Drainage Service Department

Monthly Environmental Monitoring & Auditing report for

Contract No.DC/2006/11 Drainage Improvement in Southern Lantau

April 2009

Environmental Pioneers & Solutions Limited

8/F, Chaiwan Industrial Centre Building

20 Lee Chung Street, Chaiwan, Hong Kong

Tel: 2889 0568 Fax: 2856 2010

APPROVAL SHEET

Prepared ar	nd Certified by: ET Leader (F	Environmental Pioneers &	& Solutions Limited)
Signature: ₋	Miss Patricia Chung (ET* Leader)	Date:	
Signature: ₋	Mr. Vincent Lai (Ecologist)	Date:	

TABLE of CONTENT

TAB	LE of	f CONTENT	ii
EXE	CUT	IVE SUMMARY	iv
1.	Intro	oduction	1
2.	Proje	ect Information	1
	2.1	Construction program	1
	2.2	Project Organization	1
	2.3	Key Personal Contact information chart	2
3.	Cons	struction Stage	3
	3.1	Construction Activities in the reporting month	3
	3.2	Construction Activities for the coming month	3
	3.3	Environmental Status	3
4.	Nois	e Monitoring	4
	4.1	Monitoring Parameters and Methodology	4
	4.2	Monitoring Equipment	4
	4.3	Monitoring Locations	5
	4.4	Monitoring Results and Interpretation	7
	4.5	Action and Limit level for Construction noise	7
	4.6	Noise Mitigation Measures	9
5.	Wate	er Monitoring	10
	5.1	Water Quality Monitoring Parameters and methodology	10
	5.2	Monitoring Equipment	10
	5.3	Monitoring Locations	11
	5.4	Monitoring Frequency	13
	5.5	Monitoring Results and Interpretation	13
	5.6	Action and limit level for Water Quality	15
	5.7	Water Quality Mitigation Measures	17
	5.8	Water Monitoring Schedule for the Next reporting period	17
6.	Ecol	ogy Monitoring	18
	6.1	Ecological Monitoring Parameters	18
	6.2	Monitoring Equipment and Methodology	19
	6.3	Monitoring Locations	20
	6.4	Monitoring Frequency	23
	6.5	Monitoring results	23
	6.6	Action and Limit level for Monitoring of White-shouldered Starlings	34

	6.7	Ecological monitoring Schedule	34
7.	Actio	n taken in Event of Exceedence	35
8.	Const	truction waste disposal	37
9.	Status	s of Permits and Licenses obtained	38
10.	Comp	plaint Log	38
11.	Site E	Environmental Audits	39
	11.1	Site Inspection	39
	11.2	Compliance with legal and Contractual requirement	41
	11.3	Environmental Complaint and follow up actions	41
12.	Future	e key issues	42
13.	Concl	lusions	43
		<u>APPENDIXES</u>	
Appo	endix A	A Construction Programme and location plan	
App	endix I	B Key Personal Contact information chart	
App	endix (C Calibration Certificates for measuring instruments	
App	endix I	O1 Plant species recorded at Pak Ngan Heung River (N)	
App	endix I	O2 Plant species recorded at Pak Ngan Heung River (S)	
App	endix I	O3 Plant species recorded at Luk Tei Tong River	
App	endix I	D4 Ecological Water Monitoring results (on-site measurement)	
App	endix I	O5 Ecological Water Monitoring results (lab-report)	
App	endix I	E Construction Noise Monitoring Data Sheet	
App	endix F	F1 Water Quality Monitoring Data Sheet	
App	endix F	F2 Water Quality Monitoring Lab report	

Appendix H Implementation status of environmental protection / mitigation measures

Appendix I Graphical plot of water quality monitoring results (SS, DO, turbidity)

Appendix G Monitoring Schedule for April 2009

Appendix J Graphical plot of noise monitoring results

EXECUTIVE SUMMARY

This is the ninth monthly environmental Monitoring and audit (EM&A) report for "Drainage Improvement in Southern Lantau Investigation". The environmental permit number is "EP-237/2005/A". The report concludes the impact monitoring for the activities undertaken during the period of 1st April 2009 to 30th April 2009. The major activities in this reporting month include construction works of box culvert at Pak Ngan Heung (PNH) River, box culvert at Luk Tei Tong (LTT), gabion walls Tai Tei Tong (TTT) River as well as U-channel at Ling Tsui Tau.

Noise, water quality and ecological monitoring were performed. Results obtained were checked against the previously established Action / Limit (A/L) levels. Additionally, the implementation status of environmental mitigation measures, event/ action plan and environmental complaint handling procedures were inspected during weekly site environmental audit.

In general, waste management was satisfactory during the reporting month.

Impact monitoring for construction noise was conducted in the reporting period. No exceedance of A/L level was reported.

Furthermore, impact monitoring for water quality was conducted. Non-compliance events of water quality criteria were recorded on 1, 2, 6, 17, 22, 24, 27, 28 and 29 April. Exceedances were caused by several reasons including inadequate runoffs control, site water discharge by the other project, influx of marine water from silver bay and influence of rainstorm. Among the 22 events of exceedance recorded in this reporting month, 7 of them were believed to be caused by improper site practice carried out by the contractor.

During ecological monitoring survey, no White-shouldered Starling was recorded breeding in the watch tower. And there was no sign of disturbance from the Project to the watch tower, though the breeding season of White-shouldered Starling in this year has begun. The watch tower may not be suitable for birds as nesting habitat. In addition, no disturbance on the flora and fauna in the river channels were observed during the ecological monitoring.

Furthermore, there was no complaint, notification of any summons and successful prosecutions against the project received during the reporting period.

Key construction activity in the coming month will be construction of box culvert at PNH and retaining walls at TTT River. It is expected that noise, air and water quality impacts will be resulted from the works. With reference to the EM&A manual and mitigation measure report, mitigation measures are proposed to be taken, if necessary.

The ET will continue to implement the environmental monitoring & audit programme in accordance with the EM&A Manual and Environmental Permit requirement.

1. Introduction

This is the ninth monthly Environmental Monitoring and Audit (EM&A) Report for "Drainage Improvement in Southern Lantau Investigation" project (Environmental Permit No. EP-237/2005/A)

2. Project Information

2.1 Construction program

The "Drainage Improvement in Southern Lantau Investigation" project will be completed by June 2009. The project comprises the following:

- Construction of approximately 80m long gabion with natural bed in Pak Ngan Heung River, approximately 180m of three cells 3m x 2m box culvert and approximately 100m of rectangular channel at Pak Ngan Heung River;
- Construction of approximately 250m of 0.75m wide U-Channel at Ling Tsui Tau Village in Mui Wo;
- Construction of bypass channel of about 350m and 240m long of gabion channels at Luk Tei Tong River respectively; and Widening three existing bottlenecks with gabion lined at Tai Tei Tong River

Appendix A shows the construction program and location plan of the project.

2.2 Project Organization

The Main Contractor, Yick Hing Construction Company Limited, has commissioned Environmental Pioneers & Solutions Limited and Ecosystems Limited as the Environmental Team, which comprises the environmental team leader, the ecologists and the environmental technicians to undertake the environmental monitoring and audit work for this project.

The environmental management structure and is shown in Fig 2.2.1.

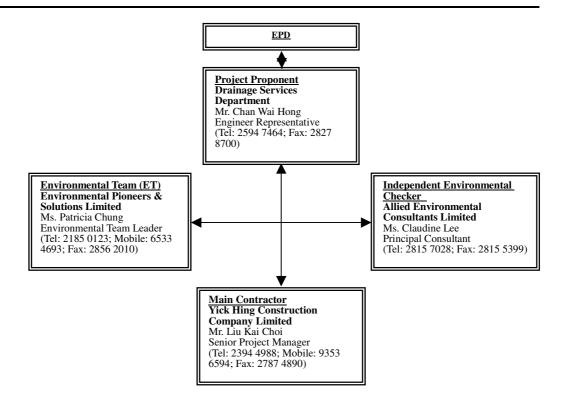


Figure. 2.2.1 Environmental Management structure for the project

2.3 Key Personal Contact information chart

Detailed contact of key persons involved in environmental aspect of the project is shown in appendix B.

3. Construction Stage

3.1 Construction Activities in the reporting month

Major activities in the reporting month included the followings:

- 1. Shuttering formwork, Steel fixing and concreting works for box culvert (coded BC12) at PNH;
- 2. Excavation works for box culvert (coded BC5 & 7) at PNH River.
- 3. Rock filling and shuttering to gabion blocks at LTT;
- 4. Excavation works of gabion trench, trimming of formation and rock filling at LTT River;
- 5. Trimming of formation as well as rock filling to gabion box at bottleneck A;
- 6. Demolition and excavation works of retaining wall H at TTT River; and
- 7. Shuttering formwork of catch pit, excavation works of pipe trench, concreting and pipe laying of pipe at Ling Tsui Tau.

3.2 Construction Activities for the coming month

Key Construction works in the coming month will include:

- 1. Construction of retaining wall H at TTT River;
- 2. Construction works of box culvert at PNH River;
- 3. Construction of retaining wall J, Gabion blocks & box culvert A at LTT River; and
- 4. Sewerage works at Ling Tsui Tau.

3.3 Environmental Status

Appendix A shows the drawing of the project area.

Locations of the monitoring and control stations with environmental sensitive receivers are presented in Section 4.3, 5.3 and 6.3 for noise, water and ecological monitoring respectively.

4. Noise Monitoring

4.1 Monitoring Parameters and Methodology

The construction noise level was measured in terms of the A-weighted equivalent continuous sound pressure level (L_{eq}). $L_{eq~(30minutes)}$ was used as the monitoring parameter for the impact monitoring in the time period between 0700 to 1900 hours on normal weekdays. For all other time period, $L_{eq~(5minutes)}$ was employed for comparison with the Noise Control Ordinance (NCO) criteria.

Noise measurement results obtained from each monitoring location were recorded in the Construction Noise Monitoring Data Sheet (Appendix E) immediately after the measurement. As supplementary information for data auditing, statistical results L_{10} and L_{90} were also be recorded for reference.

In case of non-compliance with the construction noise criteria, more frequent monitoring, as specified in the Action plan in table 4.5.2, shall be carried out. This additional monitoring shall be carried out until the recorded noise levels are rectified or proved to be irrelevant to the construction activities.

4.2 Monitoring Equipment

The sound level meters and calibrators comply with the International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) specifications as referred to in the Technical Memorandum (TM) to the Noise Control Ordinance was deployed as monitoring equipment for noise measurement.

Noise measurement was not be made in the presence of fog, rain, wind with a steady speed exceeding 5ms⁻¹ or wind with gust exceeding 10ms⁻¹. Thus wind speed was checked by the portable wind speed indicator capable of measuring the wind speed in m/s. Table 4.2.1 summarizes the equipment list for noise monitoring

Table 4.2.1 Equipment List for Noise Wontoning									
Equipment	Manufacturer & Model No.	Precision Grade	Qty						
Integrated sound level meter	ACO Japan, model 6224	IEC 651 Type 1 IEC 804 Type 1	1						
Windscreen	Microtech gefell model W2	N/A	1						
Acoustical calibrator	Castle GA 607	IEC 942 Type 1	1						
Wind speed indicator	Kestrel K1000	N/A	1						

Table 4.2.1 Equipment List for Noise Monitoring

Remarks: Calibration details for the sound level meter is given in Appendix C for reference

4.3 Monitoring Locations

According to the Baseline Monitoring Report issued in May 2008 for the captioned project, four locations where are alternative from the locations proposed in EM&A manual, were designated for baseline noise monitoring. For the data validation, impact noise monitoring was undertaken in the same locations during the construction phase of the project. The proposed monitoring locations are summarized in Table 4.3.1. Figure 4.3.1 shows the Noise Monitoring Locations

Noise measurement in each monitoring locations were taken at a point 1m from the exterior of the selected premises and at a height with no disturbance to the dweller and least obstructed view.

Identification No.	Noise Monitoring Locations
N1	No. 73, Village House, Ling Tsui Tau Tsuen (ground level)
N2	No. 31, Village House, Ling Tsui Tau Tsuen (ground level)
N3	Fence wall outside No. 5 village house adjacent to Luk Tei Tong River Outlet (ground level)
N4	No. 23 Village House Tai Tei Tong River (ground level)

Table 4.3.1 Noise Monitoring Locations during Construction Phase

In accordance with the requirements in the EM&A manual, weekly impact monitoring was conducted. For the time period between 0700 and 1900 hours on normal weekdays, and noise parameter of $L_{eq\;(30 minutes)}$ was measured. As if the construction works were carried out during restricted period (ie. 1900-2300, 2300-0700 of next day and Sundays / general holiday), impact monitoring that comprises 3 consecutive $L_{eq\;(5 minutes)}$ would be carried out.

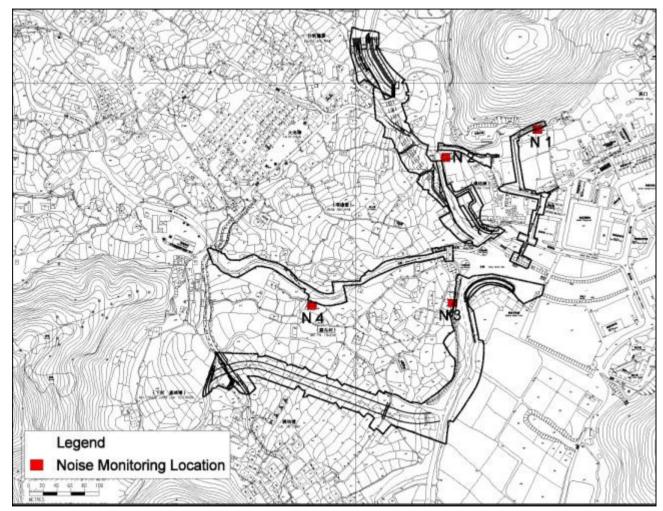


Figure 4.3.1 Impact noise monitoring locations

4.4 Monitoring Results and Interpretation

Relevant details of the noise monitoring results are presented in table 4.4.1. The results, ranged between 46.3 dB (A) and 64.1 dB (A), were within the limit levels and therefore, no exceedance was found.

Table 4.4.1 Noise monitoring results

Table 4.4	Table 4.4.1 Noise Monitoring Results for the reporting month										
Location	Parameter	Date	Time	L _{Aeq} dB(A)	Limit dB(A)	Exceedance	Weather				
N1	L _{eq 30mins}	6/04/09	14:50	47.2	75	N	Cloudy				
N1	L _{eq 30mins}	15/04/09	13:35	53.0	75	N	Sunny				
N1	L _{eq 30mins}	20/04/09	13:40	55.7	75	N	Sunny				
N1	L _{eq 30mins}	27/04/09	11:24	54.7	75	N	Sunny				
N2	L _{eq 30mins}	6/04/09	14:15	52.0	75	N	Cloudy				
N2	Leq 30mins	15/04/09	14:08	61.2	75	N	Sunny				
N2	Leq 30mins	20/04/09	14:15	54.7	75	N	Sunny				
N2	L _{eq 30mins}	27/04/09	13:00	52.6	75	N	Sunny				
N3*	L _{eq 30mins}	6/04/09	13:40	51.1	75	N	Cloudy				
N3*	L _{eq 30mins}	15/04/09	13:00	64.1	75	N	Sunny				
N3*	L _{eq 30mins}	20/04/09	13:00	62.2	75	N	Sunny				
N3*	L _{eq 30mins}	27/04/09	10:50	56.7	75	N	Sunny				
N4	L _{eq 30mins}	6/04/09	13:00	46.3	75	N	Cloudy				
N4	L _{eq 30mins}	15/04/09	14:42	59.0	75	N	Sunny				
N4	L _{eq 30mins}	20/04/09	14:53	53.6	75	N	Sunny				
N4	L _{eq 30mins}	27/04/09	13:35	58.6	75	N	Sunny				

Remarks: Raw datasheet for noise monitoring are attached in appendix E for reference.

Remark*: The equivalent noise level of N3 is corrected by +3 dB from the raw data result due to the fact that free field measurement was carried out in the location.

4.5 Action and Limit level for Construction noise

The Action and Limit (A/L) levels for construction noise are defined in Table 4.5.1. Should non-compliance of the criteria occur, action in accordance with the Action Plan in Table 4.5.2 should be carried out.

There was no recorded exceedance in the reporting month.

Table 4.5.1 Action and Limit Levels for Construction noise								
Time Period	Limit Level							
0700 – 1900 hours on normal weekdays	When one documented complaint is received	75dB(A)						

Remarks: If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.

Table 4.5.2 Event / Action Plan for Construction Noise

EVENT	ACTION												
EVENI	ET	IC(E)	ER	Contractor									
Action Level	 Notify IC(E) and Contractor; Carry out investigation; Report the results of investigation to the IC(E), ER and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness. 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise ER accordingly; Supervise the implementation of remedial measures. 	notification of failure in writing;	proposals.									
Limit Level	1. Identify source; 2. Inform IC(E), ER, EPD and Contractor; 3. Repeat measurements to confirm findings; 4. Increase monitoring frequency; 5. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; 6. Inform IC(E), ER and EPD the causes and actions taken for the exceedances; 7. Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results 8. If exceedance stops, cease additional monitoring	1. Discuss amongst ER, ET, and Contractor on the potential remedial actions; 2. Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; 3. Supervise the implementation of remedial measures.	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work 	for remedial actions to IC(E) within 3 working days of notification; 3. Implement the agreed proposals; 4. Resubmit proposals if problem still not under control; 5. Stop the relevant portion of works as determined by the									

4.6 Noise Mitigation Measures

The following mitigation measures were observed from the weekly site inspection in the reporting month:

- Use of quiet powered mechanical equipment (PME)
- Implementation of the following good site practices:
 - Only well-maintained and regularly serviced plant should be operated on site;
 - Silencers or mufflers on construction equipment;
 - Mobile plant, if any, should be sited as far from noise sensitive receivers as possible; and
 - Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum.

5. Water Monitoring

5.1 Water Quality Monitoring Parameters and methodology

Turbidity in Nephelometric Turbidity Unit (NTU), Dissolved Oxygen (DO) in mg/L and Suspended Solids (SS) in mg/L are required to measure in this project. Turbidity, DO was measured in-situ while water samples were delivered to Accredited HOKLAS Laboratory for analysis of SS.

Other relevant data such as monitoring location, time, water depth, temperature, salinity, weather conditions and any other special phenomena and work underway at the construction site were recorded during sampling.

According to the requirement of the EM&A manual, two consecutive measurements for parameters of DO concentration, DO saturation and Turbidity are required to be taken at each monitoring location. When the difference in value between the first and second reading of DO or Turbidity is more than 25%, the reading would be discarded and further reading would be taken.

5.2 Monitoring Equipment

Turbidity, DO, Salinity, pH and temperature was measured by an instrument complied with the following requirements:

The instrument is a portable as well as weatherproof multimeter complete with cable and uses a DC power source. It is capable of measuring:

- A turbidity between 0-800NTU;
- A dissolved Oxygen level in the range of 0-20mg/L and 0-200% saturation;
- A temperature of 0-50°C;
- Salinity in the range of 0-40ppt;
- pH in the range of 0-14.

Suspended solid was determined by the water samples collected from the monitoring locations for further analysis in accredited HOKLAS laboratory. Water samples were contained by polythene bottles, packed in ice (cooled in 4°C without frozen) and delivered to the laboratory for analysis as soon as possible after collection. Duplicate samples from each independent sampling event were undertaken during impact monitoring.

Detailed calibration records of the multimeter were shown in Appendix C for reference.

5.3 Monitoring Locations

Seven locations included a control station in upstream of each stream/ river, a monitoring station at the end of each stream/ river of the works area and a monitoring station at Silver River were proposed for the impact water quality monitoring. Water samples were collected at mid-depth of each proposed monitoring stations for measurements and sample collection. The Location Plan is shown in Figure 5.3.1 for reference.

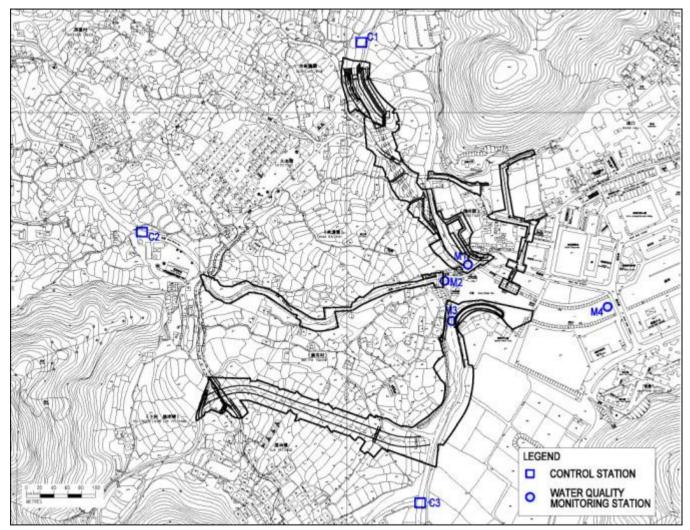


Figure 5.3.1 Water Quality Monitoring Locations

5.4 Monitoring Frequency

Impact water quality monitoring was undertaken three days per week and at ebb tides during the course of the construction river works. Upon the completion of the construction works, the monitoring exercises at the designated monitoring stations will be continued for four weeks in the same manner as the impact monitoring.

5.5 Monitoring Results and Interpretation

Water quality monitoring was carried out fourteen times during April. Detailed on-site measurements and laboratory analysis reports including QA/QC results are shown in appendix F1 and F2 respectively, while Table 5.5.1 presents consolidated results throughout the reporting month.

Exceedance events on parameters of turbidity and suspended solids were recorded on 1, 2, 6, 17, 22, 24, 27, 28 and 29 April according to the established level. Findings from the investigations showed that exceedances were mainly caused by:

- Surface runoff of site water entered the branch and stream course of LTT River.
- 2.) Construction activities belonged to the other projects carried out at the upper stream area at LTT and TTT River.
- 3.) Influx of marine water.
- 4.) Water quality changes due to heavy rainstorm.

Detailed information of the exceedance events and action taken were presented in Section 7.

Among the 22 events of exceedance recorded in this reporting month, 7 of them were believed to be caused by improper site practice carried out by the contractor. As such, contractor was advised to conduct remedial works and provide necessary mitigation measures to prevent further deterioration of water quality.

Table 5.5.1 Water quality monitoring results in April 2009

Twent every membering results in right 2009													
		М1			M2			М3			М4		
	MIN	MAX	Ave	MIN	MAX	Ave	MIN	MAX	Ave	MIN	MAX	Ave	
Turbidity (NTU)	2.8	25.9	9.2	2.5	63.8	16.6	5.5	38.8	14.0	4.8	42.7	12.1	
DO (mg/l)	6.5	10.6	8.6	7.9	10.4	9.0	5.7	9.8	7.9	6.6	10.0	8.2	
Suspended Solid (mg/l)	5.6	13.0	8.8	2.7	30.6	9.6	7.4	28.5	12.7	6.3	24.3	11.0	

	C1			C2			СЗ		
	MIN	MAX	Ave	MIN	MAX	Ave	MIN	MAX	Ave
Turbidity (NTU)	0.0	5.6	1.9	1.4	732.1	159.8	4.1	12.2	7.2
DO (mg/l)	6.4	9.3	7.7	7.9	8.5	8.1	3.9	8.4	5.9
Suspended Solid (mg/l)	0.8	10.1	2.4	1.0	490.5	101.4	6.4	13.5	8.9

^{*} Remarks: Detection limit for Turbidity, DO and SS are 1 NTU, 0.1 mg/L and 1 mg/L respectively.

5.6 Action and limit level for Water Quality

Based on the baseline water quality monitoring data obtained, the A/L levels are shown in Table 5.6.1. If the water quality monitoring results at any impact stations exceeded the criteria, the actions in accordance with the Event and Action Plan in Table 5.6.2 should be taken.

Table 5.6.1 Action and Limit Levels for water quality monitoring

	Monitoring locations										
Parameters	M	[1	M	[2	M	[3	M4				
r ar ameters	Action Level	Limit Level	Action Level	Limit Level	Action Level	Limit Level	Action Level	Limit Level			
Turbidity (NTU)	15.2	16.9	5.3	6.5	16.8	26.0	16.2	18.0			
DO (mg/L)	5.7	4.0	6.2	4.0	5.9	4.0	5.9	4.0			
SS (mg/L)	12.2	12.8	3.1	4.2	12.4	17.7	13.9	15.2			

Remarks:

For DO, non-compliance of the water quality limits occurs when monitoring result is lower than the limits

For SS and turbidity, non-compliance of the water quality limits occurs when monitoring result is higher than the limits.

Table 5.6.2 Event and action Plan for Water Quality

EVENIT.	ACTION										
EVENT	ET	IC(E)	ER	Contractor							
Action Level being exceed by one sampling day	Repeat in situ measurement to confirm findings; Identify reasons for non-compliance and source(s) of impact; Inform IC(E) and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IC(E) and Contractor; Repeat measurement on next day of exceedance.	and Contractor on the mitigation measures; 2. Review proposals in mitigation measures submitted by Contractor and advise the ER accordingly; 3. Assess the effectiveness of the	IC(E) on the proposed mitigation measures; 2. make agreement on the mitigation measures to be implemented; 3. Assess the effectiveness of the implemented mitigation measures.	confirm notification of the non-compliance in writing; 2. Rectify unacceptable practice; 3. Check all plant and equipment; 4. Consider changes of working methods;							
Action level being exceed by more than two consecutive sampling days	Repeat in situ measurement to confirm findings; Identify reasons for non-compliance and source(s) of impact; Inform IC(E) and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IC(E) and Contractor; Ensure mitigation measures are implemented; prepare to increase the monitoring frequency to daily Repeat measurement on next day of exceedance	Discuss with ET and Contractor on the mitigation measures; Review proposals in mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures.	IC(E) on the proposed mitigation measures; 2. make agreement on the mitigation measures to be implemented; 3. Assess the effectiveness of the implemented mitigation measures.	confirm notification of the non-compliance in writing; 2. Rectify unacceptable practice; 3. Check all plant and equipment; 4. Consider changes of working methods;							
Limit level being exceeded by one sampling day	Repeat in situ measurement to confirm findings; Identify reasons for non-compliance and source(s) of impact; Inform IC(E) and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IC(E) and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit Level	and Contractor on the mitigation measures; 2. Review proposals in mitigation measures submitted by Contractor and advise the ER accordingly; 3. Assess the effectiveness of the implemented mitigation measures.	IC(E) on the proposed mitigation measures; 2. make agreement on the mitigation measures to be implemented; 3. Assess the effectiveness of the implemented mitigation measures.	confirm notification of the non-compliance in writing; 2. Rectify unacceptable practice; 3. Check all plant and equipment; 4. Consider changes of working methods;							

5.7 Water Quality Mitigation Measures

Construction Run-off and Drainage

The site practices outlined in ProPECC PN 1/94 'Construction Site Drainage' should be followed as far as practicable during both construction and operation phase of the drainage improvement works in order to minimize surface runoff and the chance of erosion, and also to retain and reduce any suspended solids prior to discharge.

