MONTHLY ENVIRONMENTAL MONITORING & AUDIT REPORT

Highways Department

Route 8
Between Tsing Yi and Cheung Sha Wan
Phase 3
Stonecutters Bridge

Monthly Environmental Monitoring & Audit Report (29th November 2008 – 28th December 2008)

EP – 085/2000/E Route 8 Between Tsing Yi and Cheung Sha Wan Phase 3 Stonecutters Bridge:

Monthly Environmental Monitoring & Audit Report (29th November 2008 – 28th December 2008)

Certifie	d by the Environmental Team Leader		
Signed:	Ms. Natalie Kwok	Date: _	8 January 200
Verified	by the Independent Environmental Checker	,	
Signed:	Mr. y T tang	Date:	8-Jen-01

TABLE OF CONTENTS

\mathbf{E}	XECU	TIVE SUMMARY	1
1	INT	RODUCTION	1
	1.1	Purpose of the Report	
	1.2	Structure of the Report	1
2	PRO	DJECT INFORMATION	
	2.1	Background	2
	2.2	Site Description	
	2.3	Project Organisation	
	2.4	Project Work Programme	
3	EN	VIRONMENTAL MONITORING REQUIREMENTS	
	3.1	Air Quality	
	3.2	Noise Quality	5
4	IMI	PLEMENTATION STATUS ON ENVIRONMENTAL PROTECTION	
	RE	QUIREMENTS	7
5	EN	VIRONMENTAL LICENCES AND PERMITS	7
	5.1	Status of Permits and Licenses	7
6	MO	NITORING RESULTS	8
	6.1	Air Quality	8
	6.2	Noise	
7	AU	DIT RESULTS	
	7.1	Air Quality	
	7.2	Noise	
	7.3	Water Quality	
	7.4	Waste Management	
	7.5	Site Audits / Inspections	
8	EN	VIRONMENTAL NON-COMPLIANCE, COMPLAINTS, NOTIFICATIONS OF	
	SUI	MMONSES AND PROSECUTIONS	14
	8.1	Summary of Environmental Non-Compliance	14
	8.2	Summary of Complaints	14
	8.3	Summary of Notifications of Summonses and Prosecutions	14
9	RO	UTE 8 – TRAFFIC CONTROL AND SURVEILLANCE SYSTEM (TCSS)	
	9.1	Key issues for the Construction Works of TCSS	14
	9.2	Audit Results	
10) FU	FURE KEY ISSUES	15
	10.1	Key Issues for the Coming Month	
	10.2	Monitoring Schedule for the Coming Three Months	
1	1 RE	COMMENDATIONS AND CONCLUSIONS	
	11.1	Conclusions	16
	11.2	Recommendations	17

LIST OF TABLES

Table 2.1	Major Site Activities undertaken during the Reporting Period (Normal Hours)
Table 2.2	Major Site Activities undertaken during the Reporting Period (Restricted Hours)
Table 3.1	TSP Monitoring Parameter and Frequency
Table 3.2	TSP Monitoring Locations
Table 3.3	Air Quality Monitoring Equipment
Table 3.4	Noise Monitoring Frequency and Parameters
Table 3.5	Location of the Noise Monitoring Stations
Table 3.6	Noise Monitoring Equipment
Table 6.1	Summary of 1-hour TSP Impact Monitoring Results
Table 6.2	Summary of 24-hour TSP Impact Monitoring Results
Table 6.3	Summary of Corrected Impact Noise Levels for Normal Hour Monitoring
Table 6.4	Summary of Corrected Impact Noise Levels for Restricted Hour Monitoring
Table 7.1	Summary of Waste Disposal during the Reporting Period
Table 8.1	Summary of Non-Compliance for the Reporting Period
Table 8.2	Summary of Total Complaint Received

LIST OF APPENDICES

Appendix A	Site Location Plan
Appendix B	Project's Environmental Organization Chart and Contact Details
Appendix C	Three Months Rolling Programme
Appendix D1	Action/Limit Levels for Air Quality
Appendix D2	Action/Limit Levels for Noise
Appendix E	Environmental Monitoring Schedule for the Reporting Period
Appendix F	Locations of Monitoring Stations
Appendix G1	Calibration Certificates for HVS
Appendix G2	Not used
Appendix G3	Calibration Certificates for High Volume Orifice Calibrator
Appendix G4	Calibration Certificates for Sound Level Meter and Calibrator
Appendix G5	Certificate of HOKLAS Accredited Laboratory
Appendix H1	Event/Action Plan for Air Quality
Appendix H2	Event/Action Plan for Noise
Appendix I	Implementation Status of Environmental Protection Requirements
Appendix J	1-hour and 24-hour TSP Monitoring Results
Appendix K	Graphical Presentation of 1-hour and 24-hour TSP Monitoring Results
Appendix L	Weather Condition during Impact Monitoring
Appendix M1	Noise Monitoring Results for Normal Hour
Appendix M2	Noise Monitoring Results for Restricted Hour
Appendix N1	Graphical Presentation of Noise Monitoring Results for Normal Hour
Appendix N2	Graphical Presentation of Noise Monitoring Results for Restricted Hour
Appendix O1	Environmental Complaint Log Book
Appendix O2	Cumulative Statistics for Environmental Complaint
Appendix P	Tentative Environmental Monitoring Schedule for the Next Three Months
Appendix Q	Photographic Records of Implemented Measures
Appendix R	Summary of Environmental Licensing, Notification and Permit Status

EXECUTIVE SUMMARY

- ES 1 An Environmental Permit (EP-085/2000/E) was granted to Highways Department by the Environmental Protection Department for the construction of Route 8 Project between Tsing Yi and Cheung Sha Wan. This EP covers four phases of the Route 8 Project namely Phase 1 Ngong Shuen Chau Viaduct, Phase 2a Nam Wan Tunnel and West Tsing Yi Viaduct, Phase 2b East Tsing Yi Viaduct and Phase 3 Stonecutters Bridge.
- ES 2 This is the 54th monthly Environmental Monitoring and Audit (EM&A) Report for "Phase 3 Route 8 Stonecutters Bridge (HY/2002/26)". The construction commencement of this Contract was on 2nd July 2004 and this report presents the results of the EM&A works conducted during the period between 29th November 2008 and 28th December 2008 in accordance with the EM&A Manual which forms part of the EIA Report. (Register No. AEIAR-018/1999).
- ES 3 The major construction activities carried out during normal hours are as follows:
 - i. Tower construction (Western and Eastern Tower Site)
 - ii. Backspan construction (Western and Eastern Tower Site)
 - iii. Steel deck construction
 - iv. Roads and utilities construction (Eastern Tower Site)
 - v. E&M works
- ES 4 The major construction activities carried out during restricted hours are as follows:
 - i. Tower and steel deck construction (Western Tower Site evening, night-time and public holidays)
 - ii. Tower and steel deck construction (Eastern Tower Site evening, night-time and public holidays)
- ES 5 Monitoring of Total Suspended Particulates (TSP) and noise were carried out in accordance with the EM&A Manual. Weekly site inspections were conducted by ET on 3rd, 10th, 19th and 26th December 2008 and the joint IEC monthly audit was conducted on 19th December 2008. A joint site inspection was carried out with EPD on 19th December 2008 at CT9 site area.

Air Quality

ES 6 A total of 75 sets of 1 hour TSP and 25 sets of 24-hours TSP measurements were carried out at all monitoring locations (ASR1 to ASR5) during the reporting period and the results of all measurements taken were below the Action/Limit (AL) Levels.

Noise

ES 7 In order to assess the construction noise impact effectively for all noise monitoring locations (NSR1 to NSR5) from this Contract, an adjustment approach was adopted since 29th March 2005 and had been consulted with EPD to audit merely the construction noise levels against the statutory noise limits. The measured noise levels were adjusted with the corresponding baseline levels in order to facilitate the interpretation of the construction noise levels and this in turn would determine the actual construction noise impact contributed solely by the Phase 3 construction activities.

Daytime Monitoring

ES 8 A total of 20 sets of $L_{eq(30min)}$ measurement were undertaken in daytime (0700 to 1900 hours on normal weekdays) at all monitoring locations (NSR1 to NSR5) during the reporting period and no exceedances were recorded.

Evening-time Monitoring

ES 9 A total of 20 sets of 6 x L_{eq(5min)} measurements were taken in evening-time (1900 to 2300 hours on normal weekdays) at all monitoring locations during the reporting period and no exceedances were

recorded.

Night-time Monitoring

- ES 10 A total of 20 sets of 4 x $L_{eq(5min)}$ measurements were taken in night time (i.e. 2300 to 0700 hours next day) at all monitoring locations during the reporting period and no exceedances were recorded.
 - Public Holidays Monitoring
- ES 11 A total of 25 sets of 6 x $L_{eq(5min)}$ measurements were taken during public holidays at all monitoring locations during the reporting period and no exceedances were recorded.

Water Quality

- ES 12 Two Effluent Discharge Licenses were granted by EPD, one for the Eastern Tower Site (EP760/269/009124I) and the other for the Western Tower Site (EP760/350/008933I) on 20th September 2004 and 21st December 2004 respectively. The variation of the Discharge License (EP760/350/008933I) was granted by EPD on 13th June 2005.
- ES 13 In accordance with the approved licenses' conditions, water sampling is required on a bi-monthly basis. One water sample was taken for CT8 site area by MHYHJV on 24th November 2008. The water sample was subsequently tested by a HOKLAS accredited laboratory and the results indicated that they have fully complied with the Specific Condition as stipulated in the approved license.
- ES 14 One water sample was taken on 29th December 2008 at CT9 site area. The water sample was subsequently tested by a HOKLAS accredited laboratory and the results will be reported in coming EM&A monthly report. The next sampling is scheduled for January 2009 for CT8 site area.

Waste Management

- ES 15 The Waste Management Plan (WMP–Issue 08) was approved by EPD on 8th December 2006.
- ES 16 Since May 2004, all non-inert C&D material from the Phase 3 Contract had been disposed of at WENT Landfill. A total of 78m³ of general refuse were delivered to WENT Landfill during the reporting period.
- ES 17 With effect from 6th February 2005, all inert C&D material had been disposed of at Tuen Mun Fill Bank. During this reporting period, a total of 731m³ of public fill and 413m³ of broken concrete were delivered to Tuen Mun Area 38.
- ES 18 On 18th March 2005, approval was granted by PFC, CEDD to deliver a maximum of 4,000m³ of surplus filling material to TW/98/02 Route 9 Section between Shek Wai Kok and Chai Wan Kok for re-usage purposes. From March 2005 onwards, a total of 4,512m³ (752 dump trucks) were delivered to TW/98/02.
- ES 19 On 7th December 2005, approval was granted by PFC, CEDD to deliver a maximum of 3,000 m³ of surplus filling material to HY/2000/21 Phase 1 Ngong Shuen Chau Viaduct for re-usage purposes. From December 2005 onwards, a total of 2,004m³ (334 dump trucks) were delivered to HY/2000/21.
- ES 20 On 23rd January 2006, approval was granted by PFC, CEDD to deliver a maximum of 3,000 m³ of surplus filling material to "Drainage Improvement in East Kowloon (DC/2004/03)" for re-usage purposes. From January 2006 onwards, a total of 138m³ (23 dump trucks) were delivered to DC/2004/03.
- ES 21 CEDD was notified that a total of 1,600 m³ of broken concrete and broken asphalt had been delivered to "Ampliacao Do Novo Terminal Maritimo Da Taipa" Project in Macau by a derrick barge for the formation of internal haul roads in November 2007.
- ES 22 With the Marine Department Notice, a total of 320 nos. of concrete blocks wee delivered and laid on the designated seabed as artificial reefs since 7th July 2008.
- ES 23 No chemical waste was disposal of site during the reporting period.

Site Inspections

ES 24 ET carried out weekly site inspections during the reporting period and the major issues identified on site are presented below:

Item	Findings	MHYHJV's Corrective and Preventive measures	Effectiveness of measures
1	MHYHJV was reminded that all open stockpiles should be sprayed with sufficient water to maintain the entire surface moist and covered by impervious sheeting by end of each working day.	All open stockpiles of dusty material have been sprayed by sufficient water to maintain the entire surface moist.	,
2	More than 20 bags of cement and used cement bags without proper dust control measures were observed at area P3-SA5 & SA6. In addition, MHYHJV was also reminded to provide totally enclosed system and adequate air pollution control measures for the de-bagging and mixing processes by using of bagged cement on site.	All bagged cement had been removed from the concerned area and stored properly. Plastic bags and waste skip have been deployed on site for the temporary storage of used cement bags. MHYHJV reported that all debagging, batching and mixing process shall be carried out in enclosed area during the use of bagged cement.	Completed and closed. (Please refer <i>Appendix Q</i> Photo 03 & 04).

ES 25 The monthly IEC audit was carried out on 19th December 2008 and one reminder was recorded and it is presented as follows:-

Item	Findings	MHYHJV's Corrective and	Effectiveness of measures
		Preventive measures	
1	open stockpiles should be sprayed	All open stockpiles of dusty material have been sprayed by sufficient water to maintain the entire surface moist.	(Please refer Appendix Q

EPD Audits

ES 26 A joint site inspection was carried out with EPD on 19th December 2008 at CT9 site area. It was noted that MHYHJV had implemented appropriate environmental mitigation measures on site and the performance of such environmental measures were found to be satisfactory. MHYHJV were reminded by EPD that Ultra-low-sulphur diesel (ULSD) (defined as diesel fuel containing not more than 0.005% by weight of sulphur) shall be used in all relevant plants on the Site pursuant to the Air Pollution Control (Fuel Restriction) Regulations. MHYHJV reported that proper diesel fuel has been used on site and the record of the ULSD fuel supply order has been maintained properly.

Environmental Licenses and Permits

- ES 27 The following permits / licenses have been granted by EPD for the construction of the Phase 3 Contract and they are:
 - i. Environmental Permit (EP-085/2000/E)
 - ii. Chemical Waste Producer Registration (5213-350-M2640-01)
 - iii. 2 Effluent Discharge Licences (EP760/269/009124I and EP760/350/008933I)
 - iv. 6 Construction Noise Permits

Environmental Complaints

ES 28 No environmental complaints were received during the reporting month.

Notifications of Summonses and Prosecutions

ES 29 Since the commencement of construction, no notifications of summonses or prosecutions were received on the environmental performance for this Contract.

Future Key Issues

ES 30 The tentative program of major site activities and the impact prediction and control measures for the coming three months, i.e. January 2009 to March 2009 are summarized as follows:

Construction	Major Impact	Control Measures
Works	Prediction	
Tower and steel	Air impact (dust)	i) Frequent watering (or remove dusty material) of haul road
deck construction;		and unpaved/exposed areas;
Roads and utilities		ii) Frequent watering or covering open stockpiles with tarpaulin
construction		or similar means; and
		iii) Watering of any earth moving activities.
	Water quality	i) Diversion of collected effluent to adequate de-silting facilities
	impact (construction	for treatment prior to discharge to public storm water drains;
	effluent and surface	ii) Provision of adequate de-silting facilities for treating surface
	run-off)	run-off and other collected effluent prior to discharge; and
	·	iii) Provision of perimeter protection such as perimeter channel.
	Noise Impact	i) Scheduling of noisy construction activities if necessary to
		avoid persistent noisy operation;
		ii) Controlling the number of plants use on site;
		iii) Regular maintenance of machinery; and
		iv) Use of acoustic barriers if deemed necessary.

Route 8 - Traffic Control and Surveillance System (TCSS)

- ES 31 The construction of the "Route 8 Traffic Control and Surveillance System Contract (HY/2003/05)" (TCSS) Contract was awarded to Delcan-Imtech-GECS-Joint Venture (DIGJV).
- ES 32 The construction work of TCSS within Phase 1 Contract (Route 8 Ngong Shuen Chau Viaduct) and Phase 2a Contract (Route 8 Nam Wan Tunnel and West Tsing Yi Viaduct) site area was commenced on 4th April 2007 and 25th October 2006 respectively. Since the no further EM&A during construction phase would be carried out for both Phase 1 and Phase 2a Contracts and therefore, all future TCSS works within Phase 1 and Phase 2a would be reported in this monthly EM&A report.
- ES 33 A joint site audit amongst IEC/ET/RSS/DIGJV was carried out on 19th December 2008. No adverse comments were raised by ET, IEC and RSS.

1 INTRODUCTION

An Environmental Permit (EP-085/2000/E) was granted to Highways Department by the Environmental Protection Department for the construction of Route 8 Project between Tsing Yi and Cheung Sha Wan. This EP covers four phases of the Route 8 Project namely Phase 1 – Ngong Shuen Chau Viaduct, Phase 2a – Nam Wan Tunnel and West Tsing Yi Viaduct, Phase 2b – East Tsing Yi Viaduct and Phase 3 – Stonecutters Bridge.

1.1 Purpose of the Report

This is the 54th monthly Environmental Monitoring and Audit (EM&A) Report for the "Phase 3 - Route 8 Stonecutters Bridge (HY/2002/26)" (hereafter known as the "Phase 3 Contract"). This report presents the results of the EM&A programme conducted during the period between 29th November 2008 and 28th December 2008 in accordance with the Environmental Permit EP-085/2000/E and the EM&A Manual which forms part of the EIA Report (Register No. AEIAR-018/1999).

1.2 Structure of the Report

The structure of the report is as follows:

- Section 1: **INTRODUCTION** details the scope and structure of the report.
- Section 2: **PROJECT INFORMATION** summarizes the background and scope of the project, project organization, construction programme and the construction works undertaken during the reporting period.
- Section 3: **ENVIRONMENTAL MONOTORING REQUIREMENTS** summarizes the monitoring programmes, Action and Limit Levels, Event Action Plans, environmental mitigation measures as recommended in the EIA Report and relevant environmental requirements.
- Section 4: <u>IMPLEMENTATION STATUS ON ENVIRONMENTAL</u>
 <u>PROTECTION REQUIREMENTS</u> summarizes the implementation of environmental protection measures during the reporting period.
- Section 5: ENVIRONMENTAL LICENCE AND PERMITTING
 REQUIREMENTS summarizes the environmental licences and permits obtained or being applied during the reporting period.
- Section 6: <u>MONITORING RESULTS</u> reports the monitoring results obtained in the reporting period.
- Section 7: <u>AUDIT RESULTS</u> summarizes the audit findings in the reporting period.
- Section 8: COMPLAINTS, NOTIFICATIONS OF SUMMONS AND PROSECUTIONS DURING THE REPORTING PERIOD summarizes the complaints, notifications of summons and prosecutions recorded during the reporting period.
- Section 9: ROUTE 8 TRAFFIC CONTROL AND SURVEILLANCE SYSTEM
- Section 10: <u>FUTURE KEY ISSUES</u> summarizes the future key issues as reviewed from the works programme and work method statements.
- Section 11: **RECOMMENDATIONS AND CONCLUSIONS**

2 PROJECT INFORMATION

2.1 Background

- 2.1.1 Ove Arup and Partners Hong Kong Ltd (Arup) was awarded the Design and Construction Consultancy Assignment No. CE61/2000 "Stonecutters Bridge Design and Construction Assignment".
- 2.1.2 The construction of the Phase 3 Contract was awarded to Maeda-Hitachi-Yogogawa-Hsin Chong Joint Venture (MHYHJV) on 19th April 2004 and is scheduled to be substantially complete in mid 2009.
- 2.1.3 The Construction Works under the Phase 3 Contract involves a cable-stayed bridge of 1.6km long with 1,018m main span and 290m high mono towers. It will span across the Rambler Channel between the Kwai Chung Container Terminal 8 (CT8) at Stonecutters Island and Container Terminal 9 (CT9) at the east side of Tsing Yi.

2.2 Site Description

- 2.2.1 The Phase 3 Contract has two distinct sites; namely the Eastern Tower site which is located on the Stonecutters Island and the Western Tower site locates on the east side of Tsing Yi Island adjacent to CT9.
- 2.2.2 Five sensitive receivers have been identified for the Phase 3 Contract in accordance with the EM&A Manual and the EIA. Two monitoring stations are located at the Tsing Yi Hong Kong Institute of Vocational Education (IVE) in the Main Education Building and Fok Ying Tung Hall of Residence, one at Mayfair Gardens, one at Cheung Ching Estate and one at the DSD Pumping Station located adjacent to the Container's Port Road in the proximity of the Stonecutters Military base at the Stonecutters Island. The site location plan and the monitoring locations are presented in *Appendix A* and *F* respectively.

2.3 Project Organisation

2.3.1 The Phase 3 Contract organization chart and contact details are shown in *Appendix B*.

2.4 Project Work Programme

2.4.1 The Phase 3 Contract's Three Months Rolling Programme is presented in *Appendix C*. The major site activities undertaken during the normal hours and restricted hours during the reporting period are summarized in *Table 2.1* and *Table 2.2* respectively.

Table 2.1 Major Site Activities undertaken during the Reporting Period (Normal Hours)

Area	Details of Site Activities
P3-SA3 (Western Tower Site)	Tower, backspan and steel deck construction.
P3-SA5 (Eastern Tower Site)	Tower, backspan and steel deck construction.
P3-SA6 (Eastern Tower	Roads and utilities construction.
Site)	

Table 2.2 Major Site Activities undertaken during the Reporting Period (Restricted Hours)

Area	Details of Site Activities
P3-SA3 (Western Tower Site)	Tower and steel deck construction. (evening, night-time and
	public holidays)
P3-SA5 (Eastern Tower	Tower and steel deck construction. (evening, night-time and
Site)	public holidays)

3 ENVIRONMENTAL MONITORING REQUIREMENTS

3.1 Air Quality

Monitoring Requirements

3.1.1 In accordance with the Phase 3 Contract's EM&A Manual, 1-hour and 24-hour Total Suspended Particulates (TSP) are required to be conducted to monitor the construction dust impact. The established Action/Limit Levels for the environmental monitoring works are presented in *Appendix D1*.

Monitoring Frequency and Schedule

3.1.2 The monitoring parameters and frequency are summarized in *Table 3.1*. The monitoring schedule for the reporting period is presented in *Appendix E*.

Table 3.1 TSP Monitoring Parameter and Frequency

Parameters	Duration / hour	Frequency
24-hour TSP	24	Once Every Six Days
1-hour TSP	1	Three Times Every Six Days

Monitoring Locations

3.1.3 As identified in the EM&A Manual, five air quality monitoring locations were selected for the Phase 3 Contract and they are listed in *Table 3.2* and presented in *Appendix F*.

Table 3.2 TSP Monitoring Locations

Location I.D.	Description
ASR1	HK Institute of Vocational Education-Tsing Yi
ASKI	Fok Ying Tung Hall of Residence
ASR2	HK Institute of Vocational Education-Tsing Yi
ASKZ	5 th Floor Block D of the Main Education Building
ASR3	Mayfair Gardens
ASKS	1 st Floor adjacent to Swimming Pool
ASR4	Cheung Ching Estate
ASK4	At Roof of Ching Yung House (25/F)
ASR5	DSD Pumping Station
ASKS	G/F, in the proximity of the Stonecutters Military Base

3.1.4 All meteorological data was obtained from the Hong Kong Observatory website.

Monitoring Equipment

3.1.5 Continuous 24-hour and 1-hour TSP air quality monitoring was performed using a TE-5170 Tisch Environmental Inc. High Volume Sampler (HVS), which was installed at the monitoring stations. The sampler composed of a motor, filter holder, flow controller and a sampling inlet. Its performance specification complies with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50).

Details of the monitoring equipment are given in *Table 3.3*. A copy of the calibration certificate for the HVS and wind data monitor is attached in *Appendix G1*.

Table 3.3 Air Quality Monitoring Equipment

Equipment	Model	Qty.
HVS	TE-5170 Tisch Environmental Inc.	5
Calibrator	TE-5028A Tisch Environmental Inc.	1

Monitoring Procedures and Calibration Details

- 3.1.6 Calibration Procedures Calibration procedures of HVS are as follows (calibration certificates are presented in *Appendix G3*):
 - i. A certified orifice transfer standard with a calibration curve was used for the calibration.
 - ii. The transfer standard was connected to the inlet of the sampler. The orifice manometer was then connected to the orifice pressure port. The manometer's connecting tubing was inspected to make sure that there are no leaks between the orifice unit and the sampler.
 - iii. The motor was then disconnected from the flow controller and plugged directly to an AC power source.
 - iv. The ambient temperature, Ta (K) and the barometer pressure Pa (mmHg) were obtained from the Hong Kong Observatory website for TSP calculation.
 - v. The sampler was allowed to run for at least 2 minutes to re-establish the run temperature conditions. The pressure drop across the orifice and the well-type manometer reading was recorded during calibration. The variable resistance was adjusted to repeat recording for four different flow rates.
 - vi. The best fit straight line was determined by linear regression and the slope (m1), intercept (b1) and correlation coefficient (r) are then determined.
- 3.1.7 Operating/Analytical Procedure
 - i. The flow rate of the high volume sampler was set to about 1.1 m³/min 1.7 m³/min prior to commencement of the dust sampling in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
 - ii. The samplers was located such that:
 - a. the filter was about 1.3 meters above ground.
 - b. it was greater than 20 meters away from trees.
 - c. it was separated from any obstacle by at least twice the height of the obstacle protruding above the sampler.
 - d. it has unrestricted airflow 270° around the sampler.
 - iii. Fiberglass filters were used for TSP sampling (G810) [Note: these filters have a collection efficiency of > 99% for particles of 0.3 mm diameter.
 - iv. All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment has a temperature setting between 25°C and

- 30°C and should not vary by more than ± 3 °C; the relative humidity was < 50% and should not vary by more than ± 5 %.
- v. A new filter was placed with stamped number upward on a supporting screen.
- vi. The filter was properly aligned on the screen so that the gasket formed an air-tight seal on the outer edges of the filter.
- vii. Shelter lid closed and catch secured with the aluminum strip.
- viii. The sampler was then allowed to run for at least 5 minutes to establish run-temperature conditions
- ix. The flow indicator reading was recorded and the sampler flow rate was determined.
- x. The programmable timer was set and the starting sampling time, weather condition and the filter number was recorded.
- xi. At the end of sampling, the filter was transferred from the filter holder of the HVS to a sealable plastic bag and sent to the HOKLAS accredited laboratory for weighing. The elapsed time was also recorded. A copy of the HOKLAS Certificate is attached in *Appendix G5*.
- xii. Before weighing, all filters were equilibrated in a desiccator for 24 hours with temperature of 25°C±3°C and the relative humidity (RH) 50%±5%, preferably 40%.

3.1.8 Maintenance

- i. The high volume sampler and their accessories were maintained in good working condition, include replacing motor brushes routinely and checking electrical wiring to ensure continuous power supply.
- ii. The high volume samplers were calibrated at bi-monthly intervals using TE-5028A Tisch Environmental Inc. Calibration Kit throughout all stages of the air quality monitoring.

Event/Action Plan

3.1.9 The Event/Action Plan for Air Quality is presented in *Appendix H1*.

3.2 Noise Quality

Monitoring Requirements

- 3.2.1 According to the field study, the noise generated from the major roads (such as Tsing Yi Road and Container Port Road) was noticeable at noise monitoring stations and therefore the major roads were considered as an influencing factor of the noise sensitive receivers.
- 3.2.2 As the noise monitoring stations are located at urban area and directly affected by this Influencing Factor (IF), the Area Sensitivity Rating of the noise monitoring stations is considered to be "C" according to the *Table 1* of the Technical Memorandum on Noise from Construction Work other than Percussive Piling under Noise Pollution Control Ordinance.
- 3.2.3 Noise monitoring was conducted at five monitoring stations to monitor the construction noise impact from the Phase 3 Contract. *Appendix D2* presents the established Action/Limit Levels for the environmental monitoring works.

Monitoring Frequency and Schedule

3.2.4 The monitoring schedule is presented in *Appendix E* and the frequency and parameters of noise measurement are summarized in *Table 3.4*.

Table 3.4 Noise Monitoring Frequency and Parameters

Time Period	Duration / min.	Parameters	Frequency
Daytime (0700 to 1900)	30 (6 consecutive L _{eq} (5min) in average)	Leq, L ₉₀ & L ₁₀	Once per week
*Evening (1900 to 2300)	5	Leq, L ₉₀ & L ₁₀	Six times per week
*Night (2300 to 0700 next day)	5	Leq, L ₉₀ & L ₁₀	Four times per week
*Holiday (0700-1900 on holidays)	5	Leq, L ₉₀ & L ₁₀	Six times per week

^{*} Restricted hour noise monitoring: to be conducted only when there is construction work under valid CNP.

Monitoring Locations

3.2.5 As identified in the EM&A Manual, five noise monitoring locations (as detailed in *Table 3.5* and presented in *Appendix F*) were selected for noise measurement.

Table 3.5 Location of the Noise Monitoring Stations

Location I.D.	Description	Type of measurement
NSR1	HK Institute of Vocational Education-Tsing Yi Fok Ying Tung Hall of Residence	Free Field
NSR2	HK Institute of Vocational Education-Tsing Yi 5 th Floor Block D of the Main Education Building	Free Field
NSR3	Mayfair Gardens, 1 st Floor adjacent to Swimming Pool	Free Field
NSR4	Cheung Ching Estate At Roof of Ching Yung House (22/F)	Free Field
NSR5	DSD Pumping Station (in the proximity of Stonecutters Military Base)	Free Field

Monitoring Equipment

3.2.6 Integrating Sound Level Meters were used for noise monitoring which were Type 1 sound level meters capable of giving a continuous readout of the noise level readings including equivalent continuous sound pressure level (Leq) and percentile sound pressure level (Lx). They comply with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1). Also, a portable electronic wind speed indicator capable of measuring wind speed in m/s was used to monitor the wind speed. *Table 3.6* summarizes the noise monitoring equipment required.

Table 3.6 Noise Monitoring Equipment

Equipment	Model
Integrating Sound Level Meter	30, Pulsar; 2236 and 2238 B&K
Calibrator	100B, Pulsar; 4231 B&K
Portable Wind Speed Indicator	PWM2, Dwyer

Monitoring Procedures and Calibration Details

3.2.7 Field Monitoring

- i. The microphone of the Sound Level Meter (with weatherproof kit) was mounted on a tripod at a height of 2m above ground level.
- ii. For free field measurement, the meter was positioned away from any nearby reflective surfaces.
- iii. AC power supply was checked to ensure good functioning of the meter.
- iv. Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:

a. frequency weightingb. time weighting: Fast

c. time measurement : 30 minutes / 5 minutes

- v. Prior to and after each noise measurement, the meter was calibrated using the Calibrator for 94 dB at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB, the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- vi. The wind speed was frequently checked with the portable wind meter.
- vii. At the end of the monitoring period, the L_{eq} , L_{90} and L_{10} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- viii. Noise measurement was paused during periods of high intrusive noise if possible and observation was recorded when intrusive noise was not avoided.
- ix. Noise monitoring was cancelled in the presence of fog, rain, and wind with steady speed exceeding 5 m/s, or wind with gusts exceeding 10m/s.

3.2.8 Maintenance and Calibration

- i. The microphone head of the sound level meter and calibrator were cleaned with a soft cloth at quarterly intervals.
- ii. The meter was sent to the supplier to check and calibrate yearly.
- iii. Calibration certificates are presented in Appendix G4

3.2.9 Event/Action Plan

The Event/Action Plan for Noise impact is presented in *Appendix H2*.

4 IMPLEMENTATION STATUS ON ENVIRONMENTAL PROTECTION REQUIREMENTS

MHYHJV has implemented a series of environmental mitigation measures to fulfill requirements as stated in the EIA Report, the Environmental Permit and EM&A Manual. The implementation status during the reporting period is summarized in *Appendix I*.

5 ENVIRONMENTAL LICENCES AND PERMITS

5.1 Status of Permits and Licenses

5.1.1 The status of permits, licenses and EPD notifications for all relevant environmental issues of the Phase 3 Contract for the reporting period is presented in *Appendix R*.

6 MONITORING RESULTS

6.1 Air Quality

6.1.1 The 1-hour TSP monitoring was carried out at five monitoring stations during the reporting period. All monitoring data are presented in *Appendix J*. A summary of the measured 1-hour TSP levels is given in *Table 6.1*. Graphical presentations of the 1-hour TSP monitoring results for the reporting period and the trend of 1-hour TSP results are shown in *Appendix K*. Meteorological data such as atmospheric pressure and temperature used for the calculation of TSP values was obtained from the Hong Kong Observatory for ASR1 to ASR4 and the weather station at the Stonecutters Island for ASR5.

Table 6.1 Summary of 1-hour TSP Impact Monitoring Results

Location	1-hour TSP (μg/m³)		Action Level	Limit Level
I.D.	Range	Mean	$(\mu g/m^3]$	$(\mu g/m^3)$
ASR1	30.3 – 120.8	89.2	350	500
ASR2	55.7 – 162.2	98.5	350	500
ASR3	86.1 – 171.2	120.9	350	500
ASR4	66.7 – 164.8	116.8	350	500
ASR5	55.8 – 169.4	96.8	324	500

6.1.2 The 24-hour TSP monitoring was carried out at five monitoring stations during the reporting period. All monitoring data are presented in *Appendix J*. A summary of the measured results is given in *Table 6.2*. Graphical presentation of the results and the trend of 24-hour TSP results are shown in *Appendix K*.

Table 6.2 Summary of 24-hour TSP Impact Monitoring Results

Location	24 1	CD (/3)	Action Level	Limit Level
	24-hour T	, , , , , , , , , , , , , , , , , , ,		
I.D.	Range	Mean	(μg/m ³)	$(\mu g/m^3)$
ASR1	55.7 – 141.2	89.8	174.0	260
ASR2	50.9 – 183.5	94.4	185.5	260
ASR3	69.7 – 149.3	96.7	200.0	260
ASR4	58.9 – 144.4	89.8	192.0	260
ASR5	48.6 - 83.4	67.2	178.0	260

6.1.3 No exceedances of the Action/Limit Levels of 1-hour and 24-hour TSP were recorded during the reporting period. The wind data monitoring results recorded during the reporting period are summarized in *Appendix L*.

