

CONTRACT NO: KL/2009/01

SITE FORMATION FOR KAI TAK CRUISE TERMINAL DEVELOPMENT

ENVIRONMENTAL MONITORING & AUDIT MONTHLY REPORT

- OCTOBER 2010 -

CLIENT:

Penta-Ocean Construction Co., Ltd.

Unit 601, K. Wah Centre, 191 Java Road, North Point, Hong Kong

PREPARED BY:

Lam Environmental Services Limited

11/F Centre Point 181-185 Gloucester Road, Wanchai, H.K.

Telephone: (852) 2882-3939 Facsimile: (852) 2882-3331 E-mail: <u>info@lamenviro.com</u> Website: <u>http://www.lamenviro.com</u>

CERTIFIED BY:

Raymond Dai^V Environmental Team Leader

DATE:

6 November 2010

FAX MESSAGE

	Priority	🛯 normal / 🗂 urgent
--	----------	---------------------

То	Lam Environmental Services Limited	Ref. No.	MCLF2786
Country		Email	raymonddai@lamenviro.com
Attn.	Mr. Raymond Dai	Date	11 November 2010
From	Joseph Poon	No. of Pages	1 (Incl. this page)
C.c. To	Mr. Barry Wong (Scott Wilson Limited)	Email	barry.wong@scottwilson.com.hk
	Mr. K. Y. Shin (Civil Engineering and Development Department)	Email	kyshin@cedd.gov.hk
	Mr. Stephen Cheng (Scott Wilson Limited)	Email	stephen.cheng@scottwilson.com.hk
	Mr. Andrew Tam (Scott Wilson Limited)	Email	andrew.tam@scottwilson.com.hk
	Mr. Perry Yam (Penta-Ocean Construction Company Limited)	Email	perry.yam@pentaocean.com.hk
Subject	Agreement No. CE 19/2009 (EP) Dredging Works for Proposed Cruise Terminal a Monthly Environmental Monitoring & Audit Rep		k –

We refer to the revised Monthly EM&A Report for October 2010 that we received through email on 11 November 2010 and are pleased to confirm we have no further comment on the report.

Should you require further information, please feel free to contact us.

Best regards,

Joseph Poon Independent Environmental Checker

JP/CY/by

CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, disclose or otherwise use the information in this facsimile. If you are not the intended recipient, please telephone or fax us immediately.

CONTENTS

Ex	ecutive	SummaryI		
1	Introdu	ıction1		
	1.1	Scope of the Report1		
	1.2	Structure of the Report1		
2	Projec	t Background3		
	2.1	Background3		
	2.2	Scope of the Project and Site Description3		
	2.3	Project Organization and Contact Personnel4		
	2.4	Construction Programme and Works4		
3	Implen	nentation Requirements5		
	3.1	Status of Regulatory Compliance5		
4	Monito	ring Requirements6		
	4.1	Noise Monitoring6		
	4.2	Water Quality Monitoring7		
	4.3	Water Quality Parameters7		
	4.4	Sampling Procedures and Monitoring Equipment8		
5	Monito	ring Results11		
	5.1	Water Monitoring Results11		
	5.2	Waste Monitoring Results11		
6	Compl	iance Audit12		
	6.1	Noise Monitoring12		
	6.2	Water Quality Monitoring12		
	6.3	Dredging and Disposal13		
7	Site Inspection15			
8	Compl	aints, Notification of Summons and Prosecution16		
9	Conclu	ısion17		

LIST OF TABLES

Table I	Summary for the Exceedances Recorded in Reporting Month
Table 2.2	Contact Details of Key Personnel
Table 3.1	Summary of Valid Licences and Permits
Table 4.1	Planned Noise Monitoring Stations
Table 4.2	Water Quality Monitoring Stations for Baseline and Impact Monitoring
Table 4.3	Water Quality Monitoring Frequency and Parameters
Table 4.4	Equipment Used in Water Quality Monitoring in the Reporting Month
Table 6.2	Summary of Exceedances recorded in the Reporting Month
Table 6.3.1	Compliance with EP Conditions in the Reporting Month
Table 6.3.2	Waste Quantities Related To Dredging Works
Table 7.0.1	Observation Identified during the Site Audit
Table 8.1	Environmental Complaints Log
Table 8.2	Cumulative Statistics on Complaints
Table 8.3	Cumulative Statistics on Successful Prosecutions
Table 9.0	Construction Activities and Recommended Mitigation Measures in Coming
	Report Month

LIST OF FIGURES

<u>Figure 2.1</u>	General Layout
Figure 2.2	Project Organisation Chart

Figure 4.1 Layout of Environmental Monitoring Stations

LIST OF APPENDICES

- Appendix 3.1 Implementation Schedule of Environmental Mitigation Measures
- Appendix 4.1 Action and Limit Levels
- Appendix 4.2 Copies of Calibration Certificates
- Appendix 5.1 Monitoring Schedule for the Reporting Month and Coming Three Months
- Appendix 5.2 Water Quality Monitoring Results and Graphical Presentation
- Appendix 5.3 Event and Action Plan
- Appendix 5.4 Details of Notification of Exceedances
- Appendix 9.0 Construction Programme

EXECUTIVE SUMMARY

i. This is the Environmental Monitoring and Audit (EM&A) Monthly Report – October 2010 for Contract No. KL/2009/01 – Site Formation for Kai Tak Cruise Terminal Development. The dredging works has been commenced on 28 June 2010. This report presents the environmental monitoring findings and information recorded in October 2010.

Construction Activities for the Reporting Period

- ii. During this reporting period, the principal work activities included:
 - Dredging at Toe of Existing Seawall;
 - Dredging at Submarine Outfall; and
 - Maintenance of Silt Curtain and Silt Screens

Water Quality Monitoring

iii. Water quality monitoring at 6 designated monitoring stations namely WSD9, WSD10, WSD15, WSD17, WSD19 and WSD21 were conducted during the reporting period. As per the EM&A Manual, water quality impact monitoring was conducted during the dredging works, which commenced on 28 June 2010. Suspended solid (SS) exceedances of water quality at various monitoring stations are summarized in *Table I*. However, investigations indicated these exceedances were not related to the Project works.

Date	Tide	Parameter	Exceedance	Station	Possible Cause of Exceedance
4/10/2010	Mid-flood	SS (mg/L)	LL	WSD17	Upstream of the Project
4/10/2010	Mid-ebb	SS (mg/L)	LL	WSD19	Upstream of the Project
6/10/2010	Mid-ebb	SS (mg/L)	LL	WSD9	Upstream of the Project
8/10/2010	Mid-flood	SS (mg/L)	AL	WSD10	Upstream of the Project
8/10/2010	Mid-ebb	SS (mg/L)	AL	WSD15	Natural variation of change around station
8/10/2010	Mid-flood	SS (mg/L)	LL	WSD17	Upstream of the Project
8/10/2010	Mid-ebb	SS (mg/L)	LL	WSD17	Natural variation of change around station
11/10/2010	Mid-flood	SS (mg/L)	AL	WSD9, WSD21	Natural variation of change around station
11/10/2010	Mid-flood	SS (mg/L)	AL	WSD17	Upstream of the Project
13/10/2010	Mid-flood	SS (mg/L)	AL	WSD15	Upstream of the Project
13/10/2010	Mid-flood	SS (mg/L)	LL	WSD17	Upstream of the Project
16/10/2010	Mid-ebb	SS (mg/L)	AL	WSD17	Natural variation of change around station
18/10/2010	Mid-flood	SS (mg/L)	AL	WSD9	Natural variation or change around station
18/10/2010	Mid-flood	SS (mg/L)	AL	WSD10, WSD17	Upstream of the Project
18/10/2010	Mid-flood	SS (mg/L)	LL	WSD15	Upstream of the Project

Table I Summary for the Exceedances Recorded in Reporting Month

Date	Tide	Parameter	Exceedance	Station	Possible Cause of Exceedance
18/10/2010	Mid-ebb	SS (mg/L)	AL	WSD9	Upstream of the Project
18/10/2010	Mid-ebb	SS (mg/L)	AL	WSD15, WSD17	Natural variation or change around station
20/10/2010	Mid-flood	SS (mg/L)	LL	WSD9, WSD21	Natural variation or change around station
20/10/2010	Mid-flood	SS (mg/L)	AL	WSD10, WSD15	Upstream of the Project
20/10/2010	Mid-ebb	SS (mg/L)	AL	WSD9, WSD21	Upstream of the Project
20/10/2010	Mid-ebb	SS (mg/L)	LL	WSD10, WSD15	Natural variation or change around station
20/10/2010	Mid-ebb	SS (mg/L)	AL	WSD17	Natural variation or change around station
25/10/2010	Mid-flood	SS (mg/L)	AL	WSD17	Upstream of the Project
25/10/2010	Mid-flood	SS (mg/L)	LL	WSD9	Natural variation or change around station
25/10/2010	Mid-ebb	SS (mg/L)	AL	WSD21	Upstream of the Project
25/10/2010	Mid-ebb	SS (mg/L)	LL	WSD15	Natural variation or change around station
27/10/2010	Mid-flood	SS (mg/L)	LL	WSD15	Upstream of the Project
28/10/2010	Mid-ebb	SS (mg/L)	AL	WSD9	Upstream of the Project
28/10/2010	Mid-ebb	SS (mg/L)	LL	WSD15	Natural variation or change around station
29/10/2010	Mid-flood	SS (mg/L)	AL	WSD9	Natural variation or change around station
29/10/2010	Mid-flood	SS (mg/L)	AL	WSD10	Upstream of the Project
30/10/2010	Mid-ebb	SS (mg/L)	LL	WSD9	Upstream of the Project
30/10/2010	Mid-ebb	SS (mg/L)	AL	WSD10	Natural variation or change around station
30/10/2010	Mid-ebb	SS (mg/L)	LL	WSD15	Natural variation or change around station

iv. Owing to the frequent reported exceedances caused by fluctuation in coastal water quality due to localised effect not related to the project. It is recommended that a review of the baseline water quality and the respective action and limit levels may be necessary.

Noise Monitoring

v. Due to the non-existence of planned NSRs during the reporting period, no noise monitoring was required to be conducted at the planned noise monitoring locations NM1 and NM2.

Waste Management

vi. There were marine sediment (Type 1 – Open Sea Disposal) disposed to South Cheung Chau Spoil Disposal Area denoted "KTCT-1" and "KTCT -2". No inert C&D material and non-inert C&D material related to dredging works were disposed off site in the reporting month.

Complaints, Notifications of Summons and Successful Prosecutions

vii. No complaint, notification of prosecutions or summons was received in the reporting period.

Site Inspections and Audit

viii. The Environmental Team (ET) conducted four site inspections on 5, 12, 19 and 26 October 2010. Observation related to the dredging work during the audit sessions were rectified by the Contractor.

Compliance with Specific EP Conditions

ix. Implementation of contractor's mitigation for dredging work and the associated dredging records were checked. It was concluded that the dredging is conducted orderly in compliance with the EP requirements on site mitigation measures.

Construction Activities for the Coming Reporting Period

- x. In the coming reporting period, the principal work activities included:
 - Dredging at Toe of Existing Seawall;
 - Dredging at Submarine Outfall;
 - Maintenance of Silt Curtain and Silt Screens;
 - Fabrication and installation of silt curtain for seawall removal;
 - Dredging at Existing Seawall; and
 - Sorting of inert C&D material from existing seawall

1 INTRODUCTION

1.1 SCOPE OF THE REPORT

- 1.1.1. Lam Environmental Services Limited (LES) has been appointed to work as the Environmental Team (ET) for dredging works to implement the Environmental Monitoring and Audit (EM&A) programme for Contract No. KL/2009/01 Site Formation for Kai Tak Cruise Terminal Development. The dredging work was commenced on 28 June 2010.
- 1.1.2. This report presents the environmental monitoring and auditing work carried out in accordance to the Section 10.4 under Environmental Monitoring and Audit (EM&A) Manual.
- 1.1.3. This report documents the finding of EM&A works in October 2010. The cut-off date of reporting is at the end of each reporting month.

1.2 STRUCTURE OF THE REPORT

- **Section 1** *Introduction* details of the scope and structure of the report.
- Section 2 *Project Background* summarizes background and scope of the project, site description, project organization and contact details of key personnel during the reporting period.
- **Section 3** *Implementation Status* summarizes the status of valid Environmental Permits / Licenses during the reporting period.
- Section 4 *Monitoring Requirements* summarizes all monitoring parameters, monitoring methodology and equipment, monitoring locations, monitoring frequency, criteria and respective event and action plan and monitoring programmes.
- Section 5 *Monitoring Results* summarizes the monitoring results obtained in the reporting period.
- Section 6 Compliance Audit summarizes the auditing of monitoring results and all exceedances environmental parameters.
- Section 7 Site Inspection summarizes the findings of weekly site inspections undertaken within the reporting period, with a review of any relevant follow-up actions within the reporting period.
- Section 8 Complaints, Notification of Summons and Prosecution summarizes the complaints, notification of summons and

successful prosecution for breaches of environmental legislation and the actions taken within the reporting period.

Section 9 Conclusion

2 PROJECT BACKGROUND

2.1 BACKGROUND

- 2.1.1. The former Kai Tak Airport located in the south-eastern part of Kowloon Peninsula was the international airport of Hong Kong. The Kai Tak Airport had come into operations since 1920s. The operation of the Kai Tak Airport was ceased and replaced by the new airport at Chek Lap Kok in July 1998. After closure, the disused airport site has been occupied by various temporary uses, including a golf driving range on the runway area.
- 2.1.2. In 2002, the Chief Executive in Council approved the Kai Tak Outline Zoning Plans (No. S/K19/3 and S/K21/3) to provide the statutory framework to proceed with the South East Kowloon Development at the former Kai Tak Airport. However, following the judgment of the Court of Final Appeal in January 2004 regarding the Harbour reclamation, the originally proposed development which involves reclamation has to be reviewed. The Kai Tak Planning Review (KTPR) has resulted with a Preliminary Outline Development Plan (PODP) for Kai Tak in October 2006. Subsequently, the Administration announced in October 2006 a plan to implement a cruise terminal at Kai Tak, as part of the development.
- 2.1.3. Development of the cruise terminal at Kai Tak would require dredging at the existing seawall at the southern tip of the former Kai Tak Airport runway for construction of a quay deck structure for two berths, and dredging the seabed fronting the new quay to provide necessary manoeuvring basin. The general layout of the proposed cruise terminal construction is shown in *Figure 2.1*.
- 2.1.4. The current Project involves a dredging operation exceeding 500,000m³ for construction and operation of the proposed cruise terminal at Kai Tak and is therefore classified as a Designated Project under Item C.12, Part I, Schedule 2 of the Environmental Impact Assessment Ordinance (EIAO). An Environmental Impact Assessment (EIA) Study for the Project has been undertaken in accordance with the EIA Study Brief (No. ESB-159/2006) and the Technical Memorandum on Environmental Impact Assessment Process (EIAO-TM).

2.2 SCOPE OF THE PROJECT AND SITE DESCRIPTION

- 2.2.1. The scope of the Project comprises:
 - Dredging of marine sediment of about 700,000 m³ from the existing seabed (Stage 1 dredging) in the Harbour area off the southern tip of the former Kai Tak Airport runway to provide the necessary water depth within the manoeuvring area for cruise vessels; and
 - Removal of existing seawall of about 322,300m³ by dredging at the southern tip of the former Kai Tak Airport runway for cruise berth construction.

2.3 PROJECT ORGANIZATION AND CONTACT PERSONNEL

- 2.3.1. Kowloon Development Office of Civil Engineering and Development Department is the overall project controller. For the construction phase of KL/2009/01, Project Engineer, Contractor, Environmental Team and Independent Environmental Checker are appointed to manage and control environmental issues.
- 2.3.2. The proposed project organization and lines of communication with respect to environmental protection works are shown in <u>*Figure 2.2*</u>. Key personnel and contact particulars are summarized in *Table 2.2*:

Table 2.2Contact Details of Key Personnel

Party	Role	Name	Post	Contact No.	Contact Fax
Civil Engineering and Development Department (Kowloon Development Office)	Project Proponent	Ir. KY Shin	Senior Engineer	2301 1461	2301 1277
URS / Scott Wilson Limited	Engineer's Representative	Mr. Stephen Cheng	Chief Resident Engineer	2148 7638	2148 7277
Penta-Ocean Construction	Contractor	Mr. PL Yue	Project Manager	2148 7238	2148 7138
Company Limited		Mr. Warren Tse	Site Agent		
		Mr. Perry Yam	Environmental Officer		
Fugro (HK) Limited	Independent Environmental Checker (IEC)	Mr. Joseph Poon	Independent Environmental Checker (IEC)	2450 8238	2450 6138
Lam Environmental Services Limited	Environmental Team Leader	Mr. Raymond Dai	Environmental Team Leader (ETL)	2882 3939	2882 3331

2.4

CONSTRUCTION PROGRAMME AND WORKS

- 2.4.1. During this reporting period, the principal work activities included:
 - Dredging at Toe of Existing Seawall;
 - Dredging at Submarine Outfall; and
 - Maintenance of Silt Curtain and Silt Screens.

3 IMPLEMENTATION REQUIREMENTS

3.1 STATUS OF REGULATORY COMPLIANCE

3.1.1. A summary of the current status on licences and/or permits on environmental protection pertinent to the Project is shown in *Table 3.1*.

Table 3.1Summary of Valid Licences and Permits

Permits and/or Licences	Reference No.	Issued Date	Valid Period	Status in Reporting Month
Environmental Permit	EP-328/2009/A	15 Jun 2009	N/A	Valid
Notification of Works Under APCO	KTCT/907/S/3.14/7. 00/L/0060 (POC's REF. number) dated 9 December 2009		N/A	Valid
Construction Noise Permit (CNP)	GW-RE0442-10	10 Sep 2010	23 Sep 2010 (00:00) to 22 Mar 2011 (24:00)	Valid
Discharge Licence	WT00005933-2010	18 Mar 2010	Until 31 March 2015	Valid
Registration of Waste Producer	5213-247-P2984- 01	14 Jan 2010	N/A	Valid
Dumping Permit (Type 1 – Open Sea Disposal)	EP/MD/10-051	2 Mar 2010	3 May to 2 Nov 2010	Valid
Dumping Permit (Type 1 – Open Sea Disposal (Dedicated Sites) & Type	EP/MD/11-060	2 Sep 2010	3 Sep to 2 Oct 2010	Valid till 2 Oct 2010
2 – Confined Marine Disposal)	EP/MD/11-070	28 Sep 2010	3 Oct to 2 Nov 2010	Valid

3.1.2. Implementation status of the recommended mitigation measures during this reporting period is presented in *Appendix 3.1*.

4

MONITORING REQUIREMENTS

4.1 NOISE MONITORING

4.1.1. In accordance with the EIA Report and the approved EM&A Manual, it is anticipated that construction activities, if unmitigated, would not cause any adverse noise impact to the nearest NSRs in the vicinity of the work site. The predicted noise levels at the NSRs would comply with construction noise criteria. These nearest NSRs are designated for construction noise monitoring as listed in *Table 4.1*.

Table 4.1 Planned Noise Monitoring Stations

Station	Description	
NM1	Planned Residential Development (R3 site)	
NM2	Planned Residential Development (R3 site)	

4.1.2. As per S.3.1.1 of the approved EM&A Manual states that "Noise levels shall be monitored to evaluate the construction noise impact if there is any planned noise sensitive receivers (NSRs) occupied within 300m from the works area of this Project during the proposed dredging works". Therefore, the impact monitoring for construction noise shall only be carried out when the planned residential development at the two identified monitoring stations are occupied at a later stage.

4.2 WATER QUALITY MONITORING

- 4.2.1. The EIA Report has identified that suspended solids (SS) would be the most critical water quality parameter during the dredging operations. Water quality monitoring for SS and turbidity is therefore recommended to be carried out at selected WSD flushing water intakes. The impact monitoring should be carried out during the proposed dredging works for cruise terminal construction to ensure the compliance with the water quality standards.
- 4.2.2. It is proposed to monitor the water quality at six WSD flushing water intakes along the seafront of the Victoria Harbour. The proposed water quality monitoring stations are shown in *Table 4.2* and *Figure 4.1*.

Station Ref.	WSD Flushing Water Intake	Easting	Northing
WSD9	Tai Wan	837921.0	818330.0
WSD10	Cha Kwo Ling	841900.9	817700.1
WSD15	Sai Wan Ho	841110.4	816450.1
WSD17	Quarry Bay	839790.3	817032.2
WSD21	Wan Chai	836220.8	815940.1
WSD19	Sheung Wan	833415.0	816771.0

Table 4.2Water Quality Monitoring Stations for Baseline and Impact Monitoring

4.3 WATER QUALITY PARAMETERS

- 4.3.1. During the period of dredging, monitoring should be undertaken three days per week, at mid-flood and mid-ebb tides, with sampling / measurement at the designated monitoring stations as shown in *Table 4.2*. The interval between two sets of monitoring should not be less than 36 hours except where there are exceedances of Action and/or Limit Levels, in which case the monitoring frequency will be increased. *Table 4.3* shows the proposed monitoring frequency and water quality parameters. Duplicate in-situ measurements and water sampling should be carried out in each sampling event. For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides should not be less than 0.5m.
- 4.3.2. Silt screens shall be deployed at these intakes during the dredging period. It is recommended to conduct the monitoring inside the silt screens at the seawater intake culvert at each seawater pumping station to collect information on the mitigated water quality condition.

Table 4.3 Water Quality Monitoring Frequency and Parameters

Activities	Monitoring Frequency ¹	Parameters ²
During the 4-week baseline monitoring period	Three days per week, at mid-flood and mid-ebb tides	Turbidity (in NTU), Suspended Solids (SS in mg/L)
During dredging works for proposed cruise terminal at Kai Tak	Three days per week, at mid-flood and mid-ebb tides	Turbidity (in NTU), Suspended Solids (SS in mg/L)

Notes:

1. For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides should be not less than 0.5m.

- 2. Turbidity should be measured in situ whereas SS should be determined by laboratory.
- 4.3.3. The established Action and Limit levels according to the approved baseline monitoring report for monitoring works can be referred to *Appendix 4.1*.
- 4.3.4. Current calibration certificates of equipment are presented in *Appendix 4.2*.

4.4 SAMPLING PROCEDURES AND MONITORING EQUIPMENT

4.4.1. In-situ measurements and water sampling shall be conducted at mid-depth. Duplicate *in-situ* measurements and water sampling have been conducted in each sampling event. Water samples for all monitoring parameters shall be collected, stored, preserved and analysed according to the Standard Methods, APHA 17 and/or agreed by IEC and EPD.

Dissolved Oxygen and Temperature Measuring Equipment

- 4.4.2. The instrument should be a portable, weatherproof dissolved oxygen measuring instrument complete with cable, sensor, comprehensive operation manuals, and use a DC power source. It should be capable of measuring:
 - a dissolved oxygen level in the range of 0-20 mg/l and 0-200% saturation
 - a temperature of 0-45 degree Celsius
- 4.4.3. It should have a membrane electrode with automatic temperature compensation complete with a cable. Sufficient stocks of spare electrodes and cables should be available for replacement where necessary. (e.g. YSI model 59 meter, YSI 5739 probe, YSI 5795A submersible stirrer with reel and cable or an approved similar instrument).
- 4.4.4. Should salinity compensation not be build-in in the DO equipment, in-situ salinity shall be measured to calibrate the DO equipment prior to each DO measurement.

Turbidity Measurement Instrument

4.4.5. The instrument should be a portable, weatherproof turbidity-measuring instrument complete with comprehensive operation manual. The equipment should use a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0-1000 NTU and be complete with a cable (e.g. Hach model 2100P or an approved similar instrument).

Suspended Solids

- 4.4.6. A water sampler comprises a transparent PVC cylinder, with a capacity of not less than 2 litres, and can be effectively sealed with latex cups at both ends. The sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth (e.g. Kahlsico Water Sampler or an approved similar instrument).
- 4.4.7. Water samples for suspended solids measurement should be collected in highdensity polythene bottles, packed in ice (cooled to 4°C without being frozen), and delivered to ALS Technichem (HK) Pty Ltd. as soon as possible after collection for analysis.

Water Depth Detector

4.4.8. A portable, battery-operated echo sounder shall be used for the determination of water depth at each designated monitoring station. This unit can either be handheld or affixed to the bottom of the workboat, if the same vessel is to be used throughout the monitoring programme.

<u>Salinity</u>

4.4.9. A portable salinometer capable of measuring salinity in the range of 0-40 ppt shall be provided for measuring salinity of the water at each of monitoring location.

Locating the Monitoring Site

4.4.10. A hand-held or boat-fixed type digital Global Positioning System (GPS) with way point bearing indication or other equivalent instrument of similar accuracy shall be provided and used during monitoring to ensure the monitoring vessel is at the correct location before taking measurements.

Calibration and Accuracy of Instrument

4.4.11. All in-situ monitoring instruments shall be checked, calibrated and certified by a laboratory accredited under HOKLAS or equivalent before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring. Responses of sensors and electrodes should be checked with

certified standard solutions before each use. Wet bulb calibration for a DO meter shall be carried out before measurement at each monitoring location.

- 4.4.12. For the on site calibration of field equipment by the ET, the BS 127:1993, "Guide to Field and on-site test methods for the analysis of waters" should be observed.
- 4.4.13. Sufficient stocks of spare parts should be maintained for replacements when necessary. Backup monitoring equipment shall also be made available so that monitoring can proceed uninterrupted even when some equipment is under maintenance, calibration, etc.
- 4.4.14. The equipment used in the water quality monitoring in the reporting month are summarized in *Table 4.4*. Current calibration certificates of the used equipment are presented in *Appendix 4.2*

Table 4.4 Equipment Used in Water Quality Monitoring in the Reporting Month

Equipment	Model	Qty.
Multi-meter	YSI Sonde 600XL	1
Turbidimeter	Hach 2100P	1

5

MONITORING RESULTS

5.1 WATER MONITORING RESULTS

- 5.1.1. Due to the Strong Wind Signal no. 3 in force on 22 October 2010, water quality was considered substantially affected by urban runoff, which cannot represent the normal impact condition of water quality. Thus, the impact water monitoring on that day was cancelled. EPD was immediately notified via facsimile. The water monitoring schedule for the reporting month and coming three months are presented in *Appendix 5.1*.
- 5.1.2. Water monitoring results measured in reporting month are reviewed and presented in <u>Appendix 5.2</u>. SS exceedances were recorded on 4, 6, 8, 11, 13, 16, 18, 20, 25, 27, 28, 29 and 30 October 2010. EPD was immediately notified the limit level exceedances via facsimile. Investigation found that the exceedances were due to the natural variation or change near monitoring station, it was concluded that exceedances were not related to the Project.
- 5.1.3. The exceedances recorded in the reporting month are concluded not related to the Project, no further steps under Event and Action Plan is needed. The details of Event and Action Plans and Notification of Exceedance summarizing the finding of investigation, possible causes and review of Contractor's mitigation measures can be referred to <u>Appendix 5.3</u> and <u>Appendix 5.4</u>.
- 5.1.4. Owing to the frequent reported exceedances caused by fluctuation in coastal water quality due to localised effect not related to the project. It is recommended that a review of the baseline water quality and the respective action and limit levels may be necessary.

