CONTRACT NO: KL/2009/01

SITE FORMATION FOR KAI TAK CRUISE TERMINAL DEVELOPMENT

ENVIRONMENTAL MONITORING & AUDIT MONTHLY REPORT

- DECEMBER 2013 -

CLIENT:

Penta-Ocean Construction Co., Ltd.

Unit 601, K. Wah Centre, 191 Java Road, North Point, Hong Kong PREPARED BY:

Lam Environmental Services Limited

11/F Centre Point 181-185 Gloucester Road, Wanchai, H.K.

Telephone: (852) 2882-3939
Facsimile: (852) 2882-3331
E-mail: info@lamenviro.com
Website: http://www.lamenviro.com

CERTIFIED BY:

Raymond Dai

Environmental Team Leader

DATE:

13 January 2013

FUGRO (HONG KONG) LIMITED CONSULTING ENGINEERS

7/F., Guardian House, 32 Oi Kwan Road, Wanchai, Hong Kong Tel:: +852 2577 9023 Fax:: +852 2895 2379 Email: fugro@fugro.com.hk

FAX MESSAGE

Priority	□ normal / □ urgent		
То	Lam Environmental Services Limited	Ref. No.	MCLF3281
Country		Email	raymonddai@lamenviro.com
Attn.	Mr. Raymond Dai	Date	14 January 2014
From	Joseph Poon	No. of Pages	1 (Incl. this page)
C.c. To	Mr. Brad Chan (URS Hong Kong Limited)	Email	brad.chan@urs.com
	Mr. K. Y. Shin (Civil Engineering and Development Department)	Email	kyshin@cedd.gov.hk
	Mr. Wong Tze-kwong (URS Hong Kong Limited)	Email	tzekwong.wong@urs.com
	Mr. Andrew Tam (URS Hong Kong Limited)	 Email	andrew.tam@urs.com
	Mr. Gideon Cheng (Penta-Ocean Construction Company Limited)	Email	gideon.cheng@pentaocean.com.hk
Subject	Agreement No. CE 19/2009 (EP) Dredging Works for Proposed Cruise Terminal Monthly Environmental Monitoring & Audit Rep	at Kai Ta ort for D	ık – ecember 2013

We refer to the revised Monthly EM&A Report for December 2013 that we received through email on 14 January 2014 and are pleased to confirm we have no further comment on the report.

Should you require further information, please feel free to contact us.

Best regards,

Joseph Poon

Independent Environmental Checker

JP/CY/by

CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, disclose or otherwise use the information in this facsimile. If you are not the intended recipient, please telephone or fax us immediately.

(If you do not receive all pages, please fax response or phone +852-24508238.)

CONTENTS

Ex	ecutive	Summary	1
1	Introd	uction	5
	1.1	Scope of the Report	5
	1.2	Structure of the Report	5
2	Projec	et Background	7
	2.1	Background	7
	2.2	Scope of the Project and Site Description	7
	2.3	Project Organization and Contact Personnel	8
	2.4	Construction Programme and Works	8
3	Imple	mentation Requirements	9
	3.1	Status of Regulatory Compliance	9
	4	Monitoring Requirements	10
	4.1	Noise Monitoring	10
	4.2	Water Quality Monitoring	10
	4.3	Water Quality Parameters	11
	4.4	Sampling Procedures and Monitoring Equipment	11
5	Monit	oring Results	14
	5.1	Water Monitoring Results	14
	5.2	Waste Monitoring Results	14
6	Comp	liance Audit	15
	6.1	Noise Monitoring	15
	6.2	Water Quality Monitoring	15
	6.3	Water Quality against the Tidal Movement along Victoria Harbour	16
	6.4	Natural Variation Comparison	17
	6.5	Water Quality Surveillance System	18
	6.6	Dredging and Disposal	19
7	Enviro	onmental Site Audit	21
8	Comp	laints, Notification of Summons and Prosecution	22
0	Canal	voien	22

LIST OF TABLES

Table I	Summary of the Exceedances Recorded in Reporting Month
Table 2.1	Contact Details of Key Personnel
Table 3.1	Summary of Valid Licences and Permits
Table 4.1	Planned Noise Monitoring Stations
Table 4.2	Water Quality Monitoring Stations for Baseline and Impact Monitoring
Table 4.3	Water Quality Monitoring Frequency and Parameters
Table 4.4	Equipment Used in Water Quality Monitoring in the Reporting Month
Table 6.1	Summary of Exceedances recorded in the Reporting Month
Table 6.2	Upper Bound of Natural Variation Levels at Water Monitoring Stations
Table 6.3	Compliance with EP Conditions in the Reporting Month
Table 6.4	Waste Quantities Related To Dredging Works
Table 8.1	Environmental Complaints Log
Table 8.2	Cumulative Statistics on Complaints
Table 8.3	Cumulative Statistics on Successful Prosecutions
Table 9.1	Construction Activities and Recommended Mitigation Measures in Coming
	Report Month

LIST OF FIGURES

General Layout

Project Organisation Chart

Figure 2.1

Figure 2.2

Figure 4.1	Layout of Environmental Monitoring Stations
Figure 6.1	Layout of Monitoring Stations for Water Quality Surveillance System
LIST OF APPE	ENDICES
Appendix 3.1	Implementation Schedule of Environmental Mitigation Measures
Appendix 4.1	Action and Limit Levels
Appendix 4.2	Copies of Calibration Certificates
Appendix 5.1	Monitoring Schedule for the Reporting Month and Coming Three Months
Appendix 5.2	Water Quality Monitoring Results and Graphical Presentation
Appendix 5.3	Event and Action Plan
Appendix 5.4	Graphic Presentation of SS Results against Tidal Movement along Victoria
	Harbour
Appendix 5.5	Graphic Presentation of Water Quality Result with respect to Local
	Variation
Appendix 5.6	Graphical Presentation of Water Quality Surveillance System
Appendix 5.7	Details of Notification of Exceedances
Appendix 9.0	Construction Programme

EXECUTIVE SUMMARY

i. This is the Environmental Monitoring and Audit (EM&A) Monthly Report – December 2013 for Site Formation for Kai Tak Cruise Terminal Development under Contract No. KL/2009/01. Dredging of marine sediment has been commenced since 28 June 2010 and stage 1 dredging for the Kai Tak Cruise Terminal was completed. Removal and reconstruction of existing seawall which was commenced since 22 November 2010 was completed. This report presents the environmental monitoring findings and information recorded from 1st to 31st December 2013.

Construction Activities for the Reporting Period

- ii. During this reporting period, the principal work activities included:
 - EMSD Installation of Gangway Phase 2 Berth;
 - Routine Site Cleanliness and Tidiness;
 - Surface drainage and fencing erection;
 - Disposal of Surplus C&D Material; and
 - Surplus Rock Disposal in Area 1 & 2.

Water Quality Monitoring

- iii. Supplementary to Baseline Water Quality Monitoring Report Review of Action and Limit Levels (Revision 1.2) was submitted to EPD on 13 October 2011. With respect to the EPD's no comment on the new Action and Limit Levels for water monitoring on 19 October 2011, the new set Action and Limit Levels for turbidity and SS was started to use from 19 October 2011.
- iv. Water quality monitoring at 6 designated monitoring stations namely WSD9, WSD10, WSD15, WSD17, WSD19 and WSD21 were conducted during the reporting period. As per the EM&A Manual, water quality impact monitoring was conducted during the dredging works, which commenced on 28 June 2010. The recorded exceedances at various monitoring stations are summarized in *Table I*. There were SS exceedances on 9, 16, 17, 21 and 24 Dec 2013.

