CONTRACT NO: KL/2009/01

SITE FORMATION FOR KAI TAK CRUISE TERMINAL DEVELOPMENT

ENVIRONMENTAL MONITORING & AUDIT MONTHLY REPORT

- APRIL 2012 -

CLIENT:

Penta-Ocean Construction Co., Ltd.

Unit 601, K. Wah Centre, 191 Java Road, North Point, Hong Kong PREPARED BY:

Lam Environmental Services Limited

11/F Centre Point 181-185 Gloucester Road, Wanchai, H.K.

Telephone: (852) 2882-3939 Facsimile: (852) 2882-3331 E-mail: info@lamenviro.com

Website: http://www.lamenviro.com

CERTIFIED BY:

Raymond Dai

Environmental Team Leader

DATE:

May 2012

FUGRO (HONG KONG) LIMITED CONSULTING ENGINEERS

7/F., Guardian House, 32 Oi Kwan Road, Wanchai, Hong Kong Tel : +852 2577 9023 Fax : +852 2895 2379 Email : fugro@fugro.com.hk

FAX MESSAGE

□ normal / □ urgent		
Lam Environmental Services Limited	Ref. No.	MCLF3056
	Email	raymonddai@lamenviro.com
Mr. Raymond Dai	Date	09 May 2012
Joseph Poon	No. of Pages	1 (Incl. this page)
Mr. Barry Wong (Scott Wilson Limited)	Email	barry.wong@scottwilson.com.hk
Mr. K. Y. Shin (Civil Engineering and Development Department)	Email	kyshin@cedd.gov.hk
Mr. Stephen Cheng (Scott Wilson Limited)	Email	stephen.cheng@scottwilson.com.hk
Mr. Andrew Tam (Scott Wilson Limited)	Email	andrew.tam@scottwilson.com.hk
Mr. Perry Yam (Penta-Ocean Construction Company Limited)	Email	perry.yam@pentaocean.com.hk
Agreement No. CE 19/2009 (EP) Dredging Works for Proposed Cruise Terminal		
	Lam Environmental Services Limited Mr. Raymond Dai Joseph Poon Mr. Barry Wong (Scott Wilson Limited) Mr. K. Y. Shin (Civil Engineering and Development Department) Mr. Stephen Cheng (Scott Wilson Limited) Mr. Andrew Tam (Scott Wilson Limited) Mr. Perry Yam (Penta-Ocean Construction Company Limited) Agreement No. CE 19/2009 (EP) Dredging Works for Proposed Cruise Terminal	Lam Environmental Services Limited Mr. Raymond Dai Mr. Raymond Dai Date No. of Joseph Poon Pages Mr. Barry Wong (Scott Wilson Limited) Mr. K. Y. Shin (Civil Engineering and Development Department) Mr. Stephen Cheng (Scott Wilson Limited) Mr. Andrew Tam (Scott Wilson Limited) Mr. Andrew Tam (Scott Wilson Limited) Mr. Perry Yam (Penta-Ocean Construction Company Limited) Email

We refer to the revised Monthly EM&A Report for April 2012 that we received through email on 09 May 2012 and are pleased to confirm we have no further comment on the report.

Should you require further information, please feel free to contact us.

Best regards,

Joseph Poon

Independent Environmental Checker

JP/CY/by

CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, disclose or otherwise use the information in this facsimile. If you are not the intended recipient, please telephone or fax us immediately.

(If you do not receive all pages, please fax response or phone +852-24508238.)

CONTENTS

Ex	ecutive	Summary	1
1	Introd	uction	4
	1.1	Scope of the Report	4
	1.2	Structure of the Report	4
2	Projec	t Background	6
	2.1	Background	6
	2.2	Scope of the Project and Site Description	6
	2.3	Project Organization and Contact Personnel	7
	2.4	Construction Programme and Works	7
3	Impler	nentation Requirements	7
	3.1	Status of Regulatory Compliance	8
4	Monito	oring Requirements	9
	4.1	Noise Monitoring	9
	4.2	Water Quality Monitoring	9
	4.3	Water Quality Parameters	10
	4.4	Sampling Procedures and Monitoring Equipment	11
5	Monito	oring Results	14
	5.1	Water Monitoring Results	14
	5.2	Waste Monitoring Results	14
6	Comp	liance Audit	15
	6.1	Noise Monitoring	15
	6.2	Water Quality Monitoring	15
	6.3	Dredging and Disposal	17
7	Site In	spection	20
8	Comp	laints, Notification of Summons and Prosecution	21
9	Concli	usion	22

LIST OF TABLES

Table I	Summary of the Exceedances Recorded in Reporting Month
Table 2.2	Contact Details of Key Personnel
Table 3.1	Summary of Valid Licences and Permits
Table 4.1	Planned Noise Monitoring Stations
Table 4.2	Water Quality Monitoring Stations for Baseline and Impact Monitoring
Table 4.3	Water Quality Monitoring Frequency and Parameters
Table 4.4	Equipment Used in Water Quality Monitoring in the Reporting Month
Table 6.2	Summary of Exceedances recorded in the Reporting Month
Table 6.4.1	Compliance with EP Conditions in the Reporting Month
Table 6.4.2	Waste Quantities Related To Dredging Works
Table 8.1	Environmental Complaints Log
Table 8.2	Cumulative Statistics on Complaints
Table 8.3	Cumulative Statistics on Successful Prosecutions
Table 9.0	Construction Activities and Recommended Mitigation Measures in Coming
	Report Month

LIST OF FIGURES

<u>Figure 2.1</u>	General Layout
Figure 2.2	Project Organisation Chart
<u>Figure 4.1</u>	Layout of Environmental Monitoring Stations
<u> Figure 6.1</u>	Layout of Monitoring Stations for Water Quality Surveillance System

LIST OF APPENDICES

<u>Appendix 3.1</u>	Implementation Schedule of Environmental Mitigation Measures
Appendix 4.1	Action and Limit Levels
Appendix 4.2	Copies of Calibration Certificates
Appendix 5.1	Monitoring Schedule for the Reporting Month and Coming Three Months
Appendix 5.2	Water Quality Monitoring Results and Graphical Presentation
Appendix 5.3	Event and Action Plan
Appendix 5.4	Graphic Presentation of SS Results against to Tidal Movement along
	Victoria Harbour
Appendix 5.5	Graphic Presentation of Water Quality Result with respect to Local
	Variation
Appendix 5.6	Graphical Presentation of Water Quality Surveillance System
Appendix 5.7	Details of Notification of Exceedances
Appendix 9.0	Construction Programme

EXECUTIVE SUMMARY

i. This is the Environmental Monitoring and Audit (EM&A) Monthly Report – April 2012 for Site Formation for Kai Tak Cruise Terminal Development under Contract No. KL/2009/01. Dredging of marine sediment has been commenced since 28 June 2010 while removal and reconstruction of existing seawall has been commenced since 22 November 2010. This report presents the environmental monitoring findings and information recorded from 1st to 30th April 2012.

Construction Activities for the Reporting Period

- ii. During this reporting period, the principal work activities included:
 - · Dredging of Marine Sediment;
 - Removal of Existing Seawall;
 - Fabrication and installation of silt curtain for seawall removal;
 - Maintenance of Silt Curtain and Silt Screens;
 - Sorting of inert C&D material from existing seawall;
 - Disposal of surplus fill material off-site; and
 - Reconstruction of New Seawall

Water Quality Monitoring

iii. Due to Amber Rainstorm Warnings, the following water quality monitoring was cancelled:

16 April 2012 - ebb tide

20 April 2012 - ebb tide

27 April 2012 - ebb tide

- iv. Supplementary to Baseline Water Quality Monitoring Report Review of Action and Limit Levels (Revision 1.2) was submitted to EPD on 13 October 2011. With respect to the EPD's no comment on the new Action and Limit Levels for water monitoring on 19 October 2011, the new set Action and Limit Levels for turbidity and SS was started to use from 19 October 2011.
- v. Water quality monitoring at 6 designated monitoring stations namely WSD9, WSD10, WSD15, WSD17, WSD19 and WSD21 were conducted during the reporting period. As per the EM&A Manual, water quality impact monitoring was conducted during the dredging works, which commenced on 28 June 2010. Suspended solid (SS) exceedances of water quality at various monitoring stations are summarized in *Table I*. The exceedance was located at the upstream of the Project site.

Table I Summary of the Exceedances Recorded in Reporting Month

Date	Tide	Station	Parameter	Exceedance	Value	Possible Cause of Exceedance
10/4/2012	Mid-ebb	WSD19	SS (mg/L)	LL	21.5	Upstream of the Project

- vi. For the exceedance, further investigations were conducted to determine the cause of impact in terms of Water Quality against the Tidal Movement along Victoria Harbour, Natural Variation Comparison and Water Quality Surveillance System.
- vii. Investigations were also conducted to present the water quality along Victoria Harbour in terms of Natural Variation Comparison and Water Quality Surveillance System.

Water Quality against the Tidal Movement along Victoria Harbour

viii. In the recorded upstream exceedance on 10 April 2012, no rising SS level in downstream across the Victoria Harbour after passing the project location. It concluded that no water quality impact was arising from the Project works.

Natural Variation Comparison

- ix. Based on the determination of upper bound of the natural variation levels from the Supplementary to Baseline Water Quality Monitoring Report, most SS results in reporting month were well within the upper bound of natural variation levels.
- x. Investigations on the recorded upstream exceedance on 10 April 2012 revealed that there was no significant rising up trend of SS levels across the Victoria Harbour after passing the project location. Also, some non-project related construction works were being performed around WSD19, possible runoff from these works might cause a rise in SS level. It concluded that no adverse water quality impact was arising from the Project works. It definitely concluded that the exceedance was not related to the Project works.

Water Quality Surveillance System

xi. With reference to the upper bound of natural variation levels and self water quality surveillance system conducting in reporting month, it shows no fluctuation over the upper bound.

Noise Monitoring

xii. Due to the non-existence of planned NSRs during the reporting period, no noise monitoring was required to be conducted at the planned noise monitoring locations NM1 and NM2.

Waste Management

xiii. There was 6,879m³ marine sediment (Type 1 – Open Sea Disposal) disposed to South Cheung Chau Spoil Disposal Area denoted "KTCT-1" and "KTCT -2" in this reporting month. The disposal of the sediment (Type 1 – Open Sea Disposal (Dedicate Sites) and Type 2 – Confined Marine Disposal) to East Sha Chau Contaminated Mud Disposal Site – Pit IVc was completed. 6,000m³ surplus fill

material and 20m³ non-inert C&D material related to dredging works were also disposed off site in the reporting month.

Complaints, Notifications of Summons and Successful Prosecutions

xiv. No complaint, notification of prosecutions or summons was received in the reporting period.

Site Inspections and Audit

xv. The Environmental Team (ET) conducted four site inspections on 3, 13, 20 and 24 April 2012. Observation and/or recommendation related to the dredging work during the audit sessions can be referred to Section 7.

Compliance with Specific EP Conditions

xvi. Implementation of contractor's mitigation for dredging work and the associated dredging records were checked. It was concluded that the dredging is conducted orderly in compliance with the EP requirements on site mitigation measures.

Construction Activities for the Coming Reporting Period

- xvii. In the coming reporting period, the principal work activities included:
 - Dredging of Marine Sediment;
 - Removal of Existing Seawall;
 - Fabrication and installation of silt curtain for seawall removal;
 - Maintenance of Silt Curtain and Silt Screens;
 - Sorting of inert C&D material from existing seawall;
 - Disposal of surplus fill material off-site; and
 - Reconstruction of New Seawall

1 INTRODUCTION

1.1 SCOPE OF THE REPORT

- 1.1.1. Lam Environmental Services Limited (LES) has been appointed to work as the Environmental Team (ET) for dredging works to implement the Environmental Monitoring and Audit (EM&A) programme for Site Formation for Kai Tak Cruise Terminal Development under Contract No. KL/2009/01. Dredging of marine sediment has been commenced since 28 June 2010 while removal and reconstruction of existing seawall has been commenced since 22 November 2010.
- 1.1.2. This report presents the environmental monitoring and auditing work carried out in accordance to the Section 10.4 under Environmental Monitoring and Audit (EM&A) Manual.
- 1.1.3. This report documents the finding of EM&A works from 1st to 30th April 2012. The cut-off date of reporting is at the end of each reporting month.

1.2 STRUCTURE OF THE REPORT

Section 1 Introduction – details of the scope and structure of the report.

Section 2 Project Background – summarizes background and scope of the project, site description, project organization and contact details of key personnel during the reporting period.

Section 3 *Implementation Status* – summarizes the status of valid Environmental Permits / Licenses during the reporting period.

Section 4 Monitoring Requirements – summarizes all monitoring parameters, monitoring methodology and equipment, monitoring locations, monitoring frequency, criteria and respective event and action plan and monitoring programmes.

Section 5 *Monitoring Results* – summarizes the monitoring results obtained in the reporting period.

Section 6 Compliance Audit – summarizes the auditing of monitoring results and all exceedances environmental parameters.

Section 7 Site Inspection – summarizes the findings of weekly site inspections undertaken within the reporting period, with a review of any relevant follow-up actions within the reporting period.

Section 8 Complaints, Notification of Summons and Prosecution – summarizes the complaints, notification of summons and successful prosecution for breaches of environmental legislation and the actions taken within the reporting period.

Section 9 Conclusion

2 PROJECT BACKGROUND

2.1 BACKGROUND

- 2.1.1. The former Kai Tak Airport located in the south-eastern part of Kowloon Peninsula was the international airport of Hong Kong. The Kai Tak Airport had come into operations since 1920s. The operation of the Kai Tak Airport was ceased and replaced by the new airport at Chek Lap Kok in July 1998. After closure, the disused airport site has been occupied by various temporary uses, including a golf driving range on the runway area.
- 2.1.2. In 2002, the Chief Executive in Council approved the Kai Tak Outline Zoning Plans (No. S/K19/3 and S/K21/3) to provide the statutory framework to proceed with the South East Kowloon Development at the former Kai Tak Airport. However, following the judgment of the Court of Final Appeal in January 2004 regarding the Harbour reclamation, the originally proposed development which involves reclamation has to be reviewed. The Kai Tak Planning Review (KTPR) has resulted with a Preliminary Outline Development Plan (PODP) for Kai Tak in October 2006. Subsequently, the Administration announced in October 2006 a plan to implement a cruise terminal at Kai Tak, as part of the development.
- 2.1.3. Development of the cruise terminal at Kai Tak would require dredging at the existing seawall at the southern tip of the former Kai Tak Airport runway for construction of a quay deck structure for two berths, and dredging the seabed fronting the new quay to provide necessary manoeuvring basin. The general layout of the proposed cruise terminal construction is shown in *Figure 2.1*.
- 2.1.4. The current Project involves a dredging operation exceeding 500,000m³ for construction and operation of the proposed cruise terminal at Kai Tak and is therefore classified as a Designated Project under Item C.12, Part I, Schedule 2 of the Environmental Impact Assessment Ordinance (EIAO). An Environmental Impact Assessment (EIA) Study for the Project has been undertaken in accordance with the EIA Study Brief (No. ESB-159/2006) and the Technical Memorandum on Environmental Impact Assessment Process (EIAO-TM).

2.2 SCOPE OF THE PROJECT AND SITE DESCRIPTION

- 2.2.1. The scope of the Project comprises:
 - Dredging of marine sediment of about 700,000 m³ from the existing seabed (Stage 1 dredging) in the Harbour area off the southern tip of the former Kai Tak Airport runway to provide the necessary water depth within the manoeuvring area for cruise vessels; and
 - Removal of existing seawall of about 322,300m³ by dredging at the southern tip of the former Kai Tak Airport runway for cruise berth construction.

2.3 PROJECT ORGANIZATION AND CONTACT PERSONNEL

- 2.3.1. Kowloon Development Office of Civil Engineering and Development Department is the overall project controller. For the construction phase of KL/2009/01, Project Engineer, Contractor, Environmental Team and Independent Environmental Checker are appointed to manage and control environmental issues.
- 2.3.2. The proposed project organization and lines of communication with respect to environmental protection works are shown in <u>Figure 2.2</u>. Key personnel and contact particulars are summarized in *Table 2.2*:

Table 2.2 Contact Details of Key Personnel

Party	Role	Name	Post	Contact No.	Contact Fax
Civil Engineering and Development Department (Kowloon Development Office)	Project Proponent	Ir. KY Shin	Senior Engineer	2301 1461	2301 1277
URS / Scott Wilson Limited	Engineer's Representative	Mr. Stephen Cheng	Chief Resident Engineer	2148 7638	2148 7277
Penta-Ocean Construction	Contractor	Mr. H. Taguchi	Project Manager	2148 7238	2148 7138
Company Limited		Mr. K. Takae	Chief Construction Manager		
		Mr. Perry Yam	Environmental Officer		
Fugro (HK) Limited	Independent Environmental Checker (IEC)	Mr. Joseph Poon	Independent Environmental Checker (IEC)	2450 8238	2450 6138
Lam Environmental Services Limited	Environmental Team Leader	Mr. Raymond Dai	Environmental Team Leader (ETL)	2882 3939	2882 3331

2.4 CONSTRUCTION PROGRAMME AND WORKS

- 2.4.1. During this reporting period, the principal work activities included:
 - · Dredging of marine sediment;
 - · Removal of Existing Seawall;
 - Fabrication and installation of silt curtain for seawall removal;
 - Maintenance of Silt Curtain and Silt Screens;
 - Sorting of inert C&D material from existing seawall;
 - · Disposal of surplus fill material off-site; and
 - Reconstruction of New Seawall

3 IMPLEMENTATION REQUIREMENTS

3.1 STATUS OF REGULATORY COMPLIANCE

3.1.1. A summary of the current status on licences and/or permits on environmental protection pertinent to the Project is shown in *Table 3.1*.

Table 3.1 Summary of Valid Licences and Permits

Permits and/or Licences	Reference No.	Issued Date	Valid Period	Status in Reporting Month
Environmental Permit	EP-328/2009/A	15 Jun 2009	N/A	Valid
Notification of Works Under APCO	KTCT/907/S/3.14/7. 00/L/0060 (POC's REF. number) dated 9 December 2009		N/A	Valid
Construction Noise Permit (CNP)	GW-RE0177-12	8 Mar 2012	23 Mar 2012 (00:00) to 22 Sep 2012 (24:00)	Valid
Discharge Licence	WT00005933-2010	18 Mar 2010	Until 31 March 2015	Valid
Registration of Waste Producer	5213-247-P2984- 01	14 Jan 2010	N/A	Valid
Dumping Permit (Type 1 – Open Sea Disposal)	EP/MD/12-081	31 Oct 2011	3 Nov 2011 to 2 May 2012	Valid

3.1.2. Implementation status of the recommended mitigation measures during this reporting period is presented in *Appendix 3.1*.

4 MONITORING REQUIREMENTS

4.1 NOISE MONITORING

4.1.1. In accordance with the EIA Report and the approved EM&A Manual, it is anticipated that construction activities, if unmitigated, would not cause any adverse noise impact to the nearest NSRs in the vicinity of the work site. The predicted noise levels at the NSRs would comply with construction noise criteria. These nearest NSRs are designated for construction noise monitoring as listed in *Table 4.1*.

Table 4.1 Planned Noise Monitoring Stations

Station	Description	
NM1	Planned Residential Development (R3 site)	
NM2	Planned Residential Development (R3 site)	

4.1.2. As per S.3.1.1 of the approved EM&A Manual states that "Noise levels shall be monitored to evaluate the construction noise impact if there is any planned noise sensitive receivers (NSRs) occupied within 300m from the works area of this Project during the proposed dredging works". Therefore, the impact monitoring for construction noise shall only be carried out when the planned residential development at the two identified monitoring stations are occupied at a later stage.

4.2 WATER QUALITY MONITORING

- 4.2.1. The EIA Report has identified that suspended solids (SS) would be the most critical water quality parameter during the dredging operations. Water quality monitoring for SS and turbidity is therefore recommended to be carried out at selected WSD flushing water intakes. The impact monitoring should be carried out during the proposed dredging works for cruise terminal construction to ensure the compliance with the water quality standards.
- 4.2.2. It is proposed to monitor the water quality at six WSD flushing water intakes along the seafront of the Victoria Harbour. The proposed water quality monitoring stations are shown in *Table 4.2* and *Figure 4.1*.

Table 4.2 Water Quality Monitoring Stations for Baseline and Impact Monitoring

Station Ref.	WSD Flushing Water Intake	Easting	Northing
WSD9	Tai Wan	837921.0	818330.0
WSD10	Cha Kwo Ling	841900.9	817700.1

Lam Environmental Services Limited

Station Ref.	WSD Flushing Water Intake	Easting	Northing
WSD15	Sai Wan Ho	841110.4	816450.1
WSD17	Quarry Bay	839790.3	817032.2
WSD21	Wan Chai	836220.8	815940.1
WSD19	Sheung Wan	833415.0	816771.0

4.3 WATER QUALITY PARAMETERS

- 4.3.1. During the period of dredging, monitoring should be undertaken three days per week, at mid-flood and mid-ebb tides, with sampling / measurement at the designated monitoring stations as shown in *Table 4.2*. The interval between two sets of monitoring should not be less than 36 hours except where there are exceedances of Action and/or Limit Levels, in which case the monitoring frequency will be increased. *Table 4.3* shows the proposed monitoring frequency and water quality parameters. Duplicate in-situ measurements and water sampling should be carried out in each sampling event. For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides should not be less than 0.5m.
- 4.3.2. Silt screens in frame type or floating type shall be deployed at these intakes during the dredging period. It is recommended to conduct the monitoring behind the silt screens at the seawater intake culvert at each seawater pumping station to collect information on the water quality condition after passed the silt screen.

Table 4.3 Water Quality Monitoring Frequency and Parameters

Activities	Monitoring Frequency ¹	Parameters ²
During the 4-week baseline monitoring period	Three days per week, at mid-flood and mid-ebb tides	Turbidity (in NTU), Suspended Solids (SS in mg/L)
During dredging works for proposed cruise terminal at Kai Tak	Three days per week, at mid-flood and mid-ebb tides	Turbidity (in NTU), Suspended Solids (SS in mg/L)

Notes:

- For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides should be not less than 0.5m.
- 2. Turbidity should be measured in situ whereas SS should be determined by laboratory.
- 4.3.3. Supplementary to Baseline Water Quality Monitoring Report Review of Action and Limit Levels (Revision 1.2) was submitted to EPD on 13 October 2011. With respect to the EPD's no comment on the new Action and Limit Levels for water monitoring on 19 October 2011, the new set Action and Limit Levels for turbidity and SS was adopted from 19 Oct 2011 and can be referred to <u>Appendix 4.1</u>.
- 4.3.4. Current calibration certificates of equipment are presented in *Appendix 4.2.*

4.4 SAMPLING PROCEDURES AND MONITORING EQUIPMENT

4.4.1. In-situ measurements and water sampling shall be conducted at mid-depth. Duplicate in-situ measurements and water sampling have been conducted in each sampling event. Water samples for all monitoring parameters shall be collected, stored, preserved and analysed according to the Standard Methods, APHA 17 and/or agreed by IEC and EPD.

Dissolved Oxygen and Temperature Measuring Equipment

- 4.4.2. The instrument should be a portable, weatherproof dissolved oxygen measuring instrument complete with cable, sensor, comprehensive operation manuals, and use a DC power source. It should be capable of measuring:
 - a dissolved oxygen level in the range of 0-20 mg/l and 0-200% saturation
 - a temperature of 0-45 degree Celsius
- 4.4.3. It should have a membrane electrode with automatic temperature compensation complete with a cable. Sufficient stocks of spare electrodes and cables should be available for replacement where necessary. (e.g. YSI model 59 meter, YSI 5739 probe, YSI 5795A submersible stirrer with reel and cable or an approved similar instrument).
- 4.4.4. Should salinity compensation not be build-in in the DO equipment, in-situ salinity shall be measured to calibrate the DO equipment prior to each DO measurement.

Turbidity Measurement Instrument

4.4.5. The instrument should be a portable, weatherproof turbidity-measuring instrument complete with comprehensive operation manual. The equipment should use a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0-1000 NTU and be complete with a cable (e.g. Hach model 2100P or an approved similar instrument).

Suspended Solids

- 4.4.6. A water sampler comprises a transparent PVC cylinder, with a capacity of not less than 2 litres, and can be effectively sealed with latex cups at both ends. The sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth (e.g. Kahlsico Water Sampler or an approved similar instrument).
- 4.4.7. Water samples for suspended solids measurement should be collected in highdensity polythene bottles, packed in ice (cooled to 4°C without being frozen), and

delivered to ALS Technichem (HK) Pty Ltd. as soon as possible after collection for analysis.

Water Depth Detector

4.4.8. A portable, battery-operated echo sounder shall be used for the determination of water depth at each designated monitoring station. This unit can either be handheld or affixed to the bottom of the workboat, if the same vessel is to be used throughout the monitoring programme.

Salinity

4.4.9. A portable salinometer capable of measuring salinity in the range of 0-40 ppt shall be provided for measuring salinity of the water at each of monitoring location.

Locating the Monitoring Site

4.4.10. A hand-held or boat-fixed type digital Global Positioning System (GPS) with way point bearing indication or other equivalent instrument of similar accuracy shall be provided and used during monitoring to ensure the monitoring vessel is at the correct location before taking measurements.

Calibration and Accuracy of Instrument

- 4.4.11. All in-situ monitoring instruments shall be checked, calibrated and certified by a laboratory accredited under HOKLAS or equivalent before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring. Responses of sensors and electrodes should be checked with certified standard solutions before each use. Wet bulb calibration for a DO meter shall be carried out before measurement at each monitoring location.
- 4.4.12. For the on site calibration of field equipment by the ET, the BS 127:1993, "Guide to Field and on-site test methods for the analysis of waters" should be observed.
- 4.4.13. Sufficient stocks of spare parts should be maintained for replacements when necessary. Backup monitoring equipment shall also be made available so that monitoring can proceed uninterrupted even when some equipment is under maintenance, calibration, etc.
- 4.4.14. The equipment used in the water quality monitoring in the reporting month are summarized in *Table 4.4*. Current calibration certificates of the used equipment are presented in *Appendix 4.2*

Table 4.4 Equipment Used in Water Quality Monitoring in the Reporting Month

Equipment	Model	Qty.
Multi-meter	YSI Professional Plus	1
Turbidimeter	Hach 2100Q	1

5 MONITORING RESULTS

5.1 WATER MONITORING RESULTS

- 5.1.1. The water monitoring schedule for the reporting month and coming three months are presented in *Appendix 5.1*.
- 5.1.2. Due to Amber Rainstorm Warnings, the following water quality monitoring was cancelled

16 April 2012 - ebb tide

20 April 2012 - ebb tide

27 April 2012 - ebb tide

- 5.1.3. Water monitoring results measured in reporting month are reviewed and presented in <u>Appendix 5.2</u>. There was no turbidity. And one SS exceedance was recorded in this reporting month.
- 5.1.4. The details of Event and Action Plans and Notification of Exceedance can be referred to *Appendix 5.3* and *Appendix 5.7*.

