

Contract No. 13/WSD/17

Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant

Monthly EM&A Report No.33 (Period from 1 November to 30 November 2022)

Document No.						
ASCL / 200168078 / MEMAR33 / C						С
Publisher		Project Code		Sequential No.		Revision Index

	Prepared by:	Reviewed and Certified by:	
Name	Howard CHAN	Jacky LEUNG	
Position	Environmental Team Member	Environmental Team Leader	
Signature	Howard	X	
Date:	19 December 2022	19 December 2022	

Water Supplies Department New Works Branch Consultants Management Division 6/F Sha Tin Government Offices 1 Sheung Wo Che Road Sha Tin New Territories

Your reference:

Our reference:HKWSD202/50/108473Date:19 December 2022

Attention: Mr Sam Hui/ Mr H L Lai

BY EMAIL & POST (email: wl_hui@wsd.gov.hk/ jack_hl_lai@wsd.gov.hk)

Dear Sirs

Agreement No. CE 5/2019 (EP) Independent Environmental Checker for First Stage of Tseung Kwan O Desalination Plant – Investigation Verification of Monthly EM&A Report No.33 (November 2022)

We refer to emails of 8, 15 and 19 December 2022 attaching Monthly EM&A Report No. 33 (November 2022) for the captioned project prepared by the ET.

We have no further comment and hereby verify the captioned report in accordance with Clause 3.5 of the Environmental Permit no. EP-503/2015/A and Further Environmental Permit no. FEP-01/503/2015/A.

Should you have any queries regarding the above, please do not hesitate to contact the undersigned on 2618 2831.

Yours faithfully ANEWR CONSULTING LIMITED

Louis Kwan Independent Environmental Checker

KSYL/lsmt

REVISION HISTORY

Rev.	DESCRIPTION OF MODIFICATION	Date
А	First Issue for Comments	08/12/2022
В	Revised according to IEC's Comments	14/12/2022
С	Revised according to SOR's Comments	19/12/2022

aurecon

CONTENTS

Execu	tive Summary	1
1.	Basic Contract Information	7
2.	Noise	12
	Water Quality	
4.	Waste	24
5.	Landfill Gas Monitoring	25
6.	Ecology	28
7.	Summary of Exceedance, Complaints, Notification of Summons and Prosecutions	29
8.	EM&A Site Inspection	31
9.	Future Key Issues	32
10.	Conclusions and Recommendations	35

Appendix A	Master Programme
Appendix B	Overview of Desalination Plant in Tseung Kwan O
Appendix C	Summary of Implementation Status of Environmental Mitigation
Appendix D	Impact Monitoring Schedule
Appendix E	Event/Action Plan
Appendix F	Water Quality and Landfill Gas Equipment Calibration Certificate
Appendix G	Water Quality and Landfill Gas Monitoring Data
Appendix H	Waste Flow Table
Appendix I	Site Inspection Proforma
Appendix J	Complaint Log

Appendix K Exceedance Report(s)

EXECUTIVE SUMMARY

INTRODUCTION

- A1. The Project, Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant (TKODP), is a Designated Project under the Environmental Impact Assessment Ordinance (Cap. 499) (EIAO) and is currently governed by a Further Environmental Permit (EP No. FEP 01/503/2015/A) for the construction and operation of the Contract.
- A2. In accordance with the Environmental Monitoring and Audit (EM&A) Manual for the Contract, EM&A works for marine water quality, noise, waste management and ecology should be carried out by Environmental Team (ET), Acuity Sustainability Consulting Limited (ASCL), during the construction phase of the Contract.
- A3. This is the 33rd Monthly EM&A Report, prepared by ASCL, for the Contract summarizing the monitoring results and audit findings of the EM&A programme at and around Tseung Kwan O Area 137 (TKO 137) during the reporting period from 1 November to 30 November 2022.
- A4. The EM&A programme for this contract has covered environmental monitoring on construction noise level at selected NSRs and Contractor's environmental performance auditing in the aspects of construction dust, construction noise, water quality, waste management, Landscape and Visual and Ecology.

SUMMARY OF MAIN WORKS UNDERTAKEN & KEY MITIGATION MEASURES IMPLEMENTED

A5. Key activities carried out in this reporting period for the Contract included the followings:

Product Water Storage Tank Building

- Resin Injection work & Water Test for 4 Water Tanks
- Installation of Cat Ladders in 4 Water Tanks and Upper Roof Tiles
- Underground utility construction
- Installation of building services, Installation of mechanical equipment, steel pipe

Main Electrical & Central Chiller Plant Building

- Installation of Upper Roof Tiles
- Construction of Check Water Meter Cabinet
- Installation of Metal and Timber Doors
- Installation of chillers, building services, electrical switchboard

OSCG Building

- Installation of Design for Manufacturing and Assembly Panel
- Resin Injection work & Water Test for Brine Tank
- Construction of Outside Staircases at West Side Ground floor
- Installation of building services and mechanical equipment

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

Administration Building
• Construction of interior finishes at 2/F, 3/F, and 4/F
• carrying out waterproofing works at 1/F open area and Roof
Installation of Aluminium Window, tiling works, and louvre
Installation of building services, Lifting of electrical switchboard
Reverse Osmosis Building
• Installation of Design for Manufacturing and Assembly Panels at East & West
Sides
Construction of Staircases (Inside and Outside Locations)
Installation of roof tiles, alum, and louvre
Underground utility construction
• Installation of building services, electrical switchboard, Installation of mechanical
equipment, steel pipe, Glass Reinforced Plastics (GRP) pipe
ActiDAFF
Installation of R/F Kiosk Metal Doors
Water proofing work on roof of Cartridge Filter Plant Room
 Construction of kiosks and installation of louvre
 Underground utility construction
 Scaffolding, installation of mechanical equipment and piping
Inspection corridor
 Steel fixing works for segment 7, segment 6 and segment 5
 construction of stair tower
Chemical building
 Covering the wall opening and waterproofing works at roof of building
Post Treatment Building
Construction of Outside Staircase to Filter Press Room
Installation of Aluminium Louvre
Underground utility construction
• Installation of building services, Lifting of lime silo, Installation of mechanical
equipment
CO ₂ Tanks
Installation of Fencing and pipes
Outfall Shaft
GRP Diffuser Pipe installation
Intake shaft
Shafts backfill rock and excavation and lateral support (ELS) removal
Combined Shaft
• Staircases and internal finishing, puddle pipe installation, stop log wall
construction

• Installation of mechanical equipment and piping, stoplogs and band screens Pump room

- Staircases and internal finishing, overhead crane installation
- Elevated Walkway
- Lift shaft construction

Slope works

- Excavation at slope toe and access erection, Soil anchor and grouting construction Open Channel
- Wall construction

Other

- 132 kV temporary emergency vehicular access (eva) Construction
- Permanent road construction at Zone A, B, C
- A6. The major environmental impacts brought by the above construction works include:
 - Construction dust and noise generation from construction works, excavation works, rock cutting works and pipe piling driving works
 - Waste generation from the construction activities; and
 - Impact on water quality from marine construction works and inland construction works.
- A7. The key environmental mitigation measures implemented for the Contract in this reporting period associated with the above construction works include:
 - Dust suppression by regular wetting and water spraying for construction works;
 - Reduction of noise from equipment and machinery on-site and regular inspection to machinery and plants/vehicles on-site to ensure proper functioning;
 - Sorting and storage of general refuse and construction waste; and
 - Deployment of temporary silt curtain in the area where marine construction works were conducted and deployment of water sedimentation tanks for treatment of wastewater at inland and marine areas before discharge.

SUMMARY OF EXCEEDANCE & INVESTIGATION & FOLLOW-UP

- A8. No noise monitoring was conducted during the reporting period since there are no Contract -related construction activities undertaken within a radius of 300m from the monitoring locations. No exceedance of the Action Level was recorded during the reporting period.
- A9. The EM&A works for water quality were conducted during the reporting period in accordance with the EM&A Manual.

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

- A10. One hundred and fifty-five (155) of the general water quality monitoring results of suspended solids (SS) obtained had exceeded the Action Level. One hundred and fortytwo (142) of the general water quality monitoring results of SS obtained during the reporting period had exceeded the Limit Level.
- A11. Investigation on the reason of exceedance has been carried out, where the exceedances of SS on 5, 8, 10, 12, 15, 17, 19, 22, 24, 26 and 28 November 2022 were concluded to be unrelated to the Contract as detailed in the Incident Reports on Action Level or Limit Level Non-compliance along with supporting materials in **Appendix K**.
- A12. In this reporting period, no landfill gas monitoring was conducted at Wan Po Road (Ch1+513 Ch1+625).
- A13. Joint site inspections of the construction work by ET and IEC were carried out on 8, 15, 22 and 29 November 2022 to audit the mitigation measures implementation status. Observations and recommendations were recorded in the site inspection checklists and provided to the contractors together with the appropriate follow-up actions where necessary.

COMPLAINT HANDLING AND PROSECUTION

A14. No environmental complaint, notification of summons and prosecution was received in the reporting period.

Reporting Change

A15. There was no change to be reported that may affect the on-going EM&A programme.

SUMMARY OF UPCOMING KEY ISSUES AND KEY MITIGATION MEASURES

A16. Key activities anticipated in the next reporting period for the Contract will include the followings:

Product Water Storage Tank Building

- Resin Injection work & Water Test for 4 Water Tanks
- Installation of Cat Ladders in 4 Water Tanks and Upper Roof Tiles
- Underground utility construction
- Installation of building services, Installation of mechanical equipment, steel pipe

Main Electrical & Central Chiller Plant Building

- Installation of Upper Roof Tiles
- Construction of Check Water Meter Cabinet
- Installation of Metal and Timber Doors
- Installation of chillers, building services, electrical switchboard

OSCG Building

- Installation of Design for Manufacturing and Assembly Panel
- Resin Injection work & Water Test for Brine Tank

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

EM&A Report No.33
Construction of Outside Staircases at West Side Ground floor
Installation of building services and mechanical equipment
Administration Building
• Construction of interior finishes at 2/F, 3/F, and 4/F
carrying out waterproofing works at 1/F open area and Roof
Installation of Aluminium Window, tiling works, and louvre
Installation of building services, Lifting of electrical switchboard
Reverse Osmosis Building
• Installation of Design for Manufacturing and Assembly Panels at East & West
Sides
Construction of Staircases (Inside and Outside Locations)
Installation of roof tiles, alum, and louvre
Underground utility construction
Installation of building services, electrical switchboard, Installation of mechanical
equipment, steel pipe, Glass Reinforced Plastics (GRP) pipe
ActiDAFF
Installation of R/F Kiosk Metal Doors
Water proofing work on roof of Cartridge Filter Plant Room
Construction of kiosks and installation of louvre
Underground utility construction
Scaffolding, installation of mechanical equipment and piping
Inspection corridor
• Steel fixing works for segment 7, segment 6 and segment 5
construction of stair tower
Chemical building
• Covering the wall opening and waterproofing works at roof of building
Underground utility construction
Installation of building services, Installation of mechanical equipment
Post Treatment Building
Construction of Outside Staircase to Filter Press Room
Installation of Aluminium Louvre
Underground utility construction
 Installation of building services, Lifting of lime silo, Installation of mechanical
equipment
CO ₂ Tanks
 Installation of Fencing and pipes
Outfall Shaft
GRP Diffuser Pipe installation
Intake shaft
Shafts backfill rock and excavation and lateral support (ELS) removal
Combined Shaft
Combined onale

5

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

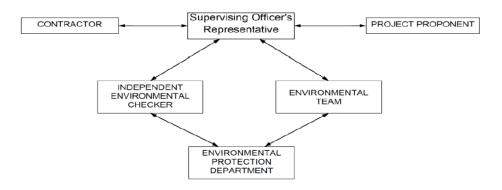
- Staircases and internal finishing, puddle pipe installation, stop log wall construction
- Installation of mechanical equipment and piping, stoplogs and band screens Pump room
- Staircases and internal finishing, overhead crane installation
- Elevated Walkway
- Lift shaft construction
- Slope works
- Excavation at slope toe and access erection, Soil anchor and grouting construction Open Channel
- Wall construction

Other

- 132 kV temporary emergency vehicular access (eva) Construction
- Permanent road construction at Zone A, B, C
- A17. The major environmental impacts brought by the above construction works will include:
 - Construction dust and noise generation from excavation and construction works;
 - Waste generation from construction activities; and
 - Impact on water quality from marine construction works and inland construction works.
- A18. The key environmental mitigation measures for the Contract in the coming reporting period associated with the above construction works will include:
 - Reduction of noise from equipment and machinery on-site;
 - Dust suppression by regular wetting and water spraying for construction works and at main haul road;
 - Sorting and storage of general refuse and construction waste; and
 - Deployment of temporary silt curtain in the area where marine construction works were conducted and deployment of water sedimentation tanks for treatment of wastewater at inland and marine areas before discharge.

1. BASIC CONTRACT INFORMATION

BACKGROUND


- 1.1. The Acciona Agua, S.A. Trading, Jardine Engineering Corporation, Limited and China State Construction Engineering (Hong Kong) Limited as AJC Joint Venture (AJCJV) is contracted to carry out the Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant (DPTKO) under Contract No. 13/WSD/17 (the Contract).
- 1.2. Acuity Sustainability Consulting Limited (ASCL) is commissioned by AJCJV to undertake the Environmental Team (ET) services as required and/or implied, both explicitly and implicitly, in the Environmental Permit (EP), Environmental Impact Assessment Report (EIA Report) (Register No. AEIAR-192/2015) and Environmental Monitoring and Audit Manual (EM&A Manual) for the Contract; and to carry out the Environmental Monitoring and Audit (EM&A) programme in fulfillment of the EIA Report's EM&A requirements and Contract No. 13/WSD/17 Specification requirements.
- Pursuant to the Environmental Impact Assessment Ordinance (EIAO), the Director of Environmental Protection granted the Environmental Permit (No. EP-01/503/2015) and Variation of Environmental Permit (No. EP-01/503/2015/A) to Water Supplies Department (WSD); and granted the Further Environmental Permit (No. FEP-01/503/2015/A) to AJCJV for the Contract.

THE REPORTING SCOPE

1.4. This is the 33rd Monthly EM&A Report for the Contract which summarizes the key findings of the EM&A programme during the reporting period from 1 November to 30 November 2022.

CONTRACT ORGANIZATION

1.5. The Contract Organization structure for Construction Phase is presented in **Figure 1.1**.

Figure 1.1Contract Organization Chart

1.6. Contact details of the key personnel are presented in **Table 1.1** below:

Party	Position	Name	Telephone no.
Contract Proponent (Water Supplies Department)	SE/CM2	Benny Lam	2634-3573
Supervising Officer	Project Manager	Christina Ko	2608-7302
(Binnies Hong Kong Limited)	Chief Resident Engineer	Roger Wu	6343-1002
The Jardine Engineering Corporation, Limited, China	Project Manager	Stephen Yeung	2807-4665
State Construction Engineering (Hong Kong) Limited and Acciona Agua, S.A. Trading	Environmental Monitoring Manager	Brian Kam	9456-9541
Acuity Sustainability Consulting Limited	Environmental Team Leader	Jacky Leung	2698-6833
ANewR Consulting Limited	Independent Environmental Checker (IEC)	Louis Kwan	2618-2831

Table 1.1Contact Details of Key Personnel

SUMMARY OF CONSTRUCTION WORKS

- 1.7. Details of the major construction activities undertaken in this reporting period are shown as below. The master programme is presented in **Appendix A**.
- 1.8. Key activities carried out in this reporting period for the Contract included the followings:

Product Water Storage Tank Building

- Resin Injection work & Water Test for 4 Water Tanks
- Installation of Cat Ladders in 4 Water Tanks and Upper Roof Tiles
- Underground utility construction
- Installation of building services, Installation of mechanical equipment, steel pipe

Main Electrical & Central Chiller Plant Building

- Installation of Upper Roof Tiles
- Construction of Check Water Meter Cabinet
- Installation of Metal and Timber Doors
- Installation of chillers, building services, electrical switchboard

OSCG Building

- Installation of Design for Manufacturing and Assembly Panel
- Resin Injection work & Water Test for Brine Tank

•	Construction of Outside Staircases at West Side Ground floor
•	construction of outside stancases at west side dround noor

Installation of building services and mechanical equipment

Administration Building

- Construction of interior finishes at 2/F, 3/F, and 4/F
- carrying out waterproofing works at 1/F open area and Roof
- Installation of Aluminium Window, tiling works, and louvre
- Installation of building services, Lifting of electrical switchboard

Reverse Osmosis Building

- Installation of Design for Manufacturing and Assembly Panels at East & West Sides
- Construction of Staircases (Inside and Outside Locations)
- Installation of roof tiles, alum, and louvre
- Underground utility construction
- Installation of building services, electrical switchboard, Installation of mechanical equipment, steel pipe, Glass Reinforced Plastics (GRP) pipe

ActiDAFF

- Installation of R/F Kiosk Metal Doors
- Water proofing work on roof of Cartridge Filter Plant Room
- Construction of kiosks and installation of louvre
- Underground utility construction
- Scaffolding, installation of mechanical equipment and piping

Inspection corridor

- Steel fixing works for segment 7, segment 6 and segment 5
- construction of stair tower

Chemical building

- Covering the wall opening and waterproofing works at roof of building
- Underground utility construction
- Installation of building services, Installation of mechanical equipment

Post Treatment Building

- Construction of Outside Staircase to Filter Press Room
- Installation of Aluminium Louvre
- Underground utility construction
- Installation of building services, Lifting of lime silo, Installation of mechanical equipment

CO₂ Tanks

• Installation of Fencing and pipes

Outfall Shaft

• GRP Diffuser Pipe installation

Intake shaft

- Shafts backfill rock and excavation and lateral support (ELS) removal
- Combined Shaft

- Staircases and internal finishing, puddle pipe installation, stop log wall construction
- Installation of mechanical equipment and piping, stoplogs and band screens Pump room
- Staircases and internal finishing, overhead crane installation
- Elevated Walkway
- Lift shaft construction

Slope works

- Excavation at slope toe and access erection, Soil anchor and grouting construction Open Channel
- Wall construction

Other

- 132 kV temporary emergency vehicular access (eva) Construction
- Permanent road construction at Zone A, B, C
- 1.9. A summary of the valid permits, licences, and/or notifications on environmental protection for this Contract is presented in **Table 1.2**.

 Table 1.2 Summary of the Status of Valid Environmental Licence, Notification, Permit and Documentations

Dormit / Liconcoc	Valid I	Period	<u>Chatra a</u>	Remark		
Permit/ Licences	From	То	Status			
Environmental Permit	Environmental Permit					
FEP - 01/503/2015/A	Throughout	the Contract	Valid	-		
Notification of Constru	iction Works u	under the Air F	ollution Control	(Construction		
Dust) Regulation (For	m NA)					
451539	Throughout the Contract		Valid	-		
Billing Account for Dis	Billing Account for Disposal of Construction Waste					
7036276	Throughout the Contract		Valid	-		
Chemical Waste Producer Registration						
5213-839-A2987-01	Throughout the Contract		Valid	-		
Wastewater Discharge Licence (Land and Marine works)						
WT00035775-2020	23/08/2021	31/07/2025	Valid	-		
Construction Noise Pe	Construction Noise Permit					
GW-RE0627-22	29/06/2022	21/12/2022	Valid	-		

1.10. The status for all environmental aspects is presented in **Table 1.3**.

Table 1.3 Summary of Status for Key Environmental Aspects under the EM&A Manual

Parameters	Status		
Water Quality			
Baseline Monitoring under EM&A	The baseline water quality monitoring was		
Manual	conducted between 12 May 2020 to 6 Jun 2020		
Impact Monitoring	On-going		
Noise			
	The baseline noise monitoring result has been		
Baseline Monitoring	reported in Baseline Monitoring Report and		
	submitted to EPD under EP Condition 3.4		
Impact Monitoring	On-going		
Waste Management			
Mitigation Measures in Waste	On-going		
Management Plan	OII-going		
Landfill Gas			
Regular Monitoring when	In this reporting period, no landfill gas		
Construction Works are within the	monitoring was conducted at Wan Po Road		
250m Consultation Zone	(Ch1+513 – Ch1+625).		
Environmental Audit			
Site Inspection covering Measures			
of Air Quality, Noise Impact, Water	On-going		
Quality, Waste, Ecological Quality,			
Fisheries, Landscape and Visual			

- 1.11. Other than the EM&A work by ET, environmental briefings, trainings, and regular environmental management meetings were conducted, in order to enhance environmental awareness and closely monitor the environmental performance of the contractors.
- 1.12. The EM&A programme has been implemented in accordance with the recommendations presented in the approved EIA Report and the EM&A Manual. A summary of implementation status of the environmental mitigation measures for the construction phase of the Contract during the reporting period is provided in **Appendix C**.

2. Noise

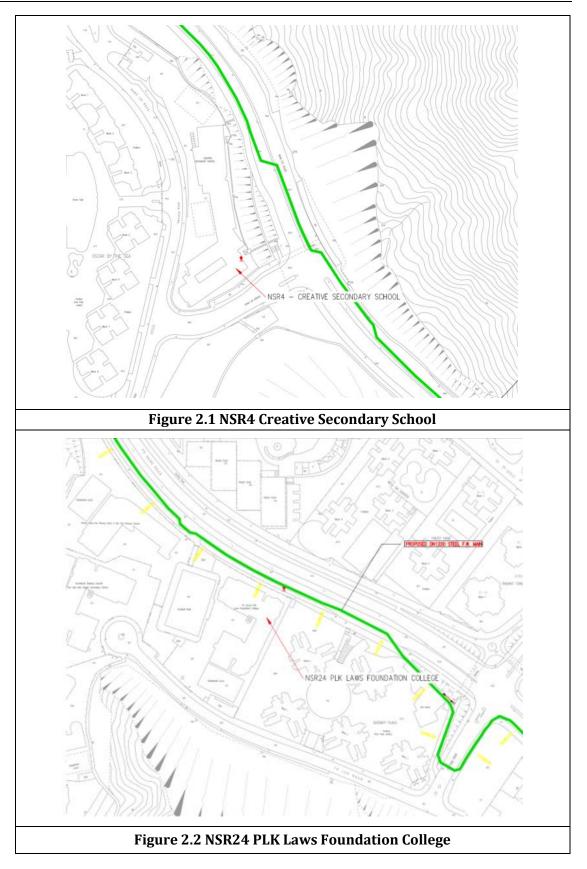
MONITORING REQUIREMENTS

- 2.1. To ensure no adverse noise impact, noise monitoring is recommended to be carried out within 300m radius from the nearby noise sensitive receivers (NSRs), during construction phase. The NSRs selected as monitoring station are (i) NSR4 Creative Secondary School, (ii) NSR24 PLK Laws Foundation College, and (iii) NSR31 School of Continuing and Professional Studies CUHK respectively.
- 2.2. Construction noise level were measured in terms of the A-weighted equivalent continuous sound pressure level (LAeq). Leq 30min was used as the monitoring parameter for the time period between 0700 and 1900 on normal weekdays. Construction works would follow stipulations of the valid Construction Noise Permits if works had to be conducted during restricted hours or public holidays. **Table 2.1** summarizes the monitoring parameters, frequency, and duration of the impact noise monitoring.

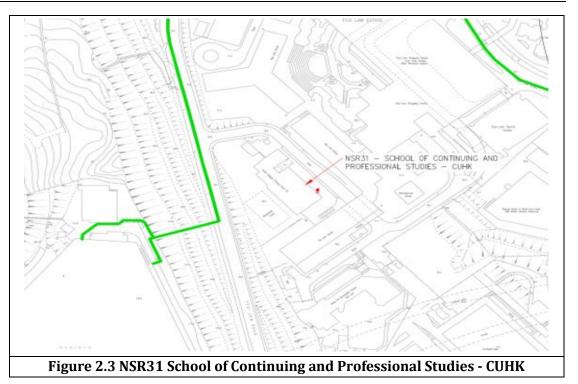
Time	Duration	Interval	Parameters
Daytime: 0700-1900	Day time: 0700-1900 (during normal weekdays)	$\begin{array}{l} \mbox{Continuously in} \\ \mbox{L}_{eq \ 5min}/\mbox{L}_{eq \ 30min} \mbox{ (average} \\ \mbox{of 6 \ consecutive} \ \mbox{L}_{eq \ 5min} \mbox{)} \end{array}$	L _{eq 30min} L _{10 30min} & L _{90 30min}

Table 2.1Noise Monitoring Parameters, Time, Frequency and Duration

MONITORING LOCATIONS


- 2.3. The monitoring locations were normally made at a point 1m from the exterior of the NSRs building façade and be at a position 1.2m above the ground. A correction of +3dB(A) should be made to the free-field measurements.
- 2.4. According to the environmental findings detailed in the EIA report and Baseline Monitoring Report, the designated locations for the construction noise monitoring are listed in **Table 2.2** below.

NSR ID	Noise Sensitive Receivers	Monitoring Location	Position
NSR 4	Creative Secondary School	Roof Floor	1 m from facade
NSR 24	PLK Laws Foundation College	Pedestrian Road on Ground Floor	Free-field
NSR 31	School of Continuing and Professional Studies - CUHK	Roof Floor	1 m from facade


Table 2.2Noise Sensitive Receivers

2.5. Three noise monitoring locations for impact monitoring at the nearby sensitive receivers are shown in **Figure 2.1-2.3**.

IMPACT MONITORING METHODOLOGY

- 2.6. Integrated sound level meter will be used for the noise monitoring. The meter will be in compliance with the International Electrotechnical Commission Publications 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications. Immediately prior to and following each noise measurement the accuracy of the sound level meter will be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements will be accepted as valid only if the calibration levels before and after the noise measurements agree to within 1.0 dB(A).
- 2.7. Noise measurements were not made in the presence of fog, rain, wind with a steady speed exceeding 5 m/s or wind with gusts exceeding 10 m/s. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.

ACTION AND LIMIT LEVELS

2.8. The Action/Limit Levels are in line with the criteria of Practice Note for Professional Persons (ProPECC PN 2/93) "Noise from Construction Activities – Non-statutory Controls" and Technical Memorandum on Environmental Impact Assessment Process issued by HKSAR Environmental Protection Department ["EPD"] under the Environmental Impact Assessment Ordinance, Cap 499, S.16 are presented in **Table 2.3**.

Action	Limit (dB(A))
When one documented complaint is received from any	• 70 dB(A) for school and
one of the noise sensitive receivers	
	Whenonedocumentedcomplaintis receivedfrom anyoneofthenoisesensitive

Note: Limits specified in the GW-TM and IND-TM for construction and operation noise, respectively.

2.9. If exceedances were found during noise monitoring, the actions in accordance with the Event and Action Plan shall be carried out according to **Appendix E.**

MONITORING RESULTS AND OBSERVATIONS

2.10. Referring to EM&A Manual Section 4.1.2, the impact noise monitoring should be carried out when there are Contract-related construction activities undertaken within a radius of 300m from the monitoring stations. No monitoring station was located within a radius of 300m of the Contract site as shown in **Figure 2.4**, no impact noise monitoring was conducted in the reporting period.

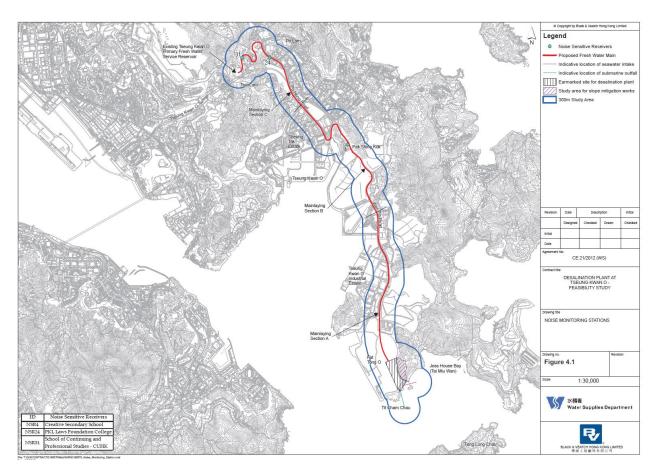


Figure 2.4 Site Layout Plan with Noise Sensitive Receivers and Desalination Plant

15

3. WATER QUALITY

- 3.1. In accordance with the recommendations of the EIA, water quality monitoring is required during dredging for the submarine pipelines and, during operation phase. The following Section provides details of the water quality monitoring to be undertaken by the Environmental Team (ET) to verify the distance of sediment and brine plume dispersion and to identify whether the potential exists for any indirect impacts to occur to ecological sensitive receivers.
- 3.2. The water quality monitoring programme will be carried out to allow any deteriorating water quality to be readily detected and timely action taken to rectify the situation.
- 3.3. Water quality monitoring for the Contract can be divided into the following stages:
 - Dredging activities during construction phase;
 - Discharge of effluent from main disinfection during construction phase;

WATER QUALITY PARAMETERS

3.4. The parameters that have been selected for measurement in situ and in the laboratory are those that were either determined in the EIA to be those with the most potential to be affected by the construction works or are a standard check on water quality conditions. Parameters to be measured in the impact monitoring are listed in **Table 3.1**.

Parameters	Unit	Abbreviation						
In-situ measurements								
Dissolved oxygen	mg/L	DO						
Temperature	оС	-						
рН	-	-						
Turbidity	NTU	-						
Salinity	0/00	-						
Total Residual Chlorine NOTE1	mg/L	TRC						
Laboratory measurements								
Suspended Solids	mg/L	SS						
Iron-Soluble	mg/L	Fe						
Anti-scalant as Reactive Phosphorus	mg/L	PO4 as P-						

 Table 3.1
 Parameters measured in the Impact Marine Water Quality Monitoring

NOTE 1: Monitoring of Total Residual Chlorine will be conducted when cleaning and sterilization of the new freshwater main is carried out.

3.5. In addition to the water quality parameters, other relevant data were also being measured and recorded in Water Quality Monitoring Logs, including the location of the sampling stations, water depth, time, weather conditions, sea conditions, tidal stage, current direction and velocity, special phenomena and work activities undertaken around the monitoring and works area that may influence the monitoring results.

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

MONITORING EQUIPMENT

3.6. For water quality monitoring, the following equipment were used:

Dissolved Oxygen and Temperature Measuring Equipment - The instrument was a portable, weatherproof dissolved oxygen measuring instrument complete with cable, sensor, comprehensive operation manuals, and was operable from a DC power source. It was capable of measuring: dissolved oxygen levels in the range of 0 - 20 mg/L and 0 - 200% saturation; and a temperature of 0 - 45 degrees Celsius. It has a membrane electrode with automatic temperature compensation complete with a cable of not less than 35 m in length. Sufficient stocks of spare electrodes and cables were available for replacement where necessary (e.g. YSI model 59 DO meter, YSI 5739 probe, YSI 5795A submersible stirrer with reel and cable or an approved similar instrument).

Turbidity Measurement Equipment - The instrument was a portable, weatherproof turbidity-measuring unit complete with cable, sensor and comprehensive operation manuals. The equipment was operated from a DC power source, it has a photoelectric sensor capable of measuring turbidity between 0 - 1000 NTU and complete with a cable with at least 35 m in length (for example Hach 2100P or an approved similar instrument).

Salinity Measurement Instrument - A portable salinometer capable of measuring salinity in the range of 0 - 40 ppt was provided for measuring salinity of the water at each monitoring location.

Water Depth Gauge – A portable, battery-operated echo sounder (for example Seafarer 700 or a similar approved instrument) was used for the determination of water depth at each designated monitoring station. This unit will preferably be affixed to the bottom of the work boat if the same vessel is to be used throughout the monitoring programme. The echo sounder was suitably calibrated.

Positioning Device – A Global Positioning System (GPS) was used during monitoring to allow accurate recording of the position of the monitoring vessel before taking measurements. The Differential GPS, or equivalent instrument, was suitably calibrated at appropriate checkpoint (e.g. Quarry Bay Survey Nail) to verify that the monitoring station is at the correct position before the water quality monitoring commence.

Water Sampling Equipment - A water sampler, consisting of a PVC or glass cylinder of not less than two litres, which can be effectively sealed with cups at both ends, was used. The water sampler has a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth.

SAMPLING / TESTING PROTOCOLS

3.7. All in situ monitoring instruments were checked, calibrated, and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme before use, and subsequently re-calibrated at monthly intervals throughout the stages of the water quality monitoring. Responses of sensors and electrodes were checked with certified standard solutions before each use.

3.8. **Table 3.2** summarizes the equipment used in the water quality monitoring program. The copies of the calibration certification of multi-parameter water quality system are shown in the **Appendix F**.

Model & Make	Serial Number	Calibration Date	Qty.					
Water Sampler								
Kahlsico Water Sampler 13SWB20	-	-	1					
Multi-parameter Water Quality System								
HORIBA U-53	PORBNFNT	12 Oct 2022	2					
HORIDA 0-55	PPHNOMXY	16 Nov 2022	2					

Table 3.2 Water Quality Monitoring Equipment

3.9. On-site calibration of field equipment was following the "*Guide to On-Site Test Methods for the Analysis of Waters*", BS 1427: 2009. Sufficient stocks of spare parts were maintained for replacements when necessary. Backup monitoring equipment was made available so that monitoring can proceed uninterrupted even when equipment is under maintenance, calibration etc.

LABORATORY MEASUREMENT AND ANALYSIS

- 3.10. Sufficient volume of each water sample was collected for carrying out the laboratory analyses. Using chain of custody forms, collected water samples were transferred to a HOKLAS accredited laboratory (Acumen Laboratory and Testing Limit HOKLAS 241) for immediate processing. The determination work was start within the next working day after collection of the water samples. Analytical methodology and sample preservation of other parameters were based on the latest edition of Standard Methods for the Examination of Waste and Wastewater published by APHA, AWWA and WPCF and methods by USEPA, or suitable method in accordance with requirements of HOKLAS or another internationally accredited scheme. The QA/QC details were in accordance with requirements of HOKLAS or another internationally accredited scheme.
- 3.11. Parameters for laboratory measurements, standard methods and detection limits are presented in **Table 3.3**.

Parameters	Standard Methods	Detection Limit	Reporting Limit	Precision
Dissolved oxygen	Instrumental, CTD	0.1	-	±25%
Temperature	Instrumental, CTD	0.1	-	±25%
рН	Instrumental, CTD	0.1	-	±25%
Turbidity	Instrumental, CTD	0.1	-	±25%
Salinity	Instrumental, CTD	0.1	-	±25%
Suspended Solids	APHA 23 rd Ed 2540D	1.0	2.5	±17%

 Table 3.3 Laboratory measurements, standard methods, and corresponding detection limits of marine water quality monitoring

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

MONITORING LOCATION

3.12. The Impact water quality monitoring locations are in accordance with the EM&A Manual and detailed in **Table 3.4** below. A schedule for water quality monitoring was prepared by the ET and submitted to IEC and EPD prior to the commencement of the monitoring.

Station	Easting	Northing	Description
CE	843550	815243	Upstream control station at ebb tide
CF	846843	810193	Upstream control station at flood tide
WSR1	846864	812014	Ecological sensitive receiver at Tung Lung Chau
WSR2	847645	812993	Fisheries sensitive receiver at Tung Lung Chau
WSR3	848023	813262	Ecological sensitive receiver at Tung Lung Chau
WSR4	847886	814154	Ecological sensitive receiver at Tai Miu Wan
WSR16	845039	815287	Ecological sensitive receiver at Fat Tong Chau
WSR33	847159	814488	Ecological sensitive receiver at Tai Miu Wan
WSR36	846878	814081	Ecological sensitive receiver at Kwun Tsai
WSR37	846655	813810	Ecological sensitive receiver at Tit Cham Chau
NF1	846542	813614	Edge of mixing zone, \sim 200m west of outfall diffuser
NF2	846942	813614	Edge of mixing zone, \sim 200m east of outfall diffuser
NF3	846742	813414	Edge of mixing zone, ~ 200m south of outfall diffuser

Table 3.4Location of Impact Water Quality Monitoring Stations

3.13. WSR1 to WSR37 were identified in accordance with Annex 14 of the EIAO-TM as well as Clause 3.4.4.2 of the Environmental Impact Assessment Study Brief for Desalination Plant at Tseung Kwan O (No. ESB-266/2013). WSR1 to WSR3 are sited near the Tung Lung Chau Fish Culture Zone; WSR16 and WSR36 are sited near the coral assemblages along the coastlines of Fat Tong Chau and Kwun Tsai respectively; WSR 4 and WSR33 are sited near the Coastal Protection Area and coral assemblages in waters of Tai Miu Wan; WSR37 is sited near the fisheries resource including spawning and nursery grounds at the coastal water of Tit Cham Chau.

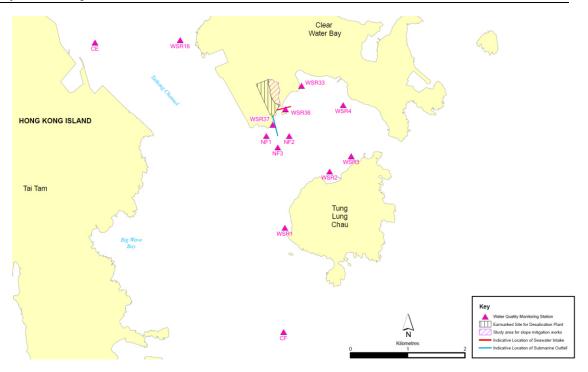


Figure 3.1 Impact water quality monitoring locations under EM&A Manual

SAMPLING FREQUENCY

3.14. Impact water quality monitoring were carried out three days per week during the construction phase after the commencement of marine construction works and dredging activities. Monitoring at each station was undertaken at both mid-ebb and mid-flood tides on the same day. The tidal range selected for the impact monitoring was at least 0.5 m for both flood and ebb tides as far as practicable. The interval between two sets of monitoring was not less than 36 hours. The monitoring frequency would be increased in the case of exceedances of Action/Limit Levels if considered necessary by ET. Monitoring frequency would be maintained as far as practicable.

SAMPLING DEPTHS & REPLICATION

3.15. During impact water quality monitoring, each station was sampled, and measurements/ water samples was taken at three depths, 1 m below the sea surface, mid-depth, and 1 m above the seabed. For in situ measurements, duplicate readings were made at each water depth at each station. Duplicate water samples were collected at each water depth at each station. All water quality monitoring results were summarized in **Appendix G**.

ACTION AND LIMIT LEVELS

3.16. The Action and Limit Levels have been set based on the derivation criteria specified in the EM&A Manual. The Action/Limit Levels have been derived and are presented in Table 3.5.

Table 3.5Derived Action and Limit Levels for Water Quality

Parameters	Action	Limit			
Construction Ph	ase Impact Monitoring				
DO in mg/L	Surface and Middle	Surface and Middle			
	7.30 mg L ⁻¹	4 mg L-1			
	<u>Bottom</u>	<u>Bottom</u>			
	7.31 mg L ⁻¹	2 mg L-1			
	Tung Lung Chau Fish Culture Zone	Tung Lung Chau Fish Culture Zone			
	5.1 mgL ⁻¹ or level at control	5.0 mgL ⁻¹ or level at control			
	station (Whichever the lower)	station (Whichever the lower)			
SS in mg/L	5.00 mg L ⁻¹ or 20% exceedance of	6.00 mg L-1 or 30% exceedance of			
(Depth-	value at any impact station	value at any impact station			
averaged)	compared with corresponding	compared with corresponding			
	data from control station	data from control station			
Turbidity in	2.41 NTU or 20% exceedance of	2.84 NTU or 30% exceedance of			
NTU (Depth-	value at any impact station	value at any impact station			
averaged)	compared with corresponding	compared with corresponding			
	data from control station	data from control station			

Notes:

i."Depth-averaged" is calculated by taking the arithmetic means of reading of all three depths.

ii.For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits.

iii.For Turbidity, SS, iron and Salinity, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

MONITORING RESULTS AND OBSERVATIONS

- 3.17. General water quality monitoring at the ten monitoring stations (CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR36 and WSR37) were conducted 1, 3, 5, 8, 10, 12, 15, 17, 19, 22, 24, 26 and 28 November 2022.
- 3.18. One hundred and fifty-five (155) of the general water quality monitoring results of suspended solids (SS) obtained had exceeded the Action Level. One hundred and forty-two (142) of the general water quality monitoring results of SS obtained during the reporting period had exceeded the Limit Level.
- 3.19. Investigation on the reason of exceedance has been carried out, where the exceedances of SS on 5, 8, 10, 12, 15, 17, 19, 22, 24, 26 and 28 November 2022 were concluded to be unrelated to the Contract as detailed in the Incident Reports on Action Level or Limit Level Non-compliance along with supporting materials in **Appendix K**.
- 3.20. Monitoring results of 6 key parameters: Salinity, DO, turbidity, SS, pH, and temperature in this reporting, are summarized in **Table 3.6** and **Table 3.7**, and detailed results are presented in **Appendix L.**

Table 3.6Summary of Impact Water Quality Monitoring Results (Mid-Flood)

		Parameters								
Locations		Salinity (ppt)			рН	Turbidity (NTU)	Suspended Solids (mg/L)	Temp.(ºC)		
	Avg.	32.9	9.6	9.6	8.3	2.8	7.1	24.8		
CE	Min.	31.6	9.6	9.6	8.2	2.4	2.5	21.5		
	Max.	34.0	9.7	9.6	8.4	3.6	19.0	25.7		
	Avg.	33.0	8.8	8.8	8.3	3.1	8.8	25.0		
CF	Min.	32.1	8.3	8.3	8.2	2.0	2.5	24.4		
	Max.	34.0	9.6	9.5	8.4	3.9	23.0	25.7		
	Avg.	32.9	8.8	8.8	8.3	2.3	10.1	25.2		
WSR1	Min.	31.4	8.4	8.3	8.0	1.8	2.5	24.5		
	Max.	33.8	9.4	9.5	8.4	2.7	20.0	26.0		
	Avg.	32.7	8.9	8.9	8.3	2.1	8.5	25.1		
WSR2	Min.	31.4	8.3	8.2	8.2	1.6	2.5	24.1		
	Max.	33.7	9.5	9.5	8.4	2.5	24.0	25.9		
	Avg.	32.7	8.9	8.9	8.2	2.3	10.8	25.1		
WSR3	Min.	31.1	8.3	8.3	8.1	2.0	2.5	24.4		
	Max.	34.0	9.6	9.6	8.4	2.9	32.0	25.9		
	Avg.	32.8	8.8	8.8	8.3	2.3	10.6	25.0		
WSR4	Min.	31.5	8.0	8.0	8.1	1.9	2.5	24.3		
	Max.	34.1	9.3	9.4	8.4	2.7	23.0	25.9		
	Avg.	32.9	8.9	8.9	8.2	2.2	10.5	25.1		
WSR16	Min.	31.8	8.3	8.2	8.1	1.9	2.5	24.5		
	Max.	33.9	9.3	9.5	8.4	2.5	23.0	26.0		
	Avg.	32.9	8.8	8.8	8.2	2.3	9.0	25.1		
WSR33	Min.	31.5	8.3	8.3	8.1	1.8	2.5	24.1		
	Max.	34.0	9.2	9.2	8.4	3.0	22.0	25.9		
	Avg.	32.7	8.8	8.8	8.3	2.3	9.1	25.1		
WSR36	Min.	31.8	8.3	8.3	8.1	2.0	2.5	24.2		
	Max.	34.0	9.4	9.4	8.4	2.7	22.0	25.8		
	Avg.	33.0	8.9	8.9	8.3	2.3	10.1	25.1		
WSR37	Min.	31.8	8.4	8.4	8.2	1.9	2.5	24.1		
	Max.	34.2	9.6	9.6	8.4	2.7	24.0	26.0		

Notes:

i. "Avg", "Min" and "Max" is the average, minimum and maximum respectively of the data from measurements conducted under mid-flood and mid-ebb tides at three water depths, except that of DO where the data for "Surface & Middle" and "Bottom" are calculated separately.

ii. Measurement data of Suspending Solids would be rounding to 2.5mg/L if the value was less than 2.5mg/L to facilitate data analysing.

Table 3.7Summary of Impact Water Quality Monitoring Results (Mid-Ebb)

			Parameters								
Locati	ions	Dissolved Oxygen Salinity (mg/L)			рН	Turbidity	Suspended Solids	Temp.(°C)			
		(ppt)	Surface & Middle	Bottom		(NTU)	(mg/L)				
Avg.		32.7	8.8	8.8	8.3	3.0	10.3	24.9			
CE	Min.	31.4	8.3	8.3	8.2	2.3	2.5	24.4			
	Max.	33.8	9.6	9.5	8.4	3.8	20.0	25.6			
	Avg.	32.7	8.8	8.8	8.3	2.7	9.7	25.0			
CF	Min.	31.7	8.3	8.4	8.1	1.8	2.5	24.3			
	Max.	33.6	9.2	9.3	8.4	3.3	21.0	25.8			
	Avg.	32.9	8.8	8.9	8.3	2.2	9.3	25.0			
WSR1	Min.	31.5	8.4	8.4	8.2	1.9	2.5	24.3			
	Max.	34.0	9.7	9.7	8.4	2.7	19.0	25.5			
	Avg.	32.7	8.8	8.8	8.3	2.0	8.9	25.1			
WSR2	Min.	31.1	8.2	8.3	8.1	1.6	2.5	24.5			
	Max.	33.9	9.6	9.5	8.4	2.4	21.0	25.9			
	Avg.	32.8	8.8	8.8	8.3	2.2	10.1	25.1			
WSR3	Min.	30.8	8.2	8.3	8.2	1.8	2.5	24.5			
	Max.	34.1	9.4	9.4	8.4	2.5	19.0	25.7			
	Avg.	32.7	8.8	8.8	8.3	2.3	12.5	24.9			
WSR4	Min.	30.8	8.3	8.3	8.2	2.0	2.5	24.2			
	Max.	33.6	9.5	9.3	8.4	2.6	21.0	25.6			
	Avg.	32.9	8.8	8.8	8.3	2.2	10.4	25.0			
WSR16	Min.	31.9	8.3	8.4	8.1	1.9	2.5	23.9			
	Max.	33.8	9.5	9.6	8.4	2.6	21.0	25.8			
	Avg.	32.7	8.7	8.7	8.3	2.2	10.2	25.0			
WSR33	Min.	31.1	8.3	8.3	8.2	1.3	2.5	24.3			
	Max.	33.8	9.8	9.8	8.4	2.6	22.0	25.5			
	Avg.	32.9	8.7	8.7	8.3	2.3	10.6	25.0			
WSR36	Min.	31.3	8.2	8.1	8.1	1.9	2.5	24.4			
	Max.	34.0	9.3	9.3	8.4	2.8	20.0	25.6			
	Avg.	32.6	8.7	8.7	8.3	2.3	10.8	25.0			
WSR37	Min.	31.2	8.0	8.0	8.2	2.0	2.5	24.3			
	Max.	33.3	9.2	9.3	8.4	3.0	23.0	25.7			

Notes:

i. "Avg", "Min" and "Max" is the average, minimum and maximum respectively of the data from measurements conducted under mid-flood and mid-ebb tides at three water depths, except that of DO where the data for "Surface & Middle" and "Bottom" are calculated separately.

ii. Measurement data of Suspending Solids would be rounding to 2.5mg/L if the value was less than 2.5mg/L to facilitate data analysing.

4. WASTE

4.1. The waste generated from this Contract includes inert construction and demolition (C&D) materials, and non-inert C&D materials. Non-inert C&D materials are made up of general refuse, vegetative wastes and recyclable wastes such as plastics and paper/cardboard packaging waste. Steel materials generated from the Contract are also grouped into non-inert C&D materials as the materials were not disposed of with other inert C&D materials. With reference to relevant handling records and trip tickets of this Contract, the quantities of different types of waste generated in the reporting month are summarized in **Table 4.1**. Details of cumulative waste management data are presented as a waste flow table in **Appendix H**.

	Actu	Actual Quantities of Inert C&D Materials Generated Monthly					Actual Quantities of C&D Wastes Generated Monthly				
Reporting Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper / cardboard packaging	Plastics ⁽¹⁾	Chemical Waste	Others, e.g. general refuse
	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)
November 2022	7273.940	0.000	0.000	0.000	7273.940	0.000	0.020	0.230	0.020	0.000	121.590

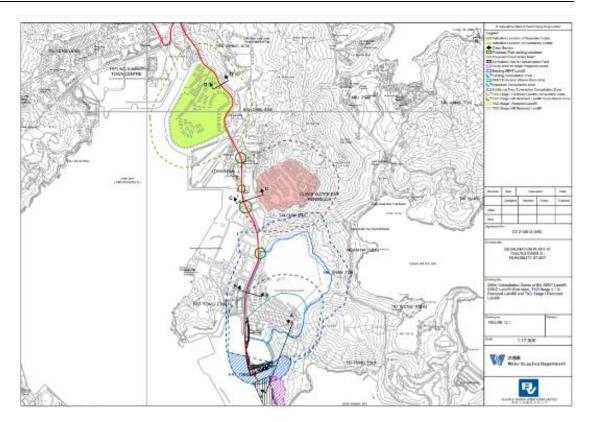
Notes: (1) Plastics refer to plastic bottles / containers, plastic sheets / foam from packaging material

5. LANDFILL GAS MONITORING

MONITORING REQUIREMENT

5.1. In accordance with Section 11 of the EM&A Manual, monitoring of landfill gas is required for construction works within the 250m Consultation Zone. Part of the desalination plant and the indicative area of natural slope mitigation works fall within the SENT Landfill Extension Consultation Zone; and part of the 1,200 mm diameter fresh water mains along Wan Po Road falls within the SENT Landfill and SENT Landfill Extension Consultation Zones, TKO Stage II/III Restored Landfill and TKO Stage I Restored Landfill Consultation Zones.

MONITORING PROGRAMME


5.2. Since part of the desalination plant (Wan Po Road and MIC compound/Basketball Court) and the indicative area of natural slope mitigation works fall within the SENT Landfill Extension Consultation Zone in this contract (Figure 5.1), landfill gas monitoring would be required for Wan Po Road and MIC compound/Basketball Court (Figure 5.2) if excavations were conducted at more than 300mm deep. Although SENT Landfill Extension has commenced operation since November 2021, no excavation works were conducted at MIC compound/Basketball Court. Hence no landfill gas monitoring would be scheduled for MIC compound/Basketball Court at the current stage.

MONITORING LOCATION

- 5.3. Monitoring of oxygen, methane, carbon dioxide and barometric pressure would be performed for excavations at 1m depth or more within the consultation Zone.
- 5.4. During construction of works within the consultation zones, excavations of 1m depth or more was monitored:
 - At the ground surface before excavation commences;
 - Immediately before any worker enters the excavation;
 - At the beginning of each working day for the entire period the excavation remains open; and
 - Periodically through the working day whilst workers are in the excavation.
- 5.5. For excavations between 300mm and 1m deep, measurements were carried out:
 - Directly after the excavation has been completed; and
 - Periodically whilst the excavation remains open.
- 5.6. The area required to be monitored for landfill gas in the reporting period is shown in **Figure 5.1**.

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

Figure 5.1 Overview of the SENT Extension Consultation Zone and the Contract Site Area

MONITORING PARAMETERS

5.7. The landfill gas monitoring parameters and the action and limit level are summarized in **Table 5.1**.

Parameters	Action Level	Limit Level
Oxygen (O ₂)	<19% 02	<19% O ₂
Methane (CH ₄)	>10% LEL	>20% LEL
Carbon Dioxide (CO ₂)	>0.5% CO ₂	>1.5% CO ₂

 Table 5.1
 Action and Limit Level for Landfill Gas Monitoring Equipment

MONITORING EQUIPMENT

- 5.8. Landfill Gas monitoring was carried out using intrinsically-safe, portable multi-gas monitoring instruments. The gas monitoring equipment is:
 - Complying with the Landfill Gas Hazard Assessment Guidance Note as intrinsically safe;
 - Capable of continuous barometric pressure and gas pressure measurements;
 - Normally operated in diffusion mode unless required for spot sampling, when it should be capable of operating by means of an aspirator or pump;
 - Having low battery, fault and over range indication incorporated;
 - Capable of storing monitoring data, and shall be capable of being downloaded directly;
 - Measure in the following ranges:

methane	0-100% Lower Explosion Limit (LEL) and 0-100% v/v;	
oxygen	0-25% v/v;	
carbon dioxide	0-5% v/v; and	
barometric pressure	mBar (absolute)	

• alarm (both audibly and visually) in the event that the concentrations of the following are exceeded:

methane	>10% LEL;
oxygen	<19%
carbon dioxide	>0.5% by volume
barometric pressure	mBar (absolute)

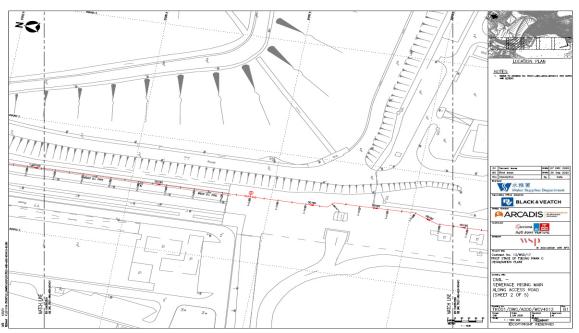


Figure 5.2 Location Map for Landfill Gas Monitoring at Wan Po Road

MONITORING RESULTS AND OBSERVATIONS

5.9. In this reporting period, no landfill gas monitoring was conducted at Wan Po Road (Ch1+513 – Ch1+625).

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

6. ECOLOGY

MONITORING REQUIREMENTS

6.1. In accordance with Section 8.1 of the EM&A Manual, weekly site audit shall be carried out by the ET include checking whether good site practices are being properly implemented by the Contractor and the extent of the works area within the Clear Water Bay Country Park should be checked by the ET during the weekly site audit.

SITE INSPECTION

- 6.2. Weekly site audit was carried out by the ET in the reporting month, no trespass by the Contractor outside the works area of the Project and Clear Water Bay Country Park, and no damage to the vegetation and rocky shore outside the Project area was observed in the reporting month. Retained trees was properly protected during the construction works, no unacceptable construction works was observed.
- 6.3. If non-compliance were found during the construction works, the actions in accordance with the Event and Action Plan will be carried out according to **Appendix E**.

7. SUMMARY OF EXCEEDANCE, COMPLAINTS, NOTIFICATION OF SUMMONS AND PROSECUTIONS

7.1. The Environmental Complaint Handling Procedure is shown in below **Figure 6.1**:

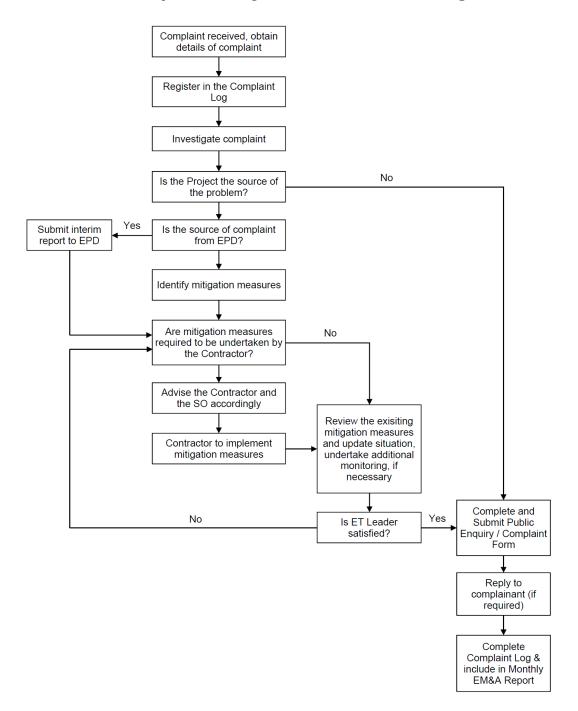


Figure 6.1 Environmental Complaint Handling Procedures

- 7.2. No noise monitoring was conducted during the reporting period since there are no Contract-related construction activities undertaken within a radius of 300m from the monitoring locations. No action Level exceedance for construction noise monitoring was recorded in the reporting month.
- 7.3. General water quality monitoring at the ten monitoring stations (CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR36 and WSR37) were conducted on 1, 3, 5, 8, 10, 12, 15, 17, 19, 22, 24, 26 and 28 November 2022.
- 7.4. One hundred and fifty-five (155) of the general water quality monitoring results of suspended solids (SS) obtained had exceeded the Action Level One hundred and forty-two (142) of the general water quality monitoring results of SS obtained during the reporting period had exceeded the Limit Level.
- 7.5. Investigation on the reason of exceedance has been carried out, where the exceedances of SS on 5, 8, 10, 12, 15, 17, 19, 22, 24, 26 and 28 November 2022 were concluded to be unrelated to the Contract as detailed in the Incident Reports on Action Level or Limit Level Non-compliance along with supporting materials in **Appendix K**.
- 7.6. In this reporting period, no landfill gas monitoring was conducted at Wan Po Road (Ch1+513 Ch1+625).
- 7.7. No environmental complaint, notification of summons and prosecution was received in the reporting month. Statistics on complaint and notification of summons and prosecution are summarized in **Appendix J**.

³⁰ The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

8. EM&A SITE INSPECTION

8.1. Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures under the Contract. In the reporting period, site inspections were carried out on 8, 15, 22 and 29 November 2022 at the site portions listed in **Table 7.1** below.

	-	
Date	Inspected Site Portion	Time
8 November 2022	TKO Area 137	14:30 - 15:30
15 November 2022	TKO Area 137	14:30 - 16:00
22 November 2022	TKO Area 137	14:30 - 15:45
29 November 2022	TKO Area 137	09:15 - 11:15

Table 7.1	Summaries of Site Inspection Record
	Summaries of Site inspection Record

- 8.2. Joint site inspections with IEC were carried out on 8, 15, 22 and 29 November 2022.
- 8.3. Environmental deficiencies were observed during weekly site inspection. Key observations during the site inspections and during the reporting period are summarized in **Table 7.2**.

Date	Environmental Observations	Follow-up Status	
8 November 2022	1. Chemical containers found near the OSCG and staff office and ActiDAFF shall be stored on a drip tray or proper storage area to prevent leakage.	1. Chemical was removed.	
15 November 2022	1. Chemical containers found near the OSCG shall be stored on a drip tray or proper storage. Excess chemicals on the ground shall be removed properly.	1. Chemical was removed.	
22 November 2022	No major observations were recorded on the reporting day.	Nil	
29 November 2022	1. Chemical containers found near the contractor rest area and Admin Building shall be stored on a drip tray or proper chemical storage.	1. Chemical was removed.	

Table 7.2Site Observations

8.4. According to the EIA Study Report, Environmental Permit, contract documents and EM&A Manual, the mitigation measures detailed in the documents should be implemented as much as practical during the reporting period. An updated Implementation Status of Environmental Mitigation Measures (EMIS) is provided in **Appendix C**. Site inspection proforma of the reporting period is provided in **Appendix I**.