Table I Summary of the Exceedances Recorded in Reporting Month

Date	Tide	Station	Parameter	Exceedance	Value	Possible Cause of Exceedance
9/12/2013	Mid- flood	WSD10	SS (mg/L)	LL	16.5	Localized impact or changes in ambient conditions at upstream of the Project
9/12/2013	Mid- flood	WSD15	SS (mg/L)	LL	16.5	Localized impact or changes in ambient conditions at upstream of the Project
9/12/2013	Mid- ebb	WSD10	SS (mg/L)	LL	17.0	Localized impact or changes in ambient conditions
9/12/2013	Mid- ebb	WSD15	SS (mg/L)	LL	17.5	Localized impact or changes in ambient conditions
16/12/2013	Mid- flood	WSD9	SS (mg/L)	AL	10.5	Localized impact or changes in ambient conditions
16/12/2013	Mid- flood	WSD10	SS (mg/L)	AL	11.5	Localized impact or changes in ambient conditions at upstream of the Project
17/12/2013	Mid- ebb	WSD9	SS (mg/L)	LL	12.0	Localized impact or changes in ambient conditions at upstream of the Project
17/12/2013	Mid- ebb	WSD10	SS (mg/L)	LL	14.0	Localized impact or changes in ambient conditions
17/12/2013	Mid- ebb	WSD15	SS (mg/L)	LL	13.0	Localized impact or changes in ambient conditions
21/12/2013	Mid- flood	WSD15	SS (mg/L)	LL	13.5	Localized impact or changes in ambient conditions at upstream of the Project
21/12/2013	Mid- flood	WSD17	SS (mg/L)	AL	13.5	Localized impact or changes in ambient conditions at upstream of the Project
24/12/2013	Mid- ebb	WSD9	SS (mg/L)	LL	17.0	Localized impact or changes in ambient conditions at upstream of the Project
24/12/2013	Mid- ebb	WSD10	SS (mg/L)	LL	14.5	Localized impact or changes in ambient conditions
24/12/2013	Mid- flood	WSD9	SS (mg/L)	AL	10.5	Localized impact or changes in ambient conditions

- v. For the exceedance, further investigations were conducted to determine the cause of impact in terms of Water Quality against the Tidal Movement along Victoria Harbour, Natural Variation Comparison and Water Quality Surveillance System.
- vi. Investigations were also conducted to present the water quality along Victoria Harbour in terms of Natural Variation Comparison and Water Quality Surveillance System.

Water Quality against the Tidal Movement along Victoria Harbour

vii. There were fourteen SS exceedances recorded in this reporting month. All of them were considered as not project-related. Among all the recorded SS exceedances, seven of them were located at upstream of project location and no rising SS were observed at downstream of the project location. The other

exceedances were concluded as not project-related since there were no rising up of SS level after passing through the project site. Furthermore, there were no marine works conducted by the contractor on December. Overall, it is concluded that no water quality impacts were arising from the project works.

Natural Variation Comparison

- viii. Based on the determination of upper bound of the natural variation levels from the Supplementary to Baseline Water Quality Monitoring Report, most SS results in reporting month were well within the upper bound of natural variation levels.
- ix. Investigations on the recorded exceedances (SS) on 9 Dec 2013 at WSD15 (Midflood) and 24 Dec 2013 at WSD9 (Mid-ebb) were upstream from project location.
 It is concluded that no water quality impact was arising from the Project works.
- x. Investigations on the recorded exceedances (SS) on 9 December 2013 at WSD15 (Mid-ebb) was considered as not project-related. There were no marine works conducted by the contractor on that day. Also, at WSD17, the immediate downstream station, there was no exceedance. No further exceedance of SS was recorded in the next monitoring day. Thus, it is concluded that no water quality impact was arising from the Project works.

Water Quality Surveillance System

xi. With reference to the upper bound of natural variation levels and self water quality surveillance system conducting in reporting month, it shows no fluctuation over the upper bound.

Noise Monitoring

xii. Due to the non-existence of planned NSRs during the reporting period, no noise monitoring was required to be conducted at the planned noise monitoring locations NM1 and NM2.

Waste Management

xiii. There was no marine sediment (Type 1 – Open Sea Disposal) disposed to South Cheung Chau Spoil Disposal Area denoted "KTCT-1" and "KTCT -2" in this reporting month. The disposal of the sediment (Type 1 – Open Sea Disposal (Dedicate Sites) and Type 2 – Confined Marine Disposal) to East Sha Chau Contaminated Mud Disposal Site – Pit IVc was completed. There were no noninert C&D materials related to dredging works disposed off site in the reporting month.

Complaints, Notifications of Summons and Successful Prosecutions

xiv. No complaint, notification of prosecutions or summons was received in the reporting period.

Site Inspections and Audit

xv. The Environmental Team (ET) conducted site inspections on 6, 12, 17 and 23 December 2013. Observation and/or recommendation related to the dredging work during the audit sessions can be referred to Section 7.

Compliance with Specific EP Conditions

xvi. Implementation of contractor's mitigation for dredging work and the associated dredging records were checked. There were no dredging operations in the reporting month.

Construction Activities for the Coming Reporting Period

- xvii. In the coming reporting period, the principal work activities included:
 - Application of protective coating to marine structures underneath the Quay Deck from Bay H to NDA;
 - Site Tidying and Cleaning from Bay H to NDA; and
 - Site formation and compactions works at WA1.

1 INTRODUCTION

1.1 SCOPE OF THE REPORT

- 1.1.1. Lam Environmental Services Limited (LES) has been appointed to work as the Environmental Team (ET) for dredging works to implement the Environmental Monitoring and Audit (EM&A) programme for Site Formation for Kai Tak Cruise Terminal Development under Contract No. KL/2009/01. Dredging of marine sediment has been commenced since 28 June 2010 while removal and reconstruction of existing seawall has been commenced since 22 November 2010. Stage 1 dredging and removal and reconstruction of existing seawall were completed. The water quality monitoring would be continued.
- 1.1.2. This report presents the environmental monitoring and auditing work carried out in accordance to the Section 10.4 under Environmental Monitoring and Audit (EM&A) Manual.
- 1.1.3. This report documents the finding of EM&A works from 1st to 31st December 2013. The cut-off date of reporting is at the end of each reporting month.

1.2 STRUCTURE OF THE REPORT

- **Section 1** *Introduction* details of the scope and structure of the report.
- **Section 2 Project Background** summarizes background and scope of the project, site description, project organization and contact details of key personnel during the reporting period.
- **Section 3** *Implementation Status* summarizes the status of valid Environmental Permits / Licenses during the reporting period.
- **Section 4** *Monitoring Requirements* summarizes all monitoring parameters, monitoring methodology and equipment, monitoring locations, monitoring frequency, criteria and respective event and action plan and monitoring programmes.
- **Section 5** *Monitoring Results* summarizes the monitoring results obtained in the reporting period.
- **Section 6 Compliance Audit** summarizes the auditing of monitoring results and all exceedances environmental parameters.
- **Section 7 Site Inspection** summarizes the findings of weekly site inspections undertaken within the reporting period, with a review of any relevant follow-up actions within the reporting period.

Section 8 Complaints, Notification of Summons and Prosecution -

> summarizes the complaints, notification of summons and successful prosecution for breaches of environmental legislation

and the actions taken within the reporting period.