5.2 WASTE MONITORING RESULTS

5.2.1. There were 6,000m³ inert surplus fill material and 20m³ non-inert C&D material related to dredging works were disposed off site in the reporting month.

6 COMPLIANCE AUDIT

6.1 NOISE MONITORING

6.1.1. Noise monitoring was not necessary in the reporting period.

6.2 WATER QUALITY MONITORING

6.2.1. Due to Amber Rainstorm Warnings, the following water quality monitoring was cancelled:

16 April 2012 - ebb tide 20 April 2012 - ebb tide 27 April 2012 - ebb tide

- 6.2.2. There was no turbidity exceedance recorded in the reporting period.
- 6.2.3. SS exceedance was recorded on the 10 April 2012 in the reporting month. *Table*6.2 summarizes the details of SS exceedance recorded. Investigation indicated the exceedance was not related to the Project works.

Table 6.2 Summary of Exceedances recorded in the Reporting Month

Date	Tide	Station	Parameter	Exceedance	Value	Possible Cause of Exceedance
10/4/2012	Mid-ebb	WSD19	SS (mg/L)	LL	21.5	Upstream of the Project

- 6.2.4. Total one SS exceedance was recorded in the reporting period. Silt curtain and silt screens were checked and confirmed in proper condition during the water monitoring. The exceedance on 10 April 2012 was located at the upstream of the Project site.
- 6.2.5. For the exceedance, further investigations were conducted to determine the cause of impact in terms of the following areas:
 - Water Quality against the Tidal Movement along Victoria Harbour;
 - Natural Variation Comparison; and
 - Water Quality Surveillance System

6.3 WATER QUALITY AGAINST THE TIDAL MOVEMENT ALONG VICTORIA HARBOUR

6.3.1 In order to conclude the cause of an adverse water quality impact, the trend across the 6 monitoring stations is reviewed. Whether the adverse impact is due to project work will be evaluated from the trend of SS level in downstream across the Victoria Harbour after passing the project location. By observing this trend of SS, contribution of the adverse water quality impact from the dredging activities

under the project can be evaluated by checking if there is a significant rising up trend in the SS level in the WSD intakes at project downstream.

- 6.3.2 Moreover, a comparison of the monitoring station at project downstream stations with the upstream monitoring stations can also indicate whether the extent of exceedance in SS content recorded at the WSD intakes downstream to the project is likely to be caused by upstream source or not. If the SS values of the upstream and downstream show similar levels, the impact at the project downstream stations shall probably be due to the project upstream source and the contribution from project work can be eliminated. A review on the tidal movement across the Victoria Harbour is plotted against the SS results and graphical presentation is presented in *Appendix 5.4*.
- 6.3.3 Investigations on the recorded upstream exceedance on 10 April 2012 revealed that there was no significant rising up trend of SS levels across the Victoria Harbour after passing the project location. Also, some non-project related construction works were being performed around WSD19, possible runoff from these works might cause a rise in SS level. It concluded that no adverse water quality impact was arising from the Project works.

6.4 NATURAL VARIATION COMPARISON

- Referring to the ER Letter ref. CEDD/KL/2009/01/M45/130(369767) dated 14 February 2011, a Supplementary to Baseline Water Quality Monitoring Report Review Action and Limit Levels (Revision 1.0) has been provided to EPD by ER in February 2011 in according to Sections 4.92 and 10.7 of EM&A Manual. This report in Revision 1.1 has been provided on 26 April 2011 in response to EPD's comments dated 1 April 2011. This report presents the methodology for enlargement baseline database and the review and determination of the Action and Limit Levels in dry and wet seasons.
- 6.4.2 On the basis of this Supplementary to Baseline Water Quality Monitoring Report, the maximum SS levels in the establishment of larger baseline database will be applied and acted as the upper bound of natural variation levels for the comparison with SS results in reporting quarter. The upper bound of natural variation levels are shown in **Table 6.4**. The graphic presentation of water quality results with respect to local variation is shown in **Appendix 5.5**.

Table 6.4 Upper Bound of Natural Variation Levels at Water Monitoring Stations

Upper Bound of Natural Variation Levels (mg/L)	WSD9	WSD10	WSD15	WSD17	WSD19	WSD21
Dry Season	12.0	19.0	14.0	16.0	18.0	15.0
Wet Season	15.1	21.2	22.7	17.9	17.1	18.8

Lam Environmental Services Limited

6.4.3 According to the graphic presentation, nearly all SS results were well within the upper bound of natural variation level. The SS exceedance on 10 April 2012 was just above the upper bound of natural variation level, this might have been caused by runoff from the non-project related construction activities around WSD19. After checking the contractor's activities, no dredging was performed on that day and seawall removal rate was 200m³ per day. All activities were within EP limits and in conclusion, no adverse water quality impact was arising from the Project works.

6.5 WATER QUALITY SURVEILLANCE SYSTEM

- 6.5.1. 1 self water quality surveillance monitoring events for removal of existing seawall were conducted on 5 April 2012. Turbidity and SS monitoring were conducted at 12 locations as follows and shown in **Figure 6.1**.
 - One sampling point inside the silt curtain (SP1);
 - · Four sampling points outside the first layer silt curtain (MP1-MP4);
 - Seven control points (C1-C7)
- 6.5.2. The trend of monitoring results from the location of dredging works to the nearest WSD pumping stations were projected for checking the water quality surveillance. The graphical presentation of the SS levels at SP1, sampling points outside the first layer silt curtain, control points and impact water quality monitoring stations against the distance are shown in **Appendix 5.6.**
- 6.5.3. Based on the graphic presentation and the trend description of the SS levels in *Appendix 5.6* conclusion of the water quality surveillance can be draw as follows:
 - Due to Amber Rainstorm Warning, the water quality surveillance on 20 April 2012 for the ebb tide was cancelled.
 - SS levels of MP are lower than SP1;
 - When the WSD intakes were located at upstream of the Project, it found that SS level was occasionally higher than the control points or sampling points near dredging area. Thus, uncertain interference of water quality was apparently interfering in the vicinity of intakes frequently;
 - For WSD intakes located at downstream of the Project, SS levels were below the Action level, sampling points MP and control points were recorded. The trend in the projections indicated that no significant rising of SS in the projection from the dredging area to the control points and the WSD pumping stations.
- 6.5.4. With reference to the upper bound of natural variation levels and water quality surveillance conducting in reporting period, it shows no fluctuation over the upper bound.

6.6 DREDGING AND DISPOSAL

Contract No. KL/2009/01 Site Formation for Kai Tak Cruise Terminal Development

6.6.1. Implementation of mitigation measures for dredging work and the associated dredging records were checked and the findings are summarized in *Table 6.4.1*.

Table 6.4.1 Compliance with EP Conditions in the Reporting Month

EP Condition	Compliance Status and/or Recommendation
2.6 Silt Curtain Deployment	In accordance with the EP requirement and Implementation Schedule for Water Quality Measure
2.6 For removal of the existing seawall and the seabed, Daily Dredging Rate ≤ 4,000m3/d Hourly Dredging Rate ≤ 334m3/hr	Complied with the EP requirement in reporting month: Daily Dredging Rate maintained at 480m ³ /day and Hourly Dredging Rate maintained at 60m ³ /hr.
2.7 For removal of marine sediment from seabed, Daily Dredging Rate ≤ 4,000m3/d Hourly Dredging Rate ≤ 334m3/hr	Complied with the EP requirement in reporting month: Daily Dredging Rate maintained at 579m³/day and Hourly Dredging Rate maintained at 140m³/hr.
2.8 Silt Screen Deployment	In accordance with the Silt Screen Deployment Plan for all 6 intakes

- 6.6.2. The daily and hourly dredging rates were checked and reviewed that were below the EP requirements. It was concluded that the dredging was conducted in compliance with the specific EP requirements.
- 6.6.3. There was 6,879m³ marine sediment (Type 1 Open Sea Disposal) was disposed to South Cheung Chau Spoil Disposal Area denoted "KTCT-1" and "KTCT -2" in this reporting month. The disposal of the sediment (Type 1 Open Sea Disposal (Dedicate Sites) and Type 2 Confined Marine Disposal) to East Sha Chau Contaminated Mud Disposal Site Pit IVc was completed. 6,000m³ inert surplus fill material and 20m³ non-inert C&D material related to dredging works were disposed off site in the reporting month. The details can be referred to the *Table 6.4.2*.

Table 6.4.2 Waste Quantities Related To Dredging Works

Waste Type	Quantity this month, m³ (Bulk volume)	Cumulative-to- Date. m ³ (Bulk volume)	Disposal / Dumping Ground
Marine Sediment (Type 1 – Open Sea Disposal)(6,879	343,114	South Cheung Chau Spoil Disposal Area denoted "KTCT-1" and "KTCT -2"
Marine Sediment (Type 1 – Open Sea Disposal (Dedicated Sites) and Type 2 – Confined Marine Disposal) *	NIL	Completed	East Sha Chau Contaminated Mud Disposal Site – Pit IVc

^{*} Remarks: The disposal of marine sediment (Type 1 – Open Sea Disposal (Dedicated Sites) and Type 2 – Confined Marine Disposal) was completed.

7 ENVIRONMENTAL SITE AUDIT

- 7.0.1. Site audits were carried out by ET on weekly basis to monitor the implementation of proper environmental management practices and mitigation measures in the Project site.
- 7.0.2. The joint site audits were conducted on 3, 13, 20 and 24 April 2012 by the representatives of IEC, ER, the Contractor and the ET. No particular finding was obtained on the dredging works during the site inspections.

8 COMPLAINTS, NOTIFICATION OF SUMMONS AND PROSECUTION

8.0.1. In this reporting period, no complaint, inspection notice, notification of summons or prosecution was received. Cumulative complaint log, summaries of complaints, notification of summons and successful prosecutions are presented in *Tables 8.1*, 8.2 and 8.3 respectively.

Table 8.1 Environmental Complaints Log

Complaint Log No.		Received From and Received By		Date Investigated	Outcome	Date of Reply
NIL	-	-	-	-	-	-

Table 8.2 Cumulative Statistics on Complaints

Environmental Parameters	Cumulative No. Brought Forward	No. of Complaints This Month	Cumulative No. Project-to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Total	0	0	0

Table 8.3 Cumulative Statistics on Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Successful Prosecutions this month (Offence Date)	Cumulative No. Project-to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Total	0	0	0

9 CONCLUSION

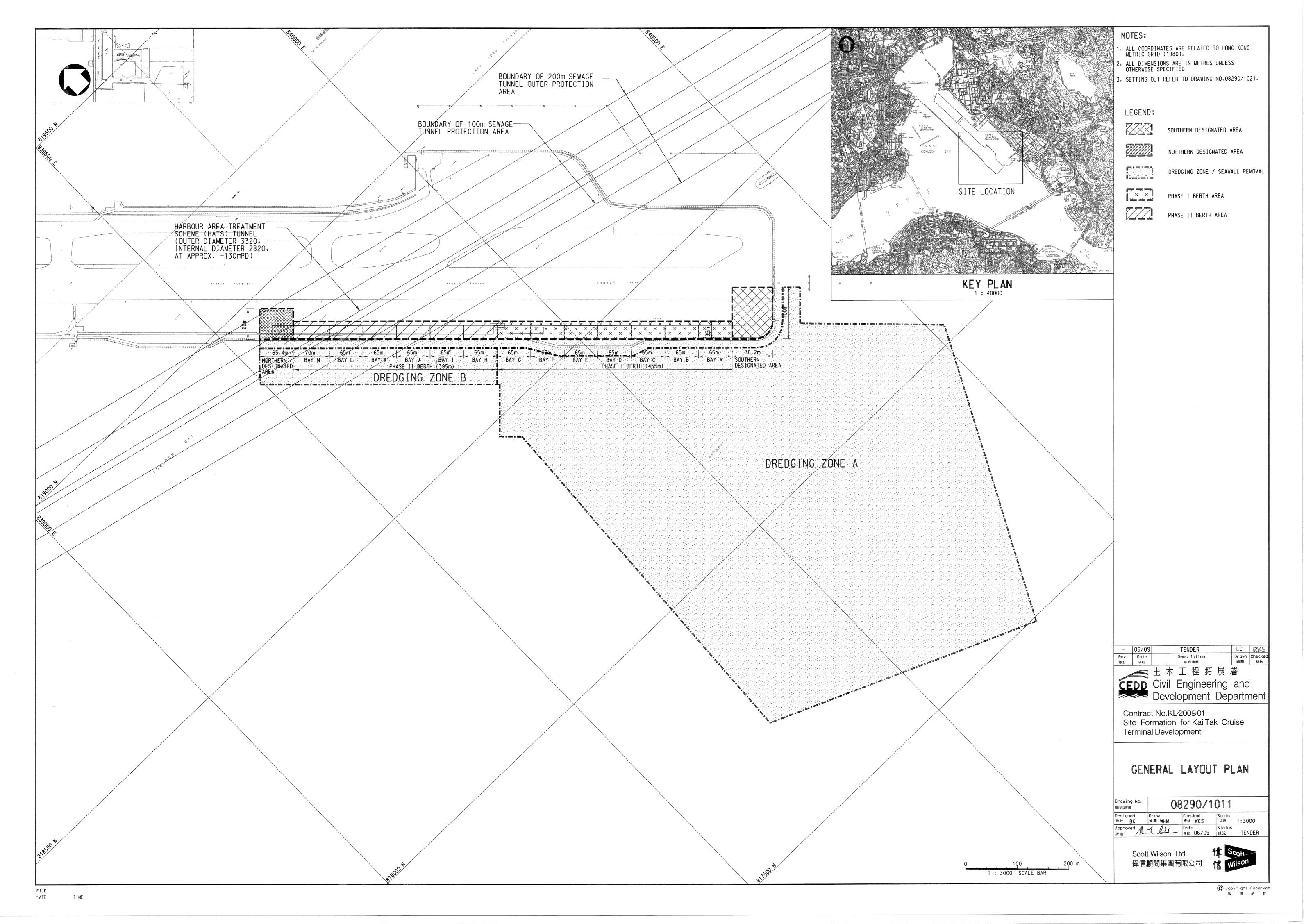

- 9.0.1. Dredging of marine sediment and removal and reconstruction of existing seawall were commenced on 28 June and 22 November 2010 respectively. The EM&A programme was carried out in accordance with the EM&A Manual requirements. As per the EM&A Manual, water quality impact monitoring was conducted during the dredging work, which was commenced on 28 June 2010.
- 9.0.2. SS exceedance was recorded on 10 April 2012. Investigation indicated the exceedance was not related to the Project.
- 9.0.3. Supplementary to Baseline Water Quality Monitoring Report Review of Action and Limit Levels (Revision 1.2) was submitted to EPD on 13 October 2011. With respect to the EPD's no comment on the new Action and Limit Levels for water monitoring on 19 October 2011, the new set Action and Limit Levels for turbidity and SS was started to use from 19 October 2011.
- 9.0.4. The scheduled construction activities and the recommended mitigation measures for the coming month are listed in *Table 9.0*. The construction programme of the Project is provided in *Appendix 9.0*.

Table 9.0 Construction Activities and Recommended Mitigation Measures in Coming Report Month

Location	Construction Works	Recommended Mitigation Measures
Marine work	 Dredging of Marine Sediment; Removal of Existing Seawall; Fabrication and installation of silt curtain for seawall removal; Maintenance of Silt Curtain and Silt Screens; Sorting of inert C&D material from existing seawall; Disposal of surplus fill material off-site; and Reconstruction of New Seawall 	 Collection and removal of floating refuse at regular intervals; Regular inspection and maintenance of the silt screens and silt curtain; Silt curtain shall be deployed around the closed grab dredgers used for seawall removal; Covering the stockpile and watering the dust surface to suppress dust emission; Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; Opening of the silt curtain should be closed except for vessel movement.

Figure 2.1

General Layout

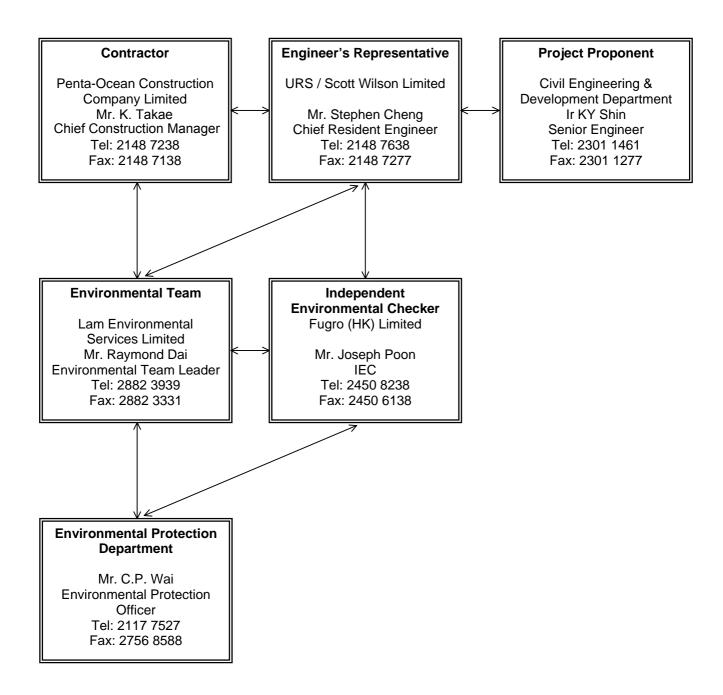
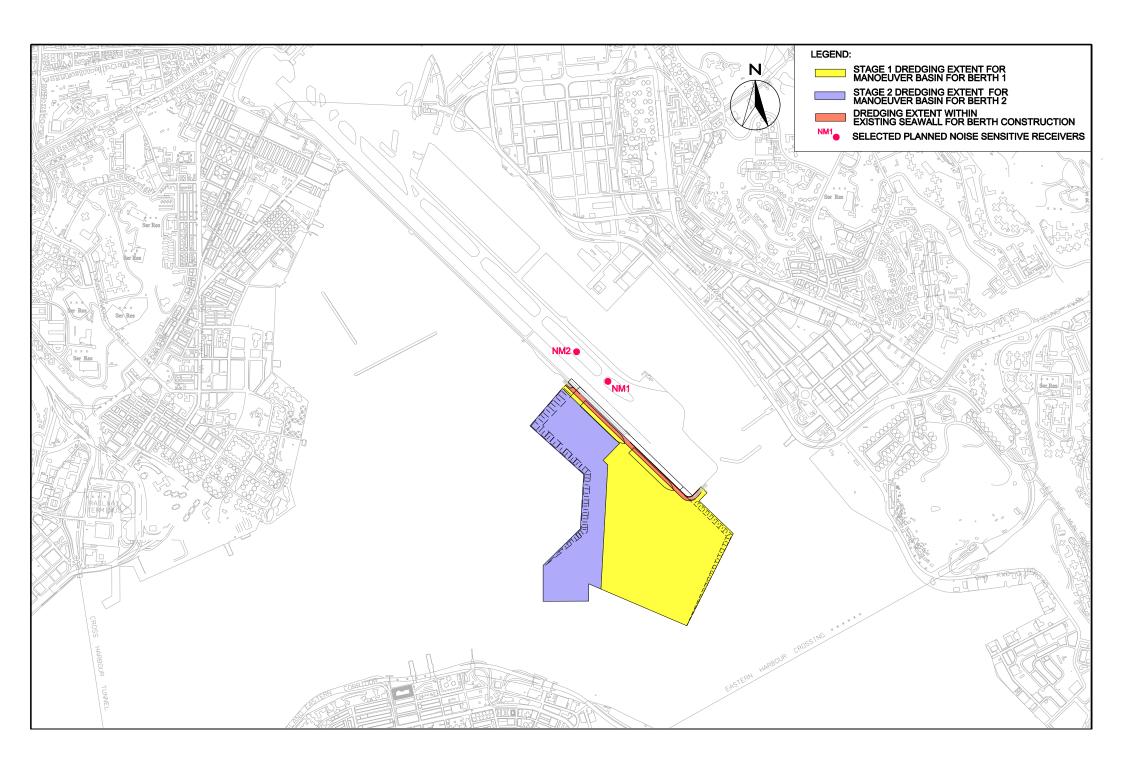


Figure 2.2

Project Organization Chart



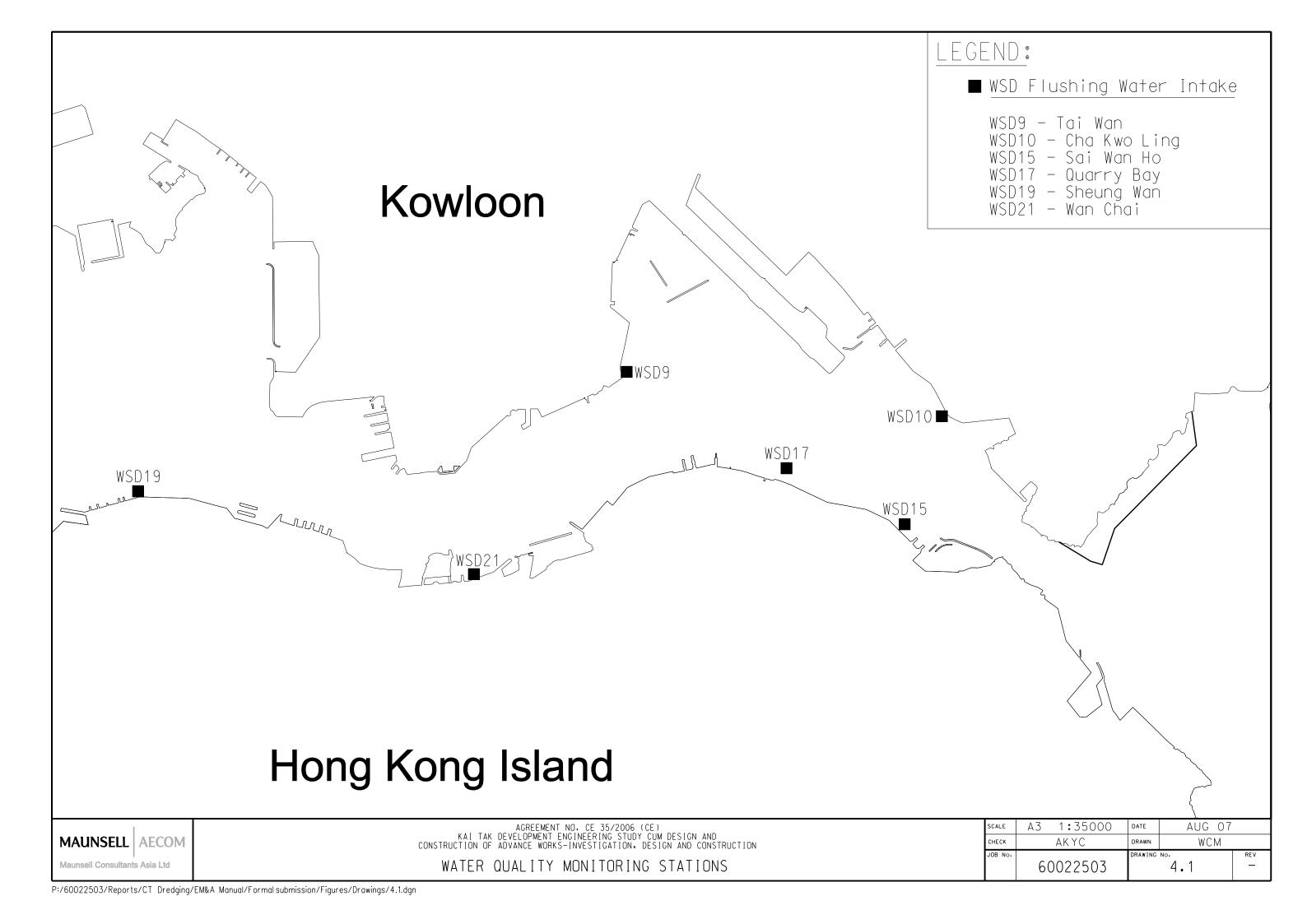
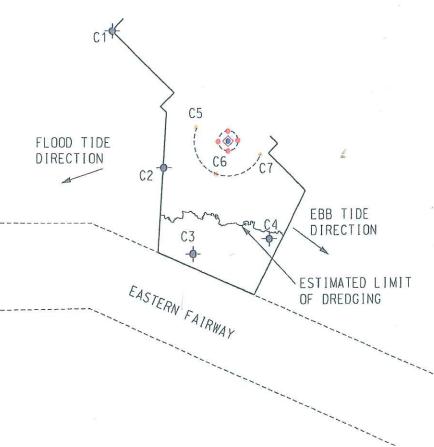

Project Organization Chart

Figure 4.1

Layout of Environmental Monitoring Stations

Figure 6.1


Layout of Monitoring Stations for Water Quality Surveillance System

2. Set A (4 sampling stations), the water quality monitoring works shall be taken at the Control Points (i.e. C1 to C4). Set B (3 sampling stations), the water quality monitoring works shall be taken at approximate 100m outside the silt curtain (i.e. C5 to C7) which the locations shall be changed from time to time to follow the movement of silt curtain.