6.1.4 Observations

Several significant dust sources were identified during the reporting period and they were mainly contributed by the following activities:

- i. On site traffic;
- ii. Roads and utilities construction; and
- iii. Vehicular emission from local traffic network.

6.2 Noise

- 6.2.1 In accordance with the Phase 3 Contract's EM&A Manual, all noise monitoring were carried out in the absence of fog, rain and wind with a steady speed exceeding 5m/s, or wind gust exceeding 10m/s. Furthermore, an additional 3dB(A) façade correction for free field measurements were made for all monitoring locations.
- 6.2.2 In order to assess the construction noise impact effectively for all noise monitoring locations (NSR1 to NSR5) from Phase 3 Contract, an adjustment approach was adopted since 29th March 2005 and had been consulted with EPD to audit merely the construction noise levels against the statutory noise limits. The measured noise levels were adjusted with the corresponding baseline levels in order to facilitate the interpretation of the construction noise levels and this in turn would determine the actual construction noise impact contributed solely by the Phase 3 construction activities. No adjustments will be made on the measured noise levels, if they were lowered or equal to the corresponding baseline levels.

6.2.3 Normal Hour Monitoring

Daytime noise monitoring was carried out at all noise monitoring stations during the reporting period. All corrected noise levels are presented in *Appendix M1*. A summary of the results is given in *Table 6.3*. Graphical presentation of the monitoring results for the reporting period and the trend of noise monitoring results are shown in *Appendix N1*.

Table 6.3 Summary of Corrected Impact Noise Levels for Normal Hour Monitoring

Daytime 0700-1900 hrs on normal weekdays	Measure	d Noise Level (Range)	¹ ,dB(A),	Construction Noise Level, dB(A) (Range)	Limit Level dB(A)
normal weekuays	$L_{eq(30min)}$	$L_{10(30 min)}$	$L_{90(30min)}$	$L_{eq(30min)}$	$L_{eq(30min)}$
NSR1	65.6 - 69.1	67.0 - 71.0	63.7 - 65.3	$62.9 - 64.9^3$	75
NSR2 ²	65.1 - 65.7	66.1 - 67.5	63.2 - 63.6	_ 4	70
NSR3	64.9 - 65.9	66.6 - 67.7	62.0 - 63.5	_ 4	75
NSR4	65.0 - 66.2	67.5 - 68.3	61.2 - 63.7	_ 4	75
NSR5	71.7 - 73.1	74.0 - 76.4	67.3 - 68.4	_ 4	75

¹ Additional 3dB (A) façade correction was made to the Free-field measurements.

6.2.4 Observations

The major noise source(s) identified at the NSRs during the normal hour monitoring were dominated by local traffic noise (such as Tsing Yi Road and Container Port Road), in particular container trucks.

² Limit Level is reduced to 70dB(A) for schools and 65dB(A) during examination periods. No examinations were carried out during the reporting period.

³ No adjustments were made on some of the measured noise levels, since corresponding baseline level ≥ measured noise level. The measured noise levels were mainly dominated by local traffic noise and the construction noise generated from the Phase 3 Contract was not noticeable at NSRs according to the field study record.

⁴ No adjustments were made on all measured noise levels, since corresponding baseline level ≥ measured noise level.

6.2.5 Restricted Hour Monitoring

Construction works were carried out at site areas P3-SA3 (Western Tower Site) and P3-SA5 (Eastern Tower Site) during evening time, night-time and public holidays. Noise monitoring was carried out at all monitoring locations (NSR1 to NSR5) during evening-time (1900 – 2300 hours), night time (2300-0700 hours next day) and public-holidays (0700 – 1900 hours). All measured noise levels are presented in *Appendix M2* and a summary of the results is given in *Table 6.4*. Graphical presentation of the monitoring results for the Reporting period is shown in *Appendix N2*.

Table 6.4 Summary of Corrected Impact Noise Levels for Restricted Hour Monitoring

		-				
Measure		\mathbf{d}^{-1} , $\mathbf{dB}(\mathbf{A})$,		Limit Level		
	(Range)			dB(A)		
	 		dB(A) (Range)			
$L_{eq(5min)}$	$L_{10(5min)}$	$L_{90(5min)}$	$L_{ m eq(5min)}$	$L_{eq(5min)}$		
62.9 - 64.4	63.5 - 66.0	62.0 - 62.8	$50.1 - 61.7^2$	70		
61.3 - 63.7	62.8 - 65.8	59.5 - 62.5		70		
62.1 - 65.5	63.6 - 68.2	59.3 - 61.8	$57.3 - 58.2^2$	70		
61.0 - 65.1	63.7 - 68.0	57.1 - 61.2	$-\frac{3}{}$	70		
69.8 - 72.7	72.5 - 76.0	64.4 - 68.9	$58.3 - 65.6^2$	70		
Measure	d Noise Level	1 ,dB(A),	Construction	Limit Level		
	(Range)		Noise Level,	dB(A)		
			dB(A) (Range)			
$L_{eq(5min)}$	$L_{10(5min)}$	$L_{90(5min)}$	$L_{eq(5min)}$	$L_{eq(5min)}$		
59.0 – 59.9	62.5 - 63.8	58.0 - 59.3	$49.4 - 54.9^2$	55		
58.9 – 60.1	60.3 - 63.3 $58.0 - 59.5$		$43.2 - 54.8^2$	55		
58.8 - 62.4	60.9 - 65.0	56.3 – 58.9	$53.9 - 54.7^2$	55		
59.9 – 64.1	62.3 - 66.6	53.5 - 59.1		55		
66.6 - 68.6	69.1 – 73.5	62.3 - 65.9	$-\frac{3}{}$	55		
Measure	d Noise Level	$^{-1}$,dB(A),	Construction	Limit Level		
	(Range)		Noise Level,	dB(A)		
			dB(A) (Range)			
$L_{eq(5min)}$	$L_{10(5min)}$	$L_{90(5min)}$	$L_{eq(5min)}$	$L_{eq(5min)}$		
63.7 - 67.4	64.8 - 69.8	62.3 - 63.5	$52.6 - 63.7^2$	70		
60.6 - 63.6	61.3 - 64.8	59.3 – 61.5	$-\frac{3}{}$	70		
61.1 - 65.0	62.5 - 68.2	58.6 – 61.7	- ³	70		
61.7 - 64.7	64.0 - 67.7	57.0 - 60.5		70		
			3			
	L _{eq(5min)} 62.9 - 64.4 61.3 - 63.7 62.1 - 65.5 61.0 - 65.1 69.8 - 72.7 Measure L _{eq(5min)} 59.0 - 59.9 58.9 - 60.1 58.8 - 62.4 59.9 - 64.1 66.6 - 68.6 Measure L _{eq(5min)} 63.7 - 67.4 60.6 - 63.6 61.1 - 65.0	Leq(5min) L10(5min) 62.9 - 64.4 63.5 - 66.0 61.3 - 63.7 62.8 - 65.8 62.1 - 65.5 63.6 - 68.2 61.0 - 65.1 63.7 - 68.0 69.8 - 72.7 72.5 - 76.0 Measured Noise Level (Range) Leq(5min) L10(5min) 59.0 - 59.9 62.5 - 63.8 58.9 - 60.1 60.3 - 63.3 58.8 - 62.4 60.9 - 65.0 59.9 - 64.1 62.3 - 66.6 66.6 - 68.6 69.1 - 73.5 Measured Noise Level (Range) Leq(5min) L10(5min) 63.7 - 67.4 64.8 - 69.8 60.6 - 63.6 61.3 - 64.8 61.1 - 65.0 62.5 - 68.2	Leq(5min) L10(5min) L90(5min)	$\begin{array}{ c c c c c }\hline (Range) & Noise Level,\\ dB(A) (Range)\\\hline L_{eq(5min)} & L_{10(5min)} & L_{90(5min)} & L_{eq(5min)}\\\hline 62.9-64.4 & 63.5-66.0 & 62.0-62.8 & 50.1-61.7^2\\\hline 61.3-63.7 & 62.8-65.8 & 59.5-62.5 & -^3\\\hline 62.1-65.5 & 63.6-68.2 & 59.3-61.8 & 57.3-58.2^2\\\hline 61.0-65.1 & 63.7-68.0 & 57.1-61.2 & -^3\\\hline 69.8-72.7 & 72.5-76.0 & 64.4-68.9 & 58.3-65.6^2\\\hline \textbf{Measured Noise Level}^1, dB(A),\\\hline (Range) & \textbf{Construction}\\\hline Noise Level,\\ dB(A) (Range)\\\hline L_{eq(5min)} & L_{10(5min)} & L_{90(5min)} & L_{eq(5min)}\\\hline 59.0-59.9 & 62.5-63.8 & 58.0-59.3 & 49.4-54.9^2\\\hline 58.8-62.4 & 60.9-65.0 & 56.3-58.9 & 53.9-54.7^2\\\hline 59.9-64.1 & 62.3-66.6 & 53.5-59.1 & -^3\\\hline 66.6-68.6 & 69.1-73.5 & 62.3-65.9 & -^3\\\hline \textbf{Measured Noise Level}^1, dB(A),\\\hline (Range) & L_{eq(5min)} & L_{eq(5min)}\\\hline Construction & Noise Level,\\dB(A) (Range) & L_{eq(5min)} & -^3\\\hline 66.6-63.6 & 69.1-73.5 & 62.3-65.9 & -^3\\\hline \textbf{Measured Noise Level}^1, dB(A),\\\hline (Range) & L_{eq(5min)} & L_{eq(5min)}\\\hline 63.7-67.4 & 64.8-69.8 & 62.3-63.5 & 52.6-63.7^2\\\hline 60.6-63.6 & 61.3-64.8 & 59.3-61.5 & -^3\\\hline 61.1-65.0 & 62.5-68.2 & 58.6-61.7 & -^3\\\hline 61.7-64.7 & 64.0-67.7 & 57.0-60.5 & -^3\\\hline \end{array}$		

¹ Additional 3dB (A) façade correction was made to the Free-field measurements.

6.2.6 Observations

The major noise sources during the restricted hour monitoring were dominated by the operation of CT9 and local traffic noise (Container Port Road and Tsing Yi Road) and in particular container trucks.

² No adjustments were made on some of the measured noise levels, since corresponding baseline level ≥ measured noise level. The measured noise levels were mainly dominated by local traffic noise and the construction noise generated from the Phase 3 Contract was not noticeable at NSRs according to the field study record.

³ No adjustments were made on all measured noise levels, $\bar{\text{since}}$ corresponding baseline level \geq measured noise level.

7 AUDIT RESULTS

7.1 Air Quality

- 7.1.1 For 1-hour TSP monitoring, a total of 75 sets of measurement were carried out during the reporting period and the results of all measurements taken were below the Action/ Limit (AL) Levels.
- 7.1.2 For 24-hour TSP monitoring, a total of 25 sets of measurement were carried out during the reporting period and the results of all measurements taken were below the Action/ Limit (AL) Levels.

7.2 Noise

- 7.2.1 A total of 20 sets of L_{eq(30min)} measurement were carried out during daytime (i.e. 0700 to 1900 hours on normal weekdays) at all monitoring locations (NSR1 to NSR5) during the reporting period and no exceedances were recorded.
- 7.2.2 A total of 20 sets of 6 x $L_{eq~(5min)}$ measurements were carried out during evening-time (i.e. 1900 to 2300 hours) at all monitoring locations during the reporting period and no exceedances were recorded.
- 7.2.3 A total of 20 sets of 4 x L_{eq (5min)} measurements were carried out during night-time (i.e. 2300 to 0700 hours next day) at all monitoring locations during the reporting period and no exceedances were recorded.
- 7.2.4 A total of 25 sets of 6 x L_{eq(5min)} measurements were carried out during public holidays (i.e. 0700 to 1900 hours) at all monitoring locations during the reporting period and no exceedances were recorded.

7.3 Water Quality

- 7.3.1 Two Effluent Discharge Licenses were granted by EPD, one for the Eastern Tower Site (EP760/269/009124I) and the other for the Western Tower Site (EP760/350/008933I) on 20th September 2004 and 21st December 2004 respectively. The variation of the Discharge License (EP760/350/008933I) was granted by EPD on 13th June 2005.
- 7.3.2 In accordance with the approved licenses' conditions, water sampling is required on a bimonthly basis. One water sample was taken for CT8 site area by MHYHJV on 24th November 2008. The water sample was subsequently tested by a HOKLAS accredited laboratory and the results indicated that they have fully complied with the Specific Condition as stipulated in the approved license.
- 7.3.3 One water sample was taken on 29th December 2008 at CT9 site area. The water sample was subsequently tested by a HOKLAS accredited laboratory and the results will be reported in coming EM&A monthly report. The next sampling is scheduled for January 2009 for CT8 site area.

7.4 Waste Management

- 7.4.1 The Waste Management Plan (WMP–Issue 08) was approved by EPD on 8th December 2006.
- 7.4.2 Since May 2004, all non-inert C&D material from the Phase 3 Contract had been disposed of at WENT Landfill. A total of 78m³ of general refuse were delivered to WENT Landfill during the reporting period.
- 7.4.3 With effect from 6th February 2005, inert C&D material had been disposed of at Tuen Mun Fill Bank. During this reporting period, a total of 731m³ of public fill and 413m³ broken concrete were delivered to Tuen Mun Area 38.
- 7.4.4 On 18th March 2005, approval was granted by PFC, CEDD to deliver a maximum of 4,000m³ of surplus filling material to "Route 9 Section between Shek Wai Kok and Chai Wan Kok (TW/98/02)" for re-usage purposes. From March 2005 onwards, a total of 4,512m³ (752 dump trucks) were delivered to TW/98/02.
- 7.4.5 On 7th December 2005, approval was granted by PFC, CEDD to deliver a maximum of 3,000 m³ of surplus filling material to "Route 8 Ngong Shuen Chau Viaduct (HY/2000/21)" for reusage purposes. From December 2005 onwards, a total of 2,004m³ (334 dump trucks) filling material were delivered to HY/2000/21.
- 7.4.6 On 23rd January 2006, approval was granted by PFC, CEDD to deliver a maximum of 3,000 m³ of surplus filling material to "Drainage Improvement in East Kowloon (DC/2004/03)" for re-usage purposes. From January 2006 onwards, a total of 138m³ (23 dump trucks) filling material were delivered to DC/2004/03.
- 7.4.7 CEDD was notified that a total of 1,600 m³ of broken concrete and broken asphalt had been delivered to "Ampliacao Do Novo Terminal Maritimo Da Taipa" Project in Macau by a derrick barge for the formation of internal haul roads in November 2007.
- 7.4.8 With the Marine Department Notice, a total of 320 nos. of concrete blocks were delivered and laid on the designated seabed as artificial reefs since 7th July 2008.
- 7.4.9 The quantities of different waste and their handling are summarized in *Table 7.1*.

Table 7.1 Summary of Waste Disposal during the Reporting Period

Material	Туре	Handling Method	Handling Quantities in the reporting period	Temporary Storage Locations On-site (if applicable)
C&D	Public Fill	Tuen Mun Fill Bank	731 m ³	N/A
material	Broken Concrete	Tuen Mun Fill Bank	413 m ³	N/A
	C&D Waste	To be recycled	N/A	P3-SA2 and P3-SA5
		(paper& plastic)		Contractor's Office
		To be recycled (metal)	N/A	N/A
General l	Refuse	Collected by licensed collector for disposal to WENT	78 m ³	N/A
Chemica	l waste	Collected by licensed chemical waste collector	N/A	Western Tower & Eastern Tower Site

7.5 Site Audits / Inspections

Photographic records provided by MHYHJV for their mitigation measures taken to rectify the deficiencies identified on site are presented in Appendix Q.

7.5.1 Environmental Team Site Inspections

Weekly site inspections were conducted by the ET during the reporting period and the major findings and MHYHJV's proposed / implemented corrective and preventive measures are summarized as follows:

- i. MHYHJV was reminded that all open stockpiles should be sprayed with sufficient water to maintain the entire surface moist and covered by impervious sheeting by end of each working day.
 - Corrective and Preventive Actions All open stockpiles of dusty material have been sprayed by sufficient water to maintain the entire surface moist. Completed and closed. (Please refer **Appendix O** Photo 01 & 02).
- ii. More than 20 bags of cement and used cement bags without proper dust control measures were observed at area P3-SA5 & SA6. In addition, MHYHJV was also reminded to provide totally enclosed system and adequate air pollution control measures for the de-bagging and mixing processes by using of bagged cement on site.

Corrective and Preventive Actions – All bagged cement had been removed from the concerned area and stored properly. Plastic bags and waste skip have been deployed on site for the temporary storage of used cement bags. MHYHJV reported that all debagging, batching and mixing process shall be carried out in enclosed area during the use of bagged cement. Completed and closed. (Please refer *Appendix Q* Photo 03 & 04).

7.5.2 Independent Environmental Checker (IEC) Site Audits

The monthly IEC audit was carried out on 19th December 2008 and one general reminder was recorded and presented as follows:

i. MHYHJV was reminded that all open stockpiles should be sprayed with sufficient water to maintain the entire surface moist and covered by impervious sheeting by end of each working day.

Corrective and Preventive Actions – All open stockpiles of dusty material have been sprayed by sufficient water to maintain the entire surface moist. Completed and closed. (Please refer *Appendix Q* Photo 01 & 02).

7.5.3 Environmental Protection Department (EPD) Site Inspections

A joint site inspection was carried out with EPD on 19th December 2008 at CT9 site area. It was noted that MHYHJV had implemented appropriate environmental mitigation measures on site and the performance of such environmental measures were found to be satisfactory.

MHYHJV were reminded by EPD that Ultra-low-sulphur diesel (ULSD) (defined as diesel fuel containing not more than 0.005% by weight of sulphur) shall be used in all relevant plants on the Site pursuant to the Air Pollution Control (Fuel Restriction) Regulations. MHYHJV reported that proper diesel fuel has been used on site and the record of the ULSD fuel supply order has been maintained properly.

8 ENVIRONMENTAL NON-COMPLIANCE, COMPLAINTS, NOTIFICATIONS OF SUMMONSES AND PROSECUTIONS

8.1 Summary of Environmental Non-Compliance

- 8.1.1 No Action / Limit Level exceedances were recorded in this reporting period and they are
- 8.1.2 Table 8.1 Summary of Non-Compliance for the Reporting Period

Media/	No. of Ex	ceedance	Action	Results of Action	Remarks
Nature	Action Level Limit Level		Taken	Taken	
Air Quality	0	0	-	-	-
Noise	0	0	-	-	-

8.2 Summary of Complaints

8.2.1 No environmental related complaints were received during the reporting month. The summary for all the complaints received since the commencement of the Phase 3 Contract is presented in *Table 8.2*. The details of previous complaints and statistics are attached in *Appendices 01* and *02* respectively.

Table 8.2 Summary of Total Complaint Received

Total No. of	No. of complaint received	No. of Active	No. of Inactive/Closed
Complaint Received	within reporting period	Complaint	Complaint
1	0	0	1

8.3 Summary of Notifications of Summonses and Prosecutions

8.3.1 No notifications of summonses or prosecutions were received on the environmental performance for Phase 3 Contract since the commencement of construction.

9 ROUTE 8 – TRAFFIC CONTROL AND SURVEILLANCE SYSTEM (TCSS)

9.1 Key issues for the Construction Works of TCSS

- 9.1.1 The construction of the "Route 8 Traffic Control and Surveillance System Contract (HY/2003/05)" (TCSS) Contract was awarded to Delcan-Imtech-GECS-Joint Venture (DIGJV) and the construction work of TCSS within Phase 1 Contract (Route 8 Ngong Shuen Chau Viaduct) site area was commenced on 4th April 2007.
- 9.1.2 The construction work of TCSS within Phase 1 Contract (Route 8 Ngong Shuen Chau Viaduct) and Phase 2a Contract (Route 8 Nam Wan Tunnel and West Tsing Yi Viaduct) site area was commenced on 4th April 2007 and 25th October 2006 respectively. Since the no further EM&A during construction phase would be carried out for both Phase 1 and Phase 2a Contracts and therefore, all future TCSS works within Phase 1 and Phase 2a would be reported in this monthly EM&A report.

9.2 Audit Results

- 9.2.1 A joint site audit was carried out amongst IEC/ET/RSS/DIGJV on 19th December 2008. No adverse comments were raised by any parties.
- 9.2.2 DIGJV reported that no C&D materials were disposed off site to designated public filling area during the reporting period.

10 FUTURE KEY ISSUES

10.1 Key Issues for the Coming Month

- 10.1.1 Works to be taken for the coming monitoring period will be similar to the previous month as follows:
 - i. Tower construction
 - ii. backspan and mainspan construction
 - iii. Steel decks construction
 - iv. Road and utilities construction
- 10.1.2 Potential environmental impacts arising from the above construction activities are mainly associated with dust, noise, site run-off and waste. However, with the implementation of the following mitigation measures, potential impacts to the surrounding sensitive receivers could be minimized

10.1.3 Construction Dust

- i. frequently watering of haul road and unpaved areas;
- ii. prohibition of open burning on site;
- iii. investigation of other dust sources near air sensitive receivers;
- iv. regularly watering or covering of open areas and stockpiles with tarpaulin;
- v. hydro-seeding or covering inactive sand fill areas with impervious sheeting if necessary;
- vi. frequently watering during concrete breaking operation;
- vii. switching off vehicles and equipment while not in use; and
- viii. regular maintenance of onsite machinery and vehicles.

10.1.4 Construction Noise

- i. identification of noise sources arising within and outside work site; and
- ii. provision of noise barriers when necessary.

10.1.5 Construction Run-off

- i. identification of sources of run-off from site;
- ii. provision of sandbags/bunds/channels to direct run-off to silt/sand removal facilities;
- iii. avoidance of direct discharge of wastewater into storm water drainage; and
- v. provision of treatment of wastewater and run-off prior to discharge.

10.1.6 Construction Waste Management

- i. avoidance of accumulation of construction waste materials and/or general refuse on site;
- ii. segregation of C&D waste;

- iii. collection of chemical waste or oil and disposal of chemical waste in accordance with relevant regulations;
- iv. regularly removing of waste materials on site; and
- v. every dump truck should be properly covered before leaving site.

10.2 Monitoring Schedule for the Coming Three Months

The tentative schedules for dust and noise monitoring for the next three months are attached in Appendix P.

11 RECOMMENDATIONS AND CONCLUSIONS

11.1 Conclusions

- 11.1.1 This Environmental Monitoring and Audit (EM&A) report presents the EM&A works undertaken during the period from 29th November 2008 to 28th December 2008 in accordance with EM&A Manual which forms part of the EIA Report (Register No. AEIAR-018/1999).
- 11.1.2 A total of 75 sets of 1 hour TSP and 25 sets of 20-hours TSP measurements were carried out at all monitoring locations during the reporting period and the results of all measurements taken were below the Action/Limit (AL) Levels.
- 11.1.3 A total of 20 sets of $L_{eq(30min)}$ measurement during daytime (i.e. 0700 to 1900 hours) were carried out at five monitoring locations during the reporting period and no exceedances were recorded.
- 11.1.4 A total of 20 sets of 6 x L_{eq(5min)} measurements during evening-time (i.e. 1900 to 2300 hours) were carried out at five monitoring locations during the reporting period and no exceedances were recorded.
- 11.1.5 A total of 20 sets of 4 x $L_{eq(5min)}$ measurement during night time (i.e. 2300 to 0700 hours next day) were carried out at five monitoring locations during the reporting period and no exceedances were recorded.
- 11.1.6 A total of 25 sets of 6 x L_{eq(5min)} measurements during public-holidays (i.e. 0700 to 1900 hours) were carried out at five monitoring locations during the reporting period and no exceedances were recorded.
- 11.1.7 No environmental complaints were received during the reporting period.
- 11.1.8 No notifications of summonses or prosecutions were received on the environmental performance for Phase 3 Contract since the commencement of construction works.
- 11.1.9 ET and IEC audits were carried out in accordance with the Phase 3 Contract's EM&A Manual and deficiencies identified were mainly related to the provision of enclosure for the de-bagging process of bagged cement, provision of dust control measures for open stockpiles and covering of bagged cement. MHYHJV had carried out immediate corrective / mitigation measures to rectify these issues.

- 11.1.10 A joint site inspection was carried out with EPD during the reporting period. No adverse comments were raised by any parties.
- 11.1.11 A joint site audit was carried out amongst IEC/ET/RSS/DIGJV on 19th December 2008. No adverse comments were raised by any parties.

11.2 Recommendations

According to the environmental audits undertaken during the reporting period, the following recommendations have been made:

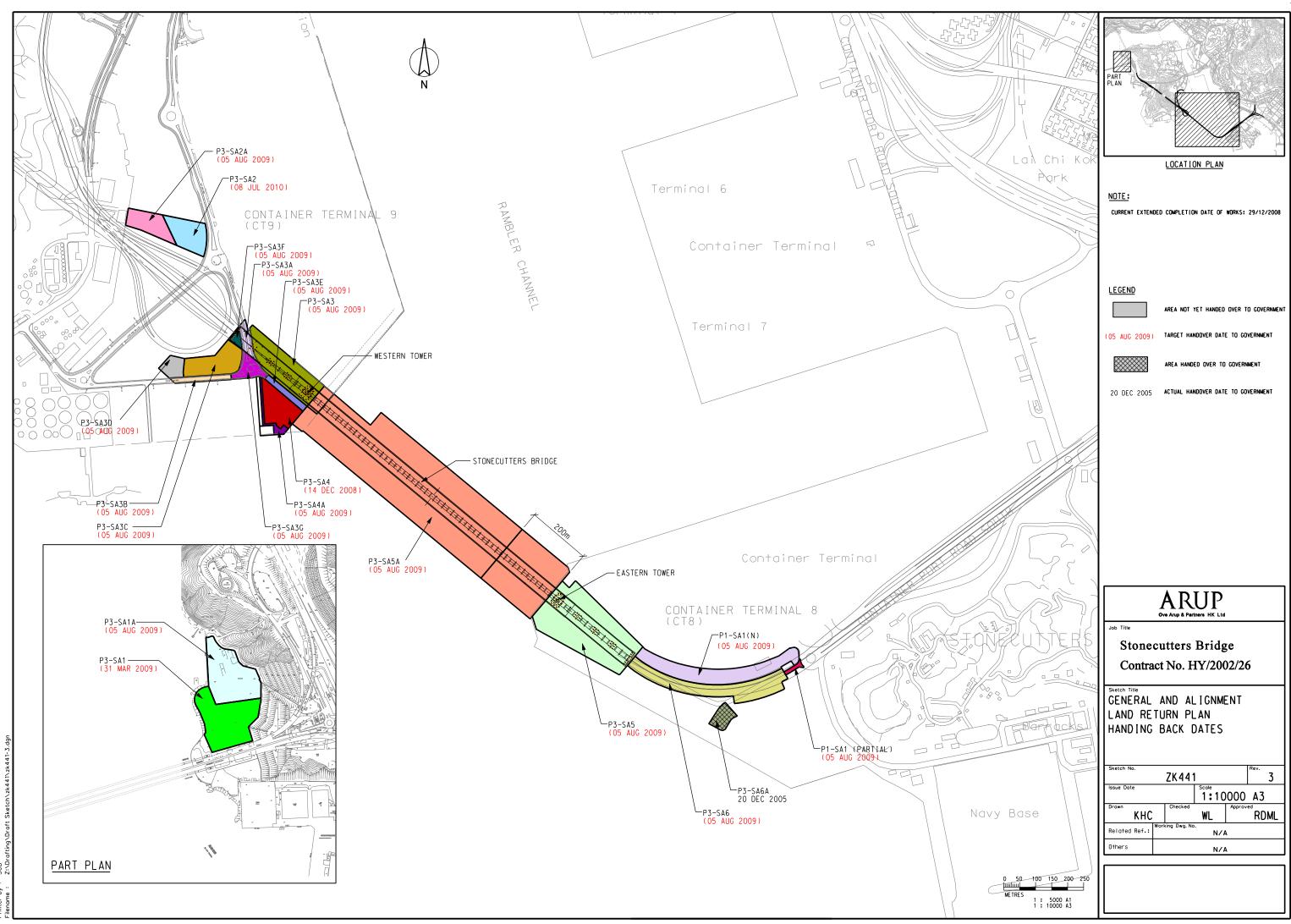
11.2.1 Construction Dust

- i. Site access road and exposed areas should be watered regularly to ensure the soil surface is moist;
- ii. Dusty areas should be watered frequently;
- iii. Open stockpiles should be covered properly by tarpaulin or similar fabric;
- iv. Concrete breaking works should be watered frequently; and
- v. Watering for any earth moving activities.

11.2.2 Construction Noise

- i. The numbers of powered mechanical plant operating should not exceed the allowable plant number for each construction activity stated in the Construction Noise Permits;
- ii. Regular maintenance of machinery; and
- iii. Noisy equipment should be located as far as possible from the NSRs.

11.2.3 Water Quality


- i. All surface run-off/wastewater should be diverted to appropriate water treatment facilities before discharge;
- ii. Sedimentation tanks/basins should have adequate capacity for settling surface runoff;
- iii. The condition of u-channel, catch pits and wheel washing facilities should be regularly maintained.
- iv. Vehicle and plant servicing area, wheel washing bay should be connected to storm drains via a petrol interceptor;
- v. Site hoarding should be tightly sealed at the bottom to prevent seepage of surface runoff from the site; and
- vi. Accumulation of water in drip trays and at chemical/fuel storage area should be avoided.

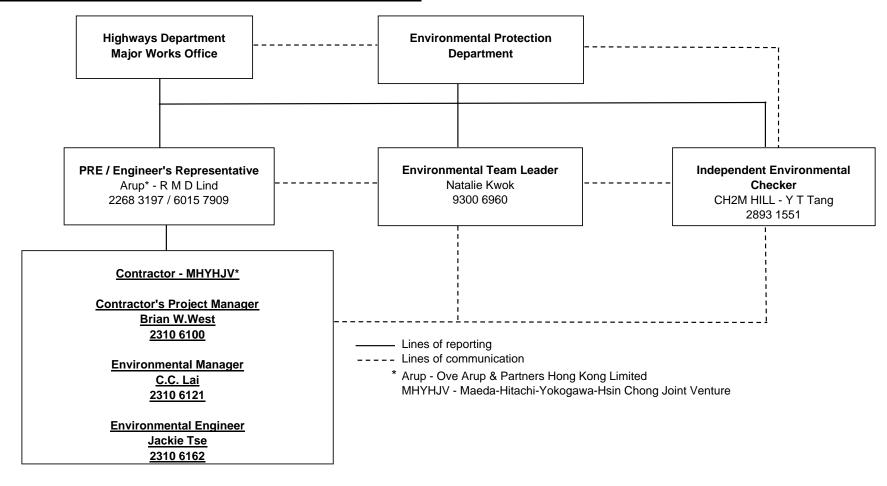
11.2.4 Waste/Chemical Management

- i. Contaminated soil should be collected and disposed of as chemical waste;
- ii. All types of waste should be separated on site prior disposal;
- iii. All types of waste should be collected by licensed waste collectors; and
- iv. Good housekeeping should be implemented throughout the whole construction period.

