

11.6 1 1

ENVIRONMENTAL MONITORING AND AUDIT REPORT

FOR

CONTRACT No. CV/2002/13

FILL BANK AT TUEN MUN AREA 38

KEBRUARY 2005

(Revision No. 0)

Report No.: ET12439

Certified by:

Mr. Jeff Tsang

Mr. Jeff Tsang Environmental Team Leader for Stanger Asia Limited

Date: 12/03/05

15/2/05

Date:

Verified by:

Mr. Joseph T. L. Poon Independent Environmental Checker for MateriaLab Consultants Ltd.

CONTENTS

EXE	CUTIVE SUMMARY	1
1.	INTRODUCTION	
1.1	Background	4
1.2	Report Structure	4
2.	PROJECT INFORMATION	
2.1	Site Description	5
2.2	Project Organization	5
2.3	Construction Programme	5
3.	ENVIRONMENTAL PERMITS AND LICENSES	6
4.	SUMMARY OF EM&A REQUIREMENTS	
4.1	Air Quality	6
4.2	Water Quality	8
4.3	Event and Action Plan	10
5.	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	10
6.	MONITORING RESULTS	
6.1	Completed Monitoring Works	11
6.2	Air Quality Monitoring	12
6.3	Water Quality Monitoring	13
7.	AUDIT REPORT	
7.1	Air Quality Monitoring	13
7.2	Water Quality Monitoring	13
7.3	Site Inspections	14
7.4	Landscape and Visual	15
8.	WASTE MANAGEMENT	15
9.	COMPLAINTS, NOTIFICATIONS OF SUMMONS AND SUCCESSFUL PROSECUTIONS	15
10.	FUTURE KEY ISSUES	15
11.	CONCLUSION	16
LIST	FOF FIGURES	

- 2.1 The Site Layout Plan4.1 Air Quality Monitoring Stations4.2 Water Quality Monitoring Stations

LIST OF FIGURES (Continued)

- 6.1 Graphical Plot for 24-hour TSP Levels
- 6.2 Graphical Plot for 1-hour TSP Levels
- 6.3 Graphical Plot for Surface and Middle Averaged Dissolved Oxygen Mid Flood Tide
- 6.4 Graphical Plot for Surface and Middle Averaged Dissolved Oxygen Mid Ebb Tide
- 6.5 Graphical Plot for Bottom Dissolved Oxygen Mid Flood Tide
- 6.6 Graphical Plot for Bottom Dissolved Oxygen Mid Ebb Tide
- 6.7 Graphical Plot for Turbidity Mid Flood Tide
- 6.8 Graphical Plot for Turbidity Mid Ebb Tide
- 6.9 Graphical Plot for Suspended Solids Mid Flood Tide
- 6.10 Graphical Plot for Suspended Solids Mid Ebb Tide

TABLES

- Table 3.1
 Summary of the Environmental Permits and Licenses
- Table 4.1Co-ordinates of Air Quality Monitoring Stations
- Table 4.2Air Quality Monitoring Frequency
- Table 4.3Action and Limit Levels for the project
- Table 4.4Water Quality Monitoring Frequency
- Table 4.5Action and Limit Level for Water Quality
- Table 6.1Completed Monitoring Works for February 2005
- Table 6.2Results of 24-hour TSP Monitoring
- Table 6.3Results of 1-hour TSP Monitoring
- Table 6.4Summary of Water Quality Monitoring Data
- Table 7.1
 Summary of Findings, Actions and Outcomes of Site Inspection by ET
- Table 7.2
 Summary of Findings, Actions and Outcomes of Site Inspection by IEC
- Table 10.1Works Programme for March 2005

APPENDICES

- I Organization Chart
- II Calibration Certificates of the Monitoring Equipment
- III Event and Action Plans
- IV Implementation Status of Mitigation Measures
- V Air Quality Monitoring Results
- VI Water Quality Monitoring Results
- VII Complaint Log
- VIII Cumulative Statistics on Complaints, Notifications of Summonses and Successful Prosecutions
- IX Master Construction Programme
- X Monitoring Schedule for the following month
- XI Wind Speed and Direction Data

EXECUTIVE SUMMARY.

This is the 20th monthly Environmental Monitoring and Audit (EM&A) report for Contract No. CV/2002/13 – Fill Bank at Tuen Mun Area 38. The site has been in operation as a public filling area as part of the reclamation. The site is 24 hours operated except during the Chinese New Year holidays to provide a stable outlet for public fill to serve the construction industry. This report covers the monitoring works conducted during the month of February 2005.

Construction Activities for the Reported Period.

- Public fill operation.
- Operation of tipping hall.
- Installation of CCTV system.
- Construction of drainage system.
- Construction of tipping hall at barge handling area.
- Construction of CREO3, weighbridge and associated widened concrete paved access road.

Air Quality Monitoring.

Two stations (A1 and A2) have been identified as the locations for the monitoring of 24-hour and 1-hour Total Suspended Particulates (TSP). In this reporting period, the monitoring of 24-hour TSP was carried out on five occasions at A1 and A2. Monitoring of 1-hour TSP was carried out on fifteen occasions at A1 and A2. There was no exceedance to the set action or limit levels for both parameters at both stations.

Water Quality Monitoring.

Water quality in terms of turbidity, dissolved oxygen, suspended solids, temperature, and salinity, was carried out on ten occasions during flood tide and eight occasion during ebb tide at FM1, FM2, FC1 and FC2 in this reporting period. There was no exceedance to the set action or limit level for all parameters at all stations.

Landscape Audit.

There was no specific observation regarding landscape in this reporting period.

Waste Management.

133,000m³ public fill was collected to the Fill Bank from land. 10.28t C&D waste and general refuse were disposed of at WENT Landfill. Chemical waste generated was stored in temporary chemical waste storage area and no chemical waste was disposed of in this reporting period.

Complaints and Notifications of Summonses and Successful Prosecutions.

No complaints or notification of summonses was received in this reporting period.

Site Inspections.

Four weekly site inspections were conducted on 5th, 12th, 17th and 22nd February 2005. Major observations are summarised in the following table.

Observations	Actions by Contractor	Outcome
Materials were stockpiled at	Cleaned up the stockpiles.	The stockpiles were
the seafront.		removed.
(17.02.2005)		(22.02.2005)

An Independent Environmental Checker (IEC) audit was conducted on 17th February 2005 with the Environmental Team. Major observations are summarized in the following table.

Observations	Actions by Contractor	Outcome
Dust emission was observed	Confined trucks to use designated	Situation rectified.
from traffic on dry areas other	haul roads by fencing off the dry	(22.02.2005)
than the main haul roads	areas.	
which were not dampened.		
Uncovered stockpiles were	Cleaned up the stockpiles.	The stockpiles were
located at the seafront near		removed.
the tipping hall.		(22.02.2005)
Splashing generated during	Ensured the barge is fitted with	Barges were fitted with
the transfer of wet soil to the	nets/tarpaulin sheets.	nets.
barge at the tipping hall has		(22.02.2005)
caused splashing into the sea.		
No net/tarpaulin sheet was		
raised on the barge during		
time of inspection.		
The western side of the Fill	The Contractor will arrange	To be observed in the next
Bank was only partially	hydroseeding after slope	reporting period.
hydroseeded.	trimming works completed.	

Future Key Issues.

The tentative works activities, predicted impacts and areas of environmental concern for the following month are summarised in the following table.

Works Activities	Predicted Impacts	Proposed Mitigation Measures
Public filling	- Dust	- Dampening of fill materials and exposed area.
operation.	- Water	- Avoid stockpiling fill materials near seafront.
		- Avoid spillage of fill materials into the marine
		water.
Operation of tipping	- Dust	- The tipping halls shall be top and 3-sides
hall for unloading	- Water	enclosed.
public fill into		- Avoid spillage of fill materials into the marine
barges.		water.
Construction of	- Dust	- Apply water spray during excavation and earth
drainage system.	- Noise	moving.
	- Water	- Comply with the conditions of construction
		noise permit.
		- Treat all wastewater to acceptable prior to
~	-	discharge.
Construction of new	- Dust	- Apply water spray during dusty operation.
tipping hall at the	- Water	- Any materials drop into the sea should be
barge handling area,		prevented and any wastewater generated should
CREO 3,		be treated to acceptable prior to discharge.
weighbridge and		
associated widened		
concrete paved		
access road.		
Replacement of	- Dust	- Carry out manual wheel washing and increase
existing wheel	- Waste	the frequency of road cleaning/sweeping when
washing facility.		to wheel washing facility is not operating.

1. INTRODUCTION.

1.1 Background.

Stanger Asia Ltd. has been commissioned by the Penta-Ocean Construction Co. Ltd. to provide an Environmental Team (ET) to monitor air and water quality and audit landscape works for Contract No.CV/2002/13. The team is to take a pro-active role in all issues, which may be of environmental concern during the establishment, operation and decommissioning phases of the Fill Bank at Tuen Mun Area 38.

The Independent Environmental Checker (IEC) appointed for this project is Materialab Consultants Ltd.

In this report, the air and water quality monitoring works and landscape audit conducted for the February 2005 will be detailed and reviewed. All monitoring works were carried out in accordance to "Agreement No, PW 01/2002 Project Profile for Fill Bank at Tuen Mun Area 38, Environmental Monitoring and Audit Manual".

1.2 Report Structure.

The purpose of this report is to detail and review the air and water quality monitoring works and landscape audit undertaken during February 2005. The impact forecast for the next reporting month and the schedules of monitoring works for the following month is also given.

The report follows the format given below:

- Section 1 Introduction and background information to the content of this report.
- Section 2 This section gives the information of the project.
- Section 3 This section summarises all the environmental permits and licenses.
- Section 4 Summary of the EM&A requirements is presented.
- Section 5 This section details the implemented mitigation measures.
- Section 6 Details monitoring results.
- Section 7 Audit the monitoring results.
- Section 8 The status for solid and liquid waste management for the site is overviewed.
- Section 9 Complaints, notifications of summons and successful prosecutions are summarized.
- Section 10 This section gives the predicted impacts of the construction activities.
- Section 11 This section gives a conclusion in relation to all monitoring activities.

2. **PROJECT INFORMATION.**

2.1 Site Description.

The works mainly comprise the construction of temporary storm water system, setting up of C&D material loading/unloading facilities, setting up/ refurnishing site facilities, stockpiling of 4.9 million m³ of public fill, and decommissioning of the temporary fill bank.

The site layout plan is shown in Figure 2.1.

2.2 **Project Organization.**

Mr. L.M. Chan is the Engineer's Representative for the Civil Engineering and Development Department, Government of the HKSAR. (Tel: 2762 5602, Fax: 2714 0113).

The Independent Environmental Checker (IEC) for this project is headed by Mr. Joseph Poon - Manager of Materialab Consultants Ltd. (Tel: 2450 8238, Fax: 2450 6138).

Mr. Chan Kam Sum, Sunny is the Site Agent for Penta-Ocean Construction Co., Ltd. (Tel: 2491 1584, Fax: 2496 0433).

The Environmental Team (ET) for the project is Stanger Asia Ltd. The team is headed by Mr Jeff Tsang – Environmental Scientist. (Tel: 2682 1203, Fax: 2682 0046).

The Organization Chart with the key personnel contacts names and telephone numbers is given in Appendix I.

2.3 Construction Programme.

The overall construction programme is given in Appendix IX. Details of the construction activities are listed below.

- Site clearance;
- Construction of storm water drainage system;
- Stockpiling of 4.9 million m³ of public fill;
- Construction of landscape works; and
- Removal of stockpiled public fill.

3. ENVIRONMENTAL PERMITS AND LICENSES.

The summary of the status of all environmental permits, licenses and notification for this project as at February 2005 is summarized in the following table.

Description	Licence/Permit	Date of	Date of	Status
	No.	Issue	Expiry	
Environmental Permit	EP-153/2003	13-Feb-03		Superseded
Registration of Chemical	WPN5296-421-	05-Aug-03		Issued
Waste Producer	P2800-03			
Amended	EP-153/2003/A	30-Oct-03		Issued
Environmental Permit				
Construction Noise	GW-RW0628-04	15-Nov-04	14-May-05	Issued
Permit				

 Table 3.1
 Summary of the Environmental Permits and Licenses

4. SUMMARY OF EM&A REQUIREMENTS.

4.1 Air Quality.

Monitoring Location.

The project has two designated locations (A1 & A2) for the monitoring of air quality. A1 is a fixed location in the vicinity of the site office to monitor the TSP levels at River Trade Terminal and A2 is a movable location to the western boundary of the site that is designed to move as works progress. The air monitoring locations are shown in Figure 4.1.

	Tuble 4.1 Coordinates of All Quarty Monitoring Stations				
Station	HK Metric Grid – Easting	HK Metric Grid - Northing			
A1	811368	825593			
A2	810812*	825096*			

Table 4.1	Coordinates of Air	Quality]	Monitoring Stations
-----------	---------------------------	-----------	----------------------------

* - Coordinates of present location.

Methodology

Measurement of 24-hour and 1-hour TSP levels were carried out in accordance to the high volume sampling method as set out in the Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50). When positioning the high volume samplers, the following requirements have been observed:

- a horizontal platform with appropriate support to secure the high volume sampler against gusty wind, should be provided;
- horizontal distance between the high volume samplers and an obstacle, such as buildings, must be at least twice the height of the obstacle protruding above the high volume samplers;
- a minimum separation of 2 m should be provided from walls, parapets, and penthouses for rooftop high volume samplers;

- a minimum separation of 2 m should be provided from any supporting structure measured horizontally;
- there should not be any furnace or incinerator flues nearby;
- there should be unrestricted airflow around the high volume samplers;
- a minimum separation of 20 m should be provided from the dripline;
- any wire fence and gate employed to protect the high volume samplers should not cause any obstruction during monitoring.

All relevant data including temperature, pressure, weather conditions, elapsedtimer meter reading for the start and finish of the sampling period, identification and weight of the filter paper, and other special phenomena were recorded.

Monitoring Equipment and Calibration Details.

Andersen GMW Model GS2310 high volume samplers were used to carry out the monitoring of 24-hour and 1-hour TSP. The high volume sampler is in compliance with the specifications as listed in the Environmental Schedule, given below:

- $0.6 1.7 \text{ m}^3/\text{min}$ (20-60 SCFM) adjustable flow range;
- equipped with a timing / control device with 5 minutes accuracy over 24 hours operations;
- installed with elapsed-time meter with 2 minutes accuracy over 24 hours operations;
- capable of providing a minimum exposed area of $406 \text{ cm}^2 (63 \text{ in}^2)$;
- flow control accuracy: 2.5% deviation over 24-hr sampling period;
- equipped with shelter to protect the filter and sampler;
- incorporated with an electronic mass flow rate controller or other equivalent devices;
- equipped with a flow recorder for continuous monitoring;
- provided with peaked roof inlet, incorporated with manometer;
- able to hold and seal the filter paper to the sampler housing at horizontal position;
- easy to change filter; and
- capable of operating continuously for 24-hr period.

The high volume sampler is calibrated at bi-monthly intervals. The calibration kit (Andersen Model G2535) comprising pressure plates and a transfer standard is traceable to the internationally recognized standard. Calibration records for the high volume sampler is given in Appendix II of this report.

Laboratory Measurement.

Laboratory measurements were carried out in Stanger Asia Ltd. own HOKLAS accredited laboratory with constant temperature and humidity control, and equipped with necessary measuring and conditioning instruments.

Clean filter papers of size 8"x10" with no pinholes were labelled before sampling. They were conditioned in a dessicator with less than 50% relative humidity for over 24 hours and pre-weighed before use for sampling.

After sampling, the filter papers loaded with dust were kept in a clean and tightly sealed plastic bag. The filter papers were then returned to the laboratory for reconditioning in the dessicator with less than 50% relative humidity followed by accurate weighing on an electronic balance regularly calibrated against a traceable standard and readable to 0.1 mg.

Stanger Asia Ltd. operates comprehensive quality assurance and quality control programmes. For QA/AC procedures, all filters were equilibrated and weighed repeatedly until the difference of two consecutive results was less than 0.5 mg.

Monitoring Parameters Frequency.

Monitoring Locations	Parameter	Frequency
A1 & A2	24-hr TSP	Once in every six days
	1-hr TSP	Three times in every six days

 Table 4.2
 Air Quality Monitoring Frequency

Action and Limit Levels.

The Action levels for air quality monitoring were established from the impact monitoring data of Contract No. CV/2000/01 prior to the commencement of the fill bank utilising the criteria laid out in *section 4.7* of the EM&A Manual for the project. The Limit levels for air quality monitoring has been set in line with statutory guidelines for air quality in Hong Kong. Action and Limit levels for both 24-hour and 1-hour TSP are given in the following table.

 Table 4.3
 Action and Limit Levels for the Project

Parameter Monitored	Action Level, $\mu g/m^3$	Limit Level, µg/m ³
1-hour TSP	344	500
24-hour TSP	192	260

4.2 Water Quality.

Monitoring Locations.

The EM&A Manual produced for this project has proposed two monitoring stations (FM1 & FM2) and two control stations (FC1 & FC2) for the carrying out of water quality monitoring. Control Station FC1 will act as upstream control station for the mid-ebb tide with control station FC2 acting as upstream control stations for the mid-flood tide.

The designated monitoring stations are shown in Figure 4.2.

Methodology.

Measurements are taken at three water depths, namely 1m below water surface, mid-water and 1m above seabed at both mid-flood and mid-ebb tides, except where the water depth less than 6m, when the mid-depth station may be omitted. Should the water depth have been less than 3m, only the mid-depth was monitored.

Two measurements of turbidity, dissolved oxygen (mg/L), dissolved oxygen (% saturation) and temperature at each depth of each station is taken. The probes are removed from the water after the first measurement and then redeployed for the second measurement. If the difference in value between the first and second reading of each set is more than 25% of the value of the first reading, the readings are discarded and further readings taken. Replicate samples of suspended solids measurements are taken at each depth and at each water quality monitoring and control station. The samples are kept in a chilled condition during delivery to the laboratory ad before commencement of analysis. For the purpose of evaluating the water quality, all values for suspended solids and turbidity shall be depth-averaged.

During monitoring works the following shall also be recorded:

- monitoring location;
- depth of water;
- time;
- weather conditions including ambient temperature;
- water temperature;

Monitoring Equipment.

The following equipment was employed for routine water quality monitoring.

- Dissolved Oxygen meter: YSI model 58 with stirrer
- Turbidity meter: Hach 2100P
- Echo sounder: Hummingbird 100SX
- Water sampler: Kahlisco 135WB203
- GPS receiver: Trimble NT2002D
- Thermometer: YSI model 58

Monitoring Equipment Calibration Details.

All on-site monitoring equipment was calibrated three-monthly at Stanger Asia's HOKLAS accredited laboratory. An on-site calibration check was carried out prior to the taking of measurements in accordance with standard water quality monitoring procedures.

Equipment calibration details were given in Appendix II.

Laboratory Analysis.

The laboratory measurements of suspended solids were carried out at Stanger Asia Limited, a HOKLAS accredited laboratory in accordance with Method No. 2540D 17th Edition of APHA.

Stanger Asia operates a comprehensive quality assurance and quality control programmes for QA/AC procedures in accordance with the requirements of HOKLAS accreditation, all filters were equilibrated and weighted repeatedly until the difference of two consecutive results is less than 0.5 mg.

Monitoring Parameters and Frequency.

	1 av	t 4.4 Watch Quality N	Tolintor mg 141	rquency
Monitoring Locations		Monitoring	Frequency	Requirements
		Parameters		
Designated Cor	ntrol	Temperature,	Three	At three depths during
Stations: FC1 & FC2.		Salinity,	days per	mid-ebb and mid-
		Dissolved Oxygen,	week.	flood tides.
Designated Monitoring		Turbidity,		
Stations: FM1 & FM2	•	Suspended Solids.		

 Table 4.4
 Water Quality Monitoring Frequency

Action and Limit Levels.

The Action and Limit levels for water quality monitoring were established from the impact monitoring data of Contract No. CV/2000/01 prior to the commencement of the fill bank utilising the criteria laid out in *section 6.8* of the EM&A Manual for the project.

Tuble 4.5 Methon and Emili Dever for Water Quanty					
Parameter	Action level	Limit level			
Dissolved Oxygen in mg/L.					
Surface & Middle	<4.78mg/L	<4mg/L			
Bottom.	<4.16mg/L	<2mg/L			
Suspended Solids (SS)	>120% of upstream control	>130% of upstream control			
in mg/L	station's SS at the same time of	station's SS at the same tide			
(depth-averaged)	the same day.	of the same day .			
Turbidity (Tby) in	>120% of upstream control	>130% of upstream control			
NTU	station's Tby at the same tide	station's Tby at the same tide			
	of the same day.	of the same day.			