5.2 WASTE MONITORING RESULTS

5.2.1. No inert C&D material and non-inert C&D material related to dredging works were disposed off site in the reporting month.

6 COMPLIANCE AUDIT

6.1 NOISE MONITORING

6.1.1. Noise monitoring was not necessary in the reporting period.

6.2 WATER QUALITY MONITORING

6.2.1. SS exceedances were recorded on 4, 6, 8, 11, 13, 16, 18, 20, 25, 27, 28,29 and 30 October 2010 in the reporting month. *Table 6.2* summarize the details of SS exceedances recorded. Investigation indicated the exceedances were not related to the Project works.

Table 6.2 Summary of Exceedances recorded in the Reporting Month

Date	Tide	Parameter	Exceedance	Station	Possible Cause of Exceedance
4/10/2010	Mid-flood	SS (mg/L)	LL	WSD17	Upstream of the Project
4/10/2010	Mid-ebb	SS (mg/L)	LL	WSD19	Upstream of the Project
6/10/2010	Mid-ebb	SS (mg/L)	LL	WSD9	Upstream of the Project
8/10/2010	Mid-flood	SS (mg/L)	AL	WSD10	Upstream of the Project
8/10/2010	Mid-ebb	SS (mg/L)	AL	WSD15	Natural variation or change around station
8/10/2010	Mid-flood	SS (mg/L)	LL	WSD17	Upstream of the Project
8/10/2010	Mid-ebb	SS (mg/L)	LL	WSD17	Natural variation or change around station
11/10/2010	Mid-flood	SS (mg/L)	AL	WSD9, WSD21	Natural variation or change around station
11/10/2010	Mid-flood	SS (mg/L)	AL	WSD17	Upstream of the Project
13/10/2010	Mid-flood	SS (mg/L)	AL	WSD15	Upstream of the Project
13/10/2010	Mid-flood	SS (mg/L)	LL	WSD17	Upstream of the Project
16/10/2010	Mid-ebb	SS (mg/L)	AL	WSD17	Natural variation or change around station
18/10/2010	Mid-flood	SS (mg/L)	AL	WSD9	Natural variation or change around station
18/10/2010	Mid-flood	SS (mg/L)	AL	WSD10, WSD17	Upstream of the Project
18/10/2010	Mid-flood	SS (mg/L)	LL	WSD15	Upstream of the Project
18/10/2010	Mid-ebb	SS (mg/L)	AL	WSD9	Upstream of the Project
18/10/2010	Mid-ebb	SS (mg/L)	AL	WSD15, WSD17	Natural variation or change around station
20/10/2010	Mid-flood	SS (mg/L)	LL	WSD9, WSD21	Natural variation or change around station
20/10/2010	Mid-flood	SS (mg/L)	AL	WSD10, WSD15	Upstream of the Project
20/10/2010	Mid-ebb	SS (mg/L)	AL	WSD9, WSD21	Upstream of the Project
20/10/2010	Mid-ebb	SS (mg/L)	LL	WSD10, WSD15	Natural variation or change around station
20/10/2010	Mid-ebb	SS (mg/L)	AL	WSD17	Natural variation or change around station

Date	Tide	Parameter	Exceedance	Station	Possible Cause of Exceedance
25/10/2010	Mid-flood	SS (mg/L)	AL	WSD17	Upstream of the Project
25/10/2010	Mid-flood	SS (mg/L)	LL	WSD9	Natural variation or change around station
25/10/2010	Mid-ebb	SS (mg/L)	AL	WSD21	Upstream of the Project
25/10/2010	Mid-ebb	SS (mg/L)	LL	WSD15	Natural variation or change around station
27/10/2010	Mid-flood	SS (mg/L)	LL	WSD15	Upstream of the Project
28/10/2010	Mid-ebb	SS (mg/L)	AL	WSD9	Upstream of the Project
28/10/2010	Mid-ebb	SS (mg/L)	LL	WSD15	Natural variation or change around station
29/10/2010	Mid-flood	SS (mg/L)	AL	WSD9	Natural variation or change around station
29/10/2010	Mid-flood	SS (mg/L)	AL	WSD10	Upstream of the Project
30/10/2010	Mid-ebb	SS (mg/L)	LL	WSD9	Upstream of the Project
30/10/2010	Mid-ebb	SS (mg/L)	AL	WSD10	Natural variation or change around station
30/10/2010	Mid-ebb	SS (mg/L)	LL	WSD15	Natural variation or change around station

6.3 DREDGING AND DISPOSAL

6.3.1. Implementation of mitigation measures for dredging work and the associated dredging records were checked and the findings are summarized in *Table 6.3.1*.

Table 6.3.1 Compliance with EP Conditions in the Re	Reporting Month
---	-----------------

-	
EP Condition	Compliance Status and/or Recommendation
2.6 Silt Curtain Deployment	In accordance with the EP requirement and Implementation Schedule for Water Quality Measure
2.7 Daily Dredging Rate \leq 4,000m ³ /d Hourly Dredging Rate \leq 334m ³ /hr	Complied with the EP requirement in reporting month: Daily Dredging Rate maintained at 2408 m ³ /day and Hourly Dredging Rate maintained at 200 m ³ /hr.
2.8 Silt Screen Deployment	In accordance with the Silt Screen Deployment Plan for all 6 intakes

- 6.3.2. The daily and hourly dredging rates were checked and reviewed that were below the EP requirements. It was concluded that the dredging was conducted in compliance with the specific EP requirements.
- 6.3.3. There was marine sediment (Type 1 Open Sea Disposal) disposed to South Cheung Chau Spoil Disposal Area denoted "KTCT-1" and "KTCT -2". No inert C&D material and non-inert C&D material related to dredging works were disposed off site in the reporting month. The details can be referred to the *Table* 6.3.2.

Waste Type	Quantity this month, m ³ (Bulk volume)	Cumulative-to- Date. m ³ (Bulk volume)	Disposal / Dumping Ground
Marine Sediment (Type 1 – Open Sea Disposal)	13,853	19,757	South Cheung Chau Spoil Disposal Area denoted "KTCT-1" and "KTCT -2"
Marine Sediment (Type 1 – Open Sea Disposal (Dedicated Sites) and Type 2 – Confined Marine Disposal)	NIL	7,849	East Sha Chau Contaminated Mud Disposal Site – Pit IVc

Table 6.3.2 Waste Quantities Related To Dredging Works

7

ENVIRONMENTAL SITE AUDIT

- 7.0.1. Site audits were carried out by ET on weekly basis to monitor the implementation of proper environmental management practices and mitigation measures in the Project site.
- 7.0.2. The joint site audits were conducted on 5, 12, 19 and 26 October 2010 by the representatives of IEC, ER, the Contractor and the ET. The observation related to the dredging work was summarized in the *Table 7.0.1*.

Table 7.0.1Observation Identified during the Site Audit

Date	Observations	Action taken by Contractor	Outcome
5 Oct 2010	Silt curtain at dredging		Completion as observed
	area (submarine outfall)	repaired.	during the site audit on 12
	needed to be repaired.		Oct 2010
19 Oct 2010	Silt curtain for grab	Silt curtain immediately	Completion as observed
	dredger need to be	repaired.	during the site audit on 26
	improved.		Oct 2010

8

COMPLAINTS, NOTIFICATION OF SUMMONS AND PROSECUTION

8.0.1. In this reporting period, no complaint, inspection notice, notification of summons or prosecution was received. Cumulative complaint log, summaries of complaints, notification of summons and successful prosecutions are presented in *Tables 8.1*, *8.2* and *8.3* respectively.

Table 8.1Environmental Complaints Log

Complaint Log No.		Received From and Received By	Nature of Complaint	Date Investigated	Outcome	Date of Reply
NIL	-	-	-	-	-	-

Table 8.2Cumulative Statistics on Complaints

Environmental Parameters	Cumulative No. Brought Forward	No. of Complaints This Month	Cumulative No. Project-to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Total	0	0	0

Table 8.3 Cumulative Statistics on Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Successful Prosecutions this month (Offence Date)	Cumulative No. Project-to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Total	0	0	0

9 CONCLUSION

- 9.0.1. The dredging works was commenced on 28 June 2010. The EM&A programme was carried out in accordance with the EM&A Manual requirements. As per the EM&A Manual, water quality impact monitoring was conducted during the dredging work, which was commenced on 28 June 2010.
- 9.0.2. SS exceedances were recorded on 4, 6, 8, 11, 13, 16, 18, 20, 25, 27, 28, 29 and 30 October 2010. Investigation indicated the exceedances were not related to the Project.
- 9.0.3. Owing to the frequent reported exceedances caused by fluctuation in coastal water quality due to localised effect not related to the project. It is recommended that a review of the baseline water quality and the respective action and limit levels may be necessary.
- 9.0.4. The scheduled construction activities and the recommended mitigation measures for the coming month are listed in *Table 9.0*. The construction programme of the Project is provided in *Appendix 9.0*.

Table 9.0Construction Activities and Recommended Mitigation Measures in Coming
Report Month

Location	Construction Works	Recommended Mitigation Measures
Marine work	 Dredging at Toe of Existing Seawall; Dredging at Submarine Outfall; Maintenance of Silt Curtain and Silt Screens; Fabrication and installation of silt curtain for seawall removal; Dredging at Existing Seawall; and Sorting of inert C&D material from existing seawall 	 Collection and removal of floating refuse at regular intervals such that water within the site boundary and the neighbouring water; Regular inspection and maintenance of the silt screens and silt curtain; Silt curtain shall be deployed around the closed grab dredgers used for dredging; Covering the stockpile and watering the dust surface to suppress dust emission; Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal.

Figure 2.1

General Layout

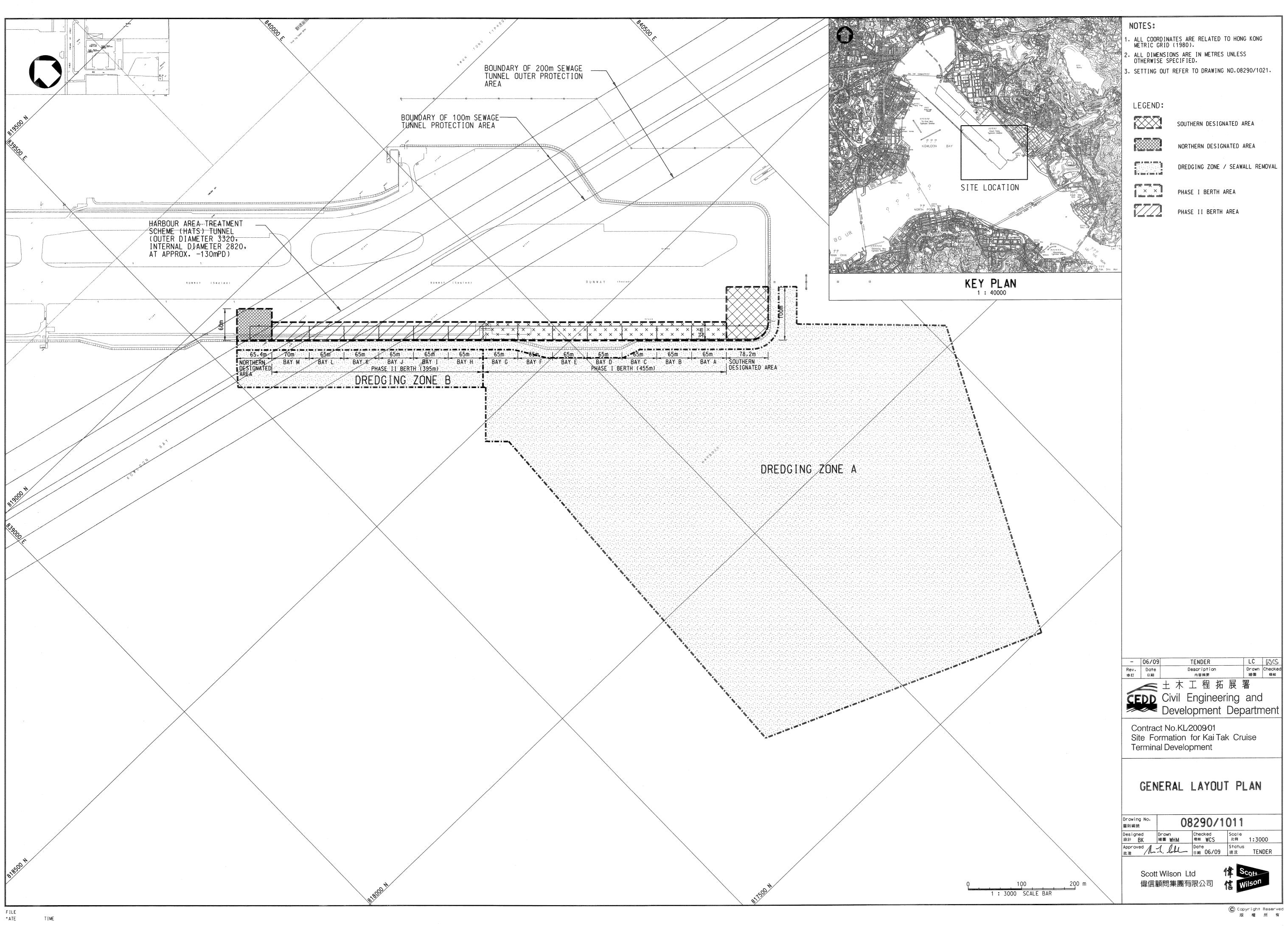


Figure 2.2

Project Organization Chart

Project Organization Chart

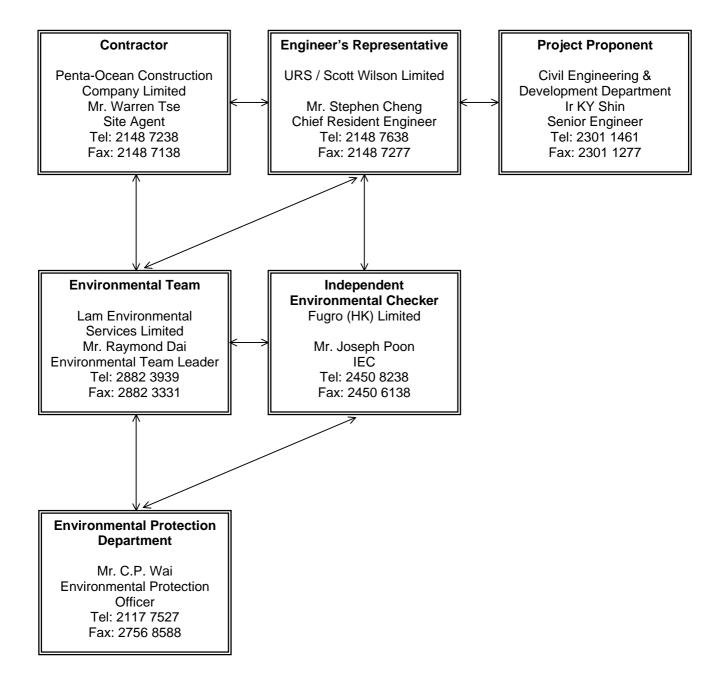
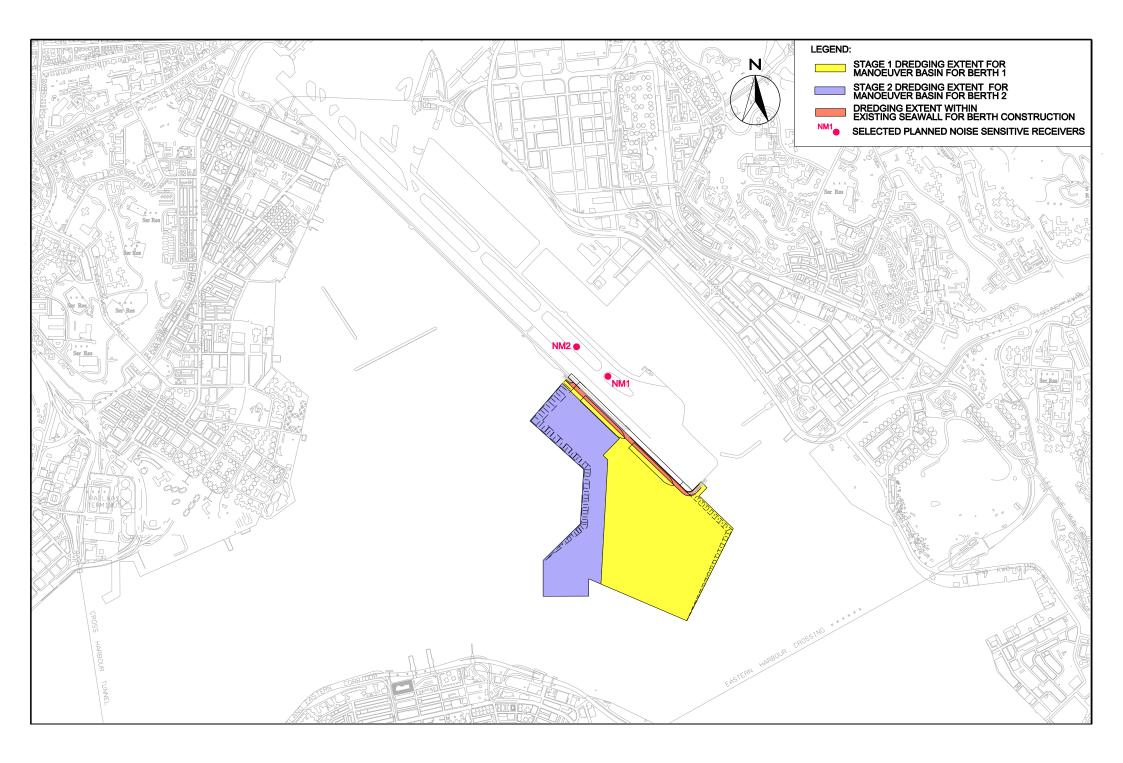
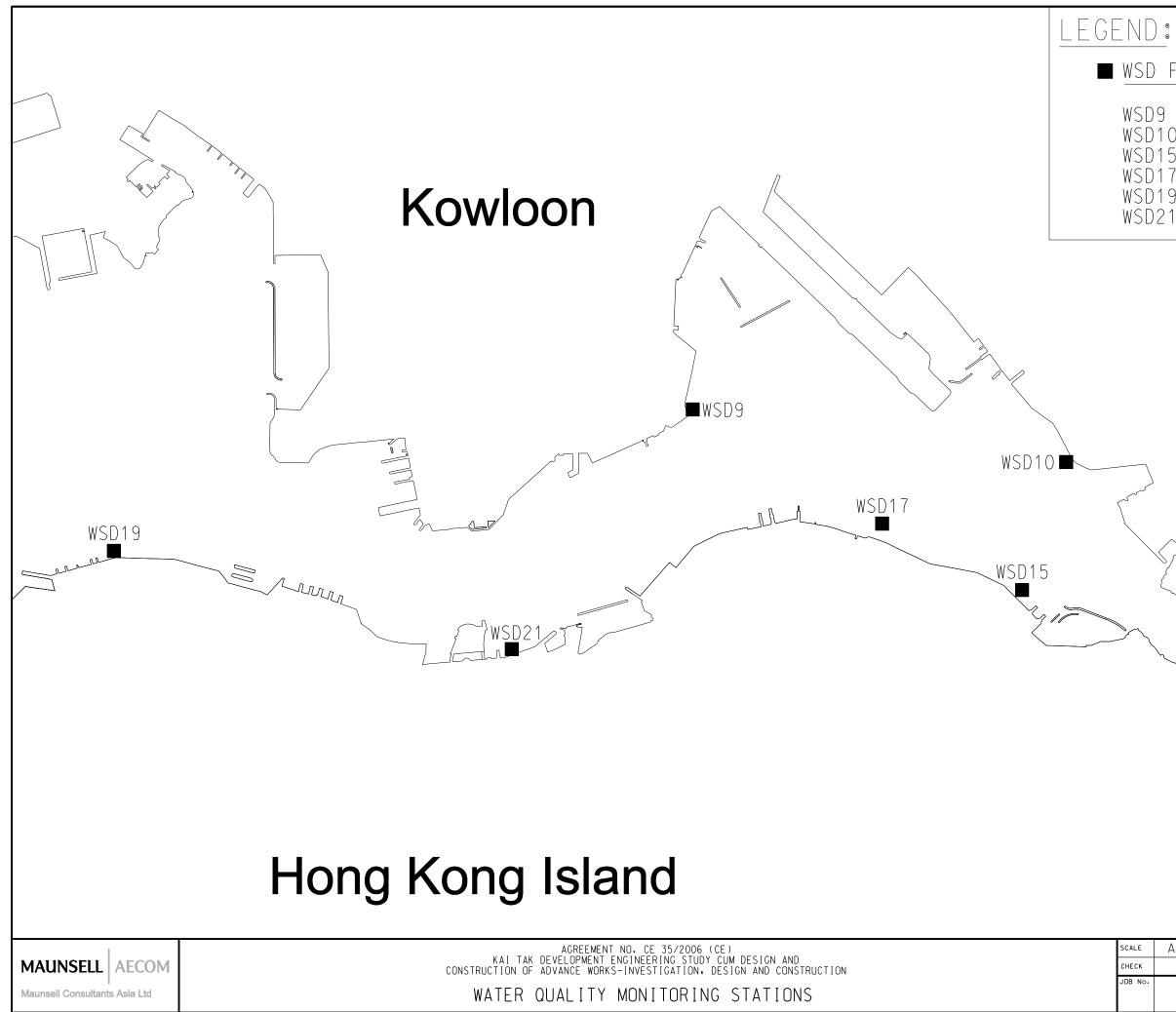




Figure 4.1

Layout of Environmental Monitoring Stations

P:/60022503/Reports/CT Dredging/EM&A Manual/Formal submission/Figures/Drawings/4.1.dgn

■ WSD Flushing Water Intake WSD9 - Tai Wan WSD10 - Cha Kwo Ling WSD15 - Sai Wan Ho WSD17 - Quarry Bay WSD19 - Sheung Wan WSD21 - Wan Chai 1:35000 AЗ DATE AUG 07 SCALE СНЕСК АКҮС DRAWN WCM JOB No. DRAWING No. REV 60022503 4.1 _

Appendix 3.1

Implementation Schedule of Environmental Mitigation Measures

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S3.6	Requirements of the Air Pollution Control (Construction Dust) Regulation shall be adhered to during the construction period.	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	Air Pollution Control (Construction Dust) Regulation
S3.6	In order to minimize the potential odour emissions, if any, the dredged sediment placed on barge should be properly covered as far as practicable to minimise the exposed area and hence the potential odour emissions during the transportation of the dredged sediment.	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM
S4.8	 Good Site Practices: Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program. Mobile plant, if any, should be sited as far away from NSRs as possible. Machines and plant (such as trucks) that may be in intermittent use should be shut down between works periods or should be throttled down to a minimum. Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. Material stockpiles and other structures should be effectively utilised, wherever practicable, in screening noise from on-site construction activities. 	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	NCO EIAO-TM

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S4.9	If there is any planned NSRs within 300m from the work area occupied during the dredging period, an EM&A programme is recommended to be established according to the predicted occurrence of noisy activities. All the recommended mitigation measures for daytime normal working activities should be incorporated into the EM&A programme for implementation during dredging.	Representative NSRs at the former Kai Tak Airport runway / Upon formal occupation	N/A	Not applicable	NCO EIAO-TM
\$5.9	• Dredging will be carried out by closed grab dredger to minimize release of sediment and other contaminants during both capital and maintenance dredging.	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM WPCO
	 The maximum production rate for dredging from the seabed to provide necessary manoeuvring area would not be more than 4,000m³ per day (and no more than 2 closed grab dredgers) during capital dredging and 2,000m³ per day (and no more than 1 closed grab dredger) during maintenance dredging. The maximum production rate for dredging at or near the seawall area would not be more than 4,000m³ per day for berth construction. No more than two closed grab dredger would be operated at the same time at or near the seawall for berth construction. 				
S5.9	Silt curtains should be deployed around the closed grab dredgers used for dredging at and near the existing seawall of the former Kai Tak Airport runway for construction of the cruise berth structures.	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM, WPCO

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S5.9	Silt screens should be installed at the WSD flushing water intakes at Cha Kwo Ling, Sai Wan Ho, Quarry Bay, Sheung Wan, Wan Chai and Tai Wan for dredging in the manoeuvring basin of the first berth during the capital dredging.	Seawater intakes in Victoria Harbour/ During the construction of cruise terminal	Contractor for capital dredging	Implemented	EIAO-TM, WPCO
S5.9	Silt screens should be installed at the WSD flushing water intakes at Cha Kwo Ling, Quarry Bay and Tai Wan for dredging in the manoeuvring basin of the second berth during the capital dredging.	Seawater intakes in Victoria Harbour / During the construction of cruise terminal	Contractor for capital dredging	Implemented	EIAO-TM, WPCO
S5.9	If the opening has been introduced at the northern runway, silt screens should also be installed at the WSD flushing water intake at Sai Wan Ho, Sheung Wan and Wan Chai for dredging in the manoeuvring basin of the second berth during the capital dredging.	Seawater intake at Sai Wan Ho, Sheung Wan and Wan Chai / During the construction of cruise terminal	Contractor for capital dredging	Implemented	EIAO-TM, WPCO

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S5.9	 Other good site practices that should be undertaken during dredging include: all vessels should be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; all barges / dredgers should be fitted with tight fitting seals to their bottom openings to prevent leakage of material; construction activities should not cause foam, oil, grease, scum, litter or other objectionable matter to be present on the water within the site or dumping grounds; barges or hoppers should not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation. 	Work site and adjacent waters / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO, EIAO-TM, WPCO, WDO
S5.9	Appropriate numbers of portable chemical toilets shall be provided by a licensed contractor to serve the construction workers over the construction site. The Contractor shall also be responsible for waste disposal and maintenance practices.	Work site and adjacent waters / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM, WPCO, WDO

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S5.9	Collection and removal of floating refuse should be performed at regular intervals on a daily basis. The contractor should be responsible for keeping the water within the site boundary and the neighbouring water free from rubbish during the dredging works.	Work site and adjacent waters / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM, WPCO, WDO
S5.9	An environmental monitoring and audit programme should be implemented to verify whether or not impact predictions are representative, and to ensure that all the recommended mitigation measures are implemented properly. If the water quality monitoring data indicate that the proposed dredging works result in unacceptable water quality impacts in the receiving water, appropriate actions should be taken to review the dredging operation and additional measures such as use of frame-type silt curtain, deployment of double silt curtains, slowing down, or rescheduling of works should be implemented as necessary.	6 selected WSD flushing water intakes in Victoria Harbour/ During dredging in construction stage	Environmental Team and verified by Independent Environmental Checker	Implemented	EIAO-TM, WPCO

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S5.9	Silt screens are recommended to be deployed at 6 selected WSD flushing water intakes during the capital dredging. The contractor for capital dredging shall demonstrate and ensure that the design of the silt screen will not affect the normal operation of flushing water intake. The contractor shall obtain consensus from all relevant parties, including WSD and Marine Department on the design of the silt screen at each of the six selected flushing water intake points before installation of the silt screen and commencement of the proposed dredging works. As a mitigation measure to avoid the pollutant and refuse entrapment problems and to ensure that the impact monitoring results are representative, regular maintenance of the silt screens and refuse collection should be performed at the monitoring stations at regular intervals on a daily basis. The Contractor should be responsible for keeping the water behind the silt screen free from floating rubbish and debris during the impact monitoring period.	6 selected WSD flushing water intakes in Victoria Harbour/ During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM, WPCO

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S6.7	Good Site Practices It is not anticipated that adverse waste management related impacts would arise, provided that good site practices are adhered to. Recommendations for good site practices during the dredging activities include:	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM
	• Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site.				
	• Training of site personnel in proper waste management and chemical waste handling procedures.				
	• Provision of sufficient waste disposal points and regular collection for disposal.				
	• Appropriate measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers.				
	• A recording system for the amount of wastes generated, recycled and disposed of (including the disposal sites).				
	• Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal.				

