

CONTRACT NO: KL/2009/01

SITE FORMATION FOR KAI TAK CRUISE TERMINAL DEVELOPMENT

ENVIRONMENTAL MONITORING & AUDIT MONTHLY REPORT

- SEPTEMBER 2011 -

CLIENT:

Penta-Ocean Construction Co., Ltd.

Unit 601, K. Wah Centre, 191 Java Road, North Point, Hong Kong

PREPARED BY:

Lam Environmental Services Limited

11/F Centre Point 181-185 Gloucester Road, Wanchai, H.K.

Telephone: (852) 2882-3939 Facsimile: (852) 2882-3331 E-mail: <u>info@lamenviro.com</u> Website: <u>http://www.lamenviro.com</u>

CERTIFIED BY:

Raymond Dai Environmental Team Leader

DATE:

6 October 2011

7/F., Guardian House, 32 Oi Kwan Road, Wanchai, Hong Kong Tel : +852 2577 9023 Fax : +852 2895 2379 Email : fugro@fugro.com.hk

FAX MESSAGE

Priority	🛯 normal / 🖾 urgent			
То	Lam Environmental Services Limited	Ref. No.	MCLF2987	
Country		Email	raymonddai@lamenviro.com	
Attn.	Mr. Raymond Dai	Date No. of	13 October 2011	
From	Joseph Poon	Pages	1 (Incl. this page)	
C.c. To	Mr. Barry Wong (Scott Wilson Limited)	Email	barry.wong@scottwilson.com.hk	
	Mr. K. Y. Shin (Civil Engineering and Development Department)	Email	kyshin@cedd.gov.hk	
	Mr. Stephen Cheng (Scott Wilson Limited)	Email	stephen.cheng@scottwilson.com.t	nk
	Mr. Andrew Tam (Scott Wilson Limited)	Email	andrew.tam@scottwilson.com.hk	
	Mr. Perry Yam (Penta-Ocean Construction Company Limited)	Email	perry.yam@pentaocean.com.hk	
Subject	Agreement No. CE 19/2009 (EP) Dredging Works for Proposed Cruise Terminal Monthly Environmental Monitoring & Audit Rep		ık –	

We refer to the revised Monthly EM&A Report for September 2011 that we received through email on 12 October 2011 and are pleased to confirm we have no further comment on the report.

Should you require further information, please feel free to contact us.

Best regards,

Joseph Poon Independent Environmental Checker

JP/CY/by

CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, disclose or otherwise use the information in this facsimile. If you are not the intended recipient, please telephone or fax us immediately.

(If you do not receive all pages, please fax response or phone +852-24508238.)

CONTENTS

Ex	ecutive	SummaryI			
1	Introdu	ıction1			
	1.1	Scope of the Report1			
	1.2	Structure of the Report1			
2	Projec	t Background3			
	2.1	Background3			
	2.2	Scope of the Project and Site Description3			
	2.3	Project Organization and Contact Personnel4			
	2.4	Construction Programme and Works4			
3	Implen	nentation Requirements4			
	3.1	Status of Regulatory Compliance5			
4	Monito	ring Requirements6			
	4.1	Noise Monitoring6			
	4.2	Water Quality Monitoring6			
	4.3	Water Quality Parameters7			
	4.4	Sampling Procedures and Monitoring Equipment7			
5	Monito	ring Results11			
	5.1	Water Monitoring Results11			
	5.2	Waste Monitoring Results11			
6	Compl	iance Audit12			
	6.1	Noise Monitoring12			
	6.2	Water Quality Monitoring12			
	6.3	Dredging and Disposal16			
7	Site Inspection				
8	Compl	aints, Notification of Summons and Prosecution19			
9	Conclu	ısion20			

LIST OF TABLES

- Table I
 Summary of the Exceedances Recorded in Reporting Month
- Table 2.2
 Contact Details of Key Personnel
- Table 3.1
 Summary of Valid Licences and Permits
- Table 4.1
 Planned Noise Monitoring Stations
- Table 4.2 Water Quality Monitoring Stations for Baseline and Impact Monitoring
- Table 4.3Water Quality Monitoring Frequency and Parameters
- Table 4.4
 Equipment Used in Water Quality Monitoring in the Reporting Month
- Table 6.2
 Summary of Exceedances recorded in the Reporting Month
- Table 6.4.1 Compliance with EP Conditions in the Reporting Month
- Table 6.4.2 Waste Quantities Related To Dredging Works
- Table 8.1Environmental Complaints Log
- Table 8.2
 Cumulative Statistics on Complaints
- Table 8.3
 Cumulative Statistics on Successful Prosecutions
- Table 9.0Construction Activities and Recommended Mitigation Measures in Coming
Report Month

LIST OF FIGURES

- Figure 2.1 General Layout
- Figure 2.2 Project Organisation Chart
- Figure 4.1 Layout of Environmental Monitoring Stations
- Figure 6.1 Layout of Monitoring Stations for Water Quality Surveillance System

LIST OF APPENDICES

Appendix 3.1	Implementation Schedule of Environmental Mitigation Measures
<u>Appendix 4.1</u>	Action and Limit Levels
Appendix 4.2	Copies of Calibration Certificates
Appendix 5.1	Monitoring Schedule for the Reporting Month and Coming Three Months
Appendix 5.2	Water Quality Monitoring Results and Graphical Presentation
Appendix 5.3	Event and Action Plan
Appendix 5.4	Graphic Presentation of SS Results against to Tidal Movement along
	Victoria Harbour
Appendix 5.5	Graphic Presentation of Water Quality Result with respect to Local
	Variation
Appendix 5.6	Graphical Presentation of Water Quality Surveillance System
Appendix 5.7	Details of Notification of Exceedances
Appendix 9.0	Construction Programme

EXECUTIVE SUMMARY

i. This is the Environmental Monitoring and Audit (EM&A) Monthly Report – September 2011 for Site Formation for Kai Tak Cruise Terminal Development under Contract No. KL/2009/01. Dredging of marine sediment has been commenced since 28 June 2010 while removal and reconstruction of existing seawall has been commenced since 22 November 2010. This report presents the environmental monitoring findings and information recorded in September 2011.

Construction Activities for the Reporting Period

- ii. During this reporting period, the principal work activities included:
 - Removal of Existing Seawall;
 - Dredging of marine sediment;
 - Fabrication and installation of silt curtain for seawall removal;
 - Maintenance of Silt Curtain and Silt Screens;
 - Sorting of inert C&D material from existing seawall;
 - Disposal of surplus fill material off-site; and
 - Reconstruction of New Seawall

Water Quality Monitoring

iii. Water quality monitoring at 6 designated monitoring stations namely WSD9, WSD10, WSD15, WSD17, WSD19 and WSD21 were conducted during the reporting period. As per the EM&A Manual, water quality impact monitoring was conducted during the dredging works, which commenced on 28 June 2010. Suspended solid (SS) exceedances of water quality at various monitoring stations are summarized in *Table I*. Other than the exceedances recorded on 30 Sept 2011, 5 out of 6 exceedances were located at the upstream of the Project site.

Table ISummary of the Exceedances Recorded in Reporting Month

Date	Tide	Station	Parameter	Exceedance	Value	Possible Cause of Exceedance
1/9/2011	Mid-flood	WSD10	SS (mg/L)	LL	12.5	Upstream of the Project
5/9/2011	Mid-flood	WSD10	SS (mg/L)	AL	9.5	Upstream of the Project
19/9/2011	Mid-flood	WSD17	SS (mg/L)	AL	15.5	Upstream of the Project
19/9/2011	Mid-ebb	WSD10	SS (mg/L)	AL	9.5	Localized natural variation in the vicinity of the station WSD10. No marine works undertaken in ebb tide
24/9/2011	Mid-flood	WSD17	SS (mg/L)	AL	13.5	Upstream of the Project
26/9/2011	Mid-flood	WSD10	SS (mg/L)	AL	9.5	Upstream of the Project
30/9/2011	Mid-flood	WSD9	Turbidity (NTU)	AL	7.38	Water quality being substantially affected after Typhoon signal no.3 on 28 & 30 Sep and Typhoon signal no.8 on 29 Sep
30/9/2011	Mid-flood	WSD10	Turbidity (NTU)	LL	30.88	Water quality being substantially affected after Typhoon signal no.3
			SS (mg/L)	LL	43.5	on 28 & 30 Sep and Typhoon

Date	Tide	Station	Parameter	Exceedance	Value	Possible Cause of Exceedance
						signal no.8 on 29 Sep
30/9/2011	Mid-flood	WSD15	Turbidity (NTU)	LL	17.28	affected after Typhoon signal no.3
56/5/2011	wild nood	WODIO	SS (mg/L)	LL	19.5	on 28 & 30 Sep and Typhoon signal no.8 on 29 Sep
30/9/2011	Mid-flood	WSD17	Turbidity (NTU)	LL	20.98	Water quality being substantially affected after Typhoon signal no.3
30/9/2011	wiid-1100d	VV3D17	SS (mg/L)	LL	24.5	on 28 & 30 Sep and Typhoon signal no.8 on 29 Sep
30/9/2011	Mid-ebb	WSD9	Turbidity (NTU)	AL	9.15	Water quality being substantially affected after Typhoon signal no.3
30/9/2011	dd9-DIM	VVSD9	SS (mg/L)	LL	12.0	on 28 & 30 Sep and Typhoon signal no.8 on 29 Sep
30/9/2011	Mid-ebb	WSD10	Turbidity (NTU)	LL	12.43	Water quality being substantially affected after Typhoon signal no.
30/3/2011		WODIO	SS (mg/L)	LL	16.0	on 28 & 30 Sep and Typhoon signal no.8 on 29 Sep
30/9/2011	Mid-ebb	WSD15	Turbidity (NTU)	AL	11.88	Water quality being substantially affected after Typhoon signal no.
30/9/2011		VV3D15	SS (mg/L)	LL	19.0	on 28 & 30 Sep and Typhoon signal no.8 on 29 Sep
30/9/2011	Mid-ebb	WSD17	SS (mg/L)	AL	12.0	Water quality being substantially affected after Typhoon signal no. 3 on 28 & 30 Sep and Typhoon signal no.8 on 29 Sep
30/9/2011	Mid-ebb	WSD21	Turbidity (NTU)	AL	10.93	Water quality being substantially

- iv. For the exceedances, further investigations were conducted to determine the cause of impact in terms of Water Quality against the Tidal Movement along Victoria Harbour, Natural Variation Comparison and Water Quality Surveillance System.
- v. There were Typhoon signal no.3 enforced on 28 and 30 September and Typhoon no. 8 on 29 September 2011. The water quality monitoring on 28 September in flood tides was cancelled. Since the water quality was being substantially affected after the Typhoon, the water monitoring data on 30 September cannot represent the normal condition of water quality. As such, the monitoring results act as the reference data of water quality on 30 September and concluded not related to the Project works.

Water Quality against the Tidal Movement along Victoria Harbour

vi. Comparison of the monitoring station at project downstream stations with the upstream monitoring stations indicates the extent of the remaining 1 SS exceedance recorded at the WSD intakes downstream to the project were attributed to the variation in ambient conditions due to natural variation or change around WSD10 and not related to project works.

vii. In the recorded upstream exceedances on 1, 5, 19, 24 and 26 September 2011, no rising SS level in downstream across the Victoria Harbour after passing the project location. It concluded that no water quality impact was arising from the Project works.

Natural Variation Comparison

viii. Based on the determination of upper bound of the natural variation levels from the Supplementary to Baseline Water Quality Monitoring Report, all SS results except the SS results recorded on 30 September 2011 in reporting month were well within the upper bound of natural variation levels. It definitely concluded that these exceedances were not related to the Project works.

Water Quality Surveillance System

- ix. With reference to the upper bound of natural variation levels and self water quality surveillance system conducting in reporting month, it shows no fluctuation over the upper bound and hence this further supports such exceedances are not caused by dredging activities.
- x. Since the investigations found that the exceedances recorded in the reporting month were not related to the Project, it was concluded that all necessary steps under Event and Action Plan had been taken. The details of Event and Action Plans and Notification of Exceedance summarizing the finding of investigation, possible causes can be referred to Section 6.

Noise Monitoring

xi. Due to the non-existence of planned NSRs during the reporting period, no noise monitoring was required to be conducted at the planned noise monitoring locations NM1 and NM2.

Waste Management

xii. There was marine sediment (Type 1 – Open Sea Disposal) was disposed to South Cheung Chau Spoil Disposal Area denoted "KTCT-1" and "KTCT -2" in this reporting month. The disposal of the sediment (Type 1 – Open Sea Disposal (Dedicate Sites) and Type 2 – Confined Marine Disposal) to East Sha Chau Contaminated Mud Disposal Site – Pit IVc was completed. 3,000m³ surplus fill material and 20m³ non-inert C&D material related to dredging works were also disposed off site in the reporting month.

Complaints, Notifications of Summons and Successful Prosecutions

xiii. No complaint, notification of prosecutions or summons was received in the reporting period.

Site Inspections and Audit

xiv. The Environmental Team (ET) conducted five site inspections on 2, 9, 16, 20 and 30 September 2011. Observation and/or recommendation related to the dredging work during the audit sessions can be referred to Section 7.

Compliance with Specific EP Conditions

xv. Implementation of contractor's mitigation for dredging work and the associated dredging records were checked. It was concluded that the dredging is conducted orderly in compliance with the EP requirements on site mitigation measures.

Construction Activities for the Coming Reporting Period

- xvi. In the coming reporting period, the principal work activities included:
 - Dredging of Marine Sediment;
 - Removal of Existing Seawall;
 - Fabrication and installation of silt curtain for seawall removal;
 - Maintenance of Silt Curtain and Silt Screens;
 - Sorting of inert C&D material from existing seawall;
 - Disposal of surplus fill material off-site; and
 - Reconstruction of New Seawall

1 INTRODUCTION

1.1 SCOPE OF THE REPORT

- 1.1.1. Lam Environmental Services Limited (LES) has been appointed to work as the Environmental Team (ET) for dredging works to implement the Environmental Monitoring and Audit (EM&A) programme for Site Formation for Kai Tak Cruise Terminal Development under Contract No. KL/2009/01. Dredging of marine sediment has been commenced since 28 June 2010 while removal and reconstruction of existing seawall has been commenced since 22 November 2010.
- 1.1.2. This report presents the environmental monitoring and auditing work carried out in accordance to the Section 10.4 under Environmental Monitoring and Audit (EM&A) Manual.
- 1.1.3. This report documents the finding of EM&A works in September 2011. The cut-off date of reporting is at the end of each reporting month.

1.2 STRUCTURE OF THE REPORT

- **Section 1** *Introduction* details of the scope and structure of the report.
- Section 2 *Project Background* summarizes background and scope of the project, site description, project organization and contact details of key personnel during the reporting period.
- Section 3 *Implementation Status* summarizes the status of valid Environmental Permits / Licenses during the reporting period.
- Section 4 *Monitoring Requirements* summarizes all monitoring parameters, monitoring methodology and equipment, monitoring locations, monitoring frequency, criteria and respective event and action plan and monitoring programmes.
- **Section 5** *Monitoring Results* summarizes the monitoring results obtained in the reporting period.
- Section 6 Compliance Audit summarizes the auditing of monitoring results and all exceedances environmental parameters.
- Section 7 Site Inspection summarizes the findings of weekly site inspections undertaken within the reporting period, with a review of any relevant follow-up actions within the reporting period.

Section 8 Complaints, Notification of Summons and Prosecution – summarizes the complaints, notification of summons and successful prosecution for breaches of environmental legislation and the actions taken within the reporting period.

Section 9 Conclusion

2 PROJECT BACKGROUND

2.1 BACKGROUND

- 2.1.1. The former Kai Tak Airport located in the south-eastern part of Kowloon Peninsula was the international airport of Hong Kong. The Kai Tak Airport had come into operations since 1920s. The operation of the Kai Tak Airport was ceased and replaced by the new airport at Chek Lap Kok in July 1998. After closure, the disused airport site has been occupied by various temporary uses, including a golf driving range on the runway area.
- 2.1.2. In 2002, the Chief Executive in Council approved the Kai Tak Outline Zoning Plans (No. S/K19/3 and S/K21/3) to provide the statutory framework to proceed with the South East Kowloon Development at the former Kai Tak Airport. However, following the judgment of the Court of Final Appeal in January 2004 regarding the Harbour reclamation, the originally proposed development which involves reclamation has to be reviewed. The Kai Tak Planning Review (KTPR) has resulted with a Preliminary Outline Development Plan (PODP) for Kai Tak in October 2006. Subsequently, the Administration announced in October 2006 a plan to implement a cruise terminal at Kai Tak, as part of the development.
- 2.1.3. Development of the cruise terminal at Kai Tak would require dredging at the existing seawall at the southern tip of the former Kai Tak Airport runway for construction of a quay deck structure for two berths, and dredging the seabed fronting the new quay to provide necessary manoeuvring basin. The general layout of the proposed cruise terminal construction is shown in *Figure 2.1*.
- 2.1.4. The current Project involves a dredging operation exceeding 500,000m³ for construction and operation of the proposed cruise terminal at Kai Tak and is therefore classified as a Designated Project under Item C.12, Part I, Schedule 2 of the Environmental Impact Assessment Ordinance (EIAO). An Environmental Impact Assessment (EIA) Study for the Project has been undertaken in accordance with the EIA Study Brief (No. ESB-159/2006) and the Technical Memorandum on Environmental Impact Assessment Process (EIAO-TM).

2.2 SCOPE OF THE PROJECT AND SITE DESCRIPTION

- 2.2.1. The scope of the Project comprises:
 - Dredging of marine sediment of about 700,000 m³ from the existing seabed (Stage 1 dredging) in the Harbour area off the southern tip of the former Kai Tak Airport runway to provide the necessary water depth within the manoeuvring area for cruise vessels; and
 - Removal of existing seawall of about 322,300m³ by dredging at the southern tip of the former Kai Tak Airport runway for cruise berth construction.

2.3 PROJECT ORGANIZATION AND CONTACT PERSONNEL

- 2.3.1. Kowloon Development Office of Civil Engineering and Development Department is the overall project controller. For the construction phase of KL/2009/01, Project Engineer, Contractor, Environmental Team and Independent Environmental Checker are appointed to manage and control environmental issues.
- 2.3.2. The proposed project organization and lines of communication with respect to environmental protection works are shown in <u>*Figure 2.2*</u>. Key personnel and contact particulars are summarized in *Table 2.2*:

Table 2.2Contact Details of Key Personnel

Party	Role	Name	Post	Contact No.	Contact Fax
Civil Engineering and Development Department (Kowloon Development Office)	Project Proponent	Ir. KY Shin	Senior Engineer	2301 1461	2301 1277
URS / Scott Wilson Limited	Engineer's Representative	Mr. Stephen Cheng	Chief Resident Engineer	2148 7638	2148 7277
Penta-Ocean Construction	Contractor	Mr. H. Taguchi	Project Manager	2148 7238	2148 7138
Company Limited		Mr. Warren Tse	Site Agent		
		Mr. Perry Yam	Environmental Officer		
Fugro (HK) Limited	Independent Environmental Checker (IEC)	Mr. Joseph Poon	Independent Environmental Checker (IEC)	2450 8238	2450 6138
Lam Environmental Services Limited	Environmental Team Leader	Mr. Raymond Dai	Environmental Team Leader (ETL)	2882 3939	2882 3331

2.4 CONSTRUCTION PROGRAMME AND WORKS

- 2.4.1. During this reporting period, the principal work activities included:
 - Removal of Existing Seawall;
 - Dredging of marine sediment;
 - Fabrication and installation of silt curtain for seawall removal;
 - Maintenance of Silt Curtain and Silt Screens;
 - Sorting of inert C&D material from existing seawall;
 - Disposal of surplus fill material off-site; and
 - Reconstruction of New Seawall

3 IMPLEMENTATION REQUIREMENTS

3.1 STATUS OF REGULATORY COMPLIANCE

3.1.1. A summary of the current status on licences and/or permits on environmental protection pertinent to the Project is shown in *Table 3.1*.

Table 3.1Summary of Valid Licences and Permits

Permits and/or Licences	Reference No.	Issued Date	Valid Period	Status in Reporting Month
Environmental Permit	EP-328/2009/A	15 Jun 2009	N/A	Valid
Notification of Works Under APCO	KTCT/907/S/3.14/7. 00/L/0060 (POC's REF. number) dated 9 December 2009		N/A	Valid
Construction Noise Permit	GW-RE0155-11	8 Mar 2011	23 Mar 2011 (00:00) to 22 Sep 2011 (24:00)	Valid until 22 Sept 2011
(CNP)	GW-RE0651-11	9 Sep 2011	23 Sep 2011 (00:00) to 22 Mar 2012 (24:00)	Valid
Discharge Licence	WT00005933-2010	18 Mar 2010	Until 31 March 2015	Valid
Registration of Waste Producer	5213-247-P2984- 01	14 Jan 2010	N/A	Valid
Dumping Permit (Type 1 – Open Sea Disposal)	EP/MD/12-006	29 Apr 2011	3 May 2011 to 2 Nov 2011	Valid

3.1.2. Implementation status of the recommended mitigation measures during this reporting period is presented in *Appendix 3.1*.

4

MONITORING REQUIREMENTS

4.1 NOISE MONITORING

4.1.1. In accordance with the EIA Report and the approved EM&A Manual, it is anticipated that construction activities, if unmitigated, would not cause any adverse noise impact to the nearest NSRs in the vicinity of the work site. The predicted noise levels at the NSRs would comply with construction noise criteria. These nearest NSRs are designated for construction noise monitoring as listed in *Table 4.1*.

Table 4.1Planned Noise Monitoring Stations

Station	Description
NM1	Planned Residential Development (R3 site)
NM2	Planned Residential Development (R3 site)

4.1.2. As per S.3.1.1 of the approved EM&A Manual states that "Noise levels shall be monitored to evaluate the construction noise impact if there is any planned noise sensitive receivers (NSRs) occupied within 300m from the works area of this Project during the proposed dredging works". Therefore, the impact monitoring for construction noise shall only be carried out when the planned residential development at the two identified monitoring stations are occupied at a later stage.

4.2 WATER QUALITY MONITORING

- 4.2.1. The EIA Report has identified that suspended solids (SS) would be the most critical water quality parameter during the dredging operations. Water quality monitoring for SS and turbidity is therefore recommended to be carried out at selected WSD flushing water intakes. The impact monitoring should be carried out during the proposed dredging works for cruise terminal construction to ensure the compliance with the water quality standards.
- 4.2.2. It is proposed to monitor the water quality at six WSD flushing water intakes along the seafront of the Victoria Harbour. The proposed water quality monitoring stations are shown in *Table 4.2* and *Figure 4.1*.

Table 4.2 Water Quality Monitoring Stations for Baseline and Impact Monitoring

Station Ref.	WSD Flushing Water Intake	Easting	Northing
WSD9	Tai Wan	837921.0	818330.0
WSD10	Cha Kwo Ling	841900.9	817700.1

Station Ref.	WSD Flushing Water Intake	Easting	Northing
WSD15	Sai Wan Ho	841110.4	816450.1
WSD17	Quarry Bay	839790.3	817032.2
WSD21	Wan Chai	836220.8	815940.1
WSD19	Sheung Wan	833415.0	816771.0

4.3 WATER QUALITY PARAMETERS

- 4.3.1. During the period of dredging, monitoring should be undertaken three days per week, at mid-flood and mid-ebb tides, with sampling / measurement at the designated monitoring stations as shown in *Table 4.2*. The interval between two sets of monitoring should not be less than 36 hours except where there are exceedances of Action and/or Limit Levels, in which case the monitoring frequency will be increased. *Table 4.3* shows the proposed monitoring frequency and water quality parameters. Duplicate in-situ measurements and water sampling should be carried out in each sampling event. For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides should not be less than 0.5m.
- 4.3.2. Silt screens in frame type or floating type shall be deployed at these intakes during the dredging period. It is recommended to conduct the monitoring behind the silt screens at the seawater intake culvert at each seawater pumping station to collect information on the water quality condition after passed the silt screen.

Table 4.3 Water Quality Monitoring Frequency and Parameters

Activities	Monitoring Frequency ¹	Parameters ²
During the 4-week baseline monitoring period	Three days per week, at mid-flood and mid-ebb tides	Turbidity (in NTU), Suspended Solids (SS in mg/L)
During dredging works for proposed cruise terminal at Kai Tak	Three days per week, at mid-flood and mid-ebb tides	Turbidity (in NTU), Suspended Solids (SS in mg/L)

Notes:

1. For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides should be not less than 0.5m.

- 2. Turbidity should be measured in situ whereas SS should be determined by laboratory.
- 4.3.3. The established Action and Limit levels according to the approved baseline monitoring report for monitoring works can be referred to *Appendix 4.1*.
- 4.3.4. Current calibration certificates of equipment are presented in *Appendix 4.2*.

4.4 SAMPLING PROCEDURES AND MONITORING EQUIPMENT

4.4.1. In-situ measurements and water sampling shall be conducted at mid-depth. Duplicate *in-situ* measurements and water sampling have been conducted in each sampling event. Water samples for all monitoring parameters shall be collected, stored, preserved and analysed according to the Standard Methods, APHA 17 and/or agreed by IEC and EPD.

Dissolved Oxygen and Temperature Measuring Equipment

- 4.4.2. The instrument should be a portable, weatherproof dissolved oxygen measuring instrument complete with cable, sensor, comprehensive operation manuals, and use a DC power source. It should be capable of measuring:
 - a dissolved oxygen level in the range of 0-20 mg/l and 0-200% saturation
 - a temperature of 0-45 degree Celsius
- 4.4.3. It should have a membrane electrode with automatic temperature compensation complete with a cable. Sufficient stocks of spare electrodes and cables should be available for replacement where necessary. (e.g. YSI model 59 meter, YSI 5739 probe, YSI 5795A submersible stirrer with reel and cable or an approved similar instrument).
- 4.4.4. Should salinity compensation not be build-in in the DO equipment, in-situ salinity shall be measured to calibrate the DO equipment prior to each DO measurement.

Turbidity Measurement Instrument

4.4.5. The instrument should be a portable, weatherproof turbidity-measuring instrument complete with comprehensive operation manual. The equipment should use a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0-1000 NTU and be complete with a cable (e.g. Hach model 2100P or an approved similar instrument).

Suspended Solids

- 4.4.6. A water sampler comprises a transparent PVC cylinder, with a capacity of not less than 2 litres, and can be effectively sealed with latex cups at both ends. The sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth (e.g. Kahlsico Water Sampler or an approved similar instrument).
- 4.4.7. Water samples for suspended solids measurement should be collected in highdensity polythene bottles, packed in ice (cooled to 4°C without being frozen), and delivered to ALS Technichem (HK) Pty Ltd. as soon as possible after collection for analysis.

Water Depth Detector

4.4.8. A portable, battery-operated echo sounder shall be used for the determination of water depth at each designated monitoring station. This unit can either be handheld or affixed to the bottom of the workboat, if the same vessel is to be used throughout the monitoring programme.

<u>Salinity</u>

4.4.9. A portable salinometer capable of measuring salinity in the range of 0-40 ppt shall be provided for measuring salinity of the water at each of monitoring location.

Locating the Monitoring Site

4.4.10. A hand-held or boat-fixed type digital Global Positioning System (GPS) with way point bearing indication or other equivalent instrument of similar accuracy shall be provided and used during monitoring to ensure the monitoring vessel is at the correct location before taking measurements.

Calibration and Accuracy of Instrument

- 4.4.11. All in-situ monitoring instruments shall be checked, calibrated and certified by a laboratory accredited under HOKLAS or equivalent before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring. Responses of sensors and electrodes should be checked with certified standard solutions before each use. Wet bulb calibration for a DO meter shall be carried out before measurement at each monitoring location.
- 4.4.12. For the on site calibration of field equipment by the ET, the BS 127:1993, "Guide to Field and on-site test methods for the analysis of waters" should be observed.
- 4.4.13. Sufficient stocks of spare parts should be maintained for replacements when necessary. Backup monitoring equipment shall also be made available so that monitoring can proceed uninterrupted even when some equipment is under maintenance, calibration, etc.
- 4.4.14. The equipment used in the water quality monitoring in the reporting month are summarized in *Table 4.4*. Current calibration certificates of the used equipment are presented in *Appendix 4.2*

Table 4.4 Equipment Used in Water Quality Monitoring in the Reporting Month

Equipment	Model	Qty.
Multi-meter	YSI 600XL Sonde	1
Turbidimeter	Hach 2100P	1

5

MONITORING RESULTS

5.1 WATER MONITORING RESULTS

- 5.1.1. Due to the hoist of typhoon signal no.3 on 28 September 2011, it was concerned the safety concerns on working under adverse weather and water quality was considered substantially affected by urban runoff, which cannot represent the normal impact condition of water quality. Thus, the impact water monitoring on 28 September at flood tide was cancelled. EPD was immediately notified via facsimile. The water monitoring schedule for the reporting month and coming three months are presented in <u>Appendix 5.1</u>.
- 5.1.2. Water monitoring results measured in reporting month are reviewed and presented in <u>Appendix 5.2</u>. SS exceedances were recorded on 1, 5, 19, 24, 26 and 30 September 2011, and Turbidity exceedances were recorded on 30 September 2011. Investigation concluded that all exceedances were not related to the Project and details shall be referred in Section 6.
- 5.1.3. The exceedances recorded in the reporting month are concluded not related to the Project, no further steps under Event and Action Plan is needed. The details of Event and Action Plans and Notification of Exceedance summarizing the finding of investigation, possible causes and review of Contractor's mitigation measures can be referred to <u>Appendix 5.3</u> and <u>Appendix 5.7</u>.

