

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Monthly EM&A Report No.9

KEPPEL SEGHERS - ZHEN HUA JOINT VENTURE

Monthly EM&A Report No.9 (Period from 1 March to 31 March 2019)

(Clause 3.3, Further Environmental Permit FEP-01/429/2012/A)

Document No.

KSZHJV	/	312	/	Monthly EM&A	/	0001	/	С
Issuer		Project Code		Type of Document		Sequential No.		Revision Index

	Prepared by:	Certified by:	Verified by:
Name	Nelson Tsui	Robin Ho	Mandy To
Position	Environmental Team	Environmental Team Leader	Independent Environmental Checker
Signature	A		Mandej2.
Date:	27 Aug 2019	22-8-20X	22 August 2019
	0		

© This document contains confidential and proprietary information belonging to Keppel Seghers - Zhen Hua Joint Venture and/or its affiliates. The contents of this document shall not be used for any other purpose than that for which they were provided. Any disclosure, copying, distribution or the taking of any action in reliance on the contents of this document is strictly prohibited. This document confers upon the recipient no right or license of whatsoever nature based on the information as described herein. If you have received this document in error, please immediately arrange for the return to Keppel Seghers - Zhen Hua Joint Venture or destruction of this document.

Revision History

С	Updated Table 1.2 & 4.1, Section 4.3, 6.2.1, 6.4.1, 6.4.4, 7.2.1, 7.2.2, 7.5.3 and	28 May 2019	
	Appendix K	28 May 2019	
В	Revision based on EPD's comment	26 April 2019	
Α	First Submission	12 April 2019	
Rev.	DESCRIPTION OF MODIFICATION	DATE	

CONTENT

1.	Basic Project Information	7
2.	Marine Water Quality Monitoring	16
3.	Noise Monitoring	31
4.	Waste	37
5.	Coral	39
6.	Marine Mammal	56
7.	White-Bellied Sea Eagle	71
8.	Summary of Monitoring Exceedance, Complaints, Notification of Summon Prosecutions	
9.	EM&A Site Inspection	81
10.	Future Key Issues	83
11.	Conclusion and Recommendations	84

Appendix A	Master Programme
Appendix B	Summary of Implementation Status of Environmental Mitigation
Appendix C	Impact Monitoring Schedule of the Reporting Month
Appendix D	Water Quality Monitoring Data
Appendix E	HOKLAS Laboratory Certificate
Appendix F	Water Quality Equipment Calibration Certificate
Appendix G	Event/ Action Plan for Water Quality Exceedance
Appendix H	Noise Monitoring Equipment Calibration Certificate
Appendix I	Event/Action Plan for Noise Exceedance
Appendix J	Noise Monitoring Data
Appendix K	Waste Flow Table
Appendix L	Event/Action Plan for Coral Monitoring
Appendix M	Event/Action Plan for White-bellied Sea Eagle Monitoring
Appendix N	Exceedance Report
Appendix O	Complaint Log
Appendix P	Impact Monitoring Schedule of Next Reporting Month

EXECUTIVE SUMMARY

Introduction

- A1. The Project, Integrated Waste Management Facility (IWMF), is a Designated Project under the Environmental Impact Assessment Ordinance (Cap. 499) (EIAO) and is currently governed by a Further Environmental Permit (FEP No. FEP-01/429/2012/A) for the construction and operation of the Project.
- A2. In accordance with the Updated Environmental Monitoring and Audit (EM&A) Manual for the Project, EM&A works for marine water quality, noise, waste management and ecology should be carried out by Environmental Team (ET), Acuity Sustainability Consulting Limited (ASCL), during the construction phase of the Project.
- A3. This is the 9th Monthly EM&A Report, prepared by ASCL, for the Project summarizing the monitoring results and audit findings of the EM&A programme at and around Shek Kwu Chau (SKC) during the reporting period from 1 March 2019 to 31 March 2019.

Summary of Main Works Undertaken & Key Mitigation Measures Implemented

- A4. Key activities carried out in this reporting period for the Project included the following:
- Marine Site Investigation Works
- Laying of Geotextile and Sand Blanket for DCM Injection Works
- DCM Installation Works
- Cone Penetration Test
- Dredging Works
- A5. The major environmental impacts brought by the above construction activities include:
- Water quality impact from DCM installation, laying of sand blanket and dredging operation
- Disturbance and possible trapping of Finless Porpoise by silt curtains
- A6. The key environmental mitigation measures implemented for the Project in this reporting period associated with the construction activities include:
- Reduction of noise from equipment and machinery on-site;
- Installation of silt curtains for DCM installation, sand blanket laying works, and dredging works;
- Sorting, recycling, storage and disposal of general refuse and construction waste;
- Management of chemicals and avoidance of oil spillage on-site; and
- Implementation of cluster MMEZ (Marine Mammal Exclusion Zone) and inspection of enclosed environment within silt curtains as per DMPFP (Detailed Monitoring Programme of Finless Porpoise)
- Regulation on rate and means for dredging works as stipulated in FEP Clause 2.17 2.21

- Daily site audit and monitoring by ET during dredging work as stipulated in FEP Clause 2.21A
- Storage, handling and disposal of dredged materials according to Dumping At Sea Ordinance (DASO)

Summary of Exceedance & Investigation & Follow-up

- A7. The EM&A works for construction noise, water quality, construction waste, coral, marine mammal and White-Bellied Sea Eagle (WBSE) were conducted during the reporting period in accordance with the Updated EM&A Manual.
- A8. No exceedance of the Action or Limit Levels in relation to the construction noise, construction waste, coral and WBSE monitoring was recorded in the reporting month.
- A9. Twenty-two and three of the General & Regular DCM water quality monitoring results for Suspended Solid (SS) obtained during the reporting period had exceeded the relevant Action and Limit Levels respectively; six and twenty-eight of the Initial Intensive DCM water quality monitoring results for Suspended Solid (SS) obtained during the reporting period had exceeded the relevant Action and Limit Levels respectively, where findings from investigations carried out immediately for each of the exceedance cases had showed that these exceedances were unrelated to the Project.
- A10. No project-related Action Level & Limit Level exceedance was recorded.
- A11. Weekly site inspections of the construction works by ET were carried out on 4, 12, 20 & 26 March 2019 to audit the mitigation measures implementation status. Monthly joint site inspection was carried out on 20 March 2019 by ET and IEC. Night time joint site inspection was carried on 4 March 2019 by ET and IEC. Observations have been recorded in the site inspection checklists and provided to the contractors together with the appropriate follow-up actions where necessary.

Complaint Handling and Prosecution

- A12. No project-related environmental complaint was received during the reporting period.
- A13. Neither notifications of summons nor prosecution was received for the Project.

Reporting Change

A14. There were no changes to be reported that may affect the on-going EM&A programme.

Summary of Upcoming Key Issues and Key Mitigation Measures

- A15. Key activities anticipated in the next reporting period for the Project will include the following:
- Laying of Geotextile and Sand Blanket for DCM Injection Works
- DCM Installation Works
- Coring of DCM samples

- Static Loading Test
- Cone Penetration Test
- Dredging Works
- A16. The major environmental impacts brought by the above construction activities will include:
- Water quality impact form DCM installation, laying of sand blanket and dredging operation
- Disturbance and possible trapping of Finless Porpoise by silt curtains
- A17. The key environmental mitigation measures for the Project in the coming reporting period associated with the construction activities will include:
- Reduction of noise from equipment and machinery on-site;
- Installation of silt curtains for DCM installation, sand blanket laying works and dredging works;
- Sorting, recycling, storage and disposal of general refuse and construction waste;
- Management of chemicals and avoidance of oil spillage on-site, especially under heavy rains and adverse weather; and
- Implementation of cluster MMEZ and inspection of enclosed environment within silt curtains as per DMPFP
- Regulation on rate and means for dredging works as stipulated in FEP Clause 2.17 2.21
- Daily site audit and monitoring by ET during dredging work as stipulated in FEP Clause 2.21A
- Storage, handling and disposal of dredged materials according to Dumping At Sea Ordinance (DASO)

1. BASIC PROJECT INFORMATION

1.1 Background

- 1.1.1 The Government of Hong Kong SAR will develop the Integrated Waste Management Facilities (IWMF) Phase 1 (hereafter "the Project") with incineration to achieve substantial bulk reduction of unavoidable municipal solid waste (MSW) and to recover energy from the incineration process. The IWMF will be on an artificial island to be formed by reclamation at the south-western coast of Shek Kwu Chau. Keppel Seghers Zhen Hua Joint Venture (KSZHJV) was awarded the contract under Contract No. EP/SP/66/12 Integrated Waste Management Facilities Phase 1 to construct and operate the Project.
- 1.1.2 An environmental impact assessment (EIA) study for the Project has been conducted and the EIA Report was approved under the Environmental Impact Assessment Ordinance on 17 January 2012. An Environmental Permit (EP) (EP No.: EP-429/2012) was granted to EPD on 19 January 2012 for the construction and operation of the Project. Subsequently, the EP was amended (EP No.: EP-429/2012/A) and a further EP (FEP) (EP No.: FEP-01/429/2012/A) was granted to the Keppel Seghers – Zhen Hua Joint Venture (KSZHJV) on 27 December 2017.
- 1.1.3 The key design and construction elements of the Project include the Design and the Works including but not limited to the design, engineering procurement, construction, testing and commissioning of the Facility including:
- Ground Treatment works;
- Seawall and Breakwater construction;
- Non-dredged Reclamation;
- Other Marine works and Harbour and Port Facilities,
- Site formation,
- Municipal Solid Waste (MSW) Treatment Processes,
- Energy Recovery for Power Generation and Surplus Electricity export,
- Wastewater treatment process,
- Desalination and water treatment process,
- Civil works;
- Building and Structural works,
- Electrical and Mechanical works,
- Building Services,
- Architectural and Landscaping works, and
- All other design and works required for the operation and maintenance of the Facility according to the Contract requirements
- 1.1.4 The location of the IWMF near Shek Kwu Chau (SKC) and general layout of IWMF are shown in **Figure 1.1** and **Figure 1.2** respectively.

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Monthly EM&A Report No.9

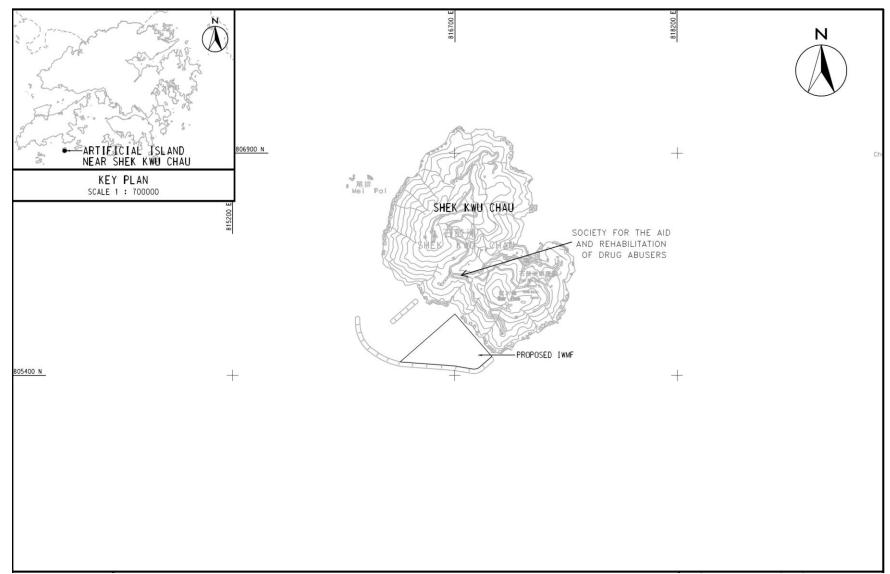


Figure 1.1 Location of the IWMF at the Artificial Island near SKC

 $_{\sim}$

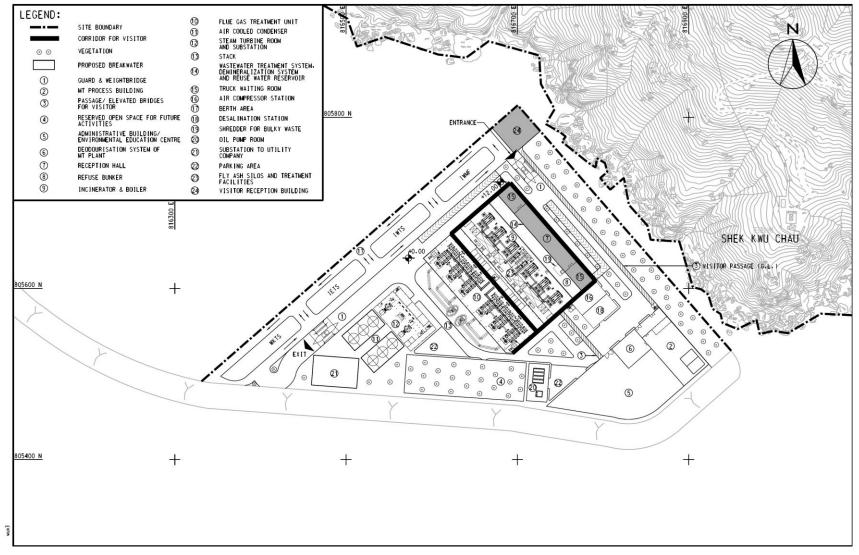
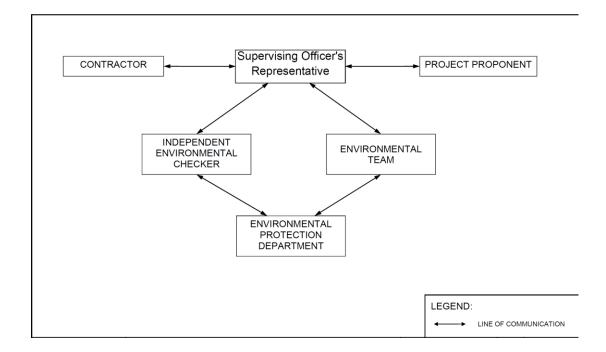



Figure 1.2 General Layout of the IWMF at the Artificial Island near SKC

- 1.2 The Reporting Scope
- 1.2.1 This is the 9th Monthly EM&A Report for the Project which summarizes the key findings of the EM&A programme during the reporting period from 1 March to 31 March 2019.
- 1.3 Project Organization
- 1.3.1 The Project Organization structure for Construction Phase is presented in **Figure 1.3**.

Figure 1.3 Project Organization Chart

1.3.2 Contact details of the key personnel are presented in **Table 1.1** below:

Table 1.1 Contact Details	s of Key Personnel
---------------------------	--------------------

Party	Position	Name	Telephone no.
Keppel Seghers – Zhen Hua Joint Venture	Project Manager	Kenny Yu	2192-0606
Acuity Sustainability Consulting Limited	Environmental Team Leader	Robin Ho	2698-6833
ERM-Hong Kong, Limited	Independent Environmental Checker	Mandy To	2271-3000

1.4 Summary of Construction Works

1.4.1 Details of the major construction activities undertaken in this reporting period are shown in **Table 1.2** and **Figure 1.4** below. The construction programme is presented in **Appendix A**.

Table 1.2 Summary of the Construction Activities Undertaken during the Reporting
Month

Location of works	Construction activities undertaken	Remarks on progress
Seawall and breakwater locations	• Marine site investigation works	Completed
Location of DCM Site Trial	• Coring of DCM samples	Completed
Seawall locations	Collecting of Marine Sediment Samples	• Completed
Location of DCM Static Loading Test	• DCM installation	Completed
Seawall and berth area	• Laying of Geotextile and Sand Blanket	 73 out of 95 geotextiles were laid Completed for sand blanket laying
Seawall and berth area	DCM installationDredging operation	 On-going 524.534 m³ of dredged sediment in bulk quantity was dumped

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Monthly EM&A Report No.9

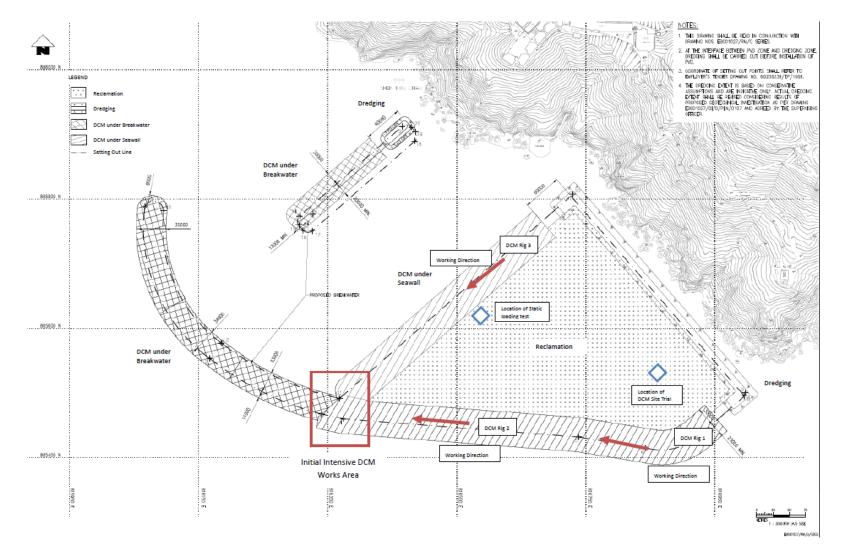


Figure 1.4 Location of Major Construction Activities Undertaken during the Reporting Month

1.5 Summary of Environmental Status

1.5.1 A summary of the valid permits, licences, and /or notifications on environmental protection for this Project is presented in **Table 1.3**

Table 1.3 Summary of the Status of Valid Environmental Licence, Notification, Permit and Documentations

Permit/ Licences/	Reference	Validity Period	Remarks
Notification			
Variation of	EP-429/2012/A	Throughout the Contract	
Environmental Permit		-	
Further Environmental	FEP-01/429/2012/A	Throughout the Contract	
Permit			
Notification of	Ref No.: 428778	15/12/2017-22/09/2024	
Construction Works			
under the Air			
Pollution Control			
(Construction Dust)			
Regulation (Form NA)			
Wastewater Discharge	-	-	Under
Licence			Application
	-	-	Under
			Application
Chemical Waste	WPN0017-933-	Throughout the Contract	
Producer Registration	K3301-01		
	WPN5213-961-	Throughout the Contract	
	K3301-02		
Construction Noise	GW-RS0018-19	15/01/2019 - 10/04/2019	
Permit (24 hours)			
Construction Noise	GW-RS0251-19	27/03/2019 - 25/09/2019	
Permit (24 hours)			
Billing Account for	A/C No.:7029768	Throughout the Contract	
Disposal of			
Construction Waste			
Marine Dumping	EP/MD/19-094	20/02/2019 - 19/8/2019	
Permit			

1.5.2 The status for all environmental aspects is presented **Table 1.4**.

Table 1.4 Summary of Status for Key Environmental Aspects under the Updated EM&A Manual

Parameters	Status
	Water Quality
Baseline Monitoring under Updated EM&A Manual and Detailed Plan on DCM	The baseline water quality monitoring result has been reported in Baseline Monitoring Report and submitted to EPD under FEP Condition 3.4
Impact Monitoring	On-going
Regular DCM Monitoring	On-going
Initial Intensive DCM Monitoring	On-going, being scheduled from 11 February 2019 to 10 March 2019

Parameters	Status
Baseline Water Quality of	Completed over 13 August 2018 to 7 September 2018
wet season	
	Noise
Baseline Monitoring	The baseline niose monitoring result has been reported in Baseline Monitoring Report and submitted to EPD under FEP Condition 3.4
Impact Monitoring	On-going
	Waste Management
Mitigation Measures in	On-going
Waste Monitoring Plan	
<u> </u>	Coral
Pre-translocation Survey	The Coral Translocation Plan was submitted and approved by
and Coral Mapping	EPD under EP Condition 2.12
Coral Translocation	Completed on 28 March 2018
Post-Translocation Coral	On-going, survey affected by missing of translocated and
Monitoring	tagged coral colonies after typhoons in September 2018
Pre-construction Coral	Completed on 26 June 2018
Survey and Tagging	Survey chatrystad due to missing of tagged corpl colonies
Tagged Coral Monitoring	Survey obstructed due to missing of tagged coral colonies
<u>C 16 1D</u>	after typhoons in September 2018
Coral Survey and Re-	Re-tagging at Indirect Impact Site was conducted on 23
tagging	November and Re-tagging at Control Site was conducted on 3
	December 2018.
Post Re-tagging Coral	On-going
Monitoring	
	Marine Mammal
Baseline Monitoring	The baseline marine mammal monitoring result has been
	reported in Baseline Monitoring Report and submitted to EPD
	under FEP Condition 3.4
Impact Monitoring	On-going
	White-bellied Sea Eagle
Baseline Monitoring	The baseline WBSE monitoring result has been reported in Baseline Monitoring Report and submitted to EPD under FEP Condition 3.4
Impact Monitoring	On-going
	Environmental Audit
Site Inspection covering	On-going
Measures of Air Quality,	
Noise Impact, Water	
Quality, Waste,	
Ecological Quality,	
Fisheries, Landscape and	
Visual	
Mitigation Measures in	On-going
Marine Mammal	<u></u>
Watching Plan (MMWP)	
Mitigation Measures in	On-going
Detailed Monitoring	
6	
Programme on Finless	
Porpoise (DMPFP)	On going
Mitigation Measures in Vessel Travel Details	On-going

Parameters	Status
Daily Site Audit and	On-going
Monitoring for Dredging	
Work	

- 1.5.3 Other than the EM&A works by ET, environmental briefings, trainings and regular environmental management meetings were conducted, in order to enhance environmental awareness and closely monitor the environmental performance of the contractors.
- 1.5.4 The EM&A programme has been implemented in accordance with the recommendations presented in the approved EIA Report and the Updated EM&A Manual. A summary of implementation status of the environmental mitigation measures for the construction phase of the Project during the reporting period is provided in **Appendix B**.

2. MARINE WATER QUALITY MONITORING

- 2.1 Water Quality Requirements
- 2.1.1 To ensure no adverse water quality impact, water quality monitoring is recommended to be carried out at the nearby water sensitive receivers (WSRs) during construction phase including proposed reclamation, breakwater construction, etc.
- 2.1.2 In accordance with the Updated EM&A Manual, impact water quality monitoring were conducted 3 days per week at mid-flood and mid-ebb tide to obtain impact water quality levels at the eleven monitoring stations during general water quality monitoring and fourteen monitoring stations during regular DCM monitoring for the construction period.
- 2.2 Water Quality Parameters, Time, Frequency
- 2.2.1 Dissolved Oxygen (DO), Turbidity, Suspended Solids (SS), Salinity and pH have been undertaken at the eleven monitoring stations during general water quality monitoring. Beside the above parameters, monitoring for Total Alkalinity, Current Velocity and Current Direction have been undertaken at all fourteen monitoring stations (including S1, S2 and S3) during regular DCM monitoring. While the same parameters monitored during regular DCM monitoring have been undertaken at twelve immediate upstream and downstream area to the DCM works location during intensive DCM monitoring. Intensive DCM monitoring was conducted on 2, 4, 6, 8 and 10 March 2019.
- 2.2.2 Current velocity and direction, DO, temperature, salinity, turbidity and pH have been measured in-situ and the SS, Total Alkalinity have been assayed in a HOKLAS laboratory.
- 2.2.3 In associate with the water quality parameters, other relevant data were also measured, such as monitoring location/position, time, water depth, sampling depth, tidal stages, weather conditions and any special phenomena or work underway nearby were also recorded. The monitoring schedule is provided in **Appendix C**.
- 2.2.4 Impact water quality monitoring was conducted 3 days per week in the reporting period. All parameters were monitored during mid-flood and mid-ebb tides at three water depths for general water quality monitoring. The interval between two sets of monitoring has not been less than 36 hours.
- 2.2.5 The initial intensive DCM monitoring programme has been conducted daily from 11-24 February 2019, and conducted every two days from 25 February to 10 March 2019. The actual duration of the initial DCM monitoring might extend beyond four weeks should there be any exceedances in specific-DCM parameters (Temperature & Alkalinity) of water quality action and limit levels.
- 2.2.6 **Table 2.1** summarizes the monitoring parameters, frequency and duration of the impact water quality monitoring during construction phase.

Parameter, unit	Frequency	No. of Depths
 Water Depth(m) Temperature(°C) Salinity(ppt) pH (pH unit) 	General water quality monitoring and Regular DCM monitoring:	3 water depths: 1m below sea surface, mid-depth and 1m above sea bed.

Table 2.1 Water Quality Monitoring Parameters, Frequency and Duration

Parameter, unit	Frequency	No. of Depths
Dissolved Oxygen (DO)(mg/L and % of	3 days per week, at mid-flood and mid-ebb tides	If the water depth is less than 3m, mid-depth sampling only.
 saturation) Turbidity(NTU) Suspended Solids (SS), mg/L Total alkalinity Current velocity Direction 	*Intensive DCM monitoring: Daily in first 2 weeks, at mid- flood and mid-ebb tides. if no exceedance is recorded within the first two weeks, then the monitoring frequency can be reduced to every two days.	If water depth less than 6m, mid-depth may be omitted.

Note: *Exccedances referred to total alkalinity and temperature only. These should be confirmed by ET and verified by IEC as project-related.

- 2.3 Water Quality Monitoring Locations
- 2.3.1 Impact water quality monitoring was conducted at eleven monitoring locations (B1-B4, H1, C1, C2, F1, CR1, CR2 & M1) during general water quality monitoring and was conducted at fourteen water monitoring locations (B1-B4, H1, C1, C2, F1, S1-S3, CR1, CR2 & M1) during regular DCM monitoring, as shown in Figure 2.1. Initial intensive DCM water quality monitoring was conducted at twelve monitoring locations (UC1-UC2 & I1-I10) while UC1 & UC2 were representative upstream control stations and I1 to I10 were impact downstream stations as shown in Figure 2.2.

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Monthly EM&A Report No.9

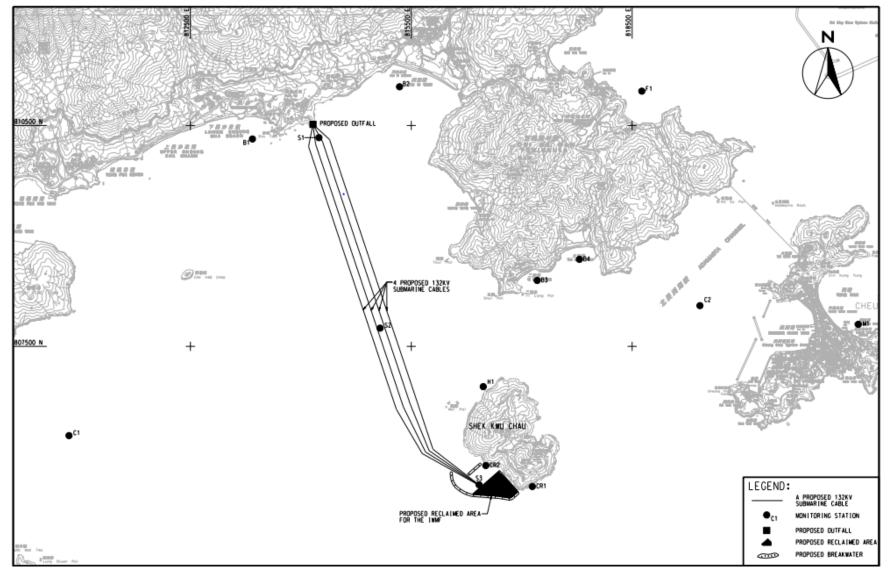


Figure 2.1 Water monitoring locations at Artificial Island near SKC

- 2.3.2 B1 to B4 are located at 4 beaches respectively at the southern shore of Lantau Island. Monitoring station H1 is located at the horseshoe crab habitat at northern SKC, while CR1 and CR2 are located at the coral communities at southwestern shore of SKC. Monitoring station F1 is located at the Cheung Sha Wan Fish Culture Zone while monitoring station M1 is located at Tung Wan at Cheung Chau. S1, S2 and S3 are located at the northern landing site, midway and southern landing site of the proposed submarine cable, respectively. S1, S2 and S3 are required for monitoring due to the laying of submarine cable. Control stations C1 and C2 at far field locations are for comparison.
- 2.3.3 Fourteen monitoring stations are listed in **Table 2.2**:

Monitoring station	Description	Easting	Northing
B1	Beach - Cheung Sha Lower	813342	810316
B2	Beach - Pui O	815340	811025
B3	Beach - Yi Long Wan	817210	808395
B4	Beach - Tai Long Wan	817784	808682
H1	Horseshoe Crab - Shek Kwu Chau	816477	806953
C1	Control Station	810850	806288
C2	Control Station	819421	808053
F1	Cheung Sha Wan Fish Culture Zone	818631	810966
S1	Submarine Cable Landing Site	814245	810335
S2	Submarine Cable	815076	807747
S3	Submarine Cable Landing Site	816420	805621
CR1	Coral	817144	805597
CR2	Coral	816512	805882
M1	Tung Wan	821572	807799

 Table 2.2 - Locations of Marine Water Quality Stations

- 2.3.4 For initial intensive DCM monitoring, mobile impact monitoring stations shall be located within fixed distances from the DCM group works area to obtain water quality information in the immediate upstream and downstream area. A total of 12 nos. monitoring stations will be deployed with the following arrangement and illustrated in **Figure 2.2**:
- Two monitoring stations upstream and at 150 m envelope of DCM group works area (Representative Control stations).
- Five monitoring stations downstream and at 150 m envelope of DCM group works area (Impact 1 stations).
- Five monitoring stations downstream and at 250 m envelope of DCM group works area (Impact 2 stations).
- Monitoring stations should be at least 50 m apart;
- Downstream monitoring stations should be perpendicular to the tidal direction.

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Monthly EM&A Report No.9

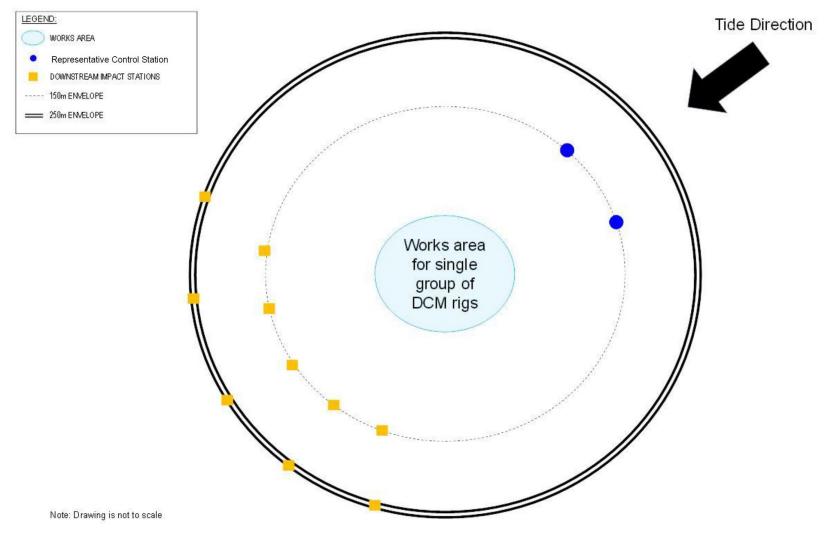


Figure 2.2 Water monitoring locations during intensive DCM monitoring

2.4 Impact Monitoring Methodology

- 2.4.1 General water quality monitoring was conducted three days per week, at mid-flood and mid-ebb tides, at the designated water quality monitoring stations during the reporting period. Initial intensive DCM monitoring was performed daily in first 2 weeks, at mid-flood and mid-ebb tides, at the mobile impact monitoring stations locating within fixed distances from the DCM group works in the immediate upstream and downstream area.
- 2.4.2 The interval between 2 sets of monitoring was not less than 36 hours except for initial intensive DCM monitoring. Sampling was collected at three water depths, namely, 1m below water surface, mid-depth and 1m above seabed, except where the water depth is less than 6m, the mid-depth was omitted. If the water depth was less than 3m, only the mid-depth station was monitored.
- 2.4.3 All observations and results were recorded in the data record sheets in **Appendix D**. Duplicate in-situ measurements and water sampling were carried out in each sampling event. The monitoring probes were retrieved out of water after the first measurement and then redeployed for the second measurement. When the difference in value between the first and second readings of DO or turbidity is more than 25% of the value of the first reading, the reading was discarded and further readings were taken.

In-situ Measurement

2.4.4 Levels of DO, pH, temperature, turbidity and salinity would be measured in-situ by portable and weatherproof measuring instrument, e.g. YSI ProDSS and Horiba U-53 Multiparameter complete with cable and sensor. (Refer to http://www.ysi.com/ProDSS for YSI ProDSS technical specification and http://www.horiba.com/processenvironmental/products/water-treatment-environment/details/u-50-multiparameterwater-quality-checker-368/ for Horiba U-53 technical specification). Water current velocity and Water Current direction would be measured by portable and weatherproof current meter. SonTek Hydrosurveyor e.g. (Refer to https://www.sontek.com/media/pdfs/riversurveyor-s5-m9-brochure.pdf for SonTek Hydrosurveyor M9 technical specification). Parameters measured by in-situ measurement is tabulated in Table 2.3

Parameter	Resolution	Range
Temperature	0.1 °C	-5-70 °C
Dissolved Oxygen (DO)	0.01 mg/L	0-50.0 mg/L
Turbidity	0.1 NTU	0-1000 NTU
pH	0.01 pH	pH 0-14
Salinity	0.01 ppt	0-40 ppt
Water Current Velocity	0.001m/s	±20m/s
Water Current Direction	±1°	$\pm 2^{\circ}$

 Table 2.3 - Parameters Measured by In-situ Measurement

Laboratory Analysis

2.4.5 Analysis of Total Alkalinity and SS should be carried out in a HOKLAS accredited laboratory, as shown in **Appendix E**. Sufficient water samples shall be collected at the monitoring stations for carrying out the laboratory determinations. The determination work should be started within 24 hours after collection of the water samples. Analytical methods and detection limits for SS and total alkalinity are present in **Table 2.4**.

Parameter	Analytical method	Detection Level
Suspended Solids, SS	APHA 2540 D _i	1 mg/L
Total Alkalinity	APHA 2320	0.01 mg/L

Table 2.4 - Analytical Methods Applied to Water Quality Samples

Footnote:

i. "APHA 2540 D" stands for American Public Health Association Standard Methods for the Examination of Water and Wastewater, 23rd Edition.

Field Log

- 2.4.6 Other relevant data was recorded, such as: monitoring location / position, time, water depth, weather conditions and any special phenomena underway near the monitoring station.
- 2.5 Monitoring Equipment
- 2.5.1 Equipment used in the impact water quality monitoring programme is summarized in **Table 2.5** below. Calibration certificates for the water quality monitoring equipment are attached in **Appendix F**.

Monitored Parameter	Equipment	Brand and Model
DO, Temperature, Salinity,	Multi-functional Meter	YSI ProDSS
pH and Turbidity		
Coordinates	Positioning Equipment	Garmin GPSMAP 78s
Water depth	Water Depth Detector	Hummingbird 160 Portable
SS	Water Sampler	Wildco 2 L Water Sampler
		with messenger

Table 2.5 Impact Water Quality Monitoring Equipment

2.5.2 Dissolved Oxygen and Temperature Measuring Equipment

The instrument was a portable and weatherproof DO probe mounted on the multifunctional meter complete with cable and sensor, and use a DC power source. The equipment was capable of measuring:

- A DO level in the range of 0 50 mg/L; and
- Temperature of -5 70 degree Celsius.
- 2.5.3 Turbidity Measurement Instrument

The instrument was a portable and weatherproof turbidity-measuring probe mounted on the multi-functional meter using a DC power source. It had a photoelectric sensor capable of measuring turbidity between 0 - 1000 NTU.

2.5.4 pH Measurement Instrument

The probe was consisted of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device mounted on the multi-functional meter. It was readable to 0.1 pH in a range of 0 to 14. Standard buffer solutions of at least pH 7 and pH 10 were used for calibration of the instrument before and after use.

2.5.5 Salinity Measurement Instrument

A portable salinometer mounted on the multi-functional meter capable of measuring salinity in the range of 0-40 parts per thousand (ppt) was provided for measuring salinity of the water at each monitoring location.

2.5.6 Sampler

The water sampler comprised a transparent PVC cylinder, with a capacity of not less than 2 litres, which can be effectively sealed with latex cups at both ends. The sampler has a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth.

2.5.7 Sample Containers and Storage

Water samples for SS were stored in high density polythene bottles with no preservative added, packed in ice (cooled to 4°C without being frozen) and delivered to the laboratory and analysed as soon as possible after collection. Sufficient volume of samples was collected to achieve the detection limit stated in **Table 2.4**.

2.5.8 Water Depth Detector

A portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station. This unit could either be hand held or affixed to the bottom of the work boat, if the same vessel is to be used throughout the monitoring programme.

2.5.9 Monitoring Position Equipment

Hand-held digital Differential Global Positioning System (DGPS) with way point bearing indication and Radio Technical Commission for maritime (RTCM) Type 16 error message 'screen pop-up' facilities (for real-time auto-display of error messages and DGPS corrections from the Hong Kong Hydrographic Office) was provided and used to ensure that the water sampling locations were correct during the water quality monitoring work.

- 2.6 Maintenance and Calibration
- 2.6.1 The multi-functional meters were checked and calibrated before use. Multi-functional meters were certified by a laboratory accredited under HOKLAS or any other international accreditation scheme, and subsequently re-calibrated at three monthly intervals throughout all stages of the water quality monitoring. Responses of sensors and electrodes were checked with certified standard solutions before each use. Wet bulb calibration for a DO meter was carried out before commencement of monitoring and after completion of all measurements each day. Calibration was not conducted at each monitoring location as daily calibration is adequate for the type of DO meter employed.
- 2.6.2 Sufficient stocks of spare parts were provided and maintained for replacements when necessary. Backup monitoring equipment was prepared for uninterrupted monitoring during equipment maintenance or calibration during monitoring.
- 2.7 Action and Limit Levels

2.7.1 The Action and Limit Levels have been set based on the derivation criteria specified in the Updated EM&A Manual and Detailed DCM Plan, as shown in **Table 2.6** below.

Parameters	Action	Limit	
Construction Phase Impact Monitoring			
DO in mg/L	\leq 5 %-ile of baseline data	≤ 4	
SS in mg/L	\geq 95 %-ile of baseline data or 120%	\geq 99 %-ile of baseline data or 130% of	
	of control station's SS at the same	control station's SS at the same tide of	
	tide of the same day of	the same day of measurement,	
	measurement, whichever is higher	whichever is higher	
Turbidity in NTU	\geq 95 %-ile of baseline data or 120%	\geq 99 %-ile of baseline data or 130% of	
	of control station's turbidity at the	control station's turbidity at the same	
	same tide of the same day of	tide of the same day of measurement,	
	measurement, whichever is higher	whichever is higher	
Temperature in [°] C	1.8°C above the temperature recorded at representative control station at the same tide of the same day	2°C above the temperature recorded at representative control station at the same tide of the same day	
Total Alkalinity in mg/L	\geq 95 %-ile of baseline data or 120% of representative control station at the same tide of the same day, whichever is higher	\geq 99 %-ile of baseline data or 130% of representative control station at the same tide of the same day, whichever is higher	

Table 2.6 Criteria of Action and Limit Levels for Water Quality

2.7.2 Based on the baseline monitoring data and the derivation criteria specified above, the Action/Limit Levels have been derived and are presented in **Table 2.7** and **Table 2.8** for both dry seasons (October – March) and wet seasons (April – September).

Parameters	Action	Limit
Construction Phase Impact Monitoring		
DO in mg/L	≤ 7.13	≤ 4
SS in mg/L	\geq 8 or 120% of control station's SS at the same tide of the same day of	\geq 10 or 130% of control station's SS at the same tide of the same day of
	measurement, whichever is higher	measurement, whichever is higher
Turbidity in NTU	\geq 5.6 or 120% of control station's turbidity at the same tide of the same day of measurement, whichever is higher	\geq 12.8 or 130% of control station's turbidity at the same tide of the same day of measurement, whichever is higher

Parameters	Action	Limit
Temperature in ^o C	1.8°C above the temperature recorded at representative control station at the same tide of the same day	2°C above the temperature recorded at representative control station at the same tide of the same day
Total Alkalinity in mg/L	 ≥116 or 120% of control station's Total Alkalinity at the same tide of the same day of measurement, whichever is higher 	\geq 118 or 130% of control station's Total Alkalinity at the same tide of the same day of measurement, whichever is higher

Notes:

i. "Depth-averaged" is calculated by taking the arithmetic means of reading of all three depths.

ii. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

iii. For turbidity, SS and Salinity, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

Table 2.8 Derived Action and Limit Levels for Water Quality (Wet Season)

Parameters	Action	Limit	
Construction Phas	Construction Phase Impact Monitoring		
DO in mg/L	≤ 5.28	<u>≤</u> 4	
SS in mg/L	\geq 12 or 120% of control station's SS	\geq 14 or 130% of control station's SS at	
	at the same tide of the same day of	the same tide of the same day of	
	measurement, whichever is higher	measurement, whichever is higher	
Turbidity in NTU	\geq 4.0 or 120% of control station's	\geq 4.3 or 130% of control station's	
	turbidity at the same tide of the same	turbidity at the same tide of the same	
	day of measurement, whichever is	day of measurement, whichever is	
	higher	higher	
Temperature in [°] C	1.8°C above the temperature recorded at representative control station at the same tide of the same day	2°C above the temperature recorded at representative control station at the same tide of the same day	
Total Alkalinity	\geq 116 mg/L or 120% of	\geq 118 mg/L or 130% of representative	
in mg/L	representative control station at the	control station at the same tide of the	
	same tide of the same day,	same day, whichever is higher	
	whichever is higher		

Notes:

i. "Depth-averaged" is calculated by taking the arithmetic means of reading of all three depths.

ii. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

iii. For turbidity, SS and Salinity, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

2.7.3 The Action and Limit (AL) levels for DCM-specific and other water quality parameters during initial intensive DCM monitoring with referring to Detailed Plan on Deep Cement Mixing, as shown in **Table 2.9 and 2.10** below respectively.

Table 2.9 Action and Limit Levels for DCM-specific Water Quality Parameters (Intensive DCM Monitoring)

Parameters	Action	Limit
Construction Phas	se Impact Monitoring	
Temperature in ^o C	1.8°C above the temperature	2°C above the temperature recorded at
	recorded at representative control	representative control station at the
	station at the same tide of the same	same tide of the same day
	day	
Total Alkalinity	95 percentile of baseline data or	99 percentile of baseline data or 130%
in mg/L	120% of representative control	of representative control station at the
	station at the same tide of the same	same tide of the same day, whichever
	day, whichever is higher	is higher

Notes:

i. "Depth-averaged" is calculated by taking the arithmetic means of reading of all three depths.

ii. For Temperature and Total Alkalinity, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

Table 2.10Action and Limit Levels for Other Water Quality Parameters (Intensive
DCM Monitoring)

Parameters	Action	Limit					
Construction Phas	Construction Phase Impact Monitoring						
DO in mg/L	80% of representative control station	70% of representative control station at					
(Surface and	at the same tide of the same day or	the same tide of the same day or					
middle)	4mg/L, whichever is lower.	4mg/L, whichever is lower.					
DO in mg/L	80% of representative control station	70% of representative control station at					
(Bottom)	at the same tide of the same day or	the same tide of the same day or					
	2mg/L, whichever is lower.	2mg/L, whichever is lower.					
SS in mg/L	120% of representative control	130% of representative control station					
	station at the same tide of the same	at the same tide of the same day.					
Turbidity in NTU	day.						

Notes:

i. "Depth-averaged" is calculated by taking the arithmetic means of reading of all three depths.

ii. For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

iii. For SS and Turbidity, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

2.7.4 If exceedances were found during water quality monitoring, the actions in accordance with the Event and Action Plan shall be carried out according to **Appendix G**.

- 2.8 Monitoring Results and Observations
- 2.8.1 During the reporting period, general water quality monitoring was conducted on 1, 4, 6 & 8 March 2019 at all eleven monitoring stations and regular DCM monitoring including monitoring stations S1, S2 & S3 were conducted on 11, 13, 15, 18, 20, 22, 25, 27 & 29 March 2019. Monitoring results of 7 key parameters: Salinity, DO,

turbidity, SS, pH, temperature and total alkalinity for general water quality and regular DCM monitoring in this reporting month, are summarized in **Table 2.11**, and details results are presented in **Appendix D**. During the reporting period, initial intensive DCM water quality monitoring was conducted on 2, 4, 6, 8 & 10 March 2019 at all twelve monitoring stations consisting of UC1, UC2 and I1 to I10. Monitoring results of 7 key parameters: Salinity, DO, turbidity, SS, pH, temperature and total alkalinity for initial intensive DCM monitoring in this reporting month, are summarized in **Table 2.12**, and details results are presented in **Appendix D**.

Parameters Locations Salinity (ppt) Dissolved Oxygen (mg/L) Turbidity (NTU) Suspended Solids (mg/L) Total Alkalinity (mg/L) B1 Avg. 30.60 10.56 10.54 8.93 2.5 5.23 20.8 110.3 Max. 33.60 10.40 10.40 10.40 Total Alkalinity (mg/L) B1 Avg. 30.61 10.40 10.40 10.40 Total Avg. 30.61 10.40 10.40 10.40 Makee Total Avg. 30.76 10.27 8.94 2.3 5.41 2.00 17.5 104.0 Max. 33.36 12.277 12.85 5.17 2.00 17.5 104.0 Max. 33.37 12.23 8.946 <th< th=""><th colspan="7">Table 2.11 Summary of Impact Water Quanty Monitoring Results</th></th<>	Table 2.11 Summary of Impact Water Quanty Monitoring Results									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Parameters									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Locations		Salinity	Oxygen		nН	-	-	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			(ppt)	&	Bottom	pii	(NTU)		(°C)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Avg.	30.60	10.56	10.54	8.93	2.5	5.23	20.8	110.3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	B1									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				13.04			4.5		23.9	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	B2	Min.								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Avg.		10.24	10.27		2.3	5.41	20.7	110.8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	B3	Min.	27.49	7.87	7.77	8.19	0.7	2.00	17.5	104.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					12.35	9.46	4.9			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Avg.	30.55	10.57	10.52	8.91	2.5	5.17	20.7	111.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	B4	Min.	27.31	7.77	7.84	8.31	0.7	2.00	17.2	107.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Max.	33.40	12.99	12.89	9.50	4.8	12.00	23.9	114.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Avg.	30.53		10.36	8.91	2.4	5.50	20.8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C1	Min.	27.47	7.55	7.63	8.13	1.0	2.00	17.3	106.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Max.	33.35	12.90	12.50	9.56	4.9	11.00	23.9	114.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Avg.		10.35	10.35		2.5	5.55	20.7	110.9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C2		27.59				1.1			106.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Max.			13.06					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	~~ .									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CR1									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	GDA									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CR2									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						1.6				1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	F 1									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	FI									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	TT1									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	пі									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	М1									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11/1									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	S 1									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										1
S2 Avg. 30.51 11.38 11.35 8.87 2.5 5.72 21.2 110.9 Min. 27.57 9.80 9.64 8.34 1.4 3.00 17.2 106.0 Max. 33.23 13.13 13.05 9.55 3.5 11.00 23.9 114.0 S3 Avg. 30.61 11.40 11.40 8.87 2.3 6.20 21.2 111.0										
32 Min. 27.57 9.80 9.64 8.34 1.4 3.00 17.2 106.0 Max. 33.23 13.13 13.05 9.55 3.5 11.00 23.9 114.0 S3 Avg. 30.61 11.40 11.40 8.87 2.3 6.20 21.2 111.0	-									
Max. 33.23 13.13 13.05 9.55 3.5 11.00 23.9 114.0 S3 Avg. 30.61 11.40 11.40 8.87 2.3 6.20 21.2 111.0	S2									
S3 Avg. 30.61 11.40 11.40 8.87 2.3 6.20 21.2 111.0										
										1
1 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 100.0 -	S3									
Max. 33.36 13.25 13.18 9.42 3.8 11.00 23.9 114.0										

 Table 2.11
 Summary of Impact Water Quality Monitoring Results

Notes:

i. "Avg", "Min" and "Max" is the average, minimum and maximum respectively of the data from measurements conducted under mid-flood and mid-ebb tides at three water depths, except that of DO where the data for "Surface & Middle" and "Bottom" are calculated separately.

ii. Total alkalinity test only conducted on DCM working day with referring master programme in Appendix A.

iii. Monitoring at S1, S2 and S3 shall only be conducted during DCM work period referring to master programme in **Appendix A**.

		Parameters							
Loca	ations	Salinity	Disso Oxygen			Turbidity (NTU)	Suspended	Temp.	Total Alkalinity
		(ppt)	Surface & Middle	Bottom	pН		Solids (mg/L)	(°C)	(mg/L) note ii
	Ava	30.82	8.53	8.50	9.01	2.8	4.68	18.9	111.7
UC1	Avg. Min.	29.15	7.56	7.70	8.13	1.3	2.00	17.3	109.0
001	Max.	32.86	9.26	9.17	9.38	4.1	9.00	20.2	114.0
	Avg.	30.89	8.45	8.50	9.04	2.8	4.93	18.9	114.0
UC2	Min.	29.15	7.58	7.67	8.19	1.3	2.00	17.3	109.0
0.02	Max.	32.59	9.27	9.15	9.47	3.9	8.00	20.2	114.0
	Avg.	30.83	8.47	8.67	9.07	2.7	4.86	18.9	1114.0
I1	Min.	29.16	7.56	7.79	8.22	1.3	3.00	17.4	109.0
	Max.	32.91	9.18	9.16	9.49	3.9	9.00	20.2	115.0
	Avg.	30.79	8.49	8.49	9.02	2.8	5.58	18.9	111.8
I2	Min.	29.16	7.64	7.57	8.28	1.7	2.00	17.2	109.0
	Max.	32.26	9.22	9.24	9.48	4.0	8.00	20.2	115.0
	Avg.	30.78	8.49	8.48	9.00	2.8	4.95	18.9	111.9
I3	Min.	29.22	7.65	7.57	8.18	1.0	2.00	17.3	109.0
	Max.	32.81	9.20	9.26	9.46	4.2	8.00	20.2	114.0
	Avg.	30.72	8.48	8.50	9.01	2.8	4.58	18.9	112.0
I4	Min.	29.07	7.57	7.96	8.20	1.8	2.00	17.2	109.0
	Max.	32.03	9.26	9.27	9.46	4.0	9.00	20.2	114.0
	Avg.	30.84	8.53	8.46	9.03	2.7	5.63	18.9	111.9
I5	Min.	29.24	7.84	7.59	8.17	1.0	2.00	17.3	108.0
	Max.	32.42	9.22	9.28	9.49	3.9	14.00	20.2	114.0
	Avg.	30.71	8.43	8.47	9.03	2.7	5.43	18.9	111.8
I6	Min.	29.09	7.55	7.74	8.20	1.2	3.00	17.2	109.0
	Max.	32.81	9.24	8.99	9.46	4.1	10.00	20.2	114.0
	Avg.	30.98	8.49	8.43	9.02	2.8	5.20	18.9	111.7
I7	Min.	29.10	7.58	7.73	8.13	1.5	2.00	17.5	109.0
	Max.	32.74	9.24	9.27	9.48	4.0	8.00	20.2	114.0
	Avg.	30.74	8.42	8.45	9.01	2.8	5.90	18.9	112.0
I8	Min.	29.07	7.59	7.76	8.23	0.9	2.00	17.3	109.0
	Max.	32.90	9.26	9.25	9.41	4.1	11.00	20.2	114.0
	Avg.	30.72	8.50	8.52	9.02	2.8	6.33	18.8	112.0
I9	Min.	29.11	7.71	7.77	8.18	1.5	2.00	17.3	109.0
	Max.	32.93	9.25	9.06	9.49	4.0	16.00	20.2	114.0
I10	Avg.	30.90	8.49	8.55	9.01	2.8	5.42	18.9	112.0
110	Min.	29.13	7.65	7.79	8.13	1.1	2.00	17.2	108.0
Notaa	Max.	32.80	9.27	9.13	9.45	4.1	12.00	20.2	114.0

 Table 2.11
 Summary of Intensive DCM Water Quality Monitoring Results

Notes:

i. "Avg", "Min" and "Max" is the average, minimum and maximum respectively of the data from measurements conducted under mid-flood and mid-ebb tides at three water depths, except that of DO where the data for "Surface & Middle" and "Bottom" are calculated separately.

- 2.8.2 The weather conditions during the monitoring period were mainly sunny and cloudy. Sea conditions for the majority of monitoring days were mainly moderate. No major pollution source and extreme weather which might affect the results were observed during the impact monitoring.
- 2.8.3 During the impact monitoring period for March 2019, twenty-two and three of the General & Regular DCM water quality monitoring results for Suspended Solid (SS) obtained during the reporting period had exceeded the relevant Action or Limit Levels respectively; six and twenty-eight of the Initial Intensive DCM water quality monitoring results for Suspended Solid (SS) obtained during the reporting period had exceeded the relevant Action or Limit Levels respectively, where findings from

investigations carried out immediately for each of the exceedance cases had showed that these exceedances were unrelated to the Project, however, environmental deficiencies of the Contractor on the implementation of the silt curtain deployment system were spotted. Details of the exceedance are presented in **Section 8**.

2.8.4 Implemented mitigation measures minimizing the adverse impacts on water are listed in the implementation schedule given in **Appendix B**.

3. Noise Monitoring

- 3.1 Monitoring Requirements
- 3.1.1 To ensure no adverse noise impact, noise monitoring is recommended to be carried out at the nearby noise sensitive receivers (NSRs) during construction phase.
- 3.1.2 In accordance with the Updated EM&A Manual, baseline noise level at the noise monitoring stations was established as presented in the Baseline Monitoring Report. Impact noise monitoring was conducted once per week in the form of 30-minutes measurements Leq, L10 and L90 levels recorded at each monitoring station between 0700 and 1900 on normal weekdays.
- 3.1.3 In accordance with the Updated EM&A Manual, additional weekly impact monitoring should be carried out during respective restricted hours period (1900 0700) if the construction works were conducted at evening and night time. Additional weekly noise monitoring was conducted once per week in the form of 5-minutes measurements Leq, L10 and L90 levels recorded at each monitoring station between 1900 and 0700 as well as public holidays and Sundays.
- 3.2 Noise Monitoring Parameters, Time, Frequency
- 3.2.1 Impact noise monitoring was conducted weekly in the reporting period between 0700-1900 on normal weekdays. Additional impact noise monitoring was conducted weekly in the reporting period between 1900-0700 on all days as well as public holidays and Sundays.
- 3.2.2 Construction noise level measured in terms of the A-weighted equivalent continuous sound pressure level (LAeq). Leq _{30min} was used as the monitoring parameter for the time period between 0700 and 1900 hours on normal weekdays. Leq _{5mins} was used as the monitoring parameter for the time period between 1900 and 0700 as well as public holidays and Sundays. **Table 3.1** summarizes the monitoring parameters, frequency and duration of the impact noise monitoring and additional impact noise monitoring. The monitoring schedule is provided in **Appendix C**.

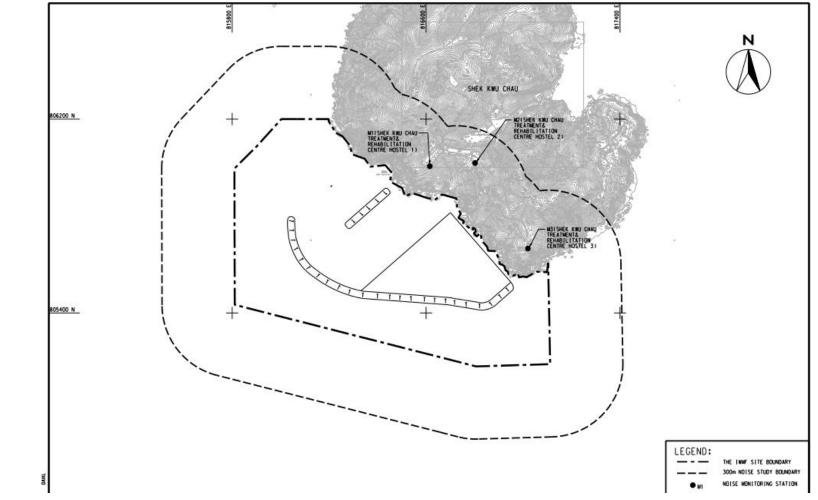

Monitoring Station	Time	Duration	Parameters
M1/ N_S1, M2/ N_S2, M3/ N_S3	Day time: 0700-1900 hrs (during normal weekdays)	$\begin{array}{c} Once \; per \; week \\ L_{eq\; 5min}/L_{eq\; 30min} \\ (average \; of \; 6 \\ consecutive \; L_{eq\; 5min}) \end{array}$	$L_{eq}, L_{10} \& L_{90}$
M1/ N_S1, M2/ N_S2, M3/ N_S3	Evening time: 1900-2300 hrs (including normal weekdays, also public holidays and Sundays)	Once per week L _{eq 5min} (3 sets of L _{eq} _{5min})	L _{eq} , L ₁₀ & L ₉₀
M1/ N_S1, M2/ N_S2, M3/ N_S3	Night time: 2300-0700 hrs (including normal weekdays, also public holidays and Sundays)	Once per week L _{eq 5min} (3 sets of L _{eq 5min})	L _{eq} , L ₁₀ & L ₉₀

Table 3.1 Noise Monitoring Parameters, Time, Frequency and Duration

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Monthly EM&A Report No.9

3.3 Noise Monitoring Locations

- --- --- ,

3.3.1 Three noise monitoring locations for impact monitoring and additional impact monitoring at the nearby sensitive receivers are shown in **Figure 3.1**.

Figure 3.1 Noise monitoring locations at SKC

- 3.3.2 M1, M2 and M3 are Shek Kwu Chau Treatment and Rehabilitation Centre Hostel 1, 2 and 3 respectively of The Society for the Aid and Rehabilitation of Drug Abusers (SARDA) located at southern part of Shek Kwu Chau.
- 3.3.3 Measurement at M1, M2 and M3 were conducted at a point 1m from the exterior of the sensitive receivers building façade and at a position 1.2m above the ground. The noise monitoring stations are summarized in **Table 3.2** below.

Station	StationNSR ID in EIA ReportNoise Monitoring Location		Type of sensitive receiver(s)	Measurement Type
M1	N_S1	Shek Kwu Chau Treatment & Rehabilitation Centre Hostel 1	Residential	Façade
M2	N_S2	Shek Kwu Chau Treatment & Rehabilitation Centre Hostel 2	Residential	Façade
M3	N_S3	Shek Kwu Chau Treatment & Rehabilitation Centre Hostel 3	Residential	Façade

Table 3.2 Noise Monitoring Location

3.4 Impact Monitoring Methodology

- 3.4.1 At each designated monitoring location, measurements of six 5-minutes A-weighted equivalent sound pressure level [" $L_{eq 5min}$ "] was carried out between 0700 and 1900 for daytime measurements on a normal weekdays (exclude Sunday or general holiday). The measured six impact noise levels at each monitoring location shall then be averaged in logarithmic scale and expressed in terms of the 30 minutes A-weighted equivalent continuous sound pressure level ($L_{eq 30min}$) for the time period between 0700 and 1900 hours on normal weekdays.
- 3.4.2 At each designated monitoring location, measurements of three 5-minutes A-weighted equivalent sound pressure level ["L_{eq 5min}"] was carried out between 1900 and 0700 for evening time and night time measurements.
- 3.4.3 The monitoring procedures are as follows:
 - The microphone head of the lead level meter was normally positioned 1m exterior of the noise sensitive façade and lowered sufficiently so that the building's external wall acts as a reflecting surface.
 - The battery condition was checked to ensure good functioning of the meter.
 - Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - Frequency weight: A
 - Time weighting: Fast
 - Measurement time: 5 minutes
 - Prior to and after noise measurement, the meter was calibrated using the calibrator for 94.0 dB at 1000Hz. If the difference in the calibration level before and after measurement is more than 1.0 dB, the measurement was considered invalid and repeat of noise measurement was required after re-calibration or repair of the equipment.
 - For Noise monitoring was carried out for 30 mins by sound level meter. At the end of the monitoring period, noise levels in terms of L_{eq}, L₁₀ and L₉₀ were recorded. In addition, site conditions and noise sources were recorded when the equipment were checked and inspected.
 - All the monitoring data within the sound level meter system was downloaded through the computer software.

3.5 Monitoring Equipment

- 3.5.1 Integrated sound level meter was used for the noise monitoring. The meter shall be in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications.
- 3.5.2 Equipment used in the impact noise monitoring programme is summarized in Table3.3 below. Calibration certificates for the noise monitoring equipment are attached in Appendix H.

Equipment	Brand and Model
Sound Level Meter	Nti XL2
	SVAN 958A
Sound Level Meter Calibrator	Pulsar 105

 Table 3.3 Impact Noise Monitoring Equipment

3.6 Maintenance and Calibration

- 3.6.1 The maintenance and calibration procedures were as follows:
 - The microphone head of the sound level meter and calibrator were cleaned with a soft cloth at quarterly intervals.
 - The sound level meter and calibrator were checked and calibrated at yearly intervals
 - Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0dB.
- 3.7 Action and Limit Levels
- 3.7.1 The Action/Limit Levels in line with the criteria of Practice Note for Professional Persons (ProPECC PN 2/93) "Noise from Construction Activities Non-statutory Controls" and Technical Memorandum on Environmental Impact Assessment Process issued by HKSAR Environmental Protection Department ["EPD"] under the Environmental Impact Assessment Ordinance, Cap 499, S.16 is presented in **Table 3.4**.

Time Period	Action	Limit (dB(A))
0700-1900 hrs on normal	When one documented	75 dB(A)
weekdays	complaint is received	75 UD(A)

Notes: If works are to be carried out during restricted hours, the conditions stipulated in the Construction Noise Permit (CNP) issued by the Noise Control Authority have to be followed.

- 3.7.2 If exceedances were found during noise monitoring. The actions in accordance with the Event and Action Plan shall be carried out according to **Appendix I**.
- 3.8 Monitoring Results and Observations
- 3.8.1 Impact monitoring for noise impact for daytime was carried out on 4, 11, 18, 25 March 2019. Since the overnight monitoring was approved in late March 2019, only one additional monitoring event could be arranged on 29 March 2019. Additional impact monitoring for noise impact for evening time and night time was carried out on 29 & 30 March 2019. The impact noise levels and additional impact noise levels at Noise Monitoring Stations at SKC (i.e. M1/ N_S1 to M3/ N_S3) are summarized in Table 3.6, Table 3.7 and Table 3.8 respectively. Details of noise monitoring results are presented in Appendix J.
- 3.8.2 Major construction activity, major noise source and extreme weather which might affect the results were recorded during the impact monitoring.
- 3.8.3 According to our field observations, the major noise source identified at the designated noise monitoring station in the reporting month are summarised in **Table 3.5**:

Monitoring Station	Major Noise Source
M1	Nil
M2	Nil
M3	Air-conditioning units nearby

Table 3.5 Summary of Field Observation

Table 3.6 Summa	rv of Impact Noise	Monitoring Re	esults during Daytime
I WOIC CTO Dummu	i j ol impace i toise	THOMAS IN A THE	

	Measur			
Location	Range of	Range of	Range of	$\mathbf{A}^{\text{NOTE 1}}$
	Leq 30min	L _{10 5min}	L90 5min	
M1	53.7 – 54.9	53.7 – 57.3	50.6 - 54.6	\checkmark
M2	55.1 - 56.5	55.4 - 58.9	51.2 - 55.6	✓
M3	54.8 - 56.0	54.6 - 58.4	50.8 - 54.6	\checkmark

NOTES:

1. A - Compliance with Limit Level of 0700 – 1900 on normal weekdays [75 dB(A)]

Location	Measured Noise Level in dB(A)			
	Range of Leq 5min	Range of L _{10 5min}	Range of L90 5min	
M1	55.0 - 55.4	56.9 –57.3	53.6 - 54.2	
M2 ^{NOTE 1}	NA	NA	NA	
M3	53.0 - 54.7	54.8 - 56.6	52.3 - 53.3	

Table 3.7 Summary of Additional Impact Noise Monitoring Results during Evening				
Time				

NOTES:

1. An unexpected failure happened for the sound level meter on monitoring station M2.

Table 3.8 Summary	v of Additional Imna	ct Noise Monitoring	Results during Night Time
Table 5.0 Summar	i of Auguluonal Impa	ici musi mumuring.	Results during rught rinne

Location	Measured Noise Level in dB(A)			
	Range of Leq 5min	Range of L _{10 5min}	Range of L _{90 5min}	
M1	55.0 - 55.8	55.3 - 57.4	52.4 - 54.8	
M2 ^{NOTE 1}	NA	NA	NA	
M3	53.3 - 53.9	55.3 - 55.6	52.4 - 53.1	

NOTES:

- 1. An unexpected failure happened for the sound level meter on monitoring station M2.
- 3.8.4 Mitigation measures for construction works in restricted hours are implemented in accordance to the "Noise Reduction Measurement Report for Double Glazed Window of NSR in Shek Kwu Chau" of KSZHJV dated 19 December 2018 and approved by EPD. Double-glazed windows and air conditioning system were installed and confirmed operable for the NSRs (N_S1, N_S2 & N_S3).
- 3.8.5 During the noise monitoring event, frontline staffs of ET have inquired the treatment centre users on any noise disturbance from the construction activities at evening and night time, where no complaint and adverse opinions was received until now.

4. WASTE

- 4.1 The waste generated from this Project includes inert construction and demolition (C&D) materials, and non-inert C&D materials. Non-inert C&D materials are made up of general refuse, vegetative wastes and recyclable wastes such as plastics and paper/cardboard packaging waste. Steel materials generated from the project are also grouped into non-inert C&D materials as the materials were not disposed of with other inert C&D materials.
- 4.2 As advised by the Contractor, 0 m³ of C&D material was generated on site in the reporting month. For C&D waste, no metals were generated and collected by registered recycling collector. 256 kg of paper was generated on site and collected by registered recycling collector. No plastic waste was collected by registered recycling collector. No chemical waste was collected by the licensed chemical waste collector. 0 m³ of other types of wastes (e.g. general refuse) were generated on site and disposed of at Landfill. 97,100 m³ of sand and 755.2 m³ of rock were imported during the reporting period.
- 4.3 524.534 m³ of dredged sediment in bulk quantity was dumped according to its dumping permit (EP/MD/19-094) during the reporting period.
- 4.4 Chemical waste generated from the cleaning of oil stain and leakage on deck of barges was now stored in the chemical waste storage area on the barges.
- 4.5 With reference to relevant handling records and trip tickets of this Project, the quantities of different types of waste generated in the reporting month are summarised in Table 4.1. Details of cumulative waste management data are presented as a waste flow table in Appendix K.

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Monthly EM&A Report No.9

Keppel Seghers - Zhen Hua Joint Venture

Table 4.1 Quantities of Waste Generated from the Project

	Actual Quantities of Inert C&D Materials Generated Monthly				Actual Quantities of C&D Wastes Generated Monthly									
Reporting Month	Total Quantity Generated	Hard Rock and Large Broken Concrete (see Note 1)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	I Sand	Public Fill	Fill Rock	Metals	Paper / cardboard packaging	Plastics (see Note 2)	Chemica	l Waste	Others, e.g. general refuse (see Note 3)
	(in ,000m ³)	(in ,000m ³)	(in ,000m ³)	(in ,000m ³)	(in ,000m ³)		(in ,000n	n ³)	(in ,000kg)	(in ,000kg)	(in ,000kg)	(in ,000kg)	(in ,000L)	(in ,000m ³)
March 2019	0	0	0	0	0	97.1	0	0.7552	0	0.256	0	0	0	0

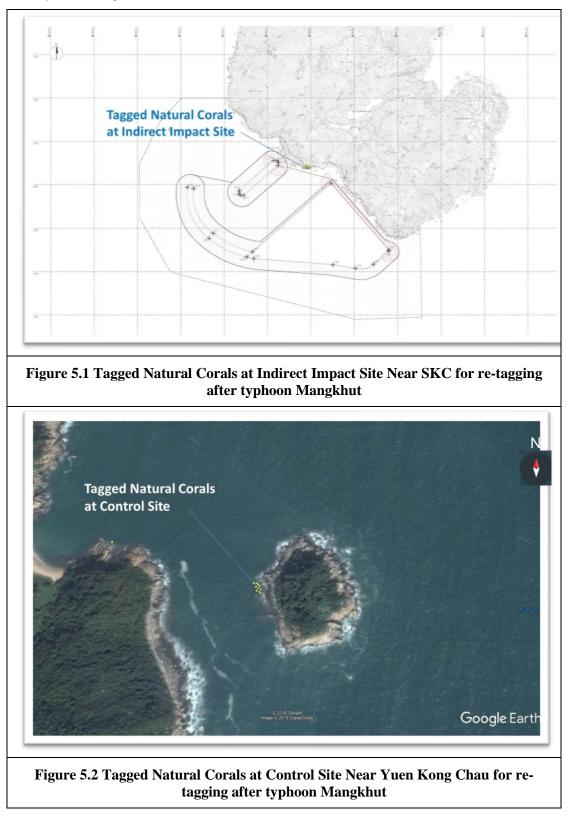
Notes:

- 1. Broken concrete for recycling into aggregates.
- 2. Plastic refer to plastic bottles / containers, plastic sheets / foam from packaging materials.
- 3. Use the conversion factor: 1 full load of dumping truck being equivalent to $6.5m^3$ by volume.
- 4.6 Although there is not much waste generation anticipated in the coming month from the Project, the Contractor is advised to sort and store any solid and liquid waste on-site properly prior to disposal.

5. CORAL

- 5.1 Coral Monitoring Requirements
- 5.1.1 To monitor the health condition of corals during different phases, corals located within areas likely to be affected by the Project, corals located at control sites (areas unlikely to be affected by the Project), the trans-located coral colonies as well as the tagged natural coral colonies at the recipient site were chosen, in order to identify any adverse indirect impact from the marine works. The size, percentage cover and health condition of corals (i.e. any sign of abnormal appearance, such as layer of mucus, bleaching, partial mortality etc.) at representative transects should be recorded during each monitoring.
- 5.2 Coral Monitoring Parameters, Time, Frequency
- 5.2.1 Rapid Ecological Assessment (REA) survey was conducted on 26 June 2018 at the suggested control site and indirect impact site within two week before commencement of the construction work which was 29 June 2018. 10 selected hard coral colonies with the similar species were tagged at both control and indirect impact site. Following coral translocation in the recipient site R3, 16 coral colonies attached to rocks less than 50 cm in diameter were translocated and tagged, as well as 10 selected natural coral colonies, at the recipient site. One additional REA survey was conducted in December 2018 to further assess the seabed condition at Indirect Impact Site after Typhoon Mangkhut.
- 5.2.2 Tagged coral colonies at the suggested control site and indirect impact site are being monitored weekly for the first month and followed by monthly monitoring for two months. Quarterly monitoring will be carried out after the first three-months monthly monitoring for until the end of the construction phase. The selected Control Site is located at Yuen Kong Chau of Soko Islands about 7 km away from the project area. Tagged coral colonies at the proposed recipient site are being monitored quarterly for one year. The selected recipient site R3 is located the opposite side of the Project area at about 2 km away. The detailed survey of the Control Site and Impact Site were conducted before the commencement of the Construction Phase.
- 5.2.3 Monitoring recorded the following parameters (using the same methodology adopted during the pre-translocation survey); the size, presence, health conditions (percentage of mortality/bleaching) and percentage of sediment of each tagged coral colony. The general environmental conditions including weather, sea, and tidal conditions of impact site, control site and recipient site were monitored.
- 5.2.4 **Table 5.1** summarizes the monitoring locations, time and frequency of the tagged coral colonies monitoring. The monitoring schedule is provided in **Appendix C**.

Monitoring Location	Monitoring Month/Year	Frequency	No. of Monitoring Survey
	1 st Month	Weekly Survey	4
	2 nd to 3 th Months	Monthly Survey	2
10 selected hard coral	4 th Month (postponed	Re-tagging of Cora	al Colonies in Indirect
colonies at control site /	to 5 th month due to	Impact Site after Ty	phoon Mangkhut
indirect impact site	diver accident in Shek		
	Kwu Chau in October		
	2018)		


 Table 5.1 Tagged Coral Monitoring Locations, Time and Frequency

Monitoring	Frequency	No. of Monitoring
		Survey
		al Colonies in Control
	Site after Typhoon	Mangkhut
· ·		
due to adverse		
weather)		
	00 0	1
	Monthly Survey	
postponed to /		
÷		
66 6		
L		
,	0 1 0	22
	Quarterly Survey	23
2018)		
1 st Year	Quarterly Survey	4
1 1001		т
	Month/Year 4 th Month (postponed to 5 th month due to diver accident in Shek Kwu Chau in October 2018 and further postpone to 6 th month due to adverse weather)	Month/YearRe-tagging of Cora4th Month (postponed to 5th month due to diver accident in Shek Kwu Chau in October 2018 and further postpone to 6th month due to adverse weather)Re-tagging of Cora Site after Typhoon I Site after Typhoon I of th month due to adverse Weather)5th Month (postponed to 6th month due to diver accident in Shek Kwu Chau and further postponed to 7th month due to delay of re-tagging activities at both Indirect Impact Site and Control Site)Post Re-tagging Monthly Survey7th to 76th Months (postponed to 8th to 76th month due to

5.3 Coral Monitoring Locations

5.3.1 Location of the ten tagged coral colonies at each of the proposed indirect impact site (re-tagging after typhoon Mangkhut), control site (baseline) and recipient site R3 (translocation) are shown in **Figure 5.1**, **Figure 5.2** and **Figure 5.3** respectively:

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Monthly EM&A Report No.9

5.3.2 The GPS coordinates of the tagged coral colonies, retagged coral colonies and recipient site were shown in **Table 5.2**, **Table 5.3** and **Table 5.4** respectively.

Table 5.2 Tagged Natural Corals during Baseline and Re-tagged Natural Corals after	
Typhoon Manghkut at Control Site near Yuen Long Chau	

Coral #	GPS Coo	ordinates
1	N22°09'45.96"	E113°54'57.81"
2R	N22°11'29.12"	E113°59'09.01"
3	N22°09'45.81"	E113°54'57.78"
4	N22°09'45.70"	E113°54'57.95"
5R	N22°11'29.10"	E113°59'09.18"
6	N22°09'45.75"	E113°54'58.02"
7R	N22°11'29.17"	E113°59'08.86"
7	N22°09'45.65"	E113°54'57.94"
8	N22°09'45.53"	E113°54'57.90"
9	N22°09'46.23"	E113°54'54.70"
10R	N22°11'29.18"	E113°59'08.91"

Notes:

i. The re-tagged corals were marked as ##**R**.

Table 5.3 Re-tagged Natural Corals after Typhoon Manghkut at Indirect Impact Site
near SKC

Coral # note i	GPS Coordinates		
11R	N22°11'29.14"	E113°59'08.92"	
12R	N22°11'29.12"	E113°59'09.01"	
13R	N22°11'29.11"	E113°59'09.07"	
14R	N22°11'29.13"	E113°59'09.12"	
15R	N22°11'29.10"	E113°59'09.18"	
16R	N22°11'29.07"	E113°59'09.23"	

Coral # note i	GPS Coordinates					
17R	N22°11'29.17"	E113°59'08.86"				
18R	N22°11'29.14"	E113°59'08.94"				
19R	N22°11'29.20"	E113°59'08.81"				
20R	N22°11'29.18"	E113°59'08.91"				
NT .						

Notes:

i. The re-tagged corals were marked as ##**R**.

Table 5.4 GPS Coordinates of Recipient Site R3

Site	GPS Coordinates		
R3	N22°11'43.69"	E113°28.99"	

5.4 Impact Monitoring Methodology

- 5.4.1 Health status of coral was assessed by the following criteria:
- Hard coral: Percentage of surface area exhibiting partial mortality and blanched/bleached area of each coral colony and degree of sedimentation.
- 5.5 Action and Limit Levels
- 5.5.1 Monitoring result was reviewed and compared against the below Action Level and Limit Level (AL/LL) as set with the below **Table 5.5** and **Table 5.6**.

Parameter	Parameter Action Level	
Mortality	occurs at more than 20% of the tagged indirect impact	If during Impact Monitoring a 25% increase in the percentage of partial mortality on the corals occurs at more than 20% of the tagged indirect impact site coral colonies that is not recorded on the tagged corals at the control site, then the Limit Level is exceeded.

Table 5.5 Action and Limit Levels for Construction Phase Coral Monitoring

Parameter	Action Level	Limit Level
Mortality	If during Post-Translocation Monitoring a 15% increase in the percentage of partial mortality on the corals occurs at more than 20% of the translocated coral colonies that is not recorded on the original corals in the recipient site, then the Action Level is exceeded.	If during Post-Translocation Monitoring a 25% increase in the percentage of partial mortality on the corals occurs at more than 20% of the translocated coral colonies that is not recorded on the original corals in the recipient site, then the Limit Level is exceeded.

- 5.5.2 If exceedance was found during coral monitoring. The actions in accordance with the Event and Action Plan should be carried out according to **Appendix L.**
- 5.6 Monitoring Results and Observations
- 5.6.1 The 1st quarterly coral monitoring during construction phase at both Indirect Impact Site and Control Site was conducted on 28 March 2019 and the weather condition was summarized in **Table 5.7**.

Table 5.7 Weather Condition for the 1st Quarterly Coral Monitoring duringConstruction Phase at both Indirect Impact Site and Control Site

Date	Condition	Average Underwater Visibility
28 March 2019	Northeast force 3Sunny period	Less than 0.5m

5.6.2 Ten (10) hard coral colonies were monitored at each Control site and Indirect Impact Site as suggested in the Construction Phase Monitoring Plan. The general health conditions (size, mortality, bleaching and sediment) were recorded and summarized in Table 5.8 and Table 5.9. Photos of each coral colonies were taken during the monitoring activities shown in Photo Plate 5.1 and 5.2.

Table 5.8 Sizes, Condition, Mortality, Bleaching and Sediment of 10 Natural Coral Colonies at Control Site during 1st Quarterly Coral Monitoring

Tag #	Species	Size (cm) – Max. Diameter	Condition	Mortali	ty (%)	Bleachin	ng (%)	Sedime	ent (%)
				Baseline	28/03	Baseline	28/03	Baseline	28/03
1	Goniopora stutchburyi	25	Fair	0	0	0	0	0	0
2R	Goniopora stutchburyi	10	Good	0	0	0	0	0	0
3	Psammocora superficialis	18	Fair	0	0	0	0	0	0
4	Turbinaria peltata	13	Good	0	0	0	0	0	0
5R	Goniopora stutchburyi	18	Good	0	0	0	0	0	0
6	Cyphastrea serailia	43	Fair	0	0	0	0	0	0
7R	<i>Coscinaraea</i> sp.	15	Good	0	0	0	0	0	0
8	Goniopora stutchburyi	21	Good	0	0	0	0	0	0
9	Goniopora stutchburyi	11	Fair	0	0	0	0	0	0
10R	Goniopora stutchburyi	20	Good	0	0	0	0	0	0

Notes:

i. The re-tagged corals were marked as ##**R**.

Tag #	Tag # Species Size (cm) – Max. Diameter	Condition	Mortality (%)		Bleaching (%)		Sediment (%)		
		Diameter		Baseline	28/03	Baseline	28/03	Baseline	28/03
11 R	Cyphastrea serailia	48	Good	0	0	0	0	0	0
12R	Favites chinensis	27	Good	0	0	0	0	0	0
13R	Turbinaria peltata	21	Good	0	0	0	0	0	0
14R	Favites chinensis	8	Good	0	0	0	0	0	0
15R	Goniopora stutchburyi	11	Good	0	0	0	0	0	0
16R	Psammocora superficialis	27	Good	0	0	0	0	0	0
17R	Favites chinensis	15	Good	0	0	0	0	0	0
18R	Psammocora superficialis	39	Good	0	0	0	0	0	0
19R	Psammocora superficialis	42	Good	0	0	0	0	0	0
20R	Psammocora superficialis	29	Good	0	0	0	0	0	0

Table 5.9 Sizes, Condition, Mortality, Bleaching and Sediment of 10 Natural Coral Colonies at Indirect Impact Site during 1st Quarterly Coral Monitoring

Notes:

i. The re-tagged corals were marked as $##\mathbf{R}$.

5.6.3 The 4th Post-Translocation Monitoring was conducted on 28 March 2019 for the Recipient Site R3 (Figure 5.3) and the weather conditions were summarized in Table 5.10. Seven (7) translocated and nine (9) natural hard coral colonies were remained to monitor after the typhoon Mangkhut in mid-September 2018. The general health conditions (size, condition, mortality, bleaching and sediment) at Recipient Site were recorded and summarized in Table 5.11 and Table 5.12 respectively. Photos of each tagged corals colonies were taken and shown in Photo Plates 5.3 and 5.4.

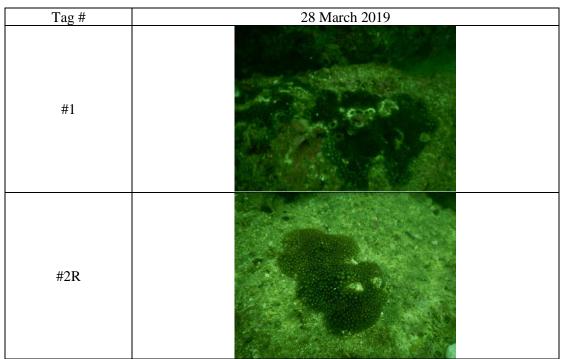
Table 5.10Weather Condition for the 4th Post-Translocated Monitoring at Recipient
Site R3

Date	Condition	Average Underwater Visibility
28 March 2019	Northeast force 3Sunny period	Less than 0.5m

Coral		Size (cm) – Max.	Morta	lity (%)	Bleach	ing (%)	Sedime	nt (%)
#	Species	Diameter/ Height	Baseline	28/03	Baseline	28/03	Baseline	28/03
1	Psammocora superficialis	35	0	15**	0	0	0	0
2	Psammocora superficialis	N/A	35	N/A	0	N/A	0	N/A
3	Psammocora superficialis	N/A	0	N/A	0	N/A	0	N/A
4	Turbinaria peltata	9	0	10**	0	0	0	0
5	Goniopora stutchburyi	N/A	0	N/A	0	N/A	0	N/A
6	Psammocora superficialis	26	0	15**	0	0	0	0
7	Psammocora superficialis	23	0	5**	0	0	5	0
8	Psammocora superficialis	N/A	0	N/A	0	N/A	0	N/A
9	Goniopora stutchburyi	N/A	0	N/A	0	N/A	0	N/A
10	Coscinaraea n sp.	21	0	5**	0	0	1	0
11	Psammocora superficialis	13	0	0	0	0	0	0
12	Psammocora superficialis	N/A	0	N/A	0	N/A	0	N/A
13	Psammocora superficialis	N/A	0	N/A	0	N/A	0	N/A
14	Psammocora superficialis	N/A	0	N/A	0	NA	0	N/A
15	Goniopora stutchburyi	N/A	0	N/A	0	N/A	0	N/A
16	Psammocora superficialis	26	0	10**	0	N/A	0	0

Table 5.11Sizes, Condition, Mortality, Bleaching and Sediment of 7 Translocated
Coral Colonies at Recipient Site for 4th Post-Translocation Coral Monitoring

* N/A: Non Applicable as coral colonies were missing.


** Increased mortality was found after the hitting of super typhoon Mangkhut in Mid-September 2018.

Coral		Size (cm) – Max.	Mortal	ity (%)	Bleach	ing (%)	Sedime	nt (%)
torai #	Species	Diameter/ Height	Baseline	28/03	Baseline	28/03	Baseline	28/03
1	Coscinaraea n sp.	16	0	0	0	0	0	0
2	Psammocora superficialis	24	0	0	0	0	0	0
3	Psammocora superficialis	23	0	0	0	0	0	0
4	Coscinaraea n sp.	15	0	0	0	0	0	0
5	Cyphastrea serailia	42	0	0	0	0	0	0
6	Cyphastrea serailia	12	0	0	0	0	0	0
7	Cyphastrea serailia	46	0	0	0	0	0	0
8	Psammocora superficialis	21	0	0	0	0	0	0
9	Psammocora superficialis	19	0	0	0	0	0	0
10	Goniopora stutchburyi	N/A	0	N/A	0	N/A	0	N/A

Table 5.12Sizes, Condition, Mortality, Bleaching and Sediment of 9 Natural Coral
Colonies at Recipient Site for 4th Post-Translocation Coral Monitoring

*N/A: Non Applicable as coral colonies were missing.

Photo Plate 5.1	Ten (10) Monitored Corals at Control Site
-----------------	---

Tag #	28 March 2019
#3	
#4	
#5R	
#6	
#7R	

Tag #	28 March 2019
#8	
#9	
#10R	

Notes:

i. The re-tagged corals were marked as ##**R**.

Photo Plate 5.2 Ten (10) Monitored Corals at Indirect Impact Site

Tag #	28 March 2019
#11R	

Tag #	28 March 2019
#12R	
#13R	
#14R	
#15R	
#16R	

Tag #	28 March 2019
#17R	
#18R	
#19R	
#20R	

Notes:

i. The re-tagged corals were marked as ##**R**.

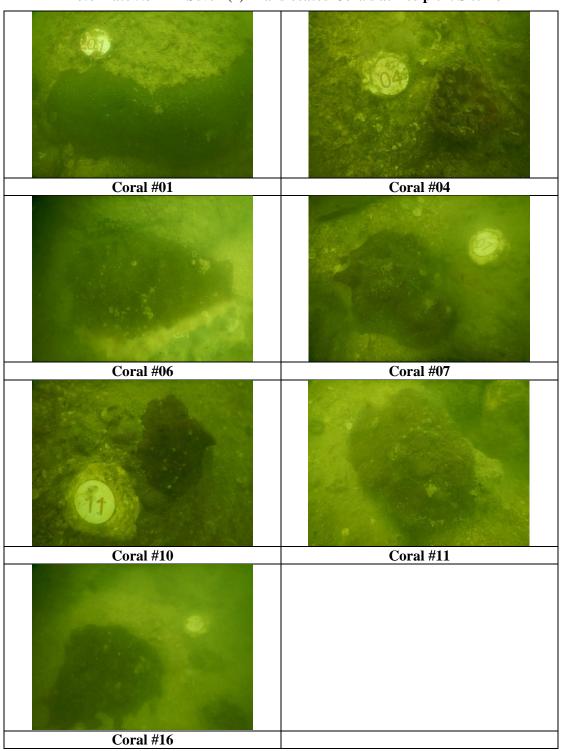


Photo Plate 5.3Seven (7) Translocated Corals at Recipient Site R3

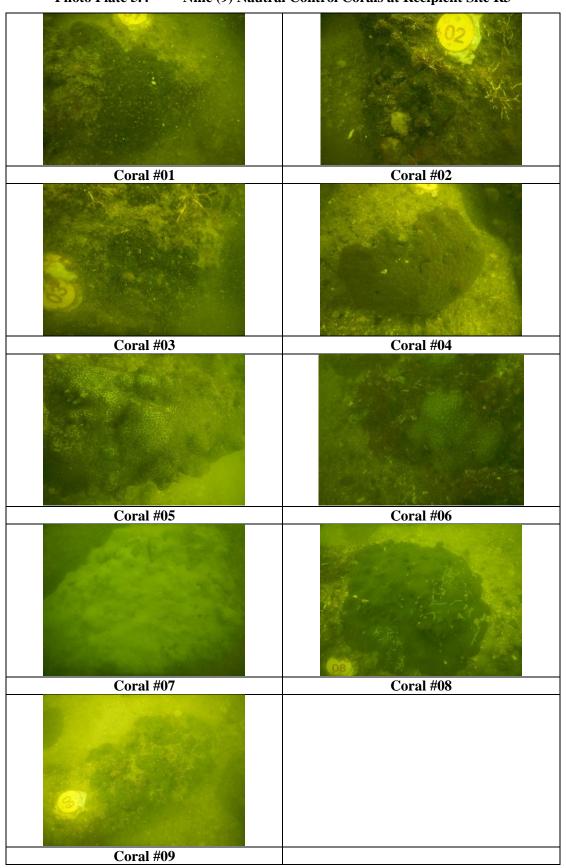


Photo Plate 5.4 Nine (9) Nautral Control Corals at Recipient Site R3

- 5.6.4 After the hitting of super typhoon Mangkhut, the coral re-tagging activities were carried out in the control site and indirect impact area on 23 November and 3 December 2018. Four and ten hard coral colonies were successfully re-tagged at both control and indirect impact sites respectively.
- 5.6.5 The 1st quarterly coral monitoring during construction phase at both Indirect Impact Site and Control Site was carried out on 28 March 2019. A total of 20 tagged coral colonies (10 at control site and 10 and indirect impact site including the re-tagged coral colonies) were monitored. Similar to the baseline result, the health condition of all tagged coral colonies were good in general. No increased mortality was recorded during the survey.
- 5.6.6 No sediment, bleaching or increased mortality in the general condition of coral colonies were observed during the first construction phase monitoring period. No deterioration of the coral community was observed in the ecological monitoring results when compared with the baseline ecological monitoring results. There is no AL/LL exceedance during the monitoring period. Photos of each tagged corals colonies were taken and shown in **Photo Plates 5.1** and **5.2**.
- 5.6.7 The first post-translocation coral monitoring was carried out on 26 June 2018. Sixteen (16) movable hard coral colonies were monitored at the recipient site R3. However, 9 translocated coral colonies were missing during the 2nd Post-Translocation Coral Monitoring survey and only 7 left. The remaining seven translocated coral colonies also showed an increased mortality from 5% to 15%. The missing colonies probably were swept away by the strong wave action caused by the Super Typhoon Mangkhut hitting Hong Kong on mid-September 2018.
- 5.6.8 The 4th post-translocation coral monitoring was carried out on 28 March 2019. Seven (7) remaining hard coral colonies were monitored at the recipient site R3. The general health of the remaining coral colonies were good in general and no increased mortality was recorded during the 4th post-translocation coral monitoring survey.
- 5.6.9 Remaining nine (9) natural hard coral colonies were also monitoring at the recipient site as control and similar to the baseline result, all the natural coral colonies are all in good condition. No increased mortality was recorded during the survey.
- 5.6.10 No sediment, bleaching or increased mortality in the general condition of coral colonies were observed during the monitoring period. No deterioration of the coral community was observed in the ecological monitoring results when compared with the baseline ecological monitoring results. There is no AL/LL exceedance during the monitoring period. Photos of each tagged translocated and natural corals were taken and shown in **Photo Plates 5.3** and **5.4**.

6. MARINE MAMMAL

- 6.1 Monitoring Requirements
- 6.1.1 The marine mammal monitoring programme would focus on Finless Porpoise, as the study area near Shek Kwu Chau has been identified as a hotspot for this species, while the Chinese White Dolphins rarely occurred there in the past.
- 6.1.2 The monitoring would verify the predicted impacts on marine mammals, and examine whether the mitigation measures recommended in the EIA report have been effectively implemented to protect marine mammals from negative impacts from construction activities.
- 6.1.3 The Vessel-based Line-transect Survey, the Passive Acoustic Monitoring and the Landbased Theodolite Tracking will be conducted to provide systematic, quantitative measurements of occurrence, encounter rate, habitat use, movement and behavioural patterns of marine mammals within or near the Project Area during construction and operational phases.
- 6.1.4 The mammal monitoring works during construction consist of the following three survey methods:
- Vessel-based Line-transect Survey to monitor the occurrence of Finless Porpoises (and Chinese White Dolphins) in the study area during construction works, by comparing with the findings of the pre-construction marine mammal monitoring;
- Passive Acoustic Monitoring to study the usage of the Project Area and two control sites in South Lantau Waters by Finless Porpoise during construction works, in reference with the baseline findings of the pre-construction marine mammal monitoring; and
- Land-based Theodolite Tracking to study the movement and behavioral pattern of Finless Porpoise within and around the Project Area during construction works.
- 6.1.5 The marine mammal observation works of Marine Mammal Exclusion Zone (MMEZ) and Marine Mammal Watching as two of the specific mitigation measures recommended in the approved EIA report shall be fully and properly implemented for the Project to minimize disturbance on Finless Porpoise during construction and operational phases.
- 6.2 Survey Methods
- 6.2.1 Vessel-based Line-transect Survey

For the vessel-based marine mammal surveys, the monitoring team adopted the standard line-transect method (Buckland et al. 2001) as same as that adopted during the EIA study and pre-construction phase monitoring to allow fair comparison of marine mammal monitoring results.

Eight transect lines are set at Southeast Lantau survey area, including Shek Kwu Chau, waters between Shek Kwu Chau and the Soko Islands, inshore waters of Lantau Island (e.g. Pui O Wan) as well as southwest corner of Cheung Chau as shown in **Figure 6.1** below:

The surveys should cover all 4 seasons in order to take natural fluctuation and seasonal variations into account for data analysis of distribution, encounter rate, density and habitat use of both porpoises and dolphins (if any). In comparison to the baseline monitoring results, results from the analysed construction phase monitoring data would allow the detection of any changes of their usage of habitat, in response to the scheduled construction works. The monitoring surveys shall be conducted throughout the construction phase involving marine construction work with the frequency shown in **Table 6.1** below:

Season	Months	Frequency
Peak Season	December, January, February,	Twice per month
	March, April & May	
Non-peak Season	June, July, August, September,	Once per month
_	October & November	-

Table 6.1 Vessel-based Line-transect Survey Frequency

For each vessel survey, a 15-m inboard vessel with an open upper deck (about 4.5 m above water surface) would be used to make observations from the flying bridge area. Two experienced marine mammal observers (a data recorder and a primary observer) would make up the on-effort survey team, and the survey vessel would transit different transect lines at a constant speed of 13-15 km per hour. The data recorder shall search with unaided eyes and fill out the datasheets, while the primary observer shall search for dolphins and porpoises continuously through 7 x 50 marine binoculars. Both observers shall search the sea ahead of the vessel, between 270° and 90° (in relation to the bow, which is defined as 00). Two additional experienced observers shall be available on the boat to work in shift (i.e. rotate every 30 minutes) in order to minimize fatigue of the survey team members. All observers shall be experienced in small

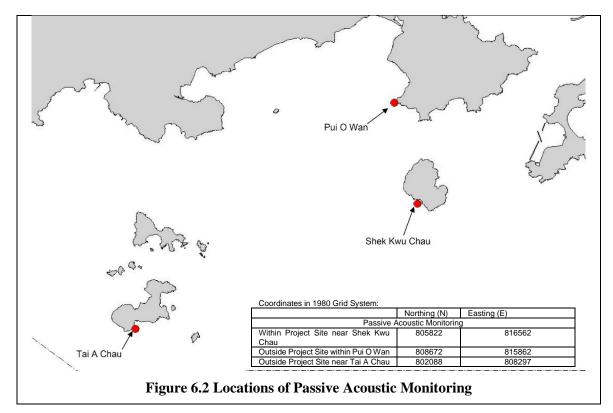
cetacean survey techniques and identifying local cetacean species with extensive training by marine mammal specialist of the ET

During on-effort survey periods, the survey team shall record effort data including time, position (latitude and longitude), weather conditions (Beaufort sea state and visibility), and distance travelled in each series (a continuous period of search effort) with the assistance of a handheld GPS (Garmin eTrex Legend). Data including time, position and vessel speed would also be automatically and continuously logged by handheld GPS throughout the entire survey for subsequent review.

When porpoises or dolphins are sighted, the survey team shall end the survey effort, and immediately record the initial sighting distance and angle of the porpoise or dolphin group from the survey vessel, as well as the sighting time and position. Then the research vessel shall be diverted from its course to approach the animals for species identification, group size estimation, assessment of group composition, behavioural observations, and collection of identification photos (feasible only for Chinese White Dolphin). The perpendicular distance (PSD) of the porpoise or dolphin group to the transect line would then be calculated from the initial sighting distance and angle, which shall be used in the line-transect analysis for density and abundance estimation.

The line-transect survey data shall be integrated with a Geographic Information System (GIS) to visualize and interpret different spatial and temporal patterns of porpoise and dolphin distribution using their sighting positions collected from vessel surveys. Location data of porpoise and dolphin groups would be plotted on map layers of Hong Kong using a desktop GIS (e.g. ArcView© 3.1) to examine their distribution patterns in details. The encounter rate could be used as an indicator to determine areas or time periods of importance to porpoises within the study area. For encounter rate analysis of finless porpoises, only survey data collected under Beaufort 2 or below condition would be used for encounter rate analysis.

To take into account of the variations of survey effort across different sections within survey area, the quantitative grid analysis of habitat use would be conducted to examine finless porpoise usage among 1-km² grids within the Southeast Lantau survey area. For the grid analysis, SPSE (sighting density) and DPSE (porpoise density) values would be deduced for evaluation on level of porpoise usage. First, positions of on-effort porpoise sightings from the study period are plotted onto 68 grids (1 km x 1 km each) within the survey area. Sighting density grids and porpoise density grids shall then be normalized with the amount of survey effort conducted within each grid. The total amount of survey effort spent on each grid shall be calculated by examining the survey coverage on each line-transect survey to determine how many times the grid had been surveyed during study period. With the amount of survey effort calculated for each grid, the sighting density and porpoise density of each grid shall be further normalized (i.e. divided by the unit of survey effort).


The newly-derived unit for sighting density was termed SPSE, representing the number of on-effort sightings per 100 units of survey effort. In addition, the derived unit for actual porpoise density was termed DPSE, representing the number of dolphins/porpoise per 100 units of survey effort. Among the 1-km² grids that were partially covered by land, the percentage of sea area was calculated using GIS tools, and their SPSE and DPSE values were adjusted accordingly. The following formulae shall be used to estimate SPSE and DPSE in each 1-km² grid within the study area:

 $SPSE = ((S / E) \times 100) / SA\%$ $DPSE = ((D / E) \times 100) / SA\%$ where

e S = total number of on-effort sightings D = total number of dolphins/porpoises from on-effort sightings E = total number of units of survey effort SA% = percentage of sea area

6.2.2 Passive Acoustic Monitoring (PAM)

The PAM aims to study the usage of an area by Finless Porpoise by using an array of automated static porpoise detectors (e.g. C-POD) which would be deployed at different locations to detect the unique ultra-high frequency sounds produced by Finless Porpoise. During the construction period, the PAM survey will be conducted including placement of two passive porpoise detectors outside the Project Area as control site (i.e. within Pui O Wan and to the south of Tai A Chau) and one porpoise detector within the Project Area (i.e. near Shek Kwu Chau) as shown in **Figure 6.2** below.

6.2.3 These three detectors will be deployed on-site to carry out 24-hours monitoring for a period listed as **Table 6.2** below during the construction phase.

Table 6.2 PAM Deployment Period

Season	Months	Deployment Period
Peak Season	December, January, February,	At least 30 days during the peak
	March, April or May	months of porpoise occurrence
		in South Lantau waters

The automated static porpoise detectors shall detect the presence and number of finless porpoise and Chinese White Dolphins respectively over the deployment period, with the false signal such as boat sonar and sediment transport noise distinguished and filtered out. The detectors shall be deployed and retrieved by professional dive team on the seabed of the three selected location shown in **Figure 6.2**. During each deployment, the C-POD unit serial numbers as well as the time and date of deployments shall be

recorded. Information including the GPS positions and water depth at each of the deployment locations shall also be obtained.

The diel patterns (i.e. 24-hour activity pattern) of finless porpoise occurrence among the three sites at Shek Kwu Chau, Tai A Chau and Pui O Wan shall be analyzed. Peaks and troughs of finless porpoise occurrence per hour of day would be identified and compared with the results obtained from pre-construction monitoring.

6.2.4 Land-based Theodolite Tracking

The Land-based Theodolite Tracking study would use the same station as in the AFCD monitoring study(same as the baseline monitoring location), which is situated at the southwest side of Shek Kwu Chau (GPS position: 22°11.47' N and 113°59.33' E) as shown in below **Figure 6.3**. The station was selected based on its height above sea level (at least 20 metres), close proximity to shore, and relatively unobstructed views of the entire Project Area to the southwest of Shek Kwu Chau. The height of the Shek Kwu Chau Station established by the HKCRP team is 74.6 m high at mean low water, and only a few hundred metres to the IWMF reclamation site, which is ideal for the purpose for the present behavioural and movement monitoring of finless porpoises as well during construction phase considering there as an un-obstructed vantage point at a height above the Project Site.

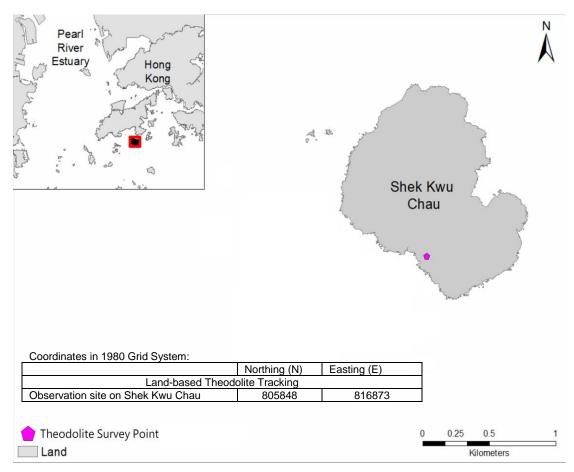


Figure 6.3 Locations of Land-based Theodolite Tracking

During the construction phase, Land-based Theodolite Tracking will be carried out for approximately six hours of tracking for each day of field work for a period listed as **Table 6.3** below, preferably at the initial stage of the construction period (i.e. December 2018 to May 2019).

Season	Months	Survey Period
Peak Season	December, January, February,	30 days during the peak months
	March, April or May	of porpoise occurrence in South
		Lantau waters

Table 6.3 Land-based Theodolite Tracking Survey Period

The monitoring period for land-based theodolite tracking will be proposed to be overlapped with the PAM. The monitoring team consists of one experienced theodolite operator and at least two field observers for assistance. To conduct theodolite tracking, our observers will search systematically for Finless Porpoise using the unaided eye and 7 x 50 handheld binoculars on each survey day throughout the study area. When an individual or group of porpoises is located, a theodolite tracking session will be initiated and focal follow methods will be used to track the porpoise(s). Behavioural state data (i.e. resting, milling, travelling, feeding and socializing) shall also be recorded every 5 minutes for the focal individual or group. Positions of porpoises and boats shall be measured using a digital theodolite connected to a laptop computer. This tracking survey will be conducted during the peak season between December 2018 and May 2019 for 30 surveys spanning across 15-16 weeks during the peak season to provide good temporal coverage during the initial stage of the construction period.

6.3 Specific Mitigation Measures

6.3.1 Monitored exclusion zones

During the installation/re-installation/relocation process of floating type silt curtains, in order to avoid the accidental entrance and entrapment of marine mammals within the silt curtains, a monitored exclusion zone of 250 m radius from silt curtain should be implemented. The exclusion zone should be closely monitored by an experienced marine mammal observer (MMO) for at least 30 minutes before the start of installation/re-installation/relocation process. If a marine mammal is noted within the exclusion zone, all marine works should stop immediately and remain idle for 30 minutes, or until the exclusion zone is free from marine mammals. The experienced marine mammal observer should be well trained to detect marine mammals. Binoculars should be used to search the exclusion zone from an elevated platform with unobstructed visibility. The marine mammal observer(s) shall be independent of the construction contractor and shall form part of the Environmental Team and have the power to call-off construction activities.

According to the Condition 2.25 of the FEP, MMEZ should be implemented during the installation/re-installation/relocation process of floating type silt curtains in order to avoid the accidental entrance and entrapment of marine mammals within the silt curtains. Also, marine construction works expected to produce underwater acoustic disturbance as per Condition 2.27 of the FEP, especially within December and May, would require the implementation of MMEZ, which currently all those specific construction activities have been replaced by less acoustically disturbing construction methods such as Deep Cement Mixing (DCM) and Precast Concrete Blocks Installation as discussed in Section 5.3 of the Detailed Monitoring Programme on Finless Porpoise, however, MMEZ would also be implemented for precautionary purpose for DCM works.

A MMEZ with 250 m distance from the boundary of a work area shall be established during the above situation. A typical MMEZ is indicated in **Figure 6.4** for reference.

The MMEZ serves as a monitoring approach to provide appropriate and immediate actions once finless porpoise or Chinese White Dolphin is sighted within the MMEZ. All MMEZ will be monitored by competent Marine Mammal Observers (MMOs) to be provided by the Environmental Team (ET) for the IWMF and trained by the Marine Mammal Monitoring Specialist of the ET who is independent from JV.

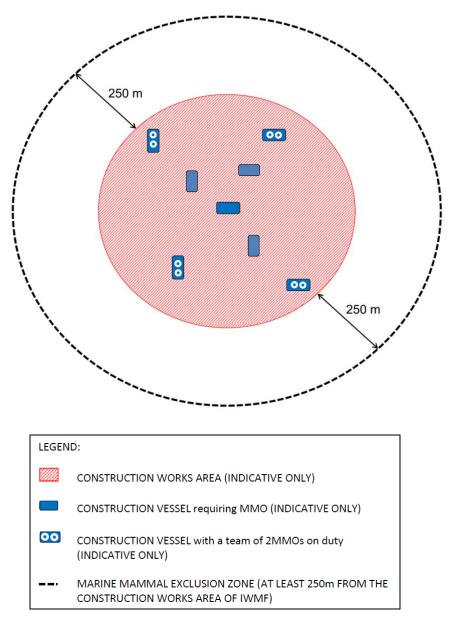


Figure 6.4 Illustration of Typical MMEZ

Prior to the commencement of construction activity, our MMOs shall ensure the boundary of a marine work area and setting up of the MMEZ for the work area and get access to the monitoring location on a barge or a lookout point where there is no obstructed views for monitoring the MMEZ during the construction activity. The MMEZ shall be scanned thoroughly by a MMO for any presence of marine mammal e.g. finless porpoise for an initial period of 30 minutes. Construction activity shall only be commenced after the MMO has confirmed that the MMEZ is clear of the marine mammal for the initial period of 30 minutes. The MMO shall then inform the construction superintendent through mobile phone or handheld transceivers to certify the commencement of construction activity. The MMEZ monitoring shall be carried on

throughout the period for all active construction activities requiring implementation of MMEZ.

When any mammal marine, e.g. Finless Porpoise, is detected by the MMO within the MMEZ during construction, the MMO shall inform the construction superintendent immediately through mobile phone or handheld transceivers to cease construction activity within the MMEZ. Construction activity shall not be re-commenced until the MMO confirms that the MMEZ is continuously clear of marine mammal for a period of 30 minutes. The MMO shall then inform the construction superintendent through mobile phone or handheld transceivers to certify the re-commencement of construction activity.

As there could be a number of Contractors working at the same time within a work area for the IWMF project, a full contact list of MMEZ monitoring team members of the ET and the relevant responsible construction superintendents of the Contractor at the site shall be prepared, updated regularly and circulated to all parties involved in the MMEZ monitoring. With a full contact list, our MMOs shall be able to find out the contacts of corresponding persons in case of marine mammal sighting within and near the MMEZ or emergent occurrence of any unpredictable impact on marine mammal.

If a marine mammal is still observed in close vicinity but outside the MMEZ, the MMO shall inform the construction superintendent about the presence of marine mammal. The MMO shall remain in position and closely observe the movement of the marine mammal as well as searching for the appearance of any other marine mammal within the MMEZ. No matter the marine mammal is observed within or in close vicinity but outside the MMEZ, the construction superintendent or relevant persons shall inform all vessel captains involved in construction activities around the MMEZ to pay special attention of the presence of the marine mammal in order to reduce chance of collision with them. In case of injury or live-stranded marine mammal being found within the MMEZ, the marine mammal observer shall immediately inform the construction superintendent to suspend construction activities within the works area and contact AFCD through "1823" marine mammal stranding hotline.

6.3.2 Marine mammal watching plan

Upon the completion of silt curtain installation/re-installation/relocation, all marine works would be conducted within a fully enclosed environment within the silt curtain. Hence exclusion zone monitoring would no longer be required. Subsequently, a marine mammal watching plan would be implemented.

Before commencement of dredging/sand blanket laying work at each designated area, a trained MMO shall check whether position frame silt curtains are ready, well prepared and operated without any obvious damage. Also, the MMO shall confirm the presence of the relevant frontline staff of the main contractor or its sub-contractors and engineers on board to ensure the effective communication, coordination and implementation of the response plan in relation to any incidents involving marine mammals within the waters surrounded by the position frame type silt curtains and the work areas. Also, there are lookout points at an elevated level on each barge, clear and safe access at the edges of the derrick lighter/ flag-top barge for inspection during dredging/sand blanket laying works, provision of sufficient lighting is required if working at night.

During the operation, the inspection will be conducted daily. The MMO will walk along the edge of derrick lighter (DL) and flag-top barge (FB) along the position frame silt curtain or proper location without obstacles where appropriate to inspect the position frame silt curtain with naked eyes, the MMO will check that the position frame silt curtains are maintained in the correct positions with no obvious defects / entanglement and there is no observable muddy water passing through the position frame silt curtain system. Any floating refuse trapped by the silt curtain shall be removed as part of the regular inspection. For night inspection, spotlight will be used to provide sufficient brightness to assist the inspection in dark condition.

For the localized silt curtain re-deployment, MMO will conduct visual inspection to confirm that there is no presence of marine mammal within the localized silt curtain. Visual inspection will be conducted every an hour by MMO till confirming that there is not any marine mammal observed in the surrounding area of the frame type silt curtain. The duration will be subject to various conditions, e.g. weather or angle of observation. The works can only commence after confirming that the surrounding waters of the localized silt curtains has not contain any marine mammal. Thereafter, frontline staff, i.e. foremen, site agent, superintendents and engineers will assist our MMO in implementing the plan from the active work fronts within the waters surrounded by the silt curtains throughout the work period. The MMO will conduct regular check every 60 minutes to observe the presence of any marine mammal around the localized silt curtain or being trapped by the localized silt curtain. The MMOs will also check if the localized silt curtains are in correct positions.

The MMO shall fill up our Marine Mammal Sighting Record Sheet. After inspection, those records should be kept properly and submitted to the project team. In case there is any marine mammal being found, the MMO should carry out the response actions and communicate with relevant parties to stop and then resume work after the discovered marine mammal leaves. After lifting up and mobilization of silt curtain, the MMO will repeat the procedures of regular and visual inspection until the end of the construction works.

Each lookout point will have an unobstructed view to waters around the DL and FB. The MMO will move around the DL and FB to establish a clear and unobstructed view as much as they can without compromising the safety concern. When appropriate, the lookout point can be replaced by a proper location if unobstructed view can be assured.

- 6.4 Results and Observations
- 6.4.1 Vessel-based Line-transect Survey

The monthly survey was conducted on 18 and 28 March 2019. As this is the designated peak season (December - May), two surveys were completed. A total on effort (transects only) survey length of 83.9 km was completed, 79.2 km at Beaufort Sea State 2 or better (**Table 6.4**). Six finless porpoise sightings were recorded, while transiting between transect lines (referred to as secondary line in AFCD reports (**Table 6.5**, **Figure 6.5**).

		-			•	
Date	Area*	Beaufort	Effort	Season	Vessel	Effort
			(km)			Type**
18/03/2019	SEL	1	9.0	SPRING	SMRUHK	Р
18/03/2019	SEL	2	29.2	SPRING	SMRUHK	Р
18/03/2019	SEL	3	4.2	SPRING	SMRUHK	Р
28/03/2019	SEL	1	41.5	SPRING	SMRUHK	Р

 Table 6.4 Summary of Vessel-based Line-transect Survey Effort

** P (from AFCD) denotes the ON EFFORT survey on the transect line, not the adjoining passages

As shown in Figure. 6.1

Date	Species	Sighting No.	Time	Group Size	PSD	Behaviour	Lat.	Long.	Area	Effort	Season
18/03/2019	Finless Porpoise	18	12:00	1	20	Travelling	22.21253	113.9837	SEL	ON	SPRING
28/03/2019	Finless Porpoise	19	11:11	4	33	Travelling	22.18111	113.9451	SEL	ON	SPRING
28/03/2019	Finless Porpoise	20	11:23	3	27	Travelling	22.17312	113.9452	SEL	ON	SPRING
28/03/2019	Finless Porpoise	21	11:41	2	126	Travelling	22.17532	113.9542	SEL	ON	SPRING
28/03/2019	Finless Porpoise	22	13:08	1	121	Travelling	22.18774	113.9623	SEL	ON	SPRING
28/03/2019	Finless Porpoise	23	14:09	2	20	Feeding	22.17603	113.9837	SEL	ON	SPRING

Table 6.5 Sightings recorded during March 2019 Vessel-based Line-transect Survey

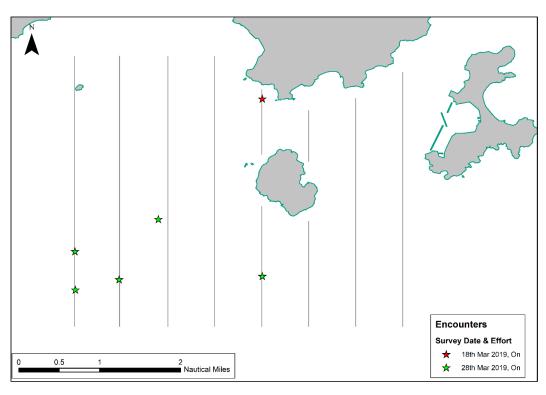
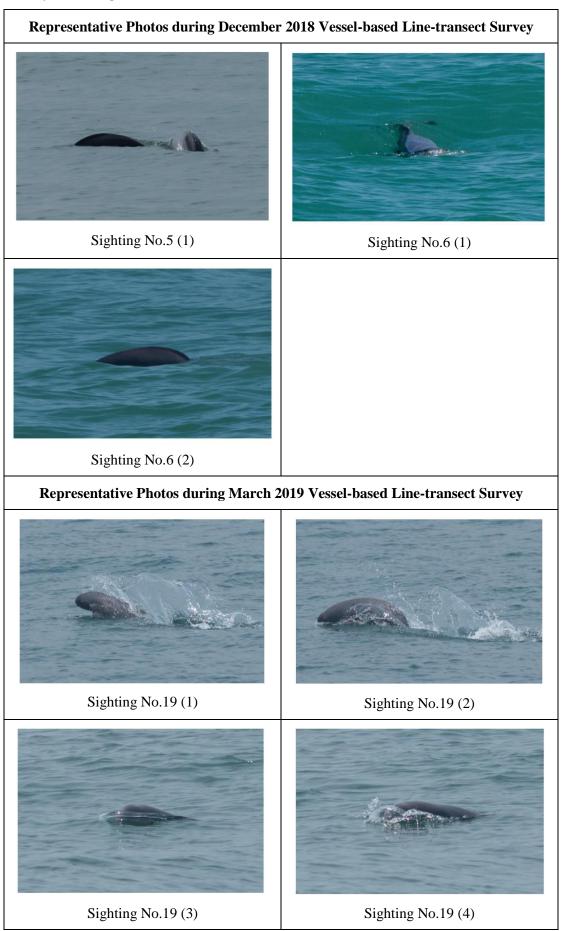



Figure 6.5 Location of sightings recorded during March 2019 Vessel-based Linetransect Survey

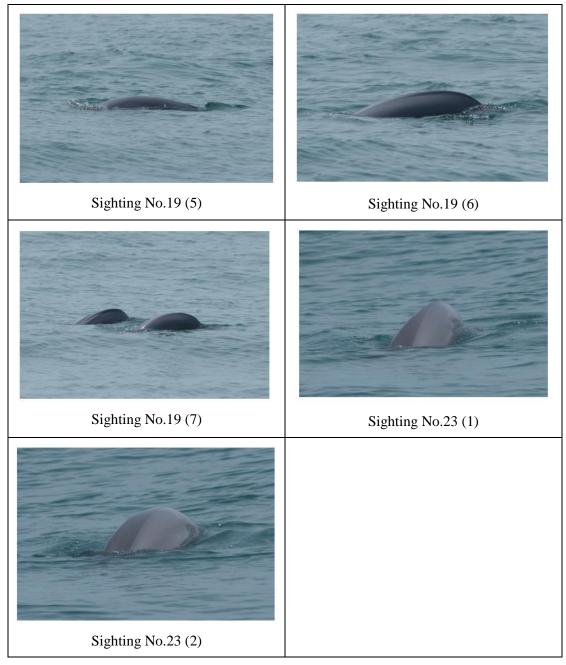


Figure 6.6 Representative Photos taken of sighting recorded during Vessel-based Line-transect Survey

Representative photos for sighting of marine mammal during Vessel-based Line-Transect Survey were taken and shown in **Figure 6.2**.