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S6.7 (cont.)	 Encourage collection of aluminium cans, PET bottles and paper by providing separate labelled bins to enable these wastes to be segregated from other general refuse generated by the workforce. Any unused chemicals or those with remaining functional capacity shall be recycled. 	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM
\$6.7	Marine Sediments The dredged marine sediments would be loaded onto barges and transported to the designated disposal sites allocated by the MFC depending on their level of contamination. Sediment classified as Category L would be suitable for Type 1 – Open Sea Disposal. Contaminated sediment would require either Type 1 – Open Sea Disposal (Dedicated Sites) or Type 2 - Confined Marine Disposal and must be dredged and transported with great care in accordance with ETWB TCW No. 34/2002. Subject to the final allocation of the disposal sites by MFC, the dredged contaminated sediment must be effectively isolated from the environment upon final disposal and shall be disposed of at the East Sha Chau Contaminated Mud Pits that are designated for the disposal of contaminated mud in Hong Kong.	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	ETWB TCW No. 34/2002

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S6.7	It will be the responsibility of the Contractor to satisfy the appropriate authorities that the contamination levels of the marine sediment to be dredged have been analysed and recorded. According to the ETWB TCW No. 34/2002, this will involve the submission of a formal Sediment Quality Report to the DEP, prior to the dredging contract being tendered. The contractor for the dredging works shall apply for the allocation of marine sediment disposal sites from all relevant authorities.	Work site / During dredging in construction stage	Contractor for capital dredging	Dumping Permits were issued by EPD	ETWB TCW No. 34/2002
S6.7	 During transportation and disposal of the dredged marine sediments requiring Type 1 and Type 2 disposal, the following measures shall be taken to minimise potential impacts on water quality: Bottom opening of barges shall be fitted with tight fitting seals to prevent leakage of material. Excess material shall be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved. Monitoring of the barge loading shall be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels shall be equipped with automatic self-monitoring devices as specified by the DEP. Barges or hopper barges shall not be filled to a level that would cause the overflow of materials or sediment laden water during loading or transportation. 	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	WDO; WPCO

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S6.7	Chemical Wastes After use, chemical wastes (for example, cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Spent chemicals should be collected by a licensed collector for disposal at the CWTF or other licensed facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	Waste Disposal (Chemical Waste) (General) Regulation; Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes
S6.7	General Refuse General refuse should be stored in enclosed bins or compaction units separate from C&D material. A reputable waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D material. An enclosed and covered area is preferred to reduce the occurrence of 'wind blown' light material.	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	WDO, WPCO

EIA Ref [#]	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S6.7	Construction and Demolition Material It is recommended that the extent of dredging of the existing seawall should be kept to a minimum in the detailed design of the new cruise terminal to minimize generation of C&D material. Mitigation measures and good site practices should be incorporated in the contract document to control potential environmental impact from handling and transportation of C&D material. The mitigation measures include: • Where it is unavoidable to have transient stockpiles of C&D material within the Project work site pending collection for disposal, the transient stockpiles shall be located away from waterfront or storm drains as far as possible. • Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric. • Skip hoist for material transport should be totally enclosed by impervious sheeting. • Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving a construction site.	Work site / During the construction period	Contractor for capital dredging	Implemented	ETWB TCW No. 33/2002, 31/2004, 19/2005
	• The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores.				

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S6.7 (cont.)	 The load of dusty materials carried by vehicle leaving a construction site should be covered entirely by clean impervious sheeting to ensure dust materials do not leak from the vehicle. All dusty materials should be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet. The height from which excavated materials are dropped should be controlled to a minimum practical height to limit fugitive dust generation from unloading. 	Work site / During the construction period	Contractor for capital dredging	Implemented	ETWB TCW No. 33/2002, 31/2004, 19/2005
S6.7	When delivering inert C&D material to public fill reception facilities, the material shall consist entirely of inert construction waste and of size less than 250mm or other sizes as agreed with the Secretary of the Public Fill Committee. In order to monitor the disposal of the surplus C&D material at the designed public fill reception facility and to control fly tipping, a trip-ticket system should be included as one of the contractual requirements and implemented by the Contractor under the Waste Management Plan certified by the Environmental Team and verified by the Independent Environmental Checker who should be responsible for auditing the results of the system.	Work site / During the construction period	Contractor for capital dredging, Engineer, Environmental Team and Independent Environmental Checker	Not applicable	ETWB TCW No. 31/2004

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S7.8	The dredging activities of the proposed cruise terminal should ensure that disturbance to the existing seawall masonry outside the Project boundary should be avoided as far as practicable.	Work site/ During construction of cruise terminal	Contractor for capital dredging as per CEDD's advice	Implemented	Antiquities and Monuments Ordinance EIAO, EIAO-TM Guidance Notes on Assessment of Impact on Sites of Cultural Heritage in Environmental Impact Assessment Studies (GN-CH) Hong Kong Planning Standards and Guidelines (HKPSG)
S7.10, App. 7.1	It is recommended that the dredged spoil should be monitored for the presence of archaeological material. Guidelines for the monitoring brief have been prepared in consultation with the AMO. A qualified marine archaeologist needs to be on standby to provide specialist advice, if required, but the monitoring can be carried out by a member of staff on the dredging barge.	Work site / during dredging in construction stage	Contractor for capital dredging, Environmental Team	Implemented	Antiquities and Monuments Ordinance EIAO, EIAO-TM GN-CH HKPSG Marine Archaeological Investigation Guidelines

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
8.7	Translocate those existing coral colonies attached on boulders that are manually movable by a diver underwater (possibly longest dimension of less than 50cm) located within the hard substrata sea area within the dredging site as far as practicable prior to the commencement of the capital dredging activities. The entire translocation exercise include the preparation of a detailed translocation plan, the pre- translocation coral survey, the coral translocation, and the quarterly post-translocation monitoring for one year. Pre-translocation survey would be focused on identifying and mapping of coral colonies that would be directly impacted by the proposed dredging and investigating the translocation feasibility of these coral colonies. A detailed translocation plan (including pre- translocation coral survey, translocation methodology and monitoring of transplanted corals) should be prepared during the detailed design stage of the Project which, together with the ecologist involved in coral translocation, should be approved by AFCD prior to commencement of the translocation exercises. The proposed relocation of the coral colonies should not affect any private/public marine rights at the recipient site.	Along the section of the former Kai Tak Airport runway that will be directed affected by the cruise terminal construction / During detailed design stage	Other ET specifically employed for coral translocation works	Final Detailed Coral Translocation Plan was approved by EPD in letter ref. (18) in EP2/K19/C/19 Pt.5 dated 5 June 2009. Form 5 was submitted under CEDD's memo ref. (6) in KD 2/31/4 Pt.3 dated 10 June 2009 regarding minor alteration of the position of the coral recipient site. Coral Translocation Report was submitted in Scott Wilson letter ref. 08290/325723 dated 2 July 2009. Post-translocation report shall be referred to the submissions by another ET specifically employed for coral translocation works.	EIAO-TM

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S8.7	New seawalls at the berth structure of the cruise terminal shall be constructed in order to provide large area of hard substrata for settlement and recruitment of intertidal and subtidal assemblages similar to those previously recorded from existing habitats.	The section of the former Kai Tak Airport runway that will be directed affected by the cruise terminal construction / During detailed design stage	To be confirmed at later stage	To be confirmed at later stage	EIAO-TM
9.6	No fisheries-specific mitigation measures would be required.	-	Not applicable	Not applicable	-

Appendix 4.1

Action and Limit Levels

Action and Limit Levels

Action and Limit Levels for Noise Monitoring

Time Period	Action Level	Limit Level
07:00 – 19:00 hours on normal weekdays	When one documented complaint is received from any one of the sensitive receivers	75 dB(A)

Remarks: No noise monitoring was conducted due to no planned noise sensitive receivers (NSRs) occupied within 300m from the works area of this Project during the dredging works.

Action and Limit Levels for Water Monitoring

Parameters	Action L	evel		Limit Le	vel	
Turbidity in NTU		All Sease	on		All Sease	<u>on</u>
	WSD9	5.67	,	WSD9	12.27	
	WSD10	6.26	5	WSD10	10.47	
	WSD15	8.15	5	WSD15	14.41	
	WSD17	11.60)	WSD17	16.91	
	WSD21	9.11		WSD21	15.38	
	WSD19	13.09)	WSD19	15.34	
Suspended Solids		Dry Season	Wet Season		Dry Season	Wet Season
(SS) in mg/L	WSD9	6.9	9.7	WSD9	7.8	10.9
	WSD10	7.7	9.1	WSD10	10.3	12.2
	WSD15	7.8	13.5	WSD15	8.4	14.5
	WSD17	9.5	11.2	WSD17	13.7	16.2
	WSD21	13.3	17.1	WSD21	13.9	17.8
	WSD19	16.3	15.1	WSD19	17.0	15.7

Remarks:

Wet season is from April to September. Dry season is from October to April.

Appendix 4.2

Copies of Calibration Certificates

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

ALS Technichem (HK) Pty Ltd

Environmental Division

CERTIFICATE OF ANALYSIS

CONTACT: MS CHERRY MAK CLIENT: LAM GEOTECHNICS LIMITED ADDRESS: 11/F., CENTRE POINT, 181-185 GLOUCESTER ROAD, WAN CHAI, HONG KONG. PROJECT:
 Batch:
 HK1022442

 AMENDMENT NO:
 1

 LABORATORY:
 HONG KONG

 DATE RECEIVED:
 27/09/2010

 DATE OF ISSUE:
 12/10/2010

 SAMPLE TYPE:
 EQUIPMENT

 No. of SAMPLES:
 1

COMMENTS

The calibration procedure used for the analysis has been applied for the calibration of the above instrument.

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

HONG KONG

ALS Technichem (HK) Pty Ltd 11/F Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung

Phone: Fax: Email: 852-2610 1044 852-2610 2021 hongkong@alsenviro.com

Mr. Chan Kwøk Fai, Godfrey Laboratory Manager - Hong Kong

Other ALS Environmental Laboratories

AUSTRALIA

Brisbane Melbourne Sydney Newcastle Hong Kong Singapore Kuala Lumpur Bogor

AMERICAS Vancouver Santiago Amtofagasta Lima This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Abbreviations: % SPK REC denotes percentage spike recovery CHK denotes duplicate check sample LOR denotes limit of reporting LCS % REC denotes Laboratory Control Sample percentage recovery

ALS Technichem (HK) Pty Ltd

Part of the **ALS Laboratory Group** 11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., H.K. **Phone: 852-2610 1044** Fax: 852-2610 2021 www.alsenviro.com A Campbell Brothers Limited Company Page 1 of 2

CERTIFICATE OF ANALYSIS

Batch: Amendment No: 1 12/10/2010 Date of Issue: Client: LAM GEOTECHNICS LIMITED **Client Reference:**

Calibration of Multimeter

Item : ALS Lab ID: Date of Calibration:	Multimeter HK1022442-001 28 September, 2010	Model No.: Equipment No.: Serial No.:	
Testing Results :			
рН	Expected Reading	Recording Reading	Testing Method:
	4.00 7.00 10.0	3.98 7.10 9.93	APHA (20th edition), 4500-H ⁺ B
	Allowing Deviation	± 0.2 unit	
Conductivity	Expected Reading	Recording Reading	Testing Method:
	146.9 uS/cm 6667 uS/cm 12890 uS/cm 58670 uS/cm	144.0 uS/cm 6302 uS/cm 12303 uS/cm 55501 uS/cm	APHA (20th edition), 2510B
	Allowing Deviation	± 10%	
Temperature	Expected Reading	Recording Reading	Testing Method:
	15.0 °C 23.0 °C 35.0 °C	14.8 °C 22.7 °C 34.5 °C	In-House Method
	Allowing Deviation	±2.0 ⁰ C	
Salinity	Expected Reading	Recording Reading	Testing Method:
	0 g/L 10.0 g/L 20.0 g/L 30.0 g/L	0 g/L 9.84 g/L 20.1 g/L 30.9 g/L	APHA (20th edition), 2520 A and B
	Allowing Deviation	± 10%	
DO	Expected Reading	Recording Reading	Testing Method:
	5.63 mg/L 6.63 mg/L 7.81 mg/L	5.55 mg/L 6.60 mg/L 7.92 mg/L	APHA (20th edition), 4500-OC & G
	Allowing Deviation	± 0.2 mg/L	

HK1022442

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES ALS Technichem (HK) Ptv Ltd

Environmental Division

CERTIFICATE OF ANALYSIS

CONTACT: MS CHERRY MAK LAM GEOTECHNICS LIMITED CLIENT: ADDRESS: 11/F., CENTRE POINT, 181-185 GLOUCESTER ROAD, WAN CHAI, HONG KONG.

Batch: AMENDMENT NO: 1 LABORATORY: DATE RECEIVED: DATE OF ISSUE: SAMPLE TYPE: No. of SAMPLES: 1

HK1019685 HONG KONG

26/08/2010 12/10/2010 EQUIPMENT

PROJECT NO.:

COMMENTS

The calibration procedure used for the analysis has been applied for the calibration of the above instrument.

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

HONG KONG

ALS Technichem (HK) Pty Ltd 11/F Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung

Phone: Fax: Email:

852-2610 1044 852-2610 2021 hongkong@alsenviro.com

Mr Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

Other ALS Environmental Laboratories

Hong Kong

Singapore

Bogor

Kuala Lumpur

AUSTRALIA

Brisbane

Svdnev

Melbourne

Newcastle

AMERICAS

Vancouver Santiago Amtofagasta Lima

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Ptv Ltd.

Abbreviations: % SPK REC denotes percentage spike recovery CHK denotes duplicate check sample LOR denotes limit of reporting LCS % REC denotes Laboratory Control Sample percentage recovery

Page 1 of 2

ALS Technichem (HK) Pty Ltd Part of the ALS Laboratory Group 11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., H.K. Phone: 852-2610 1044 Fax: 852-2610 2021 www.alsenviro.com A Campbell Brothers Limited Company

CERTIFICATE OF ANALYSIS

Calibration of Turbidimeter

ltem :	TURBIDIMETER	Model No.: 2100P
ALS Lab ID:	HK1019685-001	Equipment No.: 1010688-1
Date of Calibration:	27 August, 2010	Serial No.: 930300002705

Testing Results :

Turbidity

Expected Reading	Recording Reading
0.00 NTU	0.21NTU
4.00 NTU	3.84 NTU
40.0 NTU	39.4 NTU
80.0 NTU	76.5 NTU
400 NTU	386 NTU
Allowing Deviation	± 10%
Allowing Deviation	10/0

Testing Method:

APHA (19th edition), 2130B

Mr Chan Kwok Fai, Godfrey Laboratory Manager Hong Kong

ALS Technichem (HK) Pty Ltd ALS Environmental

Appendix 5.1

Monitoring Schedule for the Reporting Month and Coming Three Months

Water Quality Monitoring Schedule

October 2010

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1-Oct	2-Oct
					Impact WQM	Impact WQM
					Mid-flood: 18:04	Mid-ebb: 6:43
3-Oct	4-Oct	5-Oct	6-Oct	7-Oct	8-Oct	9-Oct
	Impact WQM		Impact WQM		Impact WQM	
	Mid-ebb: 9:12		Mid-ebb: 10:58		Mid-ebb: 12:30	
	Mid-flood: 16:17		Mid-flood: 17:19		Mid-flood: 18:24	
10-Oct	11-Oct	12-Oct	13-Oct	14-Oct	15-Oct	16-Oct
	Impact WQM Mid-flood: 9:03		Impact WQM			Impact WQM
	Mid-ebb: 14:43		Mid-ebb: 3:48 Mid-flood: 11:16			Mid-ebb: 7:07 Mid-flood: 15:35
17-Oct		19-Oct		21-Oct	22-Oct	
	10 000	10 000	20 000	21 000	22 000	20 000
	Impact WQM		Impact WQM		Impact WQM	
	Mid-ebb: 9:07		Mid-ebb: 10:38		Mid-ebb: 11:45	
	Mid-flood: 16:21		Mid-flood: 17:05		Mid-flood: 17:39	
24-Oct	25-Oct	26-Oct	27-Oct	28-Oct	29-Oct	30-Oct
	Impact WQM Mid-ebb: 13:20		Impact WQM Mid-flood: 19:02	Impact WQM	Impact WQM Mid-flood: 20:20	Impact WQM
	Mid-flood: 18:19		iviiu-1100u. 19.02	Mid-ebb: 2:27	iviiu-1100u. 20.20	Mid-ebb: 4:24
31-Oct						Mid-600. 4.24

Remarks:

- Due to the Strong Wind Signal no.3 in force on 22 October 2010, water monitoring on that day was cancelled.

Tentative Water Quality Monitoring Schedule

November 2010

Monday	Tuesday	Wednes	day	Thursday	Frid	ay	Satur	day
1-Nov	2-Nov		3-Nov	4-Nov		5-Nov		6-Nov
•								
		-						
	9-Nov				10003			13-Nov
0-1100	3-1100		10-1100	11-1100		12-1100		10-1100
	Impact WQM	Impact WQN	1		Impact WC	QM		
	Mid-flood: 9:04	Mid-ebb: 2	:32		Mid-ebb:	4:06		
					Mid-flood:	16:25		
15-Nov	16-Nov		17-Nov	18-Nov		19-Nov		20-Nov
Impact WQM		Impact WQN	1		Impact WG	M		
•					-			
Mid-flood: 14:42						23:10		
22-Nov	, 23-Nov	:	24-Nov	25-Nov		26-Nov		27-Nov
Impact WQM	Impact WQM	Impact WQN	1		Impact WC	QM	Impact WC	۱
Mid-ebb: 0:04	Mid-flood: 17:43	Mid-ebb:	0:58		Mid-flood:	10:19	Mid-ebb:	3:09
29-Nov	30-Nov							
Impact WQM								
•								
	1-Nov Impact WQM Mid-ebb: 7:39 Mid-flood: 14:47 8-Nov 15-Nov Impact WQM Mid-ebb: 6:52 Mid-flood: 14:42 22-Nov Impact WQM Mid-ebb: 0:04	1-Nov2-NovImpact WQMMid-ebb: 7:39Mid-flood: 14:479-NovB-Nov9-NovImpact WQMMid-flood: 9:0415-Nov16-NovImpact WQMMid-flood: 9:04Mid-flood: 14:4222-NovZ2-Nov23-NovImpact WQMImpact WQMMid-ebb:0:04Mid-flood: 17:4330-NovImpact WQMMid-flood: 17:43Impact WQMMid-flood: 17:43	1-Nov2-NovImpact WQMImpact WQMMid-ebb:7:39Mid-flood:14:478-Nov9-NovImpact WQMImpact WQMMid-flood:14:4718-Nov9-NovImpact WQMImpact WQMMid-flood:9:0415-Nov16-NovImpact WQMImpact WQMMid-ebb:6:52Mid-flood:14:4222-Nov23-NovImpact WQMImpact WQMMid-ebb:0:04Impact WQMImpact WQMMid-ebb:0:0410-ebb:30-Nov10-ebb:5:39	1-Nov2-Nov3-NovImpact WQMImpact WQMImpact WQMMid-ebb:7:39Mid-ebb:Mid-flood:14:47Mid-flood:8-Nov9-Nov10-NovImpact WQMImpact WQMMid-flood:9:04Impact WQMMid-ebb:2:3215-Nov16-Nov17-NovImpact WQMImpact WQMMid-ebb:6:52Mid-flood:14:4222-Nov23-Nov24-NovImpact WQMImpact WQMMid-ebb:0:04Impact WQMMid-flood:Mid-ebb:0:0410-Nov30-NovImpact WQMMid-flood:Mid-ebb:5:39	1-Nov2-Nov3-Nov4-NovImpact WQMImpact WQMImpact WQMImpact WQMImpact WQMMid-flood:14:47Mid-flood:16:028-Nov9-Nov10-Nov11-NovImpact WQMImpact WQMImpact WQMMid-flood:9:04Impact WQMMid-flood:9:0417-Nov15-Nov16-Nov17-Nov15-Nov16-Nov17-NovImpact WQMImpact WQMMid-ebb:6:52Mid-flood:14:4222-Nov23-Nov24-Nov22-Nov23-Nov29-Nov30-NovImpact WQMMid-ebb:0:040:17:4310-flood:17:4310-flood:17:43	1-Nov2-Nov3-Nov4-NovImpact WQMImpact WQMImpact WQMImpact WQMMid-ebb:7:39Mid-ebb:9:43Mid-flood:14:47Mid-flood:16:028-Nov9-Nov10-Nov11-NovImpact WQMImpact WQMImpact WQMMid-flood:9:04Mid-ebb:2.Nov10-Nov11-NovImpact WQMImpact WQMImpact WQMMid-flood:9:04Mid-ebb:15-Nov16-Nov17-Nov18-NovImpact WQMImpact WQMImpact WQMMid-flood:15:38Mid-flood:22-Nov23-Nov24-Nov25-NovImpact WQMImpact WQMImpact WQMMid-flood:17:43Mid-ebb:0:5829-Nov30-Nov158Mid-flood:Impact WQMMid-flood:17:43Mid-ebb:1mpact WQMMid-flood:17:43Mid-ebb:29-Nov30-Nov158Mid-flood:	1-Nov2-Nov3-Nov4-Nov5-NovImpact WQM Mid-ebb: 7:39Impact WQM Mid-ebb: 9:43 Mid-flood: 14:47Impact WQM Mid-flood: 16:02Impact WQM Mid-flood: 17:118-Nov9-Nov10-Nov11-Nov12-NovImpact WQM Mid-flood: 9:04Impact WQM Mid-ebb: 2:32Impact WQM Mid-flood: 16:25Impact WQM Mid-flood: 16:2515-Nov16-Nov17-Nov18-Nov19-NovImpact WQM Mid-flood: 14:42Impact WQM Mid-flood: 15:38Impact WQM Mid-flood: 16:19 Mid-flood: 16:19 Mid-flood: 17:43Impact WQM Mid-ebb: 0:58Impact WQM Mid-flood: 10:19Impact WQM Mid-ebb:Impact WQM Mid-flood: 17:43Impact WQM Mid-ebb: 0:58Impact WQM Mid-flood: 10:19Impact WQM Mid-ebb:17:Nov25-Nov26-NovImpact WQM Mid-flood:17:43Impact WQM Mid-ebb: 0:58Impact WQM Mid-flood: 10:1929-Nov30-Nov30-Nov10-Nov10-NovImpact WQM Mid-ebb:5:3910-Nov10-Nov	1-Nov2-Nov3-Nov4-Nov5-NovImpact WQM Mid-ebb: 7:39 Mid-flood: 14:47Impact WQM Mid-flood: 16:02Impact WQM Mid-flood: 17:118-Nov9-Nov10-Nov11-Nov12-NovImpact WQM Mid-flood: 9:04Impact WQM Mid-ebb: 2:32Impact WQM Mid-ebb: 4:06 Mid-flood: 16:25Impact WQM Mid-ebb: 4:06 Mid-flood: 16:2515-Nov16-Nov17-Nov18-Nov19-NovImpact WQM Mid-ebb: 6:52Impact WQM Mid-ebb: 8:55 Mid-flood: 16:29Impact WQM Mid-ebb: 23:10Impact WQM Mid-ebb: 23:10Impact WQM Mid-flood: 14:42Impact WQM Mid-flood: 15:38Impact WQM Mid-flood: 16:19 Mid-flood: 16:19 Mid-flood: 10:19Impact WQM Mid-ebb: 0:58Impact WQM Mid-flood: 17:43Impact WQM Mid-ebb: 0:58Impact WQM Mid-flood: 10:19Impact WQM Mid-ebb: 0:5829-Nov30-Nov30-NovImpact WQM Mid-ebb: 5:39Impact WQM Mid-ebb: 0:58Impact WQM Mid-flood: 10:19

