QUARTERLY ENVIRONMENTAL MONITORING & AUDIT REPORT

Hip Hing - Ngo Kee Joint Venture

Hong Kong Convention and Exhibition Centre Expansion Project: *Quarterly Environmental Monitoring and Audit Report (November 2007 - January 2008)*

January 2008

Environmental Resources Management

21/F Lincoln House 979 King's Road Taikoo Place Island East, Hong Kong Telephone: (852) 2271 3000 Facsimile: (852) 2723 5660 E-mail: post.hk@erm.com http://www.erm.com

QUARTERLY ENVIRONMENTAL MONITORING & AUDIT REPORT

Hip Hing - Ngo Kee Joint Venture

Hong Kong Convention and Exhibition Centre Expansion Project: *Quarterly Environmental Monitoring and Audit Report* (November 2007 - January 2008)

December 2007

Reference 0050690

For and on behalf of
Environmental Resources Management
Approved by: Dr. Robin Kennish
Signed:
Position: Director //
Certified by:
(Environmental Team Leader – Marcus Ip)
Date: 22 February 2008

This report has been prepared by Environmental Resources Management the trading name of 'ERM Hong-Kong, Limited', with all reasonable skill, care and diligence within the terms of the Contract with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client.

We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.

This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies on the report at their own risk.

NATURE & TECHNOLOGIES (HK) LIMITED 科技環保(香港)有限公司

Unit 2 & 3, 4/F., Wellborne Commercial Centre, 8 Java Road, North Point, Hong Kong. 香港北角渣華道8號威邦商業中心4樓2及3室 Tel電話:(852)2877 3122 Fax傳真:(852)2511 0922 Email電郵: enquiry@nt.com.hk Web page網址: http://www.nt.com.hk

Our Ref: 3.16/014/2006/it

25 February 2008

Maunsell Consultants Asia Ltd Grand Central Plaza, Tower 2 138 Shatin Rural Committee Road Shatin, N.T., Hong Kong

Attn: Ms Vera Chan

Dear Sir/Madam,

Hong Kong Convention Center Expansion Project Quarterly EM&A Report for November 2007 to January 2008 (Environmental Permit No. EP-239/2006/A)

With reference to the captioned document concerning the Quarterly EM&A report for November 2007 to January 2008 received from ERM dated 22 February 2008, we are pleased to provide our verification for the document pursuant to condition 3 of the Environmental Permit (EP) No. EP-239/2006/A.

Yours faithfully, Nature & Technologies (HK) Limited

Ir Dr Gabriel C K Lam Managing Director

- cc: Hong Kong Trade Development Council (Attn: Mr. K. F. Chan)
 - Hip Hing Ngo Kee Joint Venture (Attn: Mr. Eric Lau & Mr. William Tam)
 - ERM (Attn: Mr. Marcus lp)

	EXECUTIVE SUMMARY	Ι
1	INTRODUCTION	1
1.1	PURPOSE OF THE REPORT	1
1.2	STRUCTURE OF THE REPORT	1
2	PROJECT INFORMATION	3
2.1	BACKGROUND	3
2.2	SITE DESCRIPTION	3
2.3	CONSTRUCTION ACTIVITIES	4
2.4	PROJECT ORGANISATION	4
2.5	STATUS OF ENVIRONMENTAL APPROVAL DOCUMENTS	4
3	ENVIRONMENTAL MONITORING METHODOLOGY	6
3.1	AIR QUALITY MONITORING	6
3.2	WATER QUALITY MONITORING	9
4	IMPLEMENTATION STATUS OF ENVIRONMENTAL PROTECTION	
-	REQUIREMENTS	13
4.1	Environmental Site Auditing	13
4.2	WATER DISCHARGE SAMPLING	13
4.3	LANDSCAPE AND VISUAL MONITORING	13
4.4	EFFECTIVENESS OF MITIGATION MEASURES AND MONITORING	13
5	MONITORING RESULTS	15
5.1	AIR QUALITY	15
5.2	WATER QUALITY	15
5.3	WASTE MANAGEMENT	16
6	ENVIRONMENTAL NON-CONFORMANCE	18
6.1	SUMMARY OF ENVIRONMENTAL EXCEEDANCE	18
6.2	SUMMARY OF ENVIRONMENTAL NON-COMPLIANCE	18
6.3	SUMMARY OF ENVIRONMENTAL COMPLAINT	18
6.4	SUMMARY OF ENVIRONMENTAL SUMMONS AND PROSECUTION	18
7	REVIEW OF THE EM&A DATA AND EIA PREDICTIONS	19
7.1	Air Quality	19
7.2	WATER QUALITY	19
7.3	WASTE MANAGEMENT	19
7.4	Conclusion of review	20
8	CONCLUSION	21

LIST OF TABLES

- Table 2.1Summary of Construction Activities Undertaken
- Table 2.2Summary of Environmental Licensing, Notification and Permit
Status
- Table 3.1Air Monitoring Stations
- Table 3.2TSP Monitoring Parameter and Frequency
- Table 3.3Action and Limit Levels for Air Quality
- Table 3.4TSP Monitoring Equipment
- Table 3.5Monitoring Stations for Additional Water Quality Monitoring
Programme
- Table 3.6Additional Water Quality Monitoring Frequency and
Parameters
- Table 3.7
 Analytical Methods for Water Quality Parameters Monitored
- Table 3.8Action and Limit Levels for Additional Water Quality
Monitoring
- Table 5.1Summary of Record of Exceedances Recorded During the
Recording Period
- Table 5.2Quantities of Waste Generated from the Project
- Table 7.1Comparison of the HKAQO and Air Quality Monitoring
Results
- Table 7.2Comparison of the Estimated Amount and the Actual Amount
of Waste Generated

LIST OF ANNEXES

Annex A	Location of Works Areas
Annex B	Location of Construction Activities during the Reporting Quarter
Annex C	Project Organization Chart and Contact Detail
Annex D	Locations of Monitoring Stations
Annex E	Summary of Implementation Status
Annex F	24-hour and 1-hour TSP Monitoring Results
Annex G	Water Quality Monitoring Results
Annex H	Waste Flow Table

EXECUTIVE SUMMARY

The construction works for Hong Kong Convention and Exhibition Centre Expansion (previously known as HKCEC Atrium Link Extension) (EIAO Register No: AEIAR-100/2006) commenced on 1 August 2006. This is the sixth quarterly Environmental Monitoring and Audit (EM&A) report presenting the EM&A work carried out during the period from 1 November 2007 to 31 January 2008 in accordance with the EM&A Manual.

<u>Summary of Construction Works undertaken during the Reporting Period</u> The major construction works taken during the reporting period include the construction of RC Column, removal of level 5 slabs and the existing L2 slab, additional slab at L5 and L7, transfer truss installation, roof truss A and B Assembly, transfer truss installation, pile cap construction, construction works for transformer room, sea water pump house cable laying and its builder work.

Environmental Monitoring and Audit Progress

A summary of the monitoring activities in this reporting period is listed below:

24-hour Total Suspended	16 times
Particulates (TSP) monitoring	
1-hour TSP monitoring	47 times
Joint environmental site auditing	13 times
Additional water quality monitoring	12 times

Air Quality

16 sets of 24-hour and 47 sets of 1-hour TSP monitoring were carried out at the designated monitoring stations (AM1 & AM2) during the reporting period. No exceedance was recorded during the reporting period.

Water Quality

Water quality monitoring at the designated monitoring stations (W3, W4 and W5) was not conducted subsequent to the completion of installation of marine piles on 23 April 2007. Seven sets of water monitoring were carried out at the designated monitoring stations (C1, C2 and M1). Two exceedances of Limit Level of TIN were recorded during the reporting period. Results of the investigations indicated that the exceedances were likely due to natural fluctuation rather than Project works. Additional water quality monitoring for the dry season was also completed on 14 December 2007.

Construction Waste Management

The major construction activities undertaken in the reporting period were installation of marine pile, construction of marine platform and pedestrian tunnel. A total of 1,808.5 tonnes of inert C&D materials (including 1 tonnes

materials reused in this Project) and 440.28 tonnes of C&D wastes were generated during the reporting period. The C&D wastes and inert C&D materials generated from the Project were disposed of at SENT Landfill / Tseung Kwan O Area 137 temporary construction waste sorting facility and the public fill barging point at Quarry Bay respectively. No chemical waste was collected during the reporting period by licensed chemical waste collector.

Environmental Non-conformance

Thirteen weekly joint environmental site audits were carried out by the ET. No non-compliance event is recorded during the reporting period.

No environmental complaints or summons were received during the reporting period.

1 INTRODUCTION

ERM-Hong Kong, Limited (ERM) was appointed by Hip Hing – Ngo Kee Joint Venture as the Environmental Team (ET) to implement the Environmental Monitoring and Audit (EM&A) programme for Hong Kong Convention and Exhibition Centre Expansion (previously known as HKCEC Atrium Link Extension) (the Project).

1.1 PURPOSE OF THE REPORT

This is the sixth quarterly EM&A report which summarizes the impact monitoring results and audit findings for the EM&A programme during the reporting period from **1 November 2007** to **31 January 2008**.

1.2 STRUCTURE OF THE REPORT

The structure of the report is as follows:

Section 1 :	Introduction
	details the scope and structure of the report.

Section 2 : Project Information

summarizes background and scope of the Project, site description, project organization and contact details, construction programme, the construction works undertaken and the status of Environmental Permits/Licences during the reporting period.

Section 3 : Environmental Monitoring Requirement

summarizes the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels and Event / Action Plans.

Section 4 : Implementation Status on Environmental Mitigation Measures summarizes the implementation of environmental protection measures during the reporting period.

Section 5 : Monitoring Results summarizes the monitoring results obtain

summarizes the monitoring results obtained in the reporting period.

Section 6 : Environmental Non-conformance summarizes any environmental exceedance, environmental complaints and environmental summons received within the reporting period.

Section 7: Review of EM&A Data and EIA Predictions

compares and contrasts the EM&A data in the reporting period with the EIA predictions and annotates with explanation for any discrepancies.

Section 8 : Conclusion

2.1 BACKGROUND

The Hong Kong Trade Development Council (HKTDC) is expanding its existing facilities to provide additional space for Hong Kong's leading trade fairs to be held at the Hong Kong Convention and Exhibition Centre (HKCEC). The Project is located in North Wan Chai and will occupy the aerial space between Phase I and Phase II of the HKCEC. The new Atrium Link Extension (ALE) will span across the water channel between Phase I and Phase II of the HKCEC to accommodate 3 main levels of Exhibition Hall Extensions. The level of the main roof of the Extension will be of similar height as that of the podium roof of the Phase I building. A northern row of permanent supporting columns will be located on land close to Expo Drive Central and similarly a southern row will land near to Convention Avenue. There will be no permanent intermediate columns in the waterway.

The major works activities for the ALE will comprise the following:

- Construction and demolition of the temporary footbridge;
- Demolition of the existing Atrium Link;
- Construction and demolition of a temporary working platform;
- Construction of foundations and pile caps for the ALE; and
- Construction of superstructure for the ALE.

The potential environmental impacts of the Project have been studied in the *"Hong Kong Convention and Exhibition Centre, Atrium Link Extension – Environmental Impact Assessment Report"* (EIAO Register No: AEIAR-100/2006). The EIA was approved on 21 April 2006 under the *Environmental Impact Assessment Ordinance* (EIAO). An Environmental Permit (EP-239/2006) for the works was granted on 12 May 2006. An application for variation of the Environmental Permit was made on 25 January 2007, an amended Environmental Permit (EP-239/2006/A) was granted on 12 February 2007. Under the requirements of Condition 3.1 of Environmental Permit EP-239/2006/A, an EM&A programme as set out in the EM&A Manual is required to be implemented.

The construction works commenced on 1 August 2006 and are scheduled to be completed by March 2009.

2.2 SITE DESCRIPTION

The works areas of the Project are illustrated in *Annex A*.

2.3 CONSTRUCTION ACTIVITIES

A summary of the major construction activities undertaken in this quarter is shown in *Table 2.1*. The locations of the construction activities are presented in *Annex B*.

Table 2.1Summary of Construction Activities Undertaken

- Construction of RC Column
- Removal of Level 5 slabs
- Removal of Existing L2 Slab
- Additional Slab at L5 and L7
- Transfer Truss Installation
- Roof Truss A Assembly
- Roof Truss B Assembly
- Transfer Truss Installation
- Pile Cap Construction
- Construction works for Transformer Room
- Sea Water Pump House Cable Laying
- Sea Water Pump House Builder Work

2.4 PROJECT ORGANISATION

The Project organisation chart and contact details are shown in Annex C.

2.5 STATUS OF ENVIRONMENTAL APPROVAL DOCUMENTS

A summary of the relevant permits, licences, and/or notifications on environmental protection for this Project since August 2006 is presented in *Table 2.2*.

Table 2.2Summary of Environmental Licensing, Notification and Permit Status

Permit/ Licenses/ Notification	Reference	Validity Period	Remarks
Environmental Permit	EP-239/2006/A	Throughout the Contract	Permit granted on 12 February 2007
Notification of Construction Works under Air Pollution Control (Construction Dust) Regulation			Notification on 23 June 2006
Discharge Licence under Water Pollution Control Ordinance	EP860/W10/XY0145	N/A	-

Permit/ Licenses/ Notification	Reference	Validity Period	Remarks
Chemical Waste Producer Registration	WPN5213-134-H3125- 01	N/A	Chemical waste types: spent paint, acid, alkaline, adhesive, diesel fuel, lubricating oil and bitumen.
Construction Noise Permit for area inside the Atrium Link	GW-RS0667-07	Valid from 16 October 2007 to 15	
the Athum Link	GW-RS0674-07	April 2008 Valid from 1 November 2007 to	
	GW-RS0535-07	30 April 2008 Valid from 27 August 2007 to 30	
	GW-RS0692-07	November 2007 Valid from 31 October 2007 – 31	
	GW-RS0691-07	January 2008 Valid from 30 April 2007 to 30 April 2008	
	GW-RS0766-07	Valid from 30 November 2007 to 29 February 2008	
	GW-RS0029-08	Valid from 31 January 2008 to 28 June 2008	

3 ENVIRONMENTAL MONITORING METHODOLOGY

3.1 AIR QUALITY MONITORING

3.1.1 Monitoring Location

In accordance with the EM&A Manual, sampling for 24-hour and 1-hour Total Suspended Particulates (TSP) levels were conducted at the designated monitoring stations listed in *Table 3.1*. Map and photographs showing the monitoring stations are presented in *Annex D*.

Table 3.1Air Monitoring Stations

Monitoring Station	Description
AM1	Pedestrian Plaza
AM2	Renaissance Harbour View Hotel Hong Kong

3.1.2 Monitoring Parameters, Frequency and Programme

Air quality monitoring was conducted in accordance with the requirements stipulated in the EM&A Manual (*Table 3.2*).

Table 3.2TSP Monitoring Parameter and Frequency

Parameter	Frequency
24-hour TSP	Once per every 6 days
1-hour TSP	3 times per every 6 days

3.1.3 Action and Limit Levels

The Action and Limit levels were established in accordance with the EM&A Manual and are presented in *Table 3.3*.

Table 3.3Action and Limit Levels for Air Quality

Parameter	Air Monitoring Station	Action Level, µg/m ³	Limit Level, µg/m³
24-hour TSP	AM1	161	260
	AM2	168	260
1-hour TSP	AM1	327	500
	AM2	329	500

3.1.4 Monitoring Equipment

Continuous 24-hour and 1-hour TSP monitoring were performed using High Volume Samplers (HVS) with appropriate sampling inlets installed, located at the designated monitoring station. The performance specification of HVS complies with the standard method "*Determination of Suspended Particulate Matter in the Atmosphere (High Volume Method)*" as stipulated in *US EPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50 Appendix B).*

Table 3.4 summarizes the equipment that was used in the 24-hour and 1-hour TSP monitoring.

Table 3.4TSP Monitoring Equipment

Monitoring Station	Equipment	Model (HVS, Calibration Kit)
AM1 (for 24-hr TSP)	HVS, Calibration Kit	GMW-9503, Tisch TE-5025 A
AM2 (for 24-hr TSP)	HVS, Calibration Kit	GMW-9795, Tisch TE-5025A
AM1 (for 1-hr TSP)	HVS, Calibration Kit	GMW-9864, Tisch TE-5025A
AM2 (for 1-hr TSP)	HVS, Calibration Kit	GMW-8115, Tisch TE-5025 A

3.1.5 Monitoring Methodology

Installation

The HVSs at AM1 and AM2 were placed at about 1.3 m above local ground level and about 4.3 m above local ground respectively. All of the HVSs were free-standing with no obstruction.

The following criteria were considered in the installation of the HVSs:

- horizontal platform with appropriate support to secure the samplers against gusty wind were provided at AM1 & AM2;
- a minimum of 2 m separation from walls, parapets and penthouses was required for rooftop samplers;
- no furnace or incinerator flues were nearby;
- airflow around the sampler was unrestricted; and
- permission was obtained to set up the samplers and to gain access to the monitoring stations.

Preparation of Filter Papers by ETS-Test Consultant Ltd

- glass fibre filters were labeled and sufficient filters that were clean and without pinholes were selected;
- all filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ± 3 °C; the relative humidity (RH) was 40%; and
- ETS-Test Consultant Ltd, a HOKLAS accredited laboratory, implements comprehensive quality assurance and quality control programmes.

Field Monitoring

- the power supply was checked to ensure that the HVSs were working properly;
- the filter holder and the area surrounding the filter were cleaned;

- the filter holder was removed by loosening the foul bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully;
- the filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter;
- the swing bolts were fastened to hold the filter holder down to the frame. The pressure applied should be sufficient to avoid air leakage at the edges;
- then the shelter lid was closed and secured with the aluminum strip;
- the HVSs were warmed-up for about 5 minutes to establish runtemperature conditions;
- a new flowrate record sheet was set into the flow recorder;
- the flow rate of the HVSs was checked and adjust at around 0.6 -1.44 m³/min. The range specified in the EM&A Manual was between 0.6 1.7 m³/min;
- the programmable timer was set for a sampling period of 24 hours ± 1 hour, and the starting time, weather condition and the filter number were recorded;
- the initial elapsed time was recorded;
- at the end of sampling, the sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact;
- it was then placed in a clean plastic envelope and sealed;
- all monitoring information was recorded on a standard data sheet; and
- filters were sent to ETS-Test Consultant Ltd for analysis.

3.1.6 Maintenance and Calibration

The HVSs and their accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.

The flow rate of each HVS with mass flow controller were calibrated using an orifice calibrator. Initial calibration of the dust monitoring equipments were conducted upon installation and prior to commissioning. Five-point calibration was carried out for HVSs using Tisch TE-5025 A Calibration Kit. The calibration records for the HVSs are given in the respective monthly reports.

3.2 WATER QUALITY MONITORING

3.2.1 Water Quality Monitoring

In accordance with the EM&A Manual, the marine water quality monitoring should be conducted at three designated monitoring stations during the installation and removal of temporary marine piles. The installation of temporary marine piles was completed on 23 April 2007 and therefore water quality monitoring for marine pile installation works was not conducted during the reporting period.

3.2.2 Additional Water Quality Monitoring

As part of the Application for Variation of Environmental Permit (Application No. VEP-227/2007) submitted on 25 January 2007, the Permit Holder undertook additional water quality monitoring in the marine channel in connection with the installation of temporary marine piles.

The installation of temporary marine piles was completed on 23 April 2007 and four weeks of additional water quality monitoring was also completed on 21 May 2007 after the completion of marine piling works. In accordance with the additional water quality programme which was submitted to the EPD on 4 April 2007, four weeks of additional water quality monitoring during the dry season commenced on 19 November 2007 and was completed on 14 December 2007.

The following section describes the details of the additional water quality monitoring programme.

Monitoring Locations

Two control stations and an impact monitoring station were selected for the collection of data on water quality within and outside the marine channel. The locations of the control stations and the impact monitoring station are presented in *Table 3.5* and *Annex D*.

Table 3.5Monitoring Stations for Additional Water Quality Monitoring Programme

Station	Location	Monitoring Water Depth	Easting	Northing	
C1 ⁽¹⁾	Adjoins Expo Drive	Surface, middle and bottom	835645	815900	
C2 ⁽²⁾	Adjoins Expo Drive East	Surface, middle and bottom	836014	815926	
M1 ⁽³⁾	Approximately at the centre of the marine	Surface, middle and bottom	835852	815907	
	channel				
Remark:					
(1) C1 has been assigned the upstream station during mid-ebb tide with reference to the flow pattern within and in the vicinity of the marine channel.					
(2) C2 has been assigned the upstream station during mid-flood tide with reference to the flow pattern within and in the vicinity of the marine channel.					
(3) Taking into account the foreseeable difficulty in accessing the exact centre of the marine channel, monitoring station M1 was chosen to be the same location as W3 under the current					

ENVIRONMENTAL RESOURCES MANAGEMENT

monitoring programme but outside the silt screen.

Monitoring Schedule and Requirement

The additional water quality monitoring was conducted in accordance with *Table 3.6* during the dry season after the completion of the installation of the temporary marine piles at the proposed monitoring stations listed in *Table 3.5*. The monitoring programme for the reporting and following period is shown in *Annex E*.

Table 3.6 also summarises the monitoring frequency and water quality parameters adopted for the reporting period. Duplicate in-situ measurements and water samples for testing suspended solids (SS), and one water sample for testing total inorganic nitrogen (TIN) were taken for each sampling event.

Activity **Monitoring Frequency Monitoring Parameters** During the installation of Three days per week at mid-Dissolved Oxygen (DO), temporary marine piles flood and mid-ebb tides Turbidity, Suspended Solid (SS), Total Inorganic Nitrogen (TIN) Four-week monitoring Three days per week at mid-Dissolved Oxygen (DO), immediately after the flood and mid-ebb tides Turbidity, Suspended Solid completion of the installation (SS), Total Inorganic Nitrogen of the temporary marine piles (TIN) Four-week monitoring during Three days per week at mid-Dissolved Oxygen (DO), flood and mid-ebb tides the dry season after the Turbidity, Suspended Solid (SS), Total Inorganic Nitrogen completion of the installation of the temporary marine piles (TIN)

Table 3.6Additional Water Quality Monitoring Frequency and Parameters

Measurements were taken at three water depths, namely 1 m below water surface, mid-depth and 1 m above sea bed, except where the water depth is less than 6 m, in which case the mid-depth sample was omitted. Where the water depth was less than 3 m, monitoring was undertaken only at mid-depth.

Monitoring Equipment and Methodology

Dissolved oxygen and temperature measuring equipment

A portable and weatherproof dissolved oxygen (DO) measuring meter (YSI Model 85) was used in the impact monitoring.

The DO measuring meter has a membrane electrode with automatic temperature compensation complete with a 50-feet cable. Wet bulb calibration for a DO meter was carried out before measurement at each monitoring station.

Turbidity Measurement Instrument

The turbidity measurements were carried out on split water sample collected from the same depths as the SS samples. A portable and weatherproof turbidity-measuring meter (HACH 2100P) was used in the impact monitoring. It has a photoelectric sensor capable of measuring turbidity between 0-1000 NTU. Response of the sensor was checked with certified standard turbidity solutions before the start of measurement.

Suspended Solids

Water samples for suspended solids measurement were collected by means of a transparent PVC cylinder (Kahlsico Water Sampler), packed in ice (cooled to 4°C without being frozen) and delivered to the laboratory as soon as possible after collection. The SS determination work was started within 24 hours after the collection of the water samples, and the testing method of SS was carried by ETS-Testconsult Ltd (HOKLAS accredited laboratory) in accordance with the APHA 19ed 2540D⁽¹⁾ and the lowest detection limit is 1 mgL⁻¹. The Quality Assurance/Quality Control (QA/QC) procedures were followed as per HOKLAS requirements.

Water Depth Detector

A portable, battery-operated echo sounder (Speedtech instrument SM-5A) was used for the determination of water depth at each designated monitoring station.

Location of the Monitoring Sites

A hand-held GPS (MLR SP24) together with a suitably scaled map was used for locating the water quality monitoring stations.

Calibration of Equipment

All in-situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme before use, and subsequently re-calibrated at 3 monthly intervals throughout the water quality monitoring.

Laboratory Measurement / Analysis

Water samples for laboratory analyses under the additional water quality monitoring programme were collected following the same procedures described in *Section 3.2.4* for SS. The laboratory analyses were conducted within 24 hours after the collection of the water samples by ETS-Testconsult Ltd (HOKLAS accredited laboratory) in accordance with the analytical methods presented in *Table 3.7*. The Quality Assurance/Quality Control (QA/QC) procedures were followed as per HOKLAS requirements.