A review of the long term AFCD marine mammal monitoring programme, the EIA and the pre-construction baseline monitoring report for this project was conducted. Both the EIA and the pre-construction baseline monitoring were conducted during the peak porpoise months (Dec 2008 to May 2009 and Feb-April 2018, respectively). During the EIA, 55.5% of the survey effort was conducted at Beaufort Sea State 2 or better and, as such, survey conditions in March 2019 were within the upper % limits of previous AFCD and the baseline surveys, and much better than surveys conducted during the EIA.

A review of the Beaufort Sea state March survey conditions between 2009 and 2018 (only data available from AFCD at time of writing; (AFCD 2018¹; 2017²; 2016³; 2015⁴; 2014⁵; 2013⁶; 2012⁷; 2011⁸; 2010⁹)) show that between 32.6% and 100% of survey effort has been conducted at Beaufort Sea State 2 or better in the past. During the EIA, 55.5% of the survey effort was conducted at Beaufort 2 or better. For this project in March 2019, 95.0% of the survey was conducted at Beaufort Sea State 2 or better and, as such, survey conditions in March 2019 were within the upper % limits of previous AFCD and the baseline surveys, and much better than surveys conducted during the EIA.

A review of the porpoise sightings in the survey area for March between 2009-2018 indicate that there are fluctuations between the number of sightings usually recorded. For all weather conditions, and for the nine years data available, 1 year recorded zero (1) sighting (AFCD 2016), 1 year recorded two (2) sightings (2011), 1 year recorded three (3) sightings (2013), 1 year recorded seven (7) sightings (2012), 2 years recorded eight (8) sightings (EIA 2009; 2018), two years recorded ten (10) sightings (2014; Baseline 2018) and one year recorded fourteen (14) sightings (2017). No survey effort in SEL was conducted in some years (2009, 2010, 2015). Effort varied considerably between years and the average number of sightings (per km) varied between 0.02 and 0.14 km⁻¹. There is no trend in encounter rates recorded by the AFCD long term monitoring programme, i.e., the highest encounter rate was recorded once; in 2013 (3) sightings). The lowest encounter rate was recorded in 2016 (AFCD surveys). For the baseline survey, the encounter rate for March 2018 was 0.08 sightings km⁻¹. For March 2019, an encounter rate of 0.07 sightings km^{-1} is calculated, which is average when compared to other years and other survey types. It is noted that if you compare March 2019 to the two survey types in March 2018, i.e., the AFCD and the baseline survey, the encounter rate for March 2019 is approximately the same as the March 2018 baseline survey and slightly lower than the AFCD March 2018 survey. It is noted that the impact survey focuses on a relatively small populations of highly mobile individuals and the survey area conducted for this monitoring is very small.

It is difficult to draw conclusions with regards to impacts on marine mammals as predicted in the EIA and the effectiveness of project mitigation measures during the initial phase of construction activities when porpoise sightings are relatively low. It is noted that the encounter rate for March 2019 is relatively low when compared to other surveys conducted in previous Marchs. As surveys continue for this project, data shall be constantly re-evaluated across survey months to discern trends and impacts, if any. It is noted that with such an extremely low encounter rate in such a small part of the finless porpoise habitat, significant differences in sightings may be impossible to calculate.

6.4.2 PAM and Land-based Theodolite Tracking

These tracking surveys will be conducted during the peak season between December 2018 and May 2019 for 30 surveys during the peak season to provide good temporal coverage during the initial stage of the construction period.

Theodolite surveys were conducted on 1, 4, 5, 6, 12, 13, 15, 20, 21, 22, 26, 27 & 29 March 2019. Five to six hours of monitoring were conducted each day. As anticipated, site barges obstructed much of the immediate view. Theodolite data shall be analysed at the end of the survey period, as per the format and analyses procedures presented in the baseline report for this project.

6.4.3 Specific Mitigation Measures

Silt curtains were deployed for sand blanket laying works and DCM trial during the reporting period. Teams of two MMO were on duty for continuous monitoring of the Marine Mammal Exclusion Zone (MMEZ) for DCM works, cluster MMEZ installation/re-installation/relocation process of silt curtains, and the marine mammal trapping checking and silt curtains inspection in accordance with the Detailed Monitoring Programme of Finless Porpoise and Marine Mammal Watching Plan respectively. Trainings for the MMO were provided by the ET prior to the aforementioned works, with a cumulative total of 98 individuals being trained and the training records kept by the ET. From the Marine Mammal Watching observation records and MMEZ monitoring log records, no Finless Porpoise or other marine mammals were observed within or around the MMEZ and silt curtains in the reporting month.

- 6.4.4 References
 - Agriculture, Fisheries and Conservation Department (AFCD) 2018. Annual Marine Mammal Monitoring Programme April 2017-March 2018) The Agriculture, Fisheries and Conservation Department, Government of the Hong Kong SAR. <u>http://www.afcd.gov.hk/english/conservation/con_mar_chi/con_mar_chi/con_mar_chi_chi.html</u>
 - 2. Agriculture, Fisheries and Conservation Department (AFCD) 2017. *Annual Marine Mammal Monitoring Programme April 2016-March 2017*) The Agriculture, Fisheries and Conservation Department, Government of the Hong Kong SAR. <u>http://www.afcd.gov.hk/english/conservation/con_mar_chi_con_mar_chi_chi_i/con_mar_chi_chi.html</u>
 - 3. Agriculture, Fisheries and Conservation Department (AFCD) 2016. *Annual Marine Mammal Monitoring Programme April 2015-March 2016*) The Agriculture, Fisheries and Conservation Department, Government of the Hong Kong SAR. <u>http://www.afcd.gov.hk/english/conservation/con_mar_chi/con_mar_chi chi i/con_mar_chi_chi.html</u>
 - 4. Agriculture, Fisheries and Conservation Department (AFCD) 2015. *Annual Marine Mammal Monitoring Programme April 2014-March 2015*) The Agriculture, Fisheries and Conservation Department, Government of the Hong Kong SAR. http://www.afcd.gov.hk/english/conservation/con_mar_chi/con_mar_chi_chi.html
 - 5. Agriculture, Fisheries and Conservation Department (AFCD) 2014. Annual Marine Mammal Monitoring Programme April 2013-March 2014) The Agriculture, Fisheries and Conservation Department, Government of the Hong Kong SAR. <u>http://www.afcd.gov.hk/english/conservation/con_mar_chi/con_mar_chi_chi.html</u>
 - Agriculture, Fisheries and Conservation Department (AFCD) 2013. Annual Marine Mammal Monitoring Programme April 2012-March 2013) The Agriculture, Fisheries and Conservation Department, Government of the Hong Kong SAR. <u>http://www.afcd.gov.hk/english/conservation/con_mar_chi_con_mar_chi_chi.html</u>
 - 7. Agriculture, Fisheries and Conservation Department (AFCD) 2012. *Annual Marine Mammal Monitoring Programme April 2011-March 2012*) The Agriculture, Fisheries and Conservation Department, Government of the Hong Kong SAR.

http://www.afcd.gov.hk/english/conservation/con_mar_chi_con_mar_chi_ch_i/con_mar_chi_chi.html

- 8. Agriculture, Fisheries and Conservation Department (AFCD) 2011. Annual Marine Mammal Monitoring Programme April 2010-March 2011) The Agriculture, Fisheries and Conservation Department, Government of the Hong Kong SAR. http://www.afcd.gov.hk/english/conservation/con mar/con mar chi/con mar chi ch i/con mar chi chi.html
- Agriculture, Fisheries and Conservation Department (AFCD) 2010. Annual Marine Mammal Monitoring Programme April 2009-March 2010) The Agriculture, Fisheries and Conservation Department, Government of the Hong Kong SAR. <u>http://www.afcd.gov.hk/english/conservation/con_mar_chi/con_mar_chi/con_mar_chi_chi.html</u>

7. WHITE-BELLIED SEA EAGLE

- 7.1 Monitoring Requirement
- 7.1.1 On Shek Kwu Chau Island, a nest of WBSE is located about 60 m above ground within a hillside shrubland habitat, 130 m in-land from shore, about 550 m away from the proposed reclaimed land, with no human access. 3 phases monitoring programme will be comprise including: pre-construction phase, construction phase and operation phase.
- 7.1.2 The Pre-Construction WBSE monitoring was started on 30 January 2018 and the location of WBSE nest was confirmed on 21 February 2018 and it is located at the western part of SKC Island (Figure 1). Two adults and two chicks were also recorded on 5th March 2018 survey till the end of the Pre-construction monitoring on 15th May 2018. Construction Phase monitoring were carried out followed by the commencement of the Construction Phase on 28th June 2018.
- 7.2 WBSE Monitoring Parameters, Time, Frequency
- 7.2.1 The objective of the construction phase monitoring should be to verify the utilisation of the area by WBSE, their responses to construction disturbance, as well as the effectiveness of the proposed mitigation measures. Throughout the construction phase, field surveys should be conducted twice per month during their core breeding season (from December to May), and once per month outside their core breeding season (from June to November). The monitoring frequency should be increased to weekly during the incubation period of each year. In order to confirm their foraging ground near the construction site, it is necessary to conduct daily monitoring during the first week of nestling period in each year.
- 7.2.2 Since the location of the WBSE nest was located at the southwest of SKC within the hillside shrub land, it is impossible to observe the eggs during incubation period. Therefore, monitoring with increased frequency during incubation period could not be carried out. Daily monitoring will be carried out once any chick is recorded during the monitoring day. The monitoring schedule during the reporting period is provided in **Appendix C**.
- 7.3 Monitoring Location
- 7.3.1 Since there is no suitable land-based along the coast of SKC, only boat surveys were conducted. On Shek Kwu Chau Island, a nest of WBSE is located about 60 m above ground within a hillside shrubland habitat, 130 m in-land from shore, about 550 m away from the proposed reclaimed land, with no human access.
- 7.4 Monitoring Methodology
- 7.4.1 Information to be collected included feeding, perching/roosting, preening, soaring, flying, nesting and territorial guarding and the time spent on each activity. The responses and reactions to any disturbance to the WBSEs were also recorded and examined in conjunction with the construction noise and/or other events in the vicinity. Other disturbances such as weather condition, or invasion by other fauna species were also recorded.
- 7.4.2 Binocular, scope, camera, lens and GPS device used are summarized as **Table 7.1** below:

Equipment	Quantity
Swarovski EL 8.5 x 42 Binocular	1
Swarovski EL Range 8 x 42 Binocular	1
Swarovski ATX 25-60 x 85 Spotting Scope	1
Canon 1Dx Mark II Camera	1
Canon EF300mm F2.8 Lens with Canon 2x Teleconverter	1
Canon PowerShot G7X Camera	1
Garmin GPSMAP 64S	1

Table 7.1 List of Equipment Used during Construction Phase Monitoring

- 7.4.3 If event such as absence of White-bellied Sea Eagle during a whole day of monitoring was found during WBSE monitoring, the actions in accordance with the Event and Action Plan should be carried out according to **Appendix M.**
- 7.5 Results and Observations
- 7.5.1 The 9th monthly construction phase monitoring was conducted on 20 and 31 March 2019 twice per month. In accordance with Updated EM&A Manual, 7 consecutive daily monitoring during the first week of nestling period was started to conduct on 21 March 2019 and finished at 27 March 2019. Since there is no landing point along the western part of SKC, boat survey were used for the monitoring survey. In order to increase the chance of finding the WBSEs, monitoring survey was carried out early in the morning. The weather conditions of monitoring survey were shown in **Table 7.2**.

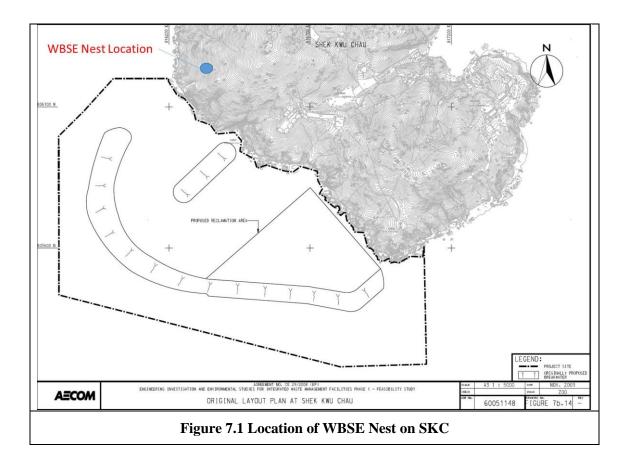
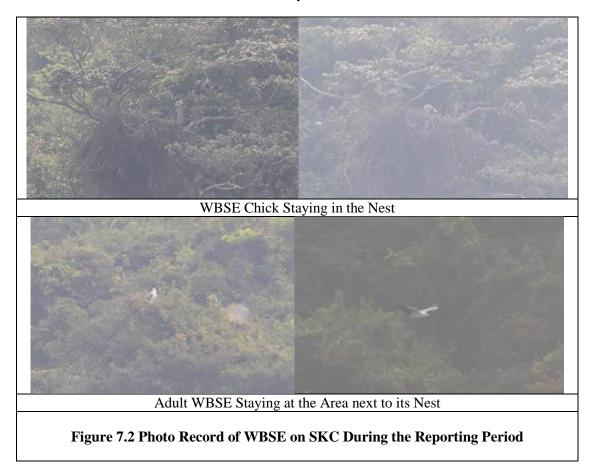

Date	Condition	Temperature (°C)
20 March 2019	East force 3 to 4Sunny	25
21 March 2019	Southeast force 3 to 4Sunny	22
22 March 2019	Southeast force 4 to 5Sunny	24
23 March 2019	Southeast force 4 to 5Sunny	26
24 March 2019	East force 4 to 5Sunny	23
25 March 2019	East force 4 to 5Sunny	24
26 March 2019	Southeast force 3 to 4Sunny	25
27 March 2019	Southeast force 3Sunny	28
31 March 2019	Southeast force 4 to 5Sunny	27

 Table 7.2 Weather Conditions during the WBSE Monitoring


7.5.2 During the monitoring survey, one chick was recorded on 20th March 2019 and two adult WBSEs were also recorded; one was staying in a tree and the other one was flying around the area next to the nest. Since chick was recorded during the monthly

monitoring, a 7 consecutive days monitoring were carried from 21st to 27th March 2019.

- 7.5.3 During the 7 consecutive days monitoring, one chick was recorded on each day of the survey. Two adult WBSE also recorded each day. Any disturbances from anthropogenic activities on the island were not recorded during the monitoring survey. However, there were fishing boats moving close to the shore were recorded. Since the nesting tree is about 160m away from the shore and it is not accessible, fishing boat activities didn't show any direct disturbance to the WBSE nest. No invasion of other fauna species was recorded as well.
- 7.5.4 No abnormal behaviour of the recorded adults and chick was observed during the March 2019 construction phase monitoring. Only two adults and one chick of WBSE were recorded (**Figure 7.2**). All marine works during the ninth month construction period did not show any affects to the WBSE.
- 7.5.5 A construction phase monitoring will be continued during the core breeding season (between December and May) in order to monitor the utilization of the area by WBSE and their responses to construction disturbance.

7.5.7 Photo record of WBSE from the survey this month is shown below:

8. SUMMARY OF MONITORING EXCEEDANCE, COMPLAINTS, NOTIFICATION OF SUMMONS AND PROSECUTIONS

8.1 The Environmental Complaint Handling Procedure is shown in below Figure 8.1:

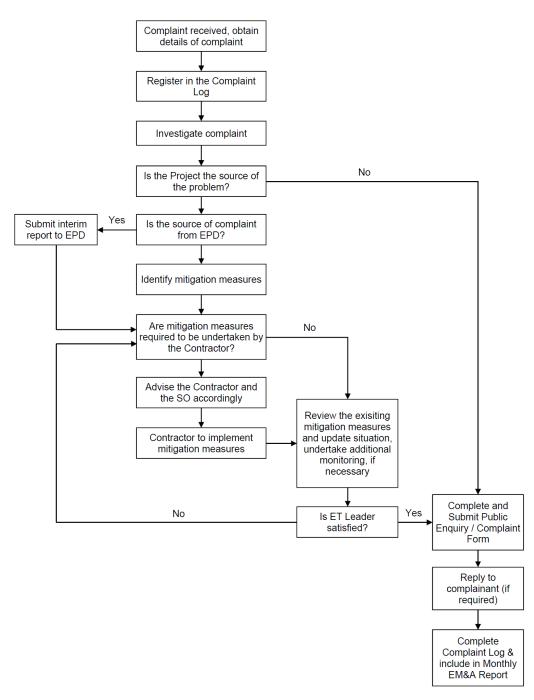


Figure 8.1 Environmental Complaint Handling Procedures

8.2 No exceedance of the Action and Limit Levels of the regular construction noise, coral and WBSE monitoring was recorded during the reporting period.

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Monthly EM&A Report No.9

Table 8.1 Summary of SS Compliance Status at Impact Stations (Mid-Ebb Tide)	
---	--

Date	B1	B2	B 3	B 4	CR1	CR2	F1	H1	S1	S2	S 3	M1
1-3-2019												
4-3-2019												
6-3-2019												
8-3-2019												
11-3-2019												
13-3-2019												
15-3-2019												
18-3-2019												
20-3-2019												
22-3-2019												
25-3-2019												
27-3-2019												
29-3-2019												
No. of SS Exceedances	1	2	2	1	1	2	3	2	1	1	2	3

Note 1: Detailed results are presented in Appendix D

Legend	l										
	No exceedance of Action Level and Limit Level										
	Exceedance of Action Level recorded at monitoring station located downstream of										
	the Project based on dominant tidal flow										
	Exceedance of Action Level recorded at monitoring station located										
	upstream/unrelated stream (neither upstream nor downstream, far away) of the										
	Project based on dominant tidal flow										
	Exceedance of Limit Level recorded at monitoring station located downstream of the										
	Project based on dominant tidal flow										
	Exceedance of Limit Level recorded at monitoring station located upstream/unrelated										
	stream of the Project based on dominant tidal flow										
	Upstream/unrelated stream station with respect to IWMF Project during the										
	respective tide based on dominant tidal flow										
	Downstream station with respect to IWMF Project during the respective tide based										
	on dominant tidal flow/station within the Project site										
	NA for measurement										
	Cancelled due to incident or adverse weather										

				-		itus ut I	-		`		<i>,</i>	
Date	B 1	B2	B3	B4	CR1	CR2	F1	H1	S1	S2	S3	M1
1-3-2019												
4-3-2019												
6-3-2019												
8-3-2019												
11-3-2019												
13-3-2019												
15-3-2019												
18-3-2019												
20-3-2019												
22-3-2019												
25-3-2019												
27-3-2019												
29-3-2019												
No. of SS Exceedances	0	0	0	0	1	1	0	0	0	0	1	1

 Table 8.2 Summary of SS Compliance Status at Impact Stations (Mid-Flood Tide)

Note 1: Detailed results are presented in Appendix D

l										
No exceedance of Action Level and Limit Level										
Exceedance of Action Level recorded at monitoring station located downstream of										
the Project based on dominant tidal flow										
Exceedance of Action Level recorded at monitoring station located										
upstream/unrelated stream (neither upstream nor downstream, far away) of the										
Project based on dominant tidal flow										
Exceedance of Limit Level recorded at monitoring station located downstream of the										
Project based on dominant tidal flow										
Exceedance of Limit Level recorded at monitoring station located upstream/unrelated										
stream of the Project based on dominant tidal flow										
Upstream/unrelated stream station with respect to IWMF Project during the										
respective tide based on dominant tidal flow										
Downstream station with respect to IWMF Project during the respective tide based										
on dominant tidal flow/station within the Project site										
NA for measurement										
Cancelled due to incident or adverse weather										

Table 8.3 Summary of SS Compliance Status at Intensive DCM Impact Stations (Mid-Ebb Tide)

Date	I1	I2	I3	I4	I5	I 6	I7	I 8	I9	I10
2-3-2019										
4-3-2019										
6-3-2019										
8-3-2019										
10-3-2019										
No. of SS Exceedances	0	1	0	0	2	2	3	3	3	3

Note 1: Detailed results are presented in Appendix D

No exceedance of Action Level and Limit Level
Exceedance of Action Level recorded at mobile monitoring station located
downstream of the DCM work groups based on dominant tidal flow during initial
intensive DCM monitoring
Exceedance of Limit Level recorded at mobile monitoring station located downstream
of the DCM work groups based on dominant tidal flow during initial intensive DCM
monitoring
Mobile downstream stations located within fixed distances from the DCM work
groups based on dominant tidal flow during initial intensive DCM monitoring
Cancelled due to the mobile monitoring station positioning on land

Table 8.4 Summary of SS Compliance Status at Intensive DCM Impact Stations (Mid-Flood Tide)

Date	I1	I2	I3	I4	I5	I6	I7	I 8	I9	I10
2-3-2019										
4-3-2019										
6-3-2019										
8-3-2019										
10-3-2019										
No. of SS Exceedances	2	2	2	3	1	1	1	1	2	2

Note 1: Detailed results are presented in Appendix D

No exceedance of Action Level and Limit Level
Exceedance of Action Level recorded at mobile monitoring station located
downstream of the DCM work groups based on dominant tidal flow during initial
intensive DCM monitoring
Exceedance of Limit Level recorded at mobile monitoring station located downstream
of the DCM work groups based on dominant tidal flow during initial intensive DCM
monitoring
Mobile downstream stations located within fixed distances from the DCM work
groups based on dominant tidal flow during initial intensive DCM monitoring
Cancelled due to the mobile monitoring station positioning on land

- 8.3 Twenty-two and three of the General & Regular DCM water quality monitoring results for Suspended Solid (SS) obtained during the reporting period had exceeded the relevant Action and Limit Levels respectively; six and twenty-eight of the Initial Intensive DCM water quality monitoring results for Suspended Solid (SS) obtained during the reporting period had exceeded the relevant Action and Limit Levels respectively as summarized in Table 8.1, 8.2, 8.3 & 8.4, where findings from investigation carried out immediately for each of the exceedance cases during the reporting period, no project-related Action Level & Limit Level exceedance was recorded as shown in Appendix N, however, environmental deficiencies of the Contractor on the implementation of silt curtain deployment system were spotted.
- 8.4 The Contractor has been reminded that all measures recommended in the deposited Silt Curtain Deployment Plan shall be fully and properly implemented for the Project as per Clause 2.6A of the FEP.
- 8.5 No notification of summons and prosecution was received in the reporting period.
- 8.6 Statistics on complaints, notifications of summons and successful prosecutions are summarized in **Appendix O**.

9. EM&A SITE INSPECTION

9.1 Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures under the Contract. In the reporting period, site inspections were carried out on 4, 12, 20 & 26 March 2019 at the site portions list in **Table 9.1** below.

Date	Inspected Site Portion	Time
4 March 2019	Portion 1, 1A & 1B (near SKC)	21:00 - 22:15
12 March 2019	Portion 1, 1A & 1B (near SKC)	10:20 - 11:30
20 March 2019	Portion 1, 1A & 1B (near SKC)	10:15 - 11:20
26 March 2019	Portion 1, 1A & 1B (near SKC)	10:15 - 11:30

Table 9.1 Site Inspection Record

- 9.2 One joint site inspection with IEC was carried out on 20 March 2019 and one joint night site inspection with IEC was carried out on 4 March 2019.
- 9.3 Environmental deficiencies were observed during weekly site inspection. Key observations during the site inspections and during the reporting period are summarized in **Table 9.2**.

Date	Environmental Observations	Follow-up Status
4 March 2019 (Site inspection)	Observation(s) and Recommendation(s) 1. There was no major observation.	NA
12 March 2019 (Site inspection)	 <u>Observation(s) and Recommendation(s)</u> 1. On ESC-61, silt curtain at the back location of the barge was broken and floated on surface. 	1. Part of the silt curtain at the back location of the barge was maintained.
20 March 2019 (Site inspection)	Observation(s) and Recommendation(s)1. There was no major observation.	NA
26 March 2019 (Site inspection)	 Observation(s) and Recommendation(s) 1. On ESC-61, the drip tray near the boarding location was not plugged. 2. On ESC-61, damage was observed on the silt curtain at the stern near the anchor. 	 On ESC-61, the drip tray near the boarding location was plugged. On ESC-61, damage of silt curtain was maintained at the stern near the anchor.

Table 9.2 Site Observations

- 9.4 The Contractor has rectified all of the observations identified during environmental site inspections in the reporting period. Yet, the Contractor has been reminded to suspend the related works immediately if silt curtain is found any damage in the future, until fixing of damaged silt curtain is completed.
- 9.5 As deficiency of Silt Curtain system was spotted, the Contractor has been reminded that all measures recommended in the deposited Silt Curtain Deployment Plan shall be fully and properly implemented for the Project as per Clause 2.6A of the FEP.
- 9.6 According to the EIA Study Report, Environmental Permit, contract documents and Updated EM&A Manual, the mitigation measures detailed in the documents are implemented as much

as practical during the reporting period. An updated Implementation Status of Environmental Mitigation Measures (EMIS) is provided in **Appendix B**.

10.FUTURE KEY ISSUES

- 10.1 Works to be undertaken in the next reporting month are:
- Laying of Geotextile and Sand Blanket for DCM Injection Works
- DCM Installation Works
- Coring of DCM samples
- Static Loading Test
- Cone Penetration Test
- Dredging Works
- 10.2 Potential environmental impacts arising from the above construction activities are mainly associated with water quality, construction noise, waste management and ecology.
- 10.3 The key environmental mitigation measures for the Project in the coming reporting period expected to be associated with the construction activities include:
- Reduction of noise from equipment and machinery on-site;
- Installation of silt curtains for DCM installation, sand blanket laying works and dredging works;
- Sorting, recycling, storage and disposal of general refuse and construction waste;
- Management of chemicals and avoidance of oil spillage on-site, especially under heavy rains and adverse weather; and
- Implementation of cluster MMEZ and inspection of enclosed environment within silt curtains as per DMPFP
- Regulation on rate and means for dredging works as stipulated in FEP Clause 2.17 2.21
- Daily site audit and monitoring by ET during dredging work as stipulated in FEP Clause 2.21A
- Storage, handling and disposal of dredged materials according to Dumping At Sea Ordinance (DASO)
- 10.4 The tentative schedule of regular construction noise, water quality and ecology monitoring in the next reporting period is presented in **Appendix P**. The regular construction noise, water quality and ecology monitoring will be conducted at the same monitoring locations in the next reporting period.

11.CONCLUSION AND RECOMMENDATIONS

- 11.1 This 9th monthly Environmental Monitoring and Audit (EM&A) Report presents the EM&A works undertaken during the period from 1 March to 31 March 2019, in accordance with the Updated EM&A Manual and the requirement under EP- 429/2012/A and FEP- 01/429/2012/A.
- 11.2 Construction noise, water quality, construction waste, marine mammal and WBSE monitoring were carried out in the reporting period. No project-related exceedance of the Action and Limit Level was recorded during the reporting period, however, environmental deficiencies of the Contractor on the implementation of silt curtain deployment system were spotted.
- 11.3 The Contractor has been reminded to facilitate the ET's investigation by promptly providing site records and information.
- 11.4 Weekly environmental site inspection was conducted during the reporting period. Environmental deficiencies were observed during site inspection and were rectified.
- 11.5 According to the environmental site inspections performed in the reporting month, the Contractor is reminded to pay attention on proper storage of chemicals.
- 11.6 Regarding to the deployment of silt curtains as a principal water quality impact mitigation measures on various marine works, the Contractor has been reminded to follow strictly to the design and checking procedure as specified in the Silt Curtain Deployment Plan. As the scale of DCM works will be stepped up in the coming months, the Contractor has been reminded to pay extra attention on the status of deployed silt curtain. The Contractor is reminded that all measures recommended in the deposited silt curtain deployment plan shall be fully and properly implemented for the Project as per EP condition 2.6 of the FEP.
- 11.7 As the dredging works was started in the reporting month, the Contractor had been reminded to follow strictly to the design and checking procedure as specified in the Silt Curtain Deployment Plan for the dredging works. The Contractor had been reminded to follow the regulation on rate and means for dredging works as stipulated in FEP Clause 2.17 2.21. The Contractor is reminded to follow Dumping At Sea Ordinance (DASO) for the storage, handling and disposal of dredged materials.
- 11.8 No environmental complaint was received in the reporting period.
- 11.9 No notification of summons or prosecution was received since commencement of the Contract.
- 11.10 The ET will keep track on the construction works to confirm compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Appendix A Master Programme

	Remaining Start Duration	Finish	2018 2019 2020 2021 D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J	
P_SP_66_12-WP-2-M0 Programme for Design and Construction Works	2835 22-Nov-17 A	26-Aug-25		
P_SP_66_12-WP-2-M0.01 Key Dates	2496 22-Nov-17	21-Sep-24		
P_SP_66_12-WP-2-M0.02 Contract Preliminaries	2807 19-Dec-17	26-Aug-25		
P_SP_66_12-WP-2-M0.03 Licence/Permit Applications	2252 15-Dec-17	13-Feb-24		
P_SP_66_12-WP-2-M0.04 General Submissions	1320 22-Nov-17	03-Jul-21		
P_SP_66_12-WP-2-M0.05 Design Submissions	1724 22-Nov-17 A	11-Aug-22		
P_SP_66_12-WP-2-M0.06 Procurement of Major Equipment	1903 13-Sep-18 1708 05-Jan-18	28-Nov-23 09-Sep-22		
P_SP_66_12-WP-2-M0.07 Environmental Works P_SP_66_12-WP-2-M0.08 Maritime Works	1277 29-Dec-17	27-Jun-21		
P SP 66 12-WP-2-M0.083 Submissions	196 29-Dec-17	12-Jul-18		
P_SP_66_12-WP-2-M0.08.1 Marine Construction	1265 10-Jan-18	27-Jun-21		
EP_SP_66_12-WP-2-M0.08.1.1 Phase I - Construction of Perimeter Seawalls EP_SP_66_12-WP-2-M0.08.1.1.3 Marine Works Preparations	740 10-Jan-18 274 10-Jan-18	19-Jan-20 10-Oct-18		
08-0900 Carry out hydrographic survey	14 10-Jan-18	23-Jan-18		
08-1005 Ground Investigation for DCM Design	180 13-Feb-18	11-Aug-18		
08-1010 Mobilization of DCM Barge for Load Test 08-1020 Mobilization of Remaining DCM Barge for Construction	30 14-May-18 30 11-Sep-18	12-Jun-18 10-Oct-18		
08-1340(2) Sediment Sample collection and testing Dumping Permit Application	21 05-Sep-18*	25-Sep-18		
EP_SP_66_12-WP-2-M0.08.1.1.1 Seawall and Berth at DCMArea	676 15-Mar-18	19-Jan-20		
08-1030 DCM Mix Trial (incl. Bench-scale testing and Lab Tests) 08-1040 DCM Pre-construction Site Trial and testing	106 15-Mar-18 43 29-Jun-18	28-Jun-18 10-Aug-18		
08-1050 Static Load Test Preparation	31 11-Aug-18	10-Sep-18		
08-1060 Carry out static loading test	22 11-Sep-18	02-Oct-18		
08-1065(2) Static load test report submission 08-1070 Geotextile Laying	8 03-Oct-18 60 11-Aug-18	10-Oct-18 09-Oct-18		
08-1075(2) Sand Blanket Laying	60 11-Aug-18	09-Oct-18		
08-1080 DCM Injection Works (575,000m3, approx 6300 nr.)	120 11-Oct-18	07-Feb-19		
D8-1090 DCM Final Completion Tests	180 10-Nov-18	08-May-19		
N8-1100 Rubble Mound Laying (100,000m3 approx, @550m3/d) N8-1105(1) Prefabrication for Caission	180 09-Jan-19 282 24-Nov-18	07-Jul-19 01-Sep-19		
8-1110 Caisson Laying (Total 50nrs, @2 nrs/week)	182 24-Mar-19	21-Sep-19		
18-1120 Wave Wall Construction	120 22-Sep-19	19-Jan-20		
EP_SP_66_12-WP-2-M0.08.1.1.2 Seawall at Dredging Area 08-1130 Dredging Works (26,000m3 @ 285m3/d avg. to comply EP Conditions 2.18)	295 25-Dec-18 110 25-Dec-18	15-Oct-19 13-Apr-19		
08-1140 Lay Rock & Sand Fill	50 15-Mar-19	03-May-19		
D8-1150 Place Rubble Mound (35,000m3 approx., @550m3/d) D8-1155(2) Fabrication and delivery of Precast Seawall Blocks (12,000nr. approx)	88 30-Mar-19 90 15-Mar-19	25-Jun-19 12-Jun-19		
8-1160 Lay Concrete Block Wals (300m length approx. @4m/d)	80 29-Apr-19	17-Jul-19		
-1170 Insitu Concrete Wall Construction	90 18-Jul-19	15-Oct-19		
SP_66_12-WP-2-M0.08.1.2 Phase II - Reclamation, Breakwater and Berth Construction SP_66_12-WP-2-M0.08.1.2.1 Reclamation	999 03-Oct-18 999 03-Oct-18	27-Jun-21 27-Jun-21		
08-1180 Geotextile Laying	100 03-Oct-18	10-Jan-19		
08-1185(2) Sand Blanket Laying	100 03-Oct-18	10-Jan-19		
08-1190 Install Vertical Band Drain by Barge 08-1200 Reclamation fill up to +2.5mPD	160 10-Feb-19 375 22-Sep-19	19-Jul-19 30-Sep-20		
08-1210 Reclamation fill from +2.5 to Formation Level	120 03-Jul-20	30-Oct-20		
08-1220 Lay Surcharge	80 11-Sep-20	29-Nov-20		
08-1230 Surcharge Period 08-1240 Remove Surcharge	180 30-Nov-20 85 04-Apr-21	28-May-21 27-Jun-21		
EP_SP_66_12-WP-2-M0.08.1.2.2 Breakwater	583 02-Sep-19	06-Apr-21		
08-1250 Geotextile and Sand Blanket Laying 08-1260 DOM Injection Worke (200.000m3, approx 3200 pr.)	45 22-Sep-19	05-Nov-19		
D8-1260 DCM Injection Works (290,000m3, approx 3200 nr.) D8-1270 DCM Final Completion Test	65 06-Nov-19 71 05-Jan-20	09-Jan-20 15-Mar-20		
08-1280 Rubble Mound Laying (100,000m3 approx, @550m3/d)	188 05-Mar-20	08-Sep-20		
08-1285(1) Prefabrication for Caission	411 02-Sep-19	16-Oct-20		
08-1290 Caisson Laying (Total 43nrs, @2 nrs/week) 08-1300 Wave Wall Construction	150 11-Jul-20 120 08-Dec-20	07-Dec-20 06-Apr-21		
EP_SP_66_12-WP-2-M0.08.1.2.3 Seawall and Berth at Marine Access	150 03-Jul-20	29-Nov-20		
08-1310(2) Prefabrication for Caission (4nrs)	90 03-Jul-20	30-Sep-20		
08-1320(2) Caisson Laying (4nrs) 08-1330(2) Wave Wall Construction	30 01-Oct-20 30 31-Oct-20	30-Oct-20 29-Nov-20		
P_SP_66_12-WP-2-M0.09 Foundation Works	397 12-Apr-21	13-May-22		
P_SP_66_12-WP-2-M0.09.0 Site Investigation and Preliminary Pile	46 12-Apr-21	27-May-21		
P_SP_66_12-WP-2-M0.09.1 Administration BId Foundation	138 25-Nov-21	11-Apr-22		=
P_SP_66_12-WP-2-M0.09.2 Waste Bunker & Tipping Hall BId Foundation P_SP_66_12-WP-2-M0.09.3 Boiler & Flue Gas BId Foundation	203 13-May-21 331 12-Apr-21	01-Dec-21 08-Mar-22		
P_SP_66_12-WP-2-M0.09.4 ACC Area Foundation	129 20-Sep-21	26-Jan-22		
	142 28-Jun-21	16-Nov-21		
P_SP_66_12-WP-2-M0.09.5 Turbine Hall Bld Foundation	28 17-Nov-21	14-Dec-21		
SP_66_12-WP-2-M0.09.5 Turbine Hall Bid Foundation SP_66_12-WP-2-M0.09.6 Air Compressor Bid Foundation				
SP_66_12-WP-2-M0.09.6 Air Compressor Bid Foundation	rko		Date	F
P_66_12-WP-2-M0.09.6 Air Compressor Bid Foundation Jarmme for Design and Construction Wo	orks		04-Dec-17 F	F Rev. 0 - 1st Issue
26_12-WP-2-M0.09.6 Air Compressor Bid Foundation	orks		04-Dec-17 F 16-Jul-18 F	

Contract No. EP/SP/66/12 gement Facilities, Phase 1 電境保護署

_			20	123		[20	124			2025	
D	JF	M	AMJ)23 J[A[S	OND	JFM	20 [A[M]J	JAS	OND	JFM	2025 A M J	JA
	:											
	:											
		_										
•••												
• •												
• •												
• •												
• •												
	Re	vis	ion					Check	ed	An	proved	
	0								-	<u> </u>		
1	comi	me	nts									
-	com						-					
	2010											

Keppel Seghers 吉寶西格斯-張華聯登公司 KEPPEL SEGHERS-ZHEN HUA JOINT VENTURE							Conti Integrated Waste Manageme
Activity ID Activity Name	Remaining Start Duration	Finish					2022 DNDJFMAMJJASONDJFM
EP_SP_66_12-WP-2-M0.09.7 Chimney Foundation	198 23-Jul-21	05-Feb-22					
EP_SP_66_12-WP-2-M0.09.8 MT Plant & Desalination Bld Foundation	168 22-Jul-21	05-Jan-22					
EP_SP_66_12-WP-2-M0.09.9 IWMF Substation Building Foundation	94 13-May-21	14-Aug-21					
EP_SP_66_12-WP-2-M0.09.10 Access Ramp Bld Foundation	133 13-Nov-21	25-Mar-22					
EP_SP_66_12-WP-2-M0.09.11 Reception Bld Foundation	49 26-Mar-22	13-May-22					
EP_SP_66_12-WP-2-M0.09.12 Pipe Bridge Foundation	397 12-Apr-21	13-May-22					
EP_SP_66_12-WP-2-M0.10 Superstructural Works	519 12-Aug-21	12-Jan-23					
EP_SP_66_12-WP-2-M0.10.1 Administration Bld Structure	267 12-Apr-22	03-Jan-23					
EP_SP_66_12-WP-2-M0.10.2 Waste Bunker & Tipping Hall Bld Sturcture	384 12-Aug-21	30-Aug-22					
EP_SP_66_12-WP-2-M0.10.3 Boiler & Flue Gas Treatment Bld Structure	441 29-Oct-21	12-Jan-23					
EP_SP_66_12-WP-2-M0.10.5 Turbine Hall Bid Structure	262 17-Nov-21	05-Aug-22		<u> </u>			
EP_SP_66_12-WP-2-M0.10.6 Air Compressor Bid Structure	63 04-May-22	05-Jul-22					
EP_SP_66_12-WP-2-M0.10.7 Chimney Structure	145 10-Jul-22 196 06-Jan-22	01-Dec-22 20-Jul-22					
EP_SP_66_12-WP-2-M0.10.8 MT Plant & Desalination Bld Structure	84 15-Aug-21	20-Jui-22 06-Nov-21					
EP_SP_66_12-WP-2-M0.10.9 IWMF Substation Structure	135 26-Mar-22	07-Aug-22					
EP_SP_66_12-WP-2-M0.10.10 Access Ramp Bld Structure EP_SP_66_12-WP-2-M0.10.11 Reception Bld Structure	150 14-May-22	10-Oct-22					
EP_SP_66_12-WP-2-M0.10.11 Reception Bid Structure	130 144 way-22 180 06-Jul-22	01-Jan-23					
EP_SP_66_12-WP-2-M0.11 Architectual Builders Works & Finishes	672 07-Nov-21	09-Sep-23					
	180 04-Jan-23	02-Jul-23					
EP_SP_66_12-WP-2-M0.11.1 Administration Bid ABWF Works	225 21-Jul-22	02-Jui-23 02-Mar-23					
EP_SP_66_12-WP-2-M0.11.2 Weste Bunker & Tipping Hall Bld ABWF Works EP_SP_66_12-WP-2-M0.11.3 Boiler & Flue Gas Bld ABWF Works	225 21-Jui-22 240 13-Jan-23	02-Wai-23		÷			
EP_SP_66_12-WP-2-W0.11.5 Turbine Hall Bid ABWF Works	299 23-Mar-22	15-Jan-23					
EP_SP_66_12-WP-2-M0.11.6_Air Compress Bld ABWF Works	105 03-Aug-22	15-Nov-22					
EP SP 66 12-WP-2-M0.11.7 Chimney ABWF Works	105 02-Dec-22	16-Mar-23					
EP SP 66 12-WP-2-M0.11.8 MT Plant & Desalination Bid ABWF Works	165 28-Jul-22	08-Jan-23					
EP SP 66 12-WP-2-M0.11.9 IWMF Substation ABWF Works	120 07-Nov-21	06-Mar-22		÷			
EP SP 66 12-WP-2-M0.11.10 Access Ramp Bid ABWF Works	165 05-Sep-22	16-Feb-23					
EP SP 66 12-WP-2-M0.11.11 Reception Bld ABWF Works	135 11-Oct-22	22-Feb-23					
EP_SP_66_12-WP-2-M0.12_Building Services Installation	581 09-Feb-22	12-Sep-23					
EP SP 66 12-WP-2-M0.12.1 Administration Eld BS Works	180 03-Feb-23	01-Aug-23					
EP SP 66 12-WP-2-M0.12.2 Weste Bunker & Tipping Hall Bld BS Works	210 04-Oct-22	01-May-23				·	
EP_SP_66_12-WP-2-M0.12.3 Boiler & Flue Gas Bld BS Works	210 29-Dec-22	26-Jul-23					
EP_SP_66_12-WP-2-M0.12.5 Turbine Hall Bld BS Works	344 07-Apr-22	16-Mar-23					
EP_SP_66_12-WP-2-M0.12.6 Air Compressor Bid BS Works	135 02-Sep-22	14-Jan-23					
EP_SP_66_12-WP-2-M0.12.4 Chimney BS Works	210 15-Feb-23	12-Sep-23					
EP_SP_66_12-WP-2-M0.12.8 MT Plant & Desalination Bld BS Works	180 11-Oct-22	08-Apr-23					
EP_SP_66_12-WP-2-M0.12.9 IWMF Substation BS Works	241 09-Feb-22	07-Oct-22					
EP_SP_66_12-WP-2-M0.12.10 Access Ramp Bld BS Works	180 19-Nov-22	17-May-23					
EP_SP_66_12-WP-2-M0.12.11 Reception Bld BS Works	120 24-Jan-23	23-May-23					
EP_SP_66_12-WP-2-M0.13 Process Equipment Installation	677 28-Dec-21	04-Nov-23					
EP_SP_66_12-WP-2-M0.13.2 Waste Bunker & Tipping Hall Bld Process Equipment Installation	233 01-Aug-22	21-Mar-23					
EP_SP_66_12-WP-2-M0.13.3 Boiler House & Flue Gas Treatment Bld Process Equipment Installa		19-Jun-23					
EP_SP_66_12-WP-2-M0.13.4 ACC Area Equipment Installation	375 23-Apr-22	02-May-23					
EP_SP_66_12-WP-2-M0.13.5 Turbine Hall Bld Equipment Installation	335 02-Jun-22	02-May-23					
EP_SP_66_12-WP-2-M0.13.6 Air Compressor Bid Equipment Installation	150 17-Sep-22	13-Feb-23					 ·····
EP_SP_66_12-WP-2-M0.13.8a MT Process Bld Process Equipment Installation	330 10-Dec-22	04-Nov-23					
EP_SP_66_12-WP-2-M0.13.8b Desalination Bid Process Equipment Installation	210 24-Aug-22	21-Mar-23	_				
EP_SP_66_12-WP-2-M0.13.09 IWMF Substation Bid Equipment Installation	450 22-Feb-22 150 19-Dec-22	17-May-23	_				
EP_SP_66_12-WP-2-M0.13.10 Ramp & Storage Bid Process Equipment Installation	240 15-Sep-22	17-May-23 12-May-23					
EP_SP_66_12-WP-2-M0.13.12 Equipment Installaion at External Area EP_SP_66_12-WP-2-M0.13.13 External Process Pipe Works	240 15-Sep-22 271 03-Oct-22	30-Jun-23		······	· · · · · · · · · · · · · · · · · · ·		
	872 07-Nov-21	27-Mar-24					
EP_SP_66_12-WP-2-M0.14 Landscape, External Road and Drains Works	633 04-Feb-22						
EP_SP_66_12-WP-2-M0.15 Works By CLP		30-Oct-23					
EP_SP_66_12-WP-2-M0.16 Testing & Commissioning	591 15-Dec-22	27-Jul-24					

Dreaman of an Design and Construction Marks	Date	Revi
Progarmme for Design and Construction Works	04-Dec-17	Rev.0 - 1stlssue
Summary Progarmme	16-Jul-18	Rev. 1 - Revised to SO's comm
Page 2 of 2	03-Sep-18	Rev. 2 - Revised to SO's comm
Page 2 01 2		

00	200		r		04			0005	
20 F[M[A[M[J			JEM	20 [A[M]J			JIFIM	2025 A M J	JA
							ויין		<u> </u>
-									
_									
	_								
-									
	_								
	_								
<u></u>									
_									
<u></u>									
1									
								·	
		_							
									
	1								
:									
·									
evision					Check	ed	Ар	proved	
ments									
				1					
nments									
				_					

Appendix B Summary of Implementation Status of Environmental Mitigation

Appendix B

Table D 4	Implementation Cabadula for Air Quality Measures for the IM/ME at the artificial island near CKC
Table B.1	Implementation Schedule for Air Quality Measures for the IWMF at the artificial island near SKC

		Location /		Imple	ementa	ation St	ages*	Relevant	Implementati
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	ο	Dec	Legislation and Guidelines	on Status and Remarks
S3b.8.1	 <u>Air Pollution Control (Construction Dust)</u> <u>Regulation & Good Site Practices</u> Use of regular watering, with complete coverage, to reduce dust emissions from exposed site surfaces and unpaved roads, particularly during dry weather. Use of frequent watering for particularly dusty construction areas and areas close to ASRs. Side enclosure and covering of any aggregate or dusty material storage piles to reduce emissions. Where this is not practicable owing to frequent usage, watering shall be applied to aggregate fines. Open stockpiles shall be avoided or covered. Where possible, prevent placing dusty material storage piles near ASRs. Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations. Establishment and use of vehicle wheel and body washing facilities at the exit points of the site. Provision of wind shield and dust extraction units or similar dust mitigation measures at the loading 	During the construction period	Contractor					Air Pollution Control (Construction Dust) Regulation	N/A

Keppel Seghers – Zhen Hua Joint Venture

	Environmental Dratastian Massures (Imp	lementa	ation St	ages*	Relevant Legislation and Guidelines	Implementati on Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	ο	Dec		
	 points, and use of water sprinklers at the loading area where dust generation is likely during the loading process of loose material, particularly in dry seasons/ periods. Imposition of speed controls for vehicles on unpaved site roads. Ten kilometers per hour is the recommended limit. Where possible, routing of vehicles and positioning of construction plant should be at the maximum possible distance from ASRs Instigation of an environmental monitoring and auditing program to monitor the construction process in order to enforce controls and modify method of work if dusty conditions arise. 								
S3b.6.3	 Odour Removal by Deodorizers Deodorizers with 95% odour removal efficiency would be installed for the air ventilated from the mechanical treatment plant before discharge to the atmosphere 	Waste reception halls, the waste storage area,	IWMF Operator	~		~		EIAO-TM	N/A
S3b.8.2	 <u>Air Pollution Control and Stack Monitoring</u> Air pollution control and stack monitoring system will be installed for the IWMF to ensure that the emissions from the IWMF stack will meet the proposed target emission limits. 	IWMF stack emissions / During design & operation phase	IWMF Operator	✓		✓		EIAO-TM, Supporting Document for Application for Variation of Environmental Permit (EP-	N/A

				Imp	lementa	ation St	ages*	Relevant	Implementati
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	on Status and Remarks
	 Voluntary Enhancement Measures in Flue Gas Cleaning and Emission Monitoring: Two-stage bag filter system with reagent recirculation; In addition to SCR, provide SNCR for removal of NO_x; tighten emission limit for half-hourly and daily NO_x to 160 mg/m³ and 80 mg/m₃ respectively; Well-mixed feed waste: to minimize the fluctuation of pollutant loading on the flue gas treatment system; Two more AQMSs would be set up at South Lantau and Shek Kwu Chau respectively; Limit levels will be set under the IWMF DBO contract to require that waste feed shall cease if any of the air pollutant has exceeded 95% of the emission concentration limit as stipulated in the Special Process license; and Each incineration chamber shall be fitted with auxiliary burners to ensure complete burn out of the combustion gases. 							429/2012)	
-	 <u>Treated Fly Ash and Air Pollution Control</u> <u>Residues:</u> During testing and commissioning, the Contractor shall sample and test every container of treated fly ash and air 	IWMF stack emissions / During design & operation	IWMF Operator	~		~		Supporting Document for Application for Variation of Environmental	N/A

Keppel Seghers – Zhen Hua Joint Venture

	Environmental Protection Measures /			Imp	lement	ation S	tages*	Relevant	Implementati
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	ο	Dec	Legislation and Guidelines	on Status and Remarks
	 pollution control residues for conformance to the Incineration Residue Pollution Control Limits and leachability criteria shown in Table 2 of the Environmental Permit. If a test result confirms that any one of the samples does not conform to the limits and the criteria, the Contractor shall be required to sample and test every container of treated fly ash and air pollution control residues for conformance to the Incineration Residue Pollution Control Limits and leachability criteria for the next six months. During the first six months of operation, if the requirements in (a) could be fully conformed with, the Contractor shall sample and test every shipload of treated fly ash and air pollution control residues for conformance to the Incineration Residue Pollution Control Limits and leachability criteria shown in Table 2 of the Environmental Permit. The Contractor shall take two samples from each shipload for testing and the Contractor shall not dispose of any of that shipload of treated fly ash and air pollution control residues until the test results confirm that the two samples conform to the limits and the criteria. If 	phase						Permit (EP- 429/2012)	
	from each shipload for testing and the Contractor shall not dispose of any of that shipload of treated fly ash and air pollution control residues until the test								

Keppel Seghers – Zhen Hua Joint Venture

	Environmental Protection Measures /			Imp	lementa	ation S	tages*	Relevant	Implementati on Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	ο	Dec	Legislation and Guidelines	
	the two samples does not conform to								
	the limits and the criteria, the								
	Contractor shall be required to sample								
	and test every shipload of treated fly								
	ash and air pollution control residues								
	for conformance to the Incineration								
	Residue Pollution Control Limits and								
	leachability criteria for the next six								
	months. The Contractor shall make								
	due allowance in the Design and the								
	Operation for the time to sample and								
	test treated fly ash and air pollution								
	control residues before disposal.								
	Provided that there is no non-								
	conformance to the Incineration								
	Residue Pollution Control Limits and								
	leachability criteria shown in Table 2 of the Environmental Permit								
	throughout a continuous sixmonth period in the Operation Period, the								
	testing frequency shall be reduced to								
	monthly interval. Two samples from								
	one shipload of treated fly ash and air								
	pollution control residues shall be								
	collected and tested for conformance								
	to the Incineration Residue Pollution								
	Control Limits and leachability criteria.								
	The Contractor shall not dispose of								
	any of the treated fly ash and air								
	pollution control residues in the								
	shipload which the samples are taken								
	until the test results confirm that the								
	samples conform to the limits and the								

	Environmental Dustanting Manager (Location / Implementation Timing Agent	Imp	lementa	ation St	ages*	Relevant	Implementati on Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures			Des	С	ο	Dec	Legislation and Guidelines	
	criteria. If the test result confirm that any one of the samples does not conform to the limits and the criteria, the Contractor shall be required to sample and test every shipload of treated fly ash and air pollution control residues for conformance to the Incineration Residue Pollution Control Limits and leachability criteria shown in Table 2 of the Environmental Permit for the next six months.								
-	Bottom Ash:	IWMF stack	IWMF Operator	✓		~		Supporting	N/A
	 During testing and commissioning, the Contractor shall sample and test every container of bottom ash for conformance to the leachability criteria shown in Table 2 of the Environmental Permit. If a test result confirms that any one of the samples does not conform to the criteria, the Contractor shall be required to sample and test every container of bottom ash for conformance to the leachability criteria for the next six months. During the first six months of operation, if the requirements in (d) could be fully conformed with, the Contractor shall sample and test one shipload of bottom ash each month for conformance to the leachability criteria shown in Table 2 of the Environmental Permit. The 	emissions / During design & operation phase						Document for Application for Variation of Environmental Permit (EP- 429/2012)	

	Environmental Drotestion Macourse (Imp	lement	ation S	tages*	Relevant	Implementati
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	ο	Dec	Legislation and Guidelines	on Status and Remarks
	Contractor shall take two samples								
	from the shipload for testing and the								
	Contractor shall not dispose of any of								
	that shipload of bottom ash until the								
	test results confirm that the two								
	samples conform to the criteria. If a								
	test result confirms that any one of								
	the two samples does not conform to								
	the criteria, the Contractor shall be								
	required to sample and test each								
	shipload of bottom ash for								
	conformance to the leachability								
	criteria for the next six months. The								
	Contractor shall make due allowance								
	in the Design and the Operation for								
	the time to sample and test bottom								
	ash before disposal.								
	 Provided that there is no non- 								
	conformance to the leachability								
	criteria shown in Table 2 of the								
	Environmental Permit throughout a								
	continuous sixmonth period in the								
	Operation Period, the Contractor								
	shall be allowed to take two samples								
	from any one shipload of bottom ash								
	once every six months for								
	conformance to the leachability								
	criteria. The Contractor shall not								
	dispose of any of the bottom ash in								
	the shipload which the samples are								
	taken until the test results confirm								
	that the samples conform to the								
	criteria. If the test result confirm that								

	Environmental Protection Measures / Mitigation Measures	Location /	Implementation Agent	Imp	lement	ation St	ages*	Relevant	Implementati
EIA Ref		Location / Timing		Des	С	ο	Dec	Legislation and Guidelines	on Status and Remarks
	any one of the samples does not conform to the criteria, the Contractor shall be required to sample and test one shipload of bottom ash each month for conformance to the leachability criteria shown in Table 2 of the Environmental Permit for the next six months as stipulated above.								

* Des - Design, C - Construction, O – Operation, and Dec - Decommissioning

Table B.2 Implementation Schedule for Noise Impact Measures for the IWMF at the artificial island near SKC

				Imple	ementa	ation	Stages*	Relevant	Implementatio
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	n Status and Remarks
S4b.8	Good site practices to limit noise emissions a source and use of quiet plant and working methods, whenever practicable.	Construction	EPD and its contractors		~			EIAO-TM	Implemented
S4b.6 & S4b.8	 All the ventilation fans installed in the below will be provided with silencers or acoustics treatment. (i) Stack of the incinerator (ii) Ventilation systems within the IWMF Enclosure and discharge silencer or other acoustic treatment equipment should be installed in the air-cooled chillers Other than provision of silencer or other acoustic treatment equipment for the stack of the incinerator and ventilation system, the detailed design should incorporate the following good practice in order to minimize the nuisance on the neighboring NSRs. (i) The exhaust of the ventilation system and any opening of the building should be located facing away from any NSRs; and (ii) Louver or other acoustic treatment equipment could also be applied to the exhaust of the ventilation system. 	Within IWMF area / Construction Period	EPD and its contractors	✓		✓		EIAO-TM	N/A

Keppel Seghers – Zhen Hua Joint Venture

-	Voluntary Enhancement Measure	IWMF site	Design team,	✓	✓	Supporting	Implemented
	 Provision of air-conditioner and double glazed windows to nearby NSR at Shek Kwu Chau (i.e. SARDA) as precautionary measures. 		contractor, IWMF operator			Document for Application for Variation of Environmental Permit (EP- 429/2012)	

* Des - Design, C - Construction, O - Operation, and Dec - Decommissioning

Table B.3 Implementation Schedule for Water Quality Measures for the Artificial Island near SKC

			Imple	ementa	tion S	tages*		Implementation
Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
Drainage and Construction Site Runoff	Work site /	Contractor		✓			EIAO-TM;	N/A
The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. These practices include the following items:	During the construction period						ProPECC PN 1/94; WPCO	
• At the start of site establishment, perimeter cut-off drains to direct off- site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented to the commencement of construction.								
 Boundaries of earthworks should be surrounded by dykes or embankments for flood protection, as necessary. 								
 Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM-DSS. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. The detailed design of the sand/silt traps shall be undertaken by the contractor Water pumped out from foundation 								
	 Measures / Mitigation Measures Drainage and Construction Site Runoff The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. These practices include the following items: At the start of site establishment, perimeter cut-off drains to direct offsite water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented to the commencement of construction. Boundaries of earthworks should be surrounded by dykes or embankments for flood protection, as necessary. Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM-DSS. The design of efficient silt removal facilities in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. The detailed design of the sand/silt traps shall be undertaken by the contractor 	Measures / Mitigation MeasuresTimingDrainage and Construction Site RunoffWork site /The site practices outlined in ProPECC PN1/94 "Construction Site Drainage" should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. These practices include the following items:Work site /• At the start of site establishment, perimeter cut-off drains to direct off- site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented to the commencement of construction.Hours and sedimentation control facilities should be surrounded by dykes or embankments for flood protection, as necessary.• Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM-DSS. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. The detailed design of the sand/silt traps shall be undertaken by the contractor	Timing Timing Agent Drainage and Construction Site Runoff The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. These practices include the following items: Work site / During the construction period Contractor • At the start of site establishment, perimeter cut-off drains to direct off- site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented to the commencement of construction. Work site / During the constructed with internal drainage works and erosion and sedimentation control facilities implemented to the commencement of construction. Sand/silt removal facilities such as sand/silt traps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM-DSS. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. The detailed design of the sand/silt traps shall be undertaken by the contractor Timing Magent	Environmental Protection Measures / Mitigation MeasuresLocation / TimingImplementation AgentDrainage and Construction Site Runoff The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. These practices include the following items:Work site / During the construction periodContractor• At the start of site establishment, perimeter cut-off drains to direct off- site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented to the commencement of construction.Work site / During the constructed with internal drainage works and erosion and sedimentation control facilities suplemented to the commencement of construction.Sand/silt raps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM-DSS. The design of efficient silt removal facilities should be 5 minutes under maximum flow conditions. The detailed design of the sand/silt traps should be 5 minutes under maximum flow conditions. The detailed design of the sand/silt traps shall be undertaken by the contractorLocation / TimingImplementation A penditi A pendition of the sand/silt traps shall be undertaken by the contractorDesite the transmithet the step shall be undertaken by the contractor	Environmental Protection Measures / Mitigation MeasuresLocation / TimingImplementation AgentDesCDrainage and Construction Site Runoff The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. These practices include the following items:Work site / During the construction periodContractor✓• At the start of site establishment, perimeter cut-off drains to direct off- site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented to the commencement of construction.Sond/site requirements of the TM-DSS. The design of efficient silt removal facilities should be provided to remove sand/silt particles from runoff to meet the requirements of the TM-DSS. The design of efficient silt removal facilities should be 5 minutes under maximum flow conditions. The detailed design of the sand/silt traps shall be undertaken by the contractorImplementation During the contractor	Environmental Protection Measures / Mitigation MeasuresLocation / TimingImplementation AgentDesC0Drainage and Construction Site Runoff The site practices outlined in ProFECC PN 1/94 "Construction Site Drainage" should be followed as far as practicable in order to minimise surface runoff and the chance of erosion. These practices include the following items:Work site / During the construction periodContractor✓• At the start of site establishment, perimeter cut-off drains to direct off- site water around the site should be construction, as necessary.Sand/silt raps and sedimentation construction, as necessary.Sand/silt raps and sediment basins should be provided to remove sand/silt particles from runoff to meet the requirements of the TM-DSS. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. The detailed design of the sand/silt traps shall be undertaken by the contractorLocation / TimingImplementation AgentImplementation control facilities should be founded by dykes or embankments for flood protection, as necessary.Implementation constructed by dykes or embankments for flood protection as necessary.Implementation constructed by dykes or embankments for flood protection as necessary.Implementation constructed by dykes or embankments for flood protection, as necessary.	Environmental Protection Measures / Mitigation MeasuresLocation / TimingImplementation AgentDesCODecDrainage and Construction Site Runoff The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be followed as far as practicable in order to ensinimise surface runoff and the chance of erosion. These practices include the following items:Work site / During the construction periodContractor✓✓• At the start of site establishment, perimeter cut-off drains to direct off- site water around the site should be construction and sedimentation control facilities implemented to the commencement of construction.Work site / During the constructed with internal drainage works and erosion and sedimentation control facilities such as sand/silt removal facilities such as sand/silt removal facilities such as sand/silt removal facilities in papendix A1 of ProPECC PN 1/94, which states that the retention time for silt/sand traps should be 5 minutes under maximum flow conditions. The detailed design of the sand/silt pars should be 5 minutes under maximum flow conditions. The detailed design of the sand/silt pars should be sand under maximum flow conditions. The detailed design of the sand/silt pars should be for sand/silt pars should be to sand/silt pars should be to sand/silt pars should be to sand/silt pars should be for the sand/silt pars should be for the sand/silt pars should be to sand/silt pars should be sand sediment partices in the conditions. The detailed design of the sand/silt pars should be sand/silt pars should be for the sand/silt pars should be sand/silt pars should be sand/silt pars should be sand/silt p	Environmental Protection Measures / Mitigation MeasuresLocation / TimingImplementation AgentDesC0DecLegislation and GuidelinesDrainage and Construction Site Runoff The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be proinedWork site / During the periodContractorVEIAO-TM; ProPECC PN 1/94;• At the start of site establishment, perimeter cut-off drains to direct off- site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities such as sand/sitt removal facilities such as sand/sitt removal facilities such as sand/sitt removal facilities in order to the design of efficient sit removal facilities in Appendix At of ProPECC PN 1/94, which states that the retention time for situ/wate ranould be based on the guidelines in Appendix At of ProPECC PN 1/94, which states that the retention time for situ/wate ranould be based on the sufficient site manual facilities in Appendix At of ProPECC PN 1/94, which states that the retention time for situ/sand traps should be 5 minutes under maximum flow conditions. The detailed design of the sand/sit traps shall be undertaken by the contractorLocation / The site wate should be 5 minutes under maximum flow conditions. The detailed design of the contractorLocation / The site water and the site should be 5 minutes under maximum flow conditions. The detailed design of the contractorLocation / The site water and the site should be 5 minutes under maximum flow conditions. The detailed design of the contractorLocation / The site should be 5 minutes under maximum flow conditions. The detailed design of the contractorLocation /

Keppel Seghers – Zhen Hua Joint Venture

				Imple	ementa	tion S	tages*	Relevant	Implementation Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
	piles must be discharged into silt removal facilities.								
	 Measures should be taken to minimize the ingress of site runoff and drainage into excavations. Drainage water pumped out from excavations should be discharged into storm drains via silt removal facilities. 								
	• During rainstorms, exposed slope/soil surfaces should be covered by a tarpaulin or other means, as far as practicable. Other measures that need to be implemented before, during and after rainstorms are summarized in ProPECC PN 1/94.								
	 Exposed soil areas should be minimized to reduce potential for increased siltation and contamination of runoff. 								
	• Earthwork final surfaces should be well compacted and subsequent permanent work or surface protection should be immediately performed.								
	 Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric during rainstorms. 								
S5b.8.1.2	Construction solid waste should be	Work site / During the constr uction period	Contractor		~			EIAO-TM; ProPECC PN 1/94; WPCO	Reminders provided to the Contractor

Keppel Seghers – Zhen Hua Joint Venture

				Imple	ementa	tion St	ages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	system. Rubbish and litter from construction sites should also be collected to prevent spreading of rubbish and litter from the site area.								
S5b.8.1.3	There is a need to apply to EPD for a discharge license for discharge of effluent from the construction site under the WPCO. The discharge quality must meet the requirements specified in the discharge license. All the run-off and wastewater generated from the works areas should be treated so that it satisfies all the standards listed in the TM-DSS. The beneficial uses of the treated effluent for other on-site activities such as dust suppression and general cleaning etc., can minimize water consumption and reduce the effluent discharge volume. If monitoring of the treated effluent quality from the works areas is required during the construction phase of the Project, the monitoring should be carried out in accordance with the relevant WPCO license which is under the ambit of regional office of EPD.	During the construction	Contractor					EIAO-TM; ProPECC PN 1/94; WPCO	Under application of Discharge License
S5b.8.1.4	Accidental Spillage Contractor must register as a chemical waste producer if chemical wastes would be produced from construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation should be observed and complied with for control of chemical wastes.	Work site / During the construction period	Contractor		~			EIAO-TM; ProPECC PN 1/94; WPCO; WDO	Implemented

Acuity Sustainability Consulting Limited

Keppel Seghers – Zhen Hua Joint Venture

				Imple	ementa	tion St	ages*	Relevant	Implementation Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
S5b.8.1.5	Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should only be undertaken within the areas which appropriately equipped to control these discharges.	During the construction	Contractor		√			EIAO-TM; ProPECC PN 1/94; WPCO; WDO	Deficiency of Mitigation Measures but rectified by the Contractor
S5b.8.1.6	Oils and fuels should only be used and stored in designated areas which have pollution prevention facilities. All fuel tanks and storage areas should be sited on sealed areas in order to prevent spillage of fuels and solvents to the nearby watercourses. All waste oils and fuels should be collected in designated tanks prior to disposal.	During the construction	Contractor		~			EIAO-TM; ProPECC PN 1/94; WPCO; WDO	Implemented
S5b.8.1.7	Disposal of chemical wastes should be carried out in compliance with the Waste Disposal Ordinance. The Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes published under the Waste Disposal Ordinance details the requirements to deal with chemical wastes. General requirements are given as follows:	During the construction period	Contractor		✓ 			EIAO-TM; ProPECC PN 1/94; WPCO; WDO	Implemented
	 Suitable containers should be used to hold the chemical wastes to avoid leakage or spillage during storage, handling and transport. Chemical waste containers should be suitably labelled, to notify and warn the personnel who are handling the wastes, to avoid accidents. Storage area should be selected at a safe location on site and adequate space should be allocated to the 								

Acuity Sustainability Consulting Limited

					menta	tion Sta	ages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	storage area.								
S5b.8.1.8	Sewage Effluent Temporary sanitary facilities, such as portable chemical toilets, should be employed on-site where necessary to handle sewage from the workforce. A licensed contractor would be responsible.	Work site / During the construction period	Contractor		~			EIAO-TM; ProPECC PN 1/94; WPCO	N/A
S5b.8.1.9	 Reclamation and Construction of Breakwaters The proposed dredging and reclamation should be commenced in phases. The breakwaters and seawalls should be constructed and the reclamation should be started within the enclosed breakwaters after the completion of the breakwater. Silt curtain should be applied around caissons / blockwork during the filling of the cell to prevent the loss of fine in the filling material. The maximum production rate for dredging for the anti-scouring protection layer shall not exceed the permitted maximum daily dredging rate and carried out within its respective distance from the nearest non-translocatable coral community by the dredging contractor as specified in S.2.18 of the Further Environmental Permit (no.:FEP-01/429/2012/A). It is recommended to employ closed grab with small capacity of 2 m³ to control the dredging rate. Any gap that may need to be provided for marine access will be located at the middle of the North Western seawall, away from the 	During the marine construction period	Contractor		✓			EIAO-TM; WPCO, Supporting Document for Application for Variation of Environmental Permit (EP- 429/2012) Further Environmental Permit No. FEP- 01/429/2012/A	Implemented.

Keppel Seghers – Zhen Hua Joint Venture

				Imple	menta	tion S	tages*	Relevant	Implementation Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	Ο	Dec	Legislation and Guidelines	
	sediment plume dispersion.								
	• The silt curtain system at marine access opening should be closed as soon as the barges passes through the marine access opening in order to minimize the period of curtain opening. Filling should only be carried out behind the silt curtain when the silt curtain is completely closed.								
	• To enhance the effectiveness of the silt curtain at the marine access, the northern breakwater would be built before the commencement of the reclamation to reduce the current velocity towards the marine access opening.								
	 The silt curtain system at marine access opening should be regularly checked and maintained to ensure proper functioning. 								
	• Where public fill is proposed for filling below +2.5mPD, the fine content in the public fill will be controlled to 25% which is in line with the CEDD's General Specification;								
	• The filling for reclamation should be carried out behind the seawall. The filling material should only consist of public fill, rock and sand. The filling composition and filling rates at each filling area should follow those delineated in Table 1 of the FEP-01/429/2012/. The filling above high watermark is not restricted;								
	 No dredging should be carried out within 16m to the nearest non-translocatable coral community; 								

Keppel Seghers – Zhen Hua Joint Venture

				Imple	ementa	tion S	tages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	• Daily site audit including full-time on-site monitoring by the ET is recommended during the dredging for anti-scouring protection layer for checking the compliance with the permitted no. of grab;								
	 Closed grab dredger should be used to minimize the loss of sediment during the raising of the loaded grabs through the water column; 								
	 Frame-type silt curtains should be deployed around the dredging operations; 								
	 Floating-type silt curtains should be used to surround the circular cell during the sheetpiling work; 								
	 The descent speed of grabs should be controlled to minimize the seabed impact speed; 								
	 Barges should be loaded carefully to avoid splashing of material; 								
	 All barges used for the transport of dredged materials should be fitted with tight bottom seals in order to prevent leakage of material during loading and transport; 								
	 No concurrence works between laying of submarine cables and dredging/reclamation works within the same location is allowed. For works close to each other, the construction program should be arranged so that the dredging/reclamation works within area bounded by the breakwaters and the laying of cables would not operate within a 								

Keppel Seghers – Zhen Hua Joint Venture

				Imple	ementa	tion S	tages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	distance of 80m from each other to avoid any accumulative impact on the environment (in case if such tight schedule is necessary).								
	• All barges should be filled to a level which ensures that material does not spill over during loading and transport to the disposal site and that adequate freeboard is maintained to ensure that the decks are not washed by wave action.								
	• No DCM works should be carried out within 100m to the nearest non-translocatable coral colony / colonies.								
	• Silt curtains should be employed to enclose DCM field trial and any full scale DCM work to minimize the potential impacts on water aspect.								
	• A sand blanket is to be placed on top of the marine deposit using tremie pipes prior to the DCM ground treatment to avoid seabed sediment disturbance.								
S5b.8.2.3	Operational Phase Discharges	Within IWMF	IWMF Operator	~		~	V	VPCO	N/A
	A pipeline drainage system will serve the development area collecting surface runoff from paved areas, roof, etc. Sustainable drainage principle would be adopted in the drainage system design to minimize peak surface runoff, maximize permeable surface and maximize beneficial use of rainwater.	site / During the operational phase							
S5b.8.2.4	Oil interceptors should be provided in the drainage system of any potentially contaminated areas (such as truck parking area and maintenance workshop) and	Within IWMF site / During the operational	IWMF Operator	✓		√	V	VPCO; WDO	N/A

Acuity Sustainability Consulting Limited

				Impler	nenta	tion S	tages*	Relevant	Implementation Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
	regularly cleaned to prevent the release of oil products into the storm water drainage system in case of accidental spillages. Accidental spillage should be cleaned up as soon as practicable and all waste oils and fuels should be collected and handled in compliance with the Waste Disposal Ordinance.	phase							
S5b.8.2.5	<u>Refuse Entrapment</u> Collection and removal of floating refuse should be performed at regular intervals for keeping the water within the Project site boundary and the neighboring water free from rubbish.	Within the Project site / During the operational phase	IWMF Operator			~		WPCO	N/A
S5b.8.2.6	Transportation of bottom ash, fly ash and APC residues to WENT Landfill for disposal Covered container should be used in the shipping of the incineration waste to limit the contact between the incineration waste and the marine water. A comprehensive emergency response plan for any accidental spillage should be submitted by the operation contractor to the EPD for agreement before the operation of the facilities. Salvage and cleanup action to recover the spilled incineration waste containers following the spillage should be carried out according to the emergency response plan to mitigate the environmental impact in case of spillage.	Transportat ion of Incineration Ash / During the operational phase	IWMF Operator						N/A

* Des - Design, C - Construction, O – Operation, and Dec - Decommissioning

Table B.4 Implementation Schedule for Waste Management Measures for the IWMF at the artificial island near SKC

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant	Implementation
				Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
6b.5.1.2	 <u>Good Site Practices</u> Adverse environmental impacts in relation to waste management are not expected, provided that good site practices are strictly followed. Recommendations for good site practices during the construction activities would include: Obtain relevant waste disposal permits from appropriate authorities, in accordance with the Waste Disposal Ordinance (Cap. 354) and subsidiary Regulations and the Land (Miscellaneous Provisions) Ordinance (Cap. 28); Provide staff training for proper waste management and chemical handling procedures; Provide sufficient waste disposal points and regular waste collection; Provide appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers; and Carry out regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors; Separate chemical wastes for special handling and disposed of to licensed facility for treatment; and Employ licensed waste collector to collect waste. 	0011011 0011011	Contractor					WDO; LDO; ETWB TCW No. 19/2005; EIAO-TM	Implemented; Chemical waste were collected by licensed chemical waste collector on 14/12/2018.

Keppel Seghers – Zhen Hua Joint Venture

	Environmental Protection Measures / Mitigation Measures			Imple	ementa	tion S	tages*	Relevant	Implementation
EIA Ref		Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
6b.5.1.3	Waste Reduction Measures Good management and control can prevent the generation of a significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include: • Design foundation works that could minimize the amount of excavated material to be generated. • Provide training to workers on the importance of site cleanliness and appropriate waste management procedures, including waste reduction, reuse and recycling; • Sort out demolition debris and excavated materials from demolition works to recover reusable/recyclable portions (i.e. soil, broken concrete, metal etc.); • Segregate and store different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; • Encourage the collection of aluminum cans by providing separate labelled bins to enable this waste to be segregated from other general refuse generated by the work force; • Proper storage and site practices to minimize the potential for damage or contamination of construction materials;	Construction	Contractor						Implemented; N/A for foundation and demolition items

				Imple	ementa	ation Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	O Dec	Legislation and Guidelines	Status and Remarks
	 Plan and stock construction materials carefully to minimize amount of waste to be generated and to avoid unnecessary generation of waste. 							
6b.5.1.7	Dredged Sediment – Application of Dumping Permit The project proponent should agree in advance with MFC of CEDD on the site allocation. The project proponent or contractor for the dredging works shall then apply for the site allocations of marine sediment disposal based on the prior agreement with MFC/CEDD. The project proponent or contractor should also be responsible for the application of all necessary permits from relevant authorities, including the dumping permit as required under DASO from EPD, for the disposal of dredged sediment prior to the commencement of the dredging works.	Seawall and Reclamation site / Construction Period	EPD and its contractor	✓	✓		DASO ETWB TCW 34/2002	Implemented, marine sediment samples have been collected.
6b.5.1.8	Dredged Sediment – Sediment Quality Report The project proponent or contractor will need to satisfy the appropriate authorities that the quality of the marine sediment to be dredged has been identified according to the requirements of ETWB TCW 34/2002. This should be completed well before the dredging works and would include at least the submission of a formal Sediment Quality Report under Tier I of ETWB TCW No. 34/2002 to DEP for approval. Subject to advice from DEP, it is possible that further marine SI in accordance with ETWB TCW 34/2002	Reclamation site /	EPD and its contractor	v			DASO ETWB TCW 34/2002	Undergoing

				Imple	menta	tion S	tages*		Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	might be necessary for the application of dumping permit under DASO. In such case, a sediment sampling and testing proposal shall be submitted to and approved by DEP before the additional marine SI works.								
6b.5.1.9	Dredged Sediment – Sediment Transportation The barge transporting the sediments to the designated disposal sites should be equipped with tight fitting seals to prevent leakage and should not be filled to a level that would cause overflow of materials or laden water during loading or transportation. In addition, monitoring of the barge loading shall be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels shall be equipped with automatic self- monitoring devices as specified by the DEP.	Reclamation site / Construction Period	EPD and its contractor		✓			DASO ETWB TCW 34/2002	N/A
6b.5.1.10	 <u>Construction and Demolition Materials</u> In order to minimize the impact resulting from collection and transportation of C&D materials for off-site disposal, the excavated material arising from site formation and foundation works should be reused on-site as backfilling material and for landscaping works as far as practicable. Other mitigation requirements are listed below: A Waste Management Plan (WMP), which becomes part of the Environmental Management Plan (EMP), should be prepared in accordance with ETWB TCW No.19/2005; 	Construction	Contractor		✓			ETWB TCW No. 19/2005	Implemented

				Imple	ementa	tion S	tages*		Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	 A recording system for the amount of wastes generated, recycled and disposed (including the disposal sites) should be adopted for easy tracking; and In order to monitor the disposal of C&D materials at public filling facilities and landfills and to control fly-tipping, a trip- 								
	ticket system should be adopted (refer to <i>ETWB TCW No. 31/2004</i>).								
6b.5.1.11 - 6b.5.1.12	,	& Construction	Contractor	×	V			ETWB TCW No. 19/2005	Implemented
	All surplus C&D materials arising from or in connection with construction works should become the property of the Contractor when it is removed unless otherwise stated. The Contractor would be responsible for devising a system to work for on-site sorting of C&D materials and promptly removing all sorted and process materials arising from the construction activities to minimize temporary								

				Imple	ementa	tion St	ages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	included in the EMP identifying the source of generation, estimated quantity, arrangement for on-site sorting, collection, temporary storage areas and frequency of collection by recycling Contractors or frequency of removal off-site.								
6b.5.1.13	<u>Chemical Wastes</u> Should chemical wastes be produced at the construction site, the Contractor would be required to register with EPD as a Chemical Waste Producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Good quality containers compatible with the chemical wastes should be used, and incompatible corrosive). The Contractor should employ a licensed collector to transport and dispose of the chemical wastes, to either the Chemical Waste Treatment Centre at Tsing Yi, or another licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.		Contractor		✓			Waste Disposal (Chemical Waste) (General) Regulation	Implemented
6b.5.1.14	General refuse should be stored in enclosed bins or compaction units separate from C&D materials. A licensed waste collector should be employed by the Contractor to remove general refuse from the site, separately from C&D materials. Preferably an enclosed and covered area should be provided to reduce the occurrence of 'wind blown' light material.		Contractor		•				Reminders provided to the Contractor

				Imple	ementa	ation Stage	s* Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	O De	c Legislation and Guidelines	Status and Remarks
6b.5.1.16 - 6b.5.1.33	 <u>Biogas Generation</u> The Contractor shall review the data and analysis results, and the data from further Site Investigation, if any. Subject to the review findings, the following gas protection measures may be considered if necessary: gas monitoring after reclamation; passive ventilation; gas impermeable membrane; ventilation with "at risk" rooms; protection of utilities or below ground services; precautions during construction works; precautions prior to entry of belowground services 	a	Designer and/or contractor	×	✓		EPD/TR8/97	N/A
6b.5.2.1	Good Site PracticesIt is recommended that the following good operational practices should be adopted to minimise waste management impacts:• Obtain the necessary waste disposal permits from the appropriate authorities, in accordance with the Waste Disposal Ordinance (Cap. 354) and Waste Disposal (Chemical	IWMF Site/During Operation Period	IWMF Operator			×	Waste Disposa Ordinance (Cap.354); Waste Disposa (Chemical Waste) (General) Regulation; ETWB TCW No 1/2004	

Keppel Seghers – Zhen Hua Joint Venture

				Imple	ementa	tion S	tages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	Ο	Dec	Legislation and Guidelines	Status and Remarks
	 Waste) (General) Regulation; Nomination of an approved person to be responsible for good site practice, arrangements for collection and effective disposal to an appropriate facility of all wastes generated at the site; Use of a waste haulier licensed to collect specific category of waste; A trip-ticket system should be included as one of the contractual requirements and implemented by the Environmental Team to monitor the disposal of solid wastes at landfills, and to control fly tipping. Reference should be made to ETWB TCW No. 31/2004. Training of site personnel in proper waste management and chemical waste handling procedures; Separation of chemical wastes for special handling and appropriate treatment at a licensed facility; Routine cleaning and maintenance programme for drainage systems, sumps and oil interceptors; Provision of sufficient waste disposal points and regular collection for disposal; Adoption of appropriate measures to minimize windblown litter and dust during transportation of waste, such as covering trucks or transporting wastes in enclosed containers; and Implementation of a recording system for the amount of wastes generated, and disposed of (including recycled 								

				Imple	ementa	tion S	tages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	the disposal sites).								
6b.5.2.2	Waste Reduction Measures Good management and control can prevent the generation of significant amounts of waste. It is recommended that the following good operational practices should be adopted to ensure waste reduction:	IWMF Site/ During Operation Period	IWMF Operator			×			Implemented
	 Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; Encourage collection of aluminum cans, plastic bottles and packaging material (e.g. carton boxes) and office paper by individual collectors. Separate labelled bins should be provided to help segregate this waste from other general refuse generated by the work force; and Any unused chemicals or those with remaining functional capacity should be reused as far as practicable. 								
6b.5.2.3	 <u>Storage, Handling, Treatment, Collection</u> <u>and Disposal of Incineration By-Products</u> The following measures are recommended for the storage, handling and collection of the incineration by-products: Ash should be stored in storage silos; Ash should be handled and conveyed in closed systems fully 	IWMF Site/ During Operation Period	IWMF Operator			✓	F	ncineration Residue Pollution Control Limits	N/A

Keppel Seghers – Zhen Hua Joint Venture

				Imple	ementat	tion S	tages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	segregatedfrom the ambient environment;								
	 Ash should be wetted with water to control fugitive dust, where necessary; 								
	 All fly ash and APC residues should be treated, e.g. by cement solidification or chemical stabilization, for compliance with the proposed Incineration Residue Pollution Control Limits and leachability criteria prior to disposal; 								
	• The ash should be transported in covered trucks or containers to the designated landfill site.								
	The Contractor should provide EPD with chemical analysis results of the bottom ash, and treated fly ash and APC residues to confirm that the ash/residue can comply with the proposed Incineration Residue Pollution Control Limits before disposal.								
6b.6.3.1	 Fuel Oil Tank Construction and Test The fuel tank to be installed should be of specified durability. Double skin tanks are preferred. Underground fuel storage tank should be placed within a concrete pit. The concrete pit shall be accessible 	Fuel Oil Storage Tank/ During Design, Construction and Operation Periods	IWMF Contractor	1	×	~			N/A

Keppel Seghers – Zhen Hua Joint Venture

				Imple	ementa	tion S	tages*	Relevant	Implementation Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
	to allow regular tank integrity tests to be carried out at regular intervals.								
	 Tank integrity tests should be conducted by an independent qualified surveyor or structural engineer. 								
	 Any potential problems identified in the test should be rectified as soon as possible. 								
6b.6.3.1	 Fuel Oil Pipeline Construction and Test Installation of aboveground fuel oil pipelines is preferable; if underground pipelines are unavoidable, concrete lined trenches should be constructed to contain the pipelines. Double skin pipelines are preferred. Distance between the fuel oil refuelling points and the fuel oil storage tank shall be minimized. Integrity tests for the pipelines should be conducted by an independent qualified surveyor or structural engineer at regular intervals. Any potential problems identified in the test should be rectified as soon as possible. 	Fuel Oil Pipelines/ During Design, Construction and Operation Periods	IWMF Contractor		✓				N/A
6b.6.3.1	Fuel Oil Leakage Detection Installation of leak detection device at storage tank and pipelines.	Fuel Oil Storage Tank and Pipelines/	IWMF Contractor	~	~	√			N/A

				Imple	menta	tion S	tages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	 Installation and use of pressure gauges (e.g. at the two ends of a filling line) in fuel filling, which allows unexpected pressure drop or difference and sign of leakage to be detected. 								
6b.6.3.1	 Fuel Oil Storage Tank Refuelling Storage tank refuelling (from road tanker) should only be conducted by authorized staff of the oil company using the company's standard procedures. 	During Operation	IWMF Operator			✓			N/A
6b.6.3.1	Fuel Oil Spillage ResponseAn Oil Spill Response Plan should be prepared by the operator to document the appropriate response procedures for oil spillage incidents in detail. General procedures to be taken in case of fuel oil spillage are presented below.• Training- Training on oil spill response actions should be given to relevant staff. The training shall cover the followings:		IWMF Operator						N/A
	 >Tools & resources to combat oil spillage and fire, e.g. locations of oil spill handling equipment and fire fighting equipment; >General methods to deal with oil spillage and fire incidents; >Procedures for emergency drills in the event of oil spills and fire; and 								

				Imple	menta	tion S	tages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	Ο	Dec	Legislation and Guidelines	Status and Remarks
	➢Regular drills shall be carried out.								
	Communication								
	-Establish communication channel with the Fire Services Department (FSD) and EPD to report any oil spillage incident so that necessary assistance from relevant department can be quickly sought.								
	Response Procedures								
	-Any fuel oil spillage within the IWMF site should be immediately reported to the Plant Manager with necessary details including location, source, possible cause and extent of the spillage.								
	 Plant Manager should immediately attend to the spillage and initiate any appropriate action to confine and clean up the spillage. The response procedures shall include the following: >Identify and isolate the source of spillage as soon as possible. >Contain the oil spillage and avoid infiltration into soil/ groundwater and discharge to storm water channels. >Remove the oil spillage. 								
	≻Clean up the contaminated area.								
	If the oil spillage occurs during storage tank refuelling, the refueling operation should immediately be								

				Imple	menta	tion S	tages*		Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	stopped. >Recovered contaminated fuel oil and the associated material to remove the spilled oil should be considered as chemical waste. The handling and disposal procedures for chemical wastes are discussed in the following paragraphs.								
6b.6.3.2	 <u>Chemicals and Chemical Wastes Handling &</u> <u>Storage</u> Chemicals and chemical wastes should only be stored in suitable containers in purpose-built areas. The storage of chemical wastes should comply with the requirements of the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. The storage areas for chemicals and chemical wastes shall have an impermeable floor or surface. The 	Chemicals and Chemical Wastes Storage Area / During Operation Period	IWMF Operator			×			N/A
	 impermeable floor/ surface shall possess the following properties: Not liable to chemically react with the materials and their containers to be stored. Able to withstand normal loading and physical damage 								
	 caused by container handling The integrity and condition of the impermeable floor or surface should 								

Keppel Seghers – Zhen Hua Joint Venture

				Imple	ementat	ion S	tages*		Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	be inspected at regular intervals to ensure that it is satisfactorily maintained								
	For liquid chemicals and chemical wastes storage, the storage area should be bunded to contain at least 110% of the storage capacity of the largest containers or 20% of the total quantity of the chemicals/chemical wastes stored, whichever is the greater.								
	Storage containers shall be checked at regular intervals for their structural integrity and to ensure that the caps or fill points are tightly closed.								
	 Chemical handling shall be conducted by trained workers under supervision. 								
6b.6.3.2	Chemicals and Chemical Wastes Spillage Response A Chemicals and/ or Chemical Wastes Spillage Response Plan shall be prepared by the operator to document in detail the appropriate response procedures for chemicals or chemical wastes spillage incidents. General procedures to be undertaken in case of chemicals/ chemical waste spillages are presented below. • Training	IWMF Site/ During Operation Period	IWMF Operator			V			N/A
	- Training on spill response actions								

				Imple	ementa	tion S	tages*	Relevant Legislation and Guidelines	Implementation Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec		
	should be given to relevant staff. The training shall cover the followings:								
	Tools & resources to handle spillage, e.g. locations of spill handling equipment;								
	 General methods to deal with spillage; and 								
	Procedures for emergency drills in the event of spills.								
	Communication								
	 Establish communication channel with FSD and EPD to report the spillage incident so that necessary assistance from relevant department can be quickly sought. 								
	Response Procedures								
	 Any spillage within the IWMF site should be reported to the Plant Manager. 								
	 Plant Manager shall attend to the spillage and initiate any appropriate actions needed to confine and clean up the spillage. The response procedures shall include the followings: 								
	 Identify and isolate the source of spillage as soon as possible; 								
	Contain the spillage and avoid infiltration into soil/								

Keppel Seghers – Zhen Hua Joint Venture

				Imple	ementa	tion S	tages*	Relevant	Implementation Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
	groundwater and discharge to storm water channels (in case the spillage occurs at locations out of the designated storage areas);								
	Remove the spillage; the removal method/ procedures documented in the Material Safety Data Sheet (MSDS) of the chemicals spilled should be observed;								
	Clean up the contaminated area (in case the spillage								
	The waste arising from the cleanup operation should be considered as chemical wastes.								
8b.6.3.3	 <u>Preventive Measures for Incineration By-products Handling</u> The recommended measures listed below can minimize the potential contamination to the surrounding environment due to the incineration by-products: Ash should be stored in storage silos; 	Storage, Handling & Collection of Incineration Ash at IWMF/ During Operation Period	IWMF Operator			×			N/A
	 Ash should be handled and conveyed in closed systems fully 								
	Ash should be wetted with water to control fugitive dust, where necessary;								
	All fly ash and APC residues should be treated, e.g. by cement solidification or chemical								

				Imple	menta	tion S	tages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	stabilization, for compliance with the proposed Incineration Residue Pollution Control Limits and leachability criteria prior to disposal;								
	• The ash should be transported in covered trucks or containers to the designated landfill site.								
6b.6.3.4 - 6b.6.3.6	Incident Record After any spillage, an incident report should be prepared by the Plant Manager. The incident report should contain details of the incident including the cause of the incident, the material spilled and estimated spillage amount, and also the response actions undertaken. The incident record should be kept carefully and able to be retrieved when necessary. The incident report should provide sufficient details for the evaluation of any environmental impacts due to the spillage and assessment of the effectiveness of measures taken.	IWMF Site/ During Operation Period	IWMF Operator					Guidance Manual for Use of Risk- based Remediation Goals for Contaminated Land Management and the Guidance Note for Contaminated Land and Remediation.	N/A
	In case any spillage or accidents results in significant land contamination, EPD should be informed immediately and the IWMF operator should be responsible for the cleanup of the affected area. The responses procedures described in Section 6b.6.3.1 and Section 6b.6.3.2 of EIA report should be followed accordingly together with the land contamination assessment and remediation guidelines								

Keppel Seghers – Zhen Hua Joint Venture

	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Imple	mentat	ion S	tages*		Implementation Status and Remarks
EIA Ref				Des	С	0	Dec	Legislation and Guidelines	
	stipulated in the Guidance Manual for Use of Risk-based Remediation Goals for								
	Contaminated Land Management and the Guidance Note for Contaminated Land and								
	Remediation.								

* Des - Design, C - Construction, O – Operation, and Dec - Decommissioning

				Imple	ement	ation \$	Stages*	* Relevant	Implementation Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
7b.8.2.1	 Measures to avoid direct loss of intertidal habitat The site boundary has been proposed to avoid direct contact with the intertidal natural rocky shore of Shek Kwu Chau. It avoids direct loss of intertidal communities and the existing natural rocky shore habitat, where Reef Egret and White-bellied Sea Eagle have been recorded within and in the vicinity of this habitat. 	IWMF site	Design team	×				EIAO-TM	N/A
7b.8.2.2	 Measures to minimise loss of coastal subtidal habitat Extensive coral colonies were recorded at the coastal hard bottom habitat at Shek Kwu Chau. To avoid and minimise the extensive direct impact on the coral colonies, the proposed reclamation area has been moved further offshore to minimise loss of subtial habitat near shore. 	IWMF site	Design team	~				EIAO-TM	N/A
7b.8.2.3	 Zero Discharge Scheme The design scheme of the Project has avoided discharge of wastewater into the marine environment. mechanical treatment plant, or for onsite washdown and landscape. 	IWMF site	Design team, IWMF operator	•		√		WPCO	N/A
7b.8.2.4	 Measures to avoid loss of plant species of conservation importance Landing portal construction works would not cause direct lost to the recorded individual of protected plant species, 	Cheung Sha landing portal	Design team, Contractor	✓	~		~	EIAO-TM	N/A

Table B.5 Implementation Schedule for Ecological Quality Measures for the IWMF at the artificial island near SKC

Integrated Waste Management Facilities, Phase 1

			Implementation Agent		Imple	ement	ation	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing			Des C O	0	Dec	Legislation and Guidelines	Status and Remarks	
	 Aquilaria sinensis, at the coastal shrubland habitat at Cheung Sha. As a precautionary measure, the plant should be tagged with eye-catching tape and fenced off prior to works, in order to avoid any damage by workers. 									
7b.8.3.1- 7b.8.3.15	 Measures to minimise water quality impact Measures for water quality as recommended in Section 5b of the EIA Report should be implemented. 	Work site		am, // MF	~	V	~	✓ 	EIAO-TM; ProPECC PN 1/94; WPCO	Implemented
7b.8.3.16 - 7b.8.3.30	 Measures to minimise disturbance on Finless Porpoise Minimisation of Habitat Loss for Finless Porpoise Substantial revision has been made on the layout plan and form of the breakwater, in order to minimise the potential loss of important habitat for Finless Porpoise. The revision has greatly reduced the size of the embayment area, as well as the Project footprint. As a result, the size of habitat loss for Finless Porpoise has reduced from the original ~50 ha, down to ~31 ha. Avoidance of peak season for finless porpoise occurrence To minimise potential acoustic disturbance from construction activities 	IWMF site,		am, WMF	✓		✓		EIAO-TM, Supporting Document for Application for Variation of the Environmental Permit (EP- 429/2012)	Implemented for avoidance of construction works that may produce underwater acoustic disturbance, Vessel Travel Route implementation, training of staff, MMEZ and marine mammal watching works during deployment of silt curtain; N/A for others

Integrated Waste Management Facilities	s, Phase 1
--	------------

				Imple	ement	tation	Stages*	* Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	on Finless Porpoise, construction works that may produce underwater acoustic disturbance should be scheduled outside the months with peak Finless Porpoise occurrence (December to May), including:								
	 sheet piling works for construction of cofferdam surrounding the reclamation area (Phase 1); sheet piling works for construction of the shorter section of breakwater (Phase 1); sheet piling works for construction of the remaining section of breakwater (Phase 3); bored piling works for berth area (Phase 3); and submarine cable installation works between Shek Kwu Chau and Cheung 								
	Sha. Such works should be restricted within June to November. This approach would not only avoid the peak season for Finless Porpoise occurrence, the magnitude of impacts arise from acoustic disturbance would also be minimised.								
	Submarine cable installation works								
	Since the DCM ground treatment and the installation of precast seawalls and								

Integrated Waste Management Facilities, Phase 1

				Imple	ement	tation	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	breakwaters should generate no underwater acoustic disturbance to Finless Porpoise, no specific mitigation measures are required.								
	Opt for quieter construction methods and plants								
	 Considering the sensitivity of marine mammals to underwater acoustic disturbance, instead of the previously proposed conventional breakwater and reclamation peripheral structure, which requires noisy piling works, the current circular cells structure for breakwater and reclamation peripheral structure is proposed. A quieter sheet piling method using vibratory hammer or hydraulic impact hammer, should be adopted for the installation of circular cells for cellular cofferdam and northern breakwater during Phase 1, and southern breakwater Phase 3; 								
	 Non-percussive bore piling method would be adopted for the installation of tubular piles for the berth construction during Phase 3. 								
	 Monitored exclusion zones During the installation/re- installation/relocation process of floating type silt curtains, in order to avoid the accidental entrance and entrapment of marine 								

Integrated Waste Management Facilities, Phase 1

				Imple	ement	tation	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	mammals within the silt curtains, a monitored exclusion zone of 250 m radius from silt curtain should be implemented. The exclusion zone should be closely monitored by an experienced marine mammal observer at least 30 minutes before the start of installation/re- installation/relocation process. If a marine mammal is noted within the exclusion								
	zone, all marine works should stop immediately and remain idle for 30 minutes, or until the exclusion zone is free from marine mammals.								
	• The experienced marine mammal observer should be well trained to detect marine mammals. Binoculars should be used to search the exclusion zone from an elevated platform with unobstructed visibility. The observer should also be independent from the project proponent and has the power to call-off construction activities.								
	 In addition, as marine mammals cannot be effectively monitored within the proposed monitored exclusion zone at night, or during adverse weather conditions (i.e. Beaufort 5 or above, visibility of 300 meters or below), marine works should be avoided under weather conditions with low visibility. 								

Integrated Waste Management Facilities, Phase 1

				Imple	ementa	ation	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
		Timing		Des	C	0	Dec	and	
	Adoption of regular travel route								

				Imple	ement	ation	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	ο	Dec	Legislation and Guidelines	Status and Remarks
	 During construction and operation, captains of all vessels should adopt regular travel route, in order to minimize the chance of vessel collision with marine mammals, which may otherwise result in damage to health or mortality. The regular travel route should avoid areas with high sighting density of Finless Porpoise as much as possible. 								
	Vessel speed limit								
	• The frequent vessel traffic in the vicinity of works area may increase the chance of mammal mammals being killed or seriously injured by vessel collision. A speed limit of ten knots should be strictly enforced within areas with high density of Finless Porpoise.								
	 Passive acoustic monitoring and land-based theodolite monitoring surveys should be adopted to verify the predicted impacts and effectiveness of the proposed mitigation measures. 								
	Training of Staff								
	 Staff, including captains of vessels, should be aware of the guidelines for safe vessel operations in the presence of cetaceans during construction and 								

Integrated Waste Management Facilities, Phase 1

				Impl	ement	ation \$	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	operation phases. Adequate trainings should be provided								
7b.8.3.31 -	Measures to minimise impact on corals	IWMF site	Design team, contractor, IWMF	~	~	~	~	EIAO-TM	Implemented, tagged coral found missing
7b.8.3.34	Coral translocation		operator						after hitting by typhoons
	 Coral communities within and in proximity to the proposed dredging sites would be disturbed by the Project due to the dredging operations. In order to minimise direct loss of coral communities, translocation of corals that are attached to movable rocks with diameter less than 50 cm are recommended. In order to avoid disturbance to corals during the spawning period, the spawning season of corals (June to August) should be avoided; and that translocation should be carried out during the winter season (November- March). 								Re-tagging of 10 coral colonies at indirect impact site and control site were conducted in November and December 2018 respectively.
	 The REA survey results suggest that the 198 directly affected coral colonies were attached to movable rocks (less than 50 cm in diameter). It is technically feasible to translocate them to avoid direct loss. Prior to coral translocation, a more detailed baseline survey, including event / action plan for coral monitoring should be submitted upon approval of this Project, prior to commencement of 								

				Imp	lement	ation	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	C	0	Dec	Legislation and Guidelines	Status and Remarks
	construction works. Advice from relevant governmental departments (i.e. AFCD) and professionals would be sought after, in order to identify a desirable location for the relocation of coral communities. Post- translocation monitoring on the translocated corals should also be considered.								
	Coral monitoring programme								
	• A coral monitoring programme is recommended to assess any adverse and unacceptable impacts to the coral communities at the coasts of Shek Kwu Chau during construction of the Project.								
	Phasing of Works								
	• To minimize environmental impacts, the proposed phasing of construction works has been carefully designed to reduce the amount of concurrent works, hence minimize SS elevation and the associated impacts on corals.								
7b.8.3.35 - 7b.8.3.41	Specific measures to minimize disturbance on breeding White-bellied Sea Eagle	IWMF site, marine traffic route	Design Team, Contractor, IWMF operator	√	~	~	~	EIAO-TM	Implemented
	Avoidance of noisy works during the breeding season of White-bellied Sea Eagle								
	To minimize potential noise disturbance								

Integrated Waste Management Facilities, Phase 1

				Imple	ement	tation	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	from construction activities on WBSE, noisy construction works should be scheduled outside their breeding season (December to May) to minimise potential degradation in breeding ground quality and breeding activities, including:								
	 sheet piling works for construction of cofferdam surrounding the reclamation area (Phase 1); sheet piling works for construction of the shorter section of breakwater (Phase 1); sheet piling works for construction of the remaining section of breakwater (Phase 3); and bored piling works for berth area (Phase 3). 								
	 Opt for quieter construction methods and plants To minimise potential construction noise disturbance on WBSE, quieter construction methods and plants should be adopted. The recommended noise mitigation measures in the Noise chapter (Section 4b.8 of the EIA Report) should be implemented to minimise potential noise disturbance to acceptable levels. 								
	Restriction on vessel access near the nest of White-bellied Sea Eagle								

				Impl	ement	ation	Stages*	* Relevant	Implementation Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	
	 During construction and operation, in order to minimize disturbance on the existing WBSE nest, a pre-defined practical route to restrict vessel access near the nest should be adopted to keep vessels and boats as far away from the nest as possible. White-bellied Sea Eagle monitoring programme A WBSE monitoring programme is recommended to assess any adverse and unacceptable impacts to the breeding activities of WBSE during construction and operation of the Project. Monitoring surveys for WBSE would include preconstruction phase (twice per month for duration of three months during their breeding season -between December and May, immediately before the commencement of works), construction phase, and operation phase (two years after the completion of construction works). Surveys should be conducted twice per month during their breeding season (June to November). More details on monitoring for WBSE are presented in the EM&A Manual. 								

Integrated Waste Management Facilities, Phase 1

				Imple	ement	tation	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	 Education of staff Staff, including captains of all vessels during construction and operation phases, should be aware of the ecological importance of WBSE. Awareness should be raised among staff to minimise any intentional or unintentional disturbance to the nest. <i>Minimisation of Glare Disturbance</i> To minimise glare disturbance on WBSE, which may cause disorientation of birds by interfering with their magnetic compass, and disruption in behavioural patterns such as reproduction, fat storage and foraging pattern, any unnecessary outdoor lighting should be avoided, and in-ward and down-ward pointing of lights should be adopted. 								
	 <u>Construction of Seawall/Breakwaters</u> To widen the open channel between the Artificial Island and Shek Kwu Chau. To design the precast concrete seawall with environmental friendly features. 	IWMF site	Design team, contractor, IWMF operator		•			Supporting Document for Application for Variation of Environmental Permit (EP- 429/2012)	N/A
7b.8.3.42	 Opt for Quieter Construction Methods and Plants Quieter construction methods and plants 	Work site	Design team, contractor, IWMF operator	· ·	~	✓	√	EIAO-TM	Implemented

Integrated Waste Management Facilities, Phase 1

			Implementation Agent		lement	tation	Stages*	Relevant	Implementation Status and Remarks
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing			С	0	Dec	Legislation and Guidelines	
	should be used to minimise disturbance to the nearby terrestrial habitat and the associated wildlife.								
7b.8.3.43	 <u>Measures to minimize impacts from artificial</u> <u>lighting</u> Unnecessary lighting should be avoided, and shielding of lights should be provided to minimize disturbance from light pollution on fauna groups. 	IWMF site	Design team, contractor, IWMF operator			✓		EIAO-TM	Implemented
7b.8.3.44 - 7b.8.3.45	 Measures to minimize accidental spillage Regular maintenance of vessels, vehicles and equipment that may cause leakage and spillage should only be undertaken within pre-designated areas, which are appropriately equipped to control the associated discharges. Oils, fuels and chemicals should be contained in suitable containers, and only be used and stored in designated areas which have pollution prevention facilities. All fuel tanks and storage areas should be sited on sealed areas in order to prevent spillage of fuels and solvents to the nearby watercourses. All waste oils and fuels should be collected in designated tanks prior to disposal. 	Work site	Contractor, IWMF operator		×	×	~	EIAO-TM	Implemented
7b.8.3.46	Measures to minimise sewage effluent • Temporary sanitary facilities, such as	Work site	Contractor		~			EIAO-TM	N/A

Integrated Waste Management Facilities, Phase 1

				Imple	ement	ation \$	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	portable chemical toilets, should be employed on-site where necessary to handle sewage from the workforce.								
7b.8.3.47	 Measures to minimise drainage and construction runoff Potential ecological impacts resulted from potential degradation of water quality due to unmitigated surface runoff could be minimised via the detailed mitigation measures in Section 5b.8 of the EIA Report. The following presents some of the mitigation measures: On-site drainage system with implemented sedimentation control facilities. Channels, earth bunds or sand bag barriers should be provided on site to direct storm water to silt removal facilities. Provision of embankment at boundaries of earthworks for flood protection. Water pumped out from foundation piles must be discharged into silt removal facilities. During rainstorms, exposed slope/soil surfaces should be covered by tarpaulin or other means, as far as practicable. Exposed soil surface should be minimized to reduce siltation and runoff. Earthwork final surfaces should be 	Work site	Contractor					EIAO-TM	N/A

Integrated Waste Management Facilities, Phase 1

		Lesster /		Impl	ementa	ation S	Stages*	s* Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	 well compacted. Subsequent permanent surface protection should be immediately performed. Open stockpiles of construction materials, and construction wastes on-site should be covered with tarpaulin or similar fabric during rainstorms. 								
7b.8.3.48	 Measures to minimise impacts from general construction activities To avoid the entering of construction solid waste into the nearby habitats, construction solid waste should be collected, handled and disposed of properly to avoid entering to the nearby habitats. It is recommended to clean the construction sites on a regular basis. 	Work site	Contractor		~			EIAO-TM	Implemented
7b.8.3.49	Pest Control Good waste management practices should be adopted at the IWMF in order to minimise the risk of introduction of pest to the island: - Transportation of wastes in enclosed containers - Waste storage area should be well maintained and cleaned - Waste should only be disposed of at designated areas - Timely removal of the newly arrived waste - Removal of items that are capable of	IWMF site	IWMF operator						N/A

Integrated Waste Management Facilities, Phase 1

				Imple	ment	ation	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	retaining water Rapid clean up of any waste spillages Maintenance of a tidy and clean site environment Regular application of pest control Education of staff the importance of site cleanliness 								
7b.8.3.50	Control of Marine Habitat Quality during Operation Phase	IWMF site	IWMF operator			~		EIAO-TM; WPCO	N/A
	 Depending on the seabed condition of the approach channel for marine vessels during operation phase of the IWMF, maintenance dredging may be required to ensure safe access. In order to avoid degradation in water quality due to elevation in SS and dispersion of sediment plume due to dredging works, it is recommended that any future maintenance dredging works should not be carried out within 100 m from the shore, similar to that of the dredging for anti-scouring protection layer during construction phase. All maintenance dredging works should be carried out with the implementation of silt curtain to control the dispersion of SS. The production rate should comply with the permit dredging rate and number of grab per hour. 								
7b.8.4.1	Compensation of loss of important habitat of Finless Porpoise	Waters between Shek	Project Proponent	~		~		EIAO-TM	N/A
7b.8.4.8		Kwu Chau and Soko Islands							

Integrated Waste Management Facilities, Phase 1

				Imple	ement	tation	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	Designation of Marine Park								
	 The Project Proponent has made a firm commitment to seek to designate a marine park of approximately 700 ha in the waters between Soko Islands and Shek Kwu Chau, in accordance with the statutory process stipulated in the Marine Parks Ordinance, as a compensation measure for the habitat loss arising from the construction of the IWMF at the artificial island near SKC. The Project Proponent shall seek to complete the designation by 2018 to tie in with the operation of the IWMF at the artificial island near SKC. 								
	 A further study should be carried out to review relevant previous studies and collate available information on the ecological characters of the proposed area for marine park designation; and review available survey data for Finless Porpoise, water quality, fisheries, marine traffic and planned development projects in the vicinity. Based on the findings, ecological profiles of the proposed area for marine park designation should be established, and the extent and location of the proposed marine park be determined. The adequacy of enhancement measures should also be reviewed. 								

Integrated Waste Management Facilities, Phase 1

EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Stages*				Relevant	Implementation
				Des	С	ο	Dec	Legislation and Guidelines	Status and Remarks
	 In addition, a management plan for the proposed marine park should be proposed, covering information on the responsible departments for operation and management (O&M) of the marine park, as well as the O&M duties of each of the departments involved. Consultation with relevant government departments and stakeholders should be conducted under the study. The study should be submitted to Director of Environmental Protection (DEP) for approval before the commencement of construction works. The Project Proponent should provide assistance to AFCD during the process of the marine park designation. 								
7b.8.5.1 - 7b.8.5.4	 <u>Additional Enhancement or</u> <u>Precautionary Measures</u> Deployment of Artificial Reefs Deployment of artificial reefs (ARs) is an enhancement measure for the marine habitats. ARs are proposed to be deployed within the proposed marine park under this Project. The exact location, dimension and type of ARs to be deployed are to be further investigated along with the further study of the proposed marine park under this Project. The proposed ARs would be deployed at the same time as the complete 	Within the proposed marine park under this study	Project Proponent	~		×		EIAO-TM	N/A

Contract No. EP/SP/66/12

Integrated Waste Management Facilities, Phase 1

Keppel Seghers – Zhen Hua Joint Venture

				Imple	ement	ation	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
	designation of marine park.								
	Release of Fish Fry at Artificial Reefs and Marine Park								
	 Release of fish fry at the proposed ARs, as well as the proposed marine park under this study, should enhance the fish resources in the nearby waters, and subsequently food sources for Finless Porpoise. The proposed ARs with various micro-habitats would have the potential to provide shelter and nursery ground for the released fish fry. The frequency and quantity of fry to be released should be agreed by AFCD. 								

* Des - Design, C - Construction, O – Operation, and Dec - Decommissioning

					Imple	ement	ation	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implemen Agen		Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
8b.8.1.2	 Measure to minimize loss of and disturbance on fisheries resources Alteration to the phasing of works, construction method, and layout plan of the IWMF at the artificial island near SKC has been made. The total fishing ground to be permanently lost due to the project has been significantly reduced from ~50 ha to ~31 ha. By adopting the current circular cells instead of the conventional seawall construction method, SS elevation would be greatly reduced, minimizing adverse impact on the health 	IWMF site	Design contractor	team,		V		×	EIAO-TM	N/A
8b.8.1.3	 of fisheries resources. <u>Measure to minimize impingement and</u> <u>entrainment</u> Provision of a screen at the water intake point for desalination plant would be essential to minimize the risk of impingement and entrainment of fisheries resources (including fish, larvae and egg) through the intake point. 	IWMF site	Design contractor, operator	team, IWMF	~	~	~		EIAO-TM	N/A

Table B.6 Implementation Schedule for Fisheries Measures for the IWMF at the artificial island near SKC

Keppel Seghers – Zhen Hua Joint Venture

						Imple	ement	ation	Stages*	Relevant	Implementation
EIA Ref	Environmental Protection Measures / Mitigation Measures	Locati Timi		Implemer Agei		Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
8b.8.1.4- 8b.8.1.6	 Measures to control water quality No wastewater effluent, anti-fouling agent, heavy metals and other contaminants would be released during operation phase of the Project. Mitigation measures recommended in the water quality impact assessment during construction and operation would serve to protect fisheries resources from indirect impacts resulted from the Project 		site, WMF	Design contractor, operator	team, IWMF	~		✓	✓	EIAO-TM	Implemented
8b.8.1.7 - 8b.8.1.8	 Additional Enhancement / Precautionary Additional Enhancement / Precautionary Measures Artificial Reefs (ARs) are proposed to be deployed within the proposed marine park under this Project as an enhancement measure for the marine habitats. This enhancement feature would bring positive impacts to the previously identified important spawning and nursery ground for fisheries resources. Release of Fish Fry at Artificial Reefs Release of fish fry has been proposed under this Project. The proposed deployment of ARs within the proposed marine park would provide shelter and nursery ground for the released fish fry. The frequency and quantity of fry to be released should be agreed by AFCD. 	Within proposed marine in the between Islands Shek Chau	park waters	Project Prop	ponent			×		EIAO-TM	N/A

* Des - Design, C - Construction, O – Operation, and Dec - Decommissioning

	Environmental Protection		Implementation	Imple	ement	ation	Stages*	Relevant	Implementation
EIA Ref	Measures / Mitigation Measures	Location / Timing	Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
S10b.10 MLVC- 01	Grass-hydroseeded bare soil surface and stock pile area	Work site / During construction phase	Contractor		~				N/A
S10b.10 MLVC-02	 Landscape Design 1) Early planting using fast grow trees and tall shrubs at strategic locations within site as buffer to block view corridors to the site from the VSRs, and to locally screen haul roads, excavation works and site preparation works. 	1	Contractor	~	~				N/A
	2) Use of tree species of dense tree crown to serve as visual barrier.								
	3) Hard and soft landscape treatment (e.g. trees and shrubs) of open areas within development to provide a background for the outdoor containers from open view, shade and shelter, and a green appearance from surrounding viewpoints.								
	 Planting strip along the periphery of the project site. 								
	5) Selected tree species suitable for the coastal condition.								

Table B.7 Implementation Schedule for Landscape and Visual Measures for the IWMF at the artificial island near SKC

	Environmental Protection		Implementation	Imple	ment	ation	Stages*	Relevant	Implementation
EIA Ref	Measures / Mitigation Measures	Location / Timing	Agent	Des	С	ο	Dec	Legislation and Guidelines	Status and Remarks
S10b.10 MLVC-03	 <u>Adoption of Natural Features of the Existing</u> <u>Shoreline</u> 1) Use of boulders in different sizes and with the similar textures of the existing rocky shores for the construction of breakwater and artificial shoreline in order to blend into the existing natural shoreline. 	Work site / During construction phase	Contractor		~				N/A
	2) Use of cellular cofferdam together with the natural boulders to form a curvature shoreline for the reclamation area to echo with the natural shoreline of SKC.								
S10b.10 MLVC-04	 <u>Greening Design (Rooftop & Vertical Greening)</u> 1) Implementation of rooftop and vertical greening (vertical building envelope) along the periphery of each building block to increase the amenity value of the work, moderate temperature extremes and enhance building energy performance. The greening appearance of the building shall enhance its visual harmony with the natural surroundings as well as reduce the apparent visual mass of the structure. 	Work site / During design & construction phases	Contractor		~				N/A
	 Sufficient space between concrete enclosure and stack to minimize heat transfer. 								
	3) Introduction of landscape decks at the stack to further enhance the overall natural and green concept unique for this site.								

