ENVIRONMENTAL MONITORING & AUDIT REPORT

Hip Hing - Ngo Kee Joint Venture

Hong Kong Convention and Exhibition Centre Expansion Project: Monthly Environmental Monitoring and Audit Report for December 2007

January 2008

Environmental Resources Management

21/F Lincoln House 979 King's Road Taikoo Place Island East, Hong Kong Telephone: (852) 2271 3000 Facsimile: (852) 2723 5660 E-mail: post.hk@erm.com http://www.erm.com

ENVIRONMENTAL MONITORING & AUDIT REPORT

Hip Hing - Ngo Kee Joint Venture

Hong Kong Convention and Exhibition Centre Expansion Project:

Monthly Environmental Monitoring and Audit Report for December 2007

January 2008

Reference 0050690

For and on behalf of				
Environmental Resources Management				
Approved by: Dr Robin Kennish				
Signed: Rdein Keeene Bl				
Position: <u>Director</u>				
Certified by:				
(Environmental Team Leader – Marcus Ip)				
Date: 14 January 2007				

This report has been prepared by Environmental Resources Management the trading name of 'ERM Hong-Kong, Limited', with all reasonable skill, care and diligence within the terms of the Contract with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client.

We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.

This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies on the report at their own risk.

NATURE & TECHNOLOGIES (HK) LIMITED 科技環保(香港)有限公司

Unit 2 & 3, 4/F., Wellborne Commercial Centre, 8 Java Road, North Point, Hong Kong. 香港北角渣華道8號威邦商業中心4樓2及3室 Tel電話:(852)2877 3122 Fax傳真:(852)2511 0922 Email電郵: enquiry@nt.com.hk Web page網址: http://www.nt.com.hk

Our Ref: 3.16/014/2006/it

11 January 2008

Maunsell Consultants Asia Ltd Grand Central Plaza, Tower 2 138 Shatin Rural Committee Road Shatin, N.T., Hong Kong

Attn: Ms Vera Chan

Dear Sir/Madam,

Hong Kong Convention Center Expansion Project Monthly EM&A Report for December 2007 (Environmental Permit No. EP-239/2006/A)

With reference to the captioned document concerning the Monthly EM&A report for December 2007 received from ERM dated 10 January 2008, we are pleased to provide our verification for the document pursuant to condition 3 of the Environmental Permit (EP) No. EP-239/2006/A.

Yours faithfully,

Nature & Technologies (HK) Limited

Ir Dr Gabriel C K Lam Managing Director

cc: - Hong Kong Trade Development Council (Attn: Mr. K. F. Chan)

- Hip Hing Ngo Kee Joint Venture (Attn: Mr. Eric Lau & Mr. William Tam)

- ERM (Attn: Mr. Marcus lp)

CONTENTS

	EXECUTIVE SUMMARY	I
1	INTRODUCTION	1
1.1	Purpose of the Report	1
1.2	STRUCTURE OF THE REPORT	1
2	PROJECT INFORMATION	3
2.1	BACKGROUND	3
2.2	SITE DESCRIPTION	3
2.3	CONSTRUCTION ACTIVITIES	4
2.4	PROJECT ORGANISATION	4
2.5	STATUS OF ENVIRONMENTAL APPROVAL DOCUMENTS	4
3	ENVIRONMENTAL MONITORING METHODOLOGY	6
3.1	AIR QUALITY MONITORING	6
3.2	Water Quality Monitoring	9
4	IMPLEMENTATION STATUS ON ENVIRONMENTAL PROTECTION REQUIREMENTS	I 13
5	MONITORING RESULTS	14
5.1	AIR QUALITY	14
5.2	WATER QUALITY	14
5.3	WASTE MANAGEMENT	15
6	ENVIRONMENTAL SITE AUDITING	16
7	ENVIRONMENTAL NON-CONFORMANCE	18
7.1	SUMMARY OF ENVIRONMENTAL EXCEEDANCE	18
7.2	SUMMARY OF ENVIRONMENTAL NON-COMPLIANCE	18
7.3	SUMMARY OF ENVIRONMENTAL COMPLAINT	18
7.4	SUMMARY OF ENVIRONMENTAL SUMMONS AND PROSECUTION	18
8	FUTURE KEY ISSUES	19
8.1	KEY ISSUES FOR THE COMING MONTH	19
8.2	MONITORING SCHEDULE FOR THE COMING MONTHS	19
9	REVIEW OF THE EM&A DATA AND EIA PREDICTIONS	20
9.1	AIR QUALITY	20
9.2	WASTE MANAGEMENT	20
9.3	CONCLUSION OF REVIEW	21

10 CONCLUSION 22

LIST OF TABLES

Table 2.1	Summary of Construction Activities Undertaken during the
	Reporting Month
Table 2.2	Summary of Environmental Licensing, Notification and Permit
	Status
Table 3.1	Air Monitoring Stations
Table 3.2	TSP Monitoring Parameter and Frequency
Table 3.3	Action and Limit Levels for Air Quality
Table 3.4	TSP Monitoring Equipment
Table 3.5	Monitoring Stations for Additional Water Quality Monitoring
	Programme
Table 3.6	Additional Water Quality Monitoring Frequency and
	Parameters
Table 3.7	Analytical Methods for Water Quality Parameters Monitored
Table 3.8	Action and Limit Levels for Water Quality
Table 5.1	Summary of Record of Exceedanace recorded during the
	Reporting Month
Table 5.2	Quantities of Waste Generated from the Project
Table 6.1	Results of Water Discharge Sampling
Table 8.1	Construction Works to be Undertaken in the Coming Month
Table 9.1	Comparison of the HKAQO and Air Quality Monitoring
	Results
Table 9.2	Comparison of the Estimated and Actual Amount of Waste
	Generated

LIST OF ANNEXES

Annex A	Location of Works Areas
Annex B	Location of Construction Activities during the Reporting Month
Annex C	Project Organization Chart and Contact Detail
Annex D	Locations of Air and Water Quality Monitoring Stations
Annex E	Monitoring Schedule of the Reporting Month and Next Month
Annex F	Calibration Reports for HVSs
Annex G	24-hour and 1-hour TSP Monitoring Results
Annex H	Calibration Certificates of Water Monitoring Equipment
Annex I	Water Quality Monitoring Results
Annex J	Event / Action Plans for Air and Water Quality Monitoring
Annex K	Summary of Implementation Status
Annex L	Waste Flow Table
Annex M	Construction Programme for Next Three Months
Annex N	Laboratory Report of Water Discharge Sampling

EXECUTIVE SUMMARY

The construction works for Hong Kong Convention and Exhibition Centre Expansion Project (EIAO Register No: AEIAR-100/2006) commenced on 1 August 2006. This is the seventeenth monthly Environmental Monitoring and Audit (EM&A) report presenting the EM&A works carried out during the period from 1 December 2007 to 31 December 2007 in accordance with the EM&A Manual.

Summary of Construction Works undertaken during the Reporting month

The major construction works undertaken during the reporting month included the construction of RC Column, the removal of Level 5 slabs, Transfer Truss installation, Roof Truss A and B Assembly, pile cap construction, construction works for Tx. Room and sea water pump house cable laying.

Environmental Monitoring and Audit Progress

A summary of the monitoring activities in this reporting month is listed below:

24-hour Total Suspended Particulates (TSP) monitoring5 sets1-hour TSP monitoring16 setsAdditional Water Quality Monitoring7 SetsEnvironmental site auditing4 times

Air Quality

Five sets of 24-hour and sixteen sets of 1-hour TSP monitoring were carried out at the designated monitoring stations (AM1 & AM2) during the reporting month. There were no exceedances recorded during the reporting month.

Water Quality

Additional water quality monitoring for the dry season has commenced on the 19 November 2007 and was completed on 14 December 2007. Seven sets of water monitoring were carried out at the designated monitoring stations (C1, C2 and M1). Two exceedances of Limit Level of TIN were recorded during the reporting month. Results of the investigations indicated that the exceedances were likely due to natural fluctuation rather than Project works.

Construction Waste Management

The major construction activities undertaken in the reporting month were the construction of pile cap, the installation of Roof Truss A and B and the removal of Level 5 slabs,

A total of 297 tonnes of inert C&D materials and 92.52 tonnes of C&D wastes were generated during the reporting month. The C&D wastes and inert C&D materials generated from the Project were disposed of at SENT Landfill

/ Tseung Kwan O Area 137 Fill Bank and the public fill barging point at Quarry Bay respectively.

Environmental Site Auditing

Four weekly environmental site audits were carried out by the ET. Details of the audit findings and implementation status are presented in *Section 6*.

Environmental Non-conformance

No environmental non-compliance was identified during the reporting month.

No environmental complaint or summons was received during the reporting month.

Future Key Issues

Major works to be undertaken in the coming month are the installation and assembly of transfer truss, pile cap construction and the removal of existing structure at Transformer Room.

Potential environmental impacts arising from the construction activities in the coming month are mainly associated with dust, site runoff, marine water quality and waste.

1 INTRODUCTION

ERM-Hong Kong, Limited (ERM) was appointed by Hip Hing – Ngo Kee Joint Venture as the Environmental Team (ET) to implement the Environmental Monitoring and Audit (EM&A) programme for Hong Kong Convention and Exhibition Centre Expansion Project (the Project).

1.1 Purpose of the Report

This is the seventeenth EM&A report which summarises the impact monitoring results and audit findings of the EM&A programme during the reporting month from 1 December 2007 to 31 December 2007.

1.2 STRUCTURE OF THE REPORT

The structure of the report is as follows:

Section 1: **Introduction**

details the scope and structure of the report.

Section 2: **Project Information**

summarises background and scope of the Project, site description, project organisation and contact details, construction programme, the construction works undertaken and the status of Environmental Permits/Licences during the reporting month.

Section 3: Environmental Monitoring Requirement

summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels and Event / Action Plans.

Section 4: **Implementation Status on Environmental Mitigation Measures** summarises the implementation of environmental protection measures during the reporting month.

Section 5 : **Monitoring Results**

summarises the monitoring results obtained in the reporting month.

Section 6: Environmental Site Auditing

summarises the audit findings of the weekly site inspections undertaken within the reporting month.

Section 7: Environmental Non-conformance

summarises any environmental exceedance, environmental complaints and environmental summons received within the reporting month.

Section 8: **Future Key Issues**

summarises the impact forecast and monitoring schedule for the next three months.

Section 9: Review of EM&A Data and EIA Predictions

compares and contrasts the EM&A data in the month with the EIA predictions and annotates with explanation for any discrepancies.

Section 10: Conclusion

2 PROJECT INFORMATION

2.1 BACKGROUND

The Hong Kong Trade Development Council (HKTDC) is expanding its existing facilities to provide additional space for Hong Kong's leading trade fairs to be held at the Hong Kong Convention and Exhibition Centre (HKCEC). The Project is located in North Wan Chai and will occupy the aerial space between Phase I and Phase II of the HKCEC. The new Atrium Link Extension (ALE) will span across the water channel between Phase I and Phase II of the HKCEC to accommodate 3 main levels of Exhibition Hall Extensions. The level of the main roof of the Extension will be of similar height as that of the podium roof of the Phase I building. A northern row of permanent supporting columns will be located on land close to Expo Drive Central and similarly a southern row will land near to Convention Avenue. There will be no permanent intermediate columns in the waterway.

The major works activities for the ALE will comprise the following:

- Construction and demolition of the temporary footbridge;
- Demolition of the existing Atrium Link;
- Construction and demolition of a temporary working platform;
- Construction of foundations and pile caps for the ALE; and
- Construction of superstructure for the ALE.

The potential environmental impacts of the Project have been studied in the "Hong Kong Convention and Exhibition Centre, Atrium Link Extension — Environmental Impact Assessment Report" (EIAO Register No: AEIAR-100/2006). The EIA was approved on 21 April 2006 under the Environmental Impact Assessment Ordinance (EIAO). An Environmental Permit (EP-239/2006) for the works was granted on 12 May 2006. An application for variation of the Environmental Permit was made on 25 January 2007, an amended Environmental Permit (EP-239/2006/A) was granted on 12 February 2007. Under the requirements of Condition 3.1 of Environmental Permit EP-239/2006/A, an EM&A programme as set out in the EM&A Manual and its supplement is required to be implemented.

The construction works commenced on 1 August 2006 and are scheduled to be completed by March 2009.

2.2 SITE DESCRIPTION

The works areas of the Project are illustrated in *Annex A*.

2.3 CONSTRUCTION ACTIVITIES

A summary of the major construction activities undertaken in this reporting month is shown in *Table 2.1*. The locations of the construction activities are shown in *Annex B*.

Table 2.1 Summary of Construction Activities Undertaken during the Reporting Month

Construction Activities Undertaken

- Construction of RC Column
- Removal of Level 5 slabs
- Transfer Truss Installation
- Roof Truss A Assembly
- Roof Truss B Assembly
- Pile Cap Construction
- Construction works for Transformer Room
- Sea Water Pump House Cable Laying

2.4 PROJECT ORGANISATION

The Project organisation chart and contact details are shown in *Annex C*.

2.5 STATUS OF ENVIRONMENTAL APPROVAL DOCUMENTS

A summary of the relevant permits, licences, and/or notifications on environmental protection for this Project since August 2006 is presented in *Table 2.2*.

Table 2.2 Summary of Environmental Licensing, Notification and Permit Status

Permit/ Licenses/	Reference	Validity Period	Remarks
Notification			
Environmental	EP-239/2006/A	Throughout the	Environmental Permit
Permit		Contract	(EP) EP-239/2006 granted originally on 12
			May 2006 but superseded
			by revised EP issued on
			12 February 2007
Notification of			Natification on 22 June
Construction Works			Notification on 23 June 2006
under Air Pollution			2000
Control (Construction			
Dust) Regulation			
Discharge Licence	EP860/W10/XY0145	N/A	-
under Water			
Pollution Control			
Ordinance			

Permit/ Licenses/ Notification	Reference	Validity Period	Remarks
Chemical Waste Producer Registration	WPN5213-134-H3125- 01	N/A	Chemical waste types: spent paint, acid, alkaline, adhesive, diesel fuel, lubricating oil and bitumen.
Valid Construction Noise Permit for area inside the Atrium Link	GW-RS0692-07	Valid from 31 October 2007 to 31 January 2008	
	GW-RS0667-07	Valid from 16 October 2007 to 15 April 2008	
	GW-RS0674-07	Valid from 1 November 2007 to 30 April 2008	
	GW-RS0691-07	Valid from 30 April 2007 to 30 April 2008	
	GW-RS0766-07	Valid from 30 November 2007 to 29 February 2008	

3

3.1 AIR QUALITY MONITORING

3.1.1 Monitoring Location

In accordance with the EM&A Manual, 24-hour and 1-hour Total Suspended Particulates (TSP) levels were conducted at the monitoring stations listed in *Table 3.1.* Maps and photographs showing the monitoring stations are presented in *Annex D*.

Table 3.1 Air Monitoring Stations

Monitoring Station	Description
AM1	Pedestrian Plaza
AM2	Renaissance Harbour View Hotel Hong Kong

3.1.2 Monitoring Parameters, Frequency and Programme

Air quality monitoring was conducted in accordance with the requirements stipulated in the EM&A Manual (*Table 3.2*). The monitoring programme for this and next three months is shown in *Annex E*.

Table 3.2 TSP Monitoring Parameter and Frequency

Parameter	Frequency
24-hour TSP	Once every 6 days
1-hour TSP	3 times every 6 days

3.1.3 Action and Limit Levels

The Action and Limit levels were established in accordance with the EM&A Manual and are presented in *Table 3.3*.

Table 3.3 Action and Limit Levels for Air Quality

Air Monitoring	Action Level, µg/m³	Limit Level, µg/m³	
Station			
AM1	161	260	
AM2	168	260	
AM1	327	500	
AM2	329	500	
	Station AM1 AM2 AM1	Station AM1 161 AM2 168 AM1 327	

3.1.4 Monitoring Equipment

Continuous 24-hour and 1-hour TSP monitoring were performed using High Volume Samplers (HVS) with appropriate sampling inlets installed, located at the designated monitoring station. The performance specification of HVS complies with the standard method "Determination of Suspended Particulate Matter in the Atmosphere (High Volume Method)" as stipulated in US EPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50 Appendix B).

Table 3.4 summarises the equipment that was used in the 24-hour and 1-hour TSP monitoring.

Table 3.4 TSP Monitoring Equipment

Monitoring Station	Equipment	Model (HVS, Calibration Kit)
AM1 (for 24-hr TSP)	HVS, Calibration Kit	GMW-9503, Tisch TE-5025 A
AM2 (for 24-hr TSP)	HVS, Calibration Kit	GMW-9795, Tisch TE-5025A
AM1 (for 1-hr TSP)	HVS, Calibration Kit	GMW-9864, Tisch TE-5025A
AM2 (for 1-hr TSP)	HVS, Calibration Kit	GMW-8115, Tisch TE-5025 A

3.1.5 *Monitoring Methodology*

Installation

The HVS's at AM1 and AM2 were placed at about 1.3 m above local ground level and about 4.3 m above local ground respectively. All of the HVS's were free-standing with no obstruction.

The following criteria were considered in the installation of the HVS's:

- horizontal platform with appropriate support to secure the samplers against gusty wind were provided at AM1 & AM2;
- a minimum of 2 m separation from walls, parapets and penthouses was required for rooftop samplers;
- no furnace or incinerator flues were nearby;
- airflow around the sampler was unrestricted; and
- permission was obtained to set up the samplers and to gain access to the monitoring stations.

Preparation of Filter Papers by ETS-Test Consultant Ltd

- glass fibre filters were labelled and sufficient filters that were clean and without pinholes were selected;
- all filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than \pm 3 °C; the relative humidity (RH) was 40%; and
- ETS-Test Consultant Ltd, a HOKLAS accredited laboratory, implements comprehensive quality assurance and quality control programmes.

Field Monitoring

- the power supply was checked to ensure that the HVS's were working properly;
- the filter holder and the area surrounding the filter were cleaned;

- the filter holder was removed by loosening the foul bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully;
- the filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter;
- the swing bolts were fastened to hold the filter holder down to the frame. The pressure applied should be sufficient to avoid air leakage at the edges;
- then the shelter lid was closed and secured with the aluminium strip;
- the HVS's were warmed-up for about 5 minutes to establish runtemperature conditions;
- a new flowrate record sheet was set into the flow recorder;
- the flow rate of the HVS's was checked and adjust at around 0.6 -1.44 m³/min. The range specified in the EM&A Manual was between 0.6 1.7 m³/min;
- the programmable timer was set for a sampling period of 24 hours \pm 1 hour, and the starting time, weather condition and the filter number were recorded;
- the initial elapsed time was recorded;
- at the end of sampling, the sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact;
- it was then placed in a clean plastic envelope and sealed;
- all monitoring information was recorded on a standard data sheet; and
- filters were sent to ETS-Test Consultant Ltd for analysis.

3.1.6 *Maintenance and Calibration*

The HVS's and their accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.

The flow rate of each HVS with mass flow controller were calibrated using an orifice calibrator. Initial calibration of the dust monitoring equipments were conducted upon installation and prior to commissioning. Five-point calibration was carried out for HVS's using Tisch TE-5025 A Calibration Kit. The calibration records for the HVS's are given in *Annex F*.

3.1.7 Event Action Plan

The Event / Action Plan (EAP) for air quality monitoring is presented in *Annex J*.

3.2 WATER QUALITY MONITORING

3.2.1 Water Quality Monitoring

In accordance with the EM&A Manual, the marine water quality monitoring should be conducted at three designated monitoring stations during the installation and removal of temporary marine piles. The installation of temporary marine piles was completed on 23 April 2007 and therefore water quality monitoring for marine pile installation works was not conducted during the reporting month.

3.2.2 Additional Water Quality Monitoring

As part of the Application for Variation of Environmental Permit (Application No. VEP-227/2007) submitted on 25 January 2007, the Permit Holder undertook additional water quality monitoring in the marine channel in connection with the installation of temporary marine piles.

The installation of temporary marine piles was completed on 23 April 2007 and four weeks of additional water quality monitoring was also completed on 21 May 2007 after the completion of marine piling works. In accordance with the additional water quality programme which was submitted to the EPD on 4 April 2007, four weeks of additional water quality monitoring during the dry season commenced on 19 November 2007 and was completed on 14 December 2007.

The following section describes the details of the additional water quality monitoring programme.

Monitoring Locations

Two control stations and an impact monitoring station were selected for the collection of data on water quality within and outside the marine channel. The locations of the control stations and the impact monitoring station are presented in *Table 3.5* and *Annex D*.

Table 3.5 Monitoring Stations for Additional Water Quality Monitoring Programme

Station	Location	Monitoring Water Depth	Easting	Northing
C1(1)	Adjoins Expo Drive	Surface, middle and bottom	835645	815900
$C2^{(2)}$	Adjoins Expo Drive East	Surface, middle and bottom	836014	815926
M1 ⁽³⁾	Approximately at the centre of the marine channel	Surface, middle and bottom	835852	815907

Station	Location	Monitoring Water Depth	Easting	Northing

Remark:

- (1) C1 has been assigned the upstream station during mid-ebb tide with reference to the flow pattern within and in the vicinity of the marine channel.
- (2) C2 has been assigned the upstream station during mid-flood tide with reference to the flow pattern within and in the vicinity of the marine channel.
- (3) Taking into account the foreseeable difficulty in accessing the exact centre of the marine channel, monitoring station M1 was chosen to be the same location as W3 under the current monitoring programme but outside the silt screen.

Monitoring Schedule and Requirement

The additional water quality monitoring was conducted in accordance with *Table 3.6* during the dry season after the completion of the installation of the temporary marine piles at the proposed monitoring stations listed in *Table 3.5*. The monitoring programme for the reporting and following month is shown in *Annex E*.

Table 3.6 also summarises the monitoring frequency and water quality parameters adopted for the reporting month. Duplicate in-situ measurements and water samples for testing suspended solids (SS), and one water sample for testing total inorganic nitrogen (TIN) were taken for each sampling event.

Table 3.6 Additional Water Quality Monitoring Frequency and Parameters

Activity	Monitoring Frequency	Monitoring Parameters
During the installation of	Three days per week at mid-	Dissolved Oxygen (DO),
temporary marine piles	flood and mid-ebb tides	Turbidity, Suspended Solid
		(SS), Total Inorganic Nitrogen
		(TIN)
Four-week monitoring	Three days per week at mid-	Dissolved Oxygen (DO),
immediately after the	flood and mid-ebb tides	Turbidity, Suspended Solid
completion of the installation		(SS), Total Inorganic Nitrogen
of the temporary marine piles		(TIN)
Four-week monitoring during	Three days per week at mid-	Dissolved Oxygen (DO),
the dry season after the	flood and mid-ebb tides	Turbidity, Suspended Solid
completion of the installation		(SS), Total Inorganic Nitrogen
of the temporary marine piles		(TIN)

Measurements were taken at three water depths, namely 1 m below water surface, mid-depth and 1 m above sea bed, except where the water depth is less than 6 m, in which case the mid-depth sample was omitted. Where the water depth was less than 3 m, monitoring was undertaken only at mid-depth.

Monitoring Equipment and Methodology

Dissolved oxygen and temperature measuring equipment

A portable and weatherproof dissolved oxygen (DO) measuring meter (YSI Model 85) was used in the impact monitoring.

The DO measuring meter has a membrane electrode with automatic temperature compensation complete with a 50-feet cable. Wet bulb

calibration for a DO meter was carried out before measurement at each monitoring station.

Turbidity Measurement Instrument

The turbidity measurements were carried out on split water sample collected from the same depths as the SS samples. A portable and weatherproof turbidity-measuring meter (HACH 2100P) was used in the impact monitoring. It has a photoelectric sensor capable of measuring turbidity between 0-1000 NTU. Response of the sensor was checked with certified standard turbidity solutions before the start of measurement.

Suspended Solids

Water samples for suspended solids measurement were collected by means of a transparent PVC cylinder (Kahlsico Water Sampler), packed in ice (cooled to 4° C without being frozen) and delivered to the laboratory as soon as possible after collection. The SS determination work was started within 24 hours after the collection of the water samples, and the testing method of SS was carried by ETS-Testconsult Ltd (HOKLAS accredited laboratory) in accordance with the APHA 19ed 2540D(1) and the lowest detection limit is 1 mgL-1. The Quality Assurance/Quality Control (QA/QC) procedures were followed as per HOKLAS requirements.

Water Depth Detector

A portable, battery-operated echo sounder (Speedtech instrument SM-5A) was used for the determination of water depth at each designated monitoring station.

Location of the Monitoring Sites

A hand-held GPS (MLR SP24) together with a suitably scaled map was used for locating the water quality monitoring stations.

Calibration of Equipment

All in-situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme before use, and subsequently re-calibrated at 3 monthly intervals throughout the water quality monitoring. The calibration records for the monitoring instruments are given in *Annex H*.

<u>Laboratory Measurement / Analysis</u>

Water samples for laboratory analyses under the additional water quality monitoring programme were collected following the same procedures described in *Section 3.2.4* for SS. The laboratory analyses were conducted within 24 hours after the collection of the water samples by ETS-Testconsult

⁽¹⁾ American Public Health Association Standard Methods for the Examination of Water and Wastewater.

Ltd (HOKLAS accredited laboratory) in accordance with the analytical methods presented in *Table 3.7*. The Quality Assurance/Quality Control (QA/QC) procedures were followed as per HOKLAS requirements.

Table 3.7 Analytical Methods for Water Quality Parameters Monitored

Water Quality Parameter	Analytical Method	Detection Limit	
Suspended Solids (SS)	APHA ⁽¹⁾ 2540D or HOKLAS-	1 mgL ⁻¹	
	accredited method		
Total Inorganic Nitrogen (TIN)	$APHA^{(1)} 4500 - NO_3^- F & NH_3 G or$	0.1 mgL ⁻¹	
	HOKLAS-accredited method		
Remark:			
(1) American Public Health Association (APHA) Standard Methods for the Examination of Water			
and Wastewater, 19th edition			

Action and Limit Levels

The Action and Limit levels were established in accordance with the EM&A Manual and are presented in *Table 3.8*.

Table 3.8 Action and Limit Levels for Water Quality

Parameter	Tide	Action Level	Limit Level
Dissolved Oxygen	Mid-Ebb	3.26	3.23
(DO) in mgL ⁻¹	Mid-Flood	3.25	3.14
Suspended Solids (SS)	Mid-Ebb	9.00	10.00
in mgL ⁻¹	Mid-Flood	8.18	8.40
Turbidity (Tby) in	Mid-Ebb	5.32	6.19
NTU	Mid-Flood	4.76	5.79

3.2.3 Event / Action Plan

The Event / Action Plan (EAP) for water quality monitoring is presented in *Annex J*.

4 IMPLEMENTATION STATUS ON ENVIRONMENTAL PROTECTION REQUIREMENTS

The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Report, the Environmental Permit and EM&A Manual. The implementation status of environmental mitigation and status of relevant required submissions under the EP are reported as part of the monthly EM&A report⁽¹⁾. Relevant submissions made on these measures and requirements during the reporting month are summarised in *Annex K*.

⁽¹⁾ The last Monthly EM&A Report for November 2007 was submitted to the EPD on 20 December 2007.

5.1 AIR QUALITY

The monitoring data at AM1 and AM2 were provided by ETS-Testconsult Ltd. Five sets of 24-hour and sixteen sets of 1-hour TSP monitoring were carried out at the designated monitoring stations (AM1 & AM2) during the reporting month. The monitoring data for 24-hour TSP and 1-hour TSP together with wind data and graphical presentations are presented in *Annex G*. In addition, the monitoring results can also be found at the web-site (http://www.hkcecema.com/index.html).

The weather condition during the monitoring period was sunny. The local impacts observed near the monitoring stations were mainly vehicle emissions along Convention Avenue and Fleming Road.

5.2 WATER QUALITY

Water quality monitoring for marine pile installation works was not conducted during the reporting month at the designated monitoring stations (W3, W4 and W5) subsequent to the completion of installation of marine piles on 23 April 2007.

Additional dry-season water quality monitoring for the marine channel with piles installed has commenced on 19 November 2007 and was completed on 14 December 2007. Seven sets of water quality measurements were carried out at the designated monitoring station C1, C2 and M1 during the reporting month.

The monitoring data and graphical presentations are summarized in *Annex I*. The monitoring results can also be found in the web-site (http://www.hkcecema.com/index.html).

Two exceedances of TIN level at the monitoring station M1 were recorded during the reporting month and was summarised in *Table 5.1*. Notifications of Exceedances with detailed investigation reports was issued to the IEC and EPD immediately when the exceedances were identified.