As recommended in the final EM&A manual, attention would be paid specially construction run-off and drainage, general construction activities, sewage discharged from construction workforce and river channel excavation works.

As for the forthcoming wet season, contractor was recommended to provide sufficient water treatment facilities for accumulated site water.

5.8 Water Monitoring Schedule for the Next reporting period

Water monitoring in the next reporting period is scheduled for 4, 6, 8, 11, 13, 15, 20, 21, 22, 25, 27 and 29 May.

6. Ecology Monitoring

6.1 Ecological Monitoring Parameters

According to the Final EM&A Manual, a specific ecological monitoring programme of the improved section of PNH and LTT Rivers is recommended. The monitoring parameters required to measure in this project and survey methodology are described below:

- (1) Avifauna species and abundance: Birds will be surveyed quantitatively using transect count method. Birds within the river channel and on the riverbank will be identified and their abundance will be recorded.
- (2) Aquatic macroinvertebrate community species composition and abundance: Survey on aquatic fauna will focus on determination of the diversity and abundance of stream aquatic communities. Sampling methods, such as active searching, direct observation, netting, and kick sampling, will be determined according to the site conditions during field survey.
- (3) Fish community species composition and abundance: Sampling methods, such as active searching, direct observation, and hand netting, will be determined according to the site conditions during field survey.
- (4) Adult odonate community species composition and abundance: Adult dragonfly will be surveyed quantitatively using transect count method. Adult dragonflies within the river channel and on the riverbank will be identified and their abundance will be recorded. Species requiring close examination will be netted.
- (5) Aquatic, emergent and riparian vegetation community species composition and abundance: The area will be walked through. Plant species composition and their relative abundance will be recorded.
- (6) Surveys of White-shouldered Starling Sturnus sinensis will be conducted at the disused watchtowers next to LTT river. Breeding of the White-shouldered Starlings will be determined by checking signs of attempt to breed or sign of breeding which include carrying nesting materials, to-and-fro movement of adults carrying food, presence of recently fledged juveniles, etc. The number of breeding pairs and the site observation will be recorded whenever possible.

Water Quality Monitoring along LTT and PNH River as well as LTT bypass channel was carried out. Water quality monitoring will include Turbidity in Nephelometric Turbidity Unit (NTU), Dissolved Oxygen (DO) in mg/L and Suspended Solids (SS) in mg/L are required to measure in this project. Moreover, additional water monitoring parameters will be taken for the purposes of ecological monitoring of water quality in this project. The added information will include: BOD, Ammonia, Nitrate and Phosphate concentrations. Turbidity, DO, pH and water flow will be measured in-situ while water samples will be delivered to Accredited HOKLAS Laboratory accredited laboratory and the analyses followed the standard methods according to APHA Standard Methods for the Examination of Water and Wastewater, 20th Edition, or equivalent for analysis of SS, BOD, Ammonia, Nitrate and Phosphate concentrations.

Other relevant data such as monitoring location, time, water depth, temperature, salinity, weather conditions and any other special phenomena and work underway at the construction site will be recorded during sampling.

According to the requirement of the EM&A manual, two consecutive measurements for parameters of DO concentration, DO saturation and Turbidity are required to be taken at each monitoring. When the difference in value between the first and second reading of DO or Turbidity is more than 25%, the reading will be discarded and further reading will be taken.

6.2 Monitoring Equipment and Methodology

Turbidity, DO, Salinity, pH and Temperature will be measured by a instrument complied with the following requirements:

The instrument is a portable as well as weatherproof multimeter complete with cable and uses a DC power source. It is capable of measuring:

- A turbidity between 0-800NTU;
- A dissolved Oxygen level in the range of 0-20mg/L and 0-200% saturation;
- A temperature of 0-50°C;
- Salinity in the range of 0-40ppt;
- pH in the range of 0-14.

Suspended solid was determined by the water samples collected from the

monitoring locations for further analysis in accredited HOKLAS laboratory. Water samples were contained by polythene bottles, packed in ice (cooled in 4°C without frozen) and delivered to the laboratory for analysis as soon as possible after collection. Duplicate samples from each independent sampling event were undertaken during impact monitoring.

6.3 Monitoring Locations

According to the Final EM&A Manual, the improved section of the river channels will be divided into 50m long sections, and ecological survey will be carried out in each of the 50m sections. A total of nine sections will be divided for the two rivers which include:

- Two sections for existing upstream of PNH river (i.e. the proposed 80m long trapezoidal channel)
- Two sections for existing downstream of PNH river (i.e. the proposed 100m long rectangular channel)
- Five sections for existing Luk Tei Tong River (i.e. the proposed 240m long trapezoidal channel)

The disused watchtowers are located at the confluence of the three rivers and next to LTT river.

The Location Plan for ecological is shown in Figure 6.1 for reference.

The improved sections of the river channels require to carrying out water quality monitoring for the ecological purpose. The sampling points for impact monitoring was undertaken in the same place as the baseline monitoring proposed, where include:

- Three points for existing of PNH river
- Three points for existing of Luk Tei Tong River

The Location Plan for ecological water monitoring is shown in Figure 6.2 for reference.

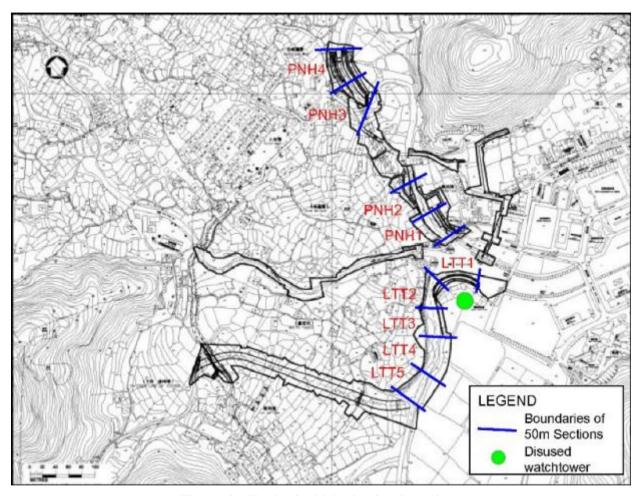


Figure 6.1 Ecological Monitoring Locations

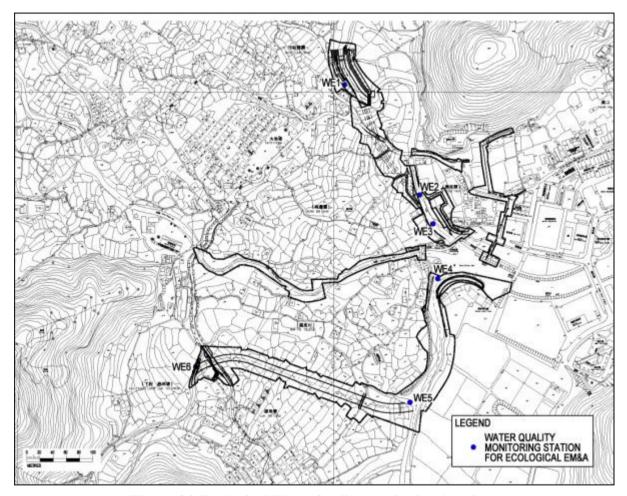


Figure 6.2 Ecological Water Quality monitoring locations

6.4 Monitoring Frequency

As proposed, ecological impact monitoring was carried out once for each monitoring location in the reporting month.

6.5 Monitoring results

Pak Ngan Heung Stream N and S sections

Vegetation

Surveys were conducted on 23 April 2009. The north section of Pak Ngan Heung Stream was fairly modified. Part of the west bank was lined with rock gabion bank and occupied by village houses and abandoned agricultural field. The stream channel was wider than the downstream section, but the stream bank was still fairly narrow and steep in gradient. Compared to the south section, the north section was relatively shaded due to presence of more trees with larger canopy.

The walk through survey recorded a total of 71 species, including 22 trees, 8 shrub, 27 herb and 4 grass species (Appendix D1). 53 of the species recorded are natives, while 18 were exotics. The quantitative sampling recorded 27 species at the north section. Large native (e.g. *Celtis sinensis, Cleistocalyx operculata, Ficus hispida*) and exotic trees (*Acacia confusa*) dominated the transects. Other species recorded include common and typical native pioneer forest and streamside tree species and ruderal species. No species of conservation interest was recorded.

Table 6.5.1 Relative percentage cover of vegetation recorded at Pak Ngan Heung (N) Section

	Relative % cover			
Species	PNH3	PNH4		
Acacia confusa		16.69		
Acorus graminifolius		1.05		
Alocasia macrorrhiza		0.52		
Aporosa dioica		2.94		
Bamboo	12.55			
Celtis sinensis	21.98	26.19		
Christella parasitica	1.47	1.8		
Cleistocalyx operculata	33.71			
Embelia ribes		1.05		
Ficus hispida		7.53		
Lemna minor		0.92		
Liriope spicata		0.49		
Litsea glutinosa		14.4		
Litsea rotundifolia	1.47			
Macaranga tanarius		15.71		
Mallotus paniculatus	19.54			
Microcos paniculata		0.49		
Microstegium ciliatum		3.34		
Mikania micrantha	2.93	1.14		
Neyraudia reynaudiana		0.33		
Plantago major		0.33		
Psychotria asiatica	0.49			
Pueraria phaseoloides	0.98			
Sageretia thea		1.64		
Sporobolus fertilis		3.44		
Sterculia lanceolata	3.42			
Syzygium jambos	1.46			
Total Relative % Cover	100.00	100.00		
Total Transect Length (m)	13	34		

^{*}Total Cover rounded up to one decimal place to avoid round-off error.

The south section of Pak Ngan Heung Stream was highly modified. Both banks were lined with rock gabions and were occupied by village houses immediately beyond the channel. The stream channel was lack of riparian zone and vegetation. A total of 18 species recorded, 13 of which were native and 5 were exotic. It was composed of isolated individuals of mangrove (*Kandelia obovata*), backshore species (*Clerodendrum inerme*), native (*Celtis sinensis*) and planted trees (*Acacia confusa*) (Appendix D2). No species of conservation interest was recorded.

Surveys were conducted on 17 April 2009.

A total of nine species of birds were recorded in the proposed work area of the Pak Ngan Heung River (Table 6.5.2). All are common in Hong Kong.

Table 6.5.2 Avifauna in Pak Ngan Heung

Common names	Latin names	PNH	PNH	PNH	PNH	Commonness
		1	2	3	4	& distribution
Little Egret	Egretta garzetta	1				CW
Black-crowned	Nycticorax	1				CL
Night Heron	nycticorax					
Common Koel	Eudynamis			1		CW
	scolopacea					
Spotted Dove	Streptopelia	2	2	2		CW
	chinensis					
Crested Bulbul	Pycnonotus				2	CW
	jocosus					
Magpie Robin	Copsychus			1	1	CW
	saularis					
Yellow-browed	Phylloscopus			1	2	CW
Warbler	inornatus					
Japanese	Zosterops japonica				2	CW
White-eye						
Great Tit	Parus major	1				CW

CW = common and widespread, CL = common/uncommon and localized

Seven species of dragonfly was recorded in the proposed work area of the Pak Ngan Heung River (Table 6.5.3). All are common and widespread in Hong Kong.

Table 6.5.3 Dragonfly in Pak Ngan Heung River

Common names	Latin names	PNH	PNH	PNH	PNH	Commonness
		1	2	3	4	& distribution
Orange-tailed	Ceriagrion				2	A
Sprite	auranticum					
Yellow Featherlegs	Copera marginpes				1	A
Asian Amberwing	Brachythemis		1			A
	contaminata					
Black Threadtail	Prodasineura				3	A
	autumnalis					
Red Skimmer	Orthetrum chrysis	1				C
Green Skimmer	Orthetrum sabina			1		С
Crimson Dropwing	Trithemis aurora				4	A

A = abundant, UC = uncommon

Aquatic fauna and fish

9 species of fish and 3 crustacean were recorded in the 4 sections at PNH. All are common and widespread in Hong Kong. Both the species number of aquatic fauna and their abundance recorded in the present monitoring survey were lower than those recorded in previous wet season months (Aug to Oct 2008). As observed on site, the stream flow and the water level were still relatively low, in the early wet season in April. Though Predaceous Chub was observed, the another one fish species of conservation concern reported in the EIA report, i.e. Flagtail *Kuhlia marginata*, was not recorded in PNH during the present monthly monitoring survey.

Table 6.5.4 Aquatic Invertebrates and fish in Pak Ngan Heung

Common names	Scientific names	PNH 1	PNH 2	PNH3	PNH4
Invertebrates					
Atyid shrimp	Caridina elongata				+
	Macrobrachium				
Palaemond shrimp	hainanensis			+	+
Crab	Varuna litterata		+		
Mitten Crab	Eriocheir japonica				
Fish					
Mosquito fish	Gamusia affinis				+
Barcheek Goby	Rhinogobius giurinus				+
Goby	Rhinogobius duospilus		+		
Swordtail	Xiphophorus hellerii				+
	Puntius				
Six-banded Barb	semifasciolatus				
Unidentified Cichlid					
fish					
Tilapia		+	++	+	
Predaceous Chub	Parazacco spilurus			++	
Jarbua Terapon	Terapon jarbua	++			
Common Silver-biddy	Gerres oyena	++			
Mullet	Mugil cephalus	+++	+++		
Broken-band	Liniparhomaloptera				
Hillstream Loach	disparis				

^{+ =} Occasional, less than 5 individuals were found; ++ = Common, 5 - 20 individuals were found; +++ = Abundant, more than 20 individuals were found.

Luk Tei Tong Stream Section

Vegetation

Surveys were conducted on 23 Apr 2009. The Luk Tei Tong Stream Section was highly modified. Vegetation only established on isolated muddy patches at the estuary and remaining semi-natural banks of Section 1 and Section 2. Vegetation on the eastern stream bank from the second half of Section 3 to Section 5 were largely cleared while the western bank was still lined with rock gabions or concrete. The whole section appeared to be subject to tidal influence, as mangrove associated or backshore species were recorded along the whole channel.

The walk through survey recorded a total of 26 species, including 11 tree, 6 shrub, 4 grass species (Appendix D3). 21 of the species recorded are natives, while 5 were exotics. The quantitative sampling recorded 10 species at Sections 2. Section 2 was dominated by *Terminalia catappa* and *Wollastonia biflora*, while Section 3 was dominated by *Hibiscus tiliaceus*. No quantitative survey was carried out on Section 3 and 4 due to vegetation clearance on stream banks as part of the site clearance works under the project. Remants of mangrove stand were still observed along Section 3, which will be cleared in due course.

Due to the patchiness of streamside vegetation, the quantitative data should be interpreted with cautions and used as a reference only.

Table 6.5.5 Relative percentage cover of vegetation recorded at Luk Tei Tong Stream Section

	Relative % cover
Species	LLT2
Acanthus ilicifolius	7.97
Celtis sinensis	9.85
Execoecaria agallocha	3.68
Fimbristylis sp.	15.85
Kandelia obovata	2.57
Papalum paspaloides	11.40
Premna serratifolia	1.63
Terminalia catappa	35.13
Toxocarpus wightianum	0.69
Wollastonia biflora	11.23
Total Relative % Cover	100.00
Total Transect Length (m)	11

^{*}Total Cover rounded up to one decimal place to avoid round-off error.

Terrestrial Fauna

The proposed work area of Luk Tei Tong River was divided into 5 sections. All recorded avifauna and dragonfly species are common in Hong Kong

Surveys were conducted on 17 April 2009.

A total of seven species of birds were recorded in these sections (Table 6.5.6). Most of these species are common and widely distributed in Hong Kong. Crested Goshawk is uncommon in Hong Kong.

Table 6.5.6 Avifauna in Luk Tei Tong River

Common names	Latin names	LTT	LTT	LTT	LTT	LTT	Commonness
		1	2	3	4	5	& distribution
Little Egret	Egretta garzetta	1					CW
Black-crowned Night	Nycticorax	1					CL
Heron	nycticorax						
Chinese Pond Heron	Ardeola bacchus					1	CW
Crested Goshawk	Accipiter trivirgatus					1	R
Indian Cuckoo	Cuculus micropterus			1			CL
Plaintive Cuckoo	Cacomantis		1				CL
	merulinus						
Crested Bulbul	Pycnonotus jocosus		5	2		·	CW

CW = common and widespread, CL = common/uncommon and localized, R = uncommon/rare and localised

Two species of dragonfly were recorded in the Luk Tei Tong River (Table 6.5.7). Both are common and widespread in Hong Kong.

Table 6.5.7 Dragonfly in Luk Tei Tong River

Common names	Latin names	LTT 1	LTT 2	LTT 3	LTT 4	LTT 5	Commonness & distribution
Green Skimmer	Orthetrum sabina			1		1	A
Wandering Glider	Pantala flavescens				1		A

A = abundant

Aquatic invertebrates and fish

5 species of fish, 4 species of crustacean and 5 species of mollusks were recorded in the 5 sections at LTT. All are common and widespread in Hong Kong. The species number of the aquatic fauna, in particular crustacean, and their abundance recorded in the present monitoring survey were lower than those recorded in previous wet season months (Aug to Oct 2008). As observed on site, the stream flow and the water level were still relatively low in upstream section. The two fish species of conservation concern reported in the EIA report, i.e. Flagtail *Kuhlia marginata* and Predaceous Chub *Parazacco*

spilurus were not recorded in LTT during the present monitoring as well as the baseline monitoring survey.

Table 6.5.8 Aquatic invertebrates and fish in Luk Tei Tong River

Common names	Scientific names	LTT1	LTT2	LTT3	LTT4	LTT5
Invertebrates						
Mangrove clam	Geloina erosa					
Rock oyster	Saccostrea cuculata		+++	+		
	Melanoides			+		
Snail	tuberculata					
Snail	Terebralia sp.			+		
Snail	Nerita sp.		++	+		
Snail	Littoraria articulata		+	++		
Crab	Varuna litterata			+		
Fiddler crab	Uca lactea		+			
Fiddler crab	Uca arcuata					
Fiddler crab	Uca crassipes					
Crab	Perisesarma bidens		+			
Mangrove mud crab	Scylla paramamosain		+			
Mitten crab	Eriocheir japonica					
Fish						
	Periophthalmus	+				
Common mudskipper	cantonensis					
Tilapia		++				
Jarbua terapon	Terapon jarbua		++	+		
Mullet	Mugil cephalus	+++	++	++		
Common Silver-biddy	Gerres oyena		+	+		
Barcheek Goby	Rhinogobius giurinus					

^{+ =} Occasional, less than 5 individuals were found; ++ = Common, 5 - 20 individuals were found; +++ = Abundant, more than 20 individuals were found.

Disused Watchtowers

Surveys were conducted on 17 April 2009.

There was no sign (e.g., adults carrying food or nesting materials) of use of the watchtower as nesting habitat by White-shouldered Starling. This species was not observed during the April 2009 monitoring. No bird of other species was observed entering the watchtower.

Since the monitoring surveys commenced in August 2008, no bird was observed entering the watchtower. It seems the birds do not prefer the watchtower as roosting or nesting habitat.

Ecological Water Quality Monitoring (EWQM)

EWQM was conducted on 9 April 2009. Monitoring results are summarized in table 6.9. Detailed on-site measurements and laboratory report are presented in appendix D4 and D5.

Table 6.10 shows the baseline results of Ecological Water Quality Monitoring, from the information given in Baseline Monitoring Report.

To review the results in table 6.9 in general, the measured results were found similar with past months. As a section of gabion wall will be carried out at the riverside of LTT River, contractor was reminded to be cautious on the change of water quality due to site works, and provide proper mitigation measures if necessary.

Table 6.9 Summarized Ecological water quality monitoring results (9 April 2009)

Parameters	Limit of detection	WE1	WE2	WE3	WE4	WE5	WE6
Suspended Solid (mg/l)	1	2.00	6.50	9.70	7.55	9.05	1.00
Nitrogen (Ammonia) (mg/l)	0.01	0.18	0.18	0.15	0.14	0.13	0.02
Nitrogen (Nitrate) (mg/l)	0.01	0.19	0.18	0.27	0.39	0.41	0.05
Phosphorous (mg/l)	0.01	0.08	0.08	0.09	0.06	0.06	0.03
BOD₅ (mg/l)	1	2.50	2.50	3.00	2.00	2.00	1.00
DO (mg/l)	0.01	7.33	8.64	9.46	8.80	8.12	7.45
Turbidity (NTU)	0.01	2.35	4.10	10.40	8.75	7.40	0.00
Temperature (oC)	0.1	20.8	22.0	22.5	22.7	22.1	20.9
рН	0.01	6.63	7.33	7.68	7.35	7.26	5.87
Salinity (ppt)	0.1	0	7.1	14.4	14.8	15.1	0
Conductivity (ms/m)	0.1	8.0	1240.0	2380.0	2460.0	2460.0	6.0
Water Flow (m/s)	N/A	0	0.05	0.045	0.06	0.1	0

Table 6.10 Baseline Results of Ecological water quality monitoring

Parameters	WE1	WE2	WE3	WE4	WE5	WE6
Suspended Solid (mg/l)	1.0	2.0	3.0	3.0	<1	<1
Nitrogen (Ammonia) (mg/l)	0.07	0.12	0.03	0.02		
Nitrogen (Nitrate) (mg/l)	0.12	0.13	0.13	0.31	0.04	0.05
Phosphorous (mg/l)	0.04	0.06	0.06	0.09	0.06	0.05
BOD ₅ (mg/l)	<2	<2	<2	<2	<2	<2
DO (mg/l)	6.58	6.82	6.37	7.61	6.87	5.70
Turbidity (NTU)	4.44	5.12	5.93	6.96	4.65	2.73
РН	6.4	7.1	7.0	6.8	6.6	6.1
Salinity (ppt)	<0.1	0.1	0.3	7.6	0.1	<0.1

6.6 Action and Limit level for Monitoring of White-shouldered Starlings

A simple Event and Action Plan is shown in Table 6.6.1. Should the Event occur, action in accordance with the Action Plan should be carried out.

There was no recorded event in the reporting month.

Table 6.6.1 Event / Action Plan for Monitoring of White-shouldered Starlings

EVENT	ACTION	
	ET Leader	Contractor
Identification of	1. Increase frequency of	1. Check all construction
disturbance to breeding	monitoring to twice	actions and working
White-shouldered	weekly	methods
Starlings	2. Notify Site Engineer	2. Submit proposals for
		remedial action to prevent
		abandonment of the
		breeding site.
	3. Review construction	3. Implement remedial
	activities of previous	action.
	week.	
	4. Identify any changes in	4. Liaise with ET
	construction activities in	regarding effectiveness of
	previous week	remedial actions.
	5. Discuss remedial	
	actions with Site Engineer	

6.7 Ecological monitoring Schedule

The next ecological surveys are scheduled on 7th, 8th and 15th May, while ecological water quality monitoring is scheduled on 6th May.

7. Action taken in Event of Exceedence

If the measurements (Noise, Water, Ecology) exceed the action / limit level, exceedance details will be reported and follow-up actions will be taken by relevant parties involved.

During the reporting period there was no exceedance for noise, ecological measurements recorded; therefore no actions were taken.

Non-compliance of water quality limits (turbidity and/or suspended solids) were recorded on 1, 2, 6, 17, 22, 24, 27,28 and 29 April according to the established level. ET has arranged site investigations for the exceedance events and causes were substantially attributable to:

- Surface runoff of site water entered the branch and then the main stream of LTT River;
- Channel improvement works of the branch at LTT, where is nearby the EVA
 carried out by the other projects. Silt water was found generated from the
 mentioned site and entered the river channel;
- Clearance works to the river channel carried out at the upper stream area of TTT River by the other project;
- Influx of marine water; and
- Water quality changes due to rainstorm.

The summary of non-compliance is listed in Table 7.1 for reference.

Among the 22 events of non-compliance recorded in this reporting month, 7 of them were believed to be caused by improper site practice carried out by the contractor.

For the exceedance events, ET has notified the relevant parties and conducted site investigation to find out the causes of results. ET also increased the monitoring frequency to daily basis until no exceedance of Limit level; at the mean time contractor was also urged to conduct necessary mitigation measures so as to keep the disturbance on water quality to minimal levels.

Table 7.1 Summary of Non-compliance for Water Quality

Date	Location	Parameter	Level of exceedance	Main cause of exceedance
01/04/2009	M2	Turbidity	Limit Level	Silty water discharged from project site
02/04/2009	M2	Turbidity	Limit Level	Disturbance of marine water
06/04/2009	M1	Turbidity	Limit Level	Heavy rainstorm
06/04/2009	M2	Turbidity	Limit Level	Heavy rainstorm
17/04/2009	M2	Turbidity, S.S.	Limit Level	Channel clearance works at upper stream area
22/04/2009	M2	Turbidity, S.S.	Limit Level	Channel clearance works at upper stream area
24/04/2009	M2	Turbidity, S.S	Limit Level	Channel clearance works at upper stream area
				Surface runoff from the site and silty water
24/04/2009	M3	Turbidity, S.S	Limit Level	generated from the construction activities of
				other project nearby EVA
27/04/2009	M2	Turbidity, S.S	Limit Level	Channel clearance works at upper stream area
				Surface runoff from the site and silty water
27/04/2009	M3	Turbidity, S.S	Limit Level	generated from the construction activities of
				other project nearby EVA
27/04/2009	M4	Turbidity, S.S	Limit Level	Water quality affected by M2 and M3 at the
27/04/2009	IVI '1	Turbidity, 3.3	LIIIII Levei	upper stream
28/04/2009	M2	Turbidity, S.S	Limit Level	Channel clearance works at upper stream area
29/04/2009	M2	Turbidity, S.S	Limit Level	Channel clearance works at upper stream area

8. Construction waste disposal

It is the contractor's responsibility to ensure that all wastes produced during the construction phase for the drainage improvement works are handled, stored and disposed of in accordance with good waste management practices and EPD's regulation and requirement. Waste materials generated during construction activities, such as construction and demolition (C&D) material, chemical wastes and general refuse, are recommended to be audited at regular intervals to ensure that proper storage, transportation and disposal practices are being implemented.