Table 3.7 Analytical Methods for Water Quality Parameters Monitored

Water Quality Parameter	Analytical Method	Detection Limit
Suspended Solids (SS)	APHA ⁽¹⁾ 2540D or HOKLAS-	1 mgL ⁻¹
	accredited method	
Total Inorganic Nitrogen (TIN)	APHA ⁽¹⁾ 4500 - NO ₃ F & NH ₃ G or	0.1 mgL ⁻¹
	HOKLAS-accredited method	Ū.

 $({}^{\scriptscriptstyle 1})$ American Public Health Association Standard Methods for the Examination of Water and Wastewater.

Water Quality Parameter	Analytical Method	Detection Limit			
Remark:					
(1) American Public Health Association (APHA) Standard Methods for the Examination of Water					
and Wastewater, 19th editi	on				

Action and Limit Levels

The Action and Limit levels were established in accordance with the EM&A Manual and are presented in *Table 3.8*.

Table 3.5Action and Limit Levels for Additional Water Quality Monitoring

Parameter	Tide	Action	Level	Limit L	Level
Dissolved	Mid-Ebb	3.26		3.23	
Oxygen ⁽¹⁾⁽²⁾ (DO) in mgL ⁻¹	Mid-Flood	3.25		3.14	
Suspended	Mid-Ebb	9.00	or 120 % of	10.00	or 130 % of
Solids ⁽¹⁾⁽³⁾ (SS) in	Mid-Flood	8.18	upstream control	8.40	upstream control
mgL ⁻¹			station's SS at		station's SS at the
			the same tide of		same tide of the
			the same day		same day
Turbidity ⁽¹⁾⁽³⁾	Mid-Ebb	5.32	or 120 % of	6.19	or 130 % of
(Tby) in NTU	Mid-Flood	4.76	upstream control	5.79	upstream control
			station's Tby at		station's Tby at the
			the same tide of		same tide of the
			the same day		same day
Total Inorganic	Mid-Ebb	0.43(5)	or 120 % of	$0.45^{(5)}$	or 130 % of
Nitrogen ⁽¹⁾⁽⁴⁾ (TIN)			upstream control		upstream control
in mgL-1	Mid-Flood	0.49	station's TIN at	0.51	station's TIN at
			the same tide of		the same tide of
			the same day		the same day

Remarks:

- Action and Limit Levels are established from the baseline water quality monitoring results obtained between 6 June and 5 July 2006 before the commencement of marine works.
- (2) For DO, non-compliance of the water quality criterion occurs when the monitoring result is lower than the limits.
- (3) For turbidity, SS and TIN, non-compliance of the water quality criterion occurs when the monitoring result is higher than the limits.
- (4) Action and Limit Levels are established from the water quality monitoring results obtained between 26 and 28 December 2006 for the monitoring locations WC1 and WC2 located within the marine channel.
- (5) Given that the calculated 95th and 99th percentiles of monitoring data obtained between 26 and 28 December 2006 are the same (ie 0.44 mgL⁻¹), and therefore 0.43 and 0.45 mgL⁻¹ will be adopted as the Action and Limit Levels respectively for midebb tide to allow a clear distinction between Action and Limit Levels.

4.1 Environmental Site Auditing

4

Weekly site inspections were carried out by the ET. 13 site inspections were conducted on 1, 8, 15, 22 and 29 November 2007; 6, 13, 20 and 27 December 2007, and 3, 10, 17, 24 and 31 January 2008 respectively. The major construction activities undertaken in the reporting period were the transfer and of trusses and the demolition of atrium link The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Report, the Environmental Permit and EM&A Manual. There was no non-compliance event recorded in the reporting period. The implementation status of environmental mitigation and status of relevant required submissions under the EP were reported as part of the monthly EM&A reports⁽¹⁾. Relevant submissions made on these measures and requirements during the reporting period are summarized in *Annex E*.

4.2 WATER DISCHARGE SAMPLING

In accordance with the discharge licence issued under WPCO, water sampling should be conducted at least quarterly to ensure the quality of treated effluent at three designated discharge points complies with the requirements of discharge license. During the reporting period, effluent sample monitoring was conducted at Discharge Point 2 and 3 on 13 December 2007. The results show that the effluent discharged from the project was in compliance with the discharge limit stipulated in the Water Discharge Licence.

4.3 LANDSCAPE AND VISUAL MONITORING

In accordance with *Section 6.7* of the EM&A Manual, bi-weekly landscape and visual monitoring is required to ensure that the design, implementation and maintenance of landscape and visual mitigation measures are fully achieved. The monitoring has commenced since January 2007 and is conducted by Earthasia Limited. Landscape and visual mitigation measures were implemented by the Contractor and the implementation status is given in *Annex E*.

4.4 EFFECTIVENESS OF MITIGATION MEASURES AND MONITORING

The mitigation measures recommended in the EIA report and required by the EP are considered effective in minimizing environmental impacts.

(1) The Monthly EM&A Reports for November 2007, December 2007 and January 2007 were submitted to the EPD on 20 December 2007, 14 January 2008.and 20 February 2008 respectively.

The EM&A for the Project was conducted as scheduled during the reporting period. No non-compliance events were observed during site audits. Two exceedances of Limit Level of TIN were recorded during December 2007. Notifications of Exceedances with detailed investigation reports were issued to the IEC and EPD immediately when the exceedances were identified. The EM&A programme is considered effective.

5.1 AIR QUALITY

The monitoring data at AM1 and AM2 were provided by ETS-Testconsult Ltd. Sixteen sets of 24-hour and forty-seven sets of 1-hour TSP monitoring were carried out at the designated monitoring stations (AM1 & AM2) during the reporting period. The monitoring data for 24-hour TSP and 1-hour TSP with weather conditions and graphical presentations are presented in *Annex F*.

The weather condition during the monitoring period varied from sunny to rainy. The local impacts observed near the monitoring stations were mainly vehicle emissions along Convention Avenue and Fleming Road.

No exceedance of 24-hour TSP and 1-hour TSP was recorded at the monitoring stations during this quarter. The measured 24-hr TSP at both stations varied in the reporting period with the measured TSP levels ranging from 23 - 145 μ gm⁻³ at AM1 and from 14 - 145 μ gm⁻³ at AM2.

5.2 WATER QUALITY

Water quality monitoring was not conducted at the designated monitoring stations (W3, W4 and W5) subsequent to the completion of installation of marine piles on 23 April 2007.

Additional dry-season water quality monitoring for the marine channel with piles installed commenced on 19 November 2007 and was completed on 14 December 2007. Twelve sets of water quality measurements were carried out at the designated monitoring stations C1, C2 and M1 during the reporting period.

The monitoring data and graphical presentations are summarized in *Annex G*. The monitoring results can also be found in the web-site (http://www.hkcecema.com/index.html).

Two exceedances of TIN level at the monitoring station M1 were recorded during the reporting period and was summarised in *Table 5.1*. Notifications of Exceedances with detailed investigation reports were issued to the IEC and EPD immediately when the exceedances were identified.

Table 5.1Summary of Record of Exceedance recorded during the Reporting Period

Station	Record of Exceedance
M1	Exceedance of Action Level of TIN on 7 December 2007 during mid-ebb and mid-
	flood tides
M1	Exceedance of Action Level of TIN on 10 December 2007 during mid-flood tide

Exceedances of Action Level of TIN were recorded on 7 and 10 December 2007. The steel roof truss was being erected in the vicinity of Station M1 during the time of monitoring. No liquid effluent was observed to be discharged from the site to the water channel. The TIN level for 10 December 2007 at M1 during mid-flood continued to exceed the action level for one instance. However, both the mid-ebb and mid-flood TIN levels returned to compliance during subsequent monitoring. The measured TIN levels of the water samples taken on 12 December 2007 at Station M1 during mid-ebb and mid-flood tides were 0.94 and 0.93 mgL⁻¹ respectively, representing compliance of the Action Levels derived based on 120% of the TIN levels recorded at the control stations for the respective tides (ie 1.07 mgL⁻¹ at Station C1 for mid-ebb tide and 1.08 mgL⁻¹ at Station C2 for mid-flood tide). It is considered that the exceedances were likely due to natural fluctuation rather than the Project works.

5.3 WASTE MANAGEMENT

Waste generated from this Project includes inert construction and demolition (C&D) materials and non-inert C&D wastes. Reference has been made on the Monthly Summary Waste Flow Table prepared by Hip Hing – Ngo Kee Joint Venture (*Annex H*).

With reference to relevant handling records and trip tickets of this Project, the quantities of different types of waste generated in the reporting period are summarized in *Table 5.2*.

		Quantity	
Month / Year	C&D Materials (inert) (a)	C&D Wastes (non-inert) ^(b)	Chemical Waste
November 2007	1016.5 tonnes	195.52 tonnes	0
		(excluding 20 tonnes of steel	
		materials which were	
		collected and recycled)	
December 2007	297 tonnes	92.52 tonnes	0
		(excluding 0.5 tonnes of steel	
		materials which were	
		collected and recycled)	
January 2008	495 tonnes	152.24 tonnes	0
-		(excluding 10 tonnes of steel	
		materials which were	
		collected and recycled)	
Total	1,808.5 tonnes	440.28 tonnes (excluding 30.5	0
		tonnes steel material)	

Table 5.2Quantities of Waste Generated from the Project

Notes:

(a) Inert C&D materials include bricks, concrete, building debris, rubble and excavated soil.
 1.0 tonnes of inert C&D materials were reused in this Project. Non-reused inert C&D materials were disposed at the public fill barging point at Quarry Bay.

(b) C&D wastes include steel materials generated from demolition of footbridge, the existing Atrium Link and working platform, paper / cardboard packaging waste, chemical waste and other wastes such as general refuse. A total of 30.5 tonnes of steel material were sent to recycler and the remaining C&D wastes other than general refuse were disposed of at SENT Landfill / Tseung Kwan O Area 137 temporary construction waste sorting facility.

ENVIRONMENTAL RESOURCES MANAGEMENT

A total of 1,808.5 tonnes of inert C&D materials (including 1 tonnes materials reused in this Project) and 30.5 tonnes of C&D wastes were generated during the reporting period. The C&D wastes and inert C&D materials generated from the Project were disposed of at SENT Landfill / Tseung Kwan O Area 137 temporary construction waste sorting facility and the public fill barging point at Quarry Bay respectively. No chemical waste was collected during the reporting period by licensed chemical waste collector.

6 ENVIRONMENTAL NON-CONFORMANCE

6.1 SUMMARY OF ENVIRONMENTAL EXCEEDANCE

No exceedance of the Action and Limit Levels of 24-hour and 1-hour TSP was recorded at monitoring stations during the reporting period.

Two exceedances of the Limit Level of TIN were recorded at the monitoring station M1 during the reporting period. Details of the exceedances have been provided in *Table 5.1*.

6.2 SUMMARY OF ENVIRONMENTAL NON-COMPLIANCE

No non-compliance event was recorded during the reporting period.

6.3 SUMMARY OF ENVIRONMENTAL COMPLAINT

No complaint was received during the reporting period.

6.4 SUMMARY OF ENVIRONMENTAL SUMMONS AND PROSECUTION

There was no summons or prosecution on environmental matters during the reporting period.

7.1 AIR QUALITY

7

Since the EIA only have qualitative assessment of dust impact during construction phase, the comparison was made on monitoring results and the Hong Kong Air Quality Objectives (HKAQO) (*Table 7.1*).

Table 7.1Comparison of the HKAQO and Air Quality Monitoring Results

Month	Monitoring Stations	Corresponding ASR in EIA	HKAQO, μg/m ³	Measured 24 hour TSP Monitoring Results, µg/m ^{3 (1)}	
			24 hour (1)	Average	Range ⁽²⁾
November 2007	AM1	AM8	260	78	23 - 145
	AM2	AM6	260	70	14 - 145
December 2007	AM1	AM8	260	80	23 - 145
	AM2	AM6	260	72	14 - 145
January 2008	AM1	AM8	260	80	23 - 145
	AM2	AM6	260	72	14 - 145

Remarks:

(1) Only 24 hours TSP monitoring results were compared as there is no maximum allowable concentration of 1 hour TSP in HKAQO.

(2) Average and range of data were calculated for the period of monitoring between August 2006 and the reporting period.

The monitoring results show that air quality impacts from construction activities during the reporting period were well below maximum allowable concentration stipulated in the HKAQO. Recommended mitigation measures in *Section 4.24* of EIA were implemented during the reporting period and were considered as effective.

7.2 WATER QUALITY

The hydrodynamic modelling assessment undertaken in the approved EIA Report was targeted at assessing the potential effects of the marine works on the flushing capacity of the water channel during the construction phase and no prediction was made on the change in water quality, hence no comparison can be made with the monitoring results.

7.3 WASTE MANAGEMENT

The estimated amount of waste generated in this project and the quantities of waste generated during the reporting period are presented in *Table 7.2*. Recommended mitigation measures in *Sections 6.35 to 6.41* of the EIA report are implemented during the reporting period. These measures are regarded as effective.

Type of Material	Estimated Amount of C&D Materials in EIA (inert & non- inert)	Actual Amount of C&D Materials Recorded ⁽¹⁾ (inert & non-inert)	
Demolition of temp. footbridge	585 tonnes	0 tonne	
Demolition of existing Atrium	4,680 tonnes	2,469.5 tonnes	
Link			
Demolition of temp. working	390 tonnes	0 tonne	
platform	20.000	40 4 05 5 4	
Construction of foundations and pile caps	20,000 tonnes	19,137.5 tonnes	
General Refuse	Insignificant	1,013 tonnes	
Chemical Waste	Small	288 Litres	
Remark:			
 The actual amount of C&D Ma works in August 2006. 	aterials was recorded since the con	mmencement of constructi	

Table 7.2Comparison of the Estimated Amount and the Actual Amount of Waste
Generated

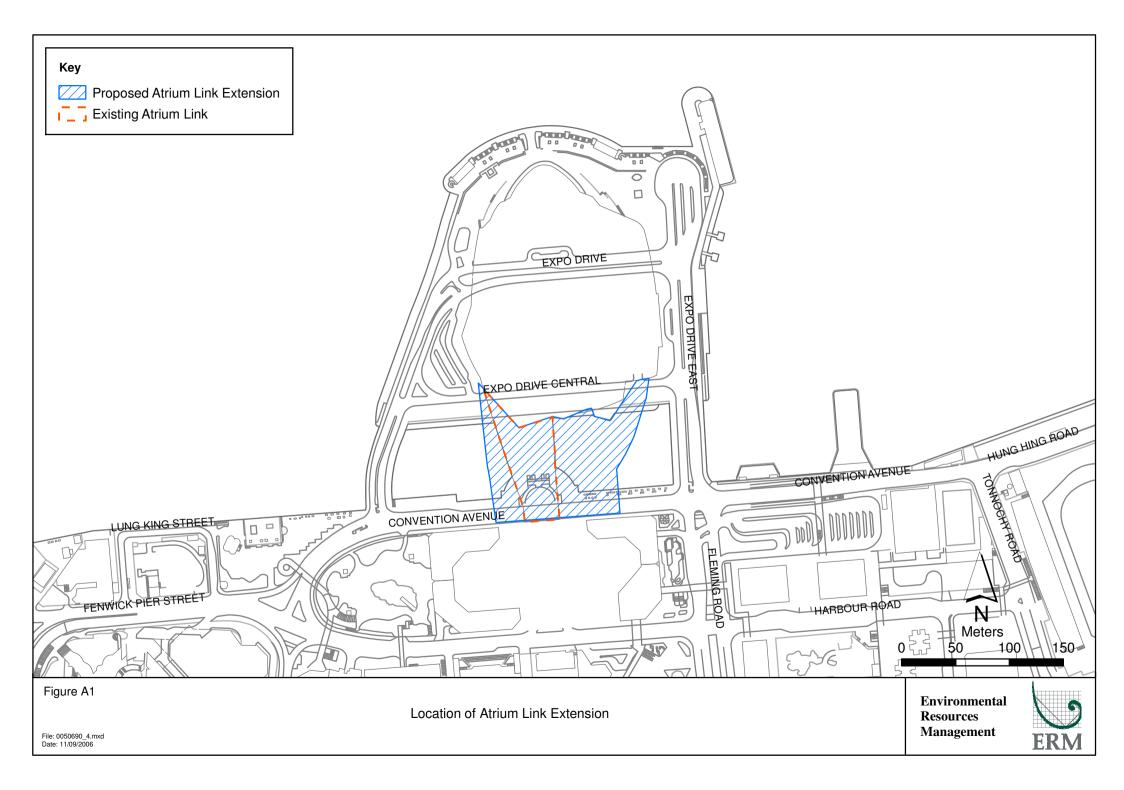
7.4 CONCLUSION OF THE REVIEW

The EIA predictions and the monitoring results during the reporting period have been reviewed. The EIA concluded that the Project would not pose adverse impacts to the environment, and the monitoring results also indicated that the construction of the Project did not pose adverse impacts to the environment. Recommendations given in the EIA are also considered to be adequate and effective for minimising the environmental impacts.

CONCLUSION

The Environmental Monitoring and Audit (EM&A) Report presents the EM&A works undertaken during the period from 1 November 2007 to 31 January 2008 in accordance with the EM&A Manual and the requirement under EP-239/2006A.

Sixteen sets of 24-hour and forty-seven sets of 1-hour TSP monitoring were carried out at the designated monitoring stations (AM1 & AM2) during the reporting period. No exceedance of 24-hour TSP and 1-hour TSP was recorded at the monitoring stations during this quarter.

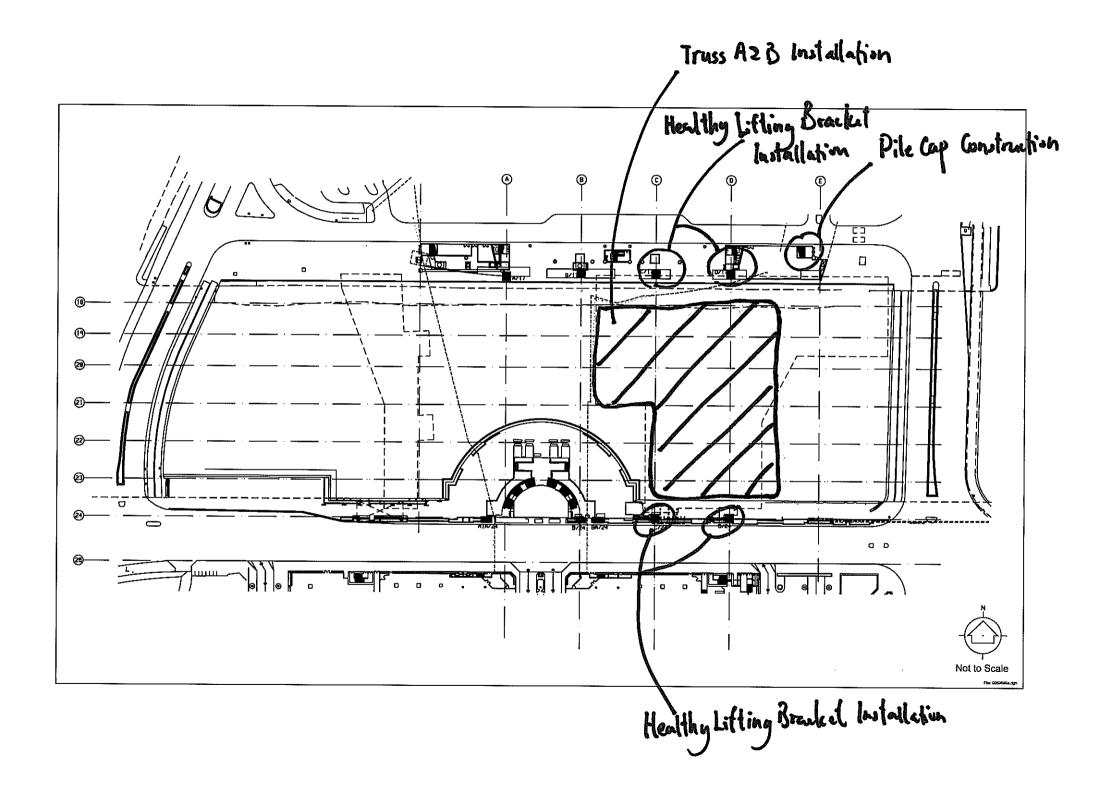

No non-compliance event was recorded during the reporting period.

Two exceedances of Limit Level of TIN were recorded during the reporting period. Results of the investigation indicated that the exceedances were likely to be due to natural fluctuation or related to works under other projects rather than works under this Project.

No complaint and summons/prosecution was received during the reporting period.

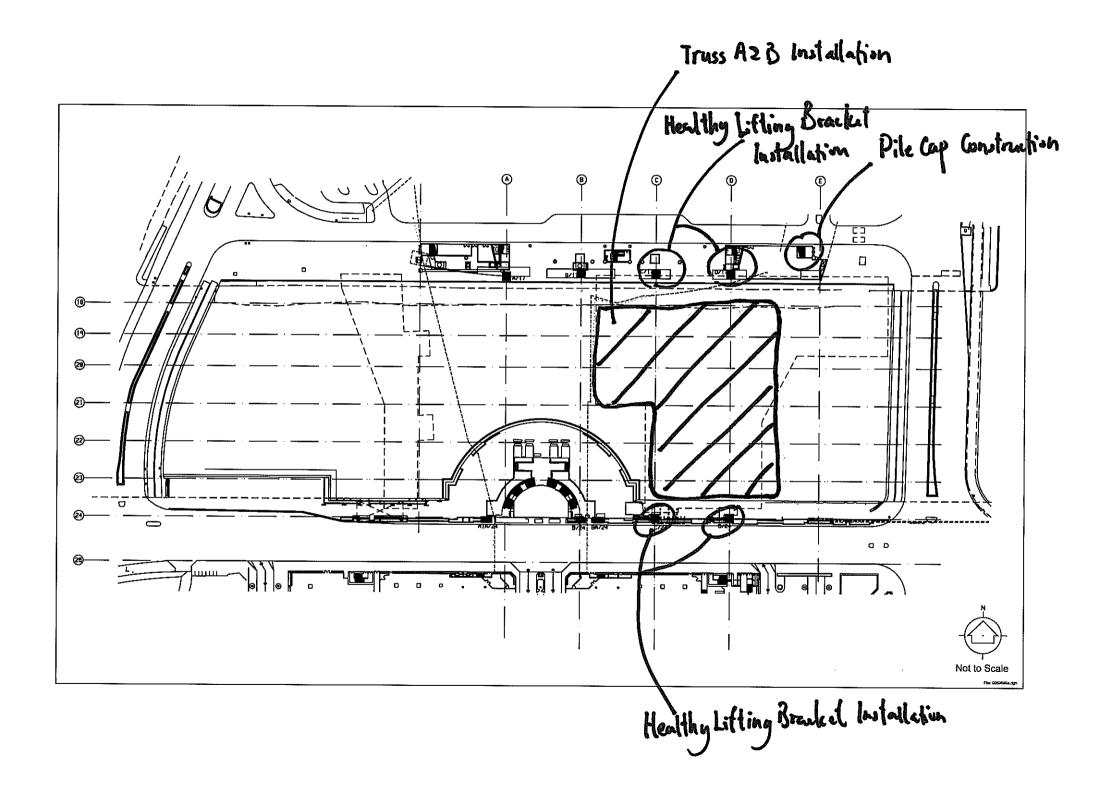
The ET will keep track of the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all necessary mitigation measures. Annex A

