Ocean Park Master Redevelopment Project

EP-249/2006/A – Condition 3.4 Monthly EM&A Report – May 2011

Certified by ______ on 22-June-11
Lindsay Pickles (ETL)

Verified by Independent Environmental Checker on 22-June-11 IEC Certificate attached in the submission? Yes

Ocean Park Master Redevelopment Project

Environmental Permit No. EP-249/2006/B - Condition 3.4

Monthly EM&A Report - May 2011

Submitted by Ocean Park Corporation on 22-06-2011

This is to verify that

Monthly EM&A Report - May 2011

Submitted by Ocean Park Corporation

On 22-06-2011

Has been verified by the undersigned.

Signed

Dr Anne F Kerr

Independent Environmental Checker (IEC)

Retained by Ocean Park Corporation

pursuant to Environmental Permit No. EP-249/2006/B

Date

22 June 2011

Ocean Park Master Redevelopment Project

Monthly Environmental Monitoring & Audit Report – May 2011

Table of Content

Part 1	Project Overview
Executive	Summary
1.	Introduction
2.	Project Organisation
3.	Construction Works Undertaken during the Reporting Month
4.	Permits and License Status
4.1 4.2 4.3	ENVIRONMENTAL PERMIT
5.	EP Submissions Status
6.	Materials Management
7.	Environmental Monitoring and Results
7.1 7.1.1. 7.2. 7.2.1. 7.2.2.	MONITORING REQUIREMENTS
8.	Site Audit1
8.1 8.2	IEC SITE AUDIT
9.	Implementation status of Environmental Mitigation Measures1
10.	Summary of Complaint, Summon or Prosecution1
11.	Future Issues
12.	Conclusion and Recommendation12
12.1 12.2	CONCLUSION
Appendix	A IEC's Site Inspection Records
Part 2	CS-03 EM&A Monthly Report
Part 3	Ocean Park Symbio Show
	2 nd Monthly Monitoring Report

Part 1 Project Overview

Executive Summary

This is the combined monthly EM&A Report for Ocean Park Master Redevelopment Project, which includes CS03 "Thrill Mountain and Polar Adventure" under Part 2. This report presents the results of EM&A works conducted in the reporting month of May 2011 (from 26 April 2011 to 25 May 2011) for construction works and in the reporting month of April (27 March 2011 to 26 April 2011) for Operational Monitoring.

Construction works at the Entry Plaza, Aqua City and Grand Aquarium under Cl07 have been completed in January 2011 and, as advised to EPD on 1 April (PD/PW/GOV/151/006107), no further construction monitoring will be undertaken.

Construction works at the Summit, CS02 for the Rainforest have been completed in April 2011.

At the Summit, Contract CS03, for the Thrill Mountain and Polar Adventure, is still underway. Other than ongoing Coral Survey, there will be no construction monitoring undertaken. The audits will continue to be carried out by the Contractors ET and OPC's ET and verified by the IEC.

The Report for the Coral Monitoring Survey for May 2011 is included in part 2 of this Report

Environmental monitoring for the Park's Operations has commenced upon the opening of Aqua City and with the commencement of the Symbio Show on 27 January 2011. The 3rd Air Quality and Noise Monitoring Report for the Ocean Park Symbio Show is included in this report under Part 3.

No complaint, non-compliance from IEC, summons or prosecution related to environmental issues was made against the Ocean Park Master Redevelopment Project in the reporting period of May 2011.

1. Introduction

The "Master Redevelopment Project of Ocean Park" (hereinafter known as the "Project") is implemented by the Ocean Park Corporation at its existing site of Ocean Park and Nam Long Shan, Aberdeen. The Project involves both reconstruction/modification of existing facilities and expansion of the Park under Environmental Permit, EP-249/2006/B.

The construction works of the project consists of various contracts. Details of the contracts, which are required to perform the EM&A programme, are shown below.

Contract No.	Contract Title	Contractor	Construction Commencement
CI-05	Site Formation, Funicular Tunnel and Miscellaneous Works	Dragages- Bouygues JV	12 March 2007 and Construction phase has ceased in early June 2009
CS-01	Back of House for Marine Mammal Veterinary Hospital	Kaden – ATAL JV	26 March 2007 and Construction phase has ceased in mid-October 2008
CW-02	Astounding Asia	W. Hing Construction Co. Ltd.	1 August 2007 and Construction phase has ceased in mid-February 2010
CI-07	Entry Plaza, Aqua City and Grand Aquarium	Leighton Contractors (Asia) Ltd.	15 August 2008 and Construction Phase has ceased in January 2011
CS-02	Rainforest	W. Hing Construction Co. Ltd.	11 May 2009
CS-03	Thrill Mountain and Polar Adventure	Kaden – ATAL JV	2 November 2009

The Contractors conduct environmental audits during the construction stage and produce contract specific monthly EM&A reports. This is the combined monthly EM&A Report including the IEC audit findings, CS03 Monthly EM&A Report, and the Operational Monitoring Report for the Ocean Park Symbio Show.

This report presents the results of EM&A works conducted in the reporting month of May 2011 (from 26 April 2011 to 25 May 2011) for construction works and in the reporting month of April 2011 (27 March 2011 to 26 April 2011) for operational monitoring.

2. Project Organisation

The structure of the environmental management team is shown in below figure.

Environmental nit Report + Liaison Project Proponent -Ocean Park Protection Environmental Team Leader Lindsay Pickles Recommendations + Improvements Liaison + submit report + recommendations + Improvements PMR (RSS Team) dependent Environmental Arthur Wong Checker - Dr Anne Kerr ndividual Contractor KAJV Individual Contractor's Environmental Team Leader Winson Cheung Working Relationship

Figure 1.1 - Management Organisation

3. Construction Works Undertaken during the Reporting Month

In the reporting month, the construction activities are summarised as follows.

CI-05

Construction phase has ceased in early June 2009.

CS-01

Construction phase has ceased in mid-October 2008.

CW-02

Construction phase has ceased in mid-February 2010.

CI-07

Construction phase has ceased in January 2011.

CS-02

Construction phase has ceased in April 2011.

CS-03

- Construction of queue area and pools at North Pole;
- Construction of Tuxedos Restaurant at South Pole;
- · Carry out water test for roof at North Pole;
- Construction of Bobsled Station superstructure and installation of rides;
- Construction Footing and superstructure for Thrill Mountain;
- Erection of structure steel works for ride at Floorless Coaster Station;
- Carry out wall finishing works for PA Building;
- Apply waterproofing at roof of PA Building;
- Construction of Superstructure for Floorless Coaster;

- Construction of Drainage system and Water main for External Works;
- Installation of theme works and
- Disposal Existing Stockpile.

4. Permits and License Status

4.1 Environmental Permit

The Environmental Impact Assessment (EIA) Report of the Project has been approved by the Environmental Protection Department (EPD) (Register No.: AEIAR-101/2006) on 12 July 2006. Subsequently, EPD issued Environmental Permit (EP) for the construction and operation of the project. Table below is a full list of the EPs.

EP No.	Issue Date	Key Variation
EP-249/2006	28 July 2006	First EP
EP-249/2006/A	25 September 2006	 Enhance the roosting habitat for freshwater birds by enlarging Pond 35 and its surrounds with a total area of no less than 120 squares meters and no construction works and discharge from construction sites shall be allowed within Pond 35 after enhancement. Filling of Pond 37 at the Lowland Area. Submission of the as-built drawings showing the enhancement works of Pond 35.
EP-249/2006B	3 November 2010	 Total sound power level of all loudspeaker clusters shall not exceed 109 db(A) and the sound pressure level at 9m away from each loudspeaker cluster shall not exceed 75 db(A). Submit noise review study Submit detail design of night time functional and thematic lighting Trial pyrotechnical special effects materials display and submit air quality sampling plan

4.2 CNP

Table below shows a list of CNP within the reporting month.

Permit No.	Starting Date	Expired Date	Validity	Location	Contract No.	Status
CS-03 (KAJV)						
GW-RS0036-11	1-Feb-11	31-Jul-11	Various	Top of Nam Long Shan Road	CS03	Valid
GW-RS0932-10	1-Dec-10	31-May-11	Various	Top of Nam Long Shan Road	CS03	Valid
GW-RS0933-10	23 Nov 10	09-May-11	Various	Shun Wan Road	CS03	Valid

4.3 Other Permits & Licenses

Tables below show lists of other permits & license for individual contracts.

CS-03

Permit/Ref/No	Valid Period		Section	Status
Notification of Cons	truction Work u	nder APCO		- Mi
311433	N/A	N/A	Thrill Mountain and Polar Adventure	Valid
Water Discharge Lic	ense			
WT00005926-2010	12-Feb-10	28-Feb-15	Thrill Mountain and Polar Adventure	Valid
Registration as Che	mical Waste Pro	ducer	*	
WPN5213-176- K2880-02	25-Nov-09	N/A	Thrill Mountain and Polar Adventure	Registered
Construction Waste	Disposal Billing	Account with	EPD	
7009695	N/A	N/A	Thrill Mountain and Polar Adventure	Issued

5. EP Submissions Status

Environmental submissions to EPD since the commencement of construction works at Ocean Park, i.e. from 12 March 2007 to 25 April 2011 are as below.

Contract	Submi	ssions
CI-05	•	Notification of Commencement Date
	•	Management Organisation Chart
	•	Construction Programme
	•	Drainage Proposal
	•	Silt Curtain Proposal
	•	Waste Management Plan
	•	Baseline Air Quality and Noise Monitoring Report
	•	Transplantation Proposal for Uncommon Species
	•	Baseline Coral Survey Report
	•	As-built Drawings of Pond 35
	•	Detailed Compensatory Planting As-built Drawing
CS03	•	Monthly EM&A Report (April 2011)
City Bus Limited	•	Written Notice on Completion of TPH Contaminated Soil Disposal
	•	Written Notice on Completion of Solidification Treatment of Heavy Metals Contaminated
	•	As-built Remediation Plan
Hong Kong	•	Confirmation Letter to confirm that Land
School of		Contamination remediation Works within HKSM has
Motoring Ltd.		been completed
Environmental	•	Noise Review Study Report
Permit Conditions	•	Glare impact Assessment report
	•	Air Quality Sampling Plan

6. Materials Management

Section 6.17 in the EIA report specified the disposal of materials to the public fill reception facilities should be considered as last resorts with the preferred approach to reuse the material within the project and/or other projects.

The amounts of different types of materials generated by the activities of the Project in the month are shown in following table. The total materials quantities of the project showed that the reuse of materials was maximized and the disposal to the public filling facilities was minimized. Mitigation measures under the Waste Management Plan (WMP) revision D have been implemented during the reporting period.

Materials Type	Disposal Locations	<u>CS-03</u>	Total
C&D	SENT	277.50	277.50
Waste		Tonnes	tonnes
	TKOSF		-
	TMSF		
C&D	CWPFBP	2,770.10	2,770.10
Material		tonnes	tonnes
	TKOFB		
Chemical	Collected	400	400
Waste	by licensed collector	litres	litres
General Waste	Collected by licensed collector		-

7. Environmental Monitoring and Results

7.1 Monitoring Requirements

Under EP-249/2006/B condition 3.2, impact environmental monitoring including sampling, measurements and necessary remedial action should be conducted in accordance with the requirements of the EM&A Manual, which has been updated to include operational monitoring of the Ocean Park Symbio Show.

7.1.1 Construction Monitoring

Construction works at the Entry Plaza, Aqua City and Grand Aquarium under Cl07 have been completed in January 2011 and, as advised to EPD on 1 April 2011 (PD/PW/GOV/151/006107), no further construction monitoring will be undertaken.

The contracts at the Summit, CS03 for the Thrill Mountain and Polar Adventure is still underway. However, other than ongoing Coral Survey, no construction monitoring will be undertaken for these works, only auditing works. The audits will continue to be carried out by the Contractors ET, certified by the OPC's ET and verified by the IEC.

Terrestrial Ecology

Monitoring of the health and condition of the transplanted plant species of conservation interest should be conducted at least once a month during the first 12 month after transplantation. Proposed monitoring location would be next to the Contract CI-05 site office.

Coral

The locations of the coral monitoring stations are presented in the table below and as shown in the figure 2.1 of the Coral Survey Report (Part 4 of this report).

Coral Impact Monitoring Stations	Identity/Description
Site 1	Seaside near the Lowland
Site 2 to Site 5	Around Headland
Control Station	Between Near Round Island and Chung Hom Kok

Ocean Park Symbio Show

Operational Stage Monitoring for Ocean Park Symbio Show for Environmental Monitoring for the Symbio Show commenced on the 27 January 2011.

Air Quality monitoring was conducted at the agreed designated air quality monitoring station (AQMS) located at locations as presented in the Table below.

AQMS ID	Location	Sampling Height (m above ground)
AM1	Rooftop of Administrative Building (former Staff Quarter) in Ocean Park	10
AM2	Landscape Storage Area in Ocean Park	3
AM3	Rooftop of Main Medical Block of Graham Hospital	20

One 24-hr average RSP sample was collected on each scheduled day for monitoring by a High Volume Sampler (HVS) following the USEPA method, EPA IO-2.1. Calibration of the equipment has followed the requirements set out in EPA IO-2.1.

Noise monitoring was conducted at five designated noise monitoring locations in accordance with the approved EM&A Manual. Alternative noise monitoring had been proposed because of accessibility problem, as set out in the Table below.

Monitoring Noise	Description	Location	With or without
Monitoring Stations			Façade Correction
AON1	Open Area adjacent to Police Training School	1.2m above street level	Without façade correction
AON2	Old canteen building, Ocean Park	1.2m above street level	With façade correction
AON3	Orchid Valley	1.2m above street level near the entrance gate	Without façade correction
AON4	Manly Villa	1.2m above street level near the entrance	With façade correction
AON5	Hau Yuen	1.2m above street level outside boundary wall	With façade correction

Six consecutive measurements of LAeq, 5 min reading were carried out to calculate the LAeq, 30 min noise level during the Lagoon Show.

Six consecutive measurements of LAeq, 5 min reading were carried out to calculate the LAeq, 30 min noise level before the lagoon night show, ie during daily operation of the Ocean Park without the Lagoon Show.

Three consecutive measurements of LAeq, 5 min reading were carried out to calculate the LAeq, 15 min noise level after the lagoon night show, ie without operation of the Ocean Park to establish the background noise levels.

Any significant influencing factors on the measured noise levels were taken into account in accordance with standard acoustical principles and practices. The corrected noise level due to the lagoon night show and the operation of Ocean Park was computed based on the background noise level and measured noise level.

7.2 Monitoring Results

7.2.1 Construction Monitoring Results

Terrestrial Ecology

According to the requirement in the EM&A Manual, the monitoring of transplanted plants at the receptor has been completed in August 2008. No further monitoring is recommended. Regular inspection would be carried out.

Coral

The 6th coral monitoring survey, after the Coral Re-tagging exercise in November 2009, was conducted on 28 May 2011. The monitoring survey showed that the change in level of sedimentation on the tagged colonies was minor. No increment in level of blenching or partial mortality suggested that all tagged corals were in good condition and healthy in all the 5 Monitoring Sites 1 to 5 and the Control Site C. Neither action/limit level of sedimentation, bleaching or mortality was exceeded. Hence no adverse impact by the construction activity on the coral community was evidenced.

7.2.2 Operational Stage Monitoring for Ocean Park Symbio Show

The report on the impact monitoring results for the open-air night show, which commenced on 27 January 2011, is provided at Part 3 of this report.

For Air Quality Monitoring, 24-hr average Respirable Suspended Particulates (RSP) monitoring was conducted at a designated monitoring station on the rooftop of the Administrative Building in OP (AM1) on 10 April 2011 and for the Landscape Storage Area (AM2) and the Roof top of the Main Medical Block of Graham Hospital (AM3) on 28 March, 2 April, 10 April and 18 April 2011.

Higher 24-hr average RSP concentrations were measured at AM3 due to the contribution from the nearby main road. However, no exceedance of A/L Level is monitored during the reporting period.

Monitoring Location	Monitoring Date	24-hr RSP	Action/Limit	
		Concentration (μgm- ³)	Level (μgm- ³)	
AM1 (Rooftop of Administrative Building (Old Staff Quarters in Ocean Park)	10 April 2011	80	180	
AM2 (Landscape Storage	28 March 2011	62	180	
Area)	4 April 2011	64	180	
	10 April 2011	51	180	
	18 April 2011	89	180	
AM3 (Roof top of the Main	28 March 2011	114	180	
Medical Block of Graham Hospital (4 April 2011	112	180	
role a lectary (10 April 2011	87	180	
	18 April 2011	160	180	

Noise Monitoring results indicated that the background corrected Lagoon Night Show Noise Levels have complied with the Limit Levels at all monitoring stations during all monitoring dates.

The background corrected Daily Operational Noise Levels have complied with the Limit Levels at most of the monitoring stations during most of the monitoring dates. Noise exceedances were recorded at AON1 (Open Area adjacent to Police Training School) due to the noise from visitors and traffic during public holidays and at AON3 (Orchid Valley) and AON5 (Hau Yuen) due to the traffic noise from Shouson Hill Road as indicated in the summary below.

Summary of Daily Operational Noise Exceedance during this Reporting Period

Date	Noise Monitoring Station	Measured No Daily Operational Noise Level, Leq (30 min) dB(A)	ise Level, dB(A) Background Noise Level, Leq (15 min) dB(A)	Daily Operational Noise Level (Background Corrected) ^(a) , Leq (30 min)	Limit Level, Leq (30 min) dB(A)
27 Mar 2011	AON1	67.1	66.1	62.8	60
(Public holiday)		56.8	53.8	56.6	55
<i>(c)</i>	AON5	59.0	55.0	56.7	55
29 Mar 2011 (weekday)	AON5	59.6	57.2	56.0	55
3 April2011 (public holiday)	AON1	67.3	65.4	65.9	60
10 April2011	AON1	67.5	66.0	65.0	60
(public holiday)	AON1	56.3	51.8	57.3	55
12 Apr 2011 (weekday)	AON3	57.2	54.9	56.3	55
22 Apr 2011 (public holiday)	AON1	65.0	62.2	64.8	60
24 Apr 2011	AON1	65.1	64.2	60.5	60

(public holiday)

Note:

(a) The Background corrected Noise Levels were either measured in front of a façade at AON2, AON4 and AON5 or with façade correction of 3dB(A) at AON1 and AON3.

8. Site Audit

8.1 IEC Site Audit

IEC conducted monthly site audit on CS02 and CS-03 on 20 May 2011. Audit checklists are attached in Appendix A of Part 1.

CS-03 Observations:

- Stockpiles of excavated materials were not covered whien idled. The contractor was reminded to cover them with tarpaulin sheets to suppress dust.
- Water was accumulated in the drip tray with oil drums. The Contractor was reminded to drain the water away
- An empty oil drum was placed on bare ground. The Contractor was reminded to dispose it as chemical waste.

8.2 Non- Compliance

No non-compliances were recorded in May 2011.

9. Implementation status of Environmental Mitigation Measures

Please see Part 2, of this Report for the individual contractual reports for the details of the implementation of environmental mitigation measures.

10. Summary of Complaint, Summon or Prosecution

No complaint, summon or prosecution was recorded in the reporting month.

11. Future Issues

Key Issues to be considered in the coming month include:

CI-05

Construction phase had ceased in early-June 2009.

CS-01

 Construction phase had ceased in mid-October 2008.

CW-02

Construction phase had ceased in mid-February 2010.

CI-07

Construction phase had ceased in January 2011.

CS-02

Construction phase had ceased in April 2011.

CS-03

- Remove waste more frequently.
- Ensure drip tray to be provided for oil drum
- Ensure water spray on haul road to avoid dusty environment.
- Ensure stockpile materials to be covered by tarpaulin or other means.

12. Conclusion and Recommendation

12.1 Conclusion

No non-compliance from IEC, complaint, summons or prosecution related to environmental issues was made against the Ocean Park Master Redevelopment Project in the reporting period of May 2011.

Daily operational noise and lagoon night show noise monitoring were carried out at five designated monitoring stations during this reporting period. Out of the 5 stations, noise exceedances were recorded at AON1 (Open Area adjacent to Police Training School) and AON3 (Orchid Valley) and AON5 (Hau Yuen) due to noise emanating from the bus terminus, high background noise from visitors and traffic during the public holidays, and the traffic noise from Shouson Hill Road

12.2 Recommendation

According to the environmental audit performed in the reporting month, the following recommendations are made:

Air Quality Impact

- · To prohibit any open burning on site.
- To regular maintain the machinery and vehicles on site.
- · To implement dust suppression measures on dry surfaces.

Noise Impact

- · To inspect the noise sources from inside and outside of the site.
- To space out noisy equipment and position as far away as possible from sensitive receivers
- To have regular maintenance of vessels and equipment used.

Water Quality Impact

To minimize water discharge runoff into nearby water body.

- To treat site surface runoffs and wastewater generated from various construction activities with wastewater treatment system (comprised of chemical coagulation, sedimentation and pH control)
- To review and implement temporary site drainage management plan.
- Silt removal facilities, channels, manholes and wastewater treatment system should be frequently cleaned the deposited silt and grit to maintain in proper condition.
- To review the adequacy of the desilting facilities' capacity.

Waste/Chemical Management

- To check for any accumulation of waste materials or rubbish on site.
- To avoid any discharge of chemical waste or oil directly from the site.
- To regularly and properly collect, store and dispose of all waste types, including floating refuses around the silt curtain.

Operational Stage Monitoring for Ocean Park Symbio Show

Recommendation has been given to continue with noise monitoring at the same stations using the same frequency and approach during the second to the twelfth months of the operation of the open-air night show.

To satisfy potentials concerns over RSP concentrators, the number of monitoring stations has been increased to a total of 3 monitoring stations. Weekly monitoring has taken take place at the 2 additional monitoring stations for the 3rd month of the operation of the Symbio Show. As the monitored results are within the AQO, the frequency will be reduced to monthly for the remaining 9 months.

Appendix A

Part 1 Independent Environmental Checker's Site Inspection Records

Ocean Park Master Redevelopment Project Contract P007 Independent Environmental Checker

MONTHLY SITE INSPECTION CHECKLIST

	-							
Inspection	n Date	20/05/2011	Time	15:00		Inspected By	EM: L.	Pickles
	_	CS02					IEC: Flo	rence Yuen
Site Local	tion	CS03					Contract	or:
							CS02:	
	L						CS03:	W. Chung

Weather								
Condition	Sunny	Fine	Overcast	D	rizzie	Rain	Storm	Hazy
Temperatur	re 30°(Humidity	Н	igh .	Moderate	Low	
Wind	Calm	Light	Breeze	s	trong	Direction		

					Close-out	N/A Yes	No	Photo/Remarks
					on last comments	or not		
	Construction	Noise			Y/N	obs		
S2.18	ls a valid Conducting restricte	struction Noise Pe	rmit (CNP) obtaine	ed for works				
S2.26	Good Site Prac	Market Company						
	 Are the or regularly? 	perating plants v	vell-maintained ar	nd serviced				
	Are silencer Are they pro	s or mufflers utilize operly maintained?	ed on construction	equipment?				
	Is the mobile	e plant sited far end	ough from NSRs?					
	 Are intermit between wo 	Itently used mach	ines and plants	shut down			一 -	-
	 Is the plant any, oriented 	known to emit noi d to direct noise aw	se strongly in one ay from the NSRs?	direction, if				
	 Is the stoo wherever pre 	ckplle or other s acticable, in screen	tructures utilized ing noise from the	effectively, works?				
S2.27	Are suitable qui	iet plants adopted?						
S2.28	Are movable ba	arriers used for both	n movable PME an	d stationary			\exists	
S2.29	Do the screeni	ng materials used	achieve the pred	licted poise				
	reduction?	J	me pred	TOISE				
S2.30	Are the noisy v nearby school?	works avoided duri	ng examination pe	eriod of the]	
	Blasting Noise							
S2.32	 Are the NSR 	s informed of the b	lasting work in adv	ance?			_	
						4C		

	 Is sufficient time allowed for alerting all the potential NSRs prior to every blasting work? 	
	 Are proper procedures put in place to alert and minimise any startling effect on the staff working in Ocean Park? 	
	 Is the optimal amount of charge used evaluated for noise reduction? 	
	Landscape and Visual	
S3.10	Consideration on existing surrounding vegetation:	
	Are temporary tree nurserles set up?	
	Is "no-intrusion zones" implemented?	
	 Is the existing vegetation protected from damage? 	
	 Are hill fire prevention measures taken? 	
	 Is dust and erosion controlled for exposed soil? 	
	 Are the irrigation networks set up throughout the Establishment Perlod? 	
	 Is Quarterly Report on existing trees to be retained or transplanted prepared by the Contractor? 	
S3.11	Consideration on appearance and view:	
G5.11	Is the appearance of hoardings suitable?	
	 Is the appearance of construction workers, plants/machines sultable? 	
	 Are the screening and alignment of the temporary barging point and conveyor system suitable? 	
	Are the selected security floodlights suitable	
	Ecology	
S4.5	Transplantation: Is the transplantation work supervised by a qualified botanist/horticulturalist in the ET?	
	Are the transplanted plant species of conservation interest	
	monitored during the first 12 months after transplantation?	
S4.7	Construction: • Is the runoff entering watercourses avoided by control	
	measure, especially during heavy rain?	
	 Is the site runoff directed to regularly cleaned and maintained silt traps (or oil separators)? 	
	 Are sediment traps included in drainage to collect and control construction run-off? 	
	Is suitable size slit traps or oil interceptor used?	
	 Is vegetation survey carried out to determine the feasibility and suitability of individual plants for transplantation? 	
	Are the trees located within the works area preserved suitably?	
	 Are individual plants of conservation interest transplanted prior to the construction phase? 	

	 Are the equipments and stockpiles placed in designated works areas and access routes selected on existing disturbed land to minimise disturbance to natural habitats? 	
	 Are construction activities restricted to the work areas demarcated? 	
	Are waste skips provided to collect general refuse and construction wastes?	
	Are the wastes disposed of timely and properly off-site?	
	To anno haraba a anno de albas an All Galla	
	 Is open burning on works sites prohibited? 	
	 Are native plant species made use of as far as possible on newly formed land? 	
	Construction Waste	
S5.4	Good Site Practices	
	 Are arrangements made for collection and effective disposal of all wastes generated? 	
	. Are the works massesment and showled headling	
	 Are the waste management and chemical handling procedures followed? 	
	 Are sufficient waste disposal points provided? 	
	 Are the wastes disposed of regularly? 	
	 Are appropriate measures taken to minimise windblown litter and dust during transportation of waste by either covering trucks or transporting wastes in enclosed containers? 	
	 Are the drainage systems, sumps and oil interceptors regularly cleaned and maintained? 	
S5.5	Waste Reduction Measures:	
35,0	 Is the C&D waste from demolition and decommissioning of existing facilities sorted to recover recyclable materials? 	
	 Are different types of wastes segregated and stored in different containers, skips or stockpiles to enhance reuse or recycling and the proper disposal? 	
	Are aluminium cans segregated in labelled bins and collected by individual collectors for recycling?	
	 Are proper storage and site practices maintained to minimise the potential for damage or contamination of construction material? 	
	 Are the construction materials planned and stocked carefully to avoid unnecessary generation of waste? 	
S5.7	General Refuse	
	 Is the general refuse stored in enclosed bins or compaction units separate from C&D material? 	
	 Is the general refuse removed regularly by a waste collector? 	
S5.8	C&D Material	
	 Are the excavated materials from site formation of the expansion areas and tunnel construction for the funicular system reused on-site as backfilling material and for landscape works? 	
	 Are the surplus rock and other Inert C&D material disposed of at the public fill sites? 	
	Is a waste management plan prepared?	

