QUARTERLY ENVIRONMENTAL MONITORING & AUDIT REPORT

Hip Hing - Ngo Kee Joint Venture

Hong Kong Convention and Exhibition Centre Expansion Project:

Quarterly Environmental Monitoring and Audit Report
(February 2007 - April 2007)

June 2007

Environmental Resources Management

21/F Lincoln House 979 King's Road Taikoo Place Island East, Hong Kong Telephone: (852) 2271 3000 Facsimile: (852) 2723 5660 E-mail: post.hk@erm.com http://www.erm.com

QUARTERLY ENVIRONMENTAL MONITORING & AUDIT REPORT

Hip Hing - Ngo Kee Joint Venture

Hong Kong Convention and Exhibition Centre Expansion Project:

Quarterly Environmental Monitoring and Audit Report (February 2007 - April 2007)

June 2007

Reference 0050690

For and on behalf of				
Environmental Resources Management				
Approved by: Steve Duckworth				
Signed: Steve Didrick				
Position: Deputy Managing Director				
Certified by:				
(Environmental Team Leader - Marcus Ip)				
Date: 20 June 2007				

This report has been prepared by Environmental Resources Management the trading name of 'ERM Hong-Kong, Limited', with all reasonable skill, care and diligence within the terms of the Contract with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client.

We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.c

This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies on the report at their own risk.

NATURE & TECHNOLOGIES (HK) LIMITED 科技環保(香港)有限公司

Unit 2 & 3,4/F., Wellborne Commercial Centre, 8 Java Road, North Point, Hong Kong. 香港北角渣華道8號威邦商業中心4樓2及3室 Tel電話:(852)28773122 Fax傳真:(852)2511 0922 Email電郵: enquiry@nt.com.hk Web page網址: http://www.nt.com.hk

Our Ref: 3.16/014/2006/it

21 June 2007

Maunsell Consultants Asia Ltd Grand Central Plaza, Tower 2 138 Shatin Rural Committee Road Shatin, N.T., Hong Kong

Attn: Ms Vera Chan

Dear Sir/Madam,

Hong Kong Convention Center Expansion Project
Quarterly EM&A Report for February 2007 to May 2007
(Environmental Permit No. EP-239/2006/A)

With reference to the captioned document concerning the Quarterly EM&A report for February 2007 to May 2007 received from ERM dated 20 June 2007, we are pleased to provide our verification for the document pursuant to condition 3 of the Environmental Permit (EP) No. EP-239/2006/A.

Yours faithfully,

Nature & Technologies (HK) Limited

Ir Dr Gabriel C K Lam Managing Director

cc:

Hong Kong Trade Development Council (Attn: Mr. K. F. Chan)

- Hip Hing Ngo Kee Joint Venture (Attn: Mr. Eric Lau & Mr. William Tam)

- ERM (Attn: Mr. Marcus Ip)

CONTENTS

	EXECUTIVE SUMMARY	1
1	INTRODUCTION	1
1.1	PURPOSE OF THE REPORT	1
1.2	STRUCTURE OF THE REPORT	1
2	PROJECT INFORMATION	3
2.1	BACKGROUND	3
2.2	SITE DESCRIPTION	3
2.3	CONSTRUCTION ACTIVITIES	4
2.4	PROJECT ORGANISATION	4
2.5	STATUS OF ENVIRONMENTAL APPROVAL DOCUMENTS	4
3	ENVIRONMENTAL MONITORING METHODOLOGY	6
3.1	AIR QUALITY MONITORING	6
3.2	WATER QUALITY MONITORING	9
4	IMPLEMENTATION STATUS OF ENVIRONMENTAL PROTECTION REQUIREMENTS	14
4.1	ENVIRONMENTAL SITE AUDITING	14
4.2	Water Discharge Sampling	14
4.3	LANDSCAPE AND VISUAL MONITORING	14
4.4	EFFECTIVENESS OF MITIGATION MEASURES AND MONITORING	1 5
5	MONITORING RESULTS	16
5.1	AIR QUALITY	16
5.2	Water Quality	16
5.3	WASTE MANAGEMENT	18
6	ENVIRONMENTAL NON-CONFORMANCE	19
6.1	SUMMARY OF ENVIRONMENTAL EXCEEDANCE	19
6.2	SUMMARY OF ENVIRONMENTAL NON-COMPLIANCE	19
6.3	SUMMARY OF ENVIRONMENTAL COMPLAINT	19
6.4	SUMMARY OF ENVIRONMENTAL SUMMONS AND PROSECUTION	19
7	REVIEW OF THE EM&A DATA AND EIA PREDICTIONS	20
7.1	AIR QUALITY	20
7.2	WATER QUALITY	20
7.3	Waste Management	20
7.4	CONCLUSION OF REVIEW	21
8	CONCLUSION	22

LIST OF TABLES

Table 2.1	Summary of Construction Activities Undertaken
Table 2.2	Summary of Environmental Licensing, Notification and Permi
	Status
Table 3.1	Air Monitoring Stations
Table 3.2	TSP Monitoring Parameter and Frequency
Table 3.3	Action and Limit Levels for Air Quality
Table 3.4	TSP Monitoring Equipment
Table 3.5	Water Quality Monitoring Locations
Table 3.6	Water Quality Monitoring Parameters & Frequency
Table 3.7	Action and Limit Levels for Water Quality
Table 3.8	Monitoring Stations for Additional Water Quality Monitoring
	Programme
Table 3.9	Additional Water Quality Monitoring Frequency and
	Parameters
Table 3.10	Analytical Methods for Water Quality Parameters Monitored
Table 5.1	Summary of Record of Exceedanace recorded during the
	Reporting Period
Table 5.2	Quantities of Waste Generated from the Project
Table 7.1	Comparison of the HKAQO and Air Quality Monitoring
	Results
Table 7.2	Comparison of the Estimated Amount and the Actual Amount
	of Waste Generated

LIST OF ANNEXES

Annex A	Location of Works Areas
Annex B	Location of Construction Activities during the Reporting Quarter
Annex C	Project Organization Chart and Contact Detail
Annex D	Locations of Monitoring Stations
Annex E	Summary of Implementation Status
Annex F	24-hour and 1-hour TSP Monitoring Results
Annex G	Water Quality Monitoring Results
Annex H	Waste Flow Table

EXECUTIVE SUMMARY

The construction works for Hong Kong Convention and Exhibition Centre Expansion (previously known as HKCEC Atrium Link Extension) (EIAO Register No: AEIAR-100/2006) commenced on 1 August 2006. This is the third quarterly Environmental Monitoring and Audit (EM&A) report presenting the EM&A work carried out during the period from 1 February to 30 April 2007 in accordance with the EM&A Manual.

<u>Summary of Construction Works undertaken during the Reporting Period</u> The major construction works taken during the reporting period include the following:

Environmental Monitoring and Audit Progress

A summary of the monitoring activities in this reporting period is listed below:

24-hour Total Suspended 16 times

Particulates (TSP) monitoring

1-hour TSP monitoring 46 times

Water quality monitoring 34 times (mid-ebb)

34 times (mid-flood)

Additional water quality monitoring 18 times (mid-ebb)

18 times (mid-flood)

Joint environmental site auditing 13 times

Air Quality

Sixteen sets of 24-hour and forty-six sets of 1-hour TSP monitoring were carried out at the designated monitoring stations (AM1 & AM2) during the reporting period. No exceedance was recorded during the reporting period.

Water Quality

Thirty-four sets of water quality measurements, recorded at mid-flood and mid-ebb tides, were carried out at designated monitoring stations of W3, W4 and W5.

Twelve Notifications of Exceedance (NOE) with detailed investigation reports were issued during the reporting period for recording water quality monitoring exceedances on dissolved oxygen and turbidity at the monitoring stations. All these exceedance, except for those recorded on 16 April 2007, were associated with natural fluctuation rather than Project works as no silty water was observed to be discharged from the site to the water channel. No further follow-up corrective action was required.

Exceedances of the Limit Level for turbidity were recorded on 16 April 2007. No silty water was observed to be discharged from the site to the marine

channel. A sediment plume was observed to be located approximately 300m away from the Project site and its source could not be identified. It is therefore suspected that the sediment plume might have contributed to the high levels of turbidity in the marine channel and consequently reflected in the water quality monitoring results obtained. The Contractor was recommended to immediately check the integrity of the silt screens installed at the monitoring stations and undertake proper maintenance, if necessary. The measured turbidity levels of water samples taken on 18 April 2007 complied with the Action Level, and therefore no further follow-up corrective action was required.

Additional water quality monitoring also commenced on 21 March 2007. Eighteen sets of water quality measurement for dissolved oxygen, turbidity, suspended solids and total inorganic nitrogen were carried out at the designated monitoring stations of C1, C2 and M1.

Construction Waste Management

The major construction activities undertaken in the reporting period were installation of marine pile, construction of marine platform and pedestrian tunnel. A total of 2,431 tonnes of inert C&D materials (including 1.5 tonnes materials reused in this Project) and 330 tonnes of C&D wastes were generated during the reporting period. The C&D wastes and inert C&D materials generated from the Project were disposed of at SENT Landfill / Tseung Kwan O Area 137 temporary construction waste sorting facility and the public fill barging point at Quarry Bay respectively. 288 litres of chemical waste generated during the reporting period were collected by licensed chemical waste collector.

Environmental Non-conformance

Thirteen weekly joint environmental site audits were carried out by the ET. No non-compliance event is recorded during the reporting period.

No environmental complaints or summons were received during the reporting period.

1 INTRODUCTION

ERM-Hong Kong, Limited (ERM) was appointed by Hip Hing – Ngo Kee Joint Venture as the Environmental Team (ET) to implement the Environmental Monitoring and Audit (EM&A) programme for Hong Kong Convention and Exhibition Centre Expansion (previously known as HKCEC Atrium Link Extension) (the Project).

1.1 Purpose of the Report

This is the third quarterly EM&A report which summarises the impact monitoring results and audit findings for the EM&A programme during the reporting period from **1 February** to **30 April 2007**.

1.2 STRUCTURE OF THE REPORT

The structure of the report is as follows:

Section 1: Introduction

details the scope and structure of the report.

Section 2: Project Information

summarises background and scope of the Project, site description, project organisation and contact details, construction programme, the construction works undertaken and the status of Environmental Permits/Licences during the reporting period.

Section 3: Environmental Monitoring Requirement

summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels and Event / Action Plans.

Section 4: **Implementation Status on Environmental Mitigation Measures** summarises the implementation of environmental protection measures during the reporting period.

Section 5: Monitoring Results

summarises the monitoring results obtained in the reporting period.

Section 6: Environmental Non-conformance

summarises any environmental exceedance, environmental complaints and environmental summons received within the reporting period.

Section 7: Review of EM&A Data and EIA Predictions
compares and contrasts the EM&A data in the reporting period
with the EIA predictions and annotates with explanation for any

discrepancies.

Section 8: Conclusion

2 PROJECT INFORMATION

2.1 BACKGROUND

The Hong Kong Trade Development Council (HKTDC) is expanding its existing facilities to provide additional space for Hong Kong's leading trade fairs to be held at the Hong Kong Convention and Exhibition Centre (HKCEC). The Project is located in the North Wan Chai and will occupy the aerial space between Phase I and Phase II of the HKCEC. The new Atrium Link Extension (ALE) will span across the water channel between Phase I and Phase II of the HKCEC to accommodate 3 main levels of Exhibition Hall Extensions. The level of the main roof of the Extension will be of similar height as that of the podium roof of the Phase I building. A northern row of permanent supporting columns will be located on land close to Expo Drive Central and similarly a southern row will land near to Convention Avenue. There will be no permanent intermediate columns in the waterway.

The major works activities for the ALE will comprise the following:

- Construction and demolition of the temporary footbridge;
- Demolition of the existing Atrium Link;
- Construction and demolition of a temporary working platform;
- Construction of foundations and pile caps for the ALE; and
- Construction of superstructure for the ALE.

The potential environmental impacts of the Project have been studied in the "Hong Kong Convention and Exhibition Centre, Atrium Link Extension – Environmental Impact Assessment Report" (EIAO Register No: AEIAR-100/2006). The EIA was approved on 21 April 2006 under the Environmental Impact Assessment Ordinance (EIAO). An Environmental Permit (EP-239/2006) for the works was granted on 12 May 2006. An application for variation of the Environmental Permit was made on 25 January 2007, an amended Environmental Permit (EP-239/2006/A) was granted on 12 February 2007. Under the requirements of Condition 3.1 of Environmental Permit EP-239/2006/A, an EM&A programme as set out in the EM&A Manual and its supplement is required to be implemented.

The construction works commenced on 1 August 2006 and are scheduled to be completed by March 2009.

2.2 SITE DESCRIPTION

The works areas of the Project are illustrated in *Annex A*.

2.3 CONSTRUCTION ACTIVITIES

A summary of the major construction activities undertaken in this quarter is shown in *Table 2.1*. The locations of the construction activities are presented in *Annex B*.

Table 2.1 Summary of Construction Activities Undertaken

Construction Activities Undertaken

- Construction of pre-bored H piles at southern and northern sides
- Construction of mini piles for marine platform at southern and northern sides
- Installation of marine pile in the marine channel
- Excavation of bored pile at BP3
- Stitch drilling of bored pile at BP4
- Stitch drilling and pre-trenching of bored pile at BP5
- Demolition of Phase II at Grid 16/ B-D from upper roof down to Level 2
- Removal of glass wall at west façade
- Erection of temporary enclosed pedestrian walkway mock-up outside site office
- Construction of RC column at Grid A1/16, A1a/24 and Ba/24
- Construction of pile cap at Grid A/17, BP4, BP5, C/17, D/17 and E/17
- Erection of A1 truss at Grid A1
- Construction of pedestrian tunnel at Zone 1-5

2.4 PROJECT ORGANISATION

The Project organisation chart and contact details are shown in *Annex C*.

2.5 STATUS OF ENVIRONMENTAL APPROVAL DOCUMENTS

A summary of the relevant permits, licences, and/or notifications on environmental protection for this Project since August 2006 is presented in *Table 2.2*.

Table 2.2 Summary of Environmental Licensing, Notification and Permit Status

Permit/ Licenses/ Notification	Reference	Validity Period	Remarks
Environmental Permit	EP-239/2006/A	Throughout the Contract	Environmental Permit (EP) EP-239/2006 granted originally on 12 May 2006 but superseded by revised EP issued on 12 February 2007
Notification of Construction Works under Air Pollution Control (Construction Dust) Regulation			Notification on 23 June 2006
Discharge Licence under Water Pollution Control Ordinance	EP860/W10/XY0145	N/A	-

Permit/ Licenses/	Reference	Validity Period	Remarks
Notification			
Chemical Waste	WPN5213-134-H3125-	N/A	Chemical waste types:
Producer Registration	01		spent paint, acid, alkaline, adhesive, diesel fuel, lubricating oil and bitumen.
Construction Noise	GW-RS0722-06	Valid from 2	
Permit for area inside		December 2006 to	
the Atrium Link		30 April 2007	
	GW-RS0026-07	Valid from 21	
		January 2007 to 14	
		July 2007	
	PP-RS0043-06	Valid from 15	
		January 2007 to 14	
		July 2007	
	GW-RS0829-06	Valid from 3	
		January 2007 to 2	
		June 2007	
	GW-RS0245-07	Valid from 26	
		April 2007 to 30	
		June 2007	
	GW-RS0163-07	Valid from 10	
		March 2007 to 30	
		September 2007	

3

3.1 AIR QUALITY MONITORING

3.1.1 Monitoring Location

In accordance with the EM&A Manual, sampling for 24-hour and 1-hour Total Suspended Particulates (TSP) levels were conducted at the designated monitoring stations listed in *Table 3.1.* Map and photographs showing the monitoring stations are presented in *Annex D*.

Table 3.1 Air Monitoring Stations

Monitoring Station	Description
AM1	Pedestrian Plaza
AM2	Renaissance Harbour View Hotel Hong Kong

3.1.2 Monitoring Parameters, Frequency and Programme

Air quality monitoring was conducted in accordance with the requirements stipulated in the EM&A Manual (*Table 3.2*).

Table 3.2 TSP Monitoring Parameter and Frequency

Parameter	Frequency
24-hour TSP	Once per every 6 days
1-hour TSP	3 times per every 6 days

3.1.3 Action and Limit Levels

The Action and Limit levels were established in accordance with the EM&A Manual and are presented in *Table 3.3*.

Table 3.3 Action and Limit Levels for Air Quality

Parameter	Air Monitoring	Action Level, μg/m³	Limit Level, μg/m³
	Station		
24-hour TSP	AM1	161	260
	AM2	168	260
1-hour TSP	AM1	327	500
	AM2	329	500

3.1.4 Monitoring Equipment

Continuous 24-hour and 1-hour TSP monitoring were performed using High Volume Samplers (HVS) with appropriate sampling inlets installed, located at the designated monitoring station. The performance specification of HVS complies with the standard method "Determination of Suspended Particulate Matter in the Atmosphere (High Volume Method)" as stipulated in US EPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50 Appendix B).

Table 3.4 summarises the equipment that was used in the 24-hour and 1-hour TSP monitoring.

Table 3.4 TSP Monitoring Equipment

Monitoring Station	Equipment	Model (HVS, Calibration Kit)
AM1 (for 24-hr TSP)	HVS, Calibration Kit	GMW-9503, Tisch TE-5025 A
AM2 (for 24-hr TSP)	HVS, Calibration Kit	GMW-9795, Tisch TE-5025A
AM1 (for 1-hr TSP)	HVS, Calibration Kit	GMW-9864, Tisch TE-5025A
AM2 (for 1-hr TSP)	HVS, Calibration Kit	GMW-8115, Tisch TE-5025 A

3.1.5 *Monitoring Methodology*

Installation

The HVSs at AM1 and AM2 were placed at about 1.3 m above local ground level and about 4.3 m above local ground respectively. All of the HVSs were free-standing with no obstruction.

The following criteria were considered in the installation of the HVSs:

- horizontal platform with appropriate support to secure the samplers against gusty wind were provided at AM1 & AM2;
- a minimum of 2 m separation from walls, parapets and penthouses was required for rooftop samplers;
- no furnace or incinerator flues were nearby;
- airflow around the sampler was unrestricted; and
- permission was obtained to set up the samplers and to gain access to the monitoring stations.

Preparation of Filter Papers by ETS-Test Consultant Ltd

- glass fibre filters were labeled and sufficient filters that were clean and without pinholes were selected;
- all filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than \pm 3 °C; the relative humidity (RH) was 40%; and
- ETS-Test Consultant Ltd, a HOKLAS accredited laboratory, implements comprehensive quality assurance and quality control programmes.

Field Monitoring

- the power supply was checked to ensure that the HVSs were working properly;
- the filter holder and the area surrounding the filter were cleaned;

- the filter holder was removed by loosening the foul bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully;
- the filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter;
- the swing bolts were fastened to hold the filter holder down to the frame. The pressure applied should be sufficient to avoid air leakage at the edges;
- then the shelter lid was closed and secured with the aluminum strip;
- the HVSs were warmed-up for about 5 minutes to establish runtemperature conditions;
- a new flowrate record sheet was set into the flow recorder;
- the flow rate of the HVSs was checked and adjust at around 0.6 -1.44 m³/min. The range specified in the EM&A Manual was between 0.6 1.7 m³/min;
- the programmable timer was set for a sampling period of 24 hours \pm 1 hour, and the starting time, weather condition and the filter number were recorded;
- the initial elapsed time was recorded;
- at the end of sampling, the sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact;
- it was then placed in a clean plastic envelope and sealed;
- all monitoring information was recorded on a standard data sheet; and
- filters were sent to ETS-Test Consultant Ltd for analysis.

3.1.6 *Maintenance and Calibration*

The HVSs and their accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.

The flow rate of each HVS with mass flow controller were calibrated using an orifice calibrator. Initial calibration of the dust monitoring equipments were conducted upon installation and prior to commissioning. Five-point calibration was carried out for HVSs using Tisch TE-5025 A Calibration Kit. The calibration records for the HVSs are given in the respective monthly reports.

3.2 WATER QUALITY MONITORING

3.2.1 *Monitoring Location*

In accordance with the EM&A Manual, the marine water quality monitoring was conducted at the designated monitoring stations during the installation and removal of temporary marine piles listed in *Table 3.5*. The map and photographs showing the monitoring stations are presented in *Annex D*.

Table 3.5 Water Quality Monitoring Locations

Station	Location	Intake Level	Easting	Northing
W3	Hong Kong Convention and Exhibition Centre Phase I Cooling Water Intake	7.5m below the existing pump house floor	835852	815907
W4	Wan Chai Tower/ Revenue Tower/ Immigration Tower Cooling Water Intake ⁽¹⁾	5m below the top of the existing sea wall	835944	815885
W5	Great Eagle Centre, China Resources Building Cooling Water Intake	5m below the top of the existing sea wall	835963	815886

Note:

3.2.2 Monitoring Parameters, Frequency and Programme

The water quality monitoring was conducted in accordance with *Table 3.6* during the period of installation and removal of temporary marine piles.

 Table 3.6
 Water Quality Monitoring Parameters & Frequency

Parameter	Frequency	No. of Samples per	Duration
		Monitoring Event	
Dissolved Oxygen (DO)	3 days per week at mid-	2	During installation
Suspended Solids (SS)	flood & mid-ebb tides		and removal of
Turbidity			temporary marine
	_		piles.

Reference was made to the predicted tides at Quarry Bay, which is the tidal station nearest to the Project Site, published on the web site of Hong Kong Observatory (http://www.hko.gov.hk/tide/eQUBtide.htm).

Measurements of suspended solids (SS), turbidity in Nephelometric Turbidity Units (NTU) and dissolved oxygen (DO) in mgL⁻¹ were undertaken at the designated monitoring stations. The first parameter was determined in the laboratory with the latter three were measured in-situ.

3.2.3 Action and Limit Levels

The Action and Limit levels were established in accordance with the EM&A Manual and are presented in *Table 3.7*.

⁽¹⁾ The cooling water intake for Wan Chai Tower / Revenue Tower/ Immigration Tower was partially relocated to the new pump house adjacent to Station W3..

Table 3.7 Action and Limit Levels for Water Quality

Parameter	Tide	Action Level	Limit Level
Dissolved Oxygen	Mid-Ebb	3.26	3.23
(DO) in mgL ⁻¹	Mid-Flood	3.25	3.14
Suspended Solids (SS)	Mid-Ebb	9.00	10.00
in mgL ⁻¹	Mid-Flood	8.18	8.40
Turbidity (Tby) in	Mid-Ebb	5.32	6.19
NTU	Mid-Flood	4.76	5.79

3.2.4 Monitoring Equipment and Methodology

Dissolved oxygen and temperature measuring equipment

The portable and weatherproof dissolved oxygen (DO) measuring meter (YSI Model 95) was used in the impact monitoring.

The DO measuring meter has a membrane electrode with automatic temperature compensation complete with a 50-feet cable. Wet bulb calibration for a DO meter was carried out before measurement at each monitoring station.

Turbidity Measurement Instrument

The turbidity measurements were carried out on split water sample collected from the same depths of SS samples. A portable and weatherproof turbidity-measuring meter (HACH 2100P) was used in the impact monitoring. It has a photoelectric sensor capable of measuring turbidity between 0-1000 NTU. Response of the sensor was checked with certified standard turbidity solutions before the start of measurement.

Suspended Solids

Water samples for suspended solids measurement were collected by use of a transparent PVC cylinder (Kahlsico Water Sampler), packed in ice (cooled to 4°C without being frozen) and delivered to the laboratory as soon as possible after collection. The SS determination work started within 24 hours after the collection of the water samples, and the testing method of SS were carried by ETS-Testconsult Ltd (HOKLAS accredited laboratory) in accordance with the APHA 19ed 2540D⁽¹⁾ and the lowest detection limit is 1 mgL⁻¹. The Quality Assurance/Quality Control (QA/QC) procedures were followed as required by HOKLAS.

Water Depth Detector

A portable, battery-operated echo sounder (Speedtech instrument SM-5A) was used for the determination of water depth at each designated monitoring station.

⁽¹⁾ American Public Health Association Standard Methods for the Examination of Water and Wastewater.

Location of the Monitoring Sites

A hand-held GPS (MLR SP24) and together with a suitably scaled map were used for locating the water quality monitoring stations.

Calibration of Equipment

All in-situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme before use, and subsequently re-calibrated at 3 monthly intervals throughout the water quality monitoring. The calibration records for the monitoring instruments are given in the respective monthly reports.

3.2.5 Additional Water Quality Monitoring

As part of the Application for Variation of Environmental Permit (Application No. VEP-227/2007) submitted on 25 January 2007, the Permit Holder undertook to conduct additional water quality monitoring in the marine channel in connection with the installation of temporary marine piles, in addition to the water quality monitoring at the three designated cooling water intakes discussed in *Section 3.2.1*. The additional water quality monitoring programme, which was prepared as a supplement to the EM&A Manual, was submitted to EPD on 4 April 2007 for consideration and was still under review by EPD at the end of the reporting period⁽¹⁾.

The Contractor had voluntarily undertaken the additional water quality monitoring since 21 March 2007 to collect water quality data while approval from EPD on the monitoring programme was awaited. A four-week additional water quality monitoring ensued upon the completion of the temporary marine pile installation works on 23 April 2007 in accordance with the additional water quality monitoring programme submitted to the EPD. The post-works additional water quality monitoring was scheduled for completion on 21 May 2007. The following describes the details of the additional water quality monitoring programme.

Monitoring Locations

Two control stations and an impact monitoring station were selected for the collection of data on water quality within and outside the marine channel. The locations of the control stations and the impact monitoring station are presented in *Table 3.8* and *Annex D*.

⁽¹⁾ The additional water quality monitoring programme was approved by the EPD on 9 May 2007.

Table 3.8 Monitoring Stations for Additional Water Quality Monitoring Programme

Station	Location	Monitoring Water Depth	Easting	Northing
C1(1)	Adjoins Expo Drive	Surface, middle and bottom	835645	815900
$C2^{(2)}$	Adjoins Expo Drive East	Surface, middle and bottom	836014	815926
M1 ⁽³⁾	Approximately at the centre of the marine	Surface, middle and bottom	835852	815907
	channel			

Remark:

- (1) C1 has been assigned the upstream station during mid-ebb tide with reference to the flow pattern within and in the vicinity of the marine channel.
- (2) C2 has been assigned the upstream station during mid-flood tide with reference to the flow pattern within and in the vicinity of the marine channel.
- (3) Taking into account the foreseeable difficulty in accessing the exact centre of the marine channel, monitoring station M1 was chosen to be the same location as W3 under the current monitoring programme but outside the silt screen.

Monitoring Schedule and Requirement

The additional water quality monitoring was conducted in accordance with *Table 3.9* during the installation of temporary marine piles at the proposed monitoring stations listed in *Table 3.8*.

Table 3.9 also summarises the monitoring frequency and water quality parameters adopted for the reporting quarter. Duplicate in-situ measurements and water samples for testing suspended solids (SS), and one water sample for testing total inorganic nitrogen (TIN) were taken for each sampling event.

Table 3.9 Additional Water Quality Monitoring Frequency and Parameters

Activity	Monitoring Frequency	Monitoring Parameters
During the installation of	Three days per week at mid-	Dissolved Oxygen (DO),
temporary marine piles	flood and mid-ebb tides	Turbidity, Suspended Solid
		(SS), Total Inorganic Nitrogen
		(TIN)
Four-week monitoring	Three days per week at mid-	Dissolved Oxygen (DO),
immediately after the	flood and mid-ebb tides	Turbidity, Suspended Solid
completion of the installation		(SS), Total Inorganic Nitrogen
of the temporary marine piles		(TIN)
Four-week monitoring during	Three days per week at mid-	Dissolved Oxygen (DO),
the dry season after the	flood and mid-ebb tides	Turbidity, Suspended Solid
completion of the installation		(SS), Total Inorganic Nitrogen
of the temporary marine piles		(TIN)

Measurements were taken at three water depths, namely 1 m below water surface, mid-depth and 1 m above sea bed, except where the water depth is less than 6 m, in which case the mid-depth sample was omitted. Where the water depth was less than 3 m, monitoring was undertaken only at mid-depth.

Monitoring Equipment

The same monitoring equipment including dissolved oxygen and temperature measuring equipment, turbidity measurement instrument and water depth detector was used as described in *Section 3.2.4*.

Laboratory Measurement / Analysis

and Wastewater, 19th edition

Water samples for laboratory analyses under the additional water quality monitoring programme were collected following the same procedures described in *Section 3.2.4* for SS. The laboratory analyses were conducted within 24 hours after the collection of the water samples by ETS-Testconsult Ltd (HOKLAS accredited laboratory) in accordance with the analytical methods presented in *Table 3.10*. The Quality Assurance/Quality Control (QA/QC) procedures were followed as per HOKLAS requirements.

Table 3.10 Analytical Methods for Water Quality Parameters Monitored

Water Quality Parameter	Analytical Method	Detection Limit
Suspended Solids (SS)	APHA(1) 2540D or HOKLAS-	1 mgL ⁻¹
	accredited method	
Total Inorganic Nitrogen (TIN)	APHA ⁽¹⁾ 4500 - NO ₃ F & NH ₃ G or	0.1 mgL ⁻¹
	HOKLAS-accredited method	-
Remark:		
(1) American Public Health Ass	sociation (APHA) Standard Methods for	the Examination of Water

4 IMPLEMENTATION STATUS OF ENVIRONMENTAL PROTECTION REQUIREMENTS

4.1 ENVIRONMENTAL SITE AUDITING

Weekly site inspections were carried out by the ET. Thirteen site inspections were conducted on 1, 8, 14 and 22 February 2007; 1, 8, 13, 22 and 29 March 2007; and 4, 12, 19 and 26 April 2007. The major construction activities undertaken in the reporting period were the installation of marine pile, construction of marine platform and pedestrian tunnel. The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Report, the Environmental Permit and EM&A Manual. There was no non-compliance event recorded in the reporting period. The implementation status of environmental mitigation and status of relevant required submissions under the EP are reported as part of the monthly EM&A reports⁽¹⁾. Relevant submissions made on these measures and requirements during the reporting period are summarised in *Annex E*.

4.2 WATER DISCHARGE SAMPLING

In accordance with the discharge licence issued under WPCO, water sampling should be conducted at least quarterly to ensure the quality of treated effluent at three designated discharge points complies with the requirements of discharge license. During the reporting period, two effluent samples were taken at Discharge Point 1, the gully located at the east end of Expo Drive Central, on 15 March 2007 as well as at Discharge Point 3, the gully located near staircase no. 35, on 13 April 2007 respectively. The results show that the effluent discharged from the project was in compliance with the discharge limit stipulated in the Water Discharge Licence.

4.3 LANDSCAPE AND VISUAL MONITORING

In accordance with *Section 6.7* of the EM&A Manual, bi-weekly landscape and visual monitoring is required to ensure that the design, implementation and maintenance of landscape and visual mitigation measures are fully achieved. The monitoring has commenced since January 2007 and is conducted by Earthasia Limited. Landscape and visual mitigation measures were implemented by the Contractor and the implementation status is given in *Annex E*.

⁽¹⁾ The Monthly EM&A Reports for February 2007, March 2007 and April 2007 were submitted to the EPD on 20 March 2007, 19 April 2007 and 15 May 2007 respectively.

4.4 EFFECTIVENESS OF MITIGATION MEASURES AND MONITORING

The mitigation measures recommended in the EIA report and required by the EP are considered effective in minimizing environmental impacts.

The EM&A for the Project was conducted as scheduled during the reporting period. Immediate notification was issued to relevant parties when noncompliance event was observed during site auditing and exceedances recorded after receiving the monitoring results. This enabled remedial actions to be taken and preventive measures to be implemented by the Contractor in a timely manner to minimize further impact on the environment. For the above reasons, the EM&A programme is considered effective.

MONITORING RESULTS

5.1 AIR QUALITY

5

The monitoring data at AM1 and AM2 were provided by ETS-Testconsult Ltd. Sixteen sets of 24-hour and forty-six sets of 1-hour TSP monitoring were carried out at the designated monitoring stations (AM1 & AM2) during the reporting period. The monitoring data for 24-hour TSP and 1-hour TSP with weather conditions and graphical presentations are presented in *Annex F*.

The weather condition during the monitoring period varied from sunny to rainy. The local impacts observed near the monitoring stations were mainly vehicle emissions along Convention Avenue and Fleming Road.

No exceedance of 24-hour TSP and 1-hour TSP was recorded at the monitoring stations during this quarter. The measured 24-hr TSP at both stations varied in the reporting period with the measured TSP levels ranging from 36 - 142 μ gm⁻³ at AM1 and from 34 - 145 μ gm⁻³ at AM2, and the measured 1-hr TSP levels ranged from 104 - 317 μ gm⁻³ at AM1 and 92 – 316 μ gm⁻³ at AM2.

5.2 WATER QUALITY

Water quality monitoring was conducted in the reporting period and the results of water quality monitoring were provided by ETS-Testconsult Ltd. Thirty-four sets of water quality measurements were carried out at the designated monitoring stations W3, W4 and W5 during the installation of marine piles, which was completed on 23 April 2007.

Additional water quality monitoring was also undertaken from 21 March 2007 on a voluntary basis. Eighteen sets of water quality measurements were carried out at the designated monitoring stations C1, C2 and M1 during the reporting month but the checking of compliance and the Event and Action Plan were not yet implemented pending EPD's approval of the additional monitoring programme and the associated Action and Limit Levels.

The monitoring data and graphical presentations are summarised in *Annex G*. The monitoring results can also be found in the web-site (http://www.hkcecema.com/index.html).

During the reporting period a total of twelve exceedances of water quality parameters of the monitoring stations were recorded and were summarised in *Table 5.1*. Notification of Exceedances with detailed investigation reports were issued to IEC and EPD immediately when the exceedances were identified.

Table 5.1 Summary of Record of Exceedanace recorded during the Reporting Period

Station	Record of Exceedance
W3	Exceedance of Action Level of Turbidity on 23 March 2007
	Exceedance of Action Level of Turbidity on 28 March 2007
	Exceedance of Action Level of Turbidity on 30 March 2007
	Exceedance of Action Level of Turbidity on 4 April 2007
	Exceedance of Limit Level of Turbidity on 16 April 2007
	Exceedance of Action Level of Turbidity on 23 April 2007
W4	Exceedance of Action Level of Dissolved Oxygen on 21 February 2007
	Exceedance of Action Level of Turbidity on 26 March 2007
	Exceedance of Action Level of Turbidity on 4 April 2007
	Exceedance of Limit Level of Turbidity on 16 April 2007
W5	Exceedance of Action Level of Turbidity on 4 April 2007
	Exceedance of Limit Level of Turbidity on 16 April 2007

Exceedance of Action Level of Dissolved Oxygen was recorded on 21 February 2007. No construction activity was being conducted in the vicinity of Station W4 during the time of monitoring. No silty water was observed to be discharged from the site to the water channel. The measured DO level of the water samples taken during the mid-ebb tide marginally exceeded the Action Level. The exceedance was likely due to natural fluctuation in water quality rather than Project works. The measured DO levels of water samples taken during the mid-ebb tide on 23 February 2007 complied with the Action Level.

Exceedances of Action and Limit Levels of turbidity were recorded on 23, 28, 26 and 30 March 2007 and 4 and 23 April 2007. During the time of monitoring, no silty water was observed to be discharged from the site to the marine channel. Results of investigations indicate that the exceedances of Action and Limit Level of turbidity were likely due to natural fluctuation or related to other project works rather than Project works. In addition, the gravimetric measurement of SS in the laboratory, which is considered a more accurate and quantitative measurement, complied with the Action Level, indicating the water quality was acceptable as compared with the Action Level.

Exceedances of the Limit Level for turbidity were recorded on 16 April 2007. No silty water was observed to be discharged from the site to the marine channel. A sediment plume was observed to be located approximately 300m away from the Project site and its source could not be identified. It is therefore suspected that the sediment plume might have contributed to the high levels of turbidity in the marine channel and consequently reflected in the water quality monitoring results obtained. The gravimetric measurement of SS in the laboratory, which is considered a more accurate and quantitative measurement, complied with the Action Level, indicating the water quality was acceptable as compared with the Action Level.

The Contractor was recommended to immediately check the integrity of the silt screens installed at the monitoring stations and undertake proper maintenance, if necessary. The measured turbidity levels of water samples taken on 18 April 2007 complied with the Action Level, and therefore no further follow-up corrective action was required.

5.3 WASTE MANAGEMENT

Waste generated from this Project includes inert construction and demolition (C&D) materials and non-inert C&D wastes. Reference has been made on the Monthly Summary Waste Flow Table prepared by Hip Hing – Ngo Kee Joint Venture (*Annex H*).

With reference to relevant handling records and trip tickets of this Project, the quantities of different types of waste generated in the reporting period are summarised in *Table 5.2*.

Table 5.2 Quantities of Waste Generated from the Project

	Quantity		
Month / Year	C&D Materials (inert) (a)	C&D Wastes (non-inert) (b)	Chemical Waste
February 2007	814 tonnes	121 tonnes (excluding 100 tonnes steel material)	288 Litres
March 2007	583 tonnes	110 tonnes (no steel materials collected)	0
April 2007	1,034 tonnes	99 tonnes (no steel materials collected)	0
Total	2,431 tonnes	330 tonnes (excluding 100 tonnes steel material)	288 Litres

Notes:

- (a) Inert C&D materials include bricks, concrete, building debris, rubble and excavated soil.1.5 tonnes of inert C&D materials were reused in this Project. Non-reused inert C&D materials were disposed at the public fill barging point at Quarry Bay.
- (b) C&D wastes include steel materials generated from demolition of footbridge, the existing Atrium Link and working platform, paper / cardboard packaging waste, chemical waste and other wastes such as general refuse. A total of 100 tonnes of steel material were sent to recycler and the remaining C&D wastes other than general refuse were disposed of at SENT Landfill / Tseung Kwan O Area 137 temporary construction waste sorting facility.

A total of 2,431 tonnes of inert C&D materials (including 1.5 tonnes materials reused in this Project) and 330 tonnes of C&D wastes were generated during the reporting period. The C&D wastes and inert C&D materials generated from the Project were disposed of at SENT Landfill / Tseung Kwan O Area 137 temporary construction waste sorting facility and the public fill barging point at Quarry Bay respectively. 288 litres of chemical waste generated during the reporting period were collected by licensed chemical waste collector.

6 ENVIRONMENTAL NON-CONFORMANCE

6.1 SUMMARY OF ENVIRONMENTAL EXCEEDANCE

No exceedance of the Action and Limit Levels of 24-hour and 1-hour TSP was recorded at the designated air quality monitoring stations during the reporting period.

Twelve Notification of Exceedance with detailed investigation reports were issued during the reporting period for water quality monitoring exceedances on turbidity at the monitoring stations W3, W4 and W5. Details of the exceedances recorded were presented in *Section 5.1*.

6.2 SUMMARY OF ENVIRONMENTAL NON-COMPLIANCE

No non-compliance event was recorded during the reporting period.

6.3 SUMMARY OF ENVIRONMENTAL COMPLAINT

No complaint was received during the reporting period.

6.4 SUMMARY OF ENVIRONMENTAL SUMMONS AND PROSECUTION

There was no summons or prosecution on environmental matters during the reporting period.