Tentative Water Quality Monitoring Schedule

December 2010

Sunday	Monda	ay	Tues	day	Wedne	esday	Thur	sday	Fric	lay	Satu	rday
						1-Dec		2-Dec		3-Dec		4-Dec
					Impact WC				Impact WO			
					Mid-ebb:				Mid-flood:			
					Mid-flood:	-			Mid-ebb:	22:46		
5-Dec		6-Dec		7-Dec		8-Dec		9-Dec		10-Dec		11-Dec
	Impact WQN				Impact WC		Impact W0				Impact W0	
Mid-flood:17:12	Mid-ebb:	0:10			Mid-flood:	8:58	Mid-ebb:	2:13			Mid-ebb:	
											Mid-flood:	
12-Dec		13-Dec		14-Dec		15-Dec		16-Dec		17-Dec		18-Dec
	Impact WQN						Impact W0				Impact W0	
	Mid-ebb: 4	-					Mid-flood:	14:17			Mid-flood:	15:15
	Mid-flood: 1	12:35					Mid-ebb:	21:47			Mid-ebb:	22:42
19-Dec		20-Dec		21-Dec		22-Dec		23-Dec		24-Dec		25-Dec
	Impact WQN	M			Impact WC	M	Impact W0	λď			Impact W0	
	Mid-flood: 1	16:27			Mid-flood:	17:54	Mid-ebb:	1:13			Mid-ebb:	2:45
	Mid-ebb: 2										Mid-flood:	9:52
26-Dec		27-Dec		28-Dec		29-Dec		30-Dec		31-Dec		
			Impact WC	QM			Impact W0					
			Mid-flood:				Mid-flood:					
			Mid-ebb:	18:19			Mid-ebb:	20:58				

Tentative Water Quality Monitoring Schedule

December 2010

Sunday	Monda	ay	Tueso	day	Wedne	esday	Thur	sday	Fric	lay	Satu	rday
						1-Dec		2-Dec		3-Dec		4-Dec
					Impact WC				Impact W0			
					Mid-ebb:				Mid-flood:			
					Mid-flood:	-			Mid-ebb:	22:46		
5-Dec		6-Dec		7-Dec		8-Dec		9-Dec		10-Dec		11-Dec
• • • • • • • • • • • • • • • • • • • •	Impact WQN				Impact WC		Impact W0				Impact W0	
Mid-flood:17:12	Mid-ebb:	0:10			Mid-flood:	8:58	Mid-ebb:	2:13			Mid-ebb:	
											Mid-flood:	
12-Dec		13-Dec		14-Dec		15-Dec		16-Dec		17-Dec		18-Dec
	Impact WOM	4					Impact W/				Impost W/	
	Impact WQN						Impact WO				Impact WO	
	Mid-ebb: 4 Mid-flood: 1						Mid-flood:				Mid-flood:	
19-Dec		2:35 20-Dec		21-Dec		22-Dec	Mid-ebb:	21:47 23-Dec		24-Dec	Mid-ebb:	22:42 25-Dec
19-Dec		20-Dec		21-Dec		zz-Dec		23-Dec		24-Dec		25-Dec
	Impact WQN	4			Impact WC	M	Impact W(MC			Impact W0	ЭМ
	Mid-flood: 1				Mid-flood:		•	1:13			Mid-ebb:	
		3:49			inia nooa.	17.04		1.10			Mid-flood:	-
26-Dec		27-Dec		28-Dec		29-Dec		30-Dec		31-Dec	inia nooa.	1-Jan
				20 200		20 200		00 200		01 200		i oun
			Impact WQ	М			Impact W0	MC				
			Mid-flood:				Mid-flood:					
			Mid-ebb:	18:19			Mid-ebb:	20:58				

Tentative Water Quality Monitoring Schedule

January 2011

Sunday	Monday	Tuesday		Wednesday	Thur	sday	Friday	Satu	ırday
26-Dec	27-Dec	28-D)ec	29-Dec		30-Dec	31-Dec		1-Jan
								Impact W	QM
								Mid-flood:	15:20
								Mid-ebb:	22:45
2-Jan	3-Jan	4-J	lan	5-Jan		6-Jan	7-Jar	ו	8-Jan
						~~~			~~~
	-	Impact WQM		Impact WQM	Impact Wo	NI)		Impact W	
	Mid-flood: 16:53			Mid-flood: 18:17				Mid-ebb:	
		Mid-ebb: 00:06			Mid-ebb:			Mid-flood:	
9-Jan	10-Jan	11-J	Jan	12-Jan		13-Jan	14-Jar	1	15-Jan
	Impact WQM	Impact WQM			Impact W	ЭM		Impact W	ОМ
	Mid-flood: 10:38	impact work			Mid-flood:			Mid-flood:	
		Mid-ebb: 03:35			Mid-ebb:	12:00		Mid-ebb:	
16-Jan	17-Jan	18-J		19-Jan		20-Jan	21-Jar	-	22-Jan
		100	, an	io dan		20 0411	21 001		22 0411
	Impact WQM			Impact WQM	Impact Wo	QM		Impact W	QM
	Mid-flood: 15:11			Mid-flood: 17:08				Mid-flood:	8:33
	Mid-ebb: 22:57				Mid-ebb:	00:22		Mid-ebb:	14:09
23-Jan	24-Jan	25-J	lan	26-Jan		27-Jan	28-Jar	n	29-Jan
	Impact WQM			Impact WQM			Impact WQM		
	Mid-flood: 9:49			Mid-flood: 11:15			Mid-flood: 12:50		
	Mid-ebb: 15:44			Mid-ebb: 17:46			Mid-ebb: 21:28		
30-Jan	31-Jan	1-F	eb	2-Feb		3-Feb	4-Feb		5-Feb
	Impact WQM								
	Mid-flood: 15:55								
	Mid-ebb: 23:18								

Notes:

1. Water Quality Monitoring for 6 water quality monitoring stations: WSD9, WSD10, WSD15, WSD17, WSD21, WSD19

2. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.

3. Cut-off day is the end of day of each month.



Appendix 5.2

Water Quality Monitoring Results and Graphical Presentation



### Water Monitoring Result at WSD9 - Tai Wan Mid-Flood Tide

Date	Time	Weater Condition	Samplin	•	Wat	er Temp °C	erature		pH -			Salinit ppt	ty	D	O Satur %	ation		DO mg/L			Turbid NTL			led Solids g/L
		0011011011	n	n	Va	lue	Average	Va	lue	Average	Va		Average	Va		Average	Va		Average	Va	alue	Average	Value	Average
1/10/2010	18:01	Fine	Middle	2	28.00	28.00	28.00	8.33	8.33	8.33	30.90	30.90	30.92	70.3	72.1	69.6	4.64	4.75	4.59	2.92	2.87	2.64	4	- 5.0
	18:08		Middle	2	28.00	28.00		8.33	8.33		30.94	30.94		69.9	66.1		4.61	4.37		2.43	2.33		6	
4/10/2010	17:53	Cloudy	Middle	3	27.31	27.31	27.33	8.15	8.15	8.15	30.87	30.87	30.87	89.2	88.7	88.6	5.92	5.89	5.89	3.33	3.52	3.15	6	6.0
	17:55		Middle	3	27.34	27.34		8.14	8.14		30.87	30.87		88.6	87.9		5.89	5.84		2.79	2.94		6	
6/10/2010	18:40	Cloudy	Middle	2	26.10	26.10	26.10	8.28	8.28	8.28	30.54	30.54	30.54	65.3	65.0	66.8	4.39	4.44	4.68	5.48	5.74	5.46	4	4.5
	18:50		Middle	2	26.10	26.10		8.28	8.28		30.54	30.54		68.9	67.9		4.70	5.20		5.44	5.16		5	
8/10/2010	19:48	Cloudy	Middle	3	27.20	27.20	27.20	8.13	8.13	8.13	29.75	29.75	29.75	62.0	66.8	63.4	4.17	4.49	4.28	4.00	3.97	3.90	7	6.5
	19:58		Middle	3	27.20	27.20		8.13	8.13		29.75	29.75		61.1	63.8		4.19	4.26		3.77	3.84		6	
11/10/2010	7:50	Cloudy	Middle	3	27.67	27.67	27.68	7.61	7.61	7.61	30.06	30.06	30.07	75.3	74.0	75.2	5.01	4.91	5.01	2.77	3.04	2.94	6	7.0
	7:53		Middle	3	27.69	27.69		7.61	7.61	-	30.08	30.08		78.9	72.7	-	5.26	4.84		3.05	2.89	-	8	
13/10/2010	9:50	Sunny	Middle	3	27.15	27.15	27.15	7.60	7.60	7.61	29.24	29.24	29.26	86.9	87.3	87.2	5.87	5.89	5.89	2.35	2.34	2.39	5	4.0
	9:54		Middle	3	27.14	27.14		7.61	7.61		29.28	29.28		87.6	87.0		5.91	5.87		2.46	2.40		3	
16/10/2010	16:48	Cloudy	Middle	3	25.49	25.49	25.48	8.35	8.35	8.34	29.20	29.20	29.20	61.3	64.9	62.6	4.34	4.59	4.43	2.79	2.61	2.29	3	3.0
10,10,2010	17:00	choudy	Middle	3	25.47	25.47	20.10	8.33	8.33	0.01	29.20	29.20	20.20	63.8	60.2	02.0	4.51	4.26		1.80	1.95	2.20	3	0.0
18/10/2010	15:45	Sunny	Middle	3	26.90	26.90	26.85	8.40	8.40	8.37	31.02	31.02	31.03	90.8	88.8	89.9	6.09	5.99	6.04	5.06	4.77	4.66	8	7.5
10/10/2010	15:48	Guility	Middle	3	26.80	26.80	20.00	8.33	8.33	0.07	31.04	31.04	01.00	89.8	90.1	66.6	6.03	6.06	0.04	4.52	4.29	4.00	7	1.0
20/10/2010	16:31	Cloudy	Middle	3	26.59	26.59	26.59	8.08	8.08	8.08	30.90	30.91	30.90	82.0	82.0	81.2	5.52	5.52	5.47	5.40	5.37	5.38	10	9.5
20/10/2010	16:40	choudy	Middle	3	26.59	26.60	20.00	8.08	8.09	0.00	30.90	30.90	00.00	80.6	80.3	01.2	5.43	5.41	0.47	5.20	5.56	0.00	9	0.0
25/10/2010	17:51	Cloudy	Middle	3	24.63	24.69	24.69	8.11	8.11	8.11	31.15	31.15	31.13	57.8	57.9	56.4	4.01	4.02	3.84	5.53	5.51	5.53	8	- 8.0
23/10/2010	17:59	Cloudy	Middle	3	24.72	24.73	24.03	8.11	8.11	0.11	31.11	31.11	51.15	56.9	53.0	50.4	3.67	3.67	3.04	5.80	5.28	0.00	8	0.0
27/10/2010	18:53	Fine	Middle	3	21.34	21.34	21.26	8.12	8.12	8.14	30.45	30.48	30.50	74.7	75.6	75.7	5.58	5.61	5.63	4.19	4.32	4.12	6	5.0
27/10/2010	18:58	Fille	Middle	3	21.17	21.17	21.20	8.15	8.16	0.14	30.52	30.53	30.50	76.2	76.1	/5./	5.67	5.67	5.03	3.92	4.06	4.12	4	5.0
20/10/2010	19:21	Fine	Middle	3	19.52	19.52	10.50	8.39	8.40	0.40	30.53	30.61	20.02	72.4	74.8	70.4	5.53	5.72	E 01	5.25	5.00	E 15	8	7.5
29/10/2010	19:28	Fine	Middle	3	19.52	19.51	19.52	8.40	8.39	8.40	30.65	30.69	30.62	73.0	73.2	73.4	5.58	5.59	5.61	5.07	5.28	5.15	7	7.5



# Water Monitoring Result at WSD10 - Cha Kwo Ling Mid-Flood Tide

Date	Time	Weater Condition	Samplin	g Depth	Wat	er Temp	erature		pН			Salinit ppt		D	O Satur	ration		DO ma/L			Turbid NTL			ed Solids
		Condition	n	n	Va	lue	Average	Va	lue -	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Vá		Average		
1/10/2010	17:02	Fine	Middle	2	27.50	27.50	27.50	8.31	8.31	8.31	30.92	30.92	30.92	72.6	69.2	69.6	4.82	4.60	4.63	2.61	2.39	2.67	5	5.0
1710/2010	17:10	1 110	Middle	2	27.50	27.50	27.00	8.31	8.31	0.01	30.92	30.92	00.02	69.5	67.1	00.0	4.62	4.46	4.00	2.99	2.70	2.07	5	0.0
4/10/2010	15:43	Cloudy	Middle	2	27.28	27.28	27.29	8.07	8.07	8.07	30.69	30.69	30.70	90.0	88.9	88.9	5.92	5.84	5.84	4.11	4.01	4.03	6	6.5
	15:47		Middle	2	27.30	27.30		8.07	8.07		30.71	30.71		88.8	88.0		5.83	5.75		3.94	4.06		7	
6/10/2010	16:02	Cloudy	Middle	2	25.90	25.90	25.90	8.28	8.28	8.28	30.46	30.46	30.46	65.7	62.4	64.8	4.42	4.27	4.42	4.79	4.21	4.42	4	4.5
	16:10		Middle	2	25.90	25.90		8.28	8.28		30.45	30.45		63.7	67.2		4.37	4.63		4.48	4.20		5	
8/10/2010	16:52	Cloudy	Middle	3	27.20	27.20	27.20	8.16	8.16	8.16	30.29	30.29	30.29	62.6	58.1	61.5	4.21	3.91	4.14	3.81	4.00	4.24	11	10.0
	17:15		Middle	3	27.20	27.20		8.16	8.17		30.29	30.29		63.5	61.8		4.27	4.15		4.23	4.92		9	
11/10/2010	8:27	Cloudy	Middle	2	27.68	27.68	27.69	7.68	7.68	7.69	30.68	30.68	30.69	70.9	69.5	71.7	4.70	4.61	4.75	3.71	3.54	3.56	7	7.0
	8:30		Middle	2	27.70	27.70		7.69	7.69		30.69	30.69		73.3	72.9		4.86	4.83		3.77	3.23		7	
13/10/2010	10:17	Sunny	Middle	3	27.25	27.25	27.26	7.83	7.83	7.82	30.31	30.31	30.30	84.2	81.5	81.6	5.64	5.46	5.47	6.01	5.56	5.48	4	4.5
	10:20		Middle	3	27.27	27.27		7.80	7.80		30.29	30.29		80.8	80.0		5.42	5.35		5.12	5.21		5	
16/10/2010	17:19	Cloudy	Middle	3	25.67	25.66	25.65	8.35	8.35	8.35	30.66	30.67	30.67	62.7	66.0	63.8	4.37	4.61	4.46	1.78	2.15	1.74	4	4.0
	17:25		Middle	3	25.63	25.63		8.35	8.35		30.68	30.68		62.9	63.5		4.40	4.44		1.61	1.41		4	
18/10/2010	16:22	Sunny	Middle	3	27.00	27.00	27.00	8.34	8.34	8.34	31.21	31.21	31.21	88.8	90.1	90.1	5.95	5.91	6.00	5.07	5.10	5.07	9	8.5
	16:25		Middle	3	27.00	27.00		8.34	8.34		31.21	31.21		91.2	90.1		6.10	6.05		5.00	5.11		8	
20/10/2010	16:03	Cloudy	Middle	3	26.96	26.95	26.92	8.12	8.12	8.12	30.91	30.91	30.92	87.8	80.0	82.0	5.31	5.40	5.36	5.21	5.50	5.49	10	9.0
	16:09	,	Middle	3	26.90	26.87		8.12	8.12		30.92	30.92		80.3	80.0		5.34	5.39		5.35	5.89		8	
25/10/2010	17:16	Cloudy	Middle	3	25.17	25.17	25.17	8.21	8.21	8.21	31.20	31.20	31.20	58.1	57.0	57.5	4.01	3.94	4.01	4.82	4.79	4.71	7	7.0
	17:23	,	Middle	3	25.16	25.16		8.21	8.22		31.20	31.20		57.1	57.7		4.10	3.98		4.76	4.47		7	
27/10/2010	17:57	Fine	Middle	3	20.88	20.88	20.87	8.39	8.39	8.39	31.36	31.36	31.37	71.2	70.4	70.4	5.30	5.24	5.25	3.98	3.96	4.09	7	6.5
	18:03		Middle	3	20.86	20.86		8.39	8.39		31.37	31.37		70.0	70.1		5.22	5.22		4.20	4.22		6	
29/10/2010	18:52	Fine	Middle	3	20.17	20.17	20.17	8.40	8.40	8.40	31.48	31.48	31.49	74.3	73.3	74.0	5.60	5.52	5.57	4.68	4.90	4.79	10	9.5
20,10,2010	18:59		Middle	3	20.16	20.16	20.17	8.39	8.39	0.40	31.49	31.49	01.40	73.8	74.7	7 4.0	5.55	5.62	0.07	4.86	4.71	1.10	9	0.0



#### Water Monitoring Result at WSD15 - Sai Wan Ho Mid-Flood Tide

Date	Time	Weater Condition		g Depth	Wat	er Temp °C	erature		pH -			Salinit ppt	ty	D	O Satur %	ation	-	DO mg/L		-	Turbid NTL	-7		led Solids a/L
		Condition	n	n	Va	lue	Average	Va	lue	Average	Va		Average	Va		Average	Va	lue	Average	Va	alue	Average		Average
1/10/2010	19:22	Fine	Middle	3	28.10	28.10	28.05	8.31	8.31	8.31	30.79	30.79	30.79	64.7	68.3	66.5	4.26	4.50	4.38	2.48	2.59	2.48	4	3.5
	19:30		Middle	3	28.00	28.00		8.31	8.31		30.79	30.79		67.8	65.0		4.47	4.28		2.52	2.34		3	
4/10/2010	16:03	Cloudy	Middle	2	27.44	27.44	27.46	8.12	8.12	8.11	30.59	30.59	30.51	86.9	86.1	86.6	5.70	5.64	5.68	4.58	3.97	4.04	8	7.5
	16:06		Middle	2	27.48	27.48		8.10	8.10		30.42	30.42		87.0	86.3		5.71	5.65		3.71	3.88		7	
6/10/2010	17:40	Cloudy	Middle	3	26.00	26.00	26.00	8.29	8.29	8.29	30.63	30.63	30.63	65.5	61.8	64.8	4.44	4.22	4.42	3.53	4.00	3.60	4	4.0
	17:50		Middle	3	26.00	26.00		8.29	8.29		30.63	30.62		67.2	64.5		4.59	4.41		3.37	3.50		4	
8/10/2010	19:13	Cloudy	Middle	3	27.00	27.00	27.00	8.20	8.20	8.20	30.66	30.66	30.67	59.2	64.2	60.1	4.02	4.31	4.05	3.94	4.09	3.92	6	7.0
0,10,2010	19:23	cloudy	Middle	3	27.00	27.00	27.00	8.20	8.20	0.20	30.67	30.67	00.07	59.5	57.3	0011	4.00	3.85		3.88	3.77	0.02	8	
11/10/2010	8:54	Cloudy	Middle	2	27.49	27.49	27.49	7.73	7.73	7.74	30.84	30.84	30.85	85.7	84.7	84.2	5.70	5.63	5.60	3.01	3.21	3.15	7	7.0
11/10/2010	8:57	Cloudy	Middle	2	27.49	27.49	27.43	7.74	7.74	7.74	30.86	30.86	00.00	83.7	82.6	04.2	5.56	5.49	5.00	3.24	3.12	0.10	7	7.0
13/10/2010	10:44	Sunny	Middle	2	27.15	27.15	27.13	7.70	7.70	7.70	30.62	30.62	30.67	78.5	77.1	79.2	5.26	5.17	5.31	4.20	4.02	4.04	8	9.0
13/10/2010	10:47	Sunny	Middle	2	27.11	27.11	27.15	7.70	7.70	7.70	30.71	30.71	30.07	81.8	79.3	15.2	5.48	5.31	5.51	4.11	3.84	4.04	10	9.0
16/10/2010	15:16	Cloudy	Middle	3	25.48	25.48	25.48	8.15	8.15	8.15	30.00	29.88	29.91	60.9	60.1	59.1	4.29	4.19	4.13	3.22	3.49	3.15	5	4.5
10/10/2010	15:26	Cloudy	Middle	3	25.48	25.47	25.40	8.15	8.15	0.15	29.88	29.88	29.91	57.9	57.3	55.1	4.00	4.03	4.15	2.99	2.90	5.15	4	4.5
18/10/2010	17:01	Cumpu	Middle	3	26.80	26.80	00.00	8.36	8.36	0.07	31.35	31.35	01.05	89.5	86.7	87.3	6.01	5.81	E 00	5.33	5.60	E E0	9	10.0
18/10/2010	17:04	Sunny	Middle	3	26.80	26.80	26.80	8.37	8.37	8.37	31.35	31.35	31.35	88.0	85.0	67.3	5.90	5.70	5.86	5.76	5.62	5.58	11	10.0
20/10/2010	19:26	Cloudy	Middle	3	26.52	26.47	26.44	8.23	8.23	8.24	31.07	31.07	31.07	63.8	65.3	65.9	4.32	4.43	4.70	5.58	5.74	5.44	8	8.0
20/10/2010	19:36	Cibudy	Middle	3	26.39	26.38	20.44	8.24	8.24	0.24	31.07	31.07	31.07	67.5	67.1	05.9	5.48	4.55	4.70	5.29	5.13	5.44	8	8.0
05/10/0010	19:57	Oleveta	Middle	3	24.88	24.89	04.70	8.24	8.24	0.04	31.40	31.40	01.40	56.4	55.5	54.0	3.91	3.92	0.00	4.50	4.81	4.00	6	7.0
25/10/2010	20:06	Cloudy	Middle	3	24.70	24.70	24.79	8.24	8.24	8.24	31.40	31.40	31.40	55.1	52.6	54.9	3.82	3.65	3.83	5.02	5.10	4.86	8	7.0
07/10/0010	20:54	Fire	Middle	4	21.34	21.31	01.05	8.40	8.40	0.40	31.44	31.62	01 50	68.2	70.1	00.0	5.04	5.18	5.07	5.47	5.44	5 70	8	
27/10/2010	20:59	Fine	Middle	4	21.17	21.17	21.25	8.40	8.40	8.40	31.63	31.63	31.58	67.0	69.1	68.6	4.95	5.10	5.07	6.09	6.03	5.76	10	9.0
00//0/2010	21:20		Middle	4	20.43	20.43	00.40	8.45	8.45	0.45	31.54	31.54	04.55	78.4	77.5	77.0	5.87	5.81		4.04	4.55	4.00	6	7.0
29/10/2010	21:28	Fine	Middle	4	20.41	20.41	20.42	8.45	8.45	8.45	31.56	31.56	31.55	77.0	76.0	77.2	5.68	5.70	5.77	4.82	4.97	4.60	8	7.0



# Water Monitoring Result at WSD17 - Quarry Bay Mid-Flood Tide

Date	Time	Weater Condition		ig Depth	Wat	er Temp °C	perature		pH -			Salinit ppt	у	C	O Satur	ation		DO mg/L			Turbid NTU		Suspend	led Solids
		Condition	n	n	Va		Average	Va	lue	Average	Va	ilue	Average	Va	lue	Average	Va	lue	Average	Va	alue	Average	Value	Average
1/10/2010	19:00	Fine	Middle	3	28.20	28.20	28.20	8.32	8.32	8.32	26.42	26.41	26.42	66.1	62.8	64.3	4.61	4.34	4.48	3.95	3.25	3.63	6	- 7.0
	19:10	-	Middle	3	28.20	28.20		8.32	8.32		26.42	26.42	-	65.2	62.9		4.61	4.35		3.66	3.64		8	
4/10/2010	16:26	Cloudy	Middle	3	27.69	27.69	27.72	8.05	8.05	8.05	30.84	30.84	30.84	82.2	81.6	81.6	5.45	5.39	5.39	8.69	7.19	7.33	14	14.5
	16:29		Middle	3	27.74	27.74		8.04	8.04		30.84	30.84		81.8	80.9		5.40	5.32		6.82	6.63		15	
6/10/2010	17:23	Cloudy	Middle	3	25.70	25.70	25.70	8.30	8.30	8.30	30.60	30.60	30.60	66.1	63.7	65.0	4.59	4.32	4.47	5.13	5.32	5.17	7	7.5
	17:30	-	Middle	3	25.70	25.70		8.30	8.30		30.60	30.60		67.1	63.0		4.63	4.32		5.15	5.09		8	
8/10/2010	17:40	Cloudy	Middle	3	26.90	26.90	26.90	8.15	8.15	8.15	30.47	30.47	30.47	61.6	60.9	60.4	4.14	4.12	4.07	8.85	9.37	9.57	12	19.5
	17:51	,	Middle	3	26.90	26.90		8.15	8.15		30.47	30.47		57.5	61.7		3.89	4.14	-	10.10	9.97		27	
11/10/2010	9:22	Cloudy	Middle	3	27.11	27.11	24.64	7.69	7.69	7.69	30.95	30.95	30.92	68.6	67.9	69.5	4.59	4.54	4.65	8.41	8.77	8.59	12	11.5
	9:24		Middle	3	27.16	17.16		7.69	7.69		30.83	30.93		71.9	69.4		4.80	4.65		8.85	8.34		11	
13/10/2010	11:03	Sunnv	Middle	2	27.15	27.15	27.17	7.70	7.70	7.70	30.62	30.62	30.62	74.7	73.5	73.3	5.00	4.92	4.91	10.20	8.80	9.20	20	21.0
10,10,2010	11:06	Gainiy	Middle	2	27.19	27.19		7.69	7.69		30.61	30.61	00.02	73.5	71.6	70.0	4.91	4.79		10.30	7.50	0.20	22	
16/10/2010	14:57	Cloudy	Middle	3	25.01	25.01	25.01	8.31	8.31	8.31	30.41	30.41	30.41	59.9	62.4	62.0	4.36	4.40	4.42	4.70	4.57	4.62	7	8.0
10/10/2010	15:09	cloudy	Middle	3	25.01	25.00	20.01	8.31	8.31	0.01	30.41	30.41	00.11	64.0	61.8	02.0	4.54	4.38	2	4.82	4.39		9	0.0
18/10/2010	17:20	Sunny	Middle	2	26.60	26.60	26.65	8.30	8.30	8.31	31.20	31.20	31.21	80.3	79.1	79.7	5.40	5.32	5.36	5.75	5.85	5.80	11	10.0
10/10/2010	17:23	Outility	Middle	2	26.70	26.70	20.00	8.31	8.31	0.01	31.22	31.22	01.21	80.4	79.0	13.1	5.41	5.31	0.00	5.91	5.70	0.00	9	10.0
20/10/2010	19:03	Cloudy	Middle	3	26.19	26.18	26.17	8.23	8.23	8.23	31.18	31.18	31.17	64.8	65.3	63.6	4.40	4.43	4.31	5.97	5.86	5.72	8	7.5
20/10/2010	19:12	Cloudy	Middle	3	26.17	26.15	20.17	8.23	8.23	0.20	31.17	31.16	01.17	62.9	61.2	00.0	4.27	4.15	4.01	5.45	5.58	5.72	7	7.5
25/10/2010	19:46	Cloudy	Middle	3	25.95	25.96	25.96	8.18	8.18	8.18	30.55	30.55	30.55	56.4	53.6	54.1	3.85	3.66	3.70	6.71	6.65	6.74	11	11.5
25/10/2010	19:51	Cloudy	Middle	3	25.96	25.96	20.90	8.18	8.18	0.10	30.55	30.55	30.55	53.3	53.1	54.1	3.65	3.63	3.70	6.81	6.78	0.74	12	11.5
27/10/2010	20:26	Fino	Middle	4	21.24	21.21	21.18	8.47	8.47	8.46	31.54	31.54	31.56	68.7	67.9	68.1	5.08	5.02	5.03	6.93	6.37	6.27	9	8.5
27/10/2010	20:34	Fine	Middle	4	21.13	21.13	21.10	8.46	8.45	0.40	31.58	31.58	31.00	67.5	68.2	00.1	4.99	5.04	5.03	5.92	5.84	0.27	8	6.0
20/10/2010	21:01	Fine	Middle	4	20.49	20.49	00 E1	8.45	8.45	0.40	31.56	31.56	01 50	77.4	71.7	70.5	5.68	5.35	E 47	4.41	4.55	4.70	7	0.5
29/10/2010	21:07	Fine	Middle	4	20.47	20.57	20.51	8.46	8.46	8.46	31.55	31.55	31.56	73.2	71.8	73.5	5.47	5.37	5.47	4.93	4.91	4.70	6	6.5



