

ENVIRONMENTAL MONITORING AND AUDIT REPORT

FOR

CONTRACT No. CV/2002/13

FILL BANK AT TUEN MUN AREA 38

SEPTEMBER 2004

(Revision No. 0)

Report No.: ET12300

Certified by:

Mr. Chris Shenfield

Environmental Team Leader for Stanger Asia Limited

Verified by:

Mr. Joseph T. L. Poon

Independent Environmental Checker for MateriaLab Consultants Ltd.

Date: 12/10/2004

Date: 13/10/04

CONTENTS

		Page
EXE	CCUTIVE SUMMARY	1
1.	INTRODUCTION	
1.1	Background	4
1.2	Report Structure	4
		•
2.	PROJECT INFORMATION	
2.1	Site Description	5
2.2	Project Organization	5
2.3	Construction Programme	5
3.	ENVIRONMENTAL PERMITS AND LICENSES	6
4.	SUMMARY OF EM&A REQUIREMENTS	
4.1	Air Quality	6
4.2	Water Quality	8
4.3	Event and Action Plan	10
5.	IMPLEMENTATION STATUS OF ENVIRONMENTAL	
	MITIGATION MEASURES	10
6.	MONITORING RESULTS	
6.1	Completed Monitoring Works	11
6.2	Air Quality Monitoring	12
6.3	Water Quality Monitoring	13
7.	AUDIT REPORT	
7.1	Air Quality Monitoring	13
7.2	Water Quality Monitoring	13
7.3	Site Inspections	14
7.4	Landscape and Visual	15
0	WASTE MANAGEMENT	1.5
8.	WASIE MANAGEMENI	15
9.	COMPLAINTS, NOTIFICATIONS OF SUMMONS AND	
	SUCCESSFUL PROSECUTIONS	15
10.	FUTURE KEY ISSUES	15
11.	CONCLUSION	16
LIST	Γ OF FIGURES	
2.1	The Site Layout Plan	
4.1	Air Quality Monitoring Stations	
4.2	Water Quality Monitoring Stations	

LIST OF FIGURES (Continued)

- 6.1 Graphical Plot for 24-hour TSP Levels
- 6.2 Graphical Plot for 1-hour TSP Levels
- 6.3 Graphical Plot for Surface and Middle Averaged Dissolved Oxygen Mid Flood Tide
- 6.4 Graphical Plot for Surface and Middle Averaged Dissolved Oxygen Mid Ebb Tide
- 6.5 Graphical Plot for Bottom Dissolved Oxygen Mid Flood Tide
- 6.6 Graphical Plot for Bottom Dissolved Oxygen Mid Ebb Tide
- 6.7 Graphical Plot for Turbidity Mid Flood Tide
- 6.8 Graphical Plot for Turbidity Mid Ebb Tide
- 6.9 Graphical Plot for Suspended Solids Mid Flood Tide
- 6.10 Graphical Plot for Suspended Solids Mid Ebb Tide

TABLES

Гable 3.1	Summary of the Environmental Permits and Licenses
Γable 4.1	Co-ordinates of Air Quality Monitoring Stations
Γable 4.2	Air Quality Monitoring Frequency
Γable 4.3	Action and Limit Levels for the project
Гable 4.4	Water Quality Monitoring Frequency
Γable 4.5	Action and Limit Level for Water Quality
Гable 6.1	Completed Monitoring Works for September 2004
Γable 6.2	Results of 24-hour TSP Monitoring
Γable 6.3	Results of 1-hour TSP Monitoring
Гable 6.4	Summary of Water Quality Monitoring Data
Гable 7.1	Summary of Findings, Actions and Outcomes of Site Inspection by ET
Γable 7.2	Summary of Findings, Actions and Outcomes of Site Inspection by IEC
Гable 10.1	Works Programme for October 2004

APPENDICES

- I Organization Chart
- II Calibration Certificates of the Monitoring Equipment
- III Event and Action Plans
- IV Implementation Status of Mitigation Measures
- V Air Quality Monitoring Results
- VI Water Quality Monitoring Results
- VII Complaint Log
- VIII Cumulative Statistics on Complaints, Notifications of Summonses and Successful Prosecutions
- IX Master Construction Programme
- X Monitoring Schedule for the following month
- XI Wind Speed and Direction Data

EXECUTIVE SUMMARY.

This is the 15th monthly Environmental Monitoring and Audit (EM&A) report for Contract No. CV/2002/13 – Fill Bank at Tuen Mun Area 38. The site has been in operation as a public filling area as part of the reclamation. The site is 24 hours operated except during the Chinese New Year holidays to provide a stable outlet for public fill to serve the construction industry. This report covers the monitoring works conducted during the month of September 2004.

Construction Activities for the Reported Period.

- Public fill operation.
- Operation of tipping hall.
- Installation of CCTV system.

Air Quality Monitoring.

Two stations (A1 and A2) have been identified as the locations for the monitoring of 24-hour and 1-hour Total Suspended Particulates (TSP). In this reporting period, the monitoring of 24-hour TSP was carried out on five occasions at A1 and on six occasions at A2. Monitoring of 1-hour TSP was carried out on fifteen occasions at A1 and on eighteen occasions at A2. The monitoring session on 01.09.2004 at A2 was a make-up. There was no exceedance to the set action or limit levels for both parameters at both stations.

Water Quality Monitoring.

Water quality in terms of turbidity, dissolved oxygen, suspended solids, temperature, and salinity, was carried out on thirteen occasions during flood tide and ebb tide at FM1, FM2, FC1 and FC2 in this reporting period. There was no exceedance to the set action or limit level for all parameters at all stations.

Landscape Audit.

There was no specific site observation regarding the landscape aspect during the reporting period.

Waste Management.

154,000m³ public fill was collected to the Fill Bank. 28.29t C&D waste and general refuse were disposed of at WENT Landfill. Chemical waste generated was stored in temporary chemical waste storage area. No chemical waste was disposed of in this reporting period.

Complaints and Notifications of Summonses and Successful Prosecutions.

No complaints or notification of summonses was received in this reporting period.

Site Inspections.

Five weekly site inspections were conducted on 3rd, 9th, 15th, 21st and 28th September 2004. Major observations are summarised in the following table.

Observations	Actions by Contractor	Outcome
Drainage channels near the recycling plant were filled with deposit. (03.09.2004)	Clean up the deposit regularly.	Contractor carries out regular cleaning to drainage channels.
Access road exiting from wheel wash bay was muddy. (03.09.2004)	Clean up that area regularly.	Situation improved. (09.09.2004)
The automatic wheel washing facility was not functioning. (03, 09, 15, 28.09.2004) Sedimentation tanks were filled with deposit. (09, 21, 28.09.2004)	Repaired the facility and increased frequency of road sweeping to keep the public highways free of mud. Clean up the sedimentation tanks.	The facility was operated occasionally. Road sweeper was operated to keep the public highways clean. To be observed.
Dust generation from site traffic on dry haul roads. (15, 21.09.2004)	Increased the frequency of water spraying.	Frequency of water spraying increased, situation improved. (28.09.2004)
Splashing of fill materials into the sea. (21.09.2004)	Raise nets and repair sheeting to retain materials.	To be observed.

An Independent Environmental Checker (IEC) audit was conducted on 21st September 2004 with the Environmental Team. Major observations are summarized in the following table.

Observations	Actions by Contractor	Outcome
Splashing generated during the transfer of wet soil to the barge at the tipping hall caused splashing into the sea.	Raise nets and repair sheeting to retain materials.	To be observed.
Heavy dust emission was observed from traffic on haul roads.	Increased the frequency of water spraying.	Frequency of water spraying increased, situation improved. (28.09.2004)
Litter was observed in the sea near the barging point and the fill bank.	Clean up the litter regularly.	Situation rectified. (28.09.2004)
The western side of the fill bank was only partially hydroseeded.	To arrange hydroseeding on that portion upon slope trimming works completed.	To be observed after slope trimming works completed.
Stagnant water and pondings were observed in various locations.	Drain away stagnant water regularly.	Contractor drains away stagnant water on regular basis.

Future Key Issues.

The tentative works activities, predicted impacts and areas of environmental concern for the following month are summarised in the following table.

Works Activities	Predicted Impacts	Proposed Mitigation Measures
Public filling	- Dust	- Dampening of fill materials and exposed area.
operation.	- Water	- Avoid stockpiling fill materials near seafront.
		- Avoid spillage of fill materials into the marine
		water.
Operation of tipping	- Dust	- The tipping halls shall be top and 3-sides
hall for unloading	- Water	enclosed.
public fill into		- Avoid spillage of fill materials into the marine
barges.		water.
Construction of	- Dust	- Apply water spray during excavation and earth
drainage system.	- Noise	moving.
	- Water	- Comply with the conditions of construction
		noise permit.
		- Treat all wastewater to acceptable prior to
		discharge.

1. INTRODUCTION.

1.1 Background.

Stanger Asia Ltd. has been commissioned by the Penta-Ocean Construction Co. Ltd. to provide an Environmental Team (ET) to monitor air and water quality and audit landscape works for Contract No.CV/2002/13. The team is to take a pro-active role in all issues, which may be of environmental concern during the establishment, operation and decommissioning phases of the Fill Bank at Tuen Mun Area 38.

The Independent Environmental Checker (IEC) appointed for this project is Materialab Consultants Ltd.

In this report, the air and water quality monitoring works and landscape audit conducted for the September 2004 will be detailed and reviewed. All monitoring works were carried out in accordance to "Agreement No, PW 01/2002 Project Profile for Fill Bank at Tuen Mun Area 38, Environmental Monitoring and Audit Manual".

1.2 Report Structure.

The purpose of this report is to detail and review the air and water quality monitoring works and landscape audit undertaken during September 2004. The impact forecast for the next reporting month and the schedules of monitoring works for the following month is also given.

The report follows the format given below:

Section 1	Introduction and background information to the content of this		
Section 2	report. This section gives the information of the project.		
Section 3	This section summarises all the environmental permits and		
	licenses.		
Section 4	Summary of the EM&A requirements is presented.		
Section 5	This section details the implemented mitigation measures.		
Section 6	Details monitoring results.		
Section 7	Audit the monitoring results.		
Section 8	The status for solid and liquid waste management for the site is overviewed.		
Section 9	Complaints, notifications of summons and successful prosecutions are summarized.		
Section 10	This section gives the predicted impacts of the construction		
Section 10	activities.		
Section 11	This section gives a conclusion in relation to all monitoring activities.		

2. PROJECT INFORMATION.

2.1 Site Description.

The works mainly comprise the construction of temporary storm water system, setting up of C&D material loading/unloading facilities, setting up/ refurnishing site facilities, stockpiling of 4.9 million m³ of public fill, and decommissioning of the temporary fill bank.

The site layout plan is shown in Figure 2.1.

2.2 Project Organization.

Mr. L.M. Chan is the Engineer's Representative for the Civil Engineering and Development Department, Government of the HKSAR. (Tel: 2762 5602, Fax: 2714 0113).

The Independent Environmental Checker (IEC) for this project is headed by Mr. Joseph Poon - Manager of Materialab Consultants Ltd. (Tel: 2450 8238, Fax: 2450 6138).

Mr. Lok Wah Fung is the Site Agent for Penta-Ocean Construction Co., Ltd. (Tel: 2491 1584, Fax: 2496 0433).

The Environmental Team (ET) for the project is Stanger Asia Ltd. The team is headed by Mr Chris Shenfield – Senior Environmental Scientist. (Tel: 2682 1203, Fax: 2682 0046).

The Organization Chart with the key personnel contacts names and telephone numbers is given in Appendix I.

2.3 Construction Programme.

The overall construction programme is given in Appendix IX. Details of the construction activities are listed below.

- Site clearance;
- Construction of storm water drainage system;
- Stockpiling of 4.9 million m³ of public fill;
- Construction of landscape works; and
- Removal of stockpiled public fill.

3. ENVIRONMENTAL PERMITS AND LICENSES.

The summary of the status of all environmental permits, licenses and notification for this project as at September 2004 is summarized in the following table.

Table 3.1 Summary of the Environmental Permits and Licenses

Description	Licence/Permit	Date of	Date of	Status
	No.	Issue	Expiry	
Environmental Permit	EP-153/2003	13-Feb-03		Superseded
Registration of Chemical	WPN5296-421-	05-Aug-03		Issued
Waste Producer	P2800-03			
Amended	EP-153/2003/A	30-Oct-03		Issued
Environmental Permit				
Construction Noise	GW-TW0143-04	15-May-04	14-Nov-04	Issued
Permit				

4. SUMMARY OF EM&A REQUIREMENTS.

4.1 Air Quality.

Monitoring Location.

The project has two designated locations (A1 & A2) for the monitoring of air quality. A1 is a fixed location in the vicinity of the site office to monitor the TSP levels at River Trade Terminal and A2 is a movable location to the western boundary of the site that is designed to move as works progress. The air monitoring locations are shown in Figure 4.1.

Table 4.1 Coordinates of Air Quality Monitoring Stations

Station	HK Metric Grid – Easting	HK Metric Grid - Northing
A1	811368	825593
A2	810812*	825096*

^{* -} Coordinates of present location.

Methodology

Measurement of 24-hour and 1-hour TSP levels were carried out in accordance to the high volume sampling method as set out in the Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50). When positioning the high volume samplers, the following requirements have been observed:

- a horizontal platform with appropriate support to secure the high volume sampler against gusty wind, should be provided;
- horizontal distance between the high volume samplers and an obstacle, such as buildings, must be at least twice the height of the obstacle protruding above the high volume samplers;
- a minimum separation of 2 m should be provided from walls, parapets, and penthouses for rooftop high volume samplers;

- a minimum separation of 2 m should be provided from any supporting structure measured horizontally;
- there should not be any furnace or incinerator flues nearby;
- there should be unrestricted airflow around the high volume samplers;
- a minimum separation of 20 m should be provided from the dripline;
- any wire fence and gate employed to protect the high volume samplers should not cause any obstruction during monitoring.

All relevant data including temperature, pressure, weather conditions, elapsed-timer meter reading for the start and finish of the sampling period, identification and weight of the filter paper, and other special phenomena were recorded.

Monitoring Equipment and Calibration Details.

Andersen GMW Model GS2310 high volume samplers were used to carry out the monitoring of 24-hour and 1-hour TSP. The high volume sampler is in compliance with the specifications as listed in the Environmental Schedule, given below:

- $0.6 1.7 \text{ m}^3/\text{min}$ (20-60 SCFM) adjustable flow range;
- equipped with a timing / control device with 5 minutes accuracy over 24 hours operations;
- installed with elapsed-time meter with 2 minutes accuracy over 24 hours operations;
- capable of providing a minimum exposed area of 406 cm² (63 in²);
- flow control accuracy: 2.5% deviation over 24-hr sampling period;
- equipped with shelter to protect the filter and sampler;
- incorporated with an electronic mass flow rate controller or other equivalent devices;
- equipped with a flow recorder for continuous monitoring;
- provided with peaked roof inlet, incorporated with manometer;
- able to hold and seal the filter paper to the sampler housing at horizontal position;
- easy to change filter; and
- capable of operating continuously for 24-hr period.

The high volume sampler is calibrated at bi-monthly intervals. The calibration kit (Andersen Model G2535) comprising pressure plates and a transfer standard is traceable to the internationally recognized standard. Calibration records for the high volume sampler is given in Appendix II of this report.

Laboratory Measurement.

Laboratory measurements were carried out in Stanger Asia Ltd. own HOKLAS accredited laboratory with constant temperature and humidity control, and equipped with necessary measuring and conditioning instruments.

Clean filter papers of size 8"x10" with no pinholes were labelled before sampling. They were conditioned in a dessicator with less than 50% relative humidity for over 24 hours and pre-weighed before use for sampling.

After sampling, the filter papers loaded with dust were kept in a clean and tightly sealed plastic bag. The filter papers were then returned to the laboratory for reconditioning in the dessicator with less than 50% relative humidity followed by accurate weighing on an electronic balance regularly calibrated against a traceable standard and readable to 0.1 mg.

Stanger Asia Ltd. operates comprehensive quality assurance and quality control programmes. For QA/AC procedures, all filters were equilibrated and weighed repeatedly until the difference of two consecutive results was less than 0.5 mg.

Monitoring Parameters Frequency.

Table 4.2 Air Quality Monitoring Frequency

Monitoring Locations	Parameter	Frequency
A1 & A2	24-hr TSP	Once in every six days
	1-hr TSP	Three times in every six days

Action and Limit Levels.

The Action levels for air quality monitoring were established from the impact monitoring data of Contract No. CV/2000/01 prior to the commencement of the fill bank utilising the criteria laid out in *section 4.7* of the EM&A Manual for the project. The Limit levels for air quality monitoring has been set in line with statutory guidelines for air quality in Hong Kong. Action and Limit levels for both 24-hour and 1-hour TSP are given in the following table.

Table 4.3 Action and Limit Levels for the Project

Parameter Monitored	Action Level, μg/m ³	Limit Level, µg/m ³
1-hour TSP	344	500
24-hour TSP	192	260

4.2 Water Quality.

Monitoring Locations.

The EM&A Manual produced for this project has proposed two monitoring stations (FM1 & FM2) and two control stations (FC1 & FC2) for the carrying out of water quality monitoring. Control Station FC1 will act as upstream control station for the mid-ebb tide with control station FC2 acting as upstream control stations for the mid-flood tide.

The designated monitoring stations are shown in Figure 4.2.

Methodology.

Measurements are taken at three water depths, namely 1m below water surface, mid-water and 1m above seabed at both mid-flood and mid-ebb tides, except where the water depth less than 6m, when the mid-depth station may be omitted. Should the water depth have been less than 3m, only the mid-depth was monitored.

Two measurements of turbidity, dissolved oxygen (mg/L), dissolved oxygen (% saturation) and temperature at each depth of each station is taken. The probes are removed from the water after the first measurement and then redeployed for the second measurement. If the difference in value between the first and second reading of each set is more than 25% of the value of the first reading, the readings are discarded and further readings taken. Replicate samples of suspended solids measurements are taken at each depth and at each water quality monitoring and control station. The samples are kept in a chilled condition during delivery to the laboratory ad before commencement of analysis. For the purpose of evaluating the water quality, all values for suspended solids and turbidity shall be depth-averaged.

During monitoring works the following shall also be recorded:

- monitoring location;
- depth of water;
- time;
- weather conditions including ambient temperature;
- water temperature;

Monitoring Equipment.

The following equipment was employed for routine water quality monitoring.

- Dissolved Oxygen meter: YSI model 58 with stirrer

- Turbidity meter: Hach 2100P

Echo sounder: Hummingbird 100SX
 Water sampler: Kahlisco 135WB203
 GPS receiver: Trimble NT2002D
 Thermometer: YSI model 58

Monitoring Equipment Calibration Details.

All on-site monitoring equipment was calibrated three-monthly at Stanger Asia's HOKLAS accredited laboratory. An on-site calibration check was carried out prior to the taking of measurements in accordance with standard water quality monitoring procedures.

Equipment calibration details were given in Appendix II.

Laboratory Analysis.

The laboratory measurements of suspended solids were carried out at Stanger Asia Limited, a HOKLAS accredited laboratory in accordance with Method No. 2540D 17th Edition of APHA.

Stanger Asia operates a comprehensive quality assurance and quality control programmes for QA/AC procedures in accordance with the requirements of HOKLAS accreditation, all filters were equilibrated and weighted repeatedly until the difference of two consecutive results is less than 0.5 mg.

Monitoring Parameters and Frequency.

Table 4.4 Water Quality Monitoring Frequency

	I		
Monitoring Locations	Monitoring	Frequency	Requirements
	Parameters		
Designated Control	Temperature,	Three	At three depths during
Stations: FC1 & FC2.	Salinity,	days per	mid-ebb and mid-
	Dissolved Oxygen,	week.	flood tides.
Designated Monitoring	Turbidity,		
Stations: FM1 & FM2.	Suspended Solids.		

Action and Limit Levels.

The Action and Limit levels for water quality monitoring were established from the impact monitoring data of Contract No. CV/2000/01 prior to the commencement of the fill bank utilising the criteria laid out in *section 6.8* of the EM&A Manual for the project.

Table 4.5 Action and Limit Level for Water Quality

Parameter	Action level	Limit level
Dissolved Oxygen in		
mg/L.		
Surface & Middle	<4.78mg/L	<4mg/L
5411400 66 1/116616	, og, _	, <u></u>
Bottom.	<4.16mg/L	<2mg/L
Suspended Solids (SS)	>120% of upstream control	>130% of upstream control
in mg/L	station's SS at the same time of	station's SS at the same tide
(depth-averaged)	the same day.	of the same day.
Turbidity (Tby) in	>120% of upstream control	>130% of upstream control
NTU	station's Tby at the same tide	station's Tby at the same tide
	of the same day.	of the same day.

All the figures given in the table are used for reference only and the EPD may amend the figures whenever necessary.

4.3 Event and Action Plans.

The Event and Action Plans for air and water are attached in Appendix III of this report.

5. IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES.

The contractor implemented various environmental mitigation measures as recommended in the Project Profile and Environmental Permit. The implementation status is attached in Appendix IV and summarised as follows:

- Wheel washing facilities were provided at the exit point of the site and the wheel washing bay was cleared regularly.

- Slopes were compacted as far as practicable.
- Site accesses were covered with concrete.
- Waste collection points were maintained and cleaned on a regular basis.
- Hoarding was erected along Lung Mun Road and near River Trade Terminal.
- Oil drums were placed in drip trays.
- Water bowsers and road sweepers were in operation.
- Buffer trees were planted.
- Speed limit warning signs were posted.
- Sea blocks were placed along the seawall.
- Completed slopes were hydroseeded.

6. MONITORING RESULTS.

6.1 Completed Monitoring Works.

Table 6.1 gives the completed monitoring works for the reported period.

Table 6.1 Completed Monitoring Works for September 2004

G 1				rks for Septer		0 . 1
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			September 1	2	3	4
			WQM			WQM
			(Ebb: 14:32)			(Ebb: 16:02)
			(Flood: 08:00)			(Flood: 10:14)
			1 - hr TSP*			1 – hr TSP
			24 - hr TSP*		Site Inspection	24 – hr TSP
5	6	7	8	9	10	11
					WQM	
					(Ebb: 10:17)	
	WQM		WQM		(Flood: 18:17)	
	(Ebb: 17:13)		(Ebb: 08:07)		1 – hr TSP	
	(Flood: 12:32)		(Flood: 20:47)	Site Inspection	24 - hr TSP	
12	13	14	15	16	17	18
				WQM		
				(Ebb: 14:05)		
	WQM			(Flood: 07:43)		WQM
	(Ebb: 12:26)			1 – hr TSP		(Ebb: 15:14)
	(Flood: 19:12)		Site Inspection	24 - hr TSP		(Flood: 09:11)
19	20	21	22	23	24	25
			WQM			
			(Ebb: 06:27)			
	WQM		(Flood: 19:06)		WQM	
	(Ebb: 16:46)		1 – hr TSP		(Ebb: 09:23)	
	(Flood: 11:17)	Site Inspection	24 – hr TSP		(Flood: 17:27)	
26	27	28	29	30		
		WQM				
		(Ebb: 12:51)				
		(Flood: 06:22)				
		1 – hr TSP				
		24 – hr TSP				
		Site Inspection		WQM		
		Landscape		(Ebb: 13:58)		
		Audit		(Flood: 07:52)		

Notes:

- 1. 24 -hr TSP (monitored once every 6 days) at monitoring locations A1 and A2.
- 2. 1 hour TSP (monitored three times every six days when highest level of dust generation expected) at monitoring locations A1 and A2.
- 3. WQM water quality monitoring three times per week, on mid-flood and mid-ebb tides. Days of monitoring to be separated by at least 36 hours. Monitoring locations FC1, FM1, FM2 & FC2.
- 4. Site inspections to be carried out once per week.
- 5. Auditing of landscape works to be carried out once per month.
- * A2 only.

6.2 Air Quality Monitoring.

Impact monitoring of 24-Hour TSP was conducted on five occasions at A1 and on six occasions at A2, with the monitoring of 1-Hour TSP being conducted on fifteen occasions at A1 and on eighteen occasions at A2 in this reported period.

The monitoring records for 24-hour and 1-hour TSP are given in the following table. Details of monitoring results are given in Appendix V. The results are presented graphically in Figures 6.1 and 6.2.

Table 6.2 Results of 24-hour TSP Monitoring

Date	A1, $\mu g/m^3$	Exceedance	A2, $\mu g/m^3$	Exceedance
		(Y/N)		(Y/N)
01/09/2004			115	N
04/09/2004	50	N	105	N
10/09/2004	88	N	87	N
16/09/2004	69	N	139	N
22/09/2004	99	N	47	N
28/09/2004	123	N	151	N
Action Level	192 μg/m3			
Limit Level	260 μg/m ³			

Table 6.3 Results of 1-hour TSP Monitoring

Date	A1, $\mu g/m^3$	Exceedance	A2, μ g/m ³	Exceedance
		(Y/N)		(Y/N)
01/09/2004			259	N
01/09/2004			131	N
01/09/2004			254	N
04/09/2004	133	N	56	N
04/09/2004	177	N	78	N
04/09/2004	156	N	292	N
10/09/2004	260	N	178	N
10/09/2004	146	N	98	N
10/09/2004	172	N	80	N
16/09/2004	303	N	221	N
16/09/2004	271	N	172	N
16/09/2004	314	N	319	N
22/09/2004	315	N	190	N
22/09/2004	92	N	126	N
22/09/2004	127	N	123	N
28/09/2004	167	N	228	N
28/09/2004	171	N	103	N
28/09/2004	165	N	269	N
Action Level	344 μg/m ³			
Limit Level	500 μg/m ³			

Wind speed and direction data from the wind station is given in Appendix XI.

6.3 Water Quality Monitoring.

Water quality monitoring was carried out on thirteen occasions during flood tide and ebb tide at FM1, FM2, FC1 and FC2.

Results for water quality monitoring are summarised in the following tables. Details of monitoring results are presented in Appendix VI. Graphical presentations of the results are shown in Figure 6.3 – Figure 6.10.

