Leighton-China States Joint Venture

Contract SCL1123 – Exhibition Station & Western Approach Tunnel

Quarterly EM&A Report for FEP-13/364/2009/H & FEP-03/376/2009 [Period from Aug to Oct 2021]

(March 2022)

Verified by:	Claudine LEE
Position:	Independent Environmental Checker
Date:	4 March 2022

Leighton-China State Joint Venture

Contract SCL1123 – Exhibition Station & Western Approach Tunnel

Quarterly EM&A Report

for

FEP-13/364/2009/H & FEP-03/376/2009

[Period from August to October 2021]

(March 2022)

Verified by:	FUNG Yiu Wah
Position:	Environmental Team Leader
Date:	4 March 2022

Leighton - China State J.V.

Shatin to Central Link - Hung Hom to Admiralty Section

Works Contract 1123 - CEDD Entrusted Work for Road P2 & other roads and Slip Road 3

Quarterly Environmental Monitoring and Audit Report

-August 2021 to October 2021-

[March 2022]

	Name	Signature
Prepared & Checked:	Barry Ho	A
Reviewed, Approved & Certified:	Y W Fung (Contractor's Environmental Team Leader)	1/

Version: 0 Date: 3 March 2022

Disclaimer

This Environmental Monitoring and Audit Report is prepared for Leighton – China State J.V. and is given for its sole benefit in relation to and pursuant to SCL1123 and may not be disclosed to, quoted to or relied upon by any person other than Leighton – China State J.V. without our prior written consent. No person (other than Leighton – China State J.V. into whose possession a copy of this report comes may rely on this plan without our express written consent and Leighton – China State J.V. may not rely on it for any purpose other than as described above.

Page

Table of Contents

EXEC	CUTIVE SUMMARY	1
1.	INTRODUCTION	2
1.1 1.2	Purpose of the ReportReport Structure	
2	PROJECT INFORMATION	3
2.1 2.2 2.3 2.4 2.5	Background Site Description Construction Programme and Activities Project Organisation Status of Environmental Licences, Notification and Permits	
3	ENVIRONMENTAL MONITORING REQUIREMENT	7
3.1 3.2	Construction Dust Monitoring Construction Noise Monitoring	
4	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	12
5	MONITORING RESULTS	13
5.1 5.2 5.3 5.4	Construction Dust MonitoringRegular Construction Noise Monitoring	13 14
6	ENVIRONMENTAL SITE INSPECTION AND AUDIT	15
7	ENVIRONMENTAL NON-CONFORMANCE	15
7.1 7.2 7.3 7.4	Summary of Monitoring Exceedances Summary of Environmental Non-Compliance Summary of Environmental Complaints Summary of Environmental Summon and Successful Prosecutions	15 15
8	CONCLUSIONS AND RECOMMENDATIONS	16
8.1 8.2	ConclusionsRecommendations	

List of Tables

Table 2.1	Contact Information of Key Personnel
Table 2.2	Status of Environmental Licenses, Notifications and Permits
Table 3.1	Air Quality Monitoring Equipment
Table 3.2	Locations of Construction Dust Monitoring Station
Table 3.3	Noise Monitoring Parameters, Frequency and Duration
Table 3.4	Noise Monitoring Equipment for Regular Noise Monitoring
Table 3.5	Noise Monitoring Station during Construction Phase
Table 4.1	Status of Required Submission under Further Environmental Permit
Table 5.1	Summary of 24-hour TSP Monitoring Result in the Reporting Period
Table 5.2	Summary of 1-hour TSP Monitoring Result in the Reporting Period
Table 5.3	Summary of Construction Noise Monitoring Results in the Reporting Period

List of Figures

Figure 1.1	Site Layout Plan of CEDD Entrusted Works under Contract 1123
Figure 3.1	Air Quality and Noise Monitoring Locations for CEDD Entrusted Works

List of Appendices

Appendix A	Construction Programme
Appendix B	Project Organisation Structure
Appendix C	Implementation Schedule of Environmental Mitigation Measures
Appendix D	Summary of Action and Limit Levels
Appendix E	Calibration Certificates of Equipment
Appendix F	EM&A Monitoring Schedules
Appendix G	Air Quality Monitoring Results and their Graphical Presentations
Appendix H	Noise Monitoring Results and their Graphical Presentations
Appendix I	Event and Action Plan
Appendix J	Cumulative Statistics on Complaints, Notification of Summons and Successful
	Prosecutions
Appendix K	Quarterly Summary Waste Flow Table

AECOM Asia Co. Ltd. ii March 2022

EXECUTIVE SUMMARY

Shatin to Central Link Contract 1123 – CEDD Entrusted Work for Road P2 & other roads and Slip Road 3 (hereafter called "the Project") covers part of the construction of CEDD entrusted work under the granted Further Environmental Permit: FEP–03/376/2009 and FEP–13/364/2009 respectively.

The Project comprises the construction of Road P2 and other roads which are classified as primary/district distributor roads and Slip Road 3.

The EM&A programme commenced on 25 January 2021. The impact EM&A for the Project includes air quality and noise monitoring.

This report documents the findings of EM&A works conducted in the period between 1 August and 31 October 2021. As informed by the Contractor, major activities in the reporting period were:

Location	Site Activities			
	August 2021	September 2021	October 2021	
Road P2 – West (Slip Road 3)	Retaining wall constructionBackfill for road base	Drainage and Road works	Drainage and Road works	
Road P2 – East (Hung Hing Road)	 TTM 2 on Convention Avenue and Hung Hing Road Drainage works 	Drainage worksRoad Pavement	Drainage worksRoad Pavement	
Road P2 – Permanent PTI (Public Transport Interchange)	 Drainage works Road works (concrete pavement and asphalt) HEC cable connection 	 Drainage works Road works (concrete pavement and asphalt) 	 Drainage works Road works (concrete pavement and asphalt) 	

Breaches of Action and Limit Levels for Air Quality

No exceedance of Action and Limit Level of air quality was recorded in the reporting period.

Breaches of Action and Limit Levels for Noise

Regular Noise Monitoring

No Action Level exceedance was recorded since no noise related complaint was received in the reporting period.

No exceedance of Limit Level of noise was recorded in the reporting period.

Complaint, Notification of Summons and Successful Prosecution

No complaint, notification of summons and successful prosecution were received in the reporting period.

Reporting Changes

There was no reporting change in the reporting period.

1. INTRODUCTION

Leighton – China State Joint Venture (JV) was commissioned by MTR as the Civil Contractor for CEDD Entrusted Works under Contract 1123. AECOM Asia Company Limited (AECOM) was appointed by JV as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the Project.

1.1 Purpose of the Report

1.1.1 This is the third quarterly EM&A Report which summaries the impact monitoring results and audit findings for the Project during the reporting period between 1 August and 31 October 2021.

1.2 Report Structure

- 1.2.1 This Quarterly EM&A Summary Report is organized as follows:
 - Section 1: Introduction
 - Section 2: Project Information
 - Section 3: Environmental Monitoring Requirement
 - Section 4: Implementation Status of Environmental Mitigation Measures
 - Section 5: Monitoring Results
 - Section 6: Environmental Site Inspection and Audit
 - Section 7: Environmental Non-conformance
 - Section 8: Future Key Issues
 - Section 9: Conclusions and Recommendations

AECOM Asia Co. Ltd. 2 March 2022

2 PROJECT INFORMATION

2.1 Background

- 2.1.1 Road P2 and other roads which are classified as primary/district distributor roads identified as DP2 which covered in the Environmental Permit No. EP-376/2009 in the approved Wan Chai Development Phase II (WDII) and Central Wan Chai Bypass (CWB) comprising (i) a dual 2-lane primary distributor road, Road P2; and (ii) other new primary and district distributor roads connecting to the slip roads of the Central-Wan Chai Bypass.
- 2.1.2 Slip road 3 identified as part of DP1 which covered in the Environmental Permit No. EP-364/2009/H in the approved Wan Chai Development Phase II (WDII) and Central Wan Chai Bypass (CWB) comprising (i) slip roads to connect the CWB to the local road system in the Wan Chai North and Causeway Bay area; and (ii) associated road lighting, road signing, traffic control and surveillance system (iii) other associated works.
- 2.1.3 The Environmental Impact Assessment Report for Central - Wan Chai Bypass and Island Eastern Corridor Link (CWB&IECL) EIA Report (Register No. AEIAR-041/2001) and the Wan Chai Development Phase II and Central-Wan Chai Bypass (WDII&CWB) EIA Report (Register No. AEIAR-125/2008) which were approved on 31 August 2001 and 11 December 2008 under the Environmental Impact Assessment Ordinance (EIAO). Following the approval of the EIA Report, an Environmental Permits (EPs) were granted on 13 November 2009 and 22 April 2020 respectively, which covers Road P2 and other roads which are classified as primary/district distributor roads [DP2] and Central - Wan Chai Bypass (CWB) including its Road Tunnel and Slip Roads [DP1] (EP No.: EP-376/2009 and EP-364/2009/H), for the construction and Environmental Permits (FEP FEP-03/376/2009 operation. Further No. FEP-13/364/2009/H) were both subsequently granted from the Director of Environmental Protection (DEP) on 2 June 2020, which cover the construction works for DP2 and a part of DP1 respectively.
- 2.1.4 The site layout plan of the Project is shown in **Figure 1.1**.

2.2 Site Description

- 2.2.1 The major construction activities under CEDD Entrusted Works of Contract 1123 include:
 - (a) Site preparation;
 - (b) Construct for dual 2-lane primary distributor road, Road P2;
 - (c) Construct for other new primary and district distributor roads connecting to the slip roads of the Central-Wan Chai Bypass;
 - (d) Construct for slip roads to connect the CWB to the local road system in the Wan Chai North and Causeway Bay area;
 - (e) Construct for associated road lighting, road signing, traffic control and surveillance system;
 - (f) Construct for other associated works;

2.3 Construction Programme and Activities

2.3.1 The major construction activities undertaken in the reporting period are summarised below:

Location	Site Activities		
	August 2021	September 2021	October 2021
Road P2 – West (Slip Road 3)	 Retaining wall construction Backfill for road base 	Drainage and Road works	Drainage and Road works
Road P2 – East (Hung Hing Road)	 TTM 2 on Convention Avenue and Hung Hing Road Drainage works 	Drainage worksRoad Pavement	Drainage works Road Pavement
Road P2 – Permanent PTI (Public Transport Interchange)	 Drainage works Road works (concrete pavement and asphalt) HEC cable connection 	 Drainage works Road works (concrete pavement and asphalt) 	 Drainage works Road works (concrete pavement and asphalt)

2.3.2 The construction programme is presented in **Appendix A**.

AECOM Asia Co. Ltd. 4 March 2022

2.4 Project Organisation

2.4.1 The project organization structure is shown in **Appendix B**. The key personnel contact names and numbers for the Project are summarised in **Table 2.1.**

Table 2.1 Contact Information of Key Personnel

Party	Role	Position	Name	Telephone	Fax
MTR	Residential Engineer (ER)	Construction Manager	Mr. Mike Bezzano	3959 2128	3959 2200
Meinhardt	Independent Environmental Checker	Independent Environmental Checker	Ms. Claudine Lee	2859 5409	2540 1580
	_	Project Director	Mr. Brian Shepstone	3973 0838	
JV Contractor		Environmental Engineer	Mr. Andy Leung	3973 1498	31051126
AECOM	Environmental Team (ET) ET Leader		Mr. YW Fung	3922 9366	2317 7609

2.5 Status of Environmental Licences, Notification and Permits

2.5.1 Relevant environmental licenses, permits and/or notifications on environmental protection for this Project and valid in the reporting period are summarized in **Table 2.2**.

Table 2.2 Status of Environmental Licenses, Notifications and Permits

Permit / License No.	Valid Period		_		
/ Notification/ Reference No.	From	То	Status	Remarks	
Environmental Permit					
FEP-03/376/2009	2 Jun 2020	End of Contract	Valid		
FEP-13/364/2009/H	2 Jun 2020	End of Contract	Valid		
Construction Noise Pe	ermit				
-	-	-	-	-	
Wastewater Discharge	e License ¹				
-	-	-	-	-	
Chemical Waste Produ	Chemical Waste Producer Registration				
5213-135-L2881-01	02 Apr 2015	End of Contract	Valid	For whole site at Wan Chai Area	
Marine Dumping Perm	nit				
-	-	-	-	-	
Billing Account for Construction Waste Disposal					
7021736	16 Feb 2015	End of Contract	Valid	For Disposal of C&D Waste	
Notification Under Air	Notification Under Air Pollution Control (Construction Dust) Regulation				
385128	1 Mar 2015	End of Contract	Valid	For whole site at Wan Chai Area	

Remark:

AECOM Asia Co. Ltd. 6 March 2022

The Contractor was reminded to keep tracking on the site condition s and review its application for wastewater discharge license.

3 ENVIRONMENTAL MONITORING REQUIREMENT

3.1 Construction Dust Monitoring

Monitoring Requirements

3.1.1 In accordance with the approved EM&A Manuals, 24-hour and 1-hour Total Suspended Particulates (TSP) levels at the designated air quality monitoring station is required. Impact 24-hour monitoring should be carried out for at least once every 6 days and 1-hour TSP monitoring should be done at least 3 times every 6 days while the highest dust impact is expected. The Action and Limit level of the air quality monitoring is provided in **Appendix D**.

Monitoring Equipment

- 3.1.2 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) located at the designated monitoring stations. The HVS meets all the requirements of the EM&A Manual.
- 3.1.3 A portable direct reading dust meter was used to carry out the 1-hour TSP monitoring.
- 3.1.4 Brand and model of the equipment is given in **Table 3.1**.

Table 3.1 Air Quality Monitoring Equipment

Equipment	Brand and Model	
High Volume Sampler (24-hour TSP)	Andersen Total Suspended Particulate Mass Flow Controlled High Volume Air Sampler (Model No. GS 2310 (S/N:10273)) (Model No. GS 2310 (S/N:3384))	
Calibration Kit (24-hour TSP)	TISCH Environmental Orifice (Model TE-5025A (S/N: 843))	
Portable direct reading dust meter (1-hour TSP)	Sibata Digital Dust Monitor (Model No. LD-3)	

Monitoring Locations

3.1.5 The monitoring station for construction dust monitoring pertinent to the Project has been identified based on the approved EM&A Manual for SCL (HUH-ADM) of the Project. The location of the construction dust monitoring stations are summarised in **Table 3.2** and shown in **Figure 3.1**.

Table 3.2 Locations of Construction Dust Monitoring Station

Station ID	Dust Monitoring Station
CMA5b ¹	Pedestrian Plaza
CMA6a ¹	WDII PRE Site Office

Remark

Monitoring Methodology

- 3.1.6 24-hour TSP Monitoring
 - (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS as far as practicable: -
 - (i) A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
 - (ii) Two samplers should not be placed less than 2m apart from each others;

AECOM Asia Co. Ltd. 7 March 2022

According to the updated site layout of CEDD Entrusted Works and Updated EM&A Manual for EP-376/2009 and EP-364/2009, Pedestrian Plaza (CMA5b) and WDII PRE Site Office (CMA6A) were selected as the most affected sensitive receiver during the construction phase.

- (iii) The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
- (iv) A minimum of 2 meters separation from walls, parapets and penthouse for rooftop sampler.
- (v) A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
- (vi) No furnace or incinerator flues nearby.
- (vii) Airflow around the sampler was unrestricted.
- (viii) The sampler was located more than 20 meters from any dripline.
- (ix) Any wire fence and gate, required to protect the sampler, did not obstruct the monitoring process.
- (x) Permission was obtained to set up the samplers and access to the monitoring station.
- (xi) A secured supply of electricity was obtained to operate the sampler.

(b) Preparation of Filter Papers

- (i) Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected.
- (ii) All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.
- (iii) All filter papers were prepared and analysed by ALS Technichem (HK) Pty Ltd., which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes.

(c) Field Monitoring

- (i) The power supply was checked to ensure the HVS works properly.
- (ii) The filter holder and the area surrounding the filter were cleaned.
- (iii) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- (iv) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- (v) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges.
- (vi) Then the shelter lid was closed and was secured with the aluminium strip.
- (vii) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- (viii) A new flow rate record sheet was set into the flow recorder.
- (ix) On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around 1.3 m³/min, and complied with the range specified in the EM&A Manual (i.e. 0.6-1.7 m³/min).
- (x) The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded.
- (xi) The initial elapsed time was recorded.
- (xii) At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded.
- (xiii) The final elapsed time was recorded.
- (xiv) The sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
- (xv) It was then placed in a clean envelope and sealed.
- (xvi) All monitoring information was recorded on a standard data sheet.
- (xvii) Filters were then sent to ALS Technichem (HK) Pty Ltd. for analysis.

(d) Maintenance and Calibration

(i) The HVS and its accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.

- (ii) HVSs were calibrated using TE-5025A Calibration Kit upon installation and thereafter at bi-monthly intervals.
- (iii) Calibration certificate of the TE-5025A Calibration Kit and the HVSs are provided in **Appendix E**.

3.1.7 1-hour TSP Monitoring

(a) Measuring Procedures

The measuring procedures of the 1-hour dust meter are in accordance with the Manufacturer's Instruction Manual as follows:

- (i) Turn the power on.
- (ii) Close the air collecting opening cover.
- (iii) Push the "TIME SETTING" switch to [BG]
- (iv) Push "START/STOP" switch to perform background measurement for 6 seconds.
- (v) Turn the knob at SENSI ADJ position to insert the light scattering plate.
- (vi) Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- (vii) Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- (viii) Pull out the knob and return it to MEASURE position.
- (ix) Push the "TIME SETTING" switch the time set in the display to 3 hours.
- (x) Lower down the air collection opening cover.
- (xi) Push "START/STOP" switch to start measurement.