7

7.1 AIR QUALITY

Since the EIA only have qualitative assessment of dust impact during construction phase, the comparison was made on monitoring results and the Hong Kong Air Quality Objectives (HKAQO) (*Table 7.1*).

Table 7.1 Comparison of the HKAQO and Air Quality Monitoring Results

Month	Monitoring	Corresponding	HKAQO, μg/m ³	Measured 2	4 hour TSP
	Stations	ASR in EIA		Monitoring Results, μg/m ^{3 (1)}	
			24 hour (1)	Average	Range
February 2007	AM1	AM8	260	93	36 - 142
	AM2	AM6	260	86	34 - 145
March 2007	AM1	AM8	260	79	53 - 108
	AM2	AM6	260	97	46 - 145
April 2007	AM1	AM8	260	75	57 - 111
_	AM2	AM6	260	62	37 - 99

Remarks

The monitoring results show that air quality impacts from construction activities during the reporting period were well below maximum allowable concentration stipulated in the HKAQO. Recommended mitigation measures in *Section 4.24* of EIA were implemented during the reporting period and were considered as effective.

7.2 WATER QUALITY

The hydrodynamic modelling assessment undertaken in the approved EIA Report was targeted at assessing the potential effects of the marine works on the flushing capacity of the water channel during the construction phase and no prediction was made on the change in water quality, hence no comparison can be made with the monitoring results.

7.3 WASTE MANAGEMENT

The estimated amount of waste generated in this project and the quantities of waste generated during the reporting period are presented in *Table 7.2*. Recommended mitigation measures in *Sections 6.35 to 6.41* of the EIA report are implemented during the reporting period. These measures are regarded as effective.

⁽¹⁾ Only 24 hours TSP monitoring results were compared as there is no maximum allowable concentration of 1 hour TSP in HKAQO.

Table 7.2 Comparison of the Estimated Amount and the Actual Amount of Waste Generated

Type of Material	Estimated Amount of C&D Materials in EIA (inert & non- inert)	Actual Amount of C&D Materials Recorded ⁽¹⁾ (inert & non-inert)
Demolition of temp. footbridge	585 tonnes	0
Demolition of existing Atrium	4,680 tonnes	305
Link		
Demolition of temp. working	390 tonnes	0
platform		
Construction of foundations and	20,000 tonnes	11,521 tonnes
pile caps		
General Refuse	Insignificant	533 tonnes
Chemical Waste	Small	288 Litres

Remark

7.4 CONCLUSION OF REVIEW

The EIA predictions and the monitoring results during the reporting period have been reviewed. The EIA concluded that the Project would not pose adverse impacts to the environment, and the monitoring results also indicated that the construction of the Project did not pose adverse impacts to the environment. Recommendations given in the EIA are also considered to be adequate and effective for minimising the environmental impacts.

⁽¹⁾ The actual amount of C&D Materials was recorded since the commencement of construction works in August 2006.

CONCLUSION

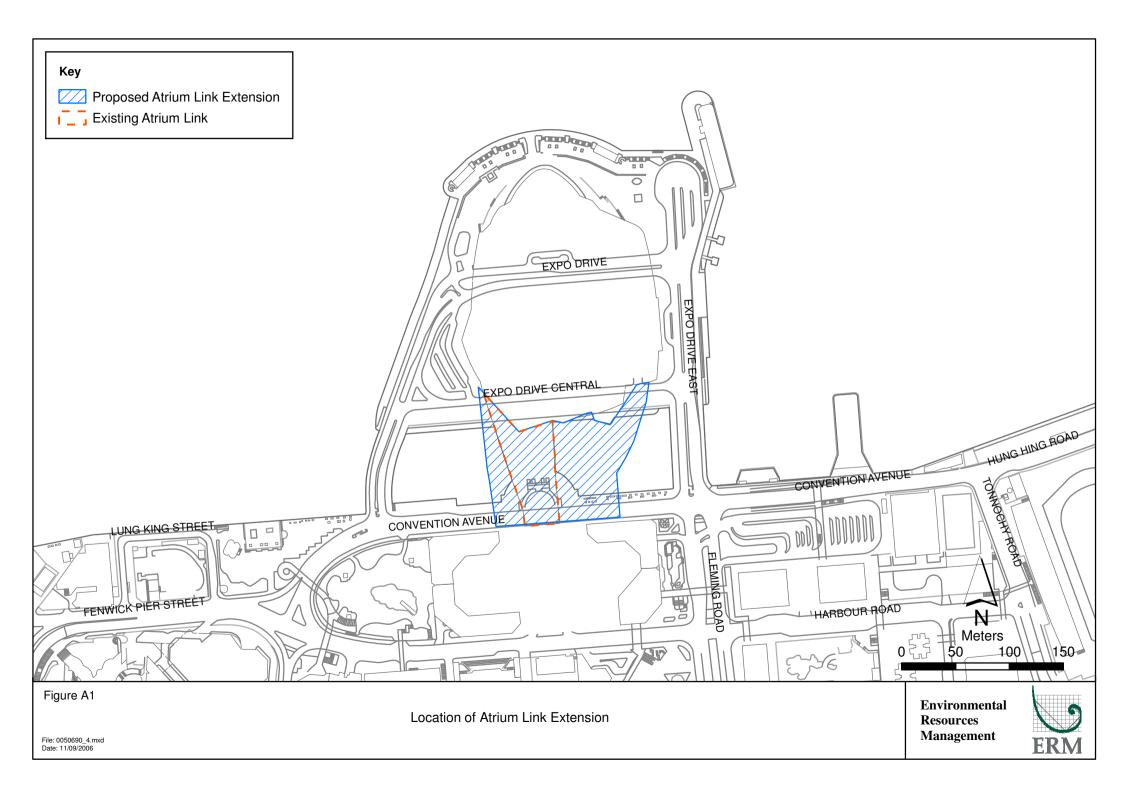
8

The Environmental Monitoring and Audit (EM&A) Report presents the EM&A works undertaken during the period from 1 February to 30 April 2007 in accordance with EM&A Manual and the requirement under EP-239/2006A.

Sixteen sets of 24-hour and forty-six sets of 1-hour TSP monitoring were carried out at the designated monitoring stations (AM1 & AM2) during the reporting period. No exceedance was recorded.

Twelve Notifications of Exceedance (NOE) with detailed investigations reports were issued during the reporting period for recording water quality monitoring exceedances on dissolved oxygen and turbidity at the monitoring stations. All these exceedance, except for those recorded on 16 April 2007, were associated with natural fluctuation rather than Project works as no silty water was observed to be discharged from the site to the water channel. No further follow-up corrective action was required.

Exceedances of the Limit Level for turbidity recorded on 16 April 2007 might be attributable to the sediment plume observed at approximately 300m away from the Project site rather than the works of the Project. The gravimetric measurement of SS in the laboratory complied with the Action Level, indicating the water quality was acceptable as compared with the Action Level. The Contractor was recommended to immediately check the integrity of the silt screens installed at the monitoring stations and undertake proper maintenance, if necessary. The measured turbidity levels of water samples taken on 18 April 2007 complied with the Action Level, and therefore no further follow-up corrective action was required.

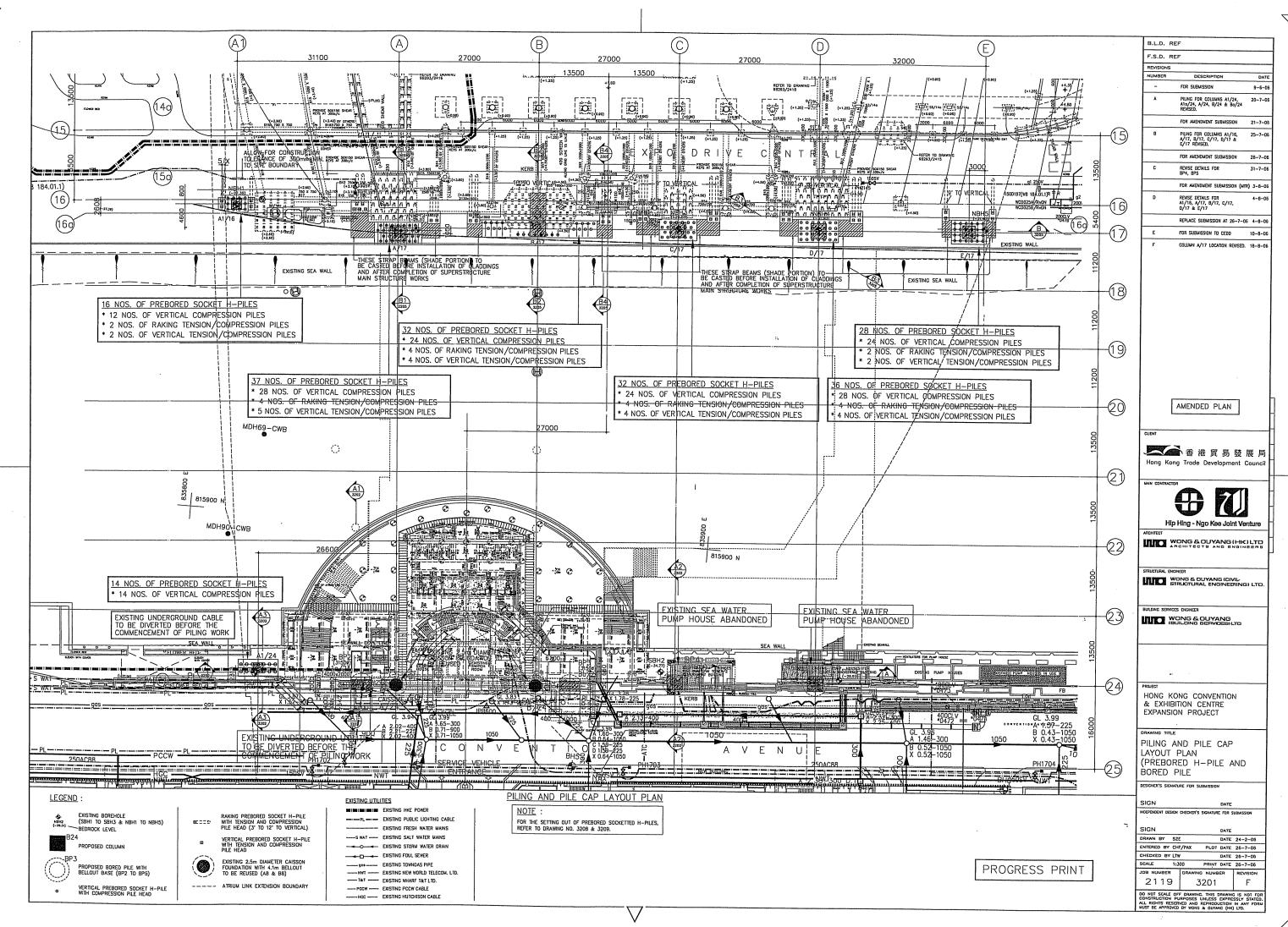

No non-compliance event was recorded during the reporting period.

No complaint and summons/prosecution was received during the reporting period.

The ET will keep track of the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

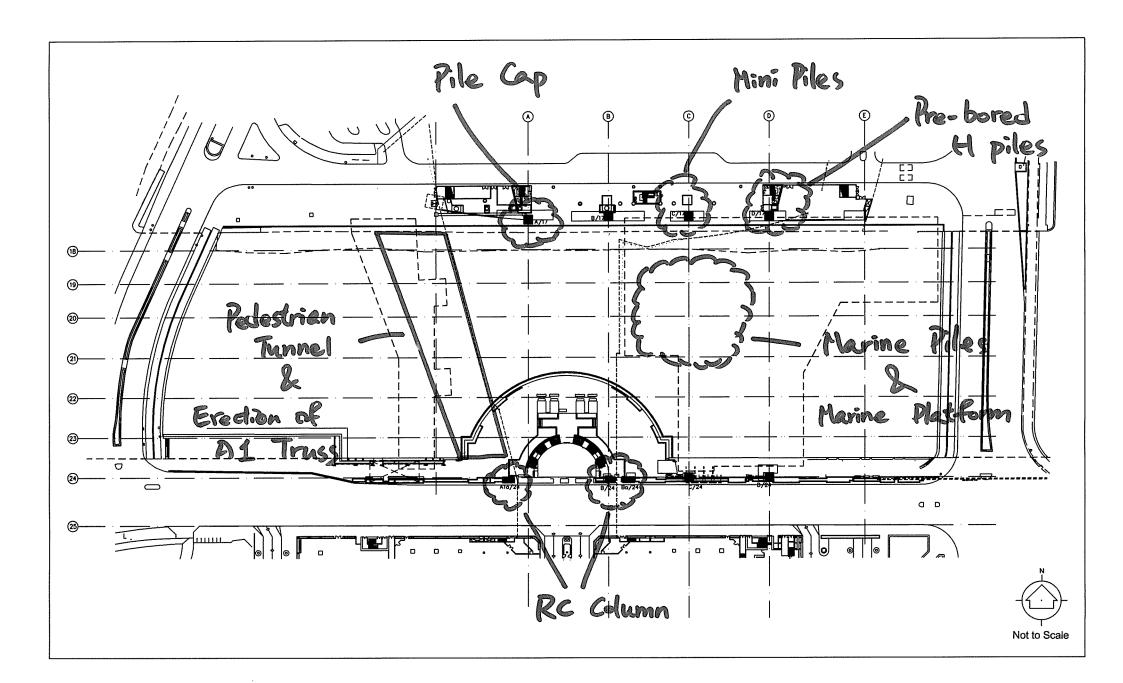
Annex A

Locations of Works Areas

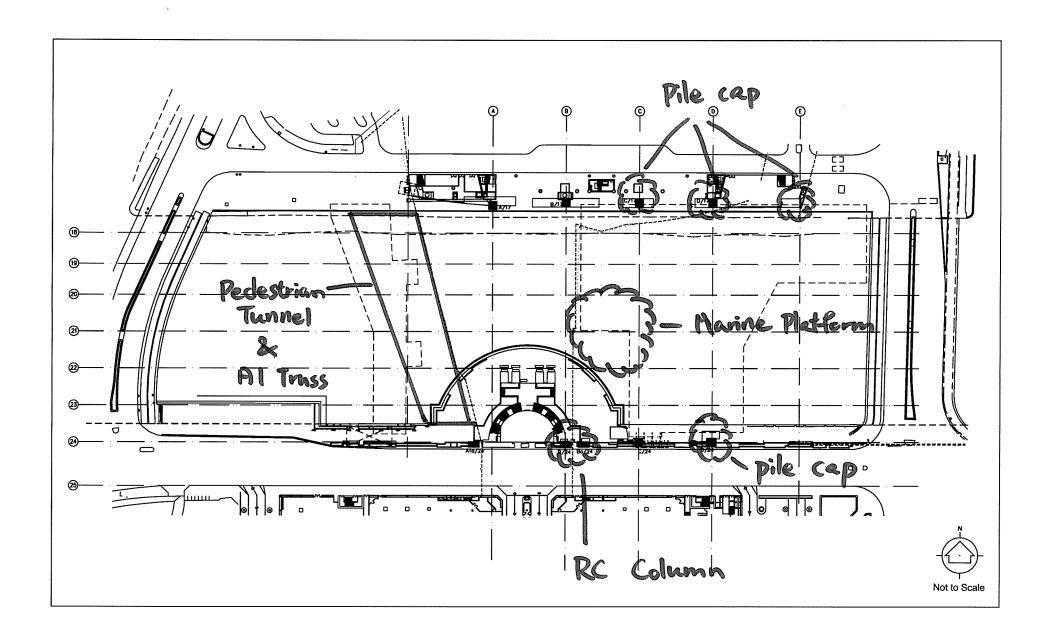


Annex B

Location of Construction Activities during the Reporting Quarter

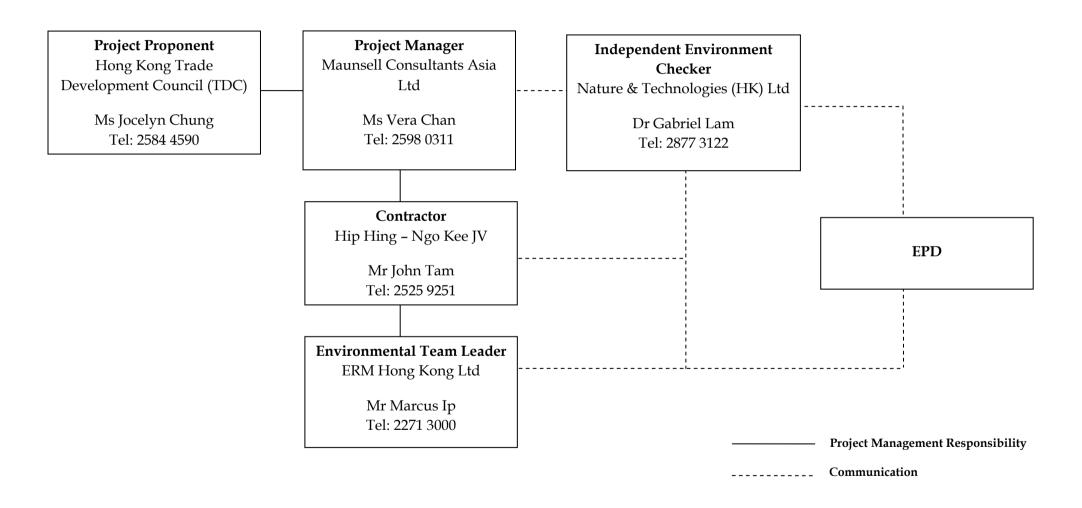

Summary of Works for February 2007

Description	Location
Pre-bored H piles at northern sides	B/17 and D/17
Mini piles for marine platform at southern and northern sides	G/F North & South Side
Marine Pile Installation	Sea channel
Excavation of bored pile at BP3	BP3
Stitch drilling of bored pile at BP4	BP4
Stitch drilling and pre-trenching of bored pile at BP5	BP5
Demolition of Phase II	Grid 16/ B-D from upper roof down to Level 2
Construction of RC Column	Grid A1/16
Removal of glass wall	West façade
Erection of temporary enclosed pedestrian walkway mock-up	Outside site office

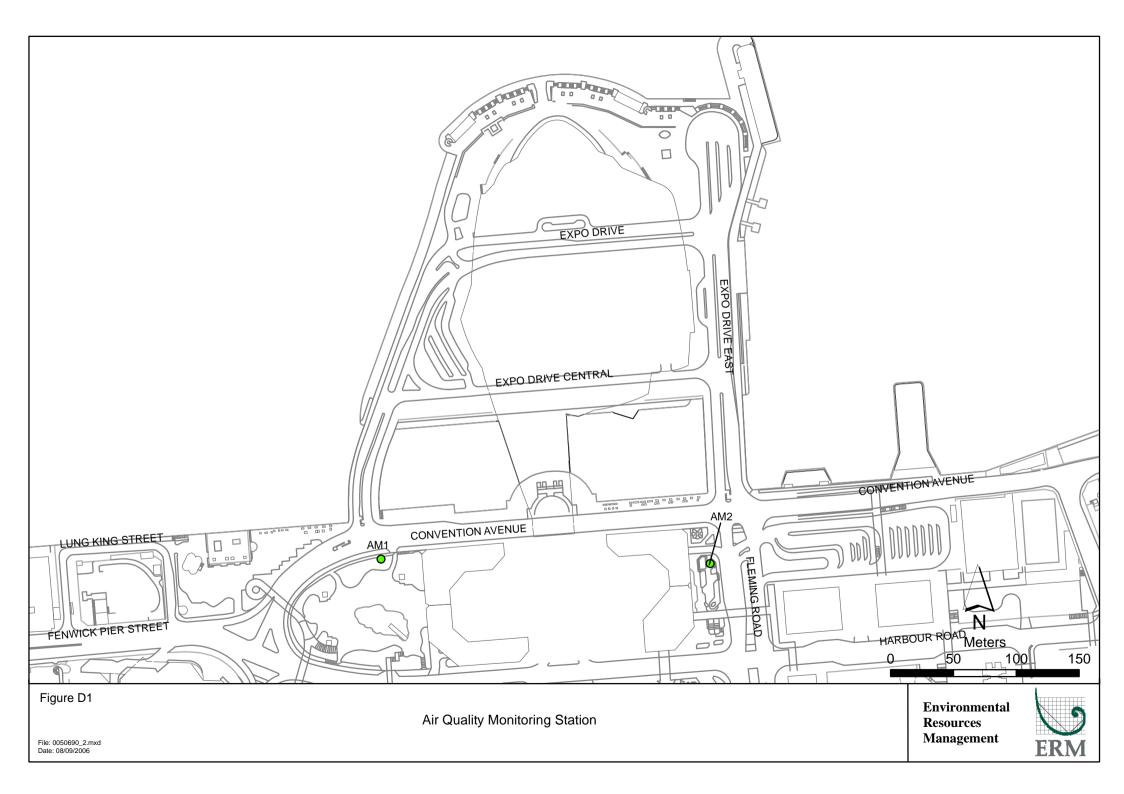

Summary of Works for March 2007

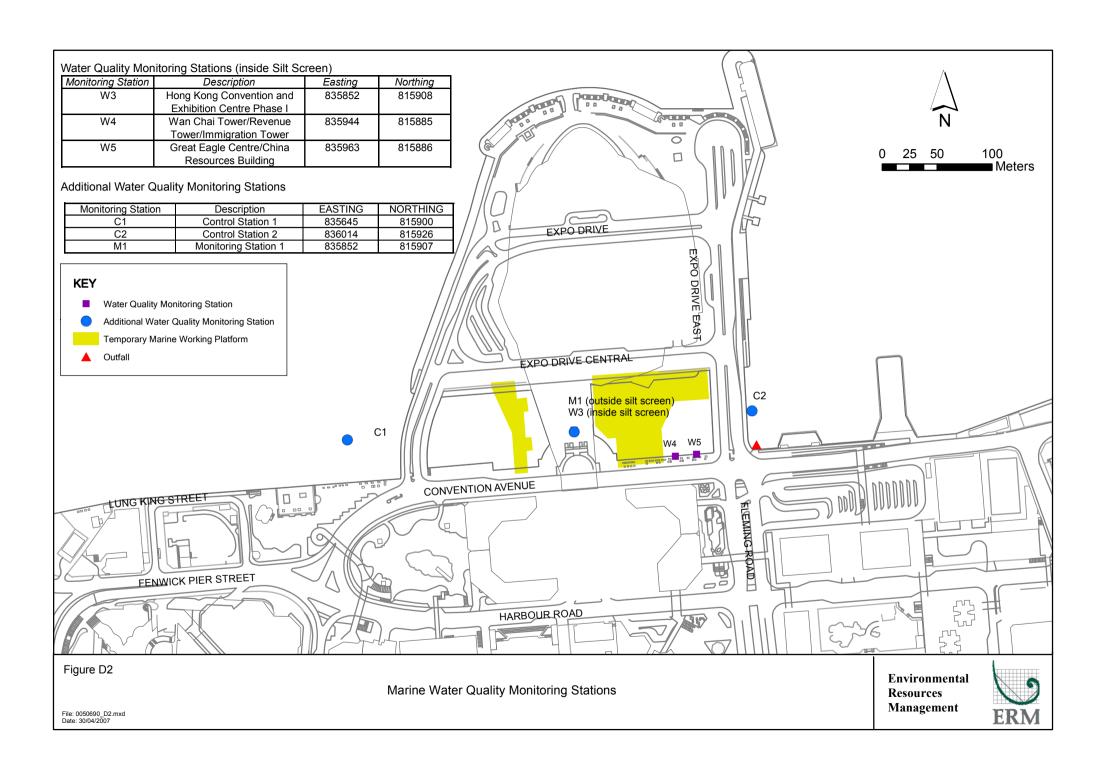
Description	Location	
Construction of pre-bored H piles	Grid D/17 North Shore	
Construction of mini piles for marine platform	G/F North Shore	
Construction of marine platform	G/F East Shore	
Installation of Marine Pile	Marine Channel	
Construction of RC column	Grid A1a/24 & Ba/24	
Construction of pile cap	Grid A/17	
Construction of pedestrian tunnel	Zone 1-5 & RS 1-4	
Erection of A1 truss	Grid A1	

Summary of Works for April 2007


Description	Location
Construction of pile cap	BP4, BP5, C/17, D/17 & E/17
Construction of RC column	Ba/24
Erection of A1 truss	Grid A1
Construction of pedestrian tunnel	Zone 1-5
Construction of marine platform	G/F East Shore

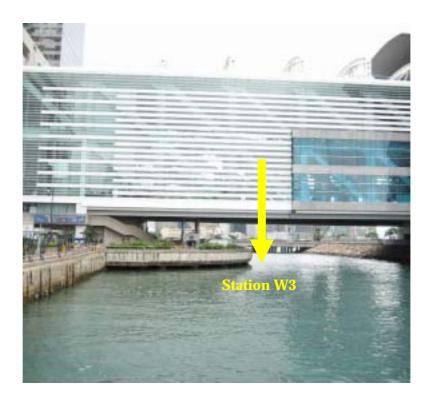
Annex C


Project Organization Chart and Contact Detail


Project Organization (with contact details)

Annex D

Location of Monitoring Stations



Air Quality Monitoring Station (AM1)

Air Quality Monitoring Station (AM2)


Water Quality Monitoring Location – Station W3

Water Quality Monitoring Location – Stations W4 and W5 $\,$

Additional Water Quality Monitoring Location – Station C1

Additional Water Quality Monitoring Location - Station C2

Additional Water Quality Monitoring Location – Station M1

Annex E

Summary of Implementation Status

Summary of Environmental Protection / Mitigation Activities

Environmental Permit No. EP-239/2006/A

EP Condition	Submission	Action Required by the Permit Holder	Implementation Status
Ref Measures for N	litigating Water Quality Impact		
2.4	Method statement on silt screens for seawater intakes (including design and maintenance requirements)	2 weeks before commencement of marine pile installation works	Method statement was submitted to the EPD on 21/6/06.
			Method statement (Revision A) was submitted to the EPD on 29/9/06.
2.5	Method statement on silt curtain system for marine piling works (including design and maintenance requirements)	2 weeks before commencement of marine pile installation works	Method statement was submitted to the EPD on 15/9/06.
2.8	Design drawings specifying pile dimension and layout	2 weeks before commencement of marine pile installation works	Marine pile layout (final stage) was submitted to the EPD on 15/2/07.
			Revised marine pile layout (final stage) was submitted to the EPD on $26/3/07$.
Measures for N	litigating Air Quality Impact		
2.9	Design drawings of ventilation facility for fresh air intakes (req'd only before operation of Project)	2 weeks before commencement of installation of ventilation facility	
Measures for M	litigating Landscape and Visual Impact		
2.10	Implementation programme for landscape and visual mitigation measures (for both construction and operational phases of Project)	Within 6 months after commencement of construction of Project	n Implementation programme (CM01, CM04 and CM05) was submitted to the EPD on 8/12/06.
2.10	Details of each landscape and visual mitigation measures package (incl plans)	2 weeks before implementation of a particular mitigation package	Proposal on protection and transplantation of existing trees was submitted to the EPD on 8/12/06. Proposal for CM03 was submitted to the EPD on 8/12/06. Proposal for CM01, CM04 and CM05 was submitted to the EPD on 15/12/06. CM01 Rev 1 was submitted to the EPD on 22/1/07. Proposal CM02 was submitted to the EPD on 13/3/07.
3.2	Baseline Monitoring Report	One week before the commencement of construction	Report was submitted to the EPD on 24/7/06 and comments from the EPD was received on 3/8/06. Revised report was submitted to EPD on 17/8/06 and no further comments received.

Type of	Environmental Protection Measures	Location/ Timing	Status	
Impact				
Construction Pl		T		
Air Quality	 The Air Pollution Control (Construction Dust) Regulation shall be implemented and good site practices shall be incorporated in the contract clauses to minimize construction dust impact. A number of practical measures are listed below: skip hoist for material transport should be totally enclosed by impervious sheeting; every vehicle should be washed to remove any dusty materials from its body and wheels before leaving a construction site; the area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores; where a site boundary adjoins a road, streets or other accessible to the public, hoarding of not less than 2.4 m high from ground level should be provided along the entire length except for a site entrance or exit; every stock of more than 20 bags of cement should be covered entirely by impervious sheeting placed in an area sheltered on the top and the 3 sides; all dusty materials should be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet; the height from which excavated materials dropped should be controlled to a minimum practical height to limit fugitive dust generation from unloading; the load of dusty materials carried by vehicle leaving a construction site should be covered entirely by clean impervious sheeting to ensure dust materials do not leak from the vehicle; and instigation of an environmental monitoring auditing program to monitor the construction process in order to enforce controls and modify method of work if dusty conditions arise. 	Work site / during construction	Δ	

Environmental Resources Management

Hip Hing - Ngo Kee Joint Venture

1

Type of	Environmental Protection Measures	Location/ Timing	Status
Impact			
Operational Pha Air Quality	Some fresh air intakes of the Hong Kong Convention and Exhibition Centre Phase I, Renaissance Harbour View Hotel and Grand Hyatt Hotel (ASRs A4, A5 and A6) should be re-diverted to the new air vent shaft provided for Atrium Link Extension where fresh air intake located at +55.8mPD.	Location of ASRs A4, A5 & A6 / Design & Operation Stage (Long-term and Interim Scenario)	Measures not required until commencement of operational phase
Air Quality	Monitoring of NO ₂ concentration underneath the Atrium Link Extension should be conducted.	Underneath the deckover / The first six months upon completion of the ALE.	Measures not required until commencement of operational phase
Construction Ph	ase		
Noise	 Good Site Practice: only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program; silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction program; mobile plant, if any, should be sited as far from NSRs as possible; machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs; and material stockpiles and other structures should be effectively utilised, wherever practicable, in screening noise from onsite construction activities; Environmental audit shall be carried out to ensure that appropriate noise control measures would be properly implemented. 	Construction work areas / Construction period	Δ

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
Operational Pha	ise		
Noise	The following noise reduction measures should be considered as far as practicable during detailed design: choose quieter plant such as those which have been effectively silenced; include noise levels specification when ordering new plant; locate fixed plant away from any NSRs as far as practicable; locate fixed plant in plant rooms with thick walls or specially designed enclosure; locate noisy machines in basement or a completely separate building; and develop and implement a regularly scheduled plant maintenance programme in order to maintain controlled level of noise.	Plant Room / Design and Operation Stage	Relevant design and plant procurement procedures to commence at a later stage
Construction Pl	nase		1
Water Quality	There should be no permanent structure in the water channel.	At the ALE sea channel / during operational phase	√
Water Quality	No dredging and no reclamation should be carried out for the Project.	At work sites / during construction phase	1
Water Quality	The marine pile layout as shown in Figure 2.6 of the EIA report should be adopted. No more than approximately 80 numbers of temporary marine piles should be installed in the ALE sea channel during the construction phase. The dimension of each temporary marine pile should be 800mm nominal diameter. These piles should be driven into position and internal space should not be excavated, i.e. left as soil. No dredging or soil /sediment excavation should be carried out. Marine piles would be removed by reverse driving.	At work sites / during construction phase	Only Stages 1 & 2 marine piling works have commenced and relevant environmental measures were implemented
Water Quality	Two layers of silt curtain should be installed around each of the marine piling and pile extraction locations. The proposed silt curtain should be extended to seabed with sinker blocks and regularly inspected and maintained to ensure it is serviceable.	At marine work sites and nearby seawater intakes / during marine piling and marine pile extraction	Δ

Environmental Resources Management

Hip Hing - Ngo Kee Joint Venture

3

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
	All marine works should be carried out in a controlled manner such that release of sediments into the marine environment would be minimized. All wastewater generated from the piling activities should be collected and be treated before controlled discharge. Spoil should also be properly collected for proper disposal.		
Water Quality	In view of the close vicinity of the seawater intakes to the work site, silt screens are recommended to be deployed at the seawater intakes shown in Figure 5.2 of the EIA report during the whole construction period. Silt screens to be provided at seawater intakes should be regularly checked and maintained to ensure that they are serviceable. Refuse collection vessel should be mobilized on a need basis to collect any floating refuse lost from/trapped at the work site during the construction period.	At seawater intakes / during the whole construction period	٨
Water Quality	Surface run-off from construction sites should be discharged into storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sedimentation basins. Channels or earth bunds or sand bag barriers should be provided on site to properly direct stormwater to such silt removal facilities. Perimeter channels at site boundaries should be provided where necessary to intercept storm runoff from outside the site so that it will not wash across the site. Catchpits and perimeter channels should be constructed in advance of site formation works and earthworks. Silt removal facilities, channels and manholes should be maintained and the deposited silt and grit should be removed regularly, at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times. Any practical options for the diversion and re-alignment of drainage should comply with both engineering and environmental requirements in order to ensure adequate hydraulic capacity of all drains. Minimum distances of 100 m should be maintained between the discharge points of construction site runoff and the nearby saltwater intakes.	Works areas / construction period	Δ

Type of	Environmental Protection Measures	Location/ Timing	Status
Impact		-	
Water Quality	There is a need to apply to EPD for a discharge license for discharge of effluent from the construction site under the WPCO. The discharge quality must meet the requirements specified in the discharge license. All the runoff and wastewater generated from the works areas should be treated so that it satisfies all the standards listed in the TM-DSS. Reuse and recycling of the treated effluent can minimize water consumption and reduce the effluent discharge volume. The beneficial uses of the treated effluent may include dust suppression, wheel washing and general cleaning. It is anticipated that only a small quantity of wastewater would be generated from the works areas. Any effluent discharge from the construction activities should be diverted away from the sea channel so as to avoid adverse water quality impact. Construction works should be programmed to minimize excavation works in rainy seasons (April to September). If excavation in soil could not be avoided in these months or at any time of year when rainstorms are likely, for the purpose of preventing soil erosion, temporary exposed slope surfaces should be covered e.g. by tarpaulin, and temporary access roads should be protected by crushed stone or gravel, as excavation proceeds. Intercepting channels should be provided (e.g. along the crest / edge of excavation) to prevent storm runoff from washing across exposed soil surfaces. Arrangements should always be in place to ensure that adequate surface protection measures can be safely carried out well before the arrival of a rainstorm.	Works areas / construction period	
Water Quality	Earthworks final surfaces should be well compacted and the subsequent permanent work or surface protection should be carried out immediately after the final surfaces are formed to prevent erosion caused by rainstorms. Appropriate drainage like intercepting channels should be provided where necessary. Measures should be taken to minimize the ingress of rainwater into trenches. If excavation of trenches in wet seasons is necessary, they should be dug and backfilled in short sections. Rainwater pumped out from trenches or foundation excavations	Works areas / construction period	✓

Environmental Resources Management

Hip Hing - Ngo Kee Joint Venture

5

Type of	Environmental Protection Measures	Location/ Timing	Status
Impact	should be discharged into storm drains via silt removal facilities. Open stockpiles of construction materials (e.g. aggregates, sand and fill material) on sites should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system. Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system, and to prevent storm run-off from getting into foul sewers. Discharge of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system.		
Water Quality	Good site practices should be adopted to remove rubbish and litter from construction sites so as to prevent the rubbish and litter from spreading from the site area. It is recommended to clean the construction sites on a regular basis.	Works areas / construction period	Δ
Water Quality	Under normal circumstances, groundwater pumped out of wells, etc. for the lowering of ground water level in basement or foundation construction should be discharged into storm drains after the removal of silt in silt removal facilities.	Works areas / construction period	V
Water Quality	Water used in ground boring and drilling or rock /soil anchoring should as far as practicable be re-circulated after sedimentation. When there is a need for final disposal, the wastewater should be discharged into storm drains via silt removal facilities.	Works areas / construction period	V
Water Quality	Wastewater generated from the washing down of mixing trucks and drum mixers and similar equipment should whenever practicable be recycled. The discharge of wastewater should be kept to a minimum.	Works areas / construction period	1

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
	To prevent pollution from wastewater overflow, the pump sump of any water recycling system should be provided with an online standby pump of adequate capacity and with automatic alternating devices.		
	Under normal circumstances, surplus wastewater may be discharged into foul sewers after treatment in silt removal and pH adjustment facilities (to within the pH range of 6 to 10). Disposal of wastewater into storm drains will require more elaborate treatment.		
Water Quality	All vehicles and plant should be cleaned before they leave a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. A wheel washing bay should be provided at every site exit if practicable and wash-water should have sand and silt settled out or removed before discharging into storm drains. The section of construction road between the wheel washing bay and the public road should be paved with backfall to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains.	Works areas / construction period	Δ
Water Quality	Bentonite slurries used in diaphragm wall and bore-pile construction should be reconditioned and reused wherever practicable. If the disposal of a certain residual quantity cannot be avoided, the used slurry may be disposed of at the marine spoil grounds subject to obtaining a marine dumping licence from EPD on a case-by-case basis. If the used bentonite slurry is intended to be disposed of through the public drainage system, it should be treated to the respective effluent standards applicable to foul sewer, storm drains or the receiving waters as set out in the WPCO Technical Memorandum on Effluent Standards.	Works areas / construction period	✓

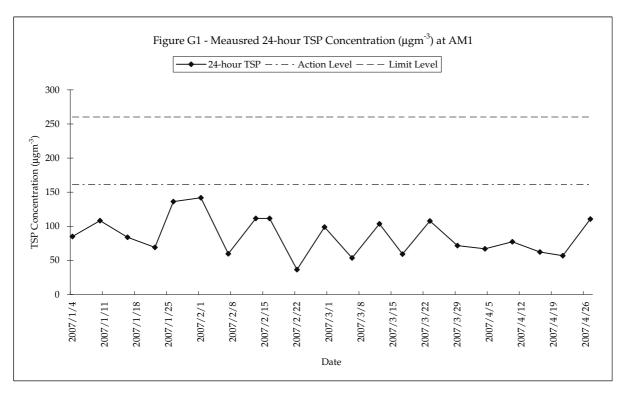
Environmental Resources Management

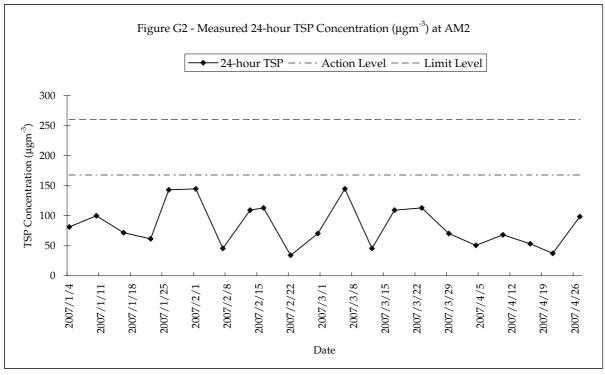
Hip Hing - Ngo Kee Joint Venture
7

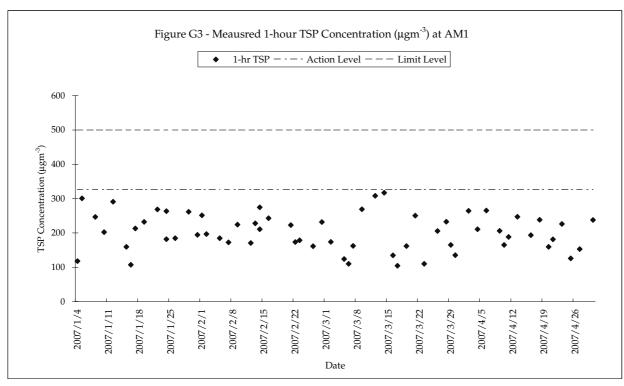
Type of	Environmental Protection Measures	Location/ Timing	Status
Impact			
	Water used in water testing to check leakage of structures and pipes should be reused for other purposes as far as practicable. Surplus unpolluted water could be discharged into storm drains. Sterilization is commonly accomplished by chlorination. Specific advice from EPD should be sought during the design stage of the works with regard to the disposal of the sterilizing water. The sterilizing water should be reused wherever practicable. Discharge of sterilization effluent should be properly pre-treated for compliance with TM/WPCO requirements, such as but not limited to total residual chlorine.	Works areas / construction period	
Water Quality	Effluent discharges from building construction and other construction site activities are subject to WPCO control. Before commencing any demolition works, all sewer and drainage connections should be sealed to prevent building debris, soil, sand etc. from entering public sewers/drains. Wastewater generated from building construction activities including concreting, plastering, internal decoration, cleaning of works and similar activities should not be discharged into the stormwater drainage system. If the wastewater is to be discharged into foul sewers, it should undergo the removal of settleable solids in a silt removal facility, and pH adjustment as necessary.	Works areas / construction period	√
Water Quality	Acidic wastewater generated from acid cleaning, etching, pickling and similar activities should be neutralized to within the pH range of 6 to 10 before discharging into foul sewers. If there is no public foul sewer in the vicinity, the neutralized wastewater should be tinkered off site for disposal into foul sewers or treated to a standard acceptable to storm drains and the receiving waters.	Works areas / construction period	No acidic wastewater will be generated.
Water Quality	Wastewater collected from canteen kitchens, including that from basins, sinks and floor drains, should be discharged into foul	Works areas / construction period	V