9. FUTURE KEY ISSUES

9.1. Works to be undertaken in the next reporting month are:

Product Water Storage Tank Building Resin Injection work & Water Test for 4 Water Tanks • Installation of Cat Ladders in 4 Water Tanks and Upper Roof Tiles • Underground utility construction • Installation of building services, Installation of mechanical equipment, steel pipe • Main Electrical & Central Chiller Plant Building Installation of Upper Roof Tiles • **Construction of Check Water Meter Cabinet** Installation of Metal and Timber Doors • Installation of chillers, building services, electrical switchboard **OSCG Building** Installation of Design for Manufacturing and Assembly Panel • Resin Injection work & Water Test for Brine Tank • Construction of Outside Staircases at West Side Ground floor • Installation of building services and mechanical equipment • Administration Building Construction of interior finishes at 2/F, 3/F, and 4/F • carrying out waterproofing works at 1/F open area and Roof • Installation of Aluminium Window, tiling works, and louvre Installation of building services, Lifting of electrical switchboard • Reverse Osmosis Building Installation of Design for Manufacturing and Assembly Panels at East & West • Sides Construction of Staircases (Inside and Outside Locations) Installation of roof tiles, alum, and louvre • Underground utility construction Installation of building services, electrical switchboard, Installation of mechanical • equipment, steel pipe, Glass Reinforced Plastics (GRP) pipe ActiDAFF Installation of R/F Kiosk Metal Doors • Water proofing work on roof of Cartridge Filter Plant Room • Construction of kiosks and installation of louvre Underground utility construction • Scaffolding, installation of mechanical equipment and piping • Inspection corridor Steel fixing works for segment 7, segment 6 and segment 5 construction of stair tower

Chemical building

- Covering the wall opening and waterproofing works at roof of building
- Underground utility construction
- Installation of building services, Installation of mechanical equipment

Post Treatment Building

- Construction of Outside Staircase to Filter Press Room
- Installation of Aluminium Louvre
- Underground utility construction
- Installation of building services, Lifting of lime silo, Installation of mechanical equipment

CO₂ Tanks

• Installation of Fencing and pipes

Outfall Shaft

• GRP Diffuser Pipe installation

Intake shaft

- Shafts backfill rock and excavation and lateral support (ELS) removal
- Combined Shaft
- Staircases and internal finishing, puddle pipe installation, stop log wall construction
- Installation of mechanical equipment and piping, stoplogs and band screens Pump room
- Staircases and internal finishing, overhead crane installation Elevated Walkway
- Lift shaft construction

Slope works

- Excavation at slope toe and access erection, Soil anchor and grouting construction Open Channel
- Wall construction

Other

- 132 kV temporary emergency vehicular access (eva) Construction
- Permanent road construction at Zone A, B, C
- 9.2. The major environmental impacts brought by the above construction works will include:
 - Construction dust and noise generation from excavation and construction works;
 - Waste generation from construction activities; and
 - Impact on water quality from marine construction works and inland construction works.
- 9.3. The key environmental mitigation measures for the Project in the coming reporting period associated with the above construction works will include:

- Dust suppression by regular wetting and water spraying for construction works
- Reduction of noise from equipment and machinery on-site by regular checking of on-site plant/vehicle to ensure proper functioning
- Sorting and storage of general refuse and construction waste
- Deployment of temporary silt curtain in the area where marine construction works were conducted and deployment of water sedimentation tanks for treatment of wastewater at inland and marine areas before discharge

10. CONCLUSIONS AND RECOMMENDATIONS

- 10.1. This is the 33rd Monthly EM&A Report for the Project which summarizes the key findings of the EM&A programme during the reporting period from 1 November to 30 November 2022, in accordance with the EM&A Manual and the requirement under FEP-01/503/2015/A.
- 10.2. No noise monitoring was conducted in the reporting period due to the over distant monitoring station from the works location, in which construction activities were not undertaken within a radius of 300m from the monitoring locations.
- 10.3. The EM&A works for water quality were conducted during the reporting period in accordance with the EM&A Manual.
- 10.4. One hundred and fifty-five (155) of the general water quality monitoring results of suspended solids (SS) obtained had exceeded the Action Level. One hundred and forty-two (142) of the general water quality monitoring results of SS obtained during the reporting period had exceeded the Limit Level. After investigation, all exceedances were concluded unrelated to the Project.
- 10.5. In this reporting period, no landfill gas monitoring was conducted at Wan Po Road (Ch1+513 Ch1+625).
- 10.6. Weekly environmental site inspections were conducted during the reporting period. Observations and recommendations were reported during the site inspections. All items are rectified within the reporting period. The environmental performance of the project was therefore considered satisfactory.
- 10.7. According to the environmental site inspections performed in the reporting month, the Contractor is reminded to pay attention on chemical storage, site hygiene and dust suppression mitigation measures.
- 10.8. No environmental complaint, notification of summons and prosecution was received in the reporting period.
- 10.9. The ET will keep track on the construction works to confirm compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

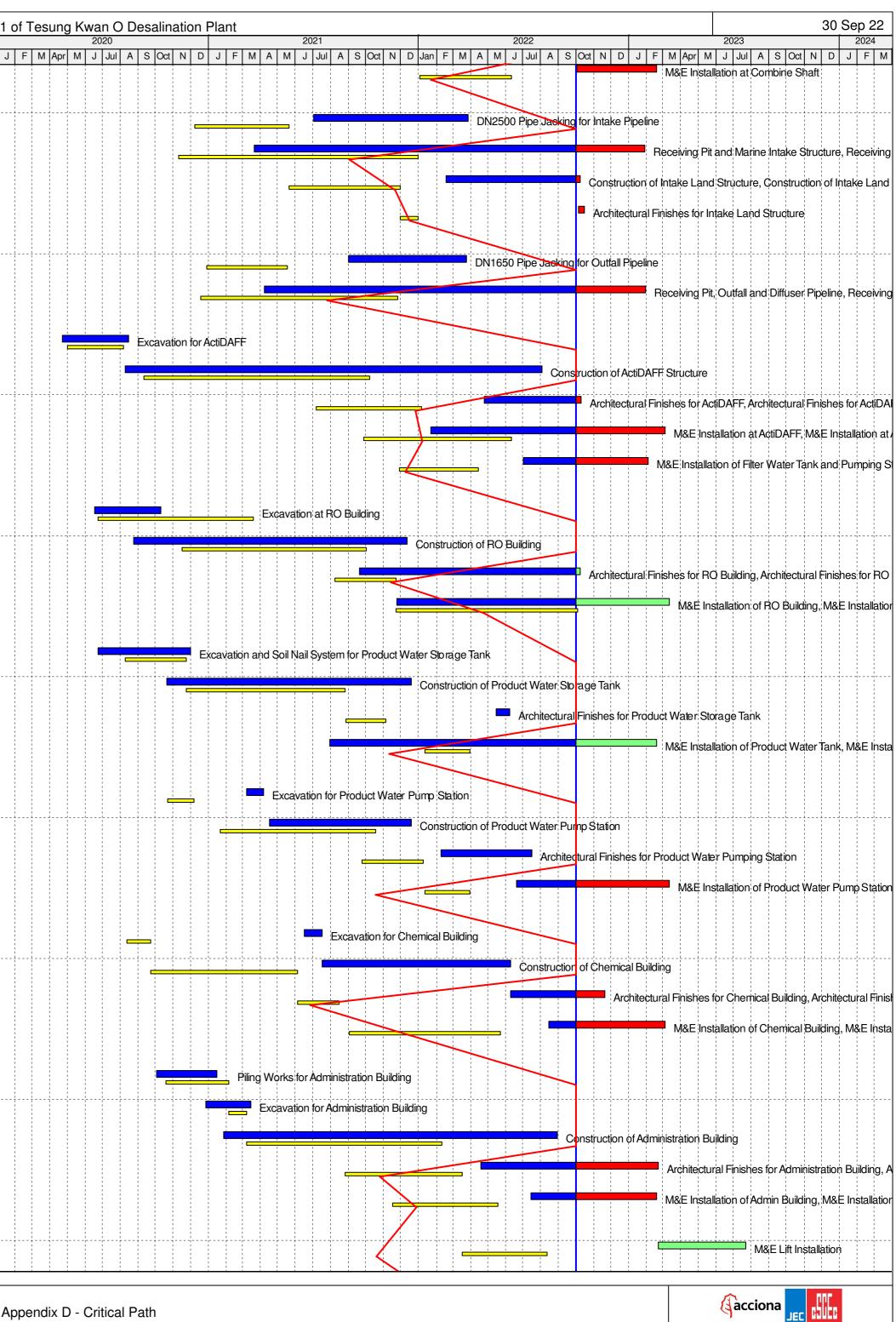
The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

Appendix A

Construction Programme

ity ID	Activity Name	Baseline Duration	Baseline Start	Baseline Finish	Remaining Duration	Actual / Planned Start	Actual / Planned Finish	Actual % Complete	Variance Finish Date	Total Float	N D	JF	MA	or M	2020	I A S
roject Prog	amme Updated as at 30 September 2022 (Level 3	2)										JF		or M	J Jul	AS
Key Dates		-/														
	ment and Completion Date															
KD0000100	Letter of Acceptance	0	15-Nov-19		0	15-Nov-19 A		100%	0		💲 Lette	r of Acc	ceptar	ice		
KD0000110	Commencement of the Works	0	30-Dec-19		0	30-Dec-19 A		100%	0		\$	Comm	nence	ment c	of the V	Vorks
KD0000120	Completion of the Works (1170 Days)	0		13-Mar-23	0		13-Mar-23	0%	0	0						
KD0000130	Revised Completion of the Works (261 Days EOT Granted)	0			261	14-Mar-23	29-Nov-23	0%		0						
KD0000510	Planned Completion of the Works	0			0		29-Dec-23	0%		-30						
KD0000520	Target Completion of the Works (Best Endeavour)	0			0		30-Sep-23	0%		60						
xecutive Su	Immaries															
Preliminary																
ES0001000	Mobilization and Preliminary Set Up	191	30-Dec-19	07-Jul-20	0	30-Dec-19 A	20-Jul-20 A	100%	-13							Mobiliza
	AIP and DDA															
ES0001010	AIP Civil Design Submission and Approval	330	30-Dec-19	23-Nov-20	0	30-Dec-19 A	31-Aug-20 A	100%	84							—
ES0001020	DDA Civil Design Submission and Approval	414	28-Feb-20	16-Apr-21	0	22-Jan-20 A	01-Sep-21 A	100%	-138			F	_			
	AIP and DDA														1	
ES0002000	M&E AIP Process Mechanical Submission and Approval	477	30-Dec-19	19-Apr-21	0	30-Dec-19 A	22-Dec-20 A	100%	118						1 1 1	
ES0002010	M&E DDA Process Mechanical Submission and Approval	679	08-Feb-20	17-Dec-21	0	21-Jul-20 A	02-Sep-21 A	100%	106			_				
ES0002020	M&E AIP Instrumentation & Control Submission and Approval	607	31-Jan-20	28-Sep-21	0	04-Feb-20 A	25-Feb-20 A	100%	581			-				
S0002030	M&E DDA Instrumentation & Control Submission and Approval	514	22-Jul-20	17-Dec-21	61	13-Feb-21 A	30-Nov-22	99.35%	-348	74					C	
S0002050	M&E DDA Electrical and Renewable Energy Submission and Approval	382	16-Aug-20	01-Sep-21	0	17-Aug-20 A	31-Dec-20 A	100%	244							
ES0002060	M&E AIP Building Services Submission and Approval	226	30-Dec-19	11-Aug-20	0	30-Dec-19 A	30-Oct-20 A	100%	-80							
S0002065	M&E Design Basis & Civil Guidance Dwg	112	30-Dec-19	19-Apr-20	0	30-Dec-19 A	24-Jul-20 A	100%	-96		_			1		M&E C
S0002070	M&E DDA Building Services Submission and Approval	306	28-Feb-20	29-Dec-20	0	01-Mar-20 A	30-Jun-21 A	100%	-183			F	_			
ES0002085	M&E AIP Site Electrical Submission and Approval	155	09-Jun-20	10-Nov-20	0	21-Mar-20 A	22-Jul-20 A	100%	111							
S0002090	M&E DDA Lift Submission and Approval	140	27-Aug-20	13-Jan-21	0	01-Oct-20 A	12-May-21 A	100%	-119							
ES0002095	M&E DDA Site Electrical Submission and Approval	140	11-Nov-20	30-Mar-21	0	23-Jul-20 A	04-Jun-21 A	100%	-66							
ES0002100	M&E DDA T&C Design Submission and Approval	155	29-Mar-22	30-Aug-22	138	01-Aug-21 A	15-Feb-23	50%	-169	-27						
	t of Major Plant & Equipment Schedule															
ES0002320	M&E Procurement of Major Plant, Equipment, Material and Delivery	901	14-Mar-20	31-Aug-22	33	04-Feb-20 A	02-Nov-22	95.63%	-63	89						
ES2420	M&E Procurement of Mechanical Equipment - Intake Pumps	595	18-May-20	02-Jan-22	0	04-Feb-20 A	11-May-22 A	100%	-129							
ES2430	M&E Procurement of Mechanical Equipment - ActiDAFF Underdrain	333	30-Oct-20	27-Sep-21	0	02-Aug-20 A	14-Mar-22 A	100%	-168							
ES2440	M&E Procurement of Mechanical Equipment - ActiDAFF Media	298	15-Mar-21	06-Jan-22	15	23-Jul-20 A	15-Oct-22	98.07%	-282	29						
ES2450	M&E Procurement of Mechanical Equipment - RO and ERD Rack	274	22-Feb-21	22-Nov-21	0	22-Jul-20 A	28-Dec-21 A	100%	-36							
S2460	M&E Procurement of Mechanical Equipment - RO Membrane	755	29-Mar-20	22-Apr-22	91	12-Feb-20A	30-Dec-22	85%	-252	128		-	-			
ES2470	M&E Procurement of Electrical Equipment - CLP Substation for LV Switchboard / Genset / Building Services	300	14-Mar-20	07-Jan-21	0	14-Mar-20 A	28-Feb-21 A	100%	-52							
32kV Subs	tation		1													
ES0001460	Excavation and Formation Works for 132kV Substation	15	16-Mar-20	30-Mar-20	0	19-Feb-20 A	23-Apr-20 A	100%	-24					Exc	avatio	on and Fo
S0001470	Construction of 132kV Substation	233	31-Mar-20	18-Nov-20	0	27-Apr-20 A	30-Dec-20 A	100%	-42				L		1 	
ES0001480	Architectural Finishes for 132kV Substation	126	11-Sep-20	14-Jan-21	0	23-Nov-20 A	22-Mar-21 A	100%	-67							
S0002240	M&E Installation of 132kV Substation	93	20-Nov-20	20-Feb-21	0	01-Dec-20 A	22-Mar-21 A	100%	-30							
			1	1	1	1	1	1		1						
Combine Sh											1 1 1					

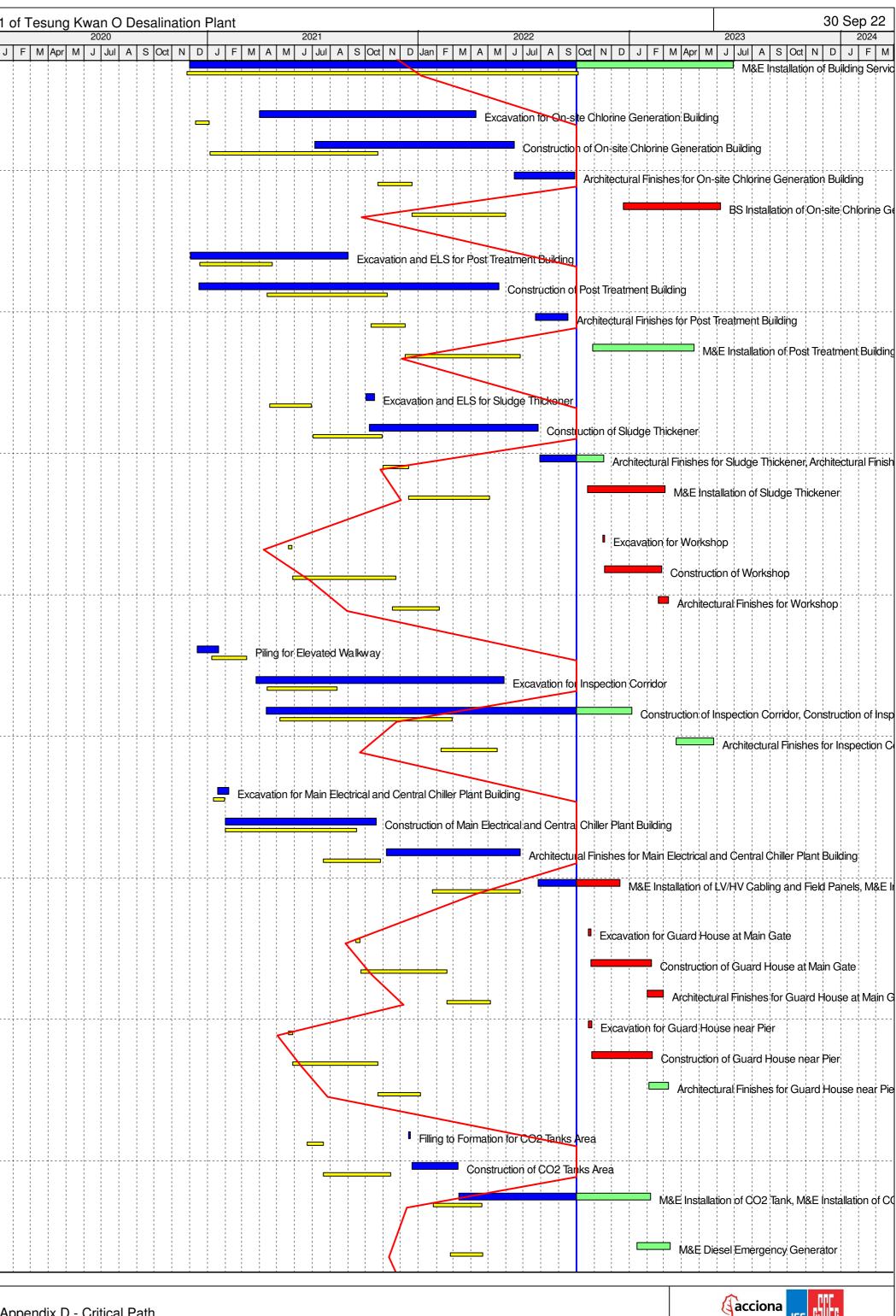
Summary Bar	Actual Work	◇	♦ Target Milestone	Page 1 of 4	
Actual Level of Effort	Early Bar	•	♦ Milestone		Д
Target Bar	Critical Bar				


	Variance	Total		2020		2021	2022	2023 2024
mplete	Finish Date	Float	N D J F M Apr M	J Jul A S Oct N D J	JFMAMJ	J Jul A S Oct N D	Jan F M A M J Jul A S Oct N I	D J F M Apr M J Jul A S Oct N D J F M
100%	0		S Letter of Acceptance					
100%	0		Commencement	of the Works				
0%	0	0			$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Scompletion of the Works (1170 Days)
0%		0						Revised Com
0%		-30						Planned (
0%		60						 Target Completion of
				·····				
100%	-13			Mobilization and Prelir	ninary Set Up			
100%	84			AIP C	Civil Design Submiss	sion and Approval		
100%	-138						sign Submission and Approval	
10070	100							
100%	118						Cubmintion and Approval	
100%	110					AIP Process Mechanical	Submission and Approval	
100%	106						M&E DDA Process Mechanical Supmission a	ınd Approval
100%	581					M&EAIP	Instrumentation & Control Submission and Ap	proval
9.35%	-348	74						
9.33 /6	-340	74						M&E DDA Instrumentation & Control Submission and Appro
100%	244					M&E DDA Ele	ectrical and Renewable Energy Submission a	nd Approval
100%	-80			M&EAIP	'Building Services	Submission and Approva		
100%	-96			M&E Design Basis &	Civil Guidance Dw	a		
10070				NICE Design Dasis &		9		
100%	-183					M&E DDA Building Se	ervices Submission and Approval	
100%	111			M&EAI	IP Site Electrical Su	Ibmission and Approval		
100%	-119				Ms	&E DDA Lift Submission a	nd Annroval	
100%	-66					M&E DDA Site Electrical	Submission and Approval	
50%	-169	-27						M&E DDA T&C Design Submission and Approval,
5.63%	-63	89					M&	E Procurement of Major Plant, Equipment, Material and Deliv
100%	-129						M&E Procurement of Mec	hanical Equipment - Intake Pumps
100%	-168						M&E Procurement of Mechanical	Equipment - ActiDAFF Underdrain
3.07%	-282	29					M&EI	Procurement of Mechanical Equipment - ActiDAFF Media, M
100%	-36						M&E Procurement of Mechanical Equipmen	tt- BO and EBD Back
85%	-252	128						M&E Procurement of Mechanical Equipment - RO Member M&E Procurement - RO Mercement - RO Mercement - RO Member M&E Procurement - RO Mercement - RO
100%	-52			· · · · · · · · · · · · · · · · · · ·	M&E Procur	rement of Electrical Equip	ment - CLP Substation for EV Switchboard / C	àenset / Building Services
100%	-24		Ex	cavation and Formation Works	s for 132kV Substa	tion		
100%	-42				Construction of 132	kV Substation		
100%	-67				Architectu	ural Finishes for 132kV Si	ubstation	
100%	-30				M&E Inst	tallation of 132kV Substat	ion	
					<u> </u>			
100%	-204	I		the state of the s		Construction of Comb	bine Shaft	

WSD/17	Activity Name	Baseline Duration	Baseline Start	Baseline Finish	Remaining Duration	Actual / Planned Start	Actual / Planned Finish		uild and C Variance Finish Date	Total Float	
ES0002120	M&E Installation at Combine Shaft	160	03-Jan-22	11-Jun-22	139	03-Oct-22	18-Feb-23	0%	-252	-30	Ľ
ntake											
ES0001070	DN2500 Pipe Jacking for Intake Pipeline	163	09-Dec-20	20-May-21	0	02-Jul-21 A	28-Mar-22 A	100%	-312		
ES0001080	Receiving Pit and Marine Intake Structure	416	11-Nov-20	31-Dec-21	120	22-Mar-21 A	28-Jan-23	75%	-393	0	
ES0001110	Construction of Intake Land Structure	193	21-May-21	29-Nov-21	8	17-Feb-22 A	08-Oct-22	98%	-313	-3	
ES0001120	Architectural Finishes for Intake Land Structure	32	30-Nov-21	31-Dec-21	10	06-Oct-22	15-Oct-22	0%	-288	-18	
DutFall ES0001090	DN1650 Pipe Jacking for Outfall Pipeline	140	29-Dec-20	17-May-21	0	01-Sep-21 A	24-Mar-22 A	100%	-311		
ES0001100	Receiving Pit, Outfall and Diffuser Pipeline	343	18-Dec-20	25-Nov-21	122	08-Apr-21 A	30-Jan-23	82%	-431	-2	-
ES0001140	Excavation for ActiDAFF	97	02-May-20	06-Aug-20	0	22-Apr-20 A	15-Aug-20 A	100%	-9		
ES0001150	Construction of ActiDAFF Structure	393	11-Sep-20	08-Oct-21	0	10-Aug-20 A	03-Aug-22 A	100%	-299		
ES0001160	Architectural Finishes for ActiDAFF	183	07-Jul-21	05-Jan-22	10	25-Apr-22 A	10-Oct-22	94%	-278	-14	
ES0002130	M&E Installation at ActiDAFF	257	28-Sep-21	11-Jun-22	155	22-Jan-22 A	04-Mar-23	11.75%	-266	-7	
ES0002140	M&E Installation of Filter Water Tank and Pumping Station	137	29-Nov-21	14-Apr-22	126	01-Jul-22 A	03-Feb-23	24.64%	-295	0	
	nosis Building	270	04 Jun 00	20-Mar-21	0	19. km 20.4	10 Oct 20 A	100%	161		ĺ
ES0001170 ES0001180	Excavation at RO Building	321	24-Jun-20 16-Nov-20	02-Oct-21	0	18-Jun-20 A	10-Oct-20 A 11-Dec-21 A	100%	-70		
	Construction of RO Building				0	25-Aug-20 A				10	_
ES0001190	Architectural Finishes for RO Building	106	09-Aug-21	22-Nov-21	8	20-Sep-21 A	08-Oct-22	98%	-320	16	
ES0002150	M&E Installation of RO Building	315	23-Nov-21	03-Oct-22	163	24-Nov-21 A	12-Mar-23	37.1%	-160	31	_
Froduct Wat ES0001240	ter Storage Tank Excavation and Soil Nail System for Product Water Storage	106	10-Aug-20	23-Nov-20	0	24-Jun-20 A	01-Dec-20 A	100%	-8		
ES0001250	Tank Construction of Product Water Storage Tank	276	24-Nov-20	26-Aug-21	0	21-Oct-20 A	18-Dec-21 A	100%	-114		+-
ES0001260	Architectural Finishes for Product Water Storage Tank	70	27-Aug-21	04-Nov-21	0	16-May-22 A	07-Jun-22 A	100%	-215		-
ES0002210	M&E Installation of Product Water Tank	78	12-Jan-22	30-Mar-22	140	31-Jul-21 A	17-Feb-23	30%	-324	3	-
roduct Wat	ter Pumping Station										Ī
ES0001270	Excavation for Product Water Pump Station	47	22-Oct-20	07-Dec-20	0	08-Mar-21 A	07-Apr-21 A	100%	-121		
ES0001280	Construction of Product Water Pump Station	270	22-Jan-21	18-Oct-21	0	17-Apr-21 A	18-Dec-21 A	100%	-61		-
ES0001290	Architectural Finishes for Product Water Pumping Station	106	25-Sep-21	08-Jan-22	0	08-Feb-22 A	16-Jul-22 A	100%	-189		
ES0002215	M&E Installation of Product Water Pump Station	78	12-Jan-22	30-Mar-22	163	20-Jun-22 A	12-Mar-23	15.37%	-347	-24	
<mark>hemical Bu</mark> ES0001300	uilding Excavation for Chemical Building	42	10 Aug 20	22-Sep-20	0	17-Jun-21 A	17-Jul-21 A	100%	-298		
ES0001300	Construction of Chemical Building	255	12-Aug-20	04-Jun-21	0	17-Jul-21 A	09-Jun-22 A	100%	-296		
ES0001310	Architectural Finishes for Chemical Building	73	23-Sep-20 05-Jun-21	16-Aug-21	50	09-Jun-22 A	19-Nov-22	70%	-370	-29	_
ES0002220	M&E Installation of Chemical Building	264	02-Sep-21	23-May-22	155	15-Aug-22 A	04-Mar-23	36%	-285	-29	
ES0001330	on Building Piling Works for Administration Building	110	19-Oct-20	05-Feb-21	0	03-Oct-20 A	16-Jan-21 A	100%	20		
ES0001340	Excavation for Administration Building	31	06-Feb-21	08-Mar-21	0	28-Dec-20 A	15-Mar-21 A	100%	-7		
ES0001350	Construction of Administration Building	339	09-Mar-21	10-Feb-22	0	28-Jan-21 A	29-Aug-22 A	100%	-200		
ES0001360	Architectural Finishes for Administration Building	204	26-Aug-21	17-Mar-22	143	19-Apr-22 A	20-Feb-23	54%	-340	-30	
ES0002230	M&E Installation of Admin Building	184	16-Nov-21	18-May-22	141	15-Jul-22 A	18-Feb-23	4.5%	-276	-30	
_	rvices & Lift Installation	=	40						• · · =		
ES0002270	M&E Lift Installation	147	18-Mar-22	11-Aug-22	152	21-Feb-23	22-Jul-23	0%	-345	21	

Target Bar

Critical Bar



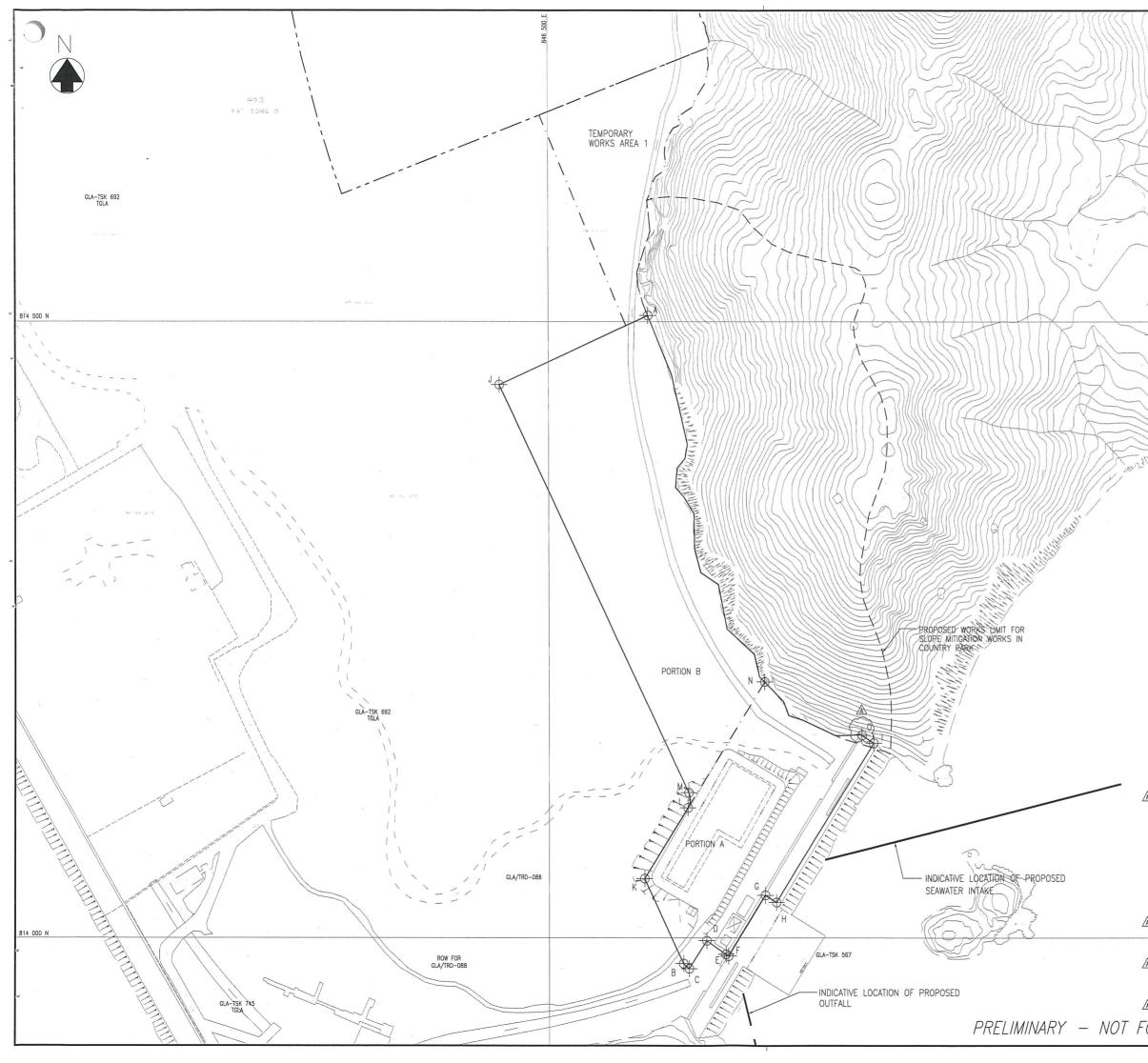
AJC JOINT VENTURE

D	Activity Name	Baseline Duration	Baseline Start	Baseline Finish	Remaining Duration	Actual / Planned Start	Actual / Planned Finish	Actual % Complete	Variance Finish Date	Total Float
S0002280	M&E Installation of Building Services	676	27-Nov-20	03-Oct-22	271	01-Dec-20 A	28-Jun-23	22.95%	-268	45
SCG Build	ling									
S0001400	Excavation for On-site Chlorine Generation Building	25	11-Dec-20	04-Jan-21	0	01-Apr-21 A	09-Apr-22 A	100%	-460	
S0001410	Construction of On-site Chlorine Generation Building	291	05-Jan-21	22-Oct-21	0	05-Jul-21 A	15-Jun-22 A	100%	-236	
S0001420	Architectural Finishes for On-site Chlorine Generation Building	59	23-Oct-21	20-Dec-21	0	16-Jun-22 A	28-Sep-22 A	100%	-282	
S0002200	BS Installation of On-site Chlorine Generation Building (DG inspection)	162	21-Dec-21	31-May-22	168	21-Dec-22	06-Jun-23	0%	-371	0
ost Treatm	ent Building									
S0001210	Excavation and ELS for Post Treatment Building	126	19-Dec-20	23-Apr-21	0	03-Dec-20 A	01-Sep-21 A	100%	-131	
S0001220	Construction of Post Treatment Building	209	14-Apr-21	08-Nov-21	0	17-Dec-20 A	19-May-22 A	100%	-192	
S0001230	Architectural Finishes for Post Treatment Building	59	11-Oct-21	08-Dec-21	0	22-Jul-22 A	16-Sep-22 A	100%	-282	
S0002180	M&E Installation of Post Treatment Building	199	09-Dec-21	25-Jun-22	176	29-Oct-22	22-Apr-23	0%	-301	51
udge Thic	:kener									
S0001680	Excavation and ELS for Sludge Thickener	73	19-Apr-21	30-Jun-21	0	02-Oct-21 A	16-Oct-21 A	100%	-108	
S0001690	Construction of Sludge Thickener	121	02-Jul-21	30-Oct-21	0	08-Oct-21 A	26-Jul-22 A	100%	-269	
S0001700	Architectural Finishes for Sludge Thickener	44	01-Nov-21	14-Dec-21	48	29-Jul-22 A	17-Nov-22	0%	-338	22
S0002190	M&E Installation of Sludge Thickener	141	15-Dec-21	04-May-22	135	20-Oct-22	03-Mar-23	0%	-303	-15
orkshop S0001560	Excavation for Workshop	7	21-May-21	27-May-21	4	15-Nov-22	18-Nov-22	0%	-540	-17
S0001570	Construction of Workshop	179	28-May-21	22-Nov-21	99	19-Nov-22	25-Feb-23	0%	-460	-17
				05-Feb-22						-18
S0001580	Architectural Finishes for Workshop	81	17-Nov-21	05-Feb-22	17	20-Feb-23	08-Mar-23	0%	-396	-18
spection (S0001590	Piling for Elevated Walkway	60	09-Jan-21	09-Mar-21	0	15-Dec-20 A	19-Jan-21 A	100%	49	
S0001600	Excavation for Inspection Corridor	121	14-Apr-21	12-Aug-21	0	26-Mar-21 A	28-May-22 A	100%	-289	
S0001610	Construction of Inspection Corridor	299	06-May-21	28-Feb-22	96	12-Apr-21 A	04-Jan-23	50%	-310	8
S0001620	Architectural Finishes for Inspection Corridor	99	08-Feb-22	17-May-22	65	23-Mar-23	26-May-23	0%	-374	93
ain Electri	cal and Central Chiller Plant Building									
S0001430	Excavation for Main Electrical and Central Chiller Plant Building	20	11-Jan-21	30-Jan-21	0	18-Jan-21 A	06-Feb-21 A	100%	-7	
S0001440	Construction of Main Electrical and Central Chiller Plant Building	227	01-Feb-21	15-Sep-21	0	01-Feb-21 A	20-Oct-21 A	100%	-35	
S0001450	Architectural Finishes for Main Electrical and Central Chiller Plant Building	99	20-Jul-21	26-Oct-21	0	06-Nov-21 A	25-Jun-22 A	100%	-242	
S0002260	M&E Installation of LV/HV Cabling and Field Panels	152	25-Jan-22	25-Jun-22	76	27-Jul-22 A	15-Dec-22	35.38%	-173	-1
<mark>uard Hous</mark> S0001490		7	15 Con 01	01 Sep 01	5	21 Oct 22	25 Oct 22	09/	200	10
	Excavation for Guard House at Main Gate	7	15-Sep-21	21-Sep-21	5	21-Oct-22	25-Oct-22	0%	-399	-13
S0001500	Construction of Guard House at Main Gate	149	23-Sep-21	18-Feb-22	105	26-Oct-22	07-Feb-23	0%	-354	-19
S0001510	Architectural Finishes for Guard House at Main Gate	76	19-Feb-22	05-May-22	28	01-Feb-23	28-Feb-23	0%	-299	-6
S0001520	Excavation for Guard House near Pier	8	21-May-21	28-May-21	6	22-Oct-22	27-Oct-22	0%	-517	-15
S0001530	Construction of Guard House near Pier	147	29-May-21	22-Oct-21	105	28-Oct-22	09-Feb-23	0%	-475	-21
S0001540	Architectural Finishes for Guard House near Pier	74	23-Oct-21	04-Jan-22	35	03-Feb-23	09-Mar-23	0%	-429	104
D2 Tank S0001370	Filling to Formation for CO2 Tanks Area	29	22-Jun-21	20-Jul-21	0	14-Dec-21 A	17-Dec-21 A	100%	-150	
S0001370	Construction of CO2 Tanks Area	116	22-Juli-21 21-Jul-21	13-Nov-21	0	14-Dec-21 A	17-Dec-21A	100%	-150	
S0001380	M&E Installation of CO2 Tank	84	27-Jan-22	20-Apr-22	129	11-Mar-22 A	06-Feb-23	15.85%	-117	108
		04	21-Jai1-22	20-ημι-22	123	11 1VIAI-22 A	00-1 00-20	10.00%	-LJL	100
<mark>esel Emer</mark> S0002250	rgency Generator M&E Diesel Emergency Generator	57	25-Feb-22	22-Apr-22	57	14-Jan-23	11-Mar-23	0%	-323	153

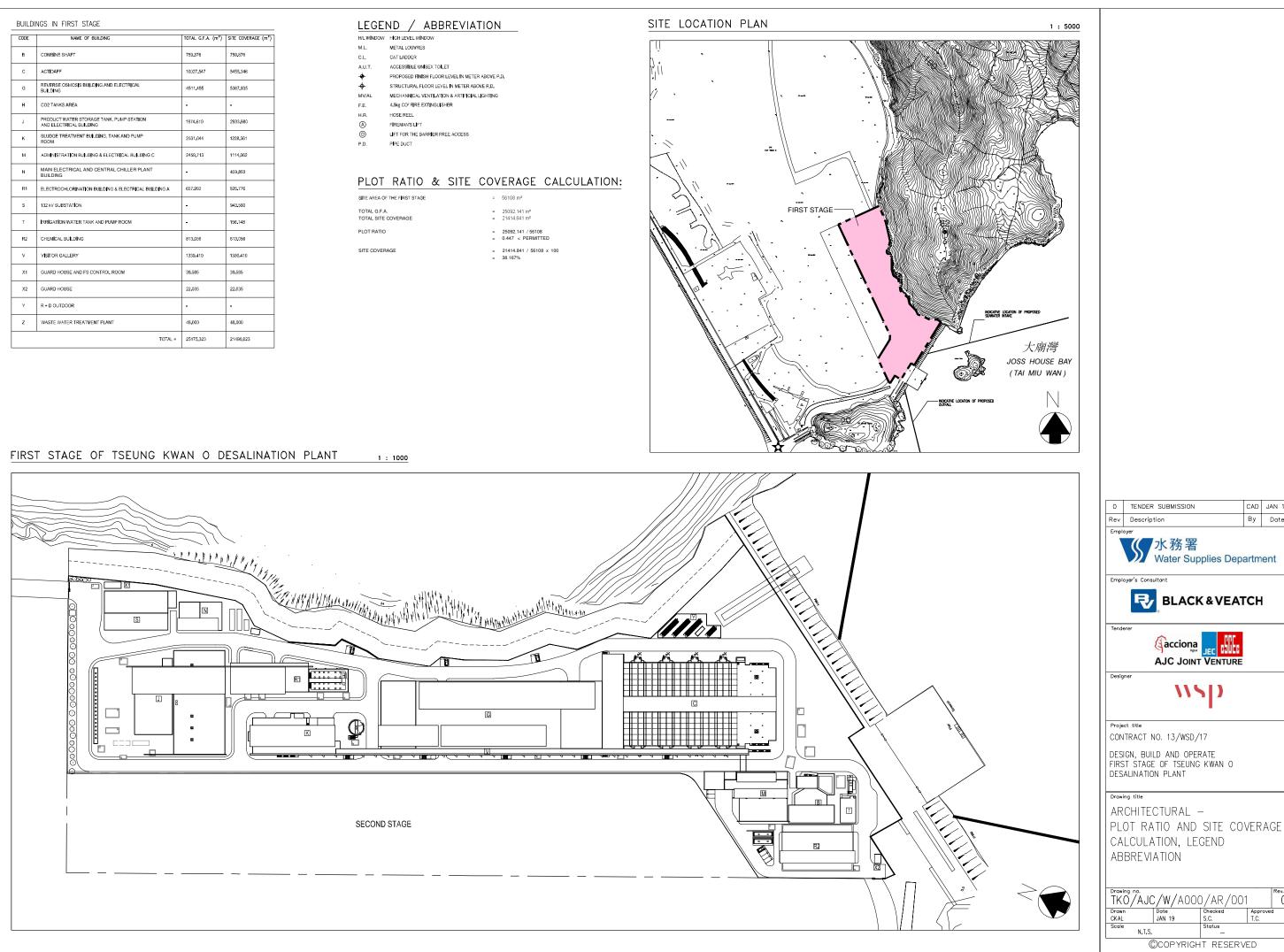
Target Bar

Critical Bar

3/WSD/17									uild and O	perate S	tage 1 of Tes	sung Kwar	O Desal	ination Pl	ant								30	30 Se
ivity ID	Activity Name	Baseline Duration	Baseline Start	Baseline Finish	n Remaining Duration		d Actual / Planned Finish	Actual %	Variance Finish Date	Total Float		202				2021			2022			2023		
		Duration			Duration	Jun		Compiete	rinon Dale		N D J F M	Apr M J	Jul A S C	oct N D	JFMA	M J Jul A	S Oct N [D Jan F M	A M J Jul A	S Oct	N D J F M	Apr M J Jul	A S Oct N E	D
	n and Transformer Installation															⊧ ⊧!								
ES0002300	M&E Installation of HV/LV Switchroom and Transformer	242	16-Nov-21	15-Jul-22	208	24-Jul-22 A	26-Apr-23	50%	-285	-9												M&E Install	lation of HV/LV Sv	witc
Miscellaneou	us					1																		
ES0001630	Remaining Architectural Finishes for All Buildings	322	11-Jan-22	28-Nov-22	268	21-Nov-22	15-Aug-23	0%	-260	17													Remaining Arc	rch
ES0001640	External Process and Non-Process Pipe	655	18-Dec-20	03-Oct-22	210	27-May-21 A	28-Apr-23	45%	-207	-30												External Pr	ocess and Non-F	Pr
ES0001650	Drainage and Cable Duct	518	04-Jun-21	03-Nov-22	182	25-Apr-22 A	31-Mar-23	30%	-148	-30												Drainage and	Cable Duct, Drair	lina
ES0001660	Slope Mitigation and Maintenance Access	684	23-Nov-20	07-Oct-22	376	28-Sep-21 A	11-Oct-23	5%	-369	49										·····			Slope I	M
ES0001670	Landscaping Works	469	28-Oct-21	08-Feb-23	275	06-Jan-23	07-Oct-23	0%	-241	7													Landsc	;C2
ES0002290	M&E PV Panels	215	23-Nov-21	25-Jun-22	150	10-Oct-22	08-Mar-23	0%	-256	148												M&E PV Panels		
ES0002310	M&E Chiller & Irrigation System Installation	298	27-Oct-21	20-Aug-22	99	12-Apr-22 A	07-Jan-23	17.96%	-140	12											M&E CI	niller & Irrigation S	ystem Installation	n,
ES0002350	M&E Installation of Surge Vessel	70	24-Feb-22	04-May-22	69	09-Jan-23	18-Mar-23	0%	-318	123												M&E Installation	of Surge Vessel	I
ES0002390	M&E Installation of Thickened Sludge Holding Tank	42	09-Dec-21	19-Jan-22	60	12-Nov-22	10-Jan-23	0%	-356	24											M&E In	stallation of Thick	ened Sludge Hold	ld
Statutory Su	bmission & Inspection																							
ES0002330	Statutory Submission & Inspection	1148	11-Jan-20	03-Mar-23	394	03-Dec-19 A	29-Oct-23	64.42%	-240	31													Statu	tu
Testing and	Commissioning		I							1														
ES0002400	M&E Precomissioning	229	12-Jun-22	26-Jan-23	203	19-Feb-23	09-Sep-23	0%	-226	-30													M&E Preco	;OI
ES0002410	M&E Commissioning	213	04-Jul-22	01-Feb-23	194	01-Mar-23	10-Sep-23	0%	-221	-30										· · · · · · · · · · · · · · · · · · ·			M&E Comr	۱m
ES0002420	M&E Performance Test	40	02-Feb-23	13-Mar-23	110	11-Sep-23	29-Dec-23	0%	-291	-30														



Appendix B


Overview of Desalination Plant in Tseung Kwan O

	1	1.7	11/10-	///	C Copyright by Black & Vertch Hong Kong Limited
847-000	1	14	1)))		LEGEND:
	1	11	SSI /		BOUNDARY OF SENT
	())))/	[]//		LANDFILL EXTENSION BOUNDARY OF WORKS AREA FOR
	1		1º		TKO DESALINATION PLANT
))			HHL.		GLA-TSK 692 TGLA 692
$\langle \langle \rangle$	4	tt	H.	>	NOTE: TEMPORARY WORKS AREA 1 WILL BE
+	_	K			HANDED OVER AT +6 MPD WITH A TOLERANCE OF ±500mm.
1		2	>)))////	<u> </u>	
1	/			1177	
	-	//	////	1111	
1		//	15		
7	1	/	716		
17	$\langle \rangle$		-ll'	AHB	
				JUN	
1	1	1/			
1	1		(.	ME	
1	/	11			
Y	1	5	\square	STIM	
1)		////////	
1	110	This .			
11111	Ŵ		1 Milegins	Mua	
					B 10/03 UPDATE NOTES YLC
					A 07/18 UPDATE COORDINATES YLC Revision Date Description Initial
					Designed Checked Drawn Checked
					Initial YLC CKH SZ WLS Date 02/18 02/18 02/18 02/18
					Approved
					ansmallo
					Agreement No. CE 8/2015 (WS)
	ſ	POINT	EASTING	NORTHING	Contract No.
		А	846581.93	814505.03	13/WSD/17
		В	846610.11	813979.23	Contract Title DESIGN. BUILD AND OPERATE
	1		010010.11		
		С	846614.73	813975.12	DESIGN, BUILD AND OPERATE FIRST STAGE OF TSEUNG KWAN O DESALINATION PLANT
		C D		813975.12 813997.84	FIRST STÁGE OF TSEUNG KWAN O DESALINATION PLANT
			846614.73		DESALINATION PLANT
		D	846614.73 846629.09	813997.84	DESALINATION PLANT
A (D E	846614.73 846629.09 846644.75	813997.84 813986.74	DESALINATION PLANT
	· · · · · · · · · · · · · · · · · · ·	D E F	846614.73 846629.09 846644.75 846646.80	813997.84 813986.74 813985.28	DESALINATION PLANT
	· · · · · · · · · · · · · · · · · · ·	D E F G	846614.73 846629.09 846644.75 846646.80 846646.80 846677.24	813997.84 813986.74 813985.28 814034.67	DESALINATION PLANT Drowing Title SITE HANDOVER WORKS AREAS Drowing No. Revision
		D E F G H	846614.73 846629.09 846644.75 846646.80 846677.24 846686.56	813997.84 813986.74 813985.28 814034.67 814028.89	DESALINATION PLANT Drowing Title SITE HANDOVER WORKS AREAS Drowing No. 190495/K/TEND/10/0003 B
		D E F G H	846614.73 846629.09 846644.75 846646.80 846646.80 846677.24 846686.56 846766.21	813997.84 813986.74 813985.28 814034.67 814028.89 814158.11	DESALINATION PLANT Drowing Title SITE HANDOVER WORKS AREAS Drowing No. Revision
		D E F G H J	846614.73 846629.09 846644.75 846646.80 846677.24 846686.56 846766.21 846459.65	813997.84 813986.74 813985.28 814034.67 814028.89 814158.11 814448.83 814048.11 814405.63	DESALINATION PLANT Drowing Title SITE HANDOVER WORKS AREAS Drowing No. 190495/K/TEND/10/0003 B Scele A1 1 : 1500 A3 1 : 3000 水務署
		D E F G H I J	846614.73 846629.09 846644.75 846646.80 846677.24 846686.56 846766.21 846766.21 846459.65 846578.45	813997.84 813986.74 813985.28 814034.67 814028.89 814158.11 814448.83 814048.11	DESALINATION PLANT Drowing Title SITE HANDOVER WORKS AREAS Drowing No. 190495/K/TEND/10/0003 B Scole A1 1 :: 1500 A3 1 :: 3000 水務署 Water Supplies
		D E F G H I J K L	846614.73 846629.09 846644.75 846646.80 846677.24 846686.56 8466766.21 8466578.45 8466578.45 846613.89	813997.84 813986.74 813985.28 814034.67 814028.89 814158.11 814448.83 814048.11 814405.63	DESALINATION PLANT Drowing Title SITE HANDOVER WORKS AREAS Drowing No. 190495/K/TEND/10/0003 B Scele A1 1 : 1500 A3 1 : 3000 水務署
		D F G H J K L M	846614.73 846629.09 846644.75 846646.80 846677.24 846686.56 8466766.21 846659.65 846578.45 846613.89 846614.60	813997.84 813986.74 813985.28 814034.67 814028.89 814028.89 814158.11 814448.83 814048.11 814405.63 814117.96	DESALINATION PLANT Drowing Title SITE HANDOVER WORKS AREAS Drowing No. 190495/K/TEND/10/0003 B Scole A1 1 :: 1500 A3 1 :: 3000 水務署 Water Supplies

CODE	NAME OF BUILDING	TOTAL G.F.A. (m ²)	SITE COVERAGE (m ²)
в	COMBINE SHAFT	759.876	759.876
с	ACTIDAFF	10027.547	5455 <u>3</u> 46
G	REVERSE OSMOSIS BUILDING AND ELECTRICAL BUILDING	4511.455	5367.935
н	CO2 TANKS AREA	-	-
J	PRODUCT WATER STORAGE TANK, PUMP STATION AND ELECTRICAL BUILDING	1974.610	2933.980
к	SLUDGE TREATMENT BUILDING, TANK AND PUMP ROOM	2531.044	1228.361
М	ADMINISTRATION BUILDING & ELECTRICAL BUILDING C	2459.713	1114,062
N	MAIN ELECTRICAL AND CENTRAL CHILLER PLANT BUILDING	-	459,893
R1	ELECTROCHLORINATION BUILDING & ELECTRICAL BUILDING A	657.992	825.776
s	132 KV SUBSTATION	-	943.560
Т	IRRIGATION WATER TANK AND PUMP ROOM	-	156.148
R2	CHEMICAL BUILDING	813.056	813.056
ν	VISITOR GALLERY	1330.410	1330.410
X1	GUARD HOUSE AND FS CONTROL ROOM	39.585	39.585
X2	GUARD HOUSE	22.035	22.035
Y	R + D OUTDOOR	-	-
z	WASTE WATER TREATMENT PLANT	48.000	48.000
	TOTAL =	25175 <u>.</u> 323	21498.023

Appendix C

Summary of Implementation Status of Environmental Mitigation

EIA	Recommended Environmental Protection Measures/	Objectives of the recommended measures &	Implementation Agent	-	ement Stage	tation	Implementation	Relevant Legislation &
Reference	Mitigation Measures	main concerns to address	imprementation rigent	D	С	0	status	Guidelines
Air Quality		L						
S4.8.1	Impervious dust screen or sheeting will be provided to enclose scaffolding from the ground floor level of building for construction of superstructure of the new buildings.	Land site/ During Construction	Contractor(s)		√		Implemented	Air Pollution Control (Construction Dust)
S4.8.1	Impervious sheet will be provided for skip hoist for material transport.	Land site/ During Construction, particularly dry season	Contractor(s)		1		NA	-
S4.8.1	The area where dusty work takes place should be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after dusty activities as far as practicable.	Land site/ During Construction	Contractor(s)		•		Implemented	-
S4.8.1	All dusty materials should be sprayed with water or a dust suppression chemical immediately prior to any loading, unloading or transfer operation.	Land site/ During Construction	Contractor(s)		 ✓ 		Implemented	-
S4.8.1	Dropping heights for excavated materials should be controlled to a practical height to minimize the fugitive dust arising from unloading.	Land site/ During Construction	Contractor(s)		√		Implemented	-
S4.8.1	During transportation by truck, materials should not be loaded to a level higher than the side and tail boards, and should be dampened or covered before transport.	Land site/ During Construction	Contractor(s)		√		Implemented	-
S4.8.1	Wheel washing device should be provided at the exits of the work sites. Immediately before leaving a construction site, every vehicle shall be washed to remove any dusty material from its body and wheels as far as practicable.	Land site/ During Construction	Contractor(s)		•		Implemented	-
S4.8.1	Road sections between vehicle-wash areas and vehicular entrance will be paved.	Land site/ During Construction	Contractor(s)		1		Implemented	-
S4.8.1	Hoarding of not less than 2.4m high from ground level will be provided along the length of the Project Site boundary.	Land site/ During construction	Contractor(s)	√	1		N/A	-
S4.8.1	Haul roads will be kept clear of dusty materials and will be sprayed with water so as to maintain the entire road surface wet at all times.	Land site/ During construction	Contractor(s)		•		Implemented	-

EIA	Recommended Environmental Protection Measures/	Objectives of the recommended measures &	Implementation Agent		emen Stage	tation	Implementation	Relevant Legislation &
Reference	Mitigation Measures	main concerns to address	Implementation Agent	D	C	0	status	Guidelines
S4.8.1	Temporary stockpiles of dusty materials will be either covered entirely by impervious sheets or sprayed with water to maintain the entire surface wet all the time.	Land site/ During construction	Contractor(s)		~		Implemented	-
S4.8.1	Stockpiles of more than 20 bags of cement, dry pulverised fuel ash and dusty construction materials will be covered entirely by impervious sheeting sheltered on top and 3-sides.	Land site/ During construction	Contractor(s)		•		Implemented after reminder	-
S4.8.1	All exposed areas will be kept wet always to minimise dust emission.	Land site/ During construction	Contractor(s)		~		Implemented	-
\$4.8.1	Ultra-low-sulphur diesel (ULSD) will be used for all construction plant on-site, as defined as diesel fuel containing not more than 0.005% sulphur by weight) as stipulated in Environment, Transport and Works Bureau Technical Circular (ETWB-TC(W)) No 19/2005 on Environmental Management on Construction Sites.	Land site/ During construction/ During Operation	Contractor(s)		•	•	Implemented	Environment, Transport and Works Bureau Technical Circular (ETWB- TC(W)) No 19/2005 on Environmental Management on Construction Sites
S4.8.1	The engine of the construction equipment during idling will be switched off.	Land site/ During construction	Contractor(s)		~		Implemented	-
\$4.8.1	Concrete batching plant will be required on site. control measures recommended in the Guidance Note on a Best Practicable Means for Cement Works (Concrete Batching Plant) (BPM 3/2 (93)) will be implemented. The control measures recommended in the Guidance Note on a Best Practicable Means for Cement Works (Concrete Batching Plant) (BPM 3/2 (93)) will be implemented.	Land site/ During construction	Contractor(s)		•		N/A	-
S4.8.1	Regular maintenance of construction equipment deployed on-site will be conducted to prevent black smoke emission.	Land site/ During construction	Contractor(s)		~		Implemented	-
S4.10	To ensure proper implementation of the recommended dust mitigation measures and good construction site practices during the construction phase, environmental site audits on weekly basis is recommended throughout the construction period.	Land site/ During construction	Contractor(s)/ Environmental Team (ET) & Independent Environmental Checker (IEC)		•		Implemented	-

aurecon

EIA Reference	Recommended Environmental Protection Measures/ Mitigation Measures	Objectives of the recommended measures &	Implementation Agent	-	ementa	ation	Implementation status	Relevant Legislation & Guidelines
Reference	Mitigation Measures	main concerns to address	Agent	D	Stage C	0	Status	Guidennes
Noise							1	
S5.7	Only well-maintained plant will be operated on-site and plant will be serviced regularly during the construction phase.	All area/ During construction	Contractor(s)		•		Implemented	A Practical Guide for the Reduction of Noise from Construction Works
S5.7	Silencers or mufflers on construction equipment will be utilised and will be properly maintained during the construction phase.	Noise control/ During construction	Contractor(s)		~		N/A	A Practical Guide for the Reduction of Noise from Construction Works
S5.7	Mobile plant, if any, will be sited as far away from NSRs as possible.	Noise control/ During construction	Contractor(s)		√		N/A	A Practical Guide for the Reduction of Noise from Construction Works
S5.7	Machines and plant (such as trucks) that may be in intermittent use will be shut down between work periods or will be throttled down to a minimum.	Noise control/ During construction	Contractor(s)		~		Implemented	A Practical Guide for the Reduction of Noise from Construction Works
S5.7	Plants known to emit noise strongly in one direction will, wherever possible, be orientated so that the noise is directed away from the nearby NSRs.	Noise control/ During construction	Contractor(s)		~		N/A	A Practical Guide for the Reduction of Noise from Construction Works
S5.7	Material stockpiles and other structures will be effectively utilised, wherever practicable, in screening noise from on-site construction activities.	Noise control/ During construction	Contractor(s)		-		N/A	A Practical Guide for the Reduction of Noise from Construction Works
S5.7	Use of Quite Powered Mechanical Equipment (QPME).	Noise control/ During construction	Contractor(s)		~		Implemented	A Practical Guide for the Reduction of Noise from Construction Works
S5.7	Movable noise barriers of 3m in height with skid footing should be used and located within a few metres of stationary plant and mobile plant such that the line of sight to the NSR is blocked by the barriers. The length of the barrier should be at least five times greater than its height. The noise barrier material should have a superficial surface density of at least 7 kg m-2 and have no o or gappeningss.	Noise control/ During construction	Contractor(s)		-		N/A	A Practical Guide for the Reduction of Noise from Construction Works
S5.7	The noise insulating sheet should be deployed such that there would be no opening or gaps on the joints.	Noise control/ During construction	Contractor(s)		•		N/A	A Practical Guide for the Reduction of Noise from Construction Works
S5.7	Construction activities (e.g. excavation/shoring, reinstatement (asphalt), and pipe jacking) will be planned and carried out in sequence, such that items of PME proposed for these activities will not be operated simultaneously.	Noise control/ During construction	Contractor(s)	•	•		Implemented	A Practical Guide for the Reduction of Noise from Construction Works
\$5.7	PMEs will not be used at the works areas near educational institutions with residual impact (ie the "influence area" within a	Noise control / During construction	Contractor(s)		~		N/A	A Practical Guide for the Reduction of Noise from

EIA	Recommended Environmental Protection Measures/	Objectives of the recommended measures &	Implementation	-	ement	ation	Implementation	Relevant Legislation & Guidelines
Reference	Mitigation Measures	main concerns to address	Agent	D	Stage C	0	status	Guidelines
	radius of 40m) during school hours in order to reduce impact to the educational institutions.							Construction Works
S5.7	Noise enclosures or acoustic sheds would be used to cover stationary PME such as generators. Portable/Movable noise enclosure made of material with superficial surface density of at least 7 kg m-2 may be used for screening the noise from operation of the saw/groover, concrete.	Noise control/ Pre- construction/ During construction	Contractor(s)	~	~		N/A	-
S5.9	Sawcutting pavement, breaking up of pavement, excavation /shoring, pipe laying, backfilling, reinstatement (concrete) and pipe jacking shall be scheduled outside the examination period.	Noise control/ Pre- construction/ During construction	Contractor(s)	•	~		N/A	-
S5.9	In view the duration of noise exceedance at Creative Secondary School, PLK Laws Foundation College, TKO Kei Tak Primary School and School of Continuing and Professional Studies-CUHK is limited to 8 weeks, the construction work in the influence areas near the four schools shall be scheduled during long school holidays (eg summer holiday, Easter holiday or Christmas holiday, etc) as far as practicable. Scheduling the construction work for the four schools.	Noise control/ Pre- construction/ During construction	Contractor(s)				N/A	-
S5.10	A noise monitoring programme shall be implemented for the construction phase.	Designated monitoring stations as defined in EM&A Manual/During construction phase	Environmental Team		~		N/A	-
S5.10	The effectiveness of on-site control measures could also be evaluated through the regular site audits.	All facilities/ During construction	Contractor(s)/ ET & Independent Environmental Checker (IEC)		-		Implemented	-

EIA Reference	Recommended Environmental Protection Measures/ Mitigation Measures	Objectives of the recommended measures &	Implementation Agent	-	emen Stage	tation	Implementation status	Relevant Legislation & Guidelines
		main concerns to address		D	C	0		
Water Qua	•							
S6.9	Dredged marine sediment will be disposed of in a gazetted marine disposal area in accordance with marine dumping permit conditions of the Dumping at Sea Ordinance (DASO).	Marine Dredging/ During construction	Contractor(s)		~		Implemented	Dumping at Sea Ordinance (DASO)
S6.9	Disposal vessels will be fitted with tight bottom seals in order to prevent leakage of material during transport.	Marine Dredging/ During construction	Contractor(s)		~		Implemented	-
S6.9	Barges will be filled to a level, which ensures that material does not spill over during transport to the disposal site and that adequate freeboard is maintained to ensure that the decks are not washed by wave action.	Marine Dredging/ During construction	Contractor(s)		•		Implemented	-
S6.9	After dredging, any excess materials will be cleaned from decks and exposed fittings before the vessel is moved from the dredging area.	Marine Dredging/ During construction	Contractor(s)		~		Implemented	-
S6.9	All vessels should be well maintained and inspected before use to limit any potential discharges to the marine environment.	Marine Dredging/ During construction	Contractor(s)		~		Implemented	-
S6.9	All vessels must have a clean ballast system.	Marine Dredging/ During construction	Contractor(s)		~		Implemented	-
S6.9	No discharge of sewage/grey wastewater should be allowed. Waste water from potentially contaminated area on working vessels should be minimized and collected. These kinds of wastewater should be brought back to port and discharged at appropriate collection and treatment system.	Marine Dredging/ During construction	Contractor(s)		~		Implemented	-
S6.9	No soil waste is allowed to be disposed overboard.	Marine Dredging/ During construction	Contractor(s)		~		N/A	-
S6.9	Silt removal facilities such as silt traps or sedimentation facilities will be provided to remove silt particles from runoff to meet the requirements of the TM standard under the WPCO. The design of silt removal facilities will be based on the guidelines provided in ProPECC PN 1/94. All drainage facilities and erosion and sediment control structures will be inspected on a regular basis and maintained to confirm proper and efficient operation at all times and particularly during rainstorms. Deposited silt and grit will be removed regularly.	Land site & drainage/ During construction	Contractor(s)		•		Implemented	ProPECC PN 1/94 TM Standard under the WPCO

EIA Reference	Recommended Environmental Protection Measures/ Mitigation Measures	Objectives of the recommended measures &	Implementation Agent	-	emer Stag	itation e	Implementation status	Relevant Legislation & Guidelines
		main concerns to address		D	C	0		
S6.9	Earthworks to form the final surfaces will be followed up with surface protection and drainage works to prevent erosion caused by rainstorms.	Land site & drainage/ During construction	Contractor(s)		~		Implemented	-
S6.9	Appropriate surface drainage will be designed and provided where necessary.	Land site & drainage/ During construction	Contractor(s)		~		Implemented	-
S6.9	The precautions to be taken at any time of year when rainstorms are likely together with the actions to be taken when a rainstorm is imminent or forecasted and actions to be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94.	Land site & drainage/ During construction	Contractor(s)	•	~		Implemented	ProPECC PN 1/94
S6.9	Oil interceptors will be provided in the drainage system where necessary and regularly emptied to prevent the release of oil and grease into the storm water drainage system after accidental spillages.	Land site & drainage/ During construction	Contractor(s)		~		N/A	-
S6.9	Temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge, if any, will be adequately designed for the controlled release of storm flows.	Land site & drainage/ During construction	Contractor(s)		•		Implemented	-
S6.9	The temporary diverted drainage, if any, will be reinstated to the original condition when the construction work has finished or when the temporary diversion is no longer required.	Land site & drainage/ During construction	Contractor(s)		•		N/A	-
S6.9	Appropriate numbers of portable toilets shall be provided by a licensed contractor to serve the construction workers over the construction site to prevent direct disposal of sewage into the water environment.	Land site & drainage/ During construction	Contractor(s)		~		Implemented	-
S6.9 and S6.12	The sterilization water should be dechlorinated with total residual chlorine (TRC) level below 1 mg/L before discharge to public sewer. In situ testing of TRC should also be conducted for the discharge of chlorinated water for pipeline disinfection to ensure sufficient dechlorination before discharge to public sewer.	Sterilization of water mains prior to commissioning	Contractor(s)		~	~	N/A	Technical Memorandum for Effluents Discharged into Drainage and Sewerage Systems
S6.9	The cleaning and flushing water should also be treated and desilted to the relevant discharge requirement stipulated in TM-DSS before discharging.	Sterilization of water mains prior to commissioning	Contractor(s)		~	•	N/A	Inland and Coastal Waters

EIA Reference	Recommended Environmental Protection Measures/ Mitigation Measures	Mitigation Measures recommended measures &		Implementation Stage			Implementation status	Relevant Legislation & Guidelines
		main concerns to address		D	С	0		
S6.9	Site drainage should be well maintained and good construction practices should be observed to ensure that oil, fuels, solvents and other chemicals are managed, stored and handled properly and do not enter the nearby water streams.	Land site & drainage/ During construction/ During operation	Contractor(s)		~	~	Implemented	-
S6.12	Regular site inspections will be carried out in order to confirm that regulatory requirements are being met and that contractors are implementing the standard site practice and mitigation measures as proposed to reduce potential impacts to water quality.	During construction	Contractor(s)/ ET & IEC		~		Implemented	-

EIA	Recommended Environmental Protection Measures/	Objectives of the recommended measures &	Implementation Agent	Imple	men Stage		Implementation	Relevant Legislation &
Reference	Mitigation Measures	main concerns to address	Implementation Agent	D	C	0	Status	Guidelines
Waste Mar	nagement			<u> </u>				
S8.5	Nomination of approved personnel to be responsible for standard site practices, arrangements for collection and effective disposal to an appropriate facility of all wastes generated at the site.	Contract mobilization/ During construction	Contractor(s)		~		Implemented after reminder	-
S8.5	Training of site personnel in proper waste management and chemical handling procedures. Training will be provided to workers on the concepts of site cleanliness and appropriate waste management procedures, including waste reduction, reuse and recycling at the beginning of the construction works.	Contract mobilization/ During construction	Contractor(s)		•		Implemented	-
S8.5	Provision of sufficient waste disposal points and regular collection for disposal.	All area/ During construction/ During operation	Contractor(s)		•	~	Implemented	DEVB TC(W) No. 8/2010, Enhanced Specification for Site Cleanliness and Tidiness.
\$8.5	Appropriate measures to reduce windblown litter and dust transportation of waste by either covering trucks or by transporting wastes in enclosed containers.	All area/ During construction	Contractor(s)		•		Implemented	DEVB TC(W) No. 8/2010, Enhanced Specification for Site Cleanliness and Tidiness.
S8.5	A waste management plan (WMP) as stated in the "ETWB TC(W) No. 19/2005, Environmental Management on Construction Sites" for the amount of waste generated, recycled and disposed of (including the disposal sites) will be established and implemented during the construction phase as part of the Environmental Management Plan (EMP). The Contractor will be required to prepare the EMP and submits it to the Architect/ Engineer under the Contract for approval prior to implementation.	All area/ During construction	Contractor(s)		•		Implemented	ETWB TC(W) No. 19/2005, Environmental Management on Construction Sites
S8.5	Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Centre at Tsing Yi.	All area/ During construction	Contractor(s)		•		Implemented	Chapters 2 & 3 Code of Practice on the Packaging, Labelling & Storage of Chemical Wastes published under the Waste Disposal Ordinance (Cap 354), Section 35
S8.5	Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors.	Land site/ During construction	Contractor(s)		•		Implemented	Waste Disposal Ordinance (Cap 354)

EIA	Recommended Environmental Protection Measures/	Objectives of the recommended measures &	Implementation Agent	-	ementati Stage	Implementation	0
Reference	Mitigation Measures	main concerns to address	1 0	D	C C	Status	Guidelines
S8.5	A recording system for the amount of wastes generated/ recycled and disposal sites. The trip- ticket system will be included as one of the contractual requirements and implemented by the contractor(s).	Land site/ During construction	Contractor(s)		•	Implemented	DEVB TC(W) No. 6/2010, Trip Ticket System for Disposal of Construction & Demolition Materials
S8.5	Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of material and their proper disposal.	Land site/ During construction/ During operation	Contractor(s)		~	Implemented	WBTC 32/92, The Use of Tropical Hard Wood on Construction Site
S8.5	Encourage collection of aluminium cans and waste paper by individual collectors during construction with separate labelled bins provided to segregate these wastes from other general refuse by the workforce.	Land site/ During construction	Contractor(s)		•	Implemented	ETWB TCW No. 33/2002, Management of Construction and Demolition Material Including Rock
S8.5	Any unused chemicals and those with remaining functional capacity will be recycled as far as possible.	Land site/ During construction	Contractor(s)		~	N/A	-
S8.5	Use of reusable non-timber formwork to reduce the amount of C&D materials.	All areas/ During construction	Contractor(s)		•	Implemented	WBTC 32/92, The Use of Tropical Hard Wood on Construction Site
S8.5	Prior to disposal of construction waste, wood, steel and other metals will be separated to the extent practical, for re-use and/or recycling to reduce the quantity of waste to be disposed of to landfill.	All areas/ During construction	Contractor(s)		*	Implemented	DEVB TC(W) No. 6/2010, Trip Ticket System for Disposal of Construction & Demolition Materials
S8.5	Proper storage and site practices to reduce the potential for damage or contamination of construction materials.	All areas/ During construction	Contractor(s)		~	Implemented	-
S8.5	Plan and stock construction materials carefully to reduce amount of waste generated and avoid unnecessary generation of waste.	All areas/ During construction	Contractor(s)			Implemented	-
S8.5	A Sediment Quality Report (SQR) for sampling and chemical testing of the sediment will be prepared and submitted to the EPD for approval. The approved detailed sampling and chemical testing will be carried out prior to the commencement of the dredging activities to confirm the sediment disposal method.	Marine works/ During construction	Contractor(s)		•	N/A	ETWB TC(W) No. 34/2002 and Dumping at Sea Ordinance (DASO)

EIA	Recommended Environmental Protection Measures/	Objectives of the recommended measures &	Implementation Agent	Impl	emen Stage	tation	Implementation	Relevant Legislation &
Reference	Mitigation Measures	main concerns to address	Implementation Agent	D	C	0	Status	Guidelines
S8.5	The management of dredged/ excavated sediment management requirement from ETWB TC(W) No. 34/2002 will be incorporated in the Specification of the Contract Documents.	Marine works/ During construction	WSD/ Contractor(s)		*		Implemented	ETWB TC(W) No. 34/2002 and Dumping at Sea Ordinance (DASO)
S8.5	The contractor will open a billing account with EPD in accordance with the Waste Disposal (Charges for Disposal of Construction Waste) Regulation for the payment of disposal charges.	Contract mobilization/ During construction	Contractor(s)		•		Implemented	Cap 354N Waste Disposal (Charges for Disposal of Construction Waste) Regulation
S8.5	A trip-ticket system will be established in accordance with DEVB TC(W) No. 6/2010 to monitor the reuse of surplus excavated materials off-site and disposal of construction waste and general refuse at transfer facilities/ landfills, and to control fly-tipping.	Contract mobilization/ During construction	Contractor(s)		•		Implemented	DEVB TC(W) No. 6/2010, Trip Ticket System for Disposal of Construction & Demolition Materials
S8.5	The project proponent will also conduct regular inspection of the waste management measures implemented on site as described in the Waste Management Plan.	All area/ During construction	Contractor(s)/ Environmental Team (ET) & Independent Environmental Checker (IEC)		<		Implemented	ETWB TC(W) No. 19/2005, Environmental Management on Construction Sites
S8.5	A recording system (similar to summary table as shown in Annex 5 and Annex 6 of Appendix G of ETWB TC(W) No. 19/2005) for the amount of waste generated, recycled and disposed of (including the disposal sites) will be established during the construction phase.	All area/ During construction	Contractor(s)		*		Implemented	Annex 5 and Annex 6 of Appendix G of ETWB TC(W) No. 19/2005
S8.5	Inert C&D materials (public fill) will be reused within the Project as far as practicable.	All area/ During construction	Contractor(s)		~		Implemented	-
S8.5	Public fill and construction waste shall be segregated and stored in different containers or skips to facilitate reuse or recycling of materials and their proper disposal.	All area/ During construction	Contractor(s)		~		Implemented	-
S8.5	Specific areas of the work site will be designated for such segregation and storage if immediate use is not practicable.	All area/ During construction	Contractor(s)		~		Implemented	-
S8.5	To reduce the potential dust and water quality impacts of site formation works, C&D materials will be wetted as quickly as possible to the extent practice after filling.	All area/ During construction	Contractor(s)		*		Implemented	Air Pollution Control (Construction Dust) Regulation (Cap 311R); WPCO (Cap 358)

EIA	Recommended Environmental Protection Measures/	Objectives of the recommended measures &	Implementation Agent	Impl	emer Stag	itation e	Implementation	Relevant Legislation &
Reference	Mitigation Measures	main concerns to address	····p·e·······························	D	C	0	Status	Guidelines
S8.5	Open stockpiles of excavated/ fill materials or construction wastes on-site should be covered with tarpaulin or similar fabric.	Land site/ During Construction, particularly dry season	Contractor(s)		~		Implemented	Air Pollution Control (Construction Dust) Regulation (Cap 311R)
S8.5	Chemical waste container shall be suitable for the substance they are holding, resistant to corrosion, maintained in a good condition, and securely closed.	All area/ During construction/ During operation	Contractor(s)/ WSD		~	~	Implemented	
S8.5	Chemical waste container shall have a capacity of less than 450 L unless the specifications have been approved by the EPD.	All area/ During construction/ During operation	Contractor(s)/ WSD		~	*	Implemented	
S8.5	A label in English and Chinese shall be displayed on the chemical container in accordance with instructions prescribed in Schedule 2 of the Regulations.	All area/ During construction/ During operation	Contractor(s)/ WSD		~	*	Implemented	
S8.5	Storage areas for chemical waste shall be enclosed on at least 3 sides.	All area/ During construction/ During operation	Contractor(s)/ WSD		~	*	Implemented	Waste Disposal
S8.5	Storage areas for chemical waste shall have an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or 20% by volume of the chemical waste stored in that area, whichever is the greatest.	All area/ During construction/ During operation	Contractor(s)/WSD		~	•	Implemented	(Chemical Waste) (General) Regulation; Code of Practice on the Packaging,
S8.5	Storage areas for chemical waste shall have adequate ventilation.	All area/ During construction/ During operation	Contractor(s)/ WSD		~	*	Implemented	Handling and Storage of Chemical Wastes
S8.5	Storage areas for chemical waste shall be covered to prevent rainfall entering (water collected within the bund must be tested and disposed of as chemical waste, if necessary).	All area/ During construction/ During operation	Contractor(s)/WSD		1	~	Implemented	
S8.5	Storage areas for chemical waste shall be arranged so that incompatible materials are appropriately separated.	All area/ During construction/ During operation	Contractor(s)/ WSD		~	*	Implemented	
S8.5	General refuse will be stored in enclosed bins or compaction units separately from construction and chemical wastes.	All area/ During construction/ During operation	Contractor(s)/WSD		•	•	Implemented after reminder	
\$8.5	Adequate number of waste containers will be provided to avoid over-spillage of waste.	All area/ During construction/ During operation	Contractor(s)/WSD		•	•	Implemented	DEVB TC(W) No. 8/2010 Enhanced Specification for Site Cleanliness and Tidiness.