5.2 WASTE MONITORING RESULTS

5.2.1. There were 3,000m³ inert surplus fill material and 20m³ non-inert C&D material related to dredging works were disposed off site in the reporting month.

6 COMPLIANCE AUDIT

6.1 NOISE MONITORING

6.1.1. Noise monitoring was not necessary in the reporting period.

6.2 WATER QUALITY MONITORING

6.2.1. SS exceedances were recorded on 1, 5, 19, 24, 26 and 30 September 2011, and Turbidity exceedances were recorded on 30 September 2011 in the reporting month. *Table 6.2* summarizes the details of SS and turbidity exceedances recorded. Investigation indicated the exceedances were not related to the Project works.

Table 6.2 Summary of Exceedances recorded in the Reporting Month

				-	-	
Date	Tide	Station	Parameter	Exceedance	Value	Possible Cause of Exceedance
1/9/2011	Mid-flood	WSD10	SS (mg/L)	LL	12.5	Upstream of the Project
5/9/2011	Mid-flood	WSD10	SS (mg/L)	AL	9.5	Upstream of the Project
19/9/2011	Mid-flood	WSD17	SS (mg/L)	AL	15.5	Upstream of the Project
19/9/2011	Mid-ebb	WSD10	SS (mg/L)	AL	9.5	Localized natural variation in the vicinity of the station WSD10. No marine works undertaken in ebb tide
24/9/2011	Mid-flood	WSD17	SS (mg/L)	AL	13.5	Upstream of the Project
26/9/2011	Mid-flood	WSD10	SS (mg/L)	AL	9.5	Upstream of the Project
30/9/2011	Mid-flood	WSD9	Turbidity (NTU)	AL	7.38	Water quality being substantially affected after Typhoon signal no.3 on 28 & 30 Sep and Typhoor signal no.8 on 29 Sep
30/9/2011	Mid-flood	WSD10	Turbidity (NTU)	LL	30.88	Water quality being substantially affected after Typhoon signal no.3
00,0,2011			SS (mg/L)	LL	43.5	on 28 & 30 Sep and Typhoon signal no.8 on 29 Sep
30/9/2011	Mid-flood	WSD15	Turbidity (NTU)	LL	17.28	Water quality being substantially affected after Typhoon signal no.3
00,0,2011	inia needa	110D 10	SS (mg/L)	LL	19.5	on 28 & 30 Sep and Typhoon signal no.8 on 29 Sep
30/9/2011	Mid-flood	WSD17	Turbidity (NTU)	LL	20.98	Water quality being substantially affected after Typhoon signal no.3
00,0,2011	inia needa		SS (mg/L)	LL	24.5	on 28 & 30 Sep and Typhoon signal no.8 on 29 Sep
30/9/2011	Mid-ebb	WSD9	Turbidity (NTU)	AL	9.15	Water quality being substantially affected after Typhoon signal no.3
00/0/2011		WODS	SS (mg/L)	LL	12.0	on 28 & 30 Sep and Typhoon signal no.8 on 29 Sep
30/9/2011	Mid-ebb	WSD10	Turbidity (NTU)	LL	12.43	Water quality being substantially affected after Typhoon signal no. 3
50/0/2011		10 10	SS (mg/L)	LL	16.0	on 28 & 30 Sep and Typhoon signal no.8 on 29 Sep
30/9/2011	Mid-ebb	WSD15	Turbidity (NTU)	AL	11.88	Water quality being substantially affected after Typhoon signal no. 3

Date	Tide	Station	Parameter	Exceedance	Value	Possible Cause of Exceedance
			SS (mg/L)	LL	19.0	on 28 & 30 Sep and Typhoon signal no.8 on 29 Sep
30/9/2011	Mid-ebb	WSD17	SS (mg/L)	AL	12.0	Water quality being substantially affected after Typhoon signal no. 3 on 28 & 30 Sep and Typhoon signal no.8 on 29 Sep
30/9/2011	Mid-ebb	WSD21	Turbidity (NTU)	AL	10.93	Water quality being substantially affected after Typhoon signal no. 3 on 28 & 30 Sep and Typhoon signal no.8 on 29 Sep

- 6.2.2. Total 13 numbers of SS exceedances and 8 numbers of turbidity exceedances were recorded in the reporting period. Silt curtain and silt screens were checked and confirmed in proper condition during the water monitoring. Other than the exceedances recorded on 30 September 2011, 5 out of 6 exceedances were located at the upstream of the Project site.
- 6.2.3. There were Typhoon signal no .3 enforced on 28 and 30 September and Typhoon no. 8 on 29 September 2011. The water quality monitoring on 28 September in flood tides was cancelled. Since the water quality was being substantially affected after Typhoon, the water monitoring data on 30 September cannot represent the normal condition of water quality. As such, the monitoring results act as the reference data of water quality on 30 September and concluded not related to the Project works.
- 6.2.4. For the exceedances, further investigations were conducted to determine the cause of impact in terms of the following areas:
 - Water Quality against the Tidal Movement along Victoria Harbour;
 - Natural Variation Comparison; and
 - Water Quality Surveillance System

6.3 WATER QUALITY AGAINST THE TIDAL MOVEMENT ALONG VICTORIA HARBOUR

- 6.3.1. In order to conclude the cause of an adverse water quality impact, the trend across the 6 monitoring stations is reviewed. Whether the adverse impact is due to project work will be evaluated from the trend of SS level in downstream across the Victoria Harbour after passing the project location. By observing this trend of SS, contribution of the adverse water quality impact from the dredging activities under the project can be evaluated by checking if there is a significant rising up trend in the SS level in the WSD intakes at project downstream.
- 6.3.2. Moreover, a comparison of the monitoring station at project downstream stations with the upstream monitoring stations can also indicate whether the extent of exceedance in SS content recorded at the WSD intakes downstream to the project is likely to be caused by upstream source or not. If the SS values of the

upstream and downstream show similar levels, the impact at the project downstream stations shall probably be due to the project upstream source and the contribution from project work can be eliminated. A review on the tidal movement across the Victoria Harbour is plotted against the SS results and graphical presentation is presented in *Appendix 5.4*.

- 6.3.3. For the downstream exceedance on 19 September 2011 during ebb tide, a review on the tidal movement across the Victoria Harbour is plotted against the SS results and graphical presentation is presented in <u>Appendix 5.4</u>.
- 6.3.4. Investigations on the exceedances recorded downstream of the Project generally found no significant rising up trend of SS levels across the Victoria Harbour after passing the project location. Thus, the downstream exceedance on 19 September 2011 was attributed to the variation in localized natural variation in the vicinity of the station WSD10. After checking with the Contractor's dredging record, there was no marine works undertaken during the whole ebb tide so that the exceedance was concluded not related to project works.
- 6.3.5. Investigations on the recorded upstream exceedances on 1, 5, 19, 24 and 26 September 2011 revealed that there were no significant rising up trend of SS levels across the Victoria Harbour after passing the project location. It concluded that no adverse water quality impact was arising from the Project works.

6.4 NATURAL VARIATION COMPARISON

- 6.4.1. Referring to the ER Letter ref. CEDD/KL/2009/01/M45/130(369767) dated 14 February 2011, a Supplementary to Baseline Water Quality Monitoring Report Review Action and Limit Levels (Revision 1.0) has been provided to EPD by ER in February 2011 in according to Sections 4.92 and 10.7 of EM&A Manual. This report in Revision 1.1 has been provided on 26 April 2011 in response to EPD's comments dated 1 April 2011. This report presents the methodology for enlargement baseline database and the review and determination of the Action and Limit Levels in dry and wet seasons.
- 6.4.2. On the basis of this Supplementary to Baseline Water Quality Monitoring Report, the maximum SS levels in the establishment of larger baseline database will be applied and acted as the upper bound of natural variation levels for the comparison with SS results in reporting quarter. The upper bound of natural variation levels are shown in **Table 6.4**. The graphic presentation of water quality results with respect to local variation is shown in **Appendix 5.5**.

Table 6.4 Upper Bound of Natural Variation Levels at Water Monitoring Stations

Upper Bound of Natural Variation Levels (mg/L)	WSD9	WSD10	WSD15	WSD17	WSD19	WSD21
Dry Season	12.0	19.0	14.0	16.0	18.0	15.0

Upper Bound of Natural Variation Levels (mg/L)	WSD9	WSD10	WSD15	WSD17	WSD19	WSD21
Wet Season	15.1	21.2	22.7	17.9	17.1	18.8

6.4.3. According to the graphic presentation, all SS results were well within the upper bound of natural variation levels except the water quality results on 30 September 2011. It definitely concluded that these exceedances were not related to the Project works.

6.5 WATER QUALITY SURVEILLANCE SYSTEM

- 6.5.1. 2 self water quality surveillance monitoring events for removal of existing seawall were conducted on 8 and 26 September 2011. Turbidity and SS monitoring were conducted at 12 locations as follows and shown in **Figure 6.1**.
 - One sampling point inside the silt curtain (SP1);
 - Four sampling points outside the silt curtain (MP1-MP4);
 - Seven control points (C1-C7)
- 6.5.2. The trend of monitoring results from the location of dredging works to the nearest WSD pumping stations were projected for checking the water quality surveillance. The graphical presentation of the SS levels at SP1, sampling points outside the silt curtain, control points and impact water quality monitoring stations against the distance are shown in <u>Appendix 5.6</u>.
- 6.5.3. Based on the graphic presentation and the trend description of the SS levels in <u>Appendix 5.6</u> conclusion of the water quality surveillance can be draw as follows:
 - SS levels of MP are lower than SP1;
 - When the WSD intakes were located at upstream of the Project, it found that SS level was occasionally higher than the control points and sampling points near dredging area. Thus, uncertain interference of water quality was apparently interfering in the vicinity of intakes frequently;
 - For WSD intakes located at downstream of the Project, SS levels were below the Action level, sampling points MP and control points were recorded. The trend in the projections indicated that no significant rising of SS in the projection from the dredging area to the control points and the WSD pumping stations.
 - Besides, the distance between the WSD intakes and the SP1 are at least more than 1km, the water quality impact was unlikely to cause impact to the WSD intakes.
- 6.5.4. With reference to the upper bound of natural variation levels and water quality surveillance conducting in reporting period, it shows no fluctuation over the upper bound and hence this further supports such exceedances are not caused by dredging activities.

6.5.5. Since the investigations found that the exceedances recorded in the reporting month were not related to the Project, it was concluded that all necessary steps under Event and Action Plan had been taken.

6.6 DREDGING AND DISPOSAL

6.6.1. Implementation of mitigation measures for dredging work and the associated dredging records were checked and the findings are summarized in *Table 6.4.1*.

EP Condition **Compliance Status and/or Recommendation** 2.6 In accordance with the EP requirement and Implementation Schedule for Water Quality Measure Silt Curtain Deployment 2.6 Complied with the EP requirement in reporting month: Daily Dredging Rate maintained at 2,127m³/day and For removal of the existing seawall and the seabed, Daily Dredging Hourly Dredging Rate maintained at 156m³/hr. Rate ≤ 4,000m3/d Hourly Dredging $Rate \le 334m3/hr$ 2.7 Complied with the EP requirement in reporting month: Daily Dredging Rate maintained at 282m³/day and For removal of marine sediment from seabed, Daily Dredging Rate Hourly Dredging Rate maintained at 27m³/hr. < 4,000m3/d Hourly Dredging Rate ≤ 334m3/hr 2.8 In accordance with the Silt Screen Deployment Plan for all 6 intakes Silt Screen Deployment

 Table 6.4.1
 Compliance with EP Conditions in the Reporting Month

- 6.6.2. The daily and hourly dredging rates were checked and reviewed that were below the EP requirements. It was concluded that the dredging was conducted in compliance with the specific EP requirements.
- 6.6.3. No marine sediment (Type 1 Open Sea Disposal) was disposed to South Cheung Chau Spoil Disposal Area denoted "KTCT-1" and "KTCT -2" in this reporting month. The disposal of the sediment (Type 1 Open Sea Disposal (Dedicate Sites) and Type 2 Confined Marine Disposal) to East Sha Chau Contaminated Mud Disposal Site Pit IVc was completed. 3,000m³ inert surplus fill material and 20m³ non-inert C&D material related to dredging works were disposed off site in the reporting month. The details can be referred to the *Table 6.4.2*.

Table 6.4.2	Waste Quantities Related To Dredging Works
-------------	--

Waste Type	Quantity this month, m³ (Bulk volume)	Cumulative-to- Date. m ³ (Bulk volume)	Disposal / Dumping Ground
Marine Sediment (Type 1 – Open Sea Disposal)(4,216	240,624	South Cheung Chau Spoil Disposal Area denoted "KTCT-1" and "KTCT -2"

Waste Type	Quantity this month, m ³ (Bulk volume)	Cumulative-to- Date. m ³ (Bulk volume)	Disposal / Dumping Ground
Marine Sediment (Type 1 – Open Sea Disposal (Dedicated Sites) and Type 2 – Confined Marine Disposal) *	NIL	147,649	East Sha Chau Contaminated Mud Disposal Site – Pit IVc

* Remarks: The disposal of marine sediment (Type 1 – Open Sea Disposal (Dedicated Sites) and Type 2 – Confined Marine Disposal) was completed.

7

ENVIRONMENTAL SITE AUDIT

- 7.0.1. Site audits were carried out by ET on weekly basis to monitor the implementation of proper environmental management practices and mitigation measures in the Project site.
- 7.0.2. The joint site audits were conducted on 2, 9, 16, 20 and 30 September 2011 by the representatives of IEC, ER, the Contractor and the ET. No particular finding was obtained on the dredging works during the site inspections. Nevertheless, contractor was reminded to check and repair any damaged silt curtain and silt screen after the Typhoon "Nesat" before resuming the dredging works.

8 COMPLAINTS, NOTIFICATION OF SUMMONS AND PROSECUTION

8.0.1. In this reporting period, no complaint, inspection notice, notification of summons or prosecution was received. Cumulative complaint log, summaries of complaints, notification of summons and successful prosecutions are presented in *Tables 8.1*, *8.2* and *8.3* respectively.

Table 8.1 Environmental Complaints Log

Complaint Log No.		Received From and Received By	Nature of Complaint	Date Investigated	Outcome	Date of Reply
NIL	-	-	-	-	-	-

Table 8.2Cumulative Statistics on Complaints

Environmental Parameters	Cumulative No. Brought Forward	No. of Complaints This Month	Cumulative No. Project-to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Total	0	0	0

Table 8.3 Cumulative Statistics on Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Successful Prosecutions this month (Offence Date)	Cumulative No. Project-to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Total	0	0	0

9 CONCLUSION

- 9.0.1. Dredging of marine sediment and removal and reconstruction of existing seawall were commenced on 28 June and 22 November 2010 respectively. The EM&A programme was carried out in accordance with the EM&A Manual requirements. As per the EM&A Manual, water quality impact monitoring was conducted during the dredging work, which was commenced on 28 June 2010.
- 9.0.2. SS exceedances were recorded on 1, 5, 19, 24, 26 and 30 September 2011. Investigation indicated all exceedances were not related to the Project.
- 9.0.3. The scheduled construction activities and the recommended mitigation measures for the coming month are listed in *Table 9.0*. The construction programme of the Project is provided in *Appendix 9.0*.

Table 9.0Construction Activities and Recommended Mitigation Measures in Coming
Report Month

Location	Construction Works	Recommended Mitigation Measures
Marine work	 Dredging of Marine Sediment; Removal of Existing Seawall; Fabrication and installation of silt curtain for seawall removal; Maintenance of Silt Curtain and Silt Screens; Sorting of inert C&D material from existing seawall; Disposal of surplus fill material off-site; and Reconstruction of New Seawall 	 Collection and removal of floating refuse at regular intervals; Regular inspection and maintenance of the silt screens and silt curtain; Silt curtain shall be deployed around the closed grab dredgers used for seawall removal; Covering the stockpile and watering the dust surface to suppress dust emission; Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; Opening of the silt curtain should be closed except for vessel movement.

Figure 2.1

General Layout

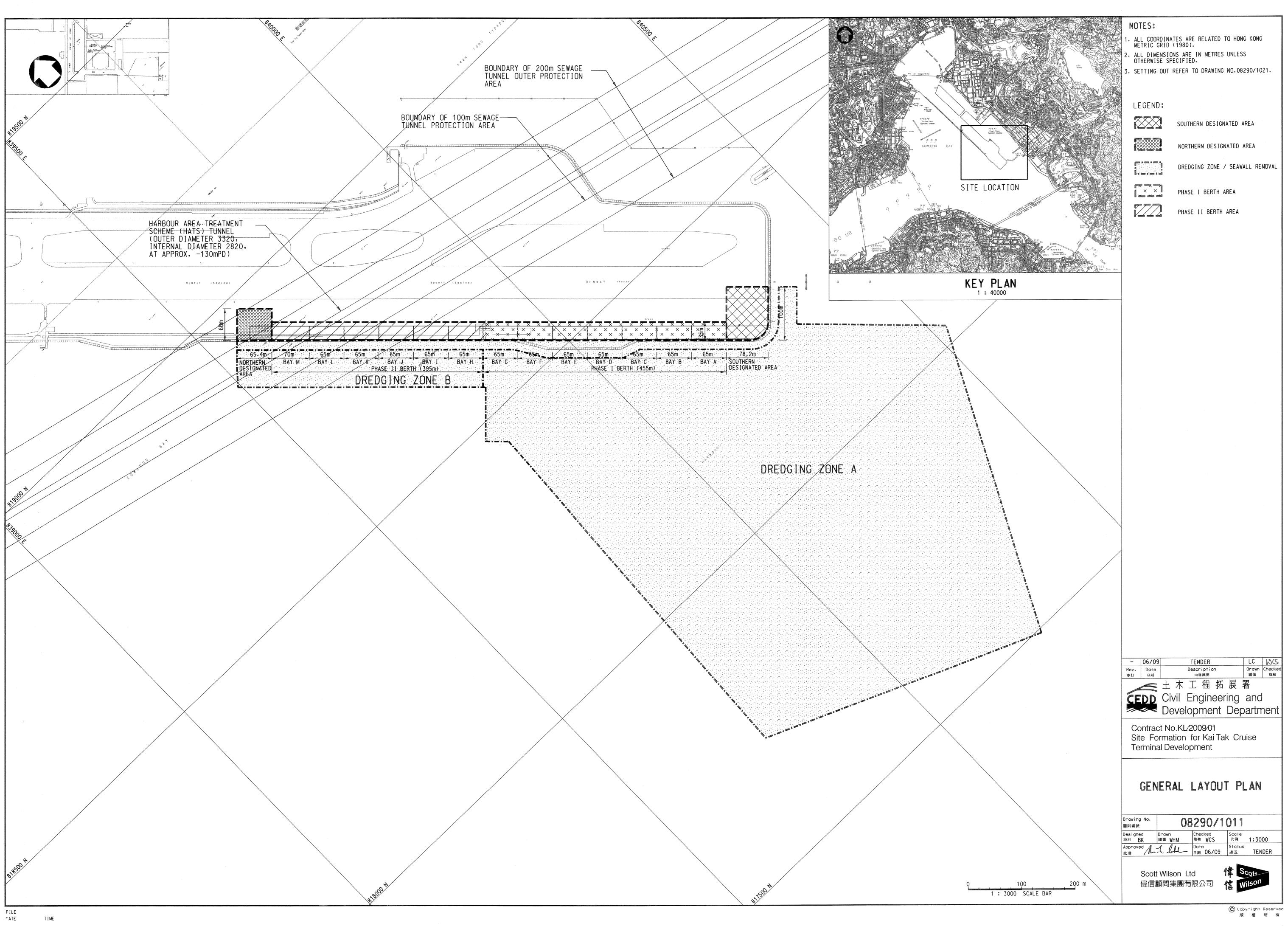


Figure 2.2

Project Organization Chart

Project Organization Chart

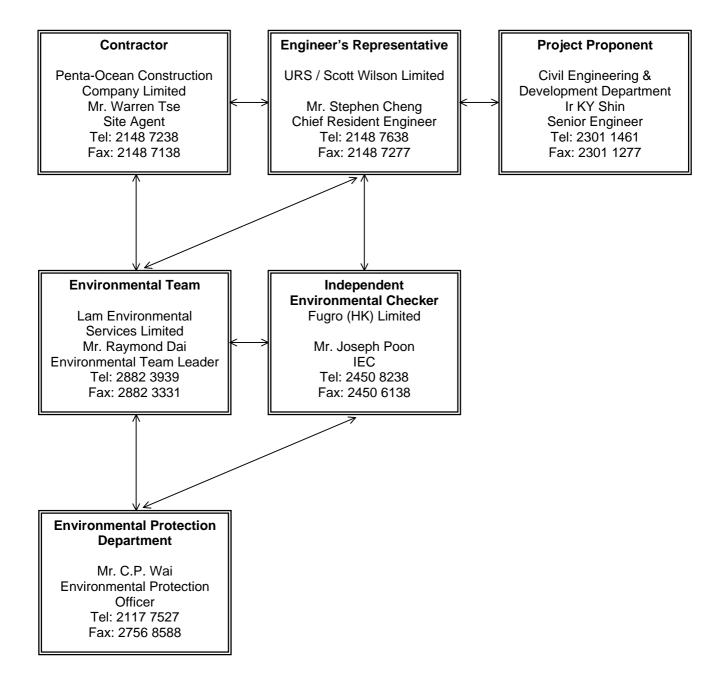
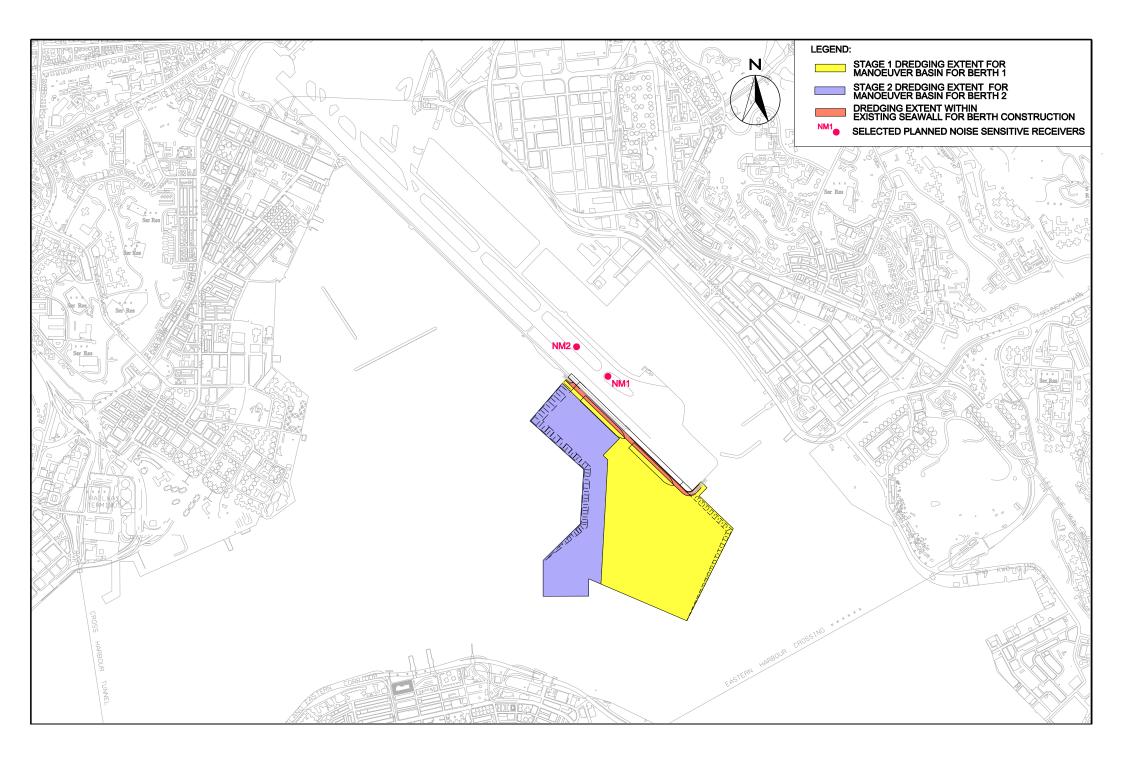
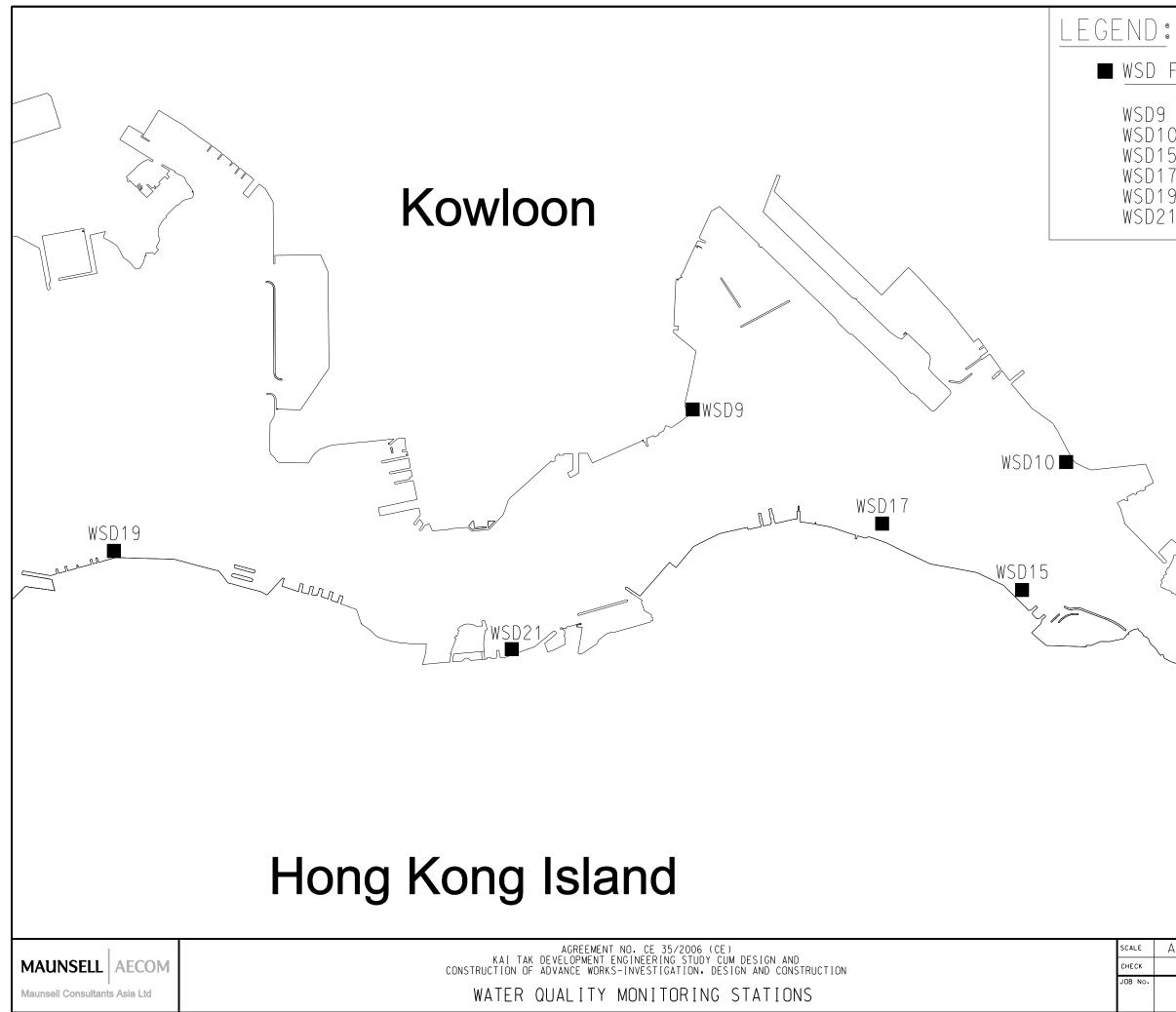
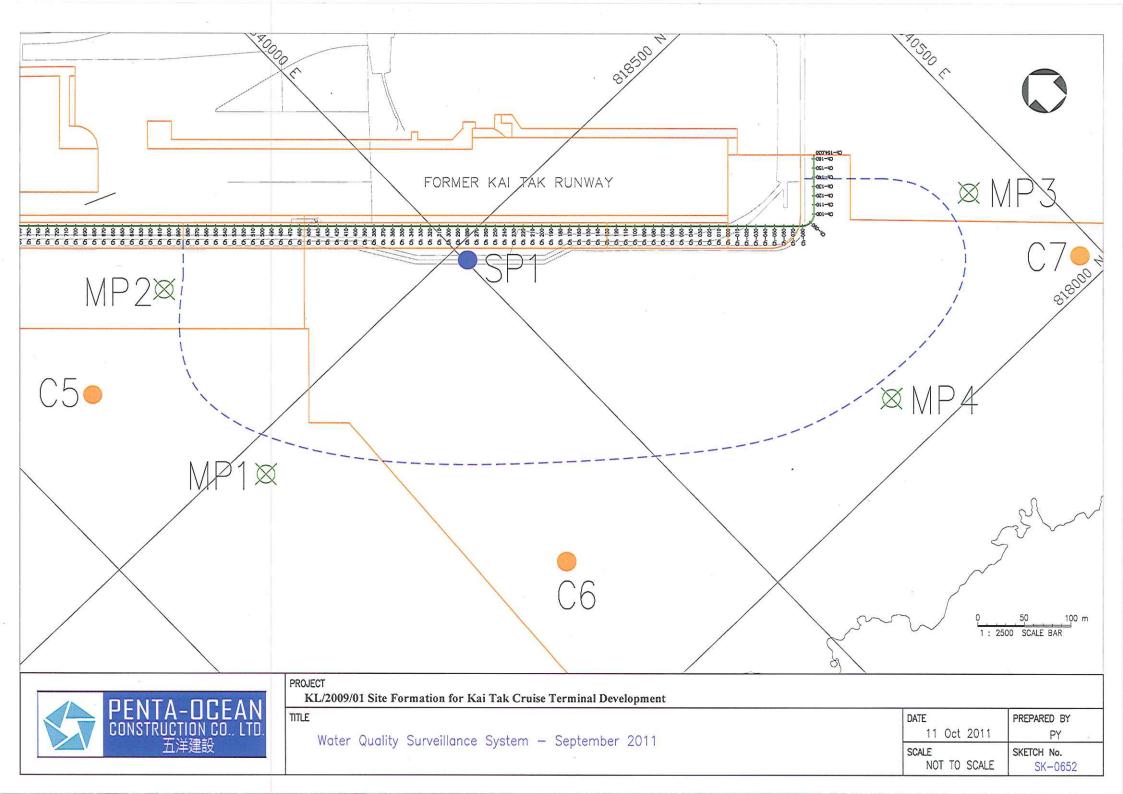




