Consulting 安醚工程顧問有限公司 香港選仔 皇后大城東183號 合和中心47億 話: (852) 2911 2233 郷文傳英・(852) 2805 5028 電子郵節 hyder@hyder.com.hk Jib www.hyderconsulting.com Hyder Consulting Limited 47/F Hopewell Centre. 183 Queen's Road East, Wan Chai, Hong Kong Tel: (852) 2911 2233 Fax: (852) 2805 5028 Email: hyder@hyder.com.hk Website: www.hyderconsulting.com Hyder Consulting Limited is incorporated in Hong Kong with limited liability. GOI Number 126012 12 April 2006 Architectural Services Department Queensway Government Offices 66 Queensway Hong Kong BY POST & FAX (2524 8194) Your Ref: Our 1148-06/E06-20476 Ref: For attention of: Mr Michael Mak Dear Michael Reprovisioning of Diamond Hill Crematorium Monthly EM&A Report for March 2006 (Revision 0) We refer to the email of 10 April 2006, which was copied to us, with the enclosure of the draft monthly EM&A Report for March 2006 (Revision 0) and subsequent email of 12 April 2006 with the enclosure of the revised draft report from MEMCL. We have no further comment and hereby verified the captioned EM&A report. Should you have any queries, please do not hesitate to contact the undersigned on 2911 2719 or Adi Lee on 2911 2729. Yours sincerely Coleman Ng Independent Environmental Checker HYDER CONSULTING LIMITED MEMCL -- Mr. Y. T. Tang/Ms Florence Yuen CRCCL -- Mr. Eric To (Fax: 2891 0305) (Fax: 2827 2921) CC | , | | |---|--| #### **TABLE OF CONTENTS** | EXEC | CUTIVE SUMMARYIII | |------|---| | 1. | INTRODUCTION1 | | | Background | | 2. | AIR QUALITY2 | | | Monitoring Requirements | | 3. | NOISE 5 | | | Monitoring Requirements | | 4. | ENVIRONMENTAL SITE INSPECTION7 | | | Site Inspections | | 5. | FUTURE KEY ISSUES9 | | | Key Issues and Recommendations for Coming Month9 Environmental Monitoring and Audit Schedule for the Coming Months9 | | 6. | CONCLUSIONS AND RECOMMENDATIONS9 | | | Conclusions9 | #### **EXECUTIVE SUMMARY** #### Introduction Maunsell Environmental Management Consultants Limited (MEMCL) is the designated Environmental Team (ET) for "Reprovisioning of Diamond Hill Crematorium" (The Project). This is the seventeenth monthly Environmental Monitoring and Audit (EM&A) report prepared by MEMCL for the Project. The EM&A programme for the Project commenced on 29 October 2004. This report documents the findings of EM&A Works conducted in the month of March 2006 (1 to 31 March 2006). As informed by the Contractor, construction activities in the reporting period were: - Backfilling of soil and compaction; - Steel fixing, erect formwork and concreting for footings, internal and external walls (including fair-face concrete wall), columns and slabs; 18 sessions 6 sessions 5 sessions 5 sessions - Welding/dismantling of steel waling and strutting to sheet pile / pipe pile wall; - Construction of 1/F floor slab at cremator plant room; - · Re-location of temporary water meter cabinet and water pipe connection work; and - Installation of underground oil tank into R.C. structure. A summary of monitoring and audit activities conducted in the reporting period is listed below: 1-hour TSP monitoring 24-hour TSP monitoring Daytime noise monitoring Environmental site inspection #### **Breaches of Action and Limit Levels** #### Air Quality All 1-hour and 24-hour TSP monitoring results recorded in the month complied with the Action and Limit Levels. #### Construction Noise All noise monitoring results recorded in the month complied with the Action and Limit Levels. #### Implementation Status of Environmental Mitigation Measures In general, the Contractor satisfactorily implemented all the required mitigation measures and was reasonably responsive to the ET's recommendations on any discrepancy observed during the weekly environmental site inspection. #### Environmental Complaints, Notification of Summons and Successful Prosecutions No environmental complaint, notification of summons or successful prosecution was received or made against this Project in the month. #### **Reporting Changes** No reporting change was required in the month. #### **Future Key Issues** Key issues to be considered in the coming month include: - Generation of dust from activities on-site; - Noise impact from operating equipment and machinery on-site; @K | Reprovisioning of Diamond Hill Crematorium Monthly EM&A Report for March 2006 (Revision 0) | |--| | Generation of site surface runoffs and wastewater from activities on-site; Storage and disposal of general refuse and construction waste from activities on-site; Management of chemicals and avoidance of oil spillage. | | 摘要 | | 簡介 | | 茂盛環境管理顧問有限公司乃「重置鑽石山火葬場」[下稱(工程項目)] 的指定環境小組。本冊是茂盛為工程項目製作的第十七份每月環境監察及審核報告。工程項目的環境監察及審核由二零零四年十月廿九日開始、本報告記錄了二零零六年三月份(二零零六年三月一日至三月三十一日)所進行的環境監察及審核工作。 | | 根據承建商的資料,本月有以下的建築活動: | | 泥土回填及壓緊 鋼根固定,支架構成及混凝土澆灌 把鋼支腰樑焊接或拆卸於椿上 建造墳化爐機械房一樓地台 搬遷臨時水錶裝置及水喉接駁 接駁地下油缸至鋼根混凝土結構 | | 本月有下列幾項的監察及審核活動: 一小時總懸浮粒子監察 18 次 廿四小時總懸浮粒子監察 6 次 日間噪音監察 6 次 環境巡査 5 次 | | 違反監察標準 | | 空氣質素
本月所有一小時及二十四小時總懸浮粒子監測結果皆符合行動水平和極限水平。 | | 建築噪音
本月所有噪音監測結果皆符合行動水平和極限水平。 | | 環境影響緩和措施 | | 承建商大致上完成所需的緩和措施,同時已對環境小組在每週的環境巡查中的建議作出合理的回應及跟進。 | | 有關環境的投訴,傳票及檢控 | | 本月沒有收到有關環境的投訴,傳票及檢控。 | | 報告修訂 | | 本月並沒有修訂報告。 | | 預計要注意的事項 | | 下月要注意事項包括: | -操作中儀器及機器產生的噪音影響 -工程活動所產生的塵埃 Reprovisioning of Diamond Hill Crematorium Monthly EM&A Report for March 2006 (Revision 0) - -工程活動所產生的污水 - -普通廢物與建築廢物的暫貯及棄置 - -化學品的管理及防止意外漏油 #### 1. INTRODUCTION #### Background 1.1 Maunsell Environmental Management Consultants Limited (MEMCL) (hereinafter called the "ET") was appointed by China Resources Construction Company Limited (CRC) (hereinafter called the "Contractor") to undertake Environmental Monitoring and Audit for "Reprovisioning of Diamond Hill Crematorium" (hereinafter called the "Project"). Under the requirements of Section 4 of Environmental Permit EP-179/2004, EM&A programme as set out in the approved EM&A Manual is required to be implemented. In accordance with the approved EM&A Manual, environmental monitoring of air quality and noise and environmental site inspections are required for the Project. #### Scope of Report 1.2 The EM&A programme for the Project commenced on 29 October 2004. This report presents a summary of the environmental monitoring and audit works, list of activities, and mitigation measures for the Project in March 2006 (from 1 to 31 March 2006). #### **Project Organisation** 1.3 The organisation of the environmental management team is shown in Figure 1.1. Key personnel contacts are presented in Appendix A. #### **Environmental Status in the Reporting Month** - 1.4 The construction programme of the Project is provided in Appendix B. In the month, the following activities took place for the construction of the Project: - Backfilling of soil and compaction; - Steel fixing, erect formwork and concreting for footings, internal and external walls (including fair-face concrete wall), columns and slabs; - Welding/dismantling of steel waling and strutting to sheet pile / pipe pile wall; - Construction of 1/F floor slab at cremator plant room; - Re-location of temporary water meter cabinet and water pipe connection work; and - · Installation of underground oil tank into R.C. structure. - 1.5 Layout plan of the Project work site is provided in Figure 1.2. #### **Summary of EM&A Requirements** - 1.6 The description and detailed locations of sensitive receivers and monitoring stations for air quality and noise are shown in Figures 2.1 and 3.1 respectively and relevant sections of this Report. - 1.7 The EM&A programme require environmental monitoring for air quality and noise and environmental site inspections for air quality, noise, water quality, landscape and visual, and waste management. The EM&A requirements for each parameter described in the following sections include: - All monitoring parameters - Action and Limit Levels for all environmental parameters - Event and Action Plans - Environmental mitigation measures, as recommended in the project final EIA report - · Environmental requirements in contract documents. | Reprovisioning | of Diamond Hill Cremate | orium | | |----------------|-------------------------|-------|---| | | Report for March 2006 (| | į | 1.8 The advice on the implementation status of environmental protection and pollution control/mitigation measures is summarised in Appendix J of the Report. #### 2. AIR QUALITY #### **Monitoring Requirements** - 2.1 1-hour TSP and 24-hour TSP levels at two designated monitoring stations were monitored in the month in accordance with the EM&A Manual. Appendix C shows the established Action and Limit Levels for the environmental monitoring works. - 2.2 The monitoring schedule for the month is shown in Appendix D. Air quality monitoring stations for 24-hour TSP and 1-hour TSP measurements are shown in Figure 2.1. #### **Monitoring Equipment** 2.3 Portable dust meter was used to carry out 1-hour TSP monitoring. High volume sampler (HVS - Model GMWS-2310 Accu-Vol) completed with the appropriate sampling inlets was installed for 24-hour TSP sampling. The HVS meet all the requirements as specified in the approved EM&A Manual. Table 2.1 summarised the equipment that were used in the dust-monitoring programme. Table 2.1 Air Quality Monitoring Equipment | Equipment | Model | |---------------------------|--------------------------------| | Dust Meter (for 1-hour | Laser Dust Monitor - Model LD- | | TSP measurement | 1/LD-3 | | HVS (for 24-hour TSP | GMWS 2310 Accy-Vol system | | measurement) | GIVIVOS 2310 ACCY-VOI SYSTEIN | | Calibration Kit (for HVS) | GMW 25 | #### Monitoring Parameters, Frequency and
Duration 2.4 Table 2.2 summarised the monitoring parameters, frequency and duration of impact air quality monitoring. Table 2.2 Air Quality Monitoring Parameters, Frequency and Duration | Parameter | Duration | Frequency | |-------------|----------|------------------------| | 1-hour TSP | 1 hour | 3 times every six days | | 24-hour TSP | 24 hours | Once every six days | #### **Monitoring Locations** 2.5 In accordance with the EM&A Manual, two air quality monitoring stations, as shown in Figure 2.1 were selected for 24-hour TSP and 1-hour TSP sampling. Table 2.3 describes the location of the air quality monitoring stations. Table 2.3 Locations of Air Quality Monitoring Stations | Monitoring Station | Identity / Description | Level | |--------------------|--|-------------------------------------| | ASR8 | Po Leung Kuk Grandmont Primary
School | Roof top level of 7 storey building | | ASR17 | Staff Quarter for Diamond Hill | Roof top level of 1 storey building | |-------|--------------------------------|-------------------------------------| | ASTI | Crematorium | | #### **Monitoring Methodology** #### 1-hour TSP Monitoring Monitoring Procedure - 2.6 The measuring procedures of 1-hour TSP by a portable dust meter are in accordance with the Manufacturer's Instruction Manual as follows: - Set POWER to "ON", push BATTERY button, make sure that the meter's indicator is in the range with a red line and allow the instrument to stand for about 3 minutes (Then, the air sampling inlet has been capped). - Push the knob at MEASURE position. - Push "O-ADJ" button. (Then meter's indication is 0). - Push the knob at SENSI ADJ position and set the meter's indication to S value described on the Test Report using the trimmer for SENSI ADJ. - Pull out the knob and return it to MEASURE position. - Push "START" button. Maintenance and Calibration - The 1-hour TSP dust meters are verified at 1-year intervals throughout all stages of the impact air quality monitoring. - Calibration details for the dust meters are provided in Appendix E. #### 24-hour TSP Monitoring Installation - 2.7 The HVSs were installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVSs: - A horizontal platform with appropriate support to secure the samplers against gusty wind was provided. - The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS. - A minimum of 2 meters separation from walls, parapets and penthouses was provided for rooftop sampler. - No furnace or incinerator flues were nearby. - Airflow around the sampler was unrestricted. - Permission was obtained to set up the sampler and to obtain access to the monitoring stations. - A secure supply of electricity was obtained to operate the sampler. Preparation of Filter papers - Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected. - All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%. - ALS Technichem (HK) Pty Ltd. is a HOKLAS accredited laboratory which has comprehensive quality assurance and quality control programmes. #### Monitoring Procedures - The power supply was checked to ensure the HVSs work properly. - The filter holder and the area surrounding the filter were cleaned. - The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully. - The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. - The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied should be sufficient to avoid air leakage at the edges. - Then the shelter lid was closed and secured with the aluminum strip. - The HVSs were warmed-up for about 5 minutes to establish run-temperature conditions. - A new flowrate record sheet was set into the flow recorder. - The flow rate of the HVS was checked and adjusted at around 1.1 m³/min. The range was between 0.6-1.7 m³/min. - The programmable timer was set for a sampling period of 24 hrs ± 1 hr, and the starting time, weather condition and the filter number were recorded. - The initial elapsed time was recorded. - At the end of sampling, the sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact. - It was then be placed in a clean plastic envelope and sealed. - · All monitoring information was recorded on a standard data sheet. - · Filters were sent to ALS Technichem (HK) Pty Ltd. for analysis. #### Maintenance and Calibration - The HVSs and their accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply. - HVSs are calibrated at bi-monthly intervals using GMW-25 Calibration Kit throughout all stages of the impact air quality monitoring. - Calibration details for the HVSs are provided in Appendix E. ### **Results and Observations** 2.8 Dust monitoring was conducted for both 1-hour TSP and 24-hour TSP at all designated monitoring stations in the month. Air quality monitoring results and graphical presentations are provided in Appendix F. #### 1-hour TSP Monitoring 2.9 All measured 1-hour TSP levels complied with the Action and Limit Levels in the month. A summary of 1-hour TSP monitoring results is presented in Table 2.4. Table 2.4 Summary of Impact 1-hour TSP Monitoring Results | Monitoring
Station | 1-hour TSP (μg/m³) | Action
Level | Limit
Level | | o. of
edance | |-----------------------|--------------------|-----------------|----------------|--------|-----------------| | | Range | (μg/m³) | (μg/m³) | Action | Limit | | ASR8 | 85.8 - 169.7 | 408.1 | 500.0 | Nil | Nil | | ASR17 | 99.1 – 173.9 | 408.4 | 500.0 | Nil | Nil | #### 24-hour TSP Monitoring 2.10 All measured 24-hour TSP levels complied with the Action and Limit Levels in the month. A summary of 24-hour TSP monitoring results is presented in Table 2.5. Table 2.5 Summary of Impact 24-hour TSP Monitoring Results | Monitoring
Station | 24-hour TSP (μg/m³) | Action
Level | Limit
Level | 1 | o. of
edance | |-----------------------|---------------------|-----------------|----------------|--------|-----------------| | | Range | (μg/m³) | (μg/m³) | Action | Limit | | ASR8 | 24.7 – 140.8 | 195.0 | 260.0 | Nil | Nil | | ASR17 | 19.5 – 104.0 | 174.1 | 260.0 | Nil | Nil | #### 3. NOISE #### **Monitoring Requirements** - 3.1 Noise levels at three designated monitoring stations were monitored in the month in accordance with the EM&A Manual. Appendix C shows the established Action and Limit Levels for the environmental monitoring works. - 3.2 The monitoring schedule for the month is shown in Appendix D. Noise monitoring stations are shown in Figure 3.1. #### **Monitoring Equipment** 3.3 Integrating Sound Level Meter was employed for noise monitoring. They were Type 1 sound level meters capable of giving a continuous readout of the noise level readings including equivalent continuous sound pressure level (L_{eq}) and percentile sound pressure level (L_x). They comply with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1). Portable electronic wind speed indicator capable of measuring wind speed in m/s was employed to check the wind speed. Table 3.1 details the noise monitoring equipment used. Table 3.1 Noise Monitoring Equipment | Equipment | Model | |-------------------------------|---------------| | Integrating Sound Level Meter | Rion NL-18/31 | | Calibrator | Rion NC-73 | #### Monitoring Parameters, Frequency and Duration 3.4 Table 3.2 summarised the monitoring parameters, period, frequency and duration of impact noise monitoring. Table 3.2 Noise Monitoring Parameters, Frequency and Duration | Time Period | Parameters | Duration (min) | Frequency | |---|-----------------|----------------|---------------| | Daytime (0700 to 1900 on normal weekdays) | L _{eq} | 30 | Once per week | #### **Monitoring Locations** 3.5 In accordance with the EM&A Manual, three noise monitoring stations, as shown in Figure 3.1 were selected for noise monitoring. Table 3.3 describes the location of this monitoring station. Table 3.3 Locations of Noise Monitoring Stations | Monitoring
Station | Identity / Description | Level | |-----------------------|---|-------------------------------------| | SR3 | International Christian Quality Music
Secondary and Primary School | Roof top level of 7 storey building | | SR4 | Po Leung Kuk Grandmont Primary School | Roof top level of 7 storey building | | SR6 | Staff Quarter for Diamond Hill
Crematorium | Roof top level of 1 storey building | #### **Monitoring Methodology** #### Monitoring Procedures - The Sound Level Meter was set on a tripod at a height of 1.2 m above the ground. - Façade measurements were made at all three monitoring locations. - The battery condition was checked to ensure the correct functioning of the meter. - Parameters such as frequency weighting, the time weighting and the measurement time were set as follows: - frequency weighting: A - time weighting: Fast - time measurement: L_{eq}(30 minutes) during non-restricted hours i.e. between 07:00 and 19:00 on normal weekdays - Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94 dB at 1000 Hz. If the difference in the calibration level before and after measurement was more