Appendix A

Site Location Plan

2009 er by : SCB


6/1/2009 Printer by

Appendix B

Project's Environmental Organization Chart and Contact Details

Contract No. HY/2002/26 Route 8 Phase 3 Stonecutters Bridge

Appendix B: Project's Environmental Organisational Chart and Contact Details

Appendix C

Three-Month Rolling Programme

Activity	Activity	Orig	Early	Early		Total			2008				2009		
PRELIM	Description MINARIES	Dur	Start	Finish	Comp	Float	Dur	S OCT	NOV	DEC		JAN	FEB	MAR I	APR
	Dates & Key Dates								 						
_	KD-9 Completion of ALL Works	0		30 SEP 09	0	0	0		 					 	
SC_KD03	KD-3 Provide Access to CHEC (02 Sep. 06) KD-4 Achievement of Stage 4 (07 Feb. 07)	0		02 SEP 06A	100		0	1						I I	
SC_KD04 SC_KD05	KD-4 Achievement of Stage 4 (07 Feb. 07) KD-5 Achievement of Stage 5 (19 Aug. 07)	0		18 NOV 06A 08 AUG 07A	100		0								-
SC_KD07	KD-7 Achievement of Stage 7 (26Nov08)	0		20 NOV 08A	100		0		♦					 	
!	KD-6 Achievement of Stage 6 (27May09)	0		27 MAY 09	0	0	0		1					 	
	neous Design & Fabrication Works Design, Fabrication & Delivery of RPL	1,424*	08 JUL 04A	30 MAR 09	94	89	81*		 					 	
	Design, Fabrication & Delivery of TMU		14 JUL 04A	06 MAR 09	96	29					7			I I	1
SC403020	Design, Fabrication & Delivery of LBGS	1,095*	18 APR 05A	03 DEC 08A	100		0*							 	
East Si	de Construction								 						
	an Construction			1										 	
	Pier 4E Construct Crosshead Pier 2E Construct Crosshead	102* 123*	12 APR 06A 19 APR 06A		100		0* 0*		 					 	-
	Pier 3E Construct Crosshead	129*		28 AUG 06A	100		0*							 	
	EBS RC Deck Bay 1	224*			100		0*							1	
	EBS RC Deck Bay 4 EBS RC Deck Bay 2	262* 229*		28 MAR 07A 08 MAR 07A	100		0* 0*		 					 	
	Pier 4E Removal of Crosshead Trusses	21*		20 AUG 06A	100		0*							 	
	EBS RC Deck Bay 3		07 AUG 06A		100		0*							 	
SC401300 SC400300	EBS Interface Works Pier 2E Removal of Crosshead Trusses	6* 10*	28 AUG 06A 05 SEP 06A		100		0* 0*							 	_
SC400500	Pier 3E Removal of Crosshead Trusses	12*		22 SEP 06A	100		0*		I					<u> </u> 	
	EBS Longitudinal Stressing	25*	02 APR 07A	26 APR 07A	100		0*	1	1					 	
	Construction Construct East Tower up to +293	4 000	01 JUN 04A	22 NOV 004	100	ı	0*							 	
	ET Bored Piling Works	1,636"		04 JAN 05A	100		0*								
SC401500	ET Pile Cap Construction	236*	04 FEB 05A	27 SEP 05A	100		0*		 						
	ET Tower Construction Lift 1 - 27, +109		07 OCT 05A		100		0*							 	
	ET Tower Construction Lift 28 - 34, +136.3 ET Tower Construction Lift 35 - 44, +175	68* 79*	15 SEP 06A 22 NOV 06A	21 NOV 06A 08 FEB 07A	100		0* 0*	1						<u> </u> 	+
SC401900	ET Tower Construct Composite Section up to U8	127*	09 FEB 07A	15 JUN 07A	100		0*							 	
SC402000 SC402012	ET Tower Construct Composite Section up to 292 Construct East Tower Concrete Box-out at +293	301* 19*	10 JUL 07A	05 MAY 08A 22 NOV 08A	100		0* 0*								
SC402012 SC402013	Install ET LBGS	47*	18 DEC 08A	16 FEB 09	4	27	45*			-	u n			! !	+
SC402035	Install ET TMU	75*	20 DEC 08	23 MAR 09	0	27	75*				7				
SC402011 SC402014	Construct East Tower Top Slab LBGS Base Install ET LGBS Instrumentation	7* 66*	17 JAN 09 17 FEB 09	24 JAN 09 06 MAY 09	0	43 97	7* 66*		 					 	
	Dismantle East Tower Crane	126*	24 APR 09	27 AUG 09	0	8			 					<u> </u> 	
Steel De	eck Erection								! !					 	
SC402200	Erect/Commission ET Tower Bracket	237*	04 SEP 06A	28 APR 07A	100		0*		1					, 	
SC402100 SC402300	Slide to Position & Weld/Paint on Ground 65-60 Erect/Commission EBS Backspan Lifting Frame	123* 50*			100		0* 0*		!					 	
SC402400	Lift Segments 65 - 60	23*	14 JUN 07A	06 JUL 07A	100		0*	1						 	
SC402500	Lift Cross Girders & Weld 65 - 60	60*	07 JUL 07A	04 SEP 07A	100		0*		 					 	
SC402600 SC402900	Stitch Concrete RC Deck & Steel Deck (East) Erect Cables 301-302 & 401-403	35* 29*	15 JUL 07A 12 SEP 07A	18 AUG 07A 10 OCT 07A	100		0* 0*		 					<u> </u> 	
SC402700	Install Hydraulic Buffer (East)	13*		24 NOV 07A	100		0*		l						
SC402800	ET Activate HB & LB & Remove Temporary Restraint	27*	26 NOV 07A 17 DEC 07A	22 DEC 07A 07 APR 08A	100		0* 0*		İ						
	MS Gantry then Erect Cables & Segments 59 - 55 Erect Cables & Segments 54 - 34	113* 317*	08 APR 08A	18 FEB 09	81	8								! !	+
Fabricat	tion & Assembly			1		I			 					 	
	Steel Deck Fabrication Segments 65 - 58	330*	05 SEP 05A	31 JUL 06A	100		0*		 					 	
SC403800 SC404400	Steel Deck Assembly & Painting Segments 65 - 58 East Side Anchor Box Fabrication	374* 521*	23 JAN 06A 10 APR 06A	31 JAN 07A 12 SEP 07A	100		0* 0*		 					 	
SC404300	East Side SS Skin Fabrication	495*	29 MAY 06A	05 OCT 07A	100		0*		1					 	
SC403400	Steel Deck Fabrication Segments 57 - 52	143*	17 JUL 06A	06 DEC 06A	100		0*		İ					1	
SC403900 SC403500	Steel Deck Assembly & Painting Segments 57 - 52 Steel Deck Fabrication Segments 51 - 46	375* 174*	09 OCT 06A 20 NOV 06A	18 OCT 07A 12 MAY 07A	100		0* 0*		 					 	1
SC404500	East Side Stay Cable Fabrication	612*	02 DEC 06A		100		0*							I I I	
SC403600	Steel Deck Fabrication Segments 45 - 40		05 MAR 07A		100		0*	1	1					 	
SC404000 SC403700	Steel Deck Assembly & Painting Segments 51 - 46 Steel Deck Fabrication Segments 39 - 34	361* 128*	26 APR 07A 11 JUL 07A	20 APR 08A 15 NOV 07A	100		0* 0*		1					 	+
SC404100	Steel Deck Assembly & Painting Segments 45 - 40	385*		31 AUG 08A	100		0*		 					1	
SC404200	Steel Deck Assembly & Painting Segments 39 - 34	192*	07 MAY 08A	14 NOV 08A	100		0*								<u> </u>
80400050	ET TMIL Docion Fabricate Install T90	404+	25 OOT 274	06 1441/ 00	70	0-1	444+				<u> </u>	<u></u>		I I	
SC402050	ET TMU Design, Fabricate, Install T&C	461*	25 OCT 07A	06 MAY 09	76	97	111*		 					 	F
SC402120	ET LBGS Design, Fabricate & Install	1,157*	04 JUL 05A	06 MAY 09	90	97	111*		1					I 	
	·	1			,									 	
									 					, 	
SC405200	WBS Pier 4W Deliver Truss from CT8 & Erect	54*	21 AUG 06A	13 OCT 06A	100		0*		 					 	
SC404600	WBS Pier 1W Deliver Truss from CT8 & Erect	22*		28 SEP 06A	100		0*		 					 	<u> </u>
SC404800 SC405000	WBS Pier 2W Deliver Truss from CT8 & Erect WBS Pier 3W Deliver Truss from CT8 & Erect	20*	16 SEP 06A 25 SEP 06A	29 SEP 06A 14 OCT 06A	100		0* 0*		 					 	-
SC404700	WBS Pier 1W Construct Crosshead		09 OCT 06A	23 DEC 06A	100		0*		 					I I	
SC405400	WBS Bay 1 Transport/Ass/Erect Trusses from CT8/1	23*		01 NOV 06A	100		0*							!	<u> </u>
SC404900 SC405100	WBS Pier 2W Construct Crosshead WBS Pier 3W Construct Crosshead	79* 82*		29 DEC 06A 05 JAN 07A	100		0* 0*		 					 	+
SC405300	WBS Pier 4W Construct Crosshead	98*	16 OCT 06A	21 JAN 07A	100		0*		 						
SC405500	WBS RC Deck Bay 1		05 NOV 06A		100		0*		1					 	\perp
SC405600 SC405800	WBS Bay 2 Transport/Ass/Erect Trusses from CT8/4 WBS Bay 3 Transport/Ass/Erect Trusses from CT8/2		07 NOV 06A 29 NOV 06A		100		0* 0*		 					<u> </u> 	+
SC405700	WBS RC Deck Bay 2		01 DEC 06A		100		0*		 					I 	
	Current	912A	Cantus	No LIVIO	000/0	6 0	40	outtors Datelan	Sheet 1 of 2						
	Current Progress Bar Critical Activity		Contract	. NO. MY/2	002/20 MHY			cutters Bridge	27 [Revision rporated into Programme P3 - S0 WP7a into Programme P3-SC7E	B7	Checked A	Approved
									21、	IUL 08 DWPS	1				
	?Primavera Systems Inc			3 Mo	nth Pi	roara	amn	ne							

?Primavera Systems, Inc.

SC405900 WBS SC406100 WBS SC406200 WBS SC406300 WBS Tower Cons SC407010 Cons SC406400 WT E SC406500 WT F	Activity Description	Orig	Early	Early	%	Total	Rem							
SC405900 WBS SC406100 WBS SC406200 WBS SC406300 WBS Tower Cons SC407010 Cons SC406400 WT E SC406500 WT F	•	Dur	Start	Finish	Comp		Dur	2008 S OCT NOV	DE	С	JAN	FEB	MAR	APR
SC406100 WBS SC406200 WBS SC406300 WBS Tower Cons SC407010 Cons SC406400 WT E SC406500 WT F	B Bay 4 Transport/Ass/Erect Trusses from CT8/3	33*	05 DEC 06A	06 JAN 07A	100		0*		1 1	-		I I I	1 1	
SC406200 WBS SC406300 WBS Tower Cons SC407010 Cons SC406400 WT E SC406500 WT F	S RC Deck Bay 3 S RC Deck Bay 4	204* 189*	16 DEC 06A 05 JAN 07A	07 JUL 07A 12 JUL 07A	100		0* 0*		i I	1		I I	1	
SC406300 WBS Tower Cons SC407010 Cons SC406400 WT E SC406500 WT F	S Longitudinal Stressing	189"	28 JUL 07A	12 JUL 07A 11 AUG 07A	100		0*		1			<u> </u>	1	
Tower Cons SC407010 Cons SC406400 WT E SC406500 WT F	S Interface Works	22*	28 JUL 07A	18 AUG 07A	100		0*	1	1			 	1	
SC407010 Cons SC406400 WT E SC406500 WT F			_5 00L 0/A	1 .57.55 077	100		J		1	1		, 	, 	
SC406400 WT B SC406500 WT F	struction struct West Tower up to +293	1,508*	26 OCT 04A	11 DEC 08A	100		0*	i	i			 	i I	
SC406500 WT F	Bored Piling Works	340*	14 JAN 05A	19 DEC 05A	100		0*		1			l I	1	
	Pile Cap Construction		28 DEC 05A	13 MAY 06A	100		0*		1			 	1	
SC406600 WT T	Fower Construction Lift 1 - 27, +109	266*	14 MAY 06A	03 FEB 07A	100		0*					! 	1	
	Tower Construction Lift 28 - 34, +136.3	58*	04 FEB 07A	02 APR 07A	100		0*					l	1	
	Tower Construction Lift 35 - 44, +175	82*	03 APR 07A	23 JUN 07A	100		0*		1			l	1	
SC406900 WT T	Tower Construct Composite Section up to U8	126*	24 JUN 07A	27 OCT 07A	100		0*		!				1	
SC407012 Cons	struct West Tower Concrete Box-out at +293	21*	18 NOV 08A	11 DEC 08A	100		0*					 	1	
SC407016 Instal	II WT TMU	101*	20 DEC 08	23 APR 09	0	8	101*		İ				1	
SC407013 Instal	II WT LBGS	44*	03 FEB 09	25 MAR 09	0	8	44*		1				I	
	struct West Tower Top Slab LBGS Base	10*	03 MAR 09	13 MAR 09	0	41	10*		1			l 		
	II WT LGBS Instrumentation	66*	20 MAR 09	08 JUN 09	0	70	66*		1			 		_~ <u>~</u>
1 1	nantle West Tower Crane	126*	24 APR 09	27 AUG 09	0	8	126*	i i	İ			! 	1	
Steel Deck E	Erection								İ			 	i I	
	aration Works for WT Tower Bracket	71*	01 MAR 07A	10 MAY 07A	100		0*	1	1			l I	1 1	
	to Position & Weld/Paint on Ground 1-6	177*	18 MAY 07A	10 NOV 07A	100		0*		1			 	1	
	t/Commission WT Tower Bracket	87*		24 OCT 07A	100		0*		1			I I	1	
	t/Commission WBS Backspan Lifting Frame	34*	17 AUG 07A	19 SEP 07A	100		0*		i	_		I	I I	
	Segments 1 - 6	13*	29 OCT 07A	10 NOV 07A	100		0*	i	I I	-		I I	1	
	Cross Girders & Weld 1 - 6 Cross Girders & Commission Lift/Access Gant	11*	21 NOV 07A 02 DEC 07A	01 DEC 07A	100		0* 0*		1	1		 	<u> </u>	
	d Cross Girders & Commission Lift/Access Gant h Concrete RC Deck & Steel Deck (West)	95* 20*	02 DEC 07A 17 DEC 07A	05 MAR 08A 05 JAN 08A	100		0* 0*		1	1		 	1	
	t Cables 101-103 & 201-202	61*		05 JAN 08A 02 MAR 08A	100		0*			1		 		
	Gantry Assemble, Erect & Commission	62*		05 MAR 08A	100		0*		+			l	1	
	Ill Hydraulic Buffer (West)	51*	21 FEB 08A	11 APR 08A	100		0*		<u> </u>			l	!	
	Activate LB & HB & Remove Temporary Restraint	38*	05 MAR 08A	11 APR 08A	100		0*		1			I I	I	
	t Stay Cables & Steel Deck Segments 7 - 11	65*	06 MAR 08A	09 MAY 08A	100		0*			1		<u>. </u>	<u> </u> 	
	t Cables & Segments 12 - 33	321*	10 MAY 08A		70	5	97*		ı I					
' '	& Assembly	. !			ļ	,		· .	I I			I I	1	
	t Side Anchor Box Fabrication	709*	05 JAN 06A	14 DEC 07A	100		0*	!	1			 	1	
	I Deck Fabrication Segments 1 - 8	244*	15 MAY 06A	13 JAN 07A	100		0*					<u> </u> 	1	
SC409400 West	t Side SS Skin Fabrication	515*	01 AUG 06A	28 DEC 07A	100		0*		İ			<u> </u> 	1	
SC408900 Steel	Deck Assembly & Painting Segments 1 - 8	271*	08 DEC 06A	04 SEP 07A	100		0*		İ			I I	1	
SC408500 Steel	Deck Fabrication Segments 9 - 15	173*	19 DEC 06A	09 JUN 07A	100		0*					l I	1	
SC409600 West	t Side Stay Cable Fabrication	591*	17 JAN 07A	29 AUG 08A	100		0*					 	1	
	Deck Fabrication Segments 16 - 22	114*	07 MAY 07A		100		0*		-			 	1	
	Deck Assembly & Painting Segments 9 - 15	314*	14 MAY 07A		100		0*		i			İ	i	
	Deck Fabrication Segments 23 - 29	79*	16 SEP 07A	03 DEC 07A	100		0*		1			I -	1	
<u> </u>	Deck Assembly & Painting Segments 16 - 22	_	25 OCT 07A	12 JUN 08A	100		0*		1			l -	1	
l — — — — — — — — — — — — — — — — — — —	Deck Fabrication Segments 30 - 33	53*	12 NOV 07A	03 JAN 08A	100		0*					 	1	
l 	I Deck Assembly & Painting Segments 23 - 29 I Deck Assembly & Painting Segments 30 - 33	249*	20 FEB 08A 03 AUG 08A	25 OCT 08A	100		0* 0*		<u> </u>			 	1	
		117	03 AUG 06A	27 NOV 00A	100		U		-			I	<u>i</u>	
	on Glazed Structure	4 4 5 7 \$	04 1111 054	00 1441/ 00	00	07	444*		1			1	1	
	BGS design, Fabricate Install T&C	1,15/^	04 JUL 05A	06 MAY 09	90	97	111*		+					T
Deck Misce	ellaneous Works								i			 	i 1	
								1	1			 	I I	
SC410120 RPL I	Design submission, EMSD Approve, Fab & Del.	568*	10 SEP 07A	30 MAR 09	82	108	101*		<u> </u>				:	
SC410000 SD E	&M, WASHMS, T&C prior to Deck Closure	519*	25 OCT 07A	26 MAR 09	81	5	97*							
SC410200 SD T	CSS Works prior to Deck Closure	345*	16 APR 08A	26 MAR 09	72	5	97*				_			
	and Pinion Lift Installation East Tower	213*	15 JAN 09	15 AUG 09	0	46	213*		1				I.	
	and Pinion Lift Installation West Tower	210*	10 FEB 09	07 SEP 09	0	23	210*		1				1	
	CSS Works after Deck Closure	73*	16 MAR 09	27 MAY 09	0	0	73*	i i	i			! 		
	E&M, WASHMS, T&C after Deck Closure Parapets	198* 166*	16 MAR 09 27 MAR 09	29 SEP 09 08 SEP 09	0	13	198* 166*	· 	1	-		l I	1	
	'arapets Roadworks (w/proof,surfacing,signs,marking)	166*	27 MAR 09 27 MAR 09	08 SEP 09 21 SEP 09	0	13	166* 179*	1	1	1		<u> </u> 	!	
	Coadworks (wproor,surracing,signs,marking) SHMS Operability Tests	75*	16 SEP 09	14 DEC 09	0	248			1	1		I 		+
		13	10 OLF 08	17 020 08	U	240	10		1			: 	1	
Substation									1			 	!	
	A - East Side								1			 	1	
	oval of Falsework bet. P1E & East Tower	86*	20 MAR 08A	13 JUN 08A	100		0*		İ	_		I I	1 1	
	struct Substation A (CLP Access)	180*	23 JUN 08A		100		0*			1		I	: 	
	B - West Side								1			 	1	
SC410600 Remo	oval of Falsework bet. P1W & West Tower	96*	14 APR 08A	18 JUL 08A	100		0*		1 1			 	1	

Appendix D1 Action/Limit Levels for Air Quality

Appendix D1: Action /Limit Levels for Air Quality

ACTION AND LIMIT LEVELS FOR 24-HOUR TSP

Location	Action Level (μg/m ³)	Limit Level (μg/m³)
ASR1	174.0	260
ASR2	185.5	260
ASR3	200.0	260
ASR4	192.0	260
ASR5	178.0	260

ACTION AND LIMIT LEVELS FOR 1-HOUR TSP

Location	Action Level (μg/m ³)	Limit Level (μg/m ³)
ASR1	350.0	500
ASR2	350.0	500
ASR3	350.0	500
ASR4	350.0	500
ASR5	324.0	500

Appendix D2 Action/Limit Levels for Noise

Appendix D2: Action/Limit Levels for Noise

Action and Limit Levels for Construction Noise

Time Period	Action	Limit
0700-1900 hrs on normal weekdays	When one documented complaint is received	75dB(A)*
0700-2300 hrs on holidays; and 1900-2300 hrs on all other days	When one documented complaint is received	70 dB(A)
2300-0700 hrs of next day	When one documented complaint is received	55 dB(A)

^{*} Reduce to 70 dB(A) for schools and 65 dB(A) during school examination periods.

Appendix E

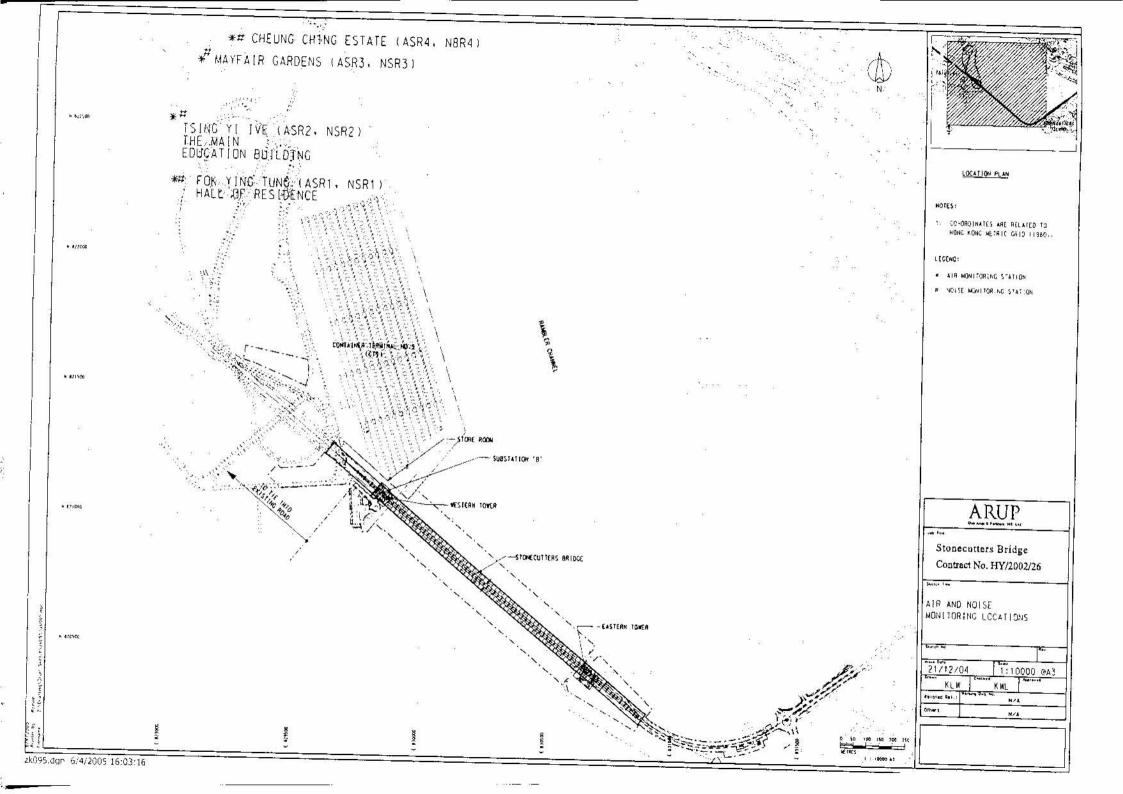
Environmental Monitoring Schedule for the Reported Period

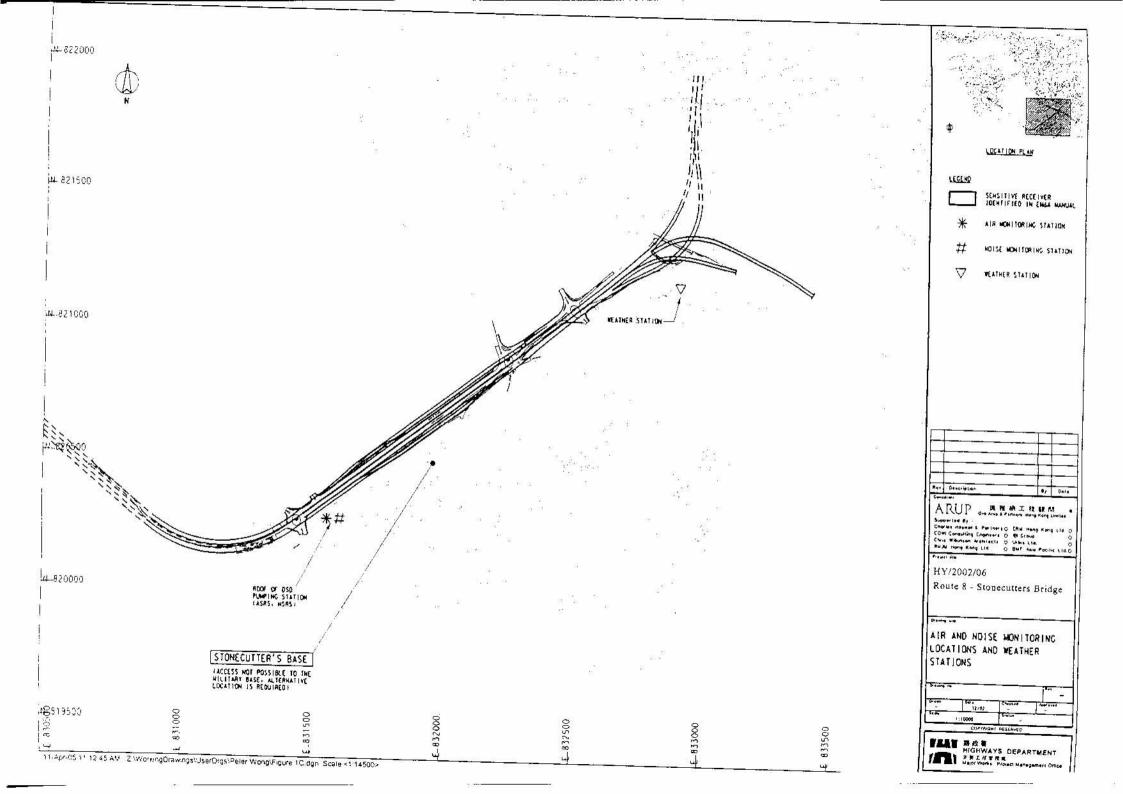
Environmental Monitoring Schedule between 29 November 2008 and 28 December 2008 for NSR1 to NSR5 and ASR1 to ASR5

Sunday		Monday		Tuesday		Wednesday		Thursday		Friday		Saturday	
													29-Nov
Noise _{P.H.}		Noise Noise _{evening} Noise _{night}	1-Dec	24hrs-TSP	2-Dec	1hr-TSP	3-Dec		4-Dec		5-Dec		6-Dec
Noise _{P.H.}	7-Dec	24hrs-TSP	8-Dec	1hr-TSP	9-Dec	Noise Noise _{evening} Noise _{night}	10-Dec		11-Dec		12-Dec	24hrs-TSP	13-Dec
Noise _{P.H.}	14-Dec	1hr-TSP	15-Dec		16-Dec		17-Dec	Noise Noise _{evening} Noise _{night}	18-Dec	24hrs-TSP	19-Dec	1hr-TSP	20-Dec
Noise _{P.H.}		Noise Noise _{evening} Noise _{night}	22-Dec	24hrs-TSP	23-Dec	1hr-TSP	24-Dec		25-Dec		26-Dec		27-Dec
Noise _{P.H.}	28-Dec												

1hr-TSP 3 x 1 hour TSP monitoring at ASR1 to ASR4 during 0900~1800.

24hrs-TSP 24 hours TSP monitoring at ASR1 to ASR4


Noise Leq30 measurement at NSR1 to NSR4 during 0700~1900.


NoiseEvening 6 x Leq5 measurement at NSR1 to NSR4 during 1900~2300

NoiseNight 4 x Leq5 measurement at NSR1 to NSR4 during 2300~0700

NoiseP.H. 6 x Leq5 measurement at NSR1 to NSR4 during 0700~1900

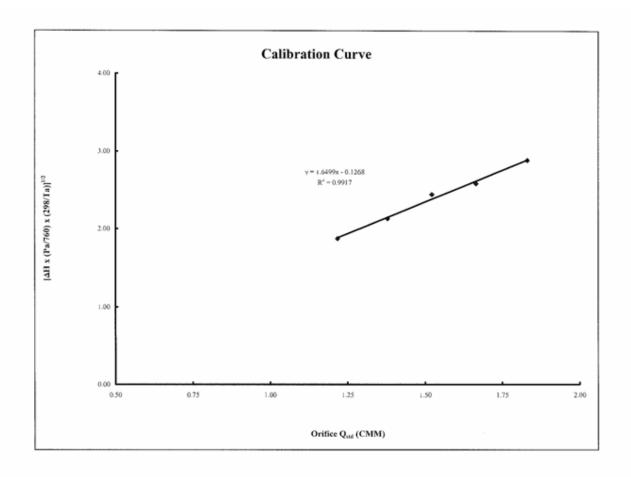
Appendix F Locations of Monitoring Locations

Appendix G1 Calibration Certificates for HVS

TSP - Total Suspended Particulates High Volume Sampler In-situ Calibration Report (ASR1)

Calibration Date	1-Dec-08	Next Calibration Date	1-Feb-09
Station	H.K. Institute of Vocational Education-Tsing Yi (IVE)	Equipment no.	P2.HVS.04
	Fok Ying Tung Hall of Residence (ASR1)		

	1833.500 EEEE FAMILI	Ambient Condition	er and the second	Banda Banda Banda Banda Banda Banda Banda Banda Banda Banda Banda Banda Banda Banda Banda Banda Banda Banda Ba
Temperature, Ta (K)	291.45		Pressure, Pa (mmHg)	766.42


Orifice Transfer Standard Information					
Equipment no.	P2.CAL.04	, , , , , , , , , , , , , , , , , , , ,			
Slope, mo	1.58686	Intercept, co	-0.03299		
Last Calibration Date	22-Oct-07	Next Calibration Date	22-Oct-08		

Calibration Point	Orifice Manometer Reading, ΔO (inch)	Orifice Q _{std} (CMM) x-axis	HVS Manometer Reading, ΔH (inch)	[ΔH x (Pa/760) x (298/Ta)] ^{1/2} y-axis
1	8.0	1.83	8.1	2.89
2	6.6	1.66	6.5	2.59
3	5.5	1.52	5.8	2.45
4	4.5	1.38	4.4	2.13
5	3.5	1.22	3.4	1.87

Calibration Point	Reading, ΔO (inch)	x-axis	Reading, ΔH (inch)	[ΔH x (Pa/760) x (298/Ta)]" y-axis
11	8.0	1.83	8.1	2.89
2	6.6	1.66	6.5	2.59
3	5.5	1.52	5.8	2.45
4	4.5	1.38	4.4	2.13
5	3.5	1.22	3.4	1.87

	3.3	1.22	3.4	
By Liner Regression of y on :	x			
Slope, mh =	1.6499	Intercept, ch =	-0.1268	
*Correction Coefficient, R =	0.9958			
Calibration Result:	ACCEPT			
* If the Correlation Coefficient, R is	< 0.9900. Checking and Recalibration	on are require.		

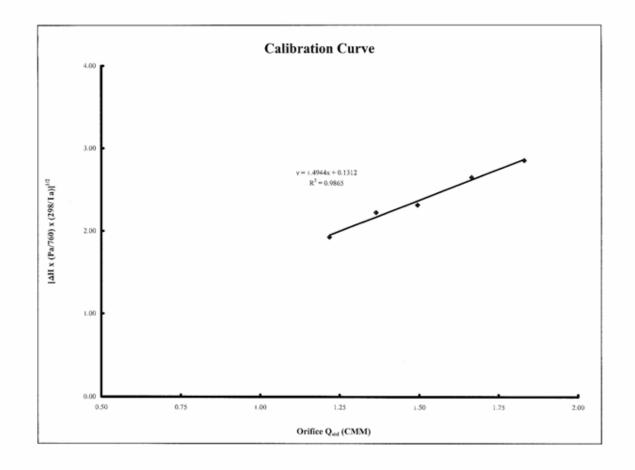
Remark: Bi-monthly Calibration Calibrated By: Checked By:

TSP - Total Suspended Particulates High Volume Sampler In-situ Calibration Report (ASR2)

Calibration Date	1-Dec-08	Next Calibration Date	1-Feb-09
Station	H.K. Institute of Vocational Education-Tsing Yi (IVE)	Equipment no.	P2.HVS.03
	5th Floor Block D of the main Education Building (ASR2	2)	

Jalies	ويستنا والمراوع الأفويل	Ambient Condition		
Temperature, Ta (K)	291.45		Pressure, Pa (mmHg)	766.42

Orifice Transfer Standard Information					
Equipment no.	P2.CAL.04				
Slope, mo	1.58686	Intercept, co	-0.03299		
Last Calibration Date	22-Oct-07	Next Calibration Date	22-Oct-08		


Calibration Point	Orifice Manometer Reading, ΔO (inch)	Orifice Q _{std} (CMM) x-axis	HVS Manometer Reading, ΔH (inch)	[ΔH x (Pa/760) x (298/Ta)] ^{1/2} y-axis
1	8.0	1.83	7.9	2.85
2	6.6	1.66	6.8	2.65
3	5.3	1.49	5.2	2.32
4	4.4	1.36	4.8	2.22
5	3.5	1.22	3.6	1.93

By Liner Regression of y on x Slope, mh = 1.4944 0.1312 Intercept, ch = *Correction Coefficient, R = 0.9932 Calibration Result: ACCEPT

* If the Correlation Coefficient, R is < 0.9900. Checking and Recalibration are require.

Remark: Bi-monthly Calibration

Calibrated By: CM Mang Checked By:

TSP - Total Suspended Particulates High Volume Sampler In-situ Calibration Report (ASR3)

Calibration Date 1-Dec-08 **Next Calibration Date** 1-Feb-09 Station Mayfair Gardens Equipment no. P2.HVS.01 1st floor adjacent to swimming pool (ASR3)

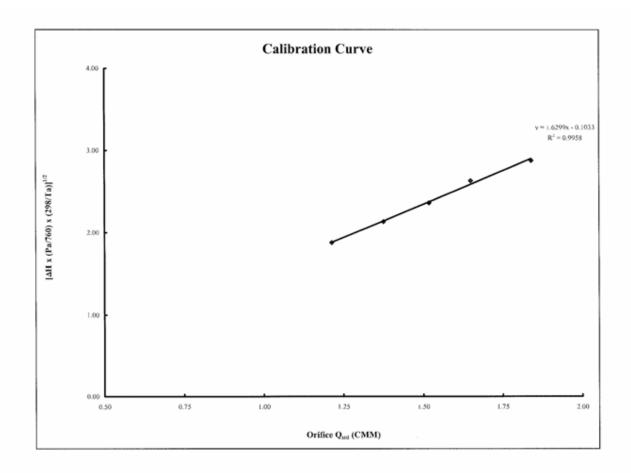
		Ambient Condition		558120-00 J.C. 200
Temperature, Ta (K)	291.45	Pressure, F	Pa (mmHg)	766.42

Intercept, co -0.01986
Next Calibration Date 22-Oct-08
m

Calibration Point	Orifice Manometer Reading, ΔO (inch)	Orifice Q _{std} (CMM) x-axis	HVS Manometer Reading, ΔH (inch)	[ΔH x (Pa/760) x (298/Ta)] ^{1/2} y-axis
1	8.1	1.84	8.0	2.87
2	6.5	1.65	6.7	2.63
3	5.5	1.52	5.4	2.36
4	4.5	1.37	4.4	2.13
5	3.5	1.21	3.4	1.87

5	5 3.5		3.4
By Liner Regression of y on >	t		

Slope, mh = *Correction Coefficient, R = 0.9979 Intercept, ch =


-0.1033

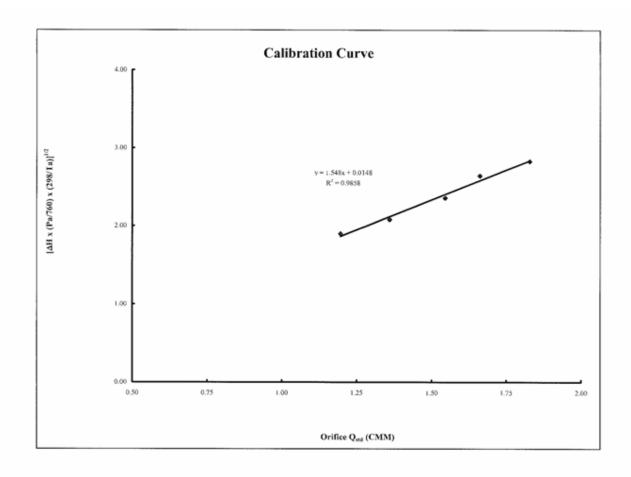
Calibration Result: ACCEPT

Remark: Bi-monthly Calibration

Calibrated By: ____

^{*} If the Correlation Coefficient, R is < 0.9900. Checking and Recalibration are require.