Section 9 Conclusion

2 PROJECT BACKGROUND

2.1 BACKGROUND

- 2.1.1. The former Kai Tak Airport located in the south-eastern part of Kowloon Peninsula was the international airport of Hong Kong. The Kai Tak Airport had come into operations since 1920s. The operation of the Kai Tak Airport was ceased and replaced by the new airport at Chek Lap Kok in July 1998. After closure, the disused airport site has been occupied by various temporary uses, including a golf driving range on the runway area.
- 2.1.2. In 2002, the Chief Executive in Council approved the Kai Tak Outline Zoning Plans (No. S/K19/3 and S/K21/3) to provide the statutory framework to proceed with the South East Kowloon Development at the former Kai Tak Airport. However, following the judgment of the Court of Final Appeal in January 2004 regarding the Harbour reclamation, the originally proposed development which involves reclamation has to be reviewed. The Kai Tak Planning Review (KTPR) has resulted with a Preliminary Outline Development Plan (PODP) for Kai Tak in October 2006. Subsequently, the Administration announced in October 2006 a plan to implement a cruise terminal at Kai Tak, as part of the development.
- 2.1.3. Development of the cruise terminal at Kai Tak would require dredging at the existing seawall at the southern tip of the former Kai Tak Airport runway for construction of a quay deck structure for two berths, and dredging the seabed fronting the new quay to provide necessary manoeuvring basin. The general layout of the proposed cruise terminal construction is shown in *Figure 2.1*.
- 2.1.4. The current Project involves a dredging operation exceeding 500,000m³ for construction and operation of the proposed cruise terminal at Kai Tak and is therefore classified as a Designated Project under Item C.12, Part I, Schedule 2 of the Environmental Impact Assessment Ordinance (EIAO). An Environmental Impact Assessment (EIA) Study for the Project has been undertaken in accordance with the EIA Study Brief (No. ESB-159/2006) and the Technical Memorandum on Environmental Impact Assessment Process (EIAO-TM).

2.2 SCOPE OF THE PROJECT AND SITE DESCRIPTION

- 2.2.1. The scope of the Project comprises:
 - Dredging of marine sediment of about 700,000 m³ from the existing seabed (Stage 1 dredging) in the Harbour area off the southern tip of the former Kai Tak Airport runway to provide the necessary water depth within the manoeuvring area for cruise vessels; and
 - Removal of existing seawall of about 322,300m³ by dredging at the southern tip of the former Kai Tak Airport runway for cruise berth construction.

2.3 PROJECT ORGANIZATION AND CONTACT PERSONNEL

- 2.3.1. Kowloon Development Office of Civil Engineering and Development Department is the overall project controller. For the construction phase of KL/2009/01, Project Engineer, Contractor, Environmental Team and Independent Environmental Checker are appointed to manage and control environmental issues.
- 2.3.2. The proposed project organization and lines of communication with respect to environmental protection works are shown in <u>Figure 2.2</u>. Key personnel and contact particulars are summarized in *Table 2.1*:

Table 2.1 Contact Details of Key Personnel

Party	Role	Name	Post	Contact No.	Contact Fax
Civil Engineering and Development Department (Kowloon Development Office)	Project Proponent	Ms. Esther Yung	Senior Engineer	2301 1302	2301 1277
URS Hong Kong Limited	Engineer's Representative	Mr. Wong Tze Kwong	Senior Resident Engineer	2148 7638	2148 7277
Penta-Ocean Construction	Contractor	Mr. H. Taguchi	Project Manager	2148 7238	2148 7138
Company Limited		Mr. Yuen Tit	Sub Agent		
		Mr. Gideon Cheng	Environmental Officer		
Fugro (HK) Limited	Independent Environmental Checker (IEC)	Mr. Joseph Poon	Independent Environmental Checker (IEC)	2450 8238	2450 6138
Lam Environmental Services Limited	Environmental Team Leader	Mr. Raymond Dai	Environmental Team Leader (ETL)	2882 3939	2882 3331

2.4 CONSTRUCTION PROGRAMME AND WORKS

- 2.4.1. During this reporting period, the principal work activities included:
 - EMSD Installation of Gangway Phase 2 Berth;
 - Routine Site Cleanliness and Tidiness;
 - Surface drainage and fencing erection;
 - Disposal of Surplus C&D Material; and
 - Surplus Rock Disposal in Area 1 & 2.

3 IMPLEMENTATION REQUIREMENTS

3.1 STATUS OF REGULATORY COMPLIANCE

3.1.1. A summary of the current status on licences and/or permits on environmental protection pertinent to the Project is shown in *Table 3.1*.

Table 3.1 Summary of Valid Licences and Permits

Permits and/or Licences	Reference No.	Issued Date	Valid Period	Status in Reporting Month
Environmental Permit	EP-328/2009/A	15 Jun 2009	N/A	Valid
Notification of Works Under APCO	KTCT/907/S/3.14/7. 00/L/0060 (POC's REF. number) dated 9 December 2009		N/A	Valid
Construction Noise Permit (CNP)	GW-RE0792-13	1 Aug 2013	15 Aug 2013 (19:00) to 14 Feb 2014 (07:00)	Valid
Discharge Licence	WT00005933-2010	18 Mar 2010	Until 31 March 2015	Valid
Registration of Waste Producer	5213-247-P2984- 01	14 Jan 2010	N/A	Valid
Dumping Permit (Type 1 – Open Sea Disposal)	EP/MD/14-086	1 Nov 2013	3 Nov 2013 to 2 May 2014	Valid

3.1.2. Implementation status of the recommended mitigation measures during this reporting period is presented in *Appendix 3.1*.

4 MONITORING REQUIREMENTS

4.1 NOISE MONITORING

4.1.1. In accordance with the EIA Report and the approved EM&A Manual, it is anticipated that construction activities, if unmitigated, would not cause any adverse noise impact to the nearest NSRs in the vicinity of the work site. The predicted noise levels at the NSRs would comply with construction noise criteria. These nearest NSRs are designated for construction noise monitoring as listed in *Table 4.1*.

Table 4.1 Planned Noise Monitoring Stations

Station	Description			
NM1	Planned Residential Development (R3 site)			
NM2	Planned Residential Development (R3 site)			

4.1.2. As per S.3.1.1 of the approved EM&A Manual states that "Noise levels shall be monitored to evaluate the construction noise impact if there is any planned noise sensitive receivers (NSRs) occupied within 300m from the works area of this Project during the proposed dredging works". Therefore, the impact monitoring for construction noise shall only be carried out when the planned residential development at the two identified monitoring stations are occupied at a later stage.

4.2 WATER QUALITY MONITORING

- 4.2.1. The EIA Report has identified that suspended solids (SS) would be the most critical water quality parameter during the dredging operations. Water quality monitoring for SS and turbidity is therefore recommended to be carried out at selected WSD flushing water intakes. The impact monitoring should be carried out during the proposed dredging works for cruise terminal construction to ensure the compliance with the water quality standards.
- 4.2.2. It is proposed to monitor the water quality at six WSD flushing water intakes along the seafront of the Victoria Harbour. The proposed water quality monitoring stations are shown in *Table 4.2* and *Figure 4.1*.