than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment. - The wind speed was frequently checked with a portable wind meter. - During the monitoring period, the L_{eq}, L₁₀ and L₉₀ were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet. - Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable. - Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s. #### Maintenance and Calibration - The microphone head of the sound level meter and calibrator is cleaned with soft cloth at quarterly intervals. - The meter and calibrator are sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals. - Calibration details for the sound level meter and calibrator are provided in Appendix E. #### **Results and Observations** - 3.6 Noise monitoring was conducted at all designated monitoring stations as scheduled in the month. Noise monitoring results and graphical presentations are provided in Appendix G. - 3.7 All measured noise levels complied with the Action and Limit Levels in the month. A summary of noise monitoring results is presented in Table 3.4. Table 3.4 Summary of Impact Noise Monitoring Results during 07:00 - 19:00 on Normal Weekdays | Monitoring
Station | Measured Noise
Level, dB(A)
L _{eg (30 min)} | Calculated
Construction Noise
Level, dB(A) | Limit Level | No. of
Exceedance | | |-----------------------|--|--|-------------|----------------------|-------| | | Average and Range | Average and Range | | Action* | Limit | | SR3 | 65.1
(64.0 – 66.2) | ,*
(* - 59.7) | 70/65** | Nil | Nil | | SR4 | 63.6
(63.0 – 64.0) | (* - *) | 70/65## | Nil | Nil | | SR6 | 59.3
(58.6 – 60.5) | ,
(* - *) | 75 | Nil | Nil | ^{* -} Action Level is triggered by receipt of a noise complaint #### 4. **ENVIRONMENTAL SITE INSPECTION** #### Site Inspections 4.1 Site inspection was carried out on a weekly basis to monitor the timely implementation of proper environmental pollution control and mitigation measures for the Project. In the month, five site inspections were carried out in the month. The summary of weekly environmental site inspections observations and environmental site inspection checklists are attached in Appendix H. #### **Review of Environmental Monitoring Procedures** 4.2 The monitoring works conducted by the Environmental Team were inspected regularly. Observations have been recorded for the monitoring works as follows: #### Air Quality Monitoring - The monitoring team recorded the observations around the monitoring stations within and outside of the construction site. - The monitoring team recorded the temperature and general weather condition on the monitoring day. #### Noise Monitoring - The monitoring team recorded the observations around the monitoring stations, which might affect the results. - Major noise sources were identified and recorded. #### Advice on Waste Management Status 4.3 The actual quantities of inert C&D materials and non-inert C&D wastes generated by activities of the Project in the month are provided in Table 4.1. Trip ticket system was implemented for all offsite waste disposal. ^{# -} Measured noise level is less than the baseline noise level ** - reduce to 70dB(A) for schools and 65dB(A) during school examination periods Table 4.1 Summary of Waste Disposal in the Month | Type of Waste Material Inert C&D materials | | Disposed Quantity | Destination Kai Tak Public Fill Barging Point | | |--|-----------------------------|-------------------|--|--| | | | 33 m ³ | | | | Non-inert C&D | Metals | Nil | Not Applicable | | | waste | Paper/cardboard packaging | Nil | Not Applicable | | | | Plastics | Nil | Not Applicable | | | | Chemical waste | Nil | Not Applicable | | | | Others, e.g. general refuse | 13 m ³ | SENT Landfill | | #### Status Environmental Licences and Permits 4.4 The status of all permits/licences obtained/in-use in the month is summarised in Appendix I. #### Implementation Status of Environmental Mitigation Measures - 4.5 An updated summary of the Environmental Mitigation Implementation Schedule (EMIS) is presented in Appendix J. - 4.6 During the weekly site inspection conducted by the Environmental Team in the month, the following observations and recommendations were made. #### Water Quality No particular observations and recommendations were made during the weekly site inspections in the month. #### Air Quality - The Contractor was reminded to cover the slopes with tarpaulin sheets. - Debagging, batching and mixing progresses with bagged cement should be carried out in sheltered areas. #### Noise No particular observations and recommendations were made during the weekly site inspections in the month. #### Waste or Chemical Management - General refuse was required to be disposed of properly and regularly. - Construction waste was not disposed properly in grease trap. The Contractor was reminded to remove it as soon as possible. - Oil spillage was not cleared properly. #### Landscape and Visual No particular observations and recommendations were made during the weekly site inspections in the month. #### Others No particular observations and recommendations were made during the weekly site inspections in the month. #### Summary of Exceedances of Environmental Quality Performance Limit 4.7 The Event and Action Plans for air quality and noise are presented in Appendix K. 4.8 No exceedance of Action and Limit Levels for 1-hour and 24-hour TSP and noise levels was recorded in the month. # Summary of Environmental Complaints, Notifications of Summons and Successful Prosecutions 4.9 Figure 4.1 presents the environmental complaint flow diagram of the Project and Table 4.2 presents the statistics of complaints, notification of summons and successful prosecution since the commencement of the Project. Table 4.2 Summary of Environmental Complaints and Prosecutions | Complaints logged Summor | | s served | Successful | Prosecution | | |--------------------------|------------|---------------------|------------|-------------|------------| | Mar 2006 | Cumulative | Mar 2006 Cumulative | | Mar 2006 | Cumulative | | 0 | 0 | 0 | 0 | 0 | 0 | 4.10 No environmental complaint, notification of summons and prosecution was received or made against the Project in the month. #### 5. FUTURE KEY ISSUES #### Key Issues and Recommendations for Coming Month - 5.1 Key issues to be considered in the coming month include: - · Generation of dust from activities on-site; - · Noise impact from operating equipment and machinery on-site; - Generation of site surface runoffs and wastewater from activities on-site; - · Storage and disposal of general refuse and construction waste from activities on-site; and - Management of chemicals and avoidance of oil spillage. - 5.2 Recommendations for the coming month include: - Ensure cement are stored and handled in a sheltered area; - · Provide water spray to haul roads and unpaved areas; - · Provide regular maintenance to wheel wash facilities on-site; - Cover the stockpiles on-site entirely; - Store all chemicals on site in the chemical storage area; - Ensure general refuse are removed from site regularly; and - Ensure construction waste are disposed off-site properly and regularly. #### **Environmental Monitoring and Audit Schedule for the Coming Months** 5.3 The tentative schedules for environmental monitoring and audit for the next three months are provided in Appendix D. #### 6. CONCLUSIONS AND RECOMMENDATIONS #### Conclusions - 6.1 Environmental monitoring and audit was performed in March 2006. All monitoring and audit results in the month were checked and reviewed. - 6.2 All 1-hour and 24-hour TSP monitoring results recorded in the month complied with the Action and Limit Levels. | Reprovi
Monthly | sioning of Diamond Hill Crematorium
EM&A Report for March 2006 (Revision 0) | | | |--------------------|---|--|--| | 6.3 | All noise monitoring results recorded in the m | nonth complied with the Action | and Limit Levels. | | 6.4 | In general, the Contractor satisfactorily impreasonably responsive to the ET's recommendate inspection. | lemented all the required miti
mendations on any discrepa | igation measure and was
ncy observed during the | | 6.5 | No environmental complaint, notification sun against this Project in the month. | nmons or successful prosecuti | on was received or made | | | Recommendations | | | | | According to results of weekly environmer construction programme for the coming mor water quality and waste and chemical manage | ith, recommendations for air q | uality, construction noise, | P:\\$0790 | 4\REPORTS\Monthly\2006\0306\rev_0.doc | 10 | MAUNSELL AECOM | FIGURES # PROJECT ORGANIZATION FOR ENVIRONMENTAL MANAGEMENT ENVIRONMENTAL PROTECTION DEPARTMENT (EPD) MR. DAVID COX INDEPENDENT ENVIRONMENTAL CHECKER (IEC) ARHITECT MR. MICHAEL MAK 2867 3802 MR. COLEMAN NG 2911 2233 2835 1106 ENVIRONMENTAL TEAM PROJECT MANAGER LEADER MR. Y.T. TANG 2891 0305 MR. ERIC TO 2828 1515 CONTRACTOR LEGEND: DIRECT COMMUNICATION - - LIAISON 2005 N.T.S.
CONTRACT NO: SS M333 - REPROVISIONING OF DIAMOND HILL CREMATORIUM DATE SCALE FSYY LLMC MAUNSELL | AECOM DRAWN CHECK PROJECT ORGANIZATION FOR JOB NO. DRAWING No. REV S07904 ENVIRONMENTAL MANAGEMENT 1.1 Maunsell Environmental Management Consultants Ltd MAUNSELL AECOM Maunsell Environmental Management Consultants Ltd CONTRACT NO: SS M333 - REPROVISIONING OF DIAMOND HILL CREMATORIUM LAYOUT OF WORK SITE | SCALE | N.T.S. | DATE | 200 | 5 | |---------|--------|---------|-----|----------| | CHECK | FSYY | DRAWN | LLM | iC | | JOB No. | 507904 | DRAWING | 1.2 | REV
— | APPENDIX A KEY CONTACTS OF ENVIRONMENTAL PERSONNEL ## Appendix A Key Contacts of Environmental Personnel | Party | Name | Telephone No. | Fax No. | | | |-------------------------------------|-----------------------|---------------|-----------|--|--| | Environmental Protection Department | | | | | | | SEPO | Mr. David Cox | 2835 1106 | 2591 0558 | | | | EPO | Ms. Marlene Ho | 2835 1186 | 2591 0558 | | | | EPO (ECD) | Mr. Charles Wu | 2117 7540 | 2756 8588 | | | | Architect | | | | | | | Architectural Services Departn | nent | | | | | | Project Architect | Mr. Michael Mak | 2867 3802 | 2524 8194 | | | | Assistant Architect | Ms. Catty Chan | 2867 3598 | 2524 8194 | | | | Independent Environmental | Checker | | | | | | Hyder Consulting Limited | | | | | | | IEC | Mr. Coleman Ng | 2911 2233 | 2805 5028 | | | | Assistant to IEC | Mr. Adi Lee | 2911 2233 | 2805 5028 | | | | Contractor | | | | | | | China Resources Construction | Company Limited | | | | | | Project Manager | Mr. Eric To | 2828 1515 | 2827 2921 | | | | Environmental Team | | | | | | | Maunsell Environmental Mana | gement Consultants Li | mited | | | | | ET Leader | Mr. Y.T. Tang | 2893 1551 | 2891 0305 | | | | Audit Team Leader | Ms. Florence Yuen | 2893 1551 | 2891 0305 | | | | Monitoring Team Leader | Mr. Eddie Yang | 2893 1551 | 2891 0305 | | | APPENDIX B CONSTRUCTION PROGRAMME 55 2, 3 \$ 2 ≝ 녈 g <u>e</u> ⊵ Ξ APPENDIX C ENVIRONMENTAL ACTION AND LIMIT LEVELS ## Appendix C Environmental Action and Limit Levels ## Action and Limit Levels for 24-hour TSP | Monitoring Station | Action Level (μg/m³) | Limit Level (μg/m³) | |--------------------|----------------------|---------------------| | ASR8 | 195.0 | 260 | | ASR17 | 174.1 | 260 | ## Action and Limit Levels for 1-hour TSP | Monitoring Station | Action Level (μg/m³) | Limit Level (μg/m³) | |--------------------|----------------------|---------------------| | ASR8 | 408.1 | 500 | | ASR17 | 408.4 | 500 | ## Action and Limit Levels (L_{eq}) for Construction Noise | Time Period | Action Level | Limit Lev | /el | | |--|---|------------|------------|---------| | | | SR3 | SR4 | SR6 | | 0700 – 1900 hours on normal weekdays | When one documented complaint is received | 70/65* | 70/65* | 75 | | 0700 – 2300 hours on public holidays including Sundays and | from any one of the sensitive receivers | stipulated | | | | 1900 – 2300 hours on all days | _ | Construc | tion Noise | Permits | | 2300 - 0700 on all days | | | | | ^{*}reduce to 70dB(A) for schools and 65dB(A) during school examination periods APPENDIX D ENVIRONMENTAL MONITORING AND AUDIT SCHEDULES Reprovisioning of Diamond Hill Crematorium Impact Air Quality and Noise Monitoring and Audit Schedule for March 2006 | Saturday 4-Mar | | 11-Mar | | | 18-Mar | 24-hour TSP | | | 25-Mar | | 1-hour TSP | | | | | | |-------------------------|---------------------|--------------------------------|-------------|-----------------------------------|--------|-------------|------------|--------------------------|--------|-------------|------------|--------------------------|--------|-------------|---------------------|--------------------------| | 3-Mar | | 10-Mar | | | 17-Mar | | | | 24-Mar | 24-hour TSP | | | 31-Mar | | 1-hour TSP
Noise | | | ः Thursday ि ः
2-Mar | 1-hour TSP
Noise | 9-Mar | | | 16-Mar | | | | 23-Mar | | _ | | 30-Mar | 24-hour TSP | | | | · Wednesday · · · | 24-hour TSP | Site Environmental Audit 8-Mar | 1-hour TSP | Noise
Site Environmental Audit | 15-Mar | | | Site Environmental Audit | 22-Mar | | | Site Environmental Audit | 29-Mar | | | Site Environmental Audit | | ् ि ि Tuesday ः | | ∕-Mar | 24-hour TSP | | 14-Mar | | 1-hour TSP | | 21-Mar | | | | 28-Mar | | | | | Mónday 🗀 😅 | | 6-Mar | | | 13-Mar | 24-hour TSP | | | 20-Mar | 1-hour TSP | Noise | | 27-Mar | | | | | Sunday | | 5-Mar | | | 12-Mar | | | | 19-Mar | | | | 26-Mar | | | | Tentative Impact Air Quality and Noise Monitoring and Audit Schedule for April 2006 Reprovisioning of Diamond Hill Crematorium | Saturday | 08-Apr | | 15-Apr | | | 22-Apr | 24-hour TSP | | 29-Apr | | 1-hour ISP | | |----------------|-----------------------|--------------------------|--------|---------------------|--------------------------|---------|-------------|-----------------------------------|---------|-------------|------------|--------------------------| | Filday | .07-Apr | | 14-Apr | | | 21-Apr | - | | 28-Apr | 24-hour TSP | | | | Thursday | 06-Apr | Pol pol- | 13-Apr | | | 20-Apr | | | 27-Apri | | | | | Wednešday | 05-Apr | | 12-Apr | 1-hour TSP
Noise | Site Environmental Audit | 19-Apri | 1-hour TSP | Noise
Site Environmental Audit | 26-Apr | | - | Site Environmental Audit | | Tuesday | 04-Apr
24-hour TSP | Site Environmental Audit | 11-Apr | 24-hour TSP | | 18-Apr | 24-hour TSP | | 25-Apr | | | | | Monday | 03-Apr | | 10-Apr | | | 17-Apr | | | 24-Apr | 1-hour TSP | Noise | | | Sunday See See | 02-Apr | | 09-Apr | | | 16-Apr | | | 23-Apr | 1 | | | Reprovisioning of Diamond Hill Crematorium Tentative Impact Air Quality and Noise Monitoring and Audit Schedule for May 2006 | Saturday
06-May | 1-hour TSP
Noise | 13-May | | 20-May | | 27-May | 24-hour TSP | | | |--------------------------|--------------------------|--------|---|--------|---|--------|--------------------------|--------|--------------------------| | Eriday 05-May | | 12-May | | 19-May | | 26-May | | | | | Thursday Thursday O4-May | 24-hour TSP | 11-May | 1-hour TSP
Noise | 18-May | | 25-May | | - | | | Wednesday 03-May | Site Environmental Audit | 10-May | 24-hour TSP
Site Environmental Audit | 17-May | 1-hour TSP
Noise
Site Environmental Audit | 24-May | Site Environmental Audit | 31-May | | | ∵ Tuesday 02-May | | 09-May | | 16-May | 24-hour TSP | 23-May | 1-hour TSP
Noise | 30-May | Site Environmental Audit | | Monday 01-May | | 08-May | | 15-May | | 22-May | 24-hour TSP | 29-May | 1-hour TSP
Noise | | Sunday
30-Apr | | 07-May | | 14-May | | 21-May | | 28-May | | Tentative Impact Air Quality and Noise Monitoring and Audit Schedule for June 2006 Reprovisioning of Diamond Hill Crematorium | Sunday | Monday | Tuesday . | Wednesday | Thursday | Some AFriday Services | Saturday | |---------------|-------------|---------------------|---|---------------------|-----------------------|------------| | | | | | 01-Jun | 02-Jun | 03-Jun | | | | | | | 24-hour TSP | 1-hour TSP | | | | | | | | | | 04-Jun | 05-Jun | unr-90 | unC-70 | unr-80 | un Ր- 60 | 10-Jun | | | | | | 24-hour TSP | 1-hour TSP
Noise | | | | | | Site Environmental Audit | | | | | 11-Jun | 12-Jun | 13-Jun | 14-Jun | 15-Jun | 16-Jun | 17-Jun | | | | | 24-hour TSP | 1-hour TSP
Noise | | | | | | | Site Environmental Audit | | | | | 18-Jun | 19-Jun | 20-Jun | 21-Jun | 22-Jun | 23-Jun | 24-Jun | | | | 24-hour TSP | 1-hour TSP
Noise | | | | | | | | Site Environmental Audit | | | | | 25-Jun | | 27-Jun | 28-Jun | 29-Jun | 30-Jun | | | in the second | 24-hour TSP | 1-hour TSP
Noise | 10
10
10
10
10
10
10
10
10
10
10
10
10
1 | | 24-hour TSP | | | | | | Site Environmental Andit | | | | | | | | אויסווויסווויסוויסו טממיל | | | | APPENDIX E CALIBRATION DETAILS ## Maunsell Environmental Management Consultants Ltd. TSP High Volume Sampler Field Calibration Report | Station | Po Leung Kuk G | randmont Primary | School (ASR8) | Operator: | Pork | y Chu | |--|------------------------------|---------------------------------------|-------------------------------|--|--------------------------------
--| | Cal. Date: | 07-Feb-06 | | | Next Due Date: | 07-A | pr-06 | | Equipment No.: | A-001-69T | | | Serial No. | . 07 | 16 | | | | | | | | | | | - 115 I | | | Condition | | | | Temperatu | re, Ta (K) | 295 | Pressure, I | Pa (mmHg) | | 768.0 | | | | · | rifice Transfer S | tandard Informatio | >n | | | Serial | No: | 988 | Slope, mc | 2.00878 | Interc | ept, bc 0.00015 | | Last Calibra | ition Date: | 15-Nov-05 | | mc x Qstd + bc | = [DH x (Pa/760) x | (298/Ta)] ^{1/2} | | Next Calibra | ation Date: | 15-Nov-06 | | Qstd = {[DH x (| Pa/760) x (298/Ta)] | ^{1/2} -bc} / mc | | | | * | O-51 | 6700 n | | | | | | <u> </u> | Calibration o | f TSP Sampler | LIVI | S Flow Recorder | | Resistance Plate | | <u> </u> | 1866 | <u>.</u> | | | | No. | DH (onfice),
in. of water | [DH x (Pa/76 | 0) x (298/Ta)] ^{1/2} | Qstd (m ³ /min) X
- axis | Flow Recorder
Reading (CFM) | Continuous Flow Recorder
Reading IC (CFM) Y-axis | | 18 | 13.2 | (| 3.67 | 1.83 | 52.0 | 52.54 | | 13 | 12.0 | | 3.50 | 1.74 | 47.0 | 47.49 | | 10 | 9.4 | | 3.10 | 1.54 | 43.0 | 43.44 | | 7 | 7.6 | 1 | 2.79 | 1.39 | 37.0 | 37.38 | | 5 | 3.1 | 1 | 1.78 | 0.89 | 23.0 | 23.24 | | By Linear Regre
Slope , mw =
Correlation Coe
*If Correlation Co | 30.1689
fficient* = | 0.9
check and recalib | 919