Location of Works Areas

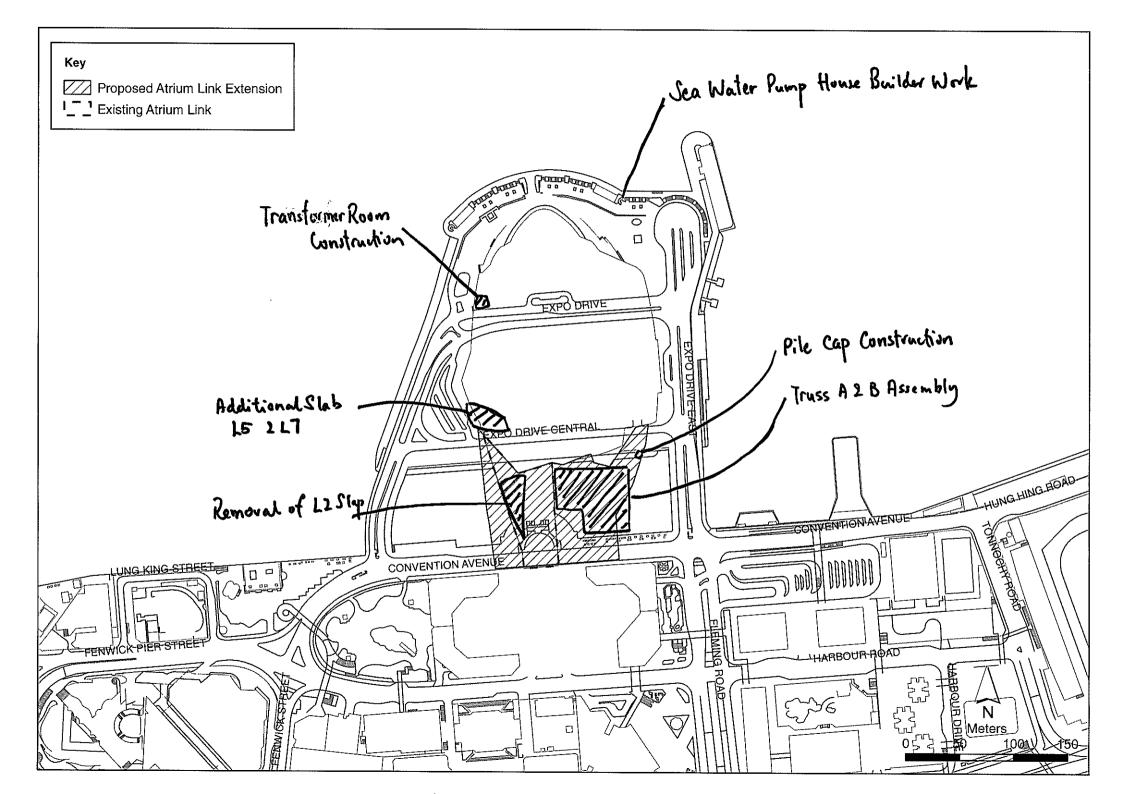


Annex B

Location of Construction Activities during the Reporting Period

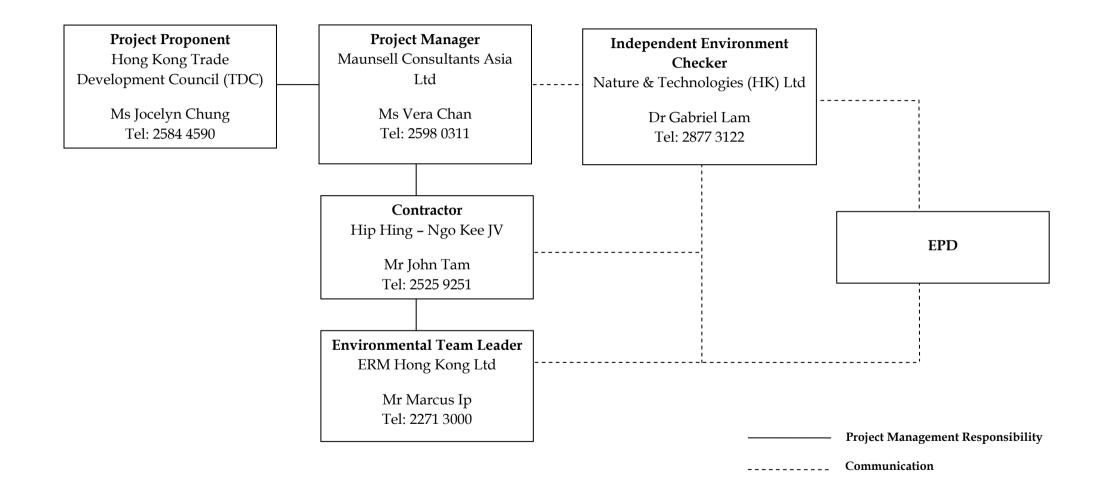

Summary of Works for November 2007

Description	Location
Construction of R.C. Column	Grid E/17
Removal of Level 5 slabs	Grid 17-21
Transfer Truss Installation	Grid A-B/24
Roof Truss A Assembly	Grid C
Roof Truss B Assembly	Grid D
Pile Cap Construction	Grid E/17a
Construction works for Transformer Room	L1, Phase II
Sea Water Pump House Cable Laying	L1, Phase II

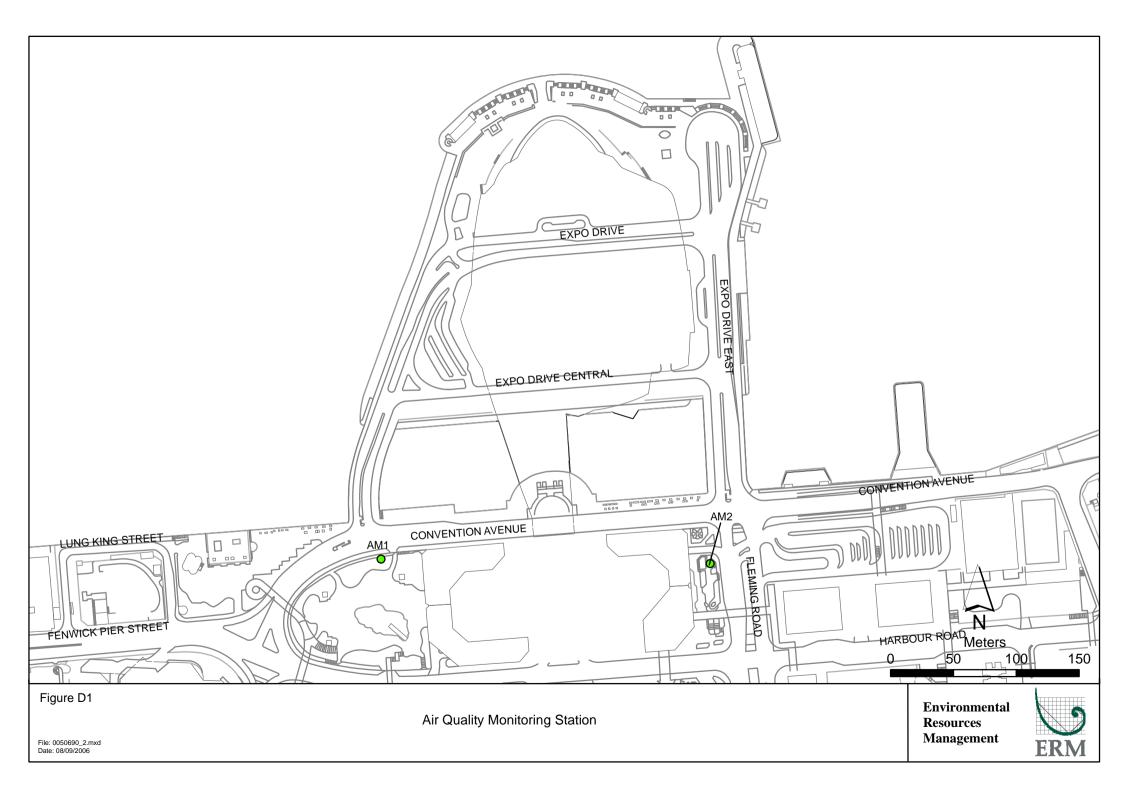

Summary of Works for December 2007

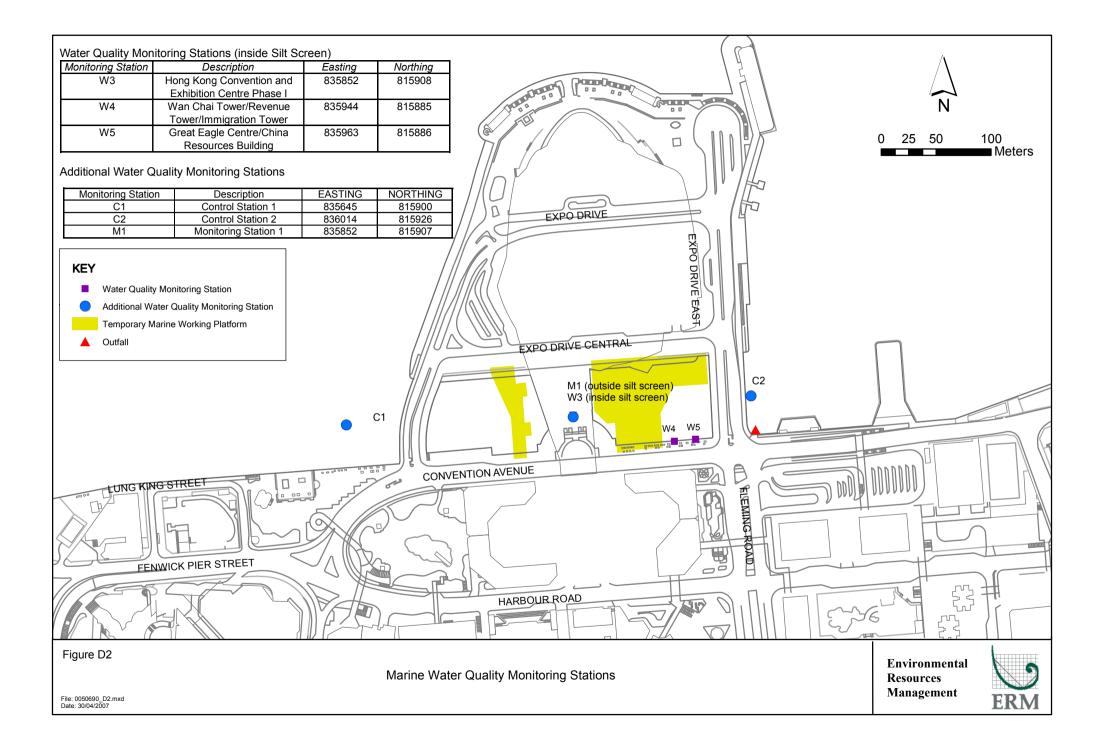
Description	Location
Construction of R.C. column	Grid E/17
Removal of Level 5 slabs	Grid 17-21
Transfer Truss Installation	GridA-B/24
Roof Truss A Assembly	Grid C
Roof Truss B Assembly	Grid D
Pile Cap Construction	Grid E/17a
Construction works for Tx. Room	Li, Phase II
Sea Water Pump House Cable Laying	Li, Phase II

Summary of Works for January 2008


Description	Location
Transfer Truss Installation	GridA-B/24
Roof Truss A Assembly	Grid C
Roof Truss B Assembly	Grid D
Pile Cap Construction	Grid E/17a
Construction works for Transformer Room	L1, Phase II
Sea Water Pump House Cable Laying	L1, Phase II
Sea Water Pump House Builder Work	L1, Phase II
Additional Slab at L5 and L7	Phase II
Removal of Existing L2 Slab	L2

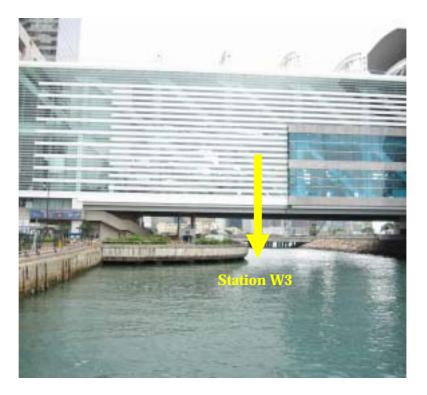
Annex C


Project Organization Chart and Contact Detail

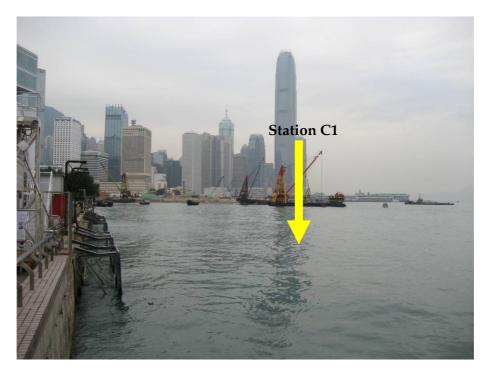

Project Organization (with contact details)

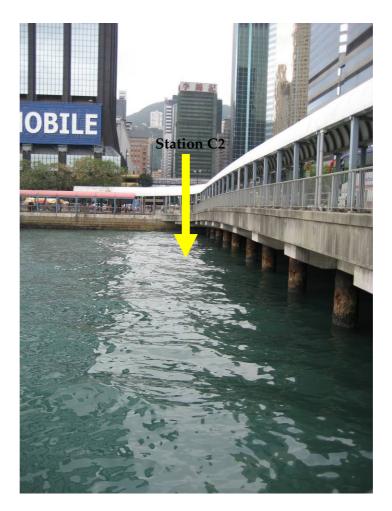
Annex D

Location of Monitoring Stations



Air Quality Monitoring Station (AM1)


Air Quality Monitoring Station (AM2)


Water Quality Monitoring Location – Station W3

Water Quality Monitoring Location – Stations W4 and W5

Additional Water Quality Monitoring Location – Station C1

Additional Water Quality Monitoring Location – Station C2

Additional Water Quality Monitoring Location – Station M1

Annex E

Summary of Implementation Status

Annex E - Summary of Environmental Protection / Mitigation Activities

Environmental Permit No. EP-239/2006/A

EP Condition	Submission	Action Required by the Permit Holder	Implementation Status
Ref			
	litigating Water Quality Impact		
2.4	Method statement on silt screens for seawater intakes (including design and maintenance requirements)	2 weeks before commencement of marine pile installation works	Method statement was submitted to the EPD on 21/6/06. Method statement (Revision A) was submitted to the EPD on 29/9/06. Method statement (Revision B) and supplementary information was submitted to the EPD on 23/5/07 and 18/6/07 respectively.
2.5	Method statement on silt curtain system for marine piling works (including design and maintenance requirements)	2 weeks before commencement of marine pile installation works	Method statement was submitted to the EPD on 15/9/06.
2.8	Design drawings specifying pile dimension and layout	2 weeks before commencement of marine pile installation works	Marine pile layout (final stage) was submitted to the EPD on 15/2/07. Revised marine pile layout (final stage) was
			submitted to the EPD on 26/3/07.
	litigating Air Quality Impact		
	Design drawings of ventilation facility for fresh air intakes (req'd only before operation of Project)	2 weeks before commencement of installation of ventilation facility	
Measures for M	itigating Landscape and Visual Impact		
	Implementation programme for landscape and visual mitigation measures (for both construction and operational phases of Project)	Within 6 months after commencement of construction of Project	Implementation programme (CM01, CM04 and CM05) was submitted to the EPD on 8/12/06.
	Details of each landscape and visual mitigation measures package (incl plans)	2 weeks before implementation of a particular mitigation package	Proposal on protection and transplantation of existing trees was submitted to the EPD on 8/12/06. Proposal for CM03 was submitted to the EPD on 8/12/06. Proposal for CM01, CM04 and CM05 was submitted to the EPD on 15/12/06. CM01 Rev 1 was submitted to the EPD on 22/1/07. Proposal CM02 was submitted to the EPD on 13/3/07. Proposal for OM01 was submitted to the EPD on 15/11/07.
3.2	Baseline Monitoring Report	One week before the commencement of construction	

Type of	Environmental Protection Measures	Location/ Timing	Status
Impact			
<u>Construction Ph</u> Air Quality	 The Air Pollution Control (Construction Dust) Regulation shall be implemented and good site practices shall be incorporated in the contract clauses to minimize construction dust impact. A number of practical measures are listed below: skip hoist for material transport should be totally enclosed by impervious sheeting; every vehicle should be washed to remove any dusty materials from its body and wheels before leaving a construction site; the area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores; where a site boundary adjoins a road, streets or other accessible to the public, hoarding of not less than 2.4 m high from ground level should be provided along the entire length except for a site entrance or exit; every stock of more than 20 bags of cement should be covered entirely by impervious sheeting placed in an area sheltered on the top and the 3 sides; all dusty materials should be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet; the height from which excavated materials dropped should be construction site should be covered entirely by clean impervious sheeting to ensure dust materials do not leak from the vehicle; and instigation of an environmental monitoring auditing program to monitor the construction process in order to enforce controls and modify method of work if dusty conditions arise. 	Work site / during construction	

Type of	Environmental Protection Measures	Location/ Timing	Status
Impact Operational Ph			
Air Quality	Some fresh air intakes of the Hong Kong Convention and Exhibition Centre Phase I, Renaissance Harbour View Hotel and Grand Hyatt Hotel (ASRs A4, A5 and A6) should be re-diverted to the new air vent shaft provided for Atrium Link Extension where fresh air intake located at +55.8mPD.	Location of ASRs A4, A5 & A6 / Design & Operation Stage (Long-term and Interim Scenario)	Measures not required until commencement of operational phase
Air Quality	Monitoring of NO ₂ concentration underneath the Atrium Link Extension should be conducted.	Underneath the deckover / The first six months upon completion of the ALE.	Measures not required until commencement of operational phase
Construction P	hase		
Noise	 Good Site Practice: only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program; silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction program; mobile plant, if any, should be sited as far from NSRs as possible; machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs; and material stockpiles and other structures should be effectively utilised, wherever practicable, in screening noise from onsite construction activities; Environmental audit shall be carried out to ensure that appropriate noise control measures would be properly implemented. 	Construction work areas / Construction period	

Type of	Environmental Protection Measures	Location/ Timing	Status
Impact			
Operational I			
Noise	 The following noise reduction measures should be considered as far as practicable during detailed design: choose quieter plant such as those which have been effectively silenced; include noise levels specification when ordering new plant; locate fixed plant away from any NSRs as far as practicable; locate fixed plant in plant rooms with thick walls or specially designed enclosure; locate noisy machines in basement or a completely separate building; and develop and implement a regularly scheduled plant maintenance programme in order to maintain controlled level of noise. 	Plant Room / Design and Operation Stage	Relevant design and plant procurement procedures to commence at a later stage
Construction	Phase	1	•
Water Quality	There should be no permanent structure in the water channel.	At the ALE sea channel / during operational phase	\bigvee
Water Quality	No dredging and no reclamation should be carried out for the Project.	At work sites / during construction phase	\checkmark
Water Quality	The marine pile layout as shown in Figure 3 of the Environmental Permit should be adopted. No more than approximately 80 numbers of temporary marine piles should be installed in the ALE sea channel during the construction phase. The dimension of each temporary marine pile should be 800mm nominal diameter. These piles should be driven into position and internal space should not be excavated, i.e. left as soil. No dredging or soil / sediment excavation should be carried out. Marine piles would be removed by reverse driving.	At work sites / during construction phase	V
Water Quality	Two layers of silt curtain should be installed around each of the marine piling and pile extraction locations. The proposed silt curtain should be extended to seabed with sinker blocks and regularly inspected and maintained to ensure it is serviceable.	At marine work sites and nearby seawater intakes / during marine piling and marine pile extraction	The installation of temporary marine piles was completed on 23 April 2007.

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
	All marine works should be carried out in a controlled manner such that release of sediments into the marine environment would be minimized. All wastewater generated from the piling activities should be collected and be treated before controlled discharge. Spoil should also be properly collected for proper disposal.		
Water Quality	In view of the close vicinity of the seawater intakes to the work site, silt screens are recommended to be deployed at the seawater intakes shown in Figure 5.2 of the EIA report during the whole construction period. Silt screens to be provided at seawater intakes should be regularly checked and maintained to ensure that they are serviceable. Refuse collection vessel should be mobilized on a need basis to collect any floating refuse lost from/ trapped at the work site during the construction period.	At seawater intakes / during the whole construction period	The installation of temporary marine piles was completed on 23 April 2007. Silt screens were removed as requested by the intake owners. Silt screens will be reinstalled at seawater intakes prior to the removal of marine piles.
Water Quality	Surface run-off from construction sites should be discharged into storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sedimentation basins. Channels or earth bunds or sand bag barriers should be provided on site to properly direct stormwater to such silt removal facilities. Perimeter channels at site boundaries should be provided where necessary to intercept storm runoff from outside the site so that it will not wash across the site. Catchpits and perimeter channels should be constructed in advance of site formation works and earthworks. Silt removal facilities, channels and manholes should be maintained and the deposited silt and grit should be removed regularly, at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times. Any practical options for the diversion and re-alignment of drainage should comply with both engineering and environmental requirements in order to ensure adequate hydraulic capacity of all drains. Minimum distances of 100 m should be maintained between the discharge points of construction site runoff and the nearby saltwater intakes.	Works areas / construction period	

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
Water Quality	There is a need to apply to EPD for a discharge license for discharge of effluent from the construction site under the WPCO. The discharge quality must meet the requirements specified in the discharge license. All the runoff and wastewater generated from the works areas should be treated so that it satisfies all the standards listed in the TM-DSS. Reuse and recycling of the treated effluent can minimize water consumption and reduce the effluent discharge volume. The beneficial uses of the treated effluent may include dust suppression, wheel washing and general cleaning. It is anticipated that only a small quantity of wastewater would be generated from the works areas. Any effluent discharge from the construction activities should be diverted away from the sea channel so as to avoid adverse water quality impact. Construction works should be programmed to minimize excavation works in rainy seasons (April to September). If excavation in soil could not be avoided in these months or at any time of year when rainstorms are likely, for the purpose of preventing soil erosion, temporary exposed slope surfaces should be protected by crushed stone or gravel, as excavation proceeds. Intercepting channels should be provided (e.g. along the crest / edge of excavation) to prevent storm runoff from washing across exposed soil surfaces. Arrangements should always be in place to ensure that adequate surface protection measures can be safely carried out well before the arrival of a rainstorm.	Works areas / construction period	
Water Quality	 Earthworks final surfaces should be well compacted and the subsequent permanent work or surface protection should be carried out immediately after the final surfaces are formed to prevent erosion caused by rainstorms. Appropriate drainage like intercepting channels should be provided where necessary. Measures should be taken to minimize the ingress of rainwater into trenches. If excavation of trenches in wet seasons is 	Works areas / construction period	\checkmark

Environmental Protection Measures Type of Location/ Timing Status Impact necessary, they should be dug and backfilled in short sections. Rainwater pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities. Open stockpiles of construction materials (e.g. aggregates, sand and fill material) on sites should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system. Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system, and to prevent storm run-off from getting into foul sewers. Discharge of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system. Water Good site practices should be adopted to remove rubbish and Works areas / construction period Λ litter from construction sites so as to prevent the rubbish and Ouality litter from spreading from the site area. It is recommended to clean the construction sites on a regular basis. Under normal circumstances, groundwater pumped out of wells, Water Works areas / construction period $\sqrt{}$ Quality etc. for the lowering of ground water level in basement or foundation construction should be discharged into storm drains after the removal of silt in silt removal facilities. Water Water used in ground boring and drilling or rock / soil anchoring Works areas / construction period $\sqrt{}$ should as far as practicable be re-circulated after sedimentation. Quality When there is a need for final disposal, the wastewater should be discharged into storm drains via silt removal facilities. Wastewater generated from the washing down of mixing trucks Water Works areas / construction period $\sqrt{}$ and drum mixers and similar equipment should whenever Quality practicable be recycled. The discharge of wastewater should be

Environmental Protection Measures	Location/ Timing	Status
To prevent pollution from wastewater overflow, the pump sump of any water recycling system should be provided with an on- line standby pump of adequate capacity and with automatic alternating devices.		
Under normal circumstances, surplus wastewater may be discharged into foul sewers after treatment in silt removal and pH adjustment facilities (to within the pH range of 6 to 10). Disposal of wastewater into storm drains will require more elaborate treatment.		
 All vehicles and plant should be cleaned before they leave a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. A wheel washing bay should be provided at every site exit if practicable and wash-water should have sand and silt settled out or removed before discharging into storm drains. The section of construction road between the wheel washing bay and the public road should be paved with backfall to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains. 	Works areas / construction period	
 Bentonite slurries used in diaphragm wall and bore-pile construction should be reconditioned and reused wherever practicable. If the disposal of a certain residual quantity cannot be avoided, the used slurry may be disposed of at the marine spoil grounds subject to obtaining a marine dumping licence from EPD on a case-by-case basis. If the used bentonite slurry is intended to be disposed of through the public drainage system, it should be treated to the respective effluent standards applicable to foul sewer, storm drains or the 	Works areas / construction period	\checkmark
	kept to a minimum. To prevent pollution from wastewater overflow, the pump sump of any water recycling system should be provided with an online standby pump of adequate capacity and with automatic alternating devices. Under normal circumstances, surplus wastewater may be discharged into foul sewers after treatment in silt removal and pH adjustment facilities (to within the pH range of 6 to 10). Disposal of wastewater into storm drains will require more elaborate treatment. All vehicles and plant should be cleaned before they leave a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. A wheel washing bay should be provided at every site exit if practicable and wash-water should have sand and silt settled out or removed before discharging into storm drains. The section of construction road between the wheel washing bay and the public road should be paved with backfall to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains. Bentonite slurries used in diaphragm wall and bore-pile construction should be reconditioned and reused wherever practicable. If the disposal of a certain residual quantity cannot be avoided, the used slurry may be disposed of at the marine spoil grounds subject to obtaining a marine dumping licence from EPD on a case-by-case basis. If the used bentonite slurry is intended to be disposed of through the public drainage system, it should be treated to the respective	kept to a minimum. To prevent pollution from wastewater overflow, the pump sump of any water recycling system should be provided with an on-line standby pump of adequate capacity and with automatic alternating devices. Under normal circumstances, surplus wastewater may be discharged into foul sewers after treatment in silt removal and pH adjustment facilities (to within the pH range of 6 to 10). Disposal of wastewater into storm drains will require more elaborate treatment. Works areas / construction period All vehicles and plant should be cleaned before they leave a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. Works areas / construction period A wheel washing bay should be provided at every site exit if practicable and wash-water should have sand and silt settled out or removed before discharging into storm drains. The section of construction road between the wheel washing bay and the public road should be prevent site run-off from entering public road drains. Works areas / construction period Bentonite slurries used in diaphragm wall and bore-pile construction should be reconditioned and reused wherever practicable. If the disposal of a cretain residual quantity cannot be avoided, the used slurry may be disposed of at the marine spoil grounds subject to obtaining a marine dumping licence from EPD on a case-by-case basis. Works areas / construction period If the used bentonite slurry is intended to be disposed of through the public drainage system, it should be treated to the respective effluent standards applicable to foul sewer, storm drains or the receiving waters as set out in the WPCO Technical Memorandum Works areas / construction period

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
	Water used in water testing to check leakage of structures and pipes should be reused for other purposes as far as practicable.Surplus unpolluted water could be discharged into storm drains.Sterilization is commonly accomplished by chlorination. Specific advice from EPD should be sought during the design stage of the works with regard to the disposal of the sterilizing water. The 	Works areas / construction period	
Water Quality	 Effluent discharges from building construction and other construction site activities are subject to WPCO control. Before commencing any demolition works, all sewer and drainage connections should be sealed to prevent building debris, soil, sand etc. from entering public sewers/drains. Wastewater generated from building construction activities including concreting, plastering, internal decoration, cleaning of works and similar activities should not be discharged into the stormwater drainage system. If the wastewater is to be discharged into foul sewers, it should undergo the removal of settleable solids in a silt removal facility, and pH adjustment as 	Works areas / construction period	
Water Quality	necessary. Acidic wastewater generated from acid cleaning, etching, pickling and similar activities should be neutralized to within the pH range of 6 to 10 before discharging into foul sewers. If there is no public foul sewer in the vicinity, the neutralized wastewater should be tinkered off site for disposal into foul sewers or treated to a standard acceptable to storm drains and the receiving waters.	Works areas / construction period	No acidic wastewater will be generated.