Table 6.4 Summary of Water Quality Monitoring Data

Sample	Surface & Middle	Bottom Averaged	Depth Averaged	Depth Averaged
Location	Averaged	Dissolved	Turbidity	Suspended
	Dissolved Oxygen	Oxygen		Solids
	(Range), mg/L	(Range), mg/L	(Range), NTU	(Range), mg/L
FM1	6.69	5.48	8.02	17.3
	(4.85-8.09)	(4.68-6.41)	(1.73-23.57)	(6.8-37.5)
FM2	6.79	5.46	8.51	17.8
	(5.00-8.30)	(4.53-6.57)	(1.82-32.35)	(6.8-48.7)
FC1	6.76	5.67	8.35	17.5
	(4.77-8.02)	(4.62-7.97)	(1.95-24.37)	(6.8-40.7)
FC2	6.92	5.71	8.56	17.8
	(4.82-8.01)	(4.65-7.02)	(2.13-28.93)	(6.8-47.7)

7. AUDIT REPORT.

7.1 Air Quality Monitoring.

No exceedance to set action or limit levels for either 24 or 1-Hour TSP monitoring was recorded at air monitoring station A1 and A2 in this reported period.

7.2 Water Quality Monitoring.

There was no exceedance to the Action and Limit Level for water quality parameters in this reported period.

7.3 Site Inspections.

Five weekly site inspections were conducted on 3rd, 9th, 15th 21st and 28th September 2004. Observations by ET, action by the Contractor and outcome are summarised in the following table.

Table 7.1 Summary of Findings, Actions and Outcomes of Site Inspection by ET

Observations	Actions by Contractor	Outcome
Drainage channels near the recycling plant were filled with deposit. (03.09.2004)	Clean up the deposit regularly.	Contractor carries out regular cleaning to drainage channels.
Access road exiting from wheel wash bay was muddy. (03.09.2004)	Clean up that area regularly.	Situation improved. (09.09.2004)
The automatic wheel washing facility was not functioning. (03, 09, 15, 28.09.2004) Sedimentation tanks were filled with deposit. (09, 21, 28.09.2004)	Repaired the facility and increased frequency of road sweeping to keep the public highways free of mud. Clean up the sedimentation tanks.	The facility was operated occasionally. Road sweeper was operated to keep the public highways clean. To be observed.
Dust generation from site traffic on dry haul roads. (15, 21.09.2004)	Increased the frequency of water spraying.	Frequency of water spraying increased, situation improved. (28.09.2004)
Splashing of fill materials into the sea. (21.09.2004)	Raise nets and repair sheeting to retain materials.	To be observed.

The Independent Environmental Checker (IEC) conducted at audit on 21st September 2004. The major observations were summarized in the following table.

Table 7.2 Summary of Findings, Actions and Outcomes of Site Inspection by IEC

Observations	Actions by Contractor	Outcome
Splashing generated during the transfer of wet soil to the barge at the tipping hall caused splashing into the sea.	Raise nets and repair sheeting to retain materials.	To be observed.
Heavy dust emission was observed from traffic on haul roads. Litter was observed in the sea	Increased the frequency of water spraying. Clean up the litter regularly.	Frequency of water spraying increased, situation improved. (28.09.2004) Situation rectified.
near the barging point and the fill bank.	Clean up the fitter regularly.	(28.09.2004)
The western side of the fill bank was only partially hydroseeded.	To arrange hydroseeding on that portion upon slope trimming works completed.	To be observed after slope trimming works completed.
Stagnant water and pondings were observed in various locations.	Drain away stagnant water regularly.	Contractor drains away stagnant water on regular basis.

7.4 Landscape and Visual.

A landscape audit was conducted on 28th September 2004. There was no specific site observation regarding the landscape aspect during the reporting period.

8. WASTE MANAGEMENT.

154,000m³ public fill was collected to the Fill Bank. 28.29t C&D waste and general refuse were disposed of at WENT Landfill. Chemical waste generated was stored in temporary chemical waste storage area. No disposal of chemical waste was carried out in this reporting period.

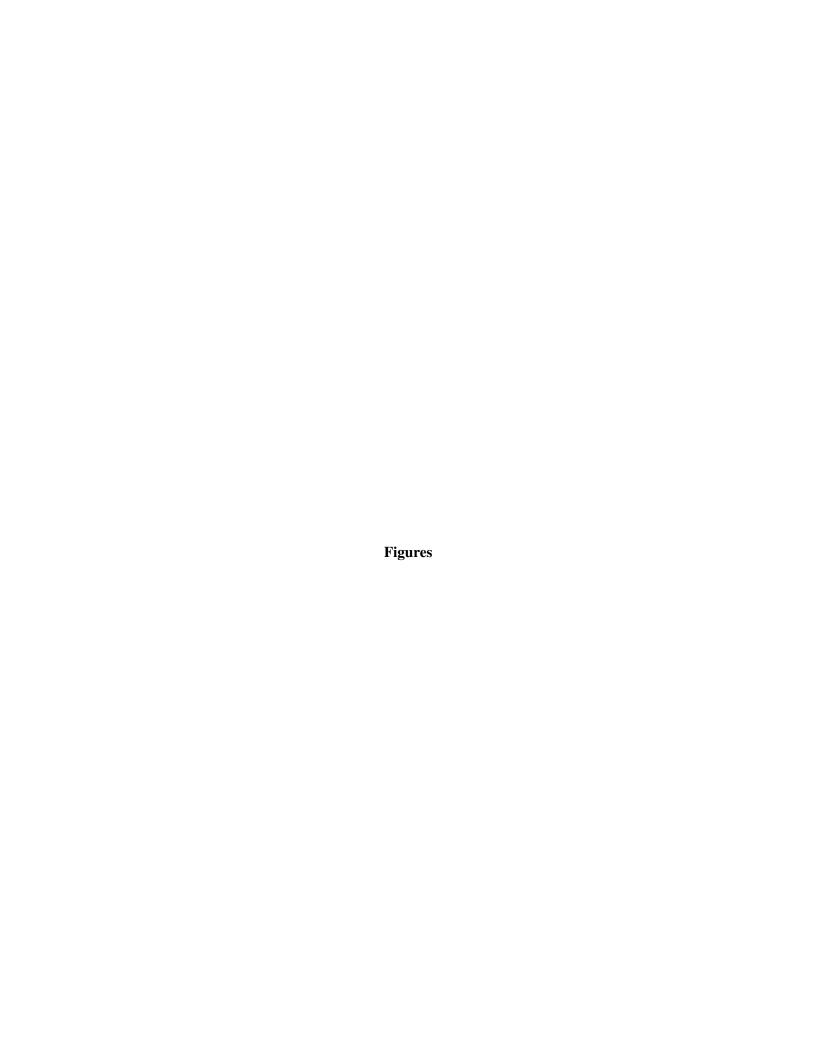
9. COMPLAINTS, NOTIFICATIONS OF SUMMONSES AND SUCCESSFUL PROSECUTIONS.

No complaint was received this month. Complaint Log is attached in Appendix VII. Cumulative statistics on complaints, notifications of summonses and successful prosecutions are attached in Appendix VIII.

10. FUTURE KEY ISSUES.

The following are the scheduled construction activities for the next reported period. Scheduled monitoring activities for the following month are given in Appendix IX.

Table 10.1 Works Programme for October 2004


Works Activities	Predicted Impacts	Proposed Mitigation Measures
Public filling	- Dust	- Dampening of fill materials and exposed area.
operation.	- Water	- Avoid stockpiling fill materials near seafront.
		- Avoid spillage of fill materials into the marine
		water.
Operation of tipping	- Dust	- The tipping halls shall be top and 3-sides
hall for unloading	- Water	enclosed.
public fill into		- Avoid spillage of fill materials into the marine
barges.		water.
Construction of	- Dust	- Apply water spray during excavation and earth
drainage system.	- Noise	moving.
	- Water	- Comply with the conditions of construction
		noise permit.
		- Treat all wastewater to acceptable prior to
		discharge.

11. CONCLUSION.

All results for the air quality monitoring conducted this month were acceptable with no exceedance to set action or limit levels for either 24 or 1-hour TSP.

In relation to the monitoring of water quality, there was no record of exceedance to the set Action and Limit Level during this reporting period.

No specific observation was reported from landscape audit.

Stanger Asia NVER TRADE ben connected STOCKPLING IRLA THE REAL PROPERTY. The red to sell take over

Figure 2.1 - The Site Layout Plan

The copyright of this report is owned by Stanger Asia Limited. If may not be reproduced expect with the prior written approval of issuing laboratory.

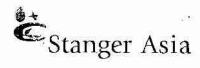
GP., 16, 8-36-, DR-Wall instituted Building, 13-On Circen Street, Fanting, New Territories, HONG KONG, Lot 867-7687 1703 and 852-2582 0046 E-mail address stanger extanger.com.like

Stanger Asia SETIENT-OUT OFFARS

POUT NESTBAR CATHO

1. ASSERTED HERALD

C. BARRAGE HERALD


C. BARRAGE SETIMATE

C. BARRAGE STATE

C. STOCKPILING AREA LIME THE PLOT NO NEWS TWOM

Figure 4.1 – Air Quality Monitoring Stations

The copyright of this report is owned by Stanger Asia Limited. It may not be reproduced expect with the prior written approval of issuing laboratory.

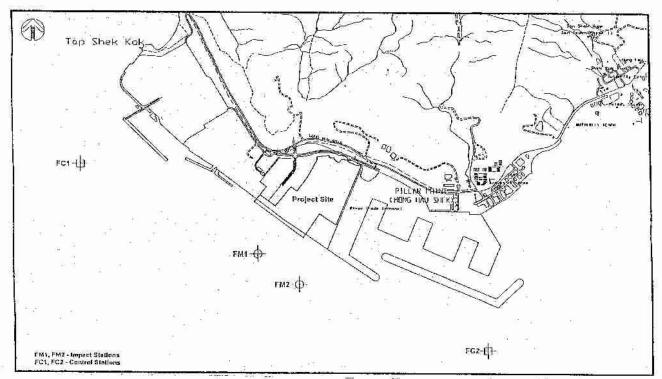


Figure 4.2 - Water Quality Monitoring Stations

The emptyight of this report is owned by Stanger Axis kimited. In may not be reproduced expect with the prior written approval of issuing laboratory.

Get, 196, 8-16, Din Wai Industrial Building, 31 On Chirn Street, Parling, New Territories, IDNG KONG, Tult 857, 7637, 196, 8-26, 2802 0016 E-mail address: stangersstanger conship.

Figure 6.1 - Graphical Plot for 24-hr TSP

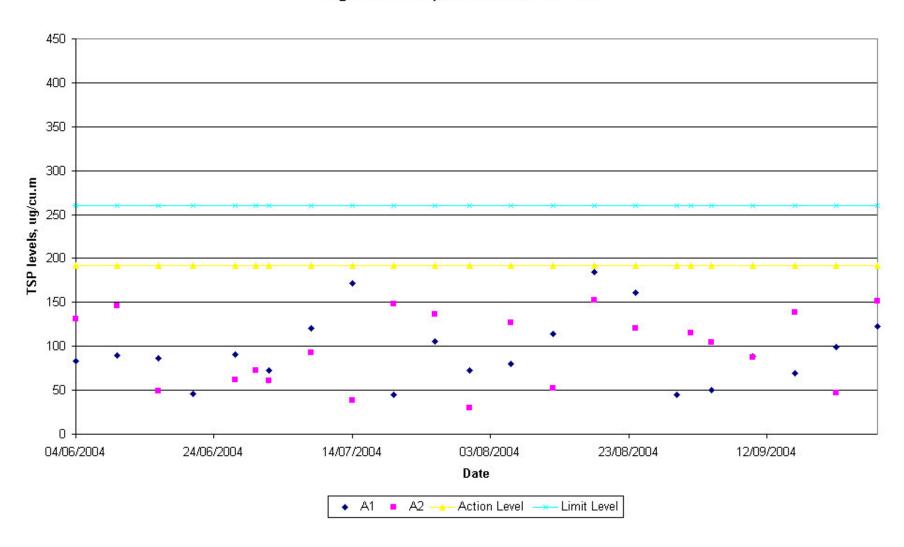


Figure 6.2 - Graphical Plot for 1-hr TSP

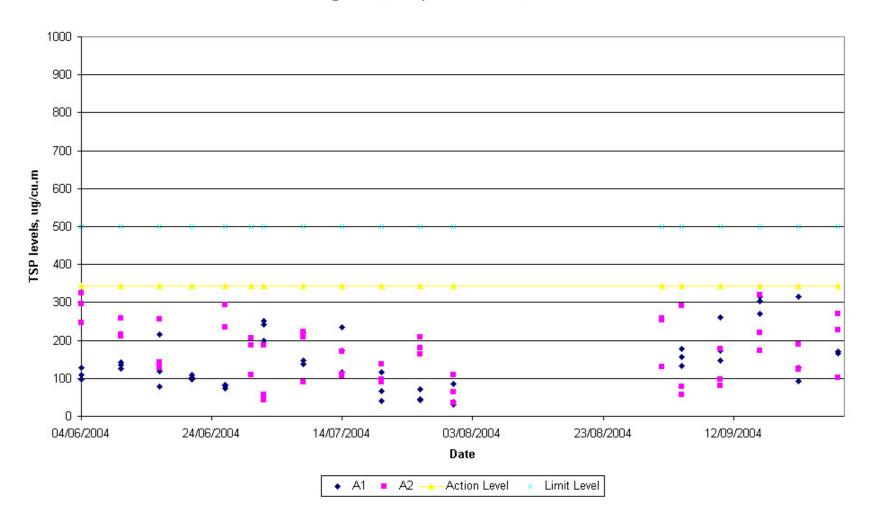


Figure 6.3 - Surface and Middle Averaged Dissolved Oxygen - Mid-Flood

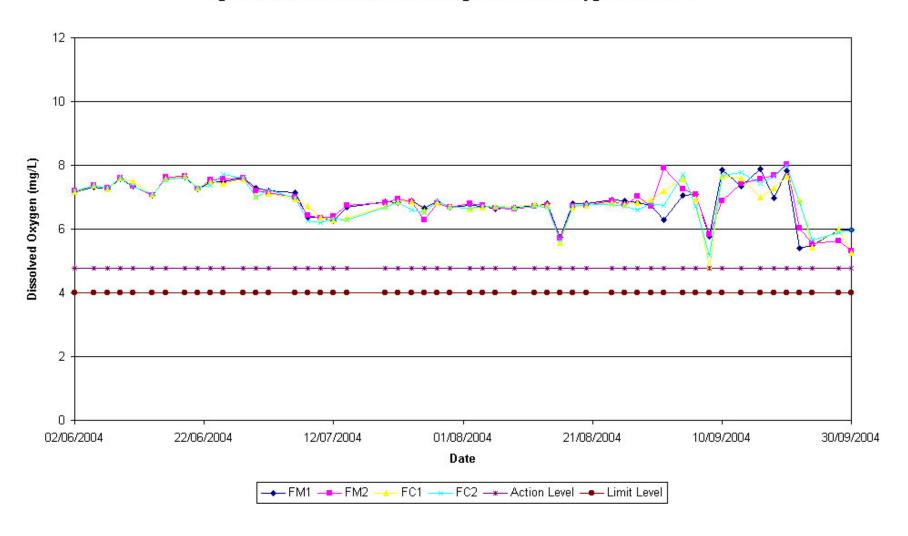


Figure 6.4 - Surface and Middle Averaged Dissolved Oxygen - Mid-Ebb

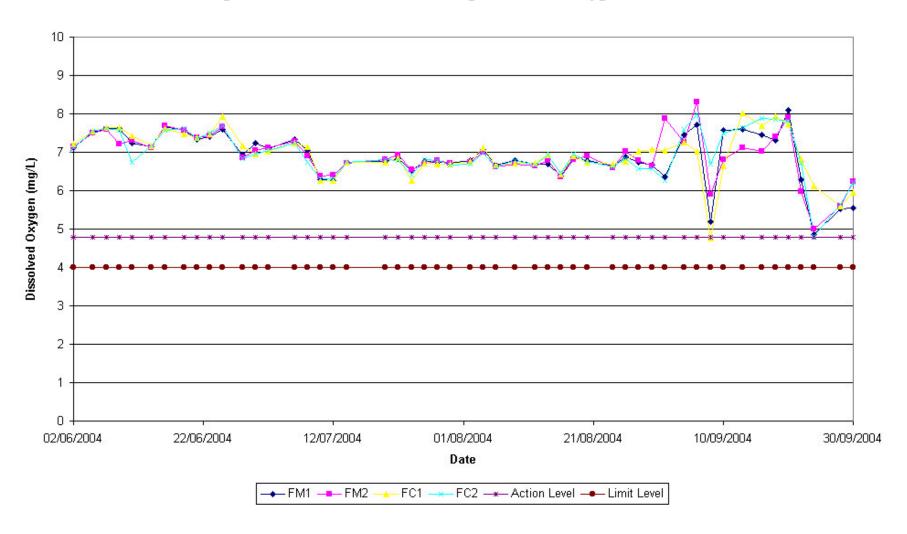


Figure 6.5 - Bottom Averaged Dissolved Oxygen - Mid-Flood

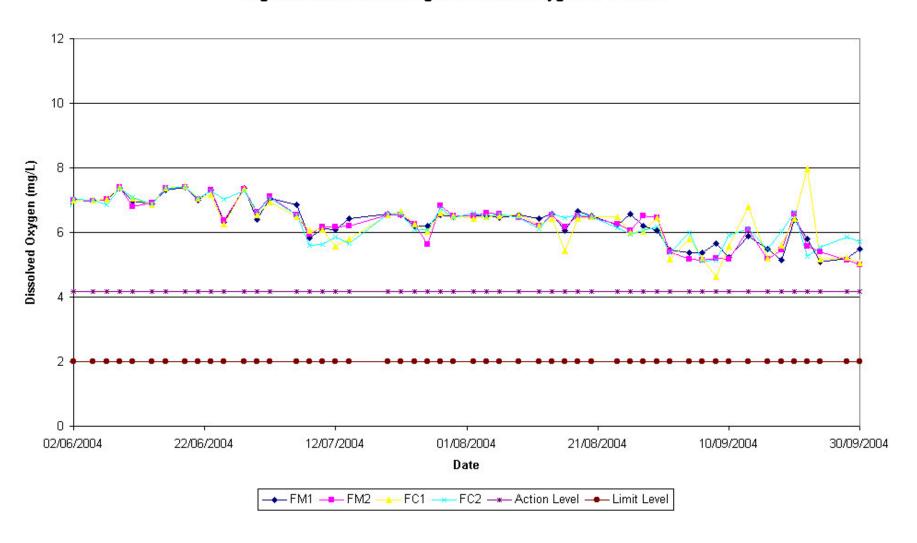


Figure 6.6 - Bottom Averaged Dissolved Oxygen - Mid-Ebb

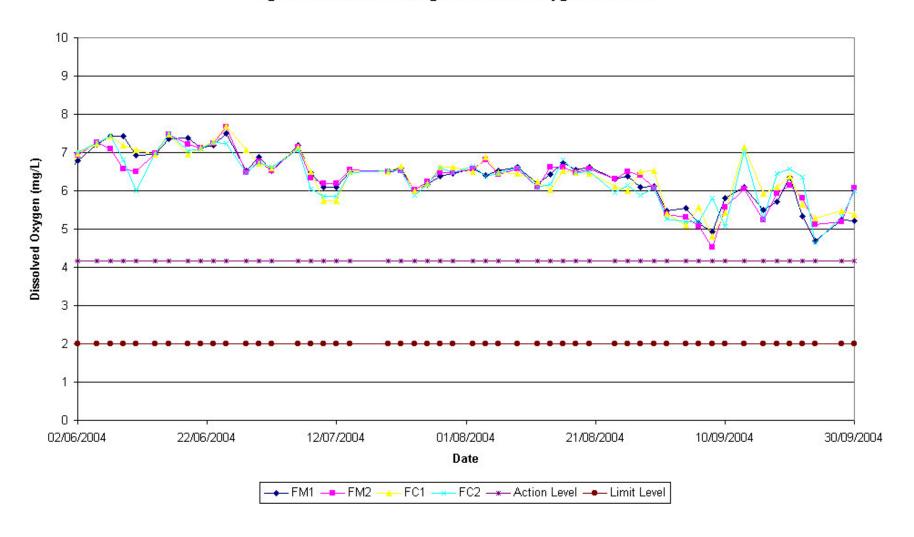


Figure 6.7 - Depth Averaged Turbidity - Mid-Flood

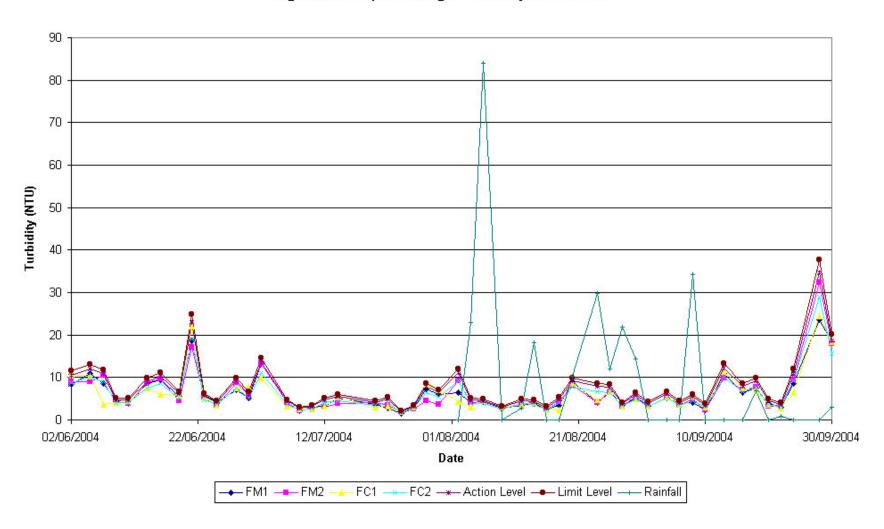


Figure 6.8 - Depth Averaged Turbidity - Mid-Ebb

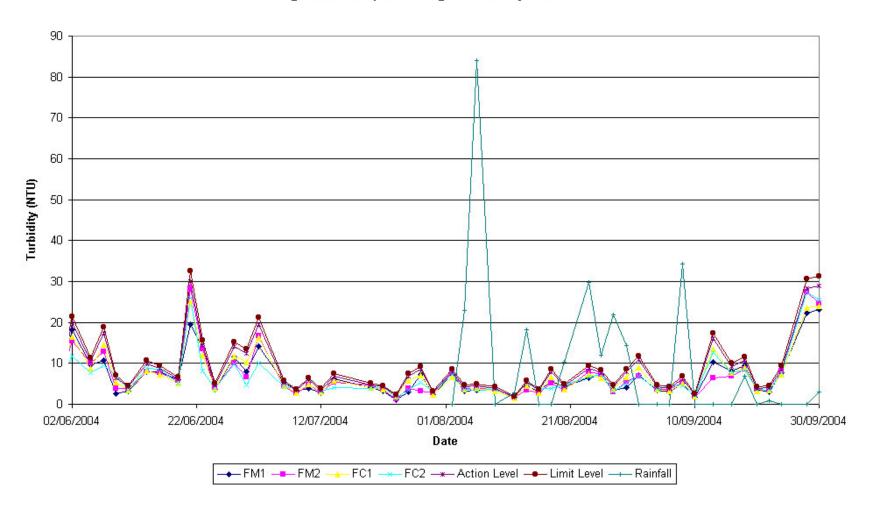
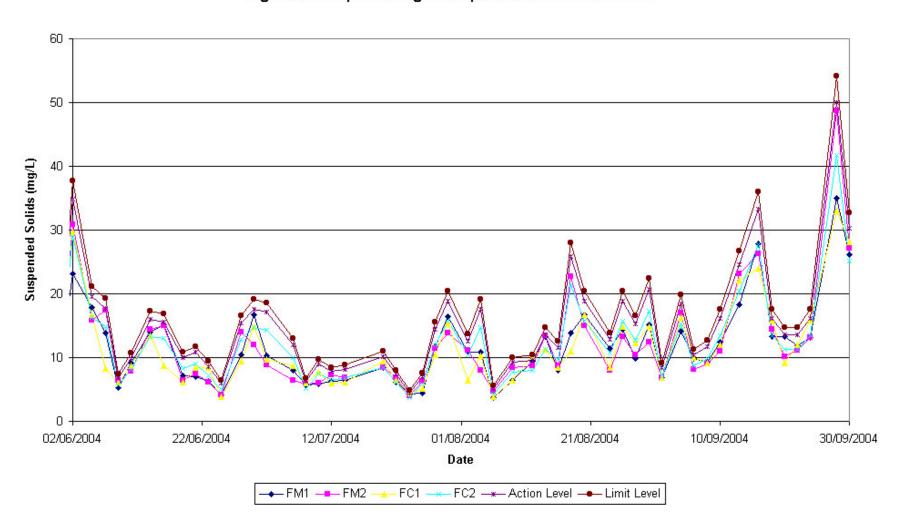
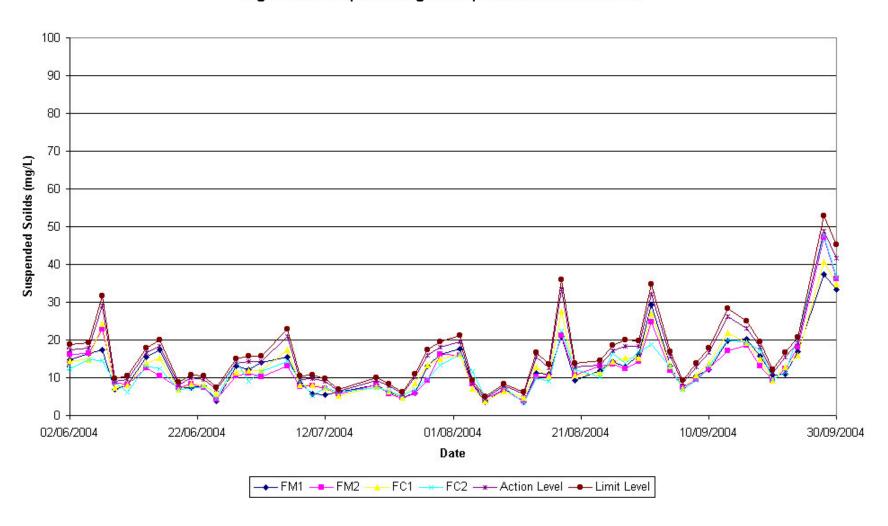
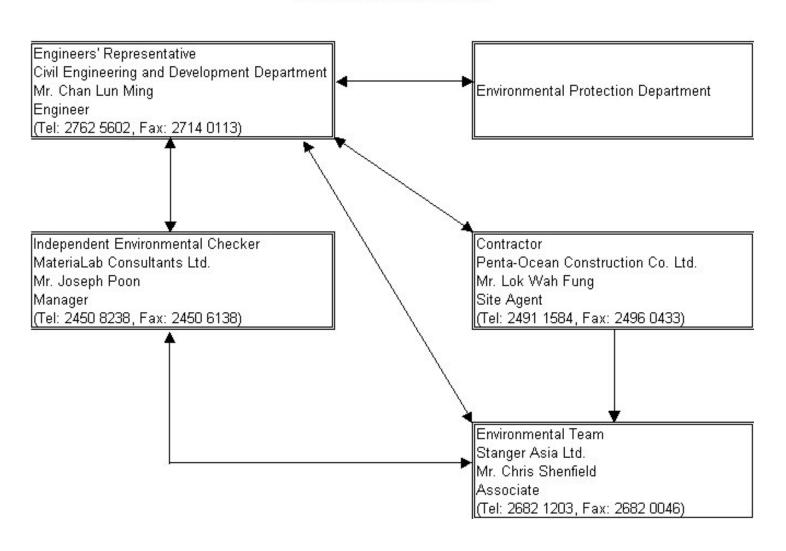


Figure 6.9 - Depth Averaged Suspended Solids - Mid-Flood


Figure 6.10 - Depth Averaged Suspended Solids - Mid-Ebb

Appendix I

Organization Chart

Project Organization (Environmental) Fill Bank at Tuen Mun Area 38 Contract No. CV/2002/13

Appendix II

Calibration Certificates of the Monitoring Equipment

Flow (CFM) 50.71 47.73 38.79

SOMP ENV052 : CALIBRATION RECORD OF HIGH VOLUME AIR SAMPLER (TSP)

Equipment No.: Serial No.:

Calibration No.:

10 7

(m³/min) 1,592

1.486

1,229

0.967 0.781

EM3052

in.H2O 10.1 8.8

6.0 3.7 2.4

16/08/2004

29 °C

Temp.: At. Press:

754 mm Hg

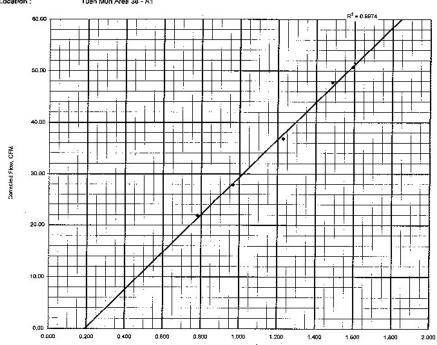
Calibrated by:

Dennis Tsui

Next Calibration Due Date:

16/10/2004

Remarks: The correlation coefficient is larger than 0.99 indicates the calibration


is linear.