			-
	 Is a recording system present for the record of amount of wastes generated, recycled and disposed? 		
	Is the trip-ticket system required in ETWB TCW No.31/2004 followed on site?		
	Chemical Wastes		
S5.9	is chemical wastes generated from the works? And if yes,		-
	 Is the Contractor registered as a Chemical Waste Producer? 		P
	 Are good quality containers used for separating and storing chemical wastes? 		<u>CS03(3) P113</u> 021
	 Are appropriate labels securely attached on each chemical waste container to indicate their corresponding chemical characteristics? 		
	 Is the Contractor licensed to transport and dispose of the chemical wastes? 		
	Land Contamination		
S6.11	 Is the contact of construction workers with contaminated materials minimised by using bulk earth-moving excavator equipment? 		
	 Are appropriate cloth, personal protective equipment, hygiene and washing facilities provided to minimise exposure to any contaminated material? 		
	Is stockpiling of contaminated excavated materials avoided?		-
	Is the use of contaminated soil for landscaping without proper trealment prohibited?	V	
	 Are vehicles containing excavated materials covered properly to limit potential dust emissions or contaminated wastewater runoff? 	V	4
	 Is the speed of the trucks carrying contaminated materials controlled? 	V	
	 Are the necessary waste disposal permits obtained from appropriate authorities in according with Waste Disposal (Chemical Waste) (General) Regulation? 		
	 Are sllt removal facilities provided with retention time for sll/sand traps of 5 minutes under maximum flow conditions? 		
	 Are the records maintained for quantity of wastes generated and disposal of? 	V	
S6.12	Remediation Process Is biopile covered by tarpaulin or low permeable sheet to avoid dust emission?		•
	 Is vented air from biopile treated by blower and carbon adsorption system before released to the atmosphere? 	V	because the state of the state
	 Are the materials which may generate airborne dust emissions adequately wetted prior to and during the loading, unloading and handling operations? 		
	 Are silencers installed at biopile blower to minimise noise impact? 		
	Are quiet plants such as generator and blower used for biopile?		

	Are the mixing process and other associated material handling activities properly scheduled to minimise potential noise impact?	
	Are impermeable liners placed at the bottom of biopile?	
	Is leachate collection sump construction along the perimeter of biopile?	_
	Is the lachate recycled back to the biopile or truck away to Chemical Waste Treatment Centre for disposal?	
	Is the mixing of contaminated soils and cement/water/other additive(s) undertaken at a solidification plant to minimise the potential for leaching?	
	Is a concrete bund construction along the perimeter of the solidification/stabilisation area to prevent runoff?	
	Are the loading, unloading, handling, transfer and storage of cement carried out in an enclose system?	
	Are the contaminated soils transported by roll-off trucks (contrainerisation)?	
	Is temporary hoarding provided around the treatment area to minimise the visual impact?	
	Air Quality	
S7.23	Good Site Practices Is watering carried out regularly with complete coverage to reduce dust emissions from exposed site surfaces and unpaved roads, particularly during dry weather?	
	Is watering frequently carried out for particularly dusty construction areas, temporary stockpiles and areas close to ASRs?	
	Are the aggregate or dusty material storage piles covered with their side enclosed to reduce emissions? Or if this is not practicable, is watering applied to aggregate fines? CS-3① PII3	<u>02</u> 07
	Is open stockpiles avoided or covered and placed far enough from the ASRs?	_
	Is the dropping height of material restricted to minimise the fugitive dust from unloading/loading?	_
	Is tarpaulin used to cover all dusty vehicle loads transported to, from and within the site?	
	Are vehicle wheel and body washing facilities available at the exit points of the site?	
	Are wind shield and dust extraction units or similar dust mitigation measures provided at the loading points? If dust generation is likely during the process, particularly in dry seasons, is water sprinklers provided at the loading site?	
	Do the vehicles comply with the recommended speed limit of 10 km/h on unpaved roads?	
	Are dusty activities rescheduled during high-wind conditions?	-
	Are the routing of vehicles and positioning of construction plants at maximum possible distance from the ASRs?	_
	Is suitable buffer zone provided and work areas fenced off with hoarding (not less than 2.4m from ground level)?	_
S7.24	Drilling & Blasting	

	٠	Is watering carried out on the exposed area after blasting?		1			
		Is vacuum extraction drilling method used?					
		Is the blasting process carefully sequenced?				-	
		to the state of process care only desperience.	L		-		
	•	Is the firing of explosive carried out in the morning prior to opening of the Park?		~			
S7.25		rushing Plant Is water sprayed on the crusher?		V			
	•	Are fabric filters installed for the crushing plant?		V			
	•	Is chute or dust curtain used for controlling dust when transferring materials from crusher to the conveyors?		/			
S7.26		arging Point & Conveyor Belt System Are the conveyors placed within enclosed structures?		W			
	٠	Is profiled steel cladding provided at two sides of loading point?		V			
	٠	Are dust suppression sprays installed and operated at the feeding inlet and outlet?		/			
	•	is the barging point placed within an enclosed structure incorporating an enclosed chute for material transfer to the barge?		V			
	•	Is a flexible curtain hanged on the enclosed chute to prevent dust emission when excavated materials/rocks transported into the barge?		/			
	w	ater Quality				*	
S8.3		te Run-off and Drainage					
		Are all sewer and drainage connections sealed to prevent debris, soil, sand etc. from entering public sewer before commencing any site formation work?			ビ		
	•	Are temporary ditches provided to facilitate runoff discharge into appropriate watercourses, via appropriate sized silt retention pond?			W		
	•	Are cut-off ditches provided for all major site clearance/excavation works where soils would be exposed to control runoff from the areas?			~		
	•	Are channels, earth/concrete bunds and sand bags deployed to direct surface runoff?			~		
	•	Are catchpits and perimeter channels constructed in advance of relevant site formation works?			1		
	٠	Are the boundaries of earthworks marked and surrounded by dykes or embankments for flood protection?			1		
	•	Are sand/silt traps and sediment basins provided to remove sand/silt particles from runoff?			W		
	•	Are silt removal facilities, channels and manholes maintained and deposited silt/grit removed regularly to ensure that these facilities are functioning properly at all times?	~				
	•	Are exposed soil surfaces covered?			V		
	٠	Is the water pumped out from foundation excavations discharged into silt removal facilities?			~		
	•	Are exposed soil areas minimised to reduce potential for			1/		

	 Are earthwork final surfaces well compacted and is subsequent permanent work or surface protection performed immediately? 		
	 Is the rainwater pumped out from trenches or excavation directed to silt removal facilities before discharge? 		C503@1113024
	 Are open stockpiles of construction materials or construction wastes of more than 50m³ covered with tarpaulin during rainstorm? 		
	In case of an excavation in rainy seasons: Is temporary exposed slope/soil surfaces covered by tarpaulin as far as practicable?	V	
	 Are intercepting channels provided to prevent storm runoff from washing across exposed soll surfaces? 		177 188
	 Are surface protection measures and arrangements implemented to prepare for arrival of a rainstorm? 		
	Coral Sites		
\$8.4	 Are enhanced (with the use of flocculants added) sand/silt removal facilities employed for treatment of runoff from the major excavation at the Summit? 		
	 Is a silt curtain system used to enclose the construction phase discharge point at Tai Shue Wan? 		
	 Are debris and refuse collected, handled and disposed of properly to avoid entering any nearby water bodies and public drainage system? 		
	 Are stockpiles of cement and other construction materials kept covered when not being used? 		
	 Are oils and fuels used and stored in designated areas which have pollution prevention facilities (Fuel tanks and storage areas provided with locks and sited on sealed areas, within bunds of a capacity equality to 110% of the storage capacity of the largest tank)? 		
	 Are temporary sanitary facilities, such as portable chemical toilets, employed on-site where necessary to hand sewage from the workforce? Is a licensed contractor employed for disposal of waste matter and maintenance of these facilities? 		
	 Is a reputable waste collector should be employed by the Contractor to remove general refuse from the site, separately from construction and chemical wastes, on a daily basis to minimize odour, pest and litter impacts. Burning of refuse on construction sites is prohibited by law? 		
	 Are aluminium cans recovered from the waste stream and collected separate labelled bins? 		
	Are office wastes reduced through the recycling of paper?		
	 Are training provided to workers on site cleanliness & waste management procedure? 	V	
	Cultural Heritage		
S10.6	If there is any work planned within one metre of the grave, is a one metre buffer zone provided around the grave and is the grave demarcated by temporary fence?		-
S11.3	Hazard to Life Good Site Practices:		

	Is the area around the magazine free of vegetation?	
•	Is the control of (small) fires planned and provided through the following?	
	 Weekly checking of fire fighting equipment and the on-site fire water tank level. 	
	 Daily checking of all critical safety equipment on vehicle, including the fire extinguishers. 	
	 Maintaining back-up means of fighting fire on the explosive vehicles. 	
	 Providing safety training for drivers and other personnel present during explosive delivery with regard to operating fire hydrents and fighting of explosive fires. 	
•	Is the magazine secured against unauthorised entry and theft of explosive through the following?	
	 Maintaining a list of persons authorised to enter the magazine and ensuring the list is available to the magazine security guard. 	
	 Activating an alarm system that limits times at which explosive can be removed from the magazine and connecting the system to central security station. 	V
	- Incorporating "Duress code" function in the alarm system.	
	- Maintaining alarm system in good condition.	
•	Is the magazine security guard located separately from the magazine complex?	
•	is the communication maintained in emergency with the following measures?	
	 Providing non-hazardous electronic equipment for persons working within 60 m of detonators. 	
	- Ensuring availability of phone numbers for all key personnel.	
4	If there is a typhoon signal no. 3 or above, or black rainstorm signal, are all operations at magazine and transport ceased?	
•	Is the risk of detonators explosion on vehicle reduced during transit through the following?	
	 Ensuring that magazine within vehicle is lined. 	
	- Limiting off-site transport to 5 to 6 a.m. each day.	
	 Escorting vehicles with separate security vehicle when using the public road. 	
	 Ensuring that UN 1.4B packaging of detonators remains intact until handed over at blasting site. 	
•	is the fuel isolation switch available on vehicle to prevent fire spreading in case a fire breaks out?	
•	is an experienced driver with accident-free record employed for explosive vehicle and security escort?	
•	Are the drivers checked for health before employing?	
•	Are the vehicles regularly checked to maintain in good condition to reduce chance of accident due to breaking down?	
•	Is the truck fuel fire escalating to cause explosion avoided through the following means?	

	 Ensuring that the Contractor is aware of the potential hazards to site. 	
	- Maintaining appropriate fire fighting equipment.	
	 Requiring the Contractor to plan and make emergency arrangements. 	
•	Is spare/redundant fire fighting equipment provided?	
•	Can communications be maintained between two vehicles (drivers and security) during the trip to prevent collision of two explosive vehicles in case of an accident?	
•	Are the processes of checking of condition of drivers to suspend any driver of concern carried out?	
	roject specific measures: Is the speed of vehicle limited along the Ocean Park portion of Nam Long Shan Road within 100 m of the explosives magazine to 25 km/hr?	
•	Is other contractors' use of the Ocean Park Internal service road restricted during delivery of explosives, i.e. 6 to 7 a.m?	
•	Is the Ocean Park guard required to call to the magazine guard on an hourly basis when explosives are stored in magazines?	
•	is the evacuation of part or all of Ocean Park Headland Area arranged in case of the explosive magazine being engulfed in fire?	
•	Is the risk to the public from accidental initation during charging and blasting limited by the following means?	
	- Closing the Ocean Park from commencement of charging holes until completion of blasting each day.	
	 Arranging for relevant authorities to post notices to mariners warning them of blasting operations and advising them to stay away from a strip 100m wide immediately to the east of Headland from commencement of charge holes until completion of blasting each day (i.e. 9 a.m). 	
	 Not operating amusement rides in the event of accidental explosion until confirmed free of critical damage. 	
•	If unexploded explosives are found in blasthole(s), is the opening of Ocean Park delayed or is part of the Ocean Park delayed when there are unspent explosives?	
•	Is the opportunity for arson/deliberate initiation of explosive reduced with the following means?	
	 Paying attention to the security alert status from the Government. 	
	- Developing a security plan to address high alert level.	
•	is an emergency plan developed to address uncontrolled fire in magazine area?	
•	is the transfer of explosives between 5 to 6 a.m agreed by Mines Division?	
•	Is the road surface along the explosive transportation route maintained?	
•	Are the contractor's driver and security escort tested in respect of safety plan? Is the route driven before the driver undertakes the first delivery of explosives?	

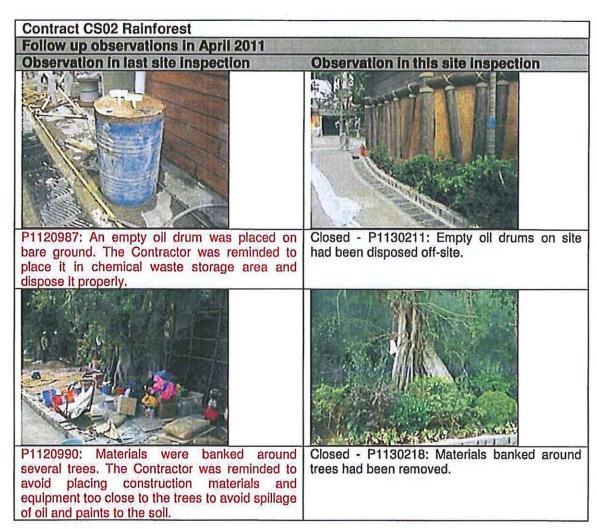
	Is adequate space provided for the explosive vehicle to manoeuvre without reversing close to the magazine to limit the likelihood of vehicle accident?	
	Is lighting for explosive vehicles provided on temporary road(s)?	
S11.4	Is ammonium nitrate emulsion (ANE) delivered outside of Park opening times?	
(Ibservations for this month	
(A)	I Till abservation for this month. The Contract	

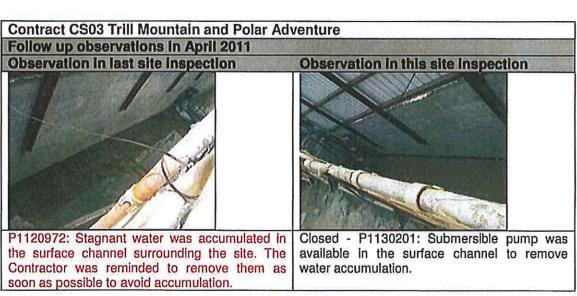
D) No particular observations for this month

IEC Representative	Environmental Manager	Contractor's
		Representative
		CS02
Glorena Ynen	1002	
l l	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
(Plarence Yun)	(LINDSAY PULLES)	()

Observations for this month

- 1 Stochpiles of encarated naturals were not convered when idled. The Contractor was remarked to cover them will tayout askets to suppress dust.
- (2) Water was accumulated in dig tray with oil during. The condraction was reminded to drain the water aways
- Cordrado was reminded to down the water cowary.


 (3) An emply oil draw was placed on bareground The

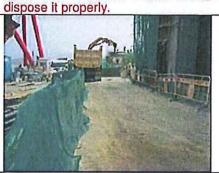

 Cordrator was reviseded to disjose it as shewish waits.

IEC Representative	Environmental Manager	Contractor's Representative CS03
Florence Ynen	M. Des	11
(florence Yuan)	(LINGSAY PICKLES)	(Winson Change

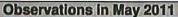
Ocean Park Master Redevelopment Project Contract P007 Independent Environmental Checker

MONTHLY SITE INSPECTION PHOTOS

Ocean Park Master Redevelopment Project Contract P007 Independent Environmental Checker


MONTHLY SITE INSPECTION PHOTOS

P1120976: An empty oil drum was placed on bare ground. The Contractor was reminded to place it in chemical waste storage area and disperse it properly.


P1130214: An empty oil drum was placed on bare ground. The Contractor was reminded to place it in chemical waste storage area and dispose it properly.

P1120984: Some parts of the haul road were dry and dusty. The Contractor was reminded to provide water spray to cover the entire site and more frequently during dry weather.

Closed - P1130202: Water spray was provided regularly along haul roads to suppress dust.

P1130207: Idled stockpiles of excavated materials were not covered. The Contractor was reminded to cover them with tarpaulin sheets or other means to suppress dust.


P1130209: Water was accumulated in drip tray with oil drums. The Contractor was reminded to drain the water away to ensure effectiveness of the drip tray.

Part 2 CS-03 EM&A REPORT (May 2011)

KADEN - ATAL JOINT VENTURE

Contract No. CS03

Ocean Park Redevelopment Project - Thrill Mountain & Polar Adventure

Monthly EM&A Report

May 2011

Prepared By

Alex Enagnon Gbaguidi

Certified By

(Eric Wong)

(Construction Manager)

TABLE OF CONTENTS

Page		
EXECUTIVE SUMMARY1		
1. INTRODUCTION3		
Background3		
Project Organizations		
Construction Programme4		
Summary of EM&A Requirements4		
2. ENVIRONMENTAL AUDIT5		
Environmental Site Audits5		
Status of Environmental Licensing and Permitting6		
Status of Waste Management		
Implementation Status of Environmental Mitigation Measures		
Summary of Exceedances		
Implementation Status of Event Action Plans		
Summary of Complaints and Prosecutions		
3. FUTURE KEY ISSUES 8		
Key Issues for the Coming Month 8		
4. CONCLUSIONS AND RECOMMENDATIONS 8		
Conclusions9		
Recommendations9		

LIST OF FIGURE

Figure 1.1 Site Layout Plan

LIST OF APPENDICES

A Site Audit Summary
B Coral Survey Report

LIST OF TABLES

Table 1.1	Key Project Contacts
Table 2.1	Observations and Recommendations of Site Audits
Table 2.2	Summary of Environmental Licensing and Permit Status
Table 2.3	Actual Quantity of Waste Generated in May 2011

EXECUTIVE SUMMARY

Introduction

This is the 12th monthly Environmental Monitoring and Audit (EM&A) Report prepared by Kaden – ATAL JV for the Contract No. CS03 "Ocean Park Redevelopment Project – Thrill Mountain & Polar Adventure" (hereinafter called "the Project"). The Project was commenced on 2nd November 2009. This document reports the findings of the environmental auditing works conducted in May 2011.

The major site activities undertaken in the reporting month included:

- · Construction of queue area and pools at North Pole;
- Construction of Tuxedos Restaurant at South Pole;
- Carry out water test for roof of North Pole;
- Construction of Bobsled Station superstructure and installation of rides;
- Construction Footing and superstructure for Thrill Mountain;
- Erection of structure steel works for ride at Floorless Coaster Station;
- Carry out wall finishing works for PA Building;
- Apply waterproofing at roof of PA Building;
- Construction of Superstructure for Floorless Coaster;
- Construction of Drainage system and Water main for External Works;
- · Installation of theme works and
- Disposal Existing Stockpile prior.

Environmental Monitoring and Audit Works

Environmental monitoring and audit works for the Project was performed as stipulated in the updated EM&A Manual. Site audits were conducted once per week. Environmental site audits were conducted on 6th, 13th, 20th & 27th May 2011 and the environmental ICE monthly site inspection was conducted on 20th May 2011 and No non-compliance was observed during the site audits.

The implementation of the environmental mitigation measures was checked and the environmental management plan was submitted.

No notification of exceedance was received from the Assistance Project Environmental Team Leader (ETL) in the reporting month.

Environmental Licenses and Permits

Licenses/Permits granted to the Project include the Environmental Permit (EP) for the Redevelopment Project, Construction Noise Permit (CNP), Billing Account for Disposal of Construction Waste and Water Discharge License

Registration of Waste Producer (Chemical Waste), and notification pursuant to Section 3(1) of the Air Pollution Control (Construction Dust) Regulation was acknowledged by EPD.

Complaints and Prosecutions

No environmental complaint and prosecution was received in the reporting month.

Future Key Issues

Key issues to be considered in the coming month include:

- Construction Superstructure for Floorless Coaster;
- Construction of Concrete Structure for Bobsled Station;
- Installation of Ride Track at Floorless Coaster and Bobsled Station;
- Internal Finishing Works at PA Building;
- Construction of road works for permanent EVA Access;
- Construction of Drainage System and Water Main for Thrill Mountain and Bobsled Station Area.
- Erection of structural steel for Floorless Coaster workshop
- Erection of structural steel for Aviator
- · Erection of structural steel for one side game booth
- Fitting our work at one side game booth
- · Erection of structural steel for four side game booth
- Fitting out work at four side game booth
- Erection of structural steel for dinner hall and food kiosk
- Installation of theme works.

1. INTRODUCTION

Background

- 1.1 Kaden-ATAL JV (the Contractor) was commissioned by the Employer to undertake the construction of the Contract No. CS03 "Ocean Park Redevelopment Project Thrill Mountain & Polar Adventure" (the Project) and the project was commenced on 2nd November 2009. The site layout plan is illustrated in Figure 1.1.
- 1.2 These report summaries the environmental monitoring and audit works for the Project in the month of May 2011.
- 1.3 The scope of works for the Project includes:
 - (a) Construction of summit reservoir and associated pump room.
 - (b) Construction of vehicular bridge.
 - (c) Construction of the Polar Adventure Building.
 - (d) Construction of back of house facilities in the Polar Adventure Building.
 - (e) Construction of other one to three storey buildings in Polar Adventure.
 - (f) Construction of foundation and installation of Bobsled Ride.
 - (g) Installation of Life Support Systems.
 - (h) Construction of one to three storey buildings in Thrill Mountain.
 - (i) Construction of foundation and installation of the Floorless Coaster.
 - (j) Installation of the Ultramax, Aviator, Musik Express and Bumper Car.
 - (k) New roadwork, paving, footpaths and infrastructure support.
 - (l) Installation of building services.
 - (m) Soft and hard landscape works.
 - (n) Construction of underground utilities and services.
 - (o) Construction of earth retaining structures.
 - (p) Construction of all interior fitting out works.
 - (q) Supply and installation of all elevator(s) and escalator(s).
 - (r) Coral survey and maintenance of existing suit curtain.

Project Organizations

- 1.4 Different parties with different levels of involvement in the project organization include:
 - The Engineer and Project Environmental Team Leader (ETL) AECOM Consultant Ltd.
 - Contractor Kaden-ATAL JV.
 - Independent Environmental Checker (IEC) Mott MacDonald HK Ltd.
- 1.5 The responsibilities of respective parties are provided in Section the Contractor's EM&A Manual of the Project.
- 1.6 The key contacts of the Project are shown in **Table 1.1**.

Table 1.1 Key Project Contacts

Party	Name	Role	Phone No.	Fax No.
Project ET	Mr. Tommy Lau	RSS Representative (Safety & Environmental)	2552 1546	2552 1406
Contractor	Mr. Keith Kwan	Acting Project Manager	3582 6099	2502 4077
Contractor	Mr. Eric Wong	Construction Manager	3582 6005	3582 4877
Contractor's ET	Mr. Alex Enagnon Gbaguidi	Contractor's Assistance Environmental Team Leader	3582 4880	3582 4877
IEC	Miss Florence Yuen	Independent Environmental Checker (IEC) Representative	2828 5757	28271823

Construction Programme

- 1.7 The site activities undertaken in the reporting month were:
 - Construction Superstructure for Floorless Coaster;
 - Construction of Concrete Structure for Bobsled Station;
 - Installation of Ride Track at Floorless Coaster and Bobsled Station;
 - Internal Finishing Works at PA Building;
 - Construction of road works for permanent EVA Access;
 - Construction of Drainage System and Water Main for Thrill Mountain and Bobsled Station Area.
 - Erection of structural steel for Floorless Coaster workshop
 - Erection of structural steel for Aviator
 - Erection of structural steel for one side game booth
 - Fitting our work at one side game booth
 - Erection of structural steel for four side game booth
 - Fitting out work at four side game booth
 - Erection of structural steel for dinner hall and food kiosk
 - Installation of theme works.

Summary of EM&A Requirements

- 1.8 The EM&A programme requires construction phase environmental site audit. The duties and responsibilities comprise the following:
 - > monitor various environmental parameters, if necessary, as specified in the Contractor's EM&A Manual;
 - > analyze the environmental monitoring and audit data;
 - > review the EM&A programme to confirm the adequacy of mitigation measures implemented and the validity of the EIA predictions and to identify and adverse

- environmental impacts arising;
- > carry out site inspection to investigate and audit the Contractor's site practice, equipment and work methodologies with respect to pollution control and environmental mitigation, and effect proactive action to pre-empt problems;
- > audit and prepare EM&A reports on the site environmental conditions;
- > report the environmental audit results to the Contractor;
- > recommend appropriate mitigation measures to the Contractor in case of exceedance of Action and Limit Levels in accordance with the Event and Action Plans; and
- > adhere to the procedures for carrying out complaint investigation in accordance with the Contractor's EM&A Manual.
- 1.9 This report presents the environmental monitoring and audit works for the Project in May 2011.

2. ENVIRONMENTAL AUDIT

Environmental Site Audits

- 2.1 Environmental site audits were carried out on weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site.
- 2.2 Site audits for the Project in the reporting month were conducted on Environmental site audits were conducted on 6th, 13th, 20th & 27th May 2011 and the environmental ICE monthly site inspection was conducted on 20th May 2011. No non-compliance was observed during the site audits. The summaries of site audits are attached in <u>Appendix A</u>.
- 2.3 During site inspections in the reporting month, no non-conformance was identified. The observations and recommendations are summarized in **Table 2.1**.

Table 2.1 Observations and Recommendations of Site Audits

Parameters	Date	Observations / Recommendations	Remediation/ Follow up
Waste/	13/05/11	Stagnant water was accumulated in the channel surrounding the site.	Remove stagnant water immediately.
Chemical Management	20/05/11	An empty oil drum was placed on bareground.	Remove empty oil drum off site immediately.
Dust Control	27/05/11	Part of the haul road was dry.	Provide water spray regularly to suppress dust.