- 3. The water quality monitoring works shall be carried out during the dredging period.
- 4. The water quality monitoring works shall be carried out at a frequency to be agreed by the Engineer. The date and time of monitoring should be in line with the impact water quality monitoring shedule under the EMBA manual. Each sampling event shall be carried out at 3 depth (i.e. 1m below the surface, mid depth, and 1m above the seabed) of the water column at each location. Duplicate in-situ measurements and water sampling shall be carried out in each sampling event. For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides shall not less than 0.5m. The schedule of water quality monitoring shall be reviewed by the Engineer and the Independent Environmental Checker (IEC) depending on whether the water quality monitoring results could indicate any trend of water quality for determination of trigger/action level or whether there is a ad-hoc requirement (e.g. change of working methods, compaints, etc.). The Contractor shall carry out the works according to the revised schedule if instructed by the Engineer.
- 5. As the key parameters, turbidity shall be measured in situ whereas Suspended Solids (SS) shall be determined by laboratory. Analysis of SS level shall be carried out in a HOKLA'S or other international accredited laboratory. Sufficient water samples of not less than 1 liter shall be collected at the monitoring stations for carrying out the laboratory SS determinations.
- Requirements on the monitoring equipments and calibration shall be referred to Paragraph 4.7 "Monitoring Equipment" of the Environmental Monitoring and Audit Manual for the Dredging Works for Proposed Cruise Terminal at Kai Tak.
- 7. Laboratory analysis of the sampling data shall be carried out in a HOKLAS or other international accredited laboratory and follow the requirements as stated in Paragraph 4.8 "Laboratory Measurement/Analysis" of the Environmental Monitoring and Audit Manual for the Dredging Works for Proposed Cruise Terminal at Kal Tak. Monitoring data together with the report shall be reported to the Engineer and the IEC on monthly basis.
- 8. Other relevant data shall also be recorded including monitoring location/position, time, water depth, sampling depth, water temperature, tidal stages, weather conditions and any special phenomena or work underway nearby.

LEGEND:

- SILT CURTAIN (20m x 20m)
- SAMPLING POINT
 INSIDE SILT CURTAIN
 (CONTRACTOR'S PROPOSED SAMPLING
 POINT TO MONITOR EFFECTIVENESS
 OF SILT CURTAINS)
- SAMPLING POINT AT ABOUT 10m
 OUTSIDE SILT CURTANN
 (CONTRACTOR'S PROPOSED SAMPLING
 POINT TO MONITOR EFFECTIVENESS
 OF SILT CURTANNS)
- SAMPLING POINT
 AS CONTROL POINT (CI TO C4)
 (ADDITIONAL)
- SAMPLING POINT AS CONTROL POINT (C5 TO C7) AT ABOUT 100m AWAY FROM SILT CURTAIN (ADDITIONAL)

ADDITIONAL WATER QUALITY MONITORING STATIONS

COORDINATE	NORTH	EAST
C1 -	818867.763	839495.740
C5	818152.875	839775.604
C3	817702.158	839931.601
C4	817780.765	840334.093
C5	acourou.	a clusion
C6		S CHANGE
C7	WITH SIL	T CURTAIN

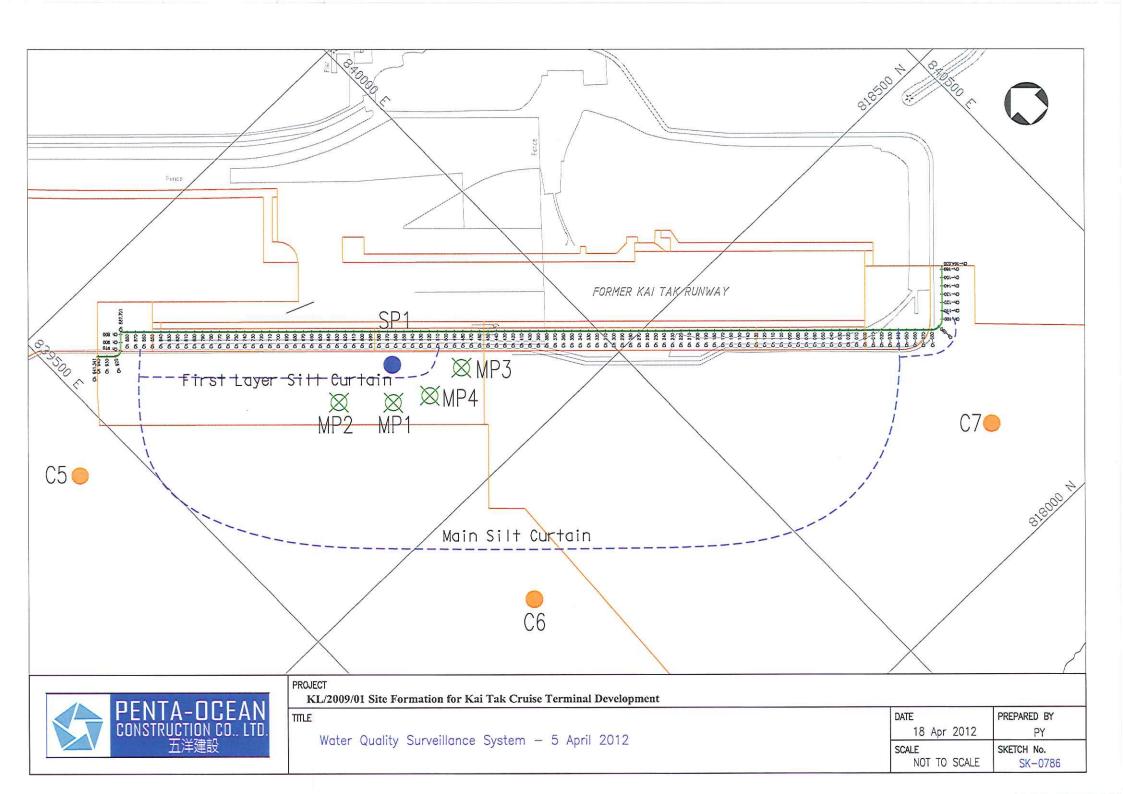
--- SITE BOUNDARY

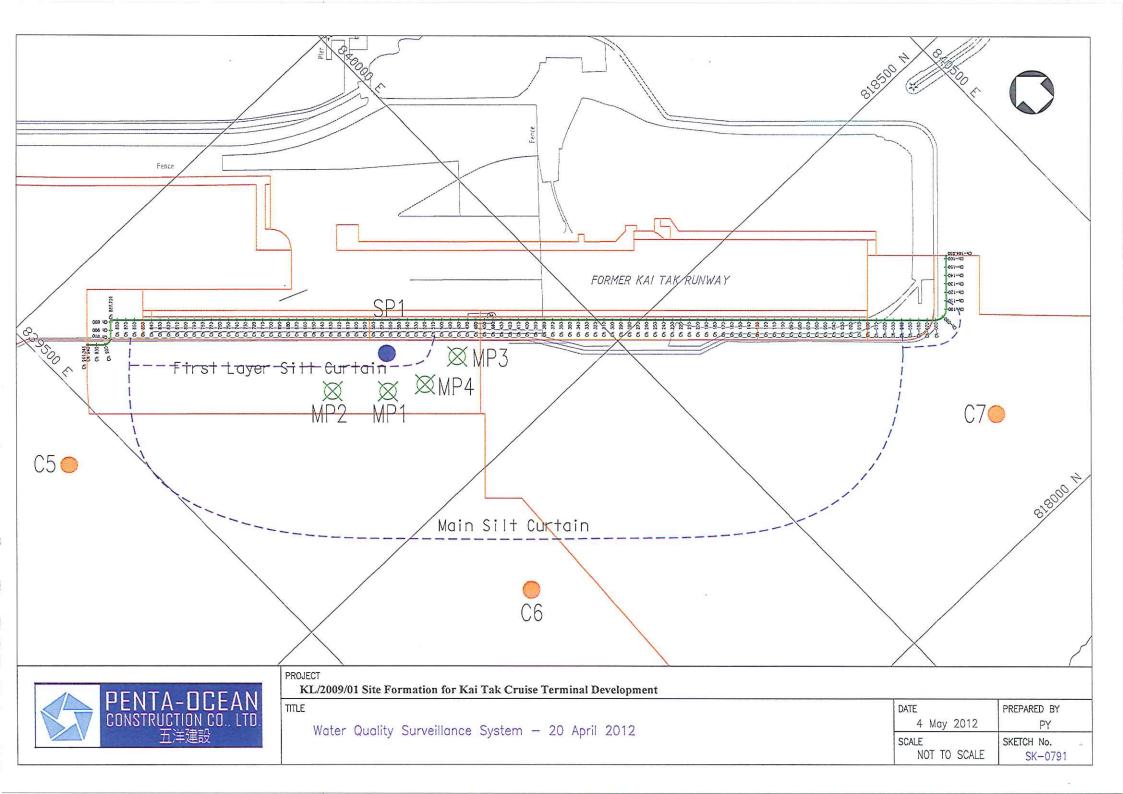
Control Copy

No. 35

BY: 00/967 (34/879) 40. \$5

B	09/10	REVISION AS SHOWN	EW	R.
A	07/10	REWSON AS SHOWN	JY	SC
Selfa	Date	Reraion	Grava	Crecked


CEDD CONTRACT KL/2009/01 SITE FORMATION FOR KN TAX CRUISE TERNINAL DEVELOPMENT


WATER QUALITY SURVEILLANCE SYSYEM

SKETCH	NO.	(CEDDK	901)SK0067E		
DATE	0640	DRAWN	JY	SCHE	
CHECKEO	AT	APPROVED	SC	Jacke	NTS
utterto	096 10				

URS SCOTT WILSON LTD
Engineer for the Conduct
ENGINEER'S REPRESENTATIVES OFFICE

Appendix 3.1

Implementation Schedule of Environmental Mitigation Measures

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S3.6	Requirements of the Air Pollution Control (Construction Dust) Regulation shall be adhered to during the construction period.	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	Air Pollution Control (Construction Dust) Regulation
S3.6	In order to minimize the potential odour emissions, if any, the dredged sediment placed on barge should be properly covered as far as practicable to minimise the exposed area and hence the potential odour emissions during the transportation of the dredged sediment.	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM
S4.8	 Good Site Practices: Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program. Mobile plant, if any, should be sited as far away from NSRs as possible. Machines and plant (such as trucks) that may be in intermittent use should be shut down between works periods or should be throttled down to a minimum. Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. Material stockpiles and other structures should be effectively utilised, wherever practicable, in screening noise from on-site construction activities. 	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	NCO EIAO-TM

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S4.9	If there is any planned NSRs within 300m from the work area occupied during the dredging period, an EM&A programme is recommended to be established according to the predicted occurrence of noisy activities. All the recommended mitigation measures for daytime normal working activities should be incorporated into the EM&A programme for implementation during dredging.	Representative NSRs at the former Kai Tak Airport runway / Upon formal occupation	N/A	Not applicable	NCO EIAO-TM
S5.9	 Dredging will be carried out by closed grab dredger to minimize release of sediment and other contaminants during both capital and maintenance dredging. The maximum production rate for dredging from the seabed to provide necessary manoeuvring area would not be more than 4,000m³ per day (and no more than 2 closed grab dredgers) during capital dredging and 2,000m³ per day (and no more than 1 closed grab dredger) during maintenance dredging. The maximum production rate for dredging at or near the seawall area would not be more than 4,000m³ per day for berth construction. No more than two closed grab dredger would be operated at the same time at or near the seawall for berth construction. 	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM WPCO
S5.9	Silt curtains should be deployed around the closed grab dredgers used for dredging at and near the existing seawall of the former Kai Tak Airport runway for construction of the cruise berth structures.	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM, WPCO

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S5.9	Silt screens should be installed at the WSD flushing water intakes at Cha Kwo Ling, Sai Wan Ho, Quarry Bay, Sheung Wan, Wan Chai and Tai Wan for dredging in the manoeuvring basin of the first berth during the capital dredging.	Seawater intakes in Victoria Harbour/ During the construction of cruise terminal	Contractor for capital dredging	Implemented	EIAO-TM, WPCO
S5.9	Silt screens should be installed at the WSD flushing water intakes at Cha Kwo Ling, Quarry Bay and Tai Wan for dredging in the manoeuvring basin of the second berth during the capital dredging.	Seawater intakes in Victoria Harbour / During the construction of cruise terminal	Contractor for capital dredging	Implemented	EIAO-TM, WPCO
S5.9	If the opening has been introduced at the northern runway, silt screens should also be installed at the WSD flushing water intake at Sai Wan Ho, Sheung Wan and Wan Chai for dredging in the manoeuvring basin of the second berth during the capital dredging.	Seawater intake at Sai Wan Ho, Sheung Wan and Wan Chai / During the construction of cruise terminal	Contractor for capital dredging	Implemented	EIAO-TM, WPCO

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S5.9	 Other good site practices that should be undertaken during dredging include: all vessels should be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; all barges / dredgers should be fitted with tight fitting seals to their bottom openings to prevent leakage of material; construction activities should not cause foam, oil, grease, scum, litter or other objectionable matter to be present on the water within the site or dumping grounds; barges or hoppers should not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation. 	Work site and adjacent waters / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO, EIAO-TM, WPCO, WDO
S5.9	Appropriate numbers of portable chemical toilets shall be provided by a licensed contractor to serve the construction workers over the construction site. The Contractor shall also be responsible for waste disposal and maintenance practices.	Work site and adjacent waters / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM, WPCO, WDO

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S5.9	Collection and removal of floating refuse should be performed at regular intervals on a daily basis. The contractor should be responsible for keeping the water within the site boundary and the neighbouring water free from rubbish during the dredging works.	Work site and adjacent waters / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM, WPCO, WDO
S5.9	An environmental monitoring and audit programme should be implemented to verify whether or not impact predictions are representative, and to ensure that all the recommended mitigation measures are implemented properly. If the water quality monitoring data indicate that the proposed dredging works result in unacceptable water quality impacts in the receiving water, appropriate actions should be taken to review the dredging operation and additional measures such as use of frame-type silt curtain, deployment of double silt curtains, slowing down, or rescheduling of works should be implemented as necessary.	6 selected WSD flushing water intakes in Victoria Harbour/ During dredging in construction stage	Environmental Team and verified by Independent Environmental Checker	Implemented	EIAO-TM, WPCO

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S5.9	Silt screens are recommended to be deployed at 6 selected WSD flushing water intakes during the capital dredging. The contractor for capital dredging shall demonstrate and ensure that the design of the silt screen will not affect the normal operation of flushing water intake. The contractor shall obtain consensus from all relevant parties, including WSD and Marine Department on the design of the silt screen at each of the six selected flushing water intake points before installation of the silt screen and commencement of the proposed dredging works. As a mitigation measure to avoid the pollutant and refuse entrapment problems and to ensure that the impact monitoring results are representative, regular maintenance of the silt screens and refuse collection should be performed at the monitoring stations at regular intervals on a daily basis. The Contractor should be responsible for keeping the water behind the silt screen free from floating rubbish and debris during the impact monitoring period.	6 selected WSD flushing water intakes in Victoria Harbour/ During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM, WPCO

Environmental Protection Measures / Mitigation | Location / Timing | Implementation Agent | Implementation Status | Relevant Legislation

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S6.7	Good Site Practices It is not anticipated that adverse waste management related impacts would arise, provided that good site practices are adhered to. Recommendations for good site practices during the dredging activities include:	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM
	Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site.				
	Training of site personnel in proper waste management and chemical waste handling procedures.				
	Provision of sufficient waste disposal points and regular collection for disposal.				
	Appropriate measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers.				
	A recording system for the amount of wastes generated, recycled and disposed of (including the disposal sites).				
	Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal.				

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S6.7 (cont.)	 Encourage collection of aluminium cans, PET bottles and paper by providing separate labelled bins to enable these wastes to be segregated from other general refuse generated by the workforce. Any unused chemicals or those with remaining functional capacity shall be recycled. 	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM
S6.7	Marine Sediments The dredged marine sediments would be loaded onto barges and transported to the designated disposal sites allocated by the MFC depending on their level of contamination. Sediment classified as Category L would be suitable for Type 1 — Open Sea Disposal. Contaminated sediment would require either Type 1 — Open Sea Disposal (Dedicated Sites) or Type 2 — Confined Marine Disposal and must be dredged and transported with great care in accordance with ETWB TCW No. 34/2002. Subject to the final allocation of the disposal sites by MFC, the dredged contaminated sediment must be effectively isolated from the environment upon final disposal and shall be disposed of at the East Sha Chau Contaminated Mud Pits that are designated for the disposal of contaminated mud in Hong Kong.	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	ETWB TCW No. 34/2002

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S6.7	It will be the responsibility of the Contractor to satisfy the appropriate authorities that the contamination levels of the marine sediment to be dredged have been analysed and recorded. According to the ETWB TCW No. 34/2002, this will involve the submission of a formal Sediment Quality Report to the DEP, prior to the dredging contract being tendered. The contractor for the dredging works shall apply for the allocation of marine sediment disposal sites from all relevant authorities.	Work site / During dredging in construction stage	Contractor for capital dredging	Dumping Permits were issued by EPD	ETWB TCW No. 34/2002
S6.7	 During transportation and disposal of the dredged marine sediments requiring Type 1 and Type 2 disposal, the following measures shall be taken to minimise potential impacts on water quality: Bottom opening of barges shall be fitted with tight fitting seals to prevent leakage of material. Excess material shall be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved. Monitoring of the barge loading shall be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels shall be equipped with automatic self-monitoring devices as specified by the DEP. Barges or hopper barges shall not be filled to a level that would cause the overflow of materials or sediment laden water during loading or transportation. 	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	WDO; WPCO

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S6.7	Chemical Wastes After use, chemical wastes (for example, cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Spent chemicals should be collected by a licensed collector for disposal at the CWTF or other licensed facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	Waste Disposal (Chemical Waste) (General) Regulation; Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes
S6.7	General Refuse General refuse should be stored in enclosed bins or compaction units separate from C&D material. A reputable waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D material. An enclosed and covered area is preferred to reduce the occurrence of 'wind blown' light material.	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	WDO, WPCO

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S6.7	Construction and Demolition Material It is recommended that the extent of dredging of the existing seawall should be kept to a minimum in the detailed design of the new cruise terminal to minimize generation of C&D material. Mitigation measures and good site practices should be incorporated in the contract document to control potential environmental impact from handling and transportation of C&D material. The mitigation measures include: • Where it is unavoidable to have transient stockpiles of C&D material within the Project work site pending collection for disposal, the transient stockpiles shall be located away from waterfront or storm drains as far as possible. • Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric. • Skip hoist for material transport should be totally enclosed by impervious sheeting. • Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving a construction site. • The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with	Work site / During the construction period	Contractor for capital dredging	Implemented	ETWB TCW No. 33/2002, 31/2004, 19/2005

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S6.7 (cont.)	 The load of dusty materials carried by vehicle leaving a construction site should be covered entirely by clean impervious sheeting to ensure dust materials do not leak from the vehicle. All dusty materials should be sprayed with 	Work site / During the construction period	Contractor for capital dredging	Implemented	ETWB TCW No. 33/2002, 31/2004, 19/2005
	water prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet.				
	The height from which excavated materials are dropped should be controlled to a minimum practical height to limit fugitive dust generation from unloading.				
S6.7	When delivering inert C&D material to public fill reception facilities, the material shall consist entirely of inert construction waste and of size less than 250mm or other sizes as agreed with the Secretary of the Public Fill Committee. In order to monitor the disposal of the surplus C&D material at the designed public fill reception facility and to control fly tipping, a trip-ticket system should be included as one of the contractual requirements and implemented by the Contractor under the Waste Management Plan certified by the Environmental Team and verified by the Independent Environmental Checker who should be responsible for auditing the results of the system.	Work site / During the construction period	Contractor for capital dredging, Engineer, Environmental Team and Independent Environmental Checker	Not applicable	ETWB TCW No. 31/2004

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S7.8	The dredging activities of the proposed cruise terminal should ensure that disturbance to the existing seawall masonry outside the Project boundary should be avoided as far as practicable.	Work site/ During construction of cruise terminal	Contractor for capital dredging as per CEDD's advice	Implemented	Antiquities and Monuments Ordinance EIAO, EIAO-TM Guidance Notes on Assessment of Impact on Sites of Cultural Heritage in Environmental Impact Assessment Studies (GN-CH) Hong Kong Planning Standards and Guidelines (HKPSG)
S7.10, App. 7.1	It is recommended that the dredged spoil should be monitored for the presence of archaeological material. Guidelines for the monitoring brief have been prepared in consultation with the AMO. A qualified marine archaeologist needs to be on standby to provide specialist advice, if required, but the monitoring can be carried out by a member of staff on the dredging barge.	Work site / during dredging in construction stage	Contractor for capital dredging, Environmental Team	Implemented	Antiquities and Monuments Ordinance EIAO, EIAO-TM GN-CH HKPSG Marine Archaeological Investigation Guidelines

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
8.7	Translocate those existing coral colonies attached on boulders that are manually movable by a diver underwater (possibly longest dimension of less than 50cm) located within the hard substrata sea area within the dredging site as far as practicable prior to the commencement of the capital dredging activities. The entire translocation exercise include the preparation of a detailed translocation plan, the pretranslocation coral survey, the coral translocation, and the quarterly post-translocation monitoring for one year. Pre-translocation survey would be focused on identifying and mapping of coral colonies that would be directly impacted by the proposed dredging and investigating the translocation feasibility of these coral colonies. A detailed translocation plan (including pretranslocation coral survey, translocation methodology and monitoring of transplanted corals) should be prepared during the detailed design stage of the Project which, together with the ecologist involved in coral translocation, should be approved by AFCD prior to commencement of the translocation exercises. The proposed relocation of the coral colonies should not affect any private/public marine rights at the recipient site.	Along the section of the former Kai Tak Airport runway that will be directed affected by the cruise terminal construction / During detailed design stage	Other ET specifically employed for coral translocation works	Final Detailed Coral Translocation Plan was approved by EPD in letter ref. (18) in EP2/K19/C/19 Pt.5 dated 5 June 2009. Form 5 was submitted under CEDD's memo ref. (6) in KD 2/31/4 Pt.3 dated 10 June 2009 regarding minor alteration of the position of the coral recipient site. Coral Translocation Report was submitted in Scott Wilson letter ref. 08290/325723 dated 2 July 2009. Post-translocation report shall be referred to the submissions by another ET specifically employed for coral translocation works.	EIAO-TM

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S8.7	New seawalls at the berth structure of the cruise terminal shall be constructed in order to provide large area of hard substrata for settlement and recruitment of intertidal and subtidal assemblages similar to those previously recorded from existing habitats.	The section of the former Kai Tak Airport runway that will be directed affected by the cruise terminal construction / During detailed design stage	To be confirmed at later stage	To be confirmed at later stage	EIAO-TM
9.6	No fisheries-specific mitigation measures would be required.	-	Not applicable	Not applicable	-

Appendix 4.1

Action and Limit Levels

Action and Limit Levels

Action and Limit Levels for Noise Monitoring

Time Period	Action Level	Limit Level
07:00 – 19:00 hours on normal weekdays	When one documented complaint is received from any one of the sensitive receivers	75 dB(A)

Remarks: No noise monitoring was conducted due to no planned noise sensitive receivers (NSRs) occupied within 300m from the works area of this Project during the dredging works.

Action and Limit Levels for Water Monitoring

Parameters	Action L	evel		Limit Le	vel	
Turbidity in NTU		All Seaso	on_		All Seaso	<u>on</u>
	WSD9	5.67	i	WSD9	12.27	
	WSD10	6.26	i	WSD10	10.47	
	WSD15	8.15		WSD15	14.41	
	WSD17	11.60	1	WSD17	16.91	
	WSD21	9.11		WSD21	15.38	
	WSD19	13.09		WSD19	15.34	
Suspended Solids		Dry Season	Wet Season		Dry Season	Wet Season
(SS) in mg/L	WSD9	6.9	9.7	WSD9	7.8	10.9
	WSD10	7.7	9.1	WSD10	10.3	12.2
	WSD15	7.8	13.5	WSD15	8.4	14.5
	WSD17	9.5	11.2	WSD17	13.7	16.2
	WSD21	13.3	17.1	WSD21	13.9	17.8
	WSD19	16.3	15.1	WSD19	17.0	15.7

Remarks:

Wet season is the period from April to September.

Dry season is the period from October to March.

Revised Action and Limit Levels for Water Monitoring

Station	Turbidity (NTU)			Suspended	Solid (mg/L)			
		Action Levindividual		Limit Level for individual stations		Action Level for individual stations			
	Dry Season	Wet Season	Dry Season	Wet Season	Dry Season	Wet Season	Dry Season	Wet Season	
WSD9	5.6	7.0	10.6	13.4	10.2	12.8	10.8	13.5	
WSD10	6.3	8.1	9.4	12.1	10.0	11.2	11.8	13.2	
WSD15	7.5	11.9	12.5	19.6	10.8	17.5	11.8	19.1	

Lam Environmental Services Limited

Station	Turbidity (I	NTU)			Suspended Solid (mg/L)			
	Action Level for individual stations		Limit Level for individual stations		Action Level for individual stations		Limit Level for individual stations	
	Dry Season	Wet Season	Dry Season	Wet Season	Dry Season	Wet Season	Dry Season	Wet Season
WSD17	10.0	12.9	15.3	19.7	13.2	14.7	15.3	17.0
WSD19	10.9	13.7	14.7	18.4	14.0	13.3	17.0	16.2
WSD21	8.9	11.6	13.4	17.6	13.3	16.7	14.0	17.5

Remarks

Revised Action and Limit Levels for water monitoring was approved on 19 October 2011.

Appendix 4.2

Copies of Calibration Certificates

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:

MR MANSON YEUNG

CLIENT:

LAM GEOTECHNICS LIMITED

ADDRESS:

11/F., CENTRE POINT,

181-185 GLOUCESTER ROAD.