Table 5.1 Summary of Record of Exceedanace recorded during the Reporting Month

Station	Record of Exceedance
M1	Exceedance of Action Level of TIN on 7 December 2007 during mid-ebb and mid-
	flood tides
M1	Exceedance of Action Level of TIN on 10 December 2007 during mid-flood tide

Exceedances of Action Level of TIN were recorded on 7 and 10 December 2007. Steel roof truss was being erected in the vicinity of Station M1 during the time of monitoring. No liquid effluent was observed to be discharged

from the site to the water channel. The TIN level for 10 December 2007 at M1 during mid-flood continued to exceed the action level for one instance. However, both the mid-ebb and mid-flood TIN levels returned to compliance during subsequent monitoring. The measured TIN levels of the water samples taken on 12 December 2007 at Station M1 during mid-ebb and mid-flood tides were 0.94 and 0.93 mgL⁻¹ respectively, representing compliance of the Action Levels derived based on 120% of the TIN levels recorded at the control stations for the respective tides (ie 1.07 mgL⁻¹ at Station C1 for mid-ebb tide and 1.08 mgL⁻¹ at Station C2 for mid-flood tide). It is considered that the exceedances were likely due to natural fluctuation rather than Project works.

5.3 WASTE MANAGEMENT

Waste generated from this Project includes inert construction and demolition (C&D) materials and non-inert C&D wastes. Reference has been made on the Monthly Summary Waste Flow Table prepared by Hip Hing – Ngo Kee Joint Venture (*Annex L*). With reference to relevant handling records and trip tickets of this Project, the quantities of different types of waste generated in the reporting quarter are summarised in *Table 5.2*. The C&D wastes and inert C&D materials generated from the Project were disposed of at SENT Landfill / Tseung Kwan O Area 137 Fill Bank and the public fill barging point at Quarry Bay respectively.

Table 5.2 Quantities of Waste Generated from the Project

	Quantity		
Month / Year	C&D Materials (inert) (a)	C&D Materials (non-inert) b)	Chemical Waste
December 2007	297 tonnes	92.52 tonnes	0
	(excluding 0.5 tonnes of steel		
		materials which were collected	
		and recycled)	

Notes:

- (a) Inert C&D materials include bricks, concrete, building debris, rubble and excavated soil. 0.5 tonne of inert C&D materials was reused in this Project. Non-reused inert C&D materials were disposed of at the public fill barging point at Quarry Bay.
- (b) C&D wastes include steel materials generated from demolition of footbridge, the existing Atrium Link and working platform, paper / cardboard packaging waste, chemical waste and other wastes such as general refuse. The C&D wastes other than general refuse were disposed of at SENT Landfill / Tseung Kwan O Area 137 temporary construction waste sorting facility.

6

Weekly site inspections were carried out by the ET. Four site inspections were conducted on 6, 13, 20 and 27 December 2007. There was no non-compliance event recorded in the reporting month.

The following reminders were given to the Contractor:

- (i) Oil stains were observed on the marine platform. The Contractor was reminded to implement appropriate measures to prevent oil spillage/leakage on site.
- (ii) The catchpit and the perimeter channel near Gate 4 were flooded with water. The Contractor was reminded to maintain the proper functioning of the site drainage system.

Water Discharge Sampling

In accordance with the discharge licence issued under WPCO, water sampling should be conducted quarterly to ensure the quality of treated effluent at three designated discharge points complies with the requirements of discharge license. Two water samples at Discharge Point 2 and Discharge Point 3 were taken on 13 December 2007. *Table 6.1* shows that the effluent discharged from the Project was in compliance with the discharge limit stipulated in the Water Discharge License. The laboratory testing reports of the water sampling and the map showing the locations of discharge points are presented in *Annex N*.

Table 6.1 Results of Water Discharge Sampling

Sampling	Parameter	Test Result	Discharge Limit
Location			
Discharge	рН	8.3	6-9
Point 2			
(H200605 WT-	Total Suspended Solids (TSS) Dried at	<7	≤30
25)	103-105°C (mg/L)		
	Chemical Oxygen Demand (COD)	< 50	≤80
	(mgO_2/L)		
Discharge	рН	8.1	6-9
Point 3			
(H200605 WT-	Total Suspended Solids (TSS) Dried at	2.9	≤30
21)	103-105°C (mg/L)		
	Chemical Oxygen Demand (COD)	< 50	≤80
	(mgO_2/L)		

Landscape and Visual Monitoring

In accordance with *Section 6.7* of the EM&A Manual, bi-weekly landscape and visual monitoring is required to ensure that the design, implementation and maintenance of landscape and visual mitigation measures are fully achieved.

The monitoring has commenced since January 2007 and is conducted by Earthasia Limited. Landscape and visual mitigation measures were implemented by the Contractor with the implementation status is given in *Annex K*.

7 ENVIRONMENTAL NON-CONFORMANCE

7.1 SUMMARY OF ENVIRONMENTAL EXCEEDANCE

No exceedance of the Action and Limit Levels of 24-hour and 1-hour TSP was recorded at monitoring stations during the reporting period.

Two exceedances of the Limit Level of TIN were recorded at the monitoring station M1 during the reporting period. Details of the exceedances have been provided in *Table 5.1*.

7.2 SUMMARY OF ENVIRONMENTAL NON-COMPLIANCE

No non-compliance event was recorded during the reporting month.

7.3 SUMMARY OF ENVIRONMENTAL COMPLAINT

No complaint was received during the reporting month.

7.4 SUMMARY OF ENVIRONMENTAL SUMMONS AND PROSECUTION

No summons or prosecution on environmental matters was received during the reporting month.

8 FUTURE KEY ISSUES

8.1 KEY ISSUES FOR THE COMING MONTH

Works to be carried out for the coming monitoring period are summarised in *Table 8.1*.

Table 8.1 Construction Works to be Undertaken in the Coming Month

Work to be taken

- Transfer Truss Installation
- Roof Truss A Assembly
- Roof Truss B Assembly
- Pile Cap Construction
- Removal of Existing Structure at Transformer Room

Potential environmental impacts arising from the above construction activities are mainly associated with dust, site runoff and waste management.

8.2 MONITORING SCHEDULE FOR THE COMING MONTHS

The tentative schedule of TSP monitoring for next month is presented in *Annex E*. The environmental monitoring will be conducted at the same monitoring locations as those for this reporting month.

The installation of temporary marine piles was completed on 23 April 2007 and four weeks of additional water quality monitoring was also completed on 21 May 2007 after the completion of marine piling works. Four weeks of additional water quality for the dry season commenced on 19 November 2007 and were completed on 14 December 2007.

The construction programme for the next three months is presented in *Annex M*.

9.1 AIR QUALITY

Since the EIA only have qualitative assessment of dust impact during construction phase, the comparison was made between the monitoring results and the Hong Kong Air Quality Objectives (HKAQO) (*Table 9.1*).

Table 9.1 Comparison of the HKAQO and Air Quality Monitoring Results

Monitoring Stations	Corresponding ASR in EIA	HKAQO, ug/m ³	Measured 24 hour TSP Monitoring Results, ug/m³ (2)	
		24 hour (1)	Average	Range
AM1	AM8	260	80	23 – 145
AM2	AM6	260	72	14 - 145

Remarks:

The monitoring results show that the 24-hour TSP levels during the reporting month were well below the maximum allowable concentration stipulated in the HKAQO. Recommended mitigation measures in *Section 4.24* of EIA were implemented during the reporting month and were considered effective.

9.2 WASTE MANAGEMENT

The estimated amount of waste generated in this Project and the quantities of waste generated during the reporting month are presented in *Table 9.2*. Recommended mitigation measures in *Sections 6.35 to 6.41* of the EIA were implemented during the reporting month and regarded as effective.

⁽¹⁾ Only 24 hours TSP monitoring results were compared as there is no maximum allowable concentration of 1 hour TSP in HKAQO.

⁽²⁾ Average and range of data were calculated for the period of monitoring between August 2006 and the reporting month.

Table 9.2 Comparison of the Estimated and Actual Amount of Waste Generated

Type of Material	Estimated Amount of C&D Materials in EIA (inert & non- inert)	Actual Amount of C&D Materials Recorded ⁽¹⁾ (inert & non-inert)
Demolition of temporary	585 tonnes	0
footbridge		
Demolition of existing Atrium	4,680 tonnes	2,459.5 tonnes
Link		
Demolition of temporary	390 tonnes	0
working platform		
Construction of foundations and	20,000 tonnes	18520.5 tonnes
pile caps		
General Refuse	Insignificant	983 tonnes
Chemical Waste	Small	288 Litres
Chemical Waste	Small	288 Litres

Remark:

9.3 **CONCLUSION OF REVIEW**

The EIA predictions and the monitoring results during the reporting month have been reviewed. The EIA concluded that the Project would not cause adverse impacts to the environment, and the monitoring results also indicated that the construction of the Project has not caused adverse impacts to the environment. Recommendations given in the EIA are also considered to be adequate and effective for minimising the environmental impacts.

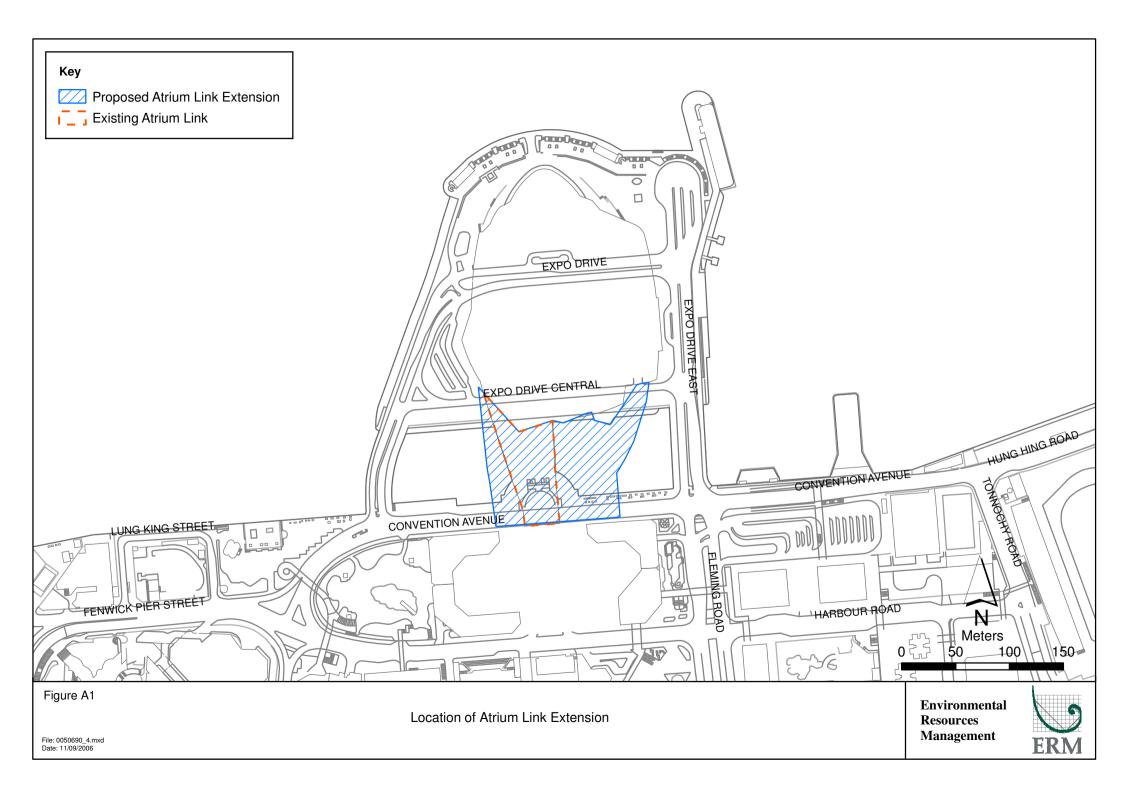
⁽¹⁾ The actual amount of C&D Materials was recorded since the commencement of construction works.

10 CONCLUSION

The Environmental Monitoring and Audit (EM&A) Report presents the EM&A work undertaken during the period from 1 December to 31 December 2007 in accordance with EM&A Manual and the requirements under EP-239/2006/A.

No exceedance of the Action and Limit Levels of 24-hour and 1-hour TSP was recorded at the monitoring stations during the reporting month.

Two exceedances of Limit Level of TIN were recorded during the reporting month. Results of investigation indicated that the exceedances were likely due to natural fluctuation or related to other project works rather than Project works.


No non-compliance event was recorded during the reporting month.

No complaint and summons/prosecution was received during the reporting month.

The ET will keep track of the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

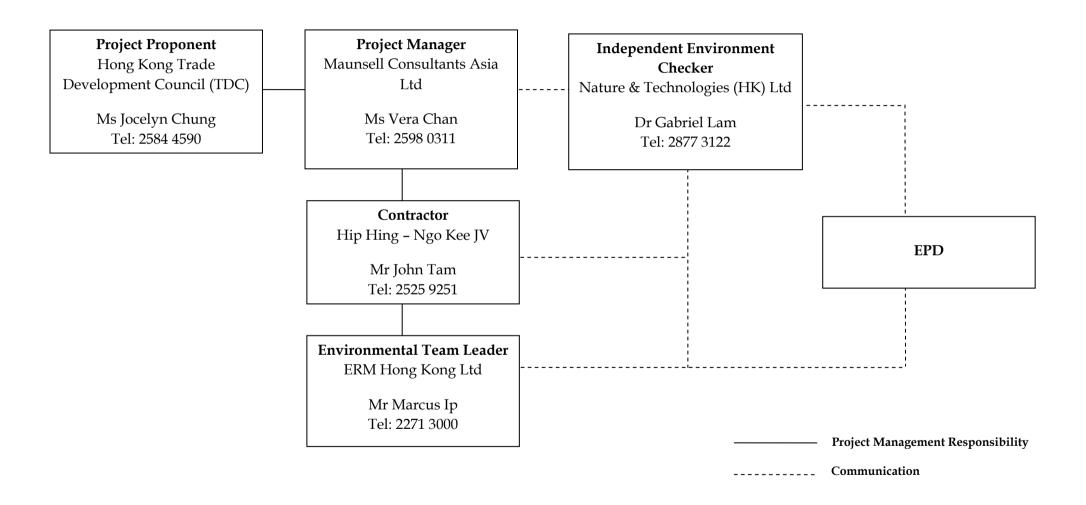
Annex A

Locations of Works Areas

Annex B

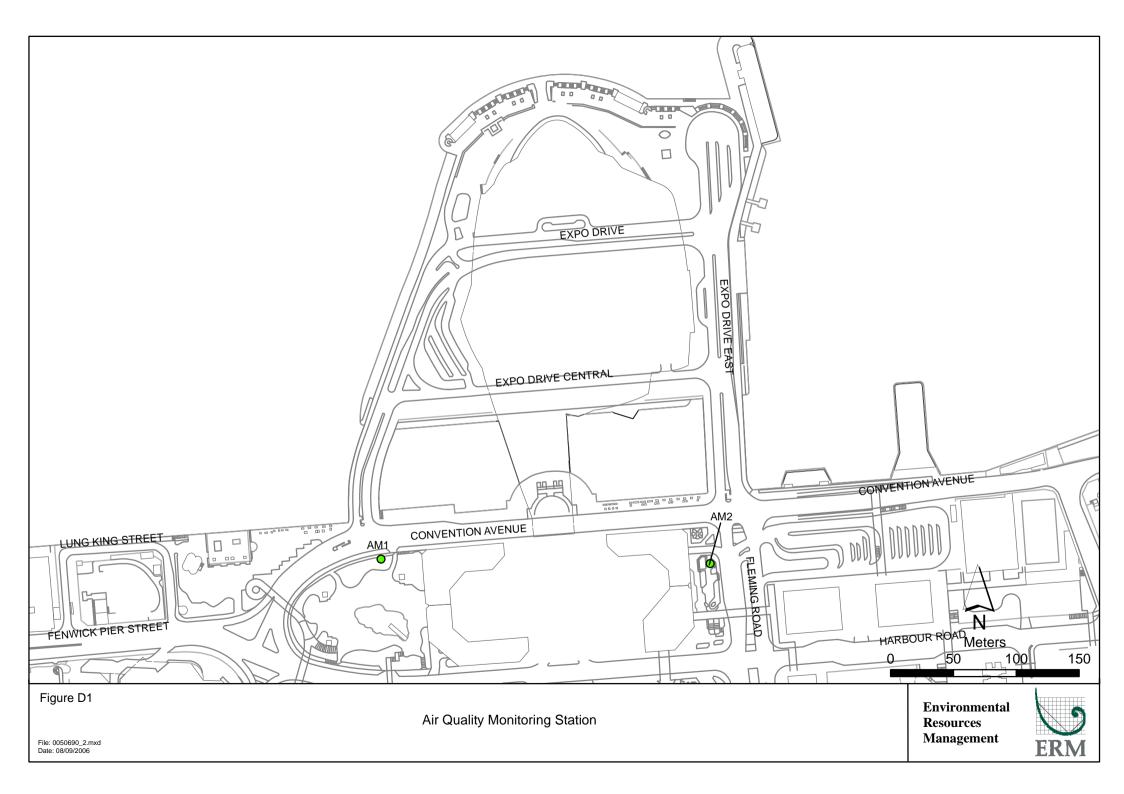
Location of Construction Activities during the Reporting Month

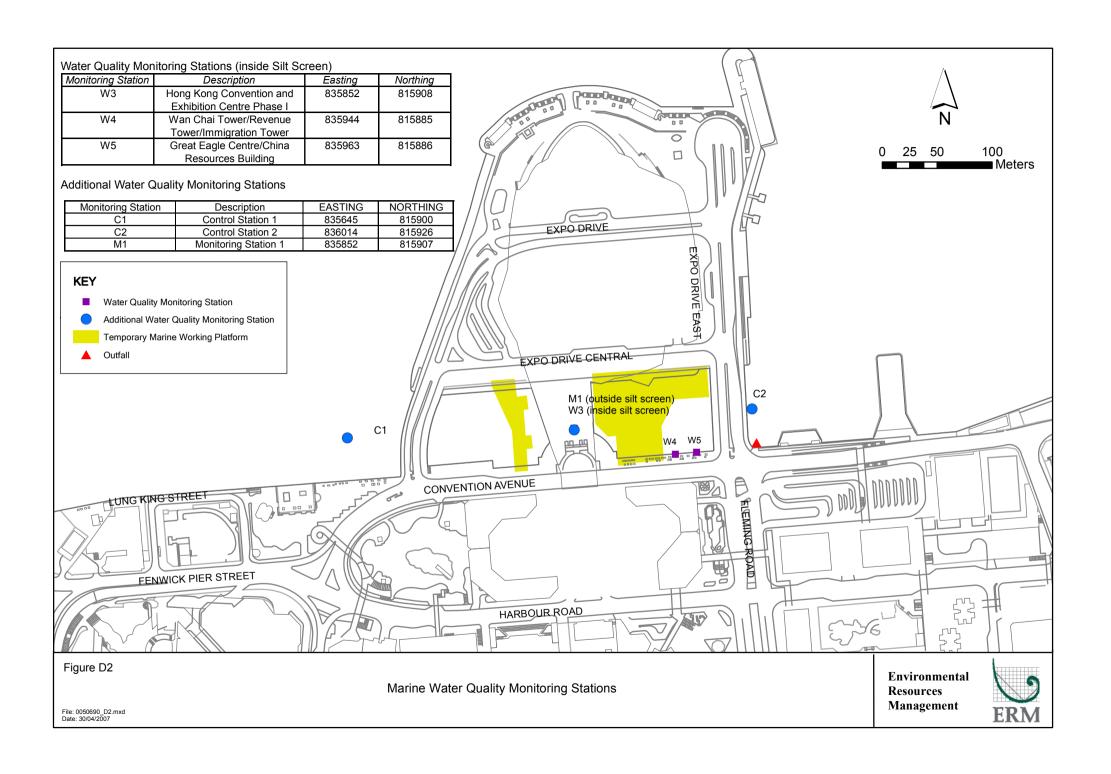
Summary of Works for December 2007


Description	Location
Construction of R.C. column	Grid E/17
Removal of Level 5 slabs	Grid 17-21
Transfer Truss Installation	GridA-B/24
Roof Truss A Assembly	Grid C
Roof Truss B Assembly	Grid D
Pile Cap Construction	Grid E/17a
Construction works for Tx. Room	Li, Phase II
Sea Water Pump House Cable Laying	Li, Phase II

Truss AZB Installation Healthy Lifting Bracket
lastallation Pile Cop Construction <u>[]</u> Healthy Lifting Brankel Installation

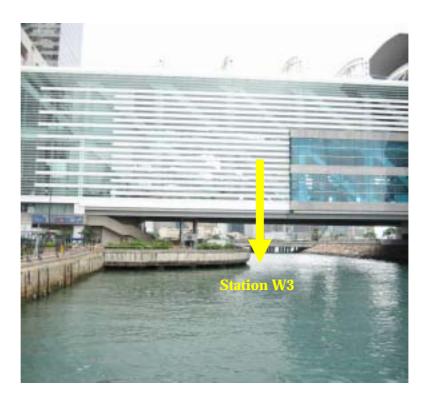
Annex C


Project Organization Chart and Contact Detail


Project Organization (with contact details)

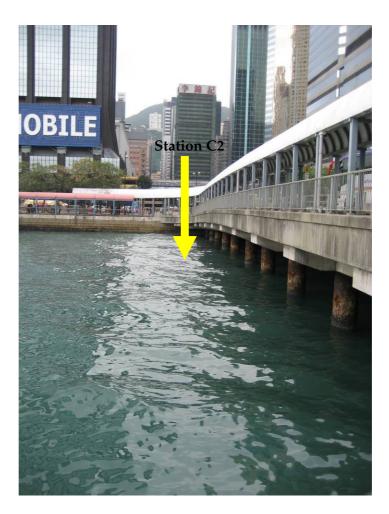
Annex D

Locations of Air and Water Quality Monitoring Stations



Air Quality Monitoring Station (AM1)

Air Quality Monitoring Station (AM2)


Water Quality Monitoring Location – Station W3

Water Quality Monitoring Location – Stations W4 and W5 $\,$

Additional Water Quality Monitoring Location – Station C1

Additional Water Quality Monitoring Location – Station C2

Additional Water Quality Monitoring Location – Station M1

Annex E

Monitoring Schedule for the Reporting Period and Next Month

Hong Kong Convention and Exhibition Centre, Atrium Link Extension Air Quality Monitoring Schedule - December 2007

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
02-Dec		04-Dec		06-Dec		08-Dec
	1 hr TSP	1 hr and 24 hr TSP	1 hr TSP		1 hr TSP	
09-Dec	10-Dec	11-Dec	12-Dec	13-Dec	14-Dec	15-Dec
	1 hr and 24 hr TSP		1 hr TSP		1 hr TSP	1 hr and 24 hr TSP
16-Dec	17-Dec	18-Dec	19-Dec	20-Dec	21-Dec	22-Dec
	1 hr TSP		1 hr TSP		1 hr and 24 hr TSP	
23-Dec	24-Dec	25-Dec	26-Dec	27-Dec	28-Dec	29-Dec
	1 hr TSP x 2			1 hr and 24 hr TSP	1 hr TSP	
30-Dec	31-Dec					
	1 hr TSP					

Hong Kong Convention and Exhibition Centre, Atrium Link Extension Air Quality Monitoring Schedule - January 2008

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	Í	01-Jan		03-Jan		05-Jan
			1 hr and 24 hr TSP		1 hr TSP	
06-Jan	07-Jan	08-Jan	09-Jan	10-Jan	11-Jan	12-Jan
	1 hr TSP	1 hr and 24 hr TSP	1 hr TSP		1 hr TSP	
13-Jan	14-Jan	15-Jan	16-Jan	17-Jan	18-Jan	19-Jan
	1 hr and 24 hr TSP		1 hr TSP		1 hr TSP	1 hr and 24 hr TSP
20-Jan	21-Jan	22-Jan	23-Jan	24-Jan	25-Jan	26-Jan
	1 hr TSP		1 hr TSP		1 hr and 24 hr TSP	
27-Jan	28-Jan	29-Jan	30-Jan	31-Jan		
	1 hr TSP		1 hr TSP	1 hr and 24 hr TSP		

Hong Kong Convention and Exhibition Centre, Atrium Link Extension Water Quality Monitoring Schedule - December 2007

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
-	•		•	·	,	01-Dec
						Mid-ebb 05:30
						Mid-flood 13:15
02-Dec	03-Dec	04-Dec	05-Dec	06-Dec	07-Dec	08-Dec
	Mid-ebb 07:23		Mid-ebb 09:21		Mid-ebb 10:49	
	Mid-flood 14:24		Mid-flood 15:23		Mid-flood 16:02	
09-Dec	10-Dec	11-Dec	12-Dec	13-Dec	14-Dec	15-Dec
	Mid-ebb 07:43		Mid-ebb 09:00		Mid-ebb 10:26	
	Mid-flood 12:37		Mid-flood 13:46		Mid-flood 15:11	
16-Dec	17-Dec	18-Dec	19-Dec	20-Dec	21-Dec	22-Dec
23-Dec	24-Dec	25-Dec	26-Dec	27-Dec	28-Dec	

Annex F

Calibration Reports for HVS

東業德勤測試顧問有限公司 ETS-TESTCONSULT LIMITED

8/F., Block B, Veristrong Industrial Centre, 34-36 Au Pui Wan Street, Fotan, Hong Kong

Tel: 2695 8318 Fax: 2695 3944 E-mail : etl@ets-testconsult.com
Web site : www.ets-testconsult.com

TEST REPORT

Calibration Report of

٠,

High Volume Air Sampler

Manufacturer

Graseby GMW

Date of Calibration

26 October 2007

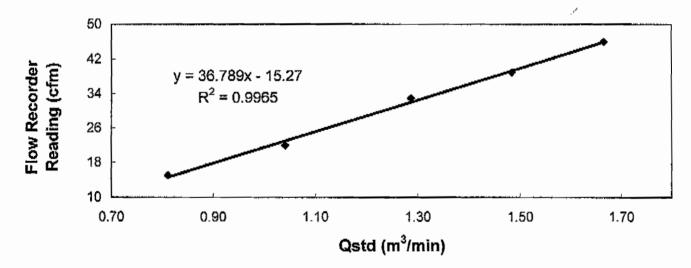
Serial No.

9795 (ET/EA/003/18)

Calibration Due Date

25 December 2007

Method


: Based on Operations Manual for the 5-point calibration using standard calibration kit

manufactured by Tisch TE-5025 A

Results

Flow recorder rea	iding (cfm)	46	39	33	22	15
Qstd (Actual flow	rate, m³/min)	1.67	1.48	1.29	1.04	0.81
Pressure :	763.56 mm Hg		Temp. :	301	К	

Sampler 9795 Calibration Curve Site: Wan Chai (AM-2) Date of Calibration: 26 October 2007

Acceptance Criteria:

Correlation coefficient (r) of the calibration curve greater than 0.990 after

a 5-point calibration

The high volume sampler complies * / does not comply * with the specified requirements and is deemed acceptable */ unacceptable * for use.

Calibrated by:

Mak Kei Wai

(Senior Technician)

Approved by

H. T. CHOW

東 業 德 勤 測 試 顧 問 有 限 公 司 ETS-TESTCONSULT LIMITED

8/F., Block B, Veristrong Industrial Centre, 34-36 Au Pui Wan Street, Fotan, Hong Kong

Tel: 2695 8318 Fax: 2695 3944 E-mail :

; etl@ets-testconsult.com

Web site : www.ets-testconsult.com

TEST REPORT

Calibration Report of High Volume Air Sampler

Manufacturer

Graseby GMW

Date of Calibration

26 October 2007

Serial No.

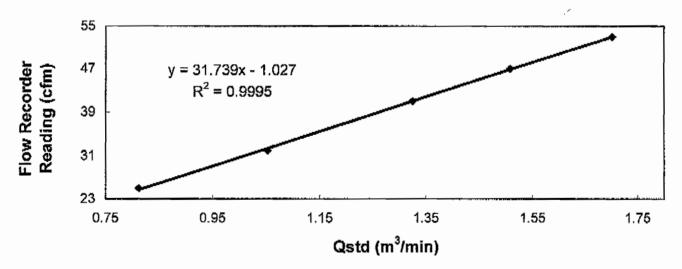
9864 (ET/EA/003/19)

Calibration Due Date

25 December 2007

Method

Based on Operations Manual for the 5-point calibration using standard calibration kit


manufactured by Tisch TE-5025 A

Results

Flow recorder rea	iding (cfm)	53	47	41	32	25
Qstd (Actual flow	rate, m³/min)	1.70	1.51	1.32	1.05	0.81
Pressure :	763.56 mm Hg		Temp.:	301	K	

Sampler 9864 Calibration Curve Site: Wan Chai (AM-1)

Date of Calibration: 26 October 2007

Acceptance Criteria:

Correlation coefficient (r) of the calibration curve greater than 0.990 after

a 5-point calibration

The high volume sampler complies * / does not comply * with the specified requirements and is deemed acceptable */ unacceptable * for use.