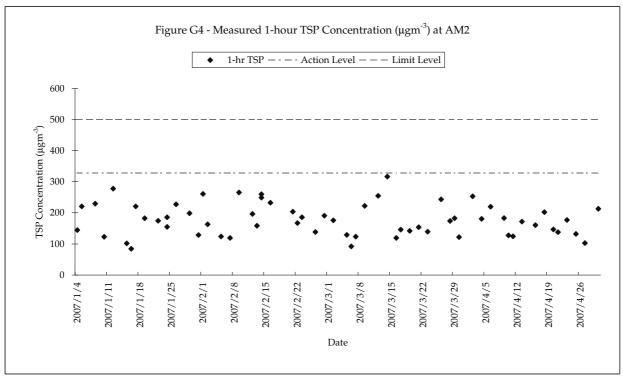
Type of	Environmental Protection Measures	Location/ Timing	Status
Impact			
	sewer via grease traps capable of providing at least 20 minutes retention during peak flow.		
	Drainage serving an open oil filling point should be connected to storm drains via a petrol interceptors with peak storm bypass.		
	Vehicle and plant servicing areas, vehicle wash bays and lubrication bays should as far as possible be located within roofed areas. The drainage in these covered areas should be connected to foul sewers via a petrol interceptor. Oil leakage or spillage should be contained and cleaned up immediately. Waste oil should be collected and stored for recycling or disposal in accordance with the Waste Disposal Ordinance.		
Water Quality	It is recommended to provide sufficient chemical toilets in the works areas. The toilet facilities should be more than 30 m from the seafront or any watercourse. A licensed waste collector should be deployed to clean the chemical toilets on a regular basis.	Works areas / construction period	√
	Notices should be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment. Regular environmental audit on the construction site can provide an effective control of any malpractices and can encourage continual improvement of environmental performance on site.		
Water Quality	Contractor must register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation should be observed and complied with for control of chemical wastes.	Works areas / construction period	√
Water Quality	Any service shop and maintenance facilities should be located on hard standings within a bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles and	Works areas / construction period	√

Environmental Resources Management


Hip Hing - Ngo Kee Joint Venture


9


Type of	Environmental Protection Measures	Location/ Timing	Status
Impact			
	equipment involving activities with potential for leakage and spillage should only be undertaken within the areas appropriately equipped to control these discharges. Disposal of chemical wastes should be carried out in compliance with the Waste Disposal Ordinance. The Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes published under the Waste Disposal Ordinance details the requirements to deal with chemical wastes. General requirements are given as follows: • suitable containers should be used to hold the chemical wastes to avoid leakage or spillage during storage, handling and transport; • chemical waste containers should be suitably labelled, to notify and warn the personnel who are handling the wastes, to avoid accidents; and • storage area should be selected at a safe location on site and adequate space should be allocated to the storage area.		
Water Quality	To minimize the potential water quality impacts from the construction works located at or near the storm system or seafront, the following mitigation measures should be adopted: • the use of less or smaller construction plants may be specified to reduce the disturbance to the seabed; • temporary sewerage system should be designed to prevent wastewater from entering the storm system and sea; • temporary storage of materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction materials should be located well away from any water courses during carrying out of the construction works; • stockpiling of construction materials and dusty materials should be covered and located away from any water courses; • construction debris and spoil should be covered up and/or disposed of as soon as possible to avoid being washed into the nearby water receivers; • construction activities, which generate large amount of	Works areas / construction period	Δ


Annex F

24-hour and 1-hour TSP Monitoring Results

24-hour TSP Monitoring Results at Station AM1 (Nearby The Grand Hyatt)

Date	Filter W	/eight (g)	Flow Rate	(m³/min.)	Elaps	se Time	Sampling	Conc.	Weather	Ave. Air	Particulate	Av. flow	Total vol.
	Initial	Final	Initial	Final	Initial	Final	Time(hrs.)	(µg/m³)	Condition	Temp. (°C)	weight(g)	(m³/min)	(m ³)
01-Feb-07	2.8674	3.0640	0.96	0.96	11209.5	11233.5	24.0	142	Cloudy	17.2	0.1966	0.96	1385.7
07-Feb-07	2.8926	2.9807	1.03	1.03	11236.5	11260.5	24.0	60	Cloudy	20.8	0.0881	1.03	1477.6
13-Feb-07	2.8388	3.0396	1.25	1.25	11263.5	11287.5	24.0	112	Cloudy	20.6	0.2008	1.25	1799.0
16-Feb-07	2.8201	3.0205	1.25	1.25	11290.5	11314.5	24.0	111	Cloudy	19.3	0.2004	1.25	1799.0
22-Feb-07	2.8253	2.8907	1.25	1.25	11316.5	11340.5	24.0	36	Rainy	18.0	0.0654	1.25	1799.0
28-Feb-07	2.8529	3.0288	1.24	1.24	11343.5	11367.5	24.0	99	Cloudy	18.9	0.1759	1.24	1781.6

 Min
 36

 Max
 142

 Average
 93

24-hour TSP Monitoring Results at Station AM2 (Nearby Renaissance Harbour View Hotel)

Date	Filter W	/eight (g)	Flow Rate	(m³/min.)	Elaps	se Time	Sampling	Conc.	Weather	Ave. Air	Particulate	Av. flow	Total vol.
	Initial	Final	Initial	Final	Initial	Final	Time(hrs.)	(µg/m³)	Condition	Temp. (°C)	weight(g)	(m³/min)	(m ³)
01-Feb-07	2.8682	3.1590	1.40	1.40	9635.0	9659.0	24.0	145	Cloudy	17.2	0.2908	1.40	2010.1
07-Feb-07	2.8999	2.9987	1.51	1.51	9662.0	9686.0	24.0	46	Cloudy	20.8	0.0988	1.51	2169.4
13-Feb-07	2.8132	3.0548	1.53	1.53	9689.0	9713.0	24.0	109	Cloudy	20.6	0.2416	1.53	2208.1
16-Feb-07	2.8181	3.0724	1.56	1.56	9716.0	9740.0	24.0	113	Cloudy	19.3	0.2543	1.56	2247.7
22-Feb-07	2.8054	2.8823	1.56	1.56	9742.0	9766.0	24.0	34	Rainy	18.0	0.0769	1.56	2247.7
28-Feb-07	2.8469	3.0024	1.53	1.53	9769.0	9793.0	24.0	70	Cloudy	18.9	0.1555	1.53	2210.3

 Min
 34

 Max
 145

 Average
 86

1-hour TSP Monitoring Results at Station AM1 (Nearby The Grand Hyatt)

Date	Filter W	/eight (g)	Flow Rate	(m³/min.)	Elaps	e Time	Sampling	Conc.	Weather	Ave. Air	Particulate	Av. flow	Total vol.
	Initial	Final	Initial	Final	Initial	Final	Time(hrs.)	(µg/m³)	Condition	Temp. (°C)	weight(g)	(m³/min)	(m ³)
01-Feb-07	2.8806	2.8951	0.96	0.96	11208.5	11209.5	1.0	251	Cloudy	17.2	0.0145	0.96	57.7
02-Feb-07	2.8800	2.8921	1.03	1.03	11233.5	11234.5	1.0	197	Cloudy	15.8	0.0121	1.03	61.6
05-Feb-07	2.9033	2.9143	0.99	0.99	11234.5	11235.5	1.0	184	Cloudy	17.7	0.0110	0.99	59.7
07-Feb-07	2.9042	2.9145	0.99	0.99	11235.5	11236.5	1.0	173	Cloudy	20.8	0.0103	0.99	59.7
09-Feb-07	2.8760	2.8911	1.12	1.12	11260.5	11261.5	1.0	224	Cloudy	22.0	0.0151	1.12	67.3
12-Feb-07	2.8916	2.9031	1.12	1.12	11261.5	11262.5	1.0	171	Cloudy	18.8	0.0115	1.12	67.3
13-Feb-07	2.8853	2.9002	1.09	1.09	11262.5	11263.5	1.0	228	Cloudy	20.6	0.0149	1.09	65.4
14-Feb-07	2.8066	2.8224	1.25	1.25	11287.5	11288.5	1.0	211	Cloudy	21.4	0.0158	1.25	75.0
14-Feb-07	2.8534	2.8740	1.25	1.25	11288.5	11289.5	1.0	275	Cloudy	21.4	0.0206	1.25	75.0
16-Feb-07	2.8141	2.8323	1.25	1.25	11289.5	11290.5	1.0	243	Cloudy	19.3	0.0182	1.25	75.0
21-Feb-07	2.8084	2.8251	1.25	1.25	11314.5	11315.5	1.0	223	Cloudy	19.3	0.0167	1.25	75.0
22-Feb-07	2.8047	2.8177	1.25	1.25	11315.5	11316.5	1.0	173	Rainy	18.0	0.0130	1.25	75.0
23-Feb-07	2.8212	2.8346	1.25	1.25	11340.5	11341.5	1.0	179	Cloudy	19.4	0.0134	1.25	75.0
26-Feb-07	2.8189	2.8310	1.24	1.24	11341.5	11342.5	1.0	161	Cloudy	18.3	0.0121	1.24	75.0
28-Feb-07	2.8191	2.8363	1.24	1.24	11342.5	11343.5	1.0	232	Cloudy	18.9	0.0172	1.24	74.2

Min 161 Max 275 Average 208

1-hour TSP Monitoring Results at Station AM2 (Nearby Renaissance Harbour View Hotel)

Date	Filter W	/eight (g)	Flow Rate	(m³/min.)	Elaps	se Time	Sampling	Conc.	Weather	Ave. Air	Particulate	Av. flow	Total vol.
	Initial	Final	Initial	Final	Initial	Final	Time(hrs.)	(µg/m³)	Condition	Temp. (°C)	weight(g)	(m³/min)	(m ³)
01-Feb-07	2.8728	2.8955	1.45	1.45	9634.0	9635.0	1.0	261	Cloudy	17.2	0.0227	1.45	87.1
02-Feb-07	2.9104	2.9257	1.56	1.56	9659.0	9660.0	1.0	163	Cloudy	15.8	0.0153	1.56	93.7
05-Feb-07	2.8495	2.8603	1.45	1.45	9660.0	9661.0	1.0	124	Cloudy	17.7	0.0108	1.45	87.1
07-Feb-07	2.8979	2.9083	1.45	1.45	9661.0	9662.0	1.0	119	Cloudy	20.8	0.0104	1.45	87.1
09-Feb-07	2.8906	2.9135	1.42	1.42	9686.0	9687.0	1.0	265	Cloudy	22.0	0.0229	1.42	86.3
12-Feb-07	2.8792	2.8963	1.45	1.45	9687.0	9688.0	1.0	196	Cloudy	18.8	0.0171	1.45	87.1
13-Feb-07	2.8259	2.8402	1.51	1.51	9688.0	9689.0	1.0	158	Cloudy	20.6	0.0143	1.51	90.4
14-Feb-07	2.8323	2.8548	1.51	1.51	9713.0	9714.0	1.0	249	Cloudy	21.4	0.0225	1.51	90.4
14-Feb-07	2.8172	2.8407	1.51	1.51	9714.0	9715.0	1.0	260	Cloudy	21.4	0.0235	1.51	90.4
16-Feb-07	2.7851	2.8065	1.53	1.53	9715.0	9716.0	1.0	233	Cloudy	19.3	0.0214	1.53	92.0
21-Feb-07	2.7901	2.8095	1.59	1.59	9740.0	9741.0	1.0	204	Cloudy	19.3	0.0194	1.59	95.3
22-Feb-07	2.8263	2.8414	1.51	1.51	9741.0	9742.0	1.0	167	Rainy	18.0	0.0151	1.51	90.4
23-Feb-07	2.8048	2.8222	1.56	1.56	9766.0	9767.0	1.0	186	Cloudy	19.4	0.0174	1.56	93.7
26-Feb-07	2.8260	2.8390	1.56	1.56	9767.0	9768.0	1.0	139	Cloudy	18.3	0.0130	1.56	93.8
28-Feb-07	2.8860	2.9036	1.53	1.53	9768.0	9769.0	1.0	191	Cloudy	18.9	0.0176	1.53	92.1

 Min
 119

 Max
 265

 Average
 194

Meteorological Data Extracted from King's Park Stations of the Hong Kong Observatory

			Kin	ıg's Park Station		
Date	Weather	Average Air Temperature (°C)	Average Wind Speed (km/h)	Average Relative Humiditiy (%)	Total Rainfall (mm)	Wind Direction
01-Feb-07	Cloudy	17.2	11.5	33.0	0.0	NE
02-Feb-07	Cloudy	15.8	6.9	39.0	0.0	SE
05-Feb-07	Cloudy	17.7	8.4	69.0	0.0	SE
07-Feb-07	Cloudy	20.8	6.9	67.0	0.0	SE
09-Feb-07	Cloudy	22.0	3.5	80.0	0.0	NW
12-Feb-07	Cloudy	18.8	9.8	79.0	0.0	SE
13-Feb-07	Cloudy	20.6	8.5	89.0	0.0	SE
14-Feb-07	Cloudy	21.4	3.8	85.0	0.0	NW
14-Feb-07	Cloudy	21.4	3.8	85.0	0.0	NW
16-Feb-07	Cloudy	19.3	10.2	93.0	0.0	SE
21-Feb-07	Cloudy	19.3	11.6	87.0	0.0	SE
22-Feb-07	Rainy	18.0	8.7	90.0	5.0	SE
23-Feb-07	Cloudy	19.4	12.0	78.0	0.0	SE
26-Feb-07	Cloudy	18.3	13.9	77.0	0.0	SE
28-Feb-07	Cloudy	18.9	15.1	80.0	0.0	SE

24-hour TSP Monitoring Results at Station AM1 (Nearby The Grand Hyatt)

Date	Filter W	/eight (g)	Flow Rate	(m³/min.)	Elaps	se Time	Sampling	Conc.	Weather	Ave. Air	Particulate	Av. flow	Total vol.
	Initial	Final	Initial	Final	Initial	Final	Time(hrs.)	(µg/m³)	Condition	Temp. (°C)	weight(g)	(m ³ /min)	(m ³)
06-Mar-07	2.8281	2.9165	1.15	1.15	11370.5	11394.5	24.0	53	Rainy	14.2	0.0884	1.15	1653.4
12-Mar-07	2.8894	3.0649	1.18	1.18	11397.5	11421.5	24.0	104	Cloudy	16.8	0.1755	1.18	1695.5
17-Mar-07	2.8945	2.9898	1.12	1.12	11424.5	11448.5	24.0	59	Rainy	18.3	0.0953	1.12	1611.5
23-Mar-07	2.8406	3.0187	1.15	1.15	11451.5	11475.5	24.0	108	Cloudy	20.3	0.1781	1.15	1653.4
29-Mar-07	2.8787	2.9908	1.09	1.09	11478.5	11502.5	24.0	71	Cloudy	23.8	0.1121	1.09	1568.0

 Min
 53

 Max
 108

 Average
 79

24-hour TSP Monitoring Results at Station AM2 (Nearby Renaissance Harbour View Hotel)

Date	Filter W	/eight (g)	Flow Rate	(m³/min.)	Elaps	se Time	Sampling	Conc.	Weather	Ave. Air	Particulate	Av. flow	Total vol.
	Initial	Final	Initial	Final	Initial	Final	Time(hrs.)	(µg/m³)	Condition	Temp. (°C)	weight(g)	(m ³ /min)	(m ³)
06-Mar-07	2.8682	3.1590	1.40	1.40	9635.0	9659.0	24.0	145	Rainy	14.2	0.2908	1.40	2010.1
12-Mar-07	2.8999	2.9987	1.51	1.51	9662.0	9686.0	24.0	46	Cloudy	16.8	0.0988	1.51	2169.4
17-Mar-07	2.8132	3.0548	1.53	1.53	9689.0	9713.0	24.0	109	Rainy	18.3	0.2416	1.53	2208.1
23-Mar-07	2.8181	3.0724	1.56	1.56	9716.0	9740.0	24.0	113	Cloudy	20.3	0.2543	1.56	2247.7
29-Mar-07	2.8469	3.0024	1.53	1.53	9769.0	9793.0	24.0	70	Cloudy	23.8	0.1555	1.53	2210.3

 Min
 46

 Max
 145

 Average
 97

1-hour TSP Monitoring Results at Station AM1 (Nearby The Grand Hyatt)

Date	Filter W	/eight (g)	Flow Rate	(m³/min.)	Elaps	se Time	Sampling	Conc.	Weather	Ave. Air	Particulate	Av. flow	Total vol.
	Initial	Final	Initial	Final	Initial	Final	Time(hrs.)	(µg/m³)	Condition	Temp. (°C)	weight(g)	(m ³ /min)	(m ³)
02-Mar-07	2.8144	2.8270	1.21	1.21	11367.5	11368.5	1.0	174	Cloudy	20.8	0.0126	1.21	72.5
05-Mar-07	2.8156	2.8248	1.24	1.24	11368.5	11369.5	1.0	124	Rainy	20.9	0.0092	1.24	74.2
06-Mar-07	2.8335	2.8407	1.09	1.09	11369.5	11370.5	1.0	110	Rainy	14.2	0.0072	1.09	65.3
07-Mar-07	2.8570	2.8676	1.09	1.09	11394.5	11395.5	1.0	162	Rainy	11.9	0.0106	1.09	65.3
09-Mar-07	2.8394	2.8565	1.06	1.06	11395.5	11396.5	1.0	269	Cloudy	15.5	0.0171	1.06	63.6
12-Mar-07	2.8820	2.9005	1.00	1.00	11396.5	11397.5	1.0	308	Cloudy	16.8	0.0185	1.00	60.0
14-Mar-07	2.8546	2.8753	1.09	1.09	11421.5	11422.5	1.0	317	Cloudy	20.2	0.0207	1.09	65.3
16-Mar-07	2.8992	2.9080	1.09	1.09	11422.5	11423.5	1.0	135	Cloudy	23.4	0.0088	1.09	65.3
17-Mar-07	2.9033	2.9103	1.12	1.12	11423.5	11424.5	1.0	104	Rainy	18.3	0.0070	1.12	67.1
19-Mar-07	2.9005	2.9105	1.03	1.03	11448.5	11449.5	1.0	162	Cloudy	17.5	0.0100	1.03	61.8
21-Mar-07	2.8793	2.8961	1.12	1.12	11449.5	11450.5	1.0	250	Cloudy	18.0	0.0168	1.12	67.1
23-Mar-07	2.8169	2.8241	1.09	1.09	11450.5	11451.5	1.0	110	Cloudy	20.3	0.0072	1.09	65.3
26-Mar-07	2.8079	2.8217	1.12	1.12	11475.5	11476.5	1.0	206	Rainy	22.8	0.0138	1.12	67.1
28-Mar-07	2.8036	2.8184	1.06	1.06	11476.5	11477.5	1.0	233	Cloudy	21.7	0.0148	1.06	63.6
29-Mar-07	2.8966	2.9071	1.06	1.06	11477.5	11478.5	1.0	165	Cloudy	23.8	0.0105	1.06	63.6
30-Mar-07	2.8906	2.8999	1.15	1.15	11502.5	11503.5	1.0	135	Cloudy	24.9	0.0093	1.15	68.9

 Min
 104

 Max
 317

 Average
 185

1-hour TSP Monitoring Results at Station AM2 (Nearby Renaissance Harbour View Hotel)

Date	Filter W	/eight (g)	Flow Rate	(m³/min.)	Elaps	e Time	Sampling	Conc.	Weather	Ave. Air	Particulate	Av. flow	Total vol.
	Initial	Final	Initial	Final	Initial	Final	Time(hrs.)	(µg/m ³)	Condition	Temp. (°C)	weight(g)	(m ³ /min)	(m ³)
02-Mar-07	2.7945	2.8107	1.53	1.53	9793.0	9794.0	1.0	176	Cloudy	20.8	0.0162	1.53	92.1
05-Mar-07	2.8481	2.8600	1.53	1.53	9794.0	9795.0	1.0	129	Rainy	20.9	0.0119	1.53	92.1
06-Mar-07	2.8134	2.8225	1.65	1.65	9795.0	9796.0	1.0	92	Rainy	14.2	0.0091	1.65	98.9
07-Mar-07	2.8307	2.8429	1.65	1.65	9820.0	9821.0	1.0	123	Rainy	11.9	0.0122	1.65	98.9
09-Mar-07	2.7948	2.8168	1.65	1.65	9821.0	9822.0	1.0	222	Cloudy	15.5	0.0220	1.65	98.9
12-Mar-07	2.8739	2.8978	1.56	1.56	9822.0	9823.0	1.0	255	Cloudy	16.8	0.0239	1.56	93.8
14-Mar-07	2.8943	2.9283	1.79	1.79	9847.0	9848.0	1.0	316	Cloudy	20.2	0.0340	1.79	107.5
16-Mar-07	2.8886	2.8992	1.48	1.48	9848.0	9849.0	1.0	120	Cloudy	23.4	0.0106	1.48	88.7
17-Mar-07	2.8832	2.8964	1.51	1.51	9849.0	9850.0	1.0	146	Rainy	18.3	0.0132	1.51	90.4
19-Mar-07	2.8869	2.9002	1.56	1.56	9874.0	9875.0	1.0	142	Cloudy	17.5	0.0133	1.56	93.8
21-Mar-07	2.8696	2.8843	1.59	1.59	9875.0	9876.0	1.0	154	Cloudy	18.0	0.0147	1.59	95.5
23-Mar-07	2.8213	2.8339	1.51	1.51	9876.0	9877.0	1.0	139	Cloudy	20.3	0.0126	1.51	90.4
26-Mar-07	2.8303	2.8527	1.53	1.53	9901.0	9902.0	1.0	243	Rainy	22.8	0.0224	1.53	92.1
28-Mar-07	2.8912	2.9072	1.53	1.53	9902.0	9903.0	1.0	174	Cloudy	21.7	0.0160	1.53	92.1
29-Mar-07	2.8886	2.9054	1.53	1.53	9903.0	9904.0	1.0	182	Cloudy	23.8	0.0168	1.53	92.1
30-Mar-07	2.8884	2.8992	1.48	1.48	9928.0	9929.0	1.0	122	Cloudy	24.9	0.0108	1.48	88.7

 Min
 92

 Max
 316

 Average
 171

Meteorological Data Extracted from King's Park Stations of the Hong Kong Observatory

			Kin	g's Park Station		
Date	Weather	Average Air Temperature (°C)	Average Wind Speed (km/h)	Average Relative Humiditiy (%)	Total Rainfall (mm)	Wind Direction
02-Mar-07	Cloudy	20.8	10.0	80.0	0.0	SE
05-Mar-07	Rainy	20.9	6.8	78.0	4.0	NE
06-Mar-07	Rainy	14.2	11.0	76.0	5.5	NE
07-Mar-07	Rainy	11.9	8.3	80.0	1.0	NE
09-Mar-07	Cloudy	15.5	9.6	90.0	0.0	SE
12-Mar-07	Cloudy	16.8	14.9	88.0	0.0	SE
14-Mar-07	Cloudy	20.2	8.7	20.2	0.0	SE
16-Mar-07	Cloudy	23.4	5.7	87.0	0.0	SE
17-Mar-07	Rainy	18.3	13.7	90.0	1.0	SE
19-Mar-07	Cloudy	17.5	7.5	77.0	6.5	NE
21-Mar-07	Cloudy	18.0	10.3	71.0	0.0	SE
23-Mar-07	Cloudy	20.3	12.8	82.0	0.0	SE
26-Mar-07	Rainy	22.8	10.6	93.0	1.5	SE
28-Mar-07	Cloudy	21.7	13.0	80.0	0.0	SE
29-Mar-07	Cloudy	23.8	5.8	83.0	0.0	W
30-Mar-07	Cloudy	24.9	7.0	85.0	0.0	NW

24-hour TSP Monitoring Results at Station AM1 (Nearby The Grand Hyatt)

Date	Filter W	eight (g)	Flow Rate	(m³/min.)	Elaps	se Time	Sampling	Conc.	Particulate	Av. flow	Total vol.
	Initial	Final	Initial	Final	Initial	Final	Time(hrs.)	(µg/m³)	weight(g)	(m ³ /min)	(m ³)
04-Apr-07	2.8731	2.9836	1.15	1.15	11505.5	11529.5	24.0	67	0.1105	1.15	1653.4
10-Apr-07	2.9117	3.0295	1.06	1.06	11532.5	11556.5	24.0	77	0.1178	1.06	1525.4
16-Apr-07	2.8970	3.0104	1.27	1.27	11559.5	11583.5	24.0	62	0.1134	1.27	1823.4
21-Apr-07	2.9148	3.0209	1.30	1.30	11586.5	11610.5	24.0	57	0.1061	1.30	1867.0
27-Apr-07	2.8354	3.0478	1.33	1.33	11613.5	11637.5	24.0	111	0.2124	1.33	1920.5

 Min
 57

 Max
 111

 Average
 75

24-hour TSP Monitoring Results at Station AM2 (Nearby Renaissance Harbour View Hotel)

Date	Filter W	/eight (g)	Flow Rate	(m³/min.)	Elaps	e Time	Sampling	Conc.	Particulate	Av. flow	Total vol.
	Initial	Final	Initial	Final	Initial	Initial Final		(µg/m³)	weight(g)	(m ³ /min)	(m ³)
04-Apr-07	2.8808	2.9865	1.45	1.45	9931.0	9955.0	24.0	51	0.1057	1.45	2087.4
10-Apr-07	2.9067	3.0407	1.36	1.36	9958.0	9982.0	24.0	68	0.1340	1.36	1964.6
16-Apr-07	2.9097	3.0144	1.36	1.36	9985.0	10009.0	24.0	53	0.1047	1.36	1964.6
21-Apr-07	2.9016	2.9797	1.45	1.45	10012.0	10036.0	24.0	37	0.0781	1.45	2087.4
27-Apr-07	2.8412	3.0181	1.24	1.24	10039.0	10063.0	24.0	99	0.1769	1.24	1792.1

 Min
 37

 Max
 99

 Average
 62

1-hour TSP Monitoring Results at Station AM1 (Nearby The Grand Hyatt)

Date	Filter W	/eight (g)	Flow Rate	(m³/min.)	Elaps	se Time	Sampling	Conc.	Particulate	Av. flow	Total vol.
	Initial	Final	Initial	Final	Initial	Final	Time(hrs.)	(µg/m³)	weight(g)	(m³/min)	(m ³)
02-Apr-07	2.8995	2.9177	1.15	1.15	11503.5	11504.5	1.0	264	0.0182	1.15	68.9
04-Apr-07	2.8846	2.8980	1.06	1.06	11504.5	11505.5	1.0	211	0.0134	1.06	63.6
06-Apr-07	2.9070	2.9234	1.03	1.03	11529.5	11530.5	1.0	265	0.0164	1.03	61.8
09-Apr-07	2.8947	2.9078	1.06	1.06	11530.5	11531.5	1.0	206	0.0131	1.06	63.6
10-Apr-07	2.8889	2.8991	1.03	1.03	11531.5	11532.5	1.0	165	0.0102	1.03	61.8
11-Apr-07	2.8845	2.8968	1.09	1.09	11556.5	11557.5	1.0	188	0.0123	1.09	65.3
13-Apr-07	2.8850	2.9007	1.06	1.06	11557.5	11558.5	1.0	247	0.0157	1.06	63.6
16-Apr-07	2.9067	2.9190	1.06	1.06	11558.5	11559.5	1.0	194	0.0123	1.06	63.6
18-Apr-07	2.8802	2.8966	1.15	1.15	11583.5	11584.5	1.0	238	0.0164	1.15	68.9
20-Apr-07	2.8924	2.9031	1.12	1.12	11584.5	11585.5	1.0	159	0.0107	1.12	67.1
21-Apr-07	2.9190	2.9315	1.15	1.15	11585.5	11586.5	1.0	181	0.0125	1.15	68.9
23-Apr-07	2.9160	2.9336	1.30	1.30	11610.5	11611.5	1.0	226	0.0176	1.30	77.8
25-Apr-07	2.8190	2.8279	1.18	1.18	11611.5	11612.5	1.0	126	0.0089	1.18	70.7
27-Apr-07	2.8004	2.8104	1.09	1.09	11612.5	11613.5	1.0	153	0.0100	1.09	65.4
30-Apr-07	2.8372	2.8523	1.06	1.06	11637.5	11638.5	1.0	238	0.0151	1.06	63.6

Min 126 Max 265 Average 204

1-hour TSP Monitoring Results at Station AM2 (Nearby Renaissance Harbour View Hotel)

Date	Filter W	/eight (g)	Flow Rate	(m³/min.)	Elaps	e Time	Sampling	Conc.	Particulate	Av. flow	Total vol.
	Initial	Final	Initial	Final	Initial	Final	Time(hrs.)	(µg/m³)	weight(g)	(m ³ /min)	(m ³)
02-Apr-07	2.8991	2.9211	1.45	1.45	9929.0	9930.0	1.0	253	0.0220	1.45	87.0
04-Apr-07	2.8814	2.8971	1.45	1.45	9930.0	9931.0	1.0	181	0.0157	1.45	87.0
06-Apr-07	2.9075	2.9255	1.36	1.36	9955.0	9956.0	1.0	220	0.0180	1.36	81.9
09-Apr-07	2.8739	2.8889	1.36	1.36	9956.0	9957.0	1.0	183	0.0150	1.36	81.9
10-Apr-07	2.8989	2.9089	1.31	1.31	9957.0	9958.0	1.0	127	0.0100	1.31	78.4
11-Apr-07	2.8848	2.8950	1.36	1.36	9982.0	9983.0	1.0	125	0.0102	1.36	81.9
13-Apr-07	2.8944	2.9076	1.28	1.28	9983.0	9984.0	1.0	172	0.0132	1.28	76.7
16-Apr-07	2.9007	2.9130	1.28	1.28	9984.0	9985.0	1.0	160	0.0123	1.28	76.7
18-Apr-07	2.8779	2.8941	1.34	1.34	10009.0	10010.0	1.0	202	0.0162	1.34	80.1
20-Apr-07	2.8935	2.9050	1.31	1.31	10010.0	10011.0	1.0	147	0.0115	1.31	78.4
21-Apr-07	2.9076	2.9189	1.36	1.36	10011.0	10012.0	1.0	138	0.0113	1.36	81.9
23-Apr-07	2.8950	2.9104	1.45	1.45	10036.0	10037.0	1.0	177	0.0154	1.45	87.0
25-Apr-07	2.8158	2.8264	1.34	1.34	10037.0	10038.0	1.0	132	0.0106	1.34	80.1
27-Apr-07	2.8413	2.8490	1.24	1.24	10038.0	10039.0	1.0	103	0.0077	1.24	74.7
30-Apr-07	2.8261	2.8420	1.24	1.24	10063.0	10064.0	1.0	213	0.0159	1.24	74.7

 Min
 103

 Max
 253

 Average
 169

Meteorological Data Extracted from King's Park Stations of the Hong Kong Observatory

			Kin	ıg's Park Station		
Date	Weather	Average Air Temperature (°C)	Average Wind Speed (km/h)	Average Relative Humiditiy (%)	Total Rainfall (mm)	Wind Direction (degree)
02-Apr-07	Cloudy	22.7	7.3	89	14.0	20
04-Apr-07	Cloudy	13.4	8.9	85	12.0	20
06-Apr-07	Cloudy	17.9	3.0	83	3.0	20
09-Apr-07	Sunny	20.1	10.1	64	0.0	100
10-Apr-07	Cloudy	18.2	7.5	83	4.5	100
11-Apr-07	Cloudy	19.9	8.4	71	0.0	100
13-Apr-07	Sunny	21.8	3.1	72	0.0	280
16-Apr-07	Sunny	25.3	6.4	84	0.0	280
18-Apr-07	Sunny	21.6	9.2	51	0.0	20
20-Apr-07	Cloudy	22.6	11.0	84	0.0	110
21-Apr-07	Sunny	23.9	8.2	90	0.0	100
23-Apr-07	Rainy	25.0	7.8	83	6.0	280
25-Apr-07	Cloudy	20.5	5.4	82	1.0	20
27-Apr-07	Sunny	23.5	11.5	70	0.0	110
30-Apr-07	Cloudy	23.3	6.	87	1.5	260

Annex G

Water Quality Monitoring Results

Figure 1 - Water Quality Monitoring Results (Mid Ebb)

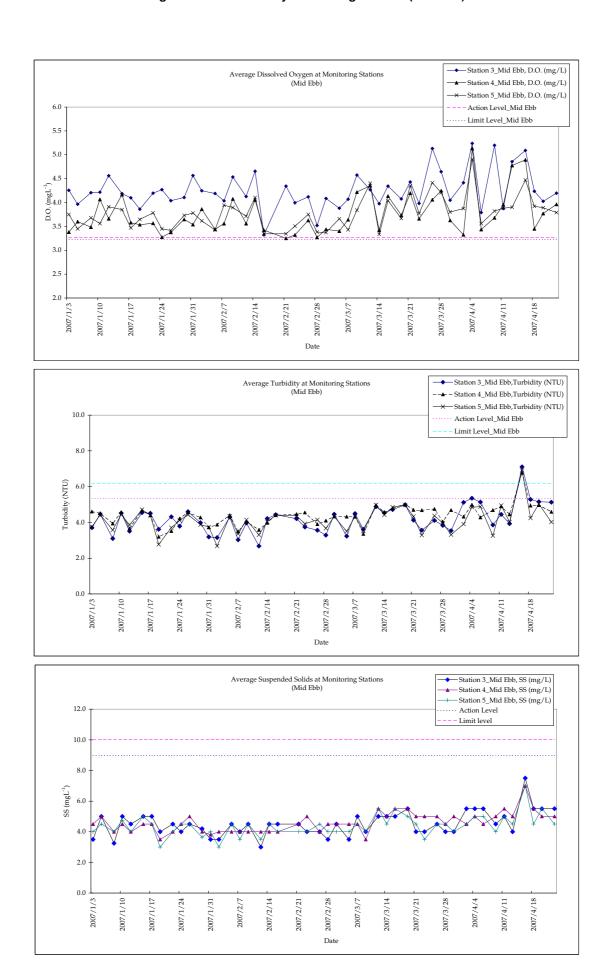
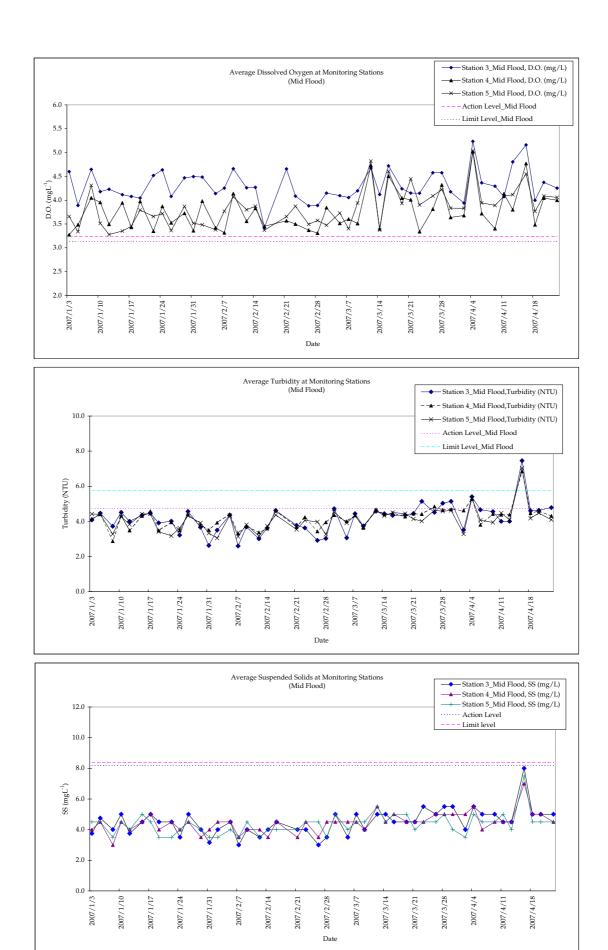



Figure 2 - Water Quality Monitoring Results (Mid Flood)

Water Quality Monitoring Results for Station 3

Date		02/02/2007			02/02/2007			05/02/2007			05/02/2007			07/02/2007	,		07/02/2007	,		09/02/2007			09/02/2007	
Time (hh:mm)		12:52 - 13:0	5		18:06 - 18:18	3	14:58 - 15:13				15:58 - 16:0	5	,	10:22 - 10:3	2	17:42 - 17:57		11:06 - 11:16						
Ambient Temperature		18			18			18			18			23			23			24		24		
Weather		Sunny			Sunny			Sunny			Sunny			Sunny			Sunny			Cloudy			Cloudy	
Water Depth (m)		7.60			8.50			7.70			7.90			8.20			7.60			8.00			8.60	
Monitoring Depth		7.50			7.50			7.50			7.50			7.50			7.50			7.50			7.50	
Tide		Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood	
Trial	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average
Water Temperature (°C)	19.4	19.5	19.5	19.2	19.2	19.2	21.4	21.4	21.4	21.3	21.2	21.3	21.7	21.7	21.7	21.6	21.6	21.6	23.6	23.6	23.6	23.4	23.4	23.4
Salinity (ppt)	32.6	32.6	32.6	32.5	32.4	32.5	32.0	31.9	32.0	32.0	32.2	32.1	32.3	32.3	32.3	32.4	32.5	32.5	32.4	32.4	32.4	32.2	32.2	32.2
D.O. (mg/L)	4.27	4.22	4.2	4.51	4.46	4.5	4.15	4.23	4.2	4.11	4.17	4.1	4.06	4.01	4.0	4.29	4.22	4.3	4.52	4.55	4.5	4.68	4.64	4.7
D.O. Saturation (%)	59.2	58.2	58.7	62.9	62.2	62.6	56.0	57.1	56.6	54.7	55.6	55.2	55.6	54.9	55.3	59.5	58.5	59.0	60.5	60.9	60.7	62.7	62.1	62.4
Turbidity (NTU)	3.12	3.18	3.2	3.53	3.47	3.5	4.28	4.32	4.3	4.33	4.38	4.4	3.06	3.00	3.0	2.57	2.63	2.6	3.97	3.96	4.0	3.69	3.68	3.7
SS* (mg/L)	3.5	3.5	3.5	4.0	4.0	4.0	4.5	4.5	4.5	4.5	4.5	4.5	4.0	4.0	4.0	3.0	3.0	3.0	4.5	4.5	4.5	4.0	4.0	4.0
Remarks	No const	ruction activ	ities were	No const	truction activi	ities were	No const	ruction activ	ities were	No const	ruction activ	ities were	No const	ruction activ	rities were	No const	ruction activ	ities were	No consti	ruction activ	ities were	No const	truction activi	ities were

^{*} For the values of suspended solids less than 5mg/L (PQL), the results are for reference only. PQL stands for practical quantitation Limit, or lowest reporting limit, which is estimated from the method detection limit (MDL). Normally PQL is about 5 times the MDL.

