                                              | Location /<br>Timing |                         | Des   | С      | 0      | Dec    | Legislation<br>and<br>Guidelines |                                         |
|         | should be given to relevant staff.<br>The training shall cover the<br>followings:                                                                                                                                                            |                      |                         |       |        |        |        |                                  |                                         |
|         | Tools & resources to handle<br>spillage, e.g. locations of spill<br>handling equipment;                                                                                                                                                      |                      |                         |       |        |        |        |                                  |                                         |
|         | <ul> <li>General methods to deal with<br/>spillage; and</li> </ul>                                                                                                                                                                           |                      |                         |       |        |        |        |                                  |                                         |
|         | <ul> <li>Procedures for emergency drills<br/>in the event of spills.</li> </ul>                                                                                                                                                              |                      |                         |       |        |        |        |                                  |                                         |
|         | <ul> <li>Communication         <ul> <li>Establish communication channel<br/>with FSD and EPD to report the<br/>spillage incident so that<br/>necessary assistance from relevant<br/>department can be quickly sought.</li> </ul> </li> </ul> |                      |                         |       |        |        |        |                                  |                                         |
|         | Response Procedures                                                                                                                                                                                                                          |                      |                         |       |        |        |        |                                  |                                         |
|         | <ul> <li>Any spillage within the IWMF site<br/>should be reported to the Plant<br/>Manager.</li> </ul>                                                                                                                                       |                      |                         |       |        |        |        |                                  |                                         |
|         | <ul> <li>Plant Manager shall attend to the<br/>spillage and initiate any appropriate<br/>actions needed to confine and clean<br/>up the spillage. The response<br/>procedures shall include the<br/>followings:</li> </ul>                   |                      |                         |       |        |        |        |                                  |                                         |
|         | <ul> <li>Identify and isolate the source<br/>of spillage as soon as possible;</li> </ul>                                                                                                                                                     |                      |                         |       |        |        |        |                                  |                                         |
|         | <ul> <li>Contain the spillage and<br/>avoid infiltration into soil/</li> </ul>                                                                                                                                                               |                      |                         |       |        |        |        |                                  |                                         |

Keppel Seghers – Zhen Hua Joint Venture

|          |                                                                                                                                                                                                                                                                                                 |                                                                                                             |                         | Imple | ementati | on S | tages* | Relevant                         | Implementation        |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------|-------|----------|------|--------|----------------------------------|-----------------------|
| EIA Ref  | Environmental Protection<br>Measures / Mitigation Measures                                                                                                                                                                                                                                      | Location /<br>Timing                                                                                        | Implementation<br>Agent | Des   | С        | 0    | Dec    | Legislation<br>and<br>Guidelines | Status and<br>Remarks |
|          | groundwater and discharge to<br>storm water channels (in<br>case the spillage occurs<br>at locations out of the<br>designated storage areas);                                                                                                                                                   |                                                                                                             |                         |       |          |      |        |                                  |                       |
|          | Remove the spillage; the<br>removal method/ procedures<br>documented in the Material<br>Safety Data Sheet (MSDS) of<br>the chemicals spilled should<br>be observed;                                                                                                                             |                                                                                                             |                         |       |          |      |        |                                  |                       |
|          | Clean up the contaminated area (in case the spillage                                                                                                                                                                                                                                            |                                                                                                             |                         |       |          |      |        |                                  |                       |
|          | The waste arising from the<br>cleanup operation should be<br>considered as chemical wastes.                                                                                                                                                                                                     |                                                                                                             |                         |       |          |      |        |                                  |                       |
| 6b.6.3.3 | <ul> <li><u>Preventive Measures for Incineration Byproducts Handling</u></li> <li>The recommended measures listed below can minimize the potential contamination to the surrounding environment due to the incineration by-products:</li> <li>Ash should be stored in storage silos;</li> </ul> | Storage,<br>Handling &<br>Collection of<br>Incineration<br>Ash at<br>IWMF/<br>During<br>Operation<br>Period | IWMF Operator           |       |          | ~    |        |                                  | N/A                   |
|          | Ash should be handled and conveyed in closed systems fully                                                                                                                                                                                                                                      |                                                                                                             |                         |       |          |      |        |                                  |                       |
|          | Ash should be wetted with water to control fugitive dust, where necessary;                                                                                                                                                                                                                      |                                                                                                             |                         |       |          |      |        |                                  |                       |
|          | All fly ash and APC residues should<br>be treated, e.g. by cement<br>solidification or chemical                                                                                                                                                                                                 |                                                                                                             |                         |       |          |      |        |                                  |                       |

Acuity Sustainability Consulting Limited

|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | Implementation<br>Agent | Imple | menta | tion S | tages* | Relevant                                                                                                                                                                          | Implementation<br>Status and<br>Remarks |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------|-------|-------|--------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| EIA Ref                | Environmental Protection<br>Measures / Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Location /<br>Timing                        |                         | Des   | С     | 0      | Dec    | Legislation<br>and<br>Guidelines                                                                                                                                                  |                                         |
|                        | stabilization, for compliance with<br>the proposed Incineration Residue<br>Pollution Control Limits and<br>leachability criteria prior to disposal;                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |                         |       |       |        |        |                                                                                                                                                                                   |                                         |
|                        | • The ash should be transported in covered trucks or containers to the designated landfill site.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |                         |       |       |        |        |                                                                                                                                                                                   |                                         |
| 6b.6.3.4 -<br>6b.6.3.6 | Incident Record<br>After any spillage, an incident report should<br>be prepared by the Plant Manager. The<br>incident report should contain details of the<br>incident including the cause of the<br>incident, the material spilled and estimated<br>spillage amount, and also the response<br>actions undertaken. The incident record<br>should be kept carefully and able to be<br>retrieved when necessary.<br>The incident report should provide<br>sufficient details for the evaluation of any<br>environmental impacts due to the spillage<br>and assessment of the effectiveness of<br>measures taken. | IWMF Site/<br>During<br>Operation<br>Period | IWMF Operator           |       |       |        |        | Guidance Manual<br>for Use of Risk-<br>based Remediation<br>Goals for<br>Contaminated<br>Land Management<br>and the Guidance<br>Note for<br>Contaminated Land<br>and Remediation. | N/A                                     |
|                        | In case any spillage or accidents results in significant land contamination, EPD should be informed immediately and the IWMF operator should be responsible for the cleanup of the affected area. The responses procedures described in <b>Section 6b.6.3.1</b> and <b>Section 6b.6.3.2</b> of EIA report should be followed accordingly together with the land contamination assessment and remediation guidelines                                                                                                                                                                                            |                                             |                         |       |       |        |        |                                                                                                                                                                                   |                                         |

#### Keppel Seghers – Zhen Hua Joint Venture

|         | Environmental Protection<br>Measures / Mitigation Measures                                                                                                                          | Location /<br>Timing | Implementation<br>Agent | Imple | mentat | tion S | tages* | Legislation | Implementation<br>Status and<br>Remarks |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|-------|--------|--------|--------|-------------|-----------------------------------------|
| EIA Ref |                                                                                                                                                                                     |                      |                         | Des   | С      | 0      | Dec    |             |                                         |
|         | stipulated in the Guidance Manual for Use<br>of Risk-based Remediation Goals for<br>Contaminated Land Management and the<br>Guidance Note for Contaminated Land and<br>Remediation. |                      |                         |       |        |        |        |             |                                         |

\* Des - Design, C - Construction, O – Operation, and Dec - Decommissioning

|          |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                               | Imple | ement | tation \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stages* |                                  | Implementation<br>Status and<br>Remarks |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------|-------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------|-----------------------------------------|
| EIA Ref  | Environmental Protection Measures<br>/ Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                   | Location /<br>Timing         | Implementation<br>Agent       | Des   | С     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dec     | Legislation<br>and<br>Guidelines |                                         |
| 7b.8.2.1 | <ul> <li>Measures to avoid direct loss of intertidal habitat</li> <li>The site boundary has been proposed to<br/>avoid direct contact with the intertidal<br/>natural rocky shore of Shek Kwu Chau. It<br/>avoids direct loss of intertidal communities<br/>and the existing natural rocky shore habitat,<br/>where Reef Egret and White-bellied Sea<br/>Eagle have been recorded within and in the<br/>vicinity of this habitat.</li> </ul> | IWMF site                    | Design team                   | ×     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | EIAO-TM                          | N/A                                     |
| 7b.8.2.2 | <ul> <li>Measures to minimise loss of coastal subtidal<br/>habitat</li> <li>Extensive coral colonies were recorded<br/>at the coastal hard bottom habitat at Shek<br/>Kwu Chau. To avoid and minimise the<br/>extensive direct impact on the coral<br/>colonies, the proposed reclamation area has<br/>been moved further offshore to minimise<br/>loss of subtial habitat near shore.</li> </ul>                                            | IWMF site                    | Design team                   | Ý     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | EIAO-TM                          | N/A                                     |
| 7b.8.2.3 | <ul> <li>Zero Discharge Scheme</li> <li>The design scheme of the Project has<br/>avoided discharge of wastewater into the<br/>marine environment.<br/>mechanical treatment plant, or for onsite<br/>washdown and landscape.</li> </ul>                                                                                                                                                                                                       | IWMF site                    | Design team,<br>IWMF operator | ~     |       | <ul> <li>Image: A start of the start of</li></ul> |         | WPCO                             | N/A                                     |
| 7b.8.2.4 | <ul> <li>Measures to avoid loss of plant species of conservation importance</li> <li>Landing portal construction works would not cause direct lost to the recorded individual of protected plant species,</li> </ul>                                                                                                                                                                                                                         | Cheung Sha<br>landing portal | Design team,<br>Contractor    | ~     | ✓     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ~       | EIAO-TM                          | N/A                                     |

#### Table B.5 Implementation Schedule for Ecological Quality Measures for the IWMF at the artificial island near SKC

Integrated Waste Management Facilities, Phase 1

|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      | Implementation<br>Agent                     |  | pler    | ment | ation | Stages* | Relevant                                                                                                                   | Implementation                                                                                                                                                                                                                                                                       |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------|--|---------|------|-------|---------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EIA Ref                     | Environmental Protection Measures<br>/ Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Location /<br>Timing |                                             |  | Des C O |      | 0     | Dec     | Legislation<br>and<br>Guidelines                                                                                           | Status and<br>Remarks                                                                                                                                                                                                                                                                |
|                             | <ul> <li>Aquilaria sinensis, at the coastal shrubland<br/>habitat at Cheung Sha. As a<br/>precautionary measure, the plant should<br/>be tagged with eye-catching tape and<br/>fenced off prior to works, in order to avoid<br/>any damage by workers.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                    |                      |                                             |  |         |      |       |         |                                                                                                                            |                                                                                                                                                                                                                                                                                      |
| 7b.8.3.1-<br>7b.8.3.15      | <ul> <li><u>Measures to minimise water quality impact</u></li> <li>Measures for water quality as recommended in <b>Section 5b</b> of the EIA Report should be implemented.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                | Work site            | Design team<br>contractor, IW N<br>operator |  |         | ✓    | ~     | ~       | EIAO-TM;<br>ProPECC PN<br>1/94; WPCO                                                                                       | Implemented,<br>deficiency on<br>deployed silt curtain<br>checking was spotted<br>Reminder was given<br>to Contractor on<br>proper silt curtains<br>checking                                                                                                                         |
| 7b.8.3.16<br>-<br>7b.8.3.30 | <ul> <li>Measures to minimise disturbance on Finless<br/>Porpoise</li> <li>Minimisation of Habitat Loss for Finless Porpoise</li> <li>Substantial revision has been made on<br/>the layout plan and form of the<br/>breakwater, in order to minimise the<br/>potential loss of important habitat for<br/>Finless Porpoise. The revision has<br/>greatly reduced the size of the<br/>embayment area, as well as the Project<br/>footprint. As a result, the size of habitat<br/>loss for Finless Porpoise has reduced from<br/>the original ~50 ha, down to ~31 ha.</li> <li>Avoidance of peak season for finless porpoise</li> </ul> | IWMF site,           | Design team<br>contractor, IW N<br>operator |  |         | ✓    | ✓     |         | EIAO-TM,<br>Supporting<br>Document for<br>Application for<br>Variation of the<br>Environmental<br>Permit (EP-<br>429/2012) | Implemented for<br>avoidance of<br>construction works that<br>may produce<br>underwater acoustic<br>disturbance, Vessel<br>Travel Route<br>implementation,<br>training of staff, MMEZ<br>and marine mammal<br>watching works during<br>deployment of silt<br>curtain; N/A for others |

Integrated Waste Management Facilities, Phase 1

|         |                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                         | Imple | ement | ation | Stages* | Relevant                         | Implementation        |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|-------|-------|-------|---------|----------------------------------|-----------------------|
| EIA Ref | Environmental Protection Measures<br>/ Mitigation Measures                                                                                                                                                                                                                                                                                                                                                           | Location /<br>Timing | Implementation<br>Agent | Des   | С     | 0     | Dec     | Legislation<br>and<br>Guidelines | Status and<br>Remarks |
|         | <ul> <li>occurrence</li> <li>To minimise potential acoustic<br/>disturbance from construction activities<br/>on Finless Porpoise, construction works<br/>that may produce underwater acoustic<br/>disturbance should be scheduled outside the<br/>months with peak Finless Porpoise<br/>occurrence (December to May), including:         <ul> <li>sheet piling works for construction</li> </ul> </li> </ul>         |                      |                         |       |       |       |         |                                  |                       |
|         | <ul> <li>of cofferdam surrounding the reclamation area (Phase 1);</li> <li>sheet piling works for construction of the shorter section of breakwater (Phase 1);</li> <li>sheet piling works for construction of the remaining section of breakwater (Phase 3);</li> <li>bored piling works for berth area (Phase 3); and</li> <li>submarine cable installation works between Shek Kwu Chau and Cheung Sha.</li> </ul> |                      |                         |       |       |       |         |                                  |                       |
|         | Such works should be restricted within June<br>to November. This approach would not only<br>avoid the peak season for Finless Porpoise<br>occurrence, the magnitude of impacts<br>arise from acoustic disturbance would also<br>be minimised.                                                                                                                                                                        |                      |                         |       |       |       |         |                                  |                       |

Integrated Waste Management Facilities, Phase 1

|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                         | Imple | ement | ation | Stages* | Relevant                         | Implementation        |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|-------|-------|-------|---------|----------------------------------|-----------------------|
| EIA Ref | Environmental Protection Measures<br>/ Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Location /<br>Timing | Implementation<br>Agent | Des   | С     | 0     | Dec     | Legislation<br>and<br>Guidelines | Status and<br>Remarks |
|         | Submarine cable installation works                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                         |       |       |       |         |                                  |                       |
|         | • Since the DCM ground treatment and the installation of precast seawalls and breakwaters should generate no underwater acoustic disturbance to Finless Porpoise, no specific mitigation measures are required.                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                         |       |       |       |         |                                  |                       |
|         | Opt for quieter construction methods and plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                         |       |       |       |         |                                  |                       |
|         | <ul> <li>Considering the sensitivity of marine<br/>mammals to underwater acoustic<br/>disturbance, instead of the previously<br/>proposed conventional breakwater and<br/>reclamation peripheral structure, which<br/>requires noisy piling works, the current<br/>circular cells structure for breakwater<br/>and reclamation peripheral structure is<br/>proposed. A quieter sheet piling method<br/>using vibratory hammer or hydraulic impact<br/>hammer, should be adopted for the<br/>installation of circular cells for cellular<br/>cofferdam and northern breakwater<br/>during Phase 1, and southern<br/>breakwater Phase 3;</li> </ul> |                      |                         |       |       |       |         |                                  |                       |
|         | • Non-percussive bore piling method would<br>be adopted for the installation of tubular<br>piles for the berth construction during<br>Phase 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                         |       |       |       |         |                                  |                       |
|         | Monitored exclusion zones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                         |       |       |       |         |                                  |                       |

Integrated Waste Management Facilities, Phase 1

|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | Implementation<br>Agent | Imple | ementa | ation | Stages* | Relevant                         | Implementation        |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|-------|--------|-------|---------|----------------------------------|-----------------------|
| EIA Ref | Environmental Protection Measures<br>/ Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Location /<br>Timing |                         | Des   | С      | 0     | Dec     | Legislation<br>and<br>Guidelines | Status and<br>Remarks |
|         | <ul> <li>During the installation/re-<br/>installation/relocation process of floating type<br/>silt curtains, in order to avoid the accidental<br/>entrance and entrapment of marine<br/>mammals within the silt curtains, a<br/>monitored exclusion zone of 250 m radius<br/>from silt curtain should be implemented.<br/>The exclusion zone should be closely<br/>monitored by an experienced marine<br/>mammal observer at least 30 minutes<br/>before the start of installation/re-<br/>installation/relocation process. If a marine<br/>mammal is noted within the exclusion<br/>zone, all marine works should stop<br/>immediately and remain idle for 30 minutes,<br/>or until the exclusion zone is free from<br/>marine mammals.</li> </ul> |                      |                         |       |        |       |         |                                  |                       |
|         | <ul> <li>The experienced marine mammal observer<br/>should be well trained to detect marine<br/>mammals. Binoculars should be used to<br/>search the exclusion zone from an<br/>elevated platform with unobstructed visibility.<br/>The observer should also be independent<br/>from the project proponent and has the<br/>power to call-off construction activities.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                    |                      |                         |       |        |       |         |                                  |                       |
|         | <ul> <li>In addition, as marine mammals cannot<br/>be effectively monitored within the<br/>proposed monitored exclusion zone at<br/>night, or during adverse weather<br/>conditions (i.e. Beaufort 5 or above,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                         |       |        |       |         |                                  |                       |

Integrated Waste Management Facilities, Phase 1

|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                         | Imple | ement | ation | Stages* | Relevant                         | Implementation        |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|-------|-------|-------|---------|----------------------------------|-----------------------|
| EIA Ref | Environmental Protection Measures<br>/ Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                               | Location /<br>Timing | Implementation<br>Agent | Des   | С     | 0     | Dec     | Legislation<br>and<br>Guidelines | Status and<br>Remarks |
|         | visibility of 300 meters or below), marine<br>works should be avoided under weather<br>conditions with low visibility.                                                                                                                                                                                                                                                                                                                                                                   |                      |                         |       |       |       |         |                                  |                       |
|         | Marine mammal watching plan                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                         |       |       |       |         |                                  |                       |
|         | <ul> <li>Upon the completion of<br/>the installation/re-installation/relocation<br/>of floating type silt curtain, all marine works<br/>would be conducted within a fully enclosed<br/>environment within the silt curtain, hence<br/>exclusion zone monitoring would no longer be<br/>required. Subsequently, a marine mammal<br/>watching plan should be implemented.</li> </ul>                                                                                                       |                      |                         |       |       |       |         |                                  |                       |
|         | The plan should include regular inspection of silt curtains, and visual inspection of the waters surrounded by the curtains. Special attention should be paid to Phase 2 (reclamation) where the floating type still curtain would be opened occasionally for vessel access, leaving a temporary 50 m opening. An action plan should be devised to cope with any unpredicted incidents such as the case when marine mammals are found within the waters surrounded by the silt curtains. |                      |                         |       |       |       |         |                                  |                       |
|         | Small openings at silt curtains                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                         |       |       |       |         |                                  |                       |
|         | • The openings for vessel access at the silt curtains should be as small as possible to                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                         |       |       |       |         |                                  |                       |

Integrated Waste Management Facilities, Phase 1

|         |                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                         | Imple | ment | tation | Stages* | Relevant                         | Implementation<br>Status and<br>Remarks |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|-------|------|--------|---------|----------------------------------|-----------------------------------------|
| EIA Ref | Environmental Protection Measures<br>/ Mitigation Measures                                                                                                                                                                                                                                                                                                                                              | Location /<br>Timing | Implementation<br>Agent | Des   | С    | 0      | Dec     | Legislation<br>and<br>Guidelines |                                         |
|         | minimise the risk of accidental entrance.                                                                                                                                                                                                                                                                                                                                                               |                      |                         |       |      |        |         |                                  |                                         |
|         | Adoption of regular travel route                                                                                                                                                                                                                                                                                                                                                                        |                      |                         |       |      |        |         |                                  |                                         |
|         | <ul> <li>During construction and operation, captains<br/>of all vessels should adopt regular travel<br/>route, in order to minimize the chance of<br/>vessel collision with marine mammals,<br/>which may otherwise result in damage to<br/>health or mortality. The regular travel<br/>route should avoid areas with high<br/>sighting density of Finless Porpoise as much<br/>as possible.</li> </ul> |                      |                         |       |      |        |         |                                  |                                         |
|         | Vessel speed limit                                                                                                                                                                                                                                                                                                                                                                                      |                      |                         |       |      |        |         |                                  |                                         |
|         | • The frequent vessel traffic in the vicinity<br>of works area may increase the chance of<br>mammal mammals being killed or<br>seriously injured by vessel collision. A<br>speed limit of ten knots should be strictly<br>enforced within areas with high density of<br>Finless Porpoise.                                                                                                               |                      |                         |       |      |        |         |                                  |                                         |
|         | • Passive acoustic monitoring and land-based theodolite monitoring surveys should be adopted to verify the predicted impacts and effectiveness of the proposed mitigation measures.                                                                                                                                                                                                                     |                      |                         |       |      |        |         |                                  |                                         |
|         | Training of Staff                                                                                                                                                                                                                                                                                                                                                                                       |                      |                         |       |      |        |         |                                  |                                         |

Integrated Waste Management Facilities, Phase 1

|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                   |               | Imple | ement   | ation | Stages* | Relevant                         | Implementation                                                                                                                                                                                                                                                                     |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------|---------------|-------|---------|-------|---------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EIA Ref                     | Environmental Protection Measures<br>/ Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Location /<br>Timing | Implementation<br>Agent           |               | Des   | Des C ( | 0     | Dec     | Legislation<br>and<br>Guidelines | Status and<br>Remarks                                                                                                                                                                                                                                                              |
|                             | • Staff, including captains of vessels,<br>should be aware of the guidelines for safe<br>vessel operations in the presence of<br>cetaceans during construction and<br>operation phases. Adequate trainings should<br>be provided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                                   |               |       |         |       |         |                                  |                                                                                                                                                                                                                                                                                    |
| 7b.8.3.31<br>-<br>7b.8.3.34 | <ul> <li>Measures to minimise impact on corals</li> <li>Coral translocation</li> <li>Coral communities within and in proximity to the proposed dredging sites would be disturbed by the Project due to the dredging operations. In order to minimise direct loss of coral communities, translocation of corals that are attached to movable rocks with diameter less than 50 cm are recommended. In order to avoid disturbance to corals during the spawning period, the spawning season of corals (June to August) should be avoided; and that translocation should be carried out during the winter season (November-March).</li> <li>The REA survey results suggest that the 198 directly affected coral colonies were attached to movable rocks (less than 50 cm in diameter). It is technically feasible to translocate them to avoid direct loss.</li> <li>Prior to coral translocation, a more</li> </ul> | IWMF site            | Design<br>contractor,<br>operator | team,<br>IWMF |       |         | ✓     |         | EIAO-TM                          | Implemented, tagged<br>coral found missing<br>after hitting by<br>typhoons<br>Re-tagging of 10 coral<br>colonies at indirect<br>impact site was<br>conducted, retagging of<br>coral colonies at control<br>site will be carried out<br>in December 2018 due<br>to adverse weather. |

Integrated Waste Management Facilities, Phase 1

|                |                                                                            | Location /<br>Timing |                         |            | Imple | ement | ation \$ | Stages*      | Relevant                         | Implementation        |
|----------------|----------------------------------------------------------------------------|----------------------|-------------------------|------------|-------|-------|----------|--------------|----------------------------------|-----------------------|
| EIA Ref        | Environmental Protection Measures<br>/ Mitigation Measures                 |                      | Implementat<br>Agent    | ion        | Des   | С     | 0        | Dec          | Legislation<br>and<br>Guidelines | Status and<br>Remarks |
|                | detailed baseline survey, including                                        |                      |                         |            |       |       |          |              |                                  |                       |
|                | event / action plan for coral monitoring                                   |                      |                         |            |       |       |          |              |                                  |                       |
|                | should be submitted upon approval of this                                  |                      |                         |            |       |       |          |              |                                  |                       |
|                | Project, prior to commencement of construction works. Advice from relevant |                      |                         |            |       |       |          |              |                                  |                       |
|                | governmental departments (i.e. AFCD)                                       |                      |                         |            |       |       |          |              |                                  |                       |
|                | and professionals would be sought after, in                                |                      |                         |            |       |       |          |              |                                  |                       |
|                | order to identify a desirable location for the                             |                      |                         |            |       |       |          |              |                                  |                       |
|                | relocation of coral communities. Post-                                     |                      |                         |            |       |       |          |              |                                  |                       |
|                | translocation monitoring on the                                            |                      |                         |            |       |       |          |              |                                  |                       |
|                | translocated corals should also be                                         |                      |                         |            |       |       |          |              |                                  |                       |
|                | considered.                                                                |                      |                         |            |       |       |          |              |                                  |                       |
|                | Coral monitoring programme                                                 |                      |                         |            |       |       |          |              |                                  |                       |
|                | • A coral monitoring programme is                                          |                      |                         |            |       |       |          |              |                                  |                       |
|                | recommended to assess any adverse and                                      |                      |                         |            |       |       |          |              |                                  |                       |
|                | unacceptable impacts to the coral                                          |                      |                         |            |       |       |          |              |                                  |                       |
|                | communities at the coasts of Shek Kwu                                      |                      |                         |            |       |       |          |              |                                  |                       |
|                | Chau during construction of the Project.                                   |                      |                         |            |       |       |          |              |                                  |                       |
|                | Phasing of Works                                                           |                      |                         |            |       |       |          |              |                                  |                       |
|                | • To minimize environmental impacts,                                       |                      |                         |            |       |       |          |              |                                  |                       |
|                | the proposed phasing of construction works                                 |                      |                         |            |       |       |          |              |                                  |                       |
|                | has been carefully designed to reduce the                                  |                      |                         |            |       |       |          |              |                                  |                       |
|                | amount of concurrent works, hence                                          |                      |                         |            |       |       |          |              |                                  |                       |
|                | minimize SS elevation and the                                              |                      |                         |            |       |       |          |              |                                  |                       |
| 7 0 0 0 -      | associated impacts on corals.                                              |                      |                         |            |       |       |          |              |                                  |                       |
| 7b.8.3.35      | Specific measures to minimize disturbance                                  | IWMF site,           | 0                       | am,<br>NMF | ~     | ~     | ~        | $\checkmark$ | EIAO-TM                          | Implemented           |
| -<br>7b.8.3.41 | on breeding White-bellied Sea Eagle                                        | marine traffic route | Contractor, IN operator |            |       |       |          |              |                                  |                       |
| 10.0.3.41      |                                                                            | TOULE                | operator                |            |       | 1     | 1        | 1            |                                  | 1                     |

Integrated Waste Management Facilities, Phase 1

|         |                                                                                                                                                                                                                                                                                                                                                                                                    |                      | Imple                   | ement | tation | Stages* | Relevant | Implementation                   |                       |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|-------|--------|---------|----------|----------------------------------|-----------------------|
| EIA Ref | Environmental Protection Measures<br>/ Mitigation Measures                                                                                                                                                                                                                                                                                                                                         | Location /<br>Timing | Implementation<br>Agent | Des   | С      | 0       | Dec      | Legislation<br>and<br>Guidelines | Status and<br>Remarks |
|         | Avoidance of noisy works during the breeding season of White-bellied Sea Eagle                                                                                                                                                                                                                                                                                                                     |                      |                         |       |        |         |          |                                  |                       |
|         | • To minimize potential noise disturbance<br>from construction activities on WBSE, noisy<br>construction works should be scheduled<br>outside their breeding season (December to<br>May) to minimise potential degradation in<br>breeding ground quality and breeding<br>activities, including:                                                                                                    |                      |                         |       |        |         |          |                                  |                       |
|         | <ul> <li>sheet piling works for construction<br/>of cofferdam surrounding the<br/>reclamation area (Phase 1);</li> <li>sheet piling works for construction of<br/>the shorter section of breakwater<br/>(Phase 1);</li> <li>sheet piling works for construction of<br/>the remaining section of breakwater<br/>(Phase 3); and</li> <li>bored piling works for berth area (Phase<br/>3).</li> </ul> |                      |                         |       |        |         |          |                                  |                       |
|         | Opt for quieter construction methods and plants                                                                                                                                                                                                                                                                                                                                                    |                      |                         |       |        |         |          |                                  |                       |
|         | <ul> <li>To minimise potential construction noise<br/>disturbance on WBSE, quieter construction<br/>methods and plants should be adopted. The<br/>recommended noise mitigation measures in<br/>the Noise chapter (Section 4b.8 of the<br/>EIA Report) should be implemented to<br/>minimise potential noise disturbance to</li> </ul>                                                              |                      |                         |       |        |         |          |                                  |                       |

Integrated Waste Management Facilities, Phase 1

|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Location /<br>Timing | Implementation<br>Agent | Imple | ement | ation | Stages* | * Relevant                       | Implementation        |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|-------|-------|-------|---------|----------------------------------|-----------------------|
| EIA Ref | Environmental Protection Measures<br>/ Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                         | Des   | С     | 0     | Dec     | Legislation<br>and<br>Guidelines | Status and<br>Remarks |
|         | acceptable levels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                         |       |       |       |         |                                  |                       |
|         | Restriction on vessel access near the nest of White-bellied Sea Eagle                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                         |       |       |       |         |                                  |                       |
|         | <ul> <li>During construction and operation, in order<br/>to minimize disturbance on the existing<br/>WBSE nest, a pre-defined practical route<br/>to restrict vessel access near the nest<br/>should be adopted to keep vessels and<br/>boats as far away from the nest as possible.</li> </ul>                                                                                                                                                                                                                                                |                      |                         |       |       |       |         |                                  |                       |
|         | White-bellied Sea Eagle monitoring programme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                         |       |       |       |         |                                  |                       |
|         | • A WBSE monitoring programme is<br>recommended to assess any adverse and<br>unacceptable impacts to the breeding<br>activities of WBSE during construction<br>and operation of the Project. Monitoring<br>surveys for WBSE would include pre-<br>construction phase (twice per month for<br>duration of three months during their<br>breeding season -between December and<br>May, immediately before the<br>commencement of works), construction<br>phase, and operation phase (two years<br>after the completion of construction<br>works). |                      |                         |       |       |       |         |                                  |                       |
|         | <ul> <li>Surveys should be conducted twice per<br/>month during their breeding season (from<br/>December to May); and once per month</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                |                      |                         |       |       |       |         |                                  |                       |

Integrated Waste Management Facilities, Phase 1

|         |                                                                                                                                                                                                                                                                                                                                                                                                     | Location /<br>Timing |                                             | Impl | ement | tation | Stages* | Relevant                                                                                                   | Implementation        |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------|------|-------|--------|---------|------------------------------------------------------------------------------------------------------------|-----------------------|
| EIA Ref | Environmental Protection Measures<br>/ Mitigation Measures                                                                                                                                                                                                                                                                                                                                          |                      | Implementation<br>Agent                     | Des  | С     | 0      | Dec     | Legislation<br>and<br>Guidelines                                                                           | Status and<br>Remarks |
|         | outside breeding season (June to<br>November). More details on monitoring for<br>WBSE are presented in the EM&A Manual.                                                                                                                                                                                                                                                                             |                      |                                             |      |       |        |         |                                                                                                            |                       |
|         | Education of staff                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                             |      |       |        |         |                                                                                                            |                       |
|         | • Staff, including captains of all vessels<br>during construction and operation phases,<br>should be aware of the ecological<br>importance of WBSE. Awareness<br>should be raised among staff to minimise<br>any intentional or unintentional disturbance<br>to the nest.                                                                                                                           |                      |                                             |      |       |        |         |                                                                                                            |                       |
|         | Minimisation of Glare Disturbance                                                                                                                                                                                                                                                                                                                                                                   |                      |                                             |      |       |        |         |                                                                                                            |                       |
|         | <ul> <li>To minimise glare disturbance on<br/>WBSE, which may cause disorientation<br/>of birds by interfering with their<br/>magnetic compass, and disruption in<br/>behavioural patterns such as reproduction,<br/>fat storage and foraging pattern, any un-<br/>necessary outdoor lighting should be<br/>avoided, and in-ward and down-ward<br/>pointing of lights should be adopted.</li> </ul> |                      |                                             |      |       |        |         |                                                                                                            |                       |
|         | <ul> <li><u>Construction of Seawall/Breakwaters</u></li> <li>To widen the open channel between the Artificial Island and Shek Kwu Chau.</li> <li>To design the precast concrete seawall with environmental friendly features.</li> </ul>                                                                                                                                                            | IWMF site            | Design team,<br>contractor, IWM<br>operator | =    | ✓     |        |         | Supporting<br>Document for<br>Application for<br>Variation of<br>Environmental<br>Permit (EP-<br>429/2012) | N/A                   |

Integrated Waste Management Facilities, Phase 1

|                             | Environmental Protection Measures<br>/ Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                                   | Imple         | ement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ation | Stages* | Legislation | Implementation |                                                                         |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|-------------|----------------|-------------------------------------------------------------------------|
| EIA Ref                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Location /<br>Timing | Implementation<br>Agent           |               | Des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | С     | 0       |             | Dec            | Status and<br>Remarks                                                   |
| 7b.8.3.42                   | <ul> <li>Opt for Quieter Construction Methods and Plants</li> <li>Quieter construction methods and plants<br/>should be used to minimise disturbance to<br/>the nearby terrestrial habitat and the<br/>associated wildlife.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Work site            | Design<br>contractor,<br>operator | team,<br>IWMF | <ul> <li>Image: A start of the start of</li></ul> | ~     | ~       | <b>v</b>    | EIAO-TM        | Implemented                                                             |
| 7b.8.3.43                   | <ul> <li>Measures to minimize impacts from artificial<br/>lighting</li> <li>Unnecessary lighting should be avoided,<br/>and shielding of lights should be provided<br/>to minimize disturbance from light pollution<br/>on fauna groups.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                              | IWMF site            | Design<br>contractor,<br>operator | team,<br>IWMF | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ~     | ~       |             | EIAO-TM        | Implemented                                                             |
| 7b.8.3.44<br>-<br>7b.8.3.45 | <ul> <li>Measures to minimize accidental spillage</li> <li>Regular maintenance of vessels, vehicles and equipment that may cause leakage and spillage should only be undertaken within pre-designated areas, which are appropriately equipped to control the associated discharges.</li> <li>Oils, fuels and chemicals should be contained in suitable containers, and only be used and stored in designated areas which have pollution prevention facilities. All fuel tanks and storage areas should be sited on sealed areas in order to prevent spillage of fuels and solvents to the nearby watercourses. All waste oils and fuels should be collected in designated tanks prior</li> </ul> | Work site            | Contractor,<br>operator           | IWMF          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | V       | ×           | EIAO-TM        | Deficiency of Mitigatior<br>Measures but rectified<br>by the Contractor |

Integrated Waste Management Facilities, Phase 1

|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Location /<br>Timing |                         | Imple | ement | tation | Stages* | Relevant                         | Implementation        |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|-------|-------|--------|---------|----------------------------------|-----------------------|
| EIA Ref   | Environmental Protection Measures<br>/ Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | Implementation<br>Agent | Des   | С     | 0      | Dec     | Legislation<br>and<br>Guidelines | Status and<br>Remarks |
|           | to disposal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                         |       |       |        |         |                                  |                       |
| 7b.8.3.46 | <ul> <li>Measures to minimise sewage effluent</li> <li>Temporary sanitary facilities, such as portable chemical toilets, should be employed on-site where necessary to handle sewage from the workforce.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Work site            | Contractor              |       | ✓     |        |         | EIAO-TM                          | N/A                   |
| 7b.8.3.47 | <ul> <li>Measures to minimise drainage and construction runoff</li> <li>Potential ecological impacts resulted from potential degradation of water quality due to unmitigated surface runoff could be minimised via the detailed mitigation measures in Section 5b.8 of the EIA Report. The following presents some of the mitigation measures:         <ul> <li>On-site drainage system with implemented sedimentation control facilities.</li> <li>Channels, earth bunds or sand bag barriers should be provided on site to direct storm water to silt removal facilities.</li> <li>Provision of embankment at boundaries of earthworks for flood protection.</li> <li>Water pumped out from foundation piles must be discharged into silt removal facilities.</li> <li>During rainstorms, exposed slope/soil surfaces should be covered by</li> </ul> </li> </ul> | Work site            | Contractor              |       | ✓     |        |         | EIAO-TM                          | N/A                   |

Integrated Waste Management Facilities, Phase 1

|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | Implementation<br>Agent | Impl | ementa | ation \$ | Stages* | Relevant                         | Implementation        |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|------|--------|----------|---------|----------------------------------|-----------------------|
| EIA Ref   | Environmental Protection Measures<br>/ Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                            | Location /<br>Timing |                         | Des  | С      | 0        | Dec     | Legislation<br>and<br>Guidelines | Status and<br>Remarks |
|           | <ul> <li>tarpaulin or other means, as far as practicable.</li> <li>Exposed soil surface should be minimized to reduce siltation and runoff.</li> <li>Earthwork final surfaces should be well compacted. Subsequent permanent surface protection should be immediately performed.</li> <li>Open stockpiles of construction materials, and construction wastes on-site should be covered with tarpaulin or similar fabric during rainstorms.</li> </ul> |                      |                         |      |        |          |         |                                  |                       |
| 7b.8.3.48 | <ul> <li>Measures to minimise impacts from general construction activities</li> <li>To avoid the entering of construction solid waste into the nearby habitats, construction solid waste should be collected, handled and disposed of properly to avoid entering to the nearby habitats. It is recommended to clean the construction sites on a regular basis.</li> </ul>                                                                             | Work site            | Contractor              |      | ~      |          |         | EIAO-TM                          | Implemented           |
| 7b.8.3.49 | Pest Control         Good waste management practices should be adopted at the IWMF in order to minimise the risk of introduction of pest to the island:         -       Transportation of wastes in enclosed containers         -       Waste storage area should be well maintained and cleaned                                                                                                                                                      | IWMF site            | IWMF operator           |      |        | ~        |         |                                  | N/A                   |

Integrated Waste Management Facilities, Phase 1

|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Location /<br>Timing | Implementation<br>Agent | Impl | ement | tation | Stages* | Relevant                         | Implementation        |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|------|-------|--------|---------|----------------------------------|-----------------------|
| EIA Ref   | Environmental Protection Measures<br>/ Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                         | Des  | С     | 0      | Dec     | Legislation<br>and<br>Guidelines | Status and<br>Remarks |
|           | <ul> <li>Waste should only be disposed of<br/>at designated areas</li> <li>Timely removal of the newly arrived<br/>waste</li> <li>Removal of items that are capable of<br/>retaining water</li> <li>Rapid clean up of any waste spillages</li> <li>Maintenance of a tidy and clean site<br/>environment</li> <li>Regular application of pest control</li> <li>Education of staff the importance of site</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                         |      |       |        |         |                                  |                       |
| 7b.8.3.50 | cleanliness<br><u>Control of Marine Habitat Quality during</u><br><u>Operation Phase</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IWMF site            | IWMF operator           |      |       | ✓      |         | EIAO-TM; WPCO                    | N/A                   |
|           | <ul> <li>Depending on the seabed condition of<br/>the approach channel for marine vessels<br/>during operation phase of the IWMF,<br/>maintenance dredging may be required to<br/>ensure safe access. In order to avoid<br/>degradation in water quality due to elevation<br/>in SS and dispersion of sediment plume<br/>due to dredging works, it is recommended<br/>that any future maintenance dredging<br/>works should not be carried out within<br/>100 m from the shore, similar to that<br/>of the dredging for anti-scouring<br/>protection layer during construction phase.<br/>All maintenance dredging works should<br/>be carried out with the implementation<br/>of silt curtain to control the dispersion of<br/>SS. The production rate should comply<br/>with the permit dredging rate and number</li> </ul> |                      |                         |      |       |        |         |                                  |                       |

Integrated Waste Management Facilities, Phase 1

|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | Implementation<br>Agent | Imple | ement | tation | Stages* | Relevant                         | Implementation        |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------|-------|-------|--------|---------|----------------------------------|-----------------------|
| EIA Ref  | Environmental Protection Measures<br>/ Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Location /<br>Timing         |                         | Des   | С     | 0      | Dec     | Legislation<br>and<br>Guidelines | Status and<br>Remarks |
|          | of grab per hour.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                         |       |       |        |         |                                  |                       |
| 7b.8.4.1 | Compensation of loss of important habitat of<br>Finless Porpoise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Waters<br>between Shek       | Project Proponent       | ~     |       | ~      |         | EIAO-TM                          | N/A                   |
| 7b.8.4.8 | Designation of Marine Park                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kwu Chau and<br>Soko Islands |                         |       |       |        |         |                                  |                       |
|          | <ul> <li>The Project Proponent has made a firm commitment to seek to designate a marine park of approximately 700 ha in the waters between Soko Islands and Shek Kwu Chau, in accordance with the statutory process stipulated in the Marine Parks Ordinance, as a compensation measure for the habitat loss arising from the construction of the IWMF at the artificial island near SKC.</li> <li>The Project Proponent shall seek to complete the designation by 2018 to tie in with the operation of the IWMF at the artificial island near SKC.</li> </ul> |                              |                         |       |       |        |         |                                  |                       |
|          | <ul> <li>A further study should be carried out to<br/>review relevant previous studies and collate<br/>available information on the ecological<br/>characters of the proposed area for<br/>marine park designation; and review<br/>available survey data for Finless Porpoise,<br/>water quality, fisheries, marine traffic and<br/>planned development projects in the vicinity.<br/>Based on the findings, ecological profiles of<br/>the proposed area for marine park<br/>designation should be established, and the</li> </ul>                            |                              |                         |       |       |        |         |                                  |                       |

Integrated Waste Management Facilities, Phase 1

|                           | / Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                     | Implementation<br>Agent | Imple                 | ement | tation | Stages* | Relevant                         | Implementation        |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------|-------------------------|-----------------------|-------|--------|---------|----------------------------------|-----------------------|
| EIA Ref                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Location<br>Timing                    | Timing              |                         | Des                   | С     | 0      | Dec     | Legislation<br>and<br>Guidelines | Status and<br>Remarks |
|                           | extent and location of the proposed marine<br>park be determined. The adequacy of<br>enhancement measures should also be<br>reviewed.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                     |                         |                       |       |        |         |                                  |                       |
|                           | <ul> <li>In addition, a management plan for the<br/>proposed marine park should be proposed,<br/>covering information on the responsible<br/>departments for operation and management<br/>(O&amp;M) of the marine park, as well as the<br/>O&amp;M duties of each of the departments<br/>involved. Consultation with relevant<br/>government departments and stakeholders<br/>should be conducted under the study. The<br/>study should be submitted to Director of<br/>Environmental Protection (DEP) for<br/>approval before the commencement of<br/>construction works.</li> </ul> |                                       |                     |                         |                       |       |        |         |                                  |                       |
|                           | • The Project Proponent should provide assistance to AFCD during the process of the marine park designation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                     |                         |                       |       |        |         |                                  |                       |
| 7b.8.5.1<br>-<br>7b.8.5.4 | Additional Enhancement or<br>Precautionary Measures Deployment of<br>Artificial Reefs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Within<br>proposed<br>marine<br>under | the<br>park<br>this | Project Proponent       | <ul> <li>✓</li> </ul> |       | •      |         | EIAO-TM                          | N/A                   |
|                           | • Deployment of artificial reefs (ARs) is an enhancement measure for the marine habitats. ARs are proposed to be deployed within the proposed marine park under this Project. The exact location, dimension and type of ARs to be deployed are to be                                                                                                                                                                                                                                                                                                                                  | study                                 |                     |                         |                       |       |        |         |                                  |                       |

Integrated Waste Management Facilities, Phase 1

Keppel Seghers – Zhen Hua Joint Venture

|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                         | Imple | ment | ation | Stages* | Relevant                         | Implementation        |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|-------|------|-------|---------|----------------------------------|-----------------------|
| EIA Ref | Environmental Protection Measures<br>/ Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                               | Location /<br>Timing | Implementation<br>Agent | Des   | С    | 0     | Dec     | Legislation<br>and<br>Guidelines | Status and<br>Remarks |
|         | further investigated along with the further<br>study of the proposed marine park under<br>this Project. The proposed ARs would be<br>deployed at the same time as the complete<br>designation of marine park.                                                                                                                                                                                                                                                                            |                      |                         |       |      |       |         |                                  |                       |
|         | Release of Fish Fry at Artificial Reefs and Marine<br>Park                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                         |       |      |       |         |                                  |                       |
|         | <ul> <li>Release of fish fry at the proposed ARs,<br/>as well as the proposed marine park under<br/>this study, should enhance the fish<br/>resources in the nearby waters, and<br/>subsequently food sources for Finless<br/>Porpoise. The proposed ARs with various<br/>micro-habitats would have the potential to<br/>provide shelter and nursery ground for the<br/>released fish fry. The frequency and<br/>quantity of fry to be released should be<br/>agreed by AFCD.</li> </ul> |                      |                         |       |      |       |         |                                  |                       |

\* Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | Implementation<br>Agent           |               | Imple | ement | ation | Stages* | Relevant                         | Implementation        |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------|---------------|-------|-------|-------|---------|----------------------------------|-----------------------|
| EIA Ref  | Environmental Protection Measures<br>/ Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Location /<br>Timing |                                   |               | Des   | С     | 0     | Dec     | Legislation<br>and<br>Guidelines | Status and<br>Remarks |
| 8b.8.1.2 | <ul> <li>Measure to minimize loss of and disturbance<br/>on fisheries resources</li> <li>Alteration to the phasing of works,<br/>construction method, and layout plan of the<br/>IWMF at the artificial island near SKC has<br/>been made. The total fishing ground to<br/>be permanently lost due to the project has<br/>been significantly reduced from ~50 ha to<br/>~31 ha. By adopting the current circular<br/>cells instead of the conventional<br/>seawall construction method, SS<br/>elevation would be greatly reduced,<br/>minimizing adverse impact on the health<br/>of fisheries resources.</li> </ul> | IWMF site            | Design<br>contractor              | team,         | ~     | ~     |       | ×       | EIAO-TM                          | N/A                   |
| 8b.8.1.3 | <ul> <li>Measure to minimize impingement and<br/>entrainment</li> <li>Provision of a screen at the water<br/>intake point for desalination plant would be<br/>essential to minimize the risk of<br/>impingement and entrainment of fisheries<br/>resources (including fish, larvae and egg)<br/>through the intake point.</li> </ul>                                                                                                                                                                                                                                                                                  | IWMF site            | Design<br>contractor,<br>operator | team,<br>IWMF | ~     |       | ~     |         | EIAO-TM                          | N/A                   |

#### Table B.6 Implementation Schedule for Fisheries Measures for the IWMF at the artificial island near SKC

Keppel Seghers – Zhen Hua Joint Venture

|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                           |                                               | Impl | ement | ation | Stages* | Relevant                         | Implementation                                                                                                                                            |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------|------|-------|-------|---------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| EIA Ref                   | Environmental Protection Measures<br>/ Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Location / Implementation<br>Timing Agent                                                                 |                                               |      | С     | 0     | Dec     | Legislation<br>and<br>Guidelines | Status and<br>Remarks                                                                                                                                     |
| 8b.8.1.6<br>8b.8.1.7<br>- | <ul> <li>Measures to control water quality</li> <li>No wastewater effluent, anti-fouling agent, heavy metals and other contaminants would be released during operation phase of the Project.</li> <li>Mitigation measures recommended in the water quality impact assessment during construction and operation would serve to protect fisheries resources from indirect impacts resulted from the Project</li> </ul>                                                                                                                                                                                                                                                                                                                                                          | Work site,<br>IWMF<br>site                                                                                | Design team,<br>contractor, IW MF<br>operator | ×    | ~     | ×     | ×       | EIAO-TM                          | Implemented,<br>deficiency on<br>deployed silt curtain<br>checking was spotted<br>Reminder was given to<br>Contractor on proper<br>silt curtains checking |
| 8b.8.1.7<br>-<br>8b.8.1.8 | <ul> <li>Additional Enhancement / Precautionary<br/>Measures</li> <li>Artificial Reefs (ARs) are proposed to be<br/>deployed within the proposed marine park<br/>under this Project as an enhancement<br/>measure for the marine habitats. This<br/>enhancement feature would bring positive<br/>impacts to the previously identified<br/>important spawning and nursery ground<br/>for fisheries resources.</li> <li>Release of Fish Fry at Artificial Reefs</li> <li>Release of fish fry has been proposed<br/>under this Project. The proposed deployment of<br/>ARs within the proposed marine park would<br/>provide shelter and nursery ground for the<br/>released fish fry. The frequency and quantity of<br/>fry to be released should be agreed by AFCD.</li> </ul> | Within the<br>proposed<br>marine park<br>in the waters<br>between Soko<br>Islands and<br>Shek Kwu<br>Chau |                                               | ×    |       | ×     |         | EIAO-TM                          | N/A                                                                                                                                                       |

\* Des - Design, C - Construction, O – Operation, and Dec - Decommissioning

|                     | Environmental Protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                          | Implementation | Imple | ement | ation | Stages* | Relevant                         | Implementation        |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------|-------|-------|-------|---------|----------------------------------|-----------------------|
| EIA Ref             | Measures / Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Location /<br>Timing                                     | Agent          | Des   | С     | 0     | Dec     | Legislation<br>and<br>Guidelines | Status and<br>Remarks |
| S10b.10<br>MLVC- 01 | Grass-hydroseeded bare soil surface and stock pile area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Work site /<br>During<br>construction<br>phase           | Contractor     |       | ~     |       |         |                                  | N/A                   |
| S10b.10<br>MLVC-02  | <ol> <li>Landscape Design         <ol> <li>Early planting using fast grow trees and tall shrubs at strategic locations within site as buffer to block view corridors to the site from the VSRs, and to locally screen haul roads, excavation works and site preparation works.</li> <li>Use of tree species of dense tree crown to serve as visual barrier.</li> <li>Hard and soft landscape treatment (e.g. trees and shrubs) of open areas within development to provide a background for the outdoor containers from open view, shade and shelter, and a green appearance from surrounding viewpoints.</li> </ol> </li> </ol> | Work site /<br>During design<br>& construction<br>phases | Contractor     | ×     |       |       |         |                                  | N/A                   |
|                     | <ul><li>4) Planting strip along the periphery of the project site.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                          |                |       |       |       |         |                                  |                       |
|                     | 5) Selected tree species suitable for the coastal condition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                          |                |       |       |       |         |                                  |                       |

# Table B.7 Implementation Schedule for Landscape and Visual Measures for the IWMF at the artificial island near SKC

|                    | Environmental Protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          | Implementation | Imple | ement | ation | Stages* | Relevant                         | Implementation        |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------|-------|-------|-------|---------|----------------------------------|-----------------------|
| EIA Ref            | Measures / Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Location /<br>Timing                                     | Agent          | Des   | С     | ο     | Dec     | Legislation<br>and<br>Guidelines | Status and<br>Remarks |
| S10b.10<br>MLVC-03 | <ul> <li><u>Adoption of Natural Features of the Existing</u><br/><u>Shoreline</u></li> <li>1) Use of boulders in different sizes and<br/>with the similar textures of the existing<br/>rocky shores for the construction of<br/>breakwater and artificial shoreline in order<br/>to blend into the existing natural shoreline.</li> </ul>                                                                                                                                                              | Work site /<br>During<br>construction<br>phase           | Contractor     |       | ~     |       |         |                                  | N/A                   |
|                    | 2) Use of cellular cofferdam together<br>with the natural boulders to form a<br>curvature shoreline for the reclamation<br>area to echo with the natural shoreline of<br>SKC.                                                                                                                                                                                                                                                                                                                          |                                                          |                |       |       |       |         |                                  |                       |
| S10b.10<br>MLVC-04 | <ul> <li><u>Greening Design (Rooftop &amp; Vertical Greening)</u></li> <li>1) Implementation of rooftop and vertical greening (vertical building envelope) along the periphery of each building block to increase the amenity value of the work, moderate temperature extremes and enhance building energy performance. The greening appearance of the building shall enhance its visual harmony with the natural surroundings as well as reduce the apparent visual mass of the structure.</li> </ul> | Work site /<br>During design<br>& construction<br>phases | Contractor     | ×     |       |       |         |                                  | N/A                   |
|                    | <ol> <li>Sufficient space between concrete<br/>enclosure and stack to minimize heat<br/>transfer.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |                |       |       |       |         |                                  |                       |
|                    | 3) Introduction of landscape decks at the stack to further enhance the overall natural and green concept unique for this site.                                                                                                                                                                                                                                                                                                                                                                         |                                                          |                |       |       |       |         |                                  |                       |

|                   | Environmental Protection                                                                                                                                                                                                                                                                                        |                                                | Implementation | Imple | ement        | ation | Stages* | Relevant                         | Implementation        |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------|-------|--------------|-------|---------|----------------------------------|-----------------------|
| EIA Ref           | Measures / Mitigation Measures                                                                                                                                                                                                                                                                                  | Location /<br>Timing                           | Agent          | Des   | С            | 0     | Dec     | Legislation<br>and<br>Guidelines | Status and<br>Remarks |
| S10b.10           | Visual Mitigation and Aesthetic Design                                                                                                                                                                                                                                                                          | Structures                                     | Contractor     | ~     | $\checkmark$ |       |         |                                  | N/A                   |
| MVC-01            | <ol> <li>Use of natural materials with recessive<br/>color to minimize the bulkiness of the<br/>building.</li> </ol>                                                                                                                                                                                            | in IWMF /<br>During<br>design &<br>constructio |                |       |              |       |         |                                  |                       |
|                   | <ol> <li>Adoption of innovative aesthetic design to<br/>the chimney to minimize or visually<br/>mitigate the massing of the chimney so as<br/>to reduce its visual impact to the<br/>surroundings.</li> </ol>                                                                                                   | n phases                                       |                |       |              |       |         |                                  |                       |
|                   | <ol> <li>Color of the chimney in a gradual<br/>changing manner to match with the<br/>color of the sky.</li> </ol>                                                                                                                                                                                               |                                                |                |       |              |       |         |                                  |                       |
|                   | <ol> <li>Provision of observation deck for public<br/>enjoyment at the top of the chimney to<br/>diminish the feeling of chimney.</li> </ol>                                                                                                                                                                    |                                                |                |       |              |       |         |                                  |                       |
|                   | <ul> <li>5) Provision of sky gardens between the two<br/>stacks to allow additional greening for<br/>enhancing the aesthetic quality.<br/>Maintenance access (elevator and<br/>staircase) from the ground floor to the sky<br/>gardens will be provided to allow<br/>maintenance of the sky gardens.</li> </ul> |                                                |                |       |              |       |         |                                  |                       |
|                   | <ol> <li>Integration of the visitor's walkway with<br/>different material façade design of<br/>incinerator plant to enhance the aesthetic<br/>quality.</li> </ol>                                                                                                                                               |                                                |                |       |              |       |         |                                  |                       |
| S10b.10<br>MVC-02 | Control of the security floodlight for<br>construction areas at night to avoid excessive<br>glare to the surrounding receiver.                                                                                                                                                                                  | Work site /<br>During<br>construction<br>phase | Contractor     |       | ✓            |       |         |                                  | Implemented           |

|                    | Environmental Protection                                                                                                                                                                                                                                                                                                                    |                                                          | Implementation | Imple | ement | ation | Stages* | Relevant                         | Implementation        |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------|-------|-------|-------|---------|----------------------------------|-----------------------|
| EIA Ref            | Measures / Mitigation Measures                                                                                                                                                                                                                                                                                                              | Location /<br>Timing                                     | Agent          | Des   | С     | 0     | Dec     | Legislation<br>and<br>Guidelines | Status and<br>Remarks |
| S10b.10<br>MVC-03  | Optimization of the construction sequence<br>and construction programme to minimize the<br>duration of impact.                                                                                                                                                                                                                              | Work site /<br>During design<br>& construction<br>phases | Contractor     | ~     | ~     |       |         |                                  | Implemented           |
| S10b.10<br>MVC-04  | Storage of the backfilling materials for<br>site formation & construction materials /<br>wastes on site at a maximum height of 2m,<br>covered with an impermeable material of<br>visually un-obtrusive material (in earth tone).                                                                                                            | Work site /<br>During<br>construction<br>phase           | Contractor     |       | ~     |       |         |                                  | N/A                   |
| S10b.10<br>MVC-05  | Reduction of the number of construction traffic at the site to practical minimum.                                                                                                                                                                                                                                                           | Work site /<br>During<br>construction<br>phase           | Contractor     |       | ~     |       |         |                                  | Implemented           |
| S10b.10<br>MLVO-01 | Planting Maintenance<br>Provision of proper planting maintenance and<br>replacement of defective plant species on the<br>new planting areas to enhance aesthetic and<br>landscape quality.                                                                                                                                                  | Project site /<br>During<br>Operation<br>phase           | Contractor     |       |       | ~     |         |                                  | N/A                   |
| S10b.10<br>MVO-01  | Environmental Education Centre<br>Development of an Environmental Education<br>Center, in which regular exhibitions and<br>lectures to promote environmental<br>awareness and waste reduction concept<br>would be provided, as a part of the IWMF<br>for the general public to alleviate negative<br>public perceptions of the development. | Project site /<br>During<br>Operation<br>phase           | Contractor     |       |       | ~     |         |                                  | N/A                   |
| S10b.10<br>MVO-02  | <u>Control of Light</u><br>Control the numbers of lights and their<br>intensity to a level that is good enough to<br>meet the safety requirements at night but not<br>excessive.                                                                                                                                                            | Project site /<br>During<br>Operation<br>phase           | Contractor     |       |       | ✓     |         |                                  | N/A                   |

Keppel Seghers – Zhen Hua Joint Venture

|                   | Environmental Protection                                                                                                                                                    |                                                | Implementation | Imple | ementa | tion | Stages* | Relevant                         | Implementation        |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------|-------|--------|------|---------|----------------------------------|-----------------------|
| EIA Ref           | Measures / Mitigation Measures                                                                                                                                              | Location /<br>Timing                           | Agent          | Des   | С      | 0    | Dec     | Legislation<br>and<br>Guidelines | Status and<br>Remarks |
| S10b.10<br>MVO-03 | <u>Control of Operation Time</u><br>Minimization of the frequency of waste<br>transportation to practical minimum (e.g.<br>limit the reception of MSW from 8 am to 8<br>pm) | Project site /<br>During<br>Operation<br>phase | Contractor     |       |        | ✓    |         |                                  | N/A                   |

\* Des - Design, C - Construction, O – Operation, and Dec - Decommissioning

# Appendix C Impact Monitoring Schedule of the Reporting Month

|     |                                                                           | Impact Monitoring Schedule for IWMF                           |                                                                               |                                                                              |                                                                                         |  |  |  |  |  |  |  |  |  |  |
|-----|---------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
|     |                                                                           |                                                               | Nov-18                                                                        |                                                                              |                                                                                         |  |  |  |  |  |  |  |  |  |  |
| Sun | Mon                                                                       | Tue                                                           | Wed                                                                           | Thu                                                                          | Fri                                                                                     |  |  |  |  |  |  |  |  |  |  |
|     |                                                                           |                                                               |                                                                               | 1                                                                            | 2                                                                                       |  |  |  |  |  |  |  |  |  |  |
|     |                                                                           |                                                               |                                                                               | Impact                                                                       |                                                                                         |  |  |  |  |  |  |  |  |  |  |
|     |                                                                           |                                                               |                                                                               | Water Quality monitoring for B1, B2, B3, B4, H1, C1, C2<br>F1, CR1, CR2 & M1 |                                                                                         |  |  |  |  |  |  |  |  |  |  |
|     |                                                                           |                                                               |                                                                               | % Mid-filed monitoring at B1, B2, B3, B4, H1, C1, C2,<br>F1, CR1, CR2 & M1   |                                                                                         |  |  |  |  |  |  |  |  |  |  |
|     |                                                                           |                                                               |                                                                               | Tidal Period:                                                                |                                                                                         |  |  |  |  |  |  |  |  |  |  |
|     |                                                                           |                                                               |                                                                               | Ebb Tide: 01:29-09:57<br>Flood Tide: 09:57-18:36                             |                                                                                         |  |  |  |  |  |  |  |  |  |  |
|     |                                                                           |                                                               |                                                                               | <u>Monitoring Time:</u><br><b>*#</b> Mid-ebb: 08:00-09:31                    |                                                                                         |  |  |  |  |  |  |  |  |  |  |
|     |                                                                           |                                                               |                                                                               | Mid-flood: 12:31-16:01                                                       |                                                                                         |  |  |  |  |  |  |  |  |  |  |
|     |                                                                           |                                                               |                                                                               | Actual Monitoring Time:<br>Mid-ebb: 09:18-12:43                              |                                                                                         |  |  |  |  |  |  |  |  |  |  |
|     |                                                                           |                                                               | 7                                                                             | 0                                                                            | 0                                                                                       |  |  |  |  |  |  |  |  |  |  |
| 4   | J                                                                         | o<br>Impact                                                   | /<br>Impact                                                                   | 8                                                                            | 9<br>Impact                                                                             |  |  |  |  |  |  |  |  |  |  |
|     | Water Quality monitoring for B1, B2, B3, B4, H1,                          | C1, Ecology monitoring for Marine Mammals by Vessel-          | Water Quality monitoring for B1, B2, B3, B4, H1, C1,                          |                                                                              | Water Quality monitoring for B1, B2, B3, B4,                                            |  |  |  |  |  |  |  |  |  |  |
|     | C2, F1, CR1, CR2 & M1<br>Tidal Period:                                    | based Line-transect Survey                                    | C2, F1, CR1, CR2 & M1<br>Tidal Period:                                        |                                                                              | C2, F1, CR1, CR2 & M1<br><u>Tidal Period:</u>                                           |  |  |  |  |  |  |  |  |  |  |
|     | Ebb Tide: 07:36-13:34                                                     |                                                               | Ebb Tide: 09:24 - 14:45                                                       |                                                                              | Ebb Tide: 11:09 - 15:49                                                                 |  |  |  |  |  |  |  |  |  |  |
|     | Flood Tide: 13:34-20:14<br>Monitoring Time:                               |                                                               | Flood Tide:15:45 - 20:59<br>Monitoring Time:                                  |                                                                              | Flood Tide: 15:49 - 21:56<br>Monitoring Time:                                           |  |  |  |  |  |  |  |  |  |  |
|     | Mid-ebb: 08:50-12:20                                                      |                                                               | Mid-ebb: 10:19 - 13:49                                                        |                                                                              | Mid-ebb: 11:44 - 15:14                                                                  |  |  |  |  |  |  |  |  |  |  |
|     | Mid-flood: 15:09-18:39                                                    |                                                               | Mid-flood: 16:07 - 19:37                                                      |                                                                              | Mid-flood: 17:07 - 20:37                                                                |  |  |  |  |  |  |  |  |  |  |
|     | Daytime Noise monitoring for M1, M2 & M3                                  |                                                               |                                                                               |                                                                              |                                                                                         |  |  |  |  |  |  |  |  |  |  |
|     |                                                                           |                                                               |                                                                               |                                                                              |                                                                                         |  |  |  |  |  |  |  |  |  |  |
| 11  | 12                                                                        | 13                                                            | 14                                                                            | 15                                                                           | 16                                                                                      |  |  |  |  |  |  |  |  |  |  |
|     | Impact<br>Daytime Noise monitoring for M1, M2 & M3                        | Impact<br>Water Quality monitoring for B1, B2, B3, B4, H1, C1 |                                                                               | Impact<br>Water Quality monitoring for B1, B2, B3, B4, H1, C1                |                                                                                         |  |  |  |  |  |  |  |  |  |  |
|     | Dayune Noise montoring for M1, M2 & M5                                    | C2, F1, CR1, CR2 & M1                                         | ,                                                                             | C2, F1, CR1, CR2 & M1                                                        |                                                                                         |  |  |  |  |  |  |  |  |  |  |
|     |                                                                           | Tidal Period:                                                 |                                                                               | <u>Tidal Period:</u>                                                         |                                                                                         |  |  |  |  |  |  |  |  |  |  |
|     |                                                                           | Ebb Tide: 14:34 - 16:18<br>Flood Tide: 07:10 - 14:34          |                                                                               | Ebb Tide: 00:00 - 09:00<br>Flood Tide: 09:00 - 18:00                         |                                                                                         |  |  |  |  |  |  |  |  |  |  |
|     |                                                                           | Monitoring Time:                                              |                                                                               | Monitoring Time:                                                             |                                                                                         |  |  |  |  |  |  |  |  |  |  |
|     |                                                                           | \$# Mid-ebb: 14:39 - 16:12<br>Mid-flood: 09:07 - 12:37        |                                                                               | *#\$ Mid-ebb: 08:00 - 08:54<br>Mid-flood: 14:00 - 17:30                      |                                                                                         |  |  |  |  |  |  |  |  |  |  |
|     |                                                                           |                                                               |                                                                               |                                                                              |                                                                                         |  |  |  |  |  |  |  |  |  |  |
|     |                                                                           |                                                               |                                                                               |                                                                              |                                                                                         |  |  |  |  |  |  |  |  |  |  |
| 18  | 19                                                                        | 20                                                            | 21                                                                            | 22                                                                           | 23                                                                                      |  |  |  |  |  |  |  |  |  |  |
| 10  | 19<br>Impact                                                              |                                                               | ZI<br>Impact                                                                  | 22                                                                           | ZS<br>Impact                                                                            |  |  |  |  |  |  |  |  |  |  |
|     | Water Quality monitoring for B1, B2, B3, B4, H1,                          | СІ,                                                           | Water Quality monitoring for B1, B2, B3, B4, H1, C1,                          |                                                                              | Ecology monitroing for WBSE                                                             |  |  |  |  |  |  |  |  |  |  |
|     | C2, F1, CR1, CR2 & M1<br>Tidal Period:                                    |                                                               | C2, F1, CR1, CR2 & M1<br><u>Tidal Period:</u>                                 |                                                                              | Coral Re-tagging at Indirect Impact Sit<br>Water Quality monitoring for B1, B2, B3, B4, |  |  |  |  |  |  |  |  |  |  |
|     | Ebb Tide: 05:43 - 12:26                                                   |                                                               | Ebb Tide: 07:59 - 13:35                                                       |                                                                              | C2, F1, CR1, CR2 & M1                                                                   |  |  |  |  |  |  |  |  |  |  |
|     | Flood Tide: 12:26 - 19:43                                                 |                                                               | Flood Tode: 13:35 - 20:09                                                     |                                                                              | Tidal Period:                                                                           |  |  |  |  |  |  |  |  |  |  |
|     | <u>Monitoring Time:</u><br><b>*#</b> Mid-ebb: 08:00 - 10:49               |                                                               | <u>Monitoring Time:</u><br>Mid-ebb: 09:02 - 12:32                             |                                                                              | Ebb Tide: 09:44 - 14:43<br>Flood Tide: 14:43 - 21:02                                    |  |  |  |  |  |  |  |  |  |  |
|     | Mid-flood: 14:19 - 17:49                                                  |                                                               | Mid-flood: 15:07 - 18:37                                                      |                                                                              | Monitoring Time:                                                                        |  |  |  |  |  |  |  |  |  |  |
|     | Daytime Noise monitoring for M1, M2 & M3                                  |                                                               |                                                                               |                                                                              | Mid-ebb: 10:28 - 13:58<br>Mid-flood: 16:07 - 19:37                                      |  |  |  |  |  |  |  |  |  |  |
|     |                                                                           |                                                               |                                                                               |                                                                              |                                                                                         |  |  |  |  |  |  |  |  |  |  |
| 25  | 26                                                                        | 27                                                            | 28                                                                            | 29                                                                           | 30                                                                                      |  |  |  |  |  |  |  |  |  |  |
|     | Impact                                                                    |                                                               | Impact                                                                        |                                                                              | Impact                                                                                  |  |  |  |  |  |  |  |  |  |  |
|     | Water Quality monitoring for B1, B2, B3, B4, H1,<br>C2, F1, CR1, CR2 & M1 | Cl,                                                           | Water Quality monitoring for B1, B2, B3, B4, H1, C1,<br>C2, F1, CR1, CR2 & M1 | ,                                                                            | Water Quality monitoring for B1, B2, B3, B4,<br>C2, F1, CR1, CR2 & M1                   |  |  |  |  |  |  |  |  |  |  |
|     | Tidal Period:                                                             |                                                               | Tidal Period:                                                                 |                                                                              | Tidal Period:                                                                           |  |  |  |  |  |  |  |  |  |  |
|     | Ebb Tide: 12:35 - 16:20<br>Flood Tide: 05:33 - 12:35                      |                                                               | Ebb Tide: 14:48 - 18:00<br>Flood Tode: 7:24 - 14:48                           |                                                                              | Ebb Tide: 17:24 - 20:33<br>Flood Tode: 09:28 - 17:24                                    |  |  |  |  |  |  |  |  |  |  |
|     | Monitoring Time:                                                          |                                                               | Monitoring Time:                                                              |                                                                              | Monitoring Time:                                                                        |  |  |  |  |  |  |  |  |  |  |
|     | Mid-ebb: 12:42 - 16:12<br><b>*#</b> Mid-flood: 08:00 - 10:49              |                                                               | <b>\$#</b> Mid-ebb: 14:57 - 17:50<br>Mid-flood: 00:21 - 12:51                 |                                                                              | <b>\$#</b> Mid-ebb: 17:33- 20:23                                                        |  |  |  |  |  |  |  |  |  |  |
|     | The Mid-flood: 08:00 - 10:49<br>Daytime Noise monitoring for M1, M2 & M3  |                                                               | Mid-flood: 09:21 - 12:51                                                      |                                                                              | Mid-flood: 11:41 - 15:11                                                                |  |  |  |  |  |  |  |  |  |  |
|     |                                                                           |                                                               |                                                                               |                                                                              |                                                                                         |  |  |  |  |  |  |  |  |  |  |
|     |                                                                           |                                                               |                                                                               |                                                                              |                                                                                         |  |  |  |  |  |  |  |  |  |  |
|     |                                                                           |                                                               |                                                                               |                                                                              |                                                                                         |  |  |  |  |  |  |  |  |  |  |

Remarks:

1. Daytime Noise Monitoring (07:00-1900), Evening Time Noise Monitoring (1900-2300), Night Time Noise Monitoring (2300-0700)

Water Quality Monitoring for \$1,\$2 and \$3 will only conduct during DCM works, refer to Detailed DCM Plan
 Coral re-tagging at Control Site scheduled on 23/11 will be postponed to December 2018 due to adverse weather.