 Table 4.5
 Action and Limit Level for Water Quality

All the figures given in the table are used for reference only and the EPD may amend the figures whenever necessary.

4.3 Event and Action Plans.

The Event and Action Plans for air and water are attached in Appendix III of this report.

5. IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES.

The contractor implemented various environmental mitigation measures as recommended in the Project Profile and Environmental Permit. The implementation status is attached in Appendix IV and summarised as follows:

- Wheel washing facilities were provided at the exit point of the site and the wheel washing bay was cleared regularly.
- Slopes were compacted as far as practicable.

- Site accesses were covered with concrete.
- Waste collection points were maintained and cleaned on a regular basis.
- Hoarding was erected along Lung Mun Road and near River Trade Terminal.
- Water bowsers and road sweepers were in operation.
- Buffer trees were planted.
- Speed limit warning signs were posted.
- Completed slopes were hydroseeded.

6. MONITORING RESULTS.

6.1 Completed Monitoring Works.

Table 6.1 gives the completed monitoring works for the reported period.

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		1	2	3	4	5
				WQM		
				(Ebb: 19:56)		WQM
		WQM		(Flood: 12:30)		(Ebb: *)
		(Ebb: 17:28)		1 – hr TSP		(Flood: 09:53)
		(Flood: 11:15)		24 – hr TSP		Site Inspection
6	7	8	9	10	11	12 1 1 TOD
						1 - hr TSP
						24 - fir 15P WOM
						(Fbb: 15.35)
						(Elood: 09:53)
						Site Inspection
13	14	15	16	17	18	19
	WQM					1 – hr TSP
	(Ebb: 16:58)					24 – hr TSP
	(Flood: 10:38)		WQM			WQM
	1 – hr TSP		(Ebb: 19:07)			(Ebb: *)
	24 – hr TSP		(Flood: 11:25)	Site Inspection		(Flood: 10:23)
20	21	22	23	24	25	26
	WOM	Sita Increation	WOM		WOM	
	(Fbb: 11.52)	L and scape	(Ebb: 12.54)	1 – hr TSP	(Ebb: 13.40)	
	(Elood: 16:42)	Audit	(Elood: 12.54) (Elood: 18.16)	24 - hr TSP	(Elood: 08:19)	
27	28	- route	(110001110110)	2	(11000.0011))	
	-0					

 Table 6.1
 Completed Monitoring Works for February 2005

Notes: 1. 24 – hr TSP (monitored once every 6 days) at monitoring locations A1 and A2.

2. 1 hour TSP (monitored three times every six days when highest level of dust generation expected) at monitoring locations A1 and A2.

3. WQM - water quality monitoring three times per week, on mid-flood and mid-ebb tides. Days of

monitoring to be separated by at least 36 hours. Monitoring locations FC1, FM1, FM2 & FC2.

4. Site inspections to be carried out once per week.

5. Auditing of landscape works to be carried out once per month.

* No ebb tide.

6.2 Air Quality Monitoring.

Impact monitoring of 24-Hour TSP was conducted on five occasions at A1 and A2, with the monitoring of 1-Hour TSP being conducted on fifteen occasions at A1 and A2 in this reported period.

The monitoring records for 24-hour and 1-hour TSP are given in the following table. Details of monitoring results are given in Appendix V. The results are presented graphically in Figures 6.1 and 6.2.

	Tuble of	Results of a linear l	or momenting	
Date	A1, $\mu g/m^3$	Exceedance	A2, $\mu g/m^3$	Exceedance
		(Y/N)		(Y/N)
03/02/2005	89	Ν	120	Ν
12/02/2005	99	Ν	101	Ν
14/02/2005	65	Ν	122	Ν
19/02/2005	84	Ν	122	Ν
24/02/2005	90	Ν	61	Ν
Action Level	192 µg/m3			
Limit Level	$260 \mu \text{g/m}^3$			

Table 6.2 Results of 24-hour TSP Monitoring

Date	A1, μ g/m ³	Exceedance	A2, $\mu g/m^3$	Exceedance
		(Y/N)		(Y/N)
03/02/2005	326	Ν	224	Ν
03/02/2005	165	Ν	245	Ν
03/02/2005	302	Ν	197	Ν
12/02/2005	294	Ν	247	Ν
12/02/2005	223	Ν	204	Ν
12/02/2005	269	Ν	316	Ν
14/02/2005	253	Ν	312	Ν
14/02/2005	191	Ν	141	Ν
14/02/2005	157	Ν	172	Ν
19/02/2005	204	Ν	164	Ν
19/02/2005	281	Ν	128	Ν
19/02/2005	203	Ν	181	Ν
24/02/2005	236	Ν	277	Ν
24/02/2005	180	Ν	215	Ν
24/02/2005	284	N	238	N
Action Level	$344 \mu g/m^3$			
Limit Level		500	μg/m ³	

 Table 6.3
 Results of 1-hour TSP Monitoring

Wind speed and direction data from the wind station is given in Appendix XI.

6.3 Water Quality Monitoring.

Water quality monitoring was carried out on ten occasions during flood tide and eight occasions during ebb tide at FM1, FM2, FC1 and FC2.

Results for water quality monitoring are summarised in the following tables. Details of monitoring results are presented in Appendix VI. Graphical presentations of the results are shown in Figure 6.3 – Figure 6.10.

Table 6.4 Summary of Water Quality Monitoring Data				
Sample	Surface & Middle	Bottom Averaged	Depth Averaged	Depth Averaged
Location	Averaged	Dissolved	Turbidity	Suspended
	Dissolved Oxygen	Oxygen		Solids
	(Range), mg/L	(Range), mg/L	(Range), NTU	(Range), mg/L
FM1	6.94	6.93	4.53	11.4
	(6.52-7.61)	(6.54-7.68)	(2.65-7.15)	(5.2-17.0)
FM2	6.90	6.86	4.57	11.0
	(6.34-7.62)	(6.31-7.64)	(2.63-6.27)	(5.8-19.2)
FC1	6.89	6.89	4.63	11.7
	(6.39-7.67)	(6.43-7.64)	(2.92-7.23)	(6.2-18.7)
FC2	6.91	6.89	4.47	11.2
	(6.40-7.61)	(6.45-7.71)	(2.50-6.50)	(5.2-17.3)

 Table 6.4
 Summary of Water Quality Monitoring Data

7. AUDIT REPORT.

7.1 Air Quality Monitoring.

No exceedance to set action or limit levels for either 24 or 1-Hour TSP monitoring was recorded at air monitoring station A1 and A2 in this reported period.

7.2 Water Quality Monitoring.

There was no exceedance to the Action and Limit Level for water quality parameters in this reported period.

7.3 Site Inspections.

Four weekly site inspections were conducted on 5th, 12th, 17th and 22nd February 2005. Observations by ET, action by the Contractor and outcome are summarised in the following table.

Table 7.1	Summary of Findings.	Actions and Outcomes	of Site Inspecti	on by ET
I GOIC / II	Summary of I manigo,	rections and outcomes	or precimpeter	

Observations	Actions by Contractor	Outcome
Materials were stockpiled at	Cleaned up the stockpiles.	The stockpiles were
the seafront.		removed.
(17.02.2005)		(22.02.2005)

The Independent Environmental Checker (IEC) conducted at audit on 17th February 2005. The major observations were summarized in the following table.

Observations	Actions by Contractor	Outcome
Dust emission was observed	Confined trucks to use designated	Situation rectified.
from traffic on dry areas other	haul roads by fencing off the dry	(22.02.2005)
than the main haul roads	areas.	
which were not dampened.		
Uncovered stockpiles were	Cleaned up the stockpiles.	The stockpiles were
located at the seafront near		removed.
the tipping hall.		(22.02.2005)
Splashing generated during	Ensured the barge is fitted with	Barges were fitted with
the transfer of wet soil to the	nets/tarpaulin sheets.	nets.
barge at the tipping hall has		(22.02.2005)
caused splashing into the sea.		
No net/tarpaulin sheet was		
raised on the barge during		
time of inspection.		
The western side of the Fill	The Contractor will arrange	To be observed in the next
Bank was only partially	hydroseeding after slope	reporting period.
hydroseeded.	trimming works completed.	

Table 7.2	Summary of Findings, Actions and Outcomes of Site Inspection by II	EC
-----------	--	----

7.4 Landscape and Visual.

A landscape audit was conducted on 22nd February 2005. There was no specific observation regarding landscape in this reporting period.

8. WASTE MANAGEMENT.

133,000m³ public fill was collected to the Fill Bank. 10.28t C&D waste and general refuse were disposed of at WENT Landfill. Chemical waste generated was stored in temporary waste storage area. No chemical waste was disposed of in this reporting period.

9. COMPLAINTS, NOTIFICATIONS OF SUMMONSES AND SUCCESSFUL PROSECUTIONS.

No complaint was received this month. Complaint Log is attached in Appendix VII. Cumulative statistics on complaints, notifications of summonses and successful prosecutions are attached in Appendix VIII.

10. FUTURE KEY ISSUES.

The following are the scheduled construction activities for the next reported period. Scheduled monitoring activities for the following month are given in Appendix IX.

Works Activities	Predicted Impacts	Proposed Mitigation Measures
Public filling operation.	- Dust - Water	 Dampening of fill materials and exposed area. Avoid stockpiling fill materials near seafront. Avoid spillage of fill materials into the marine
Operation of tipping hall for unloading public fill into barges.	- Dust - Water	 water. The tipping halls shall be top and 3-sides enclosed. Avoid spillage of fill materials into the marine water.
Construction of drainage system.	- Dust - Noise - Water	 Apply water spray during excavation and earth moving. Comply with the conditions of construction noise permit. Treat all wastewater to acceptable prior to discharge.
Construction of new tipping hall at the barge handling area, CREO 3, weighbridge and associated widened concrete paved access road.	- Dust - Water	 Apply water spray during dusty operation. Any materials drop into the sea should be prevented and any wastewater generated should be treated to acceptable prior to discharge.
Replacement of existing wheel washing facility.	- Dust - Waste	- Carry out manual wheel washing and increase the frequency of road cleaning/sweeping when to wheel washing facility is not operating.

 Table 10.1
 Works Programme for March 2005

11. CONCLUSION.

All results for the air quality monitoring conducted this month were acceptable with no exceedance to set action or limit levels for either 24 or 1-hour TSP.

In relation to the monitoring of water quality, there was no record of exceedance to the set Action and Limit Level during this reporting period.

There was no specific observation regarding landscape in this reporting period.

Figures

Figure 6.1 - Graphical Plot for 24-hr TSP

Figure 6.2 - Graphical Plot for 1-hr TSP

Figure 6.3 - Surface and Middle Averaged Dissolved Oxygen - Mid-Flood

Figure 6.4 - Surface and Middle Averaged Dissolved Oxygen - Mid-Ebb

Figure 6.5 - Bottom Averaged Dissolved Oxygen - Mid-Flood

Figure 6.6 - Bottom Averaged Dissolved Oxygen - Mid-Ebb

Figure 6.7 - Depth Averaged Turbidity - Mid-Flood

Figure 6.8 - Depth Averaged Turbidity - Mid-Ebb

Figure 6.9 - Depth Averaged Suspended Solids - Mid-Flood

Figure 6.10 - Depth Averaged Suspended Solids - Mid-Ebb

Appendix I

Organization Chart

Project Organization (Environmental) Fill Bank at Tuen Mun Area 38 Contract No. CV/2002/13

Appendix II

Calibration Certificates of the Monitoring Equipment
	SOM	P ENV052 :	CALIBRA	ATION RE	CORD OF	HIGH	VOLUME	AIR SAM	PLER (TSP)			
Date:	16/12/2004				Equip Serial	ment No.:	o.: I	M3052				
Temp.:		20 ° C			Calibr	ation No	o.: low Rate	True	Corrected			
At. Press:	7	64 mm Hg				18	(m ³ /min) 1.616	in.H2O 10.1	Flow (CFM) 50.47		_	
Calibrated	by:	Dennis Tsi	ui			13 10	1.492 1.237	8. 5.	6 44.42 9 35.33			
Next Calib	ration Due I	Date:	16/02/200	05		7	0.955	3.	5 27.26 2 20.19			
Rømarks:	The correla than 0.99 in is linear. Slope= Intercept=	ntion coefficien ndicates the ca 34.288867 -6.015929	t is larger alibration 7	-								
Location :		Tuen Mun	Area 38 - A	A1					R ² = 0	.9948		
Corrected Flow, CFM	50,00					/						
Tester:	D.000 Dennis Tsu	0.200	0.400	0.600	Check	1.00 v rate, Qs	1,2 td, m ^{\$} /min - /	Arthur Chen	ARTR g		2.000	

The copyright of this report is owned by Stanger Asia Limited. It may not be reproduced except with the prior written approval of the issuing laboratory. GE 8.15 FTA Control 13.00 Churen Street Fanlion. New Territories HONG KONG. Tel: 852-2682 1203. Fax: 852-2682 0046. E-mail.address: stander@stander.com.hk

The copyright of this report is owned by Stanger Asia Limited. It may not be reproduced except with the prior written approval of the issuing laboratory.

	ALIBRATION RECORD	OF TURBIDIMETER	
Date of Calibration	24/12/2004		
Due Date of Next (Calibration:	24/03/2005	
Equipment No.:	EM 2365	1	
Manufacturer:	HACH		
Model:	2100P		
Serial No.:	970500014289	1	
Turbidimeter Calib	ration standard (HACH):	No.1: 20 NTU	
		No.2: 100 NTU	
		No.3: 800 NTU	
Stock Calibration s	tandard No.:	896	
Three-point calibra	tion accepted:/Y/ N		
Stock Calibration c	hecking standards No.	QCS 965	
Turbidit	y value - Checking stand	ards (NTU)	
Actual value	Measured value	Accepted*: Y/N	
0	0	Y	_
5	5.31	Y	
10	10.8	Y	
	52.3	Y	
50	103	Y .	
50 100		Y	
50 100 400	406		
50 100 400 *Allowing Deviation	406 n: +/- 10%		
50 100 400 *Allowing Deviation Tested by: Dennis	406 n: +/- 10%	Checked by:	22
50 100 400 *Allowing Deviation Tested by: Dennis	406 n: +/- 10%	Checked by:	27

- 그는 것이 같은 것이 잘 말했다.	
Page 1 of 1	Stanger Asia
SOMP ENV066 : CALIBRATION RECORD OF YSJ HANDHELD SALINITY, CONDU TEMPERATURE SYSTEM	I MODEL 30 CTIVITY &
Calibration No. 04 4305	
Equipment No. EM 3694	APPROVED FOR USE BY
Serial No. 00F0285AA	Damis Than
Date of Calibration: 17/12/2004	POSITION /
Due Date of Next Calibration: 17/03/2005	- Env. Scientist
Stock Calibration Standard Potassium Chloride No. 316	
Stock Calibration Check Potassium Chloride No. 648	

Volumetric glassware employed: V20, V17, V100, V105, V109, V119

Calibration Check Solutions, ppt	Meter reading, ppt
Calibration Check Solution, El	0.0
10.0	10.3
20.0	21.0
20.0	31.6
10.0	43.5

Tested by : Inn Dennis Tsui

.

P Checked By : Jeff Tsang

It may not be reproduced except with the prior written approval of the issuing laboratory

SOMP ENVF066 : Issue 2001 No.1

The copyright of this report is owned by Stanger Asia Limited.

19 December 2001

Page 1 of 1

Constanger Asia

SOMP ENV064 : CALIBRATION RECORD OF DISSOLVED OXYGEN METER

Dissolved Oxygen Meter Equipment No.: EM 961

Dissolved Oxygen Serial No.: 93M12874

Dissolved Oxygen Probe Serial No.: 96K0145

Date of Calibration .: 24-12-2004

Due Date of Next Calibration .: 24-03-2005

Molarity of sodium thiosulphate solution: 0.0250M

Potassium Bi-iodate No.: 480

Standardisation of S	Sodium Thiosulpha	te Solution	
Standard Solution	Initial burette reading B, mL	Final burette reading C, mL	Vol. of $Na_2S_2O_3$ used A, mL = (C - B)
Standard 1	0.00	20.00	20.00
Standard 2	0.00	20.00	20.00
Standard 3	0.00	20.10	20.10
Sundard		Average Value	20.03

Calibration	of the Dissolve	d Oxygen Mete	er		-
Standard Solutions	Initial burette reading B, mL	Final burette reading C, mL	Vol. of $Na_2S_2O_3$ used A, mL = (C - B)	D.O. by titration, mg/L	Meter reading, mg/L
A	0.00	1.95	1.95	1.95	1.99
B	0.00	5.60	5.60	5.61	5.65
C	0.00	7.05	7.05	7.06	7.12
D	0.00	8.22	8.22	8.23	8.35

Tested by : Dennis Tsui

Checked By : Jeff Tsang

SOMP ENVF064 : Issue 2001 No.1

19 December 2001

The copyright of this report is owned by Stanger Asia Limited. It may not be reproduced except with the prior written approval of the issuing laboratory. G/F. & I/F. KTA Centre, 13 On Chuen Street, Fanling, New Territories, HONG KONG. Tel: 852- 2682 1203 Fax: 852- 2682 0046 E-mail address: stanger@stanger.com.hk

Page 1 of 2

Stanger Asia

SOMP ENV071: CALIBRATION RECORD OF DISSOLVED OXYGEN, SALINITY, CONDUCTIVITY, TEMPERATURE SYSTEM

Equipment No.: EM 6167

Model No.: YSI 85

Equipment Serial No.: 04L1806

Date of Calibration .: 15-12-2004

Due Date of Next Calibration .: 15-03-2005

Molarity of sodium thiosulphate solution: 0.0250M

Potassium Bi-iodate No.: 480

Stock Calibration Standard Potassium Chloride No. 316

Stock Calibration Check Potassium Chloride No. 648

Reference Thermometer No. RF2358

Calibration Check for Dissolved Oxygen

Standard Solution	Initial burette reading B, mL	Final burette reading C, mL	Vol. of $Na_2S_2O_3$ used A, mL = (C - B)
Standard 1	0.00	20.00	20.00
Standard 2	0.00	20.00	20.00
Standard 3	0.00	20.10	20.10
		Average Value	20.03

Calibratio	n of the Dissolv	ed Oxygen			
Standard Solution s	Initial burette reading B, mL	Final burette reading C, mL	Vol. of $Na_2S_2O_3$ used A, mL = (C - B)	D.O. by titration, mg/L	Meter reading, mg/L
A	0.00	2.44	2.44	2.44	2.38
В	0.00	5.45	5.45	5.46	5.40
С	0.00	7.10	7.10	7.11	7.01
D	0.00	8.31	8.31	8.32	8.21
Allowing	deviation : ± 10	%			

Calibration Check for Salinity

Calibration Check Solutions, ppt	Meter reading, ppt
0.0	0.0
10.0	10.4
20.0	20.9
30.0	31.8
40.0	42.5
owing deviation : ± 10%	

The copyright of this report is owned by Stanger Asia Limited. It may not be reproduced except with the prior written approval of the issuing laboratory. Grf. & 1/E, KTA Centre, 13 On Chuen Street, Fanling, New Territories, HONG KONG. Tel: 852-2682 1203 Fax: 852-2682 0046 E-mail address: stanger@stanger.com.hk

		0	taliger hora	
C	alibration Check for Temperature			
	Calibration Check of the Temperature	3	1.5	
	Reference Thermometer reading, °C	Meter read	ng, °C	
_	0.00	0.0	8	
-	24.90	25.0		
F	30.10	30.1		
	Allowing deviation : ± 0.5 °C			
_	10 20			
т	exted by:	Checked By :	m.	
1	Dennis Tsui	Jeff Ts	ang	
)	
	2			

Appendix III

Event and Actions Plans

Event and Action Plan for Air Quality								
		ACTION						
EVENT	ET Leader	IC (E)	ER	CONTRACTOR				
Action Level			-	-				
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures. Inform ER, IEC and Contractor. Repeat measurement to confirm findings. Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET. Check Contractor's working methods. 	1. Notify Contractor.	 Rectify unacceptable practice. Amend working methods if appropriate. 				
Exceedance for two or more consecutive samples	 Identify source, investigate the causes of exceedance and propose remedial measures. Inform IEC and Contractor. Repeat measurement to confirm findings. Increase monitoring frequency to daily. Discuss with IEC and Contractor on remedial actions. If exceedance continues, arrange meeting with IEC and ER. If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET. Check Contractor's working method. Discuss with ET and Contractor on possible remedial measures. Advise the ER on the effectiveness of the proposed remedial measures. Supervise implementation of remedial measures. 	 Confirm receipt of notification of failure in writing. Notify Contractor. Ensure remedial actions are properly implemented. 	 Submit proposals for remedial actions to ER within 3 working days of notification. Implement the agreed proposals. Amend proposals if appropriate. 				