Figure 4.1

Layout of Environmental Monitoring Stations


P:/60022503/Reports/CT Dredging/EM&A Manual/Formal submission/Figures/Drawings/4.1.dgn

■ WSD Flushing Water Intake WSD9 - Tai Wan WSD10 - Cha Kwo Ling WSD15 - Sai Wan Ho WSD17 - Quarry Bay WSD19 - Sheung Wan WSD21 - Wan Chai 1:35000 AЗ DATE AUG 07 SCALE СНЕСК АКҮС DRAWN WCM JOB No. DRAWING No. REV 60022503 4.1 _

Figure 6.1

Layout of Monitoring Stations for Water Quality Surveillance System

Appendix 3.1

Implementation Schedule of Environmental Mitigation Measures

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S3.6	Requirements of the Air Pollution Control (Construction Dust) Regulation shall be adhered to during the construction period.	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	Air Pollution Control (Construction Dust) Regulation
S3.6	In order to minimize the potential odour emissions, if any, the dredged sediment placed on barge should be properly covered as far as practicable to minimise the exposed area and hence the potential odour emissions during the transportation of the dredged sediment.	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM
S4.8	 Good Site Practices: Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program. Mobile plant, if any, should be sited as far away from NSRs as possible. Machines and plant (such as trucks) that may be in intermittent use should be shut down between works periods or should be throttled down to a minimum. Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. Material stockpiles and other structures should be effectively utilised, wherever practicable, in screening noise from on-site construction activities. 	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	NCO EIAO-TM

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S4.9	If there is any planned NSRs within 300m from the work area occupied during the dredging period, an EM&A programme is recommended to be established according to the predicted occurrence of noisy activities. All the recommended mitigation measures for daytime normal working activities should be incorporated into the EM&A programme for implementation during dredging.	Representative NSRs at the former Kai Tak Airport runway / Upon formal occupation	N/A	Not applicable	NCO EIAO-TM
S5.9	 Dredging will be carried out by closed grab dredger to minimize release of sediment and other contaminants during both capital and maintenance dredging. The maximum production rate for dredging from the seabed to provide necessary manoeuvring area would not be more than 4,000m³ per day (and no more than 2 closed grab dredgers) during capital dredging and 2,000m³ per day (and no more than 1 closed grab dredger) during maintenance dredging. The maximum production rate for dredging at or near the seawall area would not be more than 4,000m³ per day for berth construction. No more than two closed grab dredger would be operated at the same time at or near the seawall for berth construction. 	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM WPCO
S5.9	Silt curtains should be deployed around the closed grab dredgers used for dredging at and near the existing seawall of the former Kai Tak Airport runway for construction of the cruise berth structures.	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM, WPCO

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S5.9	Silt screens should be installed at the WSD flushing water intakes at Cha Kwo Ling, Sai Wan Ho, Quarry Bay, Sheung Wan, Wan Chai and Tai Wan for dredging in the manoeuvring basin of the first berth during the capital dredging.	Seawater intakes in Victoria Harbour/ During the construction of cruise terminal	Contractor for capital dredging	Implemented	EIAO-TM, WPCO
S5.9	Silt screens should be installed at the WSD flushing water intakes at Cha Kwo Ling, Quarry Bay and Tai Wan for dredging in the manoeuvring basin of the second berth during the capital dredging.	Seawater intakes in Victoria Harbour / During the construction of cruise terminal	Contractor for capital dredging	Implemented	EIAO-TM, WPCO
S5.9	If the opening has been introduced at the northern runway, silt screens should also be installed at the WSD flushing water intake at Sai Wan Ho, Sheung Wan and Wan Chai for dredging in the manoeuvring basin of the second berth during the capital dredging.	Seawater intake at Sai Wan Ho, Sheung Wan and Wan Chai / During the construction of cruise terminal	Contractor for capital dredging	Implemented	EIAO-TM, WPCO

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S5.9	 Other good site practices that should be undertaken during dredging include: all vessels should be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; all barges / dredgers should be fitted with tight fitting seals to their bottom openings to prevent leakage of material; construction activities should not cause foam, oil, grease, scum, litter or other objectionable matter to be present on the water within the site or dumping grounds; barges or hoppers should not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation. 	Work site and adjacent waters / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO, EIAO-TM, WPCO, WDO
S5.9	Appropriate numbers of portable chemical toilets shall be provided by a licensed contractor to serve the construction workers over the construction site. The Contractor shall also be responsible for waste disposal and maintenance practices.	Work site and adjacent waters / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM, WPCO, WDO

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S5.9	Collection and removal of floating refuse should be performed at regular intervals on a daily basis. The contractor should be responsible for keeping the water within the site boundary and the neighbouring water free from rubbish during the dredging works.	Work site and adjacent waters / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM, WPCO, WDO
S5.9	An environmental monitoring and audit programme should be implemented to verify whether or not impact predictions are representative, and to ensure that all the recommended mitigation measures are implemented properly. If the water quality monitoring data indicate that the proposed dredging works result in unacceptable water quality impacts in the receiving water, appropriate actions should be taken to review the dredging operation and additional measures such as use of frame-type silt curtain, deployment of double silt curtains, slowing down, or rescheduling of works should be implemented as necessary.	6 selected WSD flushing water intakes in Victoria Harbour/ During dredging in construction stage	Environmental Team and verified by Independent Environmental Checker	Implemented	EIAO-TM, WPCO

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S5.9	Silt screens are recommended to be deployed at 6 selected WSD flushing water intakes during the capital dredging. The contractor for capital dredging shall demonstrate and ensure that the design of the silt screen will not affect the normal operation of flushing water intake. The contractor shall obtain consensus from all relevant parties, including WSD and Marine Department on the design of the silt screen at each of the six selected flushing water intake points before installation of the silt screen and commencement of the proposed dredging works. As a mitigation measure to avoid the pollutant and refuse entrapment problems and to ensure that the impact monitoring results are representative, regular maintenance of the silt screens and refuse collection should be performed at the monitoring stations at regular intervals on a daily basis. The Contractor should be responsible for keeping the water behind the silt screen free from floating rubbish and debris during the impact monitoring period.	6 selected WSD flushing water intakes in Victoria Harbour/ During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM, WPCO

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines				
S6.7	Good Site Practices It is not anticipated that adverse waste management related impacts would arise, provided that good site practices are adhered to. Recommendations for good site practices during the dredging activities include:	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM				
	• Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site.								
	• Training of site personnel in proper waste management and chemical waste handling procedures.								
	• Provision of sufficient waste disposal points and regular collection for disposal.								
	• Appropriate measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers.								
	• A recording system for the amount of wastes generated, recycled and disposed of (including the disposal sites).								
	• Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal.								

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S6.7 (cont.)	 Encourage collection of aluminium cans, PET bottles and paper by providing separate labelled bins to enable these wastes to be segregated from other general refuse generated by the workforce. Any unused chemicals or those with remaining functional capacity shall be recycled. 	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM
S6.7	Marine Sediments The dredged marine sediments would be loaded onto barges and transported to the designated disposal sites allocated by the MFC depending on their level of contamination. Sediment classified as Category L would be suitable for Type 1 – Open Sea Disposal. Contaminated sediment would require either Type 1 – Open Sea Disposal (Dedicated Sites) or Type 2 - Confined Marine Disposal and must be dredged and transported with great care in accordance with ETWB TCW No. 34/2002. Subject to the final allocation of the disposal sites by MFC, the dredged contaminated sediment must be effectively isolated from the environment upon final disposal and shall be disposed of at the East Sha Chau Contaminated Mud Pits that are designated for the disposal of contaminated mud in Hong Kong.	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	ETWB TCW No. 34/2002

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S6.7	It will be the responsibility of the Contractor to satisfy the appropriate authorities that the contamination levels of the marine sediment to be dredged have been analysed and recorded. According to the ETWB TCW No. 34/2002, this will involve the submission of a formal Sediment Quality Report to the DEP, prior to the dredging contract being tendered. The contractor for the dredging works shall apply for the allocation of marine sediment disposal sites from all relevant authorities.	Work site / During dredging in construction stage	Contractor for capital dredging	Dumping Permits were issued by EPD	ETWB TCW No. 34/2002
S6.7	 During transportation and disposal of the dredged marine sediments requiring Type 1 and Type 2 disposal, the following measures shall be taken to minimise potential impacts on water quality: Bottom opening of barges shall be fitted with tight fitting seals to prevent leakage of material. Excess material shall be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved. Monitoring of the barge loading shall be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels shall be equipped with automatic self-monitoring devices as specified by the DEP. Barges or hopper barges shall not be filled to a level that would cause the overflow of materials or sediment laden water during loading or transportation. 	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	WDO; WPCO

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S6.7	Chemical Wastes After use, chemical wastes (for example, cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Spent chemicals should be collected by a licensed collector for disposal at the CWTF or other licensed facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	Waste Disposal (Chemical Waste) (General) Regulation; Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes
S6.7	General Refuse General refuse should be stored in enclosed bins or compaction units separate from C&D material. A reputable waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D material. An enclosed and covered area is preferred to reduce the occurrence of 'wind blown' light material.	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	WDO, WPCO

EIA Ref [#]	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S6.7	Construction and Demolition Material It is recommended that the extent of dredging of the existing seawall should be kept to a minimum in the detailed design of the new cruise terminal to minimize generation of C&D material. Mitigation measures and good site practices should be incorporated in the contract document to control potential environmental impact from handling and transportation of C&D material. The mitigation measures include: • Where it is unavoidable to have transient stockpiles of C&D material within the Project work site pending collection for disposal, the transient stockpiles shall be located away from waterfront or storm drains as far as possible. • Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric. • Skip hoist for material transport should be totally enclosed by impervious sheeting. • Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving a construction site.	Work site / During the construction period	Contractor for capital dredging	Implemented	ETWB TCW No. 33/2002, 31/2004, 19/2005
	• The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores.				

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S6.7 (cont.)	 The load of dusty materials carried by vehicle leaving a construction site should be covered entirely by clean impervious sheeting to ensure dust materials do not leak from the vehicle. All dusty materials should be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet. The height from which excavated materials are dropped should be controlled to a minimum practical height to limit fugitive dust generation from unloading. 	Work site / During the construction period	Contractor for capital dredging	Implemented	ETWB TCW No. 33/2002, 31/2004, 19/2005
S6.7	When delivering inert C&D material to public fill reception facilities, the material shall consist entirely of inert construction waste and of size less than 250mm or other sizes as agreed with the Secretary of the Public Fill Committee. In order to monitor the disposal of the surplus C&D material at the designed public fill reception facility and to control fly tipping, a trip-ticket system should be included as one of the contractual requirements and implemented by the Contractor under the Waste Management Plan certified by the Environmental Team and verified by the Independent Environmental Checker who should be responsible for auditing the results of the system.	Work site / During the construction period	Contractor for capital dredging, Engineer, Environmental Team and Independent Environmental Checker	Not applicable	ETWB TCW No. 31/2004

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S7.8	The dredging activities of the proposed cruise terminal should ensure that disturbance to the existing seawall masonry outside the Project boundary should be avoided as far as practicable.	Work site/ During construction of cruise terminal	Contractor for capital dredging as per CEDD's advice	Implemented	Antiquities and Monuments Ordinance EIAO, EIAO-TM Guidance Notes on Assessment of Impact on Sites of Cultural Heritage in Environmental Impact Assessment Studies (GN-CH) Hong Kong Planning Standards and Guidelines (HKPSG)
S7.10, App. 7.1	It is recommended that the dredged spoil should be monitored for the presence of archaeological material. Guidelines for the monitoring brief have been prepared in consultation with the AMO. A qualified marine archaeologist needs to be on standby to provide specialist advice, if required, but the monitoring can be carried out by a member of staff on the dredging barge.	Work site / during dredging in construction stage	Contractor for capital dredging, Environmental Team	Implemented	Antiquities and Monuments Ordinance EIAO, EIAO-TM GN-CH HKPSG Marine Archaeological Investigation Guidelines

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
8.7	Translocate those existing coral colonies attached on boulders that are manually movable by a diver underwater (possibly longest dimension of less than 50cm) located within the hard substrata sea area within the dredging site as far as practicable prior to the commencement of the capital dredging activities. The entire translocation exercise include the preparation of a detailed translocation plan, the pre- translocation coral survey, the coral translocation, and the quarterly post-translocation monitoring for one year. Pre-translocation survey would be focused on identifying and mapping of coral colonies that would be directly impacted by the proposed dredging and investigating the translocation feasibility of these coral colonies. A detailed translocation plan (including pre- translocation coral survey, translocation methodology and monitoring of transplanted corals) should be prepared during the detailed design stage of the Project which, together with the ecologist involved in coral translocation, should be approved by AFCD prior to commencement of the translocation exercises. The proposed relocation of the coral colonies should not affect any private/public marine rights at the recipient site.	Along the section of the former Kai Tak Airport runway that will be directed affected by the cruise terminal construction / During detailed design stage	Other ET specifically employed for coral translocation works	Final Detailed Coral Translocation Plan was approved by EPD in letter ref. (18) in EP2/K19/C/19 Pt.5 dated 5 June 2009. Form 5 was submitted under CEDD's memo ref. (6) in KD 2/31/4 Pt.3 dated 10 June 2009 regarding minor alteration of the position of the coral recipient site. Coral Translocation Report was submitted in Scott Wilson letter ref. 08290/325723 dated 2 July 2009. Post-translocation report shall be referred to the submissions by another ET specifically employed for coral translocation works.	EIAO-TM

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S8.7	New seawalls at the berth structure of the cruise terminal shall be constructed in order to provide large area of hard substrata for settlement and recruitment of intertidal and subtidal assemblages similar to those previously recorded from existing habitats.	The section of the former Kai Tak Airport runway that will be directed affected by the cruise terminal construction / During detailed design stage	To be confirmed at later stage	To be confirmed at later stage	EIAO-TM
9.6	No fisheries-specific mitigation measures would be required.	-	Not applicable	Not applicable	-

Appendix 4.1

Action and Limit Levels

Action and Limit Levels

Action and Limit Levels for Noise Monitoring

Time Period	Action Level	Limit Level
07:00 – 19:00 hours on normal weekdays	When one documented complaint is received from any one of the sensitive receivers	75 dB(A)

Remarks: No noise monitoring was conducted due to no planned noise sensitive receivers (NSRs) occupied within 300m from the works area of this Project during the dredging works.

Action and Limit Levels for Water Monitoring

Parameters	Action L	evel		Limit Le	vel	
Turbidity in NTU		All Sease	on		All Sease	<u>on</u>
	WSD9	5.67		WSD9	12.27	
	WSD10	6.26	;	WSD10	10.47	
	WSD15	8.15	i	WSD15	14.41	
	WSD17	11.60	1	WSD17	16.91	
	WSD21	9.11		WSD21	15.38	i i
	WSD19	13.09	I	WSD19	15.34	
Suspended Solids		Dry Season	Wet Season		<u>Dry Season</u>	Wet Season
(SS) in mg/L	WSD9	6.9	9.7	WSD9	7.8	10.9
	WSD10	7.7	9.1	WSD10	10.3	12.2
	WSD15	7.8	13.5	WSD15	8.4	14.5
	WSD17	9.5	11.2	WSD17	13.7	16.2
	WSD21	13.3	17.1	WSD21	13.9	17.8
	WSD19	16.3	15.1	WSD19	17.0	15.7

Remarks:

Wet season is the period from April to September. Dry season is the period from October to March.

Appendix 4.2

Copies of Calibration Certificates

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:	MS CHERRY MAK	WORK ORDER:	HK1115453
CLIENT:	LAM GEOTECHNICS LIMITED	LABORATORY:	HONG KONG
ADDRESS:	11/F., CENTRE POINT,	DATE RECEIVED:	07/07/2011
	181-185 GLOUCESTER ROAD,	DATE OF ISSUE:	13/07/2011
	WAN CHAI, HONG KONG.		
PROJECT:			

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory. Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:	Conductivity, Dissolved Oxygen pH, Salinity and Temperature
Description:	YSI Sonde
Brand Name:	YSI
Model No.:	YSI 600XL Sonde
Serial No.:	05C1607
Equipment No.:	EL424
Date of Calibration:	11 July, 2011

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung HONG KONG
 Phone:
 852-2610 1044

 Fax:
 852-2610 2021

 Email:
 hongkong@alsglobal.com

Mr Chan Rwok/Fai, Godfrey Laboratory Manager -Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 3

ADDRESS 11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong PHONE +852 2610 1044 FAX +852 2610 2021 ALS TECHNICHEM (HK) PTV LTD Part of the ALS Laboratory Group A Campbell Brothers Limited Company

Environmental

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: Date of Issue: Client: HK1115453 13/07/2011 LAM GEOTECHNICS LIMITED

Description:	YSI Sonde		
Brand Name:	YSI		
Model No.:	YSI 600XL Sonde		
Serial No.:	05C1607		
Equipment No.:	EL424		
Date of Calibration:	11 July, 2011	Date of next Calibration:	11 October, 2011

Parameters:

	Expected Reading (uS/cm)	Displayed Reading (uS/cm)	Tolerance (%)
	146.9	156.0	6.2
	6667	6276	-5.9
	12890	12373	-4.0
	58670	55520	-5.4
		Tolerance Limit (%)	10.0
olved Oxygen	Method Ref: APHA (21st editio		
solveu oxygen	Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
	6.00	6.15	0.15
	6.91	7.11	0.15
	7.48	7.66	0.18
	7.48	7.00	0.18
		Tolerance Limit (±mg/L)	0.20
Value	Method Ref: ALPHA (21st edit Expected Reading (pH Unit)		0.20 Tolerance (pH unit
Value	Expected Reading (pH Unit)	ion), 4500H:B Displayed Reading (pH Unit)	Tolerance (pH unit
Value	Expected Reading (pH Unit) 4.00	ion), 4500H:B Displayed Reading (pH Unit) 4.05	
Value	Expected Reading (pH Unit)	ion), 4500H:B Displayed Reading (pH Unit)	Tolerance (pH unit 0.05
Value	Expected Reading (pH Unit) 4.00 7.00	ion), 4500H:B Displayed Reading (pH Unit) 4.05 7.08	Tolerance (pH unit 0.05 0.08
Value nity	Expected Reading (pH Unit) 4.00 7.00	ion), 4500H:B Displayed Reading (pH Unit) 4.05 7.08 10.01 Tolerance Limit (±unit)	Tolerance (pH unit 0.05 0.08 0.01
	Expected Reading (pH Unit) 4.00 7.00 10.0	ion), 4500H:B Displayed Reading (pH Unit) 4.05 7.08 10.01 Tolerance Limit (±unit)	Tolerance (pH unit 0.05 0.08 0.01
	Expected Reading (pH Unit) 4.00 7.00 10.0 Method Ref: APHA (21st edition Expected Reading (ppt)	ion), 4500H:B Displayed Reading (pH Unit) 4.05 7.08 10.01 Tolerance Limit (±unit) on), 2520B Displayed Reading (ppt)	Tolerance (pH unit 0.05 0.08 0.01 0.20 Tolerance (%)
	Expected Reading (pH Unit) 4.00 7.00 10.0 Method Ref: APHA (21st edition Expected Reading (ppt) 10.0	ion), 4500H:B Displayed Reading (pH Unit) 4.05 7.08 10.01 Tolerance Limit (±unit) on), 2520B Displayed Reading (ppt) 9.90	Tolerance (pH unit 0.05 0.08 0.01 0.20 Tolerance (%) -1.0
	Expected Reading (pH Unit) 4.00 7.00 10.0 Method Ref: APHA (21st edition Expected Reading (ppt)	ion), 4500H:B Displayed Reading (pH Unit) 4.05 7.08 10.01 Tolerance Limit (±unit) on), 2520B Displayed Reading (ppt)	Tolerance (pH unit 0.05 0.08 0.01 0.20 Tolerance (%)

Mr Chan Kwok Fai, Godfrey Laboratory Managek - Hong Kong

ALS Technichem (HK) Pty Ltd ALS Environmental

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: Date of Issue: Client: HK1115453 13/07/2011 LAM GEOTECHNICS LIMITED

Description:	YSI Sonde		
Brand Name:	YSI		
Model No.:	YSI 600XL Sonde		
Serial No.:	05C1607		
Equipment No.:	EL424		
Date of Calibration:	11 July, 2011	Date of next Calibration:	11 October, 2011

Parameters:

Temperature Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.9	10.95	0.0
23.5	23.50	0.0
35.5	36.24	0.7
	Tolerance Limit (°C)	2.0

Mr Chan Kwok Fai, Godfrey Laboratory Manager Hong Kong

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MS CHERRY MAK LAM GEOTECHNICS LIMITED CLIENT: ADDRESS: 11/F., CENTRE POINT, 181-185 GLOUCESTER ROAD. WAN CHAI, HONG KONG

WORK ORDER:	HK1118564
LABORATORY:	HONG KONG
DATE RECEIVED:	08/08/2011
DATE OF ISSUE:	10/08/2011

PROJECT:

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory. Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:	Turbidity
Description:	Turbidimeter
Brand Name:	HACH
Model No.:	2100P
Serial No.:	931000003861
Equipment No.:	EL148
Date of Calibration:	09 August, 2011

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre 1-3 Wing Yip Street Kwai Chung HONG KONG

Phone: Fax: Email:

852-2610 1044 852-2610 2021 hongkong@alsglobal.com

Mr Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

ADDRESS 11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong PHONE +852 2610 1044 FAX +852 2610 2021 ALS TECHNICHEM (HK) PTY LTD Part of the ALS Laboratory Group A Campbell Brothers Limited Company

Environmental 🕽

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: Date of Issue: Client: HK1118564 10/08/2011 LAM GEOTECHNICS LIMITED

Description:	Turbidimeter
Brand Name:	HACH
Model No.:	2100P
Serial No.:	931000003861
Equipment No.:	EL148
Date of Calibration:	09 August, 2011

Date of next Calibration:

09 November, 2011

Parameters:

Turbidity	Method Ref: ALPHA 21st Ed. 2	130B	
,	Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
	0.00	0.09	
	4.00	3.77	-5.8
	40.0	38.2	-4.5
	80.0	79.8	-0.3
	400	401	0.3
	800	827	3.4
		Tolerance Limit (±%)	10.0

Mr Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

Appendix 5.1

Monitoring Schedule for the Reporting Month and Coming Three Months

Water Quality Monitoring Schedule

September 2011

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
28-Aug	29-Aug	30-Aug	31-Aug	1-Sep	2-Sep	3-Sep
				Impact WQM		Impact WQM
				Mid-ebb: 14:33		Mid-flood: 10:20
				Mid-flood: 20:36		Mid-ebb: 16:11
4-Sep	5-Sep	6-Sep	7-Sep	8-Sep	9-Sep	10-Sep
	Impact WQM			Impact WQM		Impact WQM
	Mid-ebb: 6:08			Mid-ebb: 9:45		Mid-ebb: 11:08
	Mid-flood: 13:32			Mid-flood: 17:09	10.0	Mid-flood: 18:01
11-Sep	12-Sep	13-Sep	14-Sep	15-Sep	16-Sep	17-Sep
	Impact WQM		Impact WQM		Impact WQM	
	Mid-ebb: 12:19		Mid-ebb: 13:21		Mid-ebb: 14:21	
	Mid-flood: 18:47		Mid-flood: 19:31		Mid-flood: 20:15	
18-Sep	19-Sep	20-Sep	21-Sep	22-Sep	23-Sep	24-Sep
	Impact WQM		Impact WQM	Impact WQM		Impact WQM
	Mid-ebb: 3:46		Mid-flood: 19:07			Mid-ebb: 9:38
	Mid-flood: 10:59			Mid-ebb: 7:47		Mid-flood: 16:45
25-Sep	26-Sep	27-Sep	28-Sep	29-Sep	30-Sep	1-Oct
	Impact WQM		Impact WQM		Impact WQM	
	Mid-ebb: 11:16		Mid-ebb: 12:46		Mid-ebb: 14:15	
	Mid-flood: 17:38		Mid-flood: 18:46		Mid-flood: 19:58	

Notes:
1. Water Quality Monitoring for 6 water quality monitoring stations:WSD9, WSD10, WSD15, WSD17, WSD19 and WSD21
2. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.
3. Cut-off day is the end of day of each month.
4. Due to the Typhoon signal no. 3, the water monitoring on 28 Sep at mid-flood was cancelled.

Tentative Water Quality Monitoring Schedule

October 2011

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
25-Sep	26-Sep	27-Sep	28-Sep	29-Sep	30-Sep	1-Oct
2-Oct	3-Oct	4-Oct	5-Oct	6-Oct	7-Oct	8-Oct
	Impact WQM			Impact WQM		Impact WQM
	Mid-ebb: 4:23			Mid-ebb: 8:13		Mid-flood: 16:49
	Mid-flood: 11:44			Mid-flood: 15:50		Mid-ebb: 22:42
9-Oct	10-Oct	11-Oct	12-Oct	13-Oct	14-Oct	15-Oct
1	Impact WQM		Impact WQM		Impact WQM	
	Mid-ebb: 11:17		Mid-ebb: 12:22		Mid-ebb: 13:21	
	Mid-flood: 17:37		Mid-flood: 18:19		Mid-flood: 18:59	
16-Oct	17-Oct	18-Oct	19-Oct	20-Oct	21-Oct	22-Oct
	Impact WQM		Impact WQM	Impact WQM		Impact WQM
	Mid-ebb: 2:13		Mid-flood: 16:22			Mid-ebb: 8:03
	Mid-flood: 9:47	05.0+	00.0-4	Mid-ebb: 4:59	00.0-4	Mid-flood: 15:16
23-Oct	24-Oct	25-Oct	26-Oct	27-Oct	28-Oct	29-Oct
	Impact WQM		Impact WQM		Impact WQM	
	Mid-flood: 16:21		Mid-ebb: 11:40		Mid-ebb: 13:15	
30-Oct	Mid-ebb: 22:31 31-Oct	1-Nov	Mid-flood: 17:31 2-Nov	3-Nov	Mid-flood: 18:46 4-Nov	5-Nov
50-001	51-00	1-1100	2-1100	5-1400	4-1107	5-1100
	Impact WQM	Impact WQM	Impact WQM	Impact WQM		Impact WQM
	Mid-flood: 10:21	Mid-ebb: 4:01	Mid-flood: 22:30			Mid-flood: 15:24
				Mid-ebb: 6:01		Mid-ebb: 21:36

Notes: 1. Water Quality Monitoring for 6 water quality monitoring stations:WSD9, WSD10, WSD15, WSD17, WSD19 and WSD21 2. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition. 3. Cut-off day is the end of day of each month.