Calibrated by:

Mak Kei Wai

(Senior Technician)

Approved by

H. T. CHOW

東業德勤測試顧問有限公司 ETS-TESTCONSULT LIMITED

8/F., Block B, Veristrong Industrial Centre, 34-36 Au Pui Wan Street, Folan, Hong Kong

Tel : 2695 8318 Fax : 2695 3944 E-mail : etl@ets-testconsult.com Web site : www.ets-testconsult.com

TEST REPORT

Calibration Report

٥f

High Volume Air Sampler

Manufacturer

Graseby GMW

Date of Calibration

27 December 2007

Serial No.

9864 (ET/EA/003/19)

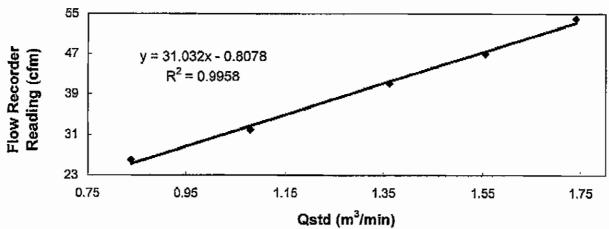
Calibration Due Date

26 February 2007

Method

: Based on Operations Manual for the 5-point calibration using standard calibration kit

20 rebidary 2007


manufactured by Tisch TE-5025 A

Results

Flow recorder rea	ding (cfm)	54	47	41	32	26
Qstd (Actual flow	rate, m³/min)	1.74	1.55	1.36	1.08	0.84
Pressure:	764.31 mm Hg		Temp.:	293	ĸ	

Sampler 9864 Calibration Curve Site: Wan Chai (AM-1)

Date of Calibration: 27 December 2007

Acceptance Criteria:

Correlation coefficient (r) of the calibration curve greater than 0,990 after

a 5-point calibration

The high volume sampler complies * / does not comply * with the specified requirements and is deemed acceptable */ unacceptable * for use.

Calibrated by :

Mak Kei Wai

(Senior Technician)

Approved by

H T CHOW

東業徳勤測試顧問有限公司 ETS-TESTCONSULT LIMITED

8/F., Block B, Veristrong Industrial Centre, 34-36 Au Pui Wan Street, Fotan, Hong Kong

Tel: 2695 8318 Fax: 2695 3944 E-mail : etl@ets-testconsult.com
Web site : www.ets-testconsult.com

TEST REPORT

Calibration Report of

High Volume Air Sampler

Manufacturer

Graseby GMW

Date of Calibration

27 December 2007

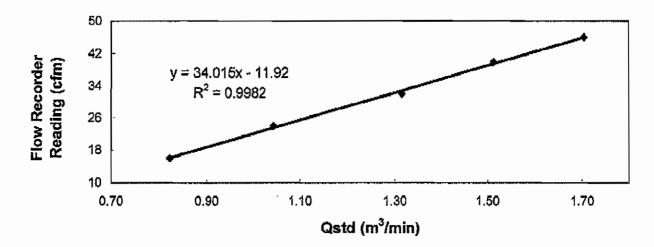
Serial No.

9795 (ET/EA/003/18)

Calibration Due Date

26 February 2008

Method


Based on Operations Manual for the 5-point calibration using standard calibration kit

manufactured by Tisch TE-5025 A

Results

Flow recorder	reading (cfm)	46	40	32	24	16
Qstd (Actual flo	ow rate, m ³ /min)	1.70	1.51	1.31	1.04	0.82
Pressure :	764.31 mm Hg		Temp. :	293	K	

Sampler 9795 Calibration Curve Site: Wan Chai (AM-2) Date of Calibration: 27 December 2007

Acceptance Criteria:

Correlation coefficient (r) of the calibration curve greater than 0.990 after

a 5-point calibration

The high volume sampler complies */ dees-net-comply * with the specified requirements and is deemed acceptable */ unacceptable * for use.

Calibrated by:

Mak Kei Wai

(Senior Technician)

Approved by

H. T. CHOW

Annex G

24-hour and 1-hour TSP Monitoring Results

24-hour TSP Monitoring Results

24-hour TSP Monitoring Results at Station AM1 (Nearby The Grand Hyatt)

Date	Filter W	/eight (g)	Flow Rate	(m ³ /min.)	Elaps	se Time	Sampling	Conc.	Weather	Ave. Air	Particulate	Av. flow	Total vol.
	Initial	Final	Initial	Final	Initial	Final	Time(hrs.)	(µg/m³)	Condition	Temp. (°C)	weight(g)	(m ³ /min)	(m ³)
04-Dec-07	2.7733	3.0227	1.29	1.29	12735.4	12759.4	24.0	134	Sunny	22	0.2494	1.29	1861.3
10-Dec-07	2.7060	2.8673	1.36	1.36	12762.4	12786.4	24.0	83	Sunny	22	0.1613	1.36	1952.2
15-Dec-07	2.8518	3.0851	1.29	1.29	12789.4	12813.4	24.0	125	Sunny	23	0.2333	1.29	1861.3
21-Dec-07	2.8515	3.0044	1.39	1.39	12816.4	12840.4	24.0	77	Sunny	21	0.1529	1.39	1997.6
27-Dec-07	2.8328	2.9635	1.12	1.12	12843.4	12867.4	24.0	81	Sunny	16	0.1307	1.12	1612.8
							N Aire	77					

 Min
 77

 Max
 134

 Average
 100

24-hour TSP Monitoring Results at Station AM2 (Nearby Renaissance Harbour View Hotel)

Date	Filter W	/eight (g)	Flow Rate	(m ³ /min.)	Elaps	se Time	Sampling	Conc.	Weather	Ave. Air	Particulate	Av. flow	Total vol.
	Initial	Final	Initial	Final	Initial	Final	Time(hrs.)	(µg/m ³)	Condition	Temp. (°C)	weight(g)	(m ³ /min)	(m ³)
04-Dec-07	2.8092	3.0224	1.26	1.26	11063.7	11087.7	24.0	118	Sunny	22	0.2132	1.26	1811.1
10-Dec-07	2.6960	2.8446	1.50	1.50	11090.7	11114.7	24.0	69	Sunny	22	0.1486	1.50	2164.4
15-Dec-07	2.8431	3.0779	1.39	1.39	11117.7	11141.7	24.0	117	Sunny	23	0.2348	1.39	2006.8
21-Dec-07	2.8449	2.9845	1.37	1.37	11144.7	11168.7	24.0	71	Sunny	21	0.1396	1.37	1966.8
27-Dec-07	2.8059	2.9488	1.35	1.35	11171.7	11195.7	24.0	74	Sunny	16	0.1429	1.35	1944.0

Min 69 Max 118 Average 90

1-hour TSP Monitoring Results

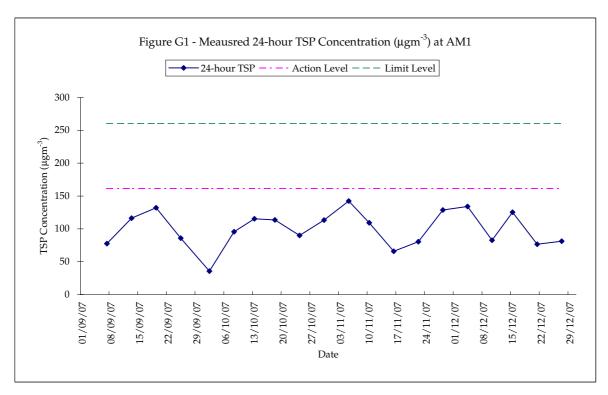
1-hour TSP Monitoring Results at Station AM1 (Nearby The Grand Hyatt)

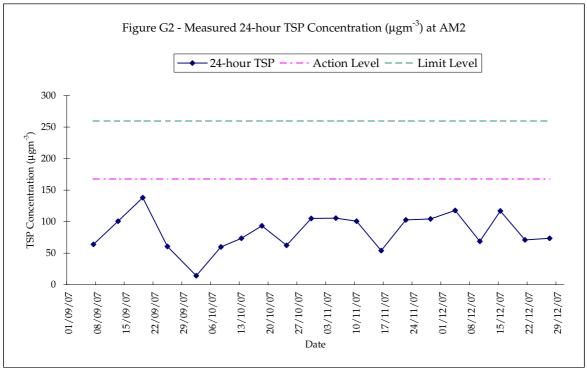
Date	Filter W	/eight (g)	Flow Rate	(m ³ /min.)	Elaps	se Time	Sampling	Conc.	Weather	Ave. Air	Particulate	Av. flow	Total vol.
	Initial	Final	Initial	Final	Initial	Final	Time(hrs.)	$(\mu g/m^3)$	Condition	Temp. (°C)	weight(g)	(m ³ /min)	(m ³)
03-Dec-07	2.7341	2.7455	1.07	1.07	12733.4	12734.4	1.0	177	Sunny	20	0.0114	1.07	64.3
04-Dec-07	2.7766	2.7905	1.04	1.04	12734.4	12735.4	1.0	223	Sunny	22	0.0139	1.04	62.4
05-Dec-07	2.8153	2.8357	1.39	1.39	12759.4	12760.4	1.0	245	Sunny	23	0.0204	1.39	83.2
07-Dec-07	2.7649	2.7848	1.07	1.07	12760.4	12761.4	1.0	309	Sunny	23	0.0199	1.07	64.3
10-Dec-07	2.7683	2.7780	1.01	1.01	12761.4	12762.4	1.0	160	Sunny	22	0.0097	1.01	60.6
12-Dec-07	2.7026	2.7088	1.04	1.04	12786.4	12787.4	1.0	99	Sunny	21	0.0062	1.04	62.4
14-Dec-07	2.7209	2.7332	1.04	1.04	12787.4	12788.4	1.0	197	Sunny	21	0.0123	1.04	62.4
15-Dec-07	2.9005	2.9096	0.98	0.98	12788.4	12789.4	1.0	155	Sunny	23	0.0091	0.98	58.7
17-Dec-07	2.8935	2.9037	1.04	1.04	12813.4	12814.4	1.0	163	Sunny	20	0.0102	1.04	62.4
19-Dec-07	2.8261	2.8418	1.04	1.04	12814.4	12815.4	1.0	251	Sunny	21	0.0157	1.04	62.4
21-Dec-07	2.8208	2.8313	1.01	1.01	12815.4	12816.4	1.0	173	Sunny	21	0.0105	1.01	60.5
24-Dec-07	2.8481	2.8585	1.04	1.04	12840.4	12841.4	1.0	167	Rainy	21	0.0104	1.04	62.4
24-Dec-07	2.8191	2.8288	1.04	1.04	12841.4	12842.4	1.0	155	Rainy	22	0.0097	1.04	62.4
27-Dec-07	2.8158	2.8202	1.19	1.19	12842.4	12843.4	1.0	62	Sunny	16	0.0044	1.19	71.2
29-Dec-07	2.8407	2.8508	1.06	1.06	12867.4	12868.4	1.0	159	Sunny	17	0.0101	1.06	63.4
31-Dec-07	2.8478	2.8559	1.09	1.09	12868.4	12869.4	1.0	124	Sunny	17	0.0081	1.09	65.4

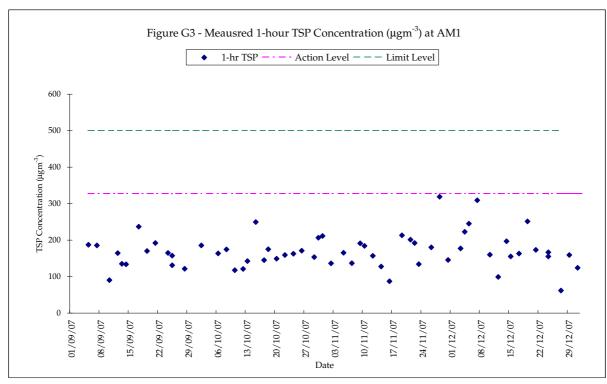
 Min
 62

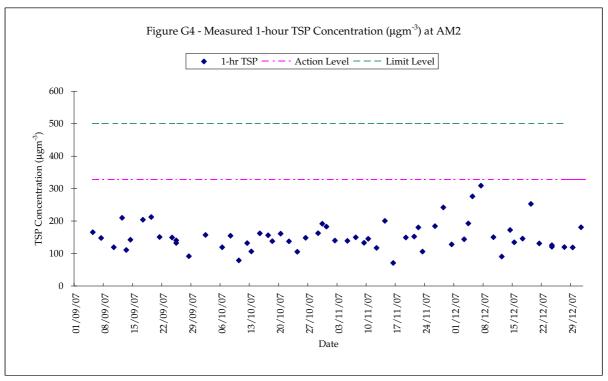
 Max
 309

 Average
 176


1-hour TSP Monitoring Results at Station AM2 (Nearby Renaissance Harbour View Hotel)


Date	Filter W	/eight (g)	Flow Rate	(m³/min.)	Elaps	e Time	Sampling	Conc.	Weather	Ave. Air	Particulate	Av. flow	Total vol.
	Initial	Final	Initial	Final	Initial	Final	Time(hrs.)	(µg/m ³)	Condition	Temp. (°C)	weight(g)	(m ³ /min)	(m ³)
03-Dec-07	2.7262	2.7373	1.28	1.28	11061.8	11062.8	1.0	144	Sunny	20	0.0111	1.28	77.1
04-Dec-07	2.7942	2.8086	1.26	1.26	11062.8	11063.7	1.0	193	Sunny	22	0.0144	1.26	74.7
05-Dec-07	2.7827	2.8076	1.50	1.50	11087.7	11088.7	1.0	276	Sunny	23	0.0249	1.50	90.1
07-Dec-07	2.7811	2.8072	1.42	1.42	11088.7	11089.7	1.0	309	Sunny	23	0.0261	1.42	84.4
10-Dec-07	2.7776	2.7904	1.42	1.42	11089.7	11090.7	1.0	150	Sunny	22	0.0128	1.42	85.2
12-Dec-07	2.7071	2.7144	1.34	1.34	11114.7	11115.7	1.0	91	Sunny	21	0.0073	1.34	80.4
14-Dec-07	2.7082	2.7218	1.31	1.31	11115.7	11116.7	1.0	173	Sunny	21	0.0136	1.31	78.7
15-Dec-07	2.8802	2.8908	1.31	1.31	11116.7	11117.7	1.0	135	Sunny	23	0.0106	1.31	78.7
17-Dec-07	2.8442	2.8557	1.31	1.31	11141.7	11142.7	1.0	146	Sunny	20	0.0115	1.31	78.7
19-Dec-07	2.8382	2.8581	1.31	1.31	11142.7	11143.7	1.0	253	Sunny	21	0.0199	1.31	78.7
21-Dec-07	2.8307	2.8408	1.28	1.28	11143.7	11144.7	1.0	131	Sunny	21	0.0101	1.28	77.1
24-Dec-07	2.8855	2.8946	1.26	1.26	11168.7	11169.7	1.0	121	Rainy	21	0.0091	1.26	75.5
24-Dec-07	2.8478	2.8577	1.31	1.31	11169.7	11170.7	1.0	126	Rainy	22	0.0099	1.31	78.7
27-Dec-07	2.8192	2.8289	1.35	1.35	11170.7	11171.7	1.0	120	Sunny	16	0.0097	1.35	81.0
29-Dec-07	2.8275	2.8369	1.32	1.32	11195.7	11196.7	1.0	119	Sunny	17	0.0094	1.32	79.2
31-Dec-07	2.8322	2.8469	1.35	1.35	11196.7	11197.7	1.0	181	Sunny	17	0.0147	1.35	81.0


Min 91 Max 309 Average 169


Meteorological Data Extracted from King's Park Stations of the Hong Kong Observatory

			K	ing's Park Statio	on	
Date	Weather	Average Air Temperature (° C)	Average Relative Humiditiy (%)	Total Rainfall (mm)	Wind Direction (Degree)	Average Wind Speed (km/h)
03-Dec-07	Sunny	20	58	0.0	100	8.9
04-Dec-07	Sunny	18	68	0.0	100	10.2
05-Dec-07	Sunny	18	66	0.0	100	8.9
07-Dec-07	Sunny	19	64	0.0	110	5.0
10-Dec-07	Sunny	24	77	0.0	110	10.2
12-Dec-07	Sunny	22	74	0.0	110	6.3
14-Dec-07	Sunny	19	76	0.0	100	11.8
15-Dec-07	Sunny	19	78	0.0	100	11.2
17-Dec-07	Sunny	21	72	0.0	120	4.5
19-Dec-07	Sunny	19	83	0.0	100	4.0
21-Dec-07	Sunny	21	79	0.0	100	10.8
24-Dec-07	Rainy	17	83	14.5	020	6.1
24-Dec-07	Rainy	17	83	14.5	020	6.1
27-Dec-07	Sunny	18	73	0.0	110	7.9
29-Dec-07	Sunny	18	63	0.0	020	8.5
31-Dec-07	Sunny	14	37	0.0	020	9.0

Annex H

Calibration Certificates of Water Monitoring Equipment

Performance	Check	of Salinity	Meter
-------------	-------	-------------	-------

Periorina	ince Check of	Sammy Meter
Equipment Ref. No. : E7/	Ew/008/00/	Manufacturer : Ys I
Model No. :	YSI 85	Serial No. : 05L 1285
Date of Calibration :	111 67	Due Date :
Ref. No. of Salinity Star	ndard used (30ppt)	J196A
Salinity Standard (ppt)	Measured Salinit	Difference %
30	29.5	1.7%
Acceptance Criteria	Difference : <1	0 %
	-	y * with the specified requirements use. Measurements are traceable to
Checked by :	App	roved by :

Form E/CE/R/12 Issue 6 (1/1) [05/05]

		1 Fal /208	/nn 1		Manufactur	er	:Y3I			
del 140.	lo. : 85							Serial No.		
to a C Culibration					Calibration					
te of Calibration	·	5/11/	/ • / 	<u> </u>	Canbration	Due Date	: 14/2/08			
f. No. of Reference The	ermometer	:		E7/:	403/01					
f. No. of Potassium Die	chromate:			<u> </u>	520/003	/02				
Temperature Verifi	cation	-	_				-			
				<u></u>	Temper	rature (°C)				
Thermome	eter reading				20.	,				
Meter	reading									
Lineality Checking							-			
D	DO m	eter reading	 g, mg/L	Winkler	Titration res	ult, mg/L	Difference (%) of DO			
Purging time, min	1	2	Average	1	2	Average	Content			
2	7.05	7.07	7.06	7.16	7.14	7.15	(. 27			
5	5.21	5.23	. 2.22	5.15	5.13	41.2	1.54			
. 10	3.13	3.15	3.14	3, • .5	3.07	3.06	. 2-58			
Zero Point Checkin	regression c					,999¥ 				
D	O meter rea	iding, mg/L	<u> </u>			0.00	_			
Salinity Checking		-	_							
Culinity (not)	DO m	eter reading	g, mg/L	ng/L Winkler Titration result, mg/L Difference (%)						
Salinity (ppt)	1	2	Average	1	2	Average	Content			
10	7.21	7.23	7.22	7.17	7.15	7.16	0.83			
30	6.14	6.12	6.13	6.25	6.23	6.24	1.78			
Acceptance Criteria (1) Differenc between (2) Linear regression of (3) Zero checking: 0.0	temperatur coefficient : mg/L	>0.99		and by winkl			thermometer : < 0.5 °C			

Internal	Calibration	Report	of	Turbidimeter
----------	-------------	--------	----	--------------

Equipment Ref. No. :

E17080 1 (002

Manufacturer

HACH

Model No.

21007

Serial No.

930900003728

Date of Calibration:

Calibration Due:

23/01/08

Data

(4.95)	(49.0)	(409),
0 - 10 NTU	10 - 100 NTU	100 - 1000 NTU
Gelex Vial	Gelex Vial	Gelex Vial
4.94		
L. H. G. O.	49.2	\ <i>\(\(\(\(\) \)</i>

The equipment complies * / does not comply * with the specified requirements and is deemed acceptable * / unacceptable * for use.

* Delete as appropriate

Calibrated by

Approved by:

blelan

LABORATORY SHEET

Determination of nitrogen (ammonia) by using Segmented flow analyser

į	n	Fo	rı	na	iti	O	n	p	r	O١	Vİ	d	ec	II	b	V	cl	ie	ne	<u>t</u>

Client : ERM-HK Ltd

Source

Sample Type : Sea water

Date Sampled

No. of Sample

: HKCEC

: 10/12/07

Laboratory information

Lab Ref. No.

: W 22642 (49-66)

: 10/12/07 Date Received

W.I.No.

: 81/7/12/52

Dated Tested

: 11/12/07

Test Method

: In-house method TPE/016/W

Description

Ref. No. of SFA

: ET /0529 /001

Preparation of calibration curve

Conc. of standard (mg NH ₃ -N/L)	Du
0.00	40
0.05	597
0.10	1147
0.25	3.07.
0.50	6103
1.00	11143

Ref. No. of Calibration standard stock:	L 962	Date of preparation:	6/12/07
Ref. No. of cal chk std stock:	L 963	Date of preparation:	6/12/07
Ref. No. of calibration curve:	071211 NH31 .	Date of preparation:	11/12/07
Equation of best fit line (y=mx+c):	V = 112.10.079	1 x + 122, 4749	$(r^2 = 0.9974)$

Where m = slee	7 7 7 7	tercent /	P. Erron	0.15 0.13 0100/ 7.5%	con and the fact that
ab Rot. No.	Citent Sample D.	Dilution (D)	Du (y)	*Nitrogen (ammenia) (mg NH ₃ -N/L)	Expanded Undertainty (U _{exp})
	cal chk std]	6118	0.534	
	MB		-26	-0.014	
	QC	1	6136	252.0	
W22X435 4497	7/12 CIF_S	~ +o-S	477	0.153	<u>·</u> _
ŋ	" (Dup)	ſ	402	0.165	
7	" (spike)		1738 米	0.716	
W22635 (50)	CIF_M		* *	*	·
(11)	CIF_B			·	
((2)	C2F_S		•		
(3)	C2F_H				
(147)	C2F_B	-\-\-	V	↓	
	cal chk std		5840	0.509	

*refer to the print-out or calculated according to the equation : Nitrogen (ammonia) (mgNH3-N/L) =

Acceptable criteria

Elecovery of spike

PIRE	
.(53)	(10.7
.5	1.
27	

Method Blank :	< 0.025 mgNH ₃ -N/L	Yes	/	No	
Calibration check standard:	0.45 - 0.55 mgNH ₃ -N/L	Yes	/	No	
Difference between duplicates:	≤10%	Yes	/	No	
Recovery of spike sample:	80-120%	Yes	/	No	
Square of correlation coefficient (r2):	≥0.995	Yes	/	No	
QC Sample :	0.479 - 0.567 mg NH3-N/L	Yes	/	No	

PQL

Drinking water matrix / wastewater matrix (0.025 mgNH₃-N/L)

Remarks

0.4 ml of x5ppm NH; etcl was added into Eml "7 1/2 CIF_S" as a spike sample.

Tested by TPE/016/W

LABORATORY SHEET

Determination of nitrogen (ammonia) by using Segmented flow analyser

Information	provided by client		Laboratory information						
Client	:			Lab Ref. No.	:				
				Date Received	:				
Source	:			W.I.No.	:				
Sample Type	:			Dated Tested					
Date Sampled				Test Method		In-house	method	TPF/016	3/1/2
No. of Sample				Description	:	III-IIOU30	moutou	11 27010	,, , , ,
No. of Sample				•	•				
				Ref. No. of SFA	•				
Preparation	of calibration curv	<u>e</u>			-				
Co	onc. of standard (mg NH ₃	-N/L)			D	u			
	0.00								
	0.05	_							
	0.10								
	0.25								
	0.50								
	1.00								
Ref. No. of Calit	bration standard stock:		-	Date of preparation	:				
Ref. No. of cal of	chk std stock:			Date of preparation	:				
Ref. No. of calib	oration curve:			Date of preparation	:	-			
Equation of bes	t fit line (y=mx+c):						(r² =)
Where m = slop Sample ana		ercest.	De	ı iNitroge	in (amm	ona)	Expan	de Unce	ainty
		(D)	Ту		NH3-N/	-)		(U _{exp})	
M22635 (II)	7/12 MIFS	« tos	*	·	<u>米</u>				
(T)	MIF_M MIF_B				-				
(8)	CIE-S		 		+ .				
(9)	CIE-M								-
(6)	CIE-B							_	
(61)	c2E_S								
(62)	C2E_H								
(63)	C2E_B								
(64)	MIE_S		<u> </u>						
1-5-6-5	cal chk std		575						
wross (fc)	7 /12 MIE-M	** 10 5		*	_ <u>*</u>	_			
*refer to the prin	t-out or calculated accord	ding to the equation	n : Nitroge	n (ammonia) (mgNH	1 ₃ -N/L) =	· (-	<u>y-c</u>)	хD	
Acceptable crite	•			< 0.025 mgNH ₃	-N/L	Yes		No	
	Calibration che			0.45 - 0.55 mgNH	l ₃ -N/L	Yes	/	No	
	•	ween duplicates:		. ≤10%		Yes		No	
	Recovery of sp			80-120%		Yes		No	
	<u>'</u>	elation coefficient	(୮):	≥0.995	11 1 10	Yes		No	
	QC Sample :			mg N	lH ₃ -N/L	Yes		No	
PQL	Drinking water	matrix / wastewate	er matrix (0.025 mgNH ₃ -N/L)					
Remarks	:					,	1		
Tankadha	. 7/			01 - 1 - 11		<i>(</i> .	حمله	_	
Tested by			-	Checked by	:				
TPE/016/W									

LABORATORY SHEET

Determination of nitrogen (ammonia) by using Segmented flow analyser

Information provid	ed by client			<u>Labor</u>	atory informati	<u>on</u>			
Client :				Lab Re	f. No. :				
				Date R	eceived :				
Source :				W.I.No.	. :				
Sample Type :				Dated 7	Tested :				
Date Sampled :				Test M		In-house	e method	TPE/016	W\8
No. of Sample :				Descrip			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
rio. or campio .				•	o. of SFA :				
				rici. Ivi	. or or A .	•			
Preparation of cali	bration curv	<u>e</u>							
Conc. of sta	andard (mg NH ₃	-N/L)				Du			
	0.00								
	0.05								
	0.10								
	0.25								
	0.50								
	1.00								
Ref. No. of Calibration st	andard stock:			Date of	preparation:				
Ref. No. of cal chk std st					preparation:				
Ref. No. of calibration cu					preparation:				
Equation of best fit line (/=mx+c):						(r² =)
W27635 (66) 7/12		Dlution (D)	Cy k k		Nitrogen (amr (mg NH₃-N 米		Expan	ded Unce (U _{exp})	ainty
W27642 (47) 10/12		of 405							
	CIF_M	02 fos			70 015				
	<u>18</u> IC		-33 592		0.517				
	CIF_B	pt 40 S	50		0.168				
	(Pup)	nº tos	48		0.158	-			
	(spike)	~ 10S	16:		0:665				
	czF_S	at 105	*		*				
cal	ohk stol		22		284.0				
	CZF_M	W 105	7	ξ	*		1		
(542)	C2F_B	o- 105	د		*				
*refer to the print-out or o	alculated accord	ding to the equation	n : Nitroge	en (amm	onia) (mgNH ₃ -N/L)	= (y-c m	хD	
Acceptable criteria	Method Blank				025 mgNH ₃ -N/L	Yes	/	No	
90 lasta	Calibration che			0.45	- 0.55 mgNH ₃ -N/L	Yes	/	No	
Theovery of spike	Pacovany of cr	ween duplicates:		<u> </u>	≤10% 80-120%	Yes	/	No No	
= 0.665-0.168 (00%)	Square of corr	elation coefficient (((²) :		≥0.995	Yes		No	
2.0	QC Sample :		. , .	0.479	₀. g7 mg NH₃-N/L		-	No	
POL =9.4%						1			
. 42		matrix / wastewate							
Remarks : o.4,	d of usppm	NH3 std was	added	into	Fml "10/12 (1F 2 "	4. 4.	nik .a.	ale
		,			من ۱۱۲	- 11 <u>-</u> D	as a s	price 5-00	y e