### Water Monitoring Result at WSD21 - Wan Chai Mid-Flood Tide

Date	Time	Weater Condition		ig Depth	Wat	er Temp °C	erature		pH -			Salinit ppt	y	D	O Satur %	ation		DO mg/L			Turbid NTL		Suspend	ed Solids
		Condition	n	n	Va		Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va		Average	Va	alue	Average	Value	Average
1/10/2010	21:55	Fine	Middle	2	27.80	27.70	27.73	8.25	8.25	8.25	30.86	30.86	30.86	67.2	65.6	65.0	4.45	4.34	4.31	2.62	2.83	2.85	2	2.5
	21:59		Middle	2	27.70	27.70	20	8.25	8.25	0.20	30.86	30.84	00.00	64.3	62.8	00.0	4.25	4.20		3.00	2.93	2.00	3	2.0
4/10/2010	15:22	Cloudy	Middle	2	28.71	28.72	28.55	8.08	8.08	8.09	31.48	31.48	31.49	64.6	64.0	63.7	4.39	4.34	4.33	3.16	3.37	3.21	9	8.0
	15:25		Middle	2	28.32	28.43		8.09	8.09		31.50	31.50		62.7	63.5		4.28	4.31		3.09	3.22		7	<u> </u>
6/10/2010	17:23	Cloudy	Middle	2	26.00	26.00	26.00	8.10	8.10	8.10	30.14	30.14	30.15	60.3	60.2	61.3	4.14	4.12	4.20	5.79	6.06	5.61	7	8.0
	17:31		Middle	2	26.00	26.00		8.10	8.10		30.15	30.15		62.6	61.9		4.28	4.24		5.23	5.35		9	
8/10/2010	17:53	Cloudy	Middle	2	26.80	26.80	26.80	8.10	8.10	8.10	30.14	30.14	30.14	59.1	58.9	59.0	4.01	3.98	3.98	7.00	6.28	6.58	8	9.0
	17:59	,	Middle	2	26.80	26.80		8.10	8.10		30.14	30.14		60.1	57.8		4.06	3.87		6.95	6.07		10	
11/10/2010	10:16	Cloudy	Middle	2	26.20	26.20	26.25	7.89	7.90	7.90	32.60	32.60	32.65	66.3	66.1	66.6	4.58	4.57	4.61	6.73	6.82	6.76	13	13.5
11/10/2010	10:19	Cloudy	Middle	2	26.30	26.30	20.23	7.91	7.91	7.90	32.70	32.70	32.00	66.8	67.3	00.0	4.63	4.66	4.01	6.65	6.84	0.70	14	13.5
13/10/2010	10:41	Sunny	Middle	2	27.10	27.10	27.05	7.30	7.30	7.31	30.91	30.91	30.87	78.8	78.0	77.6	5.21	5.16	5.14	4.15	4.12	4.14	9	10.0
10/10/2010	10:43	Guility	Middle	2	27.00	27.00	27.00	7.32	7.32	7.01	30.83	30.83	00.07	77.1	76.5	11.0	5.10	5.08	0.14	4.23	4.05		11	10.0
16/10/2010	14:40	Cloudy	Middle	2	25.87	25.86	25.86	8.24	8.24	8.24	30.00	30.00	30.00	61.5	63.3	62.5	4.31	4.44	4.38	4.37	3.62	3.81	4	4.0
	14:50		Middle	2	25.85	25.85		8.24	8.23		30.00	30.00		63.0	62.0		4.41	4.35		3.39	3.84		4	
18/10/2010	15:25	Sunny	Middle	3	26.40	26.40	26.40	7.77	7.77	7.77	32.70	32.70	32.70	73.9	73.8	73.4	5.66	5.67	5.48	4.27	4.30	4.28	14	13.0
	15:27		Middle	3	26.40	26.40		7.76	7.76		32.70	32.70		73.2	72.8		5.27	5.30		4.31	4.25		12	<u> </u>
20/10/2010	18:18	Cloudy	Middle	3	26.85	26.85	26.83	8.01	8.01	8.02	30.14	30.14	30.14	74.0	72.9	73.9	4.96	4.92	4.99	8.75	8.08	8.45	15	15.0
	18:25		Middle	3	26.85	26.77		8.02	8.02		30.14	30.14		74.6	74.2		5.04	5.02		8.77	8.18		15	
25/10/2010	18:29	Cloudy	Middle	3	25.61	25.57	25.58	8.15	8.14	8.14	30.75	30.75	30.76	54.1	56.0	55.6	3.72	3.68	3.70	8.67	8.53	8.53	11	11.5
	18:36		Middle	3	25.58	25.56		8.14	8.14		30.76	30.77		58.1	54.1		3.99	3.42		8.65	8.25		12	
27/10/2010	19:30	Fine	Middle	3	20.73	20.73	20.73	8.37	8.37	8.37	31.01	31.00	30.99	50.8	49.9	50.8	3.80	3.75	3.81	3.72	3.56	3.79	7	7.5
	19:37		Middle	3	20.72	20.72		8.37	8.37		30.98	30.98		51.2	51.3		3.85	3.85		3.91	3.97		8	
29/10/2010	20:39	Fine	Middle	3	20.37	20.37	20.37	8.36	8.37	8.37	31.24	31.24	31.25	70.7	70.1	69.2	5.31	5.34	5.22	6.48	6.00	6.09	13	11.5
	20:44		Middle	3	20.36	20.36		8.37	8.37		31.25	31.25		68.4	67.6		5.13	5.08		5.89	5.99		10	



# Water Monitoring Result at WSD19 - Sheung Wan Mid-Flood Tide

Date	Time	Weater Condition	Samplin	g Depth	Wat	er Temp	perature		pН			Salinit ppt		C	O Satur	ration		DO ma/L			Turbid NTL			led Solids a/L
		Condition	n	n	Va	lue	Average	Va	lue -	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Vá		Average		
1/10/2010	19:54	Fine	Middle	2	27.70	27.70	27.70	8.15	8.15	8.15	30.51	30.51	30.51	65.4	61.7	62.8	4.34	4.10	4.17	3.78	3.41	3.64	5	5.5
1710/2010	20:03		Middle	2	27.70	27.70	27.70	8.15	8.15	0.10	30.51	30.51	00.01	63.0	60.9	02.0	4.19	4.03	4.17	3.80	3.55	0.04	6	0.0
4/10/2010	14:50	Cloudy	Middle	2	26.77	26.77	26.76	8.08	8.08	8.06	30.71	30.71	30.71	75.4	75.0	74.9	5.08	5.05	5.04	9.90	9.63	9.73	14	15.0
	14:53	cloudy	Middle	2	26.75	26.75	20.70	8.04	8.04	0.00	30.70	30.70	00171	74.8	74.2		5.04	5.00	0.01	9.88	9.51	0.10	16	10.0
6/10/2010	16:41	Cloudy	Middle	2	25.80	25.80	25.75	8.18	8.16	8.16	30.08	30.08	30.08	61.4	58.6	61.3	4.21	4.04	4.33	5.02	5.13	4.91	7	6.5
0,10,2010	16:49	cloudy	Middle	2	25.70	25.70	20.10	8.15	8.15	0.10	30.08	30.08	00.00	63.1	62.1	0110	4.81	4.25		4.83	4.64		6	0.0
8/10/2010	18:21	Cloudy	Middle	2	26.30	26.30	26.30	8.05	8.05	8.05	30.04	30.04	30.04	59.7	61.6	60.4	4.04	4.20	4.12	4.69	5.11	5.02	12	14.0
0/10/2010	18:28	cloudy	Middle	2	26.30	26.30	20.00	8.05	8.05	0.00	30.04	30.04	00101	58.5	61.9	0011	3.99	4.23		4.84	5.44	0.02	16	
11/10/2010	9:57	Cloudy	Middle	2	27.34	27.34	27.35	7.55	7.55	7.55	30.17	30.17	30.17	63.5	68.4	66.3	4.25	4.57	4.43	3.97	4.05	3.91	12	11.0
11/10/2010	10:00	Cloudy	Middle	2	27.36	27.36	27.00	7.54	7.54	7.00	30.16	30.16	00.17	66.0	67.1	00.0	4.41	4.49	4.40	3.88	3.74	0.01	10	11.0
13/10/2010	11:49	Sunny	Middle	2	27.55	27.55	27.56	7.69	7.69	7.69	29.89	29.89	29.88	77.4	76.1	75.7	5.17	5.08	5.06	10.40	9.12	9.35	10	10.5
10/10/2010	11:52	Gunny	Middle	2	27.56	27.56	27.00	7.68	7.68	7.00	29.87	29.87	20.00	75.0	74.3	70.7	5.01	4.96	0.00	8.94	8.93	0.00	11	10.0
16/10/2010	14:15	Cloudy	Middle	2	25.57	25.58	25.58	8.26	8.26	8.26	30.12	30.12	30.17	59.6	61.3	58.6	4.18	4.30	4.14	3.98	4.14	3.76	8	8.0
10,10,2010	14:22	Cloudy	Middle	2	25.57	25.58	20.00	8.26	8.26	0.20	30.22	30.22	00.17	56.4	57.1	00.0	4.06	4.01	4.14	3.63	3.29	0.70	8	0.0
18/10/2010	14:49	Sunny	Middle	2	27.50	27.50	27.55	8.18	8.18	8.18	30.72	30.72	30.72	79.2	78.4	79.2	5.26	5.21	5.26	4.90	4.43	4.54	8	7.5
10/10/2010	14:53	Cunny	Middle	2	27.60	27.60	27.00	8.17	8.17	0.10	30.71	30.71	00.72	80.0	79.1	70.2	5.31	5.26	0.20	4.50	4.31	1.01	7	7.0
20/10/2010	18:03	Cloudy	Middle	2	26.09	26.09	26.06	8.09	8.09	8.09	30.69	30.69	30.69	55.6	55.9	56.1	3.80	3.81	3.75	5.66	5.78	5.46	10	10.5
20,10,2010	18:12	cloudy	Middle	2	26.02	26.02	20.00	8.10	8.09	0.00	30.69	30.69	00100	57.6	55.3	0011	3.61	3.78	0.70	5.20	5.21	0.10	11	1010
25/10/2010	19:22	Cloudy	Middle	2	24.40	24.40	24.39	8.13	8.13	8.13	30.89	30.89	30.90	52.5	53.0	55.7	3.08	3.71	3.70	4.89	4.87	5.19	7	8.0
20,10,2010	19:29	cloudy	Middle	2	24.37	24.37	24.00	8.13	8.13	0.10	30.90	30.90	00.00	57.4	59.9	00.7	4.02	3.99	0.70	5.59	5.42	0.10	9	0.0
27/10/2010	19:25	Fine	Middle	2	20.73	20.73	20.73	8.33	8.33	8.33	30.73	30.73	30.73	50.9	53.0	51.6	3.81	3.97	3.86	5.84	6.08	5.74	10	9.0
21/10/2010	19:32	1 110	Middle	2	20.72	20.72	20.70	8.33	8.33	0.00	30.73	30.73	00.70	50.6	51.8	51.0	3.79	3.88	0.00	5.50	5.53	5.77	8	5.0
29/10/2010	21:49	Fine	Middle	2	20.23	20.23	20.22	8.38	8.38	8.38	31.28	31.28	31.28	65.9	69.2	67.8	4.96	5.21	5.10	4.48	4.56	4.48	8	7.0
23/10/2010	21:55	1116	Middle	2	20.21	20.21	20.22	8.38	8.38	0.30	31.28	31.28	51.20	69.9	66.1	07.0	5.26	4.98	5.10	4.41	4.48	4.40	6	7.0



# Water Monitoring Result at WSD9 - Tai Wan Mid-Ebb Tide

Date	Time	Weater Condition	Samplin	g Depth	Wate	er Temp	erature		pН			Salini ppt	ty	C	O Satur	ation		DO ma/L			Turbid NTU		Suspend	led Solids
		Condition	n	n	Va	lue	Average	Va	lue -	Average	Va	llue	Average	Va	lue	Average	Va		Average	Va	alue	, Average	Value	g/∟ Average
2/10/2010	5:57	Sunny	Middle	3	27.01	27.01	27.03	8.35	8.36	8.35	30.80	30.79	30.79	95.0	94.2	94.1	6.71	6.66	6.65	2.12	2.01	2.12	2	2.5
	6:00		Middle	3	27.04	27.04		8.35	8.34		30.79	30.79		92.7	94.4		6.56	6.68		2.16	2.19		3	
4/10/2010	8:05	Cloudy	Middle	3	27.97	27.97	27.99	8.10	8.10	8.10	30.73	30.73	30.76	79.1	81.5	80.5	5.22	5.37	5.31	3.08	3.36	3.18	4	4.0
	8:08		Middle	3	28.00	28.00		8.09	8.09		30.78	30.78		81.0	80.5		5.34	5.31		3.13	3.15		4	
6/10/2010	10:32	Cloudy	Middle	3	26.83	26.83	26.79	8.30	8.30	8.29	29.60	29.60	29.64	94.7	94.1	93.4	6.40	6.36	6.32	4.03	3.80	3.73	6	- 11.0
0,10,2010	10:35	cloudy	Middle	3	26.74	26.74	20.70	8.27	8.27	0.20	29.68	29.68	20.01	93.0	91.9	0011	6.30	6.23	0.02	3.33	3.75	0.10	16	
8/10/2010	10:57	Cloudy	Middle	3	27.38	27.38	27.37	7.46	7.46	7.47	30.90	30.90	30.93	72.1	70.1	71.5	4.80	4.66	4.76	4.17	3.75	3.88	5	4.5
	11:00		Middle	3	27.36	27.36		7.48	7.48		30.96	30.96		72.2	71.7		4.81	4.78		3.88	3.73		4	
11/10/2010	15:29	Cloudy	Middle	2	26.61	26.61	26.66	8.13	8.13	8.13	30.67	30.67	30.66	83.7	82.6	82.1	5.56	5.56	5.51	2.75	3.01	2.91	3	- 3.5
11/10/2010	15:32	Cloudy	Middle	2	26.70	26.70	20.00	8.12	8.12	0.15	30.64	30.64	30.00	82.1	80.0	02.1	5.53	5.40	5.51	3.02	2.87	2.91	4	5.5
13/10/2010	2:53	Fine	Middle	2	25.90	25.90	25.90	8.18	8.18	8.18	30.90	30.90	30.90	83.3	83.3	83.4	5.62	5.62	5.63	2.73	2.91	2.57	3	2.5
13/10/2010	3:00	FILIE	Middle	2	25.90	25.90	23.90	8.18	8.18	0.10	30.90	30.90	30.90	83.4	83.4	63.4	5.63	5.63	5.65	2.33	2.29	2.57	2	2.0
16/10/2010	3:47	Cloudy	Middle	2	25.39	25.38	25.38	8.32	8.32	8.32	30.07	30.07	30.07	66.6	66.5	65.9	4.70	4.70	4.66	1.93	1.61	1.58	3	3.5
16/10/2010	3:53	Cloudy	Middle	2	25.38	25.37	20.00	8.32	8.32	0.32	30.07	30.07	30.07	66.1	64.5	65.9	4.67	4.56	4.00	1.44	1.33	1.56	4	3.5
18/10/2010	8:00	Cumpu	Middle	2	27.20	27.20	07.05	7.71	7.71	7.74	30.98	30.98	31.04	87.3	85.8	86.7	5.81	5.71	E 77	5.02	4.66	4.05	6	7.0
18/10/2010	8:04	Sunny	Middle	2	27.30	27.30	27.25	7.77	7.77	7.74	31.09	31.09	31.04	87.5	86.3	00.7	5.83	5.74	5.77	4.87	4.86	4.85	8	7.0
20/10/2010	9:45	Cloudy	Middle	3	26.20	26.20	26.25	8.29	8.29	8.31	31.49	31.49	31.56	86.8	85.8	86.6	5.86	5.79	6.60	5.16	4.82	4.86	7	7.0
20/10/2010	9:48	Cloudy	Middle	3	26.30	26.30	20.25	8.33	8.33	0.31	31.63	31.63	31.30	87.7	86.2	00.0	8.92	5.82	0.00	4.82	4.63	4.00	7	7.0
25/10/2010	12:29	Cumpu	Middle	2	27.10	27.10	27.25	8.27	8.27	8.26	31.60	31.60	31.57	80.3	79.3	79.9	5.34	5.27	5.31	4.21	3.85	4.00	5	5.5
25/10/2010	12:32	Sunny	Middle	2	27.40	27.40	27.20	8.24	8.24	0.20	31.53	31.53	31.57	80.5	79.6	79.9	5.35	5.29	5.31	4.34	3.90	4.08	6	5.5
08/10/0010	3:47	Fine	Middle	2	20.27	20.26	00.00	8.22	8.21	0.01	31.64	31.64	01.05	89.2	82.8	96.9	6.69	6.21	0.51	4.13	4.18	4.02	8	7.0
28/10/2010	3:53	Fine	Middle	2	20.25	20.26	20.26	8.21	8.21	8.21	31.65	31.65	31.65	86.7	88.5	86.8	6.51	6.64	6.51	3.98	3.84	4.03	6	7.0
20/10/2010	5:21	<b>F</b> ire -	Middle	2	19.62	19.60	10.50	8.54	8.55	0.55	32.08	32.08	00.00	56.9	54.2	54.0	4.32	4.03	4.10	5.02	5.50	E 00	9	0.5
30/10/2010	5:27	Fine	Middle	2	19.58	19.57	19.59	8.55	8.55	8.55	32.08	32.08	32.08	52.0	56.1	54.8	4.08	4.31	4.19	5.32	5.44	5.32	8	8.5



## Water Monitoring Result at WSD10 - Cha Kwo Ling Mid-Ebb Tide

Date	Time	Weater Condition	Samplin	g Depth	Wat	er Temp	erature		pH			Salini ppt	ty	C	O Satur	ration		DO ma/L			Turbid NTU			led Solids a/L
		Condition	n	n	Va	lue	Average	Va	lue	Average	Va	alue	Average	Va	alue	Average	Va		Average	Va	lue	Average		g/∟ Average
2/10/2010	6:29	Sunny	Middle	3	27.02	27.02	27.04	8.15	8.14	8.14	30.93	30.92	30.92	92.9	91.6	91.7	6.58	6.49	6.50	2.40	2.08	2.31	3	3.5
	6:32	,	Middle	3	27.05	27.06		8.14	8.14		30.91	30.91		90.7	91.4		6.43	6.48		2.42	2.35		4	
4/10/2010	8:40	Cloudy	Middle	2	28.10	28.10	28.11	7.97	7.97	7.96	30.71	30.71	30.77	91.7	90.3	91.2	6.05	5.95	6.01	3.00	3.02	2.95	6	6.0
	8:43	,	Middle	2	28.12	28.12	-	7.95	7.95		30.83	30.83		91.9	90.8		6.05	5.98		2.87	2.90		6	
6/10/2010	11:01	Cloudy	Middle	3	26.94	26.94	26.94	8.30	8.30	8.30	29.80	29.80	29.82	77.1	74.8	77.3	5.20	5.05	5.22	5.02	4.90	4.88	5	4.5
	11:04	,	Middle	3	26.93	26.93		8.30	8.30		29.83	29.83		79.4	77.9		5.36	5.26	•	4.78	4.83		4	
8/10/2010	11:27	Cloudy	Middle	3	27.06	27.06	27.15	8.03	8.03	7.98	31.12	31.12	31.10	85.8	84.2	85.3	5.72	5.61	5.69	3.63	3.17	3.39	5	5.0
	11:30	,	Middle	3	27.23	27.23		7.93	7.93		31.08	31.08		86.4	84.9		5.76	5.66		3.54	3.22		5	
11/10/2010	15:10	Cloudy	Middle	2	26.81	26.81	26.81	8.08	8.08	8.08	30.88	30.88	30.88	79.7	78.3	79.3	5.36	5.26	5.33	5.47	5.49	5.43	7	- 7.5
	15:13	cloudy	Middle	2	26.80	26.80	20.01	8.08	8.08	0.00	30.88	30.88	00.00	81.0	78.2		5.44	5.26	0.00	5.40	5.34	0.10	8	
13/10/2010	2:20	Fine	Middle	3	25.90	25.90	25.90	8.27	8.27	8.27	30.36	30.36	30.36	84.2	84.2	83.3	5.70	5.70	5.63	2.21	2.15	2.07	<2	3.0
10,10,2010	2:26		Middle	3	25.90	25.90	20.00	8.27	8.28	0.27	30.36	30.36	00.00	82.4	82.4	00.0	5.56	5.56	0.00	1.88	2.03	2.07	3	0.0
16/10/2010	6:00	Cloudy	Middle	2	25.76	25.76	25.75	8.38	8.38	8.38	30.70	30.71	30.71	62.8	64.1	64.3	4.24	4.47	4.42	2.08	2.36	2.15	3	- 3.5
	6:10	,	Middle	2	25.74	25.74		8.38	8.38		30.71	30.72		62.7	67.5		4.27	4.71		2.14	2.02	•	4	
18/10/2010	8:39	Sunnv	Middle	2	26.90	26.90	26.95	8.17	8.17	8.22	31.19	31.19	31.20	83.4	82.0	83.6	5.58	5.49	5.59	5.73	5.25	5.35	7	7.0
	8:42	Canny	Middle	2	27.00	27.00	20.00	8.26	8.26	0.22	31.20	31.20	01.20	85.2	83.7	00.0	5.70	5.60	0.00	5.23	5.18	0.00	7	
20/10/2010	10:25	Cloudy	Middle	3	26.70	26.70	26.68	8.29	8.29	8.29	31.26	31.26	31.32	80.4	79.0	79.9	5.41	5.31	5.37	5.53	5.52	5.47	14	- 13.5
	10:28	cloudy	Middle	3	26.70	26.60	20.00	8.29	8.29	0.20	31.37	31.37	01.02	80.8	79.2		5.44	5.33	0.07	5.44	5.40	0.17	13	
25/10/2010	12:55	Sunny	Middle	2	27.70	27.70	27.75	8.25	8.25	8.25	31.52	31.52	31.51	82.9	82.0	82.4	5.47	5.40	5.43	4.50	4.29	4.39	6	4.5
23/10/2010	12:58	Gunny	Middle	2	27.80	27.80	21.15	8.24	8.24	0.20	31.50	31.50	01.01	82.8	81.7	02.4	5.45	5.38	5.40	4.44	4.31	4.00	3	4.0
28/10/2010	4:29	Fine	Middle	2	20.34	20.34	20.34	8.29	8.29	8.29	31.67	31.67	31.67	82.1	82.2	81.1	6.16	6.17	6.09	3.30	3.06	3.05	7	6.5
20/10/2010	4:35		Middle	2	20.34	20.34	20.04	8.29	8.29	0.20	31.67	31.67	01.07	80.6	79.6	01.1	6.04	5.97	0.00	2.86	2.97	0.00	6	0.0
30/10/2010	5:40	Fine	Middle	2	19.49	19.49	19.45	8.59	8.59	8.60	31.89	31.89	31.89	52.6	53.0	52.8	3.99	4.02	4.00	6.13	6.66	6.17	8	9.0
00/10/2010	5:45	1.116	Middle	2	19.42	19.41	10.70	8.60	8.60	0.00	31.89	31.89	01.00	52.9	52.5	02.0	4.01	3.98	7.00	5.97	5.90	0.17	10	0.0