Note:

% - cancelled due to incident or adverse weather

\* - as per Marine Department Notice No 107 of 2018, all vessels employed for the works should stay in the works area outside the hours of works (0700 to 2300). Due to safty concern, Water Quality Monitoring would start at 0800 and end at 2200. # - Prioritized routing: Mid-Ebb:  $C1 \rightarrow S3 \rightarrow CR2 \rightarrow CR1 \rightarrow H1 \rightarrow Remaining stations$  and Mid-Flood:  $C2 \rightarrow CR1 \rightarrow S3 \rightarrow CR2 \rightarrow H1 \rightarrow Remaining stations$ \$ - Since predicted tide is shorter than 3.5 hours, method of 90% tidal period as monitoring time is approached.

|                     | Sat                                                                                                                                                                                                                                                        |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | 3                                                                                                                                                                                                                                                          |
|                     | Impact<br>Water Quality monitoring for B1, B2, B3, B4, H1, C1,<br>C2, F1, CR1, CR2 & M1<br><u>Tidal Period:</u><br>Ebb Tide: 05:23-12:06<br>Flood Tide: 12:06-19:29<br><u>Monitoring Time:</u><br><b>*#</b> Mid-ebb: 08:00-11:45<br>Mid-flood: 14:02-17:32 |
|                     | 10                                                                                                                                                                                                                                                         |
| 14, H1, C1,         |                                                                                                                                                                                                                                                            |
|                     | 17                                                                                                                                                                                                                                                         |
|                     | Impact Water Quality monitoring for B1, B2, B3, B4, H1, C1, C2, F1, CR1, CR2 & M1 <u>Tidal Period:</u> Ebb Tida: 02:00 - 11:02 Flood Tide: 11:02 - 19:13 <u>Monitoring Time:</u> *# Mid-ebb: 08:00 - 10:44 Mid-flood: 13:22 - 16:52                        |
|                     | 24                                                                                                                                                                                                                                                         |
| Site<br>14, H1, C1, |                                                                                                                                                                                                                                                            |
| 4, HI, CI,          |                                                                                                                                                                                                                                                            |

# Appendix D Water Quality Monitoring Data

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| Location | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | pH   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----------|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| C1       | 20181101               | Gale    | Strong           | Mid-Ebb   | В                        | 10.6         | 9:18  | 7.89         | 8.14 | 30.14     | 24.2      | 4.54                        | 15        | -                             | -                            | -                 |
| C1       | 20181101               | Gale    | Strong           | Mid-Ebb   | В                        | 10.6         | 9:18  | 7.92         | 8.2  | 30.08     | 24.1      | 4.54                        | 15        | -                             | -                            | -                 |
| C1       | 20181101               | Gale    | Strong           | Mid-Ebb   | М                        | 5.8          | 9:18  | 7.95         | 8.1  | 30.15     | 24.1      | 3.16                        | 14        | -                             | -                            | -                 |
| C1       | 20181101               | Gale    | Strong           | Mid-Ebb   | М                        | 5.8          | 9:19  | 7.95         | 8.18 | 30.18     | 24.2      | 3.18                        | 16        | -                             | -                            | -                 |
| C1       | 20181101               | Gale    | Strong           | Mid-Ebb   | S                        | 1            | 9:19  | 7.98         | 8.06 | 30.18     | 24.2      | 3.23                        | 13        | -                             | -                            | -                 |
| C1       | 20181101               | Gale    | Strong           | Mid-Ebb   | S                        | 1            | 9:19  | 8.02         | 8.07 | 30.06     | 24.1      | 3.23                        | 15        | -                             | -                            | -                 |
| H1       | 20181101               | Gale    | Strong           | Mid-Ebb   | В                        | 7.2          | 9:57  | 7.75         | 8.11 | 30.18     | 24.1      | 5.87                        | 15        | -                             | -                            | -                 |
| H1       | 20181101               | Gale    | Strong           | Mid-Ebb   | В                        | 7.2          | 9:57  | 7.77         | 8.08 | 30.14     | 24.1      | 5.86                        | 14        | -                             | -                            | -                 |
| H1       | 20181101               | Gale    | Strong           | Mid-Ebb   | М                        | 4.1          | 9:58  | 7.73         | 8.14 | 30.09     | 24.1      | 3.87                        | 17        | -                             | -                            | -                 |
| H1       | 20181101               | Gale    | Strong           | Mid-Ebb   | М                        | 4.1          | 9:58  | 7.73         | 8.19 | 30.08     | 24.2      | 3.9                         | 16        | -                             | -                            | -                 |
| H1       | 20181101               | Gale    | Strong           | Mid-Ebb   | S                        | 1            | 9:58  | 7.72         | 8.19 | 30.14     | 24.1      | 2.91                        | 19        | -                             | -                            | -                 |
| H1       | 20181101               | Gale    | Strong           | Mid-Ebb   | S                        | 1            | 9:59  | 7.7          | 8.19 | 30.1      | 24.1      | 2.88                        | 17        | -                             | -                            | -                 |
| CR2      | 20181101               | Gale    | Strong           | Mid-Ebb   | В                        | 7.6          | 10:22 | 7.74         | 8.08 | 30.1      | 24.2      | 5.05                        | 13        | -                             | -                            | -                 |
| CR2      | 20181101               | Gale    | Strong           | Mid-Ebb   | В                        | 7.6          | 10:22 | 7.73         | 8.19 | 30.12     | 24.1      | 5.04                        | 14        | -                             | -                            | -                 |
| CR2      | 20181101               | Gale    | Strong           | Mid-Ebb   | М                        | 4.3          | 10:23 | 7.74         | 8.19 | 30.1      | 24.1      | 4.58                        | 13        | -                             | -                            | -                 |
| CR2      | 20181101               | Gale    | Strong           | Mid-Ebb   | М                        | 4.3          | 10:23 | 7.74         | 8.1  | 30.06     | 24.2      | 4.54                        | 13        | -                             | -                            | -                 |
| CR2      | 20181101               | Gale    | Strong           | Mid-Ebb   | S                        | 1            | 10:24 | 7.74         | 8.18 | 30.09     | 24.1      | 3.23                        | 14        | -                             | -                            | -                 |
| CR2      | 20181101               | Gale    | Strong           | Mid-Ebb   | S                        | 1            | 10:24 | 7.74         | 8.06 | 30.09     | 24.1      | 3.24                        | 14        | -                             | -                            | -                 |
| CR1      | 20181101               | Gale    | Strong           | Mid-Ebb   | В                        | 7.6          | 10:43 | 7.78         | 8.14 | 30.17     | 24.2      | 5.23                        | 16        | -                             | -                            | -                 |
| CR1      | 20181101               | Gale    | Strong           | Mid-Ebb   | В                        | 7.6          | 10:44 | 7.78         | 8.08 | 30.16     | 24.2      | 5.25                        | 15        | -                             | -                            | -                 |
| CR1      | 20181101               | Gale    | Strong           | Mid-Ebb   | М                        | 4.3          | 10:44 | 7.79         | 8.12 | 30.19     | 24.2      | 3.9                         | 15        | -                             | -                            | -                 |
| CR1      | 20181101               | Gale    | Strong           | Mid-Ebb   | М                        | 4.3          | 10:45 | 7.77         | 8.12 | 30.09     | 24.1      | 3.87                        | 15        | -                             | -                            | -                 |
| CR1      | 20181101               | Gale    | Strong           | Mid-Ebb   | S                        | 1            | 10:45 | 7.75         | 8.1  | 30.08     | 24.1      | 3.16                        | 15        | -                             | -                            | -                 |
| CR1      | 20181101               | Gale    | Strong           | Mid-Ebb   | S                        | 1            | 10:45 | 7.73         | 8.16 | 30.09     | 24.2      | 3.19                        | 15        | -                             | -                            | -                 |
| C2       | 20181101               | Gale    | Strong           | Mid-Flood | В                        | 9.2          | 10:46 | 7.92         | 8.09 | 30.15     | 24.2      | 5.75                        | 12        | -                             | -                            | -                 |
| C2       | 20181101               | Gale    | Strong           | Mid-Flood | В                        | 9.2          | 10:46 | 7.89         | 8.16 | 30.06     | 24.1      | 5.77                        | 12        | -                             | -                            | -                 |
| C2       | 20181101               | Gale    | Strong           | Mid-Flood | М                        | 5.1          | 10:46 | 7.93         | 8.09 | 30.06     | 24.1      | 4.04                        | 11        | -                             | -                            | -                 |
| C2       | 20181101               | Gale    | Strong           | Mid-Flood | М                        | 5.1          | 10:47 | 7.94         | 8.13 | 30.19     | 24.1      | 4.04                        | 11        | -                             | -                            | -                 |
| C2       | 20181101               | Gale    | Strong           | Mid-Flood | S                        | 1            | 10:47 | 7.95         | 8.09 | 30.13     | 24.2      | 3.87                        | 10        | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| Location | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----------|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| C2       | 20181101               | Gale    | Strong           | Mid-Flood | S                        | 1            | 10:48 | 7.99         | 8.1  | 30.1      | 24.2      | 3.86                        | 10        | -                             | -                            | -                 |
| C1       | 20181103               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 10           | 9:53  | 8.23         | 8.23 | 31.2      | 24.3      | 5.71                        | 10        | -                             | -                            | -                 |
| C1       | 20181103               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 10           | 9:53  | 8.23         | 8.2  | 31.1      | 24.3      | 5.71                        | 10        | -                             | -                            | -                 |
| C1       | 20181103               | Cloudy  | Moderate         | Mid-Ebb   | М                        | 5.5          | 9:53  | 8.23         | 8.25 | 31.2      | 24.3      | 2.56                        | 8         | -                             | -                            | -                 |
| C1       | 20181103               | Cloudy  | Moderate         | Mid-Ebb   | М                        | 5.5          | 9:54  | 8.21         | 8.24 | 31.09     | 24.3      | 2.54                        | 10        | -                             | -                            | -                 |
| C1       | 20181103               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 9:54  | 8.21         | 8.26 | 31.19     | 24.3      | 2.91                        | 8         | -                             | -                            | -                 |
| C1       | 20181103               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 9:54  | 8.2          | 8.24 | 31.08     | 24.3      | 2.91                        | 8         | -                             | -                            | -                 |
| CR2      | 20181103               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 7.8          | 10:26 | 7.96         | 8.27 | 31.11     | 24.4      | 5.66                        | 19        | -                             | -                            | -                 |
| CR2      | 20181103               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 7.8          | 10:26 | 7.95         | 8.28 | 31.02     | 24.3      | 5.65                        | 21        | -                             | -                            | -                 |
| CR2      | 20181103               | Cloudy  | Moderate         | Mid-Ebb   | М                        | 4.4          | 10:27 | 7.92         | 8.27 | 31.03     | 24.3      | 3.83                        | 12        | -                             | -                            | -                 |
| CR2      | 20181103               | Cloudy  | Moderate         | Mid-Ebb   | М                        | 4.4          | 10:27 | 7.93         | 8.23 | 31.06     | 24.3      | 3.84                        | 12        | -                             | -                            | -                 |
| CR2      | 20181103               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 10:27 | 7.93         | 8.29 | 31.03     | 24.4      | 2.11                        | 15        | -                             | -                            | -                 |
| CR2      | 20181103               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 10:28 | 7.92         | 8.18 | 31.15     | 24.4      | 2.13                        | 17        | -                             | -                            | -                 |
| CR1      | 20181103               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 7.4          | 10:50 | 7.98         | 8.29 | 31.14     | 24.3      | 5.9                         | 5         | -                             | -                            | -                 |
| CR1      | 20181103               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 7.4          | 10:50 | 8            | 8.25 | 31.2      | 24.3      | 5.92                        | 4         | -                             | -                            | -                 |
| CR1      | 20181103               | Cloudy  | Moderate         | Mid-Ebb   | М                        | 4.2          | 10:51 | 8.02         | 8.25 | 31.18     | 24.4      | 2.82                        | 4         | -                             | -                            | -                 |
| CR1      | 20181103               | Cloudy  | Moderate         | Mid-Ebb   | М                        | 4.2          | 10:51 | 8.01         | 8.17 | 31.17     | 24.4      | 2.8                         | 5         | -                             | -                            | -                 |
| CR1      | 20181103               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 10:52 | 8.02         | 8.19 | 31.17     | 24.3      | 2.65                        | 6         | -                             | -                            | -                 |
| CR1      | 20181103               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 10:52 | 8.01         | 8.16 | 31.2      | 24.4      | 2.64                        | 5         | -                             | -                            | -                 |
| H1       | 20181103               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 7.8          | 11:11 | 8.24         | 8.19 | 31.17     | 24.4      | 4.84                        | 14        | -                             | -                            | -                 |
| H1       | 20181103               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 7.8          | 11:12 | 8.24         | 8.19 | 31.15     | 24.3      | 4.82                        | 14        | -                             | -                            | -                 |
| H1       | 20181103               | Cloudy  | Moderate         | Mid-Ebb   | М                        | 4.4          | 11:12 | 8.26         | 8.24 | 31.09     | 24.4      | 2.87                        | 17        | -                             | -                            | -                 |
| H1       | 20181103               | Cloudy  | Moderate         | Mid-Ebb   | М                        | 4.4          | 11:13 | 8.26         | 8.2  | 31.14     | 24.4      | 2.85                        | 17        | -                             | -                            | -                 |
| H1       | 20181103               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 11:13 | 8.22         | 8.19 | 31.19     | 24.3      | 2.89                        | 21        | -                             | -                            | -                 |
| H1       | 20181103               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 11:13 | 8.18         | 8.25 | 31.06     | 24.3      | 2.89                        | 23        | -                             | -                            | -                 |
| B1       | 20181103               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 4.2          | 11:46 | 8.08         | 8.23 | 31.1      | 24.3      | 5.1                         | 9         | -                             | -                            | -                 |
| B1       | 20181103               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 4.2          | 11:46 | 8.08         | 8.27 | 31.01     | 24.4      | 5.1                         | 10        | -                             | -                            | -                 |
| B1       | 20181103               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 11:46 | 8.07         | 8.24 | 31.19     | 24.3      | 3.08                        | 10        | -                             | -                            | -                 |
| B1       | 20181103               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 11:47 | 8.07         | 8.21 | 31.09     | 24.3      | 3.08                        | 10        | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| Location | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal   | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----------|------------------------|---------|------------------|---------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| B2       | 20181103               | Cloudy  | Moderate         | Mid-Ebb | В                        | 4.1          | 12:05 | 8.1          | 8.17 | 31.08     | 24.4      | 4.52                        | 11        | -                             | -                            | -                 |
| B2       | 20181103               | Cloudy  | Moderate         | Mid-Ebb | В                        | 4.1          | 12:06 | 8.1          | 8.24 | 31.07     | 24.3      | 4.5                         | 12        | -                             | -                            | -                 |
| B2       | 20181103               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 12:06 | 8.08         | 8.28 | 31.2      | 24.4      | 3.27                        | 8         | -                             | -                            | -                 |
| B2       | 20181103               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 12:06 | 8.03         | 8.16 | 31.1      | 24.4      | 3.27                        | 7         | -                             | -                            | -                 |
| B3       | 20181103               | Cloudy  | Moderate         | Mid-Ebb | В                        | 4.5          | 12:37 | 7.92         | 8.27 | 31.19     | 24.4      | 4.42                        | 7         | -                             | -                            | -                 |
| B3       | 20181103               | Cloudy  | Moderate         | Mid-Ebb | В                        | 4.5          | 12:37 | 7.9          | 8.16 | 31.18     | 24.4      | 4.41                        | 9         | -                             | -                            | -                 |
| B3       | 20181103               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 12:38 | 7.88         | 8.28 | 31.02     | 24.4      | 1.32                        | 12        | -                             | -                            | -                 |
| В3       | 20181103               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 12:38 | 7.91         | 8.26 | 31.12     | 24.4      | 1.3                         | 13        | -                             | -                            | -                 |
| B4       | 20181103               | Cloudy  | Moderate         | Mid-Ebb | В                        | 4.4          | 12:45 | 8.28         | 8.23 | 31.18     | 24.3      | 5.39                        | 9         | -                             | -                            | -                 |
| B4       | 20181103               | Cloudy  | Moderate         | Mid-Ebb | В                        | 4.4          | 12:46 | 8.27         | 8.28 | 31.13     | 24.3      | 5.43                        | 10        | -                             | -                            | -                 |
| B4       | 20181103               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 12:46 | 8.29         | 8.24 | 31.15     | 24.4      | 3.17                        | 12        | -                             | -                            | -                 |
| B4       | 20181103               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 12:46 | 8.29         | 8.19 | 31.18     | 24.4      | 3.17                        | 12        | -                             | -                            | -                 |
| C2       | 20181103               | Cloudy  | Moderate         | Mid-Ebb | В                        | 8.6          | 12:56 | 7.94         | 8.24 | 31.2      | 24.3      | 4.25                        | 12        | -                             | -                            | -                 |
| C2       | 20181103               | Cloudy  | Moderate         | Mid-Ebb | В                        | 8.6          | 12:56 | 7.97         | 8.26 | 31.06     | 24.3      | 4.22                        | 12        | -                             | -                            | -                 |
| C2       | 20181103               | Cloudy  | Moderate         | Mid-Ebb | М                        | 5.8          | 12:57 | 7.97         | 8.21 | 31.05     | 24.3      | 2.39                        | 10        | -                             | -                            | -                 |
| C2       | 20181103               | Cloudy  | Moderate         | Mid-Ebb | М                        | 5.8          | 12:57 | 7.96         | 8.23 | 31.13     | 24.4      | 2.37                        | 10        | -                             | -                            | -                 |
| C2       | 20181103               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 12:57 | 7.96         | 8.21 | 31.15     | 24.3      | 1.27                        | 9         | -                             | -                            | -                 |
| C2       | 20181103               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 12:58 | 7.98         | 8.19 | 31.01     | 24.3      | 1.29                        | 10        | -                             | -                            | -                 |
| F1       | 20181103               | Cloudy  | Moderate         | Mid-Ebb | В                        | 7.6          | 13:22 | 8.29         | 8.16 | 31.04     | 24.3      | 5.27                        | 8         | -                             | -                            | -                 |
| F1       | 20181103               | Cloudy  | Moderate         | Mid-Ebb | В                        | 7.6          | 13:23 | 8.29         | 8.28 | 31.15     | 24.3      | 5.26                        | 8         | -                             | -                            | -                 |
| F1       | 20181103               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.3          | 13:23 | 8.27         | 8.3  | 31.02     | 24.3      | 4.81                        | 7         | -                             | -                            | -                 |
| F1       | 20181103               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.3          | 13:23 | 8.28         | 8.25 | 31.17     | 24.3      | 4.79                        | 7         | -                             | -                            | -                 |
| F1       | 20181103               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 13:24 | 8.28         | 8.25 | 31.17     | 24.3      | 3.6                         | 8         | -                             | -                            | -                 |
| F1       | 20181103               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 13:24 | 8.26         | 8.21 | 31.04     | 24.3      | 3.59                        | 7         | -                             | -                            | -                 |
| M1       | 20181103               | Cloudy  | Moderate         | Mid-Ebb | В                        | 7.8          | 13:51 | 8.28         | 8.18 | 31.11     | 24.3      | 5.33                        | 11        | -                             | -                            | -                 |
| M1       | 20181103               | Cloudy  | Moderate         | Mid-Ebb | В                        | 7.8          | 13:52 | 8.27         | 8.22 | 31.09     | 24.3      | 5.29                        | 12        | -                             | -                            | -                 |
| M1       | 20181103               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.4          | 13:52 | 8.26         | 8.24 | 31.01     | 24.4      | 3.92                        | 11        | -                             | -                            | -                 |
| M1       | 20181103               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.4          | 13:53 | 8.27         | 8.26 | 31.06     | 24.3      | 3.93                        | 12        | -                             | -                            | -                 |
| M1       | 20181103               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 13:53 | 8.29         | 8.29 | 31.02     | 24.3      | 3.06                        | 7         | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| Location | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in<br>NESW |
|----------|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|----------------------|
| M1       | 20181103               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 13:53 | 8.29         | 8.2  | 31.05     | 24.4      | 3.06                        | 6         | -                             | -                            | -                    |
| C2       | 20181103               | Cloudy  | Moderate         | Mid-Flood | В                        | 9.2          | 14:16 | 8.05         | 8.17 | 31.14     | 24.3      | 4.64                        | 11        | -                             | -                            | -                    |
| C2       | 20181103               | Cloudy  | Moderate         | Mid-Flood | В                        | 9.2          | 14:16 | 8.05         | 8.3  | 31.14     | 24.3      | 4.66                        | 11        | -                             | -                            | -                    |
| C2       | 20181103               | Cloudy  | Moderate         | Mid-Flood | М                        | 5.1          | 14:17 | 8.04         | 8.22 | 31.05     | 24.3      | 4.98                        | 10        | -                             | -                            | -                    |
| C2       | 20181103               | Cloudy  | Moderate         | Mid-Flood | М                        | 5.1          | 14:17 | 8.03         | 8.3  | 31.05     | 24.3      | 5.01                        | 10        | -                             | -                            | -                    |
| C2       | 20181103               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 14:17 | 8.04         | 8.27 | 31.14     | 24.3      | 3.47                        | 9         | -                             | -                            | -                    |
| C2       | 20181103               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 14:18 | 8.07         | 8.23 | 31.19     | 24.4      | 3.44                        | 10        | -                             | -                            | -                    |
| H1       | 20181103               | Cloudy  | Moderate         | Mid-Flood | В                        | 8.4          | 14:34 | 7.96         | 8.22 | 31.05     | 24.3      | 5.95                        | 10        | -                             | -                            | -                    |
| H1       | 20181103               | Cloudy  | Moderate         | Mid-Flood | В                        | 8.4          | 14:34 | 7.96         | 8.25 | 31.01     | 24.3      | 5.97                        | 11        | -                             | -                            | -                    |
| H1       | 20181103               | Cloudy  | Moderate         | Mid-Flood | М                        | 5.7          | 14:35 | 7.95         | 8.16 | 31.14     | 24.3      | 2.89                        | 9         | -                             | -                            | -                    |
| H1       | 20181103               | Cloudy  | Moderate         | Mid-Flood | М                        | 5.7          | 14:35 | 7.99         | 8.18 | 31.16     | 24.3      | 2.91                        | 10        | -                             | -                            | -                    |
| H1       | 20181103               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 14:36 | 7.98         | 8.22 | 31.01     | 24.4      | 2.04                        | 8         | -                             | -                            | -                    |
| H1       | 20181103               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 14:36 | 8            | 8.22 | 31.19     | 24.4      | 2.02                        | 8         | -                             | -                            | -                    |
| CR1      | 20181103               | Cloudy  | Moderate         | Mid-Flood | В                        | 8.9          | 14:53 | 7.83         | 8.22 | 31.11     | 24.3      | 4.92                        | 15        | -                             | -                            | -                    |
| CR1      | 20181103               | Cloudy  | Moderate         | Mid-Flood | В                        | 8.9          | 14:54 | 7.85         | 8.27 | 31.18     | 24.4      | 4.88                        | 13        | -                             | -                            | -                    |
| CR1      | 20181103               | Cloudy  | Moderate         | Mid-Flood | М                        | 5            | 14:54 | 7.86         | 8.3  | 31.1      | 24.4      | 2.34                        | 11        | -                             | -                            | -                    |
| CR1      | 20181103               | Cloudy  | Moderate         | Mid-Flood | М                        | 5            | 14:54 | 7.88         | 8.2  | 31.08     | 24.3      | 2.33                        | 11        | -                             | -                            | -                    |
| CR1      | 20181103               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 14:55 | 7.86         | 8.17 | 31.03     | 24.3      | 3.55                        | 10        | -                             | -                            | -                    |
| CR1      | 20181103               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 14:55 | 7.89         | 8.3  | 31.14     | 24.3      | 3.54                        | 11        | -                             | -                            | -                    |
| CR2      | 20181103               | Cloudy  | Moderate         | Mid-Flood | В                        | 9            | 15:04 | 7.92         | 8.3  | 31.17     | 24.3      | 4.13                        | 20        | -                             | -                            | -                    |
| CR2      | 20181103               | Cloudy  | Moderate         | Mid-Flood | В                        | 9            | 15:04 | 7.94         | 8.26 | 31.2      | 24.4      | 4.14                        | 19        | -                             | -                            | -                    |
| CR2      | 20181103               | Cloudy  | Moderate         | Mid-Flood | М                        | 5            | 15:04 | 7.93         | 8.19 | 31.1      | 24.4      | 4.1                         | 19        | -                             | -                            | -                    |
| CR2      | 20181103               | Cloudy  | Moderate         | Mid-Flood | М                        | 5            | 15:05 | 7.92         | 8.27 | 31.14     | 24.3      | 4.1                         | 18        | -                             | -                            | -                    |
| CR2      | 20181103               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 15:05 | 7.91         | 8.23 | 31.14     | 24.3      | 3.45                        | 16        | -                             | -                            | -                    |
| CR2      | 20181103               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 15:06 | 7.94         | 8.29 | 31.01     | 24.3      | 3.46                        | 16        | -                             | -                            | -                    |
| C1       | 20181103               | Cloudy  | Moderate         | Mid-Flood | В                        | 11.4         | 15:36 | 8.2          | 8.18 | 31.04     | 24.4      | 5.11                        | 12        | -                             | -                            | -                    |
| C1       | 20181103               | Cloudy  | Moderate         | Mid-Flood | В                        | 11.4         | 15:36 | 8.25         | 8.28 | 31.05     | 24.3      | 5.13                        | 11        | -                             | -                            | -                    |
| C1       | 20181103               | Cloudy  | Moderate         | Mid-Flood | М                        | 6.2          | 15:37 | 8.24         | 8.16 | 31.08     | 24.4      | 3.78                        | 10        | -                             | -                            | -                    |
| C1       | 20181103               | Cloudy  | Moderate         | Mid-Flood | М                        | 6.2          | 15:37 | 8.28         | 8.17 | 31.16     | 24.3      | 3.78                        | 10        | -                             | -                            | _                    |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

|    | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| C1 | 20181103               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 15:37 | 8.28         | 8.26 | 31.19     | 24.4      | 3.13                        | 9         | -                             | -                            | -                 |
| C1 | 20181103               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 15:38 | 8.32         | 8.21 | 31.14     | 24.3      | 3.1                         | 8         | -                             | -                            | -                 |
| B1 | 20181103               | Cloudy  | Moderate         | Mid-Flood | В                        | 4.6          | 16:10 | 8.2          | 8.22 | 31.02     | 24.4      | 4.92                        | 10        | -                             | -                            | -                 |
| B1 | 20181103               | Cloudy  | Moderate         | Mid-Flood | В                        | 4.6          | 16:11 | 8.17         | 8.2  | 31.08     | 24.3      | 4.95                        | 8         | -                             | -                            | -                 |
| B1 | 20181103               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 16:11 | 8.17         | 8.21 | 31.1      | 24.3      | 2.93                        | 11        | -                             | -                            | -                 |
| B1 | 20181103               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 16:11 | 8.15         | 8.26 | 31.19     | 24.3      | 2.9                         | 10        | -                             | -                            | -                 |
| B2 | 20181103               | Cloudy  | Moderate         | Mid-Flood | В                        | 4.5          | 16:25 | 8.05         | 8.3  | 31.02     | 24.3      | 4.49                        | 10        | -                             | -                            | -                 |
| B2 | 20181103               | Cloudy  | Moderate         | Mid-Flood | В                        | 4.5          | 16:25 | 8.02         | 8.28 | 31.09     | 24.3      | 4.46                        | 11        | -                             | -                            | -                 |
| B2 | 20181103               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 16:26 | 8            | 8.18 | 31.01     | 24.4      | 1.41                        | 8         | -                             | -                            | -                 |
| B2 | 20181103               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 16:26 | 7.99         | 8.28 | 31.18     | 24.3      | 1.4                         | 9         | -                             | -                            | -                 |
| B3 | 20181103               | Cloudy  | Moderate         | Mid-Flood | В                        | 4.7          | 16:49 | 7.9          | 8.17 | 31.2      | 24.3      | 5.03                        | 15        | -                             | -                            | -                 |
| B3 | 20181103               | Cloudy  | Moderate         | Mid-Flood | В                        | 4.7          | 16:50 | 7.9          | 8.19 | 31.11     | 24.3      | 5.03                        | 13        | -                             | -                            | -                 |
| B3 | 20181103               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 16:50 | 7.9          | 8.25 | 31.07     | 24.4      | 3.32                        | 11        | -                             | -                            | -                 |
| B3 | 20181103               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 16:50 | 7.88         | 8.24 | 31.13     | 24.3      | 3.33                        | 13        | -                             | -                            | -                 |
| B4 | 20181103               | Cloudy  | Moderate         | Mid-Flood | В                        | 4.5          | 16:55 | 8.03         | 8.28 | 31.09     | 24.3      | 5.55                        | 9         | -                             | -                            | -                 |
| B4 | 20181103               | Cloudy  | Moderate         | Mid-Flood | В                        | 4.5          | 16:55 | 8.02         | 8.2  | 31.13     | 24.3      | 5.55                        | 10        | -                             | -                            | -                 |
| B4 | 20181103               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 16:56 | 8.01         | 8.26 | 31.1      | 24.4      | 1.44                        | 8         | -                             | -                            | -                 |
| B4 | 20181103               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 16:56 | 8.04         | 8.23 | 31.03     | 24.3      | 1.44                        | 8         | -                             | -                            | -                 |
| M1 | 20181103               | Cloudy  | Moderate         | Mid-Flood | В                        | 7.9          | 17:27 | 7.87         | 8.24 | 31.08     | 24.3      | 4.41                        | 7         | -                             | -                            | -                 |
| M1 | 20181103               | Cloudy  | Moderate         | Mid-Flood | В                        | 7.9          | 17:28 | 7.85         | 8.17 | 31.1      | 24.3      | 4.4                         | 7         | -                             | -                            | -                 |
| M1 | 20181103               | Cloudy  | Moderate         | Mid-Flood | М                        | 4.5          | 17:28 | 7.81         | 8.2  | 31.07     | 24.3      | 4.29                        | 7         | -                             | -                            | -                 |
| M1 | 20181103               | Cloudy  | Moderate         | Mid-Flood | М                        | 4.5          | 17:29 | 7.82         | 8.29 | 31.14     | 24.4      | 4.29                        | 8         | -                             | -                            | -                 |
| M1 | 20181103               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 17:29 | 7.82         | 8.29 | 31.08     | 24.3      | 2.51                        | 7         | -                             | -                            | -                 |
| M1 | 20181103               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 17:29 | 7.81         | 8.17 | 31.19     | 24.4      | 2.52                        | 7         | -                             | -                            | -                 |
| F1 | 20181103               | Cloudy  | Moderate         | Mid-Flood | В                        | 8.1          | 17:55 | 8.05         | 8.24 | 31.04     | 24.3      | 5.94                        | 14        | -                             | -                            | -                 |
| F1 | 20181103               | Cloudy  | Moderate         | Mid-Flood | В                        | 8.1          | 17:55 | 8.06         | 8.3  | 31.15     | 24.3      | 5.95                        | 14        | -                             | -                            | -                 |
| F1 | 20181103               | Cloudy  | Moderate         | Mid-Flood | М                        | 5.1          | 17:55 | 8.06         | 8.18 | 31.17     | 24.3      | 3.84                        | 9         | -                             | -                            | -                 |
| F1 | 20181103               | Cloudy  | Moderate         | Mid-Flood | М                        | 5.1          | 17:56 | 8.06         | 8.21 | 31.2      | 24.4      | 3.85                        | 10        | -                             | -                            | -                 |
| F1 | 20181103               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 17:56 | 8.06         | 8.28 | 31.06     | 24.3      | 2.89                        | 7         | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

|     | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | pH   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|-----|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| F1  | 20181103               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 17:57 | 8.06         | 8.22 | 31.01     | 24.3      | 2.91                        | 8         | -                             | -                            | -                 |
| C1  | 20181105               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 9.1          | 10:00 | 8.01         | 8.23 | 29.62     | 23.7      | 5.21                        | 16        | -                             | -                            | -                 |
| C1  | 20181105               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 9.1          | 10:00 | 7.96         | 8.25 | 29.83     | 23.7      | 5.21                        | 17        | -                             | -                            | -                 |
| C1  | 20181105               | Cloudy  | Moderate         | Mid-Ebb   | М                        | 5.1          | 10:00 | 8.02         | 8.21 | 29.84     | 23.7      | 3.84                        | 14        | -                             | -                            | -                 |
| C1  | 20181105               | Cloudy  | Moderate         | Mid-Ebb   | М                        | 5.1          | 10:01 | 8.08         | 8.08 | 29.57     | 23.7      | 3.81                        | 15        | -                             | -                            | -                 |
| C1  | 20181105               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 10:01 | 8.07         | 8.18 | 29.57     | 23.7      | 1.03                        | 13        | -                             | -                            | -                 |
| C1  | 20181105               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 10:01 | 8.01         | 8.13 | 29.82     | 23.7      | 1.05                        | 13        | -                             | -                            | -                 |
| B1  | 20181105               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 4.2          | 10:27 | 7.88         | 8.13 | 29.67     | 23.7      | 5.07                        | 7         | -                             | -                            | -                 |
| B1  | 20181105               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 4.2          | 10:27 | 7.92         | 8.06 | 29.84     | 23.8      | 5                           | 6         | -                             | -                            | -                 |
| B1  | 20181105               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 10:28 | 8.02         | 8.11 | 29.85     | 23.7      | 3.17                        | 8         | -                             | -                            | -                 |
| B1  | 20181105               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 10:28 | 7.99         | 8.21 | 29.95     | 23.8      | 3.18                        | 8         | -                             | -                            | -                 |
| B2  | 20181105               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 4.1          | 10:43 | 7.77         | 8.21 | 29.75     | 23.7      | 5.59                        | 14        | -                             | -                            | -                 |
| B2  | 20181105               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 4.1          | 10:44 | 7.75         | 8.14 | 29.57     | 23.8      | 5.59                        | 14        | -                             | -                            | -                 |
| B2  | 20181105               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 10:44 | 7.87         | 8.09 | 29.92     | 23.8      | 3.26                        | 11        | -                             | -                            | -                 |
| B2  | 20181105               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 10:44 | 7.85         | 8.09 | 29.97     | 23.7      | 3.31                        | 12        | -                             | -                            | -                 |
| H1  | 20181105               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 7.7          | 11:09 | 7.98         | 8.15 | 29.76     | 23.7      | 5.85                        | 16        | -                             | -                            | -                 |
| H1  | 20181105               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 7.7          | 11:09 | 7.91         | 8.21 | 29.96     | 23.7      | 5.85                        | 17        | -                             | -                            | -                 |
| H1  | 20181105               | Cloudy  | Moderate         | Mid-Ebb   | М                        | 4.4          | 11:10 | 7.91         | 8.25 | 29.92     | 23.8      | 3.82                        | 15        | -                             | -                            | -                 |
| H1  | 20181105               | Cloudy  | Moderate         | Mid-Ebb   | М                        | 4.4          | 11:10 | 7.98         | 8.1  | 29.92     | 23.8      | 3.83                        | 14        | -                             | -                            | -                 |
| H1  | 20181105               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 11:10 | 7.92         | 8.11 | 29.68     | 23.7      | 1.6                         | 12        | -                             | -                            | -                 |
| H1  | 20181105               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 11:11 | 7.9          | 8.17 | 29.77     | 23.7      | 1.62                        | 11        | -                             | -                            | -                 |
| CR2 | 20181105               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 7.8          | 11:31 | 8.11         | 8.24 | 29.82     | 23.7      | 5.48                        | 21        | -                             | -                            | -                 |
| CR2 | 20181105               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 7.8          | 11:32 | 8.05         | 8.12 | 29.88     | 23.7      | 5.52                        | 23        | -                             | -                            | -                 |
| CR2 | 20181105               | Cloudy  | Moderate         | Mid-Ebb   | М                        | 4.4          | 11:32 | 8.06         | 8.09 | 29.86     | 23.7      | 4.4                         | 37        | -                             | -                            | -                 |
| CR2 | 20181105               | Cloudy  | Moderate         | Mid-Ebb   | М                        | 4.4          | 11:32 | 8.08         | 8.22 | 29.97     | 23.7      | 4.36                        | 32        | -                             | -                            | -                 |
| CR2 | 20181105               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 11:33 | 8.13         | 8.06 | 29.75     | 23.8      | 2.11                        | 56        | -                             | -                            | -                 |
| CR2 | 20181105               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 11:33 | 8.07         | 8.24 | 29.53     | 23.8      | 2.06                        | 48        | -                             | -                            | -                 |
| CR1 | 20181105               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 7.9          | 11:49 | 7.89         | 8.18 | 29.51     | 23.7      | 5.65                        | 22        | -                             | -                            | -                 |
| CR1 | 20181105               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 7.9          | 11:50 | 7.72         | 8.06 | 29.69     | 23.8      | 5.62                        | 26        | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| Location | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal   | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in<br>NESW |
|----------|------------------------|---------|------------------|---------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|----------------------|
| CR1      | 20181105               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.5          | 11:50 | 7.72         | 8.15 | 29.54     | 23.7      | 3.84                        | 12        | -                             | -                            | -                    |
| CR1      | 20181105               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.5          | 11:51 | 7.8          | 8.07 | 29.68     | 23.8      | 3.88                        | 12        | -                             | -                            | -                    |
| CR1      | 20181105               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 11:51 | 7.95         | 8.11 | 29.65     | 23.8      | 3.52                        | 11        | -                             | -                            | _                    |
| CR1      | 20181105               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 11:51 | 8.02         | 8.25 | 29.84     | 23.7      | 3.54                        | 11        | -                             | -                            | -                    |
| B3       | 20181105               | Cloudy  | Moderate         | Mid-Ebb | В                        | 4.3          | 12:13 | 8.12         | 8.15 | 29.96     | 23.7      | 5.75                        | 21        | -                             | -                            | _                    |
| B3       | 20181105               | Cloudy  | Moderate         | Mid-Ebb | В                        | 4.3          | 12:13 | 8.16         | 8.1  | 29.65     | 23.7      | 5.67                        | 23        | -                             | -                            | _                    |
| B3       | 20181105               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 12:14 | 8.2          | 8.08 | 29.65     | 23.8      | 1.33                        | 14        | -                             | -                            | -                    |
| B3       | 20181105               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 12:14 | 8.26         | 8.21 | 29.88     | 23.7      | 1.35                        | 13        | -                             | -                            | _                    |
| B4       | 20181105               | Cloudy  | Moderate         | Mid-Ebb | В                        | 4.2          | 12:22 | 8            | 8.1  | 29.9      | 23.7      | 4.55                        | 20        | -                             | -                            | _                    |
| B4       | 20181105               | Cloudy  | Moderate         | Mid-Ebb | В                        | 4.2          | 12:23 | 7.96         | 8.18 | 29.8      | 23.7      | 4.53                        | 22        | -                             | -                            | _                    |
| B4       | 20181105               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 12:23 | 7.93         | 8.22 | 29.91     | 23.8      | 2.13                        | 14        | -                             | -                            | _                    |
| B4       | 20181105               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 12:23 | 7.87         | 8.13 | 29.67     | 23.7      | 2.14                        | 13        | -                             | -                            | -                    |
| C2       | 20181105               | Cloudy  | Moderate         | Mid-Ebb | В                        | 8.7          | 12:33 | 8.07         | 8.12 | 29.99     | 23.7      | 5.6                         | 20        | -                             | -                            | _                    |
| C2       | 20181105               | Cloudy  | Moderate         | Mid-Ebb | В                        | 8.7          | 12:33 | 7.89         | 8.08 | 29.88     | 23.7      | 5.65                        | 18        | -                             | -                            | -                    |
| C2       | 20181105               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.9          | 12:34 | 7.74         | 8.24 | 29.84     | 23.8      | 4.01                        | 13        | -                             | -                            | -                    |
| C2       | 20181105               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.9          | 12:34 | 7.85         | 8.2  | 29.55     | 23.7      | 3.97                        | 14        | -                             | -                            | _                    |
| C2       | 20181105               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 12:34 | 7.98         | 8.13 | 29.77     | 23.7      | 2.59                        | 10        | -                             | -                            | -                    |
| C2       | 20181105               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 12:35 | 7.86         | 8.1  | 29.6      | 23.7      | 2.6                         | 10        | -                             | -                            | -                    |
| F1       | 20181105               | Cloudy  | Moderate         | Mid-Ebb | В                        | 8.1          | 13:02 | 7.81         | 8.15 | 29.75     | 23.8      | 4.13                        | 9         | -                             | -                            | -                    |
| F1       | 20181105               | Cloudy  | Moderate         | Mid-Ebb | В                        | 8.1          | 13:03 | 7.73         | 8.1  | 29.59     | 23.7      | 4.14                        | 10        | -                             | -                            | -                    |
| F1       | 20181105               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.6          | 13:03 | 7.67         | 8.14 | 29.66     | 23.7      | 4.9                         | 10        | -                             | -                            | -                    |
| F1       | 20181105               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.6          | 13:03 | 7.57         | 8.12 | 29.99     | 23.8      | 4.93                        | 10        | -                             | -                            | -                    |
| F1       | 20181105               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 13:04 | 7.5          | 8.08 | 29.82     | 23.8      | 2.62                        | 12        | -                             | -                            | -                    |
| F1       | 20181105               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 13:04 | 7.38         | 8.12 | 29.78     | 23.8      | 2.64                        | 13        | -                             | -                            | -                    |
| M1       | 20181105               | Cloudy  | Moderate         | Mid-Ebb | В                        | 8            | 13:29 | 8.05         | 8.1  | 29.71     | 23.7      | 4.61                        | 26        | -                             | -                            | -                    |
| M1       | 20181105               | Cloudy  | Moderate         | Mid-Ebb | В                        | 8            | 13:30 | 8.1          | 8.16 | 29.55     | 23.8      | 4.56                        | 26        | -                             | -                            | -                    |
| M1       | 20181105               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.5          | 13:30 | 8.1          | 8.12 | 29.53     | 23.7      | 3.23                        | 16        | -                             | -                            | -                    |
| M1       | 20181105               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.5          | 13:31 | 8.13         | 8.18 | 29.7      | 23.7      | 3.24                        | 17        | -                             | -                            | -                    |
| M1       | 20181105               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 13:31 | 8.22         | 8.12 | 29.87     | 23.7      | 1.42                        | 12        | -                             | -                            | -                    |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| Location | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----------|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| M1       | 20181105               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 13:31 | 8.36         | 8.07 | 29.99     | 23.7      | 1.4                         | 14        | -                             | -                            | -                 |
| C2       | 20181105               | Sunny   | Moderate         | Mid-Flood | В                        | 9.1          | 15:11 | 7.77         | 8.17 | 29.77     | 23.7      | 5.67                        | 10        | -                             | -                            | -                 |
| C2       | 20181105               | Sunny   | Moderate         | Mid-Flood | В                        | 9.1          | 15:11 | 7.77         | 8.18 | 29.93     | 23.7      | 5.73                        | 9         | -                             | -                            | -                 |
| C2       | 20181105               | Sunny   | Moderate         | Mid-Flood | М                        | 5.1          | 15:12 | 7.79         | 8.06 | 29.9      | 23.7      | 4.47                        | 9         | -                             | -                            | -                 |
| C2       | 20181105               | Sunny   | Moderate         | Mid-Flood | М                        | 5.1          | 15:12 | 7.87         | 8.1  | 29.94     | 23.7      | 4.44                        | 9         | -                             | -                            | -                 |
| C2       | 20181105               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 15:12 | 7.87         | 8.12 | 30        | 23.7      | 2.14                        | 8         | -                             | -                            | -                 |
| C2       | 20181105               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 15:13 | 7.81         | 8.21 | 29.62     | 23.7      | 2.08                        | 8         | -                             | -                            | -                 |
| CR1      | 20181105               | Sunny   | Moderate         | Mid-Flood | В                        | 7.7          | 15:32 | 8.09         | 8.19 | 29.92     | 23.8      | 5.47                        | 5         | -                             | -                            | -                 |
| CR1      | 20181105               | Sunny   | Moderate         | Mid-Flood | В                        | 7.7          | 15:32 | 8.19         | 8.24 | 29.85     | 23.8      | 5.54                        | 5         | -                             | -                            | -                 |
| CR1      | 20181105               | Sunny   | Moderate         | Mid-Flood | М                        | 4.4          | 15:33 | 8.1          | 8.07 | 29.79     | 23.8      | 3.42                        | 8         | -                             | -                            | -                 |
| CR1      | 20181105               | Sunny   | Moderate         | Mid-Flood | М                        | 4.4          | 15:33 | 8.06         | 8.25 | 29.95     | 23.8      | 3.49                        | 7         | -                             | -                            | -                 |
| CR1      | 20181105               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 15:34 | 8.05         | 8.16 | 29.59     | 23.7      | 1.55                        | 12        | -                             | -                            | -                 |
| CR1      | 20181105               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 15:34 | 7.98         | 8.24 | 29.55     | 23.8      | 1.62                        | 11        | -                             | -                            | -                 |
| CR2      | 20181105               | Sunny   | Moderate         | Mid-Flood | В                        | 7.4          | 15:42 | 7.78         | 8.14 | 29.99     | 23.7      | 5.06                        | 12        | -                             | -                            | -                 |
| CR2      | 20181105               | Sunny   | Moderate         | Mid-Flood | В                        | 7.4          | 15:43 | 7.87         | 8.21 | 29.79     | 23.8      | 5.05                        | 13        | -                             | -                            | -                 |
| CR2      | 20181105               | Sunny   | Moderate         | Mid-Flood | М                        | 4.2          | 15:43 | 8.01         | 8.12 | 29.69     | 23.7      | 3.16                        | 15        | -                             | -                            | -                 |
| CR2      | 20181105               | Sunny   | Moderate         | Mid-Flood | М                        | 4.2          | 15:43 | 7.96         | 8.25 | 29.87     | 23.7      | 3.2                         | 14        | -                             | -                            | -                 |
| CR2      | 20181105               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 15:44 | 7.92         | 8.18 | 29.91     | 23.7      | 1.37                        | 23        | -                             | -                            | -                 |
| CR2      | 20181105               | Sunny   | Moderate         | Mid-Flood | S                        |              | 15:44 | 7.89         | 8.24 | 29.63     | 23.8      | 1.38                        | 21        | -                             | -                            | -                 |
| C1       | 20181105               | Sunny   | Moderate         | Mid-Flood | В                        | 11.3         | 16:14 | 8.04         | 8.23 | 29.53     | 23.7      | 5.18                        | 10        | -                             | -                            | -                 |
| C1       | 20181105               | Sunny   | Moderate         | Mid-Flood | В                        | 11.3         | 16:14 | 8.01         | 8.17 | 29.61     | 23.7      | 5.14                        | 11        | -                             | -                            | -                 |
| C1       | 20181105               | Sunny   | Moderate         | Mid-Flood | М                        | 6.2          | 16:14 | 8.09         | 8.13 | 29.6      | 23.7      | 3.92                        | 10        | -                             | -                            | -                 |
| C1       | 20181105               | Sunny   | Moderate         | Mid-Flood | М                        | 6.2          | 16:15 | 7.94         | 8.23 | 29.53     | 23.8      | 3.89                        | 10        | -                             | -                            | -                 |
| C1       | 20181105               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 16:15 | 8            | 8.13 | 29.93     | 23.7      | 1.95                        | 10        | -                             | -                            | -                 |
| C1       | 20181105               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 16:16 | 7.93         | 8.15 | 29.94     | 23.7      | 1.9                         | 9         | -                             | -                            | -                 |
| B1       | 20181105               | Sunny   | Moderate         | Mid-Flood | В                        | 4.8          | 16:40 | 8.13         | 8.11 | 29.98     | 23.8      | 4.3                         | 11        | -                             | -                            | -                 |
| B1       | 20181105               | Sunny   | Moderate         | Mid-Flood | В                        | 4.8          | 16:40 | 8.15         | 8.21 | 29.71     | 23.7      | 4.29                        | 12        | -                             | -                            | -                 |
| B1       | 20181105               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 16:41 | 8.18         | 8.18 | 29.76     | 23.7      | 2.77                        | 12        | -                             | -                            | -                 |
| B1       | 20181105               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 16:41 | 8.12         | 8.13 | 29.91     | 23.8      | 2.73                        | 12        | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

|    | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| B2 | 20181105               | Sunny   | Moderate         | Mid-Flood | В                        | 4.6          | 16:58 | 7.88         | 8.16 | 29.93     | 23.7      | 5.1                         | 20        | -                             | -                            | -                 |
| B2 | 20181105               | Sunny   | Moderate         | Mid-Flood | В                        | 4.6          | 16:59 | 7.93         | 8.21 | 29.87     | 23.8      | 5.1                         | 19        | -                             | -                            | -                 |
| B2 | 20181105               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 16:59 | 7.88         | 8.19 | 29.86     | 23.7      | 3.01                        | 10        | -                             | -                            | -                 |
| B2 | 20181105               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 17:00 | 8.01         | 8.08 | 29.55     | 23.8      | 2.97                        | 11        | -                             | -                            | -                 |
| H1 | 20181105               | Sunny   | Moderate         | Mid-Flood | В                        | 8.2          | 17:27 | 7.95         | 8.2  | 29.85     | 23.8      | 4.97                        | 10        | -                             | -                            | -                 |
| H1 | 20181105               | Sunny   | Moderate         | Mid-Flood | В                        | 8.2          | 17:27 | 8.01         | 8.09 | 29.87     | 23.7      | 4.93                        | 10        | -                             | -                            | -                 |
| H1 | 20181105               | Sunny   | Moderate         | Mid-Flood | М                        | 4.6          | 17:28 | 8.02         | 8.16 | 29.91     | 23.8      | 4.03                        | 8         | -                             | -                            | -                 |
| H1 | 20181105               | Sunny   | Moderate         | Mid-Flood | М                        | 4.6          | 17:28 | 7.86         | 8.23 | 29.9      | 23.7      | 4.01                        | 9         | -                             | -                            | -                 |
| H1 | 20181105               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 17:29 | 7.98         | 8.15 | 29.73     | 23.7      | 3.41                        | 8         | -                             | -                            | -                 |
| H1 | 20181105               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 17:29 | 7.98         | 8.15 | 29.77     | 23.7      | 3.46                        | 8         | -                             | -                            | -                 |
| B3 | 20181105               | Sunny   | Moderate         | Mid-Flood | В                        | 4.7          | 17:43 | 7.77         | 8.14 | 29.61     | 23.8      | 4.36                        | 13        | -                             | -                            | -                 |
| B3 | 20181105               | Sunny   | Moderate         | Mid-Flood | В                        | 4.7          | 17:44 | 7.61         | 8.1  | 30        | 23.7      | 4.36                        | 12        | -                             | -                            | -                 |
| B3 | 20181105               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 17:44 | 7.62         | 8.07 | 29.82     | 23.7      | 3.95                        | 12        | -                             | -                            | -                 |
| B3 | 20181105               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 17:44 | 7.71         | 8.13 | 29.76     | 23.8      | 3.97                        | 12        | -                             | -                            | -                 |
| B4 | 20181105               | Sunny   | Moderate         | Mid-Flood | В                        | 4.6          | 17:53 | 8.03         | 8.07 | 29.99     | 23.7      | 5.52                        | 10        | -                             | -                            | -                 |
| B4 | 20181105               | Sunny   | Moderate         | Mid-Flood | В                        | 4.6          | 17:53 | 8.01         | 8.11 | 29.64     | 23.7      | 5.51                        | 9         | -                             | -                            | -                 |
| B4 | 20181105               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 17:54 | 7.91         | 8.16 | 29.71     | 23.8      | 2.66                        | 9         | -                             | -                            | -                 |
| B4 | 20181105               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 17:54 | 7.74         | 8.14 | 29.7      | 23.7      | 2.66                        | 11        | -                             | -                            | -                 |
| F1 | 20181105               | Sunny   | Moderate         | Mid-Flood | В                        | 8.3          | 18:20 | 7.8          | 8.17 | 29.85     | 23.8      | 4.15                        | 18        | -                             | -                            | -                 |
| F1 | 20181105               | Sunny   | Moderate         | Mid-Flood | В                        | 8.3          | 18:21 | 7.85         | 8.19 | 29.93     | 23.8      | 4.16                        | 16        | -                             | -                            | -                 |
| F1 | 20181105               | Sunny   | Moderate         | Mid-Flood | М                        | 4.7          | 18:21 | 7.96         | 8.24 | 29.66     | 23.7      | 4.08                        | 16        | -                             | -                            | -                 |
| F1 | 20181105               | Sunny   | Moderate         | Mid-Flood | М                        | 4.7          | 18:22 | 7.87         | 8.14 | 29.69     | 23.7      | 4.09                        | 17        | -                             | -                            | -                 |
| F1 | 20181105               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 18:22 | 7.79         | 8.09 | 29.72     | 23.7      | 1.02                        | 10        | -                             | -                            | -                 |
| F1 | 20181105               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 18:22 | 7.87         | 8.12 | 29.54     | 23.7      | 1.1                         | 10        | -                             | -                            | -                 |
| M1 | 20181105               | Sunny   | Moderate         | Mid-Flood | В                        | 8.5          | 18:23 | 7.97         | 8.06 | 29.73     | 23.7      | 4.7                         | 9         | -                             | -                            | -                 |
| M1 | 20181105               | Sunny   | Moderate         | Mid-Flood | В                        | 8.5          | 18:23 | 8.07         | 8.17 | 29.78     | 23.7      | 4.74                        | 10        | -                             | -                            | -                 |
| M1 | 20181105               | Sunny   | Moderate         | Mid-Flood | М                        | 4.8          | 18:23 | 8.08         | 8.12 | 29.82     | 23.7      | 3.92                        | 17        | -                             | -                            | -                 |
| M1 | 20181105               | Sunny   | Moderate         | Mid-Flood | М                        | 4.8          | 18:24 | 8.12         | 8.09 | 29.81     | 23.7      | 3.86                        | 16        | -                             | -                            | -                 |
| M1 | 20181105               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 18:24 | 8.01         | 8.21 | 29.95     | 23.8      | 2.64                        | 16        | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| Location | Date     | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----------|----------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| M1       | 20181105 | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 18:25 | 8.16         | 8.12 | 29.67     | 23.7      | 2.67                        | 17        | -                             | -                            | -                 |
| C1       | 20181107 | Sunny   | Moderate         | Mid-Ebb   | В                        | 10.8         | 10:41 | 8.3          | 8.4  | 30.13     | 23.2      | 5.69                        | 15        | -                             | -                            | -                 |
| C1       | 20181107 | Sunny   | Moderate         | Mid-Ebb   | В                        | 10.8         | 10:41 | 8.35         | 8.33 | 30.05     | 23.2      | 5.78                        | 15        | -                             | -                            | -                 |
| C1       | 20181107 | Sunny   | Moderate         | Mid-Ebb   | М                        | 6            | 10:41 | 8.32         | 8.24 | 30.1      | 23.2      | 4.6                         | 15        | -                             | -                            | -                 |
| C1       | 20181107 | Sunny   | Moderate         | Mid-Ebb   | М                        | 6            | 10:42 | 8.33         | 8.39 | 30.01     | 23.1      | 4.53                        | 16        | -                             | -                            | -                 |
| C1       | 20181107 | Sunny   | Moderate         | Mid-Ebb   | S                        | 1            | 10:42 | 8.34         | 8.35 | 30.1      | 23.1      | 2.08                        | 14        | -                             | -                            | -                 |
| C1       | 20181107 | Sunny   | Moderate         | Mid-Ebb   | S                        | 1            | 10:42 | 8.43         | 8.31 | 30.16     | 23.1      | 2.1                         | 15        | -                             | -                            | -                 |
| B1       | 20181107 | Sunny   | Moderate         | Mid-Ebb   | В                        | 4.3          | 11:08 | 8.06         | 8.38 | 29.82     | 23.2      | 5.08                        | 21        | -                             | -                            | -                 |
| B1       | 20181107 | Sunny   | Moderate         | Mid-Ebb   | В                        | 4.3          | 11:08 | 8.01         | 8.28 | 29.86     | 23.1      | 5.18                        | 21        | -                             | -                            | -                 |
| B1       | 20181107 | Sunny   | Moderate         | Mid-Ebb   | S                        | 1            | 11:09 | 7.99         | 8.23 | 29.91     | 23.1      | 1.47                        | 8         | -                             | -                            | -                 |
| B1       | 20181107 | Sunny   | Moderate         | Mid-Ebb   | S                        | 1            | 11:09 | 8.01         | 8.21 | 29.95     | 23.1      | 1.53                        | 10        | -                             | -                            | -                 |
| B2       | 20181107 | Sunny   | Moderate         | Mid-Ebb   | В                        | 4.2          | 11:24 | 8.05         | 8.25 | 29.83     | 23.1      | 5.92                        | 15        | -                             | -                            | -                 |
| B2       | 20181107 | Sunny   | Moderate         | Mid-Ebb   | В                        | 4.2          | 11:25 | 8.12         | 8.23 | 29.89     | 23.2      | 5.83                        | 13        | -                             | -                            | -                 |
| B2       | 20181107 | Sunny   | Moderate         | Mid-Ebb   | S                        | 1            | 11:25 | 8.02         | 8.32 | 29.88     | 23.1      | 2.26                        | 12        | -                             | -                            | -                 |
| B2       | 20181107 | Sunny   | Moderate         | Mid-Ebb   | S                        | 1            | 11:25 | 8.09         | 8.26 | 29.89     | 23.1      | 2.22                        | 13        | -                             | -                            | -                 |
| H1       | 20181107 | Sunny   | Moderate         | Mid-Ebb   | В                        | 7.9          | 11:47 | 8.25         | 8.28 | 29.78     | 23.2      | 6.37                        | 10        | -                             | -                            | -                 |
| H1       | 20181107 | Sunny   | Moderate         | Mid-Ebb   | В                        | 7.9          | 11:47 | 8.16         | 8.3  | 29.79     | 23.1      | 6.36                        | 11        | -                             | -                            | -                 |
| H1       | 20181107 | Sunny   | Moderate         | Mid-Ebb   | М                        | 4.5          | 11:48 | 8.11         | 8.31 | 29.8      | 23.1      | 4.76                        | 13        | -                             | -                            | -                 |
| H1       | 20181107 | Sunny   | Moderate         | Mid-Ebb   | М                        | 4.5          | 11:48 | 8.11         | 8.28 | 29.8      | 23.1      | 4.8                         | 12        | -                             | -                            | -                 |
| H1       | 20181107 | Sunny   | Moderate         | Mid-Ebb   | S                        | 1            | 11:48 | 8.05         | 8.21 | 29.82     | 23.1      | 2.05                        | 15        | -                             | -                            | -                 |
| H1       | 20181107 | Sunny   | Moderate         | Mid-Ebb   | S                        | 1            | 11:49 | 8.06         | 8.32 | 29.85     | 23.1      | 1.97                        | 14        | -                             | -                            | -                 |
| CR2      | 20181107 | Sunny   | Moderate         | Mid-Ebb   | В                        | 8            | 12:05 | 8.11         | 8.23 | 29.78     | 23.1      | 5.86                        | 10        | -                             | -                            | -                 |
| CR2      | 20181107 | Sunny   | Moderate         | Mid-Ebb   | В                        | 8            | 12:06 | 8.07         | 8.27 | 29.88     | 23.2      | 5.76                        | 10        | -                             | -                            | -                 |
| CR2      | 20181107 | Sunny   | Moderate         | Mid-Ebb   | М                        | 4.5          | 12:06 | 8.07         | 8.27 | 29.84     | 23.1      | 4.66                        | 12        | -                             | -                            | -                 |
| CR2      | 20181107 | Sunny   | Moderate         | Mid-Ebb   | М                        | 4.5          | 12:06 | 8.05         | 8.33 | 29.77     | 23.1      | 4.63                        | 12        | -                             | -                            | -                 |
| CR2      | 20181107 | Sunny   | Moderate         | Mid-Ebb   | S                        | 1            | 12:07 | 8.15         | 8.4  | 29.8      | 23.2      | 2.71                        | 12        | -                             | -                            | -                 |
| CR2      | 20181107 | Sunny   | Moderate         | Mid-Ebb   | S                        | 1            | 12:07 | 8.1          | 8.33 | 29.83     | 23.2      | 2.64                        | 12        | -                             | -                            | -                 |
| CR1      | 20181107 | Sunny   | Moderate         | Mid-Ebb   | В                        | 8.1          | 12:23 | 8.24         | 8.31 | 30.25     | 23.1      | 4.52                        | 18        | -                             | -                            | -                 |
| CR1      | 20181107 | Sunny   | Moderate         | Mid-Ebb   | В                        | 8.1          | 12:24 | 8.2          | 8.21 | 30.16     | 23.2      | 4.59                        | 20        | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

|     | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal   | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|-----|------------------------|---------|------------------|---------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| CR1 | 20181107               | Sunny   | Moderate         | Mid-Ebb | М                        | 4.6          | 12:24 | 8.18         | 8.36 | 30.09     | 23.1      | 4.57                        | 15        | -                             | -                            | -                 |
| CR1 | 20181107               | Sunny   | Moderate         | Mid-Ebb | М                        | 4.6          | 12:25 | 8.26         | 8.39 | 30.06     | 23.2      | 4.63                        | 14        | -                             | -                            | -                 |
| CR1 | 20181107               | Sunny   | Moderate         | Mid-Ebb | S                        | 1            | 12:25 | 8.33         | 8.33 | 29.96     | 23.2      | 2.98                        | 12        | -                             | -                            | -                 |
| CR1 | 20181107               | Sunny   | Moderate         | Mid-Ebb | S                        | 1            | 12:25 | 8.23         | 8.37 | 30.03     | 23.1      | 2.88                        | 12        | -                             | -                            | -                 |
| B3  | 20181107               | Sunny   | Moderate         | Mid-Ebb | В                        | 4.3          | 13:04 | 8.16         | 8.36 | 29.88     | 23.2      | 6.81                        | 15        | -                             | -                            | -                 |
| B3  | 20181107               | Sunny   | Moderate         | Mid-Ebb | В                        | 4.3          | 13:04 | 8.15         | 8.4  | 29.87     | 23.1      | 6.85                        | 16        | -                             | -                            | -                 |
| B3  | 20181107               | Sunny   | Moderate         | Mid-Ebb | S                        | 1            | 13:05 | 8.25         | 8.31 | 29.77     | 23.1      | 1.84                        | 12        | -                             | -                            | -                 |
| B3  | 20181107               | Sunny   | Moderate         | Mid-Ebb | S                        | 1            | 13:05 | 8.31         | 8.38 | 29.79     | 23.1      | 1.77                        | 12        | -                             | -                            | -                 |
| B4  | 20181107               | Sunny   | Moderate         | Mid-Ebb | В                        | 4.1          | 13:10 | 7.96         | 8.23 | 29.83     | 23.1      | 5.22                        | 16        | -                             | -                            | -                 |
| B4  | 20181107               | Sunny   | Moderate         | Mid-Ebb | В                        | 4.1          | 13:11 | 7.96         | 8.31 | 29.86     | 23.2      | 5.12                        | 18        | -                             | -                            | -                 |
| B4  | 20181107               | Sunny   | Moderate         | Mid-Ebb | S                        | 1            | 13:11 | 8.03         | 8.35 | 29.87     | 23.2      | 2.01                        | 14        | -                             | -                            | -                 |
| B4  | 20181107               | Sunny   | Moderate         | Mid-Ebb | S                        | 1            | 13:11 | 8.01         | 8.4  | 29.88     | 23.1      | 2.01                        | 13        | -                             | -                            | -                 |
| C2  | 20181107               | Sunny   | Moderate         | Mid-Ebb | В                        | 8.6          | 13:20 | 8.21         | 8.36 | 29.92     | 23.1      | 6.91                        | 18        | -                             | -                            | -                 |
| C2  | 20181107               | Sunny   | Moderate         | Mid-Ebb | В                        | 8.6          | 13:20 | 8.26         | 8.36 | 29.91     | 23.1      | 6.82                        | 17        | -                             | -                            | -                 |
| C2  | 20181107               | Sunny   | Moderate         | Mid-Ebb | М                        | 4.8          | 13:21 | 8.3          | 8.31 | 30        | 23.1      | 2.18                        | 17        | -                             | -                            | -                 |
| C2  | 20181107               | Sunny   | Moderate         | Mid-Ebb | М                        | 4.8          | 13:21 | 8.25         | 8.27 | 30.05     | 23.2      | 2.14                        | 17        | -                             | -                            | -                 |
| C2  | 20181107               | Sunny   | Moderate         | Mid-Ebb | S                        | 1            | 13:21 | 8.23         | 8.31 | 30.12     | 23.2      | 2.36                        | 15        | -                             | -                            | -                 |
| C2  | 20181107               | Sunny   | Moderate         | Mid-Ebb | S                        | 1            | 13:22 | 8.17         | 8.27 | 30.05     | 23.1      | 2.43                        | 15        | -                             | -                            | -                 |
| M1  | 20181107               | Sunny   | Moderate         | Mid-Ebb | В                        | 7.7          | 13:46 | 8.23         | 8.31 | 29.86     | 23.1      | 5.27                        | 22        | -                             | -                            | -                 |
| M1  | 20181107               | Sunny   | Moderate         | Mid-Ebb | В                        | 7.7          | 13:47 | 8.14         | 8.29 | 29.79     | 23.2      | 5.33                        | 20        | -                             | -                            | -                 |
| M1  | 20181107               | Sunny   | Moderate         | Mid-Ebb | М                        | 4.4          | 13:47 | 8.07         | 8.25 | 29.72     | 23.1      | 4.99                        | 16        | -                             | -                            | -                 |
| M1  | 20181107               | Sunny   | Moderate         | Mid-Ebb | М                        | 4.4          | 13:47 | 8.08         | 8.29 | 29.78     | 23.1      | 5.07                        | 16        | -                             | -                            | -                 |
| M1  | 20181107               | Sunny   | Moderate         | Mid-Ebb | S                        | 1            | 13:48 | 8.12         | 8.27 | 29.72     | 23.1      | 2.67                        | 16        | -                             | -                            | -                 |
| M1  | 20181107               | Sunny   | Moderate         | Mid-Ebb | S                        | 1            | 13:48 | 8.18         | 8.37 | 29.76     | 23.1      | 2.57                        | 14        | -                             | -                            | -                 |
| F1  | 20181107               | Sunny   | Moderate         | Mid-Ebb | В                        | 7.5          | 14:21 | 8.1          | 8.39 | 29.82     | 23.2      | 4.56                        | 20        | -                             | -                            | -                 |
| F1  | 20181107               | Sunny   | Moderate         | Mid-Ebb | В                        | 7.5          | 14:22 | 8.08         | 8.36 | 29.86     | 23.1      | 4.47                        | 21        | -                             | -                            | -                 |
| F1  | 20181107               | Sunny   | Moderate         | Mid-Ebb | М                        | 4.3          | 14:22 | 8.09         | 8.23 | 29.91     | 23.1      | 2.01                        | 19        | -                             | -                            | -                 |
| F1  | 20181107               | Sunny   | Moderate         | Mid-Ebb | М                        | 4.3          | 14:23 | 8.1          | 8.36 | 29.93     | 23.1      | 2.09                        | 18        | -                             | -                            | -                 |
| F1  | 20181107               | Sunny   | Moderate         | Mid-Ebb | S                        | 1            | 14:23 | 8.2          | 8.36 | 29.9      | 23.2      | 2.05                        | 16        | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| Location | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | pН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----------|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| F1       | 20181107               | Sunny   | Moderate         | Mid-Ebb   | S                        | 1            | 14:23 | 8.25         | 8.27 | 29.94     | 23.1      | 2.02                        | 16        | -                             | -                            | -                 |
| C2       | 20181107               | Fine    | Moderate         | Mid-Flood | В                        | 9.4          | 16:07 | 8.22         | 8.31 | 29.8      | 23.1      | 5.61                        | 12        | -                             | -                            | -                 |
| C2       | 20181107               | Fine    | Moderate         | Mid-Flood | В                        | 9.4          | 16:07 | 8.18         | 8.26 | 29.82     | 23.2      | 5.68                        | 12        | -                             | -                            | -                 |
| C2       | 20181107               | Fine    | Moderate         | Mid-Flood | М                        | 5.2          | 16:08 | 8.21         | 8.36 | 29.84     | 23.2      | 4.81                        | 14        | -                             | -                            | -                 |
| C2       | 20181107               | Fine    | Moderate         | Mid-Flood | М                        | 5.2          | 16:08 | 8.12         | 8.35 | 29.8      | 23.1      | 4.81                        | 13        | -                             | -                            | -                 |
| C2       | 20181107               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 16:08 | 8.14         | 8.28 | 29.78     | 23.1      | 1.1                         | 16        | -                             | -                            | -                 |
| C2       | 20181107               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 16:09 | 8.11         | 8.2  | 29.77     | 23.1      | 1.05                        | 17        | -                             | -                            | -                 |
| CR1      | 20181107               | Fine    | Moderate         | Mid-Flood | В                        | 8.4          | 16:27 | 8.19         | 8.23 | 29.85     | 23.2      | 5.82                        | 14        | -                             | -                            | -                 |
| CR1      | 20181107               | Fine    | Moderate         | Mid-Flood | В                        | 8.4          | 16:27 | 8.21         | 8.4  | 29.89     | 23.1      | 5.75                        | 14        | -                             | -                            | -                 |
| CR1      | 20181107               | Fine    | Moderate         | Mid-Flood | М                        | 4.7          | 16:28 | 8.26         | 8.39 | 29.89     | 23.2      | 4.25                        | 17        | -                             | -                            | -                 |
| CR1      | 20181107               | Fine    | Moderate         | Mid-Flood | М                        | 4.7          | 16:28 | 8.18         | 8.21 | 29.82     | 23.2      | 4.27                        | 16        | -                             | -                            | -                 |
| CR1      | 20181107               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 16:29 | 8.14         | 8.38 | 29.86     | 23.1      | 2.45                        | 17        | -                             | -                            | -                 |
| CR1      | 20181107               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 16:29 | 8.13         | 8.3  | 29.77     | 23.2      | 2.49                        | 17        | -                             | -                            | -                 |
| CR2      | 20181107               | Fine    | Moderate         | Mid-Flood | В                        | 8.5          | 16:39 | 8.14         | 8.39 | 29.84     | 23.1      | 5.4                         | 10        | -                             | -                            | -                 |
| CR2      | 20181107               | Fine    | Moderate         | Mid-Flood | В                        | 8.5          | 16:40 | 8.1          | 8.33 | 29.86     | 23.1      | 5.42                        | 10        | -                             | -                            | -                 |
| CR2      | 20181107               | Fine    | Moderate         | Mid-Flood | М                        | 4.8          | 16:40 | 8.18         | 8.39 | 29.96     | 23.1      | 3.4                         | 12        | -                             | -                            | -                 |
| CR2      | 20181107               | Fine    | Moderate         | Mid-Flood | М                        | 4.8          | 16:40 | 8.09         | 8.26 | 29.9      | 23.1      | 3.5                         | 12        | -                             | -                            | -                 |
| CR2      | 20181107               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 16:41 | 8.07         | 8.33 | 29.91     | 23.2      | 1.65                        | 15        | -                             | -                            | -                 |
| CR2      | 20181107               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 16:41 | 8.1          | 8.21 | 29.93     | 23.2      | 1.73                        | 14        | -                             | -                            | -                 |
| C1       | 20181107               | Fine    | Moderate         | Mid-Flood | В                        | 11.5         | 17:09 | 7.91         | 8.32 | 30.17     | 23.2      | 4.92                        | 13        | -                             | -                            | -                 |
| C1       | 20181107               | Fine    | Moderate         | Mid-Flood | В                        | 11.5         | 17:09 | 7.94         | 8.35 | 30.24     | 23.2      | 4.89                        | 12        | -                             | -                            | -                 |
| C1       | 20181107               | Fine    | Moderate         | Mid-Flood | М                        | 6.3          | 17:09 | 8            | 8.4  | 30.18     | 23.2      | 4.48                        | 12        | -                             | -                            | -                 |
| C1       | 20181107               | Fine    | Moderate         | Mid-Flood | М                        | 6.3          | 17:10 | 8.1          | 8.37 | 30.15     | 23.2      | 4.54                        | 12        | -                             | -                            | -                 |
| C1       | 20181107               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 17:10 | 8.16         | 8.33 | 30.06     | 23.2      | 1.57                        | 12        | -                             | -                            | -                 |
| C1       | 20181107               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 17:11 | 8.06         | 8.36 | 29.96     | 23.1      | 1.6                         | 12        | -                             | -                            | -                 |
| B1       | 20181107               | Fine    | Moderate         | Mid-Flood | В                        | 4.7          | 17:40 | 7.99         | 8.36 | 29.93     | 23.2      | 4.36                        | 7         | -                             | -                            | -                 |
| B1       | 20181107               | Fine    | Moderate         | Mid-Flood | В                        | 4.7          | 17:40 | 8.01         | 8.34 | 29.99     | 23.2      | 4.34                        | 7         | -                             | -                            | -                 |
| B1       | 20181107               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 17:41 | 8.07         | 8.4  | 30.04     | 23.1      | 2.99                        | 7         | -                             | -                            | -                 |
| B1       | 20181107               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 17:41 | 8.13         | 8.38 | 30.08     | 23.2      | 2.92                        | 7         | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

|    | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| B2 | 20181107               | Fine    | Moderate         | Mid-Flood | В                        | 4.8          | 17:57 | 8.02         | 8.35 | 29.9      | 23.1      | 4.79                        | 16        | -                             | -                            | -                 |
| B2 | 20181107               | Fine    | Moderate         | Mid-Flood | В                        | 4.8          | 17:58 | 7.99         | 8.29 | 29.82     | 23.1      | 4.88                        | 17        | -                             | -                            | -                 |
| B2 | 20181107               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 17:58 | 8.08         | 8.29 | 29.82     | 23.2      | 1.26                        | 7         | -                             | -                            | -                 |
| B2 | 20181107               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 17:59 | 8.11         | 8.36 | 29.77     | 23.1      | 1.36                        | 8         | -                             | -                            | -                 |
| H1 | 20181107               | Fine    | Moderate         | Mid-Flood | В                        | 8.4          | 18:22 | 8.18         | 8.22 | 30.12     | 23.1      | 4.52                        | 6         | -                             | -                            | -                 |
| H1 | 20181107               | Fine    | Moderate         | Mid-Flood | В                        | 8.4          | 18:22 | 8.24         | 8.24 | 30.15     | 23.1      | 4.5                         | 6         | -                             | -                            | -                 |
| H1 | 20181107               | Fine    | Moderate         | Mid-Flood | М                        | 4.7          | 18:23 | 8.23         | 8.38 | 30.1      | 23.1      | 4.29                        | 7         | -                             | -                            | -                 |
| H1 | 20181107               | Fine    | Moderate         | Mid-Flood | М                        | 4.7          | 18:23 | 8.18         | 8.31 | 30.2      | 23.1      | 4.2                         | 6         | -                             | -                            | -                 |
| H1 | 20181107               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 18:24 | 8.2          | 8.29 | 30.1      | 23.1      | 2.73                        | 7         | -                             | -                            | -                 |
| H1 | 20181107               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 18:24 | 8.27         | 8.34 | 30.08     | 23.1      | 2.82                        | 7         | -                             | -                            | -                 |
| B3 | 20181107               | Fine    | Moderate         | Mid-Flood | В                        | 4.8          | 18:36 | 7.99         | 8.37 | 29.94     | 23.2      | 4.93                        | 11        | -                             | -                            | -                 |
| B3 | 20181107               | Fine    | Moderate         | Mid-Flood | В                        | 4.8          | 18:37 | 7.91         | 8.29 | 29.92     | 23.2      | 5.03                        | 12        | -                             | -                            | -                 |
| B3 | 20181107               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 18:37 | 8            | 8.23 | 29.86     | 23.1      | 1.16                        | 13        | -                             | -                            | -                 |
| B3 | 20181107               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 18:37 | 8.1          | 8.22 | 29.95     | 23.2      | 1.1                         | 12        | -                             | -                            | -                 |
| B4 | 20181107               | Fine    | Moderate         | Mid-Flood | В                        | 4.7          | 18:45 | 8.06         | 8.35 | 30.2      | 23.1      | 6.54                        | 14        | -                             | -                            | -                 |
| B4 | 20181107               | Fine    | Moderate         | Mid-Flood | В                        | 4.7          | 18:45 | 7.97         | 8.25 | 30.16     | 23.1      | 6.51                        | 15        | -                             | -                            | -                 |
| B4 | 20181107               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 18:46 | 8.05         | 8.37 | 30.2      | 23.2      | 2.49                        | 13        | -                             | -                            | -                 |
| B4 | 20181107               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 18:46 | 8.14         | 8.4  | 30.24     | 23.1      | 2.42                        | 13        | -                             | -                            | -                 |
| F1 | 20181107               | Fine    | Moderate         | Mid-Flood | В                        | 8            | 19:14 | 7.96         | 8.32 | 29.87     | 23.1      | 5.18                        | 13        | -                             | -                            | -                 |
| F1 | 20181107               | Fine    | Moderate         | Mid-Flood | В                        | 8            | 19:15 | 8.01         | 8.39 | 29.78     | 23.1      | 5.1                         | 12        | -                             | -                            | -                 |
| F1 | 20181107               | Fine    | Moderate         | Mid-Flood | М                        | 4.5          | 19:15 | 8.03         | 8.33 | 29.88     | 23.1      | 3.87                        | 11        | -                             | -                            | -                 |
| F1 | 20181107               | Fine    | Moderate         | Mid-Flood | М                        | 4.5          | 19:16 | 8.1          | 8.34 | 29.91     | 23.1      | 3.78                        | 11        | -                             | -                            | -                 |
| F1 | 20181107               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 19:16 | 8.01         | 8.27 | 29.85     | 23.2      | 2.29                        | 10        | -                             | -                            | -                 |
| F1 | 20181107               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 19:16 | 8.02         | 8.33 | 29.93     | 23.1      | 2.39                        | 10        | -                             | -                            | -                 |
| M1 | 20181107               | Fine    | Moderate         | Mid-Flood | В                        | 8.2          | 19:44 | 8.3          | 8.38 | 29.84     | 23.1      | 4.68                        | 10        | -                             | -                            | -                 |
| M1 | 20181107               | Fine    | Moderate         | Mid-Flood | В                        | 8.2          | 19:44 | 8.39         | 8.37 | 29.86     | 23.2      | 4.72                        | 10        | -                             | -                            | -                 |
| M1 | 20181107               | Fine    | Moderate         | Mid-Flood | М                        | 4.6          | 19:44 | 8.39         | 8.37 | 29.9      | 23.2      | 2.48                        | 16        | -                             | -                            | -                 |
| M1 | 20181107               | Fine    | Moderate         | Mid-Flood | М                        | 4.6          | 19:45 | 8.47         | 8.36 | 29.83     | 23.1      | 2.45                        | 15        | -                             | -                            | -                 |
| M1 | 20181107               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 19:45 | 8.37         | 8.38 | 29.84     | 23.1      | 2.02                        | 21        | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| Location | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | pH   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----------|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| M1       | 20181107               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 19:46 | 8.34         | 8.39 | 29.86     | 23.1      | 1.97                        | 20        | -                             | -                            | -                 |
| C1       | 20181109               | Sunny   | Light            | Mid-Ebb   | В                        | 10.8         | 11:48 | 8.19         | 8.15 | 29.1      | 22.9      | 4.27                        | 10        | -                             | -                            | -                 |
| C1       | 20181109               | Sunny   | Light            | Mid-Ebb   | В                        | 10.8         | 11:48 | 8.25         | 8.11 | 29.18     | 22.8      | 4.17                        | 9         | -                             | -                            | -                 |
| C1       | 20181109               | Sunny   | Light            | Mid-Ebb   | М                        | 5.9          | 11:48 | 8.15         | 8.11 | 29.05     | 22.9      | 3.59                        | 8         | -                             | -                            | -                 |
| C1       | 20181109               | Sunny   | Light            | Mid-Ebb   | М                        | 5.9          | 11:49 | 8.25         | 8.11 | 29.09     | 22.9      | 3.54                        | 8         | -                             | -                            | -                 |
| C1       | 20181109               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 11:49 | 8.16         | 8.06 | 29.19     | 22.9      | 2.99                        | 6         | -                             | -                            | -                 |
| C1       | 20181109               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 11:49 | 8.23         | 7.97 | 29.19     | 23        | 2.93                        | 6         | -                             | -                            | -                 |
| B1       | 20181109               | Sunny   | Light            | Mid-Ebb   | В                        | 4.2          | 12:12 | 8.19         | 7.99 | 29.11     | 22.8      | 5.96                        | 12        | -                             | -                            | -                 |
| B1       | 20181109               | Sunny   | Light            | Mid-Ebb   | В                        | 4.2          | 12:12 | 8.24         | 7.93 | 29.17     | 22.8      | 6.01                        | 12        | -                             | -                            | -                 |
| B1       | 20181109               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 12:13 | 8.32         | 7.96 | 29.1      | 22.8      | 1.25                        | 11        | -                             | -                            | -                 |
| B1       | 20181109               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 12:13 | 8.33         | 7.89 | 29.04     | 23        | 1.34                        | 10        | -                             | -                            | -                 |
| B2       | 20181109               | Sunny   | Light            | Mid-Ebb   | В                        | 4.3          | 12:28 | 8.39         | 7.83 | 29.07     | 23        | 5.53                        | 13        | -                             | -                            | -                 |
| B2       | 20181109               | Sunny   | Light            | Mid-Ebb   | В                        | 4.3          | 12:29 | 8.36         | 7.87 | 29.12     | 22.9      | 5.56                        | 13        | -                             | -                            | -                 |
| B2       | 20181109               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 12:29 | 8.43         | 7.8  | 29.17     | 23        | 2.04                        | 11        | -                             | -                            | -                 |
| B2       | 20181109               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 12:29 | 8.51         | 7.82 | 29.09     | 22.8      | 2.11                        | 12        | -                             | -                            | -                 |
| H1       | 20181109               | Sunny   | Light            | Mid-Ebb   | В                        | 7.6          | 12:55 | 8.54         | 7.75 | 29.17     | 22.8      | 4.2                         | 15        | -                             | -                            | -                 |
| H1       | 20181109               | Sunny   | Light            | Mid-Ebb   | В                        | 7.6          | 12:55 | 8.49         | 7.73 | 29.14     | 22.9      | 4.2                         | 14        | -                             | -                            | -                 |
| H1       | 20181109               | Sunny   | Light            | Mid-Ebb   | М                        | 4.3          | 12:56 | 8.54         | 7.64 | 29.19     | 22.9      | 3.73                        | 14        | -                             | -                            | -                 |
| H1       | 20181109               | Sunny   | Light            | Mid-Ebb   | М                        | 4.3          | 12:56 | 8.55         | 7.6  | 29.03     | 23        | 3.83                        | 15        | -                             | -                            | -                 |
| H1       | 20181109               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 12:56 | 8.52         | 7.6  | 29.02     | 22.8      | 2.38                        | 12        | -                             | -                            | -                 |
| H1       | 20181109               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 12:57 | 8.47         | 7.63 | 29.07     | 22.9      | 2.42                        | 12        | -                             | -                            | -                 |
| CR2      | 20181109               | Sunny   | Light            | Mid-Ebb   | В                        | 7.8          | 13:19 | 8.49         | 7.62 | 29.02     | 23        | 5.51                        | 22        | -                             | -                            | -                 |
| CR2      | 20181109               | Sunny   | Light            | Mid-Ebb   | В                        | 7.8          | 13:20 | 8.45         | 7.72 | 29.17     | 23        | 5.56                        | 21        | -                             | -                            | -                 |
| CR2      | 20181109               | Sunny   | Light            | Mid-Ebb   | М                        | 4.4          | 13:20 | 8.47         | 7.7  | 29.01     | 22.9      | 4.58                        | 19        | -                             | -                            | -                 |
| CR2      | 20181109               | Sunny   | Light            | Mid-Ebb   | М                        | 4.4          | 13:20 | 8.38         | 7.76 | 29        | 22.8      | 4.57                        | 20        | -                             | -                            | -                 |
| CR2      | 20181109               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 13:21 | 8.43         | 7.77 | 29.12     | 22.9      | 2.85                        | 16        | -                             | -                            | -                 |
| CR2      | 20181109               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 13:21 | 8.43         | 7.78 | 29.01     | 22.9      | 2.79                        | 15        | -                             | -                            | -                 |
| CR1      | 20181109               | Sunny   | Light            | Mid-Ebb   | В                        | 8            | 13:44 | 8.51         | 7.68 | 29.05     | 23        | 4.14                        | 8         | -                             | -                            | -                 |
| CR1      | 20181109               | Sunny   | Light            | Mid-Ebb   | В                        | 8            | 13:45 | 8.46         | 7.7  | 29.15     | 23        | 4.14                        | 8         | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| ,   | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal   | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|-----|------------------------|---------|------------------|---------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| CR1 | 20181109               | Sunny   | Light            | Mid-Ebb | М                        | 4.5          | 13:45 | 8.4          | 7.76 | 29.14     | 22.8      | 3.67                        | 7         | -                             | -                            | -                 |
| CR1 | 20181109               | Sunny   | Light            | Mid-Ebb | М                        | 4.5          | 13:46 | 8.42         | 7.84 | 29.18     | 22.9      | 3.71                        | 7         | -                             | -                            | -                 |
| CR1 | 20181109               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 13:46 | 8.33         | 7.81 | 29.13     | 23        | 1.73                        | 6         | -                             | -                            | -                 |
| CR1 | 20181109               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 13:46 | 8.43         | 7.82 | 29.07     | 22.9      | 1.75                        | 7         | -                             | -                            | -                 |
| B3  | 20181109               | Sunny   | Light            | Mid-Ebb | В                        | 4.3          | 14:05 | 8.41         | 7.81 | 29.07     | 22.9      | 5.05                        | 10        | -                             | -                            | -                 |
| B3  | 20181109               | Sunny   | Light            | Mid-Ebb | В                        | 4.3          | 14:05 | 8.31         | 7.85 | 29.09     | 23        | 4.95                        | 11        | -                             | -                            | -                 |
| B3  | 20181109               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 14:06 | 8.23         | 7.93 | 29.05     | 23        | 2.54                        | 7         | -                             | -                            | -                 |
| B3  | 20181109               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 14:06 | 8.17         | 7.84 | 29.16     | 22.8      | 2.49                        | 8         | -                             | -                            | -                 |
| B4  | 20181109               | Sunny   | Light            | Mid-Ebb | В                        | 4.1          | 14:19 | 8.26         | 7.76 | 29.16     | 22.8      | 4.23                        | 12        | -                             | -                            | -                 |
| B4  | 20181109               | Sunny   | Light            | Mid-Ebb | В                        | 4.1          | 14:20 | 8.25         | 7.78 | 29.07     | 22.9      | 4.21                        | 13        | -                             | -                            | -                 |
| B4  | 20181109               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 14:20 | 8.24         | 7.79 | 29.01     | 22.9      | 1.44                        | 9         | -                             | -                            | -                 |
| B4  | 20181109               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 14:20 | 8.32         | 7.76 | 29.07     | 22.8      | 1.45                        | 8         | -                             | -                            | -                 |
| C2  | 20181109               | Sunny   | Light            | Mid-Ebb | В                        | 8.5          | 14:44 | 8.32         | 7.74 | 29.03     | 23        | 5.97                        | 12        | -                             | -                            | -                 |
| C2  | 20181109               | Sunny   | Light            | Mid-Ebb | В                        | 8.5          | 14:44 | 8.24         | 7.64 | 29.06     | 22.9      | 5.99                        | 12        | -                             | -                            | -                 |
| C2  | 20181109               | Sunny   | Light            | Mid-Ebb | М                        | 4.3          | 14:45 | 8.18         | 7.61 | 29.16     | 22.9      | 4.48                        | 11        | -                             | -                            | -                 |
| C2  | 20181109               | Sunny   | Light            | Mid-Ebb | М                        | 4.3          | 14:45 | 8.22         | 7.52 | 29.15     | 22.9      | 4.42                        | 11        | -                             | -                            | -                 |
| C2  | 20181109               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 14:45 | 8.24         | 7.47 | 29.12     | 23        | 2.11                        | 10        | -                             | -                            | -                 |
| C2  | 20181109               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 14:46 | 8.33         | 7.42 | 29.12     | 22.9      | 2.06                        | 8         | -                             | -                            | -                 |
| F1  | 20181109               | Sunny   | Light            | Mid-Ebb | В                        | 8            | 15:07 | 8.41         | 7.41 | 29        | 23        | 4.27                        | 10        | -                             | -                            | -                 |
| F1  | 20181109               | Sunny   | Light            | Mid-Ebb | В                        | 8            | 15:08 | 8.42         | 7.45 | 29.03     | 22.8      | 4.29                        | 9         | -                             | -                            | -                 |
| F1  | 20181109               | Sunny   | Light            | Mid-Ebb | М                        | 4.5          | 15:08 | 8.39         | 7.44 | 29.01     | 22.9      | 3.71                        | 9         | -                             | -                            | -                 |
| F1  | 20181109               | Sunny   | Light            | Mid-Ebb | М                        | 4.5          | 15:08 | 8.3          | 7.38 | 29.15     | 22.8      | 3.79                        | 9         | -                             | -                            | -                 |
| F1  | 20181109               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 15:09 | 8.28         | 7.48 | 29.12     | 22.8      | 2.16                        | 7         | -                             | -                            | -                 |
| F1  | 20181109               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 15:09 | 8.38         | 7.42 | 29        | 22.8      | 2.14                        | 8         | -                             | -                            | -                 |
| M1  | 20181109               | Sunny   | Light            | Mid-Ebb | В                        | 7.8          | 15:35 | 8.33         | 7.35 | 29.11     | 23        | 4.03                        | 11        | -                             | -                            | -                 |
| M1  | 20181109               | Sunny   | Light            | Mid-Ebb | В                        | 7.8          | 15:36 | 8.39         | 7.35 | 29.16     | 23        | 4.13                        | 11        | -                             | -                            | -                 |
| M1  | 20181109               | Sunny   | Light            | Mid-Ebb | М                        | 4.4          | 15:36 | 8.41         | 7.27 | 29.01     | 22.9      | 3.86                        | 11        | -                             | -                            | -                 |
| M1  | 20181109               | Sunny   | Light            | Mid-Ebb | М                        | 4.4          | 15:37 | 8.45         | 7.21 | 29.04     | 23        | 3.9                         | 10        | -                             | -                            | -                 |
| M1  | 20181109               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 15:37 | 8.39         | 7.16 | 29.16     | 22.8      | 1.86                        | 9         | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

|     | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|-----|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| M1  | 20181109               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 15:37 | 8.43         | 7.26 | 29.08     | 22.9      | 1.82                        | 9         | -                             | -                            | -                 |
| C2  | 20181109               | Fine    | Moderate         | Mid-Flood | В                        | 9.3          | 17:09 | 8.38         | 7.23 | 29.16     | 22.8      | 4.26                        | 10        | -                             | -                            | -                 |
| C2  | 20181109               | Fine    | Moderate         | Mid-Flood | В                        | 9.3          | 17:09 | 8.36         | 7.27 | 29.09     | 23        | 4.19                        | 10        | -                             | -                            | -                 |
| C2  | 20181109               | Fine    | Moderate         | Mid-Flood | М                        | 5.2          | 17:10 | 8.28         | 7.27 | 29.15     | 22.9      | 3.24                        | 9         | -                             | -                            | -                 |
| C2  | 20181109               | Fine    | Moderate         | Mid-Flood | М                        | 5.2          | 17:10 | 8.26         | 7.24 | 29.01     | 22.8      | 3.2                         | 9         | -                             | -                            | -                 |
| C2  | 20181109               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 17:10 | 8.18         | 7.26 | 29.12     | 22.9      | 1.85                        | 8         | -                             | -                            | -                 |
| C2  | 20181109               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 17:11 | 8.12         | 7.26 | 29.09     | 23        | 1.8                         | 9         | -                             | -                            | -                 |
| CR1 | 20181109               | Fine    | Moderate         | Mid-Flood | В                        | 8.4          | 17:28 | 8.07         | 7.31 | 29.09     | 22.8      | 5.83                        | 12        | -                             | -                            | -                 |
| CR1 | 20181109               | Fine    | Moderate         | Mid-Flood | В                        | 8.4          | 17:28 | 8.09         | 7.27 | 29.14     | 22.9      | 5.85                        | 12        | -                             | -                            | -                 |
| CR1 | 20181109               | Fine    | Moderate         | Mid-Flood | М                        | 4.7          | 17:29 | 8.02         | 7.29 | 29.15     | 22.9      | 3.75                        | 10        | -                             | -                            | -                 |
| CR1 | 20181109               | Fine    | Moderate         | Mid-Flood | М                        | 4.7          | 17:29 | 8.06         | 7.22 | 29.03     | 22.9      | 3.74                        | 9         | -                             | -                            | -                 |
| CR1 | 20181109               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 17:30 | 8.02         | 7.24 | 29.19     | 23        | 2.18                        | 8         | -                             | -                            | -                 |
| CR1 | 20181109               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 17:30 | 7.99         | 7.26 | 29.13     | 22.9      | 2.08                        | 8         | -                             | -                            | -                 |
| CR2 | 20181109               | Fine    | Moderate         | Mid-Flood | В                        | 8.2          | 17:38 | 8            | 7.35 | 29.14     | 23        | 4.32                        | 11        | -                             | -                            | -                 |
| CR2 | 20181109               | Fine    | Moderate         | Mid-Flood | В                        | 8.2          | 17:39 | 7.92         | 7.25 | 29.19     | 23        | 4.29                        | 11        | -                             | -                            | -                 |
| CR2 | 20181109               | Fine    | Moderate         | Mid-Flood | М                        | 4.6          | 17:39 | 8.01         | 7.33 | 29.07     | 22.9      | 3.71                        | 10        | -                             | -                            | -                 |
| CR2 | 20181109               | Fine    | Moderate         | Mid-Flood | М                        | 4.6          | 17:39 | 7.91         | 7.38 | 29.11     | 23        | 3.66                        | 11        | -                             | -                            | -                 |
| CR2 | 20181109               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 17:40 | 8            | 7.32 | 29.02     | 22.9      | 2.04                        | 9         | -                             | -                            | -                 |
| CR2 | 20181109               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 17:40 | 8.07         | 7.36 | 29.09     | 22.8      | 1.94                        | 10        | -                             | -                            | -                 |
| C1  | 20181109               | Fine    | Moderate         | Mid-Flood | В                        | 11.3         | 18:13 | 8.07         | 7.44 | 29.11     | 22.8      | 4.76                        | 10        | -                             | -                            | -                 |
| C1  | 20181109               | Fine    | Moderate         | Mid-Flood | В                        | 11.3         | 18:13 | 8.02         | 7.36 | 29.04     | 23        | 4.84                        | 11        | -                             | -                            | -                 |
| C1  | 20181109               | Fine    | Moderate         | Mid-Flood | М                        | 6.2          | 18:13 | 8.01         | 7.3  | 29.04     | 23        | 4.53                        | 9         | -                             | -                            | -                 |
| C1  | 20181109               | Fine    | Moderate         | Mid-Flood | М                        | 6.2          | 18:14 | 8.03         | 7.28 | 29        | 23        | 4.63                        | 8         | -                             | -                            | -                 |
| C1  | 20181109               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 18:14 | 8.06         | 7.34 | 29.1      | 22.9      | 1.73                        | 8         | -                             | -                            | -                 |
| C1  | 20181109               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 18:15 | 8.11         | 7.33 | 29.12     | 22.8      | 1.7                         | 7         | -                             | -                            | -                 |
| B1  | 20181109               | Fine    | Moderate         | Mid-Flood | В                        | 4.7          | 18:38 | 8.18         | 7.43 | 29.06     | 22.9      | 4.63                        | 10        | -                             | -                            | -                 |
| B1  | 20181109               | Fine    | Moderate         | Mid-Flood | В                        | 4.7          | 18:38 | 8.11         | 7.35 | 29.04     | 22.8      | 4.72                        | 10        | -                             | -                            | -                 |
| B1  | 20181109               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 18:39 | 8.01         | 7.29 | 29.15     | 22.8      | 1.69                        | 8         | -                             | -                            | -                 |
| B1  | 20181109               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 18:39 | 7.98         | 7.34 | 29.19     | 23        | 1.69                        | 8         | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