TPE/016/W

LABORATORY SHEET

Determination of nitrogen (ammonia) by using Segmented flow analyser

Information provided by client

Laboratory information

Client	:			Lab Ref. No.	:				
	•			Date Received	:				
Source	:			W.I.No.					
Sample Type	•		5	Dated Tested					
Date Sampled	•			Test Method	:	In-house	method	TPE/016	:///
No. of Sample	•			Description	:	III-HOUSE	method	11 11/010)/ V V
No. or Sample	•			•	•				
				Ref. No. of SFA	:				
	of calibration curv								
·									
Con	c. of standard (mg NH ₃	-N/L)		*	D	u			
	0.00								
	0.05								
	0.10						•		
	0.25								
	0.50							•	
	1.00								
Ref. No. of Calibra	ation standard stock:	<u></u>	·	Date of preparation:					
Ref. No. of cal chl	k std stock:			Date of preparation:					
Ref. No. of calibra	ation curve:			Date of preparation:					
Equation of best f	it line (y=mx+c):						(r² =)
Sample analy	Client Sample D	Dilution (D)	Du	بيناناه الاستان السان	(amm		Ex∘an	ded Unce	tainty
W27642 (II) 1	° /12 MIF_S	aitos	*		米				
(16)	MIFH								
4 470	MIF-B								
(18)	CIE-S				<u> </u>				•
(3)	CIE_H				+				•
(6)	CIE-B				+				· ·
(61)	C2E-S C2E-H				+				
(62)	cal chk std		<u>₹</u>	0.49	7				
W22642 (63) (6	112 C2E-B	~240S	*	0.1/	<u>。</u> 米		•		
(64)	HIZ-S	n²+05			1				
(65)	MIE-M	<u>ک</u>	1	,	$\overline{}$				
*refer to the print-	out or calculated accord	ling to the equation	n : Nitroge	n (ammonia) (mgNH ₃ .	-N/L) =	· (-	y-c m	x D	
Acceptable criteria	Method Blank	:		< 0.025 mgNH ₃ -N	I/L	Yes		No	
	Calibration che			0.45 - 0.55 mgNH ₃ -		Yes	/	No	
		veen duplicates:		. ≤10%		Yes		No	
	Recovery of sp		, ,	80-120%		Yes		No	
		elation coefficient	(୮):	≥0.995		Yes		No	
	QC Sample :			- mg NH	1 ₃ -N/L	Yes		No	
PQL	Drinking water	matrix / wastewate	er matrix (0.025 mgNH ₃ -N/L)					
Remarks :									
	2/						/ ~		
Tested by :	2/	<u>-</u>		Checked by :			CC	ン	
TPE/016/W									

LABORATORY SHEET

Determination of nitrogen (ammonia) by using Segmented flow analyser

<u>Information p</u>	rovided by client			<u>Labora</u>	tory information	<u>on</u>			
Client	:			Lab Ref.	. No. :				
				Date Re	ceived :				
Source	:			W.I.No.	:				
Sample Type	:		`	Dated T	ested :				
Date Sampled	:			Test Me		In-house	method TP	=/016/W	
No. of Sample	•			Descript					
rio. or oampio	•			Ref. No.	•				
				1761. 140.	. 01317	•			
Preparation of	of calibration curve	<u> </u>							
Con	c. of standard (mg NH ₃ -	N/L))u			
	0.00								
	0.05								
	0.10								
	0.25								
	0.50							•	
	1.00								
Ref. No. of Calibra	ation standard stock:	<u> </u>		Date of	preparation:				\neg
Ref. No. of cal chi	k std stock:				preparation:				\neg
Ref. No. of calibra	ition curve:				preparation:				\neg
Equation of best f	it line (y=mx+c):	_			•		(r² =		7
W22642 (66) 19	Client Sample D	Dilution (D)	Di Vy *		Nitrogen (amm (mg-NPl ₃ -N/- -米	nonia) L)		Uncertainty	
	cal chk std	1	56.	52	0.892				
	·								
					•				·
		,							\dashv
								_	\dashv
									\neg
Ī				· · · · · · · · · · · · · · · · · · ·					
				<u> </u>					
*refer to the print-	out or calculated accord	ling to the equation	: Nitroge	en (ammo	nia) (mgNH ₃ -N/L) =	· (-	<u>y-c</u>) x D)	
Acceptable criteria	Method Blank	:		< 0.0	25 mgNH ₃ -N/L	Yes	1 1	No T	
	Calibration che	ck standard:			0.55 mgNH ₃ -N/L	Yes		No	
		veen duplicates:			≤10%	Yes		No	
	Recovery of sp		2		80-120%	Yes		10	
		elation coefficient (r	-):		≥0.995	Yes		1 0	
	QC Sample :					Yes	P	10	
PQL	Drinking water	matrix / wastewater	r matrix ((0.025 mg	NH ₃ -N/L)				
Remarks :									
							(-de		
Tested by :	2/-			Checke	d by :	(
TPE/016/W		,							—

FlowAccess Results Report

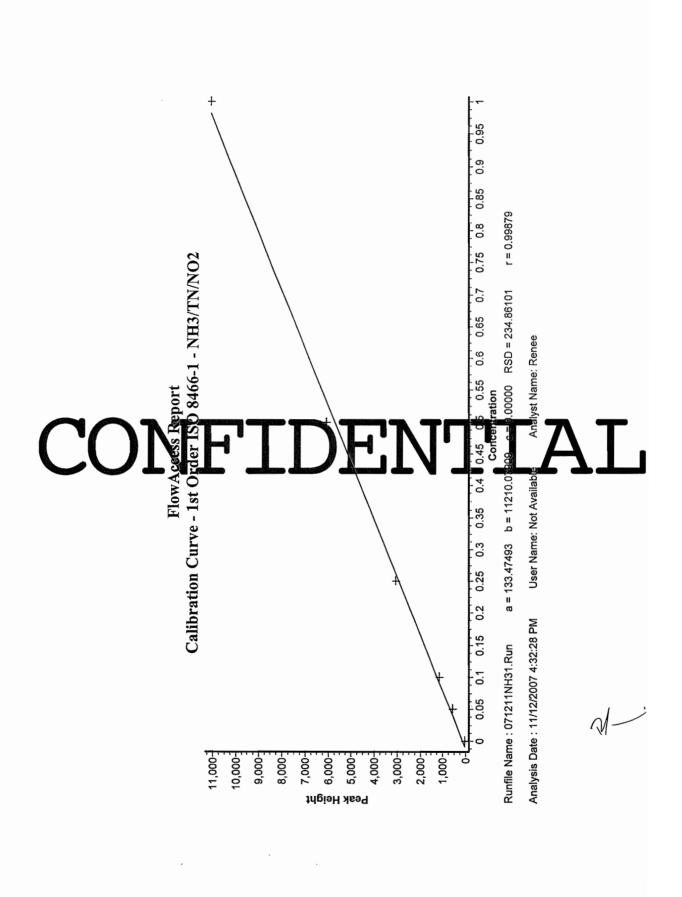
Date: 15/12/2007

1	Position	Type1	Identity1	NH3/TN/NO2 ppm	Corr.Ht NH3/TN/NO2
2	WT	IW	Initial Wash	-0.012	0
3	1	W	Wash	-0.011	12
4	2	T	Tracer	1.030	11678
5	3	w	Wash	-0.012	0
6	4	S1	Standard 1	-0.008	40
7	5	S2	Standard 2	0.041	597
8	6	S3	Standard 3	0.090	1147
9	7	S4	Standard 4	0.262	3070
10	8	S5	Standard 5	0.533	6103
11	9	S6	Standard 6	0.982	11143
12	10	w	Wash	-0.012	0
13	11	Q0	Cal Chk Std	0.534	6118
14	12	W	Wash	-0.012	0
15	13	U	MB	-0.014	-26
16	14	U	QC	0.535	6136
17	15	U	W22635(49) 7/12 C1F_S *5	0.153	477
18	16	U	(Dup)	0.165	504 % Error = 7,5% 1738 % spike = 112.6%
19	17	U	(Spike)	0.716	1738% spike = 112.6%
20	18	U	(50) C1F_M	0.428	1093
21	19	U	(51) C1F_B	0.174	524
22	20	U CO	(52) QF_S		917
1	21		(53) C2 M	0.276	752
_	22	UN-	(54) C2 B	0.287	777
25	287	W V	Wash —	0.042	
26	24	Q0	Cal Chk Std	0.509	5840
27	25	w	Wash	-0.012	0
28	26	U	W22635(55) 7/12 M1F_S	0.399	1027
29	27	U	(56) M1F_M	0.324	861
30	28	U	(57) M1F_B	0.355	929
31	29	U	(58) C1E_S	0.245	683
32	30	U	(59) C1E_M	0.164	500
33	31	U	(60) C1E_B	0.188	556
34	32	U	(61) C2E_S	0.193	566
35	33	U	(62) C2E_M	0.212	608
36	34	U	(63) C2E_B	0.151	472
37	35	U	(64) M1E_S	0.215	615
	36	w	Wash	-0.012	0
	-	Q0	Cal Chk Std	0.501	5751
38	37				
38 39	37		Wash	-0.012	0
38 39 40	38	w	Wash W22635(65) 7/12 M1F M	-0.012 0.454	0 1152
38 39 40 41	38 39	W	W22635(65) 7/12 M1E_M	0.454	4450
38 39 40 41 42	38 39 40	W U	W22635(65) 7/12 M1E_M (66) M1E_B	0.454 0.339	4450
38 39 40 41 42 43	38 39 40 41	W U U	W22635(65) 7/12 M1E_M (66) M1E_B W22642(49) 10/12 C1F_S *5	0.454 0.339 0.384	1152 893 994
38 39 40 41 42 43 44	38 39 40 41 42	W U U U	W22635(65) 7/12 M1E_M (66) M1E_B W22642(49) 10/12 C1F_S *5 (50) C1F_M	0.454 0.339 0.384 0.317	1152 893 994 844
38 39 40 41 42 43 44 45	38 39 40 41 42 43	W U U U U	W22635(65) 7/12 M1E_M (66) M1E_B W22642(49) 10/12 C1F_S *5 (50) C1F_M MB	0.454 0.339 0.384 0.317 -0.015	1152 893 994 844 -33
38 39 40 41 42 43 44 45	38 39 40 41 42 43 44	W U /	W22635(65) 7/12 M1E_M (66) M1E_B W22642(49) 10/12 C1F_S *5 (50) C1F_M MB QC	0.454 0.339 0.384 0.317 -0.015 0.517	1152 893 994 844 -33 5928
38 39 40 41 42 43 44 45 46	38 39 40 41 42 43 44 45	W U U U U U U U U U U U U U U U U U U U	W22635(65) 7/12 M1E_M (66) M1E_B W22642(49) 10/12 C1F_S *5 (50) C1F_M MB QC W22642(51) 10/12 C1F_B *5	0.454 0.339 0.384 0.317 -0.015 0.517 0.168	1152 893 994 844 -33 5928 511
38 39 40 41 42 43 44 45 46 47	38 39 40 41 42 43 44 45 46	W U U U U U U	W22635(65) 7/12 M1E_M (66) M1E_B W22642(49) 10/12 C1F_S *5 (50) C1F_M MB QC W22642(51) 10/12 C1F_B *5 (Dup)	0.454 0.339 0.384 0.317 -0.015 0.517 0.168 0.158	1152 893 994 844 -33 5928 511
38 39 40 41 42 43 44 45 46	38 39 40 41 42 43 44 45	W U U U U U U U U U U U U U U U U U U U	W22635(65) 7/12 M1E_M (66) M1E_B W22642(49) 10/12 C1F_S *5 (50) C1F_M MB QC W22642(51) 10/12 C1F_B *5	0.454 0.339 0.384 0.317 -0.015 0.517 0.168	1152 893 994 844 -33 5928

Run File Name: C:\Data\2007\Dec\071211NH31.Run

Analysis Date: 11/12/2007

FlowAccess Results Report


Date: 15/12/2007

1	Position	Tymo1	Identity1		NH3/TN/NO2	Corr.Ht
·	Position	Type1	identi	ty i	ppm	NH3/TN/NO2
52	50	Q0	Cal Chk Std		0.485	5568
53	51	W	Wash		-0.012	0
54	52	U ,	W22642(53) 10/12	C2F_M *5	0.216	618
55	53	U ,	(54)	C2F_B	0.163	498
56	54	U ′	(55)	M1F_S	0.379	983
57	55	U ,	(56)	M1F_M	0.339	894
58	56	U /	(57)	M1F_B	0.337	889
59	57	U	(58)	C1E_S	0.161	495
60	58	U	(59)	C1E_M	0.133	431
61	59	U /	(60)	C1E_B	0.181	539
62	60	U /	(61)	C2E_S	0.190	560
63	61	U /	(62)	C2E_M	0.270	739
64	62	W	Wash		-0.012	0
65	63	Q0	Cal Chk Std		0.496	5696
66	64	W	Wash		-0.012	0
67	65	U ,	W22642(63) 10/12	C2E_B *5	0.202	585
68	66	U /	(64)	M1E_S	0.124	412
69	67	U /	(65)		0.136	438
70	68	U /	(66)	M1E_B	0.423	1082
71	69	w	Wash		-0.012	0

4

Run File Name : C:\Data\2007\Dec\071211NH31.Run Analysis Date : 11/12/2007

LABORATORY SHEET

<u>Determination of Nirate by using Sigmented Flow Analyzer (SFA)</u>

Information provided by client

Laboratory information

Client

Source

: ERM-HK Ltd

Lab Ref. No.

: WZX642 (49-66)

Date Received

: 10/12/07

: HKCEC

W.I.No.

:64/7/12/52 : 13/12/07

Sample Type Date Sampled

: Sea Water : 10/12 /07

Dated Tested Test Method

: In-house method TPE/023/W

No. of Sample

18

Eq. Ref. No. (SFA) : 27/0529 /001

Description

Preparation of calibration curve

Conc. of standard (mg NO ₃ -N/L)	Du
0.00	6
0.02	272
0.04	205
0.06	7.6
0.08	921
0.10	1100

Ref. No. of Calibration standard stock:	H 744	Date of preparation:	20/8/07
Ref. No. of cal chk std stock:	H 745	Date of preparation:	20/8/07
Ref. No. of nitrite standard stock:	H 770	Date of preparation:	4/12/07
Ref. No. of calibration curve:	07 1213 NOZ+31	Date of preparation:	13/12/07
Equation of best fit line (y=mx+c):	V = 1.0887.1429	x +40.1429	(r= 0.9962)
Where m = slope of curve c = v-intercent			

Sample and	Tour Charle	Dilution (D)	7. eduction Du	$\frac{2i c c}{c c} = \frac{3 \cdot c}{c c} \times \frac{c}{c} = 9$ Sum of intrate & nitrite (ing (NO ₂ +NO ₃)-N/L)	5% %Ends "Nitrate (mgNO3-N/L)	Expanded incertainty (U _{Exp})
	cal chk std	1	723	0.065		
	0.06ppm NO2	1	758	0.066		
	MB	1	14	-0.002		
	QC ·	1	750	0.065		
W22642 (49)	10/12 CIFS	m+as	281	0.442		
	" (Dup)		281	0.443		
"	" (spike)		517	0.875		
W22642 (50)	CIF_M		*			
" (51)	CIF_B					
((2)	CZF_S					
" (33)	C2F_H				,	
" ((4)	CX-B	\perp	↓	→		

^{*} refer to print-out or caluclated according to the equation = sum of NO₂+NO₃ (mg(NO₂+NO₃)-N/L) =

** Nitrate (mg NO_3 -N/L) = sum of nitrate & nitrite (mg(NO_2 +NO₃)-N/L) - nitrite (mgNO₂-N/L)

Acceptable criteria

Thecovery of spike

Method Blank :	<0.004mgNO ₃ -N/L	Yes	/	No	
Calibration check standard:	0.054-0.066 mgNO ₃ -N/L	Yes	/	No	
Difference between duplicates:	≤10%	Yes	/	No	
Recovery of spike sample:	80-120%	Yes	/	No	
QC Sample :	o.alfo.o/o mgNO3-N/L	Yes	/	No	
Square of correlation (r2):	≥ 0.995	Yes	/	No	

PQL

Drinking water matrix / wastewater matrix (0.004 mgNO₃-N/L)

Remarks

0.2ml of NO3 std was added into tom! ""his CIF-S" as a spike sample.

Checked by:

Tested by TPE/023/W

P. 1

LABORATORY SHEET

Determination of Nirate by using Sigmented Flow Analyzer (SFA)

Information provided	by client		<u>Laboratory inform</u>	<u>ation</u>			
Client :			Lab Ref. No.	:			
			Date Received	:			
Source :			W.I.No.	:			
Sample Type :			Dated Tested	:			•
Date Sampled :			Test Method	: In-hous	e method	TPE/02:	3/W
No. of Sample :			Eq. Ref. No. (SFA)	:			
			Description	:			
Preparation of calibra	tion curve		<u> </u>				
Conc. of standa	rd (mg NO ₃ -N/	(L)		Du	_		
0.	00						
0.	02	,					
	04						
	06						
	08						
0.	10						
Ref. No. of Calibration stand	dard stock:		Date of preparation:				
Ref. No. of cal chk std stock			Date of preparation:				
Ref. No. of nitrite standard		_	Date of preparation:				
Ref. No. of calibration curve			Date of preparation:			•	
Equation of best fit line (y=r					(r² =)
Where m = slope of curve, c	= y-intercept		بالما في المستوا	_	7		
Sampre analysis					/\		
	Ditution		Sum offsithts Altrito (Sq.	**Nitrati	Evo	anded Un	cortainty
ab Ref to Client Sain	le Dilution (D)	Du C	Sum of hitrate & hitrite (ng (NO ₂ +NO ₃)-N/L)	(mgNO ₃ -N		(U _{exp})	- 1
cal chk s		727	0.066	(mg/to3-i	(,,)	(~exp/	
W22642 (SS) 10/12MIFS	100 mi to-5	 /37	*				
" (56) MIF_H		1 1	î				
" (57) MIF_B							
" (58) CIE-S							
" LS9) CIE_H							
4 (60) CIE_B							
" (61) CZE_S							_
" (62) CZE_H							
" (63) CIE_B				_			
" (64) MIE-S	✓	↓	√				
cal chk	td 1	763	0.066				
* refer to print-out or caluclate ** Nitrate (mg NO ₃ '-N/L) = sur			m of NO_2 + NO_3 (mg(NO_2 + NO_3) O_3)- N/L) - nitrite (mg NO_2 - N/L)	-N/L) =	(<u>y-c</u>	—) × D	
Acceptable criteria Me	thod Blank :		<0.004mgNO ₃ -N/L	Yes	1	No	
· · · · · · · · · · · · · · · · · · ·	libration check s	tandard:	0.054-0.066 mgNO ₃ -N/L	Yes		No	
Dif	ference between	duplicates:	≤10%	Yes		No	
	covery of spike s	sample:	80-120%	Yes		No	
	Sample :		mgNO ₃ -N/			No	
Sq	uare of correlation	on (r´):	≥ 0.995	Yes		No	
PQL Dri	nking water matr	rix / wastewater n	natrix (0.004 mgNO ₃ ⁻ -N/L)				
Remarks							
Tested by :	2/.		Checked by :	: 1	12	2	
TPE/023/W	F /		Checked by			`	

Determination of Nirate by using Sigmented Flow Analyzer (SFA)

Information provide Client :	ded by client		Lab Ref.		<u>ion</u>			
0			Date Re	ceivea :				
Source :			W.I.No.	:				
Sample Type :			Dated T	ested :				
Date Sampled :			Test Me	thod :	In-hous	e method	TPE/02	3/W
No. of Sample :			Eq. Ref.	No. (SFA) :				
			Descript	ion :				
Preparation of cal						_		
Conc. of sta	andard (mg NO	3-N/L)		- 0)u			
	0.00							
	0.02							
	0.04			-				
	0.06							
	0.08							
	0.10		-					$\neg \neg$
Ref. No. of Calibration				oreparation:				
Ref. No. of cal chk std			Date of p	oreparation:				
Ref. No. of nitrite stand	lard stock:		Date of p	reparation:				
Ref. No. of calibration of			Date of p	oreparation:				
Equation of best fit line				· ·		(r ² =)
Where m = slope of curve Sample analysis Client	Sample Dilutio	Th	Sum of nitrate	o. 965	×100% =	Exp	anded Uin	certainty
	(D)		(NO ₂ +NO ₃)		ngNO ₃ -N		(U _{exp})	- 1
W22642 (65) 10/2MI	EM +++	\$ *	*					
	E-B				_			
W27652 (49) 2/201	F.S.							
" (50) CII	E_H V	√						
MB		9	-0.003					
QC_		762	0.066					
W22652 (51) 12/2 CI			0.495					
" " (Pups of to	311	0.498					
· · /s	ipike) ~ 10		0,922					
W27652 (52) C2F-		·5 *	7	<u> </u>				
cal a	4k stal 1	739	0.064					
W27652 (53) / C24	EM Wilo	び 米		*			_	
* refer to print-out or calu ** Nitrate (mg NO ₃ -N/L)					L) =	(m	—) x D	
Acceptable criteria	Method Blank :		<0.004n	ngNO ₃ -N/L	Yes	/	No	
	Calibration che			6 mgNO ₃ -N/L	Yes	/	No	
% Recovery of spike		veen duplicates:		10%	Yes	/	No	
•	Recovery of sp	•		120%	Yes	/	No	
= 0.922-0.495 ×1007	QC Sample :		7₀mgNO₃ -N/L	Yes		No		
· _ '	Square of corre	elation (r2):		.995	Yes		No	—— i
=106.8% PQL	matrix (0.004 mg/							
Remarks 0.2m	ul of 10ppm ^	olo, stol was a	ded into Es	ml " 1/2 cl	F-S "	as a spi	ike samp	ele.
Tested by :	14_	<u> </u>	Checked		(<u>id</u>	<u>~_</u>	

Determination of Nirate by using Sigmented Flow Analyzer (SFA)

Information Client Source Sample Type Date Sample No. of Sample	: : :	<u>r client</u>		Laboratory information Lab Ref. No. Date Received W.I.No. Dated Tested Test Method Eq. Ref. No. (SFA) Description	: : :		e method	TPE/02	3/W
Preparation	of calibration	on curve							
Con	c. of standard	(mg NO ₃ -N/	L)		D)u			
	0.00								
	0.02								
	0.04						_		
	90.0 30.0								
	0.10								
	0.10	<u> </u>							
Ref. No. of Cal	ibration standa	rd stock:		Date of preparation:	: [
Ref. No. of cal				Date of preparation:					
Ref. No. of nitr		ck:		Date of preparation:	-				
Ref. No. of call				Date of preparation:	: <u> </u>		, , ,	•	
Equation of be Where m = slope	st fit line (y=mx	+c): y-intercept					(r² =)
Sample ana	Nsis Client Sample	Dilution (D)	Du (y)	Sum of nitrate & ditrite (ing (NO2*NO ₃) N/L)		*Nitrate		arded U	certainty
W27652 (S4)	MaczF_B	or tos	*						,
(55)	MIF-S								
(36)	HIF_H				4	_			
(5)	MIF_B	ļ							
(82)	C12-S	 - - - - - - - - - -	<u> </u>		+-				
(19)	CIE_M	 			+				
(60)	CIE-B	 	l - - 		+				
(627	C2E_S C2E_H			.,	+				
- (02)	cal chk std	ĭ	742	0.064					
W27652 (63)	12 12 CZE-B	o'tos	*	<u>,</u> ₹	_				
" (647)		* 105	*	*					
				um of NO_2+NO_3 (mg(NO_2+NO_3)-N/L) - nitrite (mg NO_2 -N/L		L) =	(<u>y-c</u>	—) x D	
Acceptable crite	eria Meth	od Blank:		<0.004mgNO ₃ -N/L		Yes		No	
		ration check st		0.054-0.066 mgNO ₃ -N	1/L	Yes	/	No	
		ence between		≤10%		Yes		No	
		very of spike s	ample:	80-120%		Yes		No	
		ample :	- (2).	- mgNO ₃ -	N/L	Yes		No	
		re of correlatio		≥ 0.995		Yes		No	
PQL Remarks Tested by	Drink	ng water matr	ix / wastewater	matrix (0.004 mgNO ₃ ⁻ -N/L) Checked by	: .	· (ed.	2	
TPE/023/W									

Determination of Nirate by using Sigmented Flow Analyzer (SFA)

Information	provided by	client		Laboratory infor	rmatic	<u>on</u>				
Client	:			Lab Ref. No.	:					
				Date Received	:					
Source	:			W.I.No.	:					
Sample Type	:			Dated Tested	:					
Date Sampled	· :			Test Method	: In	n-house	e method	TPE/02	3/W	
No. of Sample	:			Eq. Ref. No. (SFA) :						
				Description	:					
Preparation	of calibratio	n curve					_			
Con	c. of standard (mg NO ₃ -N	(L)		Du	<u> </u>				
	0.00		-							
	0.02		<u> </u>							
	0.04									
	0.06									
	0.08									
	0.10									
Ref. No. of Cal	ibration standard	d stock:		Date of preparation:						
Ref. No. of cal				Date of preparation:			_			
Ref. No. of nitri	te standard stoo	:k:		Date of preparation:						
Ref. No. of cali	bration curve:			Date of preparation:				-		
Equation of bes	st fit line (y=mx+	c): -intercept		•	, ,		(r ² =			
Sample ana	Client Sample	Dilution (D)	Du (y)	Sum of nitrate & nitrite (ing (NO2-NO3) N/L)		*Nitrate	190	arded Ur		
W27652 (65)	2/12MIZ-M	0.105	*		ļ				<u> </u>	
<u> </u>	MIE_B	mi fos	* *		-					
	cal chk stal		730	0.063	-					
					┥──					
	1		+		+					
_			 		+		_			
_					1					
-			 		 					
					†					
	O ₃ -N/L) = sum o	f nitrate & nit		um of NO_2+NO_3 (mg(NO_2+NC_3)-N/L) - nitrite (mg NO_2 -N/L)		=	(<u>y-c</u>	—) x D		
Acceptable crite		d Blank :		<0.004mgNO ₃ -N/L		Yes		No		
		ation check s		0.054-0.066 mgNO ₃ -N	I/L	Yes	/	No		
		nce between	•	≤10%		Yes		No		
		ery of spike s	sample:	80-120%		Yes	_	No		
					N/L	Yes		No		
			• •	≥ 0.995		Yes		No		
PQL	Drinkin	ig water matr	ix / wastewater	matrix (0.004 mgNO ₃ -N/L)						
Remarks										
Tested by	:	V_	<u>-</u>	Checked by	: _	-	Ld	2		
TPE/023/W					_					

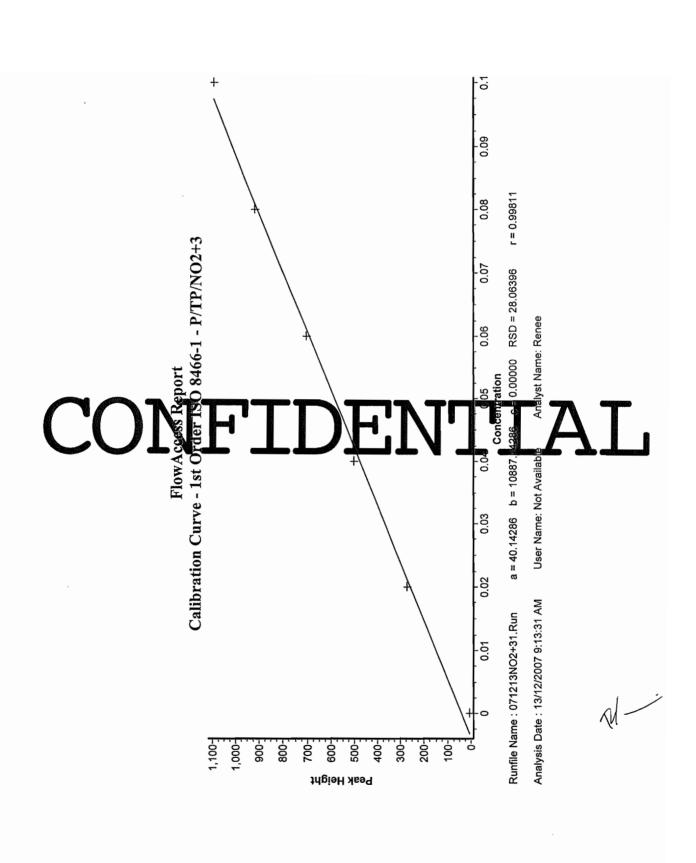
FlowAccess Results Report

Date: 13/12/2007

1	Position	Type1	Identity1	P/TP/NO2+3 ppm	Corr.Ht P/TP/NO2+3
2	WT	(W	Initial Wash	-0.004	0
3	1	W	Wash	-0.003	3
4	2	Т	Tracer	0.096	1086
5	3	W	Wash	-0.004	0
6	4	S1	Standard 1	-0.003	6
77	5	S2	Standard 2	0.021	272
8	6	S3	Standard 3	0.042	502
9	7	S4	Standard 4	0.061	706
10	8	S5	Standard 5	0.081	921
11	9	S6	Standard 6	0.097	1100
12	10	W	Wash	-0.004	0
13	11	Q0	Cal Chk Std	0.065	753 % Reduction Efficiency = 98-5%
14	12	U	0.06 ppm NO2	0.066	
15	13	w	Wash	-0.004	0
16	14	U	MB	-0.002	14
17	15	U	QC	0.065	750
18_	16		W22642(49) 10/12 C1F_S *20	0.442	281
19	17	U	(Dup)	0.443	281 % From = 0.2 %, 517 % spike = 108.3%, 300
20	18	U	(Spike)	0.875	
21	19	U	(50) C1F_M	0.478	
127	20	V - /			
	21	/	(52) C2 S	0.51	318
4	22	D /	(53) C2 M	0.479	301
25	24	W	Wash	-0.004	
27	25	Q0	Cal Chk Std	0.066	754
28	26	W	Wash	-0.004	0
29	27	U /	W22642(55) 10/12 M1F_S	0.513	319
30	28	U	(56) M1F_M	0.517	322
31		U /	(57) M1F_B	0.505	315
32		U /	(58) C1E_S	0.500	312
33		U /	(59) C1E_M	0.490	307
34		U /	(60) C1E_B	0.520	323
35	33	U /	(61) C2E_S	0.477	300
36		U /	(62) C2E_M	0.483	303
37	35	U /	(63) C2E_B	0.478	300
38		U /	(64) M1E_S	0.473	298
39	37	w	Wash	-0.004	0
40	38	Q0	Cal Chk Std	0.066	763
41	39	W	Wash	-0.004	
42	40	U /	W22642(65) 10/12 M1E_M	0.478	0 301 4
43	41	U /	(66) M1E_B	0.529	328
44	42	U	W22652(49) 12/12 C1F_S *20	0.502	314
45		U	(50) C1F_M	0.603	368
46		U	MB	-0.003	9
47		Ü	QC	0.066	762
48	46	U	W22652(51) 12/12 C1F_B *20	0.495	310
49		U	(Dup)	0.498	311 %2000 = 0.6 %
50		U	(Spike)	0.922	311 % Error = 0.6 % 542 % spike = 1.06.8%
51		U	(52) C2F_S *20	0.497	310
٠.	1		, 525	557	