Type of Location/ Timing Environmental Protection Measures Status Impact Wastewater collected from canteen kitchens, including that from Works areas / construction period Water $\sqrt{}$ Ouality basins, sinks and floor drains, should be discharged into foul sewer via grease traps capable of providing at least 20 minutes retention during peak flow. Drainage serving an open oil filling point should be connected to storm drains via a petrol interceptors with peak storm bypass. Vehicle and plant servicing areas, vehicle wash bays and lubrication bays should as far as possible be located within roofed areas. The drainage in these covered areas should be connected to foul sewers via a petrol interceptor. Oil leakage or spillage should be contained and cleaned up immediately. Waste oil should be collected and stored for recycling or disposal in accordance with the Waste Disposal Ordinance. Water It is recommended to provide sufficient chemical toilets in the Works areas / construction period $\sqrt{}$ Quality works areas. The toilet facilities should be more than 30 m from the seafront or any watercourse. A licensed waste collector should be deployed to clean the chemical toilets on a regular basis. Notices should be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment. Regular environmental audit on the construction site can provide an effective control of any malpractices and can encourage continual improvement of environmental performance on site. Water Contractor must register as a chemical waste producer if Works areas / construction period $\sqrt{}$ chemical wastes would be produced from the construction Quality activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation should be observed and complied with for control of chemical wastes. Any service shop and maintenance facilities should be located on Works areas / construction period Water $\sqrt{}$

Type of Location/ Timing Impact Quality hard standings within a bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should only be undertaken within the areas appropriately equipped to control these discharges. Disposal of chemical wastes should be carried out in compliance with the Waste Disposal Ordinance. The Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes published under the Waste Disposal Ordinance details the requirements to deal with chemical wastes. General requirements are given as follows: suitable containers should be used to hold the chemical • wastes to avoid leakage or spillage during storage, handling and transport; chemical waste containers should be suitably labelled, to • notify and warn the personnel who are handling the wastes, to avoid accidents: and storage area should be selected at a safe location on site and • adequate space should be allocated to the storage area. To minimize the potential water quality impacts from the Water Works areas / construction period Δ Quality construction works located at or near the storm system or seafront, the following mitigation measures should be adopted: the use of less or smaller construction plants may be specified to reduce the disturbance to the seabed; temporary sewerage system should be designed to prevent • wastewater from entering the storm system and sea; temporary storage of materials (e.g. equipment, filling • materials, chemicals and fuel) and temporary stockpile of construction materials should be located well away from any water courses during carrying out of the construction works; stockpiling of construction materials and dusty materials ٠ should be covered and located away from any water courses; construction debris and spoil should be covered up and/or disposed of as soon as possible to avoid being washed into

Summary of Mitigation Measures Implementation Schedule

Environmental Protection Measures

Status

Type of	Environmental Protection Measures	Location/ Timing	Status
Impact	 the nearby water receivers; construction activities, which generate large amount of wastewater, should be carried out in a distance away from the waterfront, where practicable; mitigation measures to control site runoff from entering the nearby water environment should be implemented to minimize water quality impacts. Surface channels should be provided along the edge of the waterfront within the work sites to intercept the runoff; construction effluent, site run-off and sewage should be properly collected and/or treated; proper shoring may need to be erected in order to prevent soil/mud from slipping into the storm culvert/sea; and supervisory staff should be assigned to station on site to closely supervise and monitor the works. 	Works areas / construction period	
Quality	Areas is required during the construction phase of the Project, the monitoring should be carried out in accordance with the WPCO license which is under the ambit of regional office (RO) of EPD. The contractor should submit detailed monitoring programme to EPD for approval before commencement of the construction activities.	works areas / construction period	
Water Quality	Monitoring of the water quality at the seawater intakes inside the ALE sea channel should be conducted.	ALE sea channel / Before construction period and during installation and removal of temporary marine piles.	\checkmark
Water Quality	All barges should be fitted with tight seals to their bottom opening to prevent leakage of materials. The decks of all vessels should be kept tidy and free of oil or other substances that might be accidentally or otherwise washed overboard. Loading of barges should be controlled to prevent splashing of materials to the surrounding environment and barges should under no circumstances be filled to a level which would cause overflowing of material or sediment laden water during loading and	Works areas / construction period	No barge will be required for the project.

Type of Location/ Timing Environmental Protection Measures Status Impact transportation. All barges should maintain adequate clearance between vessels and the seabed at all states of the tide and should operate at a reduced speeds to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash. Connection of sewage generated from the ALE will be connected Project site / design and construction Relevant works have yet to be Water to the existing public sewer. For handling, treatment and commenced / completed Quality period disposal of other operational stage effluent, the practices outlined in ProPECC PN 5/93 should be adopted where applicable. Consensus from DSD should be sought on technical details of the drainage and sewerage proposals. Construction Phase Waste Recommendations for good site practices during the construction Work site / during the construction period Λ activities include: nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all Wastes generated at the site; training of site personnel in proper waste management and chemical handling procedures; provision of sufficient waste disposal points and regular collection of waste; appropriate measures to minimize windblown litter and dust • during transportation of waste by either covering trucks or by transporting wastes in enclosed containers; and regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors. Waste reduction is best achieved at the planning and design Work site / during the construction period Waste $\sqrt{}$ stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include: sorting of demolition debris and excavated materials from demolition works to recover reusable/ recyclable portions (ie soil, broken concrete, metal, etc);

Type of	Environmental Protection Measures	Location/ Timing	Status
Impact	 segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; encourage collection of aluminum cans by individual collectors by providing separate labeled bins to enable this waste to be segregated from other general refuse generated by the work force; proper storage and site practices to minimize the potential for damage to contamination of construction materials; and plan and stock construction materials carefully to minimize amount of waste. 		
Waste	General Refuse General refuse should be stored in enclosed bins or compaction units separate from C&D material. A reputable waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D material. Preferably an enclosed and covered area should be provided to reduce the occurrence of 'wind blown' light material.	Work site / during the construction period	√
Waste	 Construction and Demolition Material In order to minimize the impact resulting from collection and transportation of C&D material for off-site disposal, the C&D material from the following construction activities should be reused and recycled as far as possible to reduce the net amount of C&D material generated from the Project; a Waste Management Plan should be prepared in accordance with ETWB TCW No. 19/2005; a recording system for the amount of wastes generated, recycled and disposed (including the disposal sites) should be proposed; in order to monitor the disposal of C&D and solid wastes at 	Work site / during the construction period	

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
	 public filling facilities and landfills and to control fly-tipping, a trip-ticket system should be included. One may make reference to ETWB TCW No.31/2004 for details; the large amount of C&D waste generated is mainly due to the piling works of large diameter piles' excavation at the sea front site. If however marine sediment is found during pile excavation, the handling and disposal of such wastes will be managed in accordance with the requirements of the DASO and the current ETWB Tech. Circular no. 34/2002. 		
Waste	Chemical Wastes	Work site / during the construction period	\checkmark
	If chemical wastes are produced at the construction site, the Contractor would be required to register with the EPD as a Chemical Waste Producer and to follow the guidelines stated in the <i>Code of Practice on the Packaging, Labelling and Storage of</i> <i>Chemical Wastes</i> . Good quality containers compatible with the chemical wastes should be used, and incompatible chemicals should be stored separately. Appropriate labels should be securely attached on each chemical waste container Indicating the corresponding chemical characteristics of the chemical waste, such as explosives, flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The Contractor shall use a licensed collector to transport and dispose of the chemical wastes, to either the Chemical Waste Treatment Centre at Tsing Yi, or another licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation. For this Project, the amount of chemical wastes produced would be small.		
<i>Operational F</i> Waste	Phase General Refuse	Work site / during the construction period	Measures not required until
music	Similar to the existing situation, the main waste type generated during the operation stage of the Project will be general refuse generated by the public and staff. These include waste paper, food wrappings and beverage containers. The disposal of future	for she / during the construction period	commencement of operational phase

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
	waste arisings generated at the HKCEC would follow the existing handling and disposal arrangement. Provided proper arrangements are made with licensed contractors to collect the generated waste, adverse waste-related impact is not anticipated during the operation stage. It is expected that there will be a 5-7% increase ratio in the future operations.		
Construction Ph	lase		
Landscape & Visual	Due consideration of appearance and view to 'hide' the construction through careful use of: (a) hoarding design; (b) temporary partition walls; (c) screen for hotels; and (d) temporary footbridge.	Entire works area and adjacent hotels	
Landscape & Visual	Due consideration to protect existing trees.	Entire works area	\checkmark
Landscape & Visual	Due consideration of visual impact from construction activities: (a) construction workers access to reach construction areas without passing through hotels and existing HKCEC; and (b) construction light.	Entire works area	N
Operational Pha	se		
Landscape & Visual	Sensitive soft and hard landscape design for exposed rooftop garden and shady covered area underneath the Atrium Link Extension. Maximize greening opportunity via various in-situ planting and potted planting to achieve 30% of the roof area as planting area for the project.	Roof top and area underneath the Atrium Link Extension	Mitigation measures to be implemented during operational phase
Landscape & Visual	Sensitive building architecture to visually reduce the bulkiness of the building structure, to visually break down the scale of the facades, and to create rooftops for greening opportunities.	Building of the Atrium Link Extension	Mitigation measures to be implemented during operational phase

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
Landscape & Visual	Appearance and view considerations: (a) avoid industrial feel of building service elements; (b) interior visual screens for lower levels of the hotels; (c) consider relocation of facilities of interior spaces of hotels; and (d) careful lighting design at roofs and for building façade to avoid night-time glare.	Entire proposed works and adjacent hotels	Mitigation measures to be implemented during operational phase
Landscape & Visual	Transplanting of trees to adjacent locations.	Convention Avenue	Mitigation measures to be implemented during operational phase
Landscape & Visual	Reinstatement of existing waterfront public footpaths along Convention Avenue and the existing open spaces near Fenwick Street.	Convention Avenue and Fenwick Street	Mitigation measures to be implemented during operational phase

Remark:

- $\sqrt{}$ Compliance of Mitigation Measures
- <> Compliance of Mitigation but need improvement
- x Non-compliance of Mitigation Measures
- ▲ Non-compliance of Mitigation Measures but rectified by Hip Hing Ngo Kee JV
- Δ Deficiency of Mitigation Measures but rectified by Hip Hing Ngo Kee JV

Annex F

24-hour and 1-hour TSP Monitoring Results

24-hour TSP Monitoring Results at Station AM1 (Nearby The Grand Hyatt)

Date	Filter W	/eight (g)	Flow Rate	(m ³ /min.)	Elaps	se Time	Sampling	Conc.	Weather	Ave. Air	Particulate	Av. flow	Total vol.
	Initial	Final	Initial	Final	Initial	Final	Time(hrs.)	(µg/m ³)	Condition	Temp. (°C)	weight(g)	(m ³ /min)	(m ³)
05-Nov-07	2.8604	3.0480	0.91	0.91	12600.4	12624.4	24.0	142	Sunny	22	0.1876	0.91	1317.0
10-Nov-07	2.8090	3.0368	1.45	1.45	12627.4	12651.4	24.0	109	Sunny	22	0.2278	1.45	2088.3
16-Nov-07	2.7441	2.8815	1.45	1.45	12654.4	12678.4	24.0	66	Sunny	23	0.1374	1.45	2088.3
22-Nov-07	2.8090	2.9586	1.29	1.29	12681.4	12705.4	24.0	80	Sunny	21	0.1496	1.29	1861.3
28-Nov-07	2.7526	2.9455	1.04	1.04	12708.4	12732.4	24.0	129	Sunny	16	0.1929	1.04	1498.5
							Min	66					
							Max	142					
							Average	105					

Date	Filter W	/eight (g)	Flow Rate	(m ³ /min.)	Elaps	e Time	Sampling	Conc.	Weather	Ave. Air	Particulate	Av. flow	Total vol.
	Initial	Final	Initial	Final	Initial	Final	Time(hrs.)	(µg/m ³)	Condition	Temp. (°C)	weight(g)	(m ³ /min)	(m ³)
05-Nov-07	2.8722	3.0883	1.42	1.42	10928.8	10952.8	24.0	106	Sunny	22	0.2161	1.42	2046.0
10-Nov-07	2.8310	3.0411	1.45	1.45	10955.8	10979.8	24.0	101	Sunny	22	0.2101	1.45	2085.1
16-Nov-07	2.8215	2.9321	1.42	1.42	10982.8	11006.8	24.0	54	Sunny	23	0.1106	1.42	2046.0
22-Nov-07	2.8130	3.0191	1.39	1.39	11009.8	11033.8	24.0	103	Sunny	21	0.2061	1.39	2006.8
28-Nov-07	2.7136	2.9268	1.42	1.42	11036.8	11060.8	24.0	104	Sunny	16	0.2132	1.42	2046.0
							Min	54					
							Max	106					
							Average	93					

1-hour TSP Monitoring Results at Station AM1 (Nearby The Grand Hyatt)

Date	Filter W	/eight (g)	Flow Rate	(m ³ /min.)	Elaps	se Time	Sampling	Conc.	Weather	Ave. Air	Particulate	Av. flow	Total vol.
	Initial	Final	Initial	Final	Initial	Final	Time(hrs.)	(µg/m ³)	Condition	Temp. (°C)	weight(g)	(m ³ /min)	(m ³)
02-Nov-07	2.8557	2.8637	0.98	0.98	12598.4	12599.4	1.0	136	Sunny	20	0.0080	0.98	58.7
05-Nov-07	2.8502	2.8600	0.98	0.98	12599.4	12600.4	1.0	165	Sunny	22	0.0098	0.98	59.2
07-Nov-07	2.8098	2.8173	0.91	0.91	12624.4	12625.4	1.0	137	Sunny	23	0.0075	0.91	54.9
09-Nov-07	2.8079	2.8184	0.91	0.91	12625.4	12626.4	1.0	191	Sunny	23	0.0105	0.91	54.9
10-Nov-07	2.8121	2.8229	0.98	0.98	12626.4	12627.4	1.0	184	Sunny	22	0.0108	0.98	58.7
12-Nov-07	2.8274	2.8375	1.07	1.07	12651.4	12652.4	1.0	157	Sunny	21	0.0101	1.07	64.3
14-Nov-07	2.8065	2.8152	1.14	1.14	12652.4	12653.4	1.0	128	Sunny	21	0.0087	1.14	68.1
16-Nov-07	2.7851	2.7912	1.17	1.17	12653.4	12654.4	1.0	87	Sunny	23	0.0061	1.17	70.0
19-Nov-07	2.8578	2.8719	1.10	1.10	12678.4	12679.4	1.0	213	Sunny	20	0.0141	1.10	66.2
21-Nov-07	2.7828	2.7950	1.01	1.01	12679.4	12680.4	1.0	201	Sunny	21	0.0122	1.01	60.5
22-Nov-07	2.8310	2.8430	1.04	1.04	12680.4	12681.4	1.0	192	Sunny	21	0.0120	1.04	62.4
23-Nov-07	2.8136	2.8240	1.29	1.29	12705.4	12706.4	1.0	134	Sunny	21	0.0104	1.29	77.6
26-Nov-07	2.7885	2.8001	1.07	1.07	12706.4	12707.4	1.0	180	Sunny	22	0.0116	1.07	64.3
28-Nov-07	2.8367	2.8572	1.07	1.07	12707.4	12708.4	1.0	319	Sunny	16	0.0205	1.07	64.3
30-Nov-07	2.7442	2.7533	1.04	1.04	12732.4	12733.4	1.0	146	Sunny	17	0.0091	1.04	62.4
							Min	87					
							Max	319					

Average 171

Date	Filter W	/eight (g)	Flow Rate	(m ³ /min.)	Elaps	se Time	Sampling	Conc.	Weather	Ave. Air	Particulate	Av. flow	Total vol.
	Initial	Final	Initial	Final	Initial	Final	Time(hrs.)	(µg/m ³)	Condition	Temp. (°C)	weight(g)	(m ³ /min)	(m ³)
02-Nov-07	2.8411	2.8528	1.39	1.39	10926.8	10927.8	1.0	140	Sunny	20	0.0117	1.39	83.6
05-Nov-07	2.8424	2.8545	1.45	1.45	10927.8	10928.8	1.0	139	Sunny	22	0.0121	1.45	86.9
07-Nov-07	2.7835	2.7958	1.37	1.37	10952.8	10953.8	1.0	150	Sunny	23	0.0123	1.37	82.0
09-Nov-07	2.8121	2.8230	1.37	1.37	10953.8	10954.8	1.0	133	Sunny	23	0.0109	1.37	82.0
10-Nov-07	2.8534	2.8651	1.34	1.34	10954.8	10955.8	1.0	146	Sunny	22	0.0117	1.34	80.4
12-Nov-07	2.8536	2.8634	1.39	1.39	10979.8	10980.8	1.0	117	Sunny	21	0.0098	1.39	83.6
14-Nov-07	2.8271	2.8433	1.37	1.33	10980.8	10981.8	1.0	201	Sunny	21	0.0162	1.35	80.7
16-Nov-07	2.8106	2.8163	1.34	1.34	10981.8	10982.8	1.0	71	Sunny	23	0.0057	1.34	80.4
19-Nov-07	2.8256	2.8371	1.28	1.28	11006.8	11007.8	1.0	149	Sunny	20	0.0115	1.28	77.1
21-Nov-07	2.8260	2.8380	1.31	1.31	11007.8	11008.8	1.0	152	Sunny	21	0.0120	1.31	78.7
22-Nov-07	2.8462	2.8601	1.28	1.28	11008.8	11009.8	1.0	180	Sunny	21	0.0139	1.28	77.1
23-Nov-07	2.7811	2.7896	1.34	1.34	11033.8	11034.8	1.0	106	Sunny	21	0.0085	1.34	80.4
26-Nov-07	2.7927	2.8072	1.31	1.31	11034.8	11035.8	1.0	184	Sunny	22	0.0145	1.31	78.7
28-Nov-07	2.8140	2.8361	1.45	1.45	11035.8	11036.8	1.0	242	Sunny	16	0.0221	1.45	91.2
30-Nov-07	2.7352	2.7451	1.28	1.28	11060.8	11061.8	1.0	128	Sunny	17	0.0099	1.28	77.1
	-			-			Min	71					

Min	71
Max	242
Average	149

Meteorological Data Extra	acted from King's Park Stat	ions of the Hong Kong Observatory

			к	ing's Park Statio	on	
Date	Weather	Average Air Temperature (° C)	Average Relative Humiditiy (%)	Total Rainfall (mm)	Wind Direction (Degree)	Average Wind Speed (km/h)
02-Nov-07	Sunny	20	82	2.0	020	11.5
05-Nov-07	Sunny	22	49	0.0	010	11.0
07-Nov-07	Sunny	23	53	0.0	020	12.0
09-Nov-07	Sunny	23	62	0.0	010	8.5
10-Nov-07	Sunny	22	71	0.0	100	10.5
12-Nov-07	Sunny	21	71	0.0	100	13.5
14-Nov-07	Sunny	21	74	0.0	100	11.1
16-Nov-07	Sunny	23	72	0.0	110	10.6
19-Nov-07	Sunny	20	66	0.0	020	8.3
21-Nov-07	Sunny	21	64	0.0	100	8.3
22-Nov-07	Sunny	21	70	0.0	100	9.3
23-Nov-07	Sunny	21	68	0.0	100	8.6
26-Nov-07	Sunny	22	53	0.0	360	10.9
28-Nov-07	Sunny	16	27	0.0	010	12.2
30-Nov-07	Sunny	17	56	0.0	100	8.8

24-hour TSP Monitoring Results at Station AM1 (Nearby The Grand Hyatt)

Date	Filter W	/eight (g)	Flow Rate	(m ³ /min.)	Elaps	se Time	Sampling	Conc.	Weather	Ave. Air	Particulate	Av. flow	Total vol.
	Initial	Final	Initial	Final	Initial	Final	Time(hrs.)	(µg/m ³)	Condition	Temp. (°C)	weight(g)	(m ³ /min)	(m ³)
04-Dec-07	2.7733	3.0227	1.29	1.29	12735.4	12759.4	24.0	134	Sunny	22	0.2494	1.29	1861.3
10-Dec-07	2.7060	2.8673	1.36	1.36	12762.4	12786.4	24.0	83	Sunny	22	0.1613	1.36	1952.2
15-Dec-07	2.8518	3.0851	1.29	1.29	12789.4	12813.4	24.0	125	Sunny	23	0.2333	1.29	1861.3
21-Dec-07	2.8515	3.0044	1.39	1.39	12816.4	12840.4	24.0	77	Sunny	21	0.1529	1.39	1997.6
27-Dec-07	2.8328	2.9635	1.12	1.12	12843.4	12867.4	24.0	81	Sunny	16	0.1307	1.12	1612.8
E							Min	77					
							Max	134					
							Average	100					

Date	Filter W	'eight (g)	Flow Rate	(m ³ /min.)	Elaps	e Time	Sampling	Conc.	Weather	Ave. Air	Particulate	Av. flow	Total vol.
	Initial	Final	Initial	Final	Initial	Final	Time(hrs.)	(µg/m ³)	Condition	Temp. (°C)	weight(g)	(m ³ /min)	(m ³)
04-Dec-07	2.8092	3.0224	1.26	1.26	11063.7	11087.7	24.0	118	Sunny	22	0.2132	1.26	1811.1
10-Dec-07	2.6960	2.8446	1.50	1.50	11090.7	11114.7	24.0	69	Sunny	22	0.1486	1.50	2164.4
15-Dec-07	2.8431	3.0779	1.39	1.39	11117.7	11141.7	24.0	117	Sunny	23	0.2348	1.39	2006.8
21-Dec-07	2.8449	2.9845	1.37	1.37	11144.7	11168.7	24.0	71	Sunny	21	0.1396	1.37	1966.8
27-Dec-07	2.8059	2.9488	1.35	1.35	11171.7	11195.7	24.0	74	Sunny	16	0.1429	1.35	1944.0
							Min	69					
							Max	118					
							Average	90					

1-hour TSP Monitoring Results at Station AM1 (Nearby The Grand Hyatt)