Contractor has completed the registration of Waste Producer under the Waste Disposal (Chemical Waste)(General) Regulation. The Waste Producer Number, WPN 5213-950-Y2443-03 was assigned by EPD on 12 Aug 2008. The Contractor would be responsible for the implementation of any mitigation measure to minimize waste or redress problems arising from the waste materials.

Table 8.1 is a summary of updated figures of the construction wastes disposal provided by the Contractor.

Table 8.1 Summary of Construction Waste Disposal

	Amount of Construction Waste disposed													
Month	Inert Waste	Chemical Waste												
	(to Public Fill)	(to Landfill)	(to treatment plant)											
1 st April, 09 to	144.10 (ton)	0.47 (ton)	Nil											
30 th April 09														
Total (from June	9022.89 (ton)	65.23 (ton)	0											
08 to April 09)														

9. Status of Permits and Licenses obtained

Table 9.1 is the updated status of environmental related permits/ license obtained for the construction activities

Table 9.1 Status of Permits and Licenses Obtained

Description	License / Permit No.#	Date of Issue	Date of Expiry	Remarks
Environmental Permit	EP-237/2005/A	05 Mar 2008		Issued
Registration of C&D	7006521			Issued
Waste Producer Chemical Waste Producer	5213-950-Y2443-03	12 Aug 2008		Issued
Construction Noise Permit	N/A	N/A	N/A	N/A
Effluent Discharge License	EP890/W2/XG032 EP890/W2/XG033 EP890/W2/XG034 EP890/W2/XG035 EP890/W2/XG036 EP890/W2/XG037 EP890/W2/XG038 EP890/W2/XG039 EP890/W2/XG040 EP890/W2/XG041	23 Oct 2008	31 Oct 2013	Issued

The contractor implemented various environmental mitigation measures as recommended in the Environmental Permit and Final Mitigation Measures Report. The implemented schedule is presented in appendix H.

10. Complaint Log

There was no formal complaint received during the reporting month.

Table 10.1 Summary of Formal Complaints received														
	Noise Water Ecology Cultural Others													
April 2009	0	0	0	0	0									
Total	Total 0 0 0 0													

11. Site Environmental Audits

11.1 Site Inspection

With an intention to ensure that appropriate environmental protection and pollution control mitigation measures are properly implemented, regular environmental site inspections have been scheduled.

Within the reporting month, site inspections were conducted on 2, 9, 17, 24 and 30 of April.

A detailed checklist of each site inspection together with comments, relevant photos and maps have been filed and kept. A summary of observation and follow-up action is shown in table 11.1

	Table	e 11.1 Summary of site ins	spection	
Date	Observations	Advice from ET	Action taken	Closing Date
5 Mar 09	Falling leaves and stagnant water	Contractor was advised to clean	Regular cleaning to the wheel	17 Apr 09
	were found accumulated in the	up the wheel washing bay	washing bay was observed	
	wheel washing bay, located at the	regularly (daily cleaning is	during inspection	
	site entrance of PNH BC9	preferable)		
26 Mar 09	Open stockpile and exposed	Contractor was advised to	Open stockpile have been	2 Apr 09
	earth surfaces were observed at	removed the open stockpile and	removed as advised	
	the bottleneck A of TTT River	provided proper coverings to the		
		earth surfaces exposed to river		
		stream		
2 Apr 09	Underground water was found	Accumulated water on site	Regular removal of accumulated	Ongoing
	accumulated in the excavated	should be removed for mosquito	water was conducted claimed by	
	pits of box culvert bay 3 and bay	control and hygiene issues.	contractor	
	12 at PNH			
2 Apr &	Chemical container was found	Contractor was advised provide	To be follow up	Ongoing
23 Apr 09	placed at the site of LTT bypass	proper drip pans to the chemicals		
	channel during inspection	temporarily stored on site;		
		unused chemicals should be		
		returned to designated chemical		

	Table	e 11.1 Summary of site in	spection	
Date	Observations	Advice from ET	Action taken	Closing Date
		storage area for further storage.		
17 Apr,	Stagnant water was observed	Contractor was advised to trace	To be follow up	Ongoing
23 Apr &	at the site ground located at the	the source of the water, stagnant		
30 Apr 09	end of LTT bypass channel	water should be removed for		
		mosquito control		
23 Apr 09	Site water from the excavated pit	Contractor was warned improper	Site water was found diverted to	Ongoing
	at ch.2B 150~200 was found	discharge of site water is not	a steel tank and then discharged	
	pumped to the brushwood area	allowed. Site water should be	to the pond behind of the Yuen's	
	where is out of site boundary and	diverted to proper de-silting	Compound.	
	caused flooding	facilities for treatment and		
		discharge to designated		
		discharge point in accordance		
		with discharge licenses applied		
30 Apr 09	River water was found entered	Contractor was advised to be	To be follow up	Ongoing
	the enclosed site retaining wall H	cautious on the conditions of all		
	during flood tide.	sites nearby river channels. No		
		site water or chemicals can be		
		entered into the river course.		

11.2 Compliance with legal and Contractual requirement

ET leader has reviewed the progress and programme of the works to check any relevant environmental laws has not violated.

A non-compliance of working method LTT was recorded during the joint site inspection carried out on 23rd April. Site water was found generated from the excavated pit for gabion walls at the riverside, those water was pumped to the brushwood area where is out of site boundary.

Contractor was requested to stop such practice immediately. ET, IEC and EPD representatives also advised contractor to provide proper de-silting facilities for site water treatment, treated effluent should be discharged to designated discharged point in accordance with the requirement of effluent discharge licenses applied. Contractor was also reminded to clearly identify their site boundary to prevent loss and damage of vegetation due to the site activities.

ET then carried out a spot check inspection on 28th April to check the conditions of the site. Silty water from the concerned site area was found pumped to a steel tank and then further discharged to the pond behind of the Yuen's compound, which claimed was already hired for site water treatment purpose.

ET seriously reminded the Contractor again to be cautious on the requirements stated in relevant environmental law and documents and manage good site practices so as to minimize impacts to the environment as well as sensitive receivers.

11.3 Environmental Complaint and follow up actions

During this reporting period, there was no documented complaint received. Therefore, follow up actions for the Environmental Complaint is not required

12. Future key issues

Key construction activity in the coming month will include construction of box culverts, retaining walls and gabion walls at PNH, TTT and LTT River. It is expected that several impacts on environmental aspects will be generated on-site. With reference to the EM&A manual, mitigation measure report as well as the environmental permit, proper mitigation measures are proposed to be taken, if necessary.

Contractor was reminded to provide proper measures to mitigate water quality impacts to the river channels due to construction works. River based construction activities should be carried out in enclosed as well as dry condition to prevent discharge of site water to the stream; containment measures such as bunds and barriers should be provided as to restrict the carrying out of construction works within enclosed dry area of the river.

Underground water and site water may be accumulated on site. Contractor is recommended to treat the accumulated site water by proper silt removal facilities before discharging to the designated discharge point; also reuse of site water should be considered.

Contractor was reminded to be cautious on erosion and surface run-off from the stockpiles of earth materials and exposed earth surfaces. Coverings with tarpaulin and/or geo-textile materials should be provided to minimize the concerned impacts.

Dust impact may be resulted by boulder movement, breaking and installation works of gabion blocks, contractor is reminded to provide regular watering to the dusty static site area and stockpile. Meanwhile, size and height of stockpiles should be controlled as such erosion issue could be minimized.

13. Conclusions

In this reporting month, Construction work of box culvert at PNH, excavation and installation works for gabion blocks for LTT bypass channel were carried out.

Regular site meetings and inspection audits led by the seniors for discussing site environmental matters were held among Project Proponent, Contractor and the ET on weekly basis. Also monthly site meeting and inspection audits with the above parties and IEC were carried out at the mid of the reporting month.

For noise level monitoring, all results were within the established A/L limits.

For water quality monitoring, non-compliance events of water quality criteria were recorded on 1, 2, 6, 17, 22, 24, 27, 28 and 29 April. As exceedances were found caused by several factors include defective site practice of the project. Contractor was reminded to improve their site practice and provide necessary mitigation measures for water quality. According to the monthly ecological water monitoring results performed on 09 April 2009, measurements recorded in the monitoring locations were found similar with past months.

During ecological monitoring survey, no White-shouldered Starling was recorded breeding in the watch tower. There was no sign of disturbance from the Project to the watch tower. The breeding season of White-shouldered Starling in this year has begun. However, the absence of nesting of White-shouldered Starling in the watch tower did not seem to be related to construction works in Luk Tei Tong River. A bird species nests in village house should be to certain extent disturbance tolerant.

No bird was observed entering the watchtower since the monitoring surveys commenced in August 2008. Also, no breeding was recorded in the baseline survey in September 2007. It appears that the birds do not prefer to roost or nest in the watch tower.

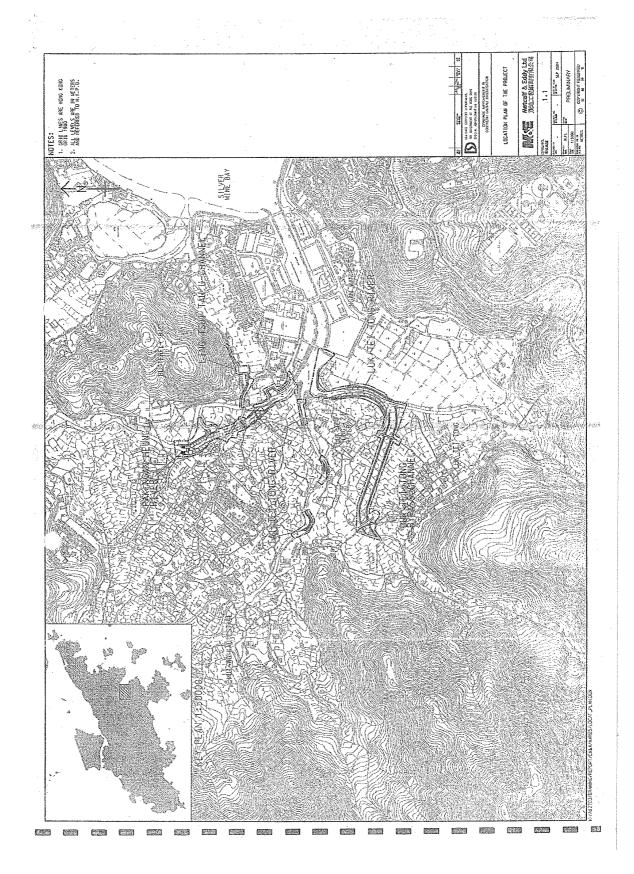
Also, there were not any notifications of summons recorded during the reporting period. Furthermore, there were not any formal prosecution and complaints recorded.

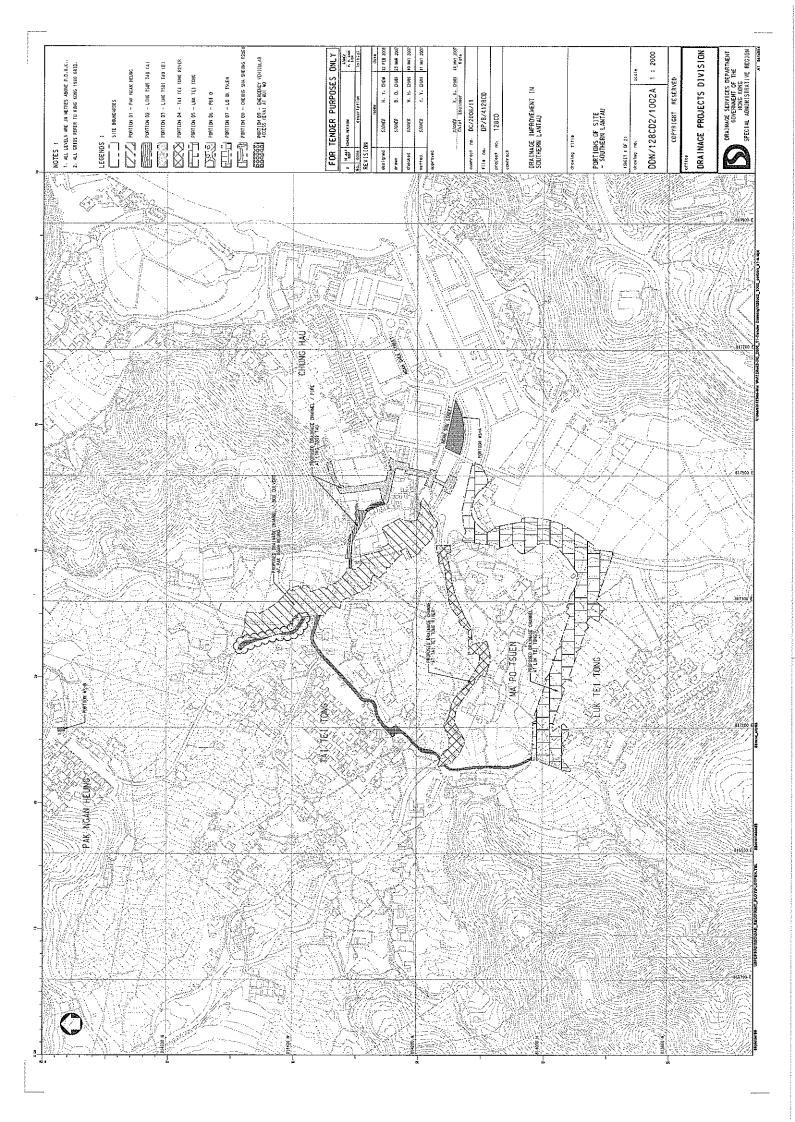
Site water control was the major concern in this reporting month. Contractor was recommended to provide proper de-silting facilities for site water treatment, and provide necessary mitigation measures to minimize impacts to the river streams.

ET has reminded the contractor to provide environmental pollution control measures wherever necessary; and to keep a good environmental management at site practice.

The ET will continue to implement the environmental monitoring & audit programme in accordance with the EM&A Manual and Environmental Permit requirement.

Appendix A


Construction
Programmer and
Location plan


			ung		at Const	ı								ī							· T.;		I.					Ī				1	ī	Ī	1		
			(may	- 1		-		1					-						H	H					H	H		-		-		-	-	1-	-		I
		2009	adiy.				-														1					Γ	7							Ţ.,			
		92	ъЩ						Ī																												
			qə <u>d</u>				_			<u> </u>		1							-	-	_	<u> </u>		L				<u> </u>			988.686		_	None	_	_	
		_	ant			-	-	_	1	_			-	-	lasis Usas					-	-	-		_	-	<u> </u>	-	_		-		_	-		-	-	⊦
			You		-	-	1	-	-	-	-	1	-	-			-	-	-	228		1		-	-	-	\vdash	-		9080	3552	<u> </u>			-	-	╀
	1		170			-	-	-	+	-	-	-	-	-	200	-	-	-	-	62	-	├			-	-	-	-			-	-	-	100	-	-	╁
			₫0Ş		-	-	-	-	1	L	\vdash			H	\vdash				V			200	1000		\vdash	\vdash			┢	-		\vdash		一	1	┢	十
			Sny			10		1	†			1																									Г
		2008	-int						Ι.	Ī																											
		20	nnf																																		
			quM			<u> </u>	<u> </u>	Ļ	L	_	_	<u> </u>	_		<u>_</u>	L	_	_	L			_	<u></u>	_					_				<u>_</u>	┞-	<u> </u>		<u> </u>
			му		_	_	-	_		_	_	20000	1000					2000	_		_	<u> </u>			ļ	_			L		<u> </u>		_	ļ.	-		-
141	راد اد بینادهٔ رداد ا		PEP.		ASS.										V.	129.0	1911				432	1.0			5.65	- Val-		N8181141		i i i		1,1	7,74	gar.		ideę :	1
			130			-				-				-	-	-	-		-	-	-	┢	-			\vdash			H	-			_		\vdash	-	H
			D≎≎							1			315360							-			_			Н		\vdash						-			T
			YOM							1		00.000				7.0																					
	Ì		120																	Π																	
			dəŞ																			L														_	Ļ
			any			_		_	ļ.,			L			L			. 3								L			<u> </u>			-	_				├-
		2007	ाता चित्र		-	_	-	-		-		-					1 11					1 2	_	_			-	-	-			-			-		-
	٠.		Yelvi		77.	-		-	\vdash		-	H		1			-				1	-				-		-			-	-		-	-	-	┢
			ıdy		-	-		-	┝	-	-	-		-	-	-	-			H				-					-		-	~		-	-	-	┢
			JEM.			-	-	-		-	-				*****	**********		365,42	-		~~~	-			10000			-	-	-CATHOLIC	-	-		-			
			qsij																															Г			
	-		nal					30																													
			Dec			_								_			_												_					<u> </u>			L
			YOM		-	-				ļ												_			-		ļ	-	<u> </u>					-	_		<u> </u>
- 1		2002	1°0 dog			-	-	-	-	-	-	-	-	_		_	2.0		***			-		- 23			-		-				-	-	-	_	-
		8.	3nV		-	-		-		-	-	H	-	-					-			-	*						-	-			-	-			-
			Inf.						-	-	-	-			-				7.										-				_	-			H
			aut				-													7													-				
																- 2		1																			
			ריספותסון	Site Clearance	Onliels to Silver River	PalcNgas Houng Outlet (CTESO -250)	Excavation	Rettioning Wall	Buckfilling	Luk Tei Tong Quilet (CH225 - CH175)	Excavation	Retaining Wall	Backfilling	Tal Lei Long Outlet	Exervation	Retaining, Wall	Buckfilling	Pak Ngan Heung - Box (Cita50 -CH75)	PakNgan Henng Myer	Dozivation (CED'5 - CH0).	Low Flow Diversion Pipes and bund	Retaining Wall-Wing Walls	Baddilling/Changel Lining	Cak'Tel Tong River (CHB175 - CHB0)	Exception (CHB175 - CHB0)	Retaining Wall	Backfülbyg/Channet Lanng	Lak Tel Tong By-pass Channel	Construction of gabion channel (d/s to u/s)	Box Culwest LTT2	Box Calvert LTT1	ral Tel Tong River.	Wideping of Bottleneck - U/S	Widening of Bottleneck - Mid Section	Ling, Tsul Ray O-channel	U.channel	Retaining Wall

A MANAGEMENT OF THE PARTY OF TH

Marchine Meteralf & Eddy Ltd
Donato. 1.2
paner. 1.2
paner. 1.2

PREL IMINARY CONSTRUCTION PROGRAMME

Appendix B Key Personal Contact information chart

Organization Name	Role	Title	Name	Telephone	Fax Number
Drainage Service Department	Project Proponent	Engineering Representative	Mr. Chan Wai Hong	2594 7464	2827 8700
Allied Environmental Consultants Limited	Independent Environmental Checker (IEC)	Principal Consultant	Ms. Claudine Lee	2815 7028	2815 5399
Yick-Hing Construction Company Limited	Main Contractor	Senior Project Manager	Mr. Liu Kai Choi	2394 4988	2787 4890
Environmental Pioneers & Solutions Limited	Environmental Team (ET)	Environmental	Ms. Patricia Chung	2185 0123	2856 2010

Appendix C

Calibration Certificates for Measuring Equipments

Report for Calibration of Hand-held Water Quality Meter WQC-24

Calibration Reference I	No. : GCE	/CAL/2009/MW/	WQM/C1
Client: ENVII	RONMENTAL PION	NEER AND SOLU	JTION LIMITED
Equipment No. :	WQC-24	Location:	Mui Wo Site
Manufacturer :I	OKK-TOA	Serial No.:	617892
Calibration Date: 26	to 28-02-2009	Due Date :	26-05-2009
Criterion: (Repeatabil	lty, Linearity)		
	Both within ± 0.05		
Dissolved oxygen	Both within ± 0.1 r	ng/L	
Electric conductivity	Both within $\pm 1\%$	FS	
Turbidity	Repeatability: wi	thin ±3%FS	
Temperature	Repeatability ± 0.2	25°C; Linearity ±	0.5°C; (Ambient 5~45°C)

Electric Conductivity (Salinity converted from EC):

(Reference: APHA 20ed 2510 B, ISO 7888 - 1985 (E) and DKK-TOA Hand-held Water

Quality Meter WQC-24 Instruction Manual)

Concentration of KCl Standard Solution (M)	Reference conductivity value at 25.0 °C	Indicated value by meter	Linearity (R ²)
0	0.0 mS/m*	0.0 mS/m	
0.001	14.7 mS/m	14.5 mS/m	
0.005	71.8 mS/m	71.2 mS/m	0.9996
0.01	0.141 S/m	0.139 S/m	
0.05	0.667 S/m	0.664 S/m	
0.1	1.29 S/m	1.28 S/m	Acceptance Criterion
0.5	5.87 S/m	5.85 S/m	$R^2 > 0.995$
	1 st time	0.00, 5.85 S/m	
TD (1.111)	2 nd time	0.00 , 5.85 S/m	-
Repeatability	3 rd time	0.00 , 5.85 S/m	-
	0.00 , 5.85 S/m	0.00,0.00	

^{* 1} S/m = 10^4 µmhos/cm = 10^3 mS/m

Remark: For repeatability, the maximum difference from the average value of 3 measurements was taken.

Dissolved Oxygen:

(Reference: APHA 20ed 4500-O B&C, ISO 5814:1990(E) and DKK-TOA Hand-held Water Quality Meter WQC-24 Instruction Manual)

DO value evaluated by Iodometric		Indicated value by meter	Linearity
Metl	nod (mg/L)	(mg/L)	(R^2)
	0.00	0.00	
	4.21	4.27	0.9997
	6.42	6.56	7
	8.77	8.90]
	10.52	10.64	Acceptance Criterion
	13.73	13.68	$R^2 > 0.995$
1 st time		0.00, 8.90	
Repeatability 2 nd time 3 rd time		eatability 2 nd time 0.00, 8.91	
		0.00,8.88	
	0.00,8.77	0.00,0.03	

Remark: For repeatability, the maximum difference from the average value of 3 measurements was taken.

pH Value:

(Reference : APHA 20ed 4500-H⁺ B, ISO 10523:1994(E) and DKK-TOA Hand-held Water Quality Meter WQC-24 Instruction Manual)

Calibration	Input value	Indicated pH value	Linearity
pH buffer	(pH buffer)	by meter	
(25°C)	(25°C)	(25°C)	(R^2)
pH = 1.67	1.67	1.69	
pH = 6.86	4.00	4.02	1.0000
pH = 7.42	7.00	7.02	
pH = 9.18	10.00	10.05	Acceptance Criterion
pH = 12.45	12.45	12.50	$R^2 > 0.995$
	1 st time	4.01, 10.05	
Repeatability	2 nd time	4.01, 10.05	-
	3 rd time	4.01, 10.04	
	pH 4.00 , 10.00	0.00, 0.01	

Remark: For repeatability, the maximum difference from the average value of 3 measurements was taken.

Temperature:

(Reference: APHA 20ed 2550 B, In-house method and DKK-TOA Hand-held Water Quality Meter WQC-24 Instruction Manual)

Setting Temperature	Indicated va	lue by meter	Linearity
(°C)	(°0	C)	
5.0	5.	.2	
15.0	15	.4	$R^2 = 0.9998$
25.0	25	5.5	And
35.0	35	35.3	
45.0	45.2		Acceptance Criterion
55.0	55	5.6	$R^2 > 0.995$ and within ± 5 °C
	1 st time	5.2,55.7	
Repeatability	2 nd time	5.2,55.6	-
	3 rd time	5.1,55.5	
	5.0,55.0	0.1,0.2	

Remark: For repeatability, the maximum difference from the average value of 3 measurements was taken.

Turbidity:

Form No.: CAL/WQM/R (2-12-2008)

(Reference : APHA 20ed 2130 B and DKK-TOA Hand-held Water Quality Meter WQC-24 Instruction Manual)

Formazin Standards (NTU)	Indicated va	Linearity (R ²)	
0.0	(NTU) 0.2		(A)
20.0		9.4	1.0000
100.0	10		
400.0	403.6		Acceptance Criterion
800.0	804.7		$R^2 > 0.995$
	1 st time	0.3,805.0	
Repeatability	2 nd time 0.3, 804.7		
ĺ	3 rd time 0.3, 804.6		
	0.0,800.0	0.0,0.4	

Remark: For repeatability, the maximum difference from the average value of 3 measurements was taken.

Comments :	Pass, comply with th	e criteria		
Tested by:	Ho Tin Kau	Certified by	:	
_				Gu Chin Chemist
Checked by :	Gu Chin	Date	:	28-2-2009
		Page 3 of 3		

綜 合 試 驗 有 限 公 司 SOILS & MATERIALS ENGINEERING CO., LTD.

G/F, 9/F, 12/F, 13/F & 20/F, Leader Centre, 37 Wang Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2565 7533

CERTIFICATE OF CALIBRATION

D094

2

Certificate No.:

09CA0102 01-01

Page

Item tested

Description:

Sound Level Meter (Type I) ACO, Japan

Microphone

Manufacturer:

ACO, Japan

Type/Model No.:

6224

7146

Serial/Equipment No.:

060166

34733

Adaptors used:

Item submitted by

Customer Name:

Geotechnics & Concrete Engineering (H.K.) Ltd.

Address of Customer:

G/F., 6 Ko Shan Road, Hung Hom, Kowloon, Hong Kong

Request No.: Date of request:

30-12-2008

Date of test:

02-01-2009

Reference equipment used in the calibration

Description:

Model: Serial No.