Run File Name: C:\Data\2007\Dec\071213NO2+31.Run

Analysis Date: 13/12/2007


FlowAccess Results Report

Date: 13/12/2007

P	osition	Type1	ident	ity1	P/TP/NO2+3 ppm	Corr.Ht P/TP/NO2+3
2 50)	w	Wash		-0.004	0
3 51	1	Q0	Cal Chk Std		0.064	739
4 52	2	W	Wash		-0.004	
5 53	3	U	W22652(53) 12/12	C2F_M *20	0.479	301
5 54	1	U	(54)	C2F_B	0.456	288
7 55	5	U	(55)	M1F_S	0.421	269
3 56	3	U	(56)	M1F_M	0.575	353
9 57	7	U	(57)	M1F_B	0.524	325
58	3	U	(58)	C1E_S	0.478	301
1 59)	U	(59)	C1E_M	0.484	304
2 60)	U	(60)	C1E_B	0.508	317
3 61	1	U	(61)	C2E_S	0.448	284
4 62	2	U	(62)	C2E_M	0.468	295
5 63	3	w	Wash		-0.004	
64	4	Q0	Cal Chk Std		0.064	742
7 65	5	w	Wash		-0.004	C
3 66	3	U	W22652(63) 12/12	C2E_B *20	0.530	328
9 67	7	U	(64)	M1E_S	0.541	335
68	3	U	(65)	M1E_M	0.461	291
1 69	9	U	(66)	M1E_B	0.552	341
70	T	W T	Wasii		— — 0,0004	ر صب
71		O O	Cal Onk Std		0.063	730
72	2	W	Wash		-0.004	0

N

Run File Name : C:\Data\2007\Dec\071213NO2+31.Run Analysis Date : 13/12/2007

Determination	of Total	Suspended	Solids	Dried a	t 1 <u>03°</u>	C-105°C

Information provid	nformation provided by client						<u>Laboratory Information</u>					
Client :	ERN	1 – Hong	Kong Ltd		l	ab. Ref.	No. :	W22	642			
Client Ref. No. :	E 7	0122HK			\	W. I. No.	:	EN /	7 /13	152		
Source :	HKO	CEC, Wa	ın Chai		[Date Rece	eived :	(0)	/ iz	/ 2007		
Sample Type :		water			ſ	Date Test	ed :	"	ا (ک	/ 2007		
		112 /	2007									
		1	2007			Test Meth	od :	in-ho	use Meth	od IPE/00	J6/W	
No. of Sample : 36 Description : Recovery of Check = $\frac{(3)}{(0).8}$							\mathcal{O}					
Re					Reco	very of Cl	neck = -	1 01.8	. X w~	· /•		
Ref. No.						-						
Drying oven use	d			/ 0502 /	002		~	01,2	7.			
TSS standard use	ed			1288					1			
Lab. Ref. No.				W22642 (13)		(14)	(15)	(16)	(17)	(18)	(19)	
Client sample ID		Blank	Check Std	C1F-S	(Dup) C1F-S	(14) C1F- SD	C1F-M	(16) C1F- MD	C1F-B	C1F- BD	C2F-S	
Foil Bowl No. B1 C1 D					D I	121	3	4	5	6	7	
Mass of Filter	V	1310.3	\$17.	243	1300,0	13.2	1816-6	BU A	1301.2	ويرونا	1314.1	
+ Foil Bowl (mg) (B)	•	1310.2	1316.9	134.6	1308.9	1319.1		13123	(309.7	1301.9	1314.0	
Vol. of Sample (mL)		500	500	200	200	400	400	400	400	400	400	
Mass of Filter		Biois	1368.5	(323,4	131018	320.8	1318-6	1314.4	1311.3	13041	131623	
+ Foil Bowl		136.4	1368.4	1323,3	1310.7	1320.7	1318.5	13143	1311.2	13-4-0	1316,2	
+ S. S. (mg) (A)												
Total Suspended Sol (mg/L) *	ids	00	(03	4.3	4.5	4.0	5.0	500	f. 3	Juz	5.5	
Chloride Check (✓)		~	✓	✓	1	✓	V	/	✓	V	レ	
Expanded uncertainty, U	•											
* Total Suspended Solids	(mg/L)	= (A - B) / Vol. of S	Sample use	ed x 1000							
Acceptance : 1. Blank : ≤ 0.5mg/L criteria						olim	5.	70%	Yes 🔽	No		
: 2. Difference between duplicates : < 10% Ye							Yes	No				
: 3. Recovery of spike sample : 80% to 1209						0%			Yes _	No		
: 4.	Che	eck Sam	ole :	80	(%) -	120 (%)		Yes 🗾	No		
PQL : 5.0	PQL : 5.0mg/L (Seawater / Drinking water / Wastewater)											
Remark : 5h.9	ma S	Silica Gel	H was a	dded to f	500ml dis	tilled wat	er as ch	eck (01.8	ma/	1.)	

TPE/006/W

Tested By

Checked By :

Page 2 of 6

LABORATORY SHEET Determination of Total Suspended Solids Dried at 103°C-105°C

Information provided by	nformation provided by client					<u>Laboratory Information</u>					
Client :				L	.ab. Ref.	No. :	`				
Client Ref. No. :				١	W. I. No.	:					
Source :				[Date Rece	eived :					
Sample Type :				Į.	Date Test	ed :					
Date Sampled :				٦	Test Meth	od :	In-ho	use Metho	od TPE/0	06/W	
No. of Sample :											
Description :											
			Ref. No.								
Drying oven used		ET	0502 / 0	002							
TSS standard used			1588								
	1305(15)					_					
Lab. Ref. No.	Wer642 (20)	(21)	(22)	(23)	(24)	(25)	_(26)	(27)	(28)	(29)	
Client sample ID	C2F- SD	C2F-M	C2F- MD	C2F-B	C2F- BD	M1F-S	M1F- SD	M1F-M	M1F- MD	M1F-B	
Foil Bowl No.	8	9	10	14	121	13	14	15	16	17	
Mass of Filter	13.07.2	3.9.7	134	(3276)	134 7	128.3	BUTIT	1318 2	317.	1321,2	
+ Foil Bowl (mg) (B)	1307.1	1309.6	13.05~0	1325.2	13026	132812	1205.2	(318-1	1317,4	1321.1	
Vol. of Sample (mL)	400	400	400	400	400	400	400	400	400	400	
Mass of Filter	1309,4	1311.5	(307.0	134.8		1330.1	1307.2	1320,3	131916	1323,0	
+ Foil Bowl	13-9.3	1311,4	1306.9	1326.7	1304.L	(330,0	(307. ((320, 2	13195	1322.9	
+ S. S. (mg) (A)											
Total Suspended Solids (mg/L) *	2.1	4.5	4.8	3.8	400	4.5	4.7	2,3	5.2	45	
Chloride Check (✓)	V	✓	~	~	~	✓	✓	/	~	V	
Expanded uncertainty, Uexp											
* Total Suspended Solids (mg/L)	=(A-B)	/ Vol. of S	sample use	d x 1000							
	nk : ≤ 0.5	mg/L						Yes _	No		
criteria : 2. Diff	erence b	etween o	duplicates	s : < 10%	1			Yes [No		
: 3. Red	covery of	spike sa	mple : 80	0% to 120	0%			Yes _	No		
: 4. Che	eck Samp	ole:	80	(%)	120 (%)		Yes _	No		
PQL : 5.0mg/L	(Seawate	er / Drink	ing wate	r / Waste	water)						
Remark :											
Tested By :	\ .				Check	ed By :	(.	de	~		

TPE/006/W

LABORATORY SHEET Determination of Total Suspended Solids Dried at 103°C-105°C

Information provided by	<u>client</u>		<u>Laboratory Information</u>					
Client :			Lab. Ref. No.	:				
Client Ref. No. :			W. I. No.	:				
Source :			Date Received	:				
Sample Type :			Date Tested	:				
Date Sampled :			Test Method	: In-house Method TPE/006/W				
No. of Sample :				,				
Description :		R	ecovery of Spike =	34.5-4.5 285 X (00 %				
				285				
		Ref. No.		•				
Drying oven used	ET	/ 0502 / 002		(ot, 37).				
TSS standard used		J 258						
Late Dat No	W12,42	1 1						
Lab. Ref. No.	(30) (spike) M1F- M1F-							
Client sample ID	BD BD	San						
Foil Bowl No.	18 S1		'					
Mass of Filter	306.8 1319.3							
+ Foil Bowl (mg) (B)	1306.7 (319.2							
1 1 on bowl (mg) (b)	1,000 / (3010 2	1						
Vol. of Sample (mL)	200 200							
Mass of Filter	1307.7 13261	4						
+ Foil Bowl	1,256, 2.7021							
+ S. S. (mg) (A)								
Total Suspended Solids (mg/L) *	4.5 34.5	-						
Chloride Check (✓)	VV							
Expanded uncertainty, Uexp								
* Total Suspended Solids (mg/L)	= (A – B) / Vol. of	Sample used x 1	000					
Acceptance : 1. Bla	ınk : ≤ 0.5mg/L			Yes No				
criteria			400/					
: 2. Diff	ference between	duplicates : <	10%	Yes No				
: 3. Re	covery of spike s	sample : 80% t	o 120%	Yes 🗹 No 🔝				
: 4. Ch	eck Sample :	80 (%)	120 (%)	Yes No				
PQL : 5.0mg/L	(Seawater / Drir	nking water / W	/astewater)					
Remark : 5.7 mg	Silica Gel H was	added to 200	ml "M1F-BD" as sp	ike (285 mg/L)				
- / ~ 3			•					
Tested By :	1		Checked By	v: Lda				

LABORATORY SHEET Determination of Total Suspended Solids Dried at 103°C-105°C

Information provided by client						Laboratory Information					
Client :				Ĺ	.ab. Ref.	No. :					
Client Ref. No. :				V	V. l. No.	:					
Source :					Date Rece	eived :					
Sample Type :					Date Test	ed :					
Date Sampled :				T	est Meth	od :	In-ho	use Metho	od TPE/00	06/W	
No. of Sample :											
Description :							اما				
				Recov	ery of Ch	eck = <-	104	->(0	~ \}		
			Ref. No.						•		
Drying oven used			/ 0502 /	002			اما	917			
TSS standard used			J 2S8				(>()	(0	•		
Lab. Ref. No.			W22642	1	(32)	(33)	(34)	(35)	(36)	(37)	
Client sample ID	Blank	Check Std	(31) C15-S	(Dup) C1E-S	CIF-	C1E-M	(34) C1E- MD	01E-B	C1E- BD	C2E-S	
Foil Bayl No	B2	C2	19	D2	20	21	22	23	24	25	
Mass of Filter	1301-7	1309,7	1319.1	1314,4	1303.7	13210	1325.6	1316.6	1371.9	1326.4	
+ Foil Bowl (mg) (B)	1301.6	1309.6	1319,0		(3026			1316.5		13413	
Vol. of Sample (mL)	500	500	200	200	400	400	400	400	400	400	
Mass of Filter	1301.8	13627	(321.0	1316,4	1305.6	1325.7	1327.4	1318-3	1323.6	1)28.6	
+ Foil Bowl	1301.7	13626	1320.9	131613	(3055	1325.6	1347.3	1318-2	1323.5	1328.5	
+ S. S. (mg) (A)										_	
Total Suspended Solids (mg/L) *	0,2	ا م)	4.8	5,0	41	4.2	1.5	4.3	4-3	5,5	
Chloride Check (✓)	~	~	/	V	/	/	✓	/	/		
Expanded uncertainty, Uexp											
* Total Suspended Solids (mg/L)	= (A-B	/ Vol. of S	Sample use								
	nk : ≤ 0.5	īmg/L		•	7	v= -5	(13)	Yes 🗾] No		
criteria : 2. Diff	erence b	etween o	duplicate	s:<10%	10600	v > >	"/"	Yes 🔽	} No		
: 3. Red	covery of	spike sa	mple : 80	0% to 120	0%			Yes	No.		
: 4. Che	eck Sam	ple: 8	80	(%)	120- (%))		Yes 🖊	No		
PQL : 5.0mg/L	(Seawat	er / Drink	ing wate	r / Waste	water)						
Remark : \(\sum_{\sum} \text{ mg S}	Silica Gel	H was a	dded to	500ml dis	tilled wa	ter as ch	eck. (401	mg/	L)	
(,	l			
Tested By :	<u>n</u>				Check	ed By	(_<	de			

TPE/006/W

Page 4 of 6

<u>LABORATORY SHEET</u> <u>Determination of Total Suspended Solids Dried at 103°C-105°C</u>

Information	Information provided by client						Laboratory Information					
Client	:					L	.ab. Ref.	No. :	****			
Client Ref. No.	. :					٧	V. I. No.	:				
Source	:					[Date Rece	eived :				
Sample Type	:					[Date Test	ed :				
Date Sampled	:					٦	est Meth	od :	In-hou	use Metho	od TPE/00	06/W
No. of Sample	:											
Description	:											
	_				Ref. No.							
Drying over TSS stand					J 28 8	002						
155 Stario	ard use	t u			J 28 0							
Lab. Ref. No.			W2642 (38)	(39)	(40)	(41)	(42)	(43)	(44)	(45)	(46)	(47)
Client sample	IB)	7	C2E SD	62E-W	C2E	028 B	CZE B	MES	M1E-	M1E-M	M1E- MD	M1E-B
Foil Bowl No.			26	27	28	29	30	31	32	33	34	35
Mass of Filter		V .	310	J. 2007	134.0	(3)	1328.1	7576.E	13(8)	1305.4	(50).	1326.8
+ Foil Bowl (m	ng) (B)		1320.9	(306,5		319.4	(37800	(3,6,1	131800		1303,4	1326.7
					•	•			•			
Vol. of Sample	e (mL)		400	400	400	400	400	400	400	400	400	400
Mass of Filter			131312	1308-6	1328.1	13415	(330.0	1317.9	019.7	130516	1301.8	1328.8
+ Foil Bowl			1323.1	(30805)	1328.0	1321.4	(329,9	1317.8	1319.6	130 1-15	13-57	1328-7
+ S. S. (mg) (A)						•					
Total Suspend (mg/L) *	ded Sol	ids	5.5	5.0	5. 2	5,0	4.8	43.	4.0	5.5	5.7	5.0
Chloride Ched	k (✓)		1	V	~	V	V	/	V	1	/	~
Expanded uncer	tainty, U	ехр										
* Total Suspende	d Solids	(mg/L)	= (A-B)	/ Vol. of S	Sample use	ed x 1000		•				
Acceptance	: 1.	Bla	nk : ≤ 0.5	img/L						Yes	No	
criteria	: 2.	Diff	fference between duplicates : < 10% Yes No									
	: 3.	Re	covery of	spike sa	mple : 80	0% to 120	0%			Yes _	No	
	: 4.	Che	eck Samp	k Sample : 80 (%) 120 - (%) Yes No								
PQL	: 5.0	mg/L	(Seawate	er / Drink	ing wate	r / Waste	water)					
Remark	:											

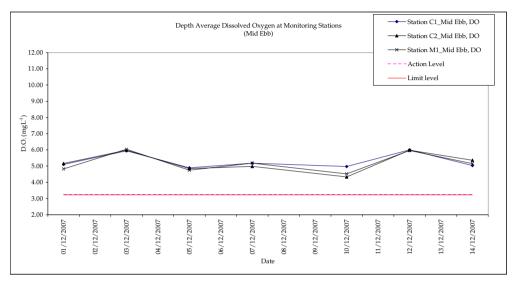
Tested By

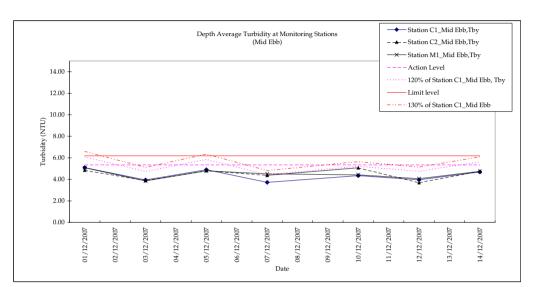
TPE/006/W

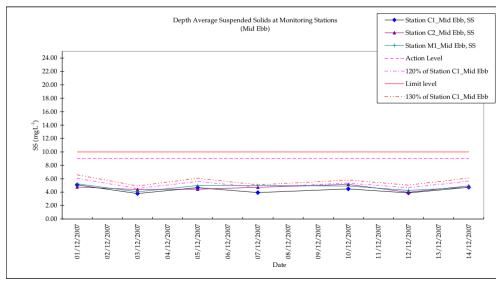
Checked By :

Page 6 of 6

<u>LABORATORY SHEET</u> <u>Determination of Total Suspended Solids Dried at 103°C-105°C</u>


Information provided by	<u>v client</u>	<u>Laboratory Information</u>					
Client :		Lab. Ref. No. :					
Client Ref. No. :		W. I. No. :					
Source :		Date Received :					
Sample Type :		Date Tested :					
Date Sampled :		Test Method : In-h	ouse Method TPE/006/W				
No. of Sample :							
Description :	Recovery of Spike = $\frac{36-5}{30.5}$ X ($\frac{3}{5}$						
		Recovery of Spike – 30,	()				
·	Ref. No.	2	~				
Drying oven used	ET / 0502 / 002	2	1. 1				
TSS standard used	1,88						
Lab. Ref. No.	(48) (spike)						
Client sample ID	BD BD		T				
Foil Bowl No	86 S2 1		\mathbf{A}				
Mass of Filter	1314.41328						
+ Foil Bowl (mg) (B)	13143 1328.7						
Vol. of Sample (mL)	200 200						
Mass of Filter	1315,41336,0						
+ Foil Bowl	1315.3 1335.9						
+ S. S. (mg) (A)							
Total Suspended Solids (mg/L) *	50 36						
Chloride Check (✓)	V J						
Expanded uncertainty, Uexp							
* Total Suspended Solids (mg/L)) = (A – B) / Vol. of Sample used	x 1000					
	ank : ≤ 0.5mg/L		Yes No				
criteria : 2. Dif	fference between duplicates:	< 10%	Yes No				
: 3. Re	ecovery of spike sample : 80%	to 120%	Yes No				
: 4. Ch	neck Sample : 80 (%	%) 120 %)	Yes No				
PQL : 5.0mg/L	(Seawater / Drinking water /	Wastewater)					
Remark : ⟨ . \ mg s	Silica Gel H was added to 200	Oml M1E-BD as spike.(}	0, 5 mg/L)				
Tested By : (Checked By :	de				


TPE/006/W


Annex I

Water Quality Monitoring Results

Figure 1 - Additional Water Quality Monitoring Results (Mid Ebb)

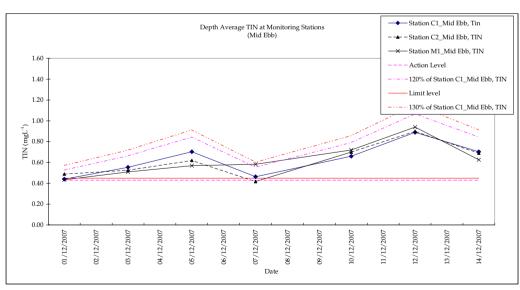
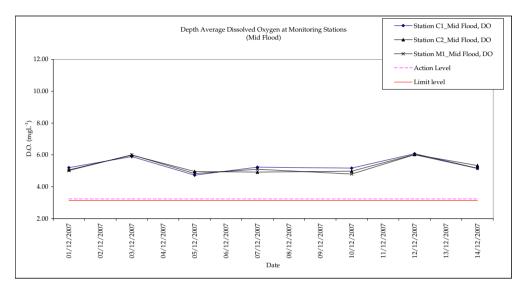
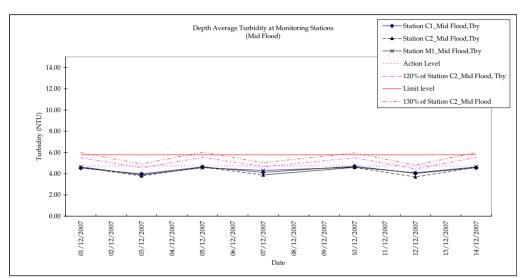
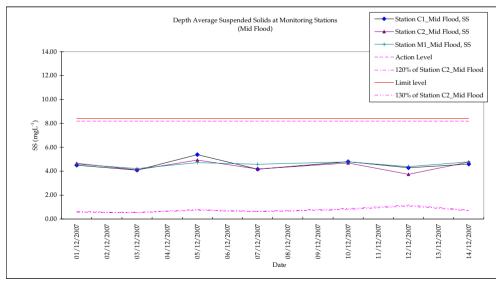
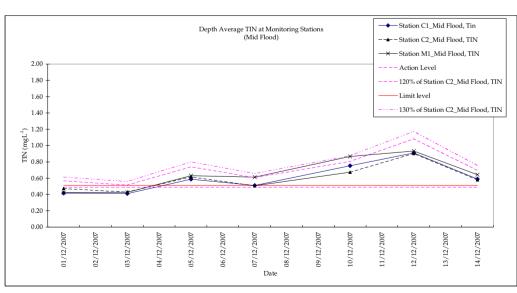






Figure 2 - Additional Water Quality Monitoring Results (Mid Flood)

Water Quality Monitoring Results for Station C1 (Mid-Ebb Tide)

																					i	_						1							1							_							
Date			01/12	/2007						03/1	2/2007						05/12/	2007						07/12	2/2007						10/1	2/2007						12	/12/2007				L		14	4/12/2007			
Time (hh:mm)			06:00	- 06:15						06:45	5 - 07:00						09:21 -	09:36						10:02	- 10:18						12:55	- 13:08						13:4	46 - 14:00)					15:	5:11 - 15:26	3		
Ambient Temperature			1	6							17						20	D							19							21							24							21			
Weather			Su	nny						F	Fine						Clou	udy						F	ine						F	ine							Sunny							Cloudy			
Water Depth (m)			14	.20						1-	4.80						14.	00						13	3.80						1-	4.00							13.40							14.00			
Monitoring Depth	1.	.00	7.1	0	13.20)		1.	.00	7.	.40	13.80			1.0	D	7.00	D	13.00			1	1.00	6.9	90	12.80				1.00	7.	00	13.00			1.	.00		6.70	12.4	0			1.00		7.00	13.00		
Tide			Mid	-Ebb						Mic	d-Ebb						Mid-	Ebb						Mid	d-Ebb						Mic	d-Ebb						N	/lid-Ebb						- 1	Mid-Ebb			
Trial	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial	I 1 Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	1 Trial 2	Trial 1	Trial 2	Depth Averag		al 1 Trial 2	2 Trial	I 1 Trial 2	2 Trial 1	Trial 2	Depth Average
Water Temperature (℃)	17.8	17.9	17.4	17.3	17.5	17.4	17.6	17.9	17.8	18.0	18.1	17.7	17.9	17.9	21.2	21.1	20.7	20.8	20.6	20.6	20.8	21.0	21.0	20.5	20.5	20.2	20.3	20.6	21.	.3 21.3	20.2	20.3	20.1	20.1	20.6	24.2	24.3	24.0	23.9	23.8	23.9	24.0	2:	2.4 22.3	21.9	.9 21.8	21.4	21.4	21.9
Salinity (ppt)	30.9	30.8	31.4	31.4	31.6	31.6	31.3	29.1	29.3	29.6	29.5	29.6	29.7	29.5	29.2	29.1	29.7	29.6	29.8	29.8	29.5	30.2	30.2	31.2	31.2	31.9	31.8	31.1	29.	.2 29.2	30.3	30.5	30.8	30.8	30.1	30.6	30.6	30.8	30.8	30.9	30.8	30.8	30	0.4 30.3	3 31.1	.1 31.1	31.2	31.2	30.9
D.O. (mg/L)	5.37	5.32	5.12	5.09	4.89	4.85	5.1	6.15	6.13	6.00	5.96	5.71	5.70	5.9	5.10	5.15	4.82	4.79	4.73	4.76	4.9	5.48	5.44	5.19	5.17	4.94	4.90	5.2	5.2	9 5.27	4.96	4.92	4.71	4.69	5.0	6.05	6.08	6.01	6.02	5.94	5.93	6.0	5	29 5.26	5.15	5 5.11	4.72	4.68	5.0
D.O. Saturation (%)	77.3	76.6	73.7	73.2	70.4	69.8	73.5	78.5	79.0	72.9	73.5	73.8	73.7	75.2	69.3	70.0	65.5	65.1	64.3	64.7	66.5	79.4	79.0	75.2	75.0	71.5	71.1	75.2	75.	.5 75.3	70.8	70.4	67.2	67.0	71.0	89.4	89.0	86.0	86.0	81.4	82.0	85.6	71	3.1 75.7	7 74.1	.1 73.5	67.4	66.9	72.3
Turbidity (NTU)	5.15	5.18	4.89	4.88	5.20	5.21	5.1	4.11	4.09	3.87	3.85	3.85	3.86	3.9	4.90	4.93	4.74	4.73	5.01	5.03	4.9	3.68	3.75	3.29	3.33	4.15	4.08	3.7	4.6	4.71	4.25	4.29	4.12	4.08	4.3	4.00	3.98	3.97	3.96	3.94	3.93	4.0	4	88 4.87	7 4.57	7 4.56	4.63	4.64	4.7
SS* (mg/L)	5.2	5.5	4.7	4.7	5.2	5.2	5.1	4.2	4.0	3.5	3.5	3.8	3.8	3.8	5.3	5.0	4.8	5.0	4.0	4.0	4.7	3.8	3.8	3.5	3.5	4.5	4.5	3.9	4.8	8 4.8	4.2	4.5	4.3	4.3	4.5	4.3	4.5	3.8	3.8	3.5	3.5	3.9	5	i.0 5.3	4.8	8 4.5	4.5	4.2	4.7
NO _x , mg N/L	0.	.16	0.1	6		0.14	0.2	0.	.20	0.	.19	0.3	24	0.2	0.3	6	0.26	6	0.2	18	0.3		0.26	0.2	27	0.	26	0.26		0.50	0.	49	0.	.52	0.50	0.	.48		0.48		0.51	0.49		0.35		0.27	0.	.25	0.3
NH ₃ , mg NH ₃ -N/L	0.	.30	0.2	7	(0.29	0.3	0.	.45	0.	.35	0.2	23	0.3	0.4	6	0.35	5	0.4	0	0.4	(0.25	0.	16	0.	19	0.20		0.16	0.	13	0.	.18	0.16	0.	.36		0.43		0.41	0.40		0.46		0.38	0	.40	0.4
Total Inorganic Nitrogen (Ammonia + NO _x), mg/L	C	0.5	0.	4		0.4	0.4	0).7	0	0.5	0.	.5	0.6	0.1		0.6		0.7	7	0.7		0.5	0.	.4	O	.5	0.46		0.7	0	.6	C	1.7	0.66		0.8		0.9		0.9	0.89		0.8		0.7	c	.7	0.7
Remarks				-							_							_							_							-																	

For the values of suspended solids less than Smg/L (PQL), the results are for reference only. PQL stands for practical quantitation Limit, or lowest reporting limit, which is estimated from the method detection limit (MDL). Normally PQL is about 5 times the MDL.