	Environmental Protection		Implementation	Imple	ement	ation	Stages*	Relevant	Implementation
EIA Ref	Measures / Mitigation Measures	Location / Timing	Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
S10b.10 MVC-01	 <u>Visual Mitigation and Aesthetic Design</u> 1) Use of natural materials with recessive color to minimize the bulkiness of the building. 2) Adoption of innovative aesthetic design to the chimney to minimize or visually mitigate the massing of the chimney so as to reduce its visual impact to the surroundings. 3) Color of the chimney in a gradual changing manner to match with the 	Structures in IWMF / During design & constructio n phases	Contractor	×	~			Guidennes	N/A
	 4) Provision of observation deck for public enjoyment at the top of the chimney to diminish the feeling of chimney. 5) Provision of sky gardens between the two 								
	stacks to allow additional greening for enhancing the aesthetic quality. Maintenance access (elevator and staircase) from the ground floor to the sky gardens will be provided to allow maintenance of the sky gardens.								
	 Integration of the visitor's walkway with different material façade design of incinerator plant to enhance the aesthetic quality. 								
S10b.10 MVC-02	Control of the security floodlight for construction areas at night to avoid excessive glare to the surrounding receiver.	Work site / During construction phase	Contractor		✓				Implemented

	Environmental Protection		Implementation	Imple	ement	ation	Stages*	Relevant	Implementation
EIA Ref	Measures / Mitigation Measures	Location / Timing	Agent	Des	С	0	Dec	Legislation and Guidelines	Status and Remarks
S10b.10 MVC-03	Optimization of the construction sequence and construction programme to minimize the duration of impact.	Work site / During design & construction phases	Contractor	•	✓				Implemented
S10b.10 MVC-04	Storage of the backfilling materials for site formation & construction materials / wastes on site at a maximum height of 2m, covered with an impermeable material of visually un-obtrusive material (in earth tone).	Work site / During construction phase	Contractor		✓				N/A
S10b.10 MVC-05	Reduction of the number of construction traffic at the site to practical minimum.	Work site / During construction phase	Contractor		✓				Implemented
S10b.10 MLVO-01	<u>Planting Maintenance</u> Provision of proper planting maintenance and replacement of defective plant species on the new planting areas to enhance aesthetic and landscape quality.	Project site / During Operation phase	Contractor			√			N/A
S10b.10 MVO-01	Environmental Education Centre Development of an Environmental Education Center, in which regular exhibitions and lectures to promote environmental awareness and waste reduction concept would be provided, as a part of the IWMF for the general public to alleviate negative public perceptions of the development.	Project site / During Operation phase	Contractor			✓			N/A
S10b.10 MVO-02	<u>Control of Light</u> Control the numbers of lights and their intensity to a level that is good enough to meet the safety requirements at night but not excessive.	Project site / During Operation phase	Contractor			•			N/A

Keppel Seghers – Zhen Hua Joint Venture

EIA Ref	Environmental Protection	Location /	Implementation	Imple	ementa	tion	Stages*	Relevant Legislation	Implementation
	Measures / Mitigation Measures	Timing	Agent	Des	С	0	Dec	and Guidelines	Status and Remarks
S10b.10 MVO-03	<u>Control of Operation Time</u> Minimization of the frequency of waste transportation to practical minimum (e.g. limit the reception of MSW from 8 am to 8 pm)	Project site / During Operation phase	Contractor			✓			N/A

* Des - Design, C - Construction, O – Operation, and Dec - Decommissioning

Appendix C Impact Monitoring Schedule of the Reporting Month

			Impact Monitoring Schedule for IWMF			
			Mar-19			
Sun	Mon	Tue	Wed	Thu	Fri	Sat
					1 Impact Water Quality monitoring for 8, 82, 83, 84, 91, C2, C2, F3, M1, CR1 & CR2 Table Prod. Ebb Tidle: 08, 82 - 10:09 Flood Tode: 10:09 - 17:31 <u>Monitoring Time</u> • 5 Mid-ebb: 08:46 - 10:04 Mid-flood: 12:15 - 15:45 Ecology monitoring for Land-based Theodolite Tracking	2 Impact @ Intensive DCM monitoring for UC1, UC2, 11, U, 13, 14, 15, 16, 17, 18, 19 & 10 <u>Tidal Periodi</u> Ebb Tide: 0909-1148 Flood Tide: 1148-184.0 <u>Monitoring Time</u> \$ Mid-ebb: 09.16 - 11.40 Mid-flood: 13.29 - 16.59
p	4. Impact Water Quality monitoring for B1, B2, B3, B4, H1, C1, C2, F1, M1, CR1 & CR2 ♥ Intensive DCM monitoring for ULU U2, 11, 12, 13, 14, 15, 17, 18, 19 & 100 Table Princip Ebb Tole: 0953 - 1344 Floot Tole: 1344 - 2001 Monitoring Times - Monitoring Times - Monitoring for M1, M2 & M3 Ecology monitoring for Land-based Theodolite Tracking 1	5 Impact Ecology monitoring for Land-based Theodolite Tracking	6 Impact Water Quality monitoring for 61, 82, 83, 84, H1, C1, C2, F1, M1, CR1 & CR2 Ø Intensive DCM monitoring for UL2, UC2, 11, U2, 13, H3, H5, H5, F7, H5, 9 & 10 <u>Total Periodi</u> Ebb Tote: 10.32 - 15:30 Fload Title: 13:30 - 11:17 <u>Monitoring Times</u> 8 Mich Fload: 16:37 - 19:30 Ecology monitoring for Land-based Theodolite Tracking 13	7 Impact Impact Second provide the second se	8 Impact Impact Water Quality monitoring for 51, 82, 83, 84, HL, CJ, CZ, FJ, MJ, CRI & CR2 Ø Intensive DDM monitoring for UL2, UZ, 11, 21, 31, 41, 51, 86, 110 Tell Prendt Ebb Tale: DAP - 16:19 Flood Tale: 1047 - 16:19 Kendel Tale	9
10 Impact Impact 100 100 100 110 1143 110 1143 110 1143 110 1143 110 1143 110 1143 110 1143 110 1143 110 1143 110 1143 110 1144 110 1144 111 1144 111 1144 111 1144 111 1144 111 1144 111 1144 111 1144 111 1144 111 1144	11 Impact 8 Water Quality monitoring for B1, B2, B3, B4, H1, C1, C2, F1, CR2, CR2, M1, S1, S2, S3, S3 <u>Total Periods</u> 16 DT die: 1158-118-23 Flood Tide: 05-89-1138 <u>Monitoring Times</u> Mid-ebb: 1325-16-55 9 Mid-flood: 0300-1139 Daylime Noise monitoring for M1, M2 & M3 % Ecology monitoring for Land-based Theodolite Tracking	Impact Ecology monitoring for Land-based Theodolite Tracking	14 Impact Water Quality monitoring for BL R2, R3, B4, H1, C1, C2, F1, CR1, CR2, M1, 51, 52, 653 <u>Trail Period</u> Ebb Trie: 252-630 Flood Tide: 06.38 - 12.45 <u>Monitoring Time</u> Metheb: 14.52 - 18.22 * Methed: 060 - 12.05 Ecology monitoring for Land-based Theodolite Tracking	Inpact Impact Scology monitoring for Land-based Theodolite Tracking	15 Impact Water Quality monitoring for 8, 82, 83, 84, HJ, CL, CZ, FL, CRJ, CRZ, ML, 53, 52, 83, 33 <u>That Period</u> , Ebb Trell: 51, 87, 32, 20 Floot The: 07, 32 - 35, 33 <u>Monitoring Times</u> & Mid-Rode 1: 53, 71, 900 Mid-Rode 1: 53, 71, 900 Mid-Rode 1: 53, 71, 900 Mid-Rode 1: 53, 71, 900	
17	18 Impact Water Quality monitoring for B1, B2, B3, B4, H1, C1, C2, F1, CR1, CR2, M1, S1, S2, B3, S3 Tdat Periodi Ib Tolice, 0845, 12:34 Flood Tide: 12:34 - 19:00 Monitorium Timm Mid-ebb: 08:56 - 12:26 Mid-load: 14:07 - 17:37 Dayline Noise monitoring for M1, M2, B, M3 Ecology monitoring for Maine Remarks by Vessel-based Line-Transect Survey	19	20 Impact Water Guality monitoring for BL 82, 85, 86, 94, 10, 12, 27, 28, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20	21 Impact Ecology monitoring for WESE Ecology monitoring for Land-based Theodolite Tracking	22 Impact Water Quality monitoring for 81, 82, 83, 84, HL, CL, CZ, FL, CRJ, CRJ, ML, SL, SZ, 84, SZ, SZ, SZ, SZ, SZ, SZ, SZ, SZ, SZ, SZ	impact Ecology monitoring for WBSE
24 Impact Ecology monitoring for WBSE	25 Impact Water Quality monitoring for B1, B2, B3, B4, H1, C1, C2, F1, CR1, CR2, M1, S1, S2, B3, S3 <u>Tatal Periodi</u> Eb Toliet, 1159-11-832 Flood Tide: 05:48-11:59 <u>Monitoring Timer</u> Mid-ebb: 13:30-17:00 * Mid-Hood: 80:00-11:40 Daytime Noise monitoring for M1, M2 & M3 Viscology monitoring for WLSE	inpact Ecology monitoring for VESE Ecology monitoring for Land-based Theodolite Tracking	27 Impact Water Guality monitoring for BL R2, R3, B4, H1, C1, C2, F1, CR1, CR2, M1, S1, C3, 26, 23 T <u>IGHI Periodi</u> Ebb Tele: 513:4-2106 Flood Tele: 06421214 <u>Monitoring Time</u> Mid-flood: 0233-1143 Ecology monitoring for Land-Aused Theodolite Tracking Ecology monitoring for Land-Aused Theodolite Tracking Ecology monitoring for WISE	23 Impact Ecology monitoring for Marine Mammals by Vessel-based Line-Transect Survey Coral Ist Quarterly Monitoring at Indirect Impact Site and Control Site + Coral Ist Quarterly Monitoring at Recipient Site	29 Inpact Water Quality monitoring for BL 82, 83, 84, 91, CL 7, CL 7, FL CR1, CR2, M1, 51, 52, 84, 53 <u>Tital Period.</u> Ebb Tidle: 15:19 - 2300 Floot Tidle: 06:00 - 35:39 <u>Monitoring Timler</u> & Mid-9bb: 15:32 - 19:00 Mid-16:00: 05:94 - 13:24 Evening & Night time Noise monitoring for M1, M2 & M3 Ecology monitoring for Land-based Theodolite Tracking	30
31 Impact Ecology monitoring for WIISE						
Remarks: 1. Darytime Noise Monitoring (07:20-1900), Evening Time Noise Monitoring (19 2. Water Cuality Monitoring for 51,52 and 53 will only conduct during CDA we 1. Ecology Monitoring for Pasuke Accusate Monitoring are under arragement 4. Night-time Noise Monitoring are under arragement and Basion with SMOU Nota: *- as per Marine Department Notace No 107 of 2018, al vessels employed for 5 - Since predicted tide is shorter than 3.5 hours, method of 90% tidal period 6 - Dub to aller comen for sampling exert in hight-time, monitod of 40% tid 0 ⁻ of the exceedance is recorded within the first two wesks (112 - 24/2), then reschedded the to incident or uniformality exceeding in the sample of the original reschedded the to incident or uniformality exceeding in the sample of the original or the original terms of the original or uniformality exceeding in the first two wesks (112 - 24/2), then reschedded the to incident or uniformality exceeding in the original original terms of the original terms of the original term deviced in the original term deviced term original term deviced in the original term deviced term original term deviced term orig	onds, metro Detailed DCM Plan tan diasion with SARDA A et the works should say in the works area outside the hours of works (0700 to 2300). D as Molific Road: (2-4/CE)-3/3-4/CE/2-9/11-9/emaining stations as monitoring time is approached. ad period as monotring time is approached and et nd at 1900.	ue to saffy concern, Water Quality Monitoring would start at 0800.				

~ - Cancelled due to incellent or unfavorable weather condition ^ - rescheduled due to incident or unfavorable weather condition

Appendix D Water Quality Monitoring Data

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
B1	20190301	Cloudy	Moderate	Mid-Ebb	В	4.7	10:17	9.78	8.93	29.45	20.9	3.99	4	-	-	-
B1	20190301	Cloudy	Moderate	Mid-Ebb	В	4.7	10:17	9.33	9.33	29.83	21.1	3.94	4	-	-	-
B1	20190301	Cloudy	Moderate	Mid-Ebb	S	1	10:18	10.65	9.15	31.52	21	1.34	3	-	-	-
B1	20190301	Cloudy	Moderate	Mid-Ebb	S	1	10:18	9.77	9.02	30.85	20.9	1.26	3	-	-	-
B2	20190301	Cloudy	Moderate	Mid-Ebb	В	4.2	10:30	10.55	9.25	28.15	21.1	3.93	2	-	-	-
B2	20190301	Cloudy	Moderate	Mid-Ebb	В	4.2	10:30	9.9	8.94	30.63	20.9	3.85	3	-	-	-
B2	20190301	Cloudy	Moderate	Mid-Ebb	S	1	10:31	9.22	9.17	29.52	21.1	1.79	3	-	-	-
B2	20190301	Cloudy	Moderate	Mid-Ebb	S	1	10:31	8.91	8.98	28.93	20.9	1.82	3	-	-	-
B3	20190301	Cloudy	Moderate	Mid-Ebb	В	4.2	10:52	9.67	9.33	28.44	20.8	3.03	6	-	-	-
B3	20190301	Cloudy	Moderate	Mid-Ebb	В	4.2	10:52	10.42	9.08	32.36	20.9	3.17	5	-	-	-
B3	20190301	Cloudy	Moderate	Mid-Ebb	S	1	10:53	8.68	8.98	28.12	21.1	1.53	4	-	-	-
B3	20190301	Cloudy	Moderate	Mid-Ebb	S	1	10:53	10.52	9.15	28.4	21.2	1.42	3	-	-	-
B4	20190301	Cloudy	Moderate	Mid-Ebb	В	4.2	11:02	8.74	9.14	32.4	21	3.85	5	-	-	-
B4	20190301	Cloudy	Moderate	Mid-Ebb	В	4.2	11:02	10.46	9.02	31.99	20.9	3.73	6	-	-	-
B4	20190301	Cloudy	Moderate	Mid-Ebb	S	1	11:03	10.45	9.24	32.82	20.9	1.35	5	-	-	-
B4	20190301	Cloudy	Moderate	Mid-Ebb	S	1	11:03	9.96	9.28	28.95	20.8	1.36	5	-	-	-
C1	20190301	Cloudy	Moderate	Mid-Ebb	В	9.6	9:53	10.46	9.26	28.86	21.1	3.16	5	-	-	-
C1	20190301	Cloudy	Moderate	Mid-Ebb	В	9.6	9:53	9.27	9.02	28.56	20.8	3.28	6	-	-	-
C1	20190301	Cloudy	Moderate	Mid-Ebb	М	5.3	9:54	10.25	9.43	31.85	21	2.56	4	-	-	-
C1	20190301	Cloudy	Moderate	Mid-Ebb	М	5.3	9:54	9.58	9.1	31.78	21.2	2.67	5	-	-	-
C1	20190301	Cloudy	Moderate	Mid-Ebb	S	1	9:55	10.37	9.13	28.87	21.1	1.77	3	-	-	-
C1	20190301	Cloudy	Moderate	Mid-Ebb	S	1	9:55	9.06	9.24	31.02	21.2	1.76	3	-	-	-
C2	20190301	Cloudy	Moderate	Mid-Ebb	В	6.7	11:12	9	9.23	30.02	21	3.56	4	-	-	-
C2	20190301	Cloudy	Moderate	Mid-Ebb	В	6.7	11:12	9.52	9.17	28.77	21.2	3.58	3	-	-	-
C2	20190301	Cloudy	Moderate	Mid-Ebb	М	3.9	11:13	10.51	9.43	29.58	20.8	3	4	-	-	-
C2	20190301	Cloudy	Moderate	Mid-Ebb	М	3.9	11:13	9.15	9.02	28.59	21.2	2.93	5	-	-	-
C2	20190301	Cloudy	Moderate	Mid-Ebb	S	1	11:14	10.67	9.38	28.58	20.8	1.2	2	-	-	-
C2	20190301	Cloudy	Moderate	Mid-Ebb	S	1	11:14	10.41	9.23	29.58	21.1	1.39	3	-	-	-
F1	20190301	Cloudy	Moderate	Mid-Ebb	В	6.4	11:04	8.76	8.93	29.83	21.1	3.74	5	-	-	-
F1	20190301	Cloudy	Moderate	Mid-Ebb	В	6.4	11:04	8.73	9.07	28.98	20.8	3.87	5	-	-	-
F1	20190301	Cloudy	Moderate	Mid-Ebb	М	3.7	11:05	10.78	9.27	32.49	21	2.52	4	-	-	-
F1	20190301	Cloudy	Moderate	Mid-Ebb	М	3.7	11:05	9.5	9.33	28.51	20.9	2.32	5	-	-	-

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
F1	20190301	Cloudy	Moderate	Mid-Ebb	S	1	11:06	9.67	9.1	30.01	21.1	1.46	5	-	-	-
F1	20190301	Cloudy	Moderate	Mid-Ebb	S	1	11:06	9.27	9.35	31	20.8	1.56	4	-	-	-
H1	20190301	Cloudy	Moderate	Mid-Ebb	В	6.4	10:20	10.48	9.3	30.68	21.1	3.21	2	-	-	-
H1	20190301	Cloudy	Moderate	Mid-Ebb	В	6.4	10:20	10.16	9.18	31.14	21	3.11	4	-	-	-
H1	20190301	Cloudy	Moderate	Mid-Ebb	М	3.7	10:21	8.77	9.03	29.16	20.8	2.56	3	-	-	-
H1	20190301	Cloudy	Moderate	Mid-Ebb	М	3.7	10:21	10.44	9.01	28.92	21	2.63	4	-	-	-
H1	20190301	Cloudy	Moderate	Mid-Ebb	S	1	10:22	9.45	9.01	28.3	20.8	1.08	3	-	-	-
H1	20190301	Cloudy	Moderate	Mid-Ebb	S	1	10:22	9.75	9.42	31.59	21.1	1.12	3	-	-	-
M1	20190301	Cloudy	Moderate	Mid-Ebb	В	8	11:39	8.64	9.01	29.53	20.9	3.75	6	-	-	-
M1	20190301	Cloudy	Moderate	Mid-Ebb	В	8	11:39	10.05	9.28	29.22	21.2	3.57	6	-	-	-
M1	20190301	Cloudy	Moderate	Mid-Ebb	М	4.5	11:40	9.55	9.2	30.31	21	2.64	6	-	-	-
M1	20190301	Cloudy	Moderate	Mid-Ebb	М	4.5	11:40	10.11	9.08	29.15	21	2.44	7	-	-	-
M1	20190301	Cloudy	Moderate	Mid-Ebb	S	1	11:41	10.27	9.15	30.09	21.2	1.15	5	-	-	-
M1	20190301	Cloudy	Moderate	Mid-Ebb	S	1	11:41	10.22	9.17	32.58	21.1	1.32	4	-	-	-
CR1	20190301	Cloudy	Moderate	Mid-Ebb	В	11.8	9:55	9.69	8.95	30.54	21.1	3.18	8	-	-	-
CR1	20190301	Cloudy	Moderate	Mid-Ebb	В	11.8	9:55	9.61	9.03	32.24	20.9	3.09	9	-	-	-
CR1	20190301	Cloudy	Moderate	Mid-Ebb	М	6.4	9:56	10.53	9.46	32.5	21.2	2.62	7	-	-	-
CR1	20190301	Cloudy	Moderate	Mid-Ebb	М	6.4	9:56	9.58	9.06	30.3	21.2	2.67	7	-	-	-
CR1	20190301	Cloudy	Moderate	Mid-Ebb	S	1	9:57	9.92	9.02	30.66	20.8	1.72	6	-	-	-
CR1	20190301	Cloudy	Moderate	Mid-Ebb	S	1	9:57	9.55	9.13	29.6	21	1.52	5	-	-	-
CR2	20190301	Cloudy	Moderate	Mid-Ebb	В	9.7	10:03	9.94	9.44	30.75	21.1	3.95	5	-	-	-
CR2	20190301	Cloudy	Moderate	Mid-Ebb	В	9.7	10:03	8.99	9.08	29.05	21.2	3.88	6	-	-	-
CR2	20190301	Cloudy	Moderate	Mid-Ebb	М	5.4	10:04	10.02	8.98	30.71	21.1	2.27	5	-	-	-
CR2	20190301	Cloudy	Moderate	Mid-Ebb	М	5.4	10:04	9.5	9.07	31.82	21	2.42	5	-	-	-
CR2	20190301	Cloudy	Moderate	Mid-Ebb	S	1	10:05	10.65	9.23	30.49	20.8	1.32	6	-	-	-
CR2	20190301	Cloudy	Moderate	Mid-Ebb	S	1	10:05	8.78	9.1	31.4	21.2	1.24	7	-	-	-
B1	20190301	Cloudy	Moderate	Mid-Flood	В	5.6	13:27	9.93	9.27	29.31	21.1	3.15	6	-	-	-
B1	20190301	Cloudy	Moderate	Mid-Flood	В	5.6	13:27	9.48	9.26	29.67	21.1	2.97	6	-	-	-
B1	20190301	Cloudy	Moderate	Mid-Flood	S	1	13:28	9.3	9.27	31.97	20.9	1.89	5	-	-	-
B1	20190301	Cloudy	Moderate	Mid-Flood	S	1	13:28	9.06	9.19	31.22	20.9	1.99	6	-	-	-
B2	20190301	Cloudy	Moderate	Mid-Flood	В	4.5	13:39	9.6	9.44	29.4	20.9	3	5	-	-	-
B2	20190301	Cloudy	Moderate	Mid-Flood	В	4.5	13:39	9.37	9.32	30.8	21.1	3.02	5	-	-	-

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
B2	20190301	Cloudy	Moderate	Mid-Flood	S	1	13:40	9.44	9.1	32.34	21	1.78	7	-	-	-
B2	20190301	Cloudy	Moderate	Mid-Flood	S	1	13:40	9.95	9.19	31.45	21.2	1.9	6	-	-	-
B3	20190301	Cloudy	Moderate	Mid-Flood	В	4.5	12:38	9.3	9.46	29.87	20.9	3.74	6	-	-	-
B3	20190301	Cloudy	Moderate	Mid-Flood	В	4.5	12:38	9.93	9.06	29.95	21	3.63	6	-	-	-
B3	20190301	Cloudy	Moderate	Mid-Flood	S	1	12:39	10.25	8.93	32.41	21.1	1.94	7	-	-	-
B3	20190301	Cloudy	Moderate	Mid-Flood	S	1	12:39	8.8	9.25	31.06	21.2	2.05	6	-	-	-
B4	20190301	Cloudy	Moderate	Mid-Flood	В	4.7	12:48	8.85	9.41	32.43	20.8	3.09	6	-	-	-
B4	20190301	Cloudy	Moderate	Mid-Flood	В	4.7	12:48	8.96	9.14	29.04	21.1	3	6	-	-	-
B4	20190301	Cloudy	Moderate	Mid-Flood	S	1	12:49	10.64	9.46	28.96	21.1	1.31	6	-	-	-
B4	20190301	Cloudy	Moderate	Mid-Flood	S	1	12:49	10.21	9.35	29.36	20.9	1.34	5	-	-	-
C1	20190301	Cloudy	Moderate	Mid-Flood	В	9.8	13:03	10.78	9.18	32.62	21.2	3.28	5	-	-	-
C1	20190301	Cloudy	Moderate	Mid-Flood	В	9.8	13:03	10.48	8.98	29.32	21.2	3.22	4	-	-	-
C1	20190301	Cloudy	Moderate	Mid-Flood	М	5.4	13:04	9.77	9.03	29.65	20.9	2.35	3	-	-	-
C1	20190301	Cloudy	Moderate	Mid-Flood	М	5.4	13:04	10.53	9.08	29.45	20.8	2.34	3	-	-	-
C1	20190301	Cloudy	Moderate	Mid-Flood	S	1	13:05	9.71	9.35	31.84	20.8	1.02	3	-	-	-
C1	20190301	Cloudy	Moderate	Mid-Flood	S	1	13:05	8.69	8.98	29.33	21.1	1.13	3	-	-	-
C2	20190301	Cloudy	Moderate	Mid-Flood	В	7.9	12:25	10.22	9.36	32.71	20.8	3.73	6	-	-	-
C2	20190301	Cloudy	Moderate	Mid-Flood	В	7.9	12:25	8.67	9.35	31.22	21.2	3.61	4	-	-	-
C2	20190301	Cloudy	Moderate	Mid-Flood	М	4.5	12:26	9.9	9.04	28.58	20.8	2.57	6	-	-	-
C2	20190301	Cloudy	Moderate	Mid-Flood	М	4.5	12:26	9.53	9.06	28.41	20.9	2.63	6	-	-	-
C2	20190301	Cloudy	Moderate	Mid-Flood	S	1	12:27	8.73	9.23	31.06	21.2	1.86	5	-	-	-
C2	20190301	Cloudy	Moderate	Mid-Flood	S	1	12:27	9	9.27	30.29	21.1	2.03	4	-	-	-
F1	20190301	Cloudy	Moderate	Mid-Flood	В	7	13:20	10.7	9.36	31.61	20.9	3.21	6	-	-	-
F1	20190301	Cloudy	Moderate	Mid-Flood	В	7	13:20	10.64	9.17	28.29	21.1	3.41	5	-	-	-
F1	20190301	Cloudy	Moderate	Mid-Flood	М	4	13:21	9.46	9.01	30.77	20.9	2.8	6	-	-	-
F1	20190301	Cloudy	Moderate	Mid-Flood	М	4	13:21	10.21	9.39	30.62	21	2.88	6	-	-	-
F1	20190301	Cloudy	Moderate	Mid-Flood	S	1	13:22	8.71	9.39	29.64	20.8	1.64	4	-	-	-
F1	20190301	Cloudy	Moderate	Mid-Flood	S	1	13:22	9.15	9.35	31.98	20.9	1.66	4	-	-	-
H1	20190301	Cloudy	Moderate	Mid-Flood	В	7.4	13:59	8.73	8.95	30.42	20.8	3.62	5	-	-	-
H1	20190301	Cloudy	Moderate	Mid-Flood	В	7.4	13:59	8.75	8.96	30.66	21	3.75	5	-	-	-
H1	20190301	Cloudy	Moderate	Mid-Flood	М	4.2	14:00	10.18	9	29.76	21	2.46	5	-	-	-
H1	20190301	Cloudy	Moderate	Mid-Flood	М	4.2	14:00	10.52	9.02	30.56	20.8	2.56	5	-	-	-

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
H1	20190301	Cloudy	Moderate	Mid-Flood	S	1	14:01	9.34	8.99	32.03	21	1.77	2	-	-	-
H1	20190301	Cloudy	Moderate	Mid-Flood	S	1	14:01	10.73	9.05	30.51	21	1.73	3	-	-	-
M1	20190301	Cloudy	Moderate	Mid-Flood	В	8.2	14:10	9.62	9.43	29.84	21	3.49	6	-	-	-
M1	20190301	Cloudy	Moderate	Mid-Flood	В	8.2	14:10	8.93	9.16	29.35	21.1	3.45	4	-	-	-
M1	20190301	Cloudy	Moderate	Mid-Flood	М	4.6	14:11	8.99	9.25	31.24	21.2	2.39	5	-	-	-
M1	20190301	Cloudy	Moderate	Mid-Flood	М	4.6	14:11	10.18	9.44	30.04	21	2.49	4	-	-	-
M1	20190301	Cloudy	Moderate	Mid-Flood	S	1	14:12	9.71	9.03	28.91	21.2	1.87	7	-	-	-
M1	20190301	Cloudy	Moderate	Mid-Flood	S	1	14:12	9.19	8.95	31.39	21.1	1.68	7	-	-	-
CR1	20190301	Cloudy	Moderate	Mid-Flood	В	11.8	12:25	10.25	9.03	28.36	20.8	3.68	4	-	-	-
CR1	20190301	Cloudy	Moderate	Mid-Flood	В	11.8	12:25	9.19	9.1	32.87	21	3.55	3	-	-	-
CR1	20190301	Cloudy	Moderate	Mid-Flood	М	6.4	12:26	10.43	9.34	28.44	21.1	2.03	3	-	-	-
CR1	20190301	Cloudy	Moderate	Mid-Flood	М	6.4	12:26	9.3	9.24	28.56	21	1.97	4	-	-	-
CR1	20190301	Cloudy	Moderate	Mid-Flood	S	1	12:27	9.88	9.38	30.2	21	1.15	4	-	-	-
CR1	20190301	Cloudy	Moderate	Mid-Flood	S	1	12:27	9.6	9.16	28.08	21	0.96	4	-	-	-
CR2	20190301	Cloudy	Moderate	Mid-Flood	В	9.8	12:37	8.71	9.14	32.11	21	3.96	6	-	-	-
CR2	20190301	Cloudy	Moderate	Mid-Flood	В	9.8	12:37	8.89	9	28.9	21	3.98	5	-	-	-
CR2	20190301	Cloudy	Moderate	Mid-Flood	М	5.4	12:38	9.06	8.95	32.06	21.2	2.29	4	-	-	-
CR2	20190301	Cloudy	Moderate	Mid-Flood	М	5.4	12:38	9.34	9.28	32.67	21.2	2.25	5	-	-	-
CR2	20190301	Cloudy	Moderate	Mid-Flood	S	1	12:39	8.93	9.21	31.17	20.8	1.19	6	-	-	-
CR2	20190301	Cloudy	Moderate	Mid-Flood	S	1	12:39	10.07	9.08	31.21	21.2	1.21	5	-	-	-
B1	20190304	Cloudy	Light	Mid-Ebb	В	4.5	11:30	9.46	9.01	33.6	19.8	1.99	<2	-	-	-
B1	20190304	Cloudy	Light	Mid-Ebb	В	4.5	11:30	7.92	8.28	31.52	20.1	2	2	-	-	-
B1	20190304	Cloudy	Light	Mid-Ebb	S	1	11:31	8.04	8.49	31.31	20.2	1.37	3	-	-	-
B1	20190304	Cloudy	Light	Mid-Ebb	S	1	11:31	7.91	8.53	31.03	20.2	1.29	3	-	-	-
B2	20190304	Cloudy	Light	Mid-Ebb	В	4.3	11:45	8.16	8.41	31.93	20.1	1.99	4	-	-	-
B2	20190304	Cloudy	Light	Mid-Ebb	В	4.3	11:45	8.08	8.48	31.5	20.2	2.08	4	-	-	-
B2	20190304	Cloudy	Light	Mid-Ebb	S	1	11:46	8.75	8.24	31.18	20.2	1.33	2	-	-	-
B2	20190304	Cloudy	Light	Mid-Ebb	S	1	11:46	8.27	8.39	31.91	20.1	1.27	3	-	-	-
B3	20190304	Cloudy	Light	Mid-Ebb	В	5	12:09	8.2	8.51	30.87	20.1	2.16	2	-	-	-
B3	20190304	Cloudy	Light	Mid-Ebb	В	5	12:09	8.01	8.19	30.31	20.2	2.14	3	-	-	-
B3	20190304	Cloudy	Light	Mid-Ebb	S	1	12:10	8.42	8.46	31.13	20.1	1.27	4	-	-	-
B3	20190304	Cloudy	Light	Mid-Ebb	S	1	12:10	8.4	8.39	31.53	20.2	1.27	3	-	-	-

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
B4	20190304	Cloudy	Light	Mid-Ebb	В	4.8	12:21	8.19	8.56	30.89	20.1	1.99	4	-	-	-
B4	20190304	Cloudy	Light	Mid-Ebb	В	4.8	12:21	8.33	8.44	30.74	20.2	1.92	3	-	-	-
B4	20190304	Cloudy	Light	Mid-Ebb	S	1	12:22	8.22	8.49	30.29	20.1	1.08	2	-	-	-
B4	20190304	Cloudy	Light	Mid-Ebb	S	1	12:22	8.5	8.46	31.3	20.2	1.03	3	-	-	-
C1	20190304	Cloudy	Light	Mid-Ebb	В	9.5	11:03	7.82	8.52	30.78	20.1	2.02	4	-	-	-
C1	20190304	Cloudy	Light	Mid-Ebb	В	9.5	11:03	8.37	8.13	30.37	20.1	1.94	5	-	-	-
C1	20190304	Cloudy	Light	Mid-Ebb	М	5.3	11:04	8.15	8.18	30.14	20.1	1.53	3	-	-	-
C1	20190304	Cloudy	Light	Mid-Ebb	М	5.3	11:04	8.76	8.29	30.79	20.2	1.63	4	-	-	-
C1	20190304	Cloudy	Light	Mid-Ebb	S	1	11:05	8.2	8.5	30.85	20.2	1.2	3	-	-	-
C1	20190304	Cloudy	Light	Mid-Ebb	S	1	11:05	8.27	8.14	30.15	20.1	1.25	3	-	-	-
C2	20190304	Cloudy	Light	Mid-Ebb	В	6.8	13:46	8.72	8.22	30.45	20.2	1.81	<2	-	-	-
C2	20190304	Cloudy	Light	Mid-Ebb	В	6.8	13:46	8.42	8.2	30.61	20.2	1.73	<2	-	-	-
C2	20190304	Cloudy	Light	Mid-Ebb	М	3.9	13:47	7.96	8.16	30.41	20.2	1.72	3	-	-	-
C2	20190304	Cloudy	Light	Mid-Ebb	М	3.9	13:47	7.93	8.24	31.53	20.1	1.68	2	-	-	-
C2	20190304	Cloudy	Light	Mid-Ebb	S	1	13:48	7.77	8.32	31.15	20.2	1.21	2	-	-	-
C2	20190304	Cloudy	Light	Mid-Ebb	S	1	13:48	7.65	8.38	30.89	20.2	1.11	2	-	-	-
F1	20190304	Cloudy	Light	Mid-Ebb	В	6.9	12:51	8.15	8.4	31.77	20.2	1.96	<2	-	-	-
F1	20190304	Cloudy	Light	Mid-Ebb	В	6.9	12:51	8.6	8.21	30.37	20.1	1.94	<2	-	-	-
F1	20190304	Cloudy	Light	Mid-Ebb	М	4	12:52	8.3	8.28	31.72	20.1	1.75	<2	-	-	-
F1	20190304	Cloudy	Light	Mid-Ebb	М	4	12:52	7.72	8.37	31.27	20.2	1.66	<2	-	-	-
F1	20190304	Cloudy	Light	Mid-Ebb	S	1	12:53	7.88	8.18	30.36	20.1	1	<2	-	-	-
F1	20190304	Cloudy	Light	Mid-Ebb	S	1	12:53	8.32	8.38	30.72	20.1	1.09	<2	-	-	-
H1	20190304	Cloudy	Light	Mid-Ebb	В	6.8	12:07	7.91	8.26	30.2	20.2	2.13	3	-	-	-
H1	20190304	Cloudy	Light	Mid-Ebb	В	6.8	12:07	8.69	8.54	31.9	20.1	2.18	2	-	-	-
H1	20190304	Cloudy	Light	Mid-Ebb	М	3.9	12:08	8.76	8.38	30.4	20.1	1.74	4	-	-	-
H1	20190304	Cloudy	Light	Mid-Ebb	М	3.9	12:08	8.5	8.52	30.94	20.2	1.7	5	-	-	-
H1	20190304	Cloudy	Light	Mid-Ebb	S	1	12:09	7.97	8.31	31.26	20.2	1.26	4	-	-	-
H1	20190304	Cloudy	Light	Mid-Ebb	S	1	12:09	7.92	8.55	31.92	20.1	1.28	4	-	-	-
M1	20190304	Cloudy	Light	Mid-Ebb	В	8.5	13:21	7.9	8.52	31.9	20.2	2.18	<2	-	-	-
M1	20190304	Cloudy	Light	Mid-Ebb	В	8.5	13:21	8.32	8.27	31	20.2	2.15	<2	-	-	-
M1	20190304	Cloudy	Light	Mid-Ebb	М	4.8	13:22	8.4	8.13	31.02	20.2	1.72	<2	-	-	-
M1	20190304	Cloudy	Light	Mid-Ebb	М	4.8	13:22	8.65	8.2	31.51	20.2	1.79	<2	-	-	-

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
M1	20190304	Cloudy	Light	Mid-Ebb	S	1	13:23	7.97	8.39	31.72	20.1	1.01	3	-	-	-
M1	20190304	Cloudy	Light	Mid-Ebb	S	1	13:23	8.54	8.27	30.44	20.1	1.04	2	-	-	-
CR1	20190304	Cloudy	Light	Mid-Ebb	В	11.4	11:40	7.96	8.43	30.23	20.1	2.07	3	-	-	-
CR1	20190304	Cloudy	Light	Mid-Ebb	В	11.4	11:40	7.74	8.55	30.43	20.2	2.06	4	-	-	-
CR1	20190304	Cloudy	Light	Mid-Ebb	М	6.2	11:41	8.33	8.33	30.26	20.2	1.7	<2	-	-	-
CR1	20190304	Cloudy	Light	Mid-Ebb	М	6.2	11:41	8.64	8.16	31.09	20.2	1.74	<2	-	-	-
CR1	20190304	Cloudy	Light	Mid-Ebb	S	1	11:42	7.73	8.39	30.95	20.2	1.27	<2	-	-	-
CR1	20190304	Cloudy	Light	Mid-Ebb	S	1	11:42	8.03	8.14	30.37	20.2	1.18	3	-	-	-
CR2	20190304	Cloudy	Light	Mid-Ebb	В	9.5	12:30	7.71	8.35	31.23	20.1	1.93	3	-	-	-
CR2	20190304	Cloudy	Light	Mid-Ebb	В	9.5	12:30	7.95	8.29	31.4	20.2	1.95	3	-	-	-
CR2	20190304	Cloudy	Light	Mid-Ebb	М	5.3	12:31	8.47	8.14	30.98	20.2	1.69	3	-	-	-
CR2	20190304	Cloudy	Light	Mid-Ebb	М	5.3	12:31	8.43	8.45	30.2	20.2	1.64	4	-	-	-
CR2	20190304	Cloudy	Light	Mid-Ebb	S	1	12:32	8.29	8.16	30.6	20.1	1.33	4	-	-	-
CR2	20190304	Cloudy	Light	Mid-Ebb	S	1	12:32	8.34	8.51	30.9	20.1	1.31	4	-	-	-
B1	20190304	Cloudy	Light	Mid-Flood	В	4.7	15:54	8.22	9.16	29.18	20.2	2.01	<2	-	-	-
B1	20190304	Cloudy	Light	Mid-Flood	В	4.7	15:54	8.18	9.05	30.53	20.2	2.09	<2	-	-	-
B1	20190304	Cloudy	Light	Mid-Flood	S	1	15:55	8.65	8.95	30.74	20.1	1.33	2	-	-	-
B1	20190304	Cloudy	Light	Mid-Flood	S	1	15:55	8.26	9.23	29.68	20.2	1.37	3	-	-	-
B2	20190304	Cloudy	Light	Mid-Flood	В	5	16:09	8.36	9.14	30.19	20.2	2.17	<2	-	-	-
B2	20190304	Cloudy	Light	Mid-Flood	В	5	16:09	8.76	9.07	29.17	20.1	2.17	3	-	-	-
B2	20190304	Cloudy	Light	Mid-Flood	S	1	16:10	8.33	9.31	30.09	20.1	1.33	<2	-	-	-
B2	20190304	Cloudy	Light	Mid-Flood	S	1	16:10	8.06	9.2	29.35	20.1	1.3	2	-	-	-
B3	20190304	Cloudy	Light	Mid-Flood	В	4.9	16:35	8.55	9.21	30.92	20.2	2.07	3	-	-	-
B3	20190304	Cloudy	Light	Mid-Flood	В	4.9	16:35	8.36	9.06	29.34	20.2	2.05	3	-	-	-
B3	20190304	Cloudy	Light	Mid-Flood	S	1	16:36	7.87	9.17	31.32	20.1	1.13	<2	-	-	-
B3	20190304	Cloudy	Light	Mid-Flood	S	1	16:36	8.29	9.14	29.8	20.2	1.05	2	-	-	-
B4	20190304	Cloudy	Light	Mid-Flood	В	5	16:46	8.13	8.94	29.68	20.1	2.05	2	-	-	-
B4	20190304	Cloudy	Light	Mid-Flood	В	5	16:46	7.84	9	31.21	20.1	2	2	-	-	-
B4	20190304	Cloudy	Light	Mid-Flood	S	1	16:47	8.5	9.17	30.67	20.1	1.21	3	-	-	-
B4	20190304	Cloudy	Light	Mid-Flood	S	1	16:47	8.46	8.96	29.42	20.2	1.24	2	-	-	-
C1	20190304	Cloudy	Light	Mid-Flood	В	8.9	15:26	8.37	9.27	29.63	20.1	1.84	3	-	-	-
C1	20190304	Cloudy	Light	Mid-Flood	В	8.9	15:26	8.04	8.98	31.49	20.1	1.92	<2	-	-	-

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
C1	20190304	Cloudy	Light	Mid-Flood	М	5	15:27	8.56	9.24	31.18	20.1	1.55	3	-	-	-
C1	20190304	Cloudy	Light	Mid-Flood	М	5	15:27	8.56	8.97	29.34	20.2	1.45	<2	-	-	-
C1	20190304	Cloudy	Light	Mid-Flood	S	1	15:28	8.27	9.19	30.07	20.2	1.13	2	-	-	-
C1	20190304	Cloudy	Light	Mid-Flood	S	1	15:28	8.42	9.1	30.03	20.1	1.22	3	-	-	-
C2	20190304	Cloudy	Light	Mid-Flood	В	7.5	15:07	8.51	9.24	29.76	20.2	2.09	<2	-	-	-
C2	20190304	Cloudy	Light	Mid-Flood	В	7.5	15:07	8.13	9.08	31.44	20.2	2.17	3	-	-	-
C2	20190304	Cloudy	Light	Mid-Flood	М	4.3	15:08	8.39	8.94	30.36	20.2	1.7	2	-	-	-
C2	20190304	Cloudy	Light	Mid-Flood	М	4.3	15:08	7.97	9.18	29.98	20.1	1.77	3	-	-	-
C2	20190304	Cloudy	Light	Mid-Flood	S	1	15:09	8.38	9.23	31.33	20.2	1.25	<2	-	-	-
C2	20190304	Cloudy	Light	Mid-Flood	S	1	15:09	8.37	9.13	30.33	20.2	1.16	<2	-	-	-
F1	20190304	Cloudy	Light	Mid-Flood	В	7.8	17:16	8.74	9.19	29.62	20.1	2.13	3	-	-	-
F1	20190304	Cloudy	Light	Mid-Flood	В	7.8	17:16	8.39	9.03	29.6	20.2	2.18	2	-	-	-
F1	20190304	Cloudy	Light	Mid-Flood	М	4.4	17:17	8.26	9.01	30.4	20.2	1.54	3	-	-	-
F1	20190304	Cloudy	Light	Mid-Flood	М	4.4	17:17	8.31	9.13	29.59	20.2	1.46	4	-	-	-
F1	20190304	Cloudy	Light	Mid-Flood	S	1	17:18	8.31	8.94	31.17	20.1	1.14	4	-	-	-
F1	20190304	Cloudy	Light	Mid-Flood	S	1	17:18	8	9.09	31.21	20.2	1.05	3	-	-	-
H1	20190304	Cloudy	Light	Mid-Flood	В	7.2	17:01	8.01	9.15	30.36	20.1	2.18	3	-	-	-
H1	20190304	Cloudy	Light	Mid-Flood	В	7.2	17:01	8.18	8.92	29.39	20.2	2.08	4	-	-	-
H1	20190304	Cloudy	Light	Mid-Flood	М	4.1	17:02	7.89	8.98	30.58	20.2	1.7	3	-	-	-
H1	20190304	Cloudy	Light	Mid-Flood	М	4.1	17:02	8.43	9.02	30.11	20.1	1.76	<2	-	-	-
H1	20190304	Cloudy	Light	Mid-Flood	S	1	17:03	8.08	9.17	29.34	20.1	1.32	4	-	-	-
H1	20190304	Cloudy	Light	Mid-Flood	S	1	17:03	8.45	9.23	29.23	20.1	1.42	3	-	-	-
M1	20190304	Cloudy	Light	Mid-Flood	В	8	18:04	8.44	9	30.46	20.2	2.04	<2	-	-	-
M1	20190304	Cloudy	Light	Mid-Flood	В	8	18:04	8.05	8.96	30.98	20.1	2.02	3	-	-	-
M1	20190304	Cloudy	Light	Mid-Flood	М	4.5	18:05	8.21	9.28	30.22	20.1	1.4	3	-	-	-
M1	20190304	Cloudy	Light	Mid-Flood	М	4.5	18:05	7.96	9.09	29.49	20.2	1.44	<2	-	-	-
M1	20190304	Cloudy	Light	Mid-Flood	S	1	18:06	8.14	8.92	31.41	20.1	1.23	<2	-	-	-
M1	20190304	Cloudy	Light	Mid-Flood	S	1	18:06	8.7	9.22	29.94	20.2	1.31	3	-	-	-
CR1	20190304	Cloudy	Light	Mid-Flood	В	11.9	15:26	7.99	9.28	29.46	20.2	2.19	3	-	-	-
CR1	20190304	Cloudy	Light	Mid-Flood	В	11.9	15:26	8.04	8.94	30.34	20.2	2.19	3	-	-	-
CR1	20190304	Cloudy	Light	Mid-Flood	М	6.5	15:27	8.38	9.29	29.33	20.1	1.66	4	-	-	-
CR1	20190304	Cloudy	Light	Mid-Flood	М	6.5	15:27	8.16	9.1	31.39	20.1	1.59	2	-	-	-

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
CR1	20190304	Cloudy	Light	Mid-Flood	S	1	15:28	8.56	9.32	31.09	20.1	1.22	4	-	-	-
CR1	20190304	Cloudy	Light	Mid-Flood	S	1	15:28	8.44	9.31	31.2	20.2	1.17	3	-	-	-
CR2	20190304	Cloudy	Light	Mid-Flood	В	9.7	16:46	7.92	9.27	29.26	20.2	2.02	5	-	-	-
CR2	20190304	Cloudy	Light	Mid-Flood	В	9.7	16:46	8.54	9.25	31.84	20.1	1.98	5	-	-	-
CR2	20190304	Cloudy	Light	Mid-Flood	М	5.4	16:47	8.27	8.92	30.28	20.2	1.67	4	-	-	-
CR2	20190304	Cloudy	Light	Mid-Flood	М	5.4	16:47	8.69	9.25	31.05	20.1	1.68	3	-	-	-
CR2	20190304	Cloudy	Light	Mid-Flood	S	1	16:48	8.15	9.03	30.25	20.2	1.03	4	-	-	-
CR2	20190304	Cloudy	Light	Mid-Flood	S	1	16:48	8.75	9.17	29.29	20.2	1.06	2	-	-	-
B1	20190306	Cloudy	Moderate	Mid-Ebb	В	4.1	12:40	9.04	9.46	32.15	19.4	2.24	5	-	-	-
B1	20190306	Cloudy	Moderate	Mid-Ebb	В	4.1	12:40	8.99	9.47	29.13	19.5	2.32	4	-	-	-
B1	20190306	Cloudy	Moderate	Mid-Ebb	S	1	12:41	8.77	9.32	32.68	19.4	2.69	2	-	-	-
B1	20190306	Cloudy	Moderate	Mid-Ebb	S	1	12:41	9.16	9.41	29.54	19.3	2.77	3	-	-	-
B2	20190306	Cloudy	Moderate	Mid-Ebb	В	4.6	12:55	9.26	9.23	32.38	19.5	2.79	4	-	-	-
B2	20190306	Cloudy	Moderate	Mid-Ebb	В	4.6	12:55	8.86	9.42	30.12	19	2.75	4	-	-	-
B2	20190306	Cloudy	Moderate	Mid-Ebb	S	1	12:56	9.17	9.31	30.54	19	2.42	<2	-	-	-
B2	20190306	Cloudy	Moderate	Mid-Ebb	S	1	12:56	9.1	9.09	32.75	19	2.39	2	-	-	-
B3	20190306	Cloudy	Moderate	Mid-Ebb	В	3.8	13:19	8.9	9.13	31.68	19.4	2.79	3	-	-	-
B3	20190306	Cloudy	Moderate	Mid-Ebb	В	3.8	13:19	9.17	9.32	32.88	19	2.71	2	-	-	-
B3	20190306	Cloudy	Moderate	Mid-Ebb	S	1	13:20	9.04	9.19	29.34	19.1	1.98	<2	-	-	-
B3	20190306	Cloudy	Moderate	Mid-Ebb	S	1	13:20	9.17	9.31	29.08	19.4	1.88	2	-	-	-
B4	20190306	Cloudy	Moderate	Mid-Ebb	В	4.5	13:28	9.13	9.21	29.84	19.2	2.93	4	-	-	-
B4	20190306	Cloudy	Moderate	Mid-Ebb	В	4.5	13:28	8.81	9.11	29.56	19	2.87	3	-	-	-
B4	20190306	Cloudy	Moderate	Mid-Ebb	S	1	13:29	8.78	9.45	30.38	19.1	2.04	3	-	-	-
B4	20190306	Cloudy	Moderate	Mid-Ebb	S	1	13:29	9.02	9.37	30.44	19.2	2.1	2	-	-	-
C1	20190306	Cloudy	Moderate	Mid-Ebb	В	8.4	12:12	8.97	9.21	32.4	19.3	2.71	3	-	-	-
C1	20190306	Cloudy	Moderate	Mid-Ebb	В	8.4	12:12	8.9	9.46	29.3	19.5	2.61	2	-	-	-
C1	20190306	Cloudy	Moderate	Mid-Ebb	М	4.7	12:13	8.74	9.39	31.76	19.2	2.58	<2	-	-	-
C1	20190306	Cloudy	Moderate	Mid-Ebb	М	4.7	12:13	8.9	9.34	30.4	19	2.61	<2	-	-	-
C1	20190306	Cloudy	Moderate	Mid-Ebb	S	1	12:14	8.97	9.24	30.97	19.3	2.47	<2	-	-	-
C1	20190306	Cloudy	Moderate	Mid-Ebb	S	1	12:14	8.83	9.38	29.24	19	2.4	<2	-	-	-
C2	20190306	Cloudy	Moderate	Mid-Ebb	В	6.8	14:53	8.74	9.02	29.82	19.1	2.85	2	-	-	-
C2	20190306	Cloudy	Moderate	Mid-Ebb	В	6.8	14:53	8.67	9.34	30.74	19.2	2.89	3	-	-	-

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
C2	20190306	Cloudy	Moderate	Mid-Ebb	М	3.9	14:54	8.65	9.2	32.47	19.1	2.26	2	-	-	-
C2	20190306	Cloudy	Moderate	Mid-Ebb	М	3.9	14:54	9.24	9.14	29.82	19.2	2.34	3	-	-	-
C2	20190306	Cloudy	Moderate	Mid-Ebb	S	1	14:55	8.89	9.05	29.65	19.5	2.44	3	-	-	-
C2	20190306	Cloudy	Moderate	Mid-Ebb	S	1	14:55	9.27	9.36	29.7	19.3	2.37	4	-	-	-
F1	20190306	Cloudy	Moderate	Mid-Ebb	В	7	14:00	9.09	9.39	32.86	19.4	1.64	5	-	-	-
F1	20190306	Cloudy	Moderate	Mid-Ebb	В	7	14:00	9.14	9.14	31.73	19	1.55	4	-	-	-
F1	20190306	Cloudy	Moderate	Mid-Ebb	М	4	14:01	9.18	9.46	32.66	19.1	2.12	<2	-	-	-
F1	20190306	Cloudy	Moderate	Mid-Ebb	М	4	14:01	9.27	9.25	31.79	19.1	2.12	<2	-	-	-
F1	20190306	Cloudy	Moderate	Mid-Ebb	S	1	14:02	8.66	9.36	32.14	19.3	2.92	<2	-	-	-
F1	20190306	Cloudy	Moderate	Mid-Ebb	S	1	14:02	9.08	9.49	30.82	19.4	2.87	3	-	-	-
H1	20190306	Cloudy	Moderate	Mid-Ebb	В	7	13:18	8.86	9.18	31.4	19.5	2.9	<2	-	-	-
H1	20190306	Cloudy	Moderate	Mid-Ebb	В	7	13:18	9.04	9.04	29.28	19.2	2.94	<2	-	-	-
H1	20190306	Cloudy	Moderate	Mid-Ebb	М	4	13:19	9.05	9.32	31.33	19.3	2.11	<2	-	-	-
H1	20190306	Cloudy	Moderate	Mid-Ebb	М	4	13:19	9.01	9.41	32.23	19.4	2.19	<2	-	-	-
H1	20190306	Cloudy	Moderate	Mid-Ebb	S	1	13:20	8.92	9.04	30.79	19.5	1.68	3	-	-	-
H1	20190306	Cloudy	Moderate	Mid-Ebb	S	1	13:20	8.8	9.24	32.76	19.3	1.61	2	-	-	-
M1	20190306	Cloudy	Moderate	Mid-Ebb	В	8.6	12:28	9.01	9.24	30.05	19.4	2.85	3	-	-	-
M1	20190306	Cloudy	Moderate	Mid-Ebb	В	8.6	12:28	8.84	9.05	29.44	19.5	2.89	3	-	-	-
M1	20190306	Cloudy	Moderate	Mid-Ebb	М	4.8	12:29	8.7	9.35	32.72	19	1.53	<2	-	-	-
M1	20190306	Cloudy	Moderate	Mid-Ebb	М	4.8	12:29	9.26	9.4	32.5	19.2	1.61	<2	-	-	-
M1	20190306	Cloudy	Moderate	Mid-Ebb	S	1	12:30	8.97	9.17	29.85	19.5	1.84	<2	-	-	-
M1	20190306	Cloudy	Moderate	Mid-Ebb	S	1	12:30	8.85	9.45	29.9	19.1	1.82	2	-	-	-
CR1	20190306	Cloudy	Moderate	Mid-Ebb	В	11.7	12:54	8.86	9.45	29.6	19.2	2.25	3	-	-	-
CR1	20190306	Cloudy	Moderate	Mid-Ebb	В	11.7	12:54	8.77	9.22	30.38	19.2	2.21	2	-	-	-
CR1	20190306	Cloudy	Moderate	Mid-Ebb	М	6.4	12:55	9	9.44	31.82	19.2	1.8	<2	-	-	-
CR1	20190306	Cloudy	Moderate	Mid-Ebb	М	6.4	12:55	9.03	9.47	32.22	19	1.74	<2	-	-	-
CR1	20190306	Cloudy	Moderate	Mid-Ebb	S	1	12:56	9.17	9.27	31.01	19.5	2.45	3	-	-	-
CR1	20190306	Cloudy	Moderate	Mid-Ebb	S	1	12:56	8.72	9.19	30.22	19.2	2.44	2	-	-	-
CR2	20190306	Cloudy	Moderate	Mid-Ebb	В	9.4	13:06	8.68	9.45	29.72	19.4	2.99	<2	-	-	-
CR2	20190306	Cloudy	Moderate	Mid-Ebb	В	9.4	13:06	8.97	9.06	31.69	19.1	2.95	<2	-	-	-
CR2	20190306	Cloudy	Moderate	Mid-Ebb	М	5.2	13:07	9.1	9.24	32.47	19.2	2.27	<2	-	-	-
CR2	20190306	Cloudy	Moderate	Mid-Ebb	М	5.2	13:07	8.88	9.41	31.13	19.1	2.32	<2	-	-	-

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
CR2	20190306	Cloudy	Moderate	Mid-Ebb	S	1	13:08	8.64	9.5	31.02	19.1	1.74	<2	-	-	-
CR2	20190306	Cloudy	Moderate	Mid-Ebb	S	1	13:08	9.21	9.23	31.98	19.3	1.8	3	-	-	-
B3	20190306	Cloudy	Moderate	Mid-Flood	В	5	16:04	9.03	9.35	30.79	19.3	2.54	2	-	-	-
B3	20190306	Cloudy	Moderate	Mid-Flood	В	5	16:04	9.15	9.46	32.02	19.3	2.44	3	-	-	-
B3	20190306	Cloudy	Moderate	Mid-Flood	S	1	16:05	9.1	9.2	32.47	19.5	1.6	4	-	-	-
B3	20190306	Cloudy	Moderate	Mid-Flood	S	1	16:05	8.84	9.38	30.71	19.5	1.5	4	-	-	-
B4	20190306	Cloudy	Moderate	Mid-Flood	В	5.1	16:15	8.68	9.32	32.49	19	1.67	3	-	-	-
B4	20190306	Cloudy	Moderate	Mid-Flood	В	5.1	16:15	8.77	9.34	32.16	19.1	1.66	2	-	-	-
B4	20190306	Cloudy	Moderate	Mid-Flood	S	1	16:16	9.07	9.14	29.76	19.1	2.95	3	-	-	-
B4	20190306	Cloudy	Moderate	Mid-Flood	S	1	16:16	8.92	9.19	29.74	19.4	2.86	2	-	-	-
C2	20190306	Cloudy	Moderate	Mid-Flood	В	7.2	15:25	9.14	9.27	31.58	19.2	2.76	<2	-	-	-
C2	20190306	Cloudy	Moderate	Mid-Flood	В	7.2	15:25	9.12	9.1	31.15	19.3	2.74	3	-	-	-
C2	20190306	Cloudy	Moderate	Mid-Flood	М	4.1	15:26	8.77	9.16	31.69	19	1.73	2	-	-	-
C2	20190306	Cloudy	Moderate	Mid-Flood	М	4.1	15:26	8.66	9.11	31.73	19.4	1.75	3	-	-	-
C2	20190306	Cloudy	Moderate	Mid-Flood	S	1	15:27	8.95	9.37	29.5	19.5	2.44	<2	-	-	-
C2	20190306	Cloudy	Moderate	Mid-Flood	S	1	15:27	8.68	9.41	31.5	19.2	2.37	<2	-	-	-
F1	20190306	Cloudy	Moderate	Mid-Flood	В	7.8	16:44	9.02	9.43	32.62	19.1	2.09	<2	-	-	-
F1	20190306	Cloudy	Moderate	Mid-Flood	В	7.8	16:44	8.73	9.16	29.42	19.5	2.07	<2	-	-	-
F1	20190306	Cloudy	Moderate	Mid-Flood	М	4.4	16:45	8.78	9.29	32.59	19.2	2.07	<2	-	-	-
F1	20190306	Cloudy	Moderate	Mid-Flood	М	4.4	16:45	9.02	9.06	31.47	19.2	2.04	<2	-	-	-
F1	20190306	Cloudy	Moderate	Mid-Flood	S	1	16:46	9.27	9.27	32.43	19.3	2.88	2	-	-	-
F1	20190306	Cloudy	Moderate	Mid-Flood	S	1	16:46	9.25	9.35	29.8	19.4	2.88	2	-	-	-
H1	20190306	Cloudy	Moderate	Mid-Flood	В	7.3	15:46	9.22	9.45	31.55	19.5	2.1	2	-	-	-
H1	20190306	Cloudy	Moderate	Mid-Flood	В	7.3	15:46	8.92	9.43	31.67	19.2	2.2	2	-	-	-
H1	20190306	Cloudy	Moderate	Mid-Flood	М	4.2	15:47	8.84	9.5	32.33	19.5	1.87	2	-	-	-
H1	20190306	Cloudy	Moderate	Mid-Flood	М	4.2	15:47	9.1	9.27	31.48	19	1.83	Note 2	-	-	-
H1	20190306	Cloudy	Moderate	Mid-Flood	S	1	15:48	9.24	9.4	29.31	19	2.64	<2	-	-	-
H1	20190306	Cloudy	Moderate	Mid-Flood	S	1	15:48	8.67	9.16	31.85	19.5	2.65	<2	-	-	-
M1	20190306	Cloudy	Moderate	Mid-Flood	В	9	17:20	9.05	9.47	29.66	19	2.96	<2	-	-	-
M1	20190306	Cloudy	Moderate	Mid-Flood	В	9	17:20	9.12	9.16	30.4	19.5	2.86	<2	-	-	-
M1	20190306	Cloudy	Moderate	Mid-Flood	М	5	17:21	8.74	9.5	30.59	19	2.8	<2	-	-	-
M1	20190306	Cloudy	Moderate	Mid-Flood	М	5	17:21	8.81	9.03	30.15	19	2.88	<2	-	-	-

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
M1	20190306	Cloudy	Moderate	Mid-Flood	S	1	17:22	8.73	9.28	29.65	19.4	2.04	<2	-	-	-
M1	20190306	Cloudy	Moderate	Mid-Flood	S	1	17:22	8.83	9.48	30.68	19	2.08	2	-	-	-
CR1	20190306	Cloudy	Moderate	Mid-Flood	В	11.3	15:42	9.27	9.22	32.71	19.3	2.72	<2	-	-	-
CR1	20190306	Cloudy	Moderate	Mid-Flood	В	11.3	15:42	9.04	9.19	29.9	19.3	2.75	2	-	-	-
CR1	20190306	Cloudy	Moderate	Mid-Flood	М	6.2	15:43	8.98	9.19	32.62	19	2.36	<2	-	-	-
CR1	20190306	Cloudy	Moderate	Mid-Flood	М	6.2	15:43	9	9.2	31.7	19.1	2.46	<2	-	-	-
CR1	20190306	Cloudy	Moderate	Mid-Flood	S	1	15:44	8.94	9.06	29.7	19.5	2.94	<2	-	-	-
CR1	20190306	Cloudy	Moderate	Mid-Flood	S	1	15:44	9.27	9.1	30.09	19.1	2.88	2	-	-	-
CR2	20190306	Cloudy	Moderate	Mid-Flood	В	9.7	17:03	8.64	9.32	32.17	19.2	2.97	<2	-	-	-
CR2	20190306	Cloudy	Moderate	Mid-Flood	В	9.7	17:03	8.89	9.21	31.57	19.5	2.98	<2	-	-	-
CR2	20190306	Cloudy	Moderate	Mid-Flood	М	5.4	17:04	8.83	9.49	32.66	19.3	1.69	4	-	-	-
CR2	20190306	Cloudy	Moderate	Mid-Flood	М	5.4	17:04	9.17	9.05	31.64	19.4	1.67	5	-	-	-
CR2	20190306	Cloudy	Moderate	Mid-Flood	S	1	17:05	8.96	9.45	30.81	19.3	2.17	8	-	-	-
CR2	20190306	Cloudy	Moderate	Mid-Flood	S	1	17:05	9.28	9.5	29.98	19.1	2.17	7	-	-	-
B1	20190308	Cloudy	Light	Mid-Ebb	В	4.9	12:33	7.67	8.78	29.26	17.8	4.5	4	-	-	-
B1	20190308	Cloudy	Light	Mid-Ebb	В	4.9	12:33	7.75	9.11	31.74	17.9	4.53	3	-	-	-
B1	20190308	Cloudy	Light	Mid-Ebb	S	1	12:34	8.16	9.04	31.73	18.2	3.94	3	-	-	-
B1	20190308	Cloudy	Light	Mid-Ebb	S	1	12:34	7.94	9.24	30.93	18.2	4.13	4	-	-	-
B2	20190308	Cloudy	Light	Mid-Ebb	В	4.2	12:48	7.65	9.08	31.78	17.9	4.81	8	-	-	-
B2	20190308	Cloudy	Light	Mid-Ebb	В	4.2	12:48	7.89	8.86	31.96	17.8	4.68	7	-	-	-
B2	20190308	Cloudy	Light	Mid-Ebb	S	1	12:49	8.58	9.18	29.69	18.1	3.65	4	-	-	-
B2	20190308	Cloudy	Light	Mid-Ebb	S	1	12:49	8.58	8.78	31.66	18.2	3.77	5	-	-	-
B3	20190308	Cloudy	Light	Mid-Ebb	В	4.3	13:13	8.83	9.12	31.1	18	4.54	4	-	-	-
B3	20190308	Cloudy	Light	Mid-Ebb	В	4.3	13:13	7.77	9.22	30.51	18	4.72	4	-	-	-
B3	20190308	Cloudy	Light	Mid-Ebb	S	1	13:14	8.27	8.9	29.55	17.8	3.88	4	-	-	-
B3	20190308	Cloudy	Light	Mid-Ebb	S	1	13:14	8.19	9.26	29.91	17.9	3.86	3	-	-	-
B4	20190308	Cloudy	Light	Mid-Ebb	В	5	13:23	8.1	8.75	29.16	18	4.66	3	-	-	-
B4	20190308	Cloudy	Light	Mid-Ebb	В	5	13:23	8.61	8.85	31.98	18.1	4.77	3	-	-	-
B4	20190308	Cloudy	Light	Mid-Ebb	S	1	13:24	7.89	9.16	31.2	18	3.83	5	-	-	-
B4	20190308	Cloudy	Light	Mid-Ebb	S	1	13:24	7.84	9.08	31.76	18	3.71	5	-	-	-
C1	20190308	Cloudy	Light	Mid-Ebb	В	9.1	12:04	7.63	8.96	30.59	18.1	4.82	8	-	-	-
C1	20190308	Cloudy	Light	Mid-Ebb	В	9.1	12:04	7.65	8.72	29.66	17.8	4.67	8	-	-	-

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
C1	20190308	Cloudy	Light	Mid-Ebb	М	5.1	12:05	8.4	9.22	31.88	18.2	4.05	5	-	-	-
C1	20190308	Cloudy	Light	Mid-Ebb	М	5.1	12:05	8.6	9.19	30.37	18.2	3.95	4	-	-	-
C1	20190308	Cloudy	Light	Mid-Ebb	S	1	12:06	8.58	9.03	30.34	18.1	3.8	3	-	-	-
C1	20190308	Cloudy	Light	Mid-Ebb	S	1	12:06	7.58	9.24	30.92	17.9	3.95	3	-	-	-
C2	20190308	Cloudy	Light	Mid-Ebb	В	6.7	14:53	8.02	8.92	30.81	18.2	4.64	5	-	-	-
C2	20190308	Cloudy	Light	Mid-Ebb	В	6.7	14:53	7.63	8.9	29.3	17.8	4.71	4	-	-	-
C2	20190308	Cloudy	Light	Mid-Ebb	М	3.9	14:54	7.88	9.03	30.05	18	4.45	2	-	-	-
C2	20190308	Cloudy	Light	Mid-Ebb	М	3.9	14:54	8.56	8.78	30.63	18.1	4.62	3	-	-	-
C2	20190308	Cloudy	Light	Mid-Ebb	S	1	14:55	8.66	9.24	30.99	18	3.62	4	-	-	-
C2	20190308	Cloudy	Light	Mid-Ebb	S	1	14:55	8.36	8.8	30.56	18.2	3.77	5	-	-	-
F1	20190308	Cloudy	Light	Mid-Ebb	В	6.2	13:55	8.17	9.14	31.17	17.9	4.95	4	-	-	-
F1	20190308	Cloudy	Light	Mid-Ebb	В	6.2	13:55	7.77	8.72	30.74	18.1	4.83	3	-	-	-
F1	20190308	Cloudy	Light	Mid-Ebb	М	3.6	13:56	8.69	9.03	30.85	18.1	4.41	5	-	-	-
F1	20190308	Cloudy	Light	Mid-Ebb	М	3.6	13:56	8.74	8.76	29.98	17.8	4.55	4	-	-	-
F1	20190308	Cloudy	Light	Mid-Ebb	S	1	13:57	8.57	9.09	29.75	18.2	3.63	5	-	-	-
F1	20190308	Cloudy	Light	Mid-Ebb	S	1	13:57	7.64	9.25	29.78	18	3.63	4	-	-	-
H1	20190308	Cloudy	Light	Mid-Ebb	В	6.5	13:20	8.77	9.07	31.07	17.9	4.54	6	-	-	-
H1	20190308	Cloudy	Light	Mid-Ebb	В	6.5	13:20	8.19	9.1	31.84	17.9	4.72	5	-	-	-
H1	20190308	Cloudy	Light	Mid-Ebb	М	3.8	13:21	8.67	9.17	29.49	18	4.25	4	-	-	-
H1	20190308	Cloudy	Light	Mid-Ebb	М	3.8	13:21	7.78	9.25	29.1	17.8	4.36	4	-	-	-
H1	20190308	Cloudy	Light	Mid-Ebb	S	1	13:22	7.78	9.11	31.31	18.2	3.59	3	-	-	-
H1	20190308	Cloudy	Light	Mid-Ebb	S	1	13:22	7.62	8.89	31.77	17.9	3.51	3	-	-	-
M1	20190308	Cloudy	Light	Mid-Ebb	В	8.5	14:26	8.46	8.94	31.27	17.8	4.57	8	-	-	-
M1	20190308	Cloudy	Light	Mid-Ebb	В	8.5	14:26	7.96	8.83	31.18	18.1	4.58	9	-	-	-
M1	20190308	Cloudy	Light	Mid-Ebb	М	4.8	14:27	7.77	9.26	31.61	18.1	4.25	4	-	-	-
M1	20190308	Cloudy	Light	Mid-Ebb	М	4.8	14:27	8.73	8.86	29.42	18	4.34	5	-	-	-
M1	20190308	Cloudy	Light	Mid-Ebb	S	1	14:28	7.6	9.25	30.4	18.2	3.69	5	-	-	-
M1	20190308	Cloudy	Light	Mid-Ebb	S	1	14:28	8.41	8.72	31.26	17.8	3.56	4	-	-	-
CR1	20190308	Cloudy	Light	Mid-Ebb	В	10.7	12:56	7.76	9.03	29.32	17.8	4.71	7	-	-	-
CR1	20190308	Cloudy	Light	Mid-Ebb	В	10.7	12:56	8.57	9.02	31.75	18	4.83	6	-	-	-
CR1	20190308	Cloudy	Light	Mid-Ebb	М	5.9	12:57	8.45	8.74	29.42	17.8	4.32	7	-	-	-
CR1	20190308	Cloudy	Light	Mid-Ebb	М	5.9	12:57	8.55	9.23	29.97	18.1	4.21	8	-	-	-

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
CR1	20190308	Cloudy	Light	Mid-Ebb	S	1	12:58	7.71	9.06	30.62	18.2	3.81	6	-	-	-
CR1	20190308	Cloudy	Light	Mid-Ebb	S	1	12:58	8.33	9.19	29.45	18.2	3.93	8	-	-	-
CR2	20190308	Cloudy	Light	Mid-Ebb	В	9.2	13:08	7.85	8.75	31.56	18.1	4.51	7	-	-	-
CR2	20190308	Cloudy	Light	Mid-Ebb	В	9.2	13:08	8.04	9.25	30.74	18.2	4.52	7	-	-	-
CR2	20190308	Cloudy	Light	Mid-Ebb	М	5.1	13:09	8.15	9.1	29.67	18.1	4.22	7	-	-	-
CR2	20190308	Cloudy	Light	Mid-Ebb	М	5.1	13:09	8.37	9.2	30.63	18.2	4.29	7	-	-	-
CR2	20190308	Cloudy	Light	Mid-Ebb	S	1	13:10	7.82	8.97	30.83	17.8	3.65	7	-	-	-
CR2	20190308	Cloudy	Light	Mid-Ebb	S	1	13:10	7.82	9.11	30.01	17.8	3.78	7	-	-	-
B1	20190308	Cloudy	Moderate	Mid-Flood	В	4.5	17:12	8.35	8.78	29.36	18	4.5	2	-	-	-
B1	20190308	Cloudy	Moderate	Mid-Flood	В	4.5	17:12	7.82	8.93	31.48	17.7	4.48	4	-	-	-
B1	20190308	Cloudy	Moderate	Mid-Flood	S	1	17:13	8.24	8.82	31.32	17.9	3.76	<2	-	-	-
B1	20190308	Cloudy	Moderate	Mid-Flood	S	1	17:13	8.84	9.19	29.76	18	3.95	3	-	-	-
B2	20190308	Cloudy	Moderate	Mid-Flood	В	5.1	17:30	7.85	8.85	31.43	17.8	4.7	3	-	-	-
B2	20190308	Cloudy	Moderate	Mid-Flood	В	5.1	17:30	8.93	8.84	30.74	17.8	4.67	3	-	-	-
B2	20190308	Cloudy	Moderate	Mid-Flood	S	1	17:31	7.54	9.04	29.56	18	3.57	2	-	-	-
B2	20190308	Cloudy	Moderate	Mid-Flood	S	1	17:31	8.8	8.8	30.5	17.9	3.48	2	-	-	-
B3	20190308	Cloudy	Moderate	Mid-Flood	В	4.7	17:57	8.74	8.91	29.7	17.7	4.94	3	-	-	-
B3	20190308	Cloudy	Moderate	Mid-Flood	В	4.7	17:57	8.91	8.9	30.99	18	4.8	4	-	-	-
B3	20190308	Cloudy	Moderate	Mid-Flood	S	1	17:58	8.92	9.08	31.92	18	3.77	<2	-	-	-
B3	20190308	Cloudy	Moderate	Mid-Flood	S	1	17:58	8.78	9.02	31.36	17.9	3.71	3	-	-	-
B4	20190308	Cloudy	Moderate	Mid-Flood	В	5.2	18:09	8.1	9.09	30.3	17.8	4.74	4	-	-	-
B4	20190308	Cloudy	Moderate	Mid-Flood	В	5.2	18:09	8.91	8.91	31.88	17.9	4.62	4	-	-	-
B4	20190308	Cloudy	Moderate	Mid-Flood	S	1	18:10	8.55	9.15	31.64	17.7	3.67	3	-	-	-
B4	20190308	Cloudy	Moderate	Mid-Flood	S	1	18:10	7.77	8.81	30.93	17.7	3.85	3	-	-	-
C1	20190308	Cloudy	Moderate	Mid-Flood	В	11	16:43	8.23	8.79	29.82	17.7	4.81	4	-	-	-
C1	20190308	Cloudy	Moderate	Mid-Flood	В	11	16:43	8.84	9.13	30.94	17.9	4.87	3	-	-	-
C1	20190308	Cloudy	Moderate	Mid-Flood	М	6	16:44	7.79	9.08	29.65	17.7	4.33	3	-	-	-
C1	20190308	Cloudy	Moderate	Mid-Flood	М	6	16:44	8.18	9.12	31.67	17.9	4.35	4	-	-	-
C1	20190308	Cloudy	Moderate	Mid-Flood	S	1	16:45	7.55	8.89	29.96	17.9	3.95	4	-	-	-
C1	20190308	Cloudy	Moderate	Mid-Flood	S	1	16:45	8.12	8.8	29.91	17.9	3.86	3	-	-	-
C2	20190308	Cloudy	Moderate	Mid-Flood	В	8	16:38	8.12	8.84	31.92	17.9	4.58	4	-	-	-
C2	20190308	Cloudy	Moderate	Mid-Flood	В	8	16:38	8.59	8.87	30.06	17.7	4.56	4	-	-	-

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
C2	20190308	Cloudy	Moderate	Mid-Flood	М	4.5	16:39	7.92	8.98	31.9	17.9	4	4	-	-	-
C2	20190308	Cloudy	Moderate	Mid-Flood	М	4.5	16:39	8.25	9.15	30.86	17.7	4	3	-	-	-
C2	20190308	Cloudy	Moderate	Mid-Flood	S	1	16:40	8.76	8.91	31.74	17.8	3.69	4	-	-	-
C2	20190308	Cloudy	Moderate	Mid-Flood	S	1	16:40	8.07	9	29.91	18	3.8	3	-	-	-
F1	20190308	Cloudy	Moderate	Mid-Flood	В	6.7	18:41	7.83	8.8	29.86	17.9	4.85	2	-	-	-
F1	20190308	Cloudy	Moderate	Mid-Flood	В	6.7	18:41	7.61	8.99	29.71	17.9	4.78	3	-	-	-
F1	20190308	Cloudy	Moderate	Mid-Flood	М	3.9	18:42	8.13	9.04	31.47	18	4.28	2	-	-	-
F1	20190308	Cloudy	Moderate	Mid-Flood	М	3.9	18:42	7.94	8.79	29.71	17.8	4.34	3	-	-	-
F1	20190308	Cloudy	Moderate	Mid-Flood	S	1	18:43	8.77	9.12	30.87	17.8	3.76	4	-	-	-
F1	20190308	Cloudy	Moderate	Mid-Flood	S	1	18:43	7.71	9.02	29.91	17.8	3.56	4	-	-	-
H1	20190308	Cloudy	Moderate	Mid-Flood	В	7.1	16:57	7.67	8.87	31.83	17.8	4.76	3	-	-	-
H1	20190308	Cloudy	Moderate	Mid-Flood	В	7.1	16:57	8.74	8.97	29.35	18	4.87	3	-	-	-
H1	20190308	Cloudy	Moderate	Mid-Flood	М	4.1	16:58	8.39	8.96	29.21	17.7	4.13	4	-	-	-
H1	20190308	Cloudy	Moderate	Mid-Flood	М	4.1	16:58	8.13	8.92	30.91	17.8	4.31	4	-	-	-
H1	20190308	Cloudy	Moderate	Mid-Flood	S	1	16:59	8.18	8.98	29.78	17.9	3.63	3	-	-	-
H1	20190308	Cloudy	Moderate	Mid-Flood	S	1	16:59	8.49	9.07	30.97	18	3.5	2	-	-	-
M1	20190308	Cloudy	Moderate	Mid-Flood	В	8.9	19:11	8.56	8.93	30.42	17.8	4.86	3	-	-	-
M1	20190308	Cloudy	Moderate	Mid-Flood	В	8.9	19:11	8.26	8.92	29.11	17.9	4.93	4	-	-	-
M1	20190308	Cloudy	Moderate	Mid-Flood	М	5	19:12	7.93	9.19	31.22	17.9	4.14	3	-	-	-
M1	20190308	Cloudy	Moderate	Mid-Flood	М	5	19:12	7.73	9.18	30.14	17.7	4.13	3	-	-	-
M1	20190308	Cloudy	Moderate	Mid-Flood	S	1	19:13	7.93	9.17	30.98	17.9	3.61	5	-	-	-
M1	20190308	Cloudy	Moderate	Mid-Flood	S	1	19:13	8.53	8.98	30.85	18	3.52	4	-	-	-
CR1	20190308	Cloudy	Moderate	Mid-Flood	В	11.7	17:14	8.08	9.18	30.88	17.8	4.5	4	-	-	-
CR1	20190308	Cloudy	Moderate	Mid-Flood	В	11.7	17:14	8.45	9.02	31.49	18	4.64	3	-	-	-
CR1	20190308	Cloudy	Moderate	Mid-Flood	М	6.4	17:15	7.7	9.2	30.54	18	4.45	3	-	-	-
CR1	20190308	Cloudy	Moderate	Mid-Flood	М	6.4	17:15	7.58	8.97	31.39	17.9	4.37	4	-	-	-
CR1	20190308	Cloudy	Moderate	Mid-Flood	S	1	17:16	8.69	8.91	30.58	17.8	3.7	3	-	-	-
CR1	20190308	Cloudy	Moderate	Mid-Flood	S	1	17:16	7.8	9.19	30.2	18	3.64	4	-	-	-
CR2	20190308	Cloudy	Moderate	Mid-Flood	В	10.6	18:29	8.98	8.93	30	17.7	4.89	3	-	-	-
CR2	20190308	Cloudy	Moderate	Mid-Flood	В	10.6	18:29	8.74	9.1	29.22	17.8	4.82	2	-	-	-
CR2	20190308	Cloudy	Moderate	Mid-Flood	М	5.8	18:30	8.39	9.13	30.04	17.9	4.42	2	-	-	-
CR2	20190308	Cloudy	Moderate	Mid-Flood	М	5.8	18:30	7.79	8.92	29.7	17.9	4.61	3	-	-	-

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
CR2	20190308	Cloudy	Moderate	Mid-Flood	S	1	18:31	7.65	8.91	29.38	18	3.88	5	-	-	-
CR2	20190308	Cloudy	Moderate	Mid-Flood	S	1	18:31	8.5	9.05	30.33	17.9	3.81	4	-	-	-
B1	20190311	Sunny	Light	Mid-Flood	В	5.3	10:49	10.31	9.01	31.01	17.8	2.11	5	113	0.143	NW
B1	20190311	Sunny	Light	Mid-Flood	В	5.3	10:49	10.26	8.9	31.73	17.5	2.16	4	112	0.275	SW
B1	20190311	Sunny	Light	Mid-Flood	S	1	10:50	10.24	9.14	31.65	17.6	1.42	4	111	0.185	W
B1	20190311	Sunny	Light	Mid-Flood	S	1	10:50	10.25	8.98	30.68	17.5	1.49	4	112	0.201	W
B2	20190311	Sunny	Light	Mid-Flood	В	5	11:05	10.69	8.95	31.52	17.8	2.09	3	113	0.238	W
B2	20190311	Sunny	Light	Mid-Flood	В	5	11:05	10.61	8.94	29.11	17.7	2.13	4	112	0.132	SW
B2	20190311	Sunny	Light	Mid-Flood	S	1	11:06	10.74	8.96	29.19	17.8	2.23	3	112	0.157	SW
B2	20190311	Sunny	Light	Mid-Flood	S	1	11:06	10.79	8.83	30.76	17.8	2.25	4	113	0.25	SW
B3	20190311	Sunny	Light	Mid-Flood	В	4.3	11:23	10.39	9.05	31.63	17.6	1.24	4	113	0.276	SW
B3	20190311	Sunny	Light	Mid-Flood	В	4.3	11:23	10.47	8.96	30.91	17.6	1.17	5	112	0.276	SW
B3	20190311	Sunny	Light	Mid-Flood	S	1	11:24	10.34	9.21	30.66	17.7	1.57	2	113	0.27	W
B3	20190311	Sunny	Light	Mid-Flood	S	1	11:24	10.48	8.87	30.09	17.5	1.6	3	113	0.134	NW
B4	20190311	Sunny	Light	Mid-Flood	В	5.4	11:33	10.18	8.91	30.01	17.5	1.59	5	114	0.135	W
B4	20190311	Sunny	Light	Mid-Flood	В	5.4	11:33	10.06	8.9	30.76	17.6	1.63	6	112	0.176	SW
B4	20190311	Sunny	Light	Mid-Flood	S	1	11:34	10.09	9.06	31.39	17.6	1.68	5	113	0.199	SW
B4	20190311	Sunny	Light	Mid-Flood	S	1	11:34	10.06	9.22	31.38	17.5	1.64	4	113	0.258	W
C1	20190311	Sunny	Light	Mid-Flood	В	9.2	10:24	10.23	9.06	29.96	17.7	2.22	6	113	0.156	NW
C1	20190311	Sunny	Light	Mid-Flood	В	9.2	10:24	10.25	8.83	29.47	17.5	2.14	7	113	0.203	SW
C1	20190311	Sunny	Light	Mid-Flood	М	5.1	10:25	10.39	8.99	30.58	17.8	1.45	8	112	0.216	W
C1	20190311	Sunny	Light	Mid-Flood	М	5.1	10:25	10.53	8.83	29.07	17.5	1.47	7	113	0.231	SW
C1	20190311	Sunny	Light	Mid-Flood	S	1	10:26	10.71	9.06	31.51	17.6	1.4	5	113	0.159	W
C1	20190311	Sunny	Light	Mid-Flood	S	1	10:26	10.77	8.89	31.81	17.8	1.44	4	114	0.228	W
C2	20190311	Sunny	Light	Mid-Flood	В	7.4	9:23	10.06	9.08	29.68	17.7	2.07	6	113	0.225	W
C2	20190311	Sunny	Light	Mid-Flood	В	7.4	9:23	10.03	9.24	31.86	17.8	2.06	6	113	0.215	W
C2	20190311	Sunny	Light	Mid-Flood	М	4.2	9:24	10.22	8.97	30.03	17.6	1.88	6	113	0.244	SW
C2	20190311	Sunny	Light	Mid-Flood	М	4.2	9:24	10.03	8.94	30.96	17.5	1.86	5	112	0.19	SW
C2	20190311	Sunny	Light	Mid-Flood	S	1	9:25	10.13	9.16	29.28	17.8	1.43	5	112	0.168	W
C2	20190311	Sunny	Light	Mid-Flood	S	1	9:25	10.19	8.95	31.5	17.5	1.38	6	113	0.137	W
F1	20190311	Sunny	Light	Mid-Flood	В	7.8	9:46	10.35	8.83	31.27	17.6	2.19	4	112	0.196	W
F1	20190311	Sunny	Light	Mid-Flood	В	7.8	9:46	10.23	8.9	31.39	17.8	2.11	3	113	0.292	W

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
F1	20190311	Sunny	Light	Mid-Flood	М	4.4	9:47	10.19	9.18	29.37	17.5	1.41	4	112	0.221	W
F1	20190311	Sunny	Light	Mid-Flood	М	4.4	9:47	10.32	9.07	29.98	17.7	1.42	4	113	0.205	NW
F1	20190311	Sunny	Light	Mid-Flood	S	1	9:48	10.32	9.14	30.34	17.7	2.12	7	113	0.285	W
F1	20190311	Sunny	Light	Mid-Flood	S	1	9:48	10.3	9.21	29.83	17.7	2.22	7	113	0.127	W
H1	20190311	Sunny	Light	Mid-Flood	В	7.2	11:05	10.88	8.76	29.15	17.8	1.84	5	113	0.175	W
H1	20190311	Sunny	Light	Mid-Flood	В	7.2	11:05	10.68	8.97	29.67	17.5	1.81	4	113	0.124	NW
H1	20190311	Sunny	Light	Mid-Flood	М	4.1	11:06	10.52	8.77	30.55	17.8	2.11	6	113	0.24	W
H1	20190311	Sunny	Light	Mid-Flood	М	4.1	11:06	10.42	8.76	30.87	17.8	2.04	6	113	0.261	W
H1	20190311	Sunny	Light	Mid-Flood	S	1	11:07	10.25	8.9	29.74	17.7	1.94	6	113	0.173	W
H1	20190311	Sunny	Light	Mid-Flood	S	1	11:07	10.28	8.78	29.17	17.5	1.95	7	113	0.266	SW
M1	20190311	Sunny	Light	Mid-Flood	В	9.2	10:20	10.43	8.78	30.87	17.7	1.87	5	112	0.22	SW
M1	20190311	Sunny	Light	Mid-Flood	В	9.2	10:20	10.24	9.01	31.29	17.5	1.88	6	113	0.227	W
M1	20190311	Sunny	Light	Mid-Flood	М	5.1	10:21	10.43	8.88	31.65	17.8	1.67	4	112	0.217	W
M1	20190311	Sunny	Light	Mid-Flood	М	5.1	10:21	10.56	8.8	30.06	17.5	1.77	5	112	0.236	NW
M1	20190311	Sunny	Light	Mid-Flood	S	1	10:22	10.68	9.09	30.68	17.5	2.06	4	111	0.17	SW
M1	20190311	Sunny	Light	Mid-Flood	S	1	10:22	10.61	9.07	29.55	17.7	2.14	3	113	0.19	W
CR1	20190311	Sunny	Light	Mid-Flood	В	11	9:33	9.89	8.78	30.71	17.7	2.12	3	112	0.142	W
CR1	20190311	Sunny	Light	Mid-Flood	В	11	9:33	9.88	8.75	29.99	17.7	2.12	3	112	0.222	SW
CR1	20190311	Sunny	Light	Mid-Flood	М	6	9:34	9.95	8.86	30.55	17.5	1.72	4	112	0.198	W
CR1	20190311	Sunny	Light	Mid-Flood	М	6	9:34	10	8.77	31.84	17.5	1.76	4	112	0.203	SW
CR1	20190311	Sunny	Light	Mid-Flood	S	1	9:35	9.95	8.77	30.82	17.8	1.98	6	113	0.285	W
CR1	20190311	Sunny	Light	Mid-Flood	S	1	9:35	10.1	9.22	31.25	17.8	1.98	7	112	0.193	W
CR2	20190311	Sunny	Light	Mid-Flood	В	10.9	9:57	9.52	9.06	30.66	17.8	1.51	3	112	0.191	W
CR2	20190311	Sunny	Light	Mid-Flood	В	10.9	9:57	9.55	9.11	30.25	17.7	1.52	4	111	0.165	SW
CR2	20190311	Sunny	Light	Mid-Flood	М	6	9:58	9.68	9.27	31.39	17.8	2.2	3	113	0.224	W
CR2	20190311	Sunny	Light	Mid-Flood	М	6	9:58	9.84	8.72	29.15	17.8	2.28	4	112	0.188	W
CR2	20190311	Sunny	Light	Mid-Flood	S	1	9:59	10.03	8.75	29.77	17.5	1.53	3	113	0.178	SW
CR2	20190311	Sunny	Light	Mid-Flood	S	1	9:59	9.98	8.82	31.1	17.5	1.55	3	113	0.267	W
S1	20190311	Sunny	Light	Mid-Flood	В	4.8	10:57	10.11	8.85	29.14	17.5	2.01	3	112	0.287	W
S1	20190311	Sunny	Light	Mid-Flood	В	4.8	10:57	10.18	9.05	29.34	17.6	1.99	2	113	0.206	SW
S1	20190311	Sunny	Light	Mid-Flood	S	1	10:58	10.14	9.08	29.69	17.8	1.4	4	113	0.152	SW
S1	20190311	Sunny	Light	Mid-Flood	S	1	10:58	10.1	8.89	30.02	17.5	1.35	3	112	0.183	NW

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
S2	20190311	Sunny	Light	Mid-Flood	В	11	11:20	9.72	8.81	29.27	17.5	1.59	3	114	0.284	W
S2	20190311	Sunny	Light	Mid-Flood	В	11	11:20	9.64	8.81	30.08	17.5	1.56	<2	113	0.226	SW
S2	20190311	Sunny	Light	Mid-Flood	М	6	11:21	9.8	8.74	30.35	17.6	1.7	4	113	0.265	W
S2	20190311	Sunny	Light	Mid-Flood	М	6	11:21	9.9	8.74	30.05	17.5	1.67	3	112	0.285	SW
S2	20190311	Sunny	Light	Mid-Flood	S	1	11:22	9.96	9.27	29.77	17.5	1.57	7	112	0.202	SW
S2	20190311	Sunny	Light	Mid-Flood	S	1	11:22	9.83	9.17	31.68	17.8	1.49	6	112	0.193	W
S3	20190311	Sunny	Light	Mid-Flood	В	9.7	9:45	10.25	9.1	31.35	17.7	1.77	4	112	0.241	W
S3	20190311	Sunny	Light	Mid-Flood	В	9.7	9:45	10.12	8.89	31.31	17.6	1.78	3	114	0.188	W
S3	20190311	Sunny	Light	Mid-Flood	М	5.4	9:46	9.97	9	29.6	17.6	1.84	3	111	0.272	NW
S3	20190311	Sunny	Light	Mid-Flood	М	5.4	9:46	10.13	9.1	31.15	17.5	1.91	4	113	0.263	W
S3	20190311	Sunny	Light	Mid-Flood	S	1	9:47	10.24	9.16	30.29	17.5	1.98	5	112	0.281	W
S3	20190311	Sunny	Light	Mid-Flood	S	1	9:47	10.29	9.15	29.6	17.6	1.98	4	113	0.272	W
B1	20190311	Sunny	Light	Mid-Ebb	В	4.6	13:47	10.74	9.11	29.47	19.3	1.28	3	112	0.215	S
B1	20190311	Sunny	Light	Mid-Ebb	В	4.6	13:47	10.73	8.96	29.14	18.9	1.21	3	112	0.139	S
B1	20190311	Sunny	Light	Mid-Ebb	S	1	13:48	10.91	9.21	29.84	19.1	1.99	4	113	0.259	SE
B1	20190311	Sunny	Light	Mid-Ebb	S	1	13:48	10.74	9.12	31.89	18.9	2.07	4	112	0.219	SE
B2	20190311	Sunny	Light	Mid-Ebb	В	4.4	14:06	9.67	8.91	31.89	19	1.33	6	112	0.146	SE
B2	20190311	Sunny	Light	Mid-Ebb	В	4.4	14:06	9.51	9.16	30.88	19.2	1.23	5	112	0.196	SW
B2	20190311	Sunny	Light	Mid-Ebb	S	1	14:07	9.44	8.98	31.45	19	2.01	<2	113	0.212	S
B2	20190311	Sunny	Light	Mid-Ebb	S	1	14:07	9.64	9.24	30.73	19	2.1	3	113	0.141	Е
B3	20190311	Sunny	Light	Mid-Ebb	В	3.9	15:05	9.53	8.78	31.02	19.1	2.21	7	112	0.23	SE
B3	20190311	Sunny	Light	Mid-Ebb	В	3.9	15:05	9.46	8.93	30.34	19.2	2.3	6	112	0.127	Е
B3	20190311	Sunny	Light	Mid-Ebb	S	1	15:06	9.3	9.15	30.74	18.9	1.22	8	113	0.167	S
B3	20190311	Sunny	Light	Mid-Ebb	S	1	15:06	9.47	8.73	29.9	19.1	1.15	8	111	0.145	S
B4	20190311	Sunny	Light	Mid-Ebb	В	4.9	15:15	10.93	8.88	30.52	19	2.24	3	113	0.195	SE
B4	20190311	Sunny	Light	Mid-Ebb	В	4.9	15:15	10.97	8.89	30.62	19.1	2.3	4	112	0.257	SE
B4	20190311	Sunny	Light	Mid-Ebb	S	1	15:16	10.89	9.11	29.29	19.2	1.33	4	113	0.275	Е
B4	20190311	Sunny	Light	Mid-Ebb	S	1	15:16	11.04	9.18	31.35	18.9	1.35	3	112	0.175	SE
C1	20190311	Sunny	Light	Mid-Ebb	В	9.4	13:25	10.95	8.88	29.58	19.3	1.29	6	113	0.153	S
C1	20190311	Sunny	Light	Mid-Ebb	В	9.4	13:25	11.04	8.97	31.26	19.3	1.3	7	112	0.266	S
C1	20190311	Sunny	Light	Mid-Ebb	М	5.2	13:26	11.08	9.13	31.27	19.2	1.31	5	113	0.144	S
C1	20190311	Sunny	Light	Mid-Ebb	М	5.2	13:26	11.25	9.2	29.25	18.9	1.22	4	113	0.183	SE

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
C1	20190311	Sunny	Light	Mid-Ebb	S	1	13:27	11.07	8.89	31.66	18.9	1.82	4	112	0.202	SE
C1	20190311	Sunny	Light	Mid-Ebb	S	1	13:27	11.12	8.76	31.67	18.9	1.82	4	112	0.17	S
C2	20190311	Sunny	Light	Mid-Ebb	В	7.3	14:28	10.74	9.22	30.18	19.1	1.34	5	112	0.229	S
C2	20190311	Sunny	Light	Mid-Ebb	В	7.3	14:28	10.9	8.88	31.64	19.2	1.31	6	112	0.242	S
C2	20190311	Sunny	Light	Mid-Ebb	М	4.2	14:29	10.85	8.85	30.93	19	1.63	6	112	0.15	Е
C2	20190311	Sunny	Light	Mid-Ebb	М	4.2	14:29	10.75	8.78	30.36	19.2	1.64	6	113	0.252	S
C2	20190311	Sunny	Light	Mid-Ebb	S	1	14:30	10.65	9.1	29.41	19	1.21	4	112	0.198	SE
C2	20190311	Sunny	Light	Mid-Ebb	S	1	14:30	10.72	8.94	31.57	19	1.19	3	113	0.245	SE
F1	20190311	Sunny	Light	Mid-Ebb	В	6.6	13:28	10.48	8.96	29.54	19.2	1.27	8	113	0.277	S
F1	20190311	Sunny	Light	Mid-Ebb	В	6.6	13:28	10.45	9.25	29.35	19.3	1.36	8	112	0.116	SE
F1	20190311	Sunny	Light	Mid-Ebb	М	3.8	13:29	10.53	9.08	31.06	19.3	2.26	7	113	0.169	S
F1	20190311	Sunny	Light	Mid-Ebb	М	3.8	13:29	10.46	9.11	30.02	19.3	2.36	7	112	0.173	SE
F1	20190311	Sunny	Light	Mid-Ebb	S	1	13:30	10.26	9.22	30.95	19.3	1.51	3	112	0.216	S
F1	20190311	Sunny	Light	Mid-Ebb	S	1	13:30	10.19	8.95	31.56	19.2	1.57	4	112	0.144	SE
H1	20190311	Sunny	Light	Mid-Ebb	В	6.7	14:50	10.37	9.25	30.83	19.1	1.95	8	112	0.135	S
H1	20190311	Sunny	Light	Mid-Ebb	В	6.7	14:50	10.24	9.13	30.03	18.9	2.02	7	114	0.12	Е
H1	20190311	Sunny	Light	Mid-Ebb	М	3.9	14:51	10.37	9.27	29.25	19.2	1.49	5	112	0.277	S
H1	20190311	Sunny	Light	Mid-Ebb	М	3.9	14:51	10.4	8.88	31.35	19.3	1.4	5	112	0.203	SE
H1	20190311	Sunny	Light	Mid-Ebb	S	1	14:52	10.4	9.13	29.41	19.3	1.28	6	113	0.248	S
H1	20190311	Sunny	Light	Mid-Ebb	S	1	14:52	10.33	8.97	29.63	19.1	1.24	5	113	0.214	S
M1	20190311	Sunny	Light	Mid-Ebb	В	8.4	14:01	10.43	8.92	29.68	19.1	1.32	8	113	0.165	SE
M1	20190311	Sunny	Light	Mid-Ebb	В	8.4	14:01	10.43	9.13	29.88	19.1	1.36	9	114	0.183	S
M1	20190311	Sunny	Light	Mid-Ebb	М	4.7	14:02	10.26	8.95	29.85	19.2	2.25	7	114	0.275	S
M1	20190311	Sunny	Light	Mid-Ebb	М	4.7	14:02	10.39	8.74	30.12	19.2	2.29	6	112	0.15	SE
M1	20190311	Sunny	Light	Mid-Ebb	S	1	14:03	10.49	8.81	31.14	19.1	1.42	6	112	0.126	S
M1	20190311	Sunny	Light	Mid-Ebb	S	1	14:03	10.46	9.09	29.82	18.9	1.44	5	113	0.276	Е
CR1	20190311	Sunny	Light	Mid-Ebb	В	11.2	14:59	10.77	9	31.9	19.3	2.08	8	112	0.175	SE
CR1	20190311	Sunny	Light	Mid-Ebb	В	11.2	14:59	10.64	8.94	31.42	19.3	2	7	112	0.149	SE
CR1	20190311	Sunny	Light	Mid-Ebb	М	6.1	15:00	10.47	9.17	30.79	18.9	1.94	6	114	0.209	S
CR1	20190311	Sunny	Light	Mid-Ebb	М	6.1	15:00	10.51	8.99	30.2	19	1.84	7	112	0.225	SE
CR1	20190311	Sunny	Light	Mid-Ebb	S	1	15:01	10.71	9.06	29.72	19.3	1.43	5	112	0.26	Е
CR1	20190311	Sunny	Light	Mid-Ebb	S	1	15:01	10.79	8.98	29.74	19	1.52	6	113	0.182	SE

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
CR2	20190311	Sunny	Light	Mid-Ebb	В	9.9	14:45	9.69	9.21	31.5	19.3	1.66	5	112	0.161	S
CR2	20190311	Sunny	Light	Mid-Ebb	В	9.9	14:45	9.55	9.25	30.66	19.2	1.73	4	112	0.223	Е
CR2	20190311	Sunny	Light	Mid-Ebb	М	5.5	14:46	9.67	8.77	31.08	19.1	1.85	5	112	0.223	S
CR2	20190311	Sunny	Light	Mid-Ebb	М	5.5	14:46	9.71	8.93	30.31	19	1.83	4	112	0.123	S
CR2	20190311	Sunny	Light	Mid-Ebb	S	1	14:47	9.72	8.72	29.26	19.1	1.46	6	113	0.211	S
CR2	20190311	Sunny	Light	Mid-Ebb	S	1	14:47	9.8	8.76	31.37	19	1.54	7	114	0.152	SE
S1	20190311	Sunny	Light	Mid-Ebb	В	4.6	13:56	10.39	8.72	31.1	19.1	2.08	9	113	0.147	Е
S1	20190311	Sunny	Light	Mid-Ebb	В	4.6	13:56	10.22	8.77	29.43	19	2.03	9	113	0.229	SE
S1	20190311	Sunny	Light	Mid-Ebb	S	1	13:57	10.22	8.75	29.78	19.3	2.1	6	113	0.235	S
S1	20190311	Sunny	Light	Mid-Ebb	S	1	13:57	10.15	9.26	30.03	18.9	2.06	7	112	0.224	SE
S2	20190311	Sunny	Light	Mid-Ebb	В	10.3	14:22	10.68	9.05	29.17	19.3	2.22	4	113	0.215	S
S2	20190311	Sunny	Light	Mid-Ebb	В	10.3	14:22	10.5	8.9	29.45	18.9	2.16	3	114	0.201	SE
S2	20190311	Sunny	Light	Mid-Ebb	М	5.7	14:23	10.62	9.04	31.88	19.3	2.09	5	113	0.242	SE
S2	20190311	Sunny	Light	Mid-Ebb	М	5.7	14:23	10.82	8.96	31.11	19	2.03	4	113	0.208	S
S2	20190311	Sunny	Light	Mid-Ebb	S	1	14:24	10.95	8.92	30.74	19.2	2.11	5	113	0.28	SE
S2	20190311	Sunny	Light	Mid-Ebb	S	1	14:24	11.03	8.86	31.21	19.3	2.21	4	113	0.19	SE
S3	20190311	Sunny	Light	Mid-Ebb	В	10.2	14:34	10.86	8.86	31.07	19.3	1.25	6	114	0.278	SE
S3	20190311	Sunny	Light	Mid-Ebb	В	10.2	14:34	11.01	9.17	30.67	19.3	1.17	7	113	0.235	S
S3	20190311	Sunny	Light	Mid-Ebb	М	5.6	14:35	11.06	8.85	31.56	19.1	1.37	4	113	0.163	Е
S3	20190311	Sunny	Light	Mid-Ebb	М	5.6	14:35	11.11	8.81	29.66	18.9	1.36	4	113	0.204	Е
S3	20190311	Sunny	Light	Mid-Ebb	S	1	14:36	11.27	8.81	30.74	19.1	2.18	4	112	0.144	S
S3	20190311	Sunny	Light	Mid-Ebb	S	1	14:36	11.36	9.15	31.74	19	2.19	4	113	0.223	S
B1	20190313	Sunny	Light	Mid-Flood	В	5.5	11:26	10.29	9.4	30.53	20.3	2.61	4	111	0.204	SW
B1	20190313	Sunny	Light	Mid-Flood	В	5.5	11:26	10.37	9.37	31.5	20.1	2.57	4	112	0.116	SW
B1	20190313	Sunny	Light	Mid-Flood	S	1	11:27	10.4	9.23	29.62	20.2	1.99	5	110	0.141	W
B1	20190313	Sunny	Light	Mid-Flood	S	1	11:27	10.22	9.4	29.78	20.1	1.98	6	111	0.225	S
B2	20190313	Sunny	Light	Mid-Flood	В	4.7	11:49	10.84	9.33	31.19	20.1	2.54	5	110	0.119	SW
B2	20190313	Sunny	Light	Mid-Flood	В	4.7	11:49	10.67	9.51	30.66	20.4	2.46	4	111	0.188	W
B2	20190313	Sunny	Light	Mid-Flood	S	1	11:50	10.87	9.14	31.4	20.3	1.55	6	111	0.159	SW
B2	20190313	Sunny	Light	Mid-Flood	S	1	11:50	10.91	9.4	29.13	20.2	1.49	6	111	0.183	SW
B3	20190313	Sunny	Light	Mid-Flood	В	5.1	11:47	10.34	9.11	29.29	20.2	2.56	5	111	0.191	W
B3	20190313	Sunny	Light	Mid-Flood	В	5.1	11:47	10.25	9.43	29.62	20.3	2.5	4	110	0.121	S

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
B3	20190313	Sunny	Light	Mid-Flood	S	1	11:48	10.29	9.07	30.81	20.1	1.61	4	112	0.171	W
B3	20190313	Sunny	Light	Mid-Flood	S	1	11:48	10.48	9.38	31.58	20.4	1.57	5	110	0.121	SW
B4	20190313	Sunny	Light	Mid-Flood	В	4.8	11:59	11.08	9.34	30.17	20.1	2.56	3	111	0.191	SW
B4	20190313	Sunny	Light	Mid-Flood	В	4.8	11:59	11.12	9.01	29.78	20.3	2.52	2	111	0.214	W
B4	20190313	Sunny	Light	Mid-Flood	S	1	12:00	10.96	9.21	29.33	20.1	1.64	5	112	0.119	SW
B4	20190313	Sunny	Light	Mid-Flood	S	1	12:00	10.99	9.5	31.28	20.2	1.73	5	111	0.159	S
C1	20190313	Sunny	Light	Mid-Flood	В	9.2	11:00	10.4	9.39	31.62	20.2	2.56	4	110	0.186	SW
C1	20190313	Sunny	Light	Mid-Flood	В	9.2	11:00	10.42	9.5	29.9	20.2	2.63	5	112	0.22	SW
C1	20190313	Sunny	Light	Mid-Flood	М	5.1	11:01	10.37	9.56	31.74	20.1	2.24	4	111	0.139	SW
C1	20190313	Sunny	Light	Mid-Flood	М	5.1	11:01	10.3	9.2	29.52	20.3	2.23	5	110	0.218	SW
C1	20190313	Sunny	Light	Mid-Flood	S	1	11:02	10.23	9.12	29.36	20.1	1.5	4	111	0.237	S
C1	20190313	Sunny	Light	Mid-Flood	S	1	11:02	10.12	9.23	31.67	20.4	1.46	5	111	0.211	SW
C2	20190313	Sunny	Light	Mid-Flood	В	7.4	9:45	10.32	9.41	31.9	20.3	2.6	5	111	0.166	SW
C2	20190313	Sunny	Light	Mid-Flood	В	7.4	9:45	10.16	9.05	30.17	20.1	2.67	6	112	0.181	W
C2	20190313	Sunny	Light	Mid-Flood	М	4.2	9:46	10.23	9.37	29.09	20.2	2.45	4	111	0.235	W
C2	20190313	Sunny	Light	Mid-Flood	М	4.2	9:46	10.1	9.11	30.38	20.3	2.51	5	111	0.186	SW
C2	20190313	Sunny	Light	Mid-Flood	S	1	9:47	10.15	8.99	29.93	20.3	1.63	6	111	0.202	SW
C2	20190313	Sunny	Light	Mid-Flood	S	1	9:47	10.21	8.99	31.45	20.4	1.71	5	112	0.187	S
F1	20190313	Sunny	Light	Mid-Flood	В	6.9	10:10	10.53	9	30.2	20.4	2.62	4	112	0.21	SW
F1	20190313	Sunny	Light	Mid-Flood	В	6.9	10:10	10.62	9.28	29.72	20.3	2.52	4	112	0.135	W
F1	20190313	Sunny	Light	Mid-Flood	М	4	10:11	10.44	8.96	30.05	20.3	2.41	5	111	0.121	W
F1	20190313	Sunny	Light	Mid-Flood	М	4	10:11	10.29	9.08	30.76	20.1	2.38	5	111	0.128	SW
F1	20190313	Sunny	Light	Mid-Flood	S	1	10:12	10.37	9.24	31.12	20.3	1.5	4	112	0.127	SW
F1	20190313	Sunny	Light	Mid-Flood	S	1	10:12	10.23	9.18	30.53	20.4	1.41	5	112	0.188	S
H1	20190313	Sunny	Light	Mid-Flood	В	6.9	11:29	11.02	9.26	31.09	20.3	2.87	4	111	0.13	W
H1	20190313	Sunny	Light	Mid-Flood	В	6.9	11:29	10.98	9.46	29.54	20.3	2.83	5	112	0.135	SW
H1	20190313	Sunny	Light	Mid-Flood	М	4	11:30	11.13	8.95	31.03	20.1	2.1	4	110	0.119	W
H1	20190313	Sunny	Light	Mid-Flood	М	4	11:30	10.98	9.29	31.31	20.4	2.05	5	111	0.221	SW
H1	20190313	Sunny	Light	Mid-Flood	S	1	11:31	10.87	9.2	31.76	20.3	1.59	5	110	0.234	W
H1	20190313	Sunny	Light	Mid-Flood	S	1	11:31	10.72	9.22	29.41	20.4	1.57	4	111	0.182	W
M1	20190313	Sunny	Light	Mid-Flood	В	8	10:45	9.99	9.13	29.1	20.2	2.71	6	113	0.126	W
M1	20190313	Sunny	Light	Mid-Flood	В	8	10:45	9.9	9.5	30.72	20.3	2.68	6	111	0.14	SW

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
M1	20190313	Sunny	Light	Mid-Flood	М	4.5	10:46	9.83	9.46	30.33	20.3	2.04	5	112	0.241	W
M1	20190313	Sunny	Light	Mid-Flood	М	4.5	10:46	9.67	9.22	30.11	20.1	1.98	6	113	0.177	SW
M1	20190313	Sunny	Light	Mid-Flood	S	1	10:47	9.75	8.92	29.49	20.4	1.71	7	111	0.206	W
M1	20190313	Sunny	Light	Mid-Flood	S	1	10:47	9.65	9.01	31.64	20.1	1.65	6	111	0.214	SW
CR1	20190313	Sunny	Light	Mid-Flood	В	11.9	10:10	11.25	8.93	30.11	20.1	2.95	8	112	0.222	S
CR1	20190313	Sunny	Light	Mid-Flood	В	11.9	10:10	11.16	9.06	30.83	20.4	3.01	8	112	0.223	SW
CR1	20190313	Sunny	Light	Mid-Flood	М	6.5	10:11	10.96	9.12	30.11	20.3	2.14	8	111	0.144	S
CR1	20190313	Sunny	Light	Mid-Flood	М	6.5	10:11	11.06	9.26	31.49	20.4	2.15	8	111	0.214	SW
CR1	20190313	Sunny	Light	Mid-Flood	S	1	10:12	10.88	9.52	31.78	20.3	1.82	7	112	0.221	SW
CR1	20190313	Sunny	Light	Mid-Flood	S	1	10:12	10.93	9.1	30.71	20.2	1.88	6	111	0.167	SW
CR2	20190313	Sunny	Light	Mid-Flood	В	9.9	10:34	11.29	9.44	29.64	20.4	2.65	5	110	0.165	W
CR2	20190313	Sunny	Light	Mid-Flood	В	9.9	10:34	11.33	9.21	31.34	20.1	2.6	6	110	0.145	SW
CR2	20190313	Sunny	Light	Mid-Flood	М	5.5	10:35	11.33	8.93	31.09	20.2	2.14	4	112	0.197	W
CR2	20190313	Sunny	Light	Mid-Flood	М	5.5	10:35	11.35	8.96	30.75	20.2	2.19	5	110	0.132	W
CR2	20190313	Sunny	Light	Mid-Flood	S	1	10:36	11.23	9.35	29.56	20.2	1.5	9	111	0.199	W
CR2	20190313	Sunny	Light	Mid-Flood	S	1	10:36	11.19	9.03	31.2	20.2	1.58	8	112	0.174	SW
S1	20190313	Sunny	Light	Mid-Flood	В	4.7	11:38	11.86	9	31	20.1	2.64	2	110	0.208	S
S1	20190313	Sunny	Light	Mid-Flood	В	4.7	11:38	11.93	9.25	29.82	20.2	2.62	4	111	0.131	W
S1	20190313	Sunny	Light	Mid-Flood	S	1	11:39	12.05	9.55	29.35	20.1	1.82	7	110	0.204	SW
S1	20190313	Sunny	Light	Mid-Flood	S	1	11:39	12.17	9.13	30.1	20.4	1.72	7	108	0.182	W
S2	20190313	Sunny	Light	Mid-Flood	В	8.3	12:09	11.88	9.44	30.73	20.4	2.53	3	112	0.127	SW
S2	20190313	Sunny	Light	Mid-Flood	В	8.3	12:09	11.7	9.02	29.21	20.4	2.48	3	111	0.228	W
S2	20190313	Sunny	Light	Mid-Flood	М	4.7	12:10	11.84	8.94	29.08	20.1	2.32	6	111	0.112	SW
S2	20190313	Sunny	Light	Mid-Flood	М	4.7	12:10	11.92	9.26	29.27	20.1	2.34	5	110	0.214	SW
S2	20190313	Sunny	Light	Mid-Flood	S	1	12:11	11.72	9.19	31.68	20.1	1.5	5	110	0.235	S
S2	20190313	Sunny	Light	Mid-Flood	S	1	12:11	11.7	9.39	29.84	20.3	1.42	6	112	0.161	SW
S3	20190313	Sunny	Light	Mid-Flood	В	7.1	10:22	11.59	9	30.23	20.2	2.77	4	111	0.223	SW
S3	20190313	Sunny	Light	Mid-Flood	В	7.1	10:22	11.59	9.34	31.21	20.1	2.83	5	111	0.212	W
S3	20190313	Sunny	Light	Mid-Flood	М	4.1	10:23	11.42	9.04	30.64	20.3	2.46	8	112	0.231	SW
S3	20190313	Sunny	Light	Mid-Flood	М	4.1	10:23	11.3	9.42	29.23	20.2	2.47	7	111	0.158	SW
S3	20190313	Sunny	Light	Mid-Flood	S	1	10:24	11.27	9.25	31.91	20.2	1.54	7	111	0.24	SW
S3	20190313	Sunny	Light	Mid-Flood	S	1	10:24	11.12	9.02	31.22	20.1	1.45	8	111	0.188	W