#### Water Monitoring Result at WSD15 - Sai Wan Ho Mid-Ebb Tide

Date	Time	Weater	Samplin	ig Depth	Wat	er Temp	perature		pН			Salinit	y	D	O Satur	ation		DO			Turbid NTU			led Solids
		Condition	r	n	Va	lue	Average	Va	- Ilue	Average	Va	ppt Ilue	Average	Va	% lue	Average	Va	mg/L lue	Average	Va	lue	Average	mg Value	g/∟ Average
2/10/2010	6:46	Sunny	Middle	2	27.06	27.06	27.08	8.18	8.18	8.18	30.89	30.89	30.90	95.4	95.6	95.6	6.76	6.77	6.78	1.90	1.93	1.92	4	5.0
2,10,2010	6:50	Canny	Middle	2	27.10	27.10	27.00	8.17	8.17	0.10	30.90	30.90	00.00	96.3	95.0	00.0	6.83	6.74	0.10	1.92	1.92		6	0.0
4/10/2010	9:20	Cloudy	Middle	2	27.63	28.63	27.90	7.98	7.98	7.98	30.49	30.49	30.55	93.0	92.7	93.0	6.18	6.16	6.18	3.01	2.87	2.72	6	7.0
	9:23		Middle	2	27.66	27.66		7.97	7.97		30.60	30.60		93.3	92.9		6.20	6.18		2.48	2.52		8	
6/10/2010	11:31	Cloudy	Middle	2	26.84	26.84	26.75	8.21	8.21	8.21	29.73	29.73	29.74	67.1	66.4	67.2	4.54	4.50	4.55	5.00	4.68	4.72	6	6.0
0,10,2010	11:34	cicady	Middle	2	26.66	26.66	20170	8.20	8.20	0.21	29.74	29.74	20.7 1	67.9	67.3	07.12	4.60	4.56		4.49	4.70		6	0.0
8/10/2010	12:02	Cloudy	Middle	3	27.55	27.55	27.55	7.73	7.73	7.73	31.08	31.08	31.09	68.4	66.6	67.4	4.54	4.42	4.47	2.91	2.94	2.88	7	8.0
	12:06		Middle	3	27.54	27.54		7.73	7.73		31.10	31.10		67.5	66.9		4.48	4.44		2.86	2.82		9	
11/10/2010	13:40	Cloudy	Middle	2	26.67	26.67	26.67	8.25	8.25	8.25	31.14	31.14	31.15	91.9	91.0	90.4	6.19	6.10	6.08	3.40	3.33	3.49	4	4.0
11,10,2010	13:43	cicady	Middle	2	26.66	26.66	20107	8.25	8.25	0.20	31.15	31.15	00	90.8	87.8	00.1	6.11	5.91	0.00	3.64	3.57	0.10	4	
13/10/2010	3:51	Fine	Middle	3	25.30	25.30	25.45	8.30	8.30	8.30	30.78	30.78	30.78	82.5	82.5	83.0	5.60	5.60	5.63	2.49	2.61	2.56	3	3.5
10,10,2010	3:58		Middle	3	25.60	25.60	20110	8.30	8.30	0.00	30.78	30.78	00.10	83.5	83.5	00.0	5.66	5.66	0.00	2.62	2.50	2.00	4	0.0
16/10/2010	9:25	Cloudy	Middle	3	25.45	25.45	25.50	8.09	8.09	8.09	30.22	30.21	30.21	72.5	70.4	67.8	5.08	4.95	4.73	2.19	2.22	2.28	4	4.0
	9:37		Middle	3	25.54	25.54		8.09	8.09		30.21	30.21		64.6	63.7		4.53	4.37		2.36	2.35		4	
18/10/2010	9:18	Sunny	Middle	2	27.20	27.20	27.25	8.29	8.29	8.31	31.18	31.18	31.19	84.8	83.7	84.5	5.68	5.60	5.64	3.85	3.91	3.78	9	8.0
10,10,2010	9:21	Canny	Middle	2	27.30	27.30	27.20	8.32	8.32	0.01	31.19	31.19	00	85.4	84.0	0110	5.69	5.60	0.01	3.64	3.72	0.10	7	0.0
20/10/2010	10:57	Cloudy	Middle	3	26.20	26.20	26.35	8.37	8.37	8.37	31.55	31.55	31.46	92.2	91.6	91.9	6.21	6.18	6.20	2.25	2.32	2.27	9	9.5
20, 10, 2010	11:00	eleady	Middle	3	26.50	26.50	20.00	8.36	8.36	0.07	31.37	31.37	0.1.10	92.4	91.5	0110	6.23	6.17	0.20	2.28	2.22	,	10	0.0
25/10/2010	13:22	Sunny	Middle	2	27.20	27.20	27.25	8.25	8.25	8.25	31.53	31.53	31.54	80.4	79.9	80.4	5.34	5.30	5.34	4.31	4.57	4.33	6	9.0
20/10/2010	13:25	Cunny	Middle	2	27.30	27.30	27.20	8.25	8.25	0.20	31.55	31.55	01.04	81.3	79.9	00.4	5.40	5.31	0.04	4.21	4.24	4.00	12	0.0
28/10/2010	1:13	Fine	Middle	3	20.47	20.47	20.47	8.35	8.35	8.35	31.80	31.80	31.80	68.1	66.0	68.3	5.09	4.94	5.13	5.51	5.30	5.23	9	9.0
20/10/2010	1:19	Tine	Middle	3	20.47	20.47	20.47	8.35	8.35	0.00	31.80	31.80	01.00	71.2	67.9	00.0	5.32	5.15	0.10	4.98	5.12	0.20	9	0.0
30/10/2010	4:00	Fine	Middle	3	19.40	19.39	19.39	8.63	8.63	8.63	31.99	31.99	31.99	54.1	56.0	57.4	4.12	4.30	4.40	5.33	5.73	5.40	12	11.0
50/10/2010	4:08		Middle	3	19.38	19.38	10.00	8.63	8.63	0.00	31.99	31.99	01.00	56.7	62.9		4.33	4.83		5.60	4.93	0.10	10	



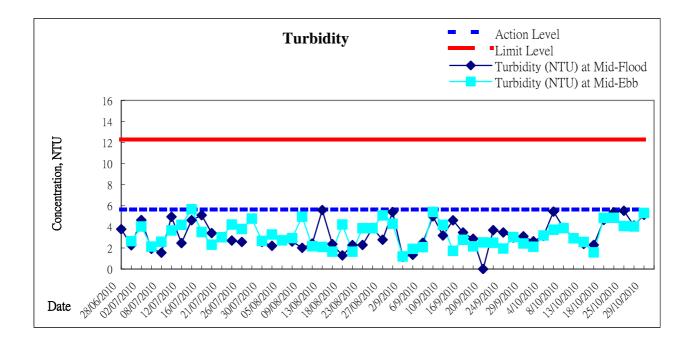
#### Water Monitoring Result at WSD17 - Quarry Bay Mid-Ebb Tide

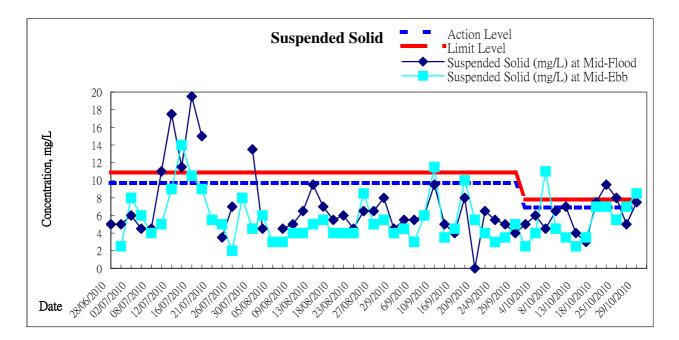
Date	Time	Weater Condition	Samplin	g Depth	Wat	er Temp	erature		pН		-	Salini ppt	ty	D	O Satur %	ation		DO ma/L		-	Turbid NTU		Suspend	led Solids
		Condition	n	n	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va		Average	Va	lue	Average	Value	Average
2/10/2010	7:03	Sunny	Middle	2	27.04	27.04	27.06	7.96	7.96	7.96	30.90	30.91	30.91	90.7	90.9	90.1	6.49	6.51	6.45	2.74	2.46	2.55	9	9.0
	7:06		Middle	2	27.07	27.07		7.95	7.95		30.91	30.91		89.8	89.1		6.43	6.38		2.47	2.53		9	
4/10/2010	9:53	Cloudy	Middle	2	27.73	27.73	27.74	8.04	8.04	8.01	30.36	30.36	30.39	84.6	82.7	84.3	5.63	5.50	5.61	6.58	6.95	6.60	8	9.5
	9:56	,	Middle	2	27.75	27.75		7.98	7.98		30.42	30.42		86.2	83.8		5.73	5.57		6.63	6.25		11	
6/10/2010	11:52	Cloudy	Middle	2	26.82	26.82	26.84	8.22	8.22	8.22	29.72	29.72	29.76	64.8	62.4	65.1	4.38	4.22	4.41	6.39	6.24	6.29	7	8.0
	11:55	,	Middle	2	26.85	26.85		8.22	8.22	-	29.79	29.79		67.0	66.3		4.54	4.49		6.31	6.22		9	
8/10/2010	12:22	Cloudy	Middle	3	27.28	27.28	27.31	7.84	7.84	7.84	31.04	31.04	31.04	62.0	60.7	62.6	4.13	4.04	4.17	10.90	10.50	10.45	22	20.0
	12:25		Middle	3	27.33	27.33		7.84	7.84	-	31.03	31.03		64.8	62.8		4.31	4.18		10.20	10.20		18	
11/10/2010	14:14	Cloudy	Middle	2	26.88	26.88	26.87	8.18	8.18	8.18	30.43	30.43	30.46	67.7	64.8	64.9	4.56	4.36	4.37	6.69	6.45	6.48	7	7.5
	14:17		Middle	2	26.85	26.85		8.18	8.18		30.48	30.48		64.9	62.0		4.37	4.17		6.40	6.37		8	
13/10/2010	3:30	Fine	Middle	3	25.70	25.70	25.70	8.32	8.32	8.32	30.60	30.60	30.60	80.9	80.9	80.7	5.48	5.48	5.47	2.68	2.53	2.54	4	4.0
	3:37		Middle	3	25.70	25.70		8.32	8.32		30.60	30.60		80.5	80.5		5.46	5.46		2.47	2.47		4	
16/10/2010	8:59	Cloudy	Middle	3	25.52	25.52	25.51	8.33	8.33	8.34	29.99	30.01	30.01	66.9	63.3	65.4	4.71	4.53	4.63	4.56	5.04	4.72	10	10.0
	9:11		Middle	3	25.50	25.49		8.34	8.34		30.01	30.01		64.2	67.2		4.53	4.73		4.43	4.86		10	
18/10/2010	9:42	Sunny	Middle	2	27.10	27.10	27.10	8.24	8.24	8.24	31.09	31.09	31.09	78.6	76.5	77.7	5.25	5.11	5.19	6.75	6.87	6.81	13	11.5
	9:45		Middle	2	27.10	27.10		8.24	8.24		31.08	31.08		78.4	77.4		5.23	5.17		6.92	6.70		10	
20/10/2010	11:18	Cloudy	Middle	3	26.30	26.30	26.35	8.36	8.36	8.34	31.30	31.30	31.31	85.8	84.7	85.5	5.79	5.72	5.78	2.97	2.99	2.98	11	11.0
	11:21		Middle	3	26.40	26.40		8.31	8.31		31.31	31.31		86.2	85.4		5.82	5.77		2.96	3.01		11	-
25/10/2010	13:50	Sunny	Middle	3	27.00	27.00	27.05	8.21	8.21	8.21	31.23	31.23	31.24	77.4	75.9	77.3	5.17	5.07	5.16	6.07	6.07	6.09	8	8.5
20/10/2010	13:54	Canny	Middle	3	27.10	27.10	27.00	8.21	8.21	0.21	31.24	31.24	0.112.1	78.3	77.6		5.23	5.18	0.10	6.18	6.02	0.00	9	0.0
28/10/2010	1:38	Fine	Middle	3	19.56	19.56	19.55	8.19	8.19	8.22	30.63	30.64	30.70	60.6	56.5	57.5	4.63	4.32	4.52	5.31	5.17	5.07	10	9.0
	1:45		Middle	3	19.54	19.54		8.24	8.24	0.22	30.73	30.78		59.4	53.6	0.10	4.55	4.56		5.05	4.75	0.07	8	
30/10/2010	4:14	Fine	Middle	3	18.95	18.94	18.86	8.61	8.61	8.61	31.84	31.84	31.84	59.0	52.1	54.9	4.54	4.02	4.23	5.44	5.50	5.18	7	7.5
	4:20		Middle	3	18.78	18.78		8.60	8.60		31.84	31.84		54.1	54.4	0.10	4.17	4.19		4.81	4.98	0.10	8	



# Water Monitoring Result at WSD21 - Wan Chai Mid-Ebb Tide

Date	Time	Weater Condition	Samplin	ig Depth	Wat	er Temp	erature		pН			Salinit	ty	D	O Satur	ation		DO ma/l			Turbid NTU			ded Solids
		Condition	r	n	Va	lue	Average	Va	lue -	Average	Va	ppt lue	Average	Va	lue	Average	Va	mg/L lue	Average	Va		Average		g/L Average
2/10/2010	8:20	Sunnv	Middle	2	27.03	27.24	27.16	8.11	8.12	8.12	30.73	30.73	30.73	80.8	78.7	79.2	5.72	5.57	5.61	2.58	2.71	2.59	4	- 4.5
	8:23	,	Middle	2	27.17	27.18		8.12	8.12		30.72	30.73		78.2	79.2		5.53	5.60		2.65	2.41		5	
4/10/2010	10:46	Cloudy	Middle	2	28.30	28.30	28.35	8.12	8.12	8.13	31.40	31.50	31.48	60.7	61.3	60.6	4.15	4.23	4.14	3.19	3.24	3.25	7	7.5
	10:49	,	Middle	2	28.40	28.40		8.13	8.13		31.50	31.50		60.2	60.0		4.11	4.07		3.37	3.18		8	
6/10/2010	11:16	Cloudy	Middle	2	26.33	26.33	26.33	7.60	7.60	7.61	29.50	29.50	29.51	69.2	69.6	69.9	4.80	4.76	4.80	3.18	3.05	3.11	5	5.5
	11:19		Middle	2	26.32	26.32		7.61	7.62		29.51	29.51		70.5	70.2		4.83	4.80		3.09	3.13		6	
8/10/2010	12:41	Cloudy	Middle	2	27.05	27.05	27.05	8.02	8.03	8.03	32.00	32.00	32.05	67.5	67.6	66.1	4.71	4.69	4.52	4.15	4.28	4.16	8	9.0
	12:43		Middle	2	27.04	27.04		8.04	8.01		32.10	32.10		64.9	64.5		4.55	4.12		4.07	4.15		10	
11/10/2010	12:28	Cloudy	Middle	2	26.85	26.85	26.85	7.96	7.96	7.96	30.23	30.23	30.24	74.9	75.0	75.1	5.08	5.10	5.09	8.96	9.01	9.05	11	12.0
	12:33		Middle	2	26.85	26.85		7.95	7.95		30.24	30.24		75.1	75.2		5.10	5.09		9.10	9.12		13	
13/10/2010	4:51	Fine	Middle	2	26.20	26.20	26.20	8.11	8.11	8.11	30.17	30.17	30.17	69.6	69.6	69.1	4.67	4.67	4.64	2.26	2.37	2.42	4	4.0
	4:58		Middle	2	26.20	26.20		8.11	8.11		30.17	30.17		68.6	68.6		4.60	4.60		2.68	2.37		4	
16/10/2010	7:50	Cloudy	Middle	2	25.25	25.25	25.25	8.23	8.23	8.23	29.81	29.81	29.84	67.3	66.4	65.4	4.62	4.62	4.54	4.64	4.46	4.59	8	9.0
	7:58		Middle	2	25.25	25.25		8.22	8.22		29.82	29.92		62.2	65.5		4.33	4.57	-	5.02	4.25		10	
18/10/2010	9:30	Sunny	Middle	2	25.60	25.60	25.60	7.81	7.81	7.81	33.00	33.00	33.00	63.5	61.9	61.5	4.28	4.17	4.15	3.57	3.43	3.45	12	13.0
	9:33		Middle	2	25.60	25.60		7.81	7.81		33.00	33.00		60.6	59.8		4.10	4.03		3.41	3.37		14	
20/10/2010	10:48	Cloudy	Middle	2	26.30	26.30	26.35	8.21	8.21	8.22	31.28	31.28	31.28	72.5	72.4	72.6	5.21	5.19	5.22	6.15	6.37	6.28	13	13.5
	10:50		Middle	2	26.40	26.40		8.22	8.22		31.27	31.27		72.9	72.7		5.25	5.23		6.42	6.18		14	
25/10/2010	13:00	Sunny	Middle	2	27.30	27.20	27.18	8.14	8.13	8.13	31.15	31.16	31.16	63.7	62.0	63.5	4.48	4.33	4.46	6.13	6.74	6.56	12	13.5
20/10/2010	13:03	Curriy	Middle	2	27.10	27.10	27.10	8.12	8.12	0.10	31.16	31.16	00	64.9	63.3	00.0	4.59	4.44		6.55	6.83	0.00	15	
28/10/2010	2:28	Fine	Middle	2	19.28	19.28	19.28	8.15	8.15	8.15	31.26	31.26	31.26	56.0	63.7	62.8	4.29	4.88	4.76	4.77	4.59	4.70	9	8.0
	2:36		Middle	2	19.28	19.28		8.14	8.14	0.10	31.26	31.26	0.120	63.8	67.7	02.0	4.69	5.19		4.79	4.63		7	
30/10/2010	4:14	Fine	Middle	2	18.77	18.77	18.77	8.64	8.63	8.58	31.70	31.70	31.70	56.3	57.1	54.9	4.35	4.40	4.23	7.19	7.59	7.56	9	9.5
00/10/2010	4:21	1110	Middle	2	18.76	18.76	10.77	8.52	8.52	0.00	31.69	31.69	01.70	52.0	54.2	04.0	3.99	4.19	4.20	7.63	7.84	1.00	10	0.0

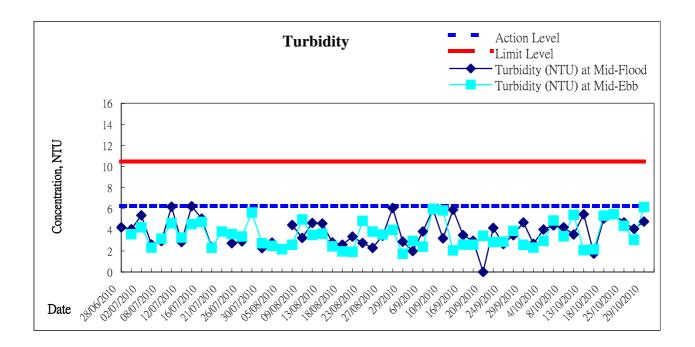


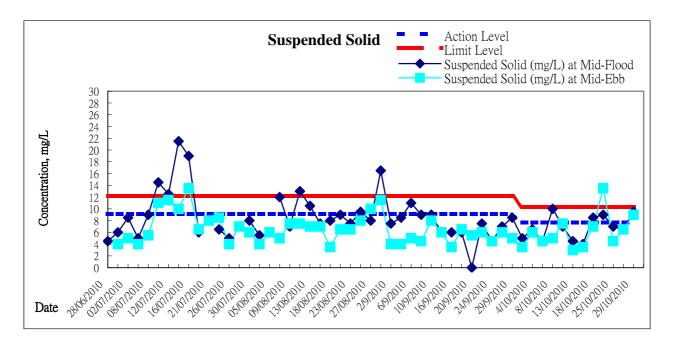


# Water Monitoring Result at WSD19 - Sheung Wan Mid-Ebb Tide

Date	Time	Weater Condition	Samplin	g Depth	Wat	er Temp	erature		pН			Salinit ppt	у	D	O Satur %	ation		DO mg/L		Turbidity NTU			led Solids a/L	
		Oblidition	n	n	Va	lue	Average	Va	lue	Average	Va		Average	Va	lue	Average	Va	lue	Average	Va		Average	Value	Average
2/10/2010	8:00	Sunny	Middle	2	26.98	26.98	26.97	8.55	8.55	8.50	30.79	30.79	30.78	93.0	92.5	93.0	6.25	6.22	6.25	4.21	3.95	3.95	10	9.0
	8:04	-	Middle	2	26.95	26.97		8.44	8.45		30.76	30.77		93.4	92.9		6.28	6.24		3.77	3.88		8	
4/10/2010	10:33	Cloudy	Middle	2	27.84	27.84	27.87	7.91	7.91	7.90	30.89	30.89	30.87	76.4	74.8	76.1	5.04	4.93	5.02	4.33	3.78	3.88	20	20.0
	10:36		Middle	2	27.89	27.89		7.88	7.88		30.85	30.85		77.2	75.8		5.09	5.00		3.69	3.72		20	
6/10/2010	9:25	Cloudy	Middle	2	26.30	26.30	26.38	7.97	7.97	7.97	30.04	30.04	29.97	74.4	73.3	73.9	5.05	4.98	5.02	4.99	4.67	4.49	6	5.5
0/10/2010	9:28	Cloudy	Middle	2	26.45	26.45	20.50	7.97	7.97	1.51	29.89	29.89	25.57	74.1	73.8	73.9	5.04	5.02	5.02	4.23	4.05	4.43	5	3.5
8/10/2010	13:27	Cloudy	Middle	2	27.10	7.10	22.10	7.60	7.60	7.60	30.59	30.59	30.60	62.2	61.8	61.5	4.17	4.15	4.13	7.75	8.07	7.89	12	13.5
8/10/2010	13:30	Cloudy	Middle	2	27.09	27.09	22.10	7.60	7.60	7.00	30.60	30.60	30.00	61.6	60.5	61.5	4.14	4.05	4.13	7.91	7.84	7.09	15	13.5
11/10/0010	14:36	Olevely	Middle	2	27.13	27.13	07.10	7.96	7.96	7.05	30.51	30.51	00.50	87.0	86.3	00.7	5.83	5.78	5.04	9.50	9.47	0.00	14	110
11/10/2010	14:39	Cloudy	Middle	2	27.12	27.12	27.13	7.94	7.94	7.95	30.52	30.52	30.52	87.5	85.9	86.7	5.86	5.75	5.81	9.04	9.31	9.33	14	14.0
10/10/0010	4:28		Middle	2	25.30	25.30	05.00	8.08	8.08	0.00	30.02	30.02		83.7	83.7		5.69	5.69	5 70	3.86	3.84	0.07	5	
13/10/2010	4:34	Fine	Middle	2	25.30	25.40	25.33	8.08	8.08	8.08	30.02	30.02	30.02	83.8	83.8	83.8	5.71	5.71	5.70	4.13	4.03	3.97	6	5.5
10/10/0010	8:01	Olevety	Middle	2	25.52	25.52	05 50	7.95	7.95	7.00	29.99	29.99	00.00	67.4	69.8	00.0	4.74	4.91	4.74	4.91	4.05	4.50	8	
16/10/2010	8:11	Cloudy	Middle	2	25.52	25.52	25.52	7.96	7.96	7.96	29.99	29.99	29.99	66.2	64.3	66.9	4.65	4.52	4.71	4.81	4.48	4.56	10	9.0
10/10/2010	10:37		Middle	2	27.30	27.30	07.00	8.14	8.14		30.66	30.66	00.07	71.0	70.2	70.0	4.74	4.68	4.00	6.43	6.21	0.07	11	10.5
18/10/2010	10:40	Sunny	Middle	2	27.30	27.30	27.30	8.14	8.14	8.14	30.68	30.68	30.67	70.7	69.3	70.3	4.72	4.63	4.69	6.37	6.06	6.27	10	10.5
	11:48		Middle	2	26.60	26.60		8.13	8.13		31.77	31.77		75.2	74.6		5.07	5.02		8.27	8.56		13	
20/10/2010	11:51	Cloudy	Middle	2	26.70	26.70	26.65	8.13	8.13	8.13	30.86	30.86	31.32	75.5	74.0	74.8	5.08	4.98	5.04	8.19	8.22	8.31	12	12.5
	11:55	_	Middle	3	26.80	26.80		8.08	8.08		31.29	31.29		71.9	70.0		4.83	4.70		5.55	5.48		8	
25/10/2010	11:58	Sunny	Middle	3	26.90	26.90	26.85	8.08	8.08	8.08	31.31	31.31	31.30	72.3	71.6	71.5	4.86	4.81	4.80	5.69	5.55	5.57	9	8.5
	2:51		Middle	2	18.79	18.79		8.04	8.04		31.38	31.38		59.7	58.0		4.61	4.48		4.41	4.35		9	
28/10/2010	2:58	Fine	Middle	2	18.80	18.80	18.80	8.04	8.05	8.04	31.38	31.38	31.38	52.5	55.2	56.4	4.05	4.27	4.35	3.96	3.70	4.11	7	8.0
	3:15		Middle	2	18.93	18.93		8.48	8.48		31.57	31.57		53.4	53.8		4.12	4.16		5.68	5.67		8	
30/10/2010	3:22	Fine	Middle	2	18.75	18.73	18.84	8.48	8.45	8.47	31.57	31.57	31.57	55.6	51.3	53.5	4.30	3.96	4.14	6.05	6.13	5.88	6	7.0



Graphic Presentation of Water Quality Result of WSD9 - Tai Wan

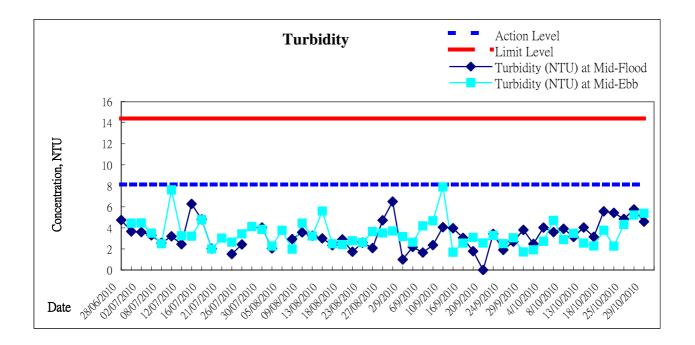


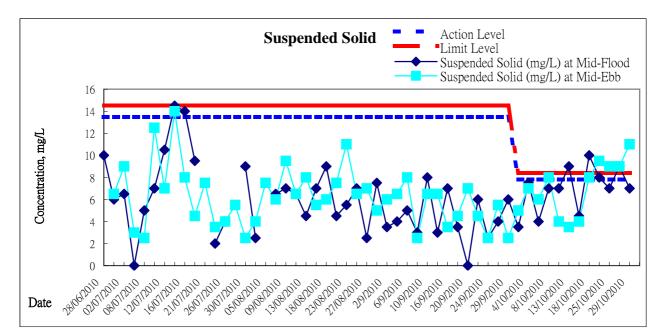




- Wet season is from April to September.
- Dry season is from October to April.
- Two sets of Suspended Solid action and limit levels for the period of dry season and wet season.