Parameters	Date	Observations / Recommendations	Remediation/ Follow up
	20/05/11	Stockpiles of excavated materials were not covered when idled.	Stockpiles were covered with tarpaulin sheet to suppress duct.
Air Pollution		N/A	

Status of Environmental Licensing and Permitting

2.4 All valid permits/licenses obtained for the Project are summarized in Table 2.2.

Table 2.2 Summary of Environmental Licensing and Permit Status

Table 2.2	Summary of	Environmen	ital Licensing and Permit Status	
Permit No.	Valid	Period	Details	Status
Termit 1(0)	From	To	Details	Status
Environmental Perm	it			
EP-249/2006/A	23/10/2006	N/A	Expansion of the existing Ocean Park and reconstruction / modification of its existing facilities.	Valid
Registration of Chem	ical Waste Pr	oducer		
WPN5213-176- K2880-02	25/11/2009	N/A	Waste Disposal (Chemical Waste) (General) Regulation - Registration of Waste Producer	Valid
Construction Noise P	ermit			
GW-RS0036-11 GW-RS0932-10	01/02/2011 01/12/2010	31/07/2011 31/05/2011	Construction Noise Permit for Top of Nam Long Shan Rd., Ocean Park, 180 Wong Chuk Hang, Hong Kong	Valid Valid Valid
Water Discharge Lice	ense		5,	_ ,
WT00005926-2010	05/11/2009	28/02/2015	Discharge of industrial trade effluent arising from the Sedimentation tank at the construction site (CS03 Ocean Park Redevelopment Project) to communal storm water drain.	Valid
Others				
311433	N/A	N/A	Notification Pursuant to Section 3(1) of the Air Pollution Control (Construction Dust) Regulation	Valid
7009695	N/A	N/A	Construction Waste Disposal Billing Account with EPD	Valid

Status of Waste Management

2.5 The amount of waste generated by the construction activities of the Project in the reporting month is attached in **Table 2.3**.

Table 2.3 Actual Quantity of Waste Generated in May 2011

Waste Type	Examples	Actual quantity disposed (Tonnes / Liter)	Disposal Locations
C&D Waste	Construction waste (Plastic, wood and bamboo)	277.5 (T)	SENT Landfill
	Mixed rock & soil	2770.1 (T)	CW barging point
Chemical waste	Used oil, spent solvent	400 L	Collected by licensed collector

Implementation Status of Environmental Mitigation Measures

2.6 During site inspections in the month, the following observations and recommendations were made.

Water Quality Mitigation Measures

 The waste water was recycled for wheel washing and dust control and Septic Tank should be maintain well functioning.

Air Quality Mitigation Measures

- The Contractor to ensure cement materials was well covered.
- The Contractor to ensure water spray was carry out during breaking of rocks.
- The Contractor was reminded to cover the existing stockpile general fill material when they were not in use.

Noise

No violation was observed nor recorded.

Ecology

No violation was observed nor recorded.

Waste / Chemical Management

- Stagnant water was accumulated in drip tray. Contractor to ensure all
 contaminated water was well collected and stored in chemical waste storage area
 without spillage.
- Oil drums were observed without drip tray and place on the ground. Ensure no spillage of the chemical oil and provide trip tray accordingly.
- Collection of waste oil by registered waste collector.

Others

No other violation was observed nor recorded.

Summary of Exceedances

2.7 No Action/Limit Level exceedance was reported in the reporting month.

Implementation Status of Event Action Plans

2.8 No complaint, summons or prosecution related to environmental issues was received or made against the Project in the reporting month.

Summary of Complaints and Prosecutions

2.9 No environmental complaint and prosecution related to the Project works was received during the reporting month.

3. FUTURE KEY ISSUES

Key Issues for the Coming Month

- 3.1 Key issues to be considered in the coming month include:
 - Construction Superstructure for Floorless Coaster;
 - Construction of Concrete Structure for Bobsled Station;
 - Installation of Ride Track at Floorless Coaster and Bobsled Station;
 - Internal Finishing Works at PA Building;
 - Construction of road works for permanent EVA Access;
 - Construction of Drainage System and Water Main for Thrill Mountain and Bobsled Station Area.
 - Erection of structural steel for Floorless Coaster workshop
 - Erection of structural steel for Aviator
 - Erection of structural steel for one side game booth

R.

- Fitting our work at one side game booth
- · Erection of structural steel for four side game booth
- Fitting out work at four side game booth
- Erection of structural steel for dinner hall and food kiosk
- Installation of theme works.

4. CONSTRUCTION OF DRAINAGE, SEWERAGE AND WATER MAIN SYSTEM.CONCLUSIONS AND RECOMMENDATIONS

Conclusions

- 4.1 Four environmental site audits were performed in May 2011. No non-compliance was observed during the site audits.
- 4.2 No exceedance of environmental monitoring was reported in the reporting month.
- 4.3 No environmental complaint and prosecution related to the project was received in the reporting month.

Recommendations

4.4 According to the environmental audits performed in the reporting month, the following recommendations are suggested:

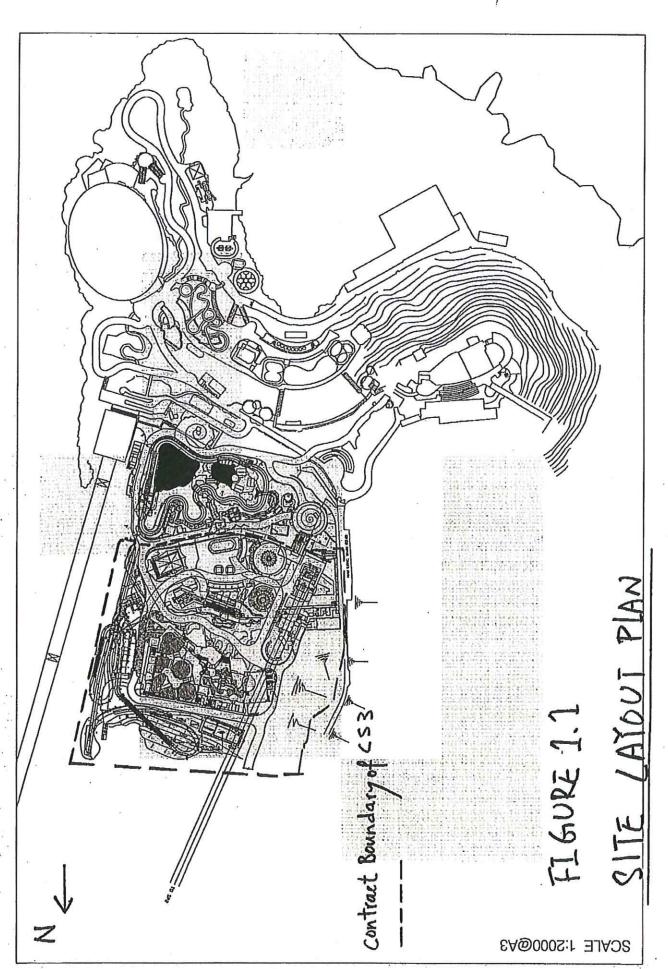
Water Quality Impact

• Should ensure that the sedimentation tank is well function before discharging waste water off site.

Dust Impact

- To carry out routine water spray to all haul roads and during rock breaking activity.
- To cover the existing stockpile general fill material when they were not in use.
- To ensure auto waterspray head is on when the floor is dry and dusty.

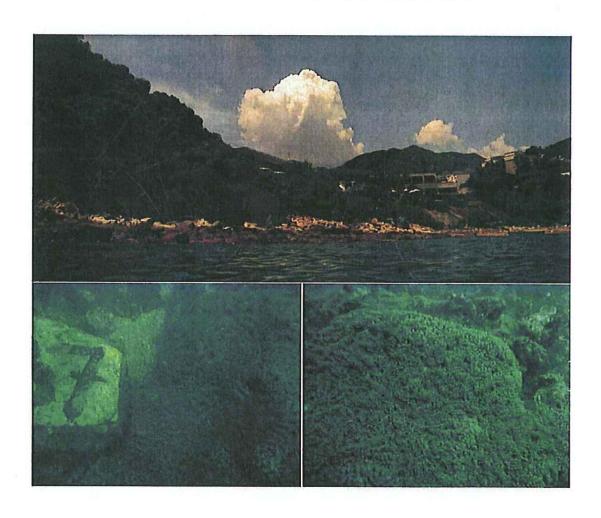
Waste / Chemical Waste Impact


- To carry out routine inspection for chemical waste storage area after rainy day.
- To ensure spent oil keep in dip tray during drilling rig maintenance.

- To ensure all domestic waste was fully cover in rubbish bin and cleaning up frequently.
- To ensure general refuse were store in the enclosed container or compaction units and separate from C& D materials.

Air Pollution Impact

 To ensure all plants and equipments are well maintained in good condition and replace air filter frequently.


Site Layout Plan

APPENDIX A Site Audit Summary (refer to Appendix A of EM & A Report)

Ocean Park Corporation Master Redevelopment Project Contract No. CS-03 Thrill Mountain and Polar Adventure

Report for Coral Monitoring Survey

May 2011

OCEAN PARK CORPORATION MASTER REDEVELOPMENT PROJECT

CONTRACT NO. CS-03

THRILL MOUNTAIN AND POLAR ADVENTURE

CORAL IMPACT MONITORING

MAY 2011

CLIENT:

Kaden Construction Limited

Factory E, 4th Floor, Gee Chang Hong Centre, 65 Wong Chuk Hang Road, Wong Chuk Hang Hong Kong

PREPARED BY:

Lam Environmental Services Limited Miniprojects Co. Limited.

11/F Centre Point 181-185 Gloucester Road, Wanchai, H.K.

Telephone: (852) 2882-3939
Facsimile: (852) 2882-3331
E-mail: info@lamenviro.com
Website: http://www.lamenviro.com

APPROVED BY:

Raymond Dai Senior Environmental Consultant / Project Manager

DATE:

7 May 2011

Ocean Park Corporation Master Redevelopment Project Contract No. CS-03 Thrill Mountain and Polar Adventure

Contents

1	INTRODUCTION 2	
	1.1 Project Background	2
2	METHODOLOGY	
	2.1 Monitoring Surveys - Locations	3
	2.2 Monitoring Requirements	
	2.3 Compliance / Event Action Plan	
3	RESULTS	
	3.1 Sites 1 to 5 and Control Site C - Coral Monitoring Survey Date: 28 May 201	16
4	SUMMARY AND CONCLUSION	
	4.1 Summary	
	4.2 Compliance / Event Action Plan	
APF	PENDIX I	
Pho	tographs of the Tagged Corals at Sites 1 to 5	12
App	pendix	
App	endix Ia Photographs of the Re-tagged Corals at Site 1	
App	endix Ib Photographs of the Re-tagged Corals at Site 2	
	endix Ic Photographs of the Re-tagged Corals at Site 3	
	endix Id Photographs of the Re-tagged Corals at Site 4	
	endix Ie Photographs of the Re-tagged Corals at Site 5	
	endix If Photographs of the Re-tagged Corals at Control Site C	
PP	- The control of the transfer country of control of the control of	

List of Figures

2.1 Map Showing the Locations of the Five Impact Monitoring Sites (1 to 5) and One Control Site (C).

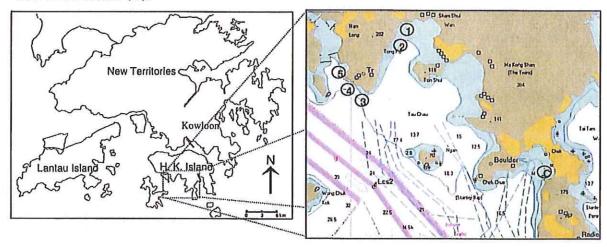
List of Tables

- 2.1 Schedule of Coral Monitoring
- 2.3 Action and Limit Level for Coral Monitoring.
- 3.1 Sites 1 to 5 and Control Site C Physical Conditions.
- 3.2 Sites 1 to 5 and Control Site C Percentage and Thickness of Sedimentation, Bleaching and Mortality of the Re-tagged Coral Colonies in Coral Re-tagging Exercise and Baseline Data Collection (November 2009) and the Present Monitoring Survey (May 2011).
- 4.1 Evaluation of Monitoring Results against Action and Limit Level for Coral Monitoring Survey.

Ocean Park Corporation Master Redevelopment Project Contract No. CS-03 Thrill Mountain and Polar Adventure

1 INTRODUCTION

1.1 Project Background


- 1.1.1 Ocean Park planned to upgrade and expand the existing area to meet the anticipated visitor demands and to position Ocean Park as a premium tourist attraction and a regional leader in the themed recreational and educational park experience.
- 1.1.2 Lam Environmental Services Limited (LAM) has been appointed to formulate a Coral Survey Team to conduct the Marine Ecology Survey for Ocean Park Corporation Master Redevelopment Project Contract No. C105 – Site Formation, Funicular Tunnel and Miscellaneous Works and Contract No. CS-03 – Thrill Mountain and Polar Adventure.
- 1.1.3 miniprojects Company Limited (miniprojects co. Ltd.) has been commissioned by LAM to undertake Coral Monitoring Survey on the tagged hard coral colonies at five Monitoring Sites around the Construction Site and one Control Site for captioned project.
- 1.1.4 In the impact monitoring surveys conducted on 16 August 2009, six out of the 60 tagged coral colonies were found to detach completely from their substrate and 46 tagging stones or marks were loss or worn out in all five Monitoring Sites and one Control Site. Such physical damage on the coral colonies and tags was believed to be caused by several strong tropical cyclones attacked Hong Kong prior to the August 2009 surveys.
- 1.1.5 miniprojects co. Ltd. has been commissioned by LAM to undertake the Coral Re-tagging Exercise and Baseline Data Re-collection on the re-tagged hard coral colonies in November 2009 at all five Monitoring Sites around the Construction Site and one Control Site and subsequent quarterly monitoring surveys since November 2009 for captioned project.
- 1.1.6 This report presents the results of the 6th Coral Monitoring Survey conducted on 28 May 2011 after Coral Re-tagging Exercise in November 2009.

2 METHODOLOGY

2.1 Monitoring Surveys – Locations

2.1.1 Five locations close to the potential impact areas were identified and designated as Impact Monitoring Sites (Sites 1 to 5; Fig. 2.1). In order to identify background environmental perturbations that are not associated with the construction, St. Stephen Beach, which is away from the impact areas, was designated as the Control Site (Control Site C; Fig. 2.1). Locations (GPS coordinates) of the five Impact Monitoring Sites and one Control Site C are summarized in Table 3.1.

Fig. 2.1 Map Showing the Locations of the Five Impact Monitoring Sites (1 to 5) and One Control Site (C).

2.2 Monitoring Requirements

- 2.2.1 The construction phase coral monitoring programme comprises an Initial Survey, Coral Tagging Exercise and Impact Monitoring Surveys. Initial Survey and Coral Tagging Exercise were completed on 07-12 April 2007.
- 2.2.2 Impact monitoring aims to determine whether impacts are occurring on tagged corals during the period of construction works commenced in June 2007. A particular focus of the Impact Monitoring is the effects of sedimentation, bleaching and mortality on corals.
- 2.2.3 As required in the EM&A manual, coral monitoring at Site 5 and Control Site C should be conducted twice a month at first 3 months of the construction (i.e. June, July and August 2007). The monitoring frequency would be changed to monthly for month 4 to month 6 (i.e. September, October and November 2007) if no adverse effects were recorded (Table 2.1). After that, the monitoring will be changed to quarterly from month 7 (i.e. December 2007) until the end of construction works.

- 2.2.4 Monitoring Survey for Sites 1 to 4 should be conducted monthly during the first 2 months (i.e. June and July 2007) of the construction works. If there is no exceedance recorded (Table 2.1), the monitoring frequency would be adjusted to quarterly from month 3 (i.e. August 2007) till the end of the construction period.
- 2.2.5 Several tropical cyclones, attacked Hong Kong between May and August 2009, led to serious physical damage on tagged and un-tagged coral colonies and the loss of the tagging stones and marks in all five Monitoring Sites and one Control Site. Coral re-tagging exercise and baseline data re-collection were undertaken in November 2009 (month 30) at all five Monitoring Sites around the Construction Site and one Control Site. The results will be as reference and reviewed during further Coral Monitoring surveys.
- 2.2.6 At each of the Impact Monitoring and Control Sites, 10 hard coral colonies were re-tagged for continuous monitoring over the course of construction phase. The health status of the re-tagged corals including area of bleaching and partial mortality, and level of sedimentation as percentage of sediment cover and approximate thickness of sediment on the colony and on adjacent hard substrate were recorded. The condition of each re-tagged coral colony was also recorded by taking photographs that best represents the entire colony. General physical parameters were recorded for each survey site, including visibility, weather, tidal conditions and water current.
- 2.2.7 The results of the Coral Re-tagging Exercise and Baseline Data Re-collection will be as reference and reviewed with further the Coral Monitoring Surveys.
- 2.2.8 This report presented the results of the 6th Coral Monitoring Survey in month 48 (May 2011) after Coral Re-tagging Exercise and Baseline Data Re-collection, required at Sites 1 to 5 and Control Site C. The schedule was summarized as follow,

Table 2.1 Schedule of Coral Monitoring

	Coral Monitoring Survey Date
	28 May 2011
Site 1	√
Site 2	✓
Site 3	✓
Site 4	✓
Site 5	✓ ·
Control Site C	✓

2.3 Compliance / Event Action Plan

- 2.3.1 Coral monitoring results were evaluated against Action and Limit Levels. Evaluation were based on recorded changes in,
 - · Percentage of partial mortality
 - · Percentage of sediment cover
 - · Percentage of bleaching
- 2.3.2 Action and Limit Levels are defined in Table 2.1
- 2.3.3 If the defined Action Level or Limit Levels for coral monitoring were exceeded, the stepwise procedures should be implemented in accordance to the EM&A manual to reverse the unfavourable impact on the coral communities.

Table 2.3 Action and Limit Level for Coral Monitoring

Parameter	Action Level Definition	Limit Level Definition
Sedimentation	If during Impact Monitoring a 15% increase in the percentage of sediment cover on hard corals occurs at more than 20% of the tagged coral at any one Impact Monitoring Site that is not recorded at the Control Site, then the Action Level is exceeded.	If during the Impact Monitoring a 25% increase in the percentage of sediment cover occurs at more than 20% of the tagged coral at any one Impact Monitoring Site that is not recorded at the Control Site, then the Limit Level is exceeded.
Bleaching	If during Impact Monitoring a 15% increase in the percentage of bleaching (bleached white) on hard corals occurs at more than 20% of the tagged coral at any one Impact Monitoring Site that is not recorded at the Control Site, then the Action Level is exceeded.	If during the Impact Monitoring a 25% increase in the percentage of bleaching (bleached white) occurs at more than 20% of the tagged coral at any one Impact Monitoring Site that is not recorded at the Control Site, then the Limit Level is exceeded.
Mortality	If during Impact Monitoring a 15% increase in the percentage of partial mortality on hard corals occurs at more than 20% of the tagged coral at any one Impact Monitoring Site that is not recorded at the Control Site, then the Action Level is exceeded.	If during the Impact Monitoring a 25% increase in the percentage of partial mortality occurs at more than 20% of the tagged coral at any one Impact Monitoring Site that is not recorded at the Control Site, then the Limit Level is exceeded.

3 RESULTS

- 3.1 Sites 1 to 5 and Control Site C Coral Monitoring Survey Date: 28 May 2011
- 3.1.1 Coral monitoring survey at Sites 1 to 5 and Control Site C were conducted on 28 May 2011. The physical conditions of each site are summarized in Table 3.1.

Table 3.1 Sites 1 to 5 and Control Site C - Physical Conditions.

Site	Site 1	Site 2	Site 3	Site 4	Site 5	Control Site C
GPS		N 22°14'25.39"		N 22°13'53.3"	N 22°14'01.9"	N 22°12'48.3"
Coordinates	E 114°10'43.6"	E 114°10'37.2"	E 114°10'14.2"		E 114°09'59.3"	
Date			28 Ma	y 2011		
Sedimentation on Rock surfaces (mm)	1-2	1-2	1-2	1-2	1-2	1-2
Visibility (m)			0.5-	-1.5		
Weather			Northeast w	ind; Cloudy		
Tide				tide		
Current (Knot)	0-0.5	0-0.5	0.5-1.0	0.5-1.0	0-0.5	0.5-1.0

3.1.2 Percentages of sedimentation, bleaching and mortality of each re-tagged colony were presented in Tables 3.2 and 3.3. Photographs of each re-tagged coral in Sites 1 to 5 and Control Site C were illustrated in Appendices Ia to If, respectively.

Site 1

3.1.3 When compared with baseline data in November 2009, increased sedimentation cover was recorded on 3 colonies (A4, A7 and A9), ranged from 1 to 5%. Decrease in sedimentation was observed in 3 colonies (A2, A5 and A8) by 1 to 3%. No bleaching was recorded. Partial mortality found in 2 colonies (A2 and A7) in baseline survey remained unchanged (Table 3.2).

Site 2

3.1.4 When compared with baseline data in November 2009, sedimentation increased in 2 colonies (B9 and B10) by 1 to 3%, and decreased in 3 colonies (B1, B2 and B7) by 1 to 4%. No bleaching was recorded. Partial mortality found in 4 colonies (B3, B4, B5 and B9) in baseline survey remained unchanged (Table 3.2).

Site 3

3.1.5 When compared with baseline data in November 2009, 2 colonies showed increase in sedimentation (C1 and C8) by 2%. Sedimentation decreased in 5 colonies (C3, C4, C5, C6 and C8) by 2 to 5%. No bleaching was recorded.

Ocean Park Corporation Master Redevelopment Project Contract No. CS-03 Thrill Mountain and Polar Adventure

Partial mortality found in 4 colonies (C1, C2, C3, and C5) in baseline survey remained unchanged (Table 3.2).

Site 4

When compared with baseline data in November 2009, sedimentation decreased in 6 colonies (E1, E3, E5, E6, E7 and E10) by 2 to 5%. Partial mortality found in 5 colonies (E3, E5, E6, E8 and E10) in baseline survey remained unchanged (Table 3.2).

Site 5

3.1.7 When compared with baseline data in November 2009, sedimentation decreased in 6 colonies (D1, D2, D3, D4, D6 and D10) by 1 to 5%. No bleaching was recorded. Partial mortality found in 5 colonies (D1, D6, D7, D9 and D10) in baseline survey remained unchanged (Table 3.2).

Control Site C

3.1.8 When compared with baseline data in November 2009, 4 colonies (F3, F5, F7 and F8) showed increase in sedimentation by 1 to 2%. Sedimentation decreased in 1 colony (F1) by 1%. No bleaching was recorded. Partial mortality found in 3 colonies (F2, F3 and F6) in baseline survey remained unchanged (Table 3.2).

Ocean Park Corporation Master Redevelopment Project Contract No. CS-03 Thrill Mountain and Polar Adventure

(May 2011). "▲" and "▼" indicate increased and decreased in percentage, respectively, when compared with the coral re-tagging exercise Table 3.2 Sites 1 to 5 and Control Site C - Percentage and thickness of Sedimentation, Bleaching and Mortality of the Re-tagged Coral Colonies in Coral Re-tagging Exercise and Baseline Data Collection (November 2009) and the Present Monitoring Survey and baseline data collection.

Site 1

٦														
	10000000		J)	Sedimentati	Sedimentation (%, mm)			Bleaching (%)	ng (%)			Mortality (%)	ity (%)	
	Coral Species	Area (cm²)	21 Nov 09	Now 2010	Tok 2011	Man 2011	21 Nov 09	Maria and a			21 Nov 09			
			(baseline)	0707 4041	1107 024	May cult	(baseline)	OTOT AGAI	rep 2011	May 2011	(baseline)	Nov 2010	Feb 2011	May 2011
	Platygyra carnosus	1200	0.0	0.0	0.0	0.0	0	0	0	0	0	0	c	c
	Favites abdita	400	5, 1	∆ 0'0	2,1▼	2,1▼	0	0	0	0	2	2	2	c
	Plesiastrea versipora	009	0.0	0.0	0.0	0.0	0	0	0	0	0	c	c	C
	Leptastrea purpurea	6200	0,0	5, 1▲	5,1▲	5,1▲	0	0	0	0	0	0	0	0
	Platygyra carnosus	3200	1,1	0,0▼	3,1▲	0,0▼	0	0	0	0	0	0	0	0
	Platygyra camosus	2600	0,0	0,0	0,0	0.0	0	0	0	0	0	0	C	c
	Favia speciosa	200	2,1	5, 1▲	3, 1▲	5,1▲	0	0	0	0	5	5	S	S
	Platygyra camosus	1500	2,1	0,0▼	2,1	0,0▼	0	0	0	0	0	0	0	0
	Leptastres purpurea	700	4,1	4, 1	5,1▲	5,1▲	0	0	0	0	0	0	0	0
_	Platygyra carnosus	2000	0,0	0,0	1, 1▲	0,0	0	0	0	0	0	0	0	0

Site 2

			S	Sedimentati	imentation (%, mm)			Bleaching (%)	ng (%)			Mortality (%)	ity (%)	
Code	Coral Species	Area (cm²)	29 Nov 09	Now 2010	Tat. 2011	Man 2011	29 Nov 09	M Oren	2.000.0		29 Nov 09			
			(baseline)	חזמל אפרו	rep 2011	May 2011	(baseline)	OTOZ AONI	reb 2011	May 2011	(baseline)	Nov 2010	Feb 2011	May 2011
B1	Platygyra carnosus	1300	2,1	0.0▼	2, 1	0.0▼	0	0	0	0	0	0	C	c
B2	Plesiastrea versipora	920	4, 1	0,0	2,1▼	0.0▼	0	0	0	0	0	0	0	0
B3	Psammocora superficialis	4400	5, 1	5,1	5,1	5,1	0	0	0	0	60	3		er er
B4	Favia speciosa	800	0.0	0,0	0,0	0.0	0	0	0	0	2	, ,	000	,
B5	Plesiastrea versipora	1000	2,1	0.0	2,1	2,1	0	0	0	0	12	2	10	10
B6	Platygyra camosus	1500	0.0	0,0	1.1▲	0,0	0	0	0	0	0	0	10	1 0
B7	Hydnophora exesa	1600	1.1	0,0▼	1,1	0,0▼	0	0	0	0	0	0	0	
	Plesiastrea versipora	1300	0.0	0.0	0,0	0,0	0	0	0	0	0	0	0	0
B9	Favia speciosa	450	1,1	4, 1▲	4,1▲	4,1▲	0	0	0	0	2	2	2	2
B10	Psammocora superficialis	400	0.0	0,0	0,0	1,1▲	0	0	0	0	0	0	0	0

Site 3

,			S	edimentati	Sedimentation (%, mm)	0		Bleaching (%)	(%) Su			Mortality (%)	ity (%)	
Code	Coral Species	Area (cm²)	28 Nov 09	Non- 2010	E-1, 2011	2000	28 Nov 09				28 Nov 09			
	The second secon		(baseline)	0707 4041	rep 2011	May 2011	(baseline)	Nov 2010	Feb 2011	May 2011	(baseline)	Nov 2010	Feb 2011	May 2011
ប	Porites sp	001	2, 1	2, 1	4.1▲	4,1▲	0	0	0	c	,	"	"	,
ខ	Porites sp	210	3.1	3.1	5 1 A	3 1	c				,	,		0
6			-	- 1.	7.1	1.0	>	>	>	>	^	^	^	2
3	Contopora stutchburyi	410	5, 1	0,0 €	0.0	0,0	0	0	0	0	7	7	7	7
2	Pavona decussata	240	4, 1	4,1	2.1▼	2.1	0	0	C	0	C			
3	Denoug decuerate	010		1000	100		1	1	,		>	>	>	>
- 1	ו מגטוות תברוסיאנות	710	3, 1	0,0 \	0.0	0.0 ▼	0	0	0	0		ı	1	-
ප	Pavona decussata	200	3, 1	0.0▼	0.0	0,0▼	0	0	0	0	c	c	c	
ß	Montipora peltiformis	096	3, 1	0,0▼	5,1▲	3, 1	0	0	0	0	0	0	, ,	
8 3	Goniopora stutchburyi	140	1,1	1,1	1,1	3.1▲	0	0	0	0	0		0	
ව	Porites sp	300	3,1	3,1	5.1▲	3.1	0	0	c	0	0	0		
010	Timber and a second	000	. ,	1				,	,	,	0	>	>	>
- 1	Cypnasirea serania	000	4, 1	4, 1	4, 1	2, 1 ▼	0	0	0	0	0	0	0	0