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
B1	20190313	Sunny	Light	Mid-Ebb	В	5.1	15:29	11.3	9.18	30.19	21	2.69	7	112	0.164	S
B1	20190313	Sunny	Light	Mid-Ebb	В	5.1	15:29	11.35	9.51	30.82	20.8	2.78	6	112	0.211	S
B1	20190313	Sunny	Light	Mid-Ebb	S	1	15:30	11.54	9.04	31.71	21	1.54	8	110	0.101	SE
B1	20190313	Sunny	Light	Mid-Ebb	S	1	15:30	11.72	9.3	29.09	20.9	1.57	7	112	0.232	S
B2	20190313	Sunny	Light	Mid-Ebb	В	5	15:51	11.02	9.29	29.39	20.8	2.99	5	112	0.163	SW
B2	20190313	Sunny	Light	Mid-Ebb	В	5	15:51	10.93	9.3	31.21	21	2.96	5	111	0.181	Е
B2	20190313	Sunny	Light	Mid-Ebb	S	1	15:52	10.95	9.14	29.29	21.1	1.5	8	111	0.21	S
B2	20190313	Sunny	Light	Mid-Ebb	S	1	15:52	11.12	9.04	29.26	20.8	1.53	9	112	0.2	SE
B3	20190313	Sunny	Light	Mid-Ebb	В	5	16:27	10.22	9.14	31.52	21	2.51	4	111	0.137	Е
B3	20190313	Sunny	Light	Mid-Ebb	В	5	16:27	10.16	9.35	30.14	21.2	2.56	5	111	0.196	S
B3	20190313	Sunny	Light	Mid-Ebb	S	1	16:28	10.23	9.4	31.82	21.2	1.63	4	111	0.21	Е
B3	20190313	Sunny	Light	Mid-Ebb	S	1	16:28	10.18	9.03	30.02	20.8	1.63	4	110	0.24	SW
B4	20190313	Sunny	Light	Mid-Ebb	В	4.2	16:37	11.74	9.5	31.35	21	2.56	5	111	0.209	S
B4	20190313	Sunny	Light	Mid-Ebb	В	4.2	16:37	11.71	9.26	29.97	21	2.59	5	111	0.161	SW
B4	20190313	Sunny	Light	Mid-Ebb	S	1	16:38	11.56	9.21	30.39	21.1	1.76	6	111	0.154	S
B4	20190313	Sunny	Light	Mid-Ebb	S	1	16:38	11.39	9.14	31.46	21.1	1.85	5	111	0.193	Е
C1	20190313	Sunny	Light	Mid-Ebb	В	8.7	15:02	10.78	8.98	30.34	21.1	2.61	7	110	0.158	SE
C1	20190313	Sunny	Light	Mid-Ebb	В	8.7	15:02	10.98	9.49	31.52	21.2	2.66	6	111	0.234	SE
C1	20190313	Sunny	Light	Mid-Ebb	М	4.9	15:03	10.79	9.15	29.43	20.8	2.01	5	110	0.184	SE
C1	20190313	Sunny	Light	Mid-Ebb	М	4.9	15:03	10.97	9.22	31.36	21	2.02	4	112	0.228	SE
C1	20190313	Sunny	Light	Mid-Ebb	S	1	15:04	11.09	9.25	31.84	21	1.53	6	112	0.22	S
C1	20190313	Sunny	Light	Mid-Ebb	S	1	15:04	11.25	9.34	30.61	21.1	1.48	6	112	0.151	Е
C2	20190313	Sunny	Light	Mid-Ebb	В	7.4	15:51	10.45	9.07	31.4	21.2	2.62	7	110	0.166	Е
C2	20190313	Sunny	Light	Mid-Ebb	В	7.4	15:51	10.62	9.15	31.63	21.1	2.65	6	111	0.143	S
C2	20190313	Sunny	Light	Mid-Ebb	М	4.2	15:52	10.75	9.06	30.93	20.9	2.07	6	112	0.233	S
C2	20190313	Sunny	Light	Mid-Ebb	М	4.2	15:52	10.87	9.33	29.55	21	2.15	7	112	0.169	E
C2	20190313	Sunny	Light	Mid-Ebb	S	1	15:53	10.8	9.07	29.1	21	1.81	6	111	0.109	SE
C2	20190313	Sunny	Light	Mid-Ebb	S	1	15:53	10.68	9.05	31.75	21.1	1.87	6	111	0.124	SE
F1	20190313	Sunny	Light	Mid-Ebb	В	6.5	17:30	11.34	9.57	29.44	20.8	2.97	6	111	0.12	SW
F1	20190313	Sunny	Light	Mid-Ebb	В	6.5	17:30	11.17	9.13	30.85	21.2	3.05	7	112	0.169	S
F1	20190313	Sunny	Light	Mid-Ebb	М	3.8	17:31	11.15	9.08	29.75	21.2	2.49	5	111	0.155	SE
F1	20190313	Sunny	Light	Mid-Ebb	М	3.8	17:31	10.96	9.27	29.87	20.8	2.59	5	112	0.101	SE

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
F1	20190313	Sunny	Light	Mid-Ebb	S	1	17:32	10.91	9.56	29.81	20.8	1.55	6	112	0.108	SE
F1	20190313	Sunny	Light	Mid-Ebb	S	1	17:32	11.07	9.12	31.6	21	1.46	6	113	0.216	S
H1	20190313	Sunny	Light	Mid-Ebb	В	6.9	16:11	10.49	9.45	30.05	21.2	2.77	4	111	0.164	S
H1	20190313	Sunny	Light	Mid-Ebb	В	6.9	16:11	10.52	9.15	30.96	21.1	2.8	6	111	0.096	S
H1	20190313	Sunny	Light	Mid-Ebb	М	4	16:12	10.46	9.21	30.41	21	2.32	5	110	0.212	SE
H1	20190313	Sunny	Light	Mid-Ebb	М	4	16:12	10.44	9.35	31.8	21.2	2.32	6	111	0.235	SE
H1	20190313	Sunny	Light	Mid-Ebb	S	1	16:13	10.49	9.28	29.28	21.1	1.89	5	111	0.198	SW
H1	20190313	Sunny	Light	Mid-Ebb	S	1	16:13	10.34	9.17	31.36	21.2	1.93	5	112	0.238	SE
M1	20190313	Sunny	Light	Mid-Ebb	В	7.8	15:25	11.7	9.02	29.85	20.9	2.88	7	112	0.164	SE
M1	20190313	Sunny	Light	Mid-Ebb	В	7.8	15:25	11.81	9.53	30.83	20.9	2.9	8	110	0.198	S
M1	20190313	Sunny	Light	Mid-Ebb	М	4.4	15:26	11.81	9.18	30.71	21.1	2.06	8	112	0.234	S
M1	20190313	Sunny	Light	Mid-Ebb	М	4.4	15:26	11.94	9.43	31.09	21	2.09	8	111	0.222	SW
M1	20190313	Sunny	Light	Mid-Ebb	S	1	15:27	11.86	9.28	29.98	20.9	1.55	11	112	0.105	S
M1	20190313	Sunny	Light	Mid-Ebb	S	1	15:27	11.91	9.38	29.81	20.9	1.51	11	111	0.214	SE
CR1	20190313	Sunny	Light	Mid-Ebb	В	11	16:22	10.6	9.48	31.07	20.8	2.82	4	110	0.235	SE
CR1	20190313	Sunny	Light	Mid-Ebb	В	11	16:22	10.52	9.17	29.48	21.2	2.85	6	110	0.196	SE
CR1	20190313	Sunny	Light	Mid-Ebb	М	6	16:23	10.68	9.2	29.15	21	2.41	4	111	0.159	SW
CR1	20190313	Sunny	Light	Mid-Ebb	М	6	16:23	10.63	8.96	29.91	21.1	2.46	3	113	0.211	SW
CR1	20190313	Sunny	Light	Mid-Ebb	S	1	16:24	10.61	9.17	31.5	20.8	1.83	5	111	0.23	SW
CR1	20190313	Sunny	Light	Mid-Ebb	S	1	16:24	10.77	9.42	31.84	21.2	1.88	4	113	0.21	S
CR2	20190313	Sunny	Light	Mid-Ebb	В	9.5	16:45	9.96	8.92	29.49	21	2.83	6	110	0.192	SE
CR2	20190313	Sunny	Light	Mid-Ebb	В	9.5	16:45	10.05	9.33	31.19	21	2.84	7	111	0.204	SE
CR2	20190313	Sunny	Light	Mid-Ebb	М	5.3	16:46	9.9	8.95	30.09	21.2	2.46	6	111	0.11	S
CR2	20190313	Sunny	Light	Mid-Ebb	М	5.3	16:46	10.06	9.22	30.51	20.9	2.46	7	110	0.198	Е
CR2	20190313	Sunny	Light	Mid-Ebb	S	1	16:47	10.17	9.51	30.58	20.9	1.72	6	111	0.214	SW
CR2	20190313	Sunny	Light	Mid-Ebb	S	1	16:47	9.97	9.49	29.44	20.8	1.82	5	112	0.214	E
S1	20190313	Sunny	Light	Mid-Ebb	В	4.4	15:40	11.89	9.42	29.46	21.2	2.57	5	112	0.207	SE
S1	20190313	Sunny	Light	Mid-Ebb	В	4.4	15:40	11.8	9.17	29.41	21.1	2.48	5	112	0.156	S
S1	20190313	Sunny	Light	Mid-Ebb	S	1	15:41	11.75	8.93	31.27	21	1.65	11	112	0.186	S
S1	20190313	Sunny	Light	Mid-Ebb	S	1	15:41	11.7	9.23	29.65	20.8	1.75	11	112	0.192	S
S2	20190313	Sunny	Light	Mid-Ebb	В	8	16:10	11.64	9.55	30.99	21	2.6	4	111	0.133	S
S2	20190313	Sunny	Light	Mid-Ebb	В	8	16:10	11.78	9.4	30.56	21.1	2.54	5	113	0.117	S

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
S2	20190313	Sunny	Light	Mid-Ebb	М	4.5	16:11	11.73	9.25	30.86	21.1	2.08	5	111	0.107	S
S2	20190313	Sunny	Light	Mid-Ebb	М	4.5	16:11	11.9	9.35	31.75	21.1	2.13	5	111	0.242	SE
S2	20190313	Sunny	Light	Mid-Ebb	S	1	16:12	11.85	9.26	29.26	20.8	1.67	6	112	0.173	SW
S2	20190313	Sunny	Light	Mid-Ebb	S	1	16:12	11.81	9.49	31.32	20.9	1.61	6	112	0.213	SE
S3	20190313	Sunny	Light	Mid-Ebb	В	7.2	16:30	11.36	9.33	30.01	21.2	2.55	6	113	0.164	Е
S3	20190313	Sunny	Light	Mid-Ebb	В	7.2	16:30	11.22	9.03	29.65	20.8	2.65	5	111	0.212	S
S3	20190313	Sunny	Light	Mid-Ebb	М	4.1	16:31	11.2	9.36	29.92	20.8	2.05	5	111	0.235	Е
S3	20190313	Sunny	Light	Mid-Ebb	М	4.1	16:31	11.3	9.24	29.23	20.8	2	4	111	0.11	SE
S3	20190313	Sunny	Light	Mid-Ebb	S	1	16:32	11.17	9.28	30.42	21.1	1.7	6	112	0.241	SW
S3	20190313	Sunny	Light	Mid-Ebb	S	1	16:32	11.02	9.38	30.8	20.8	1.75	5	111	0.167	SE
B1	20190315	Cloudy	Moderate	Mid-Flood	В	4.8	13:43	10.31	8.73	30.75	17.2	1.85	5	111	0.183	SW
B1	20190315	Cloudy	Moderate	Mid-Flood	В	4.8	13:43	10.41	8.8	31.28	17.4	1.9	4	109	0.234	W
B1	20190315	Cloudy	Moderate	Mid-Flood	S	1	13:44	10.34	9.06	29.8	17.3	1.94	4	90	0.303	W
B1	20190315	Cloudy	Moderate	Mid-Flood	S	1	13:44	10.54	8.93	30.9	17.2	1.86	4	104	0.191	W
B2	20190315	Cloudy	Moderate	Mid-Flood	В	4.9	14:01	9.57	8.82	32.32	17.6	1.98	8	109	0.198	W
B2	20190315	Cloudy	Moderate	Mid-Flood	В	4.9	14:01	9.72	9.01	31.13	17.3	1.98	7	110	0.273	NW
B2	20190315	Cloudy	Moderate	Mid-Flood	S	1	14:02	9.55	8.84	31.91	17.6	1.88	4	109	0.263	W
B2	20190315	Cloudy	Moderate	Mid-Flood	S	1	14:02	9.45	8.91	31.49	17.5	1.87	4	110	0.196	W
B3	20190315	Cloudy	Moderate	Mid-Flood	В	4.9	12:21	9.84	9.02	32.11	17.6	1.64	5	110	0.21	NW
B3	20190315	Cloudy	Moderate	Mid-Flood	В	4.9	12:21	9.87	9.05	32.24	17.5	1.61	4	110	0.248	W
B3	20190315	Cloudy	Moderate	Mid-Flood	S	1	12:22	10.06	8.77	31.05	17.5	1.53	6	109	0.245	W
B3	20190315	Cloudy	Moderate	Mid-Flood	S	1	12:22	9.94	9.04	29.79	17.6	1.58	6	110	0.185	W
B4	20190315	Cloudy	Moderate	Mid-Flood	В	4.7	12:30	10.39	8.75	30.75	17.5	1.54	4	109	0.195	SW
B4	20190315	Cloudy	Moderate	Mid-Flood	В	4.7	12:30	10.56	8.98	31.5	17.2	1.49	5	109	0.207	W
B4	20190315	Cloudy	Moderate	Mid-Flood	S	1	12:31	10.37	9.05	31.09	17.5	1.44	10	109	0.164	W
B4	20190315	Cloudy	Moderate	Mid-Flood	S	1	12:31	10.57	8.8	30.72	17.2	1.44	9	110	0.249	W
C1	20190315	Cloudy	Moderate	Mid-Flood	В	9.2	11:16	9.56	9.04	31.16	17.3	2.09	6	109	0.174	NW
C1	20190315	Cloudy	Moderate	Mid-Flood	В	9.2	11:16	9.68	9.01	31.82	17.4	2.04	5	109	0.238	W
C1	20190315	Cloudy	Moderate	Mid-Flood	М	5.1	11:17	9.59	8.73	30.02	17.4	2.04	6	109	0.192	SW
C1	20190315	Cloudy	Moderate	Mid-Flood	М	5.1	11:17	9.72	8.78	30.18	17.6	1.98	6	109	0.254	NW
C1	20190315	Cloudy	Moderate	Mid-Flood	S	1	11:18	9.82	8.89	29.59	17.3	1.91	3	109	0.184	SW
C1	20190315	Cloudy	Moderate	Mid-Flood	S	1	11:18	9.73	9.06	31.77	17.3	2	2	109	0.278	NW

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
C2	20190315	Cloudy	Moderate	Mid-Flood	В	7.1	10:19	11.62	8.88	30.85	17.6	1.97	5	108	0.212	SW
C2	20190315	Cloudy	Moderate	Mid-Flood	В	7.1	10:19	11.54	9.01	31.69	17.4	1.93	5	109	0.246	W
C2	20190315	Cloudy	Moderate	Mid-Flood	М	4.1	10:20	11.68	8.9	30.52	17.6	2.02	5	109	0.191	W
C2	20190315	Cloudy	Moderate	Mid-Flood	М	4.1	10:20	11.6	8.94	32.25	17.6	1.94	5	109	0.195	W
C2	20190315	Cloudy	Moderate	Mid-Flood	S	1	10:21	11.72	8.73	29.4	17.3	2.02	5	109	0.243	W
C2	20190315	Cloudy	Moderate	Mid-Flood	S	1	10:21	11.78	9.03	31.68	17.6	2	5	109	0.296	NW
F1	20190315	Cloudy	Moderate	Mid-Flood	В	7.5	10:44	10.77	8.87	31.22	17.5	1.33	3	109	0.235	SW
F1	20190315	Cloudy	Moderate	Mid-Flood	В	7.5	10:44	10.63	8.94	31.27	17.4	1.24	3	110	0.176	W
F1	20190315	Cloudy	Moderate	Mid-Flood	М	4.3	10:45	10.55	8.94	30.08	17.6	1.22	8	109	0.187	W
F1	20190315	Cloudy	Moderate	Mid-Flood	М	4.3	10:45	10.37	8.96	32.25	17.4	1.31	7	109	0.266	SW
F1	20190315	Cloudy	Moderate	Mid-Flood	S	1	10:46	10.22	8.99	31.53	17.6	1.25	8	109	0.239	W
F1	20190315	Cloudy	Moderate	Mid-Flood	S	1	10:46	10.13	8.73	30.69	17.5	1.19	7	111	0.216	W
H1	20190315	Cloudy	Moderate	Mid-Flood	В	6.7	11:58	9.5	8.92	31.35	17.5	2.03	5	111	0.268	NW
H1	20190315	Cloudy	Moderate	Mid-Flood	В	6.7	11:58	9.61	8.92	29.52	17.3	1.96	5	111	0.203	NW
H1	20190315	Cloudy	Moderate	Mid-Flood	М	3.9	11:59	9.6	8.77	30.44	17.3	1.88	5	110	0.251	NW
H1	20190315	Cloudy	Moderate	Mid-Flood	М	3.9	11:59	9.7	8.88	31.84	17.3	1.82	6	110	0.26	W
H1	20190315	Cloudy	Moderate	Mid-Flood	S	1	12:00	9.83	8.78	30.29	17.2	1.81	6	110	0.287	W
H1	20190315	Cloudy	Moderate	Mid-Flood	S	1	12:00	9.93	8.9	29.88	17.4	1.74	6	110	0.205	W
M1	20190315	Cloudy	Moderate	Mid-Flood	В	9	11:16	10.98	8.85	31.11	17.2	2.4	6	82	0.201	W
M1	20190315	Cloudy	Moderate	Mid-Flood	В	9	11:16	11.02	8.99	30.52	17.6	2.49	5	104	0.167	W
M1	20190315	Cloudy	Moderate	Mid-Flood	М	5	11:17	10.86	8.96	30	17.6	2.43	4	103	0.3	W
M1	20190315	Cloudy	Moderate	Mid-Flood	М	5	11:17	10.93	9.05	31.45	17.5	2.53	4	104	0.246	W
M1	20190315	Cloudy	Moderate	Mid-Flood	S	1	11:18	11.12	8.95	30.01	17.4	2.48	5	103	0.186	NW
M1	20190315	Cloudy	Moderate	Mid-Flood	S	1	11:18	11.03	8.79	31.51	17.4	2.48	4	103	0.273	W
CR1	20190315	Cloudy	Moderate	Mid-Flood	В	11.8	10:30	11.92	9.01	32.19	17.6	0.58	6	110	0.225	W
CR1	20190315	Cloudy	Moderate	Mid-Flood	В	11.8	10:30	11.72	9.04	31.8	17.3	0.57	6	108	0.261	W
CR1	20190315	Cloudy	Moderate	Mid-Flood	М	6.4	10:31	11.73	8.79	29.56	17.5	0.47	3	109	0.216	NW
CR1	20190315	Cloudy	Moderate	Mid-Flood	М	6.4	10:31	11.73	8.95	30.83	17.6	0.45	4	109	0.237	W
CR1	20190315	Cloudy	Moderate	Mid-Flood	S	1	10:32	11.79	9.02	31.07	17.3	0.37	6	109	0.181	SW
CR1	20190315	Cloudy	Moderate	Mid-Flood	S	1	10:32	11.82	8.98	31.28	17.3	0.38	7	110	0.223	W
CR2	20190315	Cloudy	Moderate	Mid-Flood	В	10.2	10:41	12.08	8.78	30.05	17.3	2.27	6	110	0.292	SW
CR2	20190315	Cloudy	Moderate	Mid-Flood	В	10.2	10:41	11.93	8.82	30.36	17.6	2.37	5	110	0.185	W

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
CR2	20190315	Cloudy	Moderate	Mid-Flood	М	5.6	10:42	12.05	9	29.68	17.4	2.47	4	108	0.207	SW
CR2	20190315	Cloudy	Moderate	Mid-Flood	М	5.6	10:42	12.05	9.04	32.13	17.3	2.37	6	109	0.245	W
CR2	20190315	Cloudy	Moderate	Mid-Flood	S	1	10:43	12.05	8.95	29.36	17.5	2.37	4	111	0.204	W
CR2	20190315	Cloudy	Moderate	Mid-Flood	S	1	10:43	12.04	8.72	30.41	17.2	2.44	4	110	0.173	W
S1	20190315	Cloudy	Moderate	Mid-Flood	В	4.6	13:50	10.68	8.74	29.8	17.4	2.24	3	111	0.19	W
S1	20190315	Cloudy	Moderate	Mid-Flood	В	4.6	13:50	10.83	8.82	30.35	17.5	2.18	4	110	0.245	W
S1	20190315	Cloudy	Moderate	Mid-Flood	S	1	13:51	10.9	8.93	31.84	17.5	2.23	4	108	0.229	SW
S1	20190315	Cloudy	Moderate	Mid-Flood	S	1	13:51	11.09	9.05	29.55	17.2	2.2	4	110	0.308	W
S2	20190315	Cloudy	Moderate	Mid-Flood	В	8.4	12:08	11.32	8.75	29.86	17.6	1.97	4	110	0.182	W
S2	20190315	Cloudy	Moderate	Mid-Flood	В	8.4	12:08	11.18	8.95	31.62	17.4	1.96	4	108	0.201	W
S2	20190315	Cloudy	Moderate	Mid-Flood	М	4.7	12:09	11.1	8.73	29.67	17.5	2.03	4	109	0.228	SW
S2	20190315	Cloudy	Moderate	Mid-Flood	М	4.7	12:09	11.3	9.05	31.08	17.2	1.97	4	109	0.228	W
S2	20190315	Cloudy	Moderate	Mid-Flood	S	1	12:10	11.19	8.97	31.71	17.6	2.04	5	108	0.214	W
S2	20190315	Cloudy	Moderate	Mid-Flood	S	1	12:10	11.3	9.03	29.61	17.5	1.99	4	110	0.306	W
S 3	20190315	Cloudy	Moderate	Mid-Flood	В	7.6	10:50	9.91	9.04	31.77	17.6	2.07	4	109	0.298	NW
S 3	20190315	Cloudy	Moderate	Mid-Flood	В	7.6	10:50	9.71	8.81	30.29	17.3	2.03	5	110	0.195	NW
S3	20190315	Cloudy	Moderate	Mid-Flood	М	4.3	10:51	9.57	8.97	30.06	17.4	2.04	3	110	0.171	W
S 3	20190315	Cloudy	Moderate	Mid-Flood	М	4.3	10:51	9.4	8.96	29.86	17.3	1.95	3	109	0.171	W
S 3	20190315	Cloudy	Moderate	Mid-Flood	S	1	10:52	9.39	9.04	31.83	17.2	2.05	4	110	0.257	SW
S 3	20190315	Cloudy	Moderate	Mid-Flood	S	1	10:52	9.41	9.03	31	17.4	2.13	4	109	0.257	W
B1	20190315	Cloudy	Moderate	Mid-Ebb	В	4.5	16:00	11.6	8.75	29.37	18.6	2.43	5	110	0.19	Е
B1	20190315	Cloudy	Moderate	Mid-Ebb	В	4.5	16:00	11.49	9.14	32.55	18.6	2.36	6	101	0.121	S
B1	20190315	Cloudy	Moderate	Mid-Ebb	S	1	16:01	11.69	8.97	31.15	18.5	2.45	5	100	0.087	SE
B1	20190315	Cloudy	Moderate	Mid-Ebb	S	1	16:01	11.51	8.97	31.01	18.8	2.39	5	105	0.215	SE
B2	20190315	Cloudy	Moderate	Mid-Ebb	В	5	15:47	11.48	8.8	30.27	18.4	0.59	5	111	0.065	Е
B2	20190315	Cloudy	Moderate	Mid-Ebb	В	5	15:47	11.57	8.66	30.64	18.4	0.63	5	110	0.144	Е
B2	20190315	Cloudy	Moderate	Mid-Ebb	S	1	15:48	11.62	8.87	32.86	18.6	0.69	4	91	0.071	S
B2	20190315	Cloudy	Moderate	Mid-Ebb	S	1	15:48	11.75	9	31.26	18.7	0.68	5	107	0.155	Е
B3	20190315	Cloudy	Moderate	Mid-Ebb	В	4.5	16:21	10.83	9.1	29.56	18.6	0.83	5	112	0.145	S
B3	20190315	Cloudy	Moderate	Mid-Ebb	В	4.5	16:21	10.64	9.15	32.85	18.4	0.79	6	111	0.174	SE
B3	20190315	Cloudy	Moderate	Mid-Ebb	S	1	16:22	10.62	9.13	29.67	18.5	0.76	4	104	0.173	SE
B3	20190315	Cloudy	Moderate	Mid-Ebb	S	1	16:22	10.49	9.06	32.19	18.5	0.7	5	110	0.188	S

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
B4	20190315	Cloudy	Moderate	Mid-Ebb	В	4.5	16:29	11.36	9.15	31.95	18.7	0.79	6	112	0.067	Е
B4	20190315	Cloudy	Moderate	Mid-Ebb	В	4.5	16:29	11.17	8.8	32.42	18.7	0.69	5	110	0.115	SE
B4	20190315	Cloudy	Moderate	Mid-Ebb	S	1	16:30	11.27	9.08	31.2	18.7	0.66	5	109	0.145	S
B4	20190315	Cloudy	Moderate	Mid-Ebb	S	1	16:30	11.45	8.66	29.09	18.7	0.68	6	111	0.14	NE
C1	20190315	Cloudy	Moderate	Mid-Ebb	В	9.7	15:37	10.08	9.14	30.69	18.5	1.75	6	112	0.081	S
C1	20190315	Cloudy	Moderate	Mid-Ebb	В	9.7	15:37	10.04	8.83	30.57	18.7	1.85	5	110	0.098	S
C1	20190315	Cloudy	Moderate	Mid-Ebb	М	5.4	15:38	10	9.05	31.58	18.7	1.88	6	110	0.079	Е
C1	20190315	Cloudy	Moderate	Mid-Ebb	М	5.4	15:38	10.09	8.98	29.23	18.4	1.95	5	109	0.136	Е
C1	20190315	Cloudy	Moderate	Mid-Ebb	S	1	15:39	10.06	9.04	29.64	18.4	2.03	5	110	0.133	Е
C1	20190315	Cloudy	Moderate	Mid-Ebb	S	1	15:39	10.25	8.63	32.86	18.5	2.08	5	107	0.12	S
C2	20190315	Cloudy	Moderate	Mid-Ebb	В	7	17:10	12.29	8.75	32.11	18.4	1.46	9	109	0.098	SE
C2	20190315	Cloudy	Moderate	Mid-Ebb	В	7	17:10	12.34	8.85	31.76	18.7	1.51	8	109	0.173	SE
C2	20190315	Cloudy	Moderate	Mid-Ebb	М	4	17:11	12.45	9.09	30.7	18.8	1.53	7	109	0.118	S
C2	20190315	Cloudy	Moderate	Mid-Ebb	М	4	17:11	12.39	8.81	30.67	18.5	1.52	7	109	0.142	NE
C2	20190315	Cloudy	Moderate	Mid-Ebb	S	1	17:12	12.46	8.81	30.93	18.7	1.49	5	110	0.115	SE
C2	20190315	Cloudy	Moderate	Mid-Ebb	S	1	17:12	12.43	8.95	31.21	18.4	1.5	6	112	0.167	Е
F1	20190315	Cloudy	Moderate	Mid-Ebb	В	6.5	16:58	10.95	8.65	31.87	18.8	0.85	8	110	0.063	SE
F1	20190315	Cloudy	Moderate	Mid-Ebb	В	6.5	16:58	11.12	8.68	32.03	18.4	0.9	8	110	0.169	S
F1	20190315	Cloudy	Moderate	Mid-Ebb	М	3.8	16:59	11.28	8.95	30.36	18.6	0.82	7	112	0.105	Е
F1	20190315	Cloudy	Moderate	Mid-Ebb	М	3.8	16:59	11.48	8.95	29.93	18.5	0.74	7	110	0.079	SE
F1	20190315	Cloudy	Moderate	Mid-Ebb	S	1	17:00	11.58	8.94	29.31	18.5	0.83	11	109	0.112	S
F1	20190315	Cloudy	Moderate	Mid-Ebb	S	1	17:00	11.73	8.79	29.99	18.4	0.87	12	108	0.129	S
H1	20190315	Cloudy	Moderate	Mid-Ebb	В	7.2	16:11	10.55	8.95	30.98	18.4	1.17	7	111	0.062	Е
H1	20190315	Cloudy	Moderate	Mid-Ebb	В	7.2	16:11	10.55	8.77	31.14	18.5	1.23	6	110	0.104	SE
H1	20190315	Cloudy	Moderate	Mid-Ebb	М	4.1	16:12	10.39	8.8	32.43	18.6	1.23	5	107	0.075	SE
H1	20190315	Cloudy	Moderate	Mid-Ebb	М	4.1	16:12	10.26	8.74	31.05	18.6	1.19	6	112	0.074	S
H1	20190315	Cloudy	Moderate	Mid-Ebb	S	1	16:13	10.32	8.75	30.08	18.6	1.12	7	108	0.196	S
H1	20190315	Cloudy	Moderate	Mid-Ebb	S	1	16:13	10.33	8.63	31.62	18.4	1.18	6	107	0.15	S
M1	20190315	Cloudy	Moderate	Mid-Ebb	В	8.5	17:25	10.26	8.62	30.23	18.4	1.2	10	109	0.085	SE
M1	20190315	Cloudy	Moderate	Mid-Ebb	В	8.5	17:25	10.15	9.17	29.99	18.7	1.16	9	109	0.114	S
M1	20190315	Cloudy	Moderate	Mid-Ebb	М	4.8	17:26	10.16	9.12	30.98	18.8	1.12	7	109	0.216	SE
M1	20190315	Cloudy	Moderate	Mid-Ebb	М	4.8	17:26	10.29	8.8	32.59	18.6	1.02	8	109	0.142	SE

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
M1	20190315	Cloudy	Moderate	Mid-Ebb	S	1	17:27	10.32	8.71	30.35	18.6	1.02	9	110	0.074	SE
M1	20190315	Cloudy	Moderate	Mid-Ebb	S	1	17:27	10.38	8.87	30.16	18.6	1	9	110	0.161	E
CR1	20190315	Cloudy	Moderate	Mid-Ebb	В	11.8	16:51	9.81	8.93	29.08	18.7	1.13	6	108	0.102	Е
CR1	20190315	Cloudy	Moderate	Mid-Ebb	В	11.8	16:51	9.95	9.08	29.4	18.4	1.12	6	110	0.189	SE
CR1	20190315	Cloudy	Moderate	Mid-Ebb	М	6.4	16:52	10.06	8.76	32.08	18.7	1.19	6	110	0.228	S
CR1	20190315	Cloudy	Moderate	Mid-Ebb	М	6.4	16:52	9.99	8.9	32.15	18.6	1.25	6	109	0.196	S
CR1	20190315	Cloudy	Moderate	Mid-Ebb	S	1	16:53	9.9	8.69	30.4	18.5	1.2	5	112	0.141	SE
CR1	20190315	Cloudy	Moderate	Mid-Ebb	S	1	16:53	9.77	8.88	31.17	18.7	1.28	4	111	0.132	Е
CR2	20190315	Cloudy	Moderate	Mid-Ebb	В	9.7	16:35	10.16	9.02	29.59	18.6	0.65	8	111	0.081	Е
CR2	20190315	Cloudy	Moderate	Mid-Ebb	В	9.7	16:35	10.19	8.7	32.08	18.4	0.67	8	110	0.137	S
CR2	20190315	Cloudy	Moderate	Mid-Ebb	М	5.4	16:36	10.1	8.76	32.8	18.8	0.72	7	110	0.073	SE
CR2	20190315	Cloudy	Moderate	Mid-Ebb	М	5.4	16:36	9.9	9.02	31.43	18.4	0.62	7	109	0.218	Е
CR2	20190315	Cloudy	Moderate	Mid-Ebb	S	1	16:37	9.77	8.96	32.66	18.7	0.68	8	109	0.182	S
CR2	20190315	Cloudy	Moderate	Mid-Ebb	S	1	16:37	9.83	8.89	32.56	18.7	0.63	8	108	0.101	Е
S1	20190315	Cloudy	Moderate	Mid-Ebb	В	4.2	16:09	10.5	8.8	32.73	18.4	0.96	9	109	0.23	SE
S1	20190315	Cloudy	Moderate	Mid-Ebb	В	4.2	16:09	10.44	8.65	32.44	18.8	0.87	9	109	0.184	Е
S1	20190315	Cloudy	Moderate	Mid-Ebb	S	1	16:10	10.51	8.76	31.45	18.8	0.85	5	110	0.231	Е
S1	20190315	Cloudy	Moderate	Mid-Ebb	S	1	16:10	10.69	8.86	31.2	18.8	0.85	6	109	0.13	E
S2	20190315	Cloudy	Moderate	Mid-Ebb	В	8.4	16:23	10.2	8.98	29.29	18.8	2.39	5	110	0.09	S
S2	20190315	Cloudy	Moderate	Mid-Ebb	В	8.4	16:23	10.4	8.89	32.56	18.7	2.35	4	110	0.196	SE
S2	20190315	Cloudy	Moderate	Mid-Ebb	М	4.7	16:24	10.22	8.87	30.65	18.8	2.38	5	112	0.116	S
S2	20190315	Cloudy	Moderate	Mid-Ebb	М	4.7	16:24	10.16	9.14	32.17	18.6	2.31	5	111	0.229	NE
S2	20190315	Cloudy	Moderate	Mid-Ebb	S	1	16:25	10.26	9.05	32.47	18.4	2.24	5	110	0.185	SE
S2	20190315	Cloudy	Moderate	Mid-Ebb	S	1	16:25	10.35	8.79	32.31	18.6	2.28	4	108	0.074	SE
S3	20190315	Cloudy	Moderate	Mid-Ebb	В	6.8	16:41	11.45	8.62	29.3	18.8	0.64	9	110	0.084	SE
S3	20190315	Cloudy	Moderate	Mid-Ebb	В	6.8	16:41	11.6	9.17	29.24	18.6	0.54	9	110	0.129	SE
S3	20190315	Cloudy	Moderate	Mid-Ebb	М	3.9	16:42	11.75	8.65	32.3	18.5	0.58	7	110	0.143	SE
S3	20190315	Cloudy	Moderate	Mid-Ebb	М	3.9	16:42	11.71	8.62	32.68	18.6	0.48	8	110	0.071	Е
S3	20190315	Cloudy	Moderate	Mid-Ebb	S	1	16:43	11.63	8.63	31.63	18.7	0.4	7	110	0.201	E
S3	20190315	Cloudy	Moderate	Mid-Ebb	S	1	16:43	11.53	9.14	31.72	18.6	0.41	7	108	0.206	Е
B1	20190318	Sunny	Moderate	Mid-Ebb	В	4.4	11:01	9.79	9.2	29.73	20.9	3.11	6	112	0.163	SE
B1	20190318	Sunny	Moderate	Mid-Ebb	В	4.4	11:01	9.75	8.83	31.1	21.1	3.08	5	113	0.126	Е

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
B1	20190318	Sunny	Moderate	Mid-Ebb	S	1	11:02	9.58	9.15	30.62	21.1	3.18	4	112	0.083	SE
B1	20190318	Sunny	Moderate	Mid-Ebb	S	1	11:02	9.75	9.13	30.7	21	3.23	6	112	0.199	Е
B2	20190318	Sunny	Moderate	Mid-Ebb	В	4.6	11:26	11.63	8.99	31.65	20.9	3.4	4	112	0.133	Е
B2	20190318	Sunny	Moderate	Mid-Ebb	В	4.6	11:26	11.49	9.23	30.47	21	3.5	4	112	0.153	SE
B2	20190318	Sunny	Moderate	Mid-Ebb	S	1	11:27	11.36	8.99	31.06	20.9	3.56	6	112	0.171	Е
B2	20190318	Sunny	Moderate	Mid-Ebb	S	1	11:27	11.29	9.05	30.43	20.9	3.54	6	113	0.167	SE
B3	20190318	Sunny	Moderate	Mid-Ebb	В	4.9	10:53	10.7	9.22	31.88	20.9	3.17	8	112	0.179	SE
B3	20190318	Sunny	Moderate	Mid-Ebb	В	4.9	10:53	10.78	9.27	31.44	21	3.18	8	111	0.095	E
B3	20190318	Sunny	Moderate	Mid-Ebb	S	1	10:54	10.83	9.02	31.4	21	3.19	6	111	0.163	SE
B3	20190318	Sunny	Moderate	Mid-Ebb	S	1	10:54	11.02	8.97	31.67	21.1	3.17	6	111	0.115	SE
B4	20190318	Sunny	Moderate	Mid-Ebb	В	4.5	10:43	10.27	8.83	30.14	20.9	3.36	5	112	0.116	SE
B4	20190318	Sunny	Moderate	Mid-Ebb	В	4.5	10:43	10.22	8.83	31.31	20.9	3.45	6	111	0.065	SE
B4	20190318	Sunny	Moderate	Mid-Ebb	S	1	10:44	10.06	9.21	30.27	20.9	3.55	6	111	0.171	Е
B4	20190318	Sunny	Moderate	Mid-Ebb	S	1	10:44	10.03	9.01	31.19	20.9	3.56	5	111	0.092	Е
C1	20190318	Sunny	Moderate	Mid-Ebb	В	9.3	10:33	11.72	8.85	30.64	21.1	2.18	7	111	0.099	Е
C1	20190318	Sunny	Moderate	Mid-Ebb	В	9.3	10:33	11.69	8.96	30.51	21.1	2.15	7	111	0.071	Е
C1	20190318	Sunny	Moderate	Mid-Ebb	М	5.2	10:34	11.54	9.19	31.84	20.9	2.22	7	112	0.174	SE
C1	20190318	Sunny	Moderate	Mid-Ebb	М	5.2	10:34	11.7	9.02	29.14	21.1	2.32	6	111	0.077	SE
C1	20190318	Sunny	Moderate	Mid-Ebb	S	1	10:35	11.76	9.12	29.1	20.9	2.32	5	111	0.161	SE
C1	20190318	Sunny	Moderate	Mid-Ebb	S	1	10:35	11.89	8.88	31.21	21.1	2.34	5	113	0.148	SE
C2	20190318	Sunny	Moderate	Mid-Ebb	В	6.6	10:32	10.86	8.83	31.62	20.8	2.07	6	111	0.113	Е
C2	20190318	Sunny	Moderate	Mid-Ebb	В	6.6	10:32	10.68	9.2	31.2	21	2.09	7	110	0.087	SE
C2	20190318	Sunny	Moderate	Mid-Ebb	М	3.8	10:33	10.48	8.92	29.09	21	2.15	7	112	0.201	Е
C2	20190318	Sunny	Moderate	Mid-Ebb	М	3.8	10:33	10.6	9.09	31.11	21.1	2.05	6	111	0.197	SE
C2	20190318	Sunny	Moderate	Mid-Ebb	S	1	10:34	10.42	9.22	30.85	20.9	2.11	5	111	0.069	NE
C2	20190318	Sunny	Moderate	Mid-Ebb	S	1	10:34	10.58	8.82	29.57	20.9	2.2	5	111	0.167	Е
F1	20190318	Sunny	Moderate	Mid-Ebb	В	6.8	12:37	9.99	9.09	31.13	21	2.12	7	111	0.133	Е
F1	20190318	Sunny	Moderate	Mid-Ebb	В	6.8	12:37	9.96	9.08	31.66	21	2.22	7	112	0.089	SE
F1	20190318	Sunny	Moderate	Mid-Ebb	М	3.9	12:38	9.98	9.17	30.76	21	2.17	5	111	0.187	Е
F1	20190318	Sunny	Moderate	Mid-Ebb	М	3.9	12:38	10.09	8.97	29.76	21.1	2.12	5	111	0.118	Е
F1	20190318	Sunny	Moderate	Mid-Ebb	S	1	12:39	10.2	9.2	30.8	21	2.05	6	111	0.105	Е
F1	20190318	Sunny	Moderate	Mid-Ebb	S	1	12:39	10.17	9.14	31.03	20.9	2.1	6	111	0.113	SE

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
H1	20190318	Sunny	Moderate	Mid-Ebb	В	7.1	11:02	10.77	9.13	31.66	20.9	2.46	7	112	0.119	Е
H1	20190318	Sunny	Moderate	Mid-Ebb	В	7.1	11:02	10.59	8.91	31.66	20.9	2.42	7	112	0.18	SE
H1	20190318	Sunny	Moderate	Mid-Ebb	М	4.1	11:03	10.74	8.97	30.12	21	2.51	6	112	0.085	Е
H1	20190318	Sunny	Moderate	Mid-Ebb	М	4.1	11:03	10.78	9.27	31.1	20.9	2.43	6	112	0.186	Е
H1	20190318	Sunny	Moderate	Mid-Ebb	S	1	11:04	10.76	8.86	31.83	21.1	2.33	5	110	0.093	SE
H1	20190318	Sunny	Moderate	Mid-Ebb	S	1	11:04	10.67	8.91	29.71	21	2.32	6	111	0.137	E
M1	20190318	Sunny	Moderate	Mid-Ebb	В	7.9	12:19	10.7	9.13	29.78	21.1	2.65	8	111	0.121	SE
M1	20190318	Sunny	Moderate	Mid-Ebb	В	7.9	12:19	10.79	8.94	29.51	21.1	2.67	7	112	0.174	SE
M1	20190318	Sunny	Moderate	Mid-Ebb	М	4.5	12:20	10.59	9.11	31.57	21.1	2.66	7	111	0.182	SE
M1	20190318	Sunny	Moderate	Mid-Ebb	М	4.5	12:20	10.44	9.04	31.12	21	2.67	7	111	0.173	SE
M1	20190318	Sunny	Moderate	Mid-Ebb	S	1	12:21	10.31	8.84	31.76	20.8	2.59	6	112	0.174	E
M1	20190318	Sunny	Moderate	Mid-Ebb	S	1	12:21	10.18	8.97	30.82	21.1	2.68	7	111	0.127	SE
CR1	20190318	Sunny	Moderate	Mid-Ebb	В	11.5	11:37	10.8	8.86	30.03	20.8	2.03	6	111	0.12	E
CR1	20190318	Sunny	Moderate	Mid-Ebb	В	11.5	11:37	10.86	9.2	31.21	21	2.04	6	110	0.197	E
CR1	20190318	Sunny	Moderate	Mid-Ebb	М	6.3	11:38	11.04	9.24	29.87	20.8	1.95	4	111	0.135	SE
CR1	20190318	Sunny	Moderate	Mid-Ebb	М	6.3	11:38	11.14	8.85	31.14	21	1.93	5	112	0.185	SE
CR1	20190318	Sunny	Moderate	Mid-Ebb	S	1	11:39	11.13	8.95	31.39	21.1	1.84	5	112	0.147	E
CR1	20190318	Sunny	Moderate	Mid-Ebb	S	1	11:39	11.28	9.1	29.88	21.1	1.88	5	112	0.114	SE
CR2	20190318	Sunny	Moderate	Mid-Ebb	В	9.4	11:16	9.72	9.17	30.84	21.1	2.5	8	112	0.193	NE
CR2	20190318	Sunny	Moderate	Mid-Ebb	В	9.4	11:16	9.91	9.26	30.57	20.8	2.6	8	112	0.06	SE
CR2	20190318	Sunny	Moderate	Mid-Ebb	М	5.2	11:17	9.77	9.19	31.92	21.1	2.54	6	113	0.102	SE
CR2	20190318	Sunny	Moderate	Mid-Ebb	М	5.2	11:17	9.61	9.16	30.12	21	2.48	7	112	0.09	Е
CR2	20190318	Sunny	Moderate	Mid-Ebb	S	1	11:18	9.45	9.19	30.7	21.1	2.57	5	112	0.192	Е
CR2	20190318	Sunny	Moderate	Mid-Ebb	S	1	11:18	9.36	8.93	30.76	21.1	2.61	6	111	0.139	Е
S1	20190318	Sunny	Moderate	Mid-Ebb	В	4.1	11:12	10.87	9.02	31.82	21	3.22	7	111	0.067	Е
S1	20190318	Sunny	Moderate	Mid-Ebb	В	4.1	11:12	10.8	8.96	29.19	21	3.28	7	112	0.177	SE
S1	20190318	Sunny	Moderate	Mid-Ebb	S	1	11:13	10.87	9.04	31.47	20.8	3.21	8	111	0.202	SE
S1	20190318	Sunny	Moderate	Mid-Ebb	S	1	11:13	10.81	9.24	29.7	20.9	3.13	7	112	0.139	Е
S2	20190318	Sunny	Moderate	Mid-Ebb	В	8.2	11:48	11.71	9.02	31.45	20.9	3.25	6	111	0.09	Е
S2	20190318	Sunny	Moderate	Mid-Ebb	В	8.2	11:48	11.9	9.24	30.48	21	3.28	7	112	0.116	Е
S2	20190318	Sunny	Moderate	Mid-Ebb	М	4.6	11:49	11.79	8.94	30.67	21	3.37	6	112	0.08	Е
S2	20190318	Sunny	Moderate	Mid-Ebb	М	4.6	11:49	11.61	9.25	30.39	21.1	3.46	8	112	0.162	Е

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
S2	20190318	Sunny	Moderate	Mid-Ebb	S	1	11:50	11.71	9.13	29.9	20.8	3.41	5	111	0.162	SE
S2	20190318	Sunny	Moderate	Mid-Ebb	S	1	11:50	11.69	8.82	29.51	21	3.37	5	111	0.168	SE
S 3	20190318	Sunny	Moderate	Mid-Ebb	В	7.5	11:27	9.92	9.06	30.98	20.9	2.44	5	111	0.124	Е
S 3	20190318	Sunny	Moderate	Mid-Ebb	В	7.5	11:27	9.79	9.17	30.5	21.1	2.45	5	112	0.113	SE
S 3	20190318	Sunny	Moderate	Mid-Ebb	М	4.3	11:28	9.86	9.12	30.01	21.1	2.45	5	112	0.13	SE
S 3	20190318	Sunny	Moderate	Mid-Ebb	М	4.3	11:28	9.66	9.12	30.45	20.9	2.36	5	111	0.095	SE
S 3	20190318	Sunny	Moderate	Mid-Ebb	S	1	11:29	9.57	9.03	29.96	20.9	2.26	6	111	0.132	SE
S 3	20190318	Sunny	Moderate	Mid-Ebb	S	1	11:29	9.77	9.03	31.04	20.9	2.18	6	112	0.124	SE
B1	20190318	Sunny	Moderate	Mid-Flood	В	4.8	15:20	10.16	9.25	31.68	23.4	3.09	4	113	0.229	W
B1	20190318	Sunny	Moderate	Mid-Flood	В	4.8	15:20	10.36	9.26	31.49	23.7	2.99	5	112	0.174	SW
B1	20190318	Sunny	Moderate	Mid-Flood	S	1	15:21	10.21	8.87	31.92	23.4	2.99	5	112	0.245	SW
B1	20190318	Sunny	Moderate	Mid-Flood	S	1	15:21	10.37	9.04	31.68	23.6	3.06	4	113	0.151	SW
B2	20190318	Sunny	Moderate	Mid-Flood	В	5.2	15:41	11.03	8.85	29.36	23.6	2.94	4	111	0.125	W
B2	20190318	Sunny	Moderate	Mid-Flood	В	5.2	15:41	11.19	9.1	29.73	23.6	2.92	5	112	0.204	W
B2	20190318	Sunny	Moderate	Mid-Flood	S	1	15:42	11.24	9.04	31.12	23.6	2.96	5	112	0.221	W
B2	20190318	Sunny	Moderate	Mid-Flood	S	1	15:42	11.44	9.19	31.85	23.8	2.99	5	113	0.168	SW
B3	20190318	Sunny	Moderate	Mid-Flood	В	4.6	14:59	11.75	9.15	30.13	23.4	2.68	4	113	0.175	NW
B3	20190318	Sunny	Moderate	Mid-Flood	В	4.6	14:59	11.62	8.83	31.05	23.5	2.77	4	113	0.199	SW
B3	20190318	Sunny	Moderate	Mid-Flood	S	1	15:00	11.75	9.16	31.28	23.8	2.75	6	113	0.192	W
B3	20190318	Sunny	Moderate	Mid-Flood	S	1	15:00	11.61	8.99	30.22	23.5	2.68	5	112	0.17	W
B4	20190318	Sunny	Moderate	Mid-Flood	В	5.2	15:11	11.98	9.05	30.27	23.7	2.79	5	112	0.24	W
B4	20190318	Sunny	Moderate	Mid-Flood	В	5.2	15:11	11.84	9.16	31.28	23.7	2.86	5	111	0.222	W
B4	20190318	Sunny	Moderate	Mid-Flood	S	1	15:12	11.91	9.06	30.5	23.5	2.8	5	112	0.126	NW
B4	20190318	Sunny	Moderate	Mid-Flood	S	1	15:12	11.73	9.17	30.04	23.5	2.75	5	112	0.214	W
C1	20190318	Sunny	Moderate	Mid-Flood	В	10.7	14:56	11.55	8.88	31.82	23.5	2.68	6	111	0.201	W
C1	20190318	Sunny	Moderate	Mid-Flood	В	10.7	14:56	11.49	8.94	30.55	23.5	2.76	7	112	0.19	NW
C1	20190318	Sunny	Moderate	Mid-Flood	М	5.9	14:57	11.5	8.98	30.56	23.7	2.82	5	112	0.167	NW
C1	20190318	Sunny	Moderate	Mid-Flood	М	5.9	14:57	11.4	9	31.16	23.4	2.85	6	113	0.243	W
C1	20190318	Sunny	Moderate	Mid-Flood	S	1	14:58	11.34	8.91	29.33	23.8	2.79	6	113	0.228	W
C1	20190318	Sunny	Moderate	Mid-Flood	S	1	14:58	11.2	8.9	30.53	23.7	2.8	7	112	0.183	W
C2	20190318	Sunny	Moderate	Mid-Flood	В	7.6	14:13	11.8	8.88	29.67	23.6	2.57	6	112	0.186	W
C2	20190318	Sunny	Moderate	Mid-Flood	В	7.6	14:13	11.81	9.25	31.77	23.7	2.51	6	113	0.131	W

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
C2	20190318	Sunny	Moderate	Mid-Flood	М	4.3	14:14	11.98	8.84	31.6	23.8	2.59	3	112	0.224	W
C2	20190318	Sunny	Moderate	Mid-Flood	М	4.3	14:14	11.99	9.11	30.64	23.7	2.54	4	111	0.171	SW
C2	20190318	Sunny	Moderate	Mid-Flood	S	1	14:15	11.95	8.87	31.15	23.4	2.5	4	112	0.221	W
C2	20190318	Sunny	Moderate	Mid-Flood	S	1	14:15	11.81	9.18	30.39	23.6	2.51	4	112	0.165	W
F1	20190318	Sunny	Moderate	Mid-Flood	В	7.6	16:29	10.62	8.9	31.13	23.4	3.48	7	113	0.229	W
F1	20190318	Sunny	Moderate	Mid-Flood	В	7.6	16:29	10.68	8.83	31.73	23.8	3.58	6	112	0.223	W
F1	20190318	Sunny	Moderate	Mid-Flood	М	4.3	16:30	10.56	9.23	31.54	23.4	3.65	4	113	0.184	W
F1	20190318	Sunny	Moderate	Mid-Flood	М	4.3	16:30	10.66	8.92	29.58	23.5	3.58	5	114	0.213	SW
F1	20190318	Sunny	Moderate	Mid-Flood	S	1	16:31	10.77	9.07	29.96	23.7	3.67	4	113	0.201	SW
F1	20190318	Sunny	Moderate	Mid-Flood	S	1	16:31	10.89	9.25	30.87	23.4	3.76	5	111	0.212	W
H1	20190318	Sunny	Moderate	Mid-Flood	В	6.7	14:41	10.63	8.94	30.11	23.6	2.23	7	112	0.131	SW
H1	20190318	Sunny	Moderate	Mid-Flood	В	6.7	14:41	10.45	8.85	29.76	23.6	2.25	6	112	0.129	W
H1	20190318	Sunny	Moderate	Mid-Flood	М	3.9	14:42	10.61	8.88	30.31	23.5	2.16	6	112	0.168	SW
H1	20190318	Sunny	Moderate	Mid-Flood	М	3.9	14:42	10.57	8.91	29.37	23.8	2.23	5	112	0.217	W
H1	20190318	Sunny	Moderate	Mid-Flood	S	1	14:43	10.7	8.83	29.83	23.8	2.13	7	112	0.125	W
H1	20190318	Sunny	Moderate	Mid-Flood	S	1	14:43	10.69	9.18	31.09	23.5	2.12	7	112	0.215	W
M1	20190318	Sunny	Moderate	Mid-Flood	В	8.2	15:52	10.14	9.09	31.67	23.6	2.23	6	113	0.175	W
M1	20190318	Sunny	Moderate	Mid-Flood	В	8.2	15:52	9.99	9.02	29.22	23.4	2.17	7	112	0.198	SW
M1	20190318	Sunny	Moderate	Mid-Flood	М	4.6	15:53	10.09	9.22	30.54	23.6	2.12	7	112	0.211	W
M1	20190318	Sunny	Moderate	Mid-Flood	М	4.6	15:53	10.04	9.13	29.89	23.6	2.09	8	113	0.239	W
M1	20190318	Sunny	Moderate	Mid-Flood	S	1	15:54	10	8.88	31.39	23.7	1.99	7	113	0.2	SW
M1	20190318	Sunny	Moderate	Mid-Flood	S	1	15:54	10.03	9.26	30.31	23.8	1.9	6	111	0.17	SW
CR1	20190318	Sunny	Moderate	Mid-Flood	В	11.3	14:10	12.04	9.11	31.55	23.8	3.41	7	110	0.223	W
CR1	20190318	Sunny	Moderate	Mid-Flood	В	11.3	14:10	12.16	8.94	30.03	23.5	3.33	8	113	0.175	NW
CR1	20190318	Sunny	Moderate	Mid-Flood	М	6.2	14:11	12.33	9.09	30.82	23.7	3.34	6	112	0.172	NW
CR1	20190318	Sunny	Moderate	Mid-Flood	М	6.2	14:11	12.52	9.06	30.57	23.8	3.44	6	113	0.135	NW
CR1	20190318	Sunny	Moderate	Mid-Flood	S	1	14:12	12.57	9.06	31.58	23.5	3.46	4	113	0.191	SW
CR1	20190318	Sunny	Moderate	Mid-Flood	S	1	14:12	12.71	8.87	29.24	23.7	3.47	5	112	0.208	SW
CR2	20190318	Sunny	Moderate	Mid-Flood	В	10.6	14:28	11.97	9	30.03	23.4	2.6	6	112	0.238	NW
CR2	20190318	Sunny	Moderate	Mid-Flood	В	10.6	14:28	11.83	9.03	29.24	23.4	2.67	7	113	0.211	SW
CR2	20190318	Sunny	Moderate	Mid-Flood	М	5.8	14:29	11.74	8.94	31.84	23.5	2.57	5	111	0.175	NW
CR2	20190318	Sunny	Moderate	Mid-Flood	М	5.8	14:29	11.65	9.01	30.12	23.5	2.57	4	112	0.239	W

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
CR2	20190318	Sunny	Moderate	Mid-Flood	S	1	14:30	11.81	8.94	30.36	23.5	2.54	6	112	0.2	W
CR2	20190318	Sunny	Moderate	Mid-Flood	S	1	14:30	11.95	8.92	30.28	23.5	2.54	6	112	0.248	SW
S1	20190318	Sunny	Moderate	Mid-Flood	В	4.3	15:30	11.21	8.96	30.73	23.5	2.78	5	112	0.231	W
S1	20190318	Sunny	Moderate	Mid-Flood	В	4.3	15:30	11.3	8.94	29.64	23.5	2.81	5	111	0.155	SW
S1	20190318	Sunny	Moderate	Mid-Flood	S	1	15:31	11.11	9.08	29.58	23.5	2.85	6	113	0.144	W
S1	20190318	Sunny	Moderate	Mid-Flood	S	1	15:31	11.29	9.17	29.38	23.8	2.88	4	111	0.214	NW
S2	20190318	Sunny	Moderate	Mid-Flood	В	8	15:59	10.61	8.84	30.65	23.5	2.78	4	111	0.179	SW
S2	20190318	Sunny	Moderate	Mid-Flood	В	8	15:59	10.48	9.17	29.43	23.8	2.73	4	112	0.19	SW
S2	20190318	Sunny	Moderate	Mid-Flood	М	4.5	16:00	10.62	8.84	29.98	23.6	2.69	4	112	0.239	SW
S2	20190318	Sunny	Moderate	Mid-Flood	М	4.5	16:00	10.72	8.84	29.91	23.6	2.74	5	113	0.134	SW
S2	20190318	Sunny	Moderate	Mid-Flood	S	1	16:01	10.59	9.24	30.16	23.6	2.68	6	112	0.228	NW
S2	20190318	Sunny	Moderate	Mid-Flood	S	1	16:01	10.58	9.23	30.71	23.7	2.69	5	112	0.201	SW
S 3	20190318	Sunny	Moderate	Mid-Flood	В	7.5	14:18	11.97	9.05	29.46	23.6	2.7	4	112	0.252	NW
S3	20190318	Sunny	Moderate	Mid-Flood	В	7.5	14:18	11.98	9.26	30.46	23.7	2.79	4	112	0.249	W
S 3	20190318	Sunny	Moderate	Mid-Flood	М	4.3	14:19	11.85	8.92	30.21	23.6	2.82	5	112	0.212	W
S 3	20190318	Sunny	Moderate	Mid-Flood	М	4.3	14:19	11.7	9.01	30.2	23.5	2.92	5	112	0.171	W
S3	20190318	Sunny	Moderate	Mid-Flood	S	1	14:20	11.65	8.89	30.02	23.6	2.88	6	111	0.227	NW
S 3	20190318	Sunny	Moderate	Mid-Flood	S	1	14:20	11.6	8.99	29.77	23.6	2.9	5	113	0.141	NW
B1	20190320	Cloudy	Moderate	Mid-Ebb	В	5.2	11:27	11.94	8.56	29.69	23.2	2.35	12	112	0.161	Е
B1	20190320	Cloudy	Moderate	Mid-Ebb	В	5.2	11:27	11.96	8.85	31.24	23.2	2.32	12	111	0.204	SE
B1	20190320	Cloudy	Moderate	Mid-Ebb	S	1	11:28	12.14	8.56	29.66	23.4	2.26	10	112	0.251	SE
B1	20190320	Cloudy	Moderate	Mid-Ebb	S	1	11:28	12.2	8.75	31.27	23.4	2.36	10	112	0.171	Е
B2	20190320	Cloudy	Moderate	Mid-Ebb	В	4.7	11:53	11.36	8.74	29.84	23.4	1.55	9	111	0.171	Е
B2	20190320	Cloudy	Moderate	Mid-Ebb	В	4.7	11:53	11.18	8.72	29.96	23.2	1.51	9	110	0.211	SW
B2	20190320	Cloudy	Moderate	Mid-Ebb	S	1	11:54	11.3	8.53	30.13	23.2	1.59	10	111	0.219	SE
B2	20190320	Cloudy	Moderate	Mid-Ebb	S	1	11:54	11.11	8.71	30.63	23.4	1.5	10	112	0.23	S
B3	20190320	Cloudy	Moderate	Mid-Ebb	В	4.9	11:54	11.89	8.59	31.24	23.3	2.75	10	110	0.14	SE
B3	20190320	Cloudy	Moderate	Mid-Ebb	В	4.9	11:54	11.99	8.86	30.97	23.2	2.8	10	111	0.193	Е
B3	20190320	Cloudy	Moderate	Mid-Ebb	S	1	11:55	11.89	8.76	30.65	23.5	2.89	11	110	0.137	SE
B3	20190320	Cloudy	Moderate	Mid-Ebb	S	1	11:55	11.8	8.6	29.53	23.1	2.91	10	112	0.144	SE
B4	20190320	Cloudy	Moderate	Mid-Ebb	В	4.8	12:04	12.23	8.86	29.41	23.5	2.75	12	111	0.132	SE
B4	20190320	Cloudy	Moderate	Mid-Ebb	В	4.8	12:04	12.12	8.84	30.27	23.6	2.84	11	113	0.231	S

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
B4	20190320	Cloudy	Moderate	Mid-Ebb	S	1	12:05	12.24	8.53	31.2	23.4	2.86	12	112	0.127	Е
B4	20190320	Cloudy	Moderate	Mid-Ebb	S	1	12:05	12.06	8.61	31.32	23.3	2.79	12	113	0.173	S
C1	20190320	Cloudy	Moderate	Mid-Ebb	В	9.1	10:59	10.45	8.69	31.58	23.5	3.04	8	112	0.163	SE
C1	20190320	Cloudy	Moderate	Mid-Ebb	В	9.1	10:59	10.38	8.61	29.37	23.4	3.11	9	112	0.24	S
C1	20190320	Cloudy	Moderate	Mid-Ebb	М	5.1	11:00	10.19	8.76	30.94	23.2	3.01	7	111	0.117	S
C1	20190320	Cloudy	Moderate	Mid-Ebb	М	5.1	11:00	10.07	8.81	31.29	23.6	2.98	6	111	0.251	S
C1	20190320	Cloudy	Moderate	Mid-Ebb	S	1	11:01	9.96	8.85	31.56	23.3	2.98	6	111	0.179	SE
C1	20190320	Cloudy	Moderate	Mid-Ebb	S	1	11:01	10.02	8.6	30.09	23.1	3.06	6	110	0.205	SW
C2	20190320	Cloudy	Moderate	Mid-Ebb	В	6.9	12:22	10.11	8.59	30.17	23.4	2.45	10	112	0.229	SW
C2	20190320	Cloudy	Moderate	Mid-Ebb	В	6.9	12:22	10.16	8.54	29.62	23.5	2.41	10	112	0.242	Е
C2	20190320	Cloudy	Moderate	Mid-Ebb	М	4	12:23	9.98	8.87	29.72	23.4	2.48	8	111	0.149	S
C2	20190320	Cloudy	Moderate	Mid-Ebb	М	4	12:23	10.1	8.78	31.38	23.3	2.52	9	112	0.153	SE
C2	20190320	Cloudy	Moderate	Mid-Ebb	S	1	12:24	10.22	8.66	30.34	23.5	2.45	7	111	0.193	Е
C2	20190320	Cloudy	Moderate	Mid-Ebb	S	1	12:24	10.07	8.6	31.51	23.1	2.4	8	111	0.174	S
F1	20190320	Cloudy	Moderate	Mid-Ebb	В	7	12:57	10.82	8.83	30.21	23.2	1.88	9	112	0.123	Е
F1	20190320	Cloudy	Moderate	Mid-Ebb	В	7	12:57	10.81	8.53	29.34	23.1	1.83	10	111	0.183	S
F1	20190320	Cloudy	Moderate	Mid-Ebb	М	4	12:58	10.9	8.85	31.12	23.3	1.75	10	111	0.127	SW
F1	20190320	Cloudy	Moderate	Mid-Ebb	М	4	12:58	10.91	8.76	30.03	23.3	1.74	10	112	0.123	S
F1	20190320	Cloudy	Moderate	Mid-Ebb	S	1	12:59	11.05	8.77	30.31	23.1	1.68	9	112	0.208	SE
F1	20190320	Cloudy	Moderate	Mid-Ebb	S	1	12:59	10.99	8.85	29.31	23.1	1.72	10	112	0.191	S
H1	20190320	Cloudy	Moderate	Mid-Ebb	В	7	11:40	10.45	8.56	31.59	23.4	2.21	7	111	0.191	Е
H1	20190320	Cloudy	Moderate	Mid-Ebb	В	7	11:40	10.53	8.62	29.42	23.2	2.27	6	112	0.227	S
H1	20190320	Cloudy	Moderate	Mid-Ebb	М	4	11:41	10.47	8.58	31.4	23.1	2.24	8	112	0.195	SE
H1	20190320	Cloudy	Moderate	Mid-Ebb	М	4	11:41	10.61	8.56	30	23.5	2.27	9	112	0.237	SE
H1	20190320	Cloudy	Moderate	Mid-Ebb	S	1	11:42	10.76	8.75	29.47	23.1	2.24	11	112	0.241	SW
H1	20190320	Cloudy	Moderate	Mid-Ebb	S	1	11:42	10.75	8.7	30.11	23.1	2.29	11	111	0.137	Е
M1	20190320	Cloudy	Moderate	Mid-Ebb	В	8	13:29	12.09	8.84	29.48	23.6	1.78	10	111	0.237	SE
M1	20190320	Cloudy	Moderate	Mid-Ebb	В	8	13:29	12.29	8.68	30.66	23.2	1.69	10	112	0.161	SE
M1	20190320	Cloudy	Moderate	Mid-Ebb	М	4.5	13:30	12.13	8.76	30.86	23.3	1.76	10	112	0.142	S
M1	20190320	Cloudy	Moderate	Mid-Ebb	М	4.5	13:30	12.12	8.85	29.4	23.6	1.84	10	112	0.157	SE
M1	20190320	Cloudy	Moderate	Mid-Ebb	S	1	13:31	12.02	8.79	31.05	23.3	1.76	9	112	0.192	S
M1	20190320	Cloudy	Moderate	Mid-Ebb	S	1	13:31	11.85	8.8	29.88	23.5	1.72	9	112	0.218	S

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
CR1	20190320	Cloudy	Moderate	Mid-Ebb	В	10.5	11:00	11.99	8.7	30	23.2	2.15	9	111	0.163	SE
CR1	20190320	Cloudy	Moderate	Mid-Ebb	В	10.5	11:00	12.15	8.6	31.36	23.2	2.08	9	111	0.146	SW
CR1	20190320	Cloudy	Moderate	Mid-Ebb	М	5.8	11:01	12.02	8.64	31.02	23.1	2.04	9	111	0.183	SE
CR1	20190320	Cloudy	Moderate	Mid-Ebb	М	5.8	11:01	12.19	8.86	29.53	23.2	1.95	8	112	0.215	S
CR1	20190320	Cloudy	Moderate	Mid-Ebb	S	1	11:02	12.27	8.74	31.34	23.5	1.93	9	112	0.205	Е
CR1	20190320	Cloudy	Moderate	Mid-Ebb	S	1	11:02	12.47	8.74	31.21	23.5	1.94	8	111	0.177	SE
CR2	20190320	Cloudy	Moderate	Mid-Ebb	В	9.7	11:10	10.12	8.7	30.08	23.5	2.94	9	112	0.25	S
CR2	20190320	Cloudy	Moderate	Mid-Ebb	В	9.7	11:10	10.22	8.6	30.95	23.3	2.93	8	113	0.162	SE
CR2	20190320	Cloudy	Moderate	Mid-Ebb	М	5.4	11:11	10.35	8.76	29.28	23.4	2.91	8	111	0.205	S
CR2	20190320	Cloudy	Moderate	Mid-Ebb	М	5.4	11:11	10.2	8.74	31.43	23.1	2.98	8	110	0.242	SE
CR2	20190320	Cloudy	Moderate	Mid-Ebb	S	1	11:12	10.15	8.65	31.12	23.1	2.89	9	111	0.134	S
CR2	20190320	Cloudy	Moderate	Mid-Ebb	S	1	11:12	9.96	8.54	29.42	23.2	2.99	10	111	0.204	SE
S1	20190320	Cloudy	Moderate	Mid-Ebb	В	4.3	11:39	10.3	8.58	31.2	23.5	2.53	9	111	0.214	S
S1	20190320	Cloudy	Moderate	Mid-Ebb	В	4.3	11:39	10.25	8.55	29.6	23.5	2.6	10	112	0.157	SE
S1	20190320	Cloudy	Moderate	Mid-Ebb	S	1	11:40	10.22	8.66	29.47	23.3	2.58	9	111	0.12	S
S1	20190320	Cloudy	Moderate	Mid-Ebb	S	1	11:40	10.29	8.55	29.7	23.6	2.63	10	112	0.131	SE
S2	20190320	Cloudy	Moderate	Mid-Ebb	В	7.8	12:13	10.59	8.63	30.16	23.4	3.09	10	112	0.159	E
S2	20190320	Cloudy	Moderate	Mid-Ebb	В	7.8	12:13	10.66	8.68	31.31	23.1	3.1	10	112	0.22	SE
S2	20190320	Cloudy	Moderate	Mid-Ebb	М	4.4	12:14	10.67	8.75	30.49	23.4	3.09	8	111	0.22	SE
S2	20190320	Cloudy	Moderate	Mid-Ebb	М	4.4	12:14	10.51	8.66	29.66	23.6	3.08	8	111	0.172	E
S2	20190320	Cloudy	Moderate	Mid-Ebb	S	1	12:15	10.55	8.74	30.55	23.3	3.02	7	112	0.126	Е
S2	20190320	Cloudy	Moderate	Mid-Ebb	S	1	12:15	10.56	8.78	31.47	23.3	3.11	7	112	0.175	SW
S3	20190320	Cloudy	Moderate	Mid-Ebb	В	7.6	11:21	12.34	8.85	30.32	23.6	2.34	10	112	0.158	SE
S3	20190320	Cloudy	Moderate	Mid-Ebb	В	7.6	11:21	12.51	8.65	31.34	23.6	2.32	10	111	0.176	SE
S3	20190320	Cloudy	Moderate	Mid-Ebb	М	4.3	11:22	12.7	8.71	31.17	23.6	2.27	8	112	0.179	SW
S3	20190320	Cloudy	Moderate	Mid-Ebb	М	4.3	11:22	12.71	8.52	31.42	23.3	2.17	9	112	0.235	SE
S3	20190320	Cloudy	Moderate	Mid-Ebb	S	1	11:23	12.71	8.86	31.06	23.5	2.2	7	111	0.15	S
S3	20190320	Cloudy	Moderate	Mid-Ebb	S	1	11:23	12.76	8.67	29.31	23.1	2.21	7	112	0.221	S
B1	20190320	Cloudy	Moderate	Mid-Flood	В	5.3	16:06	11.93	8.54	31.19	23.8	2.61	6	112	0.28	W
B1	20190320	Cloudy	Moderate	Mid-Flood	В	5.3	16:06	11.97	8.59	31.36	23.8	2.68	5	113	0.218	W
B1	20190320	Cloudy	Moderate	Mid-Flood	S	1	16:07	12.13	8.69	31.15	23.8	2.6	6	111	0.255	SW
B1	20190320	Cloudy	Moderate	Mid-Flood	S	1	16:07	11.93	8.75	29.85	23.8	2.56	7	112	0.292	W

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
B2	20190320	Cloudy	Moderate	Mid-Flood	В	5.2	16:25	10	8.54	29.65	23.7	2.16	5	112	0.251	SW
B2	20190320	Cloudy	Moderate	Mid-Flood	В	5.2	16:25	10.14	8.68	30.37	23.8	2.08	6	110	0.283	S
B2	20190320	Cloudy	Moderate	Mid-Flood	S	1	16:26	9.95	8.61	30.03	23.6	2.02	5	112	0.185	W
B2	20190320	Cloudy	Moderate	Mid-Flood	S	1	16:26	9.76	8.59	30.99	23.7	1.95	6	111	0.198	NW
B3	20190320	Cloudy	Moderate	Mid-Flood	В	5.1	15:25	11.44	8.58	29.3	23.9	2.58	10	111	0.247	W
B3	20190320	Cloudy	Moderate	Mid-Flood	В	5.1	15:25	11.26	8.73	31	23.6	2.51	9	112	0.26	SW
B3	20190320	Cloudy	Moderate	Mid-Flood	S	1	15:26	11.12	8.6	31.28	23.7	2.41	5	111	0.187	W
B3	20190320	Cloudy	Moderate	Mid-Flood	S	1	15:26	11.06	8.72	31.01	23.9	2.32	6	112	0.176	SW
B4	20190320	Cloudy	Moderate	Mid-Flood	В	4.5	15:35	11.75	8.58	31.47	23.6	2.4	8	111	0.214	W
B4	20190320	Cloudy	Moderate	Mid-Flood	В	4.5	15:35	11.55	8.69	29.44	23.9	2.43	6	112	0.268	W
B4	20190320	Cloudy	Moderate	Mid-Flood	S	1	15:36	11.52	8.65	31.29	23.7	2.48	6	111	0.235	SW
B4	20190320	Cloudy	Moderate	Mid-Flood	S	1	15:36	11.61	8.54	29.85	23.8	2.47	7	112	0.188	SW
C1	20190320	Cloudy	Moderate	Mid-Flood	В	9.3	15:41	10.39	8.56	29.46	23.8	2.87	8	112	0.277	NW
C1	20190320	Cloudy	Moderate	Mid-Flood	В	9.3	15:41	10.25	8.53	31.04	23.7	2.88	9	112	0.202	SW
C1	20190320	Cloudy	Moderate	Mid-Flood	М	5.2	15:42	10.37	8.58	30.73	23.8	2.81	8	112	0.164	W
C1	20190320	Cloudy	Moderate	Mid-Flood	М	5.2	15:42	10.43	8.66	31.49	23.7	2.9	9	112	0.171	NW
C1	20190320	Cloudy	Moderate	Mid-Flood	S	1	15:43	10.54	8.75	31.1	23.6	2.87	6	112	0.239	W
C1	20190320	Cloudy	Moderate	Mid-Flood	S	1	15:43	10.67	8.66	29.52	23.9	2.92	5	112	0.212	SW
C2	20190320	Cloudy	Moderate	Mid-Flood	В	7.3	14:52	9.85	8.64	29.27	23.6	2.94	9	111	0.28	W
C2	20190320	Cloudy	Moderate	Mid-Flood	В	7.3	14:52	9.76	8.57	29.92	23.8	2.92	8	112	0.194	W
C2	20190320	Cloudy	Moderate	Mid-Flood	М	4.2	14:53	9.57	8.62	30.89	23.8	2.84	9	112	0.22	W
C2	20190320	Cloudy	Moderate	Mid-Flood	М	4.2	14:53	9.49	8.75	30.31	23.9	2.92	9	111	0.252	SW
C2	20190320	Cloudy	Moderate	Mid-Flood	S	1	14:54	9.48	8.75	31.01	23.6	2.98	9	111	0.312	SW
C2	20190320	Cloudy	Moderate	Mid-Flood	S	1	14:54	9.33	8.76	31.56	23.9	3	10	112	0.23	NW
F1	20190320	Cloudy	Moderate	Mid-Flood	В	7	16:03	12.08	8.71	30.53	23.6	2.27	9	111	0.251	W
F1	20190320	Cloudy	Moderate	Mid-Flood	В	7	16:03	12	8.68	31.42	23.9	2.23	8	112	0.303	SW
F1	20190320	Cloudy	Moderate	Mid-Flood	М	4	16:04	12.05	8.53	29.55	23.6	2.16	8	112	0.306	SW
F1	20190320	Cloudy	Moderate	Mid-Flood	М	4	16:04	11.9	8.53	31.28	23.7	2.07	7	111	0.173	SW
F1	20190320	Cloudy	Moderate	Mid-Flood	S	1	16:05	12.05	8.67	29.84	23.8	2.11	9	112	0.281	W
F1	20190320	Cloudy	Moderate	Mid-Flood	S	1	16:05	12.21	8.66	30.26	23.8	2.12	8	112	0.258	W
H1	20190320	Cloudy	Moderate	Mid-Flood	В	7.1	15:11	10.28	8.77	31.37	23.7	1.88	7	112	0.304	SW
H1	20190320	Cloudy	Moderate	Mid-Flood	В	7.1	15:11	10.28	8.69	29.73	23.8	1.8	7	112	0.244	NW

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
H1	20190320	Cloudy	Moderate	Mid-Flood	М	4.1	15:12	10.33	8.53	31.32	23.6	1.72	9	111	0.179	W
H1	20190320	Cloudy	Moderate	Mid-Flood	М	4.1	15:12	10.49	8.56	30.71	23.6	1.73	8	111	0.23	SW
H1	20190320	Cloudy	Moderate	Mid-Flood	S	1	15:13	10.61	8.59	29.37	23.8	1.72	10	112	0.282	NW
H1	20190320	Cloudy	Moderate	Mid-Flood	S	1	15:13	10.6	8.77	30.72	23.7	1.77	10	112	0.206	NW
M1	20190320	Cloudy	Moderate	Mid-Flood	В	8.5	16:33	11.31	8.54	29.72	23.7	2.14	8	112	0.217	SW
M1	20190320	Cloudy	Moderate	Mid-Flood	В	8.5	16:33	11.48	8.75	30.87	23.8	2.08	7	112	0.216	W
M1	20190320	Cloudy	Moderate	Mid-Flood	М	4.8	16:34	11.59	8.54	30.37	23.9	2.06	7	111	0.281	W
M1	20190320	Cloudy	Moderate	Mid-Flood	М	4.8	16:34	11.61	8.56	31.01	23.6	2.04	7	110	0.229	NW
M1	20190320	Cloudy	Moderate	Mid-Flood	S	1	16:35	11.54	8.56	30.44	23.9	2.08	5	111	0.273	SW
M1	20190320	Cloudy	Moderate	Mid-Flood	S	1	16:35	11.42	8.61	30.27	23.6	2.03	5	111	0.177	W
CR1	20190320	Cloudy	Moderate	Mid-Flood	В	11.5	14:58	12.36	8.55	30.56	23.7	2.06	6	112	0.181	W
CR1	20190320	Cloudy	Moderate	Mid-Flood	В	11.5	14:58	12.36	8.57	31.39	23.8	2.02	7	111	0.272	W
CR1	20190320	Cloudy	Moderate	Mid-Flood	М	6.3	14:59	12.26	8.75	30.64	23.7	1.99	9	111	0.185	W
CR1	20190320	Cloudy	Moderate	Mid-Flood	М	6.3	14:59	12.22	8.67	30.68	23.8	1.99	10	111	0.228	SW
CR1	20190320	Cloudy	Moderate	Mid-Flood	S	1	15:00	12.13	8.53	31.06	23.6	1.96	11	111	0.259	W
CR1	20190320	Cloudy	Moderate	Mid-Flood	S	1	15:00	12.29	8.66	29.44	23.9	1.97	12	111	0.215	W
CR2	20190320	Cloudy	Moderate	Mid-Flood	В	9.7	15:12	10.55	8.75	29.43	23.9	1.94	8	112	0.184	W
CR2	20190320	Cloudy	Moderate	Mid-Flood	В	9.7	15:12	10.4	8.65	30.1	23.7	1.96	7	112	0.193	SW
CR2	20190320	Cloudy	Moderate	Mid-Flood	М	5.4	15:13	10.44	8.61	29.28	23.7	2	7	112	0.206	SW
CR2	20190320	Cloudy	Moderate	Mid-Flood	М	5.4	15:13	10.32	8.54	30.51	23.8	1.94	7	112	0.303	SW
CR2	20190320	Cloudy	Moderate	Mid-Flood	S	1	15:14	10.14	8.52	29.47	23.9	1.88	6	111	0.206	NW
CR2	20190320	Cloudy	Moderate	Mid-Flood	S	1	15:14	10.25	8.63	30.73	23.7	1.89	6	111	0.228	W
S 1	20190320	Cloudy	Moderate	Mid-Flood	В	4.6	16:14	10.74	8.56	29.99	23.6	2.48	8	112	0.286	SW
S1	20190320	Cloudy	Moderate	Mid-Flood	В	4.6	16:14	10.57	8.55	29.78	23.8	2.43	7	113	0.174	NW
S1	20190320	Cloudy	Moderate	Mid-Flood	S	1	16:15	10.48	8.77	30.54	23.9	2.39	9	111	0.282	W
S1	20190320	Cloudy	Moderate	Mid-Flood	S	1	16:15	10.33	8.52	29.6	23.8	2.36	9	112	0.198	NW
S2	20190320	Cloudy	Moderate	Mid-Flood	В	8.8	16:42	10.78	8.52	29.3	23.8	1.74	10	112	0.282	W
S2	20190320	Cloudy	Moderate	Mid-Flood	В	8.8	16:42	10.76	8.53	30.14	23.6	1.64	8	112	0.171	W
S2	20190320	Cloudy	Moderate	Mid-Flood	М	4.9	16:43	10.64	8.72	30.34	23.6	1.73	5	111	0.294	SW
S2	20190320	Cloudy	Moderate	Mid-Flood	М	4.9	16:43	10.66	8.56	31.06	23.7	1.66	6	112	0.235	W
S2	20190320	Cloudy	Moderate	Mid-Flood	S	1	16:44	10.56	8.65	30.85	23.8	1.66	6	110	0.226	NW
S2	20190320	Cloudy	Moderate	Mid-Flood	S	1	16:44	10.66	8.55	30.84	23.7	1.71	6	112	0.296	W

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
S 3	20190320	Cloudy	Moderate	Mid-Flood	В	7	15:04	12.14	8.64	29.7	23.9	2.91	7	113	0.228	W
S 3	20190320	Cloudy	Moderate	Mid-Flood	В	7	15:04	12.06	8.55	30.52	23.7	2.95	8	110	0.214	W
S 3	20190320	Cloudy	Moderate	Mid-Flood	М	4	15:05	12.13	8.59	30	23.7	2.86	6	113	0.186	W
S 3	20190320	Cloudy	Moderate	Mid-Flood	М	4	15:05	12.07	8.66	29.27	23.6	2.82	7	112	0.194	NW
S 3	20190320	Cloudy	Moderate	Mid-Flood	S	1	15:06	12.15	8.71	30.8	23.8	2.8	11	113	0.19	W
S 3	20190320	Cloudy	Moderate	Mid-Flood	S	1	15:06	11.95	8.66	29.75	23.6	2.87	11	112	0.163	NW
B1	20190322	Cloudy	Light	Mid-Flood	В	4.5	9:59	11.84	8.9	29.99	21.7	2.89	5	108	0.138	SW
B1	20190322	Cloudy	Light	Mid-Flood	В	4.5	9:59	12	8.96	32.05	22	2.94	6	106	0.16	NW
B1	20190322	Cloudy	Light	Mid-Flood	S	1	10:00	11.99	8.99	32.11	22	2.84	5	107	0.291	NW
B1	20190322	Cloudy	Light	Mid-Flood	S	1	10:00	11.79	8.8	30.26	22	2.74	5	107	0.227	NW
B2	20190322	Cloudy	Light	Mid-Flood	В	5.1	10:22	12.17	8.72	31.87	21.9	2.17	5	108	0.246	NW
B2	20190322	Cloudy	Light	Mid-Flood	В	5.1	10:22	12.22	8.9	29.88	22	2.11	5	107	0.177	SW
B2	20190322	Cloudy	Light	Mid-Flood	S	1	10:23	12.15	8.79	32.45	22	2.11	6	108	0.274	W
B2	20190322	Cloudy	Light	Mid-Flood	S	1	10:23	12.3	8.92	31.69	21.9	2.18	6	108	0.14	SW
B3	20190322	Cloudy	Light	Mid-Flood	В	5.1	10:38	11.68	8.97	32.93	22	1.47	3	108	0.13	NW
B3	20190322	Cloudy	Light	Mid-Flood	В	5.1	10:38	11.71	8.73	29.8	22	1.44	5	107	0.186	W
B3	20190322	Cloudy	Light	Mid-Flood	S	1	10:39	11.82	8.83	31.7	21.8	1.4	<2	107	0.216	W
B3	20190322	Cloudy	Light	Mid-Flood	S	1	10:39	11.92	8.73	31.39	21.9	1.45	3	108	0.152	SW
B4	20190322	Cloudy	Light	Mid-Flood	В	4.8	10:50	11.38	8.91	30.03	21.8	2.91	3	108	0.288	W
B4	20190322	Cloudy	Light	Mid-Flood	В	4.8	10:50	11.29	8.75	29.99	22	2.85	3	108	0.234	NW
B4	20190322	Cloudy	Light	Mid-Flood	S	1	10:51	11.27	8.97	32.9	21.9	2.78	3	108	0.264	W
B4	20190322	Cloudy	Light	Mid-Flood	S	1	10:51	11.42	8.98	32.39	22	2.82	3	107	0.287	SW
C1	20190322	Cloudy	Light	Mid-Flood	В	10.2	9:34	12.35	8.99	32.45	21.9	2.82	4	107	0.234	W
C1	20190322	Cloudy	Light	Mid-Flood	В	10.2	9:34	12.5	8.78	30.89	21.8	2.83	4	107	0.232	NW
C1	20190322	Cloudy	Light	Mid-Flood	М	5.6	9:35	12.62	8.96	31.98	22	2.83	4	108	0.192	SW
C1	20190322	Cloudy	Light	Mid-Flood	М	5.6	9:35	12.76	9.06	29.63	21.7	2.76	3	107	0.125	W
C1	20190322	Cloudy	Light	Mid-Flood	S	1	9:36	12.81	8.78	29.91	22	2.85	5	108	0.184	NW
C1	20190322	Cloudy	Light	Mid-Flood	S	1	9:36	12.9	9.06	29.77	22	2.93	4	107	0.206	W
C2	20190322	Cloudy	Light	Mid-Flood	В	7	8:36	11.87	8.72	31.53	22	3.04	4	108	0.173	W
C2	20190322	Cloudy	Light	Mid-Flood	В	7	8:36	11.86	8.93	31.57	21.9	3.03	4	108	0.287	NW
C2	20190322	Cloudy	Light	Mid-Flood	М	4	8:37	11.67	9.05	32.91	21.7	3.03	3	107	0.285	W
C2	20190322	Cloudy	Light	Mid-Flood	М	4	8:37	11.78	8.98	32.03	21.9	3	2	109	0.156	W

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
C2	20190322	Cloudy	Light	Mid-Flood	S	1	8:38	11.71	8.8	29.57	22	3.01	2	108	0.219	W
C2	20190322	Cloudy	Light	Mid-Flood	S	1	8:38	11.57	9.07	29.85	22	3	<2	107	0.147	SW
F1	20190322	Cloudy	Light	Mid-Flood	В	6.9	9:02	11.99	8.94	32.06	22	1.73	2	107	0.241	W
F1	20190322	Cloudy	Light	Mid-Flood	В	6.9	9:02	11.86	8.96	31.13	21.8	1.65	4	107	0.156	W
F1	20190322	Cloudy	Light	Mid-Flood	М	4	9:03	11.67	8.94	30.89	21.8	1.58	5	108	0.261	W
F1	20190322	Cloudy	Light	Mid-Flood	М	4	9:03	11.78	8.8	32.83	21.8	1.51	4	108	0.166	W
F1	20190322	Cloudy	Light	Mid-Flood	S	1	9:04	11.96	8.79	32.37	22	1.61	4	108	0.24	SW
F1	20190322	Cloudy	Light	Mid-Flood	S	1	9:04	12.16	9.05	29.09	22	1.56	5	107	0.216	SW
H1	20190322	Cloudy	Light	Mid-Flood	В	6.7	10:19	10.47	8.86	32.83	21.8	1.8	5	107	0.135	SW
H1	20190322	Cloudy	Light	Mid-Flood	В	6.7	10:19	10.43	8.95	32.3	21.9	1.8	4	108	0.266	W
H1	20190322	Cloudy	Light	Mid-Flood	М	3.9	10:20	10.62	8.9	32.42	21.9	1.71	4	108	0.242	W
H1	20190322	Cloudy	Light	Mid-Flood	М	3.9	10:20	10.43	8.94	30.07	22	1.75	3	108	0.24	W
H1	20190322	Cloudy	Light	Mid-Flood	S	1	10:21	10.48	8.93	29.59	22	1.82	4	107	0.201	W
H1	20190322	Cloudy	Light	Mid-Flood	S	1	10:21	10.42	8.88	31.51	21.8	1.91	4	108	0.188	W
M1	20190322	Cloudy	Light	Mid-Flood	В	8.8	9:36	12.99	8.75	30.87	21.7	2.47	9	108	0.261	W
M1	20190322	Cloudy	Light	Mid-Flood	В	8.8	9:36	12.83	8.99	29.8	21.7	2.38	10	107	0.193	NW
M1	20190322	Cloudy	Light	Mid-Flood	М	4.9	9:37	13.02	9.03	30.64	22	2.33	8	108	0.26	NW
M1	20190322	Cloudy	Light	Mid-Flood	М	4.9	9:37	13.12	8.76	32.45	22	2.42	8	108	0.162	SW
M1	20190322	Cloudy	Light	Mid-Flood	S	1	9:38	13.25	8.88	29.19	21.8	2.4	6	107	0.286	NW
M1	20190322	Cloudy	Light	Mid-Flood	S	1	9:38	13.08	8.99	32.1	21.8	2.5	5	109	0.2	W
CR1	20190322	Cloudy	Light	Mid-Flood	В	11.2	8:49	10.28	8.88	30.83	21.8	1.64	7	107	0.288	W
CR1	20190322	Cloudy	Light	Mid-Flood	В	11.2	8:49	10.45	8.85	31.36	21.7	1.69	8	109	0.218	W
CR1	20190322	Cloudy	Light	Mid-Flood	М	6.1	8:50	10.62	8.78	30.67	22	1.78	5	109	0.132	NW
CR1	20190322	Cloudy	Light	Mid-Flood	М	6.1	8:50	10.48	8.8	31.16	21.7	1.78	6	109	0.132	SW
CR1	20190322	Cloudy	Light	Mid-Flood	S	1	8:51	10.56	8.82	31.87	21.7	1.73	7	108	0.218	W
CR1	20190322	Cloudy	Light	Mid-Flood	S	1	8:51	10.39	8.91	30.13	21.7	1.8	7	109	0.137	SW
CR2	20190322	Cloudy	Light	Mid-Flood	В	10.3	9:09	10.51	8.87	31.49	22	2.74	4	107	0.175	W
CR2	20190322	Cloudy	Light	Mid-Flood	В	10.3	9:09	10.34	8.93	31.16	21.8	2.76	6	107	0.213	NW
CR2	20190322	Cloudy	Light	Mid-Flood	М	5.7	9:10	10.27	8.92	29.4	22	2.68	6	108	0.229	SW
CR2	20190322	Cloudy	Light	Mid-Flood	М	5.7	9:10	10.34	8.78	32.67	22	2.75	6	107	0.23	W
CR2	20190322	Cloudy	Light	Mid-Flood	S	1	9:11	10.32	8.78	29.29	21.9	2.79	8	107	0.235	W
CR2	20190322	Cloudy	Light	Mid-Flood	S	1	9:11	10.32	9	31.96	21.7	2.84	7	107	0.128	W

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
S1	20190322	Cloudy	Light	Mid-Flood	В	4.1	10:09	13	8.77	32.21	22	1.71	6	107	0.261	W
S1	20190322	Cloudy	Light	Mid-Flood	В	4.1	10:09	13.19	8.84	29.47	21.8	1.65	7	107	0.228	W
S1	20190322	Cloudy	Light	Mid-Flood	S	1	10:10	13.17	8.82	30.62	22	1.61	5	107	0.149	SW
S1	20190322	Cloudy	Light	Mid-Flood	S	1	10:10	13.33	8.74	30.13	22	1.54	6	108	0.134	W
S2	20190322	Cloudy	Light	Mid-Flood	В	8.5	10:39	12.22	8.76	31.3	21.8	2.73	6	107	0.184	W
S2	20190322	Cloudy	Light	Mid-Flood	В	8.5	10:39	12.24	9.05	29.69	21.9	2.64	7	108	0.162	W
S2	20190322	Cloudy	Light	Mid-Flood	М	4.8	10:40	12.15	8.89	32.62	21.8	2.71	5	107	0.277	W
S2	20190322	Cloudy	Light	Mid-Flood	М	4.8	10:40	12.3	8.83	32.63	21.7	2.69	6	106	0.14	W
S2	20190322	Cloudy	Light	Mid-Flood	S	1	10:41	12.19	8.95	32.72	22	2.68	6	107	0.178	W
S2	20190322	Cloudy	Light	Mid-Flood	S	1	10:41	12.32	8.78	30.17	21.9	2.69	5	108	0.213	W
S3	20190322	Cloudy	Light	Mid-Flood	В	7	8:59	11.89	8.85	32.47	22	1.44	4	108	0.224	SW
S3	20190322	Cloudy	Light	Mid-Flood	В	7	8:59	12.06	8.74	31.43	21.8	1.54	4	107	0.256	SW
S 3	20190322	Cloudy	Light	Mid-Flood	М	4	9:00	12.03	8.79	32.17	21.9	1.47	6	108	0.128	W
S 3	20190322	Cloudy	Light	Mid-Flood	М	4	9:00	12.13	8.84	29.47	21.8	1.48	7	107	0.205	SW
S 3	20190322	Cloudy	Light	Mid-Flood	S	1	9:01	12.21	9	31.84	21.7	1.45	6	107	0.187	NW
S 3	20190322	Cloudy	Light	Mid-Flood	S	1	9:01	12.21	8.94	29.71	22	1.43	7	108	0.207	W
B1	20190322	Cloudy	Light	Mid-Ebb	В	4	11:59	12.95	8.81	31.67	23.7	1.87	7	107	0.109	SE
B1	20190322	Cloudy	Light	Mid-Ebb	В	4	11:59	13.01	8.59	29.57	23.6	1.77	6	107	0.131	SE
B1	20190322	Cloudy	Light	Mid-Ebb	S	1	12:00	13.04	8.58	29.69	23.8	1.74	8	107	0.102	S
B1	20190322	Cloudy	Light	Mid-Ebb	S	1	12:00	12.92	8.74	31.82	23.6	1.72	8	108	0.109	SE
B2	20190322	Cloudy	Light	Mid-Ebb	В	5	12:22	10.96	8.95	30.39	23.8	1.66	7	107	0.106	SE
B2	20190322	Cloudy	Light	Mid-Ebb	В	5	12:22	10.87	8.64	31.26	23.6	1.57	8	108	0.119	SE
B2	20190322	Cloudy	Light	Mid-Ebb	S	1	12:23	10.79	8.57	28.88	23.9	1.63	8	108	0.103	S
B2	20190322	Cloudy	Light	Mid-Ebb	S	1	12:23	10.85	8.65	29.63	23.7	1.71	8	107	0.132	Е
B3	20190322	Cloudy	Light	Mid-Ebb	В	5	13:30	10.98	9.08	31.18	23.8	1.69	10	106	0.15	SE
B3	20190322	Cloudy	Light	Mid-Ebb	В	5	13:30	10.8	8.55	30.83	23.7	1.6	11	106	0.093	Е
B3	20190322	Cloudy	Light	Mid-Ebb	S	1	13:31	10.84	8.83	32.21	23.8	1.6	6	107	0.141	SE
B3	20190322	Cloudy	Light	Mid-Ebb	S	1	13:31	11.03	8.43	29.55	23.8	1.5	6	107	0.106	Е
B4	20190322	Cloudy	Light	Mid-Ebb	В	4.1	13:39	11.92	8.89	30.08	23.6	2.42	12	107	0.115	S
B4	20190322	Cloudy	Light	Mid-Ebb	В	4.1	13:39	11.93	9.1	28.27	23.8	2.4	11	108	0.105	S
B4	20190322	Cloudy	Light	Mid-Ebb	S	1	13:40	12.05	8.87	31.95	23.7	2.47	6	107	0.137	Е
B4	20190322	Cloudy	Light	Mid-Ebb	S	1	13:40	11.95	8.78	30.71	23.7	2.55	5	107	0.152	SE

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
C1	20190322	Cloudy	Light	Mid-Ebb	В	9.1	11:34	10.82	8.44	28.72	23.9	2.1	10	108	0.147	S
C1	20190322	Cloudy	Light	Mid-Ebb	В	9.1	11:34	10.66	9.05	29.41	23.7	2.05	10	107	0.087	SE
C1	20190322	Cloudy	Light	Mid-Ebb	М	5.1	11:35	10.77	8.71	29.25	23.8	2.15	6	106	0.099	SE
C1	20190322	Cloudy	Light	Mid-Ebb	М	5.1	11:35	10.57	8.69	30.06	23.8	2.06	6	107	0.083	SE
C1	20190322	Cloudy	Light	Mid-Ebb	S	1	11:36	10.48	8.54	28.54	23.6	1.97	7	108	0.079	SE
C1	20190322	Cloudy	Light	Mid-Ebb	S	1	11:36	10.64	8.59	31.67	23.8	1.91	6	108	0.097	Е
C2	20190322	Cloudy	Light	Mid-Ebb	В	7.6	12:49	11.66	9.09	28.49	23.6	2.96	9	108	0.124	S
C2	20190322	Cloudy	Light	Mid-Ebb	В	7.6	12:49	11.63	8.65	29.29	23.8	2.94	8	106	0.117	Е
C2	20190322	Cloudy	Light	Mid-Ebb	М	4.3	12:50	11.72	8.75	30.67	23.7	2.95	6	107	0.113	E
C2	20190322	Cloudy	Light	Mid-Ebb	М	4.3	12:50	11.8	9.02	31.64	23.6	3.04	7	108	0.1	S
C2	20190322	Cloudy	Light	Mid-Ebb	S	1	12:51	11.98	8.49	30.1	23.8	3.11	6	108	0.101	S
C2	20190322	Cloudy	Light	Mid-Ebb	S	1	12:51	11.89	9.03	31.22	23.7	3.09	7	107	0.142	S
F1	20190322	Cloudy	Light	Mid-Ebb	В	7	11:38	12.08	8.82	30.31	23.7	2.42	11	107	0.083	SE
F1	20190322	Cloudy	Light	Mid-Ebb	В	7	11:38	11.97	9.07	31.63	23.7	2.36	10	108	0.093	SE
F1	20190322	Cloudy	Light	Mid-Ebb	М	4	11:39	12.04	8.99	29.05	23.7	2.33	6	107	0.102	SE
F1	20190322	Cloudy	Light	Mid-Ebb	М	4	11:39	12.01	8.66	29.57	23.7	2.36	5	107	0.146	S
F1	20190322	Cloudy	Light	Mid-Ebb	S	1	11:40	12.1	8.67	31.65	23.7	2.27	6	107	0.112	SE
F1	20190322	Cloudy	Light	Mid-Ebb	S	1	11:40	12.04	9.08	32.22	23.8	2.2	6	107	0.144	SE
H1	20190322	Cloudy	Light	Mid-Ebb	В	6.1	13:13	11.64	8.64	31.73	23.9	1.51	7	108	0.092	Е
H1	20190322	Cloudy	Light	Mid-Ebb	В	6.1	13:13	11.5	9.12	31.03	23.8	1.61	8	107	0.129	SE
H1	20190322	Cloudy	Light	Mid-Ebb	М	3.6	13:14	11.42	8.77	29.38	23.9	1.62	8	108	0.119	SE
H1	20190322	Cloudy	Light	Mid-Ebb	М	3.6	13:14	11.51	8.49	30.81	23.8	1.52	8	106	0.145	S
H1	20190322	Cloudy	Light	Mid-Ebb	S	1	13:15	11.51	9.1	28.59	23.9	1.62	9	107	0.135	E
H1	20190322	Cloudy	Light	Mid-Ebb	S	1	13:15	11.38	8.68	30.62	23.8	1.67	8	106	0.135	S
M1	20190322	Cloudy	Light	Mid-Ebb	В	8.2	12:19	12.5	8.96	32.15	23.8	1.46	6	107	0.088	SE
M1	20190322	Cloudy	Light	Mid-Ebb	В	8.2	12:19	12.65	8.71	30	23.8	1.52	6	107	0.107	SE
M1	20190322	Cloudy	Light	Mid-Ebb	М	4.6	12:20	12.84	8.5	29.12	23.7	1.6	6	107	0.113	SE
M1	20190322	Cloudy	Light	Mid-Ebb	М	4.6	12:20	12.99	8.72	31.01	23.9	1.61	7	108	0.095	SE
M1	20190322	Cloudy	Light	Mid-Ebb	S	1	12:21	12.82	8.44	31.28	23.7	1.67	6	107	0.111	SE
M1	20190322	Cloudy	Light	Mid-Ebb	S	1	12:21	12.67	8.46	30.32	23.6	1.59	7	108	0.091	SE
CR1	20190322	Cloudy	Light	Mid-Ebb	В	11.3	13:19	11.68	8.91	30.64	23.7	1.4	6	106	0.148	SE
CR1	20190322	Cloudy	Light	Mid-Ebb	В	11.3	13:19	11.68	9.11	28.97	23.8	1.36	6	108	0.124	SE

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
CR1	20190322	Cloudy	Light	Mid-Ebb	М	6.2	13:20	11.86	9.02	30.62	23.7	1.28	6	106	0.126	SE
CR1	20190322	Cloudy	Light	Mid-Ebb	М	6.2	13:20	11.77	8.58	29.51	23.9	1.36	7	107	0.125	SE
CR1	20190322	Cloudy	Light	Mid-Ebb	S	1	13:21	11.74	8.98	32.14	23.6	1.33	7	107	0.144	Е
CR1	20190322	Cloudy	Light	Mid-Ebb	S	1	13:21	11.62	8.7	30.84	23.6	1.25	7	107	0.086	SE
CR2	20190322	Cloudy	Light	Mid-Ebb	В	9.9	12:53	11.99	8.82	29.4	23.8	2.55	5	107	0.148	SE
CR2	20190322	Cloudy	Light	Mid-Ebb	В	9.9	12:53	11.98	9.05	29.54	23.8	2.53	4	106	0.13	SE
CR2	20190322	Cloudy	Light	Mid-Ebb	М	5.5	12:54	12.08	9.14	30.71	23.9	2.56	7	108	0.134	SE
CR2	20190322	Cloudy	Light	Mid-Ebb	М	5.5	12:54	11.97	8.85	30.84	23.6	2.52	6	106	0.112	SE
CR2	20190322	Cloudy	Light	Mid-Ebb	S	1	12:55	11.93	8.65	32.12	23.8	2.59	6	106	0.089	SE
CR2	20190322	Cloudy	Light	Mid-Ebb	S	1	12:55	11.85	8.98	30.86	23.9	2.5	8	106	0.135	SE
S1	20190322	Cloudy	Light	Mid-Ebb	В	4.2	12:10	11.76	8.97	28.41	23.9	2.87	9	106	0.142	SE
S1	20190322	Cloudy	Light	Mid-Ebb	В	4.2	12:10	11.91	8.46	30.11	23.8	2.93	10	108	0.077	S
S1	20190322	Cloudy	Light	Mid-Ebb	S	1	12:11	11.85	8.63	28.47	23.7	2.89	5	107	0.144	S
S1	20190322	Cloudy	Light	Mid-Ebb	S	1	12:11	11.75	8.76	30.33	23.8	2.85	4	107	0.084	SE
S2	20190322	Cloudy	Light	Mid-Ebb	В	7.8	12:40	12.87	9.01	29.05	23.9	2.84	8	108	0.114	S
S2	20190322	Cloudy	Light	Mid-Ebb	В	7.8	12:40	13.05	8.54	28.77	23.9	2.83	8	108	0.078	Е
S2	20190322	Cloudy	Light	Mid-Ebb	М	4.4	12:41	13.13	9.14	29.08	23.6	2.78	5	107	0.131	SE
S2	20190322	Cloudy	Light	Mid-Ebb	М	4.4	12:41	13.13	8.69	31.83	23.7	2.72	6	107	0.089	S
S2	20190322	Cloudy	Light	Mid-Ebb	S	1	12:42	12.93	8.73	31.71	23.7	2.71	6	107	0.116	SE
S2	20190322	Cloudy	Light	Mid-Ebb	S	1	12:42	12.85	9.01	32.12	23.9	2.65	6	107	0.124	Е
S3	20190322	Cloudy	Light	Mid-Ebb	В	7.1	13:06	10.7	8.84	29.4	23.7	2.24	6	107	0.101	SE
S3	20190322	Cloudy	Light	Mid-Ebb	В	7.1	13:06	10.63	8.98	29.99	23.8	2.24	5	105	0.105	S
S3	20190322	Cloudy	Light	Mid-Ebb	М	4.1	13:07	10.81	8.93	30.67	23.8	2.31	8	107	0.131	SE
S3	20190322	Cloudy	Light	Mid-Ebb	М	4.1	13:07	10.81	8.88	32.3	23.9	2.38	8	107	0.099	SE
\$3	20190322	Cloudy	Light	Mid-Ebb	S	1	13:08	10.87	8.51	29.12	23.9	2.45	8	106	0.121	SE
S3	20190322	Cloudy	Light	Mid-Ebb	S	1	13:08	10.74	9.11	28.96	23.7	2.54	9	107	0.083	S
B1	20190325	Cloudy	Moderate	Mid-Flood	В	4.8	11:00	11.13	8.67	31.2	20.1	1.73	8	108	0.243	W
B1	20190325	Cloudy	Moderate	Mid-Flood	В	4.8	11:00	11.12	9.02	33.01	20.2	1.84	7	110	0.26	SW
B1	20190325	Cloudy	Moderate	Mid-Flood	S	1	11:01	10.94	9.03	32.7	20.1	1.64	6	109	0.2	NW
B1	20190325	Cloudy	Moderate	Mid-Flood	S	1	11:01	10.83	8.37	30.4	20.1	1.77	7	109	0.194	W
B2	20190325	Cloudy	Moderate	Mid-Flood	В	5	11:20	10.51	8.72	28.27	20.1	2.43	6	108	0.232	W
B2	20190325	Cloudy	Moderate	Mid-Flood	В	5	11:20	10.48	8.6	29.05	20.1	2.56	7	110	0.168	SW

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
B2	20190325	Cloudy	Moderate	Mid-Flood	S	1	11:21	10.56	8.66	31.86	20.2	2.36	7	109	0.161	W
B2	20190325	Cloudy	Moderate	Mid-Flood	S	1	11:21	10.6	8.57	31.34	20.1	2.53	6	109	0.239	SW
B3	20190325	Cloudy	Moderate	Mid-Flood	В	4.7	11:27	10.27	8.83	28.84	20.2	1.73	8	110	0.286	W
B3	20190325	Cloudy	Moderate	Mid-Flood	В	4.7	11:27	10.23	8.59	27.92	20.1	1.74	8	109	0.173	W
B3	20190325	Cloudy	Moderate	Mid-Flood	S	1	11:28	10.3	8.71	31.38	20.2	1.86	5	111	0.205	W
B3	20190325	Cloudy	Moderate	Mid-Flood	S	1	11:28	10.48	8.41	31.05	20.1	1.86	5	110	0.237	SW
B4	20190325	Cloudy	Moderate	Mid-Flood	В	5.2	11:43	10.56	8.52	27.69	20.1	3.33	6	110	0.243	NW
B4	20190325	Cloudy	Moderate	Mid-Flood	В	5.2	11:43	10.54	8.31	33.4	20.1	3.46	5	109	0.259	SW
B4	20190325	Cloudy	Moderate	Mid-Flood	S	1	11:44	10.68	8.72	32.29	20.1	3.52	5	109	0.246	W
B4	20190325	Cloudy	Moderate	Mid-Flood	S	1	11:44	10.51	8.5	29.29	20.1	3.67	4	110	0.186	W
C1	20190325	Cloudy	Moderate	Mid-Flood	В	9.4	10:32	11.09	8.65	32.53	20.1	2.81	10	110	0.278	W
C1	20190325	Cloudy	Moderate	Mid-Flood	В	9.4	10:32	11.15	8.31	30.74	20.2	2.89	10	110	0.212	W
C1	20190325	Cloudy	Moderate	Mid-Flood	М	5.2	10:33	10.95	8.5	33.11	20.2	2.91	11	110	0.135	NW
C1	20190325	Cloudy	Moderate	Mid-Flood	М	5.2	10:33	10.89	8.78	28.7	20.1	2.98	10	110	0.238	W
C1	20190325	Cloudy	Moderate	Mid-Flood	S	1	10:34	10.78	8.45	27.86	20.1	3	5	110	0.218	W
C1	20190325	Cloudy	Moderate	Mid-Flood	S	1	10:34	10.81	8.94	30.05	20.2	3	6	110	0.264	NW
C2	20190325	Cloudy	Moderate	Mid-Flood	В	7.8	9:24	13.06	8.68	28.69	20.1	3.21	6	109	0.287	W
C2	20190325	Cloudy	Moderate	Mid-Flood	В	7.8	9:24	13.02	8.66	29.62	20.1	3.29	5	110	0.267	W
C2	20190325	Cloudy	Moderate	Mid-Flood	М	4.4	9:25	13.03	8.68	30.37	20.2	3.09	6	109	0.229	SW
C2	20190325	Cloudy	Moderate	Mid-Flood	М	4.4	9:25	12.86	9	27.59	20.2	3.09	6	110	0.233	W
C2	20190325	Cloudy	Moderate	Mid-Flood	S	1	9:26	12.87	8.44	28.4	20.2	3.04	4	109	0.187	W
C2	20190325	Cloudy	Moderate	Mid-Flood	S	1	9:26	12.86	8.64	30.75	20.2	3.13	5	109	0.205	SW
F1	20190325	Cloudy	Moderate	Mid-Flood	В	7.2	9:48	11.58	8.87	27.63	20.1	2.16	4	108	0.23	SW
F1	20190325	Cloudy	Moderate	Mid-Flood	В	7.2	9:48	11.47	8.71	27.9	20.2	2.33	5	110	0.15	SW
F1	20190325	Cloudy	Moderate	Mid-Flood	М	4.1	9:49	11.57	8.43	28.9	20.2	2.3	9	111	0.28	SW
F1	20190325	Cloudy	Moderate	Mid-Flood	М	4.1	9:49	11.37	8.88	32.71	20.2	2.26	8	110	0.214	W
F1	20190325	Cloudy	Moderate	Mid-Flood	S	1	9:50	11.54	8.64	31.2	20.1	2.07	11	109	0.268	NW
F1	20190325	Cloudy	Moderate	Mid-Flood	S	1	9:50	11.48	8.84	32.4	20.2	1.99	10	109	0.14	SW
H1	20190325	Cloudy	Moderate	Mid-Flood	В	6.7	11:08	12.47	8.84	30.84	20.1	1.89	6	110	0.259	NW
H1	20190325	Cloudy	Moderate	Mid-Flood	В	6.7	11:08	12.5	8.61	31.67	20.2	2.05	6	110	0.2	W
H1	20190325	Cloudy	Moderate	Mid-Flood	М	3.9	11:09	12.69	9.04	28.29	20.2	2.01	5	110	0.259	SW
H1	20190325	Cloudy	Moderate	Mid-Flood	М	3.9	11:09	12.86	9.02	29.84	20.2	1.93	4	110	0.136	W

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
H1	20190325	Cloudy	Moderate	Mid-Flood	S	1	11:10	12.96	8.64	32.02	20.2	1.81	6	110	0.128	NW
H1	20190325	Cloudy	Moderate	Mid-Flood	S	1	11:10	13.01	8.33	31.15	20.1	1.98	5	109	0.198	W
M1	20190325	Cloudy	Moderate	Mid-Flood	В	8.7	10:24	10.97	8.66	27.86	20.1	1.96	8	110	0.219	SW
M1	20190325	Cloudy	Moderate	Mid-Flood	В	8.7	10:24	11.03	8.59	28.11	20.2	1.81	9	110	0.27	W
M1	20190325	Cloudy	Moderate	Mid-Flood	М	4.9	10:25	11.03	8.75	27.44	20.1	1.61	9	110	0.171	SW
M1	20190325	Cloudy	Moderate	Mid-Flood	М	4.9	10:25	10.93	8.65	27.81	20.1	1.56	8	110	0.136	W
M1	20190325	Cloudy	Moderate	Mid-Flood	S	1	10:26	11.08	8.76	29.36	20.2	1.37	8	109	0.159	SW
M1	20190325	Cloudy	Moderate	Mid-Flood	S	1	10:26	11.12	8.63	29.62	20.1	1.48	8	110	0.219	NW
CR1	20190325	Cloudy	Moderate	Mid-Flood	В	12	9:38	10.77	8.3	31.74	20.2	2.54	7	109	0.258	W
CR1	20190325	Cloudy	Moderate	Mid-Flood	В	12	9:38	10.73	9.03	32.66	20.1	2.5	8	109	0.224	SW
CR1	20190325	Cloudy	Moderate	Mid-Flood	М	6.5	9:39	10.84	8.6	32.96	20.2	2.3	10	110	0.202	SW
CR1	20190325	Cloudy	Moderate	Mid-Flood	М	6.5	9:39	11	8.61	29.12	20.2	2.24	9	110	0.135	SW
CR1	20190325	Cloudy	Moderate	Mid-Flood	S	1	9:40	11.18	8.44	32.03	20.1	2.36	10	111	0.122	W
CR1	20190325	Cloudy	Moderate	Mid-Flood	S	1	9:40	11.31	8.34	27.76	20.2	2.21	9	109	0.239	NW
CR2	20190325	Cloudy	Moderate	Mid-Flood	В	10.9	9:50	12.17	8.73	29.68	20.2	1.92	11	110	0.237	W
CR2	20190325	Cloudy	Moderate	Mid-Flood	В	10.9	9:50	12.3	8.56	31.4	20.1	1.85	10	110	0.151	W
CR2	20190325	Cloudy	Moderate	Mid-Flood	М	6	9:51	12.33	8.44	33.42	20.1	1.8	9	110	0.195	W
CR2	20190325	Cloudy	Moderate	Mid-Flood	М	6	9:51	12.2	8.36	30.61	20.1	1.67	10	109	0.259	W
CR2	20190325	Cloudy	Moderate	Mid-Flood	S	1	9:52	12.07	8.98	30.62	20.2	1.57	7	109	0.255	SW
CR2	20190325	Cloudy	Moderate	Mid-Flood	S	1	9:52	12.25	8.5	30.79	20.2	1.76	8	110	0.208	SW
S1	20190325	Cloudy	Moderate	Mid-Flood	В	4	11:14	11.11	8.33	33.16	20.2	1.77	8	109	0.221	SW
S1	20190325	Cloudy	Moderate	Mid-Flood	В	4	11:14	11.13	8.79	28.56	20.2	1.64	8	111	0.149	SW
S1	20190325	Cloudy	Moderate	Mid-Flood	S	1	11:15	10.96	8.69	27.3	20.1	1.54	8	109	0.197	NW
S1	20190325	Cloudy	Moderate	Mid-Flood	S	1	11:15	11	8.7	28.06	20.2	1.58	7	111	0.239	NW
S2	20190325	Cloudy	Moderate	Mid-Flood	В	8.4	11:40	12.42	8.89	27.87	20.2	1.92	7	110	0.148	W
S2	20190325	Cloudy	Moderate	Mid-Flood	В	8.4	11:40	12.5	9	30.74	20.2	1.76	6	109	0.163	W
S2	20190325	Cloudy	Moderate	Mid-Flood	М	4.7	11:41	12.62	8.72	31.41	20.1	1.59	6	109	0.245	W
S2	20190325	Cloudy	Moderate	Mid-Flood	М	4.7	11:41	12.58	8.43	31.96	20.1	1.59	6	110	0.138	SW
S2	20190325	Cloudy	Moderate	Mid-Flood	S	1	11:42	12.71	8.49	30.98	20.2	1.6	9	109	0.213	NW
S2	20190325	Cloudy	Moderate	Mid-Flood	S	1	11:42	12.71	8.59	31.92	20.2	1.66	8	110	0.234	W
S3	20190325	Cloudy	Moderate	Mid-Flood	В	7.8	10:02	10.79	8.34	28.28	20.2	3.42	5	110	0.159	SW
S 3	20190325	Cloudy	Moderate	Mid-Flood	В	7.8	10:02	10.95	8.74	27.32	20.1	3.62	6	110	0.232	W