Graphic Presentation of Water Quality Result of WSD10 - Cha Kwo Ling

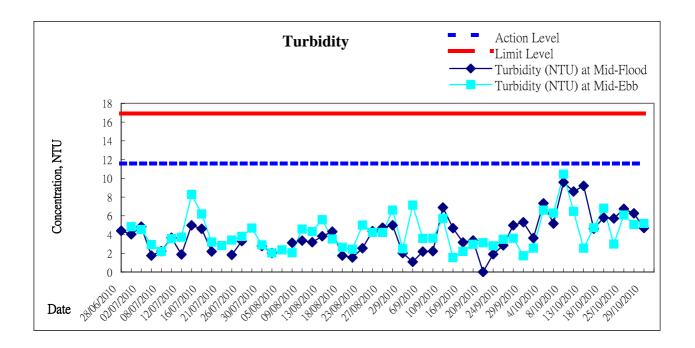


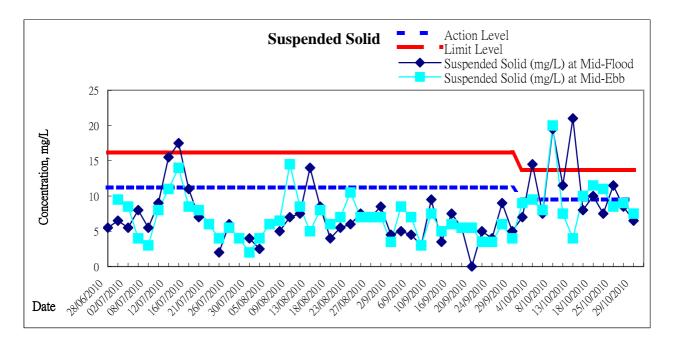




- Wet season is from April to September.
- Dry season is from October to April.
- Two sets of Suspended Solid action and limit levels for the period of dry season and wet season.



Graphic Presentation of Water Quality Result of WSD15 - Sai Wan Ho

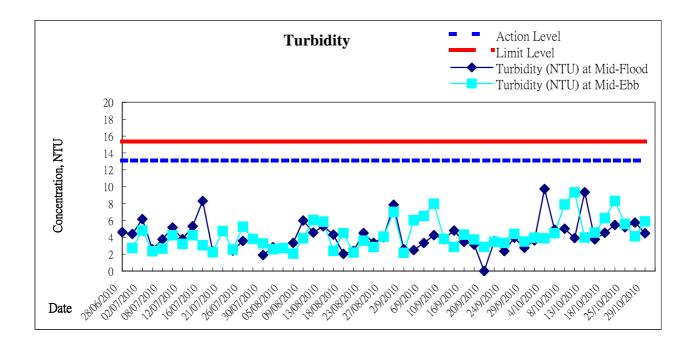


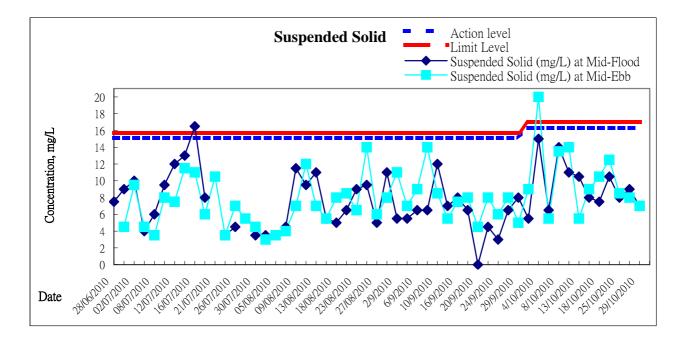




- Wet season is from April to September.
- Dry season is from October to April.
- Two sets of Suspended Solid action and limit levels for the period of dry season and wet season.



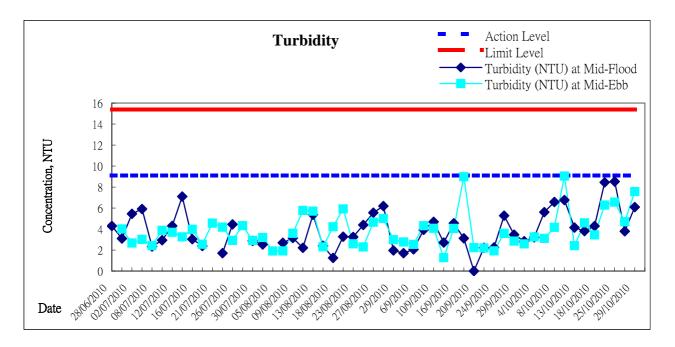
Graphic Presentation of Water Quality Result of WSD17 - Quarry Bay

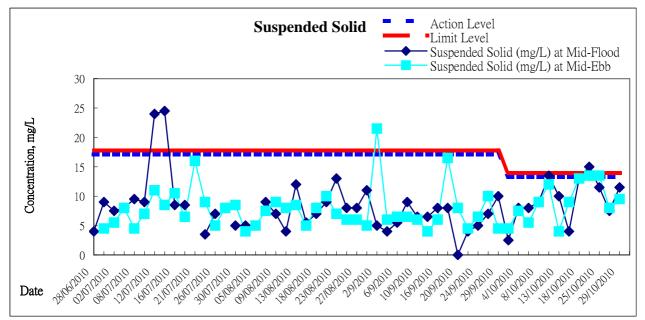



- Wet season is from April to September.
- Dry season is from October to April.
- Two sets of Suspended Solid action and limit levels for the period of dry season and wet season.




Graphic Presentation of Water Quality Result of WSD19 - Sheung Wan






- Wet season is from April to September.
- Dry season is from October to April.
- Two sets of Suspended Solid action and limit levels for the period of dry season and wet season.







- Wet season is from April to September.
- Dry season is from October to April.
- Two sets of Suspended Solid action and limit levels for the period of dry season and wet season.



Appendix 5.3

**Event and Action Plan** 



## **Event and Action Plan for Construction Noise**

EVENT		ACTION								
	ET	IC(E)	ER	CONTRACTOR						
Action Level	<ol> <li>Notify IEC and Contractor;</li> <li>Carry out investigation;</li> <li>Report the results of investigation to the IEC, ER and Contractor;</li> <li>Discuss with the Contractor and formulate remedial measures;</li> <li>Increase monitoring frequency to check mitigation effectiveness.</li> </ol>	<ol> <li>Review the analysed results submitted by the ET;</li> <li>Review the proposed remedial measures by the Contractor and advise the ER accordingly;</li> <li>Supervise the implementation of remedial measures.</li> </ol>	<ol> <li>Confirm receipt of notification of failure in writing;</li> <li>Notify Contractor;</li> <li>Require Contractor to propose remedial measures for the analysed noise problem;</li> <li>Ensure remedial measures are properly implemented.</li> </ol>	<ol> <li>Submit noise mitigation proposals to IEC;</li> <li>Implement noise mitigation proposals.</li> </ol>						
Limit Level	<ol> <li>Identify source;</li> <li>Inform IEC, ER, EPD and Contractor;</li> <li>Repeat measurements to confirm findings;</li> <li>Increase monitoring frequency;</li> <li>Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented;</li> <li>Inform IEC, ER and EPD the causes and actions taken for the exceedances;</li> <li>Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results;</li> <li>If exceedance stops, cease additional monitoring.</li> </ol>	<ol> <li>Discuss amongst ER, ET, and Contractor on the potential remedial actions;</li> <li>Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly;</li> <li>Supervise the implementation of remedial measures.</li> </ol>	<ol> <li>Confirm receipt of notification of failure in writing;</li> <li>Notify Contractor;</li> <li>Require Contractor to propose remedial measures for the analysed noise problem;</li> <li>Ensure remedial measures properly implemented;</li> <li>If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.</li> </ol>	<ol> <li>Take immediate action to avoid further exceedance;</li> <li>Submit proposals for remedial actions to IEC within 3 working days of notification;</li> <li>Implement the agreed proposals;</li> <li>Submit further proposal if problem still not under control;</li> <li>Stop the relevant portion of works as instructed by the ER until the exceedance is abated.</li> </ol>						



# Event and Action Plan for Marine Water Quality

EVENT		ACTION		
	ET	IEC	ER	CONTRACTOR
Action level being exceeded by one sampling day	<ol> <li>Repeat in-situ measurement to confirm findings;</li> <li>Identify source(s) of impact;</li> <li>Inform IEC and Contractor;</li> <li>Check monitoring data, all plant, equipment and Contractor's working methods;</li> <li>Discuss mitigation measures with IEC and Contractor;</li> <li>(The above actions should be taken within 1 working day after the exceedance is identified)</li> <li>Repeat measurement on next day of exceedance.</li> </ol>	<ol> <li>Discuss with ET and Contractor on the mitigation measures;</li> <li>Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly;</li> <li>Assess the effectiveness of the implemented mitigation measures.</li> <li>(The above actions should be taken within 1 working day after the exceedance is identified)</li> </ol>	<ol> <li>Discuss with IEC on the proposed mitigation measures;</li> <li>Make agreement on the mitigation measures to be implemented.</li> <li>(The above actions should be taken within 1 working day after the exceedance is identified)</li> </ol>	<ol> <li>Inform the ER and confirm notification of the non-compliance in writing;</li> <li>Rectify unacceptable practice;</li> <li>Check all plant and equipment;</li> <li>Review the working methods and consider additional measures such as use of frame- type silt curtain, deployment of double silt curtains, slowing down, or rescheduling of works;</li> <li>Discuss with ET and IEC and propose mitigation measures to IEC and ER;</li> <li>Implement the agreed mitigation measures.</li> <li>(The above actions should be taken within 1 working day after the exceedance is identified)</li> </ol>
Action level being exceeded by more than one consecutive sampling days	<ol> <li>Identify source(s) of impact;</li> <li>Inform IEC and Contractor;</li> <li>Check monitoring data, all plant, equipment and Contractor's working methods;</li> <li>Discuss mitigation measures with IEC and Contractor;</li> </ol>	<ol> <li>Discuss with ET and Contractor on the mitigation measures;</li> <li>Review proposals on mitigation measures submitted by Contractor and advise the ER</li> </ol>	<ol> <li>Discuss with IEC on the proposed mitigation measures;</li> <li>Make agreement on the mitigation measures to be implemented;</li> <li>Assess the effectiveness</li> </ol>	<ol> <li>Inform the Engineer and confirm notification of the non-compliance in writing;</li> <li>Rectify unacceptable practice;</li> <li>Check all plant and</li> </ol>



EVENT		ACTION		
	ET	IEC	ER	CONTRACTOR
	<ol> <li>Ensure mitigation measures are implemented;</li> <li>Prepare to increase the monitoring frequency to daily;</li> <li>(The above actions should be taken within 1 working day after the exceedance is identified)</li> <li>Repeat measurement on next working day of exceedance.</li> </ol>	accordingly; 3. Assess the effectiveness of the implemented mitigation measures. 4. (The above actions should be taken within 1 working day after the exceedance is identified)	of the implemented mitigation measures. 4. (The above actions should be taken within 1 working day after the exceedance is identified)	<ul> <li>equipment;</li> <li>4. Review the working methods and consider additional measures such as use of frame- type silt curtain, deployment of double silt curtains, slowing down, or rescheduling of works;</li> <li>5. Discuss with ET and IEC and propose mitigation measures to IEC and ER within 3 working days;</li> <li>6. Implement the agreed mitigation measures.</li> <li>7. (The above actions should be taken within 1 working day after the exceedance is identified)</li> </ul>



EVENT		ACTION		
	ET	IEC	ER	CONTRACTOR
Limit level being exceeded by one sampling day	<ol> <li>Repeat in-situ measurement to confirm findings;</li> <li>Identify source(s) of impact;</li> <li>Inform IEC, Contractor and EPD;</li> <li>Check monitoring data, all plant, equipment and Contractor's working methods;</li> <li>Discuss mitigation measures with IEC, ER and Contractor;</li> <li>Ensure mitigation measures are implemented;</li> <li>Increase the monitoring frequency to daily until no exceedance of Limit Level.</li> <li>(The above actions should be taken within 1 working day after the exceedance is identified)</li> </ol>	<ol> <li>Discuss with ET and Contractor on the mitigation measures;</li> <li>Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly;</li> <li>Assess the effectiveness of the implemented mitigation measures.</li> <li>(The above actions should be taken within 1 working day after the exceedance is identified)</li> </ol>	<ol> <li>Discuss with IEC, ET and Contractor on the proposed mitigation measures;</li> <li>Request Contractor to critically review the working methods;</li> <li>Make agreement on the mitigation measures to be implemented;</li> <li>Assess the effectiveness of the implemented mitigation measures.</li> <li>(The above actions should be taken within 1 working day after the exceedance is identified)</li> </ol>	<ol> <li>Inform the Engineer and confirm notification of the non-compliance in writing;</li> <li>Rectify unacceptable practice;</li> <li>Check all plant and equipment;</li> <li>Review the working methods and consider additional measures such as use of frame- type silt curtain, deployment of double silt curtains, slowing down, or rescheduling of works;</li> <li>Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days;</li> <li>Implement the agreed mitigation measures.</li> <li>(The above actions should be taken within 1 working day after the exceedance is identified)</li> </ol>



EVENT		ACTION		
	ET	IEC	ER	CONTRACTOR
Limit level being exceeded by more than one consecutive sampling days	<ol> <li>Identify source(s) of impact;</li> <li>Inform IEC, Contractor and EPD;</li> <li>Check monitoring data, all plant, equipment and Contractor's working methods;</li> <li>Discuss mitigation measures with IEC, ER and Contractor;</li> <li>Ensure mitigation measures are implemented;</li> <li>Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days.</li> <li>(The above actions should be taken within 1 working day after the exceedance is identified)</li> </ol>	<ol> <li>Discuss with ET and Contractor on the mitigation measures;</li> <li>Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly;</li> <li>Assess the effectiveness of the implemented mitigation measures.</li> <li>(The above actions should be taken within 1 working day after the exceedance is identified)</li> </ol>	<ol> <li>Discuss with IEC, ET and Contractor on the proposed mitigation measures;</li> <li>Request Contractor to critically review the working methods;</li> <li>Make agreement on the mitigation measures to be implemented;</li> <li>Assess the effectiveness of the implemented mitigation measures;</li> <li>Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the marine work until no exceedance of Limit level.</li> <li>(The above actions should be taken within 1 working day after the exceedance is identified)</li> </ol>	<ol> <li>Inform the ER and confirm notification of the non-compliance in writing;</li> <li>Rectify unacceptable practice;</li> <li>Check all plant and equipment;</li> <li>Review the working methods and consider additional measures such as use of frame- type silt curtain, deployment of double silt curtains, slowing down, or rescheduling of works;</li> <li>Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days;</li> <li>Implement the agreed mitigation measures;</li> <li>As directed by the Engineer, to slow down or to stop all or part of the marine work or construction activities.</li> <li>(The above actions should be taken within 1 working day after the exceedance is identified)</li> </ol>



Appendix 5.4



Contract No. KL/2009/01 Site Formation for Kai Tak Cruise Terminal Development

Ref no.	Date	Tidal	Location	Parameters (Unit)	Average	Action Level	Limit Level	Level of Exceedance	Follow-up action	
X039	4-Oct-10	Mid-flood		SS (mg/L)	14.5	9.5	13.7	Limit Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during the water monitoring; Potential source of impact was recorded; no sign of traceable source was identified; Check monitoring data
									Possible reason: Remarks / Other Obs:	In the view of silt screen and silt curtain were in proper condition, it is concluded that the source of impact was due to natural variation or change around WSD17 and not related to the project work. Conclude as non-dredging related impact and hence no further
X040	4-Oct-10	Mid-ebb	WSD19	SS (mg/L)	20.0	16.3	17	Limit Level	Action taken / to be taken:	mitigation nor repeated measurement under the EAP is required. Silt screen was inspected and confirmed in a proper condition during the water monitoring; Potential source of impact was recorded; no sign of traceable source was identified; Check monitoring data
									Possible reason:	Since the natural flow during the ebb tide indicated that the source of impact was located at the upstream of the project site, it is concluded that the source of impact was due to natural variation or change around WSD19 and not related to the project work.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further mitigation nor repeated measurement under the EAP is required.
X041	6-Oct-10	Mid-ebb	WSD9	SS (mg/L)	11.0	6.9	7.8	Limit Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during the water monitoring; Potential source of impact was recorded; no sign of traceable source was identified; Check monitoring data and contractor's dredging works; no dredging work was undertaken during monitoring at mid-ebb tides.
									Possible reason:	Since the natural flow during the ebb tide indicated that the source of impact was located at the upstream of the project site, it is concluded that the source of impact was due to natural variation or change around WSD9 and not related to the project work.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further mitigation nor repeated measurement under the EAP is required.
X042	8-Oct-10	Mid-flood	WSD10	SS (mg/L)	10.0	7.7	10.3	Action Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during the water monitoring; Potential source of impact was recorded; no sign of traceable source was identified; Check monitoring data and contractor's dredging works:
									Possible reason:	Since the natural flow during the flood tide indicated that the source of impact was located at the upstream of the project site, it is concluded that the source of impact was due to natural variation or change around WSD10 and not related to the project work.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further mitigation nor repeated measurement under the EAP is required.



Contract No. KL/2009/01 Site Formation for Kai Tak Cruise Terminal Development

Ref no.	Date	Tidal	Location	Parameters (Unit)	Average	Action Level	Limit Level	Level of Exceedance	Follow-up action	
X043			WSD15	SS (mg/L)	8.0	7.8			Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during the water monitoring:
										Potential source of impact was recorded; no sign of traceable source was identified:
										Check monitoring data and contractor's dredging works; the dredging
										rate was around 170m ³ per day and 27m ³ per hour which were
										relatively low rate and complied with the maximum dredging
										rate(4,000m ³ per day and 334m ³ per hr) in EP condition.
									Possible reason:	In the view of silt screen and silt curtain were in proper condition, it is
										concluded that the source of impact was due to natural variation or
									Remarks / Other Obs:	change around WSD15 and not related to the project work. Conclude as non-dredging related impact and hence no further
									nemarks / Other Obs.	mitigation nor repeated measurement under the EAP is required.
X044	8-Oct-10	Mid-flood	WSD17	SS (mg/L)	19.5	9.5	13.7	Limit Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during
										the water monitoring;
										Potential source of impact was recorded; no sign of traceable source
										was identified;
									Describle and service	Check monitoring data and contractor's dredging works;
									Possible reason:	Since the natural flow during the ebb tide indicated that the source of impact was located at the upstream of the project site, it is concluded
										that the source of impact was due to natural variation or change
										around WSD17 and not related to the project work.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further
										mitigation nor repeated measurement under the EAP is required.
X045	8-Oct-10	Mid-ebb	WSD17	SS (mg/L)	20.0	9.5	13.7	Limit Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during
										the water monitoring;
										Potential source of impact was recorded; no sign of traceable source was identified:
										Check monitoring data and contractor's dredging works; the dredging
										rate was around 170m ³ per day and 27m ³ per hour which were
										relatively low rate and complied with the maximum dredging
										rate $(4.000m^3 \text{ per day and } 334m^3 \text{ per hr})$ in EP condition.
									Possible reason:	In the view of silt screen and silt curtain were in proper condition, it is
										concluded that the source of impact was due to natural variation or
										change around WSD17 and not related to the project work.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further
X046	11-Oct-10	Mid-flood	WSDO	SS (mg/L)	7.0	6.9	7.8	Action Level	Action taken / to be taken:	mitigation nor repeated measurement under the EAP is required. Silt screen was inspected and confirmed in a proper condition during
7040	11-00-10	1000	**309	SS (IIIg/L)	7.0	0.9	7.8	ACTION Level	Action taken / to be taken:	the water monitoring;
										Potential source of impact was recorded: no sign of traceable source
										was identified;
										Check monitoring data and contractor's dredging works;
									Possible reason:	In the view of silt screen and silt curtain were in proper condition, it is
										concluded that the source of impact was due to natural variation or
										change around WSD9 and not related to the project work.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further
										mitigation nor repeated measurement under the EAP is required.



Contract No. KL/2009/01 Site Formation for Kai Tak Cruise Terminal Development

Ref no.	Date	Tidal	Location	Parameters (Unit)	Average	Action Level	Limit Level	Level of Exceedance	Follow-up action	
X047	11-Oct-10	Mid-flood	WSD21	SS (mg/L)	13.5	13.3	13.9	Action Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during the water monitoring; Potential source of impact was recorded; Screening washing was observed before the water monitoring; Check monitoring data and contractor's dredging works;
									Possible reason:	In the view of silt screen and silt curtain were in proper condition, it is concluded that the source of impact was due to natural variation or
									Remarks / Other Obs:	change around WSD21 and not related to the project work. Conclude as non-dredging related impact and hence no further mitigation nor repeated measurement under the EAP is required.
X048	11-Oct-10	Mid-flood	WSD17	SS (mg/L)	11.5	9.5	13.7	Action Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during the water monitoring;
										Potential source of impact was recorded; Screening washing was observed before the water monitoring; Check monitoring data and contractor's dredging works;
									Possible reason:	In the view of silt screen and silt curtain were in proper condition, it is concluded that the source of impact was due to natural variation or change around WSD17 and not related to the project work.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further mitigation nor repeated measurement under the EAP is required.
X049	13-Oct-10	Mid-flood	WSD15	SS (mg/L)	9.0	7.8	9.4	Action Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during the water monitoring; Potential source of impact was recorded; no sign of traceable source was identified;
									Possible reason:	Check monitoring data and contractor's dredging works; Since the natural flow during the flood tide indicated that the source of impact was located at the upstream of the project site, it is concluded that the source of impact was due to natural variation or
									Remarks / Other Obs:	change around WSD15 and not related to the project work. Conclude as non-dredging related impact and hence no further mitigation nor repeated measurement under the EAP is required.
X050	13-Oct-10	Mid-flood	WSD17	SS (mg/L)	21.0	9.5	13.7	Limit Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during the water monitoring; Potential source of impact was recorded; no sign of traceable source was identified;
									Possible reason:	Check monitoring data and contractor's dredging works; Since the natural flow during the flood tide indicated that the source of impact was located at the upstream of the project site, it is concluded that the source of impact was due to natural variation or
									Remarks / Other Obs:	change around WSD17 and not related to the project work. Conclude as non-dredging related impact and hence no further mitigation nor repeated measurement under the EAP is required.



Contract No. KL/2009/01 Site Formation for Kai Tak Cruise Terminal Development

Ref no.	Date	Tidal	Location	Parameters (Unit)	Average	Action Level	Limit Level	Level of Exceedance	Follow-up action	
X051	16-Oct-10	Mid-ebb		SS (mg/L)	10.0	9.5	13.7	Action Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during the water monitoring;
										Potential source of impact was recorded; no sign of traceable source was identified;
										Check monitoring data and contractor's dredging works; The SS
										level is within the torrance of baseline water monitoring results.
									Possible reason:	It is concluded that the source of impact was due to natural variation or change around WSD17 and not related to the project work.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further
										mitigation nor repeated measurement under the EAP is required.
X052	18-Oct-10	Mid-flood	WSD9	SS (mg/L)	7.5	6.9	7.8	Action Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during
										the water monitoring;
										Potential source of impact was recorded; no sign of traceable source was identified;
										Check monitoring data and contractor's dredging works; The SS
									Possible reason:	level is within the tolerance of baseline water monitoring results. It is concluded that the source of impact was due to natural variation
									Possible reason.	or change around WSD9 and not related to the project work.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further
										mitigation nor repeated measurement under the EAP is required.
X053	18-Oct-10	Mid-flood	WSD10	SS (mg/L)	8.5	7.7	10.3	Action Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during
										the water monitoring;
										Potential source of impact was recorded; no sign of traceable source was identified;
										Check monitoring data and contractor's dredging works;
									Possible reason:	Since the natural flow during the flood tide indicated that the source
										of impact was located at the upstream of the project site, it is
										concluded that the source of impact was due to natural variation or
										change around WSD10 and not related to the project work.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further
										mitigation nor repeated measurement under the EAP is required.
X054	18-Oct-10	Mid-flood	WSD15	SS (mg/L)	10.0	7.8	8.4	Limit Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during
										the water monitoring;
										Potential source of impact was recorded; no sign of traceable source
										was identified; Check monitoring data and contractor's dredging works;
									Possible reason:	Since the natural flow during the flood tide indicated that the source
									1 0001010 1000011.	of impact was located at the upstream of the project site, it is
										concluded that the source of impact was due to natural variation or
										change around WSD15 and not related to the project work.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further
										mitigation nor repeated measurement under the EAP is required.



Contract No. KL/2009/01 Site Formation for Kai Tak Cruise Terminal Development

X055 18-Oct-10 Mid-fl	flood WSD17	WSD17 S	S (mg/L)	10.0	9.5				
				10.0	9.5	13.7	Action Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during the water monitoring;
									Potential source of impact was recorded; no sign of traceable source
									was identified; Check monitoring data and contractor's dredging works;
								Possible reason:	Since the natural flow during the flood tide indicated that the source
									of impact was located at the upstream of the project site, it is
									concluded that the source of impact was due to natural variation or
									change around WSD17 and not related to the project work.
								Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further
			<b>A</b> ( 1)						mitigation nor repeated measurement under the EAP is required.
X056 18-Oct-10 Mid-e	ebb WSD9	WSD9 S	S (mg/L)	7.0	6.9	7.8	Action Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during
									the water monitoring; Potential source of impact was recorded; no sign of traceable source
									was identified;
									Check monitoring data and contractor's dredging works;
								Possible reason:	Since the natural flow during the ebb tide indicated that the source of
									impact was located at the upstream of the project site, it is concluded
									that the source of impact was due to natural variation or change
								Remarks / Other Obs:	around WSD9 and not related to the project work. Conclude as non-dredging related impact and hence no further
								nemarks / Other Obs.	mitigation nor repeated measurement under the EAP is required.
X057 18-Oct-10 Mid-e	ebb WSD15	WSD15 S	S (mg/L)	8.0	7.8	8.4	Action Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during
									the water monitoring;
									Potential source of impact was recorded; no sign of traceable source
									was identified;
									Check monitoring data and contractor's dredging works; The SS
								Possible reason:	level is within the tolerance of baseline water monitoring results. It is concluded that the source of impact was due to natural variation
									or change around WSD15 and not related to the project work.
								Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further
			<b>A</b> ( 1)			10 -			mitigation nor repeated measurement under the EAP is required.
X058 18-Oct-10 Mid-e	ebb WSD1/	WSD17 S	S (mg/L)	11.5	9.5	13.7	Action Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during the water monitoring;
									Potential source of impact was recorded: no sign of traceable source
									was identified;
									Check monitoring data and contractor's dredging works; The SS
									level is within the tolerance of baseline water monitoring results.
								Possible reason:	It is concluded that the source of impact was due to natural variation
									or change around WSD17 and not related to the project work.
								Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further
								Temarks / Other Obs.	mitigation nor repeated measurement under the EAP is required.