WAN CHAI, HONG KONG

PROJECT:

WORK ORDER:

HK1205547

LABORATORY:

HONG KONG

DATE RECEIVED:

28/02/2012

DATE OF ISSUE:

05/03/2012

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:

Dissolved Oxygen, pH, Salinity and Temperature

Description:

YSI Pro Plus multimeter

Brand Name:

YSI

Model No.:

YSI Professional Plus

Serial No.:

11H100476

Equipment No.:

Date of Calibration: 05 March, 2012

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung HONG KONG Phone:

852-2610 1044

Fax:

852-2610 2021

Email:

hongkong@alsglobal.com

Godfrey Mr Chan Kwok Fai. Laboratory Manager - Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

ADDRESS 11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong PHONE +852 2610 1044 FAX +852 2610 2021

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: Date of Issue:

HK1205547

Client:

05/03/2012

LAM GEOTECHNICS LIMITED

Description:

YSI Pro Plus multimeter

Brand Name:

YSI

Model No.:

YSI Professional Plus

Serial No.:

11H100476

Equipment No.:

Date of Calibration:

05 March, 2012

Date of next Calibration:

05 June, 2012

Parameters:

Dissolved Oxygen

Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
C 72	6.65	0.07
6.72	6.65	-0.07
7.29 8.75	7.20 8.64	-0.09 -0.11
6.73	8.04	-0.11
	Tolerance Limit (±mg/L)	0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	3.99	-0.01
7.0	7.01	0.01
10.0	9.98	-0.02
	Tolerance Limit (±unit)	0.20

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)						
10.0	9.94	-0.6						
20.0	20.01	0.1						
30.0	29.93	-0.2						
	Tolerance Limit (±%)	10.0						

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
12.0	11.5	-0.5
22.0	21.3	-0.7
31.0	30.3	-0.7
	Tolerance Limit (°C)	2.0

Mr Chan Kwok Fai, Godfrey

ALS Technichem (HK) Pty Ltd

ALS Environmental Page 2 of 2

Laboratory Manager - Hong Kong

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:

MS CHERRY MAK

CLIENT:

LAM GEOTECHNICS LIMITED

ADDRESS:

11/F., CENTRE POINT,

181-185 GLOUCESTER ROAD,

WAN CHAI, HONG KONG

PROJECT:

WORK ORDER:

HK1207574

LABORATORY:

HONG KONG

DATE RECEIVED:

20/03/2012

DATE OF ISSUE:

24/03/2012

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:

Turbidity

Description:

Turbidimeter

Brand Name:

HACH

Model No.:

21000

Serial No.:

11080C011942

Equipment No.:

Date of Calibration: 21 March, 2012

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung HONG KONG Phone:

852-2610 1044

Fax:

852-2610 2021

Email:

hongkong@alsglobal.com

Mr Chan Kwok Fali, Godfrey Laborator Manager - Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

ADDRESS 11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong PHONE +852 2610 1044 FAX +852 2610 2021 ALS TECHNICHEM (HK) PTY LTD Part of the ALS Laboratory Group A Campbell Brothers Limited Company

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: Date of Issue: HK1207574 / 24/03/2012

Client:

LAM GEOTECHNICS LIMITED

Description:

Turbidimeter

Brand Name:

HACH

Model No.:

2100Q

Serial No.:

11080C011942

Equipment No.: Date of Calibration:

21 March, 2012

Date of next Calibration:

21 June, 2012

Parameters:

Turbidity

Method Ref: APHA 21st Ed. 2130B

Method Ref. Al TIA 213t Ed. 2130B							
Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)					
0	0.14						
4	4.24	6.0					
40	41.9	4.8					
80	87.1	8.9					
400	431	7.8					
800	861	7.6					
	Tolerance Limit (±%)	10.0					

Mr Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

Appendix 5.1

Monitoring Schedule for the Reporting Month and Coming Three Months

Water Quality Monitoring Schedule

April 2012

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Apr	2-Apr	3-Apr	4-Apr	5-Apr	6-Apr	7-Apr
	Impact WQM			Impact WQM		Impact WQM
	Mid-flood: 14:03			Mid-ebb: 11:14		Mid-ebb: 12:36
	Mid-ebb: 21:12			Mid-flood: 17:23		Mid-flood: 19:06
8-Apr	9-Арг	10-Apr	11-Apr	12-Apr	13-Apr	
		Impact WQM		Impact WQM		Impact WQM
		Mid-flood: 8:12		Mid-flood: 9:37		Mid-flood: 11:51
		Mid-ebb: 14:51		Mid-ebb: 16:55		Mid-ebb: 19:26
15-Apr	16-Арг		18-Apr		20-Apr	
	Impact WQM		Impact WQM		Impact WQM	
	Mid-flood: 14:57		Mid-ebb: 10:56 Mid-flood: 16:49		Mid-flood: 18:16	
22-Apr	23-Арг	24-Apr	25-Apr	26-Apr	27-Apr	28-Apr
	Impact WQM		Impact WQM		Impact WQM	
	Mid-ebb: 13:30		Mid-ebb: 14:06			
	Mid-flood: 20:09		Mid-flood: 21:32		Mid-flood: 23:31	
29-Apr	30-Apr	1-May	2-May	3-May	4-May	5-May
	Impact WQM	Impact WQM	Impact WQM		Impact WQM	
	Mid-ebb: 19:17		Mid-flood: 15:09		Mid-ebb: 10:47	
		Mid-flood: 2:38	Mid-ebb: 21:27		Mid-flood: 17:14	

Notes:

- 1. Water Quality Monitoring for 6 water quality monitoring stations: WSD9, WSD10, WSD15, WSD17, WSD21, WSD19
- 2. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.
- 3. Cut-off day is the end of day of each month.
- 4. Water Quality Monitoring for ebb tide on 16, 20 and 27 April 2012 was cancelled due to Amber Rainstorm Warning.

Tentative Water Quality Monitoring Schedule

May 2012

Sunday	Monday	′	Tuesday	Wedne	sday	Thurse	day	Frida	ıy	Satur	day
29-Apr	3	30-Apr	1-May		2-May		3-May		4-May		5-May
	Impact WQM Mid-ebb:	19:17		Impact WQ Mid-flood Mid-ebb	M 15:09 21:27			Impact WQ Mid-ebb: Mid-flood:	M 10:47 17:14		
6-May		7-May	8-May		9-May		10-May		11-May		12-May
	Impact WQM Mid-ebb: Mid-flood:	13:01 19:58		Impact WQ Mid-ebb: Mid-flood:	M 14:41 21:52			Impact WQ Mid-ebb: Mid-flood:	M 16:33 23:58		
13-May	14	4-May	15-May		16-May		17-May		18-May		19-May
	Impact WQM Mid-ebb:	19:44	Impact WQM Mid-flood: 2:45			Impact WQ Mid-ebb: Mid-flood:	M 10:30 16:39			Impact WC Mid-ebb: Mid-flood:	NM 11:36 18:09
20-May	2	1-May	22-May		23-May		24-May		25-May		26-May
	1	12:36 19:25		Impact WQ Mid-ebb: Mid-flood:	M 13:33 20:40			Impact WQ Mid-ebb: Mid-flood:	M 14:31 22:11		
27-May		8-May	29-May		30-May		31-May		1-Jun		2-Jun
	Impact WQM Mid-flood: Mid-ebb:	10:04 17:10				Impact WQ Mid-flood: Mid-ebb:	M 14:57 20:56			Impact WC Mid-ebb: Mid-flood:	0M 10:25 17:12

Notes:

- $1.\ Water\ Quality\ Monitoring\ for\ 6\ water\ quality\ monitoring\ stations:\ WSD9,\ WSD10,\ WSD15,\ WSD17,\ WSD21,\ WSD19$
- 2. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.
- 3. Cut-off day is the end of day of each month.

Tentative Water Quality Monitoring Schedule

June 2012

Sunday	Monda	y	Tuesday	Wednesda	ıy	Thursd	lay	Frida	ıy	Saturda	ay
27-May		28-May	29-May	30-	-May		31-May		1-Jun		2-Jun
	Impact WQM Mid-flood: Mid-ebb:	10:04 17:10				Impact WQI Mid-flood: Mid-ebb:	14:57 20:56			Impact WQN Mid-ebb: Mid-flood:	10:25 17:12
3-Jun		4-Jun	5-Jun	6	-Jun		7-Jun		8-Jun		9-Jun
	Impact WQM Mid-ebb: Mid-flood:	12:01 19:08			3:41 0:52			Impact WQ Mid-ebb: Mid-flood:	M 15:17 22:30		
10-Jun		11-Jun	12-Jun		-Jun		14-Jun		15-Jun		16-Jun
	Impact WQM Mid-ebb:	17:35	Impact WQM Mid-flood: 0:53			Impact WQI Mid-flood: Mid-ebb:	M 2:17 9:23			Impact WQN Mid-flood: Mid-ebb:	1 3:24 10:43
17-Jun		18-Jun	19-Jun	20	-Jun		21-Jun		22-Jun	2	23-Jun
	Impact WQM Mid-flood: Mid-ebb:	4:25 11:44			2:50 9:54			Impact WQ Mid-ebb: Mid-flood:	M 14:03 21:04		
24-Jun		25-Jun	26-Jun	27	-Jun		28-Jun		29-Jun	3	30-Jun
	Impact WQM Mid-ebb:	16:01		Impact WQM		Impact WQI Mid-flood:	M 0:41			Impact WQN Mid-flood:	2:16
	Mid-flood:	23:12		Mid-ebb: 1	8:01					Mid-ebb:	9:17

Notes

- 1. Water Quality Monitoring for 6 water quality monitoring stations: WSD9, WSD10, WSD15, WSD17, WSD21, WSD19
- 2. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.
- 3. Cut-off day is the end of day of each month.

Tentative Water Quality Monitoring Schedule

July 2012

Sunday	Monda	y	Tuesday	у	Wednes	day	Thursd	ay	Frida	у	Saturo	lay
1-Jul		2-Jul		3-Jul		4-Jul		5-Jul		6-Jul		7-Jul
				4:51 11:52			Impact WQN Mid-ebb: Mid-flood:	13:28 20:35			Impact WQ Mid-ebb: Mid-flood:	14:50 21:52
8-Jul		9-Jul	1	IO-Jul		11-Jul		12-Jul		13-Jul		14-Jul
	Impact WQM Mid-ebb: Mid-flood:	16:03 23:09			Impact WQI	M 17:24	Impact WQN Mid-flood:	И 0:28			Impact WQ Mid-flood: Mid-ebb:	M 1:41 9:38
15-Jul		16-Jul	1	17-Jul		18-Jul		19-Jul		20-Jul		21-Jul
	Impact WQM Mid-ebb: Mid-flood:	10:48 18:07			Impact WQl Mid-ebb: Mid-flood:	M 11:57 19:06			Impact WQI Mid-ebb: Mid-flood:	M 13:10 19:59		
22-Jul		23-Jul	2	24-Jul		25-Jul		26-Jul		27-Jul		28-Jul
	Impact WQM Mid-ebb:	15:05			Impact WQI Mid-ebb:	16:35					Impact WQ Mid-ebb:	7:59
29-Jul	Mid-flood:	21:42 30-Jul	3	31-Jul	Mid-flood:	23:06 1-Aug		2-Aug		3-Aug	Mid-flood:	15:00 4-Aug
	Impact WQM Mid-ebb: Mid-flood:	10:06 17:30			Impact WQI Mid-ebb: Mid-flood:	M 11:43 18:53					Impact WQ Mid-ebb: Mid-flood:	M 13:46 20:33

Notes:

- 1. Water Quality Monitoring for 6 water quality monitoring stations: WSD9, WSD10, WSD15, WSD17, WSD21, WSD19
- 2. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.
- 3. Cut-off day is the end of day of each month.

Appendix 5.2

Water Quality Monitoring Results and Graphical Presentation

Water Monitoring Result at WSD9 - Tai Wan Mid-Flood Tide

Date	Time	Weater Condition		g Depth	Wat	er Temp °C	erature		pH -			Salini	ty	D	O Satur	ation		DO ma/L			Turbid		Suspende	
		Condition	r	n	Va	lue	Average	Va	lue	Average	Va		Average	Va	lue	Average	Va		Average	Va	llue	Average		
02/04/2012	13:34	Cloudy	Middle	3	20.30	20.30	20.30	8.16	8.16	8.16	32.44	32.44	32.44	90.6	89.8	90.2	6.78	6.71	6.75	2.00	2.02	2.34	<2	<2
	13:36	5.00.5	Middle	3	20.30	20.30		8.15	8.15		32.44	32.44		90.9	89.5		6.80	6.69		3.19	2.13		<2	
05/04/2012	17:19	Rainy	Middle	3	20.10	20.10	20.10	8.16	8.16	8.16	29.75	29.75	29.75	90.2	89.3	90.0	6.87	6.80	6.85	4.23	4.24	4.24	7	6.5
	17:21		Middle	3	20.10	20.10		8.15	8.15		29.75	29.75		90.8	89.6		6.91	6.82		4.27	4.20		6	
07/04/2012	19:55	Cloudy	Middle	3	19.76	19.76	19.76	7.95	7.95	7.95	31.65	31.65	31.65	82.6	82.9	82.4	6.26	6.28	6.25	5.10	4.48	4.79	8	7.5
	19:56		Middle	3	19.76	19.76		7.94	7.94		31.65	31.65		82.1	82.1		6.23	6.23		4.70	4.88		7	
10/04/2012	07:47	Cloudy	Middle	3	21.30	21.30	21.35	8.20	8.20	8.20	32.48	32.48	32.48	87.1	87.6	87.0	6.33	6.37	6.32	2.54	2.40	2.48	5	5.0
	07:49	,	Middle	3	21.40	21.40		8.19	8.19		32.48	32.48		86.4	87.0		6.26	6.32		2.49	2.47		5	
12/04/2012	09:02	Fine	Middle	3	23.00	23.00	23.10	8.14	8.14	8.14	32.15	32.15	32.15	87.7	85.4	87.2	6.23	6.07	6.19	2.01	1.97	1.87	3	3.5
12/0 //20 12	09:04	0	Middle	3	23.20	23.20	20.10	8.13	8.13	0	32.14	32.14	02.10	88.3	87.4	01.12	6.26	6.19	0.10	1.77	1.74		4	0.0
14/04/2012	10:55	Fine	Middle	3	23.40	23.40	22.40	8.17	8.17	8.17	32.36	32.36	32.36	90.7	91.0	00.0	6.41	6.43	6.42	0.99	0.88	0.00	3	4.0
14/04/2012	10:58	Fine	Middle	3	23.40	23.40	23.40	8.17	8.17	0.17	32.36	32.36	32.30	90.6	91.2	90.9	6.40	6.43	0.42	0.87	0.94	0.92	5	4.0
16/04/2012	15:49	Cloudy	Middle	3	24.30	24.30	24.35	8.17	8.17	8.17	32.31	32.31	32.31	90.8	88.9	90.0	6.31	6.17	6.25	2.27	2.07	2.11	5	5.0
10/0-4/2012	15:51	Oloudy	Middle	3	24.40	24.40	24.00	8.17	8.17	0.17	32.31	32.31	02.01	90.5	89.7	00.0	6.29	6.23	0.20	1.96	2.12	2.11	5	0.0
18/04/2012	17:01	Cloudy	Middle	3	21.90	21.90	21.80	8.25	8.25	8.24	32.31	33.31	33.05	85.9	86.2	86.2	6.22	6.24	6.24	2.68	2.65	2.68	5	6.0
	17:03	Í	Middle	3	21.70	21.70		8.23	8.23		33.29	33.29		85.9	86.6		6.23	6.28		2.69	2.68		7	
20/04/2012	17:30	Cloudy	Middle	3	21.90	21.90	21.85	8.15	8.15	8.16	31.66	31.66	31.67	79.5	80.4	80.4	5.79	5.86	5.86	1.41	1.45	1.46	6	5.5
20/0 1/20 12	17:33	oloudy	Middle	3	21.80	21.80	21.00	8.16	8.16	0.10	31.67	31.67	0 1.01	80.6	81.0	00.1	5.87	5.90	0.00	1.47	1.49		5	0.0
23/04/2012	19:11	Cloudy	Middle	2	27.73	27.73	25.73	7.78	7.78	7.79	31.48	31.48	31.48	98.3	98.0	98.0	6.94	6.92	6.92	3.19	3.01	3.16	8	7.0
20/04/2012	19:12	Oloddy	Middle	2	23.73	23.73	20.10	7.79	7.79	1.13	31.48	31.48	01.40	98.0	97.6	30.0	6.92	6.89	0.32	3.37	3.07	5.10	6	7.0
25/04/2012	20:46	Cloudy	Middle	2	24.28	24.28	24.28	7.61	7.61	7.61	30.51	30.51	30.51	95.6	95.6	95.6	6.62	6.62	6.62	2.04	2.11	2.08	7	6.5
23.3 772012	20:47	o.ouu,	Middle	2	24.28	24.28	220	7.61	7.61		30.51	30.51	55.01	95.6	95.6	55.0	6.62	6.62	5.52	2.06	2.09	2.50	6	0.0
27/04/2012	22:51	Cloudy	Middle	2	22.74	22.74	22.74	8.25	8.24	8.24	31.60	31.60	31.60	90.5	90.5	90.5	6.50	6.50	6.50	2.28	2.32	2.25	4	4.0
2110412012	22:52	Oloudy	Middle	2	22.74	22.74	22.17	8.24	8.24	0.27	31.60	31.60	01.00	90.4	90.4	30.5	6.49	6.49	0.50	2.20	2.21	2.20	4	7.0

Water Monitoring Result at WSD9 - Tai Wan Mid-Ebb Tide

Date	Time	Weater Condition		g Depth	Wate	er Temp	erature		pH -			Salinit	ty	D	O Satur %	ation		DO mg/L			Turbio		Suspend	led Solids g/L
			n		Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	llue	Average	Value	Average
02/04/2012	20:14	Cloudy	Middle Middle	2	19.97 19.98	19.97 19.98	19.98	8.00 7.89	8.00 7.89	7.95	31.73	31.73 31.73	31.73	73.5 73.4	73.5 73.2	73.4	5.55 5.53	5.55 5.52	5.54	1.70	1.95	1.74	3	3.5
																								1
05/04/2012	09:58	Cloudy	Middle	3	20.40	20.40	20.45	8.23	8.23	8.23	32.68	32.68	32.68	94.5	92.8	93.7	7.02	6.90	6.96	2.92	3.05	2.97	2	2.0
	10:00		Middle	3	20.50	20.50		8.23	8.23		32.67	32.67		94.3	93.3		7.00	6.93		2.83	3.07		2	
07/04/2012	11:38	Cloudy	Middle	2	19.07	19.07	19.07	7.99	7.99	7.99	31.73	31.73	31.73	94.1	93.9	93.9	7.22	7.21	7.21	3.42	3.38	3.45	7	6.5
0110412012	11:39	Oloddy	Middle	2	19.07	19.07	10.07	7.99	7.99	7.00	31.73	31.73	01.70	93.8	93.7	00.0	7.20	7.19	7.21	3.31	3.70	0.40	6	0.0
10/04/2012	14:50	Cummi	Middle	2	21.20	21.20	24.45	8.18	8.18	8.18	32.23	32.23	32.24	84.2	84.0	83.9	6.17	6.16	6.46	2.13	2.17	2.14	3	3.0
10/04/2012	14:53	Sunny	Middle	2	21.10	21.10	21.15	8.19	8.18	8.18	32.24	32.24	32.24	83.7	83.8	83.9	6.15	6.15	6.16	2.22	2.03	2.14	3	3.0
	18:34		Middle	3	23.10	23.10		8.19	8.19		32.21	32.21		89.5	89.8		6.33	6.36		2.00	2.04		6	
12/04/2012	18:36	Fine	Middle	3	23.10	23.10	23.10	8.18	8.18	8.19	32.21	32.21	32.21	89.2	89.3	89.5	6.30	6.31	6.33	2.13	2.11	2.07	6	6.0
	18:42		Middle	2	23.95	23.95		7.69	7.70		31.34	31.34		94.3	94.4		6.42	6.43		2.38	2.27		4	
14/04/2012	18:43	Cloudy	Middle	2	23.95	23.96	23.95	7.70	7.70	7.70	31.34	31.34	31.34	94.3	94.4	94.4	6.42	6.43	6.43	2.67	2.87	2.55	5	4.5
	-		Middle	_	_	_		_	_		_	_		_	_		_	_		_	_		_	
16/04/2012	_	Amber Rainstorm	Middle	_	_	-	-	_	_	-	_	_	-	_	_	-	_	_	-	-	_	-	-	-
	09:40		Middle	2	21.80	21.80		8.24	8.24		33.40	33.40		87.4	87.0		6.32	6.30		1.89	1.76		4	
18/04/2012	09:42	Cloudy	Middle	2	21.90	21.90	21.85	8.23	8.23	8.24	33.39	33.39	33.40	86.9	87.1	87.1	6.30	6.31	6.31	1.84	1.92	1.85	4	4.0
			Middle		-	21.50		0.23	0.23		33.33				07.1			0.51		1.04	1.52		-	<u> </u>
20/04/2012	_	Amber Rainstorm		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-
	-		Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	1
23/04/2012	12:00	Fine	Middle	3	23.80	23.80	23.85	8.18	8.18	8.19	32.35	32.35	32.35	81.4	81.1	81.4	5.70	5.68	5.70	1.20	1.31	1.26	8	9.0
	12:02		Middle	3	23.90	23.90		8.19	8.19		32.35	32.35		81.5	81.6		5.70	5.71		1.24	1.27		10	
25/04/2012	12:42	Fine	Middle	2	24.00	24.00	24.05	8.19	8.19	8.20	32.21	32.21	32.21	82.5	82.9	82.5	5.76	5.80	5.76	1.67	1.85	1.79	8	8.5
	12:44		Middle	2	24.10	24.10		8.20	8.20		32.20	32.20		82.1	82.3		5.73	5.74		1.82	1.83		9	
27/04/2012	-	Amber	Middle	-	-	-		-	-		-	-		1	-		-	-		-	-		-	
21/04/2012	-	Rainstorm	Middle	-	-	-	-	-	-]	-	-	-	-	-	-	-	-	-	-	-		-	-

Water Monitoring Result at WSD10 - Cha Kwo Ling Mid-Flood Tide

Date	Time	Weater Condition	Samplin	•	Wat	er Temp °C	erature		pH -			Salini		D	O Satur	ation		DO ma/L			Turbic		Suspend	
			n	n	Va	lue	Average	Va	llue	Average	Va	llue	Average	Va	lue	Average	Va	lue	Average	Va	llue	Average	Value	Average
02/04/2012	10:40	Cloudy	Middle	3	19.70	19.70	19.75	8.22	8.22	8.22	32.59	32.59	32.59	93.6	92.9	93.7	7.05	7.00	7.06	3.97	3.69	3.78	2	2.5
			Middle	3	19.80	19.80	1	8.21	8.21		32.59	32.59	1	93.9	94.5	1	7.07	7.11		3.66	3.80	1		<u> </u>
05/04/2012	17:50	Rainy	Middle	3	19.80	19.80	19.85	8.19	8.19	8.19	32.37	32.37	32.37	89.2	88.4	89.2	6.72	6.65	6.72	3.03	2.77	2.84	5	4.5
	17:51		Middle	3	19.90	19.90		8.19	8.19		32.36	32.36		90.1	89.2		6.78	6.71		2.75	2.79		4	<u></u>
07/04/2012	20:28	Cloudy	Middle	3	19.79	19.79	19.79	7.93	7.93	7.93	32.05	32.05	32.06	95.1	95.0	94.9	7.19	7.18	7.17	3.25	3.09	3.21	6	5.5
0170 1120 12	20:29	oloudy	Middle	3	19.79	19.79	10.10	7.92	7.92	7.00	32.07	32.07	02.00	94.3	95.0	0 1.0	7.13	7.18		2.91	3.59	0.2.	5	0.0
10/04/2012	08:00	Cloudy	Middle	2	20.70	20.70	20.75	8.25	8.25	8.25	32.77	32.77	32.77	89.7	90.5	90.3	6.59	6.62	6.63	3.12	3.10	3.05	3	2.5
10/04/2012	08:05	Cloudy	Middle	2	20.80	20.80	20.75	8.24	8.24	0.20	32.76	32.76	32.11	90.6	90.5	90.3	6.66	6.64	0.03	3.00	2.96	3.05	2	2.5
	10:15		Middle	3	23.80	23.80		8.26	8.26		32.79	32.79		91.6	90.4		6.36	6.30		1.44	1.75		3	
12/04/2012	10:16	Fine	Middle	3	24.00	24.00	23.90	8.25	8.25	8.26	32.78	32.78	32.79	91.8	90.8	91.2	6.38	6.30	6.34	1.46	1.41	1.52	4	3.5
	10:21		Middle	3	23.70	23.70		8.18	8.18		30.61	30.61		87.2	89.2		6.20	6.44		1.48	1.26		5	
14/04/2012	10:23	Fine	Middle	3	23.80	23.80	23.75	8.18	8.18	8.18	30.60	30.60	30.61	89.7	89.9	89.0	6.37	6.45	6.37	1.56	1.32	1.41	6	5.5
	15:17		Middle	3	24.20	24.20		8.23	8.23		32.29	32.29		93.9	93.0		6.55	6.48		2.90	2.91		6	
16/04/2012	15:18	Cloudy	Middle	3	24.30	24.30	24.25	8.22	8.22	8.23	32.29	32.29	32.29	93.8	92.5	93.3	6.53	6.44	6.50	2.65	2.53	2.75	7	6.5
	17:40		Middle	2	21.80	21.80		8.30	8.30		33.59	33.59		87.1	86.2		6.27	6.22		3.49	3.38		8	
18/04/2012	17:43	Cloudy	Middle	2	21.70	21.70	21.75	8.31	8.31	8.31	33.60	33.60	33.60	86.8	86.6	86.7	6.26	6.25	6.25	3.32	3.34	3.38	11	9.5
	18:25		Middle	2	22.00	22.00		8.19	8.19		31.87	31.87		83.0	83.2		6.03	6.04		4.66	4.58		10	
20/04/2012	18:28	Cloudy					22.05			8.20			31.88			83.6			6.07			4.43		10.5
	l I		Middle	2	22.10	22.10		8.20	8.20		31.88	31.88		83.7	84.3		6.07	6.12		4.26	4.22		11	
23/04/2012	18:41	Cloudy	Middle	2	23.68	23.68	23.68	7.75	7.75	7.72	31.08	31.08	31.08	98.8	98.8	98.8	6.95	6.95	6.95	4.23	3.81	3.98	7	6.5
	18:42		Middle	2	23.68	23.68		7.60	7.76		31.08	31.08		98.8	98.8		6.95	6.95		3.79	4.08		6	
25/04/2012	20:12	Cloudy	Middle	2	24.50	24.51	24.52	7.73	7.73	7.73	29.92	29.91	29.92	96.3	96.7	96.7	6.60	6.63	6.63	1.77	1.69	1.76	7	7.5
	20:13		Middle	2	24.53	24.52		7.73	7.73		29.92	29.92		96.9	96.9		6.64	6.64		1.68	1.91		8	
27/04/2012	22:16	Cloudy	Middle	2	22.85	22.85	22.85	7.87	7.87	7.89	31.57	31.57	31.58	93.1	93.1	92.9	6.67	6.67	6.65	1.78	1.63	1.72	5	5.0
2770472012	22:17	Cioudy	Middle	2	22.84	22.84	22.00	7.91	7.91	7.55	31.58	31.58	01.50	92.7	92.7	02.0	6.63	6.63	5.55	1.77	1.70	1.12	5	0.0