(b) Maintenance and Calibration

(i) The 1-hour TSP meter was calibrated at 1-year intervals against a continuous particulate TEOM Monitor, Series 1400ab. Calibration certificates of the Laser Dust Monitors are provided in **Appendix E**.

Monitoring Schedule for the Reporting Period

3.1.8 The schedule for environmental monitoring between August and October 2021 is provided in **Appendix F.**

AECOM Asia Co. Ltd. 9 March 2022

3.2 Construction Noise Monitoring

Monitoring Requirements

3.2.1 In accordance with the EM&A Manual, impact noise monitoring should be conducted for at least once a week during the construction phase of the Project. **Table 3.3** summarises the monitoring parameters, frequency and duration of impact noise monitoring. The Action and Limit level of the noise monitoring is provided in **Appendix D**.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

Parameter and Duration	Frequency
30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays. Leq, L ₁₀ and L ₉₀ would be recorded.	At least once per week

Monitoring Equipment

3.2.2 Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in **Table 3.4**.

Table 3.4 Noise Monitoring Equipment for Regular Noise Monitoring

Equipment	Brand and Model
	Model No. B&K 2250 (S/N: 3001291)
Integrated Sound Level Meter	Model No. B&K 2238 (S/N: 2800927)
	Model No. B&K 2270 (S/N: 2644597)
	Model No. B&K 2250-L (S/N: 2681366)
	Model No. B&K 4231 (S/N: 3014024)
Acoustic Calibrator	Model No. NC-74 (S/N: 34246490)
Acoustic Calibrator	Model No. MVI CAL21 (S/N: 34113610(2011))
	Model No. B&K 4231 (S/N:3006428)

Monitoring Locations

3.2.3 The monitoring station for construction noise monitoring pertinent to the Project has been identified based on the approved EM&A Manual for SCL (HUH-ADM) of the Project. Location of the noise monitoring station is summarised in **Table 3.5** and shown in **Figure 3.1**.

Table 3.5 Noise Monitoring Station during Construction Phase

Identification No.	District	Alternative Noise Monitoring Location
M1a ¹	Wan Chai	Footbridge for Ex-Harbour Road Sports Centre

Remark:

Monitoring Methodology

- 3.2.4 Monitoring Procedure
 - (a) Façade measurements were made at M1a.
 - (b) The battery condition was checked to ensure the correct functioning of the meter.

AECOM Asia Co. Ltd. 10 March 2022

According to the updated site layout of CEDD Entrusted Works and Updated EM&A Manual for EP-376/2009 and EP-364/2009, Footbridge for Ex-Harbour Road Sports Centre (M1a) was selected as the most affected sensitive receiver during the construction phase.

- (c) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - (i) frequency weighting: A
 - (ii) time weighting: Fast
 - (iii) time measurement: L_{eq(30-minutes)} during non-restricted hours i.e. 0700 1900 on normal weekdays.
- (d) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94 dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- (e) During the monitoring period, the L_{eq}, L₁₀ and L₉₀ were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- (f) Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable.
- (g) Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10m/s.

3.2.5 Maintenance and Calibration

- (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
- (b) The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in **Appendix E**.

Monitoring Schedule for the Reporting Period

3.2.6 The schedule for environmental monitoring August to October 2021 is provided in Appendix F.

AECOM Asia Co. Ltd. 11 March 2022

4 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

4.1.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Reports, the EP and EM&A Manuals. The implementation status of the environmental mitigation measures during the reporting period is summarized in **Appendix C.** Status of required submissions under the EP during the reporting period is summarised in **Table 4.1**.

Table 4.1 Status of Required Submission under Further Environmental Permit

EP Condition	Submission	Submission Date
Condition 2.4 (FEP-13//364/2009/H & FEP-03/376/2009)	Construction Noise Management Plan	19 November 2020
Condition 2.5 (FEP-13//364/2009/H & FEP-03/376/2009)	Landscape Plan	3 November 2020
Condition 3.3 (FEP-13//364/2009/H & FEP-03/376/2009)	Quarterly EM&A Report for May to July 2021	25 October 2021
Condition 3.3 (FEP-13//364/2009/H & FEP-03/376/2009)	Monthly EM&A Report for August 2021	14 September 2021
Condition 3.3 (FEP-13//364/2009/H & FEP-03/376/2009)	Monthly EM&A Report for September 2021	12 October 2021
Condition 3.3 (FEP-13//364/2009/H & FEP-03/376/2009)	Monthly EM&A Report for October 2021	12 November 2021

5 MONITORING RESULTS

5.1 Construction Dust Monitoring

5.1.1 The monitoring results for 24-hour TSP and 1-hour TSP are summarised in **Table 5.1** and **Table 5.2** respectively. Detailed air quality monitoring results and wind monitoring data extracted from the nearest Automatic Weather Station are presented in **Appendix G**.

Table 5.1 Summary of 24-hour TSP Monitoring Result in the Reporting Period

ID	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (µg/m³)	
CMA5b	39.0	20.4 – 71.6	209.9	260	
CMA6a	26.5	10.3 – 50.5	207.1	260	

Table 5.2 Summary of 1-hour TSP Monitoring Result in the Reporting Period

ID	Average (μg/m³)	Range (μg/m³)	Action Level (μg/m³)	Limit Level (μg/m³)
CMA5b	64.2	51.7 – 75.8	339.7	500
CMA6a	61.3	51.6 – 69.5	333	500

- 5.1.2 No Action and Limit Level exceedance were recorded for 1-hour TSP monitoring at the monitoring locations in the reporting period.
- 5.1.3 No Action and Limit Level exceedance were recorded for 24-hour TSP monitoring at the monitoring locations in the reporting period.
- 5.1.4 The event and action plan is annexed in **Appendix I**.
- 5.1.5 Major dust sources during the monitoring included construction dust, nearby traffic emission and other nearby construction sites.

5.2 Regular Construction Noise Monitoring

5.2.1 The monitoring results for noise are summarized in **Table 5.3** and the monitoring data is provided in **Appendix H**.

Table 5.3 Summary of Construction Noise Monitoring Results in the Reporting Period

ID	Range, dB(A), L _{eq (30 mins)}	Limit Level, dB(A), L _{eq (30 mins)}
M1a ^(*)	<baseline< th=""><th>75</th></baseline<>	75

^(*) Baseline correction will be made to the measured Leq when the measured noise level exceeded the corresponding baseline noise level and presented in the table.

- 5.2.2 No Action Level exceedance was recorded since no noise related complaint was received in the reporting period.
- 5.2.3 No Limit Level exceedance of noise was recorded at the monitoring station in the reporting period.
- 5.2.4 The event and action plan is annexed in **Appendix I**.

AECOM Asia Co. Ltd. 13 March 2022

5.2.5 Major noise sources during the monitoring included construction noise from the Project site, nearby traffic noise and the community.

5.3 Waste Management

- 5.3.1 C&D materials and wastes sorting were carried out on site. Receptacles were available for C&D wastes and general refuse collection.
- 5.3.2 As advised by the Contractor, 909 m³ of inert C&D material was generated and disposed of as public fill in the reporting period. No inert C&D materials were reused in other projects or in the Contract in the reporting period. No fill material was imported in the reporting period. 11 m³ of general refuse was generated in the reporting period. No metal, paper/cardboard packaging material, plastic was collected by recycling contractor in the reporting period. No chemical waste was collected by licensed contractor in the reporting period. No Type 1 and Type 2 of Marine sediment were disposed of at Confined Marine Disposal Facility to the East of Sha Chau. The waste flow table is annexed in **Appendix K**.
- 5.3.3 The Contractor is advised to properly maintain on site C&D materials and wastes collection, sorting and recording system and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- 5.3.4 The Contractor is reminded that chemical waste containers should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes

5.4 Landscape and Visual

5.4.1 Weekly inspection of the implementation of landscape and visual mitigation measures was conducted. A summary of the site inspection is provided in **Appendix C**.

AECOM Asia Co. Ltd. 14 March 2022

6 ENVIRONMENTAL SITE INSPECTION AND AUDIT

- 6.1.1 Site inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. A summary of the mitigation measures implementation schedule is provided in **Appendix C**.
- 6.1.2 In the reporting period, 13 site inspections were carried out between 1 August 2021 to 31 October 2021. No non-compliance was recorded during the site inspection. During environmental site inspections conducted during the reporting period, minor deficiencies were made.
- 6.1.3 All follow-up actions requested by Contractor's ET and IEC during the site inspection were undertaken as reported by the Contractor and confirmed in the following weekly site inspection conducted during the reporting period.

7 ENVIRONMENTAL NON-CONFORMANCE

7.1 Summary of Monitoring Exceedances

- 7.1.1 All 24-hour TSP result was below the Action and Limit level at all monitoring locations in the reporting period.
- 7.1.2 All 1-hour TSP result was below the Action and Limit level at all monitoring locations in the reporting period.
- 7.1.3 No Action Level exceedance was recorded since no noise related complaint was received in the reporting period.
- 7.1.4 No Limit Level exceedance for noise was recorded at all monitoring stations in the reporting period.

7.2 Summary of Environmental Non-Compliance

7.2.1 No environmental non-compliance was recorded in the reporting period.

7.3 Summary of Environmental Complaints

7.3.1 No environmental related complaint was received in the reporting period. Cumulative statistics on environmental complaints is provided in **Appendix J**.

7.4 Summary of Environmental Summon and Successful Prosecutions

7.4.1 No environmental related prosecution or notification of summons was received in the reporting period. Cumulative statistics on notification of summons and successful prosecutions is provided in **Appendix J**.

AECOM Asia Co. Ltd. 15 March 2022

8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

- 8.1.1 24-hour TSP, 1-hour TSP and noise monitoring were carried out in the reporting period.
- 8.1.2 No Action and Limit Level exceedance was recorded for 24-hour TSP monitoring at the monitoring locations in the reporting period.
- 8.1.3 No Action and Limit Level exceedance was recorded for 1-hour TSP monitoring at the monitoring locations in the reporting period.
- 8.1.4 No Action Level exceedance was recorded since no noise related complaint was received in the reporting period.
- 8.1.5 No Limit Level exceedance for noise was recorded at all monitoring stations in the reporting period.
- 8.1.6 13 nos. of environmental site inspections were carried out in reporting period. Recommendations on remedial actions were given to the Contractor for the deficiencies identified during the site audit.
- 8.1.7 No environmental complaint was received in the reporting period.
- 8.1.8 No notification of summons and successful prosecution were received in the reporting period.
- 8.1.9 Referring to the Contractor's information, no notification of summons and successful prosecution was received in the reporting period.

8.2 Recommendations

8.2.1 According to the environmental site inspections performed in the reporting period, the following recommendations were provided: -

Air Quality Impact

 The Contractor was reminded to provide a cover or frequent watering for the open stockpile to prevent duct emission.

Construction Noise Impact

• No specific observation was identified in the reporting period.

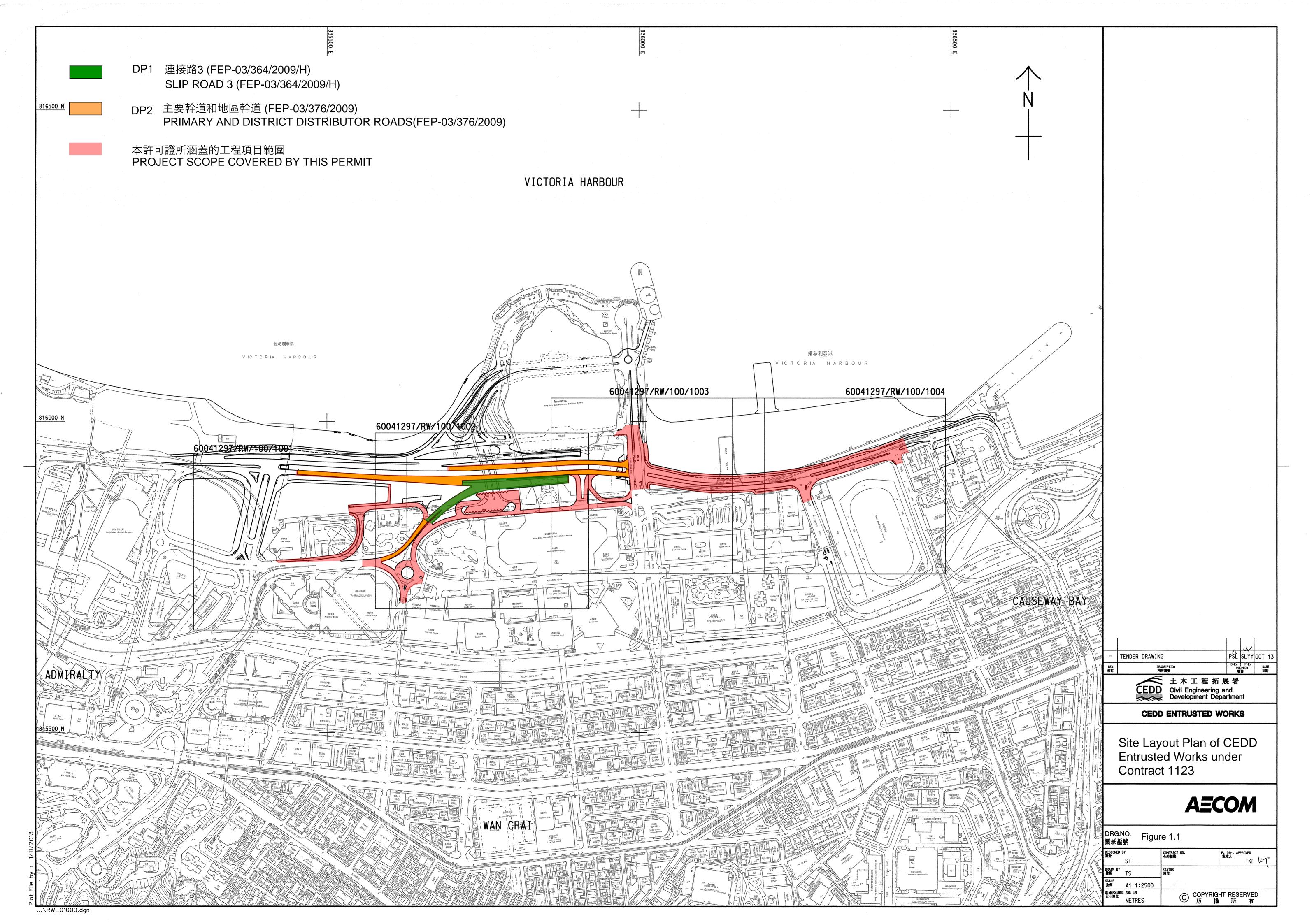
Water Quality Impact

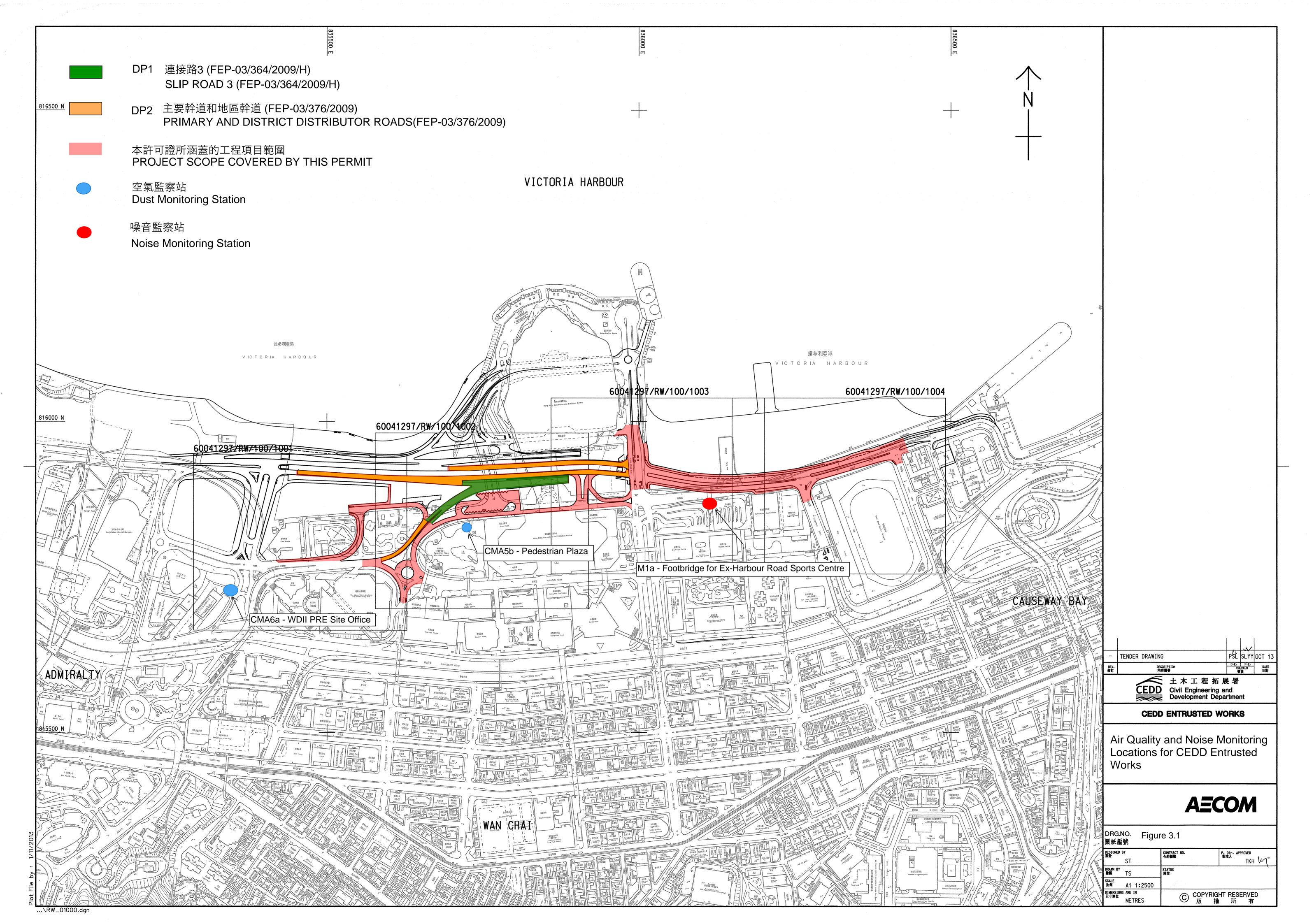
 The Contractor was advised to provide preventive measures and to ensure the site water is treated before discharge

Chemical and Waste Management

No specific observation was identified in the reporting period.