Within Action Level ?

Date	02/02	/2007
D.O. (mg/L)	Υ	Υ
Turbidity (NTU)	Υ	Υ
SS (mg/L)	Υ	Υ

•	

02/02/2007					
Υ					
Υ					
Y Y					

05/02/2007					
Υ	Υ				
Υ	Υ				
Υ	Υ				

05/02	/2007
Υ	Υ
Υ	Υ
Υ	Υ

07/02	/2007
Υ	Υ
Υ	Υ
Y	Y

I	07/02	/2007
	Υ	Υ
	Υ	Υ
	Y	Y

09/02	/2007
Υ	Υ
Υ	Υ
Υ	Υ

Within Limit Level ?	
Date	02/0
D.O. (mg/L)	Y
Turbidity (NTU)	Y
SS (mg/L)	Y

02/02/2007						
Υ	Υ					
Υ	Υ					
Υ	Υ					

05/02/2007							
Υ	Υ						
Υ	Υ						
Υ	Υ						

05/02/2007						
Υ	Υ					
Υ	Υ					
Υ	Υ					

07/02/2007							
Υ	Υ						
Υ	Υ						
Υ	Υ						

09/02	/2007
Υ	Υ
Υ	Υ
Υ	Υ

ı	09/02	/2007
	Υ	Υ
	Υ	Υ
	Υ	Υ

Water Quality Monitoring Results for Station 3

Date		12/02/2007	7		12/02/2007			14/02/2007			14/02/2007			16/02/2007			16/02/2007			21/02/2007		<u> </u>	21/02/2007																													
Time (hh:mm)		18:23 - 18:3	7	09:37 - 09:49		19:05 - 19:15			10:52 - 11:02		12:35 - 12:50		17:26 - 17:41		1	15:40 - 15:50		0	09:35 - 09:45		5																															
Ambient Temperature		21			21		24			24			22		22			22			22																															
Weather		Cloudy			Cloudy		Cloudy			Cloudy		Fine		Fine			Cloudy			Cloudy																																
Water Depth (m)	7.60		7.60 8.20				8.40			9.00		7.90		8.00			7.80			8.40																																
Monitoring Depth	7.50			7.50			7.50			7.50			7.50		7.50			7.50			7.50																															
Tide		Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood		Mid-Et		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb) Mid-Flood		Mid-Flood		Mid-Ebb			Mid-Flood		
Trial	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average																												
Water Temperature (°C)	21.7	21.7	21.7	21.9	21.9	21.9	20.8	20.7	20.8	20.9	20.8	20.9	21.3	21.3	21.3	21.5	21.5	21.5	21.9	21.9	21.9	21.6	21.6	21.6																												
Salinity (ppt)	31.8	31.9	31.9	31.6	31.6	31.6	32.1	32.1	32.1	32.4	32.4	32.4	31.6	31.5	31.6	31.4	31.3	31.4	32.2	32.2	32.2	32.0	32.0	32.0																												
D.O. (mg/L)	4.15	4.10	4.1	4.28	4.24	4.3	4.68	4.63	4.7	4.29	4.25	4.3	3.28	3.36	3.3	3.38	3.47	3.4	4.32	4.37	4.3	4.67	4.64	4.7																												
D.O. Saturation (%)	57.6	56.9	57.3	58.6	58.0	58.3	62.7	62.1	62.4	57.4	56.9	57.2	44.0	45.1	44.6	45.4	46.7	46.1	57.8	58.5	58.2	62.5	62.1	62.3																												
Turbidity (NTU)	2.64	2.71	2.7	2.97	3.04	3.0	4.20	4.23	4.2	3.62	3.64	3.6	4.47	4.40	4.4	4.58	4.66	4.6	4.21	4.20	4.2	3.78	3.77	3.8																												
SS* (mg/L)	3.0	3.0	3.0	3.5	3.5	3.5	4.5	4.5	4.5	4.0	4.0	4.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.0	4.0	4.0																												
Remarks	No construction activities were observed Observed No construction activities were observed Observed Observed Observed		No construction activities were observed																								No const	ruction activ	ities were	No constr	ruction activ	ities were	No consti	truction activi	ties were																	

Within Action Level ?

Date	12/02/2007						
D.O. (mg/L)	Υ	Υ					
Turbidity (NTU)	Υ	Υ					
SS (mg/L)	Υ	Υ					

12/02/2007								
Υ	Υ							
Υ	Υ							
Υ	Υ							

14/02/2007								
Υ	Υ							
Υ	Υ							
Υ	Υ							

14/02	2/2007
Υ	Υ
Υ	Υ
Y	Y

16/02/2007		
Υ	Υ	
Υ	Υ	
Y	Y	

16/02/2007	
Υ	Υ
Υ	Υ
Υ	Υ

21/02/2007		
Υ		
Υ		
Υ		

21/02/2007		
Υ	Υ	
Υ	Υ	
Υ	Υ	

Within Limit Level ?
Date
D.O. (mg/L)

Date	12/02	/2007
D.O. (mg/L)	Υ	Υ
Turbidity (NTU)	Υ	Υ
SS (mg/L)	Υ	Υ

12/02/2007		
Υ	Υ	
Υ	Υ	
Υ	Υ	

14/02/2007	
Υ	Υ
Υ	Υ
Υ	Υ

14/02/2007	
Υ	Υ
Υ	Υ
Υ	Υ

16/02/2007	
Υ	Υ
Υ	Υ
Y	Υ

16/02/2007		
Υ	Υ	
Y	Y	
Y	Y	

21/02/2007		
Υ	Υ	
Υ	Υ	
Υ	Υ	

Water Quality Monitoring Results for Station 3

Date		23/02/2007	•		23/02/2007			26/02/2007	•		26/02/2007	,		28/02/2007	•		28/02/2007	,
Time (hh:mm)	16:41 - 16:55		10:31 - 10:43		18:16 - 18:30		08:50 - 09:04		19:12 - 19:27		10:50 - 11:03							
Ambient Temperature		21		21		18		18		20		20						
Weather		Cloudy		Cloudy Cloudy		Cloudy		Cloudy		Cloudy								
Water Depth (m)		7.80		8.40 8.20		9.00		7.80		8.60								
Monitoring Depth		7.50		7.50			7.50		7.50			7.50		7.50				
Tide		Mid-Ebb			Mid-Flood Mid-Ebb			Mid-Flood Mid-Ebb			Mid-Flood							
Trial	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average
Water Temperature (°C)	19.7	19.6	19.7	19.5	19.5	19.5	17.9	18.0	18.0	18.5	18.4	18.5	20.2	20.2	20.2	19.7	19.8	19.8
Salinity (ppt)	32.5	32.5	32.5	32.6	32.5	32.6	31.6	31.7	31.7	31.7	31.7	31.7	31.4	31.3	31.4	32.0	32.0	32.0
D.O. (mg/L)	4.02	3.97	4.0	4.12	4.05	4.1	4.15	4.09	4.1	3.92	3.84	3.9	3.54	3.50	3.5	3.92	3.86	3.9
D.O. Saturation (%)	55.7	54.9	55.3	57.0	56.1	56.6	57.8	57.0	57.4	54.3	53.2	53.8	49.2	48.6	48.9	54.7	53.8	54.3
Turbidity (NTU)	3.72	3.77	3.7	3.59	3.66	3.6	3.52	3.60	3.6	2.89	2.94	2.9	3.24	3.33	3.3	3.04	3.01	3.0
SS* (mg/L)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.0	3.0	3.0	3.5	3.5	3.5	3.5	3.5	3.5
Remarks	No const	ruction activ	ities were	No const	ruction activ	ities were	No const	ruction activ	rities were	No const	ruction activ	rities were	No const	ruction activ	ities were	No const	ruction activ	ities were

Within Action Level ?

Date	23/02/2007		
D.O. (mg/L)	Υ	Υ	
Turbidity (NTU)	Υ	Υ	
SS (mg/L)	Y	Y	

23/02/2007		
Υ	Υ	
Υ	Υ	
Υ	Υ	

5/02/2007		26/02	/2007
	Υ	Υ	١
	Υ	Υ	١
	Υ	Υ	١

28/02/2007		
Υ	Υ	
Υ	Υ	
Y	Υ	

28/02/2007			
Υ	Υ		
Υ	Υ		
Υ	Υ		

Within Limit Level ?			
Date	23/02	2/2007	
D.O. (mg/L)	Υ	Υ	
Turbidity (NTU)	Y	Υ	
SS (mg/L)	V	V	

23/02/2007			
Υ	Υ		
Υ	Υ		
Υ	Υ		

26/02/2007			
Υ	Υ		
Υ	Υ		
Υ	Υ		

26/02/2007			
Υ	Υ		
Υ	Υ		
Υ	Υ		

28/02	28/02/2007		
Υ	Υ		
Υ	Υ		
Υ	Υ		

28/02/2007			
Υ	Υ		
Υ	Υ		
· ·	· ·		

Date		02/02/2007			02/02/2007			05/02/2007	,		05/02/2007			07/02/2007	,		07/02/2007			09/02/2007			09/02/2007	
Time (hh:mm)		12:35 - 12:4	8		17:50 - 18:0	2		14:38 - 14:5	3		09:07 - 09:2	2		15:39 - 15:5	i1		10:04 - 10:1	5		17:17 - 17:3	2	1	0:41 - 10:56	3
Ambient Temperature		18			18			18			18			23			23			24			24	
Weather		Sunny			Sunny			Sunny			Sunny			Sunny			Sunny			Cloudy			Cloudy	
Water Depth (m)		3.00			3.80			4.30			4.60			4.20			3.50			3.80			4.00	
Monitoring Depth		5.00			5.00			5.00			5.00			5.00			5.00			5.00			5.00	
Tide		Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood	
Trial	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average
Water Temperature (°C)	19.7	19.7	19.7	19.3	19.3	19.3	21.3	21.4	21.4	21.3	21.3	21.3	22.1	22.2	22.2	21.9	22.0	22.0	23.8	23.8	23.8	23.7	23.7	23.7
Salinity (ppt)	31.9	32.0	32.0	32.2	32.2	32.2	31.9	31.9	31.9	32.1	32.0	32.1	32.1	32.1	32.1	32.0	31.9	32.0	32.8	32.7	32.8	32.3	32.3	32.3
D.O. (mg/L)	3.89	3.83	3.9	4.02	3.94	4.0	3.48	3.40	3.4	3.45	3.39	3.4	3.59	3.53	3.6	3.29	3.34	3.3	4.09	4.06	4.1	4.12	4.16	4.1
D.O. Saturation (%)	53.9	53.1	53.5	56.0	54.9	55.5	46.9	45.9	46.4	46.2	45.4	45.8	49.1	48.3	48.7	45.6	46.3	46.0	54.8	54.4	54.6	55.2	55.7	55.5
Turbidity (NTU)	3.86	3.89	3.9	3.91	3.95	3.9	4.36	4.45	4.4	4.36	4.44	4.4	3.52	3.46	3.5	3.29	3.35	3.3	4.06	4.03	4.0	3.74	3.73	3.7
SS* (mg/L)	4.0	4.0	4.0	4.5	4.5	4.5	4.0	4.0	4.0	4.5	4.5	4.5	4.0	4.0	4.0	3.5	3.5	3.5	4.0	4.0	4.0	4.0	4.0	4.0
Remarks	No cons	truction activ	vities were	No cons	truction activ	vities were	No const	ruction activ	vities were	No cons	truction activ	vities were	No const	truction activ	vities were	No const	ruction activ	rities were	No const	ruction activ	rities were	No consti	uction activ	ities were

^{*} For the values of suspended solids less than 5mg/L (PQL), the results are for reference only. PQL stands for practical quantitation Limit, or lowest reporting limit, which is estimated from the method detection limit (MDL). Normally PQL is about 5 tim

Date	02/0	2/2007
D.O. (mg/L)	Y	Υ
Turbidity (NTU)	Y	Υ
SS (mg/L)	Y	Υ

/2007		
Υ	Υ	
Υ	Υ	
Υ	Υ	
Y	Y	

05/0	05/02/2007					
Υ	Υ					
Υ	Υ					
Υ	Y					

05/02/2007				
Υ	Υ			
Υ	Υ			
Υ	Υ			

07/02/2007				
Υ				
Υ				
Υ				

Within	Limit	Level	?
Dato			

Date	02/02	02/02/2007			
D.O. (mg/L)	Υ	Υ			
Turbidity (NTU)	Υ	Υ			
SS (mg/L)	Υ	Υ			

02/02/2007				
Y	Υ			
Υ	Υ			
Y	Υ			

05/02/2007					
Υ	Υ				
Υ	Υ				
Υ	Υ				

05/02/2007				
Υ	Υ			
Υ	Υ			
Υ	Υ			

ĺ	07/02	/2007
	Υ	Υ
	Υ	Υ
	Υ	Υ

09/02	2/2007
Y	Υ
Υ	Υ
V	V

Date		12/02/2007			12/02/2007			14/02/2007	7		14/02/2007			16/02/2007	7		16/02/2007			21/02/2007			21/02/2007	
Time (hh:mm)		18:05 - 18:1	7		09:18 - 09:3	1		18:45 - 18:5	i5		10:32 - 10:4	2		12:15 - 12:3	0		17:06 - 17:2	1		15:20 - 15:3	0		09:15 - 09:2	5
Ambient Temperature		21			21			24			24			22			22			22			22	
Weather		Cloudy			Cloudy			Cloudy			Cloudy			Fine			Fine			Cloudy			Cloudy	
Water Depth (m)		3.80			4.20			3.60			4.00			4.40			4.60			3.80			4.00	
Monitoring Depth		5.00			5.00			5.00			5.00			5.00			5.00			5.00			5.00	
Tide		Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood		Mid-Ebb		Mid-Flood			Mid-Ebb		Mid-Flood				
Trial	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average
Water Temperature (°C)	22.1	22.1	22.1	22.2	22.2	22.2	20.7	20.7	20.7	20.9	20.9	20.9	21.2	21.3	21.3	21.4	21.5	21.5	21.7	21.7	21.7	21.8	21.8	21.8
Salinity (ppt)	31.4	31.4	31.4	31.5	31.5	31.5	32.0	31.9	32.0	32.0	32.0	32.0	31.5	31.6	31.6	31.3	31.3	31.3	32.0	32.1	32.1	32.1	32.1	32.1
D.O. (mg/L)	3.60	3.52	3.6	3.59	3.53	3.6	4.07	4.04	4.1	3.85	3.81	3.8	3.48	3.36	3.4	3.42	3.49	3.5	3.26	3.24	3.3	3.59	3.55	3.6
D.O. Saturation (%)	50.0	48.8	49.4	49.1	48.3	48.7	54.1	53.7	53.9	51.5	51.0	51.3	46.7	45.1	45.9	46.0	46.9	46.5	43.6	43.2	43.4	48.1	47.5	47.8
Turbidity (NTU)	3.55	3.62	3.6	3.24	3.50	3.4	3.98	3.97	4.0	3.59	3.60	3.6	4.33	4.48	4.4	4.58	4.62	4.6	4.47	4.46	4.5	3.67	3.69	3.7
SS* (mg/L)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.5	3.5	3.5	4.0	4.0	4.0	4.5	4.5	4.5	4.5	4.5	4.5	3.5	3.5	3.5
Remarks	No cons	truction activ	vities were	No cons	truction activ	ities were	No const	truction action		No cons	truction activ	vities were	No const	ruction activ	vities were	No cons	truction activ	vities were	No const	ruction activ	rities were	No const	truction activ	rities were

Date	12/02/2007				
D.O. (mg/L)	Υ	Υ			
Turbidity (NTU)	Υ	Υ			
SS (mg/L)	Υ	Υ			

12/02	/2007
Υ	Υ
Υ	Υ
Υ	Y

14/02/2007						
Υ						
Υ						
Y						

14/02/2007				
Υ	Υ			
Υ	Υ			
Υ	Υ			

21/02/2007							
Υ	Υ						
Υ	Υ						
Υ	Υ						

Within Limit Level ?

Date	12/02/2007				
D.O. (mg/L)	Υ	Υ			
Turbidity (NTU)	Υ	Υ			
SS (mg/L)	Υ	Υ			

12/02	/2007
Υ	Υ
Υ	Υ
Υ	Υ

14/02	2/2007
Υ	Υ
Υ	Υ
Υ	Υ

Г	14/02	2/2007
	Υ	Υ
	Υ	Υ
	Υ	Υ

[16/02	/2007
I	Υ	Υ
I	Υ	Υ
I	Υ	Υ

ĺ	16/02	2/2007
	Υ	Υ
	Υ	Υ
	Υ	Υ

21/02	/2007	
Υ	Υ	
Υ	Υ	
Υ	Υ	

21/02/2007						
Υ	Υ					
Υ	Υ					
V	~					

Date		23/02/2007 23/02/2007				26/02/2007	,	26/02/2007			28/02/2007			28/02/2007				
Time (hh:mm)	16:24 - 16:36		10:10 - 10:22			17:58 - 18:10		08:33 - 08:46		18:53 - 19:05		5	10:32 - 10:43					
Ambient Temperature	21		21		18		18		20			20						
Weather	Cloudy		Cloudy		Cloudy		Cloudy		Cloudy			Cloudy						
Water Depth (m)	3.00			3.80 3.40		4.60		3.40			4.00							
Monitoring Depth		5.00			5.00			5.00		5.00			5.00			5.00		
Tide		Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood		Mid-Ebb			Mid-Flood		
Trial	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average
Water Temperature (°C)	19.9	19.9	19.9	19.8	19.7	19.8	17.9	17.9	17.9	18.2	18.2	18.2	20.5	20.4	20.5	20.4	20.4	20.4
Salinity (ppt)	32.2	32.2	32.2	32.3	32.3	32.3	31.9	31.9	31.9	32.0	32.0	32.0	31.1	31.2	31.2	31.6	31.6	31.6
D.O. (mg/L)	3.34	3.30	3.3	3.53	3.47	3.5	3.65	3.60	3.6	3.40	3.34	3.4	3.28	3.26	3.3	3.33	3.29	3.3
D.O. Saturation (%)	46.2	46.0	46.1	48.9	48.0	48.5	50.8	50.1	50.5	47.0	46.2	46.6	45.6	45.3	45.5	46.4	45.9	46.2
Turbidity (NTU)	4.53	4.59	4.6	4.26	4.21	4.2	3.87	3.93	3.9	3.46	3.40	3.4	4.07	4.13	4.1	3.92	3.97	3.9
SS* (mg/L)	5.0	5.0	5.0	4.5	4.5	4.5	4.0	4.0	4.0	3.5	3.5	3.5	4.5	4.5	4.5	4.5	4.5	4.5
Remarks	No cons	truction activ	vities were	No cons	truction activ	vities were	No cons	truction activ	vities were	No cons	truction activ	vities were	No const	truction activ	rities were	No cons	truction activ	rities were

Within Action Level ?

Within Limit Level ?

Date

D.O. (mg/L)

Turbidity (NTU) SS (mg/L)

Date	23/02/2007				
D.O. (mg/L)	Υ	Υ			
Turbidity (NTU)	Υ	Υ			
SS (mg/L)	Υ	Υ			

Υ	Y				
		ı			
23/02/2007					
Υ	Υ				

23/02/2007						
Υ	Υ					
Υ	Υ					
YY						

23/02/2007

Y	Y						
Υ	Υ						
Υ	Υ						
26/02/2007							

26/02/2007

26/02	26/02/2007				
Υ	Υ				
Υ	Υ				
Υ	Υ				
YY					

Υ	Y
28/02	/2007
Y	Υ

28/02	/2007
Υ	Υ
Υ	Υ
Y	Υ

28/0	2/2007
Υ	Υ
Υ	Υ
Y	Y

Date		02/02/2007			02/02/2007			05/02/2007	,		05/02/2007			07/02/2007	7		07/02/2007			09/02/2007			09/02/2007	
Time (hh:mm)		12:18 - 12:2	9	17:36 - 17:47			14:18 - 14:33		08:47 - 09:02		15:20 - 15:32		09:45 - 09:56		16:47 - 17:02		2	10:21 - 10:36		ô				
Ambient Temperature		18		18		18		18		18		23		23			24			24				
Weather		Sunny		Sunny		Sunny		Sunny		Sunny		Sunny		Cloudy		Cloudy								
Water Depth (m)		3.20		4.00			4.50		4.90		4.40		3.80		3.80		4.00							
Monitoring Depth		5.00			5.00			5.00		5.00		5.00		5.00 5.00		5.00		5.00		5.00				
Tide		Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood	
Trial	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average
Water Temperature (°C)	19.6	19.6	19.6	19.4	19.3	19.4	21.4	21.4	21.4	21.3	21.3	21.3	22.0	22.0	22.0	21.8	21.8	21.8	23.8	23.8	23.8	23.7	23.7	23.7
Salinity (ppt)	32.3	32.3	32.3	32.1	32.1	32.1	32.0	31.9	32.0	32.0	32.0	32.0	32.2	32.2	32.2	32.1	32.2	32.2	32.8	32.8	32.8	32.3	32.2	32.3
D.O. (mg/L)	3.64	3.59	3.6	3.52	3.45	3.5	3.39	3.46	3.4	3.30	3.46	3.4	3.98	3.91	3.9	3.80	3.74	3.8	3.92	3.87	3.9	4.09	4.05	4.1
D.O. Saturation (%)	50.5	49.8	50.2	49.0	48.1	48.6	45.8	46.7	46.3	44.3	46.5	45.4	54.5	53.5	54.0	52.7	51.9	52.3	52.5	51.8	52.2	54.3	53.8	54.1
Turbidity (NTU)	2.64	2.72	2.7	3.02	3.07	3.0	4.30	4.40	4.4	4.28	4.39	4.3	3.39	3.33	3.4	3.17	3.10	3.1	4.14	4.15	4.1	3.80	3.82	3.8
SS* (mg/L)	3.0	3.0	3.0	3.5	3.5	3.5	4.5	4.5	4.5	4.0	4.0	4.0	3.5	3.5	3.5	3.5	3.5	3.5	4.5	4.5	4.5	4.5	4.5	4.5
Remarks	No cons	truction activ	vities were	No cons	truction activ	rities were	No const	truction activ	vities were	No cons	truction activ	vities were	No const	truction activ	vities were	No const	ruction activ	rities were	No const	ruction activ	vities were	No const	ruction activ	ities were

^{*} For the values of suspended solids less than 5mg/L (PQL), the results are for reference only. PQL stands for practical quantitation Limit, or lowest reporting limit, which is estimated from the method detection limit (MDL). Normally PQL is about 5 tim

Date	02/02/2007			
D.O. (mg/L)	Υ	Υ		
Turbidity (NTU)	Υ	Υ		
SS (mg/L)	Υ	Υ		

02/02/2007								
Υ	Υ							
Υ	Υ							
Υ	Υ							

05/02/2007						
Υ	Υ					
Υ	Υ					
Υ	Υ					
YYY						

05/02/2007						
Υ	Υ					
Υ	Υ					
Υ	Υ					
YY						

09/02/2007					
Υ	Υ				
Υ	Υ				
Υ	Υ				

Date	02/02	/2007
D.O. (mg/L)	Υ	Υ
Turbidity (NTU)	Y	Υ
SS (mg/L)	Y	Υ

02/02/2007						
Υ	Υ					
Υ	Υ					
Υ	Υ					

05/02	2/2007
Υ	Υ
Υ	Υ
Υ	Υ

05/02/2007							
Υ	Υ						
Υ	Υ						
Υ	Υ						

07/02	/2007
Υ	Υ
Y	Y
Υ	Υ

07/02	/2007
Υ	Υ
Υ	Υ
Υ	Υ

		1		
12	/2007		09/02	/2007
	Υ		Υ	Υ
	Υ		Υ	Υ
	Υ		Υ	Υ

Water Quality Monitoring

Date		12/02/2007			12/02/2007	,		14/02/2007			14/02/2007			16/02/2007			16/02/2007			21/02/2007			21/02/2007			23/02/2007	
Time (hh:mm)		17:45 - 17:5	В		09:00 - 09:1	2		18:30 - 18:4	0		10:17 - 10:2	7		11:55 - 12:1	0		16:46 - 17:0	1		15:06 - 15:1	6		09:01 - 09:1	1		16:08 - 16:2	.0
Ambient Temperature		21			21			24			24			22			22			22			22			21	
Weather		Cloudy			Cloudy			Cloudy			Cloudy			Fine			Fine			Cloudy			Cloudy			Cloudy	
Water Depth (m)	4.20 4.50			3.60		4.00		4.60 4.80			3.80			4.00		3.40											
Monitoring Depth	5.00 5.00			5.00 5.00		5.00 5.00			5.00		5.00		5.00														
Tide		Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb	
Trial	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average
Water Temperature (°C)	22.0	22.0	22.0	22.0	22.1	22.1	20.7	20.6	20.7	20.9	20.9	20.9	21.3	21.3	21.3	21.5	21.5	21.5	21.7	21.5	21.6	21.8	21.7	21.8	19.8	19.7	19.8
Salinity (ppt)	31.7	31.7	31.7	31.6	31.5	31.6	32.0	32.0	32.0	32.0	32.1	32.1	31.6	31.6	31.6	31.3	31.3	31.3	32.0	32.0	32.0	32.1	32.1	32.1	32.3	32.3	32.3
D.O. (mg/L)	3.75	3.68	3.7	3.83	3.77	3.8	4.12	4.09	4.1	3.90	3.85	3.9	3.29	3.40	3.3	3.33	3.41	3.4	3.37	3.32	3.3	3.68	3.63	3.7	3.53	3.48	3.5
D.O. Saturation (%)	52.0	51.1	51.6	52.4	51.6	52.0	54.7	54.3	54.5	52.2	51.6	51.9	44.2	45.7	45.0	44.8	45.9	45.4	44.8	44.1	44.5	49.3	48.6	49.0	48.9	48.2	48.6
Turbidity (NTU)	3.28	3.33	3.3	3.14	3.18	3.2	4.02	4.05	4.0	3.71	3.74	3.7	4.36	4.43	4.4	4.40	4.34	4.4	4.38	4.35	4.4	3.52	3.55	3.5	3.89	3.96	3.9
SS* (mg/L)	3.5	3.5	3.5	3.5	3.5	3.5	4.5	4.5	4.5	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Remarks	No cons	truction activ	rities were	No cons	truction activ	vities were	No cons	truction activ	vities were	No cons	truction activ	vities were	No cons	truction activ	vities were	No cons	truction activ	vities were	No cons	truction activ	vities were	No const	ruction activ	vities were	No cons	truction activ	rities were

Within Action Level ?

Date	12/02/2007					
D.O. (mg/L)	Υ	Υ				
Turbidity (NTU)	Υ	Υ				
SS (mg/L)	Υ	Υ				

12/02	/2007
Y	Y

ı	12/02/2007						
	Υ	Υ					
ſ	Υ	Υ					
ſ	Υ	Υ					

14/02/2007				
Υ	Υ			
Υ	Υ			
Υ	Υ			

14/02	14/02/2007					
Υ	Υ					
Υ	Υ					
Υ	Υ					
	<u> </u>					

16/02/2007						
Υ	Υ					
Υ	Υ					
Y	Y					

21/02/2007

Υ

Date	12/02/2007					
D.O. (mg/L)	Y	Υ				
Turbidity (NTU)	Y	Υ				
SS (mg/L)	Y	Υ				

12/02/2007						
Υ	Υ					
Υ	Υ					
Y	Υ					

14/02/2007						
Υ	Υ					
Υ	Υ					
Υ	Υ					

21/02	1
Υ	
Υ	
Y	

23/0	2/2007
Υ	Υ
Y	Υ
	V

g Results for Station 5

Date		23/02/2007			26/02/2007	•		26/02/2007			28/02/2007	7	28/02/2007											
Time (hh:mm)		09:50 - 10:0	3		17:40 - 17:5	3		08:15 - 08:2	7		18:36 - 18:4	19	10:12 - 10:26											
Ambient Temperature		21			18			18			20		20											
Weather		Cloudy			Cloudy			Cloudy			Cloudy		Cloudy											
Water Depth (m)		4.00			3.60			4.80			3.60		4.20											
Monitoring Depth		5.00			5.00			5.00			5.00		5.00											
Tide		Mid-Flood		Mid-Ebb			Mid-Flood			Mid-Flood			Mid-Ebb			Mid-Flood								
Trial	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 1 Trial 2 Average		Trial 1	Trial 2	Average	Trial 1	Trial 2	Average									
Water Temperature (°C)	19.6	19.6	19.6	18.2	18.2	18.2	18.1	18.1	18.1	20.3	20.3	20.3	20.1	20.2	20.2									
Salinity (ppt)	32.4	32.4	32.4	31.7	31.8	31.8	31.9	31.9	31.9	31.4	31.3	31.4	31.6	31.6	31.6									
D.O. (mg/L)	3.89	3.86	3.9	3.78	3.72	3.8	3.52	3.47	3.5	3.40	3.36	3.4	3.54	3.61	3.6									
D.O. Saturation (%)	53.9	53.4	53.7	52.6	51.8	52.2	48.7	48.0	48.4	47.2	46.7	47.0	49.4	50.3	49.9									
Turbidity (NTU)	4.02	4.10	4.1	4.17	4.12	4.1	3.96 3.99 4.0			3.71	3.64	3.7	3.24	3.29	3.3									
SS* (mg/L)	4.5	4.5	4.5	4.5	4.5	4.5	4.5 4.5 4.5			4.5 4.5 4.5			4.5 4.5 4.5			4.5 4.5 4.5 4.0			4.5 4.5 4.5 4.0 4.0 4.0			3.5 3.5 3.5		
Remarks	No cons	truction activ	vities were	No cons	truction activ	vities were	No construction activities were No construction activities observed				vities were	ere No construction activities were												

Within Action Level ?

Date	23/02/2007						
D.O. (mg/L)	Υ	Υ					
Turbidity (NTU)	Υ	Y					
SS (mg/L)	Υ	Υ					

1	00/00	
	Υ	Υ
	Υ	Υ

26/02/2007

26/02/2007								
Υ	Υ							
Υ	Υ							
Y Y								

007	28/02	/2
Υ	Υ	
Υ	Υ	ſ
Υ	Υ	Γ

Within Limit Level ? Date 23/02/2007 D.O. (mg/L) Y Y Turbidity (NTU) Y Y SS (mg/L) Y Y

26/02	26/02/2007									
Υ	Υ									
Υ	Υ									
Υ	Υ									

26/02	/2007
Υ	Υ
Υ	Υ
Υ	Υ

28/02	/2007
Υ	Υ
Υ	Y
Υ	Υ

Date		02/03/2007	7		02/03/2007			05/03/2007			05/03/2007	,		07/03/2007	•		07/03/2007		09/03/2007 09/03/2007		12/03/2007				12/03/2007																																																			
Time (hh:mm)		12:48 - 12:5	3		18:00 - 18:1	5		13:38 - 13:52			08:11 - 08:2	6	14:55 - 1		14:55 - 15:10		09:02 - 09:17		15:14 - 15:22		08:48 - 09:02)2	18:30 - 18:40			09:32 - 09:42																																																	
Ambient Temperature		26			27			20			18			13			12			16		16			24			24																																																
Weather		Fine			Fine			Cloudy			Cloudy			Fine			Fine			Cloudy			Cloudy			Cloudy		Cloudy																																																
Water Depth (m)		7.70			7.90			7.50			8.20			7.70			7.90			8.80			7.60			8.20		8.60																																																
Monitoring Depth		7.50			7.50			7.50			7.50			7.50			7.50			9.60		7.80		7.80			7.80			7.80			7.80			7.80				7.50																																				
Tide		Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Ebb		Mid-Flood			Mid-Ebb			Mid-Flood	
Trial	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average																																														
Water Temperature (°C)	21.4	21.5	21.5	21.5	21.6	21.6	19.2	19.3	19.3	19.0	19.0	19.0	20.0	20.0	20.0	19.8	19.7	19.8	18.6	18.5	18.6	18.4	18.6	18.5	26.6	26.5	26.6	26.8	26.8	26.8																																														
Salinity (ppt)	31.6	31.7	31.7	31.3	31.3	31.3	32.3	32.3	32.3	32.6	32.6	32.6	32.6	32.6	32.6	32.7	32.7	32.7	31.4	31.3	31.4	31.5	31.5	31.5	32.1	32.1	32.1	31.9	31.8	31.9																																														
D.O. (mg/L)	4.05	4.12	4.1	4.07	4.23	4.2	3.91	3.85	3.9	4.12	4.07	4.1	4.03	4.11	4.1	4.09	4.02	4.1	4.62	4.53	4.6	4.17	4.22	4.2	4.25	4.28	4.3	4.69	4.66	4.7																																														
D.O. Saturation (%)	54.3	55.2	54.8	54.5	56.8	55.7	54.2	53.3	53.8	57.3	56.7	57.0	53.8	54.9	54.4	54.6	53.7	54.2	63.8	62.5	63.2	57.5	58.2	57.9	58.2	58.6	58.4	64.2	63.8	64.0																																														
Turbidity (NTU)	4.42	4.50	4.5	4.68	4.77	4.7	3.26	3.21	3.2	3.04	3.08	3.1	4.52	4.46	4.5	4.40	4.48	4.4	3.64	3.60	3.6	3.72	3.76	3.7	4.88	4.87	4.9	4.59	4.57	4.6																																														
SS* (mg/L)	4.5	4.5	4.5	5.0	5.0	5.0	3.5	3.5	3.5	3.5	3.5	3.5	5.0	5.0	5.0	5.0	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0	5.0	5.0	5.0	5.0	5.0	5.0																																														
Remarks		on of pedes being cond	strian tunnel lucted		ion of pedes being cond			ion of pedes being condu			ion of pedes being cond	strian tunnel ucted		ion of pedes being cond			on of pedes being cond	trian tunnel ucted		ion of pedes being cond	trian tunnel ucted		on of pede being cond	strian tunnel ducted		ion of pedes being cond			ion of pedes being condu																																															

^{*} For the values of suspended solids less than 5mg/L (PQL), the results are for reference only. PQL stands for practical quantitation Limit, or lowest reporting limit, which is estimated from the method detection limit (MDL). Normally PQL is about 5 times the MDL.

Date	02/03/2007						
D.O. (mg/L)	Υ	Υ					
Turbidity (NTU)	Υ	Υ					
SS (mg/L)	Υ	Υ					

Date	02/03	/2007
D.O. (mg/L)	Y	Υ
Turbidity (NTU)	Y	Υ
SS (mg/L)	Y	Υ

02/03	3/2007
Υ	Υ
Υ	Υ
Υ	Υ

7	05/03	/200
Υ	Υ	
Υ	Υ	
Υ	Υ	

05/03/2007									
Υ	Υ								
V	~								

05/03/2007								
Υ	Υ							
Υ	Υ							
Y	Y							

07/03	12
Υ	
Y	
Υ	
	97/03 Y Y Y

7]	07/03	3/200
Υ		Υ	
Υ		Υ	
Υ		Υ	

09/03	/2007
Υ	Υ
Y	Y
Υ	Y

09/03	3/2007
Υ	Υ
Y	Υ
Y	Υ

	Y	
	Υ	
	Υ	

3	/2007	12/03	/2007
	Υ	Y	Υ
	Υ	Υ	Υ
	Υ	Υ	Y

Date	14/03/2007 14/03/2007			16/03/2007			16/03/2007			19/03/2007			19/03/2007			21/03/2007			21/03/2007				23/03/2007	•	23/03/2007							
Time (hh:mm)		19:10 - 19:	25		09:35 - 09:50)		11:30 - 11:40		16:15 - 16:25			13:12 - 13:22			19:10 - 19:20		13:55 - 14:04		08:36 - 08:46				15:48 - 16:0	0	08:50 - 09:02						
Ambient Temperature	23 22			26			26			18			18			20				20		21			20							
Weather	Sunny Sunny			Cloudy			Cloudy			Cloudy			Cloudy				Cloudy			Cloudy			Cloudy		Cloudy							
Water Depth (m)	7.80		7.80				8.00			8.20			8.80			7.80			8.40		8.70			9.20		8.60			9.50			
Monitoring Depth	7.50 7.50				7.50			7.50			7.50		7.50 7.30					7.30		7.50			7.50									
Tide	Mid-Ebb		Mid-Ebb				Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood		Mic			Mid-Flood		
Trial	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average		
Water Temperature (°C)	20.9	20.9	20.9	20.7	20.7	20.7	23.6	23.6	23.6	23.8	23.8	23.8	20.8	20.9	20.9	20.6	20.6	20.6	20.6	20.7	20.7	20.4	20.5	20.5	21.5	21.6	21.6	21.5	21.5	21.5		
Salinity (ppt)	32.1	32.2	32.2	32.2	32.2	32.2	32.2	32.1	32.2	32.2	32.2	32.2	31.4	31.4	31.4	31.5	31.4	31.5	32.4	32.6	32.5	32.1	32.2	32.2	30.8	30.8	30.8	30.5	30.6	30.6		
D.O. (mg/L)	3.92	4.03	4.0	4.10	4.14	4.1	4.37	4.32	4.3	4.70	4.74	4.7	4.09	4.06	4.1	4.26	4.22	4.2	4.46	4.40	4.4	4.11	4.19	4.2	3.94	4.02	4.0	4.18	4.11	4.1		
D.O. Saturation (%)	53.0	54.0	53.5	56.2	56.8	56.5	59.8	59.1	59.5	64.3	64.9	64.6	56.0	55.6	55.8	58.3	57.8	58.1	62.0	61.2	61.6	57.1	58.2	57.7	53.1	54.2	53.7	58.4	57.4	57.9		
Turbidity (NTU)	4.51	4.57	4.5	4.41	4.47	4.4	4.70	4.73	4.7	4.32	4.35	4.3	4.98	4.97	5.0	4.37	4.36	4.4	4.16	4.10	4.1	4.42	4.48	4.5	3.59	3.53	3.6	5.11	5.17	5.1		
SS* (mg/L)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.5	4.5	4.5	5.5	5.5	5.5	4.5	4.5	4.5	4.0	4.0	4.0	4.5	4.5	4.5	4.0	4.0	4.0	5.5	5.5	5.5		
Remarks	Construction of pedestrian tunne was being conducted				ion of pedes being condi			ion of pedest			ion of pedes being cond			on of pedes being cond	trian tunnel		ion of pedes being cond	strian tunnel lucted		ion of pedes being condi			ion of pedes being cond	trian tunnel		on of pedes being cond	trian tunnel ucted		tion of pedes being cond			

Date	14/03	/2007
D.O. (mg/L)	Υ	Υ
Turbidity (NTU)	Υ	Υ
SS (mg/L)	Υ	Υ

Within Limit Level ?		
Date	14/0	3/2007
D.O. (mg/L)	Y	Y
Turbidity (NTU)	Y	Υ
SS (mg/L)	Y	Y

I	14/03/2007	
I	Υ	Υ
I	Υ	Υ
ſ	Υ	Υ

16/0	16/03/2007	
Υ	Υ	
Υ	Υ	
Y	Y	

16/03/2007	
Υ	Υ
Υ	Υ
Υ	Υ

	19/03/2007	
Y	Υ	
Υ	Υ	
Υ	Υ	

19/03/2007	
Υ	Υ
Υ	Υ
Υ	Y

Date	14/0	3/2007
D.O. (mg/L)	Y	Υ
Turbidity (NTU)	Y	Υ
SS (mg/L)	Y	Υ

14/03/2007	
Υ	Υ
Y	Υ
Y	Υ

16/03/2007	
Υ	Υ
Υ	Y
Υ	Υ

1	
Υ	Υ
Υ	Υ
Υ	Υ

19/0	3/2007
Υ	Υ
Υ	Υ
Υ	Υ

21/03	/2007	21/
Y	Y	Υ
Y	Υ	Υ
Y	Υ	Υ

ĺ	23/03	/2007
	Υ	Υ
	Υ	Υ
	Υ	Υ

	00,00,000																		
Date		26/03/2007			26/03/2007			28/03/2007	7		28/03/2007	'		30/03/2007		30/03/2007			
Time (hh:mm)		16:30 - 16:4	1		08:40 - 08:5	0		19:52 - 20:0	12		11:08 - 11:1	8		11:45 - 12:0	0	17:05 - 17:20			
Ambient Temperature		24			23			25			25			25		26			
Weather		Cloudy			Cloudy			Cloudy			Cloudy			Sunny		Sunny			
Water Depth (m)		9.00			9.80			9.80			10.20			8.40			8.90		
Monitoring Depth		8.20			7.60			7.50			7.50			7.50		7.50			
Tide		Mid-Ebb			Mid-Flood			Mid-Ebb		Mid-Flood			Mid-Ebb			Mid-Flood			
Trial	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	
Water Temperature (°C)	22.5	22.6	22.6	22.4	22.4	22.4	22.9	23.0	23.0	22.8	22.8	22.8	24.8	24.8	24.8	25.0	25.0	25.0	
Salinity (ppt)	30.6	30.6	30.6	30.4	30.3	30.4	30.5	30.5	30.5	30.6	30.6	30.6	30.2	30.2	30.2	30.4	30.4	30.4	
D.O. (mg/L)	5.10	5.16	5.1	4.54	4.61	4.6	4.62	4.67	4.6	4.59	4.56	4.6	3.98	4.12	4.1	4.15	4.20	4.2	
D.O. Saturation (%)	69.9	70.7	70.3	62.2	63.2	62.7	63.7	64.4	64.1	63.3	62.9	63.1	53.5	55.2	54.4	58.1	58.6	58.4	
Turbidity (NTU)	4.09	4.13	4.1	4.50	4.52	4.5	3.82	3.85	3.8	5.02	5.05	5.0	3.50	3.58	3.5	5.18	5.10	5.1	
SS* (mg/L)	4.5	4.5	4.5	5.0	5.0	5.0	4.0	4.0	4.0	5.5	5.5	5.5	4.0	4.0	4.0	5.5	5.5	5.5	
Remarks		ion of pedes being cond	edestrian tunnel Construction of pedestrian tunnel conducted was being conducted					ion of pedes being cond			ion of pedes being cond			ion of pedes		Construction of pedestrian tunnel was being conducted			

Within Action Level ?