		ACTION		
EVENT	ET Leader	IC (E)	ER	CONTRCATOR
Limit Level				
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures. Inform ER, Contractor and EPD. Repeat measurement to confirm findings. Increase monitoring frequency to daily. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET. Check Contractor's working method. Discuss with ET and Contractor on possible remedial measures. Advise the ER on the effectiveness of the proposed remedial measures. Supervisor implementation of remedial measures. 	 Confirm receipt of notification of failure in writing. Notify Contractor. Ensure remedial actions properly implemented. 	 Take immediate action to avoid further exceedances. Submit proposals for remedial actions to IEC within 3 working days of notification. Implement the agreed proposals. Amend proposal if appropriate.
Exceedance for two or more consecutive samples	 Identify source, investigate the causes of exceedance and propose remedial measures. Inform IEC, ER and Contractor and EPD. Repeat measurements to confirm findings. Increase monitoring frequency to daily. Carry out analysis of Contractor's working procedures to determine possible mitigation measure(s) to be implemented. Arrange meeting with IEC and ER to discuss the remedial actions to be taken. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET and Contractor on the potential remedial actions. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly. Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing. Notify Contractor. In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented. Ensure remedial measures properly implemented. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance. Submit proposals for remedial actions to IEC within 3 working days of notification. Implement the agreed proposals. Resubmit proposals if problem still not under control. Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Event and Action Plan for Air Quality (cont'd)

	ACTION			
EVENT	ЕТ	IEC	ER	CONTRACTOR
Action level				
Action level being exceeded by one sampling day.	 Repeat in-situ measurements to confirm findings; Identify source(s) of impacts; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; Repeat measurements on next day of exceedance. 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise ER accordingly; Assess the effectiveness of implemented mitigation measures. 	 Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented. 	 Inform the ER and confirm notification of the non- compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IEC and propose mitigation measures to IEC and ER; Implement the agreed mitigation measures.
Action level being exceeded by more than one consecutive sampling day.	 Repeat in-situ measurements to confirm findings; Identify source(s) of impact; Inform contractor and IEC; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with ER and Contractor; Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; Repeat measurements on next day of exceedance. 	 Discuss with ET and Contractor on the proposed mitigation measures; Review proposals on mitigation measures submitted by Contractor advise ER accordingly; Assess the effectiveness of the implemented mitigation measures. 	 Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures. 	 Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with the ET and IEC and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures.

Event and Action Plan for Water Quality

	ACTION			
EVENT	ЕТ	IEC	ER	CONTRACTOR
Limit level				
Limit level being exceeded by one sampling day.	 Repeat in-situ measurements to confirm findings; Identify source(s) of impact; Inform contractor and IEC; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with ER and Contractor; Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily until no exceedance of Limit level. 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by the Contractor and advise the ER accordingly; Assess the effectiveness of implemented mitigation measures. 	 Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures. 	 Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with the ET and IEC and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures.
Limit level being exceeded by more than one sampling day.	 Repeat in-situ measurements to confirm findings; Identify source(s) of impact; Inform contractor and IEC; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days. 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by the Contractor and advise ER accordingly; Assess the effectiveness of implemented mitigation measures. 	 Discuss with IEC on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures. Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of works identified as the cause of exceedance until no exceedance of Limit level. 	 Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with the ET and IEC and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures; As directed by the Engineer, slow down or stop all or part of theworks identified as the cause of exceedance or construction activities.

Event and Action Plan for	Water	Quality	(Cont'd)
----------------------------------	-------	---------	----------

Appendix IV

Implementation Status of Mitigation Measures

Area	Mitigation Measures	Implementation Period	Implementation Status
1. General	Maximum stockpiling height to be limited to a maximum of +35mPD.	Throughout the operation period	Implemented
2. Air Quality	Working areas where excavation or earthmoving operations are taking place shall be sprayed with water or a dusty suppression chemical.	Throughout the operation period	Implemented
	Any stockpiling of excavated material shall be covered by impervious sheeting or sprayed with water or a dust suppression chemical.	Throughout the operation period	Occasionally implemented
	All roads within the site to be covered with concrete, bituminous materials, hardcore or metal plates.	Throughout the operation period	Implemented
	Erect a hoarding of at least 2.4m high along the northern and eastern boundaries of the site except at the site entrance/exit. Before occupation of the Recovery Park Phase I and II, site hoarding of at least 2.4m high should also be erected along the western boundary of the fill bank.	Throughout the operation period	Implemented
	Install/refurnish vehicle wheel washing facilities including high pressure water jets provided at designated vehicle exit points.	Throughout the operation period	Implemented
	At the barging point, the drop height between the barge and dump trucks shall be minimized.	Throughout the operation period	Implemented
	Tipping halls provided for transfer of public fill from trucks to barges shall be top and 3-sides enclosed.	Throughout the operation period	Implemented
	Water lorries and/or road sweepers shall be provided and used in dust suppression.	Throughout the operation period	Implemented
	The designated main haul roads shall be watered at approximately every 2 hours to ensure that the roads are kept sufficiently dampened.	Throughout the operation period	Implemented

IMPLEMENTATION STATUS OF MITIGATION MEASURES

Area	Mitigation Measures	Implementation Period	Implementation Status
2. Air Quality	Truck speed to be controlled to within 10 km/hr.	Throughout the operation period	Implemented
	All dusty fill material shall be sprayed with water or a dust suppression chemical prior to loading, unloading or transfer.	Throughout the operation period	Occasionally Implemented
	Frequent watering (at least three times per day) of the worksites with active dusty operations is recommended. The frequency shall be increased when the weather is dry.	Throughout the operation period	Implemented
	Loading of public fill delivered to the site shall be sprayed with water at the material landing point to minimize dust emission except when the materials are sufficiently dampened when landing.	Throughout the operation period	Occasionally Implemented
	Vehicle washing facilities including high pressure water jet at the existing exits shall be maintained and operated by designated staff to ensure that these dust control measures are being used.	Throughout the operation period	Implemented
	Before leaving the fill bank site, every vehicle shall be washed to remove any dusty materials from its body and wheels.	Throughout the operation period	Implemented
	Trucks carrying dusty loads entered to the site shall be sprayed with water once the impervious sheeting covering the load is removed.	Throughout the operation period	Implemented
	A minimum buffer distance of 20m shall always be maintained between the edge of public fill stockpiling area and the nearest air sensitive receivers at the River Trade Terminal.	Throughout the operation period	Implemented
	An area of 100m x 100m in the north-eastern corner of the stockpiling area shall be managed by the Contractor as a "truckload control zone". Number of trucks travelling to the control zone shall be limited to a maximum of 64 vehicles per hour, and a daily maximum of 633 vehicles per day.	Throughout the operation period	Implemented

Area	Mitigation Measures	Implementation Period	Implementation Status
2. Air Quality	A minimum buffer zone of 20m shall be maintained between the edge of the public fill stockpiling area and the nearest air sensitive land use at Recovery Park Phase I and Phase II along the western boundary of the site.	Throughout the operation period	Implemented
	Temporary slope surfaces shall be covered with tarpaulin sheets or other impermeable sheets, or sprayed with water or a dust suppression chemical, or protected by other methods approved by CED.	Throughout the operation period	Partially implemented
	Final slope surfaces shall be treated by compaction, followed by hydroseeding, vegetation planting or other suitable surface stabiliser approved by CED to prevent the washing away of stockpiled material.	Throughout the operation period	Partially Implemented
	Any belt conveyor systems used for transfer of dusty materials shall be enclosed on top and 2 sides.	Throughout the operation period	N/A
	Every transfer point between two conveyors shall be totally enclosed.	Throughout the operation period	N/A
	An effective belt scraper or equivalent device shall be installed at the head pulley of every belt conveyor to dislodge fine particles that may adhere to the belt surface.	Throughout the operation period	N/A
	The belt conveyor shall be equipped with bottom plates or other similar means to prevent falling of material from the return belt.	Throughout the operation period	N/A
	Every stockpiling belt conveyor shall be provided with a mechanism to adjust its level such that the vertical distance between the belt conveyor and the material landing point is maintained at no more than 1m.	Throughout the operation period	N/A
	Dusty materials loaded from a belt conveyor outlet to stockpiles, storage bins, trucks, barges and other open areas shall be sprayed with water or a dust suppression chemical.	Throughout the operation period	N/A

Area	Mitigation Measures	Implementation Period	Implementation Status
2. Air Quality	Frequent mist spraying should be applied on dusty areas. The frequency of spraying required will depend upon local meteorological conditions such as rainfall, temperature, wind speed and humidity. The amount of mist spraying should be just enough to dampen the material without over-watering.	Throughout the operation period	Implemented
3. Noise	No project activities associated with land-based intake of public fill shall be carried out between 20:00 and 08:00 hrs daily.	Throughout the operation period	Implemented
	All construction works should be carried out during the non- restricted hours (i.e. 7:00 a.m. to 7:00 p.m. on weekdays other then General Holidays).	Throughout the operation period	N/A
	Before the commencement of any works that may generate a significant noise impact, the Contractor should submit to the Engineer for approval the method of working, equipment and sound-reducing measures (e.g. use of silenced type equipment).	Throughout the operation period	N/A
	The fill bank should not be in operation from 8:00 p.m. to 8:00 a.m. the next day.	Throughout the operation period	N/A
4. Water Quality	Trapezoidal surface channels should be constructed to intercept polluted surface runoff. These channels shall be equipped with sand/de-silting traps such that the effluent discharged from site during the establishment, operation and decommissioning phases will meet the required discharge limits.	Throughout the operation period	Implemented
	Tipping halls at the waterfront provided for transfer of public fill from trucks to barges shall be enclosed design with the top 3-sides enclosed to prevent spillage of material into the marine water.	Throughout the operation period	Implemented
	Before the completion of the surface drainage channels at the commencement of the project, earth bunds and sand bag barriers shall be use at required locations to effectively divert storm water to available drainage channels constructed under the reclamation works.	Throughout the operation period	N/A

Area	Mitigation Measures	Implementation Period	Implementation Status
4. Water Quality	Temporary drainage facilities provided shall allow polluted stormwater to be diverted to existing intercepting channels before stockpiling of public fill should begin.	Throughout the operation period	Implemented
	Intercepting channels shall be equipped with sand/silt removal facilities to allow the stormwater to be treated before discharge at the designated outfalls.	Throughout the operation period	Implemented
	Effluent discharged shall meet the relevant discharge limits.	Throughout the operation period	N/A
	A minimum buffer distance of 50m will be provided between the edge of the stockpiling area of the fill bank and seafront.	Throughout the operation period	Implemented
	Open channels and/or other effective drainage system shall be constructed at the perimeter of the site for intercepting and directing runoff to sand/silt removal facilities prior to discharge.	Throughout the operation period	Implemented
	The unpaved area on the seaward side of the channels shall be covered with gravel and formed with slope so that polluted stormwater will be intercepted by the channels.	Throughout the operation period	Implemented
	Any excavated material generated near the seafront (e.g. from the construction of the barging point) not required to be backfilled immediately should be transported away from the seafront to avoid potential water quality impact especially during the rainy season.	Throughout the operation period	Implemented
	Public fill transported to the stockpiling area for storage should not contain unsuitable material such as peat, vegetation, timber, organic, soluble or perishable material, dangerous or toxic material, floatable materials (such as bottle, plastic bags, foam box), and materials susceptible to combustion.	Throughout the operation period	Implemented

Area	Mitigation Measures	Implementation Period	Implementation Status
4. Water Quality	Temporary slope surfaces shall be covered as far as practicable and as soon as possible with tarpaulin or other impermeable sheets, or protected by other methods approved by CED when rainstorms are likely, especially when a rainstorm is imminent or forecast.	Throughout the operation period	Partially Implemented
	Final slope surfaces shall be treated by compaction, followed by hydroseeding, vegetation planting or other suitable stabilizer approved by CED to prevent the washing away of stockpiled material.	Throughout the operation period	Partially Implemented
	Adequately designed and constructed catchpits, sand and silt removal facilities and intercepting channels should be maintained, and the deposited silt and grit should be removed weekly and on a as need basis especially during the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times.	Throughout the operation period	Implemented
	A wheel washing bay should be provided at the site exit and washwater should have sand and silt settled out or removed before the water is being reused or discharged into storm drains.	Throughout the operation period	Implemented
	All vehicles and plant bodies should be cleaned before they leave the fill bank site to ensure that no earth, mud or debris is deposited by them on roads.	Throughout the operation period	Implemented
	The section of construction road between the wheel washing bay and the public road should be paved with concrete, bituminous materials or hardcores to reduce vehicle tracking of soil and to prevent site run-off from entering public roads drains.	Throughout the operation period	Implemented

Area	Mitigation Measures	Implementation Period	Implementation Status
4. Water Quality	Sewage from toilets and similar facilities should be discharged into a foul sewer, or chemical toilets should be provided. Should chemical toilets be employed these must be provided by a licensed contractor, who will be responsible for appropriate disposal and maintenance of these facilities.	Throughout the operation period	Implemented
	Wastewater collected from canteen kitchens, including that from basins, sinks and floor drains, should be discharged into foul sewers via grease traps.	Throughout the operation period	N/A
	Drainage systems provided at car parking areas shall be provided with oil interceptors in addition to sand/silt removal facilities.	Throughout the operation period	N/A
	All barges used in the transportation of fill material during the operation/decommissioning stages should be properly licensed under the Shipping and Port Control Ordinance, and of appropriate size such that adequate clearance is maintained between the vessels and the sea bed at all states of the tide.	Throughout the operation period	Implemented
	All vessels used for transportation of fill material should have tight fitting seals to their bottom openings.	Throughout the operation period	Implemented
	When backhoe fixed on an appropriately designed flat-top pontoon is in use, the reach of the backhoe shall be controlled to within the flat-top pontoon of sufficient length to avoid accidental dropping of public fill into the sea.	Throughout the operation period	N/A
	When hopper barges with mobile crane is in use, guardrails or equivalent shall be fixed alongside the berthing faces to guide the movement of the crane to avoid accidental dropping of fill material.	Throughout the operation period	N/A
	When derrick barges with built-in crane are in use, the reach of the jig shall be controlled to within the length of the barge to avoid accidental dropping of public fill into the sea.	Throughout the operation period	Implemented

Area	Mitigation Measures	Implementation Period	Implementation Status
4. Water Quality	The design of the specific transfer methods shall be as such that the pathway of material delivery from barge to the waterfront will not be directly on top of the marine water.	Throughout the operation period	Implemented
	Barges should not be filled to a level which may cause overflow of material during loading or transportation.	Throughout the operation period	Implemented
	Barge effluents (e.g. muddy water) should be properly collected and treated prior to disposal.	Throughout the operation period	Implemented
	Work activities should not cause any visible foam, oil, grease, scum, litter or other objectionable matters to be present on the water in the vicinity of the barging point.	Throughout the operation period	Implemented
	A waste collection vessel shall be deployed to remove floating refuse on the sea near the fill bank for proper disposal.	Throughout the operation period	Occasionally Implemented
5. Landfill Gas	Main site offices of the fill bank shall be constructed within the site area lying outside the 250m consultation zone of the restored Siu Lang Shui Landfill.	Throughout the operation period	Implemented
	The container office(s) to be set up at the site entrance/exit which is situated within the construction zone of the landfill shall be constructed on a raised hollow platform, or equivalent.	Throughout the operation period	Implemented
	No underground structures such as drainage and sewage systems, underground pipelines and chambers shall be constructed at the site area lying within the consultation zone.	Throughout the operation period	Implemented
	In the unlikely event that any sign of leachate-contaminated groundwater be encountered during the establishment, operation or decommissioning phases of the fill bank, the landfill operator should be informed so that this can be collected for proper treatment and disposal.	Throughout the operation period	Implemented

Area	Mitigation Measures	Implementation Period	Implementation Status
6. Landscape and Visual	Hydroseeding or coloured geo-textile matting (dark green/brown) shall be provided on the slopes of the fill bank along the eastern, northern and western sides of the fill bank as the slopes of each layer of platform are formed.	Throughout the operation period	Partially Implemented
	A buffer tree planting strip should be provided along the northern perimeter of the site where space permits. A row of approximately 3m high native evergreen tree species with a tall habit when fully grown (e.g. Casuarina equisetifolia) shall be planted at the early establishment/ operational phase of the project.	Throughout the operation period	Implemented
	The design, colour and finish of structures at the fill bank should be such that they are visually recessive. Reflectivity should be reduced through selection of material or surface treatment.	Throughout the operation period	Implemented
	The surface colour selected should be of an earthy tone with strong natural qualities (e.g. green/grey/brown). The use of bold colour schemes should be avoided.	Throughout the operation period	Implemented
	The existing 2.4m high site hoarding located along Lung Mun Road should be maintained to help screening of the fill bank.	Throughout the operation period	Implemented

Appendix V

Air Quality Monitoring Results

Repo	ort on 2	24-hour T	otal Susp	ended P	articulate I	Monitoring -	A1						
Sample	Location	Date and Time	Start Counter	Stop Counter	Temperature, °C	Pressure, mmHg	Weather	Wind	Weight of Filter, g	Flow rate Q _{std} ,	Total air volume	Mass Cond	centration
Number	Code	of Sampling	Reading	Reading	Initial/Final	Initial/Final	Conditions	Direction	Initial/Final	std. m ³ /min	of sample, std. m ³	of TSP,	μ g/std. m ³
13504	A1	03/02/2005	2734.53	2759.10	14	764	Cloudy	E	2.9213	1.4	2064	89	
		15:30			17	762			3.1052				
13508	A1	12/02/2005	2762.10	2786.38	17	767	Sunny	E	2.9034	1.4	2040	99	
		13:20			17	166			3.1049				
13510	A1	14/02/2005	2789.38	2814.84	17	763	Cloudy	E	2.9105	1.37	2093	65	
1		14:25			19	761	· · · · · · · · · · · · · · · · · · ·		3.0472				
13520	A1	19/02/2005	2818.02	2842.69	13	766	Cloudy	N	2.8667	1.36	2013	84	0
		14:05			10	768			3.0354				
13529	A1	24/02/2005	2846.13	2871.00	20	757	Cloudy	NE	2.9050	1.42	2119	90	
		15:10			18	759			3.0952				

Repo	ort on :	24-hour T	otal Susp	ended P	articulate	Monitoring	- A2						
					-								
Sample	Location	Date and Time	Start Counter	Stop Counter	Temperature, ^o	^{'C} Pressure, mmHg	Weather	Wind	Weight of Filter, g	Flow rate Q _{std}	Total air volume	Mass Con	centration
Number	Code	of Sampling	Reading	Reading	Initial/Final	Initial/Final	Conditions	Direction	Initial/Final	std. m ³ /min	of sample, std. m ³	of TSP,	μ g/std. m ³
13509	A2	03/02/2005	10904.00	10928.00	14	764	Cloudy	E	2.8662	1.4	2016	120	
		15:40	-		17	762			3.1085				
13568	A2	12/02/2005	10931.00	10955.00	17	767	Sunny	E	2.8472	1.43	2059	101	
		13:30			17	166			3.0555				
13583	A2	14/02/2005	10958.00	10981.94	17	763	Cloudy	E	2.8561	1.43	2054	122	
		14:35			19	761			3.1061				
13521	A2	19/02/2005	10987.87	11011.87	13	766	Cloudy	N	2.8718	1.37	1973	122	
	1	14:20			10	768			3.1124				
13530	A2	24/02/2005	11014.87	11038.87	20	757	Cloudy	NE	2.8984	1.34	1930	61	
		15:35			18	759			3.0170				