Site 4

			V)	edimentati	Sedimentation (%, mm)	9		Bleaching (%)	ng (%)			Mortality (%)	ity (%)	
Code	e Coral Species	Area (cm²)	28 Nov 09 (baseline)	Nov 2010	Feb 2011	May 2011	28 Nov 09	Nov 2010	Feb 2011	May 2011	28 Nov 09	Nov 2010	Feb 2011	May 2011
EI	Goniopora stutchburyi	290	5,1	0.0	3.1	3.1♥	0	0	c	c	(Dascame)	c	-	
E2	Coscinaraea sp.	620	0.0	0.0	2.1▲	0.0	0	0	0		0			
E3	Goniopora stutchbury	300	4, 1	0.0	3.1▼	0.0	0	0	0	0	0 "	0 "	> "	0 6
E4	Goniopora stutchbury	130	3,1	0.0	3,1	3,1	0	0	0	, ,		2	n c	0
ES	Goniopora snutchbury	460	6, 1	0.0 ▼	6,1	3.1▼	0	0	0	0	0	0	> <	
E6	Goniopora stutchbury	380	10,1	0.0	5.1♥	5.1	0	0	0	0	~	+ 0	1 0	4 0
E7	Goniopora stutchbury	120	3,1	0.0▼	5.1▲	0.0	0	0	0	0		0	0	0
B	Goniopora stutchbury	230	4, 1	0,0▼	4,1	4,1	0	0	0	0	0 01	2	0 0	0 0
63	- 1	170	3, 1	0,0	5,1▲	3, 1	0	0	0	0	0	C	0	1
E10	Goniopora stutchhury	540	7, 1	5, 1▼	5, 1▼	5,1▼	0	0	0	0	6	3	, m	0 "
													,	

Site 5

			S	edimentati	Sedimentation (%, mm)			Bleaching (%)	ng (%)			Mortality (%)	ity (%)	
Code	Coral Species	Area (cm ²) 29 Nov 09	29 Nov 09	Now 2010	Eob 2011	Man 2011	29 Nov 09	Nov. 2010	Eat. 2011	Me. 2011	29 Nov 09	M	1000 100	
			(baseline)	מוחד נחנו	110707	true farti	(baseline)	מדחק אחנו	ren zora	May 2011	(baseline)	חומה אסאו	rep 2011	May 2011
DI	Psammocora sp.	800	6, 1	0,0▼	3,1₹	≥,1▼	0	0	0	0	3	ю	3	3
D2	Montipora peltiformis	009	4, 1	0,0▼	1,1♥	1,1♥	0	0	0	0	0	0	0	0
D3	Goniopora stutchburyi	450	2, 1	0,0▼	4,1▲	0.0▼	0	0	0	0	0	0	0	0
D4	Cyphastera serailia	100	3,1	0,0▼	3, 1	0,0▼	0	0	0	0	0	0	0	0
DS	Montipora cf. turgescens	320	4, 1	4, 1	4,1	4, 1	0	0	0	0	0	0	0	0
D6	Montipora peltiformis	480	10,1	4,1♥	5, 1♥	5,1♥	0	0	0	0	20	20	20	30
D7	Montipora peltiformis	200	8, 1	4, 1♥	5, 1♥	8, 1	0	0	0	0	2	61	2	cı
D8	Montipora peltiformis	410	6, 1	8, 1▲	6, 1	6, 1	0	0	0	0	0	0	0	0
D9	Montipora peltiformis	200	5.1	5, 1	5, 1	5, 1	0	0	0	0	5	5	5	5
D10	Goniopora stutchburyi	510	7,1	5, 1▼	7, 1	5, 1 ♥	0	0	0	0	5	5	5	5

Control Site C

Court	Court of office C					The second secon								
			S	edimentati	Sedimentation (%, mm)			Bleaching (%)	ng (%)			Mortality (%)	ty (%)	
Code	Coral Species	Area (cm²) 21 Nov 09	21 Nov 09	Now 2010	Eat 2011	Mf. 2011	21 Nov 09	Man 2010	E-L 2011	P. C 2011	21 Nov 09			
			(baseline)	OTOT AGAI	rep coll	TTOT GETAI	(baseline)	0102 401	red 2011	May 2011	(baseline)	0707 AON	reb 2011	May 2011
FI	Goniastrea aspera	450	2,1	0,0▼	2,1	1,1♥	0	0	0	0	0	0	0	0
F2	Favites pentagona	2100	2, 1	0.0▼	2, 1	2, 1	0	0	0	0	2	CI	2	C3
E3	Favites pentagona	1000	0,0	0.0	1,1▲	1,1▲	0	0	0	0	5	5	5	5
F4	Favites pentagona	1300	2,1	0.0 ▲	2,1	2, 1	0	0	0	0	0	0	0	0
FS	Cyphastrea scraili	2100	0.0	0,0	₹1,1	1.1▲	0	0	0	0	0	0	0	0
F6	Porites sp	2100	5, 1	0,0▼	5, 1	5, 1	0	0	0	0	2	2	2	2
FJ	Plesiastrea versipora	3000	2,1	0,0▼	2, 1	4.1▲	0	0	0	0	0	0	0	0
F8a	Favites pentagona	089	0.0	0.0	0.0	1,1▲	0	0	0	0	0	0	0	0
F9	Favites pentagona	2600	0,0	0,0	0,0	0,0	0	0	0	0	0	0	0	С
F10	Favia rottimana	009	0,0	0,0	0,0	0,0	0	0	0	0	0	0	0	0

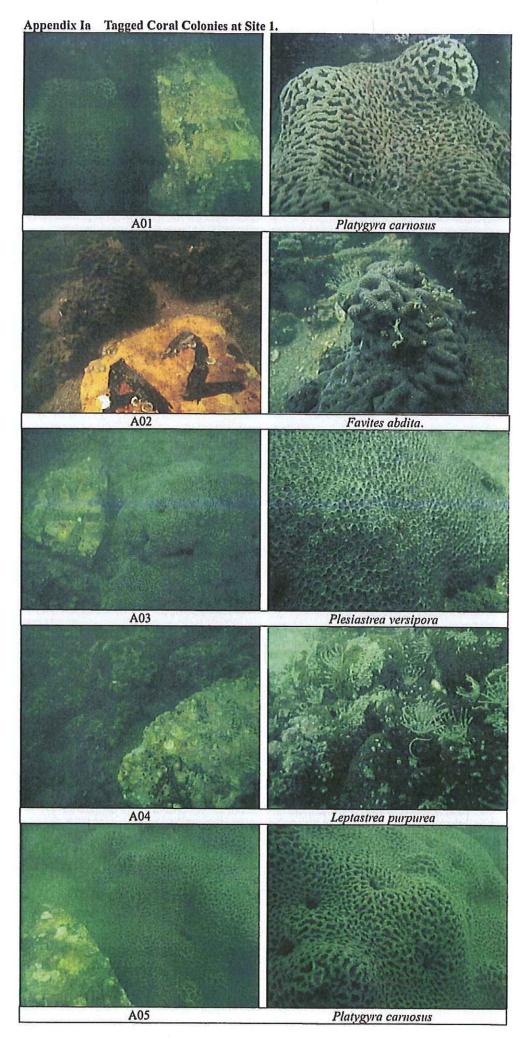
Coral Monitoring Survey - February 2011

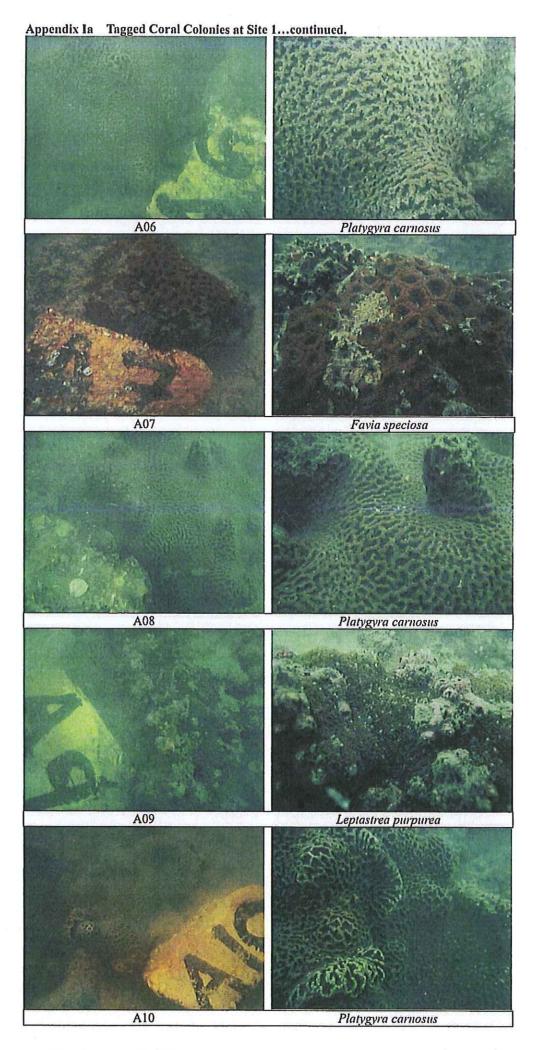
4 SUMMARY AND CONCLUSION

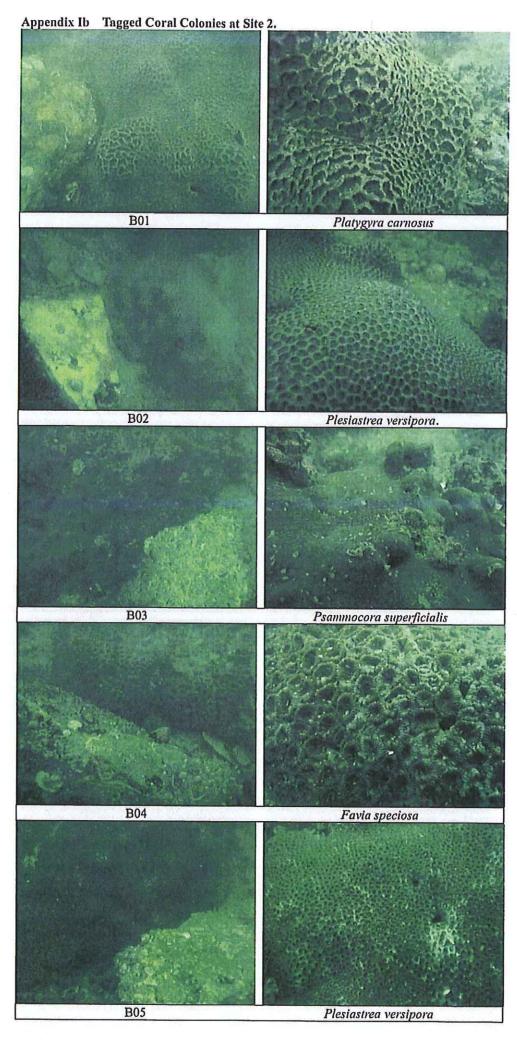
4.1 Summary

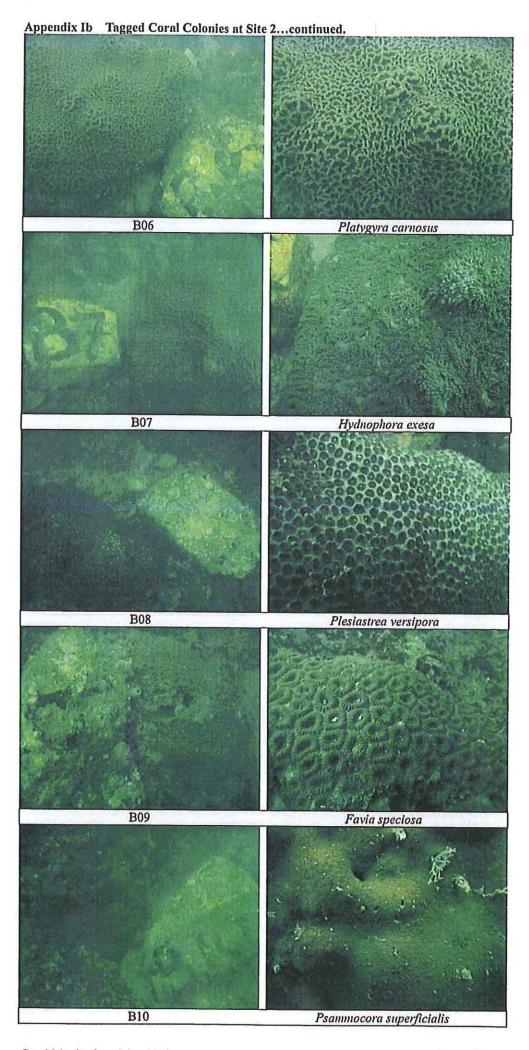
- 4.1.1 In the monitoring surveys conducted in May 2011, from all the 5 Monitoring Sites 1 to 5 and the Control Site C, the change in level of sedimentation on the tagged colonies was minor (< 5%) when compared with the baseline data in November 2009 and previous survey in February 2011. This small change in sedimentation was likely a natural fluctuation as a result of tidal current, wave, monsoonal wind, etc. No increment in level of blenching or partial mortality suggested the all tagged corals were in good condition and healthy.</p>
- 4.1.2 The data from this monitoring survey showed no significant enhancement in sedimentation, bleaching or mortality in all the 5 Monitoring Sites 1 to 5 and the Control Site C. Hence, no adverse impact by the construction activity on the coral community was evidenced.

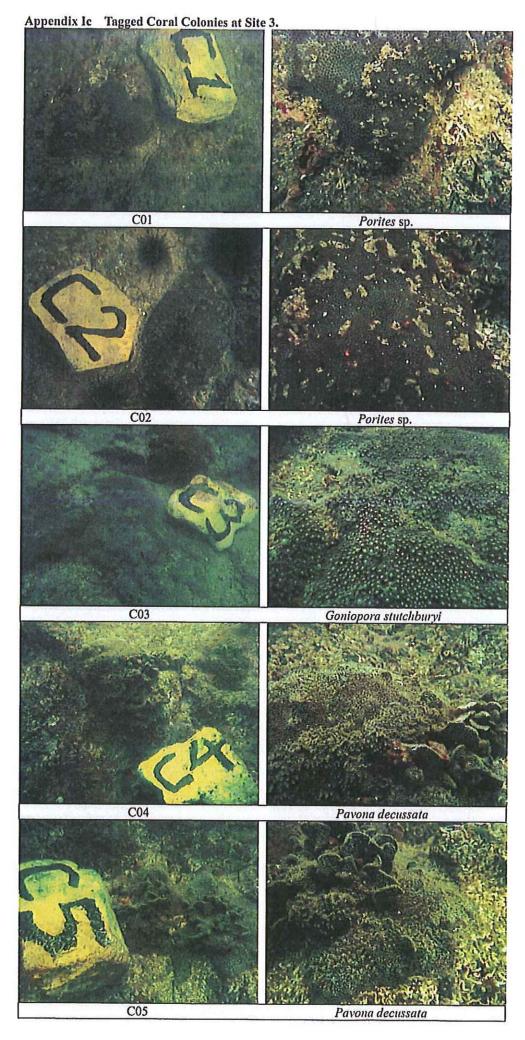
4.2 Compliance / Event Action Plan

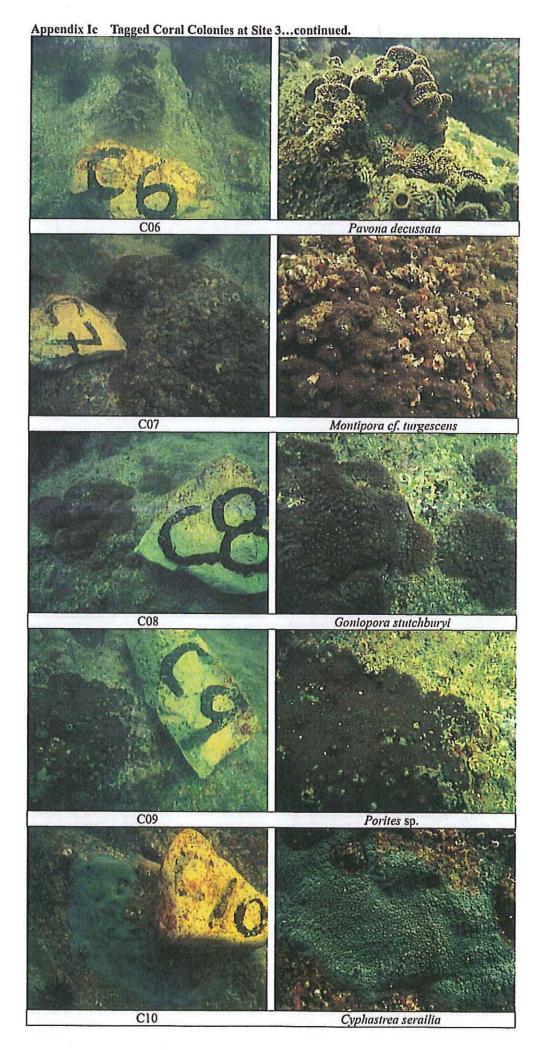

- 4.2.1 The monitoring results were evaluated against the Action and Limit Levels as defined in the EM&A manual and summarized in Table 4.1.
- 4.2.2 Overall, the healthy status of the tagged coral colonies was normal, with low levels of sedimentation. Neither action/limit level of sedimentation, bleaching or mortality was exceeded in the monitoring survey conducted in May 2011.

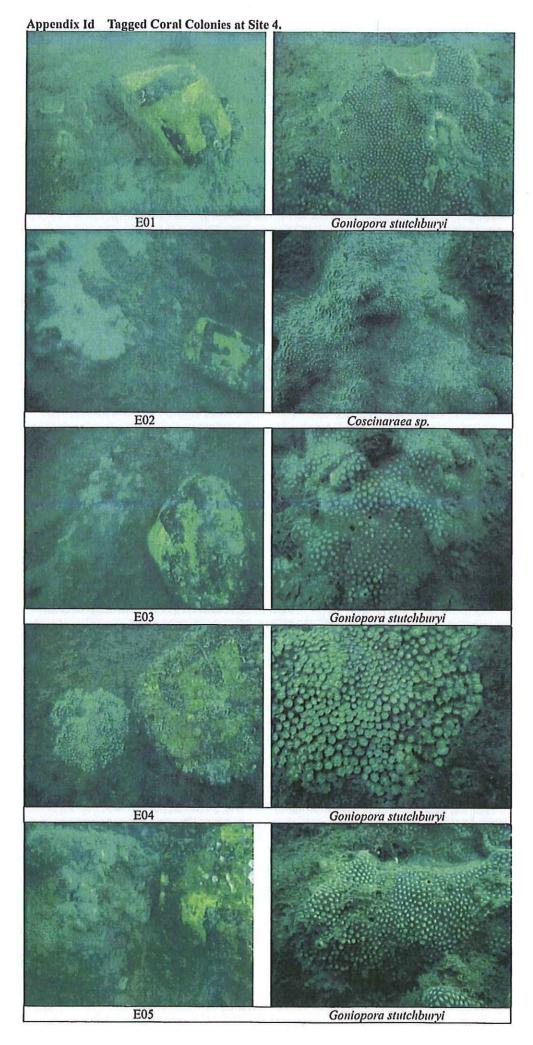

Table 4.1 Evaluation of Monitoring Results against Action and Limit Level for Coral Monitoring Survey. Note Definition of Action/Limit levels are listed in Table 2.1. "No" indicates NO exceedance.

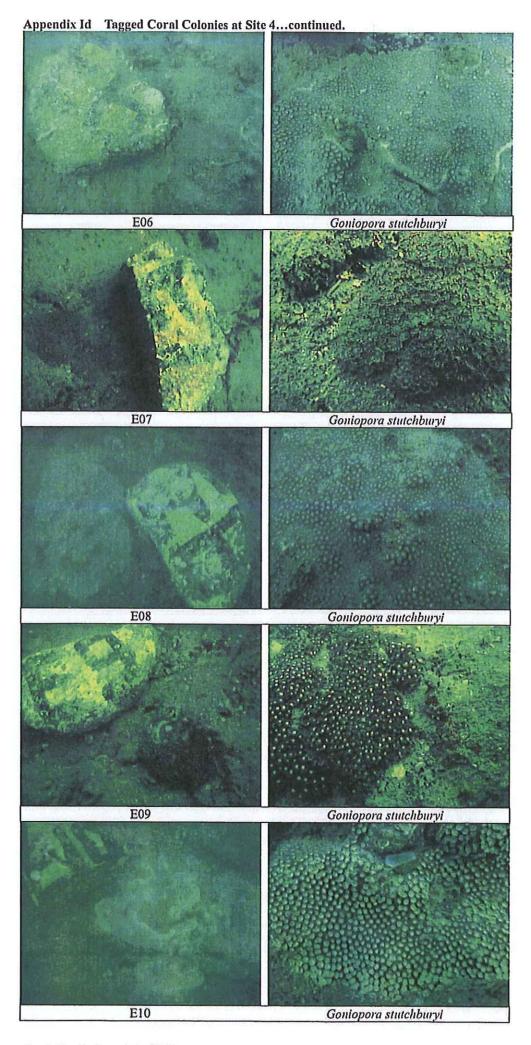

Exceedance	Sedime	ntation	Bleac	hing	Mort	ality
Site	Action Level	Limit Level	Action Level	Limit Level	Action Level	Limit Level
Site 1	No	No	No	No	No	No
Site 2	No	No	No	No	No	No
Site 3	No	No	No	No	No	No
Site 4	No	No	No	No	No	No
Site 5	No	No	No	No	No	No
Control Site C	No	No	No	No	No	No

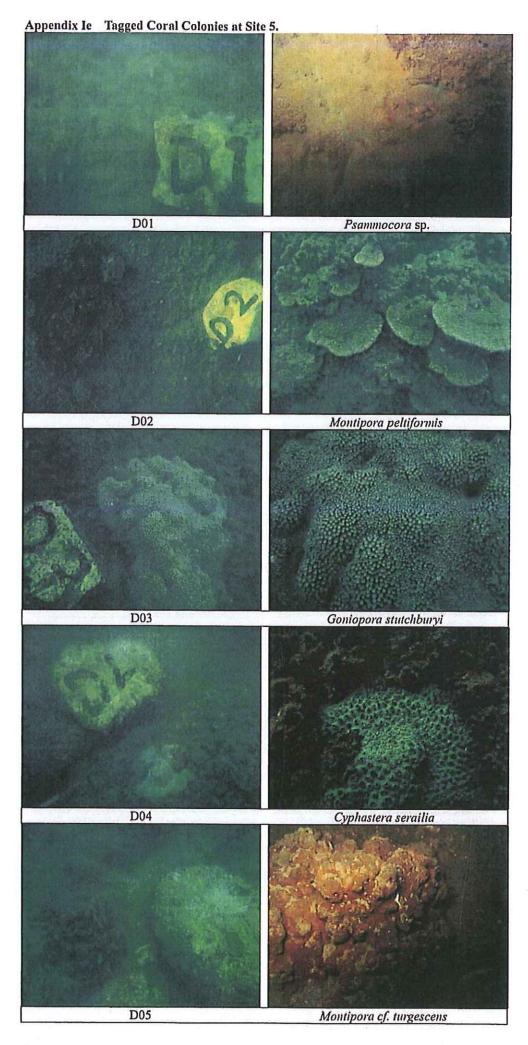

APPENDIX I

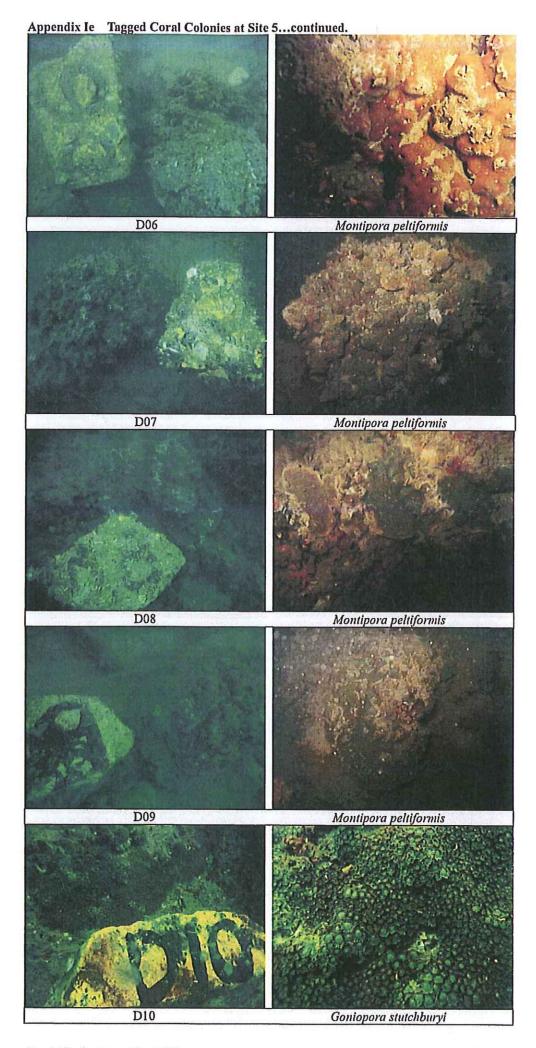

Photographs of the Tagged Corals at Sites 1 to 5 and Control Site C

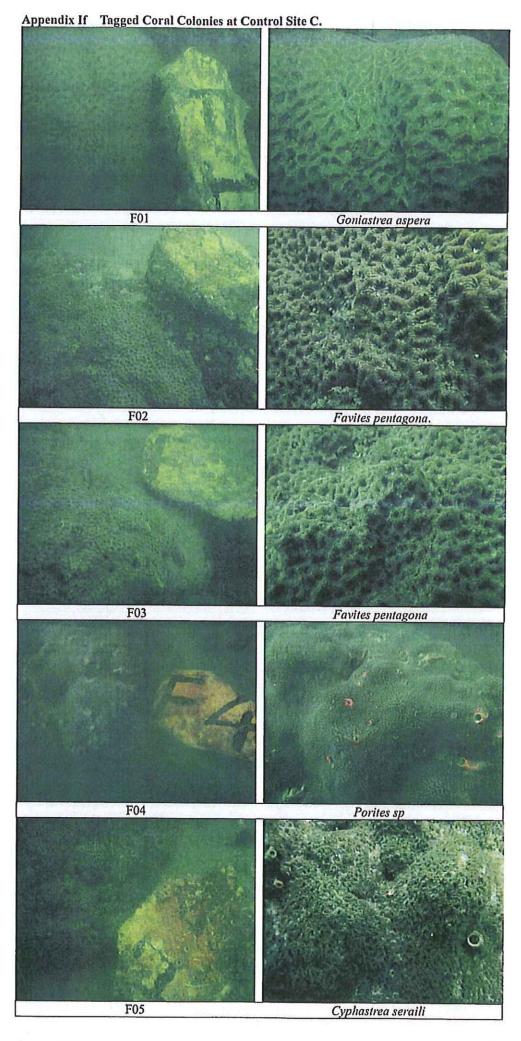


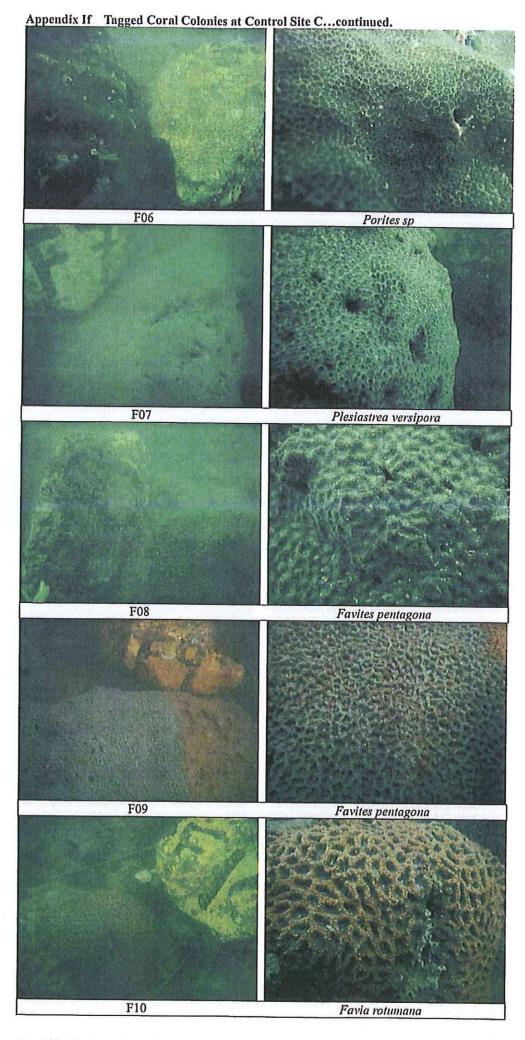












Part 3 Ocean Park Symbio Show 3rd Monthly Monitoring Report

Ocean Park Corporation, Hong Kong

Ocean Park Symbio Show: 3rd Air Quality and Noise Monitoring Report

May 2011

Environmental Resources Management

21/F Lincoln House
979 King's Road
Taikoo Place
Island East, Hong Kong
Telephone: (852) 2271 3000
Facsimile: (852) 2723 5660
E-mail: post.hk@erm.com
http://www.erm.com