Tentative Water Quality Monitoring Schedule

November 2011

у	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
)-Oct	31-Oct	1-Nov	2-Nov	3-Nov	4-Nov	5-Nov
		Impact WQM		Impact WQM		Impact WQM
						Mid-flood: 15:24
		Mid-flood: 11:31		Mid-flood: 14:04		Mid-ebb: 21:36
i-Nov	7-Nov	8-Nov	9-Nov	10-Nov	11-Nov	12-Nov
	Impact WQM		Impact WQM		Impact WQM	
	•		Mid-flood: 17:07		Mid-flood: 17:47	Mid-ebb: 0:39
	Mid-flood: 16:24		Mid-ebb: 23:47			
-Nov	14-Nov	15-Nov	16-Nov	17-Nov	18-Nov	19-Nov
	Impact WQM		Impact WQM		Impact WQM	Impact WQM
	Mid-ebb: 1:20		Mid-ebb: 2:35			Mid-ebb: 5:35
	Mid-flood: 8:51		Mid-flood: 10:37		Mid-flood: 12:37	
-Nov	21-Nov	22-Nov	23-Nov	24-Nov	25-Nov	26-Nov
	Impact WQM		Impact WQM		Impact WQM	
			Mid-ebb: 10:30		•	
	Mid-ebb: 21:22		Mid-flood: 16:15		Mid-flood: 17:36	
-Nov	28-Nov	29-Nov	30-Nov	1-Dec	2-Dec	3-Dec
	Impact WOM		Impact W/OM		Impact WOM	Impact WQM
	•		•		•	Mid-ebb: 5:47
					Mia 11000. 12.44	NIG 600. 01
	-Nov -Nov	-Nov 7-Nov Impact WQM Mid-ebb: 10:06 Mid-flood: 16:24 -Nov 14-Nov Impact WQM Mid-ebb: 1:20 Mid-flood: 8:51 -Nov 21-Nov Impact WQM Mid-flood: 14:58 Mid-ebb: 21:22	D-Oct 31-Oct 1-Nov Impact WQM Mid-ebb: 4:01 Mid-flood: 11:31 -Nov 7-Nov 8-Nov Impact WQM Mid-flood: 11:31 15-Nov -Nov 14-Nov 15-Nov Impact WQM Mid-flood: 16:24 15-Nov -Nov 14-Nov 15-Nov Impact WQM Mid-flood: 8:51 120 -Nov 21-Nov 22-Nov Impact WQM Mid-flood: 14:58 14:58 Mid-flood: 14:58 Mid-flood: 14:58 29-Nov Impact WQM 15:Nov 29-Nov	D-Oct 31-Oct 1-Nov 2-Nov Impact WQM Mid-ebb: 4:01 Mid-flood: 11:31 1-Nov -Nov 7-Nov 8-Nov 9-Nov Impact WQM Impact WQM Mid-flood: 17:07 Mid-flood: 16:24 Mid-flood: 17:07 Mid-flood: 17:07 -Nov 14-Nov 15-Nov 16-Nov Impact WQM Impact WQM Mid-ebb: 2:35 Mid-flood: 8:51 Mid-flood: 10:37 -Nov 21-Nov 22-Nov Impact WQM Impact WQM Mid-flood: 14:58 Mid-flood: 16:15 Mid-flood: 14:58 Mid-flood: 16:15 -Nov 28-Nov 29-Nov Impact WQM Impact WQM Mid-flood: 16:15 30-Nov Impact WQM Impact WQM Mid-flood: 14:58 Mid-flood: 16:15 -Nov 28-Nov 29-Nov Impact WQM Impact WQM Mid-ebb: 1:59 Impact WQM	-Oct 31-Oct 1-Nov 2-Nov 3-Nov Impact WQM Impact WQM Impact WQM Impact WQM Mid-ebb: 4:01 Mid-ebb: 6:01 Mid-flood: 11:31 Mid-flood: 14:04 -Nov 7-Nov 8-Nov 9-Nov 10-Nov Impact WQM Impact WQM Impact WQM Mid-flood: 17-Nov Impact WQM Impact WQM Mid-flood: 17-Nov Impact WQM 15-Nov 16-Nov 17-Nov Impact WQM Impact WQM Mid-ebb: 2:35 Mid-flood: 1:20 Mid-flood: 10:37 -Nov 21-Nov 22-Nov 23-Nov 24-Nov Impact WQM Impact WQM Mid-flood: 16:15 -Nov 21-Nov 22-Nov 23-Nov 24-Nov Impact WQM Impact WQM Mid-flood: 16:15 -Nov 28-Nov 29-Nov 30-Nov 1-Dec Impact WQM Impact WQM Mid-flood: 16:15 -Nov 28-Nov 29-Nov 30-Nov 1-Dec	JOCt 31-Oct 1-Nov 2-Nov 3-Nov 4-Nov Impact WQM Impact WQM Impact WQM Impact WQM Mid-ebb: 6:01 Mid-flood: 11:31 Mid-flood: 14:04 -Nov 7-Nov 8-Nov 9-Nov 10-Nov 11-Nov Impact WQM Impact WQM Impact WQM Impact WQM Impact WQM Mid-flood: 11:31 Impact WQM Impact WQM Impact WQM Impact WQM Impact WQM Impact MQM Impact WQM Impact WQM Impact WQM Mid-flood: 16:24 15-Nov 16-Nov 17-Nov 18-Nov Impact WQM Impact WQM Impact WQM Impact WQM Impact WQM Mid-flood: 16:24 Mid-flood: 10:37 Mid-flood: 12:37 Mid-flood: 12:37 -Nov 21-Nov 22-Nov 23-Nov 24-Nov 25-Nov Impact WQM Impact WQM Mid-flood: 10:37 Mid-flood: 12:37 Mid-flood: 12:37 -Nov 21-Nov 22-Nov 23-Nov 24-Nov 25-Nov Impact WQM Mid-f

Notes: 1. Water Quality Monitoring for 6 water quality monitoring stations:WSD9, WSD10, WSD15, WSD17, WSD19 and WSD21 2.Actual monitoring will be subjected to change due to any safety concern or adverse weather condition. 3. Cut-off day is the end of day of each month.

Tentative Water Quality Monitoring Schedule

December 2011

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
27-Nov	28-Nov	29-Nov	30-Nov	1-Dec	2-Dec	3-Dec
	Impact WQM		Impact WQM		Impact WQM	Impact WQM
	Mid-ebb: 1:59		Mid-ebb: 3:31		Mid-flood: 12:44	Mid-ebb: 5:47
	Mid-flood: 9:16		Mid-flood: 10:59			
4-Dec	5-Dec	6-Dec	7-Dec	8-Dec	9-Dec	10-Dec
	Impact WQM		Impact WQM		Impact WQM	
	Mid-flood: 14:47		Mid-flood: 15:45		Mid-flood: 16:37	
	Mid-ebb: 21:53		Mid-ebb: 22:58		Mid-ebb: 23:52	
11-Dec	12-Dec	13-Dec	14-Dec	: 15-Dec	16-Dec	17-Dec
		Impact WQM		Impact WQM		Impact WQM
		Mid-ebb: 1:21		Mid-ebb: 2:26		Mid-ebb: 3:49
		Mid-flood: 8:41		Mid-flood: 10:09		Mid-flood: 11:45
18-Dec	19-Dec	20-Dec	21-Dec	22-Dec	23-Dec	24-Dec
	Impact WQM		Impact WQM		Impact WQM	
	Mid-flood: 13:20		Mid-flood: 14:53		Mid-flood: 16:27	
	Mid-ebb: 19:58		Mid-ebb: 21:54		Mid-ebb: 23:30	
25-Dec	26-Dec	27-Dec	28-Dec	: 29-Dec	30-Dec	31-Dec
	Impact WQM		Impact WQM	Impact WQM		Impact WQM
	Mid-ebb: 1:03		Mid-flood: 20:11	Mid-ebb: 3:00		Mid-ebb: 4:01
	Mid-flood: 8:17					Mid-flood: 11:34

Notes:

1. Water Quality Monitoring for 6 water quality monitoring stations: WSD9, WSD10, WSD15, WSD17, WSD21, WSD19

2. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.

3. Cut-off day is the end of day of each month.

4. If there is no marine works conducted between 25-27 December 2011, the water quality monitoring on 26 December will be cancelled.

Appendix 5.2

Water Quality Monitoring Results and Graphical Presentation

Date	Time	Weater Condition		ig Depth	Wat	er Temp °C	erature		pН			Salinit ppt	İy	D	O Satur %	ation		DO mg/L			Turbid NTU		Suspende	
		Contaition	r	n	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	alue	Average	Value	Average
01/09/2011	20:03	Cloudy	Middle	2	26.38	26.38	26.38	7.36	7.36	7.36	32.64	32.64	32.64	84.7	84.6	84.6	5.68	5.67	5.67	4.49	4.60	4.55	8	7.0
	20:04		Middle	2	26.38	26.38		7.36	7.36		32.64	32.64		84.6	84.5		5.67	5.66		4.58	4.53		6	
03/09/2011	08:43 08:46	Rainy	Middle	3	25.70 25.70	25.70 25.70	25.70	7.96 7.98	7.96 7.98	7.97	33.15 33.15	33.15 33.15	33.15	73.0 73.3	71.5 72.0	72.5	4.93 4.96	4.83	4.90	3.05 3.49	3.11 3.23	3.22	6	7.0
			Middle															4.87						
05/09/2011	13:23	Cloudy	Middle	2	27.60	27.60	27.70	7.95	7.95	7.96	33.29	33.29	33.29	74.8	73.8	74.4	4.88	4.81	4.85	2.16	2.39	2.26	4	4.0
	13:25		Middle	2	27.80	27.80		7.96	7.96		33.29	33.29		75.4	73.7		4.92	4.80		2.21	2.27		4	
08/09/2011	18:22	Fine	Middle	2	27.33	27.33	27.34	7.35	7.35	7.36	32.45	32.45	32.45	93.2	93.1	93.1	6.15	6.15	6.15	3.65	4.20	4.04	8	8.0
	18:24		Middle	2	27.34	27.34		7.36	7.36		32.45	32.45		93.1	93.0		6.15	6.14		4.11	4.18		8	
10/09/2011	17:16	Fine	Middle	2	27.73	27.73	27.73	7.23	7.23	7.23	32.36	32.36	32.36	93.7	93.7	93.7	6.16	6.15	6.16	3.62	3.28	3.38	8	7.5
10/00/2011	17:17	1 110	Middle	2	27.73	27.73	21.10	7.23	7.23	1.20	32.36	32.36	02.00	93.7	93.7	50.7	6.16	6.15	0.10	3.30	3.32	0.00	7	1.0
12/09/2011	18:11	Cloudy	Middle	2	28.49	28.49	28.50	7.56	7.56	7.56	32.36	32.36	32.36	92.5	92.4	92.4	6.00	5.99	5.99	4.46	4.72	4.65	6	5.5
12/09/2011	18:12	Cloudy	Middle	2	28.50	28.50	20.30	7.56	7.56	7.50	32.36	32.36	32.30	92.3	92.2	92.4	5.98	5.98	5.99	4.82	4.60	4.05	5	5.5
1.1/00/00.1.1	18:46		Middle	2	29.04	29.04		7.42	7.42	7.40	32.28	32.28		92.6	92.6		5.96	5.96	5.00	5.26	4.94	4.00	8	
14/09/2011	18:46	Cloudy	Middle	2	29.04	29.04	29.04	7.42	7.42	7.42	32.28	32.28	32.28	92.5	92.6	92.6	5.95	5.95	5.96	4.73	4.78	4.93	6	7.0
16/09/2011	19:19	Claudu	Middle	2	28.87	28.87	20.07	7.71	7.71	7 74	31.97	31.97	21.07	78.0	77.8	77.0	5.04	5.03	E 02	4.67	4.62	4.54	6	7.0
16/09/2011	19:20	Cloudy	Middle	2	28.87	28.87	28.87	7.71	7.71	7.71	31.97	31.97	31.97	77.7	77.6	77.8	5.03	5.02	5.03	4.47	4.27	4.51	8	7.0
19/09/2011	09:41	Fine	Middle	3	28.20	28.20	20.40	8.16	8.16	8.17	32.83	32.83	22.02	85.6	84.2	05.0	5.57	5.47	E E 4	5.79	5.53	5 50	9	9.0
19/09/2011	09:44	Fine	Middle	3	28.10	28.20	28.18	8.17	8.17	0.17	32.83	32.83	32.83	86.4	84.8	85.3	5.62	5.51	5.54	5.59	5.42	5.58	9	9.0
01/00/0011	18:15		Middle	2	28.45	28.45	00.45	7.60	7.60	7.00	32.63	32.61		75.4	75.4		4.89	4.89	1.00	5.60	5.41	5.40	8	
21/09/2011	18:16	Cloudy	Middle	2	28.45	28.45	28.45	7.60	7.60	7.60	32.61	32.61	32.62	75.4	75.4	75.4	4.89	4.89	4.89	5.38	5.33	5.43	10	9.0
0.4/00/00.44	15:13	0	Middle	3	28.10	28.10	00.40	8.16	8.16	0.40	32.50	32.50	00.45	90.2	90.1		7.04	7.03	7.00	5.52	5.53	5.40	6	
24/09/2011	15:16	Cloudy	Middle	3	28.10	28.10	28.10	8.16	8.16	8.16	32.40	32.40	32.45	89.7	89.8	90.0	7.01	7.01	7.02	5.42	5.44	5.48	8	7.0
00/00/0011	16:40	0	Middle	3	27.87	27.87	07.04	7.27	7.27	7.07	32.59	32.59	00.50	76.5	76.5	70.5	5.01	5.01	5.04	4.72	4.82	4.50	8	
26/09/2011	16:41	Cloudy	Middle	3	27.81	27.81	27.84	7.27	7.27	7.27	32.59	32.59	32.59	76.5	76.5	76.5	5.01	5.01	5.01	4.47	4.22	4.56	10	9.0
20/00/2014	-	Typhoon	Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
28/09/2011	-	no.3	Middle	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-	
20/00/0014	19:10	Classific	Middle	2	27.87	27.88	07.00	7.73	7.73	7 70	32.51	32.51	20.54	74.6	74.5	74.5	4.89	4.87	4.00	7.13	7.75	7.00	7	75
30/09/2011	19:11	Cloudy	Middle	2	27.88	27.89	27.88	7.73	7.73	7.73	32.51	32.51	32.51	74.5	74.5	74.5	4.87	4.87	4.88	7.47	7.18	<u>7.38</u>	8	7.5

Water Monitoring Result at WSD10 - Cha Kwo Ling Mid-Flood Tide

Date	Time	Weater Condition	Samplin	· ·	Wat	er Temp °C	erature		pН			Salinit ppt	ty	D	O Satur	ation		DO mg/L			Turbid NTU		Suspende	
		Contaition	n	n	Va	lue	Average	Va	lue	Average	Va	ilue	Average	Va	lue	Average	Va	lue	Average	Va		Average		Average
01/09/2011	19:00	Cloudy	Middle	2	26.64	26.64	26.63	7.39	7.39	7.39	32.14	32.14	32.14	81.1	81.0	81.0	5.42	5.41	5.41	6.23	6.41	6.20	12	<u>12.5</u>
	19:01		Middle	2	26.63	26.62		7.38	7.38		32.13	32.13		80.9	80.9		5.41	5.40		6.09	6.07		13	
03/09/2011	09:21	Rainy	Middle	3	25.70	25.70	25.75	8.01	8.01	8.01	33.37	33.37	33.38	70.0	68.9	69.8	4.72	4.65	4.71	5.04	5.06	4.91	7	6.5
	09:24		Middle	3	25.80	25.80		8.00	8.00		33.38	33.38		70.7	69.6		4.77	4.69		4.97	4.55		6	
05/09/2011	13:51	Cloudy	Middle	2	27.40	27.40	27.50	8.02	8.02	8.03	33.66	33.66	33.65	86.5	85.5	86.0	5.66	5.60	5.63	6.18	5.57	5.68	9	<u>9.5</u>
	13:54	,	Middle	2	27.60	27.60		8.03	8.03		33.64	33.64		86.9	84.9		5.69	5.55		5.61	5.37		10	
08/09/2011	16:22	Fine	Middle	2	28.85	28.85	28.85	7.23	7.23	7.23	31.93	31.93	31.93	80.6	80.6	80.6	5.21	5.21	5.21	3.28	3.07	3.10	6	6.0
00/00/2011	16:25	1 110	Middle	2	28.85	28.85	20.00	7.23	7.23	1.20	31.93	31.93	01.00	80.6	80.5	00.0	5.20	5.20	0.21	3.09	2.95	0.10	6	0.0
40/00/0044	16:30	Fire	Middle	2	28.42	28.42	00.40	7.43	7.43	7.40	32.12	32.12	00.40	77.8	77.8	77.0	5.06	5.06	5.00	3.47	3.48	0.40	6	
10/09/2011	16:31	Fine	Middle	2	28.42	28.42	28.42	7.43	7.43	7.43	32.12	32.12	32.12	77.8	77.8	77.8	5.06	5.06	5.06	3.31	3.41	3.42	5	5.5
10/00/0011	17:30	0	Middle	2	29.22	29.22	00.00	7.41	7.41		30.69	30.69		65.1	65.1	05.4	4.21	4.21		5.94	6.03	5.04	9	
12/09/2011	17:31	Cloudy	Middle	2	29.22	29.22	29.22	7.41	7.41	7.41	30.69	30.69	30.69	65.1	65.1	65.1	4.21	4.21	4.21	5.69	5.97	5.91	9	9.0
	18:00		Middle	2	29.61	29.61		7.43	7.43		31.05	31.05		70.4	70.4		4.51	4.51		4.18	4.31		7	
14/09/2011	18:01	Cloudy	Middle	2	29.62	29.62	29.62	7.43	7.43	7.43	31.05	31.05	31.05	70.1	70.1	70.3	4.50	4.50	4.51	4.39	4.30	4.30	5	6.0
	18:45		Middle	2	29.74	29.74		7.70	7.70		31.26	31.26		60.6	61.2		3.86	3.92		6.05	6.09		8	
16/09/2011	18:46	Cloudy	Middle	2	29.74	29.74	29.74	7.70	7.70	7.70	31.26	31.26	31.26	61.3	61.4	61.1	3.92	3.93	3.91	6.06	6.04	6.06	8	8.0
10/00/0011	10:15	_ :	Middle	3	29.00	29.00	00.05	8.23	8.23		32.68	32.68		85.5	84.2	05.0	5.47	5.38	5.40	5.99	6.07	0.40	9	
19/09/2011	10:18	Fine	Middle	3	29.10	29.10	29.05	8.23	8.23	8.23	32.68	32.68	32.68	86.5	83.6	85.0	5.53	5.34	5.43	6.14	6.27	6.12	7	8.0
	17:30		Middle	2	29.16	29.16		7.59	7.59		31.08	31.08		71.0	71.0		4.60	4.60		5.22	5.38		9	
21/09/2011	17:31	Cloudy	Middle	2	29.16	29.16	29.16	7.59	7.59	7.59	31.08	31.08	31.08	70.9	71.0	71.0	4.60	4.60	4.60	5.28	5.39	5.32	8	8.5
	15:41		Middle	3	28.00	28.00		8.21	8.21		32.60	32.60		94.3	94.0		6.12	6.10		6.14	6.11		5	
24/09/2011	15:44	Cloudy	Middle	3	28.10	28.10	28.05	8.21	8.21	8.21	32.60	32.60	32.60	93.8	93.6	93.9	6.08	6.07	6.09	6.20	6.25	6.18	7	6.0
	16:00		Middle	2	28.95	28.95		7.20	7.20		31.38	31.38		70.8	70.7		4.61	4.60		6.22	6.14		10	
26/09/2011	16:01	Cloudy	Middle	2	28.92	28.92	28.94	7.20	7.20	7.20	31.38	31.38	31.38	70.7	70.7	70.7	4.60	4.60	4.60	6.20	6.21	6.19	9	<u>9.5</u>
20/00/2011	-	Typhoon	Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
28/09/2011	-	no.3	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	18:30		Middle	2	28.89	28.89		7.63	7.63		30.32	30.32		83.0	83.0		5.41	5.41		30.80	29.80		44	
30/09/2011	18:31	Cloudy	Middle	2	28.89	28.89	28.89	7.63	7.63	7.63	30.32	30.32	30.32	83.0	83.0	83.0	5.41	5.41	5.41	31.60	31.30	<u>30.88</u>	43	<u>43.5</u>

Water Monitoring Result at WSD15 - Sai Wan Ho Mid-Flood Tide

Date	Time	Weater Condition	Samplin	* .	Wate	er Temp °C	erature		pH -			Salinit ppt	y	D	O Satur	ation		DO ma/L			Turbid NTU		Suspende	
		Condition	n	n	Va	lue	Average	Va	lue	Average	Va		Average	Va	lue	Average	Va	lue	Average	Va		Average		Average
01/09/2011	22:09	Cloudy	Middle	3	26.03	26.03	26.04	7.38	7.38	7.38	32.96	32.96	32.96	86.2	86.2	86.2	5.80	5.80	5.80	3.23	3.45	3.29	7	6.5
	22:10		Middle	3	26.03	26.05		7.38	7.38		32.96	32.96		86.1	86.1		5.79	5.79		3.30	3.19		6	
03/09/2011	09:48	Rainy	Middle	3	26.00	26.00	26.05	7.97	7.97	7.98	33.06	33.06	33.06	58.8	57.8	58.8	3.96	3.89	3.95	2.27	2.32	2.30	11	8.0
	09:51		Middle	3	26.10	26.10		7.98	7.98		33.06	33.06		59.9	58.5		4.02	3.94		2.34	2.25		5	
05/09/2011	14:21	Cloudy	Middle	3	28.30	28.30	28.40	8.01	8.01	8.02	33.53	33.53	33.54	71.8	72.8	72.5	4.59	4.66	4.64	1.41	1.27	1.34	6	6.0
	14:24		Middle	3	28.50	28.50		8.02	8.02		33.54	33.54		73.1	72.2		4.67	4.62		1.35	1.33		6	
08/09/2011	17:20	Fine	Middle	3	27.70	27.70	27.70	8.19	8.19	8.19	33.50	33.50	33.51	91.5	90.6	91.4	5.97	5.91	5.96	3.60	3.56	3.62	7	6.0
	17:23		Middle	3	27.70	27.70		8.19	8.19		33.51	33.51		92.2	91.1		6.01	5.94		3.38	3.93		5	
10/09/2011	19:38	Fine	Middle	3	27.78	27.78	27.78	7.71	7.71	7.71	32.95	32.95	32.95	95.6	95.5	95.4	6.25	6.25	6.24	3.21	2.87	2.86	4	5.0
10/03/2011	19:39	TING	Middle	3	27.78	27.78	21.10	7.71	7.71	7.71	32.95	32.95	52.55	95.2	95.1	35.4	6.23	6.22	0.24	2.74	2.60	2.00	6	5.0
12/09/2011	20:33	Cloudy	Middle	3	28.33	28.33	28.33	7.83	7.83	7.83	32.59	32.59	32.59	76.7	76.7	76.7	4.99	4.98	4.98	2.73	2.62	2.64	6	6.0
12/09/2011	20:34	Cloudy	Middle	3	28.33	28.33	20.33	7.83	7.83	7.03	32.59	32.59	32.39	76.6	76.6	70.7	4.98	4.97	4.90	2.62	2.60	2.04	6	0.0
14/00/0011	21:08	Olaustu	Middle	3	28.72	28.72	00.70	7.69	7.69	7.00	32.43	32.43	00.40	86.3	86.2	00.0	5.57	5.57	5 50	5.50	5.34	5.07	14	40.5
14/09/2011	21:09	Cloudy	Middle	3	28.72	28.72	28.72	7.69	7.69	7.69	32.43	32.43	32.43	86.1	86.0	86.2	5.56	5.55	5.56	5.27	4.98	5.27	7	10.5
10/00/0011	21:50	Olavata	Middle	3	28.86	28.86	00.00	7.84	7.84	7.04	32.31	32.31	00.04	74.8	74.7	74.7	4.82	4.81	4.04	4.49	5.00	4.04	8	
16/09/2011	21:51	Cloudy	Middle	3	28.86	28.86	28.86	7.84	7.84	7.84	32.31	32.31	32.31	74.6	74.5	74.7	4.81	4.80	4.81	4.68	4.38	4.64	8	8.0
19/09/2011	10:49	Fine	Middle	3	28.70	28.70	28.70	8.26	8.26	8.26	33.11	33.11	33.11	89.6	88.4	89.1	5.77	5.70	5.74	5.07	5.24	5.17	7	7.5
19/09/2011	10:52	Fille	Middle	3	28.70	28.70	28.70	8.25	8.25	8.20	33.10	33.10	33.11	90.0	88.5	69.1	5.80	5.70	5.74	5.19	5.16	5.17	8	7.5
04/00/0044	20:33		Middle	3	28.30	28.30		7.78	7.78		31.05	31.05	04.05	76.4	76.4	70.4	5.01	5.01	5.04	3.38	3.33	0.00	5	5.0
21/09/2011	20:34	Cloudy	Middle	3	28.30	28.30	28.30	7.78	7.78	7.78	31.05	31.05	31.05	76.3	76.3	76.4	5.00	5.00	5.01	3.20	3.19	3.28	5	5.0
0.4/00/00.44	16:33	0	Middle	2	27.20	27.20	07.45	8.32	8.32		33.62	33.62		93.0	92.7		6.12	6.10	0.00	4.90	5.09		8	
24/09/2011	16:36	Cloudy	Middle	2	27.10	27.10	27.15	8.33	8.33	8.33	33.63	33.63	33.63	93.1	90.8	92.4	6.13	5.97	6.08	5.56	6.08	5.41	6	7.0
	19:07		Middle	3	27.52	27.52		7.79	7.79		33.09	33.09		74.7	74.5		4.91	4.89		5.27	5.20		10	
26/09/2011	19:08	Cloudy	Middle	3	27.52	27.52	27.52	7.79	7.79	7.79	33.09	33.09	33.09	74.4	74.4	74.5	4.88	4.88	4.89	5.33	5.52	5.33	9	9.5
00/00/0014	-	Typhoon	Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
28/09/2011	-	no.3	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
00/00/0011	20:40		Middle	3	27.89	27.89	07.00	7.72	7.72		32.96	32.96		89.2	69.2		4.52	4.52		17.20	17.30	17.00	20	10.5
30/09/2011	20:41	Cloudy	Middle	2.5	27.90	27.90	27.90	7.73	7.73	7.73	32.95	32.95	32.96	69.0	68.9	74.1	4.50	4.50	4.51	17.40	17.20	<u>17.28</u>	19	<u>19.5</u>