Expiry Date:

Traceable to:

Multi function sound calibrator Signal generator

B&K 4226 DS 360

2288444

11-01-2009 12-06-2009 CIGISMEC CEPREI

Signal generator

DS 360

33873 61227

18-07-2009

CEPREI

Ambient conditions

Temperature:

23 ± 2 °C

Relative humidity: Air pressure:

55 ± 15 % 1010 ± 15 hPa

Test specifications

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and 2, replaced by an equivalent capacitance within a tolerance of ±20%.
- 3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580; Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

TV

Huang Jian Mir∳Feng Jun Qi

Approved Signatory:

Date:

02-01-2009

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long term stability of the instrument.

Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

綜 合 試 驗 有 限 公 司 SOILS & MATERIALS ENGINEERING CO., LTD.

G.F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

D094

(Continuation Page)

Certificate No.:

09CA0102 01-01

Page

of

2

2

1. **Electrical Tests**

> The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The *-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Uncertanity (dB) / Coverage Factor
Self-generated noise	A	Pass	0.3
	С	Pass	1.0 2.1
	Lin	Pass	1.5 2.2
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3
	Reference SPL on all other ranges	Pass	0.3
	2 dB below upper limit of each range	Pass	0.3
	2 dB above lower limit of each range	Pass	0.3
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3
Frequency weightings	Α	Pass	0.3
	С	Pass	0.3
	Lin	Pass	0.3
Time weightings	Single Burst Fast	Pass	0.3
	Single Burst Slow	Pass	0.3
Peak response	Single 100µs rectangular pulse	N/A	N/A
R.M.S. accuracy	Crest factor of 3	Pass	0.3
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3
	Repeated at frequency of 100 Hz	Pass	0.3
Time averaging	1 ms burst duty factor 1/103 at 4kHz	Pass	0.3
	1 ms burst duty factor 1/104 at 4kHz	Pass	0.3
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4
Overload indication	SPL	Pass	0.3
	Leq	Pass	0.4

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Uncertanity (dB) / Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3
	Weighting A at 8000 Hz	Pass	0.5

3, Response to associated sound calibrator

N/A

The uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95 %. A coverage factor of 2 is assumed unless explicitly stated.

End

Calibrated by: C.Y. Fung

Daté: 02-01-2009

calibrated on a schedule to maintain the required accuracy level.

Checked by:

Date:

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

G/F., 9/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong, 香港黄竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

2095

2

Certificate No.:

09CA0102 01-02

Page:

of

1

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer:

Castle Group Ltd. GA607

Type/Model No.: Serial/Equipment No.:

039543

Adaptors used:

Item submitted by

Curstomer:

Geotechnics & Concrete Engineering (H.K.) Ltd.

Address of Customer:

G/F., 6 Ko Shan Road, Hung Hom, Kowleen, Hong Kong

Request No.: Date of request:

30-12-2008

Date of test:

02-01-2009

Reference equipment used in the calibration

Description: Model: Serial No. Expiry Date: Traceable to: Lab standard microphone B&K 4180 2412857 29-06-2009 SCL Preamplifier B&K 2673 2239857 02-12-2009 CEPREI Measuring amplifier B&K 2610 2346941 03-12-2009 **CEPREI** Signal generator DS 360 61227 18-07-2009 **CEPREI** Digital multi-meter 34401A US36087050 03-12-2009 CIGISMEC Audio analyzer 8903B GB41300350 27-11-2009 CEPREI Universal counter 53132A MY40003662 11-07-2009 CEPREI

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity:

55 ± 10 %

Air pressure:

1010 ± 15 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

Details of the performed measurements are presented on page 2 of this certificate.

Huang Jian Min/Feng Jun Qi

Approved Signatory:

Date:

02-01-2009

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

C Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/Issua 1/Rev.D/01/03/2007

綜 合 試 驗 有 限 公 司 SOILS & MATERIALS ENGINEERING CO., LTD.

G/F., 12/F., 13/F. & 20/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. 香港黃竹坑道37號利達中心地下,9樓,12樓,13樓及20樓 E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

09CA0102 01-02

Page:

of

2

2

D095

1, Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

			(Output level in dB re 20 µPa)
Frequency Shown Hz	Output Sound Pressure Level Setting dB	Measured Output Sound Pressure Level dB	Estimated Uncertainty d8
1000	94.00	94.30	0.1

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.002 dB

Estimated uncertainty

 $0.005 \, dB$

3, **Actual Output Frequency**

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 1000.0 Hz

Estimated uncertainty

0.1 Hz

Coverage factor k = 2.2

4, **Total Noise and Distortion**

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 2.1%

Estimated uncertainty

0.7%

The uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95 %. A coverage factor of 2 is assumed unless explicitly stated.

End

Calibrated by: Date: C.Y. Fung

02-01-2009

Checked by:

Date:

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

Soils & Materials Engineering Co., Ltd.

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS Directory of Accredited Laboratories. The results shown in this certificate were determined by this laboratory in accordance with its terms of accreditation. Such terms of accreditation stipulate that the results shall be traceable to the International System of Units (S.I.) or recognised measurement standards. This certificate shall not be reproduced except in full.

Appendix D1 Plant species recorded at Pak Ngan Heung River (N)

			Relative	Occui	rence
Species	Habit	Native	Abundance	PNH3	PNH4
Acacia confusa	tree	no	occasional		+
Acorus gramineus	herb	yes	scarce		+
Acronychia pedumculata	tree	yes	scarce		
Ageratum conyzoides	herb	yes	scarce	+	
Alangium chinensis	tree	yes	scarce		+
Alocasia macrorrhiza	herb	yes	occasional	+	+
Aporosa dioica	tree	yes	occasional	+	+
Ardisia crenata	shrub	yes	occasional	+	+
Atalantia buxifolia	tree	yes	scarce		+
Bamboo	herb	-	scarce	+	
Bidens pilosa	herb	no	scarce	+	
Bischofia javanica	herb	yes	scarce	+	
Caryota mitis	herb	yes	scarce		+
Celtis sinensis	tree	yes	occasional	+	+
Celtis timorensis	tree	yes	scarce		+
Christella parasitica	fern	yes	occasional	+	+
Cleistocalyx operculata	tree	yes	occasional	+	+
Conyza canadensis	herb	no	scarce	+	+
Cyperus sp.	herb	-	scarce	+	
Desmos chinensis	shrub	yes	occasional	+	
Dimocarpus longan	tree	no	occasional		+
Elephantopus tomentosa	herb	yes	scarce		+
Embelia ribes	climber	yes	scarce		+
Eupatorium catarium	herb	no	scarce	+	
Ficus hispida	tree	yes	common		+
Ficus superba	tree	yes	occasional		+
Garcinia oblongifolia	tree	yes	occasional		+
Glochidion puberum	shrub	yes	scarce	+	
Hedychium coronarium	herb	no	scarce		+
Hedyotis auricularia	herb	yes	scarce		+
Hedyotis hedyotidea	herb	yes	scarce		+
Lemna minor	herb	yes	common	+	+
Leucaena leucocephala	tree	no	scarce		+

			Relative	Occurrence	
Species	Habit	Native	Abundance	PNH3	PNH4
Liriope spicata	herb	yes	scarce		+
Litsea glutinosa	tree	yes	occasional		+
Litsea rotundifolia	shrub	yes	scarce	+	
Lygodium japonicum	fern	yes	scarce	+	+
Macaranga tanarius	tree	yes	occasional	+	+
Mallotus paniculatus	tree	yes	scarce	+	
Microcos paniculata	tree	yes	scarce		+
Microstegium ciliatum	grass	yes	common	+	+
Mikania micrantha	climber	no	common	+	+
Milletia nitida	climber	yes	scarce	+	
Mimosa pudica	herb	yes	scarce	+	
Murraya paniculata	shrub	no	scarce	+	
Musa paradisiaca	tree	no	scarce	+	
Mussaenda erosa	shrub	yes	scarce	+	
Oxalis corymbosa	herb	yes	scarce		+
Panicum maximum	grass	no	common		+
Phyllanthus urinaria	herb	yes	scarce	+	+
Pilea microphylla	herb	no	occasional	+	+
Plantago major	herb	yes	scarce		+
Pogonatherum crinitum	grass	yes	scarce		+
Polygonum barbatum	herb	yes	scarce	+	
Polygonum chinense	herb	yes	occasional	+	
Polygonum sp.	herb	yes	scarce	+	
Psychotria asiatica	shrub	yes	common	+	+
Pueraria phaseoloides	climber	yes	occasional	+	+
Sageretia thea	climber	yes	occasional		+
Sida rhombifolia	herb	yes	scarce		+
Solanum nigrum	herb	no	scarce		+
Sporobolus fertilis	grass	yes	scarce		+
Stephania longa	climber	yes	scarce		+
Sterculia lanceolata	tree	yes	common	+	+
Syngonium podophyllum	climber	no	occasional	+	
Syzygium jambos	tree	no	common	+	+
Syzygium levinei	tree	yes	scarce	+	
Urena lobata	herb	yes	scarce		+

			Relative	Occur	rrence
Species	Habit	Native	Abundance	PNH3	PNH4
Uvaria microcarpa	shrub	yes	occasional		+
Wedelia trilobata	climber	no	scarce	+	+
Zanthoxylum avicennae	tree	yes	scarce		+

Appendix D2 Plant species recorded at Pak Ngan Heung River (S)

			Relative	Occur	rence
Species	Habit	Native	Abundance	PNH1	PNH2
Acacia confusa	tree	no	occasional	+	
Acanthus ilicifolius	shrub	yes	scarce	+	
Acrostichum aureum	fern	yes	scarce	+	
Celtis sinensis	tree	yes	occasional	+	
Clerodendrum inerme	shrub	yes	occasional	+	
Dendrotrophe frutescens	climber	yes	scarce	+	
Ficus microcarpa	tree	yes	scarce		+
Ficus superba	tree	yes	occasional		+
Ipomoea cairica	climber	yes	occasional		+
Kandelia obovata	shrub	yes	scarce	+	
Melaleuca quinquenervia	tree	no	common	+	
Morus alba	tree	no	scarce		+
Neyraudia reynaudiana	grass	yes	occasional	+	
Panicum maximum	grass	no	common	+	+
Phyllanthus urinaria	shrub	yes	common		+
Sapium sebiferum	tree	yes	occasional		+
Wedelia triloba	climber	no	occasional	+	+
Wollastonia biflora	climber	yes	occasional	+	

Appendix D3 Plant species recorded at Luk Tei Tong River

			Relative	Occurrence						
Species	Habit	Native	Abundance	LLT1	LLT2	LLT3	LLT4	LLT5		
Acanthus ilicifolius	shrub	yes	common	+	+					
Acrostichum aureum	fern	yes	scarce					+		
Aegiceras corniculatum	shrub	yes	scarce	+	+					
Bougainvillea spectabilis	climber	no	scarce	+						
Bridelia tomentosa	tree	yes	occasional	+						
Celtis sinensis	tree	yes	scarce	+	+	+				
Clerodendrum inerme	shrub	yes	abundant	+	+		+			
Cyperus malaccensis	sedge	yes	occasional		+					
Excoecaria agallocha	shrub	yes	common	+	+					
Ficus microcarpa	tree	yes	scarce			+				
Ficus superba	tree	yes	occasional	+						
Fimbristylis ferruginea	sedge	yes	occasional		+		+			
Hibiscus tiliaceus	tree	yes	abundant	+	+		+			
Kandelia obovata	tree	yes	common	+	+					
Leucaena leucocephala	tree	no	occasional	+						
Litsea glutinosa	tree	yes	scarce		+	+				
Neyraudia reynaudiana	grass	yes	occasional	+		+	+	+		
Panicum maximum	grass	no	common	+		+				
Paspalum paspaloides	grass	no	occasional		+					
Premna serratifolia	tree	yes	scarce		+					
Saccharum arundinaceum	grass	yes	scarce	+						
Scolopia chinensis	tree	yes	scarce				+			
Terminalia catappa	tree	no	scarce		+					
Toxocarpus wightianus	climber	yes	scarce		+					
Wikstroemia indica	shrub	yes	scarce				+			
Wollastonia biflora	climber	yes	occasional	+	+					

Appendix D4

Ecological Water Monitoring Results (on-site measurements)

Environmental Pioneers & Solutions Limited

Ecological Water Quality Monitoring - Summary of On-site measurement results

Date of Sampling: 2009/4/9 Weather Condition: Sunny

Date of Gampling.		•			tilei oo		•												
Monitoring Location		WE1			WE2			WE3			WE4			WE5			WE6		
Time (hhmm)		1120			1206			1215			1235			1150			1135		
Tide Mode		ebb			ebb		ebb			ebb			ebb			ebb			
River Condition		Normal			Normal		Normal			Normal			Normal			Normal			
Water Depth (m)		< 1.0			< 1.0			< 1.0			< 1.0		< 1.0			< 1.0			
pH value		6.63			7.33			7.68		7.35			7.26			5.87			
Temperature (oC)		20.8			22.0		22.5			22.7			22.1			20.9			
Salinity (ppt)		0.0			7.1		14.4				14.8			15.1		0.0			
Conductivity (ms/m)		8.0		1240.0			2380.0		2460.0			2460.0		6.0					
Water flow (m/s)		0.000			0.050		0.045		0.060		0.100		0.000						
Turbidity (NTU)	2.3	2.4	Average 2.35	4.1	4.2	Average 4.15	10.3	10.5	Average 10.40	8.7	8.8	Average 8.8	7.5	7.3	Average 7.40	0.0	0.0	Average 0.0	
DO (mg/l)	7.33	7.32	Average 7.33	8.65	8.62	Average 8.64	9.46	9.46	Average 9.46	8.80	8.80	Average 8.80	8.13	8.11	Average 8.12	7.44	7.46	Average 7.45	
DO Saturation (%)	82	82	Average 82	103	103	Average	119	119	Average	112	112	Average	102	102	Average	84	84	Average 84	

Name	Signature	Date		
Prepared By: Jimmy Cheng	4	2009/4/9	remark or observation:	

Appendix D5

Ecological Water Monitoring Results (lab report)

GEOTECHNICS & CONCRETE ENGINEERING (H. K.) LTD. 6 KO SHAN RD., GROUND FL., HUNG HOM, KOWLOON, HONG KONG. TEL.: 852-2365 9123 FAX NO.: 852-2765 8034

: GCC090400062

Report No.

TEST SUMMARY ON ENVIRONMENTAL ANALYSIS OF WATER AND WASTEWATER

Page 1 of 1

: 15-03-2009

Date of Issue

Client*	: Envi	ronmental	Pioneers	& Solu	tions Lim	nited		<u> </u>		Date Receive	d	: 08-	09-2008			
Client Address*	: 8/F,	Chaiwan I	ndustrial	Centre	Building	, 20 Lee (Chur	ng Street, C	haiwan	, HK.						
	DSD	Contract	No. DC/2	2006/11	l - Draina	age Impro	vem	ent in Soutl	hern La	ntau & Constr	ucti	on of				
Project*	: Mui	Mui Wo Village Sewerage Phase 1 G/F, 20 Pak Kung Street, Hung Hom, Kowloon. Date Started : 09-04-2009														
Test Location	:G/I	F, 20 Pak	Kung Str	eet, Hu	ng Hom,	Kowloon				Date Started		: 09-0	04-2009			
W.O. No.*	:			Saı	mple Typ	e* : <u>R</u>	iver	Water		Date Complet	ted	: 14-0	04-2009			
GCE Serial No.	: WQN	И042009		GC	E Reg. N	lo. : <u>G</u>		Test Unit No. : CH 08258								
					,				-							
Analysis Descrip	tion	Т	est Meth	od	Units				Quality	y Control Resu	ılts					
Peters						Metho Blank		QC 500 m	g/L C	ΩC Duplicate	R	PD%	Spike 25 mg/			
Suspended Solid	s (SS)	APHA	\ 20ed 2!	540 D	mg/L	< 1.0)	485		482	(0.6	27.7			
		-	Acce	eptance	: Criteria	<2.5 m	g/L	475 ≤ C	ontrol L	_imit ≤ 514	≤	±5%	21 ≤ R ≤ 29			
	San	nple ID	WE1		VE1	WE2		WE2	WE3	WE3						
TEGT BEOLU TO			, ,	Dup	licate	VV L. Z	Duplicate		Duplicate Apr. 2009 / 12:15							
TEST RESULTS	i .	mpling e/Time	09 Apr.	09 Apr. 2009 /		09 Apr. 2009 / 12		9 / 12:06			09 A _l					
	LOD	Units														
Suspended Solids (SS)	1	mg/L	2.1	2.1 1.9		1.9		6.5		6.5	9.5	9.9				
	San	nple ID	WE4		VE4 olicate	WE5	£	WE5 Duplicate	WE6	/E6 WE6 Duplicate						
TEST RESULTS		npling e/Time	09 Apr.	2009	/ 12:35	09 Apr. 2009		09 / 11:50 09 /		Apr. 2009 / 11:35						
	LOD	Units]								ACC.			
Suspended Solids (SS)	1	mg/L	7.6	7	7.5	8.9		9.2	< 1.0	< 1.0						
t: Information p	rovided	by client	·				l									
Note: This la	aborator	v has no r	esponsib	ility on	sampling	and all ti	he te	est results r	elate oi	nly to the sam	nle ·	tested :	as received			
		,		,		,			0.000	, to the dans	pio	LOGICU 1	23 TCCCTVGG.			
Remarks : Lo	cation I	V11 & WE3	and Loc	ation M				e location.								
						End -										
										/	,	. £				
ested By :		LI YUKI						proved Signa		نصوک:			-			
Checked By :		GH CHI	N.E				Nan			: GU CI						
Checked By : GU CHIN							Post : Chemist									

Form No. : WQM/R1 (01-09-2008)

TEST REPORT ON ENVIRONMENTAL ANALYSIS OF WATER

Page 1 of 1 Report No. : GCC090400151 : 27-04-2009 Client* : Environmental Pioneers & Solutions Limited Order Received : 08-09-2008 Client Address*: 8/F, Chaiwan Industrial Centre Building, 20 Lee Chung Street, Chaiwan, HK. DSD Contract No. DC/2006/11 - Drainage Improvement in Southern Lantau & Construction of Project* : Mui Wo Village Sewerage Phase 1 : G/F, 20 Pak Kung Street, Hung Hom, Kowloon. Test Location Date Started : 09-04-2009 W.O. No.* Contract No.* Date Completed: 24-04-2009 GCE Serial No. : WQM042009 Sampling Date* : 09-04-2009 / 11:20 Sample Type* : River Water GCE Reg. No. : GCE 081096 Test Unit No. Sample I.D.* : CH 08258 : WE1 Descripption : River Water TEST REFERENCE DESCRIPTION TEST RESULT (In-House Method based on) APHA 20ed 2110 Appearance Odour Characteristics: --Odour APHA 20ed 2150 B Threshold Odour Number (TON): pH Value at temperature [] °C APHA 20ed 4500-H B Colour TCU APHA 20ed 2120 B Turbidity NTU APHA 20ed 2130 B Conductivity at 25°C μS/cm APHA 20ed 2510 B Salinity g/L APHA 20ed 2520 B APHA 20ed 4500-NH₃ D 0.04 Nitrogen (Ammonia) mg/L APHA 20ed 4500-NH₃ E APHA 18ed 4500-NH3 C Nitrogen (Nitrate) 0.08 mg/L APHA 20ed 4500-NO3 E Phosphorus APHA 20ed 4500-P D 0.04 mg/L Biochemical Oxygen Demand (BOD₅) mg/L APHA 20ed 5210 B 2 Chemical Oxygen Demand (COD) APHA 20ed 5220 D mg/L Total Suspended Solid APHA 20ed 2540 D mg/L *: Information provided by client This laboratory has no responsibility on sampling and all the test results relate only to the sample tested as received. Note: Sample received on 09 April 2009. REMARKS: Sample Location WE1. ----- End -----T.W. Lam, K.L. Fong Tested By Certified By Name Gu Chin

Post

Chemist

Form No. : EWA-D2/R (19-1-2009)

Gu Chin

TEST REPORT ON ENVIRONMENTAL ANALYSIS OF WATER

Page 1 of 1 : GCC090400177 Date of Issue : 27-04-2009 Report No. Order Received : 08-09-2008 Client* : Environmental Pioneers & Solutions Limited Client Address*: 8/F, Chaiwan Industrial Centre Building, 20 Lee Chung Street, Chaiwan, HK. DSD Contract No. DC/2006/11 - Drainage Improvement in Southern Lantau & Construction of Project* : Mui Wo Village Sewerage Phase 1 : 09-04-2009 Test Location : G/F, 20 Pak Kung Street, Hung Hom, Kowloon. Date Started W.O. No.* Contract No.* Date Completed: 24-04-2009 GCE Serial No. : WQM042009 Sampling Date* : 09-04-2009 / 12:06 Sample Type* : River Water : GCE 081096 GCE Reg. No. Test Unit No. : CH 08258 Sample I.D.* : WE2 Descripption : River Water TEST REFERENCE DESCRIPTION TEST RESULT (In-House Method based on) Appearance APHA 20ed 2110 Odour Characteristics: --Odour APHA 20ed 2150 B Threshold Odour Number (TON): pH Value at temperature [] °C APHA 20ed 4500-H B Colour TCU APHA 20ed 2120 B Turbidity NTU APHA 20ed 2130 B Conductivity at 25°C μS/cm APHA 20ed 2510 B Salinity g/L APHA 20ed 2520 B APHA 20ed 4500-NH3 D 0.31 APHA 20ed 4500-NH3 E Nitrogen (Ammonia) mg/L APHA 18ed 4500-NH₃ C Nitrogen (Nitrate) APHA 20ed 4500-NO3 E 0.29 mg/L Phosphorus mq/L APHA 20ed 4500-P D 0.12Biochemical Oxygen Demand (BOD₅) mg/L APHA 20ed 5210 B 3 Chemical Oxygen Demand (COD) mg/L APHA 20ed 5220 D Total Suspended Solid APHA 20ed 2540 D mg/L * : Information provided by client This laboratory has no responsibility on sampling and all the test results relate only to the sample tested as received. Note: Sample received on 09 April 2009. REMARKS: Sample Location WE2. ---- End -----Tested By T.W. Lam, K.L. Fong Certified By

Name

Post

Gu Chin

Chemist

Form No.: EWA-D2/R (19-1-2009)

Gu Chin

TEST REPORT ON ENVIRONMENTAL ANALYSIS OF WATER

Page 1 of 1 : GCC090400169 : 27-04-2009 Report No. Date of Issue Client* Order Received : 08-09-2008 : Environmental Pioneers & Solutions Limited Client Address*: 8/F, Chaiwan Industrial Centre Building, 20 Lee Chung Street, Chaiwan, HK. DSD Contract No. DC/2006/11 - Drainage Improvement in Southern Lantau & Construction of Project* : Mui Wo Village Sewerage Phase 1 Test Location : G/F, 20 Pak Kung Street, Hung Hom, Kowloon. Date Started : 09-04-2009 W.O. No.* Contract No.* Date Completed: 24-04-2009 GCE Serial No. : WQM042009 Sampling Date* : 09-04-2009 / 11:20 Sample Type* : River Water : GCE 081096 GCE Reg. No. Test Unit No. : CH 08258 Sample I.D.* : WE1 Duplicate Descripption : River Water TEST REFERENCE DESCRIPTION TEST RESULT (In-House Method based on) APHA 20ed 2110 Appearance Odour Characteristics: --Odour APHA 20ed 2150 B Threshold Odour Number (TON): pH Value at temperature [] °C APHA 20ed 4500-H B Colour TCU APHA 20ed 2120 B Turbidity NTU APHA 20ed 2130 B Conductivity at 25°C μS/cm APHA 20ed 2510 B Salinity g/L APHA 20ed 2520 B APHA 20ed 4500-NH3 D 0.04 Nitrogen (Ammonia) mg/L APHA 20ed 4500-NH3 E APHA 18ed 4500-NH₃ C Nitrogen (Nitrate) mg/L APHA 20ed 4500-NO3 E 0.07 Phosphorus mq/L APHA 20ed 4500-P D 0.04 Biochemical Oxygen Demand (BOD₅) mg/L APHA 20ed 5210 B 2 Chemical Oxygen Demand (COD) APHA 20ed 5220 D mg/L --Total Suspended Solid mg/L APHA 20ed 2540 D *: Information provided by client Note: This laboratory has no responsibility on sampling and all the test results relate only to the sample tested as received. Sample received on 09 April 2009. REMARKS: Sample Location WE1. ---- End -----Tested By T.W. Lam, K.L. Fong Certified By Name Gu Chin

Post

Chemist

Form No.: EWA-D2/R (19-1-2009)

Gu Chin

TEST REPORT ON ENVIRONMENTAL ANALYSIS OF WATER

Page 1 of 1 Report No. : GCC090400185 Date of Issue : 27-04-2009 Client* : Environmental Pioneers & Solutions Limited Order Received : 08-09-2008 Client Address*: 8/F, Chaiwan Industrial Centre Building, 20 Lee Chung Street, Chaiwan, HK. DSD Contract No. DC/2006/11 - Drainage Improvement in Southern Lantau & Construction of Project* : Mui Wo Village Sewerage Phase 1 Test Location : G/F, 20 Pak Kung Street, Hung Hom, Kowloon. Date Started : 09-04-2009 W.O. No.* Contract No.* Date Completed: 24-04-2009 GCE Serial No. : WQM042009 Sampling Date* : 09-04-2009 / 12:06 Sample Type* : River Water GCE Reg. No. : GCE 081096 Test Unit No. : CH 08258 Sample I.D.* : WE2 Duplicate Descripption : River Water TEST REFERENCE DESCRIPTION TEST RESULT (In-House Method based on) Appearance APHA 20ed 2110 Odour Characteristics: --Odour APHA 20ed 2150 B Threshold Odour Number (TON):] °C APHA 20ed 4500-H+ B pH Value at temperature [Colour TCU APHA 20ed 2120 B NTU Turbidity APHA 20ed 2130 B __ Conductivity at 25°C APHA 20ed 2510 B μS/cm Salinity g/L APHA 20ed 2520 B APHA 20ed 4500-NH₃ D 0.31 Nitrogen (Ammonia) APHA 20ed 4500-NH3 E ma/L APHA 18ed 4500-NH₃ C Nitrogen (Nitrate) mg/L APHA 20ed 4500-NO3 E 0.29 Phosphorus APHA 20ed 4500-P D 0.12 mg/L Biochemical Oxygen Demand (BOD₅) mg/L APHA 20ed 5210 B 3 Chemical Oxygen Demand (COD) mg/L APHA 20ed 5220 D Total Suspended Solid mg/L APHA 20ed 2540 D *: Information provided by client Note: This laboratory has no responsibility on sampling and all the test results relate only to the sample tested as received. Sample received on 09 April 2009. REMARKS: Sample Location WE2. ---- End ----Tested By : T.W. Lam, K.L. Fong Certified By Name Gu Chin Gu Chin Checked By : Post Chemist