Ocean Park Corporation, Hong Kong

Ocean Park Symbio Show: 3rd Air Quality and Noise Monitoring Report

May 2011

Reference 0128330

For and on behalf of

ERM-Hong Kong, Limited

Approved by:

Frank Wan

Signed:

Partner

Position:

1 artifer

Date:

13 May 2011

CONTENTS

1	INTRODUCTION	1
1.1	PURPOSE OF THE REPORT	1
1.2	STRUCTURE OF THE REPORT	1
2	AIR QUALITY MONITORING	2
2.1	Introduction	2
2.2	SAMPLING METHODOLOGY	2
2.3	MONITORING RESULTS	3
3	NOISE MONITORING	5
3.1	Introduction	5
3.2	NOISE MONITORING REQUIREMENTS	5
3.3	RESULTS OF NOISE MONITORING	8
3.4	SUMMARY OF NOISE EXCEEDANCES	8
4	OVERALL CONCLUSIONS	10
	ANNEXES	
Annex A1	Calibration Record	
Annex A2	Laboratory Report	
Annex A3	Detailed Summary and Graphical Presentation of the Cumulative Res Since Commencement of Open-air Night Show	ults
Annex A4	Recorded RSP Concentrations at EPD's AQMSs in Tung Chung, Shatin Po, Yuen Long, and Tap Mun on 28 March, 4, 10, 18 April 2011	
Annex A5	Recorded Weather Data at HKO's Weather Station in Wong Chuk Han March, 4, 10, 18 April 2011	ng on 28
Annex B1	Calibration Certificates of the Noise Measurement Equipment	
Annex B2	Results of Noise Monitoring	
Anner B3	Graphical Presentation of Noise Monitoring Results	

1 INTRODUCTION

ERM-Hong Kong, Limited (ERM) has been appointed by Ocean Park Corporation (OPC) to undertake air quality and noise monitoring for the first operational year of the Open-air Night Show under the "Repositioning and Long Term Operation Plan of Ocean Park" (the Project).

1.1 PURPOSE OF THE REPORT

The Open-air Night Show commenced on 27 January 2011. This is the 3rd air quality and noise monitoring report which summarises the impact monitoring results during the reporting period from 27 March to 26 April 2011.

1.2 STRUCTURE OF THE REPORT

After this introductory section, the remainder of this report is arranged as follows:

Section 2 describes the air quality sampling methodology, presents the monitoring results and discusses the results;

Section 3 describes the noise monitoring methodology, presents the monitoring results and discusses the results;

Section 4 presents an overall conclusion of the air quality and noise monitoring.

2 AIR QUALITY MONITORING

2.1 Introduction

In accordance with Clause 2.31 of the Environmental Permit (EP), an updated air quality monitoring programme shall be developed as part of the updated EM&A Manual for the measurement of air quality impact (in terms of respirable suspended particulates, RSP) during the first operational year of the Open-air Night Show and for submission to the Director of Environmental Protection (DEP) in January 2011. The air quality monitoring has been carried out based on the requirements given in the updated air quality monitoring programme.

2.2 SAMPLING METHODOLOGY

2.2.1 Sampling Parameters and Frequency

In accordance with the updated air quality monitoring programme, 24-hr average RSP levels should be monitored on a weekly basis in the first month of the Open-air Night Show. If the monitored results in the first month complied with Action/Limit (A/L) Level, the frequency should be reduced to monthly interval for the rest of eleven months in the first operational year. Monitoring of 24-hr average RSP has commenced at AM1 in the 1st reporting month, monthly monitoring of 24-hr average RSP was taken at AM1 on 10 April 2011. Monitoring of 24-hr average RSP was started from this reporting month for AM2 and AM3, weekly 24-hr average RSP monitoring samples were therefore taken on on 28 March, 4, 10 and 18 April 2011.

2.2.2 Sampling Locations

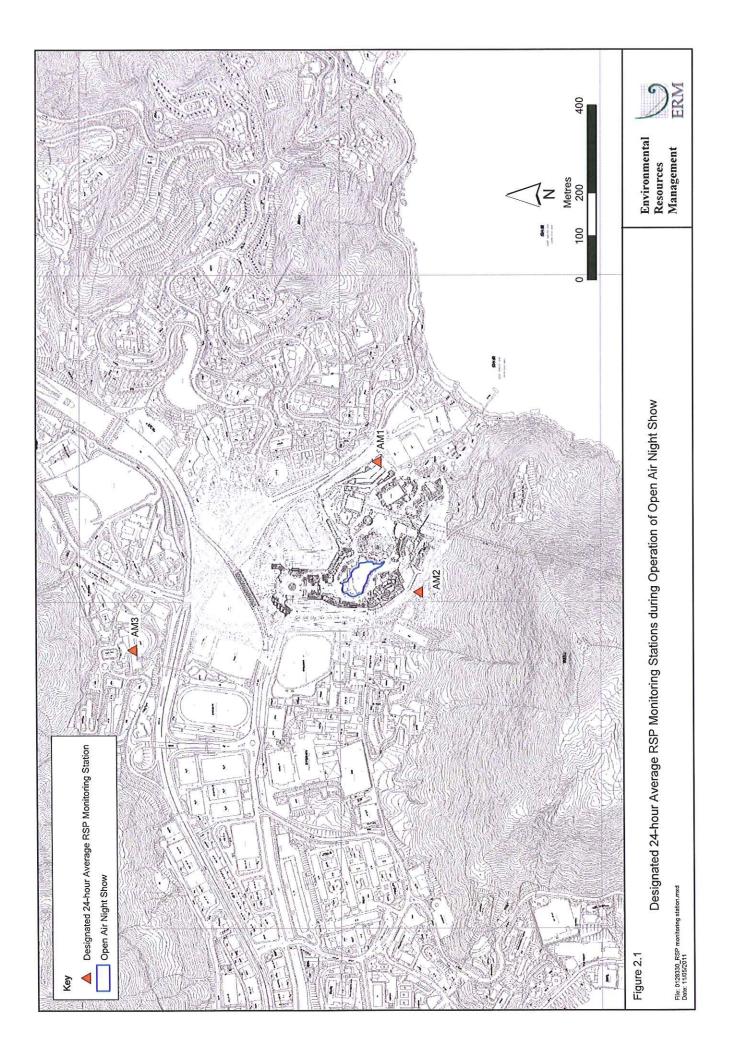

Air quality monitoring was conducted at three designated air quality monitoring station (AQMS) as presented in *Table 2.1* and illustrated in *Figure 2.1*.

Table 2.1 Air Quality Monitoring Station

AQMS ID	Location	Sampling Height (m above ground)
AM1	Rooftop of Administrative Building (Former Staff	10
	Quarters) in Ocean Park	
AM2	Landscape Storage Area in Ocean Park	3
AM3	Rooftop of Main Medical Block of Graham Hospital	20

2.2.3 Sampling and Laboratory Analysis Methodology

One 24-hr average RSP sample was collected on each scheduled day for monitoring by a High Volume Sampler (HVS) following the USEPA method, EPA IO-2.1. Calibration of the equipment has followed the requirements set

out in EPA IO-2.1 with the calibration record given in *Annex A1*. A summary of the sampling methodology and equipment is presented in *Table 2.2*.

Table 2.2 Summary of Sampling and Laboratory Analysis Method

Sampling Parameter	Method	Equipment	
24-hr average RSP	EPA IO-2.1	High volume sampler	

2.2.4 Sampling Period

The sampling periods at AM1, AM2 and AM3 are summarized in Table 2.3.

Table 2.3 Sampling Period

Sampling Parameter	Sampling Period	AQMS
24-hr average RSP	17:00 (28 March 2011) - 17:00 (29 March 2011)	AM2, AM3
	17:00 (4 April 2011) - 17:00 (5 April 2011)	AM2, AM3
	17:00 (10 April 2011) – 17:00 (11 April 2011)	AM1, AM2, AM3
	17:00 (18 April 2011) - 17:00 (19 April 2011)	AM2, AM3

2.2.5 Compliance Assessment

The measured 24-hr average RSP concentrations have been compared with the Action/Limit Level (A/L Level) which is the 24-hr average AQO for RSP (180 $\mu g m^{-3}$). Should exceedance of A/L Level occur, actions summarized in the Event and Action Plan (*Table 7.5* of updated EM&A Manual) should be followed.

2.3 MONITORING RESULTS

The 24-hour average RSP concentrations monitored at AM1, AM2 and AM3 are summarized in *Table 2.4*. The detailed laboratory report is presented in *Annex A2*.

Table 2.4 24-hr Average RSP Monitoring Results

Monitoring Location	Monitoring Date	24-hr RSP Concentration (µgm ⁻³)	Action/Limit Level (µgm ⁻³)
AM1	10 April 2011	80	180
(Rooftop of Administrative Building			
(Old Staff Quarters) in Ocean Park)			
AM2	28 March 2011	62	180
(Landscape Storage Area in Ocean	4 April 2011	64	180
Park)	10 April 2011	51	180
	18 April 2011	89	180
AM3	28 March 2011	114	180
(Rooftop of Main Medical Block of	4 April 2011	112	180
Graham Hospital)	10 April 2011	87	180
E-94 A	18 April 2011	160	180

All measured 24-hour average RSP concentrations have been well below the A/L Level (ie, 180 µgm⁻³). Detailed result summary of the air quality

monitoring data and graphical presentation of the cumulative results since the commencement of Open-air Night Show are given in *Annex A3*.

The average 24-hour average RSP concentrations during the Open-air Night Show time measured at five EPD air quality monitoring stations (AQMSs) at Tung Chung, Shatin, Tai Po, Yuen Long and Tap Mun were also provided as a reference (See *Annex A4*). The 24-hour average background RSP concentrations measured at the 5 EPD stations were between 24.6 μ g m⁻³ and 133.9 μ g m⁻³ during the reporting period. The monitored 24-hr average RSP concentrations at AM1, AM2 and AM3 have been compared with those measured at the EPD's AQMSs during the same monitoring periods. Higher 24-hr average RSP concentrations were measured at AM3 due to the contribution from the nearby main road, ie, Wong Chuk Hang Road. However, the measured results are well below the A/L Level.

Wind data (including wind directions and speeds), ambient temperature and relative humidity measured at Wong Chuk Hang weather station operated by the Hong Kong Observatory (HKO) were also provided in *Annex A5* as reference.

Besides, since all the measured 24-hr average RSP concentrations at AM2 and AM3 were well below the A/L Level, therefore, the monitoring frequency of AM2 and AM3 will be reduced to monthly interval from next month.

3 NOISE MONITORING

3.1 Introduction

Noise monitoring has been carried out following the requirements given in the updated EM&A Manual. The requirements and results are detailed in the following sections.

3.2 Noise Monitoring Requirements

It has been recommended in the EIA Report for "Repositioning and Long Term Operation Plan of Ocean Park" and stated in the EM&A Manual that fixed plant noise source monitoring should be conducted during the first operational year of the Open-air Night Show at the Aqua City.

The monitoring of fixed plant noise source impact is to be conducted:

- During the lagoon night show (hereinafter referred to as "lagoon night show noise monitoring")
- Not during the lagoon night show (hereinafter referred to as "daily operational noise monitoring")

Lagoon night show noise monitoring was carried out at all designated monitoring stations during the performance of lagoon night shows at a logging interval of 30 minutes. The noise monitoring was conducted twice a week, i.e. once on a normal weekday and once on a general holiday or Sunday.

The need for noise monitoring during the lagoon night show was reviewed based on the monitoring results, any requirements to adjust the loudspeaker system, and any change to the show schedule or rundown. With the same loudspeaker system and show rundown, if the noise levels of the month comply with the fixed plant noise criteria as stipulated in *Technical Memorandum on Environmental Impact Assessment Process* (EIAO-TM), or are consistent with the baseline noise levels, the ETL may consider not including the noise monitoring in the subsequent monitoring programme. Agreement from the IEC and approval from EPD must be sought prior to suspension of noise monitoring. Impact monitoring can be resumed if there is any change to the power, orientation, and volume of the loudspeaker system, or to the show rundown, or an increase of show frequency.

For daily operational noise monitoring, 30-minute average noise measurement at each designated station during the operational hours of Ocean Park but not during the lagoon night show should be conducted. The monitoring frequency should be the same as that for the noise monitoring during the

lagoon night show. Agreement from the IEC and approval from EPD must be obtained prior to suspension of noise monitoring.

The following sections describe the detailed methodology of the fixed plant noise monitoring.

3.2.1 Monitoring Locations

Noise monitoring was conducted at five designated noise monitoring locations in accordance with the approved EM&A Manual. Alternative noise monitoring has been proposed because of accessibility problem, as presented in *Table 3.1*, and shown in *Figure 3.1*. The alternative noise monitoring locations have been agreed by the ET and IEC.

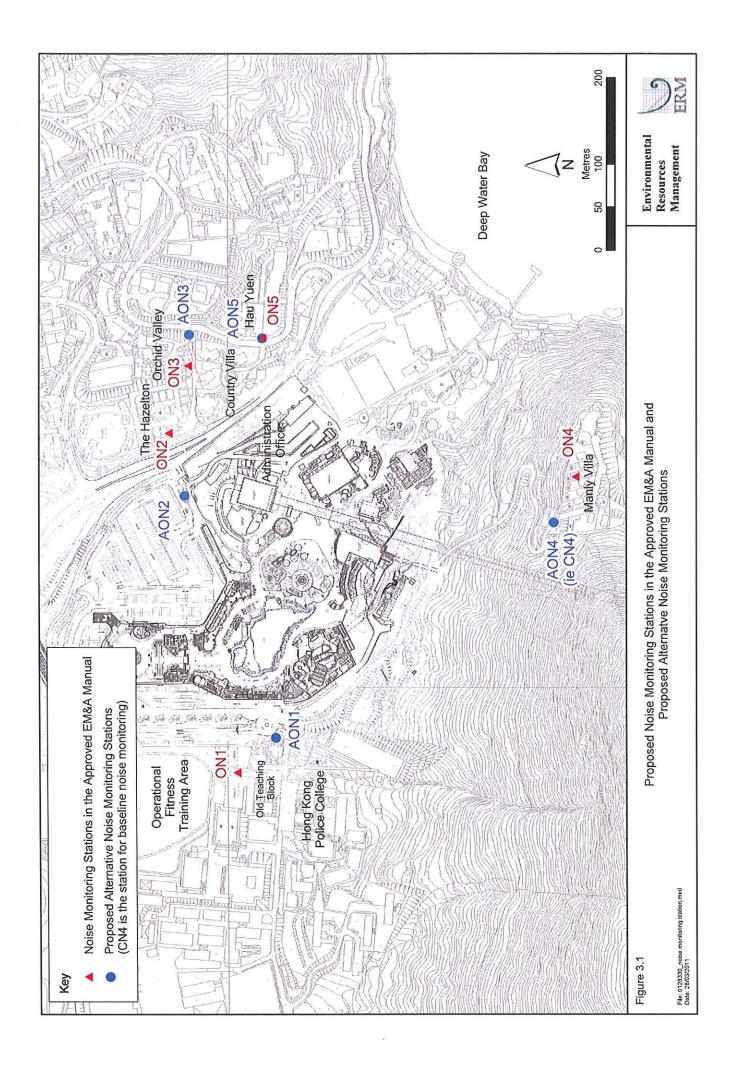
Table 3.1 Alternative Noise Monitoring Stations during the Operational Phase

Alternative Noise Monitoring Stations	Description	Location	With or without Façade Correction
AON1	Open Area adjacent to Police Training School	1.2m above street level	without facade correction
AON2	Old canteen building, Ocean Park	1.2m above roof level	with facade correction
AON3	Orchid Valley	1.2m above street level near the entrance gate	without facade correction
AON4	Manly Villa	1.2m above street level near the entrance	with facade correction
AON5	Hau Yuen	1.2m above street level outside boundary wall	with façade correction

3.2.2 Monitoring Parameters

Lagoon Night Show Noise Monitoring

Six consecutive measurements of $L_{Aeq, 5\,min}$ reading were carried out to calculate the $L_{Aeq, 30\,min}$ noise level during the lagoon night show.


Daily Operational Noise Monitoring

Six consecutive measurements of $L_{Aeq, 5 \, min}$ reading were carried out to calculate the $L_{Aeq, 30 \, min}$ noise level before the lagoon night show, ie during operation of the Ocean Park.

Background Noise Level

Three consecutive measurements of $L_{Aeq, 5\,min}$ reading were carried out to calculate the $L_{Aeq, 15\,min}$ noise level after the lagoon night show, ie without operation of the Ocean Park.

Any significant influencing factors on the measured noise levels were taken into account in accordance with standard acoustical principles and practices. The corrected noise level due to the lagoon night show and the operation of Ocean Park was computed based on the background noise level and measured noise level.

3.2.3 Monitoring Frequency

The monitoring for both lagoon night show noise monitoring and daily operational noise monitoring were conducted twice per week - one on a normal weekday and one on a general holiday, including Sundays during this reporting month.

3.2.4 Monitoring Methodology

The sound level meters and calibrator used for the noise monitoring, as listed in *Table 3.2* below, complies with IEC 651: 1979 and 804:1985 (Type 1) specification.

Table 3.2 Noise Measurement Equipments

Monitori	ng Location	Monitoring Equipment
AON1	Open Area adjacent to Police Training	RION NA-27 Sound Level Meter
	School	RION NC-73 calibrator
AON2	Old canteen building, Ocean Park	RION NL-31 Sound Level Meter
		RION NC-73 calibrator
AON3	Orchid Valley	RION NL-31 Sound Level Meter
	*	RION NC-73 calibrator
AON4	Manly Villa	RION NL-31 Sound Level Meter
	*	RION NC-73 calibrator
AON5	Hau Yuen	RION NL-31 Sound Level Meter
		RION NC-73 calibrator

Noise monitoring was conducted with reference to the calibration and measurement procedures as stated in the *Technical Memorandum for the Assessment of Noise from Places other than Domestic Premises, Public Places or Construction Sites (IND-TM)*. Immediately prior to and following each noise measurement the accuracy of the monitoring equipments was checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements were accepted if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

The sound level meters and acoustic calibrator have been calibrated by a HOKLAS accredited laboratory every two years. The relevant calibration certificates are presented in *Annex B1*.

Noise measurements were made without the presence of fog and rain, and with steady wind speed and gusts not exceeding 5ms^{-1} and 10 ms^{-1} , respectively in accordance with international standards and practices ⁽¹⁾. Broadband measurement of L_{Aeq} , L_{10} , L_{90} , L_{max} and L_{min} has been recorded at 100ms interval.

⁽¹⁾ ISO 11819-1:1997 and ISO/FDIS 13472-1:2001

3.2.5 Compliance Assessment

Fixed Plant Noise

As recommended in the EIA and stated in the EM&A Manual, OPC will follow the Action and Limit (A/L) Levels as recommended in EIA and EM&A Manual which are summarised in *Table 3.3*. In case exceedances are resulted from cumulative impacts, all steps stipulated in the Event/ Action Plan shall be followed.

Table 3.3 Action and Limit Levels for Entertainment Noise

Identification No.	Action Level	Limit Level
ON1/AON1		Leq (30 min) 60 dB(A)
ON2/AON2	un 1	Leq (30 min) 60 dB(A)
ON3/AON3	When documented complaint is received from	L _{eq (30 min)} 55 dB(A)
ON4/AON4	any one of the sensitive receivers	Leq (30 min) 55 dB(A)
ON5/AON5		Leq (30 min) 55 dB(A)

3.3 RESULTS OF NOISE MONITORING

The measured noise levels at the monitoring locations are given in *Annex B2* and graphically presented in *Annex B3*.

Results indicated that the background corrected Lagoon Night Show Noise Levels has complied with the Limit Level at all monitoring stations during all monitoring dates.

The background corrected Daily Operational Noise Levels complied with the Limit Levels at most of the monitoring stations during most of the monitoring dates. Noise exceedances were recorded at AON1 (Open Area adjacent to Police Training School) due to high background noise from the visitors and traffic during public holidays and AON3 (Orchid Valley) and AON5 (Hau Yuen) due to the traffic noise from Shouson Hill Road. Detail discussion on noise exceedances are given in *Section 3.4* below.

3.4 SUMMARY OF NOISE EXCEEDANCES

Noise exceedances recorded during this reporting period are summarised in *Table 3.4* below.

Table 3.4 Summary of Daily Operational Noise Exceedance during this Reporting Period

Date	Noise	Measured No	ise Level, dB(A)	Daily	Limit
	Monitoring Station	Daily Operational Noise Level, L _{eq (30min)}	Background Noise Level, L _{eq (15min)} dB(A)	Operational Noise Level (Background Corrected) (a),	Level, L _{eq (30 min)} dB(A)
		dB(A)		Leq (30min) dB(A)	
27 Mar 2011	AON1	67.1	66.1	62.8	60
(Public Holiday)	AON3	56.8	53.8	56.6	55
	AON5	59.0	55.0	56.7	55
29 Mar 2011 (Weekday)	AON5	59.6	57.2	56.0	55
3 Apr 2011 (Public Holiday)	AON1	67.3	65.4	65.9	60
10 Apr 2011	AON1	67.5	66.0	65.0	60
(Public Holiday)	AON3	56.3	51.8	57.3	55
12 Apr 2011 (Weekday)	AON3	57.2	54.9	56.3	55
22 Apr 2011 (Public Holiday)	AON1	65.0	62.2	64.8	60
24 Apr 2011 (Public Holiday)	AON1	65.1	64.2	60.5	60

Note:

AON1 – High Background Noise during Public Holidays

The monitoring station AON1 is directly facing the bus terminus of the Ocean Park. The measured noise levels were dominated by the bus parking, bus moving in and out the terminus to pick up visitors leaving the Ocean Park during evening time. The measured background noise levels were in the range of 62 to 66 dB(A), ie 2 to 6 dB(A) higher than the Limit Level, during the five days with noise exceedances as they were public holidays with more visitors (see *Table 3.4*).

AON3 and AON5 - Traffic Noise from Shouson Hill Road

The exceedances at AON3 and AON5 were mainly due to the traffic at Shouson Hill Road.

Summary

As mentioned above, the noise exceedances were due to the bus movements at the bus terminus during public holidays and traffic from Shouson Hill Road, ie not due to the fixed plant noise sources or the lagoon night show from the Ocean Park.

⁽a) The Background Corrected Noise Levels were either measured in front of a façade at AON2, AON4 and AON5 or with façade correction of 3 dB(A) at AON1 and AON3.

4 OVERALL CONCLUSIONS

The Open-air Night Show commenced on 27 January 2011. According to the requirements set out in the Environmental Permit (EP) and the updated EM&A Manual, air quality and noise monitoring shall be carried out during the first year of the operation of Open-air Night Show. This is the third air quality and noise monitoring report which summarises the impact monitoring results during the reporting period from 27 March to 26 April 2011.

24-hr average respirable suspended particulates (RSP) monitoring were conducted at a designated monitoring station on the rooftop of the Administrative Building in OP (AM1) on 10 April 2011, and on the Landscape Storage Area in Ocean Park (AM2) and Rooftop of Main Medical Block of Graham Hospital (AM3) on 28 March, 4, 10 and 18 April 2011. All monitored 24-hour average RSP concentrations measured at AM1, AM2 and AM3 complied with the Action/Limit (A/L) Level. Since the measured 24-hr average RSP concentrations at AM2 and AM3 complied with A/L Level, the monitoring frequency will be reduced to monthly in the next month.

Daily operational noise and lagoon night show noise monitoring were carried out at five designated monitoring stations during this reporting period. Out of the 5 stations, noise exceedances were recorded at AON1 (Open Area adjacent to Police Training School), AON3 (Orchid Valley) and AON5 (Hau Yuen) due to noise emanating from the bus terminus, high background noise from visitors and traffic during the public holidays, and the traffic noise from Shouson Hill Road.

Annex A1

HVS Calibration Report

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:

MS WINNIE KO

CLIENT:

ERM HONG KONG

ADDRESS:

21/F, LINCOLN HOUSE, 979 KING'S ROAD,

TAIKOO PLACE, ISLAND EAST,

QUARRY BAY, HONG KONG.

PROJECT:

OPC AIR QUALITY MONITORING FOR OPERATION

OF SYMBIO SHOW

WORK ORDER:

HK1107184

LABORATORY:

HONG KONG

DATE RECEIVED: DATE OF ISSUE:

24/03/2011

SAMPLE TYPE:

04/04/2011

EQUIPMENT

No. of SAMPLES:

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test: Flow Rate

Description: High Volume Sampler

Brand Name: TISCH

Model No.: Serial No.:

Equipment No.:

HK647, HK649, HK651

Date of Calibration: 24 March, 2011

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

Phone:

852-2610 1044

11/F Chung Shun Knitting Centre 1-3 Wing Yip Street

Fax: Email: 852-2610 2021

hongkong@alsglobal.com

Kwai Chung

HONG KONG

Mr Chan Kwok Fai, Godfrey Laborator Manager - Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

ADDRESS 11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong PHONE +852 2610 1044 FAX +852 2610 2021 ALS TECHNICHEM (HK) PTY LTD Part of the ALS Laboratory Group A Campbell Brothers Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS Technichem (HK) Pty Ltd.