TSP - Total Suspended Particulates High Volume Sampler In-situ Calibration Report (ASR4)


Calibration Date	1-Dec-08	Next Calibration Date	1-Feb-09
Station	Cheung Ching Estate	Equipment no.	P2.HVS.02
	At the roof of Ching Yung House (25/F)(ASR4	1)	

	SELECTION OF THE SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SE	Ambient Condition		
Temperature, Ta (K)	291.45		Pressure, Pa (mmHg)	766.42

P2.CAL.03		
1.58181	Intercept, co	-0.01986
22-Oct-07	Next Calibration Date	22-Oct-08
	1.58181 22-Oct-07	1.58181 Intercept, co

Calibration Point	Orifice Manometer Reading, ΔO (inch)	Orifice Q _{std} (CMM) x-axis	HVS Manometer Reading, ΔH (inch)	[ΔH x (Pa/760) x (298/Ta)] ^{1/2} y-axis
1	8.0	1.83	7.8	2.84
2	6.6	1.66	6.8	2.65
3	5.7	1.55	5.4	2.36
4	4.4	1.36	4.2	2.08
5	3.4	1.20	3.5	1.90

By Liner Regression of y on	×		
Slope, mh =	1.5480	Intercept, ch =	0.0148
*Correction Coefficient, R =	0.9929		
Calibration Result:	ACCEPT		
* If the Correlation Coefficient, R is	s < 0.9900. Checking and Recalibrat	ion are require.	
Remark: Bi-monthly Calibra	tion		
Coliberated Dun	. 1	Date: / / A	/ - 0
Calibrated By:CM Checked By:	1 hong		eclus
Checked by.		Date: 1 / K	21 /01

ARUP

TSP - Total Suspended Particulates High Volume Sampler In-situ Calibration Report (ASR5)

1-Dec-08	Next Calibration Date	1-Feb-09				
ASR5	Equipment no.	E.HVS.02				
Ambi	ent Condition					
291.5	Pressure, Pa (mmHg)	766.4				
Orifice Transfe	er Standard Information					
P2.CAL.04						
1.58686	Intercept, co	-0.03299				
22-Oct-07	Next Calibration Date	22-Oct-08				
$mo \times Q_{atd} + co = [\Delta O \times (Pa/760) \times (298/Ta)]^{1/2}$						
	291.5 Orifice Transfe P2.CAL.04 1.59686 22-Oct-07 mo x Q _{std} + co = [Ambient Condition 291.5 Pressure, Pa (mmHg) Orifice Transfer Standard Information P2.CAL.04 1.58686 Intercept, co 22-Oct-07 Next Calibration Date				

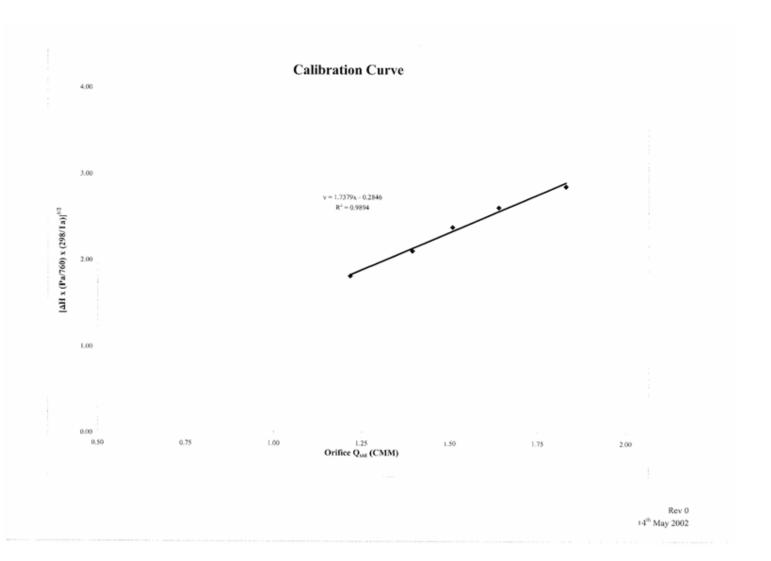
Calibration Point	Orifice Manometer	Orifice Q _{sld} (CMM)	HVS Manometer	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}
Calibration Form	Reading, ΔO (inch)	x-axis	Reading, ΔH (inch)	y-axis
1	8.0	1.83	7.9	2.85
2	6.4	1.64	6.6	2.61
3	5.4	1.51	5.5	2.38
4	4.6	1.39	4.3	2.11
5	3.5	1.22	3.2	1.82

By Liner Regression of y on x

Slope, mh =

1.7379

Intercept, ch =


-0.2846

*Correction Coefficient, R = 0.9947

Calibration Result: ACCEPT

Remark:			
Calibrated By: _	ching	Date:	1 (Dec (0 8

^{*} If the Correlation Coefficient, R is < 0.9900. Checking and Recalibration are require.

Appendix G2

Calibration Certificates for Weather Station

Appendix G2: Calibration Certificates for Weather Station

The Weather Station was removed and meteorological data was obtained from Hong Kong Observatory.

Appendix G3

Calibration Certificates for High Volume Orifice Calibrator

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5028A

I	Date - No Operator	ov 04, 2008 Tisch	Rootsmeter Orifice I.I		833620 1272	Ta (K) - Pa (mm)	295 758.19
	PLATE OR VDC #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
	1 2 3 4 5	NA NA NA NA	NA NA NA NA	1.00 1.00 1.00 1.00 1.00	1.2800 0.9910 0.9050 0.8350 0.6320	4.2 7.1 8.5 9.9 17.1	1.50 2.50 3.00 3.50 6.00

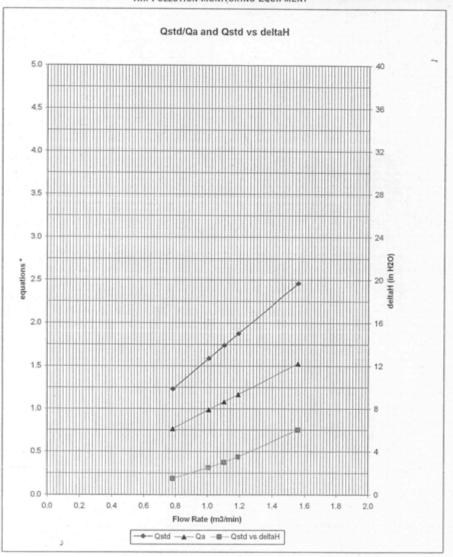
DATA TABULATION

Vstd	(x axis) Qstd	(y axis)	Va	(x axis) Qa	(y axis)
1.0021 0.9983 0.9964 0.9946 0.9850	0.7829 1.0073 1.1010 1.1911 1.5586	1.2295 1.5873 1.7388 1.8781 2.4590	 0.9944 0.9906 0.9887 0.9869 0.9774	0.7769 0.9996 1.0925 1.1819 1.5466	0.7640 0.9863 1.0804 1.1670 1.5279
Qstd slo intercep coeffici y axis =	t (b) = ent (r) =	1.58420 -0.00884 0.99998	 Qa slope intercept coefficie	(b) =	0.99200 -0.00549 0.99998

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time


For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

TISCH ENVIROMENTAL, INC.
145 SOUTH MIAMI AVE.
VILLAGE OF CLEVES, OH 45002
513.467.9000
877.263.7610 TOLL FREE
513.467.9009 FAX
WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

* y-axis equations:

Qstd series:

$$\sqrt{\Delta H \left(\frac{P a}{P s t d}\right) \left(\frac{T s t d}{T a}\right)}$$

Qa series:

#1272

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5028A

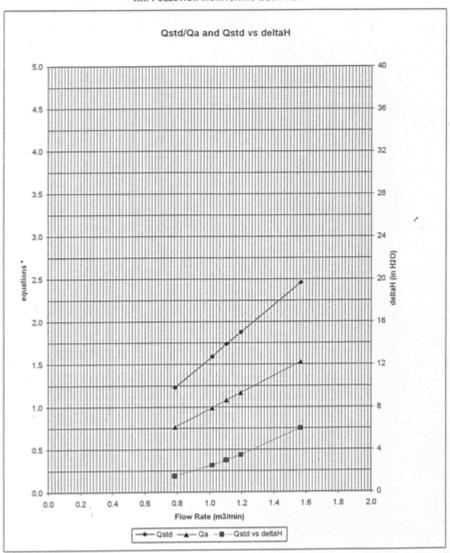
Date - No Operator		Rootsmeter Orifice I.I		833620 1274	Ta (K) - Pa (mm)	295 758.19
PLATE OR	VOLUME START	VOLUME STOP	DIFF VOLUME	DIFF TIME	METER DIFF Hg	ORFICE DIFF H2O
VDC #	(m3) NA	(m3) NA	(m3) 	(min) 1.2760	(mm) 4.2	(in.)
2 3 4	NA NA NA	NA NA NA	1.00 1.00 1.00	0.9840 0.9030 0.8340	7.1 8.4 9.9	2.50 3.00 3.50
5	NA	NA	1.00	0.6290	17.1	6.00

DATA TABULATION

7							
	Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
	1.0021	0.7854	1.2295		0.9944	0.7793	0.7640
	0.9983	1.0145	1.5873		0.9906	1.0067	0.9863
	0.9965	1.1036	1.7388		0.9889	1.0951	1.0804
	0.9946	1.1925	1.8781	1 1 1 1 1 1 1	0.9869	1.1833	1.1670
	0.9850	1.5660	2.4590	1 1 1 1 1 1 1	0.9774	1.5539	1.5279
	Qstd slop intercept coefficie	(b) =	1.57672 -0.00705 0.99988		Qa slope intercept coefficie	(b) =	0.98732 -0.00438 0.99988
	y axis =	SQRT [H2O (H	Pa/760) (298/	ra)]	y axis =	SQRT [H20 (7	Ca/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta) Qstd = Vstd/Time


Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE.
VILLAGE OF CLEVES, OH 45002
513.467.9000
877.263.7610 TOLL FREE
513.467.9009 FAX
WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

* y-axis equations:

Qstd series:

$$\sqrt{\Delta H \left(\frac{P a}{P s t d}\right) \left(\frac{T s t d}{T a}\right)}$$

Qa series:

#1274

Appendix G4

Calibration Certificates for Sound Level Meter and Calibrator

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

GF, 9F, 12F, 13F, 8 20F, Leader Center 37 Wong Chik Hang Road, Aberdeen, Hong Kong 労運資計な道37就利達中に地下・9種-12種-13種及20個 E-mail: smeo®olgismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:	08CA0904 01-01B		Page 1	of	2
tem tested					
Description:	Sound Level Meter	(Type 1)	Microphone		
Manufacturer:	Pulsar, England	1-36	Pulsar, England		
vpe/Model No :	Model 30		MK226		
Serial/Equipment No :	T220553		110453		
Adaptors used:					
tem submitted by					
Customer Name:	Meada-Hitachi-Yok	ogawa-Hsin Chong J	loint Venture		
Address of Customer:					
Request No.:	PO/HY26/7192				
Date of request:	01-09-2008				
Date of test:	04-09-2008				
Reference equipment (used in the calibr	ation			
Description:	Model:	Serial No.	Expiry Date:	Traceab	ele to:
Auti function sound calibrator	B&K 4226	2288444	11-01-2009	CIGISME	ic .
Signal generator	DS 360	33873	12-06-2009	CEPREI	
Fignal generator	DS 360	61227	18-07-2009	CEPRE	
Ambient conditions					
emperature:	23 ± 2 °C				
Relative humidity:	50 ± 15 %				
Ur pressure:	1000 ± 15 hPa				
est specifications					
The Sound Level Me	ter has been calibrate	d in accordance with	the requirements as specif	ed in BS 75	80: Part 1: 1997
and the lab calibration					
			bstituted for the microphon	e which was	removed and
replaced by an equiv					
The acoustic calibrati	on was performed usi	ng an 8&K 4226 sour	nd calibrator and correction	s was applic	d for the differe
	and pressure respon				

Test results This is to certify that the Sound Level Meter conforms to BS 7580; Part 1: 1997 for the conditions under which the test

Details of the performed measurements are presented on page 2 of this certificate

Actual Measurement data are documented on worksheets.

Approved Signatory:

ng Jun Qi

oved Signatory: Str Date: 24-09-2008 Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soits & Materials Engineering Co. Ltd.

Form No CARP152-1/Move 1/Rev C/01/02/0007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

CERTIFICATE OF CALIBRATION

Certificate No :	08CA0917 02A		Page	» 1	of	2
Item tested						
Description:	Sound Level Meter	r (Type 1)	, Microphone			
Manufacturer:	Pulsar, England		Pulsar, Engli	and		
Type/Model No.:	Model 30		MK226			
Serial/Equipment No :	T220551		110452			
Adaptors used:						
Item submitted by			-			
Customer Name:	Meada-Hitachi-Yol	kogawa-Hsin Chong	Joint Venture			
Address of Customer:		-				
Request No.:	PO/HY26/7192					
Date of request:	12-09-2008					
Date of test:	17-09-2008					
Reference equipment	used in the calibr	ation				
Description:	Model:	Serial No.	Expiry Date:		Traceab	le to:
Multi function sound calibrator	88K 4226	2288444	11-01-2009		CIGISME	C
Signal generator	DS 360	33873	12-06-2009		CEPREI	
Signal generator	DS 360	61227	18-07-2009		CEPREI	
Ambient conditions				-		
Temperature:	23 ± 2 °C					
Relative humidity:	50 ± 15 %					
	1000 ± 10 hPa					

- The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152. The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%. The acoustic calibration was performed using an BSK 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter. 1
- 2,

Test results

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets. Huang dan Mintrons Jun Qi

Approved Signatory:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument

© Soits & Materials Engineering Co. Ltd.

Form No GARP152-Lifesive 1/Fex C/91/02/2007

Certificate No : C085814

Certificate of Calibration

This is to certify that the equipment

Description: Sound Level Meter

Manufacturer: Rion

Model No.: NL-31

Serial No.: 00352013

has been calibrated for the specific items and ranges.

The results are shown in the Calibration Report No. C085814.

The equipment is supplied by

Co Name: Dragages China Harbour Joint Venture

Address 22/F, China Harbour Bldg, 370-374 King's Rd, North Point, HK

Date of Issue 10 November 2008

Certifled by

The test equipment used for calibration are traceable to the National Standards as specified in this report. This report shall not be reproduced except in full and with prior written approval from this laboratory.

輝 創 工 程 有 限 公 司

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate No

C085815

Certificate of Calibration

This is to certify that the equipment

Description Sound Level Meter

Manufacturer: Rion

Model No.: NL-31

Serial No.: 01262850

has been calibrated for the specific items and ranges The results are shown in the Calibration Report No. C085815.

The equipment is supplied by

Co. Name Dragages China Harbour Joint Venture Address 22/F, China Harbour Bldg, 370-374 King's Rd, North Point, HK

Date of Issue 10 November 2008

Certified by

The test equipment used for calibration are traceable to the National Standards as specified in this report. This report shall not be repectuced except in full and with prior written approval from this laboratory.

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO, LTD

GF, SET, 12所, 13所, 5, 23所, Leader Canner 37 Wong Chuk Hang Read, Abendeen, Hong Kong 曾海黃竹坑湖37號刊進中心地下,9個 1.2 極 1.3 植及20様 E-mail: smec@digismec.com Website, www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:	08CA0904 01-02B		Page:	1	of 2
Item tested					
Description:	Sound Calibrator (Class 1L)			
Manufacturer:	Pulsar England				
Type/Model No :	MODEL 100B				
Serial/Equipment No.:	035213				
Adaptors used:	Yes				
Item submitted by					
Curstomer:	Meada-Hitachi-Yok	togawa-Hsin Chong Joi	int Venture		
Address of Customer:					
Request No :	PO/HY26/7192				
Date of request:	01-09-2008				
Date of test:	04-09-2008				
Reference equipment	used in the calib	ration			
Description:	Model:	Serial No.	Expiry Date:		Traceable to:
Lab standard microphone	B&K 4180	2412857	29-06-2009		SCL
Preamplifier	B&K 2673	2239857	12-12-2008		CEPRE
Measuring amplifier	B&K 2610	2346941	15-12-2008		CEPREI
Signal generator	DS 360	61227	18-07-2009		CEPREI
Digital multi-meter	34401A	US36087050	30-11-2008		CIGISMEC
Audio analyzer	\$903B	GB41300350	06-12-2008		CEPREI
Universal counter	53132A	MY40003662	11-07-2009		CEPREI
Ambient conditions					
Temperature:	24 ± 1 °C				
Relative humidity:	55 ± 10 %				
Air pressure:	1000 ± 10 hPa				

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156
 The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique
- The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes

Test results

This is to certify that the sound calibrator conforms to the requirements of annex 8 of IEC 60942, 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions

Details of the performed measurements are presented on page 2 of this certificate.

Approved Signatory:

Date: 24-09-2008 Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

@ Sois & Materials Engineering Co. 116

Form No CARP155-Lissue URay 0/01/03/0007

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as fisted in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

輝創工程有限公司

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate No.: C085728

Certificate of Calibration

This is to certify that the equipment

Description . Sound Calibrator Manufacturer: Rion Model No. NC-74 Serial No. 34351581

has been calibrated for the specific items and ranges. The results are shown in the Calibration Report No. C085728.

The equipment is supplied by

Co Name: Dragages China Harbour Joint Venture

Address: 22/F, China Harbour Bldg, 370-374 King's Rd, North Point, HK

Date of Issue 5 November 2008

Certified by : CF Leurig

The test equipment used for calibration are traceable to the National Standards as specified in this report. This report shall not be reproduced except in full and with prior written approval from this laboratory.

C085729

Certificate No

Certificate of Calibration

This is to certify that the equipment

Description Sound Calibrator

Manufacturer Rion

Model No NC-74

Serial No 34973223

has been calibrated for the specific items and ranges.

The results are shown in the Calibration Report No. C085729.

The equipment is supplied by

Co Name Dragages China Harbour Joint Venture

Address: 22/F, China Harbour Bldg, 370-374 King's Rd, North Point, HK

Date of Issue 5 November 2008

Certified by CF Leung

The test equipment used for calibration are traceable to the National Standards as specified in this report. This report shall not be reproduced except in full and with prior written approval from this laboratory.

MateriaLab Division, Fugro Development Centre, 5 Lok Yi Street, 17 M S. Castle Peak Road, Tai Lam, Tuen Mun, N T., Hong Kong.

Report No: 041333CA82714(3)

Tel: +852-2450 8233
Fax: +952-2450 6138
E-mail: mattab@fugro.com.hk
Website: www.materialab.com.hk/www.fugro.com

Page 1 of 2

CALIBRATION CERTIFICATE OF SOUND LEVEL METER

Client Supplied Information

Client: Maeda-Hitachi-Yokogawa-Hsin Chong JV Address: PO Box No. 80330, Cheung Sha Wan Post Office

Project: Calibration Services

Calibration Item -

: Sound level meter Description Model No : Bruel & Kjaer (Type 2238)
Serial No : 2565848 (Microphone), 2562752 (Sound level meter)
Next Calibration Due Date : 16/Dec/2009

Laboratory Information

Calibrating Equipment -

Description : B & K Acoustic Multifunction Calibrator 4226

Serial No. : 2546175 : 16/Dec/2008 Date of Calibration

 Ambient Temperature
 : 20±2 °C

 Specification Limit
 : EN 60651: 1994 Type 1

Calibration Results :

(1) Frequency response

(Reference SPL: 94dB & Range setting: 50 - 130dB at traditional free field)

Table 1: Summary of frequency response (A - weighting)

Frequency (Hz)	Measured Value (dB)	Specific	ation L	imit (dB)
31.5	-38.6	-40.9	to	-37.9
63	-25.8	-27.7	to	-24.7
125	-16.0	-17.1	to	-15.1
250	-8.6	-9.6	to	-7.6
500	-3.3	-4.2	to	-2.2
1000(ref.)	0.0	-1.0	to	1.0
2000	1.2	0.2	to	2.2
4000	0.9	-2.0	to	2.5
8000	-2.0	-4.1	to	0.4
12500	-6.3	-10.3	to	-1.3
16000	-9.8		to	-3.6

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approved from the Company

MateriaLab Division, Fugro Development Centre, 5 Lok Yi Street, 17 M S. Castle Peak Road, Tal Lam, Tuen Mun, N T., Hong Kong

Report No.: 041333CA82714(3)

Tel +852-2450 8233
Fax +852-2450 6138
E-mail : matlab@fugro.com.hk
Website : www.materialab.com.hk / www.fugro.com

Page 2 of 2

CALIBRATION CERTIFICATE OF SOUND LEVEL METER

(2) Level range control

(Reference SPL: 94dB, Reference frequency: 1kHz & Reference range setting: 50 - 130dB)

Table 2: Summary of level range control accuracy

Level range (dB)	Measured deviation (dB)	Specification limit (dB)
50-130 (Ref.)	NA	NA
20-100	0.0	± 0.5
30-110	0.0	± 0.5
40-120	0.0	± 0.5
60-140	0.0	± 0.5

(3) Differential level linearity

(Reference SPL: 94dB, Reference frequency: 1kHz & Primary indicator range: 50 - 130dB)

Table 3: Summary of differential level linearity

Sound pressure level	Measured deviation	Specification limit
(dB)	(dB)	(dB)
94	NA	NA
104	0.0	± 0.4
114	0.0	± 0.4

(4) Crest factor

(C.F.: 3, Test frequency: 2kHz, Test range: 50 - 130dB & Test SPL: 106dB)

Table 4: Crest factor

Sound pressure level	Measured deviation	Specification limit
(dB)	(dB)	(dB)
106	0.3	± 0.5

Remarks:

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The above calibration results does comply with the Type 1 specification requirement

ned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company

Report No.: 041333CA82714(4)

Tel :+852-2450 8233
Fax :+852-2450 6138
E-mail : matiab@fugro com hk
Website : www.materialab.com hk / www.fugro.com MateriaLab Division.
Fugro Development Centre,
5 Lok Yi Street, 17 M S. Castle Peak Road
Tal Lam, Tuen Mun, N.T., Hong Kong

MateriaLab

Page 1 of 2

CALIBRATION CERTIFICATE OF SOUND LEVEL METER

Client Supplied Information

Client: Maeda-Hitachi-Yokogawa-Hsin Chong JV Address: PO Box No 80330, Cheung Sha Wan Post Office

Project: Calibration Services

Calibration Item -

: Sound level meter Description

Model No. : Bruel & Kjaer (Type 2238)
Serial No. : 2565853 (Microphone), 2562757 (Sound level meter)

Next Calibration Due Date : 16/Dec/2009

Laboratory Information

Calibrating Equipment -

Description : B & K Acoustic Multifunction Calibrator 4226

Serial No. : 2546175

: 16/Dec/2008 Date of Calibration : 20±2 °C Ambient Temperature

: EN 60651: 1994 Type 1 Specification Limit

Calibration Results :

(1) Frequency response

(Reference SPL: 94dB & Range setting: 50 - 130dB at traditional free field)

Table 1: Summary of frequency response (A - weighting)

Frequency (Hz)	Measured Value (dB)	Specification Limit		
31.5	-38.8	-40.9	to	-37.9
63	-26.0	-27.7	to	-24.7
125	-16.1	-17.1	to	-15.1
250	-8.7	-9.6	to	-7.6
500	-3.4	-4.2	to	-2.2
1000(ref.)	-0.1	-1.0	to	1.0
2000	1.1	0.2	to	2.2
4000	0.7	-2.0	to	2.5
8000	-2.4	-4.1	to	0.4
12500	-6.3	-10.3	to	-1.3
16000	-9.2	95	to	-3.6

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company

MateriaLab Division
Fugro Development Centre,
5 Lok Yi Street, 17 M S. Castle Peak Road,
Tai Lam, Tuen Mun, N.T., Hong Kong.

Report No.: 041333CA82714(4)

Tel :+852-2450 8233
Fax :+852-2450 6138
E-mail :mattab@fugro.com.hk
Website : www.materiatab.com.hk / www.fugro.com

Page 2 of 2

CALIBRATION CERTIFICATE OF SOUND LEVEL METER

(2) Level range control

(Reference SPL: 94dB, Reference frequency: 1kHz & Reference range setting: 50 - 130dB)

Table 2: Summary of level range control accuracy

Level range (dB)	Measured deviation (dB)	Specification limit (dB)
50-130 (Ref.)	NA NA	NA
20-100	0.0	± 0.5
30-110	0.0	± 0.5
40-120	0.0	± 0.5
60-140	0.0	± 0.5

(3) Differential level linearity

(Reference SPL: 94dB, Reference frequency: 1kHz & Primary indicator range: 50 - 130dB)

Table 3: Summary of differential level linearity

Sound pressure level	Measured deviation	Specification limit
(dB)	(dB)	(dB)
94	NA	NA
104	0.0	± 0.4
114	0.0	± 0.4

(4) Crest factor

(C.F.: 3, Test frequency: 2kHz, Test range: 50 - 130dB & Test SPL: 106dB)

Table 4: Crest factor

Sound pressure level	Measured deviation	Specification limit
(dB)	(dB)	(dB)
106	0.2	± 0.5

Remarks:

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2 The above calibration results does comply with the Type 1 specification requirement

Checked by Certified by :

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company

MateriaLab Division.
Fugro Development Centre,
5 Lok Yi Street, 17 M S. Castle Peak Road,
Tai Lam, Tuen Mun, N T., Hong Kong.

: +852-2450 8233 : +852-2450 6138 Tel Fax E-mail : matlab@fugro.com.hk Website : www.materialab.com.hk / www.fugro.com

Report No: 041333CA82714(5) Page 1 of 1

CALIBRATION CERTIFICATE OF SOUND LEVEL CALIBRATOR

Client Supplied Information

Client: Maeda-Hitachi-Yokogawa-Hsin Chong JV Address: PO Box No. 80330, Cheung Sha Wan Post Office

Project: Calibration Services

Calibration Item -

Description

: Bruel & Kjaer Sound Level Calibrator

Model No

: Type 4231

Serial No.

: 2605971

Next Calibration Due Date : 16-Dec-2009

Laboratory Information

Calibrating Equipment -

: B & K Acoustic Multifunction Calibrator 4226

Serial No.

: 2546175

Date of Calibration

: 16-Dec-2008 : 20±2 °C

Ambient Temperature Specification Limit

: ±0.5dB

Calibration Result:

(1) At 94dB reading

Correction of UUT (at 94dB & 1kHz) : +0.0dB

(2) At 114dB reading

Correction of UUT (at 114dB & 1kHz) : +0.0dB

Remarks:

- 1 The equipment used in this calibration is traceable to recognized National Standards.
- 2 The above calibration results does comply with the specification requirement.
- 3. Serial number of sound level meter (microphone) used is 2562752 (2565848) Settings of SLM are 50-130dB range, A weighting and F response

Date: 18-12-58 Certified by: CK So (Engineer)

The copyright of this document is owned by Fugro Technical Services Limited. It may not be reproduced except with prior written approval from the Company.

Appendix G5 Certificate HOKLAS Accredited Laboratory

Hong Kong Accreditation Service

香港認可處

This is to certify that

WELLAB LIMITED

at the address of.....

Unit C, 1/F, Goldlion Holdings Center,

13-15 Yuen Shun Circuit, Shatin, N.T., HK

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a

HOKLAS Accredited Laboratory

This laboratory meets the requirements of ISO/IEC 17025:1999 - General Requirements for the Competence of Testing and Calibration Laboratories and it has been accredited for performing specific tests or calibrations as listed in the HOKLAS Directory of Accredited Laboratories within the Test Category of

ENVIRONMENTAL TESTING

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive.

(S.S. CHAN) Executive Administrator

Registration Number

Issue Date : 2 NOVEMBER 2004

Date of First Registration : 29 MAY 1998

This Certificate is issued subject to the terms and conditions laid down by HKAS.

Hong Kong Accreditation Service

香港認可處

This is to certify that

ALS TECHNICHEM (HK) PTY LIMITED et the address of 11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, New Territories, Hong Kong. has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a

HOKLAS Accredited Laboratory

This leboratory maste the requirements of ISO/IEC 17025:1999 — General Requirements for the Competence of Testing and Calibration Laboratories and it has been accredited for parforming specific tests or calibrations as listed in the HOKLAS Directory of Accredited Laboratories within the Test Category of

ENVIRONMENTAL TESTING

The common seel of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive.

(DR. L.H. NG) Executive Administrator

J.H. Ng

Registration Number

Issue Date: 30 JANUARY 2002

Date of First Registration: 15 SEPTEMBER 1995

This Cartificate is issued subject to the terms and conditions laid down by HKAS.