Slope=

36.320928 -6.993429 Intercept=

Location :

Tuen Mun Area 38 - A1

Tester:

Checked By:

SOMP ENV052: CALIBRATION RECORD OF HIGH VOLUME AIR SAMPLER (TSP)

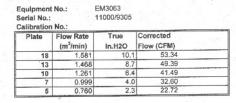
16/08/2004

29 °C

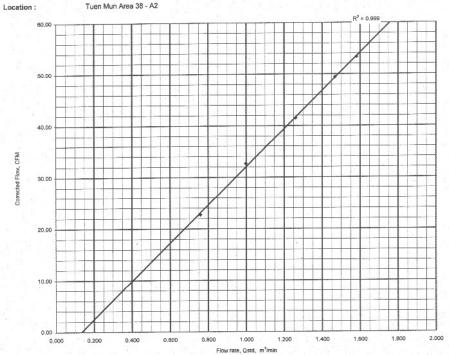
At Press:

Temp.:

754 mm Hg


Dennis Tsui Calibrated by:

16/10/2004 Next Calibration Due Date:


Remarks: The correlation coefficient is larger than 0.99 indicates the calibration is linear.

36.966674 -4.957976 Slope= Intercept=

Tuen Mun Area 38 - A2

EM3063 11000/9305

Checked By:

SOMP ENV062: CALIBRATION RECORD OF TURBIDIMETER

Date of Calibration:	24/06/2004		
Due Date of Next Calibr	ration:	24/09/2004	- W - W
Equipment No.:	EM 2365		
Manufacturer:	HACH		
Model:	2100P		
Serial No.:	970500014289		
Turbidimeter Calibration	standard (HACH):	No.1: 20 NTU	
		No.2; 100 NTU	
		No.3: 800 NTU	
Stock Calibration stand	ard No.:	804	
Three-point calibration			
Stock Calibration check		QCS 868	

Actual value	value - Checking standa Measured value	Accepted*: Y/N
0	0	<u>Y</u> _
5	5.3	Y
10	10.4	Y
50	54	Y
100	103	Y
400	410	Υ

^{*}Allowing Deviation: +/- 10%

<u> 90.22 — </u>			1001 0
Tested by:	(m-	Checked by:	JR/K

SOMP ENV062: CALIBRATION RECORD OF TURBIDIMETER

Date of Calibration:	24/09/2004		
Due Date of Next Calibr	ation:	24/12/2004	
Equipment No.:	EM 2365	I.	
Manufacturer:	HACH		
Model:	2100P		19
Serial No.:	970500014289		
Turbidimeter Calibration	standard (HACH):	No.1: 20 NTU	
		No.2: 100 NTU	
		No.3: 800 NTU	
Stock Calibration standa	ard No.:	803	
Three-point calibration a	accepted: Y N		
Stock Calibration check	ing standards No.	QCS 935	10

Actual value	Measured value	Accepted*: Y/N
0	0	Υ
5	5.2	Υ
10	11.0	Y
50	53.2	Y
100	102	Y
400	396	Υ

^{*}Allowing Deviation: +/- 10%

Tested by:	Thi	_ Checked by:_	Und	
	Dennis Tsui		Jeff Tsang	

Page 1 of 1

CERTIFIED TRUE COPY

NAME: S.C.F. CAU/Y.Y. PANG For Stanger Asia Limited

SOMP ENV066 : CALIBRATION RECORD OF YSI MODEL 30 HANDHELD SALINITY, CONDUCTIVITY & TEMPERATURE SYSTEM

		(. 7	
Calibration No.	04	2202	

Equipment No. EM 3694

Serial No. 00F0285AA

Date of Calibration: 17/06/2004

Due Date of Next Calibration: 17/09/2004

Stock Calibration Standard Potassium Chloride No. $\underline{316}$

Stock Calibration Check Potassium Chloride No. 648

Volumetric glassware employed: V14, V103, V104, V68, V69, V35

Calibration Check Solutions, ppt	Meter reading, ppt
0.0	0.0
10.0	10.5
20.0	20.4
30.0	31.0
40.0	43.0

'ested by : _	Tim	Checked By	· My	
	1		-	
			-	

APPROVED FOR USE BY

POSITION

21 Con total

SOMP ENVF066: Issue 2001 No.1

19 December 2001

Page 1 of 1

SOMP ENV066 : CALIBRATION RECORD OF YSI MODEL 30 HANDHELD SALINITY, CONDUCTIVITY & TEMPERATURE SYSTEM

Equipment No. EM 3694

Serial No. 00F0285AA

Date of Calibration: 17/09/2004

Due Date of Next Calibration: 17/12/2004

Stock Calibration Standard Potassium Chloride No. 625

Stock Calibration Check Potassium Chloride No. 648

Volumetric glassware employed: V16, V17, V104, V111, V116, V117

Calibration Check Solutions, ppt	Meter reading, ppt
0.0	0.0
10.0	10.1
20.0	20.2
30.0	32.0
40.0	42.9

Tested by :

Arthur Cheng

Checked By

Jeff Tsang

SOMP ENV064: CALIBRATION RECORD OF DISSOLVED OXYGEN METER

Dissolved Oxygen Meter Equipment No.: <u>EM 961</u>

Dissolved Oxygen Serial No.: <u>93M12874</u> Dissolved Oxygen Probe Serial No.: <u>96K0145</u>

Date of Calibration.: 24-06-2004

Due Date of Next Calibration.: 24-09-2004

Molarity of sodium thiosulphate solution: 0.0251M

Potassium Bi-iodate No.: 480

Standardisation of S Standard Solution	Initial burette reading B, mL	Final burette reading C, mL	Vol. of $Na_2S_2O_3$ used A, $mL = (C - B)$
Standard I	0.00	20.10	20.10
Standard 2	0.00	20.05	20.05
Standard 3	0.00	20.10	20.10
Diane -	8	Average Value	20.08

Standard Solutions	Initial burette reading B, mL	Final burette reading C, mL	Vol. of $Na_2S_2O_3$ used Λ , mL = $(C-B)$	D.O. by titration, mg/L	Meter reading, mg/L
Ä	0.00	1.95	1.95	1.94	2.01
A B	0.00	5.35	5.35	5.33	5.45
	0.00	6.75	6.75	6.72	6.90
D	0.00	7.80	7.80	7.77	7.69

9			$\Delta T \circ$
Tested by:	Ton	Checked By:	then
	7		L.

SOMP ENV064: CALIBRATION RECORD OF DISSOLVED OXYGEN METER

Dissolved Oxygen Meter Equipment No.: EM 961

Dissolved Oxygen Serial No.: 93M12874 Dissolved Oxygen Probe Serial No.: 96K0145

Date of Calibration .: 24-09-2004

Due Date of Next Calibration .: 24-12-2004

Molarity of sodium thiosulphate solution: 0.0253M

Potassium Bi-iodate No.: 480

Standard Solution	Initial burette reading B, mL	Final burette reading C, mL	Vol. of $Na_2S_2O_3$ used A, $mL = (C - B)$
Standard 1	0.00	20.20	20.20
Standard 2	0.00	20.20	20.20
Standard 3	0.00	20.20	20.20
Land to a second		Average Value	20.20

Standard Solutions	Initial burette reading B, mL	Final burette reading C, mL	Vol. of $Na_2S_2O_3$ used A, mL = (C-B)	D.O. by titration, mg/L	Meter reading, mg/L
A	0.00	2.05	2.05	2.07	2.04
В	0.00	5.45	5.45	5.50	5.40
C	0.00	6.80	6.80	6.87	6.75
D	0.00	7.95	7.95	8.03	7.95

Tested by:	Checked By:
Dennis Tsui	Jeff Tsang

Appendix III

Event and Actions Plans

Event and Action Plan for Air Quality

		ACTION		
EVENT	ET Leader	IC (E)	ER	CONTRACTOR
Action Level				
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures. Inform ER, IEC and Contractor. Repeat measurement to confirm findings. Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET. Check Contractor's working methods. 	1. Notify Contractor.	 Rectify unacceptable practice. Amend working methods if appropriate.
Exceedance for two or more consecutive samples	 Identify source, investigate the causes of exceedance and propose remedial measures. Inform IEC and Contractor. Repeat measurement to confirm findings. Increase monitoring frequency to daily. Discuss with IEC and Contractor on remedial actions. If exceedance continues, arrange meeting with IEC and ER. If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET. Check Contractor's working method. Discuss with ET and Contractor on possible remedial measures. Advise the ER on the effectiveness of the proposed remedial measures. Supervise implementation of remedial measures. 	Confirm receipt of notification of failure in writing. Notify Contractor. Ensure remedial actions are properly implemented.	 Submit proposals for remedial actions to ER within 3 working days of notification. Implement the agreed proposals. Amend proposals if appropriate.

Event and Action Plan for Air Quality (cont'd)

	ACTION				
EVENT	ET Leader	IC (E)	ER	CONTRCATOR	
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures. Inform ER, Contractor and EPD. Repeat measurement to confirm findings. Increase monitoring frequency to daily. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET. Check Contractor's working method. Discuss with ET and Contractor on possible remedial measures. Advise the ER on the effectiveness of the proposed remedial measures. Supervisor implementation of remedial measures. 	Confirm receipt of notification of failure in writing. Notify Contractor. Ensure remedial actions properly implemented.	 Take immediate action to avoid further exceedances. Submit proposals for remedial actions to IEC within 3 working days of notification. Implement the agreed proposals. Amend proposal if appropriate. 	
Exceedance for two or more consecutive samples	 Identify source, investigate the causes of exceedance and propose remedial measures. Inform IEC, ER and Contractor and EPD. Repeat measurements to confirm findings. Increase monitoring frequency to daily. Carry out analysis of Contractor's working procedures to determine possible mitigation measure(s) to be implemented. Arrange meeting with IEC and ER to discuss the remedial actions to be taken. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET and Contractor on the potential remedial actions. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly. Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing. Notify Contractor. In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented. Ensure remedial measures properly implemented. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance. Submit proposals for remedial actions to IEC within 3 working days of notification. Implement the agreed proposals. Resubmit proposals if problem still not under control. Stop the relevant portion of works as determined by the ER until the exceedance is abated. 	

Event and Action Plan for Water Ouality

	E (CI	nt and Action Plan for Wa ACTI		
EVENT	ET	IEC	ER	CONTRACTOR
Action level Action level being exceeded by one sampling day.	1. Repeat in-situ measurements to confirm findings; 2. Identify source(s) of impacts; 3. Inform IEC and Contractor; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC and Contractor; 6. Repeat measurements on next day of	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise ER accordingly; Assess the effectiveness of implemented mitigation measures.	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented.	Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER; Implement the agreed
Action level being exceeded by more than one consecutive sampling day.	exceedance. 1. Repeat in-situ measurements to confirm findings; 2. Identify source(s) of impact; 3. Inform contractor and IEC; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with ER and Contractor; 6. Ensure mitigation measures are implemented; 7. Prepare to increase the monitoring frequency to daily; 8. Repeat measurements on next day of exceedance.	Discuss with ET and Contractor on the proposed mitigation measures; Review proposals on mitigation measures submitted by Contractor advise ER accordingly; Assess the effectiveness of the implemented mitigation measures.	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures.	mitigation measures. 1. Inform the Engineer and confirm notification of the non-compliance in writing; 2. Rectify unacceptable practice; 3. Check all plant and equipment; 4. Consider changes of working methods; 5. Discuss with the ET and IEC and propose mitigation measures to IEC and ER within 3 working days; 6. Implement the agreed mitigation measures.

Event and Action Plan for Water Quality (Cont'd)

		d Action Plan for Water (ACT)		
EVENT	ET	IEC	ER	CONTRACTOR
Limit level Limit level	Repeat in-situ	Discuss with ET	Discuss with IEC,	Inform the Engineer
being exceeded by one sampling day.	measurements to confirm findings; 2. Identify source(s) of impact; 3. Inform contractor and IEC; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with ER and Contractor; 6. Ensure mitigation measures are implemented; 7. Prepare to increase the monitoring frequency to daily until no exceedance of Limit level.	and Contractor on the mitigation measures; 2. Review proposals on mitigation measures submitted by the Contractor and advise the ER accordingly; 3. Assess the effectiveness of implemented mitigation measures.	ET and Contractor on the proposed mitigation measures; 2. Request Contractor to critically review the working methods; 3. Make agreement on the mitigation measures to be implemented; 3. Assess the effectiveness of the implemented mitigation measures.	and confirm notification of the non-compliance in writing; 2. Rectify unacceptable practice; 3. Check all plant and equipment; 4. Consider changes of working methods; 5. Discuss with the ET and IEC and propose mitigation measures to IEC and ER within 3 working days; 6. Implement the agreed mitigation measures.
Limit level being exceeded by more than one sampling day.	 Repeat in-situ measurements to confirm findings; Identify source(s) of impact; Inform contractor and IEC; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days. 	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by the Contractor and advise ER accordingly; Assess the effectiveness of implemented mitigation measures.	Discuss with IEC on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures. Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of works identified as the cause of exceedance until no exceedance of Limit level.	Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with the ET and IEC and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures; As directed by the Engineer, slow down or stop all or part of theworks identified as the cause of exceedance or construction activities.

Appendix IV

Implementation Status of Mitigation Measures

IMPLEMENTATION STATUS OF MITIGATION MEASURES

Area	Mitigation Measures	Implementation Period	Implementation Status
1. General	Maximum stockpiling height to be limited to a maximum of +35mPD.	Throughout the operation period	Implemented
2. Air Quality	Working areas where excavation or earthmoving operations are taking place shall be sprayed with water or a dusty suppression chemical.	Throughout the operation period	Occasionally implemented
	Any stockpiling of excavated material shall be covered by impervious sheeting or sprayed with water or a dust suppression chemical.	Throughout the operation period	Occasionally implemented
	All roads within the site to be covered with concrete, bituminous materials, hardcore or metal plates.	Throughout the operation period	Implemented
	Erect a hoarding of at least 2.4m high along the northern and eastern boundaries of the site except at the site entrance/exit. Before occupation of the Recovery Park Phase I and II, site hoarding of at least 2.4m high should also be erected along the western boundary of the fill bank.	Throughout the operation period	Implemented
	Install/refurnish vehicle wheel washing facilities including high pressure water jets provided at designated vehicle exit points.	Throughout the operation period	Implemented
	At the barging point, the drop height between the barge and dump trucks shall be minimized.	Throughout the operation period	Implemented
	Tipping halls provided for transfer of public fill from trucks to barges shall be top and 3-sides enclosed.	Throughout the operation period	Implemented
	Water lorries and/or road sweepers shall be provided and used in dust suppression.	Throughout the operation period	Implemented
	The designated main haul roads shall be watered at approximately every 2 hours to ensure that the roads are kept sufficiently dampened.	Throughout the operation period	Implemented

Area	Mitigation Measures	Implementation Period	Implementation Status
2. Air Quality	Truck speed to be controlled to within 10 km/hr.	Throughout the operation period	Implemented
	All dusty fill material shall be sprayed with water or a dust suppression chemical prior to loading, unloading or transfer.	Throughout the operation period	Implemented
	Frequent watering (at least three times per day) of the worksites with active dusty operations is recommended. The frequency shall be increased when the weather is dry.	Throughout the operation period	Implemented
	Loading of public fill delivered to the site shall be sprayed with water at the material landing point to minimize dust emission except when the materials are sufficiently dampened when landing.	Throughout the operation period	Implemented
	Vehicle washing facilities including high pressure water jet at the existing exits shall be maintained and operated by designated staff to ensure that these dust control measures are being used.	Throughout the operation period	Occasionally Implemented
	Before leaving the fill bank site, every vehicle shall be washed to remove any dusty materials from its body and wheels.	Throughout the operation period	Implemented
	Trucks carrying dusty loads entered to the site shall be sprayed with water once the impervious sheeting covering the load is removed.	Throughout the operation period	Implemented
	A minimum buffer distance of 20m shall always be maintained between the edge of public fill stockpiling area and the nearest air sensitive receivers at the River Trade Terminal.	Throughout the operation period	Implemented
	An area of 100m x 100m in the north-eastern corner of the stockpiling area shall be managed by the Contractor as a "truckload control zone". Number of trucks traveling to the control zone shall be limited to a maximum of 64 vehicles per hour, and a daily maximum of 633 vehicles per day.	Throughout the operation period	Implemented

Area	Mitigation Measures	Implementation Period	Implementation Status
2. Air Quality	A minimum buffer zone of 20m shall be maintained between the edge of the public fill stockpiling area and the nearest air sensitive land use at Recovery Park Phase I and Phase II along the western boundary of the site.	Throughout the operation period	Implemented
	Temporary slope surfaces shall be covered with tarpaulin sheets or other impermeable sheets, or sprayed with water or a dust suppression chemical, or protected by other methods approved by CED.	Throughout the operation period	Partially implemented
	Final slope surfaces shall be treated by compaction, followed by hydroseeding, vegetation planting or other suitable surface stabiliser approved by CED to prevent the washing away of stockpiled material.	Throughout the operation period	Implemented
	Any belt conveyor systems used for transfer of dusty materials shall be enclosed on top and 2 sides.	Throughout the operation period	N/A
	Every transfer point between two conveyors shall be totally enclosed.	Throughout the operation period	N/A
	An effective belt scraper or equivalent device shall be installed at the head pulley of every belt conveyor to dislodge fine particles that may adhere to the belt surface.	Throughout the operation period	N/A
	The belt conveyor shall be equipped with bottom plates or other similar means to prevent falling of material from the return belt.	Throughout the operation period	N/A
	Every stockpiling belt conveyor shall be provided with a mechanism to adjust its level such that the vertical distance between the belt conveyor and the material landing point is maintained at no more than 1m.	Throughout the operation period	N/A
	Dusty materials loaded from a belt conveyor outlet to stockpiles, storage bins, trucks, barges and other open areas shall be sprayed with water or a dust suppression chemical.	Throughout the operation period	N/A

Area	Mitigation Measures	Implementation Period	Implementation Status
2. Air Quality	Frequent mist spraying should be applied on dusty areas. The frequency of spraying required will depend upon local meteorological conditions such as rainfall, temperature, wind speed and humidity. The amount of mist spraying should be just enough to dampen the material without over-watering.	Throughout the operation period	Implemented
3. Noise	No project activities associated with land-based intake of public fill shall be carried out between 20:00 and 08:00 hrs daily.	Throughout the operation period	Implemented
	All construction works should be carried out during the non-restricted hours (i.e. 7:00 a.m. to 7:00 p.m. on weekdays other then General Holidays).	Throughout the operation period	N/A
	Before the commencement of any works that may generate a significant noise impact, the Contractor should submit to the Engineer for approval the method of working, equipment and sound-reducing measures (e.g. use of silenced type equipment).	Throughout the operation period	N/A
	The fill bank should not be in operation from 8:00 p.m. to 8:00 a.m. the next day.	Throughout the operation period	N/A
4. Water Quality	Trapezoidal surface channels should be constructed to intercept polluted surface runoff. These channels shall be equipped with sand/de-silting traps such that the effluent discharged from site during the establishment, operation and decommissioning phases will meet the required discharge limits.	Throughout the operation period	Implemented
	Tipping halls at the waterfront provided for transfer of public fill from trucks to barges shall be enclosed design with the top 3-sides enclosed to prevent spillage of material into the marine water.	Throughout the operation period	Implemented
	Before the completion of the surface drainage channels at the commencement of the project, earth bunds and sand bag barriers shall be use at required locations to effectively divert storm water to available drainage channels constructed under the reclamation works.	Throughout the operation period	Implemented

Area	Mitigation Measures	Implementation Period	Implementation Status
4. Water Quality	Temporary drainage facilities provided shall allow polluted stormwater to be diverted to existing intercepting channels before stockpiling of public fill should begin.	Throughout the operation period	Implemented
	Intercepting channels shall be equipped with sand/silt removal facilities to allow the stormwater to be treated before discharge at the designated outfalls.	Throughout the operation period	Implemented
	Effluent discharged shall meet the relevant discharge limits.	Throughout the operation period	N/A
	A minimum buffer distance of 50m will be provided between the edge of the stockpiling area of the fill bank and seafront.	Throughout the operation period	Implemented
	Open channels and/or other effective drainage system shall be constructed at the perimeter of the site for intercepting and directing runoff to sand/silt removal facilities prior to discharge.	Throughout the operation period	Implemented
	The unpaved area on the seaward side of the channels shall be covered with gravel and formed with slope so that polluted stormwater will be intercepted by the channels.	Throughout the operation period	Implemented
	Any excavated material generated near the seafront (e.g. from the construction of the barging point) not required to be backfilled immediately should be transported away from the seafront to avoid potential water quality impact especially during the rainy season.	Throughout the operation period	Implemented
	Public fill transported to the stockpiling area for storage should not contain unsuitable material such as peat, vegetation, timber, organic, soluble or perishable material, dangerous or toxic material, floatable materials (such as bottle, plastic bags, foam box), and materials susceptible to combustion.	Throughout the operation period	Implemented

Area	Mitigation Measures	Implementation Period	Implementation Status
4. Water Quality	Temporary slope surfaces shall be covered as far as practicable and as soon as possible with tarpaulin or other impermeable sheets, or protected by other methods approved by CED when rainstorms are likely, especially when a rainstorm is imminent or forecast.	Throughout the operation period	Implemented
	Final slope surfaces shall be treated by compaction, followed by hydroseeding, vegetation planting or other suitable stabilizer approved by CED to prevent the washing away of stockpiled material.	Throughout the operation period	Implemented
	Adequately designed and constructed catchpits, sand and silt removal facilities and intercepting channels should be maintained, and the deposited silt and grit should be removed weekly and on a as need basis especially during the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times.	Throughout the operation period	Implemented
	A wheel washing bay should be provided at the site exit and washwater should have sand and silt settled out or removed before the water is being reused or discharged into storm drains.	Throughout the operation period	Implemented
	All vehicles and plant bodies should be cleaned before they leave the fill bank site to ensure that no earth, mud or debris is deposited by them on roads.	Throughout the operation period	Implemented
	The section of construction road between the wheel washing bay and the public road should be paved with concrete, bituminous materials or hardcores to reduce vehicle tracking of soil and to prevent site run-off from entering public roads drains.	Throughout the operation period	Implemented