Water Monitoring Result at WSD17 - Quarry Bay Mid-Flood Tide

Date	Time	Weater Condition	Samplin	· ·	Wat	er Temp °C	erature		pH -			Salinit ppt	y	D	O Satura %	ation		DO mg/L			Turbidi NTU		Suspende	
			r	n	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Value	Average
01/09/2011	21:38 21:39	Cloudy	Middle Middle	3	26.71 26.71	26.71 26.71	26.71	7.31 7.31	7.31 7.31	7.31	33.38 33.38	33.38 33.38	33.38	77.3 77.2	77.3 77.2	77.3	5.22 5.21	5.22 5.21	5.22	4.29 4.53	4.19 4.52	4.38	6	7.0
				-											1								-	<u> </u>
03/09/2011	10:05 10:08	Rainy	Middle Middle	3	25.70 25.60	25.70 25.60	25.65	8.00 8.00	8.00 8.00	8.00	33.33 33.32	33.33 33.32	33.33	58.5 58.9	57.2 57.5	58.0	3.94 3.97	3.85 3.89	3.91	4.04 3.84	3.99 4.01	3.97	7	6.5
	14:46		Middle	2	27.80	27.80		7.97	7.97		33.18	33.18		72.8	71.8		4.74	4.67		3.27	3.34		6	<u> </u>
05/09/2011	14:49	Cloudy	Middle	2	27.90	27.90	27.85	7.97	7.97	7.97	33.21	33.21	33.20	73.7	72.8	72.8	4.79	4.73	4.73	3.36	3.23	3.30	4	5.0
	17:43		Middle	3	27.30	27.30		8.21	8.21		33.55	33.55		90.2	89.6		5.92	5.89		2.85	2.92		6	
08/09/2011	17:46	Fine	Middle	3	27.40	27.40	27.35	8.21	8.21	8.21	33.55	33.55	33.55	90.3	88.2	89.6	5.92	5.79	5.88	3.14	2.84	2.94	5	5.5
40/00/0044	19:11	-	Middle	3	27.83	27.83	07.04	7.61	7.61	7.04	32.86	32.86		93.0	93.0		6.07	6.07	0.07	4.22	3.68	0.00	6	
10/09/2011	19:12	Fine	Middle	3	27.85	27.85	27.84	7.61	7.61	7.61	32.86	32.86	32.86	92.9	92.9	93.0	6.07	6.07	6.07	3.74	3.88	3.88	6	6.0
12/09/2011	20:07	Cloudy	Middle	3	28.35	28.36	28.36	7.71	7.71	7.72	32.53	32.53	32.53	90.0	89.9	89.9	5.82	5.82	5.82	4.72	4.83	4.75	9	9.5
12/09/2011	20:08	Cloudy	Middle	3	28.36	28.36	20.30	7.72	7.72	1.12	32.53	32.53	32.03	89.8	89.7	69.9	5.81	5.81	5.62	4.67	4.76	4.75	10	9.5
14/09/2011	20:25	Cloudy	Middle	3	28.71	28.71	28.71	7.71	7.71	7.71	32.24	32.24	32.24	87.0	87.0	87.0	5.62	5.61	5.61	5.07	5.35	5.45	7	9.5
14/00/2011	20:26	Cloudy	Middle	3	28.71	28.71	20.71	7.71	7.71		32.24	32.24	02.24	87.0	86.9	01.0	5.61	5.61	0.01	5.61	5.78	0.40	12	0.0
16/09/2011	21:11	Cloudy	Middle	3	28.86	28.86	28.86	7.80	7.80	7.80	32.29	32.29	32.29	80.0	80.0	80.0	5.16	5.16	5.16	7.10	6.98	7.11	12	11.0
	21:12		Middle	3	28.86	28.86		7.80	7.80		32.29	32.29		80.0	80.0		5.16	5.16		7.34	7.03		10	
19/09/2011	11:17	Fine	Middle	3	28.90	28.90	28.90	8.21	8.21	8.21	32.96	32.96	32.96	82.1	81.4	82.1	5.27	5.22	5.27	9.25	8.85	8.92	15	<u>15.5</u>
	11:21		Middle	3	28.90	28.90		8.21	8.21		32.96	32.96		82.9	82.1		5.32	5.27		8.52	9.07		16	
21/09/2011	20:00	Cloudy	Middle	3	28.17	28.17	28.17	7.68	7.68	7.68	31.20	31.20	31.20	66.7	66.7	66.7	4.38	4.38	4.38	5.93	5.96	6.13	7	7.0
	20:01		Middle	3	28.17	28.17		7.68	7.68		31.19	31.19		66.7	66.7		4.38	4.38		6.23	6.40		7	<u> </u>
24/09/2011	16:40	Cloudy	Middle	2	27.20	27.20	27.25	8.29	8.29	8.29	33.51	33.51	33.52	87.4	87.7	87.9	5.75	5.77	5.78	8.48	8.98	8.80	13	<u>13.5</u>
	16:43		Middle	2	27.30	27.30		8.28	8.28		33.52	33.52		88.4	88.1		5.82	5.79		8.78	8.97		14	<u> </u>
26/09/2011	18:33	Cloudy	Middle	3	27.72	27.72	27.73	7.77	7.77	7.77	33.01	33.01	33.01	77.3	77.3	77.3	5.06	5.06	5.06	6.37	5.81	5.99	11	11.0
	18:34		Middle	3	27.73	27.73		7.77	7.77		33.01	33.01		77.2	77.2		5.06	5.06		5.94	5.83		11	<u> </u>
28/09/2011	-	Typhoon no.3	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	-	110.0	Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
30/09/2011	20:07	Cloudy	Middle	3	27.95	27.95	27.96	7.70	7.70	7.70	32.78	32.78	32.78	72.7	72.7	72.7	4.74	4.74	4.74	21.60	20.80	<u>20.98</u>	25	<u>24.5</u>
	20:08		Middle	2.5	27.96	27.96		7.70	7.70		32.78	32.78		72.7	72.7		4.74	4.74		20.70	20.80		24	

Water Monitoring Result at WSD21 - Wan Chai Mid-Flood Tide

Date	Time	Weater Condition		ng Depth	Wat	er Temp °C	erature		pH -			Salinit ppt	y	D	O Satura %	ation		DO mg/L			Turbid NTU		Suspende	
			r	n	Va	lue	Average	Va	lue	Average	Va		Average	Va	lue	Average	Va	lue	Average	Va	lue	Average		Average
01/09/2011	20:06	Cloudy	Middle	2	26.83	26.83	26.83	7.28	7.28	7.27	32.33	32.33	32.33	79.6	79.6	79.6	5.69	5.69	5.69	3.79	3.97	4.11	3 5	4.0
	20:07		Middle	2	26.83	26.83		7.26	7.26		32.33	32.33		79.5	79.5		5.68	5.68		4.36	4.31		5	<u> </u>
03/09/2011	10:53 10:56	Rainy	Middle Middle	2	26.40	26.40	26.35	7.67 7.67	7.67 7.67	7.67	30.99	30.99	31.00	82.0 77.6	79.8 77.4	79.2	6.54 6.18	6.34	6.31	3.24 3.17	3.28	3.23	3	4.0
	10:56		Middle	2	26.30 27.60	26.30 27.60		7.68	7.68		31.00 31.98	31.00 31.98		74.2	73.9		4.88	6.17 4.83		2.44	3.21 2.49		5 4	
05/09/2011	12:38	Cloudy	Middle	2	27.70	27.70	27.65	7.69	7.69	7.69	31.98	31.98	31.98	71.0	70.6	72.4	4.64	4.60	4.74	2.29	2.31	2.38	6	5.0
	17:40		Middle	2	27.90	27.90		7.72	7.72		32.10	32.10		74.8	74.0		4.91	4.84		3.56	3.67		4	
08/09/2011	17:45	Fine	Middle	2	27.90	27.90	27.90	7.72	7.72	7.72	32.11	32.11	32.11	73.2	72.6	73.7	4.93	4.82	4.88	3.60	3.73	3.64	6	5.0
	16:34		Middle	2	27.91	27.91		7.97	7.97		32.92	32.92		66.2	66.5		4.29	4.31		3.65	3.70		6	
10/09/2011	16:39	Fine	Middle	2	27.90	27.90	27.91	7.97	7.97	7.97	32.92	32.92	32.92	64.9	65.0	65.7	4.21	4.24	4.26	3.81	3.98	3.79	5	5.5
10/00/0011	19:27		Middle	2	25.80	25.80	05.00	7.84	7.84	7.04	32.00	32.00		97.0	97.0	07.4	6.58	6.58	0.50	4.70	4.47	4.55	7	
12/09/2011	19:28	Cloudy	Middle	2	25.80	25.80	25.80	7.84	7.84	7.84	32.00	32.00	32.00	97.1	97.1	97.1	6.59	6.59	6.59	4.62	4.40	4.55	7	7.0
14/09/2011	18:34	Cloudy	Middle	2	29.10	29.10	29.05	7.84	7.84	7.85	31.90	31.90	31.90	84.1	84.1	83.7	5.39	5.3.9	5.34	3.48	3.69	3.55	7	6.5
14/09/2011	18:35	Cloudy	Middle	2	29.00	29.00	29.05	7.85	7.85	7.05	31.90	31.90	31.90	83.2	83.2	03.7	5.32	5.32	5.54	3.45	3.58	3.55	6	0.5
16/09/2011	20:54	Cloudy	Middle	2	28.70	28.70	28.70	7.83	7.83	7.83	31.70	31.70	31.70	74.7	74.7	74.6	4.80	4.80	4.80	4.86	4.77	4.86	5	5.5
10/00/2011	20:55	Cloudy	Middle	2	28.70	28.70	20.10	7.83	7.83	1.00	31.70	31.70	01.70	74.5	74.5	14.0	4.79	4.79	4.00	4.65	5.17	4.00	6	0.0
19/09/2011	10:43	Fine	Middle	2	29.40	29.40	29.40	7.81	7.81	7.81	31.80	31.80	31.75	74.2	75.3	74.6	4.71	4.77	4.73	7.21	6.89	6.91	18	13.5
	10:46		Middle	2	29.40	29.40		7.81	7.81		31.70	31.70		74.1	74.7		4.70	4.75		6.54	7.01		9	
21/09/2011	18:54	Cloudy	Middle	2	27.13	27.13	27.13	7.67	7.67	7.67	32.42	32.42	32.42	70.0	70.0	70.0	4.64	4.65	4.65	5.27	5.21	5.29	7	7.5
	18:55		Middle	2	27.13	27.13		7.67	7.67		32.42	32.42		70.0	70.1		4.65	4.65		5.48	5.19		8	
24/09/2011	13:35	Cloudy	Middle	2	28.40	28.40	28.40	8.20	8.20	8.20	33.13	33.13	33.14	67.9	67.8	68.1	4.38	4.37	4.40	3.72	3.23	3.54	4	4.0
	13:38		Middle	2	28.40	28.40		8.19	8.19		33.14	33.14		68.2	68.5		4.41	4.43		3.54	3.68		4	<u> </u>
26/09/2011	17:00	Cloudy	Middle	2	28.10	28.10	28.11	8.20	8.21	8.21	33.27	33.27	33.27	77.0	75.5	76.3	5.00	4.89	4.95	5.00	4.98	4.90	8	9.0
	17:03		Middle	2	28.11	28.11		8.21	8.21		33.26	33.26		77.2	75.5		5.01	4.90		4.75	4.86		10	
28/09/2011	-	Typhoon no.3	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	-		Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	<u> </u>
30/09/2011	18:25	Cloudy	Middle	2	25.20	25.20	25.20	8.06	8.06	8.06	32.10	32.10	32.10	95.5	95.5	95.8	6.29	6.30	6.31	4.03	3.96	4.02	5	4.5
	18:26		Middle	2	25.20	25.20		8.06	8.06		32.10	32.10		96.0	96.0		6.32	6.32		3.98	4.09		4	

Water Monitoring Result at WSD19 - Sheung Wan Mid-Flood Tide

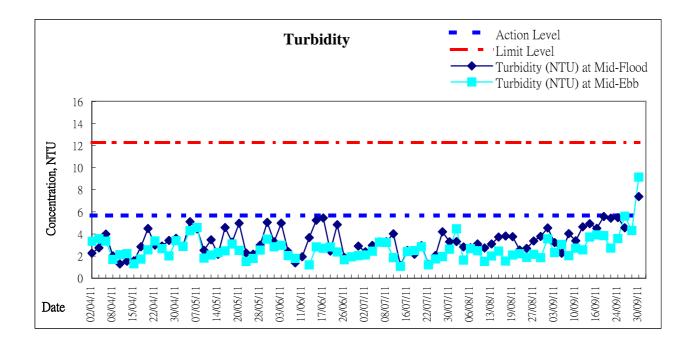
Date	Time	Weater Condition		ig Depth		er Temp °C			pH -			Salinit ppt	,		O Satur			DO mg/L			Turbid NTU		Suspende	g/L
			1		Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Value	Average
01/09/2011	20:56 20:57	Cloudy	Middle Middle	2	26.58 26.58	26.58 26.58	26.58	7.37 7.37	7.37 7.37	7.37	32.39 32.39	32.39 32.39	32.39	77.2 77.0	77.2 77.0	77.1	5.17 5.15	5.17 5.15	5.16	6.21 5.97	6.08 6.12	6.10	8 10	9.0
					1						1										1			
03/09/2011	10:59 11:02	Rainy	Middle	2	26.20 26.20	26.20 26.20	26.20	7.87 7.88	7.87 7.88	7.88	32.11 32.09	32.11 32.09	32.10	68.0 68.2	66.8 66.3	67.3	4.59 4.60	4.52 4.48	4.55	5.24 5.29	5.30 5.48	5.33	6	6.5
	12:17		Middle	2	27.40	27.40		7.91	7.91		32.90	32.90		73.1	74.8		4.78	4.89		5.55	5.38		7	<u> </u>
05/09/2011	12:30	Cloudy	Middle	2	27.60	27.60	27.50	7.91	7.91	7.91	32.90	32.90	32.90	73.5	71.7	73.3	4.81	4.69	4.79	5.94	5.80	5.67	7	7.0
	18:40		Middle	2	26.80	26.80		7.95	7.95		32.81	32.81		74.0	72.9		4.91	4.84		4.77	4.92		8	
08/09/2011	18:43	Fine	Middle	2	26.80	26.80	26.80	7.95	7.95	7.95	32.82	32.82	32.82	74.3	72.6	73.5	4.93	4.82	4.88	4.84	5.05	4.90	8	8.0
	18:13		Middle	2	27.87	27.87		7.28	7.28		32.16	32.16		78.5	78.4		5.15	5.14		5.42	6.30		8	
10/09/2011	18:14	Fine	Middle	2	27.86	27.86	27.87	7.28	7.28	7.28	32.16	32.16	32.16	78.4	78.4	78.4	5.14	5.14	5.14	5.74	6.03	5.87	8	8.0
12/00/2011	19:15	Claudu	Middle	2	28.08	28.08	28.00	7.39	7.39	7.39	32.23	32.23	22.22	74.1	74.0	74.0	4.84	4.83	4.04	7.20	6.52	7.40	11	10.0
12/09/2011	19:16	Cloudy	Middle	2	28.09	28.09	28.09	7.39	7.39	7.39	32.23	32.23	32.23	74.0	73.9	74.0	4.84	4.83	4.84	7.44	7.60	7.19	9	10.0
14/09/2011	19:40	Cloudy	Middle	2	28.41	28.41	28.41	7.28	7.28	7.28	31.93	31.93	31.93	76.5	76.5	76.4	4.98	4.98	4.97	7.53	7.92	7.72	13	12.5
14/09/2011	19:41	Cloudy	Middle	2	28.41	28.41	20.41	7.28	7.28	1.20	31.92	31.92	31.93	76.3	76.1	70.4	4.96	4.95	4.97	7.63	7.80	1.12	12	12.5
16/09/2011	20:13	Cloudy	Middle	2	28.51	28.51	28.51	7.51	7.51	7.51	31.81	31.81	31.81	66.7	66.6	66.6	4.33	4.33	4.33	6.74	6.38	6.47	9	8.5
	20:14		Middle	2	28.51	28.51		7.51	7.51		31.81	31.81		66.6	66.6		4.33	4.33		6.20	6.56		8	
19/09/2011	11:58	Fine	Middle	2	28.30	28.30	28.30	7.96	7.96	7.96	32.40	32.40	32.40	77.7	76.5	77.0	5.05	4.97	5.01	7.86	8.39	8.04	18	13.0
	12:01		Middle	2	28.30	28.30		7.95	7.95		32.39	32.39		77.4	76.4		5.04	4.97		7.92	7.99		8	<u> </u>
21/09/2011	19:10	Cloudy	Middle	2	27.79	27.79	27.79	7.78	7.78	7.78	32.41	32.41	32.41	66.0	65.9	65.9	4.33	4.32	4.32	5.04	4.85	5.14	10	9.0
	19:11		Middle	2	27.79	27.79		7.78	7.78		32.41	32.41		65.9	65.8		4.32	4.32		5.45	5.21		8	<u> </u>
24/09/2011	15:48	Cloudy	Middle	2	27.70	27.70	27.65	8.17	8.17	8.17	33.34	33.34	33.33	82.6	83.1	83.4	5.42	5.44	5.47	8.84	8.52	8.76	9	12.0
	15:51		Middle	2	27.60	27.60		8.16	8.16		33.32	33.32		84.1	83.6		5.52	5.48		8.87	8.80		15	<u> </u>
26/09/2011	17:39	Cloudy	Middle	2	28.05	28.05	28.06	7.47	7.47	7.47	32.66	32.66	32.66	65.7	65.7	65.7	4.28	4.28	4.28	6.51	6.95	6.64	12	11.0
	17:40		Middle	2	28.06	28.06		7.47	7.47		32.66	32.66		65.7	65.7		4.28	4.29		6.77	6.32		10	<u> </u>
28/09/2011	-	Typhoon no.3	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	-	10.0	Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	<u> </u>
30/09/2011	21:35	Cloudy	Middle	2	28.14	28.14	28.14	7.71	7.71	7.71	32.60	32.60	32.60	64.6	64.6	64.6	4.21	4.21	4.21	7.24	7.00	6.86	10	10.0
	21:36		Middle	1.5	28.14	28.14		7.71	7.71		32.60	32.60		64.6	64.5		4.21	4.20		6.64	6.56		10	

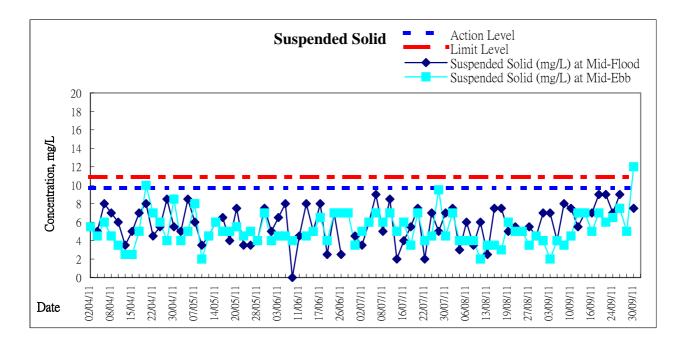
Date	Time	Weater	Samplin	g Depth	Wate	er Temp	erature		pН			Salinit	ty	D	O Satur	ation		DO			Turbid		Suspende	
Duito		Condition	m	n	Va	°C Ilue	Average	Va	- lue	Average	Va	ppt ilue	Average	Va	% lue	Average	Va	mg/L lue	Average	Va	NTU lue	Average	mg Value	g/L Average
	15:33		Middle	2	26.30	26.30		8.03	8.03		33.47	33.47	0	77.3	78.1		5.17	5.21		3.43	3.75		4	
01/09/2011	15:36	Fine	Middle	2	26.20	26.20	26.25	8.02	8.02	8.03	33.45	33.45	33.46	78.0	77.9	77.8	5.20	5.19	5.19	3.49	3.58	3.56	4	4.0
03/09/2011	16:37	Cloudy	Middle	2	26.60	26.60	26.70	8.04	8.04	8.05	33.12	33.12	33.11	79.1	76.0	78.6	5.27	5.06	5.23	2.21	2.38	2.32	<2	2.0
00/00/2011	16:40	cicady	Middle	2	26.80	26.80	20110	8.06	8.06	0.00	33.10	33.10	00.11	80.0	79.2	1010	5.33	5.27	0.20	2.44	2.26	2.02	2	2.0
05/09/2011	05:02	Cloudy	Middle	3	26.53	26.53	26.53	7.34	7.34	7.34	32.35	32.35	32.35	86.1	86.1	86.1	5.77	5.77	5.77	2.74	2.80	3.06	5	4.0
00/00/2011	05:03	Cloudy	Middle	3	26.53	26.53	20.00	7.34	7.34	1.04	32.35	32.35	02.00	86.1	86.1	00.1	5.77	5.77	0.77	3.40	3.28	0.00	3	4.0
08/09/2011	08:09	Fine	Middle	3	27.40	27.40	27.45	8.07	8.07	8.07	33.44	33.44	33.44	86.6	84.9	86.9	5.67	5.56	5.69	2.09	2.13	2.04	3	3.5
00/03/2011	08:12	Tine	Middle	3	27.50	27.50	27.43	8.07	8.07	0.07	33.44	33.44	55.44	88.2	87.7	00.0	5.78	5.74	3.03	1.91	2.02	2.04	4	5.5
10/09/2011	10:26	Fine	Middle	3	27.80	27.80	27.90	8.11	8.11	8.13	33.34	33.34	33.36	85.3	83.5	84.5	5.56	5.45	5.51	2.72	2.94	2.71	5	4.5
10/03/2011	10:29	Tine	Middle	3	28.00	28.00	27.50	8.14	8.14	0.15	33.37	33.37	55.50	85.1	84.0	04.0	5.55	5.49	0.01	2.51	2.68	2.71	4	4.5
12/09/2011	10:27	Fine	Middle	3	29.10	29.10	29.15	8.30	8.30	8.30	33.32	33.32	33.32	94.3	91.9	93.5	6.00	5.85	5.95	2.38	2.71	2.57	6	7.0
12/00/2011	10:30	Tine	Middle	3	29.20	29.20	20.10	8.30	8.30	0.00	33.31	33.31	00.02	95.1	92.6	00.0	6.05	5.90	0.00	2.54	2.63	2.07	8	1.0
14/09/2011	14:03	Fine	Middle	2	28.50	28.50	28.60	8.22	8.22	8.22	33.05	33.05	33.05	81.8	80.1	80.8	5.30	5.20	5.24	3.59	3.82	3.72	9	7.0
	14:06		Middle	2	28.70	28.70	20.00	8.21	8.21	0.22	33.05	33.05	00.00	81.6	79.7	00.0	5.29	5.15	0.2.1	3.70	3.77	0.12	5	
16/09/2011	13:50	Fine	Middle	2	29.30	29.30	29.35	8.18	8.18	8.19	32.91	32.91	32.91	78.7	79.1	78.9	5.03	5.11	5.07	4.01	3.97	3.92	5	5.0
	13:53		Middle	2	29.40	29.40		8.19	8.19		32.90	32.90		78.3	79.4		5.00	5.13		3.82	3.87		5	
19/09/2011	02:50	Cloudy	Middle	2	28.46	28.46	28.46	7.79	7.79	7.79	31.37	31.37	31.38	72.0	72.0	72.0	4.69	4.69	4.70	3.73	3.90	3.85	6	7.0
	02:51		Middle	2	28.45	28.45		7.79	7.79		31.39	31.39		72.0	72.0		4.70	4.70		3.95	3.80		8	
22/09/2011	08:32	Cloudy	Middle	2	27.60	27.60	27.60	8.35	8.35	8.34	33.71	33.71	33.71	94.8	93.8	94.2	6.20	6.13	6.21	2.51	2.95	2.73	6	6.0
	08:36	cicady	Middle	2	27.60	27.60	21.00	8.32	8.32	0.01	33.70	33.70	00.11	94.7	93.3	0.112	6.20	6.29	0.2.1	2.68	2.76	2.10	6	0.0
24/09/2011	09:07	Cloudy	Middle	3	26.90	26.90	26.90	8.32	8.32	8.32	33.62	33.62	33.62	93.4	92.3	93.3	6.18	6.11	6.18	3.68	3.47	3.59	7	6.5
	09:10		Middle	3	26.90	26.90		8.32	8.32		33.62	33.62		94.3	93.0		6.25	6.16		3.67	3.52		6	
26/09/2011	09:35	Cloudy	Middle	2	27.50	27.50	27.50	8.14	8.14	8.13	32.80	32.80	32.70	92.1	91.8	92.0	6.05	6.02	6.04	5.61	5.64	5.61	7	7.5
20,00,2011	09:38	0.000,	Middle	2	27.50	27.50	21.00	8.12	8.12	0.10	32.60	32.60	02.1.0	91.7	92.3	02.0	6.01	6.06	0.0 .	5.52	5.65	0.01	8	
28/09/2011	11:22	Fine	Middle	3	28.50	28.50	28.55	8.28	8.28	8.28	33.71	33.71	33.72	92.1	91.3	91.2	5.91	5.87	5.86	4.46	4.35	4.32	5	5.0
20,00,2011	11:25		Middle	3	28.60	28.60	10.00	8.28	8.28	0.20	33.72	33.72	00.12	91.9	89.6	0.12	5.90	5.76	0.00	4.24	4.21		5	0.0
30/09/2011	13:42	Cloudy	Middle	3	26.90	26.90	26.90	8.28	8.28	8.28	33.62	33.62	33.63	92.0	90.7	91.7	6.08	5.99	6.06	9.15	9.12	<u>9.15</u>	13	<u>12.0</u>
00,00/2011	13:45	0.0009	Middle	3	26.90	26.90	20.00	8.28	8.28	0.20	33.63	33.63	00.00	92.9	91.1	5	6.14	6.02	0.00	9.13	9.19	0.10	11	<u></u>

Date	Time	Weater Condition	Samplin	ig Depth	Wat	er Temp °C	erature		pН			Salini ppt	ty	D	O Satur %	ation		DO mg/L			Turbidi NTU			led Solids q/L
		Condition	r	n	Va	lue	Average	Va	lue	Average	Va	ilue	Average	Va	lue	Average	Va		Average	Va	lue	Average	Value	Average
01/09/2011	15:16	Fine	Middle	2	26.30	26.30	26.35	8.10	8.10	8.10	33.17	33.17	33.18	81.7	82.2	82.1	5.48	5.51	5.50	5.79	5.65	5.65	9	8.0
	15:19		Middle	2	26.40	26.40		8.09	8.09		33.19	33.19		82.5	82.1		5.52	5.50		5.43	5.72		7	
03/09/2011	17:05	Cloudy	Middle	2	25.80	25.80	25.90	8.08	8.08	8.49	33.56	33.56	33.55	74.4	73.0	73.9	5.00	4.91	4.97	3.66	3.81	3.64	5	5.0
	17:08		Middle	2	26.00	26.00		8.90	8.90		33.54	33.54		75.0	73.0		5.04	4.91		3.48	3.60		5	<u> </u>
05/09/2011	04:15	Cloudy	Middle	3	26.73	26.73	26.73	7.41	7.41	7.41	31.80	31.80	31.80	88.2	88.2	88.2	5.79	5.78	5.78	4.23	4.23	4.14	5	5.5
	04:16	-	Middle	3	26.73	26.73		7.41	7.41		31.80	31.80		88.2	88.2		5.78	5.78		4.21	3.87		6	
08/09/2011	09:04	Fine	Middle	3	27.40	27.40	27.50	8.11	8.11	8.11	33.51	33.51	33.51	88.0	86.8	86.9	5.76	5.68	5.68	4.12	3.82	3.95	4	4.5
	09:07		Middle	3	27.60	27.60		8.11	8.11		33.51	33.51		87.1	85.8		5.69	5.60		3.84	4.01		5	<u> </u>
10/09/2011	09:39	Fine	Middle	3	27.90	27.90	27.95	8.15	8.15	8.15	33.50	33.50	33.51	90.4	89.0	89.7	5.90	5.81	5.83	4.23	4.72	4.47	7	6.5
	09:42		Middle	3	28.00	28.00		8.14	8.14		33.52	33.52		90.6	88.8		5.82	5.78		4.44	4.49		6	<u> </u>
12/09/2011	11:00	Fine	Middle	3	29.00	29.00	29.05	8.27	8.27	8.28	33.28	33.28	33.28	94.7	95.5	94.8	6.05	6.10	6.06	3.23	3.32	3.31	6	6.0
	11:03		Middle	3	29.10	29.10		8.28	8.28		33.27	33.27		95.0	94.0		6.07	6.00		3.40	3.29		6	<u> </u>
14/09/2011	13:45	Fine	Middle	3	29.50	29.50	29.55	8.26	8.26	8.26	33.08	33.08	33.09	91.8	92.9	92.2	5.83	5.90	5.85	5.66	6.03	5.88	8	8.5
	13:48		Middle	3	29.60	29.60		8.25	8.25		33.09	33.09		92.6	91.4		5.88	5.79		5.95	5.88		9	<u> </u>
16/09/2011	14:28	Fine	Middle	2	29.30	29.30	29.35	8.23	8.23	8.23	32.91	32.91	32.92	85.7	85.9	85.9	5.50	5.51	5.52	6.01	6.07	6.13	7	8.0
	14:31		Middle	2	29.40	29.40		8.22	8.22		32.92	32.92		86.2	85.8		5.57	5.48		6.23	6.21		9	<u> </u>
19/09/2011	02:15	Cloudy	Middle	3	28.55	28.55	28.55	7.84	7.84	7.84	30.96	30.96	30.96	72.4	72.4	72.7	4.72	4.72	4.74	5.17	4.87	4.95	10	<u>9.5</u>
	02:16 07:59		Middle Middle	3	28.55 28.00	28.55 28.00		7.84	7.84 8.32		30.96 33.58	30.96 33.58		73.0	73.0		4.76	4.76 6.09		4.83 4.20	4.92		9	<u> </u>
22/09/2011	07:59	Cloudy	Middle	3	28.00	28.00	27.95	8.32 8.32	8.32	8.32	33.58	33.58	33.59	94.9 94.5	93.4 93.0	94.0	6.19 6.15	6.05	6.12	4.20	4.11 4.38	4.31	7	6.5
	08:31		Middle	3	27.90	27.90		8.36	8.36		33.65	33.65		94.5 96.4	95.4		6.35	6.28		4.50 5.27	5.62		8	<u> </u>
24/09/2011	08:34	Cloudy	Middle	3	27.20	27.20	27.20	8.36	8.36	8.36	33.66	33.66	33.66	96.5	93.6	95.5	6.36	6.17	6.29	5.89	5.36	5.54	10	9.0
	09:15		Middle	2	27.80	27.80		8.14	8.14		32.80	32.80		90.5	90.3		5.93	5.92		6.02	6.11		9	<u> </u>
26/09/2011	09:18	Cloudy	Middle	2	27.80	27.80	27.80	8.14	8.14	8.14	32.80	32.80	32.80	90.3	90.7	90.5	5.92	5.95	5.93	5.99	6.03	6.04	9	9.0
	12:00		Middle	3	28.30	28.30		8.26	8.26		33.68	33.68		91.5	90.0		5.90	5.80		6.16	6.23		9	<u> </u>
28/09/2011	12:04	Fine	Middle	3	28.40	28.40	28.35	8.27	8.27	8.27	33.68	33.68	33.68	92.1	89.4	90.8	5.93	5.75	5.85	5.92	6.06	6.09	7	8.0
	14:29		Middle	3	27.70	27.70		8.27	8.27		33.60	33.60		89.7	88.6		5.85	5.78		12.40	12.30		16	<u> </u>
30/09/2011	14:32	Cloudy	Middle	3	27.70	27.70	27.70	8.28	8.28	8.28	33.60	33.60	33.60	89.2	88.2	88.9	5.82	5.75	5.80	12.10	12.90	<u>12.43</u>	16	<u>16.0</u>