Table 4.2 Water Quality Monitoring Stations for Baseline and Impact Monitoring

Station Ref.	WSD Flushing Water Intake Easting		Northing
WSD9	Tai Wan	837921.0	818330.0
WSD10	Cha Kwo Ling	841900.9	817700.1
WSD15	Sai Wan Ho	841110.4	816450.1
WSD17	Quarry Bay	839790.3	817032.2
WSD21	Wan Chai	836220.8	815940.1
WSD19	Sheung Wan	833415.0	816771.0

4.3 WATER QUALITY PARAMETERS

- 4.3.1. During the period of dredging, monitoring should be undertaken three days per week, at mid-flood and mid-ebb tides, with sampling / measurement at the designated monitoring stations as shown in *Table 4.2*. The interval between two sets of monitoring should not be less than 36 hours except where there are exceedances of Action and/or Limit Levels, in which case the monitoring frequency will be increased. *Table 4.3* shows the proposed monitoring frequency and water quality parameters. Duplicate in-situ measurements and water sampling should be carried out in each sampling event. For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides should not be less than 0.5m.
- 4.3.2. Silt screens in frame type or floating type shall be deployed at these intakes during the dredging period. It is recommended to conduct the monitoring behind the silt screens at the seawater intake culvert at each seawater pumping station to collect information on the water quality condition after passed the silt screen.

Table 4.3 Water Quality Monitoring Frequency and Parameters

Activities	Monitoring Frequency ¹	Parameters ²	
During the 4-week baseline monitoring period	Three days per week, at mid-flood and mid-ebb tides	Turbidity (in NTU), Suspended Solids (SS in mg/L)	
During dredging works for proposed cruise terminal at Kai Tak	Three days per week, at mid-flood and mid-ebb tides	Turbidity (in NTU), Suspended Solids (SS in mg/L)	

Notes:

- 1. For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides should be not less than 0.5m.
- 2. Turbidity should be measured in situ whereas SS should be determined by laboratory.
- 4.3.3. Supplementary to Baseline Water Quality Monitoring Report Review of Action and Limit Levels (Revision 1.2) was submitted to EPD on 13 October 2011. With respect to the EPD's no comment on the new Action and Limit Levels for water monitoring on 19 October 2011, the new set Action and Limit Levels for turbidity and SS was adopted from 19 Oct 2011 and can be referred to <u>Appendix 4.1</u>.
- 4.3.4. Current calibration certificates of equipment are presented in *Appendix 4.2*.

4.4 SAMPLING PROCEDURES AND MONITORING EQUIPMENT

4.4.1. In-situ measurements and water sampling shall be conducted at mid-depth. Duplicate in-situ measurements and water sampling have been conducted in each sampling event. Water samples for all monitoring parameters shall be collected, stored, preserved and analysed according to the Standard Methods, APHA 17 and/or agreed by IEC and EPD.

Dissolved Oxygen and Temperature Measuring Equipment

- 4.4.2. The instrument should be a portable, weatherproof dissolved oxygen measuring instrument complete with cable, sensor, comprehensive operation manuals, and use a DC power source. It should be capable of measuring:
 - a dissolved oxygen level in the range of 0-20 mg/l and 0-200% saturation
 - a temperature of 0-45 degree Celsius
- 4.4.3. It should have a membrane electrode with automatic temperature compensation complete with a cable. Sufficient stocks of spare electrodes and cables should be available for replacement where necessary. (e.g. YSI model 59 meter, YSI 5739 probe, YSI 5795A submersible stirrer with reel and cable or an approved similar instrument).
- 4.4.4. Should salinity compensation not be build-in in the DO equipment, in-situ salinity shall be measured to calibrate the DO equipment prior to each DO measurement.

Turbidity Measurement Instrument

4.4.5. The instrument should be a portable, weatherproof turbidity-measuring instrument complete with comprehensive operation manual. The equipment should use a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0-1000 NTU and be complete with a cable (e.g. Hach model 2100P or an approved similar instrument).

Suspended Solids

- 4.4.6. A water sampler comprises a transparent PVC cylinder, with a capacity of not less than 2 litres, and can be effectively sealed with latex cups at both ends. The sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth (e.g. Kahlsico Water Sampler or an approved similar instrument).
- 4.4.7. Water samples for suspended solids measurement should be collected in highdensity polythene bottles, packed in ice (cooled to 4°C without being frozen), and delivered to ALS Technichem (HK) Pty Ltd. as soon as possible after collection for analysis.

Water Depth Detector

4.4.8. A portable, battery-operated echo sounder shall be used for the determination of water depth at each designated monitoring station. This unit can either be handheld or affixed to the bottom of the workboat, if the same vessel is to be used throughout the monitoring programme.

Salinity

4.4.9. A portable salinometer capable of measuring salinity in the range of 0-40 ppt shall be provided for measuring salinity of the water at each of monitoring location.

Locating the Monitoring Site

4.4.10. A hand-held or boat-fixed type digital Global Positioning System (GPS) with way point bearing indication or other equivalent instrument of similar accuracy shall be provided and used during monitoring to ensure the monitoring vessel is at the correct location before taking measurements.

Calibration and Accuracy of Instrument

- 4.4.11. All in-situ monitoring instruments shall be checked, calibrated and certified by a laboratory accredited under HOKLAS or equivalent before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring. Responses of sensors and electrodes should be checked with certified standard solutions before each use. Wet bulb calibration for a DO meter shall be carried out before measurement at each monitoring location.
- 4.4.12. For the on-site calibration of field equipment by the ET, the BS 127:1993, "Guide to Field and on-site test methods for the analysis of waters" should be observed.
- 4.4.13. Sufficient stocks of spare parts should be maintained for replacements when necessary. Backup monitoring equipment shall also be made available so that monitoring can proceed uninterrupted even when some equipment is under maintenance, calibration, etc.
- 4.4.14. The equipment used in the water quality monitoring in the reporting month are summarized in *Table 4.4*. Current calibration certificates of the used equipment are presented in *Appendix 4.2*

Table 4.4 Equipment Used in Water Quality Monitoring in the Reporting Month

Equipment	Model	Qty.
Multi-meter	YSI Professional Plus	2
Turbidimeter	WGZ-3B	2

5 MONITORING RESULTS

5.1 WATER MONITORING RESULTS

- 5.1.1. The water monitoring schedule for the reporting month and coming three months are presented in *Appendix 5.1*.
- 5.1.2. Water monitoring results measured in reporting month are reviewed and presented in <u>Appendix 5.2</u>. There were fourteen SS exceedances recorded in this reporting month.
- 5.1.3. The details of Event and Action Plans and Notification of Exceedance can be referred to *Appendix 5.3* and *Appendix 5.7*.

5.2 WASTE MONITORING RESULTS

5.2.1. There were no non-inert C&D material related to dredging works disposed off site in the reporting month.

6 COMPLIANCE AUDIT

6.1 NOISE MONITORING

6.1.1. Noise monitoring was not necessary in the reporting period due to non-presence of NSR.

6.2 WATER QUALITY MONITORING

6.2.1. There were fourteen SS exceedances recorded on 9, 16, 17, 21 and 24 Dec 2013.

**Table 6.1* summarizes the details of SS and turbidity exceedance recorded. Investigation indicated the exceedance were not related to the Project works.