Area	Mitigation Measures	Implementation Period	Implementation Status
4. Water Quality	Sewage from toilets and similar facilities should be discharged into a foul sewer, or chemical toilets should be provided. Should chemical toilets be employed these must be provided by a licensed contractor, who will be responsible for appropriate disposal and maintenance of these facilities.	Throughout the operation period	Implemented
	Wastewater collected from canteen kitchens, including that from basins, sinks and floor drains, should be discharged into foul sewers via grease traps.	Throughout the operation period	N/A
	Drainage systems provided at car parking areas shall be provided with oil interceptors in addition to sand/silt removal facilities.	Throughout the operation period	N/A
	All barges used in the transportation of fill material during the operation/decommissioning stages should be properly licensed under the Shipping and Port Control Ordinance, and of appropriate size such that adequate clearance is maintained between the vessels and the sea bed at all states of the tide.	Throughout the operation period	Implemented
	All vessels used for transportation of fill material should have tight fitting seals to their bottom openings.	Throughout the operation period	Implemented
	When backhoe fixed on an appropriately designed flat-top pontoon is in use, the reach of the backhoe shall be controlled to within the flat-top pontoon of sufficient length to avoid accidental dropping of public fill into the sea.	Throughout the operation period	N/A
	When hopper barges with mobile crane is in use, guardrails or equivalent shall be fixed alongside the berthing faces to guide the movement of the crane to avoid accidental dropping of fill material.	Throughout the operation period	N/A
	When derrick barges with built-in crane are in use, the reach of the jig shall be controlled to within the length of the barge to avoid accidental dropping of public fill into the sea.	Throughout the operation period	Implemented

Area	Mitigation Measures	Implementation Period	Implementation Status
4. Water Quality	The design of the specific transfer methods shall be as such that the pathway of material delivery from barge to the waterfront will not be directly on top of the marine water.	Throughout the operation period	Implemented
	Barges should not be filled to a level which may cause overflow of material during loading or transportation.	Throughout the operation period	Implemented
	Barge effluents (e.g. muddy water) should be properly collected and treated prior to disposal.	Throughout the operation period	Implemented
	Work activities should not cause any visible foam, oil, grease, scum, litter or other objectionable matters to be present on the water in the vicinity of the barging point.	Throughout the operation period	Occasionally Implemented
	A waste collection vessel shall be deployed to remove floating refuse on the sea near the fill bank for proper disposal.	Throughout the operation period	Occasionally Implemented
5. Landfill Gas	Main site offices of the fill bank shall be constructed within the site area lying outside the 250m consultation zone of the restored Siu Lang Shui Landfill.	Throughout the operation period	Implemented
	The container office(s) to be set up at the site entrance/exit which is situated within the construction zone of the landfill shall be constructed on a raised hollow platform, or equivalent.	Throughout the operation period	Implemented
	No underground structures such as drainage and sewage systems, underground pipelines and chambers shall be constructed at the site area lying within the consultation zone.	Throughout the operation period	Implemented
	In the unlikely event that any sign of leachate-contaminated groundwater be encountered during the establishment, operation or decommissioning phases of the fill bank, the landfill operator should be informed so that this can be collected for proper treatment and disposal.	Throughout the operation period	Implemented

Area	Mitigation Measures	Implementation Period	Implementation Status
6. Landscape and Visual	Hydroseeding or coloured geo-textile matting (dark green/brown) shall be provided on the slopes of the fill bank along the eastern, northern and western sides of the fill bank as the slopes of each layer of platform are formed.	Throughout the operation period	Implemented
	A buffer tree planting strip should be provided along the northern perimeter of the site where space permits. A row of approximately 3m high native evergreen tree species with a tall habit when fully grown (e.g. Casuarina equisetifolia) shall be planted at the early establishment/ operational phase of the project.	Throughout the operation period	Implemented
	The design, colour and finish of structures at the fill bank should be such that they are visually recessive. Reflectivity should be reduced through selection of material or surface treatment.	Throughout the operation period	Implemented
	The surface colour selected should be of an earthy tone with strong natural qualities (e.g. green/grey/brown). The use of bold colour schemes should be avoided.	Throughout the operation period	Implemented
	The existing 2.4m high site hoarding located along Lung Mun Road should be maintained to help screening of the fill bank.	Throughout the operation period	Implemented

Appendix V

Air Quality Monitoring Results

Repo	rt on 2	24-hour T	otal Susp	ended P	articulate l	Monitoring -	A1						
Sample	Location	Date and Time	Start Counter	Stop Counter	Temperature, °C	Pressure, mmHg	Weather	Wind	Weight of Filter, g	Flow rate Q _{std} ,	Total air volume	Mass Cond	entration
Number	Code	of Sampling	Reading	Reading	Initial/Final	Initial/Final	Conditions	Direction	Initial/Final	std. m³/min	of sample, std. m ³	of TSP,	μg/std. m ³
12879	A1	04/09/2004	2009.53	2034.41	29	755	Rainy	Е	2.8596	1.24	1851	50	
		14:30			29	753			2.9519				
12896	A1	10/09/2004	2037.49	2062.55	25	756	Cloudy	N	2.8241	1.24	1864	88	
		17:50			26	756			2.9876				
12915	A1	16/09/2004	2065.90	2090.98	29	759	Sunny	SE	2.8593	1.24	1866	69	
		16:40			28	760	- A		2.9886				
12935	A1	22/09/2004	2094.26	2119.03	29	759	Sunny	N	2.8280	1.24	1843	99	
		14:15			27	759			3.0112				
12952	A1	28/09/2004	2122.03	2146.63	28	758	Sunny	N	2.8516	1.32	1948	123	
		14:25			29	760			3.0912				

Repo	rt on 2	24-hour T	otal Susp	ended P	articulate	Monitoring -	-A2						
		D	0		T 0	25		lar i	latit to a Fin				
Sample	Location	Date and Time	Start Counter	Stop Counter	remperature, 1	Pressure, mmHg	Weather	Wind	Weight of Filter, g	Flow rate Q _{std} ,	Lotal air volume	Mass Con	centration
Number	Code	of Sampling	Reading	Reading	Initial/Final	Initial/Final	Conditions	Direction	Initial/Final	std. m³/min	of sample, std. m³	of TSP,	μg/std. m ³
12862	A2	01/09/2004	10174.68	10198.68	29	755	Sunny	E	2.9031	1.16	1670	115	guirre, ave
		16:30			29	756			3.0950				
12880	A2	04/09/2004	10201.68	10225.68	29	755	Sunny	Е	2.8648	1.16	1670	105	
		15:40			29	753			3.0409				
12897	A2	10/09/2004	10228.68	10252.68	25	756	Cloudy	N	2.8258	1.16	1670	87	
		18:00			26	756			2.9714				
12916	A2	16/09/2004	10255.68	10279.67	29	759	Sunny	SE	2.8417	1.16	1670	139	
		16:50			28	760			3.0742				
12937	A2	22/09/2004	10282.67	10306.69	29	759	Sunny	N	2.8241	1.16	1672	47	
		14:00			27	759			2.9032				
12954	A2	28/09/2004	10309.69	10333.69	28	758	Sunny	N	2.8315	1.35	1944	151	
		14:15			29	760			3.1241				

Repo	rt on	1-hour To	tal Suspe	ended Pa	rticulate N	lonitoring - /	A 1						
Sample	Location	Date and Time	Start Counter	Stop Counter	Temperature, °0	Pressure, mmHg	Weather	Wind	Weight of Filter, g	Flow rate Q _{std} ,	Total air volume	Mass Cond	entration
Number	Code	of Sampling	Reading	Reading			Condition	s Direction	Initial/Final	std. m³/min	of sample, std. m ³	of TSP,	μg/std. m ³
12870	A1	04/09/2004	2006.46	2007.48	29	755	Sunny	Е	2.8504	1.24	76	133	
		09:38					- A		2.8605				
12873	A1	04/09/2004	2007.48	2008.49	29	755	Sunny	E	2.8479	1.24	75	177	
		12:00					- 1		2.8612				
12876	A1	04/09/2004	2008.49	2009.53	29	755	Sunny	E	2.8388	1.24	77	156	
		13:18							2.8509				
12887	A1	10/09/2004	2034.41	2035.43	25	756	Cloudy	N	2.8850	1.24	76	260	
		12:30							2.9047				
12890	A1	10/09/2004	2035.43	2036.50	25	756	Cloudy	N	2.8684	1.24	80	146	
		15:19							2.8800				
12893	A1	10/09/2004	2036.50	2037.49	25	756	Cloudy	N	2.8344	1.24	74	172	
		16:39							2.8471				
12906	A1	16/09/2004	2062.55	2063.62	29	759	Sunny	SE	2.8210	1.24	80	303	
		10:45							2.8451				
12907	A1	16/09/2004	2063.62	2064.82	29	759	Sunny	SE	2.8494	1.24	89	271	
		12:40							2.8736				
12910	A1	16/09/2004	2064.82	2065.90	29	759	Sunny	SE	2.8558	1.24	80	314	
		14:00					- 1		2.8810				
12926	A1	22/09/2004	2090.98	2091.99	29	759	Sunny	N	2.8275	1.24	75	315	
		09:00							2.8512				
12929	A1	22/09/2004	2091.99	2093.10	29	759	Sunny	N	2.8468	1.24	83	92	
		10:13							2.8544				
12932	A1	22/09/2004	2093.10	2094.26	29	759	Sunny	N	2.8225	1.24	86	127	
		11:45							2.8335				
12946	A1	28/09/2004	2119.03	2120.03	28	758	Sunny	N	2.8304	1.3	78	167	
		09:35	-						2.8434				
12948	A1	28/09/2004	2120.03	2121.03	28	758	Sunny	N	2.8303	1.3	78	171	
		10:45							2.8436				
12950	A1	28/09/2004	2121.03	2122.03	28	758	Sunny	N	2.8399	1.27	76	165	
		13:20							2.8525				

керо	rt on 1	i-nour io	tai Suspe	ended Pa	rticulate ivi	onitoring - <i>i</i>	42						
Sample	Location	Date and Time	Start Counter	Stop Counter	Temperature, °C	Pressure, mmHg	Weather	Wind	Weight of Filter, g	Flow rate Q _{std}	Total air volume	Mass Cond	entration
Number	Total Control	Tastano esse	Reading	Reading			Sec. Const	Topogo monos	Initial/Final	std. m ³ /min	of sample, std. m ³	of TOD	μg/std. m ³
12852	A2	01/09/2004	10171.68	10172.68	29	755	Sunny	E	2.8888	1.16	70 70	259	agysta. III
12002	AZ	11:10	10171.00	10172.00	29	700	Suring		2.9068	1.16	70	259	
12860	A2	01/09/2004	10172.68	10173.68	29	755	Cummu	E	2.8630	1.16	70	131	
12000	AZ	12:30	10172.00	10173.00	29	700	Sunny		2.8721	1.16	70	131	
12861	A2	01/09/2004	10173.68	10174.68	29	755	Sunny	E	2.8856	1.16	70	254	
12001	AZ	14:00	10173.00	10174.00	23	755	Sunny		2.9033	1.10	70	254	
12871	A2	04/09/2004	10198.68	10199.68	29	755	Sunny	E	2.8518	1.16	70	56	
1207-1	AZ	04/09/2004	10190.00	10199.00	29	700	Sunny		2.8557	1.16	70	30	
12874	A2	04/09/2004	10199.68	10200.68	29	755	Cuppu	E	2.8400	1.16	70	78	
12074	AZ	12:15	10199.00	10200.60	23	700	Sunny		2.8454	1.10	70	/0	
12877	A2	04/09/2004	10200.68	10201.68	29	755	Sunny	Е	2.8462	1.16	70	292	
12077	AZ	13:40	10200.60	10201.60	29	700	Suring		2.8665	1.16	70	292	
12888	A2	10/09/2004	10225.68	10226.68	25	756	Cloudy	N	2.8584	1.16	70	178	
12000	A2	12:45	10223.00	10220.00	25	730	Cloudy	IN	2.8708	1.10	70	170	
12892	A2	10/09/2004	10226.68	10227.68	25	756	Cloudy	N	2.8515	1.16	70	98	
12032	AZ	15:40	10226.66	10227.00	25	736	Cloudy	IN	2.8583	1.10	70	30	
12895	A2	10/09/2004	10227.68	10228.68	25	756	Cloudy	N	2.8570	1.16	70	80	
12000	- 74	16:50	10227.00	10220.00	23	730	Cloudy	114	2.8626	1.10	70	- 00	
12909	A2	16/09/2004	10252.68	10253.68	29	759	Sunny	SE	2.8263	1.16	70	221	
12000	72	09:20	10232.00	10233.00	20	133	Culling	02	2.8417	1.10	10	221	
12912	A2	16/09/2004	10253.68	10254.68	29	759	Sunny	SE	2.8687	1.16	70	172	
12012	. 12	12:00	10233.00	10234.00	20	133	Culling	- OL	2.8807	1.10	70	1172	
12913	A2	16/09/2004	10254.68	10255.68	29	759	Sunny	SE	2.8602	1.16	70	319	
12010	7.2	13:30	10234.00	10233.00	20	1 30	Canny	- 02	2.8824	1.10	10	0,10	
12927	A2	22/09/2004	10279.67	10280.67	29	759	Sunny	N	2.8418	1.16	70	190	
		09:25							2.8550			1	
12930	A2	22/09/2004	10280.67	10281.67	29	759	Sunny	N	2.8478	1.22	73	126	
		10:30							2.8570		1000	1	
12934	A2	22/09/2004	10281.67	10282.67	29	759	Sunny	N	2.8479	1.22	73	123	
		12:00							2.8569		1.5	,,,,,	
12957	A2	28/09/2004	10306.69	10307.69	28	758	Sunny	N	2.8607	1.16	70	228	
		09:10	.5555.55					.,	2.8766				
12944	A2	28/09/2004	10308.69	10309.69	28	758	Sunny	N	2.8281	1.16	70	103	
		10:15	.0000.00					1,	2.8353	1	1	1	
12953	A2	28/09/2004	10309.69	10310.69	28	758	Sunny	N	2.8389	1.16	70	269	
		13:10							2.8576			1	

Appendix VI

Water Quality Monitoring Results

Project: C	ontract No.	CV/2002/1	3 Fill Bank	At Tuen M	un Area 3	<u>38</u>				Client:	Penta-O	cean Cons	struction	Co., Ltd.	Job No.:		4494.1				
Date of Sa	mpling :	01/09/2004	4		Weather	r Conditio	n:	Sunny			Ambier	nt Tempera	iture,°C:	33			Tide Stat	e:	Mid-Flo	<u>od</u>	
Station	Time	Sea	Overall	Sampling	Tempera	ature, °C	Dissolv	ed Oxyg	en, mg/L	Dissolv	ed Oxyg	jen, %	Salinity,	ppt	Turbidity	, NTU		Suspen	ded Soli	ds, mg/L	Remarks
		Condition	Depth, m	Depth,m	а	b	а	b	Average	а	b	Average	а	b	а	b	Average			Depth Average	
FM1 S				1.0	29.3	29.3	7.03	6.84	0.00	99.0	98.2		20.5	20.5	3.73	3.21		6	6		
FM1 M	08:30	Small wave	18.0	9.0	26.4	26.5	5.80	5.53	6.30	88.4	87.9	93.4	20.8	20.9	3.06	3.03	3.29	8	7	6.8	
FM1 B		V. (200.007)		17.0	25.6	25.6	5.61	5.33	5.47	79.9	78.5	79.2	20.8	20.8	3.34	3.38		7	7		
FM2 S				1.0	29.1	29.1	8.26	8.17		99.9	99.7		20.6	20.6	3.23	3.61		6	6		
FM2 M	08:20	Small wave	18.0	9.0	27.3	27.3	7.62	7.61	7.92	97.2	97.0	98.5	20.9	20.7	2.95	3.44	3.29	7	7	6.8	
FM2 B				17.0	26.1	26.1	5.48	5.33	5.41	74.0	73.6	73.8	21.0	20.8	3.02	3.48		7	8		
FC1 S				1.0	29.0	29.0	8.20	8.19		99.1	99.0		20.9	20.7	3.24	3.52		6	6		
FC1 M	08:50	Small wave	23.0	11.5	26.0	26.0	6.11	6.26	7.19	93.5	93.8	96.4	21.2	21.1	3.01	3.43	3.17	7	7	6.8	
FC1 B		l liuio		22.0	24.8	24.8	5.02	5.30	5.16	72.0	73.6	72.8	22.0	21.9	2.80	2.99		7	8		
FC2 S				1.0	29.2	29.2	7.46	7.35		96.1	95.8		20.8	20.5	3.57	3.52		5	6		
FC2 M	08:00	Small wave	19.0	9.5	27.6	27.5	5.98	6.12	6.73	92.2	95.5	94.9	20.7	20.8	3.01	3.30	3.26	8	9	7.0	
FC2 B		wave		18.0	26.2	26.2	5.31	5.44	5.38	73.6	74.2	73.9	20.9	20.9	3.14	3.00		7	7		
Bold data	with sing	le underlir	ne indicate	e an evre	edance	to Action	n I evel														
		underline					LUYE														
Equipment	used:	Dissolved	Oxygen Me	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	1eter:		EM	2365		Calibrat	ion Check:	4.53,	44.8,	452	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
2 //		Thermome	ter:		ET	961															

Project: <u>C</u>	ontract No.	CV/2002/1:	3 Fill Bank	At Tuen M	un Area	<u>38</u>	-			Client:	Penta-O	cean Con	struction	Co., Ltd.	Job No.:		4494.1			į.	J
Date of Sa	ampling :	01/09/2004	1		Weathe	r Conditio	n:	Sunny			Ambier	nt Tempera	ature,°C:	34			Tide Stat	e:	Mid-Ebl	<u> </u>	
Station	Time	Sea	Overall	Sampling	Temper	ature, °C	Dissolv	ed Oxyg	en, mg/L	Dissolv	ed Oxyg	jen, %	Salinity,	ppt	Turbidity	, NTU		Suspend	ded Soli	ds, mg/L	Remarks
		Condition	Depth, m	Depth,m	а	b	а	ь	Average	а	Ь	Average	а	b	а	b	Average			Depth Average	
FM1 S				1.0	29.0	29.0	6.68	6.82	6.36	97.6	98.1	93.6	21.9	21.9	7.82	8.17	,	26	30		
FM1 M	14:45	Small wave	1 17 11	8.5	26.4	26.4	5.89	6.05		88.5	90.1	85.5.0	23.5	23.5	6.04	6.15	7.00	32	34	29.3	3
FM1 B	-			16.0	25.7	25.7	5.53	5.40	5.47	78.8	77.1	78.0	24.4	24.4	6.70	7.10		28	26		
FM2 S FM2 M	-	Small		1.0	8555820	100,000	12500000		7.88	1	20000000	98.6		100.000	8.33	200903	1	19	21		
FM2 B	15:05	wave	1 17 11				(43),500(6)	7.56		97.4	0500000	30033.000	22.7	22.7	6.41				28		7
FC1 S				16.0								74.3			4.97		1	26	28		
FC1 M		Small		1.0	00093400	0.000		AG STATE OF	7.04			94.0		7,545,072	9.10	830903	-	20	21		
FC1 B	14:30	wave	1 2211		10000000	2		2. 35		88.4	5400000		23.6		8.07	1200000	-	1000	30	5	3
FC2 S	1			21.0									23.9		8.85		+	31	32		
FC2 M	1	Small	45.5	1.0	\$165Y-3563	tagara.	0.0000000000000000000000000000000000000		6.26	1	200000000000000000000000000000000000000	88.5		10000000000	3.54	20000		9	8	3	
FC2 B	15:15	wave	1811	15.75	40000000	10.000	-00-707600			78.2			22.5	W-61-4	10.40	2000.000			20		3
	1			17.0	26.3	26.3	5.30	5.22	5.26	73.2	72.8	73.0	25.5	25.5	7.22	7.28		26	29		
	with single with double						n Level														
Equipmen		Dissolved I			EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
3.008		Turbidity N	10.70		EM	2365			ion Check:		45.5,	456	NTU				Checked				
		Salinity Me			EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
		Thermome			ET	961					2 9										

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen N	lun Area	38				Client:	Penta-C	cean Con	struction	Co., Ltd.	Job No.:		4494.1				
Date of Sa	mpling :	04/09/2004	4		Weather	r Conditio	on:	Sunny			Ambie	t Tempera	ture,°C:	34			Tide State	e:	Mid-Flo	<u>od</u>	
Station		Sea Condition	Overall Depth, m	Sampling Depth,m	Tempera a	ature,°C b	Dissolv a		en, mg/L Average	Dissolv a	ed Oxyg b	jen, % Average	Salinity,	ppt b	Turbidity a	, NTU b	Average	Suspen		ds, mg/L Depth	Remarks
FM1 S				20					20 8			70 1					35			Average	
				1.0	30.0	30.2	8.38	7.99	7.07	98.4	97.3	90.7	24.5	24.5	3.32	3.42		12	11		
FM1 M	10:40	Medium wave	1 1811	9.0	28.3	28.3	5.89	6.02		83.4	83.8		24.6	24.5	6.45	5.74	5.21	16	14	14.2	
FM1 B				17.0	26.4	26.4	5.44	5.32	5.38	78.8	78.2	78.5	25.2	25.2	6.23	6.11		17	15		
-M2 S				1.0	30.1	30.1	8.78	8.71	7.25	99.1	99.0	91.1	24.3	24.2	4.80	4.77		20	18		
FM2 M	10:25	Medium wave	1811	9.0	28.1	28.1	5.68	5.82		83.0	83.2		24.4	24.4	6.70	6.76	5.44	16	17	17.0	
FM2 B				17.0	26.3	26.3	5.02	5.30	5.16	73.2	78.3	75.8	24.6	24.6	4.59	5.04		16	15		
FC1 S				1.0	30.3	30.4	6.78	7.03	7.56	94.5	96.4	96.6	23.1	23.1	3.14	3.00		9	8		
FC1 M	10:55	Medium wave	1 2211	11.0	28.0	28.0	8.28	8.14		97.9	97.7		24.3	24.4	6.15	5.89	5.46	18	18	16.3	
C1 B				21.0	26.0	26.0	5.77	5.80	5.79	80.1	82.9	81.5	25.3	25.3	7.46	7.11		21	24		
FC2 S				1.0	30.1	30.1	7.42	7.69	7.72	96.6	96.7	96.9	23.3	23.1	3.05	3.15		10	12		
C2 M	10:15	Medium wave	1 1811	9.0	28.4	28.4	8.01	7.74	17.00	97.3	97.1	(5)5050	24.4	24.4	6.35	5.84	5.19	20	20	15.3	
C2 B				17.0	26.2	26.2	6.08	5.93	6.01	83.4	81.1	82.3	24.6	24.5	6.51	6.21		16	14		
	with singl							<u>l</u>													
<u>talic data</u>	with double	underline	indicates a	n exceeda.	nce to Lii	mit Lever										<u> </u>		<i>3</i>			
Equipment	used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	/leter:		EM	2365		Calibrat	ion Check:	4.58,	44.7,	442	NTU				Checked	Ву:			
		Salinity M	eter:		ЕМ	3694		Calibrat	ion Check:	58.7	mS						Date:				
<u> </u>		Thermome	ter:		ET	961												S 5			

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen N	lun Area	<u>38</u>				Client:	Penta-O	cean Con	struction	Co., Ltd.	Job No.:		4494.1	S			
Date of Sa	ampling :	04/09/2004	4		Weather	r Conditio	n:	Sunny			Ambier	nt Tempera	ture,°C:	35			Tide Stat	e:	Mid-Ebl	<u>)</u>	
Station	Time	Sea	Overall	Sampling	Tempera	ature, °C	Dissolv	ed Oxyg		Dissolv	ed Oxyg		Salinity,	ppt	Turbidity			Suspen	ded Soli		Remarks
		Condition	Depth, m	Depth,m	а	b	а	b	Average	а	ь	Average	а	b	а	b	Average			Depth Average	
FM1 S				1.0	30.0	30.1	7.84	8.03		95.1	96.2		24.1	24.1	3.48	3.27		11	13	•	
FM1 M	16:10	Medium wave	1 17 11	8.5	27.9	27.9	6.82	7.11	7.45	89.1	93.4	93.5	24.4	24.5	4.27	4.08	3.50	13	13	13.2	
FM1 B		wave		16.0	26.1	26.1	5.45	5.65	5.55	79.7	81.2	80.5	24.8	24.8	3.10	2.80		14	15	5	
FM2 S				1.0	30.2	30.2	6.92	6.99		89.7	89.9		20.0	20.0	3.39	3.79		11	10		
FM2 M	16:25	Medium wave	1 1/11	8.5	27.8	27.9	7.48	7.70	7.27	94.6	96.1	92.6	23.3	23.3	3.78	3.73	3.60	11	12	11.8	
FM2 B				16.0	26.0	26.0	5.30	5.31	5.31	78.1	78.2	78.2	25.1	25.1	3.37	3.53		13	14		
FC1 S				1.0	30.1	30.1	8.61	8.49	7.26	99.1	98.8	94.8	24.2	24.0	3.37	3.57		11	11		
FC1 M	16:00	Medium wave	1 21.11	10.5	27.8	27.8	5.93	6.01		90.2	91.1		24.6	24.5	2.30	2.58	3.65	14	14	13.0	
FC1 B				20.0	26.2	26.2	5.08	5.12	5.10	73.2	74.4	73.8	24.7	4.7 24.8	5.44	4.62	2	13	15	5	
FC2 S				1.0	30.3	30.3	7.01	7.28		92.8	94.8		23.4	23.4	3.96	3.71		9	9	э	
FC2 M	16:45	Medium wave	1 1/11	8.5	27.6	27.6	8.13	7.99	7.60	97.1	95.9	95.2	24.4	24.5	3.47	3.27	3.61	15	13	12.8	
FC2 B				16.0	26.4	26.4	5.18	5.20	5.19	74.5	75.0	74.8	24.8	24.8	3.62	3.63		15	16		
Bold data	with singl	le underlir	ne indicat	es an exc	eedance	to Actio	on Leve	<u>l</u>													
<u>Italic data</u>	with double	underline	indicates a	n exceeda	nce to Lii	mit Level										30		10 V			
Equipmen	t used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	/leter:		EM	2365		Calibrat	ion Check:	4.63,	45.1,	455	NTU				Checked	Ву:			
		Salinity Meter:			ЕМ	3694		Calibrat	ion Check:	58.8	mS						Date:				
		Thermometer:		ET	961												2 (2) (2)				