Form No.: EWA-D2/R (19-1-2009)

TEST REPORT ON ENVIRONMENTAL ANALYSIS OF WATER

Page 1 of 1 Date of Issue : 27-04-2009 Report No. : GCC090400193 Client* : Environmental Pioneers & Solutions Limited Order Received: 08-09-2008 Client Address*: 8/F, Chaiwan Industrial Centre Building, 20 Lee Chung Street, Chaiwan, HK. DSD Contract No. DC/2006/11 - Drainage Improvement in Southern Lantau & Construction of Project* : Mui Wo Village Sewerage Phase 1 : G/F, 20 Pak Kung Street, Hung Hom, Kowloon. Date Started : 09-04-2009 **Test Location** W.O. No.* Contract No.* Date Completed: 24-04-2009 GCE Serial No. : WQM042009 Sampling Date* : 09-04-2009 / 12:15 Sample Type* : River Water GCE Reg. No. : GCE 081096 Test Unit No. : CH 08258 Sample I.D.* : WE3 : River Water Descripption TEST REFERENCE DESCRIPTION TEST RESULT (In-House Method based on) Appearance APHA 20ed 2110 Odour Characteristics: --Odour APHA 20ed 2150 B Threshold Odour Number (TON):] °C APHA 20ed 4500-H+ B pH Value at temperature [TCU Colour APHA 20ed 2120 B NTU Turbidity APHA 20ed 2130 B --APHA 20ed 2510 B Conductivity at 25°C μS/cm Salinity APHA 20ed 2520 B g/L APHA 20ed 4500-NH₃ D 0.14 Nitrogen (Ammonia) APHA 20ed 4500-NH₃ E mg/L --APHA 18ed 4500-NH₃ C Nitrogen (Nitrate) mg/L APHA 20ed 4500-NO3 E 0.27 Phosphorus APHA 20ed 4500-P D 0.09 mg/L Biochemical Oxygen Demand (BOD₅) mg/L APHA 20ed 5210 B 3 Chemical Oxygen Demand (COD) mg/L APHA 20ed 5220 D Total Suspended Solid mg/L APHA 20ed 2540 D * : Information provided by client Note: This laboratory has no responsibility on sampling and all the test results relate only to the sample tested as received. Sample received on 09 April 2009. REMARKS: Sample Location WE3. ---- End ----: T.W. Lam, K.L. Fong Tested By Certified By Name Gu Chin

Post

Chemist

Form No. : EWA-D2/R (19-1-2009)

Checked By :

Gu Chin

TEST REPORT ON ENVIRONMENTAL ANALYSIS OF WATER

Page 1 of 1 : 27-04-2009 Report No. : GCC090400208 Date of Issue Client* : Environmental Pioneers & Solutions Limited Order Received : 08-09-2008 Client Address*: 8/F, Chaiwan Industrial Centre Building, 20 Lee Chung Street, Chaiwan, HK. DSD Contract No. DC/2006/11 - Drainage Improvement in Southern Lantau & Construction of Project* : Mui Wo Village Sewerage Phase 1 **Test Location** : G/F, 20 Pak Kung Street, Hung Hom, Kowloon. Date Started : 09-04-2009 W.O. No.* Contract No.* Date Completed: 24-04-2009 : WQM042009 GCE Serial No. Sampling Date* : 09-04-2009 / 12:15 Sample Type* : River Water : GCE 081096 GCE Reg. No. Test Unit No. : CH 08258 Sample I.D.* : WE3 Duplicate Descripption : River Water TEST REFERENCE TEST RESULT DESCRIPTION (In-House Method based on) Appearance APHA 20ed 2110 Odour Characteristics: --Odour APHA 20ed 2150 B Threshold Odour Number (TON): pH Value at temperature [] °C APHA 20ed 4500-H B Colour TCU APHA 20ed 2120 B Turbidity NTU APHA 20ed 2130 B --Conductivity at 25°C μS/cm APHA 20ed 2510 B Salinity g/L APHA 20ed 2520 B APHA 20ed 4500-NH₃ D 0.15 APHA 20ed 4500-NH3 E Nitrogen (Ammonia) mg/L APHA 18ed 4500-NH₃ C Nitrogen (Nitrate) mg/L APHA 20ed 4500-NO₃ E 0.27 Phosphorus mg/L APHA 20ed 4500-P D 0.09 Biochemical Oxygen Demand (BOD₅) mg/L APHA 20ed 5210 B 3 APHA 20ed 5220 D Chemical Oxygen Demand (COD) mg/L --Total Suspended Solid mg/L APHA 20ed 2540 D * : Information provided by client Note: This laboratory has no responsibility on sampling and all the test results relate only to the sample tested as received. Sample received on 09 April 2009. REMARKS: Sample Location WE3. ---- End ----Tested By T.W. Lam, K.L. Fong Certified By

Name

Post

Gu Chin

Chemist

Form No.: EWA-D2/R (19-1-2009)

Gu Chin

TEST REPORT ON ENVIRONMENTAL ANALYSIS OF WATER

Report No. : GCC090400216	Page 1 of 1 Date of Issue : 27-04-2009		
Client* : Environmental Pioneers 8	& Solutions Limited	Order Received : 08-09-2008	
Client Address* : 8/F, Chaiwan Industrial C	Centre Building, 20 Lee Chung Stre	et, Chaiwan, HK.	
		Southern Lantau & Construction of	
Project* : Mui Wo Village Sewerage	1998 1990 to 1	D. J. O. J. J	
	et, Hung Hom, Kowloon.	Date Started : 09-04-2009	
W.O. No.* :	Contract No.* :	Date Completed : 24-04-2009	
GCE Serial No. : WQM042009	Sampling Date* : 09-04-2009		
GCE Reg. No. : GCE 081096	Test Unit No. : CH 08258	Sample I.D.* : WE4	
Descripption : River Water	= 1 ***********************************		
DESCRIPTION	TEST REFERENCE (In-House Method based on)	TEST RESULT	
Appearance	APHA 20ed 2110		
Odous	ADUA 20-4 2450 D	Odour Characteristics :	
Odour	APHA 20ed 2150 B	Threshold Odour Number (TON) :	
pH Value at temperature [] °C	APHA 20ed 4500-H ⁺ B		
Colour TCU	APHA 20ed 2120 B		
Turbidity NTU	APHA 20ed 2130 B		
Conductivity at 25°C μS/cm	APHA 20ed 2510 B		
Salinity g/L	APHA 20ed 2520 B		
- W-W M M - M - M - M - M - M - M - M -	APHA 20ed 4500-NH ₃ D	0.14	
Nitrogen (Ammonia) mg/L	APHA 20ed 4500-NH ₃ E		
2	APHA 18ed 4500-NH ₃ C		
Nitrogen (Nitrate) mg/L	APHA 20ed 4500-NO ₃ E	0.38	
Phosphorus mg/L	APHA 20ed 4500-P D	0.06	
Biochemical Oxygen Demand (BOD ₅) mg/L	APHA 20ed 5210 B	2	
Chemical Oxygen Demand (COD) mg/L	APHA 20ed 5220 D		
Total Suspended Solid mg/L	APHA 20ed 2540 D		
* : Information provided by client		1	
Note: This laboratory has no responsibil Sample received on 09 April 2		ults relate only to the sample tested as received.	
REMARKS: Sample Location WE4.	End		
Tested By :T.W. Lam, K.L. F		iy :	
	Name	: Gu Chin	

Post

Chemist

Form No.; EWA-D2/R (19-1-2009)

Gu Chin

Checked By : ____

TEST REPORT ON ENVIRONMENTAL ANALYSIS OF WATER

Page 1 of 1 : GCC090400224 : 27-04-2009 Report No. Date of Issue Client* : Environmental Pioneers & Solutions Limited Order Received : 08-09-2008 Client Address*: 8/F, Chaiwan Industrial Centre Building, 20 Lee Chung Street, Chaiwan, HK. DSD Contract No. DC/2006/11 - Drainage Improvement in Southern Lantau & Construction of Project* : Mui Wo Village Sewerage Phase 1 Test Location : G/F, 20 Pak Kung Street, Hung Hom, Kowloon. Date Started : 09-04-2009 W.O. No.* Contract No.* Date Completed: 24-04-2009 GCE Serial No. : WQM042009 Sampling Date* : 09-04-2009 / 12:35 Sample Type* : River Water GCE Reg. No. : GCE 081096 : WE4 Duplicate Test Unit No. : CH 08258 Sample I.D.* Descripption : River Water **TEST REFERENCE** DESCRIPTION TEST RESULT (In-House Method based on) APHA 20ed 2110 Appearance Odour Characteristics: --Odour APHA 20ed 2150 B Threshold Odour Number (TON): pH Value at temperature [] °C APHA 20ed 4500-H B Colour TCU APHA 20ed 2120 B Turbidity NTU APHA 20ed 2130 B µS/cm Conductivity at 25°C APHA 20ed 2510 B Salinity g/L APHA 20ed 2520 B APHA 20ed 4500-NH3 D 0.13 APHA 20ed 4500-NH3 E Nitrogen (Ammonia) mg/L APHA 18ed 4500-NH₃ C Nitrogen (Nitrate) APHA 20ed 4500-NO₃ E 0.39 mg/L Phosphorus APHA 20ed 4500-P D 0.06 mg/L Biochemical Oxygen Demand (BOD₅) mg/L APHA 20ed 5210 B 2 Chemical Oxygen Demand (COD) mg/L APHA 20ed 5220 D Total Suspended Solid APHA 20ed 2540 D mg/L * : Information provided by client This laboratory has no responsibility on sampling and all the test results relate only to the sample tested as received. Note: Sample received on 09 April 2009. REMARKS: Sample Location WE4. ---- End -----T.W. Lam, K.L. Fong Tested By Certified By Name Gu Chin

Post

Chemist

Form No.: EWA-D2/R (19-1-2009)

Gu Chin

TEST REPORT ON ENVIRONMENTAL ANALYSIS OF WATER

Page 1 of 1 : 27-04-2009 : GCC090400232 Date of Issue Report No. Client* : Environmental Pioneers & Solutions Limited Order Received : 08-09-2008 Client Address*: 8/F, Chaiwan Industrial Centre Building, 20 Lee Chung Street, Chaiwan, HK. DSD Contract No. DC/2006/11 - Drainage Improvement in Southern Lantau & Construction of Project* : Mui Wo Village Sewerage Phase 1 : 09-04-2009 Test Location : G/F, 20 Pak Kung Street, Hung Hom, Kowloon. Date Started W.O. No.* Contract No.* Date Completed: 24-04-2009 GCE Serial No. : WQM042009 Sampling Date* : 09-04-2009 / 11:50 Sample Type* : River Water GCE Reg. No. : GCE 081096 : CH 08258 Sample 1.D.* : WE5 Test Unit No. Descripption : River Water TEST REFERENCE DESCRIPTION TEST RESULT (In-House Method based on) Appearance APHA 20ed 2110 Odour Characteristics: --Odour APHA 20ed 2150 B Threshold Odour Number (TON): pH Value at temperature [] °C APHA 20ed 4500-H+ B Colour TCU APHA 20ed 2120 B Turbidity NTU APHA 20ed 2130 B Conductivity at 25°C μS/cm APHA 20ed 2510 B Salinity g/L APHA 20ed 2520 B APHA 20ed 4500-NH₃ D 0.13 APHA 20ed 4500-NH₃ E Nitrogen (Ammonia) mg/L APHA 18ed 4500-NH₃ C Nitrogen (Nitrate) 0.40APHA 20ed 4500-NO3 E mg/L Phosphorus 0.06 APHA 20ed 4500-P D mg/L Biochemical Oxygen Demand (BOD₅) mg/L APHA 20ed 5210 B 2 Chemical Oxygen Demand (COD) mg/L APHA 20ed 5220 D Total Suspended Solid APHA 20ed 2540 D mg/L * : Information provided by client This laboratory has no responsibility on sampling and all the test results relate only to the sample tested as received. Note: Sample received on 09 April 2009. REMARKS: Sample Location WE5. ---- End ----Tested By T.W. Lam, K.L. Fong Certified By

Name

Post

Gu Chin

Chemist

Form No.: EWA-D2/R (19-1-2009)

Gu Chin

TEST REPORT ON ENVIRONMENTAL ANALYSIS OF WATER

Page 1 of 1 Report No. : GCC090400240 Date of Issue : 27-04-2009 Client* : Environmental Pioneers & Solutions Limited Order Received : 08-09-2008 Client Address*: 8/F, Chaiwan Industrial Centre Building, 20 Lee Chung Street, Chaiwan, HK. DSD Contract No. DC/2006/11 - Drainage Improvement in Southern Lantau & Construction of Project* : Mui Wo Village Sewerage Phase 1 Test Location : G/F, 20 Pak Kung Street, Hung Hom, Kowloon. Date Started : 09-04-2009 W.O. No.* Contract No.* Date Completed: 24-04-2009 GCE Serial No. : WQM042009 Sampling Date* : 09-04-2009 / 11:50 Sample Type* : River Water GCE Reg. No. : GCE 081096 Test Unit No. : CH 08258 Sample I.D.* : WE5 Duplicate Descripption : River Water TEST REFERENCE DESCRIPTION TEST RESULT (In-House Method based on) Appearance APHA 20ed 2110 Odour Characteristics: --Odour APHA 20ed 2150 B Threshold Odour Number (TON): pH Value at temperature [] °C APHA 20ed 4500-H+ B Colour TCU APHA 20ed 2120 B Turbidity NTU APHA 20ed 2130 B --Conductivity at 25°C μS/cm APHA 20ed 2510 B Salinity g/L APHA 20ed 2520 B APHA 20ed 4500-NH₃ D 0.13 Nitrogen (Ammonia) mg/L APHA 20ed 4500-NH3 E APHA 18ed 4500-NH₃ C Nitrogen (Nitrate) mg/L APHA 20ed 4500-NO3 E 0.41 Phosphorus 0.06 mg/L APHA 20ed 4500-P D Biochemical Oxygen Demand (BOD₅) mg/L APHA 20ed 5210 B 2 Chemical Oxygen Demand (COD) APHA 20ed 5220 D mg/L ---Total Suspended Solid mg/L APHA 20ed 2540 D * : Information provided by client This laboratory has no responsibility on sampling and all the test results relate only to the sample tested as received. Note: Sample received on 09 April 2009. REMARKS: Sample Location WE5. ---- End ----Tested By T.W. Lam, K.L. Fong Certified By

Name

Post

Chemist

Form No.: EWA-D2/R (19-1-2009)

Gu Chin

TEST REPORT ON ENVIRONMENTAL ANALYSIS OF WATER

Report No. : GCC09000258		Page 1 of 1 Date of Issue : 27-04-2009		
Client* : Environmental Pioneers	: Environmental Pioneers & Solutions Limited			
Client Address* : 8/F, Chaiwan Industrial	Centre Building, 20 Lee Chung Stre	et, Chaiwan, HK.		
	006/11 - Drainage Improvement in	Southern Lantau & Construction of		
Project* : Mui Wo Village Sewerag				
	et, Hung Hom, Kowloon.	Date Started : 09-04-2009		
W.O. No.* :	Contract No.* :	Date Completed : 24-04-2009		
GCE Serial No. : WQM042009	Sampling Date* : 09-04-2009			
GCE Reg. No. : GCE 081096	Test Unit No. : CH 08258	Sample I.D.* : WE6		
Descripption : River Water				
DESCRIPTION	TEST REFERENCE (In-House Method based on)	TEST RESULT		
Appearance	APHA 20ed 2110			
Odour	APHA 20ed 2150 B	Odour Characteristics:		
Odddi	AFHA 20ed 2150 B	Threshold Odour Number (TON):		
pH Value at temperature [] °C	APHA 20ed 4500-H ⁺ B			
Colour TCU	APHA 20ed 2120 B			
Turbidity NTU	APHA 20ed 2130 B			
Conductivity at 25°C μS/cm	APHA 20ed 2510 B			
Salinity g/L	APHA 20ed 2520 B			
- 70-11-1	APHA 20ed 4500-NH ₃ D	0.02		
Nitrogen (Ammonia) mg/L	APHA 20ed 4500-NH ₃ E			
	APHA 18ed 4500-NH ₃ C			
Nitrogen (Nitrate) mg/L	APHA 20ed 4500-NO ₃ ⁻ E	0.05		
Phosphorus mg/L	APHA 20ed 4500-P D	0.03		
Biochemical Oxygen Demand (BOD ₅) mg/L	APHA 20ed 5210 B	1		
Chemical Oxygen Demand (COD) mg/L	APHA 20ed 5220 D			
Total Suspended Solid mg/L	APHA 20ed 2540 D			
* : Information provided by client				
Note: This laboratory has no responsible Sample received on 09 April 2		ults relate only to the sample tested as received.		
REMARKS: Sample Location WE6.	End			
Tested By : T.W. Lam, K.L. F		sy : Lassi		
	Name	: Gu Chin		

Post

Chemist

Form No.: EWA-D2/R (19-1-2009)

Gu Chin

Checked By : ____

TEST REPORT ON ENVIRONMENTAL ANALYSIS OF WATER

Report No. : GCC090400266	Page 1 of 1 Date of Issue : 27-04-2009		
Client* : Environmental Pioneers 8	& Solutions Limited	Order Received : 08-09-2008	
Client Address* : 8/F, Chaiwan Industrial (Centre Building, 20 Lee Chung Stree	et, Chaiwan, HK.	
DSD Contract No. DC/20	006/11 - Drainage Improvement in S	Southern Lantau & Construction of	
Project* : Mui Wo Village Sewerag	e Phase 1		
Test Location : G/F, 20 Pak Kung Stre	et, Hung Hom, Kowloon.	Date Started : 09-04-2009	
W.O. No.* :	Contract No.* :	Date Completed : 24-04-2009	
GCE Serial No. : WQM042009	Sampling Date* : 09-04-2009	/ 11:35 Sample Type* : River Water	
GCE Reg. No. : GCE 081096	Test Unit No. : CH 08258	Sample I.D.* : WE6 Duplicate	
Descripption : River Water			
DESCRIPTION	TEST REFERENCE (In-House Method based on)	TEST RESULT	
Appearance	APHA 20ed 2110	-	
Odour	APHA 20ed 2150 B	Odour Characteristics :	
Ododi	AFNA 20eu 2190 B	Threshold Odour Number (TON) :	
pH Value at temperature [1 °C	APHA 20ed 4500-H ⁺ B		
Colour TCU	APHA 20ed 2120 B		
Turbidity NTU	APHA 20ed 2130 B		
Conductivity at 25°C μS/cm	APHA 20ed 2510 B		
Salinity g/L	APHA 20ed 2520 B		
	APHA 20ed 4500-NH ₃ D	0.02	
Nitrogen (Ammonia) mg/L	APHA 20ed 4500-NH ₃ E		
	APHA 18ed 4500-NH ₃ C		
Nitrogen (Nitrate) mg/L	APHA 20ed 4500-NO ₃ E	0.05	
Phosphorus mg/L	APHA 20ed 4500-P D	0.03	
Biochemical Oxygen Demand (BOD ₅) mg/L	APHA 20ed 5210 B	1	
Chemical Oxygen Demand (COD) mg/L	APHA 20ed 5220 D		
Total Suspended Solid mg/L	APHA 20ed 2540 D		
* : Information provided by client		I	
•	54		
Note: This laboratory has no responsibil Sample received on 09 April 2 REMARKS: Sample Location WE6.		Ilts relate only to the sample tested as received.	
Tootad Du . T.M. Law. K. F	0.00.10	1.1	
Tested By : T.W. Lam, K.L. F	ong Certified B	y : Gu Chin	

Post

: _____Chemist

Form No. : EWA-D2/R (19-1-2009)

Checked By : Gu Chin

Appendix E

Monitoring Location		N1	N2		
Description of Location		Façade	Façade		
Date of Monitoring			2009	9/4/6	
Measurement Start Time	е	(hhmm)	1450	1415	
Measurement Time Len	gth	(mins.)	30 ı	mins	
Noise Meter Model/ Ider	ntificatio	on	SVAI	N 949	
Calibrator Model/ Identif	fication		SVAN	SV 30A	
Wind Speed	(r	n/s)	0.3	0.8	
	L90	(dB(A))	43.7	42.2	
Measurement Results	L10	(dB(A))	48.8	55.0	
	Leq	(dB(A))	47.2	52.0	
Weather condition:			Cloudy		
Major Construction Noise Sourse(s) During Monitoring			no construction works are being carried out during measurement.	Hammer noise House Keeping noise	
Other Noise Source(s) During Monitoring				1. Public noise	
Remarks					

	Name & Designation	<u>Signature</u>	Date:
	_	1	
Prepared by:	Jimmy Cheng	<u> </u>	2009/4/6

Monitoring Location		N3	N4		
Description of Location			Freefield	Facede	
Date of Monitoring			2009	9/4/6	
Measurement Start Time	е	(hhmm)	1340	1300	
Measurement Time Len	gth	(mins.)	30 r	mins	
Noise Meter Model/ Ider	ntificatio	on	SVAI	N 949	
Calibrator Model/ Identif	fication		SVAN	SV 30A	
Wind Speed	1)	n/s)	0.9	0.6	
	L90	(dB(A))	43.6	41.7	
Measurement Results	L10	(dB(A))	49.5	48.2	
	Leq	(dB(A))	48.1	46.3	
Weather condition:			Cloudy		
Major Construction Noise Sourse(s) During Monitoring			no construction works are being carried out during measurement.	no construction works are being carried out during measurement.	
Other Noise Source(s) During Monitoring			Public noise Traffic noise (Bicycles)	1. Public noise	
Remarks			_		

	Name & Designation	<u>Signature</u>	<u>Date:</u>
Prepared by:	Jimmy Cheng	4	2009/4/6

Monitoring Location		N1	N2		
Description of Location			Façade	Façade	
Date of Monitoring			2009	/4/15	
Measurement Start Time	e ((hhmm)	13:35	14:08	
Measurement Time Len	gth	(mins.)	30 ı	mins	
Noise Meter Model/ Ider	ntificatio	n	SVAI	N 949	
Calibrator Model/ Identif	ication		SVAN	SV 30A	
Wind Speed	(n	n/s)	0.7	1.5	
	L90	(dB(A))	47.8	50.6	
Measurement Results	L10	(dB(A))	55.9	64.0	
	Leq	(dB(A))	53.0	61.2	
Weather condition:			Sunny		
Major Construction Noise Sourse(s) During Monitoring			1. Excavator noise	Excavatpr noise Hand breaking noise	
Other Noise Source(s) During Monitoring				1. Public noise	
Remarks					

	Name & Designation	<u>Signature</u>	<u>Date:</u>
		1	
Prepared by:	Jimmy Cheng	4	2009/4/15

Monitoring Location		N3	N4		
Description of Location			Freefield	Facede	
Date of Monitoring			2009	/4/15	
Measurement Start Time	е	(hhmm)	13:00	14:42	
Measurement Time Len	gth	(mins.)	30 r	mins	
Noise Meter Model/ Ider	ntificatio	on	SVAI	N 949	
Calibrator Model/ Identif	ication		SVAN	SV 30A	
Wind Speed	(r	n/s)	1.3	0.9	
	L90	(dB(A))	57.3	47.2	
Measurement Results	L10	(dB(A))	62.4	61.7	
	Leq	(dB(A))	61.1	59.0	
Weather condition:			Sunny		
Major Construction Noise Sourse(s) During Monitoring			1. Excavator noise	1. Excavator noise	
Other Noise Source(s) During Monitoring			Public noise Traffic noise (Bicycle)	1. Public noise	
Remarks					

	Name & Designation	<u>Signature</u>	Date:
Prepared by:	Jimmy Cheng	4	2009/4/15

Monitoring Location		N1	N2		
Description of Location		Façade	Façade		
Date of Monitoring			2009	/4/20	
Measurement Start Time	е	(hhmm)	13:40	14:15	
Measurement Time Len	gth	(mins.)	30 ı	mins	
Noise Meter Model/ Ider	ntificati	on	SVAI	N 949	
Calibrator Model/ Identif	fication		SVAN	SV 30A	
Wind Speed	(m/s)	1.0	1.8	
	L90	(dB(A))	49.8	47.7	
Measurement Results	L10	(dB(A))	59.1	58.3	
	Leq	(dB(A))	55.7	54.7	
Weather condition:			Sunny		
Major Construction Noise Sourse(s) During Monitoring			Excavator noise Concrete Cutting Noise Truck noise	1. Excavator noise	
Other Noise Source(s) During Monitoring				1. Public noise	
Remarks					

	Name & Designation	<u>Signature</u>	<u>Date:</u>
		1	
Prepared by:	Jimmy Cheng	4	2009/4/20
•			

Monitoring Location			N3	N4				
Description of Location			Freefield	Facede				
Date of Monitoring			2009	/4/20				
Measurement Start Time	е	(hhmm)	13:00	14:53				
Measurement Time Len	gth	(mins.)	30 r	mins				
Noise Meter Model/ Ider	ntificatio	on	SVAI	N 949				
Calibrator Model/ Identif	ication		SVAN	SV 30A				
Wind Speed	1)	n/s)	1.4	1.5				
	L90	(dB(A))	54.5	47.3				
Measurement Results	L10	(dB(A))	60.6	56.6				
	Leq	(dB(A))	59.2	53.6				
Weather condition:			Su	nny				
Major Construction Nois Monitoring	se Sour	se(s) During	Power Generator noise Excavator noise	1. Excavator noise				
Other Noise Source(s) [Ouring I	Monitoring	Public noise Traffic noise (Bicycle)	1. Public noise				
Remarks			_					

	Name & Designation	<u>Signature</u>	<u>Date:</u>
Prepared by:	Jimmy Cheng	4	2009/4/20