|    | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| B2 | 20181109               | Fine    | Moderate         | Mid-Flood | В                        | 4.6          | 18:56 | 7.99         | 7.34 | 29.04     | 22.8      | 5.93                        | 14        | -                             | -                            | -                 |
| B2 | 20181109               | Fine    | Moderate         | Mid-Flood | В                        | 4.6          | 18:57 | 8.03         | 7.29 | 29.17     | 23        | 5.94                        | 13        | -                             | -                            | -                 |
| B2 | 20181109               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 18:57 | 7.99         | 7.22 | 29.1      | 22.9      | 1.47                        | 13        | -                             | -                            | -                 |
| B2 | 20181109               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 18:58 | 8.08         | 7.15 | 29.08     | 22.8      | 1.54                        | 12        | -                             | -                            | -                 |
| H1 | 20181109               | Fine    | Moderate         | Mid-Flood | В                        | 7.9          | 19:21 | 8.13         | 7.19 | 29.18     | 23        | 5.46                        | 8         | -                             | -                            | -                 |
| H1 | 20181109               | Fine    | Moderate         | Mid-Flood | В                        | 7.9          | 19:21 | 8.22         | 7.23 | 29.12     | 22.9      | 5.36                        | 9         | -                             | -                            | -                 |
| H1 | 20181109               | Fine    | Moderate         | Mid-Flood | М                        | 4.5          | 19:22 | 8.2          | 7.3  | 29.17     | 22.9      | 3.7                         | 11        | -                             | -                            | -                 |
| H1 | 20181109               | Fine    | Moderate         | Mid-Flood | М                        | 4.5          | 19:22 | 8.17         | 7.27 | 29.06     | 22.9      | 3.71                        | 10        | -                             | -                            | -                 |
| H1 | 20181109               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 19:23 | 8.15         | 7.3  | 29.08     | 22.9      | 2.16                        | 10        | -                             | -                            | -                 |
| H1 | 20181109               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 19:23 | 8.25         | 7.37 | 29.13     | 22.9      | 2.16                        | 10        | -                             | -                            | -                 |
| B3 | 20181109               | Fine    | Moderate         | Mid-Flood | В                        | 4.4          | 19:36 | 8.23         | 7.27 | 29.07     | 22.9      | 5.85                        | 9         | -                             | -                            | -                 |
| B3 | 20181109               | Fine    | Moderate         | Mid-Flood | В                        | 4.4          | 19:37 | 8.33         | 7.32 | 29.02     | 22.8      | 5.86                        | 8         | -                             | -                            | -                 |
| B3 | 20181109               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 19:37 | 8.33         | 7.3  | 29.06     | 22.9      | 1.04                        | 8         | -                             | -                            | -                 |
| B3 | 20181109               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 19:37 | 8.36         | 7.25 | 29.14     | 23        | 0.99                        | 9         | -                             | -                            | -                 |
| B4 | 20181109               | Fine    | Moderate         | Mid-Flood | В                        | 4.7          | 19:49 | 8.29         | 7.2  | 29.09     | 22.8      | 4.96                        | 10        | -                             | -                            | -                 |
| B4 | 20181109               | Fine    | Moderate         | Mid-Flood | В                        | 4.7          | 19:49 | 8.22         | 7.1  | 29.16     | 23        | 4.99                        | 11        | -                             | -                            | -                 |
| B4 | 20181109               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 19:50 | 8.13         | 7.06 | 29.14     | 22.8      | 2.9                         | 8         | -                             | -                            | -                 |
| B4 | 20181109               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 19:50 | 8.04         | 7.13 | 29.11     | 22.9      | 2.97                        | 8         | -                             | -                            | -                 |
| F1 | 20181109               | Fine    | Moderate         | Mid-Flood | В                        | 8.1          | 20:19 | 8.12         | 7.14 | 29.01     | 23        | 5.77                        | 9         | -                             | -                            | -                 |
| F1 | 20181109               | Fine    | Moderate         | Mid-Flood | В                        | 8.1          | 20:20 | 8.09         | 7.22 | 29.04     | 23        | 5.68                        | 10        | -                             | -                            | -                 |
| F1 | 20181109               | Fine    | Moderate         | Mid-Flood | М                        | 4.6          | 20:20 | 8.06         | 7.22 | 29.06     | 22.8      | 3.37                        | 8         | -                             | -                            | -                 |
| F1 | 20181109               | Fine    | Moderate         | Mid-Flood | М                        | 4.6          | 20:21 | 8.02         | 7.23 | 29.05     | 22.9      | 3.27                        | 9         | -                             | -                            | -                 |
| F1 | 20181109               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 20:21 | 8.02         | 7.26 | 29.03     | 23        | 1.05                        | 7         | -                             | -                            | -                 |
| F1 | 20181109               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 20:21 | 7.93         | 7.34 | 29.12     | 22.9      | 0.97                        | 8         | -                             | -                            | -                 |
| M1 | 20181109               | Fine    | Moderate         | Mid-Flood | В                        | 8.2          | 20:49 | 7.9          | 7.3  | 29.08     | 22.9      | 4.57                        | 11        | -                             | -                            | -                 |
| M1 | 20181109               | Fine    | Moderate         | Mid-Flood | В                        | 8.2          | 20:49 | 7.85         | 7.25 | 29.15     | 22.9      | 4.52                        | 10        | -                             | -                            | -                 |
| M1 | 20181109               | Fine    | Moderate         | Mid-Flood | М                        | 4.6          | 20:49 | 7.86         | 7.17 | 29.03     | 22.8      | 3.3                         | 10        | -                             | -                            | -                 |
| M1 | 20181109               | Fine    | Moderate         | Mid-Flood | М                        | 4.6          | 20:50 | 7.92         | 7.14 | 29.09     | 23        | 3.27                        | 9         | -                             | -                            | -                 |
| M1 | 20181109               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 20:50 | 7.98         | 7.09 | 29.05     | 22.8      | 1.11                        | 9         | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| Location | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----------|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| M1       | 20181109               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 20:51 | 7.92         | 7.14 | 29.08     | 22.8      | 1.19                        | 8         | -                             | -                            | -                 |
| C2       | 20181113               | Sunny   | Light            | Mid-Flood | В                        | 9.4          | 9:09  | 7.88         | 8.09 | 29.58     | 22.1      | 4.6                         | 22        | -                             | -                            | -                 |
| C2       | 20181113               | Sunny   | Light            | Mid-Flood | В                        | 9.4          | 9:09  | 7.86         | 8.15 | 29.63     | 22.2      | 4.54                        | 23        | -                             | -                            | -                 |
| C2       | 20181113               | Sunny   | Light            | Mid-Flood | М                        | 5.2          | 9:09  | 7.99         | 8.13 | 29.67     | 22.1      | 3.32                        | - note 2  | -                             | -                            | -                 |
| C2       | 20181113               | Sunny   | Light            | Mid-Flood | М                        | 5.2          | 9:10  | 8.05         | 8.14 | 29.62     | 22.1      | 3.24                        | 20        | -                             | -                            | -                 |
| C2       | 20181113               | Sunny   | Light            | Mid-Flood | S                        | 1            | 9:10  | 7.99         | 8.18 | 29.52     | 22.2      | 2.59                        | 19        | -                             | -                            | -                 |
| C2       | 20181113               | Sunny   | Light            | Mid-Flood | S                        | 1            | 9:10  | 7.98         | 8.2  | 29.58     | 22.1      | 2.6                         | 19        | -                             | -                            | -                 |
| CR1      | 20181113               | Sunny   | Light            | Mid-Flood | В                        | 8.3          | 9:37  | 8.12         | 8.11 | 29.63     | 22.2      | 5.92                        | 16        | -                             | -                            | -                 |
| CR1      | 20181113               | Sunny   | Light            | Mid-Flood | В                        | 8.3          | 9:37  | 8.27         | 8.2  | 29.58     | 22.1      | 5.97                        | 17        | -                             | -                            | -                 |
| CR1      | 20181113               | Sunny   | Light            | Mid-Flood | М                        | 4.7          | 9:38  | 8.19         | 8.11 | 29.56     | 22.1      | 3.27                        | 14        | -                             | -                            | -                 |
| CR1      | 20181113               | Sunny   | Light            | Mid-Flood | М                        | 4.7          | 9:38  | 8.29         | 8.18 | 29.43     | 22.1      | 3.24                        | 16        | -                             | -                            | -                 |
| CR1      | 20181113               | Sunny   | Light            | Mid-Flood | S                        | 1            | 9:38  | 8.21         | 8.06 | 29.43     | 22.1      | 1.99                        | 14        | -                             | -                            | -                 |
| CR1      | 20181113               | Sunny   | Light            | Mid-Flood | S                        | 1            | 9:39  | 8.19         | 8.06 | 29.35     | 22.2      | 1.96                        | 15        | -                             | -                            | -                 |
| CR2      | 20181113               | Sunny   | Light            | Mid-Flood | В                        | 8.3          | 9:52  | 7.68         | 8.15 | 29.55     | 22.2      | 4.74                        | 12        | -                             | -                            | -                 |
| CR2      | 20181113               | Sunny   | Light            | Mid-Flood | В                        | 8.3          | 9:52  | 7.82         | 8.08 | 29.61     | 22.1      | 4.73                        | 13        | -                             | -                            | -                 |
| CR2      | 20181113               | Sunny   | Light            | Mid-Flood | М                        | 4.7          | 9:53  | 7.79         | 8.11 | 29.56     | 22.1      | 4.69                        | 11        | -                             | -                            | -                 |
| CR2      | 20181113               | Sunny   | Light            | Mid-Flood | М                        | 4.7          | 9:53  | 7.75         | 8.19 | 29.59     | 22.1      | 4.59                        | 12        | -                             | -                            | -                 |
| CR2      | 20181113               | Sunny   | Light            | Mid-Flood | S                        | 1            | 9:54  | 7.73         | 8.12 | 29.54     | 22.2      | 2.99                        | 11        | -                             | -                            | -                 |
| CR2      | 20181113               | Sunny   | Light            | Mid-Flood | S                        | 1            | 9:54  | 7.84         | 8.18 | 29.4      | 22.1      | 2.98                        | 11        | -                             | -                            | -                 |
| C1       | 20181113               | Sunny   | Light            | Mid-Flood | В                        | 11.2         | 10:24 | 8.1          | 8.09 | 29.61     | 22.2      | 5.99                        | 12        | -                             | -                            | -                 |
| C1       | 20181113               | Sunny   | Light            | Mid-Flood | В                        | 11.2         | 10:25 | 8.07         | 8.07 | 29.6      | 22.1      | 6.04                        | 13        | -                             | -                            | -                 |
| C1       | 20181113               | Sunny   | Light            | Mid-Flood | М                        | 6.1          | 10:25 | 8.12         | 8.08 | 29.47     | 22.2      | 3.98                        | 12        | -                             | -                            | -                 |
| C1       | 20181113               | Sunny   | Light            | Mid-Flood | М                        | 6.1          | 10:26 | 8.02         | 8.07 | 29.38     | 22.1      | 3.97                        | 12        | -                             | -                            | -                 |
| C1       | 20181113               | Sunny   | Light            | Mid-Flood | S                        | 1            | 10:26 | 8.1          | 8.1  | 29.36     | 22.2      | 2.82                        | 10        | -                             | -                            | -                 |
| C1       | 20181113               | Sunny   | Light            | Mid-Flood | S                        | 1            | 10:26 | 8.25         | 8.16 | 29.3      | 22.1      | 2.82                        | 10        | -                             | -                            | -                 |
| B1       | 20181113               | Sunny   | Light            | Mid-Flood | В                        | 4.8          | 10:53 | 7.76         | 8.2  | 29.63     | 22.2      | 5.16                        | 23        | -                             | -                            | -                 |
| B1       | 20181113               | Sunny   | Light            | Mid-Flood | В                        | 4.8          | 10:53 | 7.83         | 8.14 | 29.64     | 22.1      | 5.1                         | 24        | -                             | -                            | -                 |
| B1       | 20181113               | Sunny   | Light            | Mid-Flood | S                        | 1            | 10:53 | 7.73         | 8.16 | 29.55     | 22.2      | 1.25                        | 19        | -                             | -                            | -                 |
| B1       | 20181113               | Sunny   | Light            | Mid-Flood | S                        | 1            | 10:54 | 7.72         | 8.12 | 29.4      | 22.1      | 1.32                        | 18        | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

|    | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| B2 | 20181113               | Sunny   | Light            | Mid-Flood | В                        | 4.7          | 11:08 | 8            | 8.06 | 29.59     | 22.2      | 4.31                        | 17        | -                             | -                            | -                 |
| B2 | 20181113               | Sunny   | Light            | Mid-Flood | В                        | 4.7          | 11:09 | 8.09         | 8.06 | 29.64     | 22.2      | 4.4                         | 18        | -                             | -                            | -                 |
| B2 | 20181113               | Sunny   | Light            | Mid-Flood | S                        | 1            | 11:09 | 8.07         | 8.13 | 29.67     | 22.1      | 1.57                        | 17        | -                             | -                            | -                 |
| B2 | 20181113               | Sunny   | Light            | Mid-Flood | S                        | 1            | 11:09 | 8.18         | 8.08 | 29.71     | 22.1      | 1.62                        | 16        | -                             | -                            | -                 |
| H1 | 20181113               | Sunny   | Light            | Mid-Flood | В                        | 8.1          | 11:32 | 7.86         | 8.2  | 29.52     | 22.1      | 4.57                        | 14        | -                             | -                            | -                 |
| H1 | 20181113               | Sunny   | Light            | Mid-Flood | В                        | 8.1          | 11:32 | 7.85         | 8.1  | 29.41     | 22.1      | 4.49                        | 14        | -                             | -                            | -                 |
| H1 | 20181113               | Sunny   | Light            | Mid-Flood | М                        | 4.6          | 11:33 | 7.84         | 8.15 | 29.39     | 22.1      | 4.06                        | 14        | -                             | -                            | -                 |
| H1 | 20181113               | Sunny   | Light            | Mid-Flood | М                        | 4.6          | 11:33 | 7.76         | 8.2  | 29.35     | 22.1      | 4.11                        | 13        | -                             | -                            | -                 |
| H1 | 20181113               | Sunny   | Light            | Mid-Flood | S                        | 1            | 11:33 | 7.87         | 8.09 | 29.33     | 22.2      | 2.23                        | 14        | -                             | -                            | -                 |
| H1 | 20181113               | Sunny   | Light            | Mid-Flood | S                        | 1            | 11:34 | 8.02         | 8.13 | 29.18     | 22.1      | 2.16                        | 13        | -                             | -                            | -                 |
| B3 | 20181113               | Sunny   | Light            | Mid-Flood | В                        | 4.5          | 11:51 | 7.95         | 8.2  | 29.64     | 22.1      | 4.87                        | 15        | -                             | -                            | -                 |
| B3 | 20181113               | Sunny   | Light            | Mid-Flood | В                        | 4.5          | 11:51 | 7.88         | 8.18 | 29.5      | 22.1      | 4.93                        | 16        | -                             | -                            | -                 |
| B3 | 20181113               | Sunny   | Light            | Mid-Flood | S                        | 1            | 11:52 | 7.89         | 8.19 | 29.56     | 22.1      | 1.35                        | 13        | -                             | -                            | -                 |
| B3 | 20181113               | Sunny   | Light            | Mid-Flood | S                        | 1            | 11:52 | 7.94         | 8.2  | 29.49     | 22.1      | 1.41                        | 12        | -                             | -                            | -                 |
| B4 | 20181113               | Sunny   | Light            | Mid-Flood | В                        | 4.6          | 11:59 | 8.13         | 8.07 | 29.55     | 22.1      | 4.9                         | 18        | -                             | -                            | -                 |
| B4 | 20181113               | Sunny   | Light            | Mid-Flood | В                        | 4.6          | 11:59 | 8.06         | 8.19 | 29.53     | 22.1      | 4.82                        | 18        | -                             | -                            | -                 |
| B4 | 20181113               | Sunny   | Light            | Mid-Flood | S                        | 1            | 11:59 | 8.2          | 8.19 | 29.39     | 22.1      | 2.8                         | 16        | -                             | -                            | -                 |
| B4 | 20181113               | Sunny   | Light            | Mid-Flood | S                        | 1            | 12:00 | 8.13         | 8.1  | 29.42     | 22.2      | 2.71                        | 16        | -                             | -                            | -                 |
| F1 | 20181113               | Sunny   | Light            | Mid-Flood | В                        | 8            | 12:35 | 7.98         | 8.19 | 29.55     | 22.1      | 4.89                        | 17        | -                             | -                            | -                 |
| F1 | 20181113               | Sunny   | Light            | Mid-Flood | В                        | 8            | 12:36 | 8.03         | 8.06 | 29.51     | 22.1      | 4.98                        | 17        | -                             | -                            | -                 |
| F1 | 20181113               | Sunny   | Light            | Mid-Flood | М                        | 4.5          | 12:36 | 8.07         | 8.14 | 29.47     | 22.1      | 4.74                        | 16        | -                             | -                            | -                 |
| F1 | 20181113               | Sunny   | Light            | Mid-Flood | М                        | 4.5          | 12:36 | 8.14         | 8.12 | 29.35     | 22.1      | 4.66                        | 16        | -                             | -                            | -                 |
| F1 | 20181113               | Sunny   | Light            | Mid-Flood | S                        | 1            | 12:37 | 8.07         | 8.13 | 29.42     | 22.1      | 2.48                        | 16        | -                             | -                            | -                 |
| F1 | 20181113               | Sunny   | Light            | Mid-Flood | S                        | 1            | 12:37 | 8.18         | 8.18 | 29.5      | 22.1      | 2.46                        | 14        | -                             | -                            | -                 |
| M1 | 20181113               | Sunny   | Light            | Mid-Flood | В                        | 8.3          | 13:04 | 8.06         | 8.09 | 29.53     | 22.1      | 4.74                        | 14        | -                             | -                            | -                 |
| M1 | 20181113               | Sunny   | Light            | Mid-Flood | В                        | 8.3          | 13:05 | 8.1          | 8.12 | 29.42     | 22.1      | 4.79                        | 15        | -                             | -                            | -                 |
| M1 | 20181113               | Sunny   | Light            | Mid-Flood | М                        | 4.7          | 13:05 | 8.03         | 8.08 | 29.43     | 22.1      | 3.18                        | 11        | -                             | -                            | -                 |
| M1 | 20181113               | Sunny   | Light            | Mid-Flood | М                        | 4.7          | 13:06 | 8.17         | 8.09 | 29.32     | 22.1      | 3.14                        | 11        | -                             | -                            | -                 |
| M1 | 20181113               | Sunny   | Light            | Mid-Flood | S                        | 1            | 13:06 | 8.12         | 8.11 | 29.17     | 22.1      | 2.46                        | 9         | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| 1   | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | pН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|-----|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| M1  | 20181113               | Sunny   | Light            | Mid-Flood | S                        | 1            | 13:06 | 8.22         | 8.18 | 29.08     | 22.1      | 2.55                        | 9         | -                             | -                            | -                 |
| C1  | 20181113               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 10.7         | 14:39 | 7.61         | 8.07 | 29.61     | 22.2      | 5.4                         | 14        | -                             | -                            | -                 |
| C1  | 20181113               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 10.7         | 14:39 | 7.73         | 8.08 | 29.56     | 22.1      | 5.46                        | 13        | -                             | -                            | -                 |
| C1  | 20181113               | Cloudy  | Moderate         | Mid-Ebb   | М                        | 5.4          | 14:40 | 7.69         | 8.09 | 29.51     | 22.1      | 4.42                        | 12        | -                             | -                            | -                 |
| C1  | 20181113               | Cloudy  | Moderate         | Mid-Ebb   | М                        | 5.4          | 14:40 | 7.8          | 8.1  | 29.51     | 22.1      | 4.41                        | 13        | -                             | -                            | -                 |
| C1  | 20181113               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 14:40 | 7.9          | 8.16 | 29.46     | 22.1      | 2                           | 10        | -                             | -                            | -                 |
| C1  | 20181113               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 14:41 | 7.98         | 8.19 | 29.35     | 22.1      | 1.92                        | 10        | -                             | -                            | -                 |
| B1  | 20181113               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 4.1          | 15:03 | 8.08         | 8.2  | 29.52     | 22.1      | 5.93                        | 13        | -                             | -                            | -                 |
| B1  | 20181113               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 4.1          | 15:03 | 8.17         | 8.07 | 29.38     | 22.2      | 5.94                        | 13        | -                             | -                            | -                 |
| B1  | 20181113               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 15:04 | 8.29         | 8.1  | 29.36     | 22.2      | 2.18                        | 11        | -                             | -                            | -                 |
| B1  | 20181113               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 15:04 | 8.23         | 8.2  | 29.46     | 22.2      | 2.08                        | 10        | -                             | -                            | -                 |
| B2  | 20181113               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 4.2          | 15:16 | 7.85         | 8.14 | 29.65     | 22.1      | 5.57                        | 14        | -                             | -                            | -                 |
| B2  | 20181113               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 4.2          | 15:16 | 7.82         | 8.06 | 29.56     | 22.2      | 5.62                        | 14        | -                             | -                            | -                 |
| B2  | 20181113               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 15:16 | 7.95         | 8.15 | 29.42     | 22.2      | 2.9                         | 11        | -                             | -                            | -                 |
| B2  | 20181113               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 15:17 | 7.96         | 8.18 | 29.32     | 22.1      | 2.8                         | 11        | -                             | -                            | -                 |
| H1  | 20181113               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 7.8          | 15:37 | 7.67         | 8.13 | 29.54     | 22.1      | 4.41                        | 12        | -                             | -                            | -                 |
| H1  | 20181113               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 7.8          | 15:37 | 7.57         | 8.08 | 29.54     | 22.1      | 4.41                        | 11        | -                             | -                            | -                 |
| H1  | 20181113               | Cloudy  | Moderate         | Mid-Ebb   | М                        | 4.4          | 15:38 | 7.66         | 8.13 | 29.57     | 22.1      | 4.38                        | 10        | -                             | -                            | -                 |
| H1  | 20181113               | Cloudy  | Moderate         | Mid-Ebb   | М                        | 4.4          | 15:38 | 7.64         | 8.11 | 29.63     | 22.1      | 4.29                        | 10        | -                             | -                            | -                 |
| H1  | 20181113               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 15:39 | 7.73         | 8.16 | 29.53     | 22.1      | 1.92                        | 7         | -                             | -                            | -                 |
| H1  | 20181113               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 15:39 | 7.88         | 8.2  | 29.56     | 22.2      | 1.9                         | 8         | -                             | -                            | -                 |
| CR2 | 20181113               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 8            | 15:55 | 7.65         | 8.13 | 29.59     | 22.1      | 4.32                        | 11        | -                             | -                            | -                 |
| CR2 | 20181113               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 8            | 15:56 | 7.75         | 8.06 | 29.59     | 22.1      | 4.37                        | 10        | -                             | -                            | -                 |
| CR2 | 20181113               | Cloudy  | Moderate         | Mid-Ebb   | М                        | 4.5          | 15:56 | 7.72         | 8.15 | 29.48     | 22.1      | 3.5                         | 9         | -                             | -                            | -                 |
| CR2 | 20181113               | Cloudy  | Moderate         | Mid-Ebb   | М                        | 4.5          | 15:57 | 7.76         | 8.07 | 29.49     | 22.1      | 3.51                        | 9         | -                             | -                            | -                 |
| CR2 | 20181113               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 15:57 | 7.73         | 8.08 | 29.37     | 22.2      | 2.5                         | 8         | -                             | -                            | -                 |
| CR2 | 20181113               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 15:57 | 7.88         | 8.11 | 29.31     | 22.1      | 2.5                         | 8         | -                             | -                            | -                 |
| CR1 | 20181113               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 8            | 16:07 | 8.04         | 8.1  | 29.65     | 22.2      | 5.84                        | 10        | -                             | -                            | -                 |
| CR1 | 20181113               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 8            | 16:07 | 8.02         | 8.16 | 29.68     | 22.1      | 5.93                        | 9         | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| Location | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal   | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in<br>NESW |
|----------|------------------------|---------|------------------|---------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|----------------------|
| CR1      | 20181113               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.5          | 16:07 | 8.03         | 8.14 | 29.75     | 22.1      | 4.62                        | 8         | -                             | -                            | -                    |
| CR1      | 20181113               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.5          | 16:08 | 7.96         | 8.15 | 29.68     | 22.1      | 4.72                        | 7         | -                             | -                            | -                    |
| CR1      | 20181113               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 16:08 | 7.88         | 8.2  | 29.56     | 22.1      | 1.52                        | 7         | -                             | -                            | -                    |
| CR1      | 20181113               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 16:09 | 8            | 8.07 | 29.56     | 22.1      | 1.42                        | 7         | -                             | -                            | -                    |
| B3       | 20181113               | Cloudy  | Moderate         | Mid-Ebb | В                        | 4.3          | 16:38 | 8.08         | 8.11 | 29.53     | 22.2      | 5.78                        | 17        | -                             | -                            | -                    |
| B3       | 20181113               | Cloudy  | Moderate         | Mid-Ebb | В                        | 4.3          | 16:38 | 8.04         | 8.07 | 29.63     | 22.1      | 5.88                        | 17        | -                             | -                            | -                    |
| B3       | 20181113               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 16:39 | 8.02         | 8.19 | 29.56     | 22.1      | 2.63                        | 13        | -                             | -                            | -                    |
| B3       | 20181113               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 16:39 | 8.15         | 8.08 | 29.58     | 22.2      | 2.57                        | 13        | -                             | -                            | -                    |
| B4       | 20181113               | Cloudy  | Moderate         | Mid-Ebb | В                        | 4.2          | 16:46 | 7.74         | 8.18 | 29.56     | 22.1      | 4.57                        | 14        | -                             | -                            | -                    |
| B4       | 20181113               | Cloudy  | Moderate         | Mid-Ebb | В                        | 4.2          | 16:46 | 7.87         | 8.2  | 29.48     | 22.1      | 4.6                         | 15        | -                             | -                            | -                    |
| B4       | 20181113               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 16:46 | 8.02         | 8.14 | 29.57     | 22.2      | 2.14                        | 12        | -                             | -                            | -                    |
| B4       | 20181113               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 16:47 | 8.08         | 8.1  | 29.51     | 22.1      | 2.15                        | 13        | -                             | -                            | -                    |
| C2       | 20181113               | Cloudy  | Moderate         | Mid-Ebb | В                        | 8.4          | 17:01 | 7.71         | 8.2  | 29.56     | 22.2      | 5.53                        | 18        | -                             | -                            | -                    |
| C2       | 20181113               | Cloudy  | Moderate         | Mid-Ebb | В                        | 8.4          | 17:01 | 7.61         | 8.08 | 29.65     | 22.1      | 5.59                        | 17        | -                             | -                            | -                    |
| C2       | 20181113               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.7          | 17:02 | 7.51         | 8.14 | 29.69     | 22.1      | 4.82                        | 17        | -                             | -                            | -                    |
| C2       | 20181113               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.7          | 17:02 | 7.47         | 8.09 | 29.74     | 22.2      | 4.84                        | 17        | -                             | -                            | -                    |
| C2       | 20181113               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 17:03 | 7.48         | 8.13 | 29.75     | 22.1      | 1.97                        | 14        | -                             | -                            | -                    |
| C2       | 20181113               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 17:03 | 7.51         | 8.15 | 29.84     | 22.1      | 2.04                        | 14        | -                             | -                            | -                    |
| F1       | 20181113               | Cloudy  | Moderate         | Mid-Ebb | В                        | 8.1          | 17:21 | 7.61         | 8.11 | 29.61     | 22.1      | 5.96                        | 11        | -                             | -                            | -                    |
| F1       | 20181113               | Cloudy  | Moderate         | Mid-Ebb | В                        | 8.1          | 17:22 | 7.52         | 8.15 | 29.64     | 22.1      | 5.86                        | 12        | -                             | -                            | -                    |
| F1       | 20181113               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.6          | 17:22 | 7.45         | 8.14 | 29.5      | 22.1      | 4.93                        | 10        | -                             | -                            | -                    |
| F1       | 20181113               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.6          | 17:23 | 7.53         | 8.08 | 29.55     | 22.1      | 4.9                         | 11        | -                             | -                            | -                    |
| F1       | 20181113               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 17:23 | 7.47         | 8.19 | 29.59     | 22.1      | 2.34                        | 10        | -                             | -                            | -                    |
| F1       | 20181113               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 17:23 | 7.54         | 8.12 | 29.66     | 22.1      | 2.34                        | 11        | -                             | -                            | -                    |
| M1       | 20181113               | Cloudy  | Moderate         | Mid-Ebb | В                        | 8.2          | 17:47 | 7.94         | 8.12 | 29.61     | 22.1      | 5.46                        | 15        | -                             | -                            | -                    |
| M1       | 20181113               | Cloudy  | Moderate         | Mid-Ebb | В                        | 8.2          | 17:47 | 7.98         | 8.11 | 29.55     | 22.1      | 5.45                        | 15        | -                             | -                            | -                    |
| M1       | 20181113               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.6          | 17:47 | 7.93         | 8.2  | 29.55     | 22.2      | 4.97                        | 14        | -                             | -                            | -                    |
| M1       | 20181113               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.6          | 17:48 | 8            | 8.17 | 29.42     | 22.1      | 4.95                        | 14        | -                             | -                            | -                    |
| M1       | 20181113               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 17:48 | 8.02         | 8.18 | 29.43     | 22.1      | 1.68                        | 12        | -                             | -                            | -                    |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

|     | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal   | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | pH   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in<br>NESW |
|-----|------------------------|---------|------------------|---------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|----------------------|
| M1  | 20181113               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 17:49 | 8.02         | 8.09 | 29.47     | 22.1      | 1.61                        | 13        | -                             | -                            | -                    |
| C1  | 20181115               | Cloudy  | Moderate         | Mid-Ebb | В                        | 10.9         | 8:01  | 7.77         | 8.08 | 29.36     | 22.4      | 4.46                        | 21        | -                             | -                            | -                    |
| C1  | 20181115               | Cloudy  | Moderate         | Mid-Ebb | В                        | 10.9         | 8:01  | 7.95         | 8.13 | 29.39     | 22.5      | 4.39                        | 23        | -                             | -                            | -                    |
| C1  | 20181115               | Cloudy  | Moderate         | Mid-Ebb | М                        | 6            | 8:01  | 8.09         | 8.09 | 29.43     | 22.5      | 2.55                        | 20        | -                             | -                            | -                    |
| C1  | 20181115               | Cloudy  | Moderate         | Mid-Ebb | М                        | 6            | 8:02  | 8.19         | 8.16 | 29.4      | 22.5      | 2.53                        | 19        | -                             | -                            | -                    |
| C1  | 20181115               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 8:02  | 8.27         | 8.13 | 29.35     | 22.4      | 2.59                        | 18        | -                             | -                            | -                    |
| C1  | 20181115               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 8:02  | 8.37         | 8.16 | 29.36     | 22.4      | 2.5                         | 17        | -                             | -                            | -                    |
| CR2 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | В                        | 7.9          | 8:35  | 7.6          | 8.08 | 29.87     | 22.4      | 5.1                         | 21        | -                             | -                            | -                    |
| CR2 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | В                        | 7.9          | 8:35  | 7.72         | 8.17 | 29.77     | 22.5      | 5.11                        | 20        | -                             | -                            | -                    |
| CR2 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.5          | 8:36  | 7.67         | 8.16 | 29.72     | 22.4      | 3.7                         | 19        | -                             | -                            | -                    |
| CR2 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.5          | 8:36  | 7.63         | 8.14 | 29.79     | 22.4      | 3.76                        | 19        | -                             | -                            | -                    |
| CR2 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 8:36  | 7.81         | 8.12 | 29.83     | 22.4      | 2.76                        | 20        | -                             | -                            | -                    |
| CR2 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 8:37  | 7.89         | 8.07 | 29.76     | 22.4      | 2.7                         | 20        | -                             | -                            | -                    |
| CR1 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | В                        | 8            | 8:51  | 7.78         | 8.12 | 29.84     | 22.4      | 4.95                        | 18        | -                             | -                            | -                    |
| CR1 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | В                        | 8            | 8:51  | 7.86         | 8.16 | 29.82     | 22.4      | 4.96                        | 21        | -                             | -                            | -                    |
| CR1 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.5          | 8:52  | 7.98         | 8.12 | 29.77     | 22.4      | 2.01                        | 21        | -                             | -                            | -                    |
| CR1 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.5          | 8:52  | 8.05         | 8.2  | 29.75     | 22.4      | 2.04                        | 18        | -                             | -                            | -                    |
| CR1 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 8:53  | 8.18         | 8.1  | 29.71     | 22.5      | 3.56                        | 19        | -                             | -                            | -                    |
| CR1 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 8:53  | 8.36         | 8.07 | 29.69     | 22.4      | 3.66                        | 22        | -                             | -                            | -                    |
| H1  | 20181115               | Cloudy  | Moderate         | Mid-Ebb | В                        | 7.8          | 9:10  | 7.65         | 8.09 | 29.67     | 22.5      | 4.21                        | 19        | -                             | -                            | -                    |
| H1  | 20181115               | Cloudy  | Moderate         | Mid-Ebb | В                        | 7.8          | 9:11  | 7.71         | 8.19 | 29.61     | 22.4      | 4.28                        | 20        | -                             | -                            | -                    |
| H1  | 20181115               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.4          | 9:11  | 7.9          | 8.11 | 29.55     | 22.5      | 2.99                        | 18        | -                             | -                            | -                    |
| H1  | 20181115               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.4          | 9:12  | 8.02         | 8.14 | 29.48     | 22.5      | 3.05                        | 16        | -                             | -                            | -                    |
| H1  | 20181115               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 9:12  | 8.17         | 8.2  | 29.51     | 22.4      | 2.79                        | 19        | -                             | -                            | -                    |
| H1  | 20181115               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 9:12  | 8.33         | 8.1  | 29.57     | 22.4      | 2.78                        | 20        | -                             | -                            | -                    |
| B1  | 20181115               | Cloudy  | Moderate         | Mid-Ebb | В                        | 4.3          | 9:35  | 7.68         | 8.19 | 29.41     | 22.4      | 4.35                        | 18        | -                             | -                            | -                    |
| B1  | 20181115               | Cloudy  | Moderate         | Mid-Ebb | В                        | 4.3          | 9:35  | 7.58         | 8.19 | 29.48     | 22.4      | 4.44                        | 16        | -                             | -                            | -                    |
| B1  | 20181115               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 9:35  | 7.77         | 8.19 | 29.39     | 22.5      | 3.08                        | 16        | -                             | -                            | -                    |
| B1  | 20181115               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 9:36  | 7.9          | 8.1  | 29.37     | 22.4      | 3.11                        | 14        | -                             | -                            | -                    |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

|    | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal   | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | pН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in<br>NESW |
|----|------------------------|---------|------------------|---------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|----------------------|
| B2 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | В                        | 4.4          | 9:50  | 7.76         | 8.09 | 29.8      | 22.4      | 4.88                        | 14        | -                             | -                            | -                    |
| B2 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | В                        | 4.4          | 9:51  | 7.66         | 8.19 | 29.73     | 22.4      | 4.96                        | 14        | -                             | -                            | -                    |
| B2 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 9:51  | 7.61         | 8.12 | 29.72     | 22.4      | 3.31                        | 15        | -                             | -                            | -                    |
| B2 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 9:51  | 7.78         | 8.16 | 29.75     | 22.4      | 3.25                        | 13        | -                             | -                            | -                    |
| B3 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | В                        | 4.4          | 10:14 | 7.67         | 8.1  | 29.68     | 22.5      | 5.07                        | 15        | -                             | -                            | -                    |
| B3 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | В                        | 4.4          | 10:14 | 7.72         | 8.11 | 29.78     | 22.4      | 5.03                        | 17        | -                             | -                            | -                    |
| B3 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 10:15 | 7.85         | 8.12 | 29.88     | 22.4      | 3.97                        | 13        | -                             | -                            | -                    |
| B3 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 10:15 | 8.03         | 8.09 | 29.8      | 22.4      | 3.99                        | 15        | -                             | -                            | -                    |
| B4 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | В                        | 4.2          | 10:24 | 7.66         | 8.15 | 29.5      | 22.4      | 5.71                        | 18        | -                             | -                            | -                    |
| B4 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | В                        | 4.2          | 10:25 | 7.86         | 8.15 | 29.49     | 22.4      | 5.69                        | 17        | -                             | -                            | -                    |
| B4 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 10:25 | 8.04         | 8.09 | 29.56     | 22.5      | 3.7                         | 15        | -                             | -                            | -                    |
| B4 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 10:25 | 7.99         | 8.19 | 29.6      | 22.5      | 3.72                        | 16        | -                             | -                            | -                    |
| C2 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | В                        | 8.6          | 10:35 | 7.51         | 8.11 | 29.75     | 22.4      | 5.25                        | 24        | -                             | -                            | -                    |
| C2 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | В                        | 8.6          | 10:35 | 7.58         | 8.09 | 29.67     | 22.4      | 5.16                        | 23        | -                             | -                            | -                    |
| C2 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.8          | 10:36 | 7.62         | 8.11 | 29.7      | 22.4      | 4.96                        | 20        | -                             | -                            | -                    |
| C2 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.8          | 10:36 | 7.59         | 8.12 | 29.61     | 22.4      | 4.95                        | 22        | -                             | -                            | -                    |
| C2 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 10:36 | 7.54         | 8.18 | 29.57     | 22.4      | 2.76                        | 15        | -                             | -                            | -                    |
| C2 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 10:37 | 7.62         | 8.07 | 29.5      | 22.4      | 2.73                        | 14        | -                             | -                            | -                    |
| F1 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | В                        | 8.2          | 10:59 | 7.6          | 8.1  | 29.1      | 22.4      | 5.45                        | 12        | -                             | -                            | -                    |
| F1 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | В                        | 8.2          | 11:00 | 7.56         | 8.16 | 29.04     | 22.5      | 5.49                        | 14        | -                             | -                            | -                    |
| F1 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.6          | 11:00 | 7.63         | 8.13 | 29.09     | 22.4      | 3                           | 12        | -                             | -                            | -                    |
| F1 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.6          | 11:00 | 7.59         | 8.13 | 29.15     | 22.4      | 2.96                        | 12        | -                             | -                            | -                    |
| F1 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 11:01 | 7.58         | 8.06 | 29.13     | 22.5      | 2.95                        | 11        | -                             | -                            | -                    |
| F1 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 11:01 | 7.72         | 8.11 | 29.19     | 22.4      | 3.03                        | 11        | -                             | -                            | -                    |
| M1 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | В                        | 7.9          | 11:29 | 7.56         | 8.09 | 29.38     | 22.5      | 4.49                        | 21        | -                             | -                            | -                    |
| M1 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | В                        | 7.9          | 11:30 | 7.61         | 8.06 | 29.42     | 22.4      | 4.52                        | 19        | -                             | -                            | -                    |
| M1 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.5          | 11:30 | 7.78         | 8.07 | 29.39     | 22.5      | 2.4                         | 19        | -                             | -                            | -                    |
| M1 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.5          | 11:31 | 7.91         | 8.2  | 29.49     | 22.4      | 2.46                        | 18        | -                             | -                            | -                    |
| M1 | 20181115               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 11:31 | 8.05         | 8.17 | 29.43     | 22.5      | 3.18                        | 17        | -                             | -                            | -                    |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| Location | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | pH   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in<br>NESW |
|----------|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|----------------------|
| M1       | 20181115               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 11:31 | 8.02         | 8.08 | 29.48     | 22.4      | 3.21                        | 18        | -                             | -                            | -                    |
| C2       | 20181115               | Cloudy  | Moderate         | Mid-Flood | В                        | 9.4          | 14:04 | 7.58         | 8.09 | 29.53     | 22.5      | 4.53                        | 17        | -                             | -                            | -                    |
| C2       | 20181115               | Cloudy  | Moderate         | Mid-Flood | В                        | 9.4          | 14:04 | 7.75         | 8.14 | 29.47     | 22.5      | 4.46                        | 18        | -                             | -                            | -                    |
| C2       | 20181115               | Cloudy  | Moderate         | Mid-Flood | М                        | 5.2          | 14:05 | 7.86         | 8.16 | 29.52     | 22.4      | 4.69                        | 18        | -                             | -                            | -                    |
| C2       | 20181115               | Cloudy  | Moderate         | Mid-Flood | М                        | 5.2          | 14:05 | 8.06         | 8.13 | 29.42     | 22.4      | 4.63                        | 18        | -                             | -                            | -                    |
| C2       | 20181115               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 14:05 | 8.25         | 8.15 | 29.34     | 22.4      | 3.5                         | 14        | -                             | -                            | -                    |
| C2       | 20181115               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 14:06 | 8.42         | 8.16 | 29.28     | 22.4      | 3.43                        | 15        | -                             | -                            | -                    |
| CR2      | 20181115               | Cloudy  | Moderate         | Mid-Flood | В                        | 8.5          | 14:29 | 7.57         | 8.11 | 29.8      | 22.5      | 4.87                        | 19        | -                             | -                            | -                    |
| CR2      | 20181115               | Cloudy  | Moderate         | Mid-Flood | В                        | 8.5          | 14:29 | 7.62         | 8.13 | 29.8      | 22.4      | 4.83                        | 19        | -                             | -                            | -                    |
| CR2      | 20181115               | Cloudy  | Moderate         | Mid-Flood | М                        | 4.8          | 14:30 | 7.67         | 8.12 | 29.75     | 22.4      | 2.97                        | 19        | -                             | -                            | -                    |
| CR2      | 20181115               | Cloudy  | Moderate         | Mid-Flood | М                        | 4.8          | 14:30 | 7.78         | 8.06 | 29.72     | 22.4      | 2.93                        | 18        | -                             | -                            | -                    |
| CR2      | 20181115               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 14:31 | 7.76         | 8.14 | 29.63     | 22.4      | 2.52                        | 20        | -                             | -                            | -                    |
| CR2      | 20181115               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 14:31 | 7.87         | 8.15 | 29.58     | 22.5      | 2.43                        | 19        | -                             | -                            | -                    |
| CR1      | 20181115               | Cloudy  | Moderate         | Mid-Flood | В                        | 8.4          | 14:42 | 7.54         | 8.14 | 29.27     | 22.4      | 5.62                        | 14        | -                             | -                            | -                    |
| CR1      | 20181115               | Cloudy  | Moderate         | Mid-Flood | В                        | 8.4          | 14:43 | 7.54         | 8.15 | 29.29     | 22.4      | 5.68                        | 13        | -                             | -                            | -                    |
| CR1      | 20181115               | Cloudy  | Moderate         | Mid-Flood | М                        | 4.7          | 14:43 | 7.6          | 8.2  | 29.26     | 22.4      | 4.6                         | 13        | -                             | -                            | -                    |
| CR1      | 20181115               | Cloudy  | Moderate         | Mid-Flood | М                        | 4.7          | 14:43 | 7.73         | 8.09 | 29.24     | 22.5      | 4.57                        | 12        | -                             | -                            | -                    |
| CR1      | 20181115               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 14:44 | 7.79         | 8.2  | 29.3      | 22.5      | 2.06                        | 10        | -                             | -                            | -                    |
| CR1      | 20181115               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 14:44 | 7.91         | 8.13 | 29.27     | 22.4      | 1.97                        | 10        | -                             | -                            | -                    |
| C1       | 20181115               | Cloudy  | Moderate         | Mid-Flood | В                        | 11.2         | 15:24 | 7.57         | 8.06 | 29.92     | 22.5      | 5.05                        | 18        | -                             | -                            | -                    |
| C1       | 20181115               | Cloudy  | Moderate         | Mid-Flood | В                        | 11.2         | 15:24 | 7.52         | 8.08 | 29.94     | 22.5      | 5.06                        | 18        | -                             | -                            | -                    |
| C1       | 20181115               | Cloudy  | Moderate         | Mid-Flood | М                        | 6.1          | 15:24 | 7.61         | 8.17 | 29.94     | 22.4      | 3.1                         | 15        | -                             | -                            | -                    |
| C1       | 20181115               | Cloudy  | Moderate         | Mid-Flood | М                        | 6.1          | 15:25 | 7.67         | 8.16 | 29.95     | 22.4      | 3.19                        | 14        | -                             | -                            | -                    |
| C1       | 20181115               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 15:25 | 7.59         | 8.13 | 29.95     | 22.4      | 3.31                        | 10        | -                             | -                            | -                    |
| C1       | 20181115               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 15:26 | 7.77         | 8.2  | 30.02     | 22.5      | 3.31                        | 11        | -                             | -                            | -                    |
| B1       | 20181115               | Cloudy  | Moderate         | Mid-Flood | В                        | 4.8          | 15:49 | 7.75         | 8.14 | 29.92     | 22.4      | 4.79                        | 12        | -                             | -                            | -                    |
| B1       | 20181115               | Cloudy  | Moderate         | Mid-Flood | В                        | 4.8          | 15:49 | 7.68         | 8.11 | 30        | 22.5      | 4.82                        | 11        | -                             | -                            | -                    |
| B1       | 20181115               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 15:50 | 7.62         | 8.2  | 29.9      | 22.4      | 3.51                        | 11        | -                             | -                            | -                    |
| B1       | 20181115               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 15:50 | 7.68         | 8.18 | 29.91     | 22.4      | 3.59                        | 11        | -                             | -                            | -                    |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

|    | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | pH   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| B2 | 20181115               | Cloudy  | Moderate         | Mid-Flood | В                        | 4.9          | 16:02 | 7.79         | 8.16 | 29.89     | 22.4      | 4.65                        | 16        | -                             | -                            | -                 |
| B2 | 20181115               | Cloudy  | Moderate         | Mid-Flood | В                        | 4.9          | 16:03 | 7.77         | 8.12 | 29.83     | 22.5      | 4.6                         | 16        | -                             | -                            | -                 |
| B2 | 20181115               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 16:03 | 7.75         | 8.13 | 29.81     | 22.4      | 2.74                        | 14        | -                             | -                            | -                 |
| B2 | 20181115               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 16:04 | 7.76         | 8.16 | 29.73     | 22.5      | 2.66                        | 15        | -                             | -                            | -                 |
| H1 | 20181115               | Cloudy  | Moderate         | Mid-Flood | В                        | 7.8          | 16:25 | 7.54         | 8.13 | 29.34     | 22.5      | 5.02                        | 16        | -                             | -                            | -                 |
| H1 | 20181115               | Cloudy  | Moderate         | Mid-Flood | В                        | 7.8          | 16:25 | 7.52         | 8.07 | 29.25     | 22.4      | 5.06                        | 15        | -                             | -                            | -                 |
| H1 | 20181115               | Cloudy  | Moderate         | Mid-Flood | М                        | 4.4          | 16:26 | 7.57         | 8.13 | 29.23     | 22.4      | 4.25                        | 15        | -                             | -                            | -                 |
| H1 | 20181115               | Cloudy  | Moderate         | Mid-Flood | М                        | 4.4          | 16:26 | 7.73         | 8.2  | 29.13     | 22.4      | 4.2                         | 16        | -                             | -                            | -                 |
| H1 | 20181115               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 16:27 | 7.8          | 8.07 | 29.16     | 22.4      | 2.13                        | 14        | -                             | -                            | -                 |
| H1 | 20181115               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 16:27 | 7.9          | 8.13 | 29.1      | 22.4      | 2.22                        | 15        | -                             | -                            | -                 |
| B3 | 20181115               | Cloudy  | Moderate         | Mid-Flood | В                        | 4.7          | 16:35 | 7.62         | 8.11 | 29.18     | 22.4      | 4.73                        | 14        | -                             | -                            | -                 |
| B3 | 20181115               | Cloudy  | Moderate         | Mid-Flood | В                        | 4.7          | 16:36 | 7.62         | 8.18 | 29.12     | 22.4      | 4.83                        | 14        | -                             | -                            | -                 |
| B3 | 20181115               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 16:36 | 7.77         | 8.16 | 29.2      | 22.5      | 2.98                        | 14        | -                             | -                            | -                 |
| B3 | 20181115               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 16:36 | 7.69         | 8.1  | 29.19     | 22.4      | 2.9                         | 15        | -                             | -                            | -                 |
| B4 | 20181115               | Cloudy  | Moderate         | Mid-Flood | В                        | 4.6          | 16:46 | 7.6          | 8.09 | 29.24     | 22.4      | 4.7                         | 16        | -                             | -                            | -                 |
| B4 | 20181115               | Cloudy  | Moderate         | Mid-Flood | В                        | 4.6          | 16:46 | 7.68         | 8.07 | 29.15     | 22.5      | 4.62                        | 15        | -                             | -                            | -                 |
| B4 | 20181115               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 16:47 | 7.81         | 8.13 | 29.17     | 22.4      | 3.43                        | 13        | -                             | -                            | -                 |
| B4 | 20181115               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 16:47 | 7.88         | 8.18 | 29.11     | 22.4      | 3.48                        | 13        | -                             | -                            | -                 |
| F1 | 20181115               | Cloudy  | Moderate         | Mid-Flood | В                        | 8            | 17:14 | 7.72         | 8.06 | 29.33     | 22.4      | 5.47                        | 16        | -                             | -                            | -                 |
| F1 | 20181115               | Cloudy  | Moderate         | Mid-Flood | В                        | 8            | 17:15 | 7.72         | 8.17 | 29.23     | 22.5      | 5.48                        | 16        | -                             | -                            | -                 |
| F1 | 20181115               | Cloudy  | Moderate         | Mid-Flood | М                        | 4.5          | 17:15 | 7.72         | 8.19 | 29.18     | 22.5      | 4.15                        | 15        | -                             | -                            | -                 |
| F1 | 20181115               | Cloudy  | Moderate         | Mid-Flood | М                        | 4.5          | 17:16 | 7.68         | 8.13 | 29.13     | 22.4      | 4.14                        | 16        | -                             | -                            | -                 |
| F1 | 20181115               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 17:16 | 7.77         | 8.18 | 29.09     | 22.4      | 3.72                        | 18        | -                             | -                            | -                 |
| F1 | 20181115               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 17:16 | 7.94         | 8.12 | 29.03     | 22.4      | 3.74                        | 17        | -                             | -                            | -                 |
| M1 | 20181115               | Cloudy  | Moderate         | Mid-Flood | В                        | 8.2          | 17:45 | 7.68         | 8.15 | 29.96     | 22.4      | 5.27                        | 12        | -                             | -                            | -                 |
| M1 | 20181115               | Cloudy  | Moderate         | Mid-Flood | В                        | 8.2          | 17:45 | 7.84         | 8.11 | 29.94     | 22.4      | 5.36                        | 12        | -                             | -                            | -                 |
| M1 | 20181115               | Cloudy  | Moderate         | Mid-Flood | М                        | 4.6          | 17:45 | 7.94         | 8.16 | 29.96     | 22.4      | 3.05                        | 12        | -                             | -                            | -                 |
| M1 | 20181115               | Cloudy  | Moderate         | Mid-Flood | М                        | 4.6          | 17:46 | 8.02         | 8.09 | 29.94     | 22.4      | 2.96                        | 12        | -                             | -                            | -                 |
| M1 | 20181115               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 17:46 | 8.09         | 8.07 | 30.02     | 22.4      | 2.16                        | 15        | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| Location | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | pН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----------|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| M1       | 20181115               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 17:47 | 7.99         | 8.2  | 29.98     | 22.4      | 2.11                        | 15        | -                             | -                            | -                 |
| C1       | 20181117               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 10.7         | 8:30  | 7.91         | 8.07 | 30.23     | 21.6      | 6.32                        | 12        | -                             | -                            | -                 |
| C1       | 20181117               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 10.7         | 8:30  | 7.89         | 8.14 | 30.17     | 21.6      | 6.33                        | 13        | -                             | -                            | -                 |
| C1       | 20181117               | Cloudy  | Moderate         | Mid-Ebb   | М                        | 5.9          | 8:30  | 7.85         | 8.17 | 30.19     | 21.6      | 4.96                        | 7         | -                             | -                            | -                 |
| C1       | 20181117               | Cloudy  | Moderate         | Mid-Ebb   | М                        | 5.9          | 8:31  | 7.89         | 8.06 | 30.17     | 21.6      | 5                           | 7         | -                             | -                            | -                 |
| C1       | 20181117               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 8:31  | 7.76         | 8.12 | 30.13     | 21.6      | 2.35                        | 6         | -                             | -                            | -                 |
| C1       | 20181117               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 8:31  | 7.67         | 8.19 | 30        | 21.6      | 2.2                         | 5         | -                             | -                            | -                 |
| B1       | 20181117               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 4.4          | 8:54  | 8.48         | 8.14 | 30.05     | 21.6      | 5.69                        | 4         | -                             | -                            | -                 |
| B1       | 20181117               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 4.4          | 8:54  | 8.59         | 8.09 | 29.9      | 21.5      | 5.6                         | 4         | -                             | -                            | -                 |
| B1       | 20181117               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 8:55  | 8.73         | 8.09 | 30.01     | 21.5      | 1.54                        | 5         | -                             | -                            | -                 |
| B1       | 20181117               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 8:55  | 8.86         | 8.06 | 30.1      | 21.6      | 1.69                        | 6         | -                             | -                            | -                 |
| B2       | 20181117               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 4.3          | 9:14  | 8.12         | 8.09 | 30.32     | 21.6      | 5.45                        | 5         | -                             | -                            | -                 |
| B2       | 20181117               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 4.3          | 9:15  | 8.22         | 8.18 | 30.38     | 21.5      | 5.55                        | 6         | -                             | -                            | -                 |
| B2       | 20181117               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 9:15  | 8.36         | 8.19 | 30.3      | 21.6      | 2.97                        | 7         | -                             | -                            | -                 |
| B2       | 20181117               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 9:15  | 8.36         | 8.16 | 30.41     | 21.5      | 3.08                        | 6         | -                             | -                            | -                 |
| H1       | 20181117               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 7.7          | 9:36  | 8.17         | 8.06 | 30.4      | 21.6      | 5.16                        | 8         | -                             | -                            | -                 |
| H1       | 20181117               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 7.7          | 9:36  | 8.16         | 8.08 | 30.42     | 21.5      | 5.01                        | 8         | -                             | -                            | -                 |
| H1       | 20181117               | Cloudy  | Moderate         | Mid-Ebb   | М                        | 4.4          | 9:37  | 8.25         | 8.08 | 30.31     | 21.6      | 4.6                         | 8         | -                             | -                            | -                 |
| H1       | 20181117               | Cloudy  | Moderate         | Mid-Ebb   | М                        | 4.4          | 9:37  | 8.16         | 8.13 | 30.2      | 21.6      | 4.45                        | 8         | -                             | -                            | -                 |
| H1       | 20181117               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 9:37  | 8.05         | 8.19 | 30.3      | 21.6      | 2.66                        | 6         | -                             | -                            | -                 |
| H1       | 20181117               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 9:38  | 8.18         | 8.09 | 30.17     | 21.6      | 2.77                        | 6         | -                             | -                            | -                 |
| CR2      | 20181117               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 8            | 9:50  | 8.01         | 8.17 | 30.35     | 21.6      | 6.53                        | 9         | -                             | -                            | -                 |
| CR2      | 20181117               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 8            | 9:51  | 8.03         | 8.07 | 30.27     | 21.6      | 6.59                        | 9         | -                             | -                            | -                 |
| CR2      | 20181117               | Cloudy  | Moderate         | Mid-Ebb   | М                        | 4.5          | 9:51  | 7.97         | 8.1  | 30.19     | 21.5      | 4.36                        | 6         | -                             | -                            | -                 |
| CR2      | 20181117               | Cloudy  | Moderate         | Mid-Ebb   | М                        | 4.5          | 9:51  | 7.85         | 8.15 | 30.29     | 21.6      | 4.43                        | 7         | -                             | -                            | -                 |
| CR2      | 20181117               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 9:52  | 7.8          | 8.19 | 30.18     | 21.6      | 2.83                        | 7         | -                             | -                            | -                 |
| CR2      | 20181117               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 9:52  | 7.78         | 8.13 | 30.28     | 21.6      | 2.94                        | 6         | -                             | -                            | -                 |
| CR1      | 20181117               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 7.8          | 10:03 | 7.93         | 8.06 | 30.28     | 21.6      | 5.53                        | 4         | -                             | -                            | -                 |
| CR1      | 20181117               | Cloudy  | Moderate         | Mid-Ebb   | В                        | 7.8          | 10:04 | 8.03         | 8.07 | 30.42     | 21.5      | 5.63                        | 4         | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

|     | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal   | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|-----|------------------------|---------|------------------|---------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| CR1 | 20181117               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.4          | 10:04 | 8.01         | 8.07 | 30.38     | 21.5      | 4.45                        | 4         | -                             | -                            | -                 |
| CR1 | 20181117               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.4          | 10:05 | 7.93         | 8.07 | 30.23     | 21.6      | 4.46                        | 4         | -                             | -                            | -                 |
| CR1 | 20181117               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 10:05 | 7.85         | 8.16 | 30.14     | 21.6      | 1.2                         | 4         | -                             | -                            | -                 |
| CR1 | 20181117               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 10:05 | 7.8          | 8.08 | 30.28     | 21.6      | 1.32                        | 4         | -                             | -                            | -                 |
| B3  | 20181117               | Cloudy  | Moderate         | Mid-Ebb | В                        | 4.2          | 10:31 | 8.37         | 8.06 | 30.05     | 21.6      | 6.73                        | 8         | -                             | -                            | -                 |
| B3  | 20181117               | Cloudy  | Moderate         | Mid-Ebb | В                        | 4.2          | 10:31 | 8.23         | 8.16 | 30.14     | 21.5      | 6.6                         | 8         | -                             | -                            | -                 |
| B3  | 20181117               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 10:32 | 8.34         | 8.2  | 30.01     | 21.6      | 1.96                        | 9         | -                             | -                            | -                 |
| B3  | 20181117               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 10:32 | 8.42         | 8.12 | 29.92     | 21.6      | 1.84                        | 9         | -                             | -                            | -                 |
| B4  | 20181117               | Cloudy  | Moderate         | Mid-Ebb | В                        | 4.3          | 10:41 | 8.01         | 8.15 | 30.01     | 21.6      | 5.89                        | 12        | -                             | -                            | -                 |
| B4  | 20181117               | Cloudy  | Moderate         | Mid-Ebb | В                        | 4.3          | 10:42 | 7.94         | 8.1  | 30.1      | 21.5      | 5.75                        | 11        | -                             | -                            | -                 |
| B4  | 20181117               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 10:42 | 7.8          | 8.2  | 30.03     | 21.6      | 1.2                         | 9         | -                             | -                            | -                 |
| B4  | 20181117               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 10:42 | 7.9          | 8.13 | 30.18     | 21.6      | 1.07                        | 9         | -                             | -                            | -                 |
| C2  | 20181117               | Cloudy  | Moderate         | Mid-Ebb | В                        | 8.4          | 10:51 | 8.04         | 8.19 | 30.08     | 21.6      | 6.06                        | 9         | -                             | -                            | -                 |
| C2  | 20181117               | Cloudy  | Moderate         | Mid-Ebb | В                        | 8.4          | 10:51 | 8.01         | 8.13 | 29.95     | 21.5      | 5.97                        | 10        | -                             | -                            | -                 |
| C2  | 20181117               | Cloudy  | Moderate         | Mid-Ebb | м                        | 4.7          | 10:52 | 7.93         | 8.18 | 29.86     | 21.6      | 3.25                        | 8         | -                             | -                            | -                 |
| C2  | 20181117               | Cloudy  | Moderate         | Mid-Ebb | м                        | 4.7          | 10:52 | 7.93         | 8.15 | 29.74     | 21.5      | 3.11                        | 9         | -                             | -                            | -                 |
| C2  | 20181117               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 10:52 | 7.91         | 8.17 | 29.84     | 21.5      | 1.06                        | 8         | -                             | -                            | -                 |
| C2  | 20181117               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 10:53 | 7.93         | 8.17 | 29.79     | 21.5      | 1.17                        | 9         | -                             | -                            | -                 |
| F1  | 20181117               | Cloudy  | Moderate         | Mid-Ebb | В                        | 8.1          | 11:15 | 8.05         | 8.19 | 30.36     | 21.6      | 5.97                        | 13        | -                             | -                            | -                 |
| F1  | 20181117               | Cloudy  | Moderate         | Mid-Ebb | В                        | 8.1          | 11:16 | 7.92         | 8.2  | 30.39     | 21.5      | 5.92                        | 14        | -                             | -                            | -                 |
| F1  | 20181117               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.6          | 11:16 | 7.91         | 8.12 | 30.4      | 21.5      | 3.56                        | 12        | -                             | -                            | -                 |
| F1  | 20181117               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.6          | 11:16 | 8.05         | 8.19 | 30.4      | 21.6      | 3.42                        | 11        | -                             | -                            | -                 |
| F1  | 20181117               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 11:17 | 7.98         | 8.11 | 30.33     | 21.5      | 1.03                        | 9         | -                             | -                            | -                 |
| F1  | 20181117               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 11:17 | 7.94         | 8.11 | 30.31     | 21.6      | 1.05                        | 10        | -                             | -                            | -                 |
| M1  | 20181117               | Cloudy  | Moderate         | Mid-Ebb | В                        | 8            | 11:43 | 7.97         | 8.15 | 30.05     | 21.7      | 6.12                        | 10        | -                             | -                            | -                 |
| M1  | 20181117               | Cloudy  | Moderate         | Mid-Ebb | В                        | 8            | 11:44 | 7.95         | 8.08 | 30.1      | 21.6      | 6.16                        | 9         | -                             | -                            | -                 |
| M1  | 20181117               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.5          | 11:44 | 7.84         | 8.12 | 30.23     | 21.6      | 4.37                        | 11        | -                             | -                            | -                 |
| M1  | 20181117               | Cloudy  | Moderate         | Mid-Ebb | М                        | 4.5          | 11:45 | 7.87         | 8.17 | 30.3      | 21.7      | 4.51                        | 10        | -                             | -                            | -                 |
| M1  | 20181117               | Cloudy  | Moderate         | Mid-Ebb | S                        | 1            | 11:45 | 7.97         | 8.08 | 30.41     | 21.5      | 1.52                        | 15        | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| Location | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in<br>NESW |
|----------|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|----------------------|
| M1       | 20181117               | Cloudy  | Moderate         | Mid-Ebb   | S                        | 1            | 11:45 | 8.09         | 8.1  | 30.28     | 21.6      | 1.49                        | 14        | -                             | -                            | -                    |
| C2       | 20181117               | Cloudy  | Moderate         | Mid-Flood | В                        | 9.2          | 13:22 | 7.92         | 8.07 | 30.18     | 21.5      | 6.96                        | 9         | -                             | -                            | -                    |
| C2       | 20181117               | Cloudy  | Moderate         | Mid-Flood | В                        | 9.2          | 13:22 | 7.81         | 8.15 | 30.15     | 21.7      | 6.99                        | 10        | -                             | -                            | -                    |
| C2       | 20181117               | Cloudy  | Moderate         | Mid-Flood | М                        | 5.1          | 13:23 | 7.72         | 8.2  | 30.27     | 21.7      | 3.78                        | 8         | -                             | -                            | -                    |
| C2       | 20181117               | Cloudy  | Moderate         | Mid-Flood | М                        | 5.1          | 13:23 | 7.63         | 8.06 | 30.38     | 21.5      | 3.73                        | 9         | -                             | -                            | -                    |
| C2       | 20181117               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 13:23 | 7.73         | 8.06 | 30.52     | 21.5      | 2.53                        | 8         | -                             | -                            | -                    |
| C2       | 20181117               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 13:24 | 7.79         | 8.09 | 30.54     | 21.6      | 2.67                        | 9         | -                             | -                            | -                    |
| B4       | 20181117               | Cloudy  | Moderate         | Mid-Flood | В                        | 4.8          | 13:36 | 8.05         | 8.11 | 30.17     | 21.5      | 6.58                        | 7         | -                             | -                            | -                    |
| B4       | 20181117               | Cloudy  | Moderate         | Mid-Flood | В                        | 4.8          | 13:36 | 8.16         | 8.12 | 30.14     | 21.6      | 6.52                        | 7         | -                             | -                            | -                    |
| B4       | 20181117               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 13:37 | 8.2          | 8.19 | 30.24     | 21.5      | 1.04                        | 6         | -                             | -                            | -                    |
| B4       | 20181117               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 13:37 | 8.22         | 8.11 | 30.19     | 21.7      | 1.02                        | 6         | -                             | -                            | -                    |
| B3       | 20181117               | Cloudy  | Moderate         | Mid-Flood | В                        | 4.6          | 13:44 | 8.14         | 8.08 | 30.16     | 21.5      | 5.35                        | 7         | -                             | -                            | -                    |
| B3       | 20181117               | Cloudy  | Moderate         | Mid-Flood | В                        | 4.6          | 13:44 | 8.02         | 8.08 | 30.06     | 21.6      | 5.4                         | 7         | -                             | -                            | -                    |
| B3       | 20181117               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 13:44 | 8.13         | 8.07 | 29.96     | 21.6      | 1.86                        | 5         | -                             | -                            | -                    |
| B3       | 20181117               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 13:45 | 8.01         | 8.1  | 29.91     | 21.6      | 1.94                        | 5         | -                             | -                            | -                    |
| H1       | 20181117               | Cloudy  | Moderate         | Mid-Flood | В                        | 8.2          | 13:55 | 8.49         | 8.15 | 30.15     | 21.5      | 6.13                        | 5         | -                             | -                            | -                    |
| H1       | 20181117               | Cloudy  | Moderate         | Mid-Flood | В                        | 8.2          | 13:55 | 8.48         | 8.13 | 30.19     | 21.5      | 6.2                         | 6         | -                             | -                            | -                    |
| H1       | 20181117               | Cloudy  | Moderate         | Mid-Flood | М                        | 4.6          | 13:56 | 8.46         | 8.16 | 30.04     | 21.6      | 3.83                        | 4         | -                             | -                            | -                    |
| H1       | 20181117               | Cloudy  | Moderate         | Mid-Flood | М                        | 4.6          | 13:56 | 8.58         | 8.13 | 30.1      | 21.6      | 3.9                         | 5         | -                             | -                            | -                    |
| H1       | 20181117               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 13:57 | 8.64         | 8.11 | 30.06     | 21.6      | 2.41                        | 4         | -                             | -                            | -                    |
| H1       | 20181117               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 13:57 | 8.54         | 8.2  | 30.2      | 21.6      | 2.46                        | 5         | -                             | -                            | -                    |
| CR1      | 20181117               | Cloudy  | Moderate         | Mid-Flood | В                        | 8.6          | 14:14 | 7.9          | 8.15 | 30.26     | 21.6      | 5.32                        | 7         | -                             | -                            | -                    |
| CR1      | 20181117               | Cloudy  | Moderate         | Mid-Flood | В                        | 8.6          | 14:15 | 7.75         | 8.18 | 30.37     | 21.6      | 5.36                        | 6         | -                             | -                            | -                    |
| CR1      | 20181117               | Cloudy  | Moderate         | Mid-Flood | М                        | 4.8          | 14:15 | 7.82         | 8.14 | 30.44     | 21.5      | 3.69                        | 5         | -                             | -                            | -                    |
| CR1      | 20181117               | Cloudy  | Moderate         | Mid-Flood | М                        | 4.8          | 14:16 | 7.73         | 8.1  | 30.36     | 21.5      | 3.58                        | 6         | -                             | -                            | -                    |
| CR1      | 20181117               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 14:16 | 7.59         | 8.06 | 30.3      | 21.6      | 1.21                        | 5         | -                             | -                            | -                    |
| CR1      | 20181117               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 14:16 | 7.65         | 8.15 | 30.35     | 21.6      | 1.23                        | 4         | -                             | -                            | -                    |
| CR2      | 20181117               | Cloudy  | Moderate         | Mid-Flood | В                        | 8.7          | 14:28 | 8.34         | 8.17 | 30.03     | 21.6      | 5.13                        | 6         | -                             | -                            | -                    |
| CR2      | 20181117               | Cloudy  | Moderate         | Mid-Flood | В                        | 8.7          | 14:28 | 8.45         | 8.18 | 29.98     | 21.6      | 5.28                        | 6         | -                             | -                            | -                    |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

|     | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|-----|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| CR2 | 20181117               | Cloudy  | Moderate         | Mid-Flood | М                        | 4.9          | 14:28 | 8.49         | 8.09 | 29.83     | 21.6      | 3.28                        | 6         | -                             | -                            | -                 |
| CR2 | 20181117               | Cloudy  | Moderate         | Mid-Flood | М                        | 4.9          | 14:29 | 8.51         | 8.16 | 29.76     | 21.6      | 3.25                        | 6         | -                             | -                            | -                 |
| CR2 | 20181117               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 14:29 | 8.53         | 8.13 | 29.62     | 21.6      | 1.93                        | 6         | -                             | -                            | -                 |
| CR2 | 20181117               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 14:30 | 8.52         | 8.1  | 29.75     | 21.5      | 1.98                        | 5         | -                             | -                            | -                 |
| C1  | 20181117               | Cloudy  | Moderate         | Mid-Flood | В                        | 11.4         | 14:54 | 8.32         | 8.11 | 30.22     | 21.5      | 5.25                        | 7         | -                             | -                            | -                 |
| C1  | 20181117               | Cloudy  | Moderate         | Mid-Flood | В                        | 11.4         | 14:54 | 8.18         | 8.07 | 30.28     | 21.6      | 5.32                        | 6         | -                             | -                            | -                 |
| C1  | 20181117               | Cloudy  | Moderate         | Mid-Flood | М                        | 6.2          | 14:55 | 8.17         | 8.14 | 30.39     | 21.7      | 4.19                        | 6         | -                             | -                            | -                 |
| C1  | 20181117               | Cloudy  | Moderate         | Mid-Flood | М                        | 6.2          | 14:55 | 8.05         | 8.1  | 30.41     | 21.6      | 4.27                        | 6         | -                             | -                            | -                 |
| C1  | 20181117               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 14:56 | 8.16         | 8.17 | 30.54     | 21.6      | 2.78                        | 7         | -                             | -                            | -                 |
| C1  | 20181117               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 14:56 | 8.11         | 8.11 | 30.62     | 21.5      | 2.81                        | 6         | -                             | -                            | -                 |
| B1  | 20181117               | Cloudy  | Moderate         | Mid-Flood | В                        | 4.7          | 15:19 | 8            | 8.08 | 30.05     | 21.6      | 5.17                        | 5         | -                             | -                            | -                 |
| B1  | 20181117               | Cloudy  | Moderate         | Mid-Flood | В                        | 4.7          | 15:20 | 8.05         | 8.17 | 30.2      | 21.6      | 5.22                        | 5         | -                             | -                            | -                 |
| B1  | 20181117               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 15:20 | 8.01         | 8.06 | 30.1      | 21.5      | 2.11                        | 4         | -                             | -                            | -                 |
| B1  | 20181117               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 15:20 | 8.1          | 8.19 | 30        | 21.5      | 2.1                         | 5         | -                             | -                            | -                 |
| B2  | 20181117               | Cloudy  | Moderate         | Mid-Flood | В                        | 4.5          | 15:32 | 7.95         | 8.08 | 30.06     | 21.6      | 5.96                        | 5         | -                             | -                            | -                 |
| B2  | 20181117               | Cloudy  | Moderate         | Mid-Flood | В                        | 4.5          | 15:32 | 7.81         | 8.15 | 30.05     | 21.6      | 5.95                        | 6         | -                             | -                            | -                 |
| B2  | 20181117               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 15:33 | 7.71         | 8.13 | 29.96     | 21.6      | 1.75                        | 5         | -                             | -                            | -                 |
| B2  | 20181117               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 15:33 | 7.81         | 8.13 | 29.89     | 21.5      | 1.65                        | 6         | -                             | -                            | -                 |
| F1  | 20181117               | Cloudy  | Moderate         | Mid-Flood | В                        | 8.1          | 16:38 | 7.99         | 8.1  | 30.14     | 21.6      | 6.78                        | 10        | -                             | -                            | -                 |
| F1  | 20181117               | Cloudy  | Moderate         | Mid-Flood | В                        | 8.1          | 16:39 | 8.14         | 8.06 | 30.13     | 21.6      | 6.92                        | 9         | -                             | -                            | -                 |
| F1  | 20181117               | Cloudy  | Moderate         | Mid-Flood | М                        | 4.6          | 16:39 | 8.16         | 8.08 | 30.26     | 21.7      | 3.43                        | 8         | -                             | -                            | -                 |
| F1  | 20181117               | Cloudy  | Moderate         | Mid-Flood | М                        | 4.6          | 16:40 | 8.08         | 8.06 | 30.12     | 21.5      | 3.28                        | 8         | -                             | -                            | -                 |
| F1  | 20181117               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 16:40 | 8.1          | 8.07 | 30.06     | 21.6      | 1.49                        | 8         | -                             | -                            | -                 |
| F1  | 20181117               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 16:40 | 8.19         | 8.06 | 30.09     | 21.5      | 1.38                        | 8         | -                             | -                            | -                 |
| M1  | 20181117               | Cloudy  | Moderate         | Mid-Flood | В                        | 8.2          | 17:07 | 8.04         | 8.15 | 30.33     | 21.5      | 6.1                         | 9         | -                             | -                            | -                 |
| M1  | 20181117               | Cloudy  | Moderate         | Mid-Flood | В                        | 8.2          | 17:07 | 8.15         | 8.2  | 30.31     | 21.5      | 6.05                        | 8         | -                             | -                            | -                 |
| M1  | 20181117               | Cloudy  | Moderate         | Mid-Flood | М                        | 4.6          | 17:07 | 8.25         | 8.2  | 30.32     | 21.6      | 3.25                        | 8         | -                             | -                            | -                 |
| M1  | 20181117               | Cloudy  | Moderate         | Mid-Flood | М                        | 4.6          | 17:08 | 8.35         | 8.14 | 30.46     | 21.6      | 3.1                         | 8         | -                             | -                            | -                 |
| M1  | 20181117               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 17:08 | 8.35         | 8.16 | 30.5      | 21.6      | 1.62                        | 8         | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| Location | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----------|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| M1       | 20181117               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 17:09 | 8.23         | 8.18 | 30.61     | 21.7      | 1.63                        | 8         | -                             | -                            | -                 |
| C1       | 20181119               | Sunny   | Light            | Mid-Ebb   | В                        | 10.8         | 7:19  | 7.81         | 8.18 | 30.37     | 21.6      | 5.11                        | 9         | -                             | -                            | -                 |
| C1       | 20181119               | Sunny   | Light            | Mid-Ebb   | В                        | 10.8         | 7:19  | 7.89         | 8.14 | 30.43     | 21.5      | 5.19                        | 10        | -                             | -                            | -                 |
| C1       | 20181119               | Sunny   | Light            | Mid-Ebb   | М                        | 5.9          | 7:19  | 7.99         | 8.15 | 30.2      | 21.6      | 3.49                        | 8         | -                             | -                            | -                 |
| C1       | 20181119               | Sunny   | Light            | Mid-Ebb   | М                        | 5.9          | 7:20  | 7.87         | 8.13 | 30.42     | 21.6      | 3.29                        | 8         | -                             | -                            | -                 |
| C1       | 20181119               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 7:20  | 7.75         | 8.17 | 30.5      | 21.6      | 1.23                        | 7         | -                             | -                            | -                 |
| C1       | 20181119               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 7:20  | 7.76         | 8.12 | 30.32     | 21.6      | 1.31                        | 8         | -                             | -                            | -                 |
| B1       | 20181119               | Sunny   | Light            | Mid-Ebb   | В                        | 4.4          | 7:54  | 8.06         | 8.17 | 30.58     | 21.5      | 6.28                        | 4         | -                             | -                            | -                 |
| B1       | 20181119               | Sunny   | Light            | Mid-Ebb   | В                        | 4.4          | 7:54  | 8            | 8.12 | 30.49     | 21.5      | 6.45                        | 3         | -                             | -                            | -                 |
| B1       | 20181119               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 7:55  | 8.06         | 8.2  | 30.3      | 21.5      | 1.59                        | 4         | -                             | -                            | -                 |
| B1       | 20181119               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 7:55  | 8.19         | 8.18 | 30.21     | 21.5      | 1.63                        | 5         | -                             | -                            | -                 |
| B2       | 20181119               | Sunny   | Light            | Mid-Ebb   | В                        | 4.3          | 8:10  | 8.26         | 8.07 | 30.42     | 21.6      | 6.38                        | 5         | -                             | -                            | -                 |
| B2       | 20181119               | Sunny   | Light            | Mid-Ebb   | В                        | 4.3          | 8:11  | 8.12         | 8.1  | 30.33     | 21.6      | 6.24                        | 5         | -                             | -                            | -                 |
| B2       | 20181119               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 8:11  | 8.11         | 8.09 | 30.48     | 21.5      | 1.12                        | 6         | -                             | -                            | -                 |
| B2       | 20181119               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 8:11  | 8.24         | 8.12 | 30.48     | 21.6      | 1.17                        | 5         | -                             | -                            | -                 |
| H1       | 20181119               | Sunny   | Light            | Mid-Ebb   | В                        | 7.7          | 8:34  | 8.38         | 8.1  | 30.25     | 21.6      | 6.88                        | 9         | -                             | -                            | -                 |
| H1       | 20181119               | Sunny   | Light            | Mid-Ebb   | В                        | 7.7          | 8:34  | 8.44         | 8.12 | 30.42     | 21.6      | 6.95                        | 8         | -                             | -                            | -                 |
| H1       | 20181119               | Sunny   | Light            | Mid-Ebb   | М                        | 4.4          | 8:35  | 8.59         | 8.14 | 30.48     | 21.6      | 4.46                        | 7         | -                             | -                            | -                 |
| H1       | 20181119               | Sunny   | Light            | Mid-Ebb   | М                        | 4.4          | 8:35  | 8.72         | 8.15 | 30.39     | 21.6      | 4.62                        | 7         | -                             | -                            | -                 |
| H1       | 20181119               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 8:35  | 8.73         | 8.15 | 30.2      | 21.5      | 2.48                        | 8         | -                             | -                            | -                 |
| H1       | 20181119               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 8:36  | 8.64         | 8.11 | 30.5      | 21.6      | 2.68                        | 8         | -                             | -                            | -                 |
| CR2      | 20181119               | Sunny   | Light            | Mid-Ebb   | В                        | 7.8          | 9:03  | 7.99         | 8.12 | 30.45     | 21.6      | 5.09                        | 8         | -                             | -                            | -                 |
| CR2      | 20181119               | Sunny   | Light            | Mid-Ebb   | В                        | 7.8          | 9:04  | 8            | 8.17 | 30.49     | 21.6      | 5.01                        | 8         | -                             | -                            | -                 |
| CR2      | 20181119               | Sunny   | Light            | Mid-Ebb   | М                        | 4.4          | 9:04  | 7.89         | 8.2  | 30.43     | 21.6      | 4.8                         | 8         | -                             | -                            | -                 |
| CR2      | 20181119               | Sunny   | Light            | Mid-Ebb   | М                        | 4.4          | 9:04  | 7.96         | 8.12 | 30.28     | 21.6      | 4.95                        | 7         | -                             | -                            | -                 |
| CR2      | 20181119               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 9:05  | 7.94         | 8.17 | 30.21     | 21.6      | 2.32                        | 7         | -                             | -                            | -                 |
| CR2      | 20181119               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 9:05  | 7.94         | 8.09 | 30.43     | 21.6      | 2.23                        | 8         | -                             | -                            | -                 |
| CR1      | 20181119               | Sunny   | Light            | Mid-Ebb   | В                        | 7.9          | 9:17  | 7.9          | 8.07 | 30.6      | 21.6      | 5.18                        | 7         | -                             | -                            | -                 |
| CR1      | 20181119               | Sunny   | Light            | Mid-Ebb   | В                        | 7.9          | 9:18  | 8.03         | 8.07 | 30.59     | 21.6      | 5.17                        | 6         | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