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen M	lun Area	<u>38</u>				Client:	Penta-C	cean Cons	struction	Co., Ltd.	Job No.:		4494.1		0 0		,
Date of Sa	impling :	06/09/2004	4		Weather	Conditio	on:	Sunny			Ambier	t Tempera	ture,°C:	34			Tide Stat	B:	Mid-Flo	od	
Station		Sea Condition	Overall Depth, m	Sampling Depth m	Tempera a	ture, °C	Dissolv a	ed Oxyg	en, mg/L Average	Dissolv a	ed Oxyg b	jen, % Average	Salinity,	ppt b	Turbidity a	, NTU b	Average	Suspen		ds, mg/L Depth	Remarks
	3	Condition	Deptii, iii	Deptii,iii	а		а		Average	a		Avelage	a		a		Avelage			Average	
FM1 S				1.0	30.2	30.2	8.33	8.12	7.08	98.3	98.0	91.5	18.6	18.6	2.92	3.29		5	5		
FM1 M	12:55	Small wave	1 1911	9.5	27.9	27.8	5.98	5.89		85.1	84.7	31.5	22.4	22.4	3.35	3.06	3.79	9	9	9.8	
FM1 B				18.0	26.1	26.1	5.34	5.38	5.36	83.2	85.5	84.4	22.8	22.7	5.14	4.99		16	15		
FM2 S				1.0	30.2	30.2	7.97	7.88		97.2	96.9		18.7	18.6	3.03	2.71		5	5		
FM2 M	12:40	Small wave	1 1411	9.5	27.7	27.7	6.14	6.33	7.08	83.5	84.8	90.6	21.1	21.2	3.58	3.37	3.48	8	10	8.2	
FM2 B		575765577		18.0	26.0	26.0	5.28	5.02	5.15	75.9	73.1	74.5	23.3	23.3	4.05	4.12		10	11		
FC1 S				1.0	30.0	30.1	8.13	7.86	6.95	98.0	96.9	1	17.9	17.9	2.77	3.06		9	7		
FC1 M	13:15	Small wave	1 2/11/	12.0	27.8	27.8	5.86	5.93		80.2	81.1	89.1	22.3	22.5	2.81	3.04	3.75	9	8	1	
FC1 B		5000000		23.0	26.2	26.2	5.18	5.24	5.21	75.2	76.8	76.0	23.9	23.9	5.69 5.1	5.10		14	13		
FC2 S				1.0	30.1	30.1	7.87	8.03		96.9	97.3		17.7	17.7	2.97	2.92		8	7		
FC2 M	12:30	Small wave	1 1811	9.0	27.6	27.6	5.33	5.60	6.71	78.1	82.5	88.7	22.2	22.2	3.28	3.76	3.43	12	10	8.7	
FC2 B		50000000		17.0	26.2	26.1	5.12	5.10	5.11	74.2	74.0	74.1	23.6	23.6	3.99	3.64		7	8		
Bold data	with singl	le underlir	ne indicat	es an exc	eedance	to Actio	n Leve														
Italic data	with double	underline .	indicates a	n exceeda	nce to Lir	nit Level											,		y 19		
Equipmen	t used:	Dissolved	Oxygen M	eter:	ЕМ	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	/leter:		ЕМ	2365		Calibrat	ion Check:	4.50,	44.7,	453	NTU				Checked	Ву:			
		Salinity M	eter:		ЕМ	3694		Calibrat	ion Check:	58.7	mS						Date:				
	Thermometer:				ET	961															

Project: C	ontract No.	CV/2002/1	3 Fill Bank	At Tuen M	lun Area	<u>38</u>				Client:	Penta-C	cean Con	struction	Co., Ltd.	Job No.:		4494.1				
Date of Sa	impling :	06/09/2004	1		Weather	Conditio	n:	Sunny			Ambie	nt Tempera	ature,°C:	34			Tide State	9:	Mid-Ebl	<u>0</u>	
Station	Time	Sea		Sampling						Dissolv			Salinity,		Turbidity			Suspen	ded Soli	ds, mg/L	Remarks
		Condition	Depth, m	Depth,m	а	b	a	ь	Average	а	b	Average	а	b	а	b	Average			Depth Average	
FM1 S				1.0	30.0	30.0	8.04	7.87		96.2	95.2		17.7	17.8	3.00	3.13		6	6		
FM1 M	17:25	Small wave	1 1711	8.5	28.1	28.0	7.56	7.36	7.71	94.8	94.0	95.1	18.3	18.4	2.78	2.62	3.02	6	6	7.3	
FM1 B		l liaio		16.0	26.2	26.3	5.11	5.18	5.15	73.3	73.5	73.4	25.0	25.0	3.01	3.55		10	10		
FM2 S				1.0	30.1	30.1	7.89	7.70		98.1	97.7		18.8	29.0	2.75	2.89		5	6		
FM2 M	17:35	Small wave	1811	9.0	28.0	28.0	8.66	8.93	8.30	99.3	99.6	98.7	21.3	21.4	3.39	3.59	3.65	8	8	7.3	
FM2 B				17.0	26.4	26.4	5.06	5.07	5.07	72.9	73.0	73.0	24.1	24.1	4.81	4.45		8	9		
FC1 S				1.0	30.2	30.2	7.18	7.42		93.8	94.5		18.0	18.0	2.89	2.62		5	6		
FC1 M	17:15	Small wave	21.11	10.5	27.9	27.9	6.62	6.89	7.03	88.7	89.3	91.6	18.2	18.1	3.94	3.83	3.27	5	5	7.2	
FC1 B		V177903071		20.0	26.1	26.1	5.44	5.70	5.57	84.8	87.1	86.0	24.4	24.4	3.08	3.27		10	12		
FC2 S				1.0	30.0	30.0	8.23	8.38		98.4	98.6		17.8	17.9	2.85	3.06		6	7		
FC2 M	17:55	Small wave	18.0	9.0	27.8	27.8	7.84	7.59	8.01	95.9	95.2	97.0	18.9	19.0	4.06	4.24	4.60	6	6	6.8	
FC2 B		V		17.0	26.3	26.3	5.29	5.08	5.19	75.4	73.1	74.3	23.0	23.0	6.93	6.47		8	8		
Bold data	with singl	le underlir	ne indicati	es an exc	eedance	to Actio	n Leve														
	with double														/						
Equipmen	t used:	Dissolved	Oxygen Mi	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	1eter:		EM	2365		Calibration Check:		4.58,	45.2,	460	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
	Thermometer:				ET	961													9 0		

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen M	lun Area (<u>38</u>		,		Client:	Penta-O	cean Con	struction	Co., Ltd.	Job No.:		4494.1				
Date of Sa	mpling :	08/09/2004	1		Weather	Conditio	n:	Rainy			Ambier	t Tempera	ature,°C:	26			Tide State	9:	Mid-Flo	<u>od</u>	
Station		Sea		Sampling						Dissolv			Salinity,		Turbidity			Suspen			Remarks
2.		Condition	Depth, m	Deptn,m	а	b	а	р	Average	а	b	Average	а	b	а	b	Average	3		Depth Average	
FM1 S				1.0	25.7	25.7	5.96	5.86	5.77	61.7	62.8	61.8	27.5	27.6	3.17	3.18		8	9		
FM1 M	21:05	Small wave	1811	9.0	25.1	25.0	5.61	5.65		60.8	61.7		29.9	29.9	4.35	4.50	4.16	8	9	9.3	
FM1 B		7		17.0	25.2	25.2	5.64	5.70	5.67	61.9	62.1	62.0	31.0	31.0	4.91	4.86		12	10		
FM2 S				1.0	25.8	25.8	6.21	6.27	5.04	65.7	66.7		24.7	24.7	4.73	4.79		9	9		
FM2 M	20:55	Small wave	1811	9.0	25.6	25.4	5.42	5.45	5.84	59.7	58.6	62.7	25.2	25.4	5.01	5.04	4.99	8	9	9.0	
FM2 B				17.0	25.4	25.4	5.19	5.21	5.20	51.6	50.1	1 50.9	32.0	32.1	5.17	5.21		9	10		
FC1 S				1.0	25.4	25.5	4.96		4.00	62.7	63.1		25.9	25.9	5.61	5.72		9	11		
FC1 M	21:20	Small wave	1 23.11	11.5	25.2	25.1	4.65	4.71	4.80	60.1	61.7	61.9	28.0	28.0	5.03	5.04	5.48	10	10	9.2	
FC1 B		90000000		22.0	25.1	25.1	4.61	4.62	4.62	2 59.7	60.6	60.2	29.1	29.1	5.69	5.79		7	8		
FC2 S				1.0	25.1	25.2	5.06	5.11	F 47	62.7	63.8		26.0	26.1	4.95	4.87		11	11		
FC2 M	20:45	Small wave	1811	9.0	24.8	24.8	5.21	5.31	5.17	64.7	62.4	63.4	26.5	26.5	4.69	4.72	4.57	11	9	9.8	
FC2 B				17.0	24.8	24.7	5.14	5.15	5.15	61.5	60.6	61.1	28.3	28.3	4.01	4.16		9	8		
Bold data	with sing	le underlin	ne indicati	es an exce	eedance	to Actio	n Leve	<u> </u>													
<u>Italic data</u>	with double	underline i	indicates a	n exceedar	nce to Lin	nit Level												. V			
Equipment	used:	Dissolved	Oxygen Mi	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity Meter:			EM	2365		Calibrat	ion Check:	4.54,	45.7,	455	NTU				Checked	Ву:			
		Salinity Me	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
		Thermome	ter:		ET	961															

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen N	lun Area	<u>38</u>				Client:	Penta-C	cean Cons	struction	Co., Ltd.	Job No.:	9 33	4494.1	<u> </u>			
Date of Sa	impling :	08/09/2004	4		Weather	Conditio	n:	Rainy			Ambier	t Tempera	ture,°C:	25			Tide State	9:	Mid-Eb	<u>0</u>	
Station	Time	Sea	Overall	Sampling	Tempera	ture, °C	Dissolve	ed Oxyg		Dissolv			Salinity,		Turbidity			Suspen	ided Soli	ds, mg/L	Remarks
		Condition	Depth, m	Depth,m	а	b	а	b	Average	а	b	Average	а	b	а	b	Average			Depth Average	
FM1 S				1.0	24.6	24.6	5.51	5.61	5.40	61.6	62.8		26.0	26.0	3.31	3.75		8	9		
FM1 M	08:15	Small wave	17.0	8.5	24.5	24.5	4.78	4.81	5.18	63.0	63.2	62.7	29.8	29.8	4.93	4.76	5.23	8	10	10.5	
FM1 B				16.0	24.0	24.0	4.91	4.97	4.94	57.8	57.9	57.9	31.4	31.4	6.97	7.67		15	13		
FM2 S				1.0	23.3	23.3	5.30	5.41		74.0	72.1		25.0	25.1	4.68	4.59		8	10		
FM2 M	08:25	Small wave	17.0	8.5	23.4	23.4	6.50	6.41	5.91	63.5	63.8	68.4	30.0	30.2	4.86	4.46	5.30	9	10	9.5	
FM2 B				16.0	23.6	23.5	4.46	4.60	4.53	62.6	61.4	62.0	31.0	31.0	6.67	6.54		9	11		
FC1 S				1.0	24.2	24.2	4.85	4.87	4.77	68.8		25.4	25.4	5.40	5.08		10	11			
FC1 M	08:00	Small wave	22.0	11.0	24.2	24.1	4.67	4.68			65.7	66.9	28.7	28.7	5.70	5.03	5.23	9	10	10.7	
FC1 B				21.0	23.2	23.2	4.85	4.77	4.81	67.6	66.1	66.9	32.2	31.9	5.23	4.94		11	13		
FC2 S				1.0	23.8	23.7	7.58	7.51		79.9	78.7		26.4	26.3	4.57	4.31		9	10		
FC2 M	08:40	Small wave	17.0	8.5	22.6	22.5	5.83	5.89	6.70	73.4	74.8	76.7	29.7	29.5	4.68	4.54	4.43	9	11	9.2	
FC2 B				16.0	21.5	21.6	5.81	5.80	5.81	72.1	71.7	71.9	31.3	31.3	4.11	4.39		8	8		
Bold data	with sing	le underlir	ne indicate	es an exc	edance	to Actio	n I evel														
Italic data	with double	underline	indicates a	n exceeda	nce to Lir	nit Level	LOVO														
Equipmen	t used:	Dissolved	Oxygen Mi	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	1eter:		EM	2365		Calibrat	ion Check:	4.51,	45.1,	454	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
2 2	Thermometer:			ET	961										2 6. 7 7		9 6 9 8				

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	: At Tuen M	lun Area	38				Client:	Penta-C	cean Con	struction	Co., Ltd.	Job No.:		4494.1	is 9			
Date of Sa	impling :	10/09/2004	4		Weather	r Conditio	on:	Cloudy			Ambie	t Tempera	ture,°C:	27			Tide Stat	e:	Mid-Flo	<u>od</u>	
Station		Sea Condition	Overall Depth, m	Sampling Depth,m	Tempera a	ature, °C	Dissolv a		en, mg/L Average	Dissolv a	ed Oxyç	en, % Average	Salinity,	ppt b	Turbidity a	, NTU b	Average	Suspen		Depth	Remarks
FM1 S				1.0											2.40			4.5		Average	
FM1 M		Medium		1.0	80,000	28.2	8.20	8.21	7.87	1	99.2	94.4			20500000	2.61		15	500		
	18:40	wave	1 1811	9.0	26.8	26.8	7.63	7.44		90.1	89.3		29.6	29.6	1.59	1.48	2.27	12	11	12.5	
FM1 B				17.0	25.1	25.1	5.33	5.11	5.22	73.2	72.4	72.8	30.4	30.5	2.25	2.57		13	12		
FM2 S				1.0	28.0	28.0	7.99	8.04		97.8	98.1	88.5	30.0	30.1	2.41	2.14		12	10		
FM2 M	18:25	Medium wave	1811	9.0	27.1	27.1	5.67	5.88	6.90	78.6	79.3		30.5	30.7	2.28	2.17	2.43	11	10	11.0	
FM2 B				17.0	24.9	24.9	5.03	5.31	5.17	71.8	73.0	72.4	30.9	30.8	3.05	2.52		12	11		
FC1 S				1.0	28.0	28.0	7.09	7.40		87.9	89.1		29.8	29.6	3.20	3.45		14	15		
FC1 M	19:00	Medium wave	1 2211	11.0	27.0	27.0	8.11	7.98	7.65	98.2	98.0	93.3	30.7	30.7	3.24	3.15	3.08	11	11	12.0	
FC1 B		, marc		21.0	25.1	25.1	5.46	5.69	5.58	74.8	75.1	75.0	30.6	30.6	2.67	2.74		11	10		
C2 S				1.0	28.0	28.0	8.45	8.28		99.9	99.8		30.1	30.1	3.21	3.16		16	14		
FC2 M	18:15	Medium wave	1 1811	9.0	27.1	27.1	7.16	6.89	7.70	88.2	86.3	93.6	30.2	30.2	2.89	2.64	2.93	12	12	13.5	
C2 B		******		17.0	25.4	25.4	5.94	5.90	5.92	81.1	80.1	80.6	30.1	30.2	2.81	2.88		14	13		
	with singl							<u>I</u>													
talic data	with double	underline	indicates a	n exceeda.	nce to Lii	mit Level										3 0		<i>y</i> 8			
Equipmen	t used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	/leter:		EM	2365		Calibrat	ion Check:	4.48,	46.6,	452	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
		Thermome	eter:		EM	961										<u> </u>					

Project: C	ontract No.	CV/2002/1	3 Fill Bank	At Tuen M	lun Area	<u>38</u>				Client:	Penta-C	cean Con	struction	Co., Ltd.	Job No.:		4494.1				
Date of Sa	ampling :	10/09/2004	1		Weather	Conditio	n:	Cloudy			Ambier	nt Tempera	ture,°C:	27			Tide State	9:	Mid-Ebl	<u>)</u>	
Station		Sea		Sampling	Tempera					Dissolv			Salinity,		Turbidity			Suspen		ds, mg/L	Remarks
		Condition	Depth, m	Depth,m	а	b	а	ь	Average	а	ь	Average	а	b	а	b	Average			Depth Average	
FM1 S				1.0	28.1	28.1	8.45	8.47		99.9	98.1		29.6	29.6	1.69	1.84		12	-11		
FM1 M	10:30	Medium wave	17.0	8.5	26.3	26.3	6.55	6.83	7.58	83.1	84.8	91.5	29.7	29.8	1.62	1.71	1.73	13	12	12.2	
FM1 B		wave		16.0	25.0	25.0	5.81	5.78	5.80	78.3	78.0	78.2	30.5	30.8	1.65	1.89		13	12		
FM2 S				1.0	28.2	28.2	8.11	7.03		99.1	94.9		30.0	29.8	2.43	2.13		12	11		
FM2 M	10:40	Medium wave	17.0	8.5	26.4	26.4	5.91	6.14	6.80	79.9	80.1	88.5	30.2	29.9	1.51	1.54	1.82	11	11	12.3	
FM2 B		, wave		16.0	24.9	24.8	5.57	5.59	5.58	75.8	74.3	75.1	31.1	31.0	1.67	1.65		14	15		
FC1 S				1.0	28.0	28.0	7.48	7.70		95.1	95.8		29.3	29.2	2.14	2.05		17	14		
FC1 M	10:15	Medium wave	21.0	10.5	26.0	26.0	5.71	5.70	6.65	76.6	76.4	86.0	30.5	30.5	1.95	1.70	1.95	12	14	13.8	
FC1 B				20.0	24.6	24.6	5.33	5.54	5.44	74.4	76.2	75.3	30.7	30.7	2.06	1.80		13	13		
FC2 S				1.0	28.1	28.1	8.04	7.82		98.9	97.3		29.9	29.8	2.14	2.47		15	17		
FC2 M	11:00	Medium wave	17.0	8.5	26.2	26.2	7.19	6.93	7.50	91.8	88.2	94.1	30.7	30.7	1.77	1.87	2.13	10	11	13.0	
FC2 B				16.0	25.1	25.1	5.03	5.11	5.07	73.7	73.9	73.8	30.8	30.8	2.40	2.10		13	12		
Bold data	with singl	le underlin	ne indicati	es an exc	edance	to Actio	n Leve	ı													
	with double																				
Equipmen	t used:	Dissolved	Oxygen Mi	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	1eter:		EM	2365		Calibrat	ion Check:	4.51,	45.5,	459	NTU				Checked	Ву:			
		Salinity Me	eter:		ЕМ	3694		Calibrat	ion Check:	58.8	mS						Date:				
9		Thermome	ter:		EM	961												<u> </u>			

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen N	1un Area	<u>38</u>				Client:	Penta-C	cean Cons	struction	Co., Ltd.	Job No.:	9 33	4494.1	S			
Date of Sa	impling :	13/09/2004	4		Weather	Conditio	n:	Sunny			Ambier	nt Tempera	ture,°C:	28			Tide State	B:	Mid-Flo	<u>od</u>	
Station	Time	Sea	Overall	Sampling	Tempera			ed Oxyg		Dissolv			Salinity,		Turbidity			Suspen		ds, mg/L	Remarks
		Condition	Depth, m	Depth,m	а	b	а	b	Average	а	b	Average	а	b	а	b	Average			Depth Average	
FM1 S				1.0	28.9	28.9	8.33	7.98		107.4	96.5		25.4	25.4	7.77	8.64		17	15		
FM1 M	19:55	Medium wave	18.0	9.0	27.4	27.4	6.54	6.56	7.35	76.1	76.4	89.1	25.5	25.5	12.30	12.00	10.94	17	20	18.3	
FM1 B				17.0	25.6	25.6	5.93	5.82	5.88	72.9	72.8	72.9	25.6	25.6	12.60	12.30		19	22		
FM2 S				1.0	28.8	28.8	7.11	7.40		84.9	89.1		25.2	25.2	9.47	8.42		14	15		
FM2 M	19:40	Medium wave	18.0	9.0	27.3	27.3	7.44	7.71	7.42	90.5	94.0	89.6	25.5	25.5	12.40	11.50	9.93	25	23	23.2	
FM2 B				17.0	25.4	25.4	5.99	6.21	6.10	73.3	74.4	73.9	25.6	25.6	8.66	9.12		32	30		
FC1 S				1.0	28.7	28.7	7.74	7.76		94.2	94.4		25.0	25.0	8.41	9.24		16	18		
FC1 M	20:15	Medium wave	22.0	11.0	27.0	27.0	7.51	7.33	7.59	91.2	86.5	91.6	25.5	25.5	12.20	12.70	11.46	28	27	22.2	
FC1 B		l liaio	8	21.0	25.1	25.1	6.92	6.67	6.80	79.6	76.4	78.0	26.0	26.0	13.70	12.49		24	20		
FC2 S				1.0	28.8	28.8	8.24	8.49		106.2	108.3		25.1	25.2	7.57	7.82		17	17		
FC2 M	19:15	Medium wave	18.0	9.0	27.2	27.2	7.26	7.06	7.76	82.1	80.8	94.4	25.6	25.6	10.10	9.77	10.16	18	21	20.5	
FC2 B		wave		17.0	25.4	25.4	6.29	5.95	6.12	74.8	73.0	73.9	26.4	26.3	12.50	13.20		24	26		
Rold data	with sing	la undarlir	o indicate	ne an ave	nadanca	to Actio	n Lava														
Italic data	with double	underline	indicates a	n exceeda.	nce to Lir	nit Level	III LEVE														
Equipmen	t used:	Dissolved	i Oxygen Mi	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	leter:		EM	2365		Calibrat	ion Check:	4.56,	45.9,	464	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
<i>2</i>	j.	Thermome	ter:		ET	961										2 6. 7 8					

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen N	1un Area	<u>38</u>				Client:	Penta-C	cean Con	struction	Co., Ltd.	Job No.:		4494.1				
Date of Sa	mpling :	13/09/2004	1		Weather	r Conditio	n:	Sunny			Ambier	t Tempera	ature,°C:	28			Tide Stat	9:	Mid-Ebb	Į.	
Station	Time	Sea	Overall	Sampling				ed Oxyg		Dissolv	ed Oxyg Lb	en, % Average	Salinity,	ppt b	Turbidity	-	Average	Susper		ds, mg/L Depth	Remarks
5	-5	Condition	Depth, m	Depth,m	а	ь	а	U	Average	а	D	Average	а	U	а	b	Average			Average	
FM1 S				1.0	28.7	28.7	8.26	7.97		103.4	98.3	00.0	24.4	24.4	6.30	6.89		15	14		
FM1 M	12:45	Medium wave	17.0	8.5	27.4	27.4	6.90	7.21	7.59	88.2	94.7	96.2	25.8	25.9	11.90	11.20	10.32	19	21	19.7	,
FM1 B		VIV.000000		16.0	25.2	25.2	5.99	6.18	6.09	78.5	82.3	80.4	26.3	26.1	12.20	13.40		23	26		-
FM2 S				1.0	28.6	28.6	7.84	8.05		97.2	100.6		25.0	25.0	7.88	7.40		15	15		
FM2 M	12:55	Medium wave	17.0	8.5	27.5	27.5	6.17	6.46	7.13	82.1	85.6	91.4	25.2	25.3	6.25	6.33	6.44	16	18	17.2	2
FM2 B		91998301		16.0	25.3	25.3	6.03	6.05	6.04	80.1	80.5	80.3	25.9	26.0	5.60	5.17		20	19		
FC1 S				1.0	28.8	28.8	8.19	8.44	1	102.6	104.9	404.0	25.9	25.9	8.02	9.21		16	14		
FC1 M	12:30	Medium wave	21.0	10.5	27.4	27.4	7.54	7.89	8.02	97.9	98.4	101.0	26.2	26.4	15.10	15.40	13.41	24	24	21.8	3
FC1 B		25.0700.650		20.0	24.8	24.8	7.12	7.15	7.14	93.5	93.7	93.6	26.3	26.3	16.10	16.60		29	24		
FC2 S				1.0	28.7	28.7	7.86	7.79		97.3	96.5	96.2	26.0	26.0	9.85	9.60		16	18		
FC2 M	13:15	Medium wave	17.0	8.5	27.6	27.6	7.58	7.32	7.64	95.8	95.2	96.2	26.1	26.1	11.70	11.50	12.74	16	16	20.0)
FC2 B		25.0700.070		16.0	25.1	25.1	7.01	7.03	7.02	90.1	90.4	90.3	26.4	26.4	16.30	17.50		28	26		
Bold data	with singl	e underlir	ne indicati	es an exc	eedance	to Actio	n Leve	ı													
	with double																	, r			
Equipmen	used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	tion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	1eter:		EM	2365		Calibrat	tion Check:	4.58,	45.0,	462	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	tion Check:	58.8	mS						Date:				
j.		Thermome	ter:		ET	961								(c) (c)		<u> </u>		9 9 9 9			

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen N	lun Area	<u>38</u>				Client:	Penta-C	cean Con	struction	Co., Ltd.	Job No.:		4494.1	8			
Date of Sa	impling :	16/09/2004	1		Weather	Conditio	n:	Sunny			Ambie	nt Tempera	ature,°C:	29			Tide State	9:	Mid-Flo	<u>iod</u>	
Station		Sea		Sampling						Dissolv			Salinity,		Turbidity			Susper	nded Sol	ids, mg/L	Remarks
		Condition	Depth, m	Depth,m	а	ь	а	Ь	Average	а	b	Average	а	b	а	b	Average			Depth Average	
FM1 S				1.0	28.5	28.5	8.26	8.13	1	99.2	98.9	94.5	26.2	26.3	6.50	6.59		18	19		
FM1 M	08:00	Small wave	1811	9.0	26.2	26.2	7.60	7.56	7.89	90.2	89.8		27.8	27.8	7.48	7.48	6.33	19	21	27.8	
FM1 B		V. V		17.0	25.6	25.6	5.39	5.56	5.48	73.3	74.8	74.1	29.0	29.1	4.93	4.98		46	44		
FM2 S				1.0	28.5	28.6	8.41	8.14	1	99.8	98.9		27.0	27.1	7.65	7.46		18	20		
FM2 M	07:40	Small wave	1811	9.0	26.4	26.4	6.98	6.69	7.56	84.8	83.3	91.7	28.5	28.7	6.65	6.81	7.16	20	20	26.3	
FM2 B		0.000.00		17.0	25.5	25.5	5.02	5.31	5.17	70.2	73.0	71.6	29.4	29.4	7.31	7.08		40	40		
FC1 S				1.0	28.4	28.4	7.99	7.82		94.3	93.9		25.2	25.2	7.39	7.40		20	19		
FC1 M	08:20	Small wave	1 2211	11.0	26.1	26.1	6.20	5.94	6.99	80.8	78.1	86.8	26.9	26.9	8.94	9.32	7.40	19	20	24.0	
FC1 B		31000.5		21.0	24.4	24.4	5.13	5.24	5.19	71.4	72.7	72.1	28.5	28.5	5.75	5.62		36	30		
FC2 S				1.0	28.6	28.6	8.20	8.03		99.0	98.1		26.5	26.5	5.11	5.72		19	20		
FC2 M	07:30	Small wave	1811	9.0	26.3	26.4	6.85	6.67	7.44	83.9	83.2	91.1	28.9	29.0	6.59	6.39	6.54	24	20	27.7	
FC2 B		31,81.5		17.0	25.6	25.6	5.43	5.56	5.50	74.0	74.8	74.4	29.1	29.1	7.38	8.05		39	44		
Bold data	with singl	e underlin	ne indicato	es an exc	eedance	to Actio	n Leve	I													
	with double							_													
Equipmen	t used:	Dissolved	Oxygen M	eter:	ЕМ	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity M	1eter:		EM	2365		Calibrat	ion Check:	4.49,	44.8,	453	NTU				Checked	Ву:			
		Salinity Mo	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
2 2	9	Thermome	ter:		ET	961												2 S			