Dono	rt on	1 bour To	tal Such	anded De	rticulato M	onitoring - /	N 4						
керо	nton	I-nour ro	tai Suspe	enueu Pa		onitoring - A	41						
Sample	Location	Date and Time	Start Counter	Ston Counter	Temperature, °C	Pressure mmHa	Weather	Wind	Weight of Filter g	Flow rate Q ₊₄	Total air volume	Mass Conc	entration
Number	Code	of Sampling	Reading	Reading		i iccodic, iiii ig	Conditions	Direction	Initial/Final	std m ³ /min	of sample std m ³	of TSP	ualstd m ³
13/98	Δ1	03/02/2005	2731.53	2732.53	14	764	Cloudy	F	2 8371	1 37	82	326	р <i>890</i> м. ш
10400	0	10:55	2/01.00	2102.00	1.7	104	Cloudy		2.8639	1.57	02	520	
13501	A1	03/02/2005	2732.53	2733.53	14	764	Cloudy	F	2.0000	1.37	82	165	
10001		13:20	2102.00	2100.00		104	0.000	_	2.9314	1.01		100	
13503	A1	03/02/2005	2733.53	2734.53	14	764	Cloudy	F	2 8653	1.37	82	302	
		14:25					,		2.8901				
13564	A1	12/02/2005	2759.10	2760.10	17	767	Sunny	E	2.8733	1.37	82	294	
		09:30							2.8975				
13562	A1	12/02/2005	2760.10	2761.10	17	767	Sunny	E	2.8721	1.37	82	223	
		10:25							2.8904				
13563	A1	12/02/2005	2761.10	2762.10	17	767	Sunny	E	2.8866	1.38	83	269	
		11:30					5.		2.9089				
13577	A1	14/02/2005	2786.38	2787.38	17	763	Cloudy	E	2.8602	1.37	82	253	
		09:20							2.8810		NG N		
13578	A1	14/02/2005	2787.38	2788.38	17	763	Cloudy	E	2.8749	1.37	82	191	
		10:25							2.8906				
13579	A1	14/02/2005	2788.38	2789.38	17	763	Cloudy	E	2.8767	1.37	82	157	
		13:20							2.8896			1	
13514	A1	19/02/2005	2814.92	2816.02	13	766	Cloudy	N	2.9002	1.39	92	204	
		10:05							2.9189				
13516	A1	19/02/2005	2816.02	2817.02	13	766	Cloudy	N	2.8552	1.42	85	281	
		11:10							2.8791				
13518	A1	19/02/2005	2817.02	2818.02	13	766	Cloudy	N	2.8754	1.39	83	203	
		13:00							2.8923				
13523	A1	24/02/2005	2842.69	2843.69	20	757	Cloudy	NE	2.8876	1.42	85	236	
		10:00					197 		2.9077				
13525	A1	24/02/2005	2843.69	2844.69	20	757	Cloudy	NE	2.9174	1.39	83	180	
		13:00							2.9324				
13527	A1	24/02/2005	2844.69	2846.13	20	757	Cloudy	NE	2.9396	1.39	120	284	
		14:05							2.9737				

ĸepu	ort on '	I-nour To	tal Suspe	ended Pa	rticulate M	onitoring - A	42	2				×	
Sample	Location	Date and Time	Start Counter	Stop Counter	Temperature, °C	Pressure, mmHg	Weather	Wind	Weight of Filter, g	Flow rate Q _{std} ,	Total air volume	Mass Conc	entration
Number	Code	of Sampling	Reading	Reading			Conditions	Direction	Initial/Final	std. m ³ /min	of sample, std. m ³	of TSP.	ug/std. m
13500	A2	03/02/2005	10901.00	10902.00	14	764	Cloudy	E	2.9639	1.43	86	224	, o
		11:05							2.9831	1			
13506	A2	03/02/2005	10902.00	10903.00	14	764	Cloudy	E	2.9012	1.43	86	245	
		13:30							2.9222				
13507	A2	03/02/2005	10903.00	10904.00	14	764	Cloudy	E	2.8705	1.43	86	197	
		14:35							2.8874				
13565	A2	12/02/2005	10928.00	10929.00	17	767	Sunny	Е	2.8598	1.43	86	247	
		09:30							2.8810				
13566	A2	12/02/2005	10929.00	10930.00	17	767	Sunny	E	2.8620	1.43	86	204	
		10:35		1					2.8795	1			
13567	A2	12/02/2005	10930.00	10931.00	17	767	Sunny	E	2.8641	1.43	86	316	
		11:40							2.8912				
13580	A2	14/02/2005	10955.00	10956.00	17	763	Cloudy	E	2.8603	1.43	86	312	
		09:30							2.8871				
13581	A2	14/02/2005	10956.00	10957.00	17	763	Cloudy	Е	2.8724	1.43	86	141	
		10:35							2.8845				
13582	A2	14/02/2005	10957.00	10958.00	17	763	Cloudy	E	2.8686	1.43	86	172	
		13:30	2						2.8834				
13515	A2	19/02/2005	10984.87	10985.87	13	766	Cloudy	N	2.8682	1.35	81	164	
		10:20	0						2.8815				
13517	A2	19/02/2005	10985.87	10986.87	13	766	Cloudy	N	2.8790	1.35	81	128	
		11:25							2.8894				
13519	A2	19/02/2005	10986.87	10987.87	13	766	Cloudy	N	2.8581	1.29	77	181	
		13:15							2.8721				
13524	A2	24/02/2005	11011.87	11012.87	20	757	Cloudy	NE	2.8668	1.35	81	277	
		10:15							2.8892				
13526	A2	24/02/2005	11012.87	11013.87	20	757	Cloudy	NE	2.9516	1.35	81	215	
		13:15		1					2.9690				
13528	A2	24/02/2005	11013.87	11014.87	20	757	Cloudy	NE	2.9763	1.29	77	238	
		14.00			0				2 00 47		- 100 P	0.000	

Appendix VI

Water Quality Monitoring Results

Project: <u>C</u>	ontract No.	CV/2002/1:	3 Fill Bank	At Tuen M	lun Area	<u>38</u>				Client:	Penta-O	cean Con:	struction (Co. <u>, Ltd.</u>	Job No.:		4494.1				
Date of Sa	ampling :	01/02/2005	5		Weather	r Conditic	on:	Cloudy			Ambier	it Tempera	iture,ºC:	12			Tide Stat	e:	<u>Mid-Flo</u>	<u>od</u>	
Station	Time	Sea	Overall	Sampling	Tempera	ature °C	Dissolv	nvxO he	en ma/l	Dissolv	ed Oxvo	en %	Salinity	nnt	Turhidity	NTU		Suspen	ded Soli	ids ma/l	Remarks
		Condition	Depth, m	Depth,m	а	b	а	b	Average	а	b	Average	а	b	а	b	Average			Depth	
																				Average	
rivit 3	-			1.0	16.2	16.3	7.64	7.58	7.58	92.6	92.0	92.2	32.9	32.8	6.58	6.70	8	18	17		
FM1 M	11:50	Small wave	18.0	9.0	16.3	16.3	7.60	7.49	7.00	91.7	92.3	52.2	32.8	32.8	7.26	7.18	7.15	16	18	16.7	
FM1 B	-			17.0	16.2	16.2	7.53	7.65	7.59	92.4	91.1	91.8	32.8	32.8	7.62	7.53		17	14		
				1.0	16.3	16.4	7.58	7.44		91.3	90.0		33.0	32.9	5.98	6.03		17	16		
FM2 M	11:40	Small wave	18.0	9.0	16.3	16.4	7.60	7.53	7.54	89.7	90.9	90.5	32.9	32.8	6.35	6.28	6.27	18	16	15.7	
FM2 B				17.0	16.4	16.4	7.60	7.65	7.63	90.1	89.6	89.9	32.9	32.9	6.57	6.43		14	13		
				1.0	16.2	16.3	7.48	7.60	7 59	88.8	89.7	90.7	32.8	32.8	6.57	6.61		21	18		
FC1 M	12:00	Small wave	23.0	11.5	16.3	16.2	7.57	7.70	7.55	89.6	90.5	03.7	32.9	32.9	7.67	7.56	7.23	19	21	18.7	
FC1 B				22.0	16.3	16.3	7.45	7.45	7.45	89.8	90.2	90.0	32.8	32.9	7.45	7.53		17	16		
FC2 S	-			1.0	16.2	16.2	7.50	7.64	7.56	93.4	92.8	92.9	33.0	32.8	6.49	6.54		16	19		
FC2 M	11:30	Small wave	17.0	8.5	16.2	16.3	7.53	7.57	1.50	92.5	92.9		32.9	32.9	6.02	5.96	6.18	15	16	16.7	
FC2 B	-			16.0	16.3	16.3	7.71	7.69	7.70	93.5	92.6	93.1	32.9	32.9	5.96	6.10		16	18		
Bold data	with sing	e underlir	e indicat	es an eyre	edance	to Actio	n Leve														
Italic data	with double	underline .	indicates a	n exceeda	nce to Lii	mit Level															
Equipmen	t used:	Dissolved	Oxvaen M	eter:	EM	961		Calibrat	ion Check:	Oma/L:	ok	100%:	ok				Sampled	Bv:			
		Turbidity N	1eter:		EM	2365		Calibrat	ion Check:	4.49,	45.2,	455	NIU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
<u>.</u>		Thermome	ter:		ET	961															

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen N	lun Area	<u>38</u>				Client:	Penta-O	cean Con	struction (<u>Co., Ltd.</u>	Job No.:	Ş	4494.1				
Date of Sa	mpling :	01/02/2005	5		Weather	Conditio	on:	Cloudy			Ambier	nt Tempera	ature,°C:	14		8	Tide State	e:	Mid-Ebl)	
													84								
Station	Time	Sea	Overall	Sampling	Tempera	ture, °C	Dissolv	ed Oxyg	en, mg/L	Dissolv	ed Oxyg	len, %	Salinity,	ppt	Turbidity	, NTU		Suspen	ded Soli	ds, mg/L	Remarks
		Condition	Depth, m	Depth,m	а	Ь	а	Ь	Average	а	b	Average	а	b	а	b	Average		9 9	Depth Average	
FM1 S				1.0	16.1	16.2	7.59	7.54		90.5	91.3		32.8	32.9	6.27	6.33		14	12		
FM1 M	17.10	Small	17.0	85	16.1	16.1	7.67	7.61	7.60	ал <i>и</i>	a1 a	91.5	37.8	33.0	5 78	5.96	604	11	11	1/1 3	
EM1 B	17.10	wave	17.0	0.5	10.1	10.1	7.07	7.01		52.4	51.5		JZ.0		0.70	5.00	0.04			14.3	
				16.0	16.1	16.0	7.60	7.58	7.59	92.8	92.5	92.7	33.0	32.9	5.95	6.04		19	19	1	
FM2 S	-			1.0	16.2	16.3	7.50	7.56	7.00	89.9	90.6	00.0	32.9	33.0	6.05	6.11		16	14		
FM2 M	17:20	Small wave	18.0	9.0	16.1	16.2	7.70	7.73	7.62	91.2	90.8	90.6	33.0	32.8	6.57	6.48	5.84	15	14	14.7	
FM2 B	-			17.0	15.9	15.9	7.62	7.65	7.64	90.6	90.9	90.8	33.0	32.8	4.94	4.86		15	14		
FC1 S				1.0	16.0	16.1	7.68	7.73		93.3	92.7		33.1	32.9	7.11	7.05		20	17		
FC1 M	17.00	Small	22.0	11.0	15.0	15.0	7.60	7.50	7.67	02.6	02.0	92.7	22.0	22.1	5.00	5 20	E 77	20	10	10 1	
EC1 B	1 17.00	wave	22.0	11.0	15.9	10.0	7.69	7.09		92.0	92.0		33.0	33.1	5.26	5.39	9.77	20	10	10.2	
				21.0	15.8	15.9	7.52	7.64	7.58	92.7	91.8	92.3	32.8	33.0	4.82	4.96		18	16		
FC2 S	-			1.0	15.9	15.9	7.48	7.45	7.50	88.6	89.4		32.9	33.0	4.81	4.95		15	14		
FC2 M	17:30	Small wave	17.0	8.5	16.0	16.1	7.52	7.62	7.52	91.6	91.6	90.3	32.8	33.1	4.78	4.68	4.72	13	11	13.2	
FC2 B	-			16.0	15.8	15.9	7.73	7.68	7.71	93.6	92.5	93.1	33.1	32.9	4.51	4.61		13	13		
													-								
Italic data	with single with double	<u>e underlina</u>	indicates a	es an exce n avcaada	edance	<u>to Actic</u> nit (ovol	on Leve	<u>l</u>	· · · · · ·					2							
nane uara		anaemine i	naicateo a	IT EXCEPTION	700 10 Li											2					
Equipmen	t used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	By:			
		Turbidity N	1eter:		EM	2365		Calibrat	ion Check:	4.51,	45.5,	460	NTU				Checked	By:			
10		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.8	mS		-				Date:		2		
		Thermome	ter:		ET	961															

Project: <u>C</u>	ontract No.	CV/2002/1	<u>3 Fill Bank</u>	At Tuen N	1un Area	<u>38</u>				Client:	Penta-O	cean Con	struction	<u>Co., Ltd.</u>	Job No.:		4494.1				
Date of S	amnling :	03/02/2004	5		Weather	Conditi	n.	Rainv			Amhier	t Temner:	ature °C:	13		3 - N	Tide Stat	e.	Mid-Elo	nd	
Duite of D	uniping .	00/02/2000			**eutro	oonain		rtuniy			2 stribio		itaro, o.				nde orar		141101110		
Station	Time	Sea	Overall	Sampling	Tempera	ture, °C	Dissolv	ed Oxyg	en, mg/L	Dissolv	ed Oxyg	ien, %	Salinity,	ppt	Turbidity	, NTU		Suspen	ded Soli	ids, mg/L	Remarks
		Condition	Depth, m	Depth,m	а	b	a	b	Average	a	b	Average	а	b	а	Ь	Average	5		Depth Average	
FM1 S			[1.0	15.6	15.3	7.53	7./3		900	89.0		32.0	33.1	462	1.83		16	15	l norago	
EM1 M	-			1.0	10.0	10.0	1.00	1.40	7.52		00.0	90.6	02.0		4.02	4.00			13	-	
	12:56	Big wave	19.0	9.5	15.5	15.5	7.62	7.50		91.3	90.7		33.1	33.0	4.79	4.63	4.67	16	16	15.7	
FM1 B	-			18.0	15.6	15.4	7.45	7.52	7.49	89.5	90.6	90.1	32.9	32.9	4.58	4.56		16	15		
FM2 S	_			1.0	15.6	15.6	7.60	7.65		91.9	92.6		32.8	32.9	5.10	5.18		16	15		
FM2 M	12:45	Big wave	18.0	9.0	15.4	15.5	7.49	7.51	7.56	90.6	90.6	91.4	33.0	33.0	5.06	5.14	5.09	21	21	19.2	
FM2 B	-			17.0	15.4	15.5	7.64	7.55	7.60	91.5	90.6	91.1	33.1	33.1	4.97	5.08		21	21		
FC1 S		-		1.0	15.5	15.5	7.40	7 40		00.7	00.1		22.1	22.0	5 22	E 10		17	10		
EC1 M				1.0	10.0	10.0	7.40	7.40	7.46	09.7	90.1	89.7	33.1	33.0	0.22	0.19			10	-	
	13:06	Big wave	23.0	11.5	15.6	15.4	7.45	7.52		89.3	89.8		32.8	33.1	5.26	5.39	5.21	17	17	17.7	
FC1 B				22.0	15.6	15.4	7.56	7.48	7.52	90.5	90.0	90.3	32.9	33.0	5.18	5.02		19	18		
FC2 S	_			1.0	15.3	15.4	7.62	7.57		92.1	91.8		33.0	33.0	4.93	5.01		18	19		
FC2 M	12:35	Big wave	18.0	9.0	15.3	15.2	7.37	7.46	7.51	88.9	90.2	90.8	32.8	33.1	5.03	4.96	4.97	17	15	17.3	
FC2 B				17.0	15.5	15.3	7.48	7.58	7.53	89.6	90.3	90.0	32.9	33.0	4.95	4.95		19	16		
Bold data	a with singl	e underlin	<u>ne indicat</u>	es an exc	eedance	to Actio	on Leve	<u>il</u>						8S		2 2					
nanc uata		andenne	inuicates a			IIII LEVE															
Equipmer	nt used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	By:			
		Turhidity N	/leter:		FM	2365		Calihrat	ion Check:	4 52	45.1	452	NTU				Checked	Bv:			
		and any h				2000		Junorat	ion oncort.	4.021		432	NI O				Checked	-y.			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
		Thermome	eter:		ET	961															

Project: <u>C</u>	ontract No.	CV/2002/1:	3 Fill Bank	At Tuen N	lun Area	<u>38</u>				Client:	Penta-O	cean Con	struction	Co., Ltd.	Job No.:	9	4494.1				
Date of Sa	mnling :	03/02/2004	5		Westher	r Conditir		Painy			Amhiar	t Temners	turo °C·	13		8 8	Tido Stat	o [.]	Mid-Eb	h	
Dute of Be	inipinig :	00/02/200			weather	Conditio	511. 	rtaniy			7 STIDICI	it rempere	alare, o.	13			Hec oral				
Station	Time	Sea	Overall	Sampling	Tempera	ature, °C	Dissolv	ed Oxyg	en, mg/L	Dissolv	ed Oxyg	jen, %	Salinity,	ppt	Turbidity	, NTU		Suspen	ded Sol	ids, mg/L	Remarks
		Condition	Depth, m	Depth,m	а	Ь	а	Ь	Average	а	Ь	Average	а	Ь	а	Ь	Average			Depth Average	
FM1 S				1.0	15.5	15.0	7 63	7 60		01.2	07.4		22.1	27.0	1.24	1 75		12	10	Anerage	
E 144 144	-			1.0	10.0	10.0	7.02	7.00	7.61	51.5	32.4	91.5	33.1	32.3	4.34	4.20		13	13	-	
	20:10	Big wave	17.0	8.5	15.5	15.3	7.54	7.59	90 m (5000	90.8	91.5		33.0	32.9	4.17	3.99	4.30	20	22	17.0	
FM1 B	1			16.0	15.3	15.3	7.70	7.65	7.68	92.5	91.9	92.2	33.0	33.0	4.58	4.46		18	16	1	
FM2 S				1.0	15.4	15.5	7.48	7.54		91.8	92.3		32.9	32.9	4.98	5.07		15	15		
FM2 M	20:20	Big wave	17.0	8.5	15.3	15.3	7.60	7.68	7.58	92.4	92.5	92.3	33.1	33.0	4.33	4.40	4.56	20	20	15.0	
FM2 B				16.0	15.4	15.3	7.43	7.39	7.41	91.1	91.9	91.5	32.8	32.9	4.27	4.30		9	11		
FC1 S				1.0	15.0	15.4	7 /0	7 56		02.4	02.0		22.1	22.0	1 10	1 10		14	10		
EC1 M	-			1.0	10.0	13.4	7.45	7.00	7.54	- 33.4	33.0	93.2		32.0	4.15	4.10		14	1.5	-	
	20:00	Big wave	22.0	11.0	15.2	15.3	7.48	7.61		92.8	93.6		32.9	33.1	3.97	4.11	4.04	14	13	16.2	
FC1 B				21.0	15.2	15.2	7.62	7.65	7.64	94.0	93.8	93.9	33.1	33.0	3.86	3.92		22	21		
FC2 S	-			1.0	15.2	15.4	7.66	7.60		93.6	93.4		33.1	33.1	4.26	4.33		13	12		
FC2 M	20:30	Big wave	17.0	8.5	15.3	15.2	7.58	7.61	7.61	91.7	92.6	92.8	33.0	32.9	4.08	4.18	4.21	16	19	15.8	
FC2 B				16.0	15.2	15.3	7.50	7.41	7.46	91.9	91.3	91.6	33.1	32.9	4.19	4.24		16	19		
Bold data	with singl	e underlin	ne indicato Indicator o	es an exc	eedance	to Actio	on Leve	<u> </u>						· · · · · ·		<u> </u>		2			
Italic uata		undenne i	inuicates a			THE LEVEL															
Equipmen	t used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	By:			
	0	Turbiditv №	leter:		EM	2365		Calibrat	ion Check [.]	4.59.	45.1.	449	NTU			- 	Checked	Bv:			
		. croidity in				2000		- unerut	ien onoon.												
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:		_		
j.		Thermome	ter:		ET	961															