Water Monitoring Result at WSD15 - Sai Wan Ho Mid-Ebb Tide

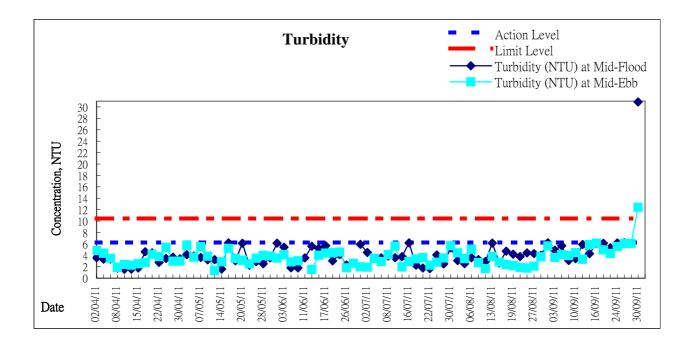
Date	Time	Weater Condition	Samplin	<u> </u>		er Temp °C			pH -			Salini ppt			O Satur %			DO mg/L	-		Turbidi NTU	,	Suspend	g/L
			II.	FI	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Value	Average
01/09/2011	14:35 14:38	Fine	Middle Middle	3 3	26.00 26.10	26.00 26.10	26.05	8.02 8.04	8.02 8.04	8.03	33.62 33.65	33.62 33.65	33.64	69.1 70.2	69.7 71.1	70.0	4.61 4.68	4.65 4.71	4.66	5.02 4.62	4.97 4.81	4.86	8	7.0
	17:20		Middle	2	25.70	25.70		8.05	8.05		33.49	33.49		63.5	61.2		4.29	4.14		2.62	2.25		6	<u> </u>
03/09/2011	17:24	Cloudy	Middle	2	25.70	25.70	25.70	8.05	8.05	8.05	33.49	33.49	33.49	63.9	62.2	62.7	4.32	4.20	4.24	2.59	2.44	2.48	8	7.0
05/00/0044	07:02	Olaustu	Middle	2	26.54	26.54	00.54	7.43	7.43	7.40	33.07	33.07	00.07	89.3	89.4		5.96	5.96	5.00	2.46	2.27	0.07	5	10
05/09/2011	07:03	Cloudy	Middle	2	26.54	26.54	26.54	7.43	7.43	7.43	33.07	33.07	33.07	89.3	89.2	89.3	5.96	5.95	5.96	2.47	2.27	2.37	3	4.0
08/09/2011	09:45	Fine	Middle	3	28.10	28.10	28.20	8.15	8.15	8.15	33.61	33.61	33.61	86.8	85.4	86.7	5.60	5.51	5.59	2.62	2.78	2.46	6	6.0
00,00,2011	09:48		Middle	3	28.30	28.30	20.20	8.15	8.15	0.10	33.61	33.61	00.01	86.7	87.9	00.1	5.59	5.67	0.00	2.17	2.27	2.10	6	0.0
10/09/2011	09:07	Fine	Middle	3	28.00	28.00	28.10	8.21	8.21	8.22	33.69	33.69	33.71	85.0	83.4	84.5	5.51	5.41	5.48	2.92	3.03	2.82	6	5.0
	09:10		Middle	3	28.20	28.20		8.22	8.22		33.72	33.72		85.8	83.6		5.56	5.42		2.58	2.74		4	
12/09/2011	11:34	Fine	Middle	3	28.80	28.80	28.80	8.33	8.33	8.33	33.32	33.32	33.32	94.5	93.5	94.8	6.06	6.00	6.08	4.28	3.92	4.35	5	6.0
	11:37		Middle	3	28.80	28.80		8.32	8.32		33.32	33.32		95.0	96.0		6.09	6.15		4.63	4.56		7	<u> </u>
14/09/2011	13:21	Fine	Middle	3	29.20	29.20	29.30	8.30	8.30	8.30	33.22	33.22	33.23	85.9	83.5	84.9	5.47	5.32	5.41	4.19	4.11	4.26	6	6.0
	13:24		Middle	3	29.40	29.40		8.30	8.30		33.23	33.23		86.4	83.7		5.51	5.35		4.43	4.32		6	<u> </u>
16/09/2011	14:50	Fine	Middle	2	29.20	29.20	29.25	8.20	8.20	8.20	32.93	32.93	32.93	81.0	80.2	80.7	5.19	5.15	5.17	5.31	5.21	5.30	10	9.0
	14:53		Middle	2	29.30	29.30		8.19	8.19		32.92	32.92		80.7	80.9		5.16	5.17		5.47	5.20		8	<u> </u>
19/09/2011	05:20 05:21	Cloudy	Middle	2	28.60	28.61	28.61	7.84	7.84	7.84	32.50	32.50	32.50	72.1	72.1	72.1	4.66	4.66	4.66	4.80	4.84	4.75	9	10.0
	05:21		Middle Middle	2	28.61 27.00	28.61 27.00		7.84 8.30	7.84 8.30		32.50 33.77	32.50 33.77		72.1 92.2	72.1 88.8		4.66 6.10	4.66 5.89		4.87 2.37	4.49 3.21		11 4	<u> </u>
22/09/2011	07:20	Cloudy	Middle	3	27.00	27.00	27.00	8.31	8.31	8.31	33.75	33.75	33.76	92.5	89.0	90.6	6.12	5.90	6.00	2.63	2.78	2.75	5	4.5
	08:00		Middle	3	26.70	26.70		8.35	8.35		33.39	33.39		92.8	90.9		6.17	6.04		3.55	3.15		5	<u> </u>
24/09/2011	08:04	Cloudy	Middle	3	26.70	26.70	26.70	8.35	8.35	8.35	33.40	33.40	33.40	93.3	91.3	92.1	6.20	6.06	6.12	3.45	3.51	3.42	7	6.0
	09:43		Middle	3	26.80	26.80		8.32	8.32		33.79	33.79		92.6	90.2		6.13	5.98		6.08	6.12		9	<u> </u>
26/09/2011	09:46	Cloudy	Middle	3	26.70	26.70	26.75	8.33	8.33	8.33	33.79	33.79	33.79	92.9	90.7	91.6	6.15	6.01	6.07	5.90	5.69	5.95	7	8.0
28/00/2014	12:29	Ein -	Middle	3	28.10	28.10	20.40	8.30	8.30	0.00	33.71	33.71	22.74	91.1	87.4	00.0	5.90	5.67	5.04	6.35	6.49	0.50	8	7.0
28/09/2011	12:32	Fine	Middle	3	28.10	28.10	28.10	8.28	8.28	8.29	33.71	33.71	33.71	91.5	88.3	89.6	5.93	5.74	5.81	6.62	6.63	6.52	6	7.0
30/09/2011	14:50	Cloudy	Middle	3	27.80	27.80	27.80	8.26	8.26	8.27	66.56	33.56	41.81	89.4	86.9	88.3	5.84	5.66	5.76	12.60	11.70	<u>11.88</u>	24	<u> 19.0</u>
50/03/2011	14:53	Cioudy	Middle	3	27.80	27.80	21.00	8.27	8.27	0.21	33.56	33.56	1.01	89.0	88.0	00.5	5.79	5.73	5.70	11.90	11.30	11.00	14	13.0

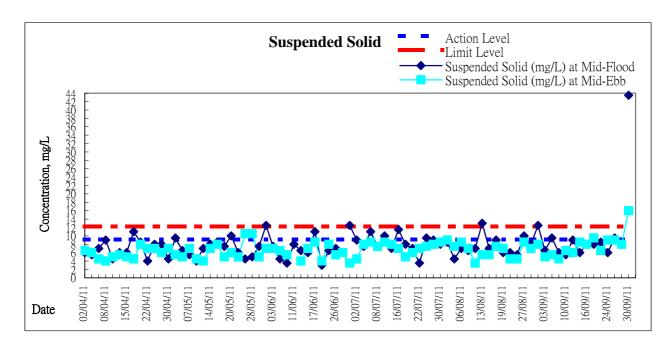

Date	Time	Weater Condition	Samplin	g Depth	Wat	er Temp °C	erature		pH			Salinit ppt	ty	D	O Satur	ation		DO mg/L			Turbid NTU			led Solids a/L
		oonanion	r	n	Va	lue	Average	Va	ue	Average	Va	lue	Average	Va	lue	Average	Va		Average	Va	alue	Average	Value	Average
01/09/2011	14:43	Fine	Middle	3	26.30	26.30	26.25	8.00	8.00	8.01	33.40	33.40	33.42	61.2	62.4	62.5	4.22	4.25	4.27	4.97	5.17	5.15	8	7.0
	14:46		Middle	3	26.20	26.20		8.02	8.02		33.43	33.43		63.6	62.9		4.31	4.30		5.23	5.22		6	
03/09/2011	17:40	Cloudy	Middle	2	26.00	26.00	26.00	8.06	8.06	8.06	33.38	33.38	33.38	74.9	73.4	74.2	5.03	4.93	4.98	2.65	2.39	2.50	6	5.5
	17:43		Middle	2	26.00	26.00		8.05	8.05		33.38	33.38		75.8	72.6		5.09	4.88		2.40	2.54		5	<u> </u>
05/09/2011	06:20	Cloudy	Middle	2	26.47	26.47	26.47	7.33	7.33	7.33	33.21	33.21	33.21	78.9	78.9	78.9	5.27	5.27	5.27	3.56	3.32	3.57	4	4.5
	06:21		Middle	2	26.47	26.47		7.33	7.33		33.21	33.21		78.9	78.9		5.26	5.26		3.44	3.94		5	
08/09/2011	10:16	Fine	Middle	3	28.20	28.20	28.30	8.10	8.10	8.11	32.45	32.45	32.46	79.1	77.2	78.3	5.09	4.97	5.04	2.24	2.37	2.22	6	5.0
	10:19		Middle	3	28.40	28.40		8.11	8.11		32.46	32.46		79.0	77.7		5.08	5.01		2.10	2.15		4	<u> </u>
10/09/2011	08:42	Fine	Middle	3	28.00	28.00	28.05	8.10	8.10	8.10	32.63	32.63	32.64	77.3	76.3	77.1	5.06	4.98	5.03	4.02	4.26	4.35	6	7.0
	08:45		Middle	3	28.10	28.10		8.10	8.10		32.64	32.64		78.5	76.2		5.11	4.96		4.77	4.35		8	<u> </u>
12/09/2011	11:55 11:58	Fine	Middle	3	28.60	28.60 28.60	28.60	8.19 8.20	8.19 8.20	8.20	33.18 33.17	33.18 33.17	33.18	86.4 87.1	85.8 85.4	86.2	5.57	5.53 5.50	5.55	5.85 5.92	5.70 6.07	5.89	7	8.0
	12:41		Middle	3	28.60 29.70	29.70		8.20	8.20		33.17	33.17		82.3	80.9		5.61 5.20	5.10		7.74	7.97		9 12	<u> </u>
14/09/2011	12:41	Fine	Middle	3	29.70	29.70	29.70	8.21	8.21	8.22	33.14	33.14	33.14	82.1	80.6	81.5	5.19	5.08	5.14	7.51	8.04	7.82	12	11.0
	15:13		Middle	2	29.10	29.10		8.17	8.17		32.75	32.75		73.2	73.8		4.68	4.69		4.92	4.87		8	<u> </u>
16/09/2011	15:17	Fine	Middle	2	29.20	29.20	29.15	8.16	8.16	8.17	32.74	32.74	32.75	74.1	73.1	73.6	4.73	4.67	4.69	5.01	4.72	4.88	7	7.5
	04:49		Middle	2	28.64	28.64		7.78	7.78		32.33	32.33		80.1	80.1		5.18	5.18		6.59	6.79		9	<u> </u>
19/09/2011	04:50	Cloudy	Middle	2	28.64	28.64	28.64	7.78	7.78	7.78	32.33	32.33	32.33	80.1	80.1	80.1	5.18	5.18	5.18	6.90	6.68	6.74	10	9.5
	06:51		Middle	3	27.70	27.70		8.29	8.29		33.41	33.41		85.3	83.8		5.57	5.48		5.62	5.70		5	
22/09/2011	06:54	Cloudy	Middle	3	27.60	27.60	27.65	8.29	8.29	8.29	33.40	33.40	33.41	85.0	83.0	84.3	5.55	5.44	5.51	5.94	5.37	5.66	6	5.5
24/09/2011	07:38	Cloudy	Middle	3	27.00	27.00	27.00	8.22	8.22	8.22	32.15	32.15	32.16	80.4	79.1	80.2	5.35	5.29	5.34	4.99	4.74	5.09	10	- 9.5
24/09/2011	07:41	Cloudy	Middle	3	27.00	27.00	27.00	8.21	8.21	8.22	32.16	32.16	32.10	81.4	79.7	80.2	5.42	5.31	5.34	5.38	5.23	5.09	9	9.5
26/09/2011	10:16	Cloudy	Middle	3	27.10	27.10	27.10	8.27	8.27	8.27	33.35	33.35	33.35	85.7	84.4	84.8	5.65	5.57	5.60	7.59	7.94	7.67	10	9.0
20/00/2011	10:19	Cioudy	Middle	3	27.10	27.10	27.10	8.27	8.27	0.21	33.35	33.35	00.00	85.5	83.6	04.0	5.64	5.52	0.00	7.76	7.39	1.01	8	0.0
28/09/2011	12:51	Fine	Middle	3	28.10	28.10	28.10	8.21	8.21	8.21	33.10	33.10	33.10	82.8	81.2	81.8	5.37	5.28	5.31	8.61	8.88	8.59	7	7.5
	12:54		Middle	3	28.10	28.10		8.21	8.21		33.09	33.09		82.5	80.8		5.35	5.25		8.34	8.52		8	
30/09/2011	13:23	Cloudy	Middle	2	27.70	27.70	27.70	8.22	8.22	8.22	33.25	32.25	33.01	81.8	82.2	82.1	5.35	5.40	5.38	8.03	8.19	8.17	11	<u>12.0</u>
	13:26	-	Middle	2	27.70	27.70		8.21	8.21		33.26	33.26		81.5	82.7		5.33	5.45		8.24	8.22		13	


Date	Time	Weater Condition	Samplin	ng Depth	Wat	er Temp °C	erature		pН			Salinit ppt	y	C	O Satur	ation		DO ma/L			Turbid NTU		Suspende	
		Condition	r	n	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	alue	Average	Va	5	Average	Va	alue	Average		Average
01/09/2011	13:17	Fine	Middle	2	27.00	27.00	27.05	7.95	7.95	7.95	33.06	33.06	33.06	71.2	71.7	71.1	4.71	4.75	4.71	3.95	3.87	3.81	6	6.0
01/00/2011	13:20	T IIIO	Middle	2	27.10	27.10	21.00	7.94	7.94	1.50	33.05	33.05	00.00	70.4	70.9	,	4.69	4.70	4.7.1	3.64	3.78	0.01	6	0.0
03/09/2011	15:20	Cloudy	Middle	2	27.10	27.10	27.10	7.74	7.74	7.75	32.12	32.12	32.13	79.6	79.8	79.1	5.24	5.26	5.20	3.12	3.11	2.97	5	5.0
	15:23		Middle	2	27.10	27.10		7.75	7.75		32.14	32.14		785	77.8		5.17	5.13		2.86	2.79		5	
05/09/2011	05:30	Cloudy	Middle	2	26.90	26.90	26.90	7.21	7.21	7.21	32.10	32.10	32.10	66.5	66.5	66.5	4.43	4.43	4.43	2.31	2.35	2.35	4	4.0
	05:31		Middle	2	26.90	26.90		7.21	7.21		32.10	32.10		66.5	66.5		4.43	4.43		2.34	2.40		4	<u> </u>
08/09/2011	10:27	Fine	Middle	2	27.78	27.78	27.79	7.13	7.13	7.13	32.00	32.00	32.00	79.4	79.0	78.2	4.92	4.90	4.89	1.92	2.11	1.96	5	4.0
	10:30		Middle	2	27.79	27.79		7.13	7.13		32.00	32.00		77.4	76.9		4.89	4.86		1.89	1.90		3	
10/09/2011	10:15	Fine	Middle	2	27.90	27.90	27.90	7.75	7.75	7.75	32.10	32.10	32.10	79.7	78.7	78.4	5.22	5.17	5.17	2.95	2.91	2.72	6	5.5
	10:18		Middle	2	27.90	27.90		7.75	7.75		32.10	32.10		77.8	77.5		5.11	5.19		2.48	2.52		5	<u> </u>
12/09/2011	11:42	Fine	Middle	2	28.60	28.60	28.55	8.04	8.04	8.04	32.98	32.98	32.98	72.0	72.6	71.6	4.65	4.68	4.62	3.11	3.28	3.12	4	5.0
	11:47		Middle	2	28.50	28.50		8.03	8.03		32.98	32.98		70.6	71.0		4.55	4.60		3.04	3.06		6	<u> </u>
14/09/2011	11:41	Fine	Middle	2	29.30	29.30	29.25	8.03	8.03	8.03	32.87	32.87	32.88	61.7	61.9	62.1	3.94	3.95	4.01	3.01	2.97	2.98	4	3.5
	11:44		Middle	2	29.20	29.20		8.02	8.02		32.89	32.89		62.3	62.6		4.07	4.09		3.12	2.82		3	<u> </u>
16/09/2011	14:07	Fine	Middle	2	29.80	29.80	29.85	7.79	7.79	7.79	31.59	31.59	31.60	82.4	82.0	82.3	5.22	5.20	5.22	3.02	2.71	2.74	8	9.0
	14:10		Middle	2	29.90	29.90		7.78	7.78		31.61	31.61		81.7	82.9		5.18	5.27		2.54	2.69		10	<u> </u>
19/09/2011	03:50	Cloudy	Middle	2	28.66	28.66	28.66	7.66	7.66	7.66	32.07	32.07	32.07	70.9	70.9	70.9	4.59	4.59	4.59	3.14	3.28	3.09	5	4.5
	03:51		Middle	2	28.66	28.66		7.66	7.66		32.07	32.07		70.8	70.8		4.59	4.58		2.95	3.00		4	<u> </u>
22/09/2011	08:41	Cloudy	Middle	2	28.20	28.20	28.20	8.03	8.03 8.03	8.03	32.10 32.10	32.10 32.10	32.10	83.1 82.5	82.4 81.7	82.4	5.40	5.38 5.33	5.37	6.43	6.28 6.31	6.31	5	6.5
	08:43		Middle	2	28.20 28.10	28.20 28.10		8.03 7.98	7.98		32.10	32.10		82.3	82.4		5.35 5.38	5.33		6.20 3.21	3.62		8	<u> </u>
24/09/2011	10:05	Cloudy	Middle	2	28.20	28.20	28.15	7.98	7.98	7.98	32.30	32.30	32.35	82.5	81.6	82.2	5.41	5.39	5.37	4.02	4.01	3.72	° 7	7.5
	11:08		Middle	2	27.90	27.90		8.21	8.21		33.37	33.37		72.6	70.6		4.73	4.59		4.52	4.76		8	<u> </u>
26/09/2011	11:10	Cloudy	Middle	2	28.00	28.00	27.95	8.21	8.21	8.21	33.38	33.38	33.38	72.2	73.8	72.3	4.70	4.80	4.71	4.72	4.99	4.75	6	7.0
	11:04		Middle	2	28.90	28.90		8.00	8.00		32.30	32.30		81.2	80.2		5.17	5.12		4.71	4.97	l	5	<u> </u>
28/09/2011	11:07	Fine	Middle	2	28.90	28.90	28.90	8.00	8.00	8.00	32.40	32.40	32.35	81.0	79.8	80.6	5.16	5.10	5.14	4.88	4.84	4.85	4	4.5
	14:38		Middle	2	28.30	28.30		7.98	7.98	I	32.30	32.30		86.9	87.2		5.60	5.62		11.40	11.20		7	<u> </u>
30/09/2011	14:41	Cloudy	Middle	2	28.40	28.40	28.35	7.99	7.99	7.99	32.20	32.20	32.25	87.5	87.4	87.3	5.65	5.64	5.63	10.20	10.90	<u>10.93</u>	9	8.0

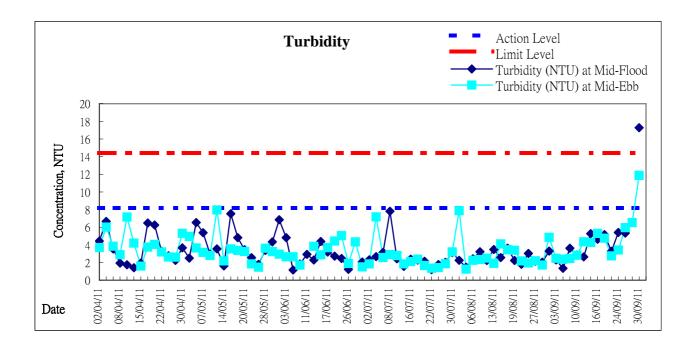
Date	Time	Weater Condition	Samplin	g Depth	Wat	er Temp °C	oerature		pН			Salinit ppt	ty	C	O Satur	ation		DO mg/L			Turbid NTU	ity	Suspend	
		Condition	n	n	Va	ilue	Average	Va	lue	Average	Va		Average	Va	alue	Average	Va		Average	Va		Average	Value	Average
01/09/2011	12:41	Fine	Middle	2	27.30	27.30	27.25	7.91	7.91	7.92	33.07	33.07	33.06	73.2	72.7	72.5	4.71	4.68	4.66	6.72	6.89	6.73	12	- 11.0
01/03/2011	12:44	T IIIC	Middle	2	27.20	27.20	21.25	7.92	7.92	1.52	33.05	33.05	33.00	72.2	71.9	72.5	4.65	4.61	4.00	6.56	6.73	0.75	10	11.0
03/09/2011	15:45	Cloudy	Middle	2	26.10	26.10	26.15	7.99	7.99	8.00	32.80	32.80	32.79	53.5	51.8	52.6	3.60	3.50	3.55	5.72	5.40	5.76	11	- 10.5
	15:48	,	Middle	2	26.20	26.20		8.00	8.00		32.78	32.78		53.1	52.0		3.57	3.53		6.04	5.89		10	
05/09/2011	05:50	Cloudy	Middle	2	26.57	26.57	26.58	7.19	7.19	7.19	32.49	32.49	32.49	76.8	76.6	76.5	5.13	5.12	5.12	3.29	3.63	3.34	3	4.0
	05:51	cicuaj	Middle	2	26.58	26.58	20.00	7.19	7.19		32.49	32.49	02.10	76.4	76.3	10.0	5.11	5.10	0.12	3.26	3.16	0.01	5	
08/09/2011	11:18	Fine	Middle	1	28.00	28.00	28.10	8.01	8.01	8.02	32.61	32.61	32.61	76.7	75.4	76.2	4.96	4.95	4.97	4.49	4.12	4.12	12	12.5
	11:21	-	Middle	1	28.20	28.20		8.03	8.03		32.60	32.60		76.9	75.7	-	4.97	4.98		3.88	3.97		13	
10/09/2011	08:06	Fine	Middle	2	27.00	27.00	27.00	7.83	7.83	7.84	32.89	32.89	32.89	70.3	68.8	69.2	4.66	4.56	4.59	8.59	7.98	8.28	10	- 10.0
	08:08		Middle	2	27.00	27.00		7.85	7.85		32.89	32.89		69.5	68.3		4.61	4.53		8.64	7.90		10	
12/09/2011	09:32	Fine	Middle	2	27.50	27.50	27.55	7.93	7.93	7.93	32.90	32.90	32.90	52.6	51.3	52.0	3.47	3.37	3.42	5.74	5.99	5.88	11	- 10.5
	09:34		Middle	2	27.60	27.60		7.92	7.92		32.89	32.89		52.5	51.5		3.46	3.38		6.02	5.78		10	
14/09/2011	10:41	Fine	Middle	2	28.00	28.00	28.05	7.97	7.97	7.97	32.65	32.65	32.65	50.1	49.5	49.8	3.27	3.23	3.25	6.82	6.97	6.87	12	- 11.5
	10:44		Middle	2	28.10	28.10		7.96	7.96		32.64	32.64		50.5	49.2		3.30	3.20		6.66	7.03		11	
16/09/2011	12:47	Fine	Middle	2	28.70	28.70	28.75	7.93	7.93	7.93	32.51	32.51	32.51	66.1	65.3	65.5	4.23	4.19	4.20	7.71	7.75	7.81	10	11.0
	12:50		Middle	2	28.80	28.80		7.92	7.92		32.50	32.50		65.1	65.4		4.17	4.20		7.92	7.87		12	<u> </u>
19/09/2011	03:29	Cloudy	Middle	2	28.47	28.47	28.48	7.57	7.57	7.58	31.83	31.83	31.83	66.3	66.3	66.3	4.31	4.31	4.31	5.33	4.65	4.85	8	8.5
	03:30		Middle	2	28.49	28.49		7.58	7.58		31.83	31.83		66.3	66.3		4.31	4.31		4.64	4.76		9	<u> </u>
22/09/2011	06:25	Cloudy	Middle	2	27.00	27.00	27.00	8.22	8.22	8.22	33.24	33.24	33.23	85.9	84.3	85.1	5.70	5.58	5.64	1.92	2.07	1.92	5	5.0
	06:28		Middle	2	27.00	27.00		8.21	8.21		33.22	33.22		86.1	84.0		5.72	5.56		1.84	1.85		5	
24/09/2011	10:10	Cloudy	Middle	2	27.30	27.30	27.30	8.12	8.12	8.11	33.27	33.27	33.28	82.4	80.4	81.7	5.45	5.31	5.40	2.11	2.05	2.18	7	7.0
	10:15		Middle	2	27.30	27.30		8.10	8.10		33.29	33.29		82.6	81.2		5.46	5.37		2.37	2.20		7	<u> </u>
26/09/2011	09:00	Cloudy	Middle	2	26.80	26.80	26.80	8.17	8.17	8.17	33.41	33.41	33.41	79.5	77.8	79.1	5.28	5.17	5.26	5.70	5.56	5.59	10	- 11.0
	09:03		Middle	2	26.80	26.80		8.17	8.17		33.41	33.41		80.1	79.0		5.32	5.25		5.33	5.75		12	<u> </u>
28/09/2011	13:33	Fine	Middle	2	28.00	28.00	28.00	8.13	8.13	8.13	33.41	33.41	33.41	88.5	87.5	86.6	5.75	5.68	5.62	6.63	6.69	6.66	10	9.0
	13:37		Middle	2	28.00	28.00		8.13	8.13		33.41	33.41		86.8	83.4		5.64	5.42		6.79	6.52		8	<u> </u>
30/09/2011	12:45	Cloudy	Middle	2	27.40	27.40	27.40	8.20	8.20	8.20	33.38	33.38	33.39	92.9	90.5	92.1	6.10	5.94	6.05	8.37	8.35	8.50	13	12.5
	14:48		Middle	2	27.40	27.40		8.20	8.20		33.39	33.39		93.4	91.6		6.13	6.01		8.52	8.76		12	