EIA	Recommended Environmental Protection Measures/	Objectives of the recommended measures &	Implementation Agent	Impl	emer Stag	ntation ge	Implementation	Relevant Legislation &
Reference	Mitigation Measures	main concerns to address		D	C	0	Status	Guidelines
S8.5	A reputable waste collector will be employed by the Contractor to remove general refuse from the site, separately from construction and chemical wastes, on a daily basis to minimise odour, pest and litter impacts.	All area/ During construction/ During operation	Contractor(s)/ WSD		~	~	Implemented	-
S8.5	Recycling bins will be provided at strategic locations within the Site to facilitate recovery of recyclable materials (including aluminum can, waste paper, glass bottles and plastic bottles) from the Site. Materials recovered will be sold for recycling.	All area/ During construction/ During operation	Contractor(s)/ WSD		~	√	Implemented	-
S8.5	To avoid any odour and litter impact, accurate number of portable toilets will be provided for workers on-site.	All area/ During construction	Contractor(s)		1		Implemented	-
S8.5	The burning of refuse on construction sites is prohibited by law.	All area/ During construction	Contractor(s)		~		Implemented	Air Pollution Control Ordinance (Cap 311)
S8.7	To facilitate monitoring and control over the contractors' performance on waste management, a waste inspection and audit programme will be implemented throughout the construction phase.	All facilities/ During construction	ET/ IEC		~		Implemented	-

EIA	Recommended Environmental Protection Measures/	Objectives of the recommended measures &	Implementation Agent	Impl	emer Stag	itation	Implementation	Relevant Legislation &
Reference	Mitigation Measures	main concerns to address	implementation rigent	D	C	0	Status	Guidelines
Ecology								
S9.7	For slope mitigation works within the Clear Water Bay Country Park, to avoid tree felling and damages to trees, the exact locations of the flexible barrier foundation plates, soil nails and rock dowels can be adjusted during detailed design, and a setback distance from existing trees is recommended to be maintained as far as practical. A detailed specification describing the exact locations of the flexible barrier foundation plates, soil nails and rock dowels will be prepared to illustrate how the setback distance from existing trees would be implemented for tree avoidance.	Slope mitigation works area/ During detailed design/ During construction	Contractor(s)	✓ 	✓		N/A	-
S9.7	Pruning of tree canopies along the alignment of the flexible barriers shall be limited to a minimum.	Slope mitigation works area/ During construction	Contractor(s)		~		N/A	
S9.7	The alignment of flexible barriers shall be optimized to preserve all species of conservation interest and minimize the impact to the existing vegetation as far as practicable. All individuals of <i>Marsdenia lachnostoma</i> within the slope mitigation areas shall be retained <i>in- situ</i> , by positioning the alignment of flexible barrier at a minimum 1.5m in a radius away from these individuals.	Slope mitigation works area/ During detailed design/ During construction	Contractor(s)	~	~		N/A	-
S9.7 and 9.10	At the detailed design stage prior to the commencement of the slope mitigation works, a vegetation survey shall be carried out at the slope mitigation areas within the Clear Water Bay Country Park to assess the condition and identify the location of each individual of <i>Marsdenia lachnostoma</i> and other flora species of conservation interest that may be directly affected by the construction works.	Slope mitigation works area/ During detailed design/ During construction	Contractor(s)				Implemented	-
S9.7	Temporary fencing will be installed to fence off the concerned species either in groups of individually within the works area and in the close proximity to prevent from being damaged and disturbed during construction. A sign identifying the site shall be attached to the fence and flagging tape shall be attached to the individuals to visualize their locations.	Slope mitigation works area/ During construction	Contractor(s)		✓		N/A	-
S9.7 and S9.10	A specification for fencing and demarcating individuals of <i>Marsdenai lachnostoma</i> (or other flora species of conservation interest, if found) adjacent to the proposed alignment of the flexible barriers will be prepared to protect the species.	Slope mitigation works area/ During construction	Contractor(s)		~		N/A	-
S9.7	Induction training shall also be provided to all site personnel in order to brief them on this flora of conservation interest including the locations and their importance.	Slope mitigation works area/ During construction	Contractor(s)		~		N/A	-
S9.7	The resident site supervisory staff will closely monitor the conditions of concerned individuals during construction of	Slope mitigation works area/ During construction	Contractor(s)		~		N/A	-

EIA Reference	Recommended Environmental Protection Measures/ Mitigation Measures	Objectives of the recommended measures &	Implementation Agent	Impl	emer Stag	ntation e	Implementation Status	Relevant Legislation & Guidelines
Kelel elice	Mitigation Measures	main concerns to address		D C O	0	Status	Guidennes	
	flexible barriers in the close proximity.							
S9.7	Erect fences along the boundary of the works area before the commencement of works to prevent vehicle movements and encroachment of personnel onto adjacent areas.	All area/ During construction	Contractor(s)		~		Implemented	-
S9.7	Regularly check the work site boundaries to ensure that they are not breached and that damage does not occur to surrounding areas.	All area/ During construction	Contractor(s)/ ET		~		Implemented.	-
S9.7	Avoid any damage and disturbance, particularly those caused by filling and illegal dumping, to the surrounding habitats through proper management of waste disposal.	All area/ During construction	Contractor(s)		~		Implemented	-
S9.7	Reinstate temporarily affected areas, particularly the habitats of plantation and shrubland-grassland immediately after completion of construction works, through on-site tree/shrub planting. The tree/shrub species will be chosen with reference to those in the surrounding area.	All area/ During construction	Contractor(s)		*		N/A	-
S9.7	Affected habitats within the Clear Water Bay Country Bay shall be reinstated by hydro-seeding and planting of climbers and native shrub seedlings where practical upon completion of the slope mitigation works.	All area/ During construction	Contractor(s)		~		N/A	-

EIA	Recommended Environmental Protection Measures/	Objectives of the recommended measures &	Implementation Agent	-	emer Stag	itation e	Implementation	Relevant Legislation &
Reference	Mitigation Measures	main concerns to address		D	С	0	Status	Guidelines
Landscap			I		1.2		r	
S11.10 & 11.11	The construction area and area allowed for temporary structures, such as the contractor's office, will be minimized to a practical minimum. (MM1)	All area/ Detailed design/ During construction/ During operation	WSD/ Contractor(s)	•	~	*	Implemented	-
S11.10 & 11.11	At the detailed design stage, the design team will seek to minimize the landscape footprint of the Project and above ground facilities, while satisfying all other requirements. (MM2)	All area/ Detailed design/ During construction/ During operation	WSD/ Contractor(s)	~	√	~	Implemented	-
S11.10 & 11.11	Design principles will be adopted to take into account the surrounding area, particularly Clear Water Bay Country Park behind and the nearby waterfront, with due consideration given to: - green roofs where practical (i.e. without equipment on the roof); - roadside planting; - aesthetic treatment of all structures; - vertical greening; - screen planting along application site; and - landscape enhancement with amenity planting where practical including planting along the edge (site boundary) fence with native shrubs where feasible, to reduce their visual impact and blend them into the surrounding landscape. (MM3)	All area/ Detailed design/ During construction/ During operation	WSD/ Contractor(s)	~	 Image: A start of the start of	•	Implemented	-
S11.10 & 11.11	All trees within the Project Site or the potential slope mitigation works area will be carefully protected during construction according to DEVB TCW No. 10/2013 – Tree Preservation (MM4)	All area/ Detailed design/ During construction/ During operation	WSD/ Contractor(s)	~	1	~	Implemented	ETWB TCW No. 3/2006 - Tree Preservation.
\$11.10 & 11.11	No tree within the Country Park will be felled. Trees within the Site unavoidably affected by the works will be transplanted where necessary and practical. For trees that need to be felled, compensatory planting will be provided to the satisfaction of relevant Government departments. A compensatory tree planting proposal including locations of tree compensation will be submitted to seek relevant government department's approval, in accordance with DEVB TC(W) No. 10/2013. (MM5)	All area/ Detailed design/ During construction/ During operation	WSD/ Contractor(s)	•	•	~	Implemented	DEVB TC(W) No. 10/2013
S11.10 & 11.11	Any slope mitigation works necessary to address natural terrain hazards, will be minimized to minimize any potential environmental impact to the Country Park e.g. soil nailing and rock stabilization will aim to avoid existing trees e.g. should any restoration of vegetation be necessary, the best planting matrix with native species will be established, with the aim of resembling the existing vegetation. (MM6)	All area/ Detailed design/ During construction/ During operation	WSD/ Contractor(s)	•	•	•	N/A	

EIA Reference	Recommended Environmental Protection Measures/ Mitigation Measures	Objectives of the recommended measures &	Implementation Agent		emer Stag	itation e	Implementation Status	Relevant Legislation & Guidelines
Reference	Miligation Measures	main concerns to address		D	С	0	Status	Guidennes
S11.10 &	Dredging works for the installation of intake structures and	All area/ Detailed design/	WSD/ Contractor(s)	~	✓	~	Implemented	
11.11	outfall diffusers should be minimized to avoid or reduce any	During construction/ During						
	potential environmental impacts to as low as reasonably	operation						
	practicable (ALARP). The intake and outfall structures (e.g.							
	intake openings and diffuser heads) will be prefabricated and							
	transferred to site for installation. (MM7)							
S11.10 &	All night-time lighting will be reduced to a practical minimum	All area/ Detailed design/	WSD/ Contractor(s)	✓	✓	✓	Implemented	-
11.11	both in terms of number of level and will be hooded and	During construction/ During						
	directional. (MM8) units and lux level and will be hooded and	operation						
	directional. (MM8)	-						

EIA Reference	Recommended Environmental Protection Measures/	Objectives of the recommended measures & main concerns to address	Implementation Agent	Implementation Stage			Implementation	Relevant Legislation &
				D	С	0		Guidelines
Landfill G	as Hazard			1				
S12.7	During all works, safety procedures should be implemented to minimize the risks of fires and explosions, asphyxiation of workers and toxicity effects resulting from contact with contaminated soil and groundwater.	All area/ Detailed design/ During construction/operation	Contractor(s)	*	~	•	Implemented	-
S12.7	During trenching and excavation as well as creation of confined spaces at near to or below ground level, precautions should be clearly laid down and rigidly Gas detection equipment and appropriate breathing apparatus should be available and used when entering confined spaces or trenches deeper than 1 meter.	All area/ Detailed design/ During construction/operation	Contractor(s)	•	•	*	Implemented	
S12.7	The Contractor should make the workers are aware of potential hazards of working in confined spaces (any chamber, manhole or culvert which is large enough to permit access to personnel). Such work in confined spaces is controlled by the Factories and Industrial Undertakings (Confined Spaces) Regulations of the Factories and Industrial Undertakings Ordinance. Following the Safety Guide to Working in Confined Spaces ensures compliance with the above regulations.	All area/ Detailed design/ During construction/operation	Contractor(s)	•	•	•	Implemented	
S12.7	Safety officers, specifically trained with regard to landfill gas and leachate related hazards and the appropriate actions to take in adverse circumstances, should be present on the site throughout the works, in particular, when works are undertaken below grade.	All area/ Detailed design/ During construction/operation	Contractor(s)	•	•	~	Implemented	
S12.7	All personnel who work on site and all visitors to the site should be made aware of the possibility of ignition of gas in the vicinity of the works, the possible presence of contaminated water and the need to avoid physical contact with it.	All area/ Detailed design/ During construction/operation	Contractor(s)	•	•	~	Implemented	
S12.7	Monitoring for landfill gas should be undertaken in all excavations, manholes, chambers (particularly during pipe jacking) and any confined spaces through the use of an intrinsically safe portable instrument, appropriately calibrated and capable of measuring the concentrations of methane. carbon dioxide and oxygen.	All area/ Detailed design/ During construction/operation	Contractor(s)	•	•	•	Implemented	
S12.7	Monitoring frequency and areas to be monitored should be specified prior to commencement of groundwork, either by the Safety Officer, or by an appropriately qualified person. All measurements should be recorded and documented.	All area/ Detailed design/ During construction/operation	Contractor(s)	•	•	√	Implemented	
S12.7	Proceed drilling with adequate care and precautions against the potential hazards which may be encountered.	All area/ Detailed design/ During construction/operation	Contractor(s)	~	√	✓	Implemented	

EIA	Recommended Environmental Protection Measures/ Mitigation Measures	Objectives of the recommended measures & main concerns to address	Implementation Agent	Implementation Stage			Implementation	Relevant Legislation &
Reference				D	C	0		Guidelines
S12.7	Prior to the commencement of the site works, the drilling contractor should devise a 'method-of- working' statement covering all normal and emergency procedures (including but not limited to number of operatives, experience and special skills of operatives, normal method of operations, emergency procedures, <i>supervisors</i> responsibilities, storage and use of safety equipment, safety procedures and signs, barriers and guarding). The site <i>supervisor</i> and all operatives must be familiar with this statement.	All area/ During construction/operation	Contractor(s)	•	~	~	Implemented	
S12.7	Where below ground service entries are necessary to the Incoming Switchgear Room, 132 kV Substation and Chlorine Store (I) and (II), the entry point should be sealed to prevent gas entry. In addition, any below grade cable trenches entering the Incoming Switchgear Room and 132 kV Substation can become the pathway for landfill gas and hence grilled metal covers should be used.	All area/ Detailed design/ During construction/operation	Contractor(s)	•	~	~	N/A	
S12.7	It is recommended regular landfill gas monitoring should be carried out at the Incoming Switchgear Room, 132 kV Substation and Chlorine Store (I) and (II). The monitoring frequency will be monthly for the first year of operation. If the monitoring results show no sign of landfill gas migration, reduce the monitoring frequency to once every six months.	All area/ Detailed design/ During construction/operation	Contractor(s)	•	✓	~	N/A	
S12.7	The manholes and utility pits within the Project Site and along the fresh water mains. Each manhole/ utility pit should be monitored with two measurements (at mid depth and base). Each measurement should be monitored for a minimum of 10 minutes. A steady reading and peak reading should be recorded at each manhole/ utility pit and for each measurement. The need for venting the manhole/ utility pit and further monitoring will be reviewed after the initial monitoring.	All area/ Detailed design/ During construction/operation	Contractor(s)	*	-	~	Implemented	
S12.7	All construction, operation and maintenance personnel working on-site as well as visitors should be made aware of the hazards of landfill gas and its possible presence on-site. This should be achieved through a combination of posting warning signs in prominent places and also by access to detailed information on landfill gas hazards and the designs and procedural means by which these hazards are being minimized on-site.	All area/ Detailed design/ During construction/operation	Contractor(s)	•	-	~	Implemented	

Appendix D

Impact Monitoring Schedule

			Water Quality Monitoring Schedul	e		
			Nov-22			
un	Mon	Tue	Wed	Thu	Fri	Sat
		1 Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR3, WSR3, WSR3, WSR3, Tial Period: Ebb Tiad: 02:00:09:29 Flood Tide: 09:29:23:59 Monitoring Time: Mid-ebb: 08:00:09:15 (cancelld) Mid-flood: 13:00-17:00 (cancelled)	2	3 Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR3, WSR3, WSR37 Table Priod: Ebb Tide, 04177-11-45 Flood Tide: 11-45-1900 Monitoring Time Mid-bbb (8500-1100) (cancelled) Mid-flood. 13:00-17:00 (cancelled)	4	5 Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR36, WSR36, WSR37 Tidal Periodi Ebb Tide: 07:00-13:00 Flood Tide: 13:00-20:05 Monitoring Time: Mid-ebb: 08:00-11:00 Mid-flood: 14:00-18:00
		8 Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR46, CE, CF, WSR1, WSR48, WSR47 Taial Period: Ebb Tide: 09.25514.30 Flood Tide: 14.30-21:15 <u>Monitoring Time</u> Mid-ebb: 10:00-13:00 Mid-flood: 16:00-19:00	y 	10 Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR3, Table Period: Ebb Tide, 11:08-15:11 Flood Tide, 0:04-11:08 Monitoring Time, Mid-abo, 11:00-14:00 Mid-flood, 08:00-10:30	11	12 Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR3, WSR86, WSR37 Tadal Period; Ebb Tide 1:300-1509 Flood Tide: 0:54-11-300 <u>Monitoring Time;</u> Mid-ebb:1300-1500 Mid-flood:08:00-11:00
3	14	15 Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR4, WSR4, WSR4, WSR4, WSR4, WSR4, WSR4, WSR4, WSR4, WSR4, WSR4, Table Priority Table Priori	16	17 Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR4, WSR16, WSR33, WSR8, WSR24, WSR16, WSR33, Talal Period: Bb Tale: 01:00-10:24 Flood Tale: 10:34:23:59 <u>Monitoring Time</u> Mid-theb: 08:300-10:00 Mid-flood: 15:00 H 8:00	18	19 Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR37, WSR37, WSR37 Eb Table 04:44-1155 Flood Tride: 11:55-19:14 <u>Monitoring Times</u> Mid-able: 08:00-11:00 Mid-able: 08:00-11:00
0	21	22	23	24	25	26
		Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR4, WSR3, WSR36, WSR57 Thial Period: Ebb Tudie: 08:25-13:26 Flood Tudie: 13:26-19:79 <u>Monitoring Tune</u> Mid-tubi: 09:00-12:00 Mid-tubi: 09:00-17:00		Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR4, WSR4, WSR33, WSR36, WSR37 Thatal Periodi Bbb Tide: 10.17.4.74 Flood Tide: 14.24.20.54 Monitoring Tide: 10.25.0.13.20 Mid-flood: 11.00.01.90.00		Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR4, WSR4, WSR4, WSR43, WSR36, WSR37 Tada Periodi Ebb Tide: 12:00-15:15 Flood Tade: 05:00-12:00 Monitoring Totac: Nut-obb, 12:00-15:00 Mid-flood: 05:00-11:00
1	28	29	30			
	Impact Water Quality monitoring for CE, CF, WSR1, WSR3, WSR3, WSR4, WSR16, WSR33, WSR56, WSR37 Tislal Period; Ebb Tisl: 1400-17.00 Flood Tisle: 06:46-14:00 Monitoring Time; Mid-beb: 14:00-17:00 Mid-bb0: 04:00-11:00					
Due to adverse weather condition (Strong wind signal No.3).			ality monitoring on 3 November 2022 was cancelled.		1	

Contract No. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant Tentative Water Quality Monitoring Schedule

	Dec-22							
Sun	Mon	Tue	Wed	Thu	Fri	Sat		
				1	2	3		
				Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR36, WSR37 <u>Tidal Period</u> Ebb Tide: 03:00-10:00 Flood Tide: 10:00-17:46 <u>Monitoring Time</u> ; Mid-ebb: 08:00-10:00 Mid-flood: 12:00-15:00		Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR3, WSR3, WSR37 <u>Tidal Period:</u> Ebb Tide: 05:22-11:22 Flood Tide: 11:25-19:00 <u>Monitoring Time:</u> Mid-ebb: 08:00-11:00 Mid-fbood: 13:00-17:00		
4	5	6	7	8	9	10		
		Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR3, WSR3, WSR36, WSR37 <u>Tidal Period;</u> Ebb Tida: 09:00-13:09 Flood Tida: 13:09-20:15 <u>Monitoring Time;</u> Mid-ebb: 09:00-12:00 Mid-flood: 14:00-18:00		Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR36, WSR37 <u>Tidal Period</u> Ebb Tide: 10:33-14:00 Flood Tide: 03:32-16:33 <u>Monitoring Time:</u> Mid-ebb: 10:00-13:00 Mid-flood: 08:00-10:30		Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR36, WSR37, <u>Tidal Period:</u> Ebb Tide: 11:55-14:11 Flood Tide: 05:00-11:55 <u>Monitoring Time:</u> Mid-ebb:12:00-14:00 Mid-fboxt:08:00-11:00		
11	12	13	14	15	16	17		
	Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR35, WSR37, <u>Tidal Period:</u> Ebb Tide: 13:00-15:00 Flood Tide: 06:18-13:00 <u>Monitoring Time</u> ; Mid-ebb: 13:00-15:00 Mid-flood: 08:00-11:00			Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR33, WSR56, WSR37 <u>Tidal Period:</u> Ebb Tide: 00:00-08:25 Flood Tide: 08:25-23:59 <u>Monitoring Time:</u> Mid-ebb: 08:00-08:25 Mid-flood: 14:00-16:00		Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR3, WSR36, WSR37 <u>Tidal Period</u> : Ebb Tide: 01:00-01:000 Flood Tide: 10:00-17:44 <u>Monitoring Time</u> : Mid-ebb:08:00-01:000 Mid-fb:00d:12:00-14:00		
18	19	20	21	22	23	24		
		Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR36, WSR37 <u>Tidal Period</u> ; Ebb Tide: 07:16-12:00 Flood Tide: 12:00-19:00 <u>Monitoring Time</u> ; Mid-ebb: 08:00-10:00 Mid-flood; 13:00-15:00		Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR36, WSR37 <u>Tidal Period</u> ; Ebb Tide: 09-311-13:03 Flood Tide: 13:03-19:40 <u>Monitoring Time</u> ; Mid-ebb: 10:00-12:00 Mid-flood: 13:00-15:00		Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR36, WSR37 <u>Tidal Period</u> ; Ebb Tide: 11:19-14:19 Flood Tide: 04:05-11:19 <u>Monitoring Time</u> ; Mid-ebb:11:30-14:00 Mid-flood:08:00-11:00		
25	26	27	28	29	30	31		
		Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR56, WSR37 <u>Trial Parioac</u> : Ebb Tide: 13:51-17:00 Flood Tide: 06:33-13:51 <u>Monitoring Time</u> ; Mid-ebb: 14:00-16:00 Mid-flood: 08:00-10:00		Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR36, WSR37 <u>Tidal Period:</u> Ebb Tide: 15:40-19:09 Flood Tide: 08:00-15:40 <u>Monitoring Time:</u> Mid-ebb: 16:00-18:00 Mid-flood: 10:00-12:00		Impact Water Quality monitoring for CE, CF, WSR1, WSR2, WSR3, WSR4, WSR16, WSR33, WSR36, WSR37 <u>Tidal Period</u> ; Ebb Tide: 03:40-09:26 Flood Tide: 09:26-17:22 <u>Monitoring Time</u> ; Mid-ebb:08:00-09:26 Mid-flood: 11:00-13:00		

Remarks: 1. Monitoring Parameters: Dissolved oxygen, Temperature, pH, Turbidity, Salinity, Suspended Solids

Note:

- Due to safety concern of vessel transportation earlier than 0700, Water Quality Monitoring would start at 0800. - Prioritized routing: Mid-Ebb: CE→WSR16→WSR37→WSR36→WSR33→Remaining stations and Mid-Flood: CF→WSR1→WSR2→WSR3→WSR4→Remaining stations

Appendix E

Event / Action Plan

Table E1Event and Action Plan for Construction Noise Monitoring

Event	Action							
	ET	IEC	ER	Contractor				
Action Level	 Carry out investigation to identify the source and cause of the complaint/ exceedance(s) Notify IEC, ER, and Contractor and report the results of investigation to the Contractor, ER and the IEC Discuss with the Contractor and IEC for remedial measures required If the complaint is related to the Project, conduct additional monitoring for checking mitigation effectiveness and report the findings and results to the IEC, ER and the Contractor 	 Review the analyzed results submitted by the ET Review the proposed remedial measures by the Contractor and advise the ER accordingly Supervise the implementation of remedial measures 	 Confirm receipt of Notification of Exceedance in writing Require Contractor to propose remedial measures for the analysed noise problem Ensure remedial measures are properly implemented 	 Submit noise mitigation proposals, if required, to the IEC and ER Implement noise mitigation proposals. 				
Limit Level	 Carry out investigation to identify the source and cause of the exceedance Notify IEC, ER, Project Proponent, EPD and Contractor Repeat measurements to confirm findings Provide investigation report to IEC, ER, EPD and Contractor he causes of the exceedances If the exceedance is related to the Project, assess effectiveness by additional monitoring. Report the remedial action implemented and the additional monitoring results to IEC, EPD, ER and Contractor If exceedance stops, cease additional monitoring 		writing 2. Require the Contractor to propose remedial measures for the analysed noise problem	 Take immediate action to avoid further exceedance Submit proposals for remedial actions to IEC and ER within 3 working days of notification Implement the agreed proposals Resubmit proposals if problem still not under control Stop the relevant activity of works as determined by the Project Proponent until the exceedance is abated 				

Notes : ET = Environmental Team, IEC = Independent Environmental Checker; ER = Engineering Representatives

Table E2Event and Action Plan for Water Quality Monitoring

Event	Action			
	ET	IEC	Contractor(s)	ER
Action Level being exceeded by one sampling day	 Repeat <i>in situ</i> measurement on the next day of exceedance to confirm findings; Check monitoring data, plant, equipment and Contractor(s)'s working methods; Identify source(s) of impact and record in notification of exceedance; Inform IEC, Contractor(s) and ER. 	 Check monitoring data submitted by ET and Contractor(s)'s working methods; Inform EPD. 	 Confirm receipt of notification of exceedance in writing; Check plant and equipment and rectify unacceptable practice 	 Confirm receipt of notification of exceedance in writing.
Action Level being exceeded by two or more consecutive sampling days	 Repeat <i>in situ</i> measurement on the next day of exceedance to confirm findings; Check monitoring data, plant, equipment and Contractor(s)'s working methods; Identify source(s) of impact and record in notification of exceedance; Inform IEC, Contractor(s) and ER; Discuss with IEC and Contractor(s) on additional mitigation measures and ensure that they are implemented 	 Check monitoring data submitted by ET and Contractor(s)'s working methods; Inform EPD; Discuss with ET and Contractor(s) on additional mitigation measures and advise ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Confirm receipt of notification of exceedance in writing; Check plant and equipment and rectify unacceptable practice; Consider changes of working methods; Discuss with ET and IEC on additional mitigation measures and propose them to ER within 3 working days; Implement the agreed mitigation measures. 	 Confirm receipt of notification of exceedance in writing; Discuss with the IEC on the proposed additional mitigation measures and agree on the mitigation measures to be implemented. Ensure additional mitigation measures are properlimplemented.
Limit Level being exceeded by one sampling day	 Repeat <i>in situ</i> measurement on the next day of exceedance to confirm findings; Check monitoring data, plant, equipment and Contractor(s)'s working methods; Identify source(s) of impact and record in notification of exceedance; Inform IEC, Contractor(s) and ER; Discuss with IEC and Contractor(s) on additional mitigation measures and ensure that they are implemented 	 Check monitoring data submitted by ET and Contractor(s)'s working methods; Inform EPD; Discuss with ET and Contractor(s) on additional mitigation measures and advise ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Confirm receipt of notification of exceedance in writing; Check plant and equipment and rectify unacceptable practice; Critically review the need to change working methods; Discuss with ET and IEC on additional mitigation measures and propose them to ER within 3 working days; Implement the agreed mitigation measures. 	 Confirm receipt of notification of exceedance in writing; Discuss with the IEC on the proposed additional mitigation measures and agree on the mitigation measures to be implemented. Ensure additional mitigation measures are properl implemented. Request Contractor(s) to critically review the working methods.
Limit Level being exceeded by two or more consecutive sampling days	 Repeat <i>in situ</i> measurement on the next day of exceedance to confirm findings; Check monitoring data, plant, equipment and Contractor(s)'s working methods; Identify source(s) of impact and record in notification of exceedance; Inform IEC, Contractor(s) and ER; Discuss with IEC and Contractor(s) on additional mitigation measures and ensure that they are implemented 	 Check monitoring data submitted by ET and Contractor(s)'s working methods; Inform EPD; Discuss with ET and Contractor(s) on additional mitigation measures and advise ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Confirm receipt of notification of exceedance in writing; Check plant and equipment and rectify unacceptable practice; Critically review the need to change working methods; Discuss with ET and IEC on additional mitigation measures and propose them to ER within 3 working days; Implement the agreed mitigation measures. As directed by ER, slow down or stop all or part of the marine construction works/ production volume of the desalination plant until no exceedance of Limit Level. 	 Confirm receipt of notification of exceedance in writing; Discuss with the IEC on the proposed additional mitigation measures and agree on the mitigation measures to be implemented. Ensure additional mitigation measures are properl implemented. Request Contractor(s) to critically review the working methods; Consider and instruct, if necessary, the Contractor(s) to slow down or to stop all or part of the marine construction works/ production volume of the desalination plant until no exceedance of Limi Level.

Notes : ET = Environmental Team, IEC = Independent Environmental Checker; ER = Engineering Representatives The above actions should be taken within 1 working day after the exceedance is identified during operation phase.

Table E2Event and Action Plan for Ecology during Construction Phase

Event	Action							
Lvent	ET		IEC		Cor	ntractor(s)	ER	
Non- conformity on one occassion	1. 2. 3. 4.	Identify source Inform IEC and ER Discuss remedial actions with IEC, the ER and the Contractor Monitor/ audit/ review remedial actions until rectification has been completed	1. 2. 3. 4. 5.	Check monitoring/ auditing results Check the Contractor's working method Discuss with the ET and Contractor on possible remedial measures Advise the ER on effectiveness of proposed remedial measures Check the implementation of remedial measures	1. 2. 3. 4.	Take immediate action to avoid further problem Amend working methods if needed Submit proposals for remedial actions to ET, ER and IEC Rectify damage and implement the agreed remedial actions	1. 2. 3.	Notify Contractor Ensure remedial measures are properly implemented Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the works in case of serious non-conformity until situation is rectified
Repeated Non- comformity	1. 2. 3. 4. 5.	Identify source Inform IEC, ER, EPD and AFCD Increase monitoring and audit frequency Discuss remedial actions with the IEC, the ER and the Contractor Monitor/ audit/ review remedial actions until rectification has been completed If non-conformity stops, cease additional monitoring/ auditing	1. 2. 3. 4. 5.	Check monitoring/ auditing results Check the Contractor's working method Discuss with the ET and Contractor on possible remedial measures Supervise the implementation of remedial measures Advise the ER on effectiveness of proposed remedial measures and keep EPD and AFCD informed	1. 2. 3. 4.	Take immediate action to avoid further problem Amend working methods if needed Submit proposals for remedial actions to ET, ER and IEC Rectify damage and implement the agreed remedial actions	1. 2. 3.	Notify Contractor Ensure remedial measures are properly implemented Consider and instruct, if necessary, the Contactor to slow down or to stop all or part of the works in the case of serious non-conformity until situation is rectified

Notes : ET = Environmental Team, IEC = Independent Environmental Checker; ER = Engineering Representatives

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

Appendix F

Water Quality and Landfill Gas Equipment Calibration Certification

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No.		
Date of Issue		
Page No.		

: R-BB110035 : 17 November 2022 : 1 of 2

PART A - CUSTOMER INFORMATION

Acuity Sustainability Consulting Limited

Unit E, 12/F, Ford Glory Plaza 37-39 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong

PART B - SAMPLE INFORMATION

Name of Equipment :	HORIBA U-53
Manufacturer :	HORIBA
Serial Number :	PPHNOMXY
Date of Received :	16 November 2022
Date of Calibration :	16 November 2022
Date of Next Calibration :	16 February 2023
Request No. :	D-BB110035

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

<u>Test Parameter</u>	Reference Method
pH value	APHA 21e 4500 H+
Temperature	Section 6 of international Accreditation New Zealand Technical Guide no. 3 Second edition March
	2008: Working Thermometer Calibration Procedure
Salinity	APHA 21e 2520 B
Dissolved oxygen	APHA 21e 4500 O
Turbidity	APHA 21e 2130 B

PART D - CALIBRATION RESULT

(1) pH value

Target (pH unit)	Display Reading (pH unit)	Tolerance	Result
4.00	4.15	0.15	Satisfactory
7.42	7.34	-0.08	Satisfactory
10.01	9.92	-0.09	Satisfactory

Tolerance of pH value should be less than \pm 0.2 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Display Reading (°C)	Tolerance	Result
14	15.45	1.45	Satisfactory
21	21.44	0.44	Satisfactory
34	34.68	0.68	Satisfactory

Tolerance of Temperature should be less than \pm 2.0 (°C)

(3) Salinity

Expected Reading (g/L)	Display Reading (g/L)	Tolerance (%)	Result
10	9.61	-3.90	Satisfactory
20	21.04	5.20	Satisfactory
30	32.03	6.77	Satisfactory

Tolerance of Salinity should be less than \pm 10.0 (%)

--- CONTINUED ON NEXT PAGE ---

AUTHORIZED SIGNATORY:

LEE Chun-ning

Assistant Manager (Chemical Testing)

This report shall not be reproduced unless with prior written approval from this laboratory

專業化驗有限公司 QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 5/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No.		
Date of Issue		
Page No.		

: R-BB110035 : 17 November 2022 : 2 of 2

(4) Dissolved oxygen

Expected Reading (mg/L)	Display Reading (mg/L)	Tolerance	Result
7.88	7.70	-0.18	Satisfactory
4.52	5.00	0.48	Satisfactory
1.43	1.00	-0.43	Satisfactory
0.00	0.03	0.03	Satisfactory

Tolerance of Dissolved oxygen should be less than $\pm \ 0.5$ (mg/L)

(5) Turbidity

Expected Reading (NTU)	Display Reading (NTU)	Tolerance (%)	Result
0	0.00		Satisfactory
10	9.80	-2.0	Satisfactory
20	19.5	-2.5	Satisfactory
100	104	4.0	Satisfactory
800	811	1.4	Satisfactory

Tolerance of Turbidity should be less than \pm 10.0 (%)

Remark(s)

•The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards. •The results relate only to the calibrated equipment as received

•The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

"Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

•The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

--- END OF REPORT ---

專業化驗有限公司 QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 14/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No. Date of Issue Page No. : R-BB100037 : 12 October 2022 : 1 of 2

PART A - CUSTOMER INFORMATION

Acuity Sustainability Consulting Limited Unit E, 12/F, Ford Glory Plaza 37-39 Wing Hong Street, Cheung Sha Wan Kowloon (HK) Hong Kong

PART B - SAMPLE INFORMATION

Name of Equipment :	HORIBA U-53
Manufacturer :	HORIBA
Serial Number :	PORBNFNT
Date of Received :	10 October 2022
Date of Calibration :	12 October 2022
Date of Next Calibration :	11 January 2023
Request No. :	D-BB100037

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

<u>Test Parameter</u>	Reference Method
pH value	APHA 21e 4500 H ⁺
Temperature	Section 6 of international Accreditation New Zealand Technical Guide no. 3 Second edition March
	2008: Working Thermometer Calibration Procedure
Salinity	APHA 21e 2520 B
Dissolved oxygen	APHA 21e 4500 O
Turbidity	APHA 21e 2130 B

PART D - CALIBRATION RESULT

(1) pH value

Target (pH unit)	Display Reading (pH unit)	Tolerance	Result
4.00	4.12	0.12	Satisfactory
7.42	7.61	0.19	Satisfactory
10.01	10.19	0.18	Satisfactory

Tolerance of pH value should be less than \pm 0.2 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Display Reading (°C)	Tolerance	Result
12	12.20	0.20	Satisfactory
26	25.36	-0.64	Satisfactory
37	35.44	-1.56	Satisfactory

Tolerance of Temperature should be less than \pm 2.0 (°C)

(3) Salinity

Expected Reading (g/L)	Display Reading (g/L)	Tolerance (%)	Result
10	9.98	-0.20	Satisfactory
20	20.23	1.15	Satisfactory
30	31.20	4.00	Satisfactory

Tolerance of Salinity should be less than \pm 10.0 (%)

--- CONTINUED ON NEXT PAGE ---

AUTHORIZED SIGNATORY:

LEE Chun-ning

Assistant Manager (Chemical Testing)

This report shall not be reproduced unless with prior written approval from this laboratory

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No.	: R-BB100037
Date of Issue	: 12 October 2022
Page No.	: 2 of 2

(4) Dissolved oxygen

Expected Reading (mg/L)	Display Reading (mg/L)	Tolerance	Result
7.87	7.45	-0.42	Satisfactory
4.09	4.05	-0.04	Satisfactory
1.26	1.00	-0.26	Satisfactory
0.01	0.06	0.05	Satisfactory

Tolerance of Dissolved oxygen should be less than ± 0.5 (mg/L)

(5) Turbidity

Expected Reading (NTU)	Display Reading (NTU)	Tolerance (%)	Result
0	0.00		Satisfactory
10	9.34	-6.6	Satisfactory
20	19.3	-3.5	Satisfactory
100	101	1.0	Satisfactory
800	780	-2.5	Satisfactory

Tolerance of Turbidity should be less than ± 10.0 (%)

Remark(s)

•The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards. •The results relate only to the calibrated equipment as received

•The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

• "Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures. • The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

--- END OF REPORT ----

Appendix G

Water Quality and Landfill Gas Monitoring Data

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
CE	20221105	Cloudy	Moderate	Mid-Flood	Surface	1	5:26:00 PM	8.6	8.2	31.9	25.0	2.6	2.5
CE	20221105	Cloudy	Moderate	Mid-Flood	Surface	1	5:26:00 PM	8.5	8.2	31.8	25.0	2.4	3.0
CE	20221105	Cloudy	Moderate	Mid-Flood	Middle	12	5:25:00 PM	8.5	8.3	31.8	25.0	2.6	5.0
CE	20221105	Cloudy	Moderate	Mid-Flood	Middle	12	5:25:00 PM	8.5	8.2	31.9	25.0	2.9	5.0
CE	20221105	Cloudy	Moderate	Mid-Flood	Bottom	23	5:24:00 PM	8.5	8.2	31.9	25.1	2.7	4.0
CE	20221105	Cloudy	Moderate	Mid-Flood	Bottom	23	5:24:00 PM	8.5	8.2	31.8	25.0	2.6	5.0
CF	20221105	Cloudy	Moderate	Mid-Flood	Surface	1	2:49:00 PM	9.1	8.2	32.2	24.7	2.8	4.0
CF	20221105	Cloudy	Moderate	Mid-Flood	Surface	1	2:49:00 PM	9.1	8.2	32.2	24.8	2.9	2.5
CF	20221105	Cloudy	Moderate	Mid-Flood	Middle	10	2:48:00 PM	9.1	8.2	32.1	24.9	2.9	12.0
CF	20221105	Cloudy	Moderate	Mid-Flood	Middle	10	2:48:00 PM	9.1	8.2	32.2	24.8	3.2	14.0
CF	20221105	Cloudy	Moderate	Mid-Flood	Bottom	19	2:47:00 PM	9.0	8.2	32.2	24.9	3.1	16.0
CF	20221105	Cloudy	Moderate	Mid-Flood	Bottom	19	2:47:00 PM	9.2	8.2	32.1	24.8	3.1	17.0
WSR01	20221105	Cloudy	Moderate	Mid-Flood	Surface	1	3:12:00 PM	9.0	8.2	31.6	25.0	2.5	13.0
WSR01	20221105	Cloudy	Moderate	Mid-Flood	Surface	1	3:12:00 PM	9.0	8.2	31.4	24.9	2.3	15.0
WSR01	20221105	Cloudy	Moderate	Mid-Flood	Middle	5	3:11:00 PM	8.9	8.2	31.5	25.0	2.4	14.0
WSR01	20221105	Cloudy	Moderate	Mid-Flood	Middle	5	3:11:00 PM	8.9	8.2	31.4	24.9	2.5	15.0
WSR01	20221105	Cloudy	Moderate	Mid-Flood	Bottom	8	3:10:00 PM	8.9	8.2	31.5	24.9	2.2	18.0
WSR01	20221105	Cloudy	Moderate	Mid-Flood	Bottom	8	3:10:00 PM	9.0	8.2	31.5	24.9	2.5	17.0
WSR02	20221105	Cloudy	Moderate	Mid-Flood	Surface	1	3:30:00 PM	8.6	8.2	31.5	24.7	1.9	23.0
WSR02	20221105	Cloudy	Moderate	Mid-Flood	Surface	1	3:30:00 PM	8.7	8.2	31.5	24.7	2.0	24.0
WSR02	20221105	Cloudy	Moderate	Mid-Flood	Middle	5	3:29:00 PM	8.6	8.2	31.4	24.7	2.1	16.0
WSR02	20221105	Cloudy	Moderate	Mid-Flood	Middle	5	3:29:00 PM	8.7	8.2	31.4	24.8	2.1	15.0
WSR02	20221105	Cloudy	Moderate	Mid-Flood	Bottom	8	3:28:00 PM	8.6	8.2	31.5	24.8	1.9	14.0
WSR02	20221105	Cloudy	Moderate	Mid-Flood	Bottom	8	3:28:00 PM	8.7	8.2	31.4	24.7	1.9	13.0
WSR03	20221105	Cloudy	Moderate	Mid-Flood	Surface	1	3:43:00 PM	9.2	8.2	31.2	24.7	2.3	3.0
WSR03	20221105	Cloudy	Moderate	Mid-Flood	Surface	1	3:43:00 PM	9.2	8.3	31.1	24.6	2.3	2.5
WSR03	20221105	Cloudy	Moderate	Mid-Flood	Middle	4	3:42:00 PM	9.3	8.3	31.2	24.7	2.2	8.0
WSR03	20221105	Cloudy	Moderate	Mid-Flood	Middle	4	3:42:00 PM	9.3	8.2	31.2	24.7	2.1	5.0
WSR03	20221105	Cloudy	Moderate	Mid-Flood	Bottom	7	3:41:00 PM	9.3	8.3	31.1	24.6	2.3	18.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR03	20221105	Cloudy	Moderate	Mid-Flood	Bottom	7	3:41:00 PM	9.2	8.3	31.2	24.7	2.4	17.0
WSR04	20221105	Cloudy	Moderate	Mid-Flood	Surface	1	3:57:00 PM	8.8	8.2	31.7	24.3	2.2	13.0
WSR04	20221105	Cloudy	Moderate	Mid-Flood	Surface	1	3:57:00 PM	8.8	8.2	31.6	24.4	2.3	15.0
WSR04	20221105	Cloudy	Moderate	Mid-Flood	Middle	4	3:56:00 PM	8.7	8.2	31.5	24.5	2.3	16.0
WSR04	20221105	Cloudy	Moderate	Mid-Flood	Middle	4	3:56:00 PM	8.8	8.3	31.7	24.4	2.2	16.0
WSR04	20221105	Cloudy	Moderate	Mid-Flood	Bottom	6	3:55:00 PM	8.7	8.3	31.7	24.5	2.3	2.5
WSR04	20221105	Cloudy	Moderate	Mid-Flood	Bottom	6	3:55:00 PM	8.8	8.2	31.6	24.4	2.6	2.5
WSR16	20221105	Cloudy	Moderate	Mid-Flood	Surface	1	5:02:00 PM	8.4	8.3	32.2	25.1	1.9	15.0
WSR16	20221105	Cloudy	Moderate	Mid-Flood	Surface	1	5:02:00 PM	8.5	8.3	32.2	25.2	2.0	18.0
WSR16	20221105	Cloudy	Moderate	Mid-Flood	Middle	8	5:01:00 PM	8.4	8.3	32.1	25.1	2.2	15.0
WSR16	20221105	Cloudy	Moderate	Mid-Flood	Middle	8	5:01:00 PM	8.5	8.3	32.3	25.1	2.1	16.0
WSR16	20221105	Cloudy	Moderate	Mid-Flood	Bottom	16	5:00:00 PM	8.4	8.3	32.3	25.1	2.3	10.0
WSR16	20221105	Cloudy	Moderate	Mid-Flood	Bottom	16	5:00:00 PM	8.5	8.3	32.3	25.1	2.2	13.0
WSR33	20221105	Cloudy	Moderate	Mid-Flood	Surface	1	4:11:00 PM	9.0	8.2	31.7	25.2	2.2	11.0
WSR33	20221105	Cloudy	Moderate	Mid-Flood	Surface	1	4:11:00 PM	9.0	8.2	31.6	25.1	2.2	10.0
WSR33	20221105	Cloudy	Moderate	Mid-Flood	Middle	4	4:10:00 PM	9.1	8.2	31.6	25.1	2.4	18.0
WSR33	20221105	Cloudy	Moderate	Mid-Flood	Middle	4	4:10:00 PM	9.0	8.3	31.6	25.2	2.3	16.0
WSR33	20221105	Cloudy	Moderate	Mid-Flood	Bottom	6	4:09:00 PM	9.0	8.3	31.5	25.2	2.5	14.0
WSR33	20221105	Cloudy	Moderate	Mid-Flood	Bottom	6	4:09:00 PM	9.0	8.2	31.6	25.1	2.3	15.0
WSR36	20221105	Cloudy	Moderate	Mid-Flood	Surface	1	4:23:00 PM	9.0	8.2	31.9	24.8	2.3	15.0
WSR36	20221105	Cloudy	Moderate	Mid-Flood	Surface	1	4:23:00 PM	9.1	8.3	32.0	24.7	2.2	15.0
WSR36	20221105	Cloudy	Moderate	Mid-Flood	Middle	4	4:23:00 PM	9.1	8.2	32.0	24.8	2.5	3.0
WSR36	20221105	Cloudy	Moderate	Mid-Flood	Middle	4	4:23:00 PM	9.1	8.2	31.8	24.8	2.5	3.0
WSR36	20221105	Cloudy	Moderate	Mid-Flood	Bottom	6	4:22:00 PM	9.0	8.3	31.9	24.8	2.3	8.0
WSR36	20221105	Cloudy	Moderate	Mid-Flood	Bottom	6	4:22:00 PM	9.1	8.3	31.8	24.7	2.3	10.0
WSR37	20221105	Cloudy	Moderate	Mid-Flood	Surface	1	4:38:00 PM	8.4	8.3	32.2	24.6	2.2	14.0
WSR37	20221105	Cloudy	Moderate	Mid-Flood	Surface	1	4:38:00 PM	8.4	8.2	32.2	24.6	2.3	15.0
WSR37	20221105	Cloudy	Moderate	Mid-Flood	Middle	4	4:37:00 PM	8.4	8.3	32.2	24.7	2.3	4.0
WSR37	20221105	Cloudy	Moderate	Mid-Flood	Middle	4	4:37:00 PM	8.3	8.3	32.2	24.7	2.4	5.0
WSR37	20221105	Cloudy	Moderate	Mid-Flood	Bottom	8	4:36:00 PM	8.4	8.3	32.1	24.7	2.3	15.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR37	20221105	Cloudy	Moderate	Mid-Flood	Bottom	8	4:36:00 PM	8.4	8.3	32.2	24.6	2.4	14.0
CE	20221108	Cloudy	Moderate	Mid-Flood	Surface	1	6:34:00 PM	8.4	8.2	32.8	25.1	2.7	5.0
CE	20221108	Cloudy	Moderate	Mid-Flood	Surface	1	6:34:00 PM	8.4	8.2	32.7	25.2	2.8	8.0
CE	20221108	Cloudy	Moderate	Mid-Flood	Middle	11	6:33:00 PM	8.4	8.2	32.7	25.1	2.8	6.0
CE	20221108	Cloudy	Moderate	Mid-Flood	Middle	11	6:33:00 PM	8.3	8.2	32.5	25.2	2.8	9.0
CE	20221108	Cloudy	Moderate	Mid-Flood	Bottom	22	6:32:00 PM	8.4	8.2	32.6	25.2	2.9	9.0
CE	20221108	Cloudy	Moderate	Mid-Flood	Bottom	22	6:32:00 PM	8.3	8.2	32.8	25.2	2.7	6.0
CF	20221108	Cloudy	Moderate	Mid-Flood	Surface	1	4:09:00 PM	8.4	8.3	32.8	24.9	3.0	5.0
CF	20221108	Cloudy	Moderate	Mid-Flood	Surface	1	4:09:00 PM	8.3	8.3	32.5	24.9	3.2	7.0
CF	20221108	Cloudy	Moderate	Mid-Flood	Middle	10	4:08:00 PM	8.4	8.3	32.6	24.9	3.3	6.0
CF	20221108	Cloudy	Moderate	Mid-Flood	Middle	10	4:08:00 PM	8.3	8.3	32.7	25.0	3.2	6.0
CF	20221108	Cloudy	Moderate	Mid-Flood	Bottom	19	4:07:00 PM	8.3	8.3	32.7	25.0	3.4	9.0
CF	20221108	Cloudy	Moderate	Mid-Flood	Bottom	19	4:07:00 PM	8.3	8.3	32.6	25.0	3.3	7.0
WSR01	20221108	Cloudy	Moderate	Mid-Flood	Surface	1	4:32:00 PM	8.4	8.2	32.5	25.6	2.3	4.0
WSR01	20221108	Cloudy	Moderate	Mid-Flood	Surface	1	4:32:00 PM	8.4	8.2	32.6	25.6	2.2	5.0
WSR01	20221108	Cloudy	Moderate	Mid-Flood	Middle	5	4:31:00 PM	8.3	8.2	32.7	25.6	2.5	5.0
WSR01	20221108	Cloudy	Moderate	Mid-Flood	Middle	5	4:31:00 PM	8.4	8.2	32.5	25.6	2.5	4.0
WSR01	20221108	Cloudy	Moderate	Mid-Flood	Bottom	8	4:30:00 PM	8.4	8.2	32.5	25.6	2.4	5.0
WSR01	20221108	Cloudy	Moderate	Mid-Flood	Bottom	8	4:30:00 PM	8.3	8.2	32.6	25.6	2.1	5.0
WSR02	20221108	Cloudy	Moderate	Mid-Flood	Surface	1	4:49:00 PM	8.6	8.2	31.8	25.1	1.7	10.0
WSR02	20221108	Cloudy	Moderate	Mid-Flood	Surface	1	4:49:00 PM	8.7	8.2	31.9	25.1	1.7	11.0
WSR02	20221108	Cloudy	Moderate	Mid-Flood	Middle	5	4:48:00 PM	8.6	8.3	31.8	25.1	1.9	5.0
WSR02	20221108	Cloudy	Moderate	Mid-Flood	Middle	5	4:48:00 PM	8.6	8.2	31.7	25.1	1.7	5.0
WSR02	20221108	Cloudy	Moderate	Mid-Flood	Bottom	8	4:47:00 PM	8.6	8.2	31.8	25.1	1.9	5.0
WSR02	20221108	Cloudy	Moderate	Mid-Flood	Bottom	8	4:47:00 PM	8.6	8.2	31.7	25.2	1.8	4.0
WSR03	20221108	Cloudy	Moderate	Mid-Flood	Surface	1	5:01:00 PM	8.4	8.2	31.7	25.3	2.5	16.0
WSR03	20221108	Cloudy	Moderate	Mid-Flood	Surface	1	5:01:00 PM	8.5	8.3	31.6	25.3	2.4	18.0
WSR03	20221108	Cloudy	Moderate	Mid-Flood	Middle	4	5:00:00 PM	8.5	8.2	31.6	25.3	2.4	32.0
WSR03	20221108	Cloudy	Moderate	Mid-Flood	Middle	4	5:00:00 PM	8.4	8.3	31.8	25.3	2.3	31.0
WSR03	20221108	Cloudy	Moderate	Mid-Flood	Bottom	7	4:59:00 PM	8.4	8.2	31.7	25.3	2.3	3.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR03	20221108	Cloudy	Moderate	Mid-Flood	Bottom	7	4:59:00 PM	8.5	8.2	31.7	25.3	2.4	5.0
WSR04	20221108	Cloudy	Moderate	Mid-Flood	Surface	1	5:14:00 PM	8.9	8.3	32.7	25.0	2.4	8.0
WSR04	20221108	Cloudy	Moderate	Mid-Flood	Surface	1	5:14:00 PM	9.0	8.3	32.8	25.0	2.3	5.0
WSR04	20221108	Cloudy	Moderate	Mid-Flood	Middle	4	5:13:00 PM	8.9	8.3	32.5	25.0	2.5	19.0
WSR04	20221108	Cloudy	Moderate	Mid-Flood	Middle	4	5:13:00 PM	9.1	8.3	32.8	25.0	2.3	19.0
WSR04	20221108	Cloudy	Moderate	Mid-Flood	Bottom	6	5:12:00 PM	8.9	8.3	32.6	25.0	2.4	15.0
WSR04	20221108	Cloudy	Moderate	Mid-Flood	Bottom	6	5:12:00 PM	9.1	8.3	32.8	25.0	2.4	16.0
WSR16	20221108	Cloudy	Moderate	Mid-Flood	Surface	1	6:13:00 PM	8.3	8.2	32.5	25.7	2.3	14.0
WSR16	20221108	Cloudy	Moderate	Mid-Flood	Surface	1	6:13:00 PM	8.4	8.2	32.6	25.8	2.4	13.0
WSR16	20221108	Cloudy	Moderate	Mid-Flood	Middle	9	6:12:00 PM	8.3	8.2	32.5	25.7	2.4	17.0
WSR16	20221108	Cloudy	Moderate	Mid-Flood	Middle	9	6:12:00 PM	8.4	8.3	32.5	25.8	2.4	17.0
WSR16	20221108	Cloudy	Moderate	Mid-Flood	Bottom	16	6:11:00 PM	8.3	8.2	32.5	25.8	2.5	11.0
WSR16	20221108	Cloudy	Moderate	Mid-Flood	Bottom	16	6:11:00 PM	8.2	8.2	32.6	25.8	2.4	11.0
WSR33	20221108	Cloudy	Moderate	Mid-Flood	Surface	1	5:27:00 PM	9.0	8.3	32.0	25.2	2.5	5.0
WSR33	20221108	Cloudy	Moderate	Mid-Flood	Surface	1	5:27:00 PM	8.9	8.3	31.8	25.1	2.4	8.0
WSR33	20221108	Cloudy	Moderate	Mid-Flood	Middle	4	5:26:00 PM	8.9	8.3	31.8	25.2	2.3	9.0
WSR33	20221108	Cloudy	Moderate	Mid-Flood	Middle	4	5:26:00 PM	9.0	8.3	31.8	25.2	2.3	7.0
WSR33	20221108	Cloudy	Moderate	Mid-Flood	Bottom	7	5:25:00 PM	8.9	8.3	31.8	25.1	2.4	8.0
WSR33	20221108	Cloudy	Moderate	Mid-Flood	Bottom	7	5:25:00 PM	8.9	8.3	32.0	25.1	2.4	9.0
WSR36	20221108	Cloudy	Moderate	Mid-Flood	Surface	1	5:39:00 PM	8.7	8.3	32.5	25.4	2.3	6.0
WSR36	20221108	Cloudy	Moderate	Mid-Flood	Surface	1	5:39:00 PM	8.7	8.3	32.5	25.4	2.4	7.0
WSR36	20221108	Cloudy	Moderate	Mid-Flood	Middle	4	5:39:00 PM	8.8	8.3	32.7	25.4	2.4	4.0
WSR36	20221108	Cloudy	Moderate	Mid-Flood	Middle	4	5:39:00 PM	8.8	8.3	32.6	25.4	2.4	2.5
WSR36	20221108	Cloudy	Moderate	Mid-Flood	Bottom	6	5:38:00 PM	8.7	8.3	32.5	25.4	2.6	6.0
WSR36	20221108	Cloudy	Moderate	Mid-Flood	Bottom	6	5:38:00 PM	8.7	8.4	32.6	25.4	2.4	4.0
WSR37	20221108	Cloudy	Moderate	Mid-Flood	Surface	1	5:53:00 PM	8.6	8.3	31.8	25.4	2.4	2.5
WSR37	20221108	Cloudy	Moderate	Mid-Flood	Surface	1	5:53:00 PM	8.7	8.3	31.8	25.5	2.6	4.0
WSR37	20221108	Cloudy	Moderate	Mid-Flood	Middle	4	5:52:00 PM	8.7	8.3	31.9	25.5	2.2	2.5
WSR37	20221108	Cloudy	Moderate	Mid-Flood	Middle	4	5:52:00 PM	8.7	8.3	31.9	25.5	2.2	4.0
WSR37	20221108	Cloudy	Moderate	Mid-Flood	Bottom	8	5:51:00 PM	8.8	8.3	31.9	25.5	2.2	11.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR37	20221108	Cloudy	Moderate	Mid-Flood	Bottom	8	5:51:00 PM	8.8	8.3	31.8	25.5	2.3	12.0
CE	20221110	Cloudy	Moderate	Mid-Flood	Surface	1	10:35:00 AM	8.5	8.3	31.6	24.5	2.6	16.0
CE	20221110	Cloudy	Moderate	Mid-Flood	Surface	1	10:35:00 AM	8.5	8.3	31.6	24.6	2.4	17.0
CE	20221110	Cloudy	Moderate	Mid-Flood	Middle	12	10:34:00 AM	8.4	8.3	31.6	24.6	2.5	16.0
CE	20221110	Cloudy	Moderate	Mid-Flood	Middle	12	10:34:00 AM	8.4	8.3	31.6	24.6	2.6	17.0
CE	20221110	Cloudy	Moderate	Mid-Flood	Bottom	23	10:33:00 AM	8.4	8.3	31.6	24.6	2.7	13.0
CE	20221110	Cloudy	Moderate	Mid-Flood	Bottom	23	10:33:00 AM	8.4	8.4	31.6	24.6	2.7	15.0
CF	20221110	Cloudy	Moderate	Mid-Flood	Surface	1	8:02:00 AM	8.5	8.3	32.3	25.0	2.9	18.0
CF	20221110	Cloudy	Moderate	Mid-Flood	Surface	1	8:02:00 AM	8.5	8.4	32.3	24.9	3.0	18.0
CF	20221110	Cloudy	Moderate	Mid-Flood	Middle	11	8:01:00 AM	8.5	8.3	32.4	24.9	3.2	19.0
CF	20221110	Cloudy	Moderate	Mid-Flood	Middle	11	8:01:00 AM	8.5	8.3	32.3	25.0	3.1	16.0
CF	20221110	Cloudy	Moderate	Mid-Flood	Bottom	20	8:00:00 AM	8.5	8.3	32.3	24.9	3.6	3.0
CF	20221110	Cloudy	Moderate	Mid-Flood	Bottom	20	8:00:00 AM	8.5	8.3	32.3	25.0	3.5	2.5
WSR01	20221110	Cloudy	Moderate	Mid-Flood	Surface	1	8:25:00 AM	8.9	8.2	32.4	24.6	2.3	18.0
WSR01	20221110	Cloudy	Moderate	Mid-Flood	Surface	1	8:25:00 AM	9.0	8.3	32.4	24.8	2.4	17.0
WSR01	20221110	Cloudy	Moderate	Mid-Flood	Middle	5	8:24:00 AM	9.0	8.2	32.4	24.7	2.3	18.0
WSR01	20221110	Cloudy	Moderate	Mid-Flood	Middle	5	8:24:00 AM	8.9	8.3	32.3	24.7	2.4	18.0
WSR01	20221110	Cloudy	Moderate	Mid-Flood	Bottom	8	8:23:00 AM	9.0	8.3	32.4	24.8	2.3	16.0
WSR01	20221110	Cloudy	Moderate	Mid-Flood	Bottom	8	8:23:00 AM	9.0	8.3	32.3	24.6	2.4	15.0
WSR02	20221110	Cloudy	Moderate	Mid-Flood	Surface	1	8:43:00 AM	8.9	8.3	31.6	24.7	2.0	2.5
WSR02	20221110	Cloudy	Moderate	Mid-Flood	Surface	1	8:43:00 AM	8.9	8.3	31.7	24.7	2.1	2.5
WSR02	20221110	Cloudy	Moderate	Mid-Flood	Middle	5	8:42:00 AM	8.8	8.3	31.7	24.8	2.2	2.5
WSR02	20221110	Cloudy	Moderate	Mid-Flood	Middle	5	8:42:00 AM	8.9	8.3	31.6	24.7	2.1	2.5
WSR02	20221110	Cloudy	Moderate	Mid-Flood	Bottom	9	8:41:00 AM	9.0	8.2	31.6	24.8	2.2	5.0
WSR02	20221110	Cloudy	Moderate	Mid-Flood	Bottom	9	8:41:00 AM	8.9	8.2	31.7	24.8	2.1	8.0
WSR03	20221110	Cloudy	Moderate	Mid-Flood	Surface	1	1:03:00 PM	9.1	8.2	32.3	24.4	2.3	18.0
WSR03	20221110	Cloudy	Moderate	Mid-Flood	Surface	1	1:03:00 PM	9.1	8.2	32.3	24.4	2.3	17.0
WSR03	20221110	Cloudy	Moderate	Mid-Flood	Middle	4	1:02:00 PM	9.1	8.2	32.2	24.4	2.4	16.0
WSR03	20221110	Cloudy	Moderate	Mid-Flood	Middle	4	1:02:00 PM	9.0	8.2	32.2	24.4	2.2	14.0
WSR03	20221110	Cloudy	Moderate	Mid-Flood	Bottom	6	1:01:00 PM	9.1	8.3	32.2	24.4	2.3	2.5