SS (mg/L)

Date	26/03	3/2007
D.O. (mg/L)	Y	Υ
Turbidity (NTU)	Y	Υ
SS (mg/L)	Y	Υ

Within Limit Level ?									
Date 26/03/2007									
D.O. (mg/L)	Y	Υ							
Touch Latter (ALTER)									

26/03	26/03/2007										
Y	Υ										
Y	Υ										
Y	Y										

28/03	/2007
Υ	Υ
Υ	Υ
Υ	Υ

		_
13	/2007	
	Υ	

30/03/2007									
Υ	Υ								
Υ	Υ								
Υ	Υ								

Annex I HKCEC EM&A_WQM_0703.xls, Station	n 3

Date		02/03/200	7		02/03/2007			05/03/2007			05/03/2007			07/03/2007			07/03/2007	,		09/03/2007			09/03/2007			12/03/2007			12/03/2007																											
Time (hh:mm)	12:28 - 12:43				17:40 - 17:5	5	13:19 - 13:33 07:48			07:48 - 08:03	3	14:35 - 14:50			08:32 - 08:47			15:24 - 15:36			09:04 - 09:18				18:12 - 18:22	2		09:12 - 09:22	2																											
Ambient Temperature		26			27			20		18		13		12			16			16			24			24																														
Weather		Fine			Fine		Cloudy Cl				Cloudy			Fine		Fine Cloudy					Cloudy	*		Cloudy		Cloudy																														
Water Depth (m)		4.50			4.80			3.40		3.80			4.40		4.60		3.60				3.20	*		3.80			4.00																													
Monitoring Depth		5.00			5.00			5.00			5.00			5.00			5.00		5.20			4.80			5.00			5.00																												
Tide		Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood		Mid-Ebb			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood																									
Trial	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average																										
Water Temperature (°C)	21.5	21.5	21.5	21.6	21.6	21.6	19.9	19.9	19.9	19.6	19.5	19.6	19.9	20.0	20.0	19.8	19.8	19.8	18.7	18.8	18.8	18.5	18.6	18.6	26.7	26.7	26.7	27.2	27.2	27.2																										
Salinity (ppt)	31.6	31.6	31.6	31.2	31.3	31.3	31.9	31.8	31.9	32.1	32.0	32.1	32.6	32.6	32.6	32.6	32.6	32.6	31.6	31.5	31.6	31.7	31.6	31.7	32.0	32.0	32.0	32.0	31.9	32.0																										
D.O. (mg/L)	3.48	3.40	3.4	4.11	3.58	3.8	3.43	3.37	3.4	3.54	3.49	3.5	3.62	3.66	3.6	3.57	3.64	3.6	4.18	4.26	4.2	3.49	3.53	3.5	4.34	4.37	4.4	4.75	4.71	4.7																										
D.O. Saturation (%)	46.7	45.7	46.2	55.2	48.0	51.6	47.5	46.7	47.1	49.3	48.6	49.0	48.5	49.0	48.8	47.7	48.7	48.2	57.7	58.8	58.3	48.2	48.7	48.5	59.0	59.4	59.2	65.0	64.5	64.8																										
Turbidity (NTU)	4.31	4.36	4.3	4.39	4.33	4.4	4.29	4.35	4.3	3.97	4.04	4.0	4.29	4.34	4.3	4.31	4.36	4.3	3.38	3.34	3.4	3.65	3.61	3.6	4.97	4.96	5.0	4.68	4.67	4.7																										
SS* (mg/L)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	3.5	3.5	3.5	4.0	4.0	4.0	5.5	5.5	5.5	5.5	5.5	5.5																										
Remarks		tion tempora ng platform v conducted			tion tempora g platform w conducted	as being		ion temporar g platform wa conducted			ion temporar g platform wa conducted			tion tempora g platform w conducted	as being			working platform was being		working platform was being		working platform was being		working platform was being		working platform was being		working platform was being		working platform was being		working platform was being		working platform was being		working platform was being		working platform was being		working platform was being		working platform was being		ng platform was being working platform was be		Construction temporaring marine working platform was being conducted		e Construction temporaring marine working platform was being conducted			Construction temporaring marine working platform was being conducted			e Construction temporaring marine working platform was being conducted		

^{*} For the values of suspended solids less than 5mg/L (PQL), the results are for reference only. PQL stands for practical quantitation Limit, or lowest reporting limit, which is estimated from the method detection limit (MDL). Normally PQL is about 5 tim

Within Action Level ?

SS (mg/L)

Date	02/03/2007							
D.O. (mg/L)	Υ	Υ						
Turbidity (NTU)	Υ	Υ						
SS (mg/L)	Y	Y						

02/03	02/03/2007	
Υ	Y	
Υ	Υ	
Υ	Υ	

05/03/2007		
Υ	Y	
Υ	Y	
Υ	Y	

05/03/2007	
Υ	Υ
Υ	Υ
Υ	Υ

07/03/2007	
Υ	Υ
Υ	Υ
Y	Υ

07/03/2007	
Υ	Υ
Υ	Υ
Υ	Υ

Within Limit Level ?		
Date	02/03/2007	
D.O. (mg/L)	Υ	Y

02/03/2007	
Y	Υ
Y	Υ
Y	Υ

02/03/2007		
Υ	Υ	
Υ	Υ	
Υ	Υ	

05/03/2007	
Υ	Y
Υ	Y
Υ	Y

05/03/2007	
Υ	Υ
Υ	Υ
Υ	Υ

07/0	07/03/2007	
Υ	Y	
Υ	Υ	
Υ	Y	

09/03/2007	
Υ	Y
Υ	Y
Υ	Υ

12/03/2007					
Υ	Y				
Υ	Y				
Υ	Υ				

12/03/2007						
Υ	Υ					
Υ	Υ					
Υ	Υ					

Date		14/03/2007			14/03/2007			16/03/2007			16/03/2007			19/03/2007			19/03/2007			21/03/2007	,	21/03/2007			23/03/2007				23/03/2007	
Time (hh:mm)		18:50 - 19:0	5		09:15 - 09:3)		11:10 - 11:20)		15:55 - 16:0	5		12:52 - 13:02	2		18:50 - 19:0	0		14:07 - 14:1	6		08:49 - 08:5	5		16:07 - 16:1	19		09:08 - 09:20	1
Ambient Temperature		23			22			26			26			18			18			20			20			21			20	
Weather		Sunny			Sunny			Cloudy			Cloudy			Cloudy			Cloudy			Cloudy			Cloudy			Cloudy			Cloudy	
Water Depth (m)		4.40			4.60			3.80			4.20			3.80			4.20			4.10			4.40			4.00			4.20	
Monitoring Depth		5.00			5.00			5.00			5.00			5.00			5.00			5.20			5.20			5.00			5.00	
Tide		Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood	
Trial	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average
Water Temperature (°C)	20.9	20.8	20.9	20.7	20.7	20.7	23.8	23.8	23.8	23.9	23.9	23.9	20.7	20.7	20.7	20.4	20.4	20.4	20.5	20.4	20.5	20.3	20.3	20.3	21.4	21.4	21.4	21.2	21.3	21.3
Salinity (ppt)	32.1	32.1	32.1	32.0	32.1	32.1	32.1	32.1	32.1	32.0	32.0	32.0	31.2	31.2	31.2	31.1	31.1	31.1	32.1	32.3	32.2	32.2	32.3	32.3	30.7	30.7	30.7	30.3	30.3	30.3
D.O. (mg/L)	3.38	3.46	3.4	3.37	3.43	3.4	4.12	4.15	4.1	4.52	4.49	4.5	3.72	3.75	3.7	4.07	4.02	4.0	4.17	4.22	4.2	3.98	4.04	4.0	3.69	3.63	3.7	3.38	3.30	3.3
D.O. Saturation (%)	45.9	47.1	46.5	45.1	46.3	45.7	56.4	56.8	56.6	61.9	61.5	61.7	50.9	51.3	51.1	55.7	55.0	55.4	57.9	58.7	58.3	55.3	56.2	55.8	49.7	48.9	49.3	47.2	46.1	46.7
Turbidity (NTU)	4.52	4.61	4.6	4.33	4.45	4.4	4.81	4.79	4.8	4.49	4.47	4.5	5.02	5.05	5.0	4.29	4.26	4.3	4.72	4.68	4.7	4.48	4.40	4.4	4.64	4.73	4.7	4.38	4.44	4.4
SS* (mg/L)	5.0	5.0	5.0	4.5	4.5	4.5	5.5	5.5	5.5	5.0	5.0	5.0	5.5	5.5	5.5	4.5	4.5	4.5	5.0	5.0	5.0	4.5	4.5	4.5	5.0	5.0	5.0	4.5	4.5	4.5
Remarks		ion tempora			ion tempora			ion temporar			tion tempora			tion temporar			tion tempora			ion tempora	ring marine		tion tempora			tion tempora			ion temporar	
	WOIKIII	conducted		WOIKIII	conducted	as being	WOIKIN	conducted	is being	WOIKIII	conducted	as being	WOIKIII	conducted	as being	WOIKIII	conducted		WOIKING	conducted		WOIKIN	conducted		WOIKIII	conducted		WOIKIII	conducted	

Date	14/03/2007						
D.O. (mg/L)	Υ	Υ					
Turbidity (NTU)	Υ	Υ					
SS (mg/L)	Υ	Υ					

14/03	14/03/2007						
Υ	Υ						
Y	Υ						
Y	Υ						

16/03		
Υ	Υ	
Υ	Υ	
Υ	Υ	

16/03/2007				
Υ	Υ			
Υ	Y			
Υ	Υ			

19/03/2007					
Υ	Υ				
Υ	Υ				
Υ	Y				

19/03/2007				
Y	Y			
Υ	Y			
Υ	Y			

23/03/2007							
Y	Y						
Y	Y						
Y	Y						

Within	Limit	Level	?	
Date				

Date	14/03/2007					
D.O. (mg/L)	Υ	Υ				
Turbidity (NTU)	Y	Y				
SS (mg/L)	Y	Y				

14/03/2007				
Υ	Υ			
Υ	Υ			
Υ	Υ			

	16/03/200			
	Υ			
	Υ			
	Υ			

3/2007	
Y	
Y	
Y	

19/0	19/03/2007		
Υ	Υ		
Υ	Υ		
Y	Υ		

23/03/2007			
Υ	Υ		
Υ	Υ		
Υ	Y		

Date		26/03/2007		26/0			28/03/2007		28/03/2007		30/03/2007			30/03/2007				
Time (hh:mm)	16:45 - 16:52		08:54 - 09:03		19:27 - 19:37		10:32 - 10:42		11:25 - 11:40		16:45 - 17:00							
Ambient Temperature	24		23		25		25		25		26							
Weather	Cloudy		Cloudy		Cloudy		Cloudy		Sunny		Sunny							
Water Depth (m)		4.60		4.40		3.80		4.00		4.20			4.40					
Monitoring Depth		5.20			5.20			5.00		5.00			5.00			5.00		
Tide		Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood		Mid-Ebb		Mid-Flood			
Trial	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average
Water Temperature (°C)	22.4	22.5	22.5	22.5	22.5	22.5	22.9	22.8	22.9	22.8	22.7	22.8	24.8	24.8	24.8	24.9	25.0	25.0
Salinity (ppt)	30.5	30.6	30.6	30.7	30.5	30.6	30.6	30.5	30.6	30.7	30.7	30.7	30.3	30.3	30.3	30.3	30.3	30.3
D.O. (mg/L)	4.03	4.09	4.1	3.79	3.84	3.8	4.27	4.22	4.2	4.30	4.34	4.3	3.66	3.59	3.6	3.62	3.66	3.6
D.O. Saturation (%)	55.2	56.0	55.6	51.9	52.6	52.3	58.4	57.8	58.1	59.3	59.8	59.6	49.3	48.4	48.9	48.7	49.4	49.1
Turbidity (NTU)	4.79	4.72	4.8	4.87	4.83	4.9	4.04	4.06	4.1	4.67	4.62	4.6	4.68	4.71	4.7	4.65	4.73	4.7
SS* (mg/L)	5.0	5.0	5.0	5.0	5.0	5.0	4.5	4.5	4.5	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Remarks		tion tempora g platform w conducted			ion tempora g platform w conducted			ion tempora g platform w conducted			ion tempora g platform w conducted			ion tempora g platform w conducted	as being		tion tempora g platform w conducted	

Within Action Level ?

SS (mg/L)

Date	26/03	3/2007
D.O. (mg/L)	Y	Υ
Turbidity (NTU)	Y	Υ
SS (mg/L)	Y	Y

26/03	26/03/2007		
Υ	Υ		
N	Ν		
Υ	Υ		

28/03/2007	
Υ	Υ
Υ	Υ
Υ	Υ

1	30/03	/2007
	Υ	Υ
	Υ	Υ
	Υ	Υ

30/03/2007		
Y	Y	
Y	Y	
Y	Y	

Date	26/03/200			
D.O. (mg/L)	Υ	Υ		
Turbidity (NTU)	Y	v		

26/03	/2007
Y	Υ
Y	Υ
Υ	Υ

28/03	/2007
Υ	Υ
Υ	Υ
٧	Υ

2007	30/0	3/2007
Υ	Υ	Υ
Υ	Υ	Υ
Υ	Υ	Υ

Date		02/03/200	7		02/03/2007	,		05/03/2007			05/03/2007			07/03/2007	7		07/03/2007			09/03/2007	,		09/03/2007	7		12/03/2007			12/03/2007	,
Time (hh:mm)		11:58 - 12:	13		17:20 - 17:3	5		13:00 - 13:1	4		07:32 - 07:4	4		14:14 - 14:3	30		08:12 - 08:2	7		15:38 - 16:0	2		09:20 - 09:3	15		18:00 - 18:1	0		09:00 - 09:1	0
Ambient Temperature		26			27			20			18			13			12			16			16			24			24	
Weather		Fine			Fine			Cloudy	Cloudy Cloudy				Fine			Fine			Cloudy			Cloudy			Cloudy			Cloudy		
Water Depth (m)		4.70			4.90			3.60			4.20			4.60			4.80			4.00			3.40			3.80			4.00	
Monitoring Depth		5.00			5.00			5.00			5.00		5.00 5.00 5.00		5.00		5.20			5.00			5.00							
Tide		Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood	
Trial	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average
Water Temperature (°C)	21.4	21.4	21.4	21.6	21.6	21.6	19.7	19.6	19.7	19.4	19.4	19.4	20.0	20.0	20.0	19.8	19.8	19.8	18.7	18.6	18.7	18.5	18.6	18.6	26.7	26.7	26.7	27.2	27.2	27.2
Salinity (ppt)	31.7	31.7	31.7	31.2	31.1	31.2	31.9	32.0	32.0	32.0	32.0	32.0	32.6	32.6	32.6	32.6	32.6	32.6	31.2	31.3	31.3	31.5	31.6	31.6	32.1	32.1	32.1	32.1	32.0	32.1
D.O. (mg/L)	3.33	3.41	3.4	3.46	3.49	3.5	3.69	3.63	3.7	3.75	3.71	3.7	3.39	3.47	3.4	3.37	3.44	3.4	3.87	3.81	3.8	3.91	3.97	3.9	4.42	4.39	4.4	4.80	4.84	4.8
D.O. Saturation (%)	44.8	45.9	45.4	46.5	46.9	46.7	51.1	50.3	50.7	52.2	51.6	51.9	45.3	46.4	45.9	45.2	46.1	45.7	53.4	52.7	53.1	54.0	54.8	54.4	60.1	59.7	59.9	65.2	65.7	65.5
Turbidity (NTU)	4.28	4.37	4.3	4.57	4.49	4.5	3.53	3.47	3.5	3.89	3.94	3.9	4.29	4.37	4.3	4.26	4.38	4.3	3.54	3.50	3.5	3.72	3.68	3.7	4.99	4.96	5.0	4.60	4.63	4.6
SS* (mg/L)	4.0	4.0	4.0	5.0	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0	4.5	4.5	4.5	4.5	4.5	4.5	4.0	4.0	4.0	4.5	4.5	4.5	5.5	5.5	5.5	5.5	5.5	5.5
Remarks		tion tempora ng platform v conducted			ction tempora ng platform w conducted			tion tempora g platform w conducted	as being		tion tempora g platform w conducted			tion tempora g platform w conducted	vas being		tion tempora g platform w conducted			tion tempora g platform w conducted	ring marine as being	working	ion tempora g platform w conducted	as being		tion tempora ng platform w conducted			ction tempora ng platform w conducted	vas being

^{*} For the values of suspended solids less than 5mg/L (PQL), the results are for reference only. PQL stands for practical quantitation Limit, or lowest reporting limit, which is estimated from the method detection limit (MDL). Normally PQL is about 5 tim

Within Action Level ?

SS (mg/L)

Date	02/03	3/2007
D.O. (mg/L)	Υ	Υ
Turbidity (NTU)	Υ	Υ
SS (mg/L)	Υ	Υ

02/03	02/03/2007							
Υ	Y							
Υ	Υ							
Υ	Υ							

05/03/2007					
Υ	Υ				
Υ	Υ				
Υ	Υ				

05/03/2007					
Υ	Υ				
Υ	Υ				
Υ	Υ				

07/03	/2007
Υ	Υ
Υ	Υ
Y	Υ

07/0	3/2007
Y	Y
Y	Y
Υ	Υ

09/03/2007						
Υ	Y					
Υ	Y					
Υ	Y					

Date	02/03	3/2007
D.O. (mg/L)	Υ	Υ
Turbidity (NTU)	Υ	Y

02/03	/2007
Y	Y
Y	Y
Y	Y

05/03	/2007
Υ	Y
Υ	Y
Υ	Υ

05/03	/2007
Υ	Υ
Υ	Υ
Υ	Υ

07/03	/2007
Υ	Υ
Υ	Υ
Υ	Υ

12/03	3/2007
Υ	Υ
Υ	Υ
~	~

Date		14/03/2007			14/03/2007			16/03/2007			16/03/2007			19/03/2007			19/03/2007	,		21/03/2007			21/03/2007	,		23/03/2007	7		23/03/2007	
Time (hh:mm)		18:30 - 18:4	5		08:55 - 09:1	0		10:57 - 11:07			15:42 - 15:5	2		12:40 - 12:5			18:36 - 18:4	16		14:18 - 14:3	0		08:58 - 09:1	8		16:23 - 16:3	18		09:27 - 09:3	3
Ambient Temperature		23			22			26			26			18			18			20			20			21			20	
Weather		Sunny			Sunny			Cloudy			Cloudy			Cloudy			Cloudy			Cloudy			Cloudy			Cloudy			Cloudy	
Water Depth (m)		4.70			4.90			4.00			4.20			3.80			4.20			4.40			5.60			4.00			4.40	
Monitoring Depth		5.00			5.00			5.00			5.00			5.00			5.00			5.60			5.20			5.00			5.00	
Tide		Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood	
Trial	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average
Water Temperature (°C)	20.9	21.0	21.0	20.8	20.8	20.8	23.8	23.8	23.8	23.9	23.8	23.9	20.8	20.8	20.8	20.5	20.5	20.5	20.3	20.3	20.3	20.1	20.2	20.2	21.5	21.5	21.5	21.4	21.4	21.4
Salinity (ppt)	32.0	32.0	32.0	32.1	32.1	32.1	32.1	32.1	32.1	32.1	32.1	32.1	31.2	31.2	31.2	31.1	31.1	31.1	32.5	32.4	32.5	32.5	32.4	32.5	30.5	30.6	30.6	30.4	30.3	30.4
D.O. (mg/L)	3.29	3.38	3.3	3.33	3.42	3.4	4.06	4.02	4.0	4.59	4.62	4.6	3.68	3.65	3.7	3.95	3.91	3.9	4.32	4.38	4.4	4.47	4.42	4.4	3.80	3.74	3.8	3.87	3.93	3.9
D.O. Saturation (%)	44.8	45.9	45.4	44.8	45.5	45.2	55.6	55.0	55.3	62.4	62.8	62.6	50.4	50.0	50.2	53.7	53.1	53.4	60.0	60.9	60.5	62.1	61.4	61.8	51.2	50.4	50.8	54.1	54.9	54.5
Turbidity (NTU)	4.40	4.45	4.4	4.28	4.37	4.3	4.84	4.87	4.9	4.51	4.50	4.5	4.99	4.97	5.0	4.43	4.45	4.4	4.36	4.31	4.3	4.17	4.11	4.1	3.25	3.33	3.3	3.97	4.06	4.0
SS* (mg/L)	4.5	4.5	4.5	4.5	4.5	4.5	5.5	5.5	5.5	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.5	4.5	4.5	4.0	4.0	4.0	3.5	3.5	3.5	4.5	4.5	4.5
Remarks		tion tempora			ion tempora			ion temporar			tion tempora			tion tempora			tion tempora				ring marine		tion tempora			tion tempora			tion tempora	
Iteliarks	working	g platform w conducted		workin	g platform w conducted		working	g platform wa conducted	is being	workin	g platform w conducted		workin	g platform w conducted	as being	workin	g platform w conducted		working	platform w conducted		workin	g platform w conducted			g platform w conducted		working	g platform w conducted	

Within	Action	Level	2

Date	14/03/2007							
D.O. (mg/L)	Υ	Υ						
Turbidity (NTU)	Υ	Υ						
SS (mg/L)	Υ	Υ						

14/0	14/03/2007									
Y	Υ									
Y	Υ									
Y	Υ									

16/03	/2007
Υ	Υ
Υ	Υ
Υ	Υ

16/0	3/2007
Y	Υ
Y	Υ
Y	Υ

19/0	3/2007
Y	Y
Υ	Y
Y	Υ

19/03/2007		
Υ	Y	
Υ	Y	
Y	Υ	

Within Limit Level ?	
Date	14/03
D.O. (ma/l.)	

Date	14/03	/2007
D.O. (mg/L)	Υ	Υ
Turbidity (NTU)	Υ	Υ
SS (mg/L)	Y	Y

14/03	/2007
Υ	Υ
Y	Υ
Υ	Υ

16/03	/20
Υ	
Υ	
Υ	

16/03	/2007
Υ	Υ
Υ	Υ
Υ	Υ

19/03/2007		
Υ	Υ	
Υ	Υ	
Y	Υ	

23/03/2007			
Υ	Y		
Υ	Υ		
Υ	Y		

Date		26/03/2007			26/03/2007		28/03/2007			28/03/2007		30/03/2007		30/03/2007					
Time (hh:mm)		16:58 - 17:0	В	09:07 - 09:17				19:15 - 19:25		10:20 - 10:30		11:05 - 11:20		16:25 - 16:40					
Ambient Temperature		24			23			25		25		25		26					
Weather		Cloudy			Cloudy			Cloudy		Cloudy		Sunny			Sunny				
Water Depth (m)		4.40		4.60				3.80		4.00		4.40			4.60				
Monitoring Depth		5.20		5.20				5.00		5.00			5.00		5.00				
Tide		Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb		Mid-Flood			
Trial	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	
Water Temperature (°C)	22.3	22.4	22.4	22.3	22.4	22.4	22.9	22.9	22.9	22.8	22.8	22.8	24.9	24.9	24.9	24.9	25.0	25.0	
Salinity (ppt)	30.3	30.5	30.4	30.2	30.4	30.3	30.5	30.4	30.5	30.6	30.6	30.6	30.2	30.2	30.2	30.3	30.4	30.4	
D.O. (mg/L)	4.45	4.38	4.4	4.12	4.06	4.1	4.22	4.19	4.2	4.24	4.21	4.2	3.76	3.84	3.8	3.89	3.78	3.8	
D.O. Saturation (%)	61.0	60.0	60.5	56.4	55.6	56.0	57.8	57.4	57.6	58.5	58.0	58.3	50.6	51.8	51.2	52.3	51.0	51.7	
Turbidity (NTU)	4.39	4.34	4.4	4.65	4.61	4.6	3.95	3.98	4.0	4.59	4.57	4.6	3.23	3.40	3.3	3.22	3.36	3.3	
SS* (mg/L)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	5.0	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0	
Remarks		ion tempora g platform w conducted			ion tempora g platform w conducted			ion tempora g platform w conducted			tion tempora g platform w conducted		Construction temporaring marine working platform was being conducted			tion tempora g platform w conducted	aring marine vas being		

Within Action Level ?

SS (mg/L)

Date	26/03	/2007
D.O. (mg/L)	Υ	Υ
Turbidity (NTU)	Υ	Υ
SS (mg/L)	Υ	Υ

26/03/2007					
Y	Υ				
Y	Υ				
Y	Υ				

28/03/2007			
Υ	Υ		
Υ	Υ		
Υ	Υ		

28/03	3/2007
Υ	Υ
Υ	Υ
Υ	Υ

/2007	1	30/03	/2007
Υ		Υ	Υ
Υ		Υ	Υ
Υ		Υ	Υ

26/03	/2007
Y	Υ
Y	Υ
Y	Υ

28/03	/2007
Υ	Υ
Υ	Υ
Y	Y

28/03	/2007
Y	Υ
Υ	Υ
Υ	Υ

Y Y Y Y Y Y	30/03	/2007
Y Y	Υ	Υ
Y Y	Υ	Υ
	Υ	Υ

Date		02/04/2007	7		02/04/2007			04/04/2007			04/04/2007			06/04/2007			06/04/2007			09/04/2007			09/04/2007	,		11/04/2007			11/04/2007	
Time (hh:mm)		13:00 - 13:1	5		19:20 - 19:2	5		14:01 - 14:10)		07:50 - 08:0	1		14:07 - 14:1	9		08:10 - 08:2	3		17:00 - 17:1	5		09:05 - 09:2	0		19:37 - 19:4	7		09:07 - 09:17	/
Ambient Temperature		25			23			18			16			19			16			25			24			23			23	
Weather		Cloudy			Cloudy			Sunny			Sunny			Cloudy			Cloudy													
Water Depth (m)		8.00			8.30			8.80			9.30			8.60			9.60			9.30			9.70			9.40			9.80	
Monitoring Depth		7.50			7.50			7.60			7.60			7.50			7.50			7.50			7.50			7.50			7.50	
Tide		Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood	
Trial	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average												
Water Temperature (°C)	24.0	24.0	24.0	24.0	24.0	24.0	20.6	20.5	20.6	20.3	20.3	20.3	19.4	19.5	19.5	19.0	19.0	19.0	21.5	21.5	21.5	21.4	21.4	21.4	22.0	21.9	22.0	21.7	21.7	21.7
Salinity (ppt)	29.5	29.5	29.5	30.1	30.0	30.1	31.9	32.0	32.0	32.2	32.1	32.2	31.2	31.2	31.2	30.5	30.5	30.5	29.1	29.1	29.1	28.9	29.1	29.0	32.7	32.7	32.7	32.7	32.6	32.7
D.O. (mg/L)	4.40	4.43	4.4	3.96	3.92	3.9	5.28	5.20	5.2	5.27	5.20	5.2	3.83	3.75	3.8	4.40	4.33	4.4	5.18	5.22	5.2	4.26	4.33	4.3	3.89	3.86	3.9	4.09	4.06	4.1
D.O. Saturation (%)	62.0	62.3	62.2	53.3	52.6	53.0	72.9	71.7	72.3	72.7	71.8	72.3	50.8	49.7	50.3	58.8	57.9	58.4	72.9	73.4	73.2	60.3	61.0	60.7	53.2	52.8	53.0	56.0	55.6	55.8
Turbidity (NTU)	5.08	5.16	5.1	3.48	3.55	3.5	5.35	5.35	5.4	5.41	5.40	5.4	5.11	5.17	5.1	4.62	4.70	4.7	3.88	3.84	3.9	4.52	4.60	4.6	4.43	4.47	4.5	4.02	3.98	4.0
SS* (mg/L)	5.5	5.5	5.5	4.0	4.0	4.0	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.0	5.0	5.0	4.5	4.5	4.5	5.0	5.0	5.0	5.0	5.0	5.0	4.5	4.5	4.5
Remarks	Ger	neral Earth \	Vorks	Ger	neral Earth W	/orks	W	elding progre	ess	W	elding progre	ess	Ge	neral earth v	vork	No cons	truction activ	rities were	Ge	neral earth w	orks	Ger	neral earth v	vorks	Ge	eneral earth	work	Ge	neral earth v	ork .

^{*} For the values of suspended solids less than 5mg/L (PQL), the results are for reference only. PQL stands for practical quantitation Limit, or lowest reporting limit, which is estimated from the method detection limit (MDL). Normally PQL is about 5 times the MDL.

Within Action Level ?			_			_			_			_			_						_		
Date	02/0	4/2007		02/04	1/2007		04/04	1/2007		04/0	4/2007		06/04	1/2007		06/04	4/2007		09/0	4/2007		09/04	/2007
D.O. (mg/L)	Υ	Υ		Υ	Υ		Y	Y		Υ	Υ		Υ	Υ		Υ	Y		Υ	Υ		Υ	
Turbidity (NTU)	Υ	Υ		Y	Υ		N	N		N	N		Y	Υ		Υ	Y		Υ	Y		Υ	
SS (mg/L)	Y	Υ		Υ	Υ		Υ	Y		Υ	Υ		Υ	Υ		Υ	Υ		Υ	Υ		Υ	
Within Limit Level ?			='						='			="			='			=' '			="		

Turbidity (NTU)	Υ	Υ	Y	Y	N	N		N	N		Υ	Υ		Y	Υ		Y	Υ		Υ	Y		Υ	Υ		Υ	Y
SS (mg/L)	Υ	Υ	Υ	Υ	Υ	Υ		Υ	Υ		Υ	Υ		Υ	Υ		Υ	Υ		Υ	Υ		Υ	Υ]	Υ	Υ
Within Limit Level ?							_						_			_			_			_			_		
Date	02/04	/2007	02/04	1/2007	04/04	1/2007		04/04	4/2007		06/04	/2007		06/04	/2007	1	09/04	/2007	ĺ	09/0-	4/2007		11/04	/2007	1	11/04	/2007
D.O. (mg/L)	Υ	Υ	Υ	Υ	Υ	Υ		Υ	Υ		Υ	Υ		Υ	Υ		Υ	Υ		Υ	Υ		Υ	Υ		Υ	Υ
Turbidity (NTU)	Υ	Υ	Υ	Υ	Υ	Υ		Υ	Υ		Υ	Υ		Υ	Υ		Υ	Υ		Υ	Υ		Υ	Υ		Υ	Υ
SS (mg/L)	Υ	Υ	Υ	Υ	Υ	Υ		Υ	Υ		Υ	Υ		Υ	Υ		Υ	Υ		Υ	Υ		Υ	Υ		Υ	Υ
`										_			_														

Date		13/04/2007	7		13/04/2007			16/04/2007			16/04/2007			18/04/2007			18/04/2007			20/04/2007			20/04/2007	7		23/04/2007			23/04/2007	
Time (hh:mm)		11:30 - 11:4	15		16:05 - 16:20)		10:35 - 10:4	6		16:35 - 16:45	5		13:10 - 13:2	5		18:50 - 19:0	5		15:30 - 15:4	0		08:43 - 08:5	3		18:35 - 18:50	0		09:10 - 09:25	5
Ambient Temperature		24			24			23			23			26			26			25			25			25		Ĺ	24	
Weather		Sunny			Sunny			Sunny			Sunny			Sunny			Cloudy			Cloudy			Cloudy			Fine		Ĺ	Rainy	
Water Depth (m)		8.30			8.60			7.60			8.60			7.90			8.30			9.20			9.80			8.60		Ĺ	9.00	
Monitoring Depth		7.50			7.50			7.90			7.40			7.50			7.50			7.50			7.50			7.50		i	7.50	
Tide		Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb		i	Mid-Flood	
Trial	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average
Water Temperature (°C)	21.8	21.8	21.8	21.8	21.9	21.9	21.5	21.4	21.5	21.4	21.5	21.5	22.0	22.2	22.1	22.3	22.4	22.4	23.6	23.5	23.6	23.1	23.1	23.1	22.0	22.4	22.2	22.2	22.2	22.2
Salinity (ppt)	32.8	32.8	32.8	32.9	32.8	32.9	30.6	30.5	30.6	30.7	30.4	30.6	31.6	31.6	31.6	31.7	31.7	31.7	31.8	31.7	31.8	31.7	31.7	31.7	31.9	31.9	31.9	31.7	31.7	31.7
D.O. (mg/L)	4.90	4.81	4.9	4.85	4.76	4.8	5.06	5.12	5.1	5.14	5.18	5.2	4.18	4.29	4.2	3.96	4.04	4.0	4.04	4.01	4.0	4.39	4.36	4.4	4.13	4.26	4.2	4.22	4.29	4.3
D.O. Saturation (%)	69.6	68.2	68.9	68.3	67.5	67.9	69.8	70.7	70.3	70.9	71.5	71.2	58.4	59.6	59.0	53.4	54.4	53.9	55.7	55.3	55.5	60.5	60.1	60.3	56.4	57.8	57.1	58.0	58.2	58.1
Turbidity (NTU)	3.89	3.97	3.9	3.98	4.03	4.0	7.12	7.09	7.1	7.44	7.48	7.5	5.27	5.30	5.3	4.57	4.63	4.6	5.15	5.17	5.2	4.65	4.62	4.6	4.98	5.28	5.1	4.83	4.74	4.8
SS* (mg/L)	4.0	4.0	4.0	4.5	4.5	4.5	7.5	7.5	7.5	8.0	8.0	8.0	5.5	5.5	5.5	5.0	5.0	5.0	5.5	5.5	5.5	5.0	5.0	5.0	5.5	5.5	5.5	5.0	5.0	5.0
Remarks	Ge	neral earth	work	Ge	neral earth v	vork	W	elding progre	ess	w	elding progre	ess	No const	ruction activ	rities were	No cons	truction activ	rities were	Ge	eneral earth v	vork	Ge	neral earth	work	No cons	ruction activ	rities were	Ge	neral earth v	ork

Within	Action	l evel ?