rate. | Intercept, bw = _ | -3.7 | 325 | | | | · · · · · · · · · · · · · · · · · · · | Set Point | Calculation | | A CONTRACTOR OF THE PROPERTY O | | From the TSP Fig | eld Calibration Cu | rve, take Qstd = 1 | | | · | | | | | Y" value accord | | | | | | | | mw : | c Qstd + bw = 1C | x [(Pa/760) x (298/1 | (a)] ^{1/2} | | | Therefore, Set Po | oint; IC = (mw x (| 2std + bw) x [(76 | 0/Pa)x(Ta/29 | 8)}¹²²= | | 35.12 | | 4 | | | | | , | | | Remarks: | | | | | | | | QC Reviewer: | Eddie | ang s | Signature: | Sde D | <u> </u> | Date: 9 · 2 · 2006 | P:\General\HV\$\S07904\A\$R8\2006\A\$R8_60207.xls ## Maunsell Environmental Management Consultants Ltd. TSP High Volume Sampler Field Calibration Report | Station | Staff Quarter For | Diamond Hill Cr | ematorium (ASR17) | Operator: | Porky | Chu | |--|--|----------------------------------|---------------------------------|------------------------------|--------------------------------|--| | Cal. Date: | 07-Feb-06 | | | Next Due Date: | 07-A _l | or-06 | | Equipment No.: | A-001-21T | | | Serial No. | 102 | 78 | | • • | | | | . * | | | | , | | · <u>··········</u> | Ambient | Condition | | | | Temperat | ure, Ta (K) | 295 | Pressure, F | Pa (mmHg) | | 768.0 | | | | | | | | | | | | | Orifice Transfer St | andard Informatio | ח | | | Seri | al No: | 988 | Slope, mc | 2.00878 | Interce | The state of s | | Last Calib | ration Date: | 15-Nov-05 | | me x Qstd + bc | = (DH x (Pa/760) x | (298/Ta)] ^{1/2} | | Next Calib | ration Date: | 15-Nov-06 | | $Qstd = \{[DH \times (I)]\}$ | Pa/760) x (298/Ta)] | ^{//2} -bc} / mc | | | | • | <u>-</u> | | | | | and the second s | | | Calibration o | TSP Sampler | | | | | | 1 | Orfice | | HV | S Flow Recorder | | Resistance Plat
No. | DH (orifice),
in. of water | (DH x (Pa/ | 760) x (298/Ta)] ^{1/2} | Qstd (m³/min) X
- axis | Flow Recorder
Reading (CFM) | Continuous Flow Recorder
Reading IC (CFM) Y-axis | | 18 | 13.0 | | 3.64 | 1,81 | 50.0 | 50.52 | | 13 | 11.6 | | 3.44 | 1.71 | 46.0 | 46.48 | | 10 | 9.4 | <u> </u> | 3.10 | 1.54 | 42.0 | 42.43 | | 7 | 7.5 | | 2.77 | 1.38 | 35.0 | 35.36 | | 5 | 3,3 | | 1,84 | 0.91 | 23.0 | 23,24 | | Slope , mw =
Correlation Co | ression of Y on X 30.2234 pefficient* = Coefficient < 0.990, | | 1.9930
librate | Intercept, bw = | -4.8
· | 790 | | a contrador | Securious a model | Association score | 1141 4141 | | | | | | | | Set Point | Calculation | | | | From the TSP | Field Calibration Co | ırve, take
Qstd = | = 1.30m ³ /min | | | | | From the Regre | ession Equation, th | e "Y" value acco | rding to | | | | | | | mı | w x Qstd + bw = IC | x ((Pa/760) x (298/ | Ta)] ^{1/2} | | | Therefore, Set | Point; IC = (mw x | Qstd + bw) x [(| 760 / Pa) x (Ta/29 | 98)] ^{t/2} = | | 34.06 | | Therefore, Set | Point; IC = (mw x | | | | 7, | 34.06 | | Remarks: | <u> </u> | | | | | | | QC Reviewer: | Eddie" | ang | Signature: | [dog |) | Date: 9 · 2 · 2006 | | P:\Gene | ral\HVS\S0790 | V
\$\ASR17\200 | 6VASR17_60207 | ر ک
xls: | , | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,,,,, | the same of the second party and | | | | | ## **EQUIPMENT CALIBRATION RECORD** | Equipment: | Manufacturer/Brand: SIBATA Model No.: LD-1 Equipment No.: A.005.05a Sensitivity Adjustment Scale Setting: 510 CPM Operator: Eddie Yang (EWNY) Standard Equipment Equipment: Rupprecht & Patashnick TEOM* Venue: Cyberport (Pui Ying Secondary Schoot) Model No.: Series 1400AB Serial No: Control: 140AB219899803 Sensor: 1200C143659803 Ko: 12500 Last Calibration Date*: 18 June 2005 Ko: 12500 Remarks: Recommended interval for hardware calibration is 1 year Calibration Result Sensitivity Adjustment Scale Setting (Before Calibration): 510 CPM Sensitivity Adjustment Scale Setting (After Calibration): 510 CPM Condition Condition (mg/m³) Total (mg/m³) Count² Hour Date (dd-mm-yy) Ambient (Condition (mg/m³) Count² Temp (R.H. (°C) (%) Y-axis Count² | | |--|--|------| | Equipment No.: Sensitivity Adjustment Scale Setting: A.005.05a 510 CPM | Equipment No.: A.005.05a | | | Sensitivity Adjustment Scale Setting: Stot CPM | Sensitivity Adjustment Scale Setting: Sto CPM | | | Equipment Equipment Equipment Equipment Equipment Cyberport (Pui Ying Secondary School) | Equipment: Rupprecht & Patashnick TEOM® | | | Equipment: | Equipment: Rupprecht & Patashnick TEOM** Venue: Cyberport (Pui Ying Secondary School) | | | Equipment: | Equipment: Rupprecht & Patashnick TEOM | | | Venue: | Venue: Cyberport (Pui Ying Secondary School) Model No.: Series 1400AB Serial No: Control: 140AB219899803 Sensor: 1200C143659803 K _p : 12500 Last Calibration Date*: 18 June 2005 Remarks: Recommended interval for hardware calibration is 1 year Calibration Result Sensitivity Adjustment Scale Setting (Before Calibration): 510 CPM Sensitivity Adjustment Scale Setting (After Calibration): 510 CPM Hour Date (dd-mm-yy) Time Ambient Concentration (mg/m³) (mg/m³) Count² Temp R.H. (°C) (%) Y-axis Count² 1 09-07-05 10:00 - 11:00 27.3 90 0.04908 2087 | | | Serial No: Series 1400AB Control: 140AB219899803 Sensor: 1200C143659803 K ₀ : 12500 | Serial No: Serial 400AB Serial No: Control: 140AB219899803 Sensor: 1200C143659803 K _p : 12500 Last Calibration Date*: 18 June 2005 Remarks: Recommended interval for hardware calibration is 1 year Calibration Result Sensitivity Adjustment Scale Selting (Before Calibration): 510 CPM Sensitivity Adjustment Scale Selting (After Calibration): 510 CPM Hour Date (dd-mm-yy) Time Ambient Concentration (mg/m³) Count² Temp R.H. (°C) (%) Y-axis Y-axis 1 09-07-05 10:00 - 11:00 27.3 90 0.04908 2087 | | | Control: 140AB219899803 Sensor: 1200C143659803 K _n : 12500 | Serial No: Control: 140AB219899803 Sensor: 1200C143659803 K _o : 12500 | | | Last Calibration Date*: 18 June 2005 19 July 2006 18 June 2005 20 | Sensor: 1200C143659803 K _o : 12500 | | | Calibration Date 18 June 2005 | Last Calibration Date*: 18 June 2005 Remarks: Recommended interval for hardware calibration is 1 year Calibration Result Sensitivity Adjustment Scale Setting (Before Calibration): 510 CPM Sensitivity Adjustment Scale Setting (After Calibration): 510 CPM Hour Date (dd-mm-yy) Time Ambient Concentration (mg/m³) (mg/m³) Y-axis Temp R.H. (°C) (%) Y-axis 1 09-07-05 10:00 - 11:00 27.3 90 0.04908 2087 | | | Calibration Result | Remarks: Recommended interval for hardware calibration is 1 year Calibration Result Sensitivity Adjustment Scale Setting (Before Calibration): 510 CPM Sensitivity Adjustment Scale Setting (After Calibration): 510 CPM Hour Date Time Ambient Concentration (mg/m³) Total Condition (mg/m³) Count² Temp R.H. (°C) (%) Y-axis 1 09-07-05 10:00 - 11:00 27.3 90 0.04908 2087 | | | Sensitivity Adjustment Scale Setting (Before Calibration): 510 CPM | Sensitivity Adjustment Scale Setting (Before Calibration): 510 CPM | | | Sensitivity Adjustment Scale Setting (Before Calibration): 510 CPM | Sensitivity Adjustment Scale Setting (Before Calibration): 510 CPM | | | Constitute | Sensitivity Adjustment Scale Setting (Before Calibration): 510 CPM | | | Condition Condition Condition Condition Count Coun | Sensitivity Adjustment Scale Setting (After Calibration): | | | Date | Sensitivity Adjustment Scale Setting (After Calibration): | | | Hour Date (dd-mm-yy) | Hour Date (dd-mm-yy) | | | Condition | (dd-mm-yy) Condition Temp R.H. (°C) (%) (mg/m³) Y-axis Count² 1 09-07-05 10:00 - 11:00 27.3 90 0.04908 2087 | | | (dd-mm-yy) | (dd-mm-yy) | Cou | | Temp R.H. Y-axis X 1 09-07-05 10:00 - 11:00 27:3 90 0.04908 2087 3 2 09-07-05 14:00 - 15:00 28:6 85 0.03566 1711 4 3 09-07-05 15:00 - 16:00 28:2 84 0.03059 1495 2 4 09-07-05 16:00 - 17:00 28:3 84 0.02393 1189 1 189 189 189 189 189 189 189 189 189 189 189 189 189 189 | Temp R.H. Y-axis (°C) (%) 1 09-07-05 10:00 - 11:00 27.3 90 0.04908 2087 | Minu | | 1 | 1 09-07-05 10:00 - 11:00 27.3 90 0.04908 2087 | X-ax | | 1 09-07-05 10:00 - 11:00 27.3 90 0.04908 2087 3 2 09-07-05 14:00 - 15:00 28.6 85 0.03566 1711 2 3 09-07-05 15:00 - 16:00 28.2 84 0.03059 1495 2 4 09-07-05 16:00 - 17:00 28.3 84 0.02393 1189 1 Nole: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM® 2. Total Count was logged by Laser Dust Monitor 3. Count/minute was calculated by (Total Count/60) By Linear Regression of Y or X Slope (K-factor): 0.0013 Correlation coefficient: 0.9311 Validity of Calibration Record: 9
July 2006 Remarks: | 1 09-07-05 10:00 - 11:00 27.3 90 0.04908 2087 | | | 2 | | 34.7 | | 3 | 2 09-07-05 14:00 - 15:00 28.6 85 0.03566 1/11 | 28.5 | | 4 | | 24.9 | | Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM® 2. Total Count was logged by Laser Dust Monitor 3. Count/minute was calculated by (Total Count/60) By Linear Regression of Y or X Slope (K-factor): 0.0013 Correlation coefficient: 0.9311 Validity of Calibration Record: 9 July 2006 Remarks: | 4400 | 19. | | Validity of Calibration Record: 9 July 2006 Remarks: | Total Count was logged by Laser Dust Monitor Count/minute was calculated by (Total Count/60) By Linear Regression of Y or X Slope (K-factor): O.0013 | | | Remarks: | | | | | Validity of Calibration Record: 9 July 2006 | | | | | | | | Remarks: | CINO | | | | し ドグイグ トー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | | | | QC Reviewer: Eddie Yang Signature: | $\gamma dV = 91$ | | | MAUNSELL | AECOM | |----------|-------| |----------|-------| ## **EQUIPMENT CALIBRATION RECORD** | Model No.: Equipment No.: A.005.07a Sensitivity Adjustment Scale Setting: S7 CPM | | | /1 | st Monite | aser Du:
IBATA | | | cturer/Brand: | Type:
Manufa | |--|---|--------------------|---|--|------------------------------|-------------------------|--|--|--------------------| | Sensitivity Adjustment Scale Setting: Eddie Yang (EWNY) | | | | | D-3 | 1 | | | | | Sensitivity Adjustment Scale Setting: 557 CPM | | | | 101.0 | | | | | | | Equipment: | | | | | 57 CPM | 5 | cale Setting: | | | | Equipment: | | | <u>y)</u> | g (EWN | ddie Yar | | | or: | Operate | | Venue: Cyberport (Pul Ving Secondary School) | | | | | | | | d Equipment | Standar | | Cyberport
(Pul Ving Secondary School) | | | | EOM® | ashnick T | :ht & Pata | Ruppred | nent: | Equipm | | Serial No: Serial 1400AB Total Total Country | | | nool) | ndary Sci | ng Seco | ort (Pui Yi | Cyberpo | | | | Control: 140AB219899803 K _o : 12500 | | | | | | | | | ,, | | Last Calibration Date*: 1200C143659803 K _o : 12500 | | | | 9803 | AB21989 | | | | | | Calibration Date*: 18 June 2005 Remarks: Recommended interval for hardware calibration is 1 year | | | K _o : 12500 | 9803 | OC14365 | | | | | | Sensitivity Adjustment Scale Setting (Before Calibration): | | - 15 No. March | | | | | | alibration Date*: | Last Ca | | Sensitivity Adjustment Scale Setting (Before Calibration): 557 | | | ear | ion is 1 y | e calibrat | hardwar | ed interval for | s: Recommende | Remark | | Sensitivity Adjustment Scale Setting (Before Calibration): 557 | | | N. C. | | | | , , , , , , , , , , , , , , , , , , , | ion Result | Calibrat | | Hour | | | | | | | | | | | Condition | | | | n):
: | Calibratio
Ilibration) | (Before (
(After Ca | Scale Setting
Scale Setting | vity Adjustment
ivity Adjustment | Sensiti
Sensiti | | Condition | tal Count/ | Total | Concentration 1 | ient | Amh | | Timo | Data | Llour | | Temp R.H. Y-axis | | Count ² | | | | | inile | 1 | Hour | | 1 | X-axis | | | | | | | (ou-min-yy) | | | 1 19-06-05 10:00 - 11:00 29.3 81 0.02866 731 2 19-06-05 11:00 - 12:00 29.3 80 0.02849 721 3 19-06-05 12:00 - 13:00 29.4 80 0.02709 695 4 19-06-05 15:00 - 16:00 28.9 82 0.02740 707 Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM® 2. Total Count was logged by Laser Dust Monitor 3. Count/minute was calculated by (Total Count/60) By Linear Regression of Y or X Slope (K-factor): 0.0023 Correlation coefficient: Validity of Calibration Record: 19 June 2006 Remarks: | | | | | | | | | | | 1 | 31 12.18 | 731 | 0.02866 | | | 11-00 | 10:00 - | 10.06.05 | 4 | | 3 19-06-05 12:00 - 13:00 29.4 80 0.02709 695 4 19-06-05 15:00 - 16:00 28.9 82 0.02740 707 Note: | | | · | The second secon | | | | | | | A 19-06-05 15:00 - 16:00 28.9 82 0.02740 707 | | | | CONTRACTOR OF THE PARTY | and the second second second | | The state of s | | | | Note: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM® 2. Total Count was logged by Laser Dust Monitor 3. Count/minute was calculated by (Total Count/60) By Linear Regression of Y or X Slope (K-factor): 0.0023 Correlation coefficient: 0.9169 Validity of Calibration Record: 19 June 2006 Remarks: | | | | | | | | | | | Validity of Calibration Record: 19 June 2006 Remarks: | | | STRICK LEOIM | itor | ost Mon | y Laser [
Ited by (T | was logged b
e was calcula
Y or X | 2. Total Count
3. Count/minul
ar Regression of | By Linea | | Remarks: | | | | | · |).9169 | | • | - | | SAM 191 | | | | | 006 | 19 June 2 | Record: _1 | y of Calibration I | Validit | | SAM 191 | | | | | | | | (S: | Remark | | OC Pariawan Eddio Yang Signatura: Swy Date: 191 | aveauvaee | | | | - | - | - | | | | OC Pariawan Eddio Yang Signatura: Swy Date: 191 | nonacional de la constanta | | | | | | | | | | OC Pariawan Eddio Yang Signature: Swy Date: 191 | e. | | | | | | | | | | OC Pavianas Eddio Vana Signature: Sam Date: 191 | , compared w | | | | | | | | 1 | | OC Pavianas Eddio Vana Signature: Sall Date: 191 | | | | | | | | | | | OC Barianas Eddio Vana Signature Sull Date 191 | | | | | | a | | | | | OC Bariawas Eddia Vana Signature / W Date | 19/6/2003 | 10 | \mathcal{V} | 811 | | | | | | | | 17/0/2003 | e: 17/ | Date | 1000 | hire. | Signs | o Vona | المدائم المحادمة المامانية | 02 P | | QC Reviewer: Eddie Yang Signature: Date: | | <u></u> | | | iaie. | ા ણા (a | e rany | eviewer: Eddi | QC R | | J | | | ſ | | | | | | | ## 綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. Website: www.cioismec.com 12/E, Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 客港英竹花逛汀紫祁逵中心12樓 Tel: (852) 2873 6860 Fax: (852) 2555 7533 Website: www.cigismec.com ## CERTIFICATE OF CALIBRATION | Certificate No.: | 05CA0519 02 | | Page | 1 | of | 2 | |---------------------------------|--|------------------|-----------------|----------|----------|-------------| | Item tested | ************************************** | | | | | | | Description: | Integrating Sound Lev | el Meter , | Preamp, | ; Micr | ophone | 1 | | Manufacturer: | Rion Co., Ltd. | • | Rion Co., Ltd. | ; Rjor | r Co., L | td. | | Type:Modul No.: | NŁ-31 | | NH-21 | : UC- | 53A | | | Serial/Equipment No.: | 00320528 | | 03575 | : 1024 | 39 | | | Adaptors used: | • | • | - | | | | | Item submitted by | | | | | | | | Client: | Maunsell Environment | al Manacement Co | onsultants Lid. | | | | | Request No.: | • | | | | | | | Date of request: | 19-May-2005 | | | | | | | Date of test: | 25-May-2005 | | | | | | | Reference equipment : | sed in the calibration | on | | ··· • ·· | -44 | | | Description: | Model: | Serial No. | Expiry Date: | | Tracea | ible to: | | Multi function sound earlbrator | 98K 4226 | 2288444 | 11/Jan/2006 | | MIM | | | heidignis gabussel | B&K 2610 | 2346941 | 09/Nov/2005 | | NIIA | | | Signal generator | DS 360 | 33873 | 09/Nov/2005 | | MIM | | | Audio analyzer | Agilent 8903B | G841300350 | 08/Nov/2005 | | ММ | | | Digital multi-meter | Agilent 3440 (A | US36087050 | 21/Nov/2005 | | SCM | | | Ambient conditions | | <u>,,,,</u> | | | | | | Temperature: | (23 ± 1) °C | | | | | | | Relative humidity: | (60 ± 10) % | | | | | | ## Test specifications Air pressure: - The Sound Level Meter has been calibrated in accordance with the requirements as specified in 8S 7580; Part 1: 1997 and the lab calibration procedure SMTP004-CA-152. - The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%. - The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter. ## Test results This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the Type 1 for the conditions under which the test was performed. Details of the performed measurements are presented on page 2 of this certificate. (1000 ± 10) hPa Approved Signatory: Date: 25-May-2005 Company Chop: THE OF THE OWNER OWNER OF THE OWNER OWN Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument. O Softs & Magariais Engineering Co., Ltd Form No.CARP152-1/Issue 1/Ee+,A(1)/12/2007 Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with his terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This curtificate shall not be reproduced except in full ## 綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. G.F., 9.F., 12.F., 13.F. & 20.F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓E-mall: smec@cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533 ## **CERTIFICATE OF CALIBRATION** | item tested | | | | | | |--
--|---|---|---|--------------------------------| | | | 45 | | | | | Description: | Sound Calibrato | r (Class 1) | | | | | Manufacturer: | Rion Co., Ltd. | | | | | | Type/Model No.: | NC-73 | | | | | | Serial/Equipment No. | .: 10307216 / N.00 | 04.06 | | | | | Adaptors used: | - | | | | | | Item submitted b | V | | | | | | | | | scultante 1 td | | | | Client: | Maunsell Enviro | nmental Management Cor | istitatis Etc. | | | | Request No.: | - | | | | | | Date of request: | 08-Jul-2005 | | | | | | Date of test: | 13-Jul-2005 | | | | | | Reference equip | ment used in the cal | ibration | | | | | Description: | Model: | Serial No. | Expiry Date: | Traceable to: | | | Lab standard micropi | hone B&K 4180 | 2341427 | 10-Nov-2005 | NIM | | | Preamplifier | B&K 2673 | 2239857 | 09-Nov-2005 | NIM | | | Measuring amplifier | B&K 2610 | 2346941 | 09-Nov-2005 | NIM | | | Signal generator | DS 360 | 61227 | 06-Jun-2006 | NIM | | | Digital multi-meter | 34401A | US36087050 | 22-Nov-2005 | SCM | | | Audio analyzer | 8903B | GB41300350 | 08-Nov-2005 | NIM | | | Universal counter | 53132A | MY40003662 | 08-Jun-2006 | NIM | | | Ambient condition | · | | | | | | Ambient condition | ons | | | | | | Temperature: | 23 ± 1 °C | | | | | | Relative humidity: | 60 ± 10 % | | | | | | | | | | | | | Air pressure: | 1000 ± 10 hPa | | | | | | Air pressure: Test specification | | | | | | | Test specification | ons Calibrator has been calibra | ted in accordance with the | requirements as specif | ied in IEC 60942 1997 | ' Annex | | Test specification | ons Calibrator has been calibra | ited in accordance with the | | | | | Test specification | ons Calibrator has been calibra | ited in accordance with the | | | | | Test specification 1. The Sound Country and the lab of the calibrate technique. | ons Calibrator has been calibra calibration procedure SMTi or was tested with its axis to the control of the calibration was tested with its axis to with the calibration with the calibration was tested with its axis to ca | ited in accordance with the
P004-CA-156.