F 000101

Appendix H1 Event/Action Plan for Air Quality

Appendix H1: Event/Action Plan for Air Quality

Event		Action	
Level	ET	ER	CONTRACTOR
Action Level	ı		oon in the contract of the con
Exceedance for one sample	Identify source Inform ER Repeat Measurement to confirm finding Increase monitoring frequency to daily	Notify Contractor Check mortaring data and Contractor's working methods	Rectify any unacceptable practice Amend working methods if appropriate
Exceedance for two or more consecutive samples	Identify source Inform ER Repeat measurements to confirm findings Increase monitoring frequency to daily Discuss with ER for remedial actions required If exceedance continues arrange meeting with ER If exceedance stops, cease additional monitoring	Confirm receipt of notification of failure in writing Notify Contractor Check monitoring data and Contractor's working methods Discuss with Environmental Team and Contractor on potential remedial actions Ensure remedial actions properly implemented	Submit proposals for remedial actions to ER within 3 working days of notification Implement the agreed proposals Amend proposal if appropriate
Limit Level			
Exceedance for one sample	Identify source Inform ER and EPD Repeat measurement to confirm finding Increase monitoring frequency to daily Assess effectiveness of Contractor's remedial actions and keep EPD and ER informed of the results	 Confirm receipt of notification of failure in writing Notify Contractor Check monitoring data and Contractor's working methods Discuss with Environmental Team Leader and Contractor potential remedial actions Ensure remedial actions properly implemented 	 Take immediate action to avoid further exceedance Submit proposals for remedial actions to ER within 3 working days of notification Implements the agreed proposals Amend proposal if appropriate
Exceedance for two or more consecutive samples	1. Identify source 2. Inform ER and EPD the causes & actions taken for the exceedances 3. Repeat measurement to confirm findings 4. Increase monitoring frequency to daily 5. Investigate the causes of exceedance 6. Arrange meeting with EPD and ER to discuss the remedial actions to be taken 7. Assess effectiveness of Contractor's remedial actions and keep EPD and ER informed of the results & if exceedance stops, cease additional monitoring	1. Confirm receipt of notification of failure in writing 2. Notify Contractor 3. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented 4. Discuss amongst Environmental Team Leader and the Contractor potential remedial actions 5. Review Contractor's remedial actions whenever necessary to assure their effectiveness 6. If exceedance continues consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated	 Take immediate action avoid further exceedance Submit proposals for remedial actions to ER within 3 working days of notification Implements the agreed proposals Resubmit proposals if problem still not under control Stop the relevant portion of works as determined by the ER until the exceedance is abated

Appendix H2 Event/Action Plan for Noise

Appendix H2: Event/Action Plan for Construction Noise

Event	Action		
	ET Leader	ER	Contractor
Action Level	Notify ER Analyse investigation Increase monitoring frequency to check mitigation effectiveness	Notify Contractor Require Contractor to propose measures* for the analysed noise problem	Submit noise mitigation proposals to Environmental Team Implement noise mitigation proposals*
Limit Level	Notify ER Notify EPD	Notify Contractor Require contractor to implement mitigation measures* Increase monitoring frequency to check mitigation effectiveness	Implement mitigation measures Prove to Environmental Team Leader ER effectiveness of measures applied
*	Mitigation Measures may include: Relocation of noise emitting p Use of silenced or super-siler Use of acoustic sheds or scree Limit quantity of plant operatin Change working technique	aced equipment ens	

Appendix I

Implementation Status of Environmental Protection Requirements

Appendix I: Implementation Status of Environmental Protection Requirement

	Environmental Protection Measures	Timing		Implementa	tion Stages*	
Activities			29/08/08 to 28/09/08	29/09/08 to 28/10/08	29/10/08 to 28/11/08	29/11/08 to 28/12/08
Landscape and visual	Erection, painting and maintenance of site hoardings around works and storage areas.	Throughout the	V	V	V	V
	Restrictions on the height of material/spoil stockpiles.	construction period	√	√	√	V
	Prompt hydro-seeding of disturbed areas and cut/fill slopes prior to the permanent landscaping works.	period	N/A	N/A	N/A	N/A
	Avoidance of chunam or shotcreting slope treatments.		N/A	N/A	N/A	N/A
	Conservation of topsoil where practical.		N/A	N/A	N/A	N/A
	Site litter patrols and regular site waste collection.		√	√	√	√
	Maintenance of planting.		N/A	N/A	N/A	N/A
Ecological Impact	Minimise damage outside works areas		V	V	V	V
Construction:		•	<u> </u>		<u> </u>	
Material Storage	Covers for dusty stockpiles	Throughout the	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
Vehicle movement	Haul road watering, vehicle wheel wash prior to exit. Where practical, access roads should be protected with crushed gravel.	construction period	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	V
Plant maintenance	All plant shall be maintained to prevent any undue air emissions.		V	A	V	V
All plant activity	Reference should be made the EM&A Manual Action Plan for measures for consideration when Noise Limit Levels are not met.		V	V	V	V
Plant maintenance	All plant shall be maintained to prevent any undue noise nuisance.		V	V	V	V

N/A = Not Applicable
✓ = Implemented
▲ = Rectified
= Not Implemented

	Environmental Protection Measures	Timing		Implementa	tion Stages*	
Activities			29/08/08 to 28/09/08	29/09/08 to 28/10/08	29/10/08 to 28/11/08	29/11/08 to 28/12/08
Wheel wash	All wheel wash water shall be diverted to a sediment pit.	Throughout	V	√	V	$\sqrt{}$
Concrete Truck Washout	All concrete trucks shall wash out into a lined pit.	the construction period	V	V	√	V
Surface water diversion	All clean surface water shall be diverted around the site.	penou	V	V	V	V
Sediment control	Sediment removal facilities shall be provided and be maintained and excavated as necessary to prevent sedimentation of the channel. Perimeter channels shall be provided. Works shall be programmed for the dry season where feasible.		•	•	V	V
Fuel can storage	All fuel cans shall be placed within a bundled area. Any fuel spills shall be mopped up as necessary.		A	A	A	V
Slope covers	Finished slopes and other slopes near drainage areas shall be covered prior to rains to reduce sedimentation of runoff. Slopes should be hydroseeded or shotcreted as early as possible to prevent erosion.		N/A	N/A	N/A	N/A
Excavation works	Excavation works shall avoid sensitive areas.	Throughout the excavation work period	√	V	V	V
Material, plant movement & fuel can refilling.	Any fuel or oil spills shall be excavated and disposed.	Throughout the construction	V	V	V	V
Generators	All generators shall be placed within a bundled area. Any fuel spills shall be mopped up as necessary.	period	V	V	V	
Material containers	All empty bags and containers shall be collected for disposal.		V	V	V	V

N/A = Not Applicable
✓ = Implemented
▲ = Rectified
= Not Implemented

	Environmental Protection Measures	Timing		Implementa	tion Stages*	
Activities			29/08/08 to 28/09/08	29/09/08 to 28/10/08	29/10/08 to 28/11/08	29/11/08 to 28/12/08
Worker generated litter and Waste	Litter receptacles shall be placed around the site. Litter shall be taken regularly to the refuse collection points. Chemical toilets (or suitable equivalent) should be provided for workers. Any canteens should have grease-traps.	Throughout the construction period	V	V	V	V
Neighbourhood nuisance	All complaints regarding construction works shall be relayed to the Environmental Team.		N/A	N/A	N/A	N/A
Legal requirements	Different types of waste should be segregated, stored, transported and disposed of in accordance with the relevant legislative requirements and guidelines		V	V	V	√
On-site separation	On-site separation of municipal solid waste and construction/demolition wastes should be conducted as far as possible in order to minimize the amount of solid waste to be disposed to landfill.		V	V	V	V
Temporary storage area	Separated wastes should be stored in different containers, skips, or stockpiles to enhance reuse or recycling of materials and encourage their proper disposal.		V	V	V	V
Record of wastes	Records of quantities of wastes generated, recycled and disposed (with locations) should be properly kept.		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	V
Trip-ticket system	To monitor the disposal of waste at landfills and control fly-tipping, a "trip-ticket" system for all solid waste transfer/disposal operations should be implemented. The system should be included as a contractual requirement, and monitored by the Environmental Team and audited by the Independent Environmental Checker.		V	V	V	V

N/A = Not Applicable
✓ = Implemented
▲ = Rectified
= Not Implemented

Appendix J

1-hour and 24-hour TSP Monitoring Results

The Summary of 1-hr TSP Concentration (µg/m³) at HKIVE Fok Ying Tung Hall of Residence (ASR 1)

			Initial Standard Flow	Final Standard Flow	Averaged Standard	Total Standard			
Date	Sampling Time	Elapsed Time	Rate	Rate	Flow Rate	Volume	Initial Filter Weight	Final Filter Weight	TSP Concentration
		(min)	(m³/min)	(m³/min)	(m³/min)	(m ³)	(g)	(g)	μg/m³
3-Dec-08	13:38	60.00	1.37	1.37	1.37	82.32	2.8121	2.8220	120.3
3-Dec-08	15:00	60.00	1.37	1.37	1.37	82.32	2.8207	2.8298	110.5
3-Dec-08	16:08	60.00	1.37	1.37	1.37	82.32	2.8266	2.8331	79.0
9-Dec-08	7:30	60.00	1.38	1.38	1.38	82.56	2.8254	2.8348	113.9
9-Dec-08	8:36	60.00	1.38	1.38	1.38	82.56	2.8600	2.8671	86.0
9-Dec-08	9:42	60.00	1.38	1.38	1.38	82.56	2.8321	2.8412	110.2
15-Dec-08	8:02	60.00	1.38	1.38	1.38	82.77	2.7931	2.8027	116.0
15-Dec-08	9:15	60.00	1.38	1.38	1.38	82.77	2.8153	2.8253	120.8
15-Dec-08	10:06	60.00	1.38	1.38	1.38	82.77	2.8387	2.8486	119.6
20-Dec-08	7:21	60.00	1.37	1.37	1.37	82.29	2.8558	2.8608	60.8
20-Dec-08	8:40	60.00	1.37	1.37	1.37	82.29	2.8296	2.8351	66.8
20-Dec-08	9:59	60.00	1.37	1.37	1.37	82.29	2.7937	2.8002	79.0
24-Dec-08	7:33	60.00	1.38	1.38	1.38	82.57	2.8389	2.8424	42.4
24-Dec-08	8:41	60.00	1.38	1.38	1.38	82.57	2.8327	2.8352	30.3
24-Dec-08	9:47	60.00	1.38	1.38	1.38	82.57	2.8716	2.8784	82.4

The Summary of 24-hrs TSP Concentration (µg/m³) at HKIVE Fok Ying Tung Hall of Residence (ASR1)

			Initial Standard Flow	Final Standard Flow	Averaged Standard	Total Standard			
Date	Sampling Time	Elapsed Time	Rate	Rate	Flow Rate	Volume	Initial Filter Weight	Final Filter Weight	TSP Concentration
		(min)	(m³/min)	(m³/min)	(m³/min)	(m ³)	(g)	(g)	μg/m ³
2-Dec-08	0:00	1440.00	1.37	1.37	1.37	1976.99	2.8387	2.9826	72.8
8-Dec-08	0:00	1440.00	1.38	1.38	1.38	1981.96	2.8612	3.0631	101.9
13-Dec-08	0:00	1440.00	1.37	1.38	1.37	1978.16	2.8315	3.1108	141.2
19-Dec-08	0:00	1440.00	1.37	1.37	1.37	1976.04	2.8314	2.9845	77.5
23-Dec-08	0:00	1440.00	1.38	1.38	1.38	1987.81	2.8318	2.9425	55.7

The Summary of 1-hr TSP Concentration (µg/m³) at HKIVE 5th floor Block D of the Main Building (ASR 2)

			Initial Standard Flow	Final Standard Flow	Averaged Standard	Total Standard			
Date	Sampling Time	Elapsed Time	Rate	Rate	Flow Rate	Volume	Initial Filter Weight	Final Filter Weight	TSP Concentration
		(min)	(m³/min)	(m³/min)	(m³/min)	(m ³)	(g)	(g)	μg/m³
3-Dec-08	13:50	60.00	1.34	1.34	1.34	80.52	2.8322	2.8416	116.7
3-Dec-08	15:15	60.00	1.34	1.34	1.34	80.52	2.7631	2.7714	103.1
3-Dec-08	16:20	60.00	1.34	1.34	1.34	80.52	2.8167	2.8257	111.8
9-Dec-08	7:49	60.00	1.35	1.35	1.35	80.79	2.8406	2.8497	112.6
9-Dec-08	8:56	60.00	1.35	1.35	1.35	80.79	2.8489	2.8620	162.2
9-Dec-08	10:06	60.00	1.35	1.35	1.35	80.79	2.8305	2.8365	74.3
15-Dec-08	7:45	60.00	1.35	1.35	1.35	81.02	2.8437	2.8544	132.1
15-Dec-08	8:56	60.00	1.35	1.35	1.35	81.02	2.8546	2.8638	113.5
15-Dec-08	10:00	60.00	1.35	1.35	1.35	81.02	2.8109	2.8203	116.0
20-Dec-08	7:37	60.00	1.34	1.34	1.34	80.49	2.8263	2.8337	91.9
20-Dec-08	8:59	60.00	1.34	1.34	1.34	80.49	2.8526	2.8579	65.8
20-Dec-08	10:21	60.00	1.34	1.34	1.34	80.49	2.8286	2.8340	67.1
24-Dec-08	7:24	60.00	1.35	1.35	1.35	80.80	2.8578	2.8639	75.5
24-Dec-08	8:30	60.00	1.35	1.35	1.35	80.80	2.8421	2.8485	79.2
24-Dec-08	9:35	60.00	1.35	1.35	1.35	80.80	2.8415	2.8460	55.7

The Summary of 24-hr TSP Concentration (µg/m³) at HKIVE 5th floor Block D of the Main Building (ASR 2)

			Initial Standard Flow	Final Standard Flow	Averaged Standard	Total Standard			
Date	Sampling Time	Elapsed Time	Rate	Rate	Flow Rate	Volume	Initial Filter Weight	Final Filter Weight	TSP Concentration
		(min)	(m³/min)	(m³/min)	(m³/min)	(m ³)	(g)	(g)	μg/m³
2-Dec-08	0:00	1439.40	1.34	1.34	1.34	1933.30	2.8293	2.9486	61.7
8-Dec-08	0:00	1440.00	1.35	1.35	1.35	1939.58	2.8466	3.0297	94.4
13-Dec-08	0:00	1440.00	1.34	1.35	1.34	1935.39	2.8155	3.1706	183.5
19-Dec-08	0:00	1440.00	1.34	1.34	1.34	1933.04	2.8201	2.9773	81.3
23-Dec-08	0:00	1440.00	1.36	1.35	1.35	1946.04	2.8621	2.9612	50.9

The Summary of 1-hr TSP Concentration (µg/m³) at Mayfair Gardens 1st floor adjacent to swimming pool (ASR3)

			Initial Standard Flow	Final Standard Flow	Averaged Standard				
Date	Sampling Time	Elapsed Time	Rate	Rate	Flow Rate	Total Standard Volume	Initial Filter Weight	Final Filter Weight	TSP Concentration
		(min)	(m ³ /min)	(m³/min)	(m³/min)	(m ³)	(g)	(g)	μg/m³
3-Dec-08	14:15	60.00	1.37	1.37	1.37	82.46	2.8475	2.8546	86.1
3-Dec-08	15:41	60.00	1.37	1.37	1.37	82.46	2.8532	2.8638	128.5
3-Dec-08	16:47	60.00	1.37	1.37	1.37	82.46	2.8584	2.8673	107.9
9-Dec-08	8:25	60.00	1.38	1.38	1.38	82.70	2.8815	2.8931	140.3
9-Dec-08	9:31	60.00	1.38	1.38	1.38	82.70	2.8744	2.8828	101.6
9-Dec-08	10:39	60.00	1.38	1.38	1.38	82.70	2.8786	2.8906	145.1
15-Dec-08	8:24	60.00	1.38	1.38	1.38	82.92	2.8437	2.8579	171.2
15-Dec-08	9:36	60.00	1.38	1.38	1.38	82.92	2.8076	2.8213	165.2
15-Dec-08	10:40	60.00	1.38	1.38	1.38	82.92	2.8489	2.8629	168.8
20-Dec-08	8:20	60.00	1.37	1.37	1.37	82.43	2.8693	2.8774	98.3
20-Dec-08	9:45	60.00	1.37	1.37	1.37	82.43	2.8672	2.8756	101.9
20-Dec-08	11:06	60.00	1.37	1.37	1.37	82.43	2.8702	2.8774	87.3
24-Dec-08	8:02	60.00	1.38	1.38	1.38	82.72	2.8724	2.8812	106.4
24-Dec-08	9:10	60.00	1.38	1.38	1.38	82.72	2.8918	2.9016	118.5
24-Dec-08	10:16	60.00	1.38	1.38	1.38	82.72	2.8530	2.8602	87.0

The Summary of 24-hrs TSP Concentration (µg/m³) at Mayfair Gardens 1st floor adjacent to swimming pool (ASR3)

			Initial Standard Flow	Final Standard Flow	Averaged Standard				
Date	Sampling Time	Elapsed Time	Rate	Rate	Flow Rate	Total Standard Volume	Initial Filter Weight	Final Filter Weight	TSP Concentration
		(min)	(m ³ /min)	(m³/min)	(m³/min)	(m ³)	(g)	(g)	μg/m³
2-Dec-08	0:00	1437.60	1.38	1.37	1.38	1977.19	2.8493	2.9872	69.7
8-Dec-08	0:00	1440.00	1.38	1.38	1.38	1985.52	2.8983	3.0965	99.8
13-Dec-08	0:00	1440.00	1.37	1.38	1.38	1981.67	2.8770	3.1728	149.3
19-Dec-08	0:00	1440.00	1.38	1.37	1.37	1979.52	2.8090	2.9955	94.2
23-Dec-08	0:00	1440.00	1.39	1.38	1.38	1991.44	2.8729	3.0133	70.5

The Summary of 1-hr TSP Concentration (µg/m³) at Cheung Ching Estate at the roof of Ching Yung House (ASR4)

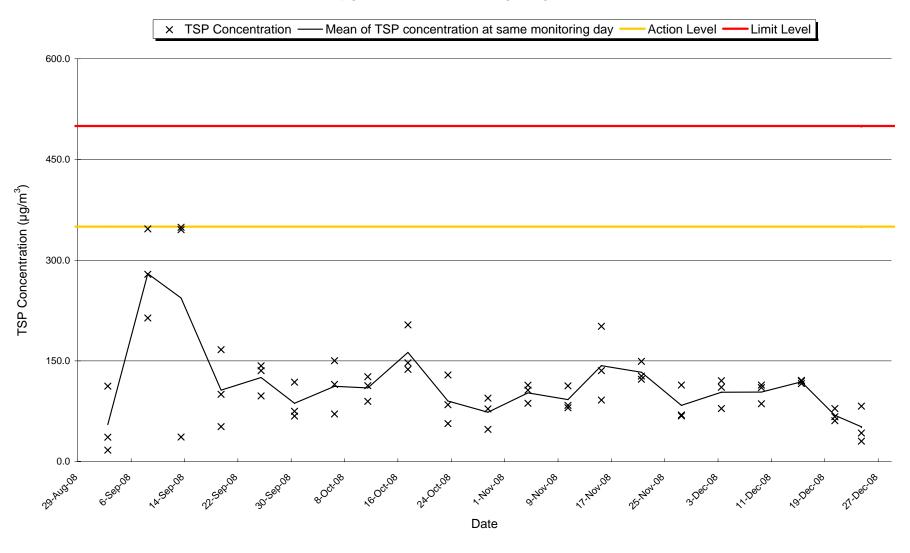
			Initial Standard Flow	Final Standard Flow	Averaged Standard				
Date	Sampling Time	Elapsed Time	Rate	Rate	Flow Rate	Total Standard Volume	Initial Filter Weight	Final Filter Weight	TSP Concentration
		(min)	(m³/min)	(m³/min)	(m³/min)	(m ³)	(g)	(g)	μg/m³
3-Dec-08	14:30	60.00	1.37	1.37	1.37	82.25	2.8705	2.8809	126.4
3-Dec-08	15:57	60.00	1.37	1.37	1.37	82.25	2.8816	2.8904	107.0
3-Dec-08	17:00	60.00	1.37	1.37	1.37	82.25	2.8810	2.8926	141.0
9-Dec-08	8:13	60.00	1.38	1.38	1.38	82.50	2.8957	2.9065	130.9
9-Dec-08	9:20	60.00	1.38	1.38	1.38	82.50	2.8339	2.8453	138.2
9-Dec-08	10:27	60.00	1.38	1.38	1.38	82.50	2.8348	2.8484	164.8
15-Dec-08	8:40	60.00	1.38	1.38	1.38	82.73	2.8305	2.8441	164.4
15-Dec-08	9:57	60.00	1.38	1.38	1.38	82.73	2.8622	2.8758	164.4
15-Dec-08	11:03	60.00	1.38	1.38	1.38	82.73	2.8388	2.8515	153.5
20-Dec-08	8:08	60.00	1.37	1.37	1.37	82.22	2.8256	2.8321	79.1
20-Dec-08	9:30	60.00	1.37	1.37	1.37	82.22	2.8402	2.8464	75.4
20-Dec-08	10:55	60.00	1.37	1.37	1.37	82.22	2.8271	2.8335	77.8
24-Dec-08	8:19	60.00	1.38	1.38	1.38	82.52	2.8692	2.8769	93.3
24-Dec-08	9:27	60.00	1.38	1.38	1.38	82.52	2.8765	2.8822	69.1
24-Dec-08	10:39	60.00	1.38	1.38	1.38	82.52	2.8285	2.8340	66.7

The Summary of 24-hrs TSP Concentration (µg/m³) at Cheung Ching Estate at the roof of Ching Yung House (ASR4)

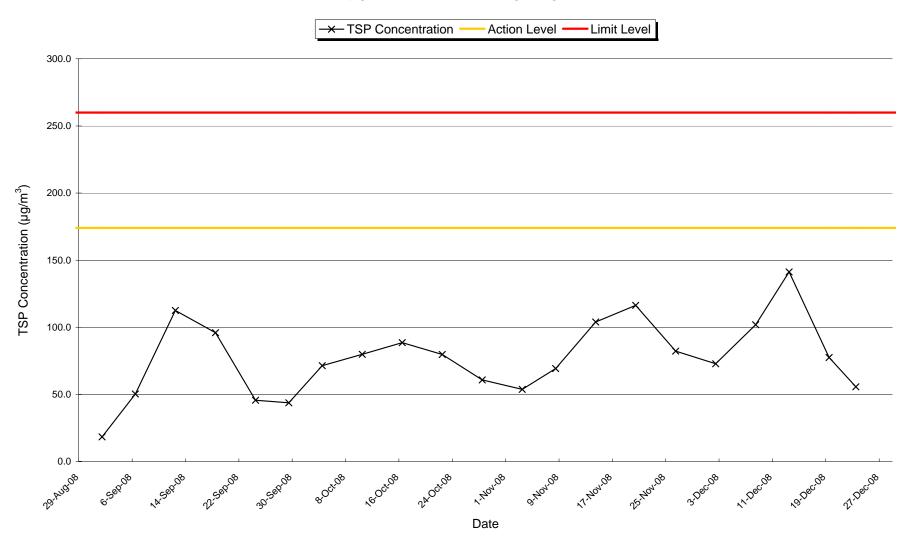
			Initial Standard Flow	Final Standard Flow	Averaged Standard				
Date	Sampling Time	Elapsed Time	Rate	Rate	Flow Rate	Total Standard Volume	Initial Filter Weight	Final Filter Weight	TSP Concentration
		(min)	(m³/min)	(m³/min)	(m³/min)	(m ³)	(g)	(g)	μg/m³
2-Dec-08	0:00	1438.80	1.37	1.37	1.37	1973.77	2.8754	2.9916	58.9
8-Dec-08	0:00	1440.00	1.38	1.38	1.38	1980.70	2.8860	3.0828	99.4
13-Dec-08	0:00	1440.00	1.37	1.38	1.37	1976.66	2.8668	3.1522	144.4
19-Dec-08	0:00	1440.00	1.37	1.37	1.37	1974.39	2.8395	3.0034	83.0
23-Dec-08	0:00	1440.00	1.38	1.38	1.38	1986.94	2.8932	3.0187	63.2

The Summary of 1-hr TSP Concentration (µg/m³) at Stonecutters Base (ASR5)

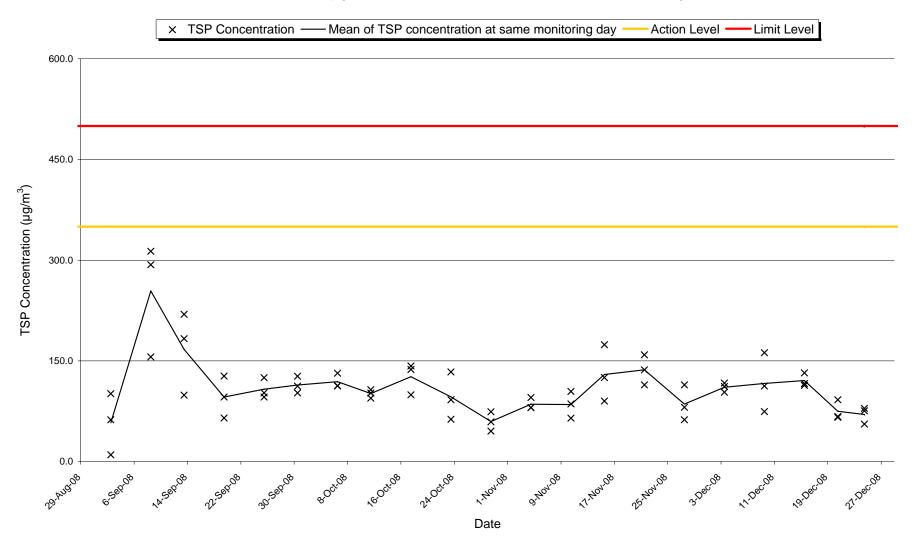
			Initial Standard Flow	Final Standard Flow	Averaged Standard	Total Standard			
Date	Sampling Time	Elapsed Time	Rate	Rate	Flow Rate	Volume	Initial Filter Weight	Final Filter Weight	TSP Concentration
		(min)	(m³/min)	(m³/min)	(m³/min)	(m ³)	(g)	(g)	μg/m³
3-Dec-08	11:15	60.00	1.40	1.40	1.40	83.78	2.8312	2.8398	102.6
3-Dec-08	13:45	60.00	1.40	1.40	1.40	83.78	2.8446	2.8501	65.6
3-Dec-08	16:17	60.00	1.40	1.40	1.40	83.78	2.8562	2.8680	140.8
9-Dec-08	11:15	60.00	1.40	1.40	1.40	84.08	2.8558	2.8653	113.0
9-Dec-08	13:20	60.00	1.40	1.40	1.40	84.08	2.8437	2.8533	114.2
9-Dec-08	16:17	60.00	1.40	1.40	1.40	84.08	2.8198	2.8290	109.4
15-Dec-08	14:15	60.00	1.41	1.41	1.41	84.41	2.8378	2.8444	78.2
15-Dec-08	15:27	60.00	1.41	1.41	1.41	84.41	2.8413	2.8484	84.1
15-Dec-08	16:44	60.00	1.41	1.41	1.41	84.41	2.8444	2.8587	169.4
20-Dec-08	15:46	60.00	1.40	1.40	1.40	83.86	2.8245	2.8360	137.1
20-Dec-08	16:50	60.00	1.40	1.40	1.40	83.86	2.8316	2.8367	60.8
20-Dec-08	17:53	60.00	1.40	1.40	1.40	83.86	2.8723	2.8787	76.3
24-Dec-08	15:43	60.00	1.40	1.40	1.40	84.18	2.8625	2.8693	80.8
24-Dec-08	16:55	60.00	1.40	1.40	1.40	84.18	2.8265	2.8312	55.8
24-Dec-08	18:00	60.00	1.40	1.40	1.40	84.18	2.8359	2.8413	64.1

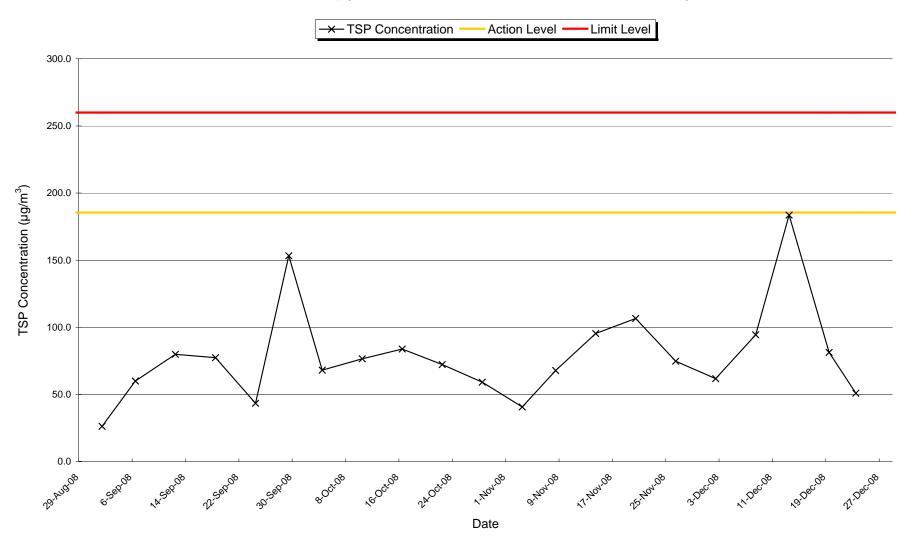

The Summary of 24-hrs TSP Concentration (µg/m³) at Stonecutters Base (ASR5)

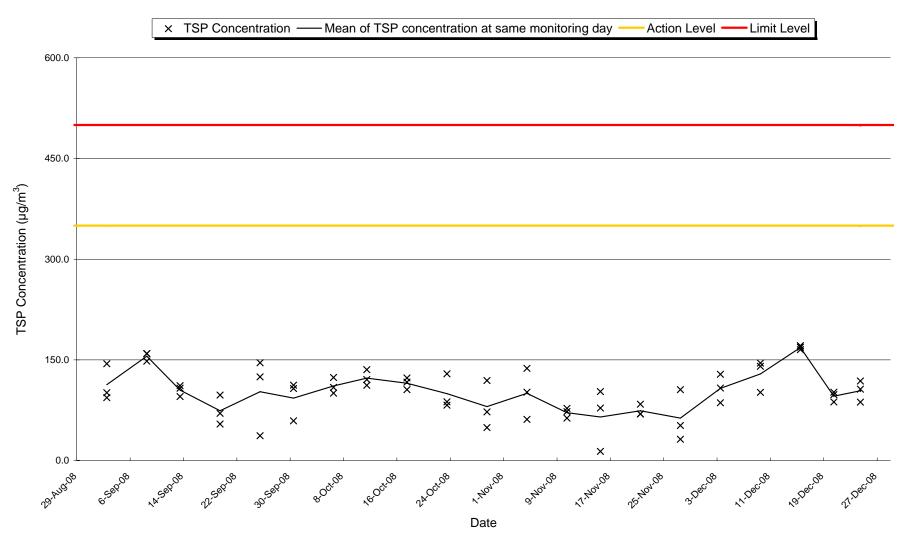
			Initial Standard Flow	Final Standard Flow	Averaged Standard	Total Standard			
Date	Sampling Time	Elapsed Time	Rate	Rate	Flow Rate	Volume	Initial Filter Weight	Final Filter Weight	TSP Concentration
		(min)	(m ³ /min)	(m³/min)	(m³/min)	(m ³)	(g)	(g)	μg/m ³
2-Dec-08	0:00	1440.00	1.40	1.40	1.40	2013.65	2.8656	2.9634	48.6
8-Dec-08	0:00	1440.00	1.40	1.40	1.40	2020.20	2.8466	2.9943	73.1
13-Dec-08	0:00	1440.60	1.39	1.41	1.40	2017.30	2.8290	2.9788	74.3
19-Dec-08	0:00	1440.00	1.40	1.40	1.40	2014.54	2.8672	2.9815	56.7
23-Dec-08	0:00	1440.00	1.41	1.40	1.41	2028.05	2.8576	3.0267	83.4

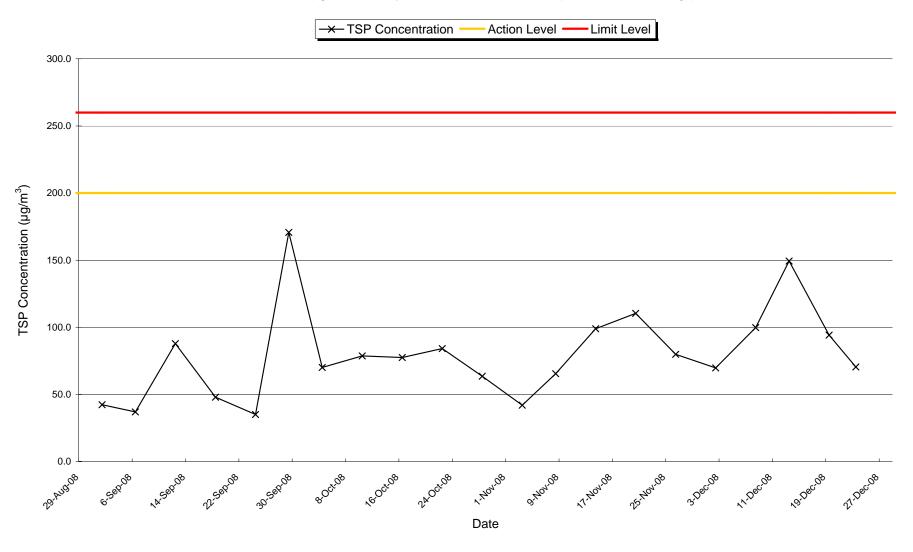

Appendix K

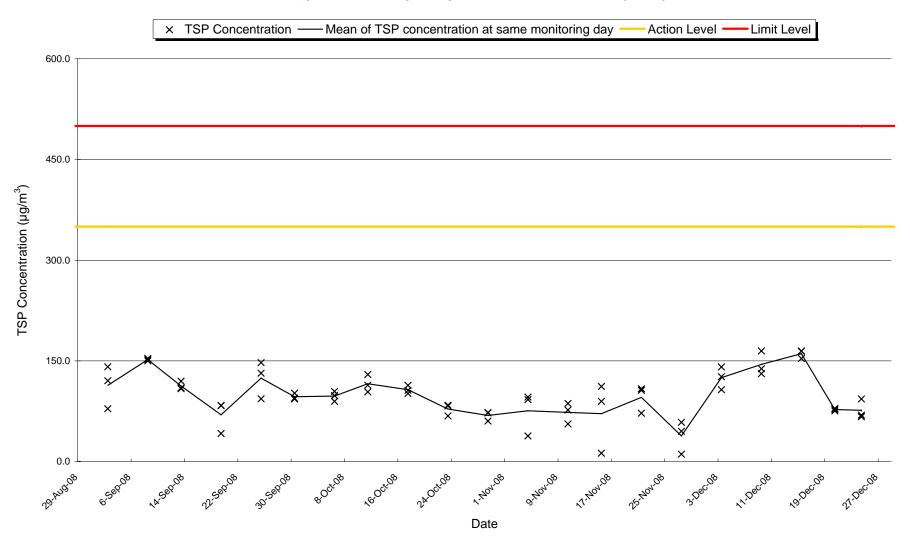
Graphical Presentation of 1-hour and 24-hour TSP Monitoring Result

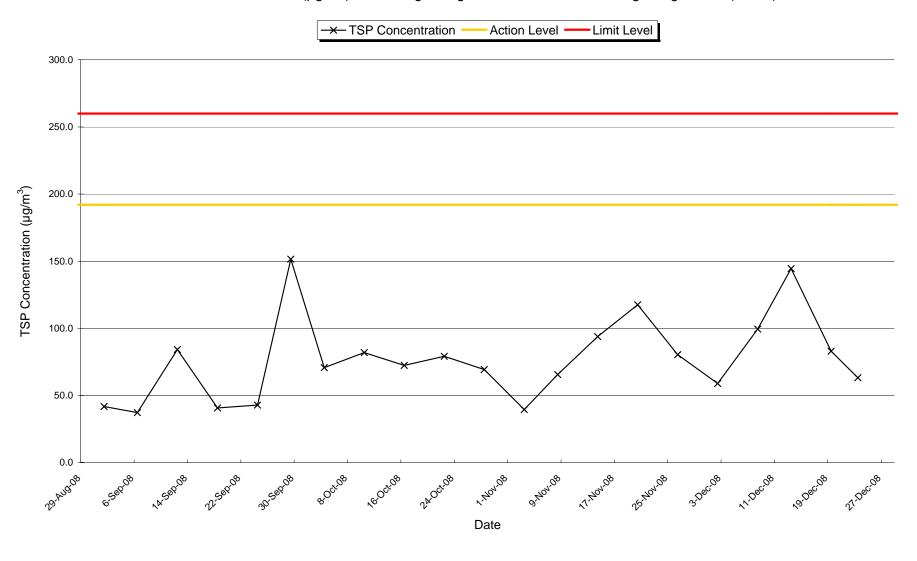

1 hr TSP Concentration ($\mu g/m^3$) at HKIVE Fok Ying Tung Hall of Residence (ASR1)