Date	01/12/2007
D.O. (mg/L)	Y
Turbidity (NTU)	Y
SS (mg/L)	Y
TIN (mg/L)	N

Within Ac	tion Level ?
Date	03/12/2007
D.O. (mg/L)	Y
Turbidity (NTU)	Y
SS (mg/L)	Y
TIN (mg/L)	N

	tion Level ?
Date	05/12/2007
D.O. (mg/L)	Y
Turbidity (NTU)	Y
SS (mg/L)	Y
TIN (mg/L)	N

Within Action Level ?						
Date	07/12/2007					
D.O. (mg/L)	Υ					
Turbidity (NTU)	Υ					
SS (mg/L)	Υ					
TIN (mg/L)	N					

Within Ac	tion Level ?
Date	10/12/2007
D.O. (mg/L)	Y
oidity (NTU)	Y
SS (mg/L)	Y
TIN (mg/L)	N

14/12/200	Date	12/12/2007	Date
Υ	D.O. (mg/L)	Υ	D.O. (mg/L)
Υ	Turbidity (NTU)	Y	oidity (NTU)
Υ	SS (mg/L)	Υ	SS (mg/L)
N	TIN (mg/L)	N	TIN (mg/L)

Within Lir	nit Level ?
Date	01/12/2007
D.O. (mg/L)	Y
Turbidity (NTU)	Y
SS (mg/L)	Y
TIN (mg/L)	N

Within Limit Level ?						
Date	03/12/2007					
D.O. (mg/L)	Y					
Turbidity (NTU)	Y					
SS (mg/L)	Y					
TIN (mg/L)	N					
TIN (mg/L)	N					

Within Lin	nit Level ?
Date	05/12/2007
D.O. (mg/L)	Y
Turbidity (NTU)	Y
SS (mg/L)	Y
TIN (mg/L)	N

Within Lir	nit Level ?
Date	07/12/2007
D.O. (mg/L)	Y
Turbidity (NTU)	Y
SS (mg/L)	Y
TIN (mg/L)	N

nit Level ?	Withi
10/12/2007	
Υ	D.O. (m
Y	Turbidity (N
Υ	SS (m
N	TIN (m
	10/12/2007 Y Y Y

Within Lin	nit Level ?
Date	14/12/2007
D.O. (mg/L)	Y
Turbidity (NTU)	Y
SS (mg/L)	Y
TIN (ma/L)	N

Water Quality Monitoring Results for Station M1 (Mid-Ebb Tide)

Date			01/12	/2007						03/1	2/2007						05/12/20	07					07/1	12/2007						10/12	/2007					12/1	2/2007						14/12/2	2007		
Time (hh:mm)			06:40	- 06:55						07:08	- 07:20						10:01 - 1	:16					10:58	8 - 11:12	2					13:50	- 14:04					14:11	- 14:25						15:51 - 1	16:06		
Ambient Temperature				6							17						20							19						2	1						24						21			
Weather			Su	nny						F	ine						Cloud						F	Fine						F	ne					Su	inny						Cloud	dy		
Water Depth (m)			9.	60						10	0.60						9.40						8	9.40						9.	20					9	.80						9.80	0		
Monitoring Depth	1.0	00	4.8	10	8	3.60		1	.00	5.	30	9.60			1.00		4.70	8	.40			1.00	4.	.70	8.40			1.	.00	4.6	0	3.20		1.	.00	4.5	90	8.80			1.0	0	4.90	8.8	.80	
Tide			Mid	-Ebb						Mic	d-Ebb						Mid-Eb						Mic	id-Ebb						Mid	-Ebb					Mic	i-Ebb						Mid-Et	.bb		
Trial	Trial 1	Trial 2	Trial 1	Trial:	2 Tria	al 1 Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1 Tr	rial 2	Depth Average	Trial 1 Tr	ial 2 Tr	rial 1 Tri	al 2 Tria	I 1 Trial 2	Depth Average	Trial	1 Trial 2	Trial 1	Trial 2	2 Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2 Tria	al 1 Trial 2	Depth Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Depth Average	Trial 1	Trial 2	Trial 1 T	Frial 2 Trial	1 Trial 2	Depth Average
Water Temperature (℃)	17.8	17.7	17.5	17.4	17.	.4 17.3	17.5	18.1	18.0	18.1	18.1	17.9 1	18.0	18.0	21.3 2	1.2 2	0.9 2	.8 20	.8 20.7	21.0	21.2	21.2	20.8	20.7	20.2	20.3	20.7	21.2	21.2	20.3	20.3 20	.2 20.2	20.6	24.3	24.4	24.6	24.2	24.0	24.0	24.3	22.4	22.4	21.8 2	21.7 21.5	5 21.4	21.9
Salinity (ppt)	30.8	30.8	31.5	31.4	31.	.7 31.7	31.3	27.7	27.8	27.9	27.9	27.8 2	28.0	27.9	29.2 2	9.2 2	9.7 2	.8 29	.8 29.7	29.6	30.1	30.1	30.9	31.0	31.6	31.5	30.9	28.4	28.3	29.5	29.5 30	.0 29.9	29.3	30.6	30.6	30.9	30.7	30.7	30.8	30.7	30.4	30.4	31.1 3	31.2 31.3	3 31.2	30.9
D.O. (mg/L)	5.10	5.15	4.63	4.67	4.7	71 4.68	4.8	6.17	6.16	6.11	6.11	5.87 5	5.85	6.0	4.94 4	.90 4	1.71 4	68 4.6	0 4.63	4.7	5.60	5.58	5.22	5.18	4.86	4.64	5.2	4.79	4.75	4.58	4.56 4.	23 4.19	4.5	6.00	6.01	5.97	5.96	5.90	5.91	6.0	5.34	5.30	5.18	5.14 5.01	1 4.97	5.2
D.O. Saturation (%)	73.4	74.1	66.6	67.2	67.	.5 66.9	69.3	79.0	79.0	73.5	73.6	70.2 7	70.1	74.2	67.1 6	6.6 6	64.0	1.6 62	.5 62.9	64.5	81.1	80.9	75.6	75.2	70.4	70.2	75.6	68.3	67.9	65.3	65.1 60	.4 60.0	64.5	88.4	88.5	85.0	85.1	82.1	82.1	85.2	76.8	76.3	74.5 7	74.0 72.1	1 71.5	74.2
Turbidity (NTU)	5.18	5.19	5.07	5.09	4.9	95 4.94	5.1	4.00	3.96	3.81	3.82	3.77 3	3.78	3.9	4.88 4	.87 4	1.75 4	74 4.7	7 4.75	4.8	4.11	4.18	5.09	5.11	4.24	4.30	4.5	4.23	4.33	4.17	4.25 4.	80 4.70	4.4	4.01	4.03	4.04	4.00	4.14	4.13	4.1	4.77	4.78	4.62 4	4.63 4.84	4 4.85	4.7
SS* (mg/L)	5.2	5.3	5.5	5.2	5.3	3 5.0	5.3	4.8	5.0	3.8	3.8	3.5	3.5	4.1	5.5	5.5 5	5.5 5	.5 4.	0 4.0	5.0	4.8	5.0	5.5	5.7	4.5	4.5	5.0	4.3	4.0	5.5	5.7 5	.0 5.0	4.9	4.3	4.3	4.5	4.8	3.8	4.0	4.3	4.3	4.5	4.8	4.7 5.0	5.0	4.7
NO _x , mg N/L	0.1	18	0.2	10		0.13	0.2	0	.22	0.	19	0.20		0.2	0.29		0.23		0.26	0.3		0.24	0.2	.23	0	27	0.25	0.	.47	0.4	8	0.53	0.49	0.	.54	0.	46	0.55	j	0.52	0.3	0	0.23		0.28	0.3
NH ₃ , mg NH ₃ -N/L	0.2	25	0.2	:3		0.31	0.3	0	.26	0.	29	0.37		0.3	0.17		0.28		0.48	0.3		0.22	0.	1.45	0	34	0.34	0.	.12	0.1	4	0.42	0.23	0.	.39	0.	44	0.44	4	0.42	0.3	5	0.35		0.37	0.4
Total Inorganic Nitrogen (Ammonia + NO _x), mg/L	0.	.4	0.	4		0.4	0.4		0.5	0	.5	0.6		0.5	0.5		0.5		0.7	0.6		0.5	0.	3.7		.6	0.58	0	0.6	0.	5	1.0	0.72	o	0.9	0	.9	1.0	,	0.94	0.7	7	0.6		0.7	0.6
Remarks																		-							-						-															

^{*} For the values of su Limit, or lowest repo

31.5 31.4	31.7 31.7	31.3	27.7 27.8	27.9	27.9 2	'.8 28.0							30.1 30.1																	31.2 31.3	1.3 31.2	30.9
4.63 4.67	4.71 4.68	4.8	6.17 6.16	6.11	6.11 5.	87 5.85	6.0	4.94 4.90	4.71	4.68	4.60 4.63	4.7	5.60 5.58	5.22	5.18	1.86 4.64	5.2	4.79 4.75	4.58 4.56	4.23	4.19	4.5	6.00 6.01	5.97 5.96	5.90	5.91	6.0	5.34 5.30	5.18 5.	5.14 5.01	01 4.97	5.2
66.6 67.2	67.5 66.9	69.3	79.0 79.0	73.5	73.6 7	0.2 70.1	74.2	67.1 66.6	64.0	63.6	62.5 62.9	64.5	81.1 80.9	75.6	75.2	70.4 70.2	75.6	68.3 67.9	65.3 65.1	60.4	60.0	64.5	88.4 88.5	85.0 85.1	82.1	82.1	85.2	76.8 76.3	74.5 74	74.0 72.1	2.1 71.5	74.2
5.07 5.09	4.95 4.94	5.1	4.00 3.96	3.81	3.82 3.	77 3.78	3.9	4.88 4.87	4.75	4.74	4.77 4.75	4.8	4.11 4.18	5.09	5.11	1.24 4.30	4.5	4.23 4.33	4.17 4.25	4.80	4.70	4.4	4.01 4.03	4.04 4.00	4.14	4.13	4.1	4.77 4.78	4.62 4.	1.63 4.84	84 4.85	4.7
5.5 5.2	5.3 5.0	5.3	4.8 5.0	3.8	3.8 3	.5 3.5	4.1	5.5 5.5	5.5	5.5	4.0 4.0	5.0	4.8 5.0	5.5	5.7	4.5 4.5	5.0	4.3 4.0	5.5 5.7	5.0	5.0	4.9	4.3 4.3	4.5 4.8	3.8	4.0	4.3	4.3 4.5	4.8 4	4.7 5.0	i.0 5.0	4.7
0.20	0.13	0.2	0.22	0.1	9	0.20	0.2	0.29	0	0.23	0.26	0.3	0.24	0.2	23	0.27	0.25	0.47	0.48	0	53	0.49	0.54	0.46	0.5	55	0.52	0.30	0.23		0.28	0.3
0.23	0.31	0.3	0.26	0.2	9	0.37	0.3	0.17	0	0.28	0.48	0.3	0.22	0.4	15	0.34	0.34	0.12	0.14	0	42	0.23	0.39	0.44	0.4	44	0.42	0.35	0.35		0.37	0.4
																									-							
0.4	0.4	0.4	0.5	0.		0.6	0.5	0.5	١.	0.5	0.7	0.6	0.5	0.	-	0.6	0.58	0.6	0.6		0	0.72	0.9	0.9	1		0.94	0.7	0.6		0.7	0.6
0.4	0.4	0.4	0.5	0.	, ,	0.0	0.5	0.5	٠.	0.5	0.7	0.0	0.5	0.		0.6	0.50	0.6	0.0		.0	0.72	0.9	0.9		.0	0.94	0.7	0.6		0.7	0.6
of suspended solids I																																
of suspended solids is reporting limit, which	Within Act Date D.O. (mg/L) Turbidity (NTU) SS (mg/L) TIN (mg/L) Within Lin	01/12/2007 Y Y Y Y	etection limit (ML	L). NOTE	E	Within Act Date D.O. (mg/L) urbidity (NTU) SS (mg/L) TIN (mg/L) Within Lin	Y Y Y				Date D.O. (mg/L) Turbidity (NTU) SS (mg/L) TIN (mg/L) Within Li	tion Level ? 05/12/2007 Y Y Y Y Y Office of the second of the sec				Date D.O. (mg/L) Furbidity (NTU) SS (mg/L) TIN (mg/L) Within Lin	Y Y N			D. Turbio	Within Action Date 10 D. (mg/L) ity (NTU) IS (mg/L) IN (mg/L) Within Limit Date 10	Y Y Y Y Y Level ?			D.C Turbidi S TI	D. (mg/L) ity (NTU) S (mg/L) N (mg/L)	Y Y Y Y Y				D.O. (mg/L) urbidity (NTU) SS (mg/L) TIN (mg/L) Within Lim	14/12/2007 Y Y Y Y

Water Quality Monitoring Results for Station C2 (Mid-Ebb Tide)

Date			01/12	0007						00/	12/2007			1			05/12	10007			1			07/12/	10007			1			40/4	2/2007						12/12	0/000T						4 4 (4)	2/2007			
	-							_							-							\vdash						4	-														_					_	
Time (hh:mm)			06:20							07:3	31 - 07:45	5			-		09:41					-		10:31 -					-		13:25	- 13:37							-14:50			i .	-		15:31	- 15:46			
Ambient Temperature			1	6							17						2	0						19	a			1				21						2	24						2	21			
Weather			Su	nny							Fine						Clo	udy						Fin	ле						F	ine						Su	inny						Clc	oudy			
Water Depth (m)			14	40							15.00						14	.40						14.3	.20						14	.80						13	.00						14	1.20			
Monitoring Depth	1	.00	7.2	D	13.40				1.00	7	7.50	14.00			1.	00	7.2	0	13.40				1.00	7.10	0	13.20				1.00	7.	10	13.80			1.00)	6.5	50	12.00			1	.00	7.f	10	13.20		
Tide			Mid	Ebb						M	fid-Ebb						Mid	Ebb						Mid-I	-Ebb						Mic	-Ebb						Mid	l-Ebb						Mid	f-Ebb			
							Depth							Depth							Depth							Depth							Depth							Depth							Depth
Trial	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Average	Trial 1	Trial 2	Trial 1	Trial 2	2 Trial 1	Trial 2	Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Average	Trial	1 Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Average	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1 Tria	al 2 Av	Average
Water Temperature (°C)	17.7	17.6	17.4	17.5	17.4	17.4	17.5	17.9	18.0	18.0	17.8	17.7	17.8	17.9	21.3	21.3	20.9	20.9	20.7	20.7	21.0	21.1	21.0	20.6	20.6	20.4	20.4	20.7	21.4	21.4	20.4	20.5	20.3	20.3	20.7	24.3	24.0	24.0	24.1	23.7	23.9	24.0	22.4	22.5	21.7	21.7	21.4 21	1.3	21.8
Salinity (ppt)	30.9	30.9	31.5	31.5	31.6	31.6	31.3	28.8	28.6	28.8	28.8	29.0	29.0	28.8	29.0	29.0	29.8	29.7	29.8	29.8	29.5	30.0	30.1	31.1	31.1	31.8	31.8	31.0	29.5	29.6	29.9	29.9	30.4	30.3	29.9	30.5	30.6	30.8	30.8	30.9	30.9	30.8	30.4	30.4	31.1	31.1	31.3 31	1.3	30.9
D.O. (mg/L)	5.29	5.25	5.15	5.19	5.06	5.02	5.2	6.18	6.17	6.04	6.03	5.76	5.73	6.0	5.07	5.02	4.64	4.61	4.89	4.85	4.8	5.35	5.31	5.08	5.06	4.57	4.53	5.0	4.90	4.88	4.66	4.62	4.64	4.35	4.3	6.03	6.02	6.00	6.01	5.92	5.92	6.0	5.58	5.54	5.49	5.46	5.07 5.0	.02	5.4
D.O. Saturation (%)	76.1	75.5	74.1	74.7	72.3	71.7	74.1	80.1	80.0	72.7	72.9	68.6	68.0	73.7	68.9	68.2	62.7	62.2	66.0	65.4	65.6	77.5	77.1	73.6	73.4	66.2	65.8	72.3	69.9	69.7	66.5	66.1	62.1	61.9	66.0	89.0	88.5	86.0	85.4	83.1	83.1	85.9	80.3	79.7	79.0	78.6	72.5 71	1.7	77.0
Turbidity (NTU)	4.82	4.83	4.97	4.96	4.74	4.75	4.8	4.01	4.02	3.94	_	3.71	3.70	3.9	4 98	4.97	4.76	4.72	4.69	4.70	4.8	4 16	4.22			4.85	4.95	4.4	5.22	5 28	5.03	5.09	4.88	4.95	5.1	3.50		3.64	3.74	3.89	3.91	3.7	4 90	1 1		4.76	461 41	.62	4.8
SS* (mg/L)	4.5	4.5	5.2	5.5	4.5	4.5	4.8	4.3		4.3		4.5	4.5	4.4	3.5	3.8	4.5	4.5	5.2	5.2	4.5	4.3			4.5	5.3	5.2	4.7	5.5	5.5		5.2	5.0	4.8	5.2	3.8			3.8	4.3	4.2	4.0	5.3	5.5	4.8	5.0	4.5 4.		4.9
NO _x , mg N/L		118	0.2			17	0.2		16	+	0 19		16	0.2		28	0.2			39	0.3	_	0.25	0.25			20	0.23	_	n 48	0.0			48	0.48	0.0		0.0		0.5		0.5	- 0.0	133	0.2		0.27		
	_			*						_																			_			-					_						-		0.0	-		-	0.3
NH ₂ , mg NH ₃ -N/L	0	.29	0.2	В	0	0.36	0.3		0.23		0.47	0	0.37	0.4	0.	42	0.2	6	0.	24	0.3	Ш.	0.19	0.21	.1	0.	15	0.18		0.19	0.3	27	0.	20	0.22	0.44	1	0.4	12	0.3	39	0.4	0	1.39	0.4	i1	0.40		0.4
Total Inorganic Nitrogen																																										ı							
(Ammonia + NO _x), mg/L		0.5	0.8	;		0.5	0.5		0.4		0.7		0.5	0.5	0	.7	0.5	5	0	.6	0.6		0.4	0.5	5	0	4	0.42		0.7	0.	8	0	.7	0.70	0.9		0.	9	0.9	9	0.9		0.7	0.	.7	0.7		0.7
Remarks		·		-						•								_							_							_		·			·												

For the values of suspended solids less than Smg L (POL), the results are for reference only. POL stands for practical quantitation Limit, or lowest reporting limit, which is estimated from the method detection limit (MDL). Normally POL is about 5 lim

01/12/2007
Υ
Υ
Υ
N

Within Ac	tion Level ?
Date	03/12/2007
D.O. (mg/L)	Υ
Turbidity (NTU)	Y
SS (mg/L)	Y
TIN (mg/L)	N

Within Ac	tion Level ?
Date	05/12/2007
D.O. (mg/L)	Y
Turbidity (NTU)	Υ
SS (mg/L)	Υ
TIN (mg/L)	N

Within Ac	tion Level ?
Date	07/12/2007
D.O. (mg/L)	Y
Turbidity (NTU)	Y
SS (mg/L)	Y
TIN (mg/L)	Y
TIN (mg/L)	Υ

Date	10/12/2007
D.O. (mg/L)	Υ
Turbidity (NTU)	Y
SS (mg/L)	Y
TIN (mg/L)	N

Within Action Level ?										
Date	12/12/2007									
D.O. (mg/L)	Υ									
Turbidity (NTU)	Υ									
SS (mg/L)	Υ									
TIN (mg/L)	N									

Within Ac	tion Level ?
Date	14/12/2007
D.O. (mg/L)	Υ
Turbidity (NTU)	Y
SS (mg/L)	Y
TIN (mg/L)	N

Within Lir	nit Level ?
Date	01/12/2007
D.O. (mg/L)	Y
Turbidity (NTU)	Y
SS (mg/L)	Y
TIN (mg/L)	N

Within Limit Level ?			
Date	03/12/2007		
D.O. (mg/L)	Y		
Turbidity (NTU)	Y		
SS (mg/L)	Y		
TIN (mg/L)	N		

1?	Within Lir	nit Level ?
2007	Date	05/12/20
	D.O. (mg/L)	Υ
	Turbidity (NTU)	Υ
	SS (mg/L)	Υ
	TIN (mg/L)	N

Within Limit Level ?			
Date 07/12/2007			
D.O. (mg/L)	Y		
Turbidity (NTU)	Y		
SS (mg/L)	Y		
TIN (mg/L)	Y		

Within Lin	nit Level ?
Date	10/12/2007
D.O. (mg/L)	Y
Turbidity (NTU)	Y
SS (mg/L)	Y
TIN (mg/L)	N

Date 12/12/2007 D.O. (mg/L) Y Turbidity (NTU) V
Turbidity (MTII)
raibiaity (NTO)
SS (mg/L) Y
TIN (mg/L) N

Within Limit Level ?			
Date 14/12/2007			
D.O. (mg/L)			
Turbidity (NTU)	Y		
SS (mg/L)	Y		
TIN (mg/L)	N		

Annex J

Event / Action Plans for Air and Water Quality Monitoring

Table J1 Event Action Plans for Air Quality

Event	Action			
Action Level	ET	Contractor	ER	IEC
Exceedance for one sample	 Identify source Notify IEC, ER and Contractor within 1 working day after receiving the laboratory results. Conduct additional monitoring to investigate the causes. Report the investigation results and if exceedance is due to contractor's construction works to the IEC, ER and Contractor. Increase monitoring frequency to once per 2 days for 24-hour TSP and daily for 1-hour TSP until exceedance stops if exceedances are considered related to contractor's construction works and report the results to IEC, ER and Contractor within 1 working day after receiving the laboratory results. 	Take immediate action to avoid further exceedance and rectify any unacceptable practice. Submit air mitigation proposal to IEC and ER for agreement within 3 working days if ET indicated that exceedance is related to the construction works Implement agreed proposal within a time scale agreed with ER and IEC.	 Confirm receipt of notification of failure in writing. Notify Contractor. Require Contractor to submit air mitigation proposal. Ensure remedial measures are properly implemented. 	 Review monitoring data and investigation report submitted by ET. Review Contractor's air mitigation proposal and advise the ER accordingly. Supervise and confirm in writing the implementation of remedial measures within 2 working days after receipt of the mitigation proposal.
Exceedance for two or more consecutive samples	 Identify source Notify EPD, IEC, ER and Contractor within 1 working day after receiving the laboratory results Conduct additional monitoring to investigate the causes. Report the investigation results and if exceedances are due to contractor's construction works to EPD, IEC, ER and Contractor within 3 working days after additional monitoring. Increase monitoring frequency to daily for 24-hour TSP and 1-hour TSP if exceedances are considered related to contractor's construction works until exceedance stops, and report the results to EPD, IEC, ER and Contractor within 1 working day after receiving the laboratory results. If exceedances continue after 1-week monitoring events, request ER to arrange meeting with ER, IEC and contractor to discuss remedial actions. 	 Take immediate action to avoid further exceedance and rectify any unacceptable practice In consultation with the IEC, submit air mitigation proposal to IEC and ER for agreement within 3 working days of notification if ET indicated that exceedances are related to construction works Implement agreed proposal within a time scale agreed with ER and IEC. Amend working methods if appropriate. 	 Confirm receipt of notification of failure in writing. Notify Contractor. Require Contractor to submit air mitigation proposal. Ensure remedial measures are properly implemented. 	 Review monitoring data and investigation report submitted by ET. Discuss amongst ER, ET and Contractor in order to formulate air mitigation proposal. Review Contractor's air mitigation proposal and advise the ER accordingly. Supervise and confirm in writing the implementation of remedial measures within 2 working days after receipt of the mitigation proposal.

Event	Action			
Limit Level	ET	Contractor	ER	IEC
Exceedance for one sample	 Identify source Notify EPD, IEC, ER and Contractor within 1 working day after receiving the laboratory results Conduct additional monitoring to investigate the causes. Report the investigation results and if exceedances are due to contractor's construction works to EPD, IEC, ER and Contractor within 3 working days after additional monitoring. Increase monitoring frequency to daily if exceedances are considered related to contractor's construction works until exceedance stops, and report the results to EPD, IEC, ER and Contractor within 1 working day after receiving the laboratory results. 	 Take immediate action to avoid further exceedance and rectify any unacceptable practice In consultation with the IEC, submit air mitigation proposal to IEC and ER for agreement within 3 working days of notification if ET indicated that exceedances are related to construction works Implement agreed proposal within a time scale agreed with ER and IEC. Amend working methods if appropriate. 	 Confirm receipt of notification of failure in writing. Notify Contractor. Require Contractor to submit air mitigation proposal. Ensure remedial measures are properly implemented. 	 Review monitoring data and investigation report submitted by ET. Discuss amongst ER, ET and Contractor in order to formulate air mitigation proposal. Review Contractor's air mitigation proposal and advise the ER accordingly. Supervise and confirm in writing the implementation of remedial measures within 2 working days after receipt of the mitigation proposal.
Exceedance for two or more consecutive samples	 Identify source Notify EPD, IEC, ER and Contractor within 1 working day after receiving the laboratory results Conduct additional monitoring to investigate the causes. Report the investigation results and if exceedances are due to contractor's construction works to EPD, IEC, ER and Contractor within 3 working days after additional monitoring. Increase monitoring frequency to daily if exceedances are considered related to contractor's construction works until exceedance stops, and report the results to EPD, IEC, ER and Contractor within 1 working day after receiving the laboratory results. If exceedances continue after 2 consecutive monitoring events, request ER to arrange meeting with IEC and contractor to discuss remedial actions. 	 Take immediate action to avoid further exceedance and rectify any unacceptable practice In consultation with the IEC, submit air mitigation proposal to IEC and ER for agreement within 3 working days of notification if ET indicated that exceedances are related to construction works Implement agreed proposal within a time scale agreed with ER and IEC. Amend working methods and proposal if appropriate. Stop relevant portion(s) of works as required by ER, ET and IEC 	 Confirm receipt of notification of failure in writing. Notify Contractor. Require Contractor to submit air mitigation proposal. Ensure remedial measures are properly implemented. If exceedances continue arrange meeting with Contractor, IEC and ET and to consider what portion(s) of works should be further mitigated or have to stop. 	 Review monitoring data and investigation report submitted by ET. Discuss amongst ER, ET and Contractor in order to formulate air mitigation proposal. Review Contractor's air mitigation proposal and advise the ER accordingly. Supervise and confirm in writing the implementation of remedial measures within 2 working days after receipt of the mitigation proposal.