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen N	lun Area	<u>38</u>				Client: J	Penta-O	cean Cons	struction	<u>Co., Ltd.</u>	Job No.:		4494.1				
Date of Sa	impling :	05/02/2005	5		Weather	r Conditio	on:	Cloudy			Ambier	it Tempera	ture,ºC:	18			Tide Stat	e:	Mid-Flo	od	
Station	Time	Sea	Overall	Sampling	Tempera	ature, °C	Dissolv	ed Oxyg	en, mg/L	Dissolv	ed Oxyg	en, %	Salinity,	ppt	Turbidity	, NTU		Suspen	ded Soli	ds, mg/L	Remarks
		Condition	Depth, m	Depth,m	а	b	а	b	Average	а	b	Average	а	b	a	b	Average			Depth	
	1			6.0													-127			Average	
FM1 S				1.0	19.7	19.7	6.84	6.83	G 70	92.4	92.3	91.7	32.9	32.9	2.99	3.08		7	8		
FM1 M	10:20	Small wave	18.0	9.0	19.5	19.5	6.75	6.72	0.70	91.1	90.9	91.7	32.8	32.8	3.34	3.42	3.30	5	6	9.2	
FM1 B				17.0	19.3	19.5	6.61	6.58	6.60	89.7	89.6	89.7	32.7	32.7	3.50	3.49		14	15		
FM2 S	-			1.0	19.8	19.8	6.83	6.86		92.2	92.6		32.8	32.8	3.43	3.47		9	8		
FM2 M	10:10	Small	17.0	8.5	19.4	19.4	6.71	6.77	6.79	90.8	91.3	91.7	32.7	32.7	3.94	3.86	3.93	8	7	8.3	
FM2 B	-	wave		16.0	19.4	19.3	6.75	6.79	6.77	91.3	91.7	91.5	32.9	32.9	4.47	4.41		9	9		
FC1 S																					
EC1 M	-	Small		1.0	19.7	19.7	6.77	6.75	6.71	91.5	91.4	90.8	32.8	32.8	3.28	3.23		11	10		
	10:35	wave	23.0	11.5	19.6	19.6	6.65	6.68		89.9	90.2		32.7	32.7	4.10	4.15	4.14	9	9	9.5	
FC1 B	-			22.0	19.6	19.4	6.58	6.60	6.59	89.0	89.1	89.1	32.8	32.8	5.02	5.04		9	9		
FC2 S				1.0	19.7	19.7	6.82	6.81	C 70	92.1	92.0	01.7	32.9	32.9	3.55	3.60		9	9		
FC2 M	10:00	Small wave	18.0	9.0	19.6	19.6	6.76	6.71	6.70	91.0	91.8	91.7	32.9	32.9	3.82	3.86	3.72	8	8	8.0	
FC2 B				17.0	19.5	19.5	6.69	6.69	6.69	90.6	90.6	90.6	32.8	32.8	3.72	3.79		7	7		
Bold data	with singl	e underlir	ne indicati	es an exce	edance	to Actio	n Leve						:								
Italic data	with double	underline	indicates a	n exceeda	nce to Lii	mit Level															
Equipment	t used:	Dissolved	Oxygen Mi	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	By:			
						0005		0.111			10.1	150									
		Turbidity N	fleter:		EM	2365	-	Calibrat	ion Check:	4.61,	46.1,	458	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
ð J		Thermome	ter:		ET	961										Ì					

Project: (Contract No.	CV/2002/10	3 Fill Bank	At Tuen N	lun Area	<u>38</u>				Client:	Penta-C	cean Cons	struction	<u>Co., Ltd.</u>	Job No.:		4494.1				
Date of S	ampling :	12/02/2005	5		Weathe	r Conditi	on:	Cloudy			Ambier	nt Tempera	iture,ºC:	16			Tide Stat	e:	<u>Mid-Flo</u>	<u>od</u>	
Station	Time	Sea	Overall	Sampling	Temper	ature °C	Dissolv	nvxO her	en ma/l	Dissolv	vxO ha	ien %	Salinity	nnt	Turhidity	NTU		Suspen	ded Sol	ids ma/l	Remarks
		Condition	Depth, m	Depth,m	a	b	a	b	Average	a	b	Average	a	b	a	b	Average			Depth Average	
FM1 S	_			1.0	14.8	15.0	7.56	7.64	7.54	89.6	90.2		33.3	33.1	4.69	4.65		8	7		
FM1 M	- 11:00	Small wave	18.0	9.0	14.8	14.9	7.39	7.58	7.54	88.7	89.4	89.5	33.0	33.3	3.25	3.39	4.10	8	8	8.7	
FM1 B				17.0	14.6	14.7	7.52	7.61	7.57	89.5	89.1	89.3	33.3	33.3	4.24	4.37		11	10		
FM2 S				1.0	14.5	14.6	7.71	7.60	7 50	90.4	91.6	00.0	33.2	33.0	3.91	3.82		7	6		
FM2 M	10:50	Small wave	18.0	9.0	14.4	14.7	7.52	7.47	7.00	89.2	88.6	90.0	33.1	33.2	3.85	3.86	3.74	6	7	6.7	
FM2 B				17.0	14.3	14.4	7.45	7.40	7.43	89.3	88.8	89.1	33.3	33.3	3.47	3.53		7	7		
FC1 S				1.0	14.3	14.5	7.56	7.56	7.51	89.2	89.4		33.3	33.1	4.83	4.75		10	10		
FC1 M	11:10	Small wave	21.0	10.5	14.2	14.4	7.48	7.45	7.01	88.9	89.5	03.5	33.2	33.3	4.55	4.61	4.45	8	9	8.5	
FC1 B				20.0	14.3	14.4	7.63	7.58	7.61	90.2	89.8	90.0	33.3	33.3	3.95	4.02		7	7		
FC2 S	_			1.0	14.5	14.6	7.47	7.62	7 57	88.6	89.2	89.1	33.1	33.0	4.06	3.99		6	7		
FC2 M	10:40	Small wave	17.0	8.5	14.2	14.3	7.65	7.53	r.5r	89.3	89.3	00.1	33.2	33.1	3.36	3.44	3.75	8	7	7.3	
FC2 B	_			16.0	14.4	14.2	7.43	7.48	7.46	88.6	88.9	88.8	33.0	33.1	3.79	3.84		8	8		
Pold dat	a with singl	lo undorlin	o indicat		adance	to Activ	n Lovo												<u>.</u>		
Italic data	a with double	e underline i	indicates a	n exceeda	nce to Li	mit Leve.	JILLEVE												Î		
Equipme	nt used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	By:	- 1		
	0	Turbidity N	1eter:		EM	2365		Calibrat	ion Check:	4.56,	44.7	453	NTU				Checked	By:	0 0		
10		Salinity Me	eter:		EM	3694		Calibrat	ion Check:	58.8	mS	a	:				Date:				
1		Thermome	ter:		ET	961															

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen N	1un Area	<u>38</u>				Client:	Penta-C	cean Con	struction (<u>Co., Ltd.</u>	Job No.:		4494.1				
Date of Sa	mnling :	12/02/2004	5		Weather	Conditic	n.	Cloudy			Amhior	t Temner	aturo °C.	17			Tide Stat	o:	Mid-Eb	h	
Date of Da	imping .	12/02/2003	,		weather	Conditio	/II.	Cloudy			Ambiei		iture, o.	11			The orac	с.	INIG-LD		
Station	Time	Sea	Overall	Sampling	Tempera	ature, °C	Dissolv	ed Oxyg	en, mg/L	Dissolv	ed Oxyg	jen, %	Salinity,	ppt	Turbidity	, NTU		Suspen	ded Sol	ids, mg/L	Remarks
		Condition	Depth, m	Depth,m	а	b	а	b	Average	а	b	Average	а	b	а	b	Average			Depth	
FM1 S				1.0	44.0	44.0	0.50				04.5				- F 10					Average	
				1.0	14.8	14.6	6.53	6.62	6.52	84.0	84.5	84.2	33.1	33.2	5.48	5.39		9	8		
FM1 M	15:50	Small wave	17.0	8.5	14.7	15.0	6.43	6.50		83.7	84.4		33.3	33.3	3.19	3.24	3.80	7	8	8.2	
FM1 B				16.0	14.8	14.7	6.50	6.57	6.54	84.0	84.0	84.0	33.2	33.0	2.68	2.79		8	9		
FM2 S	-			1.0	14.6	14.8	6.68	6.54		85.0	84.3		33.2	33.3	3.06	3.11		9	9		
FM2 M	15:40	Small wave	17.0	8.5	14.6	14.6	6.43	6.56	6.55	84.6	84.1	84.5	33.2	33.2	3.39	3.26	3.10	8	8	8.0	
FM2 B		50 Y 10 10 Y		16.0	14.5	14.7	6.40	6.45	6.43	83.6	83.9	83.8	33.1	33.2	2.83	2.92		7	7		
FC1 S	-			1.0	14.5	14.7	6.38	6.48	C 44	83.8	83.5		33.0	33.1	4.51	4.44		10	9		
FC1 M	16:00	Small wave	20.0	10.0	14.7	14.6	6.37	6.41	6.41	84.4	84.9	84.2	33.1	33.2	2.59	2.62	3.20	6	7	7.8	
FC1 B				19.0	14.7	14.7	6.53	6.70	6.62	85.3	85.1	85.2	33.1	33.2	2.48	2.53		8	7		
FC2 S				1.0	14.7	14.8	6.68	6.56	C 70	86.0	85.3	05.0	33.3	33.3	3.78	3.83		8	8		
FC2 M	15:30	Small wave	16.0	8.0	14.8	14.9	6.62	6.49	6.59	85.2	84.8	05.3	33.3	33.2	3.43	3.50	3.58	10	9	8.3	
FC2 B				15.0	14.8	14.8	6.50	6.57	6.54	84.9	84.9	84.9	33.2	33.2	3.42	3.52		8	7		
Bold data	with single with double	e underline .	ie indicates a	es an exce n exceeda	eedance nce to Lir	nit Level	in Leve	<u>l</u>													<u>.</u>
Equipmen	t used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	By:			
		Turbidity N	1eter:		EM	2365		Calibrat	ion Check:	4.60,	45.3,	449	NTU				Checked	By:			
		0.0.0.00			-	0001		A 12		50.0	_										
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
		Thermome	ter:		ET	961															
Project: C	ontract No.	CV/2002/1	<u>3 Fill Bank</u>	At Tuen N	1un Area	<u>38</u>				Client:	Penta-C)cean Con	struction	Co., Ltd.	Job No.:		4494.1	J. J.			
-------------	-------------	-------------	--------------------	-----------	------------	-----------	---------	----------	------------	---------	---------	-----------	-----------	-----------	-----------	-------	-----------	--------	------------	------------------	---------
Data of S	ompling :	11/02/2004			Weather	Conditio		Cloudy			Ambio	nt Tompor	aturo °C:	17		8 8	Tido Stat	o:	Mid Elo	od	
Date of 3	amping .	14/02/200:			vveatrier	Conditio	лт. 	Cloudy			Ambiei		ature, c.				Tiue Stat	e.	10110-1 10		
Station	Time	Sea	Overall	Sampling	Tempera	iture, °C	Dissolv	ed Oxyg	ien, mg/L	Dissolv	ed Oxyg	gen, %	Salinity,	ppt	Turbidity	, NTU		Suspen	ded Sol	ids, mg/L	Remarks
		Condition	Depth, m	Depth,m	а	Ь	a	Ь	Average	a	b	Average	a	Ь	а	Ь	Average	3		Depth Average	
FM1 S				10	15.0	14 9	6.64	6.70		84.8	85.2		33.1	33.2	3.64	3.72		q	9	l norago	
EM1 M	-	Small		1.0	10.0	14.0	0.04	0.10	6.69	04.0	00.2	85.1		00.2	0.04	0.12		-	Ĭ	-	
	- 11:00	wave	19.0	9.5	15.1	15.3	6.68	6.74		84.9	85.6		33.1	33.3	4.25	4.33	3.98	10	8	9.2	
FM1 B	_			18.0	15.1	15.2	6.80	6.73	6.77	85.3	84.4	84.9	33.3	33.3	3.95	3.99		9	10		
FM2 S	_			1.0	15.2	15.1	6.65	6.69		83.6	84.2		33.0	33.2	4.83	4.87		10	9		
FM2 M	10.50	Small	10 0		15.2	15.2	6 60	6.52	6.62	04.4	04.0	- 84.1	22.2	22.7	1 00	100	175			- 	
EMD D	10.50	wave	10.0	9.0	15.3	10.3	0.00	0.55		04.4	04.0		33.3	33.2	4.09	4.92	4.75	9	0	9.0	
	-			17.0	15.2	15.1	6.51	6.62	6.57	83.7	84.6	84.2	33.1	33.1	4.46	4.53		9	9		
FC1 S	_			1.0	15.3	15.2	6.60	6.48		84.1	85.4		33.3	33.2	3.68	3.71		8	6		
FC1 M	- 11·10	Small	22.0	11 0	15.2	15.1	6.51	6.47	6.52	85.2	84.8	84.9	33.1	33.2	2 27	2 34	3 11	10	12	95	
EC1 B	-	wave			10.2	10.1	0.01	0.11		00.2	01.0			00.2	2.21	2.01				-	
				21.0	15.3	15.1	6.60	6.67	6.64	84.3	85.0	84.7	33.2	33.3	3.33	3.32		10	11		
FC2 S	_			1.0	14.9	15.2	6.81	6.88		85.5	86.1		33.1	33.2	4.83	4.77		15	15		
FC2 M	10:40	Small	18.0	9.0	15.3	15.3	6.85	6.88	6.86	86.2	85.7	85.9	33.2	33.3	4.48	4.51	4.77	11	10	12.5	
FC2 B	-	wave		17.0	45.0				0.07						5.00		0000000			-	
				17.0	15.3	15.1	6.90	6.83	6.87	86.6	86.9	86.8	33.3	33.1	5.08	4.96		13	11		
Bold data	a with sing	e underlir	ne indicate	es an exc	eedance	to Actio	on Leve	1													
Italic data	with double	underline	indicates a	n exceeda	nce to Lir	nit Level															
Equipmer	nt used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	ion Check:	Oma/L:	ok	100%:	ok				Sampled	By:			
		Turbidity N	Aeter:		EM	2365		Calibrat	ion Check:	4.47,	46.2,	456	NTU				Checked	By:			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
				-	-																
		Ihermome	ter:		ET	961												12 2			

Project: C	ontract No.	CV/2002/1	<u>3 Fill Bank</u>	At Tuen N	1un Area	<u>38</u>				Client:	Penta-C)cean Con	struction	<u>Co., Ltd.</u>	Job No.:		4494.1				
Data of C		14002000) 0 /o oth ou	Conditio		C			Analaia			10		8	Tide Otet				
Date of 5	amping .	14/02/2005) 		vveatrier	Conditio	iri.	Sunny			Amble	ni rempera	ature, c.	10			Tide Stat	e.			
Station	Time	Sea	Overall	Sampling	Tempera	ture, °C	Dissolv	ed Oxyg	ien, mg/L	Dissolv	ed Oxy	gen, %	Salinity,	ppt	Turbidity	, NTU		Suspen	ded Sol	ids, mg/L	Remarks
		Condition	Depth, m	Depth,m	а	b	а	b	Average	а	b	Average	а	b	а	b	Average			Depth	
EM1.S	-	-																		Average	
				1.0	15.6	15.7	6.52	6.66	6.57	83.6	85.0	840	33.1	33.0	2.91	3.02		11	10		
FM1 M	17:20	Small wave	17.0	8.5	15.5	15.7	6.56	6.55	0.01	83.4	84.1	04.0	32.9	33.2	3.95	4.10	3.33	10	11	9.5	
FM1 B		linaire		16.0	15.7	15.6	6.61	6.59	6.60	84.5	83.6	84.1	33.1	33.1	2.92	3.05		8	7		
FM2 S	_			1.0	15.7	15.4	6.55	6.57		83.9	83.5		33.1	33.1	3.27	3.18		14	14		
FM2 M	17:00	Small	17.0	8.5	15.5	15.6	6.70	6.58	6.60	84.6	84.2	84.1	32.9	33.2	4.40	4.35	3.66	9	9	10.7	
EM2 B	-	wave																			
		_		16.0	15.5	15.6	6.58	6.59	6.59	83.8	83.2	83.5	33.2	33.2	3.33	3.41		9	9		
FC1 S	-			1.0	15.7	15.7	6.54	6.58	6.50	83.2	84.0	0.00	33.0	33.2	3.75	3.76		11	10		
FC1 M	17:30	Small wave	20.0	10.0	15.6	15.7	6.63	6.60	0.59	84.2	83.7		33.3	33.2	3.20	3.14	3.48	10	11	10.3	
FC1 B		linaro		19.0	15.5	15.6	6.68	6.62	6.65	84.4	84.6	84.5	33.1	33.3	3.44	3.56		11	9		
FC2 S				1.0	45.4	45.5	0.70	0.74		05.0						4.40		40	- 10		
500.14		Carrell		1.0	15.4	15.5	6.73	6.74	6.70	85.2	84.8	- 85.0	33.3	33.2	4.16	4.12	-	10	10	-	
FC2 M	17:10	Small wave	17.0	8.5	15.8	15.7	6.63	6.69		84.4	85.6		33.0	33.3	3.26	3.39	3.83	8	10	8.7	
FC2 B	_			16.0	15.8	15.7	6.72	6.74	6.73	85.9	85.8	85.9	33.1	33.2	4.07	4.00]	7	7]	
													-								
Bold data	a with singl	e underlin	<u>ne indicato</u>	es an exc	eedance	to Actio	on Leve	<u> </u>													
<u>Italic uata</u>	with double	i undenine i	indicates a	n exceeda	nce to Lii	<u>IIIC Level</u>															
Equipmer	nt used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	By:			
		Turbiditv №	Aeter:		EM	2365		Calibrat	ion Check:	4.54.	45.2	457	NTU			o 0	Checked	Bv:			
		. statut j				2000															
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.7	mS					1	Date:				
	1	Thermome	ter:		ET	961										i i					

Project: <u>C</u>	ontract No.	CV/2002/1:	3 Fill Bank	At Tuen N	lun Area	<u>38</u>				Client:	Penta-O	cean Con	struction	<u>Co., Ltd.</u>	Job No.:		4494.1				
Date of S	amnling :	16/02/2004	5		Weather	Conditio	n.	Cloudy			Amhier	t Temnera	ature °C:	20		3 - N	Tide Stat	e.	Mid-Elo	od	
	uniping .	10/02/2000			**Cutifol	oonani		Cicaaj			2 stribler		ano, o.				nac orar		14110		
Station	Time	Sea	Overall	Sampling	Tempera	ture, °C	Dissolv	ed Oxyg	en, mg/L	Dissolv	ed Oxyg	jen, %	Salinity,	ppt	Turbidity	, NTU		Susper	ided Sol	ds, mg/L	Remarks
		Condition	Depth, m	Depth,m	а	Ь	a	Ь	Average	a	b	Average	а	Ь	а	Ь	Average			Depth Average	
FM1 S				1.0	18.7	18 7	6.84	6.89		923	977		32.1	30.1	2.23	2 32		5	6	linerage	
EM1 M	-			1.0	10.7	10.7	0.04	0.00	6.80		52.1	91.6		52.1	2.20	2.02					
	11:45	Big wave	17.0	8.5	18.5	18.5	6.71	6.74		90.6	90.9		32.2	32.2	2.61	2.68	2.65	5	4	5.2	
FM1 B	_			16.0	18.2	18.2	6.59	6.55	6.57	88.7	88.4	88.6	32.2	32.2	2.99	3.09		5	6		
FM2 S	_			1.0	18.8	18.8	6.82	6.84		92.1	92.2		32.2	32.2	2.13	2.21		4	5		
FM2 M	11.35	Big wovo	17.0	9.5	19.6	19.6	6.70	6.73	6.77		90.6	91.3	27.2	30.3	2.70		263	7	7	59	
EMD D	- 11.35	Dig wave	17.0	0.0	10.0	10.0	0.70	0.75		30.4	30.0		JZ.J	JZ.J	2.15	2.02	2.03	(5.0	
	-			16.0	18.4	18.5	6.65	6.69	6.67	89.6	89.9	89.8	32.2	32.3	2.88	2.94		6	6		
FC1 S	_			1.0	18.7	18.7	6.77	6.80		91.0	91.3		32.2	32.1	1.79	1.76		4	5		
FC1 M	12:00	Big wave	23.0	11.5	18.5	18.5	6.65	6.71	6.73	89.5	90.1	90.5	32.1	32.2	3.48	3.32	2.92	6	5	6.2	
FC1 B	-	0			10 /	10 0	6 50	6.63	6.60	000	00.5	00 1	27.2	27.2	2 57	2 66					
				22.0	10.4	10.5	0.00	0.02	0.00	00.0	03.5	03.2	. JZ.J	JZ.J	J.JZ	J.00					
FU2 S	_			1.0	18.6	18.6	6.81	6.78	6.78	92.0	91.8	 	32.3	32.3	2.31	2.33		5	6		
FC2 M	11:25	Big wave	17.0	8.5	18.5	18.5	6.76	6.77	0.70	91.1	91.0	01.0	32.2	32.2	2.96	2.99	2.50	6	6	5.2	
FC2 B				16.0	18.5	18.4	6.63	6.66	6.65	89.4	89.4	89.4	32.3	32.3	2.18	2.21		4	4		
Bold data	a with singl	<u>e underlir</u>	<u>ne indicat</u>	es an exc	eedance	to Actio	on Leve	<u> </u>		-				ss		2		2			
Italic Vala		undennie i				IIII LEVEI															
Equipmer	nt used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	By:			
	0	Turbiditv №	Aeter:		EM	2365		Calibrat	ion Check [.]	4.55.	46.3.	457	NTU				Checked	Bv:			
		. sroiary in				2000		e anorat	.e onoon.		.0.01						e.noonod	_j.			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.9	mS						Date:				
		Thermome	ter:		ET	961															