Date	Filter W	/eight (g)	Flow Rate	(m ³ /min.)	Elaps	se Time	Sampling	Conc.	Weather	Ave. Air	Particulate	Av. flow	Total vol
	Initial	Final	Initial	Final	Initial	Final	Time(hrs.)	(µg/m ³)	Condition	Temp. (°C)	weight(g)	(m ³ /min)	(m ³)
03-Dec-07	2.7341	2.7455	1.07	1.07	12733.4	12734.4	1.0	177	Sunny	20	0.0114	1.07	64.3
04-Dec-07	2.7766	2.7905	1.04	1.04	12734.4	12735.4	1.0	223	Sunny	22	0.0139	1.04	62.4
05-Dec-07	2.8153	2.8357	1.39	1.39	12759.4	12760.4	1.0	245	Sunny	23	0.0204	1.39	83.2
07-Dec-07	2.7649	2.7848	1.07	1.07	12760.4	12761.4	1.0	309	Sunny	23	0.0199	1.07	64.3
10-Dec-07	2.7683	2.7780	1.01	1.01	12761.4	12762.4	1.0	160	Sunny	22	0.0097	1.01	60.6
12-Dec-07	2.7026	2.7088	1.04	1.04	12786.4	12787.4	1.0	99	Sunny	21	0.0062	1.04	62.4
14-Dec-07	2.7209	2.7332	1.04	1.04	12787.4	12788.4	1.0	197	Sunny	21	0.0123	1.04	62.4
15-Dec-07	2.9005	2.9096	0.98	0.98	12788.4	12789.4	1.0	155	Sunny	23	0.0091	0.98	58.7
17-Dec-07	2.8935	2.9037	1.04	1.04	12813.4	12814.4	1.0	163	Sunny	20	0.0102	1.04	62.4
19-Dec-07	2.8261	2.8418	1.04	1.04	12814.4	12815.4	1.0	251	Sunny	21	0.0157	1.04	62.4
21-Dec-07	2.8208	2.8313	1.01	1.01	12815.4	12816.4	1.0	173	Sunny	21	0.0105	1.01	60.5
24-Dec-07	2.8481	2.8585	1.04	1.04	12840.4	12841.4	1.0	167	Rainy	21	0.0104	1.04	62.4
24-Dec-07	2.8191	2.8288	1.04	1.04	12841.4	12842.4	1.0	155	Rainy	22	0.0097	1.04	62.4
27-Dec-07	2.8158	2.8202	1.19	1.19	12842.4	12843.4	1.0	62	Sunny	16	0.0044	1.19	71.2
29-Dec-07	2.8407	2.8508	1.06	1.06	12867.4	12868.4	1.0	159	Sunny	17	0.0101	1.06	63.4
31-Dec-07	2.8478	2.8559	1.09	1.09	12868.4	12869.4	1.0	124	Sunny	17	0.0081	1.09	65.4
							Min	62					
							NA	000					

Max 309 Average 176

Date	Filter W	/eight (g)	Flow Rate	(m ³ /min.)	Elaps	e Time	Sampling	Conc.	Weather	Ave. Air	Particulate	Av. flow	Total vol.
	Initial	Final	Initial	Final	Initial	Final	Time(hrs.)	(µg/m ³)	Condition	Temp. (°C)	weight(g)	(m ³ /min)	(m ³)
03-Dec-07	2.7262	2.7373	1.28	1.28	11061.8	11062.8	1.0	144	Sunny	20	0.0111	1.28	77.1
04-Dec-07	2.7942	2.8086	1.26	1.26	11062.8	11063.7	1.0	193	Sunny	22	0.0144	1.26	74.7
05-Dec-07	2.7827	2.8076	1.50	1.50	11087.7	11088.7	1.0	276	Sunny	23	0.0249	1.50	90.1
07-Dec-07	2.7811	2.8072	1.42	1.42	11088.7	11089.7	1.0	309	Sunny	23	0.0261	1.42	84.4
10-Dec-07	2.7776	2.7904	1.42	1.42	11089.7	11090.7	1.0	150	Sunny	22	0.0128	1.42	85.2
12-Dec-07	2.7071	2.7144	1.34	1.34	11114.7	11115.7	1.0	91	Sunny	21	0.0073	1.34	80.4
14-Dec-07	2.7082	2.7218	1.31	1.31	11115.7	11116.7	1.0	173	Sunny	21	0.0136	1.31	78.7
15-Dec-07	2.8802	2.8908	1.31	1.31	11116.7	11117.7	1.0	135	Sunny	23	0.0106	1.31	78.7
17-Dec-07	2.8442	2.8557	1.31	1.31	11141.7	11142.7	1.0	146	Sunny	20	0.0115	1.31	78.7
19-Dec-07	2.8382	2.8581	1.31	1.31	11142.7	11143.7	1.0	253	Sunny	21	0.0199	1.31	78.7
21-Dec-07	2.8307	2.8408	1.28	1.28	11143.7	11144.7	1.0	131	Sunny	21	0.0101	1.28	77.1
24-Dec-07	2.8855	2.8946	1.26	1.26	11168.7	11169.7	1.0	121	Rainy	21	0.0091	1.26	75.5
24-Dec-07	2.8478	2.8577	1.31	1.31	11169.7	11170.7	1.0	126	Rainy	22	0.0099	1.31	78.7
27-Dec-07	2.8192	2.8289	1.35	1.35	11170.7	11171.7	1.0	120	Sunny	16	0.0097	1.35	81.0
29-Dec-07	2.8275	2.8369	1.32	1.32	11195.7	11196.7	1.0	119	Sunny	17	0.0094	1.32	79.2
31-Dec-07	2.8322	2.8469	1.35	1.35	11196.7	11197.7	1.0	181	Sunny	17	0.0147	1.35	81.0
							Min	91					
							Max	309					
							Average	169					

Meteorological Data Ext	tracted from King's P	ark Stations of the	Hong Kong Observatory

		King's Park Station									
Date	Weather	Average Air Temperature (° C)	Average Relative Humiditiy (%)	Total Rainfall (mm)	Wind Direction (Degree)	Average Wind Speed (km/h)					
03-Dec-07	Sunny	20	58	0.0	100	8.9					
04-Dec-07	Sunny	18	68	0.0	100	10.2					
05-Dec-07	Sunny	18	66	0.0	100	8.9					
07-Dec-07	Sunny	19	64	0.0	110	5.0					
10-Dec-07	Sunny	24	77	0.0	110	10.2					
12-Dec-07	Sunny	22	74	0.0	110	6.3					
14-Dec-07	Sunny	19	76	0.0	100	11.8					
15-Dec-07	Sunny	19	78	0.0	100	11.2					
17-Dec-07	Sunny	21	72	0.0	120	4.5					
19-Dec-07	Sunny	19	83	0.0	100	4.0					
21-Dec-07	Sunny	21	79	0.0	100	10.8					
24-Dec-07	Rainy	17	83	14.5	020	6.1					
24-Dec-07	Rainy	17	83	14.5	020	6.1					
27-Dec-07	Sunny	18	73	0.0	110	7.9					
29-Dec-07	Sunny	18	63	0.0	020	8.5					
31-Dec-07	Sunny	14	37	0.0	020	9.0					

24-hour TSP Monitoring Results at Station AM1 (Nearby The Grand Hyatt)

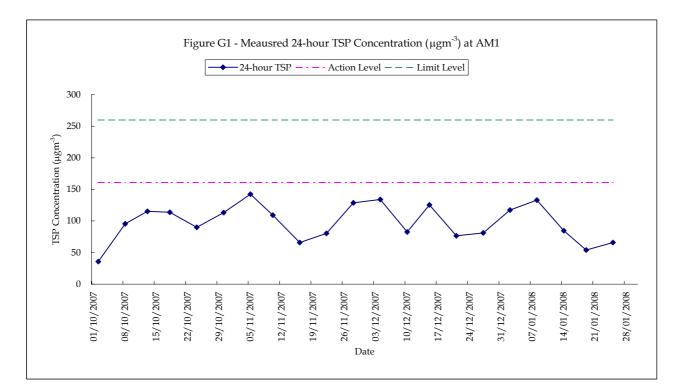
Date	Filter W	/eight (g)	Flow Rate (m ³ /min.)		Elapse Time		Sampling	Conc.	Weather	Ave. Air	Particulate	Av. flow	Total vol.
	Initial	Final	Initial	Final	Initial	Final	Time(hrs.)	(µg/m ³)	Condition	Temp. (°C)	weight(g)	(m ³ /min)	(m ³)
02-Jan-08	2.8573	3.0359	1.0572	1.0572	12870.41	12894.41	24.0	117	Sunny	17	0.1786	1.06	1522.4
08-Jan-08	2.8334	3.0605	1.1861	1.1861	12897.41	12921.41	24.0	133	Sunny	21	0.2271	1.19	1708.0
14-Jan-08	2.8566	2.9856	1.0572	1.0572	12924.40	12948.41	24.0	85	Sunny	15	0.1290	1.06	1523.0
19-Jan-08	2.8504	2.9575	1.3795	1.3795	12951.41	12975.41	24.0	54	Sunny	17	0.1071	1.38	1986.5
25-Jan-08	2.8255	2.9228	1.0250	1.0250	12978.41	13002.41	24.0	66	Rainy	12	0.0973	1.03	1476.0
31-Jan-08	2.8172	2.8949	1.0572	1.0572	13005.41	13029.42	24.0	51	Rainy	9	0.0777	1.06	1523.0
							Min	51					
							Max	133					
							Average	84					

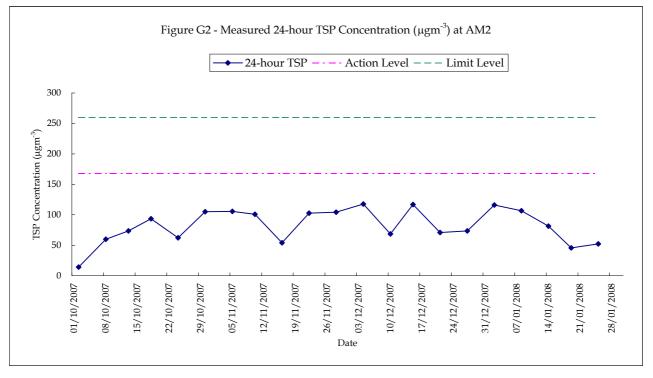
Date	Filter W	/eight (g)	Flow Rate (m ³ /min.)		Elapse Time		Sampling	Conc.	Weather	Ave. Air	Particulate	Av. flow	Total vol.
	Initial	Final	Initial	Final	Initial	Final	Time(hrs.)	(µg/m ³)	Condition	Temp. (°C)	weight(g)	(m ³ /min)	(m ³)
02-Jan-08	2.8596	3.0850	1.3500	1.3500	11198.73	11222.72	24.0	116	Sunny	17	0.2254	1.35	1943.2
08-Jan-08	2.8066	3.0137	1.3500	1.3500	11225.72	11249.72	24.0	107	Sunny	21	0.2071	1.35	1944.0
14-Jan-08	2.8274	2.9894	1.3794	1.3794	11252.72	11276.72	24.0	82	Sunny	15	0.1620	1.38	1986.3
19-Jan-08	2.8827	2.9755	1.4088	1.4088	11279.72	11303.72	24.0	46	Sunny	17	0.0928	1.41	2028.7
25-Jan-08	2.8455	2.9403	1.2618	1.2618	11306.72	11330.72	24.0	52	Rainy	12	0.0948	1.26	1817.0
31-Jan-08	2.8301	2.8980	1.3794	1.3794	11333.72	11357.72	24.0	34	Rainy	9	0.0679	1.38	1986.3
							Min	34					
							Max	116					
							Average	73					

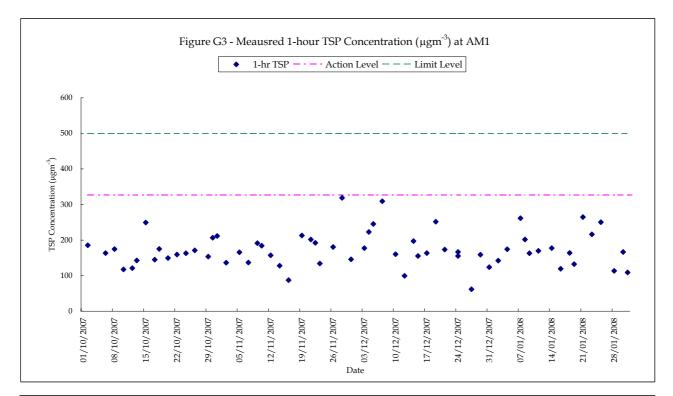
1-hour TSP Monitoring Results

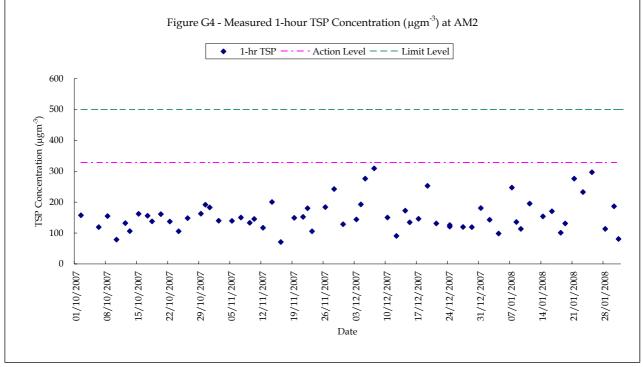
1-hour TSP Monitoring Results at Station AM1 (Nearby The Grand Hyatt)

Date	Filter W	/eight (g)	Flow Rate	(m ³ /min.)	Elaps	se Time	Sampling	Conc.	Weather	Ave. Air	Particulate	Av. flow	Total vol.
	Initial	Final	Initial	Final	Initial	Final	Time(hrs.)	(µg/m ³)	Condition	Temp. (°C)	weight(g)	(m ³ /min)	(m ³)
02-Jan-08	2.8198	2.8291	1.0894	1.0894	12869.41	12870.41	1.0	142	Sunny	17	0.0093	1.09	65.4
04-Jan-08	2.8281	2.8388	1.0250	1.0250	12894.41	12895.41	1.0	174	Sunny	19	0.0107	1.03	61.5
07-Jan-08	2.8180	2.8346	1.0572	1.0572	12895.41	12896.41	1.0	262	Sunny	26	0.0166	1.06	63.4
08-Jan-08	2.7679	2.7807	1.0572	1.0572	12896.41	12897.41	1.0	202	Sunny	21	0.0128	1.06	63.4
09-Jan-08	2.8041	2.8182	1.4439	1.4439	12921.41	12922.41	1.0	163	Sunny	22	0.0141	1.44	86.6
11-Jan-08	2.8185	2.8298	1.1217	1.1217	12922.41	12923.40	1.0	170	Sunny	21	0.0113	1.12	66.6
14-Jan-08	2.8511	2.8620	1.0250	1.0250	12923.40	12924.40	1.0	177	Sunny	15	0.0109	1.03	61.5
16-Jan-08	2.8230	2.8308	1.0894	1.0894	12948.41	12949.41	1.0	119	Sunny	14	0.0078	1.09	65.4
18-Jan-08	2.8116	2.8220	1.0572	1.0572	12949.41	12950.41	1.0	164	Sunny	14	0.0104	1.06	63.4
19-Jan-08	2.8331	2.8415	1.0572	1.0572	12950.41	12951.41	1.0	132	Sunny	17	0.0084	1.06	63.4
21-Jan-08	2.8558	2.8736	1.1217	1.1217	12975.41	12976.41	1.0	264	Sunny	17	0.0178	1.12	67.3
23-Jan-08	2.8163	2.8296	1.0250	1.0250	12976.41	12977.41	1.0	216	Sunny	18	0.0133	1.03	61.5
25-Jan-08	2.8641	2.8790	0.9928	0.9928	12977.41	12978.41	1.0	250	Rainy	12	0.0149	0.99	59.6
28-Jan-08	2.8587	2.8659	1.0572	1.0572	13002.41	13003.41	1.0	114	Sunny	14	0.0072	1.06	63.4
30-Jan-08	2.8310	2.8419	1.0894	1.0894	13003.41	13004.41	1.0	167	Rainy	12	0.0109	1.09	65.4
31-Jan-08	2.7972	2.8039	1.0250	1.0250	13004.41	13005.41	1.0	109	Rainy	9	0.0067	1.03	61.5
							Min	109					
							Max	264	1				

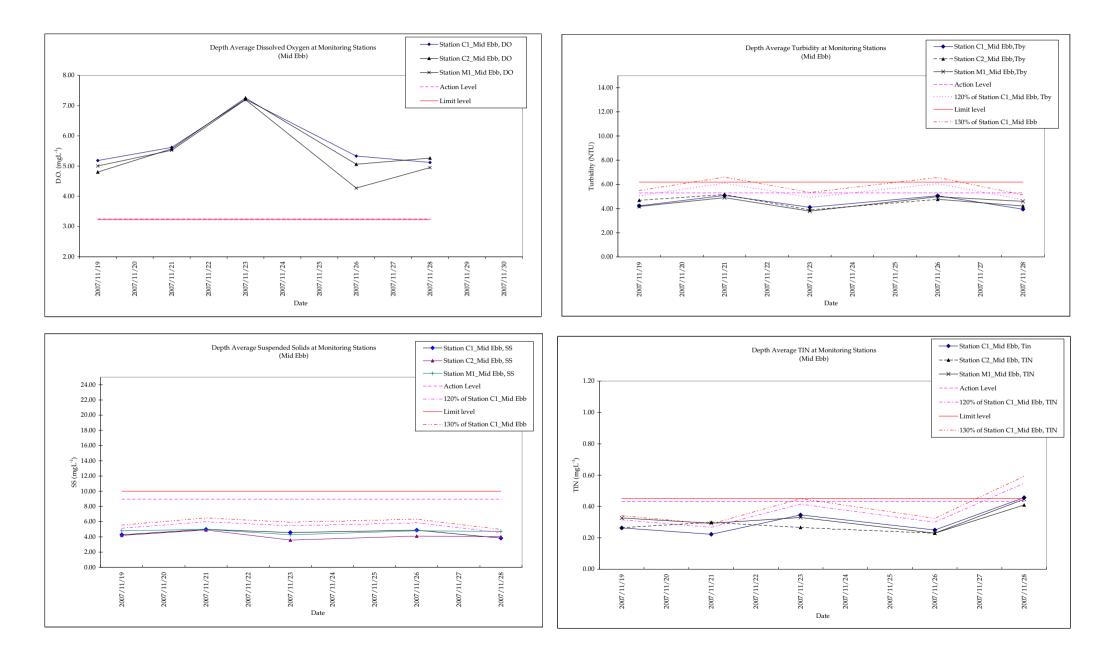

Max 264 Average 177

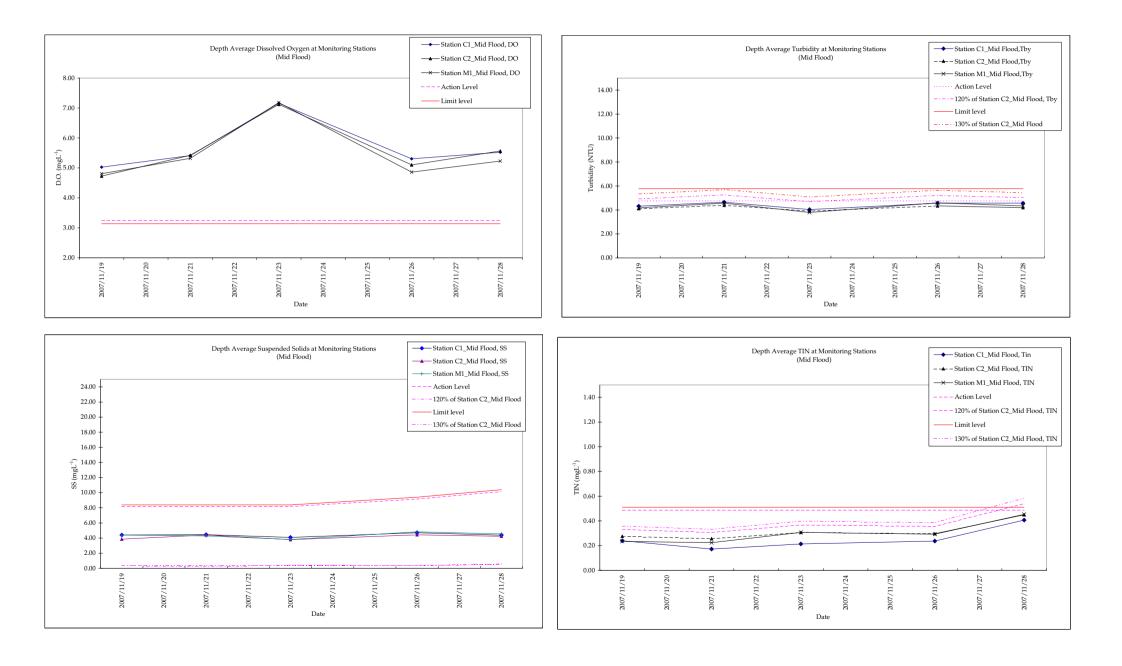

1-hour TSP Monitoring Results at Station AM2 (Nearby Renaissance Harbour View Hotel)


Date	Filter W	/eight (g)	Flow Rate	(m ³ /min.)	Elaps	Elapse Time		Conc.	Weather	Ave. Air	Particulate	Av. flow	Total vol.
	Initial	Final	Initial	Final	Initial	Final	Time(hrs.)	(µg/m ³)	Condition	Temp. (°C)	weight(g)	(m ³ /min)	(m ³)
02-Jan-08	2.8546	2.8662	1.3500	1.3500	11197.73	11198.73	1.0	143	Sunny	17	0.0116	1.35	81.0
04-Jan-08	2.8561	2.8639	1.3206	1.3206	11222.72	11223.72	1.0	98	Sunny	19	0.0078	1.32	79.2
07-Jan-08	2.8372	2.8568	1.3206	1.3206	11223.72	11224.72	1.0	247	Sunny	26	0.0196	1.32	79.2
08-Jan-08	2.8223	2.8328	1.2912	1.2912	11224.72	11225.72	1.0	136	Sunny	21	0.0105	1.29	77.5
09-Jan-08	2.8510	2.8598	1.2912	1.2912	11249.72	11250.72	1.0	114	Sunny	22	0.0088	1.29	77.5
11-Jan-08	2.8001	2.8149	1.2618	1.2618	11250.72	11251.72	1.0	195	Sunny	21	0.0148	1.26	75.7
14-Jan-08	2.7971	2.8093	1.3206	1.3206	11251.72	11252.72	1.0	154	Sunny	15	0.0122	1.32	79.2
16-Jan-08	2.8411	2.8555	1.4088	1.4088	11276.72	11277.72	1.0	170	Sunny	14	0.0144	1.41	84.5
18-Jan-08	2.8679	2.8759	1.3206	1.3206	11277.72	11278.72	1.0	101	Sunny	14	0.0080	1.32	79.2
19-Jan-08	2.8388	2.8492	1.3206	1.3206	11278.72	11279.72	1.0	131	Sunny	17	0.0104	1.32	79.2
21-Jan-08	2.8554	2.8768	1.2912	1.2912	11303.72	11304.72	1.0	276	Sunny	17	0.0214	1.29	77.5
23-Jan-08	2.8368	2.8536	1.2030	1.2030	11304.72	11305.72	1.0	233	Sunny	18	0.0168	1.20	72.2
25-Jan-08	2.8471	2.8680	1.1736	1.1736	11305.72	11306.72	1.0	297	Rainy	12	0.0209	1.17	70.4
28-Jan-08	2.8137	2.8221	1.2324	1.2324	11330.72	11331.72	1.0	114	Sunny	14	0.0084	1.23	73.9
30-Jan-08	2.8230	2.8381	1.3500	1.3500	11331.72	11332.72	1.0	186	Rainy	12	0.0151	1.35	81.0
31-Jan-08	2.8299	2.8363	1.3206	1.3206	11332.72	11333.72	1.0	81	Rainy	9	0.0064	1.32	79.2
							Min	81					
							Max	297					
							Average	167					


Meteorological Data Extra	acted from King's Park Stat	ions of the Hong Kong Observatory