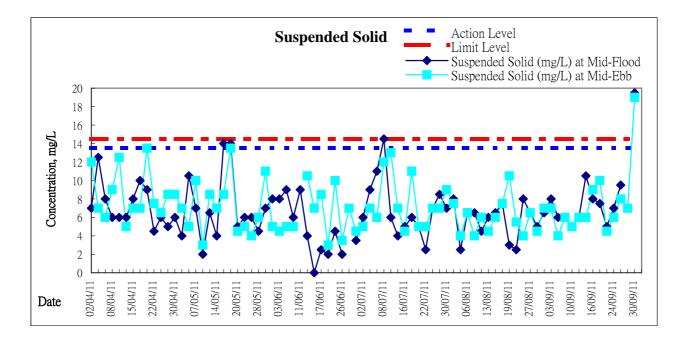
Graphic Presentation of Water Quality Result of WSD9 - Tai Wan

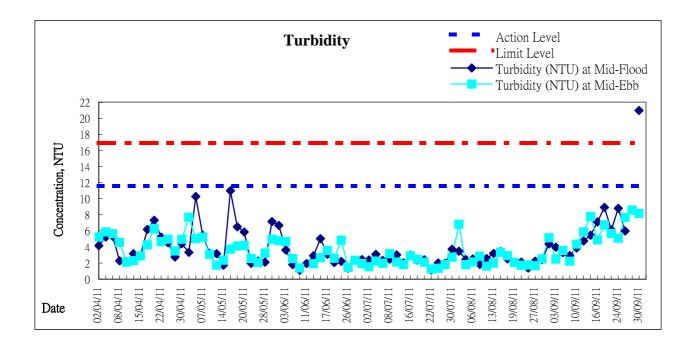


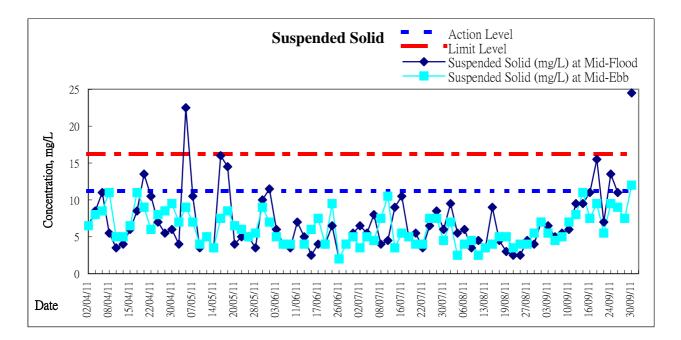


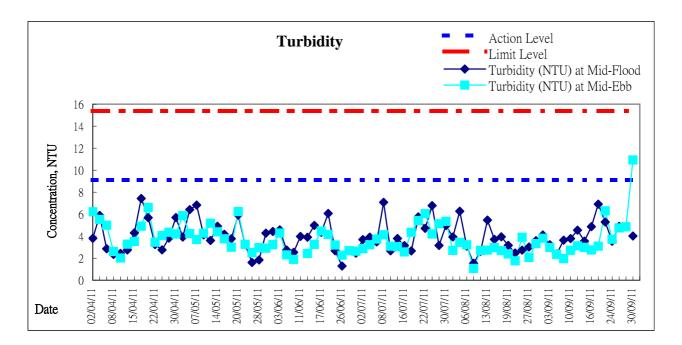
Remarks:

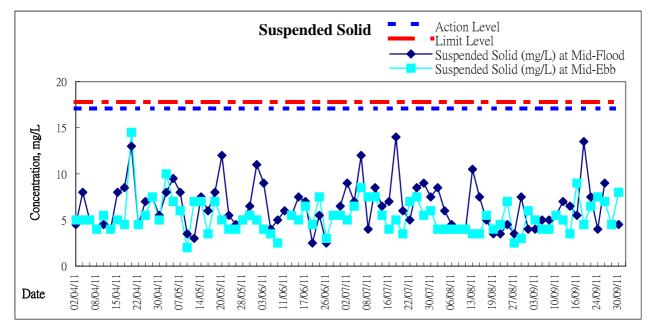


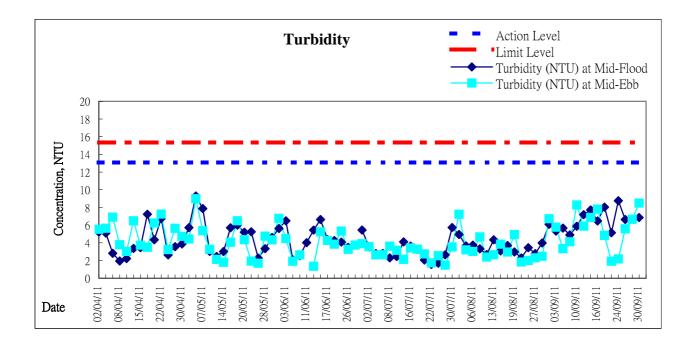

Graphic Presentation of Water Quality Result of WSD10 - Cha Kwo Ling

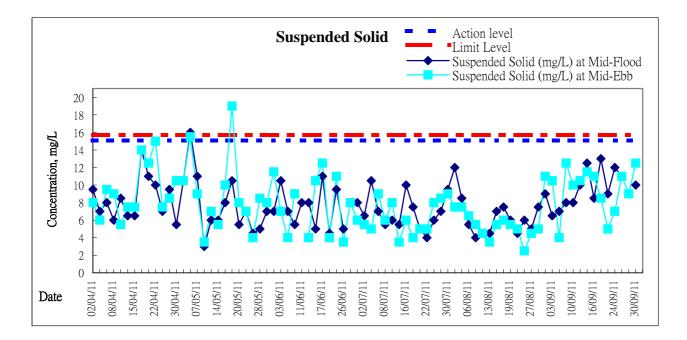












Remarks:

Graphic Presentation of Water Quality Result of WSD19 - Sheung Wan

⁻ Two sets of Suspended Solid Action and Limit levels for the dry season (the period from October to March) and wet season (the period from April to September).

Appendix 5.3

Event and Action Plan

Event and Action Plan for Construction Noise

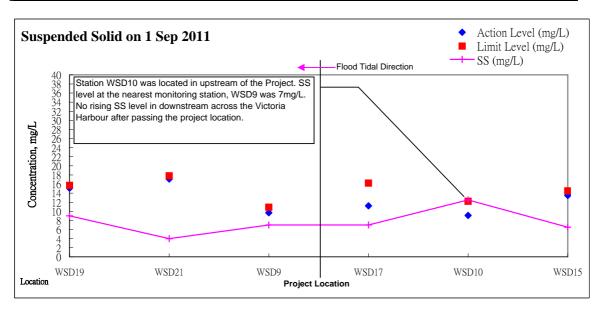
EVENT		ACTION		
	ET	IC(E)	ER	CONTRACTOR
Action Level	 Notify IEC and Contractor; Carry out investigation; Report the results of investigation to the IEC, ER and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness. 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented. 	 Submit noise mitigation proposals to IEC; Implement noise mitigation proposals.
Limit Level	 Identify source; Inform IEC, ER, EPD and Contractor; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IEC, ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Submit further proposal if problem still not under control; Stop the relevant portion of works as instructed by the ER until the exceedance is abated.

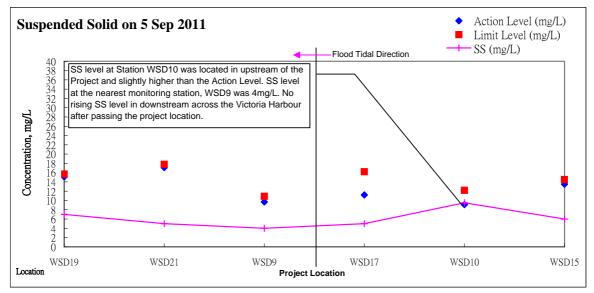
Event and Action Plan for Marine Water Quality

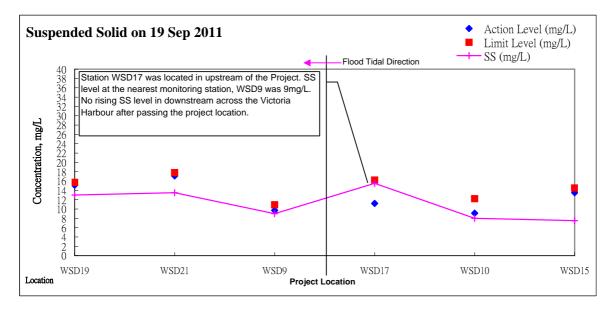
EVENT		ACTION		
	ET	IEC	ER	CONTRACTOR
Action level being exceeded by one sampling day	 Repeat in-situ measurement to confirm findings; Identify source(s) of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; (The above actions should be taken within 1 working day after the exceedance is identified) Repeat measurement on next day of exceedance. 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified) 	 Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented. (The above actions should be taken within 1 working day after the exceedance is identified) 	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Review the working methods and consider additional measures such as use of frame- type silt curtain, deployment of double silt curtains, slowing down, or rescheduling of works; Discuss with ET and IEC and propose mitigation measures to IEC and ER; Implement the agreed mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)
Action level being exceeded by more than one consecutive sampling days	 Identify source(s) of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER 	 Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness 	 Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and

EVENT		ACTION		
	ET	IEC	ER	CONTRACTOR
	 Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; (The above actions should be taken within 1 working day after the exceedance is identified) Repeat measurement on next working day of exceedance. 	accordingly; 3. Assess the effectiveness of the implemented mitigation measures. 4. (The above actions should be taken within 1 working day after the exceedance is identified)	of the implemented mitigation measures. 4. (The above actions should be taken within 1 working day after the exceedance is identified)	 equipment; 4. Review the working methods and consider additional measures such as use of frame- type silt curtain, deployment of double silt curtains, slowing down, or rescheduling of works; 5. Discuss with ET and IEC and propose mitigation measures to IEC and ER within 3 working days; 6. Implement the agreed mitigation measures. 7. (The above actions should be taken within 1 working day after the exceedance is identified)

EVENT		ACTION		
	ET	IEC	ER	CONTRACTOR
Limit level being exceeded by one sampling day	 Repeat in-situ measurement to confirm findings; Identify source(s) of impact; Inform IEC, Contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit Level. (The above actions should be taken within 1 working day after the exceedance is identified) 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified) 	 Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified) 	 Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Review the working methods and consider additional measures such as use of frame- type silt curtain, deployment of double silt curtains, slowing down, or rescheduling of works; Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)

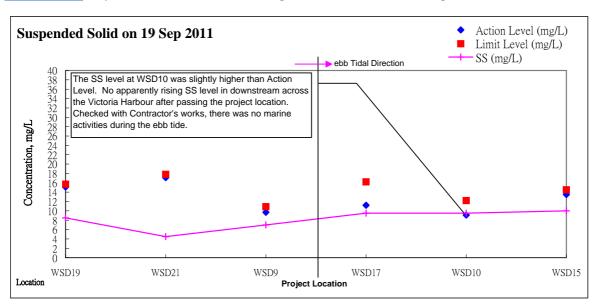


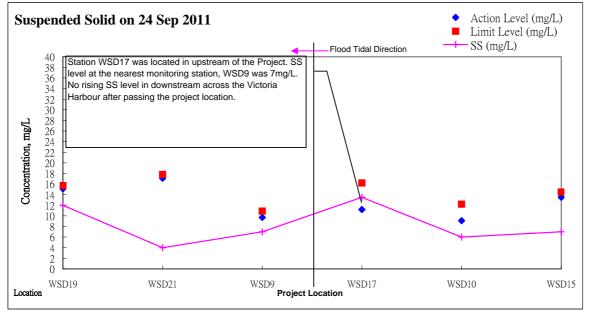

EVENT		ACTION		
	ET	IEC	ER	CONTRACTOR
Limit level being exceeded by more than one consecutive sampling days	 Identify source(s) of impact; Inform IEC, Contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days. (The above actions should be taken within 1 working day after the exceedance is identified) 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified) 	 Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the marine work until no exceedance of Limit level. (The above actions should be taken within 1 working day after the exceedance is identified) 	 Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Review the working methods and consider additional measures such as use of frame- type silt curtain, deployment of double silt curtains, slowing down, or rescheduling of works; Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures; As directed by the Engineer, to slow down or to stop all or part of the marine work or construction activities. (The above actions should be taken within 1 working day after the exceedance is identified)

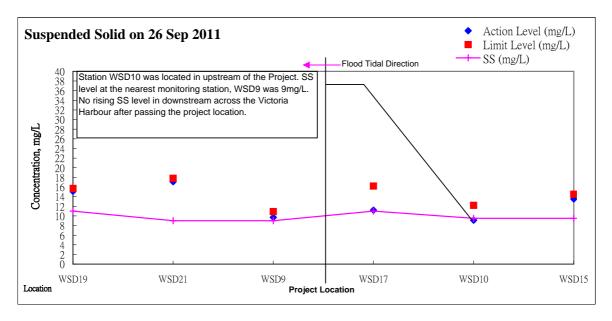


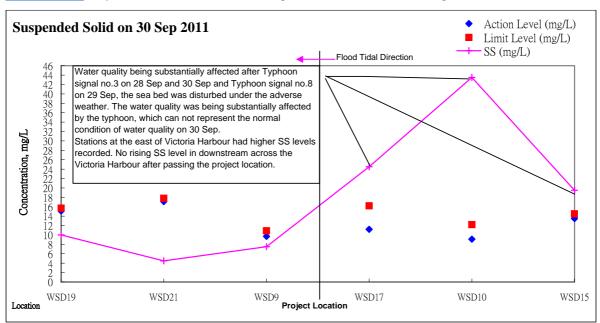
Appendix 5.4

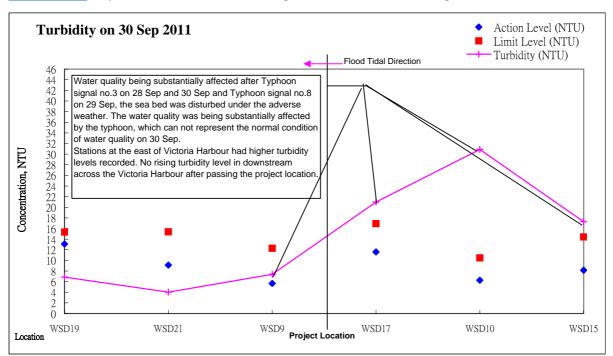
Graphic Presentation of SS Results against to Tidal Movement along Victoria Harbour

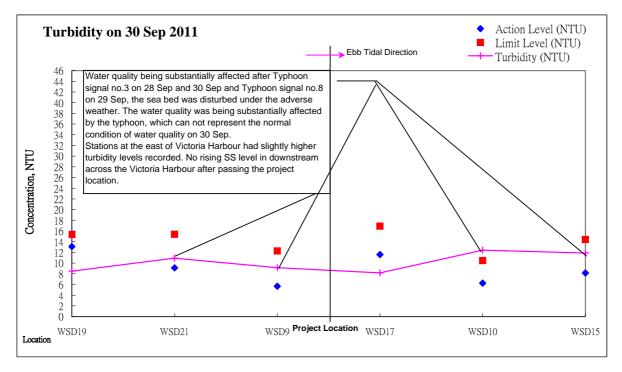




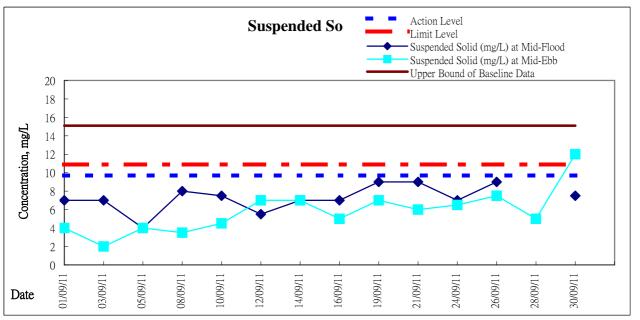


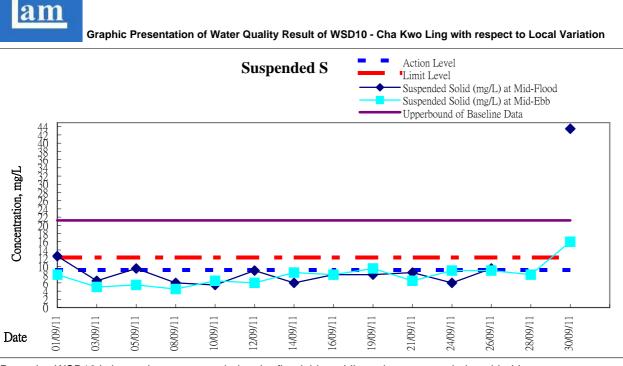

Graphic Presentation of SS Results Against the Tidal Movement along Victoria Harbour




Graphic Presentation of SS Results Against the Tidal Movement along Victoria Harbour

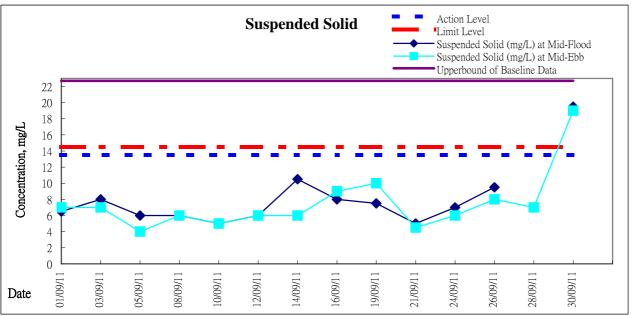
Graphic Presentation of SS Results Against the Tidal Movement along Victoria Harbour



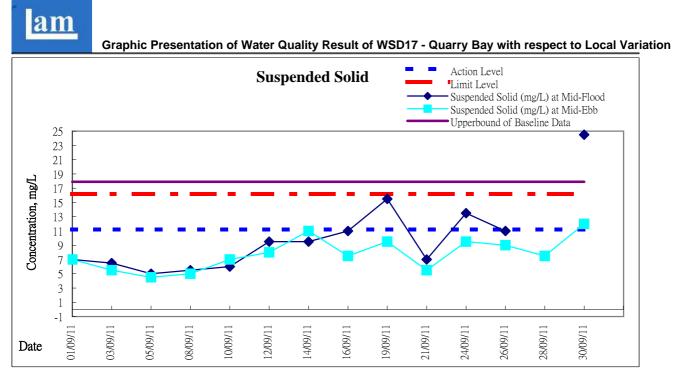

Appendix 5.5

Graphic Presentation of Water Quality Result with respect to Local Variation

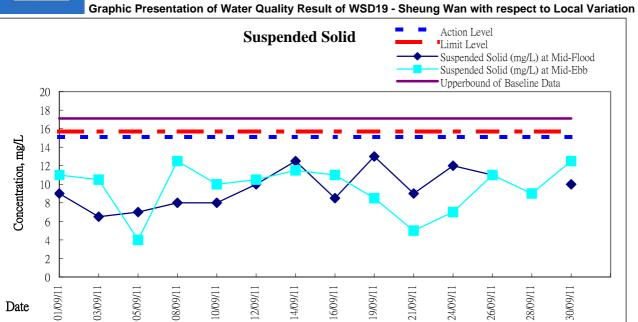
Graphic Presentation of Water Quality Result of WSD9 - Tai Wan with respect to Local Variation

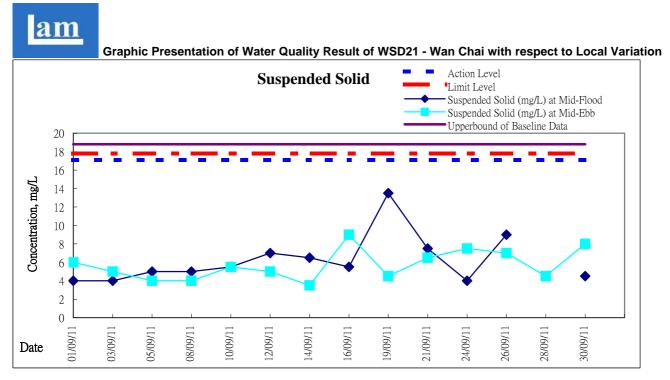


Remarks: WSD9 is located at upstream during the ebb tides while at downstream during flood tides.



Remarks: WSD10 is located at upstream during the flood tides while at downstream during ebb tides.

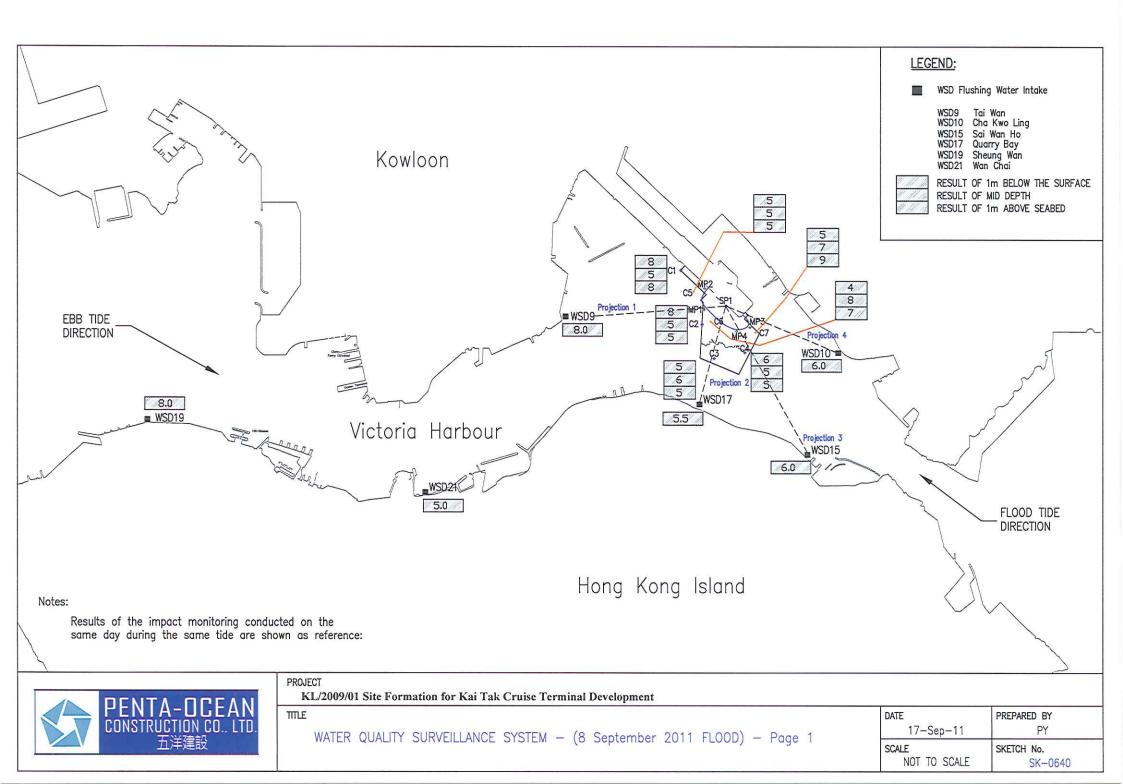

Graphic Presentation of Water Quality Result of WSD15 - Sai Wan Ho with respect to Local Variation

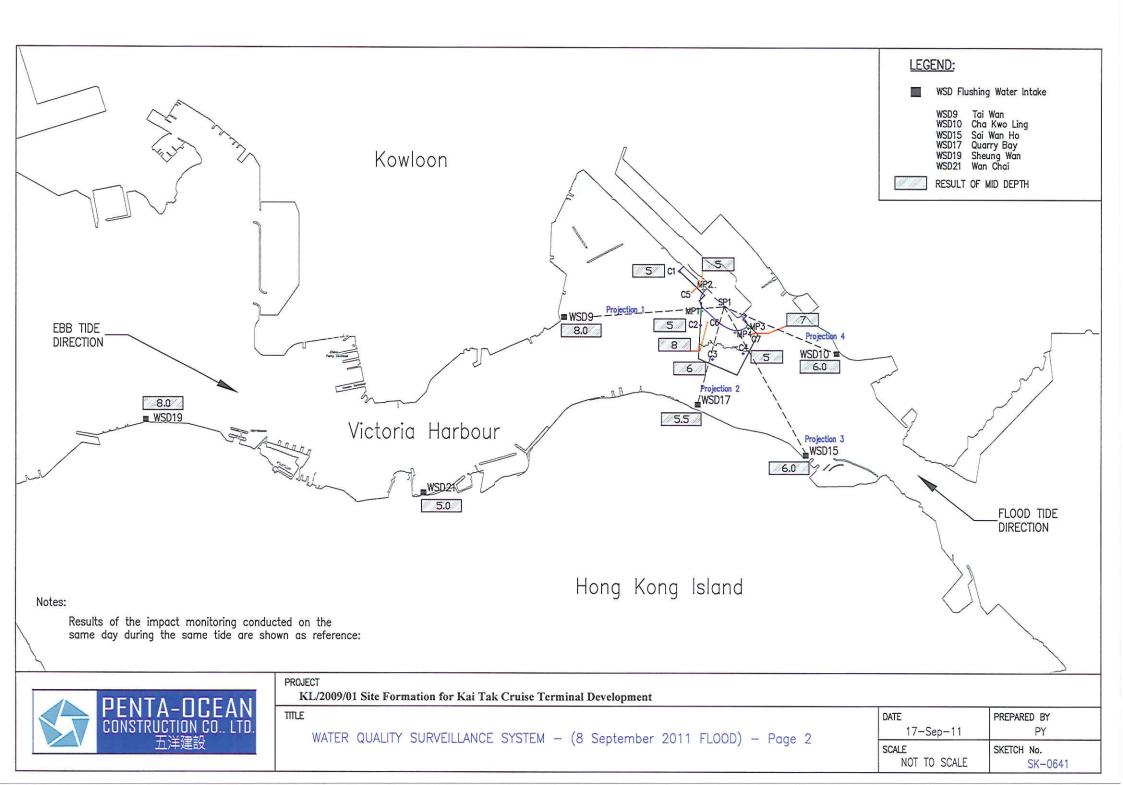

Remarks: WSD15 is located at upstream during the flood tides while at downstream during ebb tides.

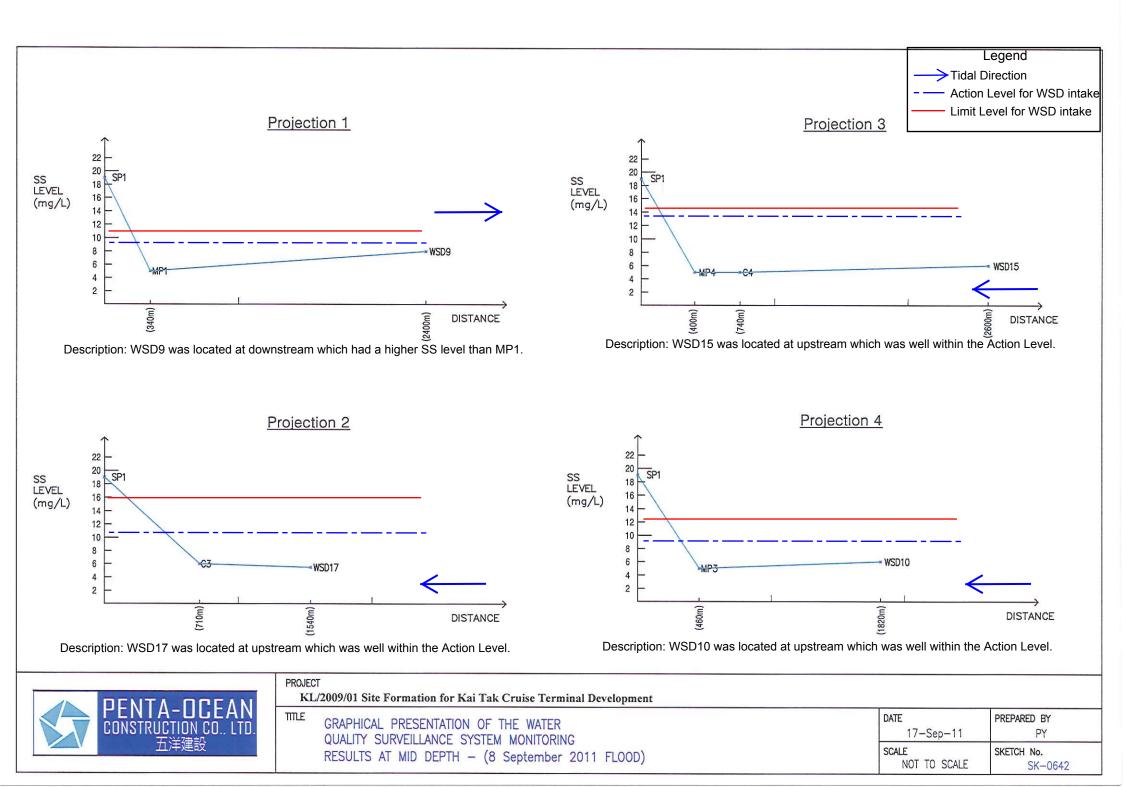
Remarks: WSD17 is located at upstream during the flood tides while at downstream during ebb tides.