Date of Sampling: Decide of Sampling: Meetline County	Project: <u>C</u>	ontract No.	CV/2002/1	<u>3 Fill Bank</u>	At Tuen N	lun Area	<u>38</u>				Client:	Penta-C	cean Con	struction	Co., Ltd.	Job No.:		4494.1				
Station Time See Condition Orgention Depth,m Temperature, %C Displayed Display	Date of Sa	impling :	16/02/2009	5		Weather	r Conditio	n	Cloudy			Ambier	nt Tempera	ture.ºC:	19		8 8	Tide Stat	e:	Mid-Eb	b	
State State Orefail State Orefail State									,					25								
Image: condition Depth: image: condit image: condition Depth: image: condition	Station	Time	Sea	Overall	Sampling	Tempera	ature, °C	Dissolv	ed Oxyg	ien, mg/L	Dissolv	ed Oxyg	gen, %	Salinity,	ppt	Turbidity	, NTU		Suspen	ded Sol	ids, mg/L	Remarks
FM S Image Image <th< td=""><td></td><td></td><td>Condition</td><td>Depth, m</td><td>Depth,m</td><td>а</td><td>b</td><td>а</td><td>b</td><td>Average</td><td>а</td><td>b</td><td>Average</td><td>а</td><td>b</td><td>а</td><td>b</td><td>Average</td><td></td><td></td><td>Depth</td><td></td></th<>			Condition	Depth, m	Depth,m	а	b	а	b	Average	а	b	Average	а	b	а	b	Average			Depth	
PM S																					Average	1
FMI M 18.0 Big wave 18.0 9.0 18.0 9.0 9.0 9.1 91.0 91.0 92.0 91.0 32.2 32.0 33.6 3.9 3.52 7 7 FMI B 17.0 17.0 17.9 17.9 6.67 6.64 6.66 89.5 89.5 32.2 32.3 3.86 3.90 3.52 7 7 7.3 FMI B 18.0 Big wave 18.0 18.0 18.0 6.81 6.76 6.66 89.5 89.5 32.2 3.23 3.89 3.84 3.43 6 7 7 7.3 FMI B 18.0 9.0 18.1 6.12 6.66 6.66 88.6 88.9 89.3 3.21 3.31 3.43 3.45 6 7 7.3 FC1 S 17.0 18.0 18.1 6.70 6.66 6.68 90.0 89.7 99.9 32.2 32.1 3.33 3.06 6 7 7.5 FC1 M 18.0 18.1 6.70 6.65 6.67	FIVILS	-			1.0	18.4	18.4	6.79	6.82		91.9	92.1		32.1	32.1	3.73	3.68		7	7		
FMI B <th< td=""><td>FM1 M</td><td>18:20</td><td>Big wave</td><td>18.0</td><td>9.0</td><td>18.2</td><td>18.2</td><td>6.78</td><td>6.77</td><td>6.79</td><td>91.1</td><td>91.2</td><td>91.6</td><td>32.2</td><td>32.3</td><td>3.85</td><td>3.91</td><td>3.52</td><td>7</td><td>7</td><td>7.3</td><td></td></th<>	FM1 M	18:20	Big wave	18.0	9.0	18.2	18.2	6.78	6.77	6.79	91.1	91.2	91.6	32.2	32.3	3.85	3.91	3.52	7	7	7.3	
FM2 S Image: FM2 B Image:	FM1 B				17.0	17.9	17.9	6.67	6.64	6.66	89.5	89.5	89.5	32.2	32.2	2.95	3.00		8	8		
FM2 M 18:30 Big wave 18:0 90 18:1 6.72 6.66 90.2 90.6 32.2 32.3 3.06 3.44 6.6 7 7.3 FM2 B 10:0 18:0 18:0 18:0 6.62 6.69 6.61 90.6 88:9 88:3 32.1 32.1 33.4 342 7 6 7 FC1 S 10:0 18.1 18:0 6.62 6.63 6.66 90.7 </td <td>FM2 S</td> <td>-</td> <td></td> <td></td> <td>1.0</td> <td>18.3</td> <td>18.4</td> <td>6.81</td> <td>6.78</td> <td></td> <td>91.4</td> <td>91.1</td> <td></td> <td>32.3</td> <td>32.3</td> <td>3.89</td> <td>3.84</td> <td></td> <td>8</td> <td>8</td> <td>1</td> <td></td>	FM2 S	-			1.0	18.3	18.4	6.81	6.78		91.4	91.1		32.3	32.3	3.89	3.84		8	8	1	
FM2 B Image: state s	FM2 M	18:30	Big wave	18.0	9.0	18.1	18.1	6.72	6.66	6.74	90.2	89.6	90.6	32.2	32.3	3.05	3.04	3.43	6	7	7.3	1
FC1 S Ison Big wave 22.0 10 18.4 18.4 6.85 6.83 6.74 92.3 92.2 91.4 32.1 32.1 2.91 2.88 2.95 5 5 6.5 FC1 M Big wave 22.0 11.0 18.2 18.3 6.74 6.71 90.7 90.5 91.4 32.1 32.1 32.1 2.91 2.88 2.95 5 5 6.5 FC1 M Big wave 21.0 18.0 6.74 6.71 6.76 6.66 6.68 90.0 89.7 89.9 32.2 32.1 3.03 3.06 6.5 6.5 FC2 M Big wave Big wave 18.0 6.75 6.72 6.81 91.0 90.7 91.0 90.7 32.2 32.3 32.2 2.36 3.45 2.66 5 6.5 6.56 6.81 91.0 90.7 91.7 32.2 32.2 2.36 2.36 2.84 7 7.5 6 6.56 6.51 6.51 6.51 6.51 6.51 6.51 6.5	FM2 B	-			17.0	18.0	18.2	6.63	6.59	6.61	89.6	88.9	89.3	32.1	32.1	3.34	3.42		7	8		
FC1 M 18:00 Big wave 22.0 11.0 18.2 18:3 6.76 6.76 90.7 90.6 91.4 32.2 32.2 2.91 2.92 2.95 5 5 6.5 FC1 B 18:00 18:0 18:0 18:1 6.70 6.66 6.66 90.0 99.7 99.9 32.2 32.1 3.03 3.06 6 6.5 6.5 FC2 S 18:40 Big wave 18.0 18.1 6.70 6.66 6.66 90.0 99.7 99.9 32.2 32.1 3.03 3.06 8 8 8 FC2 S 18.40 Big wave 18.0 18.1 6.70 6.76 6.76 90.7 90.7 91.7 32.3 32.2 2.73 2.77 2.84 7 6 5.5 5.75 7.5 FC2 B 18.40 9.0 18.1 18.0 6.75 6.75 6.76 91.0 90.7 32.3 32.1 32.3 2.39 2.84 7 7.5 7.5 7.5 7.5 7.5	EC1 S																					1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					1.0	18.4	18.4	6.85	6.83	6.78	92.3	92.2	91 /	32.1	32.1	2.91	2.88		7	6		
FC1 B Image: second	FC1 M	18:00	Big wave	22.0	11.0	18.2	18.3	6.74	6.71	0.10	90.7	90.5	01.4	32.2	32.2	2.91	2.92	2.95	5	5	6.5	
FC2 S 18.40 Big wave 1.0 18.3 18.3 6.90 6.85 92.8 92.4 91.7 32.2 32.2 3.36 3.45 2.84 7 7.5 FC2 M 18.0 9.0 18.1 18.0 6.75 6.72 6.85 88.6 88.7 32.1 32.2 2.36 2.39 9 10 9 11 FC2 M 18.0 9.0 18.1 18.0 6.75 6.72 6.81 90.0 9.1 90.7 32.3 32.2 2.36 2.39 2.84 7 7.5 FC2 M 17.0 17.8 17.9 6.56 6.59 6.58 88.8 88.7 32.1 32.2 2.36 2.39 9 10 9 11 Bold data with single underline indicates an exceedance to Limit Level 100.8 88.7 32.1 32.2 2.36 2.39 6 5 7.5 Equipment used: Dissolved Oxygen Meter: EM 961 Calibration Check: 0mg/L: ok 100%: ok 100%: ok 5 <td>FC1 B</td> <td></td> <td></td> <td></td> <td>21.0</td> <td>18.0</td> <td>18.1</td> <td>6.70</td> <td>6.66</td> <td>6.68</td> <td>90.0</td> <td>89.7</td> <td>89.9</td> <td>32.2</td> <td>32.1</td> <td>3.03</td> <td>3.06</td> <td></td> <td>8</td> <td>8</td> <td></td> <td></td>	FC1 B				21.0	18.0	18.1	6.70	6.66	6.68	90.0	89.7	89.9	32.2	32.1	3.03	3.06		8	8		
FC2 M 18:40 Big wave 18.0 9.0 18.1 18.0 6.75 6.72 6.81 91.0 90.7 32.3 32.2 2.73 2.77 2.84 7 7 7.5 FC2 B 17.0 17.8 17.9 6.56 6.59 6.58 88.5 88.8 88.7 32.1 32.2 2.36 2.39 9 11 Bold data with single underline indicates an exceedance to Action Level Image: Construction of the construle of the construle of the construction of	FC2 S	-			1.0	18.3	18.3	6.90	6.85		92.8	92.4		32.2	32.2	3.36	3.45		6	5		
FC2 B 17.0 17.8 17.9 6.56 6.59 6.58 88.8 88.7 32.1 32.2 2.36 2.39 9 11 Bold data with single underline indicates an exceedance to Action Level Image: Control of the second	FC2 M	18:40	Big wave	18.0	9.0	18.1	18.0	6.75	6.72	6.81	91.0	90.7	91.7	32.3	32.2	2.73	2.77	2.84	7	7	7.5	
Bold data with single underline indicates an exceedance to Action Level Italic data with double underline indicates an exceedance to Limit Level Equipment used: Dissolved Oxygen Meter: EM 961 Calibration Check: Omg/L: ok 100%: ok Sampled By: Turbidity Meter: EM 2365 Calibration Check: 4.47, 44.8, 460 NTU Checked By: Salinity Meter: EM 3694 Calibration Check: 58.9 mS Date:	FC2 B				17.0	17.8	17.9	6.56	6.59	6.58	88.5	88.8	88.7	32.1	32.2	2.36	2.39		9	11		
Bold data with single underline indicates an exceedance to Limit Level Image: Construction of the co																						
Halic data with double underline indicates an exceedance to Limit Level Image: Construction of the c	Bold data	with sing	e underlir	ne indicat	es an exc	eedance	to Actio	n Leve	<u> </u>													
Equipment used: Dissolved Oxygen Meter: EM 961 Calibration Check: Omg/L: ok 100%: ok Sampled By: Image: Color of the color	<u>ltalic data</u>	with double	underline	indicates a	n exceeda	nce to Lii	nit Level		S 3				<u>.</u>		6 8		š					
Turbidity Meter: EM 2365 Calibration Check: 4.47, 44.8, 460 NTU Checked By: Image: Checked By: Salinity Meter: EM 3694 Calibration Check: 58.9 mS Image: Checked By:	Equipmen	t used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	By:			
Turbidity Meter: EM 2365 Calibration Check: 4.47, 44.8, 460 N10 Checked By: Salinity Meter: EM 3694 Calibration Check: 58.9 mS Date:			T 1 ' 1' 1			-	0005		0.11		4 47		100	NITL				<u> </u>				
Salinity Meter: EM 3694 Calibration Check: 58.9 mS Date:	-		Turbidity N	neter:		EIVI	2365		Calibrat	ion Uneck:	4.47,	44.8,	460	NIU				Unecked	ву:			
			Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.9	mS						Date:				
Inermometer:			Thermome	ter		FT	961															

Project: (Contract No.	CV/2002/1	3 Fill Bank	: At Tuen N	1un Area	38				Client:	 Penta-C	cean Con	struction	Co., Ltd.	Job No.:		4494.1				
Date of S	ampling :	19/02/2005	5		Weathe	r Conditio	on:	Sunny			Ambier	nt Tempera	ature,ºC:	11			Tide Stat	e:	<u>Mid-Flo</u>	iod	
Station	Time	Sea	Overall	Sampling	Tempera	ature, °C	Dissolv	ed Oxyg	ien, mg/L	Dissolv	ed Oxyg	gen, %	Salinity,	ppt	Turbidity	, NTU		Suspen	ded Sol	ids, mg/L	Remarks
		Condition	Depth, m	Depth,m	а	b	а	b	Average	а	b	Average	а	Ь	a	b	Average			Depth	
												1								Average	
FIVIT 3	-			1.0	10.5	10.6	6.52	6.68	0.01	83.7	83.0		33.1	33.0	3.58	3.91		9	8		
FM1 M	11:00	Small	18.0	9.0	10.5	10.5	6.73	6.51	0.01	83.6	82.7] 03.3	33.5	33.3	3.08	3.48	3.54	10	10	9.5	
FM1 B	-	wave		17.0	40.0	10.5	C C2	C 70	0.01	00.0	02.0	02.0			0.50	2.00	-	10	40	-	
				17.0	10.5	10.5	0.03	0.50	0.01	03.3	03.9	03.0	:00.0	33.4	0.53	3.00		10	10		
FM2 S	-			1.0	10.3	10.3	6.32	6.55		83.5	83.6		33.2	33.4	4.08	4.22		10	9		
FM2 M	10:50	Small	18.0	9.0	10.3	10.4	6.43	6.69	6.50	84.0	85.2	84.1	33.4	33.3	3.27	3.27	3.72	11	9	9.7	
FM2 B	-	wave		17.0	40.0	10.5	0.00	0.00	0.01	00.7	04.0	04.0	22.4		0.70	0.74	-	40		-	
				17.0	10.3	10.5	6.26	6.36	6.31	83.7	84.9	84.3	- 55.4	55.4	5.79	5.71		10	9		
FC1 S				1.0	10.4	10.4	6.39	6.21		84.4	83.7		33.2	33.2	3.50	3.79		10	8		
FC1 M	11:10	Small	22.0	11.0	10.3	10.5	6.47	6.50	6.39	83.0	83.8	83.7	33.1	33.3	3 34	3.88	372	9	10	95	
EC1 B	-	wave															-				
				21.0	10.3	10.3	6.30	6.56	6.43	83.5	84.1	83.8	33.5	33.3	4.10	3.70		11	9		
FC2 S	-			1.0	10.5	10.6	6.22	6.49		83.0	82.7		33.3	33.3	4.20	4.17		9	8		
FC2 M		Small	18.0	90	10.4	10.6	6.37	6.50	6.40	82.2	83.1	82.8	33.1	33.4	4 21	4 02	1 4 00	9	g	85	
EC2 B	-	wave	10.0	0.0	10.1	10.0	0.01	0.00	and the second	02.2		a contraction					-			-	
				17.0	10.5	10.5	6.56	6.34	6.45	83.6	82.7	83.2	33.3	33.5	3.57	3.84		8	8		
Bold dat	a with eine	o undorlir	no indicat	oe an ove	andance	to Actic	nlovo														
Italic data	with double	underline	indicates a	n exceeda	nce to Li	mit Level		-								i i					
Equipmon	t used:	Discolused	Ovuran M	otor	EM	001		Calibrat	ion Chaole	Omail	ماد	1009/+	alı			8 8	Compled	D			
Equipmen	nt used:	Dissolved	Oxygen ivi	eter.		961		Calibrat	Ion Check:	Umg/L:	ок	100%:	OK			÷	Sampled	БУ:			
		Turbidity N	Aeter:		EM	2365		Calibrat	ion Check:	4.67,	47.0,	468	NTU				Checked	By:			
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
		-			-															2	
	8	Ihermome	eter:		ET	961															

Date of Sampling : 21/02/2005 Weather Condition: Cloudy Ambient Temperature,°C: 12 Tide State: Mid-Flood Station Time Sea Overall Sampling Temperature,°C Dissolved Oxygen, mg/L Dissolved Oxygen, % Salinity, ppt Turbidity, NTU Suspended Solids, mg/L Remarks Station Time Sea Overall Sampling Temperature,°C Dissolved Oxygen, mg/L Dissolved Oxygen, % Salinity, ppt Turbidity, NTU Suspended Solids, mg/L Remarks FM1 S 11.0 11.5 11.6 6.58 6.63 6.54 81.3 82.6 81.7 33.3 33.0 6.11 5.87 13 12 11.7 12 12 11.5 11.6 6.54 6.54 80.9 81.7 33.3 33.0 6.11 5.87 13 12 12 12 12 11.7 12 12 12 13 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12	
Station Time Sea Overall Sampling Temperature, °C Dissolved Oxygen, mg/L Dissolved Oxygen, % Salinity, pt Turbidity, NTU Suspended Solids, mg/L Remarks Condition Depth, m Depth, m Depth, m a b a b Average a b a b a b a b a b a b a b a b a b a b a b a b a b Average a b Average a b Average a b a b a b a b a b a	
Condition Depth, m Depth, m a b a b Average a b Average a b Average Depth Depth Average	
Image: Mark and Mark a	
FM1 S 10 11.0 11.5 11.6 6.58 6.63 81.3 82.6 33.3 33.0 6.11 5.87 13 12 FM1 M 19.0 9.5 11.7 11.4 6.43 6.52 6.54 80.9 81.8 81.7 32.9 33.2 5.27 5.43 5.47 12 11 12.7 FM1 B 19.0 11.6 11.6 6.58 6.61 6.54 80.9 81.8 81.7 33.3 33.0 6.11 5.87 13 12 12.7	
FM1 M 17:10 Small wave 19.0 9.5 11.7 11.4 6.43 6.52 80.9 81.8 32.9 33.2 5.27 5.43 5.47 12 11 12.7 FM1 B 19.0 11.6 11.6 5.64 6.52 5.54 80.9 81.8 32.9 33.2 5.27 5.43 5.47 12 11 12.7	
FM1 B 19.0 11.0 11.0 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 10.0 11.0 10.0 10.0	
FM2 S	
1.0 11.4 6.39 6.28 80.2 79.8 33.2 33.0 5.59 5.46 12 11	
Image: Non-analysis Strating Strating </td <td></td>	
FM2 B 17.0 11.5 11.7 6.31 6.50 6.41 80.9 82.3 81.6 33.1 33.1 6.76 6.56 13 13	
FC1 S 1.0 11.6 11.6 6.70 6.64 83.4 82.5 33.3 33.3 5.29 5.32 13 11	
FC1 M 17:20 Small 23.0 11.5 11.7 11.5 6.71 6.59 6.66 83.3 83.5 33.2 33.0 4.86 5.01 5.41 12 10 12.2	
FC1 B	
FC2 S 1.0 12.0 11.8 6.65 6.47 82.6 81.8 33.1 33.3 5.33 5.17 12 14	
FC2 M 16:50 Small 18.0 9.0 11.9 11.9 6.58 6.49 81.9 81.5 33.2 33.4 5.29 5.40 5.76 11 13 13.3	
FC2 B 17.0 12.0 11.7 6.60 6.57 6.59 82.3 82.6 82.5 33.4 33.3 6.86 6.50 16 14	
Bold data with single underline indicates an exceedance to Action Level (talic data with double underline indicates an exceedance to Limit Level	
Equipment used: Dissolved Oxygen Meter: EM 961 Calibration Check: 0mg/L: ok 100%: ok Sampled By:	
Turbidity Mater: EM 2365 Calibration Check: 4 65 46 2 457 NTU	
Salinity Meter: EM 3694 Calibration Check: 58.8 mS Date:	
Thermometer ET 961	