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR03	20221110	Cloudy	Moderate	Mid-Flood	Bottom	6	1:01:00 PM	9.1	8.2	32.2	24.5	2.3	2.5
WSR04	20221110	Cloudy	Moderate	Mid-Flood	Surface	1	12:51:00 PM	8.8	8.3	31.6	24.4	2.4	15.0
WSR04	20221110	Cloudy	Moderate	Mid-Flood	Surface	1	12:51:00 PM	8.8	8.2	31.7	24.4	2.2	18.0
WSR04	20221110	Cloudy	Moderate	Mid-Flood	Middle	4	12:50:00 PM	8.8	8.2	31.7	24.3	2.3	16.0
WSR04	20221110	Cloudy	Moderate	Mid-Flood	Middle	4	12:50:00 PM	8.7	8.3	31.7	24.3	2.4	15.0
WSR04	20221110	Cloudy	Moderate	Mid-Flood	Bottom	7	12:49:00 PM	8.7	8.3	31.6	24.4	2.4	16.0
WSR04	20221110	Cloudy	Moderate	Mid-Flood	Bottom	7	12:49:00 PM	8.7	8.2	31.6	24.3	2.5	17.0
WSR16	20221110	Cloudy	Moderate	Mid-Flood	Surface	1	11:48:00 AM	9.0	8.3	31.9	25.1	2.4	16.0
WSR16	20221110	Cloudy	Moderate	Mid-Flood	Surface	1	11:48:00 AM	8.9	8.2	31.8	25.0	2.3	17.0
WSR16	20221110	Cloudy	Moderate	Mid-Flood	Middle	8	11:47:00 AM	8.9	8.2	31.9	25.1	2.4	17.0
WSR16	20221110	Cloudy	Moderate	Mid-Flood	Middle	8	11:47:00 AM	8.9	8.2	31.9	25.0	2.3	17.0
WSR16	20221110	Cloudy	Moderate	Mid-Flood	Bottom	15	11:46:00 AM	8.9	8.2	31.9	25.0	2.4	15.0
WSR16	20221110	Cloudy	Moderate	Mid-Flood	Bottom	15	11:46:00 AM	8.9	8.2	31.8	25.0	2.5	14.0
WSR33	20221110	Cloudy	Moderate	Mid-Flood	Surface	1	12:37:00 PM	9.0	8.3	32.6	24.6	2.4	3.0
WSR33	20221110	Cloudy	Moderate	Mid-Flood	Surface	1	12:37:00 PM	9.1	8.3	32.7	24.5	2.4	2.5
WSR33	20221110	Cloudy	Moderate	Mid-Flood	Middle	4	12:36:00 PM	9.0	8.2	32.6	24.6	2.4	2.5
WSR33	20221110	Cloudy	Moderate	Mid-Flood	Middle	4	12:36:00 PM	9.1	8.2	32.7	24.5	2.4	2.5
WSR33	20221110	Cloudy	Moderate	Mid-Flood	Bottom	7	12:35:00 PM	9.1	8.3	32.6	24.6	2.2	16.0
WSR33	20221110	Cloudy	Moderate	Mid-Flood	Bottom	7	12:35:00 PM	9.0	8.2	32.6	24.5	2.2	16.0
WSR36	20221110	Cloudy	Moderate	Mid-Flood	Surface	1	12:22:00 PM	8.3	8.3	31.9	24.8	2.1	12.0
WSR36	20221110	Cloudy	Moderate	Mid-Flood	Surface	1	12:22:00 PM	8.3	8.4	31.9	24.7	2.2	10.0
WSR36	20221110	Cloudy	Moderate	Mid-Flood	Middle	3	12:22:00 PM	8.4	8.3	32.0	24.7	2.3	13.0
WSR36	20221110	Cloudy	Moderate	Mid-Flood	Middle	3	12:22:00 PM	8.3	8.3	32.0	24.7	2.3	11.0
WSR36	20221110	Cloudy	Moderate	Mid-Flood	Bottom	6	12:21:00 PM	8.5	8.3	31.9	24.7	2.4	12.0
WSR36	20221110	Cloudy	Moderate	Mid-Flood	Bottom	6	12:21:00 PM	8.4	8.3	31.9	24.7	2.5	14.0
WSR37	20221110	Cloudy	Moderate	Mid-Flood	Surface	1	12:09:00 PM	8.5	8.3	32.0	24.7	2.3	4.0
WSR37	20221110	Cloudy	Moderate	Mid-Flood	Surface	1	12:09:00 PM	8.5	8.2	31.9	24.7	2.4	8.0
WSR37	20221110	Cloudy	Moderate	Mid-Flood	Middle	4	12:08:00 PM	8.5	8.2	32.0	24.7	2.4	15.0
WSR37	20221110	Cloudy	Moderate	Mid-Flood	Middle	4	12:08:00 PM	8.6	8.2	31.9	24.8	2.3	16.0
WSR37	20221110	Cloudy	Moderate	Mid-Flood	Bottom	7	12:07:00 PM	8.5	8.3	31.9	24.7	2.4	15.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR37	20221110	Cloudy	Moderate	Mid-Flood	Bottom	7	12:07:00 PM	8.6	8.3	31.9	24.7	2.4	15.0
CE	20221112	Cloudy	Moderate	Mid-Flood	Surface	1	10:37:00 AM	8.6	8.4	33.1	25.3	2.4	8.0
CE	20221112	Cloudy	Moderate	Mid-Flood	Surface	1	10:37:00 AM	8.6	8.3	33.1	25.3	2.5	9.0
CE	20221112	Cloudy	Moderate	Mid-Flood	Middle	11	10:36:00 AM	8.7	8.3	33.1	25.3	2.7	16.0
CE	20221112	Cloudy	Moderate	Mid-Flood	Middle	11	10:36:00 AM	8.6	8.3	33.1	25.3	2.6	15.0
CE	20221112	Cloudy	Moderate	Mid-Flood	Bottom	20	10:35:00 AM	8.6	8.3	33.1	25.2	3.0	14.0
CE	20221112	Cloudy	Moderate	Mid-Flood	Bottom	20	10:35:00 AM	8.6	8.4	33.1	25.3	2.8	13.0
CF	20221112	Cloudy	Moderate	Mid-Flood	Surface	1	8:02:00 AM	9.0	8.4	32.7	24.9	3.2	16.0
CF	20221112	Cloudy	Moderate	Mid-Flood	Surface	1	8:02:00 AM	9.0	8.4	32.7	24.9	3.0	18.0
CF	20221112	Cloudy	Moderate	Mid-Flood	Middle	10	8:01:00 AM	8.9	8.3	32.7	24.9	3.3	11.0
CF	20221112	Cloudy	Moderate	Mid-Flood	Middle	10	8:01:00 AM	9.0	8.4	32.6	24.9	3.2	13.0
CF	20221112	Cloudy	Moderate	Mid-Flood	Bottom	20	8:00:00 AM	9.0	8.4	32.7	25.0	3.1	16.0
CF	20221112	Cloudy	Moderate	Mid-Flood	Bottom	20	8:00:00 AM	8.9	8.3	32.7	25.0	3.4	13.0
WSR01	20221112	Cloudy	Moderate	Mid-Flood	Surface	1	8:25:00 AM	8.5	8.0	32.9	24.7	2.4	17.0
WSR01	20221112	Cloudy	Moderate	Mid-Flood	Surface	1	8:25:00 AM	8.4	8.1	32.9	24.7	2.3	16.0
WSR01	20221112	Cloudy	Moderate	Mid-Flood	Middle	4	8:24:00 AM	8.4	8.0	32.9	24.7	2.3	17.0
WSR01	20221112	Cloudy	Moderate	Mid-Flood	Middle	4	8:24:00 AM	8.4	8.1	33.0	24.6	2.3	18.0
WSR01	20221112	Cloudy	Moderate	Mid-Flood	Bottom	8	8:23:00 AM	8.4	8.1	33.0	24.6	2.3	16.0
WSR01	20221112	Cloudy	Moderate	Mid-Flood	Bottom	8	8:23:00 AM	8.4	8.1	33.0	24.6	2.6	18.0
WSR02	20221112	Cloudy	Moderate	Mid-Flood	Surface	1	8:43:00 AM	8.7	8.3	33.0	25.4	2.1	19.0
WSR02	20221112	Cloudy	Moderate	Mid-Flood	Surface	1	8:43:00 AM	8.8	8.3	33.1	25.4	1.9	15.0
WSR02	20221112	Cloudy	Moderate	Mid-Flood	Middle	5	8:42:00 AM	8.8	8.3	33.0	25.5	2.1	5.0
WSR02	20221112	Cloudy	Moderate	Mid-Flood	Middle	5	8:42:00 AM	8.7	8.2	33.0	25.5	2.1	5.0
WSR02	20221112	Cloudy	Moderate	Mid-Flood	Bottom	9	8:41:00 AM	8.8	8.3	33.0	25.4	1.8	15.0
WSR02	20221112	Cloudy	Moderate	Mid-Flood	Bottom	9	8:41:00 AM	8.8	8.3	33.1	25.5	1.8	16.0
WSR03	20221112	Cloudy	Moderate	Mid-Flood	Surface	1	8:57:00 AM	8.5	8.2	33.0	25.2	2.3	12.0
WSR03	20221112	Cloudy	Moderate	Mid-Flood	Surface	1	8:57:00 AM	8.5	8.2	33.0	25.3	2.0	14.0
WSR03	20221112	Cloudy	Moderate	Mid-Flood	Middle	4	8:56:00 AM	8.5	8.1	33.1	25.2	2.2	17.0
WSR03	20221112	Cloudy	Moderate	Mid-Flood	Middle	4	8:56:00 AM	8.5	8.1	33.0	25.2	2.3	15.0
WSR03	20221112	Cloudy	Moderate	Mid-Flood	Bottom	7	8:55:00 AM	8.5	8.1	33.1	25.1	2.7	18.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR03	20221112	Cloudy	Moderate	Mid-Flood	Bottom	7	8:55:00 AM	8.6	8.2	33.0	25.2	2.5	15.0
WSR04	20221112	Cloudy	Moderate	Mid-Flood	Surface	1	9:11:00 AM	8.0	8.2	32.0	25.4	2.6	16.0
WSR04	20221112	Cloudy	Moderate	Mid-Flood	Surface	1	9:11:00 AM	8.1	8.3	32.0	25.4	2.6	17.0
WSR04	20221112	Cloudy	Moderate	Mid-Flood	Middle	4	9:10:00 AM	8.0	8.2	32.0	25.3	2.1	12.0
WSR04	20221112	Cloudy	Moderate	Mid-Flood	Middle	4	9:10:00 AM	8.1	8.3	32.1	25.3	2.4	13.0
WSR04	20221112	Cloudy	Moderate	Mid-Flood	Bottom	7	9:09:00 AM	8.1	8.2	32.0	25.4	2.3	13.0
WSR04	20221112	Cloudy	Moderate	Mid-Flood	Bottom	7	9:09:00 AM	8.0	8.3	32.1	25.3	2.1	12.0
WSR16	20221112	Cloudy	Moderate	Mid-Flood	Surface	1	10:14:00 AM	8.8	8.1	32.8	24.8	2.1	19.0
WSR16	20221112	Cloudy	Moderate	Mid-Flood	Surface	1	10:14:00 AM	8.9	8.1	32.7	24.9	2.3	17.0
WSR16	20221112	Cloudy	Moderate	Mid-Flood	Middle	8	10:13:00 AM	8.8	8.1	32.7	24.9	2.0	3.0
WSR16	20221112	Cloudy	Moderate	Mid-Flood	Middle	8	10:13:00 AM	8.9	8.1	32.7	24.8	2.1	2.5
WSR16	20221112	Cloudy	Moderate	Mid-Flood	Bottom	15	10:12:00 AM	8.9	8.1	32.8	24.9	2.2	17.0
WSR16	20221112	Cloudy	Moderate	Mid-Flood	Bottom	15	10:12:00 AM	8.8	8.2	32.8	24.9	2.2	18.0
WSR33	20221112	Cloudy	Moderate	Mid-Flood	Surface	1	9:25:00 AM	8.5	8.1	32.5	25.3	2.1	17.0
WSR33	20221112	Cloudy	Moderate	Mid-Flood	Surface	1	9:25:00 AM	8.5	8.1	32.5	25.3	2.1	20.0
WSR33	20221112	Cloudy	Moderate	Mid-Flood	Middle	4	9:24:00 AM	8.5	8.1	32.6	25.4	2.1	17.0
WSR33	20221112	Cloudy	Moderate	Mid-Flood	Middle	4	9:24:00 AM	8.5	8.1	32.6	25.4	2.2	16.0
WSR33	20221112	Cloudy	Moderate	Mid-Flood	Bottom	7	9:23:00 AM	8.5	8.1	32.6	25.3	2.3	11.0
WSR33	20221112	Cloudy	Moderate	Mid-Flood	Bottom	7	9:23:00 AM	8.5	8.1	32.6	25.3	2.2	13.0
WSR36	20221112	Cloudy	Moderate	Mid-Flood	Surface	1	9:38:00 AM	8.7	8.2	32.3	25.3	2.3	15.0
WSR36	20221112	Cloudy	Moderate	Mid-Flood	Surface	1	9:38:00 AM	8.7	8.1	32.2	25.4	2.1	15.0
WSR36	20221112	Cloudy	Moderate	Mid-Flood	Middle	4	9:38:00 AM	8.7	8.1	32.3	25.4	2.4	20.0
WSR36	20221112	Cloudy	Moderate	Mid-Flood	Middle	4	9:38:00 AM	8.6	8.1	32.2	25.4	2.3	20.0
WSR36	20221112	Cloudy	Moderate	Mid-Flood	Bottom	6	9:37:00 AM	8.6	8.2	32.2	25.3	2.5	19.0
WSR36	20221112	Cloudy	Moderate	Mid-Flood	Bottom	6	9:37:00 AM	8.7	8.2	32.3	25.2	2.4	17.0
WSR37	20221112	Cloudy	Moderate	Mid-Flood	Surface	1	9:53:00 AM	8.5	8.4	32.3	25.1	2.0	18.0
WSR37	20221112	Cloudy	Moderate	Mid-Flood	Surface	1	9:53:00 AM	8.5	8.4	32.2	25.0	2.1	17.0
WSR37	20221112	Cloudy	Moderate	Mid-Flood	Middle	4	9:52:00 AM	8.5	8.3	32.2	25.1	2.3	17.0
WSR37	20221112	Cloudy	Moderate	Mid-Flood	Middle	4	9:52:00 AM	8.5	8.3	32.2	25.0	2.3	20.0
WSR37	20221112	Cloudy	Moderate	Mid-Flood	Bottom	7	9:51:00 AM	8.4	8.4	32.3	25.0	2.5	11.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR37	20221112	Cloudy	Moderate	Mid-Flood	Bottom	7	9:51:00 AM	8.5	8.3	32.2	25.1	2.5	14.0
CE	20221115	Cloudy	Moderate	Mid-Flood	Surface	1	4:38:00 PM	9.1	8.3	32.1	24.9	2.6	3.0
CE	20221115	Cloudy	Moderate	Mid-Flood	Surface	1	4:38:00 PM	9.2	8.4	32.2	24.9	2.6	2.5
CE	20221115	Cloudy	Moderate	Mid-Flood	Middle	11	4:37:00 PM	9.2	8.4	32.0	24.9	2.7	17.0
CE	20221115	Cloudy	Moderate	Mid-Flood	Middle	11	4:37:00 PM	9.1	8.3	32.2	25.0	3.0	17.0
CE	20221115	Cloudy	Moderate	Mid-Flood	Bottom	21	4:36:00 PM	9.2	8.3	32.0	24.9	2.7	19.0
CE	20221115	Cloudy	Moderate	Mid-Flood	Bottom	21	4:36:00 PM	9.2	8.3	32.2	25.0	2.8	17.0
CF	20221115	Cloudy	Moderate	Mid-Flood	Surface	1	2:04:00 PM	9.6	8.3	32.7	24.8	2.9	20.0
CF	20221115	Cloudy	Moderate	Mid-Flood	Surface	1	2:04:00 PM	9.4	8.3	32.7	24.8	2.7	23.0
CF	20221115	Cloudy	Moderate	Mid-Flood	Middle	10	2:03:00 PM	9.4	8.3	32.5	24.8	3.0	18.0
CF	20221115	Cloudy	Moderate	Mid-Flood	Middle	10	2:03:00 PM	9.4	8.3	32.5	24.8	2.9	16.0
CF	20221115	Cloudy	Moderate	Mid-Flood	Bottom	18	2:02:00 PM	9.5	8.3	32.6	24.8	3.3	23.0
CF	20221115	Cloudy	Moderate	Mid-Flood	Bottom	18	2:02:00 PM	9.5	8.3	32.8	24.7	3.1	21.0
WSR01	20221115	Cloudy	Moderate	Mid-Flood	Surface	1	2:28:00 PM	9.2	8.4	32.3	25.4	2.1	20.0
WSR01	20221115	Cloudy	Moderate	Mid-Flood	Surface	1	2:28:00 PM	9.1	8.4	32.3	25.3	2.0	20.0
WSR01	20221115	Cloudy	Moderate	Mid-Flood	Middle	4	2:27:00 PM	9.2	8.4	32.3	25.4	2.2	16.0
WSR01	20221115	Cloudy	Moderate	Mid-Flood	Middle	4	2:27:00 PM	9.1	8.4	32.1	25.3	2.2	20.0
WSR01	20221115	Cloudy	Moderate	Mid-Flood	Bottom	8	2:26:00 PM	9.1	8.3	32.1	25.4	2.4	17.0
WSR01	20221115	Cloudy	Moderate	Mid-Flood	Bottom	8	2:26:00 PM	9.2	8.3	32.2	25.4	2.4	20.0
WSR02	20221115	Cloudy	Moderate	Mid-Flood	Surface	1	2:46:00 PM	9.5	8.4	32.0	24.8	1.6	18.0
WSR02	20221115	Cloudy	Moderate	Mid-Flood	Surface	1	2:46:00 PM	9.5	8.4	32.1	24.8	1.8	19.0
WSR02	20221115	Cloudy	Moderate	Mid-Flood	Middle	5	2:45:00 PM	9.6	8.4	32.1	24.7	1.8	8.0
WSR02	20221115	Cloudy	Moderate	Mid-Flood	Middle	5	2:45:00 PM	9.5	8.4	32.3	24.8	1.9	10.0
WSR02	20221115	Cloudy	Moderate	Mid-Flood	Bottom	9	2:44:00 PM	9.5	8.4	32.2	24.8	1.8	20.0
WSR02	20221115	Cloudy	Moderate	Mid-Flood	Bottom	9	2:44:00 PM	9.5	8.4	32.2	24.7	1.9	22.0
WSR03	20221115	Cloudy	Moderate	Mid-Flood	Surface	1	2:59:00 PM	8.9	8.4	32.2	25.1	2.3	22.0
WSR03	20221115	Cloudy	Moderate	Mid-Flood	Surface	1	2:59:00 PM	9.0	8.4	32.3	25.1	2.4	20.0
WSR03	20221115	Cloudy	Moderate	Mid-Flood	Middle	4	2:58:00 PM	8.8	8.4	32.1	25.0	2.4	22.0
WSR03	20221115	Cloudy	Moderate	Mid-Flood	Middle	4	2:58:00 PM	8.9	8.4	32.2	25.1	2.4	18.0
WSR03	20221115	Cloudy	Moderate	Mid-Flood	Bottom	7	2:57:00 PM	8.9	8.4	32.3	25.0	2.1	25.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR03	20221115	Cloudy	Moderate	Mid-Flood	Bottom	7	2:57:00 PM	8.8	8.4	32.4	25.0	2.2	23.0
WSR04	20221115	Cloudy	Moderate	Mid-Flood	Surface	1	3:12:00 PM	9.3	8.3	32.6	24.7	2.2	21.0
WSR04	20221115	Cloudy	Moderate	Mid-Flood	Surface	1	3:12:00 PM	9.3	8.3	32.7	24.7	2.1	23.0
WSR04	20221115	Cloudy	Moderate	Mid-Flood	Middle	4	3:11:00 PM	9.3	8.3	32.9	24.7	2.4	19.0
WSR04	20221115	Cloudy	Moderate	Mid-Flood	Middle	4	3:11:00 PM	9.3	8.3	32.9	24.7	2.1	22.0
WSR04	20221115	Cloudy	Moderate	Mid-Flood	Bottom	7	3:10:00 PM	9.4	8.3	32.6	24.7	2.2	23.0
WSR04	20221115	Cloudy	Moderate	Mid-Flood	Bottom	7	3:10:00 PM	9.3	8.3	32.8	24.7	2.2	22.0
WSR16	20221115	Cloudy	Moderate	Mid-Flood	Surface	1	4:15:00 PM	9.3	8.3	32.8	24.5	2.1	21.0
WSR16	20221115	Cloudy	Moderate	Mid-Flood	Surface	1	4:15:00 PM	9.3	8.3	32.8	24.5	2.2	19.0
WSR16	20221115	Cloudy	Moderate	Mid-Flood	Middle	8	4:14:00 PM	9.4	8.3	32.6	24.6	2.2	20.0
WSR16	20221115	Cloudy	Moderate	Mid-Flood	Middle	8	4:14:00 PM	9.3	8.2	32.8	24.5	2.3	23.0
WSR16	20221115	Cloudy	Moderate	Mid-Flood	Bottom	15	4:13:00 PM	9.4	8.3	32.7	24.5	2.4	5.0
WSR16	20221115	Cloudy	Moderate	Mid-Flood	Bottom	15	4:13:00 PM	9.2	8.3	32.7	24.6	2.3	9.0
WSR33	20221115	Cloudy	Moderate	Mid-Flood	Surface	1	3:26:00 PM	8.8	8.3	33.0	24.5	2.4	14.0
WSR33	20221115	Cloudy	Moderate	Mid-Flood	Surface	1	3:26:00 PM	8.9	8.3	33.0	24.6	2.4	12.0
WSR33	20221115	Cloudy	Moderate	Mid-Flood	Middle	4	3:25:00 PM	8.9	8.3	33.0	24.6	2.4	17.0
WSR33	20221115	Cloudy	Moderate	Mid-Flood	Middle	4	3:25:00 PM	8.8	8.3	33.1	24.6	2.5	20.0
WSR33	20221115	Cloudy	Moderate	Mid-Flood	Bottom	7	3:24:00 PM	8.7	8.3	33.0	24.6	2.3	20.0
WSR33	20221115	Cloudy	Moderate	Mid-Flood	Bottom	7	3:24:00 PM	8.7	8.3	33.0	24.6	2.4	22.0
WSR36	20221115	Cloudy	Moderate	Mid-Flood	Surface	1	3:39:00 PM	8.8	8.3	32.3	24.7	2.2	14.0
WSR36	20221115	Cloudy	Moderate	Mid-Flood	Surface	1	3:39:00 PM	8.9	8.3	32.4	24.7	2.2	13.0
WSR36	20221115	Cloudy	Moderate	Mid-Flood	Middle	3	3:39:00 PM	8.9	8.3	32.4	24.7	2.3	12.0
WSR36	20221115	Cloudy	Moderate	Mid-Flood	Middle	3	3:39:00 PM	8.9	8.3	32.4	24.8	2.4	12.0
WSR36	20221115	Cloudy	Moderate	Mid-Flood	Bottom	6	3:38:00 PM	8.8	8.3	32.4	24.7	2.4	22.0
WSR36	20221115	Cloudy	Moderate	Mid-Flood	Bottom	6	3:38:00 PM	8.8	8.3	32.4	24.7	2.3	22.0
WSR37	20221115	Cloudy	Moderate	Mid-Flood	Surface	1	3:53:00 PM	9.3	8.4	32.8	24.6	2.3	12.0
WSR37	20221115	Cloudy	Moderate	Mid-Flood	Surface	1	3:53:00 PM	9.3	8.4	32.8	24.5	2.4	13.0
WSR37	20221115	Cloudy	Moderate	Mid-Flood	Middle	4	3:52:00 PM	9.1	8.4	32.7	24.6	2.4	11.0
WSR37	20221115	Cloudy	Moderate	Mid-Flood	Middle	4	3:52:00 PM	9.2	8.4	32.8	24.5	2.3	13.0
WSR37	20221115	Cloudy	Moderate	Mid-Flood	Bottom	7	3:51:00 PM	9.3	8.4	32.7	24.5	2.2	22.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR37	20221115	Cloudy	Moderate	Mid-Flood	Bottom	7	3:51:00 PM	9.3	8.4	32.9	24.6	2.4	24.0
CE	20221117	Cloudy	Moderate	Mid-Flood	Surface	1	6:14:00 PM	8.6	8.2	33.3	25.2	2.4	5.0
CE	20221117	Cloudy	Moderate	Mid-Flood	Surface	1	6:14:00 PM	8.6	8.3	33.3	25.2	2.6	6.0
CE	20221117	Cloudy	Moderate	Mid-Flood	Middle	11	6:13:00 PM	8.5	8.2	33.4	25.2	2.7	4.0
CE	20221117	Cloudy	Moderate	Mid-Flood	Middle	11	6:13:00 PM	8.6	8.3	33.4	25.3	2.5	5.0
CE	20221117	Cloudy	Moderate	Mid-Flood	Bottom	21	6:12:00 PM	8.5	8.2	33.4	25.2	2.9	4.0
CE	20221117	Cloudy	Moderate	Mid-Flood	Bottom	21	6:12:00 PM	8.5	8.2	33.2	25.2	2.9	3.0
CF	20221117	Cloudy	Moderate	Mid-Flood	Surface	1	3:33:00 PM	9.1	8.2	33.1	25.2	2.9	3.0
CF	20221117	Cloudy	Moderate	Mid-Flood	Surface	1	3:33:00 PM	9.1	8.3	33.1	25.3	3.0	5.0
CF	20221117	Cloudy	Moderate	Mid-Flood	Middle	10	3:32:00 PM	9.2	8.2	33.1	25.3	3.1	2.5
CF	20221117	Cloudy	Moderate	Mid-Flood	Middle	10	3:32:00 PM	9.2	8.3	33.1	25.4	3.3	2.5
CF	20221117	Cloudy	Moderate	Mid-Flood	Bottom	19	3:31:00 PM	9.2	8.2	33.1	25.3	3.6	4.0
CF	20221117	Cloudy	Moderate	Mid-Flood	Bottom	19	3:31:00 PM	9.2	8.3	33.2	25.1	3.4	2.5
WSR01	20221117	Cloudy	Moderate	Mid-Flood	Surface	1	3:57:00 PM	8.6	8.3	33.4	25.3	2.6	2.5
WSR01	20221117	Cloudy	Moderate	Mid-Flood	Surface	1	3:57:00 PM	8.5	8.3	33.5	25.2	2.3	4.0
WSR01	20221117	Cloudy	Moderate	Mid-Flood	Middle	5	3:56:00 PM	8.6	8.3	33.5	25.2	1.9	4.0
WSR01	20221117	Cloudy	Moderate	Mid-Flood	Middle	5	3:56:00 PM	8.5	8.3	33.3	25.3	2.2	3.0
WSR01	20221117	Cloudy	Moderate	Mid-Flood	Bottom	8	3:55:00 PM	8.5	8.3	33.5	25.2	2.2	5.0
WSR01	20221117	Cloudy	Moderate	Mid-Flood	Bottom	8	3:55:00 PM	8.5	8.3	33.3	25.2	2.0	5.0
WSR02	20221117	Cloudy	Moderate	Mid-Flood	Surface	1	4:16:00 PM	9.5	8.2	33.4	25.0	2.3	7.0
WSR02	20221117	Cloudy	Moderate	Mid-Flood	Surface	1	4:16:00 PM	9.4	8.2	33.4	25.1	2.3	5.0
WSR02	20221117	Cloudy	Moderate	Mid-Flood	Middle	5	4:15:00 PM	9.5	8.2	33.3	25.1	2.3	7.0
WSR02	20221117	Cloudy	Moderate	Mid-Flood	Middle	5	4:15:00 PM	9.4	8.2	33.5	25.1	2.4	8.0
WSR02	20221117	Cloudy	Moderate	Mid-Flood	Bottom	9	4:14:00 PM	9.5	8.2	33.4	25.0	1.9	3.0
WSR02	20221117	Cloudy	Moderate	Mid-Flood	Bottom	9	4:14:00 PM	9.5	8.2	33.5	25.1	2.2	2.5
WSR03	20221117	Cloudy	Moderate	Mid-Flood	Surface	1	4:30:00 PM	9.6	8.3	32.7	25.6	2.7	11.0
WSR03	20221117	Cloudy	Moderate	Mid-Flood	Surface	1	4:30:00 PM	9.6	8.3	32.8	25.6	2.3	9.0
WSR03	20221117	Cloudy	Moderate	Mid-Flood	Middle	4	4:29:00 PM	9.5	8.3	32.7	25.7	2.6	10.0
WSR03	20221117	Cloudy	Moderate	Mid-Flood	Middle	4	4:29:00 PM	9.6	8.3	32.8	25.7	2.3	7.0
WSR03	20221117	Cloudy	Moderate	Mid-Flood	Bottom	7	4:28:00 PM	9.5	8.3	32.7	25.6	2.3	13.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR03	20221117	Cloudy	Moderate	Mid-Flood	Bottom	7	4:28:00 PM	9.6	8.3	32.8	25.7	2.1	14.0
WSR04	20221117	Cloudy	Moderate	Mid-Flood	Surface	1	4:44:00 PM	9.2	8.3	32.9	25.5	2.1	5.0
WSR04	20221117	Cloudy	Moderate	Mid-Flood	Surface	1	4:44:00 PM	9.2	8.3	33.0	25.6	1.9	6.0
WSR04	20221117	Cloudy	Moderate	Mid-Flood	Middle	3	4:43:00 PM	9.3	8.3	32.9	25.7	1.9	9.0
WSR04	20221117	Cloudy	Moderate	Mid-Flood	Middle	3	4:43:00 PM	9.2	8.3	33.1	25.5	1.9	6.0
WSR04	20221117	Cloudy	Moderate	Mid-Flood	Bottom	6	4:42:00 PM	9.2	8.3	32.9	25.5	2.1	9.0
WSR04	20221117	Cloudy	Moderate	Mid-Flood	Bottom	6	4:42:00 PM	9.2	8.3	33.1	25.6	2.2	11.0
WSR16	20221117	Cloudy	Moderate	Mid-Flood	Surface	1	5:51:00 PM	8.8	8.2	32.7	24.9	2.4	10.0
WSR16	20221117	Cloudy	Moderate	Mid-Flood	Surface	1	5:51:00 PM	8.8	8.2	32.9	24.9	2.2	10.0
WSR16	20221117	Cloudy	Moderate	Mid-Flood	Middle	8	5:50:00 PM	8.7	8.2	32.8	24.8	2.5	15.0
WSR16	20221117	Cloudy	Moderate	Mid-Flood	Middle	8	5:50:00 PM	8.8	8.2	32.7	25.0	2.1	17.0
WSR16	20221117	Cloudy	Moderate	Mid-Flood	Bottom	15	5:49:00 PM	8.7	8.2	32.9	24.9	2.3	14.0
WSR16	20221117	Cloudy	Moderate	Mid-Flood	Bottom	15	5:49:00 PM	8.8	8.2	32.8	25.0	2.1	15.0
WSR33	20221117	Cloudy	Moderate	Mid-Flood	Surface	1	4:59:00 PM	8.6	8.2	33.2	25.6	2.6	9.0
WSR33	20221117	Cloudy	Moderate	Mid-Flood	Surface	1	4:59:00 PM	8.5	8.2	33.2	25.4	2.7	9.0
WSR33	20221117	Cloudy	Moderate	Mid-Flood	Middle	4	4:58:00 PM	8.6	8.2	33.2	25.4	2.4	9.0
WSR33	20221117	Cloudy	Moderate	Mid-Flood	Middle	4	4:58:00 PM	8.5	8.2	33.3	25.5	2.4	9.0
WSR33	20221117	Cloudy	Moderate	Mid-Flood	Bottom	6	4:57:00 PM	8.6	8.2	33.1	25.6	2.0	7.0
WSR33	20221117	Cloudy	Moderate	Mid-Flood	Bottom	6	4:57:00 PM	8.6	8.2	33.2	25.5	2.2	10.0
WSR36	20221117	Cloudy	Moderate	Mid-Flood	Surface	1	5:13:00 PM	9.4	8.3	32.6	24.9	2.2	7.0
WSR36	20221117	Cloudy	Moderate	Mid-Flood	Surface	1	5:13:00 PM	9.4	8.4	32.5	25.0	2.1	10.0
WSR36	20221117	Cloudy	Moderate	Mid-Flood	Middle	3	5:13:00 PM	9.4	8.3	32.7	25.1	2.3	10.0
WSR36	20221117	Cloudy	Moderate	Mid-Flood	Middle	3	5:13:00 PM	9.3	8.3	32.6	25.1	2.3	7.0
WSR36	20221117	Cloudy	Moderate	Mid-Flood	Bottom	6	5:12:00 PM	9.3	8.3	32.5	24.9	2.6	14.0
WSR36	20221117	Cloudy	Moderate	Mid-Flood	Bottom	6	5:12:00 PM	9.4	8.4	32.6	25.1	2.4	13.0
WSR37	20221117	Cloudy	Moderate	Mid-Flood	Surface	1	5:29:00 PM	9.6	8.3	32.7	25.2	2.0	16.0
WSR37	20221117	Cloudy	Moderate	Mid-Flood	Surface	1	5:29:00 PM	9.5	8.3	32.8	25.3	2.0	13.0
WSR37	20221117	Cloudy	Moderate	Mid-Flood	Middle	4	5:28:00 PM	9.6	8.3	32.8	25.3	2.1	13.0
WSR37	20221117	Cloudy	Moderate	Mid-Flood	Middle	4	5:28:00 PM	9.5	8.3	32.7	25.2	2.3	10.0
WSR37	20221117	Cloudy	Moderate	Mid-Flood	Bottom	7	5:27:00 PM	9.6	8.2	32.7	25.2	2.3	7.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR37	20221117	Cloudy	Moderate	Mid-Flood	Bottom	7	5:27:00 PM	9.6	8.3	32.9	25.1	2.1	5.0
CE	20221119	Cloudy	Moderate	Mid-Flood	Surface	1	4:32:00 PM	8.9	8.3	34.0	25.2	2.6	2.5
CE	20221119	Cloudy	Moderate	Mid-Flood	Surface	1	4:32:00 PM	8.8	8.3	33.8	25.3	2.7	2.5
CE	20221119	Cloudy	Moderate	Mid-Flood	Middle	10	4:31:00 PM	8.9	8.3	33.7	25.2	2.9	3.0
CE	20221119	Cloudy	Moderate	Mid-Flood	Middle	10	4:31:00 PM	8.8	8.3	33.7	25.3	3.0	3.0
CE	20221119	Cloudy	Moderate	Mid-Flood	Bottom	19	4:30:00 PM	8.8	8.3	33.7	25.3	3.1	3.0
CE	20221119	Cloudy	Moderate	Mid-Flood	Bottom	19	4:30:00 PM	8.9	8.3	33.8	25.3	2.9	3.0
CF	20221119	Cloudy	Moderate	Mid-Flood	Surface	1	1:51:00 PM	8.7	8.2	33.5	25.5	3.2	2.5
CF	20221119	Cloudy	Moderate	Mid-Flood	Surface	1	1:51:00 PM	8.6	8.2	33.5	25.4	3.1	2.5
CF	20221119	Cloudy	Moderate	Mid-Flood	Middle	11	1:50:00 PM	8.7	8.2	33.4	25.5	3.3	3.0
CF	20221119	Cloudy	Moderate	Mid-Flood	Middle	11	1:50:00 PM	8.6	8.2	33.4	25.5	3.4	3.0
CF	20221119	Cloudy	Moderate	Mid-Flood	Bottom	20	1:49:00 PM	8.6	8.3	33.6	25.5	3.5	6.0
CF	20221119	Cloudy	Moderate	Mid-Flood	Bottom	20	1:49:00 PM	8.7	8.3	33.6	25.5	3.6	5.0
WSR01	20221119	Cloudy	Moderate	Mid-Flood	Surface	1	2:14:00 PM	9.3	8.4	33.3	25.9	2.1	5.0
WSR01	20221119	Cloudy	Moderate	Mid-Flood	Surface	1	2:14:00 PM	9.4	8.3	33.0	25.9	2.6	8.0
WSR01	20221119	Cloudy	Moderate	Mid-Flood	Middle	5	2:13:00 PM	9.4	8.4	33.2	26.0	2.1	3.0
WSR01	20221119	Cloudy	Moderate	Mid-Flood	Middle	5	2:13:00 PM	9.5	8.4	33.2	26.0	2.2	5.0
WSR01	20221119	Cloudy	Moderate	Mid-Flood	Bottom	8	2:12:00 PM	9.3	8.4	33.0	25.9	1.9	4.0
WSR01	20221119	Cloudy	Moderate	Mid-Flood	Bottom	8	2:12:00 PM	9.5	8.4	33.1	26.0	2.1	2.5
WSR02	20221119	Cloudy	Moderate	Mid-Flood	Surface	1	2:32:00 PM	9.2	8.3	33.1	25.8	2.1	7.0
WSR02	20221119	Cloudy	Moderate	Mid-Flood	Surface	1	2:32:00 PM	9.2	8.3	33.3	25.9	1.8	6.0
WSR02	20221119	Cloudy	Moderate	Mid-Flood	Middle	5	2:31:00 PM	9.1	8.3	33.1	25.9	1.9	9.0
WSR02	20221119	Cloudy	Moderate	Mid-Flood	Middle	5	2:31:00 PM	9.2	8.3	33.1	25.9	1.9	10.0
WSR02	20221119	Cloudy	Moderate	Mid-Flood	Bottom	8	2:30:00 PM	9.1	8.2	33.3	25.9	1.9	4.0
WSR02	20221119	Cloudy	Moderate	Mid-Flood	Bottom	8	2:30:00 PM	9.2	8.3	33.3	25.9	2.2	2.5
WSR03	20221119	Cloudy	Moderate	Mid-Flood	Surface	1	2:47:00 PM	9.1	8.2	33.2	25.3	2.9	5.0
WSR03	20221119	Cloudy	Moderate	Mid-Flood	Surface	1	2:47:00 PM	9.3	8.3	33.1	25.3	2.3	3.0
WSR03	20221119	Cloudy	Moderate	Mid-Flood	Middle	4	2:46:00 PM	9.3	8.3	33.1	25.4	2.3	14.0
WSR03	20221119	Cloudy	Moderate	Mid-Flood	Middle	4	2:46:00 PM	9.1	8.3	33.3	25.4	2.4	14.0
WSR03	20221119	Cloudy	Moderate	Mid-Flood	Bottom	6	2:45:00 PM	9.3	8.3	33.3	25.4	2.0	10.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR03	20221119	Cloudy	Moderate	Mid-Flood	Bottom	6	2:45:00 PM	9.1	8.3	33.1	25.3	2.3	12.0
WSR04	20221119	Cloudy	Moderate	Mid-Flood	Surface	1	3:02:00 PM	8.5	8.4	34.1	25.8	2.5	13.0
WSR04	20221119	Cloudy	Moderate	Mid-Flood	Surface	1	3:02:00 PM	8.4	8.3	34.1	25.8	2.3	11.0
WSR04	20221119	Cloudy	Moderate	Mid-Flood	Middle	3	3:01:00 PM	8.5	8.3	34.0	25.9	2.3	5.0
WSR04	20221119	Cloudy	Moderate	Mid-Flood	Middle	3	3:01:00 PM	8.5	8.3	33.9	25.8	2.2	9.0
WSR04	20221119	Cloudy	Moderate	Mid-Flood	Bottom	6	3:00:00 PM	8.5	8.3	33.8	25.8	2.3	4.0
WSR04	20221119	Cloudy	Moderate	Mid-Flood	Bottom	6	3:00:00 PM	8.4	8.4	34.1	25.9	2.5	5.0
WSR16	20221119	Cloudy	Moderate	Mid-Flood	Surface	1	4:09:00 PM	9.3	8.4	33.6	26.0	2.3	12.0
WSR16	20221119	Cloudy	Moderate	Mid-Flood	Surface	1	4:09:00 PM	9.3	8.3	33.5	26.0	2.4	11.0
WSR16	20221119	Cloudy	Moderate	Mid-Flood	Middle	8	4:08:00 PM	9.4	8.4	33.6	26.0	2.1	8.0
WSR16	20221119	Cloudy	Moderate	Mid-Flood	Middle	8	4:08:00 PM	9.5	8.4	33.5	25.9	2.3	9.0
WSR16	20221119	Cloudy	Moderate	Mid-Flood	Bottom	16	4:07:00 PM	9.4	8.4	33.5	26.0	1.9	7.0
WSR16	20221119	Cloudy	Moderate	Mid-Flood	Bottom	16	4:07:00 PM	9.5	8.3	33.4	26.0	2.0	10.0
WSR33	20221119	Cloudy	Moderate	Mid-Flood	Surface	1	3:17:00 PM	8.6	8.3	33.7	25.9	2.8	8.0
WSR33	20221119	Cloudy	Moderate	Mid-Flood	Surface	1	3:17:00 PM	8.7	8.4	33.8	25.9	3.0	8.0
WSR33	20221119	Cloudy	Moderate	Mid-Flood	Middle	4	3:16:00 PM	8.5	8.3	33.7	25.9	2.0	10.0
WSR33	20221119	Cloudy	Moderate	Mid-Flood	Middle	4	3:16:00 PM	8.5	8.3	33.8	25.9	2.3	8.0
WSR33	20221119	Cloudy	Moderate	Mid-Flood	Bottom	6	3:15:00 PM	8.6	8.4	33.8	25.8	1.8	4.0
WSR33	20221119	Cloudy	Moderate	Mid-Flood	Bottom	6	3:15:00 PM	8.6	8.3	33.7	25.8	2.2	3.0
WSR36	20221119	Cloudy	Moderate	Mid-Flood	Surface	1	3:31:00 PM	9.2	8.3	33.4	25.3	2.2	6.0
WSR36	20221119	Cloudy	Moderate	Mid-Flood	Surface	1	3:31:00 PM	9.2	8.3	33.6	25.4	2.5	6.0
WSR36	20221119	Cloudy	Moderate	Mid-Flood	Middle	3	3:31:00 PM	9.0	8.3	33.6	25.3	2.3	6.0
WSR36	20221119	Cloudy	Moderate	Mid-Flood	Middle	3	3:31:00 PM	9.2	8.4	33.4	25.3	2.4	6.0
WSR36	20221119	Cloudy	Moderate	Mid-Flood	Bottom	5	3:30:00 PM	9.2	8.4	33.3	25.4	2.2	2.5
WSR36	20221119	Cloudy	Moderate	Mid-Flood	Bottom	5	3:30:00 PM	9.1	8.4	33.5	25.4	2.6	4.0
WSR37	20221119	Cloudy	Moderate	Mid-Flood	Surface	1	3:47:00 PM	8.6	8.2	34.2	26.0	2.4	2.5
WSR37	20221119	Cloudy	Moderate	Mid-Flood	Surface	1	3:47:00 PM	8.8	8.3	34.1	26.0	2.4	4.0
WSR37	20221119	Cloudy	Moderate	Mid-Flood	Middle	4	3:46:00 PM	8.8	8.3	34.2	25.9	1.9	9.0
WSR37	20221119	Cloudy	Moderate	Mid-Flood	Middle	4	3:46:00 PM	8.6	8.3	34.0	26.0	1.9	9.0
WSR37	20221119	Cloudy	Moderate	Mid-Flood	Bottom	7	3:45:00 PM	8.8	8.3	34.2	25.9	2.0	14.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR37	20221119	Cloudy	Moderate	Mid-Flood	Bottom	7	3:45:00 PM	8.7	8.3	34.1	26.0	2.1	16.0
CE	20221122	Cloudy	Moderate	Mid-Flood	Surface	1	5:32:00 PM	8.3	8.3	33.7	25.6	2.6	2.5
CE	20221122	Cloudy	Moderate	Mid-Flood	Surface	1	5:32:00 PM	8.5	8.3	33.8	25.7	2.8	2.5
CE	20221122	Cloudy	Moderate	Mid-Flood	Middle	11	5:31:00 PM	8.4	8.3	33.7	25.7	2.8	3.0
CE	20221122	Cloudy	Moderate	Mid-Flood	Middle	11	5:31:00 PM	8.4	8.4	33.7	25.6	2.9	2.5
CE	20221122	Cloudy	Moderate	Mid-Flood	Bottom	22	5:30:00 PM	8.4	8.3	33.8	25.7	3.1	2.5
CE	20221122	Cloudy	Moderate	Mid-Flood	Bottom	22	5:30:00 PM	8.4	8.4	33.7	25.6	3.4	2.5
CF	20221122	Cloudy	Moderate	Mid-Flood	Surface	1	2:58:00 PM	8.4	8.4	32.8	25.7	3.6	2.5
CF	20221122	Cloudy	Moderate	Mid-Flood	Surface	1	2:58:00 PM	8.4	8.4	32.9	25.7	3.4	2.5
CF	20221122	Cloudy	Moderate	Mid-Flood	Middle	11	2:57:00 PM	8.5	8.4	32.8	25.7	3.7	7.0
CF	20221122	Cloudy	Moderate	Mid-Flood	Middle	11	2:57:00 PM	8.5	8.4	32.8	25.7	3.4	6.0
CF	20221122	Cloudy	Moderate	Mid-Flood	Bottom	21	2:56:00 PM	8.4	8.4	32.8	25.6	3.9	3.0
CF	20221122	Cloudy	Moderate	Mid-Flood	Bottom	21	2:56:00 PM	8.4	8.4	32.8	25.7	3.6	5.0
WSR01	20221122	Cloudy	Moderate	Mid-Flood	Surface	1	3:21:00 PM	8.6	8.3	33.5	26.0	2.4	4.0
WSR01	20221122	Cloudy	Moderate	Mid-Flood	Surface	1	3:21:00 PM	8.7	8.2	33.5	26.0	2.3	2.5
WSR01	20221122	Cloudy	Moderate	Mid-Flood	Middle	4	3:20:00 PM	8.6	8.3	33.5	26.0	2.0	4.0
WSR01	20221122	Cloudy	Moderate	Mid-Flood	Middle	4	3:20:00 PM	8.6	8.3	33.5	26.0	1.8	5.0
WSR01	20221122	Cloudy	Moderate	Mid-Flood	Bottom	8	3:19:00 PM	8.6	8.3	33.4	25.9	2.3	5.0
WSR01	20221122	Cloudy	Moderate	Mid-Flood	Bottom	8	3:19:00 PM	8.7	8.3	33.5	26.0	2.3	3.0
WSR02	20221122	Cloudy	Moderate	Mid-Flood	Surface	1	3:39:00 PM	9.1	8.3	32.9	25.5	2.4	2.5
WSR02	20221122	Cloudy	Moderate	Mid-Flood	Surface	1	3:39:00 PM	9.1	8.4	32.9	25.5	2.4	2.5
WSR02	20221122	Cloudy	Moderate	Mid-Flood	Middle	5	3:38:00 PM	9.2	8.3	32.9	25.5	2.3	4.0
WSR02	20221122	Cloudy	Moderate	Mid-Flood	Middle	5	3:38:00 PM	9.1	8.3	32.9	25.5	2.3	2.5
WSR02	20221122	Cloudy	Moderate	Mid-Flood	Bottom	8	3:37:00 PM	9.2	8.3	32.9	25.5	2.0	3.0
WSR02	20221122	Cloudy	Moderate	Mid-Flood	Bottom	8	3:37:00 PM	9.1	8.4	32.8	25.5	2.4	5.0
WSR03	20221122	Cloudy	Moderate	Mid-Flood	Surface	1	3:52:00 PM	8.3	8.2	33.2	25.8	2.2	4.0
WSR03	20221122	Cloudy	Moderate	Mid-Flood	Surface	1	3:52:00 PM	8.4	8.3	33.1	25.9	2.4	3.0
WSR03	20221122	Cloudy	Moderate	Mid-Flood	Middle	4	3:51:00 PM	8.3	8.2	33.2	25.8	2.3	4.0
WSR03	20221122	Cloudy	Moderate	Mid-Flood	Middle	4	3:51:00 PM	8.3	8.2	33.2	25.9	2.6	7.0
WSR03	20221122	Cloudy	Moderate	Mid-Flood	Bottom	6	3:50:00 PM	8.3	8.2	33.3	25.9	2.1	5.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR03	20221122	Cloudy	Moderate	Mid-Flood	Bottom	6	3:50:00 PM	8.4	8.3	33.2	25.8	2.2	5.0
WSR04	20221122	Cloudy	Moderate	Mid-Flood	Surface	1	4:05:00 PM	8.5	8.3	33.2	25.4	2.2	7.0
WSR04	20221122	Cloudy	Moderate	Mid-Flood	Surface	1	4:05:00 PM	8.5	8.3	33.2	25.3	2.6	7.0
WSR04	20221122	Cloudy	Moderate	Mid-Flood	Middle	4	4:04:00 PM	8.5	8.3	33.1	25.4	2.5	6.0
WSR04	20221122	Cloudy	Moderate	Mid-Flood	Middle	4	4:04:00 PM	8.5	8.3	33.1	25.4	2.2	7.0
WSR04	20221122	Cloudy	Moderate	Mid-Flood	Bottom	7	4:03:00 PM	8.5	8.3	33.1	25.4	2.2	6.0
WSR04	20221122	Cloudy	Moderate	Mid-Flood	Bottom	7	4:03:00 PM	8.4	8.3	33.2	25.3	2.1	5.0
WSR16	20221122	Cloudy	Moderate	Mid-Flood	Surface	1	5:09:00 PM	9.3	8.3	33.8	25.2	2.1	3.0
WSR16	20221122	Cloudy	Moderate	Mid-Flood	Surface	1	5:09:00 PM	9.2	8.3	33.8	25.3	2.5	2.5
WSR16	20221122	Cloudy	Moderate	Mid-Flood	Middle	8	5:08:00 PM	9.3	8.3	33.8	25.3	2.1	3.0
WSR16	20221122	Cloudy	Moderate	Mid-Flood	Middle	8	5:08:00 PM	9.3	8.3	33.8	25.2	2.3	2.5
WSR16	20221122	Cloudy	Moderate	Mid-Flood	Bottom	14	5:07:00 PM	9.3	8.3	33.9	25.3	2.1	7.0
WSR16	20221122	Cloudy	Moderate	Mid-Flood	Bottom	14	5:07:00 PM	9.4	8.3	33.9	25.2	2.2	7.0
WSR33	20221122	Cloudy	Moderate	Mid-Flood	Surface	1	4:19:00 PM	9.1	8.3	33.3	25.8	2.5	5.0
WSR33	20221122	Cloudy	Moderate	Mid-Flood	Surface	1	4:19:00 PM	9.1	8.3	33.2	25.9	2.3	3.0
WSR33	20221122	Cloudy	Moderate	Mid-Flood	Middle	4	4:18:00 PM	9.1	8.3	33.2	25.9	2.3	5.0
WSR33	20221122	Cloudy	Moderate	Mid-Flood	Middle	4	4:18:00 PM	9.1	8.2	33.3	25.8	2.1	6.0
WSR33	20221122	Cloudy	Moderate	Mid-Flood	Bottom	7	4:17:00 PM	9.2	8.2	33.3	25.9	2.2	5.0
WSR33	20221122	Cloudy	Moderate	Mid-Flood	Bottom	7	4:17:00 PM	9.2	8.2	33.3	25.9	2.3	5.0
WSR36	20221122	Cloudy	Moderate	Mid-Flood	Surface	1	4:33:00 PM	8.4	8.2	34.0	25.8	2.6	3.0
WSR36	20221122	Cloudy	Moderate	Mid-Flood	Surface	1	4:33:00 PM	8.4	8.2	33.9	25.8	2.3	2.5
WSR36	20221122	Cloudy	Moderate	Mid-Flood	Middle	3	4:33:00 PM	8.3	8.3	33.9	25.8	2.1	6.0
WSR36	20221122	Cloudy	Moderate	Mid-Flood	Middle	3	4:33:00 PM	8.4	8.3	33.8	25.7	2.0	6.0
WSR36	20221122	Cloudy	Moderate	Mid-Flood	Bottom	6	4:32:00 PM	8.3	8.3	33.8	25.8	2.3	10.0
WSR36	20221122	Cloudy	Moderate	Mid-Flood	Bottom	6	4:32:00 PM	8.3	8.2	33.9	25.8	2.2	11.0
WSR37	20221122	Cloudy	Moderate	Mid-Flood	Surface	1	4:47:00 PM	9.3	8.2	33.7	25.6	2.4	4.0
WSR37	20221122	Cloudy	Moderate	Mid-Flood	Surface	1	4:47:00 PM	9.2	8.3	33.8	25.6	2.6	4.0
WSR37	20221122	Cloudy	Moderate	Mid-Flood	Middle	4	4:46:00 PM	9.3	8.2	33.7	25.6	2.6	10.0
WSR37	20221122	Cloudy	Moderate	Mid-Flood	Middle	4	4:46:00 PM	9.3	8.3	33.7	25.6	2.3	9.0
WSR37	20221122	Cloudy	Moderate	Mid-Flood	Bottom	8	4:45:00 PM	9.4	8.3	33.8	25.6	2.0	10.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR37	20221122	Cloudy	Moderate	Mid-Flood	Bottom	8	4:45:00 PM	9.2	8.3	33.8	25.6	2.3	8.0
CE	20221124	Cloudy	Moderate	Mid-Flood	Surface	1	6:34:00 PM	8.8	8.3	33.5	24.4	2.5	5.0
CE	20221124	Cloudy	Moderate	Mid-Flood	Surface	1	6:34:00 PM	8.8	8.3	33.0	24.5	2.7	3.0
CE	20221124	Cloudy	Moderate	Mid-Flood	Middle	11	6:33:00 PM	8.8	8.3	33.4	24.4	2.7	3.0
CE	20221124	Cloudy	Moderate	Mid-Flood	Middle	11	6:33:00 PM	8.9	8.3	33.3	24.5	2.6	3.0
CE	20221124	Cloudy	Moderate	Mid-Flood	Bottom	21	6:32:00 PM	8.8	8.3	33.3	24.4	2.9	2.5
CE	20221124	Cloudy	Moderate	Mid-Flood	Bottom	21	6:32:00 PM	8.7	8.3	33.3	24.5	2.8	2.5
CF	20221124	Cloudy	Moderate	Mid-Flood	Surface	1	3:56:00 PM	9.1	8.4	33.5	24.4	2.9	2.5
CF	20221124	Cloudy	Moderate	Mid-Flood	Surface	1	3:56:00 PM	9.1	8.4	33.8	24.4	3.0	2.5
CF	20221124	Cloudy	Moderate	Mid-Flood	Middle	11	3:55:00 PM	9.1	8.4	33.8	24.4	3.1	4.0
CF	20221124	Cloudy	Moderate	Mid-Flood	Middle	11	3:55:00 PM	9.0	8.4	33.7	24.4	3.0	2.5
CF	20221124	Cloudy	Moderate	Mid-Flood	Bottom	20	3:54:00 PM	9.0	8.3	33.7	24.4	2.9	2.5
CF	20221124	Cloudy	Moderate	Mid-Flood	Bottom	20	3:54:00 PM	9.0	8.4	33.5	24.4	3.2	2.5
WSR01	20221124	Cloudy	Moderate	Mid-Flood	Surface	1	4:19:00 PM	8.9	8.3	33.6	24.6	2.4	4.0
WSR01	20221124	Cloudy	Moderate	Mid-Flood	Surface	1	4:19:00 PM	8.8	8.4	33.3	24.6	2.6	3.0
WSR01	20221124	Cloudy	Moderate	Mid-Flood	Middle	5	4:18:00 PM	8.9	8.3	33.3	24.6	2.2	6.0
WSR01	20221124	Cloudy	Moderate	Mid-Flood	Middle	5	4:18:00 PM	8.8	8.3	33.5	24.5	2.4	7.0
WSR01	20221124	Cloudy	Moderate	Mid-Flood	Bottom	8	4:17:00 PM	8.8	8.4	33.6	24.5	2.3	9.0
WSR01	20221124	Cloudy	Moderate	Mid-Flood	Bottom	8	4:17:00 PM	8.9	8.3	33.5	24.5	2.5	6.0
WSR02	20221124	Cloudy	Moderate	Mid-Flood	Surface	1	4:37:00 PM	9.0	8.3	33.1	24.1	2.2	2.5
WSR02	20221124	Cloudy	Moderate	Mid-Flood	Surface	1	4:37:00 PM	8.9	8.4	33.1	24.2	2.4	4.0
WSR02	20221124	Cloudy	Moderate	Mid-Flood	Middle	5	4:36:00 PM	9.0	8.3	33.3	24.1	2.1	11.0
WSR02	20221124	Cloudy	Moderate	Mid-Flood	Middle	5	4:36:00 PM	8.9	8.3	33.3	24.1	2.1	12.0
WSR02	20221124	Cloudy	Moderate	Mid-Flood	Bottom	9	4:35:00 PM	8.9	8.4	33.0	24.1	2.1	3.0
WSR02	20221124	Cloudy	Moderate	Mid-Flood	Bottom	9	4:35:00 PM	8.9	8.3	33.0	24.1	2.3	3.0
WSR03	20221124	Cloudy	Moderate	Mid-Flood	Surface	1	4:50:00 PM	8.9	8.1	33.8	24.4	2.4	3.0
WSR03	20221124	Cloudy	Moderate	Mid-Flood	Surface	1	4:50:00 PM	8.9	8.1	33.7	24.5	2.6	4.0
WSR03	20221124	Cloudy	Moderate	Mid-Flood	Middle	4	4:49:00 PM	8.9	8.1	33.8	24.4	2.4	3.0
WSR03	20221124	Cloudy	Moderate	Mid-Flood	Middle	4	4:49:00 PM	8.8	8.1	34.0	24.4	2.4	2.5
WSR03	20221124	Cloudy	Moderate	Mid-Flood	Bottom	6	4:48:00 PM	8.9	8.1	34.0	24.4	2.2	2.5

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR03	20221124	Cloudy	Moderate	Mid-Flood	Bottom	6	4:48:00 PM	8.9	8.2	33.9	24.4	2.3	4.0
WSR04	20221124	Cloudy	Moderate	Mid-Flood	Surface	1	5:03:00 PM	9.1	8.2	33.7	24.6	2.4	3.0
WSR04	20221124	Cloudy	Moderate	Mid-Flood	Surface	1	5:03:00 PM	9.0	8.2	33.9	24.6	2.5	3.0
WSR04	20221124	Cloudy	Moderate	Mid-Flood	Middle	4	5:02:00 PM	9.0	8.2	33.9	24.5	2.4	2.5
WSR04	20221124	Cloudy	Moderate	Mid-Flood	Middle	4	5:02:00 PM	9.1	8.1	33.6	24.5	2.4	3.0
WSR04	20221124	Cloudy	Moderate	Mid-Flood	Bottom	7	5:01:00 PM	9.1	8.2	33.6	24.5	2.0	6.0
WSR04	20221124	Cloudy	Moderate	Mid-Flood	Bottom	7	5:01:00 PM	9.0	8.2	33.7	24.5	2.1	5.0
WSR16	20221124	Cloudy	Moderate	Mid-Flood	Surface	1	6:10:00 PM	8.8	8.2	33.8	24.8	2.4	7.0
WSR16	20221124	Cloudy	Moderate	Mid-Flood	Surface	1	6:10:00 PM	8.8	8.3	33.5	24.7	2.4	9.0
WSR16	20221124	Cloudy	Moderate	Mid-Flood	Middle	9	6:09:00 PM	8.9	8.2	33.5	24.7	2.2	4.0
WSR16	20221124	Cloudy	Moderate	Mid-Flood	Middle	9	6:09:00 PM	8.8	8.3	33.6	24.7	2.5	2.5
WSR16	20221124	Cloudy	Moderate	Mid-Flood	Bottom	16	6:08:00 PM	8.9	8.2	33.5	24.7	2.3	2.5
WSR16	20221124	Cloudy	Moderate	Mid-Flood	Bottom	16	6:08:00 PM	8.8	8.3	33.7	24.7	2.5	3.0
WSR33	20221124	Cloudy	Moderate	Mid-Flood	Surface	1	5:17:00 PM	9.2	8.2	33.7	24.2	2.3	2.5
WSR33	20221124	Cloudy	Moderate	Mid-Flood	Surface	1	5:17:00 PM	9.2	8.2	34.0	24.2	2.5	4.0
WSR33	20221124	Cloudy	Moderate	Mid-Flood	Middle	4	5:16:00 PM	9.2	8.2	34.0	24.2	2.1	5.0
WSR33	20221124	Cloudy	Moderate	Mid-Flood	Middle	4	5:16:00 PM	9.2	8.1	33.9	24.2	2.2	4.0
WSR33	20221124	Cloudy	Moderate	Mid-Flood	Bottom	6	5:15:00 PM	9.2	8.2	33.6	24.1	2.1	7.0
WSR33	20221124	Cloudy	Moderate	Mid-Flood	Bottom	6	5:15:00 PM	9.2	8.2	34.0	24.1	2.0	6.0
WSR36	20221124	Cloudy	Moderate	Mid-Flood	Surface	1	5:31:00 PM	9.0	8.4	33.1	24.2	2.3	7.0
WSR36	20221124	Cloudy	Moderate	Mid-Flood	Surface	1	5:31:00 PM	9.1	8.4	33.1	24.3	2.7	7.0
WSR36	20221124	Cloudy	Moderate	Mid-Flood	Middle	3	5:31:00 PM	9.1	8.4	32.9	24.2	2.5	4.0
WSR36	20221124	Cloudy	Moderate	Mid-Flood	Middle	3	5:31:00 PM	9.1	8.4	32.8	24.3	2.7	6.0
WSR36	20221124	Cloudy	Moderate	Mid-Flood	Bottom	6	5:30:00 PM	9.2	8.4	33.0	24.2	2.1	3.0
WSR36	20221124	Cloudy	Moderate	Mid-Flood	Bottom	6	5:30:00 PM	9.1	8.4	33.2	24.3	2.2	5.0
WSR37	20221124	Cloudy	Moderate	Mid-Flood	Surface	1	5:47:00 PM	9.1	8.2	33.9	24.1	2.5	6.0
WSR37	20221124	Cloudy	Moderate	Mid-Flood	Surface	1	5:47:00 PM	9.1	8.2	33.7	24.2	2.3	7.0
WSR37	20221124	Cloudy	Moderate	Mid-Flood	Middle	4	5:46:00 PM	9.2	8.2	34.0	24.1	2.4	7.0
WSR37	20221124	Cloudy	Moderate	Mid-Flood	Middle	4	5:46:00 PM	9.1	8.2	33.9	24.1	2.3	9.0
WSR37	20221124	Cloudy	Moderate	Mid-Flood	Bottom	7	5:45:00 PM	9.1	8.2	34.1	24.1	2.3	10.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR37	20221124	Cloudy	Moderate	Mid-Flood	Bottom	7	5:45:00 PM	9.1	8.2	33.9	24.1	2.2	11.0
CE	20221126	Cloudy	Moderate	Mid-Flood	Surface	1	11:20:00 AM	8.9	8.2	33.7	25.4	3.2	6.0
CE	20221126	Cloudy	Moderate	Mid-Flood	Surface	1	11:20:00 AM	8.9	8.2	33.7	25.4	3.0	4.0
CE	20221126	Cloudy	Moderate	Mid-Flood	Middle	11	11:19:00 AM	8.9	8.2	33.4	25.4	3.4	11.0
CE	20221126	Cloudy	Moderate	Mid-Flood	Middle	11	11:19:00 AM	9.0	8.2	33.5	25.4	3.2	9.0
CE	20221126	Cloudy	Moderate	Mid-Flood	Bottom	21	11:18:00 AM	8.8	8.2	33.6	25.4	3.4	16.0
CE	20221126	Cloudy	Moderate	Mid-Flood	Bottom	21	11:18:00 AM	9.0	8.2	33.5	25.5	3.4	14.0
CF	20221126	Cloudy	Moderate	Mid-Flood	Surface	1	8:41:00 AM	8.9	8.2	34.0	25.0	2.6	11.0
CF	20221126	Cloudy	Moderate	Mid-Flood	Surface	1	8:41:00 AM	8.9	8.2	33.8	25.0	2.6	11.0
CF	20221126	Cloudy	Moderate	Mid-Flood	Middle	10	8:40:00 AM	8.8	8.2	33.9	25.0	2.0	9.0
CF	20221126	Cloudy	Moderate	Mid-Flood	Middle	10	8:40:00 AM	8.7	8.2	33.8	25.0	2.1	8.0
CF	20221126	Cloudy	Moderate	Mid-Flood	Bottom	18	8:39:00 AM	8.7	8.2	33.8	25.0	2.5	11.0
CF	20221126	Cloudy	Moderate	Mid-Flood	Bottom	18	8:39:00 AM	8.9	8.2	34.0	25.0	2.2	13.0
WSR01	20221126	Cloudy	Moderate	Mid-Flood	Surface	1	9:05:00 AM	8.7	8.3	33.5	25.3	2.5	13.0
WSR01	20221126	Cloudy	Moderate	Mid-Flood	Surface	1	9:05:00 AM	9.0	8.3	33.6	25.3	2.7	12.0
WSR01	20221126	Cloudy	Moderate	Mid-Flood	Middle	5	9:04:00 AM	9.0	8.4	33.7	25.3	2.0	6.0
WSR01	20221126	Cloudy	Moderate	Mid-Flood	Middle	5	9:04:00 AM	8.9	8.3	33.7	25.2	2.2	10.0
WSR01	20221126	Cloudy	Moderate	Mid-Flood	Bottom	9	9:03:00 AM	9.0	8.4	33.8	25.2	2.2	10.0
WSR01	20221126	Cloudy	Moderate	Mid-Flood	Bottom	9	9:03:00 AM	8.9	8.4	33.5	25.3	2.4	11.0
WSR02	20221126	Cloudy	Moderate	Mid-Flood	Surface	1	9:24:00 AM	8.3	8.2	33.5	24.8	2.1	8.0
WSR02	20221126	Cloudy	Moderate	Mid-Flood	Surface	1	9:24:00 AM	8.3	8.2	33.7	24.9	2.5	5.0
WSR02	20221126	Cloudy	Moderate	Mid-Flood	Middle	5	9:23:00 AM	8.4	8.2	33.5	24.9	2.0	17.0
WSR02	20221126	Cloudy	Moderate	Mid-Flood	Middle	5	9:23:00 AM	8.2	8.2	33.5	24.9	2.4	17.0
WSR02	20221126	Cloudy	Moderate	Mid-Flood	Bottom	8	9:22:00 AM	8.2	8.2	33.5	24.9	1.9	2.5
WSR02	20221126	Cloudy	Moderate	Mid-Flood	Bottom	8	9:22:00 AM	8.3	8.2	33.5	24.9	2.0	3.0
WSR03	20221126	Cloudy	Moderate	Mid-Flood	Surface	1	9:37:00 AM	8.8	8.3	33.6	24.9	2.4	6.0
WSR03	20221126	Cloudy	Moderate	Mid-Flood	Surface	1	9:37:00 AM	8.7	8.4	33.7	24.8	2.4	7.0
WSR03	20221126	Cloudy	Moderate	Mid-Flood	Middle	4	9:36:00 AM	8.8	8.4	33.7	24.8	2.1	5.0
WSR03	20221126	Cloudy	Moderate	Mid-Flood	Middle	4	9:36:00 AM	8.8	8.3	33.5	24.8	2.2	6.0
WSR03	20221126	Cloudy	Moderate	Mid-Flood	Bottom	7	9:35:00 AM	8.8	8.4	33.6	24.9	2.2	10.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR03	20221126	Cloudy	Moderate	Mid-Flood	Bottom	7	9:35:00 AM	8.7	8.4	33.5	24.8	2.2	8.0
WSR04	20221126	Cloudy	Moderate	Mid-Flood	Surface	1	9:50:00 AM	8.6	8.3	33.2	25.1	2.7	3.0
WSR04	20221126	Cloudy	Moderate	Mid-Flood	Surface	1	9:50:00 AM	8.5	8.3	33.2	25.0	2.7	3.0
WSR04	20221126	Cloudy	Moderate	Mid-Flood	Middle	4	9:49:00 AM	8.5	8.3	33.1	25.0	2.5	4.0
WSR04	20221126	Cloudy	Moderate	Mid-Flood	Middle	4	9:49:00 AM	8.6	8.3	33.1	25.0	2.5	7.0
WSR04	20221126	Cloudy	Moderate	Mid-Flood	Bottom	6	9:48:00 AM	8.5	8.3	33.2	25.1	1.9	2.5
WSR04	20221126	Cloudy	Moderate	Mid-Flood	Bottom	6	9:48:00 AM	8.6	8.3	33.2	25.1	2.1	2.5
WSR16	20221126	Cloudy	Moderate	Mid-Flood	Surface	1	10:57:00 AM	8.7	8.2	32.9	25.0	2.1	6.0
WSR16	20221126	Cloudy	Moderate	Mid-Flood	Surface	1	10:57:00 AM	9.0	8.2	33.0	25.0	2.4	7.0
WSR16	20221126	Cloudy	Moderate	Mid-Flood	Middle	8	10:56:00 AM	9.0	8.2	32.7	25.0	2.2	5.0
WSR16	20221126	Cloudy	Moderate	Mid-Flood	Middle	8	10:56:00 AM	8.8	8.2	32.9	25.0	2.3	5.0
WSR16	20221126	Cloudy	Moderate	Mid-Flood	Bottom	15	10:55:00 AM	8.7	8.2	32.8	25.0	2.1	2.5
WSR16	20221126	Cloudy	Moderate	Mid-Flood	Bottom	15	10:55:00 AM	8.9	8.2	33.0	25.1	2.4	2.5
WSR33	20221126	Cloudy	Moderate	Mid-Flood	Surface	1	10:04:00 AM	8.3	8.2	33.1	25.0	2.3	6.0
WSR33	20221126	Cloudy	Moderate	Mid-Flood	Surface	1	10:04:00 AM	8.3	8.2	33.1	25.0	2.3	8.0
WSR33	20221126	Cloudy	Moderate	Mid-Flood	Middle	4	10:03:00 AM	8.2	8.3	33.1	25.0	2.0	8.0
WSR33	20221126	Cloudy	Moderate	Mid-Flood	Middle	4	10:03:00 AM	8.2	8.2	33.1	25.0	2.0	6.0
WSR33	20221126	Cloudy	Moderate	Mid-Flood	Bottom	7	10:02:00 AM	8.3	8.2	33.0	25.0	2.1	4.0
WSR33	20221126	Cloudy	Moderate	Mid-Flood	Bottom	7	10:02:00 AM	8.3	8.2	33.1	25.0	2.0	2.5
WSR36	20221126	Cloudy	Moderate	Mid-Flood	Surface	1	10:18:00 AM	8.9	8.3	33.1	24.8	2.4	2.5
WSR36	20221126	Cloudy	Moderate	Mid-Flood	Surface	1	10:18:00 AM	9.0	8.2	33.0	24.9	2.5	3.0
WSR36	20221126	Cloudy	Moderate	Mid-Flood	Middle	3	10:18:00 AM	8.9	8.3	33.0	24.8	2.3	2.5
WSR36	20221126	Cloudy	Moderate	Mid-Flood	Middle	3	10:18:00 AM	8.7	8.3	33.0	24.9	2.6	2.5
WSR36	20221126	Cloudy	Moderate	Mid-Flood	Bottom	6	10:17:00 AM	8.8	8.2	33.1	24.9	2.0	11.0
WSR36	20221126	Cloudy	Moderate	Mid-Flood	Bottom	6	10:17:00 AM	8.8	8.3	33.1	24.8	2.0	13.0
WSR37	20221126	Cloudy	Moderate	Mid-Flood	Surface	1	10:33:00 AM	8.8	8.2	33.4	25.3	2.5	11.0
WSR37	20221126	Cloudy	Moderate	Mid-Flood	Surface	1	10:33:00 AM	9.0	8.2	33.6	25.2	2.7	11.0
WSR37	20221126	Cloudy	Moderate	Mid-Flood	Middle	4	10:32:00 AM	8.9	8.2	33.4	25.3	2.2	14.0
WSR37	20221126	Cloudy	Moderate	Mid-Flood	Middle	4	10:32:00 AM	8.9	8.2	33.6	25.2	2.2	13.0
WSR37	20221126	Cloudy	Moderate	Mid-Flood	Bottom	8	10:31:00 AM	8.8	8.2	33.5	25.2	2.2	5.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR37	20221126	Cloudy	Moderate	Mid-Flood	Bottom	8	10:31:00 AM	8.9	8.2	33.4	25.3	2.2	3.0
CE	20221128	Cloudy	Moderate	Mid-Flood	Surface	1	11:18:00 AM	8.8	8.2	33.5	25.1	2.7	2.5
CE	20221128	Cloudy	Moderate	Mid-Flood	Surface	1	11:18:00 AM	8.7	8.2	33.4	25.1	2.7	4.0
CE	20221128	Cloudy	Moderate	Mid-Flood	Middle	10	11:17:00 AM	8.7	8.2	33.5	25.1	2.9	5.0
CE	20221128	Cloudy	Moderate	Mid-Flood	Middle	10	11:17:00 AM	8.7	8.2	33.5	25.0	2.8	6.0
CE	20221128	Cloudy	Moderate	Mid-Flood	Bottom	20	11:16:00 AM	8.7	8.2	33.5	25.0	2.8	9.0
CE	20221128	Cloudy	Moderate	Mid-Flood	Bottom	20	11:16:00 AM	8.6	8.2	33.4	25.0	3.1	9.0
CF	20221128	Cloudy	Moderate	Mid-Flood	Surface	1	8:40:00 AM	8.6	8.3	33.5	25.3	3.3	12.0
CF	20221128	Cloudy	Moderate	Mid-Flood	Surface	1	8:40:00 AM	8.6	8.3	33.5	25.3	3.1	13.0
CF	20221128	Cloudy	Moderate	Mid-Flood	Middle	10	8:39:00 AM	8.6	8.3	33.4	25.2	3.4	4.0
CF	20221128	Cloudy	Moderate	Mid-Flood	Middle	10	8:39:00 AM	8.6	8.3	33.4	25.3	3.1	3.0
CF	20221128	Cloudy	Moderate	Mid-Flood	Bottom	19	8:38:00 AM	8.5	8.3	33.4	25.3	3.5	6.0
CF	20221128	Cloudy	Moderate	Mid-Flood	Bottom	19	8:38:00 AM	8.6	8.3	33.5	25.3	3.3	5.0
WSR01	20221128	Cloudy	Moderate	Mid-Flood	Surface	1	9:04:00 AM	9.1	8.3	33.7	25.1	2.2	12.0
WSR01	20221128	Cloudy	Moderate	Mid-Flood	Surface	1	9:04:00 AM	9.1	8.3	33.6	25.1	2.3	14.0
WSR01	20221128	Cloudy	Moderate	Mid-Flood	Middle	5	9:03:00 AM	9.1	8.3	33.5	25.0	2.1	6.0
WSR01	20221128	Cloudy	Moderate	Mid-Flood	Middle	5	9:03:00 AM	9.2	8.3	33.7	25.0	2.1	7.0
WSR01	20221128	Cloudy	Moderate	Mid-Flood	Bottom	8	9:02:00 AM	9.0	8.3	33.7	25.1	2.0	11.0
WSR01	20221128	Cloudy	Moderate	Mid-Flood	Bottom	8	9:02:00 AM	9.2	8.3	33.5	25.0	2.2	8.0
WSR02	20221128	Cloudy	Moderate	Mid-Flood	Surface	1	9:22:00 AM	8.8	8.3	33.3	25.6	2.2	9.0
WSR02	20221128	Cloudy	Moderate	Mid-Flood	Surface	1	9:22:00 AM	8.8	8.3	33.4	25.6	2.0	6.0
WSR02	20221128	Cloudy	Moderate	Mid-Flood	Middle	5	9:21:00 AM	8.9	8.3	33.4	25.6	2.2	5.0
WSR02	20221128	Cloudy	Moderate	Mid-Flood	Middle	5	9:21:00 AM	8.9	8.3	33.5	25.5	2.1	7.0
WSR02	20221128	Cloudy	Moderate	Mid-Flood	Bottom	9	9:20:00 AM	8.8	8.3	33.4	25.5	2.3	8.0
WSR02	20221128	Cloudy	Moderate	Mid-Flood	Bottom	9	9:20:00 AM	8.9	8.3	33.3	25.6	2.1	9.0
WSR03	20221128	Cloudy	Moderate	Mid-Flood	Surface	1	9:36:00 AM	9.1	8.2	33.1	25.4	2.3	6.0
WSR03	20221128	Cloudy	Moderate	Mid-Flood	Surface	1	9:36:00 AM	9.1	8.2	33.1	25.3	2.4	4.0
WSR03	20221128	Cloudy	Moderate	Mid-Flood	Middle	4	9:35:00 AM	9.1	8.2	33.1	25.3	2.3	8.0
WSR03	20221128	Cloudy	Moderate	Mid-Flood	Middle	4	9:35:00 AM	9.2	8.2	33.2	25.4	2.4	11.0
WSR03	20221128	Cloudy	Moderate	Mid-Flood	Bottom	7	9:34:00 AM	9.1	8.2	33.1	25.3	2.1	9.0