Calibration Report for High Volume Sampler (RSP Sampler)

Report No.	;	HK1107184	Equipment No.	:	HK649
Location	:	(AM1)	Calibration date	:	24/03/2011
Brand Name	1	TISCH	Calibration Due date	:	24/06/2011

CALIBRATION OF CONTINUOUS FLOW RECORDER

	Ar	nbient Condi	tion			
	Ambient			Seaso	nal	
Temperature, Ta	291.5	K	Temperature, Ts		291.3	K
Pressure,Pa	1016	hPa	Pressure,Ps		1018	hPa
	Orifice Tran	sfer Standar	s Information			
Equipment No.	TE-5025A (#1483)	Slope,m _c	1.25411 Intercept,	b _c	-0.0031	4
Last Calibration Date	02-June-2010		$Q_a = [\sqrt{(\Delta H.Ta/Pa)}]$)-b _c]/r	n _c	
Next Calibration Date	02-June-2011					

	Calib	ration of RSP		
Calibration	Manometer Reading	Q std	Continuous	W((Ta+30)/Pa) ^{1/3}
Point	H(inches of water)	(m³/min)	Flow Recorder,	
	(ΔH)	X-axis	W (CFM)	Y-axis
1	13.0	1.5425	55	30.9390
2	10.4	1.3799	49	27.5638
3	8.6	1.2550	44	24.7512
4	5.3	0.9858	34	19.1259
5	3.6	0.8129	27	15.1882

By Linear Regression of Y Vs X

Correlation coefficient, R =	0.9999
Slope,m =	21.5400
Intercept, b =	-2.2311
Calibration result :	

*If the correlation coefficient, R is < 0.9900. Checking and recalibration are required.

		g and recampitation are required			
Remarks :					
Calibration by	: Sam Wong	Checked by	•	Iris Lin	
Signature	: Sam Wong	Signature	:	Iris Lin	
Date	: 24/03/2011	Date	:	31/03/2011	

ALS Technichem (HK) Pty Ltd.

Calibration Report for High Volume Sampler (RSP Sampler)

Work Order No.	:	HK1107184	ALS Equipment No.	:	HK647	
Location	:	(AM2)	Calibration date	;	24/03/2011	
Brand Name	:	TISCH	Calibration Due date	:	24/06/2011	

CALIBRATION OF CONTINUOUS FLOW RECORDER

		Ambient Co	ondition			
	Ambient			Seas	onal	
Temperature, Ta	291.9	К	Temperati	ıre, Ts	291.3	K
Pressure,Pa	1016	hPa	Pressure,P	s	1018	hPa
	Orifice Tr	ansfer Star	dars Inform	ation		
Equipment No.	TE-5025A (#1483)	Slope,m _c	1.25411	Intercept, b _c	-0.0031	.4
Last Calibration Date	02-June-2010		$Q_a = [\sqrt{(}$	ΔH.Ta/Pa)-b _c]/	m _c	
Next Calibration Date	02-June-2011					

	Ca	alibration of RSP		
Calibration	Manometer Reading	Q_{std}	Continuous	$W((Ta+30)/Pa)^{1/2}$
Point	H(inches of water)	(m³/min)	Flow Recorder,	
	(ΔH)	X-axis	W (CFM)	Y-axis
1	12.0	1.4831	55	30.9582
2	9.2	1.2989	47	26,4552
3	7.9	1.2038	44	24.7666
4	4.8	0.9389	32	18.0121
5	3.5	0.8021	25	14.0719

By Linear Regression of Y Vs X

Correlation coeff Slope,m = Intercept, b = Calibration result	2-	0.9987 4.5974 5.3196				
*If the correlation	coefficient, R is < 0 .	9900. Checking a	nd recalibration are re	qurie	d.	
Remarks :	•					
	•					
Calibration by	: Sam Wong		Checked by	:	Iris Lin	
Signature	: Sam Wong		Signature	:	Iris Lin	
Date	: 24/03/2011		Date	:	31/03/2011	

ALS Technichem (HK) Pty Ltd.

Calibration Report for High Volume Sampler (RSP Sampler)

Location :	(AM3)	•	Calibration	n date :	24	/03/2011	
CALIBRATION OF CON	TISCH TINUOUS FLOW RECORDER		Calibration	n Due date :	24,	/06/2011	
	Amb	ient Condit	ion				
	Ambient			Sea	sonal		
Temperature, Ta	292.1	K	Temperati	ure, Ts	2	91.3	K
Pressure,Pa	1016	hPa	Pressure,F	Ps	1	.018	hPa
	Orifice Transf	er Standars	Informatio	on			
Equipment No.	TE-5025A (#1483)	Slope,m _c	1.25411	Intercept, b _c		-0.00314	
Last Calibration Date	02-June-2010		$Q_a = [\sqrt{(}$	ΔH.Ta/Pa)-b _c]/m _c		
Next Calibration Date	02-June-2011						
	Cali	bration of I	RSP				
Calibration	Manometer Reading	Q	std	Continuous		W((Ta+30))/Pa) ^{1/2}
Point	H(inches of water)	(m ³ /	min)	Flow Recorde	er,		
	(ΔH)	X	axis	W (CFM)		Y-ax	is
1	13.3	1.5	617	61		34.34	62
2	10.3	1.3	747	53		29.84	18
3	8.8	1.2	708	50		28.15	26
4	5.0	0.9	585	39		21.95	90
5	3.8	0.8	359	32		18.01	.77
		3	alibration a	are requried.			
Calibration by :	Sam Wong	_	Ch	ecked by	_	s Lin	
Signature :	Sam Wong	_	10 m	nature		s Lin	
Date :	24/03/2011		Da	te	: 31	1/03/2011	

Annex A2

Laboratory Report

ALS Technichem (HK)Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

		CERTIF	CERTIFICATE OF ANALYSIS		
Client	: ERM HONG KONG : MS WINNIE KO	Laboratory Contact	: ALS Technichem HK Pty Ltd : Chan Kwok Fai, Godfrey	Page Work Order	:10f2 : HK1107352
Address	: 21/F, LINCOLN HOUSE, 979 KING'S ROAD, TAIKOO PLACE, ISLAND EAST, QUARRY BAY, HONG KONG	Address	: 11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail Telephone	: Winnie.ko@erm.com : +852 2271 3147	E-mail Telephone Facsimile	: Godfrey.Chan@alsenviro.com : +852 2610 1044 : +852 2610 2021		
Project	: OPC AIR QUALITY MONITORING FOR	Quote number	.1.	Date Samples Received	: 30-MAR-2011
Order number	CPERATION OF STRIBIO SHOW			Issue Date	: 04-APR-2011
C-O-C number	1 !			No. of samples received No. of samples analysed	2 2
Oile					

General Comments

not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is

Key; LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific comments for Work Order: HK1107352

Sample(s) analysed and reported on an as received basis.

Sample(s) were collected by ALS Technichem (HK) staff on 30 March, 2011.

This report may not be reproduced except with prior written approval from the testing laboratory.

Authorised results for Inorganics General Manager Position Ordinance of Hong Kong, Chapter 553, Section 6. Signatories Fung Lim Chee, Richard

signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions

This document has been electronically signed by those names that appear on this report and are the authorised

ALS Laboratory Group Trading Name: ALS Technichem (HK) Pty Ltd

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com A Campbell Brothers Limited Company

2 of 2 ERM HONG KONG HK1107352 Page Number Client Work Order

Analytical Results				12 mm 2 s.c.		
S.:h-Matrix: Ell TER		Clie	Client sample ID	AM2	AM3	
	Sig	ent samplin	Client sampling date / time	[28-MAR-2011]	[28-MAR-2011]	
P. Company	CAS Number LOR	LOR	Unit	HK1107352-001	HK1107352-002	
Compound						
EA/ED: Physical and Aggregate Properties						
HK-RSP: Respirable Suspended		0.01	mg/m³	90.0	0.11	
Particulate						

ALS Technichem (HK) Pty Ltd

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	ERM HONG KONG MS WINNIE KO	Laboratory Contact	: ALS Technichem HK Pty Ltd : Chan Kwok Fai, Godfrey	Page Work Order	: 1 of 2 : HK1107817
Address	: 21/F, LINCOLN HOUSE, 979 KING'S ROAD, TAIKOO PLACE, ISLAND EAST, QUARRY BAY, HONG KONG	Address	: 11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail Telephone Facsimile	: Winnie.ko@erm.com : +852 2271 3147 : +852 2723 5660	E-mail Telephone Facsimile	: Godfrey.Chan@alsenviro.com : +852 2610 1044 : +852 2610 2021		
Project	OPC AIR QUALITY MONITORING FOR OPERATION OF SYMBIO SHOW	Quote number	1	Date Samples Received	; 06-APR-2011
Order number	; ; ; ;			Issue Date	: 12-APR-2011
C-O-C number				No. of samples received	2 .
Site	1			No. or samples analysed	7:

General Comments

not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is

Key; LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1107817

Sample(s) were collected by ALS Technichem (HK) staff on 06 April, 2011.

Sample(s) were collected by ALS Technicated (TrV) stan on 50 April, 2011.
Sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signalatics
Signalatics

 Signatories
 Position
 Authorised results for Fung Lim Chee, Richard

 Fung Lim Chee, Richard
 General Manager
 Inorganics

ALS Laboratory Group
Trading Name: ALS Technichem (HK) Pty Ltd
11F., Chung Shun Knilling Carte, 1.4 Wing Yip Street, Kwal Chung, N.T., Hong Kong
Tel: +852 2810 1044 Fax: +852 2810 2021 www.alsonvin.com
A Campbell Brothers Limited Company

: 2 of 2 : ERM HONG KONG HK1107817 Page Number Client Work Order

Analytical Results						
Sub-Matrix: FILTER		Clie	Client sample ID	AM2	AM3	
	Ö	ent samplin	Client sampling date / time	[04-APR-2011]	[04-APR-2011]	
Compound	CAS Number LOR	LOR	Unit	HK1107817-001	HK1107817-002	
EA/ED: Physical and Aggregate Properties	41					
HK-RSP: Respirable Suspended Particulate	1	0.01	mg/m³	90.0	0.11	

ALS Technichem (HK) Pty Ltd

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client Contact	: ERM HONG KONG : MS WINNIE KO	Laboratory Contact	: ALS Technichem HK Pty Ltd : Chan Kwok Fai, Godfrey	Page Work Order	: 1 of 2 : HK1108379
Address	: 21/F, LINCOLN HOUSE, 979 KING'S ROAD, TAIKOO PLACE, ISLAND EAST, QUARRY BAY, HONG KONG	Address	: 11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail Telephone	: Winnie.ko@erm.com : +852 2271 3147	E-mail Telephone	: Godfrey.Chan@alsenviro.com : +852 2610 1044		
Facsimile Project	: +852 2723 5660 : OPC AIR QUALITY MONITORING FOR	Quote number	: +852 Z610 Z0Z1 :	Date Samples Received	: 12-APR-2011
Order number	OPERATION OF SYMBIO SHOW :			Issue Date	: 14-APR-2011
C-O-C number				No. of samples received	. 3
Site	: OCEAN PARK			No. of samples analysed	e

General Comments

not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is

Key; LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1108379

Sample(s) were collected by ALS Technichem (HK) staff on 12 April, 2011. Sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written

approval from the testing laboratory.

signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions This document has been electronically signed by those names that appear on this report and are the authorised Ordinance of Hong Kong, Chapter 553, Section 6. Authorised results for Inorganics General Manager Position Signatories Fung Lim Chee, Richard

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong Tel: +852 2610 1044 Fax: +852 2610 2021 www.alsenviro.com ALS Laboratory Group
Trading Name: ALS Technichem (HK) Pty Ltd A Campbell Brothers Limited Company

Page Number Client Work Order

: 2 of 2 : ERM HONG KONG HK1108379

Analytical Results							
Sub-Matrix: FILTER		Clie	Client sample ID	AM1	AM2	AM3	
	ĊĬ	ent samplir	Client sampling date / time	[10-APR-2011]	[10-APR-2011]	[10-APR-2011]	
Compound	CAS Number LOR	LOR	Unit	HK1108379-001	HK1108379-002	HK1108379-003	
EA/ED: Physical and Aggregate Properties						The state of the s	
HK-RSP: Respirable Suspended	ļ	- 0.01	mg/m³	0.03	0.05	60'0	
Particulate							

ALS Technichem (HK)Pty Ltd

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client Contact	: ERM HONG KONG : MS WINNIE KO	Laboratory Contact	: ALS Technichem HK Pty Ltd : Chan Kwok Fai, Godfrey	Page Work Order	: 1 of 2 : HK1109205
Address	: 21/F, LINCOLN HOUSE, 979 KING`S ROAD, TAIKOO PLACE, ISLAND EAST, QUARRY BAY, HONG KONG	Address	: 11/F., Chung Shun Knitting Centre, 1 - 3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail Telephone	: Winnie.ko@erm.com : +852 2271 3147	E-mail Telephone	: Godfrey.Chan@alsenviro.com : +852 2610 1044		

: 20-APR-2011

Date Samples Received

: +852 2610 2021

Quote number

OPC AIR QUALITY MONITORING FOR

+852 2723 5660

Facsimile Project OPERATION OF SYMBIO SHOW

Facsimile

: 27-APR-2011

2 2

No. of samples analysed

No. of samples received

Issue Date

General Comments

: OCEAN PARK

Order number C-O-C number

not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is 26-APR-2011

Key; LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific comments for Work Order: HK1109205

Sample(s) were collected by ALS Technichem (HK) staff on 20 April, 2011. Sample(s) analysed and reported on an as received basis.

This report may not be reproduced except with prior written

approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Position Authorised results for	General Manager Inorganics
Signatories	Fung Lim Chee, Richard

ALS Laboratory Group
Trading Name: ALS Technichem (HK) Pty Ltd
11F., Chung Shun Kniting Cente, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong
Tel: +852 E910 1044 Fex: +852 E910 2021 www.alsowiro.com
A Campbell Brothers Limited Company

Page Number Client Work Order

: 2 of 2 : ERM HONG KONG HK1109205

Analytical Results						
Sub-Matrix: FILTER		Clie	Client sample ID	AM2	AM3	
	Clie	nt samplin	Client sampling date / time	[18-APR-2011]	[18-APR-2011]	
Compound	CAS Number LOR	LOR	Unit	HK1109205-001	HK1109205-002	
EA/ED: Physical and Aggregate Properties						
HK-RSP: Respirable Suspended Particulate	I	0.01	mg/m³	0.09	0.16	

Annex A3

Detailed Summary and Graphical Presentation of the Cumulative Results since Commencement of Open-air Night Show

Annex A3 Measured 24-hour Average RSP Concentrations

RSP Monitoring Station:

AM1 (Rooftop of Admininstration Building in Ocean Park)

							Elapsed Time		Sampling				RSP	Limit	
Start		Finish		Weather	Filter M	Neight (g)	Reading	ling	Time	Flow	Flow Rate (m3/min)	³/min)	Conc.	Level	Щ
Date	Time	Date	Time		Initial	Final	Initial	Final	(hrs)	Initial	Final	Average	(md/m ₃)	(md/m ₃)	0
28-, Jan-11	17:00	17:00 29-Jan-11	17:00	Sunny	2.8652	2.9914	17711.68 17735.95	17735.95	24.27	1.39	1.39	1.39	63	180	202102
T	17.00	17:00 05-Feb-11 17:00	17:00	Sunny	2.8755	3.0567	17735.95	17760.30	24.35	1.39	1.43	1.41	88	180	202099
12-Feh-11	17:00	13-Feb-11	17:00	Cloudy	2.8808	3.0820	17760.30	17784.33	24.03	1.39	1.39	1.39	101	180	202100
20-Feb-11	17:00	21-Feb-11	17:00	Cloudy	2.8770	2.9497	17784.33	17808.45	24.12	1.39	1.39	1.39	36	180	202101
		17:00 23-Mar-11	17:00	Cloudy	2.7967	2.8948	17808.45	17833.61	25.16	1.49	1.49	1.49	44	180	202264
		17:00 11-Apr-11	17:00	Cloudy	2.7924	2.9167	17842.11	17866.14	24.03	1.08	1.08	1.08	80	180	202288
	2														
												Min.	36		
												Max.	101		
												Average	89		

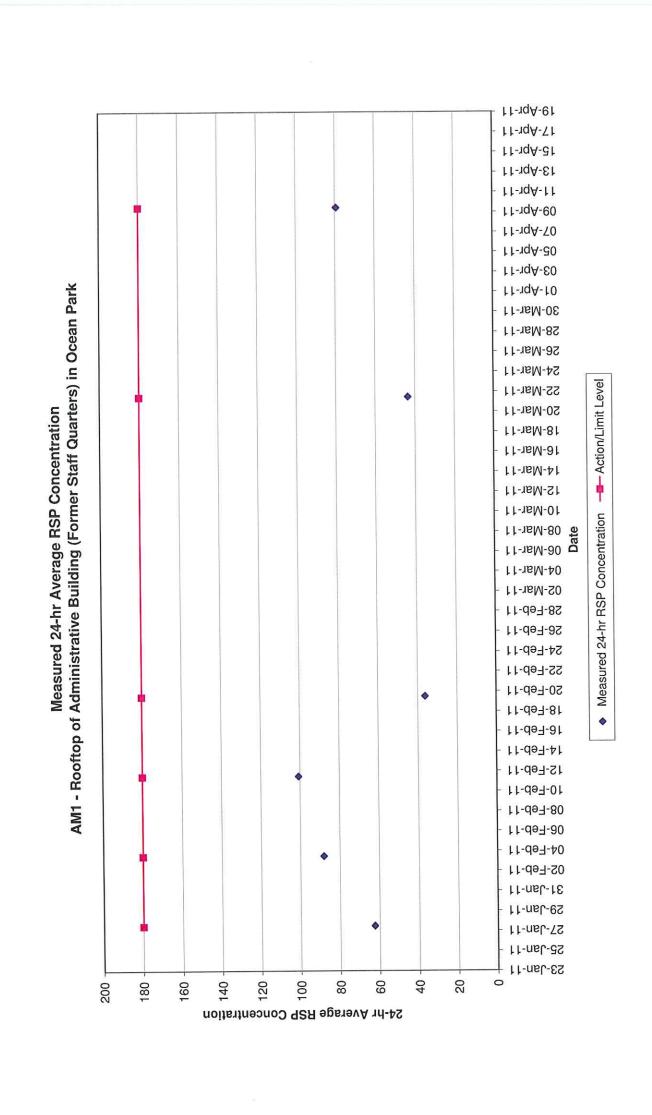
Annex A3 Measured 24-hour Average RSP Concentrations

RSP Monitoring Station:

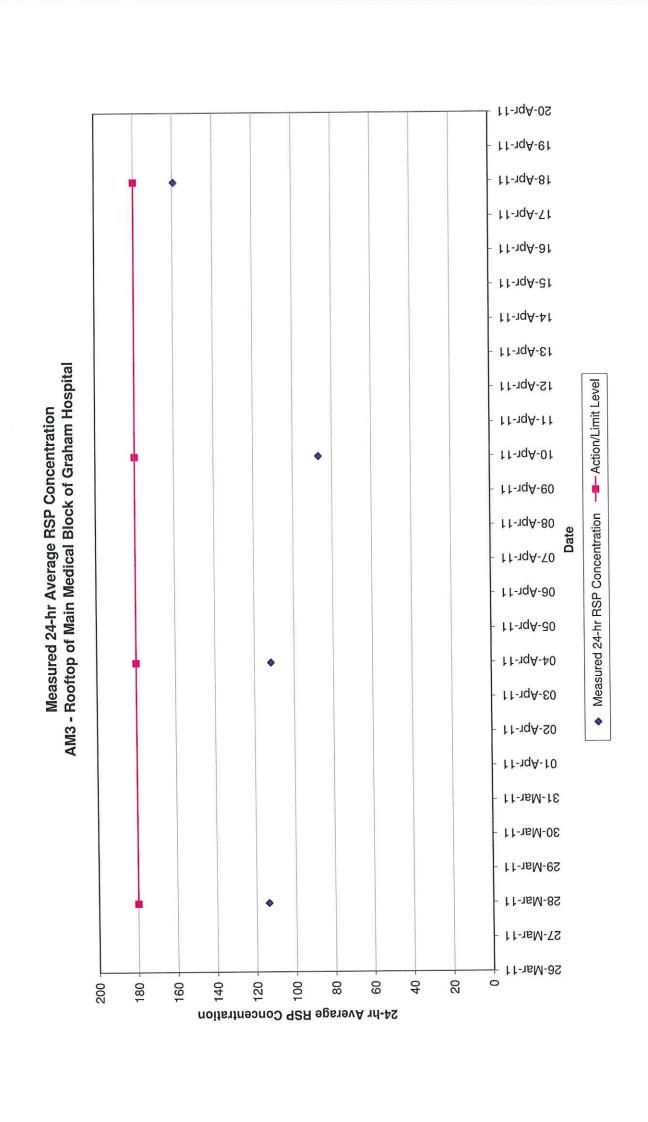
AM2 (Landscape Storage Area in Ocean Park)

					đ		Elapse	Elapsed Time	Sampling				RSP	Limit	
Start		Finish		Weather	Filter V	Weight (g)	Reading	ding	Time	Flow	Flow Rate (m ³ /min)	³/min)	Conc.	Level	Filter
Date	Time	Date	Time		Initial	Final	Initial	Final	(hrs)	Initial	Final	Average	(md/m ₃)	(µd/m ₃)	ID
28-Mar-11	17:00	17:00 29-Mar-11	17:00	Cloudy	2.7923	2.8849	5069.23	5092.98	23.75	1.04	1.04	1.04	62	180	202287
04-Apr-11	17:00	17:00 05-Apr-11	17:00	Cloudy	2.7884	2.9238	5092.98	5116.98	24.00	1.47	1.47	1.47	64	180	202290
10-Apr-11	17:00	11-Apr-11	17:00	Cloudy	2.7727	2.8799	5116.98	5140.98	24.00	1.45	1.45	1.45	51	180	202291
18-Apr-11	17:00	17:00 19-Apr-11	17:00	Cloudy	2.8004	2.9833	5140.98	5164.98	24.00	1.43	1.43	1.43	88	180	202292
		No.			8							Min.	51		

62


Max. Average

Annex A3 Measured 24-hour Average RSP Concentrations


RSP Monitoring Station:

AM3 (Rooftop of Main Medical Block of Graham Hospital)

							Elapse	Elapsed Time	Sampling				RSP	Limit	
Start		Finish	<u>.</u>	Weather	Filter V	Weight (g)	Reading	ding	Time	Flow	Flow Rate (m ³ /min)	1³/min)	Conc.	Level	Filter
Date	Time	Date	Time		Initial	Final	Initial	Final	(hrs)	Initial	Final	Average	(md/m ₃)	(µg/m ₃)	D
28-Mar-11 1	17:00	17:00 29-Mar-11	17:00	Cloudy	2.7946	2.9435	13068.68	13092.67	23.99	0.91	0.91	0.91	114	180	202265
04-Apr-11 1	17:00	17:00 05-Apr-11	17:00	Cloudy	2.8005	2.9049	13092.67	13092.67 13116.68	24.01	0.65	9.0	0.65	112	180	202289
10-Apr-11 1	17:00	11-Apr-11	17:00	Cloudy	2.7948	2.8825	13116.68	13116.68 13140.66	23.98	0.70	0.70	0.70	87	180	202294
18-Apr-11 1	17:00	19-Apr-11	17:00	Cloudy	2.7966	2.9578	13140.66 13164.68	13164.68	24.02	0.70	0.70	0.70	160	180	202295
												Min.	87		
												Max.	160		
												Average	118		

Annex A4

Recorded RSP
Concentrations at EPD's
AQMSs in Tung Chung,
Shatin, Tai Po, Yuen Long
and Tap Mun on 28 March,
4, 10, 18 April 2011

Annex A4

Recorded RSP Concentrations at EPD's AQMSs in Tung Chung, Shatin, Tai Po, Yuen Long, and Tap Mun on 28 March, 4, 10, 18 April 2011

28 March 2011

Tung Chung

29/03/2011 10:00 29/03/2011 10:00 29/03/2011 9:00 29/03/2011 8:00
29/03/2011 3:00 29/03/2011 2:00 29/03/2011 1:00 29/03/2011 0:00
28/03/2011 23:00 28/03/2011 22:00 28/03/2011 21:00 28/03/2011 20:00
28/03/2011 19:00 28/03/2011 18:00 28/03/2011 17:00

Shatin

29/03/2011 16:00 104.2 29/03/2011 15:00 99.1 29/03/2011 16:00 91.6 29/03/2011 10:00 97.6 29/03/2011 10:00 84.8 29/03/2011 9:00 89.1 29/03/2011 9:00 89.1 29/03/2011 5:00 89.1 29/03/2011 5:00 89.1 29/03/2011 5:00 89.1 29/03/2011 5:00 89.2 29/03/2011 5:00 82.8 29/03/2011 2:00 82.8 29/03/2011 2:00 82.8 29/03/2011 2:00 82.8 29/03/2011 2:00 84.7 29/03/2011 2:00 84.7 29/03/2011 2:00 84.7 29/03/2011 2:00 84.7 29/03/2011 2:00 84.7 29/03/2011 2:00 84.7 29/03/2011 2:00 84.7 29/03/2011 2:00 89.8	Date & Time	RSP
15:00 11:00		104.4
14:00 11:00		99.1
13:00 11:00 11:00 11:00 11:00 11:00 12:00 11:00 12:00 12:00 13:00	-	84
12:00 11:00 10:00 10:00 17:00	-	91.9
11:00 10:00 1 9:00 1 8:00 1 5:00 1 15:00 1 1:00 1 1:00 22:00 23:00 23:00 23:00 23:00	4	97.6
10:00 1 9:00 1 8:00 1 7:00 1 5:00 1 2:00 1 1:00 1 1 1:00 1 1 1:00 1 1 1:00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	88
19:00 8:00 7:00 15:00 13:00 10 10:00 10 10 10 10 10 10 10 10 10 10 10 10 1	1336	84.8
8:00 7:00 6:00 15:00 12:00 10:00 23:00 21:00	-	80.1
7:00 6:00 15:00 14:00 13:00 12:00 10:00 23:00 21:00	-	69.7
1 6:00 1 5:00 1 3:00 1 1:00 2 23:00 2 21:00	-	75.7
15:00 12:00 12:00 11:00 10:00 22:00 21:00	-	77.2
1 4:00 1 3:00 1 1:00 2 2:00 2 2:00 2 2:00	-	71.4
1 3:00 1 2:00 1 1:00 2 23:00 2 22:00 2 21:00	-	82.8
1 2:00 1 1:00 2 23:00 2 22:00 2 21:00		82.8
1 1:00 23:00 22:00 21:00	29/03/2011 2:00	87.8
23:00 22:00 21:00	29/03/2011 1:00	84.7
23:00	29/03/2011 0:00	83.8
22:00	28/03/2011 23:00	88
21:00		82
		79.1