vertical facing downwards a | at the specific frequency | vusing equivalent inse | ert volta | | Test specification 1. The Sound Country and the lab of the calibrate technique. | ons Calibrator has been calibra | ited in accordance with the
P004-CA-156.
vertical facing downwards a | at the specific frequency | vusing equivalent inse
for variations from a re | ert volta
eferenc | | Test specification 1, The Sound Country and the lab of the calibrate technique. 3, The results appressure of changes. | Calibrator has been calibra calibration procedure SMTi or was tested with its axis to the persent persen | ited in accordance with the
P004-CA-156.
vertical facing downwards a | at the specific frequency | vusing equivalent inse
for variations from a re | ert volta
eferenc | | Test specification 1. The Sound Country and the lab of the Calibrator technique. 3. The results appressure of changes. Test results This is to certify that the | Calibrator has been calibra calibration procedure SMTi or was tested with its axis to the persent persen | ited in accordance with the P004-CA-156. vertical facing downwards and 0.1 Hz and hather maker's information income. | at the specific frequency
ave not been corrected
dicates that the instrum- | y using equivalent inse
for variations from a re
ent is insensitive to pro
the conditions under wh | ert volta
eferenc
essure | | Test specification 1. The Sound Country and the lab of | Calibrator has been calibra calibration procedure SMTi or was tested with its axis ware rounded to the nearest 1013.25 hectoPascals as the sound calibrator conforms. This does not imply that the | ited in accordance with the P004-CA-156. vertical facing downwards and 0.0 Hz and hather maker's information income to the requirements of annex the sound calibrator meets. | at the specific frequency
ave not been corrected
dicates that the instrum-
c B of IEC 60942: 1997 for
IEC 60942 under any of | y using equivalent inse
for variations from a re
ent is insensitive to pro
the conditions under wh | ert volta
eferenc
essure | | Test specification 1. The Sound Country and the lab of | Calibrator has been calibra calibration procedure SMTi or was tested with its axis ware rounded to the nearest 1013.25 hectoPascals as the sound calibrator conforms | ited in accordance with the P004-CA-156. vertical facing downwards and 0.0 Hz and hather maker's information income to the requirements of annex the sound calibrator meets. | at the specific frequency
ave not been corrected
dicates that the instrum-
c B of IEC 60942: 1997 for
IEC 60942 under any of | y using equivalent inse
for variations from a re
ent is insensitive to pro
the conditions under wh | ert volta
eferenc
essure | | Test specification 1. The Sound Country and the lab of | Calibrator has been calibra calibration procedure SMTi or was tested with its axis ware rounded to the nearest 1013.25 hectoPascals as the sound calibrator conforms. This does not imply that the | ited in accordance with the P004-CA-156. vertical facing downwards and 0.0 Hz and hather maker's information income to the requirements of annex the sound calibrator meets. | at the specific frequency
ave not been corrected
dicates that the instrum-
c B of IEC 60942: 1997 for
IEC 60942 under any of | y using equivalent inse
for variations from a re
ent is insensitive to pro
the conditions under wh | ert volta
eferenc
essure | | Test specification 1. The Sound Country and the lab of | Calibrator has been calibra calibration procedure SMTi or was tested with its axis was are rounded to the nearest 1013.25 hectoPascals as the sound calibrator conforms. This does not imply that the med measurements are p | ited in accordance with the P004-CA-156. vertical facing downwards and 0.0 Hz and hather maker's information income to the requirements of annex the sound calibrator meets. | at the specific frequency
ave not been corrected
dicates that the instrum-
c B of IEC 60942: 1997 for
IEC 60942 under any of | r the conditions under where conditions. | ert volta
eferenc
essure | | Test specification 1. The Sound Country and the lab of the calibrate technique. 3. The results a pressure of changes. Test results This is to certify that the test was performed. Details of the performance. | Calibrator has been calibra calibration procedure SMTI or was tested with its axis vare rounded to the nearest 1013.25 hectoPascals as the sound calibrator conforms. This does not imply that the med measurements are purious and measurements are purious and measurements. | ted in accordance with the P004-CA-156. vertical facing downwards at 0.01 dB and 0.1 Hz and has the maker's information income to the requirements of anneate sound calibrator meets are sented on page 2 of this Date: 13 Juli | at the specific frequency ave not been corrected dicates that the instrument as B of IEC 60942: 1997 for IEC 60942 under any of a certificate. | r the conditions under whether conditions. | eference
essure | | Test specification 1. The Sound County and the lab of the calibrate technique. 3. The results apressure of changes. Test results This is to certify that the test was performed. Details of the performance. Approved Signator. Comments: The results | Calibrator
has been calibra calibration procedure SMTi or was tested with its axis was are rounded to the nearest 1013.25 hectoPascals as the sound calibrator conforms. This does not imply that the med measurements are p | ted in accordance with the P004-CA-156. vertical facing downwards at 0.01 dB and 0.1 Hz and has the maker's information income to the requirements of anneate sound calibrator meets are sented on page 2 of this page 2. | at the specific frequency ave not been corrected dicates that the instrument as B of IEC 60942: 1997 for IEC 60942 under any of a certificate. | r the conditions under whether conditions. | eference
essure | | Test specification 1. The Sound County and the lab of the calibrate technique. 3. The results apressure of changes. Test results This is to certify that the test was performed. Details of the performance. Approved Signator Comments: The results | Calibrator has been calibra calibration procedure SMTi or was tested with its axis was remarked to the nearest 1013.25 hectoPascals as the sound calibrator conforms. This does not imply that the med measurements are pure those of the process of the sound calibrator conforms. This does not imply that the med measurements are pure those of the process of the process of the sound calibrator conforms. This does not imply that the med measurements are pure the process of | ted in accordance with the P004-CA-156. vertical facing downwards at 0.01 dB and 0.1 Hz and has the maker's information income to the requirements of anneate sound calibrator meets are sented on page 2 of this page 2. | at the specific frequency ave not been corrected dicates that the instrum- a B of IEC 60942: 1997 for IEC 60942 under any of a certificate. Company C of the instrument on the | r the conditions under whether conditions. | eferencessure | International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full. APPENDIX F AIR QUALITY MONITORING RESULTS AND GRAPHICAL PRESENTATION ## **APPENDIX F: Air Quality Monitoring Results** 1-hour TSP Monitoring Results at Station ASR8 | Date | Starting | | Concentra | tion, µg/m3 | | |-----------|----------|-------|-----------|-------------|---------| | | Time | 1st | 2nd | 3rd | Average | | 2-Mar-06 | 7:00 | 85.8 | 90.6 | 90.5 | 89.0 | | 8-Mar-06 | 7:00 | 132.8 | 127.7 | 135.2 | 131.9 | | 14-Mar-06 | 7:00 | 148.0 | 142.9 | 149.3 | 146.7 | | 20-Mar-06 | 7:00 | 138.6 | 137.4 | 141.3 | 139.1 | | 25-Mar-06 | 13:50 | 167.4 | 169.7 | 161.7 | 166.3 | | 31-Mar-06 | 7:00 | 156.5 | 157.6 | 156.9 | 157.0 | | | | | | Min. | 85.8 | | | | | | Max. | 169.7 | | | | | | Average | 138.3 | 1-hour TSP Monitoring Results at Station ASR17 | 1-110ul 1 3 r | - MOUNTOLI | ig Kesulia | at Statio | II AOKII | | |---------------|------------|------------|-----------|--------------|---------| | Date | Starting | | Concentra | ation, µg/m3 | | | | Time | 1st | 2nd | 3rd | Average | | 2-Mar-06 | 7:00 | 104.7 | 110.9 | 99.1 | 104.9 | | 8-Mar-06 | 7:00 | 143.6 | 152.4 | 156.9 | 151.0 | | 14-Mar-06 | 7:00 | 143.4 | 145.0 | 148.9 | 145.8 | | 20-Mar-06 | 7:00 | 164.3 | 162.1 | 163.5 | 163.3 | | 25-Mar-06 | 13:50 | 168.9 | 163.2 | 161.4 | 164.5 | | 31-Mar-06 | 7:00 | 172.4 | 170.1 | 173.9 | 172.1 | | | | | | Min. | 99.1 | | | | | | Max. | 173.9 | | | | | | Average | 150.3 | Remark: Bold value indicated an Action level exceedance Bold & Italic value indicated an Limit level exceedance # APPENDIX F: Air Quality Monitoring Results ## 24-hour TSP Monitoring Results at Station ASR8 | Date | Filter Weight (g) | eight (g) | Flow Rate (m³/min | • (m³/min.) | Elapse | Elapse Time | Sampling | Conc. | Weather | Particulate | _ | Total vol. | |-----------|-------------------|-----------|-------------------|-------------|---------|-------------|------------|----------|-------------|-------------|----------|------------| | | Initial | Final | Initial | Final | Initial | Final | Time(hrs.) | (//a/m³) | Condition | weight(g) | (m³/min) | (m³) | | 1-Mar-06 | 3.5469 | 3.6262 | 1.34 | 1.34 | 2246.2 | 2270.2 | 24.0 | 41.0 | Sunny | 0.08 | 1.34 | 1932.5 | | 7-Mar-06 | 3.5386 | 3.6672 | 1.34 | 1.34 | 2270.2 | 2294.2 | 24.0 | 66.5 | Fine | 0.13 | 1.34 | 1932.5 | | 13-Mar-06 | 3.4305 | 3.4956 | 1.28 | 1.28 | 2294.2 | 2318.2 | 24.0 | 35.3 | Sunny | 0.07 | 1.28 | 1843.2 | | 18-Mar-06 | 3.5646 | 3.7452 | 1.22 | 1.22 | 2318.2 | 2342.2 | 24.0 | 103.0 | Sunny | 0.18 | 1.22 | 1753.9 | | 24-Mar-06 | 3.6287 | 3.6787 | 1.41 | 1.41 | 2342.2 | 2366.2 | 24.0 | 24.7 | Cloudy | 0.05 | 1.41 | 2023.2 | | 30-Mar-06 | 3.5057 | 3.7662 | 1.29 | 1.29 | 2366.2 | 2390.2 | 24.0 | 140.8 | Sunny | 0.26 | 1.29 | 1850.4 | | | | | | | | | Min | 24.7 | | | | | | | | | | | | | Max | 140.8 | | | | | | | | | | | | | Average | 68.6 | | | | | ## 24-hour TSP Monitoring Results at Station ASR17 | Date | Filter W | Filter Weight (g) | Flow Rate (m | | Elapse | Elapse Time | Sampling | Conc. | Weather | Particulate | Av. flow | Total vol. | |-----------|----------|-------------------|--------------|-------|---------|-------------|------------|-----------------------|-----------|-------------|----------|------------| | | Initial | Final | Initial | Final | Initial | Final | Time(hrs.) | (//g/m ₃) | Condition | weight(g) | (m³/min) | (m³) | | 1-Mar-06 | 3.5742 | 3.6828 | 1.43 | 1.43 | 16341.4 | 16365.4 | 24.0 | 52.7 | Sunny | 0.11 | 1.43 | 2062.1 | | 7-Mar-06 | 3.5421 | 3.7565 | 1.43 | 1.43 | 16365.4 | 16389.4 | 24.0 | 104.0 | Fine | 0.21 | 1.43 | 2062.1 | | 13-Mar-06 | 3.4337 | 3.5049 | 1.40 | 1.40 | 16389.4 | l | 24.0 | 35.3 | Sunny | 0.07 | 1.40 | 2018.9 | | 18-Mar-06 | 3.6069 | 3.7620 | 1.43 | 1.43 | 16413.4 | 16437.4 | 24.0 | 75.2 | Sunny | 0.16 | 1.43 | 2062.1 | | 24-Mar-06 | 3,4504 | 3.5358 | 1.43 | 1.43 | 16437.4 | 1 | 24.0 | 41.4 | Cloudy | 0.09 | 1.43 | 2062.1 | | 30-Mar-06 | 3.5466 | 3.5780 | 1.12 | 1.12 | 16461.4 | 16485.4 | 24.0 | 19.5 | Sunny | 0.03 | 1.12 | 1608.5 | | | | | | | | | Min | 19.5 | | | | | | | | | | | | | Max | 104.0 | | | | | | | | | | | | | Амегале | 54.7 | | | | | Remark: Bold value indicated an Action level exceedance Bold & Italic value indicated an Limit level exceedance | | MAUNSELL A | ECOM | Contract No. SS M333 Reprovisioning of Diamond Hill
Crematorium | SCALE | N.T.S. | DATE | 2006 | 3 | |---|------------------------|---------|--|---------|--------|----------|------|-----| | | MACHINE | LCOM | Grapinoari rocomanon er i mear rer | CHECK | FSYY | DRAWN | LLM | C | | | Maunsell Environmental | - 1 6.1 | Monitoring Results for Location ASR8 and | JOB NO. | S07904 | APPENDI) | | Rev | | ٠ | Management Consultants | s L.ta | ASR17 | | 307804 | | F | - | APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATION ## Appendix G Noise Monitoring Results Daytime Noise Monitoring Results at Station SR3 | | Weather | Noise | Level for | 30-min, d | B(A) ⁺ | Baseline Noise | Calculated | Limit Laval | Exceedance | |-----------|-----------|---------|-----------|-----------|-------------------|----------------|------------------------------------|-----------------------|------------| | Date | Condition | Time | L90 | L10 | Leq | Level, dB(A) | Construction Noise
Level, dB(A) | Limit Level,
dB(A) | (Y/N) | | 2-Mar-06 | Sunny | 8:50 | 62.1 | 66.5 | 64.6 | 65.1 | *Note | 70 | N | | 8-Mar-06 | Fine | 8:42 | 61.7 | 66.5 | 64.0 | 65.1 | *Note | 70 | . N | | 14-Mar-06 | Sunny | 8:50 | 63.4 | 67.4 | 65.0 | 65.1 | *Note | 70 | N | | 20-Mar-06 | Sunny | 9:40 | 62.7 | 67.2 | 65.6 | 65.1 | 56.0 | 70 | N | | 31-Mar-06 | Sunny | 9:00 | 63.4 | 68.5 | 66.2 | 65.1 | 59.7 | 70 | N | | | | Min | 61.7 | 66.5 | 64.0 | | | | | | | | Max | 63.4 | 68.5 | 66.2 | | | | | | | | Average | 62.7 | 67.2 | 65.1 | | | | | ## Daytime Noise Monitoring Results at Station SR4 | D-4- | Weather | Noise | Level for | 30-min, d | B(A) [†] | Baseline Noise | Calculated Construction Noise | Limit Level, | Exceedance | |-----------|-----------|---------|-----------|-----------|-------------------|----------------|-------------------------------|--------------|------------| | Date | Condition | Time | L90 | L10 | Leq | Level, dB(A) | Level, dB(A) | dB(A) | (Y/N) | | 2-Mar-06 | Sunny | 7:55 | 60.5 | 65.2 | 63.0 | 65.6 | *Note | 70 | N | | 8-Mar-06 | Fine | 8:00 | 61.0 | 65.7 | 63.8 | 65.6 | *Note | 70 | N | | 14-Mar-06 | Sunny | 8:00 | 61.0 | 65.2 | 63.8 | 65.6 | *Note | 70 | N | | 20-Mar-06 | Sunny | 8:55 | 62.0 | 66.5 | 64.0 | 65.6 | *Note | 70 | N | | 31-Mar-06 | Sunny | 8:13 | 61.8 | 65.5 | 63.5 | 65.6 | *Note | 70 | N | | | | Min | 60.5 | 65.2 | 63.0 | | * | | | | | | Max | 62.0 | 66.5 | 64.0 |] | | | | | | | Average | 61.3 | 65.6 | 63.6 | j | | | | ## Daytime Noise Monitoring Results at Station SR6 | D-4- | Weather | Noise | Level for | 30-min, d | B(A) [†] | Baseline Noise | Calculated
Construction Noise | Limit Level, | Exceedance | |-----------|-----------|---------|-----------|-----------|-------------------|----------------|----------------------------------|--------------|------------| | Date | Condition | Time | L90 | L10 | Leq | Level, dB(A) | Level, dB(A) | dB(A) | (Y/N) | | 2-Mar-06 | Sunny | 7:00 | 56.5 | 61.2 | 60.0 | 68.5 | *Note | 75 | N | | 8-Mar-06 | Fine | 7:15 | 55.8 | 60.2 | 58.8 | 68.5 | *Note | 75 | Z | | 14-Mar-06 | Sunny | 7:10 | 56.2 | 60.5 | 58.8 | 68.5 | *Note | 75 | N | | 20-Mar-06 | Sunny | 8:00 | 58.5 | 63.4 | 60.5 | 68.5 | *Note | 75 | N | | 31-Mar-06 | Sunny | 7:25 | 56.2 | 60.5 | 58.6 | 68.5 | *Note | 75 | N | | | | Min | 55.8 | 60.2 | 58.6 | | | | | | | | Max | 58.5 | 63.4 | 60.5 | | | | | | | | Average | 56.6 | 61.2 | 59.3 | | | | | *- Façade measurement Bold & Italic value indicated an Limit level exceedance Note: Measured noise level is less than the baseline noise level. APPENDIX H SUMMARY OF WEEKLY ENVIRONMENTAL SITE INSPECTION OBSERVATIONS ## Appendix H Summary of Weekly Environmental Site Inspection Observations ## Inspection Information |
Date | 1 March 2006 | |------|-----------------| | | 9:30 – 11:00 am | ## Remarks/Observations ## Water Quality 1. No violation was observed in this site inspection. ## Air Quality 2. Following the previous inspection, the slopes were needed to cover by tarpaulin sheet. The Contractor reminded to provide it as soon as possible. ## Noise 3. No violation was observed in this site inspection. ## Waste/Chemical Management - 4. Following the previous inspection, the chemical wastes were stored in proper storage areas. - 5. The general refuse was not disposed properly and regularly. The contractor was reminded to dispose it as soon as possible. ## Landscape and Visual 6. No violation was observed in this site inspection. ## Others 7. No violation was observed in this site inspection. ## Inspection Information | Date | 8 March 2006 | |------|---------------| | Time | 9:30 11:30 am | ## Remarks/Observations ## Water Quality 1. No violation was observed in this site inspection. ## Air Quality - 2. Following the previous inspection, the slopes were not covered by tarpaulin sheet. The contractor was reminded to cover it as soon as possible. - De-bagging, batching and mixing processes were not carried out in sheltered areas during the use of bagged cement. The contractor was reminded to improve it as soon as possible. ## Noise 4. No violation was observed in this site inspection. ## Waste/Chemical Management 5. Following the previous inspection, the general refuse was not disposed properly and regularly especially near stream. The contractor was reminded to dispose it as soon as possible. ## Landscape and Visual No violation was observed in this site inspection. ## Others 7. No violation was observed in this site inspection. ## Inspection Information | Date | 15 March 2006 | |------|-----------------| | | 9:30 – 11:15 am | ## Remarks/Observations ## Water Quality 1. No violation was observed in this site inspection. ## Air Quality - 2. Following the previous inspection, the slopes were not covered by tarpaulin sheet. The contractor was reminded to cover it as soon as possible. - Following the previous inspection, de-bagging, batching and mixing processes were not carried out in sheltered areas during the use of bagged cement. The contractor was reminded to do it as soon as possible. ## Noise 4. No violation was observed in this site inspection. ## Waste/Chemical Management - 5. Following the previous inspection, the general refuse was not disposed properly and regularly especially wood. The contractor was reminded to dispose it as soon as possible. - 6. Construction waste was not disposed properly in grease trap. The contractor was reminded to remove it as soon as possible. ## Landscape and Visual 7. No violation was observed in this site inspection. ## Others 8. No violation was observed in this site inspection. ## Inspection Information | Date | 22 March 2006 | |------|-----------------| | Time | 9:45 – 11:20 am | ## Remarks/Observations ## Water Quality 1. No violation was observed in this site inspection. ## Air Quality 2. Following the previous inspection, the slopes were not covered by tarpaulin sheet. The contractor was reminded to cover it as soon as possible. ## Noise 3. No violation was observed in this site inspection. ## Waste/Chemical Management 4. Following the previous inspection, the general refuse was not disposed properly and regularly. The contractor was reminded to dispose it as soon as possible. ## Landscape and Visual 5. No violation was observed in this site inspection. ## Others No violation was observed in this site inspection. # Inspection Information | Date | 29 March 2006 | |------|-----------------| | Time | 9:30 – 11:00 am | #### Remarks/Observations ## Water Quality 1. No violation was observed in this site inspection. # Air Quality 2. No violation was observed in this site inspection. ## Noise 3. No violation was observed in this site inspection. #### Waste/Chemical Management - 4. Following the previous inspection, the general refuse was not disposed properly and regularly. The contractor was reminded to dispose it as soon as possible. - 5. Following the previous inspection, the oil spillage was not avoided. The contractor was reminded to avoid it as soon as possible. # Landscape and Visual 6. No violation was observed in this site inspection. #### Others 7. No violation was observed in this site inspection. APPENDIX I STATUS OF ENVIRONMENTAL PERMITS/LICENCES # Appendix I # Status of Environmental Permits/Licenses | Permit No. | Valid | Period | | Section | | | Status | |---------------------------|----------------|----------------|-------------------------------|---------|---------|------|--------| | Permit No. | From | То | Jection Jection | | | | Status | | Environmental Per | mit & Furth | er Environn | nental Permit | | | | | | EP-179/2004/B | 14 Feb