|     | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal   | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in<br>NESW |
|-----|------------------------|---------|------------------|---------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|----------------------|
| CR1 | 20181119               | Sunny   | Light            | Mid-Ebb | М                        | 4.5          | 9:18  | 7.91         | 8.08 | 30.38     | 21.5      | 4.28                        | 7         | -                             | -                            | -                    |
| CR1 | 20181119               | Sunny   | Light            | Mid-Ebb | М                        | 4.5          | 9:19  | 7.78         | 8.14 | 30.27     | 21.6      | 4.43                        | 8         | -                             | -                            | -                    |
| CR1 | 20181119               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 9:19  | 7.88         | 8.08 | 30.23     | 21.5      | 1.3                         | 8         | -                             | -                            | -                    |
| CR1 | 20181119               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 9:19  | 7.94         | 8.09 | 30.6      | 21.5      | 1.21                        | 8         | -                             | -                            | -                    |
| B3  | 20181119               | Sunny   | Light            | Mid-Ebb | В                        | 4.5          | 9:41  | 7.81         | 8.13 | 30.5      | 21.5      | 6.57                        | 11        | -                             | -                            | -                    |
| B3  | 20181119               | Sunny   | Light            | Mid-Ebb | В                        | 4.5          | 9:41  | 7.75         | 8.08 | 30.33     | 21.6      | 6.48                        | 12        | -                             | -                            | -                    |
| B3  | 20181119               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 9:42  | 7.66         | 8.18 | 30.21     | 21.5      | 2.04                        | 7         | -                             | -                            | -                    |
| B3  | 20181119               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 9:42  | 7.62         | 8.07 | 30.39     | 21.6      | 2.04                        | 8         | -                             | -                            | -                    |
| B4  | 20181119               | Sunny   | Light            | Mid-Ebb | В                        | 4.4          | 9:52  | 7.88         | 8.07 | 30.57     | 21.6      | 6.08                        | 16        | -                             | -                            | -                    |
| B4  | 20181119               | Sunny   | Light            | Mid-Ebb | В                        | 4.4          | 9:53  | 7.75         | 8.1  | 30.22     | 21.5      | 6.14                        | 16        | -                             | -                            | -                    |
| B4  | 20181119               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 9:53  | 7.67         | 8.19 | 30.2      | 21.5      | 2.33                        | 10        | -                             | -                            | -                    |
| B4  | 20181119               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 9:53  | 7.82         | 8.15 | 30.2      | 21.5      | 2.14                        | 12        | -                             | -                            | -                    |
| C2  | 20181119               | Sunny   | Light            | Mid-Ebb | В                        | 7.6          | 10:08 | 8.19         | 8.07 | 30.31     | 21.5      | 6.47                        | 10        | -                             | -                            | -                    |
| C2  | 20181119               | Sunny   | Light            | Mid-Ebb | В                        | 7.6          | 10:08 | 8.23         | 8.2  | 30.47     | 21.6      | 6.64                        | 11        | -                             | -                            | -                    |
| C2  | 20181119               | Sunny   | Light            | Mid-Ebb | М                        | 4.3          | 10:09 | 8.1          | 8.17 | 30.53     | 21.6      | 3.97                        | 10        | -                             | -                            | -                    |
| C2  | 20181119               | Sunny   | Light            | Mid-Ebb | М                        | 4.3          | 10:09 | 8.1          | 8.17 | 30.37     | 21.5      | 3.86                        | 9         | -                             | -                            | -                    |
| C2  | 20181119               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 10:09 | 8.07         | 8.12 | 30.51     | 21.5      | 1.96                        | 9         | -                             | -                            | -                    |
| C2  | 20181119               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 10:10 | 8.13         | 8.06 | 30.25     | 21.6      | 2.05                        | 8         | -                             | -                            | -                    |
| F1  | 20181119               | Sunny   | Light            | Mid-Ebb | В                        | 8.1          | 10:36 | 8.39         | 8.2  | 30.32     | 21.6      | 6.89                        | 10        | -                             | -                            | -                    |
| F1  | 20181119               | Sunny   | Light            | Mid-Ebb | В                        | 8.1          | 10:37 | 8.53         | 8.09 | 30.59     | 21.6      | 6.74                        | 12        | -                             | -                            | -                    |
| F1  | 20181119               | Sunny   | Light            | Mid-Ebb | М                        | 4.6          | 10:37 | 8.41         | 8.13 | 30.44     | 21.5      | 4.84                        | 11        | -                             | -                            | -                    |
| F1  | 20181119               | Sunny   | Light            | Mid-Ebb | М                        | 4.6          | 10:37 | 8.27         | 8.18 | 30.34     | 21.5      | 4.78                        | 11        | -                             | -                            | -                    |
| F1  | 20181119               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 10:38 | 8.25         | 8.07 | 30.54     | 21.5      | 2.92                        | 11        | -                             | -                            | -                    |
| F1  | 20181119               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 10:38 | 8.2          | 8.16 | 30.39     | 21.5      | 3.09                        | 11        | -                             | -                            | -                    |
| M1  | 20181119               | Sunny   | Light            | Mid-Ebb | В                        | 8            | 11:05 | 8.31         | 8.09 | 30.51     | 21.6      | 6.73                        | 10        | -                             | -                            | -                    |
| M1  | 20181119               | Sunny   | Light            | Mid-Ebb | В                        | 8            | 11:06 | 8.42         | 8.07 | 30.35     | 21.5      | 6.68                        | 11        | -                             | -                            | -                    |
| M1  | 20181119               | Sunny   | Light            | Mid-Ebb | М                        | 4.5          | 11:06 | 8.33         | 8.19 | 30.59     | 21.6      | 4.86                        | 9         | -                             | -                            | -                    |
| M1  | 20181119               | Sunny   | Light            | Mid-Ebb | М                        | 4.5          | 11:07 | 8.36         | 8.16 | 30.31     | 21.5      | 4.8                         | 10        | -                             | -                            | -                    |
| M1  | 20181119               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 11:07 | 8.22         | 8.12 | 30.25     | 21.6      | 2.48                        | 9         | -                             | -                            | -                    |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| Location | Date     | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----------|----------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| M1       | 20181119 | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 11:07 | 8.35         | 8.19 | 30.34     | 21.6      | 2.51                        | 9         | -                             | -                            | -                 |
| C2       | 20181119 | Cloudy  | Moderate         | Mid-Flood | В                        | 9.6          | 14:21 | 8.08         | 8.07 | 30.21     | 21.6      | 5.87                        | 8         | -                             | -                            | -                 |
| C2       | 20181119 | Cloudy  | Moderate         | Mid-Flood | В                        | 9.6          | 14:21 | 8.21         | 8.12 | 30.53     | 21.5      | 5.8                         | 8         | -                             | -                            | -                 |
| C2       | 20181119 | Cloudy  | Moderate         | Mid-Flood | М                        | 5.3          | 14:22 | 8.33         | 8.11 | 30.57     | 21.6      | 3.86                        | 8         | -                             | -                            | -                 |
| C2       | 20181119 | Cloudy  | Moderate         | Mid-Flood | М                        | 5.3          | 14:22 | 8.27         | 8.2  | 30.27     | 21.6      | 3.71                        | 8         | -                             | -                            | -                 |
| C2       | 20181119 | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 14:22 | 8.12         | 8.2  | 30.2      | 21.6      | 1.23                        | 6         | -                             | -                            | -                 |
| C2       | 20181119 | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 14:23 | 8.11         | 8.19 | 30.37     | 21.6      | 1.28                        | 8         | -                             | -                            | -                 |
| CR1      | 20181119 | Cloudy  | Moderate         | Mid-Flood | В                        | 8.4          | 14:42 | 7.87         | 8.15 | 30.58     | 21.6      | 5.65                        | 12        | -                             | -                            | -                 |
| CR1      | 20181119 | Cloudy  | Moderate         | Mid-Flood | В                        | 8.4          | 14:42 | 7.94         | 8.09 | 30.51     | 21.5      | 5.46                        | 12        | -                             | -                            | -                 |
| CR1      | 20181119 | Cloudy  | Moderate         | Mid-Flood | М                        | 4.7          | 14:43 | 7.83         | 8.07 | 30.38     | 21.6      | 3.69                        | 9         | -                             | -                            | -                 |
| CR1      | 20181119 | Cloudy  | Moderate         | Mid-Flood | М                        | 4.7          | 14:43 | 7.77         | 8.09 | 30.53     | 21.6      | 3.49                        | 10        | -                             | -                            | -                 |
| CR1      | 20181119 | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 14:44 | 7.86         | 8.14 | 30.4      | 21.6      | 1.21                        | 6         | -                             | -                            | -                 |
| CR1      | 20181119 | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 14:44 | 7.85         | 8.14 | 30.37     | 21.6      | 1.1                         | 6         | -                             | -                            | -                 |
| CR2      | 20181119 | Cloudy  | Moderate         | Mid-Flood | В                        | 8.5          | 14:54 | 7.92         | 8.12 | 30.42     | 21.6      | 6.25                        | 8         | -                             | -                            | -                 |
| CR2      | 20181119 | Cloudy  | Moderate         | Mid-Flood | В                        | 8.5          | 14:55 | 7.92         | 8.16 | 30.37     | 21.6      | 6.3                         | 7         | -                             | -                            | -                 |
| CR2      | 20181119 | Cloudy  | Moderate         | Mid-Flood | М                        | 4.8          | 14:55 | 8.04         | 8.2  | 30.2      | 21.6      | 4.75                        | 6         | -                             | -                            | -                 |
| CR2      | 20181119 | Cloudy  | Moderate         | Mid-Flood | М                        | 4.8          | 14:55 | 7.89         | 8.11 | 30.44     | 21.6      | 4.85                        | 7         | -                             | -                            | -                 |
| CR2      | 20181119 | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 14:56 | 7.84         | 8.19 | 30.51     | 21.6      | 1.26                        | 7         | -                             | -                            | -                 |
| CR2      | 20181119 | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 14:56 | 7.83         | 8.17 | 30.54     | 21.6      | 1.07                        | 7         | -                             | -                            | -                 |
| C1       | 20181119 | Cloudy  | Moderate         | Mid-Flood | В                        | 11.5         | 15:24 | 8.33         | 8.19 | 30.59     | 21.6      | 5.21                        | 7         | -                             | -                            | -                 |
| C1       | 20181119 | Cloudy  | Moderate         | Mid-Flood | В                        | 11.5         | 15:24 | 8.38         | 8.2  | 30.4      | 21.6      | 5.05                        | 6         | -                             | -                            | -                 |
| C1       | 20181119 | Cloudy  | Moderate         | Mid-Flood | М                        | 6.3          | 15:24 | 8.49         | 8.14 | 30.26     | 21.5      | 3.53                        | 5         | -                             | -                            | -                 |
| C1       | 20181119 | Cloudy  | Moderate         | Mid-Flood | М                        | 6.3          | 15:25 | 8.53         | 8.18 | 30.47     | 21.6      | 3.58                        | 5         | -                             | -                            | -                 |
| C1       | 20181119 | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 15:25 | 8.61         | 8.16 | 30.6      | 21.5      | 1.9                         | 4         | -                             | -                            | -                 |
| C1       | 20181119 | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 15:26 | 8.67         | 8.17 | 30.52     | 21.6      | 2.07                        | 5         | -                             | -                            | -                 |
| B1       | 20181119 | Cloudy  | Moderate         | Mid-Flood | В                        | 4.7          | 15:52 | 8.3          | 8.2  | 30.59     | 21.5      | 5.77                        | 4         | -                             | -                            | -                 |
| B1       | 20181119 | Cloudy  | Moderate         | Mid-Flood | В                        | 4.7          | 15:52 | 8.45         | 8.11 | 30.38     | 21.6      | 5.96                        | 4         | -                             | -                            | -                 |
| B1       | 20181119 | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 15:53 | 8.38         | 8.13 | 30.49     | 21.5      | 2.55                        | 4         | -                             | -                            | -                 |
| B1       | 20181119 | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 15:53 | 8.29         | 8.14 | 30.21     | 21.6      | 2.58                        | 4         | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

|    | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| B2 | 20181119               | Cloudy  | Moderate         | Mid-Flood | В                        | 4.7          | 16:08 | 8.26         | 8.2  | 30.36     | 21.6      | 6.76                        | 7         | -                             | -                            | -                 |
| B2 | 20181119               | Cloudy  | Moderate         | Mid-Flood | В                        | 4.7          | 16:09 | 8.13         | 8.17 | 30.39     | 21.6      | 6.8                         | 6         | -                             | -                            | -                 |
| B2 | 20181119               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 16:09 | 8.13         | 8.13 | 30.4      | 21.5      | 1.09                        | 5         | -                             | -                            | -                 |
| B2 | 20181119               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 16:10 | 8.26         | 8.19 | 30.56     | 21.5      | 1.08                        | 5         | -                             | -                            | -                 |
| H1 | 20181119               | Cloudy  | Moderate         | Mid-Flood | В                        | 7.6          | 16:34 | 8.34         | 8.07 | 30.58     | 21.5      | 5.44                        | 6         | -                             | -                            | -                 |
| H1 | 20181119               | Cloudy  | Moderate         | Mid-Flood | В                        | 7.6          | 16:34 | 8.29         | 8.1  | 30.6      | 21.6      | 5.43                        | 5         | -                             | -                            | -                 |
| H1 | 20181119               | Cloudy  | Moderate         | Mid-Flood | М                        | 4.3          | 16:35 | 8.23         | 8.14 | 30.35     | 21.6      | 3.53                        | 5         | -                             | -                            | -                 |
| H1 | 20181119               | Cloudy  | Moderate         | Mid-Flood | М                        | 4.3          | 16:35 | 8.31         | 8.18 | 30.32     | 21.5      | 3.46                        | 6         | -                             | -                            | -                 |
| H1 | 20181119               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 16:36 | 8.37         | 8.16 | 30.3      | 21.6      | 1.78                        | 4         | -                             | -                            | -                 |
| H1 | 20181119               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 16:36 | 8.41         | 8.06 | 30.35     | 21.6      | 1.91                        | 4         | -                             | -                            | -                 |
| B3 | 20181119               | Cloudy  | Moderate         | Mid-Flood | В                        | 4.6          | 16:47 | 7.89         | 8.2  | 30.53     | 21.6      | 5.17                        | 6         | -                             | -                            | -                 |
| B3 | 20181119               | Cloudy  | Moderate         | Mid-Flood | В                        | 4.6          | 16:48 | 8.02         | 8.1  | 30.28     | 21.5      | 5.22                        | 6         | -                             | -                            | -                 |
| B3 | 20181119               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 16:48 | 7.95         | 8.06 | 30.24     | 21.6      | 1.24                        | 5         | -                             | -                            | -                 |
| B3 | 20181119               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 16:48 | 8.04         | 8.14 | 30.31     | 21.5      | 1.33                        | 5         | -                             | -                            | -                 |
| B4 | 20181119               | Cloudy  | Moderate         | Mid-Flood | В                        | 4.6          | 16:57 | 7.86         | 8.18 | 30.27     | 21.6      | 5.14                        | 6         | -                             | -                            | -                 |
| B4 | 20181119               | Cloudy  | Moderate         | Mid-Flood | В                        | 4.6          | 16:57 | 7.99         | 8.1  | 30.34     | 21.6      | 5.25                        | 6         | -                             | -                            | -                 |
| B4 | 20181119               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 16:58 | 7.84         | 8.13 | 30.23     | 21.5      | 1.34                        | 6         | -                             | -                            | -                 |
| B4 | 20181119               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 16:58 | 7.77         | 8.08 | 30.55     | 21.5      | 1.36                        | 5         | -                             | -                            | -                 |
| F1 | 20181119               | Cloudy  | Moderate         | Mid-Flood | В                        | 7.7          | 17:30 | 7.82         | 8.14 | 30.59     | 21.5      | 6.02                        | 9         | -                             | -                            | -                 |
| F1 | 20181119               | Cloudy  | Moderate         | Mid-Flood | В                        | 7.7          | 17:31 | 7.83         | 8.08 | 30.38     | 21.5      | 5.93                        | 9         | -                             | -                            | -                 |
| F1 | 20181119               | Cloudy  | Moderate         | Mid-Flood | М                        | 4.4          | 17:31 | 7.83         | 8.2  | 30.46     | 21.6      | 3.68                        | 7         | -                             | -                            | -                 |
| F1 | 20181119               | Cloudy  | Moderate         | Mid-Flood | М                        | 4.4          | 17:32 | 7.98         | 8.14 | 30.2      | 21.6      | 3.74                        | 7         | -                             | -                            | -                 |
| F1 | 20181119               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 17:32 | 7.99         | 8.19 | 30.58     | 21.6      | 2.23                        | 7         | -                             | -                            | -                 |
| F1 | 20181119               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 17:32 | 8.02         | 8.13 | 30.6      | 21.5      | 2.08                        | 6         | -                             | -                            | -                 |
| M1 | 20181119               | Cloudy  | Moderate         | Mid-Flood | В                        | 8.1          | 18:03 | 8.15         | 8.09 | 30.25     | 21.6      | 6.23                        | 9         | -                             | -                            | -                 |
| M1 | 20181119               | Cloudy  | Moderate         | Mid-Flood | В                        | 8.1          | 18:03 | 8.25         | 8.07 | 30.21     | 21.5      | 6.07                        | 9         | -                             | -                            | -                 |
| M1 | 20181119               | Cloudy  | Moderate         | Mid-Flood | М                        | 4.6          | 18:03 | 8.15         | 8.15 | 30.22     | 21.6      | 4.48                        | 6         | -                             | -                            | -                 |
| M1 | 20181119               | Cloudy  | Moderate         | Mid-Flood | М                        | 4.6          | 18:04 | 8.06         | 8.12 | 30.33     | 21.6      | 4.44                        | 7         | -                             | -                            | -                 |
| M1 | 20181119               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 18:04 | 8.03         | 8.09 | 30.58     | 21.5      | 2.88                        | 6         | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| Location | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----------|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| M1       | 20181119               | Cloudy  | Moderate         | Mid-Flood | S                        | 1            | 18:05 | 7.89         | 8.1  | 30.27     | 21.6      | 2.81                        | 5         | -                             | -                            | -                 |
| C1       | 20181121               | Sunny   | Light            | Mid-Ebb   | В                        | 10.5         | 9:14  | 7.75         | 8.2  | 30.04     | 22.2      | 4.03                        | 15        | -                             | -                            | -                 |
| C1       | 20181121               | Sunny   | Light            | Mid-Ebb   | В                        | 10.5         | 9:14  | 7.74         | 8.16 | 29.99     | 22.1      | 3.97                        | 14        | -                             | -                            | -                 |
| C1       | 20181121               | Sunny   | Light            | Mid-Ebb   | М                        | 5.8          | 9:14  | 7.65         | 8.11 | 30.05     | 22.2      | 2.48                        | 12        | -                             | -                            | -                 |
| C1       | 20181121               | Sunny   | Light            | Mid-Ebb   | М                        | 5.8          | 9:15  | 7.66         | 8.17 | 29.94     | 22.1      | 2.54                        | 14        | -                             | -                            | -                 |
| C1       | 20181121               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 9:15  | 7.5          | 8.14 | 30.19     | 22.2      | 2.12                        | 11        | -                             | -                            | -                 |
| C1       | 20181121               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 9:15  | 7.4          | 8.17 | 30.23     | 22.2      | 2.11                        | 10        | -                             | -                            | -                 |
| B1       | 20181121               | Sunny   | Light            | Mid-Ebb   | В                        | 4.4          | 9:38  | 7.62         | 8.06 | 30.18     | 22.1      | 5.94                        | 9         | -                             | -                            | -                 |
| B1       | 20181121               | Sunny   | Light            | Mid-Ebb   | В                        | 4.4          | 9:38  | 7.66         | 8.2  | 30.09     | 22.2      | 6.11                        | 11        | -                             | -                            | -                 |
| B1       | 20181121               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 9:39  | 7.6          | 8.14 | 29.99     | 22.2      | 2.56                        | 4         | -                             | -                            | -                 |
| B1       | 20181121               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 9:39  | 7.44         | 8.16 | 30.01     | 22.2      | 2.46                        | 5         | -                             | -                            | -                 |
| B2       | 20181121               | Sunny   | Light            | Mid-Ebb   | В                        | 4.4          | 9:54  | 7.81         | 8.17 | 29.77     | 22.1      | 5.62                        | 14        | -                             | -                            | -                 |
| B2       | 20181121               | Sunny   | Light            | Mid-Ebb   | В                        | 4.4          | 9:55  | 7.91         | 8.12 | 30.24     | 22.2      | 5.73                        | 15        | -                             | -                            | -                 |
| B2       | 20181121               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 9:55  | 7.94         | 8.16 | 30.06     | 22.2      | 2.21                        | 11        | -                             | -                            | -                 |
| B2       | 20181121               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 9:55  | 7.82         | 8.12 | 30.1      | 22.1      | 2.05                        | 11        | -                             | -                            | -                 |
| H1       | 20181121               | Sunny   | Light            | Mid-Ebb   | В                        | 7.6          | 10:19 | 7.9          | 8.15 | 30.08     | 22.2      | 5.48                        | 18        | -                             | -                            | -                 |
| H1       | 20181121               | Sunny   | Light            | Mid-Ebb   | В                        | 7.6          | 10:19 | 7.99         | 8.16 | 30.07     | 22.2      | 5.42                        | 18        | -                             | -                            | -                 |
| H1       | 20181121               | Sunny   | Light            | Mid-Ebb   | М                        | 4.3          | 10:20 | 8.19         | 8.15 | 29.78     | 22.1      | 3.73                        | 18        | -                             | -                            | -                 |
| H1       | 20181121               | Sunny   | Light            | Mid-Ebb   | М                        | 4.3          | 10:20 | 8.09         | 8.12 | 29.95     | 22.1      | 3.79                        | 17        | -                             | -                            | -                 |
| H1       | 20181121               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 10:20 | 8.28         | 8.16 | 30.19     | 22.1      | 1.11                        | 15        | -                             | -                            | -                 |
| H1       | 20181121               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 10:21 | 8.35         | 8.18 | 30.18     | 22.2      | 0.98                        | 14        | -                             | -                            | -                 |
| CR2      | 20181121               | Sunny   | Light            | Mid-Ebb   | В                        | 7.7          | 10:35 | 8.06         | 8.09 | 29.97     | 22.2      | 4.8                         | 14        | -                             | -                            | -                 |
| CR2      | 20181121               | Sunny   | Light            | Mid-Ebb   | В                        | 7.7          | 10:36 | 8.26         | 8.17 | 30.09     | 22.1      | 4.8                         | 14        | -                             | -                            | -                 |
| CR2      | 20181121               | Sunny   | Light            | Mid-Ebb   | М                        | 4.4          | 10:36 | 8.07         | 8.06 | 30.07     | 22.2      | 3.53                        | 12        | -                             | -                            | -                 |
| CR2      | 20181121               | Sunny   | Light            | Mid-Ebb   | М                        | 4.4          | 10:36 | 8.15         | 8.06 | 30.2      | 22.1      | 3.64                        | 12        | -                             | -                            | -                 |
| CR2      | 20181121               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 10:37 | 8.2          | 8.1  | 30.07     | 22.2      | 1.47                        | 13        | -                             | -                            | -                 |
| CR2      | 20181121               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 10:37 | 8.29         | 8.13 | 29.75     | 22.1      | 1.4                         | 11        | -                             | -                            | -                 |
| CR1      | 20181121               | Sunny   | Light            | Mid-Ebb   | В                        | 7.6          | 10:51 | 7.94         | 8.18 | 30.05     | 22.2      | 5.92                        | 12        | -                             | -                            | -                 |
| CR1      | 20181121               | Sunny   | Light            | Mid-Ebb   | В                        | 7.6          | 10:52 | 7.77         | 8.09 | 30.13     | 22.2      | 5.83                        | 13        | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

|     | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal   | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in<br>NESW |
|-----|------------------------|---------|------------------|---------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|----------------------|
| CR1 | 20181121               | Sunny   | Light            | Mid-Ebb | М                        | 4.3          | 10:52 | 7.73         | 8.18 | 29.85     | 22.2      | 3.9                         | 12        | -                             | -                            | -                    |
| CR1 | 20181121               | Sunny   | Light            | Mid-Ebb | М                        | 4.3          | 10:53 | 7.82         | 8.11 | 30.12     | 22.2      | 3.81                        | 11        | -                             | -                            | -                    |
| CR1 | 20181121               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 10:53 | 7.83         | 8.09 | 30.18     | 22.2      | 1.52                        | 11        | -                             | -                            | -                    |
| CR1 | 20181121               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 10:53 | 7.82         | 8.18 | 29.88     | 22.1      | 1.58                        | 10        | -                             | -                            | -                    |
| B3  | 20181121               | Sunny   | Light            | Mid-Ebb | В                        | 4.3          | 11:11 | 8.06         | 8.14 | 30.25     | 22.2      | 5.83                        | 10        | -                             | -                            | -                    |
| B3  | 20181121               | Sunny   | Light            | Mid-Ebb | В                        | 4.3          | 11:11 | 8.25         | 8.18 | 29.86     | 22.1      | 5.65                        | 10        | -                             | -                            | -                    |
| B3  | 20181121               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 11:12 | 8.45         | 8.1  | 30.24     | 22.2      | 2.54                        | 9         | -                             | -                            | -                    |
| B3  | 20181121               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 11:12 | 8.6          | 8.08 | 30.2      | 22.2      | 2.61                        | 8         | -                             | -                            | -                    |
| B4  | 20181121               | Sunny   | Light            | Mid-Ebb | В                        | 4.5          | 11:21 | 8.1          | 8.13 | 29.83     | 22.1      | 4.94                        | 9         | -                             | -                            | -                    |
| B4  | 20181121               | Sunny   | Light            | Mid-Ebb | В                        | 4.5          | 11:22 | 7.9          | 8.08 | 29.83     | 22.2      | 4.78                        | 9         | -                             | -                            | -                    |
| B4  | 20181121               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 11:22 | 8.03         | 8.11 | 30.18     | 22.2      | 2.6                         | 5         | -                             | -                            | -                    |
| B4  | 20181121               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 11:22 | 7.84         | 8.14 | 30.04     | 22.2      | 2.54                        | 6         | -                             | -                            | -                    |
| C2  | 20181121               | Sunny   | Light            | Mid-Ebb | В                        | 7.7          | 11:34 | 8.16         | 8.12 | 30.01     | 22.2      | 5.12                        | 15        | -                             | -                            | -                    |
| C2  | 20181121               | Sunny   | Light            | Mid-Ebb | В                        | 7.7          | 11:34 | 7.96         | 8.16 | 29.88     | 22.1      | 4.93                        | 13        | -                             | -                            | -                    |
| C2  | 20181121               | Sunny   | Light            | Mid-Ebb | М                        | 4.4          | 11:35 | 7.94         | 8.2  | 30.07     | 22.2      | 2.5                         | 14        | -                             | -                            | -                    |
| C2  | 20181121               | Sunny   | Light            | Mid-Ebb | М                        | 4.4          | 11:35 | 7.84         | 8.12 | 29.75     | 22.1      | 2.47                        | 15        | -                             | -                            | -                    |
| C2  | 20181121               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 11:35 | 7.97         | 8.1  | 29.85     | 22.1      | 1.45                        | 14        | -                             | -                            | -                    |
| C2  | 20181121               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 11:36 | 8.07         | 8.18 | 30.15     | 22.2      | 1.29                        | 13        | -                             | -                            | -                    |
| F1  | 20181121               | Sunny   | Light            | Mid-Ebb | В                        | 8.2          | 11:56 | 7.96         | 8.15 | 30.1      | 22.2      | 5.42                        | 14        | -                             | -                            | -                    |
| F1  | 20181121               | Sunny   | Light            | Mid-Ebb | В                        | 8.2          | 11:57 | 8.06         | 8.18 | 29.98     | 22.2      | 5.27                        | 15        | -                             | -                            | -                    |
| F1  | 20181121               | Sunny   | Light            | Mid-Ebb | М                        | 4.6          | 11:57 | 8.21         | 8.11 | 30.25     | 22.2      | 3.27                        | 15        | -                             | -                            | -                    |
| F1  | 20181121               | Sunny   | Light            | Mid-Ebb | М                        | 4.6          | 11:57 | 8.2          | 8.14 | 29.85     | 22.1      | 3.22                        | 15        | -                             | -                            | -                    |
| F1  | 20181121               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 11:58 | 8.2          | 8.14 | 30.11     | 22.2      | 2.42                        | 11        | -                             | -                            | -                    |
| F1  | 20181121               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 11:58 | 8.35         | 8.1  | 30.06     | 22.2      | 2.43                        | 12        | -                             | -                            | -                    |
| M1  | 20181121               | Sunny   | Light            | Mid-Ebb | В                        | 8.1          | 12:22 | 7.9          | 8.13 | 30.08     | 22.2      | 5.01                        | 11        | -                             | -                            | -                    |
| M1  | 20181121               | Sunny   | Light            | Mid-Ebb | В                        | 8.1          | 12:23 | 7.82         | 8.11 | 29.98     | 22.2      | 5.06                        | 10        | -                             | -                            | -                    |
| M1  | 20181121               | Sunny   | Light            | Mid-Ebb | М                        | 4.6          | 12:23 | 7.86         | 8.09 | 30.21     | 22.2      | 2.01                        | 8         | -                             | -                            | -                    |
| M1  | 20181121               | Sunny   | Light            | Mid-Ebb | М                        | 4.6          | 12:24 | 7.84         | 8.2  | 29.93     | 22.2      | 2.06                        | 8         | -                             | -                            | -                    |
| M1  | 20181121               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 12:24 | 7.84         | 8.11 | 29.84     | 22.1      | 2.32                        | 7         | -                             | -                            | -                    |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| Location | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | pH   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----------|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| M1       | 20181121               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 12:24 | 7.84         | 8.19 | 30.07     | 22.2      | 2.17                        | 6         | -                             | -                            | -                 |
| C2       | 20181121               | Cloudy  | Light            | Mid-Flood | В                        | 9.4          | 15:08 | 7.9          | 8.06 | 30.07     | 22.2      | 5.83                        | 9         | -                             | -                            | -                 |
| C2       | 20181121               | Cloudy  | Light            | Mid-Flood | В                        | 9.4          | 15:08 | 7.7          | 8.09 | 29.83     | 22.2      | 5.66                        | 9         | -                             | -                            | -                 |
| C2       | 20181121               | Cloudy  | Light            | Mid-Flood | М                        | 5.2          | 15:09 | 7.74         | 8.08 | 30.17     | 22.1      | 3.52                        | 10        | -                             | -                            | -                 |
| C2       | 20181121               | Cloudy  | Light            | Mid-Flood | М                        | 5.2          | 15:09 | 7.79         | 8.09 | 30.04     | 22.2      | 3.6                         | 10        | -                             | -                            | -                 |
| C2       | 20181121               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 15:09 | 7.83         | 8.13 | 29.76     | 22.2      | 1.47                        | 7         | -                             | -                            | -                 |
| C2       | 20181121               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 15:10 | 7.88         | 8.12 | 30.24     | 22.1      | 1.51                        | 7         | -                             | -                            | -                 |
| CR1      | 20181121               | Cloudy  | Light            | Mid-Flood | В                        | 8.3          | 15:27 | 8.18         | 8.15 | 30.16     | 22.2      | 4.54                        | 8         | -                             | -                            | -                 |
| CR1      | 20181121               | Cloudy  | Light            | Mid-Flood | В                        | 8.3          | 15:27 | 8.09         | 8.12 | 29.77     | 22.1      | 4.41                        | 8         | -                             | -                            | -                 |
| CR1      | 20181121               | Cloudy  | Light            | Mid-Flood | М                        | 4.7          | 15:28 | 8.17         | 8.12 | 30.21     | 22.1      | 2.1                         | 6         | -                             | -                            | -                 |
| CR1      | 20181121               | Cloudy  | Light            | Mid-Flood | М                        | 4.7          | 15:28 | 8.16         | 8.12 | 30.11     | 22.2      | 2.06                        | 7         | -                             | -                            | -                 |
| CR1      | 20181121               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 15:29 | 8.1          | 8.1  | 29.9      | 22.1      | 2.28                        | 7         | -                             | -                            | -                 |
| CR1      | 20181121               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 15:29 | 7.98         | 8.17 | 30.08     | 22.2      | 2.16                        | 7         | -                             | -                            | -                 |
| CR2      | 20181121               | Cloudy  | Light            | Mid-Flood | В                        | 8.2          | 15:37 | 7.66         | 8.09 | 29.77     | 22.1      | 4.79                        | 10        | -                             | -                            | -                 |
| CR2      | 20181121               | Cloudy  | Light            | Mid-Flood | В                        | 8.2          | 15:38 | 7.8          | 8.11 | 29.79     | 22.1      | 4.99                        | 11        | -                             | -                            | -                 |
| CR2      | 20181121               | Cloudy  | Light            | Mid-Flood | М                        | 4.6          | 15:38 | 7.99         | 8.16 | 29.91     | 22.1      | 2.19                        | 8         | -                             | -                            | -                 |
| CR2      | 20181121               | Cloudy  | Light            | Mid-Flood | М                        | 4.6          | 15:38 | 8.02         | 8.1  | 30.07     | 22.1      | 2.36                        | 8         | -                             | -                            | -                 |
| CR2      | 20181121               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 15:39 | 8.17         | 8.11 | 29.9      | 22.1      | 2.63                        | 5         | -                             | -                            | -                 |
| CR2      | 20181121               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 15:39 | 8.11         | 8.08 | 30.23     | 22.2      | 2.82                        | 6         | -                             | -                            | -                 |
| C1       | 20181121               | Cloudy  | Light            | Mid-Flood | В                        | 11.3         | 16:04 | 8.15         | 8.2  | 30.11     | 22.2      | 5.31                        | 8         | -                             | -                            | -                 |
| C1       | 20181121               | Cloudy  | Light            | Mid-Flood | В                        | 11.3         | 16:04 | 8.34         | 8.14 | 29.95     | 22.2      | 5.44                        | 8         | -                             | -                            | -                 |
| C1       | 20181121               | Cloudy  | Light            | Mid-Flood | М                        | 6.2          | 16:04 | 8.48         | 8.19 | 29.79     | 22.2      | 2.17                        | 7         | -                             | -                            | -                 |
| C1       | 20181121               | Cloudy  | Light            | Mid-Flood | М                        | 6.2          | 16:05 | 8.35         | 8.1  | 29.97     | 22.2      | 2.01                        | 7         | -                             | -                            | -                 |
| C1       | 20181121               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 16:05 | 8.31         | 8.17 | 30.17     | 22.2      | 1.19                        | 7         | -                             | -                            | -                 |
| C1       | 20181121               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 16:06 | 8.21         | 8.15 | 30.08     | 22.1      | 1.08                        | 7         | -                             | -                            | -                 |
| B1       | 20181121               | Cloudy  | Light            | Mid-Flood | В                        | 4.6          | 16:29 | 7.96         | 8.06 | 30.2      | 22.2      | 4.04                        | 6         | -                             | -                            | -                 |
| B1       | 20181121               | Cloudy  | Light            | Mid-Flood | В                        | 4.6          | 16:29 | 7.78         | 8.09 | 29.91     | 22.2      | 4.15                        | 6         | -                             | -                            | -                 |
| B1       | 20181121               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 16:30 | 7.83         | 8.1  | 30.24     | 22.2      | 2.89                        | 5         | -                             | -                            | -                 |
| B1       | 20181121               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 16:30 | 7.68         | 8.14 | 29.78     | 22.2      | 2.98                        | 4         | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

|    | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in<br>NESW |
|----|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|----------------------|
| B2 | 20181121               | Cloudy  | Light            | Mid-Flood | В                        | 4.7          | 16:45 | 7.65         | 8.17 | 30.12     | 22.1      | 4.57                        | 49        | -                             | -                            | -                    |
| B2 | 20181121               | Cloudy  | Light            | Mid-Flood | В                        | 4.7          | 16:46 | 7.55         | 8.08 | 30.23     | 22.1      | 4.63                        | 32        | -                             | -                            | -                    |
| B2 | 20181121               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 16:46 | 7.54         | 8.18 | 29.98     | 22.2      | 2.08                        | 28        | -                             | -                            | -                    |
| B2 | 20181121               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 16:47 | 7.74         | 8.09 | 30.14     | 22.2      | 1.93                        | 10        | -                             | -                            | -                    |
| H1 | 20181121               | Cloudy  | Light            | Mid-Flood | В                        | 7.5          | 17:08 | 7.88         | 8.11 | 29.96     | 22.2      | 4.68                        | 9         | -                             | -                            | -                    |
| H1 | 20181121               | Cloudy  | Light            | Mid-Flood | В                        | 7.5          | 17:08 | 7.96         | 8.09 | 29.98     | 22.2      | 4.8                         | 9         | -                             | -                            | -                    |
| H1 | 20181121               | Cloudy  | Light            | Mid-Flood | М                        | 4.3          | 17:09 | 8.14         | 8.18 | 30.04     | 22.2      | 2.65                        | 8         | -                             | -                            | -                    |
| H1 | 20181121               | Cloudy  | Light            | Mid-Flood | М                        | 4.3          | 17:09 | 8.15         | 8.2  | 30.2      | 22.2      | 2.6                         | 9         | -                             | -                            | -                    |
| H1 | 20181121               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 17:10 | 8.19         | 8.17 | 30.08     | 22.1      | 1.69                        | 7         | -                             | -                            | -                    |
| H1 | 20181121               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 17:10 | 8.32         | 8.09 | 29.91     | 22.1      | 1.81                        | 7         | -                             | -                            | -                    |
| B3 | 20181121               | Cloudy  | Light            | Mid-Flood | В                        | 4.7          | 17:19 | 7.86         | 8.12 | 29.97     | 22.1      | 5.41                        | 7         | -                             | -                            | -                    |
| B3 | 20181121               | Cloudy  | Light            | Mid-Flood | В                        | 4.7          | 17:20 | 7.8          | 8.1  | 29.79     | 22.1      | 5.31                        | 8         | -                             | -                            | -                    |
| B3 | 20181121               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 17:20 | 7.66         | 8.19 | 30.15     | 22.2      | 2.38                        | 9         | -                             | -                            | -                    |
| B3 | 20181121               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 17:20 | 7.6          | 8.1  | 30.11     | 22.2      | 2.34                        | 8         | -                             | -                            | -                    |
| B4 | 20181121               | Cloudy  | Light            | Mid-Flood | В                        | 4.6          | 17:28 | 7.67         | 8.11 | 30.12     | 22.2      | 5.58                        | 8         | -                             | -                            | -                    |
| B4 | 20181121               | Cloudy  | Light            | Mid-Flood | В                        | 4.6          | 17:28 | 7.83         | 8.15 | 29.88     | 22.2      | 5.72                        | 8         | -                             | -                            | -                    |
| B4 | 20181121               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 17:29 | 7.78         | 8.15 | 30.13     | 22.1      | 2.32                        | 7         | -                             | -                            | -                    |
| B4 | 20181121               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 17:29 | 7.87         | 8.1  | 30.21     | 22.1      | 2.27                        | 8         | -                             | -                            | -                    |
| F1 | 20181121               | Cloudy  | Light            | Mid-Flood | В                        | 7.8          | 17:57 | 8.2          | 8.17 | 30.24     | 22.2      | 4.73                        | 8         | -                             | -                            | -                    |
| F1 | 20181121               | Cloudy  | Light            | Mid-Flood | В                        | 7.8          | 17:58 | 8.09         | 8.07 | 30.2      | 22.1      | 4.85                        | 8         | -                             | -                            | -                    |
| F1 | 20181121               | Cloudy  | Light            | Mid-Flood | Μ                        | 4.4          | 17:58 | 7.97         | 8.11 | 30.25     | 22.2      | 2.25                        | 6         | -                             | -                            | -                    |
| F1 | 20181121               | Cloudy  | Light            | Mid-Flood | Μ                        | 4.4          | 17:59 | 7.77         | 8.18 | 30.14     | 22.2      | 2.15                        | 5         | -                             | -                            | -                    |
| F1 | 20181121               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 17:59 | 7.95         | 8.09 | 29.83     | 22.2      | 1.16                        | 6         | -                             | -                            | -                    |
| F1 | 20181121               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 17:59 | 7.79         | 8.18 | 30.04     | 22.2      | 1.06                        | 5         | -                             | -                            | -                    |
| M1 | 20181121               | Cloudy  | Light            | Mid-Flood | В                        | 8            | 18:28 | 7.86         | 8.11 | 29.83     | 22.1      | 4.3                         | 11        | -                             | -                            | -                    |
| M1 | 20181121               | Cloudy  | Light            | Mid-Flood | В                        | 8            | 18:28 | 7.91         | 8.07 | 30.12     | 22.1      | 4.15                        | 10        | -                             | -                            | -                    |
| M1 | 20181121               | Cloudy  | Light            | Mid-Flood | М                        | 4.5          | 18:28 | 7.9          | 8.11 | 29.98     | 22.1      | 3.91                        | 9         | -                             | -                            | -                    |
| M1 | 20181121               | Cloudy  | Light            | Mid-Flood | М                        | 4.5          | 18:29 | 7.95         | 8.15 | 30.12     | 22.2      | 3.89                        | 9         | -                             | -                            | -                    |
| M1 | 20181121               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 18:29 | 7.77         | 8.15 | 30.13     | 22.1      | 1.05                        | 6         | -                             | -                            | -                    |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| Î  | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | pH   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| M1 | 20181121               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 18:30 | 7.76         | 8.16 | 30.18     | 22.2      | 1.21                        | 6         | -                             | -                            | -                 |
| C1 | 20181123               | Sunny   | Moderate         | Mid-Ebb   | В                        | 10.7         | 10:32 | 8.04         | 8.06 | 29.98     | 22.8      | 4.66                        | 9         | -                             | -                            | -                 |
| C1 | 20181123               | Sunny   | Moderate         | Mid-Ebb   | В                        | 10.7         | 10:32 | 8.29         | 7.93 | 30.03     | 22.8      | 4.69                        | 8         | -                             | -                            | -                 |
| C1 | 20181123               | Sunny   | Moderate         | Mid-Ebb   | М                        | 5.9          | 10:32 | 8.11         | 7.92 | 30.14     | 22.8      | 3.63                        | 9         | -                             | -                            | -                 |
| C1 | 20181123               | Sunny   | Moderate         | Mid-Ebb   | М                        | 5.9          | 10:33 | 8.2          | 8.07 | 30.1      | 22.8      | 3.6                         | 8         | -                             | -                            | -                 |
| C1 | 20181123               | Sunny   | Moderate         | Mid-Ebb   | S                        | 1            | 10:33 | 8.28         | 8.1  | 29.98     | 22.8      | 1.36                        | 8         | -                             | -                            | -                 |
| C1 | 20181123               | Sunny   | Moderate         | Mid-Ebb   | S                        | 1            | 10:33 | 8.08         | 8.08 | 30.11     | 22.8      | 1.44                        | 7         | -                             | -                            | -                 |
| B1 | 20181123               | Sunny   | Moderate         | Mid-Ebb   | В                        | 4.3          | 10:54 | 7.9          | 8.02 | 30.2      | 22.8      | 4.31                        | 7         | -                             | -                            | -                 |
| B1 | 20181123               | Sunny   | Moderate         | Mid-Ebb   | В                        | 4.3          | 10:54 | 7.99         | 7.96 | 30.18     | 22.8      | 4.26                        | 8         | -                             | -                            | -                 |
| B1 | 20181123               | Sunny   | Moderate         | Mid-Ebb   | S                        | 1            | 10:55 | 7.8          | 7.99 | 30.08     | 22.8      | 1.41                        | 6         | -                             | -                            | -                 |
| B1 | 20181123               | Sunny   | Moderate         | Mid-Ebb   | S                        | 1            | 10:55 | 7.73         | 8.03 | 30.18     | 22.8      | 1.36                        | 6         | -                             | -                            | -                 |
| B2 | 20181123               | Sunny   | Moderate         | Mid-Ebb   | В                        | 4.2          | 11:07 | 7.8          | 8.03 | 30.07     | 22.8      | 4.48                        | 13        | -                             | -                            | -                 |
| B2 | 20181123               | Sunny   | Moderate         | Mid-Ebb   | В                        | 4.2          | 11:08 | 7.66         | 7.99 | 29.95     | 22.8      | 4.48                        | 14        | -                             | -                            | -                 |
| B2 | 20181123               | Sunny   | Moderate         | Mid-Ebb   | S                        | 1            | 11:08 | 7.7          | 7.98 | 30.01     | 22.8      | 1.01                        | 10        | -                             | -                            | -                 |
| B2 | 20181123               | Sunny   | Moderate         | Mid-Ebb   | S                        | 1            | 11:08 | 7.64         | 7.96 | 30.03     | 22.8      | 0.91                        | 9         | -                             | -                            | -                 |
| H1 | 20181123               | Sunny   | Moderate         | Mid-Ebb   | В                        | 7.6          | 11:37 | 8.22         | 7.9  | 30.2      | 22.8      | 4.2                         | 10        | -                             | -                            | -                 |
| H1 | 20181123               | Sunny   | Moderate         | Mid-Ebb   | В                        | 7.6          | 11:37 | 8.18         | 7.98 | 30.06     | 22.8      | 4.11                        | 10        | -                             | -                            | -                 |
| H1 | 20181123               | Sunny   | Moderate         | Mid-Ebb   | М                        | 4.3          | 11:38 | 8.25         | 7.95 | 30.09     | 22.8      | 3.44                        | 8         | -                             | -                            | -                 |
| H1 | 20181123               | Sunny   | Moderate         | Mid-Ebb   | М                        | 4.3          | 11:38 | 8.26         | 8.06 | 30.2      | 22.8      | 3.38                        | 7         | -                             | -                            | -                 |
| H1 | 20181123               | Sunny   | Moderate         | Mid-Ebb   | S                        | 1            | 11:38 | 8.17         | 8.01 | 30.04     | 22.8      | 1.02                        | 7         | -                             | -                            | -                 |
| H1 | 20181123               | Sunny   | Moderate         | Mid-Ebb   | S                        | 1            | 11:39 | 8.38         | 7.97 | 30.18     | 22.8      | 1.01                        | 8         | -                             | -                            | -                 |
| B3 | 20181123               | Sunny   | Moderate         | Mid-Ebb   | В                        | 4.4          | 11:46 | 7.76         | 7.96 | 30.18     | 22.8      | 4.16                        | 12        | -                             | -                            | -                 |
| B3 | 20181123               | Sunny   | Moderate         | Mid-Ebb   | В                        | 4.4          | 11:47 | 7.6          | 8.04 | 30.07     | 22.9      | 4.14                        | 12        | -                             | -                            | -                 |
| B3 | 20181123               | Sunny   | Moderate         | Mid-Ebb   | S                        | 1            | 11:47 | 7.75         | 8    | 30.02     | 22.8      | 1.11                        | 9         | -                             | -                            | -                 |
| B3 | 20181123               | Sunny   | Moderate         | Mid-Ebb   | S                        | 1            | 11:47 | 7.83         | 7.93 | 30.19     | 22.8      | 1.08                        | 10        | -                             | -                            | -                 |
| B4 | 20181123               | Sunny   | Moderate         | Mid-Ebb   | В                        | 4.3          | 11:54 | 7.72         | 7.9  | 30.01     | 22.8      | 4.05                        | 12        | -                             | -                            | -                 |
| B4 | 20181123               | Sunny   | Moderate         | Mid-Ebb   | В                        | 4.3          | 11:54 | 7.73         | 8.06 | 29.98     | 22.8      | 4.11                        | 13        | -                             | -                            | -                 |
| B4 | 20181123               | Sunny   | Moderate         | Mid-Ebb   | S                        | 1            | 11:54 | 7.59         | 8.1  | 29.95     | 22.8      | 1.79                        | 8         | -                             | -                            | -                 |
| B4 | 20181123               | Sunny   | Moderate         | Mid-Ebb   | S                        | 1            | 11:55 | 7.64         | 8.04 | 29.95     | 22.8      | 1.84                        | 8         | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| Location | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal   | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----------|------------------------|---------|------------------|---------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| CR1      | 20181123               | Sunny   | Moderate         | Mid-Ebb | В                        | 7.7          | 12:11 | 8.09         | 7.91 | 30.13     | 22.8      | 4.8                         | 17        | -                             | -                            | -                 |
| CR1      | 20181123               | Sunny   | Moderate         | Mid-Ebb | В                        | 7.7          | 12:12 | 8.08         | 8.05 | 29.97     | 22.8      | 4.8                         | 17        | -                             | -                            | -                 |
| CR1      | 20181123               | Sunny   | Moderate         | Mid-Ebb | М                        | 4.4          | 12:12 | 7.87         | 8.1  | 30.18     | 22.8      | 3.17                        | 15        | -                             | -                            | -                 |
| CR1      | 20181123               | Sunny   | Moderate         | Mid-Ebb | М                        | 4.4          | 12:12 | 7.79         | 7.95 | 30.05     | 22.8      | 3.24                        | 16        | -                             | -                            | -                 |
| CR1      | 20181123               | Sunny   | Moderate         | Mid-Ebb | S                        | 1            | 12:13 | 7.78         | 8.07 | 30.18     | 22.8      | 1.89                        | 14        | -                             | -                            | -                 |
| CR1      | 20181123               | Sunny   | Moderate         | Mid-Ebb | S                        | 1            | 12:13 | 7.71         | 8.01 | 30.12     | 22.8      | 1.89                        | 14        | -                             | -                            | -                 |
| CR2      | 20181123               | Sunny   | Moderate         | Mid-Ebb | В                        | 7.9          | 12:33 | 7.95         | 8.01 | 30.03     | 22.8      | 4.36                        | 9         | -                             | -                            | -                 |
| CR2      | 20181123               | Sunny   | Moderate         | Mid-Ebb | В                        | 7.9          | 12:33 | 7.77         | 7.93 | 30.04     | 22.8      | 4.31                        | 10        | -                             | -                            | -                 |
| CR2      | 20181123               | Sunny   | Moderate         | Mid-Ebb | М                        | 4.5          | 12:33 | 7.57         | 7.96 | 30.15     | 22.8      | 3.83                        | 8         | -                             | -                            | -                 |
| CR2      | 20181123               | Sunny   | Moderate         | Mid-Ebb | М                        | 4.5          | 12:34 | 7.49         | 8.06 | 30.11     | 22.8      | 3.87                        | 9         | -                             | -                            | -                 |
| CR2      | 20181123               | Sunny   | Moderate         | Mid-Ebb | S                        | 1            | 12:34 | 7.66         | 7.96 | 30.05     | 22.8      | 1.02                        | 9         | -                             | -                            | -                 |
| CR2      | 20181123               | Sunny   | Moderate         | Mid-Ebb | S                        | 1            | 12:34 | 7.71         | 7.9  | 30.18     | 22.8      | 1.04                        | 8         | -                             | -                            | -                 |
| M1       | 20181123               | Sunny   | Moderate         | Mid-Ebb | В                        | 8.1          | 13:19 | 8.12         | 8.02 | 30.09     | 22.8      | 4.33                        | 10        | -                             | -                            | -                 |
| M1       | 20181123               | Sunny   | Moderate         | Mid-Ebb | В                        | 8.1          | 13:19 | 8.05         | 8.09 | 30.18     | 22.8      | 4.3                         | 11        | -                             | -                            | -                 |
| M1       | 20181123               | Sunny   | Moderate         | Mid-Ebb | М                        | 4.6          | 13:20 | 8.21         | 8.05 | 29.97     | 22.9      | 3.72                        | 10        | -                             | -                            | -                 |
| M1       | 20181123               | Sunny   | Moderate         | Mid-Ebb | М                        | 4.6          | 13:20 | 8.42         | 7.93 | 30.2      | 22.8      | 3.76                        | 11        | -                             | -                            | -                 |
| M1       | 20181123               | Sunny   | Moderate         | Mid-Ebb | S                        | 1            | 13:20 | 8.39         | 7.99 | 30.08     | 22.8      | 1.63                        | 8         | -                             | -                            | -                 |
| M1       | 20181123               | Sunny   | Moderate         | Mid-Ebb | S                        | 1            | 13:21 | 8.27         | 8.07 | 30.17     | 22.8      | 1.69                        | 8         | -                             | -                            | -                 |
| F1       | 20181123               | Sunny   | Moderate         | Mid-Ebb | В                        | 7.7          | 13:46 | 7.83         | 8.06 | 30.1      | 22.8      | 4.99                        | 9         | -                             | -                            | -                 |
| F1       | 20181123               | Sunny   | Moderate         | Mid-Ebb | В                        | 7.7          | 13:47 | 7.6          | 8.03 | 30.18     | 22.8      | 5.07                        | 10        | -                             | -                            | -                 |
| F1       | 20181123               | Sunny   | Moderate         | Mid-Ebb | М                        | 4.4          | 13:47 | 7.84         | 8.06 | 29.95     | 22.8      | 3.3                         | 9         | -                             | -                            | -                 |
| F1       | 20181123               | Sunny   | Moderate         | Mid-Ebb | М                        | 4.4          | 13:47 | 7.71         | 7.92 | 30.05     | 22.8      | 3.33                        | 9         | -                             | -                            | -                 |
| F1       | 20181123               | Sunny   | Moderate         | Mid-Ebb | S                        | 1            | 13:48 | 7.58         | 8.08 | 30.11     | 22.8      | 1.32                        | 8         | -                             | -                            | -                 |
| F1       | 20181123               | Sunny   | Moderate         | Mid-Ebb | S                        | 1            | 13:48 | 7.52         | 8.1  | 30.11     | 22.8      | 1.25                        | 9         | -                             | -                            | -                 |
| C2       | 20181123               | Sunny   | Moderate         | Mid-Ebb | В                        | 7.8          | 14:12 | 7.98         | 8.1  | 29.96     | 22.8      | 4.38                        | 8         | -                             | -                            | -                 |
| C2       | 20181123               | Sunny   | Moderate         | Mid-Ebb | В                        | 7.8          | 14:13 | 8.21         | 7.9  | 30.08     | 22.9      | 4.41                        | 8         | -                             | -                            | -                 |
| C2       | 20181123               | Sunny   | Moderate         | Mid-Ebb | М                        | 4.4          | 14:13 | 8.41         | 7.9  | 30.1      | 22.8      | 3.64                        | 7         | -                             | -                            | -                 |
| C2       | 20181123               | Sunny   | Moderate         | Mid-Ebb | М                        | 4.4          | 14:14 | 8.27         | 8.01 | 29.97     | 22.8      | 3.59                        | 6         | -                             | -                            | -                 |
| C2       | 20181123               | Sunny   | Moderate         | Mid-Ebb | S                        | 1            | 14:14 | 8.17         | 8.07 | 30.03     | 22.8      | 1.02                        | 7         | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| Î   | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | pH   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in<br>NESW |
|-----|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|----------------------|
| C2  | 20181123               | Sunny   | Moderate         | Mid-Ebb   | S                        | 1            | 14:14 | 8.39         | 8.09 | 30.02     | 22.8      | 0.94                        | 7         | -                             | -                            | -                    |
| C2  | 20181123               | Fine    | Moderate         | Mid-Flood | В                        | 9.5          | 16:19 | 8.21         | 7.91 | 30.1      | 22.8      | 4.73                        | 7         | -                             | -                            | -                    |
| C2  | 20181123               | Fine    | Moderate         | Mid-Flood | В                        | 9.5          | 16:19 | 8.09         | 7.94 | 30.07     | 22.8      | 4.81                        | 6         | -                             | -                            | -                    |
| C2  | 20181123               | Fine    | Moderate         | Mid-Flood | М                        | 5.3          | 16:20 | 8.33         | 7.91 | 29.95     | 22.8      | 3.25                        | 5         | -                             | -                            | -                    |
| C2  | 20181123               | Fine    | Moderate         | Mid-Flood | М                        | 5.3          | 16:20 | 8.2          | 8.06 | 30.02     | 22.8      | 3.15                        | 6         | -                             | -                            | -                    |
| C2  | 20181123               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 16:20 | 8.26         | 7.92 | 30.02     | 22.8      | 1.47                        | 4         | -                             | -                            | -                    |
| C2  | 20181123               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 16:21 | 8.03         | 8    | 30.16     | 22.8      | 1.45                        | 5         | -                             | -                            | -                    |
| CR1 | 20181123               | Fine    | Moderate         | Mid-Flood | В                        | 7.7          | 16:36 | 8.24         | 8.02 | 29.98     | 22.8      | 4.86                        | 8         | -                             | -                            | -                    |
| CR1 | 20181123               | Fine    | Moderate         | Mid-Flood | В                        | 7.7          | 16:36 | 8.23         | 8.02 | 30.16     | 22.8      | 4.87                        | 9         | -                             | -                            | -                    |
| CR1 | 20181123               | Fine    | Moderate         | Mid-Flood | М                        | 4.4          | 16:37 | 8.46         | 8.06 | 30.13     | 22.8      | 3.86                        | 8         | -                             | -                            | -                    |
| CR1 | 20181123               | Fine    | Moderate         | Mid-Flood | М                        | 4.4          | 16:37 | 8.66         | 7.97 | 30.16     | 22.8      | 3.86                        | 7         | -                             | -                            | -                    |
| CR1 | 20181123               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 16:38 | 8.47         | 7.92 | 30.06     | 22.8      | 1.47                        | 7         | -                             | -                            | -                    |
| CR1 | 20181123               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 16:38 | 8.72         | 8.03 | 29.97     | 22.8      | 1.39                        | 8         | -                             | -                            | -                    |
| CR2 | 20181123               | Fine    | Moderate         | Mid-Flood | В                        | 7.6          | 16:45 | 8.01         | 8.07 | 30.12     | 22.8      | 4.28                        | 10        | -                             | -                            | -                    |
| CR2 | 20181123               | Fine    | Moderate         | Mid-Flood | В                        | 7.6          | 16:46 | 7.83         | 8.08 | 30.05     | 22.8      | 4.29                        | 10        | -                             | -                            | -                    |
| CR2 | 20181123               | Fine    | Moderate         | Mid-Flood | М                        | 4.3          | 16:46 | 7.67         | 7.9  | 30.05     | 22.8      | 3.98                        | 9         | -                             | -                            | -                    |
| CR2 | 20181123               | Fine    | Moderate         | Mid-Flood | М                        | 4.3          | 16:46 | 7.61         | 8.04 | 30.11     | 22.8      | 4.05                        | 8         | -                             | -                            | -                    |
| CR2 | 20181123               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 16:47 | 7.57         | 8.04 | 30.14     | 22.8      | 1.16                        | 7         | -                             | -                            | -                    |
| CR2 | 20181123               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 16:47 | 7.5          | 7.98 | 30.01     | 22.8      | 1.11                        | 6         | -                             | -                            | -                    |
| C1  | 20181123               | Fine    | Moderate         | Mid-Flood | В                        | 11.4         | 17:13 | 8.16         | 8    | 30.18     | 22.8      | 4.37                        | 7         | -                             | -                            | -                    |
| C1  | 20181123               | Fine    | Moderate         | Mid-Flood | В                        | 11.4         | 17:13 | 8.2          | 7.96 | 30.03     | 22.8      | 4.41                        | 7         | -                             | -                            | -                    |
| C1  | 20181123               | Fine    | Moderate         | Mid-Flood | М                        | 6.2          | 17:13 | 8.2          | 7.94 | 29.99     | 22.8      | 3.75                        | 6         | -                             | -                            | -                    |
| C1  | 20181123               | Fine    | Moderate         | Mid-Flood | М                        | 6.2          | 17:14 | 8.11         | 8.01 | 30.13     | 22.8      | 3.75                        | 6         | -                             | -                            | -                    |
| C1  | 20181123               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 17:14 | 8.09         | 8.07 | 29.96     | 22.8      | 1.87                        | 4         | -                             | -                            | -                    |
| C1  | 20181123               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 17:15 | 7.93         | 7.98 | 30.12     | 22.8      | 1.88                        | 4         | -                             | -                            | -                    |
| B1  | 20181123               | Fine    | Moderate         | Mid-Flood | В                        | 4.8          | 17:36 | 8.25         | 7.98 | 30.18     | 22.8      | 4.07                        | 10        | -                             | -                            | -                    |
| B1  | 20181123               | Fine    | Moderate         | Mid-Flood | В                        | 4.8          | 17:36 | 8.14         | 8.04 | 30.08     | 22.8      | 4.1                         | 9         | -                             | -                            | -                    |
| B1  | 20181123               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 17:37 | 8.23         | 8.03 | 30.11     | 22.8      | 1.33                        | 10        | -                             | -                            | -                    |
| B1  | 20181123               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 17:37 | 8.45         | 7.95 | 30.17     | 22.8      | 1.38                        | 9         | -                             | -                            | -                    |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