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time	DO (mg/L)	pH	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
S3	20190325	Cloudy	Moderate	Mid-Flood	М	4.4	10:03	10.88	8.53	29.23	20.1	3.69	9	110	0.233	W
S3	20190325	Cloudy	Moderate	Mid-Flood	М	4.4	10:03	10.76	8.76	30.02	20.2	3.66	9	109	0.204	W
S3	20190325	Cloudy	Moderate	Mid-Flood	S	1	10:04	10.88	8.58	32.35	20.2	3.83	11	109	0.127	NW
S3	20190325	Cloudy	Moderate	Mid-Flood	S	1	10:04	11.08	8.61	29.76	20.2	3.69	10	110	0.253	W
B1	20190325	Cloudy	Moderate	Mid-Ebb	В	4.4	13:59	12.58	8.65	28.37	20.2	3.46	8	109	0.195	Е
B1	20190325	Cloudy	Moderate	Mid-Ebb	В	4.4	13:59	12.48	8.44	28.48	20.2	3.31	8	110	0.121	SE
B1	20190325	Cloudy	Moderate	Mid-Ebb	S	1	14:00	12.58	8.96	30.12	20.2	3.28	7	110	0.25	SE
B1	20190325	Cloudy	Moderate	Mid-Ebb	S	1	14:00	12.65	8.78	28.24	20.2	3.41	8	110	0.191	SE
B2	20190325	Cloudy	Moderate	Mid-Ebb	В	4.9	14:22	10.93	8.63	32.1	20.1	2.78	8	110	0.121	Е
B2	20190325	Cloudy	Moderate	Mid-Ebb	В	4.9	14:22	10.76	8.7	30.5	20.2	2.9	7	110	0.179	S
B2	20190325	Cloudy	Moderate	Mid-Ebb	S	1	14:23	10.79	8.73	27.98	20.2	3.06	9	110	0.238	SE
B2	20190325	Cloudy	Moderate	Mid-Ebb	S	1	14:23	10.83	8.56	30.58	20.2	3	10	110	0.171	Е
B3	20190325	Cloudy	Moderate	Mid-Ebb	В	4.1	15:20	10.21	8.94	32.27	20.2	2.68	8	110	0.093	Е
B3	20190325	Cloudy	Moderate	Mid-Ebb	В	4.1	15:20	10.07	8.64	31.01	20.2	2.81	8	110	0.189	S
B3	20190325	Cloudy	Moderate	Mid-Ebb	S	1	15:21	10.24	8.73	29.29	20.1	2.84	11	110	0.082	Е
B3	20190325	Cloudy	Moderate	Mid-Ebb	S	1	15:21	10.13	8.77	27.61	20.1	2.68	12	109	0.097	SE
B4	20190325	Cloudy	Moderate	Mid-Ebb	В	5	15:32	12.45	8.74	27.47	20.2	3.13	8	110	0.232	SE
B4	20190325	Cloudy	Moderate	Mid-Ebb	В	5	15:32	12.44	8.97	32.53	20.2	3.15	9	109	0.143	S
B4	20190325	Cloudy	Moderate	Mid-Ebb	S	1	15:33	12.4	8.59	31.91	20.2	3.05	5	111	0.236	S
B4	20190325	Cloudy	Moderate	Mid-Ebb	S	1	15:33	12.36	8.57	28.27	20.2	3.13	6	109	0.157	SE
C1	20190325	Cloudy	Moderate	Mid-Ebb	В	9.7	13:34	11.21	8.96	29.09	20.1	2.15	7	109	0.086	S
C1	20190325	Cloudy	Moderate	Mid-Ebb	В	9.7	13:34	11.06	8.77	29.45	20.2	2.25	7	111	0.191	SE
C1	20190325	Cloudy	Moderate	Mid-Ebb	М	5.4	13:35	10.97	8.66	30.56	20.2	2.35	6	109	0.099	S
C1	20190325	Cloudy	Moderate	Mid-Ebb	М	5.4	13:35	10.77	8.46	31.4	20.1	2.25	7	110	0.144	SE
C1	20190325	Cloudy	Moderate	Mid-Ebb	S	1	13:36	10.62	8.77	32.39	20.2	2.16	7	111	0.077	Е
C1	20190325	Cloudy	Moderate	Mid-Ebb	S	1	13:36	10.77	8.58	31.57	20.1	2.16	8	110	0.181	SE
C2	20190325	Cloudy	Moderate	Mid-Ebb	В	6.7	14:44	10.57	8.71	29.27	20.2	3.29	9	111	0.18	SE
C2	20190325	Cloudy	Moderate	Mid-Ebb	В	6.7	14:44	10.41	8.71	31.59	20.2	3.39	8	110	0.204	SE
C2	20190325	Cloudy	Moderate	Mid-Ebb	М	3.9	14:45	10.22	9	32.05	20.2	3.25	9	111	0.14	S
C2	20190325	Cloudy	Moderate	Mid-Ebb	М	3.9	14:45	10.09	8.94	29.57	20.2	3.1	9	110	0.136	SE
C2	20190325	Cloudy	Moderate	Mid-Ebb	S	1	14:46	10.17	8.5	32.06	20.1	3.2	8	110	0.198	SE
C2	20190325	Cloudy	Moderate	Mid-Ebb	S	1	14:46	10.04	9.03	31.52	20.1	3.38	8	110	0.19	SE

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
F1	20190325	Cloudy	Moderate	Mid-Ebb	В	7.1	13:39	13.05	8.73	27.83	20.2	2.02	10	109	0.214	SE
F1	20190325	Cloudy	Moderate	Mid-Ebb	В	7.1	13:39	12.85	8.56	28.39	20.2	1.95	10	108	0.21	S
F1	20190325	Cloudy	Moderate	Mid-Ebb	М	4.1	13:40	12.89	8.41	31.27	20.1	2.02	8	110	0.076	SE
F1	20190325	Cloudy	Moderate	Mid-Ebb	М	4.1	13:40	13	8.66	28.34	20.2	1.91	8	110	0.09	S
F1	20190325	Cloudy	Moderate	Mid-Ebb	S	1	13:41	12.89	8.34	31.86	20.2	1.8	10	110	0.108	SE
F1	20190325	Cloudy	Moderate	Mid-Ebb	S	1	13:41	12.77	8.92	32.99	20.1	1.78	9	110	0.178	SE
H1	20190325	Cloudy	Moderate	Mid-Ebb	В	7.2	15:04	12.8	8.47	27.72	20.2	1.85	11	110	0.19	SE
H1	20190325	Cloudy	Moderate	Mid-Ebb	В	7.2	15:04	12.7	8.33	27.65	20.1	2.03	12	109	0.121	SE
H1	20190325	Cloudy	Moderate	Mid-Ebb	М	4.1	15:05	12.62	9.02	27.86	20.2	1.89	9	110	0.158	SE
H1	20190325	Cloudy	Moderate	Mid-Ebb	М	4.1	15:05	12.71	8.36	31.25	20.2	1.78	10	108	0.151	SE
H1	20190325	Cloudy	Moderate	Mid-Ebb	S	1	15:06	12.55	8.87	30.04	20.1	1.74	9	110	0.124	S
H1	20190325	Cloudy	Moderate	Mid-Ebb	S	1	15:06	12.72	8.65	32.44	20.1	1.88	8	110	0.106	Е
M1	20190325	Cloudy	Moderate	Mid-Ebb	В	8.3	14:07	12.1	8.43	31.85	20.2	2.94	7	111	0.171	S
M1	20190325	Cloudy	Moderate	Mid-Ebb	В	8.3	14:07	11.97	8.38	31.62	20.2	2.86	8	110	0.117	SE
M1	20190325	Cloudy	Moderate	Mid-Ebb	М	4.7	14:08	11.86	8.95	27.74	20.1	2.76	7	109	0.146	SE
M1	20190325	Cloudy	Moderate	Mid-Ebb	М	4.7	14:08	12.04	8.33	29.47	20.1	2.87	8	109	0.13	SE
M1	20190325	Cloudy	Moderate	Mid-Ebb	S	1	14:09	11.85	8.35	30.1	20.2	2.86	8	109	0.118	S
M1	20190325	Cloudy	Moderate	Mid-Ebb	S	1	14:09	11.71	8.61	29.54	20.2	2.7	8	108	0.193	SE
CR1	20190325	Cloudy	Moderate	Mid-Ebb	В	10.3	15:13	12.93	8.5	31.8	20.2	3.47	8	110	0.08	S
CR1	20190325	Cloudy	Moderate	Mid-Ebb	В	10.3	15:13	13.04	8.87	30.99	20.2	3.64	8	109	0.208	SE
CR1	20190325	Cloudy	Moderate	Mid-Ebb	М	5.7	15:14	13.04	8.68	30.13	20.1	3.6	6	110	0.24	Е
CR1	20190325	Cloudy	Moderate	Mid-Ebb	М	5.7	15:14	12.84	8.6	31.83	20.1	3.4	7	110	0.13	S
CR1	20190325	Cloudy	Moderate	Mid-Ebb	S	1	15:15	12.68	8.52	30.58	20.2	3.54	8	109	0.174	S
CR1	20190325	Cloudy	Moderate	Mid-Ebb	S	1	15:15	12.74	8.85	32.04	20.2	3.61	8	111	0.238	Е
CR2	20190325	Cloudy	Moderate	Mid-Ebb	В	9.7	15:02	10.6	9.02	31.94	20.1	2.92	10	109	0.207	S
CR2	20190325	Cloudy	Moderate	Mid-Ebb	В	9.7	15:02	10.5	8.71	30.85	20.1	3.02	10	110	0.139	S
CR2	20190325	Cloudy	Moderate	Mid-Ebb	М	5.4	15:03	10.45	8.49	28.09	20.2	3.2	11	109	0.22	Е
CR2	20190325	Cloudy	Moderate	Mid-Ebb	М	5.4	15:03	10.6	9.02	30.54	20.2	3.34	10	110	0.199	S
CR2	20190325	Cloudy	Moderate	Mid-Ebb	S	1	15:04	10.44	8.59	27.68	20.1	3.17	9	109	0.104	Е
CR2	20190325	Cloudy	Moderate	Mid-Ebb	S	1	15:04	10.3	8.57	27.97	20.1	3.17	9	111	0.089	Е
S 1	20190325	Cloudy	Moderate	Mid-Ebb	В	4	14:12	11.95	8.71	33.26	20.2	3.22	7	111	0.24	SE
S 1	20190325	Cloudy	Moderate	Mid-Ebb	В	4	14:12	11.9	8.64	30.68	20.1	3.18	8	110	0.232	SE

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
S1	20190325	Cloudy	Moderate	Mid-Ebb	S	1	14:13	11.8	9.02	27.4	20.2	3.07	9	109	0.132	S
S1	20190325	Cloudy	Moderate	Mid-Ebb	S	1	14:13	11.69	8.76	31.7	20.2	3.02	9	110	0.237	SE
S2	20190325	Cloudy	Moderate	Mid-Ebb	В	7.9	14:39	11.72	8.87	28.54	20.2	2.63	9	110	0.166	SE
S2	20190325	Cloudy	Moderate	Mid-Ebb	В	7.9	14:39	11.55	8.5	28.39	20.2	2.73	10	108	0.188	S
S2	20190325	Cloudy	Moderate	Mid-Ebb	М	4.5	14:40	11.57	8.54	32.5	20.1	2.81	7	109	0.243	S
S2	20190325	Cloudy	Moderate	Mid-Ebb	М	4.5	14:40	11.47	8.77	27.71	20.2	2.7	8	110	0.219	SE
S2	20190325	Cloudy	Moderate	Mid-Ebb	S	1	14:41	11.39	8.78	28.69	20.2	2.76	9	110	0.228	SE
S2	20190325	Cloudy	Moderate	Mid-Ebb	S	1	14:41	11.5	8.34	31.68	20.1	2.79	8	110	0.102	S
S3	20190325	Cloudy	Moderate	Mid-Ebb	В	7.6	14:52	13.01	8.74	27.77	20.1	2.22	8	109	0.202	Е
S3	20190325	Cloudy	Moderate	Mid-Ebb	В	7.6	14:52	13.18	8.75	31.41	20.1	2.42	9	109	0.248	SE
S3	20190325	Cloudy	Moderate	Mid-Ebb	М	4.3	14:53	13.14	8.84	29.25	20.1	2.6	8	109	0.188	S
S3	20190325	Cloudy	Moderate	Mid-Ebb	М	4.3	14:53	13.25	9	30.63	20.1	2.43	9	110	0.25	SE
S3	20190325	Cloudy	Moderate	Mid-Ebb	S	1	14:54	13.22	8.71	28.99	20.1	2.31	9	110	0.181	SE
S3	20190325	Cloudy	Moderate	Mid-Ebb	S	1	14:54	13.2	8.36	27.96	20.1	2.26	8	110	0.078	S
B1	20190327	Cloudy	Moderate	Mid-Flood	В	5.4	0.45	10.45	8.50	30.5	21.10	1.7	5	112	0.225	W
B1	20190327	Cloudy	Moderate	Mid-Flood	В	5.4	0.45	10.26	8.86	28.1	21.10	1.76	5	112	0.163	S
B1	20190327	Cloudy	Moderate	Mid-Flood	S	1	0.45	10.08	8.65	31.5	21.30	1.8	4	112	0.174	W
B1	20190327	Cloudy	Moderate	Mid-Flood	S	1	0.45	10.21	8.96	27.5	21.10	1.89	5	113	0.127	SW
B2	20190327	Cloudy	Moderate	Mid-Flood	В	4.5	0.46	12.75	8.63	31.0	21.30	1.94	7	112	0.216	W
B2	20190327	Cloudy	Moderate	Mid-Flood	В	4.5	0.46	12.85	8.62	28.8	21.10	2.06	8	113	0.168	W
B2	20190327	Cloudy	Moderate	Mid-Flood	S	1	0.46	12.77	9.00	28.6	21.10	1.87	5	112	0.17	W
B2	20190327	Cloudy	Moderate	Mid-Flood	S	1	0.46	12.77	8.75	27.5	21.10	2.03	6	112	0.204	W
B3	20190327	Cloudy	Moderate	Mid-Flood	В	4.5	0.48	12.22	8.77	29.0	21.20	3.29	6	112	0.202	S
B3	20190327	Cloudy	Moderate	Mid-Flood	В	4.5	0.48	12.35	8.67	30.4	21.10	3.35	6	113	0.175	W
B3	20190327	Cloudy	Moderate	Mid-Flood	S	1	0.48	12.24	9.12	33.4	21.20	3.29	6	112	0.2	SW
B3	20190327	Cloudy	Moderate	Mid-Flood	S	1	0.48	12.32	8.57	27.5	21.20	3.09	7	112	0.172	SW
B4	20190327	Cloudy	Moderate	Mid-Flood	В	5.5	0.49	11.39	8.90	27.7	21.20	3.32	9	112	0.122	SW
B4	20190327	Cloudy	Moderate	Mid-Flood	В	5.5	0.49	11.31	8.59	30.5	21.20	3.2	8	113	0.165	W
B4	20190327	Cloudy	Moderate	Mid-Flood	S	1	0.49	11.19	8.51	27.3	21.20	3.26	7	112	0.118	W
B4	20190327	Cloudy	Moderate	Mid-Flood	S	1	0.49	11.08	8.54	31.2	21.20	3.29	6	112	0.223	SW
C1	20190327	Cloudy	Moderate	Mid-Flood	В	10	0.43	10.41	8.83	31.1	21.20	2.9	7	111	0.126	SW
C1	20190327	Cloudy	Moderate	Mid-Flood	В	10	0.43	10.43	8.76	31.0	21.20	2.83	8	112	0.118	SW

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
C1	20190327	Cloudy	Moderate	Mid-Flood	М	5.5	0.43	10.51	8.85	32.2	21.30	2.82	6	112	0.199	SW
C1	20190327	Cloudy	Moderate	Mid-Flood	М	5.5	0.43	10.57	9.04	28.6	21.10	2.64	4	113	0.17	W
C1	20190327	Cloudy	Moderate	Mid-Flood	S	1	0.43	10.59	8.51	28.6	21.10	2.66	4	111	0.149	SW
C1	20190327	Cloudy	Moderate	Mid-Flood	S	1	0.43	10.45	8.82	28.7	21.20	2.65	4	112	0.17	W
C2	20190327	Cloudy	Moderate	Mid-Flood	В	7.9	0.39	11.82	8.87	32.5	21.30	1.54	11	111	0.181	W
C2	20190327	Cloudy	Moderate	Mid-Flood	В	7.9	0.39	11.79	8.50	32.5	21.20	1.73	11	113	0.17	W
C2	20190327	Cloudy	Moderate	Mid-Flood	М	4.5	0.39	11.78	9.11	28.4	21.20	1.59	8	111	0.205	NW
C2	20190327	Cloudy	Moderate	Mid-Flood	М	4.5	0.39	11.89	8.53	29.5	21.30	1.57	8	111	0.141	SW
C2	20190327	Cloudy	Moderate	Mid-Flood	S	1	0.39	11.73	8.55	29.8	21.30	1.77	8	111	0.152	W
C2	20190327	Cloudy	Moderate	Mid-Flood	S	1	0.39	11.93	9.01	30.5	21.20	1.94	7	111	0.136	W
F1	20190327	Cloudy	Moderate	Mid-Flood	В	6.9	0.41	11.92	8.62	28.9	21.20	3.32	9	111	0.13	SW
F1	20190327	Cloudy	Moderate	Mid-Flood	В	6.9	0.41	11.84	8.86	29.9	21.20	3.2	10	112	0.157	W
F1	20190327	Cloudy	Moderate	Mid-Flood	М	4	0.41	11.77	8.90	28.0	21.20	3.35	9	113	0.222	W
F1	20190327	Cloudy	Moderate	Mid-Flood	М	4	0.41	11.58	8.56	31.9	21.10	3.34	9	112	0.133	W
F1	20190327	Cloudy	Moderate	Mid-Flood	S	1	0.41	11.48	8.55	30.5	21.30	3.34	6	113	0.211	SW
F1	20190327	Cloudy	Moderate	Mid-Flood	S	1	0.41	11.49	9.00	31.6	21.20	3.29	6	111	0.126	W
H1	20190327	Cloudy	Moderate	Mid-Flood	В	6.9	0.47	10.21	8.84	30.2	21.30	3.19	10	112	0.133	SW
H1	20190327	Cloudy	Moderate	Mid-Flood	В	6.9	0.47	10.01	8.71	28.4	21.30	3.16	10	112	0.153	W
H1	20190327	Cloudy	Moderate	Mid-Flood	М	4	0.47	9.92	8.81	32.0	21.20	3.11	7	111	0.181	SW
H1	20190327	Cloudy	Moderate	Mid-Flood	М	4	0.47	9.96	9.01	33.4	21.10	3.01	8	112	0.194	NW
H1	20190327	Cloudy	Moderate	Mid-Flood	S	1	0.47	10.1	9.14	29.1	21.30	2.96	6	112	0.226	NW
H1	20190327	Cloudy	Moderate	Mid-Flood	S	1	0.47	10.3	8.75	30.6	21.20	3.05	7	112	0.21	W
M1	20190327	Cloudy	Moderate	Mid-Flood	В	8	0.43	10.08	8.50	28.1	21.20	1.78	9	113	0.195	NW
M1	20190327	Cloudy	Moderate	Mid-Flood	В	8	0.43	10.06	8.52	29.7	21.30	1.72	10	113	0.122	W
M1	20190327	Cloudy	Moderate	Mid-Flood	М	4.5	0.43	9.99	9.10	32.0	21.30	1.69	8	112	0.15	W
M1	20190327	Cloudy	Moderate	Mid-Flood	М	4.5	0.43	9.83	8.88	31.2	21.20	1.87	9	113	0.178	W
M1	20190327	Cloudy	Moderate	Mid-Flood	S	1	0.43	10	8.80	27.8	21.30	1.88	9	112	0.144	W
M1	20190327	Cloudy	Moderate	Mid-Flood	S	1	0.43	10.14	9.00	28.2	21.10	2.02	8	113	0.161	SW
CR1	20190327	Cloudy	Moderate	Mid-Flood	В	12	0.40	11.64	9.11	30.4	21.30	2.39	6	111	0.115	SW
CR1	20190327	Cloudy	Moderate	Mid-Flood	В	12	0.40	11.62	8.66	28.6	21.10	2.29	6	112	0.202	SW
CR1	20190327	Cloudy	Moderate	Mid-Flood	М	6.5	0.40	11.64	8.72	28.3	21.10	2.19	7	113	0.134	W
CR1	20190327	Cloudy	Moderate	Mid-Flood	М	6.5	0.40	11.55	8.89	32.2	21.30	2.23	6	113	0.118	SW

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
CR1	20190327	Cloudy	Moderate	Mid-Flood	S	1	0.40	11.46	8.58	31.6	21.10	2.21	5	112	0.139	NW
CR1	20190327	Cloudy	Moderate	Mid-Flood	S	1	0.40	11.65	8.74	28.9	21.20	2.4	6	112	0.219	SW
CR2	20190327	Cloudy	Moderate	Mid-Flood	В	10.5	0.40	11.31	8.57	28.9	21.20	3.21	7	111	0.163	W
CR2	20190327	Cloudy	Moderate	Mid-Flood	В	10.5	0.40	11.12	9.06	32.8	21.10	3.27	8	112	0.121	SW
CR2	20190327	Cloudy	Moderate	Mid-Flood	М	5.8	0.41	11.27	8.95	28.3	21.30	3.42	7	111	0.214	W
CR2	20190327	Cloudy	Moderate	Mid-Flood	М	5.8	0.41	11.18	8.64	29.0	21.30	3.53	8	111	0.192	W
CR2	20190327	Cloudy	Moderate	Mid-Flood	S	1	0.41	11.2	8.89	30.3	21.30	3.73	5	112	0.23	W
CR2	20190327	Cloudy	Moderate	Mid-Flood	S	1	0.41	11.13	8.66	30.7	21.20	3.64	6	113	0.168	W
S1	20190327	Cloudy	Moderate	Mid-Flood	В	4.1	0.46	10.41	8.90	33.4	21.30	2.73	5	112	0.118	SW
S1	20190327	Cloudy	Moderate	Mid-Flood	В	4.1	0.46	10.3	8.98	30.2	21.30	2.73	6	112	0.186	SW
S1	20190327	Cloudy	Moderate	Mid-Flood	S	1	0.46	10.2	8.79	32.2	21.20	2.81	4	112	0.23	NW
S1	20190327	Cloudy	Moderate	Mid-Flood	S	1	0.46	10.27	8.56	28.4	21.30	2.96	5	112	0.214	SW
S2	20190327	Cloudy	Moderate	Mid-Flood	В	8.4	0.47	10.91	8.67	30.2	21.20	2.77	5	113	0.218	W
S2	20190327	Cloudy	Moderate	Mid-Flood	В	8.4	0.47	10.88	8.53	33.2	21.10	2.59	5	112	0.18	W
S2	20190327	Cloudy	Moderate	Mid-Flood	М	4.7	0.48	10.76	8.75	27.6	21.10	2.69	4	112	0.225	W
S2	20190327	Cloudy	Moderate	Mid-Flood	М	4.7	0.48	10.57	8.63	30.5	21.10	2.57	5	112	0.216	W
S2	20190327	Cloudy	Moderate	Mid-Flood	S	1	0.48	10.61	8.64	31.2	21.20	2.51	4	111	0.115	SW
S2	20190327	Cloudy	Moderate	Mid-Flood	S	1	0.48	10.53	8.64	31.5	21.10	2.64	4	111	0.213	SW
S3	20190327	Cloudy	Moderate	Mid-Flood	В	7.6	0.41	11.91	8.65	30.9	21.30	2.92	5	113	0.135	SW
\$3	20190327	Cloudy	Moderate	Mid-Flood	В	7.6	0.41	11.75	8.99	29.9	21.20	2.74	6	112	0.156	SW
S3	20190327	Cloudy	Moderate	Mid-Flood	М	4.3	0.41	11.82	8.72	29.3	21.20	2.88	4	112	0.214	SW
S3	20190327	Cloudy	Moderate	Mid-Flood	М	4.3	0.41	11.83	8.78	32.9	21.30	2.8	4	112	0.163	SW
S3	20190327	Cloudy	Moderate	Mid-Flood	S	1	0.41	11.99	8.63	30.9	21.20	2.69	4	112	0.221	NW
S3	20190327	Cloudy	Moderate	Mid-Flood	S	1	0.41	11.85	8.67	31.4	21.20	2.87	4	112	0.164	SW
B1	20190327	Cloudy	Moderate	Mid-Ebb	В	4.7	0.66	9.9	8.77	30.6	23.70	2.3	9	113	0.136	SE
B1	20190327	Cloudy	Moderate	Mid-Ebb	В	4.7	0.66	9.75	8.88	32.7	23.50	2.45	8	112	0.252	S
B1	20190327	Cloudy	Moderate	Mid-Ebb	S	1	0.66	9.75	8.91	31.1	23.50	2.31	8	113	0.244	S
B1	20190327	Cloudy	Moderate	Mid-Ebb	S	1	0.66	9.74	8.54	27.5	23.40	2.33	9	111	0.079	SE
B2	20190327	Cloudy	Moderate	Mid-Ebb	В	5	0.67	10.11	8.68	30.4	23.50	2.71	6	112	0.198	SE
B2	20190327	Cloudy	Moderate	Mid-Ebb	В	5	0.67	10.29	8.84	28.1	23.50	2.63	7	111	0.195	S
B2	20190327	Cloudy	Moderate	Mid-Ebb	S	1	0.67	10.4	8.74	32.6	23.40	2.57	6	113	0.093	Е
B2	20190327	Cloudy	Moderate	Mid-Ebb	S	1	0.67	10.44	9.07	28.0	23.40	2.75	6	112	0.138	S

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
B3	20190327	Cloudy	Moderate	Mid-Ebb	В	4.3	0.66	10.08	8.56	31.1	23.50	2.53	4	113	0.205	SE
B3	20190327	Cloudy	Moderate	Mid-Ebb	В	4.3	0.66	10.05	8.78	28.4	23.70	2.72	6	111	0.089	SE
B3	20190327	Cloudy	Moderate	Mid-Ebb	S	1	0.66	10.16	8.73	33.1	23.50	2.79	5	112	0.244	SE
B3	20190327	Cloudy	Moderate	Mid-Ebb	S	1	0.66	10.34	8.53	33.4	23.40	2.9	5	111	0.108	SE
B4	20190327	Cloudy	Moderate	Mid-Ebb	В	4.3	0.66	12	8.57	33.0	23.50	2.06	7	112	0.165	SE
B4	20190327	Cloudy	Moderate	Mid-Ebb	В	4.3	0.66	12.03	8.60	28.1	23.40	2.22	7	112	0.218	S
B4	20190327	Cloudy	Moderate	Mid-Ebb	S	1	0.67	11.86	8.50	28.5	23.60	2.19	7	112	0.08	S
B4	20190327	Cloudy	Moderate	Mid-Ebb	S	1	0.67	11.69	8.82	27.6	23.60	2.31	6	112	0.25	SE
C1	20190327	Cloudy	Moderate	Mid-Ebb	В	8.9	0.64	11.43	8.56	27.9	23.50	2.15	9	113	0.216	S
C1	20190327	Cloudy	Moderate	Mid-Ebb	В	8.9	0.64	11.38	8.73	31.3	23.70	2.01	9	113	0.23	Е
C1	20190327	Cloudy	Moderate	Mid-Ebb	М	5	0.64	11.47	9.03	29.4	23.60	2.18	8	112	0.181	Е
C1	20190327	Cloudy	Moderate	Mid-Ebb	М	5	0.64	11.31	8.69	33.1	23.60	2.15	7	113	0.184	S
C1	20190327	Cloudy	Moderate	Mid-Ebb	S	1	0.64	11.21	8.53	33.2	23.60	2.22	7	112	0.232	SE
C1	20190327	Cloudy	Moderate	Mid-Ebb	S	1	0.64	11.03	8.99	28.8	23.40	2.24	7	112	0.223	Е
C2	20190327	Cloudy	Moderate	Mid-Ebb	В	7.3	0.72	10.34	9.02	28.9	23.60	2.81	9	112	0.191	S
C2	20190327	Cloudy	Moderate	Mid-Ebb	В	7.3	0.72	10.43	8.83	30.4	23.50	2.72	8	112	0.186	Е
C2	20190327	Cloudy	Moderate	Mid-Ebb	М	4.2	0.72	10.39	9.02	28.1	23.50	2.88	6	111	0.124	SE
C2	20190327	Cloudy	Moderate	Mid-Ebb	М	4.2	0.72	10.24	9.11	30.0	23.50	2.9	8	112	0.093	Е
C2	20190327	Cloudy	Moderate	Mid-Ebb	S	1	0.72	10.05	8.55	32.4	23.50	2.94	6	112	0.156	SE
C2	20190327	Cloudy	Moderate	Mid-Ebb	S	1	0.72	10.06	9.07	30.9	23.50	2.93	7	112	0.23	Е
F1	20190327	Cloudy	Moderate	Mid-Ebb	В	7.1	0.69	11.03	8.86	30.6	23.60	2.16	8	113	0.234	S
F1	20190327	Cloudy	Moderate	Mid-Ebb	В	7.1	0.69	11.04	8.62	32.0	23.70	1.99	8	112	0.146	SE
F1	20190327	Cloudy	Moderate	Mid-Ebb	М	4.1	0.69	11.07	8.74	33.2	23.50	1.88	7	112	0.198	Е
F1	20190327	Cloudy	Moderate	Mid-Ebb	М	4.1	0.69	11.11	8.88	32.9	23.50	1.91	7	112	0.197	SE
F1	20190327	Cloudy	Moderate	Mid-Ebb	S	1	0.69	11	8.73	28.5	23.40	1.86	7	112	0.088	SE
F1	20190327	Cloudy	Moderate	Mid-Ebb	S	1	0.69	10.89	8.85	30.5	23.50	1.78	6	112	0.084	SE
H1	20190327	Cloudy	Moderate	Mid-Ebb	В	6.5	0.65	11.01	9.06	30.2	23.40	3.5	8	113	0.25	Е
H1	20190327	Cloudy	Moderate	Mid-Ebb	В	6.5	0.65	10.97	8.60	32.1	23.50	3.42	8	112	0.176	Е
H1	20190327	Cloudy	Moderate	Mid-Ebb	М	3.8	0.65	10.9	8.69	31.7	23.60	3.33	7	112	0.236	SE
H1	20190327	Cloudy	Moderate	Mid-Ebb	М	3.8	0.65	10.7	8.74	31.3	23.70	3.33	7	113	0.198	S
H1	20190327	Cloudy	Moderate	Mid-Ebb	S	1	0.65	10.68	8.98	28.5	23.50	3.47	6	112	0.234	Е
H1	20190327	Cloudy	Moderate	Mid-Ebb	S	1	0.65	10.6	8.96	28.2	23.60	3.31	6	112	0.177	S

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
M1	20190327	Cloudy	Moderate	Mid-Ebb	В	8.8	0.71	9.91	9.08	27.8	23.50	2.57	7	113	0.243	S
M1	20190327	Cloudy	Moderate	Mid-Ebb	В	8.8	0.71	10.11	9.11	31.4	23.40	2.72	6	113	0.184	S
M1	20190327	Cloudy	Moderate	Mid-Ebb	М	4.9	0.71	10.15	8.94	30.1	23.60	2.52	6	112	0.177	SE
M1	20190327	Cloudy	Moderate	Mid-Ebb	М	4.9	0.71	10.23	8.57	30.4	23.60	2.41	6	112	0.225	S
M1	20190327	Cloudy	Moderate	Mid-Ebb	S	1	0.71	10.38	8.72	29.9	23.50	2.32	5	113	0.133	SE
M1	20190327	Cloudy	Moderate	Mid-Ebb	S	1	0.71	10.27	8.81	31.5	23.50	2.4	4	113	0.138	Е
CR1	20190327	Cloudy	Moderate	Mid-Ebb	В	11.6	0.71	10.74	8.70	30.1	23.60	2.02	7	113	0.168	S
CR1	20190327	Cloudy	Moderate	Mid-Ebb	В	11.6	0.71	10.57	8.79	33.0	23.60	1.97	6	112	0.21	SE
CR1	20190327	Cloudy	Moderate	Mid-Ebb	М	6.3	0.71	10.39	8.73	28.1	23.70	2.08	6	111	0.181	S
CR1	20190327	Cloudy	Moderate	Mid-Ebb	М	6.3	0.71	10.21	8.75	27.7	23.40	2.11	5	112	0.145	S
CR1	20190327	Cloudy	Moderate	Mid-Ebb	S	1	0.71	10.12	8.85	31.8	23.50	2.24	4	113	0.227	Е
CR1	20190327	Cloudy	Moderate	Mid-Ebb	S	1	0.71	10.28	9.08	29.8	23.40	2.27	5	112	0.212	SE
CR2	20190327	Cloudy	Moderate	Mid-Ebb	В	9.8	0.70	11.93	8.78	30.1	23.40	3.38	6	114	0.151	SE
CR2	20190327	Cloudy	Moderate	Mid-Ebb	В	9.8	0.70	11.98	8.68	30.1	23.60	3.42	7	113	0.103	S
CR2	20190327	Cloudy	Moderate	Mid-Ebb	М	5.4	0.70	11.97	8.57	28.2	23.50	3.58	7	113	0.202	S
CR2	20190327	Cloudy	Moderate	Mid-Ebb	М	5.4	0.70	11.86	8.64	27.7	23.70	3.75	6	113	0.227	Е
CR2	20190327	Cloudy	Moderate	Mid-Ebb	S	1	0.70	11.9	8.79	29.1	23.70	3.82	6	112	0.085	SE
CR2	20190327	Cloudy	Moderate	Mid-Ebb	S	1	0.70	11.83	8.54	28.3	23.50	3.76	5	112	0.079	SE
S1	20190327	Cloudy	Moderate	Mid-Ebb	В	4.1	0.66	12.47	8.89	30.4	23.70	2.53	6	113	0.115	S
S1	20190327	Cloudy	Moderate	Mid-Ebb	В	4.1	0.66	12.55	8.88	31.9	23.50	2.42	7	112	0.211	S
S1	20190327	Cloudy	Moderate	Mid-Ebb	S	1	0.67	12.41	8.66	33.4	23.50	2.24	6	113	0.092	Е
S1	20190327	Cloudy	Moderate	Mid-Ebb	S	1	0.67	12.38	8.99	33.1	23.70	2.16	5	113	0.121	S
S2	20190327	Cloudy	Moderate	Mid-Ebb	В	8.1	0.68	11.96	8.53	31.6	23.50	3.09	11	111	0.139	SE
S2	20190327	Cloudy	Moderate	Mid-Ebb	В	8.1	0.68	11.76	9.05	29.2	23.70	3.02	10	112	0.09	S
S2	20190327	Cloudy	Moderate	Mid-Ebb	М	4.6	0.68	11.93	8.96	30.1	23.60	3.01	8	112	0.174	S
S2	20190327	Cloudy	Moderate	Mid-Ebb	М	4.6	0.68	12	8.97	32.2	23.50	2.97	9	112	0.219	SE
S2	20190327	Cloudy	Moderate	Mid-Ebb	S	1	0.68	12.01	8.93	28.0	23.60	2.95	7	113	0.207	SE
S2	20190327	Cloudy	Moderate	Mid-Ebb	S	1	0.68	12.08	8.84	31.7	23.50	2.96	8	113	0.144	S
\$3	20190327	Cloudy	Moderate	Mid-Ebb	В	7.2	0.69	11.25	8.52	30.2	23.50	2.14	9	112	0.088	SE
S3	20190327	Cloudy	Moderate	Mid-Ebb	В	7.2	0.69	11.24	9.13	33.0	23.50	1.98	8	112	0.116	SE
\$3	20190327	Cloudy	Moderate	Mid-Ebb	М	4.1	0.69	11.4	8.69	30.6	23.50	1.94	8	112	0.205	SE
\$3	20190327	Cloudy	Moderate	Mid-Ebb	М	4.1	0.69	11.38	8.93	32.1	23.60	2.06	8	113	0.147	E

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
S 3	20190327	Cloudy	Moderate	Mid-Ebb	S	1	0.69	11.35	9.04	31.1	23.60	2.21	6	113	0.108	Е
S 3	20190327	Cloudy	Moderate	Mid-Ebb	S	1	0.69	11.31	9.03	32.8	23.60	2.12	7	112	0.142	Е
B1	20190329	Cloudy	Moderate	Mid-Flood	В	5.3	11:45	12.52	8.75	29.41	22.4	1.94	3	113	0.166	W
B1	20190329	Cloudy	Moderate	Mid-Flood	В	5.3	11:45	12.63	8.57	29.73	22.2	2.03	4	112	0.218	W
B1	20190329	Cloudy	Moderate	Mid-Flood	S	1	11:46	12.43	8.46	27.5	22.5	1.97	4	113	0.278	W
B1	20190329	Cloudy	Moderate	Mid-Flood	S	1	11:46	12.29	8.39	33.1	22.4	1.97	5	112	0.219	W
B2	20190329	Cloudy	Moderate	Mid-Flood	В	4.8	12:05	11.45	8.96	31.5	22.4	1.76	3	113	0.162	W
B2	20190329	Cloudy	Moderate	Mid-Flood	В	4.8	12:05	11.33	8.64	29.72	22.2	1.86	4	112	0.204	W
B2	20190329	Cloudy	Moderate	Mid-Flood	S	1	12:06	11.23	8.32	31.57	22.1	1.79	4	113	0.169	SW
B2	20190329	Cloudy	Moderate	Mid-Flood	S	1	12:06	11.25	8.3	33.28	22.2	1.73	4	113	0.127	W
B3	20190329	Cloudy	Moderate	Mid-Flood	В	4.7	12:12	11.54	9	28.72	22.4	1.8	3	113	0.267	W
B3	20190329	Cloudy	Moderate	Mid-Flood	В	4.7	12:12	11.38	8.83	30.16	22.2	1.74	3	113	0.221	W
B3	20190329	Cloudy	Moderate	Mid-Flood	S	1	12:13	11.28	8.41	28.99	22.4	1.67	<2	112	0.195	SW
B3	20190329	Cloudy	Moderate	Mid-Flood	S	1	12:13	11.41	8.4	33.02	22.4	1.77	<2	113	0.257	W
B4	20190329	Cloudy	Moderate	Mid-Flood	В	4.9	12:22	10.13	8.83	31.17	22.5	2.83	4	112	0.142	SW
B4	20190329	Cloudy	Moderate	Mid-Flood	В	4.9	12:22	10.22	8.33	30.92	22.2	2.92	4	112	0.131	SW
B4	20190329	Cloudy	Moderate	Mid-Flood	S	1	12:23	10.37	8.52	28.57	22.4	2.88	4	113	0.276	W
B4	20190329	Cloudy	Moderate	Mid-Flood	S	1	12:23	10.26	8.59	32.86	22.2	2.92	4	112	0.289	W
C1	20190329	Cloudy	Moderate	Mid-Flood	В	9.3	11:23	11.48	8.92	28.22	22.5	2.19	6	111	0.248	SW
C1	20190329	Cloudy	Moderate	Mid-Flood	В	9.3	11:23	11.34	8.3	27.47	22.2	2.21	5	112	0.196	NW
C1	20190329	Cloudy	Moderate	Mid-Flood	М	5.2	11:24	11.33	8.71	33.03	22.4	2.19	6	112	0.276	NW
C1	20190329	Cloudy	Moderate	Mid-Flood	М	5.2	11:24	11.45	9	30.68	22.2	2.21	5	112	0.266	W
C1	20190329	Cloudy	Moderate	Mid-Flood	S	1	11:25	11.44	8.83	30.82	22.2	2.27	5	112	0.193	SW
C1	20190329	Cloudy	Moderate	Mid-Flood	S	1	11:25	11.64	9.02	31.73	22.4	2.31	5	112	0.251	NW
C2	20190329	Cloudy	Moderate	Mid-Flood	В	7.5	10:17	10.03	8.67	33.14	22.3	2.39	5	113	0.176	W
C2	20190329	Cloudy	Moderate	Mid-Flood	В	7.5	10:17	10.1	8.55	27.67	22.4	2.45	6	113	0.218	W
C2	20190329	Cloudy	Moderate	Mid-Flood	М	4.3	10:18	10.16	8.32	29.6	22.1	2.42	4	113	0.267	W
C2	20190329	Cloudy	Moderate	Mid-Flood	М	4.3	10:18	10.2	8.92	27.81	22.1	2.38	4	113	0.23	SW
C2	20190329	Cloudy	Moderate	Mid-Flood	S	1	10:19	10.13	8.75	29.72	22.2	2.46	6	112	0.267	NW
C2	20190329	Cloudy	Moderate	Mid-Flood	S	1	10:19	10.09	8.4	30.99	22.4	2.38	5	113	0.209	SW
F1	20190329	Cloudy	Moderate	Mid-Flood	В	6.8	10:38	10.49	8.85	28.34	22.3	3.13	4	111	0.137	W
F1	20190329	Cloudy	Moderate	Mid-Flood	В	6.8	10:38	10.47	8.66	31.75	22.2	3.19	4	112	0.22	W

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time	DO (mg/L)	pH	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
F1	20190329	Cloudy	Moderate	Mid-Flood	М	3.9	10:39	10.27	8.3	31.25	22.3	3.17	5	112	0.167	W
F1	20190329	Cloudy	Moderate	Mid-Flood	М	3.9	10:39	10.27	8.52	32.11	22.4	3.15	4	113	0.136	W
F1	20190329	Cloudy	Moderate	Mid-Flood	S	1	10:40	10.37	8.66	33.34	22.5	3.1	5	114	0.194	SW
F1	20190329	Cloudy	Moderate	Mid-Flood	S	1	10:40	10.27	8.47	30.14	22.4	3.13	4	112	0.234	NW
H1	20190329	Cloudy	Moderate	Mid-Flood	В	6.6	11:53	11.82	8.85	29.74	22.4	2.11	3	112	0.233	NW
H1	20190329	Cloudy	Moderate	Mid-Flood	В	6.6	11:53	11.74	8.8	32.85	22.2	2.2	4	112	0.179	NW
H1	20190329	Cloudy	Moderate	Mid-Flood	М	3.8	11:54	11.9	8.33	27.4	22.3	2.1	3	112	0.128	W
H1	20190329	Cloudy	Moderate	Mid-Flood	М	3.8	11:54	11.88	8.57	32.93	22.3	2.15	3	113	0.163	SW
H1	20190329	Cloudy	Moderate	Mid-Flood	S	1	11:55	11.92	8.95	29.87	22.4	2.11	4	112	0.282	W
H1	20190329	Cloudy	Moderate	Mid-Flood	S	1	11:55	12	8.36	32.28	22.3	2.16	5	112	0.286	NW
M1	20190329	Cloudy	Moderate	Mid-Flood	В	8.1	11:10	12.18	8.51	31.1	22.5	1.65	5	112	0.277	W
M1	20190329	Cloudy	Moderate	Mid-Flood	В	8.1	11:10	12.09	8.43	28.09	22.3	1.55	5	113	0.219	W
M1	20190329	Cloudy	Moderate	Mid-Flood	М	4.6	11:11	12.01	8.41	28.24	22.3	1.57	5	112	0.197	SW
M1	20190329	Cloudy	Moderate	Mid-Flood	М	4.6	11:11	12.05	8.38	29.92	22.3	1.47	6	113	0.247	W
M1	20190329	Cloudy	Moderate	Mid-Flood	S	1	11:12	12.07	8.66	32.71	22.4	1.5	3	112	0.168	W
M1	20190329	Cloudy	Moderate	Mid-Flood	S	1	11:12	12.21	8.35	32.53	22.5	1.54	4	113	0.189	W
CR1	20190329	Cloudy	Moderate	Mid-Flood	В	11	10:32	12.1	8.76	31.17	22.2	3.47	3	112	0.273	W
CR1	20190329	Cloudy	Moderate	Mid-Flood	В	11	10:32	12.07	8.51	29.65	22.2	3.56	4	111	0.136	NW
CR1	20190329	Cloudy	Moderate	Mid-Flood	М	6	10:33	12.14	9.04	30.58	22.2	3.49	3	112	0.144	W
CR1	20190329	Cloudy	Moderate	Mid-Flood	М	6	10:33	12.34	8.83	28.05	22.3	3.52	4	112	0.193	W
CR1	20190329	Cloudy	Moderate	Mid-Flood	S	1	10:34	12.18	8.82	33.07	22.4	3.5	4	112	0.144	W
CR1	20190329	Cloudy	Moderate	Mid-Flood	S	1	10:34	12.33	8.96	31.45	22.2	3.59	4	112	0.174	W
CR2	20190329	Cloudy	Moderate	Mid-Flood	В	9.8	10:44	10.37	8.59	31.54	22.2	3.21	4	114	0.152	NW
CR2	20190329	Cloudy	Moderate	Mid-Flood	В	9.8	10:44	10.44	8.98	32.97	22.4	3.16	5	112	0.277	NW
CR2	20190329	Cloudy	Moderate	Mid-Flood	М	5.4	10:45	10.38	8.34	28.03	22.5	3.17	3	111	0.181	NW
CR2	20190329	Cloudy	Moderate	Mid-Flood	М	5.4	10:45	10.18	8.54	30.81	22.4	3.23	4	113	0.228	W
CR2	20190329	Cloudy	Moderate	Mid-Flood	S	1	10:46	9.98	8.96	28.26	22.2	3.25	3	112	0.141	W
CR2	20190329	Cloudy	Moderate	Mid-Flood	S	1	10:46	10.07	8.49	27.7	22.5	3.3	3	111	0.237	SW
S1	20190329	Cloudy	Moderate	Mid-Flood	В	4.3	11:55	10.41	8.62	27.48	22.3	1.72	6	112	0.171	NW
S1	20190329	Cloudy	Moderate	Mid-Flood	В	4.3	11:55	10.31	8.52	33.08	22.4	1.77	6	112	0.13	W
S1	20190329	Cloudy	Moderate	Mid-Flood	S	1	11:56	10.11	8.72	28.16	22.3	1.85	4	113	0.247	W
S1	20190329	Cloudy	Moderate	Mid-Flood	S	1	11:56	10.16	8.82	31.15	22.3	1.91	5	113	0.244	W

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
S2	20190329	Cloudy	Moderate	Mid-Flood	В	8.7	12:20	12.41	8.4	31.81	22.4	3.16	4	113	0.123	W
S2	20190329	Cloudy	Moderate	Mid-Flood	В	8.7	12:20	12.55	9.03	32.36	22.4	3.16	4	112	0.14	NW
S2	20190329	Cloudy	Moderate	Mid-Flood	М	4.9	12:21	12.73	8.87	28.66	22.1	3.21	4	113	0.231	NW
S2	20190329	Cloudy	Moderate	Mid-Flood	М	4.9	12:21	12.8	8.77	29.03	22.2	3.22	4	113	0.248	SW
S2	20190329	Cloudy	Moderate	Mid-Flood	S	1	12:22	12.85	8.59	29.4	22.2	3.24	4	112	0.159	W
S2	20190329	Cloudy	Moderate	Mid-Flood	S	1	12:22	12.72	8.87	27.94	22.2	3.16	4	112	0.27	W
S 3	20190329	Cloudy	Moderate	Mid-Flood	В	7.2	10:54	11.52	8.45	33.08	22.2	2.2	5	112	0.279	W
S 3	20190329	Cloudy	Moderate	Mid-Flood	В	7.2	10:54	11.38	8.58	31.12	22.2	2.29	6	111	0.122	SW
S 3	20190329	Cloudy	Moderate	Mid-Flood	М	4.1	10:55	11.51	8.47	31.34	22.2	2.39	6	112	0.143	NW
S 3	20190329	Cloudy	Moderate	Mid-Flood	М	4.1	10:55	11.5	8.56	31.77	22.4	2.3	6	113	0.29	W
S 3	20190329	Cloudy	Moderate	Mid-Flood	S	1	10:56	11.48	8.48	31.48	22.4	2.22	6	111	0.247	W
S 3	20190329	Cloudy	Moderate	Mid-Flood	S	1	10:56	11.33	8.76	30.31	22.4	2.12	6	112	0.139	SW
B1	20190329	Cloudy	Moderate	Mid-Ebb	В	4	16:32	12.75	8.65	31.93	23.9	2.81	3	113	0.225	S
B1	20190329	Cloudy	Moderate	Mid-Ebb	В	4	16:32	12.81	8.51	28.86	23.8	2.87	4	112	0.195	S
B1	20190329	Cloudy	Moderate	Mid-Ebb	S	1	16:33	12.88	8.59	30.18	23.9	2.81	4	113	0.11	S
B1	20190329	Cloudy	Moderate	Mid-Ebb	S	1	16:33	12.72	8.4	29.69	23.9	2.88	3	112	0.195	S
B2	20190329	Cloudy	Moderate	Mid-Ebb	В	4.5	16:57	12.52	8.94	32.07	23.7	1.54	5	112	0.227	SE
B2	20190329	Cloudy	Moderate	Mid-Ebb	В	4.5	16:57	12.36	8.36	31.79	23.8	1.51	4	112	0.196	S
B2	20190329	Cloudy	Moderate	Mid-Ebb	S	1	16:58	12.5	8.35	29.84	23.8	1.49	3	113	0.145	Е
B2	20190329	Cloudy	Moderate	Mid-Ebb	S	1	16:58	12.54	8.94	32.61	23.9	1.44	3	113	0.166	S
B3	20190329	Cloudy	Moderate	Mid-Ebb	В	3.7	17:51	12.05	8.54	31.53	23.7	2.95	7	113	0.086	S
B3	20190329	Cloudy	Moderate	Mid-Ebb	В	3.7	17:51	11.87	8.76	32.76	23.8	3.04	6	113	0.093	Е
B3	20190329	Cloudy	Moderate	Mid-Ebb	S	1	17:52	11.93	8.74	33.06	23.8	3.11	6	113	0.094	SE
B3	20190329	Cloudy	Moderate	Mid-Ebb	S	1	17:52	11.75	9.04	32.57	23.9	3.04	6	112	0.102	SE
B4	20190329	Cloudy	Moderate	Mid-Ebb	В	5	18:03	12.89	8.34	28.14	23.8	2.49	6	113	0.178	SE
B4	20190329	Cloudy	Moderate	Mid-Ebb	В	5	18:03	12.79	8.74	32.65	23.7	2.45	5	112	0.237	Е
B4	20190329	Cloudy	Moderate	Mid-Ebb	S	1	18:04	12.84	8.91	28.92	23.7	2.35	3	113	0.19	Е
B4	20190329	Cloudy	Moderate	Mid-Ebb	S	1	18:04	12.99	8.37	30.27	23.8	2.45	4	112	0.233	Е
C1	20190329	Cloudy	Moderate	Mid-Ebb	В	9	16:11	12.18	8.84	30.67	23.7	2.22	3	112	0.185	SE
C1	20190329	Cloudy	Moderate	Mid-Ebb	В	9	16:11	12.26	8.95	33.06	23.8	2.12	4	111	0.164	S
C1	20190329	Cloudy	Moderate	Mid-Ebb	М	5	16:12	12.18	8.35	28.9	23.9	2.03	6	112	0.177	E
C1	20190329	Cloudy	Moderate	Mid-Ebb	М	5	16:12	12.02	8.79	33.35	23.8	2.01	6	113	0.246	S

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
C1	20190329	Cloudy	Moderate	Mid-Ebb	S	1	16:13	11.94	8.54	30.67	23.8	1.97	6	113	0.082	SE
C1	20190329	Cloudy	Moderate	Mid-Ebb	S	1	16:13	12.12	8.94	29.93	23.8	2.02	6	112	0.113	Е
C2	20190329	Cloudy	Moderate	Mid-Ebb	В	7.7	18:07	12	8.96	32.47	23.8	1.75	6	113	0.211	SE
C2	20190329	Cloudy	Moderate	Mid-Ebb	В	7.7	18:07	12.2	8.77	31.2	23.8	1.73	6	112	0.173	S
C2	20190329	Cloudy	Moderate	Mid-Ebb	М	4.4	18:08	12.14	8.67	31.47	23.8	1.69	6	112	0.107	S
C2	20190329	Cloudy	Moderate	Mid-Ebb	М	4.4	18:08	12.22	8.33	30.14	23.7	1.76	6	112	0.115	Е
C2	20190329	Cloudy	Moderate	Mid-Ebb	S	1	18:09	12.39	8.95	32.41	23.7	1.85	6	113	0.183	S
C2	20190329	Cloudy	Moderate	Mid-Ebb	S	1	18:09	12.58	8.68	30.16	23.7	1.81	5	114	0.238	Е
F1	20190329	Cloudy	Moderate	Mid-Ebb	В	7.2	16:10	12.07	8.63	32.63	23.9	3.23	4	113	0.193	SE
F1	20190329	Cloudy	Moderate	Mid-Ebb	В	7.2	16:10	12.23	8.36	27.66	23.7	3.15	3	113	0.239	SE
F1	20190329	Cloudy	Moderate	Mid-Ebb	М	4.1	16:11	12.03	8.73	33.04	23.8	3.16	4	112	0.118	S
F1	20190329	Cloudy	Moderate	Mid-Ebb	М	4.1	16:11	11.99	8.86	30.22	23.8	3.17	4	112	0.142	SE
F1	20190329	Cloudy	Moderate	Mid-Ebb	S	1	16:12	12.19	8.61	33.29	23.7	3.19	5	112	0.113	SE
F1	20190329	Cloudy	Moderate	Mid-Ebb	S	1	16:12	12.17	8.78	30.35	23.8	3.17	5	113	0.122	Е
H1	20190329	Cloudy	Moderate	Mid-Ebb	В	6.4	17:35	10.97	9.03	30.81	23.8	1.83	4	113	0.182	Е
H1	20190329	Cloudy	Moderate	Mid-Ebb	В	6.4	17:35	10.94	8.9	31.01	23.9	1.78	3	113	0.149	SE
H1	20190329	Cloudy	Moderate	Mid-Ebb	М	3.7	17:36	10.74	8.63	29.99	23.8	1.81	4	113	0.087	SE
H1	20190329	Cloudy	Moderate	Mid-Ebb	М	3.7	17:36	10.65	8.99	28.68	23.9	1.81	3	112	0.113	SE
H1	20190329	Cloudy	Moderate	Mid-Ebb	S	1	17:37	10.54	8.48	31.9	23.7	1.8	4	112	0.078	Е
H1	20190329	Cloudy	Moderate	Mid-Ebb	S	1	17:37	10.61	8.82	32.22	23.9	1.81	4	112	0.104	S
M1	20190329	Cloudy	Moderate	Mid-Ebb	В	8.3	16:48	12.44	8.62	32.37	23.8	2.67	3	113	0.189	S
M1	20190329	Cloudy	Moderate	Mid-Ebb	В	8.3	16:48	12.51	8.58	29.34	23.7	2.6	3	113	0.242	Е
M1	20190329	Cloudy	Moderate	Mid-Ebb	М	4.7	16:49	12.68	8.97	32.22	23.8	2.59	<2	113	0.083	Е
M1	20190329	Cloudy	Moderate	Mid-Ebb	М	4.7	16:49	12.77	8.38	28.79	23.9	2.66	<2	112	0.113	SE
M1	20190329	Cloudy	Moderate	Mid-Ebb	S	1	16:50	12.63	8.57	30.49	23.9	2.59	<2	114	0.164	S
M1	20190329	Cloudy	Moderate	Mid-Ebb	S	1	16:50	12.63	8.69	31.81	23.7	2.52	<2	113	0.117	SE
CR1	20190329	Cloudy	Moderate	Mid-Ebb	В	11.7	17:49	10.26	9.04	28.65	23.7	2.48	2	113	0.155	Е
CR1	20190329	Cloudy	Moderate	Mid-Ebb	В	11.7	17:49	10.22	9.03	28.35	23.7	2.51	2	114	0.203	Е
CR1	20190329	Cloudy	Moderate	Mid-Ebb	М	6.4	17:50	10.16	8.54	30.53	23.8	2.41	2	114	0.108	S
CR1	20190329	Cloudy	Moderate	Mid-Ebb	М	6.4	17:50	10.06	8.58	28.96	23.8	2.47	2	113	0.118	Е
CR1	20190329	Cloudy	Moderate	Mid-Ebb	S	1	17:51	10.25	8.87	29.57	23.9	2.53	4	113	0.194	SE
CR1	20190329	Cloudy	Moderate	Mid-Ebb	S	1	17:51	10.09	8.36	27.87	23.8	2.47	3	113	0.166	S

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Regular DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note 1	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
CR2	20190329	Cloudy	Moderate	Mid-Ebb	В	10.3	17:36	11.38	8.99	27.54	23.8	2.47	6	113	0.082	S
CR2	20190329	Cloudy	Moderate	Mid-Ebb	В	10.3	17:36	11.47	8.71	28.18	23.9	2.57	7	112	0.192	S
CR2	20190329	Cloudy	Moderate	Mid-Ebb	М	5.7	17:37	11.31	8.74	28.1	23.7	2.62	5	113	0.148	SE
CR2	20190329	Cloudy	Moderate	Mid-Ebb	М	5.7	17:37	11.13	8.6	31.05	23.8	2.64	5	112	0.131	SE
CR2	20190329	Cloudy	Moderate	Mid-Ebb	S	1	17:38	10.93	8.39	32.87	23.9	2.65	4	113	0.115	Е
CR2	20190329	Cloudy	Moderate	Mid-Ebb	S	1	17:38	11.01	8.41	32.35	23.9	2.63	4	113	0.162	S
S1	20190329	Cloudy	Moderate	Mid-Ebb	В	4.5	16:42	12.69	8.39	28.01	23.7	2.17	4	113	0.178	SE
S1	20190329	Cloudy	Moderate	Mid-Ebb	В	4.5	16:42	12.62	8.96	32.9	23.7	2.27	3	113	0.227	SE
S1	20190329	Cloudy	Moderate	Mid-Ebb	S	1	16:43	12.8	8.52	27.31	23.7	2.23	2	114	0.181	SE
S1	20190329	Cloudy	Moderate	Mid-Ebb	S	1	16:43	12.98	8.5	29.07	23.7	2.25	3	112	0.189	SE
S2	20190329	Cloudy	Moderate	Mid-Ebb	В	7.8	17:13	10.67	8.45	32.64	23.7	2.46	5	112	0.106	S
S2	20190329	Cloudy	Moderate	Mid-Ebb	В	7.8	17:13	10.87	8.62	29.52	23.7	2.56	4	113	0.124	SE
S2	20190329	Cloudy	Moderate	Mid-Ebb	М	4.4	17:14	10.7	8.71	30.82	23.9	2.58	4	113	0.227	S
S2	20190329	Cloudy	Moderate	Mid-Ebb	М	4.4	17:14	10.66	8.68	28.07	23.8	2.68	5	113	0.183	S
S2	20190329	Cloudy	Moderate	Mid-Ebb	S	1	17:15	10.71	8.71	32.5	23.7	2.78	3	112	0.248	S
S2	20190329	Cloudy	Moderate	Mid-Ebb	S	1	17:15	10.54	8.83	29.5	23.8	2.69	4	113	0.239	SE
S3	20190329	Cloudy	Moderate	Mid-Ebb	В	7.6	17:26	12.44	8.84	32.32	23.7	3.35	3	114	0.113	SE
S3	20190329	Cloudy	Moderate	Mid-Ebb	В	7.6	17:26	12.45	8.96	32.54	23.8	3.41	3	114	0.121	S
S3	20190329	Cloudy	Moderate	Mid-Ebb	М	4.3	17:27	12.27	8.39	29.74	23.8	3.43	6	113	0.199	S
S3	20190329	Cloudy	Moderate	Mid-Ebb	М	4.3	17:27	12.17	8.62	31.41	23.7	3.39	6	113	0.189	S
S3	20190329	Cloudy	Moderate	Mid-Ebb	S	1	17:28	12.31	8.78	29.08	23.9	3.36	5	114	0.188	SE
S3	20190329	Cloudy	Moderate	Mid-Ebb	S	1	17:28	12.26	8.8	33.36	23.8	3.44	6	112	0.238	S

Remarks:

note 1: S – Surface M – Middle B – Bottom

note 2: Cancelled due to container leakage. note 3: Measurements of turbidity would be rounding to 0.1 NTU for proven accuracy as per the equipment specs during utilization of data.

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Intensive DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
UC1	20190302	Sunny	Light	Mid-Ebb	В	8.5	10:07	8.97	9.15	31.17	19.4	1.3	2	112	0.082	SE
UC1	20190302	Sunny	Light	Mid-Ebb	В	8.5	10:07	9.17	9.03	31.13	19.3	1.37	3	113	0.116	SE
UC1	20190302	Sunny	Light	Mid-Ebb	М	4.8	10:08	9.04	9.08	30.75	19.3	2.17	3	113	0.074	SE
UC1	20190302	Sunny	Light	Mid-Ebb	М	4.8	10:08	9.17	9.27	31.77	19.2	2.28	2	113	0.173	SE
UC1	20190302	Sunny	Light	Mid-Ebb	S	1	10:09	9.23	9.15	30.24	19.3	3.7	4	114	0.117	SE
UC1	20190302	Sunny	Light	Mid-Ebb	S	1	10:09	8.75	9.1	30.6	19.3	3.52	3	113	0.098	SE
UC2	20190302	Sunny	Light	Mid-Ebb	В	10.2	10:15	8.83	9.22	30.44	19.2	1.4	5	114	0.112	SE
UC2	20190302	Sunny	Light	Mid-Ebb	В	10.2	10:15	9.15	9.26	30.46	19.4	1.31	5	113	0.128	SE
UC2	20190302	Sunny	Light	Mid-Ebb	М	5.6	10:16	8.81	9.23	31.32	19.1	2.2	3	113	0.066	SE
UC2	20190302	Sunny	Light	Mid-Ebb	М	5.6	10:16	8.73	9.05	31.46	19.3	2.11	3	114	0.101	SE
UC2	20190302	Sunny	Light	Mid-Ebb	S	1	10:17	9.24	9.04	31.53	19.4	3.01	4	112	0.114	SE
UC2	20190302	Sunny	Light	Mid-Ebb	S	1	10:17	8.81	9.2	30.85	19.3	2.92	4	112	0.117	SE
I1	20190302	Sunny	Light	Mid-Ebb	В	10	10:24	9.15	9.23	30.83	19.4	1.31	5	112	0.09	SE
I1	20190302	Sunny	Light	Mid-Ebb	В	10	10:24	9.16	9.24	31.36	19.4	1.46	5	113	0.181	SE
I1	20190302	Sunny	Light	Mid-Ebb	М	5.5	10:25	8.76	9.13	30.62	19.3	2.54	4	112	0.12	SE
I1	20190302	Sunny	Light	Mid-Ebb	М	5.5	10:25	9.13	9.27	31.75	19.1	2.46	3	112	0.18	SE
I1	20190302	Sunny	Light	Mid-Ebb	S	1	10:26	8.89	9.27	30.13	19.1	3.74	3	112	0.072	SE
I1	20190302	Sunny	Light	Mid-Ebb	S	1	10:26	8.9	9.09	31.4	19.2	3.83	3	113	0.086	SE
I2	20190302	Sunny	Light	Mid-Ebb	В	10.2	10:29	9.05	9.03	30.91	19.2	1.88	4	114	0.141	SE
I2	20190302	Sunny	Light	Mid-Ebb	В	10.2	10:29	9.08	9.16	30.16	19.2	2	4	114	0.117	SE
I2	20190302	Sunny	Light	Mid-Ebb	М	5.6	10:30	9.15	9.2	31.52	19.2	2.21	4	114	0.112	SE
I2	20190302	Sunny	Light	Mid-Ebb	М	5.6	10:30	9.03	9.07	30.27	19.1	2.13	4	114	0.121	SE
I2	20190302	Sunny	Light	Mid-Ebb	S	1	10:31	8.71	9.03	30.42	19.4	3.48	3	113	0.176	SE
I2	20190302	Sunny	Light	Mid-Ebb	S	1	10:31	8.98	9.13	30.85	19.3	3.47	2	112	0.08	SE
13	20190302	Sunny	Light	Mid-Ebb	В	8.8	10:33	8.82	9.27	30.6	19.4	1.02	4	113	0.086	SE
13	20190302	Sunny	Light	Mid-Ebb	В	8.8	10:33	9.26	9.03	31.73	19.1	0.95	4	112	0.069	SE
I3	20190302	Sunny	Light	Mid-Ebb	М	4.9	10:34	9.16	9.02	31.72	19.3	2.93	3	113	0.142	SE
I3	20190302	Sunny	Light	Mid-Ebb	М	4.9	10:34	9.16	9.19	30.77	19.1	3.02	3	113	0.144	SE
I3	20190302	Sunny	Light	Mid-Ebb	S	1	10:35	8.79	9.27	31.18	19.3	3.95	4	113	0.18	SE
I3	20190302	Sunny	Light	Mid-Ebb	S	1	10:35	9.05	9.25	31.15	19.3	4.15	4	113	0.109	SE
I4	20190302	Sunny	Light	Mid-Ebb	В	9.8	10:41	8.94	9.12	31.43	19.3	1.97	2	113	0.098	SE
I4	20190302	Sunny	Light	Mid-Ebb	В	9.8	10:41	8.96	9.05	30.8	19.3	2.02	3	112	0.089	SE

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Intensive DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
I4	20190302	Sunny	Light	Mid-Ebb	М	5.4	10:42	8.66	9.11	31.16	19.1	2	2	113	0.144	SE
I4	20190302	Sunny	Light	Mid-Ebb	М	5.4	10:42	8.96	9.23	31.66	19.4	2.08	2	113	0.149	SE
I4	20190302	Sunny	Light	Mid-Ebb	S	1	10:43	9.26	9.13	30.36	19.4	3.54	3	114	0.165	SE
I4	20190302	Sunny	Light	Mid-Ebb	S	1	10:43	9.26	9.08	31.67	19.3	3.62	2	113	0.148	SE
I5	20190302	Sunny	Light	Mid-Ebb	В	8.5	10:47	9.26	9.07	30.88	19.3	1	6	112	0.095	SE
I5	20190302	Sunny	Light	Mid-Ebb	В	8.5	10:47	8.7	9.06	31.1	19.2	1.14	6	112	0.057	SE
I5	20190302	Sunny	Light	Mid-Ebb	М	4.8	10:48	9.13	9.16	31.76	19.1	2.82	4	111	0.146	SE
I5	20190302	Sunny	Light	Mid-Ebb	М	4.8	10:48	8.78	9.13	30.15	19.4	2.66	4	112	0.088	SE
I5	20190302	Sunny	Light	Mid-Ebb	S	1	10:49	9.22	9.27	31.3	19.1	3.14	5	113	0.146	SE
I5	20190302	Sunny	Light	Mid-Ebb	S	1	10:49	9.08	9.15	30.99	19.2	3.18	5	113	0.127	SE
I6	20190302	Sunny	Light	Mid-Ebb	В	9.2	11:19	8.86	9.04	31.9	19.4	1.15	9	113	0.117	SE
I6	20190302	Sunny	Light	Mid-Ebb	В	9.2	11:19	8.68	9.23	31.19	19.1	1.31	10	113	0.081	SE
I6	20190302	Sunny	Light	Mid-Ebb	М	5.1	11:20	8.73	9.09	31.06	19.4	2.27	9	112	0.143	SE
I6	20190302	Sunny	Light	Mid-Ebb	М	5.1	11:20	8.71	9.03	31.48	19.4	2.41	10	114	0.169	SE
I6	20190302	Sunny	Light	Mid-Ebb	S	1	11:21	8.82	9.06	30.99	19.3	3.28	8	113	0.143	SE
I6	20190302	Sunny	Light	Mid-Ebb	S	1	11:21	9.06	9.26	30.86	19.2	3.15	8	113	0.066	SE
I7	20190302	Sunny	Light	Mid-Ebb	В	9.7	11:13	8.64	9.25	31.86	19.3	1.53	6	112	0.056	SE
I7	20190302	Sunny	Light	Mid-Ebb	В	9.7	11:13	9.27	9.24	30.74	19.1	1.68	6	112	0.123	SE
I7	20190302	Sunny	Light	Mid-Ebb	М	5.4	11:14	8.73	9.16	31.46	19.1	2.71	7	112	0.089	SE
I7	20190302	Sunny	Light	Mid-Ebb	М	5.4	11:14	9.24	9.14	30.1	19.4	2.74	6	112	0.179	SE
I7	20190302	Sunny	Light	Mid-Ebb	S	1	11:15	8.94	9.14	31.9	19.2	3.51	6	112	0.105	SE
I7	20190302	Sunny	Light	Mid-Ebb	S	1	11:15	8.78	9.22	31.49	19.2	3.34	7	113	0.128	SE
18	20190302	Sunny	Light	Mid-Ebb	В	10	11:08	9.23	9.06	30.26	19.2	1.08	4	113	0.109	SE
18	20190302	Sunny	Light	Mid-Ebb	В	10	11:08	9.25	9.13	31.67	19.3	0.92	3	113	0.144	SE
I8	20190302	Sunny	Light	Mid-Ebb	М	5.5	11:09	9.03	9.1	31.52	19.4	2	4	113	0.16	SE
18	20190302	Sunny	Light	Mid-Ebb	М	5.5	11:09	8.79	9.25	30.65	19.4	2.15	4	112	0.18	SE
18	20190302	Sunny	Light	Mid-Ebb	S	1	11:10	9.1	9.2	30.76	19.3	3.98	4	113	0.136	SE
18	20190302	Sunny	Light	Mid-Ebb	S	1	11:10	9.18	9.18	31.92	19.1	4.05	4	114	0.134	SE
19	20190302	Sunny	Light	Mid-Ebb	В	9.1	11:01	9.06	9.09	31.37	19.3	1.84	6	113	0.098	SE
I9	20190302	Sunny	Light	Mid-Ebb	В	9.1	11:01	9.04	9.24	31.08	19.3	1.98	6	113	0.065	SE
I9	20190302	Sunny	Light	Mid-Ebb	М	5.1	11:02	9.25	9.22	31	19.3	2.24	7	113	0.143	SE
I9	20190302	Sunny	Light	Mid-Ebb	М	5.1	11:02	9.2	9.11	31.86	19.3	2.44	8	113	0.15	SE

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Intensive DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
I9	20190302	Sunny	Light	Mid-Ebb	S	1	11:03	9.11	9.08	30.27	19.3	3.36	9	114	0.102	SE
19	20190302	Sunny	Light	Mid-Ebb	S	1	11:03	8.66	9.02	30.65	19.1	3.52	9	113	0.172	SE
I10	20190302	Sunny	Light	Mid-Ebb	В	10.1	10:54	8.81	9.18	31.75	19.3	1.06	5	114	0.181	SE
I10	20190302	Sunny	Light	Mid-Ebb	В	10.1	10:54	8.79	9.19	31.73	19.3	1.21	6	114	0.086	SE
I10	20190302	Sunny	Light	Mid-Ebb	М	5.6	10:55	9.24	9.11	31.34	19.1	2.97	5	114	0.104	SE
I10	20190302	Sunny	Light	Mid-Ebb	М	5.6	10:55	9	9.07	31.79	19.1	2.85	6	112	0.14	SE
I10	20190302	Sunny	Light	Mid-Ebb	S	1	10:56	8.93	9.06	30.25	19.3	3.95	6	113	0.111	SE
I10	20190302	Sunny	Light	Mid-Ebb	S	1	10:56	9.15	9.1	30.27	19.3	4.12	6	112	0.066	SE
UC1	20190302	Sunny	Light	Mid-Flood	В	10.1	13:27	8.81	9.13	31.45	19.3	1.56	6	112	0.084	NW
UC1	20190302	Sunny	Light	Mid-Flood	В	10.1	13:27	8.12	9.05	30.89	19.2	1.68	7	113	0.165	NW
UC1	20190302	Sunny	Light	Mid-Flood	М	5.6	13:28	8.54	8.96	30.3	19.4	2.32	4	114	0.174	NW
UC1	20190302	Sunny	Light	Mid-Flood	М	5.6	13:28	7.99	9.02	31.03	19.1	2.46	4	113	0.185	NW
UC1	20190302	Sunny	Light	Mid-Flood	S	1	13:29	8.33	9.12	31.66	19.2	3.69	3	112	0.093	NW
UC1	20190302	Sunny	Light	Mid-Flood	S	1	13:29	8.75	8.95	31.34	19.3	3.88	4	112	0.109	NW
UC2	20190302	Sunny	Light	Mid-Flood	В	10.5	13:35	8.1	8.98	31.42	19.1	1.54	3	112	0.194	NW
UC2	20190302	Sunny	Light	Mid-Flood	В	10.5	13:35	7.93	8.94	30.47	19.3	1.64	4	113	0.102	NW
UC2	20190302	Sunny	Light	Mid-Flood	М	5.8	13:36	8.1	9.13	30.54	19.4	2.53	7	113	0.103	NW
UC2	20190302	Sunny	Light	Mid-Flood	М	5.8	13:36	8.34	9.01	30.39	19.2	2.6	6	113	0.154	NW
UC2	20190302	Sunny	Light	Mid-Flood	S	1	13:37	7.95	9.1	30.97	19.3	3.58	8	113	0.097	NW
UC2	20190302	Sunny	Light	Mid-Flood	S	1	13:37	8.1	8.94	30.35	19.3	3.59	8	113	0.168	NW
I1	20190302	Sunny	Light	Mid-Flood	В	8.8	13:42	8.7	8.86	31.31	19.4	1.71	7	113	0.164	NW
I1	20190302	Sunny	Light	Mid-Flood	В	8.8	13:42	8.74	8.94	31.93	19.2	1.56	6	113	0.117	NW
I1	20190302	Sunny	Light	Mid-Flood	М	4.9	13:43	8.81	9.11	31.93	19.2	2.93	5	113	0.189	NW
I1	20190302	Sunny	Light	Mid-Flood	М	4.9	13:43	8.8	9.06	30.54	19.1	2.83	5	113	0.136	NW
I1	20190302	Sunny	Light	Mid-Flood	S	1	13:44	8.49	9.1	31.32	19.4	3.07	5	113	0.084	NW
I1	20190302	Sunny	Light	Mid-Flood	S	1	13:44	8.82	8.84	31.11	19.2	3.19	6	113	0.093	NW
I2	20190302	Sunny	Light	Mid-Flood	В	10.4	13:49	8.6	9.16	31.81	19.4	1.93	5	113	0.119	NW
I2	20190302	Sunny	Light	Mid-Flood	В	10.4	13:49	7.84	9.16	31.34	19.4	1.73	5	112	0.212	NW
I2	20190302	Sunny	Light	Mid-Flood	М	5.7	13:50	8.29	8.95	31.51	19.1	2.93	4	113	0.103	NW
I2	20190302	Sunny	Light	Mid-Flood	М	5.7	13:50	8.17	8.94	31.51	19.2	3.01	5	112	0.19	NW
I2	20190302	Sunny	Light	Mid-Flood	S	1	13:51	8.59	8.97	30.57	19.2	3.17	7	112	0.209	NW
I2	20190302	Sunny	Light	Mid-Flood	S	1	13:51	7.97	8.91	30.92	19.1	3.22	7	112	0.12	NW

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Intensive DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
I3	20190302	Sunny	Light	Mid-Flood	В	9.7	13:56	8.67	9.11	30.76	19.1	1.07	4	113	0.194	NW
I3	20190302	Sunny	Light	Mid-Flood	В	9.7	13:56	7.94	9.17	31.32	19.4	1.15	4	112	0.155	NW
I3	20190302	Sunny	Light	Mid-Flood	М	5.4	13:57	7.94	8.84	30.98	19.2	2.25	7	113	0.136	NW
I3	20190302	Sunny	Light	Mid-Flood	М	5.4	13:57	8.64	8.93	30.1	19.3	2.37	7	113	0.092	NW
I3	20190302	Sunny	Light	Mid-Flood	S	1	13:58	8.3	9.05	30.29	19.2	3.37	8	113	0.127	NW
I3	20190302	Sunny	Light	Mid-Flood	S	1	13:58	8.16	8.86	31.61	19.1	3.38	6	114	0.112	NW
I4	20190302	Sunny	Light	Mid-Flood	В	10.6	14:02	8.26	9.06	30.12	19.1	1.9	5	113	0.153	NW
I4	20190302	Sunny	Light	Mid-Flood	В	10.6	14:02	8.85	8.87	31.64	19.1	1.8	6	114	0.083	NW
I4	20190302	Sunny	Light	Mid-Flood	М	5.8	14:03	8.49	9.1	30.8	19.3	2.82	4	113	0.128	NW
I4	20190302	Sunny	Light	Mid-Flood	М	5.8	14:03	8.47	8.96	30.98	19.1	2.94	4	113	0.103	NW
I4	20190302	Sunny	Light	Mid-Flood	S	1	14:04	7.95	9	30.37	19.3	4	6	113	0.187	NW
I4	20190302	Sunny	Light	Mid-Flood	S	1	14:04	8.74	8.86	31.26	19.3	3.87	4	113	0.135	NW
15	20190302	Sunny	Light	Mid-Flood	В	10.1	14:09	7.99	9.07	31.39	19.4	1.13	5	111	0.111	NW
15	20190302	Sunny	Light	Mid-Flood	В	10.1	14:09	7.85	9.07	30.65	19.3	1.11	5	112	0.212	NW
15	20190302	Sunny	Light	Mid-Flood	М	5.6	14:10	7.88	9.08	30.37	19.3	2.52	6	113	0.152	NW
15	20190302	Sunny	Light	Mid-Flood	М	5.6	14:10	8.36	8.91	30.47	19.1	2.5	5	114	0.167	NW
15	20190302	Sunny	Light	Mid-Flood	S	1	14:11	8.8	8.9	30.07	19.2	3.27	8	112	0.094	NW
15	20190302	Sunny	Light	Mid-Flood	S	1	14:11	8.48	9	31.79	19.1	3.38	8	112	0.178	NW
I6	20190302	Sunny	Light	Mid-Flood	В	10.9	14:43	8.04	8.91	30.26	19.1	1.4	3	112	0.203	NW
I6	20190302	Sunny	Light	Mid-Flood	В	10.9	14:43	8.71	8.85	31.41	19.3	1.49	3	113	0.111	NW
I6	20190302	Sunny	Light	Mid-Flood	М	6	14:44	8.67	8.94	30.86	19.3	2.39	5	113	0.211	NW
I6	20190302	Sunny	Light	Mid-Flood	М	6	14:44	8.63	8.92	30.39	19.4	2.37	4	112	0.133	NW
I6	20190302	Sunny	Light	Mid-Flood	S	1	14:45	8.05	9.16	30.58	19.3	3.69	6	112	0.185	NW
I6	20190302	Sunny	Light	Mid-Flood	S	1	14:45	8.29	9.03	30.32	19.2	3.74	6	112	0.171	NW
I7	20190302	Sunny	Light	Mid-Flood	В	9.4	14:36	8.8	9.06	31.11	19.1	1.58	3	113	0.173	NW
I7	20190302	Sunny	Light	Mid-Flood	В	9.4	14:36	8.38	9.02	30.63	19.3	1.66	3	112	0.091	NW
I7	20190302	Sunny	Light	Mid-Flood	М	5.2	14:37	7.94	8.98	31.31	19.2	2.04	5	113	0.154	NW
I7	20190302	Sunny	Light	Mid-Flood	М	5.2	14:37	8.82	8.94	30.73	19.1	2.17	5	113	0.137	NW
I7	20190302	Sunny	Light	Mid-Flood	S	1	14:38	8.4	8.89	31.08	19.1	3.86	6	113	0.142	NW
I7	20190302	Sunny	Light	Mid-Flood	S	1	14:38	8.75	8.83	31.88	19.2	3.97	6	112	0.207	NW
18	20190302	Sunny	Light	Mid-Flood	В	9.1	14:30	8.5	8.89	30.59	19.3	1.45	4	114	0.165	NW
18	20190302	Sunny	Light	Mid-Flood	В	9.1	14:30	8.03	9.16	31.14	19.3	1.31	3	113	0.108	NW

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Intensive DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
18	20190302	Sunny	Light	Mid-Flood	М	5.1	14:31	8.37	8.92	31.76	19.3	2.71	2	114	0.188	NW
18	20190302	Sunny	Light	Mid-Flood	М	5.1	14:31	8.3	9.02	31.36	19.4	2.56	2	114	0.177	NW
18	20190302	Sunny	Light	Mid-Flood	S	1	14:32	8.31	8.97	31.08	19.4	3.43	<2	112	0.095	NW
18	20190302	Sunny	Light	Mid-Flood	S	1	14:32	8.31	8.92	31.52	19.3	3.25	<2	113	0.106	NW
19	20190302	Sunny	Light	Mid-Flood	В	8.8	14:23	8.4	9.14	30.7	19.1	1.49	3	112	0.196	NW
19	20190302	Sunny	Light	Mid-Flood	В	8.8	14:23	8.84	9.02	31.37	19.1	1.68	4	114	0.145	NW
19	20190302	Sunny	Light	Mid-Flood	М	4.9	14:24	8.49	8.91	30.93	19.2	2.84	5	113	0.191	NW
I9	20190302	Sunny	Light	Mid-Flood	М	4.9	14:24	8.18	9.07	31.63	19.1	2.8	6	113	0.085	NW
I9	20190302	Sunny	Light	Mid-Flood	S	1	14:25	8.66	9.14	31.08	19.3	3.07	4	112	0.136	NW
I9	20190302	Sunny	Light	Mid-Flood	S	1	14:25	8.17	8.82	30.98	19.1	3.26	4	113	0.162	NW
I10	20190302	Sunny	Light	Mid-Flood	В	9.1	14:16	8.02	8.88	31.72	19.3	1.81	4	112	0.185	NW
I10	20190302	Sunny	Light	Mid-Flood	В	9.1	14:16	8.69	9.12	31.52	19.1	1.64	3	113	0.136	NW
I10	20190302	Sunny	Light	Mid-Flood	М	5.1	14:17	8.53	9.1	31.6	19.2	2.63	3	113	0.123	NW
I10	20190302	Sunny	Light	Mid-Flood	М	5.1	14:17	7.93	9.13	31.6	19.3	2.71	4	113	0.177	NW
I10	20190302	Sunny	Light	Mid-Flood	S	1	14:18	7.92	9.05	30.72	19.4	3.03	2	113	0.179	NW
I10	20190302	Sunny	Light	Mid-Flood	S	1	14:18	8.15	8.83	31.57	19.1	3.23	2	113	0.184	NW
UC1	20190304	Cloudy	Light	Mid-Ebb	В	8.8	10:33	8.56	8.54	31.03	20.1	2.33	6	113	0.128	SE
UC1	20190304	Cloudy	Light	Mid-Ebb	В	8.8	10:33	8.51	8.38	31.52	20.2	2.33	6	112	0.087	SE
UC1	20190304	Cloudy	Light	Mid-Ebb	М	4.9	10:34	8.72	8.15	31.8	20.1	2.1	5	114	0.11	SE
UC1	20190304	Cloudy	Light	Mid-Ebb	М	4.9	10:34	8.09	8.13	31.24	20.2	2.08	4	114	0.125	SE
UC1	20190304	Cloudy	Light	Mid-Ebb	S	1	10:35	8.38	8.26	30.86	20.1	2.32	6	112	0.096	SE
UC1	20190304	Cloudy	Light	Mid-Ebb	S	1	10:35	8.33	8.42	31.69	20.2	2.32	6	114	0.115	SE
UC2	20190304	Cloudy	Light	Mid-Ebb	В	10.3	10:39	8.38	8.4	30.76	20.1	2.14	5	112	0.146	SE
UC2	20190304	Cloudy	Light	Mid-Ebb	В	10.3	10:39	8.73	8.19	31.56	20.2	2.13	5	114	0.133	SE
UC2	20190304	Cloudy	Light	Mid-Ebb	М	5.7	10:40	7.95	8.43	30.24	20.1	2.4	4	113	0.121	SE
UC2	20190304	Cloudy	Light	Mid-Ebb	М	5.7	10:40	8.1	8.54	30.89	20.1	2.38	3	112	0.104	SE
UC2	20190304	Cloudy	Light	Mid-Ebb	S	1	10:41	8.27	8.4	31.85	20.2	2.26	6	114	0.117	SE
UC2	20190304	Cloudy	Light	Mid-Ebb	S	1	10:41	7.92	8.39	30.17	20.2	2.19	5	112	0.142	SE
I1	20190304	Cloudy	Light	Mid-Ebb	В	8.8	10:45	8.67	8.42	30.07	20.2	2.09	4	114	0.109	SE
I1	20190304	Cloudy	Light	Mid-Ebb	В	8.8	10:45	8.57	8.4	30.94	20.2	1.99	5	113	0.088	SE
I1	20190304	Cloudy	Light	Mid-Ebb	М	4.9	10:46	7.9	8.33	31.93	20.1	2.29	5	115	0.133	SE
I1	20190304	Cloudy	Light	Mid-Ebb	М	4.9	10:46	8.39	8.37	30.6	20.2	2.3	4	113	0.141	SE

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Intensive DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
I1	20190304	Cloudy	Light	Mid-Ebb	S	1	10:47	7.77	8.56	31.46	20.1	2	5	114	0.125	SE
I1	20190304	Cloudy	Light	Mid-Ebb	S	1	10:47	8.18	8.22	30.15	20.1	1.97	4	114	0.094	SE
I2	20190304	Cloudy	Light	Mid-Ebb	В	9	10:50	8.32	8.47	31.44	20.1	2.38	6	113	0.159	SE
I2	20190304	Cloudy	Light	Mid-Ebb	В	9	10:50	8.72	8.4	30.5	20.1	2.42	6	113	0.159	SE
I2	20190304	Cloudy	Light	Mid-Ebb	М	5	10:51	8.38	8.55	30.21	20.2	2.4	6	113	0.141	SE
I2	20190304	Cloudy	Light	Mid-Ebb	М	5	10:51	8.05	8.37	31.43	20.1	2.41	6	114	0.138	SE
I2	20190304	Cloudy	Light	Mid-Ebb	S	1	10:52	8.37	8.28	30.66	20.2	2.16	6	113	0.101	SE
I2	20190304	Cloudy	Light	Mid-Ebb	S	1	10:52	8.43	8.47	31.08	20.2	2.18	5	115	0.112	SE
I3	20190304	Cloudy	Light	Mid-Ebb	В	8.6	10:56	7.75	8.3	31.63	20.2	2.36	5	113	0.118	SE
I3	20190304	Cloudy	Light	Mid-Ebb	В	8.6	10:56	8.63	8.5	31.46	20.1	2.46	6	112	0.137	SE
I3	20190304	Cloudy	Light	Mid-Ebb	М	4.8	10:57	8.75	8.36	31.36	20.1	2.11	4	113	0.094	SE
I3	20190304	Cloudy	Light	Mid-Ebb	М	4.8	10:57	8.61	8.2	31.67	20.1	2.21	4	114	0.094	SE
I3	20190304	Cloudy	Light	Mid-Ebb	S	1	10:58	8.76	8.27	30.36	20.1	2.09	5	113	0.119	SE
I3	20190304	Cloudy	Light	Mid-Ebb	S	1	10:58	7.77	8.18	31.31	20.2	2	4	113	0.162	SE
I4	20190304	Cloudy	Light	Mid-Ebb	В	9	11:01	8.16	8.49	31.82	20.1	2.36	4	113	0.149	SE
I4	20190304	Cloudy	Light	Mid-Ebb	В	9	11:01	8.57	8.22	31.03	20.1	2.44	4	113	0.12	SE
I4	20190304	Cloudy	Light	Mid-Ebb	М	5	11:02	7.65	8.2	30.23	20.2	2.14	4	114	0.096	SE
I4	20190304	Cloudy	Light	Mid-Ebb	М	5	11:02	8.67	8.38	30.33	20.2	2.1	4	114	0.103	SE
I4	20190304	Cloudy	Light	Mid-Ebb	S	1	11:03	7.91	8.38	30.33	20.1	2.3	3	112	0.135	SE
I4	20190304	Cloudy	Light	Mid-Ebb	S	1	11:03	8.37	8.45	30.18	20.1	2.32	4	113	0.102	SE
15	20190304	Cloudy	Light	Mid-Ebb	В	8.4	11:06	8.29	8.33	30.81	20.1	2.31	14	113	0.127	SE
15	20190304	Cloudy	Light	Mid-Ebb	В	8.4	11:06	8.67	8.27	31.93	20.1	2.23	13	114	0.159	SE
15	20190304	Cloudy	Light	Mid-Ebb	М	4.7	11:07	7.92	8.49	31.66	20.1	2.11	12	113	0.123	SE
15	20190304	Cloudy	Light	Mid-Ebb	М	4.7	11:07	8.4	8.17	30.18	20.1	2.01	12	113	0.161	SE
15	20190304	Cloudy	Light	Mid-Ebb	S	1	11:08	8.21	8.57	31.26	20.1	2.2	6	114	0.127	SE
15	20190304	Cloudy	Light	Mid-Ebb	S	1	11:08	8.03	8.22	30.65	20.1	2.27	8	114	0.157	SE
I6	20190304	Cloudy	Light	Mid-Ebb	В	10.2	11:32	7.74	8.42	30.91	20.1	2.11	9	113	0.105	SE
I6	20190304	Cloudy	Light	Mid-Ebb	В	10.2	11:32	7.82	8.29	31.2	20.2	2.01	9	113	0.162	SE
I6	20190304	Cloudy	Light	Mid-Ebb	М	5.6	11:33	8.19	8.57	30.44	20.2	2.22	7	114	0.118	SE
I6	20190304	Cloudy	Light	Mid-Ebb	М	5.6	11:33	7.71	8.2	31.37	20.1	2.22	7	113	0.147	SE
I6	20190304	Cloudy	Light	Mid-Ebb	S	1	11:34	8.33	8.47	31.1	20.1	2.12	6	113	0.132	SE
I6	20190304	Cloudy	Light	Mid-Ebb	S	1	11:34	8.49	8.27	30.29	20.1	2.19	6	113	0.135	SE

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Intensive DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
I7	20190304	Cloudy	Light	Mid-Ebb	В	9.1	11:27	7.83	8.21	30.12	20.2	2.33	8	113	0.141	SE
I7	20190304	Cloudy	Light	Mid-Ebb	В	9.1	11:27	7.73	8.15	31.46	20.1	2.24	8	113	0.14	SE
I7	20190304	Cloudy	Light	Mid-Ebb	М	5.1	11:28	8.33	8.36	30.75	20.1	2.1	7	114	0.139	SE
I7	20190304	Cloudy	Light	Mid-Ebb	М	5.1	11:28	8.44	8.57	31.1	20.2	2.11	8	112	0.106	SE
I7	20190304	Cloudy	Light	Mid-Ebb	S	1	11:29	8.54	8.13	31.56	20.1	2.24	7	113	0.087	SE
I7	20190304	Cloudy	Light	Mid-Ebb	S	1	11:29	8.08	8.56	31.63	20.2	2.3	7	113	0.137	SE
18	20190304	Cloudy	Light	Mid-Ebb	В	9.9	11:22	8.42	8.26	31.2	20.2	2.34	11	114	0.156	SE
I8	20190304	Cloudy	Light	Mid-Ebb	В	9.9	11:22	8.18	8.54	31.68	20.1	2.43	11	114	0.087	SE
I8	20190304	Cloudy	Light	Mid-Ebb	М	5.5	11:23	8.28	8.23	30.69	20.2	2.31	10	112	0.141	SE
18	20190304	Cloudy	Light	Mid-Ebb	М	5.5	11:23	7.66	8.4	31.79	20.2	2.22	11	113	0.112	SE
I8	20190304	Cloudy	Light	Mid-Ebb	S	1	11:24	7.91	8.27	30.29	20.1	2.08	9	114	0.123	SE
I8	20190304	Cloudy	Light	Mid-Ebb	S	1	11:24	8	8.26	31.18	20.1	2.03	8	113	0.12	SE
I9	20190304	Cloudy	Light	Mid-Ebb	В	9	11:17	7.77	8.51	30.38	20.1	2.21	16	113	0.096	SE
I9	20190304	Cloudy	Light	Mid-Ebb	В	9	11:17	8.63	8.19	31.81	20.2	2.25	15	114	0.141	SE
I9	20190304	Cloudy	Light	Mid-Ebb	М	5	11:18	8.03	8.45	30.48	20.2	2.11	14	113	0.12	SE
I9	20190304	Cloudy	Light	Mid-Ebb	М	5	11:18	7.95	8.3	30.27	20.1	2.12	13	114	0.127	SE
I9	20190304	Cloudy	Light	Mid-Ebb	S	1	11:19	8.19	8.18	31.16	20.2	2.1	12	113	0.1	SE
I9	20190304	Cloudy	Light	Mid-Ebb	S	1	11:19	8.11	8.26	31.54	20.2	2.1	12	113	0.13	SE
I10	20190304	Cloudy	Light	Mid-Ebb	В	9.7	11:11	8.47	8.13	30.16	20.2	2.15	9	113	0.101	SE
I10	20190304	Cloudy	Light	Mid-Ebb	В	9.7	11:11	7.79	8.4	31.71	20.1	2.17	9	113	0.154	SE
I10	20190304	Cloudy	Light	Mid-Ebb	М	5.4	11:12	8.71	8.5	31.14	20.1	2.21	8	113	0.158	SE
I10	20190304	Cloudy	Light	Mid-Ebb	М	5.4	11:12	8.7	8.17	31.4	20.1	2.28	8	113	0.153	SE
I10	20190304	Cloudy	Light	Mid-Ebb	S	1	11:13	8.39	8.42	30.89	20.1	2.21	11	114	0.124	SE
I10	20190304	Cloudy	Light	Mid-Ebb	S	1	11:13	8.44	8.52	31.32	20.1	2.19	12	113	0.152	SE
UC1	20190304	Cloudy	Light	Mid-Flood	В	10.3	15:38	7.93	9.1	30.4	20.2	2.3	3	113	0.124	NW
UC1	20190304	Cloudy	Light	Mid-Flood	В	10.3	15:38	8.59	9.26	30.18	20.1	2.31	3	113	0.143	NW
UC1	20190304	Cloudy	Light	Mid-Flood	М	5.7	15:39	7.92	9.04	30.04	20.2	2.01	2	113	0.162	NW
UC1	20190304	Cloudy	Light	Mid-Flood	М	5.7	15:39	8.57	9.17	30.13	20.1	2.09	2	114	0.165	NW
UC1	20190304	Cloudy	Light	Mid-Flood	S	1	15:40	7.9	9.08	31.69	20.2	2.28	3	113	0.124	NW
UC1	20190304	Cloudy	Light	Mid-Flood	S	1	15:40	8.41	9.15	29.17	20.1	2.18	3	114	0.166	NW
UC2	20190304	Cloudy	Light	Mid-Flood	В	10.8	15:44	8.51	9.16	30.59	20.1	2.39	4	113	0.164	NW
UC2	20190304	Cloudy	Light	Mid-Flood	В	10.8	15:44	8.08	9.22	29.15	20.1	2.3	3	113	0.168	NW

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Intensive DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
UC2	20190304	Cloudy	Light	Mid-Flood	М	5.9	15:45	8.03	8.92	29.87	20.2	2.1	5	113	0.15	NW
UC2	20190304	Cloudy	Light	Mid-Flood	М	5.9	15:45	8.13	9.14	30.9	20.2	2.02	4	112	0.164	NW
UC2	20190304	Cloudy	Light	Mid-Flood	S	1	15:46	7.92	9.25	31.49	20.1	2.24	4	112	0.148	NW
UC2	20190304	Cloudy	Light	Mid-Flood	S	1	15:46	8.15	9.08	29.28	20.2	2.14	4	112	0.113	NW
I1	20190304	Cloudy	Light	Mid-Flood	В	10.7	15:51	8.22	9.23	31.76	20.1	2.04	6	113	0.149	NW
I1	20190304	Cloudy	Light	Mid-Flood	В	10.7	15:51	8.88	9	29.87	20.2	2.14	6	114	0.148	NW
I1	20190304	Cloudy	Light	Mid-Flood	М	5.9	15:52	8.23	9.02	30.29	20.1	2.2	6	114	0.114	NW
I1	20190304	Cloudy	Light	Mid-Flood	М	5.9	15:52	8.56	9.29	29.35	20.2	2.3	6	114	0.156	NW
I1	20190304	Cloudy	Light	Mid-Flood	S	1	15:53	8.72	9.31	29.67	20.2	2.19	9	113	0.112	NW
I1	20190304	Cloudy	Light	Mid-Flood	S	1	15:53	8.73	8.94	31.14	20.2	2.18	9	113	0.157	NW
I2	20190304	Cloudy	Light	Mid-Flood	В	10	15:56	7.93	8.96	29.37	20.1	2.29	5	113	0.128	NW
I2	20190304	Cloudy	Light	Mid-Flood	В	10	15:56	8.8	9.28	31.25	20.1	2.25	5	114	0.147	NW
I2	20190304	Cloudy	Light	Mid-Flood	М	5.5	15:57	8.75	9.29	29.71	20.1	2.23	6	114	0.152	NW
I2	20190304	Cloudy	Light	Mid-Flood	М	5.5	15:57	8.87	9.15	30.22	20.2	2.21	5	114	0.148	NW
I2	20190304	Cloudy	Light	Mid-Flood	S	1	15:58	8.06	9.2	31.33	20.2	2.05	7	114	0.132	NW
I2	20190304	Cloudy	Light	Mid-Flood	S	1	15:58	8.73	9.14	30.73	20.2	1.96	8	114	0.122	NW
I3	20190304	Cloudy	Light	Mid-Flood	В	10.4	16:01	8.76	8.92	31.82	20.1	2.27	6	114	0.121	NW
I3	20190304	Cloudy	Light	Mid-Flood	В	10.4	16:01	8.47	9	31.57	20.1	2.22	7	113	0.142	NW
I3	20190304	Cloudy	Light	Mid-Flood	М	5.7	16:02	8.79	9.12	29.53	20.1	2.3	6	113	0.14	NW
I3	20190304	Cloudy	Light	Mid-Flood	М	5.7	16:02	8.3	8.93	31.71	20.1	2.29	7	114	0.158	NW
I3	20190304	Cloudy	Light	Mid-Flood	S	1	16:03	7.93	8.95	29.76	20.1	2.16	6	113	0.16	NW
I3	20190304	Cloudy	Light	Mid-Flood	S	1	16:03	8.09	8.99	29.58	20.2	2.25	7	113	0.172	NW
I4	20190304	Cloudy	Light	Mid-Flood	В	10.8	16:07	7.96	9.3	29.38	20.1	2.03	5	114	0.12	NW
I4	20190304	Cloudy	Light	Mid-Flood	В	10.8	16:07	8	9.22	31.8	20.2	2.01	6	114	0.112	NW
I4	20190304	Cloudy	Light	Mid-Flood	М	5.9	16:08	8.18	9.32	29.95	20.1	2.14	5	113	0.128	NW
I4	20190304	Cloudy	Light	Mid-Flood	М	5.9	16:08	7.86	8.94	30.78	20.1	2.11	5	114	0.122	NW
I4	20190304	Cloudy	Light	Mid-Flood	S	1	16:09	8.54	8.92	29.83	20.1	2.21	5	112	0.11	NW
I4	20190304	Cloudy	Light	Mid-Flood	S	1	16:09	8.58	8.95	29.26	20.1	2.24	5	112	0.138	NW
I5	20190304	Cloudy	Light	Mid-Flood	В	9.1	16:12	8.65	9.13	31.47	20.1	2.25	5	114	0.121	NW
15	20190304	Cloudy	Light	Mid-Flood	В	9.1	16:12	7.88	9.04	31.87	20.1	2.19	5	112	0.107	NW
15	20190304	Cloudy	Light	Mid-Flood	М	5.1	16:13	8.02	8.94	30.31	20.2	2.11	5	113	0.102	NW
15	20190304	Cloudy	Light	Mid-Flood	М	5.1	16:13	8.88	8.99	30.68	20.2	2.06	4	114	0.109	NW

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Intensive DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
15	20190304	Cloudy	Light	Mid-Flood	S	1	16:14	8.01	9.29	29.99	20.1	2.06	6	113	0.161	NW
15	20190304	Cloudy	Light	Mid-Flood	S	1	16:14	8.35	9.33	31.56	20.2	1.98	7	114	0.151	NW
I6	20190304	Cloudy	Light	Mid-Flood	В	8.8	16:39	8.76	9.26	29.8	20.2	2.18	4	114	0.139	NW
I6	20190304	Cloudy	Light	Mid-Flood	В	8.8	16:39	8.25	9.07	29.32	20.1	2.11	4	114	0.167	NW
I6	20190304	Cloudy	Light	Mid-Flood	М	4.9	16:40	8.69	9.02	30.87	20.1	2.27	4	112	0.171	NW
I6	20190304	Cloudy	Light	Mid-Flood	М	4.9	16:40	8.35	9.26	31.55	20.1	2.3	4	113	0.129	NW
I6	20190304	Cloudy	Light	Mid-Flood	S	1	16:41	8.81	9.07	29.37	20.2	2.08	5	113	0.146	NW
I6	20190304	Cloudy	Light	Mid-Flood	S	1	16:41	8.08	8.95	30.32	20.1	2.08	5	114	0.161	NW
I7	20190304	Cloudy	Light	Mid-Flood	В	9.6	16:34	8.63	9.02	31.43	20.2	2.33	5	114	0.146	NW
I7	20190304	Cloudy	Light	Mid-Flood	В	9.6	16:34	8.79	8.96	29.71	20.1	2.43	4	114	0.147	NW
I7	20190304	Cloudy	Light	Mid-Flood	М	5.3	16:35	8.76	9.16	30.21	20.1	2.08	3	114	0.148	NW
I7	20190304	Cloudy	Light	Mid-Flood	М	5.3	16:35	8.46	9.23	31.41	20.2	2.06	3	113	0.157	NW
I7	20190304	Cloudy	Light	Mid-Flood	S	1	16:36	8.42	9.04	29.4	20.2	2.13	5	114	0.115	NW
I7	20190304	Cloudy	Light	Mid-Flood	S	1	16:36	8.75	8.94	30.68	20.2	2.06	6	113	0.116	NW
18	20190304	Cloudy	Light	Mid-Flood	В	9	16:28	8.58	9.32	31.32	20.1	2.15	7	114	0.133	NW
18	20190304	Cloudy	Light	Mid-Flood	В	9	16:28	8.63	9.27	31.48	20.2	2.09	6	113	0.11	NW
18	20190304	Cloudy	Light	Mid-Flood	М	5	16:29	8.33	9.2	31.78	20.1	2.21	8	113	0.139	NW
18	20190304	Cloudy	Light	Mid-Flood	М	5	16:29	8.28	9.24	29.2	20.2	2.17	7	114	0.135	NW
18	20190304	Cloudy	Light	Mid-Flood	S	1	16:30	8.36	9.25	31.83	20.2	2.27	6	113	0.138	NW
18	20190304	Cloudy	Light	Mid-Flood	S	1	16:30	8.38	9.3	31.22	20.1	2.18	7	113	0.148	NW
I9	20190304	Cloudy	Light	Mid-Flood	В	9.1	16:23	7.87	9.18	30.4	20.2	2.04	6	114	0.172	NW
I9	20190304	Cloudy	Light	Mid-Flood	В	9.1	16:23	8.88	9.22	29.71	20.2	2.11	7	114	0.107	NW
I9	20190304	Cloudy	Light	Mid-Flood	М	5.1	16:24	8.32	9.29	30.57	20.1	2.17	4	114	0.142	NW
I9	20190304	Cloudy	Light	Mid-Flood	М	5.1	16:24	7.95	8.96	30.45	20.2	2.08	4	114	0.15	NW
I9	20190304	Cloudy	Light	Mid-Flood	S	1	16:25	7.89	8.92	30.53	20.1	2.38	5	113	0.109	NW
I9	20190304	Cloudy	Light	Mid-Flood	S	1	16:25	8.3	9.33	31.1	20.2	2.45	4	113	0.152	NW
I10	20190304	Cloudy	Light	Mid-Flood	В	10.1	16:18	8.28	9.02	29.58	20.1	2.26	6	113	0.146	NW
I10	20190304	Cloudy	Light	Mid-Flood	В	10.1	16:18	8.42	9.2	29.68	20.1	2.16	6	113	0.116	NW
I10	20190304	Cloudy	Light	Mid-Flood	М	5.6	16:19	7.88	9	31.21	20.1	2.27	7	113	0.148	NW
I10	20190304	Cloudy	Light	Mid-Flood	М	5.6	16:19	8.15	9.33	30.21	20.1	2.32	7	113	0.148	NW
I10	20190304	Cloudy	Light	Mid-Flood	S	1	16:20	7.96	8.99	30.15	20.1	2.25	6	114	0.151	NW
I10	20190304	Cloudy	Light	Mid-Flood	S	1	16:20	8.03	8.93	29.68	20.1	2.26	7	114	0.16	NW

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Intensive DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
UC1	20190306	Cloudy	Moderate	Mid-Ebb	В	9.3	11:51	9.14	9.07	31.44	19.2	2.54	4	110	0.154	SE
UC1	20190306	Cloudy	Moderate	Mid-Ebb	В	9.3	11:51	8.8	9.16	29.95	19.5	2.73	6	110	0.149	SE
UC1	20190306	Cloudy	Moderate	Mid-Ebb	М	5.2	11:52	9.26	9.17	32.54	19.4	2.98	6	111	0.163	SE
UC1	20190306	Cloudy	Moderate	Mid-Ebb	М	5.2	11:52	9.13	9.38	32.84	19.4	3.02	5	110	0.16	SE
UC1	20190306	Cloudy	Moderate	Mid-Ebb	S	1	11:53	8.65	9.24	31.2	19	2.59	5	110	0.138	SE
UC1	20190306	Cloudy	Moderate	Mid-Ebb	S	1	11:53	8.83	9.38	31.23	19.5	2.6	6	110	0.172	SE
UC2	20190306	Cloudy	Moderate	Mid-Ebb	В	10.2	11:57	8.75	9.4	29.17	19.4	2.71	6	110	0.186	SE
UC2	20190306	Cloudy	Moderate	Mid-Ebb	В	10.2	11:57	8.97	9.23	32.44	19.3	2.86	4	110	0.2	SE
UC2	20190306	Cloudy	Moderate	Mid-Ebb	М	5.6	11:58	9.16	9.4	32.55	19.2	2.63	5	111	0.144	SE
UC2	20190306	Cloudy	Moderate	Mid-Ebb	М	5.6	11:58	8.66	9.03	32.48	19.5	2.67	5	110	0.143	SE
UC2	20190306	Cloudy	Moderate	Mid-Ebb	S	1	11:59	8.71	9.3	32.11	19.5	2.9	4	109	0.148	SE
UC2	20190306	Cloudy	Moderate	Mid-Ebb	S	1	11:59	8.76	9.24	31.85	19.1	2.98	5	109	0.165	SE
I1	20190306	Cloudy	Moderate	Mid-Ebb	В	9.1	12:02	8.95	9.16	32.01	19.2	2.78	3	110	0.172	SE
I1	20190306	Cloudy	Moderate	Mid-Ebb	В	9.1	12:02	8.91	9.27	29.58	19.4	2.73	4	109	0.152	SE
I1	20190306	Cloudy	Moderate	Mid-Ebb	М	5.1	12:03	9.13	9.32	29.36	19.5	2.6	4	110	0.157	SE
I1	20190306	Cloudy	Moderate	Mid-Ebb	М	5.1	12:03	8.88	9.33	32.46	19.5	2.49	3	110	0.2	SE
I1	20190306	Cloudy	Moderate	Mid-Ebb	S	1	12:04	9.04	9.23	30.93	19	2.9	3	110	0.145	SE
I1	20190306	Cloudy	Moderate	Mid-Ebb	S	1	12:04	9.16	9.41	29.61	19.3	3.05	5	109	0.19	SE
I2	20190306	Cloudy	Moderate	Mid-Ebb	В	9.1	12:07	8.95	9.2	30.93	19.1	2.84	7	110	0.138	SE
I2	20190306	Cloudy	Moderate	Mid-Ebb	В	9.1	12:07	8.83	9.07	31.23	19.3	2.84	6	109	0.16	SE
I2	20190306	Cloudy	Moderate	Mid-Ebb	М	5.1	12:08	8.79	9.42	30.33	19	2.56	6	109	0.194	SE
I2	20190306	Cloudy	Moderate	Mid-Ebb	М	5.1	12:08	8.91	9.44	30.56	19.3	2.74	6	110	0.155	SE
I2	20190306	Cloudy	Moderate	Mid-Ebb	S	1	12:09	8.96	9.48	32.26	19.3	2.56	4	109	0.166	SE
I2	20190306	Cloudy	Moderate	Mid-Ebb	S	1	12:09	8.71	9.21	31.29	19.1	2.51	5	110	0.157	SE
I3	20190306	Cloudy	Moderate	Mid-Ebb	В	8.9	12:12	8.97	9.46	31.92	19.1	2.96	3	110	0.182	SE
I3	20190306	Cloudy	Moderate	Mid-Ebb	В	8.9	12:12	8.84	9.36	31.87	19.2	3.11	2	110	0.176	SE
I3	20190306	Cloudy	Moderate	Mid-Ebb	М	5	12:13	9.16	9.18	30.13	19.5	3	<2	110	0.161	SE
I3	20190306	Cloudy	Moderate	Mid-Ebb	М	5	12:13	9.19	9.46	30.48	19	2.92	2	110	0.144	SE
I3	20190306	Cloudy	Moderate	Mid-Ebb	S	1	12:14	8.94	9.32	31.19	19.5	2.93	<2	111	0.139	SE
I3	20190306	Cloudy	Moderate	Mid-Ebb	S	1	12:14	8.99	9.05	32.81	19.2	2.8	<2	110	0.152	SE
I4	20190306	Cloudy	Moderate	Mid-Ebb	В	8.4	12:18	9	9.3	30.81	19	2.84	4	110	0.159	SE
I4	20190306	Cloudy	Moderate	Mid-Ebb	В	8.4	12:18	9.27	9.02	31.7	19.3	2.95	4	110	0.168	SE

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Intensive DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
I4	20190306	Cloudy	Moderate	Mid-Ebb	М	4.7	12:19	8.92	9.23	32.03	19.1	2.55	3	109	0.154	SE
I4	20190306	Cloudy	Moderate	Mid-Ebb	М	4.7	12:19	9.23	9.09	32	19.1	2.54	4	110	0.194	SE
I4	20190306	Cloudy	Moderate	Mid-Ebb	S	1	12:20	8.88	9.06	30.72	19	2.75	4	110	0.166	SE
I4	20190306	Cloudy	Moderate	Mid-Ebb	S	1	12:20	9.19	9.13	30.46	19	2.82	3	109	0.154	SE
15	20190306	Cloudy	Moderate	Mid-Ebb	В	8.8	12:22	9.28	9.28	30.25	19	2.6	4	109	0.165	SE
15	20190306	Cloudy	Moderate	Mid-Ebb	В	8.8	12:22	8.9	9.17	30.14	19.4	2.69	3	109	0.172	SE
15	20190306	Cloudy	Moderate	Mid-Ebb	М	4.9	12:23	8.91	9.4	32.41	19.1	2.96	6	110	0.137	SE
15	20190306	Cloudy	Moderate	Mid-Ebb	М	4.9	12:23	8.99	9.04	31.23	19	2.91	6	110	0.143	SE
I5	20190306	Cloudy	Moderate	Mid-Ebb	S	1	12:24	9.2	9.32	32.42	19.5	2.59	5	110	0.189	SE
15	20190306	Cloudy	Moderate	Mid-Ebb	S	1	12:24	8.88	9.27	30.72	19.3	2.65	5	110	0.154	SE
I6	20190306	Cloudy	Moderate	Mid-Ebb	В	9	12:48	8.99	9.42	32.1	19.3	2.98	5	109	0.183	SE
I6	20190306	Cloudy	Moderate	Mid-Ebb	В	9	12:48	8.95	9.39	32.54	19.4	3.15	4	109	0.142	SE
I6	20190306	Cloudy	Moderate	Mid-Ebb	М	5	12:49	8.94	9.13	31.06	19.3	2.99	3	110	0.175	SE
I6	20190306	Cloudy	Moderate	Mid-Ebb	М	5	12:49	9.02	9.35	30.7	19.4	2.9	4	110	0.15	SE
I6	20190306	Cloudy	Moderate	Mid-Ebb	S	1	12:50	8.93	9.39	29.29	19.5	2.8	5	109	0.175	SE
I6	20190306	Cloudy	Moderate	Mid-Ebb	S	1	12:50	9.1	9.08	32.44	19.1	2.91	3	110	0.141	SE
I7	20190306	Cloudy	Moderate	Mid-Ebb	В	8.6	12:43	8.81	9.24	31.24	19.2	2.79	5	109	0.156	SE
I7	20190306	Cloudy	Moderate	Mid-Ebb	В	8.6	12:43	8.87	9.13	30.27	19.5	2.79	6	110	0.159	SE
I7	20190306	Cloudy	Moderate	Mid-Ebb	М	4.8	12:44	8.96	9.18	31.43	19.5	2.96	4	110	0.17	SE
I7	20190306	Cloudy	Moderate	Mid-Ebb	М	4.8	12:44	9.05	9.47	31.2	19.4	2.88	4	109	0.157	SE
I7	20190306	Cloudy	Moderate	Mid-Ebb	S	1	12:45	8.82	9.43	30.8	19.4	2.95	4	110	0.17	SE
I7	20190306	Cloudy	Moderate	Mid-Ebb	S	1	12:45	9.02	9.48	31.89	19.1	3.13	3	109	0.192	SE
18	20190306	Cloudy	Moderate	Mid-Ebb	В	10.3	12:38	8.88	9.39	30.76	19.2	2.97	8	110	0.19	SE
18	20190306	Cloudy	Moderate	Mid-Ebb	В	10.3	12:38	9.18	9.18	29.53	19.2	2.91	6	110	0.165	SE
18	20190306	Cloudy	Moderate	Mid-Ebb	М	5.7	12:39	8.86	9.29	29.18	19	2.81	7	111	0.201	SE
18	20190306	Cloudy	Moderate	Mid-Ebb	М	5.7	12:39	8.88	9.41	29.13	19.4	2.99	6	110	0.197	SE
18	20190306	Cloudy	Moderate	Mid-Ebb	S	1	12:40	8.93	9.19	29.8	19.2	2.61	7	109	0.177	SE
18	20190306	Cloudy	Moderate	Mid-Ebb	S	1	12:40	8.99	9.16	32.73	19.3	2.76	8	109	0.168	SE
I9	20190306	Cloudy	Moderate	Mid-Ebb	В	9.9	12:32	8.71	9.07	30.79	19.2	2.99	6	110	0.163	SE
I9	20190306	Cloudy	Moderate	Mid-Ebb	В	9.9	12:32	8.92	9.19	29.29	19.1	3.14	6	110	0.171	SE
I9	20190306	Cloudy	Moderate	Mid-Ebb	М	5.5	12:33	9.14	9.28	32.93	19	2.54	6	109	0.173	SE
19	20190306	Cloudy	Moderate	Mid-Ebb	М	5.5	12:33	9.1	9.14	31.25	19.2	2.44	6	110	0.159	SE