2005 | N/A | Reprovisioning
Crematorium | of | Diamond | Hill | Valid | | Registration as a C | chemical Wa | ste Produc | er | | | | | | 5213-288-C3108-
10 | 6 Dec
2004 | N/A | Reprovisioning
Crematorium | of | Diamond | Hill | Valid | | Water Discharge L | icense | | | | | | | | RE/C0202/288/1 | 9 Mar
2005 | 31 Mar
2010 | Reprovisioning
Crematorium | of | Diamond | Hill | Valid | | Construction Noise | e Permit | | | | | | | | GW-RE0003-06 | 10 Feb
2006 | 9 Jul
2006 | Reprovisioning
Crematorium | of | Diamond | Hill | Valid | APPENDIX J IMPLEMENTATION SCHEDULE OF MITIGATION MEASURES # Appendix J – Environmental Mitigation Implementation Schedule | Recommended Mitigation Measures | Location and
Timing | Who to
Implement? | When to implement? | What
Requirements or
Standards to
Achieve? | Status | |---|---|------------------------|--|---|--------| | Air Quality Mitigation Measures | | | | | | | Special air pollution control systems shall be installed
and operate to reduce the emissions of
air pollutants to acceptable levels | New cremators in
New Crematorium | Arch SD | Design, Construction, Demolition and Operation stage | BPMAPCO | 1 | | FEHD shall apply for a Specified Process License
under the APCO | New Cremators in
the New
Crematorium /
prior to operation | FEHD | Construction,
Demolition and
Operation stage | APCO | N/A | | The efflux velocity of chimney shall be at least 15 m/s, the design diameter of the chimneys shall be 0.22 m and 0.30 m, the design chimney height shall be 101mP.D. (28.5m above ground), for 170 kg and 250 kg cremators respectively | Chimney of New
Crematorium /
design and
construction
stages | Arch SD | Design and
Construction stage | BPWAPCO | N/A | | If the interior wall of existing cremators and chimney
are confirmed dioxins contaminated,
special precautions shall be taken avoid fugitive
emissions of dioxin contaminated materials | Cremator room
and chimney in
Existing
Crematorium /
demolition | Arch
SD/Contractor | Demolition stage | | N/A | | Sufficient water spraying should be applied during the
construction work, the fugitive dust
generated from general construction dust would be
reduced by 90% | Project site /
construction and
demolition stages | Arch SD,
contractor | Construction and
Demolition stage | APCO | 1 | | Carry out a confirmatory test of dioxins in the
depositions on chimney wall, flue gas ducting
and combustion chambers when the existing
Crematorium is shut down | Chimney, flue and
cremators in
Existing
Crematorium /
decommissioning | FEHD, Arch SD | Demolition stage . | | N/A | | If the dioxin level of surface deposition is between 1
and 10 ppb I-TEQ, it is classified as
moderately contaminated with dioxins. The demolition
work site should be covered up to
avoid emission of fugitive dust during demolition | Chimney, flue and cremators in
Existing
Crematorium /
decommissioning | Arch SD 3 | Demolition stage | | N/A | | Recommended Mitigation Measures | Location and
Timing | Who to
Implement? | When to Implement? | What
Requirements or
Standards to
Achieve? | Status | |---|--|------------------------|--------------------|---|--------| | If the dioxin level of surface deposition exceeds 10 ppb I-TEQ, it is classified as severely dioxin-contaminated waste. If it is confirmed that the existing facilities are severely contaminated with dioxins, a special decommissioning method – Containment method – would be adopted | Chimney, flue and cremators in Existing Crematorium / decommissioning | Arch SD 3 | Demolition stage | | N/A | | All the demolition waste would be carefully handled,
sealed and treated as chemical waste.
The waste collector shall be responsible for preventing
fugitive dust emission when handling
the demolition waste | Chimney, flue and cremators in Existing Crematorium / demolition stage | Arch SD,
contractor | Demolition stage | | 1 | | Employ a registered asbestos contractor to remove
asbestos containing material during
the
demolition of the existing crematorium building | Cremator room in
Existing
Crematorium /
decommissioning | Arch SD,
contractor | Demolition stage | APCO | N/A | | Submit a formal AIR and Asbestos Abatement plan signed by a registered asbestos consultant to the Authority for approval under APCO 28 days prior to the start of any asbestos abatement work. | Cremator room in
Existing
Crematorium /
decommissioning | Arch SD,
consultant | Demolition stage | APCO . | N/A | | When removing asbestos containing materials, enclosure of the work area; containment and sealing for the asbestos containing waste; provision of personal decontamination facility; use of personal respiratory/protection equipment; use of vacuum cleaner equipped with highefficiency air particulate (HEPA) filter for cleaning up the work area; and carry out air quality monitoring during the asbestos abatement work | Cremator room in Existing Crematorium I decommissioning | Arch SD,
consultant | Demolition stage | APCO | N/A | | Appoint qualified personnel to carry out the asbestos containing material removal work, including a registered asbestos contractor to carry out the work; a registered asbestos supervisor to supervise the work; a registered asbestos laboratory to monitor the air quality, and a registered asbestos consultant to supervise and certify the asbestos abatement work. | Cremator room in
Existing
Crematorium /
decommissioning | Arch SD,
consultant | Demolition stage | APCO | N/A | | Recommended Mitigation Measures | Location and
Timing | Who to
Implement? | When to
Implement? | What
Requirements or
Standards to
Achieve? | Status | |--|---|--------------------------------|---|---|--------| | Erect a site barrier with the height of no less than 2.4m to enclose the construction site Apply frequent water spraying to ensure the surface of the construction site sufficiently wet to reduce fugitive dust due to wind erosion and transportation on unpaved haul road Cover up stockpiles of fill material and dusty material Instatl a vehicle-cleaning system at the main entrance of the construction site to clean up the vehicles before leaving the site The Air Pollution Control (Construction Dust) Regulation shall be followed for fugitive dust control | Project site /
construction and
demolition stages | Contractor | Construction and
Demolition stage | APCO, Air
Pollution
Control
(Construction
Dust) Regulation | • | | No more than 6 cremators (including both the existing and new ones) are in operation during commissioning test of new cremators. The commissioning test of each new cremator shall be recorded by a log book | Existing and new cremators in Exiting and New Crematorium / text and commissioning | Arch
SD/FEHD/
Contractor | Construction stage | | N/A | | Special air pollution control systems shall be installed
and operate to reduce the emissions of
air pollutants to acceptable levels | New cremators in
New Crematorium
/ all stages | Arch SD | Design,
Construction,
Demolition and
Operation stage | BPM/APCO | N/A | | Conduct baseline and regular 1-hour and 24-hour TSP monitoring. | A8 and A17 / baseline monitoring prior to Phase I & II works and regular monitoring throughout Phase I & II works | Contractor | Construction and Demolition stage | APCO, EM&A
Guidelines for
Development
Projects
in Hong Kong | 1 | | When the demolition material is confirmed to have
ACM, monitoring for asbestos fibre would be carried
out at the boundary of the construction site for
reassurance purposes as per the requirement of future | Construction site boundary / demolition | Contractor | Demolition stage | Asbestos Study
Report, AIR and
AAP to be
submitted under | N/A | | Recommended Mitigation Measures . | Location and
Timing | Who to
Implement? | When to Implement? | What
Requirements or
Standards to
Achieve? | Status | |---|---|----------------------|---------------------------------------|---|--------| | license for asbestos abatement, though it is not
expected that asbestos fibre would be liberated from
the demolition of the Existing Crematorium building. | | | | APCO, future
licence for
asbestos
abatement (if any) | | | Noise Mitigation Measures | | | | | | | Select quiet plant, which is defined as PME with a sound power level lower than that specified in GW-TM. Examples of quiet plant can be referred to those listed in British Standard BS5228. | Project site / construction and demolition stages | Contractor | Construction and
Demolition stages | GW-TM | 1 | | Where practicable, use movable barriers of 3 to 5 m height with a small cantilevered upper portion and skid footing can be located within a few metres from a stationary plant (e.g. generator, compressor, etc.) and within about 5 m for a mobile equipment (e.g. breaker, excavator, etc.), especially in the vicinity of SR3, SR4 and SR6. The purpose-built noise barriers or screens shall be constructed of appropriate materials with a minimum superficial density of 15kg/m2. | Project site / construction and demolition stages | Contractor | Construction and
Demolition stages | NCO | N/A | | Only well-maintained plant should be operated on
site and plant should be regularly serviced during
the construction works Plant that is used intermittently should be turned | Project site /
construction and
demolition stages | Contractor | Construction and
Demolition stages | NCO | 1 | | off or throttled down when not in active use | 1 | | | | | | Plant that is known to emit noise strongly in one
direction should be oriented to face away from
NSRs | | | | | | | Silencers, mufflers and enclosures for plant should
be used where possible and maintained
adequately throughout the works | | | | | | | Where possible mobile plant should be sited away from NSRs | | | | | | | Recommended Mitigation Measures | Location and
Timing | Who to Implement? | When to implement? | What
Requirements or
Standards to
Achieve? | Status | |--|---|-------------------|--------------------|--|--------| | Stockpiles of excavated materials and other
structures such as site buildings should be used
effectively to screen noise from the works | | | | | | | Liaise with the school and the Examination Authority to ascertain the dates and times of examination periods during the course of the construction/ demolition works so as to avoid any noisy activities during these periods. Programme of the on-site works should hence be well programmed such that the noisier construction activities would not be coincided with the examination of the schools. | Project site /
construction and
demolition stages | Contractor | Demolition stage | NCO | 4 | | Conduct regular noise monitoring. | SR 3, SR 4 and
SR
6 / Phase I & II
works | Contractor | Demolition stage | NCO, EM&A
Guidelines for
Development
Projects
in Hong Kong | 1 | | Land Contamination Mitigation Measures Additional site investigations in areas of the site that are currently in use and cannot be readily accessed. These investigations will be carried out once the existing facility has been decommissioned. The additional site investigations are required in the vicinity of the existing CLP secondary substation, and around the cremators and flues inside the crematorium building. Once access to these areas is available, a sampling and analysis plan will be prepared for approval by EPD, additional investigations will take
place, and the need for remedial works will be determined. Any remedial works required will be in addition to those described in this current report. | CLP secondary substation and cremator room/ demolition stage (Phase I - CLP secondary substation; Phase II - cremator room) | Contractor | Demolition stage | ProPECC PN 3/94 | 4 | | Once the Existing Crematorium has ceased operating during Phase II, confirmatory surface | Locations S1 to S6 specified in the | Contractor | Demolition stage | ProPECC PN 3/94 | N/A | | Recommended Mitigation Measures | Location and
Timing | Who to
Implement? | When to
Implement? | What
Requirements or
Standards to
Achieve? | Status | |--|--|----------------------|-----------------------|---|--------| | samples will be taken from the samples points S1 to S6 at a depth of 0.1m, and these samples will be analysed for the same suite of determinands (i.e. dioxins, metals and PAH) in order to confirm that no further contamination has occurred. The Remediation Action Plan will be revised on the basis of these results. | CAP/demolition | • | | | | | The underground fuel storage tank and associated pipework will be removed as part of the site formation works. The base of the excavations will be inspected during and after tank removal by a suitably experienced environmental specialist in order to determine whether there is any visual or olfactory evidence of fuel contamination. If such contamination is suspected, then confirmatory soil sampling will be carried out, and the samples analysed for TPH. | Underground fuel
storage tank/during
and after tank
removal | Contractor | Demolition stage | ProPECC PN 3/94 and Guidance Notes for Investigation and Remediation of Contaminated Sites of Petrol Filling Stations, Boatyards and Car Repair / Dismantling Workshops | N/A | | Summary of remediation works at locations S3 and S5: | | | | | | | Mark out 5m radius around S3 and S5 2. Excavate to depth of 0.5m 3. Transport to landfill site for final disposal4. Take 4 samples from edges of excavation and one sample from base of excavation, analyse for lead and tin 5. If the results exceed Dutch B Levels, extend excavation to a further 5 m radius and 0.5 m depth in the quadrant where the contaminated samples is encountered and repeat steps 3 and 4 6. If the results less than Dutch B Levels, then remediation completed. | Locations S3 and
S5 specified in
CAP/demolition | Contractor | Demolition stage | ProPECC PN3/94 | N/A | | Recommended Mitigation Measures | Location and
Timing | Who to
Implement? | When to
Implement? | What
Requirements or
Standards to
Achieve? | Status | |---|---|----------------------|-----------------------|--|--------| | During removal of the underground fuel storage tank, appropriate precautions should be taken to avoid contamination. All fuel tanks and associated pipework should be emptied prior to any demolition work being undertaken. Any remaining sludge or sediment in the tanks or pipework should be removed and disposed of as chemical waste in accordance with the appropriate regulations for disposal of such material. | Underground fuel
storage tank /
Phase II demolition | Agent Contractor | Demolition stage | ProPECC PN 3/94
and Guidance
Notes for
Investigation and
Remediation of
Contaminated
Sites of Petrol
Filling Stations,
Boatyards and Car
Repair /
Dismantling
Workshops | N∕A | | Should contamination be encountered beneath the fuel tank or the CLP secondary substation, further remedial work will be required. Such potential contamination would consist of either TPH (in the case of the fuel tank) or PCBs (in the case of the CLP secondary substation). As a realistic worst-case estimate, the PCB contaminated soil at CLP secondary substation may require stabilisation with cement prior to disposal to landfill. A realistic worst case estimate is that the volume of TPH contaminated soil at underground storage tank would require landfill disposal. | CLP secondary
substation /Phase I
demolition and
underground fuel
tank / Phase II
demolition | Contractor | Demolition stage | ProPECC PN 3/94 and Guidance Notes for Investigation and Remediation of Contaminated Sites of Petrol Filling Stations, Boalyards and Car Repair / Dismantling Workshops | N∕A | | Health and Safety Precautions during Remedial
Works | | | | | | | The site workers engaged in the remedial works should be provided with adequate personal protective equipment, which should include: - Protective footwear; - Gloves; - Dust masks; and - Overalts. A clean area should be provided, equipped with washing facilities. Eating, drinking and smoking should only be permitted within designated "clean" areas after washing. Excavated material should not be stockpiled, but should immediately be treated/transported to landfill on a daily basis | All areas requiring
remedial works in
Project site /
demolition during
Phases I and II | Contractor | Demolition stage | ProPECC PN 3/94 and Guidance Notes for Investigation and Remediation of Contaminated Sites of Petrol Filling Stations, Boatyards and Car Repair / Dismantling | N/A | | - | | |---|--| | | | | | | | | | | | | | | | | Recommended Mitigation Measures | Location and
Timing | Who to
implement? | When to implement? | What
Requirements or
Standards to
Achieve? | Status | |--|--|----------------------|--------------------|--|--------| | Avoidance of Impacts on Water Quality during Remedial Works In order to avoid impacts on water quality during remedial works, care will be taken to minimise the mobilisation of sediment during excavation and transport. Measures to be adopted will be based on the recommendations set out in Practice Note for Professional Persons ProPECC PN1/94 "Construction Site Drainage". The results of the site investigation suggest that there is unlikely to be any requirement for dewatering of excavations, since groundwater was not encountered in any of the exploratory holes. The contractor carrying out the remedial works will be required to submit a method statement detailing the measures to be taken to avoid water quality impacts. Typical measures would include; - Carry out the works during the dry season (i.e. October to March) if possible; - Use bunds or perimeter drains to prevent run-off water entering excavations; - Sheet or otherwise cover excavations whenever rainstorms are expected to occur; - Minimise the requirements for stockpiling of material and ensure any stockpiles are covered; - Temporary on-wit stockpiling of contaminated materials should be avoided, and all excavated contaminated soils/materials should be disposed of on a daily basis; - Ensure that any
discharges to storm drains pass through an appropriate silt trap. | All areas requiring remedial works in Project site I demolition during Phases I and II | Agent Contractor | Demolition stage | Workshops ProPECC PN 3/94, ProPECC PN 1/94 and Guidance Notes for Investigation and Remediation of Contaminated Sites of Petrol Filling Stations, Boatyards and Car Repair / Dismantting Workshops | N/A | | Waste Disposal Requirements during Remedial Works An application for permission to dispose of excavated material should be made to the Facilities Management Group of EPD three months prior to disposal. A "tripticket" system should be implemented. Each load of contaminated soil despatched to landfill should be | All areas requiring
remedial works in
Project site /
demolition during
Phases I and II | Contractor | Demolition stage | ProPECC PN 3/94,
Waste Disposal
Ordinance (Cap.