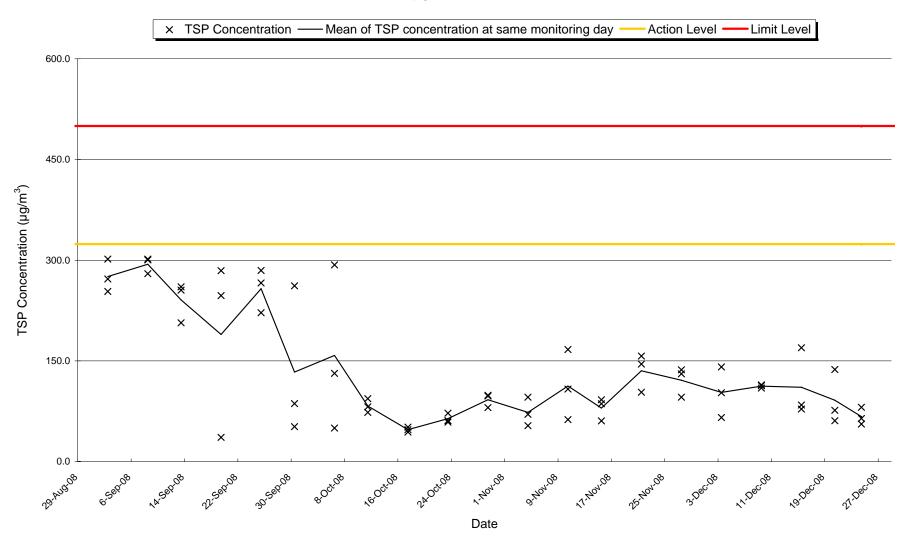

24 hrs TSP Concentration ($\mu g/m^3$) at HKIVE Fok Ying Tung Hall of Residence (ASR1)

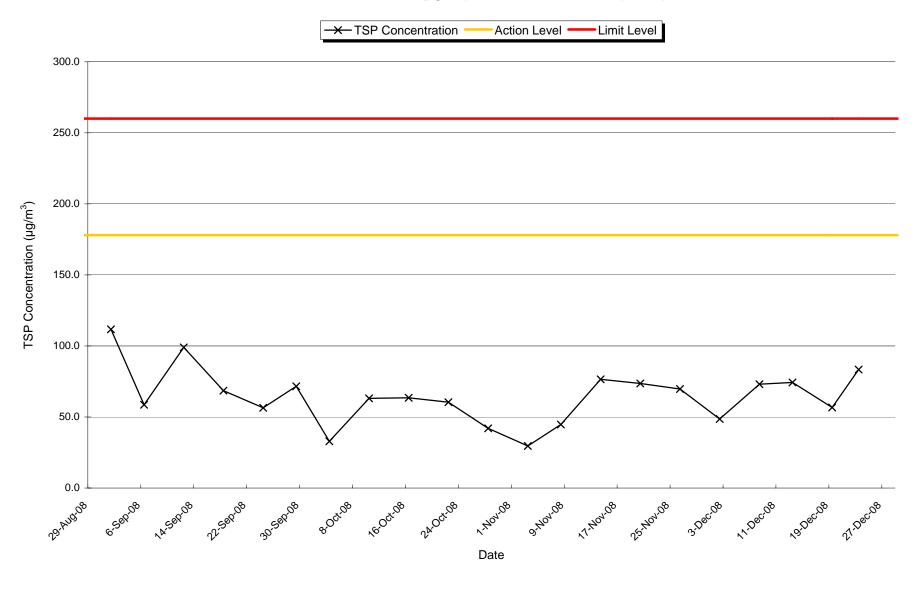

1 hr TSP Concentration ($\mu g/m^3$) at HKIVE 5th floor Block D of the main Building (ASR2)


24 hrs TSP Concentration ($\mu g/m^3$) at HKIVE 5th floor Block D of the Main Building (ASR2)


1 hr TSP Concentration ($\mu g/m^3$) at Mayfair Gardens 1st floor adjacent to swimming pool (ASR3)


24 hrs TSP Concentration ($\mu g/m^3$) at Mayfair Gardens 1st floor adjacent to swimming pool (ASR3)


1 hr TSP Concentration (µg/m³) at Cheung Ching Estate at the roof of Ching Yung House (ASR4)


24 hrs TSP Concentration ($\mu g/m^3$) at Cheung Ching Estate at the roof of Ching Yung House (ASR4)

1 hr TSP Concentration ($\mu g/m^3$) at Stonecutters Base (ASR5)

24 hrs TSP Concentration (µg/m³) at Stonecutters Base (ASR5)

Appendix L

Weather Condition during Impact Monitoring

Appendix L: Weather Condition during Impact Monitoring (ASR1-ASR5)

Date	Time	Weather Condition	Ambient Pressure	Average Ambient Temperature		Relative Humidity	Wind Direction	Wind Speed m/s
			P (mmHg)	оС	K	%		
2-Dec-08	00:00~24:00	Sunny	764.09	18.9	292.05	36~76	Е	5.5
3-Dec-08	10:00~18:00	Cloudy	761.69	19.9	293.05	60~78	NE	7.6
8-Dec-08	00:00~24:00	Sunny	765.82	17.6	290.75	33~65	N	6.1
9-Dec-08	07:15~17:00	Sunny	763.87	18.1	291.25	34~75	N	4.6
13-Dec-08	00:00~24:00	Fine	762.97	21.6	294.75	54~84	NNE	4.3
15-Dec-08	07:30~18:15	Sunny	765.74	16.5	289.65	57~72	N	6.5
19-Dec-08	00:00~24:00	Sunny	765.14	19.3	292.45	50~82	ENE	8.8
20-Dec-08	07:15~18:30	Sunny	763.79	20.1	293.25	48~87	NE	5.9
23-Dec-08	00:00~24:00	Sunny	767.77	14.1	287.25	56~66	N	6.7
24-Dec-08	07:30~18:30	Cloudy	764.99	18.0	291.15	49~69	N	4.2

Meteorological data such as atmospheric pressure and temperature used for the calculation of TSP values was obtained from the Hong Kong Observatory

Appendix M1

Noise Monitoring Results for Normal Hour

The Summary of Day-time Leq₃₀ Level at HKIVE Fok Ying Tung Hall of Residence (NSR 1)

Date	Monitoring Time	Duration	Measured Noise Level ¹			Baseline Level ¹	Construction Noise Level	Limit Level
		min	Leq	L10	L90	Leq	Leq	
			dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
1-Dec-08	9:30	30	65.8	67.3	63.7	66.8	65.8*	75.0
10-Dec-08	14:22	30	65.6	67.0	64.0	66.8	65.6*	75.0
18-Dec-08	13:28	30	68.2	69.8	65.3	66.7	62.9	75.0
22-Dec-08	10:34	30	69.1	71	65.3	67.0	64.9	75.0

NB: Bold - exceedance

The Summary of Day-time Leq₃₀ Level at HKIVE 5th Floor Block D of the Main Education Building (NSR 2)

Date	Monitoring Time	Duration	Measured Noise Level ¹			Baseline Level ¹	Construction Noise Level	Limit Level
		min	Leq	L10	L90	Leq	Leq	
			dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
1-Dec-08	8:25	30	65.1	66.1	63.6	71.3	65.1*	70.0
10-Dec-08	15:37	30	65.1	66.2	63.2	71.3	65.1*	70.0
18-Dec-08	14:19	30	65.2	66.5	63.4	71.9	65.2*	70.0
22-Dec-08	9:23	30	65.7	67.5	63.2	71.7	65.7*	70.0

¹ Additional 3dB (A) façade correction was made to the Free-field measurements

^{*} No adjustment was made on the measured noise level, since corresponding baseline level≥ measured noise level. The measured noise level was mainly dominated by local traffic noise and the construction noise generated from the Project was not noticeable at NSR according to the field study record.

^{**} No Construction works was carried out during the reporting period

¹ Additional 3dB (A) façade correction was made to the Free-field measurements

^{*} No adjustment was made on the measured noise level, since corresponding baseline level≥ measured noise level. The measured noise level was mainly dominated by local traffic noise and the construction noise generated from the Project was not noticeable at NSR according to the field study record.

^{**} No Construction works was carried out during the reporting period

The Summary of Day-time Leq₃₀ Level at Mayfair Gardens 1st floor adjacent to swimming pool (NSR 3)

Date	Monitoring Time	Duration	Measured Noise Level ¹			Baseline Level ¹	Construction Noise Level	Limit Level
		min	Leq	L10	L90	Leq	Leq	
			dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
1-Dec-08	14:41	30	65.3	66.8	63.5	69.0	65.3*	75.0
10-Dec-08	9:01	30	64.9	66.6	62.3	69.5	64.9*	75.0
18-Dec-08	8:18	30	65.9	67.7	63.0	69.6	65.9*	75.0
22-Dec-08	11:23	30	65.1	67.2	62.0	68.6	65.1*	75.0

NB: Bold - exceedance

The Summary of Day-time Leq₃₀ Level at Cheung Ching Estate at roof of Ching Yung House (NSR 4)

Date	Monitoring Time	Duration	Measured Noise Level ¹			Baseline Level ¹	Construction Noise Level	Limit Level
		min	Leq	L10	L90	Leq	Leq	
			dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
1-Dec-08	15:12	30	65.4	68.1	61.2	70.0	65.4*	75.0
10-Dec-08	8:27	30	65.6	67.9	62.5	69.5	65.6*	75.0
18-Dec-08	11:18	30	65.0	67.5	61.6	70.3	65.0*	75.0
22-Dec-08	10:03	30	66.2	68.3	63.7	70.1	66.2*	75.0

¹ Additional 3dB (A) façade correction was made to the Free-field measurements

^{*} No adjustment was made on the measured noise level, since corresponding baseline level≥ measured noise level. The measured noise level was mainly dominated by local traffic noise and the construction noise generated from the Project was not noticeable at NSR according to the field study record.

^{**} No Construction works was carried out during the reporting period

¹ Additional 3dB (A) façade correction was made to the Free-field measurements

^{*} No adjustment was made on the measured noise level, since corresponding baseline level≥ measured noise level. The measured noise level was mainly dominated by local traffic noise and the construction noise generated from the Project was not noticeable at NSR according to the field study record.

^{**} No Construction works was carried out during the reporting period

The Summary of Day-time Leq₃₀ Level at Stonecutters Base (NSR 5)

Date	Monitoring Time	Duration	Measured Noise Level ¹			Baseline Level ¹	Construction Noise Level	Limit Level
		min	Leq	L10	L90	Leq	Leq	
			dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
1-Dec-08	16:01	30	72.9	75.9	68.4	74.7	72.9*	75.0
10-Dec-08	10:23	30	72.6	76.0	67.3	75.3	72.6*	75.0
18-Dec-08	8:40	30	71.7	74.0	68.2	74.8	71.7*	75.0
22-Dec-08	16:28	30	73.1	76.4	68.1	74.7	73.1*	75.0

¹ Additional 3dB (A) façade correction was made to the Free-field measurements

^{*} No adjustment was made on the measured noise level, since corresponding baseline level≥ measured noise level. The measured noise level was mainly dominated by local traffic noise and the construction noise generated from the Project was not noticeable at NSR according to the field study record.

^{**} No Construction works was carried out during the reporting period

Appendix M2

Noise Monitoring Results for Restricted Hour

The Summary of Evening-time Leq₅ Level at HKIVE Fok Ying Tung Hall of Residence (NSR 1)

Date	Monitoring Time	Duration	Меа	asured Noise Le	vel ¹	Baseline Level ¹	Construction Noise Level	Limit Level
		min	Leq	L10	L90	Leq	Leq	
			dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
1-Dec-08	20:50	5	63.4	64.3	62.3	62.8	54.5	70.0
1-Dec-08	20:55	5	63.7	64.3	62.5	62.0	58.8	70.0
1-Dec-08	21:00	5	64.4	65.5	62.8	61.1	61.7	70.0
1-Dec-08	21:05	5	64.2	65.5	62.5	60.8	61.5	70.0
1-Dec-08	21:10	5	63.8	64.5	62.8	61.2	60.3	70.0
1-Dec-08	21:15	5	63.9	64.8	62.8	60.6	61.2	70.0
10-Dec-08	21:11	5	64.3	65.0	62.8	61.2	61.4	70.0
10-Dec-08	21:16	5	63.7	64.8	62.3	60.6	60.8	70.0
10-Dec-08	21:21	5	64.0	65.0	62.5	60.6	61.3	70.0
10-Dec-08	21:26	5	64.1	65.5	62.3	60.9	61.3	70.0
10-Dec-08	21:31	5	64.2	66.0	62.5	61.1	61.3	70.0
10-Dec-08	21:36	5	63.9	65.3	62.3	60.7	61.1	70.0
18-Dec-08	19:34	5	64.1	64.8	62.3	63.8	52.3	70.0
18-Dec-08	19:39	5	63.4	64.0	62.3	63.8	63.4*	70.0
18-Dec-08	19:44	5	63.6	64.5	62.3	63.4	50.1	70.0
18-Dec-08	19:49	5	63.5	64.3	62.3	63.6	63.5*	70.0
18-Dec-08	19:54	5	64.1	65.0	62.5	63.0	57.6	70.0
18-Dec-08	19:59	5	63.5	64.3	62.3	62.5	56.6	70.0
22-Dec-08	19:07	5	64.2	65.3	62.3	64.5	64.2*	70.0
22-Dec-08	19:12	5	63.7	65.0	62.3	65.1	63.7*	70.0
22-Dec-08	19:17	5	64.2	65.8	62.3	64.8	64.2*	70.0
22-Dec-08	19:22	5	63.6	65.0	62.0	65.1	63.6*	70.0
22-Dec-08	19:27	5	62.9	63.5	62.0	64.6	62.9*	70.0
22-Dec-08	19:32	5	63.3	64.3	62.0	63.7	63.3*	70.0

¹ Additional 3dB (A) façade correction was made to the Free-field measurements

^{*} No adjustment was made on the measured noise level, since corresponding baseline level ≥ measured noise level. The measured noise level was mainly dominated by local traffic noise and the construction noise generated from the Project was not noticeable at NSR according to the field study record.

^{**} No Construction works was carried out during the reporting period

[#] No monitoring was undertaken due to bad weather

The Summary of Night-time Leq₅ Level at HKIVE Fok Ying Tung Hall of Residence (NSR 1)

Date	Monitoring Time	Duration	Mea	asured Noise Le	vel ¹	Baseline Level ¹	Construction Noise Level	Limit Level
		min	Leq	L10	L90	Leq	Leq	
			dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
1-Dec-08	23:33	5	59.5	63.5	58.5	57.9	54.4	55.0
1-Dec-08	23:38	5	59.4	63.8	58.5	58.4	52.5	55.0
1-Dec-08	23:43	5	59.0	62.8	58.5	58.5	49.4	55.0
1-Dec-08	23:48	5	59.2	63.3	58.5	58.0	53.0	55.0
10-Dec-08	23:07	5	59.6	63.8	58.8	58.7	52.3	55.0
10-Dec-08	23:12	5	59.0	63.0	58.3	59.2	59.0*	55.0
10-Dec-08	23:17	5	59.6	63.8	58.5	58.5	53.1	55.0
10-Dec-08	23:22	5	59.4	63.8	58.5	58.3	52.9	55.0
18-Dec-08	23:48	5	59.4	62.5	58.0	58.0	53.8	55.0
18-Dec-08	23:53	5	59.6	63.0	58.5	57.8	54.9	55.0
18-Dec-08	23:58	5	59.6	62.5	58.5	57.9	54.7	55.0
18-Dec-08	0:03	5	59.0	62.8	58.5	57.4	53.9	55.0
22-Dec-08	23:14	5	59.9	63.8	59.0	58.5	54.3	55.0
22-Dec-08	23:19	5	59.7	63.3	58.8	58.3	54.1	55.0
22-Dec-08	23:24	5	59.8	63.8	59.3	58.1	54.9	55.0
22-Dec-08	23:29	5	59.8	63.5	59.3	58.2	54.7	55.0

¹ Additional 3dB (A) façade correction was made to the Free-field measurements

^{*} No adjustment was made on the measured noise level, since corresponding baseline level ≥ measured noise level. The measured noise level was mainly dominated by local traffic noise and the construction noise generated from the Project was not noticeable at NSR according to the field study record.

^{**} No Construction works was carried out during the reporting period

[#] No monitoring was undertaken due to bad weather

The Summary of Public Holiday Leq₅ Level at HKIVE Fok Ying Tung Hall of Residence (NSR 1)

Date	Monitoring Time	Duration	Mea	asured Noise Le	vel ¹	Baseline Level ¹	Construction Noise Level	Limit Level
		min	Leq	L10	L90	Leq	Leq	
			dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
30-Nov-08	10:21	5	65.4	67.5	63.0	65.1	53.6	70.0
30-Nov-08	10:26	5	64.3	65.0	63.3	64.8	64.3*	70.0
30-Nov-08	10:31	5	64.2	65.0	63.0	64.5	64.2*	70.0
30-Nov-08	10:36	5	64.9	65.8	63.5	63.7	58.7	70.0
30-Nov-08	10:41	5	64.7	65.5	63.3	63.6	58.2	70.0
30-Nov-08	10:46	5	64.6	65.5	63.5	63.9	56.3	70.0
7-Dec-08	9:54	5	64.6	65.8	62.5	64.7	64.6*	70.0
7-Dec-08	9:59	5	66.6	68.0	63.3	63.5	63.7	70.0
7-Dec-08	10:04	5	65.8	66.8	63.0	65.2	56.9	70.0
7-Dec-08	10:09	5	66.4	68.0	63.0	64.2	62.4	70.0
7-Dec-08	10:14	5	65.7	67.0	63.0	64.6	59.2	70.0
7-Dec-08	10:19	5	67.4	69.8	63.3	65.1	63.5	70.0
14-Dec-08	11:17	5	64.4	65.5	62.8	64.4	64.4*	70.0
14-Dec-08	11:22	5	63.9	64.8	62.5	64.5	63.9*	70.0
14-Dec-08	11:27	5	64.6	65.8	62.8	63.8	56.9	70.0
14-Dec-08	11:32	5	65.1	66.8	63.0	63.7	59.5	70.0
14-Dec-08	11:37	5	63.7	64.8	62.5	64.1	63.7*	70.0
14-Dec-08	11:42	5	63.8	65.3	62.5	64.9	63.8*	70.0
21-Dec-08	11:19	5	63.8	65.0	62.5	64.5	63.8*	70.0
21-Dec-08	11:24	5	64.4	65.5	62.5	63.8	55.5	70.0
21-Dec-08	11:29	5	64.1	65.3	62.3	63.7	53.5	70.0
21-Dec-08	11:34	5	64.4	65.3	63.0	64.1	52.6	70.0
21-Dec-08	11:39	5	64.4	65.8	62.8	64.9	64.4*	70.0
21-Dec-08	11:44	5	64.1	64.8	62.5	63.4	55.8	70.0
28-Dec-08	13:43	5	64.1	65.3	62.7	62.5	59.0	70.0
28-Dec-08	13:48	5	64.2	65.2	62.5	63.3	56.9	70.0
28-Dec-08	13:53	5	64.4	65.6	62.6	63.5	57.1	70.0
28-Dec-08	13:58	5	64.8	66.1	63.0	63.0	60.1	70.0
28-Dec-08	14:03	5	64.1	65.3	62.7	62.4	59.2	70.0
28-Dec-08	14:08	5	64.0	65.1	62.5	61.1	60.9	70.0

¹ Additional 3dB (A) façade correction was made to the Free-field measurements

^{*} No adjustment was made on the measured noise level, since corresponding baseline level ≥ measured noise level. The measured noise level was mainly dominated by local traffic noise and the construction noise generated from the Project was not noticeable at NSR according to the field study record.

^{**} No Construction works was carried out during the reporting period

[#] No monitoring was undertaken due to bad weather

The Summary of Evening-time Leq₅ Level at HKIVE 5th Floor Block D of the Main Building (NSR 2)

Date	Monitoring Time	Duration	Mea	asured Noise Le	vel ¹	Baseline Level ¹	Construction Noise Level	Limit Level
		min	Leq	L10	L90	Leq	Leq	
			dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
1-Dec-08	19:40	5	62.6	63.5	61.3	66.1	62.6*	70.0
1-Dec-08	19:45	5	63.7	65.8	61.0	66.3	63.7*	70.0
1-Dec-08	19:50	5	62.3	63.5	60.8	65.7	62.3*	70.0
1-Dec-08	19:55	5	63.1	65.0	61.0	66.3	63.1*	70.0
1-Dec-08	20:00	5	62.7	64.0	61.0	65.2	62.7*	70.0
1-Dec-08	20:05	5	63.4	64.8	61.3	66.4	63.4*	70.0
10-Dec-08	19:23	5	63.7	65.0	62.0	66.7	63.7*	70.0
10-Dec-08	19:28	5	63.6	64.5	62.3	65.7	63.6*	70.0
10-Dec-08	19:33	5	63.3	64.3	61.8	66.0	63.3*	70.0
10-Dec-08	19:38	5	63.5	64.5	62.5	66.1	63.5*	70.0
10-Dec-08	19:43	5	63.7	64.8	62.3	66.3	63.7*	70.0
10-Dec-08	19:48	5	63.5	64.5	61.8	65.7	63.5*	70.0
18-Dec-08	20:44	5	62.3	63.5	60.5	64.6	62.3*	70.0
18-Dec-08	20:49	5	62.7	64.0	60.8	64.3	62.7*	70.0
18-Dec-08	20:54	5	62.1	63.0	60.5	64.7	62.1*	70.0
18-Dec-08	20:59	5	62.2	63.5	60.3	64.4	62.2*	70.0
18-Dec-08	21:04	5	62.0	63.3	60.3	64.4	62.0*	70.0
18-Dec-08	21:09	5	61.3	62.8	59.5	64.6	61.3*	70.0
22-Dec-08	20:56	5	62.2	63.0	61.0	64.7	62.2*	70.0
22-Dec-08	21:01	5	62.5	63.5	60.8	64.4	62.5*	70.0
22-Dec-08	21:06	5	62.5	63.8	61.0	64.4	62.5*	70.0
22-Dec-08	21:11	5	62.0	63.0	60.5	64.6	62.0*	70.0
22-Dec-08	21:16	5	62.5	63.5	61.0	63.4	62.5*	70.0
22-Dec-08	21:21	5	63.0	64.3	60.8	63.6	63.0*	70.0

¹ Additional 3dB (A) façade correction was made to the Free-field measurements

^{*} No adjustment was made on the measured noise level, since corresponding baseline level ≥ measured noise level. The measured noise level was mainly dominated by local traffic noise and the construction noise generated from the Project was not noticeable at NSR according to the field study record.

^{**} No Construction works was carried out during the reporting period

[#] No monitoring was undertaken due to bad weather

The Summary of Night-time Leq₅ Level at HKIVE 5th Floor Block D of the Main Building (NSR 2)

Date	Monitoring Time	Duration	Mea	asured Noise Le	evel ¹	Baseline Level ¹	Construction Noise Level	Limit Level
		min	Leq	L10	L90	Leq	Leq	
			dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
1-Dec-08	23:02	5	59.7	62.3	58.0	60.3	59.7*	55.0
1-Dec-08	23:07	5	58.9	61.3	58.5	60.7	58.9*	55.0
1-Dec-08	23:12	5	59.4	61.5	58.0	60.3	59.4*	55.0
1-Dec-08	23:17	5	59.5	61.8	58.0	61.0	59.5*	55.0
10-Dec-08	23:41	5	59.9	63.0	58.5	59.7	46.4	55.0
10-Dec-08	23:46	5	59.9	63.0	58.0	58.9	53.0	55.0
10-Dec-08	23:51	5	59.9	63.3	58.5	59.3	51.0	55.0
10-Dec-08	23:56	5	59.6	63.0	58.0	58.4	53.4	55.0
18-Dec-08	23:16	5	59.6	60.5	58.5	61.0	59.6*	55.0
18-Dec-08	23:21	5	59.9	60.5	59.0	60.2	59.9*	55.0
18-Dec-08	23:26	5	59.6	60.3	58.5	59.5	43.2	55.0
18-Dec-08	23:31	5	59.7	60.5	58.5	60.2	59.7*	55.0
22-Dec-08	23:49	5	60.1	61.3	59.5	59.3	52.4	55.0
22-Dec-08	23:54	5	59.9	61.3	58.5	58.4	54.6	55.0
22-Dec-08	23:59	5	59.8	60.8	58.5	58.2	54.7	55.0
22-Dec-08	0:04	5	59.9	61.0	58.5	58.3	54.8	55.0

¹ Additional 3dB (A) façade correction was made to the Free-field measurements

^{*} No adjustment was made on the measured noise level, since corresponding baseline level ≥ measured noise level. The measured noise level was mainly dominated by local traffic noise and the construction noise generated from the Project was not noticeable at NSR according to the field study record.

^{**} No Construction works was carried out during the reporting period

[#] No monitoring was undertaken due to bad weather

The Summary of Public Holiday Leq₅ Level at HKIVE 5th Floor Block D of the Main Building (NSR 2)

Date	Monitoring Time	Duration	Mea	asured Noise Le	vel ¹	Baseline Level ¹	Construction Noise Level	Limit Level
		min	Leq	L10	L90	Leq	Leq	
			dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
30-Nov-08	11:07	5	62.7	64.0	61.0	67.8	62.7*	70.0
30-Nov-08	11:12	5	62.7	63.5	61.3	68.0	62.7*	70.0
30-Nov-08	11:17	5	62.8	63.5	61.3	69.1	62.8*	70.0
30-Nov-08	11:22	5	63.6	64.8	61.3	67.9	63.6*	70.0
30-Nov-08	11:27	5	62.8	63.8	61.3	66.0	62.8*	70.0
30-Nov-08	11:32	5	62.9	64.0	61.5	66.4	62.9*	70.0
7-Dec-08	9:19	5	62.2	63.8	60.0	67.6	62.2*	70.0
7-Dec-08	9:24	5	62.0	63.3	60.3	67.5	62.0*	70.0
7-Dec-08	9:29	5	61.6	62.8	60.0	66.8	61.6*	70.0
7-Dec-08	9:34	5	61.5	62.5	60.3	67.8	61.5*	70.0
7-Dec-08	9:39	5	61.5	62.5	60.3	67.7	61.5*	70.0
7-Dec-08	9:44	5	62.2	63.8	60.0	68.3	62.2*	70.0
14-Dec-08	10:14	5	62.7	64.3	60.8	68.3	62.7*	70.0
14-Dec-08	10:19	5	62.4	63.8	60.5	67.7	62.4*	70.0
14-Dec-08	10:24	5	62.9	64.3	60.8	66.9	62.9*	70.0
14-Dec-08	10:29	5	62.0	63.0	60.8	67.8	62.0*	70.0
14-Dec-08	10:34	5	62.1	63.0	60.8	66.2	62.1*	70.0
14-Dec-08	10:39	5	62.8	64.5	60.8	66.7	62.8*	70.0
21-Dec-08	9:46	5	62.3	63.5	60.3	68.3	62.3*	70.0
21-Dec-08	9:51	5	61.7	63.3	59.5	68.3	61.7*	70.0
21-Dec-08	9:56	5	61.9	63.5	59.5	68.2	61.9*	70.0
21-Dec-08	10:01	5	61.8	63.5	59.5	67.3	61.8*	70.0
21-Dec-08	10:06	5	60.6	61.3	59.3	68.3	60.6*	70.0
21-Dec-08	10:11	5	61.4	62.8	59.5	67.0	61.4*	70.0
28-Dec-08	15:10	5	62.5	63.9	60.6	65.2	62.5*	70.0
28-Dec-08	15:15	5	62.1	63.6	60.0	66.3	62.1*	70.0
28-Dec-08	15:20	5	62.4	63.9	60.2	65.5	62.4*	70.0
28-Dec-08	15:25	5	61.9	63.3	60.2	66.0	61.9*	70.0
28-Dec-08	15:30	5	61.4	62.2	60.1	64.6	61.4*	70.0
28-Dec-08	15:35	5	62.1	63.7	60.2	64.3	62.1*	70.0

¹ Additional 3dB (A) façade correction was made to the Free-field measurements

^{*} No adjustment was made on the measured noise level, since corresponding baseline level ≥ measured noise level. The measured noise level was mainly dominated by local traffic noise and the construction noise generated from the Project was not noticeable at NSR according to the field study record.

^{**} No Construction works was carried out during the reporting period

[#] No monitoring was undertaken due to bad weather

The Summary of Evening-time Leq₅ Level at Mayfair Gardens 1st Floor adjacet to Swimming Pool (NSR 3)

Date	Monitoring Time	Duration	Меа	asured Noise Le	vel ¹	Baseline Level ¹	Construction Noise Level	Limit Level
		min	Leq	L10	L90	Leq	Leq	
			dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
1-Dec-08	19:26	5	64.1	66.1	61.4	65.5	64.1*	70.0
1-Dec-08	19:31	5	65.0	68.0	60.6	65.4	65.0*	70.0
1-Dec-08	19:36	5	63.6	65.6	60.8	65.3	63.6*	70.0
1-Dec-08	19:41	5	63.5	65.6	60.7	65.1	63.5*	70.0
1-Dec-08	19:46	5	64.2	66.0	61.8	65.1	64.2*	70.0
1-Dec-08	19:51	5	63.9	66.4	60.9	65.4	63.9*	70.0
10-Dec-08	20:51	5	63.5	65.1	61.4	64.3	63.5*	70.0
10-Dec-08	20:56	5	62.7	64.6	60.7	64.4	62.7*	70.0
10-Dec-08	21:01	5	64.2	66.6	60.6	64.3	64.2*	70.0
10-Dec-08	21:06	5	62.1	63.8	60.0	64.1	62.1*	70.0
10-Dec-08	21:11	5	62.5	64.2	59.3	64.2	62.5*	70.0
10-Dec-08	21:16	5	62.7	64.6	60.3	64.5	62.7*	70.0
18-Dec-08	20:03	5	62.4	64.4	60.3	65.2	62.4*	70.0
18-Dec-08	20:08	5	62.7	64.6	60.4	64.8	62.7*	70.0
18-Dec-08	20:13	5	65.5	68.2	61.4	64.6	58.2	70.0
18-Dec-08	20:18	5	62.9	64.6	60.8	64.8	62.9*	70.0
18-Dec-08	20:23	5	62.8	64.3	60.8	64.5	62.8*	70.0
18-Dec-08	20:28	5	62.5	64.3	60.6	64.3	62.5*	70.0
22-Dec-08	21:13	5	64.4	67.2	61.1	64.5	64.4*	70.0
22-Dec-08	21:18	5	63.6	65.1	60.7	65.4	63.6*	70.0
22-Dec-08	21:23	5	63.5	66.2	60.3	64.7	63.5*	70.0
22-Dec-08	21:28	5	62.1	63.6	59.7	64.3	62.1*	70.0
22-Dec-08	21:33	5	63.3	65.3	61.0	64.6	63.3*	70.0
22-Dec-08	21:38	5	65.0	67.6	60.9	64.2	57.3	70.0

¹ Additional 3dB (A) façade correction was made to the Free-field measurements

^{*} No adjustment was made on the measured noise level, since corresponding baseline level ≥ measured noise level. The measured noise level was mainly dominated by local traffic noise and the construction noise generated from the Project was not noticeable at NSR according to the field study record.

^{**} No Construction works was carried out during the reporting period

[#] No monitoring was undertaken due to bad weather

The Summary of Night-time Leq₅ Level at Mayfair Gardens 1st Floor adjacet to Swimming Pool (NSR 3)

Date	Monitoring Time	Duration	Mea	asured Noise Le	vel ¹	Baseline Level ¹	Construction Noise Level	Limit Level
		min	Leq	L10	L90	Leq	Leq	
			dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
1-Dec-08	23:51	5	59.9	62.2	57.4	62.2	59.9*	55.0
1-Dec-08	23:56	5	58.8	61.0	56.4	61.6	58.8*	55.0
2-Dec-08	0:01	5	62.2	64.5	57.4	61.5	53.9	55.0
2-Dec-08	0:06	5	62.4	64.3	57.6	61.6	54.7	55.0
10-Dec-08	23:16	5	61.3	63.3	58.9	63.0	61.3*	55.0
10-Dec-08	23:21	5	62.2	63.7	58.6	62.8	62.2*	55.0
10-Dec-08	23:26	5	60.1	62.2	57.9	62.2	60.1*	55.0
10-Dec-08	23:31	5	60.9	63.3	58.3	62.3	60.9*	55.0
18-Dec-08	23:28	5	61.9	65.0	58.8	62.3	61.9*	55.0
18-Dec-08	23:33	5	61.6	63.8	58.8	62.1	61.6*	55.0
18-Dec-08	23:38	5	60.7	62.6	58.1	62.9	60.7*	55.0
18-Dec-08	23:43	5	60.1	62.4	57.4	62.2	60.1*	55.0
22-Dec-08	23:08	5	60.1	63.4	56.3	62.9	60.1*	55.0
22-Dec-08	23:13	5	59.6	62.0	56.4	63.0	59.6*	55.0
22-Dec-08	23:18	5	59.5	61.6	56.5	62.8	59.5*	55.0
22-Dec-08	23:23	5	59.0	60.9	56.7	62.2	59.0*	55.0

¹ Additional 3dB (A) façade correction was made to the Free-field measurements

^{*} No adjustment was made on the measured noise level, since corresponding baseline level ≥ measured noise level. The measured noise level was mainly dominated by local traffic noise and the construction noise generated from the Project was not noticeable at NSR according to the field study record.