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	: At Tuen M	lun Area	38				Client:	Penta-C	cean Con	struction	Co., Ltd.	Job No.:		4494.1	is 9			
Date of Sa	mpling :	16/09/2004	4		Weather	r Conditio	on:	Sunny			Ambie	t Tempera	ture,°C:	29			Tide State	e:	Mid-Ebb	<u>)</u>	
Station		Sea Condition	Overall Denth m	Sampling Denth m	Tempera a	ature, °C	Dissolve a		en, mg/L Average	Dissolv a	ed Охуц Ь	jen, % Average	Salinity,	ppt b	Turbidity a	, NTU b	Average	Suspen		ds, mg/L Depth	Remarks
		Condition	Bepin, iii	Берип,пп	ű		u		rwerage	u		, werage	-		u u		7 Wordge	9 9		Average	
FM1 S				1.0	28.5	28.5	8.28	8.03	7.46	99.5	98.3	92.1	25.5	25.5	8.00	8.26		18	18		
FM1 M	14:45	Small wave	1 1/11	8.5	26.4	26.4	6.87	6.66		86.4	84.1		27.2	27.2	6.74	5.90	8.04	23	24	20.2	
M1 B				16.0	25.5	25.5	5.44	5.57	5.51	75.6	78.4	77.0	28.3	28.4	9.92	9.40		20	18		
M2 S				1.0	28.6	28.6	7.98	7.83		97.7	96.6		26.0	26.1	8.24	7.69		18	17		
M2 M	15:05	Small wave	1 1/11	8.5	26.3	26.3	6.30	5.95	7.02	82.0	80.9	89.3	27.3	27.5	6.28	6.73	6.94	21	19	18.5	
M2 B		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		16.0	25.6	25.6	5.14	5.31	5.23	72.9	73.2	73.1	28.5	28.5	6.17	6.53		18	18		
FC1 S				1.0	28.6	28.6	8.46	8.27	7.70	99.8	99.4		25.3	25.4	6.80	7.17		20	18		
FC1 M	14:30	Small wave	1 21.11	10.5	26.2	26.2	7.17	6.90	7.70	88.4	86.7	93.6	27.0	27.1	7.10	6.88	7.69	21	21	19.3	
C1 B		**********		20.0	24.3	24.3	5.95	5.91	5.93	80.8	80.4	80.6	27.9	27.8	9.21	8.95		19	17		
C2 S				1.0	28.6	28.7	8.21	8.20		99.2	99.1		25.5	25.6	7.30	6.96		16	17		
C2 M	15:20	Small wave	1 1/11	8.5	26.4	26.4	7.46	7.66	7.88	89.4	90.3	94.5	27.2	27.2	7.22	6.93	7.82	23	20	19.2	
C2 B				16.0	25.3	25.3	5.34	5.17	5.26	73.3	72.7	73.0	28.9	28.9	9.40	9.12		18	21		
Bold data	with sing	le underlir	ne indicat	es an exc	edance	to Actio	n Leve														
talic data	with double	underline .	indicates a	n exceeda	nce to Lii	mit Level										<i>y y</i>					
Equipment	used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	Лeter:		EM	2365		Calibrat	ion Check:	4.56,	45.5,	457	NTU				Checked	Ву:			
		Salinity M	eter:		ЕМ	3694		Calibrat	ion Check:	58.8	mS						Date:				
		Thermome	eter:		ET	961															

Project: C	ontract No.	CV/2002/1	3 Fill Bank	At Tuen N	1un Area	<u>38</u>				Client:	Penta-C	cean Con	struction	Co., Ltd.	Job No.:		4494.1	15			
Date of Sa	impling :	18/09/2004	1		Weather	r Conditio	on:	Cloudy			Ambier	nt Tempera	ature,°C:	28			Tide State	e:	Mid-Flo	<u>od</u>	
Station	Time	Sea	Overall	Sampling							ed Oxyg		Salinity,		Turbidity			Suspen			Remarks
		Condition	Depth, m	Depth,m	а	b	а	b	Average	а	b	Average	а	b	а	b	Average			Depth Average	
FM1 S				1.0	28.1	28.1	7.73	8.01		95.5	97.0		30.3	30.2	5.05	5.55		12	12		
FM1 M	09:45	Medium wave	18.0	9.0	26.8	26.8	5.93	6.20	6.97	79.1	81.8	88.4	30.5	30.4	6.86	6.82	7.60	11	12	13.3	
FM1 B				17.0	25.9	25.9	5.20	5.05	5.13	71.0	70.9	71.0	29.4	29.4	11.00	10.30		15	18		
FM2 S				1.0	28.0	28.0	6.98	7.14		89.6	91.0		29.9	29.7	7.00	7.57		11	11		
FM2 M	09:25	Medium wave	18.0	9.0	26.9	26.9	8.42	8.17	7.68	99.8	97.9	94.6	29.9	30.0	8.03	7.84	7.76	11	13	14.5	
FM2 B				17.0	25.8	25.8	5.34	5.55	5.45	74.2	76.0	75.1	29.9	30.0	8.35	7.78		21	20		
FC1 S				1.0	28.2	28.2	7.98	7.71		96.7	95.3	1	29.8	29.8	5.02	4.34		16	18		
FC1 M	10:00	Medium wave	23.0	11.5	25.9	25.9	6.56	6.85	7.28	86.7	88.1	91.7	29.8	30.0	8.45	8.79	7.01	14	15	15.8	
FC1 B		91133000011		22.0	24.6	24.6	5.48	5.70	5.59	75.4	77.1	76.3	30.0	29.9	8.06	7.40		17	15		
FC2 S				1.0	28.2	28.1	8.10	7.99		97.3	96.8		29.7	29.8	5.83	5.27		11	12		
FC2 M	09:10	Medium wave	18.0	9.0	26.7	26.7	7.25	7.26	7.65	92.2	92.3	94.7	29.9	30.0	7.68	8.45	7.63	13	15	13.5	
FC2 B				17.0	25.8	25.8	6.11	5.92	6.02	80.4	79.0	79.7	30.1	30.1	8.83	9.72		14	16		
Bold data	with singl	le underlir	ne indicate	es an exc	eedance	to Actio	n Level														
	with double																				
Equipmen	t used:	Dissolved	Oxygen Me	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	1eter:		EM	2365		Calibrat	ion Check:	4.64,	46.1,	452	NTU				Checked	Ву:			
		Salinity M	eter:		ЕМ	3694		Calibrat	ion Check:	58.8	mS						Date:				
		Thermome	ter:		ET	961															

Project: C	ontract No.	CV/2002/1:	3 Fill Bank	At Tuen M	lun Area (<u>38</u>				Client: J	Penta-C	cean Con	struction	Co., Ltd.	Job No.:		4494.1	ja .			
Date of Sa	mpling :	18/09/2004	1		Weather	Conditio	n:	Cloudy			Ambie	nt Tempera	ture,°C:	27			Tide State	e:	Mid-Ebb	1	
Station		Sea Condition	Overall Depth, m	Sampling Depth,m	Tempera a	ture, °C	Dissolv a	ed Oxyg	en, mg/L Average	Dissolvi a	ed Oxyg	gen, % Average	Salinity,	ppt b	Turbidity a		Average	Suspeni		ds, mg/L Depth	Remarks
									, in the second											Average	
FM1 S				1.0	27.9	27.9	6.54	6.83	7.30	85.4	87.3	91.6	30.0	30.1	8.69	8.39	2	13	13		
FM1 M	15:30	Medium wa ve	17.0	8.5	26.5	26.5	7.91	7.90		96.8	96.7		30.1	29.9	8.26	8.06	9.35	15	15	15.8	
FM1 B				16.0	25.7	25.7	5.66	5.78	5.72	76.4	78.6	77.5	29.8	29.8	11.30	11.40		18	21		
FM2 S				1.0	27.8	27.8	8.01	7.93		97.1	96.7		29.8	29.9	8.41	8.00		13	12		
FM2 M	15:50	Medium wa ve	17.0	8.5	26.4	26.4	6.97	6.69	7.40	89.1	86.2	92.3	30.0	29.9	8.64	9.22	8.61	15	13	13.2	
FM2 B		199230133371		16.0	25.8	25.8	6.02	5.84	5.93	82.8	79.7	81.3	29.8	29.8	8.92	8.47		13	13		
FC1 S				1.0	27.9	27.9	8.18	8.45		98.0	99.8		29.1	30.0	8.55	8.57		18	16		
FC1 M	15:15	Medium wa ve	22.0	11.0	25.7	25.7	7.49	7.62	7.94	93.9	94.4	96.5	30.0	29.9	7.92	8.45	8.90	13	11	15.0	
FC1 B				21.0	24.5	24.5	5.93	6.26	6.10	80.2	84.6	82.4	29.7	29.8	9.28	10.60	8	16	16		
FC2 S				1.0	28.0	28.0	7.67	7.69		94.6	94.8		29.7	29.9	5.75	6.10		18	15		
FC2 M	16:10	Medium wa ve	17.0	8.5	26.3	26.3	8.10	7.96	7.86	97.8	96.8	96.0	29.8	30.1	8.39	7.72	8.29	13	11	17.5	
FC2 B		******		16.0	25.8	25.8	6.33	6.58	6.46	85.1	85.7	85.4	29.1	29.2	11.40	10.40		24	24		
Bold data	with singl	e underlin	ne indicate	es an eyro	edance	to Actio	n I eve	ı													
	with double																				
Equipmen	used:	Dissolved	Oxygen Mi	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
3		Turbidity M	1eter:		EM	2365		Calibrat	ion Check:	4.54,	46.7,	450	NTU				Checked	Ву:			
		Salinity Me	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
	0	Thermome	ter:		ET	961															

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen M	1un Area	<u>38</u>				Client:	Penta-C	cean Cons	struction	Co., Ltd.	Job No.:		4494.1				
Date of Sa	impling :	20/09/2004	4		Weather	Conditio	n:	Sunny			Ambier	nt Tempera	ture,°C:	30			Tide State	9:	Mid-Flo	<u>od</u>	
Station	Time	Sea	Overall	Sampling	Tempera			ed Oxyg		Dissolv			Salinity,		Turbidity			Suspen		ds, mg/L	Remarks
		Condition	Depth, m	Depth,m	а	b	а	b	Average	а	b	Average	а	ь	а	b	Average			Depth Average	
FM1 S				1.0	26.4	26.4	7.96	8.22		104.9	110.4		29.9	29.9	2.98	3.06		13	12		
FM1 M	11:50	Small wave	18.0	9.0	25.8	25.7	7.46	7.67	7.83	101.5	102.9	104.9	29.7	29.7	4.57	4.89	3.90	16	15	13.3	
FM1 B		577763577		17.0	24.4	24.4	6.53	6.29	6.41	96.3	91.2	93.8	29.6	29.7	3.78	4.09		11	13		
FM2 S				1.0	26.5	26.5	8.33	8.28		133.7	131.6		29.5	29.5	2.97	3.01		9	9		
FM2 M	11:30	Small wave	18.0	9.0	25.7	25.7	7.87	7.58	8.02	104.3	101.9	117.9	29.7	29.8	3.42	3.21	3.30	12	14	10.2	
FM2 B		l liaio		17.0	24.5	24.5	6.54	6.60	6.57	96.5	97.1	96.8	29.8	29.8	3.45	3.71		8	9		
FC1 S				1.0	26.3	26.3	7.78	7.80		103.5	103.8		29.5	29.4	2.87	2.74		9	10		
FC1 M	12:10	Small wave	23.0	11.5	25.6	25.6	7.61	7.44	7.66	102.6	101.4	102.8	29.7	29.5	4.45	4.39	3.73	11	10	9.2	
FC1 B		l liaio		22.0	24.1	24.1	6.51	6.33	6.42	96.1	92.9	94.5	29.8	29.7	3.86	4.06		8	7		
FC2 S				1.0	26.5	26.5	8.18	8.05		129.5	128.2		29.3	29.3	3.11	3.15		15	13		
FC2 M	11:15	Small wave	18.0	9.0	25.9	25.9	7.89	7.82	7.99	104.5	103.8	116.5	29.5	29.5	4.95	4.79	3.73	10	12	11.3	
FC2 B		wave		17.0	24.3	24.3	6.78	6.49	6.64	99.8	96.0	97.9	29.6	29.7	3.23	3.14		10	8		
Rold data	with sing	le underlir	o indicate	ne an ave	nadanca	to Actio	n Lava														
Italic data	with double	underline	indicates a	n exceeda	nce to Lir	nit Level	III LEVE														
Equipmen	t used:	Dissolved	Oxygen Mi	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	/leter:		EM	2365		Calibrat	ion Check:	4.51,	45.8,	452	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
<i>2</i>		Thermome	eter:		ET	961										2 6. 7 5		9 6			

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen N	1un Area	<u>38</u>				Client:	Penta-C	cean Con	struction	Co., Ltd.	Job No.:		4494.1				
Date of Sa	impling :	20/09/2004	4		Weather	Conditio	n:	Sunny			Ambier	nt Tempera	ture,°C:	29			Tide State	9:	Mid-Ebb	<u> </u>	
Station	Time	Sea	Overall	Sampling	Tempera		Dissolve	ed Oxyg		Dissolv			Salinity,		Turbidity			Suspen			Remarks
		Condition	Depth, m	Depth,m	а	b	а	b	Average	а	b	Average	а	ь	а	b	Average			Depth Average	
M1 S				1.0	26.3	26.3	8.46	8.20		135.9	130.5		29.5	29.4	3.03	2.83		13	13		
M1 M	17:10	Small wave	1 1/11	8.5	25.8	25.8	7.86	7.85	8.09	126.4	126.3	129.8	29.7	29.7	3.76	3.59	3.34	10	9	10.7	
M1 B		wave		16.0	24.4	24.4	6.21	6.49	6.35	95.2	98.0	96.6	29.8	29.8	3.30	3.53		9	10		
M2 S				1.0	26.4	26.4	8.40	8.25		135.2	130.7		29.6	29.6	4.99	5.05		10	9		
M2 M	17:30	Small wave	1 1/11	8.5	25.6	25.5	7.56	7.39	7.90	123.8	121.7	127.9	29.5	29.5	3.10	3.34	3.68	9	9	9.2	
M2 B		wave		16.0	24.3	24.2	6.22	6.08	6.15	95.3	93.3	94.3	29.4	29.4	2.82	2.78		9	9		
C1 S				1.0	26.5	26.5	8.11	8.10		129.2	129.1	405.4	29.5	29.4	3.52	3.26		10	8		
C1 M	16:55	Small wave	1 21.11	10.5	25.1	25.1	7.23	7.46	7.73	120.8	122.3	125.4	29.6	29.6	3.50	3.07	3.24	10	9	9.3	
C1 B				20.0	24.0	24.1	6.35	6.39	6.37	96.1	96.4	96.3	29.7	29.7	3.12	2.97		10	9		
C2 S				1.0	26.4	26.4	8.26	8.31	7.00	131.0	132.6		29.3	29.4	2.67	2.70		7	9		
C2 M	17:45	Small wave	1 1/11	8.5	25.3	25.3	7.19	7.42	7.80	120.1	122.0	126.4	29.5	29.5	4.38	3.94	3.71	8	10	9.5	
C2 B				16.0	24.2	24.4	6.45	6.67	6.56	97.7	99.1	98.4	29.6	29.6	4.39	4.20		11	12		
	with sing																				
talic data	with double	<u>underline</u>	indicates a	n exceeda	nce to Lii	nit Level										v 1		<i>y</i> 5			
quipmen	t used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	/leter:		EM	2365		Calibrat	ion Check:	4.50,	45.2,	463	NTU				Checked	Ву:			
		Salinity M	eter:		ЕМ	3694		Calibrat	ion Check:	58.8	mS						Date:				
	2	Thermome	eter:		ET	961															

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	: At Tuen M	lun Area	38				Client:	Penta-C	cean Con	struction	Co., Ltd.	Job No.:		4494.1	is 9			
Date of Sa	mpling :	22/09/2004	4		Weather	r Conditio	on:	Sunny			Ambier	t Tempera	ture,°C:	30			Tide State	e:	Mid-Flo	<u>od</u>	
Station		Sea Condition	Overall Depth, m	Sampling Depth,m	Tempera a	ature, °C b	Dissolv a		en, mg/L Average	Dissolv a	ed Oxyg b	jen, % Average	Salinity,	ppt b	Turbidity a	, NTU b	Average	Suspen		Depth	Remarks
FM1 S				- All					22 (20 0					363		T	Average	
				1.0	29.4	29.4	5.77	5.49	5.41	83.7	79.6	78.5	29.9	29.9	2.06	2.38		13	12		
FM1 M	19:50	Small wave	1 1811	9.0	26.5	26.5	5.18	5.20	***************************************	75.2	75.6	1,000,000	30.1	30.1	2.71	2.74	2.92	9	11	11.8	
FM1 B				17.0	26.6	26.6	5.73	5.86	5.80	82.9	85.7	84.3	30.3	30.2	3.60	4.04		13	13		
FM2 S				1.0	29.5	29.5	6.10	6.22		90.1	91.6		30.0	30.0	2.59	2.37		11	10		
FM2 M	19:35	Small wave	1 1811	9.0	26.6	26.6	5.88	5.93	6.03	86.0	87.4	88.8	30.4	30.5	4.25	4.45	3.45	11	12	11.2	
FM2 B		VC-770-257.		17.0	26.4	26.4	5.44	5.71	5.58	79.0	82.3	80.7	30.9	30.9	3.42	3.64		12	11		
FC1 S				1.0	29.3	29.3	7.22	7.48		95.4	99.5		29.2	29.3	2.07	1.98		13	13		
FC1 M	20:15	Small wave	1 2211	11.0	27.1	27.1	6.43	6.50	6.91	93.6	94.1	95.7	29.8	29.8	3.99	4.12	2.89	10	9	12.0	
FC1 B		, marc		21.0	25.9	25.9	7.81	8.13	7.97	101.4	109.4	105.4	30.0	30.0	2.52	2.68		13	14		
FC2 S				1.0	29.4	29.4	7.23	7.36		96.4	97.3		30.0	30.0	2.15	2.07		9	8		
FC2 M	19:15	Small wave	1 1811	9.0	26.5	26.5	6.21	6.47	6.82	91.5	93.8	94.8	30.7	30.6	2.96	3.26	3.07	12	11	11.3	
FC2 B		wave		17.0	26.3	26.4	5.39	5.10	5.25	78.6	74.5	76.6	31.0	30.9	4.10	3.86		15	13		
Bold data	with singl	le underlir	ne indicat	oe an ove	ondance	to Actic	n Lovo	ı													
	with double																				
Equipment	used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
y ett. 115		Turbidity N	∕leter:		EM	2365		Calibrat	ion Check:	4.59,	46.3,	451	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.7	mS						Date:				
		Thermome	eter:		ET	961															

Project: C	ontract No.	CV/2002/1	3 Fill Bank	At Tuen M	lun Area	<u>38</u>				Client:	Penta-C	cean Con	struction	Co., Ltd.	Job No.:		4494.1	5			
Date of Sa	ampling :	22/09/2004	1		Weather	Conditio	n:	Sunny			Ambier	nt Tempera	ature,°C:	30			Tide State	9:	Mid-Ebl	<u>)</u>	
Station	Time	Sea		Sampling	Tempera					Dissolv			Salinity,		Turbidity			Suspen			Remarks
		Condition	Depth, m	Depth,m	а	b	а	ь	Average	а	ь	Average	а	b	а	b	Average			Depth Average	
FM1 S				1.0	29.5	29.5	6.73	6.81		95.6	96.2		30.0	30.1	2.46	2.22		10	9		
FM1 M	06:45	Small wave	17.0	8.5	26.6	26.6	5.87	5.76	6.29	85.9	82.4	90.0	30.9	30.9	2.29	2.00	2.92	11	11	11.0	
FM1 B		wave	*	16.0	26.4	26.4	5.33	5.34	5.34	77.9	78.0	78.0	31.5	31.5	4.10	4.42		13	12		
FM2 S				1.0	29.5	29.5	6.42	6.59		93.5	94.7		30.0	30.0	3.07	3.52		10	11		
FM2 M	07:05	Small wave	17.0	8.5	26.7	26.7	5.49	5.36	5.97	79.3	78.2	86.4	30.8	30.7	3.68	3.46	3.17	12	12	12.3	
FM2 B		, wave		16.0	26.4	26.4	5.92	5.70	5.81	87.6	82.1	84.9	31.4	31.4	2.61	2.66		13	16		
FC1 S				1.0	29.4	29.4	7.10	7.08		96.8	96.7		29.5	29.6	2.73	3.06		9	10		
FC1 M	06:30	Small wave	21.0	10.5	26.9	26.9	6.66	6.42	6.82	95.3	93.3	95.5	30.8	30.8	3.98	4.03	3.45	14	12	12.8	
FC1 B				20.0	25.8	25.8	5.72	5.55	5.64	82.4	80.0	81.2	31.2	31.2	3.34	3.58		15	17		
FC2 S				1.0	29.4	29.4	7.37	7.51		98.2	99.8		30.2	30.2	2.67	2.60		11	9		
FC2 M	07:20	Small wave	17.0	8.5	26.6	26.6	5.98	5.99	6.71	88.0	88.1	93.5	30.9	30.9	3.60	3.37	3.44	12	12	11.5	
FC2 B				16.0	26.4	26.4	6.29	6.40	6.35	91.9	93.1	92.5	31.9	32.0	4.00	4.39		12	13		
Bold data	with singl	le underlin	e indicate	es an exc	eedance	to Actio	n Leve														
	with double																	y v			
Equipmen	t used:	Dissolved	Oxygen Me	eter:	ЕМ	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	1eter:		ЕМ	2365		Calibrat	ion Check:	4.49,	45.7,	459	NTU				Checked	Ву:			
		Salinity Me	eter:		EM	3694		Calibrat	ion Check:	58.7	mS						Date:				
j.		Thermome	ter:		ET	961												2 2 7 9			

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen M	lun Area (<u>38</u>				Client: J	⊃enta-O	cean Con	struction	Co., Ltd.	Job No.:		4494.1				
Date of Sa	mpling :	24/09/2004	1		Weather	Conditio	in:	Sunny			Ambier	t Tempera	ature,°C:	30			Tide State	9:	Mid-Flo	od_	
Station		Sea		Sampling	$\overline{}$					Dissolv			Salinity,		Turbidity			Suspen		ds, mg/L	Remarks
		Condition	Depth, m	Depth,m	а	b	а	b	Average	а	ь	Average	а	b	а	b	Average			Depth Average	
FM1 S				1.0	26.5	26.6	5.91	5.82	5.49	77.1	77.8	74.8	31.8	31.9	3.46	3.51		12	13		
FM1 M	18:05	Small wave	1811	9.0	26.4	26.4	5.10	5.11	5.49	72.6	71.7	74.8	32.2	32.1	8.68	9.17	8.55	15	15	13.2	
FM1 B		20000000		17.0	26.5	26.5	5.07	5.10	5.09	72.1	72.7	72.4	32.4	32.4	13.70	12.80		12	12		
FM2 S				1.0	27.1	27.0	5.72	5.71	5.53	76.5	76.1	75.5	32.3	32.3	7.74	7.92		13	13		
FM2 M	17:50	Small wave	1811	9.0	26.5	26.4	5.30	5.37	5.53	75.4	74.1	/5.5	32.3	32.3	11.20	10.30	9.34	16	15	13.2	
FM2 B				17.0	26.3	26.2	5.45	5.36	5.41	74.7	74.9	74.8	32.3	32.3	9.87	9.02		12	10		
FC1 S				1.0	26.9	26.8	5.50	5.46	5.42	75.8	76.1	75.5	30.8	30.9	3.81	3.64		15	18		
FC1 M	18:25	Small wave	1 2311	11.5	26.8	26.8	5.30	5.41	5.42	74.7	75.4	/5.5	32.4	32.5	7.57	7.42	6.38	16	13	15.8	
FC1 B				22.0	26.7	26.7	5.17	5.16	5.17	72.1	71.7	71.9	32.2	32.2	7.88	7.94		18	15		
FC2 S				1.0	26.5	26.5	5.69	5.65	5.65	76.2	75.1	76.1	30.9	30.9	4.31	4.15		11	9		
FC2 M	17:30	Small wave	1811	9.0	26.4	26.3	5.62	5.64		75.8	77.1	70.1	31.9	31.8	9.85	9.51	9.17	15	14	13.5	
FC2 B				17.0	26.4	26.4	5.58	5.51	5.55	74.1	73.0	73.6	32.0	32.0	13.30	13.90		15	17		
	with singl							<u>l</u>										s s			
<u>Italic data</u>	with double	underline	indicates a	n exceedar	nce to Lin	nit Level												y 80			
Equipmen	t used:	Dissolved	Oxygen Me	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	1eter:		EM	2365		Calibrat	ion Check:	4.62,	45.1,	454	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.7	mS						Date:				
3	9	Thermome	ter:		ET	961															