|    | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| B2 | 20181123               | Fine    | Moderate         | Mid-Flood | В                        | 4.7          | 17:50 | 7.87         | 7.97 | 29.97     | 22.8      | 4                           | 7         | -                             | -                            | -                 |
| B2 | 20181123               | Fine    | Moderate         | Mid-Flood | В                        | 4.7          | 17:51 | 7.88         | 7.91 | 30.08     | 22.8      | 3.96                        | 7         | -                             | -                            | -                 |
| B2 | 20181123               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 17:51 | 7.64         | 8.09 | 30.14     | 22.8      | 1.17                        | 7         | -                             | -                            | -                 |
| B2 | 20181123               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 17:52 | 7.76         | 8    | 29.98     | 22.8      | 1.21                        | 6         | -                             | -                            | _                 |
| H1 | 20181123               | Fine    | Moderate         | Mid-Flood | В                        | 7.8          | 18:12 | 7.85         | 7.94 | 30.16     | 22.8      | 4.63                        | 7         | -                             | -                            | -                 |
| H1 | 20181123               | Fine    | Moderate         | Mid-Flood | В                        | 7.8          | 18:12 | 8.04         | 8.03 | 30.07     | 22.8      | 4.56                        | 6         | -                             | -                            | -                 |
| H1 | 20181123               | Fine    | Moderate         | Mid-Flood | М                        | 4.4          | 18:13 | 8.03         | 8.05 | 30        | 22.9      | 3.63                        | 6         | -                             | -                            | _                 |
| H1 | 20181123               | Fine    | Moderate         | Mid-Flood | М                        | 4.4          | 18:13 | 8.27         | 7.92 | 30.08     | 22.8      | 3.62                        | 5         | -                             | -                            | _                 |
| H1 | 20181123               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 18:14 | 8.26         | 7.94 | 30.17     | 22.8      | 1.76                        | 6         | -                             | -                            | _                 |
| H1 | 20181123               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 18:14 | 8.15         | 8.09 | 29.95     | 22.8      | 1.67                        | 5         | -                             | -                            | _                 |
| B3 | 20181123               | Fine    | Moderate         | Mid-Flood | В                        | 4.7          | 18:21 | 7.71         | 7.94 | 30.09     | 22.8      | 4.27                        | 8         | -                             | -                            | _                 |
| B3 | 20181123               | Fine    | Moderate         | Mid-Flood | В                        | 4.7          | 18:22 | 7.79         | 7.96 | 30.18     | 22.8      | 4.18                        | 8         | -                             | -                            | -                 |
| B3 | 20181123               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 18:22 | 7.94         | 8.01 | 30.19     | 22.8      | 1.88                        | 7         | -                             | -                            | _                 |
| B3 | 20181123               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 18:22 | 8.04         | 7.93 | 30.01     | 22.8      | 1.95                        | 8         | -                             | -                            | _                 |
| B4 | 20181123               | Fine    | Moderate         | Mid-Flood | В                        | 4.6          | 18:29 | 7.8          | 7.94 | 30.1      | 22.8      | 4.12                        | 7         | -                             | -                            | _                 |
| B4 | 20181123               | Fine    | Moderate         | Mid-Flood | В                        | 4.6          | 18:29 | 7.56         | 7.99 | 30.16     | 22.8      | 4.22                        | 8         | -                             | -                            | -                 |
| B4 | 20181123               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 18:30 | 7.45         | 8.03 | 29.98     | 22.8      | 1.9                         | 5         | -                             | -                            | -                 |
| B4 | 20181123               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 18:30 | 7.4          | 7.99 | 30.01     | 22.8      | 1.82                        | 4         | -                             | -                            | -                 |
| F1 | 20181123               | Fine    | Moderate         | Mid-Flood | В                        | 7.9          | 18:59 | 7.96         | 8.1  | 30.06     | 22.8      | 4.74                        | 7         | -                             | -                            | -                 |
| F1 | 20181123               | Fine    | Moderate         | Mid-Flood | В                        | 7.9          | 19:00 | 8.13         | 7.94 | 30.14     | 22.8      | 4.84                        | 6         | -                             | -                            | -                 |
| F1 | 20181123               | Fine    | Moderate         | Mid-Flood | М                        | 4.5          | 19:00 | 8.27         | 8.04 | 30.06     | 22.9      | 3.52                        | 6         | -                             | -                            | -                 |
| F1 | 20181123               | Fine    | Moderate         | Mid-Flood | М                        | 4.5          | 19:01 | 8.06         | 7.98 | 30.03     | 22.8      | 3.48                        | 5         | -                             | -                            | -                 |
| F1 | 20181123               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 19:01 | 8.11         | 8.09 | 30.08     | 22.8      | 1.29                        | 6         | -                             | -                            | -                 |
| F1 | 20181123               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 19:01 | 8.27         | 8.03 | 29.95     | 22.8      | 1.29                        | 5         | -                             | -                            | -                 |
| M1 | 20181123               | Fine    | Moderate         | Mid-Flood | В                        | 8            | 19:28 | 8.11         | 8.09 | 30.1      | 22.8      | 4.1                         | 9         | -                             | -                            | -                 |
| M1 | 20181123               | Fine    | Moderate         | Mid-Flood | В                        | 8            | 19:28 | 7.94         | 8.07 | 30.11     | 22.8      | 4.15                        | 9         | -                             | -                            | -                 |
| M1 | 20181123               | Fine    | Moderate         | Mid-Flood | М                        | 4.5          | 19:28 | 7.71         | 7.95 | 30.1      | 22.8      | 3.72                        | 8         | -                             | -                            | -                 |
| M1 | 20181123               | Fine    | Moderate         | Mid-Flood | М                        | 4.5          | 19:29 | 7.51         | 7.94 | 30.02     | 22.8      | 3.79                        | 9         | -                             | -                            | -                 |
| M1 | 20181123               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 19:29 | 7.29         | 7.96 | 30.01     | 22.9      | 1.46                        | 8         | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| Location | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | pH   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----------|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| M1       | 20181123               | Fine    | Moderate         | Mid-Flood | S                        | 1            | 19:30 | 7.28         | 7.97 | 29.96     | 22.8      | 1.51                        | 8         | -                             | -                            | -                 |
| C2       | 20181126               | Cloudy  | Light            | Mid-Flood | В                        | 9.4          | 7:19  | 7.83         | 8    | 30.25     | 23        | 4.59                        | 14        | -                             | -                            | -                 |
| C2       | 20181126               | Cloudy  | Light            | Mid-Flood | В                        | 9.4          | 7:19  | 7.9          | 8.08 | 30.53     | 23        | 4.69                        | 15        | -                             | -                            | -                 |
| C2       | 20181126               | Cloudy  | Light            | Mid-Flood | М                        | 5.2          | 7:19  | 7.85         | 8.07 | 30.9      | 23        | 3.33                        | 13        | -                             | -                            | -                 |
| C2       | 20181126               | Cloudy  | Light            | Mid-Flood | М                        | 5.2          | 7:20  | 7.92         | 8.06 | 29.62     | 23        | 3.3                         | 14        | -                             | -                            | -                 |
| C2       | 20181126               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 7:20  | 7.95         | 8.06 | 30.59     | 23        | 2.65                        | 11        | -                             | -                            | -                 |
| C2       | 20181126               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 7:20  | 8.02         | 8.03 | 29.56     | 23.1      | 2.64                        | 12        | -                             | -                            | -                 |
| CR1      | 20181126               | Cloudy  | Light            | Mid-Flood | В                        | 7.6          | 7:37  | 7.53         | 8.04 | 29.88     | 23        | 4.37                        | 16        | -                             | -                            | -                 |
| CR1      | 20181126               | Cloudy  | Light            | Mid-Flood | В                        | 7.6          | 7:37  | 7.36         | 8.08 | 30.25     | 23        | 4.44                        | 16        | -                             | -                            | -                 |
| CR1      | 20181126               | Cloudy  | Light            | Mid-Flood | М                        | 4.3          | 7:38  | 7.39         | 8.06 | 30.42     | 23        | 3.51                        | 14        | -                             | -                            | -                 |
| CR1      | 20181126               | Cloudy  | Light            | Mid-Flood | М                        | 4.3          | 7:38  | 7.33         | 8.06 | 29.53     | 23        | 3.5                         | 15        | -                             | -                            | -                 |
| CR1      | 20181126               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 7:38  | 7.4          | 8.07 | 30.35     | 23        | 2.78                        | 13        | -                             | -                            | -                 |
| CR1      | 20181126               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 7:39  | 7.34         | 8.08 | 30.79     | 23        | 2.74                        | 14        | -                             | -                            | -                 |
| CR2      | 20181126               | Cloudy  | Light            | Mid-Flood | В                        | 7.8          | 7:50  | 7.88         | 8.03 | 29.61     | 23        | 4.54                        | 12        | -                             | -                            | -                 |
| CR2      | 20181126               | Cloudy  | Light            | Mid-Flood | В                        | 7.8          | 7:50  | 7.71         | 8.08 | 30.96     | 23        | 4.46                        | 12        | -                             | -                            | -                 |
| CR2      | 20181126               | Cloudy  | Light            | Mid-Flood | М                        | 4.4          | 7:51  | 7.77         | 8.02 | 30.2      | 23        | 3.54                        | 11        | -                             | -                            | -                 |
| CR2      | 20181126               | Cloudy  | Light            | Mid-Flood | М                        | 4.4          | 7:51  | 7.65         | 8.1  | 29.63     | 23        | 3.5                         | 11        | -                             | -                            | -                 |
| CR2      | 20181126               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 7:52  | 7.58         | 8    | 29.56     | 23        | 2.26                        | 11        | -                             | -                            | -                 |
| CR2      | 20181126               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 7:52  | 7.44         | 8.09 | 29.8      | 23.1      | 2.24                        | 10        | -                             | -                            | -                 |
| C1       | 20181126               | Cloudy  | Light            | Mid-Flood | В                        | 11.5         | 8:16  | 7.86         | 8.04 | 30.31     | 23        | 4.92                        | 13        | -                             | -                            | -                 |
| C1       | 20181126               | Cloudy  | Light            | Mid-Flood | В                        | 11.5         | 8:17  | 7.88         | 8.04 | 30.03     | 23        | 5.01                        | 13        | -                             | -                            | -                 |
| C1       | 20181126               | Cloudy  | Light            | Mid-Flood | М                        | 6.3          | 8:17  | 7.69         | 8.07 | 30.12     | 23        | 3.31                        | 12        | -                             | -                            | -                 |
| C1       | 20181126               | Cloudy  | Light            | Mid-Flood | М                        | 6.3          | 8:18  | 7.58         | 8.02 | 29.76     | 23        | 3.26                        | 13        | -                             | -                            | -                 |
| C1       | 20181126               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 8:18  | 7.5          | 8.03 | 29.74     | 23        | 2.22                        | 12        | -                             | -                            | -                 |
| C1       | 20181126               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 8:18  | 7.56         | 8.05 | 29.51     | 23        | 2.31                        | 12        | -                             | -                            | -                 |
| B1       | 20181126               | Cloudy  | Light            | Mid-Flood | В                        | 4.7          | 8:41  | 7.87         | 8.01 | 29.62     | 23        | 4.1                         | 16        | -                             | -                            | -                 |
| B1       | 20181126               | Cloudy  | Light            | Mid-Flood | В                        | 4.7          | 8:41  | 8.02         | 8.06 | 30.1      | 23        | 4.07                        | 15        | -                             | -                            | -                 |
| B1       | 20181126               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 8:41  | 7.95         | 8.03 | 29.59     | 23        | 2.92                        | 12        | -                             | -                            | -                 |
| B1       | 20181126               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 8:42  | 7.78         | 8.09 | 29.52     | 23        | 2.82                        | 12        | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| Location | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in<br>NESW |
|----------|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|----------------------|
| B2       | 20181126               | Cloudy  | Light            | Mid-Flood | В                        | 4.6          | 9:00  | 7.89         | 8    | 30.51     | 23        | 4.67                        | 14        | -                             | -                            | -                    |
| B2       | 20181126               | Cloudy  | Light            | Mid-Flood | В                        | 4.6          | 9:01  | 8.01         | 8.04 | 29.91     | 23        | 4.61                        | 15        | -                             | -                            | -                    |
| B2       | 20181126               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 9:01  | 8.17         | 8.1  | 29.87     | 23.1      | 2.71                        | 14        | -                             | -                            | -                    |
| B2       | 20181126               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 9:01  | 8.32         | 8.1  | 30.58     | 23        | 2.69                        | 15        | -                             | -                            | -                    |
| H1       | 20181126               | Cloudy  | Light            | Mid-Flood | В                        | 7.7          | 9:24  | 7.58         | 8.06 | 29.51     | 23        | 4.43                        | 11        | -                             | -                            | -                    |
| H1       | 20181126               | Cloudy  | Light            | Mid-Flood | В                        | 7.7          | 9:24  | 7.38         | 8.1  | 30.49     | 23.1      | 4.39                        | 11        | -                             | -                            | -                    |
| H1       | 20181126               | Cloudy  | Light            | Mid-Flood | М                        | 4.4          | 9:25  | 7.48         | 8.08 | 30.78     | 23        | 3.37                        | 11        | -                             | -                            | -                    |
| H1       | 20181126               | Cloudy  | Light            | Mid-Flood | М                        | 4.4          | 9:25  | 7.65         | 8    | 29.92     | 23        | 3.47                        | 11        | -                             | -                            | -                    |
| H1       | 20181126               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 9:25  | 7.57         | 8    | 30.4      | 23        | 2.87                        | 11        | -                             | -                            | -                    |
| H1       | 20181126               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 9:26  | 7.75         | 8.09 | 29.89     | 23        | 2.91                        | 10        | -                             | -                            | -                    |
| B3       | 20181126               | Cloudy  | Light            | Mid-Flood | В                        | 4.6          | 9:37  | 7.86         | 8.07 | 30.59     | 23        | 4.71                        | 14        | -                             | -                            | -                    |
| B3       | 20181126               | Cloudy  | Light            | Mid-Flood | В                        | 4.6          | 9:37  | 8            | 8.02 | 29.66     | 23        | 4.65                        | 15        | -                             | -                            | -                    |
| B3       | 20181126               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 9:38  | 7.82         | 8    | 30.97     | 23        | 2.95                        | 13        | -                             | -                            | -                    |
| B3       | 20181126               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 9:38  | 8.01         | 8.1  | 30.4      | 23        | 2.94                        | 13        | -                             | -                            | -                    |
| B4       | 20181126               | Cloudy  | Light            | Mid-Flood | В                        | 4.5          | 9:47  | 7.83         | 8.01 | 30.45     | 23        | 4.22                        | 13        | -                             | -                            | -                    |
| B4       | 20181126               | Cloudy  | Light            | Mid-Flood | В                        | 4.5          | 9:47  | 7.65         | 8.06 | 30.27     | 23        | 4.14                        | 14        | -                             | -                            | -                    |
| B4       | 20181126               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 9:47  | 7.5          | 8.05 | 30.41     | 23        | 2.25                        | 10        | -                             | -                            | -                    |
| B4       | 20181126               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 9:48  | 7.68         | 8.04 | 30.16     | 23        | 2.15                        | 10        | -                             | -                            | -                    |
| F1       | 20181126               | Cloudy  | Light            | Mid-Flood | В                        | 7.8          | 10:15 | 7.95         | 8.01 | 30.68     | 23        | 4.26                        | 13        | -                             | -                            | -                    |
| F1       | 20181126               | Cloudy  | Light            | Mid-Flood | В                        | 7.8          | 10:16 | 8.09         | 8.09 | 29.95     | 23        | 4.26                        | 14        | -                             | -                            | -                    |
| F1       | 20181126               | Cloudy  | Light            | Mid-Flood | М                        | 4.4          | 10:16 | 7.94         | 8.01 | 30.16     | 23        | 3.46                        | 12        | -                             | -                            | -                    |
| F1       | 20181126               | Cloudy  | Light            | Mid-Flood | М                        | 4.4          | 10:16 | 7.94         | 8.01 | 30.64     | 23        | 3.43                        | 13        | -                             | -                            | -                    |
| F1       | 20181126               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 10:17 | 8.03         | 8.09 | 30.19     | 23        | 2.41                        | 12        | -                             | -                            | -                    |
| F1       | 20181126               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 10:17 | 7.99         | 8.06 | 30.48     | 23        | 2.45                        | 12        | -                             | -                            | -                    |
| M1       | 20181126               | Cloudy  | Light            | Mid-Flood | В                        | 8.1          | 10:45 | 7.55         | 8.09 | 30.24     | 23        | 4.35                        | 13        | -                             | -                            | -                    |
| M1       | 20181126               | Cloudy  | Light            | Mid-Flood | В                        | 8.1          | 10:46 | 7.35         | 8    | 30.92     | 23        | 4.36                        | 14        | -                             | -                            | -                    |
| M1       | 20181126               | Cloudy  | Light            | Mid-Flood | М                        | 4.6          | 10:46 | 7.42         | 8.07 | 30.37     | 23        | 3.23                        | 11        | -                             | -                            | -                    |
| M1       | 20181126               | Cloudy  | Light            | Mid-Flood | М                        | 4.6          | 10:47 | 7.45         | 8.03 | 29.99     | 23        | 3.18                        | 12        | -                             | -                            | -                    |
| M1       | 20181126               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 10:47 | 7.38         | 8.07 | 30.7      | 23        | 2.14                        | 11        | -                             | -                            | -                    |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| Location | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----------|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| M1       | 20181126               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 10:47 | 7.4          | 8.02 | 30.08     | 23        | 2.16                        | 11        | -                             | -                            | -                 |
| C1       | 20181126               | Sunny   | Light            | Mid-Ebb   | В                        | 10.4         | 12:43 | 7.68         | 8.03 | 30.71     | 23        | 4.53                        | 10        | -                             | -                            | -                 |
| C1       | 20181126               | Sunny   | Light            | Mid-Ebb   | В                        | 10.4         | 12:43 | 7.59         | 8.05 | 30.68     | 23.1      | 4.46                        | 12        | -                             | -                            | -                 |
| C1       | 20181126               | Sunny   | Light            | Mid-Ebb   | М                        | 5.7          | 12:44 | 7.69         | 8.1  | 30.01     | 23        | 3.29                        | 11        | -                             | -                            | -                 |
| C1       | 20181126               | Sunny   | Light            | Mid-Ebb   | М                        | 5.7          | 12:44 | 7.73         | 8.1  | 29.81     | 23        | 3.3                         | 11        | -                             | -                            | -                 |
| C1       | 20181126               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 12:44 | 7.74         | 8.05 | 30.98     | 23        | 2.12                        | 11        | -                             | -                            | -                 |
| C1       | 20181126               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 12:45 | 7.92         | 8.03 | 30.82     | 23        | 2.06                        | 11        | -                             | -                            | -                 |
| B1       | 20181126               | Sunny   | Light            | Mid-Ebb   | В                        | 4.4          | 13:06 | 7.89         | 8.04 | 30.13     | 23.1      | 4.39                        | 14        | -                             | -                            | -                 |
| B1       | 20181126               | Sunny   | Light            | Mid-Ebb   | В                        | 4.4          | 13:06 | 7.94         | 8    | 30.54     | 23        | 4.29                        | 14        | -                             | -                            | -                 |
| B1       | 20181126               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 13:07 | 8.05         | 8    | 30.38     | 23.1      | 2.92                        | 15        | -                             | -                            | -                 |
| B1       | 20181126               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 13:07 | 8.04         | 8.05 | 30.99     | 23        | 2.96                        | 14        | -                             | -                            | -                 |
| B2       | 20181126               | Sunny   | Light            | Mid-Ebb   | В                        | 4.3          | 13:24 | 7.79         | 8.09 | 29.58     | 23        | 4.66                        | 15        | -                             | -                            | -                 |
| B2       | 20181126               | Sunny   | Light            | Mid-Ebb   | В                        | 4.3          | 13:24 | 7.73         | 8.05 | 29.71     | 23        | 4.76                        | 15        | -                             | -                            | -                 |
| B2       | 20181126               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 13:24 | 7.58         | 8.09 | 29.63     | 23        | 2.15                        | 11        | -                             | -                            | -                 |
| B2       | 20181126               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 13:25 | 7.41         | 8.02 | 30.41     | 23        | 2.16                        | 12        | -                             | -                            | -                 |
| H1       | 20181126               | Sunny   | Light            | Mid-Ebb   | В                        | 7.5          | 13:46 | 7.65         | 8.02 | 29.84     | 23        | 4.8                         | 16        | -                             | -                            | -                 |
| H1       | 20181126               | Sunny   | Light            | Mid-Ebb   | В                        | 7.5          | 13:46 | 7.71         | 8    | 30.06     | 23        | 4.9                         | 16        | -                             | -                            | -                 |
| H1       | 20181126               | Sunny   | Light            | Mid-Ebb   | М                        | 4.3          | 13:47 | 7.65         | 8.08 | 30.81     | 23        | 3.04                        | 15        | -                             | -                            | -                 |
| H1       | 20181126               | Sunny   | Light            | Mid-Ebb   | М                        | 4.3          | 13:47 | 7.51         | 8.07 | 29.98     | 23        | 3.12                        | 16        | -                             | -                            | -                 |
| H1       | 20181126               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 13:48 | 7.61         | 8.08 | 30.83     | 23        | 2.78                        | 13        | -                             | -                            | -                 |
| H1       | 20181126               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 13:48 | 7.59         | 8.07 | 30.4      | 23        | 2.69                        | 12        | -                             | -                            | -                 |
| CR2      | 20181126               | Sunny   | Light            | Mid-Ebb   | В                        | 7.8          | 14:00 | 7.98         | 8.06 | 30.08     | 23        | 4.47                        | 11        | -                             | -                            | -                 |
| CR2      | 20181126               | Sunny   | Light            | Mid-Ebb   | В                        | 7.8          | 14:01 | 8.09         | 8.04 | 30.79     | 23        | 4.55                        | 12        | -                             | -                            | -                 |
| CR2      | 20181126               | Sunny   | Light            | Mid-Ebb   | М                        | 4.4          | 14:01 | 8.13         | 8.07 | 30.24     | 23        | 3.69                        | 11        | -                             | -                            | -                 |
| CR2      | 20181126               | Sunny   | Light            | Mid-Ebb   | М                        | 4.4          | 14:02 | 7.97         | 8.08 | 30.44     | 23        | 3.69                        | 11        | -                             | -                            | -                 |
| CR2      | 20181126               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 14:02 | 7.9          | 8.06 | 30.5      | 23        | 2.14                        | 10        | -                             | -                            | -                 |
| CR2      | 20181126               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 14:02 | 7.92         | 8.09 | 30.3      | 23        | 2.14                        | 10        | -                             | -                            | -                 |
| CR1      | 20181126               | Sunny   | Light            | Mid-Ebb   | В                        | 7.6          | 14:13 | 7.73         | 8.07 | 30.51     | 23        | 4.94                        | 11        | -                             | -                            | -                 |
| CR1      | 20181126               | Sunny   | Light            | Mid-Ebb   | В                        | 7.6          | 14:13 | 7.83         | 8.09 | 30.38     | 23        | 4.99                        | 11        | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| Location | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal   | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----------|------------------------|---------|------------------|---------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| CR1      | 20181126               | Sunny   | Light            | Mid-Ebb | М                        | 4.3          | 14:13 | 7.8          | 8.07 | 30        | 23        | 3.03                        | 10        | -                             | -                            | -                 |
| CR1      | 20181126               | Sunny   | Light            | Mid-Ebb | М                        | 4.3          | 14:14 | 7.97         | 8.03 | 29.67     | 23        | 3.11                        | 11        | -                             | -                            | -                 |
| CR1      | 20181126               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 14:14 | 7.79         | 8.02 | 30.85     | 23        | 2.67                        | 11        | -                             | -                            | -                 |
| CR1      | 20181126               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 14:15 | 7.8          | 8.05 | 29.97     | 23        | 2.69                        | 10        | -                             | -                            | -                 |
| B3       | 20181126               | Sunny   | Light            | Mid-Ebb | В                        | 4.5          | 14:34 | 7.59         | 8.02 | 30.23     | 23        | 4.52                        | 13        | -                             | -                            | -                 |
| B3       | 20181126               | Sunny   | Light            | Mid-Ebb | В                        | 4.5          | 14:34 | 7.7          | 8    | 30.47     | 23        | 4.42                        | 13        | -                             | -                            | -                 |
| B3       | 20181126               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 14:35 | 7.69         | 8.02 | 30.13     | 23        | 2.68                        | 11        | -                             | -                            | -                 |
| B3       | 20181126               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 14:35 | 7.54         | 8.02 | 29.58     | 23        | 2.75                        | 12        | -                             | -                            | -                 |
| B4       | 20181126               | Sunny   | Light            | Mid-Ebb | В                        | 4.4          | 14:44 | 7.62         | 8.1  | 29.85     | 23        | 4.35                        | 15        | -                             | -                            | -                 |
| B4       | 20181126               | Sunny   | Light            | Mid-Ebb | В                        | 4.4          | 14:44 | 7.48         | 8.02 | 29.58     | 23        | 4.34                        | 14        | -                             | -                            | -                 |
| B4       | 20181126               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 14:44 | 7.4          | 8.02 | 30.21     | 23        | 2.09                        | 12        | -                             | -                            | -                 |
| B4       | 20181126               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 14:45 | 7.23         | 8.03 | 30.5      | 23        | 2.18                        | 12        | -                             | -                            | -                 |
| C2       | 20181126               | Sunny   | Light            | Mid-Ebb | В                        | 7.9          | 15:00 | 7.76         | 8.1  | 29.99     | 23        | 4.45                        | 12        | -                             | -                            | -                 |
| C2       | 20181126               | Sunny   | Light            | Mid-Ebb | В                        | 7.9          | 15:00 | 7.88         | 8.01 | 30.12     | 23        | 4.52                        | 12        | -                             | -                            | -                 |
| C2       | 20181126               | Sunny   | Light            | Mid-Ebb | М                        | 4.5          | 15:01 | 7.93         | 8    | 29.55     | 23        | 3.79                        | 12        | -                             | -                            | -                 |
| C2       | 20181126               | Sunny   | Light            | Mid-Ebb | М                        | 4.5          | 15:01 | 8.01         | 8.08 | 30.38     | 23        | 3.72                        | 11        | -                             | -                            | -                 |
| C2       | 20181126               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 15:02 | 8            | 8.09 | 29.5      | 23        | 2.87                        | 11        | -                             | -                            | -                 |
| C2       | 20181126               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 15:02 | 7.83         | 8.05 | 29.67     | 23        | 2.8                         | 12        | -                             | -                            | -                 |
| F1       | 20181126               | Sunny   | Light            | Mid-Ebb | В                        | 7.6          | 15:17 | 7.9          | 8.05 | 30.63     | 23        | 4.6                         | 14        | -                             | -                            | -                 |
| F1       | 20181126               | Sunny   | Light            | Mid-Ebb | В                        | 7.6          | 15:18 | 8            | 8.03 | 29.76     | 23.1      | 4.57                        | 13        | -                             | -                            | -                 |
| F1       | 20181126               | Sunny   | Light            | Mid-Ebb | М                        | 4.3          | 15:18 | 7.8          | 8.01 | 29.65     | 23        | 3.63                        | 11        | -                             | -                            | -                 |
| F1       | 20181126               | Sunny   | Light            | Mid-Ebb | М                        | 4.3          | 15:19 | 7.96         | 8.1  | 30.46     | 23        | 3.73                        | 12        | -                             | -                            | -                 |
| F1       | 20181126               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 15:19 | 8.05         | 8.09 | 29.63     | 23        | 2.88                        | 10        | -                             | -                            | -                 |
| F1       | 20181126               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 15:19 | 8.17         | 8.04 | 30.8      | 23        | 2.96                        | 11        | -                             | -                            | -                 |
| M1       | 20181126               | Sunny   | Light            | Mid-Ebb | В                        | 7.8          | 15:48 | 7.64         | 8.09 | 30.52     | 23        | 4.43                        | 14        | -                             | -                            | -                 |
| M1       | 20181126               | Sunny   | Light            | Mid-Ebb | В                        | 7.8          | 15:48 | 7.51         | 8.01 | 30.5      | 23        | 4.33                        | 14        | -                             | -                            | -                 |
| M1       | 20181126               | Sunny   | Light            | Mid-Ebb | М                        | 4.4          | 15:48 | 7.34         | 8    | 30.54     | 23        | 3.01                        | 12        | -                             | -                            | -                 |
| M1       | 20181126               | Sunny   | Light            | Mid-Ebb | М                        | 4.4          | 15:49 | 7.47         | 8.06 | 29.68     | 23        | 2.91                        | 13        | -                             | -                            | -                 |
| M1       | 20181126               | Sunny   | Light            | Mid-Ebb | S                        | 1            | 15:49 | 7.67         | 8.04 | 29.93     | 23        | 2.08                        | 12        | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| Location | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----------|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| M1       | 20181126               | Sunny   | Light            | Mid-Ebb   | S                        | 1            | 15:50 | 7.67         | 8.01 | 30.57     | 23        | 2.03                        | 10        | -                             | -                            | -                 |
| C2       | 20181128               | Cloudy  | Light            | Mid-Flood | В                        | 9.4          | 9:34  | 7.92         | 8.08 | 30.24     | 23.2      | 4.17                        | 9         | -                             | -                            | -                 |
| C2       | 20181128               | Cloudy  | Light            | Mid-Flood | В                        | 9.4          | 9:34  | 7.93         | 8.1  | 30.07     | 23.2      | 4.25                        | 8         | -                             | -                            | -                 |
| C2       | 20181128               | Cloudy  | Light            | Mid-Flood | М                        | 5.2          | 9:34  | 7.89         | 8.04 | 30.77     | 23.3      | 3.14                        | 8         | -                             | -                            | -                 |
| C2       | 20181128               | Cloudy  | Light            | Mid-Flood | М                        | 5.2          | 9:35  | 7.86         | 8.13 | 30.18     | 23.2      | 3.25                        | 8         | -                             | -                            | -                 |
| C2       | 20181128               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 9:35  | 7.92         | 8.12 | 30.7      | 23.2      | 2.63                        | 6         | -                             | -                            | -                 |
| C2       | 20181128               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 9:35  | 7.98         | 8.08 | 30.99     | 23.2      | 2.6                         | 6         | -                             | -                            | -                 |
| CR1      | 20181128               | Cloudy  | Light            | Mid-Flood | В                        | 7.8          | 9:52  | 8.25         | 8.13 | 30.28     | 23.2      | 4.25                        | 9         | -                             | -                            | -                 |
| CR1      | 20181128               | Cloudy  | Light            | Mid-Flood | В                        | 7.8          | 9:52  | 8.34         | 8.06 | 30.18     | 23.2      | 4.39                        | 10        | -                             | -                            | -                 |
| CR1      | 20181128               | Cloudy  | Light            | Mid-Flood | М                        | 4.4          | 9:53  | 8.26         | 8.07 | 30.38     | 23.3      | 3.91                        | 9         | -                             | -                            | -                 |
| CR1      | 20181128               | Cloudy  | Light            | Mid-Flood | М                        | 4.4          | 9:53  | 8.34         | 8.03 | 30.26     | 23.2      | 3.84                        | 8         | -                             | -                            | -                 |
| CR1      | 20181128               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 9:53  | 8.4          | 8.03 | 30.64     | 23.2      | 2.01                        | 8         | -                             | -                            | -                 |
| CR1      | 20181128               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 9:54  | 8.4          | 8.02 | 30.29     | 23.2      | 2.15                        | 7         | -                             | -                            | -                 |
| CR2      | 20181128               | Cloudy  | Light            | Mid-Flood | В                        | 7.7          | 10:03 | 8.29         | 8.13 | 30.18     | 23.2      | 4.3                         | 10        | -                             | -                            | -                 |
| CR2      | 20181128               | Cloudy  | Light            | Mid-Flood | В                        | 7.7          | 10:03 | 8.31         | 8.06 | 30.09     | 23.3      | 4.43                        | 10        | -                             | -                            | -                 |
| CR2      | 20181128               | Cloudy  | Light            | Mid-Flood | М                        | 4.4          | 10:04 | 8.21         | 8.15 | 30.7      | 23.2      | 3.1                         | 8         | -                             | -                            | -                 |
| CR2      | 20181128               | Cloudy  | Light            | Mid-Flood | М                        | 4.4          | 10:04 | 8.11         | 8.08 | 30.3      | 23.2      | 3.01                        | 8         | -                             | -                            | -                 |
| CR2      | 20181128               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 10:05 | 8.2          | 8.1  | 30.24     | 23.2      | 2.93                        | 7         | -                             | -                            | -                 |
| CR2      | 20181128               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 10:05 | 8.18         | 8.02 | 30.14     | 23.2      | 2.98                        | 7         | -                             | -                            | -                 |
| C1       | 20181128               | Cloudy  | Light            | Mid-Flood | В                        | 11.3         | 10:35 | 7.96         | 8.11 | 30.07     | 23.2      | 4.95                        | 10        | -                             | -                            | -                 |
| C1       | 20181128               | Cloudy  | Light            | Mid-Flood | В                        | 11.3         | 10:36 | 7.95         | 8    | 30        | 23.2      | 4.96                        | 11        | -                             | -                            | -                 |
| C1       | 20181128               | Cloudy  | Light            | Mid-Flood | М                        | 6.2          | 10:36 | 7.89         | 8.1  | 30.39     | 23.3      | 3.61                        | 8         | -                             | -                            | -                 |
| C1       | 20181128               | Cloudy  | Light            | Mid-Flood | М                        | 6.2          | 10:37 | 7.83         | 8.1  | 30.09     | 23.2      | 3.76                        | 8         | -                             | -                            | -                 |
| C1       | 20181128               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 10:37 | 7.9          | 8.15 | 30.46     | 23.3      | 2.26                        | 6         | -                             | -                            | -                 |
| C1       | 20181128               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 10:37 | 7.82         | 8.03 | 30.01     | 23.2      | 2.24                        | 6         | -                             | -                            | -                 |
| B1       | 20181128               | Cloudy  | Light            | Mid-Flood | В                        | 4.7          | 11:01 | 8.08         | 8.09 | 30.07     | 23.3      | 4.1                         | 16        | -                             | -                            | -                 |
| B1       | 20181128               | Cloudy  | Light            | Mid-Flood | В                        | 4.7          | 11:01 | 8.03         | 8.1  | 30.15     | 23.2      | 4.02                        | 16        | -                             | -                            | -                 |
| B1       | 20181128               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 11:01 | 8.08         | 8.05 | 30.47     | 23.2      | 2.59                        | 9         | -                             | -                            | -                 |
| B1       | 20181128               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 11:02 | 8.13         | 8.05 | 30.71     | 23.2      | 2.62                        | 18        | -                             | -                            | _                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| Location | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | pH   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----------|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| B2       | 20181128               | Cloudy  | Light            | Mid-Flood | В                        | 4.6          | 11:14 | 8.29         | 8.08 | 30.46     | 23.2      | 4.61                        | 7         | -                             | -                            | -                 |
| B2       | 20181128               | Cloudy  | Light            | Mid-Flood | В                        | 4.6          | 11:15 | 8.24         | 8.02 | 30.48     | 23.2      | 4.54                        | 7         | -                             | -                            | -                 |
| B2       | 20181128               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 11:15 | 8.33         | 8.13 | 31        | 23.3      | 2.46                        | 15        | -                             | -                            | -                 |
| B2       | 20181128               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 11:15 | 8.37         | 8.07 | 30.38     | 23.2      | 2.55                        | 7         | -                             | -                            | -                 |
| H1       | 20181128               | Cloudy  | Light            | Mid-Flood | В                        | 7.7          | 11:36 | 8.06         | 8.07 | 30.16     | 23.2      | 4.68                        | 9         | -                             | -                            | -                 |
| H1       | 20181128               | Cloudy  | Light            | Mid-Flood | В                        | 7.7          | 11:36 | 8.03         | 8.1  | 30.24     | 23.2      | 4.78                        | 9         | -                             | -                            | -                 |
| H1       | 20181128               | Cloudy  | Light            | Mid-Flood | М                        | 4.4          | 11:37 | 8.11         | 8.05 | 30.29     | 23.2      | 3.19                        | 8         | -                             | -                            | -                 |
| H1       | 20181128               | Cloudy  | Light            | Mid-Flood | М                        | 4.4          | 11:37 | 8.07         | 8.05 | 30.9      | 23.2      | 3.13                        | 8         | -                             | -                            | -                 |
| H1       | 20181128               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 11:37 | 8.08         | 8.1  | 30.55     | 23.2      | 2.45                        | 7         | -                             | -                            | -                 |
| H1       | 20181128               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 11:38 | 8.05         | 8.13 | 30.62     | 23.2      | 2.38                        | 7         | -                             | -                            | -                 |
| B3       | 20181128               | Cloudy  | Light            | Mid-Flood | В                        | 4.8          | 11:44 | 7.87         | 8.13 | 30.81     | 23.2      | 4.34                        | 7         | -                             | -                            | -                 |
| B3       | 20181128               | Cloudy  | Light            | Mid-Flood | В                        | 4.8          | 11:44 | 7.82         | 8.14 | 30.53     | 23.2      | 4.26                        | 6         | -                             | -                            | -                 |
| B3       | 20181128               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 11:45 | 7.82         | 8.1  | 30.95     | 23.2      | 2.34                        | 7         | -                             | -                            | -                 |
| B3       | 20181128               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 11:45 | 7.73         | 8.03 | 30.73     | 23.2      | 2.33                        | 7         | -                             | -                            | -                 |
| B4       | 20181128               | Cloudy  | Light            | Mid-Flood | В                        | 4.6          | 11:54 | 8.09         | 8.03 | 30.72     | 23.2      | 4.41                        | 9         | -                             | -                            | -                 |
| B4       | 20181128               | Cloudy  | Light            | Mid-Flood | В                        | 4.6          | 11:54 | 8.01         | 8.1  | 30.96     | 23.2      | 4.27                        | 8         | -                             | -                            | -                 |
| B4       | 20181128               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 11:54 | 8.11         | 8.11 | 30.09     | 23.2      | 2.8                         | 8         | -                             | -                            | -                 |
| B4       | 20181128               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 11:55 | 8.01         | 8.11 | 30.11     | 23.2      | 2.71                        | 8         | -                             | -                            | -                 |
| F1       | 20181128               | Cloudy  | Light            | Mid-Flood | В                        | 8.1          | 12:28 | 7.9          | 8.06 | 31        | 23.3      | 4.02                        | 9         | -                             | -                            | -                 |
| F1       | 20181128               | Cloudy  | Light            | Mid-Flood | В                        | 8.1          | 12:29 | 7.94         | 8.12 | 30.59     | 23.2      | 4.11                        | 8         | -                             | -                            | -                 |
| F1       | 20181128               | Cloudy  | Light            | Mid-Flood | М                        | 4.6          | 12:29 | 8.02         | 8.12 | 30.57     | 23.2      | 3.58                        | 8         | -                             | -                            | -                 |
| F1       | 20181128               | Cloudy  | Light            | Mid-Flood | М                        | 4.6          | 12:29 | 7.96         | 8.11 | 30.98     | 23.2      | 3.57                        | 8         | -                             | -                            | -                 |
| F1       | 20181128               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 12:30 | 7.99         | 8.03 | 30.39     | 23.3      | 2.6                         | 8         | -                             | -                            | -                 |
| F1       | 20181128               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 12:30 | 8.02         | 8.15 | 30.44     | 23.2      | 2.47                        | 8         | -                             | -                            | -                 |
| M1       | 20181128               | Cloudy  | Light            | Mid-Flood | В                        | 8            | 12:56 | 8.26         | 8.15 | 30.19     | 23.2      | 4.05                        | 9         | -                             | -                            | -                 |
| M1       | 20181128               | Cloudy  | Light            | Mid-Flood | В                        | 8            | 12:57 | 8.33         | 8.01 | 30.93     | 23.2      | 4.18                        | 8         | -                             | -                            | -                 |
| M1       | 20181128               | Cloudy  | Light            | Mid-Flood | М                        | 4.5          | 12:57 | 8.24         | 8.03 | 30.38     | 23.2      | 3.01                        | 9         | -                             | -                            | -                 |
| M1       | 20181128               | Cloudy  | Light            | Mid-Flood | М                        | 4.5          | 12:58 | 8.28         | 8.12 | 30.59     | 23.2      | 2.93                        | 9         | -                             | -                            | -                 |
| M1       | 20181128               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 12:58 | 8.21         | 8.12 | 30.91     | 23.2      | 2.41                        | 7         | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| Location | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | pH   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----------|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| M1       | 20181128               | Cloudy  | Light            | Mid-Flood | S                        | 1            | 12:58 | 8.22         | 8.11 | 30.53     | 23.2      | 2.37                        | 8         | -                             | -                            | -                 |
| C1       | 20181128               | Fine    | Light            | Mid-Ebb   | В                        | 10.6         | 14:57 | 8.07         | 8.02 | 30.6      | 23.2      | 4.92                        | 12        | -                             | -                            | -                 |
| C1       | 20181128               | Fine    | Light            | Mid-Ebb   | В                        | 10.6         | 14:57 | 8.16         | 8.12 | 30.7      | 23.2      | 4.94                        | 10        | -                             | -                            | -                 |
| C1       | 20181128               | Fine    | Light            | Mid-Ebb   | М                        | 5.8          | 14:58 | 8.06         | 8.02 | 30.5      | 23.2      | 3.97                        | 10        | -                             | -                            | -                 |
| C1       | 20181128               | Fine    | Light            | Mid-Ebb   | М                        | 5.8          | 14:58 | 7.97         | 8.14 | 30.55     | 23.2      | 4.02                        | 10        | -                             | -                            | -                 |
| C1       | 20181128               | Fine    | Light            | Mid-Ebb   | S                        | 1            | 14:58 | 7.87         | 8.03 | 30.36     | 23.3      | 2.32                        | 8         | -                             | -                            | -                 |
| C1       | 20181128               | Fine    | Light            | Mid-Ebb   | S                        | 1            | 14:59 | 7.91         | 8.07 | 31        | 23.2      | 2.2                         | 8         | -                             | -                            | -                 |
| B1       | 20181128               | Fine    | Light            | Mid-Ebb   | В                        | 4.4          | 15:21 | 8.23         | 8.12 | 30.43     | 23.2      | 4.2                         | 9         | -                             | -                            | -                 |
| B1       | 20181128               | Fine    | Light            | Mid-Ebb   | В                        | 4.4          | 15:21 | 8.21         | 8.14 | 30.72     | 23.2      | 4.14                        | 10        | -                             | -                            | -                 |
| B1       | 20181128               | Fine    | Light            | Mid-Ebb   | S                        | 1            | 15:22 | 8.29         | 8.13 | 30.46     | 23.2      | 2.79                        | 8         | -                             | -                            | -                 |
| B1       | 20181128               | Fine    | Light            | Mid-Ebb   | S                        | 1            | 15:22 | 8.31         | 8.04 | 30.06     | 23.2      | 2.87                        | 8         | -                             | -                            | -                 |
| B2       | 20181128               | Fine    | Light            | Mid-Ebb   | В                        | 4.3          | 15:34 | 7.83         | 8.07 | 30.26     | 23.2      | 4.43                        | 12        | -                             | -                            | -                 |
| B2       | 20181128               | Fine    | Light            | Mid-Ebb   | В                        | 4.3          | 15:34 | 7.83         | 8.01 | 30.15     | 23.2      | 4.43                        | 13        | -                             | -                            | -                 |
| B2       | 20181128               | Fine    | Light            | Mid-Ebb   | S                        | 1            | 15:34 | 7.84         | 8.06 | 30.16     | 23.2      | 2.9                         | 10        | -                             | -                            | -                 |
| B2       | 20181128               | Fine    | Light            | Mid-Ebb   | S                        | 1            | 15:35 | 7.82         | 8.15 | 30.03     | 23.2      | 2.91                        | 10        | -                             | -                            | -                 |
| H1       | 20181128               | Fine    | Light            | Mid-Ebb   | В                        | 7.5          | 15:55 | 8.11         | 8.02 | 30.12     | 23.2      | 4.12                        | 7         | -                             | -                            | -                 |
| H1       | 20181128               | Fine    | Light            | Mid-Ebb   | В                        | 7.5          | 15:55 | 8.19         | 8.11 | 30.78     | 23.2      | 4.06                        | 7         | -                             | -                            | -                 |
| H1       | 20181128               | Fine    | Light            | Mid-Ebb   | М                        | 4.3          | 15:56 | 8.15         | 8.15 | 30.7      | 23.2      | 3.04                        | 8         | -                             | -                            | -                 |
| H1       | 20181128               | Fine    | Light            | Mid-Ebb   | М                        | 4.3          | 15:56 | 8.2          | 8.11 | 30.06     | 23.2      | 2.95                        | 7         | -                             | -                            | -                 |
| H1       | 20181128               | Fine    | Light            | Mid-Ebb   | S                        | 1            | 15:57 | 8.14         | 8.07 | 30.62     | 23.2      | 2.18                        | 9         | -                             | -                            | -                 |
| H1       | 20181128               | Fine    | Light            | Mid-Ebb   | S                        | 1            | 15:57 | 8.07         | 8.03 | 30.16     | 23.2      | 2.11                        | 9         | -                             | -                            | -                 |
| CR2      | 20181128               | Fine    | Light            | Mid-Ebb   | В                        | 7.4          | 16:07 | 8            | 8.01 | 30.68     | 23.2      | 4.66                        | 10        | -                             | -                            | -                 |
| CR2      | 20181128               | Fine    | Light            | Mid-Ebb   | В                        | 7.4          | 16:08 | 8.03         | 8.06 | 30.87     | 23.2      | 4.81                        | 12        | -                             | -                            | -                 |
| CR2      | 20181128               | Fine    | Light            | Mid-Ebb   | М                        | 4.2          | 16:08 | 7.95         | 8.1  | 30.43     | 23.2      | 3.58                        | 11        | -                             | -                            | -                 |
| CR2      | 20181128               | Fine    | Light            | Mid-Ebb   | М                        | 4.2          | 16:09 | 7.96         | 8.06 | 30.85     | 23.2      | 3.67                        | 11        | -                             | -                            | -                 |
| CR2      | 20181128               | Fine    | Light            | Mid-Ebb   | S                        | 1            | 16:09 | 7.95         | 8.09 | 30.2      | 23.2      | 2.98                        | 10        | -                             | -                            | -                 |
| CR2      | 20181128               | Fine    | Light            | Mid-Ebb   | S                        | 1            | 16:09 | 7.99         | 8.01 | 30.56     | 23.2      | 2.92                        | 11        | -                             | -                            | -                 |
| CR1      | 20181128               | Fine    | Light            | Mid-Ebb   | В                        | 7.3          | 16:22 | 8.02         | 8.04 | 30.62     | 23.2      | 4.95                        | 12        | -                             | -                            | -                 |
| CR1      | 20181128               | Fine    | Light            | Mid-Ebb   | В                        | 7.3          | 16:22 | 8.05         | 8.15 | 30.13     | 23.2      | 4.88                        | 12        | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| Location | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal   | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----------|------------------------|---------|------------------|---------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| CR1      | 20181128               | Fine    | Light            | Mid-Ebb | М                        | 4.2          | 16:22 | 8.08         | 8.06 | 30.19     | 23.3      | 3.4                         | 10        | -                             | -                            | -                 |
| CR1      | 20181128               | Fine    | Light            | Mid-Ebb | М                        | 4.2          | 16:23 | 8.17         | 8.03 | 30.53     | 23.2      | 3.49                        | 11        | -                             | -                            | -                 |
| CR1      | 20181128               | Fine    | Light            | Mid-Ebb | S                        | 1            | 16:23 | 8.26         | 8.09 | 30.74     | 23.2      | 2.7                         | 12        | -                             | -                            | -                 |
| CR1      | 20181128               | Fine    | Light            | Mid-Ebb | S                        | 1            | 16:24 | 8.23         | 8.05 | 30.77     | 23.2      | 2.77                        | 11        | -                             | -                            | -                 |
| B3       | 20181128               | Fine    | Light            | Mid-Ebb | В                        | 4.4          | 16:39 | 8.01         | 8.15 | 31        | 23.3      | 4.07                        | 9         | -                             | -                            | -                 |
| B3       | 20181128               | Fine    | Light            | Mid-Ebb | В                        | 4.4          | 16:39 | 7.95         | 8.05 | 30.27     | 23.2      | 3.94                        | 10        | -                             | -                            | -                 |
| B3       | 20181128               | Fine    | Light            | Mid-Ebb | S                        | 1            | 16:40 | 7.94         | 8.06 | 30.11     | 23.2      | 2.19                        | 10        | -                             | -                            | -                 |
| B3       | 20181128               | Fine    | Light            | Mid-Ebb | S                        | 1            | 16:40 | 7.92         | 8.15 | 30.96     | 23.2      | 2.05                        | 9         | -                             | -                            | -                 |
| B4       | 20181128               | Fine    | Light            | Mid-Ebb | В                        | 4.3          | 16:48 | 8.2          | 8.04 | 30.94     | 23.2      | 4.81                        | 7         | -                             | -                            | -                 |
| B4       | 20181128               | Fine    | Light            | Mid-Ebb | В                        | 4.3          | 16:48 | 8.23         | 8.1  | 30.18     | 23.2      | 4.89                        | 7         | -                             | -                            | -                 |
| B4       | 20181128               | Fine    | Light            | Mid-Ebb | S                        | 1            | 16:48 | 8.15         | 8.04 | 30.03     | 23.2      | 2.13                        | 5         | -                             | -                            | -                 |
| B4       | 20181128               | Fine    | Light            | Mid-Ebb | S                        | 1            | 16:49 | 8.25         | 8.14 | 30.87     | 23.3      | 2.15                        | 5         | -                             | -                            | -                 |
| C2       | 20181128               | Fine    | Light            | Mid-Ebb | В                        | 9.2          | 16:58 | 8.4          | 8    | 30.26     | 23.2      | 4.39                        | 14        | -                             | -                            | -                 |
| C2       | 20181128               | Fine    | Light            | Mid-Ebb | В                        | 9.2          | 16:58 | 8.38         | 8.01 | 30.02     | 23.2      | 4.42                        | 13        | -                             | -                            | -                 |
| C2       | 20181128               | Fine    | Light            | Mid-Ebb | М                        | 5.1          | 16:59 | 8.37         | 8.15 | 30.63     | 23.2      | 3.58                        | 14        | -                             | -                            | -                 |
| C2       | 20181128               | Fine    | Light            | Mid-Ebb | М                        | 5.1          | 16:59 | 8.32         | 8.15 | 30.42     | 23.2      | 3.44                        | 13        | -                             | -                            | -                 |
| C2       | 20181128               | Fine    | Light            | Mid-Ebb | S                        | 1            | 17:00 | 8.32         | 8.08 | 30.23     | 23.2      | 2.99                        | 12        | -                             | -                            | -                 |
| C2       | 20181128               | Fine    | Light            | Mid-Ebb | S                        | 1            | 17:00 | 8.22         | 8.03 | 30.09     | 23.2      | 2.97                        | 11        | -                             | -                            | -                 |
| F1       | 20181128               | Fine    | Light            | Mid-Ebb | В                        | 7.8          | 17:20 | 8.08         | 8.09 | 30.95     | 23.2      | 4.22                        | 14        | -                             | -                            | -                 |
| F1       | 20181128               | Fine    | Light            | Mid-Ebb | В                        | 7.8          | 17:21 | 8.03         | 8.15 | 31        | 23.2      | 4.27                        | 16        | -                             | -                            | -                 |
| F1       | 20181128               | Fine    | Light            | Mid-Ebb | М                        | 4.4          | 17:21 | 8            | 8.09 | 30.98     | 23.2      | 3.16                        | 14        | -                             | -                            | -                 |
| F1       | 20181128               | Fine    | Light            | Mid-Ebb | М                        | 4.4          | 17:22 | 8            | 8.09 | 30.43     | 23.2      | 3.23                        | 14        | -                             | -                            | -                 |
| F1       | 20181128               | Fine    | Light            | Mid-Ebb | S                        | 1            | 17:22 | 8.03         | 8.08 | 30.84     | 23.2      | 2.6                         | 18        | -                             | -                            | -                 |
| F1       | 20181128               | Fine    | Light            | Mid-Ebb | S                        | 1            | 17:22 | 8.07         | 8.1  | 30.64     | 23.2      | 2.61                        | 18        | -                             | -                            | -                 |
| M1       | 20181128               | Fine    | Light            | Mid-Ebb | В                        | 7.7          | 17:47 | 7.98         | 8.12 | 30.75     | 23.2      | 4.62                        | 11        | -                             | -                            | -                 |
| M1       | 20181128               | Fine    | Light            | Mid-Ebb | В                        | 7.7          | 17:47 | 7.95         | 8.06 | 30.02     | 23.2      | 4.67                        | 10        | -                             | -                            | -                 |
| M1       | 20181128               | Fine    | Light            | Mid-Ebb | М                        | 4.4          | 17:47 | 7.98         | 8.02 | 30.66     | 23.2      | 3.35                        | 9         | -                             | -                            | -                 |
| M1       | 20181128               | Fine    | Light            | Mid-Ebb | М                        | 4.4          | 17:48 | 7.93         | 8.14 | 30.46     | 23.2      | 3.26                        | 10        | -                             | -                            | -                 |
| M1       | 20181128               | Fine    | Light            | Mid-Ebb | S                        | 1            | 17:48 | 7.98         | 8.02 | 30.23     | 23.2      | 2.09                        | 8         | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

| Location | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----------|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| M1       | 20181128               | Fine    | Light            | Mid-Ebb   | S                        | 1            | 17:49 | 7.97         | 8.03 | 30.62     | 23.2      | 2.13                        | 8         | -                             | -                            | -                 |
| C2       | 20181130               | Sunny   | Moderate         | Mid-Flood | В                        | 9.5          | 11:41 | 8.49         | 8.09 | 29.69     | 23.5      | 4.73                        | 4         | -                             | -                            | -                 |
| C2       | 20181130               | Sunny   | Moderate         | Mid-Flood | В                        | 9.5          | 11:41 | 8.42         | 8.14 | 29.88     | 23.5      | 4.71                        | 4         | -                             | -                            | -                 |
| C2       | 20181130               | Sunny   | Moderate         | Mid-Flood | М                        | 5.3          | 11:41 | 8.4          | 8.11 | 29.64     | 23.5      | 3.4                         | 6         | -                             | -                            | -                 |
| C2       | 20181130               | Sunny   | Moderate         | Mid-Flood | М                        | 5.3          | 11:42 | 8.32         | 8.01 | 29.52     | 23.5      | 3.36                        | 5         | -                             | -                            | -                 |
| C2       | 20181130               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 11:42 | 8.34         | 8.1  | 29.57     | 23.5      | 2.52                        | 7         | -                             | -                            | -                 |
| C2       | 20181130               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 11:42 | 8.44         | 8    | 29.51     | 23.5      | 2.47                        | 6         | -                             | -                            | -                 |
| CR1      | 20181130               | Sunny   | Moderate         | Mid-Flood | В                        | 7.9          | 11:58 | 8.24         | 8.06 | 29.73     | 23.5      | 4.98                        | 7         | -                             | -                            | -                 |
| CR1      | 20181130               | Sunny   | Moderate         | Mid-Flood | В                        | 7.9          | 11:58 | 8.2          | 8.13 | 29.56     | 23.5      | 5.04                        | 7         | -                             | -                            | -                 |
| CR1      | 20181130               | Sunny   | Moderate         | Mid-Flood | М                        | 4.5          | 11:59 | 8.28         | 8.06 | 29.66     | 23.5      | 3.27                        | 8         | -                             | -                            | -                 |
| CR1      | 20181130               | Sunny   | Moderate         | Mid-Flood | М                        | 4.5          | 11:59 | 8.32         | 8.1  | 29.59     | 23.5      | 3.3                         | 8         | -                             | -                            | -                 |
| CR1      | 20181130               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 11:59 | 8.23         | 8.13 | 29.88     | 23.5      | 2.9                         | 9         | -                             | -                            | -                 |
| CR1      | 20181130               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 12:00 | 8.18         | 8.03 | 29.71     | 23.5      | 2.94                        | 9         | -                             | -                            | -                 |
| CR2      | 20181130               | Sunny   | Moderate         | Mid-Flood | В                        | 7.7          | 12:06 | 8.32         | 8.06 | 29.57     | 23.5      | 4.62                        | 8         | -                             | -                            | -                 |
| CR2      | 20181130               | Sunny   | Moderate         | Mid-Flood | В                        | 7.7          | 12:06 | 8.31         | 8.04 | 29.65     | 23.5      | 4.69                        | 8         | -                             | -                            | -                 |
| CR2      | 20181130               | Sunny   | Moderate         | Mid-Flood | М                        | 4.4          | 12:07 | 8.29         | 8.06 | 29.88     | 23.5      | 3.64                        | 9         | -                             | -                            | -                 |
| CR2      | 20181130               | Sunny   | Moderate         | Mid-Flood | М                        | 4.4          | 12:07 | 8.24         | 8    | 29.52     | 23.5      | 3.67                        | 10        | -                             | -                            | -                 |
| CR2      | 20181130               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 12:08 | 8.14         | 8.03 | 29.67     | 23.5      | 2.41                        | 11        | -                             | -                            | -                 |
| CR2      | 20181130               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 12:08 | 8.13         | 8.15 | 29.98     | 23.5      | 2.49                        | 10        | -                             | -                            | -                 |
| C1       | 20181130               | Sunny   | Moderate         | Mid-Flood | В                        | 11.4         | 12:41 | 8.1          | 8    | 29.97     | 23.5      | 4.66                        | 8         | -                             | -                            | -                 |
| C1       | 20181130               | Sunny   | Moderate         | Mid-Flood | В                        | 11.4         | 12:42 | 8.17         | 8.15 | 29.76     | 23.5      | 4.69                        | 8         | -                             | -                            | -                 |
| C1       | 20181130               | Sunny   | Moderate         | Mid-Flood | М                        | 6.2          | 12:42 | 8.15         | 8.01 | 29.6      | 23.5      | 3.31                        | 6         | -                             | -                            | -                 |
| C1       | 20181130               | Sunny   | Moderate         | Mid-Flood | М                        | 6.2          | 12:43 | 8.17         | 8.01 | 29.55     | 23.5      | 3.24                        | 6         | -                             | -                            | -                 |
| C1       | 20181130               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 12:43 | 8.11         | 8.05 | 29.86     | 23.5      | 2.75                        | 4         | -                             | -                            | -                 |
| C1       | 20181130               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 12:43 | 8.21         | 8.09 | 29.53     | 23.6      | 2.69                        | 4         | -                             | -                            | -                 |
| B1       | 20181130               | Sunny   | Moderate         | Mid-Flood | В                        | 4.8          | 13:06 | 8.32         | 8.07 | 29.53     | 23.5      | 4.08                        | 5         | -                             | -                            | -                 |
| B1       | 20181130               | Sunny   | Moderate         | Mid-Flood | В                        | 4.8          | 13:06 | 8.32         | 8.07 | 29.89     | 23.5      | 4.04                        | 6         | -                             | -                            | -                 |
| B1       | 20181130               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 13:06 | 8.36         | 8.05 | 29.57     | 23.5      | 2.08                        | 7         | -                             | -                            | -                 |
| B1       | 20181130               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 13:07 | 8.42         | 8.04 | 29.81     | 23.5      | 2.06                        | 7         | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

|    | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | pH   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| B2 | 20181130               | Sunny   | Moderate         | Mid-Flood | В                        | 4.7          | 13:22 | 8.21         | 8.11 | 29.6      | 23.5      | 4.48                        | 6         | -                             | -                            | -                 |
| B2 | 20181130               | Sunny   | Moderate         | Mid-Flood | В                        | 4.7          | 13:23 | 8.17         | 8.08 | 29.77     | 23.5      | 4.55                        | 5         | -                             | -                            | -                 |
| B2 | 20181130               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 13:23 | 8.27         | 8.05 | 29.95     | 23.5      | 2.06                        | 6         | -                             | -                            | -                 |
| B2 | 20181130               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 13:23 | 8.35         | 8.13 | 29.64     | 23.5      | 1.99                        | 6         | -                             | -                            | -                 |
| H1 | 20181130               | Sunny   | Moderate         | Mid-Flood | В                        | 7.9          | 13:47 | 8.13         | 8.03 | 29.54     | 23.5      | 4.13                        | 6         | -                             | -                            | -                 |
| H1 | 20181130               | Sunny   | Moderate         | Mid-Flood | В                        | 7.9          | 13:47 | 8.23         | 8.06 | 29.64     | 23.5      | 4.1                         | 6         | -                             | -                            | -                 |
| H1 | 20181130               | Sunny   | Moderate         | Mid-Flood | М                        | 4.5          | 13:48 | 8.24         | 8.08 | 29.68     | 23.5      | 3.54                        | 5         | -                             | -                            | -                 |
| H1 | 20181130               | Sunny   | Moderate         | Mid-Flood | М                        | 4.5          | 13:48 | 8.31         | 8.05 | 29.75     | 23.5      | 3.51                        | 6         | -                             | -                            | -                 |
| H1 | 20181130               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 13:48 | 8.4          | 8.07 | 29.65     | 23.5      | 3                           | 6         | -                             | -                            | -                 |
| H1 | 20181130               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 13:49 | 8.39         | 8.07 | 29.8      | 23.5      | 3.02                        | 6         | -                             | -                            | -                 |
| B3 | 20181130               | Sunny   | Moderate         | Mid-Flood | В                        | 4.7          | 13:57 | 8.23         | 8    | 29.57     | 23.5      | 4.98                        | 7         | -                             | -                            | -                 |
| B3 | 20181130               | Sunny   | Moderate         | Mid-Flood | В                        | 4.7          | 13:57 | 8.27         | 8.08 | 29.88     | 23.5      | 4.95                        | 6         | -                             | -                            | -                 |
| B3 | 20181130               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 13:58 | 8.28         | 8.12 | 29.96     | 23.5      | 2.46                        | 4         | -                             | -                            | -                 |
| B3 | 20181130               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 13:58 | 8.22         | 8.06 | 29.64     | 23.5      | 2.4                         | 5         | -                             | -                            | -                 |
| B4 | 20181130               | Sunny   | Moderate         | Mid-Flood | В                        | 4.6          | 14:08 | 8.21         | 8.03 | 29.8      | 23.5      | 4.56                        | 7         | -                             | -                            | -                 |
| B4 | 20181130               | Sunny   | Moderate         | Mid-Flood | В                        | 4.6          | 14:08 | 8.27         | 8.03 | 29.5      | 23.5      | 4.58                        | 7         | -                             | -                            | -                 |
| B4 | 20181130               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 14:08 | 8.25         | 8.02 | 29.52     | 23.6      | 2.24                        | 5         | -                             | -                            | -                 |
| B4 | 20181130               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 14:09 | 8.19         | 8.15 | 29.93     | 23.5      | 2.22                        | 5         | -                             | -                            | -                 |
| F1 | 20181130               | Sunny   | Moderate         | Mid-Flood | В                        | 8.1          | 14:37 | 8.03         | 8    | 30        | 23.5      | 4.3                         | 5         | -                             | -                            | -                 |
| F1 | 20181130               | Sunny   | Moderate         | Mid-Flood | В                        | 8.1          | 14:38 | 7.99         | 8.04 | 29.74     | 23.5      | 4.28                        | 6         | -                             | -                            | -                 |
| F1 | 20181130               | Sunny   | Moderate         | Mid-Flood | М                        | 4.6          | 14:38 | 7.91         | 8.01 | 29.69     | 23.5      | 3.15                        | 6         | -                             | -                            | -                 |
| F1 | 20181130               | Sunny   | Moderate         | Mid-Flood | М                        | 4.6          | 14:38 | 7.96         | 8.07 | 29.67     | 23.5      | 3.06                        | 6         | -                             | -                            | -                 |
| F1 | 20181130               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 14:39 | 8.03         | 8.09 | 29.69     | 23.5      | 2.17                        | 4         | -                             | -                            | -                 |
| F1 | 20181130               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 14:39 | 8.13         | 8.08 | 29.87     | 23.6      | 2.24                        | 4         | -                             | -                            | -                 |
| M1 | 20181130               | Sunny   | Moderate         | Mid-Flood | В                        | 7.9          | 15:07 | 8.01         | 8.15 | 29.5      | 23.5      | 4.71                        | 8         | -                             | -                            | -                 |
| M1 | 20181130               | Sunny   | Moderate         | Mid-Flood | В                        | 7.9          | 15:08 | 8.09         | 8.05 | 29.76     | 23.6      | 4.72                        | 10        | -                             | -                            | -                 |
| M1 | 20181130               | Sunny   | Moderate         | Mid-Flood | М                        | 4.5          | 15:08 | 8.07         | 8.14 | 29.74     | 23.5      | 3.23                        | 8         | -                             | -                            | -                 |
| M1 | 20181130               | Sunny   | Moderate         | Mid-Flood | М                        | 4.5          | 15:09 | 8.11         | 8    | 29.65     | 23.5      | 3.27                        | 9         | -                             | -                            | -                 |
| M1 | 20181130               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 15:09 | 8.09         | 8.01 | 29.7      | 23.5      | 2.27                        | 9         | -                             | -                            | -                 |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

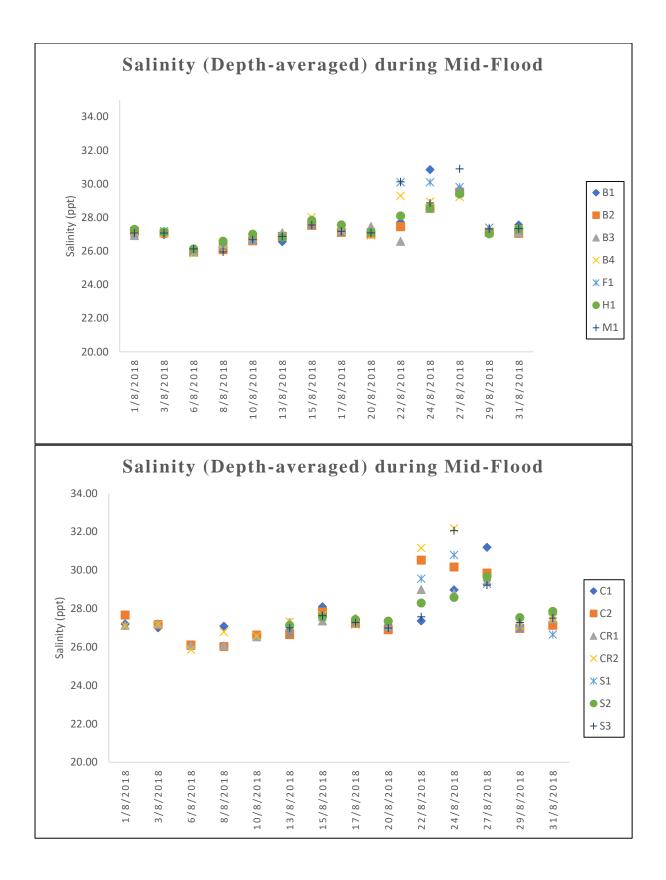
| 1   | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal     | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in<br>NESW |
|-----|------------------------|---------|------------------|-----------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|----------------------|
| M1  | 20181130               | Sunny   | Moderate         | Mid-Flood | S                        | 1            | 15:09 | 8.06         | 8.05 | 29.6      | 23.5      | 2.18                        | 9         | -                             | -                            | -                    |
| C1  | 20181130               | Cloudy  | Light            | Mid-Ebb   | В                        | 10.7         | 17:24 | 8.04         | 8.05 | 29.91     | 23.5      | 4.17                        | 5         | -                             | -                            | -                    |
| C1  | 20181130               | Cloudy  | Light            | Mid-Ebb   | В                        | 10.7         | 17:24 | 8            | 8.12 | 29.63     | 23.6      | 4.25                        | 5         | -                             | -                            | -                    |
| C1  | 20181130               | Cloudy  | Light            | Mid-Ebb   | М                        | 5.9          | 17:25 | 8.09         | 8.04 | 29.66     | 23.6      | 3.22                        | 5         | -                             | -                            | -                    |
| C1  | 20181130               | Cloudy  | Light            | Mid-Ebb   | М                        | 5.9          | 17:25 | 8.08         | 8.1  | 29.81     | 23.5      | 3.13                        | 4         | -                             | -                            | -                    |
| C1  | 20181130               | Cloudy  | Light            | Mid-Ebb   | S                        | 1            | 17:25 | 8.05         | 8.05 | 29.59     | 23.5      | 2.71                        | 5         | -                             | -                            | -                    |
| C1  | 20181130               | Cloudy  | Light            | Mid-Ebb   | S                        | 1            | 17:26 | 8.14         | 8.07 | 29.69     | 23.5      | 2.67                        | 4         | -                             | -                            | -                    |
| B1  | 20181130               | Cloudy  | Light            | Mid-Ebb   | В                        | 4.5          | 17:37 | 8.27         | 8.09 | 29.72     | 23.5      | 4.25                        | 7         | -                             | -                            | -                    |
| B1  | 20181130               | Cloudy  | Light            | Mid-Ebb   | В                        | 4.5          | 17:37 | 8.17         | 8.13 | 29.83     | 23.5      | 4.18                        | 8         | -                             | -                            | -                    |
| B1  | 20181130               | Cloudy  | Light            | Mid-Ebb   | S                        | 1            | 17:38 | 8.17         | 8.15 | 29.94     | 23.5      | 2.24                        | 7         | -                             | -                            | -                    |
| B1  | 20181130               | Cloudy  | Light            | Mid-Ebb   | S                        | 1            | 17:38 | 8.09         | 8.12 | 29.56     | 23.6      | 2.27                        | 6         | -                             | -                            | -                    |
| B2  | 20181130               | Cloudy  | Light            | Mid-Ebb   | В                        | 4.4          | 17:47 | 8.48         | 8.12 | 29.89     | 23.5      | 4.56                        | 8         | -                             | -                            | -                    |
| B2  | 20181130               | Cloudy  | Light            | Mid-Ebb   | В                        | 4.4          | 17:47 | 8.54         | 8.03 | 29.59     | 23.5      | 4.64                        | 8         | -                             | -                            | -                    |
| B2  | 20181130               | Cloudy  | Light            | Mid-Ebb   | S                        | 1            | 17:47 | 8.6          | 8.14 | 29.83     | 23.5      | 2.21                        | 11        | -                             | -                            | -                    |
| B2  | 20181130               | Cloudy  | Light            | Mid-Ebb   | S                        | 1            | 17:48 | 8.54         | 8.02 | 29.72     | 23.5      | 2.2                         | 11        | -                             | -                            | -                    |
| H1  | 20181130               | Cloudy  | Light            | Mid-Ebb   | В                        | 7.6          | 18:07 | 8.11         | 8.13 | 29.62     | 23.5      | 4.71                        | 10        | -                             | -                            | -                    |
| H1  | 20181130               | Cloudy  | Light            | Mid-Ebb   | В                        | 7.6          | 18:07 | 8.02         | 8.13 | 29.81     | 23.5      | 4.78                        | 9         | -                             | -                            | -                    |
| H1  | 20181130               | Cloudy  | Light            | Mid-Ebb   | М                        | 4.3          | 18:08 | 7.99         | 8.11 | 29.65     | 23.5      | 3.84                        | 10        | -                             | -                            | -                    |
| H1  | 20181130               | Cloudy  | Light            | Mid-Ebb   | М                        | 4.3          | 18:08 | 8.04         | 8.13 | 29.65     | 23.5      | 3.86                        | 10        | -                             | -                            | -                    |
| H1  | 20181130               | Cloudy  | Light            | Mid-Ebb   | S                        | 1            | 18:09 | 7.96         | 8.09 | 29.64     | 23.5      | 2.15                        | 12        | -                             | -                            | -                    |
| H1  | 20181130               | Cloudy  | Light            | Mid-Ebb   | S                        | 1            | 18:09 | 7.94         | 8.11 | 29.78     | 23.5      | 2.19                        | 11        | -                             | -                            | -                    |
| CR2 | 20181130               | Cloudy  | Light            | Mid-Ebb   | В                        | 7.5          | 18:19 | 8            | 8.04 | 29.93     | 23.5      | 4.58                        | 7         | -                             | -                            | -                    |
| CR2 | 20181130               | Cloudy  | Light            | Mid-Ebb   | В                        | 7.5          | 18:20 | 7.92         | 8.1  | 29.96     | 23.5      | 4.66                        | 7         | -                             | -                            | -                    |
| CR2 | 20181130               | Cloudy  | Light            | Mid-Ebb   | М                        | 4.3          | 18:20 | 7.94         | 8.08 | 29.67     | 23.5      | 3.95                        | 8         | -                             | -                            | -                    |
| CR2 | 20181130               | Cloudy  | Light            | Mid-Ebb   | М                        | 4.3          | 18:21 | 8.04         | 8.07 | 29.76     | 23.5      | 3.99                        | 8         | -                             | -                            | -                    |
| CR2 | 20181130               | Cloudy  | Light            | Mid-Ebb   | S                        | 1            | 18:21 | 8.03         | 8.09 | 29.61     | 23.5      | 2.23                        | 10        | -                             | -                            | -                    |
| CR2 | 20181130               | Cloudy  | Light            | Mid-Ebb   | S                        | 1            | 18:21 | 8.03         | 8.08 | 29.75     | 23.5      | 2.19                        | 11        | -                             | -                            | -                    |
| CR1 | 20181130               | Cloudy  | Light            | Mid-Ebb   | В                        | 7.6          | 18:33 | 8.2          | 8.05 | 29.9      | 23.5      | 4.54                        | 12        | -                             | -                            | -                    |
| CR1 | 20181130               | Cloudy  | Light            | Mid-Ebb   | В                        | 7.6          | 18:33 | 8.14         | 8.08 | 29.92     | 23.5      | 4.57                        | 13        | -                             | -                            | -                    |

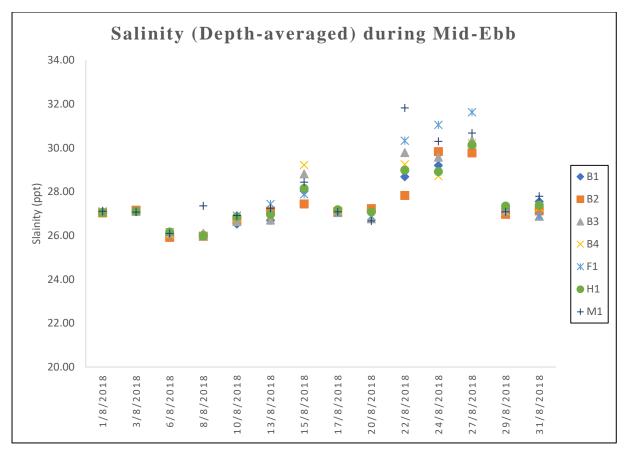
Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

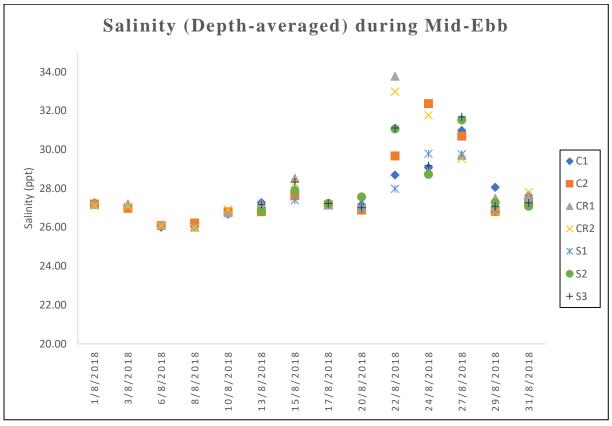
| Location | Date<br>(YYYYMMD<br>D) | Weather | Sea<br>Condition | Tidal   | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in NESW |
|----------|------------------------|---------|------------------|---------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|-------------------|
| CR1      | 20181130               | Cloudy  | Light            | Mid-Ebb | М                        | 4.3          | 18:33 | 8.24         | 8.06 | 29.78     | 23.5      | 3.73                        | 12        | -                             | -                            | -                 |
| CR1      | 20181130               | Cloudy  | Light            | Mid-Ebb | М                        | 4.3          | 18:34 | 8.19         | 8.14 | 29.91     | 23.5      | 3.7                         | 10        | -                             | -                            | -                 |
| CR1      | 20181130               | Cloudy  | Light            | Mid-Ebb | S                        | 1            | 18:34 | 8.26         | 8.03 | 29.99     | 23.5      | 2.97                        | 9         | -                             | -                            | -                 |
| CR1      | 20181130               | Cloudy  | Light            | Mid-Ebb | S                        | 1            | 18:35 | 8.24         | 8.04 | 29.77     | 23.5      | 3.05                        | 9         | -                             | -                            | -                 |
| B3       | 20181130               | Cloudy  | Light            | Mid-Ebb | В                        | 4.3          | 18:51 | 8.1          | 8.07 | 29.63     | 23.5      | 4.3                         | 7         | -                             | -                            | -                 |
| B3       | 20181130               | Cloudy  | Light            | Mid-Ebb | В                        | 4.3          | 18:51 | 8.15         | 8.02 | 29.65     | 23.5      | 4.28                        | 6         | -                             | -                            | -                 |
| B3       | 20181130               | Cloudy  | Light            | Mid-Ebb | S                        | 1            | 18:52 | 8.24         | 8.14 | 29.7      | 23.5      | 2.42                        | 6         | -                             | -                            | -                 |
| B3       | 20181130               | Cloudy  | Light            | Mid-Ebb | S                        | 1            | 18:52 | 8.24         | 8.04 | 29.72     | 23.5      | 2.33                        | 6         | -                             | -                            | -                 |
| B4       | 20181130               | Cloudy  | Light            | Mid-Ebb | В                        | 4.4          | 19:01 | 8.11         | 8.1  | 29.56     | 23.5      | 4.05                        | 6         | -                             | -                            | -                 |
| B4       | 20181130               | Cloudy  | Light            | Mid-Ebb | В                        | 4.4          | 19:01 | 8.1          | 8.09 | 29.55     | 23.5      | 3.97                        | 7         | -                             | -                            | -                 |
| B4       | 20181130               | Cloudy  | Light            | Mid-Ebb | S                        | 1            | 19:01 | 8.05         | 8.09 | 29.58     | 23.5      | 2.76                        | 6         | -                             | -                            | -                 |
| B4       | 20181130               | Cloudy  | Light            | Mid-Ebb | S                        | 1            | 19:02 | 8.15         | 8.13 | 29.63     | 23.5      | 2.84                        | 7         | -                             | -                            | -                 |
| C2       | 20181130               | Cloudy  | Light            | Mid-Ebb | В                        | 9.1          | 19:10 | 8.46         | 8.04 | 29.98     | 23.5      | 4.81                        | 10        | -                             | -                            | -                 |
| C2       | 20181130               | Cloudy  | Light            | Mid-Ebb | В                        | 9.1          | 19:10 | 8.43         | 8.08 | 29.63     | 23.5      | 4.9                         | 11        | -                             | -                            | -                 |
| C2       | 20181130               | Cloudy  | Light            | Mid-Ebb | М                        | 5.1          | 19:11 | 8.36         | 8.13 | 29.66     | 23.5      | 3.44                        | 10        | -                             | -                            | -                 |
| C2       | 20181130               | Cloudy  | Light            | Mid-Ebb | М                        | 5.1          | 19:11 | 8.28         | 8.1  | 29.6      | 23.5      | 3.48                        | 9         | -                             | -                            | -                 |
| C2       | 20181130               | Cloudy  | Light            | Mid-Ebb | S                        | 1            | 19:12 | 8.36         | 8.13 | 29.52     | 23.5      | 2.7                         | 11        | -                             | -                            | -                 |
| C2       | 20181130               | Cloudy  | Light            | Mid-Ebb | S                        | 1            | 19:12 | 8.29         | 8.02 | 29.58     | 23.5      | 2.62                        | 11        | -                             | -                            | -                 |
| F1       | 20181130               | Cloudy  | Light            | Mid-Ebb | В                        | 7.6          | 19:34 | 8.45         | 8.06 | 29.84     | 23.5      | 4.04                        | 7         | -                             | -                            | -                 |
| F1       | 20181130               | Cloudy  | Light            | Mid-Ebb | В                        | 7.6          | 19:35 | 8.49         | 8.15 | 29.55     | 23.5      | 4.14                        | 8         | -                             | -                            | -                 |
| F1       | 20181130               | Cloudy  | Light            | Mid-Ebb | М                        | 4.3          | 19:35 | 8.58         | 8.01 | 29.6      | 23.5      | 3.07                        | 9         | -                             | -                            | -                 |
| F1       | 20181130               | Cloudy  | Light            | Mid-Ebb | М                        | 4.3          | 19:36 | 8.67         | 8.02 | 29.63     | 23.5      | 3.09                        | 8         | -                             | -                            | -                 |
| F1       | 20181130               | Cloudy  | Light            | Mid-Ebb | S                        | 1            | 19:36 | 8.65         | 8.01 | 29.83     | 23.5      | 2.05                        | 8         | -                             | -                            | -                 |
| F1       | 20181130               | Cloudy  | Light            | Mid-Ebb | S                        | 1            | 19:36 | 8.7          | 8.1  | 29.89     | 23.5      | 1.96                        | 8         | -                             | -                            | -                 |
| M1       | 20181130               | Cloudy  | Light            | Mid-Ebb | В                        | 7.5          | 20:02 | 8.27         | 8.09 | 29.8      | 23.5      | 4.15                        | 8         | -                             | -                            | -                 |
| M1       | 20181130               | Cloudy  | Light            | Mid-Ebb | В                        | 7.5          | 20:02 | 8.24         | 8.02 | 29.75     | 23.5      | 4.16                        | 7         | -                             | -                            | -                 |
| M1       | 20181130               | Cloudy  | Light            | Mid-Ebb | М                        | 4.3          | 20:02 | 8.15         | 8.12 | 29.58     | 23.5      | 3.03                        | 8         | -                             | -                            | -                 |
| M1       | 20181130               | Cloudy  | Light            | Mid-Ebb | М                        | 4.3          | 20:03 | 8.12         | 8.01 | 29.89     | 23.5      | 2.93                        | 7         | -                             | -                            | -                 |
| M1       | 20181130               | Cloudy  | Light            | Mid-Ebb | S                        | 1            | 20:03 | 8.11         | 8.03 | 29.99     | 23.5      | 2.83                        | 8         | -                             | -                            | -                 |

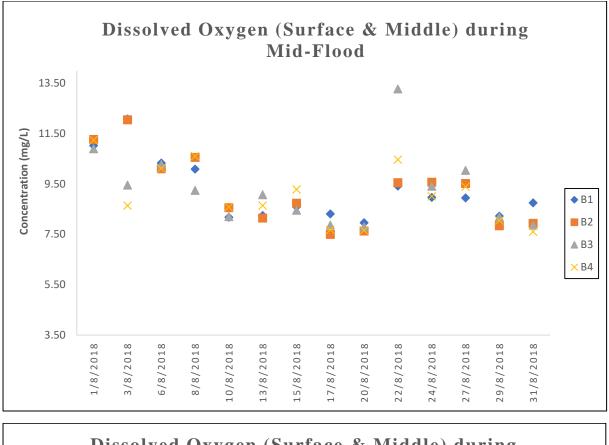
Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Impact Water Quality Monitoring Data

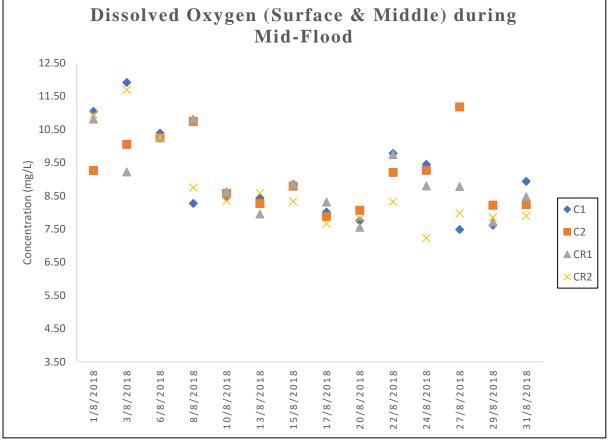
| Loca | tion Date<br>(YYYYMME<br>D) | Weather | Sea<br>Condition | Tidal   | Water<br>Level<br>note 1 | Depth<br>(m) | Time  | DO<br>(mg/L) | рН   | Sal (ppt) | Temp (°C) | Turbidty<br>(NTU)<br>note 3 | SS (mg/L) | Total<br>Alkalinity<br>(mg/L) | Current<br>Velocity<br>(m/s) | Direction in<br>NESW |
|------|-----------------------------|---------|------------------|---------|--------------------------|--------------|-------|--------------|------|-----------|-----------|-----------------------------|-----------|-------------------------------|------------------------------|----------------------|
| N    | 1 20181130                  | Cloudy  | Light            | Mid-Ebb | S                        | 1            | 20:04 | 8.08         | 8.11 | 29.81     | 23.5      | 2.89                        | 7         | -                             | -                            | -                    |


Remarks:

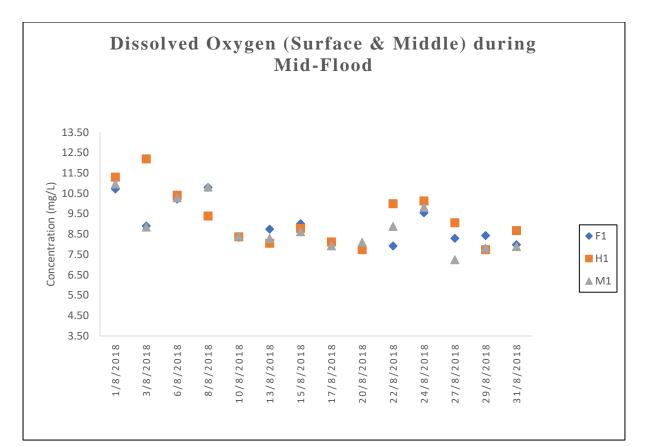

note 1: S – Surface M – Middle B – Bottom

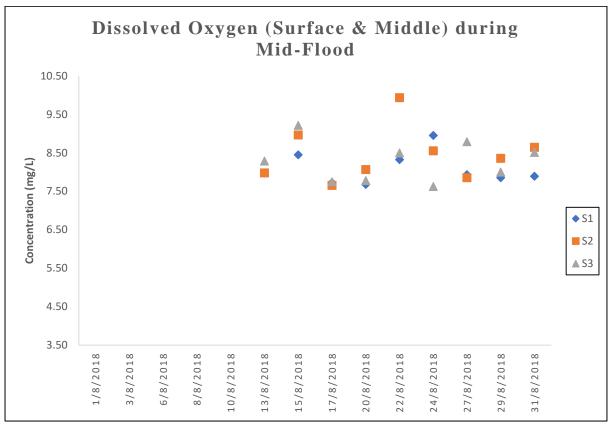

note 2: Cancelled due to container leakage.


note 3: Measurements of turbidity would be rounding to 0.1 NTU for proven accuracy as per the equipment specs during utilization of data.

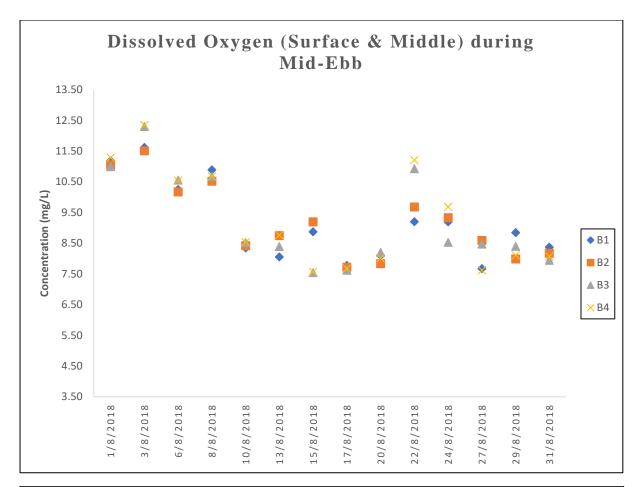

note 4: Data in legend are considered as reference use since their sampling time were out of predicted tidal period as shown in Appendix C.

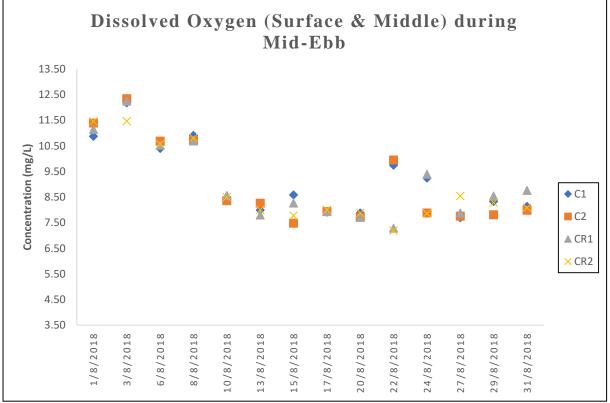




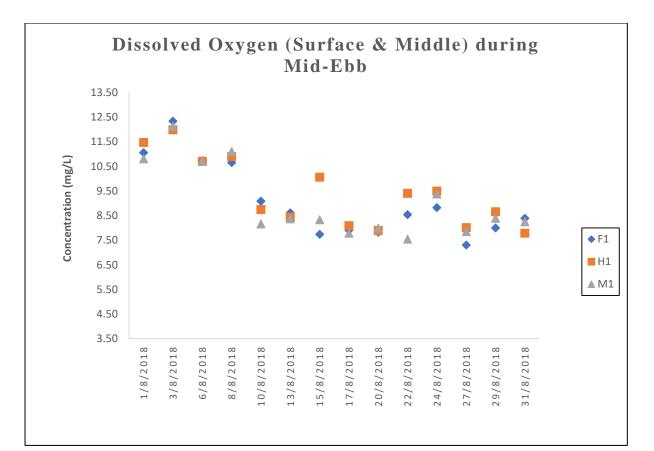



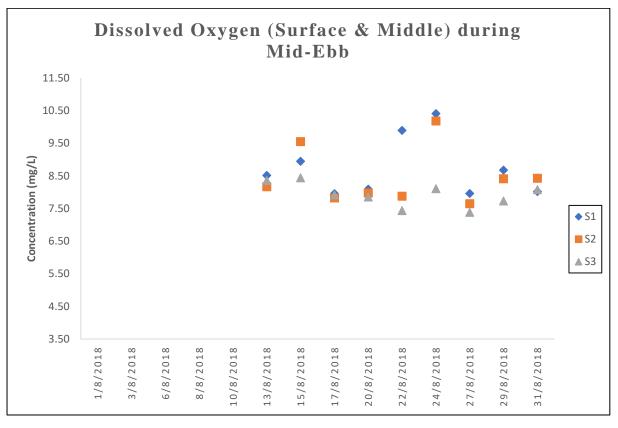


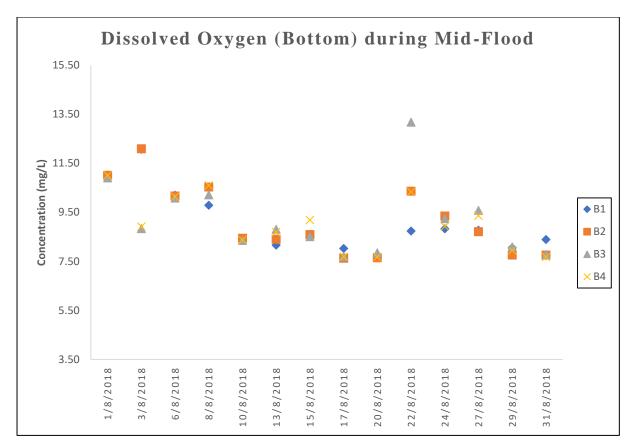


Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

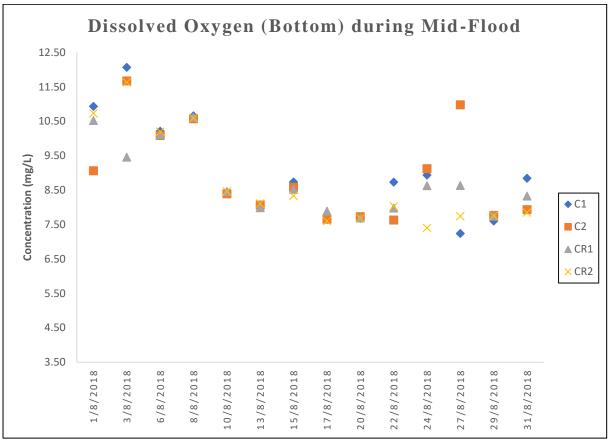




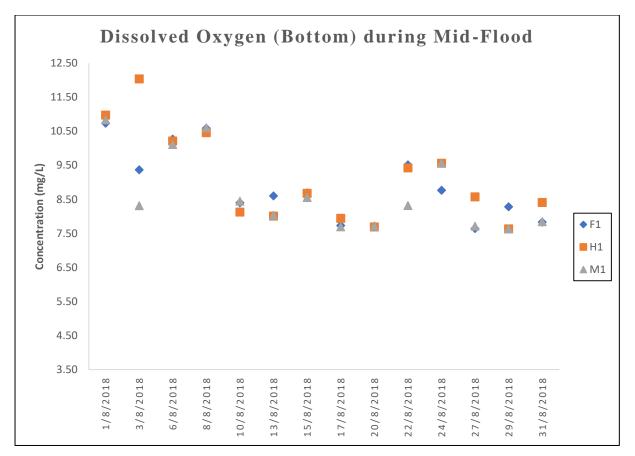


Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

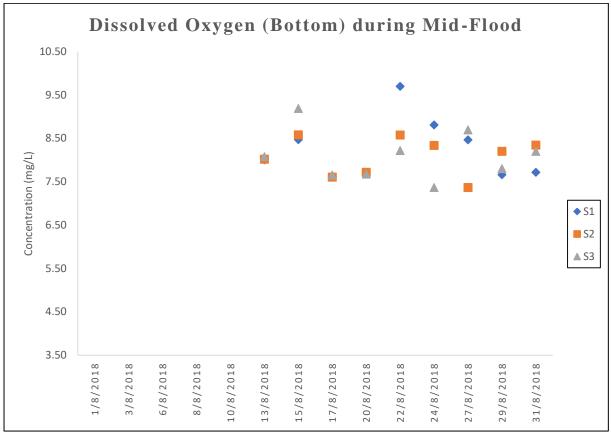




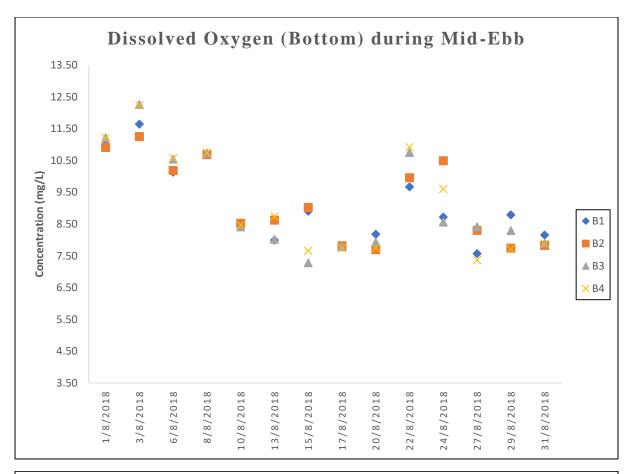


Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

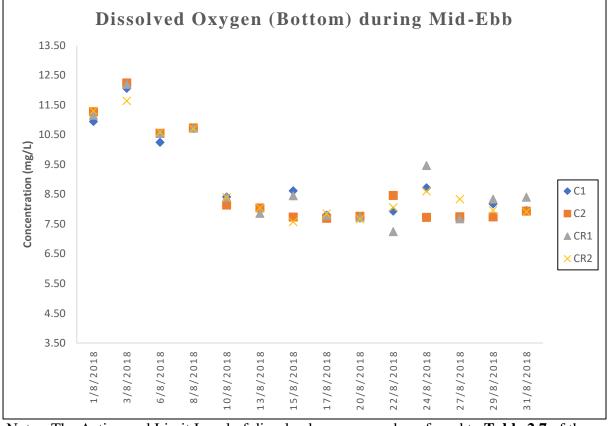




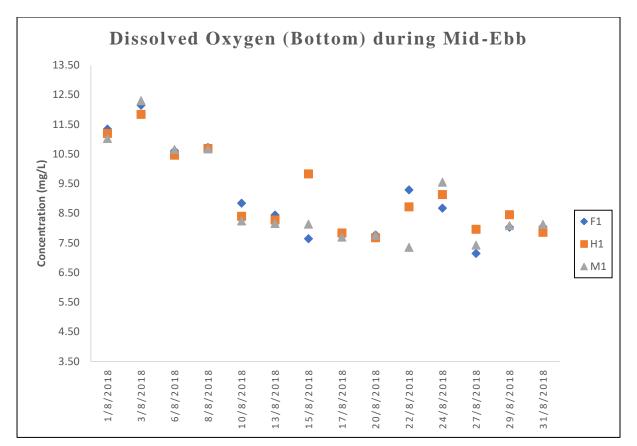


Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

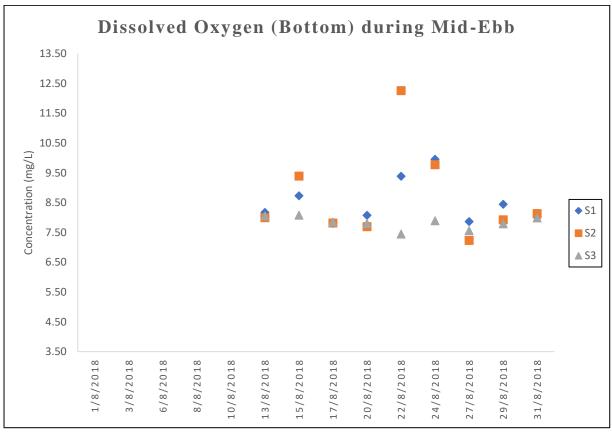




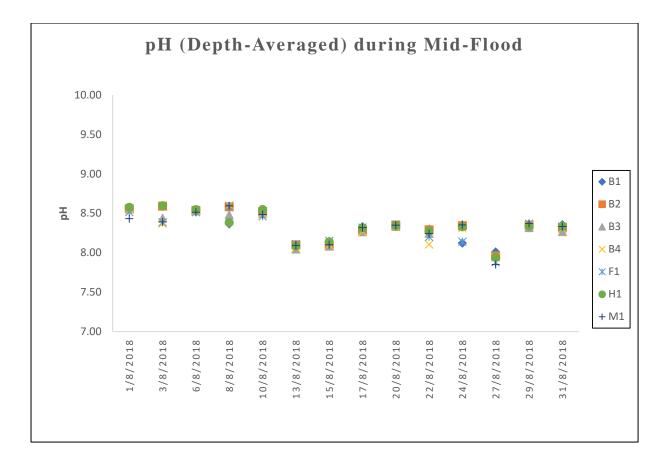


Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

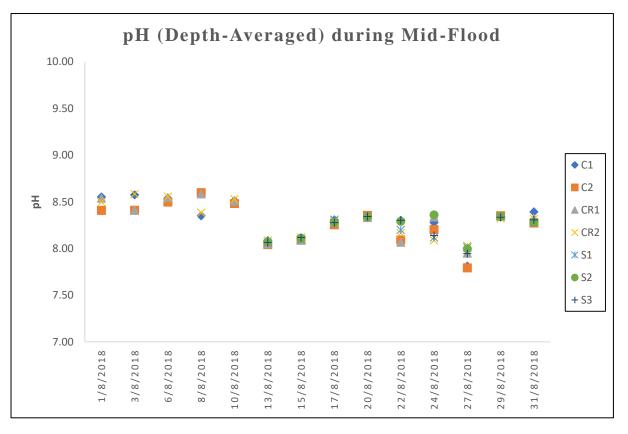


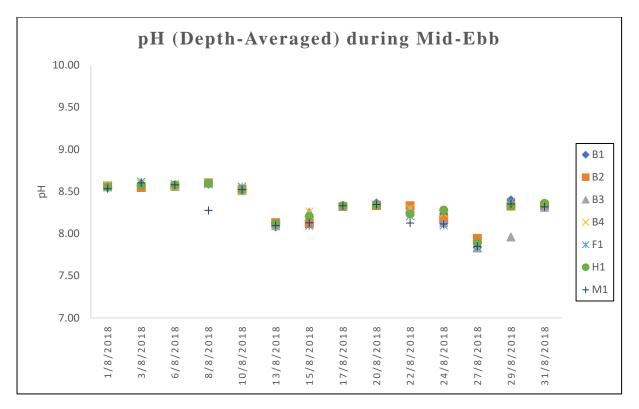


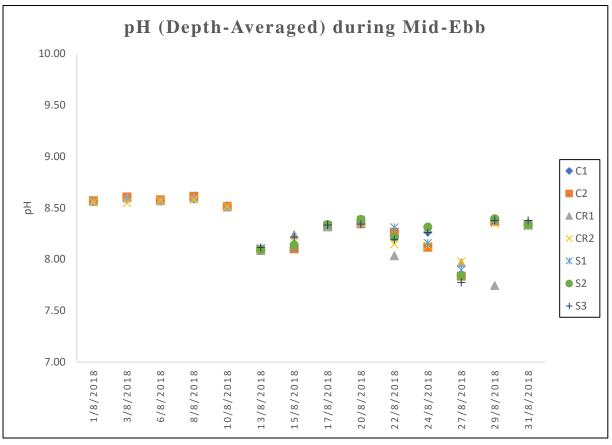


Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

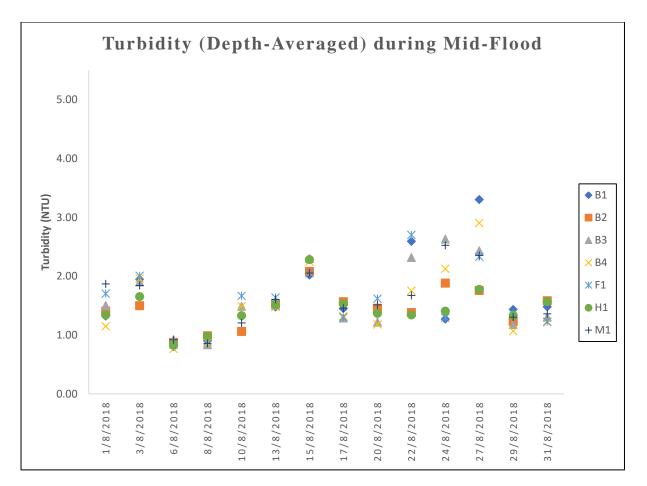


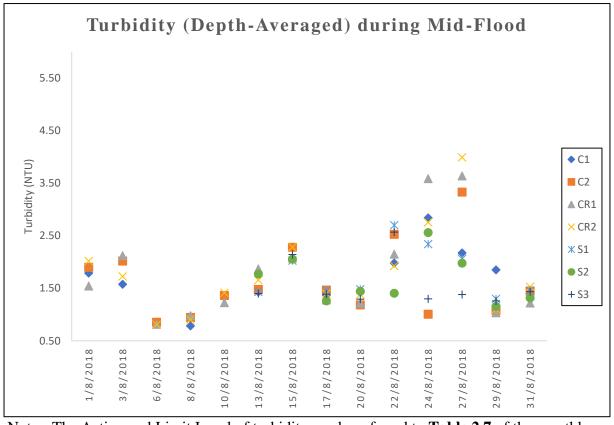




Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

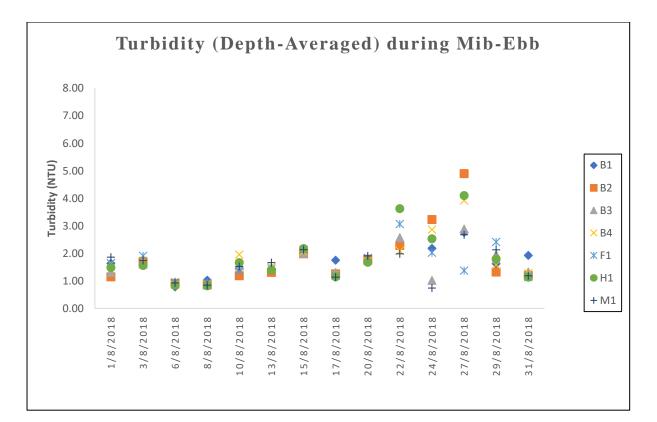


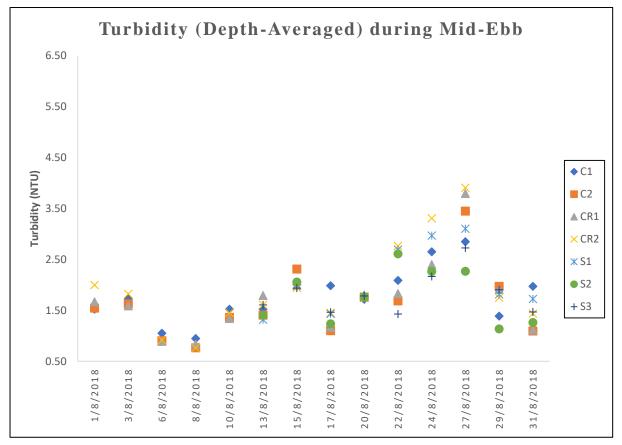





Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

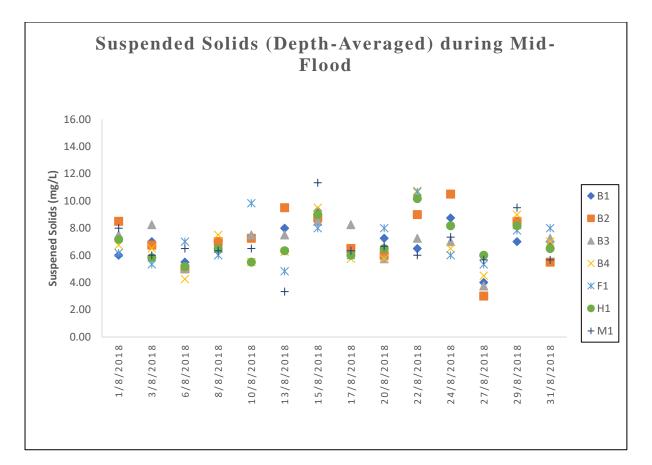


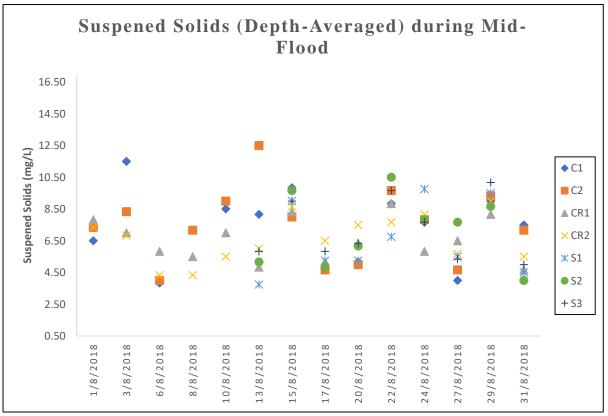


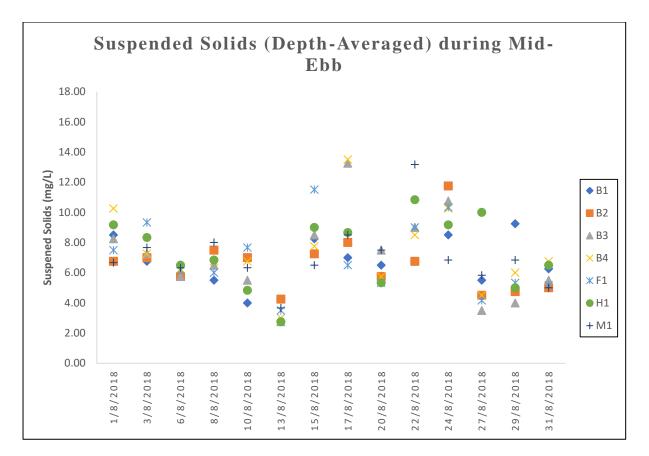



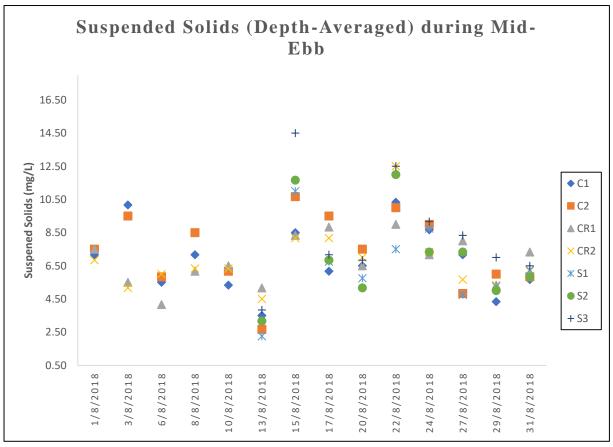


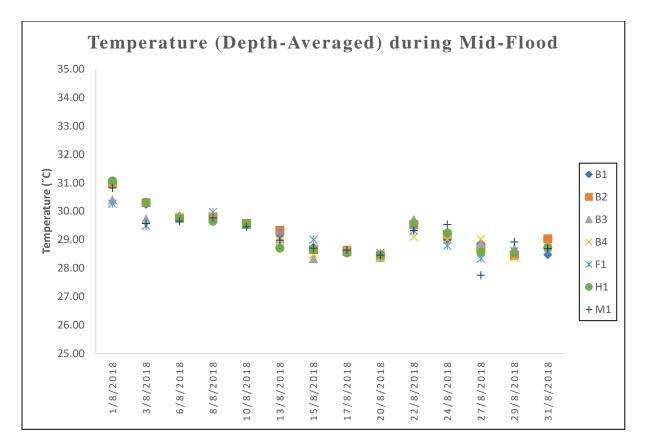


Note: The Action and Limit Level of turbidity can be referred to **Table 2.7** of the monthly EM & A report.