Table J2 Event Action Plans for Additional Water Quality Monitoring

Event	Action			
	ET	IC(E)	ER	Contractor
Action level being exceeded by one sampling day	 Repeat in-situ measurement to confirm findings; Identify source(s) of impact; Inform IC(E) and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IC(E) and Contractor; (The above actions should be taken within 1 working day after the exceedance is identified) Repeat measurement on next day of exceedance. 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified) 	 Discuss with IC(E) on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented. (The above actions should be taken within 1 working day after the exceedance is identified) 	 Inform the ER and confirm notification of the noncompliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IC(E) and propose mitigation measures to IC(E) and ER; Implement the agreed mitigation measures. The above actions should be taken within 1 working day after the exceedance is identified)
Action level being exceeded by more than one consecutive sampling days	 Identify source(s) of impact; Inform IC(E) and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IC(E) and Contractor; Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; (The above actions should be taken within 1 working day after the exceedance is identified) 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified) 	 Discuss with IC(E) on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified) 	 Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET and IC(E) and propose mitigation measures to IC(E) and ER within 3 working days; Implement the agreed mitigation measures. (The above actions should be

ENVIRONMENTAL RESOURCES MANAGEMENT

HIP HING – NGO KEE JOINT VENTURE

Event	Action			
	ET	IC(E)	ER	Contractor
	7. Repeat measurement on next working day of exceedance.			taken within 1 working day after the exceedance is identified)
Limit level being exceeded by one sampling day	 Repeat in-situ measurement to confirm findings; Identify source(s) of impact; Inform IC(E), contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IC(E), ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level. (The above actions should be taken within 1 working day after the exceedance is identified) 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified) 	 Discuss with IC(E), ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified) 	 Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IC(E) and ER and propose mitigation measures to IC(E) and ER within 3 working days; Implement the agreed mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)
Limit level being exceeded by more than one consecutive sampling days	 Identify source(s) of impact; Inform IC(E), contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IC(E), ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after 	 Discuss with IC(E), ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures; 	 Inform the ER and confirm notification of the noncompliance in writing; Rectify unacceptable practice; Check all plant and equipment; Consider changes of working methods; Discuss with ET, IC(E) and ER and propose mitigation measures to IC(E) and ER within 3 working days;

ENVIRONMENTAL RESOURCES MANAGEMENT

HIP HING – NGO KEE JOINT VENTURE

Event	Action			
	ET	IC(E)	ER	Contractor
	frequency to daily until no exceedance of Limit level for two consecutive days. (The above actions should be taken within 1 working day after the exceedance is identified)	the exceedance is identified)	5. Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the marine work until no exceedance of Limit level. (The above actions should be taken within 1 working day after the exceedance is identified)	 6. Implement the agreed mitigation measures; 7. As directed by the Engineer, to slow down or to stop all or part of the marine work or construction activities. (The above actions should be taken within 1 working day after the exceedance is identified)

ENVIRONMENTAL RESOURCES MANAGEMENT

HIP HING – NGO KEE JOINT VENTURE

Annex K

Summary of Implementation Status

Annex K - Summary of Environmental Protection / Mitigation Activities

Environmental Permit No. EP-239/2006/A

EP Condition	Submission	Action Required by the Permit Holder	Implementation Status
Ref	litigating Water Quality Impact		
2.4	Method statement on silt screens for seawater intakes (including design and maintenance requirements)	2 weeks before commencement of marine pile installation works	Method statement was submitted to the EPD on 21/6/06. Method statement (Revision A) was submitted to the EPD on 29/9/06. Method statement (Revision B) and supplementary information was submitted to the EPD on 23/5/07 and 18/6/07 respectively.
2.5	Method statement on silt curtain system for marine piling works (including design and maintenance requirements)	2 weeks before commencement of marine pile installation works	Method statement was submitted to the EPD on 15/9/06.
2.8	Design drawings specifying pile dimension and layout	2 weeks before commencement of marine pile installation works	Marine pile layout (final stage) was submitted to the EPD on 15/2/07.
			Revised marine pile layout (final stage) was submitted to the EPD on $26/3/07$.
Measures for M	litigating Air Quality Impact		
2.9	Design drawings of ventilation facility for fresh air intakes (req'd only before operation of Project)	2 weeks before commencement of installation of ventilation facility	
Measures for M	litigating Landscape and Visual Impact		
2.10	Implementation programme for landscape and visual mitigation measures (for both construction and operational phases of Project)	Within 6 months after commencement of construction of Project	Implementation programme (CM01, CM04 and CM05) was submitted to the EPD on 8/12/06.
2.10	Details of each landscape and visual mitigation measures package (incl plans)	2 weeks before implementation of a particular mitigation package	Proposal on protection and transplantation of existing trees was submitted to the EPD on 8/12/06. Proposal for CM03 was submitted to the EPD on 8/12/06. Proposal for CM01, CM04 and CM05 was submitted to the EPD on 15/12/06. CM01 Rev 1 was submitted to the EPD on 22/1/07. Proposal CM02 was submitted to the EPD on 13/3/07. Proposal for OM01 was submitted to the EPD on 15/11/07.
3.2	Baseline Monitoring Report	One week before the commencement of construction	Report was submitted to the EPD on 24/7/06 and comments from the EPD was received on 3/8/06. Revised report was submitted to EPD on 17/8/06 and no further comments received.

Type of	Environmental Protection Measures	Location/ Timing	Status				
Impact Construction P	onstruction Phase						
Air Quality	 The Air Pollution Control (Construction Dust) Regulation shall be implemented and good site practices shall be incorporated in the contract clauses to minimize construction dust impact. A number of practical measures are listed below: skip hoist for material transport should be totally enclosed by impervious sheeting; every vehicle should be washed to remove any dusty materials from its body and wheels before leaving a construction site; the area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores; where a site boundary adjoins a road, streets or other accessible to the public, hoarding of not less than 2.4 m high from ground level should be provided along the entire length except for a site entrance or exit; every stock of more than 20 bags of cement should be covered entirely by impervious sheeting placed in an area sheltered on the top and the 3 sides; all dusty materials should be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet; the height from which excavated materials dropped should be controlled to a minimum practical height to limit fugitive dust generation from unloading; the load of dusty materials carried by vehicle leaving a construction site should be covered entirely by clean impervious sheeting to ensure dust materials do not leak from the vehicle; and instigation of an environmental monitoring auditing program to monitor the construction process in order to enforce controls and modify method of work if dusty conditions arise. 	Work site / during construction					

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
Operational Ph	ase		<u> </u>
Air Quality	Some fresh air intakes of the Hong Kong Convention and Exhibition Centre Phase I, Renaissance Harbour View Hotel and Grand Hyatt Hotel (ASRs A4, A5 and A6) should be re-diverted to the new air vent shaft provided for Atrium Link Extension where fresh air intake located at +55.8mPD.	Location of ASRs A4, A5 & A6 / Design & Operation Stage (Long-term and Interim Scenario)	Measures not required until commencement of operational phase
Air Quality	Monitoring of NO ₂ concentration underneath the Atrium Link Extension should be conducted.	Underneath the deckover / The first six months upon completion of the ALE.	Measures not required until commencement of operational phase
Construction P	hase		
Noise	 Good Site Practice: only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program; silencers or mufflers on construction equipment should be utilized and should be properly maintained during the construction program; mobile plant, if any, should be sited as far from NSRs as possible; machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs; and material stockpiles and other structures should be effectively utilised, wherever practicable, in screening noise from onsite construction activities; Environmental audit shall be carried out to ensure that appropriate noise control measures would be properly implemented. 	Construction work areas / Construction period	

Type of	Environmental Protection Measures	Location/ Timing	Status
Impact			
Operational I			
Noise	 The following noise reduction measures should be considered as far as practicable during detailed design: choose quieter plant such as those which have been effectively silenced; include noise levels specification when ordering new plant; locate fixed plant away from any NSRs as far as practicable; locate fixed plant in plant rooms with thick walls or specially designed enclosure; locate noisy machines in basement or a completely separate building; and develop and implement a regularly scheduled plant maintenance programme in order to maintain controlled level of noise. 	Plant Room / Design and Operation Stage	Relevant design and plant procurement procedures to commence at a later stage
Construction	Phase		
Water Quality	There should be no permanent structure in the water channel.	At the ALE sea channel / during operational phase	√
Water Quality	No dredging and no reclamation should be carried out for the Project.	At work sites / during construction phase	√
Water Quality	The marine pile layout as shown in Figure 3 of the Environmental Permit should be adopted. No more than approximately 80 numbers of temporary marine piles should be installed in the ALE sea channel during the construction phase. The dimension of each temporary marine pile should be 800mm nominal diameter. These piles should be driven into position and internal space should not be excavated, i.e. left as soil. No dredging or soil /sediment excavation should be carried out. Marine piles would be removed by reverse driving.	At work sites / during construction phase	√
Water Quality	Two layers of silt curtain should be installed around each of the marine piling and pile extraction locations. The proposed silt curtain should be extended to seabed with sinker blocks and regularly inspected and maintained to ensure it is serviceable.	At marine work sites and nearby seawater intakes / during marine piling and marine pile extraction	The installation of temporary marine piles was completed on 23 April 2007.

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
	All marine works should be carried out in a controlled manner such that release of sediments into the marine environment would be minimized. All wastewater generated from the piling activities should be collected and be treated before controlled discharge. Spoil should also be properly collected for proper disposal.		
Water Quality	In view of the close vicinity of the seawater intakes to the work site, silt screens are recommended to be deployed at the seawater intakes shown in Figure 5.2 of the EIA report during the whole construction period. Silt screens to be provided at seawater intakes should be regularly checked and maintained to ensure that they are serviceable. Refuse collection vessel should be mobilized on a need basis to collect any floating refuse lost from/trapped at the work site during the construction period.	At seawater intakes / during the whole construction period	The installation of temporary marine piles was completed on 23 April 2007. Silt screens were removed as requested by the intake owners. Silt screens will be reinstalled at seawater intakes prior to the removal of marine piles.
Water Quality	Surface run-off from construction sites should be discharged into storm drains via adequately designed sand/silt removal facilities such as sand traps, silt traps and sedimentation basins. Channels or earth bunds or sand bag barriers should be provided on site to properly direct stormwater to such silt removal facilities. Perimeter channels at site boundaries should be provided where necessary to intercept storm runoff from outside the site so that it will not wash across the site. Catchpits and perimeter channels should be constructed in advance of site formation works and earthworks. Silt removal facilities, channels and manholes should be maintained and the deposited silt and grit should be removed regularly, at the onset of and after each rainstorm to ensure that these facilities are functioning properly at all times. Any practical options for the diversion and re-alignment of drainage should comply with both engineering and environmental requirements in order to ensure adequate hydraulic capacity of all drains. Minimum distances of 100 m should be maintained between the discharge points of construction site runoff and the nearby saltwater intakes.	Works areas / construction period	Δ

Type of	Environmental Protection Measures	Location/ Timing	Status
Impact			
Water Quality	There is a need to apply to EPD for a discharge license for discharge of effluent from the construction site under the WPCO. The discharge quality must meet the requirements specified in the discharge license. All the runoff and wastewater generated from the works areas should be treated so that it satisfies all the standards listed in the TM-DSS. Reuse and recycling of the treated effluent can minimize water consumption and reduce the effluent discharge volume. The beneficial uses of the treated effluent may include dust suppression, wheel washing and general cleaning. It is anticipated that only a small quantity of wastewater would be generated from the works areas. Any effluent discharge from the construction activities should be diverted away from the sea channel so as to avoid adverse water quality impact. Construction works should be programmed to minimize excavation works in rainy seasons (April to September). If excavation in soil could not be avoided in these months or at any time of year when rainstorms are likely, for the purpose of preventing soil erosion, temporary exposed slope surfaces should be covered e.g. by tarpaulin, and temporary access roads should be protected by crushed stone or gravel, as excavation proceeds. Intercepting channels should be provided (e.g. along the crest / edge of excavation) to prevent storm runoff from washing across exposed soil surfaces. Arrangements should always be in place to ensure that adequate surface protection measures can be safely carried out well before the arrival of a rainstorm.	Works areas / construction period	
Water Quality	Earthworks final surfaces should be well compacted and the subsequent permanent work or surface protection should be carried out immediately after the final surfaces are formed to prevent erosion caused by rainstorms. Appropriate drainage like intercepting channels should be provided where necessary. Measures should be taken to minimize the ingress of rainwater into trenches. If excavation of trenches in wet seasons is necessary, they should be dug and backfilled in short sections. Rainwater pumped out from trenches or foundation excavations	Works areas / construction period	

Environmental Resources Management

Hip Hing – Ngo Kee Joint Venture

Type of	Environmental Protection Measures	Location/ Timing	Status
Impact			
	should be discharged into storm drains via silt removal facilities. Open stockpiles of construction materials (e.g. aggregates, sand and fill material) on sites should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system. Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris from getting into the drainage system, and to prevent storm run-off from getting into foul sewers. Discharge of surface run-off into foul sewers must always be prevented in order not to unduly overload the foul sewerage system.		
Water Quality	Good site practices should be adopted to remove rubbish and litter from construction sites so as to prevent the rubbish and litter from spreading from the site area. It is recommended to clean the construction sites on a regular basis.	Works areas / construction period	√
Water Quality	Under normal circumstances, groundwater pumped out of wells, etc. for the lowering of ground water level in basement or foundation construction should be discharged into storm drains after the removal of silt in silt removal facilities.	Works areas / construction period	√ ·
Water Quality	Water used in ground boring and drilling or rock /soil anchoring should as far as practicable be re-circulated after sedimentation. When there is a need for final disposal, the wastewater should be discharged into storm drains via silt removal facilities.	Works areas / construction period	√ ·
Water Quality	Wastewater generated from the washing down of mixing trucks and drum mixers and similar equipment should whenever practicable be recycled. The discharge of wastewater should be kept to a minimum.	Works areas / construction period	√

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
Пірасі	To prevent pollution from wastewater overflow, the pump sump of any water recycling system should be provided with an online standby pump of adequate capacity and with automatic alternating devices. Under normal circumstances, surplus wastewater may be discharged into foul sewers after treatment in silt removal and pH adjustment facilities (to within the pH range of 6 to 10). Disposal of wastewater into storm drains will require more elaborate treatment.		
Water Quality	All vehicles and plant should be cleaned before they leave a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. A wheel washing bay should be provided at every site exit if practicable and wash-water should have sand and silt settled out or removed before discharging into storm drains. The section of construction road between the wheel washing bay and the public road should be paved with backfall to reduce vehicle tracking of soil and to prevent site run-off from entering public road drains.	Works areas / construction period	
Water Quality	Bentonite slurries used in diaphragm wall and bore-pile construction should be reconditioned and reused wherever practicable. If the disposal of a certain residual quantity cannot be avoided, the used slurry may be disposed of at the marine spoil grounds subject to obtaining a marine dumping licence from EPD on a case-by-case basis. If the used bentonite slurry is intended to be disposed of through the public drainage system, it should be treated to the respective effluent standards applicable to foul sewer, storm drains or the receiving waters as set out in the WPCO Technical Memorandum on Effluent Standards.	Works areas / construction period	

Type of	Environmental Protection Measures	Location/ Timing	Status
Impact	Water used in water testing to check leakage of structures and pipes should be reused for other purposes as far as practicable. Surplus unpolluted water could be discharged into storm drains. Sterilization is commonly accomplished by chlorination. Specific advice from EPD should be sought during the design stage of the works with regard to the disposal of the sterilizing water. The sterilizing water should be reused wherever practicable. Discharge of sterilization effluent should be properly pre-treated for compliance with TM/WPCO requirements, such as but not limited to total residual chlorine.	Works areas / construction period	
Water Quality	Effluent discharges from building construction and other construction site activities are subject to WPCO control. Before commencing any demolition works, all sewer and drainage connections should be sealed to prevent building debris, soil, sand etc. from entering public sewers/drains. Wastewater generated from building construction activities including concreting, plastering, internal decoration, cleaning of works and similar activities should not be discharged into the stormwater drainage system. If the wastewater is to be discharged into foul sewers, it should undergo the removal of settleable solids in a silt removal facility, and pH adjustment as necessary.	Works areas / construction period	
Water Quality	Acidic wastewater generated from acid cleaning, etching, pickling and similar activities should be neutralized to within the pH range of 6 to 10 before discharging into foul sewers. If there is no public foul sewer in the vicinity, the neutralized wastewater should be tinkered off site for disposal into foul sewers or treated to a standard acceptable to storm drains and the receiving waters.	Works areas / construction period	No acidic wastewater will be generated.
Water Quality	Wastewater collected from canteen kitchens, including that from basins, sinks and floor drains, should be discharged into foul	Works areas / construction period	√

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
	sewer via grease traps capable of providing at least 20 minutes retention during peak flow.		
	Drainage serving an open oil filling point should be connected to storm drains via a petrol interceptors with peak storm bypass.		
	Vehicle and plant servicing areas, vehicle wash bays and lubrication bays should as far as possible be located within roofed areas. The drainage in these covered areas should be connected to foul sewers via a petrol interceptor. Oil leakage or spillage should be contained and cleaned up immediately. Waste oil should be collected and stored for recycling or disposal in accordance with the Waste Disposal Ordinance.		
Water Quality	It is recommended to provide sufficient chemical toilets in the works areas. The toilet facilities should be more than 30 m from the seafront or any watercourse. A licensed waste collector should be deployed to clean the chemical toilets on a regular basis.	Works areas / construction period	1
	Notices should be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment. Regular environmental audit on the construction site can provide an effective control of any malpractices and can encourage continual improvement of environmental performance on site.		
Water Quality	Contractor must register as a chemical waste producer if chemical wastes would be produced from the construction activities. The Waste Disposal Ordinance (Cap 354) and its subsidiary regulations in particular the Waste Disposal (Chemical Waste) (General) Regulation should be observed and complied with for control of chemical wastes.	Works areas / construction period	√ ·
Water Quality	Any service shop and maintenance facilities should be located on hard standings within a bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles and	Works areas / construction period	√

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
impact	equipment involving activities with potential for leakage and spillage should only be undertaken within the areas appropriately equipped to control these discharges. Disposal of chemical wastes should be carried out in compliance with the Waste Disposal Ordinance. The Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes published under the Waste Disposal Ordinance details the requirements to deal with chemical wastes. General requirements are given as follows: • suitable containers should be used to hold the chemical wastes to avoid leakage or spillage during storage, handling and transport; • chemical waste containers should be suitably labelled, to notify and warn the personnel who are handling the wastes, to avoid accidents; and • storage area should be selected at a safe location on site and adequate space should be allocated to the storage area.		
Water Quality	To minimize the potential water quality impacts from the construction works located at or near the storm system or seafront, the following mitigation measures should be adopted: • the use of less or smaller construction plants may be specified to reduce the disturbance to the seabed; • temporary sewerage system should be designed to prevent wastewater from entering the storm system and sea; • temporary storage of materials (e.g. equipment, filling materials, chemicals and fuel) and temporary stockpile of construction materials should be located well away from any water courses during carrying out of the construction works; • stockpiling of construction materials and dusty materials should be covered and located away from any water courses; • construction debris and spoil should be covered up and/or disposed of as soon as possible to avoid being washed into the nearby water receivers; • construction activities, which generate large amount of	Works areas / construction period	Δ

Type of	Environmental Protection Measures	Location/ Timing	Status
Impact			
	 wastewater, should be carried out in a distance away from the waterfront, where practicable; mitigation measures to control site runoff from entering the nearby water environment should be implemented to minimize water quality impacts. Surface channels should be provided along the edge of the waterfront within the work sites to intercept the runoff; construction effluent, site run-off and sewage should be properly collected and/or treated; proper shoring may need to be erected in order to prevent soil/mud from slipping into the storm culvert/sea; and supervisory staff should be assigned to station on site to closely supervise and monitor the works. 		
Water Quality	If monitoring of the treated effluent quality from the Works Areas is required during the construction phase of the Project, the monitoring should be carried out in accordance with the WPCO license which is under the ambit of regional office (RO) of EPD. The contractor should submit detailed monitoring programme to EPD for approval before commencement of the construction activities.	Works areas / construction period	√
Water Quality	Monitoring of the water quality at the seawater intakes inside the ALE sea channel should be conducted.	ALE sea channel / Before construction period and during installation and removal of temporary marine piles.	√
Water Quality	All barges should be fitted with tight seals to their bottom opening to prevent leakage of materials. The decks of all vessels should be kept tidy and free of oil or other substances that might be accidentally or otherwise washed overboard. Loading of barges should be controlled to prevent splashing of materials to the surrounding environment and barges should under no circumstances be filled to a level which would cause overflowing of material or sediment laden water during loading and transportation. All barges should maintain adequate clearance between vessels and the seabed at all states of the tide and	Works areas / construction period	No barge will be required for the project.

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
mpact	should operate at a reduced speeds to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash.		
Water Quality	Connection of sewage generated from the ALE will be connected to the existing public sewer. For handling, treatment and disposal of other operational stage effluent, the practices outlined in ProPECC PN 5/93 should be adopted where applicable. Consensus from DSD should be sought on technical details of the drainage and sewerage proposals.	Project site / design and construction period	Relevant works have yet to be commenced / completed
Construction	Phase	<u> </u>	<u> </u>
Waste	 Recommendations for good site practices during the construction activities include: nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all Wastes generated at the site; training of site personnel in proper waste management and chemical handling procedures; provision of sufficient waste disposal points and regular collection of waste; appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers; and regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors. 	Work site / during the construction period	
Waste	 Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include: sorting of demolition debris and excavated materials from demolition works to recover reusable/ recyclable portions (ie soil, broken concrete, metal, etc); segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or 	Work site / during the construction period	√ ·

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
Пірасі	recycling of materials and their proper disposal; encourage collection of aluminum cans by individual collectors by providing separate labeled bins to enable this waste to be segregated from other general refuse generated by the work force; proper storage and site practices to minimize the potential for damage to contamination of construction materials; and plan and stock construction materials carefully to minimize amount of waste generated and avoid unnecessary generation of waste.		
Waste	General Refuse General refuse should be stored in enclosed bins or compaction units separate from C&D material. A reputable waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D material. Preferably an enclosed and covered area should be provided to reduce the occurrence of 'wind blown' light material.	Work site / during the construction period	V
Waste	 Construction and Demolition Material In order to minimize the impact resulting from collection and transportation of C&D material for off-site disposal, the C&D material from the following construction activities should be reused and recycled as far as possible to reduce the net amount of C&D material generated from the Project; a Waste Management Plan should be prepared in accordance with ETWB TCW No. 19/2005; a recording system for the amount of wastes generated, recycled and disposed (including the disposal sites) should be proposed; in order to monitor the disposal of C&D and solid wastes at public filling facilities and landfills and to control fly-tipping, a trip-ticket system should be included. One may make 	Work site / during the construction period	

Type of	Environmental Protection Measures	Location/ Timing	Status
Impact			
	 reference to ETWB TCW No.31/2004 for details; the large amount of C&D waste generated is mainly due to the piling works of large diameter piles' excavation at the sea front site. If however marine sediment is found during pile excavation, the handling and disposal of such wastes will be managed in accordance with the requirements of the DASO and the current ETWB Tech. Circular no. 34/2002. 		
Waste	Chemical Wastes If chemical wastes are produced at the construction site, the Contractor would be required to register with the EPD as a Chemical Waste Producer and to follow the guidelines stated in the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Good quality containers compatible with the chemical wastes should be used, and incompatible chemicals should be stored separately. Appropriate labels should be securely attached on each chemical waste container Indicating the corresponding chemical characteristics of the chemical waste, such as explosives, flammable, oxidizing, irritant, toxic, harmful, corrosive, etc. The Contractor shall use a licensed collector to transport and dispose of the chemical wastes, to either the Chemical Waste Treatment Centre at Tsing Yi, or another licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation. For this Project, the amount of chemical wastes produced would be small.	Work site / during the construction period	
Operational Ph	ase		
Waste	General Refuse Similar to the existing situation, the main waste type generated during the operation stage of the Project will be general refuse generated by the public and staff. These include waste paper, food wrappings and beverage containers. The disposal of future waste arisings generated at the HKCEC would follow the existing handling and disposal arrangement. Provided proper	Work site / during the construction period	Measures not required until commencement of operational phase

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
	arrangements are made with licensed contractors to collect the generated waste, adverse waste-related impact is not anticipated during the operation stage. It is expected that there will be a 5-7% increase ratio in the future operations.		
Construction Ph	i ase		
Landscape & Visual	Due consideration of appearance and view to 'hide' the construction through careful use of: (a) hoarding design; (b) temporary partition walls; (c) screen for hotels; and (d) temporary footbridge.	Entire works area and adjacent hotels	√
Landscape & Visual	Due consideration to protect existing trees.	Entire works area	√
Landscape & Visual	Due consideration of visual impact from construction activities: (a) construction workers access to reach construction areas without passing through hotels and existing HKCEC; and (b) construction light.	Entire works area	√ ·
Operational Pha	l se		
Landscape & Visual	Sensitive soft and hard landscape design for exposed rooftop garden and shady covered area underneath the Atrium Link Extension. Maximize greening opportunity via various in-situ planting and potted planting to achieve 30% of the roof area as planting area for the project.	Roof top and area underneath the Atrium Link Extension	Mitigation measures to be implemented during operational phase
Landscape & Visual	Sensitive building architecture to visually reduce the bulkiness of the building structure, to visually break down the scale of the facades, and to create rooftops for greening opportunities.	Building of the Atrium Link Extension	Mitigation measures to be implemented during operational phase
Landscape & Visual	Appearance and view considerations: (a) avoid industrial feel of building service elements;	Entire proposed works and adjacent hotels	Mitigation measures to be implemented during operational phase

Type of Impact	Environmental Protection Measures	Location/ Timing	Status
	(b) interior visual screens for lower levels of the hotels; (c) consider relocation of facilities of interior spaces of hotels; and (d) careful lighting design at roofs and for building façade to avoid night-time glare.		
Landscape & Visual	Transplanting of trees to adjacent locations.	Convention Avenue	Mitigation measures to be implemented during operational phase
Landscape & Visual	Reinstatement of existing waterfront public footpaths along Convention Avenue and the existing open spaces near Fenwick Street.	Convention Avenue and Fenwick Street	Mitigation measures to be implemented during operational phase

Remark:

- √ Compliance of Mitigation Measures
- Compliance of Mitigation but need improvement
- x Non-compliance of Mitigation Measures
- Non-compliance of Mitigation Measures but rectified by Hip Hing Ngo Kee JV
- Δ Deficiency of Mitigation Measures but rectified by Hip Hing Ngo Kee JV

Annex L

Waste Flow Table

HKCEC – Expansion Project

Name of Project Proponent: HKTDC **Project Commencement Date: 1 Aug 2006 Construction Completion Date: March 2009**

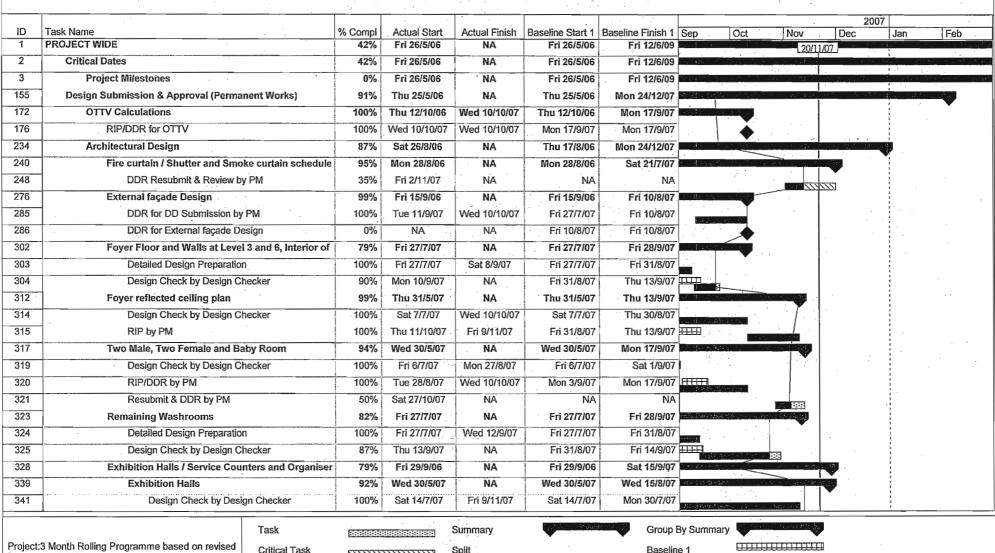
Monthly Summary Waste Flow Table for Year 2007

Year	Acti	ual Quantities of	inert C&D M	f aterials (in 10) ³ Kg) ⁽¹⁾⁽²⁾	Actual Quantities of C&D Wastes (in 10 ³ Kg) ⁽⁴⁾											
	Total Quantity Generated	Broken Concrete (3)	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Demolition	Stee	l Materials Demolition	of existing	Paper/cardboard		Paper/cardboard packaging			al Waste L)	General refuse	Other waste (6)
	Generated		Contract	(3)		Atriu	m Link	working	platform	-		, ,					
	(a)	(b)	(c)	(d)	(a)-(b)-(c)-(d)	Recycle	Disposal	Recycle	Disposal	Recycle	Disposal	Recycle	Disposal	Disposal	Disposal		
January	924	462	0.5	0	462	90 (5)	0	0	0	0.2	0.05	0	0	60	80		
February	814	110	0.5	0	704	5 (5)	0	0	0	0.2	0.07	0	288	66	55		
March	583	66	0.5	0	517	0	0	0	0	0	0.05	0	0	77	33		
April	1034	165	0.5	0	867	0	0	0	0	0.4	0.05	0	0	55	44		
May	275.5	33	0.5	0	242	10 (5)	0	0	0	0.4	0.04	0	0	55	154		
June	1654	0	0	0	1654	50	0	0	0	0.5	0.03	0	0	80	150		
July	614	0	0.5	0	613.5	60	0	0	0	0.5	0.04	0	0	85	298		
August	944	0	0.5	0	943.5	1400	0	0	0	0.6	0.01	0	0	70	380		
Sep	310	0	0.5	0	309.5	514	0	0	0	0.5	0.02	0	0	50	245		
October	406.5	0	0.5	0	406	100	0	0	0	0.5	0.01	0	0	40	38		
November	1016.5	0	0.5	0	1016	20	0	0	0	0.5	0.02	0	0	45	150		
December	297	0	0.5	0	296.5	0.5	0	0	0	0.5	0.02	0	0	25	67		
Total	8872.5	836	5.5	0	8031	2249.5	0	0	0	4.8	0.41	0	288	708	1694		

Note:

⁽¹⁾ Inert C&D materials include bricks, concrete, building debris, rubble and excavated soil.
(2) Inert C&D material mainly generated from demolition of atrium link.

Broken concrete fro recycling into aggregates.


(4) C&D wastes include steel materials generated from demolition, paper / cardboard packaging waste, chemical waste and other wastes such as general refuse. Wastes other than general refuse will be disposed of at Tsueng Kwan O Area 137 temporary construction waste sorting facility.