Monitoring Location			N1	N2								
Description of Location			Façade	Façade								
Date of Monitoring			2009	/4/27								
Measurement Start Time	е	(hhmm)	11:24	13:00								
Measurement Time Len	gth	(mins.)	30 mins									
Noise Meter Model/ Ider	ntificatio	on	SVAI	N 949								
Calibrator Model/ Identif	ication		SVAN	SV 30A								
Wind Speed	(r	n/s)	0.5	0.9								
	L90	(dB(A))	47.0	42.4								
Measurement Results	L10	(dB(A))	58.3	54.0								
	Leq	(dB(A))	54.7	52.6								
Weather condition:			Su	nny								
Major Construction Nois Monitoring	se Sour	se(s) During	Excavator noise Power generator noise Hand-held breaking noise	No construction works are being carried out during measurement.								
Other Noise Source(s) [Ouring I	Monitoring		1. Public noise								
Remarks												

	Name & Designation	<u>Signature</u>	<u>Date:</u>
		1	
Prepared by:	Jimmy Cheng		2009/4/27

Monitoring Location			N3	N4				
Description of Location			Freefield	Facede				
Date of Monitoring			2009	/4/27				
Measurement Start Time	е	(hhmm)	10:50	13:35				
Measurement Time Len	gth	(mins.)	30 r	mins				
Noise Meter Model/ Ider	ntificatio	on	SVAI	N 949				
Calibrator Model/ Identif	ication		SVAN	SV 30A				
Wind Speed	(r	n/s)	1.2	0.7				
	L90	(dB(A))	47.3	48.7				
Measurement Results	L10	(dB(A))	55.1	62.5				
	Leq	(dB(A))	53.7	58.6				
Weather condition:			Su	nny				
Major Construction Nois Monitoring	se Sours	se(s) During	Excavator noise Power generator noise	1. Excavator noise				
Other Noise Source(s) [Ouring N	Monitoring	Public noise Traffic noise (Bicycle)	1. Public noise				
Remarks								

	Name & Designation	<u>Signature</u>	<u>Date:</u>
		1	
Prepared by:	Jimmy Cheng	<u> </u>	2009/4/27
		17	

Appendix F1

Water Quality
Monitoring Data Sheet

Date of Sampling:	1/4/2009	9		Cloud	y																	
Monitoring Location		M1			М2			М3		М4			C1				C2		С3			
Time (hhmm)		1700			1650		1642			1710			1600				1610			1622		
Tide Mode		mid-ebb)		mid-ebb		mid-ebb				mid-ebb	1	mid-ebb			mid-ebb				mid-ebb		
River Condition		normal			normal		normal			normal			normal			normal				normal		
Water Depth (m)		<1			< 1 7.61			< 1			1.1			< 1			< 1					
pH value		7.80			7.61			7.79			7.96		6.22			5.85			6.99			
Temperature (oC)		22.1			22.1			21.7			22.5			22.1			22.5			21.9		
Salinity (ppt)		19.7			8.3		22.0		22.0		22.9			0.0			0.0			14.1		
Turbidity (NTU)	8.9	8.8	Average	7.1	7.1	Average	6.5	6.4	Average	6.6	6.5	Average	0.0	0.0	Average	18.2	18.0	Average	7.0	6.9	Average	
			8.9			7.1			6.5			6.6			0.0			18.1			7.0	
DO (mg/l)	8.73	8.71	Average	8.61	8.61	Average	8.01	8.01	Average	8.60	8.59	Average	8.05	8.03	Average	8.13	8.10	Average	7.62	7.60	Average	
			8.72			8.61			8.01			8.60			8.04			8.12			7.61	
DO Saturation (%)	111	111	Average	107	107	Average	105	105	Average	110	110	Average	103	102	Average	105	105	Average	96	96	Average	
			111	1 107		107			05 110		110 10		103	103		105			96			

Name Prepared By: Jimmy Cheng

Date 1/4/2009

remark or

Date of Sampling: 2/4/2009 Sunny Monitoring М2 М4 C2 Location М1 М3 C1 C3 1705 1655 1700 1720 1620 1630 1645 Time (hhmm) mid-ebb mid-ebb mid-ebb mid-ebb mid-ebb mid-ebb mid-ebb Tide Mode normal normal normal normal normal normal normal River Condition 1.3 2 <1 < 1 < 1 < 1 < 1 Water Depth (m) 7.95 7.73 7.89 8.01 5.75 5.87 6.61 pH value 20.5 19.8 21.3 19.8 20.0 20.4 20.1 Temperature (oC) 21.1 16.8 23.1 24.3 0.0 0.0 10.5 Salinity (ppt) Average Average Average Average Average 7.5 3.3 Turbidity (NTU) 7.5 12.8 12.8 13.8 13.8 9.1 9.1 3.3 7.5 5.2 7.5 12.8 13.8 9.1 3.3 7.5 5.2 Average Average Average Average Average Average DO (mg/l) 8.56 8.56 9.25 8.36 8.28 7.87 7.87 8.22 8.22 3.89 9.25 8.36 8.28 3.89 8.56 9.25 8.36 8.28 7.87 8.22 3.89 Average Average Average Average Average Average Average DO Saturation (%) 109 109 115 115 109 109 108 108 90 90 95 95 46 46 109 115 109 108 90 95

Name Prepared By: Jimmy Cheng

Date 2/4/2009

Water level is high

Cloudy Date of Sampling: 6/4/2009 Monitoring М2 C2 Location М1 М3 М4 C1 C3 1105 1115 1045 1125 1135 1145 1110 Time (hhmm) mid-ebb mid-ebb mid-ebb mid-ebb mid-ebb mid-ebb mid-ebb Tide Mode normal normal normal normal normal normal normal River Condition <1 < 1 < 1 < 1 < 1 < 1 < 1 Water Depth (m) 7.04 6.95 6.75 7.51 6.25 6.77 5.81 pH value 21.9 21.3 21.0 21.3 21.3 21.4 20.8 Temperature (oC) 2.6 0.5 11.7 20.3 0.0 0.0 2.7 Salinity (ppt) Average Average Average Average Average 4.1 Turbidity (NTU) 25.9 25.9 10.4 10.4 13.1 13.1 9.2 9.2 2.8 6.9 25.9 10.4 13.1 9.2 4.1 2.8 6.9 Average Average Average Average Average Average DO (mg/l) 7.48 7.48 9.14 6.75 6.75 6.55 6.55 6.79 6.79 8.08 8.08 4.13 9.14 4.13 7.48 9.14 6.75 6.55 6.79 8.08 4.13 Average Average Average Average Average Average Average DO Saturation (%) 85 103 103 84 84 84 84 79 79 91 91 40 40 85 103 84 84 79 91 40

Name Prepared By: Jimmy Cheng

Date 6/4/2009

M2: A high school field trip event was carried out at the point

remark or

observation: works are being carried out in the upper river the location C2

sediments & contaminants accumulated in riverbed were brought to the downstream area by steep flow.

Date of Sampling:	8/4/200	9		Sunny	/																
Monitoring Location		M1			М2			МЗ			М4			C1			C2		СЗ		
Time (hhmm)		1140			1135		1130			1150				1055			1110			1120	
Tide Mode		mid-ebb)		mid-ebb		mid-ebb			mid-ebb			mid-ebb			mid-ebb				mid-ebb	
River Condition		normal			normal			normal		normal			normal				normal			normal	
Water Depth (m)		<1			< 1 7 27			< 1			1.2		< 1				< 1			< 1	
pH value		7.36			7.27			7.07			7.76		5.91			5.68			6.73		
Temperature (oC)		22.6			22.2		22.7			22.5			19.6			22.0			21.7		
Salinity (ppt)		9.6			4.5		20.3				21.5			0.0			0.0			1.3	
Turbidity (NTU)	10.7	10.7	Average	2.5	2.5	Average 2.5	5.5	5.5	Average 5.5	4.8	4.8	Average 4.8	2.3	2.3	Average 2.3	2.9	2.9	Average 2.9	6.7	6.7	Average 6.7
DO (mg/l)	9.74	9.74	Average 9.74	10.42	10.42	Average 10.42	8.23	8.23	Average 8.23	8.59	8.59	Average 8.59	6.74	6.74	Average 6.74	7.86	7.86	Average 7.86	4.21	4.21	Average 4.21
DO Saturation (%)	119	119	Average	123	123	Average	107	107	Average	112	112	Average	74	74	Average	90	90	Average	41	41	Average
			119	123		23 107			07 112		112	112		74	74 9			0 41			

Name Prepared By: Jimmy Cheng

Date 8/4/2009

remark or

Date of Sampling:	9/4/200	9		Sunny	/																	
Monitoring Location		M1			М2			МЗ			М4			C1			C2		C3			
Time (hhmm)		1215			1225			1235		1245				1120			1130			1145		
Tide Mode		mid-ebb)		mid-ebb		mid-ebb				mid-ebb			mid-ebb			mid-ebb			mid-ebb		
River Condition		normal			normal			normal		normal				normal			normal			normal		
Water Depth (m)		<1			< 1 7.54			< 1			1.4			< 1			< 1			< 1		
pH value		7.68			7.54			7.35			7.85		6.63			6.01			6.73			
Temperature (oC)		22.5			2.2		22.7			22.8			20.8			21.6			21.6			
Salinity (ppt)		14.4			7.7		14.8		14.8		21.8			0.0			0.0			7.3		
Turbidity (NTU)	10.3	10.5	Average	4.6	4.8	Average 4.7	8.7	8.8	Average	11.5	11.4	Average	2.3	2.4	Average 2.4	2.8	2.8	Average 2.8	7.3	7.3	Average 7.3	
DO (mg/l)	9.46	9.46	Average 9.46	10.03	10.03	Average	8.80	8.80	Average 8.80	8.26	8.26	Average 8.26	7.33	7.32	Average 7.33	8.15	8.15	Average 8.15	7.01	7.01	Average 7.01	
DO Saturation (%)	119	119	Average	120	120	Average	112	112	Average	109	109	Average	82	82	Average 82	93	93	Average 93	83	83	Average 83	

Name Prepared By: Jimmy Cheng

Date 9/4/2009

remark or

Date of Sampling:	14/4/20	09		Sunny	y																	
Monitoring Location		M1			М2			МЗ			М4			C1			C2			С3		
Time (hhmm)		1540			1510		1530			1550				1440			1450			1500		
Tide Mode		mid-ebb)		mid-ebb		mid-ebb				mid-ebb			mid-ebb			mid-ebb			mid-ebb		
River Condition		normal			normal			normal		normal			normal				normal			normal		
Water Depth (m)		<1			< 1			< 1			< 1			< 1			< 1			< 1		
pH value		7.87			7.41		7.53				7.95		5.56			5.79			6.33			
Temperature (oC)		27.4			26.2		27.8			27.4			26.5			25.8			27.1			
Salinity (ppt)		13.3			8.5		18.5				23.0			0.0			0.0			4.4		
Turbidity (NTU)	8.8	8.7	Average	5.1	5.2	Average	9.7	9.5	Average	12.7	12.5	Average	2.3	2.3	Average	1.4	1.4	Average	10.0	9.9	Average	
			8.8			5.2			9.6			12.6			2.3			1.4			10.0	
DO (mg/l)	10.62	10.61	Average	10.41	10.43	Average	9.81	9.80	Average	9.94	9.96	Average	9.27	9.27	Average	8.38	8.40	Average	8.44	8.43	Average	
			10.62			10.42			9.81			9.95			9.27			8.39			8.44	
DO Saturation (%)	146	146	Average	138	138	Average	140	140	Average	144	144	Average	118	118	Average	105	105	Average	110	110	Average	
			146			138	140		144				118			105			110			

Name Prepared By: Jimmy Cheng

Date 14/4/2009

remark or

Date of Sampling:	15/4/20	09		Sunny	y																
Monitoring Location		M1			M2			МЗ			М4			C1			C2			С3	
Time (hhmm)		1610			1550			1600			1615			1520			1530			1545	
Tide Mode		mid-ebb)		mid-ebb		mid-ebb			mid-ebb			mid-ebb			mid-ebb			mid-ebb)
River Condition		normal			normal			normal		normal			normal				normal				
Water Depth (m)		<1			< 1 7.16			< 1			1.3		< 1				< 1			< 1	
pH value		7.53			7.16		7.33				7.90		5.96			5.84			6.55		
Temperature (oC)		24.8			24.2		25.5			25.3			24.3			24.4			24.8		
Salinity (ppt)		12.0			5.9		19.3		19.3		22.0			0.0			0.0			7.7	
Turbidity (NTU)	9.7	9.7	Average 9.7	3.5	3.5	Average 3.5	10.7	10.7	Average	8.5	8.5	Average 8.5	5.6	5.6	Average 5.6	1.7	1.6	Average	8.3	8.3	Average 8.3
DO (mg/l)	8.13	8.13	Average 8.13	9.10	9.10	Average 9.10	8.03	8.03	Average 8.03	8.76	8.76	Average 8.76	8.49	8.49	Average 8.49	8.47	8.47	Average 8.47	7.72	7.72	Average 7.72
DO Saturation (%)	105	105	Average	112	112	Average	109	109	Average	121	121	Average	102	102	Average	102	102	Average	96	96	Average 96

Name Prepared By: Jimmy Cheng

Date 15/4/2009

Date of Sampling:	17/4/20	09		Sunny	y																	
Monitoring Location		M1			M2			М3			M4			C1			C2			C3		
Time (hhmm)		1715		1710			1705			1725			1635			1645			1655			
Tide Mode		mid-ebb)	mid-ebb			mid-ebb			mid-ebb				mid-ebb			mid-ebb			mid-ebb		
River Condition	normal			normal			normal			normal			normal			normal						
Water Depth (m)	<1			< 1			< 1			1.4			<1			< 1						
pH value	7.99			7.18			7.64			8.07			6.46			6.02						
Temperature (oC)	26.3			25.0			26.5				26.6			25.5			24.6			25.3		
Salinity (ppt)		11.0		2.4			16.6				19.5		0.0			0.0			7.3			
Turbidity (NTU)	10.2	10.2	Average	13.1	13.1	Average	8.9	8.9	Average 8.9	8.3	8.3	Average 8.3	1.8	1.8	Average	18.8	18.8	Average	6.9	6.9	Average 6.9	
DO (mg/l)	9.83	9.83	Average 9.83	8.44	8.44	Average	9.48	9.48	Average 9.48	9.58	9.58	Average 9.58	7.98	7.98	Average 7.98	8.25	8.25	Average 8.25	5.77	5.77	Average 5.77	
DO Saturation (%)	130	130	Average	104	104	Average	129	129	Average	133	133	Average	98	98	Average 98	99	99	Average 99	71	71	Average 71	

Name Prepared By: Jimmy Cheng

Date 17/4/2009

River constrution (demolition to the old bank) near M2 is in remark or observation: works are being carried out in the upper river the location C2

Date of Sampling:	20/4/20	09		Sunny	y																	
Monitoring Location		M1			M2			М3			M4			C1			C2			C 3		
Time (hhmm)	955			1000			1010				950			1020			1030			1040		
Tide Mode	mid-ebb			mid-ebb			mid-ebb				mid-ebb			mid-ebb			mid-ebb			mid-ebb		
River Condition	normal			normal			normal				normal			normal			normal			normal		
Water Depth (m)	<1			< 1				< 1			1.1			< 1			< 1			< 1		
pH value	6.99			6.63			6.66				7.57			6.32			6.03			6.78		
Temperature (oC)		26.9			25.3			27.3			26.9			25.6			25.7			26.1		
Salinity (ppt)		0.6		0.0			6.2				11.1			0.0			0.0			1.3		
Turbidity (NTU)	8.1	8.1	Average Q 1	5.0	4.9	Average	13.3	13.3	Average	8.6	8.6	Average	0.0	0.0	Average	135.1	135.1	Average	9.3	9.3	Average	
DO (mg/l)	8.44	8.44	8.1 Average 8.44	8.41	8.41	5.0 Average 8.41	8.21	8.21	Average 8.21	7.86	7.86	8.6 Average 7.86	7.08	7.08	0.0 Average 7.08	8.27	8.27	135.1 Average 8.27	6.18	6.18	9.3 Average 6.18	
DO Saturation (%)	106	106	Average	103	103	Average	108	108	Average	106	106	Average	87	87	Average 87	102	102	Average	71	71	Average 71	

Name Prepared By: Jimmy Cheng

Date 20/4/2009

remark or

Cloudy Date of Sampling: 22/4/2009 Monitoring М2 М4 C2 Location М1 М3 C1 C3 1050 1055 1100 1040 1110 1120 1130 Time (hhmm) mid-ebb mid-ebb mid-ebb mid-ebb mid-ebb mid-ebb mid-ebb Tide Mode normal normal normal normal normal normal normal River Condition <1 < 1 < 1 < 1 < 1 < 1 < 1 Water Depth (m) 6.85 7.34 6.95 7.58 6.21 6.03 6.48 pH value 22.7 22.8 22.5 22.7 22.8 22.6 23.0 Temperature (oC) 2.6 0.4 8.6 16.0 0.1 0.0 0.6 Salinity (ppt) Average Average Average Average 12.8 0.0 528.6 Turbidity (NTU) 5.9 5.9 8.8 6.3 12.8 0.0 528.6 4.1 5.9 6.3 12.8 0.0 528.6 4.1 Average Average Average Average Average Average DO (mg/l) 7.61 7.61 8.54 8.54 6.71 6.71 6.81 6.37 6.37 7.85 7.85 5.77 5.77 6.81

6.71

Average

82

87

Name Prepared By: Jimmy Cheng

DO Saturation (%)

99

99

7.61

Average

89

89

Date 22/4/2009

82

82

8.54

Average

99

remark or

87

6.81

Average

87

74

74

observation: works are being carried out in the upper river the location C2

89

89

7.85

Average

89

69

69

5.77

Average

69

6.37

Average

74

Environmental Pioneers & Solutions Limited

Water Quality Monitoring - Summary of On-site measurement results

Date of Sampling:	24/4/20	09		Cloud	ly	-									-			-			-	
Monitoring Location		M1		M2			М3			М4			C1			C2			C3			
Time (hhmm)	1220			1225			1235			1250			1145			1155						
Tide Mode	mid-ebb			mid-ebb			mid-ebb			mid-ebb				mid-ebb			mid-ebb			mid-ebb		
River Condition	normal			normal			normal			normal			normal			normal						
Water Depth (m)	<1			< 1			< 1			<1			< 1			<1						
pH value	6.97			7.22			6.75			7.15			6.38			6.48			6.62			
Temperature (oC)	23.0			22.9			23.3			23.3		21.0			21.8			22.5				
Salinity (ppt)		9.9		2.3			10.9				16.5		0.3			0.3			4.8			
Turbidity (NTU)	2.8	2.8	Average	16.5	16.5	Average	35.1	35.1	Average	12.9	12.9	Average	2.9	2.9	Average	238.2	238.2	Average	7.2	7.2	Average	
DO (mg/l)	6.48	6.48	2.8 Average	7.85	7.85	16.5 Average	5.74	5.74	35.1 Average	6.68	6.68	12.9 Average	7.95	7.95	2.9 Average	8.22	8.22	238.2 Average	7.22	7.22	7.2 Average	
			6.48			7.85			5.74			6.68			7.95			8.22			7.22	
DO Saturation (%)	80	80	Average	93	93	Average	72	72	Average	85	85	Average	90	90	Average	94	94	Average	86	86	Average	
	80 93				93			72			85			90			94			86		

Name Prepared By: Jimmy Cheng Signature

Date 24/4/2009

Other construction activities are being carried out in the river upper

Date of Sampling: 27/4/2009 Sunny Monitoring М2 М4 C2 Location М1 М3 C1 C3 1430 1435 1440 1420 1448 1455 1505 Time (hhmm) mid-ebb mid-ebb mid-ebb mid-ebb mid-ebb mid-ebb mid-ebb Tide Mode normal normal normal normal normal normal normal River Condition < 1 < 1 < 1 < 1 < 1 < 1 < 1 Water Depth (m) 7.14 7.17 7.05 7.48 7.23 6.46 6.65 pH value 23.7 23.5 24.7 22.9 23.1 23.8 24.6 Temperature (oC) 8.9 1.6 15.4 8.7 0.0 0.0 2.9 Salinity (ppt) Average Average Average Average 42.7 732.1 4.3 Turbidity (NTU) 5.6 63.8 63.8 38.8 38.8 42.7 0.0 0.0 732.1 5.6 63.8 38.8 42.7 0.0 732.1 4.3 Average Average Average Average Average Average DO (mg/l) 8.04 8.04 8..39 7.33 7.33 7.98 8.41 8.31 5.31 8.39 7.98 8.41 8.31 5.31 8.04 8.39 7.33 7.98 8.41 8.31 5.31 Average Average Average Average Average Average Average DO Saturation (%) 99 100 100 96 96 101 101 98 98 97 97 64 64 99 100 96 101 98 97 64

Name Prepared By: Jimmy Cheng

Date

27/4/2009

remark or

Date of Sampling:	28/4/2009		Sunn	y																	
Monitoring Location	M1		M1 M2			М3				М4		C1			C2			C3			
Time (hhmm)				1540			1550			1603						1515			1525		
Tide Mode	m	id-ebb		mid-ebb			mid-ebb			mid-ebb			mid-ebb			mid-ebb			mid-ebb		
River Condition	n	ormal		normal			normal			normal			normal			normal			normal		
Water Depth (m)		<1		< 1			< 1			1			< 1			< 1			< 1		
pH value				6.85			7.01			7.51						6.71			6.63		
Temperature (oC)				23.7		24.2			24.3						24.3			23.2			
Salinity (ppt)				1.6			13.3			12.1					0.1				3.3		
Turbidity (NTU)		Average #DIV/0	23.5	23.5	Average	13.2	13.2	Average	13.6	13.6	Average			Average #DIV/0!	360.5	360.5	Average 360.5	5.8	5.8	Average 5.8	
DO (mg/l)		Average	6.46	8.48	Average	7.14	7.14	Average 7.14	8.42	8.42	Average			Average #DIV/0!	7.87	7.87	Average 7.87	4.11	4.11	Average 4.11	
DO Saturation (%)		Average	101	101	Average	92	92	Average 92	108	108	Average			Average #DIV/0!	94	94	Average 94	49	49	Average 49	

Name Prepared By: Jimmy Cheng

Date 28/4/2009

The results are the ad hoc monitoring due to exceedance observation: works are being carried out in the upper river the location C2

Date of Sampling:	29/4/20	09		Sunny	у																	
Monitoring Location		М1			M2			М3			M4			C1			C2			СЗ		
Time (hhmm)	1550			1535			1540			1600			1500			1514						
Tide Mode	mid-ebb			mid-ebb			mid-ebb				mid-ebb			mid-ebb			mid-ebb			mid-ebb		
River Condition	normal			normal			normal			normal			normal			normal						
Water Depth (m)		<1		< 1				< 1			1.2			< 1			<1			< 1		
pH value		7.34		7.05			7.09			7.58			6.55			6.30			6.62			
Temperature (oC)		22.9			23.8			23.6			23.5		23.6			24.5			23.4			
Salinity (ppt)		10.6			4.4			14.4			13.0		0.0			0.0			3.8			
Turbidity (NTU)	5.7	5.7	Average 5.7	56.1	56.1	Average 56.1	11.8	11.8	Average	8.3	8.3	Average 8.3	0.3	0.3	Average 0.3	186.7	186.7	Average	12.2	12.2	Average	
DO (mg/l)	8.72	8.72	Average 8.72	8.37	8.37	Average 8.37	7.69	7.69	Average 7.69	8.35	8.35	Average 8.35	7.71	7.71	Average 7.71	7.95	7.95	Average 7.95	5.18	5.18	Average 5.18	
DO Saturation (%)	108	108	Average 108	102	102	Average	99	99	Average 99	106	106	Average	91	91	Average 91	96	96	Average 96	62	62	Average 62	

Name Prepared By: Jimmy Cheng

Date 29/4/2009

Muddy water is observed at location C2 and M2 due to the construction

Appendix F2

Water Quality
Monitoring Lab report

Page 1 of 1

TEST REPORT ON ENVIRONMENTAL ANALYSIS OF WATER AND WASTEWATER

P.O. Received : 08-09-2008

Client Address*: 8/F, Chaiwan Industrial Centre Building, 20 Lee Chung Street, Chaiwan, HK.

: Environmental Pioneers & Solutions Limited

DSD Contract No. DC/2006/11 - Drainage Improvement in Southern Lantau & Construction of

Project* : Mui Wo Village Sewerage Phase 1

: GCC090400012

Report No.