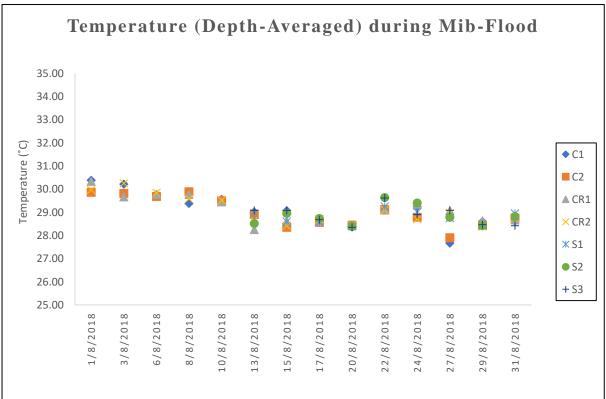




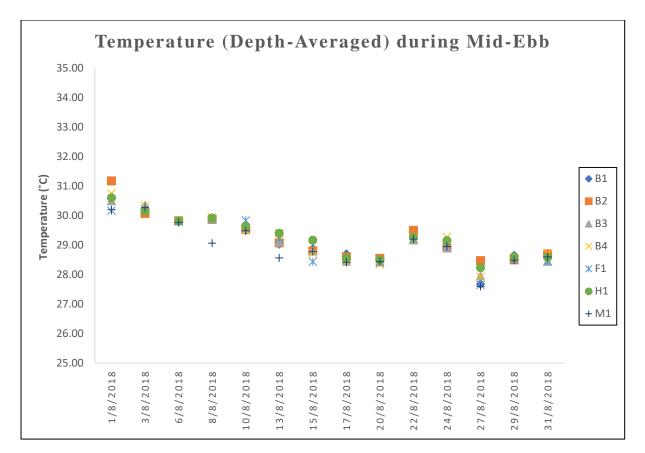


Note: The Action and Limit Level of turbidity can be referred to **Table 2.7** of the monthly EM & A report.

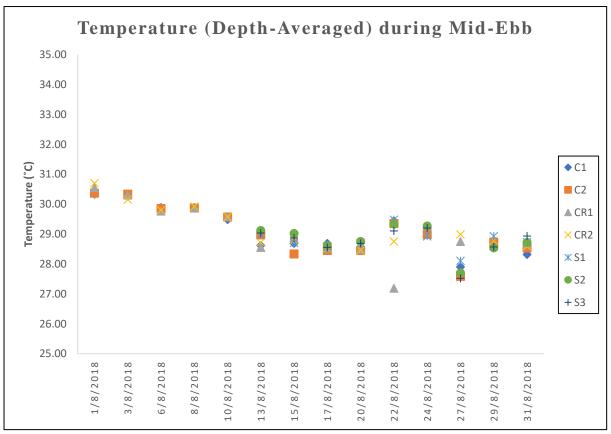




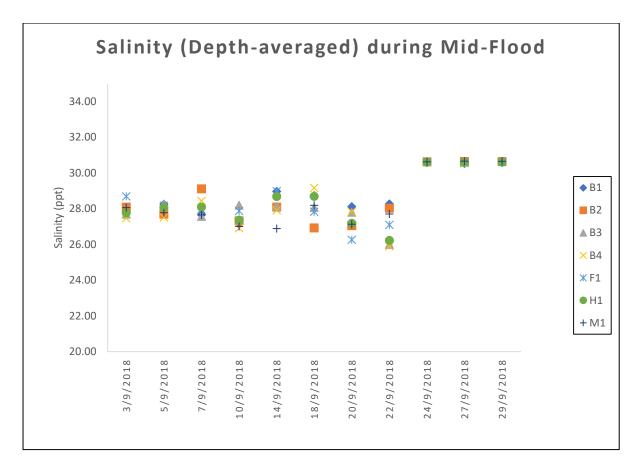


Note: The Action and Limit Level of suspened solids can be referred to **Table 2.7** of the monthly EM & A report.

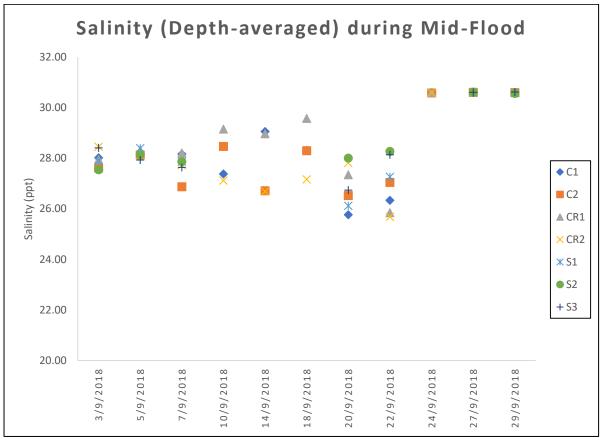




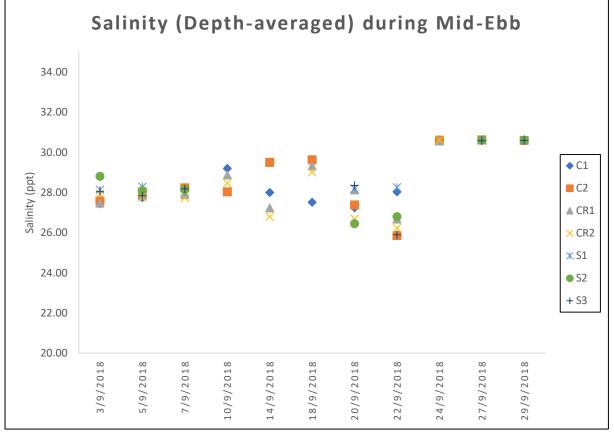


Note: The Action and Limit Level of suspened solids can be referred to **Table 2.7** of the monthly EM & A report.

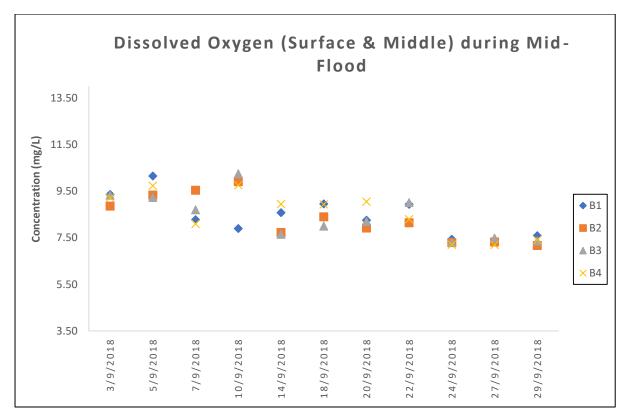


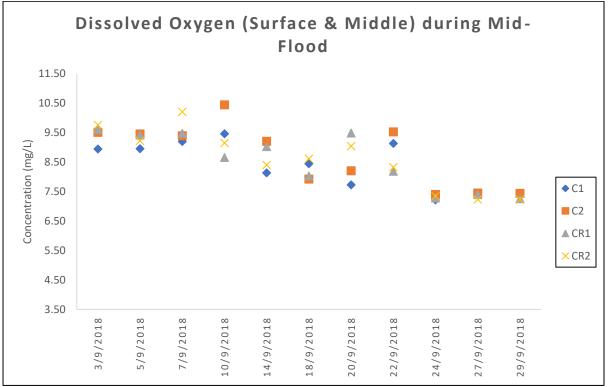




Note: The Action and Limit Level of temperature can be referred to **Table 2.7** of the monthly EM & A report.

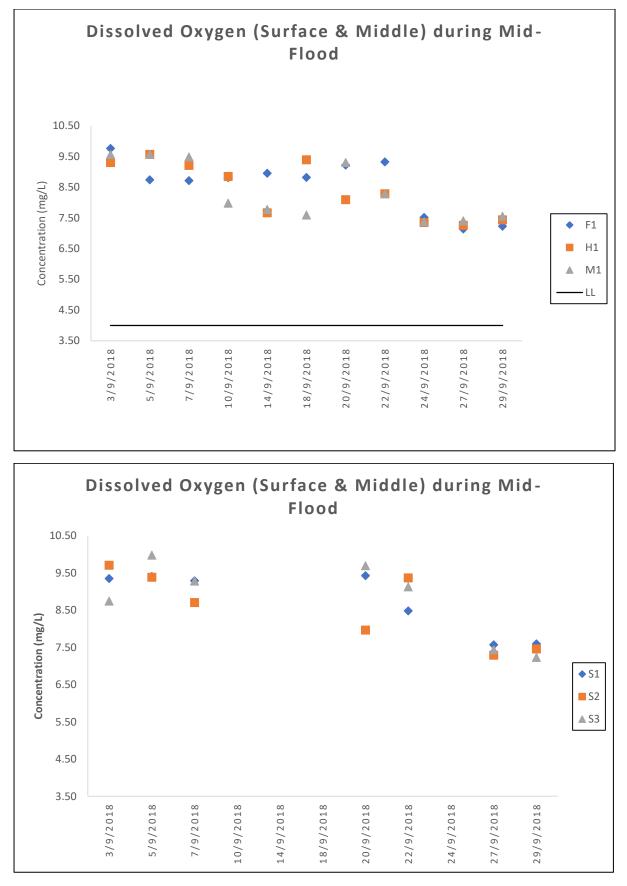


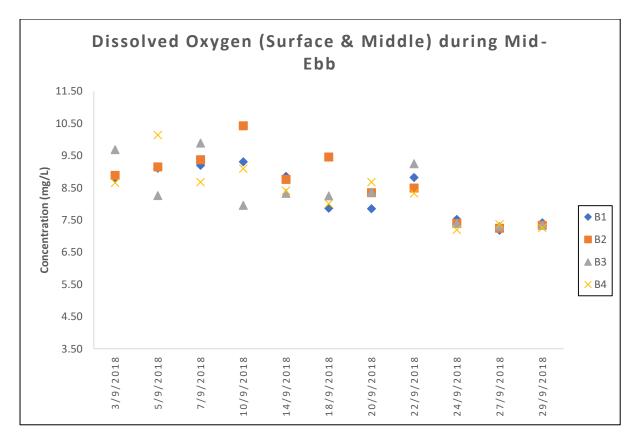


Note: The Action and Limit Level of temperature can be referred to **Table 2.7** of the monthly EM & A report.

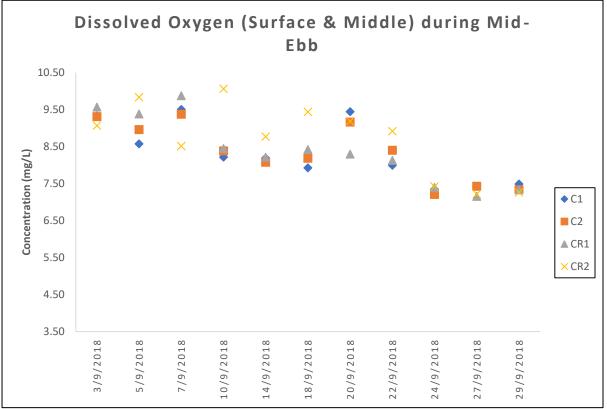




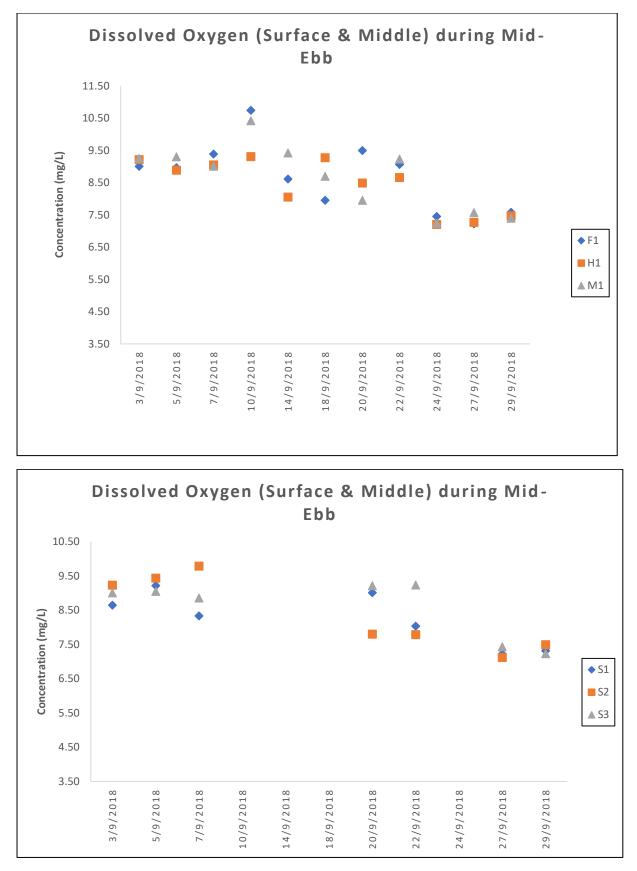





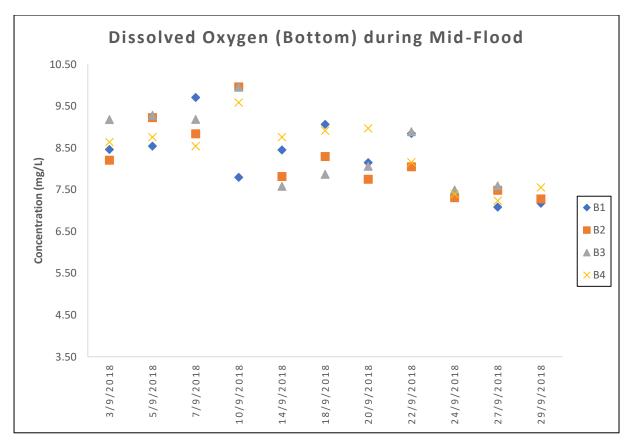



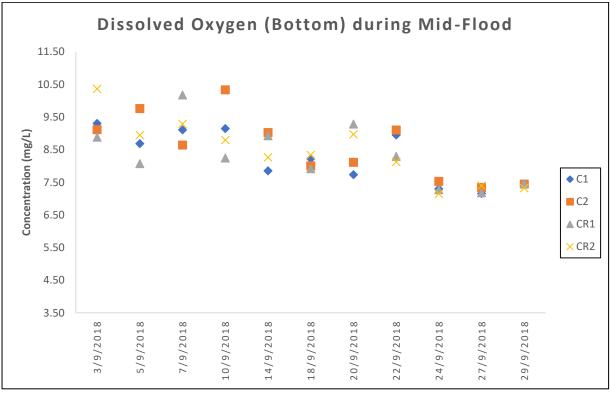




Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

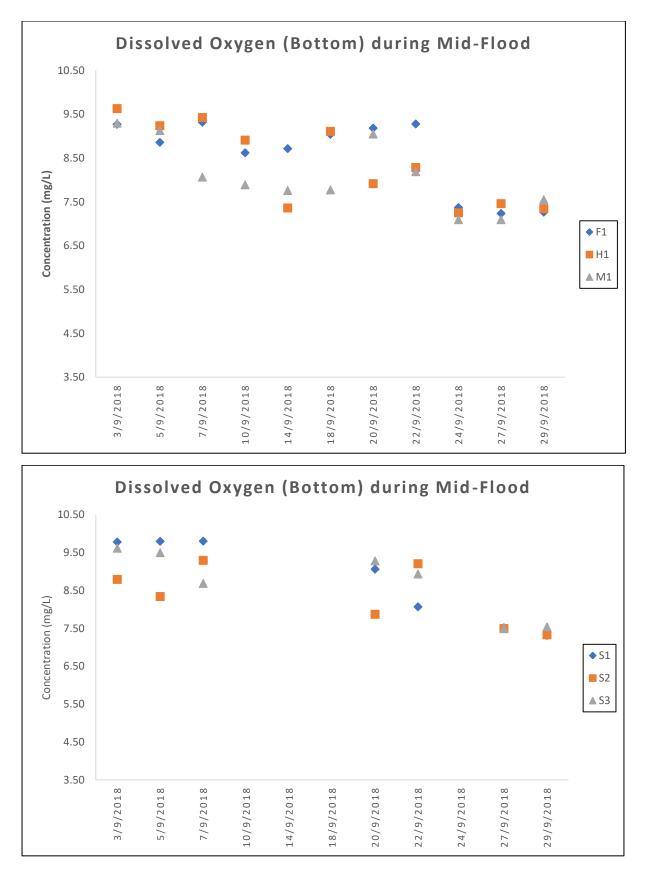



Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

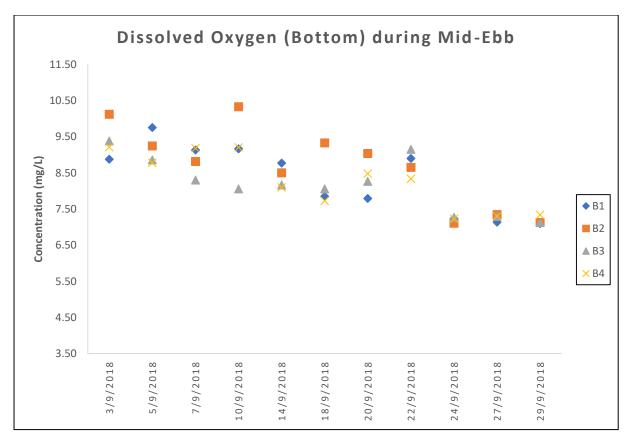



Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.



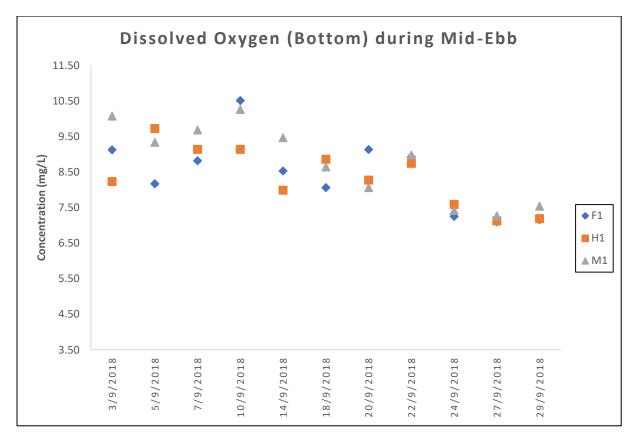

Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

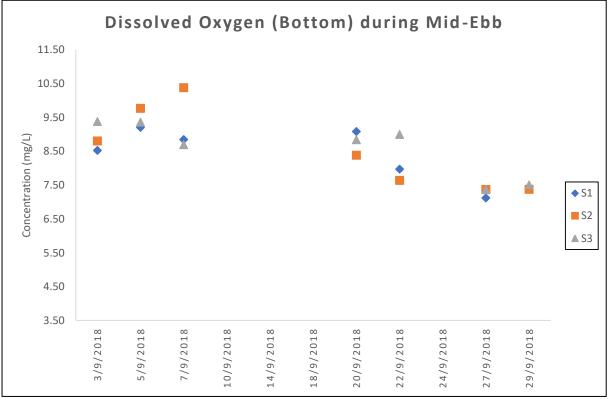




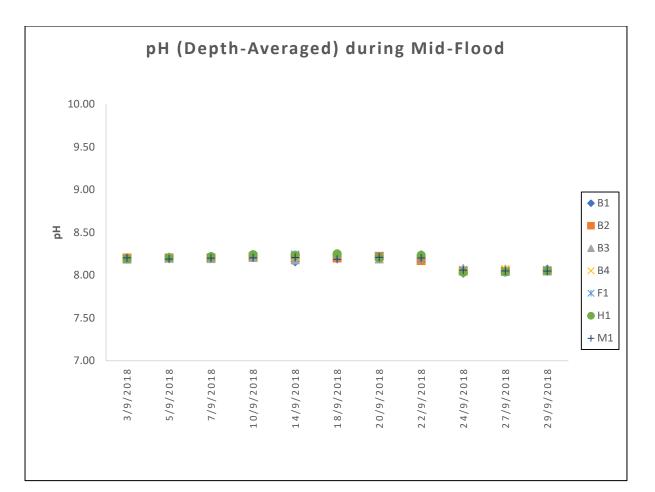


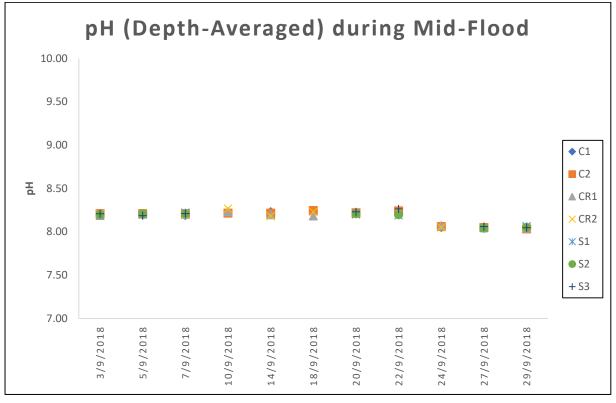
Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

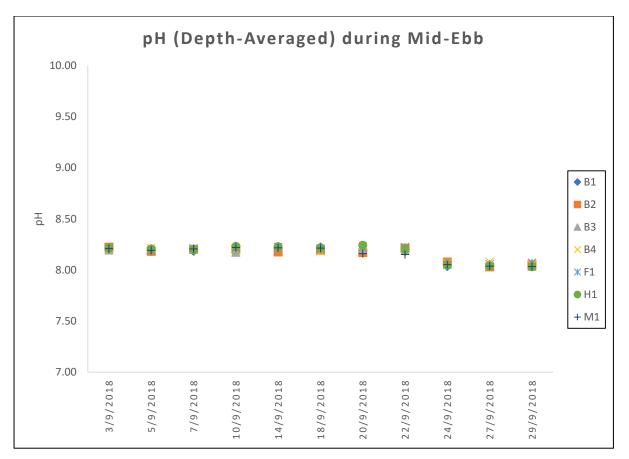


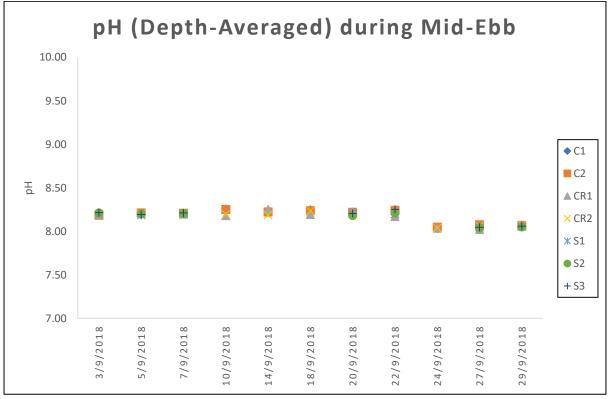


Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

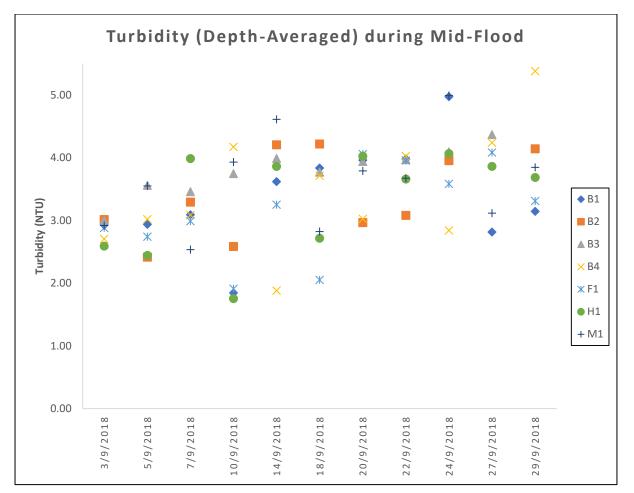


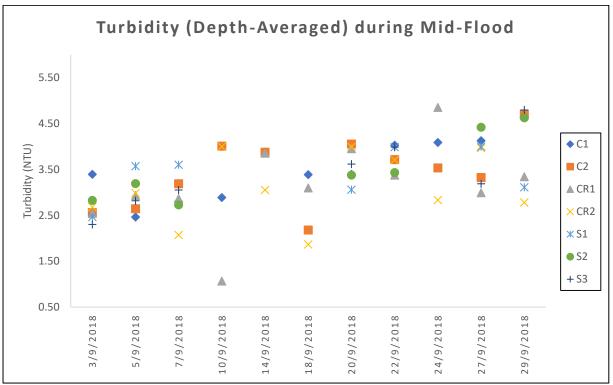




Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

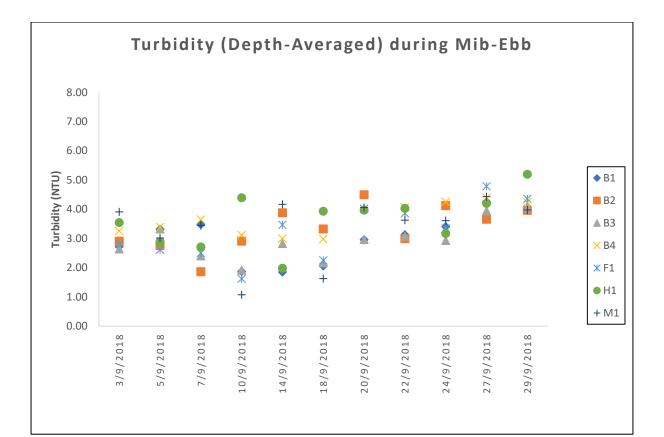


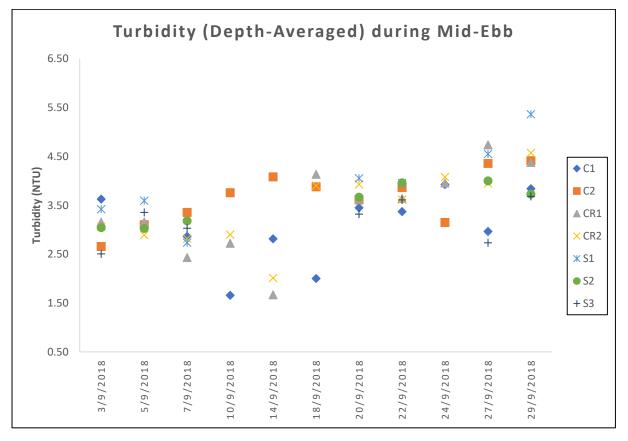





Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

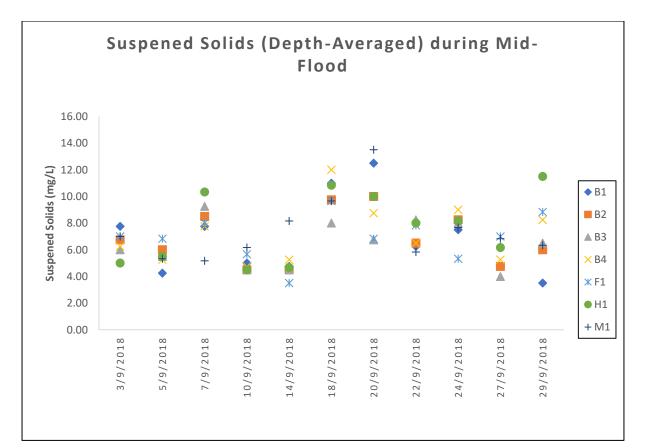


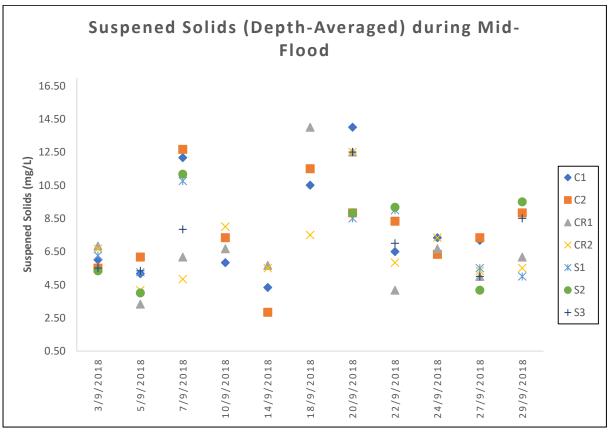


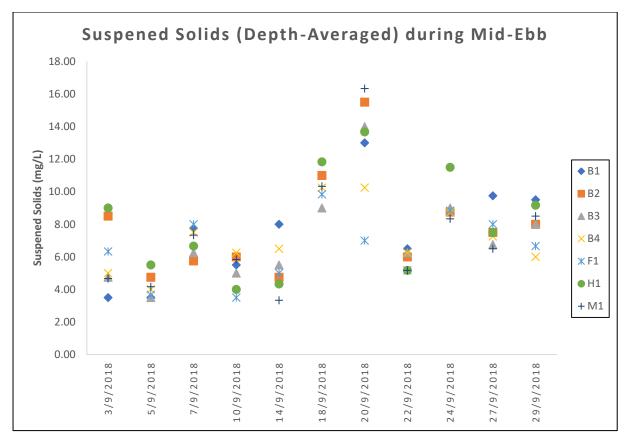



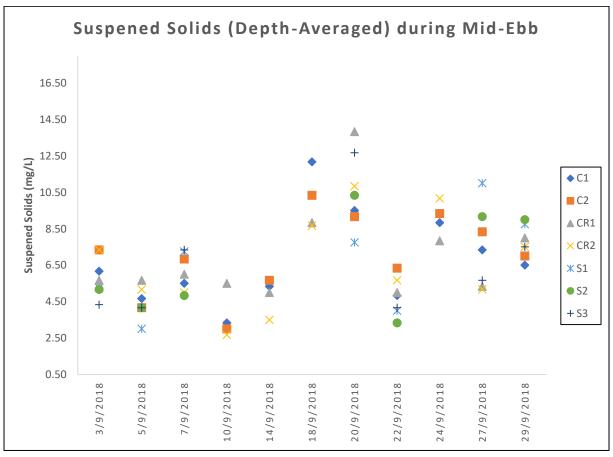


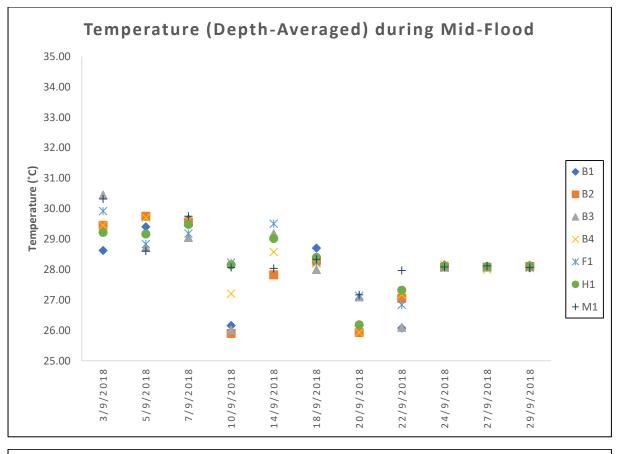


Note: The Action and Limit Level of turbidity can be referred to **Table 2.7** of the monthly EM & A report.

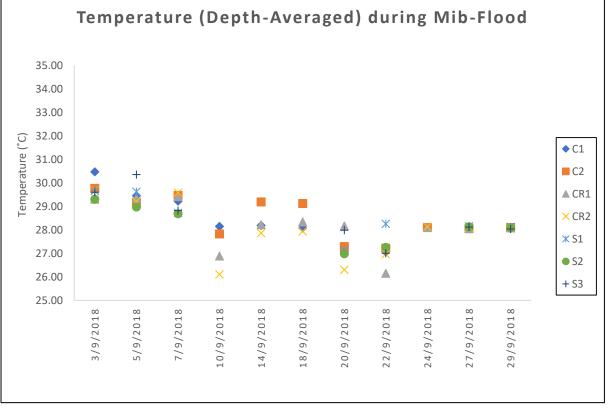




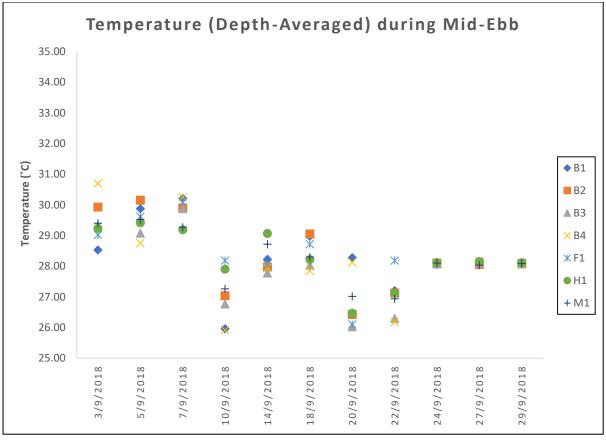


Note: The Action and Limit Level of turbidity can be referred to **Table 2.7** of the monthly EM & A report.

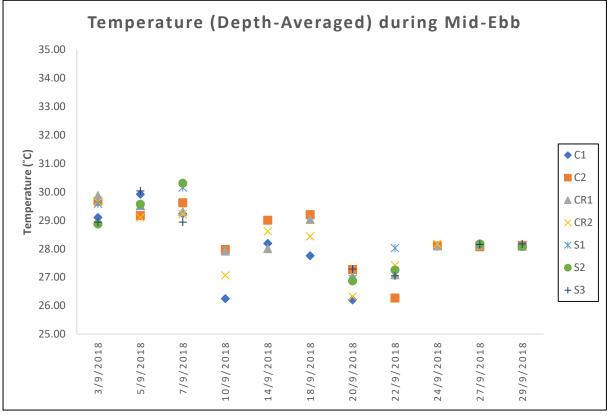




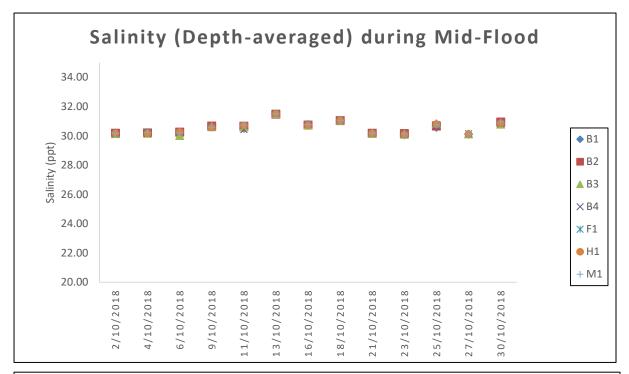


Note: The Action and Limit Level of suspened solids can be referred to **Table 2.7** of the monthly EM & A report.

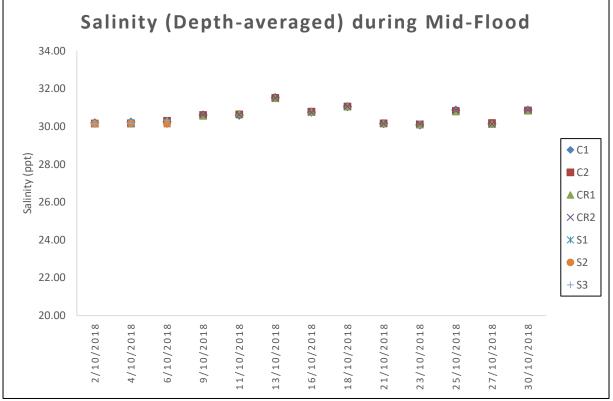


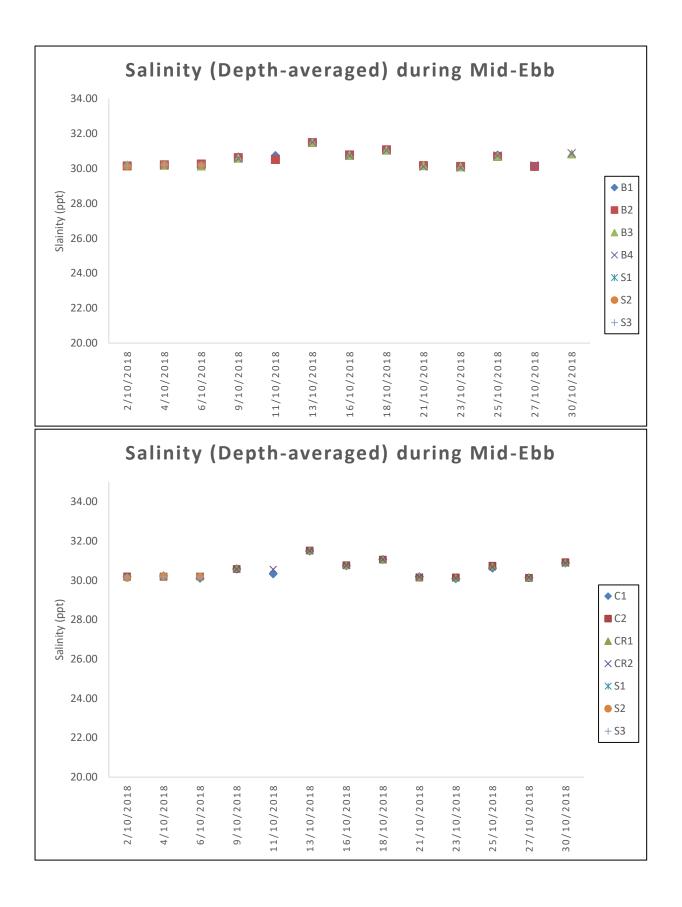


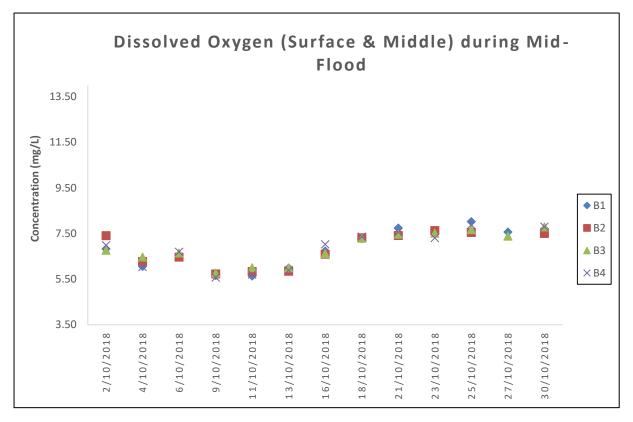


Note: The Action and Limit Level of suspened soilds can be referred to **Table 2.7** of the monthly EM & A report.





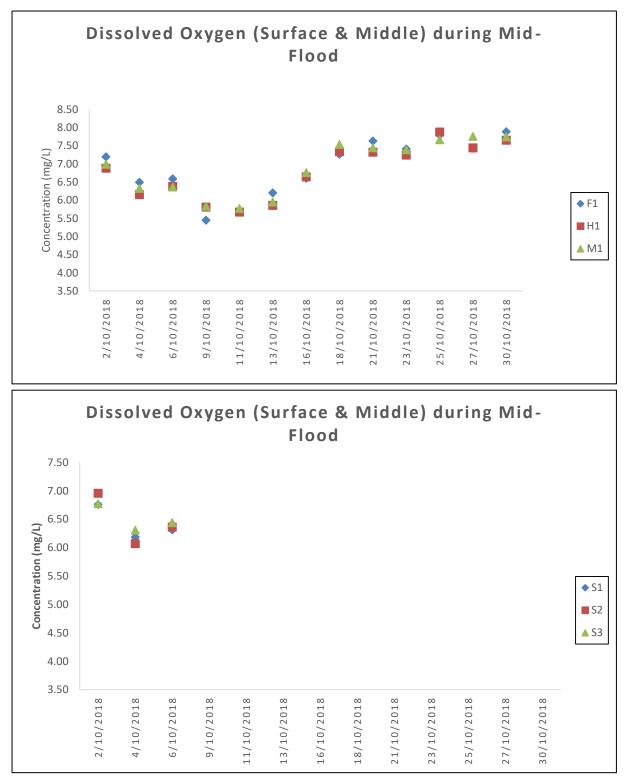


Note: The Action and Limit Level of temperature can be referred to **Table 2.7** of the monthly EM & A report.



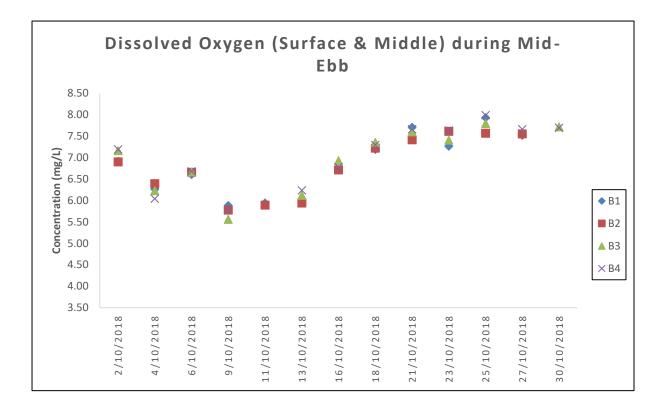



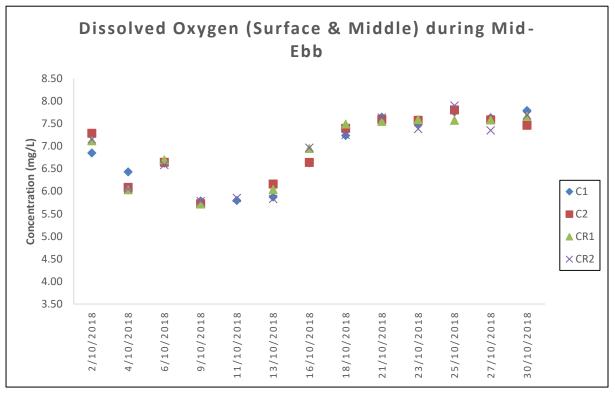

Note: The Action and Limit Level of temperature can be referred to **Table 2.7** of the monthly EM & A report.



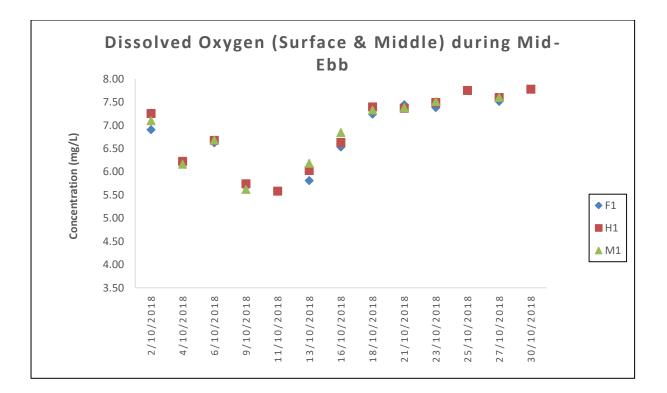


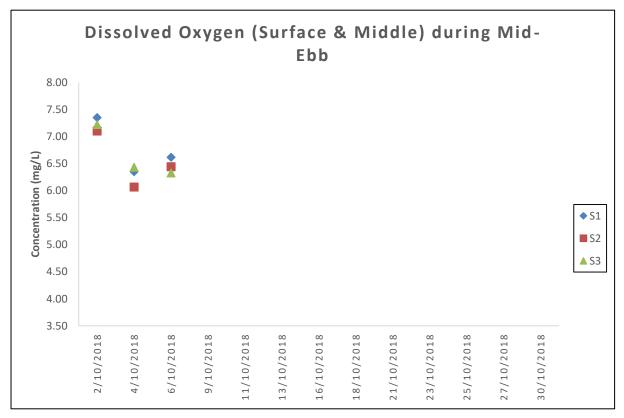


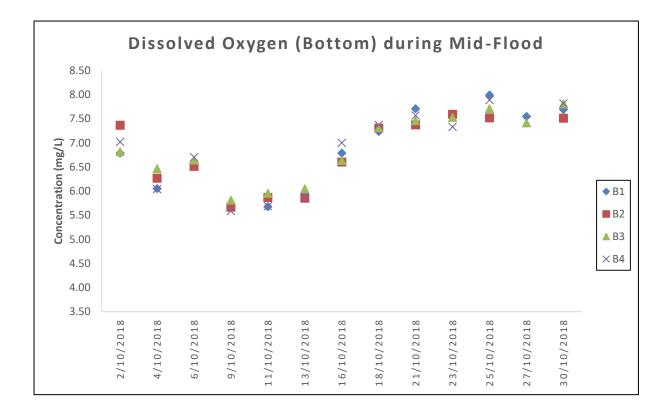



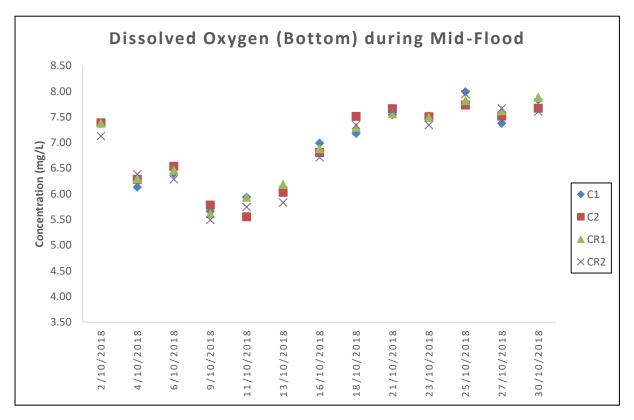

Note: The Action and Limit Level of Dissolved oxygen can be referred to **Table 2.7** of the monthly EM &A report.



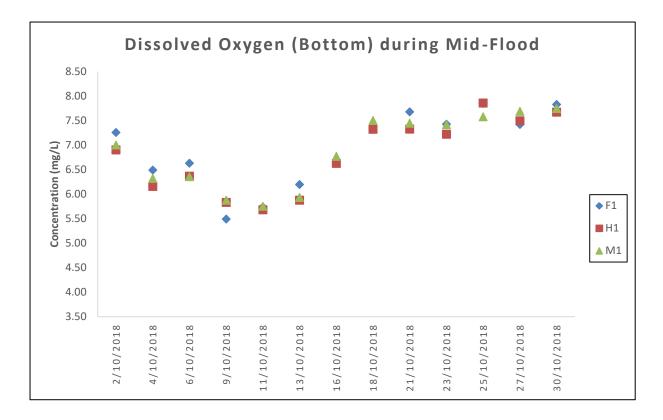


Note: The Action and Limit Level of Dissolved oxygen can be referred to **Table 2.7** of the monthly EM &A report.

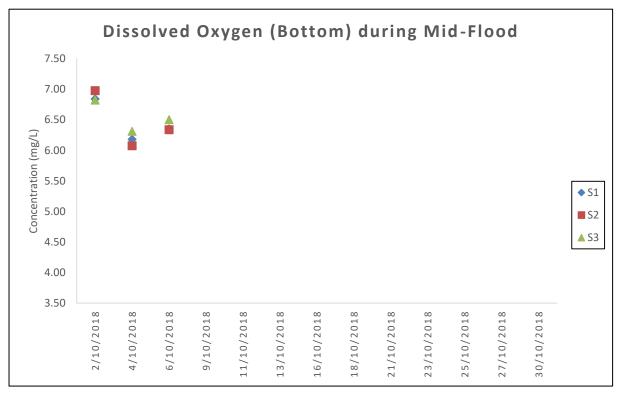




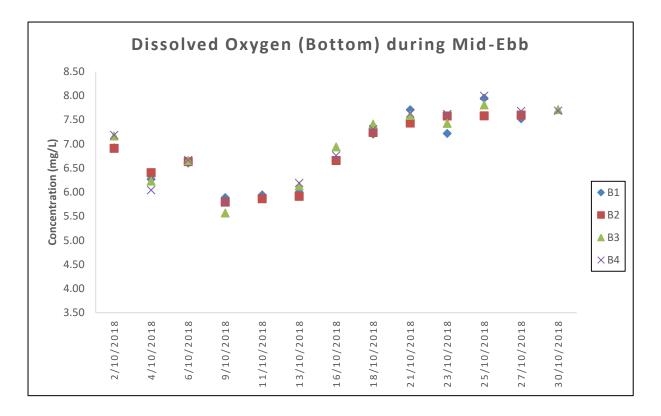


Note: The Action and Limit Level of Dissolved oxygen can be referred to **Table 2.7** of the monthly EM &A report.

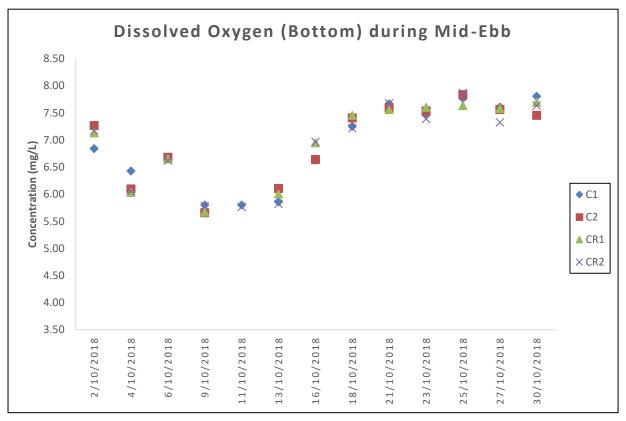




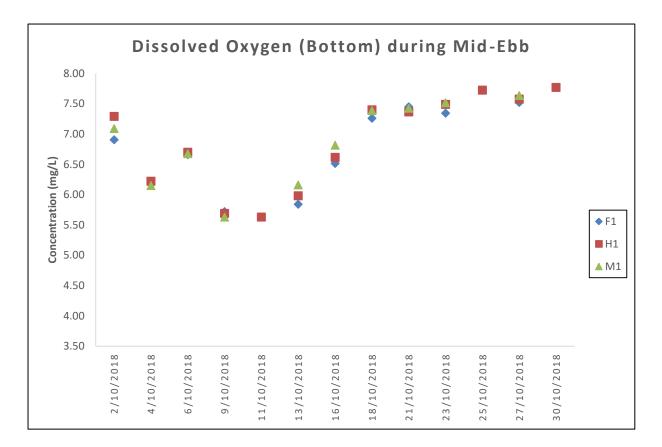


Note: The Action and Limit Level of Dissolved oxygen can be referred to **Table 2.7** of the monthly EM &A report.

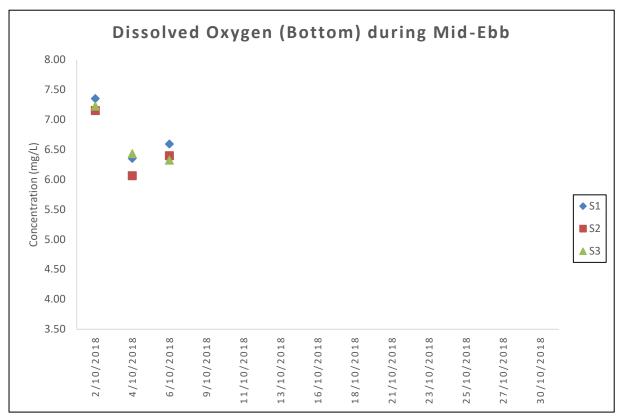




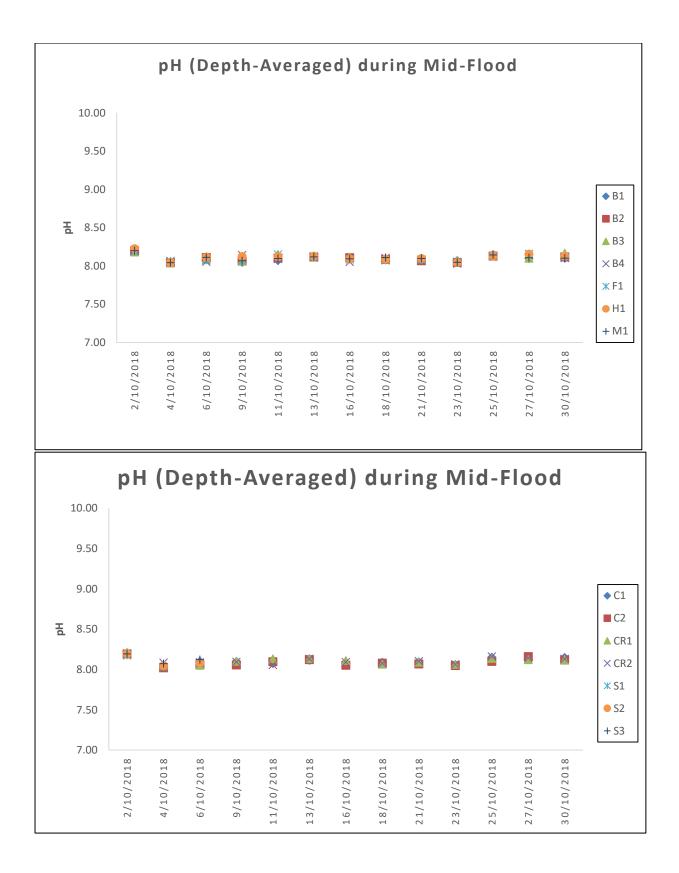


Note: The Action and Limit Level of Dissolved oxygen can be referred to **Table 2.7** of the monthly EM &A report.

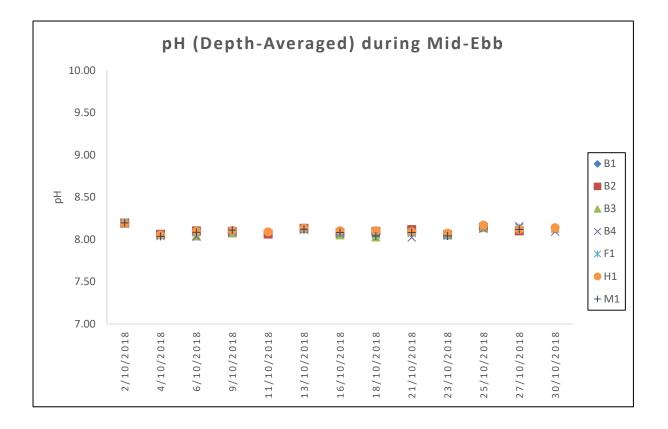


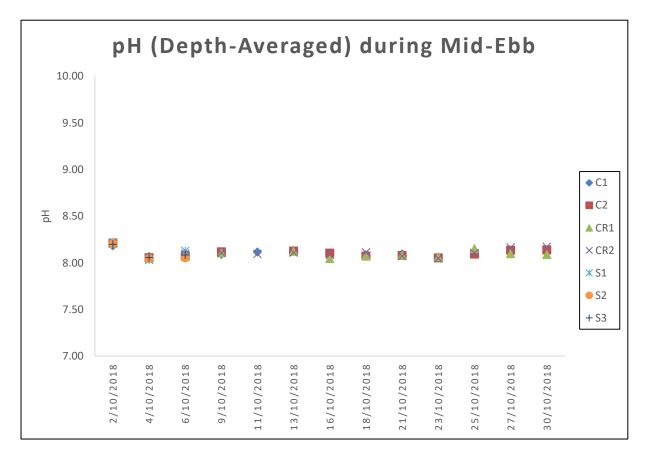


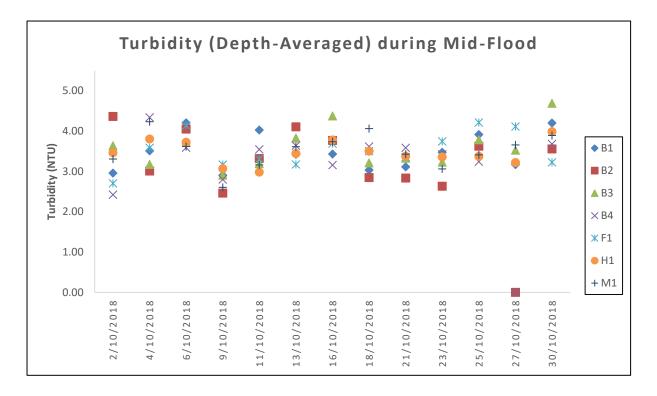


Note: The Action and Limit Level of Dissolved oxygen can be referred to **Table 2.7** of the monthly EM &A report

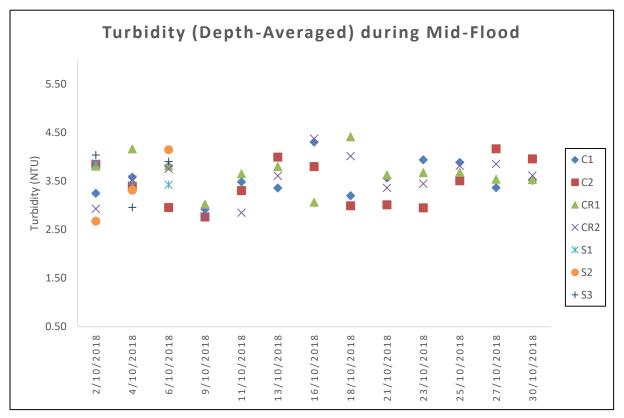




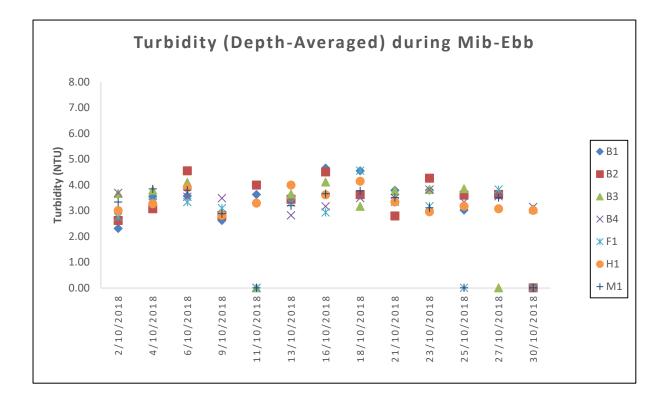


Note: The Action and Limit Level of Dissolved oxygen can be referred to **Table 2.7** of the monthly EM &A report.

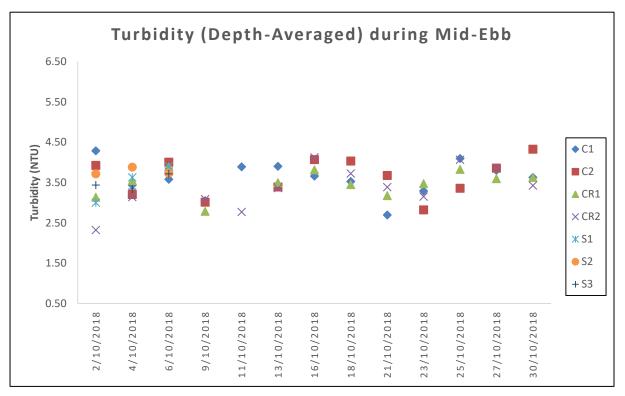


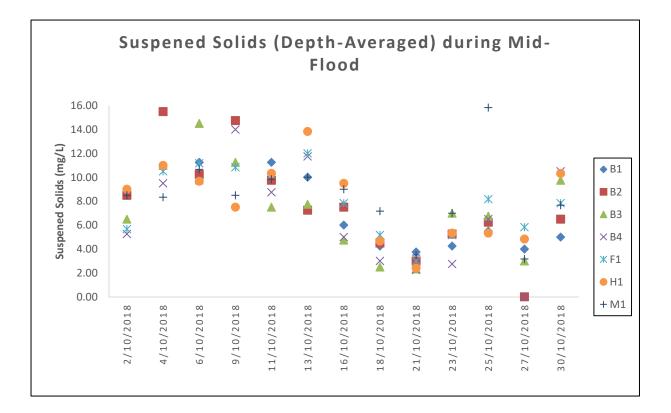


Note: The Action and Limit Level of Dissolved oxygen can be referred to **Table 2.7** of the monthly EM &A report.

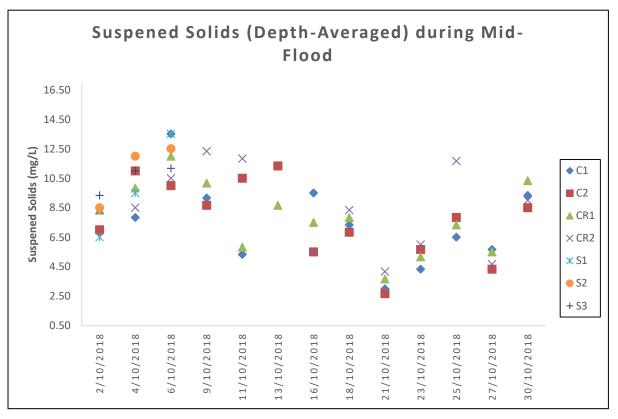




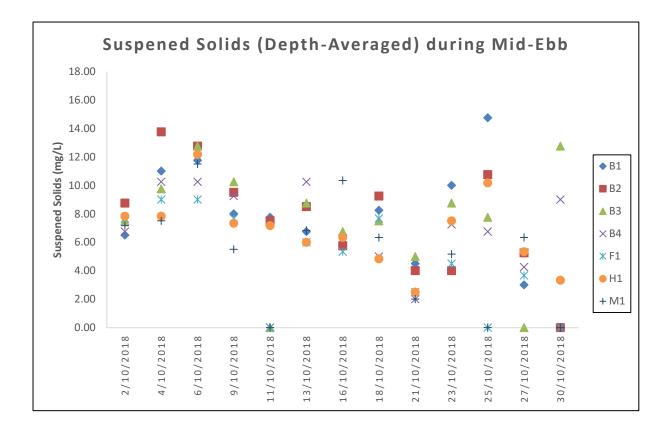



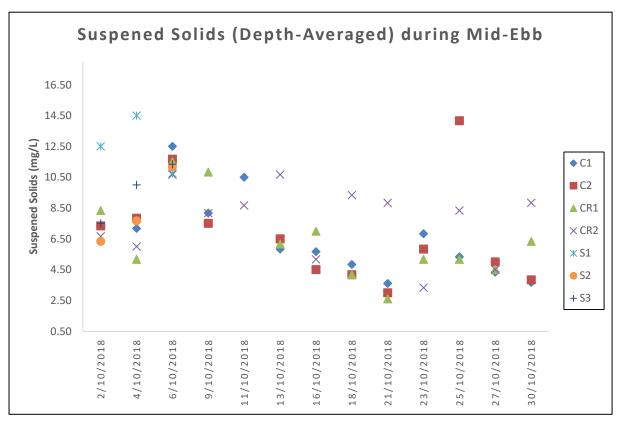


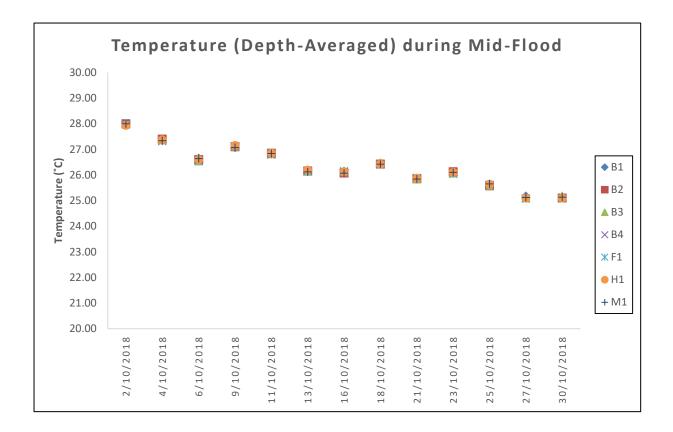


Note: The Action and Limit Level of Turbidity can be referred to **Table 2.7** of the monthly EM &A report

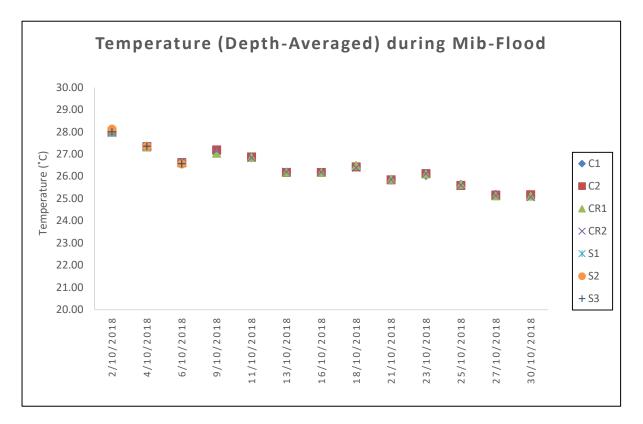




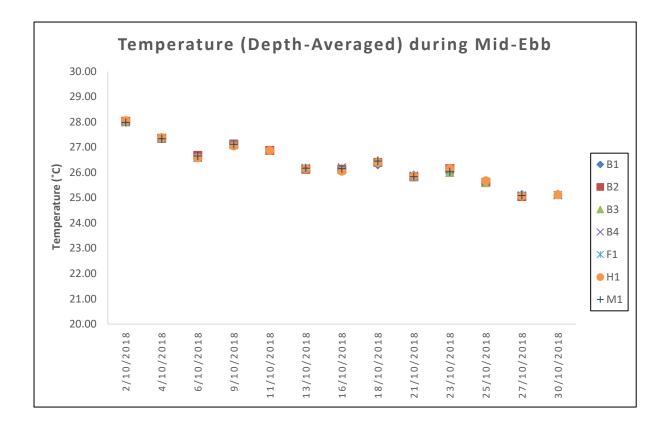


Note: The Action and Limit Level of Turbidity can be referred to **Table 2.7** of the monthly EM &A report

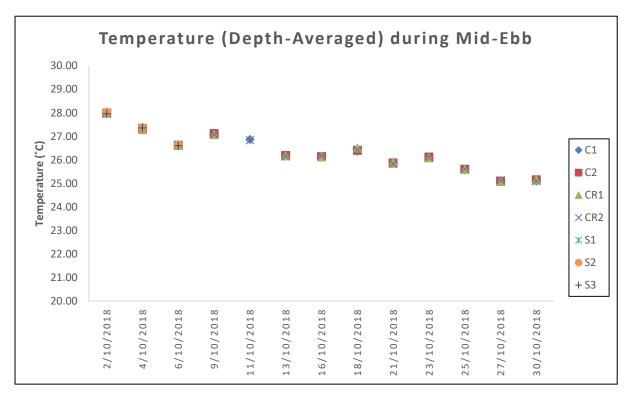




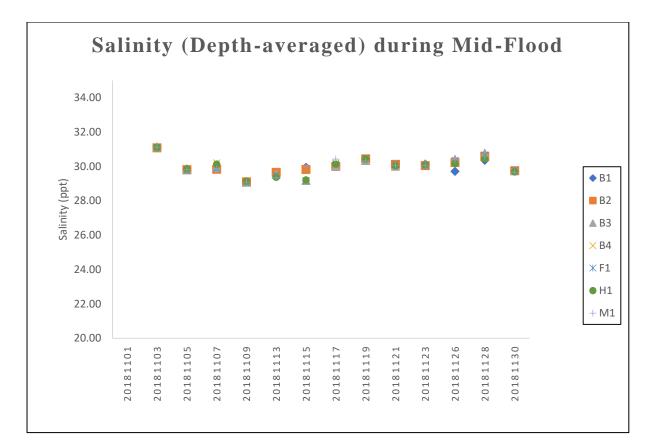


Note: The Action and Limit Level of Suspended Solids can be referred to **Table 2.7** of the monthly EM &A report

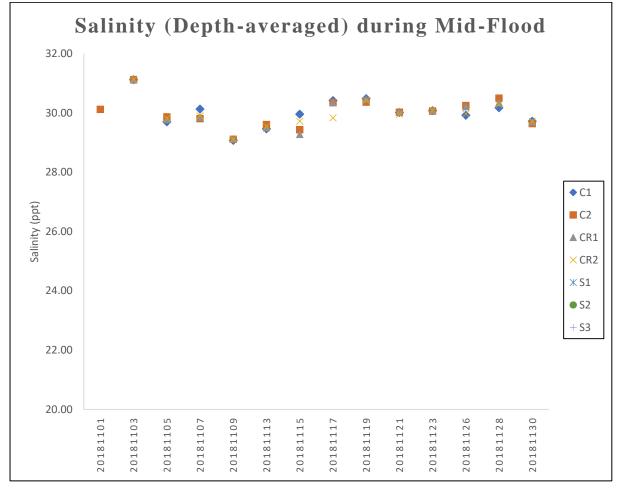


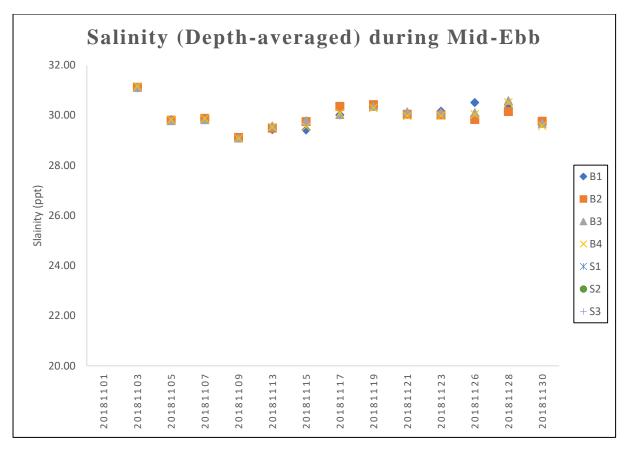


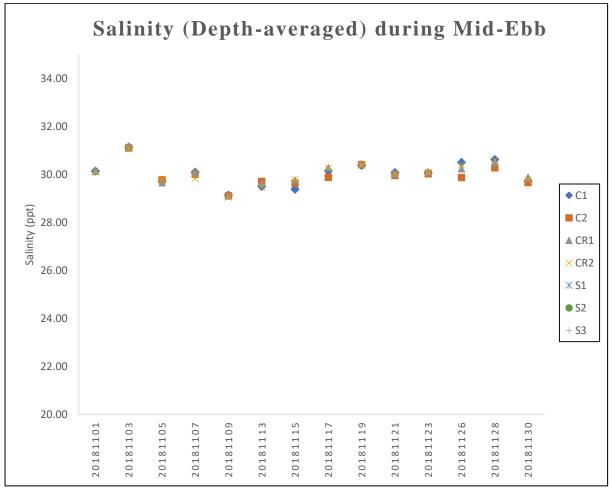


Note: The Action and Limit Level of Suspended Solids can be referred to **Table 2.7** of the monthly EM &A report.

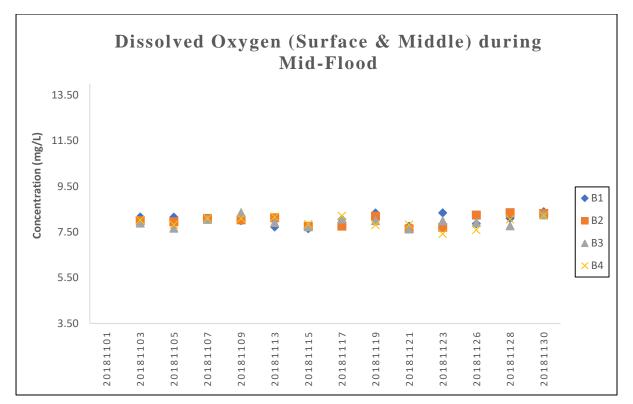


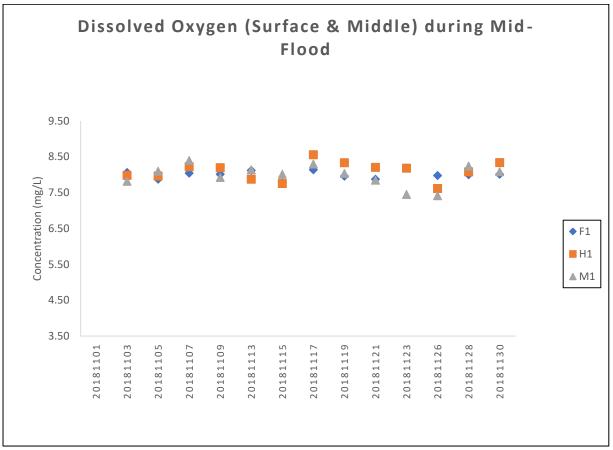




Note: The Action and Limit Level of Temperature can be referred to **Table 2.7** of the monthly EM &A report.