Project: <u>C</u>	ontract No.	CV/2002/1	3 Fill Bank	At Tuen N	lun Area	38				Client:	Penta-C	cean Con	struction	<u>Co., Ltd.</u>	Job No.:		4494.1				
Data of Sr	monling :	21/02/2004	-		Weatha	Conditio	n:	Cloudy			Ambio	t Tompore	turo 00.	11		32 - 33	Tido Stat	o:	Mid Eb	h.	
Date of 30	amping .	21/02/200:			vveatrier	Contaitio	n	Cloudy			Ambiei		iture, c.				Tiue Stat	e.			
Station	Time	Sea	Overall	Sampling	Tempera	iture, °C	Dissolv	ed Oxyg	ien, mg/L	Dissolv	ed Oxyg	jen, %	Salinity,	ppt	Turbidity	, NTU		Suspen	ded Sol	ids, mg/L	Remarks
		Condition	Depth, m	Depth,m	а	Ь	а	Ь	Average	а	Ь	Average	а	Ь	а	Ь	Average			Depth Average	
FM1 S				10	11.1	10.9	6.74	6.82		83.3	84.1		33.3	33.2	4.02	1 20		11	13	/ workigo	
EM1 M	-	Small		1.0	1.1.1	10.0	0.74	0.02	6.75	00.0	04.1	83.2			4.02	4.20			- 13	-	
	12:00	wave	17.0	8.5	11.1	11.1	6.66	6.76		82.6	82.9		33.2	33.4	3.84	3.99	4.07	10	9	10.8	
FM1 B	-			16.0	10.8	11.2	6.79	6.58	6.69	82.7	84.3	83.5	33.1	33.3	4.22	4.14		11	11		
FM2 S				1.0	11.2	11.3	6.82	6.75		84.5	85.1		33.3	33.1	3.74	3.85		9	9		
FM2 M	12:10	Small	17.0	8.5	11.1	11.3	6.73	6.67	6.74	83.8	84.0	84.4	33.2	33.3	4.70	4.81	4.05	9	9	8.8	
FM2 B	-	wave		16.0	11.2	11.2	6.84	6.76	6.80	85.2	84.6	84.9	33.2	33.3	3.54	3.64		8	9	-	
EC1 S																					
				1.0	10.8	10.8	6.75	6.75	671	84.6	84.0	84.1	33.0	32.9	4.74	4.56		10	11		
FC1 M	11:50	Small wave	21.0	10.5	10.9	11.0	6.79	6.54		83.5	84.4		33.1	32.9	4.13	4.01	4.35	10	11	10.5	
FC1 B				20.0	11.0	10.8	6.62	6.78	6.70	84.1	84.6	84.4	32.9	32.9	4.32	4.36		10	11		
FC2 S				1.0	11.3	11.5	6.54	6.62		84.5	83.8		33.3	33.1	3.68	3.79		10	9		
FC2 M	12:20	Small	16.0	8.0	11.4	11.4	6.70	6.68	6.64	83.5	84.9	84.2	33.4	33.2	3.78	3.65	3.76	10	10	10.3	
FC2 B	-	wave		15.0	11.3	11.5	6.73	6.66	6.70	82.6	84.9	83.8	33.4	33.3	3.89	3.74		12	11	-	
																					<u> </u>
Bold data	with singl	e underlir	ne indicat	es an exc	eedance	to Actio	n Leve	<u>I</u>													
<u>Italic data</u>	with double	underline	indicates a	in exceeda	nce to Lir	nit Level								0		8					
Equipmen	t used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	By:			
		Turkidity N	lator		EM	2200		Colibrat	ion Chook:	1 51	1E Q	450	NTH				Checked	Dur			
		Torbioity N	ieter.			2305		Canorat	ion Check:	4.91,	49.9	453	NIU				Checked				
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.7	mS						Date:				
		Thermome	ter:		ET	961						-									

Project: (Contract No.	CV/2002/10	3 Fill Bank	At Tuen N	lun Area	<u>38</u>				Client:	Penta-C	cean Cons	struction	Co., Ltd.	Job No.:		4494.1				
Date of S	ampling :	23/02/2005	5		Weather	r Conditio	on:	Cloudy			Ambier	nt Tempera	iture,ºC:	18			Tide Stat	e:	<u>Mid-Flo</u>	od	
Station	Time	Sea	Overall	Sampling	Tempera	ature. °C	Dissolv	ed Oxva	en. ma/L	Dissolv	ed Oxvo	ien. %	Salinity.	ppt	Turbidity	NTU		Suspen	ded Soli	ds. ma/L	Remarks
		Condition	Depth, m	Depth,m	а	b	а	b	Average	а	b	Average	a	b	а	b	Average			Depth	
		Ĵ.										721				3	353) î		Average	
FM1 S				1.0	15.4	15.7	6.93	6.87	C 00	84.5	85.2	946	33.2	33.5	6.15	6.01		13	12		
FM1 M	18:40	Small wave	19.0	9.5	15.5	15.5	6.86	6.90	0.03	83.8	85.0	04.0	33.4	33.3	5.79	5.83	6.01	11	11	11.7	
FM1 B	_			18.0	15.7	15.5	6.77	6.88	6.83	84.2	84.8	84.5	33.3	33.3	6.06	6.23		12	11		
FM2 S	_			1.0	15.6	15.8	6.58	6.73		82.9	83.5		33.1	33.4	4.95	5.11		9	10		
FM2 M	18:30	Small	19.0	9.5	15.8	15.8	6.75	6.70	6.69	84.1	83.7	83.6	33.4	33.4	5.82	5.97	5.38	10	11	9.5	
FM2 B		, indice		18.0	15.7	15.6	6.76	6.80	6.78	84.4	84.7	84.6	33.5	33.3	5.26	5.18		9	8		
FC1 S																					
EC1 M	_	Small		1.0	15.5	15.7	6.53	6.57	6.54	84.4	84.6	83.7	33.3	33.3	6.45	6.60		12	11		
	18:50	wave	22.0	11.0	15.6	15.8	6.62	6.45		83.8	82.1		33.2	33.4	6.54	6.64	6.46	9	8	10.2	
	_			21.0	15.7	15.8	6.67	6.51	6.59	83.5	82.9	83.2	33.3	33.3	6.38	6.17		10	11		
FC2 S				1.0	15.7	15.6	6.71	6.65	6 69	83.8	83.4	94.4	33.5	33.3	6.44	6.30		11	12		
FC2 M	18:20	Small wave	18.0	9.0	15.8	15.7	6.76	6.60	0.00	84.9	85.3	04.4	33.5	33.6	5.52	5.48	5.73	8	8	10.7	
FC2 B				17.0	15.6	15.5	6.56	6.48	6.52	83.0	81.9	82.5	33.4	33.4	5.23	5.39		12	13		
Bold dat	a with sing	le underlin	e indicati	es an exc	eedance	to Actio	on Leve	:1					-								
Italic dat	a with double	e underline i	indicates a	n exceeda	nce to Lii	mit Level															
_										_							_				
Equipme	nt used:	Dissolved I	Uxygen Mi	eter:	EM	961		Calibrat	ion Check:	Umg/L:	ok	100%:	ok			ļ į	Sampled	Ву:			
	0	Turhidity M	leter:		EM	2365		Calibret	ion Check:	4 59	45.6	462	NTU				Checked	By:			
		. arbidity iv				2000		Cambrat	ion onoon.				1110			İ	Chooked	-1.			
		Salinity Me	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
-	-	The			ET	004															
3	1	Inermome	ter:		EI	961								10 10							

Project: <u>C</u>	ontract No.	CV/2002/1	<u>3 Fill Bank</u>	At Tuen M	1un Area	<u>38</u>				Client:	Penta-(Ocean Con	struction (<u>Co., Ltd.</u>	Job No.:		4494.1				
Date of Sa	ampling :	23/02/200	5		Weather	^r Conditio	in:	Cloudy			Ambie	nt Tempera	ature,°C:	16			Tide Stat	e:	Mid-Eb	<u>b</u>	
Station	Time	Sea Condition	Overall Depth, m	Sampling Depth,m	Tempera a	iture, °C b	Dissolv a	red Oxyg b	gen, mg/L Average	Dissolv a	/ed Oxy b	gen, % Average	Salinity, a	ppt b	Turbidity a	r, NTU b	Average	Susper	ded Soli	ids, mg/L Depth	Remarks
FM1 S	-			1.0	15.3	15.1	6.77	6.68		85.2	2 83.7	7	33.5	33.3	6.48	6.21		10	10	Average	
FM1 M	13:10	Small wave	17.0	8.5	15.4	15.2	6.62	6.67	6.69	84.6	6 84.0	- 84.4	33.4	33.5	5.84	5.98	6.19	12	11	12.8	}
FM1 B				16.0	15.2	15.3	6.80	6.60	6.70	85.0	84.2	2 84.6	33.4	33.4	6.24	6.40		16	18		
FM2 S	-	0		1.0	15.4	15.3	6.75	6.75	6.74	82.9	84.0	83.7	33.5	33.3	5.68	5.84	-	12	12		
FM2 M	13:20	wave	17.0	8.5	15.2	15.4	6.79	6.66		84.4	83.5	5	33.5	33.3	6.80	6.93	6.23	12	12	11.7	,
				16.0	15.3	15.3	6.65	6.70	6.68	83.3	83.5	5 83.4	33.4	33.5	6.01	6.11		11	11		
FC1 M	-	Small		1.0	15.5	15.4	6.80	6.73	6.75	85.5	5 85.5	5 84.7	33.4	33.3	5.63	5.75	-	10	11		
FC1 B	13:00 	wave	20.0	10.0	15.6	15.6	6.72	6.75		83.7	84.2	2	33.2	33.4	6.00	6.23	6.04	9	10	11.3	
FC2 S				19.0	15.6	15.4	6.83	6.75	6.79	05.5	03.0	0 83.8	33.5	33.b	6.27	6.35		13	15		
FC2 M	13:30	Small	 17 0	85	15.4	15.5	6.75	6.79	6.73	85.6	86.2	85.2	33.3	33.5	6.05	6.08	6.50	11	12	11 2	
FC2 B	-	wave		16.0	15.5	15.6	6.65	6.59	6.62	85.0	84.2	2 84.6	33.5	33.2	7.14	7.23		11	10		·
Bold data	with sing	le underli	ne indicat	es an exc	eedance	to Actio	n Leve														
Italic data	with double	e underline	indicates a	n exceeda	nce to Lir	nit Level															
Equipmen	t used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	tion Check:	Omg/L:	ok	100%:	ok				Sampled	Ву:			
		Turbidity N	vleter:		EM	2365		Calibra	tion Check:	4.54,	46.1,	466	NTU				Checked	Ву:			
		Salinity M	eter:		EM	3694		Calibrat	tion Check:	58.8	3 mS	S					Date:				
		Thermome	eter:		ET	961															

Proiect: (Contract No.	CV/2002/1	3 Fill Bank	At Tuen N	1un Area	38				Client:	 Penta-O	cean Con	struction	Co., Ltd.	Job No.:		4494.1				
Date of S	ampling :	25/02/2005	5		Weathe	r Conditio	on:	Foggy		-	Ambier	nt Tempera	iture,°C:	18			Tide Stat	e:	Mid-Flo	od	
Station	Time	Sea	Overall	Sampling	Tempera	ature, °C	Dissolv	ed Oxyg	en, mg/L	Dissolv	ed Oxyg	jen, %	Salinity,	ppt	Turbidity	, NTU		Suspen	ded Sol	ids, mg/L	Remarks
		Condition	Depth, m	Depth,m	а	b	а	Ь	Average	а	b	Average	а	Ь	а	b	Average			Depth	
FM1 S				1.0	10.2	10.5	6.74	6.60		02.4	020			22 5	5.20	E 17		15	12	Average	
E 644 64		Small		1.0	10.3	16.5	6.74	0.09	6.72	03.4	03.9	83.8		33.5	5.30	5.17		15	-13	-	
	08:40	wave	18.0	9.0	16.3	16.4	6.80	6.65		84.6	83.2		33.4	33.5	5.00	5.28	5.49	10	11	12.0	
FM1 B				17.0	16.5	16.4	6.70	6.73	6.72	84.4	86.3	85.4	33.3	33.3	6.12	5.99]	11	12]	
FM2 S				1.0	16.5	16.5	6.59	6.70		83.1	85.2		33.0	33.3	6.03	6.16		14	12		
FM2 M	08:30	Small wave	18.0	9.0	16.4	16.4	6.48	6.38	6.54	82.0	81.7	83.0	33.4	33.1	5.39	5.53	5.81	12	11	13.5	
FM2 B				17.0	16.4	16.5	6.44	6.52	6.48	84.3	83.2	83.8	33.2	33.2	5.91	5.84		16	16		
FC1 S				1.0	16.3	16.6	6.80	6.80		85.1	83.7		33.6	33.4	5.98	6.05		15	13		
FC1 M	08:50	Small	22.0	11.0	16.5	16.5	6.59	6.67	6.72	83.8	84.6	84.3	33.4	33.4	5.15	5.34	5.75	12	13	14.7	
FC1 B		wave		21.0	16.2	16.4	6.71	6.50	6.61	84.9	82.6	83.8	33.3	33.4	6.03	5.95		19	16	-	
FC2 S				1.0	16.4	16.5	6.47	6.53		85.1	85.9		33.5	33.2	5.59	5.74		13	13		
FC2 M	- 08.20	Small	17 0	85	16.5	16.3	6.57	6.49	6.52	85.3	83.5	85.0	33.3	33.4	5.65	5.88	5.71	12	12	13.3	
FC2 B	-	wave		16.0	16.0	16.4	6.72	6.66	93.3	83.0	83.7	83.4	33.3	33.4	5 79	5.62		15	15		
				10.0	10.4	10.4	0.72	0.00	0.00	00.0	00.7	05.4			0.10	0.02					
Bold dat	a with sing	le underlir	ne indicat	es an exc	eedance	to Actio	on Leve	<u>l</u>							-						
<u>Italic data</u>	a with double	underline .	indicates a	n exceeda	nce to Lii	mit Level	•														
Equipme	nt used:	Dissolved	Oxygen M	eter:	EM	961		Calibrat	ion Check:	Omg/L:	ok	100%:	ok				Sampled	By:			
		Turbidity N	fotor:		EM	1265		Colibrat	ion Choole	4.50	110	AEC	NTU				Chooked	Dur			
		Turbiaity N	neter:			2365	-	Calibrat	ion Check:	4.50,	44.8,	456	NTU				Спескеа	ру:			
		Salinity M	eter:	-	EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
		Thermome	ter:		ET	961															

Project: <u>C</u>	ontract No.	CV/2002/1:	<u>3 Fill Bank</u>	At Tuen N	1un Area	<u>38</u>				Client:	Penta-C	cean Con	struction	<u>Co., Ltd.</u>	Job No.		4494.1				
Date of Sa	mpling :	25/02/2005	5		Weather	Conditio	on:	Foggy			Ambier	nt Tempera	ature,°C:	19		8 8	Tide State	e:	Mid-Eb	b	
																1 1				0.00	
Station	Time	Sea	Overall	Sampling	Tempera	ture, °C	Dissolv	ed Oxyg	ien, mg/L	Dissolv	ed Oxyg	jen, %	Salinity,	ppt	Turbidity	, NTU		Suspen	ded Sol	ids, mg/L	Remarks
	8	Condition	Depth, m	Depth,m	а	b	a	b	Average	a	b	Average	а	Ь	а	b	Average			Depth Average	
FM1 S				1.0	17.0	16.8	6.84	6.66		85.1	83.7		33.4	33.5	3.78	3.88		12	12		
FM1 M	14:00	Small	17.0	8.5	16.8	16.9	6.73	6.67	6.73	83.3	84.2	84.1	33.2	33.5	4.02	3.86	4.10	16	14	14.0	
FM1 B	-	wave		16.0	16.7	16.6	6.83	6.80	6.82	85.0	85.6	85.3	33.4	33.5	4.53	4.50		16	14	-	
FM2 S	-			1.0	16.9	17.0	6.79	6.77		84.6	83.9		33.5	33.5	4.77	4.82		12	13		
FM2 M	14:10	Small	16.0	8.0	16.9	16.7	6.80	6.65	6.75	84.7	82.6	84.0	33.4	33.2	4.42	4.76	4.59	11	13	12.5	
FM2 B		wave		15.0	16.7	16.7	6.62	6.81	6.72	82.6	84.0	83.3	33.4	33.4	4 35	4 40	0.025.54	12	14		
E01.0	<u> </u>			10.0	10.1		0.02	0.01	0.12	02.0	0-1.0	00.0		00.4	-1.00	-1.10				<u> </u>	
FUIS				1.0	16.8	16.6	6.58	6.68	6.65	81.8	83.1	82.9	33.5	33.3	5.43	5.31		14	16		
FC1 M	13:50	Small wave	20.0	10.0	16.7	16.9	6.73	6.61		83.9	82.7		33.5	33.3	4.82	4.79	5.50	13	11	13.5	
FC1 B				19.0	16.7	16.6	6.70	6.53	6.62	83.4	82.0	82.7	33.2	33.3	6.41	6.21		13	14		
FC2 S	-			1.0	16.4	16.6	6.59	6.65		82.9	84.4		33.5	33.5	4.56	4.30		13	14		
FC2 M	14:20	Small wave	16.0	8.0	16.7	16.5	6.67	6.60	6.63	82.5	83.0	83.2	33.2	33.4	4.31	4.48	4.42	12	14	14.3	
FC2 B	-			15.0	16.7	16.7	6.50	6.69	6.60	84.4	81.9	83.2	33.3	33.3	4.35	4.50		17	16		
D-L-L-L-4-		P -				4- 0-4															
Italic data	with double	e underline .	indicates a	n exceeda	nce to Lir	nit Level	on Leve	<u>l</u>								<u>e e</u>					
Equipmen	t used:	Dissolved	Oxygen M	eter:	EM	961	-	Calibrat	ion Check:	Omg/L:	ok	100%:	ok			1	Sampled	By:			
·		Turbidity N	Aeter:		EM	2365		Calibrat	ion Check:	4.63,	46.2,	455	NTU			o	Checked	By:			
																	_				
		Salinity M	eter:		EM	3694		Calibrat	ion Check:	58.8	mS						Date:				
		Thermome	ter:		ET	961															

Appendix VII

Complaint Log

CONTRAC COMPLAI	T No. CV/20 NTS LOG.	02/13 – FILL BAN	K AT TUEN MUN AI	REA 38 - ENV	IRONMEN	TAL
Complaint	Date of	Received From	Nature of Complaint	Date	Outcome	Date of Reply
Log No.	Receipt	and Received By	*	Investigated		and to Whom
001	07.02.2004	From: Public By: Home Affairs Department	Cleanliness of public roads.	N/A	The situation was rectified.	N/A
002	29.06.2004	From: Public By: EPD	Dust generation in Fill Bank.	N/A	The situation was rectified.	N/A
003	31.07.2004	From: Public By: EPD	Dust generation at Lung Mun Road near Fill Bank.	07.08.2004	The situation was rectified.	N/A
004	13.08.2004	From: Public By: EPD	Dust emission within the site.	18.08.2004	The situation was rectified.	N/A
005	26.08.2004	From: Public By: EPD	Dust emission and debris leakage from dump trucks near Government Depot.	07.09.2004	Not site related.	N/A
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-

Appendix VIII

Cumulative Statistics on Complaints, Notifications of Summonses and Successful Prosecutions

CONTRACT No. CV/2	CONTRACT No. CV/2002/13 - FILL BANK AT TUEN MUN AREA 38										
Cumulative Statistics on Complaints											
Environmental Parameters	Cumulative No. Brought Forward	No. of Complaints This Month	Cumulative Number to Date								
Air	4		4								
Noise	0		0								
Water	0		0								
Waste	1		1								
Landscape & Visual	0		0								
Total	0		5								