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Intensive DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
I9	20190306	Cloudy	Moderate	Mid-Ebb	S	1	12:34	8.75	9.1	32.07	19.2	2.53	5	109	0.191	SE
I9	20190306	Cloudy	Moderate	Mid-Ebb	S	1	12:34	8.98	9.48	29.33	19.2	2.57	5	109	0.152	SE
I10	20190306	Cloudy	Moderate	Mid-Ebb	В	9	12:27	9.03	9.05	32.28	19	2.68	6	110	0.157	SE
I10	20190306	Cloudy	Moderate	Mid-Ebb	В	9	12:27	9.13	9.15	32.49	19	2.86	6	110	0.187	SE
I10	20190306	Cloudy	Moderate	Mid-Ebb	М	5	12:28	9.2	9.37	30.72	19.2	2.52	5	110	0.14	SE
I10	20190306	Cloudy	Moderate	Mid-Ebb	М	5	12:28	8.75	9.14	32.8	19.4	2.56	4	110	0.168	SE
I10	20190306	Cloudy	Moderate	Mid-Ebb	S	1	12:29	9.25	9.4	31.88	19.4	2.79	5	110	0.161	SE
I10	20190306	Cloudy	Moderate	Mid-Ebb	S	1	12:29	9.27	9.45	30.37	19.5	2.75	4	109	0.153	SE
UC1	20190306	Cloudy	Moderate	Mid-Flood	В	10.2	15:54	8.78	9.14	30.71	19.3	2.65	4	109	0.18	NW
UC1	20190306	Cloudy	Moderate	Mid-Flood	В	10.2	15:54	9.06	9.13	30.13	19.3	2.52	5	110	0.168	NW
UC1	20190306	Cloudy	Moderate	Mid-Flood	М	5.6	15:55	9.11	9.34	29.69	19	2.81	5	109	0.143	NW
UC1	20190306	Cloudy	Moderate	Mid-Flood	М	5.6	15:55	9.12	9.3	29.7	19.3	2.63	4	110	0.176	NW
UC1	20190306	Cloudy	Moderate	Mid-Flood	S	1	15:56	8.74	9.03	32.86	19	2.94	4	110	0.144	NW
UC1	20190306	Cloudy	Moderate	Mid-Flood	S	1	15:56	9.03	9.25	29.23	19.3	2.74	5	109	0.168	NW
UC2	20190306	Cloudy	Moderate	Mid-Flood	В	10.1	16:00	8.97	9.47	29.75	19.5	2.85	4	110	0.141	NW
UC2	20190306	Cloudy	Moderate	Mid-Flood	В	10.1	16:00	8.95	9.47	30.31	19	2.8	5	110	0.175	NW
UC2	20190306	Cloudy	Moderate	Mid-Flood	М	5.6	16:01	8.78	9.15	32.59	19	2.8	5	111	0.18	NW
UC2	20190306	Cloudy	Moderate	Mid-Flood	М	5.6	16:01	9.21	9.15	31.14	19.1	2.99	4	110	0.181	NW
UC2	20190306	Cloudy	Moderate	Mid-Flood	S	1	16:02	8.71	9.42	31.06	19.3	2.6	3	110	0.172	NW
UC2	20190306	Cloudy	Moderate	Mid-Flood	S	1	16:02	9.27	9.1	30.37	19.1	2.58	3	109	0.115	NW
I1	20190306	Cloudy	Moderate	Mid-Flood	В	9.5	16:06	8.81	9.49	32.23	19.1	2.69	6	110	0.142	NW
I1	20190306	Cloudy	Moderate	Mid-Flood	В	9.5	16:06	8.89	9.12	32.91	19	2.74	5	110	0.131	NW
I1	20190306	Cloudy	Moderate	Mid-Flood	М	5.3	16:07	8.69	9.44	31.62	19	2.7	5	110	0.176	NW
I1	20190306	Cloudy	Moderate	Mid-Flood	М	5.3	16:07	8.91	9.24	29.44	19.1	2.6	6	110	0.121	NW
I1	20190306	Cloudy	Moderate	Mid-Flood	S	1	16:08	9.18	9.42	29.51	19.4	2.64	4	110	0.177	NW
I1	20190306	Cloudy	Moderate	Mid-Flood	S	1	16:08	8.64	9.36	31.76	19.4	2.5	5	109	0.191	NW
I2	20190306	Cloudy	Moderate	Mid-Flood	В	10.3	16:11	9.24	9.1	31.57	19.1	2.88	5	110	0.186	NW
I2	20190306	Cloudy	Moderate	Mid-Flood	В	10.3	16:11	8.95	9.44	29.66	19.5	2.85	4	109	0.163	NW
I2	20190306	Cloudy	Moderate	Mid-Flood	М	5.7	16:12	8.88	9.36	31.56	19	2.97	4	110	0.16	NW
I2	20190306	Cloudy	Moderate	Mid-Flood	М	5.7	16:12	8.64	9.31	30.94	19.4	2.86	2	109	0.151	NW
I2	20190306	Cloudy	Moderate	Mid-Flood	S	1	16:13	8.85	9.21	31.82	19.1	2.65	6	109	0.182	NW
I2	20190306	Cloudy	Moderate	Mid-Flood	S	1	16:13	9.22	9.02	31.18	19.4	2.5	4	110	0.126	NW

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Intensive DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
13	20190306	Cloudy	Moderate	Mid-Flood	В	9.9	16:17	8.88	9.16	30.03	19.3	2.66	6	110	0.143	NW
I3	20190306	Cloudy	Moderate	Mid-Flood	В	9.9	16:17	9.25	9.05	32.01	19.2	2.46	6	109	0.142	NW
I3	20190306	Cloudy	Moderate	Mid-Flood	М	5.5	16:18	8.85	9.38	31.59	19.3	2.91	4	109	0.171	NW
I3	20190306	Cloudy	Moderate	Mid-Flood	М	5.5	16:18	8.64	9.37	32.02	19.1	3.07	3	110	0.15	NW
I3	20190306	Cloudy	Moderate	Mid-Flood	S	1	16:19	9.2	9.45	29.62	19.4	2.5	2	110	0.182	NW
13	20190306	Cloudy	Moderate	Mid-Flood	S	1	16:19	9.02	9.16	30.05	19.1	2.64	3	110	0.134	NW
I4	20190306	Cloudy	Moderate	Mid-Flood	В	10.7	16:22	8.72	9.22	31.7	19.5	2.8	5	111	0.133	NW
I4	20190306	Cloudy	Moderate	Mid-Flood	В	10.7	16:22	8.87	9.07	30.11	19.1	2.63	6	110	0.148	NW
I4	20190306	Cloudy	Moderate	Mid-Flood	М	5.9	16:23	8.84	9.46	31.38	19.5	2.66	5	110	0.182	NW
I4	20190306	Cloudy	Moderate	Mid-Flood	М	5.9	16:23	8.8	9.35	31.13	19.4	2.86	6	110	0.12	NW
I4	20190306	Cloudy	Moderate	Mid-Flood	S	1	16:24	8.81	9.13	31.27	19.4	2.57	4	110	0.16	NW
I4	20190306	Cloudy	Moderate	Mid-Flood	S	1	16:24	9.02	9.17	29.11	19.5	2.49	5	110	0.156	NW
15	20190306	Cloudy	Moderate	Mid-Flood	В	9.1	16:27	9.08	9.49	30.99	19.5	2.96	5	110	0.186	NW
I5	20190306	Cloudy	Moderate	Mid-Flood	В	9.1	16:27	8.74	9.15	31.59	19.1	2.76	7	110	0.154	NW
15	20190306	Cloudy	Moderate	Mid-Flood	М	5.1	16:28	8.8	9.21	29.57	19.5	2.55	4	110	0.145	NW
15	20190306	Cloudy	Moderate	Mid-Flood	М	5.1	16:28	9.04	9.27	31.58	19.1	2.52	3	108	0.182	NW
I5	20190306	Cloudy	Moderate	Mid-Flood	S	1	16:29	8.96	9.27	29.47	19.3	2.68	4	110	0.19	NW
15	20190306	Cloudy	Moderate	Mid-Flood	S	1	16:29	8.87	9.1	31.95	19	2.83	3	110	0.184	NW
I6	20190306	Cloudy	Moderate	Mid-Flood	В	9.6	16:55	8.71	9.46	30.47	19.5	2.74	4	110	0.13	NW
I6	20190306	Cloudy	Moderate	Mid-Flood	В	9.6	16:55	8.9	9.05	32.8	19	2.7	3	109	0.168	NW
I6	20190306	Cloudy	Moderate	Mid-Flood	М	5.3	16:56	9.18	9.29	30.32	19.2	2.52	4	109	0.139	NW
I6	20190306	Cloudy	Moderate	Mid-Flood	М	5.3	16:56	8.68	9.3	29.7	19.2	2.42	5	110	0.184	NW
I6	20190306	Cloudy	Moderate	Mid-Flood	S	1	16:57	9.17	9.28	32.56	19.1	2.7	4	109	0.153	NW
I6	20190306	Cloudy	Moderate	Mid-Flood	S	1	16:57	9.24	9.03	32.81	19.5	2.59	6	110	0.161	NW
I7	20190306	Cloudy	Moderate	Mid-Flood	В	10.3	16:50	8.81	9.02	31.93	19.4	2.68	5	109	0.128	NW
I7	20190306	Cloudy	Moderate	Mid-Flood	В	10.3	16:50	8.71	9.2	31.7	19.3	2.84	6	110	0.182	NW
I7	20190306	Cloudy	Moderate	Mid-Flood	М	5.7	16:51	9.23	9.4	32.74	19.2	2.68	4	109	0.181	NW
I7	20190306	Cloudy	Moderate	Mid-Flood	М	5.7	16:51	8.69	9.34	32.1	19.3	2.79	4	110	0.173	NW
I7	20190306	Cloudy	Moderate	Mid-Flood	S	1	16:52	8.66	9.09	32.4	19.3	2.94	4	110	0.169	NW
I7	20190306	Cloudy	Moderate	Mid-Flood	S	1	16:52	8.7	9.3	31.29	19.5	2.95	2	110	0.159	NW
18	20190306	Cloudy	Moderate	Mid-Flood	В	9.4	16:44	9.02	9.06	30.48	19.1	2.53	5	110	0.174	NW
18	20190306	Cloudy	Moderate	Mid-Flood	В	9.4	16:44	8.79	9.3	30.77	19.4	2.45	5	109	0.131	NW

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Intensive DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
I8	20190306	Cloudy	Moderate	Mid-Flood	М	5.2	16:45	9.25	9.3	30.59	19.4	2.51	5	110	0.14	NW
18	20190306	Cloudy	Moderate	Mid-Flood	М	5.2	16:45	8.88	9.4	31.82	19.4	2.6	5	110	0.171	NW
18	20190306	Cloudy	Moderate	Mid-Flood	S	1	16:46	9.26	9.14	32.9	19	2.75	5	110	0.19	NW
18	20190306	Cloudy	Moderate	Mid-Flood	S	1	16:46	8.92	9.41	31.69	19.2	2.92	5	110	0.186	NW
I9	20190306	Cloudy	Moderate	Mid-Flood	В	10.7	16:37	8.9	9.11	29.92	19.2	2.87	5	109	0.178	NW
I9	20190306	Cloudy	Moderate	Mid-Flood	В	10.7	16:37	8.84	9.29	30.22	19.4	2.85	5	110	0.122	NW
I9	20190306	Cloudy	Moderate	Mid-Flood	М	5.9	16:38	8.75	9.28	29.71	19.1	2.95	4	110	0.177	NW
I9	20190306	Cloudy	Moderate	Mid-Flood	М	5.9	16:38	8.98	9.49	29.99	19.4	3.15	4	111	0.162	NW
I9	20190306	Cloudy	Moderate	Mid-Flood	S	1	16:39	8.8	9.2	32.84	19	2.73	4	110	0.152	NW
I9	20190306	Cloudy	Moderate	Mid-Flood	S	1	16:39	8.87	9.45	30.62	19	2.59	4	110	0.182	NW
I10	20190306	Cloudy	Moderate	Mid-Flood	В	9.9	16:32	8.95	9.04	31.08	19.1	3	3	111	0.141	NW
I10	20190306	Cloudy	Moderate	Mid-Flood	В	9.9	16:32	8.98	9.27	32.12	19.4	2.94	3	110	0.13	NW
I10	20190306	Cloudy	Moderate	Mid-Flood	М	5.5	16:33	8.78	9.42	32.03	19.1	2.94	3	109	0.151	NW
I10	20190306	Cloudy	Moderate	Mid-Flood	М	5.5	16:33	8.96	9.22	31.37	19.1	3.04	2	110	0.138	NW
I10	20190306	Cloudy	Moderate	Mid-Flood	S	1	16:34	8.69	9.23	31.18	19	2.65	3	110	0.114	NW
I10	20190306	Cloudy	Moderate	Mid-Flood	S	1	16:34	8.92	9.35	32.76	19.4	2.56	4	108	0.154	NW
UC1	20190308	Cloudy	Light	Mid-Ebb	В	8.4	11:48	8.06	8.99	31.89	18	3.96	7	111	0.274	SE
UC1	20190308	Cloudy	Light	Mid-Ebb	В	8.4	11:48	8.36	8.93	30.63	17.9	4.12	6	113	0.299	SE
UC1	20190308	Cloudy	Light	Mid-Ebb	М	4.7	11:49	8.31	9.11	29.15	18.2	3.39	7	112	0.185	SE
UC1	20190308	Cloudy	Light	Mid-Ebb	М	4.7	11:49	7.93	8.91	31.9	18.2	3.22	7	111	0.238	SE
UC1	20190308	Cloudy	Light	Mid-Ebb	S	1	11:50	8.79	8.77	30.4	18.2	2.63	8	113	0.247	SE
UC1	20190308	Cloudy	Light	Mid-Ebb	S	1	11:50	8.16	8.82	31.05	18.2	2.65	9	112	0.269	SE
UC2	20190308	Cloudy	Light	Mid-Ebb	В	9.8	11:53	8.51	8.86	31.99	17.8	3.89	7	113	0.19	SE
UC2	20190308	Cloudy	Light	Mid-Ebb	В	9.8	11:53	8.68	9.24	31.51	18.2	3.71	8	112	0.215	SE
UC2	20190308	Cloudy	Light	Mid-Ebb	М	5.4	11:54	8.49	9.24	32.03	18.2	3.44	7	112	0.251	SE
UC2	20190308	Cloudy	Light	Mid-Ebb	М	5.4	11:54	8.47	9.11	30.87	17.8	3.63	7	112	0.294	SE
UC2	20190308	Cloudy	Light	Mid-Ebb	S	1	11:55	8.37	9.2	29.89	17.9	2.74	8	112	0.262	SE
UC2	20190308	Cloudy	Light	Mid-Ebb	S	1	11:55	7.72	8.75	31.84	18	2.75	8	113	0.226	SE
I1	20190308	Cloudy	Light	Mid-Ebb	В	9.1	11:58	8.62	9	29.16	18.2	3.55	8	112	0.216	SE
I1	20190308	Cloudy	Light	Mid-Ebb	В	9.1	11:58	8.43	9.25	31.96	18.1	3.6	9	112	0.3	SE
I1	20190308	Cloudy	Light	Mid-Ebb	М	5.1	11:59	8	9.24	30.44	17.9	3.24	7	112	0.188	SE
I1	20190308	Cloudy	Light	Mid-Ebb	М	5.1	11:59	8.08	9.07	29.68	18.1	3.16	8	112	0.17	SE

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Intensive DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
I1	20190308	Cloudy	Light	Mid-Ebb	S	1	12:00	7.84	8.99	29.47	18	2.74	6	112	0.217	SE
I1	20190308	Cloudy	Light	Mid-Ebb	S	1	12:00	7.56	8.75	31.83	17.9	2.54	6	112	0.254	SE
I2	20190308	Cloudy	Light	Mid-Ebb	В	9.1	12:03	7.57	9.14	30.79	17.9	3.82	8	112	0.302	SE
I2	20190308	Cloudy	Light	Mid-Ebb	В	9.1	12:03	7.92	8.8	31.1	18	3.62	8	112	0.271	SE
I2	20190308	Cloudy	Light	Mid-Ebb	М	5.1	12:04	8.25	9.08	30.9	18.2	3.01	7	112	0.223	SE
I2	20190308	Cloudy	Light	Mid-Ebb	М	5.1	12:04	8.47	9.07	29.81	18.2	3	8	111	0.203	SE
I2	20190308	Cloudy	Light	Mid-Ebb	S	1	12:05	8.59	9.16	30.88	18.1	2.56	8	111	0.179	SE
I2	20190308	Cloudy	Light	Mid-Ebb	S	1	12:05	8.2	8.91	29.19	18.1	2.57	8	111	0.259	SE
I3	20190308	Cloudy	Light	Mid-Ebb	В	9	12:08	7.57	9.08	29.78	17.9	3.63	7	112	0.216	SE
I3	20190308	Cloudy	Light	Mid-Ebb	В	9	12:08	8.75	8.83	30.67	17.8	3.56	6	112	0.199	SE
I3	20190308	Cloudy	Light	Mid-Ebb	М	5	12:09	8.88	9.08	30.54	17.8	3.17	6	113	0.254	SE
I3	20190308	Cloudy	Light	Mid-Ebb	М	5	12:09	7.92	8.83	29.22	17.8	3.35	6	112	0.273	SE
I3	20190308	Cloudy	Light	Mid-Ebb	S	1	12:10	8.83	8.83	30.97	18.1	2.53	7	112	0.177	SE
I3	20190308	Cloudy	Light	Mid-Ebb	S	1	12:10	7.95	8.79	29.22	18.1	2.59	7	111	0.22	SE
I4	20190308	Cloudy	Light	Mid-Ebb	В	9.4	12:14	8.42	8.73	30.73	18.2	3.72	6	112	0.217	SE
I4	20190308	Cloudy	Light	Mid-Ebb	В	9.4	12:14	8.26	9.2	30.76	18	3.89	5	112	0.276	SE
I4	20190308	Cloudy	Light	Mid-Ebb	М	5.2	12:15	8.02	9.14	29.49	18.1	3.44	6	113	0.178	SE
I4	20190308	Cloudy	Light	Mid-Ebb	М	5.2	12:15	8.68	8.87	30.14	17.8	3.29	7	112	0.225	SE
I4	20190308	Cloudy	Light	Mid-Ebb	S	1	12:16	7.57	8.78	31.31	18	2.95	8	113	0.277	SE
I4	20190308	Cloudy	Light	Mid-Ebb	S	1	12:16	7.71	8.9	30.55	18.2	2.8	8	113	0.288	SE
15	20190308	Cloudy	Light	Mid-Ebb	В	8.4	12:19	7.59	9.23	31.12	17.8	3.52	8	112	0.186	SE
15	20190308	Cloudy	Light	Mid-Ebb	В	8.4	12:19	8.59	9.01	31.72	17.8	3.69	8	112	0.273	SE
15	20190308	Cloudy	Light	Mid-Ebb	М	4.7	12:20	8.27	9.09	29.42	17.9	3.37	6	113	0.19	SE
15	20190308	Cloudy	Light	Mid-Ebb	М	4.7	12:20	8.55	9.1	29.24	18	3.19	7	113	0.286	SE
15	20190308	Cloudy	Light	Mid-Ebb	S	1	12:21	8.43	9.15	31.13	18.1	2.63	7	113	0.2	SE
15	20190308	Cloudy	Light	Mid-Ebb	S	1	12:21	8.63	8.82	31.11	17.9	2.63	7	112	0.169	SE
I6	20190308	Cloudy	Light	Mid-Ebb	В	9.4	12:49	8.49	8.99	30.78	18.1	3.6	5	113	0.216	SE
I6	20190308	Cloudy	Light	Mid-Ebb	В	9.4	12:49	7.79	9.04	30.2	18.2	3.68	6	112	0.28	SE
I6	20190308	Cloudy	Light	Mid-Ebb	М	5.2	12:50	8.29	9.27	29.1	17.8	3.16	8	112	0.22	SE
I6	20190308	Cloudy	Light	Mid-Ebb	М	5.2	12:50	7.56	9.03	29.99	18.1	3.14	7	111	0.253	SE
I6	20190308	Cloudy	Light	Mid-Ebb	S	1	12:51	7.81	9.02	31.84	17.8	2.5	9	112	0.287	SE
I6	20190308	Cloudy	Light	Mid-Ebb	S	1	12:51	7.56	8.76	30.02	17.9	2.42	9	112	0.26	SE

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Intensive DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pH	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
I7	20190308	Cloudy	Light	Mid-Ebb	В	8.8	12:44	8.6	8.94	30.82	17.8	3.83	6	112	0.17	SE
I7	20190308	Cloudy	Light	Mid-Ebb	В	8.8	12:44	8.32	9.16	30.85	18	3.8	5	112	0.274	SE
I7	20190308	Cloudy	Light	Mid-Ebb	М	4.9	12:45	7.64	9.19	30.91	18.1	3.08	6	111	0.176	SE
I7	20190308	Cloudy	Light	Mid-Ebb	М	4.9	12:45	7.58	9.13	29.37	18.2	3.05	6	111	0.277	SE
I7	20190308	Cloudy	Light	Mid-Ebb	S	1	12:46	8.13	8.78	31.03	18.2	2.57	8	112	0.172	SE
I7	20190308	Cloudy	Light	Mid-Ebb	S	1	12:46	7.75	9.02	29.76	18.1	2.47	7	111	0.261	SE
I8	20190308	Cloudy	Light	Mid-Ebb	В	10.2	12:39	7.94	8.83	30.45	18.1	3.83	7	111	0.156	SE
I8	20190308	Cloudy	Light	Mid-Ebb	В	10.2	12:39	7.76	8.8	29.96	18.2	3.96	7	110	0.298	SE
I8	20190308	Cloudy	Light	Mid-Ebb	М	5.6	12:40	7.6	8.92	29.14	17.8	3.18	6	113	0.163	SE
I8	20190308	Cloudy	Light	Mid-Ebb	М	5.6	12:40	7.9	9.16	29.11	17.9	3.12	6	112	0.281	SE
I8	20190308	Cloudy	Light	Mid-Ebb	S	1	12:41	7.89	8.95	31.11	18.1	2.91	6	113	0.234	SE
I8	20190308	Cloudy	Light	Mid-Ebb	S	1	12:41	7.59	8.88	30.68	18.2	2.9	5	112	0.21	SE
I9	20190308	Cloudy	Light	Mid-Ebb	В	9.3	12:34	8.83	8.85	30.32	17.9	3.91	5	112	0.236	SE
I9	20190308	Cloudy	Light	Mid-Ebb	В	9.3	12:34	7.86	8.98	29.59	18.2	3.71	6	112	0.222	SE
I9	20190308	Cloudy	Light	Mid-Ebb	М	5.2	12:35	8.85	8.96	30.27	18	3.16	6	110	0.184	SE
I9	20190308	Cloudy	Light	Mid-Ebb	М	5.2	12:35	8.48	9.25	31.8	17.9	2.97	6	110	0.245	SE
I9	20190308	Cloudy	Light	Mid-Ebb	S	1	12:36	8.21	9.07	31.76	17.8	2.66	6	111	0.22	SE
I9	20190308	Cloudy	Light	Mid-Ebb	S	1	12:36	8.74	9.11	30.47	18.1	2.82	7	112	0.199	SE
I10	20190308	Cloudy	Light	Mid-Ebb	В	8.4	12:29	8.54	8.95	31.12	18.1	3.54	7	110	0.213	SE
I10	20190308	Cloudy	Light	Mid-Ebb	В	8.4	12:29	8.72	8.86	29.94	17.9	3.44	8	110	0.285	SE
I10	20190308	Cloudy	Light	Mid-Ebb	М	4.7	12:30	8.22	8.98	31.71	18.1	3.1	7	111	0.16	SE
I10	20190308	Cloudy	Light	Mid-Ebb	М	4.7	12:30	7.75	8.78	31.1	18.1	3.17	7	111	0.224	SE
I10	20190308	Cloudy	Light	Mid-Ebb	S	1	12:31	8.79	9.25	31.86	18.2	2.99	4	111	0.208	SE
I10	20190308	Cloudy	Light	Mid-Ebb	S	1	12:31	8.76	8.78	29.22	17.8	2.99	5	112	0.198	SE
UC1	20190308	Cloudy	Moderate	Mid-Flood	В	9	17:26	7.73	8.78	31.05	17.9	3.89	6	110	0.146	NW
UC1	20190308	Cloudy	Moderate	Mid-Flood	В	9	17:26	8.25	9.08	29.53	17.7	4.04	6	111	0.21	NW
UC1	20190308	Cloudy	Moderate	Mid-Flood	М	5	17:27	8.57	8.96	30.8	17.7	3.45	4	111	0.252	NW
UC1	20190308	Cloudy	Moderate	Mid-Flood	М	5	17:27	8.45	8.88	30.36	17.9	3.63	5	111	0.297	NW
UC1	20190308	Cloudy	Moderate	Mid-Flood	S	1	17:28	7.56	9.19	29.32	17.8	2.73	5	111	0.172	NW
UC1	20190308	Cloudy	Moderate	Mid-Flood	S	1	17:28	8.22	9.1	30.97	18	2.79	5	109	0.149	NW
UC2	20190308	Cloudy	Moderate	Mid-Flood	В	10.1	17:31	8.55	9.1	30.59	17.8	3.59	4	111	0.217	NW
UC2	20190308	Cloudy	Moderate	Mid-Flood	В	10.1	17:31	7.68	8.92	29.58	17.7	3.67	5	111	0.277	NW

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Intensive DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
UC2	20190308	Cloudy	Moderate	Mid-Flood	М	5.6	17:32	8.16	8.96	31.71	17.9	3.26	3	111	0.298	NW
UC2	20190308	Cloudy	Moderate	Mid-Flood	М	5.6	17:32	8.6	8.97	29.87	17.8	3.44	4	111	0.175	NW
UC2	20190308	Cloudy	Moderate	Mid-Flood	S	1	17:33	7.58	9.12	29.66	17.7	2.89	5	111	0.237	NW
UC2	20190308	Cloudy	Moderate	Mid-Flood	S	1	17:33	8.05	9.18	31.85	18	2.95	4	112	0.283	NW
I1	20190308	Cloudy	Moderate	Mid-Flood	В	10.7	17:37	8.77	8.88	30.07	17.9	3.51	5	112	0.15	NW
I1	20190308	Cloudy	Moderate	Mid-Flood	В	10.7	17:37	8.54	8.97	29.29	17.7	3.37	5	110	0.183	NW
I1	20190308	Cloudy	Moderate	Mid-Flood	М	5.9	17:38	7.76	9.01	31.01	17.8	3.23	3	111	0.23	NW
I1	20190308	Cloudy	Moderate	Mid-Flood	М	5.9	17:38	7.84	8.79	30.96	17.7	3.17	3	110	0.17	NW
I1	20190308	Cloudy	Moderate	Mid-Flood	S	1	17:39	7.83	9.01	30.74	17.8	2.51	3	111	0.2	NW
I1	20190308	Cloudy	Moderate	Mid-Flood	S	1	17:39	8.59	9.13	31.43	18	2.63	4	112	0.147	NW
I2	20190308	Cloudy	Moderate	Mid-Flood	В	10.3	17:42	8.61	9.13	30.13	17.9	3.6	7	110	0.266	NW
I2	20190308	Cloudy	Moderate	Mid-Flood	В	10.3	17:42	7.62	8.84	31.43	18	3.66	7	111	0.168	NW
I2	20190308	Cloudy	Moderate	Mid-Flood	М	5.7	17:43	8.81	8.86	29.55	18	3.12	8	110	0.287	NW
I2	20190308	Cloudy	Moderate	Mid-Flood	М	5.7	17:43	8.71	8.86	30.41	17.8	2.97	7	111	0.282	NW
I2	20190308	Cloudy	Moderate	Mid-Flood	S	1	17:44	7.64	8.91	29.6	17.9	2.9	8	110	0.209	NW
I2	20190308	Cloudy	Moderate	Mid-Flood	S	1	17:44	7.89	8.85	31.31	17.8	3.05	8	110	0.214	NW
I3	20190308	Cloudy	Moderate	Mid-Flood	В	10.9	17:47	7.6	9.2	29.37	17.7	3.52	6	111	0.291	NW
I3	20190308	Cloudy	Moderate	Mid-Flood	В	10.9	17:47	7.59	9.03	31.68	17.7	3.55	7	110	0.201	NW
I3	20190308	Cloudy	Moderate	Mid-Flood	М	6	17:48	7.65	8.85	31.26	18	3.07	6	111	0.303	NW
I3	20190308	Cloudy	Moderate	Mid-Flood	М	6	17:48	8.24	9.09	29.32	17.9	3.16	6	112	0.279	NW
I3	20190308	Cloudy	Moderate	Mid-Flood	S	1	17:49	7.74	8.83	30.41	17.9	2.8	8	110	0.167	NW
I3	20190308	Cloudy	Moderate	Mid-Flood	S	1	17:49	8.48	8.94	30.54	17.9	2.76	6	110	0.162	NW
I4	20190308	Cloudy	Moderate	Mid-Flood	В	10.4	17:52	8.31	9.18	31.23	17.9	3.55	8	111	0.285	NW
I4	20190308	Cloudy	Moderate	Mid-Flood	В	10.4	17:52	8.06	9.08	31.55	18	3.56	9	110	0.271	NW
I4	20190308	Cloudy	Moderate	Mid-Flood	М	5.7	17:53	8.4	8.79	31.6	18	3.24	5	111	0.263	NW
I4	20190308	Cloudy	Moderate	Mid-Flood	М	5.7	17:53	8.63	8.88	30.73	17.7	3.34	7	111	0.28	NW
I4	20190308	Cloudy	Moderate	Mid-Flood	S	1	17:54	8.87	9.16	31.78	17.9	2.98	4	111	0.273	NW
I4	20190308	Cloudy	Moderate	Mid-Flood	S	1	17:54	8.33	8.83	29.4	17.7	3.1	6	110	0.205	NW
15	20190308	Cloudy	Moderate	Mid-Flood	В	10	17:57	8.1	9.13	30.92	18	3.7	2	111	0.209	NW
15	20190308	Cloudy	Moderate	Mid-Flood	В	10	17:57	8.21	9.19	29.71	18	3.68	<2	111	0.266	NW
15	20190308	Cloudy	Moderate	Mid-Flood	М	5.5	17:58	8.58	9.01	31.44	17.8	3.36	5	111	0.309	NW
15	20190308	Cloudy	Moderate	Mid-Flood	М	5.5	17:58	8.91	9.01	31.15	18	3.37	4	111	0.16	NW

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Intensive DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	pH	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
15	20190308	Cloudy	Moderate	Mid-Flood	S	1	17:59	8.14	9.18	29.77	17.8	2.79	6	111	0.237	NW
I5	20190308	Cloudy	Moderate	Mid-Flood	S	1	17:59	8.33	9.14	30.74	17.9	2.65	7	111	0.31	NW
I6	20190308	Cloudy	Moderate	Mid-Flood	В	10	18:22	8.87	9.1	29.66	18	3.93	6	112	0.307	NW
I6	20190308	Cloudy	Moderate	Mid-Flood	В	10	18:22	8.85	8.88	29.83	17.8	4.07	6	111	0.159	NW
I6	20190308	Cloudy	Moderate	Mid-Flood	М	5.5	18:23	7.61	9.06	31.14	17.8	3.37	5	111	0.195	NW
I6	20190308	Cloudy	Moderate	Mid-Flood	М	5.5	18:23	7.55	8.83	29.47	17.9	3.25	4	111	0.236	NW
I6	20190308	Cloudy	Moderate	Mid-Flood	S	1	18:24	8.09	9.13	30.43	17.9	2.58	4	110	0.24	NW
I6	20190308	Cloudy	Moderate	Mid-Flood	S	1	18:24	8.03	8.87	31.33	17.9	2.4	5	111	0.207	NW
I7	20190308	Cloudy	Moderate	Mid-Flood	В	8.9	18:17	7.86	8.9	29.37	18	3.66	6	110	0.295	NW
I7	20190308	Cloudy	Moderate	Mid-Flood	В	8.9	18:17	7.88	8.96	31.32	17.7	3.81	7	110	0.242	NW
I7	20190308	Cloudy	Moderate	Mid-Flood	М	5	18:18	7.83	8.97	31.57	17.7	3.02	4	111	0.232	NW
I7	20190308	Cloudy	Moderate	Mid-Flood	М	5	18:18	8.03	8.99	31.59	17.8	2.96	5	110	0.296	NW
I7	20190308	Cloudy	Moderate	Mid-Flood	S	1	18:19	8.27	8.9	29.1	17.8	2.79	3	112	0.212	NW
I7	20190308	Cloudy	Moderate	Mid-Flood	S	1	18:19	8.1	8.89	29.63	18	2.85	2	111	0.258	NW
I8	20190308	Cloudy	Moderate	Mid-Flood	В	10	18:12	8.3	8.93	31.65	17.8	3.75	4	111	0.146	NW
I8	20190308	Cloudy	Moderate	Mid-Flood	В	10	18:12	8.06	8.87	29.42	18	3.87	4	112	0.209	NW
I8	20190308	Cloudy	Moderate	Mid-Flood	М	5.5	18:13	7.86	9.04	29.29	17.8	3.25	4	109	0.28	NW
I8	20190308	Cloudy	Moderate	Mid-Flood	М	5.5	18:13	7.64	8.91	29.23	17.7	3.24	5	112	0.16	NW
I8	20190308	Cloudy	Moderate	Mid-Flood	S	1	18:14	8.75	9.03	29.59	17.9	2.8	5	110	0.194	NW
I8	20190308	Cloudy	Moderate	Mid-Flood	S	1	18:14	8.21	8.86	30.75	18	3	6	111	0.186	NW
I9	20190308	Cloudy	Moderate	Mid-Flood	В	10.9	18:07	8.03	9.16	29.93	17.8	3.9	6	112	0.17	NW
I9	20190308	Cloudy	Moderate	Mid-Flood	В	10.9	18:07	8.41	8.89	31.07	17.7	4.02	6	110	0.151	NW
I9	20190308	Cloudy	Moderate	Mid-Flood	М	6	18:08	8.91	8.85	30.19	18	3.14	6	112	0.228	NW
I9	20190308	Cloudy	Moderate	Mid-Flood	М	6	18:08	8.19	8.88	30.77	17.7	3.1	6	113	0.239	NW
I9	20190308	Cloudy	Moderate	Mid-Flood	S	1	18:09	8.66	8.9	29.12	17.8	2.97	5	111	0.171	NW
I9	20190308	Cloudy	Moderate	Mid-Flood	S	1	18:09	8.21	8.78	29.38	17.9	2.9	6	112	0.249	NW
I10	20190308	Cloudy	Moderate	Mid-Flood	В	10	18:02	7.94	8.89	30.77	17.9	3.75	5	111	0.216	NW
I10	20190308	Cloudy	Moderate	Mid-Flood	В	10	18:02	8.48	8.94	31.27	18	3.61	5	110	0.298	NW
I10	20190308	Cloudy	Moderate	Mid-Flood	М	5.5	18:03	7.96	8.94	29.64	17.7	3.12	5	112	0.227	NW
I10	20190308	Cloudy	Moderate	Mid-Flood	М	5.5	18:03	7.65	9.03	31.05	17.7	3.05	4	111	0.277	NW
I10	20190308	Cloudy	Moderate	Mid-Flood	S	1	18:04	8.3	9.17	29.81	18	2.77	8	112	0.259	NW
I10	20190308	Cloudy	Moderate	Mid-Flood	S	1	18:04	7.86	8.37	29.79	18	2.77	7	111	0.259	NW

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Intensive DCM Water Quality Monitoring Data

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) _{Note 3}	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
UC1	20190310	Cloudy	Moderate	Mid-Flood	В	9.8	9:19	8.6	9.16	29.75	18	3.64	6	110	0.197	NW
UC1	20190310	Cloudy	Moderate	Mid-Flood	В	9.8	9:19	8.15	9.2	31.07	17.9	3.45	7	110	0.174	NW
UC1	20190310	Cloudy	Moderate	Mid-Flood	М	5.4	9:20	8.05	8.96	31.24	18	3.16	5	112	0.145	NW
UC1	20190310	Cloudy	Moderate	Mid-Flood	М	5.4	9:20	8.48	8.83	31.13	17.8	3.13	5	111	0.11	NW
UC1	20190310	Cloudy	Moderate	Mid-Flood	S	1	9:21	8.64	9.06	31.14	18	2.7	3	110	0.142	NW
UC1	20190310	Cloudy	Moderate	Mid-Flood	S	1	9:21	8.73	9.18	29.98	18	2.86	4	109	0.077	NW
UC2	20190310	Cloudy	Moderate	Mid-Flood	В	9.9	9:25	8.27	8.9	31.56	18	3.78	5	110	0.108	NW
UC2	20190310	Cloudy	Moderate	Mid-Flood	В	9.9	9:25	7.67	8.8	30.47	18	3.93	4	112	0.199	NW
UC2	20190310	Cloudy	Moderate	Mid-Flood	М	5.5	9:26	8.94	9.06	29.79	17.9	3.42	6	111	0.105	NW
UC2	20190310	Cloudy	Moderate	Mid-Flood	М	5.5	9:26	8.54	8.82	29.85	18	3.59	5	111	0.153	NW
UC2	20190310	Cloudy	Moderate	Mid-Flood	S	1	9:27	8.97	9.07	31.88	17.8	2.61	7	110	0.075	NW
UC2	20190310	Cloudy	Moderate	Mid-Flood	S	1	9:27	8.07	9.09	31.61	18	2.75	6	111	0.126	NW
I1	20190310	Cloudy	Moderate	Mid-Flood	В	9.3	9:31	8.16	9.23	30.74	18	3.86	3	110	0.065	NW
I1	20190310	Cloudy	Moderate	Mid-Flood	В	9.3	9:31	8.42	9.17	31.03	17.8	3.9	4	110	0.073	NW
I1	20190310	Cloudy	Moderate	Mid-Flood	М	5.2	9:32	8.61	8.96	31.38	17.8	3.2	3	111	0.068	NW
I1	20190310	Cloudy	Moderate	Mid-Flood	М	5.2	9:32	8.52	9.26	31.3	18	3.19	3	111	0.098	NW
I1	20190310	Cloudy	Moderate	Mid-Flood	S	1	9:33	8.38	9.24	30.16	17.7	2.61	3	111	0.068	NW
I1	20190310	Cloudy	Moderate	Mid-Flood	S	1	9:33	8.35	9.19	29.9	17.7	2.68	3	111	0.146	NW
I2	20190310	Cloudy	Moderate	Mid-Flood	В	9.4	9:38	7.69	9.02	31.55	18	3.79	5	111	0.16	NW
I2	20190310	Cloudy	Moderate	Mid-Flood	В	9.4	9:38	8.84	9.04	29.92	17.7	3.76	4	112	0.137	NW
I2	20190310	Cloudy	Moderate	Mid-Flood	М	5.2	9:39	8.55	8.84	31.33	17.7	3.11	4	112	0.137	NW
I2	20190310	Cloudy	Moderate	Mid-Flood	М	5.2	9:39	7.94	8.89	30.17	17.8	3.14	5	112	0.197	NW
I2	20190310	Cloudy	Moderate	Mid-Flood	S	1	9:40	8.42	9.14	31.4	17.9	2.53	<2	112	0.165	NW
I2	20190310	Cloudy	Moderate	Mid-Flood	S	1	9:40	7.65	8.85	30.36	18	2.34	3	112	0.199	NW
I3	20190310	Cloudy	Moderate	Mid-Flood	В	8.9	9:44	8.78	8.88	30.74	17.8	3.92	3	111	0.067	NW
I3	20190310	Cloudy	Moderate	Mid-Flood	В	8.9	9:44	8.85	9.21	29.25	17.8	3.92	3	113	0.118	NW
I3	20190310	Cloudy	Moderate	Mid-Flood	М	5	9:45	8.77	8.98	31.12	17.7	3.37	3	111	0.154	NW
I3	20190310	Cloudy	Moderate	Mid-Flood	М	5	9:45	7.74	9.14	29.5	18	3.23	3	111	0.157	NW
I3	20190310	Cloudy	Moderate	Mid-Flood	S	1	9:46	8.62	8.87	30.25	18	2.82	4	111	0.191	NW
I3	20190310	Cloudy	Moderate	Mid-Flood	S	1	9:46	7.88	9.15	31.68	17.9	2.73	4	110	0.088	NW
I4	20190310	Cloudy	Moderate	Mid-Flood	В	10	9:50	8.12	9.25	31.36	17.9	3.75	4	111	0.113	NW
I4	20190310	Cloudy	Moderate	Mid-Flood	В	10	9:50	8.61	9.07	29.27	17.7	3.66	5	112	0.164	NW

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Intensive DCM Water Quality Monitoring Data

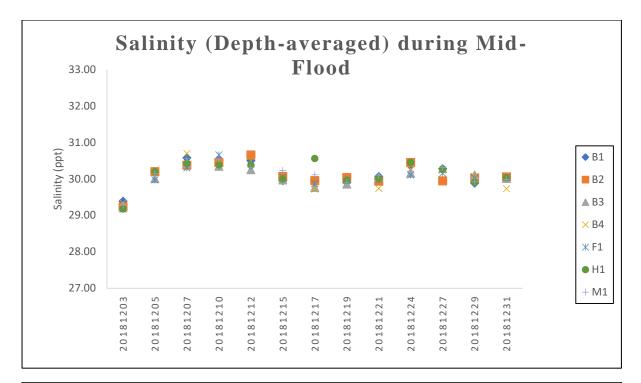
Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
I4	20190310	Cloudy	Moderate	Mid-Flood	М	5.5	9:51	8.88	9.09	29.12	17.9	3.02	4	111	0.062	NW
I4	20190310	Cloudy	Moderate	Mid-Flood	М	5.5	9:51	8.15	9.06	31.53	17.7	2.92	4	112	0.068	NW
I4	20190310	Cloudy	Moderate	Mid-Flood	S	1	9:52	8.01	8.91	29.36	18	2.63	3	111	0.111	NW
I4	20190310	Cloudy	Moderate	Mid-Flood	S	1	9:52	8.55	9.04	30.03	17.8	2.8	3	112	0.079	NW
I5	20190310	Cloudy	Moderate	Mid-Flood	В	10	9:56	7.66	8.93	31.44	17.8	3.75	3	111	0.148	NW
15	20190310	Cloudy	Moderate	Mid-Flood	В	10	9:56	8.41	8.82	30.91	17.9	3.6	2	112	0.095	NW
15	20190310	Cloudy	Moderate	Mid-Flood	М	5.5	9:57	7.84	9.02	29.66	17.8	3.47	4	112	0.138	NW
I5	20190310	Cloudy	Moderate	Mid-Flood	М	5.5	9:57	8.67	9.24	29.94	17.7	3.39	3	112	0.117	NW
15	20190310	Cloudy	Moderate	Mid-Flood	S	1	9:58	8.28	9.09	30.77	17.7	2.96	5	111	0.066	NW
15	20190310	Cloudy	Moderate	Mid-Flood	S	1	9:58	8.32	9.16	31.27	17.8	3.03	4	112	0.171	NW
I6	20190310	Cloudy	Moderate	Mid-Flood	В	8.8	10:26	7.89	8.94	30.96	17.8	3.96	6	112	0.175	NW
I6	20190310	Cloudy	Moderate	Mid-Flood	В	8.8	10:26	8.11	9.26	30.62	18	3.96	5	112	0.152	NW
I6	20190310	Cloudy	Moderate	Mid-Flood	М	4.9	10:27	8.5	9.22	31.48	18	3.01	4	112	0.09	NW
I6	20190310	Cloudy	Moderate	Mid-Flood	М	4.9	10:27	8.28	9	31.27	17.7	2.85	4	111	0.162	NW
I6	20190310	Cloudy	Moderate	Mid-Flood	S	1	10:28	7.82	9.26	31.07	17.7	3	4	111	0.062	NW
I6	20190310	Cloudy	Moderate	Mid-Flood	S	1	10:28	8.19	9.2	29.36	17.8	2.96	4	112	0.147	NW
I7	20190310	Cloudy	Moderate	Mid-Flood	В	9.6	10:20	8.73	8.83	30.54	17.8	3.88	5	111	0.067	NW
I7	20190310	Cloudy	Moderate	Mid-Flood	В	9.6	10:20	8.02	9.19	30.89	17.7	4.03	6	112	0.134	NW
I7	20190310	Cloudy	Moderate	Mid-Flood	М	5.3	10:21	8.11	9.15	31.82	17.9	3.49	4	112	0.178	NW
17	20190310	Cloudy	Moderate	Mid-Flood	М	5.3	10:21	8.53	9.18	31.81	18	3.61	5	112	0.149	NW
17	20190310	Cloudy	Moderate	Mid-Flood	S	1	10:22	8.54	9.19	31.6	18	2.78	2	113	0.18	NW
I7	20190310	Cloudy	Moderate	Mid-Flood	S	1	10:22	8.14	8.99	29.64	17.9	2.81	2	111	0.196	NW
18	20190310	Cloudy	Moderate	Mid-Flood	В	10.1	10:14	7.97	9.2	31.59	17.9	3.62	5	111	0.063	NW
I8	20190310	Cloudy	Moderate	Mid-Flood	В	10.1	10:14	8.35	8.95	30.45	17.7	3.54	6	112	0.154	NW
I8	20190310	Cloudy	Moderate	Mid-Flood	М	5.6	10:15	8.96	8.83	31.51	17.8	3.12	5	111	0.175	NW
I8	20190310	Cloudy	Moderate	Mid-Flood	М	5.6	10:15	7.83	8.83	29.56	17.7	2.99	6	112	0.102	NW
18	20190310	Cloudy	Moderate	Mid-Flood	S	1	10:16	8.69	8.83	29.07	17.7	2.7	3	111	0.088	NW
18	20190310	Cloudy	Moderate	Mid-Flood	S	1	10:16	8.67	8.98	30.63	17.9	2.73	4	112	0.091	NW
I9	20190310	Cloudy	Moderate	Mid-Flood	В	9.7	10:08	8.04	9.14	30.17	17.8	3.5	3	112	0.087	NW
I9	20190310	Cloudy	Moderate	Mid-Flood	В	9.7	10:08	8.9	9.14	29.11	17.8	3.49	4	112	0.087	NW
I9	20190310	Cloudy	Moderate	Mid-Flood	М	5.4	10:09	8.4	8.91	31.66	17.8	3.5	3	112	0.16	NW
19	20190310	Cloudy	Moderate	Mid-Flood	М	5.4	10:09	7.72	8.84	30.11	17.7	3.53	4	111	0.177	NW

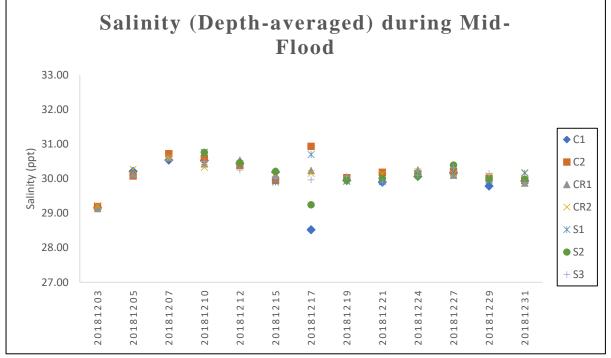
Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Intensive DCM Water Quality Monitoring Data

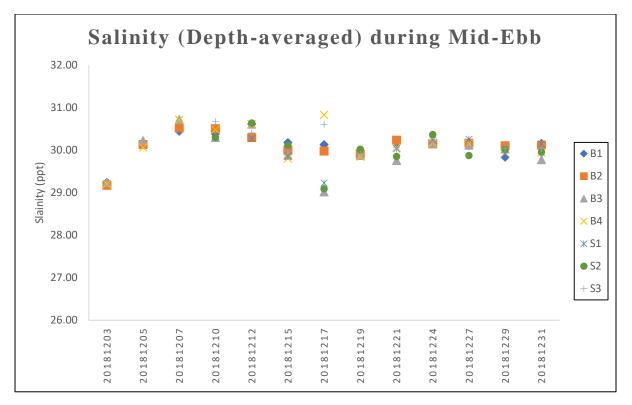
Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
I9	20190310	Cloudy	Moderate	Mid-Flood	S	1	10:10	8.96	9.23	30.73	17.9	2.96	3	111	0.182	NW
I9	20190310	Cloudy	Moderate	Mid-Flood	S	1	10:10	8.46	9.24	29.5	17.9	2.92	2	112	0.184	NW
I10	20190310	Cloudy	Moderate	Mid-Flood	В	9.5	10:02	8.37	8.98	30.33	17.7	3.92	4	112	0.12	NW
I10	20190310	Cloudy	Moderate	Mid-Flood	В	9.5	10:02	8.18	9.14	30.89	18	3.87	4	112	0.129	NW
I10	20190310	Cloudy	Moderate	Mid-Flood	М	5.3	10:03	8.8	9.01	30.36	18	3.22	4	112	0.175	NW
I10	20190310	Cloudy	Moderate	Mid-Flood	М	5.3	10:03	8.39	9.21	29.13	18	3.36	3	111	0.063	NW
I10	20190310	Cloudy	Moderate	Mid-Flood	S	1	10:04	8.2	8.99	31.74	17.7	2.82	6	112	0.18	NW
I10	20190310	Cloudy	Moderate	Mid-Flood	S	1	10:04	8.82	9.26	29.16	17.9	2.84	5	112	0.146	NW
UC1	20190310	Cloudy	Moderate	Mid-Ebb	В	8.6	13:30	7.7	8.98	30.98	17.4	3.76	4	112	0.218	SE
UC1	20190310	Cloudy	Moderate	Mid-Ebb	В	8.6	13:30	8.7	9.05	31.02	17.3	3.8	5	112	0.147	SE
UC1	20190310	Cloudy	Moderate	Mid-Ebb	М	4.8	13:31	8.41	8.86	30.54	17.6	3.23	3	112	0.166	SE
UC1	20190310	Cloudy	Moderate	Mid-Ebb	М	4.8	13:31	8.83	9.23	31.76	18.1	3.33	4	112	0.266	SE
UC1	20190310	Cloudy	Moderate	Mid-Ebb	S	1	13:32	8.02	9.2	31.05	18	2.96	3	111	0.215	SE
UC1	20190310	Cloudy	Moderate	Mid-Ebb	S	1	13:32	8.14	8.83	29.17	17.7	3.13	4	112	0.139	SE
UC2	20190310	Cloudy	Moderate	Mid-Ebb	В	9.5	13:36	8.95	8.92	31.53	17.4	3.79	4	112	0.177	SE
UC2	20190310	Cloudy	Moderate	Mid-Ebb	В	9.5	13:36	8.27	9.22	29.48	18.1	3.75	4	112	0.222	SE
UC2	20190310	Cloudy	Moderate	Mid-Ebb	М	5.3	13:37	8.91	9.23	31.08	17.5	3.48	4	112	0.117	SE
UC2	20190310	Cloudy	Moderate	Mid-Ebb	М	5.3	13:37	8.26	8.87	30.91	17.3	3.62	2	111	0.202	SE
UC2	20190310	Cloudy	Moderate	Mid-Ebb	S	1	13:38	8.37	9.23	30.73	17.4	2.62	7	112	0.112	SE
UC2	20190310	Cloudy	Moderate	Mid-Ebb	S	1	13:38	8.63	9.2	30.38	17.6	2.77	7	111	0.097	SE
I1	20190310	Cloudy	Moderate	Mid-Ebb	В	8.8	13:42	8.93	9.26	31.69	17.5	3.64	3	111	0.283	SE
I1	20190310	Cloudy	Moderate	Mid-Ebb	В	8.8	13:42	7.79	9.11	31.78	17.7	3.51	<2	112	0.271	SE
I1	20190310	Cloudy	Moderate	Mid-Ebb	М	4.9	13:43	7.93	9.24	29.17	18.1	3.39	4	112	0.225	SE
I1	20190310	Cloudy	Moderate	Mid-Ebb	М	4.9	13:43	7.94	9.18	31.01	17.9	3.52	4	112	0.18	SE
I1	20190310	Cloudy	Moderate	Mid-Ebb	S	1	13:44	8.92	9.14	31.11	17.5	2.62	5	111	0.116	SE
I1	20190310	Cloudy	Moderate	Mid-Ebb	S	1	13:44	7.78	9.13	31.75	17.4	2.55	6	111	0.272	SE
I2	20190310	Cloudy	Moderate	Mid-Ebb	В	8.7	13:48	8.77	9.11	31.25	17.8	3.82	7	112	0.264	SE
I2	20190310	Cloudy	Moderate	Mid-Ebb	В	8.7	13:48	8.38	8.84	30.85	17.4	4	6	114	0.178	SE
I2	20190310	Cloudy	Moderate	Mid-Ebb	М	4.9	13:49	8.48	9.09	31.22	17.9	3.25	6	111	0.154	SE
I2	20190310	Cloudy	Moderate	Mid-Ebb	М	4.9	13:49	8.73	8.94	30.94	18	3.3	5	112	0.288	SE
I2	20190310	Cloudy	Moderate	Mid-Ebb	S	1	13:50	7.9	8.93	30.93	17.2	2.55	4	112	0.281	SE
I2	20190310	Cloudy	Moderate	Mid-Ebb	S	1	13:50	7.9	9.13	29.16	17.8	2.47	4	111	0.141	SE

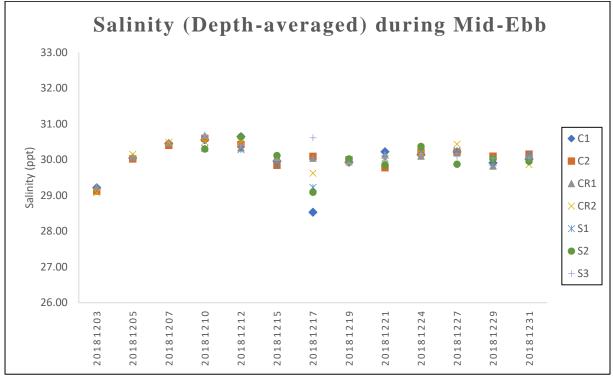
Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Intensive DCM Water Quality Monitoring Data

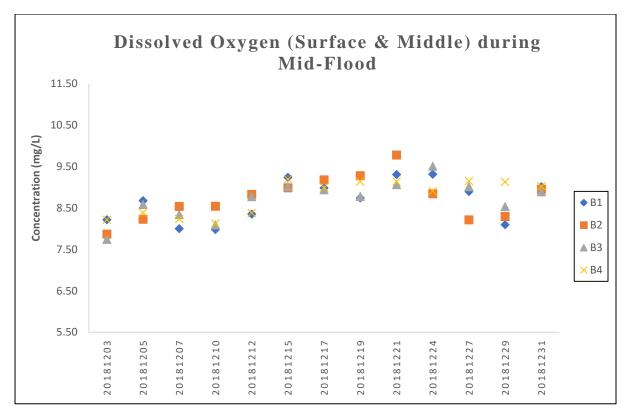
Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
I3	20190310	Cloudy	Moderate	Mid-Ebb	В	9.1	13:54	7.94	9.11	30.1	18.1	3.99	4	113	0.298	SE
I3	20190310	Cloudy	Moderate	Mid-Ebb	В	9.1	13:54	8.22	9.02	31.34	17.8	4.18	4	113	0.267	SE
I3	20190310	Cloudy	Moderate	Mid-Ebb	М	5.1	13:55	8.63	9	31.25	17.9	3.27	4	114	0.23	SE
I3	20190310	Cloudy	Moderate	Mid-Ebb	М	5.1	13:55	8.13	9.17	29.79	17.4	3.46	5	113	0.286	SE
I3	20190310	Cloudy	Moderate	Mid-Ebb	S	1	13:56	7.92	9.07	30.61	17.3	2.88	5	113	0.26	SE
I3	20190310	Cloudy	Moderate	Mid-Ebb	S	1	13:56	8.03	9.12	30.63	17.8	2.73	6	113	0.198	SE
I4	20190310	Cloudy	Moderate	Mid-Ebb	В	8.4	14:00	8.55	9.13	30.39	18.1	3.57	4	113	0.232	SE
I4	20190310	Cloudy	Moderate	Mid-Ebb	В	8.4	14:00	8.16	9.26	31.85	18.2	3.6	5	113	0.294	SE
I4	20190310	Cloudy	Moderate	Mid-Ebb	М	4.7	14:01	8.91	9.13	31.52	17.8	3.15	3	113	0.197	SE
I4	20190310	Cloudy	Moderate	Mid-Ebb	М	4.7	14:01	7.88	9.15	30.97	18.1	3.13	4	112	0.219	SE
I4	20190310	Cloudy	Moderate	Mid-Ebb	S	1	14:02	7.75	9.12	29.07	17.2	2.81	3	114	0.101	SE
I4	20190310	Cloudy	Moderate	Mid-Ebb	S	1	14:02	7.79	9.14	29.66	17.7	2.87	4	114	0.247	SE
I5	20190310	Cloudy	Moderate	Mid-Ebb	В	8.7	14:06	8.46	8.9	31.71	18.1	3.87	4	114	0.28	SE
15	20190310	Cloudy	Moderate	Mid-Ebb	В	8.7	14:06	8.96	9.06	30.03	17.3	3.74	6	113	0.264	SE
15	20190310	Cloudy	Moderate	Mid-Ebb	М	4.9	14:07	8.65	9.09	30.65	17.3	3.17	4	113	0.13	SE
15	20190310	Cloudy	Moderate	Mid-Ebb	М	4.9	14:07	8.24	9.05	30.69	17.9	2.99	4	113	0.18	SE
15	20190310	Cloudy	Moderate	Mid-Ebb	S	1	14:08	8.22	9.07	30.22	17.6	2.86	4	113	0.226	SE
15	20190310	Cloudy	Moderate	Mid-Ebb	S	1	14:08	8.06	8.97	30.2	18.1	2.71	3	114	0.203	SE
I6	20190310	Cloudy	Moderate	Mid-Ebb	В	9.5	14:37	8.38	9.13	30.13	17.3	3.56	4	114	0.185	SE
I6	20190310	Cloudy	Moderate	Mid-Ebb	В	9.5	14:37	8.65	9.21	30.05	17.7	3.44	4	112	0.111	SE
I6	20190310	Cloudy	Moderate	Mid-Ebb	М	5.3	14:38	8.88	9.02	31.23	17.5	3.02	3	112	0.181	SE
I6	20190310	Cloudy	Moderate	Mid-Ebb	М	5.3	14:38	8.25	9.19	29.33	17.2	3.09	4	113	0.299	SE
I6	20190310	Cloudy	Moderate	Mid-Ebb	S	1	14:39	7.99	9.04	29.81	17.7	2.67	4	112	0.184	SE
I6	20190310	Cloudy	Moderate	Mid-Ebb	S	1	14:39	8.97	9.09	29.09	18	2.7	5	113	0.195	SE
I7	20190310	Cloudy	Moderate	Mid-Ebb	В	9	14:31	8.01	8.84	31.9	17.7	3.71	8	113	0.225	SE
I7	20190310	Cloudy	Moderate	Mid-Ebb	В	9	14:31	7.85	9	29.47	18	3.86	8	113	0.137	SE
I7	20190310	Cloudy	Moderate	Mid-Ebb	М	5	14:32	8.66	8.99	30.69	18.2	3.24	5	113	0.254	SE
I7	20190310	Cloudy	Moderate	Mid-Ebb	М	5	14:32	8.72	9.14	30.07	17.5	3.34	6	112	0.099	SE
I7	20190310	Cloudy	Moderate	Mid-Ebb	S	1	14:33	8.43	9.2	31.09	18.2	2.57	4	112	0.142	SE
I7	20190310	Cloudy	Moderate	Mid-Ebb	S	1	14:33	8.68	9.18	31.16	17.5	2.73	4	112	0.12	SE
I8	20190310	Cloudy	Moderate	Mid-Ebb	В	8.9	14:25	7.91	8.8	29.92	17.4	3.53	8	113	0.274	SE
I8	20190310	Cloudy	Moderate	Mid-Ebb	В	8.9	14:25	7.98	8.87	31.77	17.6	3.56	7	113	0.25	SE

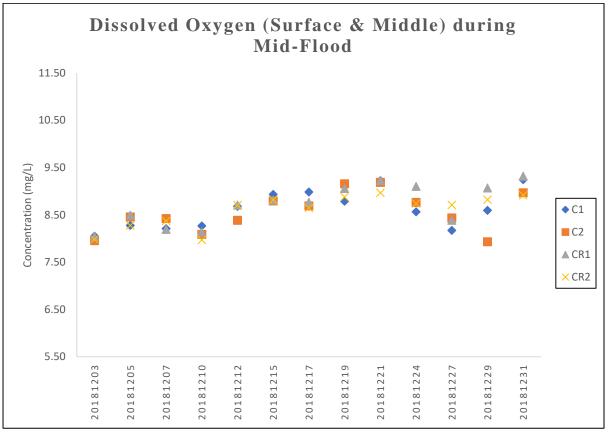

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1 Intensive DCM Water Quality Monitoring Data

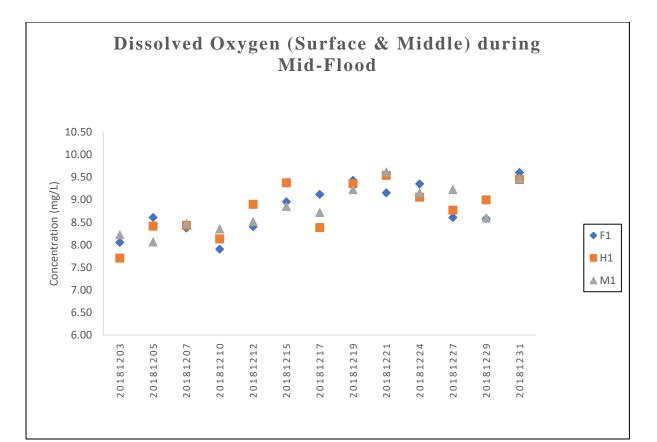

Location	Date (YYYYMMDD)	Weather	Sea Condition	Tidal	Water Level note	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (°C)	Turbidity (NTU) Note 3	SS (mg/L)	Total Alkalinity (mg/L)	Current Velocity	Direction in NESW
18	20190310	Cloudy	Moderate	Mid-Ebb	М	5	14:26	7.9	8.89	30.68	17.9	3.31	6	113	0.224	SE
18	20190310	Cloudy	Moderate	Mid-Ebb	М	5	14:26	7.78	9.23	29.53	17.3	3.36	7	113	0.261	SE
18	20190310	Cloudy	Moderate	Mid-Ebb	S	1	14:27	8.88	9.19	30.91	17.4	2.66	6	112	0.272	SE
18	20190310	Cloudy	Moderate	Mid-Ebb	S	1	14:27	8.25	9.07	31.34	17.6	2.56	7	113	0.234	SE
I9	20190310	Cloudy	Moderate	Mid-Ebb	В	9.7	14:19	8.45	9.26	31.46	17.9	3.87	9	113	0.226	SE
I9	20190310	Cloudy	Moderate	Mid-Ebb	В	9.7	14:19	8	9.17	31.45	18.1	3.76	8	113	0.124	SE
I9	20190310	Cloudy	Moderate	Mid-Ebb	М	5.4	14:20	8.41	8.98	31.46	17.4	3.03	8	114	0.258	SE
I9	20190310	Cloudy	Moderate	Mid-Ebb	М	5.4	14:20	8.15	8.88	31.58	18.2	2.86	8	114	0.192	SE
19	20190310	Cloudy	Moderate	Mid-Ebb	S	1	14:21	7.95	8.8	30.46	17.7	2.57	7	112	0.284	SE
19	20190310	Cloudy	Moderate	Mid-Ebb	S	1	14:21	7.71	9.24	30.69	17.3	2.39	7	113	0.133	SE
I10	20190310	Cloudy	Moderate	Mid-Ebb	В	9.1	14:13	8.85	9.01	29.74	17.6	3.54	7	114	0.096	SE
I10	20190310	Cloudy	Moderate	Mid-Ebb	В	9.1	14:13	8.48	8.91	30.45	18	3.67	6	113	0.152	SE
I10	20190310	Cloudy	Moderate	Mid-Ebb	М	5.1	14:14	8.5	9.04	30.13	17.5	3.26	5	114	0.235	SE
I10	20190310	Cloudy	Moderate	Mid-Ebb	М	5.1	14:14	8.68	9.27	29.22	18	3.3	6	114	0.278	SE
I10	20190310	Cloudy	Moderate	Mid-Ebb	S	1	14:15	8.29	9.09	30.95	17.2	2.53	3	114	0.186	SE
I10	20190310	Cloudy	Moderate	Mid-Ebb	S	1	14:15	7.67	9.11	30.67	17.2	2.57	4	113	0.234	SE

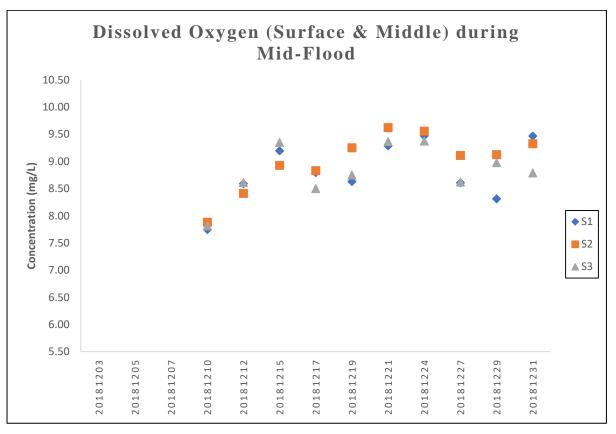

Remarks:

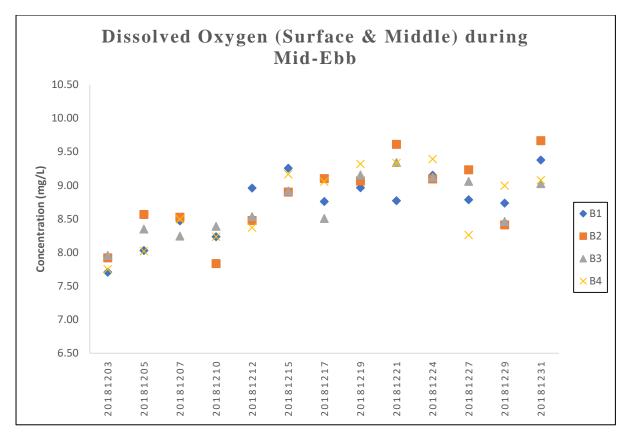

note 1: S – Surface M – Middle B – Bottom

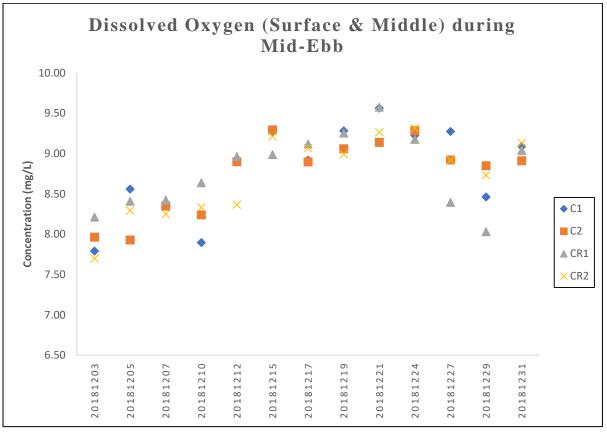

note 2: Cancelled due to container leakage. note 3: Measurements of turbidity would be rounding to 0.1 NTU for proven accuracy as per the equipment specs during utilization of data.

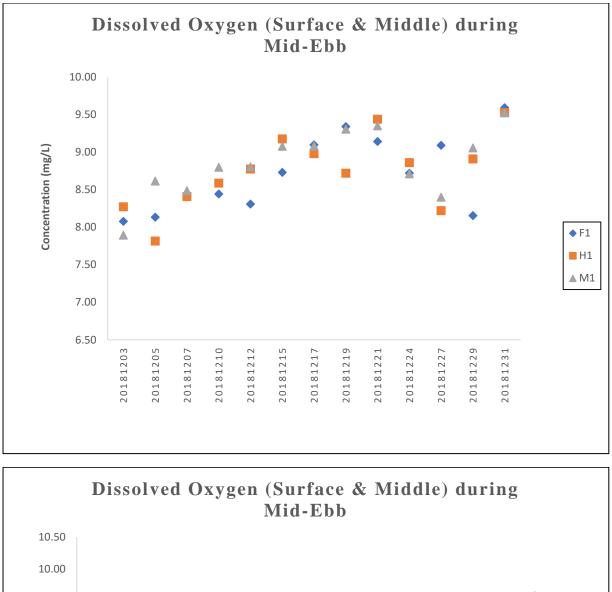


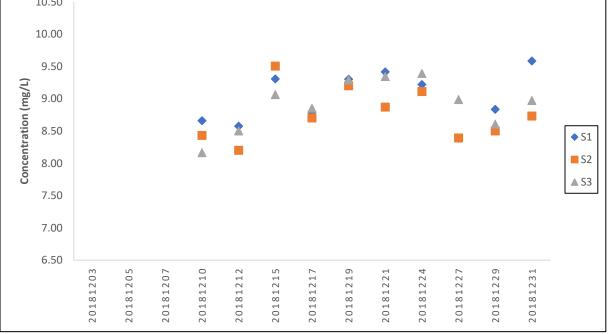


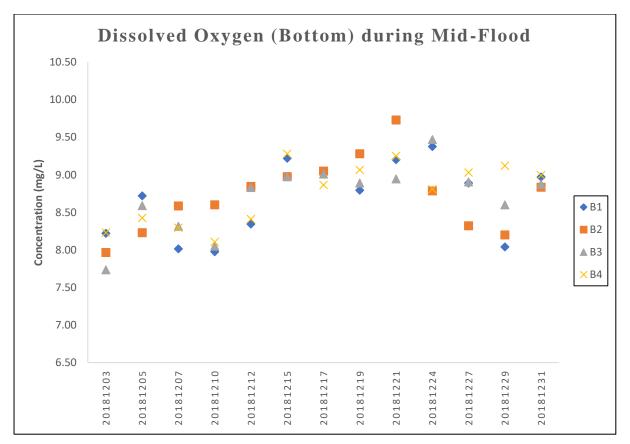


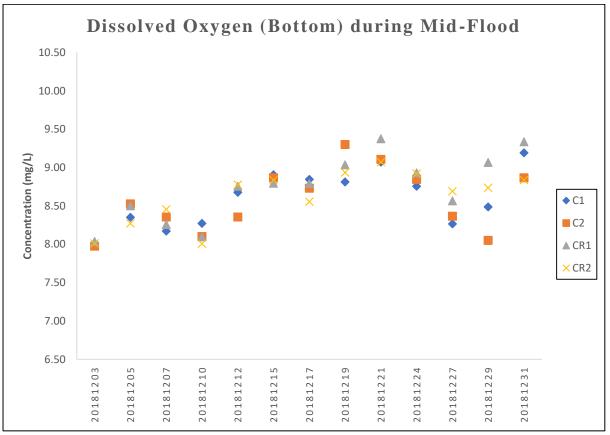


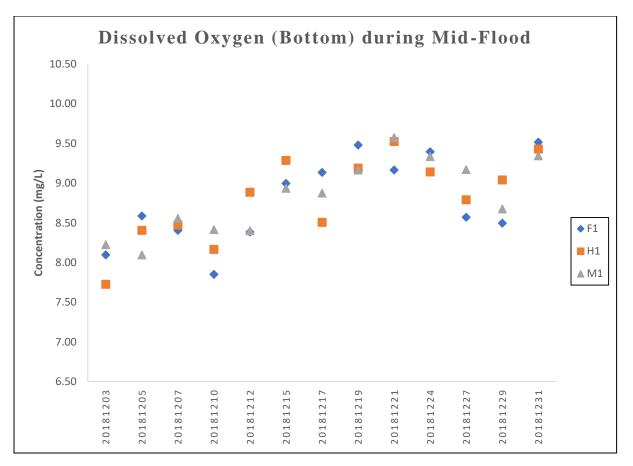

Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

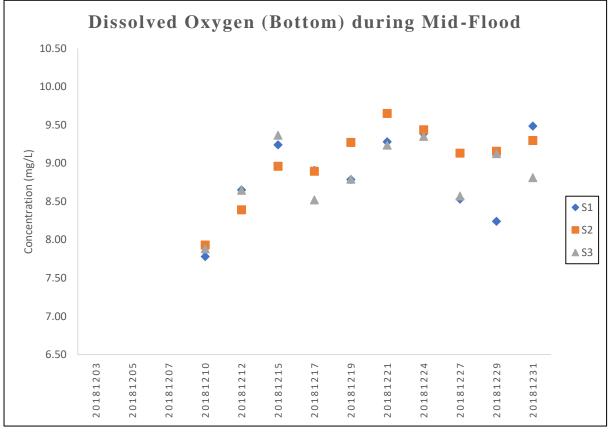


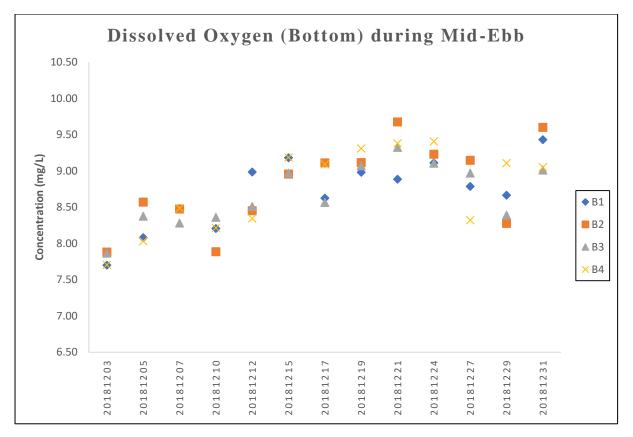

Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

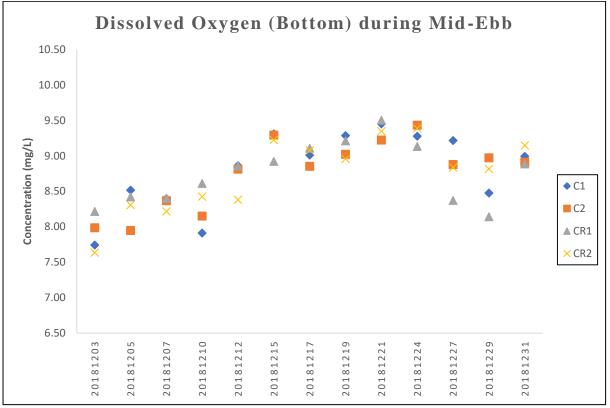


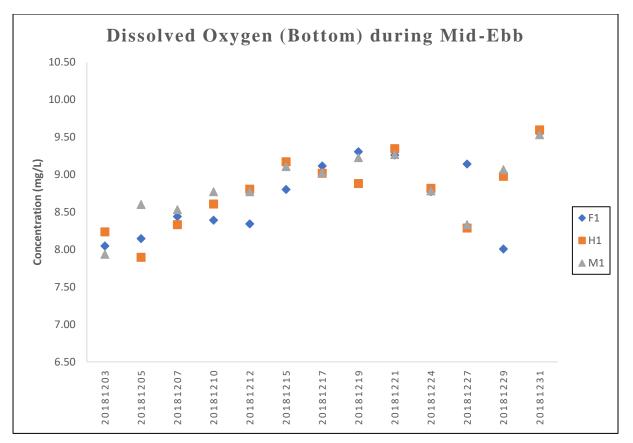

Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

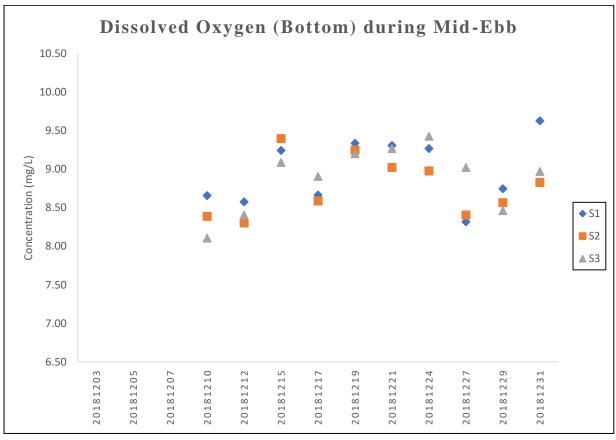


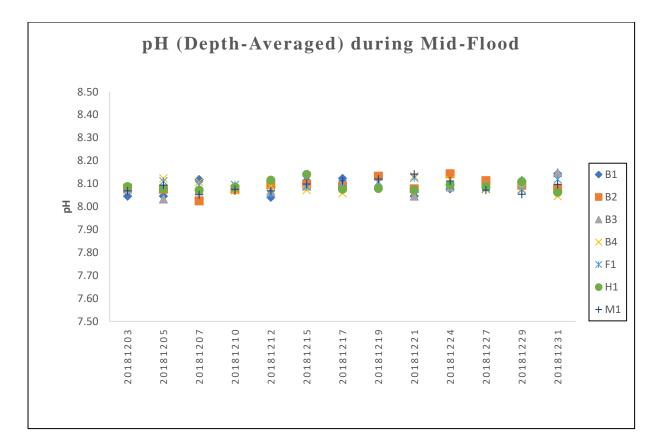

Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

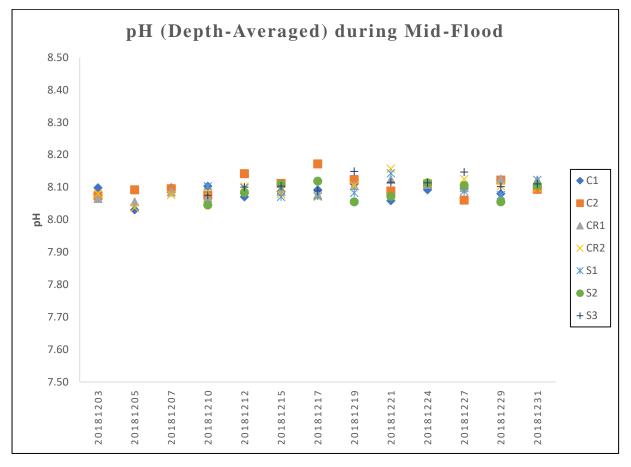


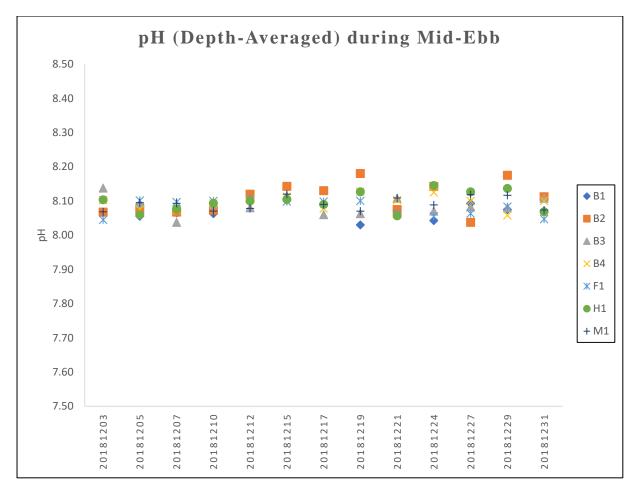

Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

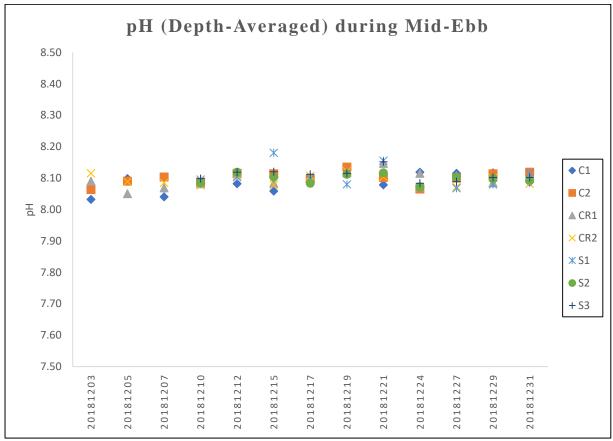


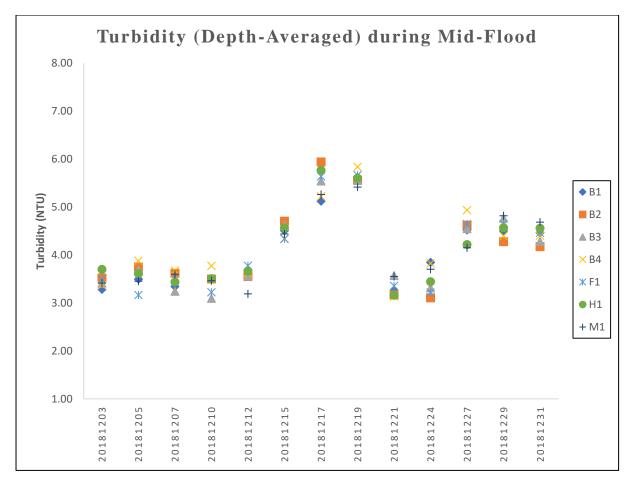

Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

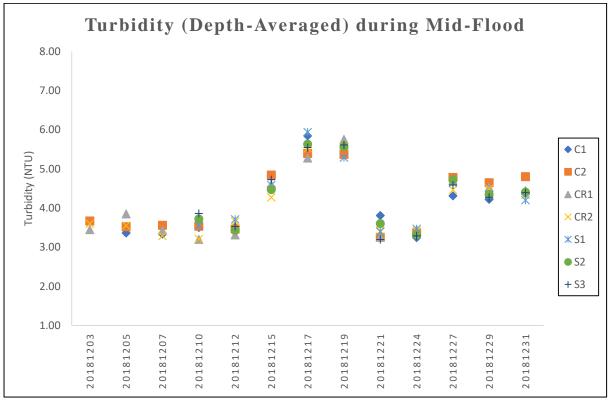


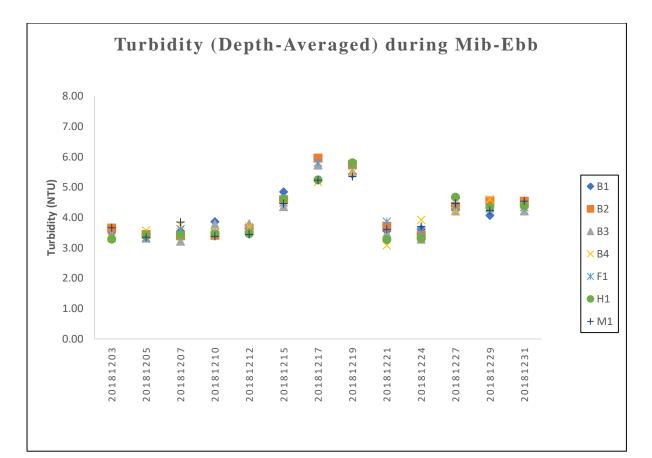

Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.



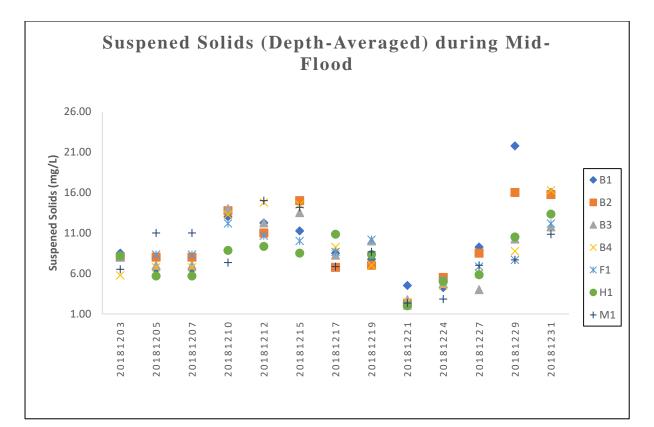


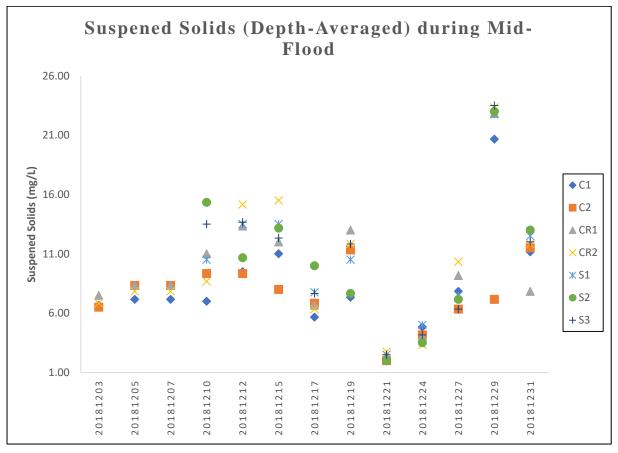

Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

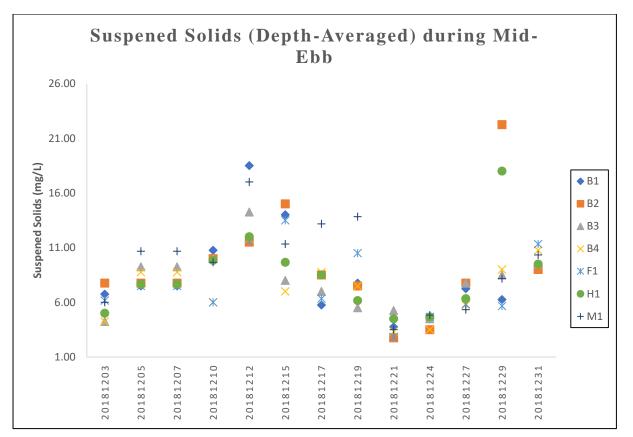


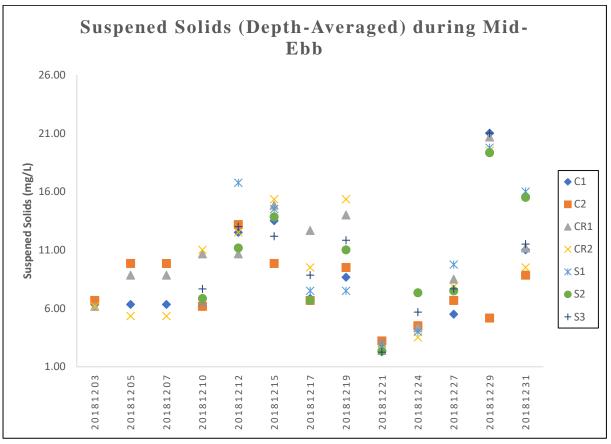


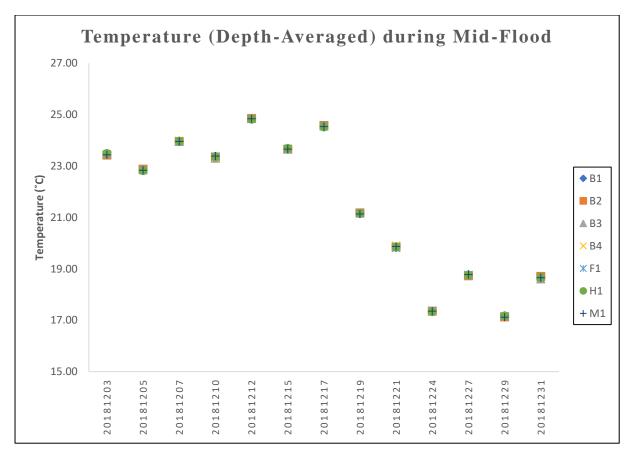


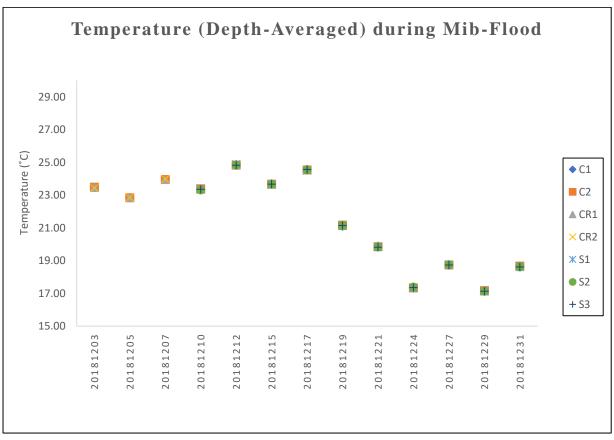


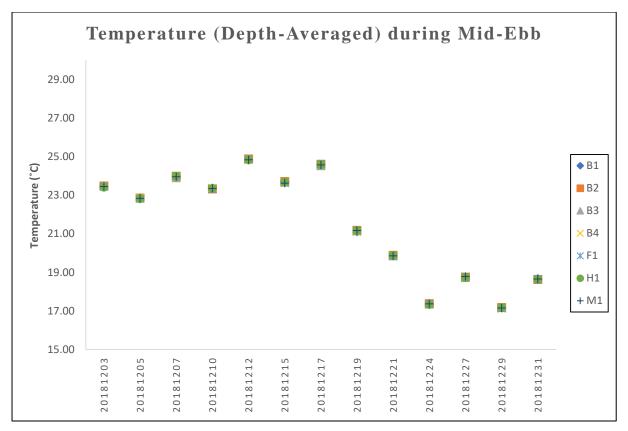

Note: The Action and Limit Level of turbidity can be referred to **Table 2.7** of the monthly EM & A report.

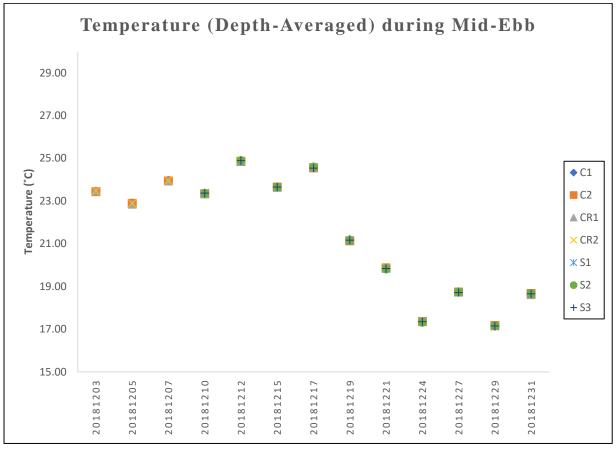


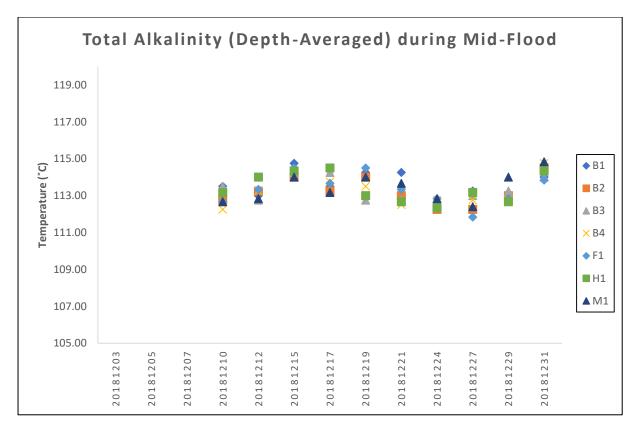

Note: The Action and Limit Level of turbidity can be referred to **Table 2.7** of the monthly EM & A report.

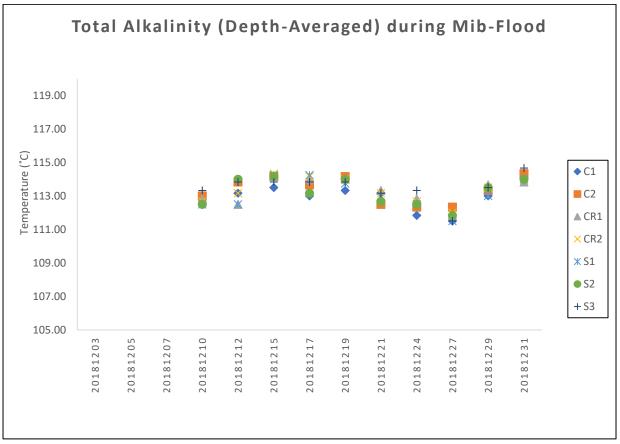


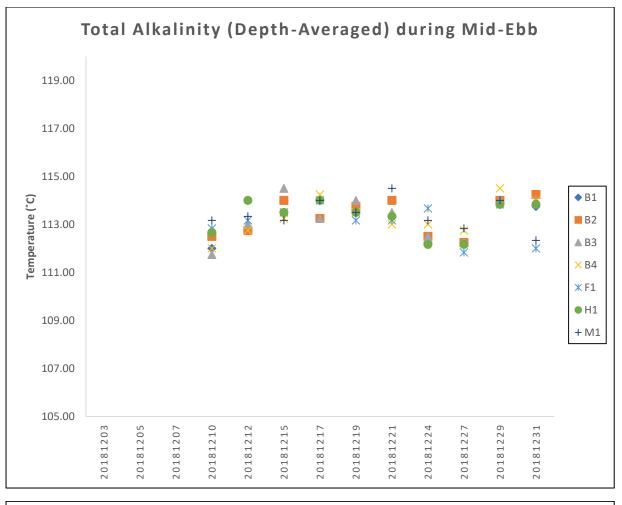

Note: The Action and Limit Level of suspened solids can be referred to **Table 2.7** of the monthly EM & A report.

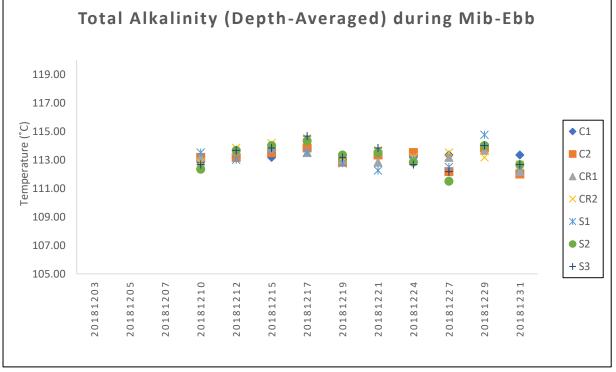


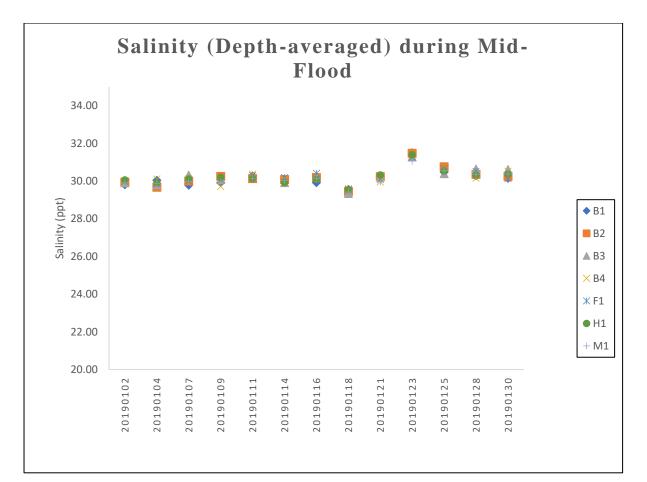

Note: The Action and Limit Level of suspened solids can be referred to **Table 2.7** of the monthly EM & A report.

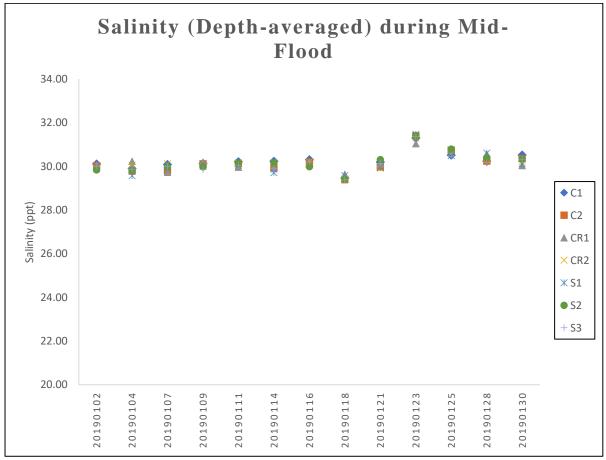


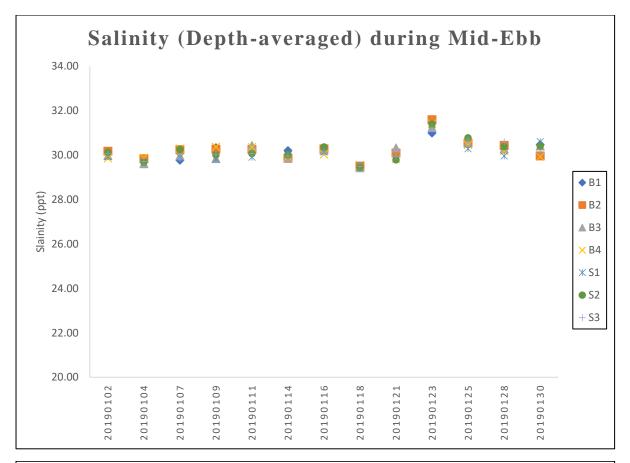

Note: The Action and Limit Level of temperature can be referred to **Table 2.7** of the monthly EM & A report.

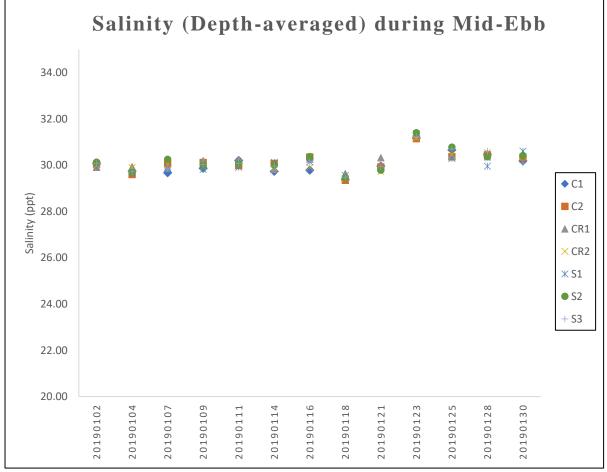



Note: The Action and Limit Level of temperature can be referred to **Table 2.7** of the monthly EM & A report.

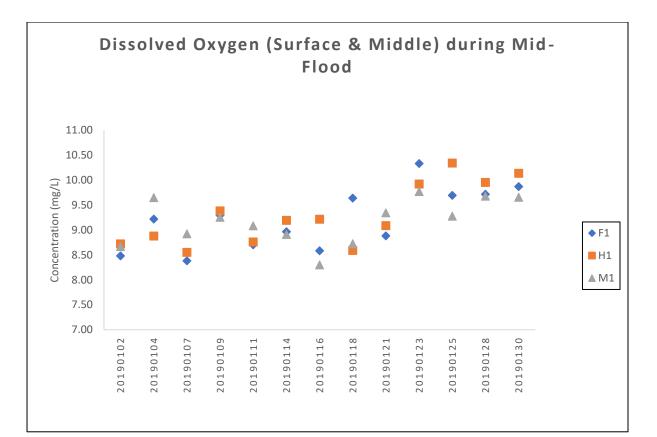


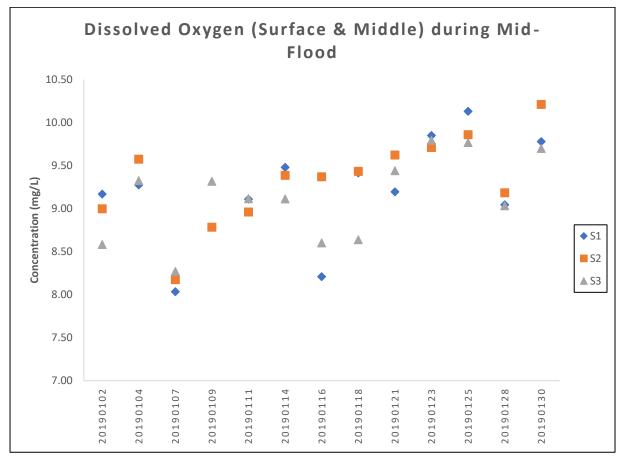

Note: The Action and Limit Level of total alkalinity can be referred to **Table 2.7** of the monthly EM & A report.

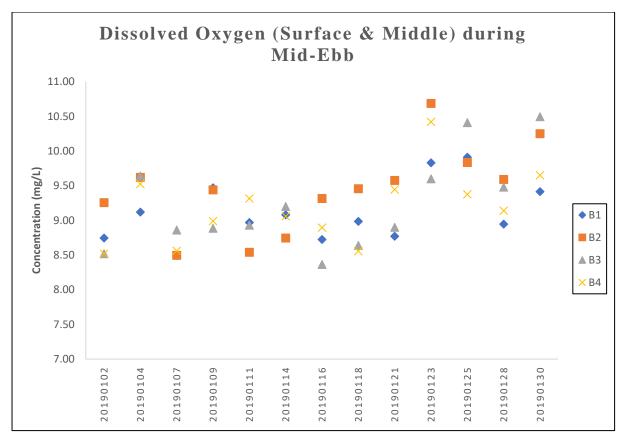


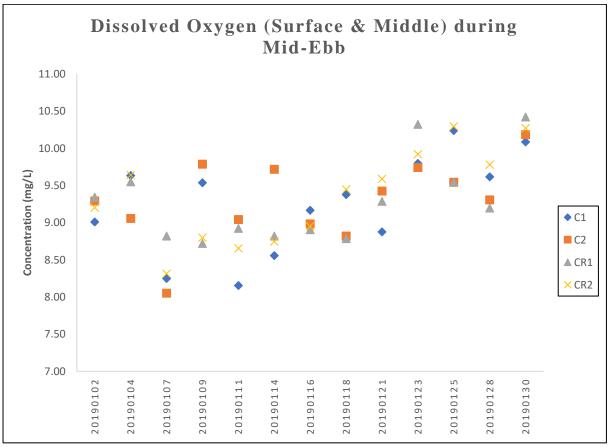


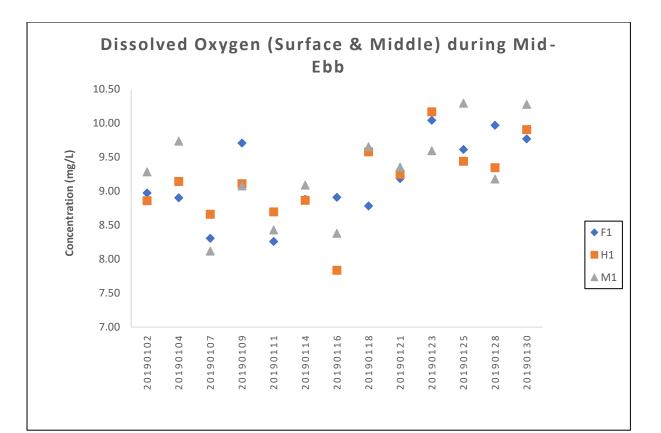
Note: The Action and Limit Level of total alkalinity can be referred to **Table 2.7** of the monthly EM & A report.

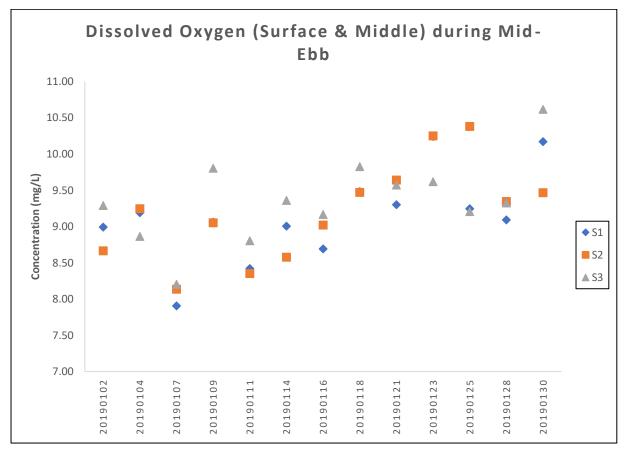


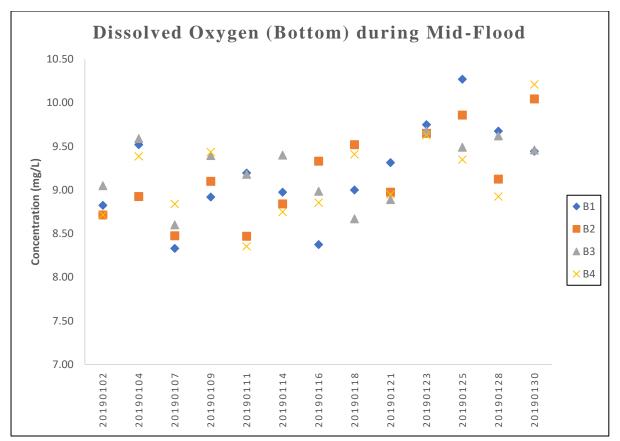


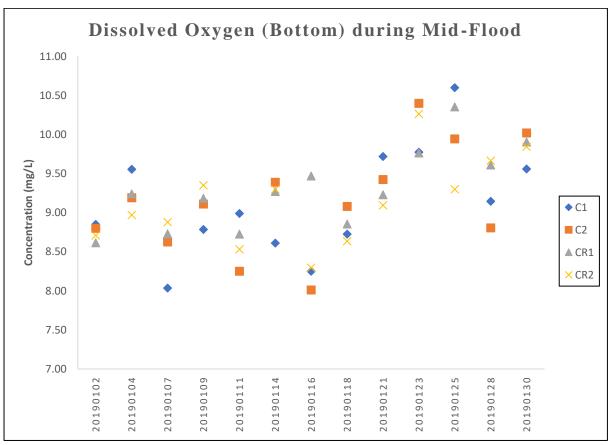


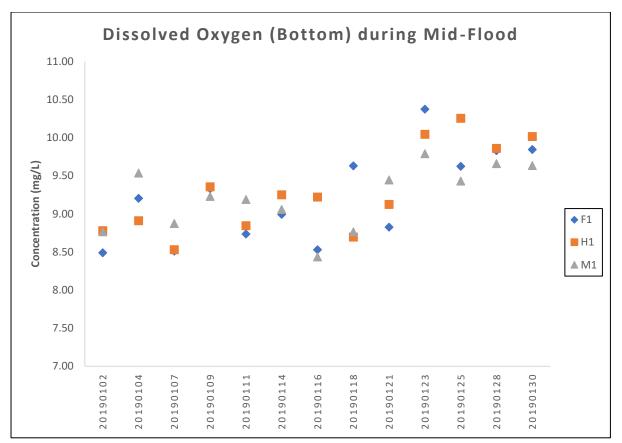

Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

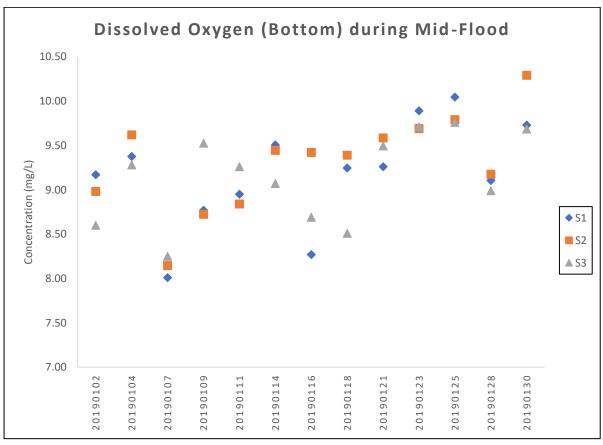


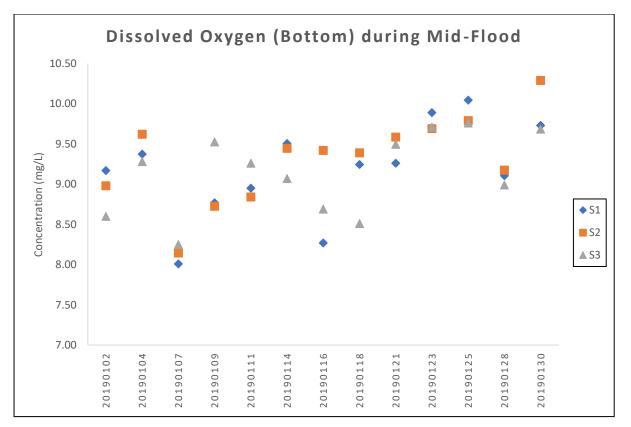

Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

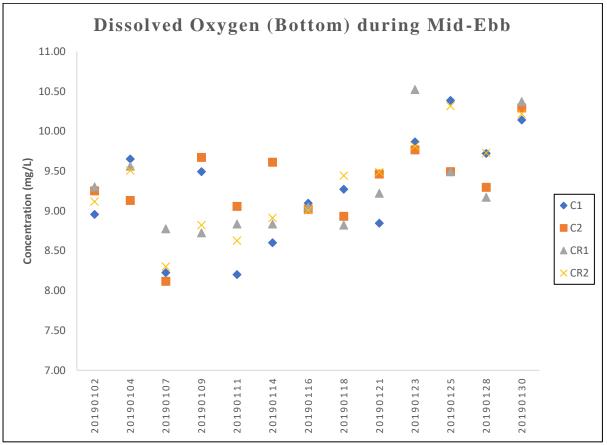


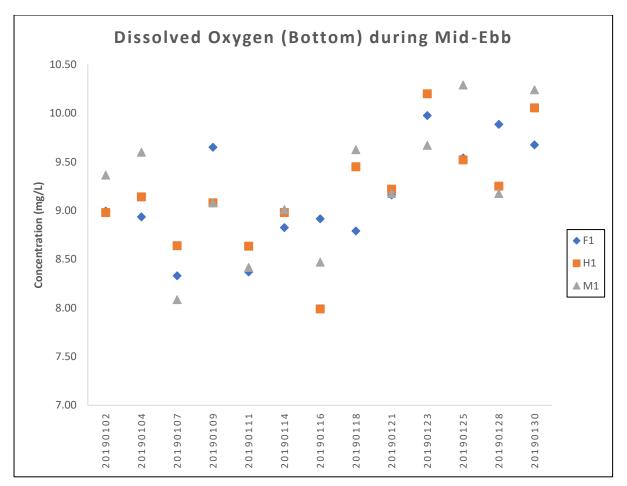

Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

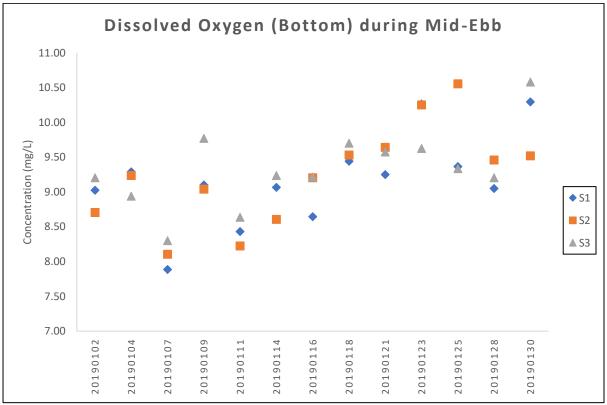


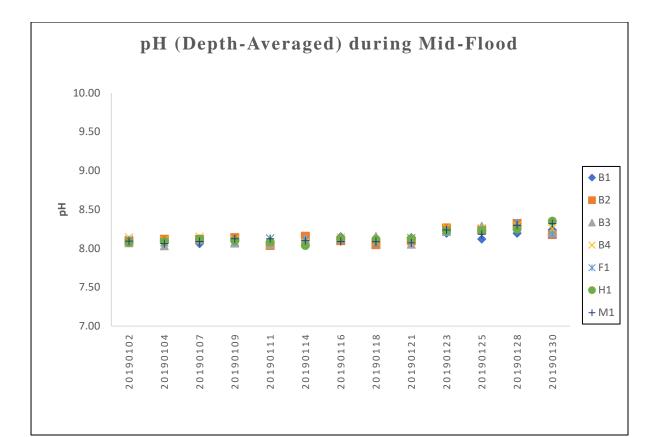

Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

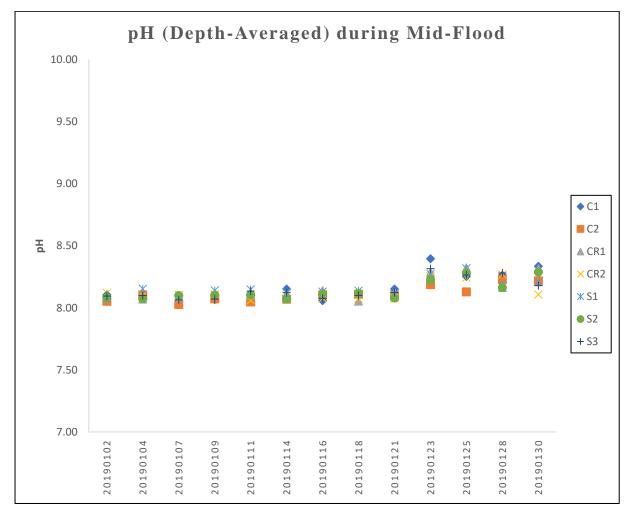


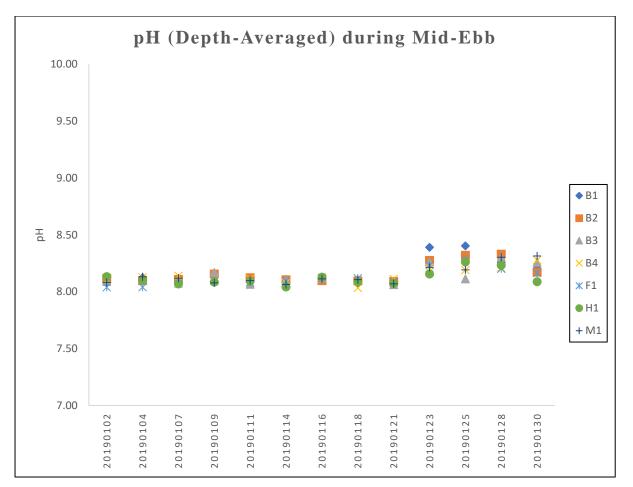

Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

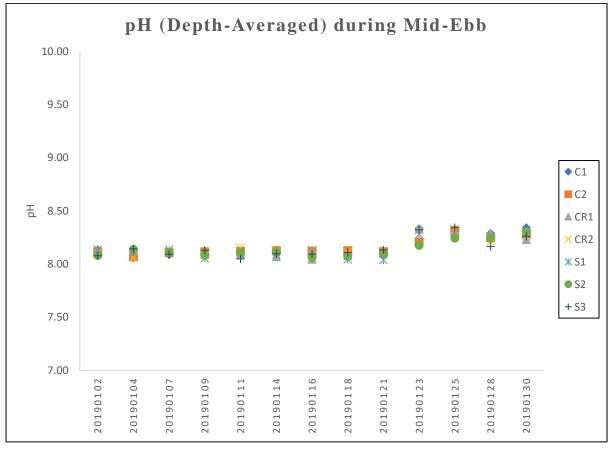


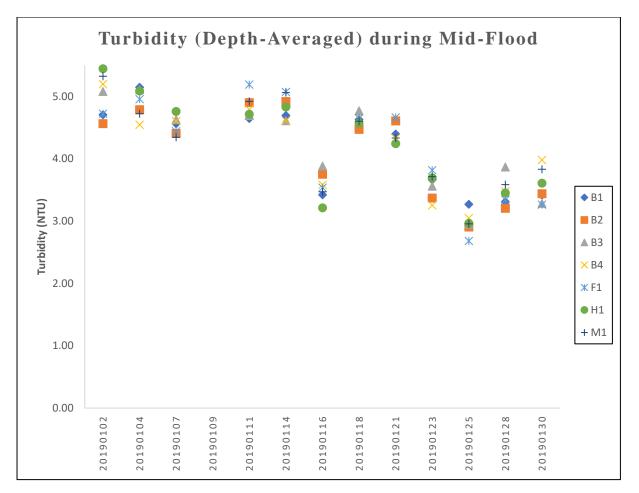

Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

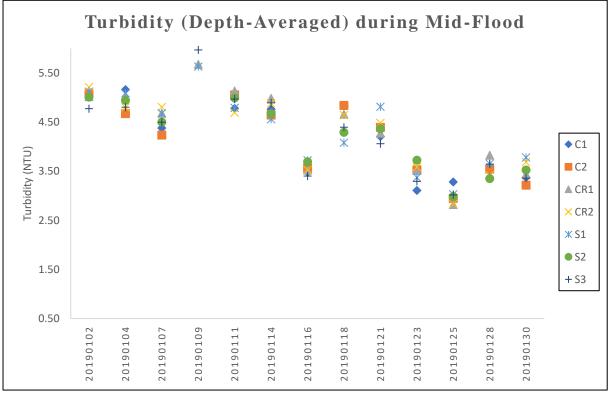


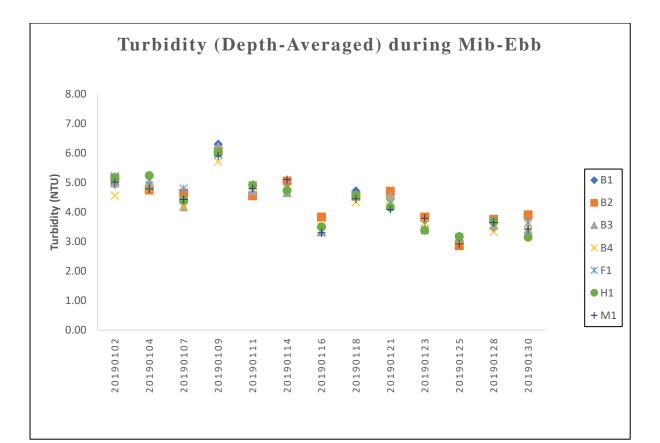

Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

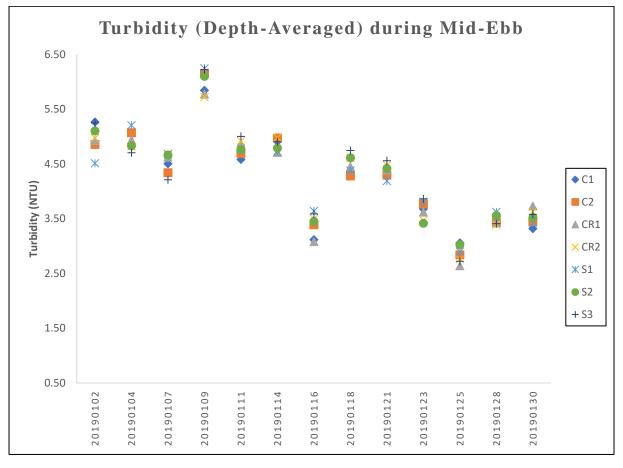


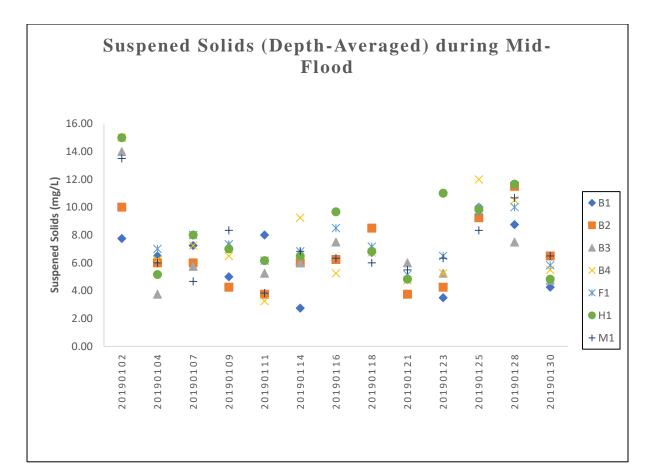


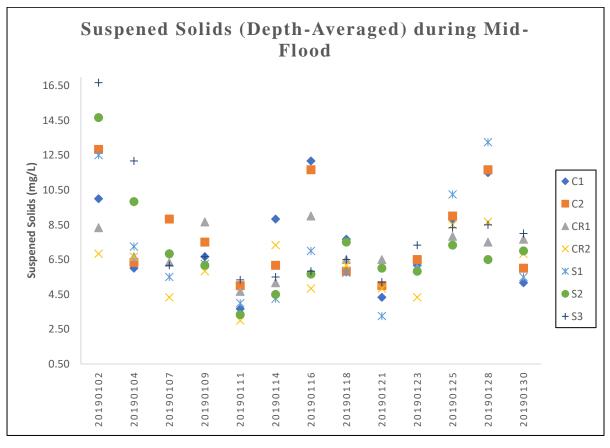

Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

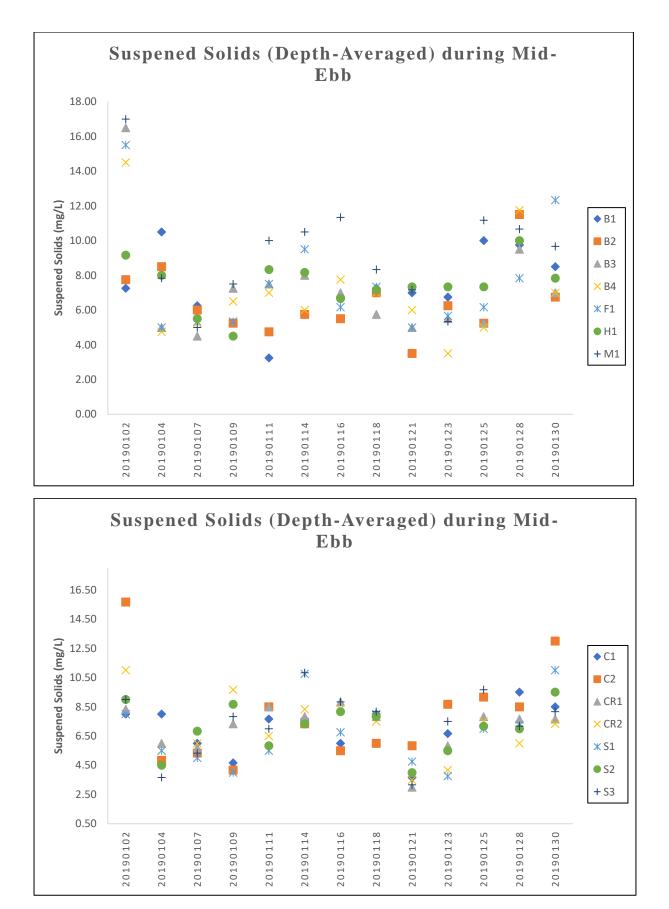




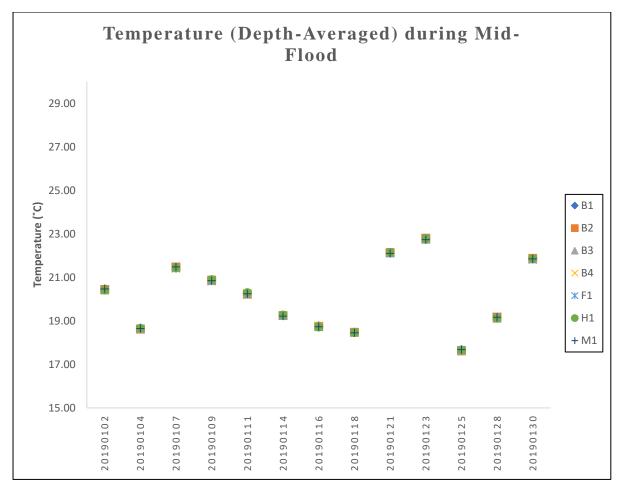


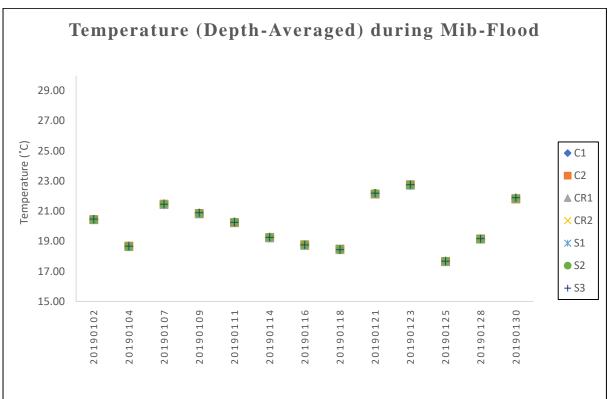



Note: The Action and Limit Level of turbidity can be referred to **Table 2.7** of the monthly EM & A report.