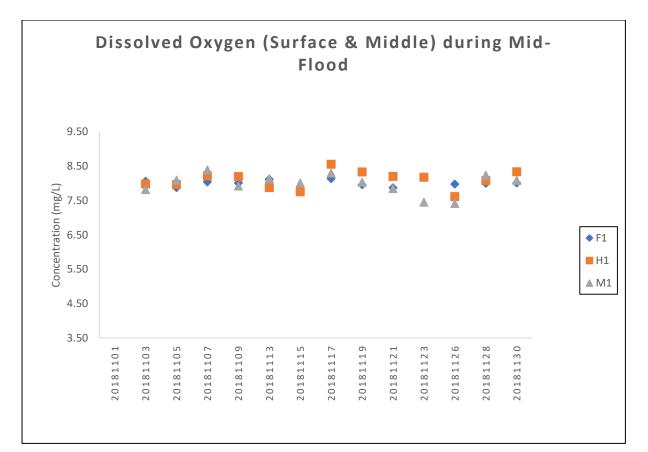


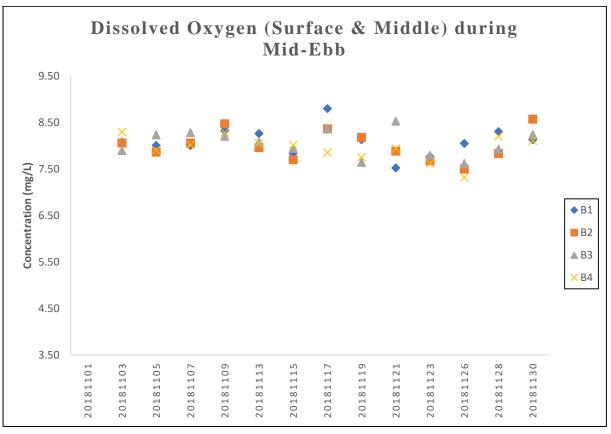





Note: The Action and Limit Level of Temperature can be referred to **Table 2.7** of the monthly EM &A report

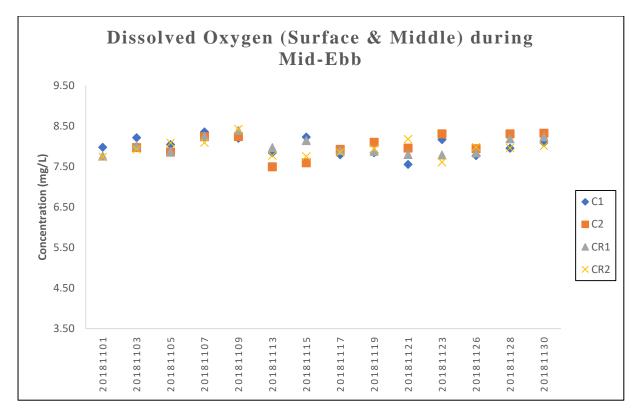


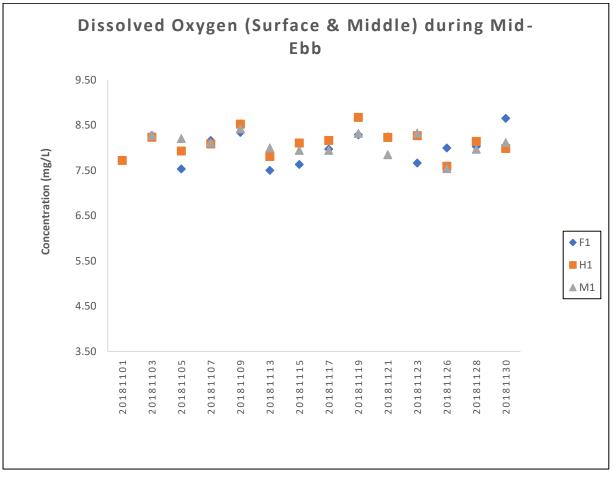


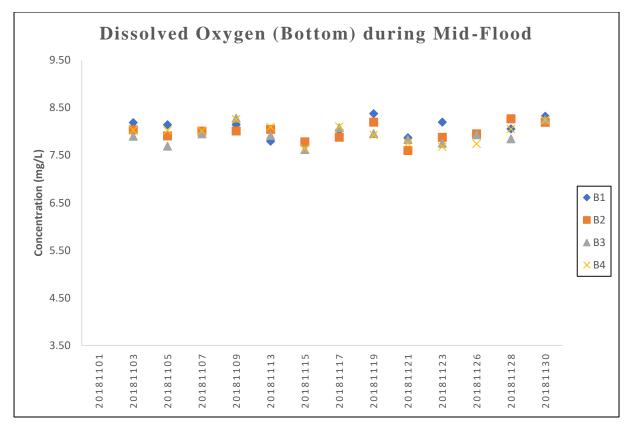



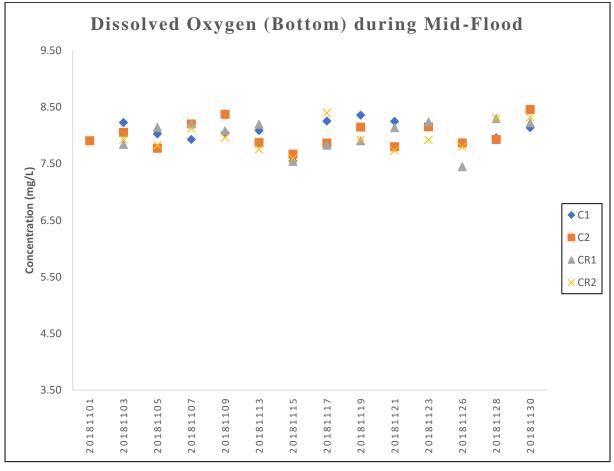


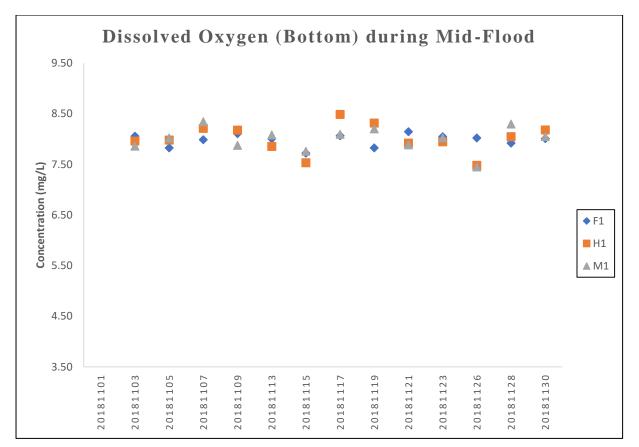


Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

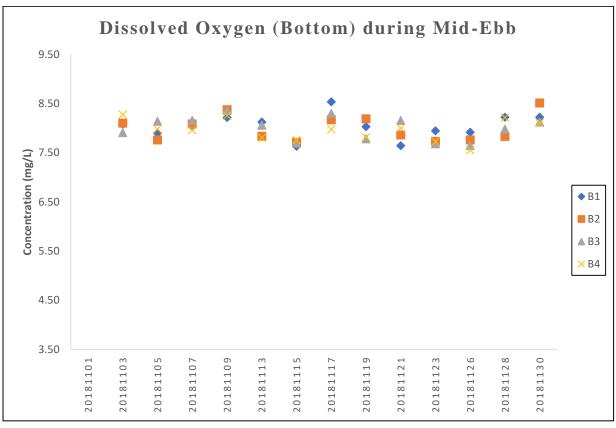




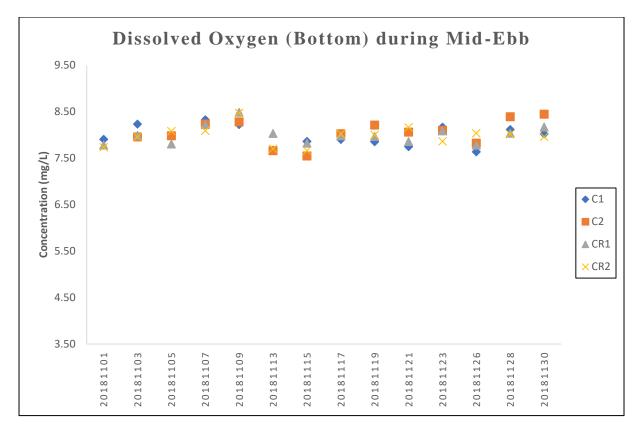


Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

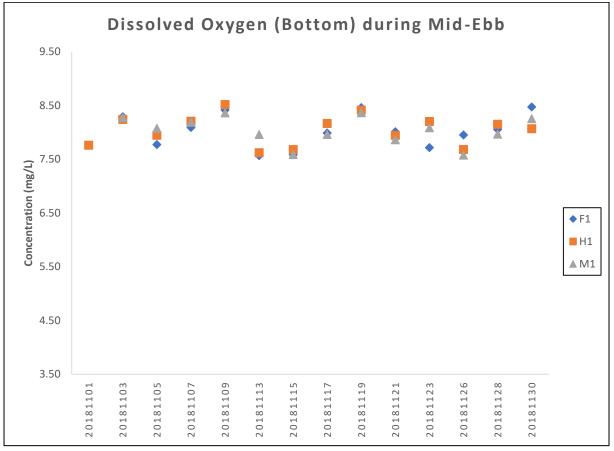




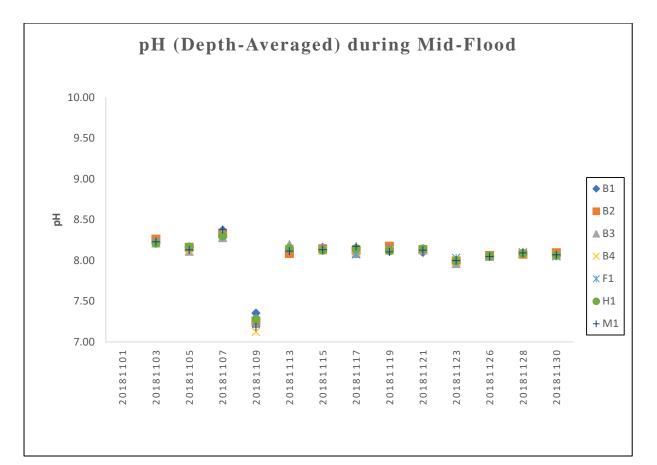


Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

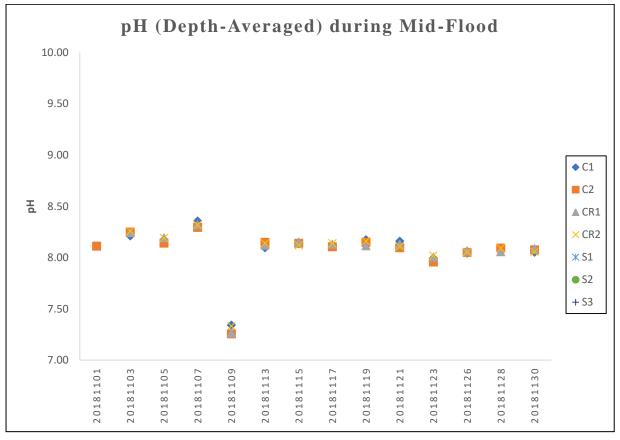


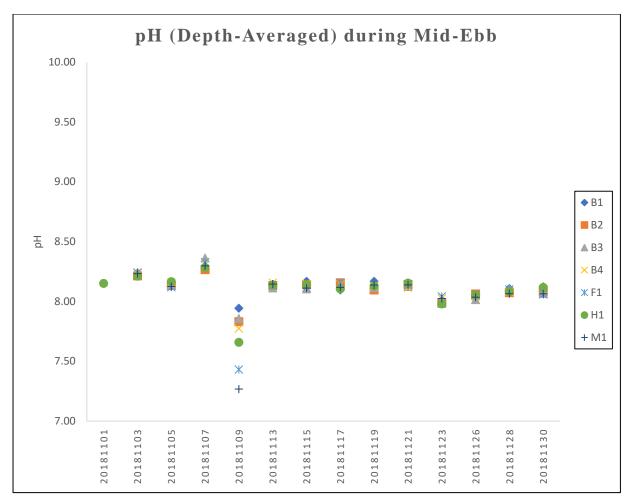


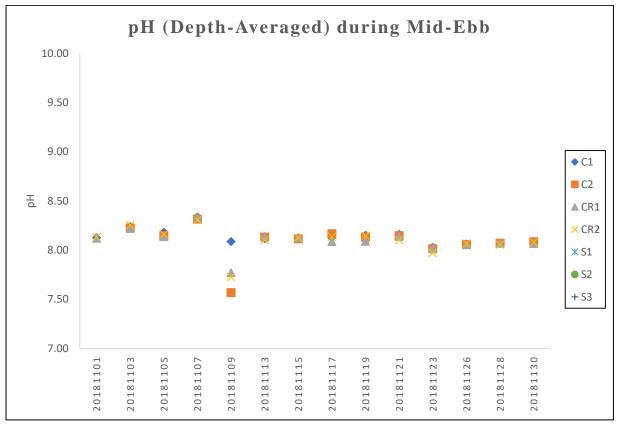


Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

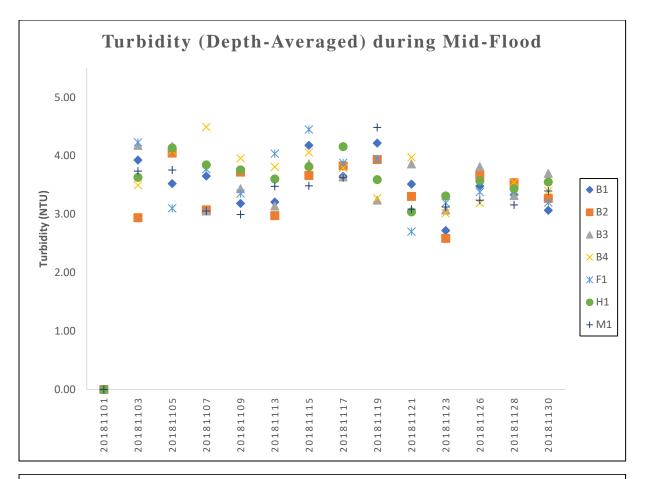


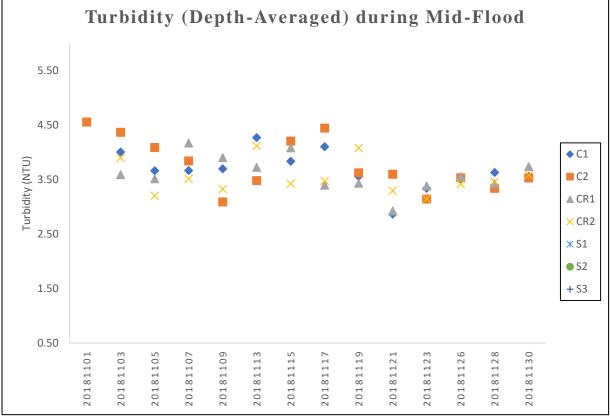




Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

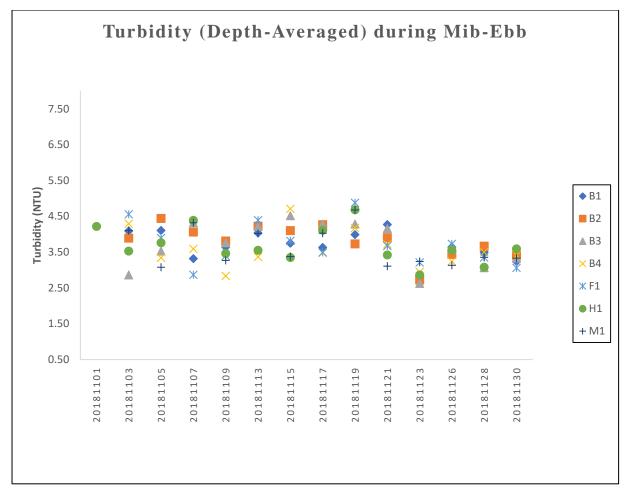


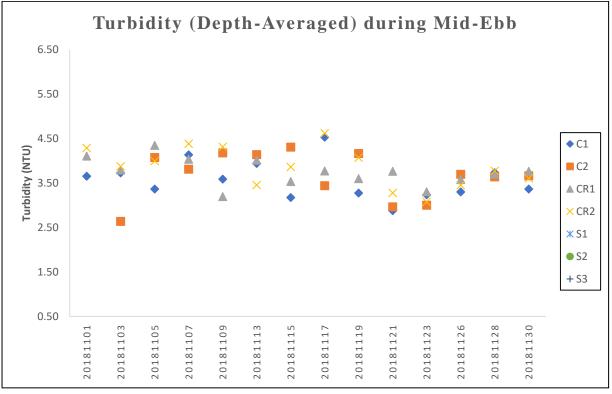





Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

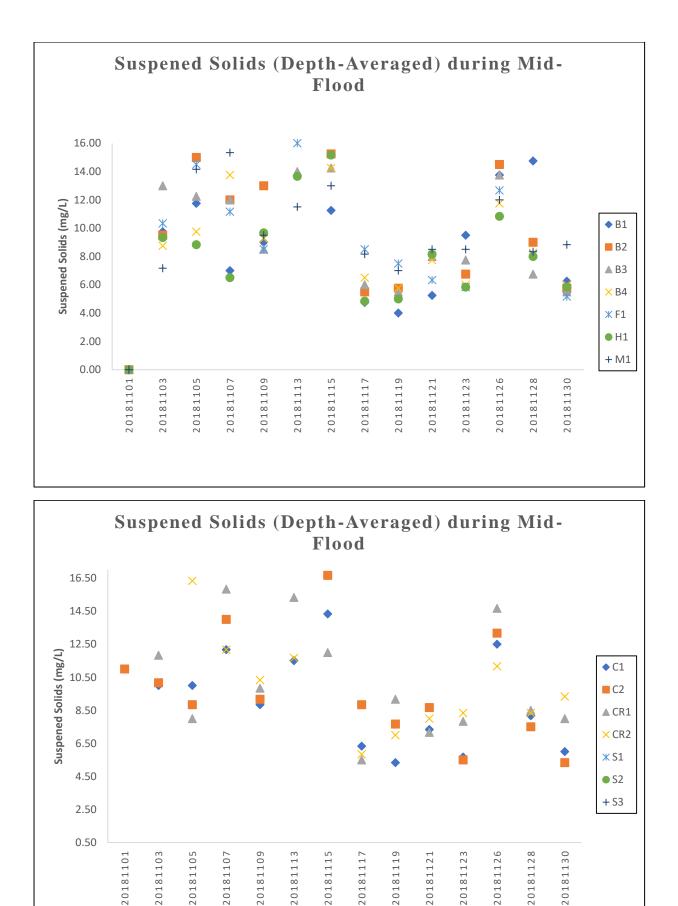




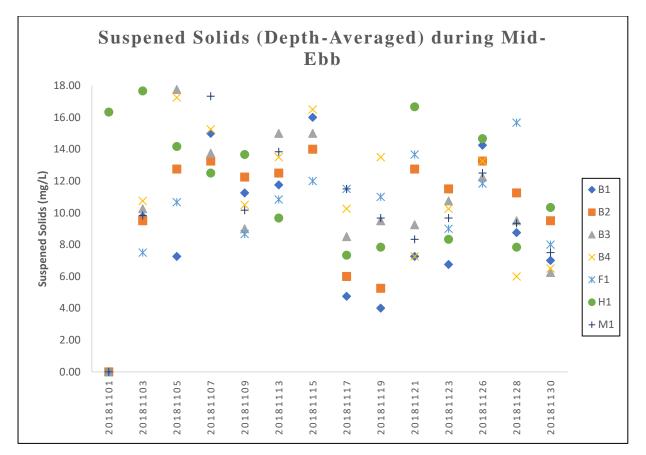



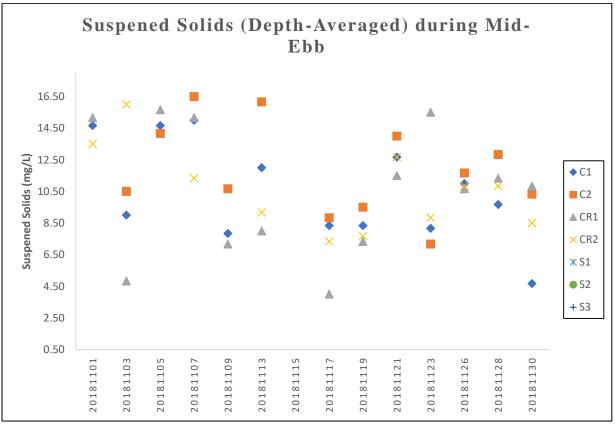





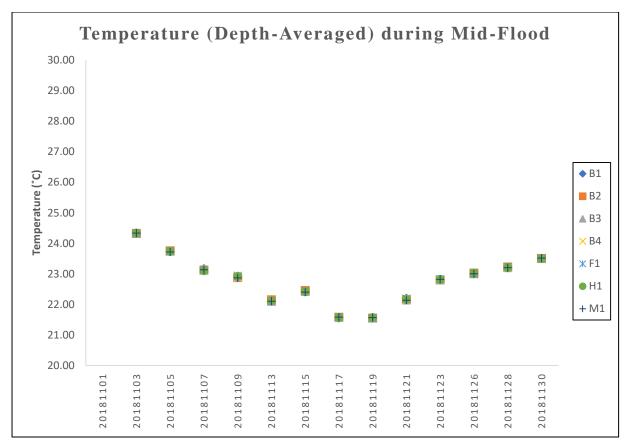



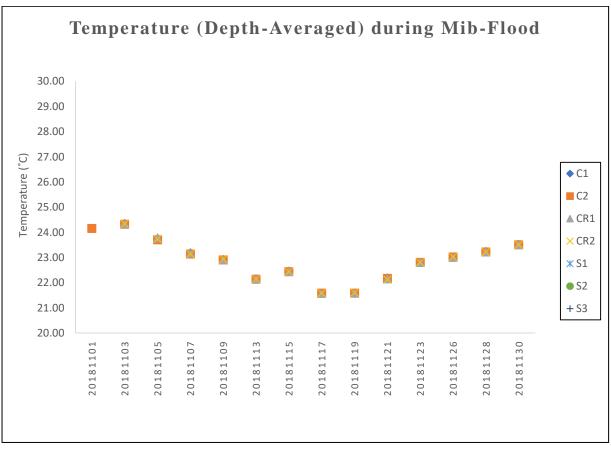

Note: The Action and Limit Level of turbidity can be referred to **Table 2.7** of the monthly EM & A report.



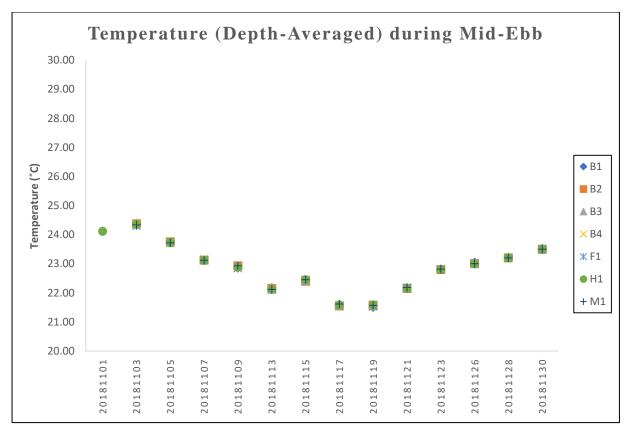



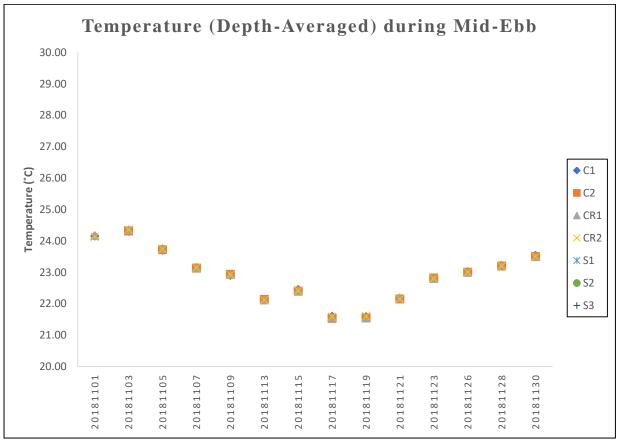

Note: The Action and Limit Level of turbidity can be referred to **Table 2.7** of the monthly EM & A report.





Note: The Action and Limit Level of suspened solids can be referred to **Table 2.7** of the monthly EM & A report.







Note: The Action and Limit Level of suspened solids can be referred to **Table 2.7** of the monthly EM & A report.





Note: The Action and Limit Level of temperature can be referred to **Table 2.7** of the monthly EM & A report.





Note: The Action and Limit Level of temperature can be referred to **Table 2.7** of the monthly EM & A report.

# Appendix E HOKLAS Laboratory Certificate

Integrated Waste Management Facilities, Phase 1



Hong Kong Accreditation Service 香港認可處

#### Certificate of Accreditation 認可證書

This is to certify that 特此證明

#### ALS TECHNICHEM (HK) PTY LIMITED

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, New Territories, Hong Kong 香港新界葵涌永業街1-3號忠信針織中心11樓

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 為香港認可處執行機關根據認可證詞委員會建議而接受的

#### HOKLAS Accredited Laboratory 「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO / IEC 17025 : 2005 – General requirements for the competence 此實驗所符合ISO / IEC 17025 : 2005 – 《測試及校正實驗所能力的通用規定》所訂的要求。 of testing and calibration laboratories and it has been accredited for performing specific tests or calibrations as 獲認可進行載於香港實驗所認可計劃《認可實驗所名冊》內下這測試類別中的指定 listed in the HOKLAS Directory of Accredited Laboratories within the test category of 測試或校正工作

> Environmental Testing 環境測試

This laboratory is accredited in accordance with the recognized international Standard ISO / IEC 17025 : 2005. 本實驗所乃相違公認的國際標準 ISO / IEC 17025 : 2005 獲得證可。 This accreditation demonstrates technical compatence for a defined scope and the operation of a laboratory 道項證可資格源示在指定範疇所需的技術能力及實驗所質量增減指的運作 quality management system (see joint IAF-ILAC-ISO Companie), (見國際認可論權、國際實驗所認可合作組織及國際標準化組織的融合公報)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 香港認可處執行機關的權限在此蓋上通用印章

CHAN Sing Sing, Terence, Executive Administrator 執行幹事 陳成城 Issue Date: 5 May 2009 簽發日期:二零零九年五月五日

Registration Number: HOKLAS 066 註冊號碼:



Date of First Registration: 15 September 1995 首次註冊日期:一九九五年九月十五日

This certilicate is issued sobject to the torms and conditions laid down by HKAS 本證書按照香港銀可處訂立的條款及條件發出 L 000552

Contract No. EP/SP/66/12

Integrated Waste Management Facilities, Phase 1

Keppel Seghers - Zhen Hua Joint Venture



Hong Kong Accreditation Service 香港認可處

#### Certificate of Accreditation 認可證書

This is to certify that 特此證明

#### ACUMEN LABORATORY AND TESTING LIMITED

浩科檢測中心有限公司

Lot 12, Tam Kon Shan Road, North Tsing Yi, New Territories, Hong Kong 香港新界青衣北担杆山路12路段

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 在認可諮詢委員會的建議下獲香港認可處執行機關接受為

#### HOKLAS Accredited Laboratory

「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO/IEC 17025:2005 and it has been accredited for performing specific tests or calibrations as listed in the scope of accreditation within the test category of

**Environmental Testing** 

此實驗所符合ISO/IEC 17025:2005所訂的要求 並獲認可進行載於認可範圍內下述測試類別中的指定測試成校正工作

環境測試

This accreditation to ISO/IEC 17025:2005 demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (see joint IAF-ILAC-ISO Communiqué). 此項 ISO/IEC 17025:2005 的認可資格證明此實驗所與借指定範疇內所須的技術能力並 實施一套實驗所質量管理麵系(見圖際認可論握、圖際實驗所認可合作組織及圖際標準化組織的聯合公經)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 現經香港認可處執行機關授權在此蓋上香港認可處的印章

WONG Wang-wh, Executive Administrator 執行幹事 黃宏華 Issue Date: 16 July 2014 簽發日期:二零一四年七月十六日 Registration Number: 註冊號碼:

This certificate is issued subject to the terms and conditions laid down by HKAS. 本證書按照書港師可處訂立的條款及條件登出



Date of First Registration: 16 July 2014 首次註冊日期:二零一四年七月十六日

L 001195

# Appendix F Water Quality Equipment Calibration Certificate



ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

# REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

| CONTACT: | MR. NELSON TSUI                                             | WORK ORDER:                                                   | HK1849814                                    |
|----------|-------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------|
| CLIENT:  | ACUITY SUSTAINABILITY CONSULTING LIMITED                    |                                                               |                                              |
| ADDRESS: | 11 TAM KONG SUN ROAD,<br>TSING YI (N),<br>N.T.<br>HONG KONG | SUB-BATCH:<br>LABORATORY:<br>DATE RECEIVED:<br>DATE OF ISSUE: | 0<br>HONG KONG<br>13-Sep-2018<br>28-Sep-2018 |

# COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

| Scope of Test:       | Dissolved Oxygen, pH Value, Turbidity, Salinity and Temperature |
|----------------------|-----------------------------------------------------------------|
| Equipment Type:      | Multifunctional Meter                                           |
| Brand Name:          | YSI                                                             |
| Model No.:           | Professional DSS                                                |
| Serial No.:          |                                                                 |
| Equipment No.:       | 15M101091                                                       |
| Date of Calibration: | 27 September, 2018                                              |

## <u>NOTES</u>

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Ma Si

Mr Chan Siu Ming, Vico Manager - Inorganic

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

# REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

| WORK ORDER:                                                                                           | HK1849814                                                                               |                           | ALS               |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------|-------------------|
| SUB-BATCH:<br>DATE OF ISSUE:<br>CLIENT:                                                               | 0<br>28-Sep-2018<br>ACUITY SUSTAINABILITY CONS                                          | SULTING LIMITED           |                   |
| Equipment Type:<br>Brand Name:<br>Model No.:<br>Serial No.:<br>Equipment No.:<br>Date of Calibration: | Multifunctional Meter<br>YSI<br>Professional DSS<br><br>15M101091<br>27 September, 2018 | Date of Next Calibration: | 27 December, 2018 |

#### PARAMETERS:

#### Dissolved Oxygen Method Ref: APHA (21st edition), 4500-O: G

| Expected Reading (mg/L) | Displayed Reading (mg/L) | Tolerance (mg/L) |
|-------------------------|--------------------------|------------------|
| 2.66                    | 2.48                     | -0.18            |
| 5.53                    | 5.50                     | -0.03            |
| 7.75                    | 7.70                     | -0.05            |
|                         | Tolerance Limit (mg/L)   | ±0.20            |

#### pH Value

Method Ref: APHA (21st edition), 4500H:B

| Expected Reading (pH unit) | Displayed Reading (pH unit) | Tolerance (pH unit) |
|----------------------------|-----------------------------|---------------------|
| 4.0                        | 3.99                        | -0.01               |
| 7.0                        | 6.97                        | -0.03               |
| 10.0                       | 9.95                        | -0.05               |
|                            | Tolerance Limit (pH unit)   | ±0.20               |

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ma Sin

Mr Chan Siu Ming, Vico Manager - Inorganic

# REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

| WORK ORDER:                                                                                           | HK1849814                                                                               |                           | ALS               |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------|-------------------|
| SUB-BATCH:<br>DATE OF ISSUE:<br>CLIENT:                                                               | 0<br>28-Sep-2018<br>ACUITY SUSTAINABILITY CONS                                          | SULTING LIMITED           |                   |
| Equipment Type:<br>Brand Name:<br>Model No.:<br>Serial No.:<br>Equipment No.:<br>Date of Calibration: | Multifunctional Meter<br>YSI<br>Professional DSS<br><br>15M101091<br>27 September, 2018 | Date of Next Calibration: | 27 December, 2018 |

# PARAMETERS:

Turbidity

#### Method Ref: APHA (21st edition), 2130B

| Expected Reading (NTU) | Displayed Reading (NTU) | Tolerance (%) |  |  |
|------------------------|-------------------------|---------------|--|--|
| 0                      | 0.60                    |               |  |  |
| 4                      | 3.81                    | -4.8          |  |  |
| 40                     | 38.58                   | -3.6          |  |  |
| 80                     | 76.48                   | -4.4          |  |  |
| 400                    | 418.12                  | + 4.5         |  |  |
| 800                    | 797.52                  | -0.3          |  |  |
|                        | Tolerance Limit (%)     | ±10.0         |  |  |
|                        | · · · ·                 |               |  |  |

Salinity

#### Method Ref: APHA (21st edition), 2520B

| Expected Reading (ppt) | Displayed Reading (ppt) | Tolerance (%) |
|------------------------|-------------------------|---------------|
| 0                      | 0.00                    |               |
| 10                     | 9.70                    | -3.0          |
| 20                     | 18.58                   | -7.1          |
| 30                     | 28.21                   | -6.0          |
|                        | Tolerance Limit (%)     | ±10.0         |

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ma Li

Mr Chan Siu Ming, Vico Manager - Inorganic

# REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

| WORK ORDER:                                                                                           | HK1849814                                                                               |                                    | ALS               |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------|-------------------|
| SUB-BATCH:<br>DATE OF ISSUE:<br>CLIENT:                                                               | 0<br>28-Sep-2018<br>ACUITY SUSTAINABILITY CO                                            | NSULTING LIMITED                   |                   |
| Equipment Type:<br>Brand Name:<br>Model No.:<br>Serial No.:<br>Equipment No.:<br>Date of Calibration: | Multifunctional Meter<br>YSI<br>Professional DSS<br><br>15M101091<br>27 September, 2018 | Date of Next Calibration:          | 27 December, 2018 |
| PARAMETERS:<br>Temperature                                                                            |                                                                                         | rnational Accreditation New Zealar |                   |

|                       | Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure. |                        |                             |  |  |
|-----------------------|-----------------------------------------------------------------------------------|------------------------|-----------------------------|--|--|
| Expected Reading (°C) |                                                                                   | Displayed Reading (°C) | Tolerance ( <sup>o</sup> C) |  |  |
|                       | 11.0                                                                              | 11.5                   | +0.5                        |  |  |
|                       | 21.5                                                                              | 21.1                   | -0.4                        |  |  |
|                       | 40.5                                                                              | 39.3                   | -1.2                        |  |  |
|                       |                                                                                   | Tolerance Limit (°C)   | ±2.0                        |  |  |

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Ma Sing

Mr Chan Siu Ming, Vico Manager - Inorganic

Appendix G Event / Action Plan for Water Quality Exceedance

| Event                                                                                 | Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                       | ET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IEC                                                                                                                                                                                                                                                                                                                                                                                              | SO                                                                                                                                                                                                                                                                                                                                                     | Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Action level<br>being exceeded<br>by one<br>sampling day                              | Repeat in-situ measurement<br>to confirm findings;<br>Identify source(s) of impact;<br>Inform IEC and Contractor;<br>Check monitoring data, all<br>plant, equipment and<br>Contractor's working methods;<br>Discuss mitigation measures<br>with IEC and Contractor;<br>Repeat measurement on next<br>day of exceedance.<br>(The above actions should be<br>taken within 1 working day<br>after the exceedance is<br>identified)                                                                                                     | Discuss with ET and<br>Contractor on the mitigation<br>measures;<br>Review proposals on<br>mitigation measures submitted<br>by Contractor and advise the<br>SO accordingly;<br>Assess the effectiveness of<br>the implemented mitigation<br>measures.<br>(The above actions should be<br>taken within 1 working day<br>after the exceedance is<br>identified)                                    | Discuss with IEC on the<br>proposed mitigation<br>measures;<br>Make agreement on the<br>mitigation measures to be<br>implemented.<br>(The above actions should be<br>taken within 1 working day<br>after the exceedance is<br>identified)                                                                                                              | Inform the SO and confirm<br>notification of the non-<br>compliance in writing;<br>Rectify unacceptable practice;<br>Check all plant and<br>equipment;<br>Consider changes of working<br>methods;<br>Discuss with ET and IEC and<br>propose mitigation measures<br>to IEC and SO within 3<br>working days;<br>Implement the agreed<br>mitigation measures.<br>(The above actions should be<br>taken within 1 working day<br>after the exceedance is<br>identified)                                    |
| Action level<br>being exceeded<br>by more than<br>one<br>consecutive<br>sampling days | Identify source(s) of impact;<br>Inform IEC and Contractor;<br>Check monitoring data, all<br>plant, equipment and<br>Contractor's working methods;<br>Discuss mitigation measures<br>with IEC and Contractor;<br>Ensure mitigation measures<br>are implemented;<br>Prepare to increase the<br>monitoring frequency to daily;<br>Repeat measurement on next<br>working day of exceedance.<br>(The above actions should be<br>taken within 1 working day<br>after Action Level being<br>exceeded by two consecutive<br>sampling days) | Discuss with ET and<br>Contractor on the mitigation<br>measures;<br>Review proposals on<br>mitigation measures submitted<br>by Contractor and advise the<br>SO accordingly;<br>Assess the effectiveness of<br>the implemented mitigation<br>measures.<br>(The above actions should be<br>taken within 1 working day<br>after Action Level being<br>exceeded by two consecutive<br>sampling days) | Discuss with IEC on the<br>proposed mitigation<br>measures;<br>Make agreement on the<br>mitigation measures to be<br>implemented.<br>Assess the effectiveness of<br>the implemented mitigation<br>measures.<br>(The above actions should be<br>taken within 1 working day<br>after Action Level being<br>exceeded by two consecutive<br>sampling days) | Inform the SO and confirm<br>notification of the non-<br>compliance in writing;<br>Rectify unacceptable practice;<br>Check all plant and<br>equipment;<br>Consider changes of working<br>methods;<br>Discuss with ET and IEC and<br>propose mitigation measures<br>to IEC and SO within 3<br>working days;<br>Implement the agreed<br>mitigation measures.<br>(The above actions should be<br>taken within 1 working day<br>after Action Level being<br>exceeded by two consecutive<br>sampling days) |

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1

Keppel Seghers – Zhen Hua Joint Venture

| Event          | Action                         |                               |                               |                                |
|----------------|--------------------------------|-------------------------------|-------------------------------|--------------------------------|
|                | ET                             | IEC                           | SO                            | Contractor                     |
| Limit level    | Inform the SO and confirm      | Discuss with ET and           | Discuss with IEC, ET and      | Inform the SO and confirm      |
| being exceeded | notification of the non-       | Contractor on the mitigation  | Contractor on the proposed    | notification of the non-       |
| by one         | compliance in writing;         | measures;                     | mitigation measures;          | compliance in writing;         |
| sampling day   | Rectify unacceptable practice; | Review proposals on           | Request Contractor to         | Rectify unacceptable practice; |
|                | Check all plant and            | mitigation measures submitted | critically review the working | Check all plant and            |
|                | equipment;                     | by Contractor and advise the  | methods;                      | equipment;                     |
|                | Consider changes of working    | SO accordingly;               | Make agreement on the         | Consider changes of working    |
|                | methods;                       | Assess the effectiveness of   | mitigation measures to be     | methods;                       |
|                | Discuss with Contractor, IEC   | the implemented mitigation    | implemented.                  | Discuss with ET, IEC and SO    |
|                | and SO and propose             | measures.                     | Assess the effectiveness of   | and propose mitigation         |
|                | mitigation measures to IEC     | (The above actions should be  | the implemented measures.     | measures to IEC and SO         |
|                | and SO within 3 working days;  | taken within 1 working day    | (The above actions should be  | within 3 working days;         |
|                | Implement the agreed           | after the exceedance is       | taken within 1 working day    | Implement the agreed           |
|                | mitigation measures.           | identified)                   | after the exceedance is       | mitigation measures.           |
|                | (The above actions should be   |                               | identified)                   | (The above actions should be   |
|                | taken within 1 working day     |                               |                               | taken within 1 working day     |
|                | after the exceedance is        |                               |                               | after the exceedance is        |
|                | identified)                    |                               |                               | identified)                    |

| Event          |                               | Act                           | ion                              |                                  |
|----------------|-------------------------------|-------------------------------|----------------------------------|----------------------------------|
|                | ET                            | IEC                           | SO                               | Contractor                       |
| Limit level    | Identify source(s) of impact; | Discuss with ET and           | Discuss with IEC, ET and         | Inform the SO and confirm        |
| being exceeded | Inform IEC, Contractor and    | Contractor on the mitigation  | Contractor on the proposed       | notification of the non-         |
| by more than   | EPD;                          | measures;                     | mitigation measures;             | compliance in writing;           |
| one            | Check monitoring data, all    | Review proposals on           | Request Contractor to            | Rectify unacceptable practice;   |
| consecutive    | plant, equipment and          | mitigation measures submitted | critically review the working    | Check all plant and              |
| sampling days  | Contractor's working methods. | by Contractor and advise the  | methods;                         | equipment;                       |
|                | Discuss mitigation measures   | SO accordingly;               | Make agreement on the            | Consider changes of working      |
|                | with IEC, SO and Contractor.  | Assess the effectiveness of   | mitigation measures to be        | methods;                         |
|                | Ensure mitigation measures    | the implemented mitigation    | implemented.                     | Discuss with ET, IEC and SO      |
|                | are implemented;              | measures.                     | Assess the effectiveness of      | and propose mitigation           |
|                | Increase the monitoring       | (The above actions should be  | the implemented measures.        | measures to IEC and SO           |
|                | frequency to daily until no   | taken within 1 working day    | Consider and instruct, if        | within 3 working days;           |
|                | exceedance of Limit level for | after Limit Level being       | necessary, the Contractor to     | Implement the agreed             |
|                | two consecutive days.         | exceeded by two consecutive   | slow down or to stop all or part | mitigation measures;             |
|                | (The above actions should be  | sampling days)                | of the marine work until no      | As directed by the SOR, to       |
|                | taken within 1 working day    |                               | exceedance of Limit level.       | slow down or to stop all or part |
|                | after Limit Level being       |                               | (The above actions should be     | of the marine work or            |
|                | exceeded by two consecutive   |                               | taken within 1 working day       | construction activities.         |
|                | sampling days)                |                               | after Limit Level being          | (The above actions should be     |
|                |                               |                               | exceeded by two consecutive      | taken within 1 working day       |
|                |                               |                               | sampling days)                   | after Limit Level being          |
|                |                               |                               |                                  | exceeded by two consecutive      |
|                |                               |                               |                                  | sampling days)                   |

# Appendix H Noise Monitoring Equipment Calibration Certificate

# Certificate of Calibration

for

| Description:  | Sound Level Meter                  |
|---------------|------------------------------------|
| Manufacturer: | NTi Audio                          |
| Type No.:     | XL2 (Serial No.: A2A-13548-E0)     |
| Microphone:   | NTi Audio M2211 (Serial No.:64962) |
| Preamplifier: | NTi Audio MA220 (Serial No.:6089)  |
|               | Submitted by:                      |

Customer: Acuity Sustainability Consulting Limited Address: Unit 1908, iPlace, Nos. 301-305 Castle Peak Road, Kwai Chung, New Territories

Upon receipt for calibration, the instrument was found to be:

| $\checkmark$ | Within  |
|--------------|---------|
| $\Box$       | Outside |

#### the allowable tolerance.

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

Date of receipt: 22 January 2018

Date of calibration: 23 January 2018

Calibrated by:

Calibration Technician

Date of issue: 23 January 2018

Certified by:

Mr. Ng Yan Wa aboratory Manager

Page 1 of 4

Certificate No.: APJ17-179-CC002

## 1. Calibration Precaution:

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- The results presented are the mean of 3 measurements at each calibration point.

## 2. Calibration Conditions:

| Air Temperature:          | 20.5 °C  |
|---------------------------|----------|
| Air Pressure:             | 1008 hPa |
| <b>Relative Humidity:</b> | 67.2 %   |

# 3. Calibration Equipment:

|                          | Туре     | Serial No. | Calibration Report<br>Number | Traceable to |  |
|--------------------------|----------|------------|------------------------------|--------------|--|
| Multifunction Calibrator | B&K 4226 | 2288467    | PA160056                     | HOKLAS       |  |

# 4. Calibration Results

Sound Pressure Level

Reference Sound Pressure Level

| Setting of Unit-under-test (UUT) |         | Applied value |                | UUT Reading, | IEC 61672 Class 1 |      |                   |
|----------------------------------|---------|---------------|----------------|--------------|-------------------|------|-------------------|
| Range, dB                        | Freq. W | eighting      | Time Weighting | Level, dB    | Frequency, Hz     | dB   | Specification, dB |
| 30-130                           | dBA     | SPL           | Fast           | 94           | 1000              | 94.1 | ±0.4              |

Linearity

| Setting of Unit-under-test (UUT) |       |           | Applied value  |           | UUT Reading,  | IEC 61672 Class 1 |                   |
|----------------------------------|-------|-----------|----------------|-----------|---------------|-------------------|-------------------|
| Range, dB                        | Freq. | Weighting | Time Weighting | Level, dB | Frequency, Hz | dB                | Specification, dB |
|                                  |       |           |                | 94        |               | 94.1              | Ref               |
| 30-130                           | dBA   | SPL       | Fast           | 104       | 1000          | 104.0             | ±0.3              |
|                                  |       |           | 114            |           | 114.0         | ±0.3              |                   |

Time Weighting

| Setting of Unit-under-test (UUT) |          |          | Applied value  |           | UUT Reading,  | IEC 61672 Class 1 |                   |
|----------------------------------|----------|----------|----------------|-----------|---------------|-------------------|-------------------|
| Range, dB                        | Freq. We | eighting | Time Weighting | Level, dB | Frequency, Hz | dB                | Specification, dB |
|                                  | 15.1     | CDI      | Fast           |           | 1000          | 94.1              | Ref               |
| 30-130 dBA                       | SPL      | Slow     | 94 10          | 1000      | 94.1          | ±0.3              |                   |

Certificate No.: APJ17-179-CC002



Page 2 of 4



## Frequency Response

# Linear Response

| Setting of Unit-under-test (UUT) |         | Applied value |                | UUT Reading, | IEC 61672 Class 1 |      |                   |
|----------------------------------|---------|---------------|----------------|--------------|-------------------|------|-------------------|
| Range, dB                        | Freq. V | Veighting     | Time Weighting | Level, dB    | Frequency, Hz     | dB   | Specification, dB |
|                                  |         |               |                |              | 31.5              | 94.2 | ±2.0              |
|                                  |         |               |                |              | 63                | 94.2 | ±1.5              |
|                                  |         |               |                |              | 125               | 94.3 | ±1.5              |
|                                  |         |               |                |              | 250               | 94.1 | ±1.4              |
| 30-130                           | dB      | SPL           | Fast           | 94           | 500               | 94.1 | ±1.4              |
|                                  |         |               |                |              | 1000              | 94.1 | Ref               |
|                                  |         |               |                | 2000         | 94.3              | ±1.6 |                   |
|                                  |         |               |                |              | 4000              | 95.1 | ±1.6              |
|                                  |         |               |                |              | 8000              | 93.0 | +2.1; -3.1        |

A-weighting

| Setting of Unit-under-test (UUT) |         |           | Applied value  |           | UUT Reading,  | IEC 61672 Class 1 |                   |
|----------------------------------|---------|-----------|----------------|-----------|---------------|-------------------|-------------------|
| Range, dB                        | Freq. V | Weighting | Time Weighting | Level, dB | Frequency, Hz | dB                | Specification, dB |
|                                  |         |           |                |           | 31.5          | 54.8              | -39.4 ±2.0        |
|                                  |         |           |                |           | 63            | 68.0              | -26.2±1.5         |
|                                  |         |           |                |           | 125           | 78.2              | -16.1±1.5         |
|                                  |         |           |                |           | 250           | 85.5              | -8.6±1.4          |
| 30-130                           | dBA     | SPL       | Fast           | 94        | 500           | 91.0              | -3.2±1.4          |
|                                  |         |           |                |           | 1000          | 94.1              | Ref               |
|                                  |         |           |                |           | 2000          | 95.5              | +1.2±1.6          |
|                                  |         |           |                |           | 4000          | 96.1              | +1.0±1.6          |
|                                  |         |           |                |           | 8000          | 92.0              | -1.1+2.1; -3.1    |

C-weighting

| Setting of Unit-under-test (UUT) |         |          | Applied value  |           | UUT Reading,  | IEC 61672 Class 1 |                   |  |  |  |  |  |     |      |          |
|----------------------------------|---------|----------|----------------|-----------|---------------|-------------------|-------------------|--|--|--|--|--|-----|------|----------|
| Range, dB                        | Freq. W | eighting | Time Weighting | Level, dB | Frequency, Hz | dB,               | Specification, dB |  |  |  |  |  |     |      |          |
|                                  |         |          |                |           | 31.5          | 91.2              | -3.0 ±2.0         |  |  |  |  |  |     |      |          |
|                                  |         |          |                |           | 63            | 93.4              | -0.8±1.5          |  |  |  |  |  |     |      |          |
|                                  |         |          |                |           |               |                   |                   |  |  |  |  |  | 125 | 94.1 | -0.2±1.5 |
|                                  |         |          |                | 250       | 94.2          | -0.0±1.4          |                   |  |  |  |  |  |     |      |          |
| 30-130                           | dBC     | SPL      | Fast           | 94        | 500           | 94.1              | -0.0±1.4          |  |  |  |  |  |     |      |          |
| 610000 - 62000-9601              |         |          |                |           | 1000          | 94.1              | Ref               |  |  |  |  |  |     |      |          |
|                                  |         |          |                |           | 2000          | 93.6              | -0.2±1.6          |  |  |  |  |  |     |      |          |
|                                  |         |          |                | 4000      | 92.6          | -0.8±1.6          |                   |  |  |  |  |  |     |      |          |
|                                  |         |          |                |           | 8000          | 85.9              | -3.0+2.1; -3.1    |  |  |  |  |  |     |      |          |



Page 3 of 4

Certificate No.: APJ17-179-CC002

# 5. Calibration Results Applied

The results apply to the particular unit-under-test only. All calibration points are within manufacture's specification as IEC 61672 Class 1.

Uncertainties of Applied Value:

| 94 dB  | 31.5 Hz | ± 0.05 |
|--------|---------|--------|
|        | 63 Hz   | ± 0.05 |
|        | 125 Hz  | ± 0.05 |
|        | 250 Hz  | ± 0.10 |
|        | 500 Hz  | ± 0.10 |
|        | 1000 Hz | ± 0.05 |
|        | 2000 Hz | ± 0.05 |
|        | 4000 Hz | ± 0.05 |
|        | 8000 Hz | ± 0.05 |
| 104 dB | 1000 Hz | ± 0.15 |
| 114 dB | 1000 Hz | ± 0.05 |

The uncertainties are evaluated for a 95% confidence level.

Note:

The values given in this certification only related to the values measured at the time of the calibration and any uncertainties quoted will not allow for the equipment long-term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the calibration. (A+A)\*L shall not be liable for any loss or damage resulting from the use of the equipment.



Certificate No.: APJ17-179-CC002

Page 4 of 4



Calibration & Testing Laboratory

# Certificate of Calibration 校正證書

Certificate No. : C183253 證書編號

| ITEM TESTED / 送檢項目     | (Job No. / 序引編號:IC18-1199)            | Date of Receipt / 收件日期: 11 June 2018  |
|------------------------|---------------------------------------|---------------------------------------|
| Description / 儀器名稱 :   | Acoustic Calibrator                   |                                       |
| Manufacturer / 製造商 :   | Pulsar                                |                                       |
| Model No. / 型號 :       | 105                                   |                                       |
| Serial No. / 編號 :      | 70396                                 |                                       |
| Supplied By / 委託者 :    | Acumen Environmental Engineering and  | Technologies Co., Ltd.                |
|                        | Lot 11, Tam Kon Shan Road, North Tsin | ng Yi, N.T.                           |
| TEST CONDITIONS / 測詞   | 式條件                                   |                                       |
| Temperature / 溫度 : (22 | 3 ± 2)°C                              | Relative Humidity / 相對濕度 : (50 ± 25)% |
| Line Voltage / 電壓 :    | 0.<br>•                               |                                       |

#### TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 : 18 June 2018

#### TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies / Keysight Technologies
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA

Tested By 測試

H T Wong

Technical Officer

K C Lee Engineer

Certified By 核證 Date of Issue 簽發日期 :

20 June 2018

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。



# Certificate of Calibration 校正證書

Certificate No. : C183253 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment :

| Equipment ID | Description                       | Certificate No. |
|--------------|-----------------------------------|-----------------|
| TST150A      | Measuring Amplifier               | C181288         |
| CL130        | Universal Counter                 | C173864         |
| CL281        | Multifunction Acoustic Calibrator | PA160023        |

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

| UUT           | Measured Value | IEC60942:2003 | Uncertainty of Measured Value |  |
|---------------|----------------|---------------|-------------------------------|--|
| Nominal Value | (dB)           | Class 1 Spec. | (dB)                          |  |
| 94 dB, 1 kHz  | 93.8           | ± 0.4 dB      | ± 0.2                         |  |

Mfr's Spec. : IEC60942:2003 Class 1

#### 5.2 Frequency Accuracy

| UUT Nominal | Measured Value | Mfr's       | Uncertainty of Measured Value |
|-------------|----------------|-------------|-------------------------------|
| Value (kHz) | (kHz)          | Spec.       | (Hz)                          |
| 1           | 1.000          | 1 kHz ± 1 % | ± 1                           |

Remark : - The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

# Certificate of Calibration

for

| Description:  | Sound Level Meter                  |
|---------------|------------------------------------|
| Manufacturer: | NTi Audio                          |
| Type No.:     | XL2 (Serial No.: A2A-13663-E0)     |
| Microphone:   | NTi Audio M2211 (Serial No.:60989) |
| Preamplifier: | NTi Audio MA220 (Serial No.:5735)  |
|               | Submitted by:                      |

Customer: Acuity Sustainability Consulting Limited Address: Unit 1908, iPlace, Nos. 301-305 Castle Peak Road, Kwai Chung, New Territories

#### Upon receipt for calibration, the instrument was found to be:

| $\checkmark$ | Within  |
|--------------|---------|
|              | Outside |

#### the allowable tolerance.

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

Date of receipt: 22 January 2018

Date of calibration: 23 January 2018

Calibration Technician

Date of issue: 23 January 2018

Calibrated by:

Certified by:

Mr. Ng Yan Wa Laboratory Manager



Certificate No.: APJ17-179-CC001

Room 422,Leader Industrial Centre,57-59 Au Pui Wan Street ,Fo Tan, Shatin,N.T.,Hong Kong Tel: (852) 2668 3423 Fax:(852) 2668 6946 Homepage: http://www.aa-lab.com E-mail : inquiry@aa-lab.com Page 1 of 4

# 1. Calibration Precaution:

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- The results presented are the mean of 3 measurements at each calibration point.

## 2. Calibration Conditions:

| Air Temperature:          | 20.5 °C  |
|---------------------------|----------|
| Air Pressure:             | 1008 hPa |
| <b>Relative Humidity:</b> | 67.2 %   |

### 3. Calibration Equipment:

|                          | Туре     | Serial No. | Calibration Report<br>Number | Traceable to |  |
|--------------------------|----------|------------|------------------------------|--------------|--|
| Multifunction Calibrator | B&K 4226 | 2288467    | PA160056                     | HOKLAS       |  |

## 4. Calibration Results

Sound Pressure Level

Reference Sound Pressure Level

| Sett      | Setting of Unit-under-test (UUT) |          | Appl           | ied value | UUT Reading,  | IEC 61672 Class 1 |                   |
|-----------|----------------------------------|----------|----------------|-----------|---------------|-------------------|-------------------|
| Range, dB | Freq. W                          | eighting | Time Weighting | Level, dB | Frequency, Hz | dB                | Specification, dB |
| 30-130    | dBA                              | SPL      | Fast           | 94        | 1000          | 94.1              | ±0.4              |

Linearity

| Setting of Unit-under-test (UUT) |       |           | App            | lied value | UUT Reading,  | IEC 61672 Class 1 |                   |
|----------------------------------|-------|-----------|----------------|------------|---------------|-------------------|-------------------|
| Range, dB                        | Freq. | Weighting | Time Weighting | Level, dB  | Frequency, Hz | dB                | Specification, dB |
|                                  |       |           |                | 94         |               | 94.1              | Ref               |
| 30-130                           | dBA   | SPL       | Fast           | 104        | 1000          | 104.0             | ±0.3              |
| 50 100                           |       |           | 0              | 114        |               | 114.0             | ±0.3              |

Time Weighting

| Setting of Unit-under-test (UUT) |          |                 | Setting of Unit-under-test (UUT) Applied value       |                                                                                    | UUT Reading,                                                                                                  | IEC 61672 Class 1                                                                                                             |
|----------------------------------|----------|-----------------|------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Freq. We                         | eighting | Time Weighting  | Level, dB                                            | Frequency, Hz                                                                      | dB                                                                                                            | Specification, dB                                                                                                             |
| . ·                              |          | Fast            | 2 N                                                  | and a second store                                                                 | 94.1                                                                                                          | Ref                                                                                                                           |
| dBA                              | SPL      | Slow            | 94                                                   | 1000                                                                               | 94.0                                                                                                          | ±0.3                                                                                                                          |
|                                  |          | Freq. Weighting | Freq. Weighting     Time Weighting       dBA     SPL | Freq. Weighting     Time Weighting     Level, dB       dBA     SPL     Fast     94 | Freq. Weighting     Time Weighting     Level, dB     Frequency, Hz       dBA     SPL     Fast     94     1000 | Freq. Weighting     Time Weighting     Level, dB     Frequency, Hz     dB       dBA     SPL     Fast     94     1000     94.1 |

Certificate No.: APJ17-179-CC001

Page 2 of 4



#### Frequency Response

#### Linear Response

| Sett      | Setting of Unit-under-test (UUT) |         |                | Appl      | ied value     | UUT Reading, | IEC 61672 Class 1 |
|-----------|----------------------------------|---------|----------------|-----------|---------------|--------------|-------------------|
| Range, dB | Freq. We                         | ighting | Time Weighting | Level, dB | Frequency, Hz | dB           | Specification, dB |
|           |                                  |         |                |           | 31.5          | 94.0         | ±2.0              |
|           |                                  |         |                |           | 63            | 94.1         | ±1.5              |
|           |                                  |         |                |           | 125           | 94.0         | ±1.5              |
|           |                                  |         |                |           | 250           | 94.0         | ±1.4              |
| 30-130    | dB                               | SPL     | Fast           | 94        | 500           | 94.1         | ±1.4              |
| 50 100    |                                  |         | 2              |           | 1000          | 94.1         | Ref               |
|           |                                  |         |                |           | 2000          | 94.5         | ±1.6              |
|           |                                  |         |                |           | 4000          | 95.6         | ±1.6              |
|           |                                  |         |                |           | 8000          | 94.6         | +2.1; -3.1        |

A-weighting

| Setting of Unit-under-test (UUT) |       |           |                | Applied value |               | UUT Reading, | IEC 61672 Class 1 |
|----------------------------------|-------|-----------|----------------|---------------|---------------|--------------|-------------------|
| Range, dB                        | Freq. | Weighting | Time Weighting | Level, dB     | Frequency, Hz | dB           | Specification, dB |
| 30-130                           | dBA   |           | Fast           | 94            | 31.5          | 54.5         | -39.4 ±2.0        |
|                                  |       |           |                |               | 63            | 67.8         | -26.2±1.5         |
|                                  |       |           |                |               | 125           | 78.0         | -16.1±1.5         |
|                                  |       |           |                |               | 250           | 85.4         | -8.6±1.4          |
|                                  |       |           |                |               | 500           | 90.9         | -3.2±1.4          |
|                                  |       |           |                |               | 1000          | 94.1         | Ref               |
|                                  |       |           |                |               | 2000          | 95.7         | +1.2±1.6          |
|                                  |       |           |                |               | 4000          | 96.6         | $+1.0\pm1.6$      |
|                                  |       |           |                |               | 8000          | 93.5         | -1.1+2.1; -3.1    |

C-weighting

| Setting of Unit-under-test (UUT) |          |          |                | Applied value |               | UUT Reading, | IEC 61672 Class 1 |
|----------------------------------|----------|----------|----------------|---------------|---------------|--------------|-------------------|
| Range, dB                        | Freq. We | eighting | Time Weighting | Level, dB     | Frequency, Hz | dB           | Specification, dB |
|                                  | dBC SPL  |          |                | 31.5          | 91.0          | -3.0 ±2.0    |                   |
|                                  |          | SPL      | Fast           | 94            | 63            | 93.2         | -0.8±1.5          |
|                                  |          |          |                |               | 125           | 94.0         | -0.2±1.5          |
|                                  |          |          |                |               | 250           | 94.1         | -0.0±1.4          |
| 30-130                           |          |          |                |               | 500           | 94.1         | -0.0±1.4          |
| 50 150                           |          |          |                |               | 1000          | 94.1         | Ref               |
|                                  |          |          |                |               | 2000          | 93.8         | -0.2±1.6          |
|                                  |          |          |                |               | 4000          | 93.3         | -0.8±1.6          |
|                                  |          |          |                |               | 8000          | 87.4         | -3.0+2.1; -3.1    |



Certificate No.: APJ17-179-CC001

## 5. Calibration Results Applied

The results apply to the particular unit-under-test only. All calibration points are within manufacture's specification as IEC 61672 Class 1.

Uncertainties of Applied Value:

| 31.5 Hz | ± 0.05                                                                                     |
|---------|--------------------------------------------------------------------------------------------|
| 63 Hz   | ± 0.10                                                                                     |
| 125 Hz  | ± 0.10                                                                                     |
| 250 Hz  | ± 0.05                                                                                     |
| 500 Hz  | ± 0.05                                                                                     |
| 1000 Hz | ± 0.05                                                                                     |
| 2000 Hz | ± 0.05                                                                                     |
| 4000 Hz | ± 0.05                                                                                     |
| 8000 Hz | ± 0.15                                                                                     |
| 1000 Hz | ± 0.05                                                                                     |
| 1000 Hz | ± 0.05                                                                                     |
|         | 63 Hz<br>125 Hz<br>250 Hz<br>500 Hz<br>1000 Hz<br>2000 Hz<br>4000 Hz<br>8000 Hz<br>1000 Hz |

The uncertainties are evaluated for a 95% confidence level.

Note:

The values given in this certification only related to the values measured at the time of the calibration and any uncertainties quoted will not allow for the equipment long-term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the calibration. (A+A)\*L shall not be liable for any loss or damage resulting from the use of the equipment.



Certificate No.: APJ17-179-CC001

Page 4 of 4

# Appendix I Event / Action Plan for Noise Exceedance

| exceeded          |                            | to the IEC, SO and Contractor;<br>Discuss with the IEC and<br>Contractor on remedial measures                                                                                                                             | 1.<br>2. | measures by the Contractor and<br>advise the SO accordingly;<br>Advise the SO on the effectiveness                                                                                                               | 1.<br>2.<br>3. | failure in writing;<br>Notify Contractor;<br>In consolidation with the IEC,<br>agree with the Contractor on the<br>remedial measures to be                 | 1.             | Actions to be taken by<br>Contractor as<br>immediate as<br>practicable<br>. Submit noise mitigation<br>proposals to IEC and SO;<br>. Implement noise mitigation<br>proposals.<br>(The above actions should<br>be taken within 2 working |
|-------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Limit Level       | 1.                         | required;<br>Increase monitoring frequency to<br>check mitigation effectiveness.<br>(The above actions should be<br>taken within 2 working .days after<br>the exceedance is identified)<br>Inform IEC, SO, Contractor and | 1.       | measures.<br>(The above actions should be<br>taken within 2 working days after<br>the exceedance is identified).<br>Discuss amongst SO, ET, and                                                                  |                |                                                                                                                                                            | 1.             | days after the exceedance<br>is identified)<br>. Take immediate action to                                                                                                                                                               |
| being<br>exceeded | 3.<br>4.<br>5.<br>6.<br>7. | EPD;<br>Repeat measurements to confirm                                                                                                                                                                                    |          | Contractor on the potential<br>remedial actions;<br>Review Contractors remedial<br>actions whenever necessary to<br>assure their effectiveness and<br>advise the SO accordingly;<br>(The above actions should be | 2.<br>3.<br>4. | failure in writing;<br>Notify Contractor;<br>In consolidation with the IEC,<br>agree with the Contractor on the<br>remedial measures to be<br>implemented; | 2.<br>3.<br>4. | avoid further exceedance;<br>Submit proposals for<br>remedial actions to IEC and<br>SO within 3 working days<br>of notification;<br>Implement the agreed<br>proposals;<br>Submit further proposal if                                    |

## Appendix J Noise Monitoring Data

| Location:                                                               | Shek Kwu Chau Treatment & Rehabilitation Centre Hostel 1 (M1 / $N\_S1)$ |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Monitoring date:                                                        | 5, 12, 19 & 26 November 2018                                            |
| Parameter:                                                              | L <sub>eq 30min</sub>                                                   |
| Noise source other than<br>construction activities from<br>the Project: | Installation of air-conditioner nearby                                  |

Noise Monitoring data:

| Date       | Start time |   | End time | Weather | L <sub>eq 30min</sub><br>dB(A) |
|------------|------------|---|----------|---------|--------------------------------|
| 05-11-2018 | 11:14      | - | 11:44    | Sunny   | 48.8                           |
| 12-11-2018 | 11:17      | - | 11:47    | Sunny   | 50.6                           |
| 19-11-2018 | 11:14      | - | 11:44    | Sunny   | 60.8                           |
| 26-11-2018 | 11:30      | I | 12:00    | Sunny   | 52.3                           |

| Location:                                                               | Shek Kwu Chau Treatment & Rehabilitation Centre Hostel 2 (M2 / N_S2) |
|-------------------------------------------------------------------------|----------------------------------------------------------------------|
| Monitoring date:                                                        | 5, 12, 19 & 26 November 2018                                         |
| Parameter :                                                             | L <sub>eq 30min</sub>                                                |
| Noise source other than<br>construction activities from<br>the Project: | Installation of air-conditioner nearby                               |

Noise Monitoring data:

| Date       | Start time |   | End time | Weather | L <sub>eq 30min</sub><br>dB(A) |
|------------|------------|---|----------|---------|--------------------------------|
| 05-11-2018 | 10:40      | I | 11:10    | Sunny   | 53.6                           |
| 12-11-2018 | 10:44      | - | 11:14    | Sunny   | 52.9                           |
| 19-11-2018 | 10:41      | - | 11:11    | Sunny   | 60.6                           |
| 26-11-2018 | 10:56      | I | 11:26    | Sunny   | 51.9                           |

| Location:                                                               | Shek Kwu Chau Treatment & Rehabilitation Centre Hostel 3 (M3 / $N\_S3)$ |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Monitoring date:                                                        | 5, 12, 19 & 26 November 2018                                            |
| Parameter :                                                             | L <sub>eq 30min</sub>                                                   |
| Noise source other than<br>construction activities from<br>the Project: | Air-conditioning units nearby                                           |

Noise Monitoring data:

| Date       | Start time |   | End time | Weather | L <sub>eq 30min</sub><br>dB(A) |
|------------|------------|---|----------|---------|--------------------------------|
| 05-11-2018 | 9:57       | I | 10:27    | Sunny   | 51.1                           |
| 12-11-2018 | 10:04      | - | 10:34    | Sunny   | 53.8                           |
| 19-11-2018 | 10:01      | - | 10:31    | Sunny   | 54.7                           |
| 26-11-2018 | 10:13      | I | 10:43    | Sunny   | 51.5                           |

Appendix K Waste Flow Table



吉寶西格斯 - 振華聯營公司 Keppel Seghers - Zhen Hua Joint Venture



Contract No.: EP/SP/66/12

### Monthly Summary Waste Flow Table for 2018

Project : Integrated Waste Management Facilities, Phase I

|           | Actual Quantities of Inert C&D Materials Generated Monthly |                                                                 |                              |                                |                            |                          |                                    |                          |              | Actual Quantities of C&D Wastes Generated Monthly |                          |                |            |                                |
|-----------|------------------------------------------------------------|-----------------------------------------------------------------|------------------------------|--------------------------------|----------------------------|--------------------------|------------------------------------|--------------------------|--------------|---------------------------------------------------|--------------------------|----------------|------------|--------------------------------|
| Month     | Total<br>Quantity<br>Generated                             | Hard Rock<br>and Large<br>Broken<br>Concrete<br>(see Note<br>1) | Reused in<br>the<br>Contract | Reused in<br>other<br>Projects | Disposed as<br>Public Fill | Imported<br>Fill<br>Sand | Imported<br>Fill<br>Public<br>fill | Imported<br>Fill<br>Rock | Metals       | Paper/<br>cardboard<br>packaging                  | Plastics<br>(see Note 2) | Chemical Waste |            | Others, e.g. general<br>refuse |
|           | (in '000m <sup>3</sup> )                                   | (in '000m <sup>3</sup> )                                        | (in '000m <sup>3</sup> )     | (in '000m <sup>3</sup> )       | (in '000m <sup>3</sup> )   | (                        | in '000m <sup>3</sup> )            |                          | (in '000 kg) | (in '000kg)                                       | (in '000kg)              | (in '000kg)    | (in '000L) | (in '000kg)                    |
| Jan       | -                                                          | -                                                               | -                            | -                              | -                          | -                        | -                                  | -                        | -            | -                                                 | -                        | -              | -          | -                              |
| Feb       | -                                                          | -                                                               | -                            | -                              | -                          | -                        | -                                  | -                        | -            | -                                                 | -                        | -              | -          | -                              |
| Mar       | -                                                          | -                                                               | -                            | -                              | -                          | -                        | -                                  | -                        | -            | -                                                 | -                        | -              | -          | -                              |
| Apr       | -                                                          | -                                                               | -                            | -                              | -                          | -                        | -                                  | -                        | -            | -                                                 | -                        | -              | -          | -                              |
| May       | -                                                          | -                                                               | -                            | -                              | -                          | -                        | -                                  | -                        | -            | -                                                 | -                        | -              | -          | -                              |
| Jun       | 0                                                          | 0                                                               | 0                            | 0                              | 0                          | 0                        | 0                                  | 0                        | 0            | 0                                                 | 0                        | 0              | 0          | 0                              |
| Sub-total | 0                                                          | 0                                                               | 0                            | 0                              | 0                          | 0                        | 0                                  | 0                        | 0            | 0                                                 | 0                        | 0              | 0          | 0                              |
| Jul       | 0                                                          | 0                                                               | 0                            | 0                              | 0                          | 0                        | 0                                  | 0                        | 0            | 0                                                 | 0                        | 0              | 0          | 0                              |
| Aug       | 0                                                          | 0                                                               | 0                            | 0                              | 0                          | 0                        | 0                                  | 0                        | 0            | 0                                                 | 0                        | 0              | 0          | 3.2                            |
| Sep       | 0                                                          | 0                                                               | 0                            | 0                              | 0                          | 0                        | 0                                  | 0                        | 0            | 0                                                 | 0                        | 0              | 0          | 0                              |
| Oct       | 0                                                          | 0                                                               | 0                            | 0                              | 0                          | 0                        | 0                                  | 0                        | 0            | 0                                                 | 0                        | 0              | 0          | 4.2                            |
| Nov       | 0                                                          | 0                                                               | 0                            | 0                              | 0                          | 0                        | 0                                  | 0                        | 0            | 0                                                 | 0                        | 0              | 0          | 0                              |
| Dec       |                                                            |                                                                 |                              |                                |                            |                          |                                    |                          |              |                                                   |                          |                |            |                                |
| Total     | 0                                                          | 0                                                               | 0                            | 0                              | 0                          | 0                        | 0                                  | 0                        | 0            | 0                                                 | 0                        | 0              | 0          | 7.4                            |

(1) Broken concrete for recycling into aggregates.

Notes:

(2) Plastics refer to plastic bottles/ containers, plastic sheets/ foam from packaging materials.

## Appendix L Event / Action Plan for Coral Monitoring

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1

Keppel Seghers – Zhen Hua Joint Venture

| Event                                  | Action                                                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                                                                                        |                                                                                                                                        |  |  |  |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| _                                      | ET Leader II                                                                                                                                                                               | EC S                                                                                                                                                                                                       | o c                                                                                                                                                                                    | ontractor                                                                                                                              |  |  |  |  |  |
| Exceedance                             | 2. Inform the IEC, SO ,and                                                                                                                                                                 | Discuss monitoring with the 1.<br>ET and the Contractor;<br>Review proposals for<br>additional monitoring and<br>any other measures<br>submitted by the Contractor 2.<br>and advise the SO<br>accordingly. | Discuss with the IEC 1.<br>additional monitoring<br>requirements and any other<br>measures proposed by the 2.<br>ET;<br>Make the agreement on the<br>measures to be 3.<br>implemented. | notification of the<br>non-compliance in writing;<br>Discuss with the ET and the<br>IEC and propose measures<br>to the IEC and the SO; |  |  |  |  |  |
| Limit Level <sup>1</sup><br>Exceedance | <ol> <li>Undertake Steps 1-4 as in 1.<br/>the Action Level<br/>Exceedance. If further 2.<br/>exceedance of Limit Level,<br/>propose enhancement<br/>measures for consideration.</li> </ol> | Discuss monitoring with the 1.<br>ET and the Contractor;<br>Review proposals for<br>additional monitoring and<br>any other measures<br>submitted by the Contractor 2.<br>and advise the SO<br>accordingly. | Discuss with the IEC 1.<br>additional monitoring<br>requirements and any other<br>measures proposed by the 2.<br>ET;<br>Make the agreement on the<br>measures to be 3.<br>implemented. | notification of the<br>non-compliance in writing;<br>Discuss with the ET and the<br>IEC and propose measures<br>to the IEC and the SO; |  |  |  |  |  |

Appendix M Event / Action Plan for White-Bellied Sea Eagle

| Event                                                                               | Action                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|--|--|--|--|
|                                                                                     | Environmental                                                             | Audit Team                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contractor                                       |  |  |  |  |  |  |
|                                                                                     | Team                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |  |  |  |  |  |  |
| Absence of<br>White-bellied<br>Sea Eagle<br>during a<br>whole day of<br>monitoring. | Inform audit<br>team.<br>Increase<br>monitoring<br>frequency to<br>daily. | <ul> <li>Inform site engineer and contractor.</li> <li>If the absence remains: <ul> <li>Review construction activities and noise monitoring records of the associated period;</li> <li>Identify potential causes of the absence;</li> <li>Propose remedial measures, such as change of construction method and sequence;</li> <li>Confirm the feasibility of the proposed remedial measures with site engineer and contractor;</li> <li>Discuss with environmental team about the effectiveness of the proposed remedial measures.</li> </ul> </li> </ul> | Implement<br>the agreed<br>remedial<br>measures. |  |  |  |  |  |  |

Appendix N Exceedance Report

#### Integrated Waste Management Facilities, Phase 1

|           | Wate         | r Quality   |       |
|-----------|--------------|-------------|-------|
| Location  | Action Level | Limit Level | Total |
| B1        | 2            | 3           | 5     |
| B2        | 2            | 6           | 8     |
| B3        | 1            | 3           | 4     |
| B4        | 3            | 2           | 5     |
| CR1       | 1            | 2           | 3     |
| CR2       | 3            | 5           | 8     |
| F1        | 2            | 3           | 5     |
| H1        | 5            | 0           | 5     |
| S1        | 0            | 0           | 0     |
| S2        | 0            | 0           | 0     |
| S3        | 0            | 0           | 0     |
| M1        | 3            | 2           | 5     |
| I         | Ν            | Noise       |       |
| Location  | Action Level | Limit Level | Total |
| M1 / N_S1 | 0            | 0           | 0     |
| M2 / N_S2 | 0            | 0           | 0     |
| M3 / N_S3 | 0            | 0           | 0     |
|           |              |             |       |

### Statistical Summary of Exceedances in the Reporting Period

| Project                       | Integrated Waste Managemen                                                                                                              | nt Facilities, Phase 1                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Date                          | 3 November 2018 (Lab result received on 7 November 2018)                                                                                |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Time                          | 09:53 – 13:55 (Mid-Ebb)                                                                                                                 |                                                                                                                                                                            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                               | 14:16 – 17:59 (Mid-Flood)                                                                                                               |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                               | Mid-E                                                                                                                                   | Ebb                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Monitoring Location           | H1 & CR2                                                                                                                                |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                               | +<br>• C1                                                                                                                               | B2<br>PROPOSED OUTFALL +<br>4 PROPOSED 12RV<br>SUBMARINE CABLES<br>52<br>52<br>52<br>52<br>6<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | F1<br>+<br>C2<br>+<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>C2<br>M1<br>C2<br>C2<br>M1<br>C2<br>C2<br>M1<br>C2<br>C2<br>M1<br>C2<br>C2<br>M1<br>C2<br>C2<br>M1<br>C2<br>C2<br>M1<br>C2<br>C2<br>M1<br>C2<br>C2<br>C2<br>M1<br>C2<br>C2<br>C2<br>M1<br>C2<br>C2<br>C2<br>C2<br>C2<br>C2<br>C2<br>C2<br>C2<br>C2 |  |  |  |  |
|                               |                                                                                                                                         |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Parameter                     | Suspended Solid (SS)                                                                                                                    | <b>. . . . . .</b>                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Action & Limit Levels         | Action Level                                                                                                                            | Limit Level                                                                                                                                                                | (1000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                               | $\geq$ 10.8 mg/L (120% of C1)                                                                                                           | $\geq 11.7 \text{ mg/L}$ (                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Measurement Level             | Impact Station(s) with                                                                                                                  | Control Stations                                                                                                                                                           | Impact Station(s) without                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                               | Exceedance                                                                                                                              |                                                                                                                                                                            | Exceedance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                               | 17.7 mg/L (H1)                                                                                                                          | 9.0 mg/L (C1)                                                                                                                                                              | 9.8 mg/L (B1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                               | 16.0 mg/L (CR2)                                                                                                                         | *10.5 mg/L (C2)                                                                                                                                                            | 9.5 mg/L (B2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                               |                                                                                                                                         |                                                                                                                                                                            | *10.3 mg/L (B3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                               |                                                                                                                                         |                                                                                                                                                                            | *10.8 mg/L (B4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                               |                                                                                                                                         |                                                                                                                                                                            | *7.5 mg/L (F1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                               |                                                                                                                                         |                                                                                                                                                                            | *9.8 mg/L (M1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                               |                                                                                                                                         |                                                                                                                                                                            | 4.8 mg/L (CR1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Possible reason for Action or | Most of works scheduled on                                                                                                              | site on 3/11 were suspended of                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Limit Level Non-compliance    | (GI) work of 1borehole<br>crial, which shall not be a<br>limited scale and nature of                                                    |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                               | Dominating sea current direction was found to be from Northwest to Southeast at waters around Shek Kwu Chau.                            |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                               | Solution when comparing<br>SS level. CR2 is located<br>servation of silt plume was<br>absence of major SS source<br>absence of major be |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |

|                                                             | unrelated to the Project.                                                                                                        |                                                        |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Actions taken / to be taken                                 | Site tidiness in the present ba<br>inspection on 6/11, where no<br>increase in SS level was obse<br>Examination of environment   | o improper site<br>erved during th<br>al performance   | practice that mine inspection.<br>e of the Project       | ight contribute to the will be continued during the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                             | weekly inspection, and the C                                                                                                     |                                                        |                                                          | ement all applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                             | mitigation measures as per the Mid-F                                                                                             |                                                        | ia Manual.                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Monitoring Location                                         | Mid-F                                                                                                                            | Iood                                                   | H1<br>SHEK KWU CHAU                                      | F1<br>+<br>C2<br>+<br>C2<br>+<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>C2<br>M1<br>C2<br>C2<br>M1<br>C2<br>C2<br>M1<br>C2<br>C2<br>C2<br>C2<br>C2<br>C2<br>C2<br>C2<br>C2<br>C2 |
| Parameter                                                   | Suspended Solid (SS)                                                                                                             |                                                        |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Action & Limit Levels                                       | Action Level                                                                                                                     |                                                        | Limit Level                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                             | $\geq$ 12.2 mg/L (120% of C2)                                                                                                    |                                                        | $\geq$ 13.2 mg/L (                                       | 130% of C2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Measurement Level                                           | Impact Station(s) of<br>Exceedance                                                                                               | Control Stati                                          | <b>U</b>                                                 | Impact Station(s) without<br>Exceedance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                             | 13.0 mg/L (B3)<br>18.0 mg/L (CR2)                                                                                                | 10.0 mg/L (0<br>10.2 mg/L (0                           | C2)                                                      | 9.8 mg/L (B1)<br>9.5 mg/L (B2)<br>8.8 mg/L (B4)<br>10.3 mg/L (F1)<br>9.3 mg/L (H1)<br>7.2 mg/L (M1)<br>11.8 mg/L (CR1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Possible reason for Action or<br>Limit Level Non-compliance | Most of works scheduled on<br>progress from typhoon YUT<br>drilling and DCM sample co-<br>major source of SS concentra<br>works. | U except groun<br>ring for pre-co<br>ation increase of | nd investigation<br>nstruction site t<br>considering the | lue to the yet to recover<br>(GI) work of 1borehole<br>rial, which shall not be a<br>limited scale and nature of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                             | waters around Shek Kwu Ch<br>B3 is located at unrelated stru<br>away) to the works location,                                     | au.<br>eam direction (                                 | (neither upstrea                                         | m nor downstream, far                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|                             | unrelated to the Project.                                                                                                                                                                                                                                  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             |                                                                                                                                                                                                                                                            |
|                             | CR2 is located close to the works location within the Project site, while no observation of silt plume was made during the sampling event and absence of major SS source might suggest that SS exceedance at CR2 is deemed to be unrelated to the Project. |
|                             | Site tidiness in the present barges in the Project site were checked during weekly site inspection on 6/11, where no improper site practice that might contribute to the increase in SS level was observed during the inspection.                          |
| Actions taken / to be taken | Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is reminded to implement all applicable mitigation measures as per the Updated EM&A Manual.                                     |
| Remarks                     | Note: Data with (*) are considered as reference use only since their sampling time were out of predicted tidal period.                                                                                                                                     |
|                             | Current direction during mid-ebb sampling on 3/11:                                                                                                                                                                                                         |
|                             | B. PING<br>本式数<br>可能分22Wi<br>日ei Ling Cha<br>調査法<br>下reasure Island                                                                                                                                                                                        |
|                             | Prestaurant & Ban<br>Restaurant & Ban<br>限憲法書                                                                                                                                                                                                              |
|                             | Mong Tung Wast                                                                                                                                                                                                                                             |
|                             |                                                                                                                                                                                                                                                            |
|                             | oko (slands)<br>索置群岛 X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                 |
|                             | K K K K K K K K                                                                                                                                                                                                                                            |
|                             | Current direction during mid-flood sampling on 3/11:                                                                                                                                                                                                       |
|                             | で<br>Treasure Island<br>Restaurant & Bar<br>根表演                                                                                                                                                                                                            |
|                             | L L L Mong A<br>L L L Mong A                                                                                                                                                                                                                               |
|                             | E E E E E E E E Cheung Chau E E E                                                                                                                                                                                                                          |
|                             | THE REAL Shek Kwu Chau<br>THE FERENCE AND THE                                                                                                                                                                          |
|                             | Soko Islands                                                                                                                                                                                                                                               |
|                             | CAR K K K K K K                                                                                                                                                                                                                                            |

|             |               | Le            | egend           |               |
|-------------|---------------|---------------|-----------------|---------------|
|             | Speed (knot)  |               | Speed (knot)    |               |
|             | 0-0.5         | $\rightarrow$ | 1.5-2.0         | $\rightarrow$ |
|             | 0.5-1.0       | $\rightarrow$ | 2.0-2.5         | $\rightarrow$ |
|             | 1.0-1.5       |               | 2.5 and above   | $\rightarrow$ |
|             | (Sourced from | http:         | //current.hydro | .gov.hk/      |
| Prepared by | Polar Chan    |               |                 |               |
| Date        | 8 November 2  | 018           |                 |               |