354), WBTC No.
21/2002 and | N/A | | Recommended Mitigation Measures | Location and
Timing | Who to implement? | When to
Implement? | What
Requirements or
Standards to
Achieve? | Status | |--|---|-------------------|---------------------------------------|--|--------| | accompanied by an admission ticket. Vehicles leaving the site should be adequately sheeted to prevent dispersion of contaminated material during transport. The wheels of vehicles should be cleaned prior to leaving site, to prevent contaminated material leaving site on the wheels of vehicles. | | | | Guidance Notes
for Investigation
and Remediation
of Contaminated
Sites of Petrol
Filling Stations,
Boatyards and Car
Repair /
Dismantling
Workshops | | | Compliance Report for Remedial Works Following completion of remediation works, a | All areas requiring | Agent Contractor | Demolition stage | ProPECC PN 3/94 | N/A | | Remediation Report should be compiled and submitted, to demonstrate that the remediation works have been carried out in accordance with the Remediation Action Plan. The Remediation Report should include details of the excavation works carried out, records of material taken to landfill, and results of confirmatory testing, and should be submitted to EPD for approval before the commencement of building works. | remedial works in
Project site / after
completion of
remediation works | Agein Collector | Deniminal Stage | and Guidance Notes for Investigation and Remediation of Contaminated Sites of Petrol Filling Stations, Boatyards and Car Repair / Dismantling Workshops | | | Land Contamination Mitigation Measures Conduct supplementary site investigation for TPH and PCB in soil samples. | CLP substation /
after
decommissioning
but prior to
demolition during
Phase I work | Contractor | Demolition stage | CAR, RAP, future
sampling and
analysis plan | ٧ | | Conduct confirmatory testing of PAH, dioxins and metals (the "Dutch List") in soil samples. | S1 to S6 / Phase II work | Contractor | Construction and
Demolition stages | CAR, RAP, future
sampling and
analysis plan | N/A | | If fuel contamination underneath the underground fuel tank is suspected, confirmatory soil sampling will be carried out for analysis of TPH. | Underneath the
underground fuel
tank / Phase II | Contractor | Demolition stages | CAR, RAP, future
sampling and
analysis plan | N/A | | Conduct confirmatory testing of tin and lead in soil | S3 and S5 / during | Contractor | Construction and | CAR, RAP, future | N/A | | Recommended Mitigation Measures | Location and
Timing | Who to Implement? | When to
Implement? | What
Requirements or
Standards to
Achieve? | Status | |---|---|-------------------|--|---|----------| | samples to confirm all contaminated soil has been excavated. | Phase II work following excavation at each location | | Demolition stages | sampling and
analysis plan | : | | Waste Management Mitigation Measures Good Site Practice Obtain relevant waste disposal permits from the appropriate authorities, in accordance with the Waste Disposal Ordinance (Cap. 354), Waste Disposal (Chemical Waste) (General) Regulation (Cap. 354) and the Land (Miscellaneous Provision) Ordinance(Cap. 28) Prepare a Waste Management Plan approved by the Engineers / Supervising Officer of the Project in accordance with Environment, Transport and Works Bureau Technical Circular (Works) (ETWBTC(W)) 15/2003, Waste Management On Construction Sites Nominate an approved person, such as site manager, to be responsible for good site practice, arrangements for collection and effective disposal of all types of wastes generated on-site to appropriate facility Use waste haulier authorized or licensed to collect specific category of waste Establish trip ticket system as contractual requirement (with reference to Works Branch Technical Circular (WBTC) No. 21/2002) for monitoring of public fill and C&D waste at public filling facilities and landfills. Such activities should be monitored by the Environmental Team Provide training to site staff in terms of proper waste management and chemical waste handling procedures Separate chemical wastes for special handling and dispose them at licensed facility for treatment Establish routine cleaning and maintenance programme for drainage systems, sumps and oil interceptors Provide sufficient waste disposal points and regular | Project site/
design,
construction and
demolition stages | Contractor | Design, Construction and Demolition stages | Waste Disposal Ordinance (Cap. 354), Waste Disposal(Chemical Waste) (General) Regulation(Cap. 354) Land(Miscellaneou s Provision) Ordinance(Cap. 28) WDO, ETWBTC(W) 15/2003, WBTC No. 21/2002 | V | | Recommended Mitigation Measures | Location and
Timing | Who to
Implement? | When to
Implement? | What
Requirements or
Standards to
Achieve? | Status | |--|--|----------------------|--|---|--------| | collection for disposal Adopt measures to minimize windblown litter and dust during transportation of waste, such as covering trucks or transporting wastes in enclosed containers Establish recording system for the amount of wastes generated, recycled and disposed of (including the disposal sites) | | | | | | | Waste Management Plan The contractor should submit the Waste Management Plan to Engineer/Supervising Officer of the Project for approval. The Waste Management Plan should describe the arrangements
for avoidance, reuse, recovery and recycling, storage, collection, treatment and disposal of different categories of waste to be generated from the activities of the Project and indicate the disposal location(s) of all waste. A trip ticket system shall be included in the Waste Management Plan. | Project site /
design,
construction and
demolition stages | Contractor | Design,
Construction and
Demolition stages | Waste Disposal
Ordinance (Cap.
354) | * | | Waste Reduction Measures • Minimize the damage or contamination of construction material by proper storage and site practices • Plan and stock construction materials carefully to minimize amount of waste generated and avoid unnecessary generation of waste • Prior to disposal of C&D waste, wood, steel and other metals should be separated for reuse and / or recycling to minimize the quantity of waste to be disposed of to landfill • Minimize use of wood and reuse non-timber formwork to reduce the amount of C&D waste • Recycle any unused chemicals or those with remaining functional capacity as far as practicable • As far as practicable, segregate and store different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal • Encourage collection of aluminium cans, plastic bottles and packaging material (e.g. carton boxes) and office paper by individual collectors, separate labeled | Project site /
construction and
demolition stages | Agent Contractor | Construction and Demolition stages | WBTC No. 32/92,
5/98 and 19/99 | 1 | | Recommended Mitigation Measures | Location and
Timing | Who to implement? | When to
Implement? | What
Requirements or
Standards to
Achieve? | Status | |--|---|-------------------|--|---|----------| | bins should be provided to help segregate this waste
from other general refuse generated by the work force | | | | | <u> </u> | | Excavated Material Rock and soil generated from excavation should be reused for site formation as far as possible. In addition, excavated material from foundation work can be reused for landscaping as far as practicable to avoid disposal off-site. | Project site /
construction and
demolition stages | Contractor | Construction and Demolition stages | WBTC 12/2000 | 1 | | Construction and Demolition Material Careful design, planning and good site management can minimize over-ordering and generation of waste materials such as concrete, mortar and cement grouts. Standard formwork should be used as far as practicable, wooden formwork should be replaced by metal ones whenever possible. Alternatives such as plastic fencing and reusable site office structures can also minimize C&D waste generation. The contractor should recycle as much as possible of the C&D material on-site. Public fill and C&D waste should be segregated and stored in different containers or skips to enhance reuse or recycling of materials and their proper disposal. Materials such as concrete and masonry can be crushed and used as fill and steel reinforcing bar can be used by scrap steel mills. Different areas of sites should be designated for such segregation and storage. To maximize landfill life, government policy discourages the disposal of C&D materials with more than 20% inert material by volume (or 30% inert material by weight) at landfill, inert C&D material (public fill) should be directed to an approved public filling area, where it has the added benefit of offsetting the need for removal of materials from borrow areas for reclamation purposes. | Project site / construction and demolition stages | Contractor | Design,
Construction and
Demolition stages | WBTC 5/98
and 19/99 | | | Contaminated Material – Further Contamination | CLP secondary | Contractor | Demolition | ProPECC PN | N/A | | Recommende | ed Mitigation Meas | ures | Location and
Timing | Who to
Implement? | When to Implement? | What
Requirements or
Standards to
Achieve? | Status | |---|---|-------------------------|------------------------|----------------------|--------------------|---|--------| | Location | Investigation
Parameter | Investigation
Period | | | | | | | Cremators/
flue/chimney
and
surrounding
areas | Asbestos
(building
structure) | Phase II | | | | | | | CLP
secondary
substation | PCB, TPH (soil samples) | Phase I | | | | | | | Cremators/
flue/chimney
and
surrounding
areas | Dioxins, heavy
metals, PAH
(ash
waste) | Phase II | | | | | | | Surface soil
around
Existing
Crematorim | Dioxins, heavy
metals, PAH
(soil
sample) | Phase II | | | | | | | information on
at cremators / | materials requiring | | | | | | | | Recommended Mitigation Measures | Location and
Timing | Who to
Implement? | When to
Implement? | What
Requirements or
Standards to
Achieve? | Status | |--|--|----------------------|-----------------------|---|--------| | Samples of ash/particulate matters should be collected from within the cremators (including the bottom ash), chimney walls, flues and surrounding area of the Existing Crematorium for analysis of dioxin, heavy metals and PAHs by a HOKLAS accredited laboratory. A consultant experienced in the abatement of chemical wastes particularly the handling of DCM, should be appointed in order to assist with the evaluation of the information and prepare an abatement plan for the ash waste. Such a plan shall be submitted to EPD and the Labour Department (LD) to establish an acceptable and safe method for these potentially hazardous wastes. The abatement plan should identify the method of abatement, the performance criteria for the protection of workers and the environment and any emergency | | | | | | | It must be ensured that the treatment of ash wastes will comply with all routine construction site safety procedures would apply as well as statutory requirements under the Occupational Safety and Health Ordinance and Factories and Industrial Undertakings Ordinance. Due to the difficulties in establishing permanent and effective engineering controls, the protection of workers is likely to be at the worker level. A safe system of work must be provided, and training and suitable personal protective equipment as well as hygienic decontamination facilities should be provided. It is recommended that the methods to be adopted by the contractor for disposal of the ash waste should be agreed with LD and EPD. | Cremator room in Existing Crematorium / before demolition and after decommission | Contractor | Demolition stage | ProPECC PN 3/94 | N/A | | Sufficient time should be allocated to abate all ash waste with DCM/HMCM/PAHCM. The contractor should ensure the implications of dust | | | | ProPECC PN 3/94
Code of Practice
on | N/A | | Recommended Mitigation Measures | Location and
Timing | Who to implement? | When to
Implement? | What
Requirements or
Standards to
Achieve? | Status |
---|--|-------------------|-----------------------|--|--------| | containing DCM/HMCM on air quality and workers health during the clean up work are mitigated. Since DCM is chemically related to Polychlorinated Biphenyl (PCB) wastes, the requirements of the Code of Practice on the Handling, Transportation and Disposal of (PCB) Wastes should be referenced when developing the abatement plan. | | | | the Handling,
Transportation and
Disposal of (PCB)
Wastes | | | A land contamination site investigation was carried out under this EIA to determine disposal requirements for contaminated soil. Further site investigation on soil around CLP secondary substation is needed when decommissioned, which will be during Phase I of the works. In addition, confirmatory testing on DCM level in locations S1 to S6 will be required to identify the appropriate remediation and disposal requirements during Phase II of the works. | Locations S1 to S6
in CAP / prior to
Phase II
demolition | | Demolition stage | | N/A | | Asbestos Containing Materials (ACM) Further asbestos assessment should be carried out when access to the cremators /flue /chimney is accessible after decommissioning and before demolition. An AMP should be prepared. The AAP should be prepared. The AAP should be prepared and submitted to EPD for approval prior to commencement of demolition works in accordance to the APCO. It is preferable to remove all ACM before actual demolition. A registered asbestos removal contractor should be employed to remove all ACM in accordance with the approved AAP which will be prepared in due course in accordance with the Code of Practice (COP) on Asbestos Control for Safe Handling of Low Risk ACM and Asbestos Work Using Full Containment or Mini Containment Method published by EPD. A registered asbestos consultant should also be employed to | Cremator room in Existing Crematorium / before demolition and after decommission | Contractor | Demolition stage | Code of Practice (COP) on Asbestos Control for Safe Handling of Low Risk ACM and Asbestos Work Using Full Containment or Mini Containment Method COP on Handling, Transportation and Disposal of Asbestos Waste under the Waste Disposal | N/A | | Recommend | ied Mitigation Meas | ures | Location and
Timing | Who to
Implement? | When to Implement? | What
Requirements or
Standards to
Achieve? | Status | |--|---|---|---|----------------------|--------------------|---|--------| | the contracto
on Handling,
Waste under | atement works. For the should observe the Transportation and Lethe Waste Disposal laste) (General) Requ | COP
Disposal of Asbestos | | | | (Chemical
Waste) (General)
Regulation
APCO | | | Dioxin Conta
Containing M
Polyaromatic
(PAHCM) fro
Crematorium
Proposed Co
with DCM/HM | ining Materials (DCM
laterials (HMCM) /
Hydrocarbon Contai
m Demolition of the E
Intamination Classific |) / Heavy Metal
ning Materials
Existing | Cremator room in
Existing
Crematorium /
before demolition
and after
decommission | Contractor | Demolition | ProPECC PN3/94
USEPA dioxin
assessment
criterion | N/A | | Low/Non
Contaminat
ed by
DCM /
HMCM /
PAHCM | < 1 ppb TEQ | < Dutch "B" List | | | | | | | Moderately/
Severely
Contaminat
ed HMCM /
PAHCM | < 1 ppb TEQ | ≥ Dutch "B" List | | | | | | | Moderately
Contaminat
ed
DCM | ≥ 1 and <10 ppb
TEQ | Any level | | | | | | | Recommend | led Mitigation Meas | ures | Location and
Timing | Who to
Implement? | When to
Implement? | What
Requirements or
Standards to
Achieve? | Status | |--|--|--|---|----------------------|-----------------------|---|--------| | Severely
Contaminat
ed DCM | ≥10 ppb TEQ | Any level | | | | | | | Low/Non-Cor
PAHCM from
Where the as
DCM/HMCM/
should avoid
demolition. G
measures me
All such ash v
disposal of at
Subject to the
investigation,
ash waste is | landling, Treatment a
taminated DCM/HM.