		King's Park Station										
Date	Weather	Average Air Temperature (° C)	Average Relative Humiditiy (%)	Total Rainfall (mm)	Wind Direction (Degree)	Average Wind Speed (km/h)						
02-Jan-08	Sunny	17	37	0.0	020	9.4						
04-Jan-08	Sunny	19	73	0.0	110	7.6						
07-Jan-08	Sunny	26	67	0.0	120	4.2						
08-Jan-08	Sunny	21	71	0.0	110	8.5						
09-Jan-08	Sunny	22	76	0.0	110	8.2						
11-Jan-08	Sunny	21	93	0.0	100	10.1						
14-Jan-08	Sunny	15	63	0.0	010	7.9						
16-Jan-08	Sunny	14	58	0.0	020	9.2						
18-Jan-08	Sunny	14	77	0.0	100	10.3						
19-Jan-08	Sunny	17	82	0.0	100	13.5						
21-Jan-08	Sunny	17	71	0.0	260	5.5						
23-Jan-08	Sunny	18	58	0.0	020	4.8						
25-Jan-08	Rainy	12	92	17.0	110	9.0						
28-Jan-08	Sunny	14	86	0.0	110	3.5						
30-Jan-08	Rainy	12	94	12.0	100	6.5						
31-Jan-08	Rainy	9	87	1.0	20	5.1						




Annex G

Water Quality Monitoring Results

Figure 1 - Additional Water Quality Monitoring Results (Mid Ebb)

Figure 2 - Additional Water Quality Monitoring Results (Mid Flood)

Water Quality Monitoring Results for Station C1 (Mid-Ebb Tide)

	1						r							7							7							1							٦
Date			19/1	1/2007						21/1	1/2007						23/1	1/2007						26/1	1/2007						28/1	1/2007			
Time (hh:mm)			07:00	0 - 07:14					08:15 - 08:30					11:15 - 11:28					12:30 - 12:45							14:52 - 15:04									
Ambient Temperature				20							22							22							23							19			
Weather			F	ine						s	unny						1	Fine						C	oudy						F	ine			
Water Depth (m)			1	4.00						1	3.60						1	3.60						1	4.00						9	.40			
Monitoring Depth	1.	00	7.	00	1	3.00		1.0	00	6	.80	1:	2.60		1.	00	6	.80	1	2.60		1	.00	7.	00	13.00			1.0	00	4.	70	8.40		1
Tide			Mi	d-Ebb						Mi	d-Ebb						Mi	d-Ebb						Mi	d-Ebb						Mic	d-Ebb			1
Trial	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	P. Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average
Water Temperature (°C)	21.6	21.6	21.4	21.4	21.0	21.0	21.3	23.2	23.1	22.9	22.8	22.9	22.9	23.0	22.4	22.3	22.2	22.2	21.6	21.8	22.1	23.8	23.7	23.1	23.1	23.0	23.0	23.3	22.3	22.2	21.6	21.6	21.3	21.2	21.7
Salinity (ppt)	30.3	30.4	31.1	31.1	31.6	31.6	31.0	30.1	30.2	30.5	30.6	30.5	30.5	30.4	31.5	31.4	31.6	31.6	31.6	31.7	31.6	30.4	30.3	31.1	31.1	31.4	31.3	30.9	29.2	29.2	30.0	29.9	30.2	30.1	29.8
D.O. (mg/L)	5.62	5.56	5.24	5.20	4.77	4.71	5.2	5.79	5.75	5.56	5.60	5.49	5.52	5.6	7.30	7.33	7.23	7.20	7.09	7.09	7.2	5.63	5.67	5.26	5.23	5.11	5.07	5.3	5.49	5.45	5.23	5.21	4.68	4.64	5.1
D.O. Saturation (%)	80.7	79.8	75.0	74.4	67.6	66.8	74.1	80.4	79.9	77.2	77.8	76.3	76.7	78.1	105.4	105.3	102.0	102.0	99.8	99.8	102.4	78.2	78.8	73.1	72.6	70.5	69.9	73.9	75.0	74.6	71.4	71.2	63.9	63.5	69.9
Turbidity (NTU)	3.96	3.93	4.13	4.19	4.54	4.65	4.2	4.89	4.85	5.17	5.16	5.23	5.23	5.1	4.04	4.02	4.11	4.09	4.16	4.20	4.1	5.09	5.08	4.97	4.96	5.12	5.15	5.1	4.20	4.21	3.67	3.74	3.92	3.99	4.0
SS* (mg/L)	3.8	4.0	4.3	4.3	4.5	4.8	4.3	5.0	4.8	4.7	5.0	5.2	5.3	5.0	4.3	4.5	4.5	4.5	4.8	4.8	4.6	5.5	5.2	4.5	4.8	4.8	4.5	4.9	4.5	4.5	3.5	3.5	3.5	3.5	3.8
NO _x , mg N/L	0.	18	0.	14	().15	0.2	0.1	14	0	.14	(0.13	0.1	0.	13	0	.12		0.17	0.1	0	.19	0.	17	(0.14	0.2	0.1	12	0.1	14	C).14	0.1
NH ₃ , mg NH ₃ -N/L	0.	13	0.	04	().15	0.1	0.0	01	0	.17	(0.08	0.1	0.	21	0	.17		0.24	0.2	<(.13	0.	09	(0.06	0.1	0.3	30	0.3	32	C).35	0.3
Total Inorganic Nitrogen (Ammonia + NO _x), mg/L	0	.3	C	.2		0.3	0.3	0.	.1	c	1.3		0.2	0.2	o	.3	c).3		0.4	0.3	(1.3	0	.3		0.2	0.3	0.4	4	0.	.5		0.5	0.5
Remarks					-														-																

Within Action Level ?							
Date	19/11/2007						
D.O. (mg/L)	Y						
Turbidity (NTU)	Y						
SS (mg/L)	Y						
TIN (mg/L)	Y						

Within Lim	it Level ?
Date	19/11/2007
D.O. (mg/L)	Y
Turbidity (NTU)	Y
SS (mg/L)	Y
TIN (ma/L)	Y

Within Action Level ?						
Date	21/11/2007					
D.O. (mg/L)	Y					
Turbidity (NTU)	Y					
SS (mg/L)	Y					
TIN (mg/L)	Y					

Within Limit Level ?						
Date	21/11/2007					
D.O. (mg/L)	Y					
Turbidity (NTU)	Y					
SS (mg/L)	Y					
TIN (mg/L)	Y					

Within Action Level ?							
Date	23/11/2007						
D.O. (mg/L)	Y						
Turbidity (NTU)	Y						
SS (mg/L)	Y						
TIN (mg/L)	Y						

Within Limit Level ?							
Date	23/11/2007						
D.O. (mg/L)	Y						
Turbidity (NTU)	Y						
SS (mg/L)	Y						
TIN (ma/L)	Y						

Within Action Level ?								
Date	26/11/2007							
D.O. (mg/L)	Y							
Turbidity (NTU)	Y							
SS (mg/L)	Y							
TIN (mg/L)	Y							

Within Limit Level ?							
Date	26/11/2007						
D.O. (mg/L)	Y						
Turbidity (NTU)	Y						
SS (mg/L)	Y						
TIN (mg/L)	Y						

Within Action Level ?					
Date	28/11/2007				
D.O. (mg/L)	Y				
Turbidity (NTU)	Y				
SS (mg/L)	Y				
TIN (mg/L)	N				

Within	Limit	Level ?	

Within Limit Level ?					
Date	28/11/2007				
D.O. (mg/L)	Y				
Turbidity (NTU)	Y				
SS (mg/L)	Y				
TIN (mg/L)	Ν				

Water Quality Monitoring Results for Station C2 (Mid-Ebb Tide)

	1						-							٦	r						-							7							7
Date			19	/11/2007						21/1	1/2007						23/1	1/2007						26/1	1/2007				I		28/1	1/2007			
Time (hh:mm)			07:	45 - 07:58						08:5	5 - 09:10				11:57 - 12:12				12:50 - 13:05							14:25 -14:33									
Ambient Temperature				20							22							22							23				L			19			
Weather				Fine						s	unny						F	Fine						CI	oudy				1		F	ine			
Water Depth (m)				9.80						9	9.60						1-	4.40						14	4.20				1		10	0.00			1
Monitoring Depth	1	1.00		4.90	8.8	30		1	.00	4	.80	8	8.60		1.	.00	7.20 13.40		1	1	.00	7.	10	13	3.20		1.	.00	5.	00	9.00		1		
Tide			Ν	1id-Ebb						Mi	d-Ebb						Mi	d-Ebb						Mic	l-Ebb				1		Mic	d-Ebb			1
Trial	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	I Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average
Water Temperature (°C)	21.7	21.8	21.5	21.5	21.2	21.2	21.5	22.9	22.9	22.7	22.6	22.7	22.7	22.8	22.6	22.7	22.5	22.5	22.0	22.1	22.4	23.8	23.9	23.1	23.0	23.0	23.0	23.3	22.4	22.4	21.8	21.8	21.2	21.2	21.8
Salinity (ppt)	30.1	30.1	30.9	31.0	31.4	31.4	30.8	30.2	30.2	30.4	30.4	30.4	30.3	30.3	31.3	31.3	31.5	31.4	31.6	31.6	31.5	30.6	30.5	31.1	31.1	31.4	31.4	31.0	29.7	29.7	30.0	30.0	30.3	30.2	30.0
D.O. (mg/L)	5.08	5.01	4.95	4.90	4.46	4.40	4.8	5.59	5.55	5.47	5.52	5.62	5.65	5.6	7.36	7.37	7.37	7.38	7.02	7.02	7.3	5.28	5.24	4.89	4.84	5.04	5.07	5.1	5.65	5.61	5.32	5.30	4.87	4.83	5.3
D.O. Saturation (%)	72.9	71.9	70.8	70.1	63.2	62.4	68.6	77.7	77.1	76.2	76.9	78.1	78.5	77.4	104.7	104.8	104.1	104.2	100.0	99.8	102.9	73.3	72.8	67.4	66.7	69.5	69.9	69.9	77.2	76.8	72.6	72.4	66.5	66.1	71.9
Turbidity (NTU)	4.27	4.33	5.08	5.18	4.60	4.66	4.7	5.17	5.13	5.09	5.08	5.27	5.23	5.2	3.93	3.94	3.80	3.80	3.97	3.97	3.9	4.94	4.97	4.87	4.95	4.43	4.46	4.8	4.02	4.08	3.88	3.93	4.71	4.66	4.2
SS* (mg/L)	4.3	4.5	4.5	4.8	3.5	3.5	4.2	4.5	4.5	4.8	4.8	5.3	5.5	4.9	4.0	3.8	3.5	3.5	3.2	3.5	3.6	4.3	4.5	4.2	4.0	3.8	3.8	4.1	3.8	4.0	3.5	3.5	4.5	4.8	4.0
NO _x , mg N/L	().18		0.16		0.14	0.2	C	0.14	0	.15	C	0.14	0.1	0.	16	0.	.16		0.10	0.1	(.12	0.	15	0	.14	0.1	0.	.13	0.	14	0	0.11	0.1
NH ₃ , mg NH ₃ -N/L	().14		0.07		0.11	0.1	0).21	0	.04	C	.22	0.2	0.	.21	0.	.01		0.16	0.1	<	0.13	0.	02	<(0.13	0.0	0.	.30	0.	31	C).24	0.3
Total Inorganic Nitrogen (Ammonia + NO _x), mg/L		0.3		0.2		0.3	0.3		0.4	C	0.2		0.4	0.3	C	.4	0).2		0.3	0.3		0.3	0	.2	(0.3	0.2	0).4	0	.5		0.4	0.4
Remarks																			-																

Within Action Level ?								
Date	00/01/1900							
D.O. (mg/L)	Y							
Turbidity (NTU)	Y							
SS (mg/L)	Y							
TIN (mg/L)	Y							

Within Limit Level ?						
Date	19/11/2007					
D.O. (mg/L)	Y					
Turbidity (NTU)	Y					
SS (mg/L)	Y					
TIN (mg/L)	Y					

Within Action Level ?						
Date	21/11/2007					
D.O. (mg/L)	Y					
Turbidity (NTU)	Y					
SS (mg/L)	Y					
TIN (mg/L)	Y					

Within Limit Level ?						
Date	21/11/2007					
D.O. (mg/L)	Y					
Turbidity (NTU)	Y					
SS (mg/L)	Y					
TIN (mg/L)	Y					

Within Action Level ?						
Date	23/11/2007					
D.O. (mg/L)	Y					
Turbidity (NTU)	Y					
SS (mg/L)	Y					
TIN (mg/L)	Y					

Within Limit Level ?							
Date	23/11/2007						
D.O. (mg/L)	Y						
Turbidity (NTU)	Y						
SS (mg/L)	Y						
TIN (mg/L)	Y						

Within Action Level ?							
Date	26/11/2007						
D.O. (mg/L)	Y						
Turbidity (NTU)	Y						
SS (mg/L)	Y						
TIN (mg/L)	Y						

Within Limit Level ?							
Date	26/11/2007						
D.O. (mg/L)	Y						
Turbidity (NTU)	Y						
SS (mg/L)	Y						
TIN (mg/L)	Y						

Within Action Level ?						
28/11/2007						
Y						
Y						
Y						
Y						

Within Limit Level ?	

Date	28/11/2007	
D.O. (mg/L)	Y	
Turbidity (NTU)	Y	
SS (mg/L)	Y	
TIN (mg/L)	Y	

Water Quality Monitoring Results for Station M1 (Mid-Ebb Tide)

	1						٦							T							1							T							T
Date				1/2007			-	21/11/2007			-	23/11/2007					26/11/2007						-	28/11/2007					4						
Time (hh:mm)			07:2	3 - 07:35						08:35	- 08:50						11:36	5 - 11:50						13:1) - 13:25				14:05 - 14:17				1		
Ambient Temperature				20							22							22							23							19			
Weather				Fine						S	unny						F	ine						C	loudy						F	ine			
Water Depth (m)			1	4.60						1	4.40						g	9.40							9.60							7.40			I
Monitoring Depth	1.0	00	7	.30		13.60		1.	.00	7.	20	1	3.40	Ī	1.	00	4.	70	8	.40	•	1	.00	4	.80	8	.60	Ī	1.	.00	3	70	6.40		İ
Tide			М	id-Ebb						Mi	d-Ebb			İ			Mie	d-Ebb		-				м	d-Ebb			İ			Mi	d-Ebb			t
Trial	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average
Water Temperature (°C)	21.7	21.7	21.6	21.6	21.3	21.4	21.6	23.4	23.4	3.1	23.1	22.8	22.8	19.8	22.5	22.4	22.4	22.4	22.0	22.0	22.3	23.6	23.7	23.2	23.2	22.9	22.9	23.3	22.4	22.5	21.7	21.7	21.4	21.4	21.9
Salinity (ppt)	30.1	30.1	30.9	30.8	31.2	31.3	30.7	29.9	29.8	30.4	30.3	30.5	30.4	30.2	31.4	31.4	31.5	31.6	31.6	31.6	31.5	30.5	30.4	31.0	31.0	31.3	31.3	30.9	29.4	29.5	29.9	29.9	30.0	30.0	29.8
D.O. (mg/L)	5.43	5.37	5.09	5.03	4.58	4.52	5.0	5.37	5.32	5.62	5.59	5.64	5.60	5.5	7.33	7.31	7.25	7.25	7.01	7.03	7.2	5.39	5.35	0.07	5.02	4.92	4.89	4.3	5.31	5.29	4.98	4.94	4.60	4.58	5.0
D.O. Saturation (%)	78.0	77.1	72.8	72.0	64.9	64.1	71.5	74.8	74.1	78.2	77.7	78.3	77.8	76.8	105.6	105.7	102.0	102.3	100.2	100.2	102.7	74.9	74.3	69.9	69.2	67.8	67.4	70.6	72.5	72.3	68.0	67.6	62.8	62.6	67.6
Turbidity (NTU)	4.11	4.19	4.38	4.30	4.02	4.06	4.2	4.40	4.42	5.09	5.11	5.22	5.19	4.9	3.91	3.94	3.81	3.80	3.61	3.66	3.8	5.15	5.14	5.02	5.05	4.78	4.77	5.0	4.96	4.90	4.54	4.58	4.27	4.33	4.6
SS* (mg/L)	4.5	4.5	5.3	5.5	4.5	4.5	4.8	5.0	5.0	4.5	4.7	5.2	5.5	5.0	4.0	4.3	4.8	4.8	3.8	4.0	4.3	4.5	4.5	5.3	5.5	4.5	4.5	4.8	5.2	5.5	4.3	4.5	4.3	4.5	4.7
NO _x , mg N/L	0.	14	0	.16		0.15	0.2	0.	.14	0.	14	0).15	0.1	0.	13	0.	13	C	.13	0.1	0	.14	0	.10	0	.12	0.1	0.	.13	0	.15	0	0.13	0.1
NH ₃ , mg NH ₃ -N/L	0.	16	0	.24		0.13	0.2	0.	.08	0.	15	().22	0.1	0.	23	0.	20	C	.17	0.2	0	.10	0	.19	0	.04	0.1	0.	.33	0	.33	().27	0.3
Total Inorganic Nitrogen (Ammonia + NO _x), mg/L	0.	.3	().4		0.3	0.3	0).2	C	.3		0.4	0.3	0	.4	0	.3		0.3	0.3	(1.2	().3	().2	0.2	0	1.5	(.5		0.4	0.4
Remarks																																			

Within Action Level ?					
Date	00/01/1900				
D.O. (mg/L)	Y				
Turbidity (NTU)	Y				
SS (mg/L)	Y				
TIN (mg/L)	Y				

With	Within Limit Level ?						
	Date	19/11/2007					
D.O. (mg/L)	Y					
Turbidity	(NTU)	Y					
SS (mg/L)	Y					
TIN (mg/L)	Y					

Within Action Level ?						
Date	21/11/2007					
D.O. (mg/L)	Y					
Turbidity (NTU)	Y					
SS (mg/L)	Y					
TIN (mg/L)	Y					

Within Lim	it Level ?
Date	21/11/2007
D.O. (mg/L)	Y
Turbidity (NTU)	Y
SS (mg/L)	Y
TIN (mg/L)	Y

Within Act	ion Level ?
Date	23/11/2007
D.O. (mg/L)	Y
urbidity (NTU)	Y
SS (mg/L)	Y
TIN (mg/L)	Y
	Date D.O. (mg/L) urbidity (NTU) SS (mg/L)

Within Limit Level ?								
Date	23/11/2007							
D.O. (mg/L)	Y							
Turbidity (NTU)	Y							
SS (mg/L)	Y							
TIN (mg/L)	v							

Within Action Level ?							
Date	26/11/2007						
D.O. (mg/L)	Y						
Turbidity (NTU)	Y						
SS (mg/L)	Y						
TIN (mg/L)	Y						

Within Lim	it Level ?
Date	26/11/2007
D.O. (mg/L)	Y
Turbidity (NTU)	Y
SS (mg/L)	Y
TIN (mg/L)	Y

Within Action Level ?						
Date	28/11/2007					
D.O. (mg/L)	Y					
Turbidity (NTU)	Y					
SS (mg/L)	Y					
TIN (mg/L)	Y					

Within Lim	it Level ?
Date	28/11/2007
$D \cap (ma/l)$	V

D.O. (mg/L)	Y	
Turbidity (NTU)	Y	
SS (mg/L)	Y	
TIN (mg/L)	Y	

Water Quality Monitoring Results for Station C1 (Mid-Flood Tide)

							1							1							T							1							Т
Date				1/2007					21/11/2007					23/11/2007				-	26/11/2007						_	28/11/2007					4				
Time (hh:mm)			14:05	5 - 14:17						15:00	0 - 15:15				16:00 - 16:14					08:30 - 08:45							10:02 - 10:16				_				
Ambient Temperature				24							22							23							23							17			
Weather			F	ine						S	unny						ſ	Fine				Cloudy										Fine			
Water Depth (m)			1	2.80						1	4.20						1	3.40						1	4.40						1	8.80			
Monitoring Depth	1.	00	6	.40	1	1.80		1.	.00	7	.10	1	3.20		1	.00	6	.70	1:	2.40		1.	00	7.	20	13.40			1	.00	4	.40		7.80	1
Tide			Mic	l-Flood						Mic	d-Flood			1			Mic	d-Flood			Ī			Mid	-Flood						Mir	d-Flood			1
Trial	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average
Water Temperature (°C)	24.7	24.6	23.8	23.8	23.7	23.7	24.1	23.6	23.7	23.0	22.9	22.9	22.8	23.2	2.9	24.0	24.0	23.9	23.6	23.5	20.3	23.6	23.7	22.9	23.0	22.8	22.9	23.2	21.2	21.4	21.3	21.3	20.5	20.5	21.0
Salinity (ppt)	30.0	29.9	30.4	30.4	30.6	30.6	30.3	30.3	30.2	30.6	30.7	30.7	30.6	30.5	31.3	31.5	31.6	31.6	31.7	31.7	31.6	30.5	30.4	31.0	30.9	31.4	31.4	30.9	28.7	28.7	30.0	30.0	30.4	30.5	29.7
D.O. (mg/L)	5.34	5.30	4.92	4.88	4.89	4.83	5.0	5.67	5.65	5.32	5.29	5.29	5.25	5.4	7.21	7.20	7.17	7.17	7.11	7.11	7.2	5.50	5.54	5.32	5.37	5.07	5.04	5.3	5.86	5.80	5.62	5.55	5.20	5.13	5.5
D.O. Saturation (%)	75.7	75.5	70.7	70.0	69.5	68.8	71.7	78.8	78.5	73.9	73.5	73.5	72.9	75.2	101.4	101.6	101.1	101.0	100.1	100.8	101.0	76.4	77.0	73.9	74.6	69.9	69.5	73.6	80.2	79.8	76.3	75.4	69.2	68.2	74.9
Turbidity (NTU)	4.04	3.88	4.25	4.31	4.69	4.74	4.3	4.59	4.56	4.67	4.64	4.70	4.72	4.6	3.97	3.98	4.07	4.03	4.07	4.07	4.0	4.57	4.59	4.69	4.70	4.42	4.41	4.6	4.76	4.70	4.64	4.68	4.27	4.35	4.6
SS* (mg/L)	3.8	4.0	4.3	4.5	4.8	5.0	4.4	4.3	4.2	4.5	4.5	4.5	4.7	4.5	4.3	4.2	3.5	3.5	4.5	4.5	4.1	4.8	5.0	5.2	5.2	4.0	4.0	4.7	4.5	4.3	4.5	4.8	4.2	4.0	4.4
NO _x , mg N/L	0	16	0	.14	(0.15	0.2	0.	.09	0	.12	().12	0.1	0	.14	0.	.16	0	.01	0.1	0.	09	0.	10	C	0.09	0.1	0	0.11	0	.13	1	0.12	0.1
NH ₃ , mg NH ₃ -N/L	0	11	0	.08	(0.08	0.1	0.	.18	0	.00	(0.01	0.1	0	.04	0.	.04	0	.25	0.1	<0	.13	0.	17	<	0.13	0.2	0).27	0	.30	1	0.29	0.3
Total Inorganic Nitrogen (Ammonia + NO _x), mg/L	c	.3	C	1.2		0.2	0.2	0	1.3	c).1		0.1	0.2	().2	C).2		0.3	0.2	0	2	0	.3		0.2	0.2		0.4	1	0.4		0.4	0.4
Remarks					-														-																

Within Action Level ?					
Date	19/11/2007				
D.O. (mg/L)	Y				
Turbidity (NTU)	Y				
SS (mg/L)	Y				
TIN (mg/L)	Y				

Within Lim	it Level ?
Date	19/11/2007
D.O. (mg/L)	Y
Turbidity (NTU)	Y
SS (mg/L)	Y
TIN (mg/L)	Y

Within Act	ion Level ?
Date	21/11/2007
D.O. (mg/L)	Y
Turbidity (NTU)	Y
SS (mg/L)	Y
TIN (mg/L)	Y

Within Limit Level ?					
Date	21/11/2007				
D.O. (mg/L)	Y				
Turbidity (NTU)	Y				
SS (mg/L)	Y				
TIN (mg/L)	Y				

Within Act	ion Level ?
Date	23/11/2007
D.O. (mg/L)	Y
Turbidity (NTU)	Y
SS (mg/L)	Y
TIN (mg/L)	Y

Within Lim	it Level ?
Date	23/11/2007
D.O. (mg/L)	Y
Turbidity (NTU)	Y
SS (mg/L)	Y
TIN (ma/L)	Y

Within Action Level ?						
Date	26/11/2007					
D.O. (mg/L)	Y					
Turbidity (NTU)	Y					
SS (mg/L)	Y					
TIN (mg/L)	Y					

Within Limit Level ?						
Date	26/11/2007					
D.O. (mg/L)	Y					
Turbidity (NTU)	Y					
SS (mg/L)	Y					
TIN (mg/L)	Y					

Within Action Level ?								
Date 28/11/2007								
D.O. (mg/L)	Y							
Turbidity (NTU)	Y							
SS (mg/L)	Y							
TIN (mg/L)	Y							

Within Lim	it Level ?	
	00/14/10/007	

28/11/2007	
Y	
Y	
Y	
Y	
	Y Y Y

Water Quality Monitoring Results for Station C2 (Mid-Flood Tide)