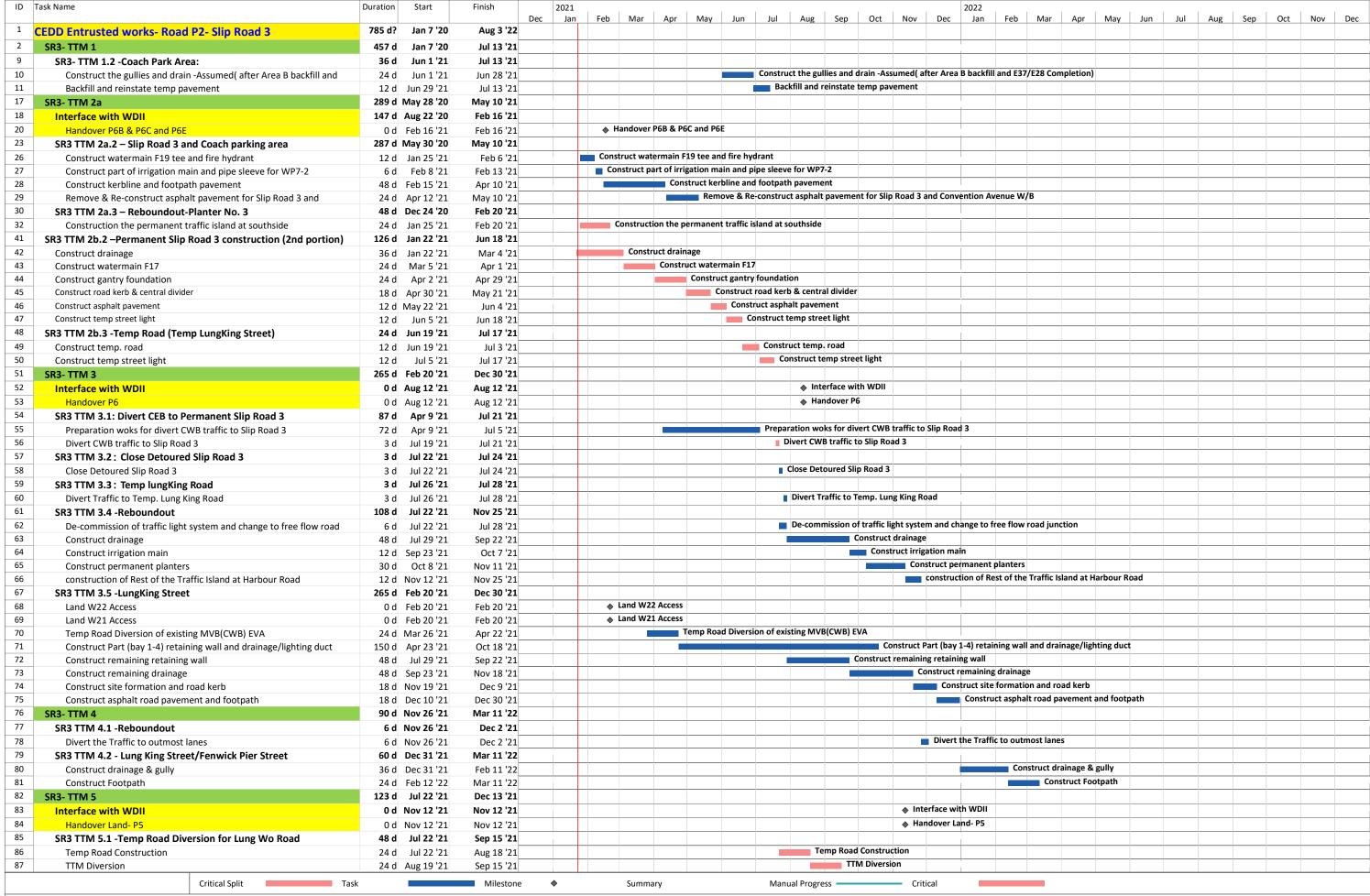
Landscape & Visual Impact

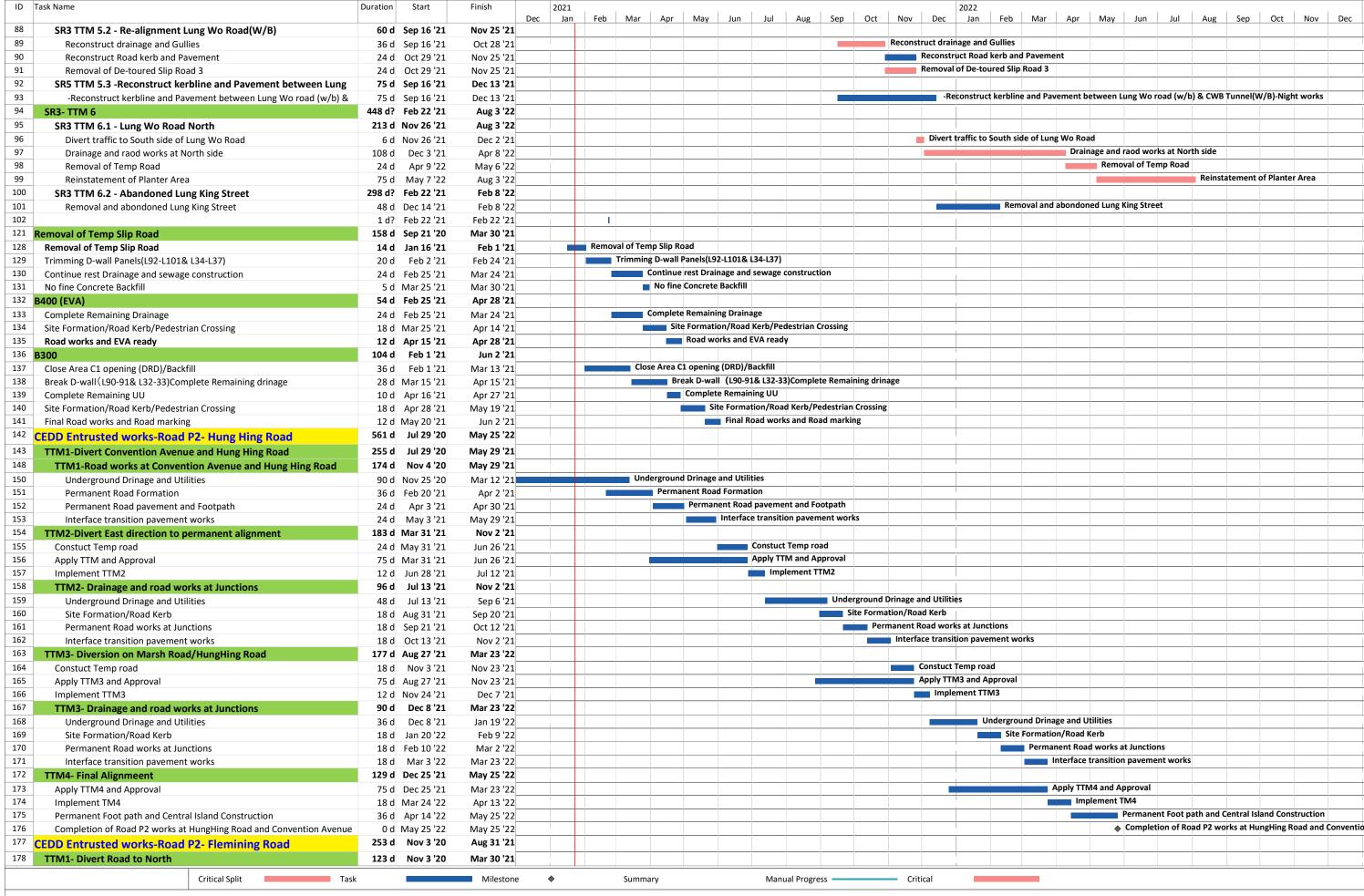

No specific observation was identified in the reporting period.


Permits/licenses

• The Contractor was advised to display the copy of FEP at the site entrance.

AECOM Asia Co. Ltd. 16 March 2022





APPENDIX A

Construction Programme

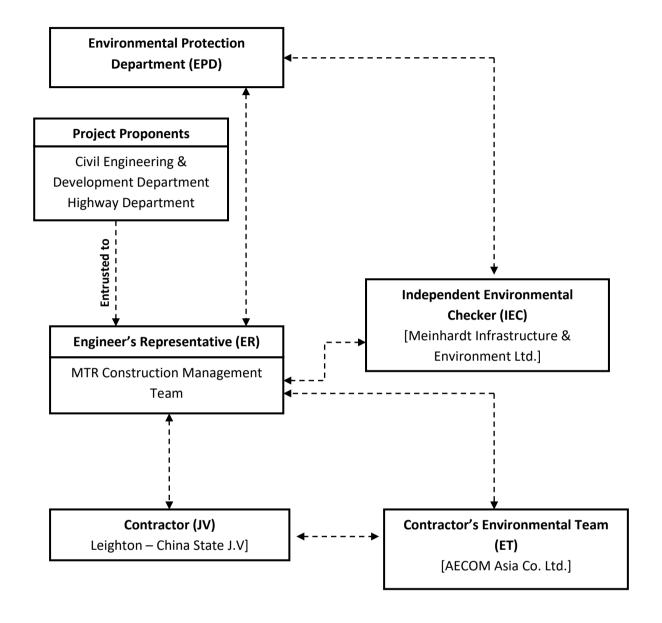
ID Task Name	Duration	Start	Finish		2021	2022
				Dec	Jan	
Road Kerb and Footpath Pavement -South of Convention Avenue	48 d	Feb 3 '21	Mar 30 '21			Road Kerb and Footpath Pavement -South of Convention Avenue
182 Middle Part- Remaining Drainage work	28 d	Jan 16 '21	Feb 17 '21			Middle Part- Remaining Drainage work
183 Middle Part- Irrigation works and Road Kerb	28 d	Feb 18 '21	Mar 22 '21			Middle Part- Irrigation works and Road Kerb
184 TTM2- Divert West direction to South	151 d	Jan 2 '21	Jun 28 '21			
185 Apply TTM2 and Approval	75 d	Jan 2 '21	Mar 31 '21			Apply TTM2 and Approval
186 Implement TTM2	12 d	Mar 31 '21	Apr 13 '21			Implement TTM2
187 Remaining Drainage Works-Middle part	28 d	Apr 14 '21	May 17 '21			Remaining Drainage Works-Middle part
188 Irrigation and landscape works -Middle part	28 d	May 18 '21	Jun 18 '21			Irrigation and landscape works -Middle part
189 Road Kerb-North of Comvention Anenue	18 d	Jun 8 '21	Jun 28 '21			Road Kerb-North of Comvention Anenue
190 TTM3- to Final Alignment	129 d	Apr 1 '21	Aug 31 '21			
191 Apply TTM2 and Approval	75 d	Apr 1 '21	Jun 29 '21			Apply TTM2 and Approval
192 Permanent TTM at PTI approval (no drawing now)	75 d	Apr 1 '21	Jun 29 '21			Permanent TTM at PTI approval (no drawing now)
193 Area C2-Road works Completed	0 d	Jun 29 '21	Jun 29 '21			Area C2-Road works Completed
194 works at Expro East completed	0 d	Jun 29 '21	Jun 29 '21			works at Expro East completed works at Expro East completed
195 Implement TTM3- to Final Alignment	6 d	Jun 29 '21	Jul 6 '21			Implement TTM3- to Final Alignment
Road Kerb and Footpath Pavement/road lighting -North of Convention	24 d	Jul 7 '21	Aug 3 '21			Road Kerb and Footpath Pavement/road lighting -North of Convention Avenue
197 Road Lighting /rails and Final touch up	24 d	Aug 4 '21	Aug 31 '21			Road Lighting /rails and Final touch up

Critical Split

Task

Milestone

Manual Progress —


Critical

Summary

APPENDIX B

Project Organization Structure

Appendix B Project Organisation Structure

Appendix B AECOM

APPENDIX C

Implementation Schedule of Environmental Mitigation Measures

EIA Ref.	Recommended Mitigation Measures	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
Construct	ion Dust Impact				
Construct	ion Phase				
S3.6.5	Four times a day watering of the work site with active operations	Contractor	Works areas	Construction phase	V
S3.8.1	Implementation of dust suppression measures stipulated in Air Pollution Control (Construction Dust) Regulation. The following mitigation measures, good site practices and a comprehensive dust monitoring and audit programme are recommended to minimise cumulative dust impacts.	Contractor	Works areas	Construction phase	
	 Strictly limit the truck speed on site to below 10 km per hour and water spraying to keep the haul roads in wet condition; 				V
	Watering during excavation and material handling;				@
	 Provision of vehicle wheel and body washing facilities at the exit points of the site, combined with cleaning of public roads where necessary; and 				V
	Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations.				V
/	 Dust suppression measures (con't) De-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement The portion of any road where along the site boundary should be kept clear of dusty materials. Use of frequent watering for any dusty construction process (e.g. breaking works) to reduce dust emissions. 	Contractor	Works areas	Construction phase	V V V
/	 Emission from Vehicles and Plants All vehicles shall be shut down in intermittent use. Only well-maintained plant should be operated on-site and plant should be serviced regularly to avoid emission of black smoke. All diesel fuelled construction plant within the works areas shall be powered by ultra low sulphur diesel fuel (ULSD) 	Contractor	Works areas	Construction phase	V V
Airborne I	Noise Impact				
Construct	ion Phase				
S4.9.4	 Good Site Practice: Only well-maintained plant shall be operated on-site and plant shall be serviced regularly during the construction program. 	Contractor	Works areas	Construction phase	V
	Silencers or mufflers on construction equipment shall be utilized and shall be properly maintained during the construction program.				V
	 Mobile plant, if any, shall be sited as far away from NSRs as possible. Machines and plant (such as trucks) that may be in intermittent use shall be shut down between works periods or shall be throttled down to a minimum. 				V
	 Plant known to emit noise strongly in one direction shall, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. 				V
	 Material stockpiles and other structures shall be effectively utilized, wherever practicable, in screening noise from onsite construction activities. 				V

EIA Ref.	Recommended Mitigation Measures	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
For DP1 –	CWB (Within the Project Boundary)				
S4.8.3 – S4.8.5	Use of quiet powered mechanical equipment, movable noise barrier and temporary noise barrier for the following tasks: Slip road 8 tunnel Construction of diaphragm wall and substructures of the tunnel approach ramp Excavation Construction of slabs Backfill Demolition and construction of substructures for the IEC Demolition works of existing piers and crossheads of the marine section of the existing IEC Use of PME grouping for the following tasks:	Contractor	Works areas	Construction phase	N/A V V V N/A N/A N/A
	At-grade roadwork Substructure for IFCL connection				N/A
For DP2 –	Substructure for IECL connection WDII Major Roads (Road P2)				
S4.8.3 – S4.8.4	Use of quiet powered mechanical equipment, movable noise barrier and temporary noise barrier for the following tasks: • Temporary road diversion • Resurfacing • At-grade roadwork				V V V
Water Qua	lity Impact	L			· · · · · · · · · · · · · · · · · · ·
Construct	ion Phase				
S5.8	 Construction Runoff and Drainage: Use of sediment traps, wheel washing facilities for vehicles leaving the site, and adequate maintenance of drainage systems to prevent flooding and overflow; 	Contractor	Works areas	Construction phase	V
	 Permanent drainage channels shall incorporate sediment basins or traps and baffles to enhance deposition rates. The design of efficient silt removal facilities shall be based on the guidelines in Appendix A1 of ProPECC PN 1/94; 				V
	 A sediment tank constructed from preformed individual cells of approximately 6 - 8 m³ capacity can be used for settling ground water prior to disposal; 				V
	Oil interceptors shall be provided in the drainage system for the tunnels and regularly cleaned to prevent the release of oils and grease into the storm water drainage system after accidental spillages. The interceptor shall have a bypass to prevent flushing during periods of heavy rain;				@
	 Precautions and actions to be taken when a rainstorm is imminent or forecast, and during or after rainstorms. Particular attention shall be paid to the control of any silty surface runoff during storm events; 				V
	On-site drainage system shall be installed prior to the commencement of other construction activities. Sediment traps shall be installed in order to minimize the sediment loading of the effluent prior to discharge; All the property and the property of the property				V
	 All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge shall be adequately designed for the controlled release of storm flows. All sediment control measures shall be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rain storms. The temporarily diverted drainage shall be reinstated to its original condition when the construction work is finished or the temporary diversion is no longer required; 				
	 All fuel tanks and store areas shall be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity; 				V