A4-1 ENVIRONMENTAL RESOURCES MANAGEMENT

76.5	77.2	73.6
28/03/2011 19:00	-	28/03/2011 17:00
	19:00	19:00

Tai Po

					_	_		_	_		_			_			OVI							
RSP	107.4	100.2	96.4	86.2	83	78.7	84.1	84.9	79.3	76.5	71.1	6.69	71.1	72.1	7	64.3	73.3	72.1	9/	82.2	75.3	79.2	6.69	83.8
Date & Time	29/03/2011 16:00	29/03/2011 15:00	29/03/2011 14:00	29/03/2011 13:00	29/03/2011 12:00	29/03/2011 11:00	29/03/2011 10:00	29/03/2011 9:00	29/03/2011 8:00	29/03/2011 7:00	29/03/2011 6:00	29/03/2011 5:00	29/03/2011 4:00	29/03/2011 3:00	29/03/2011 2:00	29/03/2011 1:00	29/03/2011 0:00	28/03/2011 23:00	28/03/2011 22:00	28/03/2011 21:00	28/03/2011 20:00	28/03/2011 19:00	28/03/2011 18:00	28/03/2011 17:00

Yuen Long

Date & Time	RSP
29/03/2011 16:00	99.2
29/03/2011 15:00	2.66
29/03/2011 14:00	7.76
29/03/2011 13:00	103.7
29/03/2011 12:00	107.7
29/03/2011 11:00	100.8
29/03/2011 10:00	118.4
29/03/2011 9:00	110.7
29/03/2011 8:00	81.6
29/03/2011 7:00	94.6
29/03/2011 6:00	73.1
29/03/2011 5:00	81.1
29/03/2011 4:00	8.99
29/03/2011 3:00	82.9
29/03/2011 2:00	2.69
29/03/2011 1:00	74.4

ENVIRONMENTAL RESOURCES MANAGEMENT

Shatin

4 April 2011

Tung Chung

Date & Time	RSP
05/04/2011 16:00	45.9
05/04/2011 15:00	45.9
05/04/2011 14:00	48.5
05/04/2011 13:00	59.3
05/04/2011 12:00	62.3
05/04/2011 11:00	49
05/04/2011 10:00	45.4
05/04/2011 9:00	40.1
05/04/2011 8:00	48
05/04/2011 7:00	57.1
05/04/2011 6:00	56.4
05/04/2011 5:00	52.8
05/04/2011 4:00	48.6
05/04/2011 3:00	45.6
05/04/2011 2:00	45.1
05/04/2011 1:00	22
05/04/2011 0:00	70.1
04/04/2011 23:00	69.7
04/04/2011 22:00	83.8
04/04/2011 21:00	86.8
04/04/2011 20:00	81.2
04/04/2011 19:00	79.7
04/04/2011 18:00	78.6
04/04/2011 17:00	80.8

Date & Time
05/04/2011 16:00
05/04/2011 15:00
05/04/2011 13:00
05/04/2011 13:00
05/04/2011 13:00
05/04/2011 13:00
05/04/2011 13:00
05/04/2011 13:00
05/04/2011 13:00
05/04/2011 2:00
05/04/2011 2:00
05/04/2011 2:00
05/04/2011 2:00
05/04/2011 2:00
05/04/2011 2:00
05/04/2011 2:00
04/04/2011 2:00
04/04/2011 2:00
04/04/2011 2:00
04/04/2011 2:00
04/04/2011 2:00
04/04/2011 2:00
04/04/2011 2:00
04/04/2011 2:00
04/04/2011 2:00

		ı
		ı
		ı
		1
		ı
3	ı	ı
•	ı	ı
٠	ı	ı
_	ı	ı
4	۱	ı
J	ı	ı
	0 1 1	2 1 2

RSP	37.5	35.8	36.9	42	45.8	67.3	52.6	42.2	37.4	45.1	20	49.7	42.5	41.6	50.6	41.8	55.5	8.99	70.1	67.7	66.5	81.9	7.77	67.2
Date & Time	05/04/2011 16:00	05/04/2011 15:00	05/04/2011 14:00	05/04/2011 13:00	05/04/2011 12:00	05/04/2011 11:00	05/04/2011 10:00	05/04/2011 9:00	05/04/2011 8:00	05/04/2011 7:00	05/04/2011 6:00	05/04/2011 5:00	05/04/2011 4:00	05/04/2011 3:00	05/04/2011 2:00	05/04/2011 1:00	05/04/2011 0:00	04/04/2011 23:00	04/04/2011 22:00	04/04/2011 21:00	04/04/2011 20:00	04/04/2011 19:00	04/04/2011 18:00	04/04/2011 17:00

ENVIRONMENTAL RESOURCES MANAGEMENT

A4-4

OCEAN PARK CORPORATION

A4-3

ENVIRONMENTAL RESOURCES MANAGEMENT

OCEAN PARK CORPORATION

Yuen Long

Date & Time

05/04/2011 16:00

05/04/2011 15:00

05/04/2011 11:00

05/04/2011 11:00

05/04/2011 11:00

05/04/2011 10:00

05/04/2011 10:00

05/04/2011 0:00

05/04/2011 0:00

05/04/2011 0:00

05/04/2011 0:00

05/04/2011 0:00

05/04/2011 0:00

05/04/2011 0:00

05/04/2011 0:00

04/04/2011 20:00

04/04/2011 20:00

04/04/2011 20:00

04/04/2011 20:00

04/04/2011 20:00

04/04/2011 20:00

04/04/2011 20:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

04/04/2011 12:00

10 April 2011

Tung Chung

Date & Time	RSP
11/04/2011 16:00	81.5
11/04/2011 15:00	68.9
11/04/2011 14:00	51.7
11/04/2011 13:00	37.9
11/04/2011 12:00	36.5
11/04/2011 11:00	36.9
11/04/2011 10:00	36.6
11/04/2011 9:00	29.5
11/04/2011 8:00	25.8
11/04/2011 7:00	32.2
11/04/2011 6:00	32.6
11/04/2011 5:00	31.1
11/04/2011 4:00	35.7
11/04/2011 3:00	40
11/04/2011 2:00	37.4
11/04/2011 1:00	31.5
11/04/2011 0:00	31
10/04/2011 23:00	31.2
10/04/2011 22:00	33.6
10/04/2011 21:00	34.8

OCEAN PARK CORPORATION

A4-5

ENVIRONMENTAL RESOURCES MANAGEMENT

47.8 44.1 44.8 10/04/2011 20:00 10/04/2011 19:00 10/04/2011 18:00 10/04/2011 17:00

Date & Time Shatin

RSP

11/04	11/04/2011 16:00	75.1
11/04	11/04/2011 15:00	69.4
11/04	11/04/2011 14:00	63.9
11/04	11/04/2011 13:00	60.3
11/04	11/04/2011 12:00	54.1
11/0	11/04/2011 11:00	44.3
11/07	11/04/2011 10:00	36.9
11/0	11/04/2011 9:00	34.1
11/0	11/04/2011 8:00	36.4
11/0	1/04/2011 7:00	29.4
11/0	1/04/2011 6:00	26.7
11/0	11/04/2011 5:00	52
11/0	1/04/2011 4:00	24.6
11/0	1/04/2011 3:00	27.2
11/0	11/04/2011 2:00	34.7
11/	11/04/2011 1:00	42.2
11/(11/04/2011 0:00	46.9
10/0	10/04/2011 23:00	59.5
10/0	0/04/2011 22:00	64.2
10/0	0/04/2011 21:00	61.5
10/01	0/04/2011 20:00	52.8
10/0	0/04/2011 19:00	47.5
10/0	0/04/2011 18:00	47.4
10/0	0/04/2011 17:00	47.9

Tai Po

	RSP
	2/
11/04/2011 15:00	58.7
11/04/2011 14:00	68.3
11/04/2011 13:00	80.3
11/04/2011 12:00	70.1
11/04/2011 11:00	52.6
11/04/2011 10:00	40.6
11/04/2011 9:00	41.4
11/04/2011 8:00	40.6
11/04/2011 7:00	46.7
11/04/2011 6:00	42.2
11/04/2011 5:00	47.2
11/04/2011 4:00	41.3
11/04/2011 3:00	38.9
11/04/2011 2:00	41.9
11/04/2011 1:00	44.4
11/04/2011 0:00	44.2
10/04/2011 23:00	47.4
10/04/2011 22:00	20

ENVIRONMENTAL RESOURCES MANAGEMENT

OCEAN PARK CORPORATION

THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS N	
0/04/2011 21:00	52.8
0/04/2011 20:00	53.2
10/04/2011 19:00	53.1
0/04/2011 18:00	46.1
10/04/2011 17:00	42.8

Yuen Long

Date & Time	107.5
	118.8
11/04/2011 14:00	111.3
11/04/2011 13:00	106.3
11/04/2011 12:00	84.5
11/04/2011 11:00	24
11/04/2011 10:00	50.4
11/04/2011 9:00	56.1
11/04/2011 8:00	46
11/04/2011 7:00	44.7
11/04/2011 6:00	33.5
11/04/2011 5:00	32.2
11/04/2011 4:00	27.7
11/04/2011 3:00	31.2
11/04/2011 2:00	40.2
11/04/2011 1:00	34.8
11/04/2011 0:00	36.2
10/04/2011 23:00	33.2
10/04/2011 22:00	32.4
10/04/2011 21:00	37.5
10/04/2011 20:00	38.9
10/04/2011 19:00	53.6
10/04/2011 18:00	51
10/04/2011 17:00	42.5

18 April 2011

Tung Chung

Date & Time	TSE.
19/04/2011 16:00	118.1
19/04/2011 15:00	109.7
19/04/2011 14:00	101.3
19/04/2011 13:00	8.96
19/04/2011 12:00	94.1
19/04/2011 11:00	91.8
19/04/2011 10:00	85.5
19/04/2011 9:00	8.99
19/04/2011 8:00	63.5
19/04/2011 7:00	63.9
19/04/2011 6:00	63.9
19/04/2011 5:00	61.7
19/04/2011 4:00	59.9
19/04/2011 3:00	63.7
19/04/2011 2:00	69.5
19/04/2011 1:00	71.1
19/04/2011 0:00	71.8
18/04/2011 23:00	60.4
18/04/2011 22:00	48.8
18/04/2011 21:00	38.3
18/04/2011 20:00	35.5
18/04/2011 19:00	31.5
18/04/2011 18:00	34.5
18/04/2011 17:00	49

Shatin

	RSP
19/04/2011 16:00	133.9
19/04/2011 15:00	121.5
19/04/2011 14:00	113.6
19/04/2011 13:00	116.5
19/04/2011 12:00	113.8
19/04/2011 11:00	101.5
19/04/2011 10:00	89.4
19/04/2011 9:00	75
19/04/2011 8:00	64
19/04/2011 7:00	59.1
19/04/2011 6:00	55.7
19/04/2011 5:00	55.7
19/04/2011 4:00	54.9
19/04/2011 3:00	54.8
19/04/2011 2:00	58.6
19/04/2011 1:00	65.5
19/04/2011 0:00	63.1
18/04/2011 23:00	57.2
18/04/2011 22:00	46.1
18/04/2011 21:00	50.6
18/04/2011 20:00	45.7

BNVIRONMENTAL RESOURCES MANAGEMENT

A4-8

OCEAN PARK CORPORATION

40.8 34 30.5 18/04/2011 19:00 18/04/2011 18:00 18/04/2011 17:00

46 47 38.2 37.4 42.9 43.4

18/04/2011 22:00 18/04/2011 21:00 18/04/2011 20:00 18/04/2011 19:00 18/04/2011 18:00 18/04/2011 17:00

Tai Po

Date & Time	HSF
19/04/2011 16:00	118.5
19/04/2011 15:00	103.7
19/04/2011 14:00	102.6
19/04/2011 13:00	103
19/04/2011 12:00	97.4
19/04/2011 11:00	94
19/04/2011 10:00	83.8
19/04/2011 9:00	19 (
19/04/2011 8:00	65.3
19/04/2011 7:00	60.1
19/04/2011 6:00	69
19/04/2011 5:00	49.2
19/04/2011 4:00	20
19/04/2011 3:00	59.1
19/04/2011 2:00	60.3
19/04/2011 1:00	53.9
19/04/2011 0:00	30
18/04/2011 23:00	45.3
18/04/2011 22:00	47.2
18/04/2011 21:00	48
18/04/2011 20:00	0 41.3
18/04/2011 19:00	39
18/04/2011 18:00	33.9
18/04/2011 17:00	31.9

Yuen Long

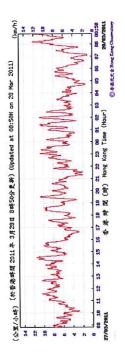
19/04/2011 16:00 19/04/2011 15:00	110.2
19/04/2011 13:00	96.3
19/04/2011 12:00	1
19/04/2011 11:00	1
19/04/2011 10:00	86.9
19/04/2011 9:00	101.5
19/04/2011 8:00	114.1
19/04/2011 7:00	70.3
19/04/2011 6:00	56.6
19/04/2011 5:00	58.7
19/04/2011 4:00	67.1
19/04/2011 3:00	59.9
19/04/2011 2:00	53.4
19/04/2011 1:00	57.8
19/04/2011 0:00	40
18/04/2011 23:00	52.6

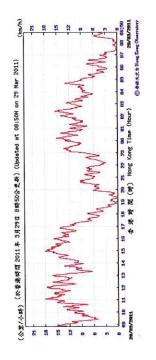
ENVIRONMENTAL RESOURCES MANAGEMENT

OCEAN PARK CORPORATION

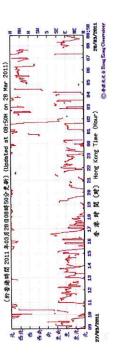
A4-10

Annex A5


Weather Data Recorded at HKO's Weather Station in Wong Chuk Hang on 28 March, 4, 10, 18 April 2011

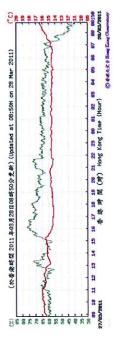

Annex A5

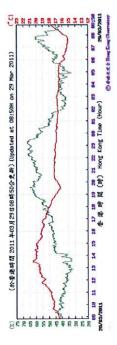
Recorded Weather Data at HKO's Weather Station in Wong Clink Hang on 28 March, 4, 10, 18 April 2011


28 March 2011

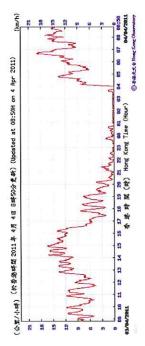
Prevailing Wind Speed

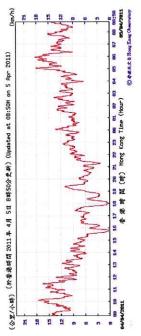
Prevailing Wind Direction



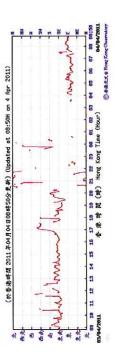


Ambient Temperature and Relative Humidity

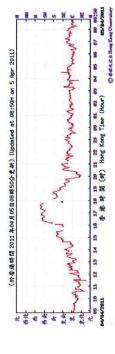


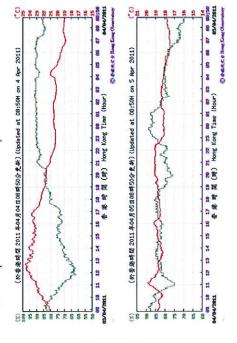


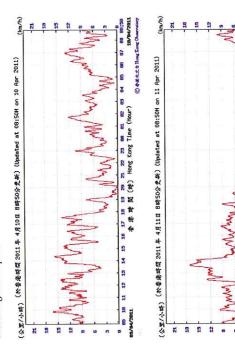
OCEAN PARK CORPORATION


4 April 2011

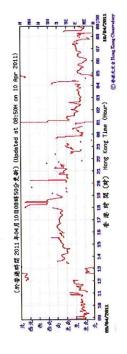
Prevailing Wind Speed



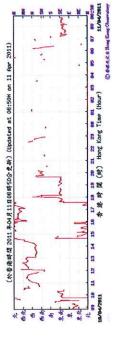

Prevailing Wind Direction

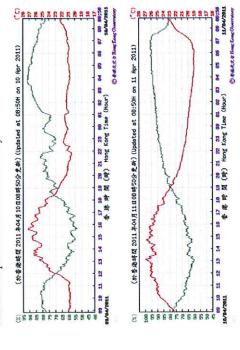


Ambient Temperature and Relative Humidity

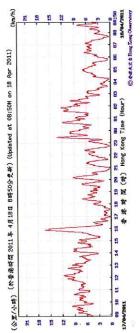


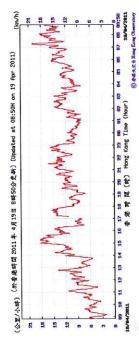
10 April 2011

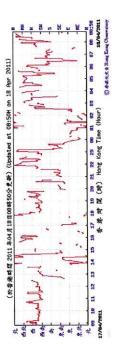

Prevailing Wind Speed

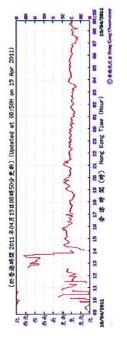

Prevailing Wind Direction

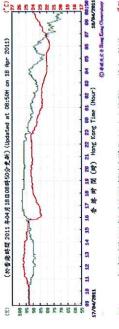
ENVIRONMINITAL RESOURCES MANAGEMENT A5-5

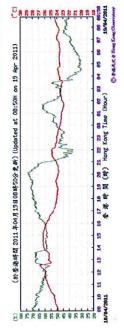



Ambient Temperature and Relative Humidity


18 April 2011


Prevailing Wind Speed




Prevailing Wind Direction

Ambient Temperature and Relative Humidity

A5-7

Annex B1

Calibration Certificates of the Noise Measurement Equipment

Certificate No.: C103766

Certificate of Calibration

This is to certify that the equipment

Description: Sound Level Calibrator

Manufacturer: Rion

Model No.: NC-73

Serial No.: 10786708

has been calibrated for the specific items and ranges. The results are shown in the Calibration Report No. C103766.

The equipment is supplied by

Co. Name: Envirotech Services Co.

Address: Shop 6, G/F., Casio Mansion, 209 Shaukeiwan Road, Hong Kong

Date of Issue: 13 July 2010

Certified by:

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No. : C103766

Calibration Report

ITEM TESTED

DESCRIPTION : Sound Level Calibrator

MANUFACTURER: Rion
MODEL NO.: NC-73
SERIAL NO.: 10786708

TEST CONDITIONS

AMBIENT TEMPERATURE : (23 ± 2)°C RELATIVE HUMIDITY : (55 ± 20)%

LINE VOLTAGE : ---

TEST SPECIFICATIONS

Calibration check

DATE OF TEST: 12 July 2010 JOB NO.: IC10-1738

TEST RESULTS

The results apply to the particular unit-under-test only. All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies, USA
- Fluke Everett Service Center, USA
- Rohde & Schwarz Laboratory, Germany
- The Bruel & Kjaer Calibration Laboratory, Denmark

Tested by :

L.L. Cheung

Date: 13 July 2010

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No.: C103766

Calibration Report

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment:

Equipment ID TST150A CL130 CL281

Description
Measuring Amplifier
Universal Counter
Multifunction Acoustic Calibrator

Certificate No. C101008 C103289 C1005490

- 4. Test procedure: MA100N.
- 5. Results:

5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.0	± 0.5	± 0.2

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value	
(kHz)	(kHz)	Spec.	(Hz)	
1	0.991 0	1 kHz ± 2 %	± 0.1	

Remark: - The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Calibration Report only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

Certificate No.: C103852

Certificate of Calibration

This is to certify that the equipment

Description: Precision Sound Level Meter

Manufacturer: Rion

Model No.: NA-27

Serial No.: 00201194

has been calibrated for the specific items and ranges. The results are shown in the Calibration Report No. C103852.

The equipment is supplied by

Co. Name: Envirotech Services Co.

Address: Shop 6, G/F., Casio Mansion, 209 Shaukeiwan Road, Hong Kong

Date of Issue: 15 July 2010

Certified by:

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No. : C103852

Calibration Report

ITEM TESTED

DESCRIPTION : Precision Sound Level Meter

MANUFACTURER: Rion

MODEL NO. : NA-27

SERIAL NO. : 00201194

TEST CONDITIONS

AMBIENT TEMPERATURE : $(23 \pm 2)^{\circ}$ C RELATIVE HUMIDITY : $(55 \pm 20)\%$

LINE VOLTAGE : ---

TEST SPECIFICATIONS

Calibration

DATE OF TEST: 15 July 2010 JOB NO.: IC10-1790

TEST RESULTS

The results apply to the particular unit-under-test only. All results are within manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies, USA
- Fluke Everett Service Center, USA
- Rohde & Schwarz Laboratory, Germany
- The Bruel & Kjaer Calibration Laboratory, Denmark

Tested by :

I. I. Cheuno

Date: 15 July 2010

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No.: C103852

Calibration Report

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using the internal standard (After Adjustment) was performed before the test 6.1.2 6.4.
- 3. The results presented are the mean of 3 measurement at each calibration point.
- 4. Test equipment:

Equipment ID CL280 CL281

<u>Description</u> 40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator Certificate No. C100067 DC1005490

- 5. Test procedure: MA101N.
- 6. Results:
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

	UUT Setting		Applied Value		UUT Reading (dB) IE		IEC 60651 Type 1
Range (dB)	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Before Adjustment	After Adjustment	Spec.
50 - 110	LA	Fast	94.00	1	94.6	94.0	± 0.7

6.1.2 Linearity

UUT Setting		Applied	Value	UUT	
Range (dB)	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
60 - 120	LA	Fast	94.00	1	94.0 (Ref.)
			104.00		104.0
			114.00		114.0

IEC 60651 Type 1 Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

6.2 Time Weighting

UUT Setting A		Applie	d Value	UUT	IEC 60651 Type 1	
Range (dB)	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Spec. (dB)
50 - 110	LA	Fast	94.00	1	94.0	Ref.
		Slow			94.0	± 0.1

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No. : C103852

Calibration Report

6.3 Frequency Weighting

6.3.1 A-Weighting

	UUT Settin	g	Appli	ed Value	UUT Reading (dB)	IEC 60651 Type 1 Spec. (dB)
Range (dB)	Frequency Weighting	Time Weighting	Level (dB)	Freq.		
	Fast	94.00	31.5 Hz	54.4	-39.4 ± 1.5	
				63 Hz	67.7	-26.2 ± 1.5
			125 Hz	77.8	-16.1 ± 1.0	
				250 Hz	85.2	-8.6 ± 1.0
1100				500 Hz	90.7	-3.2 ± 1.0
				1 kHz	94.0	Ref.
				2 kHz	95.2	$+1.2 \pm 1.0$
				4 kHz	95.0	$+1.0 \pm 1.0$
				8 kHz	92.8	-1.1 (+1.5; -3.0)
				12.5 kHz	89.7	-4.3 (+3.0; -6.0)

6.3.2 C-Weighting

	UUT Setting	g	Applied Value		UUT	IEC 60651 Type 1
Range (dB)	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Spec. (dB)
50 - 110	LC	Fast	94.00	31.5 Hz	90.9	-3.0 ± 1.5
				63 Hz	93.1	-0.8 ± 1.5
				125 Hz	93.8	-0.2 ± 1.0
				250 Hz	93.9	0.0 ± 1.0
				500 Hz	94.0	0.0 ± 1.0
				1 kHz	93.9	Ref.
				2 kHz	93.8	-0.2 ± 1.0
				4 kHz	93.1	-0.8 ± 1.0
				8 kHz	90.9	-3.0 (+1.5; -3.0)
				12.5 kHz	87.7	-6.2 (+3.0; -6.0)

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No.: C103852

Calibration Report

6.4 Time Averaging

	UUT Setti	ng				UUT	IEC 60804		
Range (dB)	Mode	Integrating Time	Freq. (kHz)	Burst Duration (ms)	Burst Duty Factor	Burst Level (dB)	Equivalent Level (dB)	Reading (dB)	Type 1 Spec. (dB)
50 - 110	LAeq	10 sec.	4	1	1/10	110.0	100	99.9	± 0.5
					1/102		90	90.2	± 0.5
		60 sec.			1/103		80	80.0	± 1.0
		5 min.			1/104		70	70.0	± 1.0

Remarks: - Mfr's Spec.: IEC 60651 Type 1 & IEC 60804 Type 1

- Uncertainties of Applied Value : 94 dB $\,$: 31.5 Hz - 125 Hz : $\pm\,0.35$ dB

250 Hz - 500 Hz : ± 0.30 dB 1 kHz : ± 0.20 dB 2 kHz - 4 kHz : ± 0.35 dB 8 kHz : ± 0.45 dB 12.5 kHz : ± 0.70 dB

104 dB : 1 kHz : ± 0.10 dB (Ref. 94 dB) 114 dB : 1 kHz : ± 0.10 dB (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Calibration Report only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate No.: C102904

Certificate of Calibration

This is to certify that the equipment

Description: Sound Level Meter

Manufacturer: Rion

Model No.: NL-31

Serial No.: 00410224

has been calibrated for the specific items and ranges. The results are shown in the Calibration Report No. C102904.

The equipment is supplied by

Co. Name: Envirotech Services Co.

Address: Shop 6, G/F., Casio Mansion, 209 Shaukeiwan Road, Hong Kong

Date of Issue: 31 May 2010

Certified by:

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No. : C102904

Calibration Report

ITEM TESTED

DESCRIPTION

: Sound Level Meter

MANUFACTURER: MODEL NO.

Rion

NL-31

SERIAL NO.

: 00410224

TEST CONDITIONS

AMBIENT TEMPERATURE : (23 ± 2)°C

RELATIVE HUMIDITY: $(55 \pm 20)\%$

LINE VOLTAGE

TEST SPECIFICATIONS

Calibration check

DATE OF TEST: 31 May 2010

JOB NO. : IC10-1356

TEST RESULTS

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested by :

Date: 31 May 2010

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No.: C102904

Calibration Report

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to 1. warm up for over 10 minutes before the commencement of the test.
- Self-calibration was performed before the test. 2.
- The results presented are the mean of 3 measurements at each calibration point. 3.
- Test equipment: 4.

Equipment ID

Description

Certificate No.

CL280 CL179 40 MHz Arbitrary Waveform Generator

C100067

Acoustical Calibrator

C095223

- Test procedure: MA101N. 5.
- 6. Results:
- Sound Pressure Level 6.1

Reference Sound Pressure Level 6.1.1

	UU	T Setting		Applied	l Value	UUT	IEC 60651
Range (dB)	e Mode Frequency Time		Level (dB)	Freq. (kHz)	Reading (dB)	Type 1 Spec. (dB)	
30 - 120	LA	A	Fast	94.00	1	93.9	± 0.7

6.1.2 Linearity

	UU'	T Setting		Applied	l Value	UUT	
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	
30 - 120	LA	A	Fast	94.00	1	93.9 (Ref.)	
				114.00		113.9	

IEC 60651 Type 1 Spec. : ± 0.4 dB per 10 dB step and ± 0.7 dB for overall different.