Water Monitoring Result at WSD10 - Cha Kwo Ling Mid-Ebb Tide

Date	Time	Weater Condition	Samplin	•	Wat	er Temp	erature		pH -			Salini	ty	D	O Satur	ation		DO mg/L			Turbid NTU		Suspend	led Solids
		001101011	n	n	Va	lue	Average	Va	llue	Average	Va	lue	Average	Va	llue	Average	Va		Average	Va	lue	Average		Average
02/04/2012	19:52	Cloudy	Middle	2	19.83	19.83	19.83	8.07	8.07	8.06	31.73	31.73	31.72	89.7	89.4	89.0	6.79	6.76	6.73	2.48	2.31	2.32	4	4.5
	19:53		Middle	2	19.82	19.82		8.04	8.04		31.70	31.70		88.5	88.2		6.70	6.68		2.29	2.21		5	
05/04/2012	10:47	Cloudy	Middle	3	20.40	20.40	20.40	8.23	8.23	8.23	32.65	32.65	32.65	92.8	92.3	92.6	6.91	6.87	6.89	2.43	2.38	2.37	6	6.0
	10:48	,	Middle	3	20.40	20.40		8.23	8.23		32.65	32.65		93.2	92.0		6.93	6.84		2.42	2.26		6	
07/04/2012	11:09	Cloudy	Middle	3	19.13	19.13	19.14	7.98	7.98	7.98	31.53	31.53	31.53	89.4	89.4	89.3	6.86	6.86	6.85	3.99	3.48	3.82	4	4.0
0170-112012	11:10	Cloudy	Middle	3	19.14	19.14	10.14	7.98	7.98	7.00	31.53	31.53	01.00	89.3	89.1	00.0	6.85	6.83	0.00	3.74	4.08	0.02	4	4.0
10/04/2012	14:20	Sunny	Middle	2	21.30	21.30	21.30	8.34	8.34	8.34	32.40	32.40	32.40	90.7	90.7	90.2	6.65	6.65	6.61	5.11	4.52	4.99	7	7.0
10/04/2012	14:23	Outliny	Middle	2	21.30	21.30	21.00	8.34	8.34	0.54	32.40	32.40	32.40	89.7	89.7	30.2	6.57	6.57	0.01	5.21	5.10	4.55	7	7.0
12/04/2012	17:45	Fine	Middle	3	22.90	22.90	22.90	8.23	8.23	8.23	32.51	32.51	32.51	86.8	86.6	86.6	6.12	6.10	6.10	2.84	2.60	2.52	4	3.5
12/04/2012	17:47	Fille	Middle	3	22.90	22.90	22.90	8.23	8.23	6.23	32.50	32.50	32.31	86.5	86.6	00.0	6.09	6.09	0.10	2.37	2.26	2.52	3	3.5
14/04/2012	18:16	Claudy	Middle	2	23.90	23.88	23.89	7.66	7.66	7.66	31.58	31.57	31.54	94.8	94.7	94.7	6.64	6.63	6.63	3.09	2.85	2.06	6	6.5
14/04/2012	18:17	Cloudy	Middle	2	23.88	23.88	23.69	7.65	7.65	7.00	31.50	31.50	31.54	94.6	94.5	94.7	6.62	6.62	0.03	3.00	2.91	2.96	7	0.5
16/04/2012	-	Amber	Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
16/04/2012	-	Rainstorm	Middle	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-]
40/04/0040	10:15	Oleverto	Middle	2	21.90	21.90	04.00	8.27	8.27	0.00	33.58	33.58	20.50	86.9	86.8	00.0	6.26	6.25	0.05	2.74	2.68	0.07	9	40.5
18/04/2012	10:17	Cloudy	Middle	2	21.90	21.90	21.90	8.28	8.28	8.28	33.59	33.59	33.59	86.5	86.8	86.8	6.23	6.25	6.25	2.65	2.62	2.67	12	10.5
00/04/0040	-	Amber	Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
20/04/2012	-	Rainstorm	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
00/04/0040	12:30	F:	Middle	2	23.20	23.20	00.05	8.24	8.24	0.64	32.89	32.89	20.22	84.8	85.0	05.0	5.98	5.99	0.00	4.02	3.84	0.77	8	0.5
23/04/2012	12:32	Fine	Middle	2	23.30	23.30	23.25	8.24	8.24	8.24	32.88	32.88	32.89	85.3	85.6	85.2	6.01	6.02	6.00	3.47	3.75	3.77	9	8.5
	13:07		Middle	2	24.00	24.00		8.22	8.22		32.59	32.59		84.2	83.0		6.27	5.92		2.60	2.75		11	<u> </u>
25/04/2012	13:09	Fine	Middle	2	24.10	24.10	24.05	8.23	8.23	8.23	32.60	32.60	32.60	85.2	85.3	84.4	6.38	6.43	6.25	2.52	2.53	2.60	10	10.5
	-	Amber	Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
27/04/2012	-	Rainstorm	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Water Monitoring Result at WSD15 - Sai Wan Ho Mid-Flood Tide

Date	Time	Weater Condition		g Depth	Wat	er Temp °C	erature		pH -			Salini	ty	D	O Satur	ation		DO ma/L			Turbic		Suspend	
			r	n	Va	lue	Average	Va	llue	Average	Va	llue	Average	Va	lue	Average	Va	lue	Average	Va	alue	Average	Value	Average
02/04/2012	10:57	Cloudy	Middle Middle	3	19.70 19.80	19.70 19.80	19.75	8.20 8.20	8.20 8.20	8.20	32.59 32.59	32.59 32.59	32.59	94.7	93.5 93.9	94.3	7.14	7.05 7.07	7.11	2.69	2.58	2.68	2	2.0
	1					<u> </u>									<u> </u>		7.16	<u> </u>			1			
05/04/2012	18:16	Rainy	Middle	3	19.90	19.90	19.95	8.20	8.20	8.20	32.30	32.30	32.31	90.2	89.5	89.5	6.78	6.73	6.73	2.59	2.22	2.36	5	5.0
	18:17		Middle	3	20.00	20.00		8.20	8.20		32.31	32.31		89.4	89.0		6.72	6.68		2.27	2.34		5	
07/04/2012	19:08	Cloudy	Middle	3	19.37	19.37	19.39	8.02	8.02	8.02	32.16	32.16	32.16	95.5	95.3	95.1	7.26	7.25	7.23	3.96	4.06	3.85	4	4.5
	19:09		Middle	3	19.41	19.41		8.02	8.02		32.15	32.15		94.8	94.7		7.21	7.20		3.51	3.85		5	
10/04/2012	07:50	Cloudy	Middle	2	20.80	20.80	20.85	8.27	8.27	8.26	32.78	32.78	32.79	91.5	91.9	91.5	6.72	6.75	6.72	5.75	5.85	5.71	8	8.0
	07:53	,	Middle	2	20.90	20.90		8.25	8.25		32.79	32.79		91.4	91.1		6.71	6.68		5.60	5.63		8	
12/04/2012	10:33	Fine	Middle	3	22.60	22.60	22.70	8.27	8.27	8.27	32.14	32.14	32.15	91.5	90.3	91.0	6.51	6.42	6.46	2.68	2.57	2.60	4	4.0
12/04/2012	10:34	TING	Middle	3	22.80	22.80	22.10	8.27	8.27	0.21	32.15	32.15	32.13	91.4	90.6	31.0	6.49	6.43	0.40	2.62	2.51	2.00	4	4.0
44/04/0040	12:21	F:	Middle	3	23.10	23.10	00.45	8.21	8.21	0.04	32.57	32.57	20.50	88.88	87.3	00.0	6.31	6.18	0.00	0.93	0.82	0.04	4	4.0
14/04/2012	12:22	Fine	Middle	3	23.20	23.20	23.15	8.21	8.21	8.21	32.58	32.58	32.58	88.8	88.4	88.3	6.29	6.26	6.26	1.05	0.83	0.91	4	4.0
	14:29		Middle	3	24.40	24.40		8.14	8.14		32.35	32.35		90.0	88.8		6.24	6.15		2.43	2.45		4	
16/04/2012	14:30	Cloudy	Middle	3	24.60	24.60	24.50	8.15	8.15	8.15	32.35	32.35	32.35	90.2	89.6	89.7	6.24	6.20	6.21	2.39	2.37	2.41	4	4.0
	18:00		Middle	2	22.00	22.00		8.30	8.30		33.64	33.64		87.2	87.3		6.27	6.28		2.71	2.66		11	
18/04/2012	18:03	Cloudy	Middle	2	22.10	22.10	22.05	8.31	8.31	8.31	33.63	33.63	33.64	87.1	86.7	87.1	6.26	6.29	6.28	2.89	2.96	2.81	12	11.5
	17:38		Middle	2	21.90	21.90		8.33	8.33		31.47	31.47		83.5	84.1		6.08	6.12		1.49	1.34		4	
20/04/2012	17:41	Cloudy	Middle	2	22.00	22.00	21.95	8.32	8.32	8.33	31.48	31.48	31.48	84.0	83.7	83.8	6.11	6.09	6.10	1.58	1.53	1.49	4	4.0
	20:53		Middle	3	23.30	23.30		7.84	7.84		32.37	32.37		86.8	86.8		6.14	6.13		3.08	2.62		4	
23/04/2012	20:54	Cloudy	Middle	3	23.36	23.36	23.33	7.80	7.80	7.82	32.37	32.37	32.37	86.8	86.6	86.8	6.14	6.12	6.13	2.63	2.69	2.76	3	3.5
	22:18		Middle	3	24.11	24.11		7.77	7.77		31.91	31.90		91.8	91.6		6.39	6.38		2.37	1.90		4	
25/04/2012	22:19	Cloudy	Middle	3	24.18	24.18	24.15	7.77	7.77	7.77	31.90	31.90	31.90	91.6	91.5	91.6	6.39	6.38	6.39	1.98	2.04	2.07	5	4.5
	00:11		Middle	3	22.61	22.61		8.18	8.18		31.82	31.82		79.4	79.2		5.71	5.69		1.83	2.07		4	
27/04/2012	00:12	Cloudy	Middle	3	22.63	22.63	22.62	8.18	8.18	8.18	31.82	31.82	31.82	79.2	79.3	79.3	5.69	5.70	5.70	1.52	1.67	1.77	3	3.5
	00.12		Middle	J	22.03	22.03		0.10	0.10		31.02	31.02		13.2	18.5		J.08	3.70		1.02	1.07		J	<u> </u>

Water Monitoring Result at WSD15 - Sai Wan Ho Mid-Ebb Tide

Date	Time	Weater Condition	Samplin	•	Wat	er Temp	erature		pH -			Salini	ty	D	O Satur	ation		DO ma/L			Turbid NTU		Suspend	
		Containon	r	n	Va	lue	Average	Va	lue	Average	Va		Average	Va	lue	Average	Va	lue	Average	Va		Average		Average
02/04/2012	21:44	Cloudy	Middle	3	19.65	19.66	19.66	8.11	8.08	8.08	31.98	31.98	31.98	83.5	83.4	83.3	6.32	6.32	6.31	1.64	1.47	1.58	4	3.5
02/04/2012	21:45	Cloudy	Middle	3	19.66	19.66	13.00	8.07	8.07	0.00	31.98	31.98	31.50	83.3	83.0	00.0	6.31	6.28	0.01	1.62	1.57	1.50	3	5.5
05/04/2012	11:12	Cloudy	Middle	3	20.40	20.40	20.45	8.21	8.21	8.21	32.56	32.56	32.56	92.4	91.9	92.0	6.88	6.83	6.84	1.82	1.66	1.83	3	3.0
03/04/2012	11:13	Cloudy	Middle	3	20.50	20.50	20.43	8.21	8.21	0.21	32.56	32.56	32.30	92.4	91.4	32.0	6.87	6.79	0.04	1.99	1.85	1.00	3	3.0
07/04/2012	12:58	Cloudy	Middle	3	19.54	19.54	19.55	7.77	7.77	7.77	31.79	31.79	31.77	87.8	87.7	87.5	6.66	6.65	6.63	2.90	2.47	2.60	3	3.0
0770-472012	12:59	Cloudy	Middle	3	19.56	19.56	10.00	7.77	7.77	7.77	31.75	31.74	01.77	87.4	87.2	07.0	6.62	6.60	0.00	2.48	2.54	2.00	3	0.0
10/04/2012	14:05	Sunny	Middle	2	21.70	21.70	21.70	8.20	8.20	8.20	32.25	32.25	32.25	84.0	84.0	83.9	6.11	6.11	6.10	2.18	2.22	2.09	4	3.5
10/0-4/2012	14:08	Cullity	Middle	2	21.70	21.70	21.70	8.20	8.20	0.20	32.25	32.25	02.20	83.7	83.7	00.0	6.08	6.08	0.10	2.02	1.92	2.00	3	0.0
12/04/2012	17:20	Fine	Middle	2	22.80	22.80	22.85	8.22	8.22	8.22	32.56	32.56	32.56	85.4	85.9	85.7	6.06	6.09	6.07	1.82	1.61	1.64	4	3.5
12/04/2012	17:22	Tille	Middle	2	22.90	22.90	22.00	8.22	8.22	0.22	32.55	32.55	32.30	85.2	86.2	00.7	6.03	6.10	0.07	1.53	1.60	1.04	3	5.5
14/04/2012	20:06	Cloudy	Middle	3	23.85	23.85	23.88	7.62	7.62	7.62	31.69	31.69	31.69	95.5	95.6	95.1	6.73	6.73	6.63	2.65	2.25	2.48	5	5.0
14/04/2012	20:07	Cloudy	Middle	3	23.91	23.91	23.00	7.62	7.62	7.02	31.69	31.69	31.09	94.7	94.6	95.1	6.52	6.52	0.03	2.81	2.20	2.40	5	5.0
16/04/2012	-	Amber	Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	_
10/04/2012	-	Rainstorm	Middle	1	-	-	,	1	-	-	-	-	-	-	-	-	-	-		-	1	,	1	_
18/04/2012	10:30	Cloudy	Middle	2	22.00	22.00	22.00	8.28	8.28	8.29	33.63	33.63	33.64	85.0	85.5	85.1	6.12	6.16	6.13	2.00	2.13	1.99	15	14.0
10/04/2012	10:32	Cloudy	Middle	2	22.00	22.00	22.00	8.29	8.29	0.29	33.64	33.64	33.04	84.8	85.2	03.1	6.10	6.13	0.13	1.89	1.92	1.55	13	14.0
20/04/2012	-	Amber	Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
20/04/2012	-	Rainstorm	Middle	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-		-	-		-	
23/04/2012	13:07	Fine	Middle	2	23.50	23.80	23.63	8.21	8.21	8.21	32.49	32.49	32.50	83.4	83.8	83.3	5.81	5.84	5.82	2.35	2.43	2.36	4	- 5.5
23/04/2012	13:09	Fine	Middle	2	23.60	23.60	23.03	8.20	8.20	0.21	32.50	32.50	3∠.50	83.0	83.1	03.3	5.80	5.81	5.62	2.14	2.52	∠.30	7	5.5
0E/04/0040	13:35	Fi	Middle	2	24.20	24.20	24.05	8.21	8.21	0.04	32.24	32.24	22.04	80.6	80.6	00.0	5.61	5.60	F.00	2.37	2.16	0.40	10	40.5
25/04/2012	13:37	Fine	Middle	2	24.30	24.30	24.25	8.21	8.21	8.21	32.24	32.24	32.24	81.2	80.0	80.6	5.64	5.56	5.60	2.08	2.09	2.18	11	10.5
27/04/2042	-	Amber	Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
27/04/2012	-	Rainstorm	Middle	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-

Water Monitoring Result at WSD17 - Quarry Bay Mid-Flood Tide

Date	Time	Weater Condition		ng Depth	Wat	er Temp °C	erature		pH -			Salini	ty	D	O Satur %	ation		DO mg/L			Turbio		Suspend	led Solids g/L
				n	Va	lue	Average	Va	alue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	alue	Average	Value	Average
02/04/2012	11:14	Cloudy	Middle	3	20.10	20.10	20.15	8.17	8.17	8.18	32.64	32.64	31.64	95.5	94.5	95.0	7.14	7.07	7.10	6.25	6.63	6.32	8	8.5
	11:16	,	Middle	3	20.20	20.20		8.19	8.19		30.64	30.64		95.8	94.3		7.16	7.04		6.29	6.12		9	<u> </u>
05/04/2012	18:30	Rainy	Middle	3	19.90	19.90	19.95	8.23	8.23	8.23	32.54	32.54	32.54	92.4	91.5	92.1	6.94	6.87	6.92	4.60	4.31	4.44	11	11.5
	18:32	·	Middle	3	20.00	20.00		8.23	8.23		32.54	32.54		92.7	91.8		6.96	6.89		4.36	4.48		12	
07/04/2012	18:33	Cloudy	Middle	3	19.54	19.56	19.55	7.82	7.82	7.82	31.84	31.84	31.84	82.2	82.2	82.2	6.24	6.25	6.24	7.81	8.11	8.19	12	12.0
	18:34		Middle	3	19.54	19.54		7.82	7.82		31.84	31.84		82.2	82.0		6.24	6.23		8.44	8.38		12	<u> </u>
10/04/2012	07:27	Cloudy	Middle	2	21.00	21.00	20.95	8.24	8.24	8.24	32.88	32.88	32.89	90.5	91.1	90.8	6.57	6.62	6.60	7.07	7.21	7.20	10	9.5
	07:29	5.000	Middle	2	20.90	20.90		8.23	8.23		32.89	32.89		90.8	90.9		6.60	6.59		7.30	7.22		9	
12/04/2012	10:50	Fine	Middle	3	22.80	22.80	22.80	8.22	8.22	8.22	32.58	32.58	32.58	89.0	88.1	88.8	6.33	6.27	6.31	2.00	1.84	1.92	4	3.5
	10:52		Middle	3	22.80	22.80		8.22	8.22	5	32.58	32.58		89.5	88.4		6.36	6.29		1.97	1.85		3	
14/04/2012	12:00	Fine	Middle	4	23.20	23.20	23.20	8.18	8.18	8.18	32.10	32.10	32.11	91.4	91.8	91.6	6.49	6.51	6.50	1.40	1.42	1.45	3	3.0
14/04/2012	12:02	TINC	Middle	4	23.20	23.20	25.20	8.18	8.18	0.10	32.11	32.11	32.11	91.3	91.9	31.0	6.48	6.52	0.50	1.50	1.47	1.40	3	3.0
16/04/2012	14:43	Cloudy	Middle	3	24.10	24.10	24.10	8.24	8.24	8.24	32.32	32.32	32.32	93.1	91.9	92.6	6.52	6.43	6.47	1.53	1.52	1.47	2	2.5
10/04/2012	14:45	Oloudy	Middle	3	24.10	24.10	24.10	8.24	8.24	0.24	32.32	32.32	32.02	93.1	92.2	32.0	6.50	6.44	0.47	1.38	1.44	1.47	3	2.5
18/04/2012	18:08	Cloudy	Middle	2	22.00	22.00	22.00	8.41	8.41	8.42	33.65	33.65	33.66	91.4	91.2	91.5	6.58	6.56	6.59	4.22	4.20	4.17	10	11.0
10/04/2012	18:12	Oloudy	Middle	2	22.00	22.00	22.00	8.42	8.42	0.42	33.66	33.66	33.00	91.6	91.9	31.3	6.60	6.63	0.55	4.09	4.18	7.17	12	11.0
20/04/2012	17:59	Cloudy	Middle	2	22.00	22.00	21.95	8.14	8.14	8.15	31.99	31.99	32.00	82.6	83.5	83.4	5.99	6.06	6.05	1.30	1.25	1.31	5	4.5
20/04/2012	18:02	Cloudy	Middle	2	21.90	21.90	21.93	8.15	8.15	0.13	32.00	32.00	32.00	83.4	83.9	00.4	6.05	6.09	0.03	1.33	1.35	1.31	4	4.5
23/04/2012	20:20	Cloudy	Middle	3	23.05	23.05	23.06	7.74	7.74	7.75	32.41	32.41	32.41	96.0	96.0	95.8	6.82	6.82	6.81	3.11	3.28	3.20	6	5.5
23/04/2012	20:21	Cloudy	Middle	3	23.07	23.07	23.00	7.75	7.75	7.75	32.41	32.41	32.41	95.6	95.6	95.6	6.79	6.79	0.01	3.19	3.20	3.20	5	5.5
25/04/2242	21:50	Clariti	Middle	3	23.82	23.82	22.04	7.66	7.66	7.00	31.75	31.75	24.75	92.6	93.3	02.0	6.28	6.33	6.00	1.42	1.47	4.44	7	7.0
25/04/2012	21:51	Cloudy	Middle	3	23.85	23.85	23.84	7.66	7.66	7.66	31.75	31.75	31.75	93.3	93.4	93.2	6.33	6.33	6.32	1.45	1.43	1.44	7	7.0
07/04/0045	23:39	0	Middle	3	22.70	22.70	00.70	8.15	8.15	0.45	31.46	31.46	04.40	87.1	87.0	07.0	6.26	6.26	0.00	1.91	1.74	4.70	<2	
27/04/2012	23:40	Cloudy	Middle	3	22.70	22.70	22.70	8.15	8.15	8.15	31.46	31.46	31.46	87.0	86.9	87.0	6.26	6.25	6.26	1.60	1.53	1.70	3	3.0

Water Monitoring Result at WSD17 - Quarry Bay Mid-Ebb Tide

Date	Time	Weater Condition	'	g Depth	Wat	er Temp °C	erature		pH -			Salini	ty	D	O Satur	ation		DO mg/L			Turbid NTU		Suspend	led Solids
			r	n	Va	lue	Average	Va	lue	Average	Va		Average	Va	lue	Average	Va		Average	Va	lue	Average		Average
02/04/2012	21:08	Cloudy	Middle	2	19.85	19.85	19.86	7.88	7.88	7.88	31.78	31.78	31.78	81.1	81.1	80.8	6.13	6.13	6.11	2.79	2.94	2.74	3	3.5
	21:09		Middle	2	19.87	19.87		7.88	7.88		31.78	31.78		80.5	80.5		6.08	6.09		2.72	2.52		4	
05/04/2012	11:59	Cloudy	Middle	3	20.80	20.80	20.80	8.20	8.20	8.20	32.47	32.47	32.47	89.1	88.4	88.6	6.59	6.54	6.55	2.61	2.51	2.59	5	4.5
	12:01		Middle	3	20.80	20.80		8.20	8.20		32.47	32.47		88.6	88.2		6.55	6.52		2.54	2.70		4	<u> </u>
07/04/2012	12:24	Cloudy	Middle	2	19.50	19.50	19.50	7.65	7.65	7.65	31.81	31.81	31.81	90.7	90.7	90.6	6.90	6.90	6.89	3.55	3.65	3.58	7	6.0
	12:25		Middle	2	19.49	19.49		7.65	7.65		31.81	31.81		90.5	90.5		6.88	6.88		3.60	3.52		5	<u> </u>
10/04/2012	14:14	Sunny	Middle	2	21.40	21.40	21.40	8.23	8.23	8.23	32.08	32.08	32.09	83.2	83.5	83.1	6.10	6.13	6.10	2.71	2.39	2.52	6	5.0
	14:17		Middle	2	21.40	21.40		8.23	8.23		32.09	32.09		82.9	82.7		6.08	6.07		2.45	2.51		4	<u> </u>
12/04/2012	17:04	Fine	Middle	2	23.00	23.00	23.05	8.27	8.27	8.28	32.41	32.41	32.41	91.2	91.7	91.1	6.44	6.47	6.42	2.77	2.78	2.88	7	6.0
	17:06		Middle	2	23.10	23.10		8.29	8.29		32.41	32.42		90.8	90.7		6.39	6.38		2.93	3.04		5	
14/04/2012	19:35	Cloudy	Middle	2	23.50	23.50	23.50	7.77	7.68	7.74	31.43	31.43	31.43	85.4	85.4	85.4	6.06	6.06	6.05	2.21	2.19	2.14	6	6.5
	19:36		Middle	2	23.50	23.50		7.78	7.74		31.43	31.43		85.4	85.2		6.06	6.02		2.15	2.00		7	<u> </u>
16/04/2012	-	Amber	Middle	-	-	-	-	-	-	_	-	-	_	-	-	-	-	-	-	-	-	-	-	_
	-	Rainstorm	Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
18/04/2012	10:59	Cloudy	Middle	2	22.30	22.30	22.30	8.24	8.24	8.25	33.30	33.30	33.31	82.5	82.7	82.5	5.93	5.95	5.93	2.92	2.80	2.83	10	11.0
	11:01		Middle	2	22.30	22.30		8.25	8.25		33.31	33.31		82.2	82.5		5.91	5.93		2.78	2.81		12	
20/04/2012	-	Amber	Middle	-	-	-	_	-	-	_	-	-	_	-	-	_	-	-	-	-	-	-	-	
	-	Rainstorm	Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
23/04/2012	13:20	Fine	Middle	2	23.60	23.60	23.65	8.21	8.21	8.22	32.50	32.50	32.50	83.6	83.0	83.3	5.85	5.81	5.83	2.34	2.37	2.42	6	6.0
	13:22		Middle	2	23.70	23.70		8.22	8.22		32.50	32.50		83.1	83.4		5.81	5.83		2.41	2.55		6	
25/04/2012	14:00	Fine	Middle	2	24.60	24.60	24.60	8.19	8.19	8.19	31.64	31.64	31.65	76.5	76.4	76.3	5.34	5.33	5.32	2.44	2.52	2.41	7	7.0
25.5 25 . 2	14:02		Middle	2	24.60	24.60	2	8.19	8.19	55	31.65	31.65	000	76.1	76.2	. 0.0	5.30	5.31	0.02	2.41	2.26		7	
27/04/2012	-	Amber	Middle	-	-	-	_	-	-	_	-	-	_	-	-	_	-	-	_	-	-	_	-	_
2.70202	-	Rainstorm	Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	