^{**} No Construction works was carried out during the reporting period

[#] No monitoring was undertaken due to bad weather

The Summary of Public Holiday Leq₅ Level at Mayfair Gardens 1st Floor adjacet to Swimming Pool (NSR 3)

Date	Monitoring Time	Duration	Mea	asured Noise Le	vel ¹	Baseline Level ¹	Construction Noise Level	Limit Level
		min	Leq	L10	L90	Leq	Leq	
			dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
30-Nov-08	13:46	5	62.5	64.7	59.6	65.1	62.5*	70.0
30-Nov-08	13:51	5	64.0	66.8	59.9	65.0	64.0*	70.0
30-Nov-08	13:56	5	63.0	65.0	60.3	65.5	63.0*	70.0
30-Nov-08	14:01	5	62.4	65.3	58.6	64.7	62.4*	70.0
30-Nov-08	14:06	5	63.9	65.9	60.7	65.1	63.9*	70.0
30-Nov-08	14:11	5	63.5	65.3	61.7	65.0	63.5*	70.0
7-Dec-08	15:30	5	62.8	65.3	59.9	65.8	62.8*	70.0
7-Dec-08	15:35	5	61.6	63.6	59.0	65.2	61.6*	70.0
7-Dec-08	15:40	5	64.1	66.8	60.0	65.4	64.1*	70.0
7-Dec-08	15:45	5	62.1	64.0	59.7	64.9	62.1*	70.0
7-Dec-08	15:50	5	62.8	64.8	59.9	65.8	62.8*	70.0
7-Dec-08	15:55	5	63.5	66.1	60.1	65.5	63.5*	70.0
14-Dec-08	9:27	5	63.2	65.2	60.3	66.7	63.2*	70.0
14-Dec-08	9:32	5	63.0	65.2	60.2	67.5	63.0*	70.0
14-Dec-08	9:37	5	63.3	65.6	59.8	67.3	63.3*	70.0
14-Dec-08	9:42	5	62.8	64.7	60.2	67.4	62.8*	70.0
14-Dec-08	9:47	5	63.0	64.7	60.3	67.8	63.0*	70.0
14-Dec-08	9:52	5	63.0	65.4	60.3	67.4	63.0*	70.0
21-Dec-08	10:48	5	63.6	65.9	61.0	67.3	63.6*	70.0
21-Dec-08	10:53	5	63.7	66.1	60.4	67.6	63.7*	70.0
21-Dec-08	10:58	5	63.7	65.7	61.2	67.1	63.7*	70.0
21-Dec-08	11:03	5	62.2	63.9	59.7	66.7	62.2*	70.0
21-Dec-08	11:08	5	62.7	64.7	60.1	66.7	62.7*	70.0
21-Dec-08	11:13	5	61.1	62.5	59.4	66.6	61.1*	70.0
28-Dec-08	14:43	5	65.0	68.2	61.5	65.1	65.0*	70.0
28-Dec-08	14:48	5	63.6	65.8	61.6	66.6	63.6*	70.0
28-Dec-08	14:53	5	62.6	64.1	61.3	64.5	62.6*	70.0
28-Dec-08	14:58	5	63.2	64.5	61.4	65.3	63.2*	70.0
28-Dec-08	15:03	5	64.1	66.4	61.3	64.9	64.1*	70.0
28-Dec-08	15:08	5	63.0	65.0	61.1	65.7	63.0*	70.0

¹ Additional 3dB (A) façade correction was made to the Free-field measurements

^{*} No adjustment was made on the measured noise level, since corresponding baseline level > measured noise level. The measured noise level was mainly dominated by local traffic noise and the construction noise generated from the Project was not noticeable at NSR according to the field study record.

^{**} No Construction works was carried out during the reporting period

[#] No monitoring was undertaken due to bad weather

The Summary of Evening-time Leq₅ Level at Cheung Ching Estate at Roof of Ching Yung House (NSR 4)

Date	Monitoring Time	Duration	Mea	asured Noise Le	vel ¹	Baseline Level ¹	Construction Noise Level	Limit Level
		min	Leq	L10	L90	Leq	Leq	
			dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
1-Dec-08	20:07	5	63.8	66.1	60.3	66.8	63.8*	70.0
1-Dec-08	20:12	5	63.4	65.4	59.5	67.1	63.4*	70.0
1-Dec-08	20:17	5	63.3	65.9	59.7	67.3	63.3*	70.0
1-Dec-08	20:22	5	62.3	65.0	58.0	66.5	62.3*	70.0
1-Dec-08	20:27	5	63.9	67.1	59.7	66.5	63.9*	70.0
1-Dec-08	20:32	5	62.5	65.5	57.9	66.1	62.5*	70.0
10-Dec-08	19:27	5	63.8	66.5	60.3	67.7	63.8*	70.0
10-Dec-08	19:32	5	64.6	67.9	58.9	67.8	64.6*	70.0
10-Dec-08	19:37	5	64.1	66.8	58.5	67.6	64.1*	70.0
10-Dec-08	19:42	5	65.1	68.0	60.5	67.1	65.1*	70.0
10-Dec-08	19:47	5	62.5	65.6	57.6	67.2	62.5*	70.0
10-Dec-08	19:52	5	63.7	66.5	58.9	67.5	63.7*	70.0
18-Dec-08	19:43	5	64.9	67.4	61.1	67.2	64.9*	70.0
18-Dec-08	19:48	5	64.2	66.8	60.9	67.5	64.2*	70.0
18-Dec-08	19:53	5	64.9	67.6	61.2	67.8	64.9*	70.0
18-Dec-08	19:58	5	63.5	66.5	59.8	66.8	63.5*	70.0
18-Dec-08	20:03	5	65.0	66.1	60.3	66.8	65.0*	70.0
18-Dec-08	20:08	5	62.5	65.0	59.2	67.1	62.5*	70.0
22-Dec-08	20:48	5	62.4	64.6	59.1	66.9	62.4*	70.0
22-Dec-08	20:53	5	62.9	65.8	58.7	66.0	62.9*	70.0
22-Dec-08	20:58	5	63.4	66.7	59.1	66.8	63.4*	70.0
22-Dec-08	21:03	5	62.6	65.1	59.8	66.0	62.6*	70.0
22-Dec-08	21:08	5	61.0	63.7	57.1	65.8	61.0*	70.0
22-Dec-08	21:13	5	63.4	66.3	58.5	66.3	63.4*	70.0

¹ Additional 3dB (A) façade correction was made to the Free-field measurements

^{*} No adjustment was made on the measured noise level, since corresponding baseline level > measured noise level. The measured noise level was mainly dominated by local traffic noise and the construction noise generated from the Project was not noticeable at NSR according to the field study record.

^{**} No Construction works was carried out during the reporting period

[#] No monitoring was undertaken due to bad weather

The Summary of Night-time Leq₅ Level at Cheung Ching Estate at Roof of Ching Yung House (NSR 4)

Date	Monitoring Time	Duration	Mea	asured Noise Le	evel ¹	Baseline Level ¹	Construction Noise Level	Limit Level
		min	Leq	L10	L90	Leq	Leq	
			dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
1-Dec-08	23:32	5	60.1	62.8	55.1	65.4	60.1*	55.0
1-Dec-08	23:37	5	61.9	64.8	53.5	65.7	61.9*	55.0
1-Dec-08	23:42	5	61.9	64.7	56.9	65.8	61.9*	55.0
1-Dec-08	23:47	5	61.5	64.1	57.1	65.2	61.5*	55.0
10-Dec-08	23:07	5	62.4	65.5	57.9	66.0	62.4*	55.0
10-Dec-08	23:12	5	62.9	66.0	58.0	65.7	62.9*	55.0
10-Dec-08	23:17	5	62.7	65.8	57.8	66.7	62.7*	55.0
10-Dec-08	23:22	5	63.0	66.4	58.4	65.7	63.0*	55.0
18-Dec-08	23:18	5	63.0	66.6	58.2	65.7	63.0*	55.0
18-Dec-08	23:23	5	60.4	63.1	57.2	65.3	60.4*	55.0
18-Dec-08	23:28	5	64.1	66.4	59.1	65.4	64.1*	55.0
18-Dec-08	23:33	5	62.0	64.9	57.1	65.7	62.0*	55.0
22-Dec-08	23:35	5	59.9	62.3	55.8	65.7	59.9*	55.0
22-Dec-08	23:40	5	61.6	65.3	56.3	65.8	61.6*	55.0
22-Dec-08	23:45	5	63.4	65.9	58.6	65.2	63.4*	55.0
22-Dec-08	23:50	5	61.8	64.9	55.8	65.0	61.8*	55.0

¹ Additional 3dB (A) façade correction was made to the Free-field measurements

^{*} No adjustment was made on the measured noise level, since corresponding baseline level ≥ measured noise level. The measured noise level was mainly dominated by local traffic noise and the construction noise generated from the Project was not noticeable at NSR according to the field study record.

^{**} No Construction works was carried out during the reporting period

[#] No monitoring was undertaken due to bad weather

The Summary of Public Holiday Leq₅ Level at Cheung Ching Estate at Roof of Ching Yung House (NSR 4)

Date	Monitoring Time	Duration	Mea	asured Noise Le	vel ¹	Baseline Level ¹	Construction Noise Level	Limit Level
		min	Leq	L10	L90	Leq	Leq	
			dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
30-Nov-08	15:02	5	63.4	65.8	59.0	66.4	63.4*	70.0
30-Nov-08	15:07	5	61.7	64.0	57.6	66.8	61.7*	70.0
30-Nov-08	15:12	5	62.7	66.2	57.8	66.5	62.7*	70.0
30-Nov-08	15:17	5	64.0	67.4	60.1	67.7	64.0*	70.0
30-Nov-08	15:22	5	63.6	66.5	59.2	67.2	63.6*	70.0
30-Nov-08	15:27	5	64.7	67.3	60.4	66.6	64.7*	70.0
7-Dec-08	13:37	5	63.0	66.8	58.6	67.1	63.0*	70.0
7-Dec-08	13:42	5	63.0	66.0	59.5	67.5	63.0*	70.0
7-Dec-08	13:47	5	62.7	65.8	57.9	66.8	62.7*	70.0
7-Dec-08	13:52	5	63.5	66.7	58.6	65.8	63.5*	70.0
7-Dec-08	13:57	5	62.4	65.5	57.0	66.6	62.4*	70.0
7-Dec-08	14:02	5	63.2	66.3	58.2	66.9	63.2*	70.0
14-Dec-08	10:32	5	62.1	65.1	57.9	67.0	62.1*	70.0
14-Dec-08	10:37	5	63.2	65.7	59.5	66.6	63.2*	70.0
14-Dec-08	10:42	5	63.7	66.2	59.9	67.3	63.7*	70.0
14-Dec-08	10:47	5	64.6	67.7	60.5	66.4	64.6*	70.0
14-Dec-08	10:52	5	62.9	65.7	58.8	66.9	62.9*	70.0
14-Dec-08	10:57	5	63.0	65.6	58.9	66.9	63.0*	70.0
21-Dec-08	9:18	5	63.3	65.5	58.9	67.4	63.3*	70.0
21-Dec-08	9:23	5	64.2	67.0	60.0	66.9	64.2*	70.0
21-Dec-08	9:28	5	63.0	65.3	60.0	66.2	63.0*	70.0
21-Dec-08	9:33	5	63.7	66.3	59.8	67.5	63.7*	70.0
21-Dec-08	9:38	5	64.3	67.1	60.1	67.4	64.3*	70.0
21-Dec-08	9:43	5	62.7	66.1	58.2	67.3	62.7*	70.0
28-Dec-08	11:16	5	64.4	67.7	60.0	67.3	64.4*	70.0
28-Dec-08	11:21	5	62.2	65.5	58.3	66.9	62.2*	70.0
28-Dec-08	11:26	5	62.8	65.2	59.9	66.8	62.8*	70.0
28-Dec-08	11:31	5	63.2	65.6	59.5	67.0	63.2*	70.0
28-Dec-08	11:36	5	63.3	65.9	58.9	66.6	63.3*	70.0
28-Dec-08	11:41	5	62.7	65.4	58.4	67.3	62.7*	70.0

¹ Additional 3dB (A) façade correction was made to the Free-field measurements

^{*} No adjustment was made on the measured noise level, since corresponding baseline level > measured noise level. The measured noise level was mainly dominated by local traffic noise and the construction noise generated from the Project was not noticeable at NSR according to the field study record.

^{**} No Construction works was carried out during the reporting period

[#] No monitoring was undertaken due to bad weather

The Summary of Evening-time Leq₅ Level at Stonecutters Base (NSR 5)

Date	Monitoring Time	Duration	Mea	asured Noise Le	vel ¹	Baseline Level ¹	Construction Noise Level	Limit Level
		min	Leq	L10	L90	Leq	Leq	
			dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
1-Dec-08	19:35	5	71.5	74.8	66.5	72.6	71.5*	70.0
1-Dec-08	19:40	5	71.1	74.7	68.3	73.1	71.1*	70.0
1-Dec-08	19:45	5	71.4	75.1	68.8	73.3	71.4*	70.0
1-Dec-08	19:50	5	70.9	73.9	68.3	72.5	70.9*	70.0
1-Dec-08	19:55	5	70.6	73.2	68.0	72.6	70.6*	70.0
1-Dec-08	20:00	5	71.1	73.1	67.7	73.0	71.1*	70.0
10-Dec-08	20:44	5	70.9	73.8	66.1	72.1	70.9*	70.0
10-Dec-08	20:49	5	71.2	73.7	66.1	72.0	71.2*	70.0
10-Dec-08	20:54	5	71.8	74.5	67.0	71.6	58.3	70.0
10-Dec-08	20:59	5	71.2	73.8	67.7	71.7	71.2*	70.0
10-Dec-08	21:04	5	70.4	73.2	65.7	71.7	70.4*	70.0
10-Dec-08	21:09	5	71.9	74.4	67.2	71.4	62.3	70.0
18-Dec-08	21:03	5	69.8	72.5	64.4	71.7	69.8*	70.0
18-Dec-08	21:08	5	71.2	73.6	66.2	71.4	71.2*	70.0
18-Dec-08	21:13	5	71.7	76.0	66.8	71.4	59.9	70.0
18-Dec-08	21:18	5	71.0	74.2	65.8	72.0	71.0*	70.0
18-Dec-08	21:23	5	70.8	73.8	65.8	71.0	70.8*	70.0
18-Dec-08	21:28	5	72.1	75.1	66.9	71.0	65.6	70.0
22-Dec-08	19:07	5	71.3	73.8	65.6	72.8	71.3*	70.0
22-Dec-08	19:12	5	72.3	73.9	67.5	73.7	72.3*	70.0
22-Dec-08	19:17	5	72.4	75.7	68.9	73.6	72.4*	70.0
22-Dec-08	19:22	5	72.1	75.7	66.0	73.3	72.1*	70.0
22-Dec-08	19:27	5	71.4	74.3	66.0	72.5	71.4*	70.0
22-Dec-08	19:32	5	72.7	74.6	67.9	73.1	72.7*	70.0

¹ Additional 3dB (A) façade correction was made to the Free-field measurements

^{*} No adjustment was made on the measured noise level, since corresponding baseline level ≥ measured noise level. The measured noise level was mainly dominated by local traffic noise and the construction noise generated from the Project was not noticeable at NSR according to the field study record.

^{**} No Construction works was carried out during the reporting period

[#] No monitoring was undertaken due to bad weather

The Summary of Night-time Leq₅ Level at Stonecutters Base (NSR 5)

Date	Monitoring Time	Duration	Measured Noise Level ¹			Baseline Level ¹	Construction Noise Level	Limit Level
		min	Leq	L10	L90	Leq	Leq	
			dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
1-Dec-08	23:20	5	68.6	72.8	65.9	69.0	68.6*	55.0
1-Dec-08	23:25	5	67.7	71.5	64.5	68.5	67.7*	55.0
1-Dec-08	23:30	5	67.8	72.2	64.5	68.2	67.8*	55.0
1-Dec-08	23:35	5	68.1	72.7	64.7	69.0	68.1*	55.0
10-Dec-08	23:58	5	67.3	72.0	65.0	67.6	67.3*	55.0
11-Dec-08	0:03	5	67.2	71.4	63.7	67.9	67.2*	55.0
11-Dec-08	0:08	5	67.3	69.1	62.9	68.6	67.3*	55.0
11-Dec-08	0:13	5	67.7	73.5	62.3	68.0	67.7*	55.0
18-Dec-08	23:15	5	67.8	71.7	65.3	69.2	67.8*	55.0
18-Dec-08	23:20	5	67.7	72.0	64.4	69.0	67.7*	55.0
18-Dec-08	23:25	5	67.8	72.5	65.2	68.5	67.8*	55.0
18-Dec-08	23:30	5	67.8	71.6	63.0	68.2	67.8*	55.0
22-Dec-08	23:03	5	67.2	70.0	63.9	69.1	67.2*	55.0
22-Dec-08	23:08	5	66.6	70.5	63.3	69.6	66.6*	55.0
22-Dec-08	23:13	5	68.5	73.4	63.7	69.2	68.5*	55.0
22-Dec-08	23:18	5	68.3	71.1	63.6	69.0	68.3*	55.0

¹ Additional 3dB (A) façade correction was made to the Free-field measurements

^{*} No adjustment was made on the measured noise level, since corresponding baseline level ≥ measured noise level. The measured noise level was mainly dominated by local traffic noise and the construction noise generated from the Project was not noticeable at NSR according to the field study record.

^{**} No Construction works was carried out during the reporting period

[#] No monitoring was undertaken due to bad weather

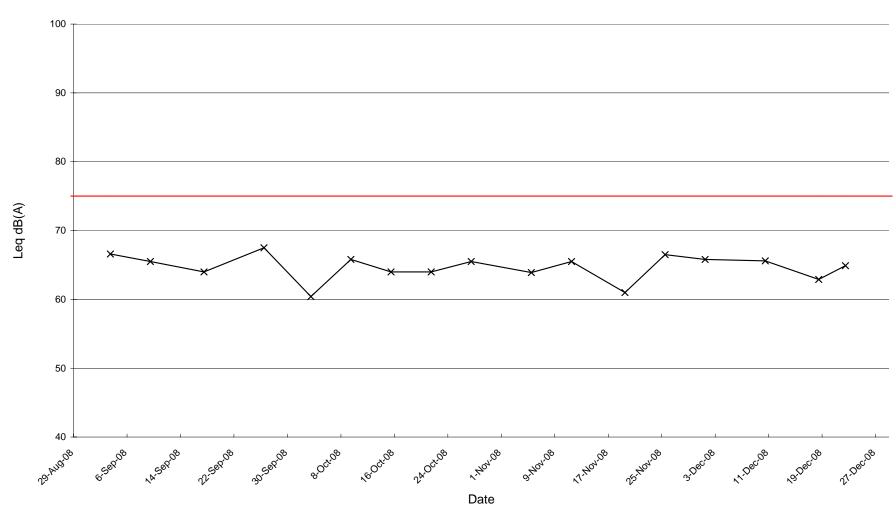
The Summary of Public Holiday Leq₅ Level at Stonecutters Base (NSR 5)

Date	Monitoring Time	Duration	Measured Noise Level ¹			Baseline Level ¹	Construction Noise Level	Limit Level
		min	Leq	L10	L90	Leq	Leq	
			dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
30-Nov-08	9:53	5	72.1	75.3	67.2	74.4	72.1*	70.0
30-Nov-08	9:58	5	72.2	74.6	67.0	74.6	72.2*	70.0
30-Nov-08	10:03	5	72.5	75.3	68.2	74.6	72.5*	70.0
30-Nov-08	10:08	5	71.6	75.0	65.2	75.9	71.6*	70.0
30-Nov-08	10:13	5	72.7	76.0	65.6	74.6	72.7*	70.0
30-Nov-08	10:18	5	69.6	72.5	64.4	73.2	69.6*	70.0
7-Dec-08	11:06	5	72.6	74.0	66.2	74.3	72.6*	70.0
7-Dec-08	11:11	5	71.8	73.4	70.2	73.8	71.8*	70.0
7-Dec-08	11:16	5	73.7	76.1	70.7	74.2	73.7*	70.0
7-Dec-08	11:21	5	72.4	73.9	70.0	74.2	72.4*	70.0
7-Dec-08	11:26	5	71.6	73.2	69.8	72.9	71.6*	70.0
7-Dec-08	11:31	5	70.9	72.5	69.1	73.5	70.9*	70.0
14-Dec-08	10:44	5	70.4	71.4	69.3	73.3	70.4*	70.0
14-Dec-08	10:49	5	71.2	72.5	69.7	74.7	71.2*	70.0
14-Dec-08	10:54	5	71.4	73.0	68.6	74.8	71.4*	70.0
14-Dec-08	10:59	5	70.3	72.6	67.7	74.5	70.3*	70.0
14-Dec-08	11:04	5	70.9	73.0	68.5	74.3	70.9*	70.0
14-Dec-08	11:09	5	71.5	73.1	69.7	73.8	71.5*	70.0
21-Dec-08	14:30	5	70.9	75.7	61.5	74.6	70.9*	70.0
21-Dec-08	14:35	5	71.5	74.8	65.3	72.8	71.5*	70.0
21-Dec-08	14:40	5	72.3	76.2	66.1	74.6	72.3*	70.0
21-Dec-08	14:45	5	70.6	73.8	65.2	73.2	70.6*	70.0
21-Dec-08	14:50	5	70.1	72.4	64.2	74.2	70.1*	70.0
21-Dec-08	14:55	5	70.8	74.0	65.7	74.7	70.8*	70.0
28-Dec-08	16:52	5	70.7	73.6	65.4	74.3	70.7*	70.0
28-Dec-08	16:57	5	71.4	73.7	67.5	72.5	71.4*	70.0
28-Dec-08	17:02	5	71.9	74.6	67.4	72.1	71.9*	70.0
28-Dec-08	17:07	5	70.5	73.2	66.5	72.5	70.5*	70.0
28-Dec-08	17:12	5	70.5	72.7	66.4	73.3	70.5*	70.0
28-Dec-08	17:17	5	71.2	73.6	67.7	73.0	71.2*	70.0

¹ Additional 3dB (A) façade correction was made to the Free-field measurements

^{*} No adjustment was made on the measured noise level, since corresponding baseline level \geq measured noise level. The measured noise level was mainly dominated by local traffic noise and the construction noise generated from the Project was not noticeable at NSR according to the field study record.

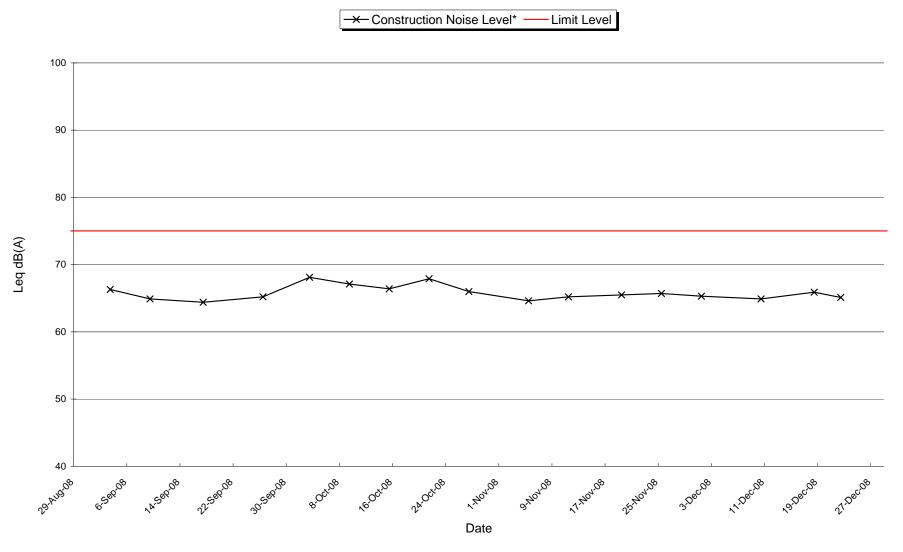
^{**} No Construction works was carried out during the reporting period


[#] No monitoring was undertaken due to bad weather

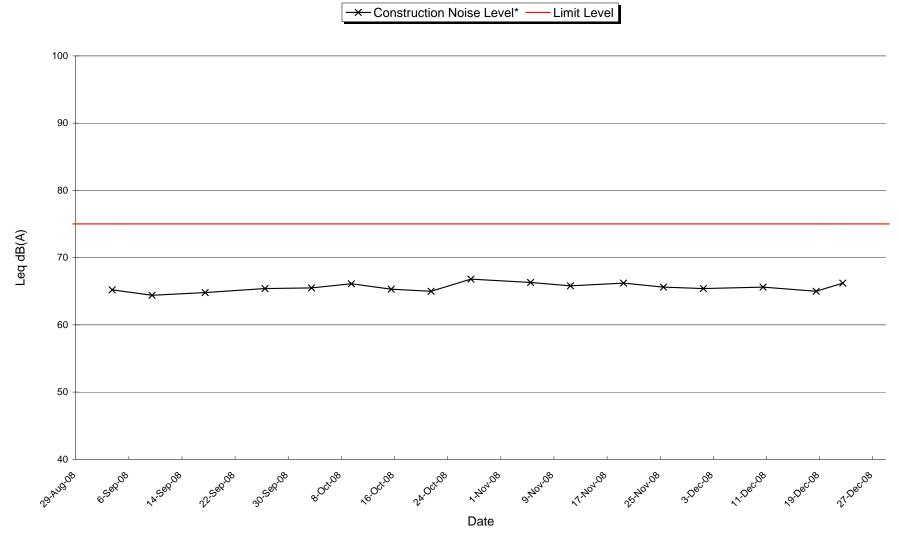
Appendix N1

Graphical Presentation of Noise Monitoring Results for Normal Hour

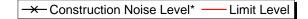
Day-time Leq₃₀ (Construction Noise Level) at HKIVE Fok Ying Tung Hall of Residence (NSR1)

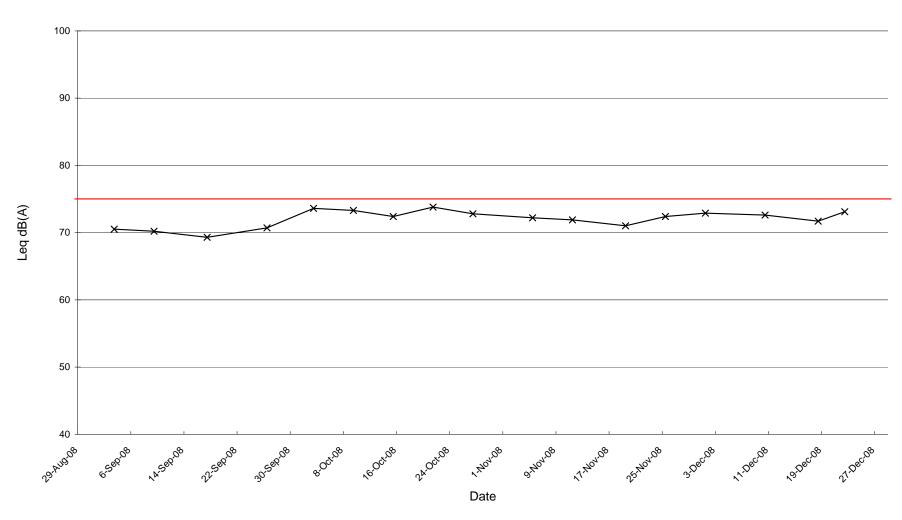

^{*} Construction Noise Level (CNL) = Measured Noise Level - Corresponding Baseline Level Please refer to Section 6.2 and Appendix M1 for more details.

Day-time Leq₃₀ (Construction Noise Level) at HKIVE 5th Floor Block D of the Main Education Building (NSR2)


^{*} Construction Noise Level (CNL) = Measured Noise Level - Corresponding Baseline Level Please refer to Section 6.2 and Appendix M1 for more details.

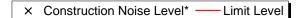
Day-time Leq₃₀ (Construction Noise Level) at Mayfair Gardens 1st floor adjacent to swimming pool (NSR3)

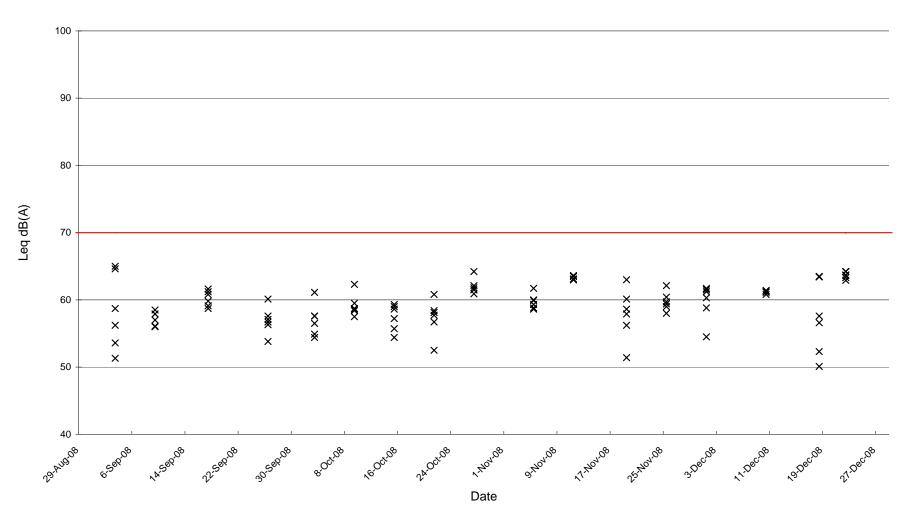

^{*} Construction Noise Level (CNL) = Measured Noise Level - Corresponding Baseline Level Please refer to Section 6.2 and Appendix M1 for more details.


Day-time Leq₃₀ (Construction Noise Level) at Cheung Ching Estate at the Roof of Ching Yung House (NSR4)

^{*} Construction Noise Level (CNL) = Measured Noise Level - Corresponding Baseline Level Please refer to Section 6.2 and Appendix M1 for more details.

Day-time Leq₃₀ (Construction Noise Level) at Stonecutters Base (NSR5)

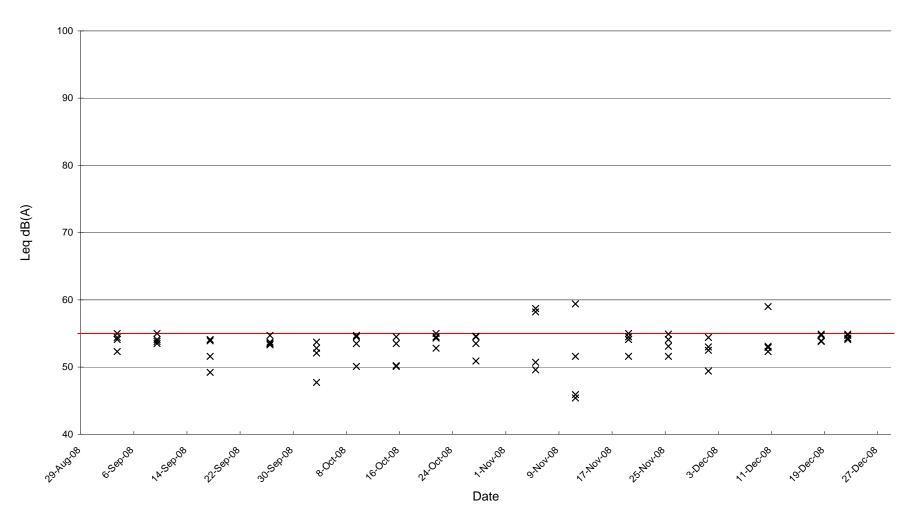



^{*} Construction Noise Level (CNL) = Measured Noise Level - Corresponding Baseline Level Please refer to Section 6.2 and Appendix M1 for more details.

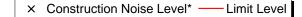
Appendix N2

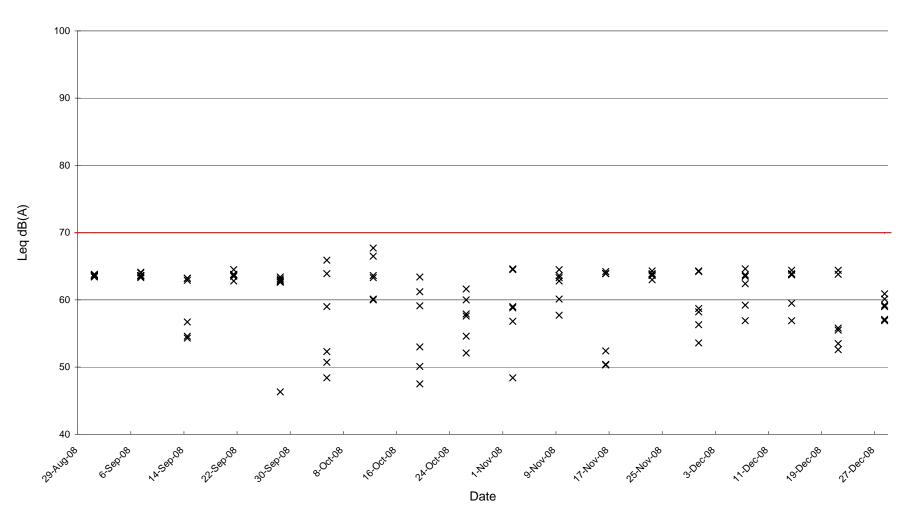
Graphical Presentation of Noise Monitoring Results for Restricted Hour

Evening-time Leq₅ (Construction Noise Level) at HKIVE Fok Ying Tung Hall of Residence (NSR1)



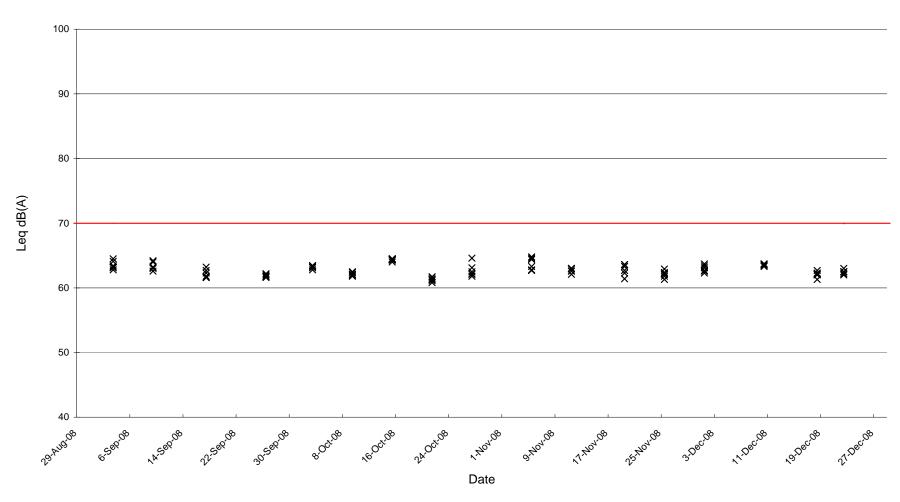
^{*} Construction Noise Level (CNL) = Measured Noise Level - Corresponding Baseline Level Please refer to Section 6.2 and Appendix M2 for more details.