6.2 Time Weighting

Continuous Signal

	UUT Setting				d Value	UUT	IEC 60651
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Type 1 Spec. (dB)
30 - 120	LA	A	Fast	94.00	1	93.9	Ref.
			Slow			93.8	± 0.1

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No.: C102904

Calibration Report

6.3 Frequency Weighting

A-Weighting 6.3.1

	Ul	UT Setting		App	lied Value	UUT	IEC 60651
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)
30 - 120	L _A	A	Fast	94.00	31.5 Hz	54.2	-39.4 ± 1.5
					63 Hz	67.6	-26.2 ± 1.5
					125 Hz	77.7	-16.1 ± 1.0
			74	250 Hz	85.2	-8.6 ± 1.0	
					500 Hz	90.6	-3.2 ± 1.0
					1 kHz	93.9	Ref.
					2 kHz	95.2	$+1.2 \pm 1.0$
					4 kHz	95.0	$+1.0 \pm 1.0$
					8 kHz	92.9	-1.1 (+1.5; -3.0)
					12.5 kHz	90.0	-4.3 (+3.0; -6.0)

6.3.2 C-Weighting

	Ul	JT Setting		App	lied Value	UUT	IEC 60651
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)
30 - 120	Lc	C	Fast	94.00	31.5 Hz	90.6	-3.0 ± 1.5
					63 Hz	93.1	-0.8 ± 1.5
					125 Hz	93.7	-0.2 ± 1.0
					250 Hz	93.9	0.0 ± 1.0
					500 Hz	93.9	0.0 ± 1.0
					1 kHz	93.9	Ref.
					2 kHz	93.9	-0.2 ± 1.0
					4 kHz	93.3	-0.8 ± 1.0
					8 kHz	91.0	-3.0 (+1.5; -3.0)
					12.5 kHz	88.1	-6.2 (+3.0; -6.0)

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No. : C102904

Calibration Report

6.4 Time Averaging

	UU	T Setting				UUT	IEC 60804			
Range (dB)	Mode	Frequency Weighting	Time Weighting	Freq. (kHz)	Burst Duration (ms)	Burst Duty Factor	Burst Level (dB)	Equivalent Level (dB)	Reading (dB)	Type 1 Spec. (dB)
20 - 110	LAsq	A	10 sec.	4	1	1/10	110.0	100	100.0	± 0.5
						1/102		90	90.0	± 0.5
	1000		60 sec.			1/103		80	80.0	±1.0
			5 min.		181 SU	1/104	Total State of the	70	70.0	± 1.0

Remarks: - Mfr's Spec.: IEC 60651 Type 1 & IEC 60804 Type 1

- Uncertainties of Applied Value: 94 dB: 31.5 Hz - 125 Hz: ± 0.35 dB

250 Hz - 1 kHz : $\pm 0.30 \text{ dB}$ 2 kHz - 4 kHz : $\pm 0.35 \text{ dB}$ 8 kHz : $\pm 0.45 \text{ dB}$

12.5 kHz : \pm 0.70 dB

114 dB: 1 kHz : \pm 0.10 dB (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Calibration Report only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

Certificate No.: C103778

Certificate of Calibration

This is to certify that the equipment

Description: Sound Level Meter

Manufacturer: Rion

Model No.: NL-31

Serial No.: 00320533

has been calibrated for the specific items and ranges. The results are shown in the Calibration Report No. C103778.

The equipment is supplied by

Co. Name: Envirotech Services Co.

Address: Shop 6, G/F., Casio Mansion, 209 Shaukeiwan Road, Hong Kong

Date of Issue: 13 July 2010

Certified by:

KK Lee

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No. : C103778

Calibration Report

ITEM TESTED

DESCRIPTION

: Sound Level Meter

MODEL NO.

MANUFACTURER: Rion NL-31

SERIAL NO.

: 00320533

TEST CONDITIONS

AMBIENT TEMPERATURE : (23 ± 2)°C

RELATIVE HUMIDITY: $(55 \pm 20)\%$

LINE VOLTAGE

TEST SPECIFICATIONS

Calibration check

DATE OF TEST: 12 July 2010

JOB NO.: IC10-1738

TEST RESULTS

The results apply to the particular unit-under-test only. All results are within manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Agilent Technologies, USA
- Fluke Everett Service Center, USA
- Rohde & Schwarz Laboratory, Germany
- The Bruel & Kjaer Calibration Laboratory, Denmark

Tested by:

Date: 13 July 2010

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No. : C103778

Calibration Report

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration was performed before the test.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment:

Equipment ID CL280 CL281

<u>Description</u>
40 MHz Arbitrary Waveform Generator
Multifunction Acoustic Calibrator

Certificate No. C100067 C1005490

- 5. Test procedure: MA101N.
- 6. Results:
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

	UUT Setting				l Value	UUT	IEC 60651
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Type 1 Spec. (dB)
30 - 120	LA	A	Fast	94.00	1	94.3	± 0.7

6.1.2 Linearity

	UU'	T Setting		Applied	Value	UUT
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
30 - 120	L _A	A	Fast	94.00	1	94.3 (Ref.)
				104.00		104.3
				114.00		114.3

IEC 60651 Type 1 Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

6.2 Time Weighting

6.2.1 Continuous Signal

	UU	T Setting		Applie	d Value	UUT	IEC 60651
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Type 1 Spec. (dB)
30 - 120	L _A	A	Fast	94.00	1	94.3	Ref.
			Slow			94.2	± 0.1

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No. : C103778

Calibration Report

6.3 Frequency Weighting

6.3.1 A-Weighting

	U	JT Setting		App	lied Value	UUT	IEC 60651
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)
30 - 120	LA	A	Fast	94.00	31.5 Hz	55.3	-39.4 ± 1.5
					63 Hz	68.4	-26.2 ± 1.5
					125 Hz	78.4	-16.1 ± 1.0
				250 Hz	85.8	-8.6 ± 1.0	
					500 Hz	91.1	-3.2 ± 1.0
				1	1 kHz	94.3	Ref.
					2 kHz	95.3	$+1.2 \pm 1.0$
					4 kHz	94.5	$+1.0 \pm 1.0$
					8 kHz	90.5	-1.1 (+1.5; -3.0)
					12.5 kHz	85.0	-4.3 (+3.0; -6.0)

6.3.2 C-Weighting

	Ul	JT Setting	THE PROPERTY.	App	lied Value	UUT	IEC 60651
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Type 1 Spec. (dB)
30 - 120	Lc	C	Fast	94.00	31.5 Hz	91.5	-3.0 ± 1.5
					63 Hz	93.7	-0.8 ± 1.5
					125 Hz	94.2	-0.2 ± 1.0
					250 Hz	94.4	0.0 ± 1.0
			A STATE OF		500 Hz	94.4	0.0 ± 1.0
					1 kHz	94.3	Ref.
					2 kHz	94.0	-0.2 ± 1.0
					4 kHz	92.8	-0.8 ± 1.0
					8 kHz	88.7	-3.0 (+1.5; -3.0)
			31 9 5 5 6 1 1 1 5 5 6 5 6 5 6 5 6 5 6 5 6 5		12.5 kHz	82.4	-6.2 (+3.0; -6.0)

6.4 Time Averaging

	UU	T Setting				Applied Va	lue		UUT	IEC 60804
Range (dB)	Mode	Frequency Weighting	Time Weighting	Freq. (kHz)	Burst Duration (ms)	Burst Duty Factor	Burst Level (dB)	Equivalent Level (dB)	Reading (dB)	Type 1 Spec. (dB)
20 - 110	LAcq	A	60 sec.	4	- 1	1/103	110.0	80	80.7	±1.0
			5 min.			1/104		70	70.7	±1.0

Report No.: C103778

Calibration Report

Remarks: - Mfr's Spec.: IEC 60651 Type 1 & IEC 60804 Type 1

- Uncertainties of Applied Value : 94 dB : 31.5 Hz - 125 Hz : \pm 0.35 dB

250 Hz - 1 kHz : ± 0.30 dB 2 kHz - 4 kHz : ± 0.35 dB 8 kHz : ± 0.45 dB 12.5 kHz : ± 0.70 dB

104 dB: 1 kHz : ± 0.10 dB (Ref. 94 dB) 114 dB: 1 kHz : ± 0.10 dB (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Calibration Report only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

Certificate No.: C105886

Certificate of Calibration

This is to certify that the equipment

Description: Sound Level Meter

Manufacturer: Rion

Model No.: NL-31

Serial No.: 00983400

has been calibrated for the specific items and ranges. The results are shown in the Calibration Report No. C105886.

The equipment is supplied by

Co. Name: Envirotech Services Co.

Address: Shop 6, G/F., Casio Mansion, 209 Shaukeiwan Road, Hong Kong

Date of Issue: 26 October 2010

Certified by:

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No. : C105886

Calibration Report

ITEM TESTED

: Sound Level Meter DESCRIPTION

MANUFACTURER: Rion MODEL NO. : NL-31 SERIAL NO. : 00983400

TEST CONDITIONS

AMBIENT TEMPERATURE : (23 ± 2)°C RELATIVE HUMIDITY: $(55 \pm 20)\%$

LINE VOLTAGE

TEST SPECIFICATIONS

Calibration check

JOB NO. : IC10-2726 DATE OF TEST: 25 October 2010

TEST RESULTS

The results apply to the particular unit-under-test only. All results are within manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- The Bruel & Kjaer Calibration Laboratory, Denmark
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested by :

Date: 26 October 2010

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No. : C105886

Calibration Report

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- Self-calibration was performed before the test.
- The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment:

Equipment ID CL280 CL281

Description
40 MHz Arbitrary Waveform Generator
Multifunction Acoustic Calibrator

Certificate No. C100067 C1006860

- 5. Test procedure: MA101N.
- 6. Results:
- 6.1 Sound Pressure Level

6.1.1 Reference Sound Pressure Level

	UU	T Setting		Applied	l Value	UUT	IEC 61672
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)
30 - 120	LA	A	Fast	94.00	1	94.0	± 1.1

6.1.2 Linearity

	UU'	T Setting		Applied	Value	UUT
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
30 - 120	LA	A	Fast	94.00	1	94.0 (Ref.)
				104.00		104.0
				114.00		114.1

IEC 61672 Class 1 Spec. : ± 0.6 dB per 10 dB step and ± 1.1 dB for overall different.

6.2 Time Weighting

ine weign		JT Setting		Applie	d Value	UUT	IEC 61672
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)
30 - 120	L _A	A	Fast	94.00	1	94.0	Ref.
			Slow			93.9	± 0.3

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No. : C105886

Calibration Report

6.3 Frequency Weighting

6.3.1 A-Weighting

1- W Cigittii		JT Setting		App	ied Value	UUT	IEC 61672
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 120	LA	A	Fast	94.00	63 Hz	67.6	-26.2 ± 1.5
					125 Hz	77.7	-16.1 ± 1.5
					250 Hz	85.2	-8.6 ± 1.4
					500 Hz	90.7	-3.2 ± 1.4
					1 kHz	94.0	Ref.
					2 kHz	95.3	$+1.2 \pm 1.6$
					4 kHz	95.1	$+1.0 \pm 1.6$
					8 kHz	93.0	-1.1 (+2.1; -3.1)
		a series also both			12.5 kHz	90.1	-4.3 (+3.0; -6.0)

6.3.2 C-Weighting

5- Weightin		JT Setting		App	lied Value	UUT	IEC 61672
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 120	L _C	C	Fast	94.00	63 Hz	93.2	-0.8 ± 1.5
					125 Hz	93.8	-0.2 ± 1.5
					250 Hz	94.0	0.0 ± 1.4
					500 Hz	94.0	0.0 ± 1.4
					1 kHz	94.0	Ref.
					2 kHz	93.9	-0.2 ± 1.6
				1000	4 kHz	93.4	-0.8 ± 1.6
					8 kHz	91.1	-3.0 (+2.1; -3.1)
				1000	12.5 kHz	88.3	-6.2 (+3.0; -6.0)

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No. : C105886

Calibration Report

Remarks: - Mfr's Spec.: IEC 61672 Class 1

- Uncertainties of Applied Value: 94 dB: 63 Hz - 125 Hz: ± 0.35 dB

250 Hz - 500 Hz : ± 0.30 dB $: \pm 0.20 \, dB$ 1 kHz 2 kHz - 4 kHz : $\pm 0.35 \text{ dB}$ $\pm 0.45 \, dB$ 8 kHz

 $\pm 0.70 \text{ dB}$ 12.5 kHz

 $\pm 0.10 \, dB \, (Ref. 94 \, dB)$ 104 dB: 1 kHz 114 dB: 1 kHz $\pm 0.10 \text{ dB (Ref. 94 dB)}$

- The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Calibration Report only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

Annex B2

Results of Noise Monitoring

Annex B2 Operational Noise Monitoring Results Open area adjacent to Police Training School

AON1

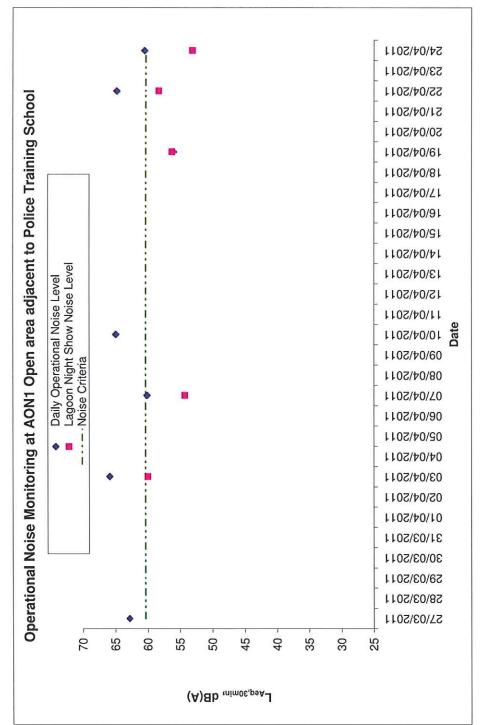
Monitoring Location:

Weekdays/ Public Holiday	1	Daily (Noise	Show	Background Noise Level, Leg sterin	Daily Operational Noise Level (Background Corrected), Leg somin	Il Noise Level Corrected),	Lagoon Night Show Noise Level (Background Corrected), Lec sterin		Noise Criteria, Leq(30mins)* dB(A)	Remark / Other Noise Source(s)
กี	Start	E SO	ed, somin	the the	Without facade	With façade correction	Without façade	With façade correction		
12	0000	1 29	5 59	66.1	59.8	62.8	Negligible	Negligible	09	Note [1] & [2]
9 9		63.0	63.1	1.43	Negligible	Negligible	Negligible	Negligible	90	Note [1]
= =		67.3	0.99	65.4	62.9	62.9	57.0	0.09	09	Note [1] & [2]
18		61.3	59.8	59.2	57.1	60.1	51.2	54.2	99	ř
181		67.5	62.9	0.99	62.0	65.0	Negligible	Negligible	09	Note [1] & [2]
1 2		60.4	61.8	62.3	Negligible	Negligible	Negligible	Negligible	9	Note 111
18		61.2	61.2	60.4	53.1	56.1	53.3	56.3	09	ı
18		65.0	63.0	62.2	61.8	64.8	55.3	58.3	09	Note III & E3
18	1850 2000	65.1	64.4	64.2	57.5	60.5	50.1	53.1	09	Note 11 miles
	AON2	Roof of Old Canteen Building	een Building							
Measu	Measurement Period, hours		Measured Noise Level [1], dB(A)	dB(A)						
Weekdays/ Public Holiday	trest?		Daily Operational Lagoon Night Noise Level, Leg, Show Noise Level, Background Noise Level, Leg, 15min Level, Leg, 15min	Background Noise Level, Leg. 15min	Daily Operational Noise Level (Background Corrected), Len 30min	al Noise Level Corrected),	Lagoon Night Show Noise Level (Background Corrected), Lec. 30min	ow Noise Level Corrected),	Noise Criteria, Leq(30mlns)* dB(A)	Remark / Other Noise Source(s)
2 2	-	87.8	58.0	56.3	52.3	3	53.1	1	09	
=		57.7	57.1	54.6	54.8	8	53.4	4	09	
18		57.7	58.2	26.7	50.5	5	52.8	80	09	•
18		58.1	58.4	57.3	50.1	-	51.9	6	09	() () () () () () () () () ()
31		58.5	58.4	57.3	52.5	5	51.8	8	09	1
18	1850 2000	58.3	57.7	56.3	54.0	0	51.9	6	09	1
118	1850 2000	57.5	27.7	26.7	49.5	2	51.0	0.	09	,
31	1850 2000	57.9	58.0	9.99	52.1		52.5	s,	09	
~		57.8	58.6	57.5	46.5	5	52.1		09	
	AON3	Orchid Valley								
			Mosey to I along the [1] dB(A)	dR/A)						
Meda		Daily Opera	Lagoon Night		Daily Operational Noise Level	al Noise Level	Lagoon Night Show Noise Level	low Noise Level		
Public Holiday	Ctot	Noise Level, Leq.	Show Noise Level	Show Noise Level, Background Noise		Corrected),	(Background Col	Corrected),	Noise Criteria.	
		EEO	***************************************	The state of the s	Without fac	With façade correction	Without façade	With façade correction	Leq(30mins), dB(A)	Remark /
Ĺ	1850 2000	56.8	53.9	53.8	53.6	56.6	29.7	32.7	55	Note [1] & [3]
-	H	56.2	55.9	54.4	51.4	54.4	50.4	53.4	55	à
=		53.8	55.6	55.3	Negligible	Negligible	43.9	46.9	55	Note [1]
=		58.3	56.0	57.3	51.4	54.4	Negligible	Negligible	55	Note
H		56.3	53.3	51.8	54.3	57.3	48.1	51.1	55	Note [1] & [3]
-		57.2	56.2	54.9	53.3	56.3	50.0	53.0	55	Note [1] & [3]
-		54.7	53.8	54.4	42.4	45.4	Negligible	Negligible	55	Note
-	1850 2000	53.0	52.4	53.2	Negligible	Negligible	Negligible	Negligible	55	Note [1]

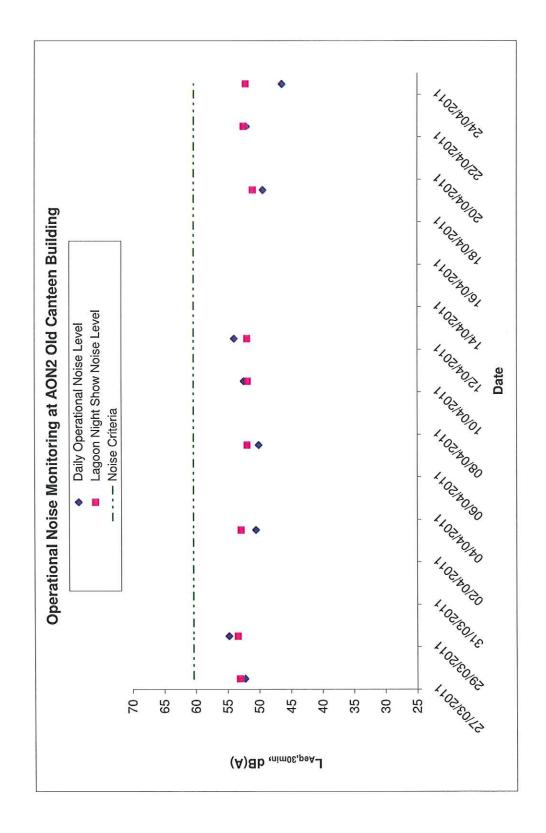
2 of 2

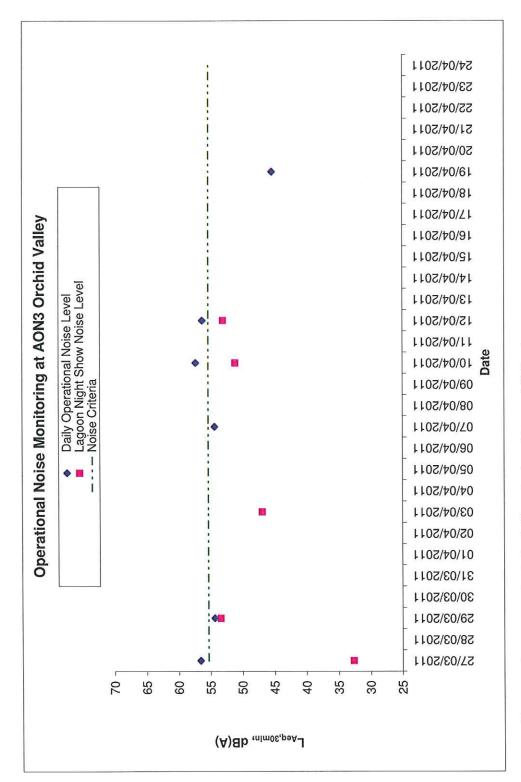
Manly Villa	
AON4	
Ionitoring Location:	

		Measurement	Measurement Period, hours		Measured Noise Level 11, dB(A)	dB(A)				
	Weekdays/			Daily Operational Noise Level, Leq.	Lagoon Night Show Noise Level,	ial Lagoon Night Show Noise Level, Background Noise	Daily Operational Noise Level (Background Corrected),	Lagoon Night Show Noise Level Noise Criteria, (Background Corrected),	Noise Criteria,	
Date	(WD/PH)	Start	End	30min	Leq. 30min	Level, Leg. 15min	Log. 30min	Leg, 30min	dB(A)	Remark / Other Noise Source(s)
27-Mar-11	PH	1850	2000	55.1	54.5	53.3	50.4	48.4	55	r
29-Mar-11	WD	1850	2000	54.2	54.8	53.9	42.7	47.3	55	1
03-Apr-11	PH	1850	2000	55.4	54.8	54.2	49.5	45.9	55	,
07-Apr-11	WD	1850	2000	54.9	53.6	52.6	51.1	46.5	55	•
10-Apr-11	PH	1850	2000	55.0	54.1	53.2	50.2	46.8	55	t
12-Apr-11	WD	1850	2000	55.0	54.1	53.5	49.8	45.5	55	L
19-Apr-11	WD	1850	2000	57.0	54.9	53.6	54.3	49.0	55	1
22-Apr-11	PH	1850	2000	55.5	53.7	52.6	52.4	47.2	55	
24-Apr-11	PH	1850	2000	55.3	53.9	53.0	51.4	46.7	55	,

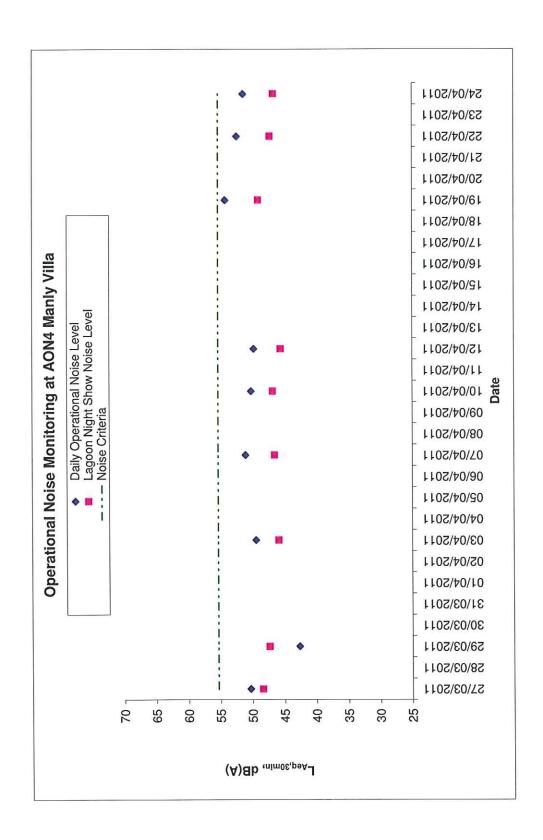

AON5 Monitoring Location:

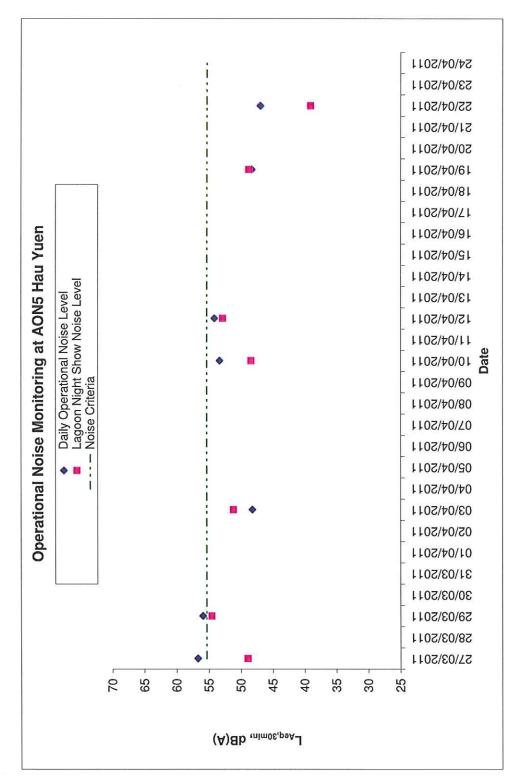
Remark / Other Noise Source(s) Note [1] & [3] Note [1] & [3] Note [1] Note [1] Lagoon Night Show Noise Level Noise Criteria, (Background Corrected), Loq(30mlns)* dB(A) 55 55 55 55 55 55 22 55 Negligible Negligible 48.9 54.6 51.2 48.4 52.9 48.8 39.1 Daily Operational Noise Level (Background Corrected), Negligible Negligible 96.0 48.2 53.4 54.2 47.0 26.7 Daily Operational Lagoon Night
Noise Level, Level, Show Noise Level, Background Noise 51.5 54.2 55.0 58.9 56.7 57.2 57.4 55.8 60.2 Level, Measured Noise Level 11, dB(A) Leq. 30min 58.3 53.2 55.9 59.1 9.95 54.3 59.3 55.5 54.9 59.0 59.6 57.9 9.99 58.1 Hau Yuen Measurement Period, hours 2000 2000 2000 2000 2000 2000 2000 End 1850 1850 1850 1850 1850 1850 1850 1850 Start Weekdays/ Public Holiday (WD/PH) WD MD. WD PH ΜĐ PH 표 PH 07-Apr-11 10-Apr-11 12-Apr-11 19-Apr-11 03-Apr-11 22-Apr-11 27-Mar-11 24-Apr-11 29-Mar-11 Date


Notes:
[1] Bolded value indicates exceedance over the noise criteria.
[1] Bolded value indicates exceedance over the noise levels lower than the background noise levels.
Negligible refers to the measured impact noise levels lower than the background roise from visitors and traffic on public holidays, especially on 27 Mar, 3, 10, 22 and 24 Apr 2011, which were public holidays.
[2] The exceedance at AON3 and AON5 were due to traffic noise from Shouson Hill Road.


Annex B3

Graphical Presentation of Noise Monitoring Results




Note: The exceedance were due to the high level of background noise from visitors and traffic on public holidays, especially on 27 Mar, and 3, 10, 22 and 24 Apr 2011, which were public holidays.

Note: The exceedances were due to the traffic noise from Shouson Hill Road

Note: The exceedances were due to traffic noise from Shouson Hill Road