Appendix IX

Master Construction Programme

ree	month rolling programme (Mar 2004 -	May 2004	1)				Prepsied by : Reviewed by Approved By:
D 34	Task Name Take over	Duration I	Early Start 03/5/28	Early Finish 03/6/28	% Complete	2003 ay Jun Jul Aug Sen C 4 6/29	Oct Nov Dec Jan j	2004 Feb Mar Apr May Jur Jur Aug Sep
5	Mpd:lication of wheel washing facilities	49d	03/6/28	03/8/15	100%		8	
6	Operation and maintenanc∈	834d	03/6/28	05/3/22	34%		i	
37	Surveillance System	427d	04/4/1	05/6/1	0%		ŝ.	
38		62d		04/6/1		i i		
39	Operation and maintenance	365d	24/6/2	05/6/1	0%			
10	Tipping Hall	304d	04/2/1	04/11/30	10%			
n	Mddifination	. 29d	D4/2/1	04/2/29	100%			
12	Uperation	275d	64/3/1	04/11/30	D%			
43	Environmental Monitoring Works	744d	03/6/2	05/6/14	33%	•		
44	Water Quality Baseมิกต Report	22d	03/6/2	03/6/23	100%	,		
	· · · · · · · · · · · · · · · · · · ·			0.00	11230			
ontra	act No. CV/2002/13	Tesk				Summary Rolled Un Took		Rolled Up Progress
Jate:	1 March 2004	Progress	3			Rolled Un Miestone	196	Subcritical Path for Fach Section

hree	month rolling programme (!	Var 2004	- May 2004)	i ti	2003		· · · · ·	Frepared by Runiewed by Approved By
ID	Task Name	Duration	Early Start	Early Finish	% Complete	May Jul Aug Ser	o Oct Nov Des	Jan Feb Mar Apr	May Jun Jul Aug Sep Oct
45	Water Quality Monitoring	6284	03/9/26	05/6/14	24%				
46	Air Quality Baseline Monitoring	143	03/6/12	23/6/25	100%				
47	Air Quality Muniforing	706d	03/6/26	05/5/31	34%	ž			ter and the second s
48	Environmental Audit	735d	03/6/2	05/5/31	37%				
49	Section 1 of the Works	585d	03/7/15	05/2/18	92%				
50	Development of computer programme for typ licket system and weightridges	7 2d	03/7/31	03/8/31	100%				
61	Combined reception and exit office (CREO) converted from recorder house	104d	03/8/13	03/11/24	100%	Y			÷.
52	Taking over of weighbrdige and recorder	td	93/8/13	03/8/13	100%	• -8/13			
53	Conversion of recorder house into a CREO	98d	03/8/14	03/11/19	100%)		
54	installation of trip ticket system in the CREO	14	03/11/23	03/11/23	100%		li t		
55	Commissioning of the CREO	1d j	03/11/24	03/11/24	100%		11	/24	
		5 e es e		÷		1270	ti ti an batra	+1 23	
Contra	nct Ng, CV/2002/13	Task				Summery Relied Up Tark	-	Ralled Up Progr	755
Date:	1 March 2004	Progress	5 2		244 C		Bertin Marcade and	Submitical Data	for Each Section

ree	month rolling programme (Mar 2004	- May 2004	H)		<u> </u>	Prepared by Reviewed by Approved By
0	Tack Name	Duration	Farly Start	Farly Finish	% Complete	2003	2004 Dec_Jan Feb ¹ Mar Apr May Jun Jul Aug Sep Oc
17	Foundational weighbridge	140	03/9/20	03/10/3	100%		
38	Installation of weighbridge	47d	03/10/4	03/11/19	100%		
69	Frection of recorder house	31d	03/10/4	03/11/3	100%		
70	Installation of computer system in the recorder house	10	03/11/23	03/11/23	(00%)		
71	Commissioningof WP2	br	03/11/24	03/11/24	100%	*	11/24
12	Tree planting at Poition A	Td Td	03/10/8	03/10/8	100%	Ť	
73	Tree planting at Portion C	10	n3/10/B	03/10/8	100%	Ť	
74	Tree planting at Portion H:	i Id	C3/10/8	03/10/8	- 100%	Ĩ	
75	Tree planting at Portion H	29d	05/1/21	05/2/18	0%		
76	Section 2 of the Works	704d	03/6/28	05/5/31	32%		
77	Commencementol Public Filling Operation	1d	03/6/28	03/6/28	100%	6/28	
0.0	1 2		l. (337	17. (19)) (1)			
lontra	et No. CV/2002/13	Task	- CSM			Summary	Rolled Up Progress
ill Ba Date:	nk at Tuen Mun Area 38 1 March 2004	Progress	8	liter.		Rolled Up Task	Cutical Path

nree	month rolling programme (Mar 2004	- May 2004)			Prepared by : Reviewed by Approved By:
ID:	Task Name Atr	Duration	Early Start	Early Finish	% Complete	2003. n Jul Aug Sep Oct Nov Dec Jan Feb Mar	Apr Jun Jul Aug Sep Oct
78	Public filling operation between +5.00mPD to +15.00mPD	340d	03/6/28	04/6/1	53%	V	
79	Eantywork	1176	03/6/28	63/10/22	99%		
80	Brainage at +15.00mPD	62d	94/4/1	D4/6/1	D%		
81	Hydroseeding	.6*d	94/2/15	64/4/15	19%	.	
82	Public filling operation between + 15.00mPD to +25.00mPD	336d	03/10/23	64/9/22	44%		
83	Earthwork	274d	03/10/23	04/7/22	64%	<u>7</u>	
B4	Drainage at +25.00mPD	61 d	04/7/23	04/9/21			Ž argana
85	Hydroseeding	6½d	04/7/23	04/9/22	0%		
86	Public filling operation between +25.00mPD to +36.00mPD	304d	04/7/23	05/5/22	3%		
87	Earthwork	243d	04/7/23	05/3/22	4%		
88	Drainage at +35.00mPD	61 d	05/3/23	05/5/22	0%	#	:
		1.000		as incad	waan d	ank w -	
Contra	st No_CV/2002/13	Task				nary Rolled Up	; Prngress
r III Ba Date:	akratiluen Mun Azea 38 IMaroh 2004	Progress	8			d Up Task Critical Pr	

hree month rolling program	ne (Mar 2004 - May 2004)	99.0			35	Prepared by Reviewed by : Approved By	
9	2005	1418-157	200	6	F		2007
ov Doc Jan Fet Mar Apr	May Jun : Jul Aug Sep ; Oct	Nov Doc Jan Feb	Mor Apr May Jun	Jul Aug Sep Oct N	lov Dec Jan Fe) Mar Apr ¹ May	Jun Jul
180 (B)							
					.+.		
	2				į.		
					1 # 1 1 4 4 1 4 4 1 4 1 4		
a 3							
					4	60	
	1	8			1		
		-	22				
					1		0
		191 191					
					ŝ		
		*			1		
2+2+					~~~		
		4					
		1			14		
-							
	9. 11						
4		4					
					Š.		
84 24					j.		
1	5						
11	162.5				00-18-55-740010 - OT105		w ates dist i
	 Taek		Summary		Rollad Lip Brooser		
Contract No: CV/2002/13	Bellevin		Sammaly Souther state	· · · · ·	noneu op rangress	15	2
ate: 1 March 2004	Progress		Kolled Up Task		Critical Path		
terreter and a second data and a second	Milestone		Rolled Up Milesturie	29	Subcritical Path for	Each Section	

Appendix X

Monitoring Schedule for the following month

<u>Fill Bank at Tuen Mun Area 38</u> <u>Environmental Monitoring Schedule</u> March 2005

Sunday	Monday	Tuesday		Wednesday		Thursday		Friday	Saturday	
			1		2		3	4		5
						WOM				
		WOM				WQM (Ehb. 17.56)			WOM	
		(Ebb: $16:04$)		1 hr TSD		(EDD: 17:30) (Elood: 10:44)			(Ebb)(16)(20)	
		(Elood: 09:48)		1 - 111 131 24 - hr TSP		Site Inspection			(Elood:*)	
6	7	(11000.09.40)	8	24 - 111 151	9	Site inspection	10	11	(11000.)	12
0	,	WOM	U		'		10	11		12
		(Ebb: 12:01)				WOM				
		(Flood: 17:04)				(Ebb: 13:17)			WOM	
		1 – hr TSP				(Flood: 07:40)			(Ebb: 14:25)	
		24 – hr TSP				Site Inspection			(Flood: 08:30)	
13	14	. 1	15	1	16	•	17	18		19
	WQM									
	(Ebb: 15:35)									
	(Flood: 09:11)			WQM				WQM		
	1 – hr TSP			(Ebb: 17:04)				(Ebb:15:00)	1 – hr TSP	
	24 – hr TSP			(Flood: 09:54)		Site Inspection		(Flood:*)	24 – hr TSP	
20	21		22	2	23	WQM	24	25		26
						(Ebb: 12:30)				
		WOM				(Flood: 18:12)			WOM	
		WQM (Thh: 11:40)				1 - nr 1SP			WQM (Ehb. 12.22)	
		(E00: 11:40) (Elood: 16:44)				24 - III 15P			(E00: 15:25) (Elood: 07:30)	
77	20	(F1000. 10.44)	20		20	Site inspection	21		(F1000. 07.50)	
21	20	-	29	WOM	30		51			
				(Fbb: 15.45)						
	WOM			(Flood: 09:05)						
	(Ebb: 14:27)			1 – hr TSP		Landscape Audi	t			
	(Flood: 08:14)			24 – hr TSP		Site Inspection	-			

Notes : 1. 24 -hr TSP (to be monitored once every 6 days) at monitoring locations A1 & A2.

2. 1 hour TSP (to be monitored three times every six days when highest level of dust generation expected) at monitoring locations A1 & A2.

3. WQM - water quality monitoring three times per week, on mid-flood and mid-ebb tides. Days of monitoring to be

separated by at least 36 hours. Monitoring locations FC1, FM1, FM2 & FC2.

4. Site inspections to be carried out once per week.

5. Auditing of landscape works to be carried out once per month. * No flood tide.
Appendix XI

Wind Speed and Direction Data

DATE MON	DATE DAY	TIME HR	TIME MIN	WS:AVG M/S	WS:MAX M/S	WD:AVG DEG	WD:SDV DEG
2	3	0	0	1.7	5	94	40
2	3	1	0	1.7	5	94	32
2	3	2	0	2.2	5	72	27
2	3	3	0	3	5	61	49
2	3	4	0	3.1	6	75	48
2	3	5	0	3	6	24	74
2	3	6	0	3 4	6	29	54
2	3	7	0	3 5	8	73	33
2	3	8	0	3.8	7	53	52
2	3	9	0	3.7	7	82	40
2	3	10	0	2.9	6	31	30
2	3	11	0	2.2	5	56	74
2	3	12	0	2.5	5	38	32
2	3	13	0	1.8	4	35	43
2	3	14	0	2.3	5	57	66
2	3	15	0	1.6	4	96	78
2	3	16	0	2.1	5	72	24
2	3	17	0	3.2	6	109	80
2	3	18	0	2.5	6	91	47
2	3	19	0	2.9	6	92	36
2	3	20	0	2.1	5	90	30
2	3	21	0	1.4	4	91	75
2	3	22	0	1.3	4	56	72
2	3	23	0	0.3	2	54	46
2	4	0	0	0.1	1	69	69
2	4	1	0	0.1	1	89	52
2	4	2	0	0	1	66	64
2	4	3	0	0.1	1	90	38
2	4	4	0	0.3	1	87	38
2	4	5	0	1	3	44	28
2	4	6	0	0.9	3	77	71
2	4	7	0	1.8	10	29	40
2	4	8	0	1.9	7	57	37
2	4	9	0	0.6	2	15	75
2	4	10	0	1.4	4	25	47
2	4	11	0	2.4	5	76	44
2	4	12	0	2.2	5	80	61
2	4	13	0	1.6	3	70	45
2	4	14	0	0.8	2	29	71
2	4	15	0	1	3	33	51
2	4	16	0	0.9	2	86	43
2	4	17	0	1.7	4	90	29
2	4	18	0	0.7	3	30	41
2	4	19	0	1.1	3	34	70
2	4	20	0	1.3	4	83	25
2	4	21	0	1.2	6	61	57
2	4	22	0	2.3	0	74	33
2	4	23	0	2.3	S	19	40 E 4
2	10	1	0	2.5	0	21	71
2	12	1	0	1.1	2	100	71
2	12	2	0	1 2	3	102	69
2	12	4	0	1 2	3	85	57
2	12	5	0	0.4	3	36	60
2	12	6	0	0.3	1	83	63
2	12	7	0	0.8	3	111	24
2	12	8	0	2.6	5	118	79
2	12	9	0	2.2	5	49	63
2	12	10	0	2.3	5	16	50
2	12	11	0	2.3	5	86	2.6
2	12	12	0	2	4	74	48
2	12	13	0	0.8	2	26	72
2	12	14	0	0.3	1	98	75
2	12	15	0	1	5	22	31
2	12	16	0	1.3	4	77	23
2	12	17	0	0.8	2	119	54
2	12	18	0	0.9	3	26	72
2	12	19	0	1.2	4	109	61
2	12	20	0	1.3	4	57	66
2	12	21	0	0.9	4	18	22
2	12	22	0	2	5	30	63
2	12	23	0	2.7	5	116	26
2	13	0	0	2.5	5	65	66
2	13	1	0	2.5	4	22	23
2	13	2	0	1.8	4	101	38
2	13	3	0	1.8	4	34	34
2	13	4	0	2	4	24	26
2	13	5	0	2	5	22	37

DATE MON	DATE DAY	TIME HR	TIME MIN	WS:AVG M/S	WS:MAX M/S	WD:AVG DEG	WD:SDV DEG
0	10	<i>c</i>	0	0.4	F	5.2	20
2	13	о 7	0	2.3	5	53 40	32
2	13	8	0	2.2	4	49	27
2	13	9	0	1.8	4	63	77
2	13	10	0	1.8	5	116	25
2	13	11	0	1.4	3	118	20
2	13	12	0	1.1	5	117	27
2	13	13	0	0.9	3	16	64
2	13	14	0	0.7	2	27	33
2	13	16	0	0.2	1	98	66
2	13	17	0	0.7	3	24	46
2	13	18	0	1.2	3	112	73
2	13	19	0	1.1	3	25	43
2	13	20	0	1	2	46	52
2	13	21	0	0.9	2	19	10
2	13	23	0	1.8	2	19	42
2	14	0	0	2.2	5	112	57
2	14	1	0	2.6	5	55	79
2	14	2	0	2.6	6	69	53
2	14	3	0	2.3	5	89	39
2	14	4	0	2.9	6	48	64
2	14	5	0	2.3	5	29	73
2	14	ю 7	0	1.5	4 4	97	52
2	14	8	0	2.6	6	99	65
2	14	9	0	2.7	6	90	52
2	14	10	0	2.4	5	79	44
2	14	11	0	2.5	5	28	63
2	14	12	0	2.2	5	52	48
2	14	13	0	2.2	5	62	51
2	14	14	0	4.4	8	116	26
2	14	15	0	29	6	74	77
2	14	17	0	2.5	6	15	49
2	14	18	0	2.8	6	51	41
2	14	19	0	3	7	54	50
2	14	20	0	3.2	7	52	55
2	14	21	0	3	8	31	77
2	14	22	0	3.1	7	100	68
2	14	23	0	3.1 2.2	1	46	44
2	15	1	0	2.5	6	62	51
2	15	2	0	1.6	5	75	36
2	15	3	0	1.8	5	43	55
2	15	4	0	1.6	5	61	25
2	15	5	0	1.4	4	71	46
2	15	6	0	1.4	4	19	35
2	15	/ 8	0	0.9	4	45 77	68 55
2	15	9	0	1.6	5	56	40
2	15	10	0	1.2	3	79	46
2	15	11	0	0.9	2	58	50
2	15	12	0	0.2	1	68	51
2	15	13	0	1.7	6	52	49
2	15	14	0	2.8	/	80	54
2	15	16	0	3.4	8	14	20
2	15	17	0	2.4	7	37	36
2	15	18	0	3	8	66	30
2	15	19	0	2	7	28	46
2	15	20	0	1.6	5	72	36
2	15	21	0	1.8	6	67	67
2	15	22	0	1.7	5	297	76
2	19	0	0	2.3	7 5	321	31
2	19	1	0	2.6	6	30	67
2	19	2	0	2.4	5	35	47
2	19	3	0	1.3	5	328	80
2	19	4	0	1.2	3	336	68
2	19	5	0	1.5	3	350	22
2	19	6 7	U	1.4	3	10	36 79
2	19 19	/	0	0./ 2.4	∠ 9	18	70 68
2	19	9	0	1.7	7	20	29
2	19	10	0	1.8	7	25	75
2	19	11	0	1.6	6	309	43

DATE	DATE	TIME	TIME	WS:AVG	WS:MAX	WD:AVG	WD:SDV
MON	DAY	HK	MIN	M/S	M/S	DEG	DEG
2	19	12	0	1.0	0	240	25
2	19	1.4	0	2.2		242	20
2	19	14	0	2.5	0	315	
2	19	15	0	1 2	4	37	64 57
2	19	10	0	1.2	3	30	27
2	19	10	0	1.5	3	293	21
2	19	10	0	1.4	4	324	7.5
2	19	19	0	1.8	4	309	28
2	19	20	0	1.4	4	345	26
2	10	22	0	1 7	3	337	15
2	19	22	0	1 8	3	291	75
2	20	0	0	1 8	3	286	75
2	20	1	0	0.6	2	348	53
2	2.0	2	0	0.1	1	310	80
2	2.0	3	0	1	2	332	41
2	2.0	4	0	0.4	2	298	4.5
2	20	5	0	0.2	1	333	45
2	20	6	0	0.1	1	317	26
2	20	7	0	0	1	349	46
2	20	8	0	0.9	3	341	29
2	20	9	0	1.8	4	335	30
2	20	10	0	1.4	5	346	70
2	20	11	0	0.9	3	314	62
2	20	12	0	1.2	6	295	52
2	20	13	0	1.6	5	318	66
2	20	14	0	2.1	5	10	22
2	20	15	0	2.1	5	20	46
2	20	16	0	1.8	4	25	73
2	20	17	0	1.4	4	30	57
2	20	18	0	2.2	7	35	62
2	20	19	0	1.7	4	40	58
2	20	20	0	1.6	4	44	64
2	20	21	0	2.6	6	49	71
2	20	22	0	2.9	6	281	43
2	20	23	0	2.2	6	328	56
2	24	0	0	2.1	5	343	43
2	24	1	0	2.3	5	62	65
2	24	2	0	1.9	5	64	60
2	24	3	0	3.6	9	30	69
2	24	4	0	2.2	9	52	/3
2	24	5	0	1.1	5	22	22
2	24	0	0	1.0	6	37 2E	20
2	24	0	0	1.6	6	SS 61	13
2	24	9	0	1 /	5	13	4.J 5.3
2	24	10	0	2 6	7	29	58
2	24	11	0	1.4	7	61	68
2	2.4	12	0	2	7	2.8	63
2	2.4	13	0	2	5	22	2.6
2	24	14	0	1.4	5	70	49
2	24	15	0	1.5	5	40	53
2	24	16	0	2.3	6	37	39
2	24	17	0	2.2	5	43	49
2	24	18	0	2.6	6	70	28
2	24	19	0	2.4	5	47	71
2	24	20	0	2.5	5	39	32
2	24	21	0	2.5	6	51	47
2	24	22	0	2.3	6	64	53
2	24	23	0	2.3	5	56	60
2	25	0	0	2.2	5	50	22
2	25	1	0	1.5	4	60	58
2	25	2	0	3.1	6	69	58
2	25	3	0	2.8	6	48	38
2	25	4	U	1.5	4	55	4/
2	20 25	с С	0	1.9	4	20	03 40
2	20 25	0 7	0	U.9 1 C	2	39 26	40
2	20 25	/	0	1.0	د ۸	30 22	33 42
2	2J 2E	0	0	1.J 2 1	4	23 70	75 75
2	20 25	2 10	0	∠.⊥ 2 1	4	/U 50	1 J 7 3
2	25	11	0	2.2		50	78
2	25	12	0	1 8	3	26	62
2	25	13	0	1	2	60	70
2	25	14	0	- 1.7	4	66	55
2	25	15	0	2.4	4	70	45
2	25	16	0	2.7	5	65	37
2	25	17	0	2.7	5	30	63

DATE MON	DATE DAY	TIME HR	TIME MIN	WS:AVG M/S	WS:MAX M/S	WD:AVG DEG	WD:SDV DEG
2	25	18	0	0.6	3	54	34
2	25	19	0	0.9	5	69	62
2	25	20	0	1.7	0	69 21	39
2	25	22	0	3	° 7	32	57
2	25	23	0	1.5	5	64	75