WSR03 20221128 Cloudy Moderate Mid-Flood Surface 1 9:34:00 AM 9.1 8.2 33.2 25.2 2.3 11.0 WSR04 20221128 Cloudy Moderate Mid-Flood Surface 1 9:48:00 AM 8.7 8.3 33.5 25.0 2.2 11.0 WSR04 20221128 Cloudy Moderate Mid-Flood Middle 3 9:47:00 AM 8.7 8.3 33.5 25.1 2.3 13.0 WSR04 20221128 Cloudy Moderate Mid-Flood Bottom 6 9:46:00 AM 8.7 8.3 33.5 25.1 2.3 13.0 WSR04 20221128 Cloudy Moderate Mid-Flood Surface 1 10:54:00 AM 8.7 8.3 33.5 25.2 2.3 12.0 WSR16 20221128 Cloudy Moderate Mid-Flood Surface 1 10:53:00 AM 8.7 8.3 32.9 25.5 2.1	Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR04 20221128 Cloudy Moderate Mid-Flood Surface 1 9+48:00 AM 8.7 8.3 33.6 25.2 2.4 13.0 WSR04 20221128 Cloudy Moderate Mid-Flood Middle 3 9+47:00 AM 8.7 8.3 33.5 25.1 2.3 13.0 WSR04 20221128 Cloudy Moderate Mid-Flood Midtle 3 9+46:00 AM 8.7 8.3 33.5 25.1 2.3 13.0 WSR04 20221128 Cloudy Moderate Mid-Flood Bottom 6 9+46:00 AM 8.7 8.3 33.5 25.2 2.5 8.0 WSR16 20221128 Cloudy Moderate Mid-Flood Surface 1 10:53:00 AM 8.7 8.3 33.0 25.5 2.1 2.5 WSR16 20221128 Cloudy Moderate Mid-Flood Middle 8 10:53:00 AM 8.7 8.3 33.0 25.5 2.4	WSR03	20221128	Cloudy	Moderate	Mid-Flood	Bottom	7	9:34:00 AM	9.1	8.2	33.2	25.2	2.3	11.0
WSR04 20221128 Cloudy Moderate Middle 3 9:47:00 AM 8.7 8.3 33.5 25.0 2.2 11.0 WSR04 20221128 Cloudy Moderate Mid-Flood Middle 3 9:47:00 AM 8.7 8.3 33.5 25.1 2.3 13.0 WSR04 20221128 Cloudy Moderate Mid-Flood Bottom 6 9:46:00 AM 8.7 8.3 33.5 25.1 2.5 8.0 WSR04 20221128 Cloudy Moderate Mid-Flood Surface 1 10:5:4:00 AM 8.7 8.3 33.0 25.5 2.3 12.0 WSR16 20221128 Cloudy Moderate Mid-Flood Surface 1 10:5:0:00 AM 8.7 8.3 32.9 25.5 2.1 2.2 2.5 WSR16 20221128 Cloudy Moderate Mid-Flood Bottom 15 10:5:2:00 AM 8.7 8.3 32.7 25.4 2.2	WSR04	20221128	Cloudy	Moderate	Mid-Flood	Surface	1	9:48:00 AM	8.8	8.3	33.5	25.1	2.2	11.0
WSR04 20221128 Cloudy Moderate Mid-Flood Bottom 6 9:47:00 AM 8.7 8.3 33.5 25.1 2.3 13.0 WSR04 20221128 Cloudy Moderate Mid-Flood Bottom 6 9:46:00 AM 8.7 8.3 33.5 25.1 2.5 8.0 WSR04 20221128 Cloudy Moderate Mid-Flood Surface 1 10:54:00 AM 8.7 8.3 33.5 25.2 2.5 8.0 WSR16 20221128 Cloudy Moderate Mid-Flood Surface 1 10:54:00 AM 8.7 8.2 33.0 25.5 2.1 2.5 WSR16 20221128 Cloudy Moderate Mid-Flood Middle 8 10:53:00 AM 8.7 8.2 33.0 25.5 2.1 2.5 WSR16 20221128 Cloudy Moderate Mid-Flood Surface 1 10:02:00 AM 8.8 8.3 32.7 25.4 2.5	WSR04	20221128	Cloudy	Moderate	Mid-Flood	Surface	1	9:48:00 AM	8.7	8.3	33.6	25.2	2.4	13.0
WSR04 20221128 Cloudy Moderate Mid-Flood Bottom 6 9:46:00 AM 8.7 8.3 33.5 25.1 2.5 8.0 WSR04 20221128 Cloudy Moderate Mid-Flood Surface 1 10:54:00 AM 8.7 8.3 33.5 25.2 2.5 8.0 WSR16 20221128 Cloudy Moderate Mid-Flood Surface 1 10:54:00 AM 8.7 8.3 32.9 25.4 2.2 11.0 WSR16 20221128 Cloudy Moderate Mid-Flood Surface 1 10:53:00 AM 8.7 8.2 33.0 25.4 2.2 2.5 WSR16 20221128 Cloudy Moderate Mid-Flood Bottom 15 10:52:00 AM 8.8 8.3 33.0 25.5 2.4 2.5 WSR31 20221128 Cloudy Moderate Mid-Flood Surface 1 10:0:2:00 AM 9.1 8.3 32.7 25.4 2.5	WSR04	20221128	Cloudy	Moderate	Mid-Flood	Middle	3	9:47:00 AM	8.7	8.3	33.5	25.0	2.2	11.0
WSR04 20221128 Cloudy Moderate Mid-Flood Bottom 6 9:46:00 AM 8.7 8.3 33.5 25.2 2.5 8.0 WSR16 20221128 Cloudy Moderate Mid-Flood Surface 1 10:54:00 AM 8.7 8.3 32.9 25.4 2.2 11.0 WSR16 20221128 Cloudy Moderate Mid-Flood Surface 1 10:54:00 AM 8.7 8.2 33.0 25.5 2.3 12.0 WSR16 20221128 Cloudy Moderate Mid-Flood Middle 8 10:53:00 AM 8.7 8.2 33.0 25.4 2.2 2.5 WSR16 20221128 Cloudy Moderate Mid-Flood Bottom 15 10:52:00 AM 8.7 8.3 32.0 25.4 2.0 2.5 WSR36 20221128 Cloudy Moderate Mid-Flood Surface 1 10:02:00 AM 9.1 8.3 32.7 25.4 2.3	WSR04	20221128	Cloudy	Moderate	Mid-Flood	Middle	3	9:47:00 AM	8.7	8.3	33.5	25.1	2.3	13.0
WSR16 20221128 Cloudy Moderate Mid-Flood Surface 1 10:54:00 AM 8.7 8.3 32.9 25.4 2.2 11.0 WSR16 20221128 Cloudy Moderate Mid-Flood Surface 1 10:54:00 AM 8.7 8.2 33.0 25.5 2.3 12.0 WSR16 20221128 Cloudy Moderate Mid-Flood Middle 8 10:53:00 AM 8.7 8.2 33.0 25.4 2.2 2.5 WSR16 20221128 Cloudy Moderate Mid-Flood Bottom 15 10:52:00 AM 8.7 8.3 32.9 25.4 2.0 2.5 WSR16 20221128 Cloudy Moderate Mid-Flood Bottom 15 10:52:00 AM 8.8 3.3 32.7 25.4 2.3 2.5 WSR33 20221128 Cloudy Moderate Mid-Flood Surface 1 10:01:00 AM 9.1 8.3 32.7 25.4 2.3 <td>WSR04</td> <td>20221128</td> <td>Cloudy</td> <td>Moderate</td> <td>Mid-Flood</td> <td>Bottom</td> <td>6</td> <td>9:46:00 AM</td> <td>8.7</td> <td>8.3</td> <td>33.5</td> <td>25.1</td> <td>2.5</td> <td>8.0</td>	WSR04	20221128	Cloudy	Moderate	Mid-Flood	Bottom	6	9:46:00 AM	8.7	8.3	33.5	25.1	2.5	8.0
WSR16 20221128 Cloudy Moderate Mid-Flood Surface 1 10:54:00 AM 8.7 8.2 33.0 25.5 2.3 12.0 WSR16 20221128 Cloudy Moderate Mid-Flood Middle 8 10:53:00 AM 8.8 8.3 32.9 25.5 2.1 2.5 WSR16 20221128 Cloudy Moderate Mid-Flood Bottom 15 10:52:00 AM 8.7 8.3 32.9 25.4 2.0 2.5 WSR16 20221128 Cloudy Moderate Mid-Flood Bottom 15 10:52:00 AM 8.8 8.3 33.0 25.5 2.4 2.5 WSR33 20221128 Cloudy Moderate Mid-Flood Surface 1 10:02:00 AM 9.1 8.3 32.7 25.4 2.3 2.5 WSR33 20221128 Cloudy Moderate Mid-Flood Midle 4 10:01:00 AM 9.1 8.3 32.7 25.4 2.3	WSR04	20221128	Cloudy	Moderate	Mid-Flood	Bottom	6	9:46:00 AM	8.7	8.3	33.5	25.2	2.5	8.0
WSR16 20221128 Cloudy Moderate Mid-Flood Middle 8 10:53:00 AM 8.8 8.3 32.9 25.5 2.1 2.5 WSR16 20221128 Cloudy Moderate Mid-Flood Bottom 15 10:52:00 AM 8.7 8.2 33.0 25.4 2.2 2.5 WSR16 20221128 Cloudy Moderate Mid-Flood Bottom 15 10:52:00 AM 8.7 8.3 32.9 25.4 2.0 2.5 WSR16 20221128 Cloudy Moderate Mid-Flood Bottom 15 10:52:00 AM 8.8 8.3 33.0 25.5 2.4 2.5 WSR33 20221128 Cloudy Moderate Mid-Flood Surface 1 10:02:00 AM 9.1 8.3 32.7 25.4 2.3 2.5 WSR33 20221128 Cloudy Moderate Mid-Flood Midele 4 10:01:00 AM 9.1 8.3 32.7 25.3 2.2	WSR16	20221128	Cloudy	Moderate	Mid-Flood	Surface	1	10:54:00 AM	8.7	8.3	32.9	25.4	2.2	11.0
WSR16 20221128 Cloudy Moderate Mid-Flood Middle 8 10:53:00 AM 8.7 8.2 33.0 25.4 2.2 2.5 WSR16 20221128 Cloudy Moderate Mid-Flood Bottom 15 10:52:00 AM 8.7 8.3 32.9 25.4 2.0 2.5 WSR16 20221128 Cloudy Moderate Mid-Flood Bottom 15 10:52:00 AM 8.8 8.3 33.0 25.5 2.4 2.5 WSR33 20221128 Cloudy Moderate Mid-Flood Surface 1 10:02:00 AM 9.2 8.2 32.7 25.4 2.3 2.5 WSR33 20221128 Cloudy Moderate Mid-Flood Middle 4 10:01:00 AM 9.2 8.3 32.7 25.4 2.3 2.5 2.4 2.3 2.5 WSR33 20221128 Cloudy Moderate Mid-Flood Middle 4 10:01:00 AM 9.1 8.3 32.4 2.5 2.1 8.0 WSR33 20221128 Cloudy <td>WSR16</td> <td>20221128</td> <td>Cloudy</td> <td>Moderate</td> <td>Mid-Flood</td> <td>Surface</td> <td>1</td> <td>10:54:00 AM</td> <td>8.7</td> <td>8.2</td> <td>33.0</td> <td>25.5</td> <td>2.3</td> <td>12.0</td>	WSR16	20221128	Cloudy	Moderate	Mid-Flood	Surface	1	10:54:00 AM	8.7	8.2	33.0	25.5	2.3	12.0
WSR16 20221128 Cloudy Moderate Mid-Flood Bottom 15 10:52:00 AM 8.7 8.3 32.9 25.4 2.0 2.5 WSR16 20221128 Cloudy Moderate Mid-Flood Bottom 15 10:52:00 AM 8.8 8.3 33.0 25.5 2.4 2.5 WSR33 20221128 Cloudy Moderate Mid-Flood Surface 1 10:02:00 AM 9.2 8.2 32.7 25.4 2.3 2.5 WSR33 20221128 Cloudy Moderate Mid-Flood Surface 1 10:02:00 AM 9.1 8.3 32.7 25.4 2.3 2.5 2.5 WSR33 20221128 Cloudy Moderate Mid-Flood Midle 4 10:01:00 AM 9.1 8.3 32.7 25.3 2.2 8.0 WSR33 20221128 Cloudy Moderate Mid-Flood Bottom 6 10:00:00 AM 9.1 8.3 32.8 25.5 2.1 8.0 WSR33 20221128 Cloudy Moderate	WSR16	20221128	Cloudy	Moderate	Mid-Flood	Middle	8	10:53:00 AM	8.8	8.3	32.9	25.5	2.1	2.5
WSR16 20221128 Cloudy Moderate Mid-Flood Bottom 15 10:52:00 AM 8.8 8.3 33.0 25.5 2.4 2.5 WSR33 20221128 Cloudy Moderate Mid-Flood Surface 1 10:02:00 AM 9.2 8.2 32.7 25.4 2.3 2.5 WSR33 20221128 Cloudy Moderate Mid-Flood Surface 1 10:02:00 AM 9.1 8.3 32.7 25.4 2.5 2.5 WSR33 20221128 Cloudy Moderate Mid-Flood Middle 4 10:01:00 AM 9.2 8.3 32.7 25.4 2.3 5.0 WSR33 20221128 Cloudy Moderate Mid-Flood Middle 4 10:01:00 AM 9.1 8.3 32.8 25.5 2.1 8.0 WSR33 20221128 Cloudy Moderate Mid-Flood Bottom 6 10:00:00 AM 9.1 8.3 32.4 25.6 2.1 8.0 WSR33 20221128 Cloudy Moderate Mid-Flood	WSR16	20221128	Cloudy	Moderate	Mid-Flood	Middle	8	10:53:00 AM	8.7	8.2	33.0	25.4	2.2	2.5
WSR3320221128CloudyModerateMid-FloodSurface110:02:00 AM9.28.232.725.42.32.5WSR3320221128CloudyModerateMid-FloodSurface110:02:00 AM9.18.332.725.42.52.5WSR3320221128CloudyModerateMid-FloodMiddle410:01:00 AM9.28.332.725.42.35.0WSR3320221128CloudyModerateMid-FloodMiddle410:01:00 AM9.18.332.725.32.28.0WSR3320221128CloudyModerateMid-FloodBottom610:00:00 AM9.18.332.825.52.18.0WSR3320221128CloudyModerateMid-FloodBottom610:00:00 AM9.28.332.825.42.38.0WSR3320221128CloudyModerateMid-FloodBottom610:00:00 AM9.28.332.825.42.38.0WSR3620221128CloudyModerateMid-FloodSurface110:16:00 AM8.88.332.525.62.77.0WSR3620221128CloudyModerateMid-FloodSurface110:16:00 AM8.88.332.525.72.46.0WSR3620221128CloudyModerateMid-FloodMidle410:16:00 AM8.88.3	WSR16	20221128	Cloudy	Moderate	Mid-Flood	Bottom	15	10:52:00 AM	8.7	8.3	32.9	25.4	2.0	2.5
WSR3320221128CloudyModerateMid-FloodSurface110:02:00 AM9.18.332.725.42.52.5WSR3320221128CloudyModerateMid-FloodMiddle410:01:00 AM9.28.332.725.42.35.0WSR3320221128CloudyModerateMid-FloodMiddle410:01:00 AM9.18.332.725.32.28.0WSR3320221128CloudyModerateMid-FloodBottom610:00:00 AM9.18.332.825.52.18.0WSR3320221128CloudyModerateMid-FloodBottom610:00:00 AM9.18.332.825.52.18.0WSR3320221128CloudyModerateMid-FloodBottom610:00:00 AM9.18.332.825.52.18.0WSR3620221128CloudyModerateMid-FloodSurface110:16:00 AM8.88.332.425.62.49.0WSR3620221128CloudyModerateMid-FloodSurface110:16:00 AM8.88.332.525.72.38.0WSR3620221128CloudyModerateMid-FloodSurface110:16:00 AM8.88.332.525.72.46.0WSR3620221128CloudyModerateMid-FloodBottom710:15:00 AM8.88.3 <td>WSR16</td> <td>20221128</td> <td>Cloudy</td> <td>Moderate</td> <td>Mid-Flood</td> <td>Bottom</td> <td>15</td> <td>10:52:00 AM</td> <td>8.8</td> <td>8.3</td> <td>33.0</td> <td>25.5</td> <td>2.4</td> <td>2.5</td>	WSR16	20221128	Cloudy	Moderate	Mid-Flood	Bottom	15	10:52:00 AM	8.8	8.3	33.0	25.5	2.4	2.5
WSR3320221128CloudyModerateMid-FloodMiddle410:01:00 AM9.28.332.725.42.35.0WSR3320221128CloudyModerateMid-FloodMiddle410:01:00 AM9.18.332.725.32.28.0WSR3320221128CloudyModerateMid-FloodBottom610:00:00 AM9.18.332.825.52.18.0WSR3320221128CloudyModerateMid-FloodBottom610:00:00 AM9.28.332.825.42.38.0WSR3620221128CloudyModerateMid-FloodBottom610:00:00 AM9.28.332.825.42.38.0WSR3620221128CloudyModerateMid-FloodSurface110:16:00 AM8.88.332.525.62.77.0WSR3620221128CloudyModerateMid-FloodSurface110:16:00 AM8.88.332.525.72.38.0WSR3620221128CloudyModerateMid-FloodMidle410:16:00 AM8.88.332.525.72.46.0WSR3620221128CloudyModerateMid-FloodBottom710:15:00 AM8.88.332.425.62.09.0WSR3620221128CloudyModerateMid-FloodBottom710:15:00 AM8.88.3 <t< td=""><td>WSR33</td><td>20221128</td><td>Cloudy</td><td>Moderate</td><td>Mid-Flood</td><td>Surface</td><td>1</td><td>10:02:00 AM</td><td>9.2</td><td>8.2</td><td>32.7</td><td>25.4</td><td>2.3</td><td>2.5</td></t<>	WSR33	20221128	Cloudy	Moderate	Mid-Flood	Surface	1	10:02:00 AM	9.2	8.2	32.7	25.4	2.3	2.5
WSR3320221128CloudyModerateMid-FloodMiddle410:01:00 AM9.18.332.725.32.28.0WSR3320221128CloudyModerateMid-FloodBottom610:00:00 AM9.18.332.825.52.18.0WSR3320221128CloudyModerateMid-FloodBottom610:00:00 AM9.28.332.825.42.38.0WSR3620221128CloudyModerateMid-FloodSurface110:16:00 AM8.88.332.425.62.49.0WSR3620221128CloudyModerateMid-FloodSurface110:16:00 AM8.88.332.525.62.77.0WSR3620221128CloudyModerateMid-FloodSurface110:16:00 AM8.88.332.525.72.38.0WSR3620221128CloudyModerateMid-FloodMidle410:16:00 AM8.88.332.525.72.38.0WSR3620221128CloudyModerateMid-FloodMidle410:16:00 AM8.88.332.425.62.09.0WSR3620221128CloudyModerateMid-FloodBottom710:15:00 AM8.88.332.425.62.09.0WSR3620221128CloudyModerateMid-FloodBottom710:15:00 AM8.78.3 <t< td=""><td>WSR33</td><td>20221128</td><td>Cloudy</td><td>Moderate</td><td>Mid-Flood</td><td>Surface</td><td>1</td><td>10:02:00 AM</td><td>9.1</td><td>8.3</td><td>32.7</td><td>25.4</td><td>2.5</td><td>2.5</td></t<>	WSR33	20221128	Cloudy	Moderate	Mid-Flood	Surface	1	10:02:00 AM	9.1	8.3	32.7	25.4	2.5	2.5
WSR3320221128CloudyModerateMid-FloodBottom610:00:00 AM9.18.332.825.52.18.0WSR3320221128CloudyModerateMid-FloodBottom610:00:00 AM9.28.332.825.42.38.0WSR3620221128CloudyModerateMid-FloodSurface110:16:00 AM8.88.332.425.62.49.0WSR3620221128CloudyModerateMid-FloodSurface110:16:00 AM8.88.332.525.62.77.0WSR3620221128CloudyModerateMid-FloodSurface110:16:00 AM8.88.332.525.72.38.0WSR3620221128CloudyModerateMid-FloodMidle410:16:00 AM8.88.332.525.72.38.0WSR3620221128CloudyModerateMid-FloodMidle410:16:00 AM8.88.332.525.72.46.0WSR3620221128CloudyModerateMid-FloodBottom710:15:00 AM8.88.332.425.62.09.0WSR3620221128CloudyModerateMid-FloodBottom710:15:00 AM8.88.332.425.62.09.0WSR3620221128CloudyModerateMid-FloodSurface110:32:00 AM9.18.2<	WSR33	20221128	Cloudy	Moderate	Mid-Flood	Middle	4	10:01:00 AM	9.2	8.3	32.7	25.4	2.3	5.0
WSR33 20221128 Cloudy Moderate Mid-Flood Bottom 6 10:00:00 AM 9.2 8.3 32.8 25.4 2.3 8.0 WSR36 20221128 Cloudy Moderate Mid-Flood Surface 1 10:16:00 AM 8.8 8.3 32.4 25.6 2.4 9.0 WSR36 20221128 Cloudy Moderate Mid-Flood Surface 1 10:16:00 AM 8.8 8.3 32.5 25.6 2.7 7.0 WSR36 20221128 Cloudy Moderate Mid-Flood Midle 4 10:16:00 AM 8.8 8.3 32.5 25.7 2.3 8.0 WSR36 20221128 Cloudy Moderate Mid-Flood Midle 4 10:16:00 AM 8.8 8.3 32.5 25.7 2.3 8.0 WSR36 20221128 Cloudy Moderate Mid-Flood Bottom 7 10:15:00 AM 8.8 8.3 32.4 25.6 2.0 9.0 WSR36 20221128 Cloudy Moderate Mid-Flood <	WSR33	20221128	Cloudy	Moderate	Mid-Flood	Middle	4	10:01:00 AM	9.1	8.3	32.7	25.3	2.2	8.0
WSR3620221128CloudyModerateMid-FloodSurface110:16:00 AM8.88.332.425.62.49.0WSR3620221128CloudyModerateMid-FloodSurface110:16:00 AM8.88.332.525.62.77.0WSR3620221128CloudyModerateMid-FloodMidle410:16:00 AM8.78.332.525.72.38.0WSR3620221128CloudyModerateMid-FloodMidle410:16:00 AM8.88.332.525.72.38.0WSR3620221128CloudyModerateMid-FloodMidle410:16:00 AM8.88.332.425.62.09.0WSR3620221128CloudyModerateMid-FloodBottom710:15:00 AM8.88.332.425.62.09.0WSR3620221128CloudyModerateMid-FloodBottom710:15:00 AM8.88.332.425.62.17.0WSR3620221128CloudyModerateMid-FloodBottom710:15:00 AM8.78.332.425.62.17.0WSR3720221128CloudyModerateMid-FloodSurface110:32:00 AM9.18.233.525.22.22.5WSR3720221128CloudyModerateMid-FloodSurface110:32:00 AM9.18.2 <t< td=""><td>WSR33</td><td>20221128</td><td>Cloudy</td><td>Moderate</td><td>Mid-Flood</td><td>Bottom</td><td>6</td><td>10:00:00 AM</td><td>9.1</td><td>8.3</td><td>32.8</td><td>25.5</td><td>2.1</td><td>8.0</td></t<>	WSR33	20221128	Cloudy	Moderate	Mid-Flood	Bottom	6	10:00:00 AM	9.1	8.3	32.8	25.5	2.1	8.0
WSR36 20221128 Cloudy Moderate Mid-Flood Surface 1 10:16:00 AM 8.8 8.3 32.5 25.6 2.7 7.0 WSR36 20221128 Cloudy Moderate Mid-Flood Middle 4 10:16:00 AM 8.7 8.3 32.5 25.7 2.3 8.0 WSR36 20221128 Cloudy Moderate Mid-Flood Middle 4 10:16:00 AM 8.7 8.3 32.5 25.7 2.3 8.0 WSR36 20221128 Cloudy Moderate Mid-Flood Midle 4 10:16:00 AM 8.8 8.3 32.5 25.7 2.4 6.0 WSR36 20221128 Cloudy Moderate Mid-Flood Bottom 7 10:15:00 AM 8.8 8.3 32.4 25.6 2.0 9.0 WSR36 20221128 Cloudy Moderate Mid-Flood Bottom 7 10:15:00 AM 8.7 8.3 32.4 25.6 2.1 7.0 WSR37 20221128 Cloudy Moderate Mid-Flood <	WSR33	20221128	Cloudy	Moderate	Mid-Flood	Bottom	6	10:00:00 AM	9.2	8.3	32.8	25.4	2.3	8.0
WSR36 20221128 Cloudy Moderate Mid-Flood Middle 4 10:16:00 AM 8.7 8.3 32.5 25.7 2.3 8.0 WSR36 20221128 Cloudy Moderate Mid-Flood Middle 4 10:16:00 AM 8.8 8.3 32.5 25.7 2.4 6.0 WSR36 20221128 Cloudy Moderate Mid-Flood Bottom 7 10:15:00 AM 8.8 8.3 32.4 25.6 2.0 9.0 WSR36 20221128 Cloudy Moderate Mid-Flood Bottom 7 10:15:00 AM 8.8 8.3 32.4 25.6 2.0 9.0 WSR36 20221128 Cloudy Moderate Mid-Flood Bottom 7 10:15:00 AM 8.7 8.3 32.4 25.6 2.1 7.0 WSR37 20221128 Cloudy Moderate Mid-Flood Surface 1 10:32:00 AM 9.1 8.2 33.5 25.4 2.4 4.0 WSR37 20221128 Cloudy Moderate Mid-Flood	WSR36	20221128	Cloudy	Moderate	Mid-Flood	Surface	1	10:16:00 AM	8.8	8.3	32.4	25.6	2.4	9.0
WSR36 20221128 Cloudy Moderate Mid-Flood Middle 4 10:16:00 AM 8.8 8.3 32.5 25.7 2.4 6.0 WSR36 20221128 Cloudy Moderate Mid-Flood Bottom 7 10:15:00 AM 8.8 8.3 32.4 25.6 2.0 9.0 WSR36 20221128 Cloudy Moderate Mid-Flood Bottom 7 10:15:00 AM 8.7 8.3 32.4 25.6 2.1 7.0 WSR37 20221128 Cloudy Moderate Mid-Flood Surface 1 10:32:00 AM 9.1 8.2 33.5 25.2 2.2 2.5 WSR37 20221128 Cloudy Moderate Mid-Flood Surface 1 10:32:00 AM 9.1 8.2 33.5 25.4 2.4 4.0	WSR36	20221128	Cloudy	Moderate	Mid-Flood	Surface	1	10:16:00 AM	8.8	8.3	32.5	25.6	2.7	7.0
WSR36 20221128 Cloudy Moderate Mid-Flood Bottom 7 10:15:00 AM 8.8 8.3 32.4 25.6 2.0 9.0 WSR36 20221128 Cloudy Moderate Mid-Flood Bottom 7 10:15:00 AM 8.7 8.3 32.4 25.6 2.1 7.0 WSR37 20221128 Cloudy Moderate Mid-Flood Surface 1 10:32:00 AM 9.1 8.2 33.5 25.2 2.2 2.5 WSR37 20221128 Cloudy Moderate Mid-Flood Surface 1 10:32:00 AM 9.1 8.2 33.5 25.4 2.4 4.0	WSR36	20221128	Cloudy	Moderate	Mid-Flood	Middle	4	10:16:00 AM	8.7	8.3	32.5	25.7	2.3	8.0
WSR36 20221128 Cloudy Moderate Mid-Flood Bottom 7 10:15:00 AM 8.7 8.3 32.4 25.6 2.1 7.0 WSR37 20221128 Cloudy Moderate Mid-Flood Surface 1 10:32:00 AM 9.1 8.2 33.5 25.2 2.2 2.5 WSR37 20221128 Cloudy Moderate Mid-Flood Surface 1 10:32:00 AM 9.1 8.2 33.5 25.2 2.2 2.5 WSR37 20221128 Cloudy Moderate Mid-Flood Surface 1 10:32:00 AM 9.1 8.2 33.5 25.4 2.4 4.0	WSR36	20221128	Cloudy	Moderate	Mid-Flood	Middle	4	10:16:00 AM	8.8	8.3	32.5	25.7	2.4	6.0
WSR37 20221128 Cloudy Moderate Mid-Flood Surface 1 10:32:00 AM 9.1 8.2 33.5 25.2 2.2 2.5 WSR37 20221128 Cloudy Moderate Mid-Flood Surface 1 10:32:00 AM 9.1 8.2 33.5 25.4 2.4 4.0	WSR36	20221128	Cloudy	Moderate	Mid-Flood	Bottom	7	10:15:00 AM	8.8	8.3	32.4	25.6	2.0	9.0
WSR37 20221128 Cloudy Moderate Mid-Flood Surface 1 10:32:00 AM 9.1 8.2 33.5 25.4 2.4 4.0	WSR36	20221128	Cloudy	Moderate	Mid-Flood	Bottom	7	10:15:00 AM	8.7	8.3	32.4	25.6	2.1	7.0
	WSR37	20221128	Cloudy	Moderate	Mid-Flood	Surface	1	10:32:00 AM	9.1	8.2	33.5	25.2	2.2	2.5
WSR37 20221128 Cloudy Moderate Mid-Flood Middle 4 10:31:00 AM 9.0 8.2 33.5 25.3 2.4 6.0	WSR37	20221128	Cloudy	Moderate	Mid-Flood	Surface	1	10:32:00 AM	9.1	8.2	33.5	25.4	2.4	4.0
	WSR37	20221128	Cloudy	Moderate	Mid-Flood	Middle	4	10:31:00 AM	9.0	8.2	33.5	25.3	2.4	6.0
WSR37 20221128 Cloudy Moderate Mid-Flood Middle 4 10:31:00 AM 9.1 8.2 33.6 25.4 2.4 7.0	WSR37	20221128	Cloudy	Moderate	Mid-Flood	Middle	4	10:31:00 AM	9.1	8.2	33.6	25.4	2.4	7.0
WSR37 20221128 Cloudy Moderate Mid-Flood Bottom 7 10:30:00 AM 9.1 8.2 33.6 25.2 2.3 6.0	WSR37	20221128	Cloudy	Moderate	Mid-Flood	Bottom	7	10:30:00 AM	9.1	8.2	33.6	25.2	2.3	6.0
WSR37 20221128 Cloudy Moderate Mid-Flood Bottom 7 10:30:00 AM 9.0 8.2 33.5 25.2 2.4 4.0	WSR37	20221128	Cloudy	Moderate	Mid-Flood	Bottom	7	10:30:00 AM	9.0	8.2	33.5	25.2	2.4	4.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
CE	20221105	Cloudy	Moderate	Mid-Ebb	Surface	1	8:17:00 AM	8.3	8.2	31.6	24.8	2.8	15.0
CE	20221105	Cloudy	Moderate	Mid-Ebb	Surface	1	8:17:00 AM	8.3	8.2	31.5	24.8	2.9	17.0
CE	20221105	Cloudy	Moderate	Mid-Ebb	Middle	11	8:16:00 AM	8.4	8.2	31.5	24.8	2.9	15.0
CE	20221105	Cloudy	Moderate	Mid-Ebb	Middle	11	8:16:00 AM	8.4	8.2	31.4	24.8	2.7	16.0
CE	20221105	Cloudy	Moderate	Mid-Ebb	Bottom	22	8:15:00 AM	8.4	8.2	31.4	24.8	3.2	16.0
CE	20221105	Cloudy	Moderate	Mid-Ebb	Bottom	22	8:15:00 AM	8.4	8.2	31.6	24.9	3.2	16.0
CF	20221105	Cloudy	Moderate	Mid-Ebb	Surface	1	10:50:00 AM	8.6	8.3	31.8	24.3	2.5	16.0
CF	20221105	Cloudy	Moderate	Mid-Ebb	Surface	1	10:50:00 AM	8.6	8.3	32.0	24.3	2.4	14.0
CF	20221105	Cloudy	Moderate	Mid-Ebb	Middle	10	10:49:00 AM	8.6	8.3	32.1	24.3	2.6	16.0
CF	20221105	Cloudy	Moderate	Mid-Ebb	Middle	10	10:49:00 AM	8.5	8.3	31.8	24.3	2.4	15.0
CF	20221105	Cloudy	Moderate	Mid-Ebb	Bottom	19	10:48:00 AM	8.6	8.3	32.1	24.4	2.7	11.0
CF	20221105	Cloudy	Moderate	Mid-Ebb	Bottom	19	10:48:00 AM	8.6	8.3	31.8	24.4	2.6	10.0
WSR01	20221105	Cloudy	Moderate	Mid-Ebb	Surface	1	10:26:00 AM	8.4	8.3	31.5	25.1	2.2	2.5
WSR01	20221105	Cloudy	Moderate	Mid-Ebb	Surface	1	10:26:00 AM	8.4	8.3	31.8	25.1	2.0	3.0
WSR01	20221105	Cloudy	Moderate	Mid-Ebb	Middle	5	10:25:00 AM	8.4	8.3	31.7	25.0	2.1	9.0
WSR01	20221105	Cloudy	Moderate	Mid-Ebb	Middle	5	10:25:00 AM	8.5	8.3	31.7	25.1	2.2	12.0
WSR01	20221105	Cloudy	Moderate	Mid-Ebb	Bottom	8	10:24:00 AM	8.4	8.2	31.6	25.0	2.3	2.5
WSR01	20221105	Cloudy	Moderate	Mid-Ebb	Bottom	8	10:24:00 AM	8.4	8.3	31.8	25.0	2.4	2.5
WSR02	20221105	Cloudy	Moderate	Mid-Ebb	Surface	1	10:08:00 AM	9.0	8.2	31.1	25.0	1.9	15.0
WSR02	20221105	Cloudy	Moderate	Mid-Ebb	Surface	1	10:08:00 AM	9.0	8.2	31.2	24.9	1.8	13.0
WSR02	20221105	Cloudy	Moderate	Mid-Ebb	Middle	5	10:07:00 AM	9.0	8.2	31.1	24.9	1.8	11.0
WSR02	20221105	Cloudy	Moderate	Mid-Ebb	Middle	5	10:07:00 AM	8.9	8.2	31.1	25.0	1.9	11.0
WSR02	20221105	Cloudy	Moderate	Mid-Ebb	Bottom	9	10:06:00 AM	9.0	8.2	31.4	25.0	1.8	5.0
WSR02	20221105	Cloudy	Moderate	Mid-Ebb	Bottom	9	10:06:00 AM	9.1	8.3	31.4	25.0	1.9	6.0
WSR03	20221105	Cloudy	Moderate	Mid-Ebb	Surface	1	9:53:00 AM	8.5	8.2	30.9	24.7	2.2	9.0
WSR03	20221105	Cloudy	Moderate	Mid-Ebb	Surface	1	9:53:00 AM	8.5	8.3	30.8	24.7	2.2	10.0
WSR03	20221105	Cloudy	Moderate	Mid-Ebb	Middle	4	9:52:00 AM	8.5	8.3	30.8	24.7	2.1	15.0
WSR03	20221105	Cloudy	Moderate	Mid-Ebb	Middle	4	9:52:00 AM	8.6	8.3	30.8	24.7	2.2	16.0
WSR03	20221105	Cloudy	Moderate	Mid-Ebb	Bottom	7	9:51:00 AM	8.6	8.3	31.1	24.6	2.2	3.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR03	20221105	Cloudy	Moderate	Mid-Ebb	Bottom	7	9:51:00 AM	8.5	8.3	30.9	24.7	2.2	3.0
WSR04	20221105	Cloudy	Moderate	Mid-Ebb	Surface	1	9:41:00 AM	8.8	8.3	31.1	25.0	2.3	3.0
WSR04	20221105	Cloudy	Moderate	Mid-Ebb	Surface	1	9:41:00 AM	8.7	8.3	31.0	24.9	2.2	2.5
WSR04	20221105	Cloudy	Moderate	Mid-Ebb	Middle	4	9:40:00 AM	8.8	8.3	30.8	25.0	2.3	14.0
WSR04	20221105	Cloudy	Moderate	Mid-Ebb	Middle	4	9:40:00 AM	8.8	8.3	30.9	25.0	2.4	14.0
WSR04	20221105	Cloudy	Moderate	Mid-Ebb	Bottom	7	9:39:00 AM	8.7	8.3	31.1	24.9	2.4	14.0
WSR04	20221105	Cloudy	Moderate	Mid-Ebb	Bottom	7	9:39:00 AM	8.7	8.3	31.1	24.9	2.4	15.0
WSR16	20221105	Cloudy	Moderate	Mid-Ebb	Surface	1	8:39:00 AM	8.4	8.2	31.9	24.7	2.1	10.0
WSR16	20221105	Cloudy	Moderate	Mid-Ebb	Surface	1	8:39:00 AM	8.4	8.3	32.0	24.7	2.0	12.0
WSR16	20221105	Cloudy	Moderate	Mid-Ebb	Middle	8	8:38:00 AM	8.4	8.3	32.0	24.8	2.4	8.0
WSR16	20221105	Cloudy	Moderate	Mid-Ebb	Middle	8	8:38:00 AM	8.5	8.2	32.2	24.8	2.3	9.0
WSR16	20221105	Cloudy	Moderate	Mid-Ebb	Bottom	14	8:37:00 AM	8.4	8.2	32.0	24.7	2.5	10.0
WSR16	20221105	Cloudy	Moderate	Mid-Ebb	Bottom	14	8:37:00 AM	8.4	8.3	32.1	24.7	2.5	13.0
WSR33	20221105	Cloudy	Moderate	Mid-Ebb	Surface	1	9:27:00 AM	8.6	8.2	31.1	24.5	2.0	13.0
WSR33	20221105	Cloudy	Moderate	Mid-Ebb	Surface	1	9:27:00 AM	8.7	8.2	31.1	24.5	2.2	14.0
WSR33	20221105	Cloudy	Moderate	Mid-Ebb	Middle	4	9:26:00 AM	8.6	8.2	31.2	24.5	2.1	14.0
WSR33	20221105	Cloudy	Moderate	Mid-Ebb	Middle	4	9:26:00 AM	8.7	8.2	31.2	24.5	2.2	13.0
WSR33	20221105	Cloudy	Moderate	Mid-Ebb	Bottom	7	9:25:00 AM	8.7	8.2	31.3	24.4	2.5	15.0
WSR33	20221105	Cloudy	Moderate	Mid-Ebb	Bottom	7	9:25:00 AM	8.7	8.2	31.3	24.4	2.3	14.0
WSR36	20221105	Cloudy	Moderate	Mid-Ebb	Surface	1	9:13:00 AM	8.4	8.2	31.6	24.8	2.3	14.0
WSR36	20221105	Cloudy	Moderate	Mid-Ebb	Surface	1	9:13:00 AM	8.4	8.2	31.3	24.8	2.2	16.0
WSR36	20221105	Cloudy	Moderate	Mid-Ebb	Middle	4	9:13:00 AM	8.3	8.2	31.6	24.9	2.2	13.0
WSR36	20221105	Cloudy	Moderate	Mid-Ebb	Middle	4	9:13:00 AM	8.5	8.2	31.4	24.9	2.3	13.0
WSR36	20221105	Cloudy	Moderate	Mid-Ebb	Bottom	7	9:12:00 AM	8.3	8.3	31.6	24.8	2.4	14.0
WSR36	20221105	Cloudy	Moderate	Mid-Ebb	Bottom	7	9:12:00 AM	8.4	8.2	31.6	24.8	2.4	16.0
WSR37	20221105	Cloudy	Moderate	Mid-Ebb	Surface	1	9:00:00 AM	8.3	8.3	31.2	25.1	2.1	11.0
WSR37	20221105	Cloudy	Moderate	Mid-Ebb	Surface	1	9:00:00 AM	8.3	8.3	31.4	25.1	2.3	12.0
WSR37	20221105	Cloudy	Moderate	Mid-Ebb	Middle	4	8:59:00 AM	8.3	8.3	31.4	25.1	2.2	17.0
WSR37	20221105	Cloudy	Moderate	Mid-Ebb	Middle	4	8:59:00 AM	8.3	8.3	31.4	25.1	2.2	16.0
WSR37	20221105	Cloudy	Moderate	Mid-Ebb	Bottom	8	8:58:00 AM	8.3	8.3	31.4	25.1	2.4	12.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR37	20221105	Cloudy	Moderate	Mid-Ebb	Bottom	8	8:58:00 AM	8.3	8.3	31.2	25.1	2.3	12.0
CE	20221108	Cloudy	Moderate	Mid-Ebb	Surface	1	10:19:00 AM	8.3	8.2	31.6	25.6	2.3	5.0
CE	20221108	Cloudy	Moderate	Mid-Ebb	Surface	1	10:19:00 AM	8.3	8.3	31.8	25.5	2.9	3.0
CE	20221108	Cloudy	Moderate	Mid-Ebb	Middle	11	10:18:00 AM	8.3	8.2	31.6	25.6	3.5	6.0
CE	20221108	Cloudy	Moderate	Mid-Ebb	Middle	11	10:18:00 AM	8.3	8.3	31.7	25.5	3.3	3.0
CE	20221108	Cloudy	Moderate	Mid-Ebb	Bottom	21	10:17:00 AM	8.3	8.3	31.7	25.5	3.4	4.0
CE	20221108	Cloudy	Moderate	Mid-Ebb	Bottom	21	10:17:00 AM	8.3	8.3	31.6	25.6	3.8	2.5
CF	20221108	Cloudy	Moderate	Mid-Ebb	Surface	1	12:46:00 PM	8.6	8.3	31.7	25.3	2.6	3.0
CF	20221108	Cloudy	Moderate	Mid-Ebb	Surface	1	12:46:00 PM	8.5	8.3	31.8	25.3	2.8	3.0
CF	20221108	Cloudy	Moderate	Mid-Ebb	Middle	10	12:45:00 PM	8.5	8.3	31.9	25.3	2.9	4.0
CF	20221108	Cloudy	Moderate	Mid-Ebb	Middle	10	12:45:00 PM	8.7	8.2	31.9	25.3	2.6	3.0
CF	20221108	Cloudy	Moderate	Mid-Ebb	Bottom	19	12:44:00 PM	8.7	8.2	31.7	25.4	3.0	3.0
CF	20221108	Cloudy	Moderate	Mid-Ebb	Bottom	19	12:44:00 PM	8.7	8.3	31.8	25.4	3.1	5.0
WSR01	20221108	Cloudy	Moderate	Mid-Ebb	Surface	1	12:23:00 PM	8.8	8.3	32.5	25.5	2.2	4.0
WSR01	20221108	Cloudy	Moderate	Mid-Ebb	Surface	1	12:23:00 PM	8.7	8.3	32.6	25.5	2.2	3.0
WSR01	20221108	Cloudy	Moderate	Mid-Ebb	Middle	5	12:22:00 PM	8.7	8.3	32.6	25.4	2.2	15.0
WSR01	20221108	Cloudy	Moderate	Mid-Ebb	Middle	5	12:22:00 PM	8.7	8.3	32.5	25.4	2.2	15.0
WSR01	20221108	Cloudy	Moderate	Mid-Ebb	Bottom	8	12:21:00 PM	8.7	8.3	32.6	25.4	2.4	13.0
WSR01	20221108	Cloudy	Moderate	Mid-Ebb	Bottom	8	12:21:00 PM	8.8	8.3	32.6	25.4	2.4	11.0
WSR02	20221108	Cloudy	Moderate	Mid-Ebb	Surface	1	12:06:00 PM	8.3	8.2	32.2	24.9	1.7	15.0
WSR02	20221108	Cloudy	Moderate	Mid-Ebb	Surface	1	12:06:00 PM	8.3	8.2	32.3	25.1	1.8	14.0
WSR02	20221108	Cloudy	Moderate	Mid-Ebb	Middle	5	12:05:00 PM	8.3	8.2	32.4	24.9	1.7	2.5
WSR02	20221108	Cloudy	Moderate	Mid-Ebb	Middle	5	12:05:00 PM	8.3	8.3	32.3	25.0	1.9	4.0
WSR02	20221108	Cloudy	Moderate	Mid-Ebb	Bottom	8	12:04:00 PM	8.3	8.2	32.2	25.0	2.1	5.0
WSR02	20221108	Cloudy	Moderate	Mid-Ebb	Bottom	8	12:04:00 PM	8.3	8.3	32.2	24.9	2.0	7.0
WSR03	20221108	Cloudy	Moderate	Mid-Ebb	Surface	1	11:52:00 AM	8.2	8.2	32.0	25.6	2.2	8.0
WSR03	20221108	Cloudy	Moderate	Mid-Ebb	Surface	1	11:52:00 AM	8.3	8.2	32.0	25.7	2.3	8.0
WSR03	20221108	Cloudy	Moderate	Mid-Ebb	Middle	4	11:51:00 AM	8.3	8.2	31.9	25.6	2.4	4.0
WSR03	20221108	Cloudy	Moderate	Mid-Ebb	Middle	4	11:51:00 AM	8.3	8.2	32.0	25.5	2.2	3.0
WSR03	20221108	Cloudy	Moderate	Mid-Ebb	Bottom	7	11:50:00 AM	8.3	8.2	32.0	25.7	2.5	2.5

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR03	20221108	Cloudy	Moderate	Mid-Ebb	Bottom	7	11:50:00 AM	8.3	8.2	32.0	25.6	2.4	2.5
WSR04	20221108	Cloudy	Moderate	Mid-Ebb	Surface	1	11:41:00 AM	8.4	8.2	32.0	24.8	2.2	17.0
WSR04	20221108	Cloudy	Moderate	Mid-Ebb	Surface	1	11:41:00 AM	8.3	8.3	32.1	25.0	2.1	17.0
WSR04	20221108	Cloudy	Moderate	Mid-Ebb	Middle	4	11:40:00 AM	8.4	8.2	32.0	24.9	2.3	15.0
WSR04	20221108	Cloudy	Moderate	Mid-Ebb	Middle	4	11:40:00 AM	8.4	8.2	32.0	24.8	2.2	15.0
WSR04	20221108	Cloudy	Moderate	Mid-Ebb	Bottom	7	11:39:00 AM	8.3	8.3	32.0	24.8	2.5	20.0
WSR04	20221108	Cloudy	Moderate	Mid-Ebb	Bottom	7	11:39:00 AM	8.4	8.3	32.0	25.0	2.4	17.0
WSR16	20221108	Cloudy	Moderate	Mid-Ebb	Surface	1	10:41:00 AM	8.8	8.2	32.4	25.4	2.1	7.0
WSR16	20221108	Cloudy	Moderate	Mid-Ebb	Surface	1	10:41:00 AM	8.9	8.3	32.3	25.4	2.2	8.0
WSR16	20221108	Cloudy	Moderate	Mid-Ebb	Middle	8	10:40:00 AM	8.9	8.3	32.3	25.4	2.4	6.0
WSR16	20221108	Cloudy	Moderate	Mid-Ebb	Middle	8	10:40:00 AM	8.9	8.3	32.1	25.6	2.4	8.0
WSR16	20221108	Cloudy	Moderate	Mid-Ebb	Bottom	15	10:39:00 AM	8.7	8.2	32.1	25.6	2.3	5.0
WSR16	20221108	Cloudy	Moderate	Mid-Ebb	Bottom	15	10:39:00 AM	8.8	8.2	32.4	25.5	2.3	4.0
WSR33	20221108	Cloudy	Moderate	Mid-Ebb	Surface	1	11:28:00 AM	8.5	8.3	31.8	25.2	2.3	20.0
WSR33	20221108	Cloudy	Moderate	Mid-Ebb	Surface	1	11:28:00 AM	8.3	8.2	31.8	25.3	2.3	19.0
WSR33	20221108	Cloudy	Moderate	Mid-Ebb	Middle	4	11:27:00 AM	8.4	8.2	31.8	25.2	2.4	4.0
WSR33	20221108	Cloudy	Moderate	Mid-Ebb	Middle	4	11:27:00 AM	8.4	8.2	31.8	25.2	2.4	5.0
WSR33	20221108	Cloudy	Moderate	Mid-Ebb	Bottom	6	11:26:00 AM	8.3	8.2	31.9	25.3	2.2	16.0
WSR33	20221108	Cloudy	Moderate	Mid-Ebb	Bottom	6	11:26:00 AM	8.3	8.2	31.7	25.3	2.2	20.0
WSR36	20221108	Cloudy	Moderate	Mid-Ebb	Surface	1	11:15:00 AM	8.6	8.3	32.1	25.2	2.3	6.0
WSR36	20221108	Cloudy	Moderate	Mid-Ebb	Surface	1	11:15:00 AM	8.6	8.3	32.2	25.3	2.2	5.0
WSR36	20221108	Cloudy	Moderate	Mid-Ebb	Middle	4	11:15:00 AM	8.6	8.3	32.2	25.2	2.3	13.0
WSR36	20221108	Cloudy	Moderate	Mid-Ebb	Middle	4	11:15:00 AM	8.6	8.3	32.0	25.3	2.4	12.0
WSR36	20221108	Cloudy	Moderate	Mid-Ebb	Bottom	6	11:14:00 AM	8.7	8.3	32.3	25.2	2.4	18.0
WSR36	20221108	Cloudy	Moderate	Mid-Ebb	Bottom	6	11:14:00 AM	8.7	8.3	32.2	25.3	2.4	18.0
WSR37	20221108	Cloudy	Moderate	Mid-Ebb	Surface	1	11:02:00 AM	8.9	8.2	31.9	25.3	2.4	3.0
WSR37	20221108	Cloudy	Moderate	Mid-Ebb	Surface	1	11:02:00 AM	8.8	8.2	31.8	25.1	2.3	2.5
WSR37	20221108	Cloudy	Moderate	Mid-Ebb	Middle	4	11:01:00 AM	9.0	8.3	31.7	25.1	2.5	3.0
WSR37	20221108	Cloudy	Moderate	Mid-Ebb	Middle	4	11:01:00 AM	9.0	8.2	31.8	25.1	2.5	6.0
WSR37	20221108	Cloudy	Moderate	Mid-Ebb	Bottom	7	11:00:00 AM	8.8	8.3	31.7	25.2	2.3	18.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR37	20221108	Cloudy	Moderate	Mid-Ebb	Bottom	7	11:00:00 AM	8.9	8.3	31.9	25.2	2.4	19.0
CE	20221110	Cloudy	Moderate	Mid-Ebb	Surface	1	11:26:00 AM	9.1	8.2	32.1	24.4	2.8	17.0
CE	20221110	Cloudy	Moderate	Mid-Ebb	Surface	1	11:26:00 AM	9.1	8.2	32.0	24.4	2.9	15.0
CE	20221110	Cloudy	Moderate	Mid-Ebb	Middle	10	11:25:00 AM	9.0	8.2	32.0	24.5	3.3	17.0
CE	20221110	Cloudy	Moderate	Mid-Ebb	Middle	10	11:25:00 AM	9.1	8.2	32.1	24.4	2.8	17.0
CE	20221110	Cloudy	Moderate	Mid-Ebb	Bottom	19	11:24:00 AM	9.0	8.2	32.1	24.5	3.5	17.0
CE	20221110	Cloudy	Moderate	Mid-Ebb	Bottom	19	11:24:00 AM	9.1	8.2	31.9	24.5	3.5	14.0
CF	20221110	Cloudy	Moderate	Mid-Ebb	Surface	1	1:59:00 PM	8.6	8.4	31.8	24.7	2.4	14.0
CF	20221110	Cloudy	Moderate	Mid-Ebb	Surface	1	1:59:00 PM	8.6	8.3	31.7	24.7	2.6	16.0
CF	20221110	Cloudy	Moderate	Mid-Ebb	Middle	10	1:58:00 PM	8.6	8.3	31.7	24.8	2.6	16.0
CF	20221110	Cloudy	Moderate	Mid-Ebb	Middle	10	1:58:00 PM	8.6	8.3	31.7	24.8	2.5	16.0
CF	20221110	Cloudy	Moderate	Mid-Ebb	Bottom	19	1:57:00 PM	8.6	8.3	31.7	24.7	2.8	16.0
CF	20221110	Cloudy	Moderate	Mid-Ebb	Bottom	19	1:57:00 PM	8.5	8.3	31.7	24.7	2.9	17.0
WSR01	20221110	Cloudy	Moderate	Mid-Ebb	Surface	1	1:36:00 PM	8.5	8.2	31.7	24.3	2.3	2.5
WSR01	20221110	Cloudy	Moderate	Mid-Ebb	Surface	1	1:36:00 PM	8.5	8.2	31.6	24.3	2.2	2.5
WSR01	20221110	Cloudy	Moderate	Mid-Ebb	Middle	5	1:35:00 PM	8.6	8.2	31.6	24.3	2.4	15.0
WSR01	20221110	Cloudy	Moderate	Mid-Ebb	Middle	5	1:35:00 PM	8.5	8.2	31.7	24.3	2.4	18.0
WSR01	20221110	Cloudy	Moderate	Mid-Ebb	Bottom	8	1:34:00 PM	8.5	8.2	31.7	24.4	2.3	15.0
WSR01	20221110	Cloudy	Moderate	Mid-Ebb	Bottom	8	1:34:00 PM	8.6	8.2	31.7	24.3	2.4	14.0
WSR02	20221110	Cloudy	Moderate	Mid-Ebb	Surface	1	1:18:00 PM	8.8	8.3	32.4	24.6	1.9	14.0
WSR02	20221110	Cloudy	Moderate	Mid-Ebb	Surface	1	1:18:00 PM	8.8	8.3	32.4	24.5	1.9	14.0
WSR02	20221110	Cloudy	Moderate	Mid-Ebb	Middle	5	1:17:00 PM	8.7	8.3	32.4	24.6	2.1	16.0
WSR02	20221110	Cloudy	Moderate	Mid-Ebb	Middle	5	1:17:00 PM	8.7	8.4	32.4	24.5	2.1	15.0
WSR02	20221110	Cloudy	Moderate	Mid-Ebb	Bottom	9	1:16:00 PM	8.8	8.3	32.5	24.5	2.0	16.0
WSR02	20221110	Cloudy	Moderate	Mid-Ebb	Bottom	9	1:16:00 PM	8.8	8.3	32.4	24.5	2.1	17.0
WSR03	20221110	Cloudy	Moderate	Mid-Ebb	Surface	1	1:03:00 PM	8.4	8.3	31.9	24.6	2.1	18.0
WSR03	20221110	Cloudy	Moderate	Mid-Ebb	Surface	1	1:03:00 PM	8.4	8.3	31.8	24.5	2.2	18.0
WSR03	20221110	Cloudy	Moderate	Mid-Ebb	Middle	4	1:02:00 PM	8.4	8.3	31.9	24.6	2.2	18.0
WSR03	20221110	Cloudy	Moderate	Mid-Ebb	Middle	4	1:02:00 PM	8.3	8.3	31.7	24.5	2.3	17.0
WSR03	20221110	Cloudy	Moderate	Mid-Ebb	Bottom	7	1:01:00 PM	8.5	8.3	31.9	24.6	2.3	15.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR03	20221110	Cloudy	Moderate	Mid-Ebb	Bottom	7	1:01:00 PM	8.4	8.3	31.8	24.5	2.4	18.0
WSR04	20221110	Cloudy	Moderate	Mid-Ebb	Surface	1	12:51:00 PM	8.5	8.2	32.7	24.6	2.1	15.0
WSR04	20221110	Cloudy	Moderate	Mid-Ebb	Surface	1	12:51:00 PM	8.5	8.2	32.6	24.5	2.1	16.0
WSR04	20221110	Cloudy	Moderate	Mid-Ebb	Middle	4	12:50:00 PM	8.4	8.2	32.6	24.6	2.3	15.0
WSR04	20221110	Cloudy	Moderate	Mid-Ebb	Middle	4	12:50:00 PM	8.4	8.2	32.7	24.5	2.2	15.0
WSR04	20221110	Cloudy	Moderate	Mid-Ebb	Bottom	7	12:49:00 PM	8.4	8.2	32.6	24.6	2.4	16.0
WSR04	20221110	Cloudy	Moderate	Mid-Ebb	Bottom	7	12:49:00 PM	8.4	8.2	32.6	24.5	2.4	16.0
WSR16	20221110	Cloudy	Moderate	Mid-Ebb	Surface	1	11:48:00 AM	8.5	8.2	32.1	24.8	2.2	18.0
WSR16	20221110	Cloudy	Moderate	Mid-Ebb	Surface	1	11:48:00 AM	8.4	8.3	32.1	24.7	2.3	15.0
WSR16	20221110	Cloudy	Moderate	Mid-Ebb	Middle	8	11:47:00 AM	8.3	8.2	32.2	24.7	2.3	15.0
WSR16	20221110	Cloudy	Moderate	Mid-Ebb	Middle	8	11:47:00 AM	8.4	8.2	32.1	24.7	2.2	19.0
WSR16	20221110	Cloudy	Moderate	Mid-Ebb	Bottom	16	11:46:00 AM	8.5	8.2	32.1	24.7	2.4	14.0
WSR16	20221110	Cloudy	Moderate	Mid-Ebb	Bottom	16	11:46:00 AM	8.4	8.2	32.1	24.8	2.4	16.0
WSR33	20221110	Cloudy	Moderate	Mid-Ebb	Surface	1	12:37:00 PM	8.4	8.3	32.3	24.4	2.4	14.0
WSR33	20221110	Cloudy	Moderate	Mid-Ebb	Surface	1	12:37:00 PM	8.4	8.3	32.4	24.3	2.5	16.0
WSR33	20221110	Cloudy	Moderate	Mid-Ebb	Middle	4	12:36:00 PM	8.4	8.3	32.4	24.4	2.3	2.5
WSR33	20221110	Cloudy	Moderate	Mid-Ebb	Middle	4	12:36:00 PM	8.3	8.3	32.3	24.4	2.3	2.5
WSR33	20221110	Cloudy	Moderate	Mid-Ebb	Bottom	6	12:35:00 PM	8.4	8.3	32.4	24.3	2.2	15.0
WSR33	20221110	Cloudy	Moderate	Mid-Ebb	Bottom	6	12:35:00 PM	8.4	8.3	32.3	24.3	2.4	13.0
WSR36	20221110	Cloudy	Moderate	Mid-Ebb	Surface	1	12:22:00 PM	8.4	8.3	32.3	24.5	2.4	14.0
WSR36	20221110	Cloudy	Moderate	Mid-Ebb	Surface	1	12:22:00 PM	8.6	8.2	32.3	24.5	2.4	15.0
WSR36	20221110	Cloudy	Moderate	Mid-Ebb	Middle	4	12:22:00 PM	8.4	8.2	32.2	24.5	2.4	14.0
WSR36	20221110	Cloudy	Moderate	Mid-Ebb	Middle	4	12:22:00 PM	8.5	8.2	32.2	24.5	2.4	13.0
WSR36	20221110	Cloudy	Moderate	Mid-Ebb	Bottom	6	12:21:00 PM	8.6	8.2	32.2	24.4	2.3	14.0
WSR36	20221110	Cloudy	Moderate	Mid-Ebb	Bottom	6	12:21:00 PM	8.7	8.2	32.3	24.6	2.4	15.0
WSR37	20221110	Cloudy	Moderate	Mid-Ebb	Surface	1	12:09:00 PM	8.4	8.3	32.8	24.6	2.2	18.0
WSR37	20221110	Cloudy	Moderate	Mid-Ebb	Surface	1	12:09:00 PM	8.5	8.3	32.7	24.6	2.1	15.0
WSR37	20221110	Cloudy	Moderate	Mid-Ebb	Middle	4	12:08:00 PM	8.5	8.2	32.8	24.6	2.4	17.0
WSR37	20221110	Cloudy	Moderate	Mid-Ebb	Middle	4	12:08:00 PM	8.4	8.3	32.7	24.6	2.2	16.0
WSR37	20221110	Cloudy	Moderate	Mid-Ebb	Bottom	7	12:07:00 PM	8.4	8.3	32.8	24.6	2.4	17.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR37	20221110	Cloudy	Moderate	Mid-Ebb	Bottom	7	12:07:00 PM	8.5	8.3	32.7	24.6	2.4	19.0
CE	20221112	Cloudy	Moderate	Mid-Ebb	Surface	1	12:21:00 PM	8.3	8.2	32.4	24.9	2.7	17.0
CE	20221112	Cloudy	Moderate	Mid-Ebb	Surface	1	12:21:00 PM	8.4	8.3	32.4	24.8	2.6	17.0
CE	20221112	Cloudy	Moderate	Mid-Ebb	Middle	11	12:20:00 PM	8.4	8.3	32.4	24.9	2.8	14.0
CE	20221112	Cloudy	Moderate	Mid-Ebb	Middle	11	12:20:00 PM	8.4	8.2	32.4	24.9	3.0	12.0
CE	20221112	Cloudy	Moderate	Mid-Ebb	Bottom	22	12:19:00 PM	8.4	8.3	32.4	24.9	3.2	13.0
CE	20221112	Cloudy	Moderate	Mid-Ebb	Bottom	22	12:19:00 PM	8.4	8.2	32.4	24.8	2.9	11.0
CF	20221112	Cloudy	Moderate	Mid-Ebb	Surface	1	2:53:00 PM	8.9	8.2	32.7	25.3	2.6	12.0
CF	20221112	Cloudy	Moderate	Mid-Ebb	Surface	1	2:53:00 PM	8.9	8.2	32.7	25.2	2.6	13.0
CF	20221112	Cloudy	Moderate	Mid-Ebb	Middle	11	2:52:00 PM	9.0	8.1	32.8	25.2	2.6	16.0
CF	20221112	Cloudy	Moderate	Mid-Ebb	Middle	11	2:52:00 PM	8.9	8.2	32.7	25.3	2.7	15.0
CF	20221112	Cloudy	Moderate	Mid-Ebb	Bottom	20	2:51:00 PM	9.0	8.1	32.8	25.2	2.7	11.0
CF	20221112	Cloudy	Moderate	Mid-Ebb	Bottom	20	2:51:00 PM	8.9	8.2	32.7	25.2	2.7	11.0
WSR01	20221112	Cloudy	Moderate	Mid-Ebb	Surface	1	2:31:00 PM	8.9	8.2	33.1	24.7	2.2	7.0
WSR01	20221112	Cloudy	Moderate	Mid-Ebb	Surface	1	2:31:00 PM	9.0	8.4	33.1	24.8	2.3	11.0
WSR01	20221112	Cloudy	Moderate	Mid-Ebb	Middle	4	2:30:00 PM	8.9	8.3	33.1	24.7	2.3	9.0
WSR01	20221112	Cloudy	Moderate	Mid-Ebb	Middle	4	2:30:00 PM	9.0	8.4	33.1	24.9	2.7	10.0
WSR01	20221112	Cloudy	Moderate	Mid-Ebb	Bottom	8	2:29:00 PM	8.9	8.2	33.1	24.8	2.5	14.0
WSR01	20221112	Cloudy	Moderate	Mid-Ebb	Bottom	8	2:29:00 PM	8.9	8.3	33.1	24.8	2.5	13.0
WSR02	20221112	Cloudy	Moderate	Mid-Ebb	Surface	1	2:13:00 PM	8.5	8.2	32.1	25.4	1.7	8.0
WSR02	20221112	Cloudy	Moderate	Mid-Ebb	Surface	1	2:13:00 PM	8.4	8.2	32.1	25.4	2.0	6.0
WSR02	20221112	Cloudy	Moderate	Mid-Ebb	Middle	5	2:12:00 PM	8.4	8.1	32.1	25.5	2.0	8.0
WSR02	20221112	Cloudy	Moderate	Mid-Ebb	Middle	5	2:12:00 PM	8.5	8.2	32.1	25.4	2.1	7.0
WSR02	20221112	Cloudy	Moderate	Mid-Ebb	Bottom	8	2:11:00 PM	8.4	8.1	32.1	25.4	1.8	11.0
WSR02	20221112	Cloudy	Moderate	Mid-Ebb	Bottom	8	2:11:00 PM	8.4	8.1	32.1	25.4	2.0	10.0
WSR03	20221112	Cloudy	Moderate	Mid-Ebb	Surface	1	1:58:00 PM	8.9	8.3	33.1	25.5	2.0	16.0
WSR03	20221112	Cloudy	Moderate	Mid-Ebb	Surface	1	1:58:00 PM	8.9	8.3	33.0	25.5	2.0	16.0
WSR03	20221112	Cloudy	Moderate	Mid-Ebb	Middle	4	1:57:00 PM	9.0	8.3	33.1	25.4	2.3	16.0
WSR03	20221112	Cloudy	Moderate	Mid-Ebb	Middle	4	1:57:00 PM	8.9	8.3	33.1	25.5	2.1	19.0
WSR03	20221112	Cloudy	Moderate	Mid-Ebb	Bottom	7	1:56:00 PM	9.0	8.3	33.1	25.5	2.2	19.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR03	20221112	Cloudy	Moderate	Mid-Ebb	Bottom	7	1:56:00 PM	9.0	8.3	33.1	25.4	2.4	15.0
WSR04	20221112	Cloudy	Moderate	Mid-Ebb	Surface	1	1:46:00 PM	8.6	8.3	32.1	25.0	2.1	20.0
WSR04	20221112	Cloudy	Moderate	Mid-Ebb	Surface	1	1:46:00 PM	8.5	8.3	32.1	24.9	2.1	17.0
WSR04	20221112	Cloudy	Moderate	Mid-Ebb	Middle	4	1:45:00 PM	8.5	8.3	32.1	24.9	2.3	16.0
WSR04	20221112	Cloudy	Moderate	Mid-Ebb	Middle	4	1:45:00 PM	8.5	8.3	32.2	25.0	2.3	18.0
WSR04	20221112	Cloudy	Moderate	Mid-Ebb	Bottom	6	1:44:00 PM	8.5	8.3	32.2	25.0	2.2	16.0
WSR04	20221112	Cloudy	Moderate	Mid-Ebb	Bottom	6	1:44:00 PM	8.5	8.3	32.1	25.0	2.2	19.0
WSR16	20221112	Cloudy	Moderate	Mid-Ebb	Surface	1	12:43:00 PM	8.5	8.2	32.5	25.1	2.2	17.0
WSR16	20221112	Cloudy	Moderate	Mid-Ebb	Surface	1	12:43:00 PM	8.6	8.2	32.5	25.1	2.1	18.0
WSR16	20221112	Cloudy	Moderate	Mid-Ebb	Middle	8	12:42:00 PM	8.5	8.2	32.6	25.2	2.2	20.0
WSR16	20221112	Cloudy	Moderate	Mid-Ebb	Middle	8	12:42:00 PM	8.5	8.1	32.6	25.2	2.0	18.0
WSR16	20221112	Cloudy	Moderate	Mid-Ebb	Bottom	15	12:41:00 PM	8.6	8.2	32.6	25.1	2.4	16.0
WSR16	20221112	Cloudy	Moderate	Mid-Ebb	Bottom	15	12:41:00 PM	8.5	8.2	32.6	25.2	2.2	15.0
WSR33	20221112	Cloudy	Moderate	Mid-Ebb	Surface	1	1:32:00 PM	8.6	8.2	32.8	25.5	2.6	16.0
WSR33	20221112	Cloudy	Moderate	Mid-Ebb	Surface	1	1:32:00 PM	8.5	8.2	32.8	25.5	2.5	15.0
WSR33	20221112	Cloudy	Moderate	Mid-Ebb	Middle	4	1:31:00 PM	8.5	8.2	32.8	25.5	2.3	16.0
WSR33	20221112	Cloudy	Moderate	Mid-Ebb	Middle	4	1:31:00 PM	8.5	8.2	32.7	25.4	2.3	14.0
WSR33	20221112	Cloudy	Moderate	Mid-Ebb	Bottom	6	1:30:00 PM	8.6	8.2	32.8	25.4	2.2	2.5
WSR33	20221112	Cloudy	Moderate	Mid-Ebb	Bottom	6	1:30:00 PM	8.5	8.2	32.8	25.5	2.3	2.5
WSR36	20221112	Cloudy	Moderate	Mid-Ebb	Surface	1	1:17:00 PM	8.6	8.2	32.8	25.2	2.5	4.0
WSR36	20221112	Cloudy	Moderate	Mid-Ebb	Surface	1	1:17:00 PM	8.6	8.1	32.8	25.3	2.8	6.0
WSR36	20221112	Cloudy	Moderate	Mid-Ebb	Middle	3	1:17:00 PM	8.5	8.1	32.9	25.2	2.3	11.0
WSR36	20221112	Cloudy	Moderate	Mid-Ebb	Middle	3	1:17:00 PM	8.6	8.2	32.8	25.2	2.2	12.0
WSR36	20221112	Cloudy	Moderate	Mid-Ebb	Bottom	5	1:16:00 PM	8.6	8.2	32.8	25.2	2.2	14.0
WSR36	20221112	Cloudy	Moderate	Mid-Ebb	Bottom	5	1:16:00 PM	8.6	8.2	32.8	25.2	2.4	14.0
WSR37	20221112	Cloudy	Moderate	Mid-Ebb	Surface	1	1:04:00 PM	8.1	8.4	32.3	25.1	2.4	18.0
WSR37	20221112	Cloudy	Moderate	Mid-Ebb	Surface	1	1:04:00 PM	8.1	8.3	32.2	25.2	2.3	18.0
WSR37	20221112	Cloudy	Moderate	Mid-Ebb	Middle	4	1:03:00 PM	8.0	8.3	32.2	25.2	2.7	15.0
WSR37	20221112	Cloudy	Moderate	Mid-Ebb	Middle	4	1:03:00 PM	8.1	8.3	32.2	25.1	2.3	16.0
WSR37	20221112	Cloudy	Moderate	Mid-Ebb	Bottom	7	1:02:00 PM	8.0	8.3	32.2	25.1	2.2	16.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR37	20221112	Cloudy	Moderate	Mid-Ebb	Bottom	7	1:02:00 PM	8.0	8.4	32.3	25.2	2.4	14.0
CE	20221115	Cloudy	Moderate	Mid-Ebb	Surface	1	8:02:00 AM	9.3	8.4	32.2	24.6	2.6	14.0
CE	20221115	Cloudy	Moderate	Mid-Ebb	Surface	1	8:02:00 AM	9.5	8.4	32.3	24.6	2.5	14.0
CE	20221115	Cloudy	Moderate	Mid-Ebb	Middle	11	8:01:00 AM	9.6	8.3	32.3	24.7	2.8	18.0
CE	20221115	Cloudy	Moderate	Mid-Ebb	Middle	11	8:01:00 AM	9.5	8.3	32.3	24.6	2.8	20.0
CE	20221115	Cloudy	Moderate	Mid-Ebb	Bottom	20	8:00:00 AM	9.3	8.4	32.2	24.6	2.9	18.0
CE	20221115	Cloudy	Moderate	Mid-Ebb	Bottom	20	8:00:00 AM	9.5	8.4	32.2	24.6	2.8	17.0
CF	20221115	Cloudy	Moderate	Mid-Ebb	Surface	1	10:26:00 AM	9.1	8.4	32.2	25.0	2.4	20.0
CF	20221115	Cloudy	Moderate	Mid-Ebb	Surface	1	10:26:00 AM	9.2	8.4	32.2	25.0	2.5	18.0
CF	20221115	Cloudy	Moderate	Mid-Ebb	Middle	11	10:25:00 AM	9.2	8.4	32.3	24.9	2.5	21.0
CF	20221115	Cloudy	Moderate	Mid-Ebb	Middle	11	10:25:00 AM	9.2	8.4	32.4	25.0	2.4	20.0
CF	20221115	Cloudy	Moderate	Mid-Ebb	Bottom	20	10:24:00 AM	9.3	8.4	32.3	24.9	2.7	21.0
CF	20221115	Cloudy	Moderate	Mid-Ebb	Bottom	20	10:24:00 AM	9.2	8.4	32.4	24.9	2.8	19.0
WSR01	20221115	Cloudy	Moderate	Mid-Ebb	Surface	1	10:03:00 AM	9.6	8.4	32.7	24.8	2.2	18.0
WSR01	20221115	Cloudy	Moderate	Mid-Ebb	Surface	1	10:03:00 AM	9.5	8.4	32.8	24.9	2.2	17.0
WSR01	20221115	Cloudy	Moderate	Mid-Ebb	Middle	5	10:02:00 AM	9.7	8.4	32.7	24.8	1.9	19.0
WSR01	20221115	Cloudy	Moderate	Mid-Ebb	Middle	5	10:02:00 AM	9.6	8.4	32.8	24.9	2.0	17.0
WSR01	20221115	Cloudy	Moderate	Mid-Ebb	Bottom	8	10:01:00 AM	9.7	8.4	32.6	24.7	2.1	15.0
WSR01	20221115	Cloudy	Moderate	Mid-Ebb	Bottom	8	10:01:00 AM	9.7	8.4	32.6	24.7	2.1	14.0
WSR02	20221115	Cloudy	Moderate	Mid-Ebb	Surface	1	9:47:00 AM	9.2	8.2	33.1	25.0	1.9	19.0
WSR02	20221115	Cloudy	Moderate	Mid-Ebb	Surface	1	9:47:00 AM	9.3	8.2	33.1	24.9	1.7	20.0
WSR02	20221115	Cloudy	Moderate	Mid-Ebb	Middle	5	9:46:00 AM	9.5	8.2	33.0	25.0	1.7	20.0
WSR02	20221115	Cloudy	Moderate	Mid-Ebb	Middle	5	9:46:00 AM	9.5	8.2	33.1	24.9	1.8	16.0
WSR02	20221115	Cloudy	Moderate	Mid-Ebb	Bottom	8	9:45:00 AM	9.2	8.2	33.0	24.9	1.9	21.0
WSR02	20221115	Cloudy	Moderate	Mid-Ebb	Bottom	8	9:45:00 AM	9.4	8.2	33.2	24.9	1.8	19.0
WSR03	20221115	Cloudy	Moderate	Mid-Ebb	Surface	1	9:33:00 AM	9.3	8.2	32.3	25.1	2.4	19.0
WSR03	20221115	Cloudy	Moderate	Mid-Ebb	Surface	1	9:33:00 AM	9.1	8.2	32.3	25.0	2.2	15.0
WSR03	20221115	Cloudy	Moderate	Mid-Ebb	Middle	4	9:32:00 AM	9.2	8.2	32.4	25.0	2.3	19.0
WSR03	20221115	Cloudy	Moderate	Mid-Ebb	Middle	4	9:32:00 AM	9.3	8.3	32.4	25.1	2.5	18.0
WSR03	20221115	Cloudy	Moderate	Mid-Ebb	Bottom	7	9:31:00 AM	9.4	8.3	32.4	25.0	2.3	19.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR03	20221115	Cloudy	Moderate	Mid-Ebb	Bottom	7	9:31:00 AM	9.3	8.3	32.4	25.1	2.4	19.0
WSR04	20221115	Cloudy	Moderate	Mid-Ebb	Surface	1	9:22:00 AM	9.3	8.2	32.6	25.3	2.3	18.0
WSR04	20221115	Cloudy	Moderate	Mid-Ebb	Surface	1	9:22:00 AM	9.5	8.2	32.6	25.2	2.2	20.0
WSR04	20221115	Cloudy	Moderate	Mid-Ebb	Middle	4	9:21:00 AM	9.3	8.2	32.6	25.1	2.5	20.0
WSR04	20221115	Cloudy	Moderate	Mid-Ebb	Middle	4	9:21:00 AM	9.3	8.2	32.7	25.2	2.4	19.0
WSR04	20221115	Cloudy	Moderate	Mid-Ebb	Bottom	7	9:20:00 AM	9.3	8.2	32.6	25.2	2.5	21.0
WSR04	20221115	Cloudy	Moderate	Mid-Ebb	Bottom	7	9:20:00 AM	9.3	8.2	32.6	25.3	2.4	20.0
WSR16	20221115	Cloudy	Moderate	Mid-Ebb	Surface	1	8:22:00 AM	9.2	8.2	33.0	25.1	2.1	21.0
WSR16	20221115	Cloudy	Moderate	Mid-Ebb	Surface	1	8:22:00 AM	8.9	8.2	33.1	25.1	2.2	20.0
WSR16	20221115	Cloudy	Moderate	Mid-Ebb	Middle	8	8:21:00 AM	8.9	8.2	33.0	25.2	2.3	11.0
WSR16	20221115	Cloudy	Moderate	Mid-Ebb	Middle	8	8:21:00 AM	9.1	8.2	33.1	25.2	2.1	12.0
WSR16	20221115	Cloudy	Moderate	Mid-Ebb	Bottom	16	8:20:00 AM	9.0	8.2	33.0	25.1	2.2	7.0
WSR16	20221115	Cloudy	Moderate	Mid-Ebb	Bottom	16	8:20:00 AM	9.0	8.3	33.1	25.1	2.4	10.0
WSR33	20221115	Cloudy	Moderate	Mid-Ebb	Surface	1	9:10:00 AM	9.7	8.3	32.3	24.8	2.4	22.0
WSR33	20221115	Cloudy	Moderate	Mid-Ebb	Surface	1	9:10:00 AM	9.7	8.3	32.4	24.9	2.3	21.0
WSR33	20221115	Cloudy	Moderate	Mid-Ebb	Middle	4	9:09:00 AM	9.7	8.3	32.2	24.8	2.2	17.0
WSR33	20221115	Cloudy	Moderate	Mid-Ebb	Middle	4	9:09:00 AM	9.8	8.3	32.4	24.9	2.3	20.0
WSR33	20221115	Cloudy	Moderate	Mid-Ebb	Bottom	6	9:08:00 AM	9.6	8.3	32.3	24.8	2.5	20.0
WSR33	20221115	Cloudy	Moderate	Mid-Ebb	Bottom	6	9:08:00 AM	9.8	8.3	32.2	24.8	2.4	20.0
WSR36	20221115	Cloudy	Moderate	Mid-Ebb	Surface	1	8:56:00 AM	9.3	8.3	32.7	24.9	2.1	7.0
WSR36	20221115	Cloudy	Moderate	Mid-Ebb	Surface	1	8:56:00 AM	9.2	8.3	33.0	24.9	2.1	5.0
WSR36	20221115	Cloudy	Moderate	Mid-Ebb	Middle	3	8:56:00 AM	9.2	8.4	32.8	24.9	2.1	20.0
WSR36	20221115	Cloudy	Moderate	Mid-Ebb	Middle	3	8:56:00 AM	9.2	8.3	32.9	24.9	2.2	20.0
WSR36	20221115	Cloudy	Moderate	Mid-Ebb	Bottom	6	8:55:00 AM	9.2	8.3	32.9	24.9	2.4	20.0
WSR36	20221115	Cloudy	Moderate	Mid-Ebb	Bottom	6	8:55:00 AM	9.3	8.3	32.9	24.9	2.3	20.0
WSR37	20221115	Cloudy	Moderate	Mid-Ebb	Surface	1	8:43:00 AM	9.2	8.3	32.3	24.5	2.2	21.0
WSR37	20221115	Cloudy	Moderate	Mid-Ebb	Surface	1	8:43:00 AM	9.1	8.3	32.4	24.4	2.1	23.0
WSR37	20221115	Cloudy	Moderate	Mid-Ebb	Middle	4	8:42:00 AM	9.1	8.3	32.2	24.4	2.2	18.0
WSR37	20221115	Cloudy	Moderate	Mid-Ebb	Middle	4	8:42:00 AM	9.2	8.3	32.4	24.5	2.3	21.0
WSR37	20221115	Cloudy	Moderate	Mid-Ebb	Bottom	7	8:41:00 AM	9.2	8.3	32.2	24.5	2.0	20.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR37	20221115	Cloudy	Moderate	Mid-Ebb	Bottom	7	8:41:00 AM	9.2	8.3	32.3	24.4	2.1	21.0
CE	20221117	Cloudy	Moderate	Mid-Ebb	Surface	1	8:02:00 AM	8.8	8.3	32.8	25.0	2.8	5.0
CE	20221117	Cloudy	Moderate	Mid-Ebb	Surface	1	8:02:00 AM	8.8	8.3	32.8	25.0	2.7	3.0
CE	20221117	Cloudy	Moderate	Mid-Ebb	Middle	11	8:01:00 AM	8.8	8.3	32.8	25.0	3.0	8.0
CE	20221117	Cloudy	Moderate	Mid-Ebb	Middle	11	8:01:00 AM	8.8	8.3	32.9	25.1	2.8	8.0
CE	20221117	Cloudy	Moderate	Mid-Ebb	Bottom	21	8:00:00 AM	8.8	8.3	32.8	24.9	3.1	6.0
CE	20221117	Cloudy	Moderate	Mid-Ebb	Bottom	21	8:00:00 AM	8.8	8.3	32.8	24.9	3.3	8.0
CF	20221117	Cloudy	Moderate	Mid-Ebb	Surface	1	10:37:00 AM	9.1	8.3	32.5	25.4	2.9	9.0
CF	20221117	Cloudy	Moderate	Mid-Ebb	Surface	1	10:37:00 AM	8.9	8.3	32.5	25.4	2.5	9.0
CF	20221117	Cloudy	Moderate	Mid-Ebb	Middle	11	10:36:00 AM	8.9	8.3	32.5	25.4	2.8	7.0
CF	20221117	Cloudy	Moderate	Mid-Ebb	Middle	11	10:36:00 AM	8.9	8.3	32.5	25.3	2.9	6.0
CF	20221117	Cloudy	Moderate	Mid-Ebb	Bottom	20	10:35:00 AM	8.9	8.3	32.4	25.3	2.9	9.0
CF	20221117	Cloudy	Moderate	Mid-Ebb	Bottom	20	10:35:00 AM	8.9	8.4	32.5	25.4	2.9	8.0
WSR01	20221117	Cloudy	Moderate	Mid-Ebb	Surface	1	10:14:00 AM	8.8	8.3	33.0	25.2	2.0	3.0
WSR01	20221117	Cloudy	Moderate	Mid-Ebb	Surface	1	10:14:00 AM	8.9	8.3	32.9	25.1	2.1	4.0
WSR01	20221117	Cloudy	Moderate	Mid-Ebb	Middle	5	10:13:00 AM	9.0	8.2	33.0	25.2	2.3	9.0
WSR01	20221117	Cloudy	Moderate	Mid-Ebb	Middle	5	10:13:00 AM	8.9	8.2	33.1	25.1	2.4	5.0
WSR01	20221117	Cloudy	Moderate	Mid-Ebb	Bottom	8	10:12:00 AM	8.8	8.3	33.1	25.2	2.5	3.0
WSR01	20221117	Cloudy	Moderate	Mid-Ebb	Bottom	8	10:12:00 AM	8.8	8.2	32.9	25.0	2.6	2.5
WSR02	20221117	Cloudy	Moderate	Mid-Ebb	Surface	1	9:57:00 AM	9.5	8.3	32.9	25.6	1.8	10.0
WSR02	20221117	Cloudy	Moderate	Mid-Ebb	Surface	1	9:57:00 AM	9.5	8.3	32.9	25.5	1.8	14.0
WSR02	20221117	Cloudy	Moderate	Mid-Ebb	Middle	5	9:56:00 AM	9.6	8.3	33.1	25.5	1.8	3.0
WSR02	20221117	Cloudy	Moderate	Mid-Ebb	Middle	5	9:56:00 AM	9.4	8.3	32.9	25.4	1.7	2.5
WSR02	20221117	Cloudy	Moderate	Mid-Ebb	Bottom	9	9:55:00 AM	9.4	8.3	33.0	25.5	2.0	11.0
WSR02	20221117	Cloudy	Moderate	Mid-Ebb	Bottom	9	9:55:00 AM	9.5	8.3	33.1	25.4	2.0	7.0
WSR03	20221117	Cloudy	Moderate	Mid-Ebb	Surface	1	9:42:00 AM	9.4	8.3	33.2	25.4	2.3	3.0
WSR03	20221117	Cloudy	Moderate	Mid-Ebb	Surface	1	9:42:00 AM	9.4	8.3	33.1	25.3	2.4	2.5
WSR03	20221117	Cloudy	Moderate	Mid-Ebb	Middle	4	9:41:00 AM	9.3	8.3	33.3	25.3	1.9	3.0
WSR03	20221117	Cloudy	Moderate	Mid-Ebb	Middle	4	9:41:00 AM	9.4	8.2	33.2	25.4	2.0	4.0
WSR03	20221117	Cloudy	Moderate	Mid-Ebb	Bottom	8	9:40:00 AM	9.3	8.3	33.1	25.3	2.1	7.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR03	20221117	Cloudy	Moderate	Mid-Ebb	Bottom	8	9:40:00 AM	9.2	8.3	33.2	25.4	1.9	6.0
WSR04	20221117	Cloudy	Moderate	Mid-Ebb	Surface	1	9:30:00 AM	8.9	8.2	33.4	25.1	2.0	10.0
WSR04	20221117	Cloudy	Moderate	Mid-Ebb	Surface	1	9:30:00 AM	9.1	8.2	33.3	25.1	2.3	8.0
WSR04	20221117	Cloudy	Moderate	Mid-Ebb	Middle	4	9:29:00 AM	9.0	8.2	33.3	25.0	2.3	13.0
WSR04	20221117	Cloudy	Moderate	Mid-Ebb	Middle	4	9:29:00 AM	8.9	8.2	33.4	25.2	2.3	13.0
WSR04	20221117	Cloudy	Moderate	Mid-Ebb	Bottom	7	9:28:00 AM	9.0	8.2	33.4	25.0	2.3	9.0
WSR04	20221117	Cloudy	Moderate	Mid-Ebb	Bottom	7	9:28:00 AM	9.1	8.2	33.4	25.2	2.3	10.0
WSR16	20221117	Cloudy	Moderate	Mid-Ebb	Surface	1	8:24:00 AM	9.5	8.3	32.7	24.9	2.2	14.0
WSR16	20221117	Cloudy	Moderate	Mid-Ebb	Surface	1	8:24:00 AM	9.5	8.3	32.8	25.0	2.4	13.0
WSR16	20221117	Cloudy	Moderate	Mid-Ebb	Middle	8	8:23:00 AM	9.5	8.3	32.6	24.9	2.2	14.0
WSR16	20221117	Cloudy	Moderate	Mid-Ebb	Middle	8	8:23:00 AM	9.5	8.4	32.7	24.9	2.4	14.0
WSR16	20221117	Cloudy	Moderate	Mid-Ebb	Bottom	16	8:22:00 AM	9.5	8.3	32.7	24.9	2.6	3.0
WSR16	20221117	Cloudy	Moderate	Mid-Ebb	Bottom	16	8:22:00 AM	9.6	8.3	32.7	25.1	2.4	3.0
WSR33	20221117	Cloudy	Moderate	Mid-Ebb	Surface	1	9:16:00 AM	9.0	8.3	33.0	24.8	2.3	8.0
WSR33	20221117	Cloudy	Moderate	Mid-Ebb	Surface	1	9:16:00 AM	8.8	8.3	32.9	24.9	2.3	7.0
WSR33	20221117	Cloudy	Moderate	Mid-Ebb	Middle	4	9:15:00 AM	8.8	8.3	32.9	24.8	2.4	7.0
WSR33	20221117	Cloudy	Moderate	Mid-Ebb	Middle	4	9:15:00 AM	8.9	8.3	33.1	24.8	2.2	8.0
WSR33	20221117	Cloudy	Moderate	Mid-Ebb	Bottom	7	9:14:00 AM	8.9	8.3	33.0	24.8	2.3	6.0
WSR33	20221117	Cloudy	Moderate	Mid-Ebb	Bottom	7	9:14:00 AM	8.9	8.4	32.9	24.8	2.4	9.0
WSR36	20221117	Cloudy	Moderate	Mid-Ebb	Surface	1	9:01:00 AM	8.6	8.2	33.4	25.2	2.1	8.0
WSR36	20221117	Cloudy	Moderate	Mid-Ebb	Surface	1	9:01:00 AM	8.8	8.2	33.4	25.3	2.3	8.0
WSR36	20221117	Cloudy	Moderate	Mid-Ebb	Middle	4	9:01:00 AM	8.8	8.3	33.5	25.3	2.2	9.0
WSR36	20221117	Cloudy	Moderate	Mid-Ebb	Middle	4	9:01:00 AM	8.7	8.3	33.6	25.4	2.1	8.0
WSR36	20221117	Cloudy	Moderate	Mid-Ebb	Bottom	6	9:00:00 AM	8.7	8.3	33.6	25.3	2.3	9.0
WSR36	20221117	Cloudy	Moderate	Mid-Ebb	Bottom	6	9:00:00 AM	8.7	8.2	33.6	25.2	2.2	6.0
WSR37	20221117	Cloudy	Moderate	Mid-Ebb	Surface	1	8:46:00 AM	8.8	8.4	33.2	24.8	2.0	7.0
WSR37	20221117	Cloudy	Moderate	Mid-Ebb	Surface	1	8:46:00 AM	8.9	8.4	33.3	24.9	2.3	8.0
WSR37	20221117	Cloudy	Moderate	Mid-Ebb	Middle	4	8:45:00 AM	8.8	8.3	33.3	24.8	2.3	7.0
WSR37	20221117	Cloudy	Moderate	Mid-Ebb	Middle	4	8:45:00 AM	8.8	8.3	33.3	24.8	2.4	8.0
WSR37	20221117	Cloudy	Moderate	Mid-Ebb	Bottom	8	8:44:00 AM	8.8	8.4	33.3	24.9	2.4	9.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR37	20221117	Cloudy	Moderate	Mid-Ebb	Bottom	8	8:44:00 AM	8.9	8.4	33.3	24.8	2.2	6.0
CE	20221119	Cloudy	Moderate	Mid-Ebb	Surface	1	8:02:00 AM	9.1	8.4	33.8	25.4	3.0	19.0
CE	20221119	Cloudy	Moderate	Mid-Ebb	Surface	1	8:02:00 AM	9.0	8.3	33.8	25.5	3.2	14.0
CE	20221119	Cloudy	Moderate	Mid-Ebb	Middle	11	8:01:00 AM	9.3	8.4	33.5	25.4	3.3	2.5
CE	20221119	Cloudy	Moderate	Mid-Ebb	Middle	11	8:01:00 AM	9.1	8.3	33.6	25.5	3.1	4.0
CE	20221119	Cloudy	Moderate	Mid-Ebb	Bottom	21	8:00:00 AM	9.1	8.3	33.5	25.4	3.5	8.0
CE	20221119	Cloudy	Moderate	Mid-Ebb	Bottom	21	8:00:00 AM	9.2	8.3	33.5	25.5	3.2	4.0
CF	20221119	Cloudy	Moderate	Mid-Ebb	Surface	1	10:36:00 AM	8.8	8.2	33.5	25.7	2.8	11.0
CF	20221119	Cloudy	Moderate	Mid-Ebb	Surface	1	10:36:00 AM	8.8	8.3	33.4	25.8	2.8	15.0
CF	20221119	Cloudy	Moderate	Mid-Ebb	Middle	10	10:35:00 AM	8.8	8.2	33.3	25.7	2.6	5.0
CF	20221119	Cloudy	Moderate	Mid-Ebb	Middle	10	10:35:00 AM	9.0	8.2	33.3	25.7	2.7	5.0
CF	20221119	Cloudy	Moderate	Mid-Ebb	Bottom	19	10:34:00 AM	8.9	8.2	33.4	25.8	2.7	5.0
CF	20221119	Cloudy	Moderate	Mid-Ebb	Bottom	19	10:34:00 AM	8.8	8.3	33.3	25.7	2.7	3.0
WSR01	20221119	Cloudy	Moderate	Mid-Ebb	Surface	1	10:12:00 AM	9.2	8.3	34.0	25.4	2.0	8.0
WSR01	20221119	Cloudy	Moderate	Mid-Ebb	Surface	1	10:12:00 AM	9.2	8.3	33.9	25.4	2.0	11.0
WSR01	20221119	Cloudy	Moderate	Mid-Ebb	Middle	4	10:11:00 AM	9.1	8.3	34.0	25.4	1.9	8.0
WSR01	20221119	Cloudy	Moderate	Mid-Ebb	Middle	4	10:11:00 AM	9.2	8.3	34.0	25.4	2.2	8.0
WSR01	20221119	Cloudy	Moderate	Mid-Ebb	Bottom	7	10:10:00 AM	9.3	8.3	33.9	25.4	2.0	9.0
WSR01	20221119	Cloudy	Moderate	Mid-Ebb	Bottom	7	10:10:00 AM	9.1	8.3	33.9	25.4	2.1	6.0
WSR02	20221119	Cloudy	Moderate	Mid-Ebb	Surface	1	9:53:00 AM	8.8	8.3	33.6	25.9	1.7	5.0
WSR02	20221119	Cloudy	Moderate	Mid-Ebb	Surface	1	9:53:00 AM	9.0	8.3	33.7	25.8	1.7	4.0
WSR02	20221119	Cloudy	Moderate	Mid-Ebb	Middle	5	9:52:00 AM	8.8	8.4	33.7	25.9	1.8	4.0
WSR02	20221119	Cloudy	Moderate	Mid-Ebb	Middle	5	9:52:00 AM	8.8	8.3	33.9	25.9	2.0	3.0
WSR02	20221119	Cloudy	Moderate	Mid-Ebb	Bottom	8	9:51:00 AM	9.0	8.3	33.8	25.9	1.8	10.0
WSR02	20221119	Cloudy	Moderate	Mid-Ebb	Bottom	8	9:51:00 AM	9.0	8.3	33.8	25.9	1.8	7.0
WSR03	20221119	Cloudy	Moderate	Mid-Ebb	Surface	1	9:38:00 AM	9.1	8.3	33.6	25.6	2.4	7.0
WSR03	20221119	Cloudy	Moderate	Mid-Ebb	Surface	1	9:38:00 AM	9.1	8.3	33.7	25.6	2.4	6.0
WSR03	20221119	Cloudy	Moderate	Mid-Ebb	Middle	4	9:37:00 AM	9.0	8.3	33.7	25.6	2.0	6.0
WSR03	20221119	Cloudy	Moderate	Mid-Ebb	Middle	4	9:37:00 AM	9.1	8.3	33.5	25.6	1.9	9.0
WSR03	20221119	Cloudy	Moderate	Mid-Ebb	Bottom	8	9:36:00 AM	9.0	8.3	33.7	25.6	2.0	2.5