	-						r							1	r						1							1	<u> </u>						7																												
Date			19/1	1/2007					21/11/2007					23/11/2007								26/1	1/2007				28/11/2007				_																																
Time (hh:mm)			14:25	5 - 14:38						15:40	0 - 15:55				16:42 - 16:58								08:50	0 - 09:05				10:28 -10:40																																			
Ambient Temperature				24							22							23							23							17																															
Weather			F	ine						S	unny						1	Fine						С	loudy				Fine																																		
Water Depth (m)			8	3.80						1	0.20						1	4.00						1	4.80						1	9.60]																												
Monitoring Depth	1.	00	4.	.40	1	7.80		1	.00	5.	.10	g	.20		1.	00	7	.00	1	3.00		1.	00	7	.40	13.80			1.	.00	4	.80	٤	3.60]																												
Tide			Mid	I-Flood						Mic	I-Flood						Mic	d-Flood						Mic	I-Flood						Mir	d-Flood]																												
Trial	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average																												
Water Temperature (°C)	24.4	24.4	23.7	23.7	23.6	23.5	23.9	23.0	23.1	23.0	23.0	22.8	22.8	23.0	24.0	24.0	23.8	23.7	23.4	23.6	23.8	23.7	23.7	23.1	23.0	22.8	22.8	23.2	21.5	21.3	21.0	20.8	21.0	20.9	21.1																												
Salinity (ppt)	30.1	30.1	30.6	30.5	30.8	30.8	30.5	30.2	30.2	30.7	30.6	30.7	30.7	30.5	31.3	31.4	31.7	31.7	31.7	31.7	31.6	30.6	30.6	31.1	31.1	31.5	31.4	31.1	29.8	30.0	30.1	30.1	30.1	30.2	30.1																												
D.O. (mg/L)	5.17	5.08	4.83	4.75	4.29	4.23	4.7	5.48	5.52	5.36	5.32	5.41	5.45	5.4	7.27	7.25	7.11	7.07	7.01	7.02	7.1	5.24	5.21	5.12	5.15	4.96	4.94	5.1	5.74	5.69	5.64	5.61	5.39	5.32	5.6																												
D.O. Saturation (%)	73.3	72.0	68.5	67.3	60.8	60.0	67.0	76.1	76.7	3.9	73.4	74.6	75.2	63.3	103.6	103.0	101.7	101.9	100.1	100.0	101.7	72.8	72.4	71.1	71.5	68.9	68.6	70.9	78.3	77.6	77.3	76.7	74.8	74.0	76.5																												
Turbidity (NTU)	3.67	3.80	3.99	4.06	4.51	4.64	4.1	4.21	4.22	4.39	4.38	4.57	4.56	4.4	3.97	3.98	3.90	3.90	3.88	3.88	3.9	4.32	4.33	4.21	4.20	4.50	4.52	4.3	4.04	4.13	4.53	4.58	3.97	3.90	4.2																												
SS* (mg/L)	3.5	3.5	4.0	4.3	3.8	4.0	3.9	4.0	4.3	4.2	4.5	4.8	4.7	4.4	3.5	3.5	4.0	4.2	3.8	3.8	3.8	4.5	4.3	4.5	4.8	4.3	4.2	4.4	3.8	3.8	4.5	4.5	4.3	4.5	4.2																												
NO _x , mg N/L	0.	15	0.	.15	(0.18	0.2	0	.18	0.	.13	C	.15	0.2	0.	14	0	.12		0.13	0.1	0.	14	0	.14	C	.15	0.1	0	.15	0	.11	(0.12	0.1																												
NH ₃ , mg NH ₃ -N/L	0.	16	0.	.05	(0.13	0.1	0	.00	0.	.19	C	.12	0.1	0.	01	0	.19		0.33	0.2	0.	01	0	22	C	.23	0.2	0	.33	0	.33	(0.31	0.3																												
Total Inorganic Nitrogen (Ammonia + NO _x), mg/L	0	.3	0	1.2		0.3	0.3	c).2	C	0.3		0.3	0.3	0.2		0.2		0.2		0.2		0.2		0.2		0.2		0.2		0.2		0.2		0.2		0.2		0.2		0.2		0.2		C	0.3		0.5	0.3	0	.2	C	.4		0.4	0.3	c).5	().4		0.4	0.5
Remarks																																																															

Within Action Level ?						
Date	00/01/1900					
D.O. (mg/L)	Y					
Turbidity (NTU)	Y					
SS (mg/L)	Y					
TIN (mg/L)	Y					

Within Limit Level ?						
Date	19/11/2007					
D.O. (mg/L)	Y					
Turbidity (NTU)	Y					
SS (mg/L)	Y					
TIN (mg/L)	Y					

Within Act	ion Level ?
Date	21/11/2007
D.O. (mg/L)	Y
Turbidity (NTU)	Y
SS (mg/L)	Y
TIN (mg/L)	Y

Within Lim	Within Limit Level ?					
Date	21/11/2007					
D.O. (mg/L)	Y					
Turbidity (NTU)	Y					
SS (mg/L)	Y					
TIN (mg/L)	Y					

Within Ac	Within Action Level ?							
Date	23/11/2007							
D.O. (mg/L	Y							
Turbidity (NTU	Y							
SS (mg/L	Y							
TIN (mg/L	Y							

Within Limit Level ?						
Date	23/11/2007					
D.O. (mg/L)	Y					
Turbidity (NTU)	Y					
SS (mg/L)	Y					
TIN (mg/L)	Y					

Within Act	ion Level ?
Date	26/11/2007
D.O. (mg/L)	Y
Turbidity (NTU)	Y
SS (mg/L)	Y
TIN (mg/L)	Y

Within Limit Level ?						
Date	26/11/2007					
D.O. (mg/L)	Y					
Turbidity (NTU)	Y					
SS (mg/L)	Y					
TIN (mg/L)	Y					

Within Action Level ?						
Date	28/11/2007					
D.O. (mg/L)	Y					
Turbidity (NTU)	Y					
SS (mg/L)	Y					
TIN (mg/L)	Y					

Within Limit Level ?	

Date	28/11/2007	
D.O. (mg/L)	Y	
Turbidity (NTU)	Y	
SS (mg/L)	Y	
TIN (mg/L)	Y	

Water Quality Monitoring Results for Station M1 (Mid-Flood Tide)

			10.0	1/2007			1			0.1.1	1 2007			T							1				4 10 0 0 7			Т				1 20 0 0 7			1
Date							21/11/2007				ł	23/11/2007				4	26/11/2007						+	28/11/2007				1							
Time (hh:mm)	14:48 - 15:02 15:20 - 15:35				ļ.			16:20	0 - 16:34						09:1	0 - 09:25			+	10:48 - 11:00			4												
Ambient Temperature				24							22							23							23				17						
Weather			1	Fine						s	unny						1	Fine						С	loudy				Fine						
Water Depth (m)			1	3.60						1	4.80						9	9.00						1	0.20							6.80			
Monitoring Depth	1.	00	6	.80		12.60		1.	00	7	.40	1	3.80	Ī	1.	.00	4	.50		3.00		1	.00	5	.10	9.20		Ī	1.	.00	3	.40	5.80		
Tide			Mic	d-Flood						Mic	I-Flood			1			Mid-Flood			1			Mie	d-Flood			T			Mic	I-Flood				
Trial	Trial 1	Trial 2	Trial 1	Trial 2	Trial	1 Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average
Water Temperature (°C)	24.6	24.6	23.5	23.6	23.4	4 23.4	23.9	23.5	23.6	23.2	23.1	22.8	22.8	23.2	24.0	23.7	23.4	23.3	23.0	23.1	23.4	23.4	23.4	23.0	22.9	22.9	22.9	23.1	21.2	21.1	20.9	20.8	20.9	20.9	21.0
Salinity (ppt)	29.9	29.8	30.4	30.5	30.7	7 30.7	30.3	30.3	30.2	30.7	30.7	30.7	30.7	30.6	31.4	31.2	31.4	31.4	31.6	31.6	31.4	30.4	30.3	31.1	31.1	31.4	31.3	30.9	29.8	29.9	30.1	30.1	30.1	30.1	30.0
D.O. (mg/L)	5.26	5.19	4.77	4.71	4.50	0 4.43	4.8	5.52	5.47	5.30	5.26	5.21	5.17	5.3	7.30	7.30	7.22	7.22	7.02	7.03	7.2	5.12	5.15	4.89	4.84	4.57	4.60	4.9	5.49	5.43	5.43	5.38	4.84	4.80	5.2
D.O. Saturation (%)	74.6	73.6	68.5	67.7	64.0	0 63.0	68.6	76.7	76.0	73.6	73.1	72.4	71.8	73.9	102.1	102.1	102.0	102.0	100.7	100.6	101.6	71.1	71.5	67.9	67.2	63.0	63.4	67.4	74.5	73.8	74.0	73.6	67.2	66.6	71.6
Turbidity (NTU)	3.82	3.88	4.11	4.05	4.61	1 4.64	4.2	4.43	4.46	4.52	4.55	4.74	4.74	4.6	3.97	3.98	3.71	3.72	3.71	3.70	3.8	4.68	4.67	4.39	4.40	4.70	4.73	4.6	4.36	4.27	4.59	4.53	4.20	4.13	4.3
SS* (mg/L)	3.8	4.0	4.3	4.2	5.0	5.0	4.4	3.8	4.0	4.3	4.3	4.5	4.8	4.3	3.5	3.8	3.8	3.8	4.0	4.0	3.8	5.3	5.5	4.7	4.5	4.5	4.5	4.8	4.5	4.5	4.8	4.7	4.3	4.5	4.6
NO _x , mg N/L	0.	15	0	.16		0.14	0.2	0.	13	0	.14	(.16	0.1	0.	.12	0	.13		0.12	0.1	0	.11	0	.14	C	0.13	0.1	0	.13	0	.13	0	0.13	0.1
NH ₃ , mg NH ₃ -N/L	0.	16	0	.05		0.05	0.1	0.	10	0	.10	(.05	0.1		.19	0	.26		0.10	0.2	0	0.11 <0.13		0.13	0.26		0.2	0.33		0.30		0.34		0.3
Total Inorganic Nitrogen (Ammonia + NO _x), mg/L	0	.3	().2		0.2	0.2	0	.2	C	1.2		0.2	0.2	C).3	C).4		0.2	0.3	C	1.2	().3		0.4	0.3	c	0.5	().4		0.5	0.5
Remarks																																			

* For the values of suspended solids less than 5mg/L (PQL), the results are for reference only. PQL stands for practical quantitation Limit, or lowest reporting limit, which is estimated from the method detection limit (MDL). Normally PQL is about 5 tim

Within Action Level ?							
Date	19/11/2007						
D.O. (mg/L)	Y						
Turbidity (NTU)	Y						
SS (mg/L)	Y						
TIN (mg/L)	Y						

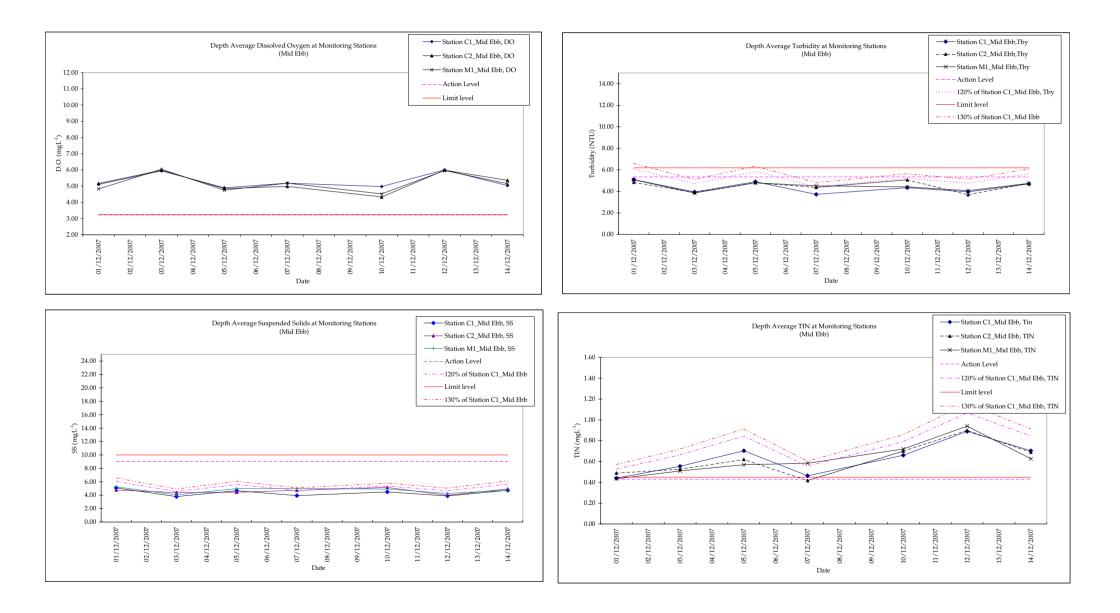
Within Limit Level ?						
Date	19/11/2007					
D.O. (mg/L)	Y					
Turbidity (NTU)	Y					
SS (mg/L)	Y					
TIN (mg/L)	Y					

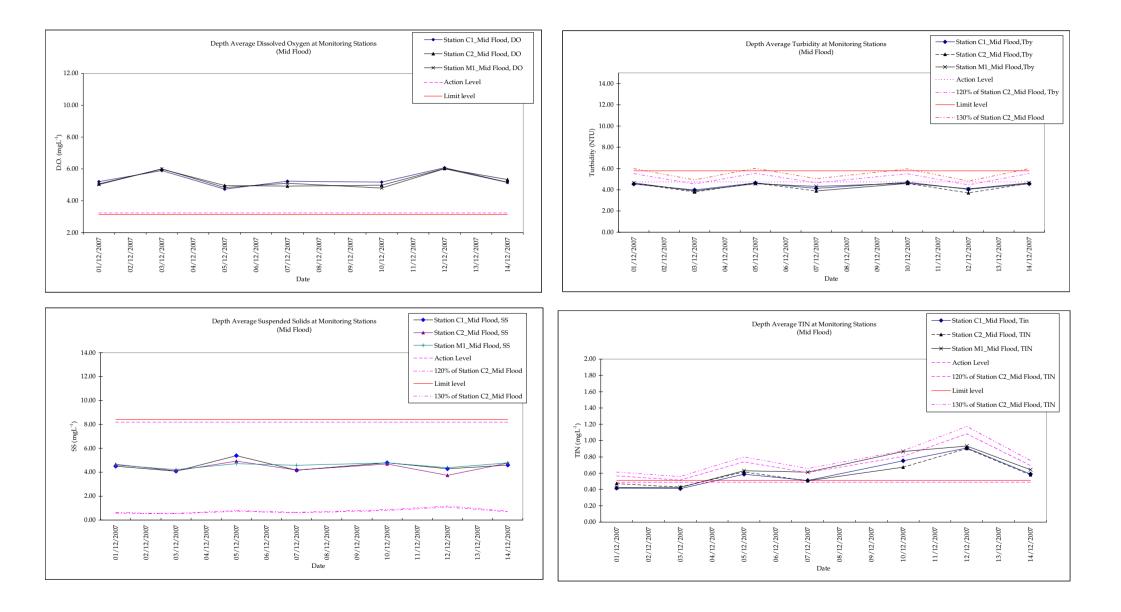
Within Action Level ?						
Date	21/11/2007					
D.O. (mg/L)	Y					
Turbidity (NTU)	Y					
SS (mg/L)	Y					
TIN (mg/L)	Y					

Within Lim	it Level ?
Date	21/11/2007
D.O. (mg/L)	Y
Turbidity (NTU)	Y
SS (mg/L)	Y
TIN (mg/L)	Y

	Within Act	ion Level ?
	Date	23/11/2007
	D.O. (mg/L)	Y
	Turbidity (NTU)	Y
	SS (mg/L)	Y
	TIN (mg/L)	Y

Within Limit Level ?						
Date	23/11/2007					
D.O. (mg/L)	Y					
Turbidity (NTU)	Y					
SS (mg/L)	Y					
TIN (mg/L)	Y					


Within Act	ion Level ?
Date	26/11/2007
D.O. (mg/L)	Y
Turbidity (NTU)	Y
SS (mg/L)	Y
TIN (mg/L)	Y


Within Lim	it Level ?
Date	26/11/2007
D.O. (mg/L)	Y
Turbidity (NTU)	Y
SS (mg/L)	Y
TIN (mg/L)	Y

Within Act	ion Level ?
Date	28/11/2007
D.O. (mg/L)	Y
Turbidity (NTU)	Y
SS (mg/L)	Y
TIN (mg/L)	Y

Within Limit Level ?

Date	28/11/2007	
D.O. (mg/L)	Y	[
Turbidity (NTU)	Y	
SS (mg/L)	Y	
TIN (mg/L)	Y	

Water Quality Monitoring Results for Station C1 (Mid-Ebb Tide)

			-												_	_														_	_																				
Date			01/12	2007							03/	12/2007							05/12/20	007						07/1:	2/2007						10/1	2/2007						12/12	2/2007						14/12/	2007			
Time (hh:mm)			06:00 -	06:15							06:4	5 - 07:00	0						09:21 - 0	9:36						10:02	- 10:18						12:5	- 13:08						13:46	- 14:00						15:11 -	15:26			
Ambient Temperature			1	6								17				ſ			20								19							21						2	24						21	1			
Weather			Sur	nny				Ī				Fine				Γ			Cloud	y						F	ine						1	ine						Su	nny						Clou	udy			
Water Depth (m)			14.	20				[14.80				Γ			14.00)						13	1.80						1	4.00						13	.40						14.0	00			
Monitoring Depth	1.	1.00	7.1	D	13.	20			1.0	00	7	7.40	13.8	D		ſ	1.00		7.00	1	13.00			1.	.00	6.1	90	12.80				1.00	7	00	13.00			1.0	00	6.7	70	12.40			1.	.00	7.00	0	13.00		
Tide			Mid-	Ebb							м	fid-Ebb				ſ			Mid-Et	b						Mid	l-Ebb						M	d-Ebb						Mid	-Ebb						Mid-I	Ebb			
Trial	Trial 1	Trial 2	Trial 1	Trial	2 Trial	1 Trial 2		epth erage	Trial 1	Trial 2	Trial 1	Trial 2	2 Trial 1	Trial 2		epth erage	Trial 1 T	ial 2 Tri	ial 1 Tr	ial 2 Tri	ial 1 Tri		Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial	Trial 2	Trial 1	Trial 2	frial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	rial 1 Trial		Depth Average
Water Temperature (°C)	17.8	17.9	17.4	17.3	17.5	5 17.4	1	7.6	17.9	17.8	18.0	18.1	17.7	17.9	1	7.9	21.2	1.1 2	0.7 2	0.8 2	0.6 20	0.6	20.8	21.0	21.0	20.5	20.5	20.2	20.3	20.6	21.3	21.3	20.2	20.3	20.1	20.1	20.6	24.2	24.3	24.0	23.9	23.8	23.9	24.0	22.4	22.3	21.9	21.8	21.4 21.	.4	21.9
Salinity (ppt)	30.9	30.8	31.4	31.4	31.6	3 31.6	3	1.3	29.1	29.3	29.6	29.5	29.6	29.7	2	29.5	29.2 1	9.1 2	9.7 2	9.6 2	9.8 29	9.8	29.5	30.2	30.2	31.2	31.2	31.9	31.8	31.1	29.2	29.2	30.3	30.5	30.8	30.8	30.1	30.6	30.6	30.8	30.8	30.9	30.8	30.8	30.4	30.3	31.1	31.1	31.2 31.	.2	30.9
D.O. (mg/L)	5.37	5.32	5.12	5.0	4.89	4.85		5.1	6.15	6.13	6.00	5.96	5.71	5.70	4	5.9	5.10 8	.15 4	.82 4	.79 4.	.73 4.	76	4.9	5.48	5.44	5.19	5.17	4.94	4.90	5.2	5.29	5.27	4.96	4.92	4.71	4.69	5.0	6.05	6.08	6.01	6.02	5.94	5.93	6.0	5.29	5.26	5.15	5.11	4.72 4.6	58	5.0
D.O. Saturation (%)	77.3	76.6	73.7	73.3	2 70.4	4 69.8	7	3.5	78.5	79.0	72.9	73.5	73.8	73.7	7	75.2	69.3	0.0 6	5.5 6	5.1 6	4.3 64	1.7	66.5	79.4	79.0	75.2	75.0	71.5	71.1	75.2	75.5	75.3	70.8	70.4	67.2	67.0	71.0	89.4	89.0	86.0	86.0	81.4	82.0	85.6	76.1	75.7	74.1	73.5	66.	.9	72.3
Turbidity (NTU)	5.15	5.18	4.89	4.8	5.20	5.21	4	5.1	4.11	4.09	3.87	3.85	i 3.85	3.86	3	3.9	4.90	.93 4	.74 4	.73 5.	.01 5.	03	4.9	3.68	3.75	3.29	3.33	4.15	4.08	3.7	4.64	4.71	4.25	4.29	4.12	4.08	4.3	4.00	3.98	3.97	3.96	3.94	3.93	4.0	4.88	4.87	4.57	4.56	4.63 4.6	54	4.7
SS* (mg/L)	5.2	5.5	4.7	4.7	5.2	5.2	4	5.1	4.2	4.0	3.5	3.5	3.8	3.8	3	3.8	5.3	5.0 4	1.8	5.0 4	4.0 4	.0	4.7	3.8	3.8	3.5	3.5	4.5	4.5	3.9	4.8	4.8	4.2	4.5	4.3	4.3	4.5	4.3	4.5	3.8	3.8	3.5	3.5	3.9	5.0	5.3	4.8	4.5	4.5 4.2	2	4.7
NO _x , mg N/L	0.	0.16	0.1	6		0.14	0	0.2	0.2	20	(0.19		0.24	(0.2	0.36		0.26		0.28		0.3	0.	26	0.3	27	0.	26	0.26		0.50	0	49	0.52	2	0.50	0.4	18	0.4	18	0.5	1	0.49	0	.35	0.27	7	0.25		0.3
NH ₃ , mg NH ₃ -N/L	0.	0.30	0.2	7		0.29	0	0.3	0.4	45	(0.35		0.23	(0.3	0.46		0.35		0.40		0.4	0.	25	0.1	16	0.	19	0.20		0.16	0	13	0.18	3	0.16	0.3	36	0.4	13	0.4	1	0.40	0.	.46	0.38	8	0.40		0.4
Total Inorganic Nitrogen (Ammonia + NO _x), mg/L	C	0.5	0.4	Ļ		0.4	(0.4	0.	.7		0.5		0.5		0.6	0.8		0.6		0.7		0.7	0	1.5	0.	4	0	.5	0.46		0.7	(.6	0.7		0.66	0.8	8	0.	9	0.9	,	0.89	().8	0.7	,	0.7		0.7
Remarks																																																			

Within Action Level ?	Within Action Level ?	Within Action Level ?	Within Action Level ?	Within Action Level ?	Within Action Level ?	Within Action Level ?
Date 01/12/2007	Date 03/12/2007	Date 05/12/2007	Date 07/12/2007	Date 10/12/2007	Date 12/12/2007	Date 14/12/2007
D.O. (mg/L) Y	D.O. (mg/L) Y	D.O. (mg/L) Y	D.O. (mg/L) Y	D.O. (mg/L) Y	D.O. (mg/L) Y	D.O. (mg/L) Y
Turbidity (NTU) Y	Turbidity (NTU) Y	Turbidity (NTU) Y	Turbidity (NTU) Y	Turbidity (NTU) Y	Turbidity (NTU) Y	Turbidity (NTU) Y
SS (mg/L) Y	SS (mg/L) Y	SS (mg/L) Y	SS (mg/L) Y	SS (mg/L) Y	SS (mg/L) Y	SS (mg/L) Y
TIN (mg/L) N	TIN (mg/L) N	TIN (mg/L) N	TIN (mg/L) N	TIN (mg/L) N	TIN (mg/L) N	TIN (mg/L) N
						·
Within Limit Level ?	Within Limit Level ?	Within Limit Level ?	Within Limit Level ?	Within Limit Level ?	Within Limit Level ?	Within Limit Level ?
Date 01/12/2007	Date 03/12/2007	Date 05/12/2007	Date 07/12/2007	Date 10/12/2007	Date 12/12/2007	Date 14/12/2007
D.O. (mg/L) Y	D.O. (mg/L) Y	D.O. (mg/L) Y	D.O. (mg/L) Y	D.O. (mg/L) Y	D.O. (mg/L) Y	D.O. (mg/L) Y
Turbidity (NTU) Y	Turbidity (NTU) Y	Turbidity (NTU) Y	Turbidity (NTU) Y	Turbidity (NTU) Y	Turbidity (NTU) Y	Turbidity (NTU) Y
SS (mg/L) Y	SS (mg/L) Y	SS (mg/L) Y	SS (mg/L) Y	SS (mg/L) Y	SS (mg/L) Y	SS (mg/L) Y
TIN (mg/L) N	TIN (mg/L) N	TIN (mg/L) N	TIN (mg/L) N	TIN (mg/L) N	TIN (mg/L) N	TIN (mg/L) N