Contract No. KL/2009/01 Site Formation for Kai Tak Cruise Terminal Development

Ref no.	Date	Tidal	Location	Parameters (Unit)	Average	Action Level	Limit Level	Level of Exceedance	Follow-up action	
X059		Mid-flood		SS (mg/L)	9.5		7.8	Limit Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during
										the water monitoring;
										Potential source of impact was recorded; no sign of traceable source or abnormal observation was identified;
										Checked monitoring data and contractor's dredging rate was
										complied with EP's condition
									Possible reason:	Silt curtain for the grab dredger was observed that needed to be
										improved during the site inspection on 19 Oct 2010. Contractor had
										immediately repaired the silt curtain on 19 and 20 Oct 2010 and no
										more dredging works until 25 Oct 2010. In the view of proper
										condition of silt screen during monitoring and SS level is within the tolerance of baseline water monitoring results, it considered as non-
										project related impact.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further
										mitigation nor repeated measurement under the EAP is required.
X060	20-Oct-10	Mid-flood	WSD10	SS (mg/L)	9.0	7.7	10.3	Action Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during
										the water monitoring;
										Potential source of impact was recorded; no sign of traceable source
										was identified; Checked monitoring data and contractor's dredging rate was
										complied with EP's condition; The SS level is within the tolerance of
										baseline water monitoring results.
									Possible reason:	Since the natural flow during the flood tide indicated that the source
										of impact was located at the upstream of the project site, it is
										concluded that the source of impact was due to natural variation or
									Remarks / Other Obs:	change around WSD10 and not related to the project work.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further mitigation nor repeated measurement under the EAP is required.
X061	20-Oct-10	Mid-flood	WSD15	SS (mg/L)	8.0	7.8	8.4	Action Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during
							•			the water monitoring;
										Potential source of impact was recorded; no sign of traceable source
										was identified;
										Checked monitoring data and contractor's dredging rate was
										complied with EP's condition; The SS level is within the tolerance of
									Possible reason:	baseline water monitoring results. Since the natural flow during the flood tide indicated that the source
										of impact was located at the upstream of the project site, it is
										concluded that the source of impact was due to natural variation or
										change around WSD15 and not related to the project work.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further
										mitigation nor repeated measurement under the EAP is required.



Contract No. KL/2009/01 Site Formation for Kai Tak Cruise Terminal Development

Ref no.	Date	Tidal	Location		Average	Action Level	Limit Level	Level of Exceedance	Follow-up action	
X062	20-Oct-10	Mid-flood		SS (mg/L)	15.0	13.3	13.9	Limit Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during the water monitoring;
										Potential source of impact was recorded; no sign of traceable source
										or abnormal observation was identified;
										Checked monitoring data and contractor's dredging rate was
									Possible reason:	complied with EP's condition Silt curtain for the grab dredger was observed that needed to be
									FOSSIBle Teason.	improved during the site inspection on 19 Oct 2010. Contractor had
										immediately repaired the silt curtain on 19 and 20 Oct 2010 and no
										more dredging works until 25 Oct 2010. In the view of proper
										condition of silt screen during monitoring and SS level is within the
										tolerance of baseline water monitoring results, it considered as non-
										project related impact.
									Remarks / Other Obs:	Compared the monitoring stations near the site area, it is the farthest
										distance to the site area which has highest SS level. The
										exceedance is considered as not related to the project.
X063	20-Oct-10	Mid-ebb	WSD9	SS (mg/L)	7.0	6.9	7.8	Action Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during
										the water monitoring;
										Potential source of impact was recorded; no sign of traceable source was identified:
										Checked monitoring data and no dredging work was undertaken
										during the mid-ebb tides;
									Possible reason:	Due to no dredging work during the mid-ebb tide monitoring, it is
										concluded that the source of impact was due to natural variation or
										change around WSD9 and not related to the project work.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further
										mitigation nor repeated measurement under the EAP is required.
X064	20-Oct-10	Mid-ebb	WSD10	SS (mg/L)	13.5	7.7	10.3	Limit Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during
										the water monitoring; Potential source of impact was recorded; no sign of traceable source
										was identified;
										Checked monitoring data and no dredging work was undertaken
										during the mid-ebb tides:
									Possible reason:	Due to no dredging work during the mid-ebb tide monitoring, it is
										concluded that the source of impact was due to natural variation or
										change around WSD10 and not related to the project work.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further
				0.0 ( ")						mitigation nor repeated measurement under the EAP is required.
X065	20-Oct-10	Mid-ebb	WSD15	SS (mg/L)	9.5	7.8	8.4	Limit Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during
										the water monitoring;
										Potential source of impact was recorded; no sign of traceable source was identified:
										Checked monitoring data and no dredging work was undertaken
										during the mid-ebb tides;
									Possible reason:	Due to no dredging work during the mid-ebb tide monitoring, it is
										concluded that the source of impact was due to natural variation or
										change around WSD15 and not related to the project work.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further
										mitigation nor repeated measurement under the EAP is required.



Contract No. KL/2009/01 Site Formation for Kai Tak Cruise Terminal Development

Ref no.	Date	Tidal	Location	Parameters (Unit)	Average	Action Level	Limit Level	Level of Exceedance	Follow-up action	
X066	20-Oct-10	Mid-ebb	WSD17	SS (mg/L)	11.0	9.5		Action Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during the water monitoring;
										Potential source of impact was recorded; no sign of traceable source
										was identified;
										Checked monitoring data and no dredging work was undertaken
									Possible reason:	during the mid-ebb tides; Due to no dredging work during the mid-ebb tide monitoring, it is
									1 0351010 1043011.	concluded that the source of impact was due to natural variation or
										change around WSD17 and not related to the project work.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further
										mitigation nor repeated measurement under the EAP is required.
X067	20-Oct-10	Mid-ebb	WSD21	SS (mg/L)	13.5	13.3	13.9	Action Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during
										the water monitoring;
										Potential source of impact was recorded; no sign of traceable source was identified:
										Checked monitoring data and no dredging work was undertaken
										during the mid-ebb tides;
									Possible reason:	Due to no dredging work during the mid-ebb tide monitoring, it is
										concluded that the source of impact was due to natural variation or
										change around WSD21 and not related to the project work.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further
Voco	05 0 + 10	Mid-flood	14/0047	00 (	44.5	0.5	10.7	A stinue Laurel		mitigation nor repeated measurement under the EAP is required.
X068	25-Oct-10	IVIIa-TIOOA	WSD17	SS (mg/L)	11.5	9.5	13.7	Action Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during the water monitoring;
										Potential source of impact was recorded; no sign of traceable source
										was identified:
										Checked monitoring data and the SS level is within the torrance of
										baseline water monitoring results; Contractor's dredging rate was
										complied with EP's condition
									Possible reason:	Since the natural flow during the flood tide indicated that the source
										of impact was located at the upstream of the project site, it is concluded that the source of impact was due to natural variation or
										change around WSD17 and not related to the project work.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further
										mitigation nor repeated measurement under the EAP is required.
X069	25-Oct-10	Mid-flood	WSD9	SS (mg/L)	8.0	6.9	7.8	Limit Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during the water monitoring;
1										Potential source of impact was recorded; no sign of traceable source
1										was identified;
1										Checked monitoring data and the SS level is within the torrance of
										baseline water monitoring results; Contractor's dredging rate was complied with EP's condition
1									Possible reason:	It is concluded that the source of impact was due to natural variation
										or change around WSD9 and not related to the project work.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further
										mitigation nor repeated measurement under the EAP is required.



Contract No. KL/2009/01 Site Formation for Kai Tak Cruise Terminal Development

Ref no.	Date	Tidal	Location	Parameters (Unit)	Average	Action Level	Limit Level	Level of Exceedance	Follow-up action	
X070			WSD21	SS (mg/L)	13.5		13.9	Action Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during the water monitoring;
										Potential source of impact was recorded; no sign of traceable source was identified;
										Checked monitoring data and the SS level is within the torrance of
										baseline water monitoring results; Contractor's dredging rate was complied with EP's condition
									Possible reason:	Since the natural flow during the ebb tide indicated that the source of impact was located at the upstream of the project site, it is concluded that the source of impact was due to natural variation or change
									Demonstra / Othern Ohm	around WSD21 and not related to the project work.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further mitigation nor repeated measurement under the EAP is required.
X071	25-Oct-10	Mid-ebb	WSD15	SS (mg/L)	9.0	7.8	8.4	Limit Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during
										the water monitoring;
										Potential source of impact was recorded; no sign of traceable source was identified;
										Checked monitoring data and the SS level is within the torrance of baseline water monitoring results; Contractor's dredging rate was complied with EP's condition
									Possible reason:	It is concluded that the source of impact was due to natural variation or change around WSD15 and not related to the project work.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further mitigation nor repeated measurement under the EAP is required.
X072	27-Oct-10	Mid-flood	WSD15	SS (mg/L)	9.0	7.8	8.4	Limit Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during the water monitoring;
										Potential source of impact was recorded; no sign of traceable source was identified;
										Checked monitoring data and the SS level is within the torrance of
										baseline water monitoring results; Contractor's dredging rate was complied with EP's condition
									Possible reason:	Since the natural flow during the flood tide indicated that the source of impact was located at the upstream of the project site, it is
										concluded that the source of impact was due to natural variation or
									Remarks / Other Obs:	change around WSD15 and not related to the project work. Conclude as non-dredging related impact and hence no further
X073	28-Oct-10	Mid-ebb	WSD9	SS (mg/L)	7.0	6.9	7.8	Action Level	Action taken / to be taken:	mitigation nor repeated measurement under the EAP is required. Silt screen was inspected and confirmed in a proper condition during
X073	28-00l-10	dd9-blivi	W2D9	55 (mg/L)	7.0	6.9	7.8	Action Level	Action taken / to be taken:	the water monitoring;
										Potential source of impact was recorded; no sign of traceable source was identified;
										Checked monitoring data and the SS level is within the torrance of
										baseline water monitoring results; Contractor's dredging rate was complied with EP's condition
									Possible reason:	Since the natural flow during the ebb tide indicated that the source of impact was located at the upstream of the project site, it is concluded
										that the source of impact was due to natural variation or change around WSD9 and not related to the project work.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further
										mitigation nor repeated measurement under the EAP is required.



Contract No. KL/2009/01 Site Formation for Kai Tak Cruise Terminal Development

Ref no.	Date	Tidal	Location	Parameters (Unit)	Average	Action Level	Limit Level	Level of Exceedance	Follow-up action	
X074	28-Oct-10	Mid-ebb	WSD15	SS (mg/L)	9.0	7.8	8.4	Limit Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during the water monitoring; Potential source of impact was recorded; no sign of traceable source was identified; Checked monitoring data and the SS level is within the torrance of baseline water monitoring results; Contractor's dredging rate was
									Possible reason:	complied with EP's condition It is concluded that the source of impact was due to natural variation or change around WSD15 and not related to the project work.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further mitigation nor repeated measurement under the EAP is required.
X075	29-Oct-10	Mid-flood	WSD9	SS (mg/L)	7.5	6.9	7.8	Action Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during the water monitoring; Potential source of impact was recorded; no sign of traceable source was identified; Checked monitoring data and the SS level is within the torrance of baseline water monitoring results; Contractor's dredging rate was complied with EP's condition
									Possible reason:	It is concluded that the source of impact was due to natural variation or change around WSD9 and not related to the project work.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further mitigation nor repeated measurement under the EAP is required.
X076	29-Oct-10	Mid-flood	WSD10	SS (mg/L)	9.5	7.7	10.3	Action Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during the water monitoring; Potential source of impact was recorded; no sign of traceable source was identified; Checked monitoring data and the SS level is within the torrance of baseline water monitoring results; Contractor's dredging rate was
									Possible reason:	complied with EP's condition Since the natural flow during the flood tide indicated that the source of impact was located at the upstream of the project site, it is concluded that the source of impact was due to natural variation or change around WSD10 and not related to the project work.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further mitigation nor repeated measurement under the EAP is required.
X077	30-Oct-10	Mid-ebb	WSD9	SS (mg/L)	8.5	6.9	7.8	Limit Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during the water monitoring; Potential source of impact was recorded; no sign of traceable source was identified; Checked monitoring data and the SS level is within the torrance of baseline water monitoring results; Contractor's dredging rate was complied with EP's condition
									Possible reason:	Since the natural flow during the ebb tide indicated that the source of impact was located at the upstream of the project site, it is concluded that the source of impact was due to natural variation or change
									Remarks / Other Obs:	around WSD9 and not related to the project work. Conclude as non-dredging related impact and hence no further mitigation nor repeated measurement under the EAP is required.



Contract No. KL/2009/01 Site Formation for Kai Tak Cruise Terminal Development

Ref no.	Date	Tidal	Location	Parameters (Unit)	Average	Action Level	Limit Level	Level of Exceedance	Follow-up action	
X078	30-Oct-10	Mid-ebb	WSD10	SS (mg/L)	9.0	7.7	10.3	Action Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during the water monitoring;
										Potential source of impact was recorded; no sign of traceable source was identified;
										Checked monitoring data and the SS level is within the torrance of baseline water monitoring results; Contractor's dredging rate was complied with EP's condition
									Possible reason:	It is concluded that the source of impact was due to natural variation or change around WSD10 and not related to the project work.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further mitigation nor repeated measurement under the EAP is required.
X079	30-Oct-10	Mid-ebb	WSD15	SS (mg/L)	11.0	7.8	8.4	Limit Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during the water monitoring;
										Potential source of impact was recorded; no sign of traceable source was identified;
										Checked monitoring data and the SS level is within the torrance of baseline water monitoring results; Contractor's dredging rate was
									Possible reason:	complied with EP's condition It is concluded that the source of impact was due to natural variation
										or change around WSD15 and not related to the project work.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further mitigation nor repeated measurement under the EAP is required.



Appendix 9.0

**Construction Programme** 

Activity	Activity	Orig	Early	Late	Early	Late	Total	Free	
ID	Description	Dur	Start	Start	Finish	Finish	Float I	1000000	ND JFMAMJJASONDJFMAMJJASONDJFMAMJJASONDJFMAMJJASONDJFMAMJJASONDJFMAMJJA
The second s	mation KT Cruise Terminal Develo	pme	nt						
	aries & General Requirements								
Initial Submi SU1020	Application of Dumping Permit at Sea	90	30/11/09	01/01/10	27/02/10	31/03/10	32	25	Application of Dumping Permit at Seal
SU1040	Notices to Mariners	90	04/12/09	01/01/10	03/03/10	31/03/10	28	21	Notices to Mariners
SU1170 SU1200	Submission of M.S. for Hydrographic Survey Submission of M.S for Dredging Works	42	13/02/10 28/02/10	04/08/13	26/03/10 03/04/10	14/09/13 04/04/10	1,268	0	Submission of M.S. for Hydrographic Survey
SU1220	Submission of Sorting Facilities	40	11/04/10	12/04/10	20/05/10	21/05/10	1	0	Submission of Sorting Facilities
Environment ES1000	tal and Site Safety Monitoring Appointment of Environmental Team Leader (ETL)	7	01/12/09	02/12/09	07/12/09	08/12/09	1 1	0	Appointment of Environmental Team Leader (ETL)
ES1010	Submission of SSP & EMP for Approval	60	03/12/09	04/12/09	31/01/10	01/02/10	1	0	Submission of SSP & EMP for Approval
ES1020	Submission of ETL for Approval	14	08/12/09	09/12/09	21/12/09	22/12/09	1	0	Submission of ETL for Approva
ES1030 ES1040	Submission of Baseline Water Monitoring Schedule Submission of M.S. for Silt Curtain	48 60	22/12/09 24/01/10	21/01/10 31/01/10	07/02/10 24/03/10	09/03/10 31/03/10	30	29 0	Submission of M.S. for Silt Curtain
ES1050	Monthly Update of SSP & EMP	1,422	01/02/10	02/02/10	23/12/13	24/12/13	1	1	Monthly U
ES1070 ES1080	Baseline Water Quality Monitoring Submissioin M.S. for Silt Screen	30 15	09/03/10 20/02/10	10/03/10 22/10/13	07/04/10 06/03/10	08/04/10 05/11/13	1,340	0	Baseline Water Quality Monitoring
ES1100	Install Silt Screen at WSD Intake (6 nos.)	40	16/03/10	15/11/13	24/04/10	24/12/13	1,340 1	,340	Install Silt Screen at WSD Intake (6 nos.)
ES1110	Impact Monitoring for Water Quality	1,348	16/04/10	17/04/10	23/12/13	24/12/13	1	1	Vimpact Mo
ES1120	Submission of Baseline Monitoring Report & Site Clearance	15	08/04/10	10/12/13	22/04/10	24/12/13	1,342 1	,342	
MP1000	Mobilization and Setup	60	30/11/09	14/12/09	28/01/10	11/02/10	14	14	Mobilization and Setup
MP1050	Establishment of Sorting Facility	60	10/08/10	18/01/11	08/10/10	18/03/11	161	58	Establishment of Sorting Facility
Initial Survey SR1010	/ Hydrographic Survey for Dredging & Dumping Areas	25	27/03/10	15/09/13	20/04/10	09/10/13	1,268	0	Hydrographic Survey for Dredging & Dumping Areas
	Submit Hydrographic Survey Reports (KTCT1)	8	26/05/10	14/11/13	02/06/10	21/11/13		0	Submit Hydrographic Survey Reports (KTCT1)
Section 1	- Portion MQ1								
Portion MQ1							Contraction of the		
Dredging Work SW.1.3000	Removal of Existing Seawall     Removal of Existing Seawall Armour (8500m3)	28	27/12/10	27/12/10	23/01/11	23/01/11	0	0	Removal of Existing Seawall Armour (8500m3)
SW.1.3010	Removal of Existing Seawall Rockfill (7650m3)	28	24/01/11	24/01/11	20/02/11	20/02/11	0	0	Removal of Existing Seawall Rockfill (7650m3)
SW.1.3020	Excavation Within MQ1 (63300m3)	91	24/01/11	24/01/11	24/04/11	24/04/11	0	0	Excavation Within MQ1 (63300m3)
	- Portions MQ2, LS1, LS2, SDA & DZA							-	
and the second second of	(Bays C - G), LS1 & LS2 & Removal of Existing Seawall			TREAM					
SW.2.3000	Removal of Existing Seawall Armour (21150m3)	63	26/04/11	26/04/11	27/06/11	27/06/11	0	0	Removal of Existing Seawall Armour (21150m3)
SW.2.3010 SW.2.3020	Removal of Existing Seawall Rockfill (19150m3) Excavation Within MQ2 (158340m3)	63 119	25/05/11 15/06/11	25/05/11 15/06/11	26/07/11 11/10/11	26/07/11 11/10/11	0	0	Removal of Existing Seawall Rockfill (19150m3)
SW.2.3030	Removal of Existing Abandoned Submarine Outfall	14	28/06/11	13/07/11	11/07/11	26/07/11	15	15	Removal of Existing Abandoned Submarine Outfall
Portion SDA (									
Dredging Work SW.21.3000	& Removal of Existing Seawall Removal of Existing Seawall Armour (5000m3)	35	07/03/11	19/03/11	10/04/11	22/04/11	12	0	Removal of Existing Seawall Armour (5000m3)
SW.21.3010	Removal of Existing Seawall Rockfill (4600m3)	35	11/04/11	23/04/11	15/05/11	27/05/11	12	0	Removal of Existing Seawall Rockfill (4600m3)
SW.21.3020	Excavation Within SDA (38100m3)	91	16/05/11	28/05/11	14/08/11	26/08/11	12	0	Excavation Within SDA (38100m3)
SW.21.3030 Portion DZA	Removal of Existing Abandoned Outfall	7	11/04/11	21/05/11	17/04/11	27/05/11	40	28	
Dredging Work									
SW.22.1000	Preparation & Installation of Silt Curtain	21	25/03/10	01/04/10	14/04/10	21/04/10	7	0	Preparation & Installation of Silt Curtain
SW.22.1010 SW.22.1040	Installation of Light Buoy at DZA Dredging (B03-B01) - Contaminated Mud 8000m3	35 56	15/04/10 28/06/10	22/04/10 05/07/10	19/05/10 22/08/10	26/05/10 29/08/10	7	0	Dredging (B03-B01) - Contaminated Mud 8000m3
SW.22.1050	Submarine Outfall-20000m3 Rock & 160m Long Pipe	63	23/08/10	30/08/10	24/10/10	31/10/10	7	0	Submarine Outfall-20000m3 Rock & 160m Long Pipe
SW.22.1060 SW.22.1070	Dredging (SDA) - Uncontaminated Mud 6000m3	14 42	25/10/10 08/11/10	01/11/10 15/11/10	07/11/10 19/12/10	14/11/10 26/12/10	7	0	Dredging (SDA) - Uncontaminated Mud 6000m3
SW.22.1070	Dredging (Bay A-B) - Uncontaminated Mud 10000m3 Dredging (A05-A03, B01-B03& B26-B33)-Cont. 48500m3	70	20/12/10	23/07/12	27/02/11	30/09/12	581	581	Dredging (A05-A03,B01-B03& B26-B33)-Cont. 48500m3
	Remaining Area (415142 m3)	350	12/10/11	17/10/11	25/09/12	30/09/12	5	0	Remaining Area (415142 m3)
And the second division of the second divisio	- Portion MQ3								
Portion MQ3									
	& Removal of Existing Seawall Removal of Existing Seawall Armour (8500m3)	28	31/10/11	31/10/11	27/11/11	27/11/11	0	0	Removal of Existing Seawall Armour (8500m3)
							·		
				7	Farly Bar Progress Bar	KTWP		F	Penta-Ocean Construction Co., Ltd. Sheet 1 of 2 Finish Date 24/12/13 Date Revision Checked Approved 31/08/10 F TM DK
	PENTA-OCEAN				Critical Activity				Data Date 30/11/09
	LUNSTRUCTION LO., LTU. 五洋建設								CEDD Contract No. KL/2009/01 Run Date 07/10/10 09:37
Y AND									nme for Marine Works (General Dredging)
	© Primavera Systems, Inc.					1			

			-			1.6	7.61	- 2	009		2010 2011 2012 2013 201
Activity	Activity	Orig	Early	Late	Early	Late		N	DJFN	A M	J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F
ID	Description	Dur	Start	Start	Finish	Finish	Float F	loat		ապարությ	
SW.3.3010	Removal of Existing Seawall Rockfill (7650m3)	28	28/11/11	28/11/11	25/12/11	25/12/11	0	0		1 1	Removal of Existing Seawall Rockfill (7650m3)
SW.3.3020	Excavation Within MQ3 (63300m3)	91	26/12/11	26/12/11	25/03/12	25/03/12	0	0	1 1		Excavation Within MQ3 (63300m3)
SW.3.3030	Removal of Existing Abandoned Outfall	7	28/11/11	19/12/11	04/12/11	25/12/11	21	21			Removal of Existing Abandoned Outfall
Section 4	- Portions MQ4, LS3, NDA & DZB						Salar S				
Portion MQ4	4 (Bays J - M) & LS3						F. S.	1			
<b>Dredging Wor</b>	rk & Removal of Existing Seawall										
SW.4.3000	Removal of Existing Seawall Armour (17250m3)	49	27/02/12	27/02/12	15/04/12	15/04/12	0	0	1 1 1		Removal of Existing Seawall Armour (17250m3)
SW.4.3010	Removal of Existing Seawall Rockfill (15600m3)	49	26/03/12	26/03/12	13/05/12	13/05/12	0	0			Removal of Existing Seawall Rockfill (15600m3)
SW.4.3020	Excavation Within MQ4 (129100m3)	140	09/04/12	09/04/12	26/08/12	26/08/12	0	0		1 1	Excavation Within MQ4 (129100m3)
SW.4.3030	Removal of Existing Abandoned Outfall	7	16/04/12	07/05/12	22/04/12	13/05/12	21	21			Removal of Existing Abandoned Outfall
Portion NDA	(Bay NDA)									I I	
<b>Dredging Wor</b>	rk & Removal of Existign Seawall										
SW.41.3000	Removal of Existing Seawall Armour (4250m3)	14	27/08/12	29/08/12	09/09/12	11/09/12	2	0			Removal of Existing Seawall Armour (4250m3)
SW.41.3010	Removal of Existing Seawall Rockfill (3850m3)	14	10/09/12	20/02/13	23/09/12	05/03/13	163	7			Removal of Existing Seawall Rockfill (3850m3)
SW.41.3020	Excavation Within MQ4 (31850m3)	28	01/10/12	06/03/13	28/10/12	02/04/13	156	156			Excavation Within MQ4 (31850m3)
Portion DZB										1 1	
Dredging Worl	rk		-							♥ ¦ ¦	
SW.42.1000	Preparation & Installation of Silt Curtain	28	15/04/10	13/11/10	12/05/10	10/12/10	212	0		Pre	reparation & Installation of Silt Curtain
SW.42.1010	Installation of Light Buoy at DZB	21	13/05/10	11/12/10	02/06/10	31/12/10	212	200			Installation of Light Buoy at DZB
SW.42.1020	Dredging at Toe of Existing Seawall (10500m3)	77	20/12/10	01/01/11	06/03/11	18/03/11	12	0		1 1	Dredging at Toe of Existing Seawall (10500m3)
SW.42.1030	Dredging Remaning Area (30000m3)	77	26/09/12	09/10/13	11/12/12	24/12/13	378	378	1 1	1 1 1	Dredging Remaning Area (30000m3)



KTWP

Penta-Ocean Construction Co., Ltd.

CEDD Contract No. KL/2009/01 Site Formation for Kai Tak Cruise Terminal Development Programme for Marine Works (General Dredging) Sheet 2 of 2 Start Date Finish Date Data Date Run Date

30/11/09			Revision	Checked	Approved
24/12/13	31/08/10	F		TM	DK
30/11/09					
07/10/10 09:37					