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	: At Tuen M	lun Area	38				Client:	Penta-C	cean Cons	struction	Co., Ltd.	Job No.:		4494.1	is 9			
Date of Sa	impling :	24/09/2004	4		Weather	r Conditio	on:	Sunny			Ambie	t Tempera	ture,°C:	29			Tide State	e:	Mid-Ebb	<u>)</u>	
Station		Sea Condition	Overall	Sampling Donth m	Tempera	ature, °C	Dissolv		en, mg/L Average	Dissolv	ed Oxyg b	jen, % Average	Salinity,	ppt b	Turbidity a	, NTU b	Average	Suspen		ds, mg/L Depth	Remarks
	3	Condition	Бериі, ііі	Берин, пт	а	U	а		Average	а		Average	а		а	U	Average	9		Average	
FM1 S				1.0	26.5	26.5	5.06	5.02	4.85	73.6	74.2	71.2	30.2	30.2	4.59	5.04		11	13		
FM1 M	10:20	Small wave	1 1/11	8.5	26.3	26.4	4.67	4.66		68.3	68.7		30.7	30.7	7.90	7.41	7.67	14	17	16.8	
FM1 B				16.0	26.3	26.5	4.69	4.67	4.68	66.8	66.5	66.7	30.5	30.4	10.30	10.80		24	22		
FM2 S				1.0	26.2	26.2	5.28	5.28	5.00	78.6	78.3	73.7	31.2	31.2	6.96	6.50		12	10		
FM2 M	10:35	Small wave	1 1/11	8.5	26.3	26.3	4.71	4.71	5.00	68.9	68.8		30.4	30.6	7.94	7.24	8.12	13	14	18.0	
FM2 B				16.0	26.3	26.3	5.12	5.14	5.13	68.8	68.9	68.9	31.3	31.1	10.10	10.00		29	30		
FC1 S				1.0	27.1	27.1	7.17	7.12		87.7	88.4		29.9	30.1	3.64	4.49		14	14		
FC1 M	10:00	Small wave	1 21.11	10.5	26.8	26.8	5.11	5.10	6.13	76.7	77.6	82.6	30.5	30.8	11.30	10.60	7.21	19	17	16.0	
FC1 B		***************************************		20.0	26.6	26.5	5.29	5.26	5.28	72.5	71.1	71.8	30.8	31.0	6.27	6.93		17	15		
FC2 S				1.0	26.4	26.4	5.14	5.17	4.00	76.0	76.3	71.1	30.4	30.8	6.07	6.79		15	14		
FC2 M	11:00	Small wave	1 1811	9.0	26.3	26.3	4.49	4.49	4.82	66.0	66.1	10.000	30.6	31.0	7.00	6.47	7.79	21	22	21.0	
FC2 B				17.0	26.2	26.2	4.65	4.64	4.65	66.9	66.5	66.7	30.8	31.2	10.00	10.40		28	26		
Bold data	with singl	e underlir	ne indicat	es an exc	eedance	to Actio	on Leve	<u>l</u>													
<u>Italic data</u>	with double	underline	indicates a	n exceeda.	nce to Lii	mit Level						0				3 1		J 10			
Equipmen	t used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	/leter:		EM	2365		Calibrat	ion Check:	4.47,	45.0,	455	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
		Thermome	eter:		ET	961												3 S			

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen M	lun Area	<u>38</u>				Client:	Penta-C	cean Con	struction	Co., Ltd.	Job No.:		4494.1	S			
Date of Sa	impling :	28/09/2004	4		Weather	Conditio	on:	Sunny			Ambier	nt Tempera	ature,ºC:	30			Tide Stat	e:	Mid-Flo	<u>od</u>	
Station	Time	Sea	Overall	Sampling						Dissolv			Salinity,		Turbidity			Suspen			Remarks
		Condition	Depth, m	Depth,m	а	b	а	ь	Average	а	b	Average	а	b	а	b	Average			Depth Average	
FM1 S				1.0	27.6	27.9	6.17	6.10		80.2	81.7	79.9	32.5	32.8	23.10	22.40		29	32		
FM1 M	07:00	Small wave	1811	9.0	27.1	27.1	5.90	5.72	5.97	78.4	79.1		34.2	34.3	24.90	22.50	23.57	35	38	35.0	
FM1 B		***********		17.0	26.4	26.4	5.14	5.24	5.19	76.1	75.7	75.9	34.2	34.3	23.20	25.30		36	40		
FM2 S				1.0	28.4	28.6	5.96	5.86		79.6	78.4		33.4	33.2	21.20	21.90		35	38		
FM2 M	06:50	Small wave	1811	9.0	27.8	27.8	5.36	5.38	5.64	75.2	74.7	77.0	34.1	34.0	28.30	29.80	32.35	40	44	48.7	
FM2 B				17.0	27.0	27.0	5.19	5.09	5.14	69.5	68.6	69.1	34.1	34.1	48.10	44.80		64	71		
FC1 S				1.0	27.2	27.3	6.23	6.14		81.7	82.5		32.7	32.6	18.00	17.00		22	19		
FC1 M	07:20	Small wave	1 2311	11.5	26.8	26.8	5.72	5.86	5.99	76.9	75.4	79.1	33.0	33.0	28.10	26.20	24.37	35	39	33.0	
FC1 B				22.0	26.5	26.5	5.21	5.26	5.24	70.2	70.9	70.6	34.5	34.6	28.40	28.50		40	43		
FC2 S				1.0	28.1	28.1	6.01	5.86		79.5	78.7		34.1	34.2	21.60	22.40		28	30		
FC2 M	06:35	Small wave	1811	9.0	27.3	27.4	5.86	5.87	5.90	78.4	76.7	78.3	34.1	34.0	28.00	26.80	28.93	36	39	41.7	
FC2 B				17.0	27.3	27.2	5.87	5.82	5.85	76.5	76.9	76.7	34.1	34.3	36.30	38.50		59	58		
Bold data	with singl	le underlir	ne indicat	es an exc	eedance	to Actio	n Leve														
	with double															,					
Equipmen	t used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity M	/leter:		EM	2365		Calibrat	ion Check:	4.51,	45.2,	452	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
		Thermome	eter:		ET	961															

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	: At Tuen M	lun Area	38				Client:	Penta-C	cean Con	struction	Co., Ltd.	Job No.:		4494.1	is 9			
Date of Sa	impling :	28/09/2004	4		Weather	r Conditio	on:	Sunny			Ambier	t Tempera	ture,°C:	31			Tide Stat	e:	Mid-Ebl	<u>)</u>	
Station		Sea Condition	Overall	Sampling	Tempera	ature, °C			en, mg/L Average	Dissolv a		jen, % Average	Salinity,	ppt b	Turbidity a	, NTU b	Average	Suspen		ds, mg/L Depth	Remarks
	3	Condition	Беріп, ті	Беріп,пі	а	D	а	D	Average	а	Ь	Average	а	U	а	U	Average	3		Average	
FM1 S				1.0	30.0	30.0	5.97	5.86	5.53	79.5	79.8	77.4	32.3	31.5	14.70	14.90		22	26		
M1 M	13:05	Small wave	1 1/11	8.5	28.5	28.5	5.14	5.16		76.2	74.1		33.3	32.4	22.60	22.70	22.37	38	41	37.5	
M1 B				16.0	28.4	28.4	5.24	5.21	5.23	76.5	75.7	76.1	33.6	33.4	28.00	31.30		46	52		
M2 S				1.0	29.7	29.7	5.74	5.79	5.59	77.2	76.7	76.2	33.3	33.0	20.30	21.20		37	38		
M2 M	13:20	Small wave	1 1/11	8.5	28.6	28.6	5.36	5.47	5.53	74.7	76.1		33.4	33.4	31.30	30.40	27.37	58	54	47.2	
M2 B				16.0	28.6	28.6	5.20	5.16	5.18	72.3	72.5	72.4	33.4	33.4	29.80	31.20		48	48		
C1 S				1.0	29.5	29.5	5.71	5.81	F F0	77.0	78.1		31.4	31.4	11.80	12.50		24	26		
C1 M	12:45	Small wave	1 2211	11.0	28.4	28.3	5.38	5.47	5.59	75.4	76.7	76.8	32.8	32.8	24.90	26.80	23.50	39	41	40.7	
C1 B				21.0	28.0	28.0	5.51	5.42	5.47	74.8	74.6	74.7	33.2	33.2	32.40	32.60		59	55		
C2 S				1.0	29.6	29.6	5.65	5.70	5.64	76.5	77.9	76.5	32.8	32.8	22.10	22.10		28	28		
C2 M	13:35	Small wave	1 1/11	8.5	28.7	28.5	5.61	5.61	5.04	75.1	76.4	100-0-0	33.2	33.2	24.10	24.30	27.42	47	51	47.7	
C2 B				16.0	28.7	28.7	5.30	5.37	5.34	73.2	74.9	74.1	33.1	33.3	35.80	36.10		67	65		
	with sing							l													
alic data	<u>with double</u>	underline	indicates a	n exceeda.	nce to Lii	mit Level								100		<i>(</i>)		<i>y</i> 9,			
quipmen	t used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	/leter:		EM	2365		Calibrat	ion Check:	4.50,	46.0,	456	NTU				Checked	Ву:			
		Salinity M	eter:		ЕМ	3694		Calibrat	ion Check:	58.8	mS						Date:				
		Thermome	eter:		ET	961												S 5			

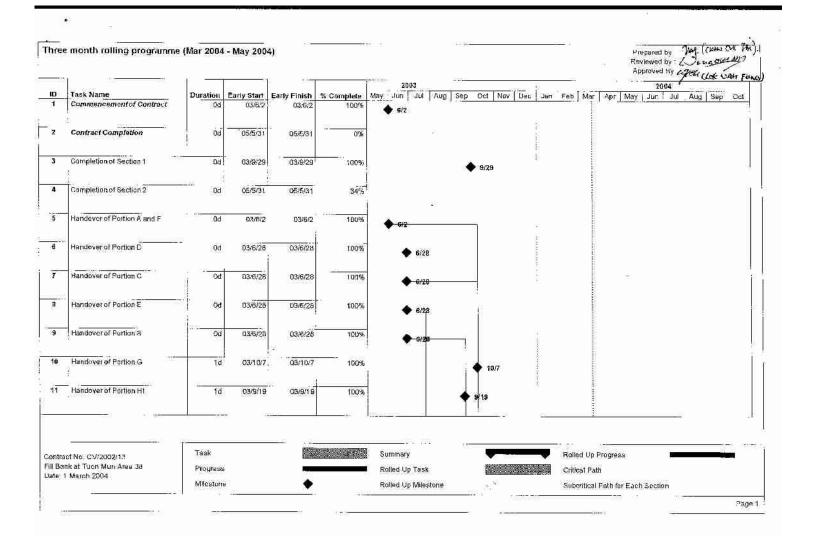
Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen N	1un Area	<u>38</u>				Client: J	Penta-C	cean Con	struction	Co., Ltd.	Job No.:		4494.1				
Date of Sa	impling :	30/09/2004	1		Weathe	r Conditio	n:	Cloudy			Ambier	t Tempera	ature,°C:	29			Tide Stat	e:	Mid-Floo	od .	
Station	Time	Sea Condition	Overall Depth, m	Sampling	Tempera	ature,°C	Dissolv a	ed Oxyg h	jen, mg/L Average	Dissolv a	ed Oxyg h	en, % Average	Salinity,	ppt b	Turbidity a	, NTU b	Average	Suspen		ds, mg/L Depth	Remarks
		Condition	Deptili, III	Бериі, ііі	а	U	а	U	Average	а	U	Average	а	U	а	U	Average	5		Average	
FM1 S				1.0	28.5	28.5	6.11	6.30	5.97	79.8	81.6	77.3	33.8	33.9	11.40	12.10		20	21		
M1 M	08:25	Small wave	18.0	9.0	27.2	27.2	5.71	5.76		73.4	74.5	17.3	34.2	34.1	14.00	15.20	18.42	23	23	26.2	2
M1 B				17.0	26.5	26.5	5.45	5.50	5.48	72.0	71.6	71.8	34.2	34.2	28.20	29.60		35	35		
M2 S				1.0	28.4	28.4	5.34	5.16		76.5	74.1	7	34.1	34.1	17.40	18.90		26	24		
FM2 M	08:15	Small wave	18.0	9.0	26.8	26.7	5.36	5.41	5.32	74.1	75.0	74.9	34.9	34.9	16.00	17.20	18.03	27	25	27.2	2
FM2 B		virenda (d		17.0	26.7	26.6	5.00	4.98	4.99	71.6	71.9	71.8	34.6	34.6	18.80	19.90		32	29		
FC1 S				1.0	28.5	28.5	5.17	5.30		75.4	72.1	70.0	33.9	33.9	14.30	15.40		21	23		
FC1 M	08:35	Small wave	23.0	11.5	26.9	26.9	5.21	5.36	5.26	72.6	71.7	73.0	33.4	33.4	14.20	14.00	18.37	24	21	28.2	2
FC1 B		V:1700.017		22.0	26.8	26.8	5.04	5.07	5.06	70.8	71.7	71.3	34.0	34.0	27.20	25.10		42	38		
FC2 S				1.0	28.6	28.6	6.00	5.97		78.1	77.6		34.2	34.4	14.10	15.20		21	23		
FC2 M	08:00	Small wave	18.0	9.0	27.1	27.1	5.96	5.90	5.96	74.0	73.0	75.7	35.3	35.5	15.70	17.00	15.57	26	23	25.2	2
FC2 B		9.7976/2077		17.0	26.8	26.8	5.76	5.65	5.71	73.4	71.7	72.6	35.5	35.5	15.70	15.70		31	27		
Rold data	with singl	e underlir	e indicat	es an exc	eedance	to Actic	ın I eve														
	with double													y 5							
Equipmen	t used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	tion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	leter:		EM	2365		Calibrat	tion Check:	4.47,	46.6,	459	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	tion Check:	58.8	mS						Date:				
		Thermome	ter:		ET	961															

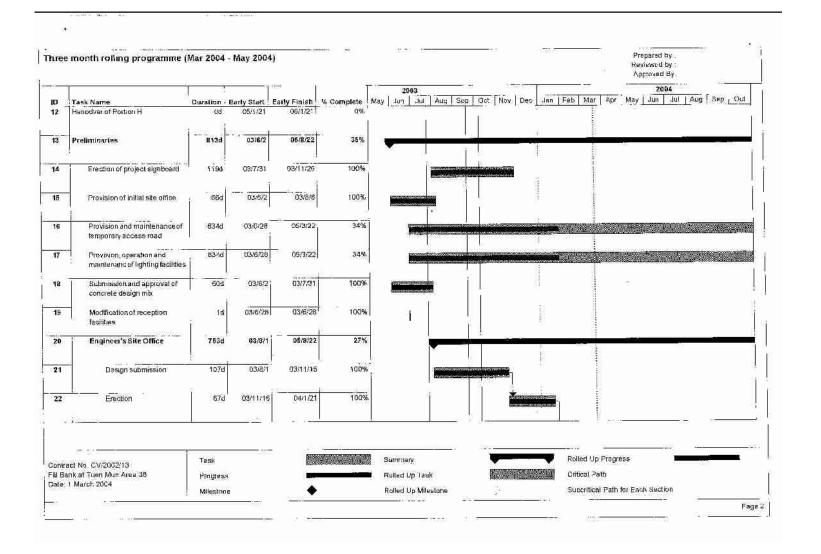
Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen N	1un Area	<u>38</u>		2		Client: J	Penta-C	cean Con	struction	Co., Ltd.	Job No.:	3	4494.1		-		
Date of Sa	ampling :	30/09/2004	4		Weather	Conditio	n:	Sunny			Ambier	nt Tempera	ture,°C:	30			Tide State	9;	Mid-Ebb	<u>)</u>	
Station	Time	Sea	Overall	Sampling	Tempera	ture, °C	Dissolv			Dissolv	ed Oxyg		Salinity,	ppt	Turbidity	, NTU		Suspen			Remarks
		Condition	Depth, m	Depth,m	а	b	а	b	Average	a	ь	Average	а	b	а	b	Average			Depth Average	
M1 S				1.0	29.7	29.8	5.71	5.69		77.0	78.1		32.2	32.1	14.10	12.80		19	22		
M1 M	14:20	Small wave	17.0	8.5	28.6	28.6	5.37	5.40	5.54	74.2	72.8	75.5	34.6	34.7	29.70	26.70	23.13	39	39	33.3	
M1 B		wave		16.0	27.4	27.4	5.17	5.24	5.21	72.1	71.6	71.9	34.9	34.9	29.50	26.00		40	41		
M2 S	-			1.0	29.5	29.5	6.24	6.38		84.1	85.6		32.6	32.7	15.00	14.90		23	26		
M2 M	14:35	Small wave	17.0	8.5	27.5	27.6	6.11	6.20	6.23	82.6	84.5	84.2	34.0	34.2	27.20	28.60	24.62	42	43	36.3	
M2 B		liaio		16.0	25.3	25.4	6.08	6.06	6.07	81.7	80.6	81.2	34.4	34.6	31.20	30.80		41	43		
C1 S				1.0	29.4	29.4	6.11	6.10		82.3	81.6		32.6	32.8	14.90	15.20		23	22		
FC1 M	14:00	Small wave	21.0	10.5	26.1	26.1	5.76	5.82	5.95	78.6	77.6	80.0	33.0	33.1	25.70	27.20	24.08	37	35	34.8	
C1 B		VIO. 80. 7.		20.0	26.4	26.3	5.41	5.36	5.39	74.3	72.1	73.2	34.4	34.4	29.00	32.50		48	44		
C2 S				1.0	29.1	29.1	6.39	6.25		84.7	83.0	1	33.6	33.7	15.10	13.90		24	29		
C2 M	14:55	Small wave	17.0	8.5	26.3	26.3	6.10	6.14	6.22	82.1	81.8	82.9	34.0	34.0	29.10	30.20	25.50	42	41	36.7	
C2 B		*******		16.0	26.5	26.5	6.02	6.00	6.01	80.7	81.6	81.2	34.9	35.0	31.90	32.80		42	42		
Bold data	with sing	le underlir	ne indicat	es an exc	eedance	to Actic	n Leve	ı													
talic data	with double	underline	indicates a	n exceeda	nce to Lii	nit Level												y			
Equipmen	t used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	/leter:		EM	2365		Calibrat	ion Check:	4.48,	46.3,	450	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
		Thermome	ter:		ET	961															

Appendix VII

Complaint Log

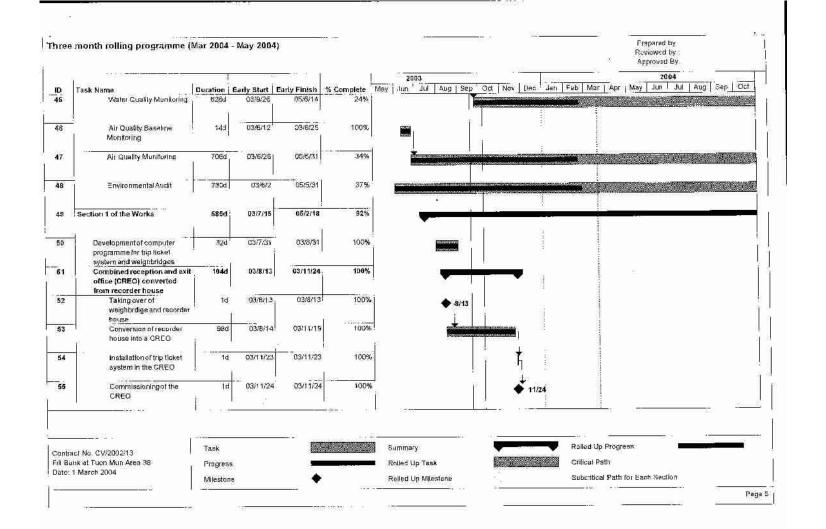
CONTRAC COMPLAI		02/13 – FILL BAN	K AT TUEN MUN AI	REA 38 - ENV	IRONMEN	TAL
COMPLAT Complaint Log No.	Date of Receipt	Received From and Received By	Nature of Complaint	Date Investigated	Outcome	Date of Reply and to Whom
001	07.02.2004	From: Public By: Home Affairs Department	Cleanliness of public roads.	N/A	The situation was rectified.	N/A
002	29.06.2004	From: Public By: EPD	Dust generation in Fill Bank.	N/A	The situation was rectified.	N/A
003	31.07.2004	From: Public By: EPD	Dust generation at Lung Mun Road near Fill Bank.	07.08.2004	The situation was rectified.	N/A
004	13.08.2004	From: Public By: EPD	Dust emission within the site.	18.08.2004	The situation was rectified.	N/A
005	26.08.2004	From: Public By: EPD	Dust emission and debris leakage from dump trucks near Government Depot.	07.09.2004	Not site related.	N/A
-	-	-	-	-	_	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-

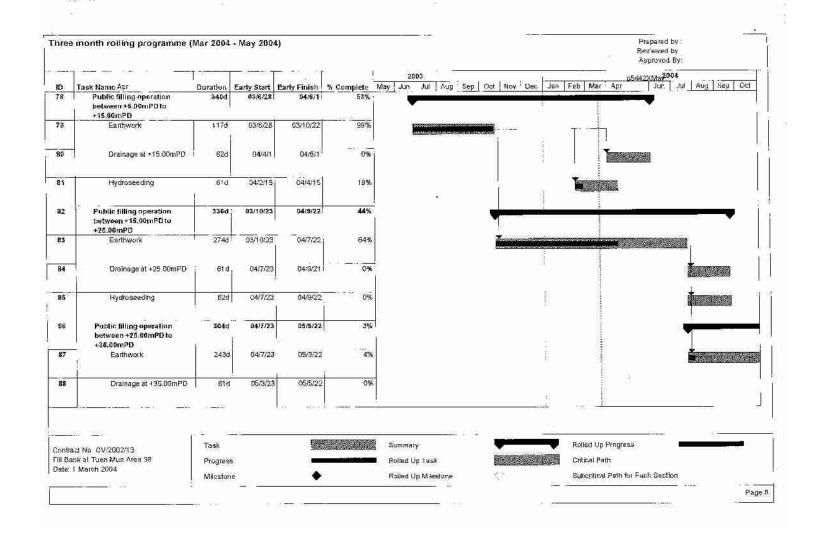

Appendix VIII


Cumulative Statistics on Complaints, Notifications of Summonses and Successful Prosecutions

CONTRACT No. CV/2 Cumulative Statistics		SANK AT TUEN MUN AREA 38	
Environmental Parameters	Cumulative No. Brought Forward	No. of Complaints This Month	Cumulative Number to Date
Air	2	2	4
Noise	0		0
Water	0		0
Waste	1		1
Landscape & Visual	0		0
Total	0		5

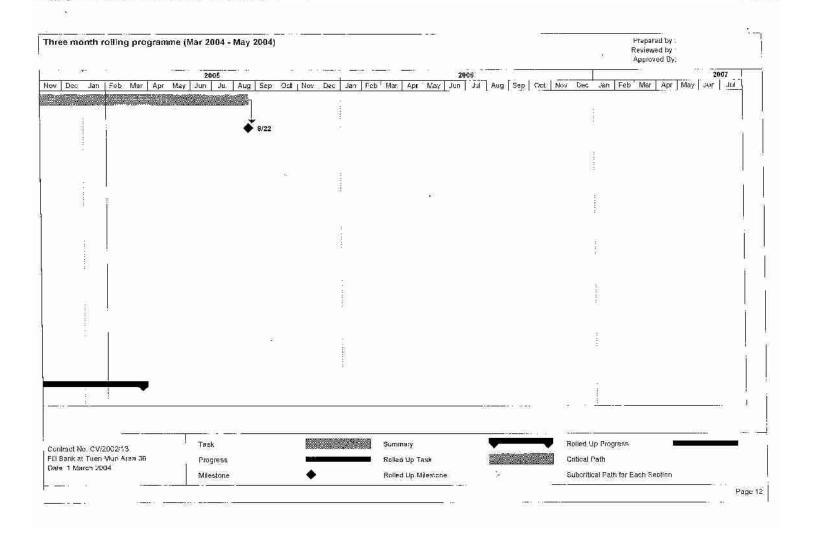
Appendix IX


Master Construction Programme

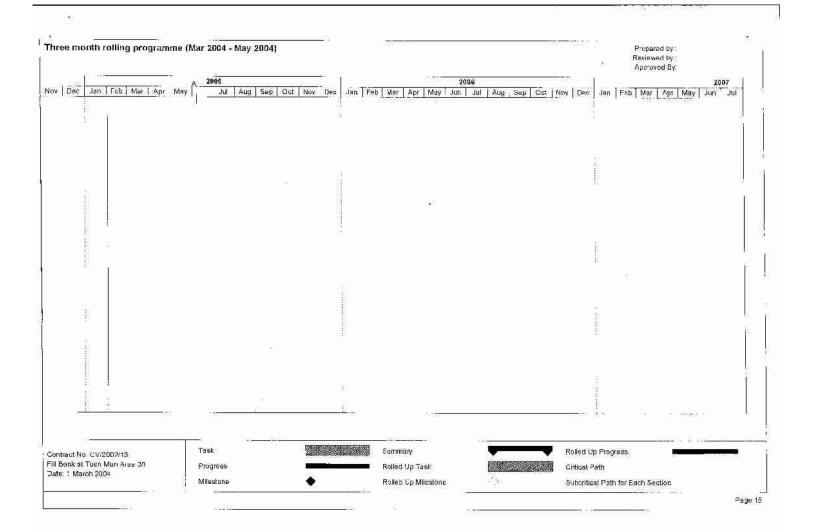


ee	month rolling programme (T (5 11-11		Ţ	2003		Prepared by : Reviewed by : Ардичее Ву: 2004 Feb Mar Apr May Jun Jun Aug Sep Oc
4	Task Name Take over	Duration 1d	Early Start 03/6/28	Early Finish 03/6/28	% Complete 100%	y Jun Jul Aug Sen • 6/28	Oct Nov Dec Lan	Feb Mar Apr May Jur Jui Aug Sep O
5	Mpd:fication of wheel washing facilities	49d	03/6/28	03/8/15	100%	400000000000000000000000000000000000000	İ	
36	Operation and maintenanc∈	834d	03/6/28	05/3/22	34%			
37	Surveillance System	427d	04/4/1	05/6/1	0%	60		
38	Provision	62d	04/4/1	04/6/1	0%	į.		
39	Operation and maintenance	365d	04/6/2	05/6/1	0%			T
40	Tipping Hall	304d	04/2/1	04/11/30	10%			
41	Mddifination	29d	D4/2/1	04/2/29	100%		1	-]
42	Operation	275d	64/3/1	04/11/30	D%			
43	Environmental Monitoring Works	744d	03/6/2	05/6/14	33%	•	+ +	
44	Water Quality Baseline Report		03/6/2	03/6/23	100%	· · · · · · · · · · · · · · · · · · ·		
							X22 12	
FIII B	act No. CV/2002/13 ank at Tuen Mun Area 38 1 March 2004	Task Progress	· · · · ·			Summery Rolled Up Task Railed Up M.lostone	-	Rolled Up Progress Critical Path Subcritical Path for Each Section