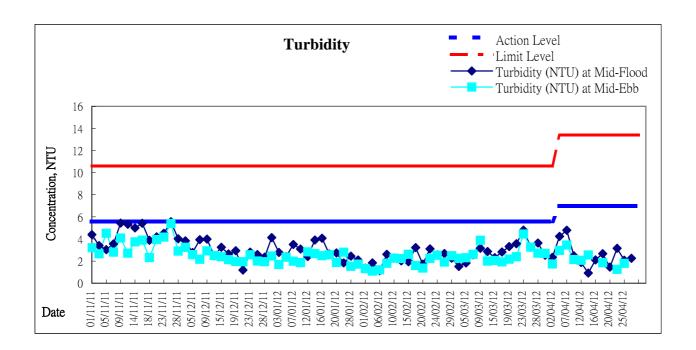
Water Monitoring Result at WSD19 - Sheung Wan Mid-Flood Tide

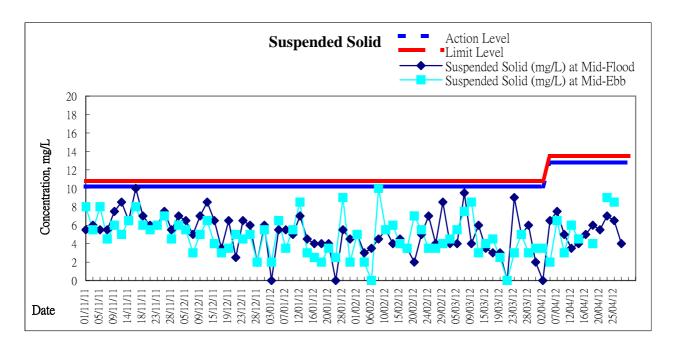
Date	Time	Weater Condition		g Depth	Wat	er Temp °C	erature		pH -			Salini		D	O Satur	ation		DO ma/L			Turbic		Suspend	
			n	n	Va	llue	Average	Va	llue	Average	Va	llue	Average	Va	lue	Average	Va	lue	Average	Va	alue	Average	Value	Average
02/04/2012	12:20	Cloudy	Middle	2		20.70	20.75	8.18	8.18	8.19	32.18	32.18	32.18	88.0	86.8	87.3	6.50	6.41	6.45	6.81	6.86	6.82	7	7.0
	12:22		Middle	2	20.80	20.80		8.19	8.19		32.18	32.18		87.8	86.5		6.49	6.39		6.78	6.82		7	
05/04/2012	16:02	Rainy	Middle	3	20.40	20.40	20.45	8.14	8.14	8.14	31.99	31.99	31.99	90.3	89.0	89.7	6.74	6.65	6.70	3.10	3.20	3.13	7	7.5
	16:04		Middle	3	20.50	20.50		8.13	8.13		31.99	31.99		90.1	89.3		6.72	6.67		3.14	3.07		8	
07/04/2012	17:40	Cloudy	Middle	2	19.56	19.56	19.56	7.98	7.98	7.98	31.38	31.38	31.38	88.9	89.1	88.8	6.76	6.77	6.75	7.93	7.65	7.90	10	10.5
	17:41	,	Middle	2	19.56	19.56		7.98	7.98		31.38	31.38		88.6	88.6		6.73	6.73		7.90	8.10		11	
10/04/2012	09:00	Cloudy	Middle	3	20.70	20.70	20.75	8.12	8.12	8.13	31.89	31.89	31.90	86.4	86.0	86.0	6.40	6.37	6.37	6.02	6.03	5.98	7	7.0
10/04/2012	09:03	Cloudy	Middle	3	20.80	20.80	20.73	8.13	8.13	0.10	31.90	31.90	31.50	85.8	85.9	00.0	6.35	6.36	0.07	5.98	5.87	5.50	7	7.0
12/04/2012	08:33	Fine	Middle	2	23.20	23.20	22.20	8.12	8.12	0.40	31.93	31.93	24.02	86.5	85.5	06.0	6.13	6.06	6.44	4.43	4.38	4.26	5	5.0
12/04/2012	08:35	Fine	Middle	2	23.40	23.40	23.30	8.12	8.12	8.12	31.92	31.92	31.93	87.2	85.6	86.2	6.17	6.06	6.11	4.39	4.25	4.36	5	5.0
	11:27		Middle	2	23.70	23.70		8.23	8.23		30.84	30.84		89.4	88.8		6.34	6.30		3.77	3.63		14	
14/04/2012	11:29	Fine	Middle	2	23.70	23.70	23.70	8.23	8.23	8.23	30.85	30.85	30.85	90.1	89.4	89.4	6.39	6.33	6.34	3.60	3.66	3.67	12	13.0
	16:18		Middle	2	24.70	24.70		8.19	8.19		30.72	30.72		89.5	88.8		6.17	6.12		3.34	3.18		3	
16/04/2012	16:20	Cloudy	Middle	2	24.80	24.80	24.75	8.19	8.19	8.19	30.72	30.72	30.72	89.9	89.0	89.3	6.20	6.13	6.16	3.25	3.26	3.26	3	3.0
	15:22		Middle	2	22.40	22.40		8.20	8.20		32.20	32.20		77.7	77.1		5.49	5.46		2.08	1.91		4	
18/04/2012	15:23	Cloudy	Middle	2	22.50	22.50	22.45	8.21	8.21	8.21	32.19	32.19	32.20	75.9	76.4	76.8	5.39	5.42	5.44	2.11	2.08	2.05	5	4.5
	19:45		Middle	2	22.00	22.00		8.15	8.15		31.80	31.80		83.2	83.6		6.05	6.07		2.47	2.50		6	
20/04/2012	19:48	Cloudy	Middle	2	22.10	22.10	22.05	8.14	8.14	8.15	31.81	31.81	31.81	83.1	84.0	83.5	6.04	6.10	6.07	2.29	2.24	2.38	6	6.0
	21:23		Middle	2	23.31	23.31		7.78	7.78		31.30	31.30		82.3	82.3		5.86	5.86		5.56	5.84		9	
23/04/2012	21:24	Cloudy	Middle	2	23.33	23.33	23.32	7.78	7.78	7.78	31.29	31.29	31.30	82.1	82.2	82.2	5.85	5.85	5.86	5.79	6.10	5.82	9	9.0
	22:57		Middle	2	23.62	23.61		7.71	7.71		30.12	30.12		85.6	85.0		6.08	6.06		4.58	4.70		9	
25/04/2012	22:58	Cloudy	Middle	2	23.80	23.82	23.71	7.71	7.71	7.71	30.09	30.09	30.11	84.5	84.2	84.8	6.00	5.98	6.03	4.68	4.65	4.65	10	9.5
	01:00		Middle	2	22.68	22.68		8.11	8.11		31.26	31.26		73.5	73.5		5.30	5.30		3.38	3.70		6	
27/04/2012	01:01	Cloudy	Middle	2	22.72	22.72	22.70	8.11	8.11	8.11	31.26	31.26	31.26	73.4	73.3	73.4	5.29	5.28	5.29	3.26	3.30	3.41	7	6.5
	31.01		Middle		22.12	22.12		J. 11	0.11		31.20	31.20		10.7	10.0		J.23	5.20		5.20	5.50			

Water Monitoring Result at WSD19 - Sheung Wan Mid-Ebb Tide

Date	Time	Weater Condition	Samplin	•	Wat	er Temp °C	erature		pH -			Salini		С	O Satur	ation		DO mg/L			Turbid		Suspende	
			n	n	Va	lue	Average	Va	llue	Average	Va		Average	Va	llue	Average	Va		Average	Va	lue	Average		Average
02/04/2012	22:40	Cloudy	Middle	2	20.23	20.23	20.20	7.91	7.91	7.91	31.61	31.61	31.62	83.5	83.4	83.2	6.28	6.28	6.26	3.15	3.04	2.83	4	3.5
	22:41		Middle	2	20.17	20.17		7.90	7.90		31.62	31.62		83.5	82.5		6.28	6.21		2.54	2.57		3	
05/04/2012	12:31	Cloudy	Middle	2	20.90	20.90	20.95	8.18	8.18	8.18	32.24	32.24	32.25	93.6	92.1	93.0	6.88	6.77	6.83	4.07	3.94	3.94	12	11.5
	12:34		Middle	2	21.00	21.00		8.18	8.18		32.26	32.26		93.9	92.3		6.89	6.77		3.86	3.89		11	
07/04/2012	14:02	Cloudy	Middle	2	19.50	19.50	19.50	7.82	7.82	7.82	31.33	31.33	31.35	84.2	84.4	84.3	6.43	6.44	6.44	7.73	8.01	7.76	9	9.0
0770472012	14:03	Cloudy	Middle	2	19.50	19.49	10.00	7.82	7.82	7.02	31.36	31.36	31.55	84.4	84.2	04.0	6.44	6.43	0.44	7.62	7.68	7.70	9	3.0
10/04/2012	13:41	Sunny	Middle	2	21.70	21.70	21.70	8.17	8.17	8.17	32.09	32.09	32.09	86.9	86.4	86.3	6.32	6.29	6.29	8.24	8.22	8.20	20	21.5
10/04/2012	13:44	Suring	Middle	2	21.70	21.70	21.70	8.17	8.17	0.17	32.08	32.08	32.09	85.8	86.0	00.3	6.26	6.27	0.29	8.19	8.15	6.20	23	21.5
12/04/2012	16:52	Fine	Middle	2	22.80	22.80	22.80	8.16	8.16	8.17	31.55	31.55	31.56	76.8	76.6	76.7	5.46	5.45	5.45	2.41	2.45	2.55	6	5.5
12/04/2012	16:54	Fine	Middle	2	22.80	22.80	22.00	8.17	8.17	0.17	31.56	31.56	31.30	77.0	76.4	70.7	5.47	5.43	5.45	2.62	2.73	2.55	5	5.5
4.4/0.4/0.04.0	20:47	Olevedic	Middle	2	23.42	23.42	00.40	7.67	7.67	7.07	30.44	30.44	00.44	93.1	92.9	00.0	6.63	6.62	6.62	3.35	3.33	0.40	6	
14/04/2012	20:48	Cloudy	Middle	2	23.54	23.54	23.48	7.67	7.67	7.67	30.44	30.44	30.44	92.8	93.0	93.0	6.61	6.63	0.02	3.39	3.62	3.42	5	5.5
40/04/0040	-	Amber	Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
16/04/2012	-	Rainstorm	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10/01/0010	11:52	01 1	Middle	2	22.30	22.30	00.05	8.26	8.26	2.07	32.54	32.54	00.54	84.0	84.3	24.4	6.05	6.07	0.07	3.30	3.34	0.05	6	0.0
18/04/2012	11:54	Cloudy	Middle	2	22.40	22.40	22.35	8.27	8.27	8.27	32.54	32.54	32.54	84.4	84.7	84.4	6.07	6.09	6.07	3.35	3.42	3.35	6	6.0
00/04/0040	-	Amber	Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
20/04/2012	-	Rainstorm	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	14:20		Middle	2	24.00	24.00		8.20	8.20		31.49	31.49		80.7	80.9		5.66	5.67		1.98	1.92		8	
23/04/2012	14:22	Fine	Middle	2	24.00	24.10	24.03	8.21	8.21	8.21	31.49	31.49	31.49	80.5	80.4	80.6	5.65	5.65	5.66	2.03	2.01	1.99	8	8.0
	15:02		Middle	2	24.60	24.60		8.20	8.20	1	30.13	30.13		79.5	79.7		5.58	5.60		3.30	3.32		5	
25/04/2012	15:04	Fine	Middle	2	24.50	24.50	24.55	8.21	8.21	8.21	30.13	30.13	30.13	79.0	79.2	79.4	5.55	5.56	5.57	3.14	3.42	3.30	5	5.0
	-	Amber	Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
27/04/2012	-	Rainstorm	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

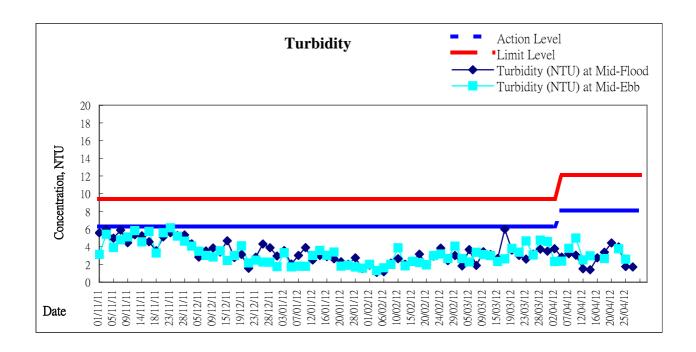
Water Monitoring Result at WSD21 - Wan Chai Mid-Flood Tide

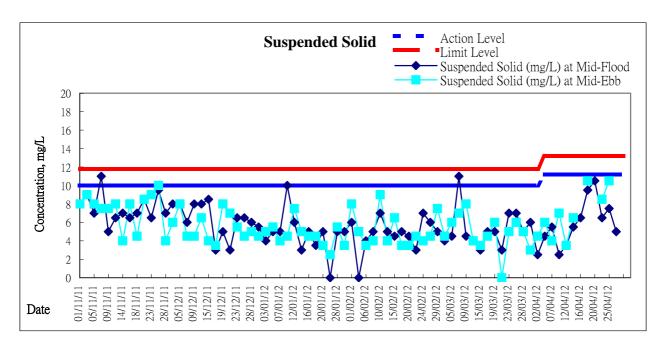

Date	Time	Weater Condition	Samplin	ng Depth	Wat	er Temp	erature		pН			Salini	ty	D	O Satur	ation		DO ma/L			Turbid		Suspend	led Solids
		Condition	r	n	Va	lue	Average	Va	lue	Average	Va	ilue	Average	Va	llue	Average	Va		Average	Va		Average	Value	
02/04/2012	12:16	Cloudy	Middle	2	20.20	20.20	20.15	7.99	7.99	7.99	30.82	30.82	30.82	52.3	52.3	52.3	3.81	3.81	3.79	5.25	5.21	5.28	9	8.0
	12:18	,	Middle	2	20.10	20.10		7.98	7.98		30.82	30.82		52.2	52.2		3.76	3.76		5.47	5.20		7	
05/04/2012	17:05	Rainy	Middle	2	20.20	20.20	20.20	7.85	7.85	7.85	31.51	31.51	31.51	43.5	43.8	43.3	3.47	3.77	3.49	5.24	5.19	5.17	5	5.0
	17:07		Middle	2	20.20	20.20		7.85	7.85		31.51	31.51		42.4	43.4		3.65	3.05		5.13	5.12		5	
07/04/2012	19:27	Cloudy	Middle	2	19.30	19.30	19.30	7.79	7.79	7.79	30.71	30.71	30.72	50.0	50.0	50.1	3.83	3.83	3.84	6.16	6.35	6.16	7	8.0
	19:28		Middle	2	19.30	19.30		7.78	7.78		30.72	30.72		50.1	50.1		3.85	3.85		5.99	6.15		9	
10/04/2012	07:11	Cloudy	Middle	2	21.30	21.30	21.30	7.84	7.84	7.84	30.60	30.60	30.45	77.8	77.9	76.6	5.80	5.81	5.71	11.60	11.10	10.90	4	4.5
	07:13		Middle	2	21.30	21.30		7.83	7.83		30.30	30.30		75.3	75.3		5.61	5.61		10.60	10.30		5	
12/04/2012	10:09	Fine	Middle	2	21.80	21.80	21.80	7.77	7.77	7.77	30.35	30.35	30.35	65.2	64.6	64.8	4.79	4.75	4.77	4.44	4.27	4.36	4	4.0
	10:11		Middle	2	21.80	21.80		7.77	7.77		30.34	30.34		65.1	64.4		4.79	4.73		4.32	4.40		4	
14/04/2012	11:00	Fine	Middle	2	23.70	23.70	23.70	7.86	7.86	7.86	30.58	30.58	30.58	73.5	73.5	73.2	5.21	5.21	5.19	5.25	5.45	5.41	7	7.5
	11:03		Middle	2	23.70	23.70		7.86	7.86		30.58	30.58		72.8	72.8		5.16	5.16		5.20	5.72		8	
16/04/2012	15:52	Cloudy	Middle	2	24.50	24.50	24.55	7.68	7.68	7.68	30.30	30.30	30.30	74.5	73.5	74.0	5.24	5.17	5.20	3.62	3.60	3.65	4	4.0
	15:54		Middle	2	24.60	24.60		7.68	7.68		30.30	30.30		74.7	73.2		5.25	5.15		3.70	3.66		4	
18/04/2012	15:59	Cloudy	Middle	2	22.70	22.70	22.75	7.90	7.90	7.90	31.56	31.56	31.56	65.3	65.2	65.4	4.70	4.72	4.72	5.81	6.00	5.92	7	7.5
	16:02		Middle	2	22.80	22.80		7.90	7.90		31.56	31.56		65.6	65.3		4.73	4.72		5.92	5.95		8	
20/04/2012	18:17	Cloudy	Middle	2	22.50	22.50	22.50	7.73	7.73	7.73	29.78	29.78	29.78	72.6	72.6	72.7	5.29	5.29	5.31	3.97	3.96	4.03	4	4.0
	18:19		Middle	2	22.50	22.50		7.73	7.73		29.78	29.78		72.8	72.8		5.32	5.32		4.13	4.04		4	
23/04/2012	19:25	Cloudy	Middle	1	24.30	24.30	24.30	7.66	7.66	7.66	30.50	30.50	30.51	75.7	75.7	74.8	5.35	5.35	5.28	3.66	3.68	3.59	6	6.5
	19:27		Middle	1	24.30	24.30		7.66	7.66		30.51	30.51		73.8	73.8		5.20	5.20		3.52	3.48		7	
25/04/2012	20:25	Cloudy	Middle	2	24.60	24.60	24.60	7.82	7.82	7.82	29.05	29.05	29.05	72.4	72.4	72.1	5.12	5.12	5.08	7.43	7.23	7.24	16	16.0
	20:27		Middle	2	24.60	24.60		7.82	7.82		29.05	29.05		71.7	71.7		5.04	5.04		7.09	7.21		16	
27/04/2012	22:39	Cloudy	Middle	2	22.70	22.70	22.70	7.75	7.75	7.75	30.17	30.17	30.18	70.7	73.3	72.0	5.12	5.30	5.22	10.60	11.80	11.20	15	16.0
	22:41		Middle	2	22.70	22.70		7.75	7.75		30.18	30.18		71.6	72.2		5.18	5.26		11.70	10.70		17	



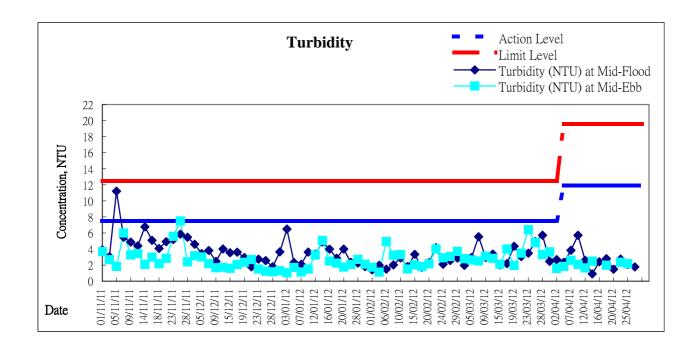
Water Monitoring Result at WSD21 - Wan Chai Mid-Ebb Tide

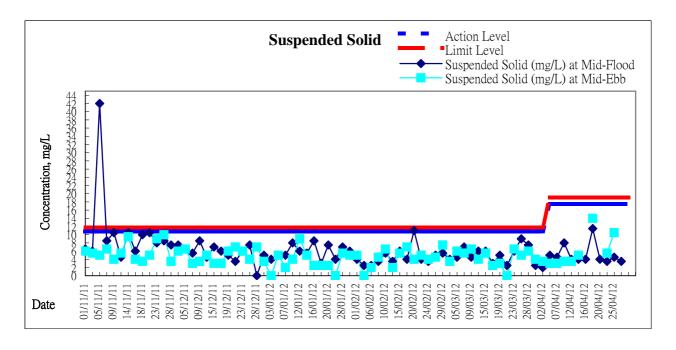
Date	Time	Weater Condition	Samplin	•	Wate	er Temp °C	erature		pH -			Salini	ty	D	O Satur	ation		DO mg/L			Turbid		Suspende	
			n	n	Va	lue	Average	Va	llue	Average	Va		Average	Va	lue	Average	Va		Average	Va	llue	Average		
02/04/2012	19:35 19:37	Cloudy	Middle Middle	2	19.90 19.90	19.90 19.90	19.90	7.83 7.82	7.83 7.82	7.83	30.85 30.85	30.85 30.85	30.85	53.7 52.8	53.7 52.8	53.3	3.93	3.93	3.93	7.24 7.36	7.05 7.27	7.23	5	5.5
	19.37		Midule	2	19.90	19.90		7.02	1.02		30.65	30.00		32.0	32.0		3.92	3.92		7.30	1.21		Ü	
05/04/2012	09:15	Cloudy	Middle	2	20.20	20.20	20.20	7.82	7.82	7.77	31.00	31.00	31.00	56.0	55.9	52.6	4.11	4.00	3.89	5.62	5.43	5.54	4	4.5
	09:17		Middle	2	20.20	20.20		7.71	7.71		31.00	31.00		49.7	48.9		3.66	3.80		5.75	5.35		5	
07/04/2012	12:05	Cloudy	Middle	2	19.30	19.30	19.30	7.82	7.82	7.82	30.91	30.91	30.91	58.8	58.8	55.7	4.54	4.54	4.29	4.62	4.57	4.69	7	6.0
0170 1120 12	12:07	Cloudy	Middle	2	19.30	19.30	10.00	7.82	7.82	7.02	30.91	30.91	00.01	52.5	52.5	00.1	4.03	4.03	20	4.65	4.92	1.00	5	0.0
10/04/2012	15:01	Sunny	Middle	1	22.00	22.00	22.00	7.92	7.92	7.92	30.60	30.60	30.60	74.9	73.5	74.1	5.45	5.38	5.41	5.44	5.35	5.42	4	4.5
10/04/2012	15:04	Suring	Middle	1	22.00	22.00	22.00	7.92	7.92	7.92	30.60	30.60	30.00	73.7	74.2	74.1	5.39	5.41	5.41	5.51	5.37	5.42	5	4.5
40/04/0040	18:42	<u>-</u> .	Middle	2	22.10	22.10	00.40	7.70	7.70	7.70	29.73	29.73	00.74	78.4	75.7	77.0	5.71	5.53	5.00	3.01	2.86	0.00	4	0.5
12/04/2012	18:44	Fine	Middle	2	22.10	22.10	22.10	7.70	7.70	7.70	29.74	29.74	29.74	78.7	76.0	77.2	5.73	5.55	5.63	2.98	2.85	2.93	3	3.5
	18:30		Middle	2	23.50	23.50		7.77	7.78		30.51	30.51		72.2	72.2		5.15	5.15		4.40	4.57		13	
14/04/2012	18:31	Cloudy	Middle	2	23.50	23.50	23.50	7.78	7.77	7.78	30.51	30.51	30.51	73.6	73.6	72.9	5.24	5.24	5.20	4.48	4.50	4.49	15	14.0
	-	Amber	Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
16/04/2012	-	Rainstorm	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	11:45		Middle	2	22.00	22.00		7.78	7.78		31.33	31.33		61.2	61.8		4.41	4.45		2.94	3.20		3	
18/04/2012	11:47	Cloudy	Middle	2	22.00	22.00	22.00	7.79	7.79	7.79	31.33	31.33	31.33	62.9	62.6	62.1	4.53	4.58	4.49	2.82	2.85	2.95	5	4.0
	-	Amber	Middle	-	-	-		-	-		-	-		-	-		-	-		-	-		-	
20/04/2012	-	Rainstorm	Middle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	12:20		Middle	2	23.60	23.60		7.73	7.73	1	30.76	30.76		72.4	72.4		5.13	5.13		2.74	2.79		5	
23/04/2012	12:22	Fine	Middle	2	23.70	23.70	23.65	7.74	7.74	7.74	30.76	30.76	30.76	72.4	72.4	72.4	5.12	5.12	5.13	2.82	2.48	2.71	4	4.5
	13:45		Middle	2	25.10	25.10		7.74	7.74	1	29.86	29.86		72.1	72.1		5.00	5.00		5.88	5.71		8	
25/04/2012	13:47	Fine	Middle	2	25.00	25.00	25.05	7.73	7.73	7.74	29.86	29.86	29.86	71.7	71.7	71.9	4.98	4.98	4.99	5.91	5.86	5.84	8	8.0
	-		Middle	-	-	-		-	-	<u> </u>	-	-		_	-		-	-		-	-		-	
27/04/2012		Amber Rainstorm	Middle	_	_	_	-	_	_	-	_	_	-	_	_	-	_		-	_	_	-	_	-
	_		Midule			-		_			_			_			_	-		_			-	


Graphic Presentation of Water Quality Result of WSD9 - Tai Wan

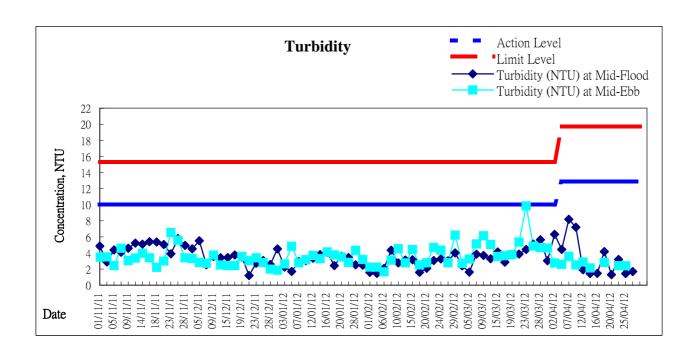


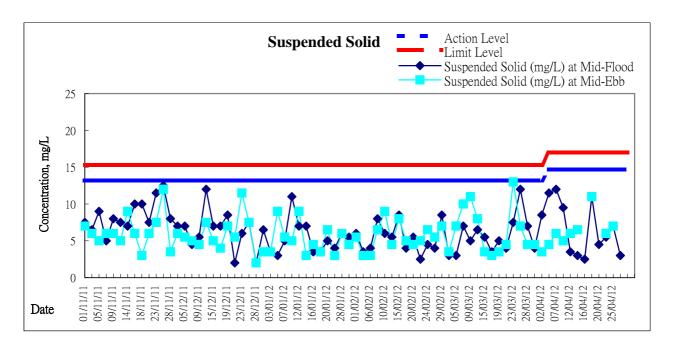
- Two sets of Suspended Solid Action and Limit levels for the dry season (the period from October to March)
- and wet season (the period from April to September).
- New sets Turbidity and SS Action Level and Limit Level for dry and wet season were approved by EPD on 19 Oct 2011
- Due to Amber Rainstorm Warnings, water quality monitoring for ebb tide on 16, 20 and 27 April 2012 was cancelled.