Night-time Leq₅ (Construction Noise Level) at HKIVE Fok Ying Tung Hall of Residence (NSR1)

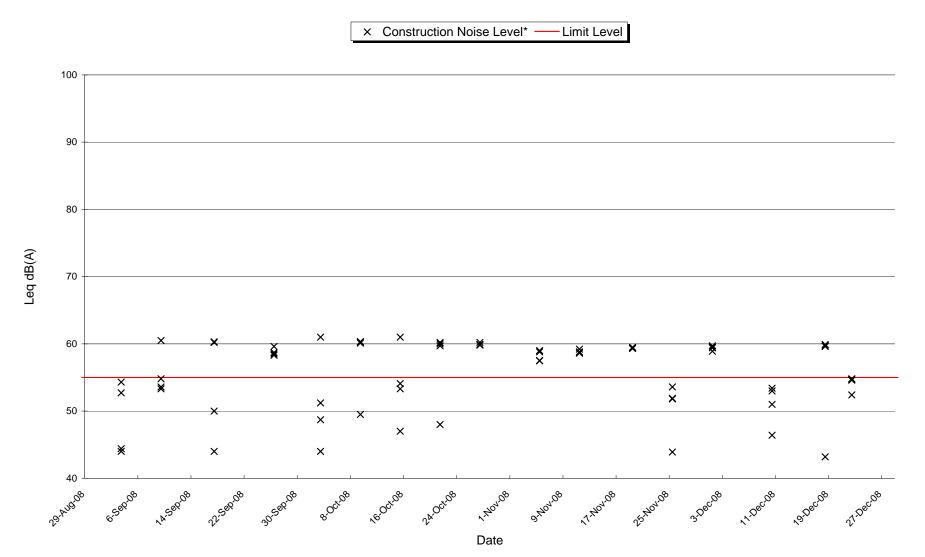


^{*} Construction Noise Level (CNL) = Measured Noise Level - Corresponding Baseline Level Please refer to Section 6.2 and Appendix M2 for more details.

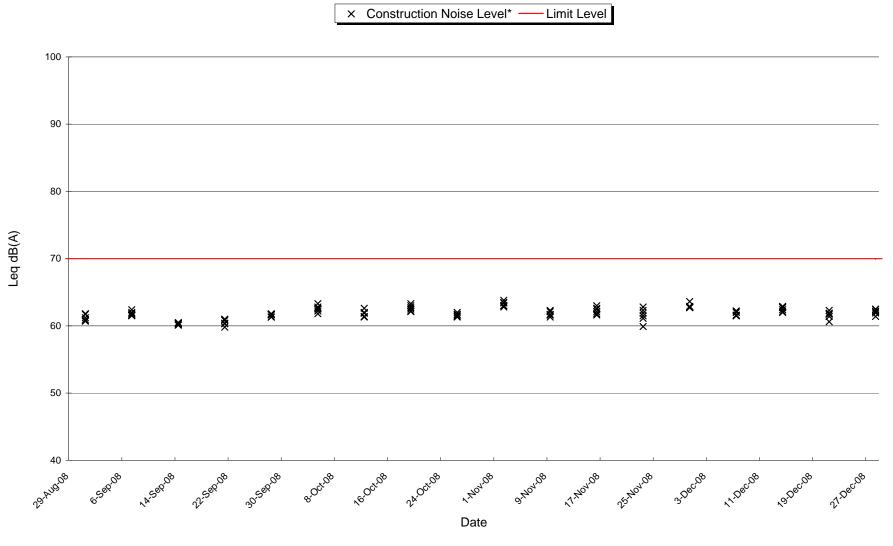
Public Holiday Leq₅ (Construction Noise Level) at HKIVE Fok Ying Tung Hall of Residence (NSR1)



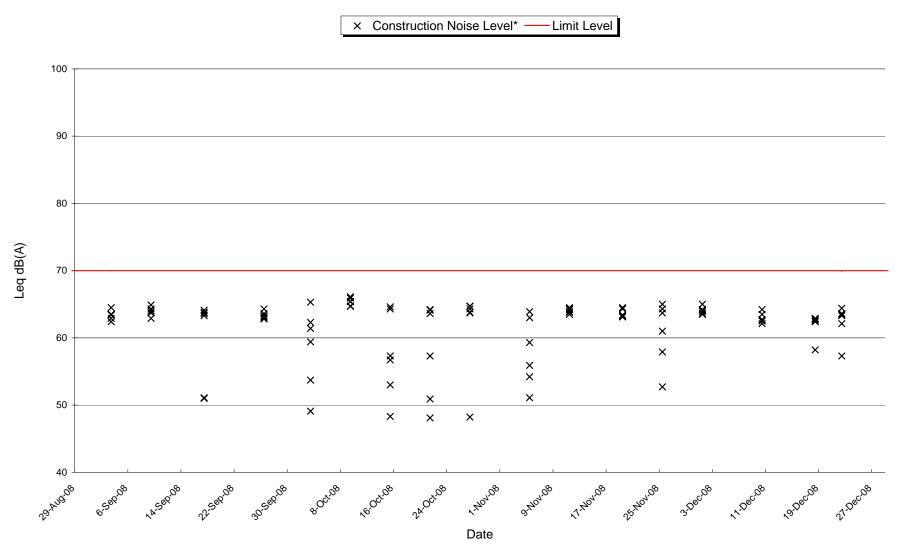
^{*} Construction Noise Level (CNL) = Measured Noise Level - Corresponding Baseline Level Please refer to Section 6.2 and Appendix M2 for more details.


Evening-time Leq₅ (Construction Noise Level) at HKIVE 5th Floor Block D of the Main Education Building (NSR2)

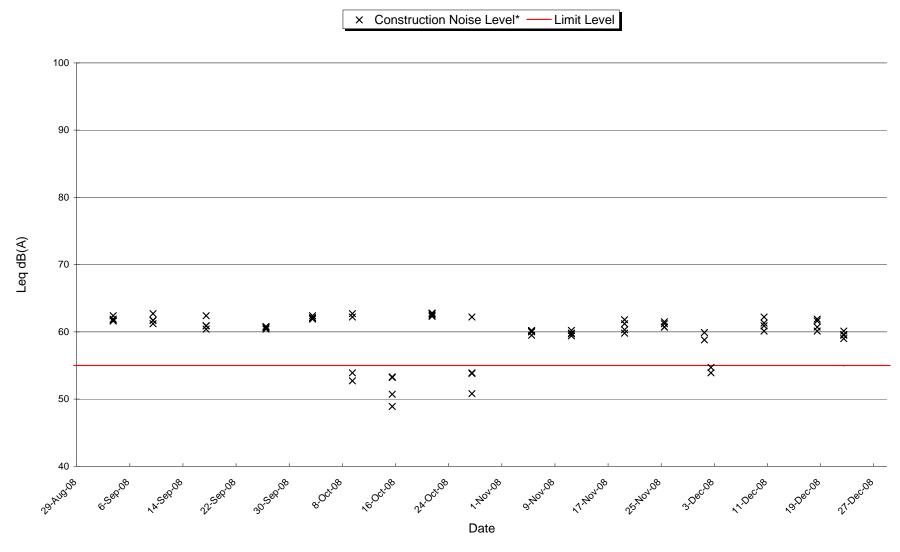
× Construction Noise Level* —— Limit Level


^{*} Construction Noise Level (CNL) = Measured Noise Level - Corresponding Baseline Level Please refer to Section 6.2 and Appendix M2 for more details.

Night-time Leq_5 (Construction Noise Level) at HKIVE 5th Floor Block D of the Main Education Building (NSR2)

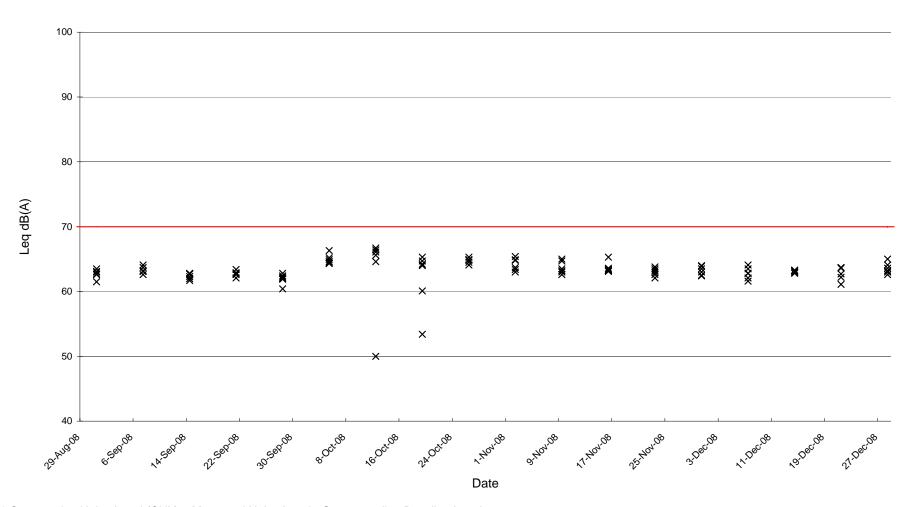

^{*} Construction Noise Level (CNL) = Measured Noise Level - Corresponding Baseline Level Please refer to Section 6.2 and Appendix M2 for more details.

Public Holiday Leq₅ (Construction Noise Level) at HKIVE 5th Floor Block D of Main Education Building (NSR2)


^{*} Construction Noise Level (CNL) = Measured Noise Level - Corresponding Baseline Level Please refer to Section 6.2 and Appendix M2 for more details.

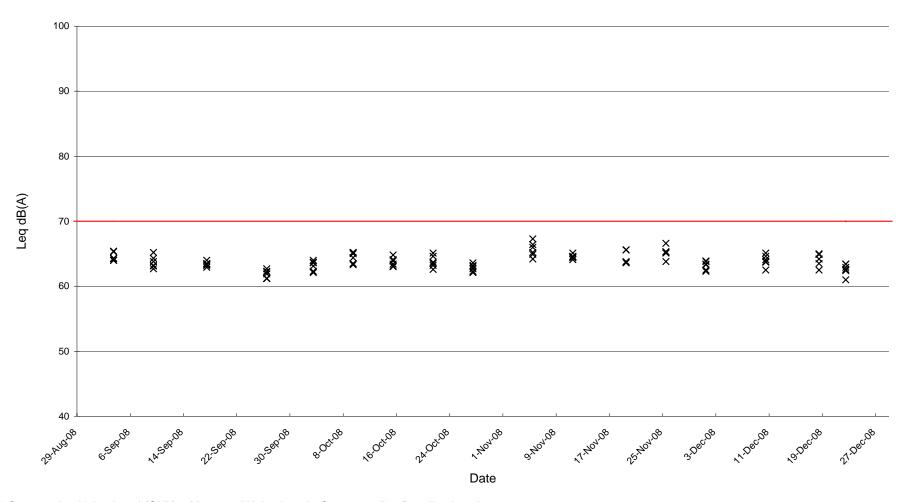
Evening-time Leq₅ (Construction Noise Level) at Mayfair Gardens 1st floor adjacent to swimming pool (NSR3)

^{*} Construction Noise Level (CNL) = Measured Noise Level - Corresponding Baseline Level Please refer to Section 6.2 and Appendix M2 for more details.

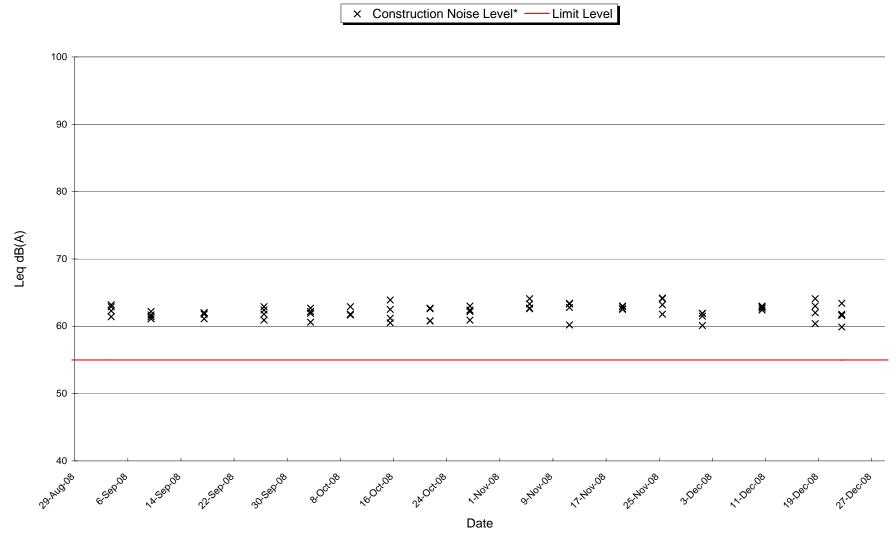

Night-time Leq₅ (Construction Noise Level) at Mayfair Gardens 1st floor adjacent to swimming pool (NSR3)

^{*} Construction Noise Level (CNL) = Measured Noise Level - Corresponding Baseline Level Please refer to Section 6.2 and Appendix M2 for more details.

Public Holiday Leq₅ (Construction Noise Level) at Mayfair Gardens 1st floor adjacent to swimming pool (NSR3)

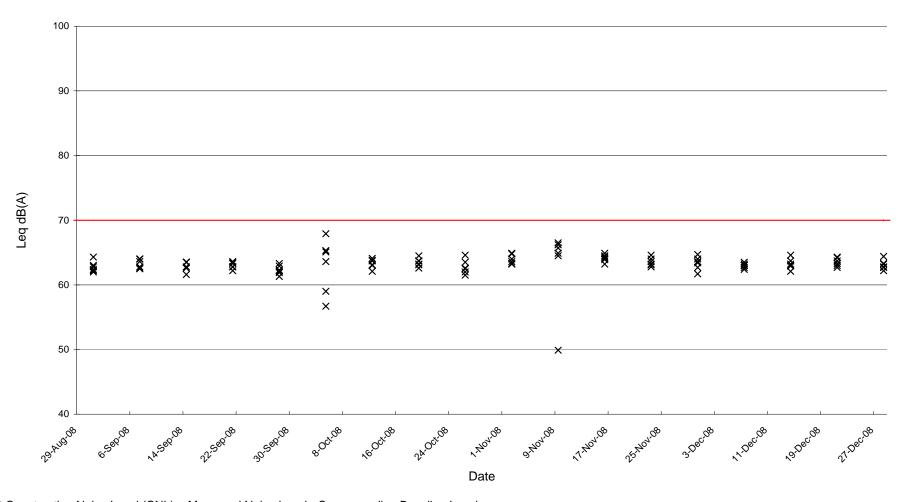

× Construction Noise Level* —— Limit Level

 $^{^{*}}$ Construction Noise Level (CNL) = Measured Noise Level - Corresponding Baseline Level Please refer to Section 6.2 and Appendix M2 for more details.

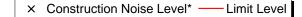

Evening-time Leq₅ (Construction Noise Level) at Cheung Ching Estate at the Roof of Ching Yung House (NSR4)

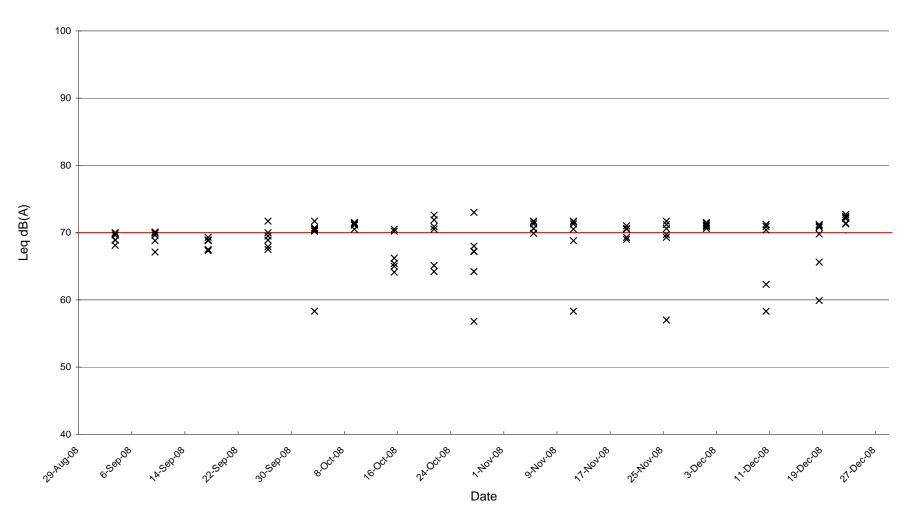
× Construction Noise Level* —— Limit Level

^{*} Construction Noise Level (CNL) = Measured Noise Level - Corresponding Baseline Level Please refer to Section 6.2 and Appendix M2 for more details.

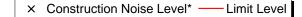

Night-time Leq₅ (Construction Noise Level) at Cheung Ching Estate at the Roof of Ching Yung House (NSR4)

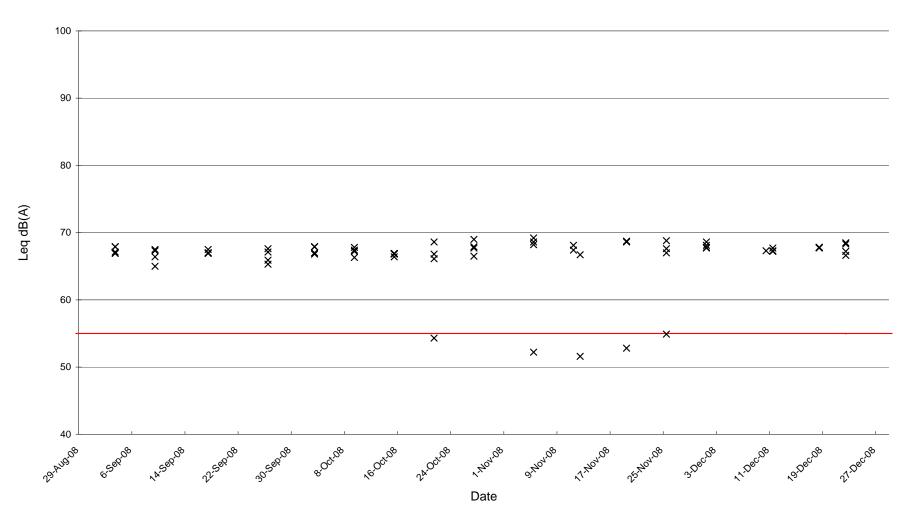
^{*} Construction Noise Level (CNL) = Measured Noise Level - Corresponding Baseline Level Please refer to Section 6.2 and Appendix M2 for more details.


Public Holiday Leq₅ (Construction Noise Level) at Cheung Ching Estate at the Roof of Ching Yung House (NSR4)

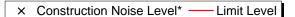

× Construction Noise Level* —— Limit Level

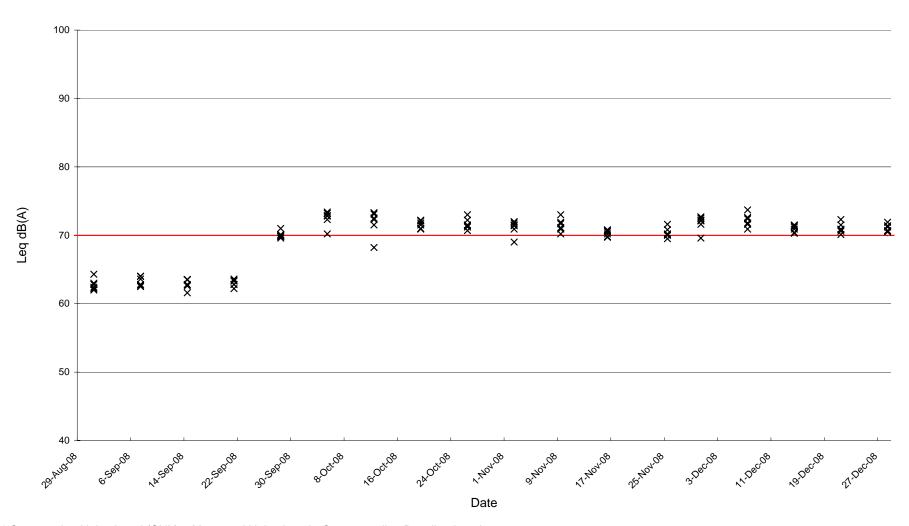
 $^{^{*}}$ Construction Noise Level (CNL) = Measured Noise Level - Corresponding Baseline Level Please refer to Section 6.2 and Appendix M2 for more details.


Evening-time Leq₅ (Construction Noise Level) at Stonecutters Base (NSR5)



^{*} Construction Noise Level (CNL) = Measured Noise Level - Corresponding Baseline Level Please refer to Section 6.2 and Appendix M2 for more details.


Night-time Leq₅ (Construction Noise Level) at Stonecutters Base (NSR5)

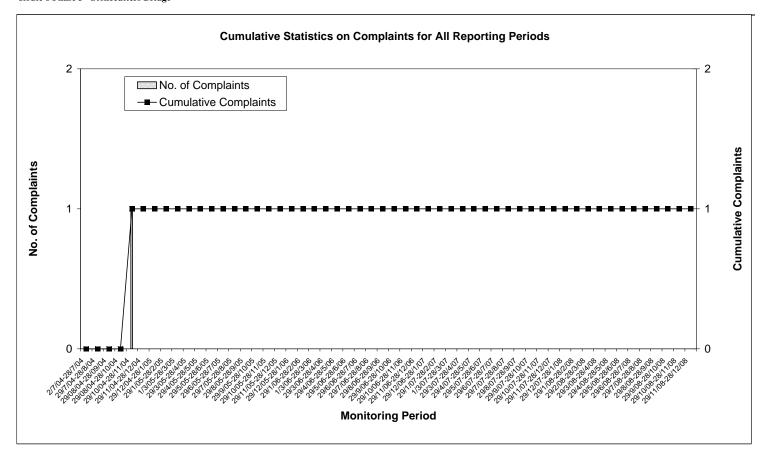


^{*} Construction Noise Level (CNL) = Measured Noise Level - Corresponding Baseline Level Please refer to Section 6.2 and Appendix M2 for more details.

Public Holiday Leq₅ (Construction Noise Level) at Stonecutters Base (NSR5)

 $^{^{*}}$ Construction Noise Level (CNL) = Measured Noise Level - Corresponding Baseline Level Please refer to Section 6.2 and Appendix M2 for more details.

Appendix O1 Environmental Complaint Log Book


Case No	Date of Received		Complainant's information	Detail's of complaint	Recommended Mitigation Measures	Follow-up Action	Status/Remarks
EC01	25-Nov-04 by e-mail from HyD	mail and	The complainant claimed to be a resident of Rambler Crest, east Tsing Yi.	The complainant mainly enquired about why impact monitoring at Rambler Crest is not being carried out as part of the routine EM&A Programme currently being implemented for the Route 8 Stonecutter's Bridge Project during the construction stage. In addition, the complainant also enquired why monitoring at the 4 sensitive receivers are not being done for the same Project.		Both HyD and EPD have formally replied to the complainant by e-mail on 10 December 2004. Further enquiries were made by the complainant and a joint meeting was held between HyD, EPD and the ET and a second formal reply was issued by HyD on 23 December 2004 via e-mail. No further enquiries were received since and therefore the complaint is considered closed.	Closed.

Appendix O2

Cumulative Statistics for Environmental Complaint

Appendix O2 - Cumulative Statistics of Complaints

Route 8 Phase 3 - Stonecutters Bridge

Appendix P

Tentative Environmental Monitoring Schedule for the Next Three Months

Tentative Environmental Monitoring Schedule between 29 December 2008 and 28 January 2009

Sunday		Monday		Tuesday		Wednesday		Thursday		Friday		Saturday	
		24hrs-TSP	29-Dec	1hr-TSP		Noise Noise _{evening} Noise _{night}	31-Dec		1-Jan		2-Jan	24hrs-TSP	3-Jan
Noise _{P.H.}	4-Jan	1hr-TSP	5-Jan		6-Jan		7-Jan	Noise Noise _{evening} Noise _{night}	8-Jan	24hrs-TSP	9-Jan	1hr-TSP	10-Jan
Noise _{P.H.}		Noise Noise _{evening} Noise _{night}	12-Jan	24hrs-TSP	13-Jan	1hr-TSP	14-Jan		15-Jan		16-Jan	24hrs-TSP	17-Jan
Noise _{P.H.}	18-Jan	1hr-TSP		Noise Noise _{evening} Noise _{night}	20-Jan		21-Jan		22-Jan	24hrs-TSP	23-Jan	1hr-TSP	24-Jan
Noise _{P.H.}	25-Jan		26-Jan		27-Jan		28-Jan						

1hr-TSP 3 x 1 hour TSP monitoring at ASR1 to ASR4 during 0900~1800.

24hrs-TSP 24 hours TSP monitoring at ASR1 to ASR4

Noise Leq30 measurement at NSR1 to NSR4 during 0700~1900.

Noise_{Evening} 6 x Leq5 will be measured at NSR1 to NSR4 during 1900~2300 (if construction activities are undertaken).

 $Noise_{Night} \hspace{1.5cm} 4 \ x \ Leq5 \ will \ be \ measured \ at \ NSR1 \ to \ NSR4 \ during \ 2300~0700 \ next \ day \ (if \ construction \ activities \ are \ undertaken).$

Noise_{P.H.} 6 x Leq5 will be measured at NSR1 to NSR4 during 0700~1900 (if construction activities are undertaken).

Tentative Environmental Monitoring Schedule between 29 January 2009 and 28 February 2009

Sunday		Monday		Tuesday	,	Wednesday		Thursday		Friday		Saturday	
								24hrs-TSP	29-Jan	1hr-TSP	30-Jan	Noise Noise _{evening} Noise _{night}	31-Jan
Noise _{P.H.}	1-Feb			Noise Noise _{evening} Noise _{night}	3-Feb	24hrs-TSP	4-Feb	1hr-TSP	5-Feb		6-Feb		7-Feb
Noise _{P.H.}	8-Feb	Noise Noise _{evening} Noise _{night}	9-Feb	24hrs-TSP	10-Feb	1hr-TSP	11-Feb		12-Feb		13-Feb		14-Feb
Noise _{P.H.}	15-Feb	24hrs-TSP	16-Feb	1hr-TSP		Noise Noise _{evening} Noise _{night}	18-Feb		19-Feb		20-Feb	24hrs-TSP	21-Feb
Noise _{P.H.}	22-Feb	1hr-TSP		Noise Noise _{evening} Noise _{night}	24-Feb		25-Feb		26-Feb	24hrs-TSP	27-Feb	1hr-TSP	28-Feb

1hr-TSP 3 x 1 hour TSP monitoring at ASR1 to ASR4 during 0900~1800.

24hrs-TSP 24 hours TSP monitoring at ASR1 to ASR4

Noise Leq30 measurement at NSR1 to NSR4 during 0700~1900.

Noise_{Evening} 6 x Leq5 will be measured at NSR1 to NSR4 during 1900~2300 (if construction activities are undertaken).

 $Noise_{Night} \hspace{1.5cm} 4 \ x \ Leq5 \ will \ be \ measured \ at \ NSR1 \ to \ NSR4 \ during \ 2300~0700 \ next \ day \ (if \ construction \ activities \ are \ undertaken).$

Noise_{P.H.} 6 x Leq5 will be measured at NSR1 to NSR4 during 0700~1900 (if construction activities are undertaken).

Tentative Environmental Monitoring Schedule between 29 February 2009 and 28 March 2009

Sunday		Monday	Tuesday	Wednesday		Thursday		Friday	Saturday
Noise _{P.H.}	1-Mar	2-Mar	3-M	Noise Noise _{evening} Noise _{night}	4-Mar	24hrs-TSP	5-Mar	6-Mar 1hr-TSP	7-Mar
Noise _{P.H.}	8-Mar	9-Mar	10-M Noise Noise _{evening} Noise _{night}	ar 24hrs-TSP	11-Mar	1hr-TSP	12-Mar	13-Mar	14-Mar
Noise _{P.H.}		16-Mar Noise Noise _{evening} Noise _{night}	17-M 24hrs-TSP	ar 1hr-TSP	18-Mar		19-Mar	20-Mar	21-Mar
Noise _{P.H.}		23-Mar 24hrs-TSP	24-M 1hr-TSP	noise Noise Noise Noise Noise Noise Noise Noise Noise	25-Mar		26-Mar	27-Mar	28-Mar 24hrs-TSP

1hr-TSP 3 x 1 hour TSP monitoring at ASR1 to ASR4 during 0900~1800.

24hrs-TSP 24 hours TSP monitoring at ASR1 to ASR4

Noise Leq30 measurement at NSR1 to NSR4 during 0700~1900.

Noise_{Evening} 6 x Leq5 will be measured at NSR1 to NSR4 during 1900~2300 (if construction activities are undertaken).

 $Noise_{Night} \hspace{1.5cm} 4 \ x \ Leq5 \ will \ be \ measured \ at \ NSR1 \ to \ NSR4 \ during \ 2300 \sim 0700 \ next \ day \ (if \ construction \ activities \ are \ undertaken).$

Noise_{P.H.} 6 x Leq5 will be measured at NSR1 to NSR4 during 0700~1900 (if construction activities are undertaken).

Appendix Q

Photographic Records of Implemented Measures

Appendix Q Photographical Records of Implemented Measures

Photo 01 (P3-SA5)

Photo 03 (P3-SA5)

Photo 04 (P3-SA6)

Appendix R

Summary of Environmental Licensing, Notification and Permit Status

Route 8 Contract No. H/2002/26 – Stonecutters Bridge Summary of Licensing, Notification and Permit Status

Item	Nature of Date of Permits/License Application		Date of issue of Permits/License	Permit/License No.	Remark
1	Environmental Permit	6/9/2002 (HyD,	26/09/2002	EP-085/2000/E	Valid
		VEP-073/2002)			
2	Registration as a	5/5/2004	06/08/2004	WPN 5213-350-	Valid
	Waste Producer	(M45/100/000773)	(EP760/350/0089331)	M2640-01	
3	Effluent Discharge	6/9/2004	20/09/2004	EP760/269/009124I	For Eastern Tower Site Works Area
	License	(M45/100/001766)	(EP760/269/009124I)	(until 30/09/2009)	
		9/9/2004	21/12/2004	EP760/350/008933I	For Western Tower Site Works Area
		(M45/400/002475)	(EP760/350/008933I)	(until 31/12/2009)	
4	Construction Noise	05/06/2008	19/06/2008	GW-RW0288-08	For Eastern Tower Site: 07:00 to 23:00 (General
	Permit	(received by EPD)	(EP731/K20/RW0288-08)	(until 19/12/2008)	Holiday, including Sunday), 19:00 to 23:00 (Any day
				(Expired)	not being a general holiday)
		05/06/2008	19/06/2008	GW-RW0289-08	For Western Tower Site: 07:00 to 23:00 (General
		(received by EPD)	(EP731/K20/RW0289-08)	(until 19/12/2008)	Holiday, including Sunday), 19:00 to 23:00 (Any day
				(Superseded)	not being a general holiday)
		18/06/2008	02/07/2008	GW-RW0302-08	For Eastern Tower Site: 00:00 to 07:00 and 23:00 to
		(received by EPD)	(EP731/N31/RW0302-08)	(until 14/01/2009)	24:00 (Any day)
		16/09/2008	03/10/2008	GW-RW0468-08	For Western Tower Site: 00:00 to 24:00 (General
		(received by EPD)	(EP731/N31/RW0468-08)	(until 20/04/2009)	Holiday, including Sunday), 00:00 to 07:00 and 19:00
					to 24:00 (Any day not being a general holiday)
		16/09/2008	03/10/2008	GW-RW0470-08	For Western Tower Site: 00:00 to 24:00 (General
		(received by EPD)	(EP731/N31/RW0470-08)	(until 20/04/2009)	Holiday, including Sunday), 00:00 to 07:00 and 19:00
					to 24:00 (Any day not being a general holiday)
		19/11/2008	03/12/2008	GW-RW0594-08	For Eastern Tower Site: 00:00 to 24:00 (General
		(received by EPD)	(EP731/N31/RW0594-08)	(until 19/06/2009)	Holiday, including Sunday), 00:00 to 07:00 and 19:00
					to 24:00 (Any day not being a general holiday)