EIA Ref.	Recommended Mitigation Measures	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
	Minimum distances of 100 m shall be maintained between the storm water discharges and the existing or planned WSD flushing water intakes during construction phase				V
S5.8	Sewage from Construction Work Force:	Contractor	Works areas	Construction phase	
	Construction work force sewage discharges on site shall be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage shall be handled by portable chemical toilets prior to the commission of the on-site sewer system. Appropriate numbers of portable toilets shall be provided by a licensed contractor to serve the large number of construction workers over the construction site. The Contractor shall also be responsible for waste disposal and maintenance practices.				V
S5.8	Floating Debris and Refuse: Collection and removal of floating refuse shall be performed at regular intervals on a daily basis. The contractor shall be responsible for keeping the water within the site boundary and the neighbouring water free from rubbish.	Contractor	Works areas and adjacent water	Construction phase	V
S5.8	Storm Water Discharges: Minimum distances of 100 m shall be maintained between the existing or planned stormwater discharges and the existing or planned WSD flushing water intakes.	Contractor	Works areas and adjacent water	Construction phase	V
Waste Ma	nagement Implications				
Construct	ion Phase				
S6.7.7	 Good Site Practices: Recommendations for good site practices during the construction activities include: Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site; 	Contractor	Works areas	During planning and design stage, and construction stage	V
	 Training of site personnel in proper waste management and chemical waste handling procedures; Provision of sufficient waste disposal points and regular collection for disposal; Appropriate measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers; 				V V V
	 Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors; and A recording system for the amount of wastes generated, recycled and disposed of (including the disposal sites). 				V
6.7.8	Waste Reduction Measures: Recommendations to achieve waste reduction include:	Contractor	Works areas	During planning and design stage, and construction	V
	 Sort C&D waste from demolition of the existing waterfront structures to recover recyclable portions such as metals. Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse 			stage	V
	 or recycling of materials and their proper disposal. Encourage collection of aluminium cans, PET bottles and paper by providing separate labelled bins to enable 				V
	 these wastes to be segregated from other general refuse generated by the work force. Any unused chemicals or those with remaining functional capacity shall be recycled. 				V
	 Use of reusable non-timber formwork, such as in casting the tunnel box sections, to reduce the amount of C&D material. 				V
	 Prior to disposal of C&D waste, it is recommended that wood, steel and other metals shall be separated for reuse and / or recycling to minimise the quantity of waste to be disposed of to landfill. Proper storage and site practices to minimise the potential for damage or contamination of construction 				V
	 materials. Plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste. 				V

EIA Ref.	Recommended Mitigation Measures	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status
S6.7.10	General Refuse: • General refuse shall be stored in enclosed bins or compaction units separate from C&D material. A licensed waste collector shall be employed by the contractor to remove general refuse from the site, separately from	Contractor	Works areas	Construction phase	V
	 C&D material. A collection area shall be provided where wastes can be stored and loaded prior to removal from site. An enclosed and covered area is recommended to reduce the occurrence of 'wind blow' light material. 				V
S6.7.11	Chemical Wastes: After use, chemical wastes (for example, cleaning fluids, solvents, lubrication oil and fuel) shall be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Spent chemicals shall be collected by a licensed collector for disposal at the CWTF or other licensed facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	Contractor	Works areas	Construction phase	V
S6.7.12 – S6.7.13	 Construction and Demolition Material: C&D material shall be sorted on-site into inert C&D material (that is, public fill) and C&D waste. All the suitable inert C&D material shall be broken down to 250 mm in size for reuse as public fill in the WDII reclamation. C&D waste, such as wood, glass, plastic, steel and other metals shall be reused or recycled and, as a last resort, disposed of to landfill. A suitable area shall be designated to facilitate the sorting process and a temporary 	Contractor	Works areas	Construction phase	V
	 stockpiling area will be required for the separated materials. In order to monitor the disposal of public fill and C&D waste at public fill reception facilities and landfills, respectively, and to control fly tipping, a trip-ticket system shall be included as one of the contractual requirements and implemented by the Environmental Team undertaking the environmental monitoring and audit work. An Independent Environment Checker shall be responsible for auditing the results of the system. 				V
S6.7.14	Bentonite Slurry: The disposal of residual used bentonite slurry shall follow the good practice guidelines stated in ProPECC PN 1/94 "Construction Site Drainage" and listed as follows:	Contractor	Works areas	Construction phase	NI/A
	 If the disposal of a certain residual quantity cannot be avoided, the used slurry may be disposed of at the marine spoil grounds subject to obtaining a marine dumping licence from EPD on a case-by-case basis. If the used bentonite slurry is intended to be disposed of through the public drainage system, it shall be treated to the respective effluent standards applicable to foul sewers, storm drains or the receiving waters as set out in the Technical Memorandum of Standards for Effluents Discharged into Drainage and Sewerage Systems, Inland and Coastal Waters. 				N/A N/A
	 If the used bentonite slurry is intended to be disposed to public fill reception facilities, it will be mixed with dry soil on site before disposal. 				N/A
/	 Accidental spillage To prevent accidental spillage of chemicals, the following is recommended: Proper storage and handling facilities will be provided. All the tanks, containers, storage area will be bunded and the locations will be locked as far as possible from the sensitive watercourse and stormwater drains. The contractor will register as a chemical waste producer if chemical wastes would be generated. Storage of chemical waste arising from the construction activities will be stored with suitable labels and warnings. 	Contractor	Works areas	Construction phase	@ @ V
	Disposal of chemical wastes will be conducted in compliance with the requirements as stated in the Waste disposal (Chemical Waste) (General) Regulation.				V
Land Cont	amination Impact				
S.7.1.1	As no potential contaminative land uses were identified within the Study Area, adverse land contamination impacts associated with the construction and operation of the Project is not expected. As such, environmental protection and mitigation measures are considered not necessary and will not be covered in this EM&A Manual.	-	-	-	N/A

EIA Ref.	Recommended Mitigation Measures	Who to implement the measures?	Location of the measure	When to implement the measures?	Implementation Status			
Landscape and Visual								
Constructi	on Phase							
For DP1 – C	CWB (Within the Project Boundary) and DP2 - WDII Major Roads (Road P2)							
Table 10.5	 CM1 - Topsoil, where identified, shall be stripped and stored for re-use in the construction of the soft landscape works, where practical. CM2 - Existing trees to be retained on site shall be carefully protected during construction. CM3 - Trees unavoidably affected by the works shall be transplanted where practical. CM4 - Compensatory tree planting shall be provided to compensate for felled trees. CM5 - Control of night-time lighting. CM6 - Erection of decorative screen hoarding compatible with the surrounding setting. 	Contractor	Works areas	Construction phase	V N/A N/A N/A V N/A			

Legend: V = implemented;

x = not implemented;

@ = partially implemented;

N/A = not applicable

APPENDIX D

Summary of Action and Limit Levels

Appendix D - Summary of Action and Limit Levels

Table 1 Action and Limit Levels for 24-hour TSP

ID	Location	Location Action Level	
CMA5b	Pedestrian Plaza	209.9 μg/m³	260 μg/m³
CMA6a	WDII PRE Site Office	207.1 μg/m ³	260 μg/m³

Table 2 Action and Limit Levels for 1-hour TSP

ID	Location	Action Level	Limit Level
CMA5b	Pedestrian Plaza	339.7 μg/m³	500 μg/m³
CMA6a	WDII PRE Site Office	333 μg/m³	500 μg/m³

Table 3 Action and Limit Levels for Construction Noise (0700 – 1900 hrs of normal weekdays)

ID	Location	Action Level	Limit Level
M1a	Footbridge at EX-Wanchai Harbour Road Sports Centre	When one documented complaint is received	75 dB(A)

Appendix D AECOM

APPENDIX E

Calibration Certificates of Equipments

RECALIBRATION DUE DATE:

January 7, 2022

Certificate of Calibration

Calibration Certification Information

Cal. Date: January 7, 2021 Roots

Rootsmeter S/N: 438320 Ta: 294

Pa: 756.4

°K

Operator: Jim Tisch Calibration Model #:

odel #: TE-5025A

Calibrator S/N: 0843

mm Hg

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.3970	4.2	2.00
2	3	4	1	0.9930	6.4	4.00
3	5	6	1	0.8790	8.0	5.00
4	7	8	1	0.8420	8.7	5.50
5	9	10	1	0.6950	12.7	8.00

		Data Tabula	tion		
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	$\sqrt{\Delta H(Ta/Pa)}$
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)
1.0032	0.7181	1.4204	0.9944	0.7118	0.8817
1.0003	1.0073	2.0088	0.9915	0.9985	1.2469
0.9982	1.1356	2.2459	0.9894	1.1256	1.3941
0.9972	1.1843	2.3555	0.9885	1.1740	1.4621
0.9919	1.4272	2.8409	0.9832	1.4147	1.7634
	m=	1.99914		m=	1.25183
QSTD[b=	-0.01375	QA	b=	-0.00854
ασ.σ	r=	0.99991		r=	0.99991

	Calculation	ns	
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)
Qstd=	Vstd/∆Time	Qa=	Va/ΔTime
	For subsequent flow rat	e calculatio	ns:
Qstd=	$1/m \left(\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right) \left(\frac{Tstd}{Ta} \right)} \right) - b $	Qa=	$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrato	r manometer reading (in H2O)
	er manometer reading (mm Hg)
Ta: actual ab:	solute temperature (°K)
Pa: actual ba	rometric pressure (mm Hg)
b: intercept	
m: slope	

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

www.tisch-env.com

TOLL FREE: (877)263-7610

FAX: (513)467-9009

Cal. Date:	on WDII PRE Site Office Date: 16 Jul 2021				Shum Ka	Shum Kam Yuen		
ai. Dale.	16 Jul 2021			Next Due Date:	16 Sep	2021		
Equipment No.: A-001-79T				Serial No.	33	84		
			Ambient	Condition				
Temperatu	ire, Ta (K)	304.0	Pressure, F	Pa (mmHg)		755.1		

			Orifice Transfer S	tandard Informatio	n			
Serial No: 843 Slope, mc			1.99914	Interce	· ·			
Last Calibra			'Jan 2021					
Next Calibra	ation Date:	7 Jan 2022	<u></u>	Qstd = {[DH x (F	Pa/760) x (298/Ta)]	^{1/2} -bc} / mc		
		•						
			Calibration of	of TSP Sampler				
		C	Orfice		HVS	S Flow Recorder		
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/7	(60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Record Reading IC (CFM) Y-ax		
18	7.1		2.63	1.38	45.0	44.41		
13	6.1		2.44	1.29	40.0	39.48		
10	4.5		2.09	1.12	32.0	31.58		
7	3.2		1.77	0.95	24.0	23.69		
5	2.4		1.53	0.83	19.0	18.75		
	ession of Y on X	ı		Intercept, bw =	-20.4	4471		
Slope , mw = Correlation Coe	46.6734 officient* =		.9994	—				
Slope , mw = Correlation Coe	46.6734 officient* =	0. , check and recali		——————————————————————————————————————				
Slope , mw = Correlation Coe	46.6734 officient* = pefficient < 0.990	, check and recali	ibrate. Set Point	Calculation				
Slope , mw = Correlation Coe	46.6734 officient* = pefficient < 0.990		ibrate. Set Point					
Slope , mw = Correlation Coe If Correlation Co From the TSP Fig.	46.6734 officient* = perficient < 0.990 ield Calibration Co	, check and recali	Set Point 1.30m³/min					
Slope , mw = Correlation Coe If Correlation Co From the TSP Fig.	46.6734 officient* = perficient < 0.990 ield Calibration Co	, check and recali urve, take Qstd = ne "Y" value accor	Set Point 1.30m³/min rding to	Calculation				
Slope , mw = Correlation Coe If Correlation Co From the TSP Fig.	46.6734 officient* = perficient < 0.990 ield Calibration Co	, check and recali urve, take Qstd = ne "Y" value accor	Set Point 1.30m³/min rding to					
Slope , mw = Correlation Coe If Correlation Co From the TSP Fig.	46.6734 officient* = perflicient < 0.990 ield Calibration Cossion Equation, the	, check and recali urve, take Qstd = ne "Y" value accor	Set Point 1.30m ³ /min rding to v x Qstd + bw = IC	Calculation x [(Pa/760) x (298/		40.76		
Slope , mw = Correlation Coe If Correlation Co From the TSP Fire From the Regres	46.6734 officient* = perflicient < 0.990 ield Calibration Cossion Equation, the	, check and recali urve, take Qstd = ne "Y" value accor	Set Point 1.30m³/min rding to	Calculation x [(Pa/760) x (298/		40.76		
Slope , mw = Correlation Coe If Correlation Coe From the TSP Fire From the Regres	46.6734 officient* = perflicient < 0.990 ield Calibration Cossion Equation, the	, check and recali urve, take Qstd = ne "Y" value accor	Set Point 1.30m ³ /min rding to v x Qstd + bw = IC	Calculation x [(Pa/760) x (298/		40.76		
Slope , mw = Correlation Coe If Correlation Coe From the TSP Fire From the Regres	46.6734 officient* = perflicient < 0.990 ield Calibration Cossion Equation, the	, check and recali urve, take Qstd = ne "Y" value accor	Set Point 1.30m ³ /min rding to v x Qstd + bw = IC	Calculation x [(Pa/760) x (298/		40.76		
Slope , mw = Correlation Coe If Correlation Coe From the TSP Fire From the Regres Therefore, Set P	46.6734 officient* = perflicient < 0.990 ield Calibration Cossion Equation, the	, check and recali urve, take Qstd = ne "Y" value accor	Set Point 1.30m ³ /min rding to v x Qstd + bw = IC	Calculation x [(Pa/760) x (298/		40.76		
Slope , mw = Correlation Coe If Correlation Coe From the TSP Fire From the Regres Therefore, Set P	46.6734 officient* = perflicient < 0.990 ield Calibration Cossion Equation, the	, check and recali urve, take Qstd = ne "Y" value accor	Set Point 1.30m ³ /min rding to v x Qstd + bw = IC	Calculation x [(Pa/760) x (298/		40.76		
From the TSP Fi	46.6734 officient* = perflicient < 0.990 ield Calibration Cossion Equation, the	, check and recali urve, take Qstd = ne "Y" value accor	Set Point 1.30m ³ /min rding to v x Qstd + bw = IC	Calculation x [(Pa/760) x (298/		40.76		

		ffice		Operator:	Shum Ka	ım Yuen	
al. Date:	15 Sep 2021			Next Due Date:	15 Nov	2021	
quipment No.:	A-001-79T			Serial No.	338	84	
			A	Candidian			
	7 40	200.0		Condition		757.2	
Temperatur	re, Ta (K)	303.0	Pressure, F	²a (mm∺g)		737.2	
		(Orifice Transfer S	tandard Informatio	n		
Serial	No:	843	Slope, mc	1.99914	Interce		-0.1375
Last Calibra	tion Date:	7 Jan 2021		mc x Qstd + bc	= [DH x (Pa/760) x	(298/Ta)] ^{1/2}	
Next Calibra	ation Date:	7 Jan 2022		Qstd = {[DH x (I	Pa/760) x (298/Ta)] ¹	-bc} / mc	
			Calibratian	of TSP Sampler			
		0	PLANT CARLES FOR A PARTIE	or 15P Sampler	LI\/G	S Flow Recorder	
Resistance		T	rfice	7000			
Plate No.	DH (orifice), in. of water	[DH x (Pa/76	60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Reading IC (CFI	
18	7.0		2.62	1.38	45.0	44.54	
13	6.0		2.42	1.28	40.0	39.60	
10	4.5		2.10	1.12	33.0	32.67	15 74
7	3.1		1.74	0.94	24.0	23.76	
5	2.4		1.53	0.84	20.0	19.80	2.00
Slope , mw =	45.8197 45icient* =		9987	Intercept, bw =	-18.8	8437	•
Slope , mw = Correlation Coe	45.8197 fficient* =			Intercept, bw =	-18.8	8437	-
Slope , mw = Correlation Coe	45.8197 fficient* =	0.9	brate.	Intercept, bw =	-18.8	8437	
Slope , mw = Correlation Coe *If Correlation Co	45.8197 Ifficient* = Defficient < 0.990	0.9	orate. Set Point	_	-18.3	8437	•
Slope , mw = Correlation Coe *If Correlation Co From the TSP Fi	45.8197 Ifficient* = Defficient < 0.990 eld Calibration C	, check and recalii urve, take Qstd =	Set Point 1.30m³/min	_	-18.9	8437	
Slope , mw = Correlation Coe *If Correlation Co From the TSP Fi	45.8197 Ifficient* = Defficient < 0.990 eld Calibration C	0.: , check and recalil	Set Point 1.30m³/min	_	-18.	8437	
Slope , mw = Correlation Coe *If Correlation Co From the TSP Fi	45.8197 Ifficient* = Defficient < 0.990 eld Calibration C	o.: , check and recalil urve, take Qstd = ne "Y" value accor	Set Point 1.30m³/min ding to	_		8437	
Slope , mw = Correlation Coe *If Correlation Co From the TSP Fi From the Regres	45.8197 Ifficient* = Defficient < 0.990 Reld Calibration Consists Equation, the deficient is a second control of the control	, check and recalil urve, take Qstd = ne "Y" value accor	Set Point 1.30m³/min ding to x Qstd + bw = IC	c Calculation x [(Pa/760) x (298/			
Slope , mw = Correlation Coe *If Correlation Co From the TSP Fi From the Regres	45.8197 Ifficient* = Defficient < 0.990 Reld Calibration Consists Equation, the deficient is a second control of the control	, check and recalil urve, take Qstd = ne "Y" value accor	Set Point 1.30m³/min ding to	c Calculation x [(Pa/760) x (298/		41.14	-