Graphic Presentation of Water Quality Result of WSD10 - Cha Kwo Ling

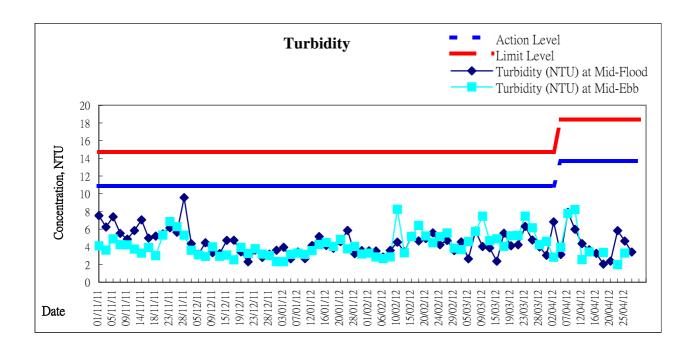


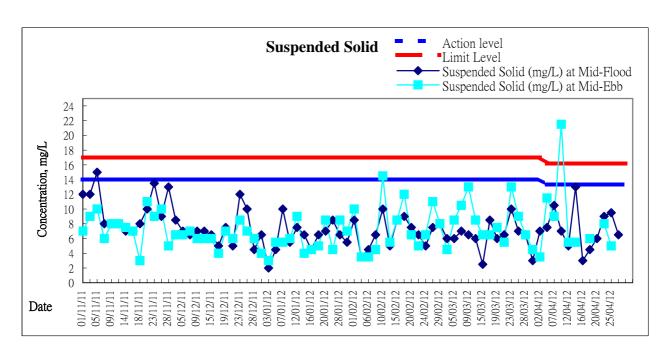
- Two sets of Suspended Solid Action and Limit levels for the dry season (the period from October to March) and wet season (the period from April to September).
- New sets Turbidity and SS Action Level and Limit Level for dry and wet season were approved by EPD on 19 Oct 2011
- Due to Amber Rainstorm Warning, water quality monitoring for the ebb tide on 16, 20 and 27 April 2012 was cancelled.


Graphic Presentation of Water Quality Result of WSD15 - Sai Wan Ho

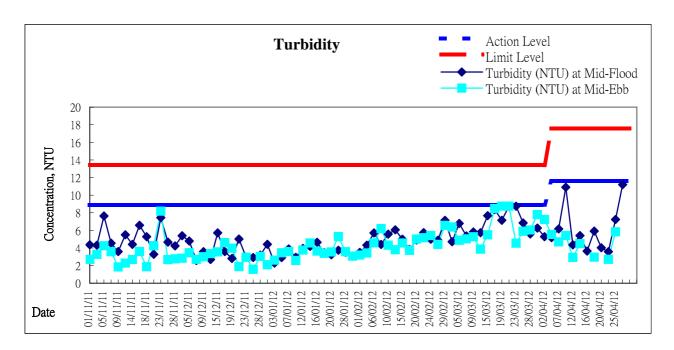


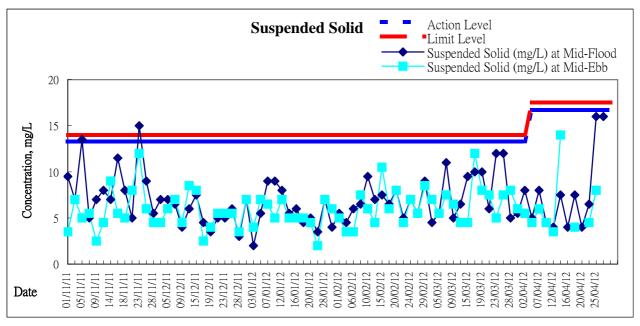
- Two sets of Suspended Solid Action and Limit levels for the dry season (the period from October to March) and wet season (the period from April to September).
- New sets Turbidity and SS Action Level and Limit Level for dry and wet season were approved by EPD on 19 Oct 2011
- Due to Amber Rainstorm Warning, water quality monitoring for the ebb tide on 16, 20 and 27 April 2012 was cancelled.


Graphic Presentation of Water Quality Result of WSD17 - Quarry Bay



- Two sets of Suspended Solid Action and Limit levels for the dry season (the period from October to March) and wet season (the period from April to September).
- New sets Turbidity and SS Action Level and Limit Level for dry and wet season were approved by EPD on 19 Oct 2011
- Due to Amber Rainstorm Warning, water quality monitoring for the ebb tide on 16, 20 and 27 April 2012 was cancelled.


Graphic Presentation of Water Quality Result of WSD19 - Sheung Wan



- Two sets of Suspended Solid Action and Limit levels for the dry season (the period from October to March)
- and wet season (the period from April to September).
- New sets Turbidity and SS Action Level and Limit Level for dry and wet season were approved by EPD on 19 Oct 2011
- Due to Amber Rainstorm Warnings, water quality monitoring for ebb tide on 16, 20 and 27 April 2012 was cancelled.

Graphic Presentation of Water Quality Result of WSD21 - Wan Chai

- Two sets of Suspended Solid Action and Limit levels for the dry season (the period from October to March)
- and wet season (the period from April to September).
- New sets Turbidity and SS Action Level and Limit Level for dry and wet season were approved by EPD on 19 Oct 2011
- Due to Amber Rainstorm Warnings, water quality monitoring for ebb tide on 16, 20 and 27 April 2012 was cancelled.

Appendix 5.3

Event and Action Plan

Event and Action Plan for Construction Noise

EVENT		ACTION		
	ET	IC(E)	ER	CONTRACTOR
Action Level	 Notify IEC and Contractor; Carry out investigation; Report the results of investigation to the IEC, ER and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness. 	1. Review the analysed results submitted by the ET; 2. Review the proposed remedial measures by the Contractor and advise the ER accordingly; 3. Supervise the implementation of remedial measures.	Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented.	Submit noise mitigation proposals to IEC; Implement noise mitigation proposals.
Limit Level	 Identify source; Inform IEC, ER, EPD and Contractor; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IEC, ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures.	Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IEC within 3 working days of notification; 3. Implement the agreed proposals; 4. Submit further proposal if problem still not under control; 5. Stop the relevant portion of works as instructed by the ER until the exceedance is abated.

Lam Environmental Services Limited

Event and Action Plan for Marine Water Quality

EVENT	-	ACTION		
	ET	IEC	ER	CONTRACTOR
Action level being exceeded by one sampling day	1. Repeat in-situ measurement to confirm findings; 2. Identify source(s) of impact; 3. Inform IEC and Contractor; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC and Contractor; 6. (The above actions should be taken within 1 working day after the exceedance is identified) 7. Repeat measurement on next day of exceedance.	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented. (The above actions should be taken within 1 working day after the exceedance is identified)	1. Inform the ER and confirm notification of the non-compliance in writing; 2. Rectify unacceptable practice; 3. Check all plant and equipment; 4. Review the working methods and consider additional measures such as use of frametype silt curtain, deployment of double silt curtains, slowing down, or rescheduling of works; 5. Discuss with ET and IEC and propose mitigation measures to IEC and ER; 6. Implement the agreed mitigation measures. 7. (The above actions should be taken within 1 working day after the exceedance is identified)
Action level being exceeded by more than one consecutive sampling days	Identify source(s) of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor;	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness	Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and

EVENT AND ACTION PLAN

Lam Environmental Services Limited

EVENT		ACTION		
	ET	IEC	ER	CONTRACTOR
	5. Ensure mitigation measures are implemented; 6. Prepare to increase the monitoring frequency to daily; 7. (The above actions should be taken within 1 working day after the exceedance is identified) 8. Repeat measurement on next working day of exceedance.	accordingly; 3. Assess the effectiveness of the implemented mitigation measures. 4. (The above actions should be taken within 1 working day after the exceedance is identified)	of the implemented mitigation measures. 4. (The above actions should be taken within 1 working day after the exceedance is identified)	equipment; 4. Review the working methods and consider additional measures such as use of frametype silt curtain, deployment of double silt curtains, slowing down, or rescheduling of works; 5. Discuss with ET and IEC and propose mitigation measures to IEC and ER within 3 working days; 6. Implement the agreed mitigation measures. 7. (The above actions should be taken within 1 working day after the exceedance is identified)

Lam Environmental Services Limited

EVENT		ACTION		
	ET	IEC	ER	CONTRACTOR
Limit level being exceeded by one sampling day	1. Repeat in-situ measurement to confirm findings; 2. Identify source(s) of impact; 3. Inform IEC, Contractor and EPD; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC, ER and Contractor; 6. Ensure mitigation measures are implemented; 7. Increase the monitoring frequency to daily until no exceedance of Limit Level. 8. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	1. Inform the Engineer and confirm notification of the non-compliance in writing; 2. Rectify unacceptable practice; 3. Check all plant and equipment; 4. Review the working methods and consider additional measures such as use of frametype silt curtain, deployment of double silt curtains, slowing down, or rescheduling of works; 5. Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days; 6. Implement the agreed mitigation measures. 7. (The above actions should be taken within 1 working day after the exceedance is identified)

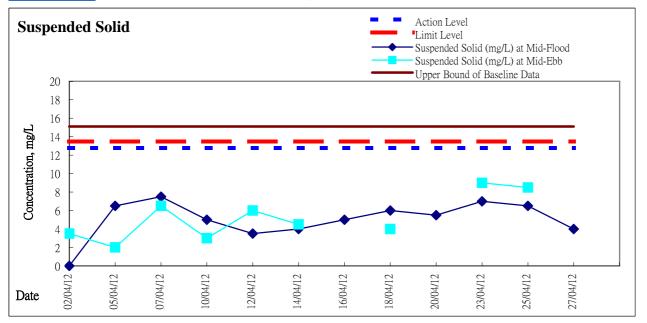
Lam Environmental Services Limited

EVENT		ACTION		
	ET	IEC	ER	CONTRACTOR
Limit level being exceeded by more than one consecutive sampling days	 Identify source(s) of impact; Inform IEC, Contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days. (The above actions should be taken within 1 working day after the exceedance is identified) 	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the marine work until no exceedance of Limit level. (The above actions should be taken within 1 working day after the exceedance is identified)	1. Inform the ER and confirm notification of the non-compliance in writing; 2. Rectify unacceptable practice; 3. Check all plant and equipment; 4. Review the working methods and consider additional measures such as use of frametype silt curtain, deployment of double silt curtains, slowing down, or rescheduling of works; 5. Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days; 6. Implement the agreed mitigation measures; 7. As directed by the Engineer, to slow down or to stop all or part of the marine work or construction activities. 8. (The above actions should be taken within 1 working day after the exceedance is identified)

Appendix 5.4

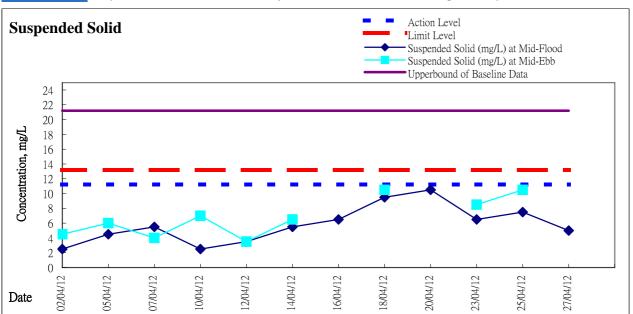
Graphic Presentation of SS Results against to Tidal Movement along Victoria Harbour

Graphic Presentation of SS Results Against the Tidal Movement along Victoria Harbour



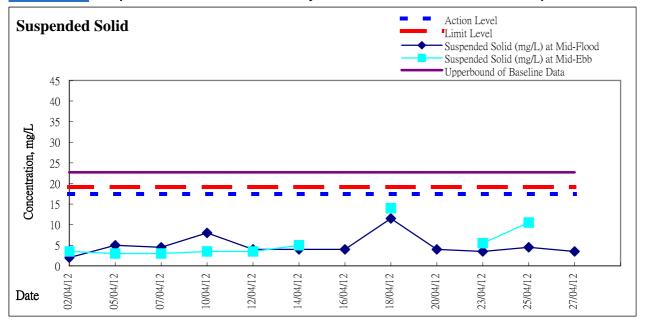
Appendix 5.5

Graphic Presentation of Water Quality Result with respect to Local Variation



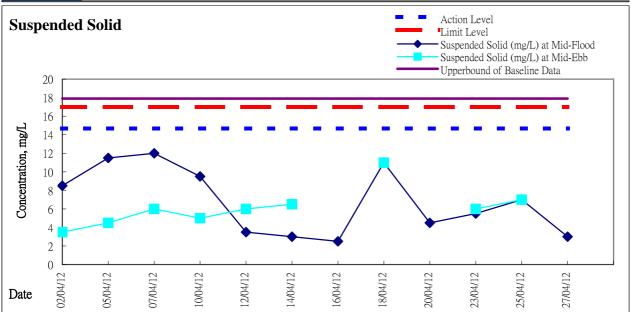
Graphic Presentation of Water Quality Result of WSD9 - Tai Wan with respect to Local Variation

Remarks: WSD9 is located at upstream during the ebb tides while at downstream during flood tides.



Remarks: WSD10 is located at upstream during the flood tides while at downstream during ebb tides.

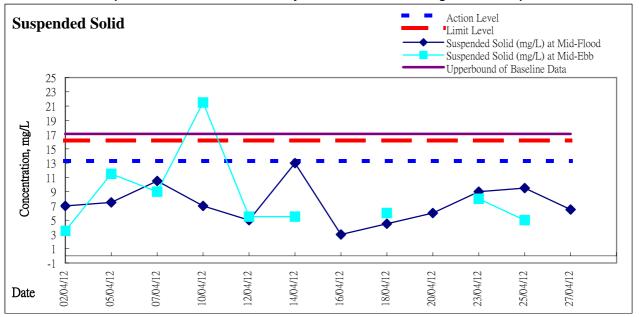
Remarks: Due to Amber Rainstorm Warnings, water quality monitoring for ebb tide on 16, 20 and 27 April 2012 was cancelled.


Graphic Presentation of Water Quality Result of WSD15 - Sai Wan Ho with respect to Local Variation

Remarks: WSD15 is located at upstream during the flood tides while at downstream during ebb tides.

am

Graphic Presentation of Water Quality Result of WSD17 - Quarry Bay with respect to Local Variation



Remarks: WSD17 is located at upstream during the flood tides while at downstream during ebb tides.


Remarks: Due to Amber Rainstorm Warnings, water quality monitoring for ebb tide on 16, 20 and 27 April 2012 was cancelled.

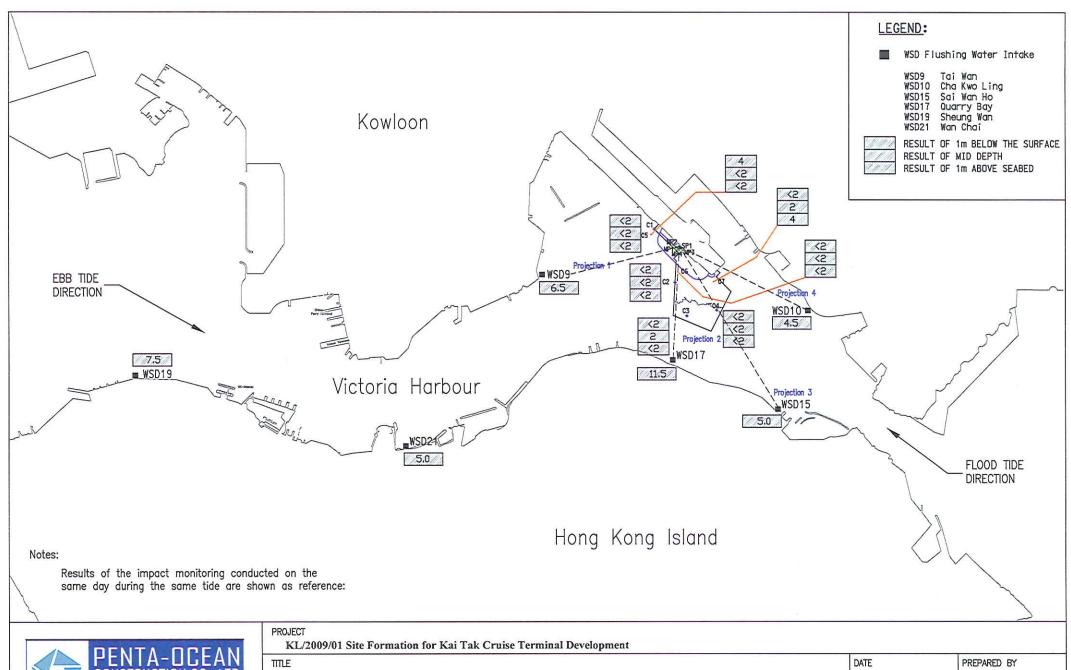
am

Graphic Presentation of Water Quality Result of WSD19 - Sheung Wan with respect to Local Variation

Remarks: WSD19 is located at upstream during the ebb tides while at downstream during flood tides.

Remarks: WSD21 is located at upstream during the ebb tides while at downstream during flood tides.

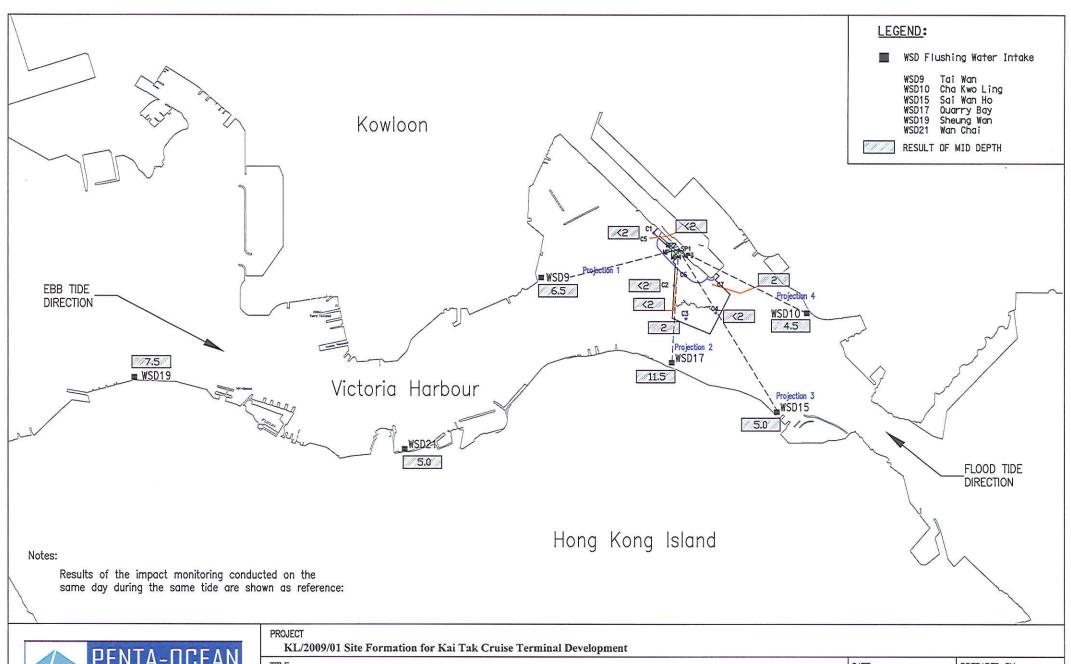
Remarks: Due to Amber Rainstorm Warnings, water quality monitoring for ebb tide on 16, 20 and 27 April 2012 was cancelled.


Appendix 5.6

Graphical Presentation of Water Quality Surveillance System

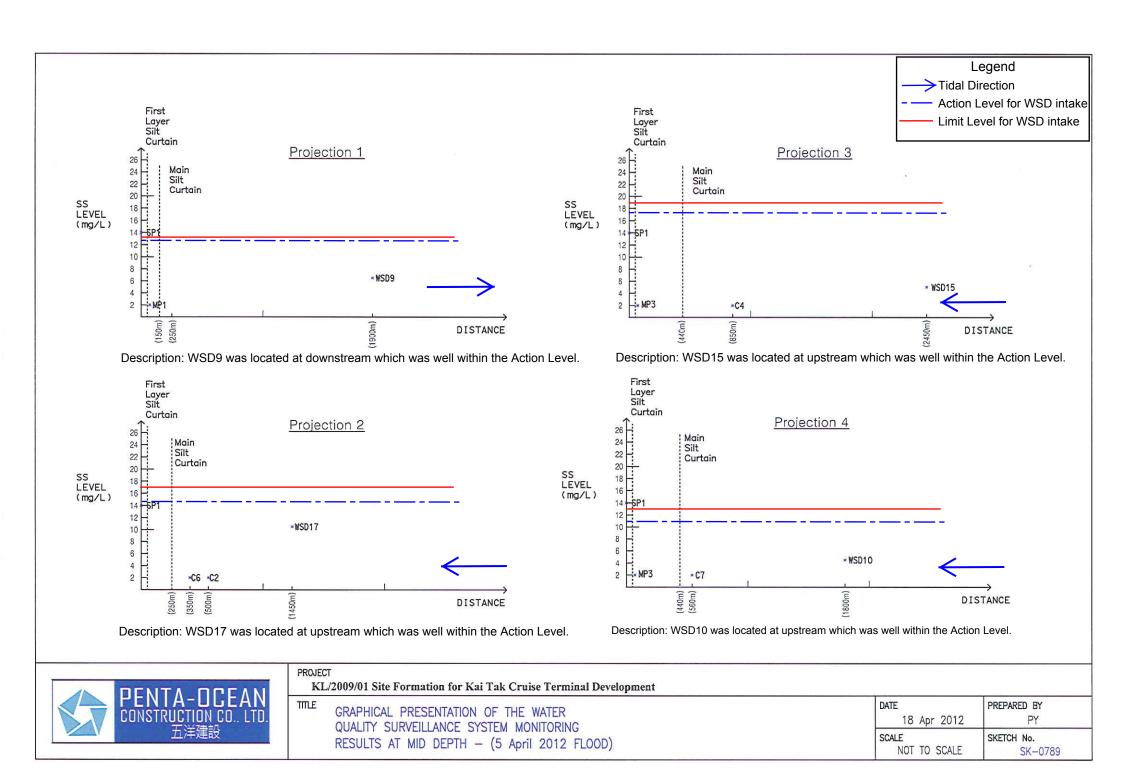
Water Quality Surveillance System Monitoring Results - 05 April 2012 (Flood Tide)

Monitoring Location		Turbidity in	Compare to	Suspended	Compare to				
IVIO		NTU	Trigger Level	Solids in mg/L	Trigger Level				
	1m below the surface	130	N/A N/A	173	N/A				
SP1	mid depth	m above the seabed 10.3		14	N/A				
	1m above the seabed	10.3	N/A	10	N/A				
	1m below the surface	3.72	N/A	2	N/A				
MP1	mid depth	3.66	N/A	<2	N/A				
	1m above the seabed	2.75	N/A	2	N/A				
	1m below the surface	3.51	N/A	<2	N/A				
MP2	mid depth	3.34	N/A	3	N/A				
IVII 2	1m above the seabed	3.51	N/A	<2	N/A				
	1m below the surface	3.74	N/A	3	N/A				
MP3	mid depth	4.36	N/A	2	N/A				
	1m above the seabed	3.49	N/A	2	N/A				
MP4	1m below the surface	3.29	N/A	<2	N/A				
	mid depth	4.56	N/A	<2	N/A				
	1m above the seabed	2.98	N/A	2	N/A				
C1	1m below the surface	2.55	Lower	<2	Lower				
C1	mid depth	3.14	Lower	<2	Lower				
	1m above the seabed	2.54	Lower	<2	Lower				
1m above the 1m below the 1m above the 1m above the 1m below the 1m be	1m below the surface	2.55	Lower	<2	Lower				
	mid depth	2.83	Lower	<2	Lower				
	1m above the seabed	2.56	Lower	<2	Lower				
1	1m below the surface	3.62	Lower	<2	Lower				
C3	mid depth	3.14	Lower	2	Lower				
	1m above the seabed	3.41	Lower	<2	Lower				
	1m below the surface	2.31	Lower	<2	Lower				
MP3	mid depth	2.52	Lower	<2	Lower				
	1m above the seabed	2.59	Lower	<2	Lower				
	1m below the surface	2.68	N/A	4	N/A				
C2 n 1 C3 n 1 C4 n 1 C5 n	mid depth	2.47	N/A	<2	N/A				
	1m above the seabed	3.00	N/A	<2	N/A				
C6	1m below the surface	2.78	N/A	<2	N/A				
	mid depth	2.67	N/A	<2	N/A				
	1m above the seabed	3.12	N/A	<2	N/A				
	1m below the surface	2.84	N/A	<2	N/A				
C7	mid depth	3.20	N/A	2	N/A				
5-24025()	1m above the seabed	2.85	N/A	4	N/A				


Control Point C1 C2 C3	Trigger Level for Turbidity in	Trigger Level for SS in mg/L for Wet Season (April - September)
C1		(riprii september)
CI	12.3 for Flood Tide 12.3 for Flood Tide	
C2	12.3 for Flood Tide	18.5
C3	NTU for All Season 12.3 for Flood Tide	10.5
C4	10.5 for Ebb Tide	