Remarks: WSD19 is located at upstream during the ebb tides while at downstream during flood tides.

Remarks: WSD21 is located at upstream during the ebb tides while at downstream during flood tides.

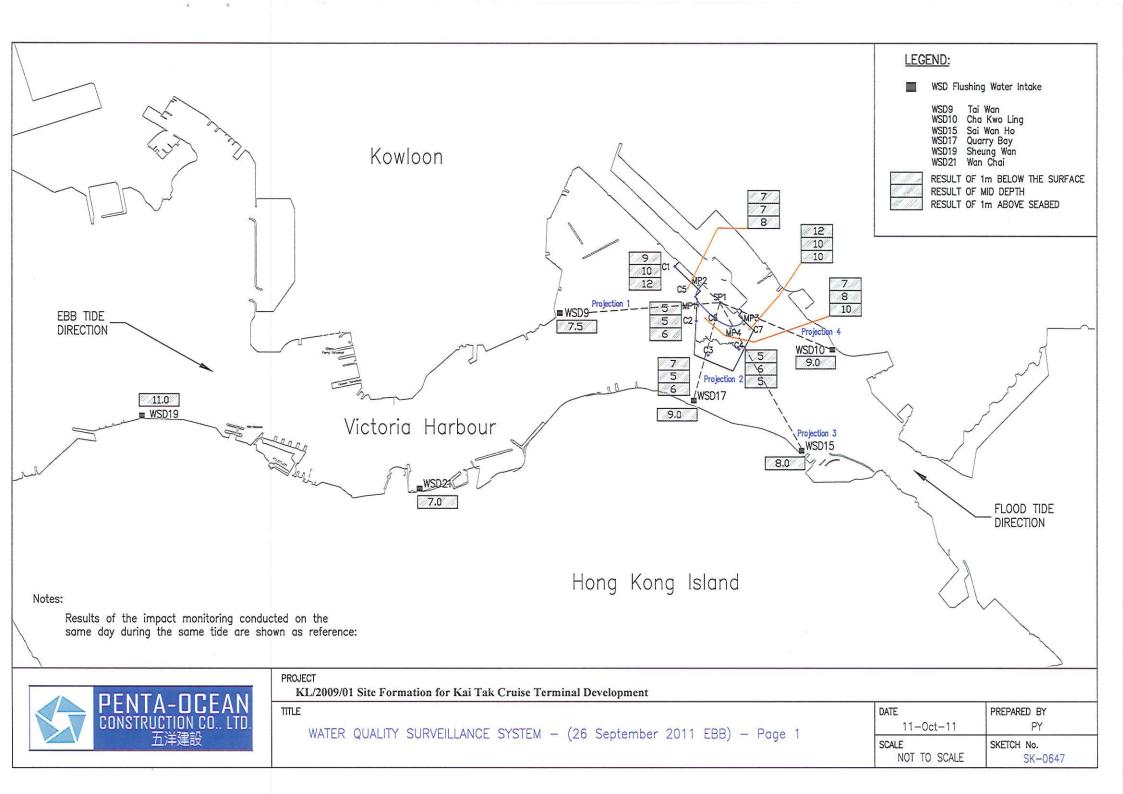


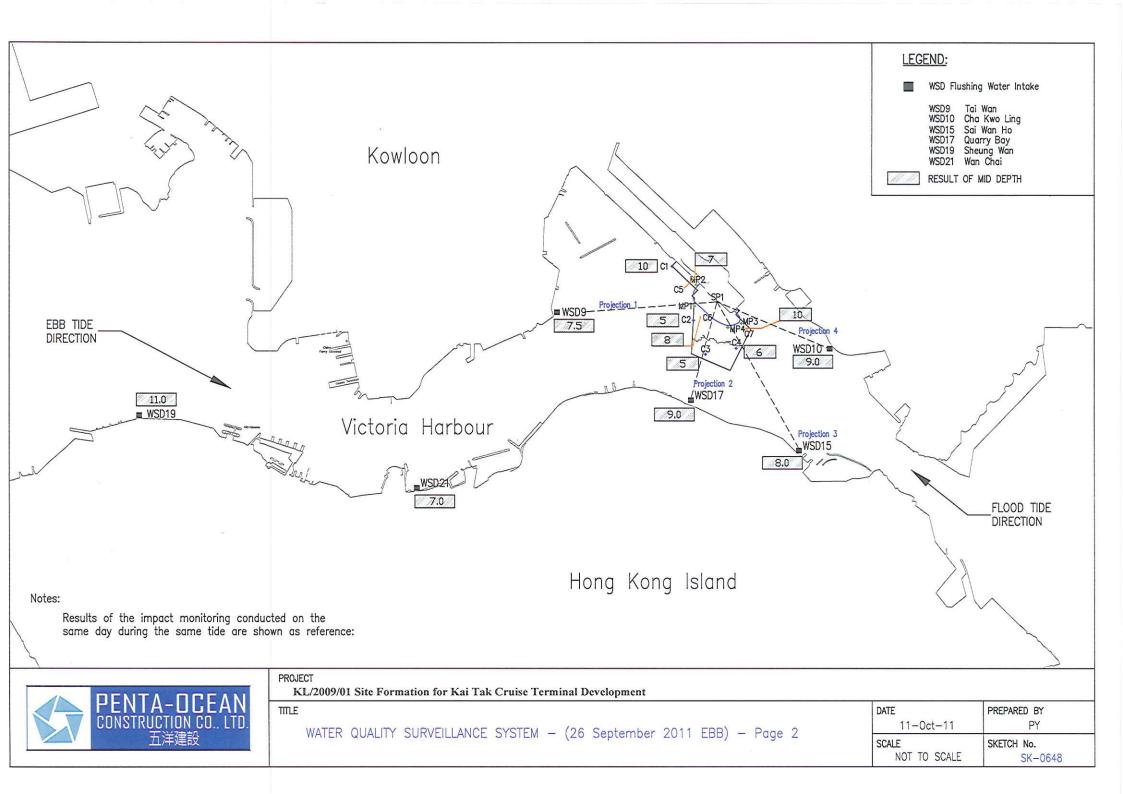

Appendix 5.6

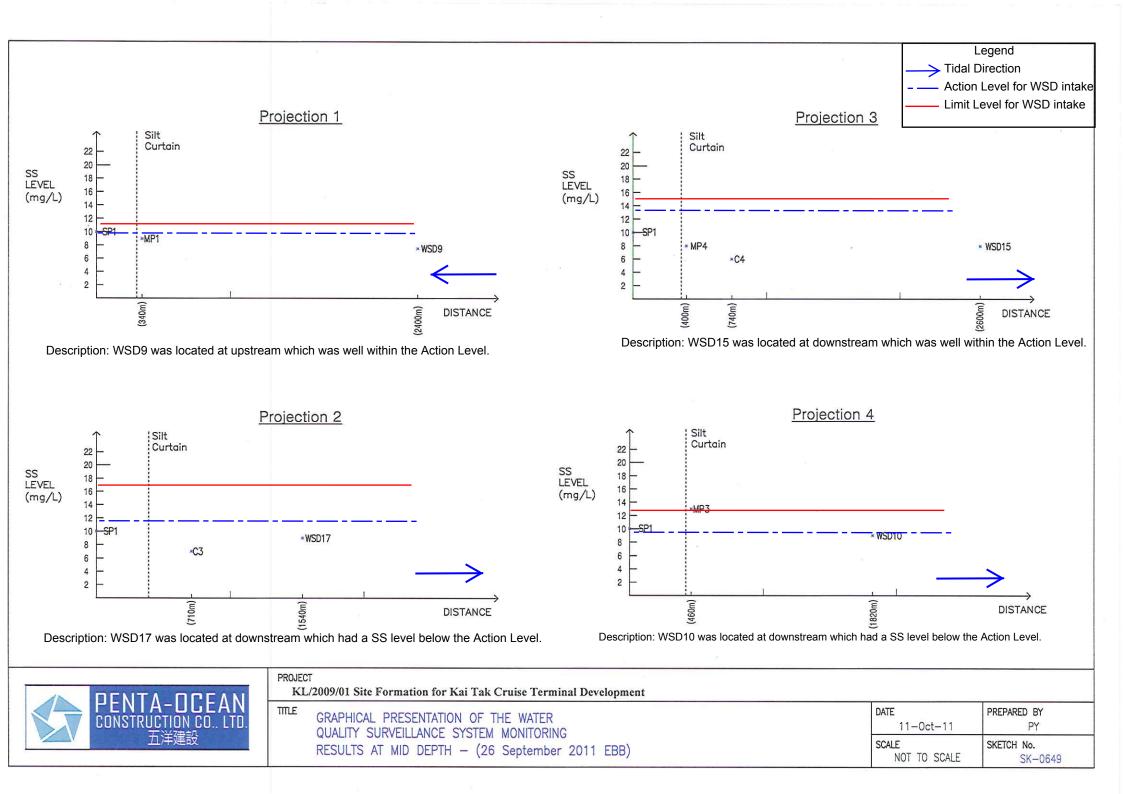

Graphical Presentation of Water Quality Surveillance System

Mo	nitoring Location	Turbidity in	Compare to	Suspended	Compare to
		NTU	Trigger Level	Solids in mg/L	Trigger Leve
SP1	1m below the surface	4.03	N/A	14	N/A
	mid depth	6.05	N/A	19	N/A
	1m above the seabed	8.70	N/A	19	N/A
	1m below the surface	3.40	N/A	4	N/A
MP1	mid depth	2.76	N/A	5	N/A
	1m above the seabed	3.14	N/A	6	N/A
	1m below the surface	2.57	N/A	6	N/A
MP2	mid depth	2.43	N/A	5	N/A
	1m above the seabed	2.90	N/A	5	N/A
	1m below the surface	2.85	N/A	4	N/A
MP3	mid depth	2.51	N/A	5	N/A
	1m above the seabed	5.49	N/A	10	N/A
	1m below the surface	2.98	N/A	6	N/A
MP4	mid depth	3.16	N/A	5	N/A
	1m above the seabed	3.88	N/A	6	N/A
	1m below the surface	4.06	Lower	8	Lower
C1	mid depth	2.83	Lower	5	Lower
	1m above the seabed	2.85	Lower	8	Lower
	1m below the surface	2.92	Lower	8	Lower
C2	mid depth	3.06	Lower	5	Lower
	1m above the seabed	3.94	Lower	5	Lower
	1m below the surface	3.17	Lower	5	Lower
C3	mid depth	3.09	Lower	6	Lower
	1m above the seabed	2.91	Lower	5	Lower
	1m below the surface	2.60	Lower	6	Lower
C4	mid depth	3.27	Lower	5	Lower
	1m above the seabed	2.77	Lower	5	Lower
	1m below the surface	2.82	N/A	5	N/A
C5	mid depth	2.71	N/A	5	N/A
	1m above the seabed	2.95	N/A	5	N/A
	1m below the surface	3.05	N/A	4	N/A
C6	mid depth	3.46	N/A	8	N/A
00	1m above the seabed	3.85	N/A	7	N/A
	1m below the surface	3.04	N/A N/A	5	N/A
C7	mid depth	3.88	N/A N/A	7	N/A
07	1m above the seabed	4.95	N/A N/A	9	N/A N/A

Control Point	Trigger Level for Turbidity in NTU for All Season	Trigger Level for SS in mg/L for Wet Season (April -		
C1	12.3 for Flood Tide			
C2	12.3 for Flood Tide	10.5		
C3	16.9	- 18.5		
C4	10.5 for Ebb Tide			






Water Quality Surveillance System Monitoring Results - 26 September 2011 (Ebb Tide)

Мо	nitoring Location	Turbidity in NTU	Compare to	Suspended Solids in mg/L	Compare to Trigger Level
	1m below the surface	5.48	Trigger Level N/A	11	N/A
SP1		5.63	N/A N/A	10	N/A N/A
	mid depth	Charles and Charles		10	N/A N/A
	1m above the seabed	7.60	N/A		N/A N/A
1 (D1	1m below the surface	4.75	N/A	10	
MP1	mid depth	5.80	N/A	9	11/11
	1m above the seabed	5.68	N/A	8	N/A
	1m below the surface	5.44	N/A	11	N/A
MP2	mid depth	6.24	N/A	9	N/A
	1m above the seabed	5.95	N/A	8	N/A
	1m below the surface	6.24	N/A	10	N/A
MP3	mid depth	6.31	N/A	13	N/A
	1m above the seabed	5.86	N/A	16	N/A
	1m below the surface	5.07	N/A	. 10	N/A
MP4	mid depth	5.02	N/A	8	N/A
	1m above the seabed	4.85	N/A	7	N/A
	1m below the surface	5.16	Lower	9	Lower
C1	mid depth	5.43	Lower	10	Lower
	1m above the seabed	6.45	Lower	12	Lower
	1m below the surface	3.37	Lower	5	Lower
C2	mid depth	2.83	Lower	5	Lower
	1m above the seabed	3.48	Lower	6	Lower
	1m below the surface	4.19	Lower	7	Lower
C3	mid depth	4.64	Lower	5	Lower
	1m above the seabed	4.56	Lower	6	Lower
	1m below the surface	4.69	Lower	5	Lower
C4	mid depth	4.32	Lower	6	Lower
	1m above the seabed	3.66	Lower	5	Lower
	1m below the surface	4.68	N/A	7	N/A
C5	mid depth	4.37	N/A	7	N/A
	1m above the seabed	5.13	N/A	8	N/A
	1m below the surface	4.03	N/A	7	N/A
C6	mid depth	4.26	N/A	8	N/A
~ ~	1m above the seabed	4.11	N/A	10	N/A
	1m below the surface	6.50	N/A	10	N/A
C7	mid depth	6.28	N/A	10	N/A
C/	1m above the seabed	7.29	N/A N/A	10	N/A N/A

Control	Trigger Level for Turbidity in	Trigger Level for SS in mg/L			
Point	NTU for All Season	for Wet Season (April -			
C1	12.3 for Flood Tide				
C2	12.3 for Flood Tide	18.5			
C3	16.9	16.5			
C4	10.5 for Ebb Tide				

Appendix 5.7

Details of Notification of Exceedances

Ref no.	Date	Tidal	Location	Parameters (Unit)	Average	Action Level	Limit Level	Level of Exceedance	Follow-up action	
X181	1-Sep-11	Mid-flood	WSD10	SS (mg/L)	12.5	9.1	12.2	Limit Level	Action taken / to be taken: Possible reason:	Silt screen was inspected and confirmed in a proper condition during the water monitoring. Any abnormal observation should be recorded, but no sign of traceable source was visualized and identified during monitoring. The trend of SS level against tidal movement along Victoria Harbour was reviewed, All stations in downstream were below the Action Levels. No sign of traceable source was identified during monitoring. Since WSD10 was located at the upstream of the Project, it is definitely not caused by the Project works and may be due to influences in the vicinity of the station. It is concluded that the source of impact was due to variation or change around WSD10 and not related to the project work.
									Remarks / Other Obs:	It was concluded as non-dredging related impact and hence no further mitigation nor repeated measurement under the EAP is required.
X182	5-Sep-11	Mid-flood	WSD10	SS (mg/L)	9.5	9.1	12.2	Action Level	Action taken / to be taken: Possible reason:	Silt screen was inspected and confirmed in a proper condition during the water monitoring. Any abnormal observation should be recorded, but no sign of traceable source was visualized and identified during monitoring. The trend of SS level against tidal movement along Victoria Harbour was reviewed, All stations in downstream were below the Action Levels. No sign of traceable source was identified during monitoring. Since WSD10 was located at the upstream of the Project, it is definitely not caused by the Project works and may be due to influences in the vicinity of the station. It is concluded that the source of impact was due to variation or change around WSD10 and not related to the project work.
									Remarks / Other Obs:	It was concluded as non-dredging related impact and hence no further mitigation nor repeated measurement under the EAP is required.
X183	19-Sep-11	Mid-flood	WSD17	SS (mg/L)	15.5	11.2	16.2	Action Level	Action taken / to be taken: Possible reason:	Silt screen was inspected and confirmed in a proper condition during the water monitoring. Any abnormal observation should be recorded, but no sign of traceable source was visualized and identified during monitoring. The trend of SS level against tidal movement along Victoria Harbour was reviewed, All stations in downstream were below the Action Levels. No sign of traceable source was identified during monitoring. Since WSD17 was located at the upstream of the Project, it is definitely not caused by the Project works and may be due to influences in the vicinity of the station. It is concluded that the source of impact was due to variation or change around WSD17 and not related to the project work.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further mitigation nor repeated measurement under the EAP is required.
X184	19-Sep-11 2:15	Mid-ebb	WSD10	SS (mg/L)	9.5	9.1	12.2	Action Level	Action taken / to be taken: Possible reason:	Silt screen was inspected and confirmed in a proper condition during the water monitoring. Any abnormal observation should be recorded, but no sign of traceable source was visualized and identified during monitoring. Checked with Contractor works, there was no marine activities during the ebb tide (23:48 on 18 Sep - 7:44 on 19 Sep). After checked monitoring data, no exceedance was recorded in the next consecutive water monitoring at the same day. It is concluded that the source of impact was due to natural variation or change around WSD10 and not related to the project work.
									Remarks / Other Obs:	Conclude as non-dredging related impact and hence no further mitigation nor repeated measurement under the EAP is required.

Ref no.	Date	Tidal	Location	Parameters (Unit)	Average	Action Level	Limit Level	Level of Exceedance	Follow-up action	
X185	24-Sep-11	Mid-flood	WSD17	SS (mg/L)	13.5	11.2	16.2	Action Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during the water monitoring. Any abnormal observation should be recorded, but no sign of traceable
									Possible reason:	The trend of SS level against tidal movement along Victoria Harbour was reviewed, All stations in downstream were below the Action Levels.
									Remarks / Other Obs:	No sign of traceable source was identified during monitoring. Since WSD17 was located at the upstream of the Project, it is definitely not caused by the Project works and may be due to influences in the vicinity of the station. It is concluded that the source of impact was due to variation or change around WSD17 and not related to the project work.
X186	26-Sep-11	Mid-flood	WSD10	SS (mg/L)	9.5	9.1	12.2	Action Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during the water monitoring. Any abnormal observation should be recorded, but no sign of traceable source was visualized and identified during monitoring.
									Possible reason:	The trend of SS level against tidal movement along Victoria Harbour was reviewed, All stations in downstream were below the Action Levels.
									Remarks / Other Obs:	No sign of traceable source was identified during the vicinit Levels. No sign of traceable source was identified during monitoring. Since WSD10 was located at the upstream of the Project, it is definitely not caused by the Project works and may be due to influences in the vicinity of the station. It is concluded that the source of impact was due to variation or change around WSD10 and not related to the project work.
X187	30-Sep-11	Mid-flood	WSD9	Turbidity (NTU)	7.4	5.7	12.27	Action Level	Action taken / to be taken:	Immediate repeated measurements had conducted to confirm the exceedances. Silt screen was inspected and confirmed in a proper condition during the water monitoring. Any abnormal observation should be recorded, but no sign of traceable source was visualized and identified during monitoring. Checked with the Contractor's marine works on 30 Sep, there was seawall removal dredging which have compliance with the hourly and daily dredging rate as stated in EP's condition.
									Possible reason:	Water quality being substantially affected after Typhoon signal no.3 on 28 Sep and 30 Sep and Typhoon signal no.8 on 29 Sep, the sea bed was disturbed under the adverse weather. The water quality was being substantially affected by the typhoon, which can not represent the normal condition of water quality on 30 Sep. As such, the monitoring results act as the reference of water quality on 30 September.
									Remarks / Other Obs:	Since water quality was being substantially affected by the typhoon , it is concluded that the source of impact was due to the disturbance by the typhoon and not related to the project work.
X188	30-Sep-11	Mid-flood	WSD10	SS (mg/L)	43.5	9.1	12.2	Limit Level	Action taken / to be taken:	screen was inspected and confirmed in a proper condition during the water monitoring. Any abnormal observation should be recorded, but no sign of traceable
				Turbidity (NTU)	30.9	6.26	10.47	Limit Level	Possible reason:	source was visualized and identified during monitoring. Water quality being substantially affected after Typhoon signal no.3 on 28 Sep and 30 Sep and Typhoon signal no.8 on 29 Sep, the sea bed was disturbed under the adverse weather. The water quality was being substantially affected by the typhoon, which can not represent the normal condition of water quality on 30 Sep. As such, the monitoring results act as the reference of water quality on 30 September.
									Remarks / Other Obs:	Since WSD10 was located at the upstream of the Project, it is definitely not caused by the Project works and due to the disturbance by typhoon. It is concluded that the source of impact was due to variation or change around WSD10 and not related to the project work.

Ref no.	Date	Tidal	Location	Parameters (Unit)	Average	Action Level	Limit Level	Level of Exceedance	Follow-up action	
X189	30-Sep-11	Mid-flood	WSD15	SS (mg/L)	19.5	13.5	14.5	Limit Level	Action taken / to be taken:	Immediate repeated measurements had conducted to confirm the exceedances. Silt screen was inspected and confirmed in a proper condition during the water monitoring. Any abnormal observation should be recorded, but no sign of traceable source was visualized and identified during monitoring.
				Turbidity (NTU)	17.3	8.2	14.4	Limit Level	Possible reason:	Water quality being substantially affected after Typhoon signal no.3 on 28 Sep and 30 Sep and Typhoon signal no.8 on 29 Sep, the sea bed was disturbed under the adverse weather. The water quality was being substantially affected by the typhoon, which can not represent the normal condition of water quality on 30 Sep. As such, the monitoring results act as the reference of water quality on 30 September.
									Remarks / Other Obs:	Since WSD15 was located at the upstream of the Project, it is definitely not caused by the Project works and due to the disturbance by typhoon. It is concluded that the source of impact was due to variation or change around WSD15 and not related to the project work.
X190	30-Sep-11	Mid-flood	WSD17	SS (mg/L)	24.5	11.2	16.2	Limit Level	Action taken / to be taken:	Immediate repeated measurements had conducted to confirm the exceedances. Silt screen was inspected and confirmed in a proper condition during the water monitoring. Any abnormal observation should be recorded, but no sign of traceable source was visualized and identified during monitoring.
				Turbidity (NTU)	21.0	11.6	16.9	Limit Level	Possible reason:	Water quality being substantially affected after Typhoon signal no.3 on 28 Sep and 30 Sep and Typhoon signal no.8 on 29 Sep, the sea bed was disturbed under the adverse weather. The water quality was being substantially affected by the typhoon, which can not represent the normal condition of water quality on 30 Sep. As such, the monitoring results act as the reference of water quality on 30 September.
									Remarks / Other Obs:	Since WSD17 was located at the upstream of the Project, it is definitely not caused by the Project works and due to the disturbance by typhoon. It is concluded that the source of impact was due to variation or change around WSD17 and not related to the project work.
X191	30-Sep-11	Mid-ebb	WSD9	SS (mg/L)	12.0	9.7	10.9	Limit Level	Action taken / to be taken:	Immediate repeated measurements had conducted to confirm the exceedances. Silt screen was inspected and confirmed in a proper condition during the water monitoring. Any abnormal observation should be recorded, but no sign of traceable source was visualized and identified during monitoring.
				Turbidity (NTU)	9.2	5.7	12.3	Action Level	Possible reason:	Water quality being substantially affected after Typhoon signal no.3 on 28 Sep and 30 Sep and Typhoon signal no.8 on 29 Sep, the sea bed was disturbed under the adverse weather. The water quality was being substantially affected by the typhoon, which can not represent the normal condition of water quality on 30 Sep. As such, the monitoring results act as the reference of water quality on 30 September.
									Remarks / Other Obs:	Since WSD9 was located at the upstream of the Project, it is definitely not caused by the Project works and due to the disturbance by typhoon. It is concluded that the source of impact was due to variation or change around WSD9 and not related to the project work.

Ref no.	Date	Tidal	Location	Parameters (Unit)	Average	Action Level	Limit Level	Level of Exceedance	Follow-up action	
X192	30-Sep-11	Mid-ebb	WSD10	SS (mg/L) Turbidity (NTU)	16.0 12.4			Limit Level Limit Level	Action taken / to be taken: Possible reason:	Immediate repeated measurements had conducted to confirm the exceedances. Silt screen was inspected and confirmed in a proper condition during the water monitoring. Any abnormal observation should be recorded, but no sign of traceable source was visualized and identified during monitoring. Checked with the Contractor's marine works on 30 Sep, there was seawall removal dredging which have compliance with the hourly and daily dredging rate as stated in EP's condition. Water quality being substantially affected after Typhoon signal no.3 on 28 Sep and 30 Sep and Typhoon signal no.8 on 29 Sep, the sea bed was disturbed under the
									Demorties (Other Oher	adverse weather. The water quality was being substantially affected by the typhoon, which can not represent the normal condition of water quality on 30 Sep. As such, the monitoring results act as the reference of water quality on 30 September.
									Remarks / Other Obs:	Since water quality was being substantially affected by the typhoon , it is concluded that the source of impact was due to the disturbance by the typhoon and not related to the project work.
X193	30-Sep-11	Mid-ebb	WSD15	SS (mg/L)	19.0	13.5	14.5	Limit Level	Action taken / to be taken:	Immediate repeated measurements had conducted to confirm the exceedances. Silt screen was inspected and confirmed in a proper condition during the water monitoring. Any abnormal observation should be recorded, but no sign of traceable source was visualized and identified during monitoring. Checked with the Contractor's marine works on 30 Sep, there was seawall removal dredging which have compliance with the hourly and daily dredging rate as stated in EP's condition.
				Turbidity (NTU)	11.9	8.2	14.4	Action Level	Possible reason:	Water quality being substantially affected after Typhoon signal no.3 on 28 Sep and 30 Sep and Typhoon signal no.8 on 29 Sep, the sea bed was disturbed under the adverse weather. The water quality was being substantially affected by the typhoon, which can not represent the normal condition of water quality on 30 Sep. As such, the monitoring results act as the reference of water quality on 30 September.
									Remarks / Other Obs:	Since water quality was being substantially affected by the typhoon , it is concluded that the source of impact was due to the disturbance by the typhoon and not related to the project work.
X194	30-Sep-11	Mid-ebb	WSD17	SS (mg/L)	12.0	11.2	16.2	Action Level	Action taken / to be taken:	Immediate repeated measurements had conducted to confirm the exceedances. Silt screen was inspected and confirmed in a proper condition during the water monitoring. Any abnormal observation should be recorded, but no sign of traceable source was visualized and identified during monitoring. Checked with the Contractor's marine works on 30 Sep, there was seawall removal dredging which have compliance with the hourly and daily dredging rate as stated in EP's condition.
									Possible reason:	Water quality being substantially affected after Typhoon signal no.3 on 28 Sep and 30 Sep and Typhoon signal no.8 on 29 Sep, the sea bed was disturbed under the adverse weather. The water quality was being substantially affected by the typhoon, which can not represent the normal condition of water quality on 30 Sep. As such, the monitoring results act as the reference of water quality on 30 September.
									Remarks / Other Obs:	Since water quality was being substantially affected by the typhoon , it is concluded that the source of impact was due to the disturbance by the typhoon and not related to the project work.

Lam Environmental Services Limited

am

Ref no.	Date	Tidal	Location	Parameters (Unit)	Average	Action Level	Limit Level	Level of Exceedance	Follow-up action	
X195	30-Sep-11	Mid-ebb	WSD21	Turbidity (NTU)	10.9	9.1	15.38	Action Level	Action taken / to be taken:	Immediate repeated measurements had conducted to confirm the exceedances. Silt
									Possible reason:	screen was inspected and confirmed in a proper condition during the water monitoring. Any abnormal observation should be recorded, but no sign of traceable source was visualized and identified during monitoring. Water quality being substantially affected after Typhoon signal no.3 on 28 Sep and 30 Sep and Typhoon signal no.8 on 29 Sep, the sea bed was disturbed under the adverse weather. The water quality was being substantially affected by the typhoon, which can not represent the normal condition of water quality on 30 Sep. As such, the monitoring results act as the reference of water quality on 30 September.
									Remarks / Other Obs:	Since WSD21 was located at the upstream of the Project, it is definitely not caused by the Project works and due to the disturbance by typhoon. It is concluded that the source of impact was due to variation or change around WSD21 and not related to the project work.

Appendix 9.0

Construction Programme