Station	Pedestrian Plaza	а		Operator:	Choi W	ing Ho	_
Cal. Date:	18-Jun-21			Next Due Date:	18-Aı		-
Equipment No.:	A-001-70T	_		Serial No.	102	:73	_
			Ambient	Condition			
Temperatu	ıre, Ta (K)	303	Pressure, F	Pa (mmHg)		754.0	
		L					
			Orifice Transfer S	tandard Informatio	n		
Seria	il No:	843	Slope, mc	1.99	914	Intercept, bc	-0.01375
Last Calibr	ation Date:	07-Jan-21		me v Ostd + he =	= [H x (Pa/760) x	$(298/Ta)l^{1/2}$	
Next Calibr	ation Date:	07-Jan-22		me x Qstu + be	[11 x (1 tt/ 700) x	(2) 0, 1 1, 1	
			Calibration of	of TSP Sampler			
		C	Orfice		HV	S Flow Recorder	
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/7	60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flo	
18	6.8		2.58	1.30	44.0	43.40	6
13	5.6		2.34	1.18	38.0	37.5	4
10	4.6		2.12	1.07	33.0	32.6	0
7	3.5		1.85	0.93	27.0	26.6	7
5	2.5		1.56	0.79	21.0	20.7	4
By Linear Regr Slope , mw = Correlation Co	efficient* =		.9988	Intercept, bw =	-14.	7355	-
*If Correlation C	Coefficient < 0.990), check and recal	ibrate.	_			
		-		t Calculation			
From the TSP F	ield Calibration (Curve, take Qstd =	: 1.30m³/min				
From the Regre	ession Equation, t	the "Y" value acco	rding to				
					1/2		
		mv	v x Qstd + bw = IC	x [(Pa/760) x (298)	/Ta)]" [*]		
Therefore Oct	Doint: IC = / mi	v Oetd + hw \ v !/ '	760 / Pa) x (Ta / 2	98)1 ^{1/2} =		43.83	
i nereiore, Set	roint, ic = (iiiw)	x Com tow) x [(100114/1/14/2	.00 /]			
Remarks:							
a in tearrain i in 500 (1180 (146))							
OC Boviower:	1-15	MAZI	Signature:	2		Date: 18/	6

station	Pedestrian Plaza			Operator:	Choi W	ing Ho	
al. Date:	17-Aug-21			Next Due Date:	17-00	ct-21	_
- Equipment No.:	A-001-70T				Serial No. 10273		_
•				_			
				Condition			
Temperatu	re, Ta (K)	305	Pressure, F	Pa (mmHg)		756.6	
			Orifice Transfer S	tandard Informatio	n .		
Coriol	No					Intercept, bc	-0.01375
		07-Jan-21	7 Jan 21				
Next Calibra		07-Jan-21 07-Jan-22		$mc \times Qstd + bc =$	$= [H \times (Pa/760) \times$	$(298/Ta)]^{1/2}$	
Next Calibra	allon Date.	07-3411-22					
			Calibration of	of TSP Sampler			
		C	Orfice		HVS	S Flow Recorder	
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/7)	60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X · axis	Flow Recorder Reading (CFM)	Continuous Flo Reading IC (CF	
		2.50		1.30	44.0	43.3	9
18	6.9						
18 13	6.9 5.6		2.59	1.17	38.0	37.4	8
				1.17 1.06	38.0 32.0	37.4 31.5	
13	5.6		2.33				6
13 10	5.6 4.6		2.33 2.12	1.06	32.0	31.5	6
13 10 7 5 By Linear Regres Slope, mw = Correlation Coe	5.6 4.6 3.6 2.6 ession of Y on X 49.5988	0.	2.33 2.12	1.06 0.94	32.0 26.0 19.0	31.5 25.6	6
13 10 7 5 By Linear Regres Slope, mw = Correlation Coe	5.6 4.6 3.6 2.6 ession of Y on X 49.5988		2.33 2.12 1.87 1.59 .9996 ibrate.	1.06 0.94 0.80	32.0 26.0 19.0	31.5 25.6 18.7	6
13 10 7 5 By Linear Regres Slope, mw = Correlation Coe *If Correlation Coe	5.6 4.6 3.6 2.6 ession of Y on X 49.5988 efficient* =	0., check and recali	2.33 2.12 1.87 1.59 .9996 ibrate.	1.06 0.94 0.80	32.0 26.0 19.0	31.5 25.6 18.7	6
13 10 7 5 By Linear Regres Slope, mw = Correlation Coe *If Correlation Coe	5.6 4.6 3.6 2.6 ession of Y on X 49.5988 efficient* = cefficient < 0.990 eld Calibration C	0., check and recali	2.33 2.12 1.87 1.59 .9996 ibrate. Set Point : 1.30m³/min	1.06 0.94 0.80	32.0 26.0 19.0	31.5 25.6 18.7	6
13 10 7 5 By Linear Regres Slope, mw = Correlation Coe *If Correlation Coe	5.6 4.6 3.6 2.6 ession of Y on X 49.5988 efficient* = cefficient < 0.990 eld Calibration C	0., check and recali	2.33 2.12 1.87 1.59 .9996 ibrate. Set Point : 1.30m³/min	1.06 0.94 0.80	32.0 26.0 19.0	31.5 25.6 18.7	6
13 10 7 5 By Linear Regres Slope, mw = Correlation Coe *If Correlation Coe	5.6 4.6 3.6 2.6 ession of Y on X 49.5988 efficient* = cefficient < 0.990 eld Calibration C	0., check and recali	2.33 2.12 1.87 1.59 .9996 ibrate. Set Point : 1.30m³/min rding to	1.06 0.94 0.80 Intercept, bw =	32.0 26.0 19.0	31.5 25.6 18.7	6
13 10 7 5 By Linear Regres Slope, mw = Correlation Coe *If Correlation Coe	5.6 4.6 3.6 2.6 ession of Y on X 49.5988 efficient* = cefficient < 0.990 eld Calibration C	0., check and recali	2.33 2.12 1.87 1.59 .9996 ibrate. Set Point : 1.30m³/min rding to	1.06 0.94 0.80	32.0 26.0 19.0	31.5 25.6 18.7	6
13 10 7 5 By Linear Regres Slope, mw = Correlation Coe *If Correlation Coe From the TSP Fi	5.6 4.6 3.6 2.6 ession of Y on X 49.5988 efficient* = pefficient < 0.990 eld Calibration C ession Equation, the	o., check and recali urve, take Qstd = ue "Y" value accor	2.33 2.12 1.87 1.59 .9996 ibrate. Set Point : 1.30m³/min rding to	1.06 0.94 0.80 Intercept, bw =	32.0 26.0 19.0	31.5 25.6 18.7	6

Station	Pedestrian Plaza	· ·		Operator:	Choi W	ling Ho	
Cal. Date:	15-Oct-21			Next Due Date:	15-D	15-Dec-21 10273	
Equipment No.:	A-001-70T	-		Serial No.	103		
			Ambient	Condition			
Temperatu	re. Ta (K)	300		Pa (mmHg)		756.6	
	, , , , , ,			(3)			
			Orifice Transfer S	tandard Informatio	on		
Serial	l No:	843	Slope, mc	1.99	9914	Intercept, bc	-0.0137
Last Calibra	ation Date:	07-Jan-21		O-td b -	= [H x (Pa/760) x	(209/T-)1/2	
Next Calibra	ation Date:	07-Jan-22		mc x Qsta + bc =	= [H X (Pa//60) X	(298/1a)]	iX
			A 111				
	5. 44 5. 1. 15			of TSP Sampler	111/	C Flanc Danas dan	
Resistance		1	Orfice		HV	S Flow Recorder	
Plate No.	DH (orifice), in. of water	[DH x (Pa/7	760) x (298/Ta)] ^{1/2}	Qstd (m³/min) X · axis	Flow Recorder Reading (CFM)	Continuous Flor Reading IC (CF	
18	6.8		2.59	1.30	44.0	43.7	5
13	5.6		2.35	1.18	38.0	37.79	9
10	4.6		2.13	1.07	33.0	32.83	2
7	3.5		1.86	0.94	26.0	25.8	6
5	2.6	1	1.60	0.81	20.0	19.89	9
Slope , mw = Correlation Coe	48.2634 #fficient* = 0.990,	0	.9997	Intercept, bw =	-19.	2178	-
ii Correlation Co	penicient < 0.990,	CHECK AND TECA	ibrate.				
			Set Point	Calculation			
From the TSP Fig	eld Calibration Cu	urve, take Qstd =	: 1.30m³/min				
From the Regres	sion Equation, th	e "Y" value acco	rding to				
					1/2		
		mv	v x Qstd + bw = IC	x [(Pa/760) x (298/	Ta)]" ²		
Therefore Set Po	oint: IC = (mw x	Ostd + bw) x [(7	760 / Pa) x (Ta / 29	98)1 ^{1/2} =		43.77	
	· (/ / / / / / / / / / / / / / / / / /	ασια στι / Λ <u>[</u> (·		71		10111	-
Remarks:							
OC Reviewer	WIS CA	1AN	Signature:	R		Date: 15/	0/11

EQUIPMENT CALIBRATION RECORD

Type:	rpe: Laser Dust Monitor						
Manufact	turer/Brand:		SIBATA				-
Model No	D.:		LD-3				_
Equipmer	nt No.:		A.005.10	-			
Sensitivit	Sensitivity Adjustment Scale Setting:						-
Operator:			Mike She	k (MSKM)		***	_
Standard	Equimment	***					
Fauinmor			Hisb Val		1		
Equipmer Venue:	ιι.			ıme Samp			-
Model No			TE-5170	overnmer	nt Secondary Scho	01	=
Serial No.			3154				-
	ration Date:			1			-
Last Callb	ration bate.		23-Apr-2	T			-
				p gr			
Calibratio	n Result						
Sensitivity	/ Adjustment Sca	le Setting (Refo	re Calibrati	ion)·		753	СРМ
	Adjustment Sca	, , , , , , , , , , , , , , , , , , ,		6050		753	CPM
	, , , , , , , , , , , , , , , , , , , ,	ne setting (rinter	Cambratio	,.			- CFIVI
Hour	Date	Time	Ambient	Condition	Concentration ①	Total Count 2	Count/
	(dd/mm/yy)		Temp (°C)	R.H.(%)	(mg/m3)		Minute ③
					Y-axis		X-axis
1	30/04/21	9:30-10:30	28.0	78	0.04950	1945	32.42
2	30/04/21	10:30-11:30	28.0	78	0.05045	2010	33.50
3	30/04/21	11:30-12:30	28.0	78	0.05250	2110	35.17
4	30/04/21	12:30-13:30	28.0	78	0.05520	2310	38.50
Note:		data was measu			Sampler		
	=	was logged by L					
	(3) Count/minu	ite was calculate	ed by (Total	Count/60	0)		
By Linear	Regression of Y o	nn Y					
by Linear	Slope (K-factor)		0.0015				
	Correlation coe		(The state of the				
	Correlation coe	mcient.	0.9994				
Validity of	Calibration Reco	ord:	30-A	pr-22			
Remarks:							

QC Reviewer: Signature: Date: 3-May 1

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

2

CERTIFICATE OF CALIBRATION

Certificate No.:

20CA1019 02-01

Page

of

Preamp

Item tested

Description:

Sound Level Meter (Type 1) B & K

Manufacturer: E Type/Model No.: 2

2250 3001291 Microphone B & K

B & K B & K 4950 ZC0032 3005374 23853

Adaptors used:

Item submitted by

Serial/Equipment No.:

Customer Name:

AECOM ASIA CO LIMITED

Address of Customer:

Request No.:

-

Date of receipt:

19-Oct-2020

Date of test:

22-Oct-2020

Reference equipment used in the calibration

Description:

Model: B&K 4226 Serial No.

Expiry Date: 23-Aug-2021

Traceable to: CIGISMEC

Signal generator

DS 360

2288444 61227

24-Dec-2020

CEPREI

Ambient conditions

Multi function sound calibrator

Temperature:

Air pressure:

22 ± 1 °C

Relative humidity:

55 ± 10 % 1005 ± 5 hPa

Test specifications

- The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- 3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Feng

Approved Signatory:

Date:

23-Oct-2020

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument. The results apply to the item as received.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

香港新界葵涌水基路 2 2 - 2 4 號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

2

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

20CA1019 02-01

Page

0

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
^	Door	0.2	
전 사용을 하는 것 같은 사람들이 되었다. 그런 그리고 있는 것이 없는 것이었다면 없는 것이 없는 것이었다면 없는 것이 없는 것이었다면 없다면 없는 것이었다면 없었다면 없었다면 없었다면 없었다면 없었다면 없었다면 없었다면 없	100000000000000000000000000000000000000		
9			
1000 - 000 -			
		0.3	
	Pass	0.3	
С	Pass	0.3	
Lin	Pass	0.3	
Single Burst Fast	Pass	0.3	
Single Burst Slow	Pass	0.3	
Single 100µs rectangular pulse	Pass	0.3	
Crest factor of 3	Pass	0.3	
Single burst 5 ms at 2000 Hz	Pass	0.3	
Repeated at frequency of 100 Hz	Pass	0.3	
1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Single burst 10 ms at 4 kHz	Pass	0.4	
Single burst 10 ms at 4 kHz	Pass	0.4	
SPL	Pass	0.3	
Leq	Pass	0.4	
	A C Lin At reference range, Step 5 dB at 4 kHz Reference SPL on all other ranges 2 dB below upper limit of each range 2 dB above lower limit of each range At reference range, Step 5 dB at 4 kHz A C Lin Single Burst Fast Single Burst Slow Single 100µs rectangular pulse Crest factor of 3 Single burst 5 ms at 2000 Hz Repeated at frequency of 100 Hz 1 ms burst duty factor 1/10³ at 4kHz 1 ms burst duty factor 1/10⁴ at 4kHz Single burst 10 ms at 4 kHz Single burst 10 ms at 4 kHz SPL	A Pass C Pass Lin Pass At reference range , Step 5 dB at 4 kHz Pass Reference SPL on all other ranges Pass 2 dB below upper limit of each range Pass 2 dB above lower limit of each range Pass At reference range , Step 5 dB at 4 kHz Pass A Pass C Pass Lin Pass Single Burst Fast Pass Single Burst Slow Pass Single Burst Slow Pass Single 100μs rectangular pulse Pass Crest factor of 3 Pass Single burst 5 ms at 2000 Hz Pass Repeated at frequency of 100 Hz Pass 1 ms burst duty factor 1/10 ³ at 4kHz Pass 1 ms burst duty factor 1/10 ⁴ at 4kHz Pass Single burst 10 ms at 4 kHz Pass	Subtest: Status: Uncertanity (dB) A Pass 0.3 C Pass 0.8 Lin Pass 1.6 At reference range , Step 5 dB at 4 kHz Pass 0.3 Reference SPL on all other ranges Pass 0.3 2 dB below upper limit of each range Pass 0.3 2 dB above lower limit of each range Pass 0.3 At reference range , Step 5 dB at 4 kHz Pass 0.3 A Pass 0.3 C Pass 0.3 Lin Pass 0.3 Single Burst Fast Pass 0.3 Single Burst Slow Pass 0.3 Single Burst Slow Pass 0.3 Single burst 5 ms at 2000 Hz Pass 0.3 Repeated at frequency of 100 Hz Pass 0.3 1 ms burst duty factor 1/10 ³ at 4kHz Pass 0.3 1 ms burst duty factor 1/10 ⁴ at 4kHz Pass 0.3 Single burst 10 ms at 4 kHz Pass 0.4

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Date: Fung Chi Yip 22-Oct-202

End -

Checked by

22-Oct-2020\)

Feng Junqi
Date: 23-Oct-2020

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:

20CA0914 02

Page

of

2

Item tested

Description: Manufacturer: Sound Level Meter (Type 1) B & K

Microphone B & K

Type/Model No.: Serial/Equipment No.:

2238 2800927 4188 2250455

Adaptors used:

d: -

_

Item submitted by

Customer Name:

AECOM ASIA CO., LTD.

Address of Customer:

Request No.: Date of receipt:

14-Sep-2020

Date of test:

19-Sep-2020

Reference equipment used in the calibration

Description:

Model:

Serial No.

Expiry Date:

Traceable to:

Multi function sound calibrator

B&K 4226

2288444

23-Aug-2021

CIGISMEC

Signal generator

DS 360

61227

24-Dec-2020

CEPREI

Ambient conditions

Temperature:

22 ± 1 °C 55 ± 10 %

Relative humidity: Air pressure:

1000 ± 5 hPa

Test specifications

 The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.

 The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Feng Junqi

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

20-Sep-2020

Company Chop:

the date of calibration and

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument. The results apply to the item as received.