Table 6.1 Summary of Exceedances recorded in the Reporting Month

Date	Tide	Station	Parameter	Exceedance	Value	Possible Cause of Exceedance
9/12/2013	Mid- flood	WSD10	SS (mg/L)	LL	16.5	Localized impact or changes in ambient conditions at upstream of the Project
9/12/2013	Mid- flood	WSD15	SS (mg/L)	LL	16.5	Localized impact or changes in ambient conditions at upstream of the Project
9/12/2013	Mid- ebb	WSD10	SS (mg/L)	LL	17.0	Localized impact or changes in ambient conditions
9/12/2013	Mid- ebb	WSD15	SS (mg/L)	LL	17.5	Localized impact or changes in ambient conditions
16/12/2013	Mid- flood	WSD9	SS (mg/L)	AL	10.5	Localized impact or changes in ambient conditions
16/12/2013	Mid- flood	WSD10	SS (mg/L)	AL	11.5	Localized impact or changes in ambient conditions at upstream of the Project
17/12/2013	Mid- ebb	WSD9	SS (mg/L)	LL	12.0	Localized impact or changes in ambient conditions at upstream of the Project
17/12/2013	Mid- ebb	WSD10	SS (mg/L)	LL	14.0	Localized impact or changes in ambient conditions
17/12/2013	Mid- ebb	WSD15	SS (mg/L)	LL	13.0	Localized impact or changes in ambient conditions
21/12/2013	Mid- flood	WSD15	SS (mg/L)	LL	13.5	Localized impact or changes in ambient conditions at upstream of the Project
21/12/2013	Mid- flood	WSD17	SS (mg/L)	AL	13.5	Localized impact or changes in ambient conditions at upstream of the Project
24/12/2013	Mid- ebb	WSD9	SS (mg/L)	LL	17.0	Localized impact or changes in ambient conditions at upstream of the Project
24/12/2013	Mid- ebb	WSD10	SS (mg/L)	LL	14.5	Localized impact or changes in ambient conditions
24/12/2013	Mid- flood	WSD9	SS (mg/L)	AL	10.5	Localized impact or changes in ambient conditions

Lam Environmental Services Limited

- 6.2.2. Fourteen SS exceedances and no turbidity exceedance were recorded in the reporting period.
- 6.2.3. For the exceedances, further investigations were conducted to determine the cause of impact in terms of the following areas:
 - Water Quality against the Tidal Movement along Victoria Harbour;
 - Natural Variation Comparison; and
 - Water Quality Surveillance System

6.3 WATER QUALITY AGAINST THE TIDAL MOVEMENT ALONG VICTORIA HARBOUR

- 6.3.1 In order to conclude the cause of an adverse water quality impact, the trend across the 6 monitoring stations is reviewed. Whether the adverse impact is due to project work will be evaluated from the trend of SS level in downstream across the Victoria Harbour after passing the project location. By observing this trend of SS, contribution of the adverse water quality impact from the dredging activities under the project can be evaluated by checking if there is a significant rising up trend in the SS level in the WSD intakes at project downstream.
- 6.3.2 Moreover, a comparison of the monitoring station at project downstream stations with the upstream monitoring stations can also indicate whether the extent of exceedance in SS content recorded at the WSD intakes downstream to the project is likely to be caused by upstream source or not. If the SS values of the upstream and downstream show similar levels, the impact at the project downstream stations shall probably be due to the project upstream source and the contribution from project work can be eliminated. A review on the tidal movement across the Victoria Harbour is plotted against the SS results and graphical presentation is presented in *Appendix 5.4*.
- 6.3.3 For the recorded exceedances (SS) on 9 Dec 2013 (mid-flood) at WSD10 and WSD15; 16 Dec 2013 (mid-flood) at WSD10; and 17 Dec 2013 (mid-ebb) at WSD9; 21 Dec 2013 (mid-flood) at WSD15 and WSD17; 24 Dec 2013 (mid-ebb) at WSD9, they were located at the upstream of project location. It is concluded that no water quality impact was arising from the Project works.
- 6.3.4 On 9 Dec 2013 (Mid-ebb), the recorded exceedance at WSD10 and WSD15 were considered as not project related. At WSD17, the immediate downstream station, there was no exceedance of SS. No further exceedance of SS was recorded in the next monitoring day. Moreover, there were no marine works conducted by the contractor on that day. It is concluded that no water quality impact was arising from the Project works.
- 6.3.5 On 16 Dec 2013 (Mid-flood), the recorded exceedance at WSD9 were considered as not project related. There were no rising up of SS level after passing through the project location. The overall SS levels at all monitoring stations show a similar

magnitude. Moreover, there were no marine works conducted by the contractor on that day. It is concluded that no water quality impact was arising from the Project works.

- 6.3.6 On 17 Dec 2013 (Mid-ebb), the recorded exceedance at WSD10 and WSD15 were considered as not project related. At WSD17, the immediate downstream station, there was no exceedance of SS and no rising of SS level after passing through the project site. Moreover, there were no marine works conducted by the contractor on that day. It is concluded that no water quality impact was arising from the Project works.
- 6.3.7 On 24 Dec 2013 (Mid-ebb), the recorded exceedance at WSD10 were considered as not project related. At WSD17, the immediate downstream station, there was no exceedance of SS and no rising of SS level after passing through the project site. Moreover, there were no marine works conducted by the contractor on that day. It is concluded that no water quality impact was arising from the Project works.
- 6.3.8 On 24 Dec 2013 (Mid-flood), the recorded exceedance at WSD9 were considered as not project related. No further exceedance of SS was recorded in the next monitoring (26 Dec ebb tide was 3.5mg/L). Moreover, there were no marine works conducted by the contractor on that day. It is concluded that no water quality impact was arising from the Project works.

6.4 NATURAL VARIATION COMPARISON

- Referring to the ER Letter ref. CEDD/KL/2009/01/M45/130(369767) dated 14 February 2011, a Supplementary to Baseline Water Quality Monitoring Report Review Action and Limit Levels (Revision 1.0) has been provided to EPD by ER in February 2011 in according to Sections 4.92 and 10.7 of EM&A Manual. This report in Revision 1.1 has been provided on 26 April 2011 in response to EPD's comments dated 1 April 2011. This report presents the methodology for enlargement baseline database and the review and determination of the Action and Limit Levels in dry and wet seasons.
- On the basis of this Supplementary to Baseline Water Quality Monitoring Report, the maximum SS levels in the establishment of larger baseline database will be applied and acted as the upper bound of natural variation levels for the comparison with SS results in reporting quarter. The upper bound of natural variation levels are shown in **Table 6.2**. The graphic presentation of water quality results with respect to local variation is shown in **Appendix 5.5**.

Table 6.2 Upper Bound of Natural Variation Levels at Water Monitoring Stations

Upper Bound of Natural Variation Levels (mg/L)	WSD9	WSD10	WSD15	WSD17	WSD19	WSD21
Dry Season	12.0	19.0	14.0	16.0	18.0	15.0
Wet Season	15.1	21.2	22.7	17.9	17.1	18.8

- 6.4.3 According to the graphic presentation, most SS results were well within the upper bound of natural variation level.
- 6.4.4 Investigations on the recorded exceedances (SS) on 9 Dec 2013 at WSD15 (Midflood) and 24 Dec 2013 at WSD9 (Mid-ebb) were upstream from project location. It is concluded that no water quality impact was arising from the Project works.
- Investigations on the recorded exceedances (SS) on 9 December 2013 at WSD15 (Mid-ebb) was considered as not project-related. There were no marine works conducted by the contractor on that day. Also, at WSD17, the immediate downstream station, there was no exceedance. No further exceedance of SS was recorded in the next monitoring day. Thus, it is concluded that no water quality impact was arising from the Project works.