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR03	20221119	Cloudy	Moderate	Mid-Ebb	Bottom	8	9:36:00 AM	9.2	8.3	33.7	25.6	2.2	3.0
WSR04	20221119	Cloudy	Moderate	Mid-Ebb	Surface	1	9:27:00 AM	9.3	8.2	33.4	25.5	2.5	11.0
WSR04	20221119	Cloudy	Moderate	Mid-Ebb	Surface	1	9:27:00 AM	9.0	8.2	33.5	25.6	2.5	10.0
WSR04	20221119	Cloudy	Moderate	Mid-Ebb	Middle	3	9:26:00 AM	9.2	8.2	33.6	25.5	2.2	5.0
WSR04	20221119	Cloudy	Moderate	Mid-Ebb	Middle	3	9:26:00 AM	9.2	8.2	33.6	25.5	2.3	7.0
WSR04	20221119	Cloudy	Moderate	Mid-Ebb	Bottom	6	9:25:00 AM	9.2	8.2	33.6	25.6	2.0	11.0
WSR04	20221119	Cloudy	Moderate	Mid-Ebb	Bottom	6	9:25:00 AM	9.2	8.3	33.6	25.6	2.1	11.0
WSR16	20221119	Cloudy	Moderate	Mid-Ebb	Surface	1	8:24:00 AM	8.8	8.2	33.1	25.8	2.2	2.5
WSR16	20221119	Cloudy	Moderate	Mid-Ebb	Surface	1	8:24:00 AM	8.8	8.2	32.9	25.8	2.3	2.5
WSR16	20221119	Cloudy	Moderate	Mid-Ebb	Middle	8	8:23:00 AM	8.8	8.2	32.9	25.7	2.1	4.0
WSR16	20221119	Cloudy	Moderate	Mid-Ebb	Middle	8	8:23:00 AM	8.9	8.3	33.2	25.7	2.4	3.0
WSR16	20221119	Cloudy	Moderate	Mid-Ebb	Bottom	15	8:22:00 AM	8.6	8.2	32.9	25.8	2.2	12.0
WSR16	20221119	Cloudy	Moderate	Mid-Ebb	Bottom	15	8:22:00 AM	8.7	8.3	33.1	25.8	2.3	12.0
WSR33	20221119	Cloudy	Moderate	Mid-Ebb	Surface	1	9:12:00 AM	8.4	8.3	33.8	25.5	2.0	8.0
WSR33	20221119	Cloudy	Moderate	Mid-Ebb	Surface	1	9:12:00 AM	8.3	8.3	33.7	25.4	2.2	8.0
WSR33	20221119	Cloudy	Moderate	Mid-Ebb	Middle	4	9:11:00 AM	8.3	8.3	33.7	25.4	1.8	9.0
WSR33	20221119	Cloudy	Moderate	Mid-Ebb	Middle	4	9:11:00 AM	8.4	8.3	33.8	25.5	1.8	9.0
WSR33	20221119	Cloudy	Moderate	Mid-Ebb	Bottom	6	9:10:00 AM	8.5	8.3	33.7	25.5	1.9	5.0
WSR33	20221119	Cloudy	Moderate	Mid-Ebb	Bottom	6	9:10:00 AM	8.3	8.3	33.8	25.5	2.0	6.0
WSR36	20221119	Cloudy	Moderate	Mid-Ebb	Surface	1	8:58:00 AM	8.7	8.3	33.8	25.6	2.4	6.0
WSR36	20221119	Cloudy	Moderate	Mid-Ebb	Surface	1	8:58:00 AM	8.9	8.3	33.9	25.5	2.4	7.0
WSR36	20221119	Cloudy	Moderate	Mid-Ebb	Middle	4	8:58:00 AM	8.7	8.3	33.8	25.6	2.3	13.0
WSR36	20221119	Cloudy	Moderate	Mid-Ebb	Middle	4	8:58:00 AM	8.9	8.3	34.0	25.6	2.5	12.0
WSR36	20221119	Cloudy	Moderate	Mid-Ebb	Bottom	6	8:57:00 AM	8.7	8.3	34.0	25.6	2.4	2.5
WSR36	20221119	Cloudy	Moderate	Mid-Ebb	Bottom	6	8:57:00 AM	8.8	8.3	33.7	25.5	2.4	2.5
WSR37	20221119	Cloudy	Moderate	Mid-Ebb	Surface	1	8:45:00 AM	9.0	8.3	33.1	25.6	2.2	3.0
WSR37	20221119	Cloudy	Moderate	Mid-Ebb	Surface	1	8:45:00 AM	9.2	8.3	33.1	25.7	2.3	2.5
WSR37	20221119	Cloudy	Moderate	Mid-Ebb	Middle	4	8:44:00 AM	9.1	8.3	33.0	25.7	2.0	2.5
WSR37	20221119	Cloudy	Moderate	Mid-Ebb	Middle	4	8:44:00 AM	9.2	8.3	33.2	25.7	2.2	2.5
WSR37	20221119	Cloudy	Moderate	Mid-Ebb	Bottom	7	8:43:00 AM	9.3	8.4	33.2	25.7	2.0	8.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR37	20221119	Cloudy	Moderate	Mid-Ebb	Bottom	7	8:43:00 AM	9.2	8.3	33.1	25.6	2.3	6.0
CE	20221122	Cloudy	Moderate	Mid-Ebb	Surface	1	9:12:00 AM	8.8	8.3	33.8	25.3	3.3	6.0
CE	20221122	Cloudy	Moderate	Mid-Ebb	Surface	1	9:12:00 AM	8.8	8.3	33.7	25.1	2.9	6.0
CE	20221122	Cloudy	Moderate	Mid-Ebb	Middle	10	9:11:00 AM	8.8	8.3	33.8	25.2	3.3	6.0
CE	20221122	Cloudy	Moderate	Mid-Ebb	Middle	10	9:11:00 AM	8.9	8.3	33.7	25.1	3.2	5.0
CE	20221122	Cloudy	Moderate	Mid-Ebb	Bottom	20	9:10:00 AM	8.7	8.3	33.7	25.2	3.4	4.0
CE	20221122	Cloudy	Moderate	Mid-Ebb	Bottom	20	9:10:00 AM	8.8	8.3	33.8	25.1	3.5	3.0
CF	20221122	Cloudy	Moderate	Mid-Ebb	Surface	1	11:59:00 AM	9.2	8.3	33.2	25.4	2.1	2.5
CF	20221122	Cloudy	Moderate	Mid-Ebb	Surface	1	11:59:00 AM	9.1	8.4	33.3	25.4	1.9	2.5
CF	20221122	Cloudy	Moderate	Mid-Ebb	Middle	11	11:58:00 AM	9.2	8.3	33.2	25.3	1.8	3.0
CF	20221122	Cloudy	Moderate	Mid-Ebb	Middle	11	11:58:00 AM	9.2	8.3	33.2	25.4	2.0	5.0
CF	20221122	Cloudy	Moderate	Mid-Ebb	Bottom	20	11:57:00 AM	9.2	8.3	33.1	25.3	2.9	9.0
CF	20221122	Cloudy	Moderate	Mid-Ebb	Bottom	20	11:57:00 AM	9.2	8.4	33.3	25.3	3.1	7.0
WSR01	20221122	Cloudy	Moderate	Mid-Ebb	Surface	1	11:36:00 AM	8.7	8.3	33.0	25.2	2.3	7.0
WSR01	20221122	Cloudy	Moderate	Mid-Ebb	Surface	1	11:36:00 AM	8.6	8.3	33.0	25.3	2.1	9.0
WSR01	20221122	Cloudy	Moderate	Mid-Ebb	Middle	5	11:35:00 AM	8.6	8.3	33.1	25.2	2.5	6.0
WSR01	20221122	Cloudy	Moderate	Mid-Ebb	Middle	5	11:35:00 AM	8.7	8.3	33.0	25.2	2.1	6.0
WSR01	20221122	Cloudy	Moderate	Mid-Ebb	Bottom	8	11:34:00 AM	8.7	8.3	33.0	25.2	2.2	10.0
WSR01	20221122	Cloudy	Moderate	Mid-Ebb	Bottom	8	11:34:00 AM	8.6	8.3	33.1	25.2	2.2	13.0
WSR02	20221122	Cloudy	Moderate	Mid-Ebb	Surface	1	11:17:00 AM	9.1	8.3	33.1	25.3	2.3	9.0
WSR02	20221122	Cloudy	Moderate	Mid-Ebb	Surface	1	11:17:00 AM	9.1	8.3	33.2	25.1	2.3	5.0
WSR02	20221122	Cloudy	Moderate	Mid-Ebb	Middle	5	11:16:00 AM	9.1	8.3	33.3	25.2	2.3	10.0
WSR02	20221122	Cloudy	Moderate	Mid-Ebb	Middle	5	11:16:00 AM	9.1	8.3	33.3	25.2	2.2	7.0
WSR02	20221122	Cloudy	Moderate	Mid-Ebb	Bottom	9	11:15:00 AM	9.0	8.3	33.3	25.2	2.4	6.0
WSR02	20221122	Cloudy	Moderate	Mid-Ebb	Bottom	9	11:15:00 AM	9.0	8.3	33.3	25.3	2.4	6.0
WSR03	20221122	Cloudy	Moderate	Mid-Ebb	Surface	1	11:02:00 AM	9.2	8.3	33.4	25.7	2.4	18.0
WSR03	20221122	Cloudy	Moderate	Mid-Ebb	Surface	1	11:02:00 AM	9.2	8.3	33.5	25.7	2.4	17.0
WSR03	20221122	Cloudy	Moderate	Mid-Ebb	Middle	4	11:01:00 AM	9.2	8.3	33.5	25.6	2.2	7.0
WSR03	20221122	Cloudy	Moderate	Mid-Ebb	Middle	4	11:01:00 AM	9.3	8.3	33.4	25.6	2.4	6.0
WSR03	20221122	Cloudy	Moderate	Mid-Ebb	Bottom	7	11:00:00 AM	9.2	8.3	33.4	25.6	2.2	8.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR03	20221122	Cloudy	Moderate	Mid-Ebb	Bottom	7	11:00:00 AM	9.3	8.3	33.4	25.7	2.3	7.0
WSR04	20221122	Cloudy	Moderate	Mid-Ebb	Surface	1	10:38:00 AM	8.5	8.3	33.5	25.4	2.1	8.0
WSR04	20221122	Cloudy	Moderate	Mid-Ebb	Surface	1	10:38:00 AM	8.5	8.3	33.6	25.4	2.3	8.0
WSR04	20221122	Cloudy	Moderate	Mid-Ebb	Middle	4	10:37:00 AM	8.5	8.3	33.6	25.4	2.5	3.0
WSR04	20221122	Cloudy	Moderate	Mid-Ebb	Middle	4	10:37:00 AM	8.4	8.3	33.5	25.4	2.3	5.0
WSR04	20221122	Cloudy	Moderate	Mid-Ebb	Bottom	6	10:36:00 AM	8.4	8.3	33.6	25.3	2.3	8.0
WSR04	20221122	Cloudy	Moderate	Mid-Ebb	Bottom	6	10:36:00 AM	8.4	8.3	33.6	25.4	2.4	8.0
WSR16	20221122	Cloudy	Moderate	Mid-Ebb	Surface	1	9:35:00 AM	9.4	8.4	33.6	25.1	2.4	16.0
WSR16	20221122	Cloudy	Moderate	Mid-Ebb	Surface	1	9:35:00 AM	9.4	8.4	33.5	25.2	2.4	17.0
WSR16	20221122	Cloudy	Moderate	Mid-Ebb	Middle	8	9:34:00 AM	9.4	8.4	33.6	25.2	2.2	8.0
WSR16	20221122	Cloudy	Moderate	Mid-Ebb	Middle	8	9:34:00 AM	9.4	8.4	33.5	25.1	1.9	5.0
WSR16	20221122	Cloudy	Moderate	Mid-Ebb	Bottom	16	9:33:00 AM	9.4	8.4	33.6	25.2	2.1	7.0
WSR16	20221122	Cloudy	Moderate	Mid-Ebb	Bottom	16	9:33:00 AM	9.4	8.4	33.6	25.2	1.9	10.0
WSR33	20221122	Cloudy	Moderate	Mid-Ebb	Surface	1	10:25:00 AM	9.3	8.3	33.2	25.5	2.1	6.0
WSR33	20221122	Cloudy	Moderate	Mid-Ebb	Surface	1	10:25:00 AM	9.2	8.3	33.3	25.5	2.1	5.0
WSR33	20221122	Cloudy	Moderate	Mid-Ebb	Middle	4	10:24:00 AM	9.2	8.3	33.2	25.4	1.8	7.0
WSR33	20221122	Cloudy	Moderate	Mid-Ebb	Middle	4	10:24:00 AM	9.2	8.3	33.2	25.4	1.9	9.0
WSR33	20221122	Cloudy	Moderate	Mid-Ebb	Bottom	6	10:23:00 AM	9.2	8.2	33.2	25.4	1.3	8.0
WSR33	20221122	Cloudy	Moderate	Mid-Ebb	Bottom	6	10:23:00 AM	9.2	8.3	33.2	25.4	1.4	7.0
WSR36	20221122	Cloudy	Moderate	Mid-Ebb	Surface	1	10:11:00 AM	9.0	8.3	32.9	25.3	2.4	9.0
WSR36	20221122	Cloudy	Moderate	Mid-Ebb	Surface	1	10:11:00 AM	8.9	8.4	32.9	25.3	2.4	5.0
WSR36	20221122	Cloudy	Moderate	Mid-Ebb	Middle	3	10:11:00 AM	9.0	8.3	33.0	25.2	2.3	13.0
WSR36	20221122	Cloudy	Moderate	Mid-Ebb	Middle	3	10:11:00 AM	9.0	8.4	32.9	25.3	2.4	14.0
WSR36	20221122	Cloudy	Moderate	Mid-Ebb	Bottom	6	10:10:00 AM	8.9	8.3	32.9	25.3	2.2	15.0
WSR36	20221122	Cloudy	Moderate	Mid-Ebb	Bottom	6	10:10:00 AM	9.0	8.4	32.8	25.3	1.9	14.0
WSR37	20221122	Cloudy	Moderate	Mid-Ebb	Surface	1	9:57:00 AM	8.6	8.3	33.1	25.2	2.3	16.0
WSR37	20221122	Cloudy	Moderate	Mid-Ebb	Surface	1	9:57:00 AM	8.6	8.3	33.0	25.3	2.3	19.0
WSR37	20221122	Cloudy	Moderate	Mid-Ebb	Middle	4	9:56:00 AM	8.6	8.3	33.0	25.3	2.2	13.0
WSR37	20221122	Cloudy	Moderate	Mid-Ebb	Middle	4	9:56:00 AM	8.6	8.3	33.1	25.3	3.0	11.0
WSR37	20221122	Cloudy	Moderate	Mid-Ebb	Bottom	7	9:55:00 AM	8.6	8.3	33.0	25.2	2.5	4.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR37	20221122	Cloudy	Moderate	Mid-Ebb	Bottom	7	9:55:00 AM	8.5	8.3	33.0	25.3	2.1	6.0
CE	20221124	Cloudy	Moderate	Mid-Ebb	Surface	1	10:37:00 AM	9.3	8.3	33.6	24.4	2.9	5.0
CE	20221124	Cloudy	Moderate	Mid-Ebb	Surface	1	10:37:00 AM	9.2	8.3	33.6	24.4	2.7	8.0
CE	20221124	Cloudy	Moderate	Mid-Ebb	Middle	11	10:36:00 AM	9.3	8.3	33.8	24.5	3.0	8.0
CE	20221124	Cloudy	Moderate	Mid-Ebb	Middle	11	10:36:00 AM	9.3	8.3	33.5	24.5	3.0	7.0
CE	20221124	Cloudy	Moderate	Mid-Ebb	Bottom	20	10:35:00 AM	9.3	8.3	33.5	24.5	3.0	9.0
CE	20221124	Cloudy	Moderate	Mid-Ebb	Bottom	20	10:35:00 AM	9.3	8.3	33.7	24.5	3.2	7.0
CF	20221124	Cloudy	Moderate	Mid-Ebb	Surface	1	1:15:00 PM	9.0	8.2	33.3	24.4	2.4	6.0
CF	20221124	Cloudy	Moderate	Mid-Ebb	Surface	1	1:15:00 PM	8.9	8.2	33.4	24.4	2.5	7.0
CF	20221124	Cloudy	Moderate	Mid-Ebb	Middle	10	1:14:00 PM	9.0	8.2	33.4	24.3	2.5	4.0
CF	20221124	Cloudy	Moderate	Mid-Ebb	Middle	10	1:14:00 PM	8.9	8.2	33.4	24.3	2.5	2.5
CF	20221124	Cloudy	Moderate	Mid-Ebb	Bottom	19	1:13:00 PM	8.9	8.2	33.3	24.3	2.7	3.0
CF	20221124	Cloudy	Moderate	Mid-Ebb	Bottom	19	1:13:00 PM	8.9	8.3	33.3	24.3	2.8	3.0
WSR01	20221124	Cloudy	Moderate	Mid-Ebb	Surface	1	12:52:00 PM	8.9	8.3	33.4	24.7	2.5	2.5
WSR01	20221124	Cloudy	Moderate	Mid-Ebb	Surface	1	12:52:00 PM	8.9	8.3	33.2	24.7	2.1	4.0
WSR01	20221124	Cloudy	Moderate	Mid-Ebb	Middle	5	12:51:00 PM	8.9	8.3	33.2	24.7	2.2	6.0
WSR01	20221124	Cloudy	Moderate	Mid-Ebb	Middle	5	12:51:00 PM	8.8	8.3	33.2	24.7	2.5	9.0
WSR01	20221124	Cloudy	Moderate	Mid-Ebb	Bottom	8	12:50:00 PM	8.9	8.3	33.2	24.7	2.1	2.5
WSR01	20221124	Cloudy	Moderate	Mid-Ebb	Bottom	8	12:50:00 PM	9.0	8.3	33.1	24.7	2.1	2.5
WSR02	20221124	Cloudy	Moderate	Mid-Ebb	Surface	1	12:33:00 PM	8.9	8.3	33.0	24.5	2.4	4.0
WSR02	20221124	Cloudy	Moderate	Mid-Ebb	Surface	1	12:33:00 PM	8.8	8.2	33.2	24.5	2.3	2.5
WSR02	20221124	Cloudy	Moderate	Mid-Ebb	Middle	5	12:32:00 PM	9.0	8.2	33.1	24.6	2.2	2.5
WSR02	20221124	Cloudy	Moderate	Mid-Ebb	Middle	5	12:32:00 PM	9.0	8.3	33.0	24.6	2.1	4.0
WSR02	20221124	Cloudy	Moderate	Mid-Ebb	Bottom	8	12:31:00 PM	8.9	8.2	32.9	24.5	2.0	3.0
WSR02	20221124	Cloudy	Moderate	Mid-Ebb	Bottom	8	12:31:00 PM	8.9	8.2	33.1	24.5	2.3	2.5
WSR03	20221124	Cloudy	Moderate	Mid-Ebb	Surface	1	12:17:00 PM	8.8	8.2	33.3	24.7	2.2	3.0
WSR03	20221124	Cloudy	Moderate	Mid-Ebb	Surface	1	12:17:00 PM	8.8	8.3	33.4	24.6	2.5	8.0
WSR03	20221124	Cloudy	Moderate	Mid-Ebb	Middle	4	12:16:00 PM	8.9	8.2	33.4	24.6	2.2	9.0
WSR03	20221124	Cloudy	Moderate	Mid-Ebb	Middle	4	12:16:00 PM	8.8	8.2	33.2	24.6	2.1	6.0
WSR03	20221124	Cloudy	Moderate	Mid-Ebb	Bottom	7	12:15:00 PM	8.8	8.2	33.2	24.6	1.9	18.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR03	20221124	Cloudy	Moderate	Mid-Ebb	Bottom	7	12:15:00 PM	8.8	8.3	33.2	24.7	2.1	15.0
WSR04	20221124	Cloudy	Moderate	Mid-Ebb	Surface	1	12:05:00 PM	9.3	8.3	32.9	24.2	2.3	11.0
WSR04	20221124	Cloudy	Moderate	Mid-Ebb	Surface	1	12:05:00 PM	9.4	8.3	33.1	24.3	2.6	11.0
WSR04	20221124	Cloudy	Moderate	Mid-Ebb	Middle	4	12:04:00 PM	9.3	8.3	32.9	24.2	2.1	15.0
WSR04	20221124	Cloudy	Moderate	Mid-Ebb	Middle	4	12:04:00 PM	9.3	8.3	33.0	24.2	2.1	17.0
WSR04	20221124	Cloudy	Moderate	Mid-Ebb	Bottom	6	12:03:00 PM	9.3	8.3	33.1	24.2	2.2	13.0
WSR04	20221124	Cloudy	Moderate	Mid-Ebb	Bottom	6	12:03:00 PM	9.3	8.3	33.0	24.3	2.4	15.0
WSR16	20221124	Cloudy	Moderate	Mid-Ebb	Surface	1	10:59:00 AM	8.4	8.4	33.7	24.0	2.0	16.0
WSR16	20221124	Cloudy	Moderate	Mid-Ebb	Surface	1	10:59:00 AM	8.5	8.3	33.7	24.0	2.1	16.0
WSR16	20221124	Cloudy	Moderate	Mid-Ebb	Middle	8	10:58:00 AM	8.5	8.3	33.6	24.0	2.0	10.0
WSR16	20221124	Cloudy	Moderate	Mid-Ebb	Middle	8	10:58:00 AM	8.5	8.4	33.8	24.0	2.2	11.0
WSR16	20221124	Cloudy	Moderate	Mid-Ebb	Bottom	15	10:57:00 AM	8.4	8.3	33.7	23.9	2.2	11.0
WSR16	20221124	Cloudy	Moderate	Mid-Ebb	Bottom	15	10:57:00 AM	8.5	8.4	33.6	24.0	2.2	12.0
WSR33	20221124	Cloudy	Moderate	Mid-Ebb	Surface	1	11:50:00 AM	9.3	8.2	32.9	24.5	2.4	15.0
WSR33	20221124	Cloudy	Moderate	Mid-Ebb	Surface	1	11:50:00 AM	9.3	8.3	33.0	24.5	2.1	14.0
WSR33	20221124	Cloudy	Moderate	Mid-Ebb	Middle	4	11:49:00 AM	9.3	8.2	33.2	24.6	2.4	13.0
WSR33	20221124	Cloudy	Moderate	Mid-Ebb	Middle	4	11:49:00 AM	9.4	8.3	33.1	24.5	2.4	11.0
WSR33	20221124	Cloudy	Moderate	Mid-Ebb	Bottom	7	11:48:00 AM	9.3	8.3	33.2	24.5	2.1	10.0
WSR33	20221124	Cloudy	Moderate	Mid-Ebb	Bottom	7	11:48:00 AM	9.3	8.3	33.0	24.6	2.3	10.0
WSR36	20221124	Cloudy	Moderate	Mid-Ebb	Surface	1	11:36:00 AM	8.7	8.2	33.5	24.7	2.1	10.0
WSR36	20221124	Cloudy	Moderate	Mid-Ebb	Surface	1	11:36:00 AM	8.7	8.2	33.5	24.7	2.4	7.0
WSR36	20221124	Cloudy	Moderate	Mid-Ebb	Middle	3	11:36:00 AM	8.8	8.2	33.6	24.7	2.1	7.0
WSR36	20221124	Cloudy	Moderate	Mid-Ebb	Middle	3	11:36:00 AM	8.8	8.3	33.4	24.7	2.4	5.0
WSR36	20221124	Cloudy	Moderate	Mid-Ebb	Bottom	6	11:35:00 AM	8.7	8.3	33.5	24.7	2.1	11.0
WSR36	20221124	Cloudy	Moderate	Mid-Ebb	Bottom	6	11:35:00 AM	8.7	8.2	33.5	24.7	2.2	11.0
WSR37	20221124	Cloudy	Moderate	Mid-Ebb	Surface	1	11:22:00 AM	9.0	8.3	33.1	24.3	2.0	8.0
WSR37	20221124	Cloudy	Moderate	Mid-Ebb	Surface	1	11:22:00 AM	8.9	8.3	33.1	24.3	2.1	8.0
WSR37	20221124	Cloudy	Moderate	Mid-Ebb	Middle	4	11:21:00 AM	8.9	8.3	32.9	24.4	2.1	13.0
WSR37	20221124	Cloudy	Moderate	Mid-Ebb	Middle	4	11:21:00 AM	9.0	8.3	33.2	24.4	2.4	14.0
WSR37	20221124	Cloudy	Moderate	Mid-Ebb	Bottom	7	11:20:00 AM	8.9	8.3	32.9	24.4	2.0	8.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	pН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR37	20221124	Cloudy	Moderate	Mid-Ebb	Bottom	7	11:20:00 AM	9.0	8.3	33.2	24.4	2.0	6.0
CE	20221126	Cloudy	Moderate	Mid-Ebb	Surface	1	11:54:00 AM	8.9	8.3	33.7	24.7	3.1	15.0
CE	20221126	Cloudy	Moderate	Mid-Ebb	Surface	1	11:54:00 AM	8.8	8.2	33.6	24.7	3.1	12.0
CE	20221126	Cloudy	Moderate	Mid-Ebb	Middle	12	11:53:00 AM	8.8	8.2	33.7	24.7	2.8	12.0
CE	20221126	Cloudy	Moderate	Mid-Ebb	Middle	12	11:53:00 AM	8.9	8.3	33.6	24.7	3.0	11.0
CE	20221126	Cloudy	Moderate	Mid-Ebb	Bottom	23	11:52:00 AM	8.8	8.3	33.7	24.6	3.2	3.0
CE	20221126	Cloudy	Moderate	Mid-Ebb	Bottom	23	11:52:00 AM	8.9	8.2	33.7	24.6	3.1	5.0
CF	20221126	Cloudy	Moderate	Mid-Ebb	Surface	1	2:28:00 PM	8.9	8.3	33.1	24.8	3.1	7.0
CF	20221126	Cloudy	Moderate	Mid-Ebb	Surface	1	2:28:00 PM	8.8	8.3	33.3	24.8	3.3	6.0
CF	20221126	Cloudy	Moderate	Mid-Ebb	Middle	10	2:27:00 PM	9.0	8.3	33.3	24.9	3.0	15.0
CF	20221126	Cloudy	Moderate	Mid-Ebb	Middle	10	2:27:00 PM	8.8	8.3	33.3	24.8	3.1	13.0
CF	20221126	Cloudy	Moderate	Mid-Ebb	Bottom	19	2:26:00 PM	8.8	8.3	33.2	24.9	3.1	13.0
CF	20221126	Cloudy	Moderate	Mid-Ebb	Bottom	19	2:26:00 PM	8.9	8.3	33.3	24.9	3.2	11.0
WSR01	20221126	Cloudy	Moderate	Mid-Ebb	Surface	1	2:04:00 PM	8.6	8.3	33.5	24.6	2.3	14.0
WSR01	20221126	Cloudy	Moderate	Mid-Ebb	Surface	1	2:04:00 PM	8.6	8.3	33.4	24.6	2.4	15.0
WSR01	20221126	Cloudy	Moderate	Mid-Ebb	Middle	5	2:03:00 PM	8.6	8.3	33.3	24.6	2.4	15.0
WSR01	20221126	Cloudy	Moderate	Mid-Ebb	Middle	5	2:03:00 PM	8.6	8.3	33.4	24.6	2.3	15.0
WSR01	20221126	Cloudy	Moderate	Mid-Ebb	Bottom	8	2:02:00 PM	8.5	8.3	33.3	24.6	2.0	14.0
WSR01	20221126	Cloudy	Moderate	Mid-Ebb	Bottom	8	2:02:00 PM	8.6	8.3	33.3	24.7	2.1	15.0
WSR02	20221126	Cloudy	Moderate	Mid-Ebb	Surface	1	1:47:00 PM	8.3	8.3	33.1	24.9	2.3	15.0
WSR02	20221126	Cloudy	Moderate	Mid-Ebb	Surface	1	1:47:00 PM	8.3	8.3	33.1	24.9	2.4	15.0
WSR02	20221126	Cloudy	Moderate	Mid-Ebb	Middle	5	1:46:00 PM	8.3	8.3	33.0	24.9	2.2	7.0
WSR02	20221126	Cloudy	Moderate	Mid-Ebb	Middle	5	1:46:00 PM	8.2	8.3	33.2	24.9	2.3	6.0
WSR02	20221126	Cloudy	Moderate	Mid-Ebb	Bottom	8	1:45:00 PM	8.3	8.3	33.0	25.0	2.2	7.0
WSR02	20221126	Cloudy	Moderate	Mid-Ebb	Bottom	8	1:45:00 PM	8.3	8.3	33.0	24.9	2.4	7.0
WSR03	20221126	Cloudy	Moderate	Mid-Ebb	Surface	1	1:33:00 PM	8.8	8.3	34.0	25.1	2.1	7.0
WSR03	20221126	Cloudy	Moderate	Mid-Ebb	Surface	1	1:33:00 PM	8.7	8.3	34.1	25.1	2.3	4.0
WSR03	20221126	Cloudy	Moderate	Mid-Ebb	Middle	4	1:32:00 PM	8.7	8.3	33.9	25.0	2.0	8.0
WSR03	20221126	Cloudy	Moderate	Mid-Ebb	Middle	4	1:32:00 PM	8.8	8.4	34.0	25.1	2.3	7.0
WSR03	20221126	Cloudy	Moderate	Mid-Ebb	Bottom	7	1:31:00 PM	8.7	8.4	33.9	25.1	2.1	10.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR03	20221126	Cloudy	Moderate	Mid-Ebb	Bottom	7	1:31:00 PM	8.7	8.4	33.9	25.1	2.4	11.0
WSR04	20221126	Cloudy	Moderate	Mid-Ebb	Surface	1	1:21:00 PM	9.0	8.2	33.2	24.7	2.2	13.0
WSR04	20221126	Cloudy	Moderate	Mid-Ebb	Surface	1	1:21:00 PM	8.8	8.2	33.2	24.6	2.2	11.0
WSR04	20221126	Cloudy	Moderate	Mid-Ebb	Middle	4	1:20:00 PM	8.7	8.2	33.4	24.7	2.3	6.0
WSR04	20221126	Cloudy	Moderate	Mid-Ebb	Middle	4	1:20:00 PM	8.8	8.3	33.3	24.7	2.3	7.0
WSR04	20221126	Cloudy	Moderate	Mid-Ebb	Bottom	6	1:19:00 PM	8.9	8.3	33.3	24.6	2.1	8.0
WSR04	20221126	Cloudy	Moderate	Mid-Ebb	Bottom	6	1:19:00 PM	9.0	8.3	33.4	24.6	2.1	6.0
WSR16	20221126	Cloudy	Moderate	Mid-Ebb	Surface	1	12:17:00 PM	8.6	8.3	33.5	24.7	2.0	9.0
WSR16	20221126	Cloudy	Moderate	Mid-Ebb	Surface	1	12:17:00 PM	8.6	8.3	33.6	24.7	2.2	8.0
WSR16	20221126	Cloudy	Moderate	Mid-Ebb	Middle	8	12:16:00 PM	8.5	8.3	33.5	24.8	2.0	6.0
WSR16	20221126	Cloudy	Moderate	Mid-Ebb	Middle	8	12:16:00 PM	8.6	8.2	33.5	24.8	2.4	5.0
WSR16	20221126	Cloudy	Moderate	Mid-Ebb	Bottom	15	12:15:00 PM	8.6	8.2	33.7	24.8	2.4	2.5
WSR16	20221126	Cloudy	Moderate	Mid-Ebb	Bottom	15	12:15:00 PM	8.6	8.3	33.5	24.8	2.4	2.5
WSR33	20221126	Cloudy	Moderate	Mid-Ebb	Surface	1	1:07:00 PM	8.3	8.3	33.3	25.4	2.2	2.5
WSR33	20221126	Cloudy	Moderate	Mid-Ebb	Surface	1	1:07:00 PM	8.3	8.3	33.3	25.4	2.4	3.0
WSR33	20221126	Cloudy	Moderate	Mid-Ebb	Middle	4	1:06:00 PM	8.3	8.3	33.3	25.4	2.0	7.0
WSR33	20221126	Cloudy	Moderate	Mid-Ebb	Middle	4	1:06:00 PM	8.3	8.3	33.5	25.4	2.3	4.0
WSR33	20221126	Cloudy	Moderate	Mid-Ebb	Bottom	6	1:05:00 PM	8.3	8.3	33.5	25.4	2.0	2.5
WSR33	20221126	Cloudy	Moderate	Mid-Ebb	Bottom	6	1:05:00 PM	8.3	8.3	33.4	25.4	2.2	2.5
WSR36	20221126	Cloudy	Moderate	Mid-Ebb	Surface	1	12:52:00 PM	8.5	8.2	33.6	24.7	2.1	8.0
WSR36	20221126	Cloudy	Moderate	Mid-Ebb	Surface	1	12:52:00 PM	8.4	8.2	33.3	24.8	2.5	10.0
WSR36	20221126	Cloudy	Moderate	Mid-Ebb	Middle	4	12:52:00 PM	8.5	8.2	33.5	24.8	2.4	7.0
WSR36	20221126	Cloudy	Moderate	Mid-Ebb	Middle	4	12:52:00 PM	8.4	8.2	33.4	24.7	2.5	8.0
WSR36	20221126	Cloudy	Moderate	Mid-Ebb	Bottom	6	12:51:00 PM	8.5	8.2	33.4	24.8	2.0	7.0
WSR36	20221126	Cloudy	Moderate	Mid-Ebb	Bottom	6	12:51:00 PM	8.5	8.2	33.5	24.8	2.3	7.0
WSR37	20221126	Cloudy	Moderate	Mid-Ebb	Surface	1	12:39:00 PM	8.3	8.2	33.2	25.3	2.3	2.5
WSR37	20221126	Cloudy	Moderate	Mid-Ebb	Surface	1	12:39:00 PM	8.2	8.2	33.3	25.2	2.5	2.5
WSR37	20221126	Cloudy	Moderate	Mid-Ebb	Middle	4	12:38:00 PM	8.3	8.2	33.1	25.2	2.1	2.5
WSR37	20221126	Cloudy	Moderate	Mid-Ebb	Middle	4	12:38:00 PM	8.3	8.2	33.2	25.2	2.3	4.0
WSR37	20221126	Cloudy	Moderate	Mid-Ebb	Bottom	7	12:37:00 PM	8.3	8.2	33.3	25.2	2.2	3.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR37	20221126	Cloudy	Moderate	Mid-Ebb	Bottom	7	12:37:00 PM	8.3	8.3	33.3	25.3	2.4	2.5
CE	20221128	Cloudy	Moderate	Mid-Ebb	Surface	1	1:47:00 PM	8.5	8.2	32.9	25.4	2.9	12.0
CE	20221128	Cloudy	Moderate	Mid-Ebb	Surface	1	1:47:00 PM	8.5	8.2	32.8	25.2	3.0	13.0
CE	20221128	Cloudy	Moderate	Mid-Ebb	Middle	11	1:46:00 PM	8.4	8.2	33.0	25.3	3.2	10.0
CE	20221128	Cloudy	Moderate	Mid-Ebb	Middle	11	1:46:00 PM	8.4	8.3	32.9	25.3	3.4	11.0
CE	20221128	Cloudy	Moderate	Mid-Ebb	Bottom	21	1:45:00 PM	8.6	8.2	33.0	25.3	3.2	6.0
CE	20221128	Cloudy	Moderate	Mid-Ebb	Bottom	21	1:45:00 PM	8.5	8.2	32.9	25.4	3.4	7.0
CF	20221128	Cloudy	Moderate	Mid-Ebb	Surface	1	4:22:00 PM	8.3	8.3	33.6	25.2	2.8	2.5
CF	20221128	Cloudy	Moderate	Mid-Ebb	Surface	1	4:22:00 PM	8.5	8.4	33.6	25.2	2.8	2.5
CF	20221128	Cloudy	Moderate	Mid-Ebb	Middle	11	4:21:00 PM	8.4	8.4	33.6	25.2	2.9	9.0
CF	20221128	Cloudy	Moderate	Mid-Ebb	Middle	11	4:21:00 PM	8.5	8.3	33.6	25.3	3.1	9.0
CF	20221128	Cloudy	Moderate	Mid-Ebb	Bottom	21	4:20:00 PM	8.5	8.4	33.6	25.2	2.7	7.0
CF	20221128	Cloudy	Moderate	Mid-Ebb	Bottom	21	4:20:00 PM	8.4	8.3	33.5	25.2	2.9	5.0
WSR01	20221128	Cloudy	Moderate	Mid-Ebb	Surface	1	3:59:00 PM	9.0	8.3	33.7	25.2	2.2	9.0
WSR01	20221128	Cloudy	Moderate	Mid-Ebb	Surface	1	3:59:00 PM	8.9	8.3	33.8	25.2	2.4	9.0
WSR01	20221128	Cloudy	Moderate	Mid-Ebb	Middle	4	3:58:00 PM	9.0	8.3	33.7	25.2	1.9	10.0
WSR01	20221128	Cloudy	Moderate	Mid-Ebb	Middle	4	3:58:00 PM	9.0	8.3	33.8	25.2	2.1	7.0
WSR01	20221128	Cloudy	Moderate	Mid-Ebb	Bottom	7	3:57:00 PM	9.0	8.3	33.7	25.2	2.0	7.0
WSR01	20221128	Cloudy	Moderate	Mid-Ebb	Bottom	7	3:57:00 PM	9.0	8.3	33.7	25.2	2.0	7.0
WSR02	20221128	Cloudy	Moderate	Mid-Ebb	Surface	1	3:40:00 PM	8.4	8.3	33.0	25.2	1.6	2.5
WSR02	20221128	Cloudy	Moderate	Mid-Ebb	Surface	1	3:40:00 PM	8.4	8.3	33.0	25.2	1.7	2.5
WSR02	20221128	Cloudy	Moderate	Mid-Ebb	Middle	5	3:39:00 PM	8.5	8.3	32.9	25.3	1.8	2.5
WSR02	20221128	Cloudy	Moderate	Mid-Ebb	Middle	5	3:39:00 PM	8.4	8.3	32.9	25.3	1.8	3.0
WSR02	20221128	Cloudy	Moderate	Mid-Ebb	Bottom	8	3:38:00 PM	8.3	8.3	33.0	25.3	2.1	8.0
WSR02	20221128	Cloudy	Moderate	Mid-Ebb	Bottom	8	3:38:00 PM	8.3	8.3	32.9	25.2	2.1	6.0
WSR03	20221128	Cloudy	Moderate	Mid-Ebb	Surface	1	3:24:00 PM	8.6	8.3	33.7	24.9	2.2	10.0
WSR03	20221128	Cloudy	Moderate	Mid-Ebb	Surface	1	3:24:00 PM	8.6	8.3	33.6	25.0	1.8	8.0
WSR03	20221128	Cloudy	Moderate	Mid-Ebb	Middle	4	3:23:00 PM	8.6	8.3	33.7	25.0	1.9	3.0
WSR03	20221128	Cloudy	Moderate	Mid-Ebb	Middle	4	3:23:00 PM	8.7	8.4	33.6	25.0	2.1	5.0
WSR03	20221128	Cloudy	Moderate	Mid-Ebb	Bottom	7	3:22:00 PM	8.6	8.3	33.7	25.0	1.9	8.0

Location	Date	Weather	Sea Condition	Tidal	Water Level	Depth (m)	Time	DO (mg/L)	рН	Sal (ppt)	Temp (oC)	Turbidty (NTU)	Suspended Solids (mg/L)
WSR03	20221128	Cloudy	Moderate	Mid-Ebb	Bottom	7	3:22:00 PM	8.6	8.3	33.6	24.9	1.9	8.0
WSR04	20221128	Cloudy	Moderate	Mid-Ebb	Surface	1	3:11:00 PM	9.1	8.4	32.6	24.8	2.2	6.0
WSR04	20221128	Cloudy	Moderate	Mid-Ebb	Surface	1	3:11:00 PM	9.1	8.4	32.8	24.8	2.3	7.0
WSR04	20221128	Cloudy	Moderate	Mid-Ebb	Middle	3	3:10:00 PM	9.1	8.4	32.7	24.8	2.4	12.0
WSR04	20221128	Cloudy	Moderate	Mid-Ebb	Middle	3	3:10:00 PM	9.1	8.3	32.7	24.8	2.3	10.0
WSR04	20221128	Cloudy	Moderate	Mid-Ebb	Bottom	6	3:09:00 PM	9.1	8.4	32.7	24.8	2.1	10.0
WSR04	20221128	Cloudy	Moderate	Mid-Ebb	Bottom	6	3:09:00 PM	9.1	8.4	32.7	24.9	2.1	9.0
WSR16	20221128	Cloudy	Moderate	Mid-Ebb	Surface	1	2:09:00 PM	9.0	8.4	33.5	25.4	2.1	5.0
WSR16	20221128	Cloudy	Moderate	Mid-Ebb	Surface	1	2:09:00 PM	9.1	8.4	33.6	25.4	2.1	6.0
WSR16	20221128	Cloudy	Moderate	Mid-Ebb	Middle	8	2:08:00 PM	9.0	8.4	33.6	25.4	2.0	6.0
WSR16	20221128	Cloudy	Moderate	Mid-Ebb	Middle	8	2:08:00 PM	9.0	8.4	33.7	25.4	2.3	7.0
WSR16	20221128	Cloudy	Moderate	Mid-Ebb	Bottom	14	2:07:00 PM	9.1	8.4	33.7	25.4	1.9	7.0
WSR16	20221128	Cloudy	Moderate	Mid-Ebb	Bottom	14	2:07:00 PM	8.9	8.4	33.7	25.3	2.0	6.0
WSR33	20221128	Cloudy	Moderate	Mid-Ebb	Surface	1	2:57:00 PM	8.3	8.3	33.2	25.1	2.3	6.0
WSR33	20221128	Cloudy	Moderate	Mid-Ebb	Surface	1	2:57:00 PM	8.3	8.3	33.1	25.1	2.5	6.0
WSR33	20221128	Cloudy	Moderate	Mid-Ebb	Middle	4	2:56:00 PM	8.4	8.3	33.2	25.0	2.2	5.0
WSR33	20221128	Cloudy	Moderate	Mid-Ebb	Middle	4	2:56:00 PM	8.4	8.4	33.3	25.0	2.2	6.0
WSR33	20221128	Cloudy	Moderate	Mid-Ebb	Bottom	7	2:55:00 PM	8.3	8.3	33.3	25.1	2.0	5.0
WSR33	20221128	Cloudy	Moderate	Mid-Ebb	Bottom	7	2:55:00 PM	8.3	8.3	33.1	25.1	2.2	3.0
WSR36	20221128	Cloudy	Moderate	Mid-Ebb	Surface	1	2:43:00 PM	8.2	8.4	32.7	24.7	2.4	8.0
WSR36	20221128	Cloudy	Moderate	Mid-Ebb	Surface	1	2:43:00 PM	8.2	8.4	32.7	24.7	2.6	9.0
WSR36	20221128	Cloudy	Moderate	Mid-Ebb	Middle	3	2:43:00 PM	8.4	8.4	32.6	24.8	2.2	7.0
WSR36	20221128	Cloudy	Moderate	Mid-Ebb	Middle	3	2:43:00 PM	8.2	8.4	32.8	24.7	2.3	7.0
WSR36	20221128	Cloudy	Moderate	Mid-Ebb	Bottom	6	2:42:00 PM	8.1	8.4	32.7	24.6	1.9	8.0
WSR36	20221128	Cloudy	Moderate	Mid-Ebb	Bottom	6	2:42:00 PM	8.4	8.4	32.7	24.6	2.1	5.0
WSR37	20221128	Cloudy	Moderate	Mid-Ebb	Surface	1	2:30:00 PM	8.8	8.3	32.7	24.7	2.0	7.0
WSR37	20221128	Cloudy	Moderate	Mid-Ebb	Surface	1	2:30:00 PM	8.9	8.2	32.7	24.8	2.1	7.0
WSR37	20221128	Cloudy	Moderate	Mid-Ebb	Middle	4	2:29:00 PM	9.0	8.2	32.6	24.7	2.0	10.0
WSR37	20221128	Cloudy	Moderate	Mid-Ebb	Middle	4	2:29:00 PM	9.0	8.2	32.7	24.7	2.3	7.0
WSR37	20221128	Cloudy	Moderate	Mid-Ebb	Bottom	7	2:28:00 PM	9.0	8.2	32.7	24.6	2.0	10.0
WSR37	20221128	Cloudy	Moderate	Mid-Ebb	Bottom	7	2:28:00 PM	8.9	8.2	32.6	24.8	2.0	7.0

Appendix H

Waste Flow Table

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

W	1	4.5.10		DM to it is a	to 1 Manual Inc			A	COD Wester (7	
		Actual Quar	tities of Inert C&I	D Materials Genera	ited Monthly			Actual Quantities	of C&D Wastes C	Jenerated Monthly	
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 3)	Chemical Waste	Others, e.g. general refuse
	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)
Jan	233.850	0.000	0.000	0.000	233.850	0.000	0.000	0.069	0.005	0.000	109.020
Feb	175.850	0.000	0.000	0.000	175.850	0.000	0.000	0.000	0.000	0.296	293.110
Mar	68.790	0.000	0.000	0.000	68.790	0.000	0.000	0.000	0.000	0.000	54.140
Apr	29.050	0.000	0.000	0.000	29.050	0.000	0.001	0.165	0.004	0.000	113.780
May	6.300	0.000	0.000	0.000	6.300	0.000	0.000	0.000	0.000	0.000	139.130
Jun	80.960	0.000	0.000	0.000	80.960	0.000	0.000	0.124	0.004	0.000	271.000
Sub-total	594.800	0.000	0.000	0.000	594.800	0.000	0.001	0.357	0.013	0.296	980.180
Jul	2794.730	0.000	0.000	0.000	2794.730	0.000	0.000	0.000	0.000	0.000	252.740
Aug	10429.730	0.000	0.000	0.000	10429.730	0.000	0.000	0.000	0.090	0.000	240.470
Sep	13842.840	0.000	0.000	0.000	13842.840	0.000	0.000	0.170	0.090	0.000	196.910
Oct	20945.100	0.000	0.000	0.000	20945.100	0.000	0.000	0.000	0.000	0.000	230.900
Nov	7273.940	0.000	0.000	0.000	7273.940	0.000	0.020	0.230	0.020	0.000	121.590
Dec											
Total	55881.140	0.000	0.000	0.000	55881.140	0.000	0.021	0.757	0.213	0.296	2022.790

Monthly Summary Waste Flow Table for 2022 (year)

Notes:

(1) The performance targets are given in Section 1.69 of Specification B

(2) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

(3) Plastics refer to plastic bottles/containers, plastic sheets/ foam from packaging material

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

Appendix I

Site Inspection Proforma

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

WEEKLY ENVIRONMENTAL INSPECTION CHECKLIST

Inspection Date: <u>8</u>	(1 2022	Inspected by:	ET: Contractor:	acky Leyny		mand Koll	WSD:
Inspection Time:/	4:30-15-30			0		1 Juli - 0 1	
Weather	/						
Condition	- Sunny Fine	Overcast	Drizzle	Rain	Storm	Hazy	
Temperature	<u>28</u> °c	Humidity	High	Moderate	Low		
Wind	Calm Light	Breeze	Strong				

Item	EIA ref.		N/A	Yes	No	Photo/Remarks
No.						
0.00		General				1. (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
0.01		Is the current Environmental Permit displayed conspicuously at all vehicle site		$\sqrt{1}$		
		entrances/exits for public's information at any time?		V		
0.02				— 71		
		Is ET Leader's log-book kept readily available for inspections?		\checkmark		
<u> </u>		Construction Dust		,		
1.00	S4.8.1	Are dusty materials, such as excavated materials, building debris and construction		$\overline{\mathbf{\Lambda}}$		
1.01		materials, and exposed earth surface properly covered to prevent dust emission?		V		
1.02	S4.8.1	Are screenings, enclosures, water spraying, or vacuum cleaning devices provided to				
		dusty construction works for dust suppression?		\mathbf{A}		
1.03	S4.8.1	A for a second sec				· · · · · · · · · · · · · · · · · · ·
		Are fumes or smoke emitting plants or construction activities shielded by a screen?				
1.04	S4.8.1	Are wheel-washing facilities with high-pressure water jets provided at all site exits?		\Box		
		Are wheel-washing facilities with high-pressure water jets provided at an site exits.				-
1.05	\$4.8.1	Is wheel-washing provided to all vehicles leaving the site?		\Box		
1.06	S4.8.1	Are road section near the site exit free from dusty material?				
1.07	G4.0.1					
1.07	S4.8.1	Are all main haul roads inside the site paved or sprayed with water to minimize				
		dust emission during vehicle movement?				
1.08	S4.8.1	Are water spraying provided immediately prior to any loading or transfer of dusty				
		materials?				
1.09	S4.8.1	Are covers provided to all dump trucks carrying dusty materials when entering and				
		leaving the site?				
1.10	S4.8.1	Are the working areas for uprooting of trees, shrubs, or vegetation or the removal				
		of boulders, poles, pillars sprayed with water to maintain the entire surface wet?				
1.11	S4.8.1	Is exposed earth properly treated within six months after the last construction				
		activity on site?				
1.12	\$4.8.1	Does the operation of plants on site free form dark smoke emission?				
1.13	\$4.8.1	Are vehicles travelling at speed not exceeding 15km/hr within the site?		\Box		
				\mathbf{N}		
1.14	S4.8.1	Are stock of more than 20 bags of cement or day PFA covered or sheltered on top				
		and 3 sides?				