Water Quality Monitoring Results for Station M1 (Mid-Ebb Tide)

			-					-					-						-																			_							
Date			01/12	2007						03/12/20	007					05/12/	2007					07/12	2/2007						10/12/2007						12/12/20	07					14/12/2	/2007			
Time (hh:mm)			06:40	06:55						07:08 - 0	7:20					10:01 -	10:16					10:58	- 11:12						13:50 - 14:0	4					14:11 - 14	:25					15:51 -	- 16:06			
Ambient Temperature			1	6						17						20						1	19						21						24						21	a .			
Weather			Su	nny						Fine			1			Clou	dy					Fi	ine						Fine						Sunny						Clou	udy			
Water Depth (m)			9.	50						10.60)		1			9.4	D					9.	.40						9.20						9.80						9.8	80			
Monitoring Depth	1	1.00	4.8	0	8.60			1.0	0	5.30	9	9.60		1.	00	4.70		8.40		1.	.00	4.7	70	8.40			1.0	10	4.60	8.20)		1.	00	4.90	8.	.80		1	.00	4.90	0	8.80		
Tide			Mid	Ebb						Mid-Et	dd		1			Mid-8	bb					Mid	I-Ebb						Mid-Ebb						Mid-Eb	b					Mid-E	-Ebb			
Trial	Trial 1	1 Trial 2	Trial 1	Trial :	2 Trial 1	Trial 2	Depth Average	Trial 1	Trial 2 T	ial 1 Tr	ial 2 Tria	il 1 Trial 2	Depth Average		Trial 2	Trial 1	rial 2 Tri	al 1 Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	rial 2	Depth Average	Trial 1	Trial 2	Trial 1 Trial	2 Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1 Tri	al 2 Trial	1 Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1 Tr		Depth Average
Water Temperature (°C)	17.8	17.7	17.5	17.4	17.4	17.3	17.5	18.1	18.0	8.1 1	8.1 17	.9 18.0	18.0	21.3	21.2	20.9	20.8 20	0.8 20.7	21.0	21.2	21.2	20.8	20.7	20.2	20.3	20.7	21.2	21.2	20.3 20.3	20.2	20.2	20.6	24.3	24.4	24.6 24	1.2 24.	0 24.0	24.3	22.4	22.4	21.8	21.7	21.5 2	21.4	21.9
Salinity (ppt)	30.8	30.8	31.5	31.4	31.7	31.7	31.3	27.7	27.8 2	7.9 2	7.9 27	.8 28.0	27.9	29.2	29.2	29.7	29.8 21	9.8 29.7	29.6	30.1	30.1	30.9	31.0	31.6	31.5	30.9	28.4	28.3	29.5 29.5	30.0	29.9	29.3	30.6	30.6	30.9 30	0.7 30.	7 30.8	30.7	30.4	30.4	31.1	31.2	31.3 3	81.2	30.9
D.O. (mg/L)	5.10	5.15	4.63	4.67	4.71	4.68	4.8	6.17	6.16 6	.11 6	.11 5.8	37 5.85	6.0	4.94	4.90	4.71	4.68 4.	60 4.63	4.7	5.60	5.58	5.22	5.18	4.86	4.64	5.2	4.79	4.75	4.58 4.56	4.23	4.19	4.5	6.00	6.01	5.97 5.	96 5.9	0 5.91	6.0	5.34	5.30	5.18	5.14	5.01 4	1.97	5.2
D.O. Saturation (%)	73.4	74.1	66.6	67.2	67.5	66.9	69.3	79.0	79.0	3.5 7	3.6 70	.2 70.1	74.2	67.1	66.6	64.0	63.6 63	2.5 62.9	64.5	81.1	80.9	75.6	75.2	70.4	70.2	75.6	68.3	67.9	65.3 65.1	60.4	60.0	64.5	88.4	88.5	85.0 85	5.1 82.	1 82.1	85.2	76.8	76.3	74.5	74.0	72.1 7	1.5	74.2
Turbidity (NTU)	5.18	5.19	5.07	5.09	4.95	4.94	5.1	4.00	3.96	.81 3	.82 3.7	77 3.78	3.9	4.88	4.87	4.75	4.74 4.	77 4.75	4.8	4.11	4.18	5.09	5.11	4.24	4.30	4.5	4.23	4.33	4.17 4.25	4.80	4.70	4.4	4.01	4.03	4.04 4.	00 4.1	4 4.13	4.1	4.77	4.78	4.62	4.63	4.84 4	1.85	4.7
SS* (mg/L)	5.2	5.3	5.5	5.2	5.3	5.0	5.3	4.8	5.0	3.8 ;	3.8 3.	5 3.5	4.1	5.5	5.5	5.5	5.5 4	.0 4.0	5.0	4.8	5.0	5.5	5.7	4.5	4.5	5.0	4.3	4.0	5.5 5.7	5.0	5.0	4.9	4.3	4.3	4.5 4	.8 3.8	4.0	4.3	4.3	4.5	4.8	4.7	5.0 5	5.0	4.7
NO _x , mg N/L	G	0.18	0.2	0	(0.13	0.2	0.2	2	0.19		0.20	0.2	0.	29	0.23		0.26	0.3	0.	.24	0.2	23	0.27		0.25	0.4	7	0.48		0.53	0.49	0.	54	0.46		0.55	0.52	0.	.30	0.23	13	0.28		0.3
NH ₃ , mg NH ₃ -N/L	0	0.25	0.2	3	(0.31	0.3	0.2	6	0.29		0.37	0.3	0.	17	0.28		0.48	0.3	0.	.22	0.4	45	0.34		0.34	0.1	2	0.14		0.42	0.23	0.	39	0.44		0.44	0.42	0.	.35	0.35	15	0.37		0.4
Total Inorganic Nitrogen (Ammonia + NO _x), mg/L		0.4	0.4			0.4	0.4	0.5	5	0.5		0.6	0.5	0	5	0.5		0.7	0.6	a	0.5	0.	7	0.6		0.58	0.	6	0.6		1.0	0.72	0	9	0.9		1.0	0.94	c	0.7	0.6	6	0.7		0.6
Remarks													1										-								. 1			. 1		-								- 1	
	* For th	the velues	of ouronanda	d oolido	loss then	Email (PO	L), the result	to are for a	oforonoo (an annational	nuontitation																												-				-

Within Action Level ?	Within Action Level ?	Within Action Level ?	Within Action Level ?	Within Action Level ?	Within Action Level ?	Within Action Level ?
Date 01/12/2007	Date 03/12/2007	Date 05/12/2007	Date 07/12/2007	Date 10/12/2007	Date 12/12/2007	Date 14/12/2007
D.O. (mg/L) Y	D.O. (mg/L) Y	D.O. (mg/L) Y	D.O. (mg/L) Y	D.O. (mg/L) Y	D.O. (mg/L) Y	D.O. (mg/L) Y
Turbidity (NTU) Y	Turbidity (NTU) Y	Turbidity (NTU) Y	Turbidity (NTU) Y	Turbidity (NTU) Y	Turbidity (NTU) Y	Turbidity (NTU) Y
SS (mg/L) Y	SS (mg/L) Y	SS (mg/L) Y	SS (mg/L) Y	SS (mg/L) Y	SS (mg/L) Y	SS (mg/L) Y
TIN (mg/L) Y	TIN (mg/L) Y	TIN (mg/L) Y	TIN (mg/L) N	TIN (mg/L) Y	TIN (mg/L) Y	TIN (mg/L) Y
Within Limit Level ?	Within Limit Level ?	Within Limit Level ?	Within Limit Level ?	Within Limit Level ?	Within Limit Level ?	Within Limit Level ?
Date 01/12/2007	Date 03/12/2007	Date 05/12/2007	Date 07/12/2007	Date 10/12/2007	Date 12/12/2007	Date 14/12/2007
D.O. (mg/L) Y	D.O. (mg/L) Y	D.O. (mg/L) Y	D.O. (mg/L) Y	D.O. (mg/L) Y	D.O. (mg/L) Y	D.O. (mg/L) Y
Turbidity (NTU) Y	Turbidity (NTU) Y	Turbidity (NTU) Y	Turbidity (NTU) Y	Turbidity (NTU) Y	Turbidity (NTU) Y	Turbidity (NTU) Y
SS (mg/L) Y	SS (mg/L) Y	SS (mg/L) Y	SS (mg/L) Y	SS (mg/L) Y	SS (mg/L) Y	SS (mg/L) Y
TIN (mg/L) Y	TIN (mg/L) Y	TIN (mg/L) Y	TIN (mg/L) Y	TIN (mg/L) Y	TIN (mg/L) Y	TIN (mg/L) Y

Water Quality Monitoring Results for Station C2 (Mid-Ebb Tide)

Data			01	12/2007							02/	12/2007			1			05/1	2/2007			1			07/11	2/2007						10/12/	2007					10/1	2/2007						14/12	2007			
ate							-		-				_		1								-												-														
me (hh:mm)			06:2	0 - 06:3	5							31 - 07:45	5						1 - 09:56				_			1 - 10:43				-		13:25 -			-				8 -14:50				-		15:31 -				
mbient Temperature				16								17							20				_			19						2							24						2				
feather				Sunny								Fine						С	loudy						F	Fine						Fir	ne					S	unny						Clo	udy			
ater Depth (m)				14.40								15.00							4.40						14	4.20						14.						1	3.00						14	.20			
Ionitoring Depth	1.	.00		7.20		13.40			1.	.00	7	7.50	14.00				1.00	7	.20	13.40			1.	.00	7.1	.10	13.20			1.0	10	7.40	D 1	3.80		1.	.00	6.	50	12.00			1.0	00	7.1	.0	13.20		
ide			N	lid-Ebb							M	fid-Ebb						Mi	d-Ebb						Mid	d-Ebb						Mid-	Ebb					Mi	d-Ebb						Mid-	-Ebb			
rial	Trial 1	Trial 2	Trial 1	Т	rial 2 1	rial 1 Trial		Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average		1 Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2 T	ial 1	Trial 2 Tria	l 1 Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2 T	Trial 1 T	rial 2	Dep Avers
ater Temperature (°C)	17.7	17.6	17.4	1	7.5	17.4 17.	.4	17.5	17.9	18.0	18.0	17.8	17.7	17.8	17.9	21.3	21.3	20.9	20.9	20.7	20.7	21.0	21.1	21.0	20.6	20.6	20.4	20.4	20.7	21.4	21.4	0.4	20.5 20	.3 20.3	20.7	24.3	24.0	24.0	24.1	23.7	23.9	24.0	22.4	22.5	21.7	21.7	21.4 2	21.3	21.
linity (ppt)	30.9	30.9	31.5	3	81.5	31.6 31.	.6	31.3	28.8	28.6	28.8	28.8	29.0	29.0	28.8	29.0	29.0	29.8	29.7	29.8	29.8	29.5	30.0	30.1	31.1	31.1	31.8	31.8	31.0	29.5	29.6	9.9	29.9 30	.4 30.3	29.9	30.5	30.6	30.8	30.8	30.9	30.9	30.8	30.4	30.4	31.1	31.1	31.3 3	31.3	30.
0. (mg/L)	5.29	5.25	5.15	5	5.19	5.06 5.0	02	5.2	6.18	6.17	6.04	6.03	5.76	5.73	6.0	5.07	5.02	4.64	4.61	4.89	4.85	4.8	5.35	5.31	5.08	5.06	4.57	4.53	5.0	4.90	4.88	.66	4.62 4.	4.35	4.3	6.03	6.02	6.00	6.01	5.92	5.92	6.0	5.58	5.54	5.49	5.46	5.07 5	5.02	5.4
O. Saturation (%)	76.1	75.5	74.1	7	4.7	72.3 71.	.7	74.1	80.1	80.0	72.7	72.9	68.6	68.0	73.7	68.9	68.2	62.7	62.2	66.0	65.4	65.6	77.5	77.1	73.6	73.4	66.2	65.8	72.3	69.9	69.7	6.5	66.1 62	.1 61.9	66.0	89.0	88.5	86.0	85.4	83.1	83.1	85.9	80.3	79.7	79.0	78.6	72.5 7	71.7	77.
urbidity (NTU)	4.82	4.83	4.97	4	1.96	4.74 4.7	75	4.8	4.01	4.02	3.94	3.94	3.71	3.70	3.9	4.98	4.97	4.76	4.72	4.69	4.70	4.8	4.16	4.22	4.00	4.06	4.85	4.95	4.4	5.22	5.28	.03	5.09 4.	4.95	5.1	3.50	3.50	3.64	3.74	3.89	3.91	3.7	4.90	4.93	4.77	4.76	4.61 4	4.62	4.8
S* (mg/L)	4.5	4.5	5.2	3	5.5	4.5 4.5	5	4.8	4.3	4.3	4.3	4.5	4.5	4.5	4.4	3.5	3.8	4.5	4.5	5.2	5.2	4.5	4.3	4.5	4.5	4.5	5.3	5.2	4.7	5.5	5.5	5.0	5.2 5	0 4.8	5.2	3.8	4.0	3.8	3.8	4.3	4.2	4.0	5.3	5.5	4.8	5.0	4.5	4.5	4.5
O _x , mg N/L	0.	.18		0.19		0.17		0.2	0	16	(0.19	0).16	0.2		0.28	0	.27	0	.39	0.3	0.	.25	0.2	.25	0.2	c	0.23	0.4	18	0.48	в	0.48	0.48	0.	.45	0.	47	0.5		0.5	0.3	33	0.2	27	0.27		0.3
H ₃ , mg NH ₃ -N/L	0.	.29		0.28		0.36		0.3	0.	.23	(0.47	0	.37	0.4		0.42	0	.26	0	.24	0.3	0.	.19	0.2	.21	0.1	5	0.18	0.1	9	0.23	7	0.20	0.22	0.	.44	0.	42	0.3		0.4	0.3	39	0.4	61	0.40		0.4
otal Inorganic Nitrogen Ammonia + NO _x), mg/L		15		0.5		0.5		0.5				0.7		n 5	0.5		0.7					0.6		n.4			0.		0.42		-	0.8		0.7	0.70		19		9	0.9		0.9		7	0.7	7	0.7		07
emarks		2.5		0.0		0.0		0.5			1	0.7		0.0	0.5		0.7				5.0	0.0		<i>v.</i> 4	0.		0.0		0.42	0.1	·	0.0		0.7	0.70				.0	0.0		0.5	0.	<u>′</u>	0.7	l			0.7

* For the values of suspended solids less than 5mg/L (PQL), th method detection limit (MDL). Normally PQL is about 5 tim

Within Action Level ?	Within Action Level ?	Within Action Level ?	Within Action Level ?	Within Action Level ?	Within Action Level ?	Within Action Level ?
Date 01/12/2007	Date 03/12/2007	Date 05/12/2007	Date 07/12/2007	Date 10/12/2007	Date 12/12/2007	Date 14/12/2007
D.O. (mg/L) Y	D.O. (mg/L) Y	D.O. (mg/L) Y	D.O. (mg/L) Y	D.O. (mg/L) Y	D.O. (mg/L) Y	D.O. (mg/L) Y
Turbidity (NTU) Y	Turbidity (NTU) Y	Turbidity (NTU) Y	Turbidity (NTU) Y	Turbidity (NTU) Y	Turbidity (NTU) Y	Turbidity (NTU) Y
SS (mg/L) Y	SS (mg/L) Y	SS (mg/L) Y	SS (mg/L) Y	SS (mg/L) Y	SS (mg/L) Y	SS (mg/L) Y
TIN (mg/L) N	TIN (mg/L) N	TIN (mg/L) N	TIN (mg/L) Y	TIN (mg/L) N	TIN (mg/L) N	TIN (mg/L) N
Within Limit Level ?	Within Limit Level ?	Within Limit Level ?	Within Limit Level ?	Within Limit Level ?	Within Limit Level ?	Within Limit Level ?
Date 01/12/2007	Date 03/12/2007	Date 05/12/2007	Date 07/12/2007	Date 10/12/2007	Date 12/12/2007	Date 14/12/2007
D.O. (mg/L) Y	D.O. (mg/L) Y	D.O. (mg/L) Y	D.O. (mg/L) Y	D.O. (mg/L) Y	D.O. (mg/L) Y	D.O. (mg/L) Y
Turbidity (NTU) Y	Turbidity (NTU) Y	Turbidity (NTU) Y	Turbidity (NTU) Y	Turbidity (NTU) Y	Turbidity (NTU) Y	Turbidity (NTU) Y
SS (mg/L) Y	SS (mg/L) Y	SS (mg/L) Y	SS (mg/L) Y	SS (mg/L) Y	SS (mg/L) Y	SS (mg/L) Y
TIN (mg/L) N	TIN (mg/L) N	TIN (mg/L) N	TIN (mg/L) Y	TIN (mg/L) N	TIN (mg/L) N	TIN (mg/L) N

Annex H

Waste Flow Table

HKCEC – Atrium Link Extension Project

Name of Project Proponent: HKTDC **Project Commencement Date: 1 Aug 2006 Construction Completion Date: March 2009**

Monthly Summary Waste Flow Table for Year 2006

Year	Ac	tual Quantitie	s of inert C&	ک Materials (in 10 ³ Kg) ⁽¹⁾				Actual Qua	ntities of C&D	Wastes (in 10 ³	Kg) ⁽⁴⁾			
	Total Quantity Generated	Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill		n of existing		n of existing		ardboard aging	General refuse	Other waste	Chemic	al Waste
	(a)	(b)	(c)	(d)	(a)-(b)-(c)-(d)	Atriu Recycle	m Link Disposal	Recycle	platform Disposal	Recycle	Disposal	Disposal	Disposal	Recycle	Disposal
January	(a) -	-	-	- (u)	-	-	-	-	-	-	-	-	-	-	Disposal
February	_	-	_	_		_	-	-		_	_	_	-	_	
March	-	-	_	_		-	-	-		_		_	-	_	
April	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
May	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
June	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
July	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
August	264	0	1	0	263	0	0	0	0	0	1	50	81	0	0
Septembe	1509 (2)	0	2	0	1507	0	0	0	0	0	1	60	215	0	0
October	1380	0	2 (3)	0	1378	30 (5)	0	0	0	0	1	55	532 ⁽⁶⁾	0	0
November	2091	0	1 (3)	0	2090	100 (5)	0	0	0	0	1.5	50	115(6)	0	0
December	1717	0	1 (3)	0	1716	80 (5)	0	0	0	0.2	0.1	60	50	0	0
Total	6961	0	7	0	6954	210	0	0	0	0.2	4.6	275	993	0	0

 ⁽¹⁾ Inert C&D materials include bricks, concrete, building debris, rubble and excavated soil.
 ⁽²⁾ Inert C&D material mainly generated from construction of foundation.
 ⁽³⁾ Reused for building bunds and making sand bags. Note:

⁽⁴⁾ C&D wastes include steel materials generated from demolition, paper / cardboard packaging waste, chemical waste and other wastes such as general refuse. Wastes other than general refuse will be disposed of at Tsueng Kwan O Area 137 temporary construction waste sorting facility.

⁽⁵⁾ Waste from demolition of steel structure at existing Atrium Link of HKCEC (Phase 2).

⁽⁶⁾ Wastes include materials associated with additional and alternation (A&A) works of HKCEC (e.g. demolition of E&M equipment and finishing materials, bamboo scaffolding) and piling works.

HKCEC – Expansion Project

Name of Project Proponent: HKTDC Project Commencement Date: 1 Aug 2006 **Construction Completion Date: March 2009**

Monthly Summary Waste Flow Table for Year 2007

Year	Acti	ual Quantities of i	inert C&D M	laterials (in 10	³ Kg) ⁽¹⁾⁽²⁾				Actual Quar	ntities of C&D	Wastes (in 10	³ Kg) ⁽⁴⁾			
	Total Quantity	Broken Concrete ⁽³⁾	Reused in the	Reused in other Projects	Disposed as Public Fill	Demolition	Stee	l Materials	of existing		ardboard aging	Chemic	al Waste	General refuse	Other waste ⁽⁶⁾
	Generated	Concrete	Contract	(3)	I done I'lli		m Link		platform	раск	aging	l)	_)	Teruse	waste
	(a)	(b)	(c)	(d)	(a)-(b)-(c)-(d)	Recycle	Disposal	Recycle	Disposal	Recycle	Disposal	Recycle	Disposal	Disposal	Disposal
January	924	462	0.5	0	462	90 ⁽⁵⁾	0	0	0	0.2	0.05	0	0	60	80
February	814	110	0.5	0	704	5 (5)	0	0	0	0.2	0.07	0	288	66	55
March	583	66	0.5	0	517	0	0	0	0	0	0.05	0	0	77	33
April	1034	165	0.5	0	867	0	0	0	0	0.4	0.05	0	0	55	44
May	275.5	33	0.5	0	242	10 (5)	0	0	0	0.4	0.04	0	0	55	154
June	1654	0	0	0	1654	50	0	0	0	0.5	0.03	0	0	80	150
July	614	0	0.5	0	613.5	60	0	0	0	0.5	0.04	0	0	85	298
August	944	0	0.5	0	943.5	1400	0	0	0	0.6	0.01	0	0	70	380
Sep	310	0	0.5	0	309.5	514	0	0	0	0.5	0.02	0	0	50	245
October	406.5	0	0.5	0	406	100	0	0	0	0.5	0.01	0	0	40	38
November	1016.5	0	0.5	0	1016	20	0	0	0	0.5	0.02	0	0	45	150
December	297	0	0.5	0	296.5	0.5	0	0	0	0.5	0.02	0	0	25	67
Total	8872.5	836	5.5	0	8031	2249.5	0	0	0	4.8	0.41	0	288	708	1694

Note:

 (1) Inert C&D materials include bricks, concrete, building debris, rubble and excavated soil.
 (2) Inert C&D material mainly generated from demolition of atrium link.
 (3) Broken concrete fro recycling into aggregates.
 (4) C&D wastes include steel materials generated from demolition, paper / cardboard packaging waste, chemical waste and other wastes such as general refuse. Wastes other than general refuse will be disposed of at Tsueng Kwan O Area 137 temporary construction waste sorting facility. ⁽⁵⁾ Waste from demolition of steel structure at existing Atrium Link of HKCEC (Phase 2).

⁽⁶⁾ Wastes include materials associated with additional and alternation (A&A) works of HKCEC (e.g. demolition of E&M equipment and finishing materials, bamboo scaffolding) and piling works.

HKCEC – Expansion Project

Name of Project Proponent: HKTDC Project Commencement Date: 1 Aug 2006 **Construction Completion Date: March 2009**

Monthly Summary Waste Flow Table for Year 2008

Year	Act	ual Quantities of i	inert C&D N	laterials (in 10	3 Kg) ⁽¹⁾⁽²⁾				Actual Quar	ntities of C&D	Wastes (in 10	9 ³ Kg) ⁽⁴⁾			
	Total Quantity	Broken	Reused in the	Reused in other	Disposed as			l Materials			ardboard	Chemic	al Waste	General	Other
	Generated	Concrete ⁽³⁾	Contract	Projects	Public Fill		n of existing m Link		of existing platform	pack	aging	(1	L)	refuse	waste (6)
	(a)	(b)	(c)	(d)	(a)-(b)-(c)-(d)	Recycle	Disposal	Recycle	Disposal	Recycle	Disposal	Recycle	Disposal	Disposal	Disposal
January	495	0	0	0	495	10 (5)	0	0	0	0.2	0.04	0	0	30	122
February															
March															
April															
May															
June															
July															
August															
Sep															
October															
November															
December															
Total	495	0	0	0	495	10 (5)	0	0	0	0.2	0.04	0	0	30	122

Note:

 (1) Inert C&D materials include bricks, concrete, building debris, rubble and excavated soil.
 (2) Inert C&D material mainly generated from demolition of atrium link.
 (3) Broken concrete fro recycling into aggregates.
 (4) C&D wastes include steel materials generated from demolition, paper / cardboard packaging waste, chemical waste and other wastes such as general refuse. Wastes other than general refuse will be ⁽⁵⁾ Waste from demolition of steel structure at existing Atrium Link of HKCEC (Phase 2).

⁽⁶⁾ Wastes include materials associated with additional and alternation (A&A) works of HKCEC (e.g. demolition of E&M equipment and finishing materials, bamboo scaffolding) and piling works.