6.5 WATER QUALITY SURVEILLANCE SYSTEM

- 6.5.1 2 self water quality surveillance monitoring events for removal of existing seawall were conducted on 11 and 20 December 2013. Turbidity and SS monitoring were conducted at 12 locations as follows and shown in *Figure 6.1*.
 - One sampling point inside the final location of silt curtain (SP1);
 - Four sampling points outside the final location of first layer silt curtain (MP1-MP4);
 - Seven control points (C1-C7)
- 6.5.2 The trend of monitoring results from the location of dredging works to the nearest WSD pumping stations were projected for checking the water quality surveillance. The graphical presentation of the SS levels at SP1, sampling points outside the first layer silt curtain, control points and impact water quality monitoring stations against the distance are shown in *Appendix 5.6*.
- 6.5.3 Based on the graphic presentation and the trend description of the SS levels in **Appendix 5.6** conclusion of the water quality surveillance can be draw as follows:
 - · SS levels at all monitoring stations were below the established trigger level.
 - When the WSD intakes were located at upstream of the Project, it found that SS level was occasionally higher than the control points or sampling points near dredging area. Thus, uncertain interference of water quality was apparently interfering in the vicinity of intakes frequently;

- For WSD intakes located at downstream of the Project, the trend in the projections indicated that no significant rising of SS in the projection from the dredging area to the control points and the WSD pumping stations.
- 6.5.4 With reference to the upper bound of natural variation levels and water quality surveillance conducting in reporting period, it shows mostly no fluctuation over the upper bound.
- 6.5.5 Since the investigations found that the exceedances recorded in the reporting month were not related to the Project, it was concluded that all necessary steps under Event and Action Plan had been taken.

6.6 DREDGING AND DISPOSAL

- 6.6.1 Implementation of mitigation measures for dredging work and the associated dredging records were checked and the findings are summarized in Table 6.3.
- 6.6.2 No dredging works were conducted in the reporting month. A letter of confirmation of the end of dredging operations dated 5th December, 2013 was sent to EPD by the contractor. No further dredging operations will be carried out without prior notification to EPD.

Table 6.3 Compliance with EP Conditions in the Reporting Month

EP Condition	Compliance Status and/or Recommendation
2.6	Completed
Silt Curtain Deployment	Completed
2.6	
For removal of the existing seawall and the seabed, Daily Dredging Rate \leq 4,000m3/d Hourly Dredging Rate \leq 334m3/hr	Completed
2.7	
For removal of marine sediment from seabed, Daily Dredging Rate ≤ 4,000m3/d Hourly Dredging Rate ≤ 334m3/hr	Completed
2.8 Silt Screen Deployment	Completed

6.6.3 There was no marine sediment (Type 1 – Open Sea Disposal) disposed to South Cheung Chau Spoil Disposal Area denoted "KTCT-1" and "KTCT -2" in this reporting month. The disposal of the sediment (Type 1 – Open Sea Disposal (Dedicate Sites) and Type 2 – Confined Marine Disposal) to East Sha Chau Contaminated Mud Disposal Site – Pit IVc was completed. There were no noninert C&D materials related to dredging works disposed off site in the reporting month. The details can be referred to the **Table 6.4**.

Table 6.4 Waste Quantities Related To Dredging Works

Waste Type	Quantity this month, m ³ (Bulk volume)	Cumulative- to-Date. m ³ (Bulk volume)	Disposal / Dumping Ground
Marine Sediment (Type 1 – Open Sea Disposal)	NIL	561,891	South Cheung Chau Spoil Disposal Area denoted "KTCT-1" and "KTCT -2"
Marine Sediment (Type 1 – Open Sea Disposal (Dedicated Sites) and Type 2 – Confined Marine Disposal) *	NIL	Completed	East Sha Chau Contaminated Mud Disposal Site – Pit IVc

^{*} Remarks: The disposal of marine sediment (Type 1 – Open Sea Disposal (Dedicated Sites) and Type 2 – Confined Marine Disposal) was completed.

7 ENVIRONMENTAL SITE AUDIT

- 7.0.1. Site audits were carried out by ET on weekly basis to monitor the implementation of proper environmental management practices and mitigation measures in the Project site.
- 7.0.2. The joint site audits were conducted on 6, 12, 17 and 23 December 2013 by the representatives of IEC, ER, the Contractor and the ET. No particular findings were obtained on the dredging works during the site inspections.
- 7.0.3. During this reporting period, collection of rock materials were observed on-site. After checking with contractor, the observed activities were performed by another contract. The interfacing contractor shall be responsible for environmental mitigation measures and the contractor of this contract shall liaise with the interfacing contractor to ensure compliance of environmental requirements.

8 COMPLAINTS, NOTIFICATION OF SUMMONS AND PROSECUTION

8.0.1. In this reporting period, no complaint, inspection notice, notification of summons or prosecution was received. Cumulative complaint log, summaries of complaints, notification of summons and successful prosecutions are presented in *Tables 8.1*, 8.2 and 8.3 respectively.

Table 8.1 Environmental Complaints Log

Complaint Log No.		Received From and Received By		Date Investigated	Outcome	Date of Reply
NIL	-	-	-	-	-	-

Table 8.2 Cumulative Statistics on Complaints

Environmental Parameters	Cumulative No. Brought Forward	No. of Complaints This Month	Cumulative No. Project-to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Total	0	0	0

Table 8.3 Cumulative Statistics on Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Successful Prosecutions this month (Offence Date)	Cumulative No. Project-to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Total	0	0	0