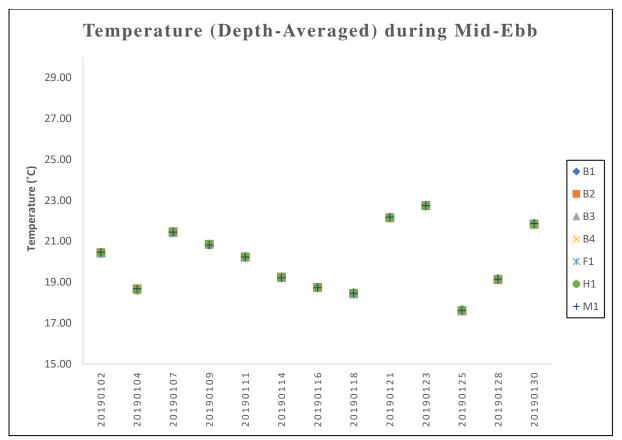


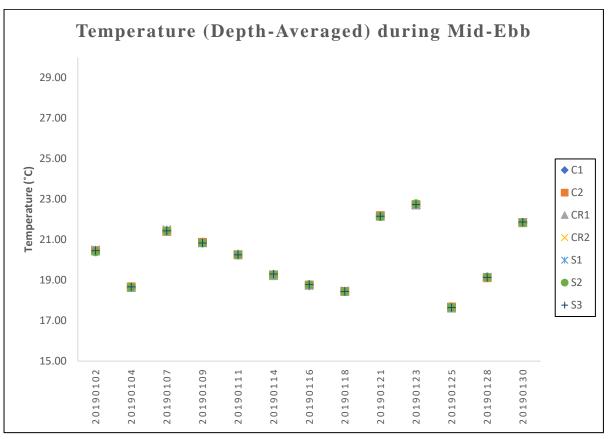
Note: The Action and Limit Level of turbidity can be referred to **Table 2.7** of the monthly EM & A report.

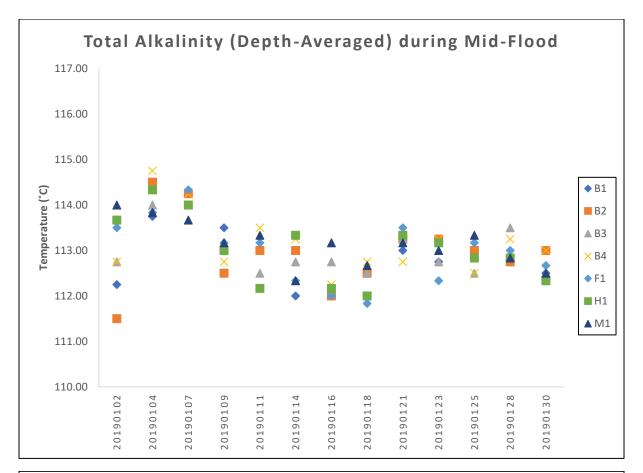


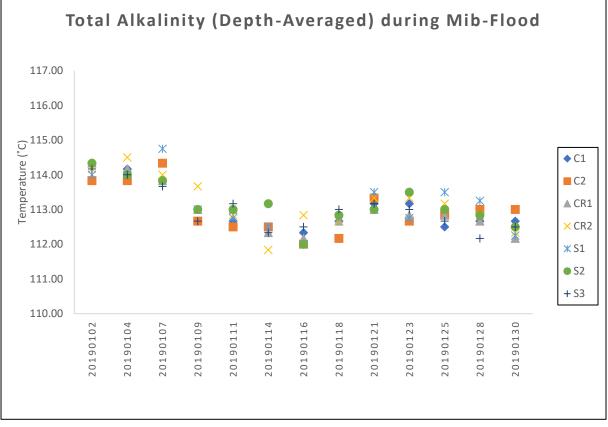


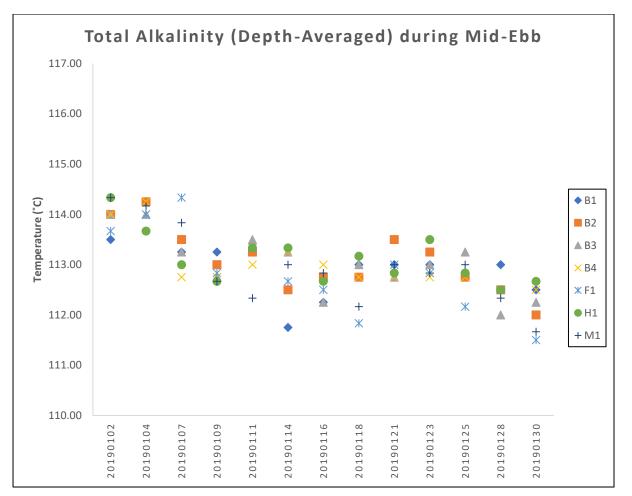
Note: The Action and Limit Level of suspened solids can be referred to **Table 2.7** of the monthly EM & A report.

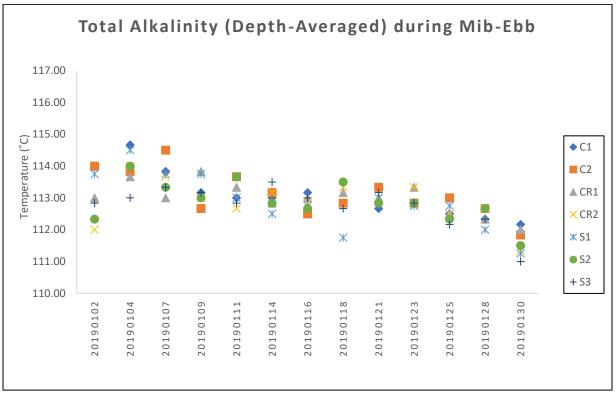


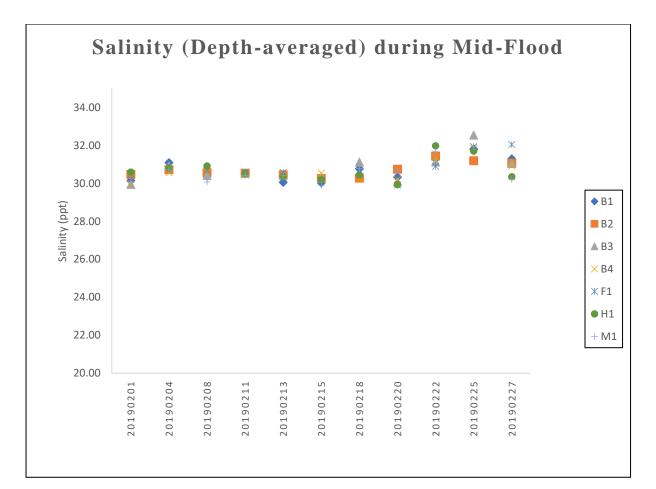

Note: The Action and Limit Level of suspened solids can be referred to **Table 2.7** of the monthly EM & A report.

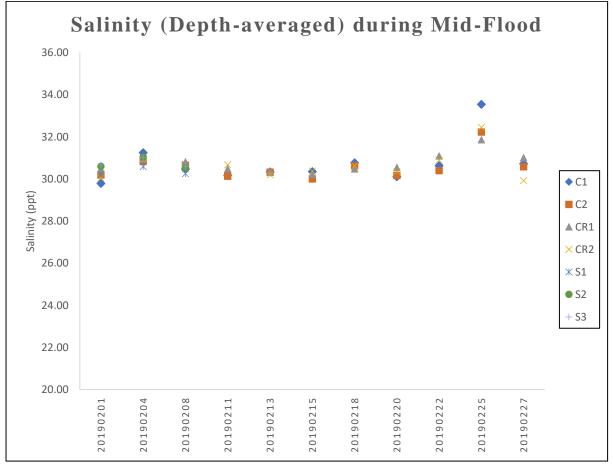


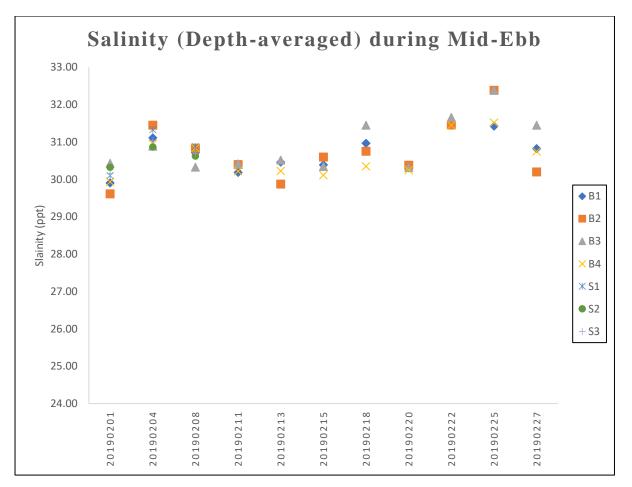

Note: The Action and Limit Level of temperature can be referred to **Table 2.7** of the monthly EM & A report.

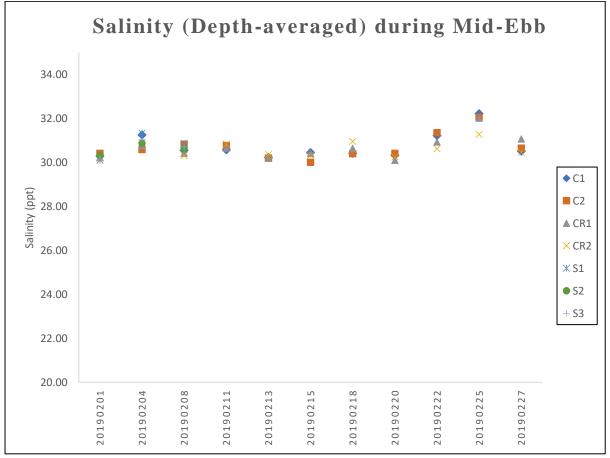


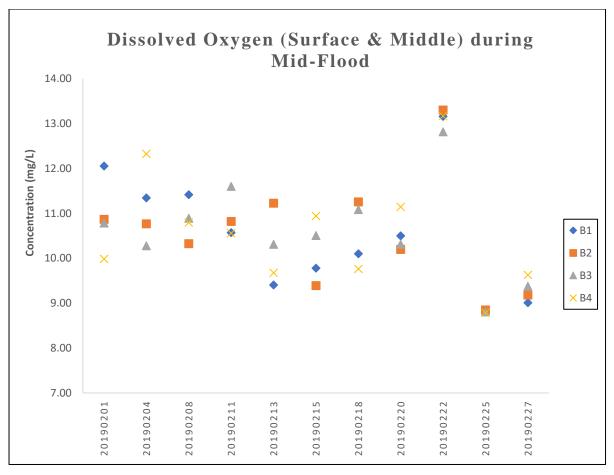

Note: The Action and Limit Level of temperature can be referred to **Table 2.7** of the monthly EM & A report.

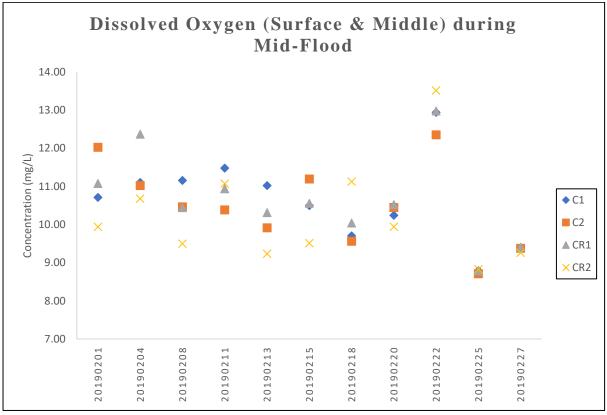


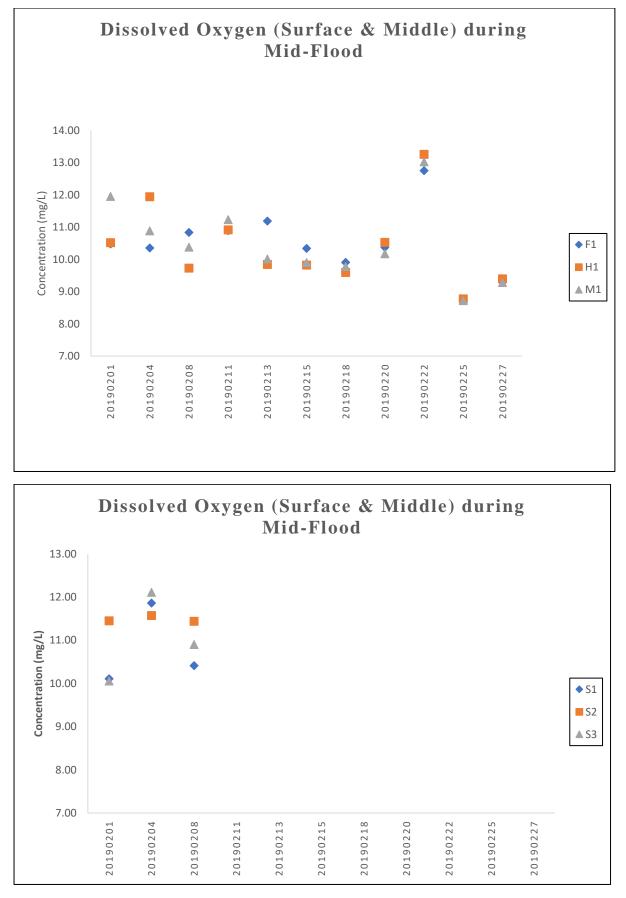

Note: The Action and Limit Level of total alkalinity can be referred to **Table 2.7** of the monthly EM & A report.

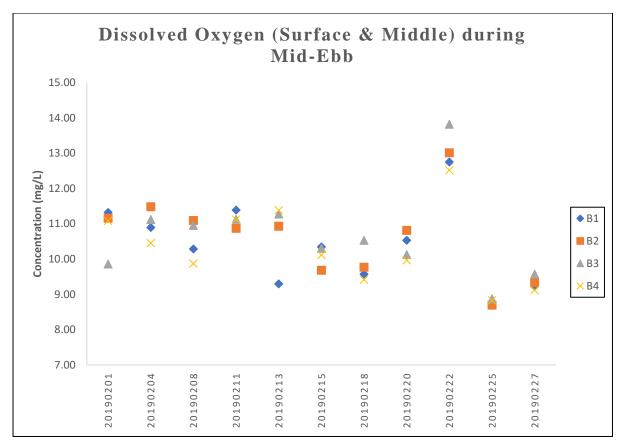


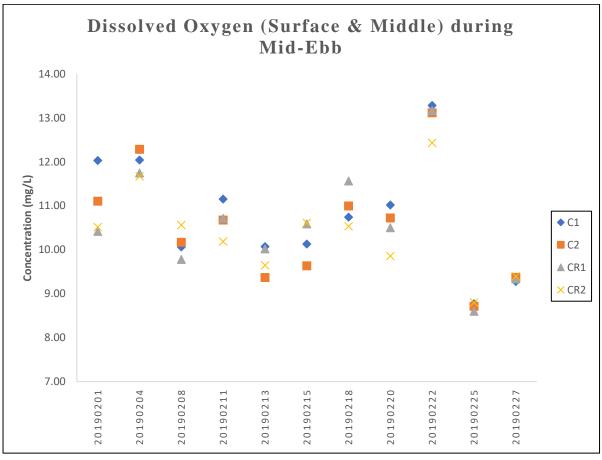



Note: The Action and Limit Level of total alkalinity can be referred to **Table 2.7** of the monthly EM & A report.

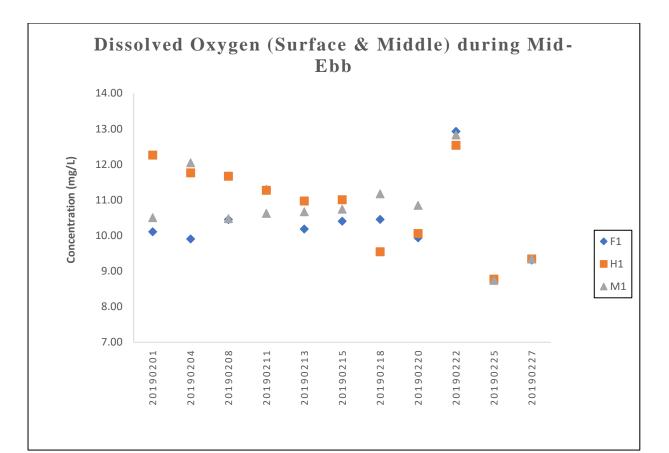


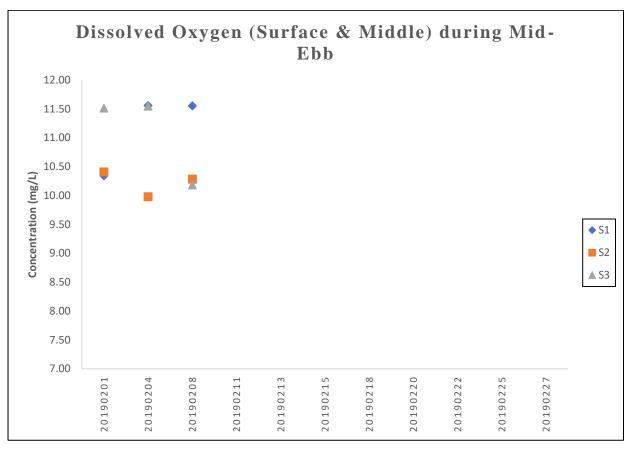


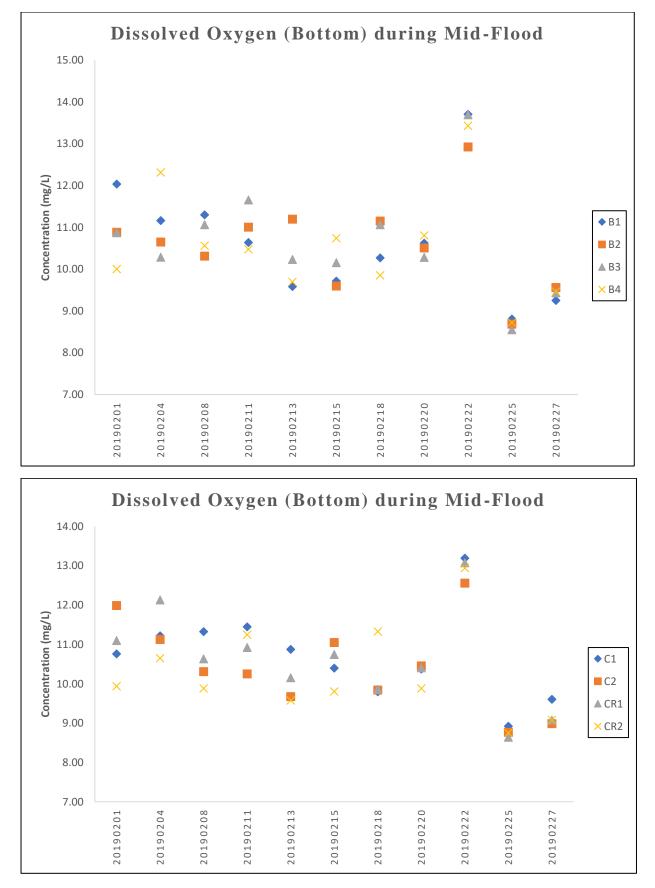




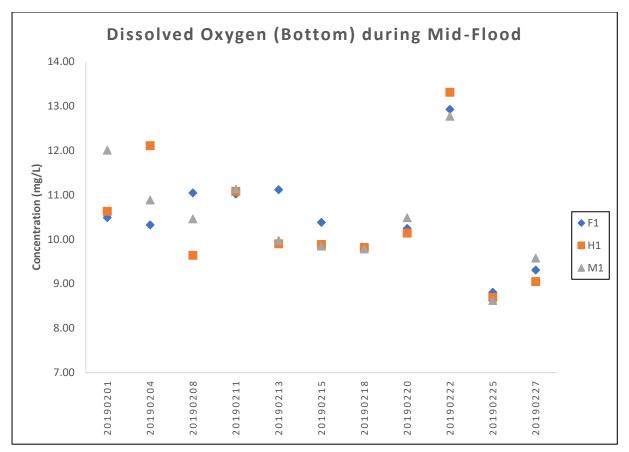
Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

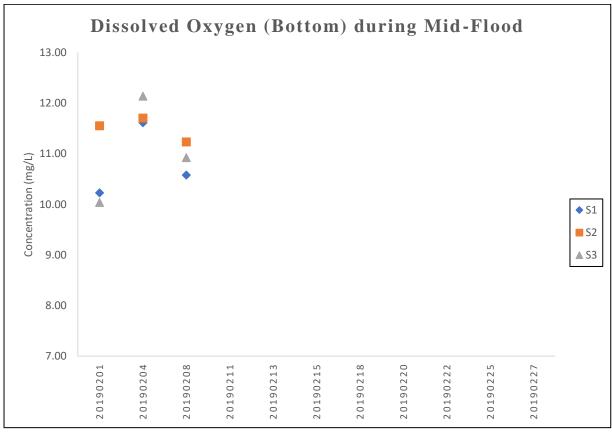



Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

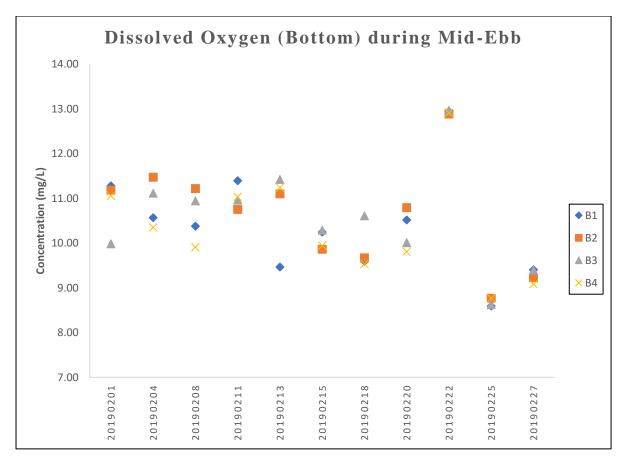


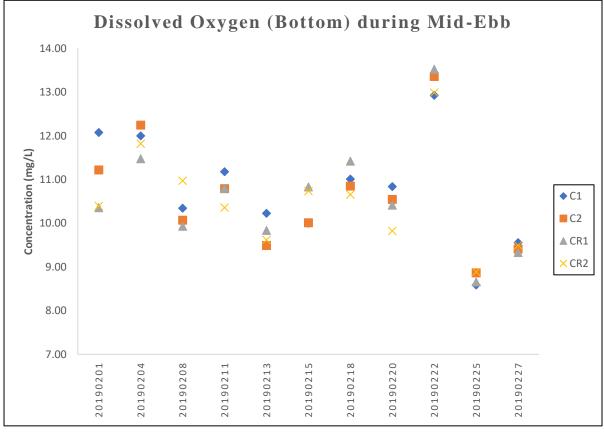
Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

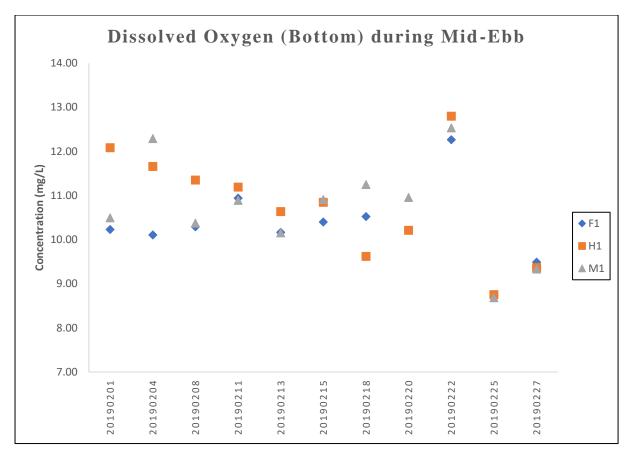


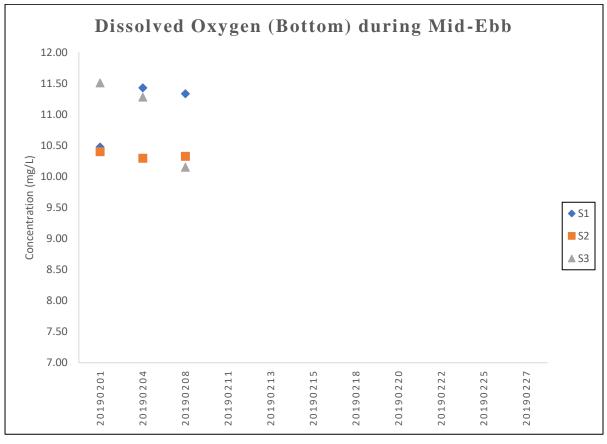


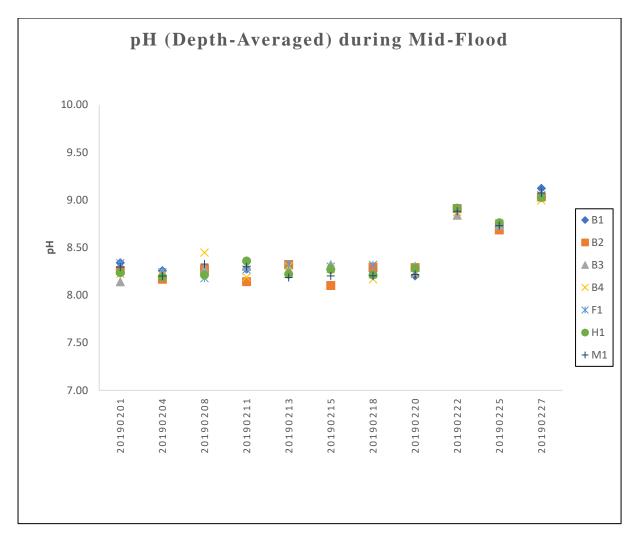
Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

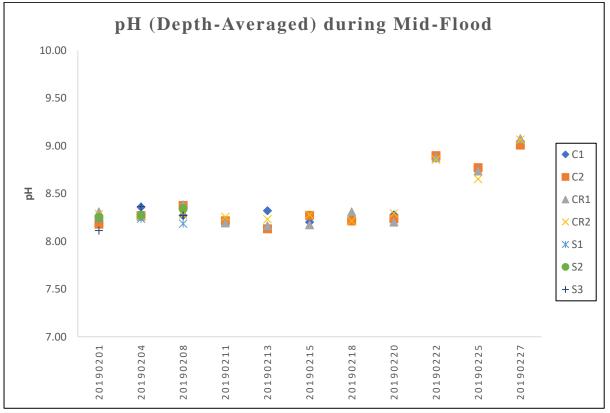


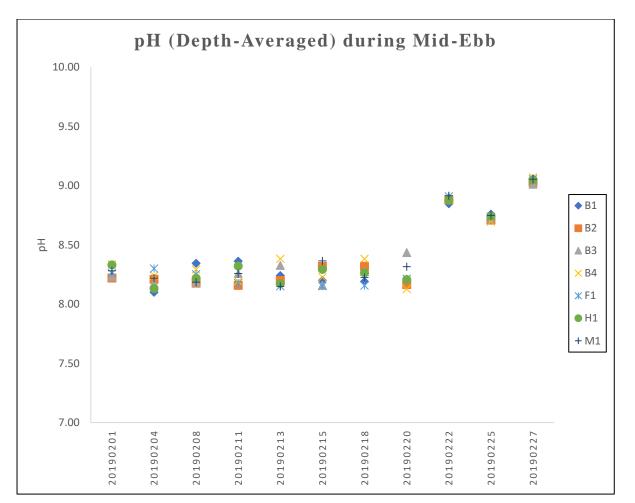

Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

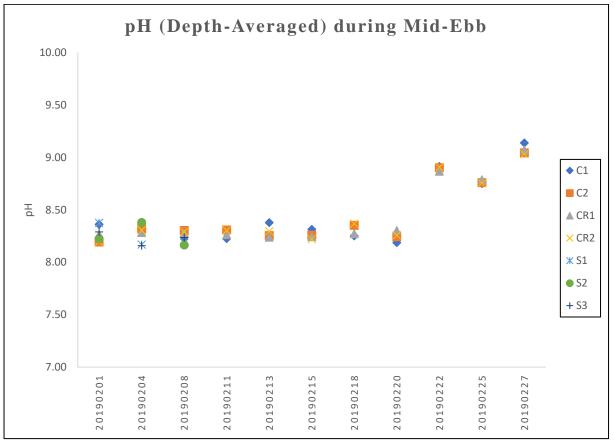


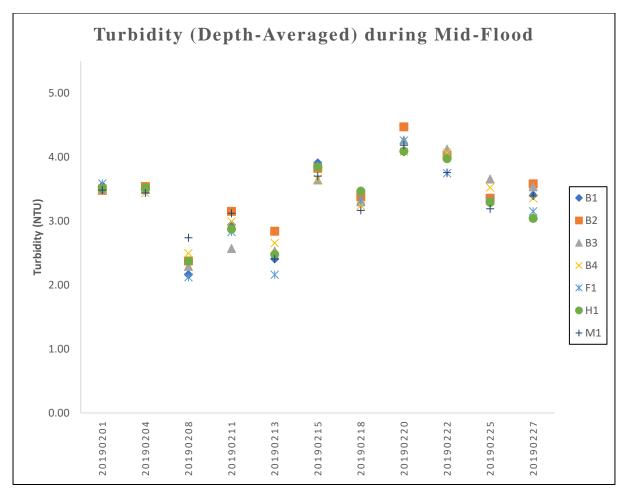

Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

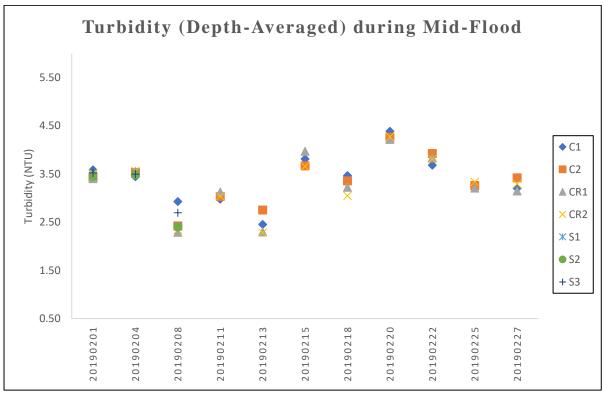


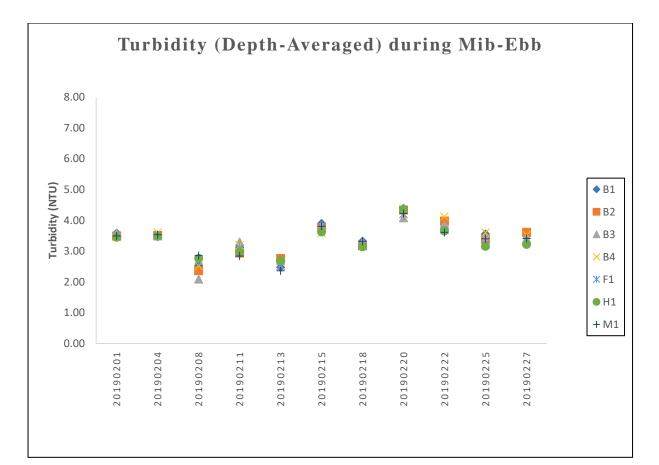

Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

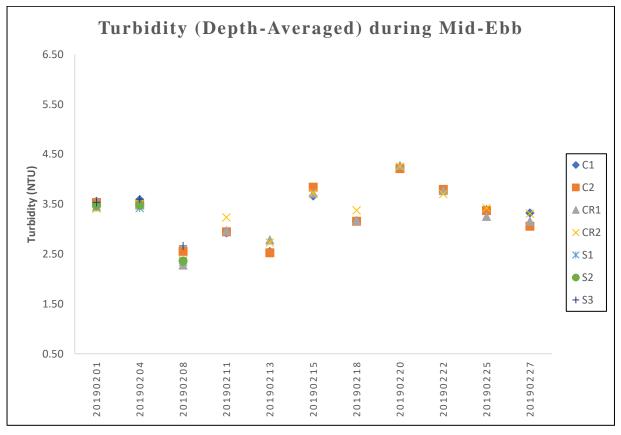


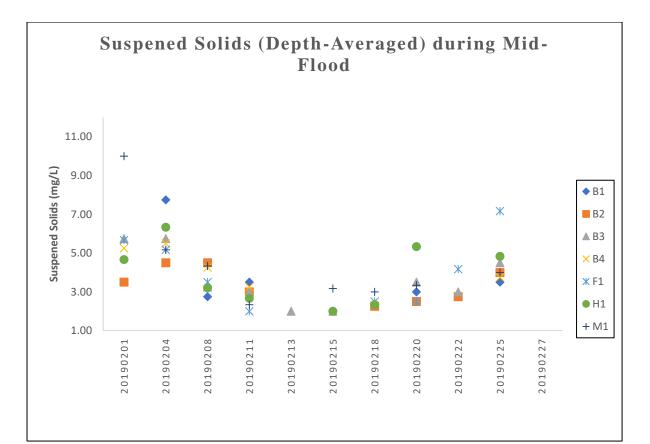


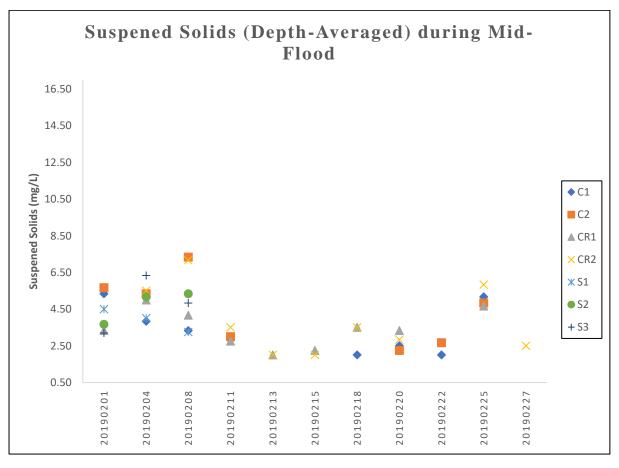

Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

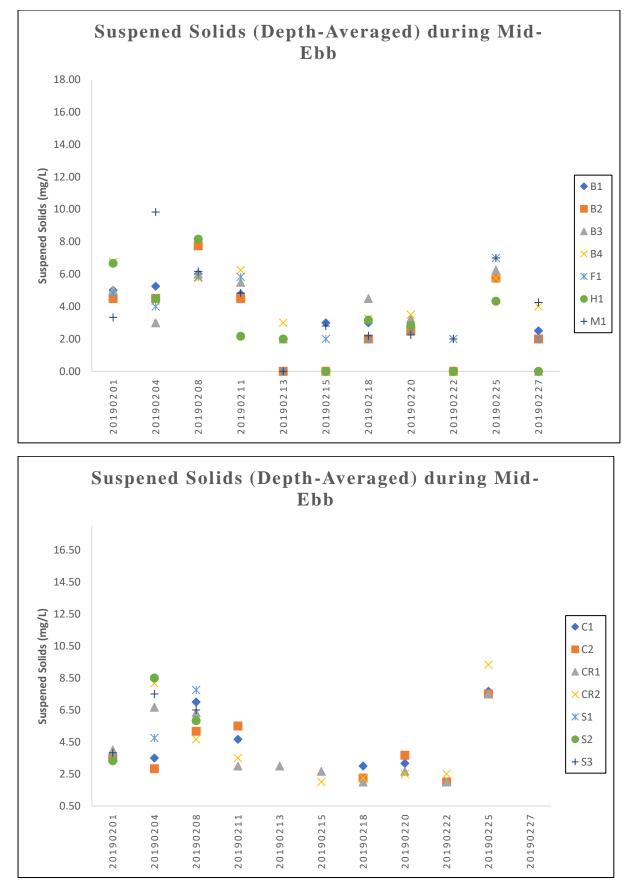




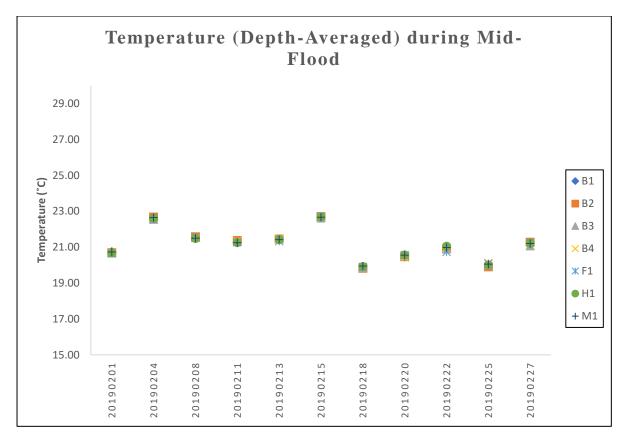


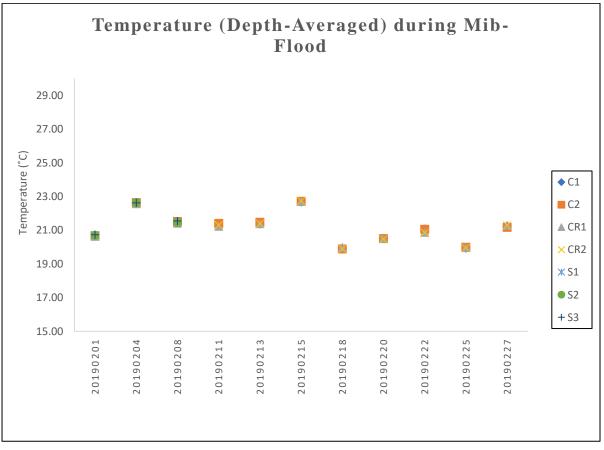



Note: The Action and Limit Level of turbidity can be referred to **Table 2.7** of the monthly EM & A report.

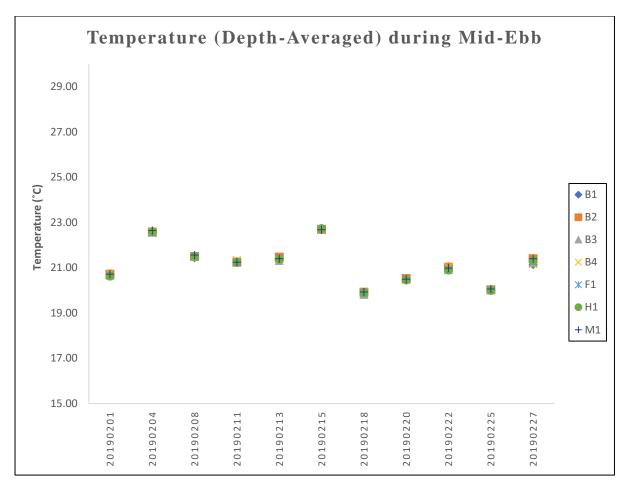


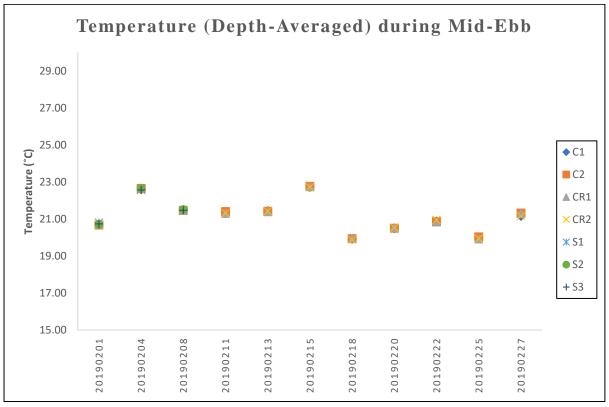
Note: The Action and Limit Level of turbidity can be referred to **Table 2.7** of the monthly EM & A report.

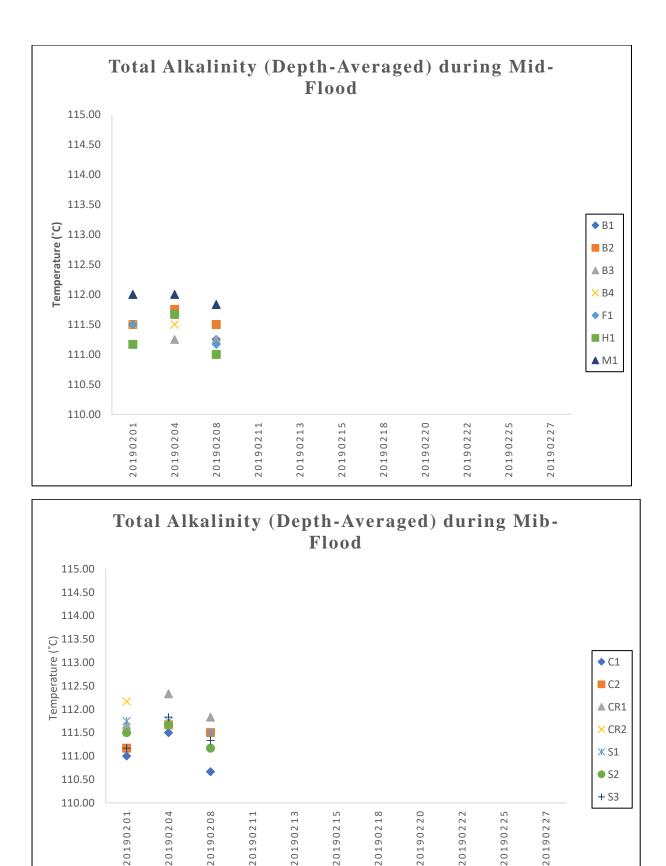




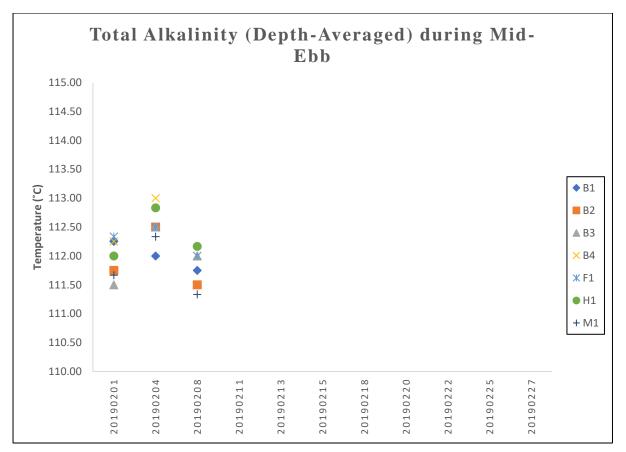
Note: The Action and Limit Level of suspened solids can be referred to **Table 2.7** of the monthly EM & A report.

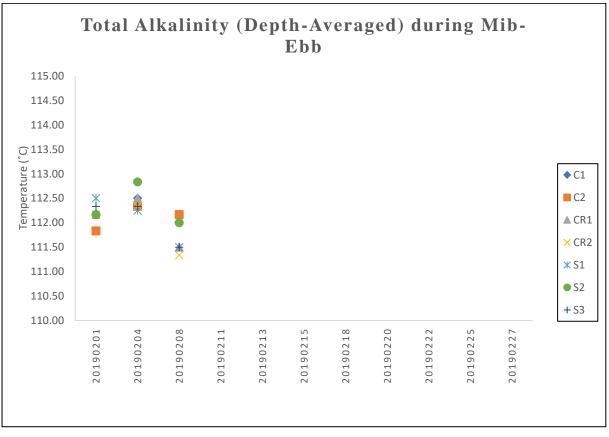



Note: The Action and Limit Level of suspened solids can be referred to **Table 2.7** of the monthly EM & A report.

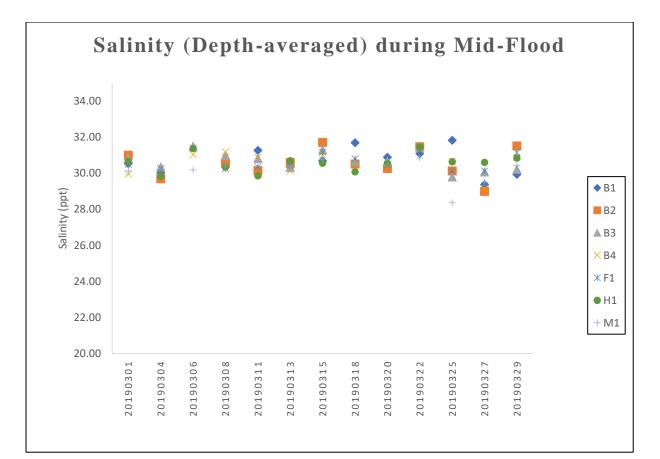


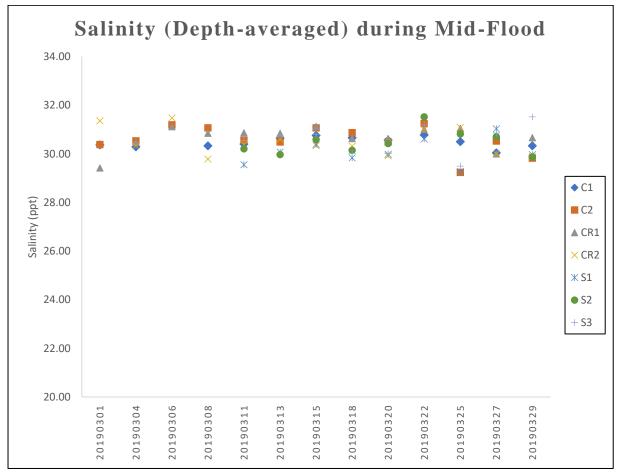
Note: The Action and Limit Level of temperature can be referred to **Table 2.7** of the monthly EM & A report.

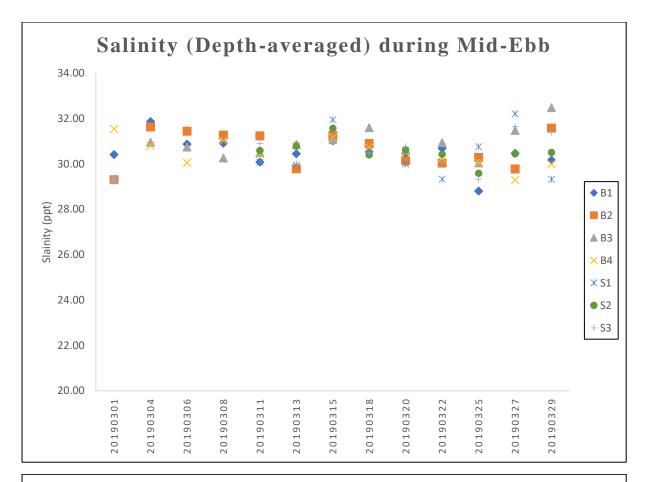


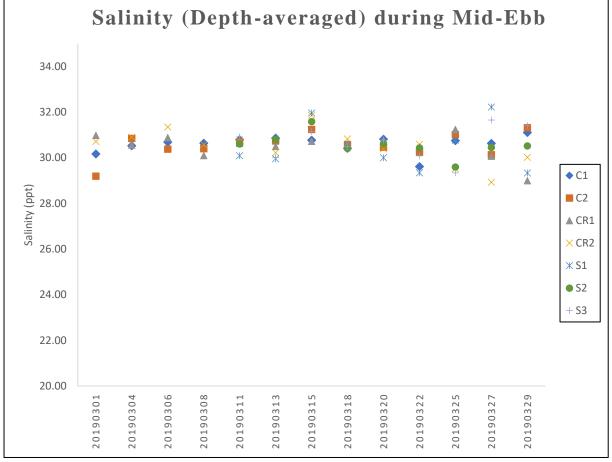


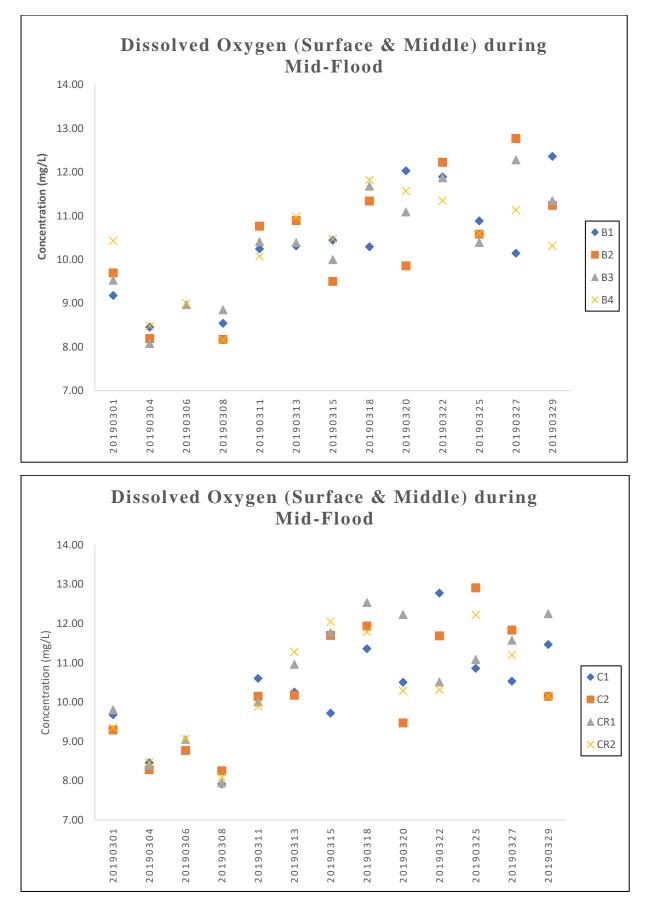
Note: The Action and Limit Level of temperature can be referred to **Table 2.7** of the monthly EM & A report.

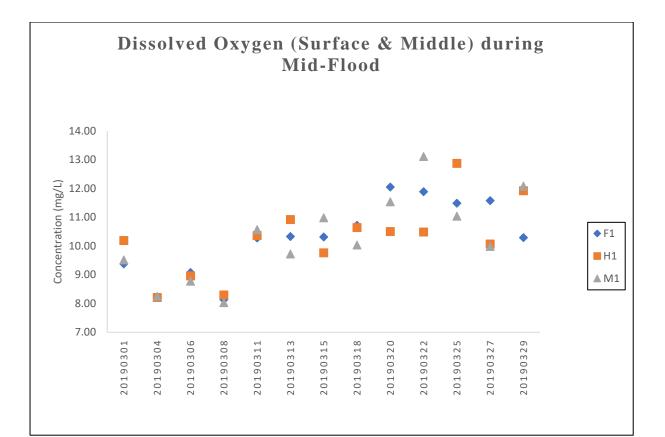


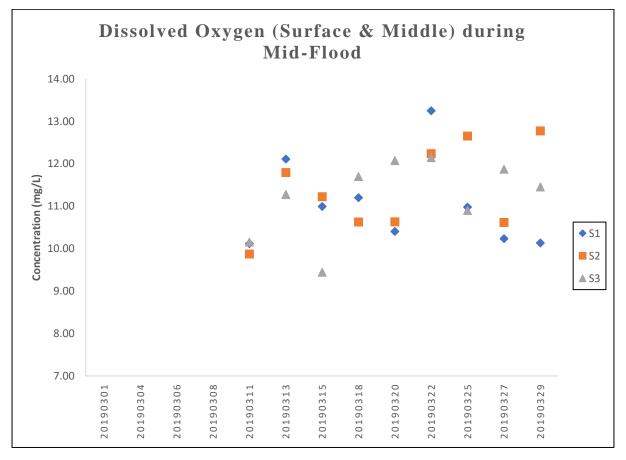

Note: The Action and Limit Level of total alkalinity can be referred to Table 2.7 of the monthly EM & A report.

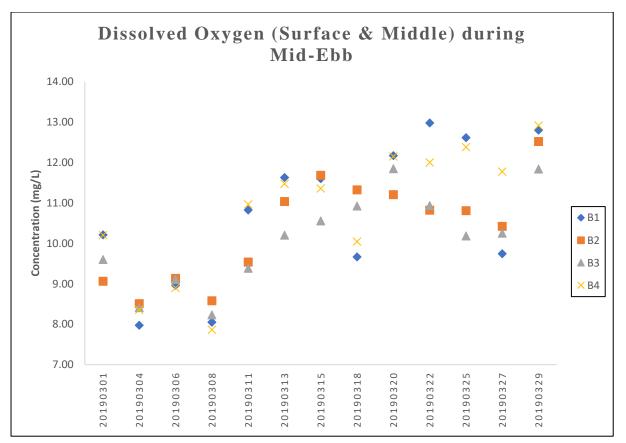


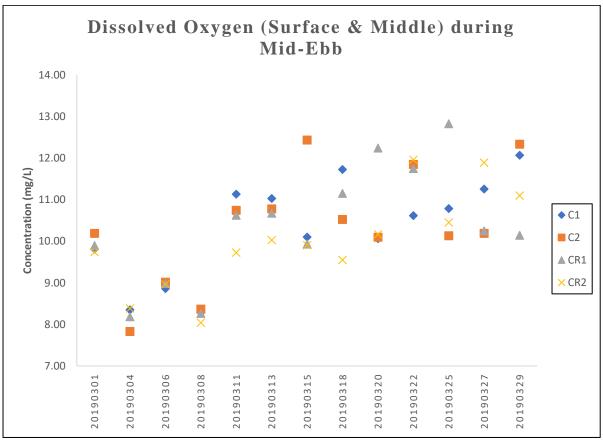


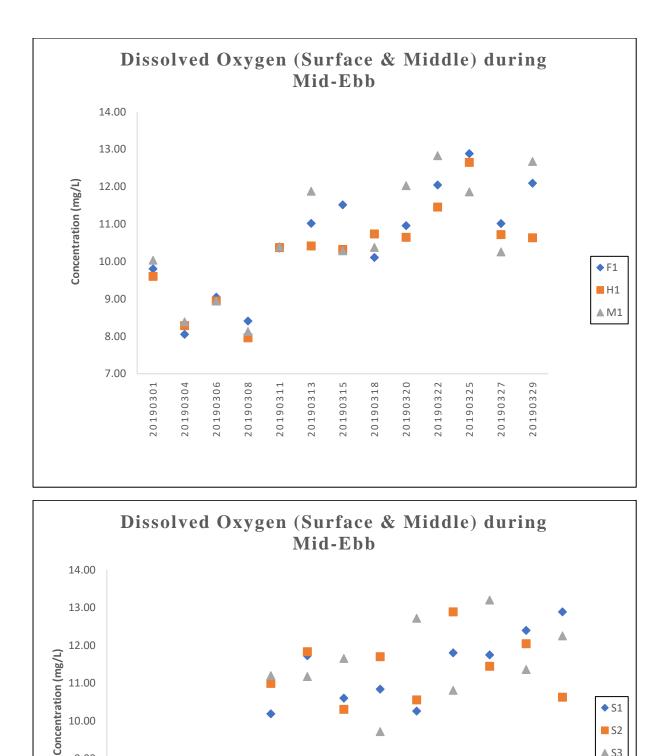

Note: The Action and Limit Level of total alkalinity can be referred to **Table 2.7** of the monthly EM & A report.







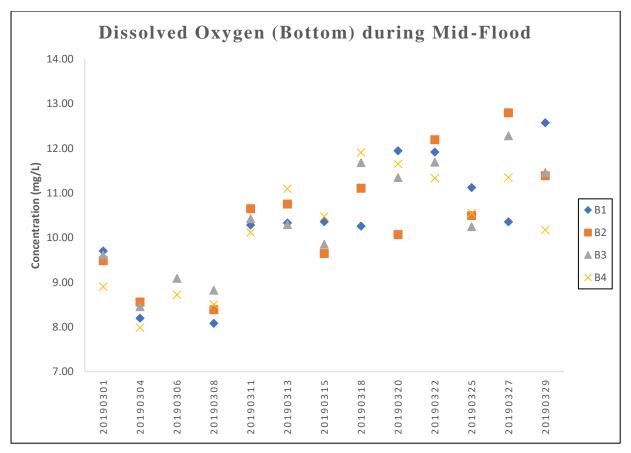

Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

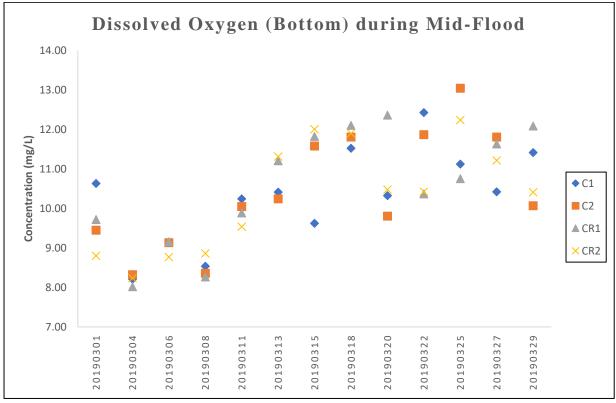


Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

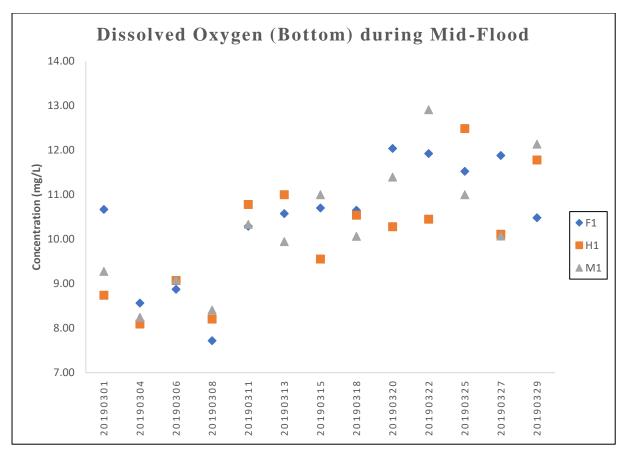
Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

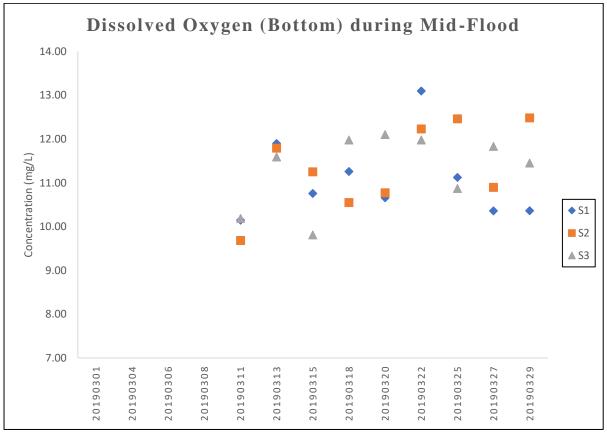
Note: The Action and Limit Level of dissolved oxygen can be referred to Table 2.7 of the monthly EM & A report.

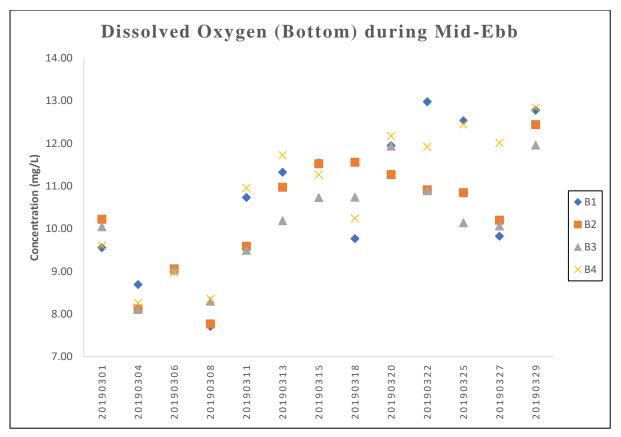

9.00

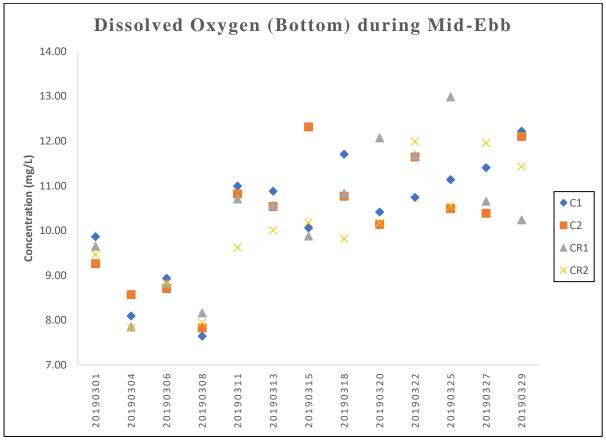

8.00

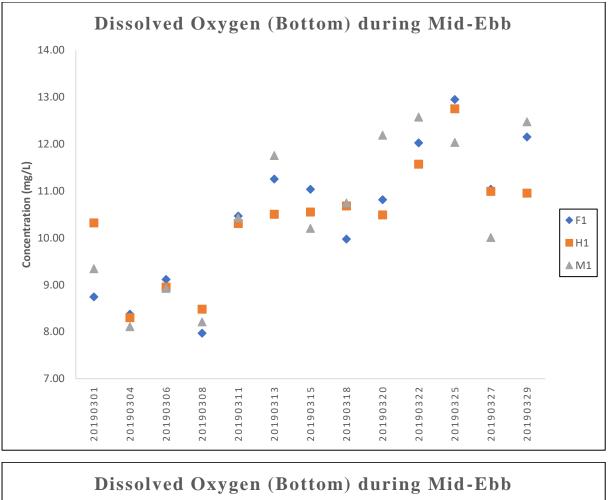
7.00

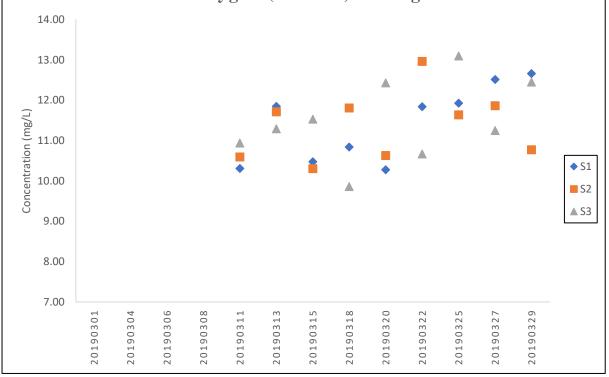

S2

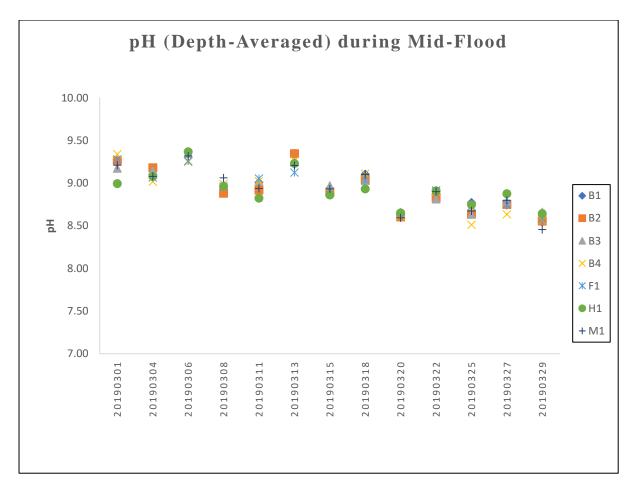

▲ S3

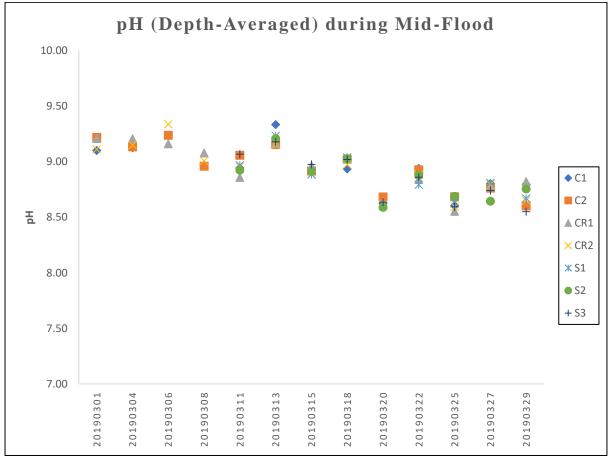


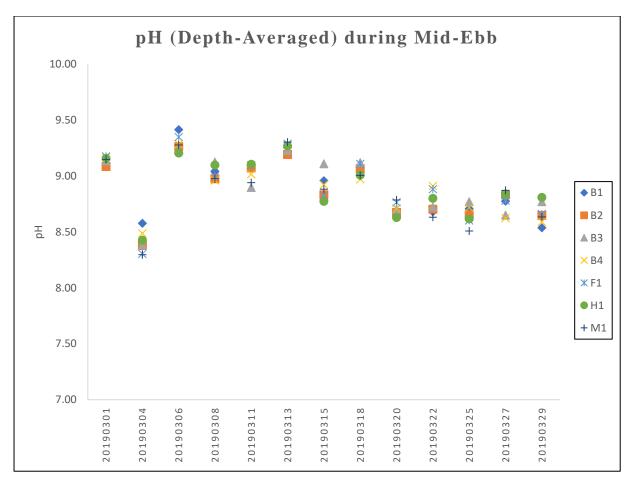

Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

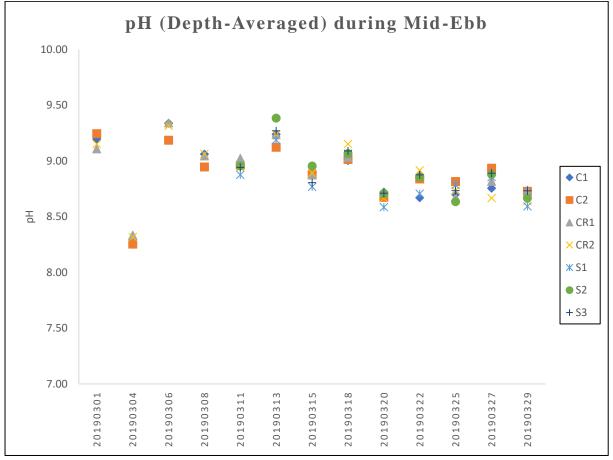


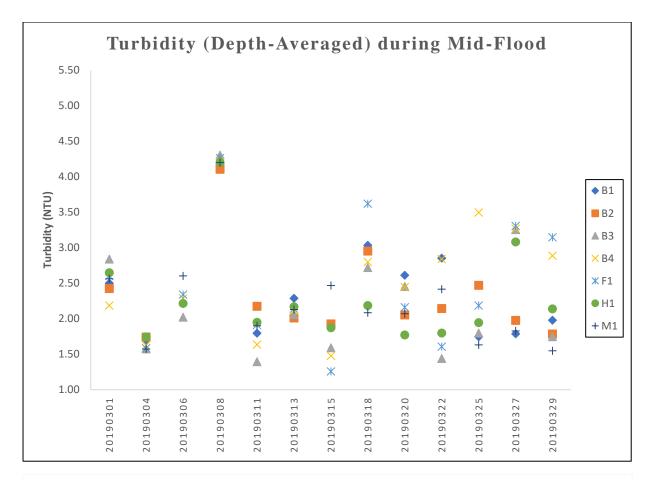

Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

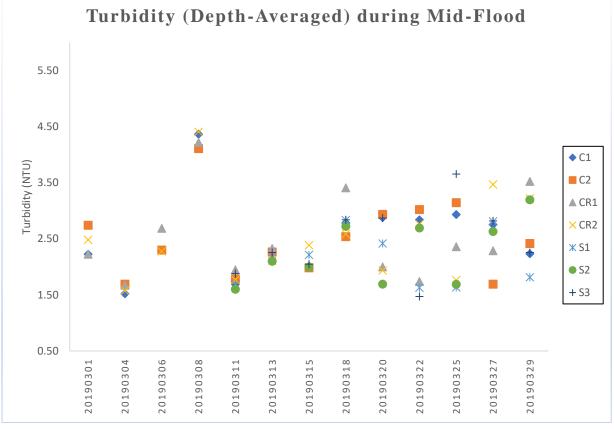


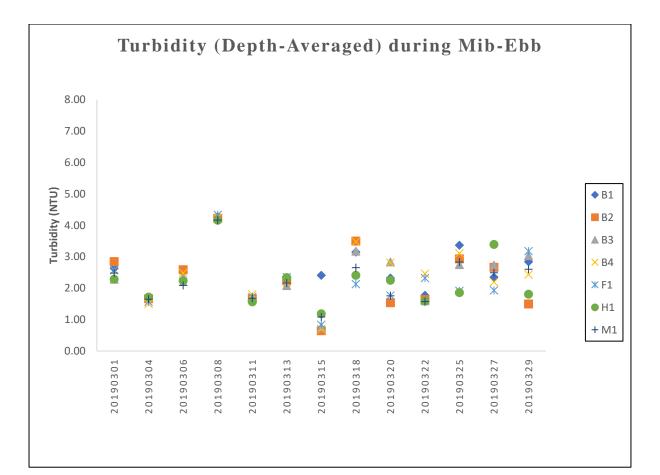

Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

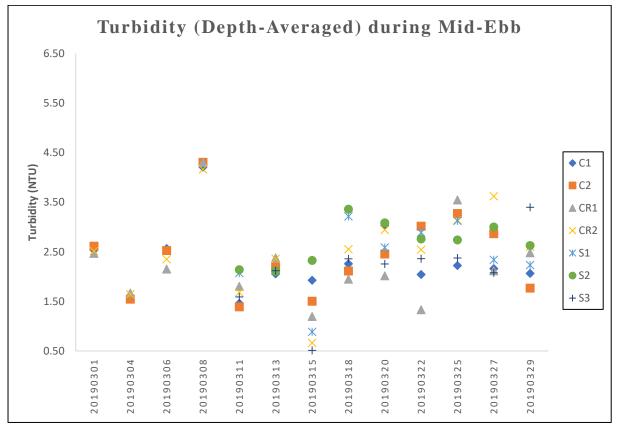


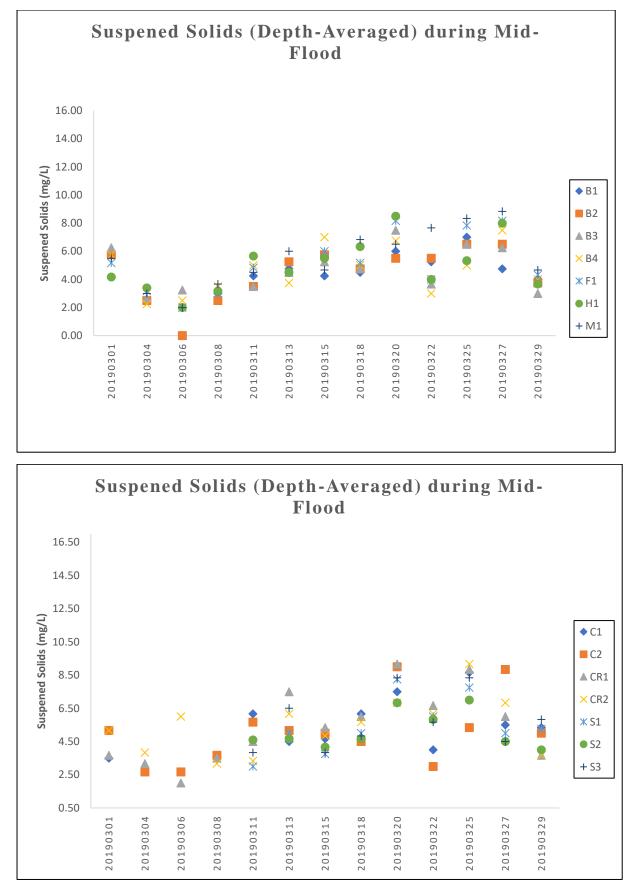



Note: The Action and Limit Level of dissolved oxygen can be referred to **Table 2.7** of the monthly EM & A report.

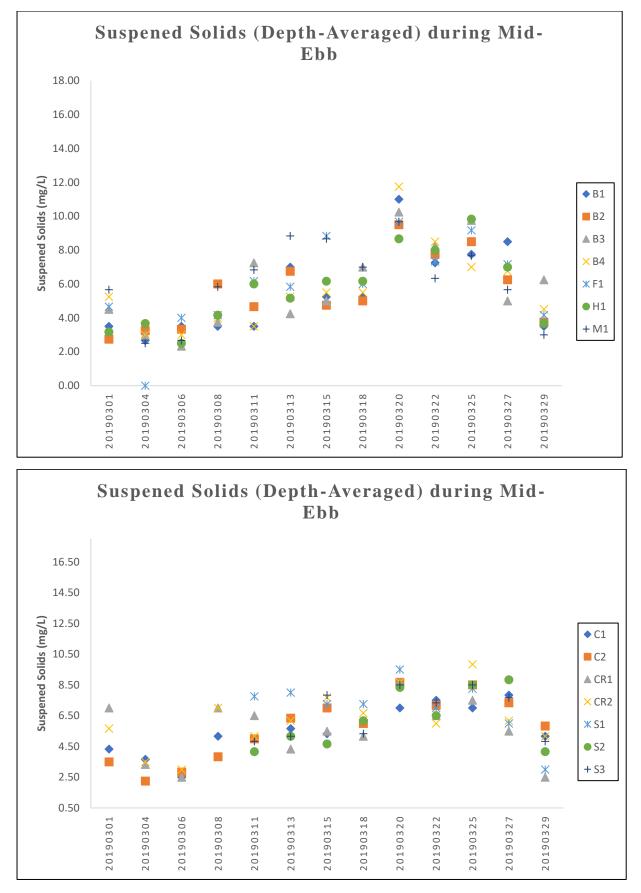


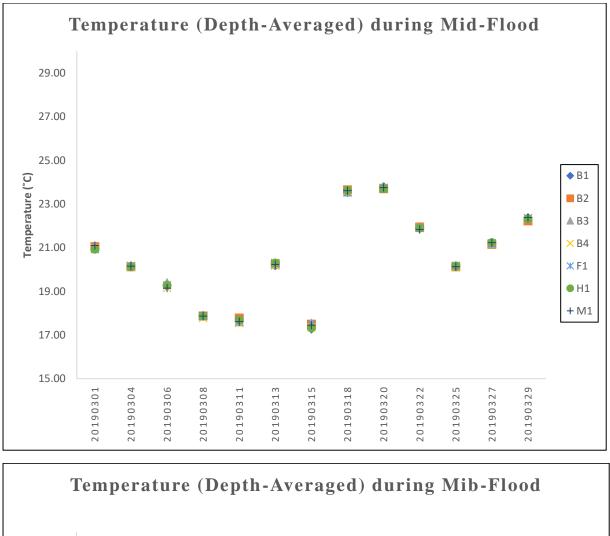


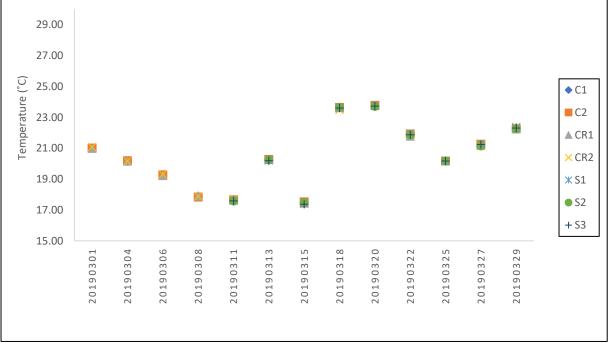




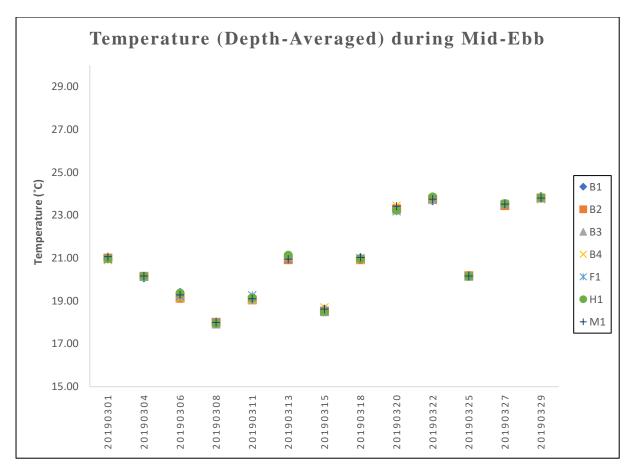
Note: The Action and Limit Level of turbidity can be referred to **Table 2.7** of the monthly EM & A report.

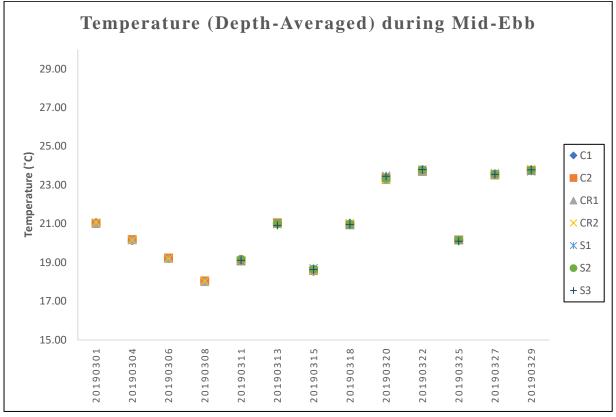


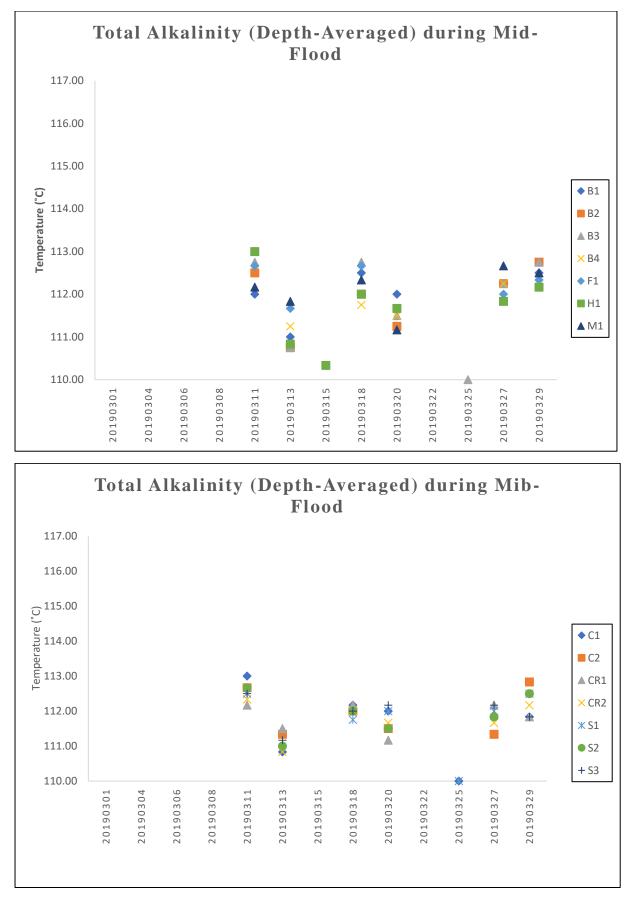

Note: The Action and Limit Level of turbidity can be referred to **Table 2.7** of the monthly EM & A report.



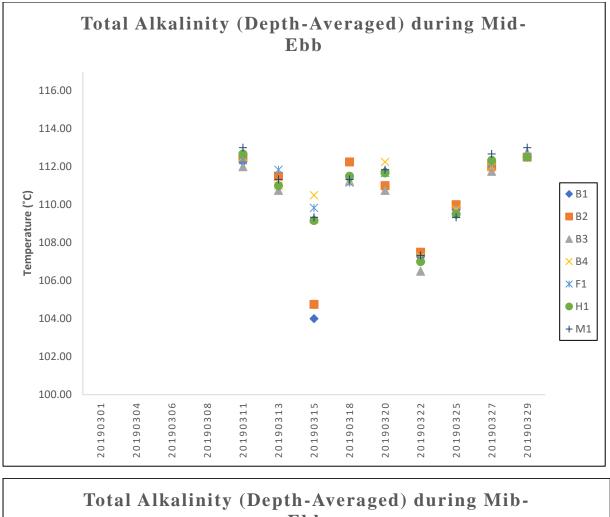
Note: The Action and Limit Level of suspened solids can be referred to **Table 2.7** of the monthly EM & A report.

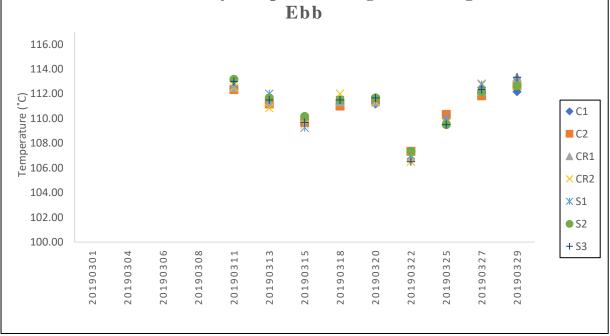



Note: The Action and Limit Level of suspened solids can be referred to **Table 2.7** of the monthly EM & A report.

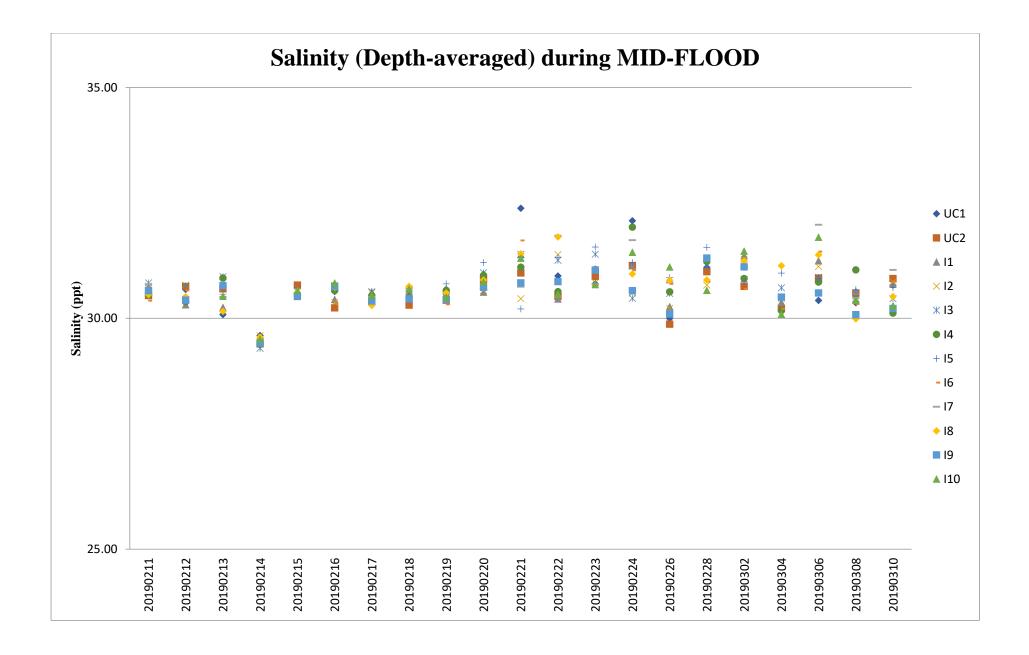


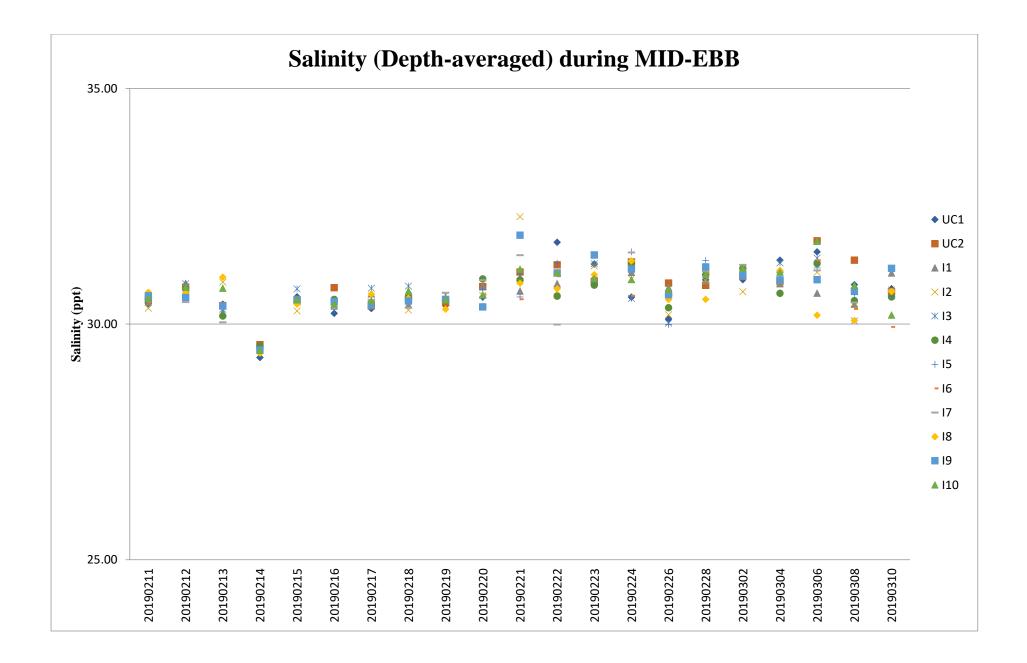
Note: The Action and Limit Level of temperature can be referred to **Table 2.7** of the monthly EM & A report.

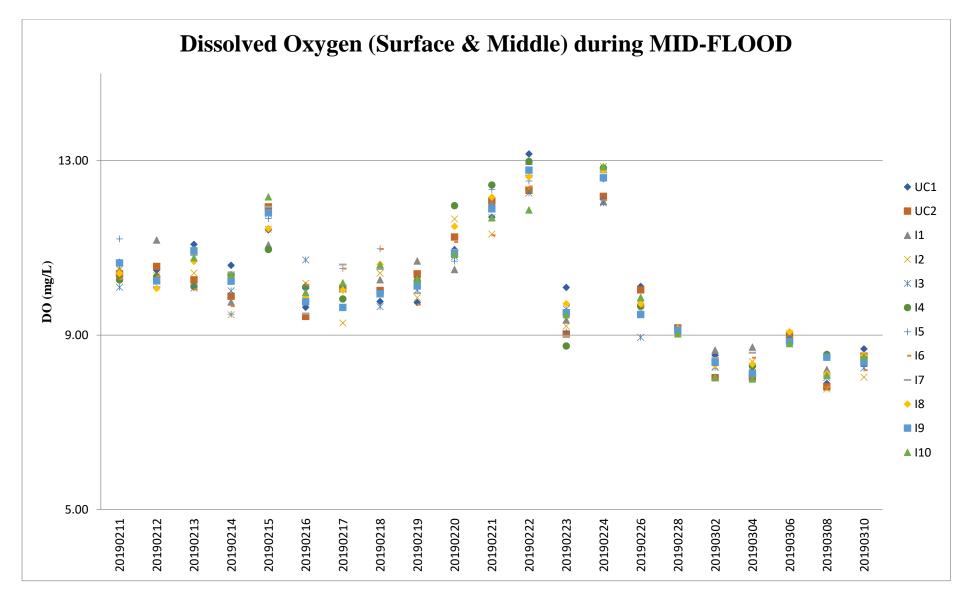


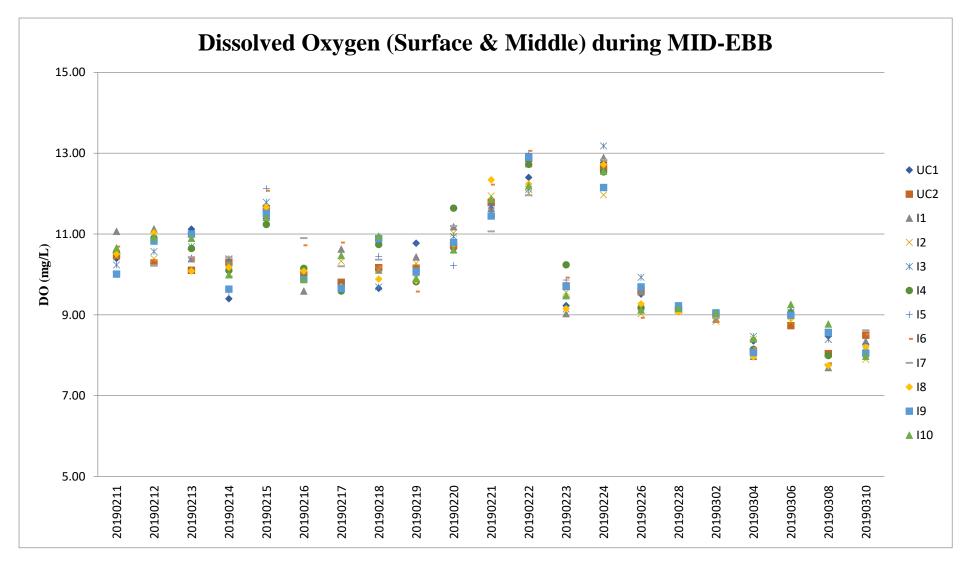


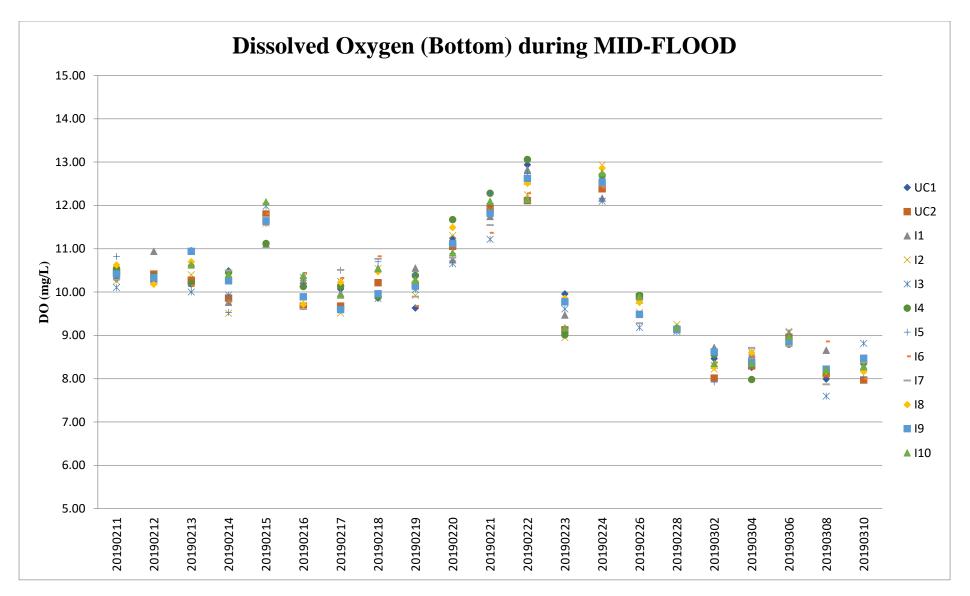
Note: The Action and Limit Level of temperature can be referred to **Table 2.7** of the monthly EM & A report.

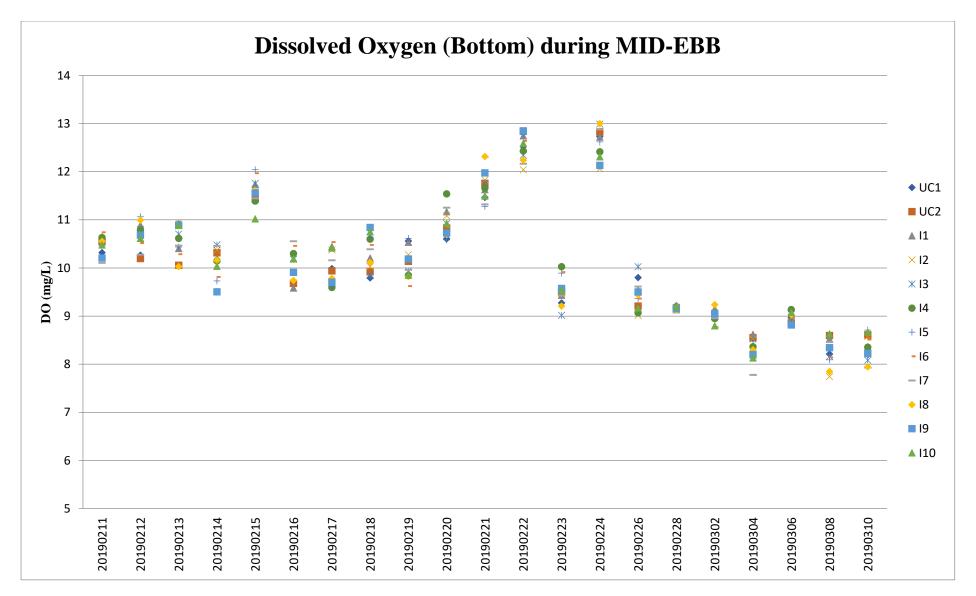


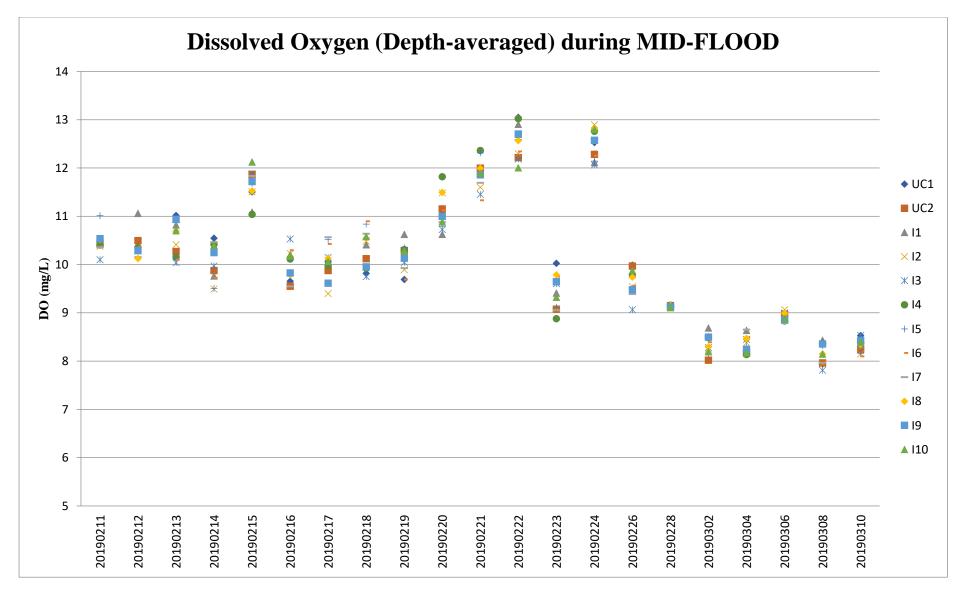

Note: The Action and Limit Level of total alkalinity can be referred to **Table 2.7** of the monthly EM & A report.

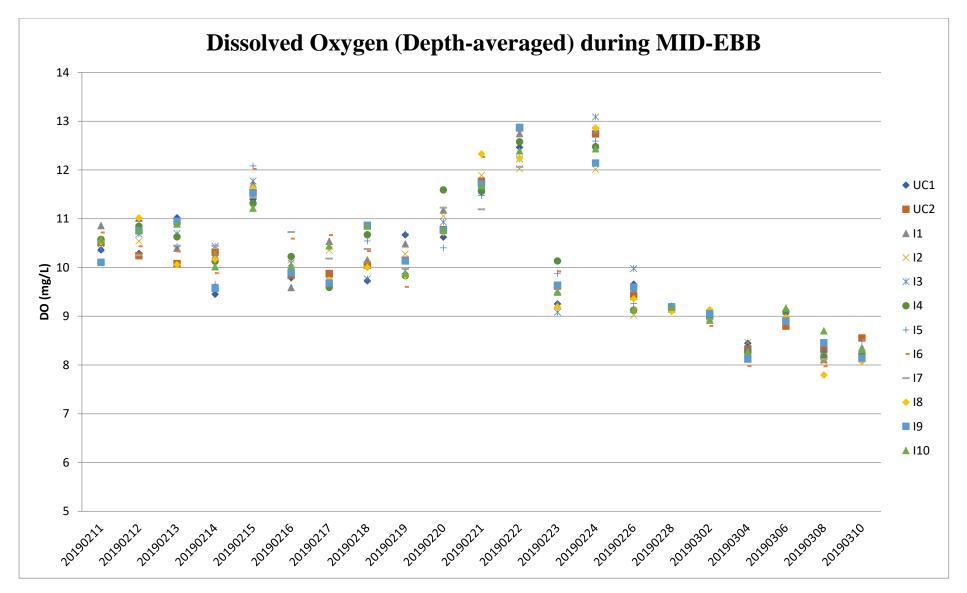


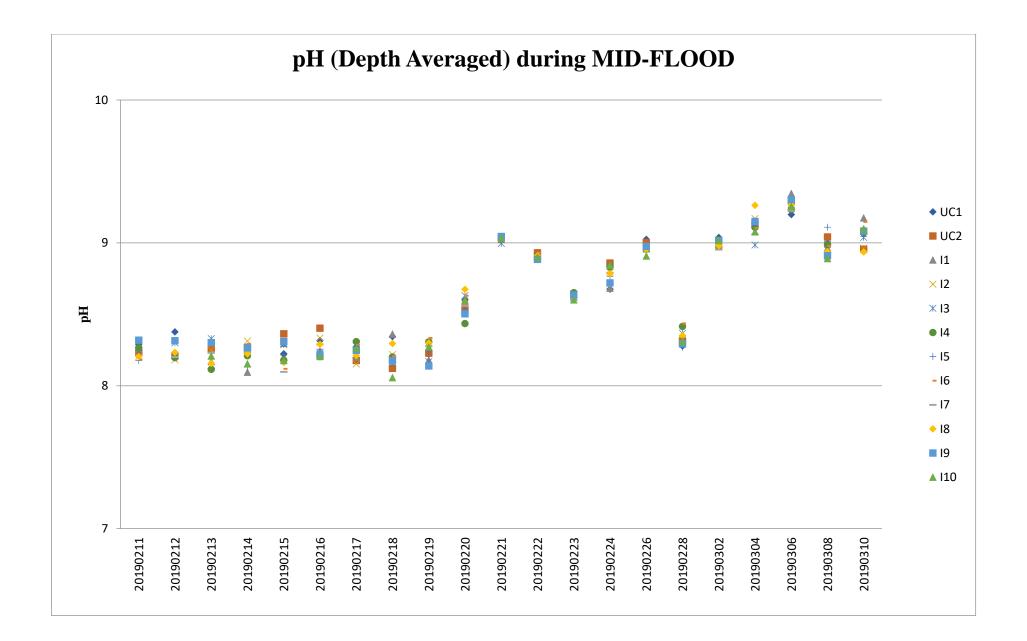

Note: The Action and Limit Level of total alkalinity can be referred to **Table 2.7** of the monthly EM & A report.

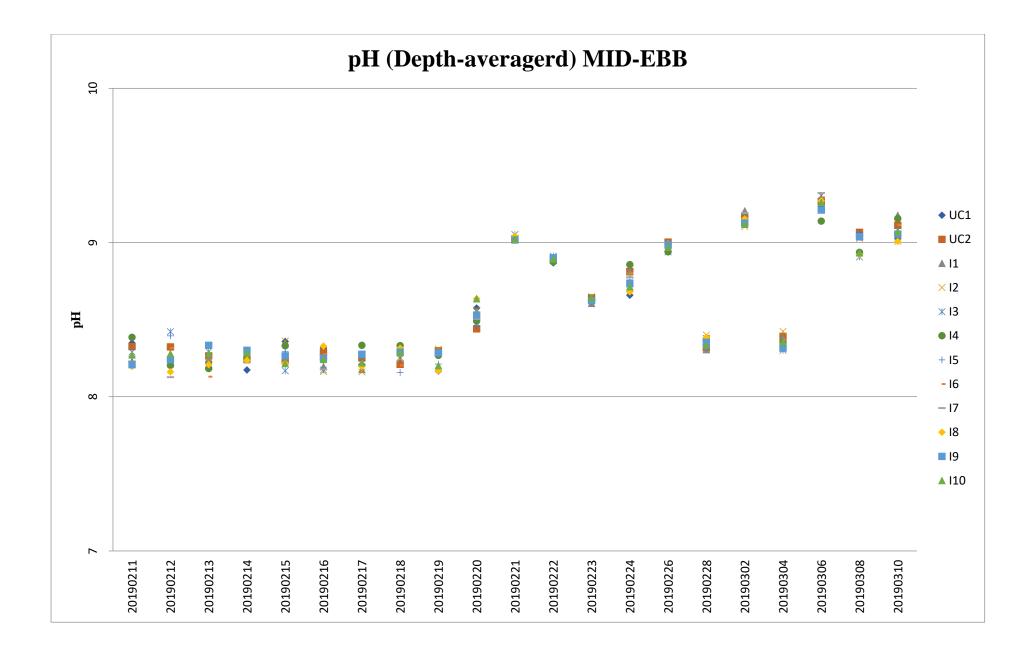


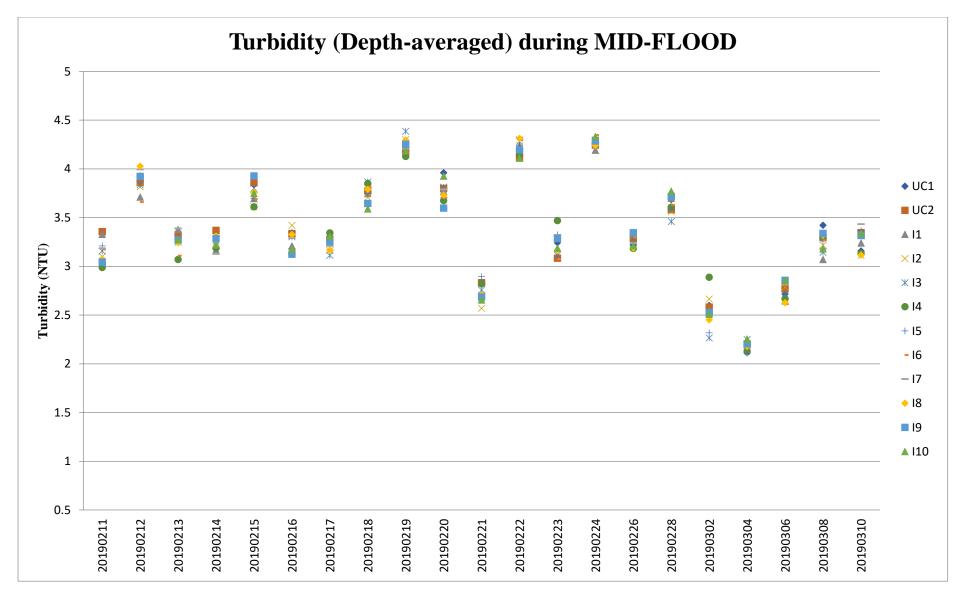

Note: The Action and Limit Level of dissolved oxygen can be referred to Table 2.10 of the monthly EM & A report.

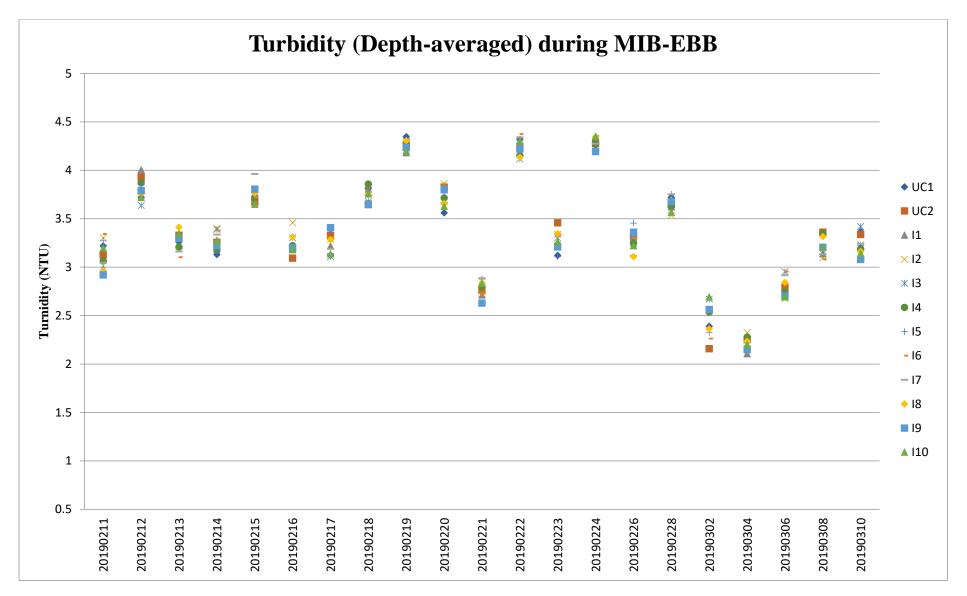

Note: The Action and Limit Level of dissolved oxygen can be referred to Table 2.10 of the monthly EM & A report.

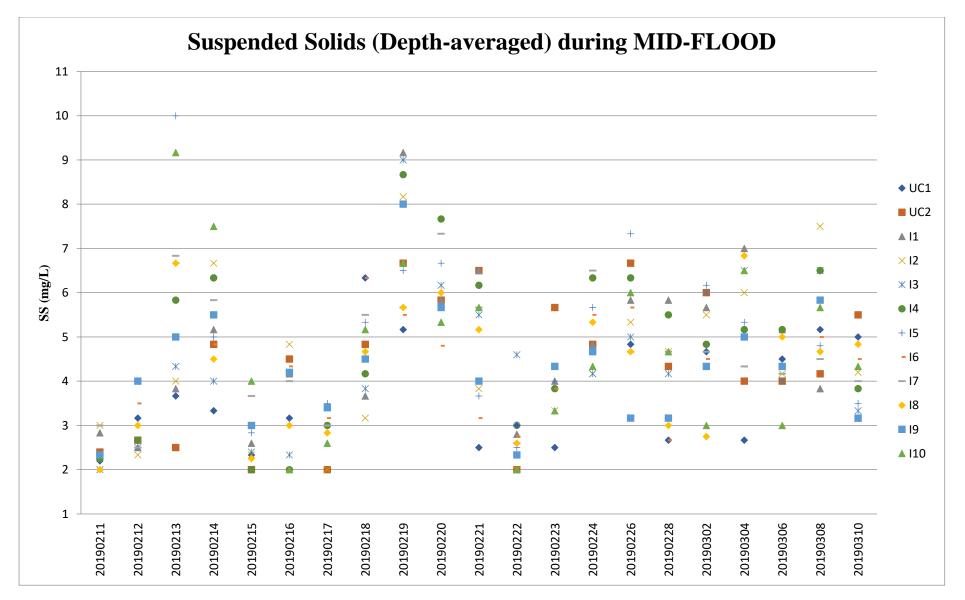

Note: The Action and Limit Level of dissolved oxygen can be referred to Table 2.10 of the monthly EM & A report.

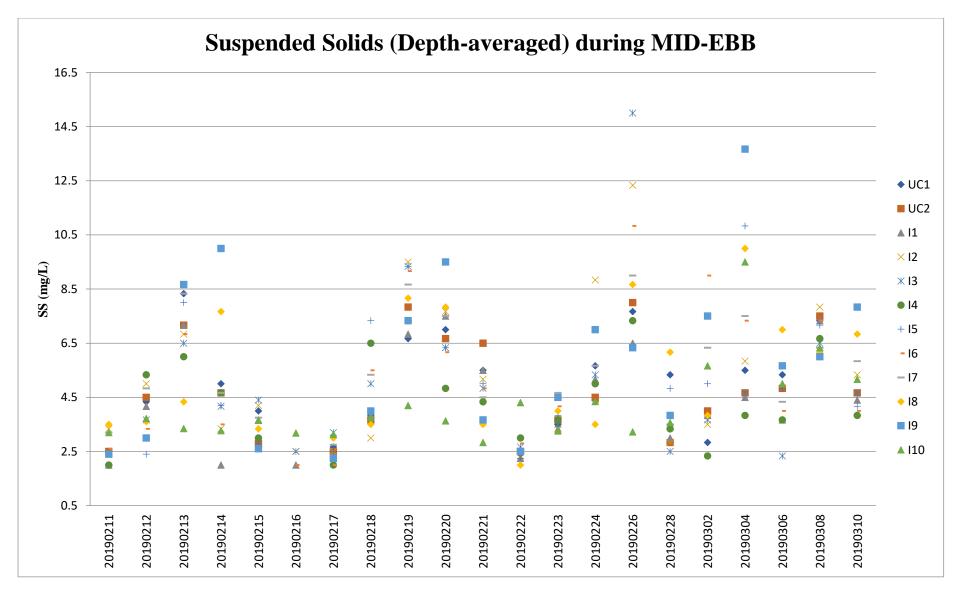

Note: The Action and Limit Level of dissolved oxygen can be referred to Table 2.10 of the monthly EM & A report.