Demolition of Existin
h waste contains low
PAHCM, the contract
ash waste becoming
eneral dust suppress
intioned in Section 4
waste can be directly
landfill.
e findings of the furth-
building structures we
found but contaminal
alt in accordance to? | ICM/ ng Crematorium infon contaminated itor airborne during iton should be followed. er asbestos where such ted with asbestos | Cremator room in
Existing
Crematorium /
demolition | Contractor | Demolition stage | APCO | N/A | | Moderately C
Moderately/S
from Demoliti
Crematorium
Procedure on
disposal of M | demolition, handling
oderately Contamina
derately/Severely Co | nd
nd HMCM/PAHCM
g, treatment and | Cremator room in
Existing
Crematorium /
demolition | Contractor | Demolition stage | Waste Disposal
(Chemical Waste)
(General)
Regulation | N∕A | | Recommend | Recommended MitIgation Measures | | Who to
Implement? | When to
Implement? | What
Requirements or
Standards to
Achieve? | Status | |---------------------|---|--|----------------------|-----------------------|---|--------| | Site
Preparation | The contractor should ensure the impacts of dust containing dioxin and/or heavy metals on air quality and workers health during the handling and transportation of the contaminated materials are mitigated. Except the cremators/flue/chimney, all removable items where moderately contaminated DCM or moderately/severely contaminated HMCM / PAHCM is identified should be removed as far as practicable to avoid obstructing the decontamination activities. Preliminary site decontamination of all debris shall be carried out using HEPA vacuum cleaner. The top portion of the chimney above the roof shall be enclosed by a chamber with three layers of polyethene sheets. At the entrance to the cremators /flues /chimney, a 3-chamber decontamination unit shall be constructed for entry and exit from the work area. The 3-chamber decontamination unit shall comprise a dirty room, a shower room and a clean room of at least 1m x 1m base each with 3 layers of fire retardant polyethene sheet where all workers shall carry out decontamination procedures before leaving the work area. Warning signs in both Chinese and English should be put up in conspicuous areas. | | | | | | | Recommend | Recommended Mitigation Measures | | Who to Implement? | When to implement? |
What
Requirements or
Standards to
Achieve? | Status | |---|--|--|-------------------|--------------------|---|--------| | | All workers shall wear full protective equipment, disposable protective coverall (such as Tyvek) (with hood and shoe covers), nitrile gloves, rubber boots (or boot covers), and full-face positive pressure respirators equipped with a combination cartridge that filters particulate and removes organic vapour. The organic vapour protection is an added protection against the unlikely exposure to any vapour. If ACM is identified in building structures where moderately contaminated DCM or moderately/severely contaminated HMCM / PAHCM is found, relevant abatement measures for building structures described in the AAP (see 7.7.16) should be implemented prior to the above site preparation. | | | | | | | Decontamin
ation,
demolition
and
handling | The cremators/flue/chimney shall be removed from top down starting from the chimney. Any ash or residues attached to the cremators/flue/chimney or any other building structures shall be removed by scrubbing and HEPA vacuuming. Wastes generated from the containment or decontamination unit including the protection clothing of the workers such as the coverall, nitrile glove, rubber boots and materials used for wet wiping shall be disposed of at landfill site. | Cremator room in Existing Crematorium / demolition | Contractor | Demolition stage | Waste Disposal
(Chemical Waste)
(General)
Regulation | N∕A | | Recommended Mitigation Measures | | Location and
Timing | Who to Implement? | When to implement? | What
Requirements or
Standards to
Achieve? | Status | |---------------------------------|--|------------------------|-------------------|--------------------|---|--------| | | After completion of removal, decontaminate all surfaces by HEPA vacuum. | | | | | | | Treatment | If ACM is identified in building structures where moderately contaminated DCM or moderately/severely contaminated HMCM / PAHCM is found, relevant abatement measures for building structures described in the AAP (see 7.7.16) should be implemented prior to the above decontamination, demolition and handling measures. The ash waste contains dioxin/heavy metals and in its untreated state would be classified as a chemical waste under the Waste Disposal (Chemical Waste) (General) Regulation. While the quantity of DCWHMCM is not | | | | | | | | expected to be significant, the levels of dioxin and heavy metals would affect the treatment option. Immobilization of the contaminated materials by mixing with cement followed by disposal at landfill (if landfill disposal criteria can be met) would be the most preferable option. | | | | | | | | Rather than treating the already incinerated ash waste by incineration, the ash waste with moderately contaminated | | | | | | | Recommended Mitigation Me | asures | Location and
Timing | Who to Implement? | When to Implement? | What
Requirements or
Standards to
Achieve? | Status | |--|--|------------------------|-------------------|--------------------|---|--------| | be collected and landfill disposal Management G In this case It is process would in mixing of the ash wast mixing and TCL carried out to establish cement to ash vof EPD, It is envisional involve the series of the series would involve the series and three cube blocks for each should then be correct | IMCM / PAHCM should do stabilized to meet criteria of the Facilities roup (FMG) of EPD. envisaged that the involve collection and e with cement. Pilot P tests should be the appropriate ratio of waste to the satisfaction aged that the pilot tests e mixing of say 5%, atios of cement to ash a replicate of 300 mm ratio. TCLP tests used to establish the to ash waste to the | | | | | | | Recommen | Recommended Mitigation Measures | | Who to
Implement? | When to
Implement? | What
Requirements or
Standards to
Achieve? | Status | |----------|--|--|----------------------|-----------------------|---|--------| | Disposal | After immobilization of the ash waste by mixing with cement in the correct ratio as determined by the pilot mixing and TCLP test, the waste materials should be placed inside polyethene lined steel drums for disposal at landfill. Transparent plastic sheeting of 0.15 mm thickness low-density polyethene or PVC should be employed. The drums should be 16 gauge steel or thicker and fitted with double bung fixed ends adequately sealed and well labelled in new or good condition. The drums should be clearly marked "DANGEROUS CHEMICAL WASTE" in English and Chinese. Prior agreement of the disposal criteria from the FMG of EPD and agreement to disposal from the landfill operator must be obtained. As a fall back option, if the landfill disposal criteria cannot be met after immobilization of the ash waste, disposal at the CWTC should be considered. The building structures will be disposal of at landfill. | Cremator room in Existing Crematorium / demolition | Contractor | Demolition stage | Waste Disposal
(Chemical Waste)
(General)
Regulation | N/A | | Recommend | Recommended Mitigation Measures | | Who to Implement? | When to implement? | What
Requirements or
Standards to
Achieve? | Status | |---|--|------------------|-------------------|--------------------|---|--------| | | If ACM is identified in building structures where moderately contaminated DCM or moderately/severely contaminated HMCM / PAHCM is found, relevant disposal measures for building structures described in the AAP (see 7.7.16) should be implemented instead. | Cremator room in | | | | | | Severely Cont
Demolition of
Procedure for
disposal of Se | Demolition, Handling, Treatment and Disposal of
Severely Contaminated DCM from
Demolition of the Existing Crematorium
Procedure for demolition, handling, treatment and
disposal of Severely Contaminated DCM
is listed below | | Contractor | Demolition stage | Waste Disposal
(Chemical Waste)
(General)
Regulation | N/A | | item | Procedure |
 | | | | | Site
Preparation | Except the cremators/flue/chimney, all removable items where severely contaminated DCM is identified should be removed from the cremator room as far as practicable to avoid obstructing the decontamination activities. Preliminary site decontamination of all debris shall be carried out using HEPA vacuum cleaner. The walls, floor and ceiling of the cremator room where severely contaminated DCM located shall be lined with 3 layers of fire retardant polyethene sheets. The top portion of the chimney above the roof shall be enclosed by a chamber with three layers of polyethene sheets. At the entrance to the cremators/flues/chimney, a 3-chamber | | | | | | | Recommended Mitigation Measures | Location and
Timing | Who to Implement? | When to Implement? | What
Requirements or
Standards to
Achieve? | Status | |---|------------------------|-------------------|--------------------|---|--------| | decontamination unit shall be constructed for entry and exit from the work area. The 3-chamber decontamination unit shall comprise a dirty room, a shower room and a clear room of at least 1m x 1m base each with 3 layers of fire retardant polyethene sheet where all workers shall carry out decontamination procedures before leaving the work area. Warning signs in both Chinese and English should be put up in conspicuous areas. | | | | | | | Air movers should be installed at the cremator room, and at the bottom of the chimney to exhaust air from the work area. A stand-by air mover shalf also be installed with each of the air movers. Sufficient air movement shall be maintained to give a minimum of 6 air changes per hour to the work area, and maintain a negative pressure of 0.05-0.15 inches of water within the work area throughout the entire course of the decommissioning works. A pressure monitor with printout records and audible alarm shall be installed at an easily accessible location to demonstrate tha negative pressure is maintained. New pre-filters and HEPA filters shall be used on the air movers. A copy of the maintenance records of | | | | | | | Recommended Mitigation Measures | Location and
Timing | Who to
implement? | When to
Implement? | What
Requirements or
Standards to
Achieve? | Status | |---|--|----------------------|-----------------------|---|--------| | the air movers should be kept on site for inspection upon request. The appointed contractor shall also check the differential pressure of the air mover to make sure the filter is not blocked. A differential pressure above 0.2 inches of water indicates that the filters would need to be changed. | - | | | | | | Smoke Test: before commencement of the decommissioning work, a smoke test with non-toxic smoke shall be carried out to ensure the air-tightness of the containment. Also check whether there are stagnant air pockets indicated by an aggregate of smoke that cannot effectively be extracted. After a successful test, switch on the air mover to exhaust smoke from the containment and to give a minimum of 6 air changes per hour, and check visually to see that the filters screen out the smoke effectively and if the pressure gauges read normal. If not, the air mover shall be sealed up and returned to the supplier workshop for necessary servicing, and replaced by a tested air mover. The normal reading pressure range for maintaining 6 air changes per hour shall be 1.5-4 mm/0.05-0.15 inches of water or equivalent | Cremator room in Existing Crematorium / demolition | Contractor | Demolition stage | Waste Disposal
(Chemical Waste)
(General)
Regulation | N/A | | Recommended Mitigation Measures | Location and
Timing | Who to
Implement? | When to implement? | What
Requirements or
Standards to
Achieve? | Status | |---|------------------------|----------------------|--------------------|---|--------| | (negative pressure). The audible alarm's integrity should also be checked and the trigger shall be at <1.5 mm/0.05 inches of water (negative pressure). Otherwise securely seal up all openings before switching off the air mover. | | | | | | | Treatment of WasterWorkers Safety Protection: the contractor shall be required to register as a Chemical Waste Producer. All workers shall wear full protective equipment, disposable protective coverall (such as Tyvek) (with hood and shoe covers), nitrile gloves, rubber boots (or boot covers), and full-face positive pressure respirators equipped with a combination cartridge that filters particulate and removes organic vapour. The organic vapour protection is an added protection against the unlikely exposure to any vapour as a necessary measure. | | | | | | | If ACM is identified in building structures where severely contaminated DCM is found, relevant abatement measures for building structures described in the AAP (see 7.7.16) should be implemented prior to the above site preparation. | | | | | | | Recommende | d Mitigation Measures | Location and
Timing | Who to Implement? | When to
Implement? | What
Requirements or
Standards to
Achieve? | Status | |---|---|---|-------------------|-----------------------|---|--------| | Decontamin
ation,
demolition
and
handling | The cremators/flue/chimney shall be removed from top down starting from the chimney. Any ash or residues attaching to the cremators/flue/chimney or any other building structures shall be removed by scrubbing and HEPA vacuuming. The detached sections of the building structures where severely contaminated DCM is located shall be wrapped with 2 layers of fire retardant polyethene sheets. A third layer shall then be wrapped and secured with duct tape. Decontaminate the outer layer of the wrapped flue sections by wel wiping. | Cremator room in
Existing
Crematorium /
demolition | Contractor | Demolition stage | Waste Disposal
(Chemical Waste)
(General)
Regulation | N/A | | | Wastes generated from the containment or decontamination unit including the fire retardant polyethene sheets, protection clothing of the workers such as the coverall, nitrile glove, rubber boots and materials used for wet wiping shall be disposed of at tandfill site. | Cremator room in
Existing
Crematorium /
demolition | Contractor | Demolition stage | Waste Disposal
(Chemical Waste)
(General)
Regulation | N∕A | | Recommended Mitigation Measures | Location and
Timing | Who to
Implement? | When to implement? | What
Requirements or
Standards to
Achieve? | Status |
--|------------------------|----------------------|--------------------|---|--------| | The quantity of wastewater generated from the decontaminated process will be very small but the contractor should take precautionary measures as to minimize the quantity of contaminated water arising. Nevertheless, if any contaminated wastewater needs to be discharged out of the site, it has to be properly treated to WPCO requirements with prior agreement from EPD on discharge standards. After completion of removal, decontaminate the surface where severely contaminated DCM was located, including the wrapped incinerator furnace and flue sections left within the containment, by wet wiping and HEPA vacuum. Then spray the innermost layer of the fire retardant polyethene sheet covering the wall, ceiling and floor with PVA. Upon drying, peet off this innermost layer of the polyethene sheet covering the containment and dispose of at landfill site. | | | | | | | Recommend | ed Mitigation Measures | Location and
Timing | Who to
Implement? | When to Implement? | What
Requirements or
Standards to
Achieve? | Status | |------------------------|--|--|----------------------|--------------------|---|--------| | | Repeat the above decontamination procedure for the second innermost layer of fire retardant polyethene sheet by wet wiping and HEPA vacuuming. After spraying with PVA, peel off this second innermost layer of the polyethene sheet covering the wall, ceiling and floor and dispose of at landfill site. Finally, the last layer of polyethene sheet shall then be taken down after spaying with PVA and be disposed as contaminated wastes. | | | | | | | Treatment and disposal | If ACM is identified in building structures where severely contaminated DCM is found, relevant abatement measures for building structures described in the AAP (see 7.7.16) should be implemented prior to the above decontamination, demolition and handling measures. Waste to be disposed to CWTC: all contaminated ash waste with severely contaminated DCM removed and the used HEPA filters shall be sent to CWTC in Tsing YI. The total volume should be confirmed by further site investigation. | Cremator room in Existing Crematorium / demolition | Contractor | Demolition stage | Waste Disposal
(Chemical Waste)
(General)
Regulation | N/A | | Recommended Mitigation Measures | Location and
Timing | Who to Implement? | When to Implement? | What
Requirements or
Standards to
Achieve? | Status | |--|------------------------|-------------------|--------------------|---|--------| | Waste to be Disposed of at Landfill: other wastes including the building structures and its associated panels a well as wastes generated from this decommissioning works are also considered as contaminated waste an shall be disposed of at a designated landfill. Wastes generated from this decommissioning works refer to the polyethene wrapping sheets for the building structures, waste generated from the dismantlement of the containment and decontamination units, and cloth used in wet wrapping, etc. as previously described in this section. They shall be placed into appropriate containers such as drums, jerticans, or heavy duty and leak-proof plastic as a prudent approach. A disposal permit has to be obtained from the Authority. The disposal trip ticket is required to be made available as record after disposal. If ACM is identified in building structures where severely contaminated DCM is found, relevant disposal measures for building structures described in the AAP (see 7.7.16) should be implemented in prior to the above disposal measures. | e d | | | | | | Recommended Mitigation Measures | Location and
Timing | Who to
Implement? | When to Implement? | What
Requirements or
Standards to
Achieve? | Status | |---|---|----------------------|--------------------|---|--------| | Dioxin Containing Materials (DCM) / Heavy Metal
Containing Materials (HMCM)
/Polyaromatic Hydrocarbon Containing Materials
(PAHCM) / Total Petroleum Hydrocarbon
Containing Materials (TPHCM) / Polychlorinated
Biphenyls Containing Materials
(PCBCM) from Soil Remediation at the Project Site | | | | | | | According to the CAR and RAP, less than 100 m3 of soil would require disposal at landfill. Relevant health and safety procedure, waste disposal requirements and compliance report are as detailed in Figure 6.3. Mitigation measures to avoid fugitive dust emission mentioned in S.4.7.2 should also be observed. | Locations S3 and
S5 of CAP /
demolition | Contractor | Demolition stage | ProPECC PN3/94
APCO | N/A | | In addition, after decommissioning but before demolition of the Existing Crematorium, further investigations during Phase I of the works at the vicinity of CLP secondary substation should also be carried out to determine if additional remediation (in addition to the current RAP) is required. Confirmatory test on levels of DCM, HMCM and PAHCM in locations S1 to S6 during Phase II of the works is also required to determine any further remediation. Itreatment/disposal. In addition, the ash waste in cremator/chimney/flues should also be collected for the testing of DCM/HMCM/PAHCM during Phase II of the works. The sampling and analysis plan should be prepared and submitted to EPD for approval. | CLP secondary substation / after decommission and before demolition | Contractor | Demolition stage | ProPECC PN3/94 | N/A | | All the aforementioned ACM / DCM / HMCM / PAHCM / TPHCM / PCBCM are classified as chemical waste. In addition to the measures mentioned above, the packaging, labelling and storage practices of chemical waste as stipulated in the following paragraphs should also be applied to these contaminated materials. | Project site /
demolition | Contractor | Demolition stage | Waste Disposal
(Chemical Waste)
(General)
Regulation | N/A | | Recommended Mitigation Measures | Location and
Timing | Who to
Implement? | When to implement? | What
Requirements or
Standards to
Achieve? | Status | |---|------------------------------
----------------------|--------------------|--|--------| | Chemical Waste All the chemical waste should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. The Contractor should register as a chemical waste producer. The chemical waste should be stored and collected by an approved contractor for disposal at a licensed facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation. Containers used for the storage of chemical waste should: | Project site /
demolition | Contractor | Demolition stage | Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Waste Disposal (Chemical Waste) (General) Regulation. | • | | Be suitable for the substance they are holding,
resistant to corrosion, maintained in good
condition, and securely closed; | | | | | | | Have a capacity of less than 450 L unless the
specifications have been approved by the EPD;
and | | | | | | | Display a label in English and Chinese in
accordance with instructions prescribed in
Schedule 2 of the Waste Disposal (Chemical
Waste) (General) Regulation. | | | | | | | The storage area for chemical waste should: | | 1 | | | | | Be clearly labeled and used solely for the storage
of chemical waste; | | | | | | | Be enclosed on at least 3 sides; | | | | | , | | Have an impermeable floor and bunding, of
capacity to accommodate 110% of the volume of
the largest container or 20% by volume of the
chemical waste stored in that area, whichever is
the greatest; | | | | | | | Have adequate ventitation; | | | 1 | | | | Be covered to prevent rainfall from entering (water
collected within the bund must be tested and