9 CONCLUSION

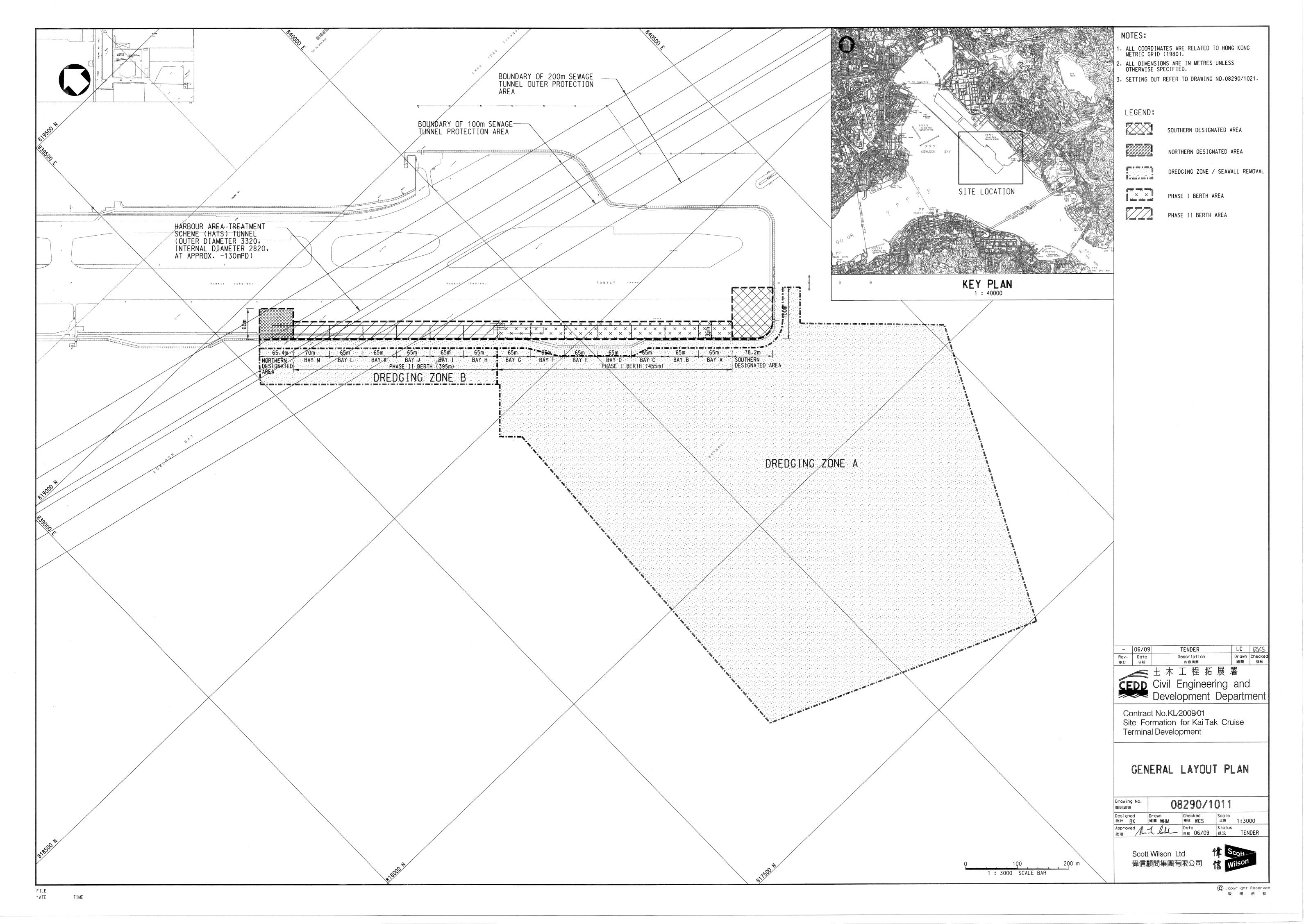

- 9.0.1. Dredging of marine sediment and removal and reconstruction of existing seawall were commenced on 28 June and 22 November 2010 respectively. Stage 1 dredging and removal and reconstruction of existing seawall were completed. The EM&A programme was carried out in accordance with the EM&A Manual requirements. The water quality impact monitoring would be continued.
- 9.0.2. There were fourteen recorded SS exceedances on 9, 16, 17, 21 and 24 Dec 2013 and no turbidity exceedance. Investigations indicated the exceedances were not related to the Project.
- 9.0.3. Supplementary to Baseline Water Quality Monitoring Report Review of Action and Limit Levels (Revision 1.2) was submitted to EPD on 13 October 2011. With respect to the EPD's no comment on the new Action and Limit Levels for water monitoring on 19 October 2011, the new set Action and Limit Levels for turbidity and SS was started to use from 19 October 2011.
- 9.0.4. The scheduled construction activities and the recommended mitigation measures for the coming month are listed in *Table 9.1*. The construction programme of the Project is provided in *Appendix 9.0*.

Table 9.1 Construction Activities and Recommended Mitigation Measures in Coming Report Month

Construction Works	Recommended Mitigation Measures
Routine Site Cleanliness and Tidiness.	 Covering the stockpile and watering the dust surface to suppress dust emission; Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal.

Figure 2.1

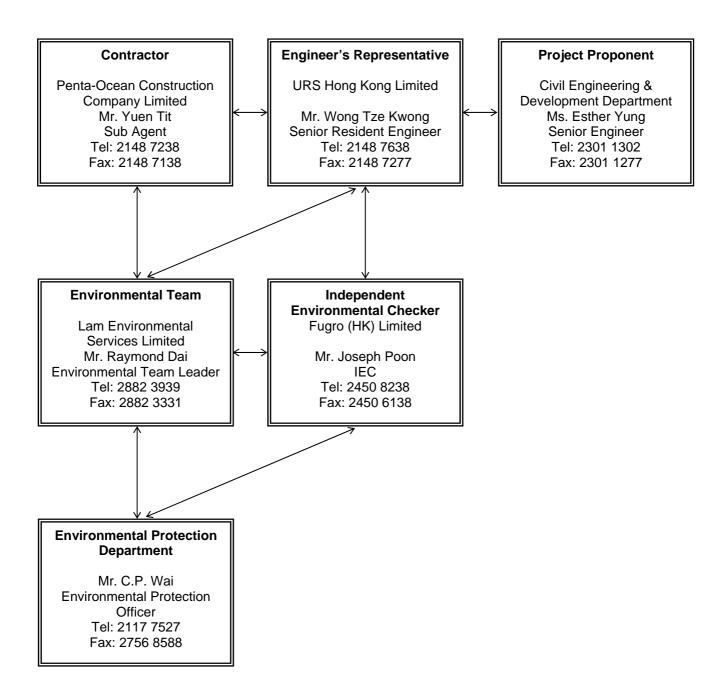
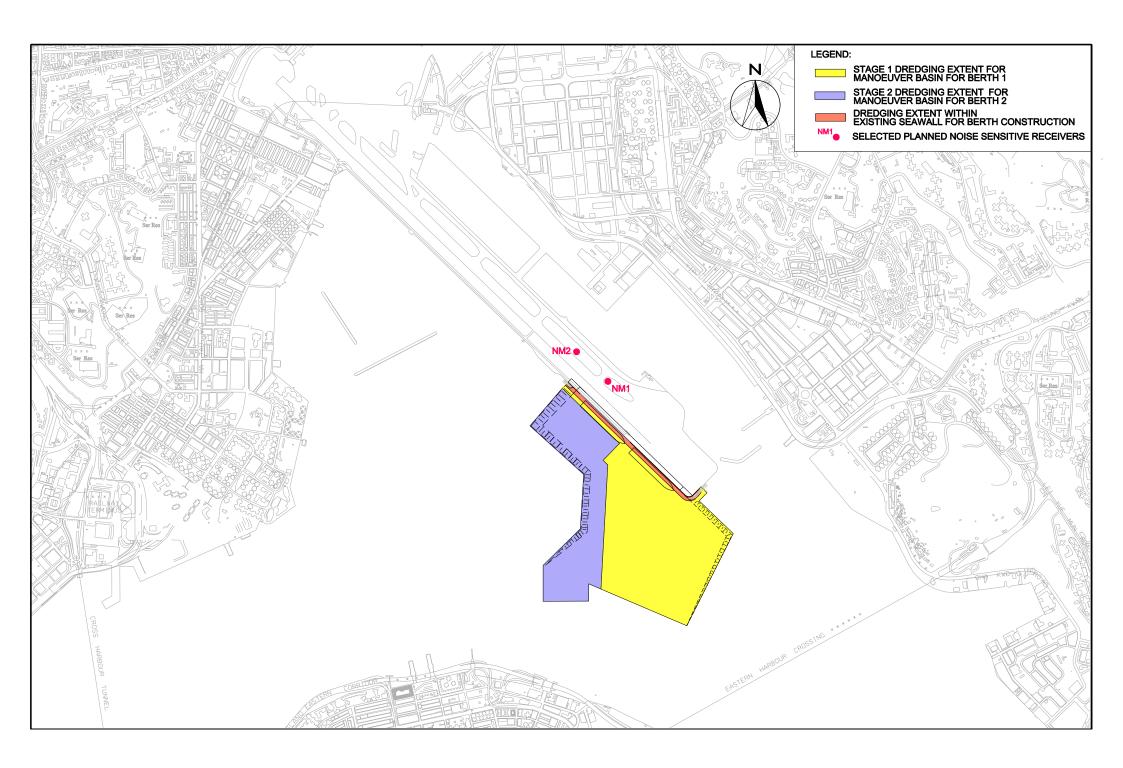