Date	13/04	/2007
D.O. (mg/L)	Υ	Υ
Turbidity (NTU)	Υ	Υ
SS (mg/L)	Υ	Υ

3/04/2007		16/04
	Υ	Υ
	Υ	N
	Υ	Υ

16/04/2007	
Υ	Υ
N	N
Υ	Υ

18/04/2007	
Υ	Y
Υ	Υ
Υ	Υ

18/04/2007		
Υ	Υ	
Υ	Υ	
Y	Y	

Date	13/0	13/04/2007	
D.O. (mg/L)	Υ	Υ	
Turbidity (NTU)	Υ	Υ	
SS (mg/L)	Y	Υ	

13/04/2007	
Y Y	
Υ	Υ
Υ	Υ

	16/04/200	
	Υ	
	N	
	Υ	

16/04/2007	
Υ	Υ
N	N
Υ	Υ

18/04/2007	
Υ	Υ
Υ	Υ
Υ	Υ

18/04/2007		
Υ	Υ	
Υ	Y	
Υ	Υ	

23/04/2007		
Y	Υ	
Y	Υ	
Y	Υ	

Date		02/04/2007	7		02/04/2007			04/04/2007			04/04/2007			06/04/2007			06/04/2007			09/04/2007			09/04/2007			11/04/2007			11/04/2007	,
Time (hh:mm)		12:40 - 12:5	55		18:50 - 19:0	5		14:13 - 14:23	3		08:04 - 08:1	3		14:22 - 14:3	5		08:27 - 08:3	9		17:20 - 17:35	5	С	9:25 - 09:4	0		19:22 - 19:3	2		08:52 - 09:0	12
Ambient Temperature		25			23			18			16			19			16			25			24			23			23	
Weather		Cloudy			Cloudy			Cloudy			Cloudy			Cloudy			Cloudy			Sunny			Sunny			Cloudy			Cloudy	
Water Depth (m)		4.10			4.40			4.20			4.40			3.60			4.40			4.00			4.20			4.00			4.20	
Monitoring Depth		5.00			5.00			5.40			5.20			5.00			5.00			5.00			5.00			5.00			5.00	
Tide		Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood	
Trial	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average
Water Temperature (°C)	24.7	24.8	24.8	24.1	24.0	24.1	20.5	20.6	20.6	20.2	20.1	20.2	19.8	19.9	19.9	19.5	19.4	19.5	21.5	21.5	21.5	21.3	21.3	21.3	22.0	22.1	22.1	21.8	21.7	21.8
Salinity (ppt)	30.0	29.9	30.0	30.0	30.0	30.0	31.2	31.4	31.3	32.1	32.1	32.1	31.0	31.0	31.0	30.2	30.1	30.2	29.2	29.1	29.2	29.1	29.1	29.1	32.6	32.6	32.6	32.6	32.6	32.6
D.O. (mg/L)	3.26	3.39	3.3	3.66	3.70	3.7	5.15	5.11	5.1	4.98	5.06	5.0	3.47	3.40	3.4	3.74	3.70	3.7	3.64	3.72	3.7	3.39	3.42	3.4	3.97	3.94	4.0	4.12	4.15	4.1
D.O. Saturation (%)	45.7	47.3	46.5	49.2	49.8	49.5	71.1	70.5	70.8	68.7	69.8	69.3	46.0	45.1	45.6	50.0	49.4	49.7	49.0	50.1	49.6	47.3	47.7	47.5	54.3	53.9	54.1	56.4	56.8	56.6
Turbidity (NTU)	4.26	4.38	4.3	4.58	4.66	4.6	4.98	5.00	5.0	5.26	5.28	5.3	4.26	4.29	4.3	3.74	3.86	3.8	4.65	4.73	4.7	4.39	4.45	4.4	4.89	4.90	4.9	4.39	4.36	4.4
SS* (mg/L)	4.5	4.5	4.5	5.0	5.0	5.0	5.0	5.0	5.0	5.5	5.5	5.5	4.5	4.5	4.5	4.0	4.0	4.0	5.0	5.0	5.0	4.5	4.5	4.5	5.5	5.5	5.5	4.5	4.5	4.5
Remarks	No cons	truction acti observed		No cons	struction activ	vities were	No cons	truction activ	ities were	No cons	truction activ	rities were	Lifting	work was o	oserved	Lifting	work was ol	bserved	No cons	truction activ	ities were	No const	uction activ	rities were	No cons	truction activ	vities were	No const	ruction activobserved	vities were

^{*} For the values of suspended solids less than Smg/L (PQL), the results are for reference only. PQL stands for practical quantitation Limit, or lowest reporting limit, which is estimated from the method detection limit (MDL). Normally PQL is about 5 tim

Date	02/04	1/2007
D.O. (mg/L)	N	Y
Turbidity (NTU)	Y	Y
SS (mg/L)	Y	Y

D.O. (IIIg/L)	N	Y
Turbidity (NTU)	Υ	Y
SS (mg/L)	Υ	Y
Within Limit Level ?		

Within Limit Level ?		
Date	02/04	/2007
D.O. (mg/L)	Υ	Y
Turbidity (NTU)	Υ	Y
SS (mg/L)	Υ	Y

02/04	/2007
Υ	Y
Υ	Y
Υ	Y

04	/2007	
	Y	
	Y	

04/0-	4/2007
Y	Y
Y	Υ
Y	Υ

04/04	/2007
Υ	Υ
Υ	Υ
Υ	Y

06/04	/2007
Υ	Y
Y	Y
Υ	Y

06/04	1/2007
Y	Y
Y	Y
Y	Υ

Υ	Υ	
Υ	Υ	
Υ	Y	
09/04	1/2007	

11/04	/2007
11/04	12001
~	V

11/04/2007									
Y	Υ								
Y	Υ								
V	V								

Date		13/04/200	7		13/04/2007			16/04/2007			16/04/2007			18/04/2007			18/04/2007			20/04/2007			20/04/2007			23/04/2007			23/04/2007	
Time (hh:mm)		11:10 - 11:2	25		15:45 - 16:00	0		10:50 - 11:0	1		16:51 - 17:02			12:50 - 13:0	5		18:30 - 18:4	5		15:12 - 15:2	2		08:25 - 08:3	5		18:55 - 19:1	0		09:30 - 09:45	5
Ambient Temperature		24			24			23			23			26			26			25			25			25			24	
Weather		Sunny			Sunny			Sunny			Sunny			Sunny			Cloudy			Cloudy			Cloudy			Fine			Rainy	
Water Depth (m)		3.80			4.10			3.40			3.60			4.00			4.30			4.00			4.20			4.00			4.30	
Monitoring Depth		5.00			5.00			5.20			5.40			5.00			5.00			5.00			5.00			5.00			5.00	
Tide		Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood	
Trial	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average
Water Temperature (°C)	21.8	21.8	21.8	21.8	21.9	21.9	21.6	21.5	21.6	21.6	21.4	21.5	22.1	22.2	22.2	22.4	22.4	22.4	23.7	23.7	23.7	23.2	23.2	23.2	22.4	22.3	22.4	22.2	22.2	22.2
Salinity (ppt)	32.8	32.8	32.8	32.9	32.9	32.9	30.2	30.3	30.3	30.6	30.5	30.6	31.8	31.7	31.8	31.6	31.7	31.7	31.9	31.8	31.9	31.8	31.8	31.8	32.0	31.9	32.0	31.7	31.8	31.8
D.O. (mg/L)	4.72	4.83	4.8	3.71	3.89	3.8	4.87	4.92	4.9	4.75	4.79	4.8	3.41	3.49	3.5	3.42	3.55	3.5	3.79	3.75	3.8	4.07	4.02	4.0	4.02	3.90	4.0	4.03	3.97	4.0
D.O. Saturation (%)	67.3	68.5	67.9	67.0	69.1	68.1	67.2	67.9	67.6	65.6	66.1	65.9	47.2	48.0	47.6	47.6	48.9	48.3	52.3	51.7	52.0	56.1	55.4	55.8	55.6	54.3	55.0	55.9	55.0	55.5
Turbidity (NTU)	4.40	4.49	4.4	4.38	4.39	4.4	6.76	6.79	6.8	6.87	6.83	6.9	5.00	4.88	4.9	4.43	4.51	4.5	4.97	4.96	5.0	4.59	4.60	4.6	4.56	4.63	4.6	4.23	4.39	4.3
SS* (mg/L)	5.0	5.0	5.0	4.5	4.5	4.5	7.0	7.0	7.0	7.0	7.0	7.0	5.5	5.5	5.5	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.5	4.5	4.5
Remarks	No cons	truction act		No cons	ruction activ	rities were	No cons	truction activ	ities were	No cons	truction activ	ties were	No cons	truction activ	rities were	No cons	struction activ	rities were	Ge	eneral earth	work	Ge	eneral earth	work	Waste wat	er was noted	d from others	Waste wate	er was noted	from others

Within	Action	Level	2

Date	13/0-	4/2007			
D.O. (mg/L)	Y	Y			
Turbidity (NTU)	Y	Y			
SS (mg/L)	Y	Y			

Date	13/04	/2007
D.O. (mg/L)	Y	Y
Turbidity (NTU)	Y	Υ
SS (mg/L)	Y	V

13/04/2007							
Y	Y						
Υ	Y						
Υ	Υ						

Y	Y					
16/04	/2007					
Y	Y					

16/04/2007						
Υ	Υ					
N	N					
Υ	Υ					

1	
Υ	
Y	

18/04/2007						
Y	Υ					
Y	Y					
Y	Υ					

	Υ	Υ					
	20/04/2007						
	20/04	/2007					
F	20/04 Y	/2007 Y					

23/04/2007							
Y	Υ						
Y	Y						
Y	Y						

23/04	/2007
Y	Y
Y	Υ

Date		02/04/2007			02/04/2007	,		04/04/2007			04/04/2007			06/04/2007	7		06/04/2007			09/04/2007			09/04/2007			11/04/2007			11/04/2007	7
Time (hh:mm)		12:20 - 12:3	5		18:31 - 18:4	6		14:27 - 14:3	7		08:16 - 08:20	6		14:38 - 14:5	i1		08:42 - 08:5	5		17:40 - 17:5	5	(09:45 - 10:0	0		19:10 - 19:2	0	(08:40 - 08:5	0
Ambient Temperature		25			23			18			16			19			16			25			24			23			23	
Weather		Cloudy			Cloudy			Cloudy			Cloudy			Cloudy			Cloudy			Sunny			Sunny			Cloudy			Cloudy	
Water Depth (m)		4.20			4.50			4.40			4.80			3.80			4.20			4.10			4.40			4.00			4.40	
Monitoring Depth		5.00			5.00			5.60			5.60			5.00			5.00			5.00			5.00			5.00			5.00	
Tide		Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood	
Trial	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average
Water Temperature (°C)	24.8	24.8	24.8	24.0	24.0	24.0	20.6	20.5	20.6	20.4	20.4	20.4	19.7	19.7	19.7	19.3	19.3	19.3	21.5	21.5	21.5	21.3	21.4	21.4	22.1	22.1	22.1	21.7	21.7	21.7
Salinity (ppt)	29.9	29.9	29.9	30.0	30.0	30.0	31.6	31.5	31.6	32.3	32.0	32.2	30.9	31.0	31.0	30.3	30.2	30.3	29.2	29.2	29.2	29.1	29.1	29.1	32.6	32.5	32.6	32.7	32.6	32.7
D.O. (mg/L)	3.81	3.94	3.9	3.75	3.91	3.8	4.87	4.94	4.9	5.07	5.01	5.0	3.59	3.53	3.6	3.97	3.92	3.9	3.80	3.84	3.8	3.86	3.92	3.9	3.90	3.86	3.9	4.10	4.07	4.1
D.O. Saturation (%)	53.9	55.0	54.5	50.5	52.2	51.4	64.9	68.2	66.6	69.9	69.1	69.5	47.6	46.8	47.2	53.1	52.4	52.8	51.2	51.8	51.5	54.0	54.8	54.4	53.4	52.8	53.1	56.1	55.7	55.9
Turbidity (NTU)	3.93	3.88	3.9	3.22	3.34	3.3	4.84	4.87	4.9	5.33	5.31	5.3	4.83	4.92	4.9	4.05	4.09	4.1	3.22	3.29	3.3	3.91	3.97	3.9	4.97	4.94	5.0	4.47	4.48	4.5
SS* (mg/L)	4.5	4.5	4.5	3.5	3.5	3.5	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	4.5	4.5	4.5	4.0	4.0	4.0	4.5	4.5	4.5	5.0	5.0	5.0	5.0	5.0	5.0
Remarks	No cons	truction activ	vities were	No cons	truction activ		No cons	truction activ	ities were	No cons	truction activ	ities were	No const	truction activ	vities were	No cons	truction activ	vities were	No cons	truction activ	ities were	No const	ruction activ	rities were	No cons	truction activ	ities were	No const	ruction activ	rities were

^{*} For the values of suspended solids less than 5mg/L (PQL), the results are for reference only. PQL stands for practical quantitation Limit, or lowest reporting limit, which is estimated from the method detection limit (MDL). Normally PQL is about 5 tim

Date	02/0	02/04/2007				
D.O. (mg/L)	Y	Υ				
Turbidity (NTU)	Y	Υ				
SS (mg/L)	Y	Υ				

Y
Υ
Υ

2007]	04/04	/2007
Υ		Υ	١
Υ		Υ	ŕ
Υ		Υ	,

04/04/2007						
Υ	Υ					
N	N					
Υ	Υ					

ĺ	06/04	/2007
	Υ	Υ
	Υ	Υ
	Y	Y

Within	Limit Level ?
Date	

Date	02/04/2007					
D.O. (mg/L)	Υ	Υ				
Turbidity (NTU)	Υ	Υ				
SS (mg/L)	Υ	Υ				

02/04/2007				
Υ	Υ			
Υ	Υ			
Υ	Υ			

2007	04/04	/2007
Υ	Υ	-
Υ	Υ	,
Υ	Υ	,

04/04/2007					
Υ	Υ				
Υ	Υ				
Υ	Υ				

06/04/2007					
Υ	Υ				
Υ	Υ				
Υ	Υ				

11/04		
Υ	Υ	
Υ	Υ	
Υ	Υ	

ĺ	44/04	/2007
	11/04	12007
	Υ	Y
	Υ	Υ
	~	~

Date		13/04/2007			13/04/2007			16/04/2007			16/04/2007			18/04/2007			18/04/2007			20/04/2007			20/04/2007			23/04/2007		Ĺ	23/04/2007	
Time (hh:mm)		10:50 - 11:0	5		15:25 - 15:40)		11:06 - 11:26	3		17:06 - 17:17	7	1	2:30 - 12:4	5		18:10 - 18:2	5		15:00 - 15:10)	(08:13 - 08:2	3		19:15 - 19:3	0		09:50 - 10:00	,
Ambient Temperature		24			24			23			23			26			26			25			25			25		1	24	
Weather		Sunny			Sunny			Sunny			Sunny			Sunny			Cloudy			Cloudy			Cloudy			Fine			Rainy	
Water Depth (m)		4.00			4.30			3.60			4.20			4.10			4.30			4.00			4.20			4.10		i	4.60	
Monitoring Depth		5.00			5.00			5.40			5.40			5.00			5.00			5.00			5.00			5.00		i	5.00	
Tide		Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb			Mid-Flood			Mid-Ebb		1	Mid-Flood	
Trial	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average	Trial 1	Trial 2	Average
Water Temperature (°C)	21.9	21.8	21.9	21.9	21.9	21.9	21.5	21.4	21.5	21.3	21.2	21.3	22.2	22.1	22.2	22.4	22.4	22.4	23.7	23.6	23.7	23.2	23.1	23.2	22.4	22.4	22.4	22.0	22.1	22.1
Salinity (ppt)	32.8	32.9	32.9	32.9	33.0	33.0	30.8	30.7	30.8	30.6	30.5	30.6	31.7	31.7	31.7	31.7	31.7	31.7	31.8	31.8	31.8	31.7	31.6	31.7	31.9	31.9	31.9	31.8	31.8	31.8
D.O. (mg/L)	3.92	3.88	3.9	4.05	4.18	4.1	4.46	4.48	4.5	4.52	4.58	4.6	3.88	3.96	3.9	3.74	3.79	3.8	3.91	3.87	3.9	4.11	4.07	4.1	3.77	3.81	3.8	4.12	4.00	4.1
D.O. Saturation (%)	54.8	54.2	54.5	55.2	56.7	56.0	61.5	61.8	61.7	62.4	63.2	62.8	54.2	55.4	54.8	53.9	54.3	54.1	53.6	53.0	53.3	56.7	56.1	56.4	50.8	51.3	51.1	56.6	55.3	56.0
Turbidity (NTU)	3.98	4.06	4.0	3.98	4.20	4.1	6.89	6.93	6.9	7.02	7.06	7.0	4.19	4.30	4.2	4.12	4.23	4.2	5.02	5.04	5.0	4.49	4.47	4.5	3.93	4.11	4.0	3.98	4.20	4.1
SS* (mg/L)	4.5	4.5	4.5	4.0	4.0	4.0	7.0	7.0	7.0	7.5	7.5	7.5	4.5	4.5	4.5	4.5	4.5	4.5	5.5	5.5	5.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Remarks	No const	ruction action	rities were	No const	ruction activ	ities were	No const	ruction activ	ties were	No cons	ruction activ	ities were	No const	uction activ	rities were	No cons	truction activ	ities were	Ge	neral earth v	vork	Gei	neral earth v	vork	Waste wate	er was noted	I from others	Waste water	er was noted	from others

Within	Action	evel 7

Within Limit Level ? Date D.O. (mg/L) Turbidity (NTU) SS (mg/L)

Date 13/04/2007				
D.O. (mg/L)	Y	Υ		
Turbidity (NTU)	Y	Υ		
SS (mg/L)	Y	Υ		

	Y	Y					
13/04/2007							
	Υ	Υ					

13/04/2007					
Υ	Υ				
Υ	Υ				
Υ	Υ				

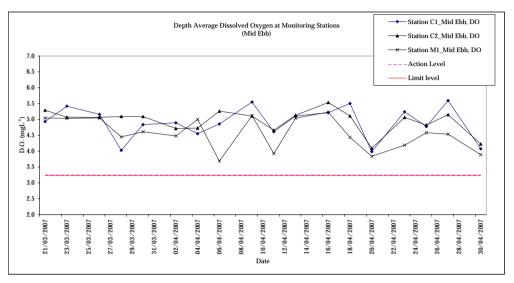
16/04	/2007
Υ	Υ
N	N

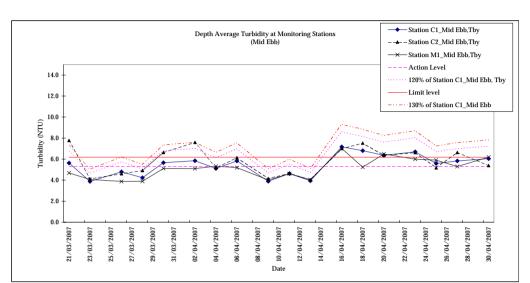
ı	16/04	/2007
	Υ	Υ
	N	N
	Υ	Υ

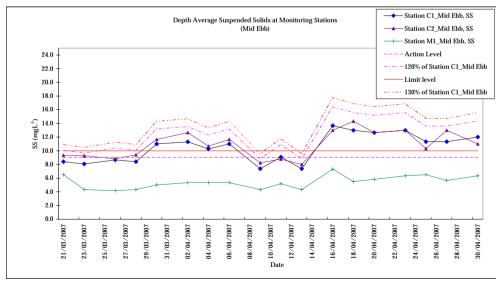
16/04	/2007]	18/04	/2007
	Υ		Υ	
	N		Υ	

	1	19/04	/2007
		10/04	12001
_		Y	Y
		Y	Y

18/04	/2007
Υ	Υ
Υ	Υ
V	~


20/04	/2007
Υ	Υ
Υ	Υ
Υ	Υ


23/04	/2007
Υ	Υ
Υ	Y
Υ	Υ


07	20/04	/2007	2
Υ	Υ	Υ	Υ
Υ	Y	Υ	Υ
Υ	Υ	Υ	Υ

23/0	4/2007
Υ	Υ
Y	Y
	~

Figure 3 - Additional Water Quality Monitoring Results (Mid Ebb)

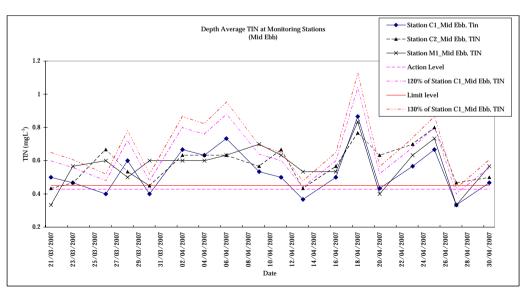
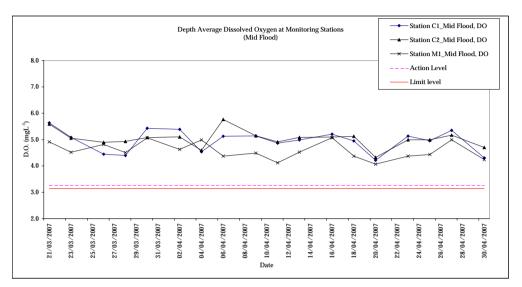
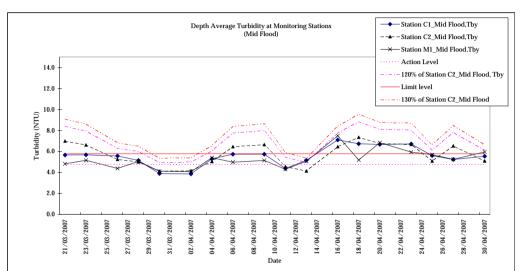
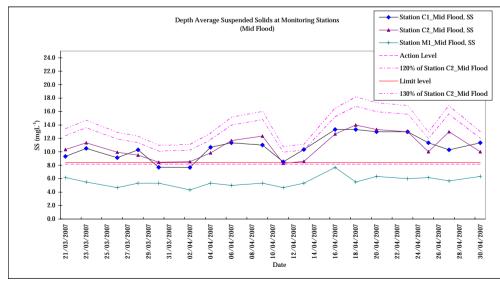
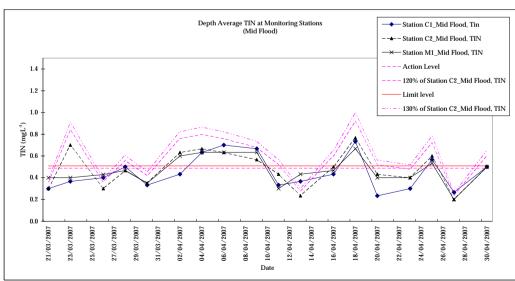






Figure 4 - Additional Water Quality Monitoring Results (Mid Flood)

Water Quality Monitoring Results for Station C1 (Mid-Ebb Tide

_	1						1							1																					1
Date			21	/03/2007						23/0	03/2007						26/0	03/2007						28/0	3/2007						30/0	3/2007			
Time (hh:mm)			13:0	02 - 13:13						14:45	5 - 14:57						18:30	0 - 18:41						18:30	- 18:45						11:05	- 11:20			
Ambient Temperature				20							21							24							25							25			
Weather				Cloudy						С	loudy						С	loudy						Cl	oudy						Si	ınny			
Water Depth (m)				13.60						1	4.00						1	3.20						14	4.00						1-	4.30			
Monitoring Depth	1	.00		6.80	12.6	60		1.	.00	7.	.00	13.00			1	.00	6	.60	12.20			1.	00	7.0	00	13.00			1	.00	7.	20	13.30		
Tide			N	/lid-Ebb						Mi	id-Ebb						Mi	id-Ebb						Mic	l-Ebb						Mic	l-Ebb			
Trial	Trial 1	Trial 2	Trial	1 Trial 2	Trial	1 Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average
Water Temperature (°C)	20.4	20.5	20.2	20.3	19.9	20.0	20.2	22.6	22.4	21.5	21.6	21.5	21.5	21.9	22.6	22.5	22.3	22.3	22.1	22.0	22.3	22.9	22.9	22.6	22.7	22.3	22.4	22.6	24.8	24.7	24.0	24.2	24.0	24.0	24.3
Salinity (ppt)	32.8	32.7	33.1	33.1	33.3	33.4	33.1	30.4	30.4	30.5	30.6	30.2	30.4	30.4	29.7	29.9	30.6	30.4	30.9	30.8	30.4	30.4	30.4	30.9	30.9	30.8	30.7	30.7	30.2	30.2	30.4	30.4	30.6	30.6	30.4
D.O. (mg/L)	4.64	4.60	4.76	4.82	5.40	5.38	4.9	5.61	5.48	5.70	5.55	5.21	4.96	5.4	5.44	5.49	5.16	5.10	4.92	4.86	5.2	3.88	3.85	4.15	4.19	4.06	4.02	4.0	4.81	4.86	4.39	4.80	5.11	5.07	4.8
D.O. Saturation (%)	63.1	62.6	64.7	65.5	73.4	73.2	67.1	76.6	75.4	77.2	76.7	70.2	69.5	74.3	74.5	75.2	70.7	69.9	67.4	66.6	70.7	53.2	52.9	57.2	57.8	55.6	55.0	55.3	65.1	66.0	63.7	66.9	68.9	68.4	66.5
Turbidity (NTU)	5.55	5.53	5.34	5.30	6.01	6.05	5.6	4.10	4.26	3.79	3.81	3.71	3.62	3.9	5.18	5.14	4.82	4.78	4.40	4.46	4.8	4.27	4.29	4.02	4.05	4.38	4.36	4.2	5.92	5.83	5.05	4.94	6.11	6.17	5.7
SS* (mg/L)	7.2	7.3	9.3	9.3	8.8	8.5	8.4	8.0	8.0	8.3	8.2	8.0	8.0	8.1	9.0	9.0	8.5	8.5	8.5	8.5	8.7	8.5	8.5	8.2	8.2	8.5	8.5	8.4	11.0	11.0	10.0	10.0	12.0	12.0	11.0
NO _x , mg N/L	<	0.1		0.3		0.5	0.4	<(0.1	C	0.3		0.2	0.3	<	0.1	(0.2	C	0.1	0.2	0	.4	0.	.3		0.2	0.3	١).3	<().1	(0.1	0.2
NH ₃ , mg NH ₃ -N/L	(1.3		0.2		0.2	0.2	0	1.3	С	0.3	-	0.3	0.3	(1.3	(0.3	C).3	0.3	0	.4	0.	.3		0.2	0.3	C).4	<().1	<	0.1	0.4
Total Inorganic Nitrogen (Ammonia + NO _x), mg/L		1.3		0.5		0.7	0.5	0	1.3		0.6		0.5	0.5		1.3		0.5		1.4	0.4	0	.8	0	.6		0.4	0.6		1.7	-(0.1		1.1	0.4

^{*} For the values of suspended solids less than Smg/L (PQL), the results are for reference only. PQL stands for practical quantitation Limit, or lowest reporting limit, which is estimated from the method detection limit (MDL). Normally PQL is about 5 times the MDL.

Water Quality Monitoring Results for Station C2 (Mid-Ebb Tide

								-																				1							1
Date			21/0	3/2007						23/0	03/2007						26/0	3/2007						28/0	3/2007						30/0	3/2007			
Time (hh:mm)			13:36	6 - 13:50						15:08	8 - 15:22						19:02	- 19:15						18:55	5 - 19:10						11:45	5 - 12:00			
Ambient Temperature				20							21							24							25							25			
Weather			С	loudy						С	loudy						CI	oudy						С	loudy						Sr	unny			
Water Depth (m)			1	4.90						1	4.40						1-	4.80						1	4.60						1-	4.60			
Monitoring Depth	1.	00	7.	.50	13.90			1.	00	7	.20	13.40			1.	00	7.	40	13.80			1.	00	7.	.30	13	3.60		1.0	00	7.5	.50	13.60		
Tide			Mi	d-Ebb	•					Mi	id-Ebb	•					Mic	d-Ebb						Mi	d-Ebb	•					Mic	d-Ebb	•		
Trial	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average
Water Temperature (°C)	20.4	20.3	20.1	20.2	19.9	20.0	20.2	22.2	22.4	21.3	21.3	21.2	21.2	21.6	22.4	22.3	22.2	22.1	22.0	21.9	22.2	22.9	23.0	22.8	22.7	22.3	22.3	22.7	24.7	24.7	24.2	24.3	24.0	24.0	24.3
Salinity (ppt)	32.5	32.6	32.9	32.8	33.1	33.3	32.9	29.8	29.8	30.6	30.6	30.7	30.6	30.4	29.8	29.9	30.6	30.4	30.9	30.9	30.4	30.5	30.4	30.8	30.8	30.8	30.8	30.7	30.4	30.3	30.4	30.4	30.5	30.5	30.4
D.O. (mg/L)	4.64	4.72	5.32	5.36	5.90	5.82	5.3	4.91	4.88	5.21	5.11	5.17	5.13	5.1	5.38	5.30	5.02	5.10	4.76	4.82	5.1	5.37	5.32	5.15	5.11	4.83	4.80	5.1	5.17	5.13	5.12	5.08	5.08	4.97	5.1
D.O. Saturation (%)	63.1	64.2	72.4	72.9	80.2	79.2	72.0	66.3	65.5	69.5	68.3	69.4	68.9	68.0	73.7	72.6	68.8	69.9	65.2	66.0	69.4	74.1	73.4	70.5	70.0	66.1	65.7	70.0	69.4	68.9	68.8	68.6	67.8	66.7	68.4
Turbidity (NTU)	9.52	9.46	7.21	7.24	6.64	6.60	7.8	5.02	4.94	3.24	3.39	4.04	4.14	4.1	4.79	4.83	4.37	4.44	4.58	4.64	4.6	5.01	5.05	4.75	4.72	4.99	4.97	4.9	6.03	6.19	5.26	5.39	8.50	8.44	6.6
SS* (mg/L)	9.0	9.0	10.0	10.0	9.0	9.0	9.3	10.0	10.0	9.0	9.0	8.8	8.8	9.3	9.0	9.3	8.8	8.8	8.5	8.5	8.8	10.0	10.0	9.0	9.0	9.2	9.3	9.4	12.0	12.0	11.0	11.0	12.0	12.0	11.7
NO _x , mg N/L	0	.4	C).2		0.1	0.2	0	.2	(0.2		0.2	0.2	0	.3	0	.2	(0.3	0.3	0	.3	C	0.3	C	1.3	0.3	0	.4	0	1.2).4	0.3
NH ₃ , mg NH ₃ -N/L	0	.2	C).2		0.2	0.2	0	.3	(0.3		0.2	0.3	C	.7	0	.3	(0.2	0.4	0	.2	C).3	C	1.2	0.2	<0).1	0	1.2).1	0.2
Total Inorganic Nitrogen (Ammonia + NO _x), mg/L	0	. 6		0.4		0.3	0.4		.5	,	0.5		0.4	0.5		.0		.5	,	0.5	0.7		.5		0.6		1.5	0.5	0.	4	0).5	0.4

^{*} For the values of suspended solids less than 5mg/L (PQL), the results are for reference only. PQL stands for practical quantitation Limit, or lowest reporting limit, which is estimated from the method detection limit (MDL). Normally PQL is about 5 tim

Water Quality Monitoring Results for Station M1 (Mid-Ebb Tide

														1							T							1							1
Date			21/	03/2007						23/0	3/2007						26/0	03/2007						28/0	3/2007						30/0	3/2007			4
Time (hh:mm)			13:1	8 - 13:3	0					15:33	3 - 15:44						18:46	6 - 18:57						19:35	5 - 19:50						11:25	- 11:40			
Ambient Temperature				20							21							24							25							25			
Weather			C	Cloudy						CI	loudy						С	loudy						С	loudy						S.	unny			
Water Depth (m)				9.60						ç	9.40						1	0.20						9	9.80						ξ	.40			
Monitoring Depth	1.	00	4	1.80		8.60		1	.00	4.	.70	8.40			1.	00	5	.10	9.20			1.	00	4	.90	8	.80		1.	.00	4.	70	8.40		
Tide			М	lid-Ebb						Mie	d-Ebb						Mi	id-Ebb						Mi	d-Ebb						Mic	d-Ebb			
Trial	Trial 1	Trial 2	Trial 1	Trial	2 Trial	1 Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial :	2 Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average
Water Temperature (°C)	20.4	20.4	20.0	20.2	19.9	20.0	20.2	21.4	21.4	21.2	21.2	21.1	21.1	21.2	22.5	22.4	22.4	22.3	22.0	22.1	22.3	23.0	23.0	22.7	22.7	22.4	22.5	22.7	24.8	24.8	24.2	24.2	24.0	24.0	24.3
Salinity (ppt)	32.6	32.5	32.8	33.0	33.0	33.2	32.9	30.6	30.6	30.7	30.8	30.7	30.7	30.7	29.8	29.8	30.5	30.6	31.0	31.1	30.5	30.4	30.5	30.9	30.8	30.9	30.9	30.7	30.3	30.3	30.3	30.4	30.6	30.5	30.4
D.O. (mg/L)	5.18	5.12	5.37	5.30	4.62	4.68	5.0	5.00	4.92	5.43	5.28	4.83	4.75	5.0	5.28	5.36	5.10	5.02	4.72	4.78	5.0	4.49	4.45	4.58	4.54	4.30	4.33	4.4	4.25	4.38	5.00	4.92	4.52	4.59	4.6
D.O. Saturation (%)	70.4	69.6	73.0	72.1	62.8	63.6	68.6	71.3	70.1	73.2	71.6	65.8	64.9	69.5	72.3	73.4	69.9	68.8	64.7	65.5	69.1	61.9	61.4	63.2	62.6	59.3	59.7	61.4	59.6	61.2	67.3	66.5	59.0	59.8	62.2
Turbidity (NTU)	5.08	5.04	4.46	4.50	4.52	4.50	4.7	3.84	3.87	4.17	4.23	4.05	4.28	4.1	4.04	4.08	3.86	3.90	3.75	3.71	3.9	3.97	3.96	3.85	3.81	3.90	3.94	3.9	4.47	4.61	5.23	5.33	5.58	5.52	5.1
SS* (mg/L)	6.0	6.0	7.0	7.0	6.5	6.5	6.5	4.0	4.0	4.5	4.5	4.5	4.5	4.3	4.5	4.5	4.0	4.0	4.0	4.0	4.2	4.5	4.5	4.0	4.0	4.5	4.5	4.3	4.5	4.5	5.0	5.0	5.5	5.5	5.0
NO _x , mg N/L	0	.3		0.1		<0.1	0.2	(0.2	0	1.3		0.3	0.3	C	.3	(0.3		0.5	0.4	0	.2	0	0.3		0.3	0.3	0	0.3	0	.4		0.5	0.4
NH ₃ , mg NH ₃ -N/L	0	.2		0.3		0.1	0.2	(0.3	0	1.3	- 1	0.3	0.3	С	.2	(0.3		0.2	0.2	C	.3	C).3	-	0.1	0.2	О).2	0	.4		<0.1	0.3
Total Inorganic Nitrogen (Ammonia + NO _x), mg/L	0	.5		0.4		0.1	0.3		0.5	0	1.6		0.6	0.6	0	.5		0.6		0.7	0.6	o	.5	().6		0.4	0.5	c).5	С	.8		0.5	0.6

^{*}For the values of suspended solids less than 5mg/L (PQL), the results are for reference only. PQL stands for practical quantitation Limit, or lowest reporting limit, which is estimated from the method detection limit (MDL). Normally PQL is about 5 tim

Water Quality Monitoring Results for Station C1 (Mid-Flood Tide

Date			21/	03/2007			Ī			23/0	03/2007			Ī			26/0	03/2007						28/0	3/2007]			30/0	3/2007			1
Time (hh:mm)			07:4	4 - 08:01						07:5	5 - 08:08			Ī			09:30	0 - 09:41						09:30	- 09:45						16:25	5 - 16:40			
Ambient Temperature				20							20			Ī				23							25							26			1
Weather			(Cloudy						С	loudy						С	loudy						CI	oudy						S	unny			
Water Depth (m)				13.40						1	4.00						1	3.70						1	4.60						1	4.30			
Monitoring Depth	1.	00	6	6.70		12.40		1.	.00	7	.00	13.00			1	.00	6	.85	12.70			1	.00	7.	30	13.60)		1	.00	7	20	13	3.30	
Tide			Mi	d-Flood						Mic	d-Flood						Mic	d-Flood						Mid	-Flood						Mid	l-Flood			
Trial	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	1 Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average
Water Temperature (°C)	20.3	20.2	20.1	20.1	20.0	20.0	20.1	22.1	22.0	21.5	21.5	21.3	21.3	21.6	22.4	22.4	22.1	22.1	22.2	22.2	22.2	22.7	22.7	22.4	22.4	22.3	22.4	22.5	24.9	24.9	24.2	24.1	24.0	24.0	24.4
Salinity (ppt)	33.0	33.1	32.9	33.0	32.8	33.0	33.0	28.6	28.6	29.4	29.4	29.5	29.5	29.2	29.5	29.5	29.9	30.0	30.0	30.0	29.8	30.4	30.4	30.8	30.7	30.8	30.8	30.7	30.1	30.1	30.3	30.3	30.5	30.5	30.3
D.O. (mg/L)	5.38	5.30	6.74	6.68	4.82	4.90	5.6	5.18	5.11	5.07	5.00	5.09	5.03	5.1	4.58	4.55	4.46	4.43	4.35	4.31	4.4	4.39	4.42	4.58	4.55	4.19	4.23	4.4	5.60	5.51	5.48	5.59	5.24	5.16	5.4
D.O. Saturation (%)	73.1	72.1	91.7	90.8	65.5	66.6	76.6	70.6	69.5	68.1	67.3	68.6	67.8	68.7	62.6	62.2	60.8	60.4	59.9	58.9	60.8	60.1	60.5	62.7	62.3	57.4	57.9	60.2	76.5	75.4	75.4	77.1	70.4	69.7	74.1
Turbidity (NTU)	6.03	6.05	4.72	4.66	6.26	6.29	5.7	5.96	5.74	5.04	4.98	6.21	6.14	5.7	5.50	5.52	5.39	5.40	5.80	5.81	5.6	4.64	4.63	5.36	5.37	5.42	5.45	5.1	4.17	4.23	3.77	3.81	3.78	3.60	3.9
SS* (mg/L)	9.5	9.8	9.0	9.0	9.3	9.3	9.3	10.0	10.0	9.5	9.5	12.0	12.0	10.5	9.0	9.2	8.5	8.5	9.7	9.8	9.1	9.0	8.8	11.0	11.0	11.0	11.0	10.3	8.0	8.2	7.5	7.5	7.5	7.5	7.7
NO _x , mg N/L	<	0.1		:0.1		<0.1	<0.1	<	0.1	<	0.1		0.2	0.2	<	0.1	(0.1		0.2	0.2	(1.2	<(0.1		0.1	0.2	<	0.1	<	0.1	<	0.1	<0.1
NH ₃ , mg NH ₃ -N/L	C	.3		0.3		0.3	0.3	0	0.3	(0.3	-	0.3	0.3	(0.3	(0.3		0.3	0.3	().5	0	.4		0.3	0.4	(0.4	С	1.3	C).3	0.3
Total Inorganic Nitrogen (Ammonia + NO _x), mg/L	C	.3		0.3		0.3	0.3	0).3		0.3		0.5	0.4		0.3		0.4		0.5	0.4		1.7	0	.4		0.4	0.5	,	0.4	(1.3		0.3	0.3

^{*} For the values of suspended solids less than Smg/L (PQL), the results are for reference only. PQL stands for practical quantitation Limit, or lowest reporting limit, which is estimated from the method detection limit (MDL). Normally PQL is about 5 tim