	12 PAGE	T T	(i)		į į	2003	(Albinonia)	- 1 TANKET E	Reviewed by : Approved by: 2004	10
ID 56	Task Name New combined reception and exit office (CREO)	Duration 76d	Early Start 03/9/10	Early Finish 03/11/24	% Complete 188%	May Jun Jul Aug Sep	Oct Nov Dec Jan	Feb Mar Apr N	iay un jul Aug	Sep Oct
67	Demolition of paying blocks	1a	03/9/10	03/9/10	100%	Ą		1		i i
52	Construction of foundation	37d	03/9/11	03/10/17	100%					
59	Erection of structures for CRSO	35d	03/10/18	03/11/22	100%	e F				
60	Installation of trip ticket system in the CREC	1d	08/11/23	B3/41/23	100%		ļ ţ	and the contract of the contra		
61	Commissioning of the new CREO	1d	03/11/24	03/11/24 I	100%	# #	11/24			ľ
62	Weighbridge WP3	2d	03/7/31	03/8/1	100%		b I			
63	Taking over of weighbridge and recorder house	1.0	03/7/31	03/7/31	100%	7/31				-
84	Commissioning of weighbudge	1d	03/8/1	03/8/1	100%	▶ ♠ 8/1		HIC SHOWING		47
65	Weighbridge WP4	133d	03/7/15	03/11/24	100%	-		Video Company		**
66	Submission	17d	03/7/15	03/7/31	100%	econos:		O'MAT THE PERSON OF		4
	E SOT S	3 00	ls _= -8_		242	- H	4 us (2 2	3 50		_ =
FIII Ba	ani No. CV/2002/13 unk at Tuen Mun Area 38 1 March 2004	Task Progress Mileston			Transfer Market	Summary Rolled Up Task Rolled Up Milestone		Rolled Up Progress Critical Path Subcritical Path for		


ree	month rolling programme (Vlar 2004 -	- May 2004	1)				Prepared by Reviewed by Approved By	
		marcanesso .	Early Otani	Early Finish	% Complete M	2003 y Jun Jul Aug Sep	Ort Nov Dec Jan	Feb Mar Apr May Jun Jul Aug Sep	Dei
ID 67	Task Name Foundational weighbridge	144	03/9/20	03/10/3	100%				- 3, 344
68	Installation of weighbridge	47d	03/10/4	03/11/19	100%			2000	
69	Frection of recorder house	314	03/10/4	03/11/3	100%			400 410 410 410 410 410 410 410 410 410	
70	Installation of computer system in the recorder house	1.0	03/11/23	B3/11/23	(00%	P2	1 1	6	
71	Continissioning of WP2	18	03/11/24	03/11/24	100%		11/24		
72	Tree planting at Portion A	īd	03/10/8	03/10/8	100%			(4.0) (1.0)	
73	Tree planting at Portion C	14	n3/10/8	03/10/8	100%		†	Hostopia	
74	Tree planting at Portion H:	1d	C3/10/8	e3/10/8	100%		1	1000	
75	Tree planting at Portion ਮ	29d	05/1/21	05/2/18	Ο%		i de la companya de l		
76	Section 2 of the Works	704d	03/6/21	05/5/31	32%	- 10 m			
77	Commencement of Public Filling Operation	1d	03/6/28	03/6/28	100%	♦ 6/28			
===nio	,k sa		S 1311	H TW	Table 1998 - In		#3 (M ²⁾		2000
	net No. CV/2002/13	Task	OSSIT.		7.2	Summary.	~~~	Rolled Up Progress	
	nk at Tuen Mun Area 36 1 March 2004	Progress Mileston				Rolled Up Task Rolled Up Milestone		Critical Path Subcritical Path for Euch Section	

ree month rolling programme	e (Mar 2004 - May 2004)	1000	Prepared by Reviewed by Approved Sy
Task Name Hydorseeding	Duration Early Start Early Finish % Co	mplete May Jun Jul Aug Scp Gct 1	Nov Dec Jan Feb Mar Apr May Jun Jul Aug Seo Oct
Monitoring of geotechnical instruments	670d 93/6/1 C6/5/31	29%	
	4		
	×		
	E.		
entract No. CV/2002/13	Task Progress	Summary Rolled Up Task	Rolled Up Progress Critical Path
ill Bank at Tuen Mun Arca 38 ata: 1 March 2004	1 regress	117 Apr. 60.000 - 0.00	


ree month rolling program	ime (Mar 2004 - May 2004)		≌repand by : Reviewed by Approved By:			
v Dec Jan Feb Mar Apr	2005 May Jun Jul Aug Sop	Oct Nov Dec Jan Fab	Mar Apr May Jun Ju	ui Aug Sep Cnt No	v Des Jan Heb Mar Apr May Jun	2007 1 Jul
8	♦ 5/31	# # # # # # # # # # # # # # # # # # #			费	E.
		# # # # # # # # # # # # # # # # # # #			5500	2
######################################	♦ 5/31	E.	ė		1 1000	
:: :::::::::::::::::::::::::::::::::::					ii.	d T
3		Surresco				;
ä					1	Į.
					See	
a d		## ## ##				äd.,
3616Y	n in the second	<u> </u>	5 	: 201-102	- M-(6 1 33 5 23	1
ontian! No. CV/2002/13	Task		Summary		Rolled Up Progress	- 8
네 Bank at Tuer Muri Area 38 late: 1 March 2004	Progress Milestone		Rolled Up Task Rolled Up Milestone	TN .	Critical Path Subcritical Path for Each Section	

e month rolling programme (Mar	2004 - May 2004)		W227-38.		Prepared by Reviewed by Approved By:	
Dec Jan Feb Mar Apr May Ju	2005	That I can be seen	b Mar Apr May Jun		w Dec Jan Feb Mar Apr May	Jun Jul
• 11/21	r. au Aug Sep : Oct	1909 Dec Jan Se	o mar Apr may Juli	July 1908 Lush : (30) Lus	in , Decr John Trop (Mar Prin (May)	3501
		B B			-	No.
•		Ĕ				
		Ē				Ar Ar
*	4).					
		1	ė ≜			*
		*			i#	
E .						
						25
					100	
					§	1
					20	ė).
						İ
()	*	1				
					t)	!
oveg i		g			# 1 # 1 # 1	
100 (1 2)	-				57 5	,
1 222					NA WARRANG PROPERTY OF THE PARTY	
3CLINE 5V/2002/15	ask		Summary	~	Rolled trp Progress	541 14
1 March 2004	rogress Nestone		Rolled Up Task Rolled Up Milestone		Critical Path Subcritical Path for Each Section	

hree mo	nth rolling programi	me (Mar 2004 - May 200	4)			Prepared by : Reviewed by : Approved By	
oy Dec	Jan Feb Mar ! Ap*	2005 May I Jun - Jul - Aug - Se	t Dot New 1 Dec an 1 F	2604 der Apr , May Jun	6 G4A	Dec Jan Feb Mar Apr May	20 07
N Truces		1000 P 1000 1000 1000		The I man 2 when I have I have I		Table Franchisch (An Town	* ***
			â				4
	0					<u>50</u>	
			6 <u>0</u>			67 65	ğ.,
	2-12-12-12-12-12-12-12-12-12-12-12-12-12						
				50		#	8
				•		*	
	4		F.5.				v
						*	
_			# # # #			¥	Į.
Y						ě .	
	ļ			2			5
			41			*	Ī
						41	10
			39				Î
		OI GIMI				N economical Physical	
entrant No	©CV/2002/13	Task		Summary		Rolled Up Pragress	
	Tuen Mun Arca 38	Progress	Ye	■ Rolled Up Task		Critical Path	
acy i Midi	OIL ECOM:	Milestone	•	Rolled Up Milestone	7 x	Subgritical Path for Each Section	

ree month rolling programme (Mar 2004 - May 2004)	मध्य विकास १८०६मा स्थान	\$550	312.5	Prepared by : Reviewed by : Approved Ry	7
/ Dec Jan Feb Mar Apr May	2005 Jun Jul Aug Sep	Oct Nov Dec Jan i	2606 eb Mar Apr May Jun J	ul Aug Sep Oct Nov D	ec Jan Feh Mar Apr May Ju	2007 n Jul
					Ĭ	\$
1	25					3
	3	2 2				-
		40			ä	2
		10	£ ≧		1	
						31
- (최 - 5 ^^) 		:2				4
		1 1 1 1			R	Į,
					2000 2000 2000 2000 2000 2000 2000 200	
Ť						!
#1 D)		(4			£1	
	95					
,		100 100 100 100 100 100 100 100 100 100			40	
22 ∰		*			*	
ac to see the second		18-m r		4 1 4 13		
8	5 52000 SG 52	- Control	111EE		<u> </u>	
tract No. CV/2002/13	Task		State State State		d Up Progress	
Bank at Tuen Muri Area 38 e: 1 March 2004	Progress Milastone	(2)	Rolled Up Task Rolled Up Milestone	The state of the s	oat Path critical Path for Each Section	

ree month rolling programm	ne (Mar 2004 - May 2004)			Prepared by Reviewed by : Approved By	7.5
707 - 707 -	2005		2006	The second secon	2007
Doc Jan Feb Mar Apr	May Jun Jul Aug Sep Oct No	ov Doc Jan Feb Mor Apr May	dun Jul Aug Sep Oct No	Dec Jan Feb Mar Apr May	Jun Jul
id.	8				
				*	1
a 9					**
1				(e)	
	40	£			
		i i			
		# # #		*	
ii ii					#
9 8					
a A					J.
		*			
18.		14000		.w	4
19 10 10		#		i i	
Ť				1	
	¥6				
3					
				Ŕ	
1					()
(II	10 and a 10 and				
	non		70		
	4 41	35445**********************************	PS 94	-2290V T	
ntract No. CV/2002/13	Task	Summary		Rolled Up Progress	
Bank et Tuen Mun Area 38 te: 1 March 2004	Progress	Rolled Up Task		Critical Path	
to I morett cood	Milestone	Rolled Up Mileston	8	Subcritical Path for Each Section	

month rolling programm	e (Mar 2004 - May 2004)			Rev	pared by : proyed by : proyed By:
ec Jan Feb Mar Apr N	2005 May Jun Jul Aug Sep	Dot Nov Dec Jan Fe	2006 u Mar Apri May Jun Jul	Aug Sep Oct Nov Dec Jan Feb N	2007 Mar Apr May Jun Jul
(2) (2)				######################################	J
		п п		To see the second	
			£1	2000 2000 2000 2000 2000 2000 2000 200	
E.		् सार्वाच्या		11	
100 m					
	3	# 100 mg		0.00	
	<u> </u>	es es seco	,		agaa ee
rt No. CV/2002/13 k at Tuch Mun Area 38	Tosk Progress		Summery Rohad Up Yask	Rolled Up Progress Critical Path	
March 2004	Milestone	•	Rolled Up Milestone	Suboritical Path for Eac	h Section

month rolling programm	≥ (Mar 2004 - May 2	004)	201	.E2	Prepared by : Reviewed by : Approved By:	
Occ Jan Feb Mar Apr M	2005 ay Jun , Jul Aug ;	Sep Oct Nov Doc Jan Fel	2006 Mar Apr May Jun 3	ul Nug Sep Oct N	ov Dec Jan Fob Mar Apr May	2007 Jun Jul
R						Sk 28
				ANHAS ST		-15-25
		40				
			£3			
		55				
ed No: CV/2002/13	Task		Summary		Ralled Up Progress	
nk at Tuen Mun Area 38	Progress	Province Control	Bulled Up Task		Critical Path	

Appendix X

Monitoring Schedule for the following month

<u>Fill Bank at Tuen Mun Area 38</u> <u>Environmental Monitoring Schedule</u> October 2004

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					October 1	WQM (Ebb: 14:58) (Flood: 09:17)
3	WQM (Ebb: 16:01) (Flood: 11:02) 1 – hr TSP 24 – hr TSP	5	6	WQM (Ebb: 06:43) (Flood: 19:35) Site Inspection	8	WQM (Ebb: 09:26) (Flood: 17:23) 1 – hr TSP 24 – hr TSP
10	WQM (Ebb: 11:10) (Flood: 17:57)	12	WQM (Ebb: 12:26) (Flood: 18:38)	14 Site Inspection	WQM (Ebb: 13:39) (Flood: 07:38) 1 – hr TSP 24 – hr TSP	16
17		3 19				WQM (Ebb: 09:04) (Flood: 16:45)
24	WQM (Ebb: 10:58) (Flood: 17:41)	5 26	WQM (Ebb: 12:20) (Flood: 18:26) 1 – hr TSP 24 – hr TSP	28	WQM (Ebb: 13:29) (Flood: 07:48) Site Inspection Landscape Audit	30
31						

Notes:

1. 24 –hr TSP (to be monitored once every 6 days) at monitoring locations A1 & A2.

^{2.} I hour TSP (to be monitored three times every six days when highest level of dust generation expected) at monitoring

^{3.} WQM - water quality monitoring three times per week, on mid-flood and mid-ebb tides. Days of monitoring to be separated by at least 36 hours. Monitoring locations FC1, FM1, FM2 & FC2.

^{4.} Site inspections to be carried out once per week.

^{5.} Auditing of landscape works to be carried out once per month.

Appendix XI

Wind Speed and Direction Data

DATE MON	DATE DAY	TIME HR	TIME MIN	WS:AVG M/S	WS:MAX M/S	WD:AVG DEG	WD:SDV DEG
9	1	0	0	2	4	77	15
9	1	1	0	2	4	76	17
9	1	2	0	2	4	53	15
9	1	3	0	1.9	4	60	15
9	1	4	0	1.6	3	65	15
9	1	5	0		4	63	19
9	1	6	0		4	84	12
9	1	7	0	1.6	3	76	14
9	1	8 9	0	1.7	4	94 97	19 17
9	1	10	0		4	108	20
9	1	11	0			115	23
9	1	12	0	2.8	5	101	20
9	1	13	0		6	128	33
9	1	14	0		6	134	24
9	1	15	0			141	25
9	1	16 17	0		6	133 131	22 19
9	1	18	0		6	119	23
9	1	19	0	2.4	5	118	20
9	1	20	0	2.5	6	91	16
9	1	21	0	2	4	89	18
9	1	22	0	1	3	70	33
9	1	23	0			13	49
9	2	0	0	1.2		41	13
9	2		0	0.6	2	30 319	32 38
9	2		0	0.2	1	329	49
9			0		2	326	63
9		5	0	0	1	343	55
9	2	6	0	0.2	1	328	44
9	2	7	0	0.1	1	323	63
9	2	8	0	0.6	2	76	59
9	2	9 10	0	1.3 1.7	4	120 115	33 26
9	2	11	0	1.9		106	29
9	2	12	0		4	100	25
9	2	13	0	2.4	5	93	22
9	2	14	0		5	104	27
9	2	15	0	3	6	132	20
9	2	16 17	0	2.2	6	137 100	25 20
9	2	18	0		6 5	98	19
9	2	19	0	2.3	6	91	20
9	2	20	0	1.7	5	92	30
9	2	21	0	1.4	4	72	27
9	2	22	0		4	88	19
9	2	23	0	1.3	4	89	25
9	4	0	0	1	2	42 30	12 32
9	4	2	0		1	305	44
9	4	3	0	0.3	1	354	61
9	4	4	0	0.9	2	42	14
9	4	5	0	1.3	3	53	12
9	4	6	0	1.3	3	59	20
9	4	7 8	0	0.7	2	53 78	24 24
9	4	9	0	1.5	3	96	22
9	4	10	0	0.7	2	300	59
9	4	11	0	1.3	5	268	47
9	4	12	0	1.5	7	292	68
9	4	13	0	1.8	7	301	58
9	4	14 15	0	1.6	6 6	350 14	61 73
9	4	16	0	1.4	6	312	48
9	4	17	0	1.1	5	36	80
9	4	18	0	1.9	5	151	62
9	4	19	0	2.1	5	235	28
9	4	20	0	1.2	4	199	48
9	4	21	0	1.3	5	342	74
9	4	22 23	0	1.2	4	10 5	34 71
9	5	0	0	0.8	1	333	62
9	5	1	0	0.8	4	41	64
9	5	2	0	1.1	5	64	62
9	5	3	0	0.6	3	170	94
9	5	4	0	0.8	4	16	85
9	5	5	0	0.6	3	317	42
9	5 5	6 7	0	0.5	3 1	346 337	66 58
9	5	8	0	0.3	1	337	73
9	5	9	0	0.8	3	314	65
9	5	10	0	0.5	1	334	58
9	5	11	0	0.4	2	8	62

9	5	10	0	1 1	5	355	60
9	5	12 13	0	1.1	7	303	74
9	5	14	0	1.4	6	10	65
9	5 5	15 16	0	1.8	6 7	333 318	42 33
9	5	17	0	3.2	7	302	19
9	5	18	0	2.1	6	305	24
9	5 5	19 20	0	1.1	5 2	359 350	49 35
9	5	21	0	0.8	3	23	24
9	5	22	0	0.7	2	11	24
9	5 10	23 0	0	0.9	3 5	5 321	23 26
9	10	1	0	1.5	4	325	21
9	10	2	0	1.9	5 4	332	24
9	10 10	4	0	0.9	3	266 305	81 24
9	10	5	0	1	4	298	35
9	10 10	6 7	0	0.6	2	311 344	32 59
9	10	8	0	1	4	319	45
9	10	9	0	1.1	4	311	36
9	10 10	10 11	0	1 1.2	3 4	325 285	46 44
9	10	12	0	1.6	5	295	38
9	10	13	0	2.2	7	297	20
9	10 10	14 15	0	2.1 1.5	6 5	298 311	22 46
9	10	16	0	2.2	6	316	34
9	10 10	17 18	0	1.6	6 6	321 334	43 47
9	10	19	0	1.4	8	340	64
9	10	20	0	0.9	4	291	46
9	10 10	21 22	0	0.3	2	314 304	60 58
9	10	23	0	1.1	5	278	59
9	11	0	0	0.3	2	309	75
9	11 11	1 2	0	0.7	3 5	298 294	37 39
9	11	3	0	1.4	6	295	51
9	11	4	0	1.7	6	324	60
9	11 11	5 6	0	1.7	6 6	313 328	53 52
9	11	7	0	1.3	6	339	81
9	11 11	8 9	0	1.4	5 7	276 270	71 63
9	11	10	0	2.2	7	302	43
9	11	11	0	1.9	6	322	59
9	11 11	12 13	0	2.1	8	316 309	50 33
9	11	14	0	1.8	6	320	36
9	11	15	0	2.2	6	321	34
9	11 11	16 17	0	1.6 1.7	5 5	342 315	46 33
9	11	18	0	1.6	5	325	43
9	11 11	19 20	0	1.7	5 6	318 310	56 48
9	11	21	0	1.2	7	270	75
9	11	22	0	1.7	9	341	70
9	11 16	23 0	0	1.5	6 1	316 305	56 36
9	16	1	0	0.2	1	352	51
9	16 16	2	0	0.2	1 1	8 14	61 44
9	16	4	0	0.5	2	29	43
9	16	5	0	0.3	1	332	52
9	16 16	6 7	0	0.1	1 1	305 299	57 62
9	16	8	0	0.1	1	31	45
9	16 16	9 10	0	0.6 1.2	2	245 234	74 28
9	16	11	0	1.6	3	233	27
9	16	12	0	1.7	4	240	24
9 9	16 16	13 14	0	1.8	4	244 238	23 33
9	16	15	0	1.4	3	245	28
9	16	16	0	1.9	5	111	43
9	16 16	17 18	0	2.7	5 5	118 110	20 21
9	16	19	0	2.2	4	93	19
9	16 16	20 21	0	2.7	5 5	100 92	16 15
9	16	22	0	2.6	5	88	12
9	16	23	0	2.5	5	84	12
9	17 17	0 1	0	2 1.2	5 3	82 67	15 15
9	17	2	0	1.3	4	67	15

9	17	3	0	1.6	4	35	13
9	17	4	0	1.2	2	27	16
9	17	5	0	1	3	28	31
9	17	6	0	0.8	2	351	51
9	17	7	0	0.1	1	356	73
9	17	8	0	0.4	3	23	78
9	17	9	0	1.7	4	99	21
9	17	10	0	2	4	105	23
9	17	11	0	2.1	4	116	32
9	17	12	0	2.3	5	116	33
9	17	13	0	1.9	5	222	46
9	17	14	0	1.6	5	191	90
9	17	15	0	3.6	8	114	22
9	17	16	0	3.2	6	101	16
9	17	17	0	2.5	5	92	20
9	17	18	0	1.9	4	115	25
9	17	19	0	1.8	4	82	29
9	17	20	0	1.5	4	61	17
9	17	21	0	1.4	3	70	26
9	17	22	0	0.9	2	59	20
9	17	23	0	0.7	2	39	31
9	22	0	0	1.7	7	85	41
9	22	1	0	2.1	8	0	83
9	22	2	0	2	8	101	46
9	22	3	0	2	6	313	28
9	22	4	0	2.1	5	330	21
9	22	5	0	2.3	5	322	21
9	22	6	0	1.1	4	283	53
9	22	7	0	0.7	4	141	89
9	22	8	0	1.3	4	209	48
9	22	9	0	2.3	7	29	96
9	22	10	0	2.9	8	9	33
9	22	11	0	2.2	8	359	41
9	22	12	0	1.5	5	313	57
9	22	13	0	1.9	6	305	41
9	22	14	0	2.6	5	300	22
9	22	15	0	2.6	6	306	23
9	22	16	0	1.3	5	327	41
9	22	17	0	1.2	4	39	50
9	22	18	0	1.1	3	73	27
9	22	19	0	0.5	2	7	43
9	22	20	0	0.8	2	12	19
9	22	21	0	0.7	2	22	16
9	22	22	0	0.8	3	29	20
9	22	23	0	1.6	4	23	24
9	23	0	0	2.1	5	15	20
9	23	1	0	2.1	5	10	24
9	23	2	0	2.7	6	22	21
9	23 23	3	0	2.6	6	25	25 83
9	23	5	0	0.6	6 2	68 315	62
9	23	6	0	1.1	4	254	54
9	23	7	0	1	3	288	63
9	23	8	0	1.3	8	283	86
9	23	9	0	1.8	6	123	91
9	23	10	0	1.3	6	205	73
9	23	11	0	1.7	8	25	98
9	23	12	0	1.6	6	34	72
9	23	13	0	1.7	7	317	74
9	23	14	0	1.7	6	316	44
9	23	15	0	2.4	5	300	29
9	23	16	0	2.7	7	294	22
9	23	17	0	2.3	5	301	21
9	23	18	0	1.7	4	22	71
9	23	19	0	1.7	4	66	19
9	23	20	0	1.5	3	54	12
9	23	21	0	1.6	2	42	8
9	23	22	0	1.7	3	44	7
9	23	23	0	1.5	2	39	7
9	28	0	0	0	0	295	16
9	28	1	0	0	1	303	30
9	28	2	0	0.2	1	289	22
9	28	3	0	0.3	1	279	18
9	28	4	0	0.6	3	337	63
9	28	5	0	0.6	3	322	43
9	28	6	0	0.6	3	295	67
9	28	7	0	0.2	1	0	62
9	28	8	0	1.6	8	353	55
9	28	9	0	2.2	8	343	41
9	28	10	0	1.3	3 5	224	68
9	28	11	0	1.7		211	31
9	28	12	0	2.2	6	203	33
9	28	13 14	0	2.9	6	264	24
9	28 28	14	0	2.8	5 4	253 257	21 23
9		16	0	2	5	257	24
_	28		~	4	_	4 4 1	
9	28 28	17	0	1.5	5	145	61

9	28	18	0	2	5	119	22
9	28	19	0	1.9	5	68	16
9	28	20	0	2	4	75	16
9	28	21	0	2.1	4	77	15
9	28	22	0	1.6	3	71	15
9	28	23	0	1.5	3	64	14
9	29	0	0	1.3	2	57	12
9	29	1	0	1.5	3	64	13
9	29	2	0	1.6	3	57	14
9	29	3	0	1.4	3	44	9
9	29	4	0	0.9	2	32	32
9	29	5	0	0.5	1	299	26
9	29	6	0	0.6	2	309	19
9	29	7	0	0.5	2	352	39
9	29	8	0	0.8	3	345	32
9	29	9	0	0.9	4	319	53
9	29	10	0	1.1	4	311	51
9	29	11	0	1.5	5	311	42
9	29	12	0	1.7	4	295	31
9	29	13	0	2.3	5	269	28
9	29	14	0	1.9	5	288	36
9	29	15	0	1.2	4	232	32
9	29	16	0	1.3	3	203	36
9	29	17	0	1.8	4	102	35
9	29	18	0	1.8	4	91	20
9	29	19	0	1.8	4	98	22
9	29	20	0	2.1	5	95	18
9	29	21	0	1.7	4	91	20
9	29	22	0	1.7	4	94	22
9	29	23	0	2.1	5	106	18