disposal as chemical waste if necessary); and | | | | | | | Be properly arranged so that incompatible | <u></u> | | | 1 | | | Recommended Mitigation Measures | Location and
Timing | Who to implement? | When to Implement? | What
Requirements or
Standards to
Achieve? | Status | |---|--|-------------------|-----------------------------------|---|--------| | materials are adequately separated. | | | | | | | The chemical waste should be disposed of by: A licensed waste collector; A facility licensed to receive chemical waste, such as the CWTC at Tsing Yi, which offers chemical waste collection service and can supply the necessary storage containers; and/or A waste recycling plant as approved by EPD. | Project site /
demolition | Contractor | Demolition stage | Code of Practice
on
the Packaging,
Labelling and
Storage
of Chemical
Wastes,
Waste Disposal
(Chemical Waste)
(General) | N/A | | General Refuse General refuse should be stored in enclosed bins or compaction units separated from C&D and chemical wastes. A reliable waste collector should be employed by the contractor to remove general refuse from the sile, separately from C&D and chemical wastes, on a daily or every second day basis to minimize odour, pest and litter impacts. The burning of refuse on construction sites is prohibited by law. Aluminum cans are often recovered from the waste stream by individual collectors if they are segregated or easily accessible. Therefore, separately labeled bins for deposit of these cans should be provided if feasible. Similarly, plastic bottles and carton package material generated on-site should be separated for recycling as far as practicable. Site office waste should be reduced through recycling of paper if volumes are large enough to warrant collection. Participation in a local collection scheme should be considered if one is available. | Project site / construction and demolition stages | Contractor | Construction and Demolition stage | Regulation. | | | Conduct supplementary site investigation for asbestos
in building structures and for dioxins,
metals (the "Dutch List") and PAH in ash/particular | Around existing
cremators,
chimney and flues | Contractor | Demolition stage | AIR, AMP/AAP to
be
submitted under | N/A | | 22 | | | | |----|--|--|--| | | | | | | | | | | | Recommended Mitigation Measures | Location and
Timing | Who to
Implement? | When to
Implement? | What
Requirements or
Standards to
Achieve? | Status | |---|--|-----------------------------|--------------------------------------|--|--------| | matter samples. | inside cremator
room / after
decommissioning
but prior to
demolition during
Phase II work | | | APCO, future
supplementary site
investigation plan | | | Landscape and Visual Mitigation Measures | | | | | | | The identification of the landscape and visual impacts will highlight those sources of conflict requiring design solutions or modifications to reduce the impacts and, if possible, blend the development with the surrounding landscape. The proposed landscape mitigation measures will be described and illustrated by means of site plans and photomontage and take into account factors including: | Project site /
design,
construction and
demolition stages | Contractor/FEH
D/Arch SD | Construction and
Demolition stage | EIAO-TM | N/A | | Screen planting | | | | | | | Transplanting of mature trees with good amenity value where appropriate | 1 | | | | | | Conservation of topsoil for reuse | | | | | | | Sensitive alignment of structures to minimise
disturbance to surrounding vegetation | | | | | | | Reinstatement of areas disturbed during construction | | | | | | | The design and finishes / colours of architectural
and engineering structures such as terminals and
pylons | | | | | | | Existing views, views of the development with no
mitigation, views with mitigation at day one of
operation and after 10 years of operation | | | | | | | Tree transplanting: The tree survey has identified the
trees which will be affected by the
development and which could be considered for | Project site /
construction and
demolition as well | Contractor/Arch
SD | Construction and
Demolition stage | WBTC 7/2002,
WBTC 14/2002,
EIAO-TM | N/A | | Recommended Mitigation Measures | Location and
Timing | Who to implement? | When to
implement? | What
Requirements or
Standards to
Achieve? | Status | |---|---|-------------------|--------------------------------------|---|--------| | transplanting prior to commencement of construction work. Felling is considered as a last resort and every effort should be made to
transplant the many good trees of high amenity value to either nearby suitable sites within the cemetery or to available space in FEHD's Wo Hop Shek Crematorium pending identification of an alternative site. The feasibility of transplanting will depend on a number of factors such as size, health and species of the tree. Adequate time (a minimum of 4 months) should be allowed for preparing trees for transplanting. Weekly inspection of tree protection measures as well as monitoring of tree transplant operations during both phases should be implemented. Particular care should be taken to save the 9 nos. mature and semi-mature protected tree species and 12 nos, protected shrub and immahure tree species identified. To give the protected species the best possible chance of survival it is recommended that they are relocated to sheltered and well maintained planted areas within the cemetery. The following measures for tree transplanting should be adopted: (a) Appoint a landscape contractor for the establishment and maintenance of the transplanted trees as well as any new tree planting for 12 months upon completion of the works. (b) Careful co-ordination of Phase I and II works to allow tree transplanting from Phase II site directly to Phase I site. | as operation stages | | | | | | Tree protection: Trees to be retained adjacent to works
areas will be carefully protected by
strong hoarding and if necessary additional protection
to individual tree trunks to avoid
damage by machinery. The hoarding will also prevent | Project site /
construction and
demolition stages | Arch SD | Construction and
Demolition stage | WBTC 7/2002,
WBTC 14/2002,
EIAO-TM | N/A | | _ | _ | |---|----| | • | ٠. | | v | v | | Recommended Mittgation Measures | Location and
Timing | Who to implement? | When to Implement? | What
Requirements or
Standards to
Achieve? | Status | |---|---|-----------------------------------|--------------------------------------|---|--------| | contractors from compacting soil around tree roots or dumping materials. Reference should be made to the guidelines for tree protection in the Government publication "Tree Planting and Maintenance in Hong Kong". | | | | | | | Topsoil conservation: Any topsoil excavated during
construction will be carefully saved and
stored to one side of the works area for reuse upon
completion. | Project site / upon
completion of
construction
works for each
phase | Arch SD | Construction and
Demolition stage | WBTC 7/2002,
WBTC 14/2002,
EIAO-TM | N/A | | Replanting: Upon completion planting of ornamental trees and shrubs will be provided to the periphery of the new crematorium building to help screen and soften the overall appearance of the structure. In addition, a reprovisioned memorial garden with a lotus pond and ornamental planting will be incorporated in the deck area of the building. Since the majority of the new planting will be on the deck structure the selection of species will be more limited with emphasis on smaller trees and ornamental shrubs to comply with loading restrictions. Notwithstanding this site constraint on tree selection, a minimum of 1.2m soil depth will be provide for tree planting on the podium / roof structure for healthy establishment of the new tree planting. | Project site / upon completion of construction works for each phase | Arch SD | Construction and Demolition stage | WBTC 7/2002,
WBTC 14/2002,
EIAO-TM | N/A | | Weekly inspections of tree protection measures as well as monitoring of tree transplant operations. | Project site /
Phase
I & II works | Project
Landscape
Architect | Construction and
Demolition stage | Landscape Master
Plan, Tree Planting
and Maintenance
in
Hong Kong | N/A | | Water Quality Mitigation Measures | | | | | | | Construction and Demolition Phases – General
To safeguard the water quality of the WSRs potentially
affected by the Project works, the | Project site /
construction and
demolition stages | Contractor | Construction and
Demolition stage | ProPECC PN 1/94 | 4 | | Recommended Miligation Measures | Location and
Timing | Who to
Implement? | When to Implement? | What
Requirements or
Standards to
Achieve? | Status | |--|---|----------------------|-----------------------------------|---|--------| | contractor should implement appropriate mitigation measures with reference to the Practice Note for Professional Persons, Construction Site Drainage (ProPECC PN 1/94) published by EPD. Such measures are highlighted as follows. | | | | | | | Construction and Demolition Phases - Construction and Demolition Run-off and Drainage Exposed soil areas should be minimized to reduce the potential for increased siltation, contamination of run-off and erosion. Any effluent discharge from the Project site is subject to the control of Water Pollution Control Ordinance (WPCO) discharge license and should be treated to meet the discharge standard set out in the relevant license. In addition, no site run-off should enter the stream on the eastern side of the Project site. Run-off impacts associated with the construction and demolition activities can be readily controlled through the use of appropriate mitigation measures, which include: Temporary ditches should be provided to facilitate run-off discharge into appropriate watercourses, via a silt retention pond Boundaries of earthworks should be marked and surrounded by dykes | Project site I construction and demolition stages | Contractor | Construction and Demolition stage | ProPECC PN 1/94 | 1 | | Open material storage stockpiles should be
covered with tarpaulin or similar fabric to prevent
material washing away | | | | | | | Exposed soil areas should be minimized to reduce
the potential for increased siltation and
contamination of run-off | | | | | | | Earthwork final surfaces should be well compacted
and subsequent permanent work should be
immediately performed | | | | | | | Use of sediment traps wherever necessary | | <u> </u> | | | | | Recommended Mitigation Measures | Location and
Timing | Who to
implement? | When to implement? | What
Requirements or
Standards to
Achieve? | Status | |---|---|----------------------|--------------------------------------|---|--------| | Maintenance of drainage systems to prevent
flooding and overflow | | | | | | | All temporary drainage pipes and culverts provided to facilitate run-off discharge should be adequately designed to facilitate rapid discharge of storm flows. All sediment traps should be regularly cleaned and maintained. The temporarily diverted drainage should be reinstated to its original condition, when the construction/demolition work is completed. | | | | | 1 | | Sand and silt in wash water from wheel washing facilities should be settled out and removed from discharge into temporary drainage pipes or culverts. A section of the haul road between the wheel washing bay and the public road should be paved with backfall to prevent wash water or other site run-off from entering public road drains. | | | | | 1 | | Oil interceptors should be provided in the drainage system downstream of any significant oil and grease sources. They should be regularly maintained to prevent the release of oil and grease into the storm water drainage system after accidental spillage. The inceptor should have a bypass to prevent flooding during periods of heavy rain, as specified in <i>ProPECC PN</i> 1/94. | Project site / construction and demolition stages | Contractor |
Construction and
Demolition stage | ProPECC PN 1/94 | N/A | | Construction and Demolition Phases - General Construction and Demolition Activities All the solid waste and chemical waste generated on site should be collected, handled and disposed of properly to avoid affecting the water quality of the nearby WSRs. The proper waste management measures are detailed in S.7.7.5-S.7.7.6. | Project site / construction and demolition stages | Contractor | Construction and
Demolition stage | ProPECC PN 1/94 | 1 | | Construction and Demolition Phases - Sewage
Generated from On-site Workforce | Project site / construction and | Contractor | Construction and
Demolition stage | ProPECC PN 1/94 | 1 | | Recommended Mitigation Measures | Location and
Timing | Who to
Implement? | When to
Implement? | What
Requirements or
Standards to
Achieve? | Status | |--|---|----------------------|-----------------------------------|---|--------| | The sewage from construction work force is expected to be handled by portable chemical toilets if the existing toilets in the Project site are not adequate. Appropriate and adequate portable toilets should be provided by licensed contractors who will be responsible for appropriate disposal and maintenance of these facilities. | demolition stages | | | | | | Construction and Demolition Phases - Soil Remediation Activities Mitigation measures will need to be implemented during the currently identified soil remediation activities. If further land contamination investigation results (at CLP secondary substation during Phase I and at locations S1 to S6 during Phase II) confirm the needs for further soil remediation prior to demolition of the Existing Crematorium, relevant water quality mitigation measures (in addition to the current RAP) will need to be identified and implemented by the contractor. In addition, the mitigation measures recommended for minimizing water quality impacts for construction and demolition run-off and drainage as well as for general construction and demolition activities should also be adopted where applicable. In order to avoid impacts on water quality during further remedial works, care will be taken to minimise the mobilisation of sediment during excavation and transport. Measures to be adopted will be based on the recommendations set out in Practice Note for Professional Persons ProPECC PN194 "Construction Site Drainage". The results of the site Investigation suggest that there is unlikely to be any requirement for dewatering of | Project site / construction and demolition stages | Contractor | Construction and Demolition stage | Propercy PN 1/94 | 1 | | Recommended Mitigation Measures | Location and
Timing | Who to Implement? | When to implement? | What
Requirements or
Standards to
Achleve? | Status | |---|------------------------|-------------------|--------------------|---|--------| | excavations, since groundwater was not encountered | | | | | | | in any of the exploratory holes. | | | | | | | The contractor carrying out the remedial works will be | 1 | | - | | | | required to submit a method statement | ł | | | | | | detailing the measures to be taken to avoid water | | | | | | | quality impacts. Typical measures would | | | | | | | include: | | | | | | | Carry out the works during the dry season (i.e. | | | | | | | October to March) if possible | | | | | | | Use bunds or perimeter drains to prevent run-off | | | | 1 | | | water entering excavations | | | | | | | : Sheet or otherwise cover excavations whenever | | | j | 1 | | | rainstorms are expected to occur | | | | 1 | | | · Minimise the requirements for stockpiling of material | | | | 1 | | | and ensure any stockpiles are | | | | 1 | | | covered | | | | 1 | | | : Temporary on-site stockpiling of contaminated | | 1 | | 1 | | | materials should be avoided, all | | | | 1 | | | excavated contaminated soils/materials should be | 1 | | Ĭ | i | | | disposed of on a daily basis | | | | 1 |] | | Ensure that any discharges to storm drains pass | | | | 1 | | | through an appropriate silt trap | 1 | ı | ı | 1 | 1 | Note: √ × • N/A Compliance of mitigation measure Non-compliance of mitigation measures Non-compliance but rectified by the contractor Not applicable APPENDIX K EVENT AND ACTION PLANS Appendix K Event and Action Plans Table K.1 Event and Action Plan for Air Quality | | | ACTION | | t : | |---|--|--|--|--| | EVENT | ET | IEC | AR | CONTRACTOR | | ACTION LEVEL | | | | | | 1. Exceedance for one sample | Identify source, investigate the cause of exceedance and propose remedial measures; Inform IEC and AR; Repeat measurement to confirm finding; Increase monitoring frequency to daily, if ET assessment indicates that exceedance is due to contractor's construction works. | Check monitoring data submitted by ET; Check Contractor's working method. | Notify Contractor. | Rectify any unacceptable practice; Amend working methods if appropriate. | | 2. Exceedance for two or more consecutive samples | 1. Identify source, investigate the cause of exceedance and propose remedial measures; 2. Inform IEC and AR; 3. Repeat measurements to confirm findings; 4. Increase monitoring frequency to daily, if ET assessment indicates that exceedance is due to contractor's construction works; 5. Discuss with IEC and Contractor on remedial actions required; 6. If exceedance continues, arrange meeting with IEC and AR; 7. If exceedance stops, cease additional monitoring. | Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the AR on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. | Confirm receipt of notification of exceedance in writing: Notify Contractor; Ensure remedial measures properly implemented. | Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; Amend proposal if appropriate. | | LIMIT LEVEL | | | | | | Exceedance for one sample | 1. Identify source, investigate the cause of exceedance and propose remedial measures; 2. Inform EC, AR and EPD; 3. Repeat measurement to confirm finding; 4. Increase monitoring frequency to daily, if ET assessment indicates that exceedance is due to contractor's construction works; 5. Assess effectiveness of Contractor's remedial actions and keep IEC, AR and EPD informed of the results. | Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the AR on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. | Confirm receipt of notification of exceedance in writing: Notify Contractor, Ensure remedial measures properly implemented. | Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within three working days of notification; Implement the agreed proposals; Amend proposal if | | Exceedance for
two or more
consecutive
samples | Notify Contractor, IEC, AR and EPD; Identify source, investigate the cause of exceedance and propose remedial measures; Repeat measurement to confirm findings; Increase monitoring frequency to daily, if ET | Discuss amongst AR, ET, and Contractor on
the potential remedial actions; Review Contractor's remedial actions
whenever necessary to
assure their
effectiveness and advise the AR accordingly; | Confirm receipt of notification of exceedance in writing; Notify Contractor; In consultation with the IEC, agree with the Contractor on the remedial | Take Immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within three working days of notification; | | EVENT | | ACTION | | | |-------|--|---|--|----------------------------------| | | ET | IEC | AR | CONTRACTOR | | | assessment indicates that exceedance is due to | 3. Supervise the implementation of remedial | measures to be implemented; | 3. Implement the agreed | | | contractor's construction works; | measures. | 4. Ensure remedial measures properly | proposals; | | | 5. Carry out analysis of Contractor's working | | implemented; | 4. Resubmit proposals if problem | | | procedures to determine possible mitigation to be | | 5. If exceedance continues, consider | still not under control; | | | implemented; | | what portion of the work is responsible | 5. Stop the relevant portion of | | | Arrange meeting with IEC and AR to discuss the | | and instruct the Contractor to stop that | works as determined by the | | | remedial actions to be taken; | | portion of work until the exceedance is | AR until the exceedance is | | | 7. Assess effectiveness of Contractor's remedial | | abated. | abated. | | | actions and keep IEC, AR and EPD informed of | | | | | | the results; | | | | | | 8. If exceedance stops, cease additional monitoring. | | | | | 2 | | |---|--| \prod Table K.2 Event and Action Plan for Construction Noise | EVENT | | ACTION | | | |--------------|--|--|---|---| | | ET | IEC EC | AR | CONTRACTOR | | Action Level | Notify Contractor and IEC; Carry out investigation; Report the results of investigation to the IEC and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness, if ET assessment indicates that exceedance is due to contractor's construction work. | Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the AR accordingly; Supervise the implementation of remedial measures. | Confirm receipt of notification of exceedance in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented. | Submit noise mitigation proposals to IEC; Implement noise mitigation proposals. | | Limit Level | Notify Contractor, IEC, AR and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency, if ET assessment indicates that exceedance is due to contractor's construction work; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IEC, AR and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IEC, AR and EPD informed of the results; If exceedance stops, cease additional monitoring. | Discuss amongst AR, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the AR accordingly; Supervise the implementation of remedial measures. | Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures problem; Ensure remedial measures problem; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. | 1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IEC within 3 working days of notification; 3. Implement the agreed proposals; 4. Resubmit proposals if problem still not under control; 5. Stop the relevant portion of works as determined by the AR until the exceedance is abated. |