Water Quality Monitoring Results for Station C2 (Mid-Flood Tide

																					1														1
Date			21/0	3/2007						23/0	03/2007						26	/03/2007						28/0	3/2007						30/0	3/2007			
Time (hh:mm)			08:24	- 08:35						08:15	5 - 08:27						10:	06 - 10:15						10:00	0 - 10:15						17:05	5 - 17:20			
Ambient Temperature				20							20							23							25							26			
Weather			CI	oudy						С	loudy							Cloudy						С	loudy						Sr	unny			
Water Depth (m)			1:	5.20						1	5.40							15.20						1	5.00						1-	4.90			
Monitoring Depth	1	.00	7.	60	1	14.20		1.	.00	7.	.70	14.40				1.00		7.60	14.20			1.	00	7	.50	14.00			1.	.00	7.	.50	18	3.90	
Tide			Mid	-Flood						Mic	l-Flood						М	lid-Flood						Mic	l-Flood						Mid	l-Flood			
Trial	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial	1 Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average
Water Temperature (°C)	20.4	20.3	20.2	20.2	19.9	20.0	20.2	21.9	21.7	21.3	21.2	21.1	21.1	21.4	22.4	22.5	22.2	22.2	22.0	22.1	22.2	22.4	22.4	22.0	22.0	22.1	22.0	22.2	24.8	24.8	24.2	24.3	24.1	24.1	24.4
Salinity (ppt)	32.7	32.5	32.9	32.7	33.1	33.2	32.9	29.8	29.8	30.2	30.2	30.3	30.2	30.1	29.8	29.7	30.3	30.4	30.5	30.4	30.2	30.7	30.7	30.6	30.5	30.6	30.6	30.6	30.1	30.2	30.3	30.4	30.5	30.4	30.3
D.O. (mg/L)	4.44	4.51	6.01	6.09	6.22	6.26	5.6	5.06	5.02	5.18	5.25	5.02	4.79	5.1	5.12	5.18	4.96	5.02	4.58	4.50	4.9	4.94	4.91	5.07	5.02	4.83	4.80	4.9	4.98	4.82	5.27	5.11	5.18	5.09	5.1
D.O. Saturation (%)	60.4	61.3	81.7	82.8	84.6	85.1	76.0	68.5	67.6	69.5	70.6	67.5	65.6	68.2	70.1	71.0	67.9	68.8	62.7	61.7	67.0	68.1	67.7	69.9	69.2	66.6	66.2	68.0	67.1	64.9	69.8	68.3	69.5	68.4	68.0
Turbidity (NTU)	9.03	9.06	6.87	6.80	5.12	5.06	7.0	6.08	5.99	5.24	5.50	8.51	8.45	6.6	5.38	5.36	5.10	5.18	5.22	5.24	5.2	5.18	5.23	4.89	4.82	4.96	4.92	5.0	5.02	5.08	3.22	3.26	4.02	4.15	4.1
SS* (mg/L)	9.0	9.0	11.0	11.0	11.0	11.0	10.3	11.0	11.0	10.0	10.0	13.0	13.0	11.3	8.8	8.8	10.0	10.0	11.0	11.0	9.9	10.0	10.0	9.0	9.0	9.5	9.5	9.5	10.0	10.0	7.3	7.2	8.2	8.0	8.5
NO _x , mg N/L	<	0.1	<(0.1		<0.1	<0.1	<	0.1	<	0.1	(0.6	0.6		<0.1		<0.1		:0.1	<0.1	C	.2	().1		0.1	0.1	0).2	<0).1	<	0.1	0.2
NH ₃ , mg NH ₃ -N/L).3	0	.3		0.3	0.3	0).3	C).3	(0.9	0.5		0.3		0.3		0.3	0.3	C	.4	().2		0.4	0.3	0	0.3	<0).1	С	0.2	0.3
Total Inorganic Nitrogen (Ammonia + NO _x), mg/L																																			
).3	0	.3		0.3	0.3	0).3	C).3		1.5	0.7		0.3		0.3		0.3	0.3	C	.6	().3		0.5	0.5	0).5	<0	J.1	0).2	0.4

^{*}For the values of suspended solids less than \$mg/L (PQL), the results are for reference only. PQL stands for practical quantitation Limit, or lowest reporting limit, which is estimated from the method detection limit (MDL). Normally PQL is about 5 tim

Water Quality Monitoring Results for Station M1 (Mid-Flood Tide

	T						1							7							1							1							ſ
Date			21/0	03/2007						23/0	3/2007						26/0	03/2007						28/	03/2007						30/0	3/2007			1
Time (hh:mm)			08:0	5 - 08:19						08:35	- 08:46						09:4	8 - 09:57						10:5	0 - 11:05						16:45	5 - 17:00			1
Ambient Temperature				20							20							23							25							26			1
Weather			С	loudy						CI	oudy						С	loudy						C	loudy						S	unny			1
Water Depth (m)			,	9.80						1	0.20						1	0.60							10.20						ŗ	9.70			I .
Monitoring Depth	1	.00	4	.90		8.80		1.	.00	5.	10	9.20			1	.00	5	.30	9.60			1	.00	5	i.10	9.20			1.	.00	4	.50	8.70		I .
Tide			Mic	d-Flood						Mid	-Flood	•					Mic	d-Flood	•					Mie	d-Flood						Mic	i-Flood			I .
Trial	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	2 Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average
Water Temperature (°C)	20.4	20.3	20.2	20.3	20.1	20.0	20.2	21.4	21.3	21.1	21.1	20.9	20.9	21.1	22.3	22.4	22.1	22.2	22.0	22.1	22.2	22.8	22.8	22.6	22.6	22.6	22.7	22.7	24.9	24.9	24.2	24.2	24.0	24.1	24.4
Salinity (ppt)	32.9	33.1	33.2	33.0	33.1	33.4	33.1	30.3	30.5	30.5	30.5	30.5	30.4	30.5	29.7	29.6	30.2	30.1	30.4	30.3	30.1	30.6	30.6	30.6	30.7	30.7	30.7	30.7	30.2	30.2	30.3	30.3	30.4	30.5	30.3
D.O. (mg/L)	4.92	5.00	5.67	5.72	4.04	4.12	4.9	4.23	4.59	4.58	4.49	4.54	4.66	4.5	4.87	4.96	4.62	4.70	4.91	4.84	4.8	4.67	4.61	4.49	4.45	4.42	4.37	4.5	5.08	4.91	5.38	5.43	4.86	4.72	5.1
D.O. Saturation (%)	66.9	68.0	77.1	77.8	54.9	56.0	66.8	59.4	63.0	64.0	62.9	59.2	60.6	61.5	66.7	67.9	63.3	64.4	67.3	66.3	66.0	63.9	63.1	61.9	61.4	60.9	60.3	61.9	72.0	70.3	72.6	73.2	66.4	64.6	69.9
Turbidity (NTU)	5.14	5.10	4.76	4.72	4.64	4.60	4.8	4.59	4.62	5.28	5.34	5.60	5.53	5.2	4.43	4.47	4.31	4.35	4.40	4.36	4.4	5.07	5.02	4.98	4.95	5.10	5.14	5.0	3.86	3.97	4.17	4.29	4.19	4.21	4.1
SS* (mg/L)	5.0	5.0	6.5	6.5	7.0	7.0	6.2	5.0	5.0	5.5	5.5	6.0	6.0	5.5	4.5	4.5	4.5	4.5	5.0	5.0	4.7	5.5	5.5	5.0	5.0	5.5	5.5	5.3	5.0	5.0	5.5	5.5	5.5	5.5	5.3
NO _x , mg N/L	<	0.1	(0.3		<0.1	0.3	<(0.1	0	.2		<0.1	0.2	().2	(0.4		0.1	0.2		0.2		0.1		0.2	0.2	<	0.1	<	0.1	<	:0.1	<0.1
NH ₃ , mg NH ₃ -N/L	(1.3	(0.3		0.3	0.3	0	1.3	0	.4		0.3	0.3	().2	(0.1		0.3	0.2).4		0.3		0.2	0.3	<	0.1	С).4	(0.3	0.4
Total Inorganic Nitrogen (Ammonia + NO _x), mg/L	(1.3	(0.6		0.3	0.4	0	1.3	0	.6		0.3	0.4	().4	(0.5		0.4	0.4		0.6		0.4		0.4	0.5	<	0.1	C).4		0.3	0.4

For the values of suspended solids less than 5mg/L (PQL), the results are for reference only. PQL stands for practical quantitation Limit, or lowest reporting limit, which is estimated from the method detection limit (MDL). Normally PQL is about 5 tim

Water Quality Monitoring Results for Station C1 (Mid-Ebb Tide)

Date			01	2/04/2007						04/	04/2007						06/0	04/2007			1			00//	04/2007			1			11//	04/2007			T
							-																					1							+
Time (hh:mm)			13:	45 - 14:00						13:1	4 - 13:24						13:05	5 - 13:18						16:0	0 - 16:15						18:30	0 - 18:45			4
Ambient Temperature				25							18							19							25							23			
Weather				Cloudy						С	loudy						CI	loudy						S	unny						C	loudy			
Water Depth (m)				13.50						1	13.40						1	3.60						1	3.40						1	14.00			
Monitoring Depth		.00		7.00		12.50		1.	.00	6	.70	1	2.40		1.	.00	6.	.80	1	2.60		1	.00	6	.50	12.40			1.	.00	7	.00	14.00)	
Tide				Mid-Ebb						M	id-Ebb						Mi	d-Ebb						Mi	d-Ebb						Mi	id-Ebb			
Trial	Trial 1	Trial 2	Trial	1 Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	2 Trial 1	Trial 2	Depth Average
Water Temperature (°C)	24.8	24.8	24.2	24.2	29.6	29.6	26.2	20.8	20.7	20.6	20.5	20.5	20.4	20.6	19.2	19.2	19.8	19.8	19.7	19.8	19.6	21.5	21.5	21.2	21.2	21.0	21.0	21.2	22.0	21.9	21.7	21.6	21.4	21.5	21.7
Salinity (ppt)	29.0	29.0	29.4	29.4	29.0	29.0	29.1	31.9	31.8	32.2	32.1	32.4	32.4	32.1	31.1	31.0	30.9	30.9	30.7	30.8	30.9	29.0	29.0	29.3	29.3	29.5	29.5	29.3	32.7	32.7	33.1	33.1	33.1	33.0	33.0
D.O. (mg/L)	4.24	3.66	4.18	5.09	6.36	5.82	4.9	5.04	5.08	4.48	4.40	4.18	4.12	4.6	5.10	5.03	4.87	4.81	4.70	4.64	4.9	5.66	5.63	5.68	5.74	5.23	5.37	5.6	4.89	4.85	4.50	4.54	4.47	4.42	4.6
D.O. Saturation (%)	61.8	53.3	60.7	69.4	75.6	65.6	64.4	69.6	70.1	61.8	60.7	57.7	56.9	62.8	67.6	66.7	64.6	63.8	62.3	61.5	64.4	76.8	76.4	77.0	77.5	70.4	71.9	75.0	66.9	66.4	61.6	62.1	61.2	60.6	63.1
Turbidity (NTU)	4.70	4.62	6.12	6.05	7.00	6.63	5.9	4.88	4.84	5.22	5.20	5.28	5.26	5.1	5.88	5.92	5.45	5.39	6.20	6.12	5.8	4.12	4.26	3.75	3.82	3.70	3.76	3.9	3.95	3.98	4.92	4.95	4.99	4.96	4.6
SS* (mg/L)	8.8	9.0	12.0	12.0	13.0	13.0	11.3	8.8	8.8	11.0	11.0	11.0	11.0	10.3	11.0	11.0	10.0	10.0	12.0	12.0	11.0	8.2	8.3	7.0	7.0	6.7	7.0	7.4	8.2	8.3	9.0	9.0	10.0	10.0	9.1
NO _x , mg N/L		0.5		0.2		0.3	0.3	0).4	().4		0.3	0.4	C).4	0).4		0.4	0.4	().3	().2	().3	0.3	0).1	C	0.1		0.3	0.2
NH ₃ , mg NH ₃ -N/L		0.3		0.5		0.2	0.3	0).4	(0.2		0.2	0.3	С	1.3	0).4		0.3	0.3	().3	().3	().2	0.3	0).4	С	0.3		0.3	0.3
Total Inorganic Nitrogen (Ammonia + NQ), mg/L																																			
		8.0		0.7		0.5	0.7	0	1.8	(0.6		0.5	0.6).7	0	1.8		0.7	0.7	- ().6	().5	().5	0.5	0).5	0	0.4		0.6	0.5

^{*}For the values of suspended solids less than 5mg/L (PQL), the results are for reference only. PQL stands for practical quantitation Limit, or lowest reporting limit, which is estimated from the method detection limit (MDL). Normally PQL is about 5 times the MDL.

Water Quality Monitoring Results for Station C1 (Mid-Ebb Tide)

	1						1							7							i							T							Т
Date			13	/04/2007						16/0	14/2007						18/0	04/2007						20/	04/2007				<u> </u>		23/0	14/2007			1
Time (hh:mm)			09:4	44 - 10:00						11:35	5 - 11:45			1			13:3	5 - 13:50						14:2	0 - 14:35			1			17:18	3 - 17:35			_
Ambient Temperature				24							23							26							25							25			
Weather				Sunny						Si	unny						s	unny						(loudy						F	ine			
Water Depth (m)				14.00						1	3.80						1	4.20							14.40						1	3.90			
Monitoring Depth	1	.00		7.00	13.0	0		1.	.00	6.	90	12.80			1	1.00	7.	.10	13.20			1	.00	7	.20	13.40	1		1	.00	7.	.00	12.90		
Tide			N	/lid-Ebb						Mic	d-Ebb						Mi	id-Ebb						M	id-Ebb						Mi	d-Ebb			
Trial	Trial 1 Trial 2 Trial 1 Trial 2 Trial 1 Trial 2 21.8 21.8 21.6 21.6 21.5 21.5				Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	
Water Temperature (°C)	21.8	21.8	21.6	21.6	21.5	21.5	21.6	21.6	21.5	21.4	21.3	21.2	21.1	21.4	22.0	22.0	21.8	21.7	21.6	21.6	21.8	23.5	23.5	23.0	23.0	22.8	22.7	23.1	22.3	22.3	22.1	22.1	21.8	21.7	22.1
Salinity (ppt)	32.8				32.9	29.2	29.3	30.1	30.0	30.8	30.9	30.1	31.6	31.6	31.7	31.8	32.1	32.1	31.8	31.8	31.8	32.2	32.1	32.8	32.8	32.3	31.9	31.9	32.0	32.0	32.3	32.3	32.1		
D.O. (mg/L)	4.39	4.42	5.71	5.62	5.22	5.30	5.1	5.46	5.40	5.18	5.12	5.09	5.03	5.2	5.63	5.49	5.62	5.71	5.28	5.31	5.5	4.15	4.18	3.89	3.85	3.94	3.91	4.0	5.48	5.56	5.07	5.19	5.13	5.02	5.2
D.O. Saturation (%)	61.0	61.4	77.3	76.2	70.3	71.0	69.5	75.3	74.5	71.5	70.7	70.3	69.4	72.0	76.9	75.5	76.4	77.3	70.6	71.2	74.7	57.2	57.6	53.6	53.1	53.9	53.5	54.8	75.4	76.2	67.6	68.9	58.7	67.6	69.1
Turbidity (NTU)	4.18	4.22	3.81	3.87	3.74	3.85	3.9	7.20	7.18	7.28	7.24	7.04	7.06	7.2	6.18	6.09	5.97	6.16	8.14	8.27	6.8	5.57	5.59	6.02	6.05	7.48	7.46	6.4	5.81	5.92	6.09	6.16	8.18	8.06	6.7
SS* (mg/L)	8.2	8.2	7.0	7.0	6.8	7.0	7.4	14.0	14.0	14.0	14.0	13.0	13.0	13.7	12.0	12.0	11.0	11.0	16.0	16.0	13.0	11.0	11.0	12.0	12.0	15.0	15.0	12.7	11.0	11.0	12.0	12.0	16.0	16.0	13.0
NO _x , mg N/L	8.2 8.2 7.0 7.0 6.8 7.0						0.2	C	1.3	0	.3		0.3	0.3		0.4	C).5		0.6	0.5	<	0.1		0.2		0.2	0.2	С	0.4	C	1.1		0.4	0.3
NH ₃ , mg NH ₃ -N/L	<0.1 <0.1 0.2 0.3 0.3 0.3						0.3	C	1.2	0	.2		0.2	0.2		0.4	C).3		0.4	0.4	().3		0.3		0.3	0.3	С	0.3	0	1.3		0.2	0.3
Total Inorganic Nitrogen (Ammonia + NQ ₂), mg/L					0.4			0			0.5	0.5		0.0				10	0.0						0.5	0.4		0.7				0.0	0.0		
	0.3 0.3 0.5							1 0	1.5	0	.5	1	0.5	0.5	1 (0.8	1 (0.8	1	1.0	0.9	1 ().3	1	0.5	1	0.5	0.4	1 6	0.7		1.4	1	0.6	0.6

Water Quality Monitoring Results for Station C1 (Mid-Ebb Tide)

Date			25/0	4/2007						27/0	4/2007						30/0	04/2007			
Time (hh:mm)			18:30	- 18:45						10:00	- 10:15						11:26	6 - 11:41			
Ambient Temperature				23							23							26			
Weather			CI	oudy						F	ine						С	loudy]
Water Depth (m)			9	.00						1	0.20						1	0.60			
Monitoring Depth	1.	.00	4.	50	8.00			1.	00	5.	10	9.20			1.	00	5.	.30	9.60]
Tide			Mic	d-Ebb						Mic	d-Ebb						Mi	d-Ebb			
Trial	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average
Water Temperature (°C)	22.9	22.8	22.6	22.5	22.4	22.3	22.6	22.2	22.2	22.0	22.1	22.0	22.0	22.1	24.9	24.8	24.6	24.6	24.3	24.3	24.6
Salinity (ppt)	31.9	31.9	31.9	32.0	32.3	32.2	32.0	31.2	31.3	31.4	31.5	31.5	31.6	31.4	29.0	29.1	29.4	29.4	29.4	29.5	29.3
D.O. (mg/L)	4.96	4.93	4.75	4.71	4.68	4.65	4.8	6.03	6.11	5.56	5.68	5.13	5.08	5.6	4.25	4.21	4.08	4.05	3.95	3.91	4.1
D.O. Saturation (%)	69.4	69.0	66.0	65.4	65.0	64.6	66.6	67.9	68.5	73.0	74.2	68.8	68.1	70.1	60.6	60.1	58.3	57.9	56.0	55.5	58.1
Turbidity (NTU)	5.97	5.99	5.29	5.28	5.50	5.52	5.6	5.67	5.61	5.76	5.82	6.00	6.14	5.8	5.79	5.80	6.04	6.07	6.27	6.26	6.0
SS* (mg/L)	12.0	12.0	11.0	11.0	11.0	11.0	11.3	11.0	11.0	11.0	11.0	12.0	12.0	11.3	11.0	11.0	12.0	12.0	13.0	13.0	12.0
NO _x , mg N/L	C).2	0	.2	(0.5	0.3	0	.1	<().1		0.2	0.2	0	.4	0).3		0.3	0.3
NH ₃ , mg NH ₃ -N/L	C).4	0	.4	(0.3	0.4	0	.2	0	.3	().2	0.2	<().1	0).2		0.2	0.2
Total Inorganic Nitrogen (Ammonia + NQ _x), mg/L		16	0	6		n 8	0.7		3		3		14	0.3		4		15		1.5	0.5

Water Quality Monitoring Results for Station C2 (Mid-Ebb Tide)

														т							•														=
Date	Cloudy 14.40 14									04/	04/2007						06/04	/2007						09/	04/2007						11/0	04/2007			
Time (hh:mm)			14:1	0 - 14:25						13:4	6 - 13:56						13:29 -	13:42						16:4	0 - 16:55						18:50	0 - 19:05			
Ambient Temperature				25							18						1	9							25							23			
Weather			C	Cloudy						C	loudy						Clo	udy						S	unny						C.	loudy			
Water Depth (m)				14.40						1	14.20						14.	60						1	4.80						1	4.60			
Monitoring Depth	1.	00	7	.20	13.40	1		1.0	00	7	.10	1	3.20		1.	00	7.3	0	1:	3.60		1	.00	7	.40	10	3.80		1.	.00	7	.30	13.60	,	
Tide	Trial 1 Trial 2 Trial 1 Trial 2 Trial 1 24.0 23.9 23.8 23.8 23.5								М	id-Ebb	•					Mid-	Ebb						M	d-Ebb						Mi	d-Ebb			1	
Trial	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average
Water Temperature (°C)	24.0 23.9 23.8 23.8 23.5 29.6 29.7 29.9 29.9 30.3		23.5	23.8	20.5	20.6	20.3	20.3	20.2	20.2	20.4	19.3	19.3	19.7	19.7	19.6	19.7	19.6	21.5	21.5	21.3	21.3	21.0	21.0	21.3	22.0	22.0	21.7	21.7	21.4	21.4	21.7			
Salinity (ppt)	24.0 23.9 23.8 23.8 23.5 23.5 29.6 29.7 29.9 29.9 30.3 33.3			30.3	30.0	31.6	31.5	32.0	32.1	32.4	32.3	32.0	31.0	31.0	30.3	30.4	30.5	30.5	30.6	29.0	29.0	29.3	29.3	29.5	29.5	29.3	32.7	32.6	33.0	32.9	33.1	33.1	32.9		
D.O. (mg/L)	4.89	4.35	5.16	4.92	4.27	4.70	4.7	4.89	4.84	4.63	4.70	4.68	4.62	4.7	5.52	5.48	5.29	5.23	5.07	5.00	5.3	4.88	4.92	5.24	5.28	5.13	5.19	5.1	5.01	4.97	4.60	4.57	4.43	4.40	4.7
D.O. Saturation (%)	67.0	63.2	72.0	67.6	61.4	64.7	66.0	67.5	66.8	64.0	64.9	64.5	63.8	65.3	73.2	72.6	70.1	69.3	67.2	66.3	69.8	65.5	66.4	69.9	70.4	68.8	69.6	68.4	68.6	68.0	63.0	62.6	60.2	59.8	63.7
Turbidity (NTU)	8.00	8.12	6.50	6.44	8.26	8.30	7.6	4.96	4.98	5.30	5.32	5.26	5.24	5.2	6.16	6.10	5.84	5.91	6.39	6.43	6.1	5.07	5.15	3.25	3.33	4.02	4.10	4.2	4.28	4.30	4.77	4.74	4.90	4.93	4.7
SS* (mg/L)	13.0	13.0	12.0	12.0	13.0	13.0	12.7	10.0	10.0	11.0	11.0	11.0	11.0	10.7	12.0	12.0	11.0	11.0	12.0	12.0	11.7	10.0	10.0	6.5	6.5	8.2	8.2	8.2	8.5	8.5	8.8	8.8	9.0	9.0	8.8
NO _x , mg N/L	0	.3		0.4		0.4	0.4	0.	.4		0.3		0.4	0.4	0	.3	0.3	1		0.4	0.3	().3	(0.2		0.3	0.3	0	1.4	С	1.3		0.3	0.3
NH ₃ , mg NH ₃ -N/L	0	.1	(0.4	- 1	0.3	0.3	0.	.2	(0.3		0.3	0.3	0	.3	0.3	1	-	0.3	0.3	().3	().3	().3	0.3	0	1.3	С	1.3		0.4	0.3
Total Inorganic Nitrogen (Ammonia + NO _x), mg/L	29. 24.0 23.9 23.8 23.8 23.5 2 29.6 29.7 29.9 29.9 30.3 3 4.89 4.35 5.16 4.92 4.27 4 67.0 63.2 72.0 67.6 61.4 6 8.00 8.12 6.50 6.44 8.26 8 13.0 13.0 12.0 12.0 13.0 1 0.3 0.4 0.4			0.7	0.6	0.	.6		0.6		0.7	0.6	0	.6	0.6	;		0.7	0.6	().6).5).6	0.6	c	1.7	c	1.6		0.7	0.7		

^{*} For the values of suspended solids less than 5mg/L (PQL), the results are for reference only. PQL stands for practical quantitation Limit, or lowest reporting limit, which is estimated from the method detection limit (MDL). Normally PQL is about 5 tim

Water Quality Monitoring Results for Station C2 (Mid-Ebb Tide)

Date			13/0	04/2007						16/0	4/2007						18/	04/2007						20/	04/2007						23/0	04/2007			
Time (hh:mm)			10:2	5 - 10:40						12:20	- 12:30						14:2	5 - 14:40						14:4	0 - 14:55						17:50	0 - 18:05			
Ambient Temperature				24							23							26							25							25			
Weather			s	Sunny						S	unny						8	unny						(Cloudy						F	Fine			
Water Depth (m)			1	14.20						1	5.60						1	4.40							14.00						1	15.40			
Monitoring Depth	1	.00	7	.10	13.2)		1	.00	7.	.80	14.60			1	.00	7	.20	13.40	1		1	.00	1 7	7.00	13.00)		1.	.00	7.	.70	14.40	,	
Tide			Mi	id-Ebb						Mie	d-Ebb						M	d-Ebb						N	lid-Ebb						Mi	id-Ebb			1
Trial	Trial 1	Trial 1 Trial 2 Trial 1 Trial 2 Trial 1 Trial 2 Trial 1 Trial 2 21.8 21.8 21.6 21.7 21.5 21.5					Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	2 Trial 1	Trial 2	Depth Average
Water Temperature (°C)	21.8	21.8	21.6	21.7	21.5	21.5	21.7	21.4	21.3	21.3	21.2	21.0	21.1	21.2	22.0	22.0	21.7	21.7	21.7	21.7	21.8	23.6	23.6	23.1	23.1	22.8	22.8	23.2	22.3	22.2	22.0	22.0	21.7	21.7	22.0
Salinity (ppt)	32.9	32.9	32.9				33.0	29.6	29.5	30.7	30.6	31.2	31.3	30.5	31.6	31.6	31.7	31.7	32.1	32.1	31.8	31.7	31.7	32.3	32.3	32.7	32.6	32.2	32.0	32.0	32.0	32.0	32.1	32.1	32.0
D.O. (mg/L)	4.97				5.1	5.53	5.59	5.65	5.61	5.38	5.44	5.5	4.88	4.94	5.23	5.30	5.19	5.12	5.1	4.09	4.06	4.15	4.18	4.06	4.02	4.1	4.90	4.96	5.14	5.20	5.16	5.02	5.1		
D.O. Saturation (%)	67.0	68.1	69.9	67.8	69.5	69.9	68.7	76.3	77.1	78.0	77.4	74.2	75.1	76.4	65.5	66.7	69.8	70.5	70.4	69.8	68.8	56.4	56.0	56.8	57.2	55.6	55.0	56.2	66.6	67.2	69.1	70.2	69.2	67.5	68.3
Turbidity (NTU)	4.76	4.70	3.26	3.31	4.13	4.05	4.0	5.78	5.82	6.84	6.86	8.37	8.34	7.0	6.64	6.50	7.83	7.92	8.02	8.24	7.5	5.85	5.87	6.28	6.25	6.99	6.97	6.4	5.76	5.68	6.09	6.01	8.04	8.17	6.6
SS* (mg/L)	9.0	9.0	6.5	6.5	8.5	8.5	8.0	11.0	11.0	12.0	12.0	16.0	16.0	13.0	13.0	13.0	14.0	14.0	16.0	16.0	14.3	11.0	11.0	13.0	13.0	14.0	14.0	12.7	11.0	11.0	12.0	12.0	16.0	16.0	13.0
NO _x , mg N/L	().2	<	:0.1		0.2	0.2	(0.4	0	1.3		0.3	0.3	(0.4	().3		0.6	0.4		0.4		0.3		0.3	0.3	0).6	0	0.5		0.3	0.5
NH ₃ , mg NH ₃ -N/L	().3	(0.3		0.3	0.3	(0.3	0	1.2		0.2	0.2	(0.3	().4		0.3	0.3		0.3		0.3		0.3	0.3	0).2	0	0.3		0.2	0.2
Total Inorganic Nitrogen (Ammonia + NO _x), mg/L	0.3 0.3 0.3 0.3 0.5				0.4	(0.7	0	1.5		0.5	0.6		0.7).7		0.9	0.8		0.7		0.6		0.6	0.6	c	0.8	c	0.8		0.5	0.7		

Water Quality Monitoring Results for Station C2 (Mid-Ebb Tide)

Date			25/0	4/2007						27/0	4/2007						30/0	4/2007			
Time (hh:mm)			18:55	- 19:10						10:55	5 - 11:10						11:51	- 12:06			
Ambient Temperature				23							23							26			
Weather			CI	oudy						F	ine						CI	oudy			
Water Depth (m)			1-	4.00						1	4.80						1	4.20			
Monitoring Depth	1.	.00	7.	00	13.00			1.	.00	7.	40	13.80			1.	00	7.	10	13.20		
Tide			Mie	d-Ebb						Mie	d-Ebb						Mie	d-Ebb			
Trial	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average
Water Temperature (°C)	22.9	22.8	22.6	22.5	22.4	22.3	22.6	22.2	22.2	22.0	22.0	21.7	21.7	22.0	24.8	24.7	24.6	24.5	24.3	24.3	24.5
Salinity (ppt)	31.8	31.8	32.0	32.0	32.2	32.2	32.0	31.3	31.3	31.5	31.5	31.8	31.8	31.5	29.2	29.1	29.5	29.5	29.7	29.7	29.5
D.O. (mg/L)	5.15	5.11	4.88	4.85	4.49	4.45	4.8	5.17	5.22	5.14	5.20	5.06	5.11	5.2	4.47	4.44	4.19	4.15	4.08	4.04	4.2
D.O. Saturation (%)	71.5	71.0	67.8	67.4	62.4	61.8	67.0	63.7	64.1	69.1	70.2	67.8	68.3	67.2	63.9	63.4	59.4	58.9	57.9	57.3	60.1
Turbidity (NTU)	5.37	5.36	5.02	5.05	5.15	5.11	5.2	6.02	6.16	5.28	5.39	8.55	8.46	6.6	5.54	5.52	5.27	5.25	5.39	5.36	5.4
SS* (mg/L)	11.0	11.0	10.0	10.0	10.0	10.0	10.3	12.0	12.0	11.0	11.0	16.0	16.0	13.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
NO _x , mg N/L	0).4	0	.5	(0.4	0.4	0	1.3	0	.4		0.2	0.3	0	.3	0	.5	(0.3	0.4
NH ₃ , mg NH ₃ -N/L	0).3	0	.4	(0.4	0.4	0	1.2	0	.1		0.2	0.2	0	.2	<(0.1	(0.2	0.2
Total Inorganic Nitrogen (Ammonia + NO _x), mg/L		17		q		18	0.8		15		5		14	0.5	0	5		5		15	0.5

Water Quality Monitoring Results for Station M1 (Mid-Ebb Tide)

	02/04/2007 13:20 - 13:35						1							ī			001				T			0010	4/2007			T			4410				T
Date							4				04/2007							04/2007			ł	_						+	_			4/2007			+
Time (hh:mm)			13:2	0 - 13:35						13:3	0 - 13:41			1			13:52	2 - 14:04			ļ			16:20	- 16:35			1			19:49	- 20:04			4
Ambient Temperature				25							18							19							25							23			
Weather			С	loudy						C	loudy						С	loudy						S	unny						Clo	oudy			
Water Depth (m)				9.60							9.60						8	8.80						9	.60						9	.40			I
Monitoring Depth	1	.00	5	.00		8.60		1	.00	4	.80		3.60		1	.00	4.	.40	7	7.80		1	.00	5.	00	8	3.60		1	00	4.7	70	8.40		1
Tide			Mi	id-Ebb						М	id-Ebb						Mi	id-Ebb						Mi	d-Ebb						Mic	d-Ebb			1
Trial	Trial 1 Trial 2 Trial 1 Trial 2 Trial 1 24.8 24.8 24.2 24.2 29.6			Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average		
Water Temperature (°C)	24.8	24.8			29.6	26.2	20.7	20.8	20.5	20.5	20.4	20.3	20.5	19.3	19.4	19.6	19.6	19.8	19.8	19.6	21.5	21.5	21.2	21.2	21.0	21.0	21.2	22.0	22.0	21.7	21.7	21.5	21.5	21.7	
Salinity (ppt)	30.0			29.1	29.3	31.8	31.9	32.3	32.4	32.6	32.7	32.3	31.1	31.2	30.9	30.8	30.8	30.8	30.9	29.0	29.0	29.3	29.3	29.5	29.5	29.3	32.7	32.6	33.1	33.0	33.1	33.1	32.9		
D.O. (mg/L)	4.21	4.39	4.42	4.59	4.56	4.70	4.5	5.34	5.30	4.98	4.92	4.76	4.70	5.0	4.02	3.96	3.81	3.76	3.25	3.33	3.7	5.07	5.13	5.42	5.50	4.88	4.72	5.1	4.02	4.05	3.90	3.94	3.84	3.80	3.9
D.O. Saturation (%)	59.1	62.0	62.2	63.9	59.6	61.1	61.3	73.7	73.1	68.7	67.9	65.7	64.9	69.0	53.3	52.5	50.5	49.8	43.1	44.1	48.9	71.8	72.4	73.1	72.7	66.4	65.2	70.3	55.0	55.4	53.0	53.5	52.2	51.6	53.5
Turbidity (NTU)	4.48	4.60	5.18	5.31	5.48	5.57	5.1	5.03	5.01	5.52	5.50	5.47	5.44	5.3	5.69	5.75	4.43	4.60	5.40	5.33	5.2	3.81	3.85	4.12	4.17	4.03	4.12	4.0	4.60	4.63	4.68	4.67	4.57	4.54	4.6
SS* (mg/L)	5.0	5.0	5.5	5.5	5.5	5.5	5.3	5.0	5.0	5.5	5.5	5.5	5.5	5.3	5.5	5.5	5.0	5.0	5.5	5.5	5.3	4.0	4.0	4.5	4.5	4.5	4.5	4.3	5.0	5.0	5.5	5.5	5.0	5.0	5.2
NO _x , mg N/L		0.4	(0.4		0.4	0.4		0.3		0.4		0.3	0.3	(0.4	C	0.2		0.4	0.3	(1.4	0	.4		0.4	0.4	(.4	0.	.4		0.4	0.4
NH ₃ , mg NH ₃ -N/L		0.3	<	0.1		0.3	0.3		0.3		0.2		0.3	0.3	(0.3	C	0.3		0.3	0.3	(1.3	0	.3		0.3	0.3	(.2	0.	.2		0.3	0.2
Total Inorganic Nitrogen (Ammonia + NO _x), mg/L		0.7		0.4		0.7	0.6		0.6		0.6		0.6	0.6		0.7		0.5		0.7	0.6		1.7	0	.7		0.7	0.7		.6	0.	6		0.7	0.6

^{*} For the values of suspended solids less than 5mg/L (PQL), the results are for reference only. PQL stands for practical quantitation Limit, or lowest reporting limit, which is estimated from the method detection limit (MDL). Normally PQL is about 5 tim

Water Quality Monitoring Results for Station M1 (Mid-Ebb Tide)

Date			13/0	4/2007						16/0	4/2007						18/0	4/2007						20/0	4/2007						23/0	4/2007			
Time (hh:mm)			10:05	5 - 10:20						11:52	2 - 12:02						14:00	- 14:15						15:42	2 - 15:57						18:15	- 18:30			
Ambient Temperature				24							23							26							25							25			
Weather			s	unny						Sı	unny						s	unny						С	loudy						F	ine			
Water Depth (m)	Sunny 9.30							10	0.00							9.60							9.20						10	0.20					
Monitoring Depth	1	.00	4	70	8.30			1.	.00	5.	00	9.00			1.	.00	5.	00	8.60			1	.00	4	60	8.20			1.0	00	5.1	10	9.20		
Tide									Mic	d-Ebb						Mi	d-Ebb						Mi	d-Ebb						Mic	d-Ebb				
Trial	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average
Water Temperature (°C)	21.8	21.8	21.6	21.7	21.5	21.5	21.7	21.5	21.5	21.3	21.4	21.2	21.1	21.3	22.0	22.0	21.8	21.8	21.7	21.6	21.8	23.6	23.6	23.0	23.0	22.9	22.8	23.2	22.3	22.3	22.0	22.1	21.8	21.8	22.1
Salinity (ppt)	Perature 24 Sunny			33.0	33.0	32.9	29.4	29.5	30.6	30.5	31.1	31.1	30.4	31.6	31.6	31.7	31.8	32.0	32.0	31.8	31.8	31.7	32.3	32.3	32.8	32.7	32.3	32.0	31.9	32.0	32.0	32.2	32.3	32.1	
D.O. (mg/L)	10.05 - 10.20				4.76	4.82	5.0	5.12	5.20	5.44	5.36	5.18	5.10	5.2	4.22	4.31	4.56	4.43	4.59	4.50	4.4	3.97	3.92	3.85	3.81	3.76	3.73	3.8	4.18	4.24	4.30	4.22	4.13	4.05	4.2
D.O. Saturation (%)	69.5	70.9	73.5	72.2	65.0	65.8	69.5	70.7	71.8	75.1	74.0	71.5	70.4	72.3	59.1	60.3	63.8	62.4	59.8	58.9	60.7	54.7	54.1	53.1	52.6	51.5	51.1	52.9	56.8	57.6	58.2	57.3	56.7	55.8	57.1
Turbidity (NTU)	3.81	3.93	4.15	4.19	4.10	4.09	4.0	7.08	7.04	7.14	7.16	6.87	6.85	7.0	5.20	5.27	5.03	5.12	5.36	5.44	5.2	5.71	5.70	6.11	6.14	7.62	7.60	6.5	5.06	5.18	5.91	6.04	6.86	6.99	6.0
SS* (mg/L)	4.0	4.0	4.5	4.5	4.5	4.5	4.3	7.5	7.5	7.5	7.5	7.0	7.0	7.3	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	6.5	6.5	5.8	5.5	5.5	6.5	6.5	7.0	7.0	6.3
NO _x , mg N/L	C).1	C	.3	(0.3	0.2	0	1.3	0	.3		0.4	0.3	0).3	0	.4	(0.8	0.5	C).1	0	.1		0.1	0.1	0.	3	0	.4	0	0.3	0.3
NH ₃ , mg NH ₃ -N/L	C).3	C	.3	(0.3	0.3	0).2	0	.2		0.2	0.2	0).3	C	.3	().4	0.3	C).3	C	.3		0.3	0.3	0.	3	0.	.3	0	0.3	0.3
Total Inorganic Nitrogen (Ammonia + NO _x), mg/L).4		.6		0.6	0.5	0).5	0	.5		0.6	0.5	0).6		.7		1.2	0.8).4		.4		0.4	0.4	0.	6	0.	.7	С	0.6	0.6

Water Quality Monitoring Results for Station M1 (Mid-Ebb Tide)

														,							1
Date			25/0-	4/2007						27/0-	4/2007						30/0	4/2007			
Time (hh:mm)			19:15	- 19:30						10:30	- 10:45						12:11	- 12:26			
Ambient Temperature			:	23						:	23							26			
Weather			Cle	oudy						F	ine						CI	oudy			
Water Depth (m)			8	.20						9	.60						9	0.40			
Monitoring Depth	1.	00	4.	10	7.20			1.0	00	5.0	00	8.60			1.0	00	4.	70	8.40		
Tide			Mic	I-Ebb						Mic	I-Ebb						Mic	d-Ebb			
Trial	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average
Water Temperature (°C)	22.9	22.9	22.5	22.4	22.4	22.4	22.6	22.0	22.1	22.0	21.8	21.8	21.8	21.9	24.8	24.8	24.5	24.5	24.3	24.2	24.5
Salinity (ppt)	31.9	31.8	32.1	32.0	32.3	32.3	32.1	31.4	31.4	31.5	31.5	31.7	31.7	31.5	29.1	29.1	29.4	29.5	29.6	29.7	29.4
D.O. (mg/L)	5.02	4.98	4.64	4.60	4.13	4.10	4.6	4.29	4.38	4.72	4.68	4.59	4.54	4.5	4.03	4.07	3.89	3.85	3.76	3.73	3.9
D.O. Saturation (%)	70.2	69.7	64.4	63.9	57.4	56.9	63.8	60.3	61.3	61.2	60.7	60.9	59.3	60.6	57.6	58.2	55.6	55.0	53.7	53.3	55.6
Turbidity (NTU)	5.77	5.76	5.95	5.92	6.04	6.02	5.9	5.08	4.87	5.29	5.36	5.66	5.54	5.3	5.88	5.87	6.29	6.30	6.40	6.43	6.2
SS* (mg/L)	6.0	6.0	6.5	6.5	7.0	7.0	6.5	5.5	5.5	5.5	5.5	6.0	6.0	5.7	6.0	6.0	6.5	6.5	6.5	6.5	6.3
NO _x , mg N/L	0	.4	0.	4	().5	0.4	0	.1	0.	1	().2	0.1	0.	.4	0	.3	().3	0.3
NH ₃ , mg NH ₃ -N/L	0	.3	0.	3	(0.3	0.3	0	.2	0.	2	(0.2	0.2	0.	.3	0	.2	(0.2	0.2
Total Inorganic Nitrogen (Ammonia + NO _x), mg/L	0	.7	0.	7).8	0.7	0.	.3	0.	3).4	0.3	0.	.7	0	.5).5	0.6