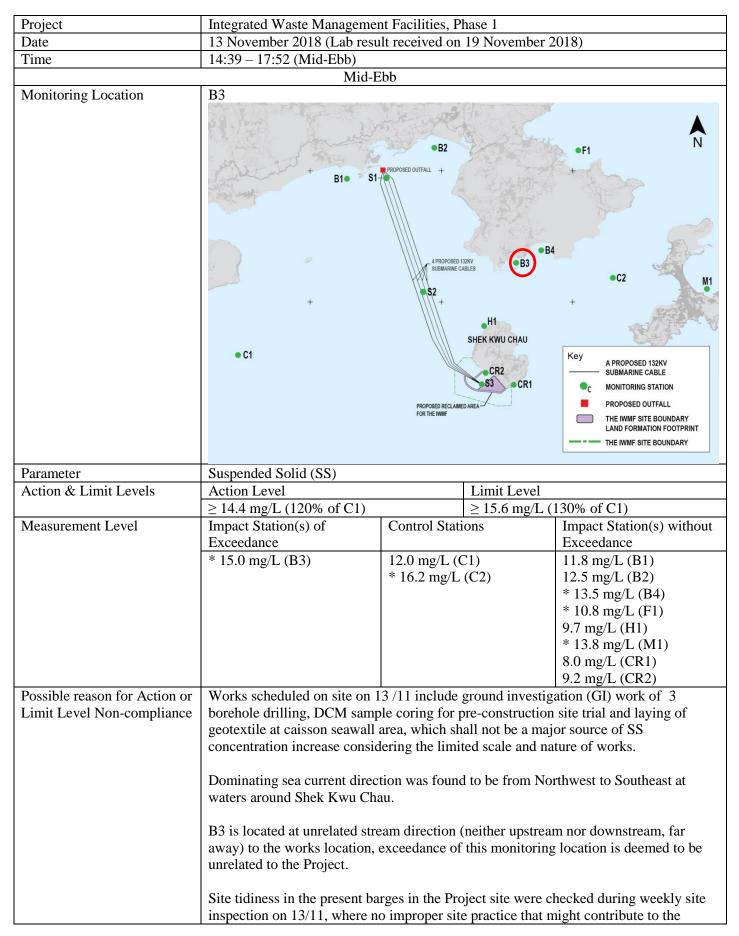
| Project                                                     | Integrated Waste Managemen                                                                                                                                                        | nt Facilities, Phase 1                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                               |  |  |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Date                                                        | <u> </u>                                                                                                                                                                          | t received on 8 November 201                                                                                                                                                                                                                                                                                                  | (8)                                                                                                                                                                                                                                                                           |  |  |
| Time                                                        | 10:00 – 13:29 (Mid-Ebb)                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                               |  |  |
|                                                             | 15:11 – 18:50 (Mid-Flood)                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                               |  |  |
|                                                             | Mid-E                                                                                                                                                                             | Ebb                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                               |  |  |
| Monitoring Location                                         | B3, M1 & CR2                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                               |  |  |
|                                                             | + B10 * S1                                                                                                                                                                        | B2<br>PROPOSED OUTFALL +<br>4 PROPOSED 132KY<br>SUBMARINE CABLES<br>52<br>4<br>4 PROPOSED 132KY<br>SUBMARINE CABLES<br>52<br>4<br>4 PROPOSED 132KY<br>SUBMARINE CABLES<br>52<br>4<br>4 PROPOSED 132KY<br>SUBMARINE CABLES<br>52<br>4<br>52<br>4<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52 | F1<br>+<br>C2<br>+<br>C2<br>+<br>Key<br>A PROPOSED 132KV<br>SUBMARINE CABLE<br>C MONITORING STATION<br>PROPOSED 0UTFALL<br>C MONITORING STATION<br>PROPOSED 0UTFALL<br>THE IWMF SITE BOUNDARY<br>LAND FORMATION FOOTPRINT<br>THE IWMF SITE BOUNDARY<br>THE IWMF SITE BOUNDARY |  |  |
| Parameter                                                   | Suspended Solid (SS)                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                               |  |  |
| Action & Limit Levels                                       | Action Level                                                                                                                                                                      | Limit Level                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                               |  |  |
| retion & Linit Levels                                       | $\geq$ 17.6 mg/L (120% of C1)                                                                                                                                                     | $\geq$ 19.1 mg/L (                                                                                                                                                                                                                                                                                                            | 130% of C1)                                                                                                                                                                                                                                                                   |  |  |
| Measurement Level                                           | Impact Station(s) with                                                                                                                                                            | Control Stations                                                                                                                                                                                                                                                                                                              | Impact Station(s) without                                                                                                                                                                                                                                                     |  |  |
| Weasurement Lever                                           | Exceedance                                                                                                                                                                        | Control Stations                                                                                                                                                                                                                                                                                                              | Exceedance                                                                                                                                                                                                                                                                    |  |  |
|                                                             | 17.8 mg/L (B3)                                                                                                                                                                    | 14.7 mg/L (C1)                                                                                                                                                                                                                                                                                                                | 7.3 mg/L (B1)                                                                                                                                                                                                                                                                 |  |  |
|                                                             | 18.5  mg/L (M1)                                                                                                                                                                   | 14.2  mg/L (C2)                                                                                                                                                                                                                                                                                                               | 12.8  mg/L (B2)                                                                                                                                                                                                                                                               |  |  |
|                                                             | 36.2  mg/L (CR2)                                                                                                                                                                  | 14.2 mg/L (C2)                                                                                                                                                                                                                                                                                                                | 17.3 mg/L (B2)                                                                                                                                                                                                                                                                |  |  |
|                                                             | 50.2  mg/L(CK2)                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                               | 10.7 mg/L (F1)                                                                                                                                                                                                                                                                |  |  |
|                                                             |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                               | 10.7  mg/L (11)<br>14.2 mg/L (H1)                                                                                                                                                                                                                                             |  |  |
|                                                             |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                               |  |  |
| Possible reason for Action or<br>Limit Level Non-compliance | progress from typhoon YUT                                                                                                                                                         | site on 5 /11 were suspended of<br>U except ground investigation                                                                                                                                                                                                                                                              | (GI) work of 1 borehole                                                                                                                                                                                                                                                       |  |  |
|                                                             | drilling and DCM sample coring for pre-construction site trial, which shall not be a major source of SS concentration increase considering the limited scale and nature of works. |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                               |  |  |
|                                                             | Dominating sea current direction was found to be from Northwest to Southeast at waters around Shek Kwu Chau.                                                                      |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                               |  |  |
|                                                             |                                                                                                                                                                                   | related stream direction (neither<br>works location, exceedance of<br>nrelated to the Project.                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                             |  |  |
|                                                             |                                                                                                                                                                                   | orks location within the Proje<br>og the sampling event. The abo                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                               |  |  |

|                               | major SS source might sugge<br>unrelated to the Project.                                                                                                                                                               | est that high SS   | level exceedan      | ice at CR2 is deemed to be                                                                            |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|-------------------------------------------------------------------------------------------------------|
|                               | It is noted that SS level at CR<br>source of SS increase was no<br>track of any re-occurrence of                                                                                                                       | t spotted durin    | g the water sam     | pling event. ET will keep                                                                             |
|                               | Site tidiness in the present ba<br>inspection on 6/11, where no<br>increase in SS level was obse                                                                                                                       | improper site      | practice that mi    |                                                                                                       |
| Actions taken / to be taken   | Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is reminded to implement all applicable mitigation measures as per the Updated EM&A Manual. |                    |                     |                                                                                                       |
|                               | Mid-Fl                                                                                                                                                                                                                 | lood               |                     |                                                                                                       |
| Monitoring Location           | B1, B2, B3, F1, M1 & CR2                                                                                                                                                                                               |                    |                     |                                                                                                       |
|                               | +<br>• C1                                                                                                                                                                                                              | PROPOSED OUTFALL + | HI<br>SHEK KWU CHAU | C2<br>+<br>C2<br>+<br>C2<br>C2<br>C2<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C |
| Parameter                     | Suspended Solid (SS)                                                                                                                                                                                                   |                    |                     |                                                                                                       |
| Action & Limit Levels         | Action Level                                                                                                                                                                                                           |                    | Limit Level         |                                                                                                       |
|                               | $\geq$ 10.6 mg/L (120% of C2)                                                                                                                                                                                          |                    | $\geq$ 11.5 mg/L (  | 130%  of  C2)                                                                                         |
| Measurement Level             | $\frac{2}{10.0 \text{ mg/L}} (120\% \text{ of } C2)$ Impact Station(s) of                                                                                                                                              | Control Stati      |                     | Impact Station(s) without                                                                             |
| Measurement Level             | Exceedance                                                                                                                                                                                                             |                    | 0115                | Exceedance                                                                                            |
|                               | 11.8 mg/L (B1)                                                                                                                                                                                                         | 10.0 mg/L (C       | [1]                 | 9.8 mg/L (B4)                                                                                         |
|                               | 15.9 mg/L (B2)                                                                                                                                                                                                         | 8.8 mg/L (C2       |                     | 8.8 mg/L (H1)                                                                                         |
|                               | 12.3  mg/L (B2)                                                                                                                                                                                                        |                    | -,                  | 8.0  mg/L (CR1)                                                                                       |
|                               | 14.5 mg/L (F1)                                                                                                                                                                                                         |                    |                     |                                                                                                       |
|                               | 14.2 mg/L (M1)<br>16.3 mg/L (CR2)                                                                                                                                                                                      |                    |                     |                                                                                                       |
| Possible reason for Action or | Most of works scheduled on                                                                                                                                                                                             | site on 5 /11 w    | ere suspended o     | lue to the yet to recover                                                                             |
| Limit Level Non-compliance    | progress from typhoon YUT                                                                                                                                                                                              |                    | •                   | •                                                                                                     |
| _                             | drilling and DCM sample con                                                                                                                                                                                            |                    |                     |                                                                                                       |
|                               | major source of SS concentra<br>works.                                                                                                                                                                                 | ation increase c   | onsidering the      | limited scale and nature of                                                                           |
|                               | Dominating sea current direc                                                                                                                                                                                           | tion was found     | to be from Sou      | theast to Northwest at                                                                                |

|                             | waters around Shek Kwu Chau.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | B1, B2, B3, F1 & M1 are located at unrelated stream direction (neither upstream nor downstream, far away) to the works location, exceedance of these monitoring locations are deemed to be unrelated to the Project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             | CR2 is located close to works location within the Project site, while no observation of silt plume was made during the sampling event and absence of major SS source might suggest that SS exceedance at CR2 is deemed to be unrelated to the Project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             | Site tidiness in the present barges in the Project site were checked during weekly site inspection on 6/11, where no improper site practice that might contribute to the increase in SS level was observed during the inspection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Actions taken / to be taken | Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is reminded to implement all applicable mitigation measures as per the Updated EM&A Manual.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Remarks                     | Current direction during mid-ebb sampling on 5/11:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                             | Hei Ling Chau<br>Bill Ministry He |
|                             | Sokolslands AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

|             |               | Le            | egend           |               |
|-------------|---------------|---------------|-----------------|---------------|
|             | Speed (knot)  |               | Speed (knot)    |               |
|             | 0-0.5         | $\rightarrow$ | 1.5-2.0         | $\rightarrow$ |
|             | 0.5-1.0       | $\rightarrow$ | 2.0-2.5         | $\rightarrow$ |
|             | 1.0-1.5       |               | 2.5 and above   | $\rightarrow$ |
|             | (Sourced from | http:         | //current.hydro | .gov.hk/      |
| Prepared by | Polar Chan    |               |                 |               |
| Date        | 9 November 2  | 018           |                 |               |

| Project                                                     | Integrated Waste Managemer                                                                                                                                                                                                                                                                                                                                                                         | nt Facilities. Phase 1                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Date                                                        | 7 November 2018 (Lab result received on 9 November 2018)                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Time                                                        | 10:41 – 14:25 (Mid-Ebb)                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                 | - /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                             | Mid-E                                                                                                                                                                                                                                                                                                                                                                                              | 2bb                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Monitoring Location                                         | F1<br>+ B10 S1<br>+                                                                                                                                                                                                                                                                                                                                                                                | B2<br>PROPOSED OUTFALL +<br>B3<br>B3<br>B3<br>B3<br>B3<br>B3<br>B3<br>B3<br>B3<br>B3<br>B3<br>B3<br>B3                                                                                                          | Image: Constraint of the system of the sy |  |
| Parameter                                                   | Suspended Solid (SS)                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Action & Limit Levels                                       | Action Level                                                                                                                                                                                                                                                                                                                                                                                       | Limit Level                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                             | $\geq$ 18.0 mg/L (120% of C1)                                                                                                                                                                                                                                                                                                                                                                      | $\geq$ 19.5 mg/L                                                                                                                                                                                                | (130% of C1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Measurement Level                                           | Impact Station(s) of                                                                                                                                                                                                                                                                                                                                                                               | Control Stations                                                                                                                                                                                                | Impact Station(s) without                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                             | Exceedance                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                 | Exceedance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                             | 18.3 mg/L (F1)                                                                                                                                                                                                                                                                                                                                                                                     | 15.0 mg/L (C1)<br>16.5 mg/L (C2)                                                                                                                                                                                | 15.0 mg/L (B1)<br>13.3 mg/L (B2)<br>13.8 mg/L (B3)<br>15.3 mg/L (B4)<br>17.3 mg/L (M1)<br>12.5 mg/L (H1)<br>15.2 mg/L (CR1)<br>11.3 mg/L (CR2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Possible reason for Action or<br>Limit Level Non-compliance | <ul> <li>Works scheduled on site on 7<br/>borehole drilling and DCM sa<br/>not be a major source of SS c<br/>nature of works.</li> <li>Dominating sea current direct<br/>waters around Shek Kwu Cha</li> <li>F1 is located at unrelated stre<br/>away) to the works location, o<br/>unrelated to the Project.</li> <li>Site tidiness in the present ba<br/>inspection on 6/11, where no</li> </ul> | ample coring for pre-construct<br>oncentration increase consident<br>tion was found to be from Not<br>au.<br>am direction (neither upstreat<br>exceedance of this monitorin<br>rges in the Project site were of | ation (GI) work of 1<br>ction site trial, which shall<br>ering the limited scale and<br>orthwest to Southeast at<br>an nor downstream, far<br>g location is deemed to be<br>checked during weekly site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |


| Actions taken / to be taken Examination<br>weekly insp<br>mitigation n | SS level was observed during the inspection.<br>In of environmental performance of the Project will be continued during the<br>section, and the Contractor is reminded to implement all applicable<br>measures as per the Updated EM&A Manual.<br>Extended to the Contractor is reminded to implement all applicable<br>the cont |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| weekly insp<br>mitigation m       Remarks                              | ection, and the Contractor is reminded to implement all applicable<br>neasures as per the Updated EM&A Manual.<br>ection during mid-ebb sampling on 7/11:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| mitigation n       Remarks     Current dire                            | neasures as per the Updated EM&A Manual.<br>ection during mid-ebb sampling on 7/11:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Remarks Current dire                                                   | ection during mid-ebb sampling on 7/11:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                        | Country Park<br>BISE<br>SISSY218<br>Treasure Island<br>Restaurant & Bar<br>BISE<br>BISE<br>SISSY218<br>Treasure Island<br>Restaurant & Bar<br>BISE<br>SISSY218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                        | Tung wax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\rightarrow$ $\rightarrow$                                            | Cheung Po Tsai Cave O Cheung Chau<br>後後 V 前<br>後<br>大<br>大<br>大<br>大<br>大<br>大<br>大<br>大<br>大<br>大<br>大<br>大<br>大                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Soko Islands<br>素置群島<br>→                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                        | Legend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Speed (kno                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0-0.5                                                                  | $\rightarrow$ 1.5-2.0 $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.5-1.0                                                                | $\rightarrow$ 2.0-2.5 $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.0-1.5                                                                | $\rightarrow$ 2.5 and above $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                        | om http://current.hydro.gov.hk/en/map.html)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Prepared by Polar Chan                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Date 10 November                                                       | er 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Project                                                     | Integrated Waste Managemen                                                  | nt Facilities, Phase 1                                                                                                                   |                                                                                                                                                                                  |
|-------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date                                                        | <u> </u>                                                                    | t received on 14 November 20                                                                                                             | 018)                                                                                                                                                                             |
| Time                                                        | 11:48 – 15:40 (Mid-Ebb)                                                     |                                                                                                                                          |                                                                                                                                                                                  |
| Thire                                                       | 17:09 - 20:54 (Mid-Flood)                                                   |                                                                                                                                          |                                                                                                                                                                                  |
|                                                             | Mid-E                                                                       | Thb                                                                                                                                      |                                                                                                                                                                                  |
| Monitoring Location                                         | B1, B2, B4, H1, M1 & CR2                                                    | 200                                                                                                                                      |                                                                                                                                                                                  |
|                                                             | + B10 S1                                                                    | PROPOSED OUTFALL +                                                                                                                       | F1 C2 C2 C2 C2 C2 Example 1 Monitoring station Proposed outfall Proposed outfall THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT |
|                                                             |                                                                             |                                                                                                                                          |                                                                                                                                                                                  |
| Parameter                                                   | Suspended Solid (SS)                                                        | 1                                                                                                                                        |                                                                                                                                                                                  |
| Action & Limit Levels                                       | Action Level                                                                | Limit Level                                                                                                                              |                                                                                                                                                                                  |
|                                                             | $\geq$ 9.4 mg/L (120% of C1)                                                | $\geq 10.2 \text{ mg/L}$ (                                                                                                               |                                                                                                                                                                                  |
| Measurement Level                                           | Impact Station(s) with                                                      | Control Stations                                                                                                                         | Impact Station(s) without                                                                                                                                                        |
|                                                             | Exceedance                                                                  |                                                                                                                                          | Exceedance                                                                                                                                                                       |
|                                                             | 11.3 mg/L (B1)                                                              | 7.8 mg/L (C1)                                                                                                                            | 9.0 mg/L (B3)                                                                                                                                                                    |
|                                                             | 12.3 mg/L (B2)                                                              | 10.7 mg/L (C2)                                                                                                                           | 8.7 mg/L (F1)                                                                                                                                                                    |
|                                                             | 10.5 mg/L (B4)                                                              |                                                                                                                                          | 7.2 mg/L (CR1)                                                                                                                                                                   |
|                                                             | 13.7 mg/L (H1)                                                              |                                                                                                                                          |                                                                                                                                                                                  |
|                                                             | 10.2 mg/L (M1)                                                              |                                                                                                                                          |                                                                                                                                                                                  |
|                                                             | 18.8 mg/L (CR2)                                                             |                                                                                                                                          |                                                                                                                                                                                  |
| Possible reason for Action or<br>Limit Level Non-compliance | borehole drilling and DCM sanot be a major source of SS contature of works. | 9/11 include ground investiga<br>ample coring for pre-construct<br>concentration increase conside<br>tion was found to be from No<br>au. | ction site trial, which shall<br>being the limited scale and                                                                                                                     |
|                                                             |                                                                             | ed at unrelated stream direction<br>works location, exceedance of<br>nrelated to the Project.                                            | -                                                                                                                                                                                |
|                                                             | to H1 (upstream monitoring s                                                | a monitoring station to the site<br>stations), exhibited a smaller S<br>within the Project site, while no                                | SS level. CR2 is located                                                                                                                                                         |

|                                                             | <ul> <li>was made during the sampling event. The above rationale and absence of major SS source might suggest that high SS level exceedance at CR2 and H1 are deemed to be unrelated to the Project.</li> <li>Site tidiness in the present barges in the Project site were checked during weekly site inspection on 13/11, where no improper site practice that might contribute to the increase in SS level was observed during the inspection.</li> </ul> |                                                            |                                                                                                                                                                                                                                 |  |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Actions taken / to be taken                                 | Examination of environment<br>weekly inspection, and the C<br>mitigation measures as per th<br>Mid-Fl                                                                                                                                                                                                                                                                                                                                                       | Contractor is reminded to im<br>ne Updated EM&A Manual.    |                                                                                                                                                                                                                                 |  |
| Monitoring Location                                         | B2<br>+ B10 S1<br>+ C1                                                                                                                                                                                                                                                                                                                                                                                                                                      | PROPOSED OUTFALL +                                         | PF1<br>PF1<br>PF1<br>PF1<br>PF1<br>PF1<br>PF1<br>PF1                                                                                                                                                                            |  |
| Parameter                                                   | Suspended Solid (SS)                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                            |                                                                                                                                                                                                                                 |  |
| Action & Limit Levels                                       | Action Level $(1200)$ of C2)                                                                                                                                                                                                                                                                                                                                                                                                                                | Limit Level                                                |                                                                                                                                                                                                                                 |  |
| Maannan 4 T1                                                | $\geq$ 11.0 mg/L (120% of C2)                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            | L (130% of C2)                                                                                                                                                                                                                  |  |
| Measurement Level                                           | Impact Station(s) of<br>Exceedance<br>13.0 mg/L (B2)                                                                                                                                                                                                                                                                                                                                                                                                        | Control Stations<br>8.8 mg/L (C1)<br>9.2 mg/L (C2)         | Impact Station(s) without         Exceedance         9.0 mg/L (B1)         8.5 mg/L (B3)         9.3 mg/L (B4)         8.5 mg/L (F1)         9.7 mg/L (H1)         9.5 mg/L (M1)         9.8 mg/L (CR1)         10.3 mg/L (CR2) |  |
| Possible reason for Action or<br>Limit Level Non-compliance | Works scheduled on site on 9<br>borehole drilling and DCM s<br>not be a major source of SS of<br>nature of works.<br>Dominating sea current direct<br>waters around Shek Kwu Ch                                                                                                                                                                                                                                                                             | concentration increase construction was found to be from S | uction site trial, which shall idering the limited scale and                                                                                                                                                                    |  |
|                                                             | B2 is located at unrelated stre                                                                                                                                                                                                                                                                                                                                                                                                                             | eam direction (neither upstr                               | eam nor downstream, far                                                                                                                                                                                                         |  |

|                             | away) to the works location, exceedance of this monitoring location is deemed to be     |
|-----------------------------|-----------------------------------------------------------------------------------------|
|                             | unrelated to the Project.                                                               |
|                             |                                                                                         |
|                             | Site tidiness in the present barges in the Project site were checked during weekly site |
|                             | inspection on 13/11, where no improper site practice that might contribute to the       |
|                             | increase in SS level was observed during the inspection.                                |
| Actions taken / to be taken | Examination of environmental performance of the Project will be continued during the    |
|                             | weekly inspection, and the Contractor is reminded to implement all applicable           |
|                             | mitigation measures as per the Updated EM&A Manual.                                     |
| Remarks                     | Current direction during mid-ebb sampling on 9/11:                                      |
|                             | 5年 時天朝 Het Ling Chau 直雷洲                                                                |
|                             |                                                                                         |
|                             |                                                                                         |
|                             | Treasure Island                                                                         |
|                             | Restaurant & Bar<br>积差济者                                                                |
|                             | × Iers //*                                                                              |
|                             |                                                                                         |
|                             | Mong J                                                                                  |
|                             |                                                                                         |
|                             | Y Y Y Y Y Y Y Y Y                                                                       |
|                             |                                                                                         |
|                             | Cheung Polisai Care & Cheung Chau                                                       |
|                             |                                                                                         |
|                             | K K K K                                                                                 |
|                             | oko Islands Y Y Y Y Y Y Y Y                                                             |
|                             |                                                                                         |
|                             |                                                                                         |
|                             | Y Y Y Y Y Y Y Y                                                                         |
|                             |                                                                                         |
|                             | Current direction during mid-flood sampling on 9/11:                                    |
|                             | BIF Example Chau<br>語評<br>語評<br>語評<br>日日 Ling Chau<br>画書州                               |
|                             |                                                                                         |
|                             |                                                                                         |
|                             | Treasure Island                                                                         |
|                             | Restaurant & Ban<br>現意法書                                                                |
|                             | S Letter //                                                                             |
|                             | THE FR                                                                                  |
|                             | L K Mong Tung Wan                                                                       |
|                             |                                                                                         |
|                             | KKK KK KK                                                                               |
|                             | t skt all s                                                                             |
|                             |                                                                                         |
|                             | THE K K Shek Kwu K                                                                      |
|                             | K K GRANK K K                                                                           |
|                             | Sokolislands KKKK KKKK                                                                  |
|                             |                                                                                         |
|                             |                                                                                         |
|                             | KK K K K                                                                                |
|                             | Legend                                                                                  |
|                             |                                                                                         |
|                             |                                                                                         |
|                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                    |
|                             | $0.5-1.0 \longrightarrow 2.0-2.5 \longrightarrow$                                       |
|                             | 1.0-1.5 $\longrightarrow$ 2.5 and above $\longrightarrow$                               |
|                             | (Sourced from http://current.hydro.gov.hk/en/map.html)                                  |

| Prepared by | Polar Chan       |
|-------------|------------------|
| Date        | 15 November 2018 |



|                             | increase in SS level was observed during the inspection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Actions taken / to be taken | Examination of environmental performance of the Project will be continued during the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                             | weekly inspection, and the Contractor is reminded to implement all applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                             | mitigation measures as per the Updated EM&A Manual.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Remarks                     | Note: Data with (*) are considered as reference use only since their sampling time were out of predicted tidal period.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                             | Current direction during mid-ebb sampling on 13/11:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                             | 高行<br>包括公園<br>包括公園                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                             | Treasure Island<br>Restaurant & Ber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                             | H 型 A B B B B B B B B B B B B B B B B B B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                             | and a second sec |  |  |
|                             | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                             | A Tung War                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                             | -> -> -> -> -> -> -> -> -> -> -> -> -> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                             | Shek Kwu<br>Chan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                             | KJ KKKKK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                             | Soko Islands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                             | Legend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                             | Speed (knot) Speed (knot)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                             | $0-0.5 \rightarrow 1.5-2.0 \rightarrow $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                             | $0.5-1.0 \rightarrow 2.0-2.5 \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                             | 1.0-1.5 $\longrightarrow$ 2.5 and above $\longrightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                             | (Sourced from http://current.hydro.gov.hk/en/map.html)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Prepared by                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Date                        | e 20 November 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |

| Project                                                     | Integrated Waste Managemer                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nt Facilities Phase 1                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date                                                        | Integrated Waste Management Facilities, Phase 1<br>17 November 2018 (Lab result received on 26 November 2018)                                                                                                                                                                                                                                                                                                                                                               |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Time                                                        | 08:30 – 11:48 (Mid-Ebb)                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                             | Mid-Ebb                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Monitoring Location                                         | B4 & F1 & M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B2<br>POPOSED OUTFALL +<br>B3<br>B3<br>B3<br>B3<br>B3<br>B3<br>B3<br>B3<br>B3<br>B3<br>B3<br>B3<br>B3 | F1       N         B4       -C2         -C2       Oto         W       -C2         -C2       Oto         -C3       Oto         -C4       Oto         -C5       Oto         -C6       MONITORING STATION         -C7       Disposed OutFall         -C8       Oto         -C9       THE IWMF SITE BOUNDARY         LAND FORMATION FORTPRINT       THE IWMF SITE BOUNDARY |
| Demonstern                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Parameter                                                   | Suspended Solid (SS)                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>Y</b> • • <b>Y</b> •                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Action & Limit Levels                                       | Action Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limit Level                                                                                           | (1200) 6.01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Measurement Level                                           | $\geq$ 10.0 mg/L (120% of C1)                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\geq$ 10.8 mg/L<br>Control Stations                                                                  | (130% of C1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Measurement Level                                           | Impact Station(s) of<br>Exceedance                                                                                                                                                                                                                                                                                                                                                                                                                                          | Control Stations                                                                                      | Impact Station(s) without<br>Exceedance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                             | 10.3 mg/L (B4)                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.3 mg/L (C1)                                                                                         | 4.8 mg/L (B1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                             | * 11.5 mg/L (F1)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.8  mg/L (C2)                                                                                        | 6.0  mg/L (B2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                             | * 9.7 mg/L (M1)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0 mg/2 (02)                                                                                         | 8.5 mg/L (B3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                       | 7.3 mg/L (H1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                       | 4.0  mg/L (CR1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                       | 7.3 mg/L (CR2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Possible reason for Action or<br>Limit Level Non-compliance | <ul> <li>Works scheduled on site on 17/11 include ground investigation (GI) work of 3 borehole drilling, DCM sample coring for pre-construction site trial and laying of geotextile at caisson seawall area, which shall not be a major source of SS concentration increase considering the limited scale and nature of works.</li> <li>Dominating sea current direction was found to be from Northwest to Southeast at waters around Shek Kwu Chau.</li> </ul>             |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                             | <ul><li>B4, F1 and M1 are located at unrelated stream direction (neither upstream nor downstream, far away) to the works location, exceedance of these monitoring locations are deemed to be unrelated to the Project.</li><li>Site tidiness in the present barges in the Project site were checked during weekly site inspection on 20/11, where no improper site practice that might contribute to the increase in SS level was observed during the inspection.</li></ul> |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Actions taken / to be taken                                 | Examination of environmenta                                                                                                                                                                                                                                                                                                                                                                                                                                                 | al performance of the Project                                                                         | t will be continued during the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| weeking inspection, and the contractor is reminided to implement an appr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | weekly inspection, and the Contractor is reminded to implement all applicable      |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|
| mitigation measures as per the Updated EM&A Manual.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mitigation measures as per the Updated EM&A Manual.                                |  |  |
| Remarks         Note: Data with (*) are considered as reference use only since their sam were out of predicted tidal period.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Note: Data with (*) are considered as reference use only since their sampling time |  |  |
| Current direction during mid-ebb sampling on 17/11:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                    |  |  |
| Image: Contract of the second seco |                                                                                    |  |  |
| Speed (knot) Speed (knot)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                    |  |  |
| $0-0.5 \rightarrow 1.5-2.0 \rightarrow 0-0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                    |  |  |
| $0.5-1.0 \rightarrow 2.0-2.5 \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                    |  |  |
| 1.0-1.5 $\longrightarrow$ 2.5 and above $\longrightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                    |  |  |
| (Sourced from http://current.hydro.gov.hk/en/map.html)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                    |  |  |
| Prepared by Polar Chan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                    |  |  |
| Date 27 November 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                    |  |  |

| Project                                                     | Integrated Waste Managemen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nt Facilities. Phase 1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date                                                        | 19 November 2018 (Lab result received on 22 November 2018)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Time                                                        | 07:19 – 11:10 (Mid-Ebb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                             | Mid-Ebb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Monitoring Location                                         | B4 & F1<br>+ B10 S1-<br>+ C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B2<br>PROPOSED OUTFALL +   | F1 C2 C2 C2 M1 C2 C2 C2 M1 C2 M1 C2 M1 C2 M1 C2 M1 <pm1< p=""> <pm1< p=""></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<></pm1<> |
| Demonster                                                   | Custom do d. Colid (CC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | THE IWMF SITE BOUNDARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Parameter                                                   | Suspended Solid (SS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>Y</b> • • . <b>Y</b> •  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Action & Limit Levels                                       | Action Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Limit Level                | 1200/ -£ 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             | $\geq$ 10.0 mg/L (120% of C1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\geq 10.8 \text{ mg/L}$ ( |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Measurement Level                                           | Impact Station(s) of Exceedance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Control Stations           | Impact Station(s) without<br>Exceedance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.2  mg/L (C1)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                             | 13.5  mg/L (B4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.3  mg/L (C1)             | 4.0  mg/L (B1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                             | 11.0 mg/L (F1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.5 mg/L (C2)              | 5.3 mg/L (B2)<br>9.5 mg/L (B3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | e e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | 7.8  mg/L (H1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.7 mg/L (M1)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | 7.3 mg/L (CR1)<br>7.7 mg/L (CR2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Possible reason for Action or<br>Limit Level Non-compliance | <ul> <li>Works scheduled on site on 19/11 include ground investigation (GI) work of 3 borehole drilling, DCM sample coring for pre-construction site trial and laying of geotextile at caisson seawall area, which shall not be a major source of SS concentration increase considering the limited scale and nature of works.</li> <li>Dominating sea current direction was found to be from Northwest to Southeast at waters around Shek Kwu Chau.</li> <li>B4 and F1 are located at unrelated stream direction (neither upstream nor downstream, far away) to the works location, exceedance of these monitoring locations are deemed to be unrelated to the Project.</li> <li>Site tidiness in the present barges in the Project site were checked during weekly site inspection on 20/11, where no improper site practice that might contribute to the increase in SS level was observed during the inspection.</li> </ul> |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Actions taken / to be taken | Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is reminded to implement all applicable |  |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                             | mitigation measures as per the Updated EM&A Manual.                                                                                                                |  |  |
| Remarks                     | Current direction during mid-ebb sampling on 19/11:                                                                                                                |  |  |
|                             | Speed (knot) Speed (knot)                                                                                                                                          |  |  |
|                             | $0-0.5 \rightarrow 1.5-2.0 \rightarrow $                                                                                                                           |  |  |
|                             | $0.5-1.0 \rightarrow 2.0-2.5 \rightarrow$                                                                                                                          |  |  |
|                             | 1.0-1.5 $\longrightarrow$ 2.5 and above $\longrightarrow$                                                                                                          |  |  |
|                             | (Sourced from http://current.hydro.gov.hk/en/map.html)                                                                                                             |  |  |
| Prepared by                 | Polar Chan                                                                                                                                                         |  |  |
| Date                        | 23 November 2018                                                                                                                                                   |  |  |

| Project                                                     | Integrated Waste Manageme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nt Facilities, Phase 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date                                                        | 21 November 2018 (Lab result received on 26 November 2018)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Time                                                        | 09:02 – 12:32 (Mid-Ebb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                             | 15:07 – 18:37 (Mid-Flood)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                             | Mid-H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ebb                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Monitoring Location                                         | H1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                             | +<br>• C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B2<br>PROPOSED OUTFALL + | A<br>+<br>C2<br>+<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C2<br>C2<br>C2<br>C2<br>C2<br>C2<br>C2<br>C2<br>C2<br>C2 |
| Parameter                                                   | Suspended Solid (SS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Action & Limit Levels                                       | Action Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Limit Level              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Action & Emilt Levels                                       | $\geq$ 15.2 mg/L (120% of C1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\geq$ 16.5 mg/L (       | (130%  of  C1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Measurement Level                                           | $\frac{2}{19.2 \text{ mg/L}} (120\% \text{ of } C1)$ Impact Station(s) of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Control Stations         | Impact Station(s) without                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Weasurement Lever                                           | Exceedance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Control Stations         | Exceedance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.7                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                             | 16.7 mg/L (H1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.7 mg/L (C1)           | 7.3  mg/L (B1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.0 mg/L (C2)           | 12.8 mg/L (B2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 9.3 mg/L (B3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 7.3 mg/L (B4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 13.7 mg/L (F1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 8.3 mg/L (M1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 11.5 mg/L (CR1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 12.7 mg/L (CR2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Possible reason for Action or<br>Limit Level Non-compliance | <ul> <li>Works scheduled on site on 21/11 include ground investigation (GI) work of 3 borehole drilling and DCM sample coring for pre-construction site trial, which shall not be a major source of SS concentration increase considering the limited scale and nature of works.</li> <li>Dominating sea current direction was found to be from Northwest to Southeast around Shek Kwu Chau.</li> <li>CR1 and CR2, the closest monitoring stations to the site location when comparing to H1 (upstream monitoring stations), exhibited a smaller SS level. The above rationales and absence of major SS source might suggest that high SS level exceedance at H1 is</li> </ul> |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                             | deemed to be is deemed to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

|                                    | inspection on $27/11$ , where i                                                                                                                                                                                        | no improper site practic | e were checked during weekly site<br>that might contribute to the |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------|
|                                    | increase in SS level was observed during the inspection.                                                                                                                                                               |                          |                                                                   |
| Actions taken / to be taken        | Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is reminded to implement all applicable mitigation measures as per the Updated EM&A Manual. |                          |                                                                   |
|                                    |                                                                                                                                                                                                                        |                          |                                                                   |
|                                    |                                                                                                                                                                                                                        |                          |                                                                   |
|                                    | Mid-F                                                                                                                                                                                                                  | Flood                    |                                                                   |
| Monitoring Location                | B2                                                                                                                                                                                                                     |                          |                                                                   |
|                                    | +<br>• C1                                                                                                                                                                                                              | PROPOSED OUTFALL +       | CHAU                                                              |
|                                    |                                                                                                                                                                                                                        |                          |                                                                   |
| Parameter<br>Action & Limit Levels | Suspended Solid (SS)                                                                                                                                                                                                   | Limit                    | T1                                                                |
| Action & Limit Levels              | Action Level                                                                                                                                                                                                           |                          |                                                                   |
|                                    | $\geq$ 10.4 mg/L (120% of C2)                                                                                                                                                                                          |                          | mg/L (130% of C2)                                                 |
| Measurement Level                  | Impact Station(s) of                                                                                                                                                                                                   | Control Stations         | Impact Station(s) without                                         |
|                                    | Exceedance                                                                                                                                                                                                             |                          | Exceedance                                                        |
|                                    | 29.8 mg/L (B2)                                                                                                                                                                                                         | 7.3 mg/L (C1)            | 5.3 mg/L (B1)                                                     |
|                                    |                                                                                                                                                                                                                        | 8.7 mg/L (C2)            | 8.0 mg/L (B3)                                                     |
|                                    |                                                                                                                                                                                                                        |                          | 7.8 mg/L (B4)                                                     |
|                                    |                                                                                                                                                                                                                        |                          | 6.3 mg/L (F1)                                                     |
|                                    |                                                                                                                                                                                                                        |                          | 8.2 mg/L (H1)                                                     |
|                                    |                                                                                                                                                                                                                        |                          | 8.5 mg/L (M1)                                                     |
|                                    |                                                                                                                                                                                                                        |                          | 7.2 mg/L (CR1)                                                    |
|                                    |                                                                                                                                                                                                                        |                          | 8.0 mg/L (CR2)                                                    |
| Possible reason for Action or      | Works scheduled on site on                                                                                                                                                                                             | 21/11 include ground in  | nvestigation (GI) work of 3                                       |
| Limit Level Non-compliance         | borehole drilling and DCM sample coring for pre-construction site trial, which shall                                                                                                                                   |                          |                                                                   |
| _                                  | not be a major source of SS concentration increase considering the limited scale and                                                                                                                                   |                          |                                                                   |
|                                    | nature of works.                                                                                                                                                                                                       |                          |                                                                   |
|                                    | Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau.                                                                                                           |                          |                                                                   |
|                                    | B2 is located at unrelated stream direction (neither upstream nor downstream, far away) to the works location, exceedance of this monitoring location is deemed to be unrelated to the Project.                        |                          |                                                                   |
|                                    | Site tidiness in the present barges in the Project site were checked during weekly site                                                                                                                                |                          |                                                                   |

| Inspection on 2//11, where no improper site practice that implit contribute to the increase in S2 level was observed during the inspection.         Actions taken / to be taken       Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is reminated to implement all applicable mitigation measures as per the Updated EM&A Manual.         Remarks       Current direction during mid-ebb sampling on 21/11:         Current direction during mid-flood sampling on 21/11:         Examination of every performance of the project will be continued to implement all applicable         Second during mid-flood sampling on 21/11:         Current direction during mid-flood sampling on 21/11:         Examination of every performance of the project will be continued to implement the performance of the project will be continued to implement the performance of the project will be continued to implement the performance of the project will be continued to implement the performance of the project will be continued to implement the performance of the project will be continued to implement the performance of the project will be continued to implement the performance of the project will be continued to implement the performance of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Actions taken / to be taken       Examination of environmental performance of the Project will be constructed termined to implement all applicable mitigation measures as per the Updated EM&A Manual.         Remarks       Current direction during mid-ebb sampling on 21/11:         Image: state of the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | inspection on 27/11, where no improper site practice that might contribute to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| weekly inspection, and the Contractor is reminded to implement all applicable mitigation measures as per the Update L&&A Manual.         Remarks       Current direction during mid-bb sampling on 21/11:         Current direction during mid-flood sampling on 21/11:       Current direction during mid-flood sampling on 21/11:         Current direction during mid-flood sampling on 21/11:       Current direction during mid-flood sampling on 21/11:         September 2010       September 2010         Septembe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Actions tolion / to be tolion | Increase in SS level was observed during the inspection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| mitigation measures as per the Updated EM&A Manual.         Remarks       Current direction during mid-ebb sampling on 21/11:         The sample of the sampling on 21/11:       The sample of the sampling on 21/11:         Current direction during mid-flood sampling on 21/11:       The sample of the sampling on 21/11:         Current direction during mid-flood sampling on 21/11:       The sample of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Actions taken / to be taken   | Examination of environmental performance of the Project will be continued during the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Remarks       Current direction during mid-ebb sampling on 21/11:         Under the sampling on 21/11:       Under the sampling on 21/11:         Under the sampling on 21/11:       Under the sampling on 21/11:         Under the sampling on 21/11:       Under the sampling on 21/11:         Under the sampling on 21/11:       Under the sampling on 21/11:         Under the sampling on 21/11:       Under the sampling on 21/11:         Under the sampling on 21/11:       Under the sampling on 21/11:         Under the sampling on 21/11:       Under the sampling on 21/11:         Under the sampling on 21/11:       Under the sampling on 21/11:         Under the sampling on 21/11:       Under the sampling on 21/11:         Under the sampling on 21/11:       Under the sampling on 21/11:         Under the sampling on 21/11:       Under the sampling on 21/11:         Under the sampling on 21/11:       Under the sampling on 21/11:         Under the sampling on 21/11:       Under the sampling on 21/11:         Under the sampling on 21/11:       Under the sampling on 21/11:         Under the sampling on 21/11:       Under the sampling on 21/11:         Under the sampling on 21/11:       Under the sampling on 21/11:         Under the sampling on 21/11:       Under the sampling on 21/11:         Under the sampling on 21/11:       Under the sampling on 21/11:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| $ \frac{1}{\text{Speed} (\text{knot})} = \frac{1}{25 \text{ and above}} = \frac{1}{25  and a$ | Remarks                       | Current direction during mid able compling on 21/11:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Current direction during mid-flood sampling on 21/11:         Current direction during mid-flood sampling on 21/11:         Speed (mont)         Storeed from http://current.ht/ker/map.html)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Kemarks                       | IG PING<br>影響                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Current direction during mid-flood sampling on 21/11:         Image: Current direction du                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 如野公園                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Current direction during mid-flood sampling on 21/11:         Image: Current direction du                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Current direction during mid-flood sampling on 21/11:         Image: Current direction du                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Current direction during mid-flood sampling on 21/11:         Image: Current direction du                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | Treasure Island<br>Restaurant & Bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Current direction during mid-flood sampling on 21/11:         Image: Current direction during dire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Current direction during mid-flood sampling on 21/11:         Image: Current direction during dire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | Comments in the second s |  |  |
| Current direction during mid-flood sampling on 21/11:         Image: Current direction during dire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | Mana Mana L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Current direction during mid-flood sampling on 21/11:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | Tung Wark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Current direction during mid-flood sampling on 21/11:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Current direction during mid-flood sampling on 21/11:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Current direction during mid-flood sampling on 21/11:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | → → Cheung Po Tsai Cave O Cheung Chau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Current direction during mid-flood sampling on 21/11:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Turrent direction during mid-flood sampling on 21/11:         Outrent direction during mid-flood sampling on 21/11:         Transfer diamond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Turrent direction during mid-flood sampling on 21/11:         Outrent direction during mid-flood sampling on 21/11:         Transfer diamond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | K K K K K K K K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| a price       Country Park         result       Country Park         result       Feesure Island         result       Seed (knot)         o.0.5       -     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | Soko Islands<br>索害群局                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| a price       Country Park         result       Country Park         result       Feesure Island         result       Seed (knot)         o.0.5       -     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | A REAL Y Y Y Y Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| $\frac{\textbf{Legend}}{(Sourced from http://current.hydro.gov.hk/en/map.html)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | Current direction during mid-flood sampling on 21/11:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| $\frac{\textbf{Legend}}{(Sourced from http://current.hydro.gov.hk/en/map.html)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | G PING<br>评 图大键 Hei Ling Chau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Restaurant & Bar         Restaurant & Bar         Hand         H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Restaurant & Bar         Restaurant & Bar         Hand         H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Restaurant & Bar         Restaurant & Bar         Hand         H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | Treasure Island                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| $\frac{\text{Legend}}{\text{Speed (knot)}}$ $\frac{\text{Legend}}{\text{0.0.5} \rightarrow 1.5 \cdot 2.0 \rightarrow 0.5 \cdot 1.5 \cdot 2.0 \rightarrow 0.5 \cdot 1.5 \cdot 2.5 \text{ and above} \rightarrow (\text{Sourced from http://current.hydro.gov.hk/en/map.html)}$ $Prepared by Polar Chan$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | Restaurant & Bar<br>貝演泳灘                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| $\frac{\text{Legend}}{\text{Speed (knot)}}$ $\frac{\text{Legend}}{\text{0.0.5} \rightarrow 1.5 \cdot 2.0 \rightarrow 0.5 \cdot 1.5 \cdot 2.0 \rightarrow 0.5 \cdot 1.5 \cdot 2.5 \text{ and above} \rightarrow (\text{Sourced from http://current.hydro.gov.hk/en/map.html)}$ $Prepared by Polar Chan$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| $\frac{\text{Legend}}{\text{Speed (knot)}}$ $\frac{\text{Legend}}{\text{0.0.5} \rightarrow 1.5 \cdot 2.0 \rightarrow 0.5 \cdot 1.5 \cdot 2.0 \rightarrow 0.5 \cdot 1.5 \cdot 2.5 \text{ and above} \rightarrow (\text{Sourced from http://current.hydro.gov.hk/en/map.html)}$ $Prepared by Polar Chan$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | Plante Standard + K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | Mong A Tung Wag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| $\begin{tabular}{ c c c c } \hline & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| $\begin{tabular}{ c c c c } \hline & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | KKK KKK KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| $\begin{tabular}{ c c c c } \hline & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | L L K K K Chauge Dicai Che Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Image: Speed (knot)       Image: Speed (knot)         0.0.5 $\rightarrow$ 0.5-1.0 $\rightarrow$ 2.0-2.5 $\rightarrow$ 1.0-1.5 $\rightarrow$ 2.5 and above $\rightarrow$ (Sourced from http://current.hydro.gov.hk/en/map.html)         Prepared by       Polar Chan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| LegendSpeed (knot)Speed (knot) $0-0.5 \rightarrow 1.5-2.0$ $\rightarrow$ $0.5-1.0 \rightarrow 2.0-2.5$ $\rightarrow$ $1.0-1.5 \rightarrow 2.5$ and above $\rightarrow$ (Sourced from http://current.hydro.gov.hk/en/map.html)Prepared byPolar Chan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               | K K Chau<br>Abit K L F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| LegendSpeed (knot)Speed (knot) $0-0.5 \rightarrow 1.5-2.0$ $\rightarrow$ $0.5-1.0 \rightarrow 2.0-2.5$ $\rightarrow$ $1.0-1.5 \rightarrow 2.5$ and above $\rightarrow$ (Sourced from http://current.hydro.gov.hk/en/map.html)Prepared byPolar Chan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| LegendSpeed (knot)Speed (knot) $0-0.5 \rightarrow 1.5-2.0$ $\rightarrow$ $0.5-1.0 \rightarrow 2.0-2.5$ $\rightarrow$ $1.0-1.5 \rightarrow 2.5$ and above $\rightarrow$ (Sourced from http://current.hydro.gov.hk/en/map.html)Prepared byPolar Chan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               | okolslands KKK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Speed (knot)Speed (knot) $0-0.5$ $\rightarrow$ $1.5-2.0$ $0.5-1.0$ $\rightarrow$ $2.0-2.5$ $1.0-1.5$ $\rightarrow$ $2.5$ and above(Sourced from http://current.hydro.gov.hk/en/map.html)Prepared byPolar Chan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | Legend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | Speed (knot) Speed (knot)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 1.0-1.5          → 2.5 and above →          (Sourced from http://current.hydro.gov.hk/en/map.html)         Prepared by       Polar Chan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | $0-0.5 \rightarrow 1.5-2.0 \longrightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| (Sourced from http://current.hydro.gov.hk/en/map.html)       Prepared by     Polar Chan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | $0.5-1.0 \longrightarrow 2.0-2.5 \longrightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Prepared by Polar Chan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | 1.0-1.5 $\longrightarrow$ 2.5 and above $\longrightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Prepared by Polar Chan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | (Sourced from http://current.hydro.gov.hk/en/map.html)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Date 27 November 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Prepared by                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date                          | e 27 November 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |

# Incident Report on Action Level or Limit Level Non-compliance

| Project                                                     | Integrated Waste Manageme                                                                                                                                                                                                                                                                                                                      | ent Facilities, Phase 1                                         |                                                                                                                                                                                                                               |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date                                                        |                                                                                                                                                                                                                                                                                                                                                | ult received on 29 November                                     | 2018)                                                                                                                                                                                                                         |
| Time                                                        | 10:28 – 13:58 (Mid-Ebb)<br>16:07 – 19:37 (Mid-Flood)                                                                                                                                                                                                                                                                                           |                                                                 |                                                                                                                                                                                                                               |
|                                                             |                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                                                                                                                                                                                               |
|                                                             | Mid-H                                                                                                                                                                                                                                                                                                                                          | Ebb                                                             |                                                                                                                                                                                                                               |
| Monitoring Location                                         | B2, B3, B4 & CR1                                                                                                                                                                                                                                                                                                                               |                                                                 |                                                                                                                                                                                                                               |
|                                                             | +<br>• C1                                                                                                                                                                                                                                                                                                                                      | PROPOSED OUTALL +                                               | APROPOSED 132KV<br>C2<br>M1<br>C2<br>M1<br>C<br>C<br>M0<br>SUBMARINE CABLE<br>C<br>M0NITORING STATION<br>PROPOSED OUTFALL<br>PROPOSED OUTFALL<br>THE IWMF SITE BOUNDARY<br>LAND FORMATION FOOTPRINT<br>THE IWMF SITE BOUNDARY |
| Parameter                                                   | Suspended Solid (SS)                                                                                                                                                                                                                                                                                                                           |                                                                 |                                                                                                                                                                                                                               |
| Action & Limit Levels                                       | Suspended Solid (SS)<br>Action Level                                                                                                                                                                                                                                                                                                           | Limit Level                                                     |                                                                                                                                                                                                                               |
| Action & Linit Levels                                       |                                                                                                                                                                                                                                                                                                                                                |                                                                 | (1200/ - f C1)                                                                                                                                                                                                                |
| Maaaaa ta ta aa 1                                           | $\geq$ 9.8 mg/L (120% of C1)                                                                                                                                                                                                                                                                                                                   | $\geq 10.6 \text{ mg/L}$                                        |                                                                                                                                                                                                                               |
| Measurement Level                                           | Impact Station(s) of                                                                                                                                                                                                                                                                                                                           | Control Stations                                                | Impact Station(s) without                                                                                                                                                                                                     |
|                                                             | Exceedance                                                                                                                                                                                                                                                                                                                                     |                                                                 | Exceedance                                                                                                                                                                                                                    |
|                                                             | 11.5 mg/L (B2)                                                                                                                                                                                                                                                                                                                                 | 8.2 mg/L (C1)                                                   | 6.8 mg/L (B1)                                                                                                                                                                                                                 |
|                                                             | 10.8 mg/L (B3)                                                                                                                                                                                                                                                                                                                                 | 7.2 mg/L (C2)                                                   | 9.0 mg/L (F1)                                                                                                                                                                                                                 |
|                                                             | 10.3 mg/L (B4)                                                                                                                                                                                                                                                                                                                                 |                                                                 | 8.3 mg/L (H1)                                                                                                                                                                                                                 |
|                                                             | 15.5 mg/L (CR1)                                                                                                                                                                                                                                                                                                                                |                                                                 | 9.7 mg/L (M1)                                                                                                                                                                                                                 |
|                                                             |                                                                                                                                                                                                                                                                                                                                                |                                                                 | 8.8 mg/L (CR2)                                                                                                                                                                                                                |
| Possible reason for Action or<br>Limit Level Non-compliance | <ul><li>Works scheduled on site on 23/11 include ground investigation (GI) work of 2 borehole drilling, DCM sample coring for pre-construction site trial and laying of geotextile with sand placing for ballasting at caisson seawall area.</li><li>Dominating sea current direction was found to be from Northwest to Southeast at</li></ul> |                                                                 |                                                                                                                                                                                                                               |
|                                                             | downstream, far away) to the<br>locations are deemed to be un<br>CR1 is located at downstrear<br>silt plume was made during t<br>implemented by contractor a                                                                                                                                                                                   | t unrelated stream direction (r<br>e works location, exceedance | of these monitoring<br>ion, while no observation of<br>n checking was<br>o deficiency of silt curtain                                                                                                                         |

|                                                             | inspection on 27/11, where<br>increase in SS level was obs                   | barges in the Project site were<br>no improper site practice that<br>served during the inspection.      | might contribute to the                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Actions taken / to be taken                                 | weekly inspection, and the G                                                 | tal performance of the Projec<br>Contractor is reminded to imp<br>the Updated EM&A Manual.              | t will be continued during the<br>plement all applicable                                                                                                                                                                                                                          |
|                                                             | Mid-I                                                                        |                                                                                                         |                                                                                                                                                                                                                                                                                   |
| Monitoring Location                                         | B1, M1 & CR2                                                                 |                                                                                                         |                                                                                                                                                                                                                                                                                   |
|                                                             | +<br>• C1                                                                    | B2<br>PROPOSED OUTFALL +<br>A PROPOSED 12XY<br>B3<br>B3<br>B3<br>B3<br>B3<br>B3<br>B3<br>B3<br>B3<br>B3 | PB4<br>C2<br>C2<br>C2<br>C2<br>C<br>C<br>MONITORING STATION<br>PROPOSED 132KV<br>SUBMARINE CABLE<br>C<br>MONITORING STATION<br>PROPOSED OUTFALL<br>C<br>PROPOSED OUTFALL<br>C<br>PROPOSED OUTFALL<br>THE IWMF SITE BOUNDARY<br>LAND FORMATION FOOTPRINT<br>THE IWMF SITE BOUNDARY |
| Demonster                                                   |                                                                              |                                                                                                         |                                                                                                                                                                                                                                                                                   |
| Parameter                                                   | Suspended Solid (SS)                                                         | <b>. . . . . . . .</b>                                                                                  |                                                                                                                                                                                                                                                                                   |
| Action & Limit Levels                                       | Action Level                                                                 | Limit Level                                                                                             |                                                                                                                                                                                                                                                                                   |
| Maggung and Laugh                                           | $\geq 8.0 \text{ mg/L}$                                                      | $\geq 10.0 \text{ mg/L}$                                                                                |                                                                                                                                                                                                                                                                                   |
| Measurement Level                                           | Impact Station(s) of<br>Exceedance                                           | Control Stations                                                                                        | Impact Station(s) without<br>Exceedance                                                                                                                                                                                                                                           |
|                                                             | 9.5 mg/L (B1)                                                                | 5.7 mg/L (C1)                                                                                           | 6.8 mg/L (B2)                                                                                                                                                                                                                                                                     |
|                                                             | 8.5 mg/L (M1)                                                                | 5.7  mg/L (C1)<br>5.5  mg/L (C2)                                                                        | 7.8 mg/L (B2)                                                                                                                                                                                                                                                                     |
|                                                             | 8.3  mg/L (CR2)                                                              | 5.5 mg/L (C2)                                                                                           | 6.0 mg/L (B4)                                                                                                                                                                                                                                                                     |
|                                                             | $0.5 \operatorname{mg/L}(CR2)$                                               |                                                                                                         | 5.8  mg/L (F1)                                                                                                                                                                                                                                                                    |
|                                                             |                                                                              |                                                                                                         | 5.0  mg/L (H1)<br>5.2  mg/L (H1)                                                                                                                                                                                                                                                  |
|                                                             |                                                                              |                                                                                                         | 7.8  mg/L (CR1)                                                                                                                                                                                                                                                                   |
| Possible reason for Action or<br>Limit Level Non-compliance | Works scheduled on site on 23/11 include ground investigation (GI) work of 2 |                                                                                                         |                                                                                                                                                                                                                                                                                   |
|                                                             | waters around Shek Kwu Cl<br>B1 and M1 are located at ur                     | hau.<br>nrelated stream direction (neit<br>ne works location, exceedance                                | her upstream nor                                                                                                                                                                                                                                                                  |
|                                                             | silt plume was made during implemented by contractor a                       | the sampling event. Silt curta<br>and checking result showed n                                          | ÷                                                                                                                                                                                                                                                                                 |

|                             | unrelated to the Project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                             | Site tidiness in the present barges in the Project site were checked during weekly site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                             | inspection on 27/11, where no improper site practice that might contribute to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                             | increase in SS level was observed during the inspection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Actions taken / to be taken | Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is reminded to implement all applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                             | mitigation measures as per the Updated EM&A Manual.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Remarks                     | Current direction during mid-ebb sampling on 23/11:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                             | S. PING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                             | Mong Tung Wah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                             | Image: state |  |  |
|                             | bko fslands<br>索置群島 ソンソン サイ サ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                             | Current direction during mid-flood sampling on 23/11:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                             | 하나 이 Prines<br>경구<br>이 Pui O. Beach<br>日道淡海<br>이 Pui O. Beach<br>日道淡海                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                             | Tung Wan LAR T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                             | + + + + + + + + Cheung-Po Tsai Cive @ Cheung Chau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                             | - + + K K K Shek Kwu<br>K F K K K Chau<br>GBM K K F F K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                             | Sokolslands FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                             | Legend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                             | Speed (knot) Speed (knot)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                             | $0-0.5 \rightarrow 1.5-2.0 \rightarrow $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                             | $0.5-1.0 \longrightarrow 2.0-2.5 \longrightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                             | 1.0-1.5 $\longrightarrow$ 2.5 and above $\longrightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                             | (Sourced from http://current.hydro.gov.hk/en/map.html)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Prepared by                 | Polar Chan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Date                        | 30 November 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |

# Incident Report on Action Level or Limit Level Non-compliance

| Project                                                     | Integrated Waste Managemen                                                                                                                                                                                     | nt Facilities Pha                                                     | ase 1                        |                                                                                                                                                                                                                                     |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date                                                        | 26 November 2018 (Lab resu                                                                                                                                                                                     |                                                                       |                              | 018)                                                                                                                                                                                                                                |
| Time                                                        | 12:42 – 16:12 (Mid-Ebb)                                                                                                                                                                                        |                                                                       |                              |                                                                                                                                                                                                                                     |
|                                                             | Mid-Ebb                                                                                                                                                                                                        |                                                                       |                              |                                                                                                                                                                                                                                     |
| Monitoring Location                                         | B1, B2, B4 & H1<br>+ B1 • S1-<br>+ • C1                                                                                                                                                                        | PROPOSED OUTFALL +<br>4 PROPOSED 132K<br>SUBMARINE CABLE<br>\$22<br>+ | CR2<br>S1<br>CR1             | FI<br>+<br>C2<br>+<br>C2<br>+<br>Key<br>A PROPOSED 132KV<br>SUBMARINE CABLE<br>©<br>C MONITORING STATION<br>PROPOSED 0UTFALL<br>©<br>C MONITORING STATION<br>PROPOSED 0UTFALL<br>THE IWMF SITE BOUNDARY<br>LAND FORMATION FOOTPRINT |
|                                                             |                                                                                                                                                                                                                |                                                                       |                              | THE IWMF SITE BOUNDARY                                                                                                                                                                                                              |
| Parameter                                                   | Suspended Solid (SS)                                                                                                                                                                                           |                                                                       |                              |                                                                                                                                                                                                                                     |
| Action & Limit Levels                                       | Action Level                                                                                                                                                                                                   |                                                                       | Limit Level                  |                                                                                                                                                                                                                                     |
|                                                             | $\geq$ 13.2 mg/L (120% of C1)                                                                                                                                                                                  |                                                                       | $\geq$ 14.3 mg/L (1          |                                                                                                                                                                                                                                     |
| Measurement Level                                           | Impact Station(s) of                                                                                                                                                                                           | Control Statio                                                        | ns                           | Impact Station(s) without                                                                                                                                                                                                           |
|                                                             | Exceedance                                                                                                                                                                                                     |                                                                       |                              | Exceedance                                                                                                                                                                                                                          |
|                                                             | 14.3  mg/L (B1)                                                                                                                                                                                                | 11.0 mg/L (C)                                                         |                              | 12.3  mg/L (B3)                                                                                                                                                                                                                     |
|                                                             | 13.3 mg/L (B2)<br>13.3 mg/L (B4)                                                                                                                                                                               | 11.8 mg/L (C2                                                         | 2)                           | 11.8 mg/L (F1)<br>12.5 mg/L (M1)                                                                                                                                                                                                    |
|                                                             | 14.7 mg/L (H1)                                                                                                                                                                                                 |                                                                       |                              | 10.7  mg/L (CR1)                                                                                                                                                                                                                    |
|                                                             |                                                                                                                                                                                                                |                                                                       |                              | 10.8  mg/L (CR2)                                                                                                                                                                                                                    |
| Possible reason for Action or<br>Limit Level Non-compliance | Works scheduled on site on 26/11 include ground investigation (GI) work of 2                                                                                                                                   |                                                                       |                              | tion (GI) work of 2<br>site trial and laying of                                                                                                                                                                                     |
|                                                             | Dominating sea current direct waters around Shek Kwu Cha                                                                                                                                                       |                                                                       | to be from Nor               | thwest to Southeast at                                                                                                                                                                                                              |
|                                                             | B1, B2 and B4 are located at unrelated stream direction (neither upstream nor downstream, far away) to the works location, exceedance of these monitoring locations are deemed to be unrelated to the Project. |                                                                       |                              |                                                                                                                                                                                                                                     |
|                                                             | CR1 and CR2, the closest mo<br>H1 (upstream monitoring stat<br>checking was implemented by<br>deficiency of silt curtain was                                                                                   | tions), exhibited<br>y the contractor                                 | a much small<br>and checking | er SS level. Silt curtain result showed that no                                                                                                                                                                                     |

|                             | exceedance at H1 is deemed to be unrelated to the project.                                              |  |  |
|-----------------------------|---------------------------------------------------------------------------------------------------------|--|--|
|                             |                                                                                                         |  |  |
|                             | Site tidiness in the present barges in the Project site were checked during weekly site                 |  |  |
|                             | inspection on 27/11, where no improper site practice that might contribute to the                       |  |  |
|                             | increase in SS level was observed during the inspection.                                                |  |  |
| Actions taken / to be taken | Examination of environmental performance of the Project will be continued during the                    |  |  |
|                             | weekly inspection, and the Contractor is reminded to implement all applicable                           |  |  |
|                             | mitigation measures as per the Updated EM&A Manual.                                                     |  |  |
| Remarks                     | Current direction during mid-ebb sampling on 26/11:                                                     |  |  |
|                             | NG PING<br>BP<br>BP<br>PuiO,Beach<br>R≅##<br>Mong<br>Tung Wan<br>CheungPo Tsai Cale ⊕ Cheung Chau<br>B# |  |  |
|                             | + + + × × × V Shek Kwu<br>Chau<br>GHE/M ↓ × ↓ ↓                                                         |  |  |
|                             | Soko Islands                                                                                            |  |  |
|                             | Legend                                                                                                  |  |  |
|                             | Speed (knot) Speed (knot)                                                                               |  |  |
|                             | $0-0.5 \rightarrow 1.5-2.0 \rightarrow $                                                                |  |  |
|                             | $0.5-1.0 \longrightarrow 2.0-2.5 \longrightarrow$                                                       |  |  |
|                             | 1.0-1.5 → 2.5 and above →                                                                               |  |  |
|                             | (Sourced from http://current.hydro.gov.hk/en/map.html)                                                  |  |  |
| Prepared by                 | Polar Chan                                                                                              |  |  |
| Date                        | 30 November 2018                                                                                        |  |  |

#### Incident Report on Action Level or Limit Level Non-compliance

| Project                                                     | Integrated Waste Manageme                                                                                    | ent Facilities, Phase 1                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date                                                        | <u> </u>                                                                                                     | ult received on 3 December 20                                                                                                              | 018)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Time                                                        | 09:21 – 12:51 (Mid-Flood)<br>14:57 – 17:50 (Mid-Ebb)                                                         |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                             |                                                                                                              |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                             | Mid-F                                                                                                        | lood                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Monitoring Location                                         | B1 & B2                                                                                                      |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                             | +<br>• C1                                                                                                    | PROPOSED OUTFALL +                                                                                                                         | A<br>C2<br>M1<br>C2<br>M1<br>C2<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>M1<br>C<br>C<br>C<br>M1<br>C<br>C<br>C<br>M1<br>C<br>C<br>C<br>M1<br>C<br>C<br>C<br>M1<br>C<br>C<br>C<br>M1<br>C<br>C<br>C<br>M1<br>C<br>C<br>C<br>M1<br>C<br>C<br>C<br>M1<br>C<br>C<br>C<br>M1<br>C<br>C<br>C<br>M1<br>C<br>C<br>C<br>C<br>M1<br>C<br>C<br>C<br>C<br>M1<br>C<br>C<br>C<br>C<br>C<br>M1<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C |
| Demonstern                                                  | 0                                                                                                            |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Parameter<br>Action & Limit Levels                          | Suspended Solid (SS)<br>Action Level                                                                         | Limit Level                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Action & Linit Levels                                       |                                                                                                              | $\geq 10.0 \text{ mg/L}$                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Measurement Level                                           | $\geq$ 9.0 mg/L (120% of C2)<br>Impact Station(s) of                                                         | Control Stations $\geq 10.0 \text{ mg/L}$                                                                                                  | Impact Station(s) without                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                             | Exceedance                                                                                                   | Control Stations                                                                                                                           | Exceedance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                             | 14.8 mg/L (B1)                                                                                               | 8.2 mg/L (C1)                                                                                                                              | 6.8 mg/L (B3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                             | 9.0  mg/L (B2)                                                                                               | 7.5  mg/L (C2)                                                                                                                             | 8.3 mg/L (B4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                             | 210 mg/2 (22)                                                                                                | , io ing/2 (02)                                                                                                                            | 8.2 mg/L (F1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                             |                                                                                                              |                                                                                                                                            | 8.0 mg/L (H1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                             |                                                                                                              |                                                                                                                                            | 8.3 mg/L (M1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                             |                                                                                                              |                                                                                                                                            | 8.5 mg/L (CR1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             |                                                                                                              |                                                                                                                                            | 8.3 mg/L (CR2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Possible reason for Action or<br>Limit Level Non-compliance | on or Works scheduled on site on 28/11 include ground investigation (GI) work of 2                           |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                             | Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau. |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                             | far away) to the works locati<br>and checking result showed                                                  | related stream direction (neither<br>on, silt curtain checking was in<br>no deficiency of silt curtain w<br>ing locations are deemed to be | implemented by contractor as found on that day,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                             |                                                                                                              | arges in the Project site were on improper site practice that it                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

|                                                                                      | increase in SS level was obse                                                                                                                                                                                                                                                                                                       | erved during th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ne inspection.                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Actions taken / to be taken                                                          | Examination of environmental performance of the Project will be continued during t                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | will be continued during the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                      | weekly inspection, and the Contractor is reminded to implement all applicable                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                      | mitigation measures as per the Updated EM&A Manual.                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                      | Mid-F                                                                                                                                                                                                                                                                                                                               | Ebb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Monitoring Location                                                                  | F1                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                      | +<br>• C1                                                                                                                                                                                                                                                                                                                           | B2<br>PROPOSED OUTFALL +<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBMARINE<br>SUBM | H1<br>SHEK KWU CHAU<br>CR2<br>S3<br>CR1 | Image: Constraint of the second se |
|                                                                                      |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | THE IWMF SITE BOUNDARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Parameter                                                                            | Suspended Solid (SS)                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Action & Limit Levels                                                                | Action Level                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Limit Level                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                      | $\geq$ 11.6 mg/L (120% of C1)                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\geq$ 12.6 mg/L (                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Measurement Level                                                                    | Impact Station(s) of                                                                                                                                                                                                                                                                                                                | Control Stat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ions                                    | Impact Station(s) without                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                      | Exceedance                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                       | Exceedance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                      | 15.7 mg/L (F1)                                                                                                                                                                                                                                                                                                                      | 9.7 mg/L (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | 8.8 mg/L (B1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                      |                                                                                                                                                                                                                                                                                                                                     | 12.8 mg/L (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (2)                                     | 11.3  mg/L (B2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                      |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | 9.5 mg/L (B3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                      |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | 6.0 mg/L (B4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                      |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | 7.8 mg/L (H1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                      |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | 9.3 mg/L (M1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                      |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | 11.3 mg/L (CR1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                      |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | 10.8 mg/L (CR2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Possible reason for Action or<br>Limit Level Non-compliance                          | Works scheduled on site on 2<br>borehole drilling, DCM samp<br>geotextile with sand placing 3                                                                                                                                                                                                                                       | ole coring for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pre-construction                        | tion (GI) work of 2<br>site trial and laying of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dominating sea current direction was found to be from N waters around Shek Kwu Chau. |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d to be from Nor                        | rthwest to Southeast at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                      | F1 is located at unrelated stream direction (neither upstream nor downstream, far away) to the works location, silt curtain checking was implemented by contractor and checking result showed no deficiency of silt curtain was found on that day, exceedance of this monitoring location is deemed to be unrelated to the Project. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Site tidiness in the pres<br>inspection on 27/11, wh<br>increase in SS level wa      |                                                                                                                                                                                                                                                                                                                                     | o improper sit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e practice that n                       | hecked during weekly site night contribute to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Actions taken / to be taken | Examination of environmental performance of the Project will be continued during the                                                                                                                                                                   |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | weekly inspection, and the Contractor is reminded to implement all applicable mitigation measures as per the Updated EM&A Manual.                                                                                                                      |
| Remarks                     | Current direction during mid-flood sampling on 28/11:                                                                                                                                                                                                  |
|                             | Pul O Beach<br>Bar A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                               |
|                             | Tung Wan<br>Tung Wan<br>t t t t t t t t t t t t t t t t t t t                                                                                                                                                                                          |
|                             | Soko Islands KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK                                                                                                                                                                                                      |
|                             | t t t t t t t t t t t t                                                                                                                                                                                                                                |
|                             | Current direction during mid-ebb sampling on 28/11:                                                                                                                                                                                                    |
|                             | Pui O Brach + + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                      |
|                             | Tung Walt                                                                                                                                                                                                                                              |
|                             |                                                                                                                                                                                                                                                        |
|                             | $\begin{array}{c} \rightarrow \rightarrow$ |
|                             | L Soko Islands                                                                                                                                                                                                                                         |
|                             | Legend                                                                                                                                                                                                                                                 |
|                             | Speed (knot) Speed (knot)                                                                                                                                                                                                                              |
|                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                   |
|                             | $1.0-1.5 \longrightarrow 2.5 \text{ and above} \longrightarrow$                                                                                                                                                                                        |
|                             | (Sourced from http://current.hydro.gov.hk/en/map.html)                                                                                                                                                                                                 |
| Prepared by                 | y Polar Chan                                                                                                                                                                                                                                           |
| Date                        | e 4 December 2018                                                                                                                                                                                                                                      |

| Project                       | Integrated Waste Managemen                                                                                                                                                                                                                                                                                                                             | nt Facilities. Phase 1                                                                                                                                                                                                                                                                               |                                                                                                                                                         |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date                          |                                                                                                                                                                                                                                                                                                                                                        | ilt received on 5 December 20                                                                                                                                                                                                                                                                        | )18)                                                                                                                                                    |
| Time                          | 11:41 – 15:11 (Mid-Flood)                                                                                                                                                                                                                                                                                                                              | in received on 5 December 20                                                                                                                                                                                                                                                                         | ,10)                                                                                                                                                    |
| Time                          | 17:33 – 20:23 (Mid-Ebb)                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                         |
|                               | Mid-Fl                                                                                                                                                                                                                                                                                                                                                 | lood                                                                                                                                                                                                                                                                                                 |                                                                                                                                                         |
| Monitoring Location           | M1, CR1 & CR2                                                                                                                                                                                                                                                                                                                                          | 1000                                                                                                                                                                                                                                                                                                 |                                                                                                                                                         |
|                               | +<br>• C1                                                                                                                                                                                                                                                                                                                                              | B2<br>PROPOSED OUTFAL +<br>4 PROPOSED 12RV<br>SUBMARINE CABLES<br>52<br>4<br>4<br>4<br>52<br>4<br>4<br>52<br>4<br>4<br>52<br>4<br>4<br>52<br>4<br>4<br>52<br>4<br>4<br>52<br>4<br>52<br>4<br>4<br>52<br>52<br>50<br>52<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | F1 C2 Key A PROPOSED 132KV SUBMARINE CABLE C MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY |
| D                             |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                         |
| Parameter                     | Suspended Solid (SS)                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                         |
| Action & Limit Levels         | Action Level                                                                                                                                                                                                                                                                                                                                           | Limit Level                                                                                                                                                                                                                                                                                          |                                                                                                                                                         |
|                               | $\geq$ 8.0 mg/L                                                                                                                                                                                                                                                                                                                                        | $\geq 10.0 \text{ mg/L}$                                                                                                                                                                                                                                                                             |                                                                                                                                                         |
| Measurement Level             | Impact Station(s) of                                                                                                                                                                                                                                                                                                                                   | Control Stations                                                                                                                                                                                                                                                                                     | Impact Station(s) without                                                                                                                               |
|                               | Exceedance                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                      | Exceedance                                                                                                                                              |
|                               | 8.8 mg/L (M1)                                                                                                                                                                                                                                                                                                                                          | 6.0 mg/L (C1)                                                                                                                                                                                                                                                                                        | 6.3 mg/L (B1)                                                                                                                                           |
|                               | 8.0 mg/L (CR1)                                                                                                                                                                                                                                                                                                                                         | 5.3 mg/L (C2)                                                                                                                                                                                                                                                                                        | 5.8 mg/L (B2)                                                                                                                                           |
|                               | 9.3 mg/L (CR2)                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                      | 5.5 mg/L (B3)                                                                                                                                           |
|                               |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                      | 6.0 mg/L (B4)                                                                                                                                           |
|                               |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                      | 5.2 mg/L (F1)                                                                                                                                           |
|                               |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                      | 5.8 mg/L (H1)                                                                                                                                           |
| Possible reason for Action or | Works scheduled on site on 3                                                                                                                                                                                                                                                                                                                           | 30/11 include ground investig                                                                                                                                                                                                                                                                        |                                                                                                                                                         |
| Limit Level Non-compliance    |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                         |
|                               | borehole drilling, DCM sample coring for pre-construction site trial, laying of geotextile with sand placing for ballasting and sand blanket laying at caisson seawall area.                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                         |
|                               | Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau.                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                         |
|                               | M1 is located at unrelated str<br>away) to the works location,<br>unrelated to the Project.                                                                                                                                                                                                                                                            | eam direction (neither upstrea<br>exceedance of this monitoring                                                                                                                                                                                                                                      |                                                                                                                                                         |
|                               | CR1 is located at upstream direction and CR2 is located close to the works location<br>within the Project site, while no observation of silt plume was made during the<br>sampling event. Silt curtain checking was implemented by contractor and checking<br>result showed no deficiency of silt curtain was found on that day. It might suggest that |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                         |

| Integrated Waste Management Fa                              |                                                                                                                                                                                                                                                           |                                                                 | Seghers – Zhen Hua Joint Venture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                             | exceedance of SS at CR1 and<br>Site tidiness in the present ba<br>inspection on 27/11, where n<br>increase in SS level was obse                                                                                                                           | arges in the Project site were<br>o improper site practice that | e checked during weekly site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Actions taken / to be taken                                 | Examination of environment<br>weekly inspection, and the C<br>mitigation measures as per the<br>Mid-H                                                                                                                                                     | ontractor is reminded to implete Updated EM&A Manual.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Monitoring Location                                         | B2, F1, H1, CR1 & CR2                                                                                                                                                                                                                                     |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                             | +<br>• C1                                                                                                                                                                                                                                                 | PROPOSED OUTFALL +                                              | FI Image: Second state of the second |
| Parameter                                                   | Suspended Solid (SS)                                                                                                                                                                                                                                      |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Action & Limit Levels                                       | Action Level                                                                                                                                                                                                                                              | Limit Level                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                             | $\geq$ 8.0 mg/L                                                                                                                                                                                                                                           | $\geq 10.0 \text{ mg/I}$                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Measurement Level                                           | Impact Station(s) of<br>Exceedance                                                                                                                                                                                                                        | Control Stations                                                | Impact Station(s) without<br>Exceedance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                             | 9.5 mg/L (B2)<br>8.0 mg/L (F1)<br>10.3 mg/L (H1)<br>10.8 mg/L (CR1)                                                                                                                                                                                       | 4.7 mg/L (C1)<br>10.3 mg/L (C2)                                 | 7.0 mg/L (B1)<br>6.3 mg/L (B3)<br>6.5 mg/L (B4)<br>7.5 mg/L (M1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                             | 8.5 mg/L (CR2)                                                                                                                                                                                                                                            |                                                                 | 7.5 mg/L (1011)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Possible reason for Action or<br>Limit Level Non-compliance | Works scheduled on site on 30/11 include ground investigation (GI) work of 2 borehole drilling, DCM sample coring for pre-construction site trial, laying of geotextile with sand placing for ballasting and sand blanket laying at caisson seawall area. |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                             | Dominating sea current direction was found to be from Northwest to Southeast around Shek Kwu Chau.                                                                                                                                                        |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                             | B2 and F1 are located at unrefar away) to the works location location, exceedance of these Project.                                                                                                                                                       | ons and H1 is located at ups                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                             | CR1 is located at downstrear<br>within the Project site, while<br>sampling event. Silt curtain c                                                                                                                                                          | no observation of silt plum                                     | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Integrated Waste Management F |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               | result showed no deficiency of silt curtain was found on that day. It might suggest that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                               | exceedance of SS at CR1 and CR2 are deemed to be unrelated to the Project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                               | Site tidiness in the present barges in the Project site were checked during weekly site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                               | inspection on 27/11, where no improper site practice that might contribute to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| A                             | increase in SS level was observed during the inspection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Actions taken / to be taken   | Examination of environmental performance of the Project will be continued during the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                               | weekly inspection, and the Contractor is reminded to implement all applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Remarks                       | mitigation measures as per the Updated EM&A Manual.Current direction during mid-flood sampling on 30/11:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Kennarks                      | Het Lino Chau<br>E Mit Chau<br>E M |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                               | Tung Wan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                               | tt t t t t t t t t t t t t t t t t t t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               | - + + K K K Shek Kwu<br>Chau<br>K K K K K K K K K K K K K K K K K K K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                               | Soko Islands KKKKKKKKKKKKKKKKKKKKKK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                               | t t t t t t t t t t t t t t t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                               | Current direction during mid-flood sampling on 30/11:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                               | □<br>一<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                               | Mong Tung Walk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                               | + + + × × × × Shek Kwu<br>Chau<br>GBM + × × +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                               | Soko Islands <sup>2</sup><br>家置群島<br>メンシン<br>メンシン<br>レー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                               | Legend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                               | Speed (knot) Speed (knot)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                               | $0-0.5 \rightarrow 1.5-2.0 \rightarrow $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                               | $0.5-1.0 \rightarrow 2.0-2.5 \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                               | 1.0-1.5 $\rightarrow$ 2.5 and above $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Prepared by                   | (Sourced from http://current.hydro.gov.hk/en/map.html)         /         Polar Chan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Date                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Appendix O Complaint Log

Integrated Waste Management Facilities, Phase 1

### Statistical Summary of Environmental Complaints

| Environmental Complaint Statistics |  |  |  |
|------------------------------------|--|--|--|
| nt Nature                          |  |  |  |
| //A                                |  |  |  |
|                                    |  |  |  |

### Statistical Summary of Environmental Summons

| Reporting                  | Environmental Summons Statistics |            |         |  |
|----------------------------|----------------------------------|------------|---------|--|
| Period                     | Frequency                        | Cumulative | Details |  |
| 1 Nov 2018-<br>30 Nov 2018 | 0                                | 0          | N/A     |  |

#### Statistical Summary of Environmental Prosecution

| Reporting                  | <b>Environmental Prosecution Statistics</b> |            |         |  |
|----------------------------|---------------------------------------------|------------|---------|--|
| Period                     | Frequency                                   | Cumulative | Details |  |
| 1 Nov 2018-<br>30 Nov 2018 | 0                                           | 0          | N/A     |  |

# Appendix P Impact Monitoring Schedule of Next Reporting Month

| Impact Monitoring Schedule for IWMF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                              |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Dec-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                              |  |  |  |
| Sun Mon T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tue                                   | Wed                                                                                                                                                                                                                                                                   | Thu                                                                                                                                                                                                                                                                 | Pri                                                                                                                                                                                                                               | Sat                                                                                                                                                                                                                                                                          |  |  |  |
| 2 3 Inpact<br>Coral REA Survey + Corel Post-Translocation Monitoring + Corel Re-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                     | 5 Impat<br>Water Quality and write (P. 81, 82, 84, 84, 94, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97                                                                                                                                                                     | 6<br>Impact<br>Ecology monitoring for Marine Mammals by Vessel-based Line-transect                                                                                                                                                                                  | 7 Impat<br>Wave Charline reconcision for 181 52 53 54 141 C1 C2 F1 C20                                                                                                                                                            | 8                                                                                                                                                                                                                                                                            |  |  |  |
| tagging + Ecology monitoring for WISES           Water Quality monitoring for NI, BL2, B3, BA, H1, C1, C2, F1, CR1, CR2           & M1           Tial Princit           Ebb Trade Oct2s - 12:11           Flood Trade: 70:1-19:14           Minimizing Time:           • Mid-beht ORS - 1:19:14           Minimizing Time:           • Daytime Noise monitoring for M1, M2 & M3           9         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11                                    | & M1<br>Tail Divisit<br>Bb Taice 06:88 - 13:31<br>Proof Tail: 13:10:2003<br><u>Monoring Time</u><br>Mid-th: 06:10 - 12:49<br>Mid-th: 06:10 - 12:49<br>Mid-th: 06:10 - 18:32                                                                                           | Looky abatong to pane dimension of vesteroactic Lateranece<br>Survey                                                                                                                                                                                                | 1444 (sain) manufacti (21, 21, 32, 32, 33, 34, 54, 54, 54, 54, 54, 54, 54, 54, 54, 5                                                                                                                                              | 15                                                                                                                                                                                                                                                                           |  |  |  |
| Impet<br>Water Quality monitoring for B1, B2, B3, B4, H1, C1, C2, F1, CR1,<br>CR2, M1, S1, S2, 85<br>T <u>G41 Privids</u><br>Ebb T <u>G4</u> : 1235 - 1600<br>Flood <u>TTG4</u> : 0529 - 1245<br><u>Monitoring Time</u><br>Mid-debb: 1237 - 1607<br>• Mid-divad: 0840 - 1052<br>Dogtime Noise monitoring for M1, M2 & M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | Impact<br>Water Quality monitoring for Bi, B2, B3, B4, H1, C1, C2, F1, CR1,<br>CR2, M1, S1, S2, & S3<br><u>Tital Previst</u><br>EbS Tale 1400 - 1730<br>Flood Tale 0465 - 1400<br><u>Monitoring Time</u><br><b>6</b> Mui-teb: 1479 - 1651<br>Mai-flood: 08:37 - 12:07 |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   | Impat<br>Water Quality monitoring for Bi, B2, B3, B4, H1, C1, C2, F1, CR1,<br>CR2, M1, S1, S2, & S3<br><u>Taila Previot</u><br>Ebb Taila: 17:55 - 20:36<br>Flood Taile: 09000 17:55<br><u>Monitorini Time</u><br><b>6</b> Mid-thol 18:03 - 20:28<br>Mid-flood: 11:42 - 15:12 |  |  |  |
| 16         17         Impact         1           Water Quality monitoring for B1, B2, B3, B4, H1, C1, C2, F1, CR1,<br>CR2, M1, S1, S2, B4, B4, B4, C1, C2, F1, CR1,<br>CR2, M1, S1, S2, B4, B4, C1, C2, F1, CR1,<br>CR2, M1, S1, S1, B4, B4, C1, C2, F1, CR1,<br>CR2, B4, C1, C2, C1, C1, C1, C1, C1, C1, C1, C1, C1, C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Inpact<br>Ecology monitroing for WBSE | 19 Impact<br>Water Quality monitoring for B1, B2, B3, B4, H1, C1, C2, F1, CR1,<br>CR2, M1, S1, S2, & K33<br>Telal Detects<br>PBN Take 0632 - 11:20<br>Flood Tool: 11:20 - 1845<br>Monitoring Time:<br>• Mid-block (800 - 1041<br>Mid-flood: 13:17 - 16:47             | 20 Inpact<br>Ecology monitoring for Marine Mammals by Vessel-based Line-transect<br>Survey                                                                                                                                                                          | 21 Ingast<br>Water Quality monitoring for Bi, B2, B3, B4, H1, C1, C2, F1, CR1,<br>CR2, M1, S1, S2, 653<br>Talal Period;<br>Ebb Tala: US2, 20, 557<br>Hood Tike: US2, 20, 1557<br>Michebb, 052, 00, 1250<br>Michebb, 052, 00, 1250 | 22                                                                                                                                                                                                                                                                           |  |  |  |
| 23 24 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                    | 26                                                                                                                                                                                                                                                                    | 27                                                                                                                                                                                                                                                                  | 28                                                                                                                                                                                                                                | 29                                                                                                                                                                                                                                                                           |  |  |  |
| Impact<br>Water Quality monitoring for B1, B2, B3, B4, H1, C1, C2, F1, CR1,<br>CR2, M1, S1, S2, & R53<br>Tidal Periods<br>Tidal Period |                                       | 2                                                                                                                                                                                                                                                                     | Impact<br>Impact<br>Water Quality monitoring for B1, B2, B3, B4, H1, C1, C2, F1, CR1,<br>CR2, M1, S1, S2, & S3<br>Tabal Period:<br>Bb Tafe 11:38 - 1527<br>Flood Tode (5500 - 11:38<br><u>Monitoring Time</u><br>Mal-ebb: 14:26 - 17:56<br>Mal-flood: 08:59 - 12:29 |                                                                                                                                                                                                                                   | Impact<br>Water Quality monitoring for B1, B2, B3, B4, H1, C1, C2, F1, CR1,<br>CR2, M1, S1, S2 & 63<br>Table Period:<br>Bob Table: 160:0-2026<br>Flood Table: 08:50 - 1600<br><u>Monitoring Time</u><br>Mid-sebi: 16:28 - 19:58<br>Mid-flood: 10:40 - 14:10                  |  |  |  |
| 30 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                              |  |  |  |
| Inpoct<br>Water Quality monitoring for B1 B2, B3, B4, H1, C1, C2, F1, CR1,<br>CR2, M1, S1, S2, & S3<br>Tikel Period:<br>Ebb Tike-04-05, S1 0.03<br>Filod Tike: 103, S1 0.03<br>Monitoring Time:<br>••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                              |  |  |  |

Remarks: 1. Daytime Noise Monitoring (07:00-1900), Evening Time Noise Monitoring (1900-2200), Night Time Noise Monitoring (2300-0700) 2. Water Quality Monitoring for SI,52 and S3 will only conduct during DCM works, refer to Detailed DCM Plan

Note: \* - as per Marine Department Notice No 107 of 2018, all vessels employed for the works should stay in the works area outside the hours of works (0700 to 2300). Due to safty concern, Water Quality Monitoring would start at 0800 and end at 2200. # - Protrited routing Mid-Bob: C1-+S3--CR2--CR1-+H1->Remaining stations and Mid-Flood: C2--CR1-+S3--CR2-+H1->Remaining stations S - Since predicted tide is shorter than 3.5 hours, method of 90% tidal period as monitoring time is approached.