Test Location : G/F, 20 Pak Kung Street, Hung Hom, Kowloon. Date Started : 02-04-2009

W.O. No.* : -- Sample Type* : River Water Date Completed : 03-04-2009

GCE Serial No. : WQM042009 GCE Reg. No. : GCE 081096 Test Unit No. : CH 08258

Analysis Descript	tion	Т	est Metho	od	Units				Qual	ity (Control Resu	its		
						Method Blank	ı	QC 500 m	g/L	αc	C Duplicate		PD%	Spike 25 mg/L
Suspended Solids	s (SS)	APHA	\ 20ed 25	540 D	mg/L	< 1.0		497			489	. 1	1.6	26.4
			Acce	ptance	Criteria	< 2.5 mg	ı/L	475 ≤ C	ontro	l Lir	mit ≤ 514	≤	±5%	21 ≤ R ≤ 29
	Sam	ple ID	C1	C1 D	uplicate	C2	C2	Duplicate	C	3	C3 Duplica	ate		
TEST RESULTS		pling /Time	01 Apr	2009	16:00	01 Apr 2	200	9 / 16:10	01	Apı	2009 / 16:2	22		<u> </u>
	LOD	Units												
Suspended Solids (SS)	1	mg/L	1.6	,	8، ا	12.5		12.0	12.	1	11.6			
	Sam	ple ID	M1	M1 D	uplicate	M2	M2	Duplicate	M	3	M3 Duplica	ate	M4	M4 Duplicate
TEST RESULTS		pling /Time	01 Apr	2009 /	17:00	01 Apr 2	200	9 / 16:50	01	Apr	2009 / 16:4	42	01 Ap	or 2009 / 17:10
	LOD	Units												
Suspended Solids (SS)	1	mg/L	8.1	8	.9	5.5		5.1	11.	0	11.1		11.1	11.3

^{* :} Information provided by client

Note:	This labor	atory has no responsibility on s	ampling and all the test results rela	ite only to	o the sample tested as received.
Remarks :					
			End		
Tested By	:	Li Yuke	Approved Signato	ory :	
			Name	:	GU CHIN
Checked By	y :	GU CHIN	Post	:	Chemist

GEOTECHNICS & CONCRETE ENGINEERING (H. K.) LTD. 6 KO SHAN RD., GROUND FL., HUNG HOM, KOWLOON, HONG KONG. FAX NO.: 852-2765 8034 TEL.: 852-2365 9123

TEST REPORT ON ENVIRONMENTAL ANALYSIS OF WATER AND WASTEWATER

Page 1 of 1 Report No. : GCC090400020 : 03-04-2009 Date of Issue Client* : Environmental Pioneers & Solutions Limited P.O. Received : 08-09-2008 Client Address*: 8/F, Chaiwan Industrial Centre Building, 20 Lee Chung Street, Chaiwan, HK. DSD Contract No. DC/2006/11 - Drainage Improvement in Southern Lantau & Construction of Project* : Mui Wo Village Sewerage Phase 1 **Test Location** : G/F, 20 Pak Kung Street, Hung Hom, Kowloon. Date Started : 02-04-2009 W.O. No.* Sample Type* : River Water Date Completed : 03-04-2009 GCE Serial No. : WQM042009 GCE Reg. No. : GCE 081096 Test Unit No. : CH 08258 Analysis Description **Test Method** Units **Quality Control Results** Method QC Duplicate QC 500 mg/L RPD% Spike 25 mg/L Blank Suspended Solids (SS) APHA 20ed 2540 D < 1.0 495 497 mg/L -0.4 21.8 Acceptance Criteria < 2.5 mg/L $475 \le Control \ Limit \le 514$ ≤ ±5% $21 \le R \le 29$ C1 Duplicate Sample ID C1 C2C2 Duplicate C3 C3 Duplicate **TEST RESULTS** Sampling -02 Apr 2009 / 16:20 02 Apr 2009 / 16:30 02 Apr 2009 / 16:45 Date/Time LOD Units Suspended 1 mg/L 1.1 1.0 3.7 3.9 8.1 7.9 Solids (SS) Sample ID M1 M1 Duplicate M2 M2 Duplicate М3 M3 Duplicate M4 Duplicate M4 **TEST RESULTS** Sampling 02 Apr 2009 / 17:05 02 Apr 2009 / 16:55 02 Apr 2009 / 17:00 02 Apr 2009 / 17:20 Date/Time LOD Units Suspended 6.4 mg/L 6.2 9.1 9.0 12.2 12.1 11.3 10.8 Solids (SS) * : Information provided by client Note: This laboratory has no responsibility on sampling and all the test results relate only to the sample tested as received.

Remarks :					
			End		
Tested By	:	Li Yuke	Approved Signatory	:_	South the second
			Name	:	GU CHIN
Checked By	:	GU CHIN	Post	:	Chemist

TEST REPORT ON ENVIRONMENTAL ANALYSIS OF WATER AND WASTEWATER

Page 1 of 1

Report No.	: GCCC	9040003	88							Date of Issue		: 15-0)4-2009
Client*	: Enviro	onmental	Pioneers	& Solut	ions Lim	ited			F	P.O. Received	ł	: 08-0	9-2008
Client Address*	: 8/F, 0	Chaiwan I	ndustrial	Centre	Building,	20 Lee C	Chun	ig Street, Ch	naiwan,	нк.			
						ige Impro	vem	ent in South	ern Lan	tau & Constr	ucti	on of	
Project*		Vo Village								-1.0740			
Test Location	: <u>G/F</u>	, 20 Pak I	Kung Stre	eet, Hur	ng Hom,	Kowloon				Date Started			04-2009
W.O. No.*	:			Sar	nple Typ	e* : <u>R</u>	iver	Water		Date Complet	ed	: 07-0)4-2009
GCE Serial No.	: WQM	1042009		GC	E Reg. N	o. : <u>G</u>	CE (081096	1	Test Unit No.		: <u>CH</u>	08258
Analysis Descrip	tion	Te	est Metho	od	Units				Quality	Control Resu	ilts		
, Nitroved and a					<u> </u>	Metho Blank		QC 500 m	g/L Q	C Duplicate	RPD%		Spike 25 mg/L
Suspended Solid	s (SS)	APHA	20ed 25	540 D	mg/L	< 1.0	•	506		511	-	1.0	27.3
		!	Acce	ptance	Criteria	<2.5 m	g/L	475 ≤ C	ontrol Li	mit ≤ 514	≤	±5%	21 ≤ R ≤ 29
	Sarr	ıple ID	C1	C1 D	uplicate	C2	C2	2 Duplicate	C3	C3 Duplica	ate		
TEST RESULTS		Sampling Date/Time 06 Apr 2009				06 Apr	200	9 / 11:35	06 Ap	r 2009 / 11:	45		
	LOD	Units											To John Office
Suspended Solids (SS)	1	mg/L	1.5	2	2.0	2.3		2.2	8.8	8.6			
	Sarr	iple ID	M1	M1 D	uplicate	M2	M2	2 Duplicate	МЗ	M3 Duplic	ate	М4	M4 Duplicate
TEST RESULTS		npling e/Time	06 Apr	2009 /	11:05	06 Apr	200	9 / 11:10	06 Ap	06 Apr 2009 / 11:15			or 2009 / 10:45
	LOD	Units											
Suspended Solids (SS)	1	mg/L	13.2	1:	2.8	5.0		4.8	9.2	9.2		7.4	7.9
* : Information p	rovided	by client					-	,	•			•	
Note: This l	aborator	y has no i	esponsib	ility on	sampling	g and all t	he t	est results r	elate on	ly to the sam	ple	tested	as received.
Remarks :													
·						End				- M I	***************************************		
Tested By :		LI YUK	E				Anı	oroved Sian:	atorv :	/	<u>/</u>	J.E	
	-						Approved Signatory : Name :			GU C	HIN	- Ju	
Checked Bv :		GU CH	IN				Pos		•	Chem	nist		

TEST REPORT ON ENVIRONMENTAL ANALYSIS OF WATER AND WASTEWATER

Page 1 of 1 Date of Issue : 15-04-2009 : GCC090400046 Report No. P.O. Received : 08-09-2008 Client* : Environmental Pioneers & Solutions Limited Client Address*: 8/F, Chaiwan Industrial Centre Building, 20 Lee Chung Street, Chaiwan, HK. DSD Contract No. DC/2006/11 - Drainage Improvement in Southern Lantau & Construction of : Mui Wo Village Sewerage Phase 1 Project* : 08-04-2009 : G/F, 20 Pak Kung Street, Hung Hom, Kowloon. Date Started **Test Location** : 09-04-2009 W.O. No.* Sample Type* : River Water Date Completed : CH 08258 GCE Serial No. : WQM042009 GCE Reg. No. : GCE 081096 Test Unit No.

Analysis Descript	llysis Description Test Method								Quality	Control Resu	ilts		
						Metho Blank		QC 500 m	g/L Q	C Duplicate	RI	PD%	Spike 25 mg/L
Suspended Solids	pended Solids (SS) APHA 20ed 2540 [mg/L	< 1.0)	509		502	1.4		21.9
			Acce	ptance	Criteria	<2.5 m	g/L	475 ≤ C	ontrol L	imit ≤ 514	≤	±5%	21 ≤ R ≤ 29
	Sam	ple ID	C1	C1 D	uplicate	C2	C2	2 Duplicate	C3 -	C3 Duplica	ate		
TEST RESULTS		npling r/Time	08 Apr	2009	10:55	08 Apr	200	9 / 11:10	08 Ap	or 2009 / 11:	20		
	LOD	Units											
Suspended Solids (SS)	1	mg/L	3.5	A CONTRACTOR OF THE PARTY OF TH	3.1	1.1		1.3	6.5	6.3			- The accompany of the same of
	Sam	ple ID	M1	M1 D	uplicate	M2	M	2 Duplicate	М3	M3 Duplic	ate	M4	M4 Duplicate
TEST RESULTS		npling e/Time	08 Apr	2009	/ 11:40	08 Apr	200	99 / 11:35	08 Ap	or 2009 / 11:	11:30 08 Apr 2009		or 2009 / 11:50
	LOD	Units									,		
Suspended Solids (SS)	1	mg/L	11.5	11.6		2.7		2.7	7.2	7.6		6.4	6.1

* : Information provided by client

Note:	This la	boratory has no responsibility on sa	ampling and all the test results relate	e only	to the sample tested as received.
Remarks :			End		
Tooted Dv		LI YUKE	Approved Signatory	, .	/ <u> </u>
Tested By Checked By	;	GU CHIN	Approved Signatory Name Post	' · _ : :	GU CHIN Chemist

: GCC090400054

Report No.

TEST SUMMARY ON ENVIRONMENTAL ANALYSIS OF WATER AND WASTEWATER

Page 1 of 1

: 15-03-2009

Date of Issue

Client*	: Enviro	onmental	Pioneers	& Solut	ions Lim	ited			P.O. Receive	d	: 08-09	9-2008	
Client Address*	: 8/F, C	Chaiwan li	ndustrial	Centre	Building,	20 Lee C	hur	ng Street, Cl	naiwa	n, HK.			
	DSD	Contract I	No. DC/2	006/11	- Draina	ge Impro	vem	ent in South	iern L	antau & Const	ructi	on of	
Project*	: Mui V	Vo Village	Sewerag	ge Phas	e 1								
Test Location	: <u>G/F</u>	, 20 Pak I	Kung Stre	et, Hu	ng Hom,	Kowloon				Date Started		: 09-04	1-2009
W.O. No.*	:			Sar	nple Typ	e* : <u>R</u>	iver	Water		Date Comple	ted	: 14-04	1-2009
GCE Serial No.	: <u>WQM</u>	1042009		GC	E Reg. N	lo. : <u>G</u>	CE	081096		Test Unit No		: <u>CH 0</u>	8258
Analysis Descrip	tion	To	est Metho	od	Units				Quali	ty Control Res	uits		
		4 4 4 4 7 7 7 7 8 7 8 7 8 7 8				Metho Blank		QC 500 m	g/L	QC Duplicate	R	PD%	Spike 25 mg/L
Suspended Solid	s (SS)	APHA	20ed 25	540 D	mg/L	< 1.0)	485		482	(D.6	27.7
			Acce	ptance	Criteria	<2.5 m	g/L	475 ≤ C	ontrol	Limit ≤ 514	≤	±5%	21 ≤ R ≤ 29
	Sam	ıple ID	C1	C1 D	uplicate	C2	C	2 Duplicate	C3	C3 Duplic	ate		
TEST RESULTS		npling e/Time	Time 09 Apr. 2009 / 11:20				200	09 / 11:30	09 /	Apr. 2009 / 11	:45		
T-VF-0A	LOD	Units											İ
Suspended Solids (SS)	1	mg/L	2.6	2	2.8	< 1.0		< 1.0	7.6	7.9			
	Sam	ıple ID	M1	M1 D	uplicate	M2	M2 Duplicate		МЗ	M3 Duplio	ate	M4	M4 Duplicate
TEST RESULTS		npling e/Time	09 Apr.	2009	/ 12:15	09 Apr.	200	09 / 12:25	09 /	Apr. 2009 / 12	:35	09 Apr	. 2009 / 12:45
	LOD	Units											
Suspended Solids (SS)	1	mg/L	9.5	9	.9	2.6		2.8	7.6	7.5		10.1	9.8
* : Information p	rovided	by client	ı							····		<u> </u>	1
Note: This la	aborator	y has no r	esponsib	ility on	samplinç	g and all t	he t	est results r	elate	only to the sar	nple	tested a	s received.
Remarks : Lo	cation N	и1 & WE3	3 and Loc	ation N	13 & WE	4 are the	san	ne location.				observations and	
						End -							
											,	. 1	
Tested By :		LI YUK	E				Approved Signatory Name			: GU (HIN		
Checked By :		GU CH	IN				Post : Chemist						

Form No. : WQM/R1 (01-09-2008)

TEST REPORT ON ENVIRONMENTAL ANALYSIS OF WATER AND WASTEWATER

Page 1 of 1

Report No.	: GCC0	9040007	'O							ate of Issue		: 20-0	4-2009
Client*	: Enviro	nmental	Pioneers	& Solut	tions Lim	ited			F	.O. Received		: 08-0	9-2008
Client Address*	: 8/F, C	haiwan li	ndustrial	Centre	Building,	20 Lee 0	Chun	g Street, Ch	aiwan,	нк.			
	DSD (Contract I	No. DC/2	006/11	- Draina	ge Impro	veme	ent in South	ern Lan	tau & Constru	uctic	n of	
Project*	: Mui W	/o Village	Seweraç	ge Phas	e 1								
Test Location	: <u>G/F,</u>	20 Pak I	Kung Stre	et, Hu	ng Hom,	Kowloon			[ate Started		: 15-0	4-2009
W.O. No.*	:			Sar	nple Typ	e* : <u>R</u>	iver '	Water		ate Complet	ed	: 16-0	4-2009
GCE Serial No.	: WQM	042009		_ GC	E Reg. N	o. : <u>G</u>	CE C	81096	т	est Unit No.		: <u>CH 0</u>	8258
Analysis Descript	tion	Т	est Metho	od	Units				Quality	Control Resu	lts		
						Metho Blank		QC 500 mg	g/L Q0	C Duplicate	RF	%סי	Spike 25 mg/L
Suspended Solids	s (SS)	АРНА	20ed 2	540 D	mg/L	< 1.0)	483		486	-0.6		25.4
			Acce	eptance	Criteria	<2.5 m	g/L	475 ≤ Co	ontrol Li	mit ≤ 514	≤ :	±5%	21 ≤ R ≤ 29
	Sam	ple ID	C1	C1 D	uplicate	C2	C2	Duplicate	C3	C3 Duplica	ite		
TEST RESULTS	S Sampling 14 Apr 2009 Date/Time		2009	/ 14:40	14 Apr	200	9 / 14:50	14 Ap	r 2009 / 15:0	00			
	LOD	Units											
Suspended Solids (SS)	1	mg/L	2.1	,	1.9	1.1		1.3	8.7	8.4			
	Şam	ple ID	M1	M1 D	uplicate	M2	М2	2 Duplicate	МЗ	M3 Duplica	ste	M4	M4 Duplicate
TEST RESULTS		npling e/Time	14 Apr	2009	/ 15:40	14 Apr 20		009 / 15:10 14		4 Apr 2009 / 15:30		14 Ap	r 2009 / 15:50
	LOD	Units											
Suspended Solids (SS)	1	mg/L	8.5	8	3.7	2.8		3.0	9.8	9.6		11.5	11.1
* : Information p	rovided	by client					·			·		·	
Note: This la	aborator	y has no i	responsib	oility on	sampling	g and all t	he t	est results r	elate on	ly to the sam	ple 1	tested a	s received.
Remarks :													
						End							
Tested By :		LI YUK	E				App	oroved Signa	atory :	/	ر کرین	火	
-			o'n d' Marin a make a a mak h Amin'ana d'i H d	and the second second second second			Name		:	GU C	HIN	-	
Checked By :		GU CH	IN				Pos	t	;	Chem	ist		

TEST REPORT ON ENVIRONMENTAL ANALYSIS OF WATER AND WASTEWATER

Page 1 of 1

Report No.	: GCC0	9040008	18						C	ate of Issue		: 20-0	04-2009	
Client*	: Enviro	nmental i	Pioneers	& Solut	ions Lim	ited			F	.O. Received		: 08-0	9-2008	
Client Address*														
						ige Impro	vem	ent in South	ern Lant	au & Constr	uctic	on of		
Project*		Vo Village		-	- Contract									
Test Location	: <u>G/F</u>	, 20 Pak I	Kung Stre							ate Started		~~~~	04-2009	
W.O. No.*	:			-	nple Typ		iver	Water		ate Complet	ed	: 16-0	04-2009	
GCE Serial No.	: WQM	042009		_ GC	E Reg. N	o. : <u>G</u>	CE	081096		'est Unit No.		: <u>CH (</u>	08258	
Analysis Descrip	tion	Te	est Metho	od	Units				Quality	Control Resu	its			
						Metho Blank	OC 500 ma/E		g/L Q	Duplicate	RPD%		Spike 25 mg/L	
Suspended Solid	s (SS)	APHA	20ed 29	540 D	mg/L	< 1.0)	503		492	2.2		27.0	
			Acce	ptance	Criteria	<2.5 m	ng/L 475 ≤ Contro			nit ≤ 514	≤ :	±5%	21 ≤ R ≤ 29	
	Sam	ple ID	C1	C1 D	uplicate	C2	C:	2 Duplicate	C3	C3 Duplica	ite			
TEST RESULTS	Sampling Date/Time 15 Apr 2009			15:20	15 Apr	200	09 / 15:30	15 Ap	r 2009 / 15:	45				
	LOD	Units												
Suspended Solids (SS)	1	mg/L	9.8	1	0.4	1.6		1.6	6.7	6.3				
	Sam	ple ID	M1	M1 D	uplicate	M2	M2 M2 Duplicate		MЗ	3 M3 Duplicate		M4	M4 Duplicate	
TEST RESULTS		npling e/Time	15 Apr	2009 /	16:10	15 Apr	200	09 / 15:50	15 Ap	r 2009 / 16:0	00	15 Ap	or 2009 / 16:15	
	LOD	Units					İ							
Suspended Solids (SS)	1	mg/L	9.3	9	.1	2.9		2.9	11.3	11.3	i	9.8	9.6	
* : Information p	rovided	by client												
Note: This la	aborator	y has no i	responsib	ility on	sampling	g and all 1	he 1	test results r	elate on	ly to the sam	ple	tested :	as received.	
Remarks :														
nemarks ;						End								
Tested By :		LI YUK	E				Approved Signatory :		atory :		, \	<u>'</u>		
Checked By :		GU CH	INI				Na Po:	me	;	GU C Chem			-	
unecked BV '		(11) (.H	HM				10	SI		CDAM	ust			

TEST REPORT ON ENVIRONMENTAL ANALYSIS OF WATER AND WASTEWATER

Page 1 of 1 Report No. : GCC090400096 Date of Issue : 20-04-2009 : Environmental Pioneers & Solutions Limited P.O. Received : 08-09-2008 Client Address*: 8/F, Chaiwan Industrial Centre Building, 20 Lee Chung Street, Chaiwan, HK. DSD Contract No. DC/2006/11 - Drainage Improvement in Southern Lantau & Construction of Project* : Mui Wo Village Sewerage Phase 1 Test Location : G/F, 20 Pak Kung Street, Hung Hom, Kowloon. Date Started : 17-04-2009 W.O. No.* Sample Type* : River Water Date Completed : 18-04-2009 GCE Serial No. : WQM042009 GCE Reg. No. : GCE 081096 Test Unit No. : CH 08258 **Test Method** Analysis Description Units **Quality Control Results** Method QC 500 mg/L QC Duplicate RPD% Spike 25 mg/L Blank Suspended Solids (SS) APHA 20ed 2540 D 498 mg/L < 1.0 492 1.2 24.2 Acceptance Criteria < 2.5 mg/L $475 \le Control \ Limit \le 514$ ≤ ±5% $21 \le R \le 29$ Sample ID C1 C1 Duplicate C2 C2 Duplicate C3 C3 Duplicate **TEST RESULTS** Sampling 17 Apr 2009 / 16:35 17 Apr 2009 / 16:45 17 Apr 2009 / 16:55 Date/Time LOD Units Suspended mg/L 1.4 1.6 7.0 7.0 11.7 11.3 Solids (SS) Sample ID M1 M1 Duplicate M2 M2 Duplicate M3 Duplicate М3 M4 M4 Duplicate **TEST RESULTS** Sampling 17 Apr 2009 / 17:15 17 Apr 2009 / 17:10 17 Apr 2009 / 17:05 17 Apr 2009 / 17:25 Date/Time LOD Units Suspended 1 mg/L 10.1 10.0 7.7 7.8 7.9 8.2 7.6 7.5 Solids (SS) *: Information provided by client Note: This laboratory has no responsibility on sampling and all the test results relate only to the sample tested as received. Remarks: ---- End -----Tested By LI YUKE Approved Signatory: Name **GU CHIN**

Post

Chemist

Form No. : WQM/R1 (19-01-2009)

GU CHIN

Checked By :

TEST REPORT ON ENVIRONMENTAL ANALYSIS OF WATER AND WASTEWATER

Page 1 of 1

Report No.	: GCCO	9040012	7						D	ate of Issue		: 27-0	4-2009
		nmental l	N+					hins .		.O. Received		: <u>08-</u> 0	9-2008
Client Address*										HK. au & Constri	ıctio	n of	
Project*		ontract i o Village				ge impro	vem	ent in South	eni Lam	au & Consti	30130		
-		20 Pak l				Kowloon			C	ate Started		: 22-0	4-2009
	*				nple Typ			Water		ate Complet	ed	: 23-0	14-2009
		042009		-	E Reg. N		CE (081096	 Т	est Unit No.		: CH (08258
		-		-		_							
Analysis Descript	ion	Te	est Metho	od	Units				Quality	Control Resu	lts		
						Metho Blank		QC 500 mg	g/L QC Duplicate		Rf	PD%	Spike 25 mg/L
Suspended Solids	s (SS)	APHA	20ed 25	540 D	mg/L	< 1.0)	490		486	c	8.0	25.5
		1	Acce	ptance	Criteria	<2.5 m	g/L	475 ≤ Co	ontrol Lii	mit ≤ 514	≤ :	±5%	21 ≤ R ≤ 29
	Sam	ple ID	C1	C1 D	uplicate	C2	C	2 Duplicate	C3	C3 Duplica	ate		
TEST RESULTS		npling e/Time	20 Apr	2009	/ 10:20	20 Apr	200	09 / 10:30	20 Ap	r 2009 / 10:	40		
	LOD	Units	-							-			
Suspended Solids (SS)	1	mg/L	1.1	<	1.0	73.2		73.6	7.9	7.5			
	Sam	ple ID	M1	M1 D	uplicate	M2	М	2 Duplicate	МЗ	M3 Duplic	ate	M4	M4 Duplicate
TEST RESULTS		npling e/Time	20 Ap	г 2009	/ 9:55	20 Apr	200	09 / 10:00	20 Ap	r 2009 / 10:	10	20 A	pr 2009 / 9:50
	LOD	Units											
Suspended Solids (SS)	1	mg/L	8.3	8	3.3	2.8		2.9	12.1	12.3		9.3	9.2
* : Information p	orovided	by client	,										
Note: This I	aborator	y has no	responsib	ility on	samplin	g and all	the	test results r	elate on	ly to the san	nple	tested	as received.
Remarks :													
nemarks :	- H-1A					End							
-		115000	· E						ata	/	,	Ļ	
Tested By :		LI YUK	LE .					proved Sign ime	atory :	GU C	// HIN		
Checked By :		GU CH	IIN				Po		;	Chen			

TEST REPORT ON ENVIRONMENTAL ANALYSIS OF WATER AND WASTEWATER

Page 1 of 1

Report No.	: GCC0	9040013	35					. .	Date of Issue	: 27-()4-2009
Client*	: Enviro	nmental	Pioneers	& Solut	ions Lim	ited			P.O. Received	: 08-0	09-2008
Client Address*	: 8/F, C	haiwan li	ndustrial	Centre	Building,	20 Lee 0	Chung Street, C	haiwan,	HK.	NA 17 17	
						ige Impro	vement in Sout	hern Lan	itau & Constri	uction of	
•		/o Village									
Test Location	: <u>G/F</u>	, 20 Pak i	Kung Stre			Kowloon			Date Started		04-2009
<i>N</i> .O. No.*	:			Sar	nple Typ	e* : <u>R</u>	iver Water		Date Complet		
GCE Serial No.	: WQM	042009		_ GC	E Reg. N	lo. : <u>G</u>	CE 081096		Test Unit No.	: <u>CH</u>	08258
Analysis Descript	ion	T	est Metho	od	Units			Quality	Control Resu	lts	
						Metho Blank	OC 500 ma/E		C Duplicate	RPD%	Spike 25 mg/L
Suspended Solids	s (SS)	APHA	20ed 2	540 D	mg/L	< 1.0	484		486	-0.4	24.2
		i	Acce	eptance	Criteria	<2.5 m	g/L 475 ≤ C	Control L	imit ≤ 514	≤ ±5%	21 ≤ R ≤ 29
	Sam	ple ID	C1	C1 D	uplicate	C2	C2 Duplicate	СЗ	C3 Duplica	ate	
TEST RESULTS	Date/Time 22 Apr 2009			2009 /	/ 11:10	22 Apr	2009 / 11:20	22 Ap	or 2009 / 11:	30	4
	LOD	Units									
Suspended Solids (SS)	1	mg/L	1.6	,	1.6	326.0	320.0	9.2	9.2		
-	Sam	ple ID	M1	M1 D	uplicate	M2	M2 Duplicate	МЗ	M3 Duplic	ate M4	M4 Duplicate
TEST RESULTS		npling e/Time	22 Apr	2009	/ 10:50	22 Apr	2009 / 10:55	22 A _l	or 2009 / 11:	00 22 A	pr 2009 / 10:40
	LOD	Units									
Suspended Solids (SS)	1	mg/L	8.4	8	3.8	6.9	6.6	7.4	7.8	10.8	10.7
* : Information p	rovided	by client					-				
Note: This la	aborator	y has no	responsit	oility on	samplin	g and all 1	the test results	relate or	nly to the sam	nple tested	as received.
Remarks :											
						End	distributed and an				
Tested By :		LI YUK	E				Approved Sign	natory	:	1/-	
0		C11 511	113.1				Name		: GU C		
Checked By :		GU CH	IIN				Post		: Chem	าเรเ	