Item	EIA ref.		N/A	Yes	No	Photo/Remarks
No.						
1.15	S4.8.1	Are de-bagging, batching and mixing processes of bagged cement carried out in sheltered areas?				
1.16		Are hoarding of at least 2.4m high provided along the site boundary adjoining areas accessible by the public?	$\overline{\checkmark}$			
1.17	S4.8.1	Is open burning prohibited?				
2.00		Construction Noise (Airborne)		F		
2.01	S5.7	Are quiet plants adopted on site?		\checkmark		
2.02	S5.7	Are the PMEs operating on site well-maintained to minimize the generation of excessive noise?		\square		
2.03	S5.7	Are plants throttled down or turned off when not in use?		\checkmark		
2.04	S5.7	Are the plants known to emit noise strongly in one direction oriented to face away from NSRs?	\checkmark			
2.05	S5.7	Are moveable barriers provided to screen NSRs from plant or noisy operations?				
2.06	S5.7	Are silencers, mufflers and enclosures provided to plants?				
2.07	S5.7	Are the hoods, cover panels and inspection hatches of PMEs closed during operation?		\checkmark		
2.08	S5.7	Are purposely-built site hoarding construction with appropriate materials provided along the site boundary?	1			
2.09		Are noisy operation properly scheduled to minimize exposure and cumulative impacts to nearby sensitive receivers?	\checkmark			
2.10		Are valid noise emission label(s) affixed to all hand-held breakers operating on site?	\checkmark			
2.11	S5.7	Are valid noise emission label(s) affixed to all air compressors operating on site?	\checkmark			
2.12	\$5.7	Are all construction noise permit(s) applied for percussive piling work?	\checkmark			
2.13		Are construction noise permit(s) applied for general construction works during restricted hours?		Ń		
2.14	S5.7	Are valid construction noise permit(s) displayed at all vehicular exits?				
3.00		Water Quality		<u> </u>		
- Seal - Area and	_	Is effluent discharge license obtained for wastewater discharge from site?		\checkmark		
		Is effluent discharged according to the effluent discharge license?		\checkmark		
3.03	S6.9	Is wastewater discharge from site properly treated prior to discharge?		V		
3.04	S6.9	Are perimeter channels provided to intercept storm runoff from outside the site?	5			
3.05		Are sand/silt removal facilities such as sand/silt traps and sediment basins provided to remove sand/silt particles from runoff?		\checkmark		

	EIA ref.	ti no. 15/WSD/17 Design, Dunu and Operate First Stage of	N/A	Yes	No	Photo/Remarks
	\$6.9	Is surface runoff diverted to sedimentation facilities?		•		Rol
3.07	\$6.9	Is the drainage system properly maintained?		$\overline{\mathbf{A}}$		
3.08	\$6.9	Are construction works carefully programmed to minimize soil excavation works during rainy seasons?				
3.09	S6.9	Are exposed soil surface protected by paving as soon as possible to reduce the potential of soil erosion?	$\overline{\checkmark}$			
3.10	S6.9	Are temporary access roads protected by crushed gravel?				
3.11	S6.9	Are exposed slope surface properly protected?	\checkmark			
3.12	S6.9	Is trench excavation avoided in the wet season as far as practicable, or if necessary, backfilled in short sections after excavation?				
3.13	S6.9	Are open stockpiles of construction materials on site covered by tarpaulin or similar fabric during construction?	V			
3.14	S6.9	Is runoff from wheel-washing facilities avoided?		V		
3.15	\$6.9	Is oil leakage or spillage prevented?		\checkmark		
3.16	S6.9	Are there any measures to prevent the release of oil and grease into the storm drainage system?				
3.17	S6.9	Are the oil interceptors/ grease traps properly maintained?				
3.18	S6.9	Are debris and rubbish generated on site collected, handled and disposed of properly to avoid them entering the streams?		\checkmark		
3.19	S6.9	Are all fuel tanks and storage areas provided with locks and be sited on sealed areas, within bunds of capacity equal to 110% of the storage capacity of the largest tank?				
3.20	S6.9	Are tanks, containers, storage area bunded and the locations locked as far as possible from the sensitive watercourse and stormwater drains?		\square		
3.21	S6.9	Are sufficient chemical toilets provided on site to handle sewage from construction work force?		\checkmark		
3.22	S6.9	Are sewage disposal and toilet maintenance of the portable chemical toilets provided by the licensed contractors?				
3.23	S6.9	Is concrete washing water properly collected and treated prior to discharge?	\overline{V}			
3.24	S6.9	Is suitable type of silt curtains deployed during dredging to reduce the elevation of suspended solids to nearby sensitive receivers?				
3.25	S6.9	Is closed grab dredger used to reduce the potential leakage of sediments?				
3.26	S6.9	Is closed grab dredger of 3 to 6 m ³ used for dredging at seawater intake?				
3.27	S6.9	Is specific work staff assigned the responsibility for monitoring the number of grab dredged per hour? Is number of cycle limited to 20-21 grab per hour for 3m ³ closed grab, 10-11 grab per hour for 6m3 closed grab?				

Item	EIA ref.		N/A	Yes	No	Photo/Remarks
No.						
3.28	S6.9	Is the grab operated in slow and controlled manner such that the impact to seabed				
		by the grab when being lowered could be minimized? Is the operator ensured the				
		grab be properly closed before lifting the grab?				
3.29	S6.9	Is the maximum allowed dredging rate at the seawater intake limited to 750 m3/day			THE OWNER OF THE OWNER	
		while the maximum allowed dredging rate at the submarine outfall is 3,500			_	
		m3/day?	\checkmark			
3.30	S6.9	Is dredged marine sediment disposed of in a gazetted marine disposal area in				
		accordance with marine dumping permit conditions of the Dumping at Sea				
		Ordinance (DASO)?	\checkmark			
3.31	S6.9	Are disposal vessels fitted with tight bottom seals in order to prevent leakage of				
		material during transport?	\checkmark			
3.32	S6.9	Are barges filled to a level which ensures that material does not spill over during				
0.02	50.7	transport to the disposal site and that adequate freeboard is maintained to ensure	1			
		that the decks are not washed by wave action?		nt		
2.22	S6.9					
5.55	30.9	Are excess materials cleaned from decks and exposed fittings before the vessel is moved from the dredging area after dredging?				
2.24	0(0	moved from the dredging area after dredging?				
3.34	S6.9	Are the contractor(s) confirmed that the works cause no visible foam, oil, grease,				
		litter or other objectionable matter to be present in the water within and adjacent	\checkmark			
		to the dredging site?				
3.35	S6.9	When the dredged material has been unloaded at the disposal areas, is any material				
		accumulated on the deck or other exposed parts of the vessel removed and placed in				
		the hold or a hopper?	V			
3.36	S6.9	Is dredger maintained adequate clearance between vessels and the seabed at all		N N		
		states of the tide and reduce operations speed to ensure that excessive turbidity is	$\overline{\mathbf{x}}$	A		
		not generated by turbulence from vessel movement or propeller wash?	V	167°		
3.37	S6.9	Is the contractor shall regularly inspect the silt curtains and check that they are				
		moored and marked to avoid danger to marine traffic? Is regular inspection on the		J.		
		integrity of the silt curtain carried out by the contractor and any damage to the silt				
		curtain shall be repaired by the contractor promptly?				
3.38	S6.9	Are all vessels have a clean ballast system?				
		a no un vossois navo a oloan banast System:	\bigvee			
3.39	S6.9	Are all vessels well maintained and inspected before use to limit any potential	\Box			
		discharges to the marine environment?	\bigvee			
3.40	S6.9	Is any discharge of sewage/grey wastewater? Is wastewater from potentially	\Box			
		contaminated area on working vessels should be minimized and collected?	Δ			
3.41	S6.9	Is any soil waste disposed avarbaard?				
		Is any soil waste disposed overboard?				
4.00		Waste Management				
4.01	S8.5	Is a trip-ticket system implemented to monitor the disposal of C&D and solid				
		wastes at public filling facilities and landfills?				
4.02	S8.5	Is a recording system implemented to record the amount of wastes generated,				
		recycled and disposed of?				
4.03	58.5					
	00.0	Is the Contractor registered as a chemical waste producer?		\bigvee		
			home and	لستسا	<u> </u>	
-						

L	Junua	ct no. 15/WSD/17 Design, Bund and Operate First Stage of	iscung itt		Jesann	ation 1 mit
ltem No.	EIA ref.		N/A	Yes	No	Photo/Remarks
4.04	S8.5	Is chemical waste separated from other waste and collected by a licensed chemical waste collector?	\checkmark			
4.05	S8.5	Are trip tickets for chemical waste disposal available for inspection?		\square		
4.06	S8.5	Is drip tray provided for chemical storage?				Ool
4.07	S8.5	Are all containers for chemical waste properly labelled?				
4.08		Is chemical waste storage area used solely for storage of chemical waste and properly labelled?		\checkmark		
4.09	S8.5	Are incompatible chemical wastes stored in different areas?				
4.10	S8.5	Is the chemical waste storage area enclosed on at least 3 sides and adequately ventilated?		\checkmark		
4.11	S8.5	Is an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or of 20% by volume of the chemical waste stored in that area, whichever is the greatest, provide?		Ń		
4.12	S8.5	Are a routine cleaning and maintenance programme implemented for drainage systems, sump pits, and oil interceptors?		\checkmark		
4.13	S8.5	Are sufficient general refuse disposal/collection points provided on site?		\checkmark		
4.14	S8.5	Is general refuse disposed of properly and regularly?				
4.15		Are appropriate measures adopted to minimize windblown litter and dust during transportation of waste?	$\overline{\Lambda}$			
4.16	S8.5	Are individual collectors for aluminum cans, plastic bottles and packaging material and office paper provided to encourage waste segregation?		$\overline{\mathbf{V}}$		
4.17	S8.5	Are C&D wastes sorted on site?		\checkmark		
4.18	S8.5	Are C&D waste disposed of properly?		\checkmark		
4.19	S8.5	Are unused C&D materials or chemicals recycled or reused to reduce the quantity of waste?				
4.20	S8.5	Are public fill and C&D waste reuse on site as far as practicable to avoid disposal off-site?				
4.21	S8.5	Are the construction materials stored properly to minimize the potential for damage or contamination?		$\overline{\mathbf{A}}$		
4.22	S8.5	Is a dumping license obtained to deliver public fill to public filling areas?	Ń			
5.00	S11.10	Landscape and Visual	v			
		Are Is site hoarding provided?				
5.02	S11.10 & 11.11	Are vegetation disturbance minimized or soil protected to reduce potential soil erosion?		\checkmark		
5.03	S11.10 & 11.11	Is construction light oriented away from the sensitive receivers?				

Item	EIA ref.		N/A	Yes	No	Photo/Remarks
No.						
5.04	S11.10 & 11.11	Is grass hydroseeding provided to slopes as soon as the completion of works?				
5.05	S11.10 & 11.11	Are damages to trees outside site boundary due construction works avoided?		\checkmark		
5.06	S11.10 & 11.11	Is excavation works carried out manually instead of machinery operation within 2.5m vicinity of any preserved trees?		\checkmark		
5.07	S11.10 & 11.11	Are the retained and transplanted tree(s) properly protected and in good conditions?		\checkmark		
5.08	S11.10 & 11.11	Are surgery works carried out for damaged trees?	$\overline{\checkmark}$			
6.00 6.01		Ecology Is site runoff properly treated to prevent any silly runoff?				
6.02	S9.7	Are silt trap installed and well-maintained?				
6.03	S9.7	Are stockpiles properly covered to avoid generating silty runoff?	$\overline{\checkmark}$			
6.04	S9.7	Are construction works restricted to works area which are clearly defined?		\checkmark		-
6.05		For slope mitigation works within the Clear Water Bay Country Park, are tree felling and damages to trees, the exact locations of the flexible barrier foundation plates, soil nails and rock dowels adjusted during detailed design, and a setback distance from existing trees is recommended to be maintained as far as practical?				
6.06	S9.7	Are pruning of tree canopies along the alignment of the flexible barriers limited to a minimum?	\checkmark			
6.07		Is the alignment of flexible barriers optimized to preserve all species of conservation interest and minimize the impact to the existing vegetation as far as practicable? Are the alignment of flexible barriers positioned at minimum 1.5 m in a radius away from these individuals?				
		Is temporary fencing installed to fence off the concerned species either in groups of individually within the works area and in the close proximity to prevent from being damaged and disturbed during construction? Is a sign identifying the site attached to the fence and flagging tape shall be attached to the individuals to visualize their locations?		\checkmark		
6.09		Is a specification for fencing and demarcating individuals of Marsdenai lachnostoma (or other flora species of conservation interest, if found) adjacent to the proposed alignment of the flexible barriers prepared to protect the species?				
6.10		Is any induction training provided to all site personnel in order to brief them on this flora of conservation interest including the locations and their importance?				
6.11		Is the resident site supervisory staff closely monitor the conditions of concerned individuals during construction of flexible barriers in the close proximity?	\checkmark			
6.12		Are fences erected along the boundary of the works area before the commencement of works to prevent vehicle movements and encroachment of personnel onto adjacent areas?				
6.13		Is regular check of the work site boundaries performed to ensure that they are not breached and that damage does not occur to surrounding areas?				
6.14		Is any damage and disturbance avoided, particularly those caused by filling and illegal dumping, to the surrounding habitats through proper management of waste disposal?		\checkmark		

Item	EIA ref.		N/A	Yes	No	Photo/Remarks
No.						
6.15	S9.7	Are temporarily affected areas reinstated, particularly the habitats of plantation and shrubland-grassland immediately after completion of construction works, through on-site tree/shrub planting?	V			
6.16	S9.7	Are affected habitats within the Clear Water Bay Country Bay reinstated by hydro- seeding and planting of climbers and native shrub seedlings where practical upon completion of the slope mitigation works?	\checkmark			
7.00]	Landfill Gas Hazard	(
7.01	S12.7	Are the safety procedures implemented to minimise the risks of fires and explosions, asphyxiation of works and toxicity effects during all works?	\checkmark			
7.02	S12.7	Are the gas detection equipment and precautions being used during trenching and excavation as well as creation of confined spaces?				
7.03	S12.7	Are the training with regard to the awareness of potential hazards of working in confined spaces provided from the Contractor to the workers?	\checkmark			
7.04	S12.7	Are the safety officers trained with regard to landfill gas and leachate related hazards and presented on the site throughout the works undertaken below grade?		\checkmark		
7.05	S12.7	Are the all personnel working on site and all visitor made aware of the possibility of ignition of gas, the possible presence of contaminated water and the need to avoid physical contact?	\checkmark			
7.06	S12.7	Is the monitoring of landfill gas being undertaken in all excavations, manholes, chambers and any confined spaces?	\checkmark			
7.07	S12.7	Are the monitoring frequency and areas being specified by the safety officers or appropriately qualified person? Are the all measurements being recorded and documented?	\square			
7.08	S12.7	Is the drilling proceeded with adequate care and precautions against the potential hazards?				
7.09		Is the method statement covering all normal and emergency procedures provided by the drilling contractor prior to the commencement of the site works?				
7.10		Are the below ground services entries being sealed to prevent gas entry? Are the grilled metal covers being used for below grade cable trenches?	\square			
7.11		Is each manhole or utility pit monitored with two measurements (at mid-depth and base) for minimum of 10 minutes? Is the steady reading and peak reading recorded at each manhole or utility pit?				·
7.12		Are the warning signs of the hazards of landfill gas and its possible presence on site posted in prominent places?				
8.00 8.01		Overall Is the EM&A properly implemented in general?		\square		

1) Chenical containers found near the OSCG and staff office & Acti De Al shall be store on a dip tray or proper storage to privent leckage. Remark / Follow up of Observation(s) and Non-compliance(s) of Last Weekly Site Inspection: Reminder !) Block water found near the substation rest area Skill Leremoved asap. Signatures: Supervising Officer's IEC's WSD's ET Contractor's Representative Representative Representative Representative Representative 10006 Mayon (Name: Louis) (Name: ((Name: (Name: (Name:) (5-x) lon

WEEKLY ENVIRONMENTAL INSPECTION CHECKLIST

Inspection Date: <u>15</u> 1	11/2022	Inspected by:	ET: Jac Contractor: MS.	Ily Jenna Tistany Bana	SO: <u>Mr. 1</u> IEC: <u>j. 1</u>	Bymand Kok	WSD:
Inspection Time:4	-30 - 16-00					AND ARRY	
Weather	1						
Condition	Sunny Fine	Overcast	Drizzle	Rain	Storm	Hazy	
Temperature	24°C	Humidity	High	Moderate	Low		
Wind	Calm Light	Breeze	Strong				

Item EIA re No.		N/A	Yes	No	Photo/Remarks
0.00 0.01	General Is the current Environmental Permit displayed conspicuously at all vehicle site entrances/exits for public's information at any time?				
0.02	Is ET Leader's log-book kept readily available for inspections?				1
1.00 S4.8.1	Construction Dust Are dusty materials, such as excavated materials, building debris and construction materials, and exposed earth surface properly covered to prevent dust emission?				
1.02 S4.8.1	Are screenings, enclosures, water spraying, or vacuum cleaning devices provided to dusty construction works for dust suppression?				
1.03 S4.8.1	Are fumes or smoke emitting plants or construction activities shielded by a screen?				
1.04 S4.8.1	Are wheel-washing facilities with high-pressure water jets provided at all site exits?		\checkmark		
1.05 S4.8.1	Is wheel-washing provided to all vehicles leaving the site?		\checkmark		
1.06 S4.8.1	Are road section near the site exit free from dusty material?		\checkmark		
1.07 S4.8.1	Are all main haul roads inside the site paved or sprayed with water to minimize dust emission during vehicle movement?		\checkmark		
1.08 S4.8.1	Are water spraying provided immediately prior to any loading or transfer of dusty materials?				
1.09 S4.8.1	Are covers provided to all dump trucks carrying dusty materials when entering and leaving the site?				
1.10 S4.8.1	Are the working areas for uprooting of trees, shrubs, or vegetation or the removal of boulders, poles, pillars sprayed with water to maintain the entire surface wet?				
1.11 S4.8.1	Is exposed earth properly treated within six months after the last construction activity on site?	\checkmark			
1.12 S4.8.1	Does the operation of plants on site free form dark smoke emission?		\checkmark		
1.13 S4.8.1	Are vehicles travelling at speed not exceeding 15km/hr within the site?		\checkmark		
1.14 S4.8.1	Are stock of more than 20 bags of cement or day PFA covered or sheltered on top and 3 sides?	\checkmark			

	1	t no. 15/ WSD/17 Design, Dund and Operate Thist Stage of I			NI	D1 . /D 1
Item No.	EIA ref.		N/A	Yes	No	Photo/Remarks
1.15		Are de-bagging, batching and mixing processes of bagged cement carried out in sheltered areas?				
1.16		Are hoarding of at least 2.4m high provided along the site boundary adjoining areas accessible by the public?	\checkmark			
1.17	S4.8.1	Is open burning prohibited?		\checkmark		
2.00 2.01	S5.7	Construction Noise (Airborne) Are quiet plants adopted on site?		\checkmark		
2.02	S5.7	Are the PMEs operating on site well-maintained to minimize the generation of excessive noise?		\checkmark		
2.03	S5.7	Are plants throttled down or turned off when not in use?		\checkmark		
2.04		Are the plants known to emit noise strongly in one direction oriented to face away from NSRs?	V			
2.05	S5.7	Are moveable barriers provided to screen NSRs from plant or noisy operations?	V			
2.06	S5.7	Are silencers, mufflers and enclosures provided to plants?	\checkmark			
2.07	S5.7	Are the hoods, cover panels and inspection hatches of PMEs closed during operation?				÷
2.08	S5.7	Are purposely-built site hoarding construction with appropriate materials provided along the site boundary?	\checkmark			
2.09	S5.7	Are noisy operation properly scheduled to minimize exposure and cumulative impacts to nearby sensitive receivers?	\checkmark			
2.10	S5.7	Are valid noise emission label(s) affixed to all hand-held breakers operating on site?				
2.11	S5.7	Are valid noise emission label(s) affixed to all air compressors operating on site?	\checkmark			
2.12	S5.7	Are all construction noise permit(s) applied for percussive piling work?	$\overline{\checkmark}$			
2.13	S5.7	Are construction noise permit(s) applied for general construction works during restricted hours?				
2.14	S5.7	Are valid construction noise permit(s) displayed at all vehicular exits?		\bigvee		
3.00		Water Quality				
3.01	S6.9	Is effluent discharge license obtained for wastewater discharge from site?		\checkmark		·
3.02	S6.9	Is effluent discharged according to the effluent discharge license?				7
3.03	\$6.9	Is wastewater discharge from site properly treated prior to discharge?				
3.04	\$6.9	Are perimeter channels provided to intercept storm runoff from outside the site?	$\overline{\mathbf{V}}$			
3.05	S6.9	Are sand/silt removal facilities such as sand/silt traps and sediment basins provided to remove sand/silt particles from runoff?		Ţ		
			L			

Contract no. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant EIA ref. N/A Yes No Photo/Remarks Item No 3.06 S6.9 Is surface runoff diverted to sedimentation facilities? S6.9 3.07 Is the drainage system properly maintained? 3.08 S6.9 Are construction works carefully programmed to minimize soil excavation works during rainy seasons? Are exposed soil surface protected by paving as soon as possible to reduce the 3.09 \$6.9 potential of soil erosion? 3.10 S6.9 Are temporary access roads protected by crushed gravel? 3.11 S6.9 Are exposed slope surface properly protected? 3.12 S6.9 Is trench excavation avoided in the wet season as far as practicable, or if necessary, backfilled in short sections after excavation? 3.13 S6.9 Are open stockpiles of construction materials on site covered by tarpaulin or similar fabric during construction? 3.14 S6.9 Is runoff from wheel-washing facilities avoided? 3.15 S6.9 Is oil leakage or spillage prevented? 3.16 S6.9 Are there any measures to prevent the release of oil and grease into the storm drainage system? 3.17 S6.9 Are the oil interceptors/ grease traps properly maintained? Are debris and rubbish generated on site collected, handled and disposed of 3.18 S6.9 properly to avoid them entering the streams? 3.19 S6.9 Are all fuel tanks and storage areas provided with locks and be sited on sealed areas, within bunds of capacity equal to 110% of the storage capacity of the largest tank? 3.20 S6.9 Are tanks, containers, storage area bunded and the locations locked as far as possible from the sensitive watercourse and stormwater drains? 3.21 S6.9 Are sufficient chemical toilets provided on site to handle sewage from construction work force? 3.22 S6.9 Are sewage disposal and toilet maintenance of the portable chemical toilets provided by the licensed contractors? 3.23 S6.9 Is concrete washing water properly collected and treated prior to discharge? 3.24 S6.9 Is suitable type of silt curtains deployed during dredging to reduce the elevation of suspended solids to nearby sensitive receivers? 3.25 \$6.9 Is closed grab dredger used to reduce the potential leakage of sediments? 3.26 S6.9 Is closed grab dredger of 3 to 6 m³ used for dredging at seawater intake? 3.27 S6.9 Is specific work staff assigned the responsibility for monitoring the number of grab dredged per hour? Is number of cycle limited to 20-21 grab per hour for 3m³ closed grab, 10-11 grab per hour for 6m3 closed grab?

	Contra	ct no. 13/WSD/17 Design, Build and Operate First Stage of 7	Iseung Ky	wan O I	Desalina	ation Plant
Item	EIA ref.		N/A	Yes	No	Photo/Remarks
No.						
3.28	S6.9	Is the grab operated in slow and controlled manner such that the impact to seabed				
		by the grab when being lowered could be minimized? Is the operator ensured the	1			
		grab be properly closed before lifting the grab?				
3.29	S6.9	Is the maximum allowed dredging rate at the seawater intake limited to 750 m3/day				
		while the maximum allowed dredging rate at the submarine outfall is 3,500				
		m3/day?				· · · · · · · · · · · · · · · · · · ·
3.30	S6.9	Is dredged marine sediment disposed of in a gazetted marine disposal area in	,			
		accordance with marine dumping permit conditions of the Dumping at Sea				
		Ordinance (DASO)?				
3.31	S6.9	Are disposal vessels fitted with tight bottom seals in order to prevent leakage of				
		material during transport?	\overline{V}			
3.32	S6.9	Are barges filled to a level which ensures that material does not spill over during				
		transport to the disposal site and that adequate freeboard is maintained to ensure				
		that the decks are not washed by wave action?	V			-
3.33	S6.9	Are excess materials cleaned from decks and exposed fittings before the vessel is				
		moved from the dredging area after dredging?	\checkmark			
3.34	S6.9	Are the contractor(s) confirmed that the works cause no visible foam, oil, grease,				
		litter or other objectionable matter to be present in the water within and adjacent				
		to the dredging site?				
3.35	S6.9	When the dredged material has been unloaded at the disposal areas, is any material				
		accumulated on the deck or other exposed parts of the vessel removed and placed in				
		the hold or a hopper?	\checkmark			
3.36	S6.9	Is dredger maintained adequate clearance between vessels and the seabed at all	/			
		states of the tide and reduce operations speed to ensure that excessive turbidity is				
		not generated by turbulence from vessel movement or propeller wash?	\vee			-
3.37	S6.9	Is the contractor shall regularly inspect the silt curtains and check that they are				
		moored and marked to avoid danger to marine traffic? Is regular inspection on the				
		integrity of the silt curtain carried out by the contractor and any damage to the silt			_	
		curtain shall be repaired by the contractor promptly?				
3.38	S6.9					
		Are all vessels have a clean ballast system?	$\mathbf{\nabla}$			
3.39	S6.9	Are all vessels well maintained and inspected before use to limit any potential				
		discharges to the marine environment?	\mathbf{V}			
3.40	S6.9	Is any discharge of sewage/grey wastewater? Is wastewater from potentially				
		contaminated area on working vessels should be minimized and collected?				
3.41	S6.9					
		Is any soil waste disposed overboard?				
4.00		Waste Management				
4.01	S8.5	Is a trip-ticket system implemented to monitor the disposal of C&D and solid				
		wastes at public filling facilities and landfills?				
4.02	S8.5	Is a recording system implemented to record the amount of wastes generated,				
		recycled and disposed of?				
4.03	S8.5	· ·		r d		
		Is the Contractor registered as a chemical waste producer?				

5.02 S11.10 &

5.03

11.11 S11.10 &

11.11

Member of the Aurecon Group Contract no. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant EIA ref. Item N/A Yes No Photo/Remarks No. 4.04 \$8.5 Is chemical waste separated from other waste and collected by a licensed chemical waste collector? 4.05 \$8.5 Are trip tickets for chemical waste disposal available for inspection? 4.06 S8.5 Is drip tray provided for chemical storage? Oal 4.07 S8.5 Are all containers for chemical waste properly labelled? 4.08 S8.5 Is chemical waste storage area used solely for storage of chemical waste and properly labelled? 4.09 S8.5 Are incompatible chemical wastes stored in different areas? 4.10 \$8.5 Is the chemical waste storage area enclosed on at least 3 sides and adequately ventilated? 4.11 S8.5 Is an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or of 20% by volume of the chemical waste stored in that area, whichever is the greatest, provide? Are a routine cleaning and maintenance programme implemented for drainage 4.12 S8.5 systems, sump pits, and oil interceptors? 4.13 S8.5 Are sufficient general refuse disposal/collection points provided on site? 4.14 S8.5 Is general refuse disposed of properly and regularly? 4.15 S8.5 Are appropriate measures adopted to minimize windblown litter and dust during transportation of waste? 4.16 \$8.5 Are individual collectors for aluminum cans, plastic bottles and packaging material and office paper provided to encourage waste segregation? 4.17 S8.5 Are C&D wastes sorted on site? 4.18 S8.5 Are C&D waste disposed of properly? 4.19 S8.5 Are unused C&D materials or chemicals recycled or reused to reduce the quantity of waste? 4.20 S8.5 Are public fill and C&D waste reuse on site as far as practicable to avoid disposal off-site? 4.21 S8.5 Are the construction materials stored properly to minimize the potential for damage or contamination? 4.22 S8.5 Is a dumping license obtained to deliver public fill to public filling areas? 5.00 S11.10 Landscape and Visual 5.01 & 11.11 Are Is site hoarding provided?

Are vegetation disturbance minimized or soil protected to reduce potential soil erosion?

Is construction light oriented away from the sensitive receivers?

Item	EIA ref.		N/A	Yes	No	Photo/Remarks
No.						
5.04	S11.10 & 11.11	Is grass hydroseeding provided to slopes as soon as the completion of works?	\square			
5.05	S11.10 & 11.11	Are damages to trees outside site boundary due construction works avoided?		\checkmark		
5.06	1997 State	Is excavation works carried out manually instead of machinery operation within 2.5m vicinity of any preserved trees?		\checkmark		
5.07	S11.10 & 11.11	Are the retained and transplanted tree(s) properly protected and in good conditions?		\checkmark		
5.08	S11.10 & 11.11	Are surgery works carried out for damaged trees?				
6.00 6.01		Ecology Is site runoff properly treated to prevent any silly runoff?				
6.02	S9.7	Are silt trap installed and well-maintained?	\checkmark			
6.03	S9.7	Are stockpiles properly covered to avoid generating silty runoff?				
6.04	S9.7	Are construction works restricted to works area which are clearly defined?		\checkmark		
6.05		For slope mitigation works within the Clear Water Bay Country Park, are tree felling and damages to trees, the exact locations of the flexible barrier foundation plates, soil nails and rock dowels adjusted during detailed design, and a setback distance from existing trees is recommended to be maintained as far as practical?		\checkmark		
6.06		Are pruning of tree canopies along the alignment of the flexible barriers limited to a minimum?				
6.07		Is the alignment of flexible barriers optimized to preserve all species of conservation interest and minimize the impact to the existing vegetation as far as practicable? Are the alignment of flexible barriers positioned at minimum 1.5 m in a radius away from these individuals?		\square		
6.08		Is temporary fencing installed to fence off the concerned species either in groups of individually within the works area and in the close proximity to prevent from being damaged and disturbed during construction? Is a sign identifying the site attached to the fence and flagging tape shall be attached to the individuals to visualize their locations?		\checkmark		
6.09		Is a specification for fencing and demarcating individuals of Marsdenai lachnostoma (or other flora species of conservation interest, if found) adjacent to the proposed alignment of the flexible barriers prepared to protect the species?				
6.10		Is any induction training provided to all site personnel in order to brief them on this flora of conservation interest including the locations and their importance?				
6.11		Is the resident site supervisory staff closely monitor the conditions of concerned individuals during construction of flexible barriers in the close proximity?	\checkmark			
6.12		Are fences erected along the boundary of the works area before the commencement of works to prevent vehicle movements and encroachment of personnel onto adjacent areas?	\checkmark			
6.13		Is regular check of the work site boundaries performed to ensure that they are not breached and that damage does not occur to surrounding areas?				-
6.14		Is any damage and disturbance avoided, particularly those caused by filling and illegal dumping, to the surrounding habitats through proper management of waste disposal?		\square		

ltem	EIA ref.		N/A	Yes	No	Photo/Remarks
No.						
6.15	S9.7	Are temporarily affected areas reinstated, particularly the habitats of plantation and shrubland-grassland immediately after completion of construction works, through on-site tree/shrub planting?				
6.16	S9.7	Are affected habitats within the Clear Water Bay Country Bay reinstated by hydro- seeding and planting of climbers and native shrub seedlings where practical upon completion of the slope mitigation works?				
7.00]	Landfill Gas Hazard				
7.01	S12.7	Are the safety procedures implemented to minimise the risks of fires and explosions, asphyxiation of works and toxicity effects during all works?				
7.02	S12.7	Are the gas detection equipment and precautions being used during trenching and excavation as well as creation of confined spaces?	\checkmark			
7.03	S12.7	Are the training with regard to the awareness of potential hazards of working in confined spaces provided from the Contractor to the workers?	\checkmark			
7.04	S12.7	Are the safety officers trained with regard to landfill gas and leachate related hazards and presented on the site throughout the works undertaken below grade?	\checkmark			
7.05	S12.7	Are the all personnel working on site and all visitor made aware of the possibility of ignition of gas, the possible presence of contaminated water and the need to avoid physical contact?	\square			
7.06	S12.7	Is the monitoring of landfill gas being undertaken in all excavations, manholes, chambers and any confined spaces?	\checkmark			
7.07	S12.7	Are the monitoring frequency and areas being specified by the safety officers or appropriately qualified person? Are the all measurements being recorded and documented?				
7.08	S12.7	Is the drilling proceeded with adequate care and precautions against the potential hazards?				3
7.09	S12.7	Is the method statement covering all normal and emergency procedures provided by the drilling contractor prior to the commencement of the site works?				
7.10	S12.7	Are the below ground services entries being sealed to prevent gas entry? Are the grilled metal covers being used for below grade cable trenches?				
7.11	S12.7	Is each manhole or utility pit monitored with two measurements (at mid-depth and base) for minimum of 10 minutes? Is the steady reading and peak reading recorded at each manhole or utility pit?				
7.12	S12.7	Are the warning signs of the hazards of landfill gas and its possible presence on site posted in prominent places?				
8.00 8.01		Overall Is the EM&A properly implemented in general?				

Remark / Follow up of Observation(s) and Non-compliance(s) of Last Weekly Site Inspection: Observation(S) Chemingle containers found near the OSCG Shell be stored on a drip trad on proper storage Ercess alericals on Hegand shall be removed propenty. Signatures: ET Contractor's Supervising Officer's IEC's WSD's Representative Representative Representative Representative Representative UNG MONG (Name: (Name:) (Name: (Name: (Name:)) Kou

WEEKLY ENVIRONMENTAL INSPECTION CHECKLIST

		14:30 - 15:45 Inspected by: ET: <u>Howard Chan</u> Contractor: <u>Mr. Brian Kam</u>	SO: <u>Mr.</u> IEC: <u>Mr.</u>	Raymond k Edric Lan	wsd wsd	·
Weath		1				
Condit	ion	Sunny Trine Overcast Drizzle Rain	Storm	Ha	zy	
Tempe	rature	☐4 ^O C Humidity ↓ High Moderate	Low			
Wind		Calm Light Breeze Strong				
			N/A	Yes	No	Photo/Remarks
Item No.	EIA ref.					
0.00		General				
0.01		Is the current Environmental Permit displayed conspicuously at all vehicle site		Δ		
		entrances/exits for public's information at any time?				
0.02		Is ET Leader's log-book kept readily available for inspections?		\checkmark		
		Construction Dust				
1.00	S4.8.1	Are dusty materials, such as excavated materials, building debris and construction		\checkmark		
1.01		materials, and exposed earth surface properly covered to prevent dust emission?				
1.02	S4.8.1	Are screenings, enclosures, water spraying, or vacuum cleaning devices provided to		$\overline{\mathbf{A}}$		
		dusty construction works for dust suppression?				
1.03	S4.8.1	Are fumes or smoke emitting plants or construction activities shielded by a screen?	\checkmark			
1.04	\$4.8.1					

1.03	S4.8.1	Are fumes or smoke emitting plants or construction activities shielded by a screen?	\checkmark		
1.04	S4.8.1	Are wheel-washing facilities with high-pressure water jets provided at all site exits?		\checkmark	
1.05	S4.8.1	Is wheel-washing provided to all vehicles leaving the site?		\square	
1.06	S4.8.1	Are road section near the site exit free from dusty material?		\checkmark	
1.07	S4.8.1	Are all main haul roads inside the site paved or sprayed with water to minimize dust emission during vehicle movement?		\checkmark	
1.08	S4.8.1	Are water spraying provided immediately prior to any loading or transfer of dusty materials?		\checkmark	
1.09	\$4.8.1	Are covers provided to all dump trucks carrying dusty materials when entering and leaving the site?		\checkmark	
1.10	S4.8.1	Are the working areas for uprooting of trees, shrubs, or vegetation or the removal of boulders, poles, pillars sprayed with water to maintain the entire surface wet?	\checkmark		
1.11	S4.8.1	Is exposed earth properly treated within six months after the last construction activity on site?	\checkmark		
1.12	S4.8.1	Does the operation of plants on site free form dark smoke emission?		\checkmark	
1.13	S4.8.1	Are vehicles travelling at speed not exceeding 15km/hr within the site?		\checkmark	
1.14	S4.8.1	Are stock of more than 20 bags of cement or day PFA covered or sheltered on top and 3 sides?		\checkmark	Rol

Contract no. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant EIA ref. Item N/A Yes No Photo/Remarks No 1.15 S4.8.1 Are de-bagging, batching and mixing processes of bagged cement carried out in sheltered areas? Are hoarding of at least 2.4m high provided along the site boundary adjoining areas 1.16 S4.8.1 accessible by the public? S4.8.1 1.17 Is open burning prohibited? 2.00 **Construction Noise (Airborne)** S5.7 2.01 Are quiet plants adopted on site? 2.02 S5.7 Are the PMEs operating on site well-maintained to minimize the generation of excessive noise? 2.03 S5.7 Are plants throttled down or turned off when not in use? 2.04 S5.7 Are the plants known to emit noise strongly in one direction oriented to face away from NSRs? 2.05 S5.7 Are moveable barriers provided to screen NSRs from plant or noisy operations? 2.06 S5.7 Are silencers, mufflers and enclosures provided to plants? 2.07 S5.7 Are the hoods, cover panels and inspection hatches of PMEs closed during operation? 2.08 S5.7 Are purposely-built site hoarding construction with appropriate materials provided along the site boundary? 2.09 S5.7 Are noisy operation properly scheduled to minimize exposure and cumulative impacts to nearby sensitive receivers? Are valid noise emission label(s) affixed to all hand-held breakers operating on 2.10 \$5.7 site? 2.11 S5.7 Are valid noise emission label(s) affixed to all air compressors operating on site? 2.12 \$5.7 Are all construction noise permit(s) applied for percussive piling work? 2.13 S5.7 Are construction noise permit(s) applied for general construction works during restricted hours? 2.14 S5.7 Are valid construction noise permit(s) displayed at all vehicular exits? 3.00 Water Quality 3.01 Is effluent discharge license obtained for wastewater discharge from site? S6.9 3.02 S6.9 Is effluent discharged according to the effluent discharge license? 3.03 S6.9 Is wastewater discharge from site properly treated prior to discharge? 3.04 S6.9 Are perimeter channels provided to intercept storm runoff from outside the site? 3.05 S6.9 Are sand/silt removal facilities such as sand/silt traps and sediment basins provided to remove sand/silt particles from runoff?

Contract no. 13/WSD/17 Design, Build and Operate First Stage of Tseung Kwan O Desalination Plant Photo/Remarks N/A Yes No EIA ref. Item No. 3.06 \$6.9 Is surface runoff diverted to sedimentation facilities? 3.07 S6.9 Is the drainage system properly maintained? Are construction works carefully programmed to minimize soil excavation works 3.08 S6.9 during rainy seasons? Are exposed soil surface protected by paving as soon as possible to reduce the 3.09 S6.9 potential of soil erosion? 3.10 S6.9 Are temporary access roads protected by crushed gravel? 3.11 \$6.9 Are exposed slope surface properly protected? Is trench excavation avoided in the wet season as far as practicable, or if necessary, 3.12 \$6.9 backfilled in short sections after excavation? Are open stockpiles of construction materials on site covered by tarpaulin or similar 3.13 S6.9 fabric during construction? 3.14 S6.9 Is runoff from wheel-washing facilities avoided? 3.15 S6.9 Is oil leakage or spillage prevented? Are there any measures to prevent the release of oil and grease into the storm 3.16 S6.9 drainage system? 3.17 S6.9 Are the oil interceptors/ grease traps properly maintained? Are debris and rubbish generated on site collected, handled and disposed of 3.18 S6.9 properly to avoid them entering the streams? Are all fuel tanks and storage areas provided with locks and be sited on sealed 3.19 S6.9 areas, within bunds of capacity equal to 110% of the storage capacity of the largest tank? Are tanks, containers, storage area bunded and the locations locked as far as 3.20 S6.9 possible from the sensitive watercourse and stormwater drains? Are sufficient chemical toilets provided on site to handle sewage from construction 3.21 S6.9 work force? Are sewage disposal and toilet maintenance of the portable chemical toilets 3.22 S6.9 provided by the licensed contractors? 3.23 S6.9 Is concrete washing water properly collected and treated prior to discharge? Is suitable type of silt curtains deployed during dredging to reduce the elevation of 3.24 S6.9 suspended solids to nearby sensitive receivers? 3.25 S6.9 Is closed grab dredger used to reduce the potential leakage of sediments? 3.26 S6.9 Is closed grab dredger of 3 to 6 m³ used for dredging at seawater intake? Is specific work staff assigned the responsibility for monitoring the number of grab 3.27 S6.9 dredged per hour? Is number of cycle limited to 20-21 grab per hour for 3m3 closed grab, 10-11 grab per hour for 6m3 closed grab?

Item	EIA ref.	June and operate inst Stage of	N/A	Yes		
No.			IN/A	1 68	No	Photo/Remarks
3.28	S6.9	Is the grab operated in slow and controlled manner such that the impact to seabed				
5.20	50.5					
		by the grab when being lowered could be minimized? Is the operator ensured the				
-		grab be properly closed before lifting the grab?				-
3.29	S6.9	Is the maximum allowed dredging rate at the seawater intake limited to 750 m3/day				
		while the maximum allowed dredging rate at the submarine outfall is 3,500				1
		m3/day?				
3.30	S6.9	Is dredged marine sediment disposed of in a gazetted marine disposal area in				
		accordance with marine dumping permit conditions of the Dumping at Sea				
		Ordinance (DASO)?				
3 31	S6.9					
5.51	50.9	Are disposal vessels fitted with tight bottom seals in order to prevent leakage of				
		material during transport?				
3.32	S6.9	Are barges filled to a level which ensures that material does not spill over during				
		transport to the disposal site and that adequate freeboard is maintained to ensure				3
		that the decks are not washed by wave action?	\mathbf{V}			
3.33	S6.9	Are excess materials cleaned from decks and exposed fittings before the vessel is				
		moved from the dredging area after dredging?	\mathbf{V}			
3.34	S6.9	Are the contractor(s) confirmed that the works cause no visible foam, oil, grease,				
		litter or other objectionable matter to be present in the water within and adjacent				
		to the dredging site?				
2.25	S6.9					
5.55	50.9	When the dredged material has been unloaded at the disposal areas, is any material				
		accumulated on the deck or other exposed parts of the vessel removed and placed in				
		the hold or a hopper?	\checkmark			
3.36	S6.9	Is dredger maintained adequate clearance between vessels and the seabed at all				
		states of the tide and reduce operations speed to ensure that excessive turbidity is				
		not generated by turbulence from vessel movement or propeller wash?	\bigvee			
3.37	S6.9	Is the contractor shall regularly inspect the silt curtains and check that they are				
		moored and marked to avoid danger to marine traffic? Is regular inspection on the				
		integrity of the silt curtain carried out by the contractor and any damage to the silt				
		curtain shall be repaired by the contractor promptly?				
2.20	6(0	currant shart be reparted by the contractor promptry:				
3.38	S6.9	Are all vessels have a clean ballast system?				
			1/			
3.39		Are all vessels well maintained and inspected before use to limit any potential				
		discharges to the marine environment?	Δ			
3.40	S6.9	Is any discharge of sewage/grey wastewater? Is wastewater from potentially				
		contaminated area on working vessels should be minimized and collected?	\checkmark			
3.41	S6.9					
		Is any soil waste disposed overboard?	\checkmark			
4.00		Waste Management				
4.01	S8.5	Is a trip-ticket system implemented to monitor the disposal of C&D and solid				
		wastes at public filling facilities and landfills?				
				\bigvee		
4.02	S8.5	Is a recording system implemented to record the amount of wastes generated,		<u></u>		
		recycled and disposed of?		\checkmark		
4.03						
		Is the Contractor registered as a chemical waste producer?		\checkmark		

		et no. 13/WSD/17 Design, Build and Operate First Stage of T	seung KV	van OI	Na	Photo/Remarks
	EIA ref.		N/A	Yes	No	Photo/Remarks
ю.						
4.04	S8.5	Is chemical waste separated from other waste and collected by a licensed chemical				
		waste collector?	V			
4.05	S8.5	Are trip tickets for chemical waste disposal available for inspection?				
		Are trip tickets for chemical waste disposal available for hispection.				
4.06	\$8.5	Is drip tray provided for chemical storage?				
		is drip tray provided for chemical storage:				
4.07	S8.5					
		Are all containers for chemical waste properly labelled?		\bigvee		
4.08	S8.5	Is chemical waste storage area used solely for storage of chemical waste and				
		properly labelled?		\vee		
4.09	S8.5	Are incompatible chemical wastes stored in different areas?				
4.10	S8.5	Is the chemical waste storage area enclosed on at least 3 sides and adequately				
	1	ventilated?				
4.11	S8.5	Is an impermeable floor and bunding, of capacity to accommodate 110% of the				
		volume of the largest container or of 20% by volume of the chemical waste stored		\mathbf{M}		·
		in that area, whichever is the greatest, provide?				
4.12	S8.5	Are a routine cleaning and maintenance programme implemented for drainage				
4.12	30.5	120		\checkmark		
		systems, sump pits, and oil interceptors?				
4.13	S8.5	Are sufficient general refuse disposal/collection points provided on site?				
4.14	S8.5	Is general refuse disposed of properly and regularly?		$\overline{\mathbf{N}}$		
				ĽŸ		
4.15	S8.5	Are appropriate measures adopted to minimize windblown litter and dust during				
		transportation of waste?				
4.16	S8.5	Are individual collectors for aluminum cans, plastic bottles and packaging material				
		and office paper provided to encourage waste segregation?		$\Delta $		
4.17	S8.5					
4.17	30.5	Are C&D wastes sorted on site?		V		Party and a second s
4.18	S8.5	Are C&D waste disposed of properly?		\bigvee		
4.19	S8.5	Are unused C&D materials or chemicals recycled or reused to reduce the quantity				
		of waste?				
4.20	S8.5	Are public fill and C&D waste reuse on site as far as practicable to avoid disposal				
		off-site?		\mathbf{V}		
4.21	S8.5	Are the construction materials stored properly to minimize the potential for damage				
4.21	30.5	or contamination?				
4.22	\$8.5	Is a dumping license obtained to deliver public fill to public filling areas?		\bigvee		
5.00	S11.10	Landscape and Visual				
5.01	& 11.11	Are Is site hoarding provided?				
5.02	2 S11.10	& Are vegetation disturbance minimized or soil protected to reduce potential soil erosion?		\bigvee		
	11.11			لننا		-
5.03	3 S11.10	& Is construction light oriented away from the sensitive receivers?				
1	11.11	is constitution light oriented away from the sensitive receivers.	V			

Item	EIA ref.	June and Operate First Stage of				
No.			N/A	Yes	No	Photo/Remarks
5.04	& 11.10 & 11.11	Is grass hydroseeding provided to slopes as soon as the completion of works?	\square			7
5.05	S11.10 &	k Are damages to trees outside site boundary due construction works avoided?				
5.06	S11.10 8 11.11	Is excavation works carried out manually instead of machinery operation within 2.5m vicinity of any preserved trees?				-
	S11.10 &	Are the retained and transplanted tree(s) properly protected and in good conditions?		\checkmark		
5.08	S11.10 & 11.11	Are surgery works carried out for damaged trees?				
6.00 6.01		Ecology Is site runoff properly treated to prevent any silly runoff?		\square		
6.02	S9.7	Are silt trap installed and well-maintained?	$\overline{\mathbf{A}}$			
6.03	S9.7	Are stockpiles properly covered to avoid generating silty runoff?		$\overline{\checkmark}$		
6.04	S9.7	Are construction works restricted to works area which are clearly defined?				
6.05		For slope mitigation works within the Clear Water Bay Country Park, are tree felling and damages to trees, the exact locations of the flexible barrier foundation plates, soil nails and rock dowels adjusted during detailed design, and a setback distance from existing trees is recommended to be maintained as far as practical?		$\overline{\checkmark}$		
6.06	S9.7	Are pruning of tree canopies along the alignment of the flexible barriers limited to a minimum?				
6.07		Is the alignment of flexible barriers optimized to preserve all species of conservation interest and minimize the impact to the existing vegetation as far as practicable? Are the alignment of flexible barriers positioned at minimum 1.5 m in a radius away from these individuals?				
		Is temporary fencing installed to fence off the concerned species either in groups of individually within the works area and in the close proximity to prevent from being damaged and disturbed during construction? Is a sign identifying the site attached to the fence and flagging tape shall be attached to the individuals to visualize their locations?		\checkmark		
6.09		Is a specification for fencing and demarcating individuals of Marsdenai lachnostoma (or other flora species of conservation interest, if found) adjacent to the proposed alignment of the flexible barriers prepared to protect the species?		\checkmark		
6.10		Is any induction training provided to all site personnel in order to brief them on this flora of conservation interest including the locations and their importance?				
6.11		s the resident site supervisory staff closely monitor the conditions of concerned individuals during construction of flexible barriers in the close proximity?		\checkmark		
6.12	1 a	Are fences erected along the boundary of the works area before the commencement of works to prevent vehicle movements and encroachment of personnel onto adjacent areas?		\checkmark		
6.13		s regular check of the work site boundaries performed to ensure that they are not preached and that damage does not occur to surrounding areas?		\checkmark		
6.14		s any damage and disturbance avoided, particularly those caused by filling and illegal lumping, to the surrounding habitats through proper management of waste disposal?		\checkmark		

Item	EIA ref.		N/A	Yes	No	Photo/Remarks
No.						
6.15	S9.7	Are temporarily affected areas reinstated, particularly the habitats of plantation and shrubland-grassland immediately after completion of construction works, through on-site tree/shrub planting?				
6.16	S9.7	Are affected habitats within the Clear Water Bay Country Bay reinstated by hydro- seeding and planting of climbers and native shrub seedlings where practical upon completion of the slope mitigation works?	\checkmark			
7.00		Landfill Gas Hazard				
7.01	S12.7	Are the safety procedures implemented to minimise the risks of fires and explosions, asphyxiation of works and toxicity effects during all works?				
7.02	S12.7	Are the gas detection equipment and precautions being used during trenching and excavation as well as creation of confined spaces?				
7.03	S12.7	Are the training with regard to the awareness of potential hazards of working in confined spaces provided from the Contractor to the workers?	\checkmark			
7.04	S12.7	Are the safety officers trained with regard to landfill gas and leachate related hazards and presented on the site throughout the works undertaken below grade?				
7.05	S12.7	Are the all personnel working on site and all visitor made aware of the possibility of ignition of gas, the possible presence of contaminated water and the need to avoid physical contact?				
7.06	S12.7	Is the monitoring of landfill gas being undertaken in all excavations, manholes, chambers and any confined spaces?	\checkmark			2
7.07	S12.7	Are the monitoring frequency and areas being specified by the safety officers or appropriately qualified person? Are the all measurements being recorded and documented?				
7.08	S12.7	Is the drilling proceeded with adequate care and precautions against the potential hazards?				
7.09	S12.7	Is the method statement covering all normal and emergency procedures provided by the drilling contractor prior to the commencement of the site works?				
7.10	S12.7	Are the below ground services entries being sealed to prevent gas entry? Are the grilled metal covers being used for below grade cable trenches?	\square			
7.11	S12.7	Is each manhole or utility pit monitored with two measurements (at mid-depth and base) for minimum of 10 minutes? Is the steady reading and peak reading recorded at each manhole or utility pit?	Ń			
7.12	S12.7	Are the warning signs of the hazards of landfill gas and its possible presence on site posted in prominent places?				
8.00 8.01		Overall Is the EM&A properly implemented in general?		\checkmark		

Remark / Follow up of Observation(s) and Non-compliance(s) of Last Weekly Site Inspection: Reminder: Rol: Contractor was reminded that stock of more than 20 bogs of cement shall be covered or sheltered on top and 3 sides. (near Ro Building) Signatures: ET Contractor's Supervising Officer's IEC's WSD's Representative Representative Representative Representative Representative (Name: Edric Lun) (Name: (Name: (Name: Howard Chan) (Name:) Man lon

WEEKLY ENVIRONMENTAL INSPECTION CHECKLIST

Inspection Date: 29	-11-2022	Inspected by:	ET: Jack	y Leng		Raymus Kell WSD:	
Inspection Time:	15- 11:15		Contractor. $p = p_{-} - p_{-}$	Mr. KAn	iLe. <u>/ // .</u>	lan Kwan	
Weather							
Condition	Sunny Fine	Overcast	Drizzle	Rain	Storm	Hazy	
Temperature	28°C	Humidity	High	Moderate	Low		
Wind	Calm Light	Breeze	Strong				

Item No.	EIA ref.		N/A	Yes	No	Photo/Remarks
0.00		General				
0.00		Is the current Environmental Permit displayed conspicuously at all vehicle site		Γ		
		entrances/exits for public's information at any time?		\checkmark		
0.02		entrances/exits for public's information at any time?				1015 State
0.02		Is ET Leader's log-book kept readily available for inspections?		\checkmark		
		Construction Dust		/		
1.00	S4.8.1	Are dusty materials, such as excavated materials, building debris and construction		$\overline{\mathbf{N}}$		
1.01		materials, and exposed earth surface properly covered to prevent dust emission?				
1.02	\$4.8.1	Are screenings, enclosures, water spraying, or vacuum cleaning devices provided to				
		dusty construction works for dust suppression?				
1.03	S4.8.1					
		Are fumes or smoke emitting plants or construction activities shielded by a screen?	ليكا			
1.04	S4.8.1	Are wheel-washing facilities with high-pressure water jets provided at all site exits?		\square	\square	
1.05	S4.8.1					
	51.0.1	Is wheel-washing provided to all vehicles leaving the site?		\checkmark		
1.06	S4.8.1	Are road section near the site exit free from dusty material?				
1.07	C4.0.1					
1.07	S4.8.1	Are all main haul roads inside the site paved or sprayed with water to minimize		\Box		
		dust emission during vehicle movement?				
1.08	S4.8.1	Are water spraying provided immediately prior to any loading or transfer of dusty				
		materials?				
1.09	S4.8.1	Are covers provided to all dump trucks carrying dusty materials when entering and		1.7		
		leaving the site?		\vee		
1.10	S4.8.1	Are the working areas for uprooting of trees, shrubs, or vegetation or the removal	T/T			
		of boulders, poles, pillars sprayed with water to maintain the entire surface wet?	\bigvee			
1.11	S4.8.1	Is exposed earth properly treated within six months after the last construction				
		activity on site?				
1.12	S4.8.1					
		Does the operation of plants on site free form dark smoke emission?		\square		
1.13	S4.8.1	Are vehicles travelling at speed not exceeding 15km/hr within the site?				
1.14	S4.8.1	Are stock of more than 20 bags of cement or day PFA covered or sheltered on top		1		
		and 3 sides?		\bigvee		

	EIA ref.		N/A	Yes	No	Photo/Remarks
No. 1.15	S4.8.1	Are de-bagging, batching and mixing processes of bagged cement carried out in				
1.15	54.0.1	sheltered areas?	V			
1.16	S4.8.1	Are hoarding of at least 2.4m high provided along the site boundary adjoining areas	1			
		accessible by the public?	V			
1.17	S4.8.1	Is open burning prohibited?		\checkmark		
2.00		Construction Noise (Airborne)				
2.01	S5.7	Are quiet plants adopted on site?		\checkmark		
2.02	S5.7	Are the PMEs operating on site well-maintained to minimize the generation of excessive noise?		\checkmark		
2.03	S5.7	Are plants throttled down or turned off when not in use?		\square		
2.04	S5.7	Are the plants known to emit noise strongly in one direction oriented to face away				
0.05	0.5.7	from NSRs?				
2.05	S5.7	Are moveable barriers provided to screen NSRs from plant or noisy operations?	\mathbf{V}			
2.06	S5.7	Are silencers, mufflers and enclosures provided to plants?	\checkmark			
2.07	S5.7	Are the hoods, cover panels and inspection hatches of PMEs closed during operation?		\square		
2.08	S5.7	Are purposely-built site hoarding construction with appropriate materials provided				
		along the site boundary?				
2.09	S5.7	Are noisy operation properly scheduled to minimize exposure and cumulative	\Box			
		impacts to nearby sensitive receivers?	Ľ			
2.10	S5.7	Are valid noise emission label(s) affixed to all hand-held breakers operating on site?	\checkmark			
2.11	\$5.7	Are valid noise emission label(s) affixed to all air compressors operating on site?				
2.12	\$5.7	Are all construction noise permit(s) applied for percussive piling work?				
2.13	S5.7	Are construction noise permit(s) applied for general construction works during				
		restricted hours?		\vee		. <u></u>
2.14	S5.7	Are valid construction noise permit(s) displayed at all vehicular exits?		\square		
3.00		Water Quality				
3.01	S6.9	Is effluent discharge license obtained for wastewater discharge from site?				
3.02	S6.9	Is effluent discharged according to the effluent discharge license?		\checkmark		
3.03	S6.9	Is wastewater discharge from site properly treated prior to discharge?		\checkmark		
3.04	S6.9	Are perimeter channels provided to intercept storm runoff from outside the site?		\Box		
3.05	S6.9	Are sand/silt removal facilities such as sand/silt traps and sediment basins provided				
		to remove sand/silt particles from runoff?		\checkmark		
			1.000 A. 100			

		ct no. 13/WSD/17 Design, Build and Operate First Stage of 7				
ltem No.	EIA ref.		N/A	Yes	No	Photo/Remarks
	0.0					
3.06	S6.9	Is surface runoff diverted to sedimentation facilities?				
3.07	\$6.9	Is the drainage system properly maintained?				
				\checkmark		
3.08	\$6.9	Are construction works carefully programmed to minimize soil excavation works	. /			
		during rainy seasons?				-
3.09	S6.9	Are exposed soil surface protected by paving as soon as possible to reduce the	\Box			
		potential of soil erosion?				
3.10	\$6.9	Are temporary access roads protected by crushed gravel?		\square		
3.11	S6.9	Are exposed slope surface properly protected?	\checkmark			
3.12	\$6.9	Is trench excavation avoided in the wet season as far as practicable, or if necessary,				
		backfilled in short sections after excavation?				
3.13	\$6.9	Are open stockpiles of construction materials on site covered by tarpaulin or similar				
		fabric during construction?	\bigvee			
3.14	\$6.9	Is runoff from wheel-washing facilities avoided?				
		is funori nom wheel-washing facilities avoided:		1/		
3.15	S6.9	Is oil leakage or spillage prevented?		\square		
3.16	\$6.9	Are there any measures to prevent the release of oil and grease into the storm				
		drainage system?	ЦЦ			•
3.17	\$6.9	Are the oil interceptors/ grease traps properly maintained?	\checkmark			
3.18	S6.9	Are debris and rubbish generated on site collected, handled and disposed of				
		properly to avoid them entering the streams?		\checkmark		-
3.19	S6.9	Are all fuel tanks and storage areas provided with locks and be sited on sealed				
		areas, within bunds of capacity equal to 110% of the storage capacity of the largest				
		tank?				
3.20	\$6.9	Are tanks, containers, storage area bunded and the locations locked as far as				
		possible from the sensitive watercourse and stormwater drains?		\checkmark		
3 21	S6.9	Are sufficient chemical toilets provided on site to handle sewage from construction				
0.21	50.5	work force?		\checkmark		10
3 77	\$6.9	Are sewage disposal and toilet maintenance of the portable chemical toilets				
5.22	30.9	provided by the licensed contractors?		\bigvee		
2 22	S6.9					
3.23	50.9	Is concrete washing water properly collected and treated prior to discharge?				
3.24	S6.9	Is suitable type of silt curtains deployed during dredging to reduce the elevation of	5			
		suspended solids to nearby sensitive receivers?				
3.25	S6.9	Is closed grab dredger used to reduce the potential leakage of sediments?	\checkmark			_
3.26	\$6.9	Is closed grab dredger of 3 to 6 m ³ used for dredging at seawater intake?	\square	\Box		
3 77	S6.9	Is specific work staff assigned the responsibility for monitoring the number of grab				
3.21	30.9		1			
		dredged per hour? Is number of cycle limited to 20-21 grab per hour for 3m ³ closed	∇			
		grab, 10-11 grab per hour for 6m3 closed grab?	Ľ			

						Photo/Remarks
No.						
3.28 S6.	5.9	Is the grab operated in slow and controlled manner such that the impact to seabed				
		by the grab when being lowered could be minimized? Is the operator ensured the				
		grab be properly closed before lifting the grab?				· · · · · · · · · · · · · · · · · · ·
3.29 S6.	5.9	Is the maximum allowed dredging rate at the seawater intake limited to 750 m3/day				
		while the maximum allowed dredging rate at the submarine outfall is 3,500				
		m3/day?	\checkmark			N
3.30 S6.	5.9	Is dredged marine sediment disposed of in a gazetted marine disposal area in				
		accordance with marine dumping permit conditions of the Dumping at Sea				
		Ordinance (DASO)?	V			
3.31 S6.	5.9	Are disposal vessels fitted with tight bottom seals in order to prevent leakage of				
		material during transport?				
3.32 S6.	5.9	Are barges filled to a level which ensures that material does not spill over during				
		transport to the disposal site and that adequate freeboard is maintained to ensure				
1		that the decks are not washed by wave action?				
3.33 S6	0.000	Are excess materials cleaned from decks and exposed fittings before the vessel is	$\overline{\Lambda}$			
		moved from the dredging area after dredging?				
3.34 S6	5.9	Are the contractor(s) confirmed that the works cause no visible foam, oil, grease,				
		litter or other objectionable matter to be present in the water within and adjacent	1			
		to the dredging site?	للهجب			-
3.35 S6		When the dredged material has been unloaded at the disposal areas, is any material				
	0.	accumulated on the deck or other exposed parts of the vessel removed and placed in	5/1			
		the hold or a hopper?				
3.36 S6	882.0	Is dredger maintained adequate clearance between vessels and the seabed at all				
		states of the tide and reduce operations speed to ensure that excessive turbidity is	. /			
		not generated by turbulence from vessel movement or propeller wash?				
3.37 S6		Is the contractor shall regularly inspect the silt curtains and check that they are				
		moored and marked to avoid danger to marine traffic? Is regular inspection on the				
		integrity of the silt curtain carried out by the contractor and any damage to the silt				
		curtain shall be repaired by the contractor promptly?				
3.38 S6	5.9	Are all vessels have a clean ballast system?				
3.39 S6	5.0	Are all vessels well maintained and inspected before use to limit any potential				
5.57 50		discharges to the marine environment?				
3.40 S6		Is any discharge of sewage/grey wastewater? Is wastewater from potentially				
0.40 30		contaminated area on working vessels should be minimized and collected?	\checkmark			
3.41 S6	59					
5.41 50	5.9	Is any soil waste disposed overboard?				
4.00		Waste Management			14	
4.01 S8		Is a trip-ticket system implemented to monitor the disposal of C&D and solid				
		wastes at public filling facilities and landfills?				
4.02 \$8.	3.5	Is a recording system implemented to record the amount of wastes generated,				
4.02 30.		recycled and disposed of?				
4.03 S8.						
1.05 50.		Is the Contractor registered as a chemical waste producer?		\mathbf{V}		

C	Juntia	t llo. 15/ WSD/17 Design, Dunu and Operate First Stage of	De ang an			ation I funt
Item No.	EIA ref.		N/A	Yes	No	Photo/Remarks
4.04		Is chemical waste separated from other waste and collected by a licensed chemical waste collector?	\square			-
4.05	S8.5	Are trip tickets for chemical waste disposal available for inspection?				
4.06	S8.5	Is drip tray provided for chemical storage?		\square		001
4.07	S8.5	Are all containers for chemical waste properly labelled?		\checkmark		
4.08	1	Is chemical waste storage area used solely for storage of chemical waste and properly labelled?				
4.09	S8.5	Are incompatible chemical wastes stored in different areas?	\checkmark			
4.10	S8.5	Is the chemical waste storage area enclosed on at least 3 sides and adequately ventilated?		\checkmark		
4.11	S8.5	Is an impermeable floor and bunding, of capacity to accommodate 110% of the volume of the largest container or of 20% by volume of the chemical waste stored in that area, whichever is the greatest, provide?		\checkmark		
4.12		Are a routine cleaning and maintenance programme implemented for drainage systems, sump pits, and oil interceptors?				
4.13	S8.5	Are sufficient general refuse disposal/collection points provided on site?		\square		
4.14	S8.5	Is general refuse disposed of properly and regularly?		\square		-
4.15	1	Are appropriate measures adopted to minimize windblown litter and dust during transportation of waste?				
4.16		Are individual collectors for aluminum cans, plastic bottles and packaging material and office paper provided to encourage waste segregation?				
4.17	S8.5	Are C&D wastes sorted on site?				
4.18	S8.5	Are C&D waste disposed of properly?				
4.19	S8.5	Are unused C&D materials or chemicals recycled or reused to reduce the quantity of waste?		\checkmark		
4.20	S8.5	Are public fill and C&D waste reuse on site as far as practicable to avoid disposal off-site?		\checkmark		
4.21	S8.5	Are the construction materials stored properly to minimize the potential for damage or contamination?		\square		
4.22	S8.5	Is a dumping license obtained to deliver public fill to public filling areas?		\checkmark		
E 00	011.10	Landroopp and Viewal				
	S11.10 & 11.11	Landscape and Visual Are Is site hoarding provided?	\checkmark			
5.02	S11.10 & 11.11	Are vegetation disturbance minimized or soil protected to reduce potential soil erosion?		\square		
5.03	S11.10 &	Is construction light oriented away from the sensitive receivers?	\checkmark			
L	J					10110

_ (Contra	ct no. 13/WSD/17 Design, Build and Operate First Stage of '	Iseung K	wan O I	Desalina	ation Plant
Item	EIA ref.		N/A	Yes	No	Photo/Remarks
No.						
5.04	S11.10					
	& 11.11	Is grass hydroseeding provided to slopes as soon as the completion of works?				1
5.05	S11.10 &	Are damages to trees outside site boundary due construction works avoided?				
	11.11					
5.06	S11.10 &	Is excavation works carried out manually instead of machinery operation within 2.5m				
	11.11	vicinity of any preserved trees?				· · · · · · · · · · · · · · · · · · ·
5.07	S11.10 &	Are the retained and transplanted tree(s) properly protected and in good conditions?		\square		
5.08	S11 10 8	Are surgery works carried out for damaged trees?				
5.08	11.11	Are surgery works carried out for damaged nees?				
6.00	S9.7	Ecology		\Box		
6.01		Is site runoff properly treated to prevent any silly runoff?				
6.02	S9.7	Are silt trap installed and well-maintained?	$\overline{\mathbf{X}}$			
6.03	S9.7	Are stockpiles properly covered to avoid generating silty runoff?				
				Δ		
6.04	S9.7	Are construction works restricted to works area which are clearly defined?		Ń		
6.05	S9.7	For slope mitigation works within the Clear Water Bay Country Park, are tree felling and				
		damages to trees, the exact locations of the flexible barrier foundation plates, soil nails				
		and rock dowels adjusted during detailed design, and a setback distance from existing				
		trees is recommended to be maintained as far as practical?		\bigvee		
6.06	S9.7	Are pruning of tree canopies along the alignment of the flexible barriers limited to a				
		minimum?				
6.07	S9.7	Is the alignment of flexible barriers optimized to preserve all species of conservation				
		interest and minimize the impact to the existing vegetation as far as practicable? Are the				
		alignment of flexible barriers positioned at minimum 1.5 m in a radius away from these				
		individuals?				
6.08	S9.7	Is temporary fencing installed to fence off the concerned species either in groups of		÷		
		individually within the works area and in the close proximity to prevent from being				
	75	damaged and disturbed during construction? Is a sign identifying the site attached to the		\Box		
		fence and flagging tape shall be attached to the individuals to visualize their locations?		\vee		
6.09	S9.7	Is a specification for fencing and demarcating individuals of Marsdenai lachnostoma (or				
		other flora species of conservation interest, if found) adjacent to the proposed alignment				
		of the flexible barriers prepared to protect the species?		$\Delta $		
6.10	S9.7	Is any induction training provided to all site personnel in order to brief them on this flora				
		of conservation interest including the locations and their importance?				
6.11	S9.7	Is the resident site supervisory staff closely monitor the conditions of concerned				
		individuals during construction of flexible barriers in the close proximity?				
6.12	50 7	Are fences erected along the boundary of the works area before the commencement of				
0.12		works to prevent vehicle movements and encroachment of personnel onto adjacent				
		areas?				
6.12		(p. 1997).00	·			
6.13		Is regular check of the work site boundaries performed to ensure that they are not				
		breached and that damage does not occur to surrounding areas?				
6.14	S9.7	Is any damage and disturbance avoided, particularly those caused by filling and illegal				
		dumping, to the surrounding habitats through proper management of waste disposal?		\checkmark		

dumping, to the surrounding habitats through proper management of waste disposal?