© Soils & Materials Engineering Co., Ltd

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

香港新界葵涌永基路 2 2 - 2 4 號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

20CA0914 02

Page

0

2

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
	127			
Self-generated noise	A	Pass	0.3	
	С	Pass	1.0	2.1
	Lin	Pass	2.0	2.2
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	Α	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
7.0	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Weighting A at 125 Hz	Pass	0.3	
Weighting A at 8000 Hz	Pass	0.5	
	Weighting A at 125 Hz	Weighting A at 125 Hz Pass	SubtestStatusUncertanity (dB)Weighting A at 125 HzPass0.3

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Date:

25/

Fung Chi Yip 19-Sep-2020 End -

Checked by:

Date:

20-Sep-2020

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

2

CERTIFICATE OF CALIBRATION

Certificate No.:

21CA0309 02

Page

of

Item tested

Description: Manufacturer: Sound Level Meter (Type 1) B & K

,

Microphone B & K Pream B & K ZC0032

Type/Model No.: Serial/Equipment No.: Adaptors used: 2270 2644597 4950 2879980

29398

Item submitted by

Customer Name:

AECOM ASIA CO LTD

Address of Customer:

Request No.: Date of receipt:

09-Mar-2021

Date of test:

22-Mar-2021

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Model:

Serial No.

Expiry Date:

Traceable to:

Signal generator

B&K 4226 DS 360 2288444 33873 23-Aug-2021

CIGISMEC CEPREI

19-May-2021

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity: Air pressure:

55 ± 10 % 1005 ± 5 hPa

Test specifications

 The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.

 The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

24-Mar-2021

Company Chop:

STOS ** OLL

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument. The results apply to the item as received.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

香港新界藝涌永基路 2 2 - 2 4號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

(Continuation Page)

A	r	
OPTI	ficate	MO.
OCILI	IICate	140

21CA0309 02

Page

2

2

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Uncertanity (dB) / Coverage Factor
Self-generated noise	A	Pass	0.3
	C	Pass	1.0 2.1
	Lin	Pass	2.0 2.2
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3
	Reference SPL on all other ranges	Pass	0.3
	2 dB below upper limit of each range	Pass	0.3
	2 dB above lower limit of each range	Pass	0.3
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3
Frequency weightings	A	Pass	0.3
	С	Pass	0.3
	Lin	Pass	0.3
Time weightings	Single Burst Fast	Pass	0.3
	Single Burst Slow	Pass	0.3
Peak response	Single 100µs rectangular pulse	Pass	0.3
R.M.S. accuracy	Crest factor of 3	Pass	0.3
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3
	Repeated at frequency of 100 Hz	Pass	0.3
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3
	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4
Overload indication	SPL	Pass	0.3
	Leq	Pass	0.4

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Uncertanity (dB) / Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3
	Weighting A at 8000 Hz	Pass	0.5

3, Response to associated sound calibrator

N/A

The uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95 %. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

 $| \sim \sim |$

End

Checked by:

Chan Yuk Yiu

Date:

Fung Chi Yip 22-Mar-2021

Date:

24-Mar-2021

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:

21CA0319 01-01

Page

1

2

Item tested

Description:

Sound Level Meter (Type 1) B & K Microphone B & K Preamp

of

Manufacturer: Type/Model No.:

2250-L

4950

B & K ZC0032 17190

Serial/Equipment No.: Adaptors used:

2681366

2665582

1713

Item submitted by

Customer Name:

AECOM ASIA CO LTD

Address of Customer:

-

Request No.: Date of receipt:

19-Mar-2021

Date of test:

23-Mar-2021

Reference equipment used in the calibration

Description:

Model:

Serial No.

Expiry Date:

Traceable to:

Multi function sound calibrator Signal generator B&K 4226 DS 360 2288444 33873 23-Aug-2021

CIGISMEC

19-May-2021

CEPREI

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity: Air pressure: 55 ± 10 % 1005 ± 5 hPa

Test specifications

 The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%.

 The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Feng

Jungi

Approved Signatory:

Date:

24-Mar-2021

Company Chop:

S ENGINECALLY STOS ** OLY

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument. The results apply to the item as received.

© Soils & Materials Engineering Co., Ltd

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

綜合試驗有限公司

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

(Continuation Page)

Ce	rtifi	cate	No.:
CC		cate	140

21CA0319 01-01

Page

2

1, **Electrical Tests**

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

			Expanded	Coverage
Test:	Subtest:	Status:	Uncertanity (dB)	Factor
Self-generated noise	A	Pass	0.3	
	С	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leq	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	Α	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Checked by: Fung Chi Yip

Chan Yuk Yiu

Date:

23-Mar-2021

Date: 24-Mar-2021

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

C Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:

20CA1019 02-02

Page:

of

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer:

B&K

Type/Model No.: Serial/Equipment No.: 4231

3014024 / N004.04

Adaptors used:

Item submitted by

Curstomer:

AECOM ASIA CO LIMITED

Address of Customer:

Request No.:

Date of receipt:

19-Oct-2020

Date of test:

22-Oct-2020

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2341427	11-May-2021	SCL
Preamplifier	B&K 2673	2743150	03-Jun-2021	CEPREI
Measuring amplifier	B&K 2610	2346941	03-Jun-2021	CEPREI
Signal generator	DS 360	33873	19-May-2021	CEPREI
Digital multi-meter	34401A	US36087050	19-May-2021	CEPREI
Audio analyzer	8903B	GB41300350	18-May-2021	CEPREI
Universal counter	53132A	MY40003662	18-May-2021	CEPREI

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity:

55 ± 10 %

Air pressure:

1005 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B 1, and the lab calibration procedure SMTP004-CA-156.
- The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique. 2,
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Approved Signatory:

Date:

23-Oct-2020

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long term stability of the instrument. The results apply to the item as received.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

20CA1019 02-02

Page:

1. Measured Sound Pressure Level

> The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

(Output level in dB re 20 µPa) Frequency Output Sound Pressure Measured Output Estimated Expanded Shown Level Setting Sound Pressure Level Uncertainty Hz dB dB dB 1000 94.00 93.98 0.10

2. Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.014 dB

Estimated expanded uncertainty

0.005 dB

3, **Actual Output Frequency**

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 1000.0 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

4, **Total Noise and Distortion**

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 0.5 %

Estimated expanded uncertainty

Fung Chi Yip

22-Oct-2020

0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

End

Calibrated by:

Date:

Checked by:

Date:

Feng 23-Oct-2020

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005

香港新界葵涌水基路 2 2 - 2 4 號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:

20CA1006 03

Page:

of

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer:

Rion Co., Ltd.

Type/Model No.:

NC-74

Serial/Equipment No.:

34246490 / N.004.10

Adaptors used:

_

Item submitted by

Curstomer:

AECOM ASIA CO LIMITED

Address of Customer:

-

Request No.:

-

Date of receipt:

06-Oct-2020

Date of test:

12-Oct-2020

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2412857	11-May-2021	SCL
Preamplifier	B&K 2673	2743150	03-Jun-2021	CEPREI
Measuring amplifier	B&K 2610	2346941	03-Jun-2021	CEPREI
Signal generator	DS 360	33873	19-May-2021	CEPREI
Digital multi-meter	34401A	US36087050	19-May-2021	CEPREI
Audio analyzer	8903B	GB41300350	18-May-2021	CEPREI
Universal counter	53132A	MY40003662	18-May-2021	CEPREI

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity:

 $55 \pm 10 \%$

Air pressure:

1005 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Feng Junqi

Approved Signatory:

Date:

12-Oct-2020

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument. The results apply to the item as received.

© Soils & Materials Engineering Co., Ltd

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

20CA1006 03

Page:

2

1. Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

Frequency Shown	Output Sound Pressure Level Setting	Measured Output Sound Pressure Level	Estimated Expanded Uncertainty
Hz	dB	dB	dB
1000	94.00	94.10	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.017 dB

Estimated expanded uncertainty

0.005 dB

3, **Actual Output Frequency**

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 1002.1 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

Total Noise and Distortion 4.

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 1.6%

Estimated expanded uncertainty

0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Date:

Fung Chi Yip 12-Oct-2020 Checked by:

Date:

12-Oct-2020

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-2/Issue 1/Rev C/01/05/2005

香港新界藝涌水基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:

21CA0319 01-02

Page:

of

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer:

MVI

Type/Model No.:

CAL21

Serial/Equipment No.:

34113610(2011) / N.004.11

Adaptors used:

Yes (BAC21)

Item submitted by

Curstomer:

AECOM ASIA CO., LTD.

Address of Customer:

-

Request No.:

_

Date of receipt:

-19-Mar-2021

Date of test:

23-Mar-2021

Reference equipment used in the calibration

Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter Audio analyzer	Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A 8903B	Serial No. 2412857 2743150 2346941 33873 US36087050 GB41300350	Expiry Date: 11-May-2021 03-Jun-2021 03-Jun-2021 19-May-2021 19-May-2021 18-May-2021	Traceable to: SCL CEPREI CEPREI CEPREI CEPREI CEPREI CEPREI
Universal counter	8903B	GB41300350	18-May-2021	CEPREI
	53132A	MY40003662	18-May-2021	CEPREI

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity:

55 ± 10 %

Air pressure:

1005 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3. The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Feng Junqi

Approved Signatory:

Date:

24-Mar-2021

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument. The results apply to the item as received.

© Soils & Materials Engineering Co., Ltd

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

21CA0319 01-02

Page:

of

2

1, Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

	(Output level in dB re 20 µPa)
	Estimated Expanded
1	Uncertainty

Frequency	Output Sound Pressure	Measured Output	Estimated Expanded Uncertainty dB
Shown	Level Setting	Sound Pressure Level	
Hz	dB	dB	
1000	94.00	93.98	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.010 dB

Estimated expanded uncertainty

0.005 dB

3, **Actual Output Frequency**

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 1002.6 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

4, **Total Noise and Distortion**

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 1.8 %

Estimated expanded uncertainty

0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

End

Calibrated by:

Fung Chi Yip

Checked by:

Date: 23-Mar-2021 Date:

24-Mar-2021

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005

香港新界葵涌水基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:

21CA0401 02

Page:

0

2

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer:

B & K

Type/Model No.:

4231 3006428

Serial/Equipment No.: Adaptors used:

_

Item submitted by

Curstomer:

AECOM

Address of Customer:

100

Request No.: Date of receipt:

01-Apr-2021

Date of test:

05-Apr-2021

Reference equipment used in the calibration

Description: Lab standard microphone Preamplifier Measuring amplifier Signal generator Digital multi-meter Audio analyzer Universal counter	Model: B&K 4180 B&K 2673 B&K 2610 DS 360 34401A 8903B 53132A	Serial No. 2412857 2743150 2346941 33873 US36087050 GB41300350 MY40003662	Expiry Date: 11-May-2021 03-Jun-2021 03-Jun-2021 19-May-2021 19-May-2021 18-May-2021	Traceable to: SCL CEPREI CEPREI CEPREI CEPREI CEPREI
Universal counter	53132A	MY40003662	18-May-2021	CEPREI

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity: Air pressure: 55 ± 10 % 1010 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B
 and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942: 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Approved Signatory:

Date:

07-Apr-2021

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long term stability of the instrument. The results apply to the item as received.

© Soils & Materials Engineering Co., Ltd

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

2

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

21CA0401 02

Page:

1, Measured Sound Pressure Level

> The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

> > (Output level in dB so 30 Da)

Frequency	Output Sound Pressure	Measured Output	Estimated Expanded
Shown	Level Setting	Sound Pressure Level	Uncertainty
Hz	dB	dB	dB
1000	94.00	94.23	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.016 dB

Estimated expanded uncertainty

0.005 dB

3, **Actual Output Frequency**

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 999.95 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

4, **Total Noise and Distortion**

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 0.3 %

Estimated expanded uncertainty

0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Fnd

Calibrated by:

Checked by:

Date:

05-Apr-2021

Date:

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005

APPENDIX F

EM&A Monitoring Schedules

Shatin to Central Link 1123 - CEDD Entrusted Work Road P2 & other roads and Slip Road 3 Tentative Impact Monitoring Schedule for August 2021

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Aug	2-Aug	3-Aug	4-Aug	5-Aug	6-Aug	7-Aug
	1-hour TSP			Noise	24-hour TSP	1-hour TSP
8-Aug	9-Aug	10-Aug	11-Aug	12-Aug	13-Aug	14-Aug
			Noise	24-hour TSP	1-hour TSP	
15-Aug	16-Aug	17-Aug	18-Aug	19-Aug	20-Aug	21-Aug
		Noise	24-hour TSP	1-hour TSP		
22-Aug	23-Aug	24-Aug	25-Aug	26-Aug	27-Aug	28-Aug
	Noise	24-hour TSP	1-hour TSP			
29-Aug	30-Aug	31-Aug				
	24-hour TSP Noise	1-hour TSP				

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station

CMA5b Pedestrian Plaza
CMA6a WDII PRE site office

Monitoring Frequency

24-hr TSP Once every 6 days

1-hr TSP 3 times every 6 days (as required in of complaints)

Noise Monitoring Station

M1a Footbridge for Ex-Harbour Road Sports Centre

Monitoring Frequency

Once per week

Shatin to Central Link 1123 - CEDD Entrusted Work Road P2 & other roads and Slip Road 3 Tentative Impact Monitoring Schedule for September 2021

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			1-Sep	2-Sep	3-Sep	4-Sep
						24-hour TSP
5-Sep	6-Sep	7-Sep	8-Sep	9-Sep	10-Sep	11-Sep
	1-hour TSP			Noise	24-hour TSP	1-hour TSP
12-Sep	13-Sep	14-Sep	15-Sep	16-Sep	17-Sep	18-Sep
			Noise	24-hour TSP	1-hour TSP	
19-Sep	20-Sep	21-Sep	22-Sep	23-Sep	24-Sep	25-Sep
		24-hour TSP Noise		1-hour TSP		
26-Sep	27-Sep	28-Sep	29-Sep	30-Sep		
	24-hour TSP Noise	1-hour TSP				

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Air Quality Monitoring Station

CMA5b Pedestrian Plaza
CMA6a WDII PRE site office

Monitoring Frequency

24-hr TSP Once every 6 days

1-hr TSP 3 times every 6 days (as required in of complaints)

Noise Monitoring Station

M1a Footbridge for Ex-Harbour Road Sports Centre

Monitoring Frequency

Once per week

Shatin to Central Link 1123 - CEDD Entrusted Work Road P2 & other roads and Slip Road 3 Tentative Impact Monitoring Schedule for October 2021

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Oct	2-Oct
						24-hour TSP
3-Oct	4-Oct	5-Oct	6-Oct	7-Oct	8-Oct	9-Oct
	1-hour TSP			Noise	24-hour TSP	[1] 1-hour TSP
10-Oct	11-Oct	12-Oct	13-Oct	14-Oct	15-Oct	16-Oct
			[2] 24-hour TSP Noise		1-hour TSP 24-hour TSP Noise	
17-Oct	18-Oct	19-Oct	20-Oct	21-Oct	22-Oct	23-Oct
		24-hour TSP	1-hour TSP	Noise		
24-Oct	25-Oct	26-Oct	27-Oct	28-Oct	29-Oct	30-Oct
	24-hour TSP Noise	1-hour TSP				24-hour TSP
31-Oct						

The schedule is subject to change due to unforeseeable circumstances (e.g. adverse weather, etc)

Remarks:

[1] Because of the adverse weather conditions of Tropical Cyclone Signal No.8 announced by HKO hoisted on 9/10/2021, the environmental monitoring was cancelled.

[2] Because of the adverse weather conditions of Tropical Cyclone Signal No.8 announced by HKO hoisted on 13/10/2021, the environmental monitoring was rescheduled to 15-Oct-2021.