Water Quality Monitoring Results for Station C1 (Mid-Flood Tide)

							T							1							7							7	$\overline{}$						7
Date			02/	04/2007						04/0	04/2007			_			06/0	14/2007			4			09/0	04/2007			4			11/0	04/2007			_
Time (hh:mm)			20:2	0 - 20:35						07:01	1 - 07:11						07:15	5 - 07:22						08:00	0 - 08:15						08:00	0 - 08:15			1
Ambient Temperature				24			1				16							16							24							23			
Weather	Cloudy 14.00					1			С	loudy						С	loudy						s	unny						C	loudy				
Water Depth (m)	14.00								1	3.60						1	4.20						1	3.80						1	4.60				
Monitoring Depth	pth 1.00 7.00 13.00				3.00	Ī	1.0	00	6.	.80	1.	2.60		1.	.00	7.	.10	1	3.20			1.00	7	.00	12.80			1.	.00	7	.30	11	3.60		
Tide			Mi	d-Flood						Mic	i-Flood						Mic	I-Flood						Mic	i-Flood						Mic	d-Flood			
Trial	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average
Water Temperature (°C)	24.0	24.2	23.2	23.2	23.1	23.1	23.5	20.2	20.3	20.0	20.1	19.9	20.0	20.1	18.9	18.8	19.7	19.7	19.7	19.7	19.4	21.3	21.3	21.2	21.1	21.0	21.0	21.2	21.8	21.7	21.4	21.5	21.6	21.7	21.6
Salinity (ppt)	30.0	30.0	30.2	30.3	30.4	30.4	30.2	31.6	31.5	32.1	32.0	32.3	32.3	32.0	31.4	31.4	30.6	30.6	30.4	30.5	30.8	28.9	28.9	29.3	29.3	29.4	29.4	29.2	32.6	32.7	33.0	32.9	33.1	33.0	32.9
D.O. (mg/L)	4.98	5.11	5.78	5.86	5.25	5.34	5.4	5.16	5.08	4.39	4.31	4.10	4.18	4.5	5.29	5.23	5.11	5.06	5.06	5.01	5.1	5.20	5.31	5.02	5.16	5.03	5.10	5.1	5.03	4.98	4.69	4.73	4.89	4.86	4.9
D.O. Saturation (%)	76.6	78.2	79.3	82.6	70.6	71.3	76.4	71.2	70.1	60.6	59.5	56.5	57.7	62.6	70.7	69.9	68.3	67.6	67.6	67.0	68.5	70.8	71.9	67.5	69.0	67.9	68.7	69.3	68.8	68.4	64.2	64.8	66.9	66.5	66.6
Turbidity (NTU)	4.00	4.24	3.72	3.86	3.62	3.70	3.9	5.11	5.14	5.42	5.40	5.36	5.38	5.3	6.03	5.98	5.32	5.26	5.87	5.94	5.7	5.78	5.88	5.14	5.07	6.23	6.30	5.7	3.17	3.20	4.89	4.90	5.07	5.05	4.4
SS* (mg/L)	8.0	8.2	7.5	7.7	7.3	7.3	7.7	10.0	10.0	11.0	11.0	11.0	11.0	10.7	12.0	12.0	11.0	11.0	11.0	11.0	11.3	11.0	11.0	10.0	10.0	12.0	12.0	11.0	6.5	6.5	9.0	9.0	10.0	10.0	8.5
NO _x , mg N/L		0.2		0.3		0.4	0.3	0.3	.3	0	0.3		0.4	0.3	0).4	0	.4		0.4	0.4		0.3	C	0.3		0.4	0.3	0).2	С	0.1	<	<0.1	0.2
NH ₃ , mg NH ₃ -N/L		0.3		0.1		<0.1	0.2	0.3	.3	0).3		0.3	0.3	0).2	0	.3		0.4	0.3		0.3	C).3		0.4	0.3	0).2	С).2		0.3	0.2
Total Inorganic Nitrogen (Ammonia + NO _x), mg/L		0.5		0.4		0.4	0.4	0.6					0.7	0.6).6		1.7		0.8	0.7		0.6).6		0.0	0.7			,	0.3		0.3	0.3
		J.5		J.4		U. 4	0.4	0.0	.0).6		J./	0.6		0.0	U	.7	1		0.7		0.0		0.0		0.8	0.7	1 0).4		.3	'	J.S	0.3

For the values of suspended solids less than 5mg/L (PQL), the results are for reference only. PQL stands for practical quantitation Limit, or lowest reporting limit, which is estimated from the method detection limit (MDL). Normally PQL is about 5 tim

Water Quality Monitoring Results for Station C1 (Mid-Flood Tide)

Date			13/0	04/2007						16/0	4/2007			1			18/0	04/2007						20/	04/2007						23/0	04/2007			1
Time (hh:mm)			14:2	0 - 14:35						17:37	- 17:46			1			19:1	5 - 19:30						07:3	3 - 07:48						08:00	0 - 08:15			
Ambient Temperature				24							24			1				26							25							24			
Weather			S	Sunny						S	unny			1			С	loudy						C	loudy						P	Rainy			
Water Depth (m)			1	14.40						1-	4.20			1			1	4.40							15.20						1	4.40			
Monitoring Depth	1	.00	7	.20	13.40	0		1	.00	7.	10	13.20		1	1	.00	7	.20	13.40			1	.00	7	.60	14.20			1.	.00	7.	.20	13.40		
Tide			Mic	d-Flood						Mid	-Flood						Mic	i-Flood						Mi	d-Flood						Mic	d-Flood			
Trial	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Avera
Water Temperature (°C)	21.9	21.9	21.6	21.6	21.5	21.5	21.7	21.4	21.3	21.2	21.1	21.1	21.1	21.2	22.3	22.2	22.0	21.9	21.6	21.7	22.0	23.1	23.1	22.7	22.7	22.7	22.7	22.8	22.2	22.2	22.0	22.0	21.8	21.7	22.0
Salinity (ppt)	32.8	32.8	32.9	32.9	33.1	33.1	32.9	29.4	29.5	30.3	30.4	31.0	31.1	30.3	31.7	31.6	31.8	31.8	32.0	32.0	31.8	31.7	31.7	32.1	32.1	32.7	32.7	32.2	31.7	31.7	31.9	31.9	32.1	32.1	31.9
D.O. (mg/L)	4.68	4.80	5.05	5.17	5.13	5.08	5.0	5.38	5.44	5.22	5.27	4.94	4.99	5.2	5.24	5.16	4.50	4.44	5.13	5.22	4.9	4.53	4.50	4.12	4.07	4.05	4.01	4.2	5.24	5.36	5.13	5.10	5.00	4.95	5.1
D.O. Saturation (%)	64.8	66.1	67.2	68.4	89.0	88.5	74.0	74.2	75.0	72.0	72.7	68.2	68.9	71.8	71.2	70.4	63.0	62.4	68.8	69.6	67.6	62.5	62.1	56.8	56.1	55.8	55.3	58.1	71.3	72.5	68.5	68.0	67.4	67.0	69.1
Turbidity (NTU)	5.08	5.19	5.00	5.12	5.22	5.34	5.2	7.38	7.34	7.06	7.09	6.87	6.84	7.1	5.87	5.79	6.25	5.90	8.20	8.34	6.7	5.63	5.65	6.14	6.12	8.25	8.24	6.7	5.94	5.86	6.07	6.12	8.17	8.13	6.7
SS* (mg/L)	10.0	10.0	10.0	10.0	11.0	11.0	10.3	14.0	14.0	13.0	13.0	13.0	13.0	13.3	11.0	11.0	13.0	13.0	16.0	16.0	13.3	11.0	11.0	12.0	12.0	16.0	16.0	13.0	11.0	11.0	12.0	12.0	16.0	16.0	13.0
NO _x , mg N/L	<	0.1	<	:0.1		0.1	0.1	C	0.3	0	.2		0.2	0.2	().6	().4		0.4	0.5	<	0.1		:0.1	<	0.1	#DIV/0!	<	:0.1	<(0.1	(0.1	0.1
NH ₃ , mg NH ₃ -N/L	C	.4	(0.3		0.3	0.3	C).2	0	.2		0.2	0.2	().1	().4		0.3	0.3	().1	(0.3	().3	0.2	C	0.2	0	0.3	(0.3	0.3
Total Inorganic Nitrogen (Ammonia + NO _x), mg/L		1.4		0.3		0.4	0.4).5	0	.4		0.4	0.4).7).8		0.7	0.7		0.1		0.3	().3	0.2	(0.2	С).3		0.4	0.3

Water Quality Monitoring Results for Station C1 (Mid-Flood Tide)

Date			25/0	4/2007			1			27/0	4/2007			1			30/0	4/2007			1
Time (hh:mm)			07:15	5 - 07:30						15:14	- 15:30						17:43	3 - 17:58			
Ambient Temperature				23							23							26			
Weather			С	loudy						F	ine						С	loudy			
Water Depth (m)			9	9.40						1	1.00						1	0.80			
Monitoring Depth	1.	.00	4.	70	8.40		I	1.	00	5.	50	10.00			1.	00	5.	.40	9.80		I
Tide			Mic	I-Flood						Mid	-Flood						Mic	I-Flood			
Trial	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average
Water Temperature (°C)	22.7	22.7	22.4	22.5	22.4	22.4	22.5	22.4	22.4	22.1	22.1	22.0	21.9	22.2	25.1	25.1	24.7	24.7	24.6	24.6	24.8
Salinity (ppt)	31.7	31.7	31.7	31.8	32.2	32.2	31.9	31.3	31.3	31.4	31.5	31.6	31.6	31.5	29.4	29.4	29.8	29.7	29.8	29.7	29.6
D.O. (mg/L)	5.09	5.05	4.98	4.95	4.82	4.85	5.0	5.77	5.63	5.38	5.41	5.00	4.92	5.4	4.72	4.69	4.15	4.19	4.07	4.02	4.3
D.O. Saturation (%)	70.7	70.1	69.2	68.8	67.1	67.5	68.9	78.1	76.8	74.8	75.2	67.4	66.8	73.2	67.4	67.0	58.9	59.4	57.7	57.1	61.3
Turbidity (NTU)	5.62	5.65	5.75	5.78	5.40	5.41	5.6	4.98	5.19	4.92	5.26	5.49	5.58	5.2	5.39	5.38	5.57	5.54	5.69	5.70	5.5
SS* (mg/L)	11.0	11.0	12.0	12.0	11.0	11.0	11.3	10.0	10.0	9.8	10.0	11.0	11.0	10.3	11.0	11.0	11.0	11.0	12.0	12.0	11.3
NO _x , mg N/L	0	.2	0	1.2		0.2	0.2	<	0.1	<(0.1	<	:0.1	<0.1	0	.3	0	.3		0.3	0.3
NH ₃ , mg NH ₃ -N/L	0	.4	0	1.3		0.4	0.4	0	.2	0	.3	(0.3	0.3	0	.2	0	.2		0.2	0.2
Total Inorganic Nitrogen (Ammonia + NO _x), mg/L	o	1.6	C	1.5		0.6	0.6	o	1.2	0	.3	(0.3	0.3	0	.5	o	1.5		0.5	0.5

Water Quality Monitoring Results for Station C2 (Mid-Flood Tide)

							-							-							-							_							_
Date			02/	04/2007						04/0	04/2007						06/0	04/2007						09/0	04/2007						11/0	4/2007			
Time (hh:mm)			19:5	5 - 20:10						07:31	1 - 07:40						07:32	2 - 07:44						08:4	5 - 09:00						08:20	0 - 08:35			
Ambient Temperature				24							16							16							24							23			
Weather			C	Cloudy						CI	loudy						C	loudy						S	unny						C	loudy			
Water Depth (m)				15.00						1	5.00						1	5.20						1	5.20						1	5.00			
Monitoring Depth	1.	.00	7	.50	1	14.00		1.	00	7.	.50	14	1.00		1.	00	7.	.60	1	4.20		1	.00	7	.60	14.20			1.	.00	7.	50	1/	4.00	
Tide	Mid-Flood								Mid	i-Flood						Mid	i-Flood						Mic	d-Flood						Mid	l-Flood				
Trial	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Averag
Water Temperature (°C)	24.0	24.1	23.4	23.4	23.1	23.1	23.5	20.4	20.3	20.3	20.3	20.1	20.0	20.2	18.8	18.8	19.4	19.4	19.6	19.6	19.3	21.4	21.4	21.2	21.2	21.0	21.0	21.2	21.9	21.8	21.5	21.4	21.4	21.3	21.6
Salinity (ppt)	30.1	30.1	30.2	30.2	30.2	30.4	30.2	31.7	31.6	31.9	31.9	32.2	32.2	31.9	31.6	31.5	30.7	30.7	30.7	30.6	31.0	28.9	29.2	29.6	29.5	29.6	29.6	29.4	32.6	32.6	33.0	32.9	33.0	32.9	32.8
D.O. (mg/L)	Trial 1 Trial 2 Trial 1 Trial 2 Tr **C) 24.0 24.1 23.4 23.4 2. 30.1 30.1 30.2 30.2 30.2 3		5.19	5.08	5.1	4.84	4.88	4.51	4.60	4.32	4.40	4.6	6.10	5.99	5.83	5.77	5.49	5.41	5.8	5.08	5.19	5.17	5.23	5.04	5.16	5.1	5.17	5.15	4.77	4.74	4.80	4.84	4.9		
D.O. Saturation (%)	66.3	67.3	69.9	70.3	69.6	68.1	68.6	66.8	67.3	62.2	63.5	59.6	60.7	63.4	81.5	80.1	77.9	77.1	73.4	72.3	77.1	68.7	69.6	69.4	70.2	67.7	68.4	69.0	70.8	70.5	65.3	64.9	65.7	66.2	67.2
Turbidity (NTU)	5.04	5.03	3.27	3.36	4.07	4.18	4.2	4.74	4.78	5.05	5.03	5.29	5.31	5.0	6.48	6.53	6.14	6.11	6.72	6.77	6.5	6.04	6.18	5.22	5.36	8.53	8.62	6.7	3.89	3.90	4.90	4.91	4.88	4.85	4.6
SS* (mg/L)	10.0	10.0	7.5	7.5	8.2	8.0	8.5	8.5	8.5	10.0	10.0	11.0	11.0	9.8	12.0	12.0	11.0	11.0	12.0	12.0	11.7	12.0	12.0	11.0	11.0	14.0	14.0	12.3	7.0	7.0	9.0	9.0	8.8	9.0	8.3
NO _x , mg N/L	C).4		0.4		0.2	0.3	0	.4	0	1.3	().4	0.4	0	.3	0	1.3		0.3	0.3	().3	().3	0	.3	0.3	C	0.2	0	.1		0.3	0.2
NH ₃ , mg NH ₃ -N/L	C	1.3		0.3		0.3	0.3	0	.3	0	1.3	(0.3	0.3	0	.4	0	1.3		0.3	0.3	().3	().3	0	.2	0.3	C	0.2	0	.3	- 1	0.2	0.2
Total Inorganic Nitrogen (Ammonia + NQ), mg/L																														<u></u>					
,).7		0.7		0.5	0.6	0	.7	0	1.6	().7	0.7	0	.7	0	1.6		0.6	0.6	().6	().6	0	.5	0.6		0.4	0	.4		0.5	0.4

^{*} For the values of suspended solids less than 5mg/L (PQL), the results are for reference only. PQL stands for practical quantitation Limit, or lowest reporting limit, which is estimated from the method detection limit (MDL). Normally PQL is about 5 tim

Water Quality Monitoring Results for Station C2 (Mid-Flood Tide)

Date			13/0	04/2007						16/04	/2007						18/0	4/2007						20/	04/2007						23/0	4/2007			
Time (hh:mm)			15:00	0 - 15:15						18:10 -	- 18:20						20:05	5 - 20:20						07:5	3 - 08:08						08:25	5 - 08:40			
Ambient Temperature				24						2	4							26							25							24			
Weather			s	unny						Sur	nny						CI	loudy						С	loudy						R.	ainy			
Water Depth (m)			1	4.60						15.	.80						15	5.00						1	14.80						1f	6.00			
Monitoring Depth	1.	00	7.	.30	13.60			1.0	00	7.9	0	14.80			1.0	00	7.	50	14.00			1.	.00	7	.40	13.80			12	00	8.6	00	15.00		
Tide			Mic	d-Flood						Mid-F	Flood						Mid	l-Flood						Mie	d-Flood						Mid	l-Flood			
Trial	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average
Water Temperature (°C)	21.8	21.8	21.6	21.6	21.5	21.5	21.6	21.4	21.5	21.2	21.3	21.0	21.0	21.2	22.3	22.3	21.9	22.0	21.7	21.6	22.0	23.2	23.1	22.7	22.6	22.7	22.8	22.9	22.1	22.1	22.0	21.9	21.7	21.7	21.9
Salinity (ppt)	32.9	32.8	32.9	32.9	33.0	33.0	32.9	29.7	29.6	30.5	30.6	31.2	31.4	30.5	31.7	31.7	31.8	31.8	32.1	32.1	31.9	31.7	31.6	32.3	32.3	32.7	32.6	32.2	31.7	31.6	31.9	31.9	32.1	32.1	31.9
D.O. (mg/L)	4.95	4.86	5.24	5.18	5.16	5.12	5.1	5.26	5.31	5.03	5.07	4.92	4.98	5.1	5.13	5.02	5.11	5.20	5.20	5.09	5.1	4.69	4.65	4.21	4.18	4.11	4.08	4.3	4.86	4.94	5.16	5.04	5.00	4.93	5.0
D.O. Saturation (%)	66.8	65.9	69.4	68.7	69.4	68.8	68.2	72.6	73.3	69.4	69.9	67.9	68.7	70.3	68.5	67.6	68.9	69.7	69.7	67.0	68.6	64.7	64.1	58.0	57.6	56.3	55.8	59.4	66.2	66.9	69.3	68.0	67.3	66.5	67.4
Turbidity (NTU)	5.07	5.03	3.26	3.29	4.10	4.05	4.1	6.22	6.28	6.03	6.09	7.10	7.04	6.5	6.43	6.38	7.69	7.81	7.90	7.96	7.4	5.98	5.95	6.37	6.38	7.97	7.95	6.8	5.88	5.95	6.02	6.15	8.09	8.04	6.7
SS* (mg/L)	10.0	10.0	7.2	7.3	8.5	8.5	8.6	12.0	12.0	12.0	12.0	14.0	14.0	12.7	13.0	13.0	14.0	14.0	15.0	15.0	14.0	12.0	12.0	13.0	13.0	15.0	15.0	13.3	11.0	11.0	12.0	12.0	16.0	16.0	13.0
NO _x , mg N/L	<().1	<	0.1		<0.1	#DIV/0!	0.	.3	0.2	2	C).3	0.3	0	.4	0	.4		0.3	0.4	٧	0.1	(0.1	0	.3	0.2	0	.1	0.	.1	(0.1	0.1
NH ₃ , mg NH ₃ -N/L	0	.1	C	0.3		0.3	0.2	0.	.3	0.2	2	c).2	0.2	0	.4	0	.4		0.4	0.4	C	1.3	(0.3	0	.3	0.3	0	.3	0.	.3	(0.3	0.3
Total Inorganic Nitrogen (Ammonia + NO _x), mg/L	0	.1).3		0.3	0.2	0.	6	0.4	1).5	0.5	0	8	0	.8		0.7	0.8		1.3		0.4	0	6	0.4	0	.4	0	4		0.4	0.4

Water Quality Monitoring Results for Station C2 (Mid-Flood Tide)

Date			25/0	14/2007						27/0	4/2007						30/0	4/2007				
Time (hh:mm)			07:40	0 - 07:55						16:10	- 16:25						18:08	- 18:23				
Ambient Temperature				23							23							26				
Weather			CI	loudy						F	ine						CI	oudy				
Water Depth (m)			1	4.60						1:	5.40						1-	4.60			1	
Monitoring Depth	1.0	00	7.	30	13.60			1.	00	7.	80	14.40			1.	00	7.	30	13.60			
Tide			Mic	l-Flood						Mid	-Flood						Mid	-Flood				
Trial	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	
Water Temperature (°C)	22.8	22.7	22.5	22.4	22.4	22.3	22.5	22.4	22.4	22.1	22.1	22.0	19.8	21.8	25.2	25.2	24.8	24.7	24.4	24.4	24.8	
Salinity (ppt)	31.8	31.8	32.0	32.0	32.2	32.2	32.0	31.3	31.3	31.5	31.5	31.8	31.8	31.5	29.5	29.5	29.8	29.8	29.8	29.8	29.7	
D.O. (mg/L)	5.19	5.16	5.06	5.02	4.77	4.73	5.0	5.18	5.26	5.28	5.33	5.03	4.92	5.2	4.89	4.85	4.72	4.68	4.55	4.50	4.7	
D.O. Saturation (%)	76.8	72.2	70.8	70.2	66.3	65.7	70.3	63.8	64.4	71.2	72.1	63.1	62.4	66.2	69.9	69.3	67.4	66.9	64.6	63.9	67.0	
Turbidity (NTU)	5.26	5.24	4.97	4.98	5.03	5.01	5.1	6.00	5.88	5.19	5.28	8.46	8.35	6.5	4.92	4.91	5.07	5.09	5.26	5.29	5.1	
SS* (mg/L)	11.0	11.0	9.0	9.0	10.0	10.0	10.0	12.0	12.0	11.0	11.0	16.0	16.0	13.0	9.0	9.0	10.0	10.0	11.0	11.0	10.0	
NO _x , mg N/L	0	.3	0	.2		0.2	0.2	<(0.1	<().1	<	0.1	#DIV/0!	0	.3	0	.3	(0.3	0.3	
NH ₃ , mg NH ₃ -N/L	0	.3	0	.4	(0.4	0.4	0	.2	0	.2	(0.2	0.2	0	.2	0	.2	(0.2	0.2	
Total Inorganic Nitrogen (Ammonia + NQ), mg/L	0	.6	0	.6		0.6	0.6	0	.2	0	.2		0.2	0.2	0	.5	0	.5		0.5	0.5	

Water Quality Monitoring Results for Station M1 (Mid-Flood Tide)

										4/2007							14/2007							4/2007							4/2007			
										- 07:26							5 - 08:08							- 08:40			1				- 09:34			1
						-							1														+							4
			24							16							16							24			1				23			4
		CI	loudy						Cle	oudy						CI	loudy						Sı	unny						Clo	oudy			
Cloudy 10.20							9	.80						g	9.80						1	0.00						9	.80					
1.0	00	5.	.10	9	9.20		1.0	00	4.9	90	8	.80		1.	00	4.	90	8	.80		1	.00	5.	00	9.00			1.0	00	4.9	90	8.80		
								Mid	-Flood						Mid	l-Flood						Mid	-Flood						Mid-	-Flood]	
Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average
24.1	24.1	23.8	23.8	23.4	23.4	23.8	20.3	20.3	20.2	20.2	20.0	20.1	20.2	19.0	19.0	19.6	19.5	19.7	19.7	19.4	21.4	21.4	21.2	21.2	21.0	21.0	21.2	21.7	21.7	21.3	21.4	21.5	21.4	21.5
30.1	30.0	30.1	30.0	30.2	30.3	30.1	32.1	32.1	32.4	32.3	32.5	32.6	32.3	31.3	31.3	30.5	30.5	30.6	30.6	30.8	28.9	29.1	29.4	29.4	29.6	29.6	29.3	32.7	32.7	33.0	33.1	33.0	33.0	32.9
10.20 1.00 5.10 Mid-Flood Trial 1 Trial 2 Trial 1 Trial 2 Trial 2 Trial 3 30.1 30.0 30.1 30.0 30.1 4.97 4.82 3.88 3.94 4.6 71.0 71.8 52.3 52.8 66 3.86 3.92 4.18 4.22 4.1		4.96	5.20	4.6	5.26	5.20	4.98	4.90	4.74	4.82	5.0	4.87	4.82	4.23	4.19	4.08	4.02	4.4	4.22	4.26	4.58	4.66	4.52	4.68	4.5	4.20	4.16	4.15	4.11	4.07	4.02	4.1		
71.0	71.8	52.3	52.8	66.7	68.0	63.8	72.6	71.8	68.7	67.6	65.4	66.5	68.8	65.1	64.4	56.5	56.0	54.5	53.7	58.4	59.3	60.1	64.0	64.4	59.3	61.0	61.4	57.5	56.9	56.4	55.8	55.7	55.1	56.2
3.86	3.92	4.18	4.22	4.12	4.18	4.1	5.24	5.26	5.41	5.40	5.52	5.54	5.4	4.89	4.83	4.22	4.30	5.76	5.88	5.0	4.49	4.59	5.27	5.21	5.68	5.61	5.1	4.09	4.10	4.27	4.29	4.53	4.50	4.3
4.0	4.0	4.5	4.5	4.5	4.5	4.3	5.5	5.5	5.5	5.5	5.0	5.0	5.3	5.0	5.0	4.5	4.5	5.5	5.5	5.0	5.0	5.0	5.5	5.5	5.5	5.5	5.3	4.5	4.5	4.5	4.5	5.0	5.0	4.7
0	.3	0	1.3		0.4	0.3	0.3	3	0.	3	(0.4	0.3	0	.3	0	.3	(0.4	0.3	(0.4	0	.3		0.4	0.4	<0).1	<0	.1	().1	0.1
0	.2	0	1.3		0.3	0.3	0.2	2	0.	3	(0.4	0.3	0	.3	0	.3	(0.3	0.3	(0.3	0	.3		0.2	0.3	0	.2	0.	3	().3	0.3
																																		0.3
	rial 1 24.1 30.1 4.97 71.0 3.86 4.0	rial 1 Trial 2 24.1 24.1 30.1 30.0 4.97 4.82 71.0 71.8 3.86 3.92 4.0 4.0 0.3	1.00 5 5 Mic	10.20 1.00 5.10 Mid-Flood mial 1 Trial 2 Trial 1 Trial 2 24.1 24.1 23.8 23.8 30.1 30.0 30.1 30.0 4.97 4.82 3.88 3.94 71.0 71.8 52.3 52.8 3.86 3.92 4.18 4.22 4.0 4.0 4.5 4.5 0.3 0.3 0.2 0.3	10.20 1.00 5.10 9 Mid-Floot rial 1 Trial 2 Trial 1 Trial 2 Trial 1 24.1 24.1 23.8 23.8 23.4 30.1 30.0 30.1 30.0 30.2 4.97 4.82 3.88 3.94 4.96 71.0 71.8 52.3 52.8 66.7 3.86 3.92 4.18 4.22 4.12 4.0 4.0 4.5 4.5 4.5 0.3 0.3 0.3	10.20 1.00	10.20 1.00	10.20 1.00	10.20 1.00	10.20 1.00	10.20 9.80 1.00 4.90 1.00 4.90 Mid-Flood Mid-Flood	1,00	1.02 9.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00	10.20 9.80 1.00 4.90 8.80 1.00 4.90 8.80 Mid-Flood Mid-Flo	1,00	10.20 1.00	1.00	1,00	10.20 1.00	10.20 1.00 5.10 9.20 9.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 1.0	10.20 1.00 5.10 9.20 9.80 1.00 4.90 8.80 1.0	10.20	1.00	1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 5.	10.0	10.0	1.00 5.10 9.20 9.20 1.00 4.90 8.80 1.00 4.90 4.	1.00	1.00	1.00	10.0 5.0 9.20 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 5.00 9.00 9.00 9.00 9.00 9.00 4.90 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 8.80 1.00 4.90 8.80 1.00 4.90 8.80 1.00 8.80 8.80 1.00 8.80 8.80 1.00 8.80 8.80 1.00 8.80 8.80 1.00 8.80 8.80 1.00 8.80 1.00 8.80 8.80 1.00 8.80 8.80 8.80 8.80 8.80 1.00 8.80	1.00 5.10 9.20 9	1.00 5.10 9.20 9.	10.0 5.10 9.20 1.00 4.90 8.80 1.00 4.90

^{*} For the values of suspended solids less than 5mg/L (PQL), the results are for reference only. PQL stands for practical quantitation Limit, or lowest reporting limit, which is estimated from the method detection limit (MDL). Normally PQL is about 5 tim

Water Quality Monitoring Results for Station M1 (Mid-Flood Tide)

Date			13	04/2007						16/0	04/2007						18/0	4/2007						20/0	14/2007						23/0	04/2007			
Time (hh:mm)			14:4	10 - 14:55						17:52	2 - 18:03						19:40	- 19:55						08:55	5 - 09:10						08:50	0 - 09:05			
Ambient Temperature				24							24							26							25							24			
Weather				Sunny						s	unny						С	loudy						С	loudy						R	Rainy			
Water Depth (m)				9.50						1	0.20						1	0.10						9	9.80						10	0.60			
Monitoring Depth	1	.00		5.00	8.5	0		1.0	00	5.	.10	9.20)		1.	.00	5.	10	9.10			1	1.00	4.	90	8.80			1	.00	5.	.30	9.60		
Tide	1.00 5.00 8.50 Mid-Flood								Mid	d-Flood						Mic	l-Flood						Mic	l-Flood						Mid	i-Flood			1	
Trial	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average
Water Temperature (°C)	21.8	21.9	21.6	21.6	21.5	21.5	21.7	21.5	21.4	21.3	21.2	21.1	21.1	21.3	22.3	22.3	21.9	21.9	21.7	21.7	22.0	23.1	23.1	22.8	22.8	22.8	22.7	22.9	22.1	22.1	22.0	22.0	21.8	21.8	22.0
Salinity (ppt)	32.9	32.8	32.9	32.9	33.0	33.0	32.9	29.5	29.6	30.7	30.6	31.2	31.3	30.5	31.7	31.7	31.8	31.8	32.0	32.0	31.8	31.7	31.7	32.2	32.2	32.6	32.6	32.2	31.7	31.7	31.9	31.9	32.0	32.1	31.9
D.O. (mg/L)	4.27	4.36	4.68	4.60	4.63	4.58	4.5	5.08	5.12	5.14	5.20	4.92	4.96	5.1	4.07	4.12	4.42	4.38	4.59	4.63	4.4	4.26	4.22	4.07	4.02	3.94	3.90	4.1	4.36	432	4.52	4.44	4.33	4.20	4.4
D.O. Saturation (%)	59.9	60.7	65.0	64.8	60.3	59.9	61.8	70.1	70.6	70.9	71.8	67.9	68.4	70.0	54.9	55.6	62.4	62.0	58.6	59.1	58.8	58.7	58.2	55.7	55.0	53.9	53.4	55.8	59.1	58.6	63.3	62.5	58.7	57.4	59.9
Turbidity (NTU)	4.56	4.66	5.24	5.31	5.28	5.32	5.1	7.52	7.50	7.65	7.61	7.38	7.32	7.5	4.70	4.74	5.18	5.26	5.63	5.59	5.2	5.88	5.89	6.43	6.47	8.16	8.17	6.8	4.90	4.83	5.80	5.88	7.18	7.06	5.9
SS* (mg/L)	5.0	5.0	5.5	5.5	5.5	5.5	5.3	7.5	7.5	8.0	8.0	7.5	7.5	7.7	5.0	5.0	5.5	5.5	6.0	6.0	5.5	5.5	5.5	6.0	6.0	7.5	7.5	6.3	5.0	5.0	6.0	6.0	7.0	7.0	6.0
NO _x , mg N/L		:0.1		0.2		0.2	0.2	0	2	0).3		0.3	0.3	C).4	C	.3		0.4	0.4		0.3	<	0.1		:0.1	0.3	(0.1	0	.1	-	0.2	0.1
NH ₃ , mg NH ₃ -N/L		0.3		0.3		0.3	0.3	0.:	2	0).2		0.2	0.2	C).3	C	.3		0.3	0.3		0.3	C	.3		0.3	0.3	(0.2	0	.3	-	0.3	0.3
Total Inorganic Nitrogen (Ammonia + NO _x), mg/L		0.3		0.5		0.5	0.4	0.	4	0).5		0.5	0.5		17		.6		0.7	0.7		0.6		.3		0.3	0.4	,	0.3	0	14		0.5	0.4

Water Quality Monitoring Results for Station M1 (Mid-Flood Tide)

							-														_
Date			25/0	4/2007						27/0	4/2007						30/0	4/2007			1
Time (hh:mm)			08:00	- 08:15						15:45	- 16:00						18:28	- 18:43			
Ambient Temperature				23							23							26			1
Weather			CI	oudy						F	ine						CI	oudy			1
Water Depth (m)			8	.80						10	0.30						9	.80			1
Monitoring Depth	1.	.00	4.	40	7.80			1.0	00	5.	20	9.30			1.0	00	4.	90	8.80		1
Tide			Mid	-Flood						Mid	-Flood						Mid	-Flood	•		
Trial	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average
Water Temperature (°C)	22.8	22.7	22.5	22.5	22.4	22.4	22.6	22.4	22.3	22.1	22.1	22.0	21.9	22.1	25.2	25.2	24.6	24.5	24.5	24.5	24.8
Salinity (ppt)	31.8	31.7	32.0	31.9	32.1	32.2	32.0	31.4	31.4	31.5	31.5	31.7	31.6	31.5	29.4	29.4	29.7	29.7	29.8	29.8	29.6
D.O. (mg/L)	4.72	4.69	4.43	4.40	4.20	4.15	4.4	5.94	5.78	4.80	4.64	4.43	4.37	5.0	4.53	4.50	4.17	4.14	4.02	4.06	4.2
D.O. Saturation (%)	66.0	65.6	62.0	61.6	57.9	57.6	61.8	70.3	68.5	62.0	60.8	58.0	57.6	62.9	64.7	64.3	59.6	59.2	57.0	57.6	60.4
Turbidity (NTU)	5.89	5.86	5.48	5.49	5.75	5.72	5.7	5.13	5.09	5.17	5.22	5.39	5.51	5.3	5.07	5.05	6.17	6.19	6.64	6.63	6.0
SS* (mg/L)	6.0	6.0	6.0	6.0	6.5	6.5	6.2	5.5	5.5	5.5	5.5	6.0	6.0	5.7	5.5	5.5	6.5	6.5	7.0	7.0	6.3
NO _x , mg N/L	0	1.2	0	.2		0.2	0.2	<0	1.1	<(0.1	<	:0.1	<0.1	0.	3	0	.3	(0.3	0.3
NH ₃ , mg NH ₃ -N/L	0).4	0	.3	().3	0.3	0.	2	0	1.2	-	0.2	0.2	0.	2	0	.2	(0.2	0.2
Total Inorganic Nitrogen (Ammonia + NO _x), mg/L				_																	0.5
	1 0	1.6	0	.5).5	0.5	0.	.2	0	1.2		0.2	0.2	0.	5	0	.5	(0.5	0.5

Annex H

Waste Flow Table

HKCEC - Atrium Link Extension Project

Name of Project Proponent: HKTDC **Project Commencement Date: 1 Aug 2006 Construction Completion Date: March 2009**

Monthly Summary Waste Flow Table for Year 2006

Year	Ac	tual Quantitie	s of inert C&	≿D Materials ((in 10 ³ Kg) (1)				Actual Qua	ntities of C&D	Wastes (in 10 ³	Kg) ⁽⁴⁾			
	Total Quantity Generated	Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill		Steel on of existing om Link		of existing		ardboard aging	General refuse	Other waste	Chemica	al Waste
	(a)	(b)	(c)	(d)	(a)-(b)-(c)-(d)	Recycle	Disposal	Recycle	Disposal	Recycle	Disposal	Disposal	Disposal	Recycle	Disposal
January	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
February	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
March	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
April	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
May	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
June	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
July	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
August	264	0	1	0	263	0	0	0	0	0	1	50	81	0	0
Septembe	1509 (2)	0	2	0	1507	0	0	0	0	0	1	60	215	0	0
October	1380	0	2 (3)	0	1378	30 (5)	0	0	0	0	1	55	532 ⁽⁶⁾	0	0
November	2091	0	1 (3)	0	2090	100 (5)	0	0	0	0	1.5	50	115 ⁽⁶⁾	0	0
December	1717	0	1 (3)	0	1716	80 (5)	0	0	0	0.2	0.1	60	50	0	0
Total	6961	0	7	0	6954	210	0	0	0	0.2	4.6	275	993	0	0

Note:

⁽¹⁾ Inert C&D materials include bricks, concrete, building debris, rubble and excavated soil.
(2) Inert C&D material mainly generated from construction of foundation.
(3) Reused for building bunds and making sand bags.

⁽⁴⁾ C&D wastes include steel materials generated from demolition, paper / cardboard packaging waste, chemical waste and other wastes such as general refuse. Wastes other than general refuse will be disposed of at Tsueng Kwan O Area 137 temporary construction waste sorting facility.

⁽⁵⁾ Waste from demolition of steel structure at existing Atrium Link of HKCEC (Phase 2).

⁽⁶⁾ Wastes include materials associated with additional and alternation (A&A) works of HKCEC (e.g. demolition of E&M equipment and finishing materials, bamboo scaffolding) and piling works.

HKCEC – Expansion Project

Name of Project Proponent: HKTDC **Project Commencement Date: 1 Aug 2006 Construction Completion Date: March 2009**

Monthly Summary Waste Flow Table for Year 2007

Year	Ac	tual Quantitie	s of inert C&	¢D Materials ((in 10 ³ Kg) ⁽¹⁾	Actual Quantities of C&D Wastes (in 10 ³ Kg) ⁽⁴⁾									
	Total Quantity Generated Broken Concrete Reused in the Contract Projects Projects Disposed as Public Fill			Steel Materials Demolition of existing Demolition of existing Atrium Link working platform				Paper/cardboard packaging		Chemical Waste (L)		General refuse	Other waste		
	(a)	(b)	(c)	(d)	(a)-(b)-(c)-(d)	Recycle	Disposal	Recycle	Disposal	Recycle	Disposal	Recycle	Disposal	Disposal	Disposal
January	924	462	0.5	0	462	90	0	0	0	0.2	0.05	0	0	60	80
February	814	110	0.5	0	704	5	0	0	0	0.2	0.07	0	288	66	55
March	583	66	0.5	0	517	0	0	0	0	0	0.05	0	0	77	33
April	1034	165	0.5	0	867	0	0	0	0	0.4	0.05	0	0	55	44
May	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
June	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
July	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
August	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sep	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
October	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
November	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
December	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total	3355	803	2	0	2550	95	0	0	0	0.8	0.22	0	288	258	212

Note:

⁽¹⁾ Inert C&D materials include bricks, concrete, building debris, rubble and excavated soil.
(2) Inert C&D material mainly generated from construction of foundation.
(3) Reused for building bunds and making sand bags.

⁽⁴⁾ C&D wastes include steel materials generated from demolition, paper / cardboard packaging waste, chemical waste and other wastes such as general refuse. Wastes other than general refuse will be disposed of at Tsueng Kwan O Area 137 temporary construction waste sorting facility.

⁽⁵⁾ Waste from demolition of steel structure at existing Atrium Link of HKCEC (Phase 2).

⁽⁶⁾ Wastes include materials associated with additional and alternation (A&A) works of HKCEC (e.g. demolition of E&M equipment and finishing materials, bamboo scaffolding) and piling works.