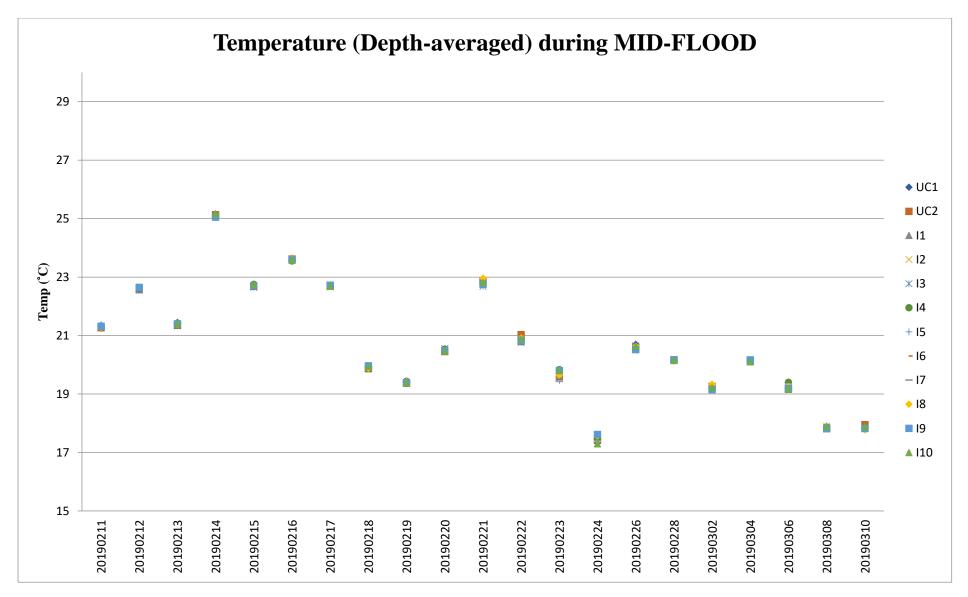


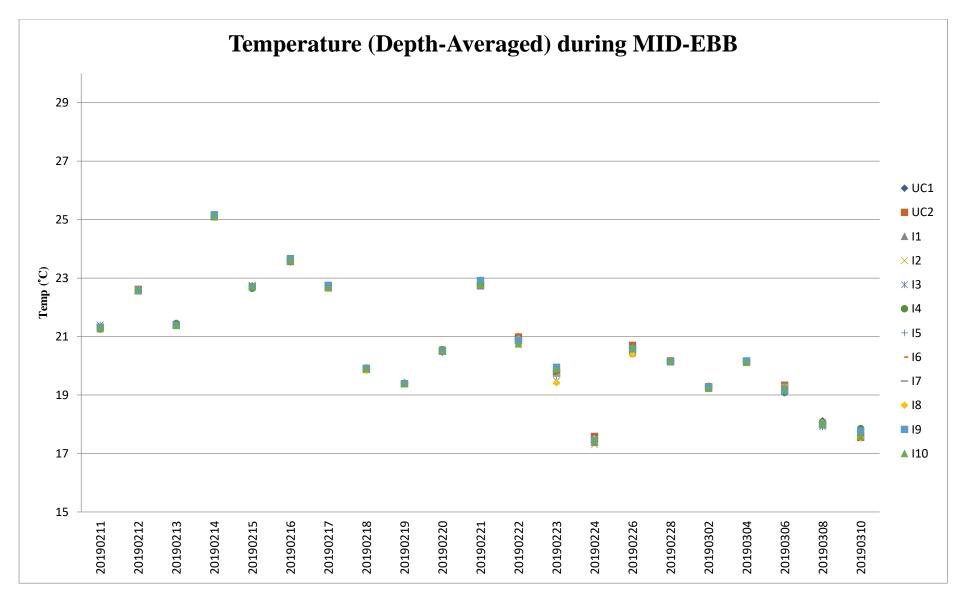

Note: The Action and Limit Level of dissolved oxygen can be referred to Table 2.10 of the monthly EM & A report.

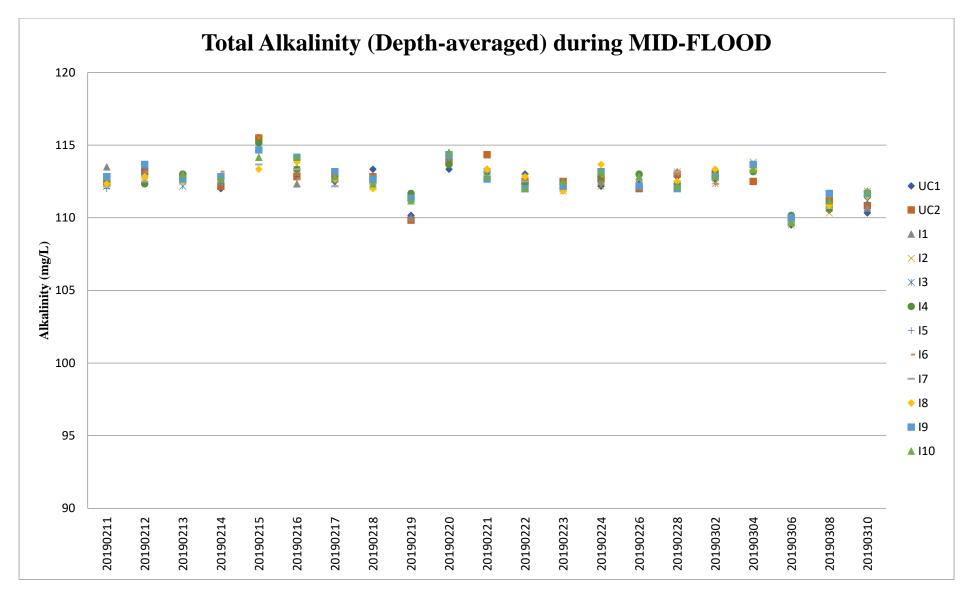

Note: The Action and Limit Level of dissolved oxygen can be referred to Table 2.10 of the monthly EM & A report.




Note: The Action and Limit Level of turbidity can be referred to **Table 2.10** of the monthly EM & A report.


Note: The Action and Limit Level of turbidity can be referred to **Table 2.10** of the monthly EM & A report.


Note: The Action and Limit Level of suspened solids can be referred to **Table 2.10** of the monthly EM & A report.


Note: The Action and Limit Level of suspened solids can be referred to Table 2.10 of the monthly EM & A report.

Note: The Action and Limit Level of temperature can be referred to Table 2.9 of the monthly EM & A report.

Note: The Action and Limit Level of temperature can be referred to Table 2.9 of the monthly EM & A report.

Note: The Action and Limit Level of total alkalinity can be referred to Table 2.9 of the monthly EM & A report.

Note: The Action and Limit Level of total alkalinity can be referred to **Table 2.9** of the monthly EM & A report.

Appendix E HOKLAS Laboratory Certificate

Integrated Waste Management Facilities, Phase 1

Hong Kong Accreditation Service 香港認可處

Certificate of Accreditation 認可證書

This is to certify that 特此證明

ALS TECHNICHEM (HK) PTY LIMITED

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, New Territories, Hong Kong 香港新界葵涌永業街1-3號忠信針織中心11樓

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 為香港認可處執行機關根據認可證詢委員會建議而接受的

HOKLAS Accredited Laboratory 「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO / IEC 17025 : 2005 – General requirements for the competence 此實驗所符合ISO / IEC 17025 : 2005 – 《測試及校正實驗所能力的通用規定》所訂的要求。 of testing and calibration laboratories and it has been accredited for performing specific tests or calibrations as 獲認可進行載於香港實驗所認可計劃《認可實驗所名冊》內下這測試類別中的指定 listed in the HOKLAS Directory of Accredited Laboratories within the test category of 測試或校正工作

> Environmental Testing 環境測試

This laboratory is accredited in accordance with the recognized international Standard ISO / IEC 17025 : 2005. 本實驗所乃相違公認的國際標準 ISO / IEC 17025 : 2005 獲得證可。 This accreditation demonstrates technical compatence for a defined scope and the operation of a laboratory 道項證可資格源示在指定範疇所需的技術能力及實驗所質量增減指的運作 quality management system (see joint IAF-ILAC-ISO Companie), (見國際認可論權、國際實驗所認可合作組織及國際標準化組織的融合公報)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 香港認可處執行機關的權限在此蓋上通用印章

CHAN Sing Sing, Terence, Executive Administrator 執行幹事 陳成城 Issue Date: 5 May 2009 簽發日期:二零零九年五月五日

Registration Number: HOKLAS 066 註冊號碼:

Date of First Registration: 15 September 1995 首次註冊日期:一九九五年九月十五日

This certilicate is issued sobject to the torms and conditions laid down by HKAS 本證書按照香港認可處訂立的條款及條件發出 L 000552

Contract No. EP/SP/66/12

Integrated Waste Management Facilities, Phase 1

Keppel Seghers - Zhen Hua Joint Venture

Hong Kong Accreditation Service 香港認可處

Certificate of Accreditation 認可證書

This is to certify that 特此證明

ACUMEN LABORATORY AND TESTING LIMITED

浩科檢測中心有限公司

Lot 12, Tam Kon Shan Road, North Tsing Yi, New Territories, Hong Kong 香港新界青衣北担杆山路12路段

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 在認可諮詢委員會的建議下獲香港認可處執行機關接受為

HOKLAS Accredited Laboratory

「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO/IEC 17025:2005 and it has been accredited for performing specific tests or calibrations as listed in the scope of accreditation within the test category of

Environmental Testing

此實驗所符合ISO/IEC 17025:2005所訂的要求 並獲認可進行載於認可範圍內下述測試類別中的指定測試成校正工作

環境測試

This accreditation to ISO/IEC 17025:2005 demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (see joint IAF-ILAC-ISO Communiqué). 此項 ISO/IEC 17025:2005 的認可資格證明此實驗所與借指定範疇內所須的技術能力並 實施一套實驗所質量管理麵系(見圖際認可論握、圖際實驗所認可合作組織及圖際標準化組織的聯合公經)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 現經香港認可處執行機關授權在此蓋上香港認可處的印章

WONG Wang-wh, Executive Administrator 執行幹事 黃宏華 Issue Date: 16 July 2014 簽發日期:二零一四年七月十六日 Registration Number: 註冊號碼:

This certificate is issued subject to the terms and conditions laid down by HKAS. 本證書按照書港師可處訂立的條款及條件登出

Date of First Registration: 16 July 2014 首次註冊日期:二零一四年七月十六日

L 001195

Appendix F Water Quality Equipment Calibration Certificate

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: CLIENT:	MR. NELSON TSUI	WORK ORDER:	HK1866963
	ACUITY SUSTAINABILITY CONSULTING LIMITED		
ADDRESS:	UNIT 1908, IPLACE, NOS. 301- 305 CASTLE PEAK ROAD, KWAI CHUNG, NEW TERRITORIES, HONG KONG	SUB-BATCH: LABORATORY: DATE RECEIVED: DATE OF ISSUE:	0 HONG KONG 27- Dec- 2018 15- Jan- 2019

<u>COMMENTS</u>

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

The "Next Calibration Date" is recommended according to best practice principle as practised by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test:	Dissolved Oxygen, pH Value, Turbidity, Salinity, Redox Potential and Temperature
Equipment Type:	Multifunctional Meter
Brand Name:	HORIBA
Model No.:	U- 5000
Serial No.:	WJ2DHR9V
Equipment No.:	BGYP9CKD
Date of Calibration:	02 January, 2019

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Ma fi

Mr Chan Siu Ming, Vico Manager - Inorganic

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

WORK ORDER: HK1866963

SUB-BATCH:	0
DATE OF ISSUE:	15- Jan- 2019
CLIENT:	ACUITY SUSTAINABILITY CONSULTING LIMITED

Equipment Type:	Multifunctional Meter		
Brand Name:	HORIBA		
Model No.:	U- 5000		
Serial No.:	WJ2DHR9V		
Equipment No.:	BGYP9CKD		
Date of Calibration:	02 January, 2019	Date of Next Calibration:	02 April, 2019

PARAMETERS:

Dissolved Oxygen Method Ref: APHA (21st edition), 4500-O: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.21	3.13	- 0.08
6.34	6.26	- 0.08
8.02	8.09	+ 0.07
	Tolerance Limit (mg/L)	±0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.0	4.12	+ 0.12
7.0	7.02	+ 0.02
10.0	9.82	- 0.18
	Tolerance Limit (pH unit)	±0.20

Ma Alin

Mr Chan Siu Ming, Vico Manager - Inorganic

WORK ORDER: HK1866963

SUB-BATCH:	0
DATE OF ISSUE:	15- Jan- 2019
CLIENT:	ACUITY SUSTAINABILITY CONSULTING LIMITED

Equipment Type:	Multifunctional Meter		
Brand Name:	HORIBA		
Model No.:	U- 5000		
Serial No.:	WJ2DHR9V		
Equipment No.:	BGYP9CKD		
Date of Calibration:	02 January, 2019	Date of Next Calibration:	02 April, 2019

PARAMETERS: Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.30	
10	10.12	+1.2
20	20.36	+ 1.8
30	30.73	+ 2.4
	Tolerance Limit (%)	±10.0

Redox Potential

Method Ref: APHA (21st edition), 2580B

Method Ref: Orion Research Instruction Manual and the Laboratory Manual

the Environmental of Water, Wastewater and Soil (2nd edition), Rump & Krist (1992)

Expected Reading (mV)	Displayed Reading (mV)	Difference of A and B (mV)
Solution A (~234mV)	231	
Solution B (~300mV)	303	+ 72.0
	Tolerance Limit (mV)	> 66

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.0	9.8	- 0.2
22.5	21.9	- 0.6
37.0	37.26	+ 0.3
	Tolerance Limit (°C)	± 2.0

Ma Alig

Mr Chan Siu Ming, Vico Manager - Inorganic

WORK ORDER: HK1866963

SUB-BATCH:	0
DATE OF ISSUE:	15- Jan- 2019
CLIENT:	ACUITY SUSTAINABILITY CONSULTING LIMITED

Equipment Type:	Multifunctional Meter		
Brand Name:	HORIBA		
Model No.:	U- 5000		
Serial No.:	WJ2DHR9V		
Equipment No.:	BGYP9CKD		
Date of Calibration:	15 January, 2019	Date of Next Calibration:	02 April, 2019

PARAMETERS: Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.11	
4	4.27	+ 6.7
40	37.8	- 5.5
80	81.5	+ 1.9
400	399	- 0.3
800	828	+ 3.5
	Tolerance Limit (%)	±10.0

Ma Ai

Mr Chan Siu Ming, Vico Manager - Inorganic

ALS Technichem (HK) Pty Ltd 11/F, Chung Shun Knitting Centre 1-3 Wing Yip Street, Kwai Chung N.T., Hong Kong T: +852 2610 1044 | F: +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:	MR. POLAR CHAN	WORK ORDER:	HK1907349
CLIENT:	ACUITY SUSTAINABILITY CONSULTING LIMITED		
ADDRESS:	1908, IPLACE, NOS. 301-305 CASTLE PEAK ROAD, KWAI CHUNG, NEW TERRITORIES, HONG KONG	SUB-BATCH: LABORATORY: DATE RECEIVED: DATE OF ISSUE:	0 HONG KONG 19-Feb-2019 28-Feb-2019

COMMENTS

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

The "Tolerance Limit" quoted is the acceptance criteria applicable for similar equipment used by the ALS Hong Kong laboratory or quoted from relevant international standards.

Scope of Test: Dissolved Oxygen, pH Value, Turbidity, Salinity, Redox Potential and Temperature

Equipment Type:	Multifunctional Meter
Brand Name:	HORIBA
Model No .:	U-5000
Serial No.:	UHB5F2BB
Equipment No.:	
Date of Calibration:	26 February, 2019

<u>NOTES</u>

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Ma Si

Mr Chan Siu Ming, Vico Manager - Inorganic

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

SUB-BATCH:	0
DATE OF ISSUE:	28-Feb-2019
CLIENT:	ACUITY SUSTAINABILITY CONSULTING LIMITED

HK1907349

Equipment Type:	Multifunctional Meter		
Brand Name:	HORIBA		
Model No.:	U-5000		
Serial No.:	UHB5F2BB		
Equipment No.:			
Date of Calibration:	26 February, 2019	Date of Next Calibration:	26 May, 2019

PARAMETERS:

WORK ORDER:

Dissolved Oxygen

ygen Method Ref: APHA (21st edition), 4500-O: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
3.72	3.90	+0.18
5.61	5.76	+0.15
8.52	8.43	-0.09
	Tolerance Limit (mg/L)	±0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH unit)	Displayed Reading (pH unit)	Tolerance (pH unit)
4.O	4.08	+0.08
7.0	7.00	+0.00
10.0	9.98	-0.02
	Tolerance Limit (pH unit)	±0.20

Ma Alin

Mr Chan Siu Ming, Vico Manager - Inorganic

WORK ORDER:	HK1907349
SUB-BATCH: DATE OF ISSUE: CLIENT:	0 28-Feb-2019 ACUITY SUSTAINABILITY CONSULTING LIMITED
Equipment Type:	Multifunctional Meter

Brand Name:	HORIBA	
Model No .:	U-5000	
Serial No.:	UHB5F2BB	
Equipment No.:		
Date of Calibration:	26 February, 2019	Date of Next Calibration:

26 May, 2019

PARAMETERS:

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.00	
4	4.17	+4.3
40	39.8	-0.5
80	78.4	-2.0
400	398	-0.5
800	784	-2.0
	Tolerance Limit (%)	±10.0

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.02	
10	9.37	-6.3
20	18.06	-9.7
30	27.41	-8.6
	Tolerance Limit (%)	±10.0

Ma Aij

Mr Chan Siu Ming, Vico Manager - Inorganic

WORK ORDER:	HK1907349		ALS
SUB-BATCH: DATE OF ISSUE: CLIENT:	0 28-Feb-2019 ACUITY SUSTAINABILITY CONSU	JLTING LIMITED	
Equipment Type: Brand Name: Model No.: Serial No.: Equipment No.:	Multifunctional Meter HORIBA U-5000 UHB5F2BB		
Date of Calibration:	26 February, 2019	Date of Next Calibration:	26 May, 2019
PARAMETERS:			
Redox Potential	Method Ref: APHA (21st edition)	, 2580B	
	Method Ref: Orion Research Inst	ruction Manual and the Laborator	y Manual
	the Environmental of Water, Was	tewater and Soil (2nd edition), Ru	mp & Krist (1992)
	Expected Reading (mV)	Displayed Reading (mV)	Difference of A and B (mV)
	Solution A (~234mV)	228	
	Solution B (~300mV)	295	+67.0
		Tolerance Limit (mV)	>66
Temperature	Method Ref: Section 6 of Interna	tional Accreditation New Zealand	Technical
	Guide No. 3 Second edition Marc	h 2008: Working Thermometer Ca	libration Procedure.

	dude No. 3 Second cuttor materi 2000. Working memoriter campration roccudie.							
Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)						
11.0	11.48	+0.5						
21.0	21.66	+ O. 7						
38.0	39.07	+ 1.1						
	Tolerance Limit (°C)	±2.0						

Ma Alin

Mr Chan Siu Ming, Vico Manager - Inorganic

Appendix G Event / Action Plan for Water Quality Exceedance

Event	Action								
	ET	IEC	SO	Contractor					
Action level being exceeded by one sampling day	Repeat in-situ measurement to confirm findings; Identify source(s) of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; Repeat measurement on next day of exceedance. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the SO accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented. (The above actions should be taken within 1 working day after the exceedance is identified)	Inform the SO and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and SO within 3 working days; Implement the agreed mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)					
Action level being exceeded by more than one consecutive sampling days	Identify source(s) of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; Repeat measurement on next working day of exceedance. (The above actions should be taken within 1 working day after Action Level being exceeded by two consecutive sampling days)	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the SO accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after Action Level being exceeded by two consecutive sampling days)	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented. Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after Action Level being exceeded by two consecutive sampling days)	Inform the SO and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and SO within 3 working days; Implement the agreed mitigation measures. (The above actions should be taken within 1 working day after Action Level being exceeded by two consecutive sampling days)					

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1

Keppel Seghers – Zhen Hua Joint Venture

Event	Action								
	ET	IEC	SO	Contractor					
Limit level	Inform the SO and confirm	Discuss with ET and	Discuss with IEC, ET and	Inform the SO and confirm					
being exceeded	notification of the non-	Contractor on the mitigation	Contractor on the proposed	notification of the non-					
by one	compliance in writing;	measures;	mitigation measures;	compliance in writing;					
sampling day	Rectify unacceptable practice;	Review proposals on	Request Contractor to	Rectify unacceptable practice;					
	Check all plant and	mitigation measures submitted	critically review the working	Check all plant and					
	equipment;	by Contractor and advise the	methods;	equipment;					
	Consider changes of working	SO accordingly;	Make agreement on the	Consider changes of working					
	methods;	Assess the effectiveness of	mitigation measures to be	methods;					
	Discuss with Contractor, IEC	the implemented mitigation	implemented.	Discuss with ET, IEC and SO					
	and SO and propose	measures.	Assess the effectiveness of	and propose mitigation					
	mitigation measures to IEC	(The above actions should be	the implemented measures.	measures to IEC and SO					
	and SO within 3 working days;	taken within 1 working day	(The above actions should be	within 3 working days;					
	Implement the agreed	after the exceedance is	taken within 1 working day	Implement the agreed					
	mitigation measures.	identified)	after the exceedance is	mitigation measures.					
	(The above actions should be		identified)	(The above actions should be					
	taken within 1 working day			taken within 1 working day					
	after the exceedance is			after the exceedance is					
	identified)			identified)					

Event	Action							
	ET	IEC	SO	Contractor				
Limit level	Identify source(s) of impact;	Discuss with ET and	Discuss with IEC, ET and	Inform the SO and confirm				
being exceeded	Inform IEC, Contractor and	Contractor on the mitigation	Contractor on the proposed	notification of the non-				
by more than	EPD;	measures;	mitigation measures;	compliance in writing;				
one	Check monitoring data, all	Review proposals on	Request Contractor to	Rectify unacceptable practice;				
consecutive	plant, equipment and	mitigation measures submitted	critically review the working	Check all plant and				
sampling days	Contractor's working methods.	by Contractor and advise the	methods;	equipment;				
	Discuss mitigation measures	SO accordingly;	Make agreement on the	Consider changes of working				
	with IEC, SO and Contractor.	Assess the effectiveness of	mitigation measures to be	methods;				
	Ensure mitigation measures	the implemented mitigation	implemented.	Discuss with ET, IEC and SO				
	are implemented;	measures.	Assess the effectiveness of	and propose mitigation				
	Increase the monitoring	(The above actions should be	the implemented measures.	measures to IEC and SO				
	frequency to daily until no	taken within 1 working day	Consider and instruct, if	within 3 working days;				
	exceedance of Limit level for	after Limit Level being	necessary, the Contractor to	Implement the agreed				
	two consecutive days.	exceeded by two consecutive	slow down or to stop all or part	mitigation measures;				
	(The above actions should be	sampling days)	of the marine work until no	As directed by the SOR, to				
	taken within 1 working day		exceedance of Limit level.	slow down or to stop all or part				
	after Limit Level being		(The above actions should be	of the marine work or				
	exceeded by two consecutive		taken within 1 working day	construction activities.				
	sampling days)		after Limit Level being	(The above actions should be				
			exceeded by two consecutive	taken within 1 working day				
			sampling days)	after Limit Level being				
				exceeded by two consecutive				
				sampling days)				

Appendix H Noise Monitoring Equipment Calibration Certificate

Certificate of Calibration

for

Description:	Sound Level Meter
Manufacturer:	NTi Audio
Type No.:	XL2 (Serial No.: A2A-13661-E0)
Microphone:	ACO 7052 (Serial No.:70537)
Preamplifier:	NTi Audio MA220 (Serial No.:6282)

Submitted by:

Customer: Acuity Sustainability Consulting Limited Company Address: Unit 1908, iPlace, Nos. 301-305 Castle Peak Road, Kwai Chung, New Territories

Upon receipt for calibration, the instrument was found to be:

\checkmark	Within
	Outside

Calibrated by:

the allowable tolerance.

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

Date of receipt: 7 September 2018

Date of calibration: 10 September 2018

Calibration Technician

Certified by: Mr. Ng Yan Wa

Yaboratory Manager

Date of issue: 10 September 2018

Certificate No.: APJ18-086-CC001

Page 1 of 4

Room 422,Leader Industrial Centre,57-59 Au Pui Wan Street ,Fo Tan, Shatin,N.T.,Hong Kong Tel: (852) 2668 3423 Fax:(852) 2668 6946 Homepage: http://www.aa-lab.com E-mail : inquiry@aa-lab.com

1. Calibration Precaution:

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- The results presented are the mean of 3 measurements at each calibration point.

2. Calibration Conditions:

Air Temperature:	<u>26.0</u> °C
Air Pressure:	1008 hPa
Relative Humidity:	64.8 %

3. Calibration Equipment:

	Туре	Serial No.	Calibration Report Number	Traceable to
Multifunction Calibrator	B&K 4226	2288467	AV180064	HOKLAS

4. Calibration Results

Sound Pressure Level

Reference Sound Pressure Level

Sett	Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. V	Veighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130	dBA	SPL	Fast	94	1000	94.0	±0.4

Linearity

Setting of Unit-under-test (UUT)			Setting of Unit-under-test (UUT) Applied value			UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. W	/eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
				94		94.0	Ref
30-130	dBA	SPL	Fast	104	1000	104.0	±0.3
				114		114.0	±0.3

Time Weighting

Sett	Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130	dBA	SPL	Fast	94	1000	94.0	Ref
50-150	30-130 dBA SI	SFL	Slow	94	1000	94.0	±0.3

Certificate No.: APJ18-086-CC001

Page 2 of 4

Room 422,Leader Industrial Centre,57-59 Au Pui Wan Street ,Fo Tan, Shatin,N.T.,Hong Kong Tel: (852) 2668 3423 Fax:(852) 2668 6946 Homepage: http://www.aa-lab.com E-mail : inquiry@aa-lab.com

Frequency Response

Linear Response

Setting of Unit-under-test (UUT)			Appl	lied value	UUT Reading,	IEC 61672 Class 1								
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB							
					31.5	93.9	±2.0							
	dB SPL			63	94.0	±1.5								
		זס ס	Fast	04	125	94.0	±1.5							
30-130					250	94.0	±1.4							
50-150		de 150 de 151 en 1651 94	SIL	ub SFL	Tasi	1 451	1 451	1 431	Tast	Tast	94	500	94.0	±1.4
				1000	94.0	Ref								
					2000	93.8	±1.6							
					4000	93.9	±1.6							

A-weighting

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. Weighting		Time Weighting	Level, dB Frequency, Hz		dB	Specification, dB
				31.5	54.8	-39.4 ±2.0	
				63	67.8	-26.2 ±1.5	
					125	77.9 -16.1±1	-16.1 ±1.5
30-130	dBA	SPL	Fast 94	85.4	-8.6±1.4		
50-150	GD A			24	500	90.8	-3.2±1.4
					1000	94.0	Ref
					2000	95.0	+1.2±1.6
					4000	94.9	+1.0±1.6

C-weighting

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. Weighting		Time Weighting	Level, dB Frequency, Hz		dB	Specification, dB
				31.5	90.9	-3.0±2.0	
				63 93.2	93.2	-0.8±1.5	
					125 93.8	-0.2±1.5	
30-130	dBC	dBC SPL	Fast	94	250	94.0	-0.0±1.4
50-150	uDC				500	94.0	-0.0±1.4
					1000	94.0	Ref
		2000 93.7		93.7	-0.2±1.6		
					4000	93.1	-0.8±1.6

Certificate No.: APJ18-086-CC001

Page 3 of 4

Acoustics and Air Testing Laboratory Co. Ltd. (A+A)*L 聲學及空氣測試實驗室有限公司

Calibration Results Applied 5.

The results apply to the particular unit-under-test only. All calibration points are within manufacture's specification as IEC 61672 Class 1.

Uncertainties of Applied Value:

04 dD	31.5 Hz	± 0.15
94 dB	63 Hz	± 0.05
	125 Hz	\pm 0.05
	250 Hz	± 0.05
	500 Hz	± 0.10
	1000 Hz	± 0.05
	2000 Hz	± 0.05
	4000 Hz	± 0.10
104 dB	1000 Hz	± 0.05
104 dB	1000 Hz	± 0.05
114 00		

The uncertainties are evaluated for a 95% confidence level.

Note:

The values given in this certification only related to the values measured at the time of the calibration and any uncertainties quoted will not allow for the equipment long-term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the calibration. (A+A)*L shall not be liable for any loss or damage resulting from the use of the equipment.

Certificate No.: APJ18-086-CC001

CALIBRATION CERTIFICATE

<i>Certificate Informat</i> Date of Issue	22-Oct-2018	7	Certificate Number	MLCN182538S
Date of Issue	22-001-2018		Certificate Number	WILCIN1825585
Customer Information	011			
Company Name	Acuity Sustainal	oility Consulting Limite	xd	
Address		301-305 Castle Peak R	oad,	
	Kwai Chung, N.	Т.		
Equipment-under-T	est (EUT)			
Description	Sound & Vibrat	ion Analyser		
Manufacturer	Svantek			
Model Number	SVAN 958A			
Serial Number	36691			
Equipment Number				
Calibration Particul	ar			
Date of Calibration	22-Oct-2018			
Calibration Equipment	4231(MLTE008	3) / / 0-Jan-1900		
	CE-7144(MLTH	E120) / SSD201606579	/ 27-Oct-2019	
Calibration Procedure	MLCG00, MLC	C15		
			23 °C ± 5 °C	
Calibration Conditions	Laboratory	Temperature Relative Humidity	$55\% \pm 25\%$	
	EUT	Stabilizing Time	Over 3 hours	
	Bor	Warm-up Time	10 minutes	
		Power Supply	Internal battery	
Calibration Results	Svantek Vibrati	on Accelerometer PNR	: SV84, SNR : D6013.	
		were detailed in the co		
	EUT reading in	Vibration Mode of Z-A	axis was found to be very low.	
Approved By & Date	e			
		1		
		6	K.O. Lo	22-Oct-201
Statements				
 Calibration equipment use The results on this Calibra 	ed for this calibration ar ation Certificate only re	e traceable to national / inte ate to the values measured :	rnational standards. at the time of the calibration and the uncertain	ties quoted will not
include allowance for the	EUT long term drift, va	riation with environmental	changes, vibration and shock during transporta	tion, overloading,
		er laboratory to repeat the m		
 MaxLab Calibration Centre The copy of this Certificat 	re Limited shall not be lite is owned by MaxLab	table for any loss or damage Calibration Centre Limited	e resulting from the use of the EUT. No part of this Certificate may be reproduced	d without the prior
written approval of MaxLa			part of this continue hay or reproduced	a militar ine prior

Page 1 of 2

Certificate No. MLCN182538S

Channel / Mode	Test Frequency (Hz)	Direction	EUT Reading	Standard Reading	EUT Error (% of Rdg)	Calibration Uncertainty (% of Rdg)
CH1 / Vibration	Test Frequency	X-Axis	7.94 m/s ²	9.00 m/s ²	-11.8%	3%
(peak)	56 Hz		13.2 m/s^2	15.00 m/s ²	-12.0%	3%
	Range		17.8 m/s ²	20.0 m/s^2	-11.0%	3%
	316 m/s^2		35.4 m/s ²	40.0 m/s ²	-11.5%	3%
CH2 / Vibration	Test Frequency	Y-Axis	8.99 m/s ²	9.00 m/s ²	-0.1%	3%
(peak)	56 Hz		14.9 m/s ²	15.00 m/s ²	-0.7%	3%
	Range		20.0 m/s ²	20.0 m/s^2	0.0%	3%
	316 m/s^2		40.0 m/s ²	40.0 m/s ²	0.0%	3%
CH3 / Vibration	Test Frequency	Z-Axis	0.76 m/s ²	9.00 m/s ²	-91.6%	3%
(peak)	56 Hz		0.9 m/s ²	15.00 m/s ²	-94.0%	3%
	Range		0.9 m/s ²	20.0 m/s^2	-95.5%	3%
	316 m/s^2		0.9 m/s^2	40.0 m/s^2	-97.8%	3%

Channel / Mode	Filter / Detector	Range	EU Read	-	Stand Read		EUT Erro	or	Calibrati Uncertai	
CH4 / Sound	A / FAST	105 dE	94.0	dB	94.0	dB	0.0	dB	0.2	dB
	(1 kHz Input)	130 dE	94.1	dB	94.0	dB	0.1	dB	0.2	dB
			114.1	dB	114.0	dB	0.1	dB	0.2	dB
	C / FAST	105 dE	94.0	dB	94.0	dB	0.0	dB	0.2	dB
	(1 kHz Input)	130 dE	94.1	dB	94.0	dB	0.1	dB	0.2	dB
			114.1	dB	114.0	dB	0.1	dB	0.2	dB
	LIN / FAST	105 dE	94.0	dB	94.0	dB	0.0	dB	0.2	dB
	(1 kHz Input)	130 dE	94.1	dB	94.0	dB	0.1	dB	0.2	dB
			114.1	dB	114.0	dB	0.1	dB	0.2	dB
	A / SLOW	105 dE	94.0	dB	94.0	dB	0.0	dB	0.2	dB
	(1 kHz Input)	130 dE	114.1	dB	114.0	dB	0.1	dB	0.2	dB
	C / SLOW	105 dE	94.0	dB	94.0	dB	0.0	dB	0.2	dB
	(1 kHz Input)	130 dE	114.1	dB	114.0	dB	0.1	dB	0.2	dB
	LIN / SLOW	105 dE	94.0	dB	94.0	dB	0.0	dB	0.2	dB
	(1 kHz Input)	130 dE	114.1	dB	114.0	dB	0.1	dB	0.2	dB
	A / IMPULSE	105 dE	94.0	dB	94.0	dB	0.0	dB	0.2	dB
	(1 kHz Input)	130 dE	114.1	dB	114.0	dB	0.1	dB	0.2	dB
	C / IMPULSE	105 dE	94.0	dB	94.0	dB	0.0	dB	0.2	dB
	(1 kHz Input)	130 dE	114.1	dB	114.0	dB	0.1	dB	0.2	dB
	LIN / IMPULSE	105 dE	94.0	dB	94.0	dB	0.0	dB	0.2	dB
	(1 kHz Input)	130 dE	114.1	dB	114.0	dB	0.1	dB	0.2	dB

- END -

Calibrated By : Date :

Dan 22-Oct-2018 Checked By : Date :

K.O. Lo 22-Oct-2018

Page 2 of 2

萬儀校正中心有限公司 MaxLab Calibration Centre Limited

Certificate of Calibration

for

Description:	Sound Level Meter
Manufacturer:	NTi Audio
Type No.:	XL2 (Serial No.: A2A-13548-E0)
Microphone:	ACO 7052 (Serial No.:60997)
Preamplifier:	NTi Audio MA220 (Serial No.:5287)
	Submitted by:

Customer:	Acuity Sustainability Consulting Limited					
Address:	Unit 1908, iPlace, Nos. 301-305 Castle Peak Road,					
	Kwai Chung, New Territories					

Upon receipt for calibration, the instrument was found to be:

\checkmark	Within
\Box	Outside

the allowable tolerance.

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

Date of receipt: 8 January 2019

Date of calibration: 10 January 2019

Calibration Technician

Date of issue: 10 January 2019

Calibrated by:

Certificate No.: APJ18-157-CC001

Certified by:

//Mr. Ng Yan Wa Laboratory Manager

Page 1 of 4

Room 422,Leader Industrial Centre,57-59 Au Pui Wan Street ,Fo Tan, Shatin,N.T.,Hong Kong Tel: (852) 2668 3423 Fax:(852) 2668 6946 Homepage: http://www.aa-lab.com E-mail : inquiry@aa-lab.com

1. Calibration Precaution:

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- The results presented are the mean of 3 measurements at each calibration point.

2. Calibration Conditions:

Air Temperature:	22.3 °C
Air Pressure:	1006 hPa
Relative Humidity:	71.3 %

3. Calibration Equipment:

	Туре	Serial No.	Calibration Report Number	Traceable to
Multifunction Calibrator	B&K 4226	2288467	AV180064	HOKLAS

4. Calibration Results

Sound Pressure Level

Reference Sound Pressure Level

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. Weighting Time Weighting		Level, dB	Frequency, Hz	dB	Specification, dB	
30-130	dBA	SPL	Fast	94	1000	94.0	±0.4

Linearity

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
				94		94.0	Ref
30-130	dBA	SPL	Fast	104	1000	104.0	±0.3
				114		114.0	±0.3

Time Weighting

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. Weighting		Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130	dBA	SPL	Fast	94	1000	94.0	Ref
30-130	dBA	SA SPL	Slow	94	1000	94.0	±0.3

Certificate No.: APJ18-157-CC001

Page 2 of 4

Frequency Response

Linear Response

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. We	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
				31.5	94.0	±2.0	
			Fast	94	63	94.1	±1.5
					125	94.1	±1.5
					250	94.0	±1.4
30-130	dB SPL	SPL			500	94.0	±1.4
					1000	94.0	Ref
					2000	93.8	±1.6
					4000	93.8	±1.6
					8000	92.7	+2.1: -3.1

A-weighting

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
		dBA SPL	Fast	94	31.5	54.8	-39.4 ±2.0
					63	67.9	-26.2±1.5
					125	78.0	-16.1±1.5
					250	85.4	-8.6±1.4
30-130	dBA				500	90.8	-3.2±1.4
					1000	94.0	Ref
					2000	95.1	+1.2±1.6
					4000	94.8	+1.0±1.6
					8000	91.6	-1.1+2.1; -3.1

C-weighting

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	91.0	-3.0±2.0
			Fast	63 125 250 94 500	93.2	-0.8±1.5	
					125	93.9	-0.2±1.5
					250	94.0	-0.0±1.4
30-130	dBC SPL	SPL			500	94.0	-0.0±1.4
				1000	94.0	Ref	
					2000	93.7	-0.2±1.6
					4000	93.0	-0.8±1.6
				8000	89.7	-3.0 +2.1: -3.1	

Certificate No.: APJ18-157-CC001

Page 3 of 4

5. Calibration Results Applied

The results apply to the particular unit-under-test only. All calibration points are within manufacture's specification as IEC 61672 Class 1.

Uncertainties of Applied Value:

94 dB	31.5 Hz	± 0.05
	63 Hz	± 0.05
	125 Hz	± 0.10
	250 Hz	± 0.10
	500 Hz	± 0.10
	1000 Hz	± 0.05
	2000 Hz	± 0.05
	4000 Hz	± 0.10
	8000 Hz	± 0.10
104 dB	1000 Hz	± 0.05
114 dB	1000 Hz	± 0.05

The uncertainties are evaluated for a 95% confidence level.

Note:

The values given in this certification only related to the values measured at the time of the calibration and any uncertainties quoted will not allow for the equipment long-term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the calibration. (A+A)*L shall not be liable for any loss or damage resulting from the use of the equipment.

Certificate No.: APJ18-157-CC001

Page 4 of 4

3

CALIBRATION CERTIFICATE

Certificate Informatio				ML CN1920245			
Date of Issue	23-Nov-2018		Certificate Number	MLCN182934S			
Customer Informatio	n						
Company Name		oility Consulting Limite	:d				
Address		301-305 Castle Peak R					
	Kwai Chung, N.		,				
	,						
Equipment-under-Te	st (EUT)						
Description	Sound Level Cal	ibrator					
Manufacturer	Rion						
Model Number	NC-74						
Serial Number	34504770						
Equipment Number							
Calibration Particula	r						
Date of Calibration	23-Nov-2018						
Calibration Equipment) / AV180068 / 13 Ma	-20				
	4231(MLTE008) / AV180068 / 13-May-20 1357(MLTE190) / MLEC18/05/02 / 25-May-19						
) / WILLEC 10/05/02 / 25	-way-19				
Calibration Procedure	MLCG00, MLC	G15					
Calibration Conditions			23 °C ± 5 °C				
	Laboratory	Temperature Relative Humidity	$23 \ C \pm 3 \ C$ 55% ± 25%				
	EUT	Stabilizing Time	Over 3 hours				
	LUI	Warm-up Time	Not applicable				
		Power Supply	Internal battery				
Calibration Descripto	Calibration data	were detailed in the co					
Calibration Results		It was out of EUT spec					
	Calibration resul	it was out of EOT spec	incation.				
Approved By & Date							
			Λ				
			K.O. Lo	23-Nov-2018			
Statements							
* Calibration equipment used				intics quoted will not			
			t the time of the calibration and the uncerta hanges, vibration and shock during transpo				
mishandling, misuse, and th	•			, e reneraling,			
			resulting from the use of the EUT.				
 The copy of this Certificate written approval of MaxLab 	-		No part of this Certificate may be reproduc	ed without the prior			
written approval of MaxLab	Canoration Centre Li	mitted.					

Certificate No. N

MLCN182934S

Calibration Data											
EUT Setting	Standard Reading	EUT Error from Setting	Calibration Uncertainty	EUT Specification							
94 dB	94.0 dB	0.0 dB	0.20 dB	\pm 0.3 dB							

- END -

Calibrated By : Date :

.

Dan 23-Nov-18
 Checked By :
 K.O. Lo

 Date :
 23-Nov-18

Page 2 of 2

Appendix I Event / Action Plan for Noise Exceedance

exceeded		to the IEC, SO and Contractor; Discuss with the IEC and Contractor on remedial measures	1. 2.	measures by the Contractor and advise the SO accordingly; Advise the SO on the effectiveness	1. 2. 3.	failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be	1.	Actions to be taken by Contractor as immediate as practicable . Submit noise mitigation proposals to IEC and SO; . Implement noise mitigation proposals. (The above actions should be taken within 2 working
Limit Level	1.	required; Increase monitoring frequency to check mitigation effectiveness. (The above actions should be taken within 2 working .days after the exceedance is identified) Inform IEC, SO, Contractor and	1.	measures. (The above actions should be taken within 2 working days after the exceedance is identified). Discuss amongst SO, ET, and			1.	days after the exceedance is identified) . Take immediate action to
being exceeded	3. 4. 5. 6. 7.	EPD; Repeat measurements to confirm		Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the SO accordingly; (The above actions should be	2. 3. 4.	failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented;	2. 3. 4.	avoid further exceedance; Submit proposals for remedial actions to IEC and SO within 3 working days of notification; Implement the agreed proposals; Submit further proposal if

Appendix J Noise Monitoring Data

Location:	Shek Kwu Chau Treatment & Rehabilitation Centre Hostel 1 (M1 / N_S1)
Monitoring date:	4, 11, 18, 25 March 2019 (Impact)
	29, 30 March 2019 (Additional)
Parameter:	Leq 30min (Impact), Leq 5min (Additional)
Noise source other than construction activities from the Project:	Nil

Noise Monitoring data:

Date	Start time		End time	Weather	$\frac{L_{eq 30min} dB(A)}{L_{eq 5min} dB(A)}$	Sound Level Meter Used	Calibrator Used	
04-03- 2019	11:31	-	12:01	Sunny	54.5	XL2 (Serial No. A2A-13661-E0)	NC-74 (No. 34504770)	
11-03- 2019	11:20	-	11:50	Sunny	53.7	XL2 (Serial No. A2A-13661-E0)	NC-74 (No. 34504770)	
18-03- 2019	11:30	-	12:00	Sunny	54.9	XL2 (Serial No. A2A-13661-E0)	NC-74 (No. 34504770)	
25-03- 2019	11:22	-	11:52	Sunny	54.9	XL2 (Serial No. A2A-13661-E0)	NC-74 (No. 34504770)	
29-03-	19:14	-	19:19		55.0	SVAN 059A	NC 74 (No	
29-03-	21:04	-	21:09	Fine	55.2	SVAN 958A (Serial No. 36691)	NC-74 (No. 34504770)	
2019	22:44	-	22:49		55.4	(Senai No. 50091)	34304770)	
29-03- 2019	23:34	-	23:39		55.0		NC-74 (No. 34504770)	
30-03- 2019	04:04	I	04:09	Fine	53.3	SVAN 958A (Serial No. 36691)		
30-03- 2019	06:34	-	06:39		55.8			

Location:	Shek Kwu Chau Treatment & Rehabilitation Centre Hostel 2 (M2 / N_S2)
Monitoring date:	4, 11, 18, 25 March 2019 (Impact)
	29, 30 March 2019 (Additional)
Parameter :	Leq 30min (Impact), Leq 5min (Additional)
Noise source other than construction activities from the Project:	Nil
Remarks:	For the additional noise impact monitoring in restricted hour on 29 March 2019, probably due to heavy rain patch on that night, an unexpected failure happened for the sound level meter on monitoring station M2.

Noise Monitoring data:

Date	Start time		End time	Weather	L _{eq 30min} dB(A)	Sound Level Meter Used	Calibrator Used
04-03- 2019	10:51	-	11:21	Sunny	55.6	XL2 (Serial No. A2A- 13661-E0)	NC-74 (No. 34504770)
11-03- 2019	10:43	-	11:13	Sunny	56.4	XL2 (Serial No. A2A- 13661-E0)	NC-74 (No. 34504770)
18-03- 2019	10:54	-	11:24	Sunny	55.1	XL2 (Serial No. A2A- 13661-E0)	NC-74 (No. 34504770)
25-03- 2019	10:42	-	11:12	Sunny	56.5	XL2 (Serial No. A2A- 13661-E0)	NC-74 (No. 34504770)

Location:	Shek Kwu Chau Treatment & Rehabilitation Centre Hostel 3 (M3 / $N_S3)$
Monitoring date:	4, 11, 18, 25 March 2019 (Impact)
	29, 30 March 2019 (Additional)
Parameter :	Leq 30min (Impact), Leq 5min (Additional)
Noise source other than construction activities from the Project:	Air-conditioning units nearby

Noise Monitoring data:

Date	Start time		End time	Weather	$\frac{L_{eq 30min} dB(A)}{L_{eq 5min} dB(A)}$	Sound Level Meter Used	Calibrator Used		
04-03- 2019	10:09	-	10:39	Sunny	54.9	XL2 (Serial No. A2A-13661-E0)	NC-74 (No. 34504770)		
11-03- 2019	10:07	-	10:37	Sunny	54.8	XL2 (Serial No. A2A-13661-E0)	NC-74 (No. 34504770)		
18-03- 2019	10:11	-	10:41	Sunny	56.0	XL2 (Serial No. A2A-13661-E0)	NC-74 (No. 34504770)		
25-03- 2019	10:04	-	10:34	Sunny	55.1	XL2 (Serial No. A2A-13661-E0)	NC-74 (No. 34504770)		
29-03-	19:14	-	19:19		53.0	XL2 (Serial No.	NC-74 (No.		
2019	21:04	-	21:09	Fine	54.7	A2A-13548-E0)	34504770)		
2017	22:44	-	22:49		53.3	A2A-15546-L0)	34304770)		
29-03- 2019	23:34	-	23:39		53.7				
30-03- 2019	04:04	-	04:09	Fine	53.3	XL2 (Serial No. A2A-13548-E0)	NC-74 (No. 34504770)		
30-03- 2019	06:34	-	06:39		53.9				

Appendix K Waste Flow Table

吉寶西格斯 - 振華聯營公司 Keppel Seghers - Zhen Hua Joint Venture

Monthly Summary Waste Flow Table for _____

____ (year)

Contract No · EP/SP/66/12

2018

Project : Integrated Waste Management Facilities, Phase I

	Jeet - integrated waste ivialiagement l'acinties, l'hase l													
		Actual	Quantities of	f Inert C&D	Materials Ger	nerated Mon	thly		Actual Quantities of C&D Wastes Generated Monthly					
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete (see Note 1)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill Sand	Imported Fill Public fill	Imported Fill Rock	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste		Others, e.g. general refuse (see Note 3)
	(in ,000m ³)	(in ,000m ³)	(in ,000m ³)	(in ,000m ³	(in ,000m ³)	(in ,000m ³)		(in ,000 kg)	(in ,000kg)	(in ,000kg)	(in ,000kg)	(in ,000L)	(in ,000 m ³)
Jan	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Feb	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mar	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apr	0	0	0	0	0	0	0	0	0	0	0	0	0	0
May	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Jun	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sub-total	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Jul	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Aug	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0065
Sep	0	0	0	0	0	2.9619	0	0	0	0	0	0	0	0
Oct	0	0	0	0	0	3.0771	0	0	0	0	0	0	0	0.013
Nov	0	0	0	0	0	6.7871	0	0	0	0	0	0	0	0
Dec	0	0	0	0	0	59.0709	0	0	0	0	0	0.2	0.87	0
Total	0	0	0	0	0	71.8970	0	0	0	0	0	0.2	0.87	0.0195

(1) Broken concrete for recycling into aggregates.

Notes:

(2) Plastics refer to plastic bottles/ containers, plastic sheets/ foam from packaging materials.

(3) Use the conversion factor : 1 full load of dumping truck being equivalent to 6.5m^3 by volume.

吉寶西格斯 - 振華聯營公司 Keppel Seghers - Zhen Hua Joint Venture

Monthly Summary Waste Flow Table for _____

____ (year)

Contract No.: EP/SP/66/12

2019

Project : Integrated Waste Management Facilities, Phase I

		U	Quantities of		Materials Ger	nerated Mon	thly		Actual Quantities of C&D Wastes Generated Monthly					
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete (see Note 1)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill Sand	Imported Fill Public fill	Imported Fill Rock	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemica	l Waste	Others, e.g. general refuse (see Note 3)
	(in ,000m ³)	(in ,000m ³)	(in ,000m ³)	(in ,000m ³	(in ,000m ³)	(1	in ,000m ³)		(in ,000 kg)	(in ,000kg)	(in ,000kg)	(in ,000kg)	(in ,000L)	(in ,000 m ³)
Jan	0	0	0	0	0	82.6139	0	0	0	0	0	0	0	0.0065
Feb	0	0	0	0	0	46.7821	0	0	0	0	0	0	0	0
Mar	0	0	0	0	0	97.1	0	0.7552	0	0.256	0	0	0	0
Apr														
May														
Jun														
Sub-total	0	0	0	0	0	226.496	0	0.7552	0	0.256	0	0	0	0.0065
Jul														
Aug														
Sep														
Oct														
Nov														
Dec														
Total	0	0	0	0	0	226.496	0	0.7552	0	0.256	0	0	0	0.0065

(1) Broken concrete for recycling into aggregates.

Notes:

(2) Plastics refer to plastic bottles/ containers, plastic sheets/ foam from packaging materials.

(3) Use the conversion factor : 1 full load of dumping truck being equivalent to 6.5m^3 by volume.

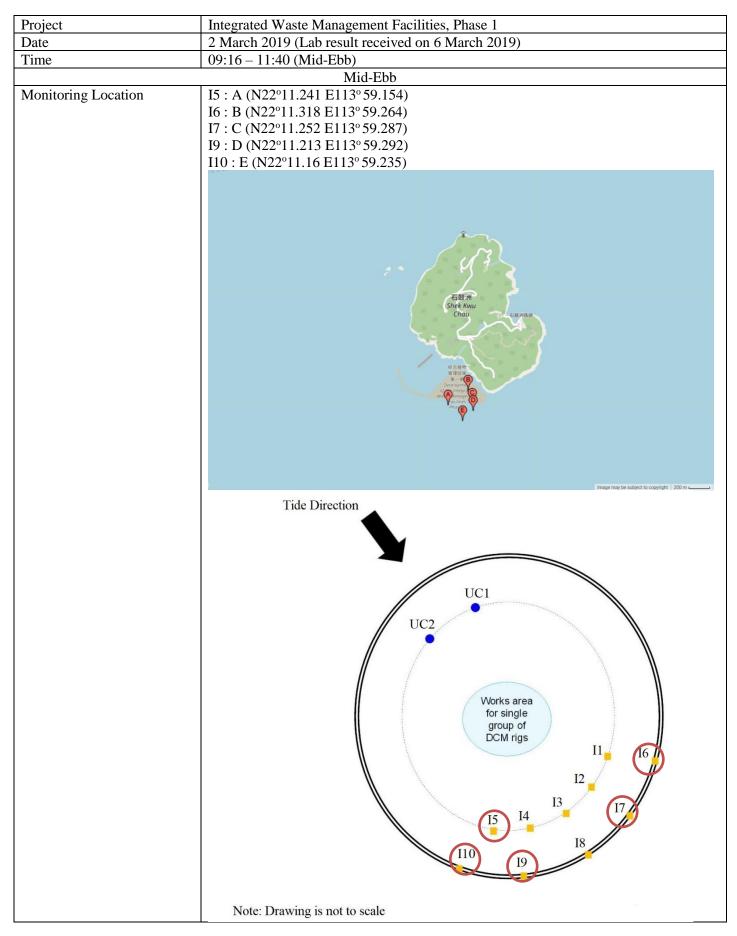
Appendix L Event / Action Plan for Coral Monitoring

Keppel Seghers – Zhen Hua Joint Venture

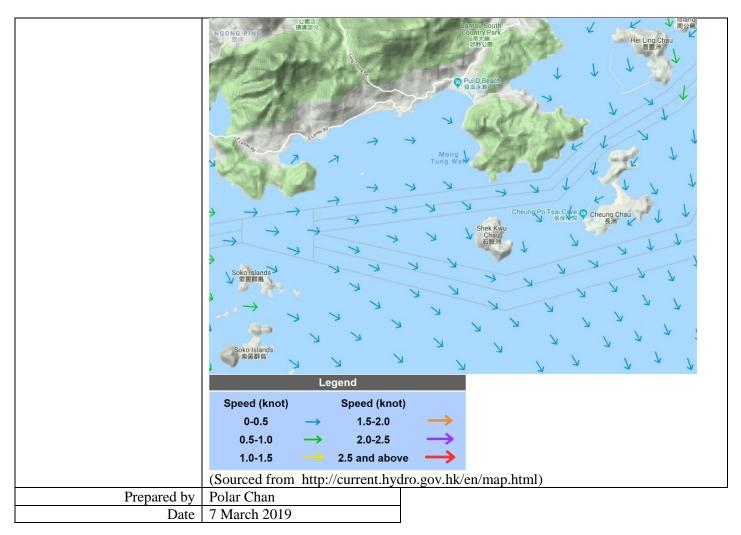
Event	Action											
_	ET Leader II	EC S	o c	ontractor								
Exceedance	2. Inform the IEC, SO ,and	Discuss monitoring with the 1. ET and the Contractor; Review proposals for additional monitoring and any other measures submitted by the Contractor 2. and advise the SO accordingly.	Discuss with the IEC 1. additional monitoring requirements and any other measures proposed by the 2. ET; Make the agreement on the measures to be 3. implemented.	notification of the non-compliance in writing; Discuss with the ET and the IEC and propose measures to the IEC and the SO;								
Limit Level ¹ Exceedance	 Undertake Steps 1-4 as in 1. the Action Level Exceedance. If further 2. exceedance of Limit Level, propose enhancement measures for consideration. 	Discuss monitoring with the 1. ET and the Contractor; Review proposals for additional monitoring and any other measures submitted by the Contractor 2. and advise the SO accordingly.	Discuss with the IEC 1. additional monitoring requirements and any other measures proposed by the 2. ET; Make the agreement on the measures to be 3. implemented.	notification of the non-compliance in writing; Discuss with the ET and the IEC and propose measures to the IEC and the SO;								

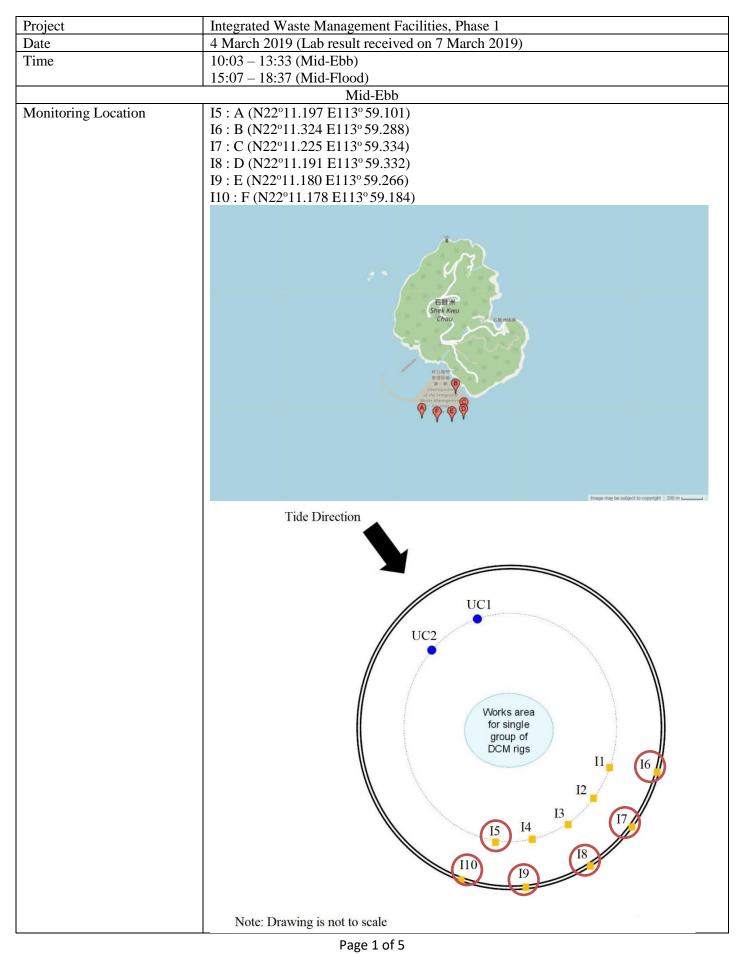
Appendix M Event / Action Plan for White-Bellied Sea Eagle

Event	Action											
	Environmental	Audit Team	Contractor									
	Team											
Absence of White-bellied Sea Eagle during a whole day of monitoring.	Inform audit team. Increase monitoring frequency to daily.	 Inform site engineer and contractor. If the absence remains: Review construction activities and noise monitoring records of the associated period; Identify potential causes of the absence; Propose remedial measures, such as change of construction method and sequence; Confirm the feasibility of the proposed remedial measures with site engineer and contractor; Discuss with environmental team about the effectiveness of the proposed remedial measures. 	Implement the agreed remedial measures.									


Appendix N Exceedance Report

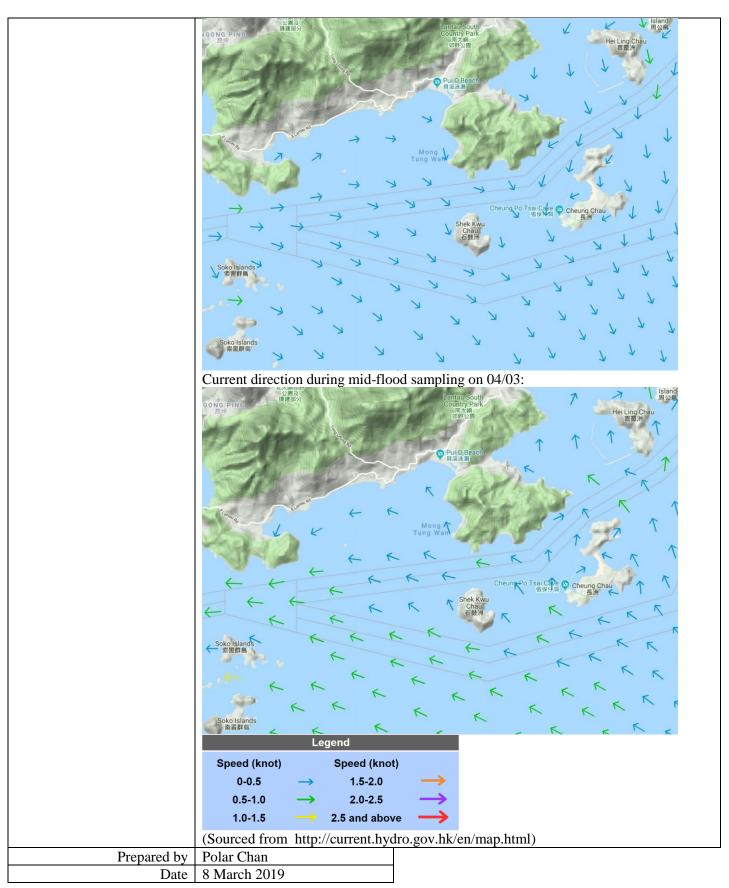
Integrated Waste Management Facilities, Phase 1

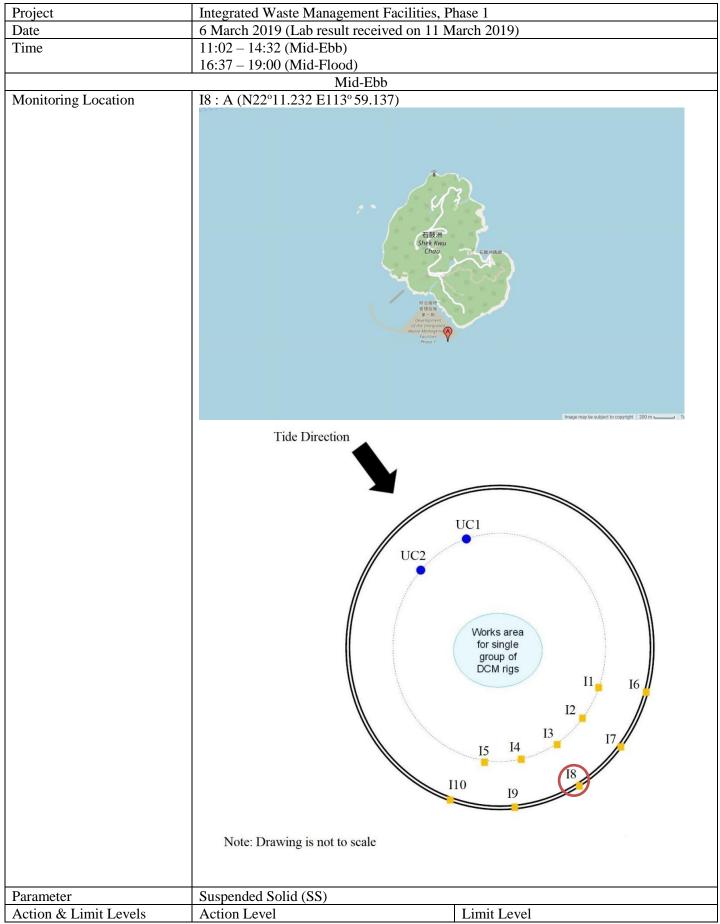

	Wate	r Quality	
Location	Action Level	Limit Level	Total
B1	0	1	1
B2	2	0	2
B3	1	1	2
B4	0	1	1
CR1	2	0	2
CR2	3	0	3
F1	3	0	3
H1	2	0	2
S 1	1	0	1
S2	1	0	1
S3	3	0	3
M1	4	0	4
	Water Quality	(Intensive DCM)	
Location	Action Level	Limit Level	Total
I1	1	1	2
I2	1	2	3
I3	0	2	2
I4	1	2	3
15	0	3	3
I6	0	3	3
I7	0	4	4
I8	0	4	4
I9	1	4	5
I10	2	3	5


Statistical Summary of Exceedances in the Reporting Period

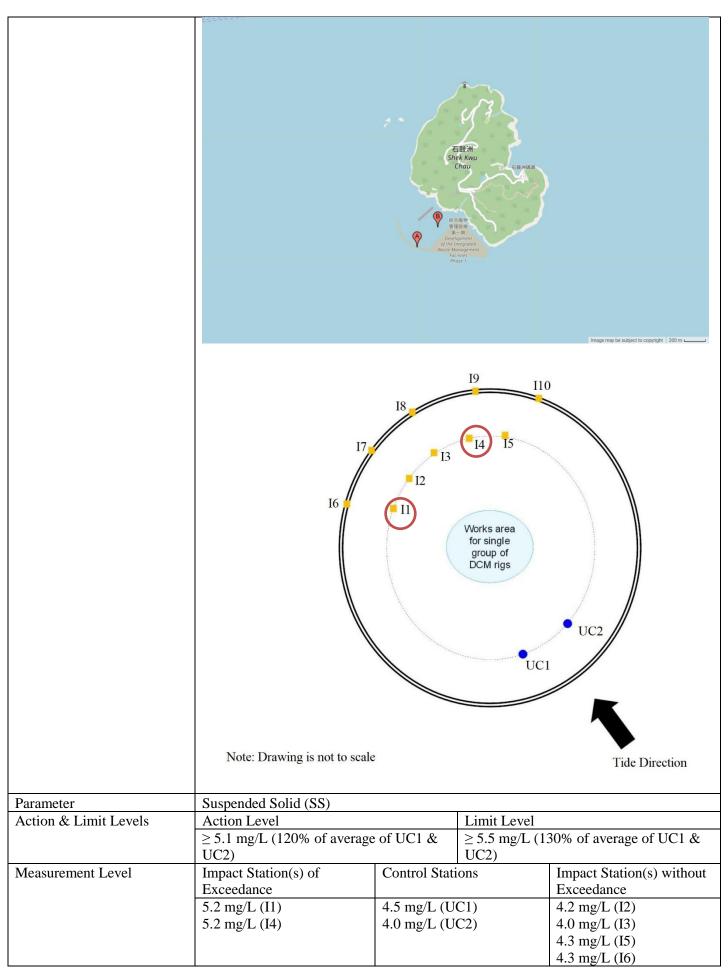
	Noise (Day Time)					
Location	Action Level	Limit Level T				
M1 / N_S1	0	0	0			
M2 / N_S2	0	0	0			
M3 / N_S3	0	0	0			
	Noise (Eve	ening Time)				
Location	Action Level	Limit Level	Total			
M1 / N_S1	0	0	0			
M2 / N_S2	0	0	0			
M3 / N_S3	0	0	0			
	Noise (N	ight Time)				
Location	Action Level	Limit Level	Total			
M1 / N_S1	0	0	0			
M2 / N_S2	0	0	0			
M3 / N_S3	0	0	0			

Parameter	Suspended Solid (SS)				
Action & Limit Levels	Action Level		Limit Level		
	\geq 4.1 mg/L (120% of average of UC1 & UC2)		\geq 4.4 mg/L (130% of average of UC1 & UC2)		
Measurement Level	Impact Station(s) of	Control Stations		Impact Station(s) without	
	Exceedance			Exceedance	
	5.0 mg/L (I5)	2.8 mg/L (UC1)		3.8 mg/L (I1)	
	9.0 mg/L (I6)	4.0 mg/L (U	(C2)	3.5 mg/L (I2)	
	6.3 mg/L (I7)			3.7 mg/L (I3)	
	7.5 mg/L (I9)			2.3 mg/L (I4)	
	5.7 mg/L (I10)			3.8 mg/L (I8)	
Possible reason for Action or Limit Level Non-compliance				enetration test works, DCM	
	Dominating sea current direction was found to be from Northwest to Southeast at waters around Shek Kwu Chau.				
	 From MMO monitoring records on 02/03, MMO teams were arranged to two barges (ESC-61 & ESC-62) and four derrick barges (Shun Tat D12, DL-5, GE FTB-19) on that day while no deficiency of silt curtain was found before the sconstruction activity. I5, I6, I7, I9 & I10 are located close to the work location within the Project sit silt curtain checking was implemented on FTB19 (07:00), ESC-62 (07:30) and 61 (08:30) by the Contractor and checking results showed that no deficiency of curtain was found on that day. No sand blanket laying works scheduled on Sh D12, Cheung Kee No.7 & Kam Ying No.8 were carried out with referring to so on that day. No surface rock removal works scheduled on DL-5 and GD-851 were carried out with referring to site diary on that day. It might suggest that the SS exceedance at I5, I6, I7, I9 & I10 are deemed to be unrelated to the Project. 			Tat D12, DL-5, GD-851 &	
				ESC-62 (07:30) and ESC- that no deficiency of silt ks scheduled on Shun Tat it with referring to site diary DL-5 and GD-851 were suggest that the SS	
	inspection on 04/03, where n contribute to the increase in s	ess in the present barges in the Project site was checked during week n on 04/03, where no major observation of improper site practice tha e to the increase in SS level was observed during the inspection.			
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is remained to implement all applicable mitigation measures as per the Updated EM&A Manual.				
Remarks	Current direction during mid	-ebb sampling	; on 02/03:		

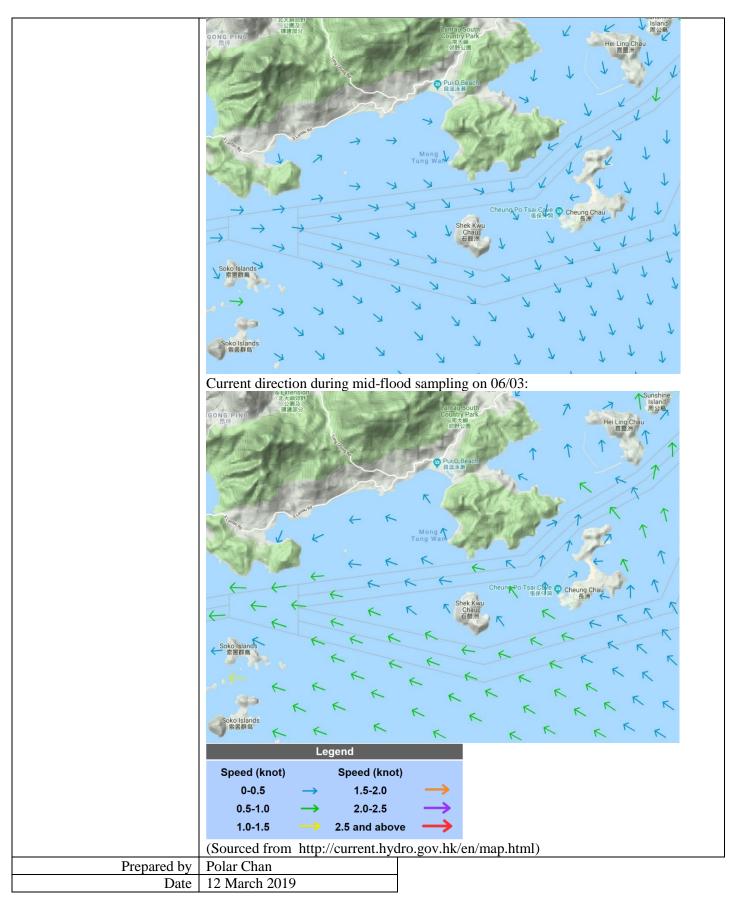


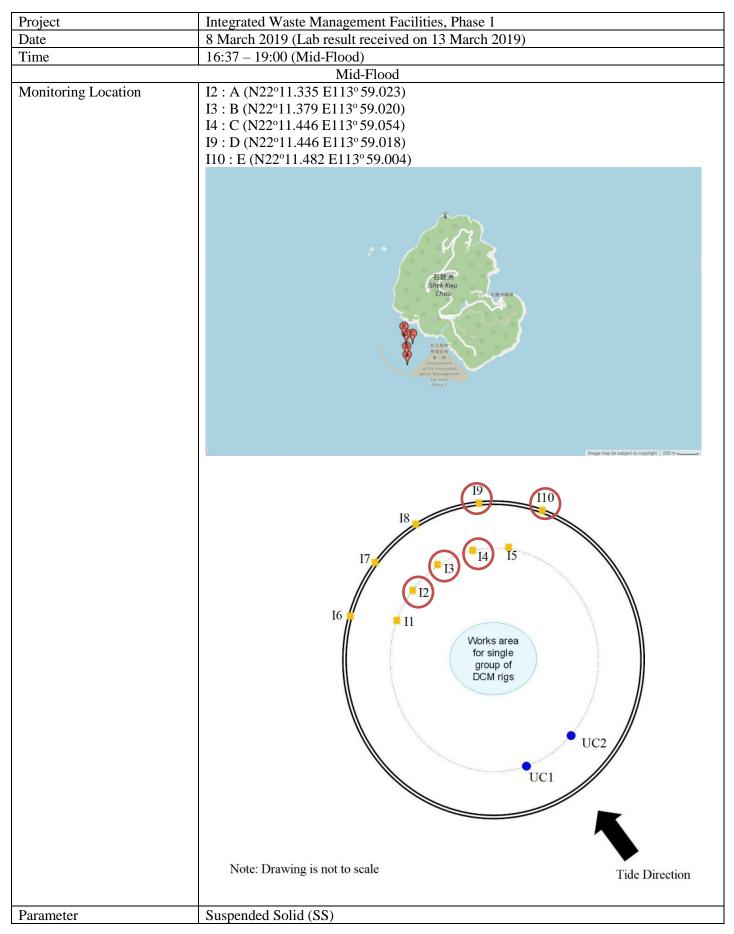


Parameter	Suspended Solid (SS)			
Action & Limit Levels	Action Level		Limit Level	
				130% of average of UC1 &
Measurement Level	Impact Station(s) of Exceedance	Control Stations		Impact Station(s) without Exceedance
	10.8 mg/L (I5) 7.3 mg/L (I6) 7.5 mg/L (I7) 10.0 mg/L (I8)	5.5 mg/L (UC1) 4.7 mg/L (UC2)		4.5 mg/L (I1) 5.8 mg/L (I2) 4.7 mg/L (I3) 3.8 mg/L (I4)
	13.7 mg/L (I9) 9.5 mg/L (I10)			
Possible reason for Action or Limit Level Non-compliance	Works schedule on site on 04 laying of sand blanket at cais sample coring for DCM main static loading test area and le test. Dominating sea current direct	sson seawall a n works, DCM evelling the for	rea, post cone p I main works, l rmation of rubb	benetration test works, DCM aying of rocks material at ble mound of static loading
	 Bonnading sed current direction was found to be from Form west to boundeast at waters around Shek Kwu Chau. From MMO monitoring records on 04/03, MMO teams were arranged to two DCM barges (ESC-61 & ESC-62) and four derrick barges (Shun Tat D12, FTB-19, DL-5 GD-851) on that day while no deficiency of silt curtain was found before the start o construction activity. I5, I6, I7, I8, I9 & I10 are located close to the work location within the Project site while silt curtain checking was implemented on DL-5 (10:30), GD-851 (13:15), FTB19 (09:00), ESC-62 (07:30) and ESC-61 (09:00) by the Contractor and checkin results showed that no deficiency of silt curtain was found on that day. No sand blanket laying works scheduled on Shun Tat D12, Cheung Kee No.7 & Kam Ying No.8 were carried out with referring to site diary on that day. It might suggest that the SS exceedance at I5, I6, I7, I8, I9 & I10 are deemed to be unrelated to the Project. Site tidiness in the present barges in the Project site were checked during weekly sitt inspection on 04/03, where no major observation of improper site practice that might contribute to the increase in SS level was observed during the inspection. 			n Tat D12, FTB-19, DL-5 & as found before the start of on within the Project site 9:30), GD-851 (13:15), he Contractor and checking d on that day. No sand g Kee No.7 & Kam Ying lay. It might suggest that the unrelated to the Project. checked during weekly site oper site practice that might g the inspection.
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during th weekly inspection, and the Contractor is remained to implement all applicable mitigation measures as per the Updated EM&A Manual. Mid-Flood			-
Monitoring Location	I1 : A (N22°11.340 E113°58 I2 : B (N22°11.348 E113°59 I3 : C (N22°11.394 E113°59 I4 : D (N22°11.420 E113°59 I5 : E (N22°11.454 E113°59 I6 : F (N22°11.373 E113°58 I7 : G (N22°11.394 E113°58 I8 : H (N22°11.452 E113°58 I9 : I (N22°11.452 E113°58. I10 : J (N22°11.508 E113°58	.024) .043) .082) .068) .886) .958) .938) 926)		

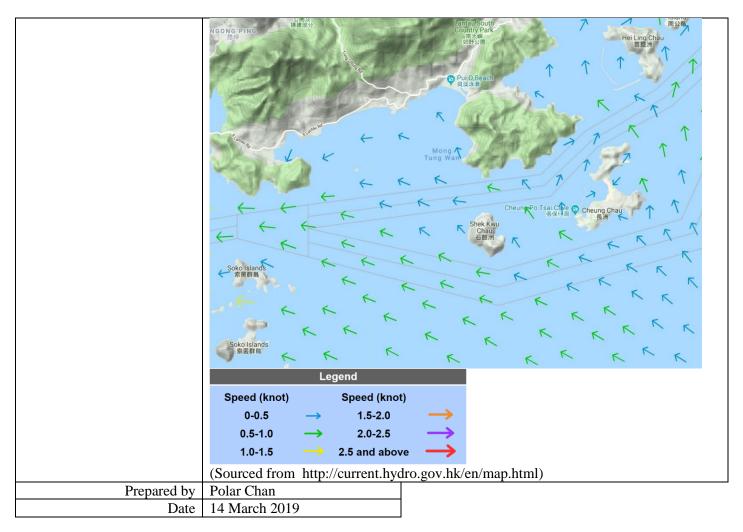

		ER Min Shek Kou Charles Martine Martin		Image may be subject to copyright 200 m	
	10 10 10 10 10 10 10 10 10 10				
	Note: Drawing is not to scale			Tide Direction	
Parameter	Suspended Solid (SS)				
Action & Limit Levels	Action Level Limit Leve		Limit Level		
	\geq 4.0 mg/L (120% of average UC2)		\geq 4.3 mg/L (1) UC2)	30% of average of UC1 &	
Measurement Level	Impact Station(s) of ExceedanceControl Station			Impact Station(s) without Exceedance	
	7.0 mg/L (I1) 6.0 mg/L (I2) 6.5 mg/L (I3) 5.2 mg/L (I4) 5.3 mg/L (I5)	2.7 mg/L (U 4.0 mg/L (U			

	4.3 mg/L (I6) 4.3 mg/L (I7) 6.8 mg/L (I8) 5.0 mg/L (I9) 6.5 mg/L (I10)					
Possible reason for Action or Limit Level Non-compliance	Works schedule on site on 04/03 include laying of geotextile at caisson seawall area, laying of sand blanket at caisson seawall area, post cone penetration test works, DCM sample coring for DCM main works, DCM main works, laying of rocks material at static loading test area and levelling the formation of rubble mound of static loading test.					
	Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau.					
	From MMO monitoring records on 04/03, MMO teams were arranged to two DCM barges (ESC-61 & ESC-62) and four derrick barges (Shun Tat D12, FTB-19, DL-5 & GD-851) on that day while no deficiency of silt curtain was found before the start of construction activity.					
	I1, I2, I3, I4, I5, I6, I7, I8, I9 & I10 are located close to the work location within the Project site while silt curtain checking was implemented on DL-5 (10:30), GD-851 (13:15), FTB19 (09:00), ESC-62 (07:30) and ESC-61 (09:00) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. No sand blanket laying works scheduled on Shun Tat D12, Cheung Kee No.7 & Kam Ying No.8 were carried out with referring to site diary on that day. When compared to the baseline data of dry season (Action Level: 8.0mg/L & Limit Level: 10.0mg/L), most of the monitoring stations (including upstream control station UC1 and UC2) were relatively low, it might suggest that the SS exceedance at I1, I2, I3, I4, I5, I6, I7, I8, I9 & I10 are deemed to be unrelated to the Project.					
	Site tidiness in the present barges in the Project site were checked during weekly site inspection on 04/03, where no major observation of improper site practice that might contribute to the increase in SS level was observed during the inspection.					
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is remained to implement all applicable mitigation measures as per the Updated EM&A Manual.					
Remarks	Current direction during mid-ebb sampling on 04/03:					

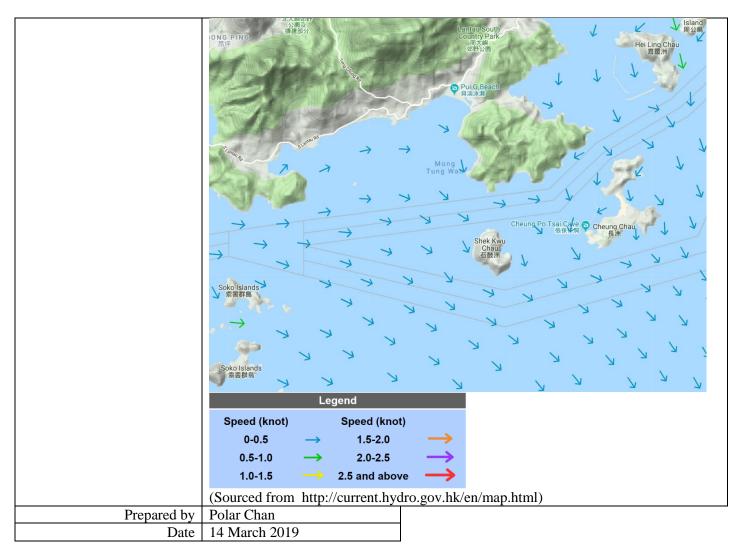




	\geq 6.1 mg/L (120% of avera UC2)	ge of UC1 &	$ \ge 6.6 \text{ mg/L} (1) $ UC2)	130% of average of UC1 &
Measurement Level	Impact Station(s) of	Control Stat	tions	Impact Station(s) without
	Exceedance			Exceedance
	7.0 mg/L (I8)	5.3 mg/L (U	JC1)	3.7 mg/L (I1)
		4.8 mg/L (U		5.7 mg/L (I2)
				2.2 mg/L (I3)
				3.7 mg/L (I4)
				4.8 mg/L (I5)
				4.0 mg/L (I6)
				4.3 mg/L (I7)
				5.7 mg/L (I9)
				5.0 mg/L (I10)
Possible reason for Action or	Works scheduled on site on	06/03 include	laying of geotez	xtile at caisson breakwater
Limit Level Non-compliance				ea and caisson seawall area,
	post cone penetration test w			
	main works, levelling of ro		loading test area	a and removal of surface
	rock at vertical blockwork seawall area.			
	Dominating sea current direction was found to be from Northwest to Southeast at waters around Shek Kwu Chau.			orthwest to Southeast at
	From MMO monitoring rec barges (ESC-61 & ESC-62) FTB-19) on that day while construction activity.) and four derrie	ck barges (Shun	n Tat D12, GD-851, DL-5 &
	I8 is located close to the work location within the Project site while silt curchecking was implemented on DL-5 (08:30), FTB19 (07:00), ESC-62 (07: (08:00) and Shun Tat D12 (09:00) by the Contractor and checking results no deficiency of silt curtain was found on that day. No sand blanket laying scheduled on Cheung Kee No.7 & Kam Ying No.8 were carried out with r the site diary on that day. No surface rock removal works scheduled on Gl carried out with referring to the site diary on that day. It might suggest that exceedance at I8 is deemed to be unrelated to the Project.			00), ESC-62 (07:30), ESC-61 checking results showed that ad blanket laying works carried out with referring to scheduled on GD-851 was
Site tidiness in the present barges in the Project site was checked during inspection on 04/03, where no major observation of improper site practice contribute to the increase in SS level was observed during the inspection			per site practice that might the inspection.	
Actions taken / to be taken				will be continued during the
	weekly inspection, and the			ement all applicable
	mitigation measures as per the Updated EM&A Manual.			
		Flood		
Monitoring Location	I1 : A (N22°11.302 E113° 5	,		
	I4 : B (N22°11.402 E113°5	9.093)		



	4.2 mg/L (I7) 5.0 mg/L (I8) 4.3 mg/L (I9) 3.0 mg/L (I10)				
Possible reason for Action or Limit Level Non-compliance	Works scheduled on site on 06/03 include laying of geotextile at caisson breakwater area, laying of sand blanket at both caisson breakwater area and caisson seawall area, post cone penetration test works, DCM sample coring for DCM main works, DCM main works, levelling of rock fill at static loading test area and removal of surface rock at vertical blockwork seawall area.				
	Dominating sea current direction was found to be from Southeast to Northwest at waters around Shek Kwu Chau.				
	From MMO monitoring records on 06/03, MMO teams were arranged to two DCM barges (ESC-61 & ESC-62) and four derrick barges (Shun Tat D12, GD-851, DL-5 & FTB-19) on that day while no deficiency of silt curtain was found before the start of construction activity.				
	I1 & I4 are located close to the work location within the Project site while silt curtain checking was implemented on DL-5 (08:30), FTB19 (07:00), ESC-62 (07:30), ESC-61 (08:00) and Shun Tat D12 (09:00) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. No sand blanket laying works scheduled on Cheung Kee No.7 & Kam Ying No.8 were carried out with referring to the site diary on that day. No surface rock removal works scheduled on GD-851 was carried out with referring to the site diary on that day. When compared to the baseline data of dry season (Action Level: 8mg/L & Limit Level: 10mg/L), most of the monitoring stations (including upstream control station UC1 and UC2) were relatively low, it might suggest that the SS exceedance at I1 & I4 are deemed to be unrelated to the Project.				
	Site tidiness in the present barges in the Project site was checked during weekly site inspection on 04/03, where no major observation of improper site practice that might contribute to the increase in SS level was observed during the inspection.				
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is remained to implement all applicable mitigation measures as per the Updated EM&A Manual.				
Remarks	Current direction during mid-ebb sampling on 06/03:				



Action & Limit Levels	Action Level		Limit Level	
	\geq 5.6 mg/L (120% of average of UC1 &		\geq 6.1 mg/L (130% of average of UC1 &	
	UC2)			
Measurement Level	Impact Station(s) of	Control Stat	ions	Impact Station(s) without
	Exceedance			Exceedance
	7.5 mg/L (I2)	5.2 mg/L (UC1)		3.8 mg/L (I1)
	6.5 mg/L (I3)	4.2 mg/L (U	C2)	4.3 mg/L (I5)
	6.5 mg/L (I4)	_		5.0 mg/L (I6)
	5.8 mg/L (I9)			4.5 mg/L (I7)
	5.7 mg/L (I10)			4.7 mg/L (I8)
Possible reason for Action or Limit Level Non-compliance	 Works schedule on site on 08 laying of sand blanket at cais works, DCM main works and area. Dominating sea current direct waters around Shek Kwu Cha From MMO monitoring recorbarge (ESC-61) and three derwhile no deficiency of silt cu I2, I3, I4, I9 & I10 are located silt curtain checking was imperfecting results showed that sand blanket laying scheduled Ying No.8 were carried out d that day. No DCM main work condition with referring to th scheduled on GD-851 was cardiary on that day. When com 8.0 mg/L & Limit Level: 10.0 upstream control station UC1 SS exceedance at I2, I3, I4, I9 	son seawall ar I removal of si tion was found au. rds on 08/03, T rick barges (I rtain was found d close to the lemented on I no deficiency d on Shun Tat ue to wavy co ks scheduled of e site diary on rried out due to pared to the ba 0 mg/L), most and UC2) we 9 & 110 are de rges in the Pro o major obser	ea, DCM sampl urface rock at ve d to be from Sou MMO teams we DL-5, Shun Tat l ad before the sta work location w DL-5 (08:30) by of silt curtain w D12, FTB-19, 0 endition with ref on ESC-61 was of that day. No su to wavy condition aseline data of d of the monitoring ere relatively low eemed to be unre- opject site were covation of improp	le coring for DCM main ertical blockwork seawall utheast to Northwest at ere arranged to one DCM D12 & FTB-19) on that day rt of construction activity. within the Project site while the Contractor and vas found on that day. No Cheung Kee No.7 & Kam ferring to the site diary on carried out due to wavy rface rock removal works on with referring to the site lry season (Action Level: ng stations (including w, it might suggest that the elated to the Project. hecked during weekly site per site practice that might
Actions taken / to be taken				
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the			
	weekly inspection, and the Contractor is remained to implement all applicable			
	mitigation measures as per the Updated EM&A Manual.			
Remarks	Current direction during mid	-flood samplir	ng on 08/03:	

Project	Integrated Waste Management Facilities, Phase 1
Date	10 March 2019 (Lab result received on 13 March 2019)
Time	12:51 – 16:21 (Mid-Ebb)
	Mid-Ebb
Monitoring Location	I2 : A (N22°11.241 E113° 59.154) I7 : B (N22°11.318 E113° 59.264) I8 : C (N22°11.252 E113° 59.292) I9 : D (N22°11.213 E113° 59.292) I10 : E (N22°11.16 E113° 59.235)
	Tide Direction
	Note: Drawing is not to scale

Parameter	Suspended Solid (SS)			
Action & Limit Levels	Action Level		Limit Level	
	\geq 5.1 mg/L (120% of average of UC1 &		\geq 5.5 mg/L (130% of average of UC1 &	
	UC2)		UC2)	-
Measurement Level	Impact Station(s) of	Control Stat	ions	Impact Station(s) without
	Exceedance			Exceedance
	5.3 mg/L (I2)	3.8 mg/L (UC1)		4.0 mg/L (I1)
	5.8 mg/L (I7)	4.7 mg/L (U	C2)	4.7 mg/L (I3)
	6.8 mg/L (I8)			3.8 mg/L (I4)
	7.8 mg/L (I9)			4.2 mg/L (I5)
	5.2 mg/L (I10)			4.0 mg/L (I6)
Possible reason for Action or Limit Level Non-compliance	Works scheduled on site on 10/03 include laying of geotextile at caisson breakwate			a and caisson seawall area, DCM main works, DCM Fork seawall area. rthwest to Southeast at
	 From MMO monitoring records on 10/03, MMO teams were arranged to one DCM barge (ESC-61) and four derrick barges (Shun Tat D12, GD-851, DL-5 & FTB-19) on that day while no deficiency of silt curtain was found before the start of construction activity. I2, I7, I8, I9 & I10 are located close to the work location within the Project site while 			
	silt curtain checking was implemented on DL-5 (08:30), FTB19 (07:45), ESC-61 (08:00) and Shun Tat D12 (08:50) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. No sand blanket laying works scheduled on Cheung Kee No.7 & Kam Ying No.8 were carried out with referring to the site diary on that day. No surface rock removal works scheduled on GD-851 was carried out with referring to the site diary on that day. When compared to the baseline data of dry season (Action Level: 8.0 mg/L & Limit Level: 10.0mg/L), most of the monitoring stations (including upstream control station UC1 and UC2) were relatively low, it might suggest that the SS exceedance at I2, I7, I8, I9 & I10 are deemed to be unrelated to the Project.			
	inspection on 12/03, where pa broken and floated on surface baseline data as detailed in the considered as the source of S			
Actions taken / to be taken	 Part of the silt curtain at the back location of the barge was maintained on 12/03 Contractor was reminded to keep tracking on the status of the deployed silt curta during construction works. Examination of environmental performance of the Project will be continued dur weekly inspection, and the Contractor is reminded to implement all applicable mitigation measures as per the Updated EM&A Manual. 			
				-
Remarks	Current direction during mid-	-ebb sampling	on 10/03:	

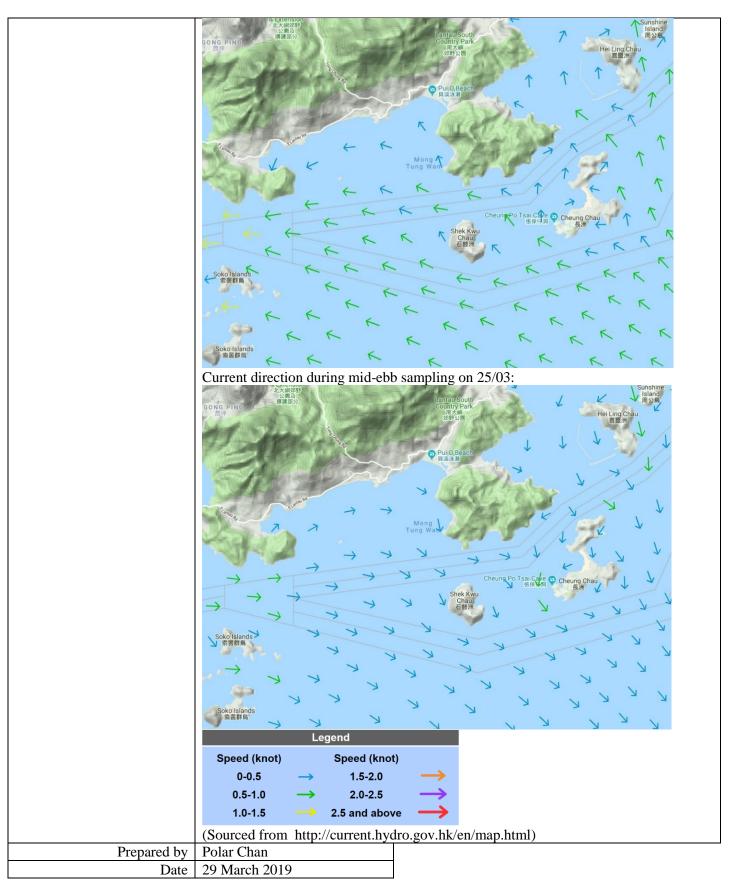
Project	Integrated Waste Managemen	nt Facilities, Phas	e 1
Date	13 March 2019 (Lab result received on 18 March 2019)		
Time	14:52 – 18:22 (Mid-Ebb)		
	Mid-E	Ebb	
Monitoring Location	M1 & S1	PB2 POOSED OUTFALL + + PROPOSED 132A' SUBMARINE CABLES - S2 + - S4 - S4	FI FI FI FI C2 FI C2 FI C2 FI C2 FI C2 FI FI FI FI FI FI FI FI FI FI
Parameter	Suspended Solid (SS)		
Action & Limit Levels	Action Level		imit Level
Measurement Level	$\geq 8.0 \text{ mg/L}$		10.0 mg/L
Measurement Level	Impact Station(s) of Exceedance	Control Stations	s Impact Station(s) without Exceedance
	8.8 mg/L (M1)	5.7 mg/L (C1)	7.0 mg/L (B1)
	8.0 mg/L (S1)	6.3 mg/L (C2)	6.8 mg/L (B2)
	8.0 mg/L (31)	0.3 mg/L(C2)	4.3 mg/L (B2)
			ê ()
			5.3 mg/L (B4)
			5.8 mg/L (F1)
			5.2 mg/L (H1)
			4.3 mg/L (CR1)
			6.2 mg/L (CR2)
			5.2 mg/L (S2)
			5.2 mg/L (S3)
Possible reason for Action or Limit Level Non-compliance	area, laying of sand blanket a post cone penetration test wo main works, removal of surfa rockfill at static loading test a	t both caisson bre rks, DCM sample ace rock at vertica area. tion was found to	ng of geotextile at caisson breakwater eakwater area and caisson seawall area, e coring for DCM main works, DCM l blockwork seawall area and levelling be from Northwest to Southeast at
	M1 and S1 are located at unre	elated stream dire	ction (neither upstream nor
		works location, e	exceedance of these monitoring stations

	 From MMO monitoring records on 13/03, MMO teams were arranged to one DCM barge (ESC-61) and five derrick barges (Shun Tat D12, FTB-19, DL-5, Cheung Kee No.7 & GD851) on that day while no deficiency of silt curtain was found before the start of construction activity. Silt curtain checking was implemented on DL-5 (08:30), GD-851 (08:30), ESC-61 			
	(07:30), Cheung Kee No.7 (08:00), FTB-19 (18:00) & Shun Tat D12 (09:00) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. No surface rock removal works scheduled on Kam Ying No.8 was carried out with referring to the site diary on that day. It might suggest that the SS exceedance at M1 and S1 are deemed to be unrelated to the Project.			
	Site tidiness in the present barges in the Project site was checked during weekly site inspection on 12/03, where part of silt curtain at the back location of the barge was broken and floated on surface on ESC-61. However, according to the investigation in the previous paragraphs, this observation was not considered as the source of SS exceedance.			
Actions taken / to be taken	Part of the silt curtain at the back location of the barge was maintained on 12/03. The Contractor was reminded to keep tracking on the status of the deployed silt curtain during construction works.			
	Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is remained to implement all applicable mitigation measures as per the Updated EM&A Manual.			
Remarks	Current direction during mid-ebb sampling on 13/03:			
	Legend			
	Speed (knot) Speed (knot) 0-0.5 → 1.5-2.0 →			
	$0.5-1.0 \longrightarrow 2.0-2.5 \longrightarrow$			
	1.0-1.5 \longrightarrow 2.5 and above \longrightarrow			
	(Sourced from http://current.hydro.gov.hk/en/map.html)			
Prepared by	Polar Chan			
Date	19 March 2019			

Project	Integrated Waste Managemen	nt Facilities. Ph	ase 1	
Date	15 March 2019 (Lab result received on 20 March 2019)			
Time	15:37 – 19:00 (Mid-Ebb)			
	Mid-E	Ebb		
Monitoring Location	F1 & M1 + B1• S1-	PROPOSED OUTFALL +	H1 SHEK KWU CHAU CR2 S3 CR1	C2 + C2 + C2 C2 C2 C C2 C C2 C C2 C C2 C C2 C2
				THE IWMF SITE BOUNDARY
Parameter	Suspended Solid (SS)			
Action & Limit Levels	Action Level		Limit Level	
Measurement Level	\geq 8.0 mg/L Impact Station(s) of	Control Static	$\geq 10.0 \text{ mg/L}$	
	Exceedance 8.8 mg/L (F1) 8.7 mg/L (M1)	5.3 mg/L (C1 7.0 mg/L (C2)	Impact Station(s) without Exceedance 5.3 mg/L (B1) 4.8 mg/L (B2) 5.0 mg/L (B3) 5.5 mg/L (B4) 6.2 mg/L (H1)
				5.5 mg/L (CR1) 7.7 mg/L (CR2) 7.3 mg/L (S1) 4.7 mg/L (S2) 7.8 mg/L (S3)
Possible reason for Action or Limit Level Non-compliance	Works scheduled on site on 1 area, laying of sand blanket a main works, DCM main worl surface rock at vertical block	tt caisson seawa ks, post cone pe work seawall a	all area, DCM s enetration test v rea.	ample coring for DCM vorks and removal of
	Dominating sea current direct waters around Shek Kwu Cha F1 and M1 are located at unre downstream, far away) to the are deemed to be unrelated to	au. elated stream di works location	irection (neithe	r upstream nor

	From MMO monitoring records on 15/03, MMO teams were arranged to one DCM barge (ESC-61) and four derrick barges (Cheung Kee No.7, Cheung Kee No.10, GD-851 & FTB-19) on that day while no deficiency of silt curtain was found before the start of construction activity.			
	Silt curtain checking was implemented on FTB19 (09:00), Cheung Kee No.10 (11:3) and GD-851 (08:30) by the Contractor and checking results showed that no deficient of silt curtain was found on that day. No sand blanket laying works scheduled on Cheung Kee No.7 was carried out with referring to the site diary on that day. No DC main works scheduled on ESC-61 was carried out due to adverse wave condition wir referring to the site diary on that day. No surface rock removal works scheduled on Kam Ying No.8 & DL-5 were carried out with referring to the site diary on that day. might suggest that the SS exceedance at F1 and M1 are deemed to be unrelated to th Project.			
	Site tidiness in the present barges in the Project site was checked during weekly site inspection on 12/03, where part of silt curtain at the back location of the barge was broken and floated on surface on ESC-61. However, according to the investigation in the previous paragraphs, this observation was not considered as the source of SS exceedance			
Actions taken / to be taken	exceedance.Part of the silt curtain at the back location of the barge was maintained on 12/03. The Contractor was reminded to keep tracking on the status of the deployed silt curtain during construction works.			
	Examination of environmental performance of the Project will be continued during the weekly inspection, and the Contractor is remained to implement all applicable mitigation measures as per the Updated EM&A Manual.			
Remarks	Current direction during mid-ebb sampling on 15/03:			
Prepared by	Polar Chan			
Date	21 March 2019			

Project	Integrated Waste Managemen	nt Facilities, P	hase 1	
Date	20 March 2019 (Lab result received on 22 March 2019)			
Time	14:52 – 19:00 (Mid-Ebb)			
	Mid-E	Ebb		
Monitoring Location	B1, B2, B3, B4, F1, H1, M1, + B10 (\$1 + • C1		NZATV ABLES HER KWU CHAU CR2 S3 CR1	A C2 C2 C2 C2 C2 C2 C C MONITORING STATION PROPOSED 132KV SUBMARINE CABLE C MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT
				THE IWMF SITE BOUNDARY
Parameter	Suspended Solid (SS)		1	
Action & Limit Levels	Action Level		Limit Level	
	\geq 8.4 mg/L (120% of C1)	<u></u>	\geq 10.0 mg/L	
Measurement Level	Impact Station(s) of	Control Stati	ions	Impact Station(s) without Exceedance
Possible reason for Action or	Exceedance 11.0 mg/L (B1) 9.5 mg/L (B2) 10.3 mg/L (B3) 11.8 mg/L (B4) 9.7 mg/L (F1) 8.7 mg/L (H1) 9.7 mg/L (M1) 8.7 mg/L (CR1) 8.7 mg/L (CR2) 9.5 mg/L (S1) 8.5 mg/L (S3) Works scheduled on site on 2	7.0 mg/L (C 8.7 mg/L (C	2)	8.3 mg/L (S2)
Limit Level Non-compliance	area, laying of sand blanket a post cone penetration test wo main works and removal of s Dominating sea current direct waters around Shek Kwu Cha	tt both caisson rks, DCM sam urface rock at tion was found	breakwater area pple coring for I vertical blockw	a and caisson seawall area, DCM main works, DCM ork seawall area.
	B1, B2, B3, B4, F1, H1, M1 a upstream nor downstream, fa monitoring stations are deem	r away) to the	works location,	, exceedance of these


	 From MMO monitoring records on 20/03, MMO teams were arranged to two DCM barges (ESC-61 & ESC-62) and five derrick barges (Shun Tat D12, GD-851, FTB-19, DL-5 & Cheung Kee No.10) on that day while no deficiency of silt curtain was found before the start of construction activity. H1 is located at upstream location, CR1 is located at downstream direction, CR2 & S3 are located close to the works location within the Project site, while silt curtain checking was implemented on GD-851 (08:30), ESC-62 (07:00), ESC-61 (07:30), FTB-19 (09:40), Shun Tat D12 (09:00) by the Contractor and checking results showed that no deficiency of silt curtain was found on that day. No sand blanket laying scheduled on Cheung Kee No.7 & Cheung Kee No.10 were carried out with referring to site diary on that day. No surface rock removal works scheduled on DL-5 was carried out with referring to the site diary on that day. It might suggest that the SS exceedance at B1, B2, B3, B4, F1, H1, M1, CR1, CR2, S1 & S3 are deemed to be unrelated to the Project, and indicated the high SS background due to natural fluctuation at the waters near SKC. Site tidiness in the present barges in the Project site was checked during weekly site inspection on 20/03, where was no major observation of improper site practice that
	might contribute to the increase in SS level observed during the inspection.
Actions taken / to be taken	Examination of environmental performance of the Project will be continued during the
	weekly inspection, and the Contractor is remained to implement all applicable
	mitigation measures as per the Updated EM&A Manual.
Remarks	Current direction during mid-ebb sampling on 20/03:
	$\frac{1}{1}$
	$0.5-1.0 \longrightarrow 2.0-2.5 \longrightarrow$
	1.0-1.5 ────────────────────────────────────
	(Sourced from http://current.hydro.gov.hk/en/map.html)
Prepared by	Polar Chan
Date	23 March 2019
Date	20 Minute 2017

Project	Integrated Waste Managemen	nt Facilities, Phase 1	
Date	25 March 2019 (Lab result received on 28 March 2019)		
Time	08:00 – 11:40 (Mid-Flood)	· · · · · · · · · · · · · · · · · · ·	
	13:30 – 17:00 (Mid-Ebb)		
	Mid-Fl	lood	
Monitoring Location	M1, CR1, CR2 & S3		
	+ B1 • S1	B2 PROPOSED OUTFALL + 4 PROPOSED 132N SUBMARINE CABLES 52 4 4 52 4 4 52 4 4 52 4 4 52 4 4 52 4 4 52 4 52 4 4 52 52 4 4 52 52 52 52 52 52 52 52 52 52 52 52 52	F1 + - - - - - - - - - - - - -
Parameter	Suspended Solid (SS)	I insid I and	
Action & Limit Levels	Action Level	Limit Level	
	$\geq 8.0 \text{ mg/L}$	$\geq 10.0 \text{ mg/L}$	
Measurement Level	Impact Station(s) of	Control Stations	Impact Station(s) without
	Exceedance		Exceedance
	8.3 mg/L (M1)	8.7 mg/L (C1)	7.0 mg/L (B1)
	8.8 mg/L (CR1)	5.3 mg/L (C2)	6.5 mg/L (B2)
	9.2 mg/L (CR2)		6.5 mg/L (B3)
	8.3 mg/L (S3)		5.0 mg/L (B4)
			7.8 mg/L (F1)
			5.3 mg/L (H1)
			7.8 mg/L (S1)
			7.0 mg/L (S2)
Possible reason for Action or Limit Level Non-compliance	area, laying of sand blanket post cone penetration test w main works, removal of surf at vertical blockwork seawall Dominating sea current dire waters around Shek Kwu Cha M1 is located at unrelated	ection was found to be from au. stream direction (neither up:	ea and caisson seawall area, or DCM main works, DCM k seawall area and dredging a Southeast to Northwest at stream nor downstream, far
	away) to the works location unrelated to the Project.	, exceedance of this monitor	ring station is deemed to be

	From MMO monitoring reco barges (ESC-61 & ESC-62) a DL-5 & Cheung Kee No.10) before the start of construction	and five derric on that day w	k barges (Shun	Tat D12, GD-851, FTB-19,
	CR1 is located at upstream direction, CR2 & S3 are located close to the location within the Project site while silt curtain checking was implemented Contractor on DL-5 (08:30), FTB-19 (20:45), ESC-62 (16:30), ESC-61 (09: Shun Tat D12 (09:30) and checking results showed that no deficiency of silt c was found on that day. No construction works scheduled on Cheung Kee No.1 carried out with referring to the site diary on that day. No surface rock removal scheduled on GD-851 was carried out with referring to the site diary on that the SS exceedance at CR1, CR2 & S3 are deemed to be unrelate the Project.			
	Site tidiness in the present b inspection on 26/03, where of the anchor on ESC-61. Ho paragraphs, this observation	lamage was ol owever, accord was not consid	bserved on the ling to the invertee as the source	silt curtain at the stern near vestigation in the previous ree of SS exceedance.
Actions taken / to be taken	The damage of silt curtain at 01/04. The Contractor was recurtain during construction w	minded to kee		
	Examination of environmenta weekly inspection, and the mitigation measures as per th	Contractor is e Updated EM	is remained to	
Monitoring Location	Mid-E B2, B3, F1, H1, CR2, S2 & S			
	+ • C1	PROPOSED OUTFALL +	SZAV KIELES BB3 BB3 BB4 BB3 BB4 BB3 BB4 BB3 BB4 BB3 BB4 BB3 BB4 BB3 BB4 BB3 BB4 BB4	+ Key A PROPOSED 132KV SUBMARINE CABLE
		PROPOSED RECLAIME FOR THE IMME		MONITORING STATION PROPOSED OUTFALL THE IWMF SITE BOUNDARY LAND FORMATION FOOTPRINT THE IWMF SITE BOUNDARY
Parameter	Suspended Solid (SS)			
Action & Limit Levels	Action Level		Limit Level	
	\geq 8.4 mg/L (120% of C1)		$\geq 10.0 \text{ mg/L}$	
Measurement Level	Impact Station(s) of Exceedance	Control Stati		Impact Station(s) without Exceedance

	8.5 mg/L (B2)	7.0 mg/L (C1)	7.8 mg/L (B1)
	9.8 mg/L (B3)	8.5 mg/L (C2)	7.0 mg/L (B4)
	9.2 mg/L (F1)		7.7 mg/L (M1)
	9.8 mg/L (H1)		7.5 mg/L (CR1)
	9.8 mg/L (CR2)		8.3 mg/L (S1)
	8.5 mg/L (S2)		
	8.5 mg/L (S3)		
Possible reason for Action or Limit Level Non-compliance	Works scheduled on site on	ace rock at vertical blockworl area. ction was found to be from	ea and caisson seawall area, or DCM main works, DCM of seawall area and dredging
	B2, B3, F1 & S2 are locat downstream, far away) to the are deemed to be unrelated to		
	From MMO monitoring reco barges (ESC-61 & ESC-62) a DL-5 & Cheung Kee No.10) before the start of construction	and five derrick barges (Shun on that day while no deficier	Tat D12, GD-851, FTB-19,
	on DL-5 (08:30), FTB-19 (2 (09:30) and checking results	silt curtain checking was imp 0:45), ESC-62 (16:30), ESC-4 showed that no deficiency of rks scheduled on Cheung Kee n that day. No surface rock r n referring to the site diary of	blemented by the Contractor 61 (09:15) & Shun Tat D12 of silt curtain was found on No.10 was carried out with emoval work scheduled on n that day. It might suggest
		lamage was observed on the wever, according to the invasion not considered as the source of the sour	silt curtain at the stern near vestigation in the previous ce of SS exceedance.
Actions taken / to be taken	The damage of silt curtain at 01/04. The Contractor was re curtain during construction w	· · ·	
	Examination of environmenta	al performance of the Project	will be continued during the
		ontractor is remained to imple	
	• •	•	mont an applicable
	mitigation measures as per th		
Remarks	Current direction during mid-	-flood sampling on 25/03:	

Contract No. EP/SP/66/12 Integrated Waste Management Facilities, Phase 1

Appendix O Complaint Log

Integrated Waste Management Facilities, Phase 1

Statistical Summary of Environmental Complaints

Reporting	E	Environmental Complaint Statistics		
Period	Frequency	Cumulative	Complaint Nature	
1 March 2019- 31 March 2019	0	0	N/A	
51 March 2019				

Statistical Summary of Environmental Summons

Reporting	I	Environmental Summons Statistics		
Period	Frequency	Cumulative	Details	
1 March 2019- 31 March 2019	0	0	N/A	

Statistical Summary of Environmental Prosecution

Reporting	E	Environmental Prosecution Statistics		
Period	Frequency	Cumulative	Details	
1 March 2019- 31 March 2019	0	0	N/A	

Appendix P Impact Monitoring Schedule of Next Reporting Month

Impact Monitoring Schedule for IWMF							
	Apr.13						
	Mon	Tue	Wed	Thu	Ed	Sat	
-	1	2	3	4	5	6	
	Impact Water Quality monitoring for B1, B2, B3, B4, H2, C1, C2, F1, C11, C32, M1 51, 128, 53 Table Previot Exb Teles: 0584-12:56 Floor Tiles: 120-71-737 Monitoring Time Mart Tool: 120-71-737 Kontenging Carlos Mart Tool: 120-71-737 Ecology monitoring for Land-based Theodolite Tracking	Impat Daytime, Evening & Vigitt time lock Cookgy monitoring for Marine Mammals by Vessel-based Line-Transect Survey	Water Quality monitoring for 81, 82, 84, 84, 94, 01, 02, 51, 031, 032, 843 Table Proof: Table Proof: Ebb Tide: 0225 - 34:36 Pool Table: 31-66 - 2023 Mostioning Time: Most Proof: Most Proof: Most Proof: Table: 12-50 Most Proof: Most Proof: Table: 12-50 Most Proof: Loss Proof: Most Proof: Loss Proof: Table: 12-50 Konderboot: Loss Proof: Collagy monitoring for Land-based Threedolite: Tracking	Impart Ecology monitoring for Land-based Theodolite Tracking	-	Impact Water Quality monitoring for 61, 82, 84, 84, 14, C1, C2, F1, C81, C82, M 51, 52 8, 53 <u>Tate Periods</u> Ebb Tide: 1004-1609 Flood Tide: 1009 - 1230 Monitoring Time: Mid-ebb: 111-11-145 & Mid-flood: 16:28-13:00	
7	8 Impact Water Quality monitoring for BLR_BLR_BLA, HL, CL, CL, FL, CRJ, CRJ, ML SL, DA, BL, BL, BL, HL, CL, CL, FL, CRJ, ML SL, DA, BL, BL, BL, BL, BL, SL, SL, SL, SL, SL, SL, SL, SL, SL, S	Impact Impact Ecology monitoring for Land-based Theodotte Tracking	10 Impact Water Quality monitoring for BL, D, BJ, BL, HL, CL, CZ, FL, CHL, CH2, KH2, KH2, KH2, KH2, KH2, KH2, KH2, K	13 Impact Ecology monitoring for WBSE Ecology monitoring for Land-Samed Threadotte Tracking	12 Impact Water Quality monitoring for BL2, RE, BL4, H1, C1, C2, F1, CR1, CR2, M1, S1, S2, RE, S1, S1, S1, S1, S1, S1, S1, S1, S1, S1	B	
14	15	16	17	18	19	20	
Water Quality monitoring for 11, 82, 84, 84, 94, 91, 01, 02, 91, 032, 84, 83 Teal Prices 10, 269, 269, 269, 269, 269, 269, 269, 269	inpact Ecology monitoring for Land-Assed Theodolite Tracking Daytime, Evening & Night time Hoise monitoring for M1, M2 & M3	Unpart Water Quality monitoring for BL B2, B3, B4, H1, C1, C2, F1, CR1, CR2, M1, S1, S2, E3 Total Provid: 30 FBT Tater, 05, 10, 10 FBT Tater, 05, 10, 10 Monitoring Time Mod-etch: 06, 33 - 12:00 Model Total Adv 7: 10.37 Ecology monitoring for Land-based Theodolite Tracking	Impact	Water Quality monitoring for 51, 22, 83, 84, 91, C1, C2, 71, CR1, CR2, M1, 51, 22, 83 Tail Previous Phartic CR359, 124, 83 Phartice CR359, 124, 83 Phartice CR359, 124, 83 Monitorial Times Mid-Host (19, 47, 1900) Ecology monitoring for Land-based Theodolite Tracking			
					A.4		
		1995 Water Quality monitoring for BJ, BJ, BJ, BJ, BJ, HJ, CL, CJ, FJ, CRL, CR2, ML, 51, 52, 84, 53 Tail a Penol: Ebb Tute: 1122 - 1825 Road Tute: 050 - 11.22 Monitoring Time: Mod-Phote 050 - 01:103 Ecology monitoring for Marine Mammals by Vesuel-based Line-Transect Survey	impart Ecology monitoring for Land-based Theodolite Tracking	¹⁰ Whete Quality monitoring for 81, 80, 80, 84, 81, 61, 62, 71, 628, 610, 71, 72, 81, 72, 83, 73, 74, 74, 76, 76, 74, 74, 74, 76, 76, 74, 74, 76, 76, 74, 74, 76, 76, 74, 76, 76, 74, 76, 76, 74, 76, 76, 74, 76, 76, 74, 76, 76, 74, 74, 76, 76, 76, 74, 74, 76, 76, 76, 74, 74, 76, 76, 76, 76, 76, 76, 76, 76, 76, 76	impail Ecology monitoring for Land-based Theodolite Tracking	Mater Quality monitoring for 81, 82, 84, 84, 84, 84, 87, 82, 83 State Quality monitoring for 81, 82, 84, 84, 84, 84, 82, 83 Table Pendo Ebb Tiele 1460 - 2321 Fleed Tiele: 0500 - 1400 Monitoring Time & Mid-Road: 09:15 - 12:45	
28	29	30					
	Unput: Linguit Water Quality monitoring (= 81, 82, 83, 84, 94, 12, 12, 74, 751, 762, 762, 763, 774, 774, 774, 774, 774, 774, 774, 77	Impact Ecology monitoring for Land-based Theodolite Tracking					

Remarks: 1. Daytime Noise Monitoring (07:50-1900), Evening Time Noise Monitoring (1900-2300), Night Time Noise Monitoring (2300-0700) 2. Water Quality Monitoring for 51,52 and 53 will only conduct during DCM works, refer to Detailed DCM Plan

Note: • a ger Marine Department Notes No 107 of 2018, al vessels employed for the works should stay in the works area outside the Yours of works (0700 to 2200), Due to safty concern, Water Quality Monitoring would start at 0000. • Proteind routing: Mod B&C: 1253 + 023 - 423 + 423 + 424 - 424