⁽⁵⁾ Waste from demolition of steel structure at existing Atrium Link of HKCEC (Phase 2).

⁽⁶⁾ Wastes include materials associated with additional and alternation (A&A) works of HKCEC (e.g. demolition of E&M equipment and finishing materials, bamboo scaffolding) and piling works.

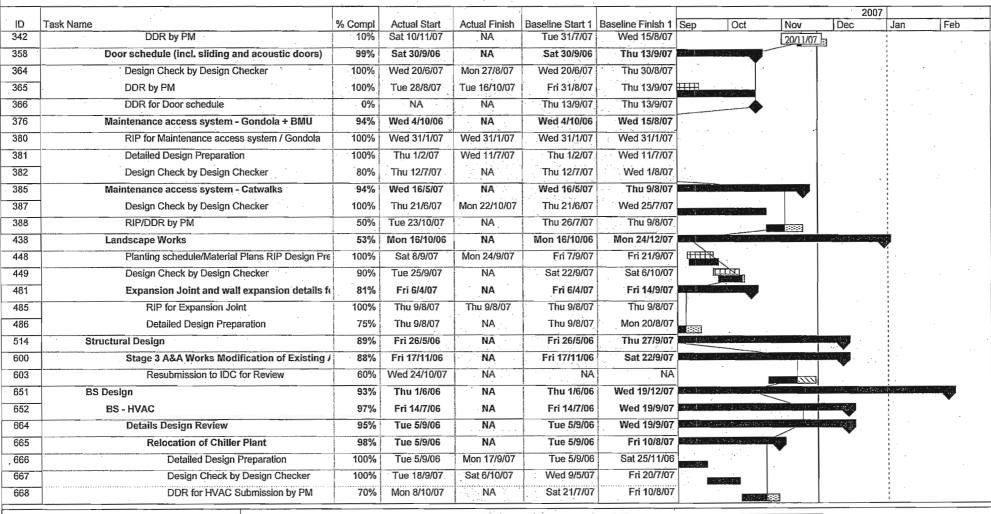
Annex M

Construction Programme for Next Three Months

Project:3 Month Rolling Programme based on revised Date: 20/11/2007

Critical Task Progress

Milestone


THI THINK THE

Split External Tasks

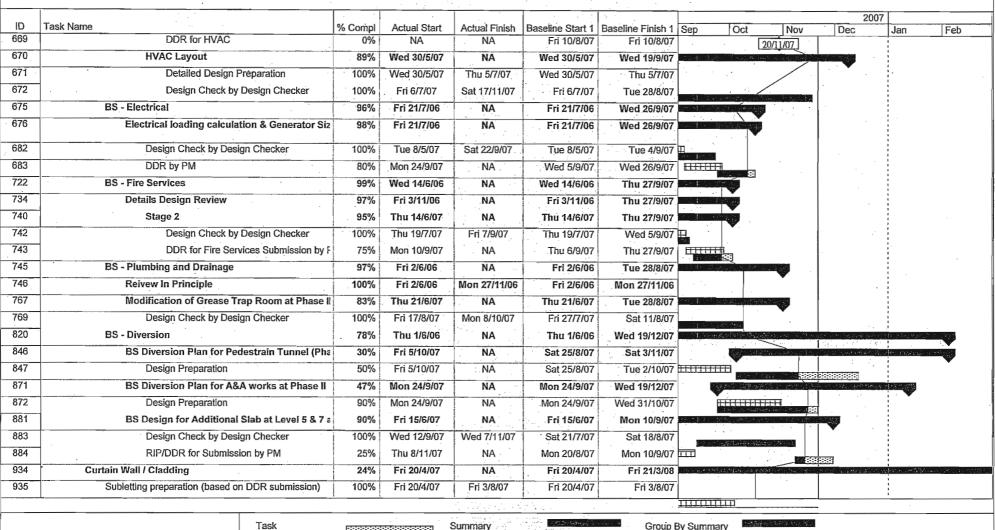
Project Summary

111111111111111111

Page 1

Project:3 Month Rolling Programme based on revised Date: 20/11/2007

Task
Critical Task
Progress
Milestone


Summary
Split

Split
External Tasks
Project Summary

Group By Summary

Baseline 1

Page 2

Project:3 Month Rolling Programme based on revised Date: 20/11/2007

Critical Task Progress

Milestone

ப்பீடிப்பாப்ப

Group By Summary

Baseline 1

Page 3

External Tasks

Project Summary

ID	Task Name	% Compl	Actual Start	Actual Finish	Baseline Start 1	Baseline Finish 1	Sen	Oct	Nov	Dec 20	Jan	Feb
942	M & E Long - Lead Items	6%	Sat 16/6/07	NA	Sat 16/6/07	Mon 15/9/08		74.54/5	Witnessign.	44 4 4		7-
943	HVAC Equipment Procurement	25%	Wed 15/8/07	NA	Fri 21/9/07	Sat 14/6/08	FE				minnin	HHHHH
144	Electrical Equipment	15%	Thu 1/11/07	NA	Thu 27/9/07	Sat 31/5/08				e control		
50	Bearing for Steel Truss	82%	Thu 12/10/06	NA	Thu 12/10/06	Wed 5/9/07	sid on t	and the	7 V 10 7 1			
52	Bearing Procument and Delivery	70%	Fri 20/10/06	NA	Fri 20/10/06	Wed 5/9/07		. `			enim.	
84	CSWD / CBWD	8%	Fri 14/9/07	NA	Wed 15/8/07	Sat 27/9/08		and the second	in the second	Congression and a		
85	CSW/CBW Submission/Comment/Re-submit/Approval	22%	Fri 14/9/07	NA	Wed 15/8/07	Mon 18/8/08					, minne	HHHHH
88	Site Works	24%	Mon 19/6/06	NA	Mon 19/6/06	Fri 12/6/09	Ace Luiza	Testa de Percono	·			1 6 7 1
14	A & A Works to Existing HKCEC Phase 1 and 2	44%	Wed 26/7/06	NA	Wed 26/7/06	Fri 10/10/08	May IV 19	100 May 100 Ma		1 147 7		
18	HK CEC Phase 1 - New Atrium Link Connection	14%	Mon 30/4/07	NA	Mon 30/4/07	Fri 10/10/08	ANTHA A	4 7 15825 F 11.	1.250	25 050000	100	, our destruction
19	Erect Internal Hoarding (G.L. 25/A1-A)	100%	Mon 30/4/07	Mon 18/6/07	Mon 30/4/07	Mon 18/6/07				٠.		
)20	Remove Existing Internal Finishes & Feature	70%	Fri 22/6/07	NA :	Fri 22/6/07	Tue 14/8/07						
70	Demolition of Existing Artrium Link	92%	Wed 14/3/07	NA.	Wed 14/3/07	Wed 28/5/08	2011 02	the Donaside to the	<u> Signal and Ra</u>	Tan (as a fact)		Markey Co.
76	Demolition of Existing Atrium Link	90%	Wed 14/3/07	NA	Wed 14/3/07	Wed 28/5/08		ijos kultikijais.	e as espending	ACMORA NELSON	- 1024 to	M, 994 1 454 3
88	Remove Top Portion of Existing Eastern Façade Tru:	100%	Fri 7/9/07	Sat 29/9/07	Tue 4/9/07	Wed 19/9/07						
90	New Atrium Link Extension	18%	Tue 27/6/06	NA	Tue 27/6/06	Fri 12/6/09	10.00		egEljeres ka		rij postave	PERSONAL TO
52	Mini-piles near Grid 16/Al-A, 16/D-E and	99%	Fri 22/6/07	NA	Fri 22/6/07	Fri 5/10/07	14 14 14 14 14 14 14 14 14 14 14 14 14 1					
53	Mini-pile construction (102 nos)	100%	Fri 22/6/07	Sat 6/10/07	Fri 22/6/07	Sat 15/9/07	10000 to 1000 to 1000 to	2000 C				
54	Completion Report to IDC	100%	Sat 6/10/07	Sat 6/10/07	Mon 17/9/07	Mon 17/9/07	8					
55	Load Test for the Selected Piles (2 nos	100%	Mon 8/10/07	Thu 18/10/07	Tue 18/9/07	Fri 5/10/07			-			
68	Substructure Construction - Gride 16 & 17 (Minipi	3%	Fri 19/10/07	NA .	Sat 6/10/07	Wed 31/10/07			Section as well			
72	Pile Cap Construction /Tie Beams / Ground	5%	Mon 5/11/07	NA	Sat 6/10/07	Wed 31/10/07						
73	Superstructure	. 36%	Thu 30/11/06	NA .	Thu 30/11/06	Thu 25/9/08	ES-Shawiri	Control of the Contro	to the topological	er have or heart in the		
174	Columns to Steel Truss - Grid 17	98%	Mon 4/12/06	NA	Mon 4/12/06		1987 Approxim	garan ayang da sala	odysekanowa.	Action of the second	Se de una la lega)
175	Column A1/16	100%	Mon 4/12/06	Wed 27/12/06	Mon 4/12/06	1						
176	R.C Mega Columns for A1/16(46m3)	100%	Mon 4/12/06	Wed 20/12/06	Mon 4/12/06	j						
177	Bearing Installation at Column A1/16	100%	Fri 22/12/06	Wed 27/12/06	Fri 22/12/06	Wed 27/12/06						-
178	Column E/17	88%	Fri 5/10/07	NA	Thu 8/11/07	Tue 4/12/07		A company	M. The contribution of the		and a color	<u>, </u>
	Task 3 Month Rolling Programme based on revised 0/11/2007 Critical Task			Summary Split		Baselir	By Summa	•		l I		

Task Summary Group By Summary

Critical Task Progress External Tasks

Milestone Project Summary

Page 4

										200	07	
ID,.		% Compl	Actual Start	Actual Finish		Baseline Finish 1	Sep	Oct	Nov	Dec	Jan	Feb
179	R.C Mega Columns for E/17(91m3)	100%	Fri 5/10/07	Wed 31/10/07	Thu 8/11/07	Fri 30/11/07					20/11/07	
180	Bearing Installation at Column E/17	0%	NA	NA	Sat 1/12/07	Tue 4/12/07	. ,	: .	1	Ħ	: 🖫	
181	Column A/17	97%	Mon 21/5/07	NA ·	Mon 21/5/07	Sat 8/9/07	<u>, o</u> dradsc	away ke was		ayil valasistasi	a si area san	
182	R.C Mega Columns for A/17(310m3)	100%	Mon 21/5/07	Tue 18/9/07	Mon 21/5/07	Fri 31/8/07	755 N 55 N				1	
183	Bearing Installation at Column A/17	0%	NA	NA	Wed 5/9/07	Sat 8/9/07	8				,	
184	Column B/17	100%	Tue 29/5/07	Tue 23/10/07	Tue 29/5/07	Wed 19/9/07	20 mg 10 20 20 20 20 20 20 20 20 20 20 20 20 20	rviy or s			23	
1185	R.C Mega Columns for B/17(420m3)	100%	Tue 29/5/07	Thu 11/10/07	Tue 29/5/07	Sat 15/9/07	HIII.	201000000			1	
1186	Bearing Installation at Column B/17	100%	Tue 23/10/07	Tue 23/10/07	Mon 17/9/07	Wed 19/9/07						
1187	Column C/17	100%	Sat 5/5/07	Tue 18/9/07	Sat 5/5/07	Sat 8/9/07			•	7	t :	,
1188	R.C Mega Columns for C/17(467m3)	100%	Sat 5/5/07	Wed 11/7/07	Sat 5/5/07	Wed 11/7/07	Y					
1189	Bearing Installation at Column C/17	100%	Tue 18/9/07	Tue 18/9/07	Wed 5/9/07	Sat 8/9/07	в.					
1190	Column D/17	94%	Fri 18/5/07	NA	Fri 18/5/07	Sat 8/9/07	er outs with	##9.44 ^{5,4} 65	Page a de gra de filosofica de	allo salamanigi		
1191	R.C Mega Columns for D/17(314m3)	100%	Fri 18/5/07	Wed 18/7/07	Fri 18/5/07	Wed 18/7/07						
1192	Bearing Installation at Column D/17	0%	NA	NA .	Wed 5/9/07	Sat 8/9/07	8				;	
1193	Columns to Steel Truss - Grid 24	99%	Thu 14/12/06	NA	Thu 14/12/06	Sat 8/9/07	4 (21 py.66)	18() (25a / 30z)	a sapangan ang	<u>Mari</u> kum da kandina		
1194	Column A1/24	100%	Thu 14/12/06	Tue 9/1/07	Thu 14/12/06	Tue 9/1/07	1.					
1195	R.C. Mega Columns for A1/24(52m3)	100%	Thu 14/12/06	Sat 6/1/07	Thu 14/12/06	Sat 6/1/07						
1196	Bearing Installation at Column A1/24	100%	Fri 5/1/07	Tue 9/1/07	Fri 5/1/07	Tue 9/1/07						
1197	Column A1a/24	100%	Fri 2/2/07	Thu 6/9/07	Fri 2/2/07	Sat 8/9/07	17.8				1 1 1	
1198	R.C. Mega Columns for A1a/24 (+3.8 to +1-	100%	Fri 2/2/07	Fri 9/2/07	Fri 2/2/07	Fri 9/2/07	•					
1199	R.C. Mega Columns for A1a/24 (+14.4 to +	100%	Fri 2/2/07	Wed 4/4/07	Fri 2/2/07	Wed 4/4/07					1	
1200	Bearing Installation at Column A1a/24	100%	Thu 6/9/07	Thu 6/9/07	Wed 5/9/07	Sat 8/9/07	C				t t	
1201	Column Ba/24	100%	Mon 12/3/07	Fri 21/9/07	Mon 12/3/07	Sat 8/9/07	Topic November	3				
1202	R.C. Mega Columns for Ba/24 (316m3)	100%	Mon 12/3/07	Sat 26/5/07	Mon 12/3/07	Sat 26/5/07	•			1 :		
1203	Bearing Installation at Column Ba/24	100%	Fri 21/9/07	Fri 21/9/07	Wed 5/9/07	Sat 8/9/07					1	
1204	Columns C/24	100%	Tue 8/5/07	Sat 6/10/07	Tue 8/5/07	Sat 8/9/07		. 4 m . 5 . 5 . 5 . 6 . 5 . 6 . 6 . 6 . 6 . 6				
1205	R.C. Mega Columns for C/24(438m3)	100%	Tue 8/5/07	Mon 16/7/07	Tue 8/5/07	Mon 16/7/07	1.5		•		1 1	
1206	Bearing Installation at Column C/24	100%	Sat 6/10/07	Sat 6/10/07	Wed 5/9/07	Sat 8/9/07	8					

Group By Summary Task Summary Project:3 Month Rolling Programme based on revised Date: 20/11/2007 Critical Task Split Baseline 1 The Chilippen Progress External Tasks Milestone Project Summary Page 5

Hong Kong Convention and Exhibition Centre Expansion Project

3 Month Rolling Programme base		

ID	Task Name	0/ Compi	Actual Start	Actual Finish	Descline Stort 1	Decelies Finish 1	0	104	New	200		F=b
1207	Columns D/24	% Compi	Actual Start Wed 16/5/07	NA NA	Wed 16/5/07	Baseline Finish 1 Sat 8/9/07	Sep	Oct	Nov	Dec	Jan	Feb
1208					į.						20/11/07	
	R.C. Mega Columns for D/24(331m3)	100%	Wed 16/5/07	Fri 13/7/07	Wed 16/5/07	Fri 13/7/07						
1209	Bearing Installation at Column D/24	0%	NA	NA	Wed 5/9/07	Sat 8/9/07	B	•		1	Ø	
1215	Steel Roof Trusses and Superstructure	22%	Thu 30/11/06	NA.	Thu 30/11/06	Thu 25/9/08	ALCONO V		EL CALL DAY COL	aga ya wangan	izakin di sasa	ing e Santi j
1278	Temporary Works for Sliding & Heavy Lifting	31%	Sat 8/9/07	NA.	Sat 8/9/07	Wed 19/12/07		2		A Administration	خصاب	Children
1279	Heavy Lifting & Sliding System Installation	35%	Sat 8/9/07	NA	Sat 8/9/07	Mon 22/10/07			1			,,,,,,,,,
1281	Transfer Truss for Grid 24/A-B	71%	Fri 14/9/07	NA	Fri 14/9/07	Mon 17/12/07		CONTRACTOR	ment sylving 13	polynomia (Mare en 1915)	Parket Comment	10,7 (c)
1282	Delivery of Materials	100%	Fri 14/9/07	Tue 18/9/07	Fri 14/9/07	Wed 26/9/07						
1283	Assembly Steel Transfer Truss on Column /	100%	Mon 17/9/07	Wed 31/10/07	Mon 17/9/07	Mon 5/11/07						
1284	Connection of Roof Truss A	0%	NA	NA	Tue 11/12/07	Mon 17/12/07						
1285	Connection to Roof Truss B	0%	NA	NA	Tue 11/12/07	Mon 17/12/07			· · · · ·	III		
1286	Roof Truss A	24%	Sun 14/10/07	NA	Wed 10/10/07	Wed 20/2/08	1		Carlott (Carlotte (Carlotte)	on, see the enders WSW	23 - 3 0 seed - 20	10 May 10
1287	Delivery of Materials	100%	Sun 14/10/07	Sat 3/11/07	Wed 10/10/07	Sat 20/10/07						
1288	Assembly of Steel Roof Truss A on Site	80%	Mon 15/10/07	NA .	Mon 15/10/07	Thu 8/11/07						
1289	Erect Temp Bracing between Roof Truss A	0%	NA NA	NA	Fri 9/11/07	Wed 14/11/07			桓			
1295	Roof Truss B	4%	Wed 14/11/07	NA	Wed 10/10/07	Wed 20/2/08			•	i karan sagara	Sala Maja	Jan Ber
1296	Delivery of Materials	30%	Wed 14/11/07	NA	Wed 10/10/07	Sat 20/10/07		Ш	a ·			
1297	Assembly of Steel Roof Truss B on Site	5%	Mon 19/11/07	NA	Mon 15/10/07	Thu 8/11/07					:	
1624	Transformer Installation at Level 1 Phase 2	39%	Fri 1/6/07	- NA	Fri 1/6/07	Mon 14/7/08	Polyportis Same	Tom Spillarie for	g Saud Aleksayla	Spirit Spirit and a six of	<u> </u>	的人物法學
1629	Consent to A & A Works	100%	Fri 12/10/07	Frì 12/10/07	NA NA	NA					# " #	
1630	A&A Works for Transformer room	55%	Mon 15/10/07	NA NA	Wed 1/8/07	Fri 30/11/07	THE				- 1	

Project:3 Month Rolling Programme based on revised Date: 20/11/2007	Task Critical Task	Summary Split	Group By Summary Baseline 1	
	Progress Milestone	External Tasks Project Summary		
		Page 6		

Hip Hing - Ngo Kee Joint Venture HKCEC - Expansion Project

PILE CAP AND COLUMN CONSTRUCTION FOR GRID 17 & 24 / A - E

													_							
ID	Task Name		Duration	Start	Finish				March 2007	April 2007 25/3 15/4	May 2007	June 2 27/5	2007 Ju	aly 2007 8/7	August 29/7		9/9	October 2 30/9		_
1	Pile Cap & Column Construction		212 days	Wed 21/2/07	Wed 31/10/07	31/12	21/1	11/2	1500 milit for	25/3 15/4	0/5	2115	1//6	· 8//	2911	19/8	919		21/10	11/1
2	For Grid Ba/24		80 days	Wcd 21/2/07	Sat 26/5/07	1:			angan sa	age training for Speak	in a second	9 .			1	:			Ť	;
3	Pile Cap Ba/24		16 days	Wed 21/2/07	Sat 10/3/07	1	1.	1					:		:	:		: :	:	1
9	Column Be/24	***************************************	64 days	Mon 12/3/07	Sat 26/5/07	-	i		· Service	4 4 3 1 4 5 1 4 6 4 6	Or of the second	J			:	:		,		
50	For Grid C/24		98 days	Tue 20/3/07	Mon 16/7/07	1				igna en la company	in the same		دونودي	100	:	:			:	
51	Underground Transfer Section C/24		41 days	Tue 20/3/07	Mon 7/5/07	-			: 0	other processing and a single					1	: .		1.	:	1
53	Column C/24		57 days	Tue 8/5/07	Mon 16/7/07						· Comment	entrolling	en en en en en en	100	;	:				;
104	For Grid D/24	i maria dalam da manda da mand	96 days	Tue 20/3/07	Fri 13/7/07	1	1,			energe est il thouse en	en 11 en 150 en 165 gant	androven	< . <u> </u>	4	ľ	:		:	:	:
105	Underground Transfer Section D/24	AMARA MAN	48 days	Tue 20/3/07	Tue 15/5/07	7:		j		gipanteria, en en en en 1957	The state of the s				i	:			:	- 1.
107	Column D/24		48 days	Wed 16/5/07	Fri 13/7/07	1				:	- I CONTROL OF THE PERSON NAMED IN COLUMN	<u>ediarenaejni</u>	<u> </u>	400		:		1	:	
148	For Grid A/17		135 days	Tue 10/4/07	Tue 18/9/07			ì			Course Har 1888	See Branch	4.35.	ويواده بالمجا	i symptom an	Control San New York	· Trains		:	:
149	Pile Cap A/17		10 days	Tue 10/4/07	Fri 20/4/07			į			:	:			}	:			:	;
156	A/17 A&A Works at Atrium Link		24 days	Sat 21/4/07	Sat 19/5/07]:	:			2 to an		-	:		1	:		1	:	• ;
158	Column A/17	: .	101 days	Mon 21/5/07	Tue 18/9/07	-		į		:	100	e , i Seet	we the	11.12	التنايية تناثر	9.000	-			į
206	For Grid B/17	1.1.	161 days	Моп 2/4/07	Thu 11/10/07		1	!		Charles to the party server		Tall Value	and the fact of the		3 14 24 8 27 1 2	12.31.161	Ongthe gold the transport of	1000	:	;
207	Pile Cap B/17		23 days	Mon 2/4/07	Fri 27/4/07]:	- ;			Company of the Control of the Contro	ļ		:			:			:	;
220	B/17 A&A Works at Atrium Link		24 days	Sat 28/4/07	Mon 28/5/07]:	1	:			and a great thought as	4	:		:	:		:	:	
222	Column B/17		114 days	Tue 29/5/07	Thu 11/10/07	7:	į					Mississi	er jalistyren	myrey on	o kolonia salah kalendari T	iga itti o kadagi igalis	er professorial also f	a to place a distribution		
289	For Grid C/17	3.1	71 days	Mon 16/4/07	Wed 11/7/07	Ė	:			September 1	grafiana Merodensky f	gyrösi i		7	:	:		:	:	:
290	Pile Cap C/17		16 days	Mon 16/4/07	Fri 4/5/07		i	;		· Water	100	: 11 A.			;	:		1	:	10
300	Column C/17		55 days	Sat 5/5/07	Wed 11/7/07	<u>:</u>	:				The second second	- Kultanosa g	- Santagaran A	*				:	:	,
353	For Grid D/17		67 days	Fri 27/4/07	Wed 18/7/07	7:					State Section Section 1	er destrues.	· Arten Sugariore	and the	-	• . :		1	:	
354	Pile Cap D/17		17 days	Fri 27/4/07	Thu 17/5/07	ŀ				. 👽	Article Street		· :		1	:				
364	Column D/17		50 days	Fri 18/5/07	Wed 18/7/07]: '	;		,	:	100	K. Berge	er in the second	describer.	;	:		;	:	3
400	For Grid E/17		142 days	Tue 15/5/07	Wed 31/10/07	Ŀ	;	1		:		erate engly	V 22 7 20 10 .	1. W.M.	<u>artina erres</u> T		21 77.117.	200 (100) 1		
401	Pile Cap E/17		1 day	Tue 15/5/07	Tue 15/5/07	:	;	1		: ,		1	:		:	:		:		
403	Column E/17	. 结 体 4 4 7 7 7 7 7	15 days	Mon 15/10/07	Wed 31/10/07	<u> </u>		1		:	:	:			;	:		- Care	To the last	

Annex N

Laboratory Report of Water Quality Sampling

ENVIRO LABS LIMITED

環境化驗有限公司

TEST REPORT

JOB NO. : 712093

DATE OF ISSUE : 28 December 2007 PAGE : 1 of 1

1. Customer

Hip Hing - Ngo Kee Joint Venture

5/F, 38 Sheung On Street, Chai Wan, Hong Kong

Attn.: Mr. Ken Leung

2. Sample Identification

Sample Description : 2 batches of water sample said to be wastewater was received in cool condition

Quantity of Sample : 2 x 1L in plastic bottles (for TSS) and 2 x 250mL in plastic bottles (for COD)

Sampling : Conducted by the staff of the Enviro Labs Ltd.

Sampling Point : Outlet of Wastewater Treatment Facility (HKCEC Expansion Project, H200605)

Preservation : Stored under refrigerated condition, COD: conc. H₂SO₄ was added to pH < 2

 Sampling Date
 : 13 Dec 2007

 Received Date
 : 13 Dec 2007

 Testing Period
 : 13 – 28 Dec 2007

3. Test Method

Para	ameter	Reference Method	
(i)	рН	APHA¹ 20e 4500 H³B	
(ii)	Total Suspended Solids (TSS) Dried at 103-105°C	APHA ¹ 17e 2540 D	
(iii)	Chemical Oxygen Demand (COD)	APHA ¹ 20e 5220 C	

^{1.} APHA Standard Methods for the Examination of Water and Wastewater

4. Test Result*

Label marked by customer	Test Parameter	Sample No.	Test Result	Discharge Limit **	Unit
HKCEC Expansion	pH at 22 °C	712093-1	8.3	6 – 9	
Project H200605 WT-21	TSS	712093-1	< 7	≤30	mg/L
VV 1-21	COD	712093-2	< 50	≤80	mgO _z /L
HVCEC Evnancion	pH at 24 °C	712093-3	8.1	6 – 9	
HKCEC Expansion Project H200605	TSS	712093-3	2.9	≤30	mg/L
WT-25	COD	712093-4	< 50	≤80	mgO₂/L

^{*} Test results relate only to the items received.

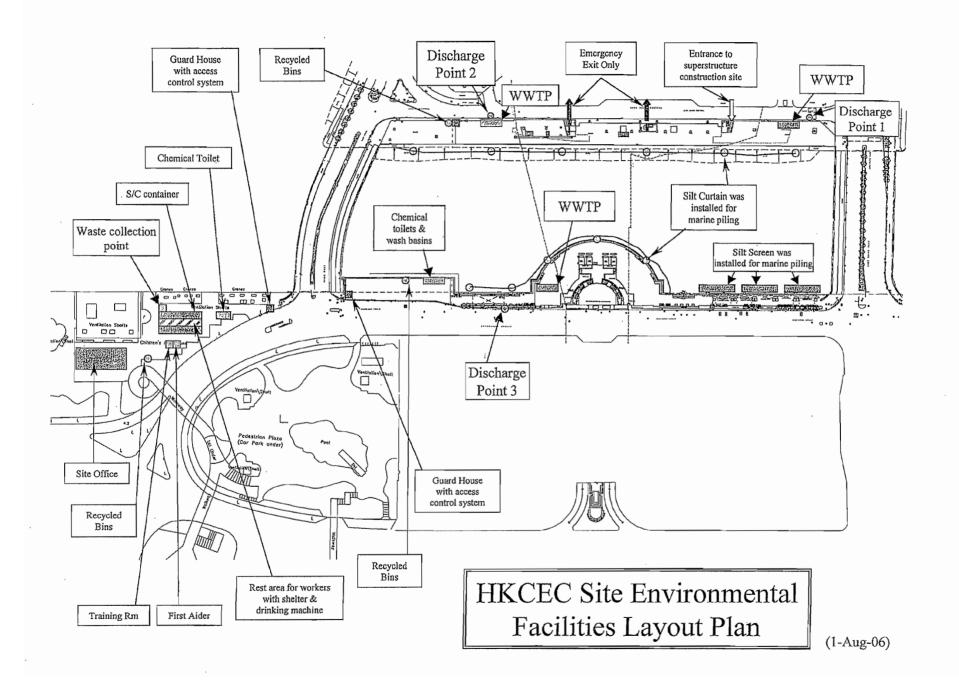
--- END of REPORT ----

APPROVED SIGNATORY:

Kenneth Kar Kin LAM (Laboratory Manager)

P.01

Rm 611-612, Hong Leong Plaza, 33 Lok Yip Road,


Fanling, N.T., Hong Kong

Tel: (852) 2676 2983

Fax: (852) 2676 2860 e-mail: ell@envirolab

http://www.envirolabs.com.hk e-mail: ell@envirolabs.com.hk

Information provided by the customer. (It is not a test result, information for reference only).