TEST REPORT ON ENVIRONMENTAL ANALYSIS OF WATER AND WASTEWATER

Page 1 of 1 Date of Issue : 27-04-2009 Report No. : GCC090400143 P.O. Received : 08-09-2008 : Environmental Pioneers & Solutions Limited Client* Client Address*: 8/F, Chaiwan Industrial Centre Building, 20 Lee Chung Street, Chaiwan, HK. DSD Contract No. DC/2006/11 - Drainage Improvement in Southern Lantau & Construction of : Mui Wo Village Sewerage Phase 1 Project* Date Started : 25-04-2009 : G/F, 20 Pak Kung Street, Hung Hom, Kowloon. **Test Location** W.O. No.* Sample Type* : River Water Date Completed: 25-04-2009 : GCE 081096 Test Unit No. : CH 08258 GCE Serial No. : WQM042009 GCE Reg. No. **Quality Control Results** Test Method Units **Analysis Description** Method QC 500 mg/L RPD% Spike 25 mg/L QC Duplicate Blank 23.8 Suspended Solids (SS) APHA 20ed 2540 D mg/L < 1.0 490 498 -1.6 Acceptance Criteria < 2.5 mg/L 475 ≤ Control Limit ≤ 514 ≤ ±5% $21 \le R \le 29$ C2 C2 Duplicate C3 C3 Duplicate C1 C1 Duplicate Sample 1D **TEST RESULTS** Sampling 24 Apr 2009 / 11:45 24 Apr 2009 / 11:55 24 Apr 2009 / 12:05 Date/Time LOD Units Suspended 2.7 2.3 147.2 7.6 7.6 1 mg/L 146.8 Solids (SS) M4 Duplicate Sample ID M1 M1 Duplicate M2 M2 Duplicate М3 M3 Duplicate M4 **TEST RESULTS** Sampling 24 Apr 2009 / 12:50 24 Apr 2009 / 12:20 24 Apr 2009 / 12:25 24 Apr 2009 / 12:35 Date/Time LOD Units Suspended 26.0 5.9 13.7 26.0 11.1 11.3 1 mg/L 5.3 13.3 Solids (SS) * : Information provided by client Note: This laboratory has no responsibility on sampling and all the test results relate only to the sample tested as received. Remarks: ---- End ----Tested By LI YUKE Approved Signatory : **GU CHIN** Name

Post

Chemist

Form No. : WQM/R1 (19-01-2009)

GU CHIN

Checked By :

GEOTECHNICS & CONCRETE ENGINEERING (H. K.) LTD. 6 KO SHAN RD., GROUND FL., HUNG HOM, KOWLOON, HONG KONG. FAX NO.: 852-2765 8034 TEL.: 852-2365 9123

TEST REPORT ON ENVIRONMENTAL ANALYSIS OF WATER AND WASTEWATER

Page 1 of 1 : 30-04-2009 Date of Issue : GCC090400347 Report No. : 08-09-2008 P.O. Received : Environmental Pioneers & Solutions Limited Client* Client Address*: 8/F, Chaiwan Industrial Centre Building, 20 Lee Chung Street, Chaiwan, HK. DSD Contract No. DC/2006/11 - Drainage Improvement in Southern Lantau & Construction of : Mui Wo Village Sewerage Phase 1 Project* : 27-04-2009 Date Started : G/F, 20 Pak Kung Street, Hung Hom, Kowloon. Test Location Date Completed: 28-04-2009 : River Water Sample Type* W.O. No.* : CH 08258 Test Unit No. : GCE 081096 GCE Reg. No. GCE Serial No. : WQM042009 **Quality Control Results** Units Test Method Analysis Description Spike 25 mg/L Method RPD% QC Duplicate QC 500 mg/L Blank 25.1 -0.4 485 483 < 1.0 APHA 20ed 2540 D mg/L Suspended Solids (SS) $21 \le R \le 29$ ≤ ±5% 475 ≤ Control Limit ≤ 514 < 2.5 mg/L Acceptance Criteria C3 Duplicate СЗ C2 Duplicate C1 Duplicate C2 C1 Sample ID 27 Apr 2009 / 15:05 27 Apr 2009 / 14:55 Sampling TEST RESULTS 27 Apr 2009 / 14:48 Date/Time Units LOD 9.2 9.2 496.0 485.0 < 1.0 Suspended < 1.0 mg/L 1 Solids (SS) M4 Duplicate M3 Duplicate M3 M2 Duplicate M2 M1 Duplicate Sample ID M1 27 Apr 2009 / 14:20 27 Apr 2009 / 14:40 27 Apr 2009 / 14:35 Sampling 27 Apr 2009 / 14:30 TEST RESULTS Date/Time LOD Units 24.2 24.4 28.6 28.4 29.6 29.0 6.4 Suspended 5.9 mg/L 1 Solids (SS) * : Information provided by client This laboratory has no responsibility on sampling and all the test results relate only to the sample tested as received. Note: Remarks: ---- End ----Approved Signatory : K.L. Fong **GU CHIN** Tested By Name Chemist Post GU CHIN Checked By :

TEST REPORT ON ENVIRONMENTAL ANALYSIS OF WATER AND WASTEWATER

Page 1 of 1 : 30-04-2009 Date of Issue : GCC090400355 Report No. : 08-09-2008 P.O. Received : Environmental Pioneers & Solutions Limited Client Address*: 8/F, Chaiwan Industrial Centre Building, 20 Lee Chung Street, Chaiwan, HK. DSD Contract No. DC/2006/11 - Drainage Improvement in Southern Lantau & Construction of : Mui Wo Village Sewerage Phase 1 Project* : 28-04-2009 Date Started : G/F, 20 Pak Kung Street, Hung Hom, Kowloon. **Test Location** Date Completed: 29-04-2009 : River Water Sample Type* W.O. No.* : CH 08258 Test Unit No. GCE Reg. No. : GCE 081096 GCE Serial No. : WQM042009 **Quality Control Results** Units Analysis Description **Test Method** Method RPD% Spike 25 mg/L QC Duplicate QC 500 mg/L Blank 22.5 498 1.6 506 < 1.0 Suspended Solids (SS) APHA 20ed 2540 D mg/L $21 \le R \le 29$ $475 \le Control \ Limit \le 514$ ≤ ±5% < 2.5 mg/L Acceptance Criteria C3 Duplicate СЗ C1 Duplicate C2 C2 Duplicate C1 Sample ID **TEST RESULTS** Sampling 28 Apr 2009 / 15:15 28 Apr 2009 / 15:25 Date/Time LOD Units Suspended 9.0 237.6 240.0 8.4 1 mg/L Solids (SS) M3 Duplicate M4 M4 Duplicate М3 M2 M2 Duplicate M1 Duplicate Sample ID М1 28 Apr 2009 / 16:03 **TEST RESULTS** Sampling 28 Apr 2009 / 15:50 28 Apr 2009 / 15:40 Date/Time LOD Units Suspended 14.7 15.3 15.1 15.6 13.0 13.4 1 mg/L Solids (SS) * : Information provided by client This laboratory has no responsibility on sampling and all the test results relate only to the sample tested as received. Note: Remarks: ---- End ----Approved Signatory Tested By K.L. Fong **GU CHIN** Name Post Chemist **GU CHIN** Checked By :

: Environmental Pioneers & Solutions Limited

: G/F, 20 Pak Kung Street, Hung Hom, Kowloon.

Sample Type*

GCE Reg. No.

: Mui Wo Village Sewerage Phase 1

: GCC090400363

Report No.

Client*

Project*

Test Location W.O. No.*

GCE Serial No. : WQM042009

TEST REPORT ON ENVIRONMENTAL ANALYSIS OF WATER AND WASTEWATER

Page 1 of 1 : 30-04-2009 Date of Issue P.O. Received Client Address*: 8/F, Chaiwan Industrial Centre Building, 20 Lee Chung Street, Chaiwan, HK. DSD Contract No. DC/2006/11 - Drainage Improvement in Southern Lantau & Construction of Date Started : 30-04-2009

Date Completed: 30-04-2009

Test Unit No.

: CH 08258

Analysis Descrip	tion	Т	est Metho	od	Units				Quality	Control Resu	llts		
			PRIVALER Fortischer unz zu einem und der und		A & B. (A) 100 A 101 A 1	Method Blank	_	QC 500 m	g/L C	ΩC Duplicate	RI	PD%	Spike 25 mg/L
Suspended Solid	s (SS)	APHA	\ 20ed 25	540 D	mg/L	< 1.0)	488	488 482 1.2				
			Acce	ptance	Criteria	< 2.5 m	g/L	475 ≤ C	ontrol l	imit ≤ 514	≤	±5%	21 ≤ R ≤ 29
				04.5									
	Sam	ple ID	C1	C1 Di	uplicate	C2	C2	2 Duplicate	C3	C3 Duplica	ate		
TEST RESULTS		npling e/Time	29 Apr	2009 /	15:00	29 Apr	200	9 / 15:14	29 A	pr 2009 / 15:	30		
	LOD	Units											
Suspended Solids (SS)	1	mg/L	< 1.0	<	1.0	118.8		115.2	13.7	13.3			
	Sam	ple ID	M1	M1 D	uplicate	M2	M2	2 Duplicate	МЗ	M3 Duplic	ate	M4	M4 Duplicate
TEST RESULTS		npling e/Time	29 Apr	2009 /	15:50	29 Apr	200	9 / 15:35	29 A	pr 2009 / 15:	40	29 Ap	or 2009 / 16:00
	LOD	Units											Maria Caraca Car
Suspended Solids (SS)	1	mg/L	8.4	8	.3	30.8	A 40 - 40 - 40 - 40 - 40 - 40 - 40 - 40	30.4	11.9	12.3		8.7	9.1

: River Water

: GCE 081096

This laboratory has no responsibility on sampling and all the test results relate only to the sample tested as received. Note: Remarks: ---- End ----

Tested By K.L. Fong Approved Signatory **GU CHIN** Name Checked By : **GU CHIN** Post Chemist

Form No.: WQM/R1 (19-01-2009)

* : Information provided by client

Appendix G

Monitoring Schedule
for Apr 2009

Environmental Pioneers and Solutions Limited

DC/2006/11 - DRAINAGE IMPROVEMENT IN SOUTHERN LANTAU

Master Schedule of EM&A works in April 2009

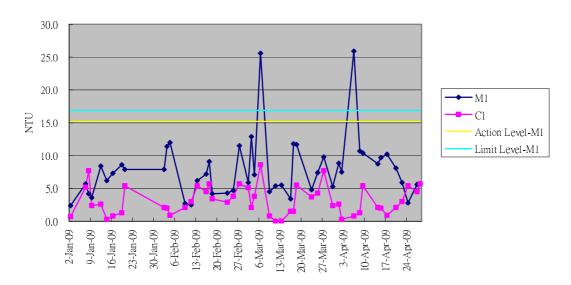
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			4/1	4/2	4/3	4/4
			WQM at:	WQM at:		
			16:18	16:58		
				Site Inspection		
4/5	4/6	4/7	4/8	4/9	4/10	4/11
	WQM at:		WQM at:	WQM & EWQM at:		
	10:18		11:49	12:18 Ecological Survey		
	Noise monitoring			Site Inspection		
4/12	4/13	4/14	4/15	4/16	4/17	4/18
		WQM at:	WQM at:		WQM at:	
		15:09	15:46		17:12	
					Ecological Survey	
			Noise monitoring		Site Inspection	
4/19	4/20	4/21	4/22	4/23	4/24	4/25
	WQM at:		WQM at:		WQM at:	
	08:55		10:11		11:59	
	Noise monitoring				Site Inspection	
4/26	-	4/28	4/29	4/30		
	WQM at:	4720	WQM at:	4/00		
	13:51		15:33			
	1	WQM repeat	1			
	Noise monitoring	measurement				

Noise Monitoring Locations: Total 4 Locations as N1, N2, N3 and N4

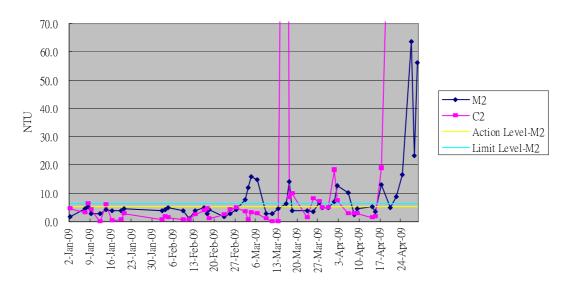
Water Quality Monitoring (WQM) Locations: Total 7 Locations as M1, M2, M3, M4, C1, C2 and C3

Ecological Water Quality Monitoring (EWQM) Locations: Total 6 Locations as WE1, WE2, WE3, WE4, WE5 and WE6

Appendix H Implementation Status of environmental protection / mitigation measures

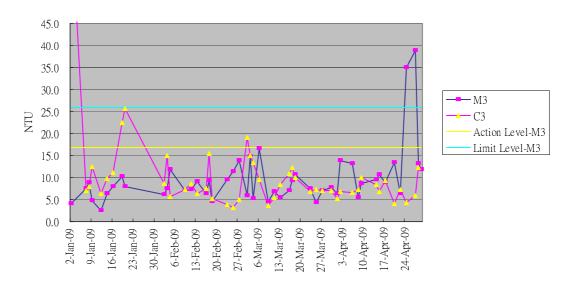

Environmental	Protection / Mitigation Measures	Implementation	Follow-up	
Aspect		status	action	
Air Quality	Use of regular watering to reduce dust emissions from exposed site surfaces and unpaved road, with complete coverage.	Implemented	-	
	Use of frequent watering for particular dusty static construction areas and areas close to ASRs.	Implemented	-	
	Tarpaulin covering of all dusty vehicle loads transported to and from and between site location;	Implemented	-	
	Establishment and use of vehicle wheel and body washing facilities at the exit points of the site.	Implemented		
	Routing of vehicles and positioning of construction plant should be at the maximum possible distance from ASRs.	Implemented	-	
Noise	Use of quiet powered mechanical equipment (PME)	Implemented	-	
NOISE	Adoption of movable noise barriers and temporary noise barriers	Not applicable at this stage	-	
	manual Clause 3.8.1	•	-	
Water Quality	Before commencing any site formation works, all sewer and drainage connections should be sealed to prevent debris, soil, sand etc. from entering public sewers/drains.	Implemented	-	
	Temporary ditches should be provided to facilitate run-off discharge into appropriate watercourses, via a silt retention pond. No site run-off should enter the freshwater marshes at Luk Tei Tong.	Not applicable	-	
	Sand/ silt removal facilities such as sand traps, silt traps and sediment basins should be provided to remove sand/ silt particles from runoff to meet the requirements of the Technical Memorandum standard under the Water Pollution Control Ordinance.	Deficiencies found on 23 Apr 09	To be follow up	
	Water pumped out from foundation excavations should be discharged into silt removal facilities.	Deficiencies found on 23 Apr 09	To be follow up	
	During rainstorms, exposed slope surface should be covered by a tarpaulin or the means.	Implemented	-	
	Exposed soil areas should be minimized to reduce potential for increased siltation and contamination of runoff.	Implemented	-	
	Exposed soil surfaces should be protected by paving or fill material as soon as possible to reduce potential of soil erosion.	Implemented	-	
	Open stockpiles of construction materials or construction wastes on-site of more than 50m ³ should be covered with tarpaulin or similar fabric during rainstorms.	Implemented	-	
	Oils and fuels should only be used and stored on designated areas which have pollution prevention facilities.	Implemented	-	
	Temporary sanitary facilities, such as portable chemical toilets, should be employed on-site.	Not applicable	-	
	The excavation and widening works for the drainage improvements to the Pak Ngan Heung River, Tai Tei Tong River, Luk Tei Tong River and Luk Tei Tong By-pass Channel should be carried out in sections (approximately 300 –400 m in length) and in dry condition.	Implemented	-	

Environmental	Protection / Mitigation Measures	Implementation	Follow-up
Aspect		status	action
	Maintenance desiliting of the re-profiled river channels of the Pak Ngan Heung River, Tai Tei Tong River, Luk Tei tong River and Luk Tei Tong By-pass Channel, temporary barrier walls should be used to provide a dry zone for desiliting work.	Not applicable at this stage	-
Ecology	Existing natural habitats should be retained as far as practicable	Implemented	-
	Boundary of working areas should be identified to prevent loss of vegetation	Implemented	
	All existing trees / plant should be well protected within the site or transplanted properly	Implemented	-
	Turf removal from the Luk Tei Tong marsh due to the construction of Luk Tei Tong Bypass Channel shall be minimized	Implemented	
	Turf from the Luk Tei Tong marsh shall be properly removed, stored, maintained and reused for lining the riverbed of the Luk Tei Tong Bypass Channel	Implemented	
Chemical and	Chemical wastes should be properly stored in a proper store as per statutory requirements (i.e. on a hard standing, within an enclosed and locked area)	Implemented	-
Solid Waste	Chemical waste stores should be provided with fire precaution facilities (i.e. fire extinguisher, no smoking warning etc).	Implemented	-
	Chemical wastes should be properly stored in corrosion resistant containers placed inside the store and labelled with warning signs in English and Chinese.	Implemented	-
	Chemical wastes should be disposed of by licensed chemical waste collector with supporting delivery records.	Implemented	-
	All containers for fuel, diesel and fluid chemical (in use) and oil filled stationery plants located with proper drip pans.	Implemented	-
	Construction wastes should be managed and disposed to the designated public fill and landfill areas in acceptable manner.	Implemented	-
	All waste disposals managed in a proper manner i.e. trip ticket system implementation.	Implemented	-

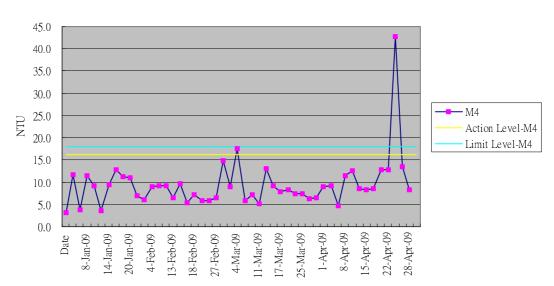

Appendix I

Graphical plot of water quality monitoring results (SS, DO, turbidity)

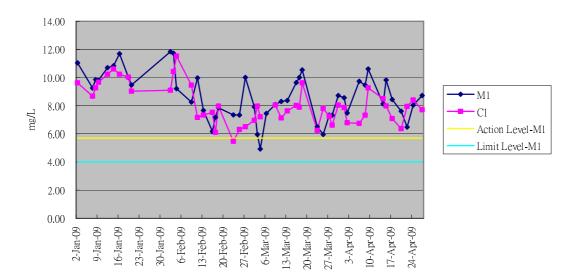
Graphical Plot of Turbidity Trend M1&C1 (Jan- Apr 09)

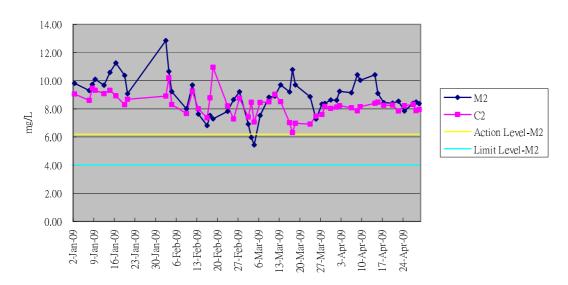


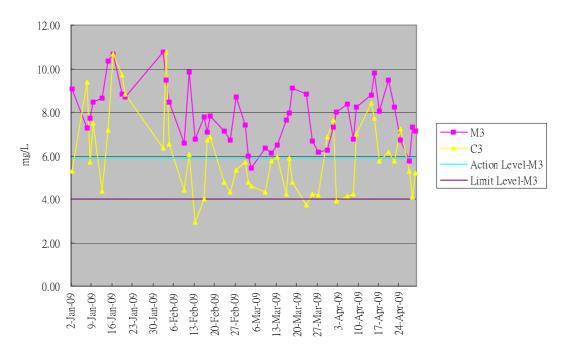
Graphical Plot of Turbidity Trend M2&C2 (Jan-Apr 09)

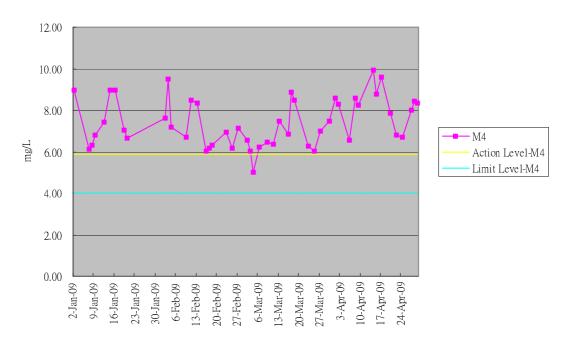


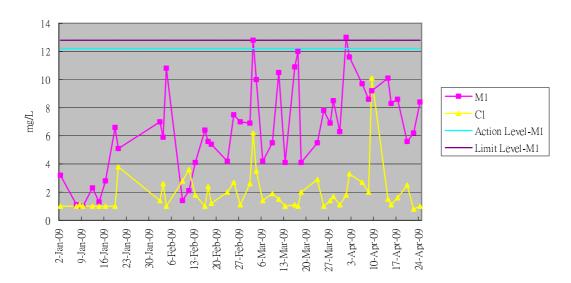
Remarks: The reading of C2 on 27th, 28th and 29th April 2009 is 732.1, 360.5, and 186.7, which was over the range of the plot.

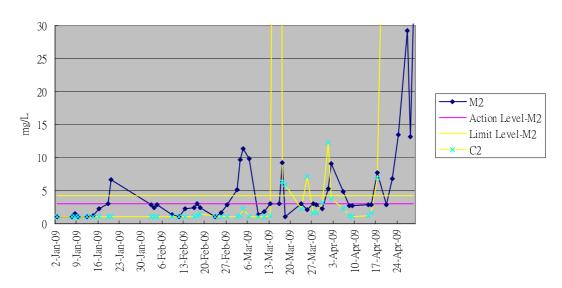

Graphical Plot of Turbidity Trend M3&C3 (Jan- Apr 09)


Graphical Plot of Turbidity Trend M4 (Jan- Apr 09)

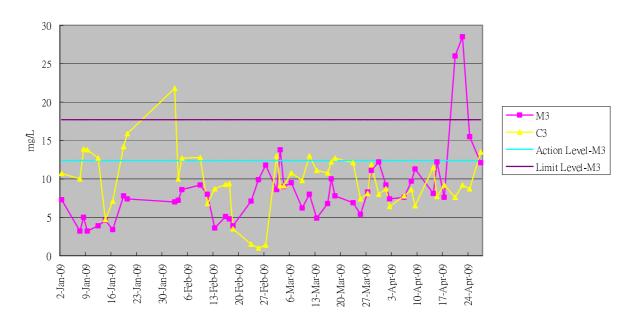

Graphical Plot of Dissolved Oxygen Trend M1&C1 (Jan-Apr 09)


Graphical Plot of Dissolved Oxygen Trend M2&C2 (Jan-Apr 09)

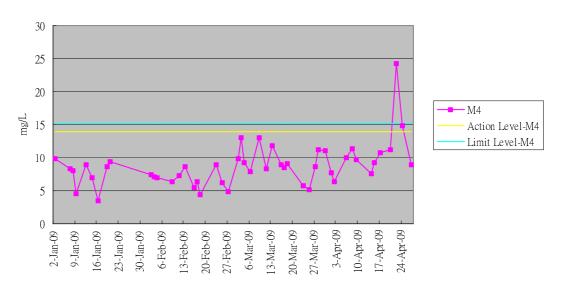

Graphical Plot of Dissolved Oxygen Trend M3&C3 (Jan-Apr 09)


Graphical Plot of Dissolved Oxygen Trend M4 (Jan-Apr 09)

Graphical Plot of Suspended Soild M1&C1 (Jan-Apr 08)

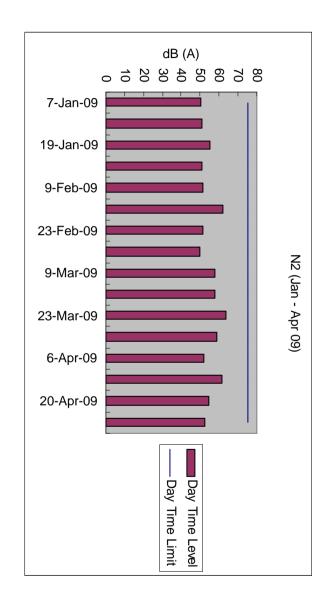


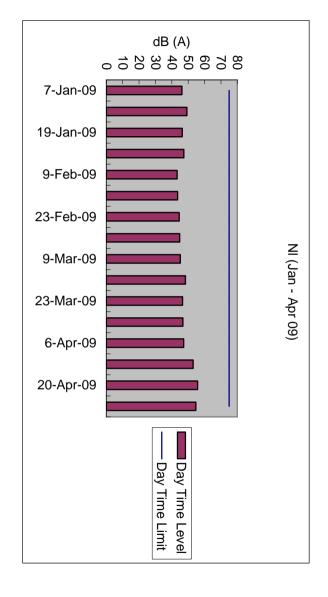
Graphical Plot of Suspended Soild M2&C2 (Jan-Apr 08)

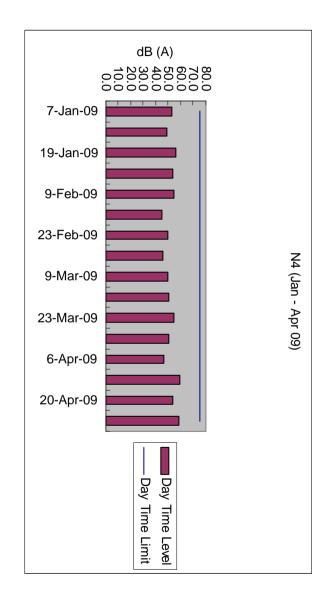


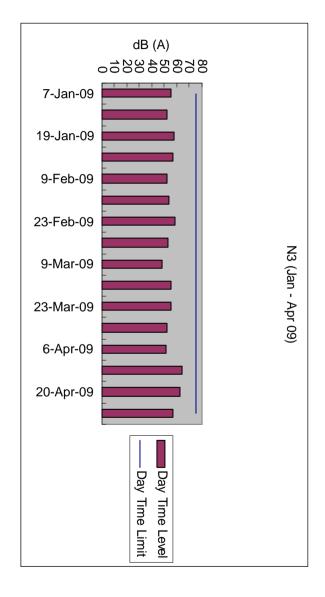
Remarks: The reading of M2 on 30th April 2009 is 30.6 and C2 on 27th April 2009 is 490.5, which was over the range of the plot.

Graphical Plot of Suspended Soild M3&C3 (Jan-Apr 08)




Graphical Plot of Suspended Soild M4 (Jan-Apr 08)




Appendix J

Graphical plot of noise monitoring results