 \checkmark

L

sustainability

Member of the Aurecon Group

C	Jonira	ct no. 15/WSD/17 Design, Bund and Operate First Stage of a			NI.	Dhate /Damades
	EIA ref.		N/A	Yes	No	Photo/Remarks
No.						
6.15	S9.7	Are temporarily affected areas reinstated, particularly the habitats of plantation and shrubland-grassland immediately after completion of construction works, through on-site	\checkmark			
		tree/shrub planting?				
6.16	597	Are affected habitats within the Clear Water Bay Country Bay reinstated by hydro-				
	57.1	seeding and planting of climbers and native shrub seedlings where practical upon	$\overline{1}$			
		completion of the slope mitigation works?				
1.00		Landfill Gas Hazard				
7.00	010.7		\Box			
7.01	S12.7	Are the safety procedures implemented to minimise the risks of fires and explosions,				
		asphyxiation of works and toxicity effects during all works?				
7.02	S12.7	Are the gas detection equipment and precautions being used during trenching and		\square		
		excavation as well as creation of confined spaces?				
7.03	S12.7	Are the training with regard to the awareness of potential hazards of working in confined				
		spaces provided from the Contractor to the workers?				
7.04	S12.7	Are the safety officers trained with regard to landfill gas and leachate related hazards and	<u> </u>			
	512.1	presented on the site throughout the works undertaken below grade?	\bigvee			
7.05	S12.7	Are the all personnel working on site and all visitor made aware of the possibility of		<u></u>		
1.05	512.7	ignition of gas, the possible presence of contaminated water and the need to avoid				
		physical contact?				
7.06	S12.7	Is the monitoring of landfill gas being undertaken in all excavations, manholes,				
		chambers and any confined spaces?				
7.07	S12.7	Are the monitoring frequency and areas being specified by the safety officers or				
		appropriately qualified person? Are the all measurements being recorded and				
		documented?				
7.08	S12.7	Is the drilling proceeded with adequate care and precautions against the potential				
		hazards?	\checkmark			
7.09	S12.7	Is the method statement covering all normal and emergency procedures provided by				
		the drilling contractor prior to the commencement of the site works?	\checkmark			
7 10	012.7	Are the below ground services entries being sealed to prevent gas entry? Are the	1			2
7.10	S12.7					
		grilled metal covers being used for below grade cable trenches?		L		
7.11	S12.7	Is each manhole or utility pit monitored with two measurements (at mid-depth and				
		base) for minimum of 10 minutes? Is the steady reading and peak reading recorded				
		at each manhole or utility pit?				
7.12	S12.7	Are the warning signs of the hazards of landfill gas and its possible presence on site				
		posted in prominent places?	V			
8.00		Overall				1
				\bigvee		
8.01		Is the EM&A properly implemented in general?				

sustainability

Member of the Aurecon Group

Remark / Follow up of Observation(s) and Non-compliance(s) of Last Weekly Site Inspection: Observations 1.) Cheminel containens found near the contractor nest area and the Budding shall be stoned on a drip tray on propen chenical Remindens 1) Hauscherping near the R.O. Bailding and OSCB shall topy more attention on the material storage and frequency increase the increase the increase the Signatures: ET Supervising Officer's Contractor's IEC's WSD's Representative Representative Representative Representative Representative (Name:) (Name: Marchi Kal) (Name: (Name: Lows Suar Ken (Name: lin

aurecon

Appendix J

Complaint Log

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

Statistical Summary of Environmental Complaints

	En	vironmental Complai	nt Statistics
Reporting Period	Frequency	Cumulative	Complaint Nature
1 – 30 November 2022	0	1	N/A

Statistical Summary of Environmental Summons

Descenting Devised	E	nvironmental Summons	Statistics
Reporting Period	Frequency	Cumulative	Details
1 – 30 November 2022	0	0	N/A

Statistical Summary of Environmental Prosecution

Descention Desired	Er	wironmental Prosecution	a Statistics
Reporting Period	Frequency	Cumulative	Details
1 – 30 November 2022	0	0	N/A

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

Appendix K

Exceedance Report (s)

The copyright of this document is owned by Acuity Sustainability Consulting Limited. It may not be reproduced except with prior written approval from the Company.

Bi-Weekly Incident Report on Action Level or Limit Level Non-Compliance

Date of	nce Station WSR1 WSR2 WSR3 WSR3 WSR4 WSR4 WSR16 WSR33 WSR36 WSR37 WSR1 WSR2 WSR3 WSR4 WSR33 WSR36 WSR37 WSR36 WSR37 WSR36 WSR37 WSR3 WSR37 WSR2 WSR3 WSR4 WSR3 WSR37 WSR16 WSR3 WSR16	Tide	Parameter	Measurement Result	Sampling depth	Depth Average Result		n Level g/L)	Limit (m	Level g/L)	Exceedance	Marine construction activities with	Exceedance related to Project	R¢	asons	of nor	1-proje	ect relat	ed exc	eedanc	e
exceedance	Station			(mg/L)		(mg/L)	95%-ile	Control 120%	99%-ile	Control 130%		contact with water (Y/N)	(Y/N)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	WSR1					15.3					Limit Level	Y	N	✓	✓	~	✓				
	WSR2					17.5]				Limit Level	Y	N	~	~	~	✓				
	WSR3					8.9]				Limit Level	Y	N	~	~	~	✓				
	WSR4	Flood	Suspended Solid			10.8	5.0	13.1	6.0	14.2	Limit Level	Y	N	✓	~	✓	✓				
	WSR16	Flood	Suspended Solid			14.5	5.0	13.1	0.0	14.2	Limit Level	Y	Ν	✓	~	~	✓				
	WSR33					14.0					Limit Level	Y	N		~	~	✓				
	WSR36					9.0]				Limit Level	Y	N		~	~	✓				
Date of exceedance	WSR37					11.2]				Limit Level	Y	N		~	~					
5/11/2022	WSR1					5.3					Action Level	Y	N	✓	✓	~	✓				
	WSR2					10.2]				Limit Level	Y	N	~	~	~	~				
	WSR3					9.3	-				Limit Level	Y	N	~	✓	✓	✓				
	WSR4	 				10.4		10.0		• • •	Limit Level	Y	N	✓	~	✓	✓				
	WSR16	Ebb	Suspended Solid			10.3	5.0	19.0	6.0	20.6	Limit Level	Y	N	~	✓	✓	✓				
	WSR33					13.8	-				Limit Level	Y	N		~	✓	✓				
	WSR36					14.3	-				Limit Level	Y	N		~	✓	✓				
	WSR37					13.3					Limit Level	Y	N		~	✓					
	WSR2					6.7					Limit Level	Y	N	✓	✓	✓	✓	✓	~	✓	
	WSR3					17.5	-				Limit Level	Y	N	✓	~	~	✓	✓	~	~	
	WSR4					13.7					Limit Level	Y	N	✓	✓	✓	✓	✓	~	~	
	WSR16	Flood	Suspended Solid			13.8	- 5.0	8.0	6.0	8.7	Limit Level	Y	N	✓	✓	✓	✓	✓	~	~	
	WSR33					7.7	-				Limit Level	Y	N		✓	✓	✓	✓	~	~	
	WSR37					6.0	-				Action Level	Y	N		~	✓		✓	~	~	
	WSR1					10.2					Limit Level	Y	N	✓	✓	✓	✓	✓		~	
	WSR2					7.9					Limit Level	Y	N	✓	~	✓	✓	✓		~	
	WSR3					16.8	-				Limit Level	Y	N	✓	✓	✓	✓	✓		~	
0.111.100.000	WSR16	Ebb	Suspended Solid			6.3	5.0	4.7	6.0	5.1	Limit Level	Y	N	✓	~	✓	✓	✓		~	
8/11/2022	WSR33					14.0	-				Limit Level	Y	N		✓	✓	✓	✓		~	
	WSR36					12.0	-				Limit Level	Y	N		~	✓	✓	✓		~	
	WSR37					8.6					Limit Level	Y	N		✓	✓		✓		~	
				2.46																	
				2.37	Surface																ľ
				2.36		1															ļ
	WSR3	Flood	Turbidity	2.34	Middle	2.38	2.41	3.87	2.81	4.19	N/A	N/A	N/A				N	/A			ļ
				2.66		1															ļ
				2.34	Bottom																ļ
				2.41																	ļ

Date of exceedance	Monitoring Station	Tide	Parameter	Measurement Result	Sampling depth	Depth Average Result	Action (m	n Level g/L)	Limit (m	Level g/L)	Exceedance	Marine construction activities with	Exceedance related to	Reasons of non-project related exceedance
exceedance	Station			(mg/L)		(mg/L)	95%-ile	Control 120%	99%-ile	Control 130%		contact with water (Y/N)	Project (Y/N)	(1) (2) (3) (4) (5) (6) (7) (8)
				2.40	0			120,0		100%				
				2.32	Surface									
				2.45	Middle									
	WSR4		Turbidity	2.33	initiale	2.37								
				2.72										
				2.38	Bottom									
				2.35				2.07	2.01	4.10	27/4	27/4		
		Flood		2.40	Surface		2.41	3.87	2.81	4.19	N/A	N/A	N/A	N/A
				2.37										
				2.15	Middle									
	WSR37		Turbidity	2.22		2.32								
				2.98										
				2.34	Bottom									
				2.34										
				3.01										
				2.13	Surface									
				2.15										
	WSR16		Turbidity	2.95		2.28								
	WSR37 WSR16 WSR33			2.40	Middle									
				2.39										
				2.33	Bottom									
				2.28										
				2.78 2.33	Surface									
				2.33	Surrace									
		Ebb	Turbidity	2.36		2.31	2.41	3.83	2.81	4.14	N/A	N/A	N/A	N/A
			,	2.43	Middle									
				2.19										
				2.20	Bottom									
				2.34	Strafe er									
				2.2	Surface									
				2.31	Middle									
			Turbidity	2.42	Midule	2.35								
				3.09										
				2.44	Bottom									
				2.35										

Member of the Aurecon Group

Date of	Monitoring	Tide	Parameter	Measurement Result	Sampling depth	Depth Average Result	Action (mg	n Level g/L)		Level g/L)	Exceedance	Marine construction activities with	Exceedance related to	Rea	asons	of non-j	projec	ct related	d exce	edance	
exceedance	Station			(mg/L)		(mg/L)	95%-ile	Control 120%	99%-ile	Control 130%		contact with water (Y/N)	Project (Y/N)	(1)	(2)	(3)	(4)	(5)	(6)	(7) (8)
	WSR1					17.0					Limit Level	Y	N	✓	✓	✓	✓			✓	
	WSR3					11.7					Limit Level	Y	N	✓	~	~	✓			✓	
	WSR4					16.2					Limit Level	Y	N	✓	✓	~	✓			✓	_
	WSR16	Flood	Suspended Solid			16.0	5.0	15.3	6.0	16.6	Limit Level	Y	N	✓	✓	~	✓			✓	
	WSR33					7.1					Limit Level	Y	N		~	~	✓			✓	
	WSR36					12.0					Limit Level	Y	N		~	~	✓			✓	
	WSR37					12.2					Limit Level	Y	N		✓	~				✓	
10/11/2022	WSR1					11.2					Limit Level	Y	N	✓	~	~	✓			✓	
	WSR2					15.3					Limit Level	Y	N	✓	~	~	✓			✓	
	WSR3					17.3					Limit Level	Y	N	✓	✓	~	✓			✓	
	WSR4					15.5					Limit Level	Y	N	✓	~	~	✓			✓	
	WSR16	Ebb	Suspended Solid			16.2	5.0	19.4	6.0	21.0	Limit Level	Y	N	✓	~	~	✓			✓	
	WSR33					10.5					Limit Level	Y	N		✓	~	✓			✓	_
	WSR36					14.2					Limit Level	Y	N		~	~	✓			✓	
	WSR37					17.0					Limit Level	Y	N		~	~				✓	
	WSR1					17.0					Limit Level	Y	N	✓	✓	~	✓				
	WSR2					12.5					Limit Level	Y	N	~	✓	~	✓				
	WSR3					15.2					Limit Level	Y	N	✓	✓	~	✓				
	WSR4					13.8					Limit Level	Y	N	~	~	~	✓				
	WSR16	Flood	Suspended Solid			12.8	5.0	17.4	6.0	18.9	Limit Level	Y	N	✓	✓	~	✓				
	WSR33					15.7					Limit Level	Y	N		✓	~	✓				_
	WSR36					17.7					Limit Level	Y	N		✓	~	✓				
	WSR37					16.2					Limit Level	Y	N		✓	~					_
	WSR1					10.7					Limit Level	Y	N	✓	✓	~	✓				_
	WSR2					8.3					Limit Level	Y	N	✓	✓	~	✓				_
	WSR3					16.8					Limit Level	Y	N	✓	✓	~	✓				_
12/11/2022	WSR4					17.7		140			Limit Level	Y	N	✓	✓	~	✓				_
	WSR16	Ebb	Suspended Solid			17.3	5.0	16.8	6.0	18.2	Limit Level	Y	N	✓	✓	~	✓				_
	WSR33					11.0					Limit Level	Y	N		~	~	✓				
	WSR36					10.2					Limit Level	Y	N		✓	~	✓				_
	WSR37					16.2	1				Limit Level	Y	N		✓	~	\neg				
				2.66														I		I	
				2.14	Surface																
	WOD14	T ' '	T. 1.11	2.31		0.17	2.41	2.00	2.01	4.10	27/4	27/4	27/1				•••				
	WSR16	Flood	Turbidity	2.67		2.17	2.41	3.80	2.81	4.12	N/A	N/A	N/A				N/A	Ŧ			
				2.00	Middle																
				2.13																	

Date of exceedance	Monitoring Station	Tide	Parameter	Measurement Result	Sampling depth	Depth Average Result	Action (mg		Limit (mį	Level g/L)	Exceedance	Marine construction activities with	Exceedance related to	Reasons of non-project related e	exceedance
exceedance	Station			(mg/L)		(mg/L)	95%-ile	Control 120%	99%-ile	Control 130%		contact with water (Y/N)	Project (Y/N)	(1) (2) (3) (4) (5) (6)	(7) (8)
				2.71											
				2.23	Bottom										
				2.22											
				2.55											
				2.13	Surface										
				2.11											
	WSR4	Ebb	Turbidity	2.27	Middle	2.18	2.41	3.46	2.81	3.75	N/A	N/A	N/A	N/A	
				2.30											
				2.15	Bottom										
				2.15											
	WSR1	-				18.8	-				Limit Level	Y	N	✓ ✓ ✓ ✓	
	WSR2	-				16.2	-				Limit Level	Y	N	$\checkmark \qquad \checkmark \qquad \qquad \qquad \qquad \qquad$	
	WSR3	-				21.7	-				Limit Level	Y	N		
	WSR4	Flood	Suspended Solid			21.7	5.0	24.2	6.0	26.2	Limit Level	Y	N	✓ ✓ ✓ ✓	
	WSR16	-				16.2	-				Limit Level	Y	N	✓ ✓ ✓ ✓	
	WSR33	-				17.5	-				Limit Level	Y	N	✓ ✓ ✓ ✓	
	WSR36	-				15.8	-				Limit Level	Y	N		
	WSR37					15.8					Limit Level	Y	N	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
	WSR1 WSR2	-				16.7 19.2	-				Limit Level	Y Y	N N		
15/11/2022	WSR2 WSR3	-				19.2					Limit Level	Y Y	N N		
15/11/2022		-				19.7	-				Limit Level	Y I	N N	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
13/11/2022		Ebb	Suspended Solid			13.5	5.0	20.2	6.0	21.9	Limit Level	Y	N N	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
15/11/2022						20.0	{				Limit Level	Y	N		
						15.3	1				Limit Level	Y	N		
						20.7	1				Limit Level	Y	N		
				2.35								-		<u>III</u>	
				2.43	Surface										
				2.41		-									
15/11/2022 WSR4 WSR16 WSR33 WSR36 WSR37 WSR37	WSR33	Flood	Turbidity	2.45	Middle	2.39	2.41	3.55	2.81	3.85	N/A	N/A	N/A	N/A	
		-	2.85												
				2.31	Bottom										
				2.38											

1) WSR1, WSR2, WSR3, WSR4, WSR16 were located distant from the construction site and possibility of being affected by marine construction activity was considered limited.

2) Control station value already exceed either the Action or Limit Level.

3) No algal bloom, silt plume or pollution discharge from site area was observed.

4) Water quality mitigation measures were observed maintained / implemented properly.

5) Rainfall was recorded at Tseung Kwan O during the monitoring period, rainfall may lead to release of SS content form the soil of the nearby lands (e.g., Country Park, fill bank).

Member of the Aurecon Group

- 6) No action and limit level exceedance observed at WSR36 (Intake Shaft) or WSR37 (Outfall Shaft).
- 7) No marine construction activity was conducted at WSR36 (Intake Shaft).
- 8) No marine construction activity was conducted at WSR37 (Outfall Shaft).

Conclusion:

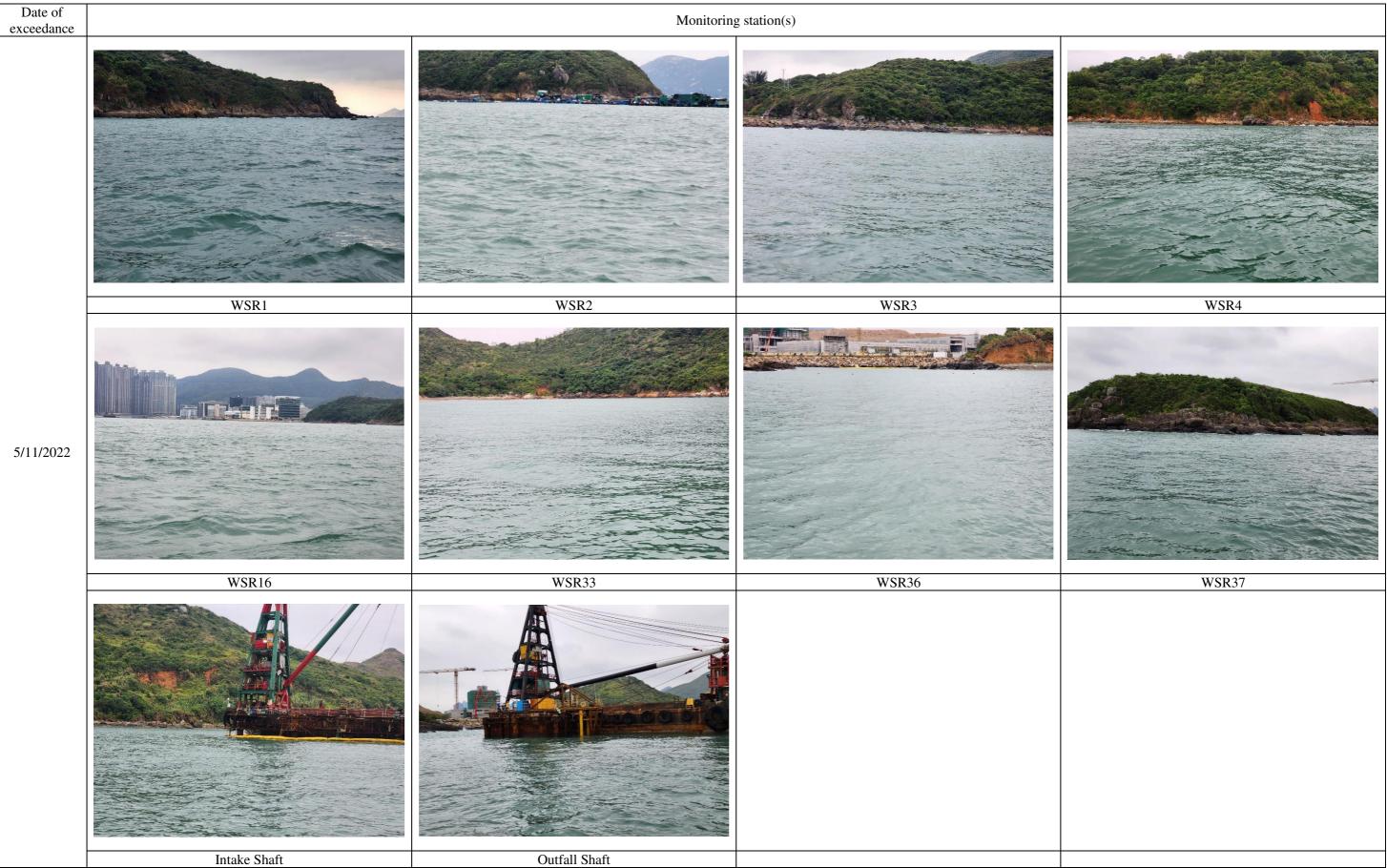
During water quality monitoring on 5 November 2022, eight (8) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and one (1) Action Level exceedance and seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and one (1) Action Level exceedances and seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and one (1) Action Level exceedances and seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and one (1) Action Level exceedances and seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and one (1) Action Level exceedances and seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and one (1) Action Level exceedances and seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and one (1) Action Level exceedances and seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and one (1) Action Level exceedances and seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and one (1) Action Level exceedances and seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and one (1) Action Level exceedances and seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and one (1) Action Level exceedances and seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and one (1) Action Level exceedances and seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and one (1) Action Level exceedances and seven (7) Limit Level exceedances and seven (7) Lim

During water quality monitoring on 8 November 2022, one (1) Action Level exceedance and five (5) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, seven (7) Limit Level exceedances of Suspended S

During water quality monitoring on 10 November 2022, seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and eight (8) Limit Level exceedances of Suspended Solids were recorded during mid-ebb tide. After investigation, all exceedances were considered non-project related.

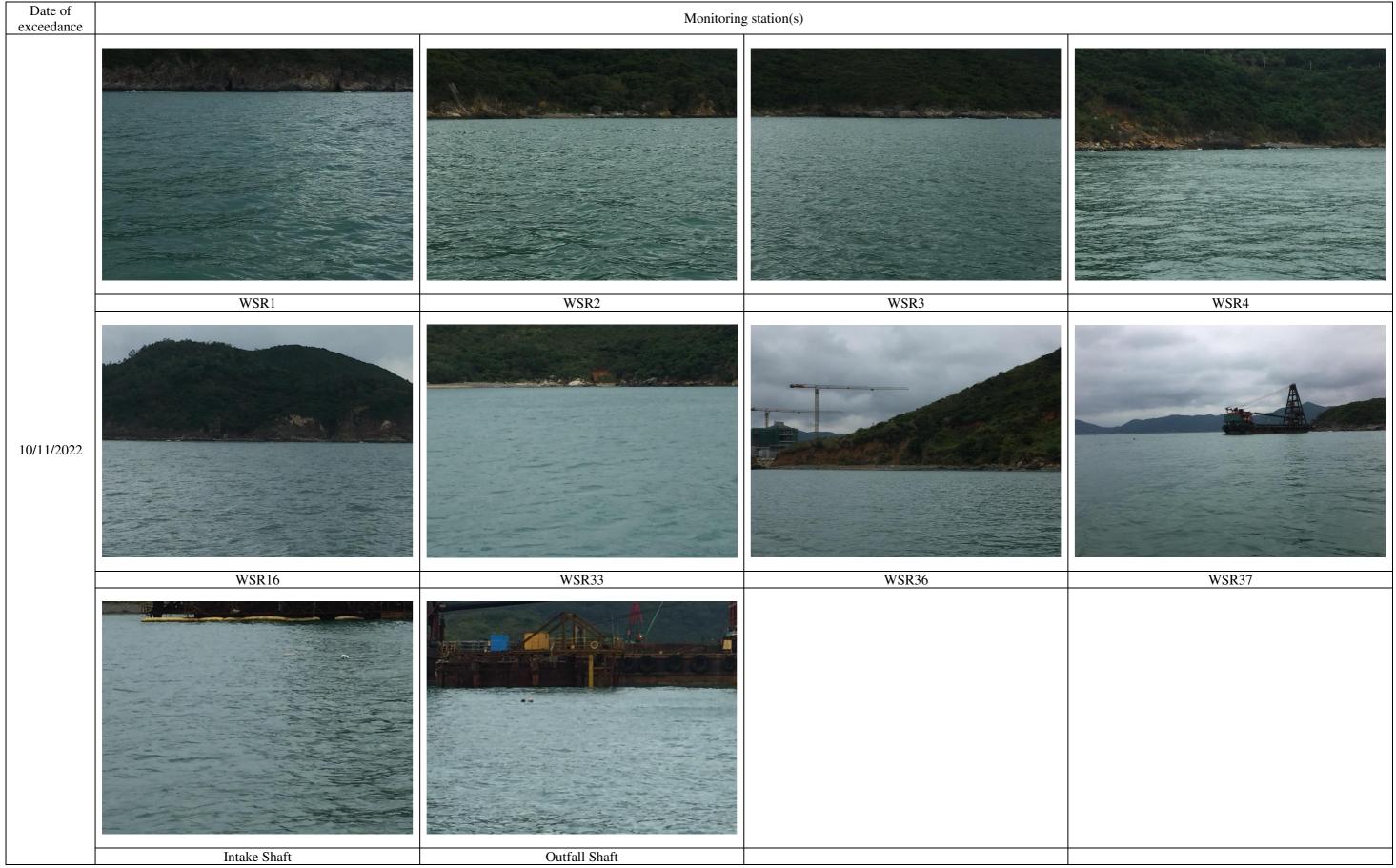
During water quality monitoring on 12 November 2022, eight (8) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and eight (8) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide. After investigation, all exceedances were considered non-project related.

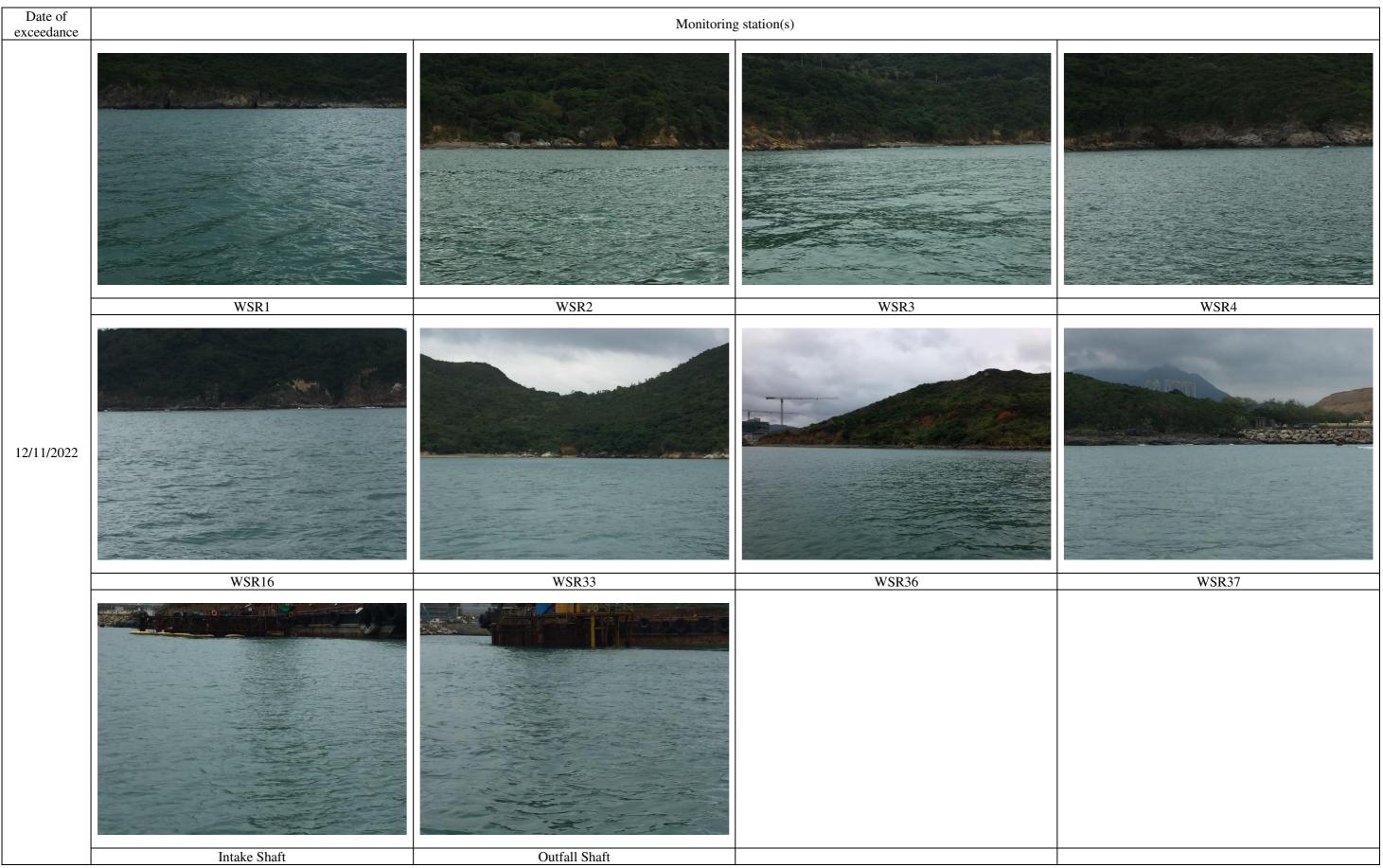
During water quality monitoring on 15 November 2022, eight (8) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and eight (8) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and eight (8) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and eight (8) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and eight (8) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and eight (8) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and eight (8) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and eight (8) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and eight (8) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and eight (8) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and eight (8) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and eight (8) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and eight (8) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and eight (8) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and eight (8) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and eight (8) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and eight (8) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and eight (8) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and eight (8) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and eight (8) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and eight (8) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, an


Total seventy-six (76) Action Level and seven-four (74) Limit Level exceedances for Suspended Solid of impact water quality monitoring were recorded between 5 November 2022 and 15 November 2022. After investigation, all exceedances were considered non-project related.

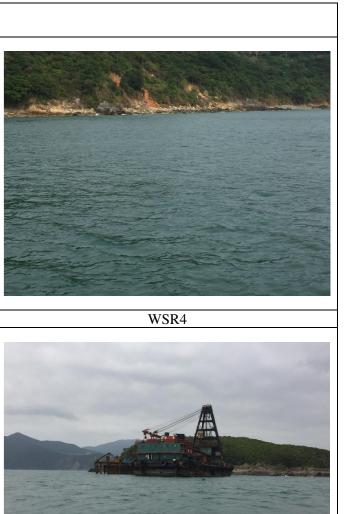
seven (7) Limit Level exceedances of Suspended Solids n (7) Limit Level exceedances of Suspended Solids were of Suspended Solids were recorded during mid-ebb tide. of Suspended Solids were recorded during mid-ebb tide. of Suspended Solids were recorded during mid-ebb tide.

Supporting Photo:

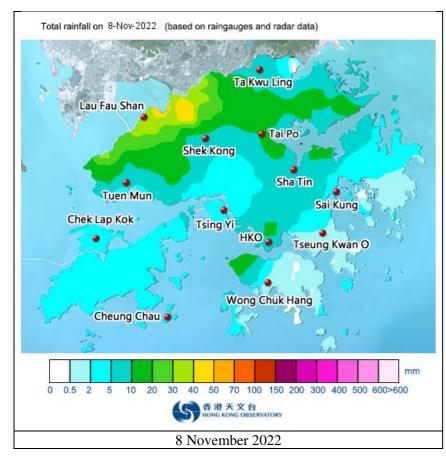

Date of exceedance		Monitorin	g station(s)
	WSR1	WSR2	WSR3
8/11/2022			
	WSR16	WSR33	WSR36
	Intake Shaft	Outfall Shaft	



WSR37



Date of exceedance		Monitoring	g station(s)
	WSR1	WSR2	WSR3
15/11/2022			
	WSR16	WSR33	WSR36
	Intake Shaft	Outfall Shaft	



WSR37

Rainfall Record from Hong Kong Observatory

Bi-Weekly Incident Report on Action Level or Limit Level Non-Compliance

Date of exceedance	Monitoring Station	Tide	Parameter	Measurement Result	Sampling depth	Depth Average Result		n Level g/L)		t Level g/L)	Exceedance	Marine construction activities with	Exceedance related to Project	Re	easons	of no	n-proj	ect relat	ted exc	ceedan	e
exceedance	Station			(mg/L)		(mg/L)	95%-ile	Control 120%	99%-ile	Control 130%		contact with water (Y/N)	(Y/N)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	WSR1					3.9					Action Level	Y	N	✓		✓	~				
	WSR2					5.4					Limit Level	Y	N	✓		~	~				
	WSR3					10.7]				Limit Level	Y	N	✓		~	~			1	
	WSR4	Elsed	Current de d. C11: d			7.7	5.0	2.0	()	4.2	Limit Level	Y	N	✓		~	~			1	
	WSR16	Flood	Suspended Solid			13.5	- 5.0	3.9	6.0	4.2	Limit Level	Y	N	✓		~	~				
	WSR33					8.8]				Limit Level	Y	N			~	~			1	
17/11/2022	WSR36					10.2]				Limit Level	Y	N			~	~			1	
17/11/2022	WSR37					10.7					Limit Level	Y	N			~					
	WSR2					7.9					Limit Level	Y	N	~	~	~	~				
	WSR4					10.5]				Limit Level	Y	N	~	~	~	~				
	WSR16					10.2	-	7.6	()		Limit Level	Y	N	✓	✓	~	✓				
	WSR33	Ebb	Suspended Solid			7.5	5.0	7.6	6.0	8.2	Limit Level	Y	N		✓	~	~			1	
	WSR36					8.0					Limit Level	Y	N		~	~	~			1	
	WSR37					7.5					Limit Level	Y	N		✓	~				i l	
	WSR1					4.6					Action Level	Y	N	✓		✓	✓			i	
	WSR2					6.4	1				Limit Level	Y	N	✓		~	✓			1	
	WSR3					9.6	1				Limit Level	Y	N	✓		~	✓			1	
	WSR4					7.8					Limit Level	Y	N	✓		✓	✓			1	
	WSR16	Flood	Suspended Solid			9.5	5.0	4.4	6.0	4.8	Limit Level	Y	N	✓		~	~			1	
	WSR33					6.8	1				Limit Level	Y	N			~	✓			1	
	WSR36					5.1	1				Limit Level	Y	N			~	~			1	
	WSR37					9.1	1				Limit Level	Y	N			~				1	
	WSR1					8.3					Limit Level	Y	N	✓	✓	~	✓			1	
	WSR2					5.5	1				Action Level	Y	N	✓	✓	~	~			1	
	WSR3					5.6	1				Action Level	Y	N	✓	✓	~	~			1	
19/11/2022	WSR4	Ebb	Suspended Solid			9.2	5.0	10.3	6.0	11.2	Limit Level	Y	N	✓	✓	~	✓			1	
	WSR16					6.0	1				Action Level	Y	N	✓	✓	~	~			1	
	WSR33					7.5	1				Limit Level	Y	N		✓	~	✓			1	
	WSR36					7.2	1				Limit Level	Y	N		✓	~	✓			1	
				2.51											1	1		11		I	
				2.33	Surface																ļ
				2.84																	ļ
	WSR4	Flood	Turbidity	2.34	Middle	2.38	2.41	4.00	2.81	4.34	N/A	N/A	N/A				N	J/A			ļ
			-	2.24																	ļ
				2.34		1															ļ
				2.53	Bottom																ļ

Date of exceedance	Monitoring Station	Tide	Parameter	Measurement Result	Sampling depth	Depth Average Result		n Level g/L)		t Level g/L)	Exceedance	Marine construction activities with	Exceedance related to	R	easons	of no	on-pro	ject rel	ated ex	cceedanc	e
exceedance	Station			(mg/L)		(mg/L)	95%-ile	Control 120%	99%-ile	Control 130%		contact with water (Y/N)	Project (Y/N)	(1)	(2)	(3)	(4)) (5)	(6)	(7)	(8)
	WSR4					6.3					Limit Level	Y	N	✓		✓	✓	~			
	WSR36	Flood	Suspended Solid			6.4	5.0	5.2	6.0	5.6	Limit Level	Y	N			✓	~	~			
	WSR37					7.5					Limit Level	Y	N			~		~			
	WSR1					8.5					Limit Level	Y	N	~	✓	~	~	~			
	WSR2					7.2					Limit Level	Y	Ν	~	✓	~	~	~			
	WSR3					10.5					Limit Level	Y	Ν	~	~	~	~	~			
	WSR4	Ebb	Suspended Solid			6.7	5.0	6.0	6.0	6.5	Limit Level	Y	Ν	~	~	✓	~	~			
	WSR16	EUU	Suspended Solid			10.5	5.0	0.0	0.0	0.5	Limit Level	Y	Ν	~	~	✓	~	~			
22/11/2022	WSR33					7.0					Limit Level	Y	Ν		~	~	~	~			
22/11/2022	WSR36					11.8	_				Limit Level	Y	N		✓	~	✓	~			
	WSR37					11.5					Limit Level	Y	N		✓	✓		~			
				3.15																	ľ
				2.34	Surface																
				2.31																	ľ
	WSR2	Ebb	Turbidity	2.25	Middle	2.32	2.41	3.91	2.84	4.24	N/A	N/A	N/A]	N/A			ľ
				2.22	Wildle																
				2.41	Bottom																
				2.38	Dottom																
	WSR1					5.8	_				Limit Level	Y	Ν	✓		✓	✓	~			
	WSR2					5.9	_				Limit Level	Y	N	✓		✓	✓	~			
	WSR4					3.8	_				Limit Level	Y	N	✓		✓	✓	~			
	WSR16	Flood	Suspended Solid			4.7	5.0	3.3	6.0	3.6	Limit Level	Y	N	~		✓	✓	~			
	WSR33					4.8	-				Limit Level	Y	N			✓	✓	~			
	WSR4 WSR16 WSR33 WSR36					5.3					Limit Level	Y	N			✓	✓	✓			
24/11/2022	WSR37					8.3					Limit Level	Y	N			✓		~			
	WSR3					9.8	-				Limit Level	Y	N	~	✓	✓	✓	~			
	WSR4					13.7	-				Limit Level	Y	N	✓	✓	~	✓				
	WSR16	Ebb	Suspended Solid			12.7	5.0	8.8	6.0	9.5	Limit Level	Y	N	✓	✓	~	✓	~			
	WSR33	100	buspended bond			12.2		0.0	0.0	7.0	Limit Level	Y	N		✓	~	✓	~			
	WSR36					8.5	-				Limit Level	Y	N		✓	✓	✓	~			
	WSR37					9.5					Limit Level	Y	N		✓	✓		~			
	WSR1					10.3					Limit Level	Y	N	~	~	~	~				
	WSR2					8.8					Limit Level	Y	N	~	~	~	~				
26/11/2022	WSR3	Flood	Suspended Solid			7.0	5.0	12.6	6.0	13.7	Limit Level	Y	N	~	~	~	~				
20/11/2022	WSR33	11000	Suspended Solid			5.8	5.0	12.0	0.0	13./	Action Level	Y	N		~	~	~				
	WSR36					5.8					Action Level	Y	N		~	~	~				
	24/11/2022 WSR37 WSR3 WSR4 WSR16 WSR33 WSR36 WSR37 WSR1 WSR1 WSR2 WSR3 WSR3 WSR3					9.5					Limit Level	Y	Ν		✓	✓					

exceedance State WS WS WS <th>Monitoring Station</th> <th>Tide</th> <th>Parameter</th> <th>Measurement Result</th> <th>Sampling depth</th> <th>Depth Average Result</th> <th></th> <th>n Level g/L)</th> <th></th> <th>Level g/L)</th> <th>Exceedance</th> <th>Marine construction activities with</th> <th>Exceedance related to Project</th> <th>Re</th> <th>easons</th> <th>of non</th> <th>-projec</th> <th>ct relate</th> <th>d exce</th> <th>edance</th> <th>į.</th>	Monitoring Station	Tide	Parameter	Measurement Result	Sampling depth	Depth Average Result		n Level g/L)		Level g/L)	Exceedance	Marine construction activities with	Exceedance related to Project	Re	easons	of non	-projec	ct relate	d exce	edance	į.
exceduatee	Station			(mg/L)		(mg/L)	95%-ile	Control 120%	99%-ile	Control 130%		contact with water (Y/N)	(Y/N)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	WSR1					14.7					Limit Level	Y	N	✓	✓	✓	✓				
	WSR2					9.5					Limit Level	Y	N	✓	✓	✓	~				
	WSR3					7.8	-				Limit Level	Y	N	✓	✓	✓	~				
	WSR4	Ebb	Suspended Solid			8.5	5.0	11.6	6.0	12.6	Limit Level	Y	N	✓	✓	✓	~				
	WSR16					5.5					Action Level	Y	N	✓	✓	✓	~				
	WSR36					7.8					Limit Level	Y	N		✓	✓	✓				
				2.35	0.6											I <u> </u>	I				
				2.43	Surface																
				2.41	NC 1 II																
	WSR33	Flood	Turbidity	2.45	Middle	2.39	2.41	3.55	2.81	3.85	N/A	N/A	N/A				N/.	A			
				2.85																	ļ
				2.31	Bottom																ļ
				2.38																	ļ
	WSR1					9.7					Limit Level	Y	N	~	✓	✓	✓	~			
	WSR2					7.3					Limit Level	Y	N	~	✓	✓	~	~			
	WSR3					8.2					Limit Level	Y	N	~	~	~	~	~			
	WSR4	Flood	Suspended Solid			10.7	5.0	8.6	6.0	9.3	Limit Level	Y	N	~	✓	~	~	~			
	WSR16					5.5					Action Level	Y	N	~	✓	✓	~	~			
	WSR33					5.7					Action Level	Y	N		✓	✓	~	~			
	WSR36					7.7					Limit Level	Y	N		✓	✓	~	~			
	WSR1					8.2					Limit Level	Y	N	~	✓	✓	~	~			
	WSR3					7.0					Limit Level	Y	Ν	~	~	~	~	~			
	WSR4					9.0					Limit Level	Y	Ν	~	~	~	~	~			
	WSR16	Ebb	Suspended Solid			6.2	5.0	11.8	6.0	12.8	Limit Level	Y	Ν	~	~	~	~	~			
28/11/2022	WSR33					5.2					Action Level	Y	Ν		~	~	~	~			
28/11/2022	WSR36					7.3					Limit Level	Y	Ν		~	✓	~	~			
	WSR37					8.0					Limit Level	Y	Ν		~	✓		~			
				2.93																	
				2.32	Surface																
				2.42																	ļ
	WSR3		Turbidity	2.39	Middle	2.30	2.41	3.94	2.81	4.26	N/A	N/A	N/A				N/.	A			ļ
		Flood		2.38	witadie																ļ
		FIOOD		2.09	Bottom																
				2.32	Bottoth																
				3.05																	
	WSR4		Turbidity	2.24	Surface	2.35	2.41	3.94	2.81	4.26	N/A	N/A	N/A				N/.	A			ļ
				2.35																	

Date of exceedance	Monitoring Station	Tide	Parameter	Measurement Result (mg/L)	Sampling depth	Depth Average Result (mg/L)	Action Level (mg/L)		Limit Level (mg/L)		Exceedance	Marine construction activities with	Exceedance related to Project	Reasons of non-project related exceedance
							95%-ile	Control 120%	99%-ile	Control 130%		contact with water (Y/N)	(Y/N)	(1) (2) (3) (4) (5) (6) (7) (8)
				2.19	Middle									
				2.28	Middle									
				2.50	Bottom									
				2.53										
				3.58										
				2.17	Surface									
	WSR4	Ebb	Turbidity	2.32		2.24	2.41	3.83	2.84	4.14	N/A	N/A	N/A	N/A
				2.41	Middle									
				2.33										
				2.07	Bottom									
				2.13										

1) WSR1, WSR2, WSR3, WSR4, WSR16 were located distant from the construction site and possibility of being affected by marine construction activity was considered limited.

2) Control station value already exceed either the Action or Limit Level.

3) No algal bloom, silt plume or pollution discharge from site area was observed.

4) Water quality mitigation measures were observed maintained / implemented properly.

5) Rainfall was recorded at Tseung Kwan O during the monitoring period, rainfall may lead to release of SS content form the soil of the nearby lands (e.g., Country Park, fill bank).

6) No action and limit level exceedance observed at WSR36 (Intake Shaft) or WSR37 (Outfall Shaft).

7) No marine construction activity was conducted at WSR36 (Intake Shaft).

8) No marine construction activity was conducted at WSR37 (Outfall Shaft).

Conclusion:

During water quality monitoring on 17 November 2022, one (1) Action Level exceedance and seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and six (6) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and six (6) Limit Level exceedances of Suspended Solids.

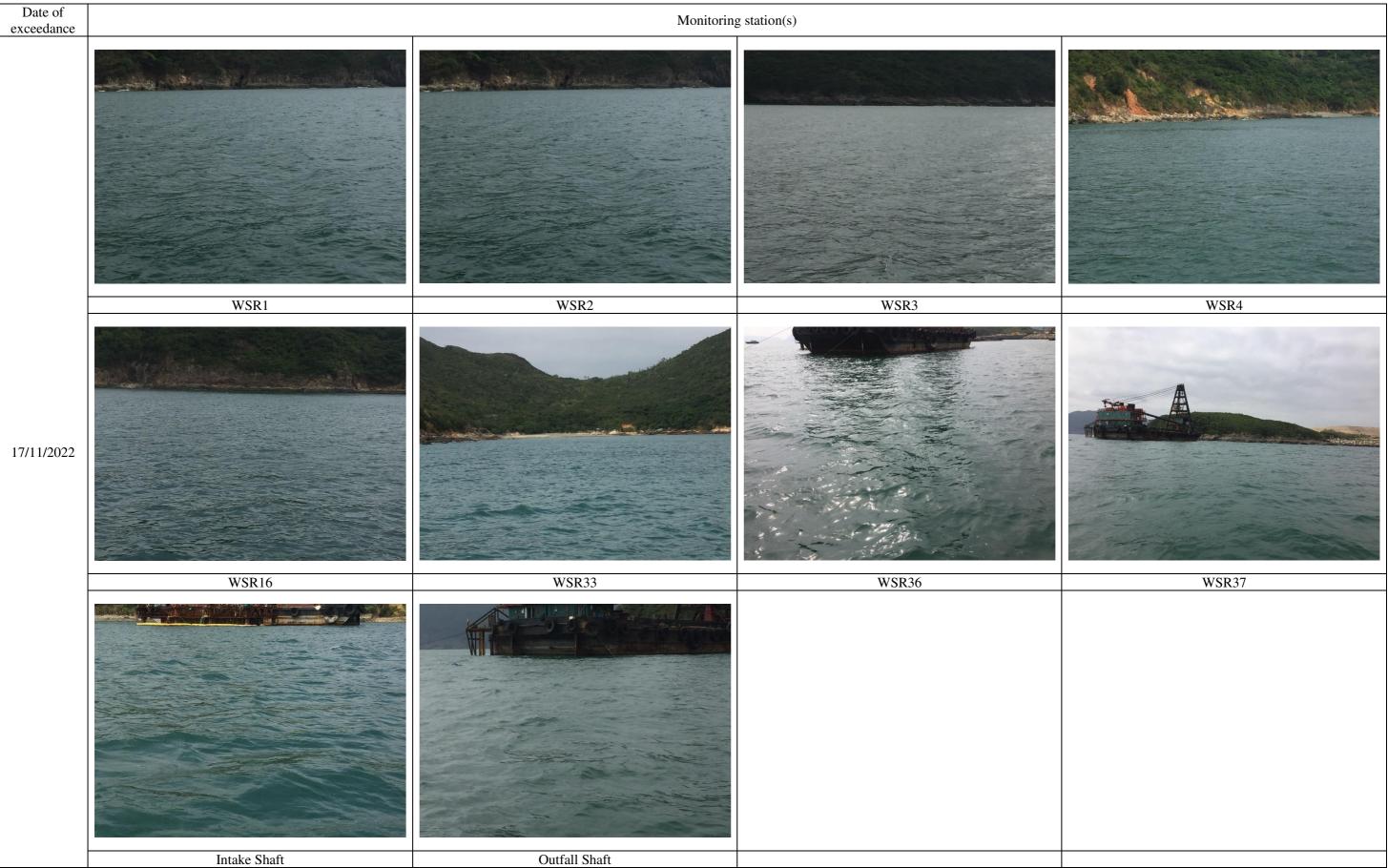
During water quality monitoring on 19 November 2022, one (1) Action Level exceedance and seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and three (3) Action Level and four (4) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide. After investigation, all exceedances were considered non-project related.

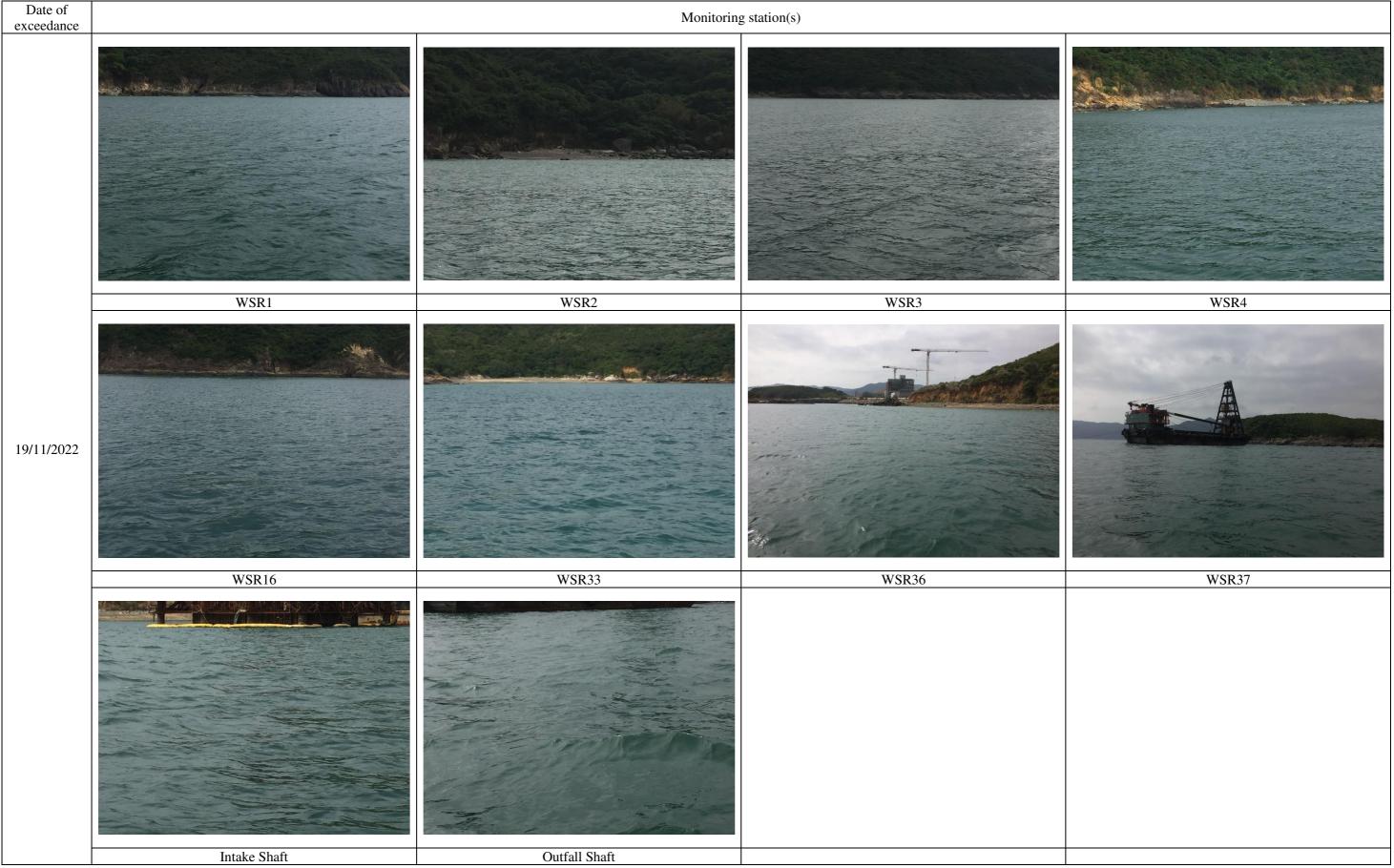
During water quality monitoring on 22 November 2022, three (3) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and eight (8) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide. After investigation, all exceedances were considered non-project related.

During water quality monitoring on 24 November 2022, seven (7) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and six (6) Limit Level exceedances of Suspended Solids were recorded during mid-ebb tide. After investigation, all exceedances were considered non-project related.

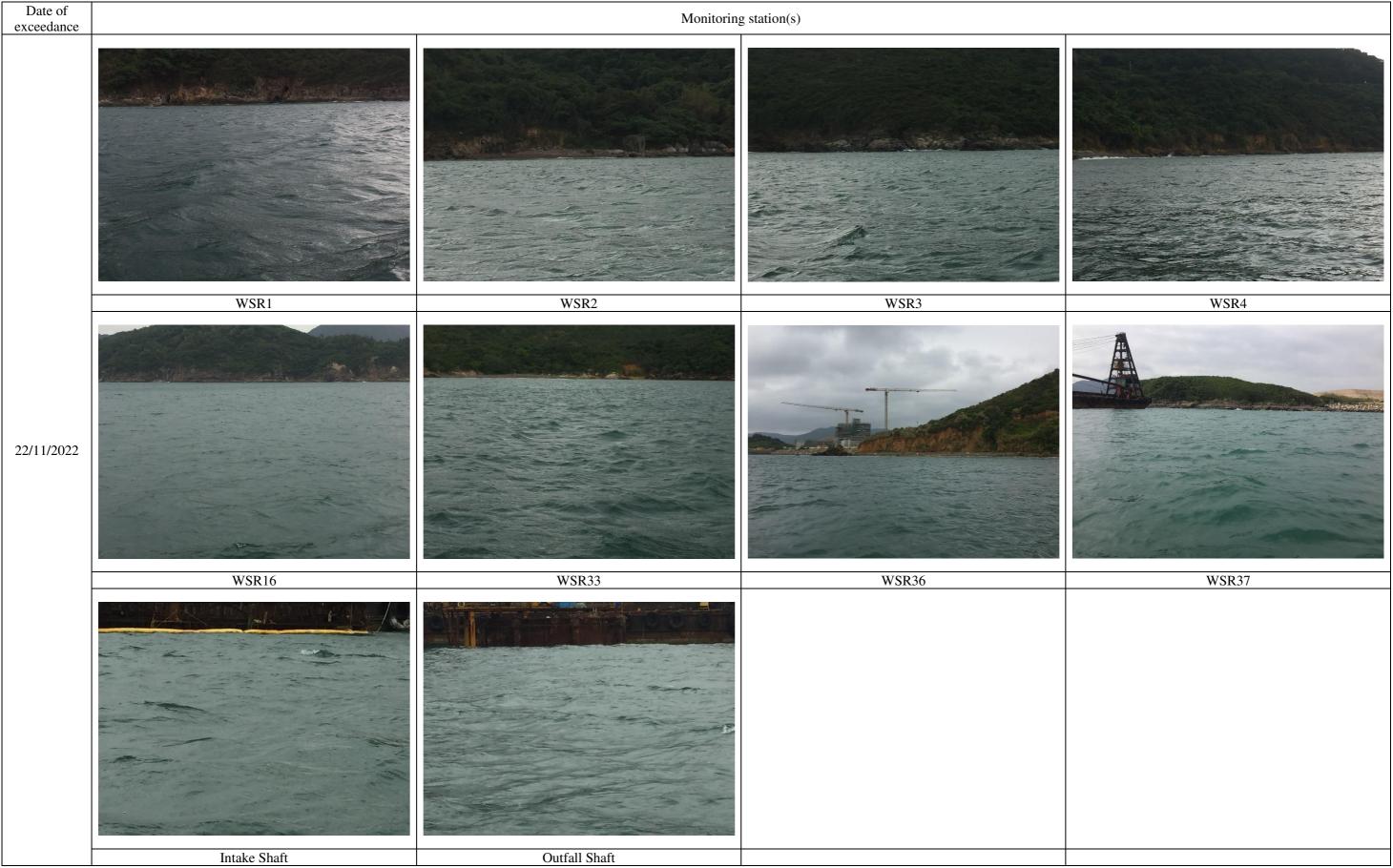
During water quality monitoring on 26 November 2022, two (2) Action Level exceedances and four (4) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and one (1) Action Level exceedance and five (5) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and one (1) Action Level exceedances and four (4) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and one (1) Action Level exceedances and four (4) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and one (1) Action Level exceedances were considered non-project related.

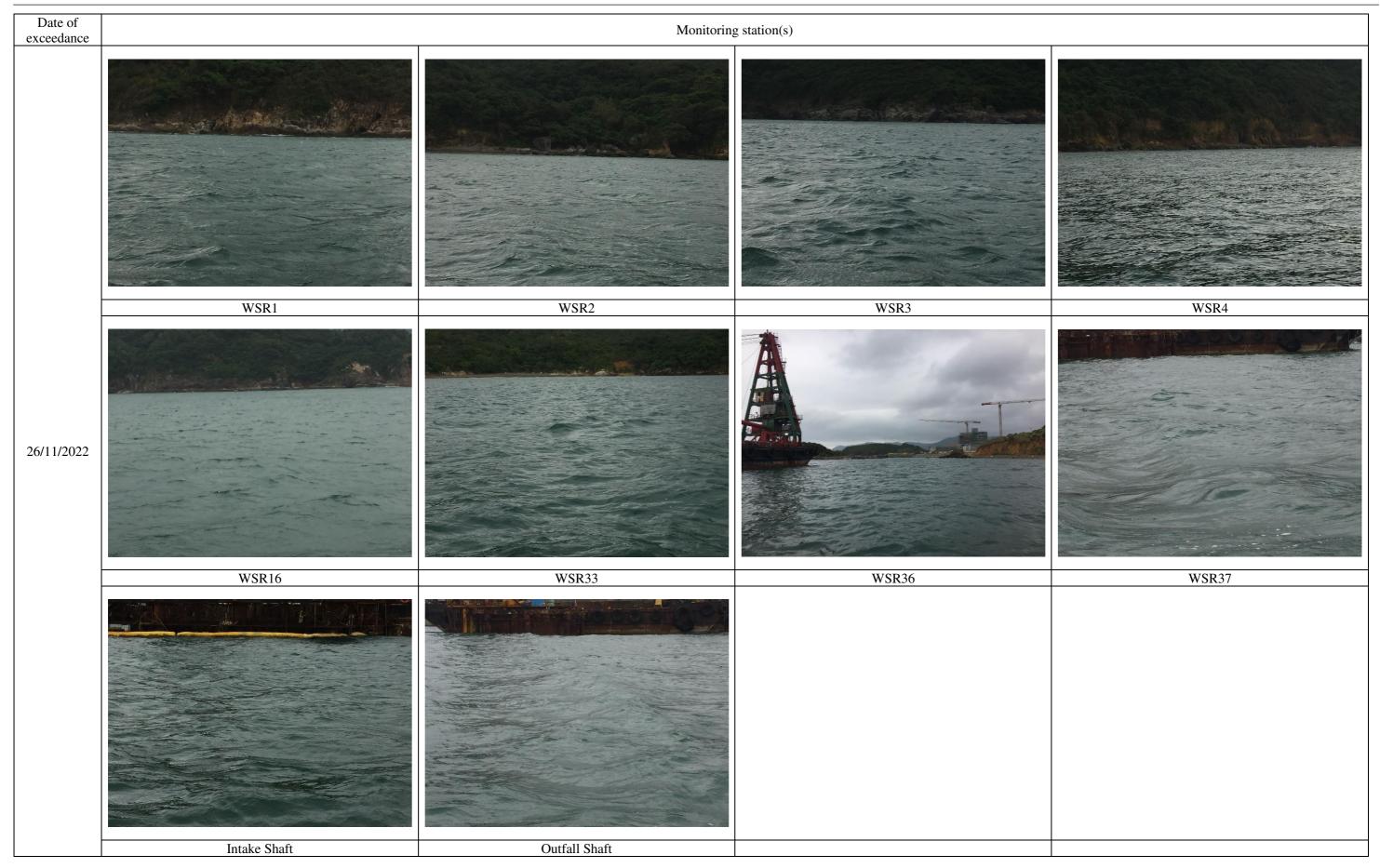
During water quality monitoring on 28 November 2022, two (2) Action Level exceedances and five (5) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and one (1) Action Level exceedance and six (6) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and one (1) Action Level exceedances and six (6) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and one (1) Action Level exceedances and six (6) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and one (1) Action Level exceedances and six (6) Limit Level exceedances of Suspended Solids were recorded during mid-flood tide, and one (1) Action Level exceedances and six (6) Limit Level exceedances are considered non-project related.

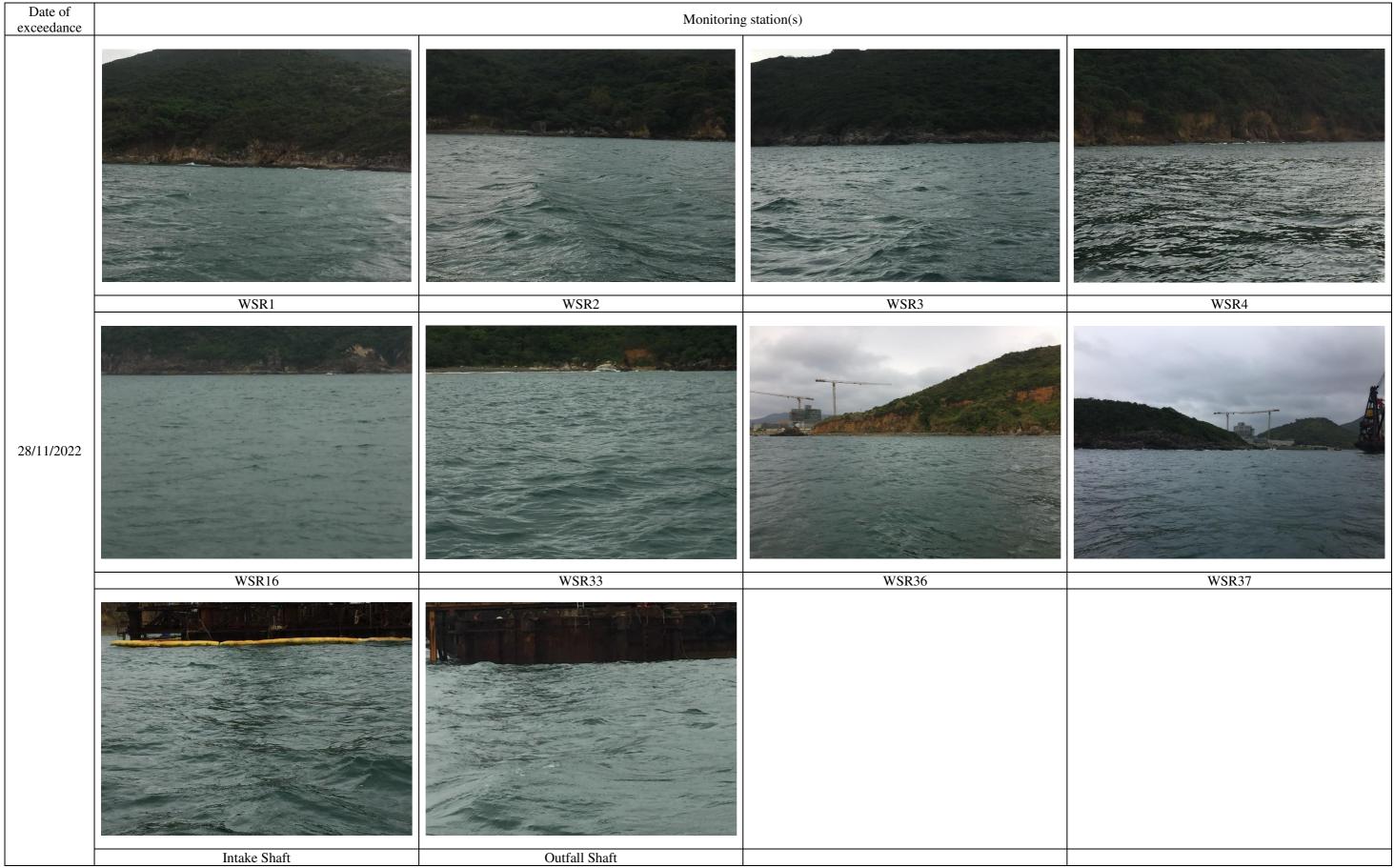

Total seventy-nine (79) Action Level and sixty-eight (68) Limit Level exceedances for Suspended Solid of impact water quality monitoring were recorded between 17 November 2022 and 28 November 2022. After investigation, all exceedances were considered non-project related.

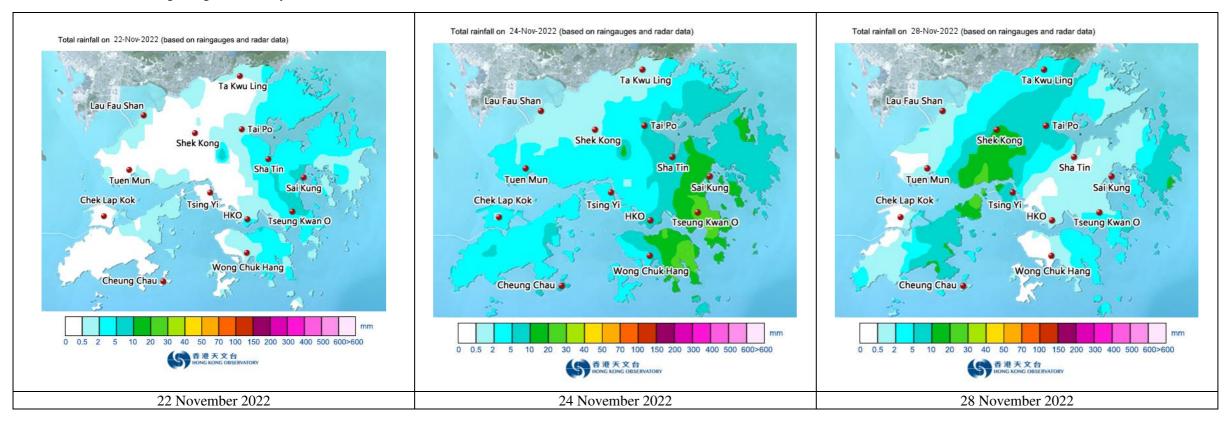

nd six (6) Limit Level exceedances of Suspended Solids de, and three (3) Action Level and four (4) Limit Level of Suspended Solids were recorded during mid-ebb tide. uspended Solids were recorded during mid-ebb tide. After and one (1) Action Level exceedance and five (5) Limit one (1) Action Level exceedance and six (6) Limit Level lovember 2022. After investigation, all exceedances were

Supporting Photo:









Rainfall Record from Hong Kong Observatory