Air Quality Monitoring Station

CMA5b Pedestrian Plaza
CMA6a WDII PRE site office

Noise Monitoring Station

M1a Footbridge for Ex-Harbour Road Sports Centre

Monitoring Frequency

24-hr TSP Once every 6 days

Monitoring Frequency

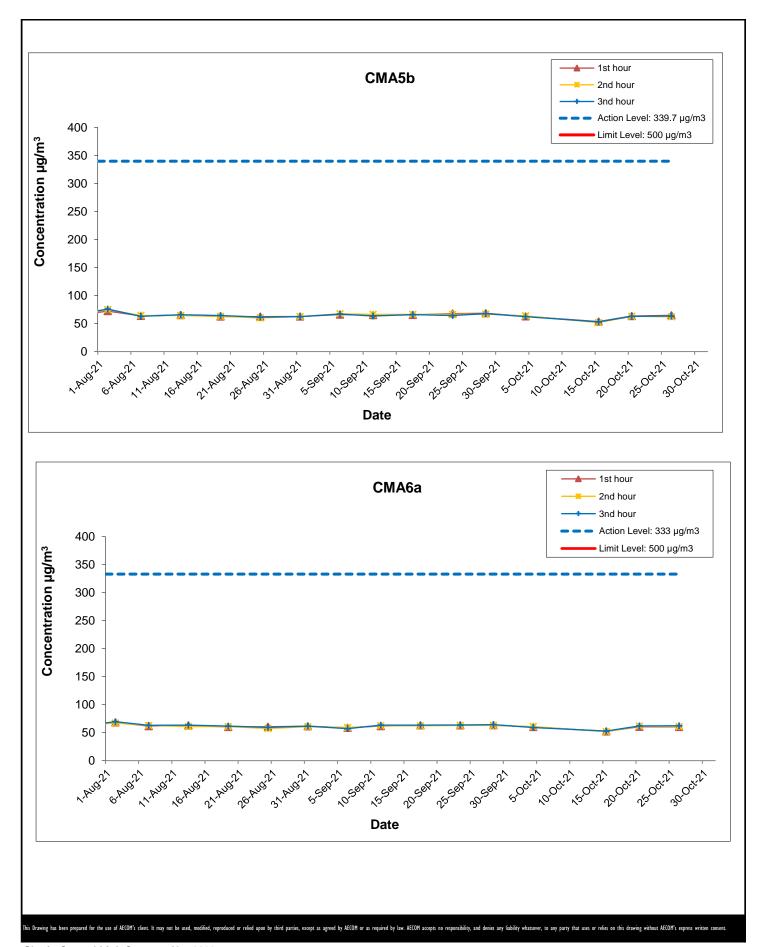
Once per week

1-hr TSP 3 times every 6 days (as required in of complaints)

APPENDIX G

Air Quality Monitoring Results and their Graphical Presentations

Appendix G
Air Quality Monitoring Results


1-hour TSP Monitoring Results at Station CMA5b (Pedestrian Plaza)

<u>1-hour TSP Monito</u>	oring Results a	t Station CMA5b (Ped	estrian Plaza)		
	Start		1st Hour	2nd Hour	3rd Hour
Date	Time	Weather	Conc.	Conc.	Conc.
	(hh:mm)	Condition	(µg/m³)	(µg/m³)	(µg/m³)
02-Aug-21	10:55	Sunny	72.2	74.9	75.8
07-Aug-21	10:35	Sunny	63.7	64.2	62.9
13-Aug-21	10:25	Fine	65.2	64.4	65.6
19-Aug-21	14:20	Rainy	62.7	63.0	64.2
25-Aug-21	10:30	Sunny	62.2	60.1	61.3
31-Aug-21	11:05	Fine	62.6	62.7	62.2
06-Sep-21	10:05	Sunny	65.9	67.4	66.8
11-Sep-21	14:35	Sunny	65.1	66.2	63.4
17-Sep-21	13:07	Sunny	65.3	66.3	66.0
23-Sep-21	13:35	Fine	67.6	66.2	64.3
28-Sep-21	10:35	Sunny	68.2	66.8	67.7
04-Oct-21	10:45	Sunny	63.0	63.8	62.2
15-Oct-21	14:00	Fine	53.4	51.7	53.0
20-Oct-21	11:20	Fine	63.3	62.9	63.0
26-Oct-21	10:15	Sunny	64.6	62.1	63.3
				Average	64.2
				Min	51.7
				Max	75.8

Appendix G Air Quality Monitoring Results

1-hour TSP Monitoring Results at Station CMA6a (WDII PRE Site Office)

	Start		1st Hour	2nd Hour	3rd Hour
Date	Time	Weather	Conc.	Conc.	Conc.
	(hh:mm)	Condition	(µg/m³)	(µg/m³)	(µg/m³)
02-Aug-21	10:40	Sunny	68.2	67.1	69.5
07-Aug-21	10:50	Sunny	61.7	62.8	63.1
13-Aug-21	10:40	Fine	62.7	60.9	63.3
19-Aug-21	14:30	Rainy	60.1	60.7	61.6
25-Aug-21	10:20	Sunny	60.6	57.4	59.5
31-Aug-21	11:20	Fine	61.5	60.6	61.8
06-Sep-21	10:40	Sunny	58.7	59.2	57.0
11-Sep-21	14:50	Sunny	61.8	62.2	63.4
17-Sep-21	10:30	Sunny	63.1	62.2	63.5
23-Sep-21	13:50	Fine	63.1	62.9	63.7
28-Sep-21	10:45	Sunny	63.5	62.7	64.3
04-Oct-21	10:30	Sunny	60.1	60.9	59.1
15-Oct-21	15:30	Fine	52.1	51.6	52.7
20-Oct-21	11:35	Fine	60.6	61.8	62.0
26-Oct-21	10:00	Sunny	60.2	60.9	62.2
				Average	61.3
				Min	51.6
				Max	69.5

Shatin Central Link Contract No. 1123 Entrusted Work for Road P2 & other roads and Slip Road 3

Date: February 2022 Appendix G

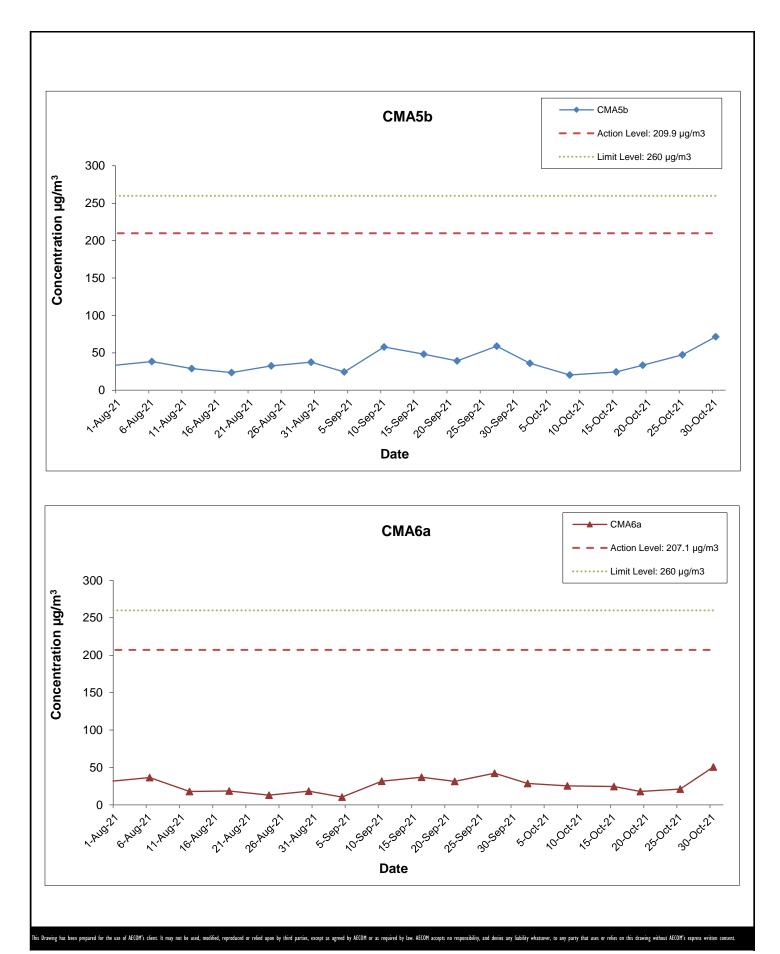
Appendix G Air Quality Monitoring Results

24-hour TSP Monitoring Results at Station CMA5b (Pedestrain Plaza)

Start		End		Weather Air		Atmospheric	Flow Rate (m ³ /min.)		Av. flow	Total vol.	Filter Weight (g)		Particulate	Elapse Time		Sampling	Conc.
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure (hPa)	Initial	Final	(m³/min)	(m³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
06-Aug-21	0:00	07-Aug-21	0:00	Sunny	28.6	998.0	1.34	1.34	1.34	1928.2	2.6728	2.7470	0.0742	27071.01	27095.01	24.00	38.5
12-Aug-21	0:00	13-Aug-21	0:00	Sunny	29.0	1008.9	1.34	1.34	1.34	1928.2	2.6848	2.7407	0.0559	27095.01	27119.01	24.00	29.0
18-Aug-21	0:00	19-Aug-21	0:00	Sunny	29.5	1008.2	1.34	1.34	1.34	1928.2	2.6725	2.7180	0.0455	27119.01	27143.01	24.00	23.6
24-Aug-21	0:00	25-Aug-21	0:00	Cloudy	29.6	1007.7	1.34	1.34	1.34	1928.2	2.6934	2.7561	0.0627	27143.01	27167.01	24.00	32.5
30-Aug-21	0:00	31-Aug-21	0:00	Fine	29.1	1011.4	1.34	1.34	1.34	1928.2	2.6752	2.7475	0.0723	27167.01	27191.01	24.00	37.5
04-Sep-21	0:00	05-Sep-21	0:00	Sunny	29.8	1008.3	1.34	1.34	1.34	1928.2	2.6699	2.7172	0.0473	27335.01	27359.01	24.00	24.5
10-Sep-21	0:00	11-Sep-21	0:00	Fine	30.5	1008.3	1.34	1.34	1.34	1928.2	2.6824	2.7940	0.1116	27359.01	27383.01	24.00	57.9
16-Sep-21	0:00	17-Sep-21	0:00	Fine	29.2	1009.4	1.34	1.34	1.34	1928.2	2.6860	2.7791	0.0931	27383.01	27407.01	24.00	48.3
21-Sep-21	0:00	22-Sep-21	0:00	Sunny	29.0	1009.5	1.34	1.34	1.34	1928.2	2.6897	2.7654	0.0757	27407.01	27431.01	24.00	39.3
27-Sep-21	0:00	28-Sep-21	0:00	Sunny	29.5	1010.8	1.34	1.34	1.34	1928.2	2.6855	2.7990	0.1135	27431.01	27455.01	24.00	58.9
02-Oct-21	0:00	03-Oct-21	0:00	Fine	30.0	1011.0	1.34	1.34	1.34	1928.2	2.6570	2.7265	0.0695	27455.01	27479.01	24.00	36.0
08-Oct-21	0:00	09-Oct-21	0:00	Rainy	25.5	1004.6	1.34	1.34	1.34	1928.2	2.6733	2.7126	0.0393	27479.01	27503.01	24.00	20.4
15-Oct-21	0:00	16-Oct-21	0:00	Cloudy	26.2	1010.4	1.33	1.33	1.33	1921.0	2.6592	2.7063	0.0471	27503.01	27527.01	24.00	24.5
19-Oct-21	0:00	20-Oct-21	0:00	Fine	28.9	1017.8	1.34	1.34	1.34	1928.2	2.6708	2.7355	0.0647	27527.01	27551.01	24.00	33.6
25-Oct-21	0:00	26-Oct-21	0:00	Fine	27.5	1016.6	1.34	1.34	1.34	1928.2	2.6574	2.7489	0.0915	27551.01	27575.01	24.00	47.5
30-Oct-21	0:00	31-Oct-21	0:00	Fine	26.2	1018.8	1.34	1.34	1.34	1928.2	2.6660	2.8041	0.1381	27575.01	27599.01	24.00	71.6
•														-		Average	39.0
																Minimum	20.4

71.6

Maximum

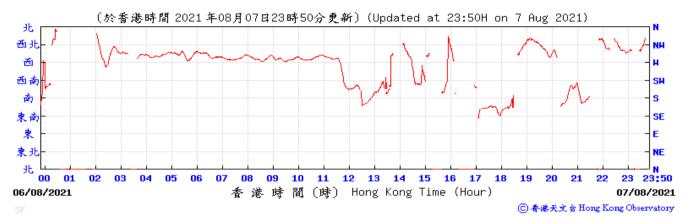

Appendix G Air Quality Monitoring Results

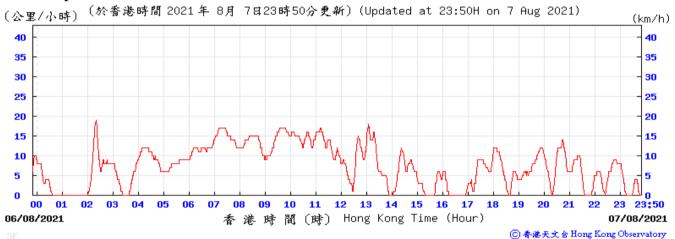
24-hour TSP Monitoring Results at Station CMA6a (WDII PRE site office)

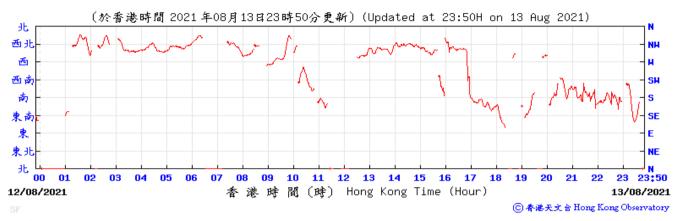
Start		End		Weather	Air	Atmospheric	Flow Rate (m³/min.)		Av. flow	Total vol.	Filter Weight (g)		Particulate	Elapse Time		Sampling	Conc.
Date	Time	Date	Time	Condition	Temp. (°C)	Pressure (hPa)	Initial	Final	(m³/min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
06-Aug-21	0:00	07-Aug-21	0:00	Sunny	28.6	998.0	1.33	1.33	1.33	1921.0	2.6732	2.7432	0.0700	9816.39	9840.39	24.00	36.4
12-Aug-21	0:00	13-Aug-21	0:00	Sunny	29.0	1008.9	1.33	1.33	1.33	1921.0	2.6707	2.7052	0.0345	9840.39	9864.39	24.00	18.0
18-Aug-21	0:00	19-Aug-21	0:00	Sunny	29.5	1008.2	1.33	1.33	1.33	1921.0	2.6900	2.7255	0.0355	9864.39	9888.39	24.00	18.5
24-Aug-21	0:00	25-Aug-21	0:00	Cloudy	29.6	1007.7	1.33	1.33	1.33	1921.0	2.6729	2.6978	0.0249	9888.39	9912.39	24.00	13.0
30-Aug-21	0:00	31-Aug-21	0:00	Fine	29.1	1011.4	1.33	1.33	1.33	1921.0	2.6739	2.7092	0.0353	9912.39	9936.39	24.00	18.4
04-Sep-21	0:00	05-Sep-21	0:00	Sunny	29.8	1008.3	1.33	1.33	1.33	1921.0	2.6794	2.6992	0.0198	10080.39	10104.39	24.00	10.3
10-Sep-21	0:00	11-Sep-21	0:00	Fine	30.5	1008.3	1.33	1.33	1.33	1921.0	2.6741	2.7346	0.0605	10104.39	10128.39	24.00	31.5
16-Sep-21	0:00	17-Sep-21	0:00	Fine	29.2	1009.4	1.33	1.33	1.33	1921.0	2.6795	2.7504	0.0709	10128.39	10152.39	24.00	36.9
21-Sep-21	0:00	22-Sep-21	0:00	Sunny	29.0	1009.5	1.33	1.33	1.33	1921.0	2.6995	2.7596	0.0601	10152.39	10176.39	24.00	31.3
27-Sep-21	0:00	28-Sep-21	0:00	Sunny	29.5	1010.8	1.33	1.33	1.33	1921.0	2.6957	2.7767	0.0810	10176.39	10200.39	24.00	42.2
02-Oct-21	0:00	03-Oct-21	0:00	Fine	30.0	1011.0	1.33	1.33	1.33	1921.0	2.6635	2.7184	0.0549	10200.39	10224.39	24.00	28.6
08-Oct-21	0:00	09-Oct-21	0:00	Rainy	25.5	1004.6	1.33	1.33	1.33	1921.0	2.6283	2.6771	0.0488	10224.39	10248.39	24.00	25.4
15-Oct-21	0:00	16-Oct-21	0:00	Cloudy	26.2	1010.4	1.33	1.33	1.33	1921.0	2.6592	2.7063	0.0471	10248.39	10272.39	24.00	24.5
19-Oct-21	0:00	20-Oct-21	0:00	Fine	28.9	1017.8	1.33	1.33	1.33	1921.0	2.6464	2.6809	0.0345	10272.39	10296.39	24.00	18.0
25-Oct-21	0:00	26-Oct-21	0:00	Fine	27.5	1016.6	1.33	1.33	1.33	1921.0	2.6623	2.7030	0.0407	10296.39	10320.39	24.00	21.2
30-Oct-21	0:00	31-Oct-21	0:00	Fine	26.2	1018.8	1.33	1.33	1.33	1921.0	2.6922	2.7893	0.0971	10320.39	10344.39	24.00	50.5
																Average	26.5
																Minimum	10.3

50.5

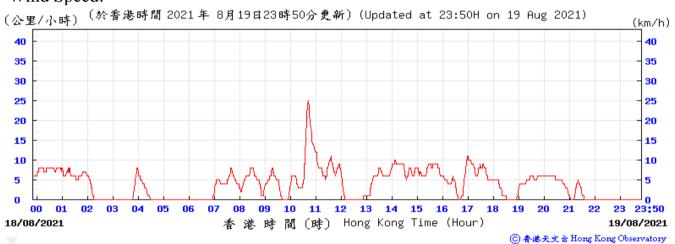
Maximum

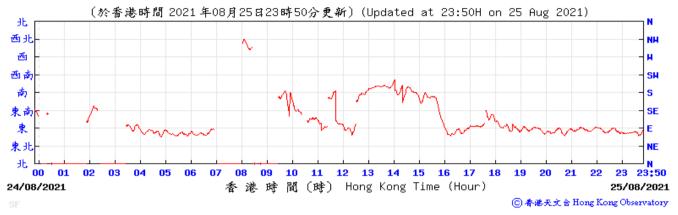



Shatin Central Link Contract No. 1123 Entrusted Work for Road P2 & other roads and Slip Road 3

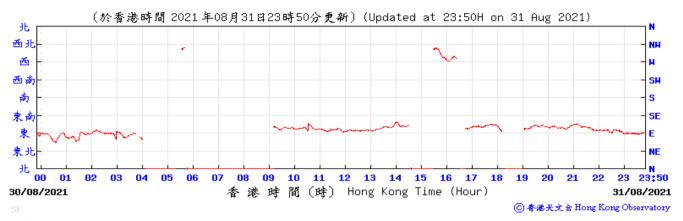

Date: February 2022 Appendix G


Wind Direction:

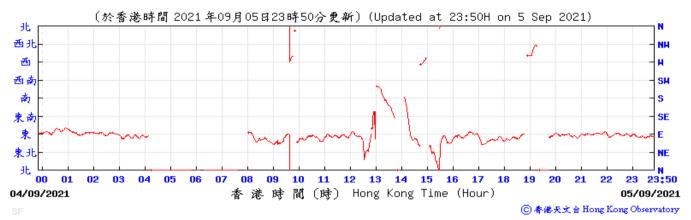

Wind Direction:



Wind Direction:

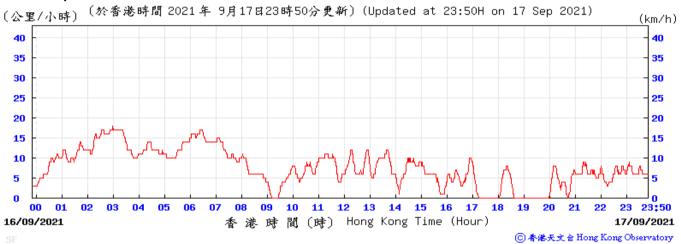


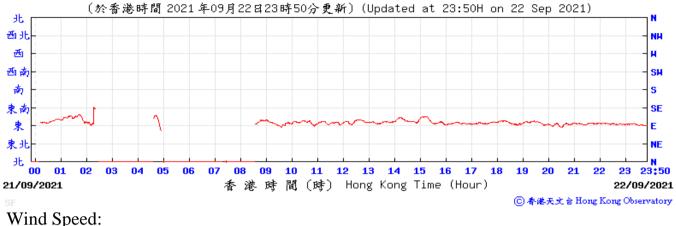
Wind Direction:



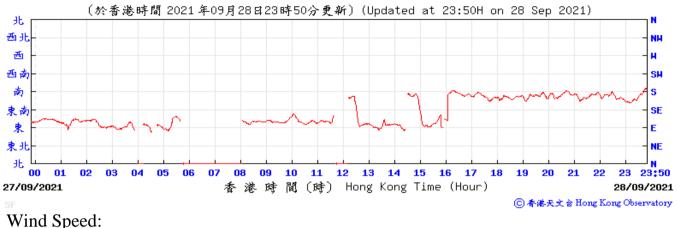
Wind Direction:

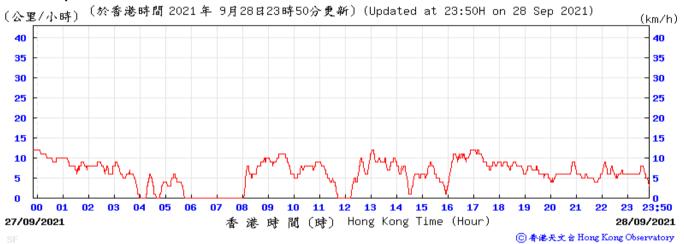
Wind Direction:

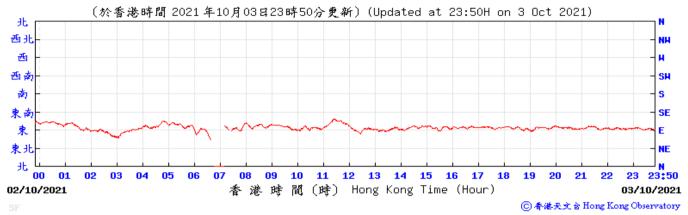

Wind Direction:

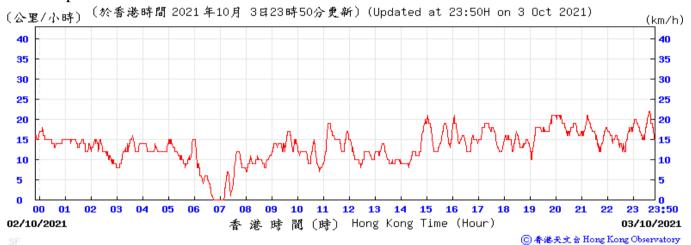


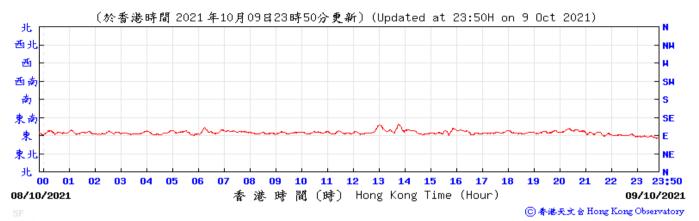
Wind Direction:

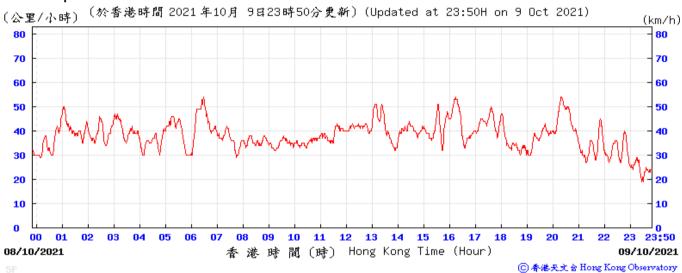


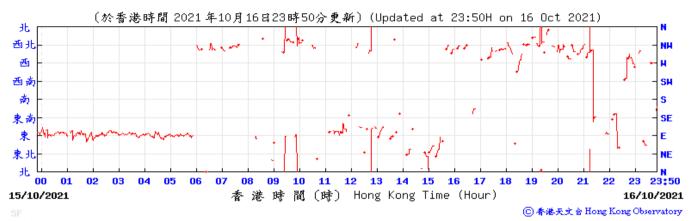

Wind Direction:

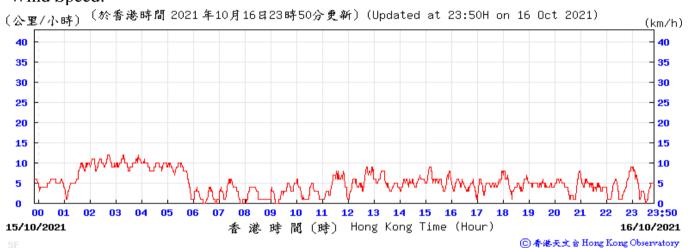


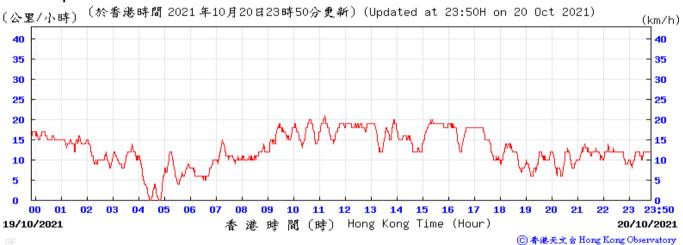

Wind Direction:

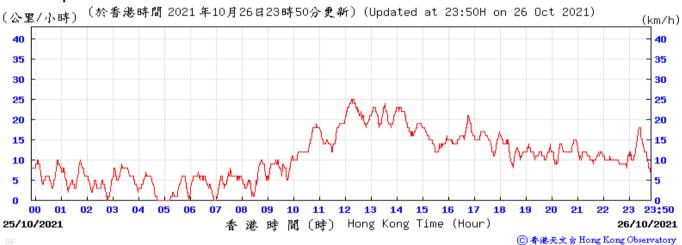


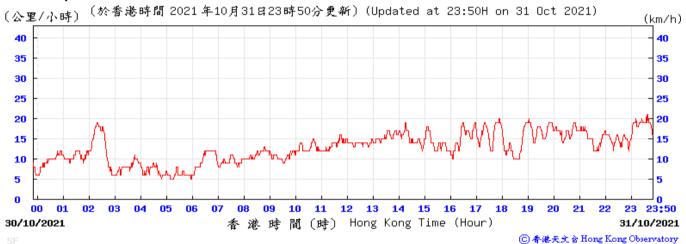

Wind Direction:




Wind Direction:

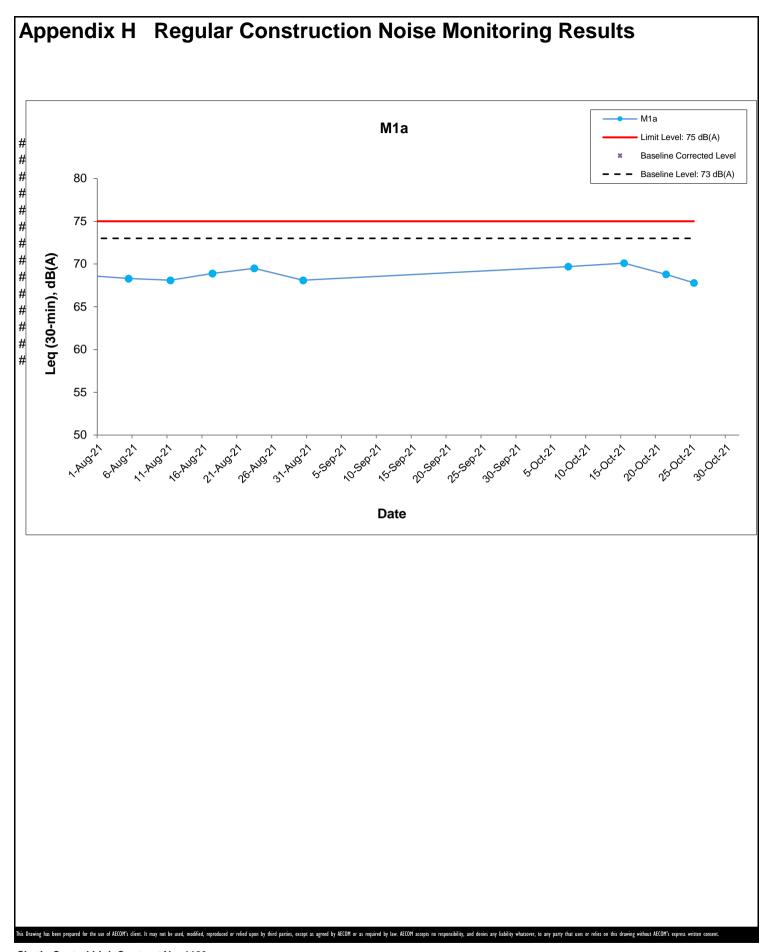

Wind Direction:


Wind Direction:


Wind Direction:

Wind Direction:

APPENDIX H


Noise Monitoring Results and their Graphical Presentations

Appendix H Regular Construction Noise Monitoring Results

Daytime Noise Monitoring Results at Station M1a (Footbridge for Ex-Harbour Road Sport Centre)

Date	Weather Condition	Nois	e Level foi	30-min, c	IB(A) ⁺	Baseline Corrected	Baseline Noise	Limit Level,	Exceedance
		Time	L90	L10	Leq	Level, dB(A)	Level, dB(A)	dB(A)	(Y/N)
5-Aug-21	Fine	14:10	66.0	69.8	68.3	<baseline< td=""><td>73.0</td><td>75</td><td>N</td></baseline<>	73.0	75	N
11-Aug-21	Sunny	11:15	65.3	69.6	68.1	<baseline< td=""><td>73.0</td><td>75</td><td>N</td></baseline<>	73.0	75	N
17-Aug-21	Sunny	13:35	66.2	70.5	68.9	<baseline< td=""><td>73.0</td><td>75</td><td>N</td></baseline<>	73.0	75	N
23-Aug-21	Fine	10:50	66.9	71.1	69.5	<baseline< td=""><td>73.0</td><td>75</td><td>N</td></baseline<>	73.0	75	N
30-Aug-21	Cloudy	13:50	66.0	69.8	68.1	<baseline< td=""><td>73.0</td><td>75</td><td>N</td></baseline<>	73.0	75	N
5-Aug-21	Fine	14:10	66.0	69.8	68.3	<baseline< td=""><td>73.0</td><td>75</td><td>N</td></baseline<>	73.0	75	N
11-Aug-21	Sunny	11:15	65.3	69.6	68.1	<baseline< td=""><td>73.0</td><td>75</td><td>N</td></baseline<>	73.0	75	N
17-Aug-21	Sunny	13:35	66.2	70.5	68.9	<baseline< td=""><td>73.0</td><td>75</td><td>N</td></baseline<>	73.0	75	N
23-Aug-21	Fine	10:50	66.9	71.1	69.5	<baseline< td=""><td>73.0</td><td>75</td><td>N</td></baseline<>	73.0	75	N
30-Aug-21	Cloudy	13:50	66.0	69.8	68.1	<baseline< td=""><td>73.0</td><td>75</td><td>N</td></baseline<>	73.0	75	N
7-Oct-21	Fine	10:45	65.8	71.1	69.7	<baseline< td=""><td>73.0</td><td>75</td><td>N</td></baseline<>	73.0	75	N
15-Oct-21	Fine	15:40	68.2	71.4	70.1	<baseline< td=""><td>73.0</td><td>75</td><td>N</td></baseline<>	73.0	75	N
21-Oct-21	Sunny	11:15	66.1	69.7	68.8	<baseline< td=""><td>73.0</td><td>75</td><td>N</td></baseline<>	73.0	75	N
25-Oct-21	Sunny	11:00	65.2	69.0	67.8	<baseline< td=""><td>73.0</td><td>75</td><td>N</td></baseline<>	73.0	75	N

⁺ - Façade measurement

Shatin Central Link Contract No. 1123 Entrusted Work for Road P2 & other roads and Slip Road 3

Date: March 2022 Appendix H

APPENDIX I

Event Action Plan

Appendix I Event Action Plan

Event / Action Plan for Construction Dust Monitoring

EVENT	ACTION									
EVENT	ET	IEC	ER	Contractor						
ACTION LEVEL										
Exceedance for one sample	Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily.	 Check monitoring data submitted by ET; Check Contractor's working method. 	Notify Contractor.	Identify source(s), investigate the causes of exceedance and propose remedial measures; Implement remedial measures; Amend working methods agreed with the ER as appropriate.						
Exceedance for two or more consecutive samples	 Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; If exceedance stops, cease additional monitoring. 	 Checking monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented.	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 						

Appendix I Event Action Plan

Appendix I	Event Action Plan									
EVENT	ACTION									
EVENT	ET	IEC	ER	Contractor						
LIMIT LEVEL										
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Checking monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 						
Exceedance for two or more consecutive samples	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures.	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated. 						

Appendix I Event Action Plan

Event and Action Plan for Construction Noise Monitoring

EVENT	ACTION									
EVENI	ET	IEC	ER	Contractor						
Exceedance of Action Level	 Notify ER, IEC and Contractor; Carry out investigation; Report the results of investigation to the IEC, ER and Contractor; Discuss with the IEC and Contractor on remedial measures required; Increase monitoring frequency to check mitigation effectiveness. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Review the investigation results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Advise the ER on the effectiveness of the proposed remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified) 	Submit noise mitigation proposals to IEC and ER; Implement noise mitigation proposals. (The above actions should be taken within 2 working days after the exceedance is identified)						
Exceedance of Limit Level	 Inform IEC, ER, Contractor and EPD; Repeat measurements to confirm findings; Increase monitoring frequency; Identify source and investigate the cause of exceedance; Carry out analysis of Contractor's working procedures; Discuss with the IEC, Contractor and ER on remedial measures required; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. (The above actions should be taken within 2 working days after the exceedance is identified) 	1. Discuss amongst ER, ET, and Contractor on the potential remedial actions; 2. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly. (The above actions should be taken within 2 working days after the exceedance is identified)	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; Supervise the implementation of remedial measures; If exceedance continues, consider stopping the Contractor to continue working on that portion of work which causes the exceedance until the exceedance is abated. (The above actions should be taken within 2 working days after the exceedance is identified) 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC and ER within 3 working days of notification; Implement the agreed proposals; Submit further proposal if problem still not under control; Stop the relevant portion of works as instructed by the ER until the exceedance is abated. (The above actions should be taken within 2 working days after the exceedance is identified) 						

APPENDIX J

Cumulative Statistics of Exceedances, Complaints, Notification of Summons and Successful Prosecutions

Appendix H

Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

	Date Received	Subject	Status	Total no. received in this month	Total no. received since project commencement
Environmental complaints	-	-	-	0	0
Notification of summons	-	-	-	0	0
Successful Prosecutions	-	-	-	0	0

APPENDIX K

Waste Flow Table

MONTHLY SUMMARY WASTE FLOW TABLE

Contract No.: SCL 1123 - CEDD Entrusted Work for Road P2 & other roads and Slip Road 3

Reporting Month: August to October 2021

Monthly Summary Waste Flow Table for 2021

	Actual Quantities of Inert C&D Materials Generated Monthly						Actual Quantities of C&D Wastes Generated Monthly				Actual Quantities of Marine Dumping Monthly		
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in Other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper / Cardboard Packaging	Plastics	Chemical Waste	Others, e.g. general refuse	Type 1	Type 2
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)	(in '000m ³)	(in '000m ³)
Jan	0.958	0.000	0.000	0.000	0.958	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Feb	0.598	0.000	0.000	0.000	0.598	0.051	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mar	0.700	0.000	0.000	0.000	0.700	0.097	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Apr	0.741	0.000	0.000	0.000	0.741	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Мау	0.176	0.000	0.000	0.000	0.176	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Jun	0.070	0.000	0.000	0.000	0.070	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
July	0.315	0.000	0.000	0.000	0.315	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000
August	0.525	0.000	0.000	0.000	0.525	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
September	0.112	0.000	0.000	0.000	0.112	0.000	0.000	0.000	0.000	0.000	0.011	0.000	0.000
October	0.272	0.000	0.000	0.000	0.272	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
November													
December													
Total	4.467	0.000	0.000	0.000	3.558	0.148	0.000	0.000	0.000	0.000	0.001	0.000	0.000
Total (Reporting Months)	0.909	0.000	0.000	0.000	0.909	0.000	0.000	0.000	0.000	0.000	0.011	0.000	0.000