WATER QUALITY SURVEILLANCE SYSTEM - (5 April 2012 FLOOD) - Page 1

DATE	PREPARED BY
18 Apr	2012 PY
SCALE	SKETCH No.
NOT TO S	CALE SK-0787



PENTA-DCEAN CONSTRUCTION CO.. LTD. 五洋建設

TITLE

WATER QUALITY SURVEILLANCE SYSTEM - (5 April 2012 FLOOD) - Page 2

DATE	PREPARED BY
18 Apr 2012	PY
SCALE	SKETCH No.
NOT TO SCALE	SK-0788

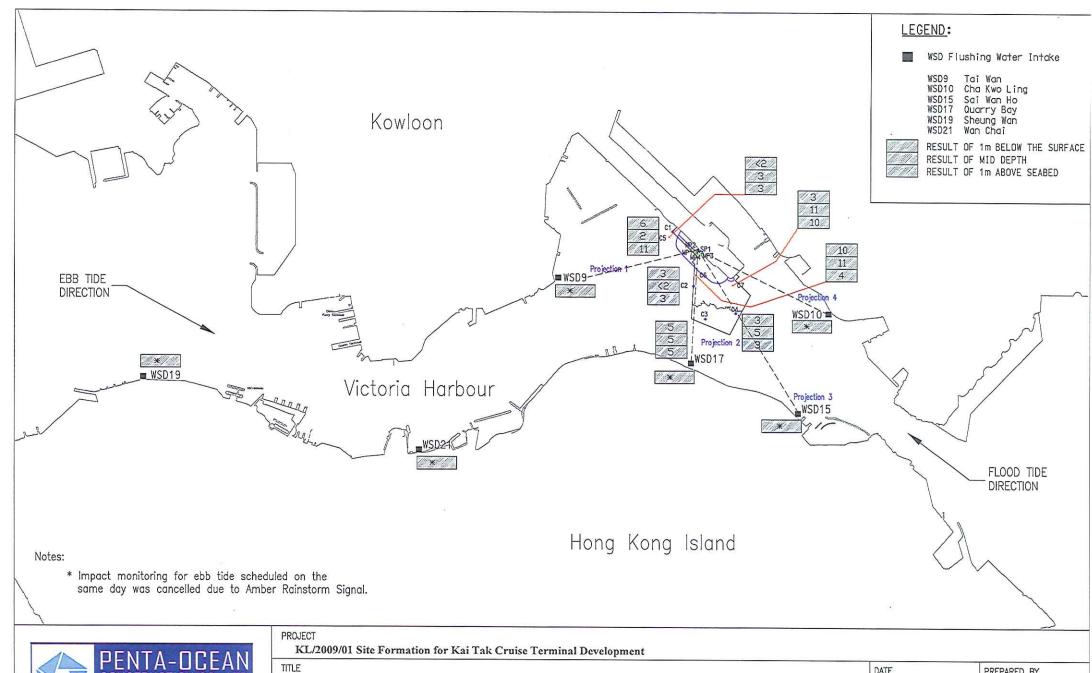
Mo	nitoning Logotion	Turbidity in	Compare to	Suspended	Compare to				
IVIO	nitoring Location	NTU	Trigger Level	Solids in mg/L	Trigger Level				
	1m below the surface	6.72	N/A	8	N/A				
SP1	mid depth	7.50	N/A	9	N/A				
	1m above the seabed	6.32	N/A	8	N/A				
	1m below the surface	*	N/A	*	N/A				
· MP1 mi	mid depth	*	N/A	* .	N/A				
	1m above the seabed	*	N/A	*	N/A				
	1m below the surface	*	N/A	*	N/A				
MP2	mid depth	*	N/A	*	N/A				
IVII Z	1m above the seabed	*	N/A	*	N/A				
	1m below the surface	*	N/A	*	N/A				
MP3	mid depth	*	N/A	*	N/A				
	1m above the seabed	*	N/A	*	N/A				
	1m below the surface	*	N/A	*	N/A				
MP4 mid de 1m abo	mid depth	*	N/A	*	N/A				
	1m above the seabed	*	N/A	*	N/A				
	1m below the surface	1.90	Lower	6	Lower				
C1	C1 mid depth	2.88	Lower	2	Lower				
1m	1m above the seabed	1.88	Lower	11	Lower				
	1m below the surface	1.83	Lower	3	Lower				
C2	mid depth	1.33	Lower	<2	Lower				
	1m above the seabed	1.83	Lower	3	Lower				
	1m below the surface	1.90	Lower	5	Lower				
C3	mid depth	2.16	Lower	5	Lower				
	Im above the seabed	3.02	Lower	5	Lower				
	1m below the surface	1.90	Lower	3	Lower				
C4	mid depth	1.90	Lower	5	Lower				
	1m above the seabed	1.97	Lower	3	Lower				
		N/A	<2	N/A					
C4 r 1 C5 r	mid depth	2.18	N/A	3	N/A				
	1m above the seabed	2.23	N/A	3	N/A				
	1m below the surface	2.04	N/A	3	N/A				
C6	mid depth	1.77	N/A	11	N/A				
	1m above the seabed	1.70	N/A	10	N/A				
	1m below the surface	2.57	N/A	10	N/A				
C7	mid depth	2.47	N/A	11	N/A				
	1m above the seabed	2.55	N/A	4	N/A				

Control	Trigger Level for Turbidity in	Trigger Level for SS in mg/L for Wet Season						
Point	NTU for All Season	(April - September)						
C1	12.3 for Flood Tide							
C2	nt NTU for All Season	18.5						
C3		10.3						
C4	10.5 for Ebb Tide							

Notes: * Monitoring at MP1 to MP4 were cancelled due to Thunderstorm Warning.

Warning Information

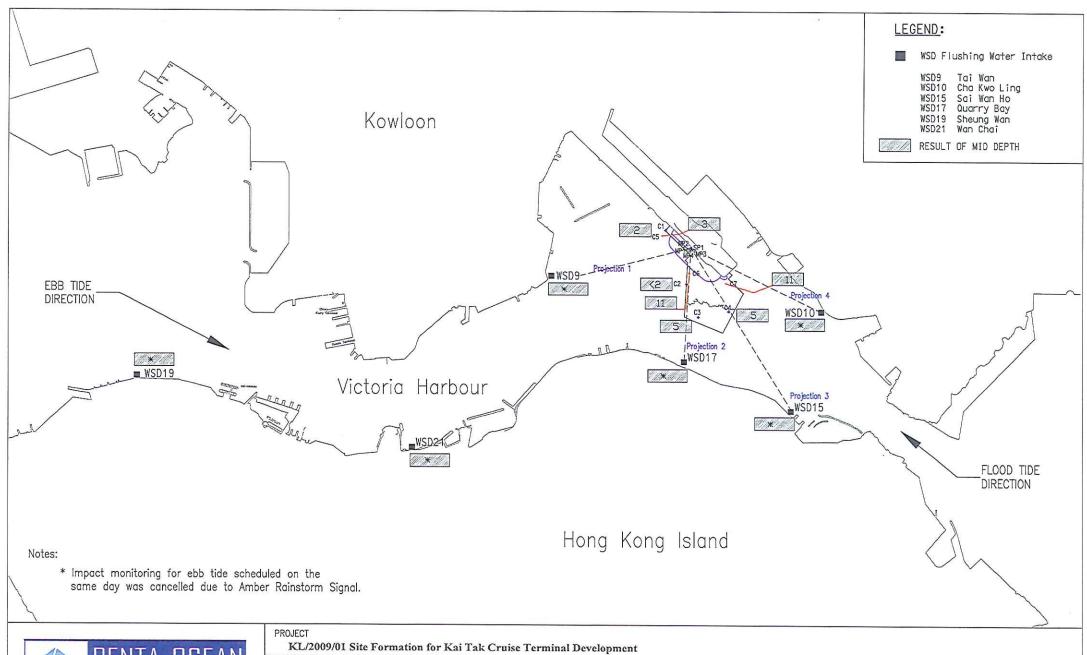
Thunderstorm Warning


Thunderstorm Warning was issued at 9:50 a.m. on 20 Apr 2012. It will be valid until noon today. Squally thunderstorms are expected to occur over Hong Kong. Gusts reaching 100 kilometres per hour or above may affect Hong Kong.

Members of the public are advised to take the following precautions when thunderstorms occur:

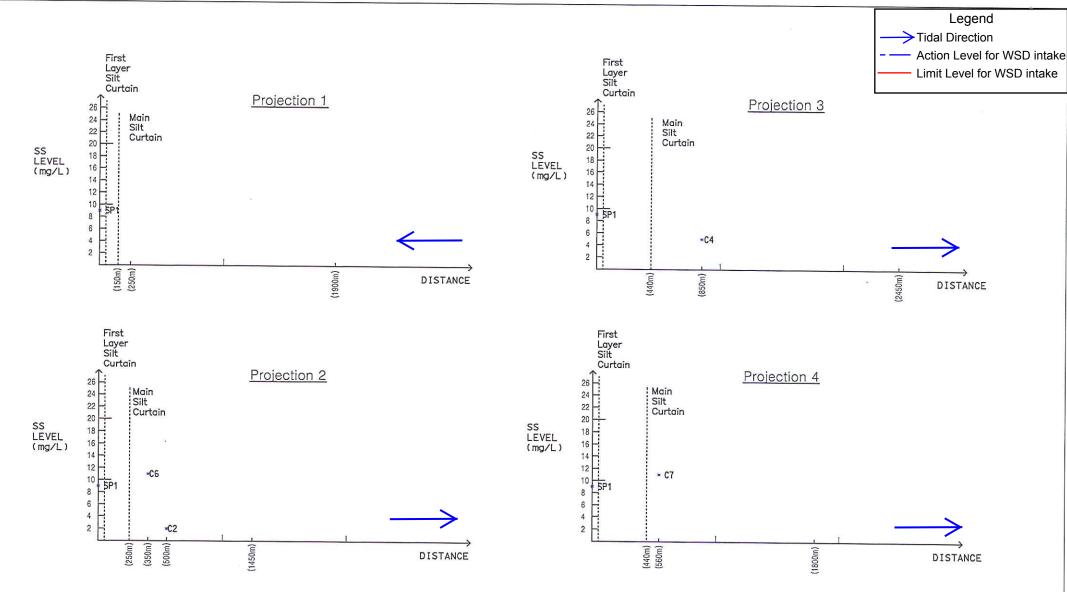
- 1. Stay indoors. Seek shelter in buildings if you are engaging in outdoor activities.
- 2. Do not stand on high grounds. Keep away from highly conductive objects, trees or masts.
- 3. Take precautions against violent gusts. Beware of flying debris and falling objects.
- 4. Drivers using highways and flyovers should reduce speed to be alert to violent gusts.

Dispatched by Hong Kong Observatory at 09:50 HKT on 20.04.2012


| Copyright and Disclaimer | Home | Chinese Version / 中文版本 | RSS |

WATER QUALITY SURVEILLANCE SYSTEM - (20 April 2012 EBB) - Page 1

DATE	PREPARED BY
4 May 2012	PY
SCALE	SKETCH No.
NOT TO SCALE	SK-0792



HILE

WATER QUALITY SURVEILLANCE SYSTEM - (20 April 2012 EBB) - Page 2

DATE	PREPARED BY
4 May 2012	PY
SCALE	SKETCH No.
NOT TO SCALE	SK-0793

Remarks: Due to Amber Rainstorm Signal, the water quality monitoring for the ebb tide on 20 April 2012 was cancelled.

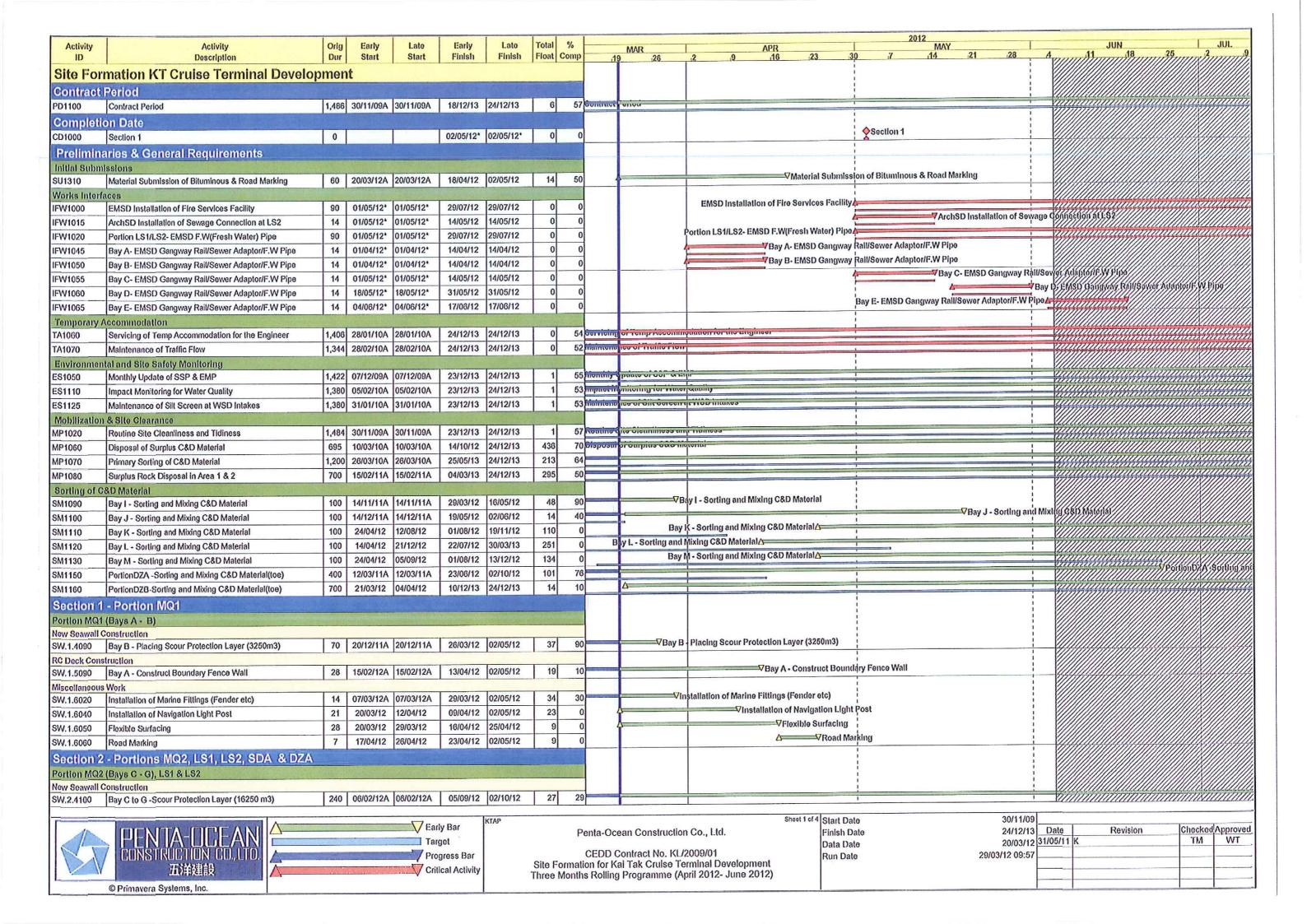
PROJECT
KL/2009/01 Site Formation for Kai Tak Cruise Terminal Development

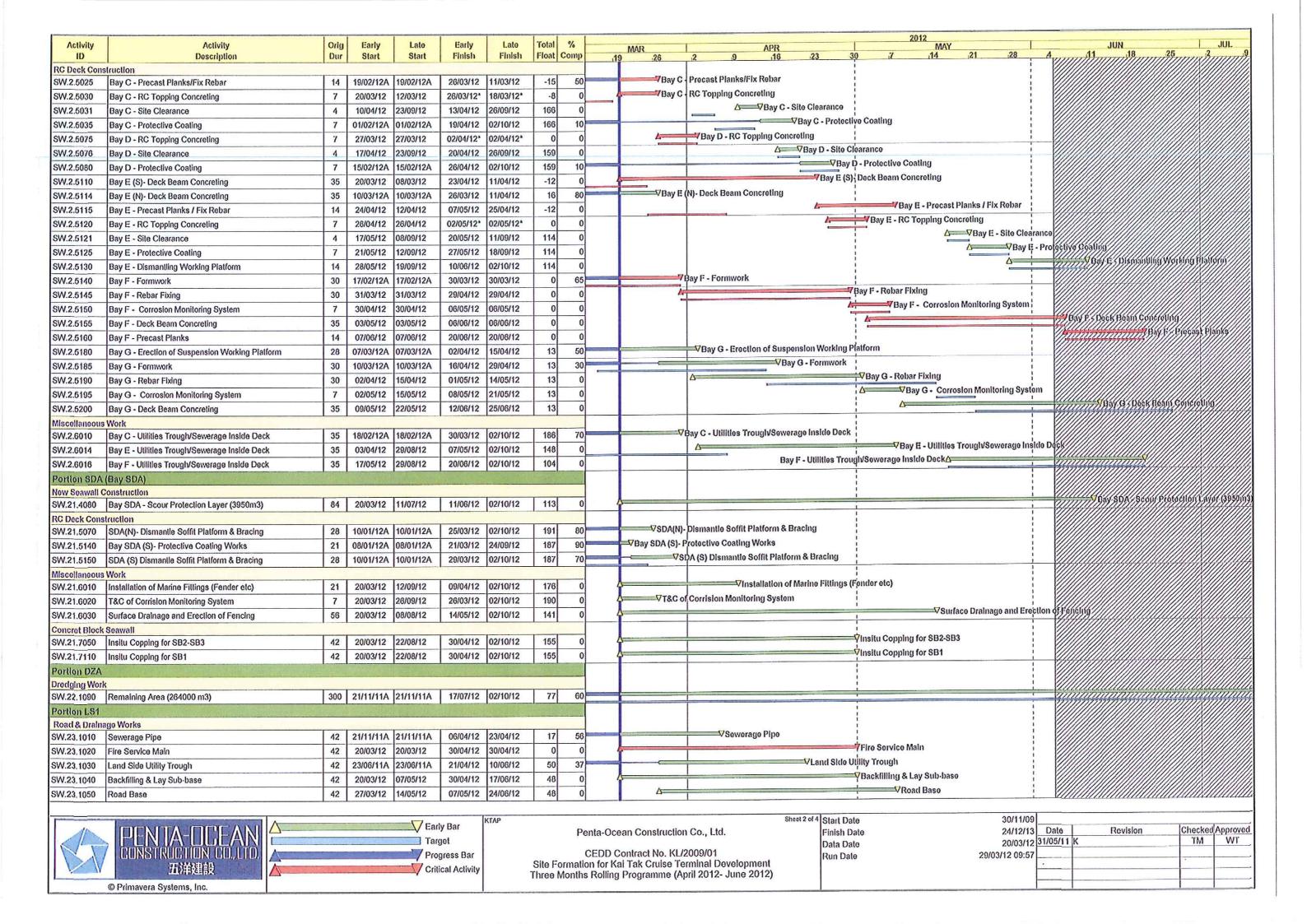
GRAPHICAL PRESENTATION OF THE WATER
QUALITY SURVEILLANCE SYSTEM MONITORING
RESULTS AT MID DEPTH — (20 April 2012 EBB)

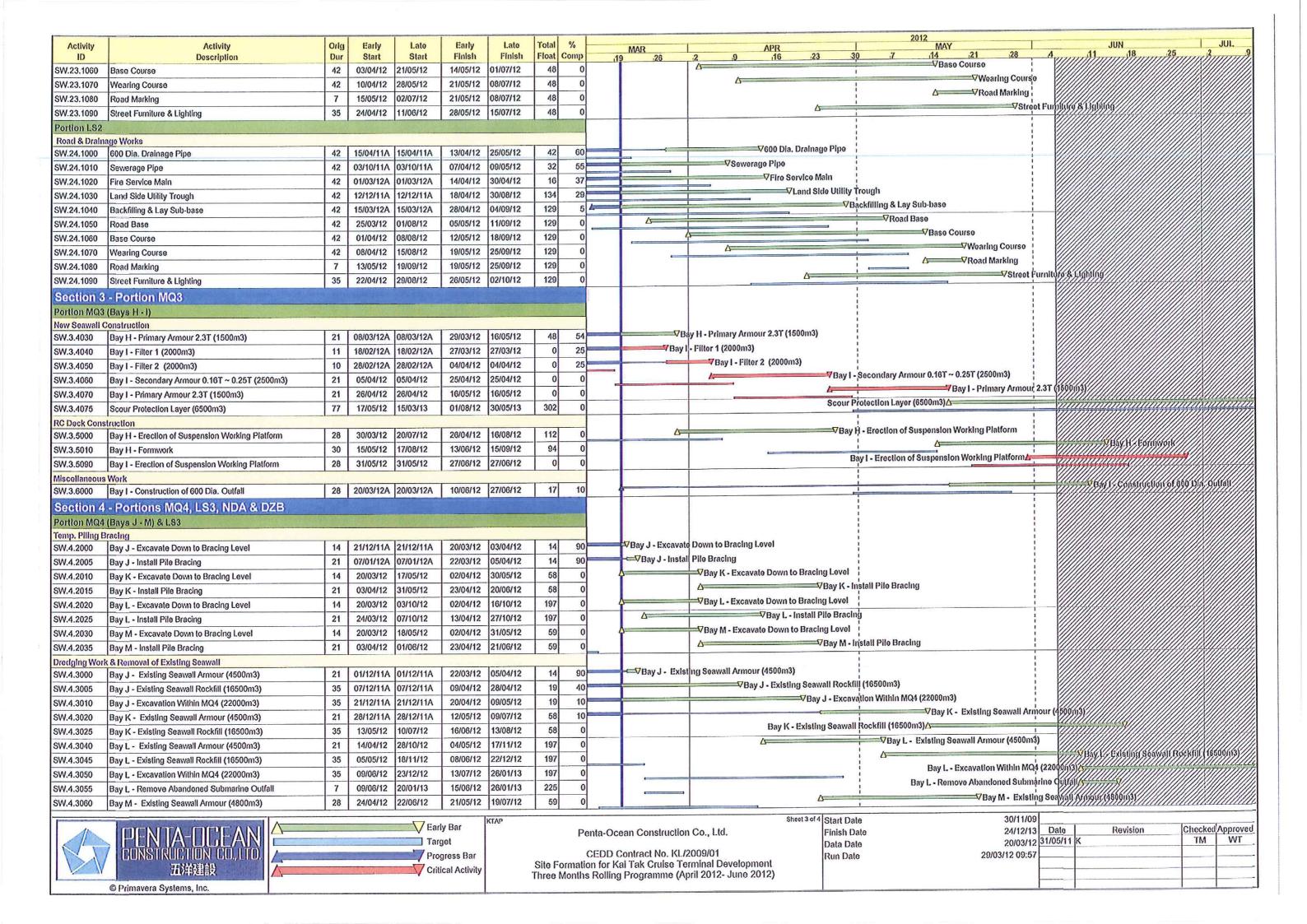
DATE	PREPARED BY
4 May 2012	PY
SCALE	SKETCH No.
NOT TO SCALE	SK-0794

Appendix 5.7

Details of Notification of Exceedances


Lam Environmental Services Limited


Summary for Notification of Exceedance


Ref no.	Date	Tidal	Location	Parameters (Unit)	Average	Action Level	Limit Level	Level of Exceedance	Follow-up action	
X226	10-Apr-12	Mid-ebb	WSD19	SS (mg/L)	21.5	13.3	16.2	Limit Level	Action taken / to be taken:	Silt screen was inspected and confirmed in a proper condition during the water monitoring. Non-project related construction activities were found around the WSD19 during monitoring.
									Possible reason:	The trend of SS level against tidal movement along Victoria Harbour was reviewed, All stations in downstream were below the Action Levels. Non-project related construction activities were found around the WSD19 during monitoring. Possible runoff from the non-project related construction activities could cause rise in SS level.
									Remarks / Other Obs:	Since WSD19 was located at the upstream of the Project, it is definitely not caused by the Project works and may be caused by influences in the vicinity of the station, i.e. non-project related construction activities around intake. No further exceedance was recorded in the consecutive monitoring. It is concluded that the source of impact was due to variation or change around WSD19, i.e. non-project related construction works around WSD19, and not related to the project work.

Appendix 9.0


Construction Programme

Activity	Activity	Orig	Early	Late	Early	Late	Total	%									2012										
ID	Description	Dur	Start	Start	Finish	Finish	2000	Comp		MAR 10 26	_	^	PR 16	00		.,		MAY	04	00	1	44	JUN		or		UL.
SW.4.3065	Bay M - Existing Seawall Rockfill (20000m3)	42		20/07/12		30/08/12	59	Comp		19 26	12	19	116	Bay M	- Existii	ng Seawa		14 1 (20000m3) <u>\(\)</u>	28	: A		MAN	18	25	4939//	///
New Seawall	-1				1	32233100			_						İ				1_	-	1					<i>773/111</i>	///
SW.4.4000	Bay J - Filter 1 (2000m3)	11	21/04/12	10/05/12	01/05/12	20/05/12	19	0						Δ	7	Bay J - F	ilter 1 (20	00m3)									
SW.4.4005	Bay J - Filter 2 (2000m3)	10	02/05/12	21/05/12	11/05/12	30/05/12	19	0							'Δ		VBa	y J - Filter	2 (2000)	m3)	!						
SW.4.4010	Bay J - Secondary Armour 0.16T ~ 0.25T (2500m3)	21	12/05/12	31/05/12	01/06/12	20/06/12	19	0									Δ=			Verselle State	Bay	-866616	ary Arino	ur 9.16	17,025	(2500)13)	
SW.4.4015	Bay J - Primary Armour 2.3T (1500m3)	21	02/06/12	21/06/12	22/06/12	11/07/12	19	0							- 1		Bay J - P	rlmary Arm	our 2.31	T (1500m3	3)△				\$/////		////
Section	5 - Portion CA3, CA5B & WA1A																										
Transplantin	ng and Tree Preservation														i						1						
LS1030	Preservation & Protection of Existing Trees	1,300	03/05/10A	03/05/10A	20/11/13	23/11/13	3	53							_						1	and the first of the first of the first	a fally fally fall of	in he had a factor of a factor	And the last of th		75.67
LS1040		1	20/03/12	24/12/13	20/03/12	24/12/13	545	0		Δ∇					1												
LS1050		1	20/03/12	24/12/13	20/03/12	24/12/13	545	0		ΔV					!												
LS1060		1	20/03/12	24/12/13	20/03/12	24/12/13	545	0		Δ∇					1												
LS1070		1	20/03/12	24/12/13	20/03/12	24/12/13	545	0		Δ∇																	
LS1080	2	1	20/03/12	24/12/13	20/03/12	24/12/13	545	0		Δ∇					1						1						
LS1090		1	20/03/12	24/12/13	20/03/12	24/12/13	545	0	1	ΔV					1						: 8					<i>(1)(((()</i>	
LS1100		1	20/03/12	24/12/13	20/03/12	24/12/13	545	0		ΔV					i												
LS1110		1	20/03/12	24/12/13	20/03/12	24/12/13	545	0	1	74					1						: 8						

Penta-Ocean Construction Co., Ltd.

CEDD Contract No. KL/2009/01 Site Formation for Kai Tak Cruise Terminal Development Three Months Rolling Programme (April 2012- June 2012)

Sheet 4 of 4 Finish Date Data Date Run Date

30/11/09
24/12/13
Date Revision Checked Approved
31/05/11 K TM WT
29/03/12 09:57