General Layout

Figure 2.2


Project Organization Chart

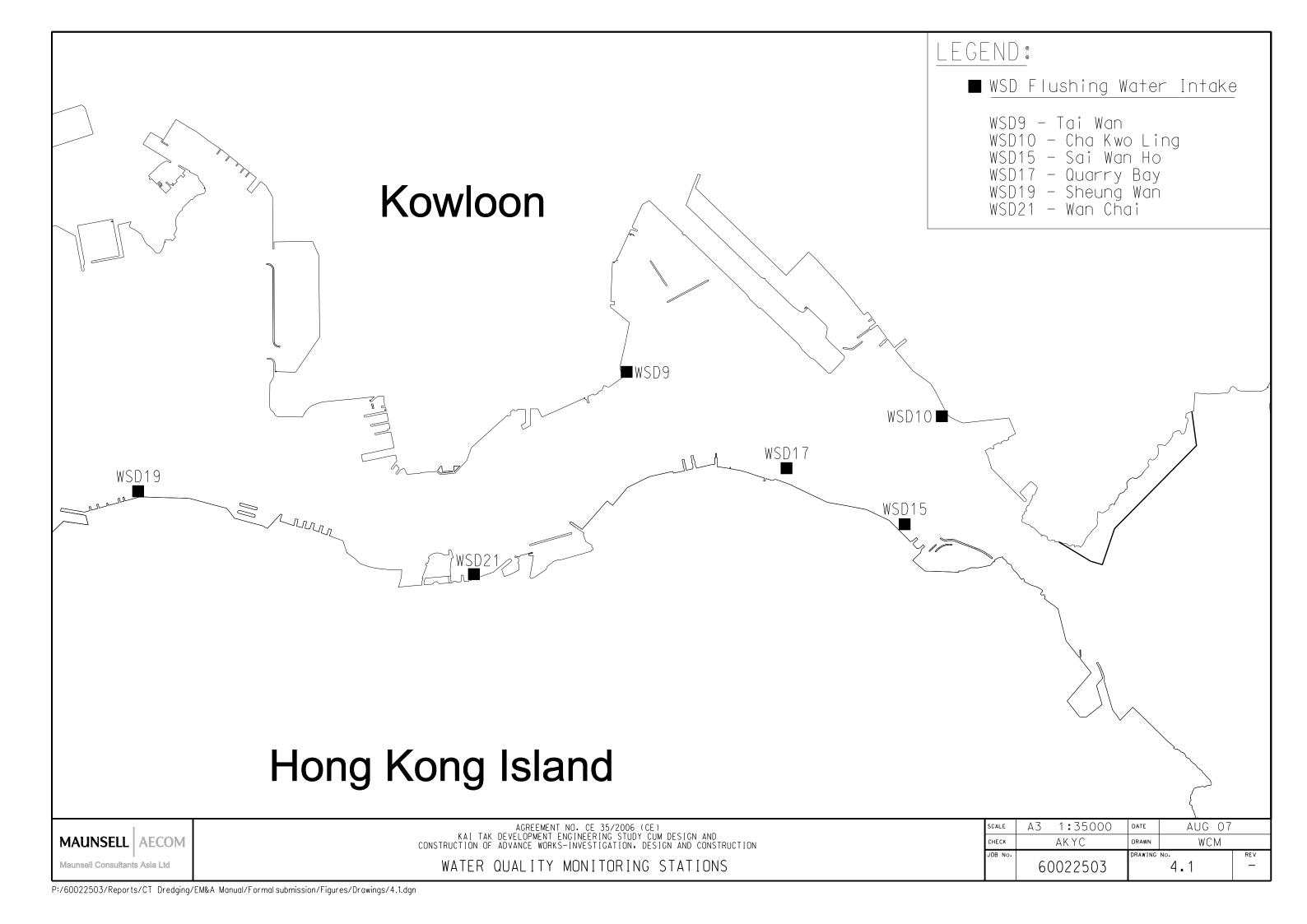
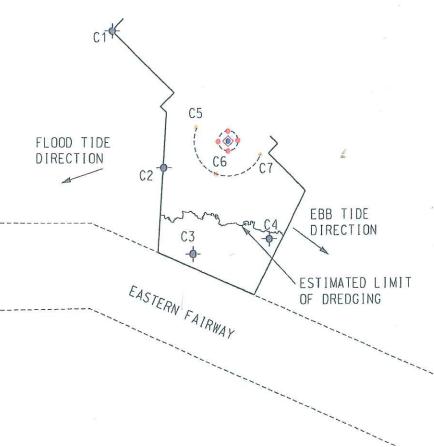

Project Organization Chart

Figure 4.1

Layout of Environmental Monitoring Stations

Figure 6.1


Layout of Monitoring Stations for Water Quality Surveillance System

2. Set A (4 sampling stations), the water quality monitoring works shall be taken at the Control Points (i.e. C1 to C4). Set B (3 sampling stations), the water quality monitoring works shall be taken at approximate 100m outside the silt curtain (i.e. C5 to C7) which the locations shall be changed from time to time to follow the movement of silt curtain.

- 3. The water quality monitoring works shall be carried out during the dredging period.
- 4. The water quality monitoring works shall be carried out at a frequency to be agreed by the Engineer. The date and time of monitoring should be in line with the impact water quality monitoring shedule under the EMBA manual. Each sampling event shall be carried out at 3 depth (i.e. 1m below the surface, mid depth, and 1m above the seabed) of the water column at each location. Duplicate in-situ measurements and water sampling shall be carried out in each sampling event. For selection of tides for in-situ measurement and water sampling, tidal range of individual flood and ebb tides shall not less than 0.5m. The schedule of water quality monitoring shall be reviewed by the Engineer and the Independent Environmental Checker (IEC) depending on whether the water quality monitoring results could indicate any trend of water quality of determination of trigger/action level or whether there is a ad-hoc requirement (e.g. change of working methods, compaints, etc.). The Contractor shall carry out the works according to the revised schedule if instructed by the Engineer.
- 5. As the key parameters, turbidity shall be measured in situ whereas Suspended Solids (SS) shall be determined by laboratory. Analysis of SS level shall be carried out in a HOKLA'S or other international accredited laboratory. Sufficient water samples of not less than 1 liter shall be collected at the monitoring stations for carrying out the laboratory SS determinations.
- Requirements on the monitoring equipments and calibration shall be referred to Paragraph 4.7 "Monitoring Equipment" of the Environmental Monitoring and Audit Manual for the Dredging Works for Proposed Cruise Terminal at Kai Tak.
- 7. Laboratory analysis of the sampling data shall be carried out in a HOKLAS or other international accredited laboratory and follow the requirements as stated in Paragraph 4.8 "Laboratory Measurement/Analysis" of the Environmental Monitoring and Audit Manual for the Dredging Works for Proposed Cruise Terminal at Kal Tak. Monitoring data together with the report shall be reported to the Engineer and the IEC on monthly basis.
- 8. Other relevant data shall also be recorded including monitoring location/position, time, water depth, sampling depth, water temperature, tidal stages, weather conditions and any special phenomena or work underway nearby.

LEGEND:

- SILT CURTAIN (20m x 20m)
- SAMPLING POINT
 INSIDE SILT CURTAIN
 (CONTRACTOR'S PROPOSED SAMPLING
 POINT TO MONITOR EFFECTIVENESS
 OF SILT CURTAINS)
- SAMPLING POINT AT ABOUT 10m
 OUTSIDE SILT CURTANN
 (CONTRACTOR'S PROPOSED SAMPLING
 POINT TO MONITOR EFFECTIVENESS
 OF SILT CURTANNS)
- SAMPLING POINT
 AS CONTROL POINT (CI TO C4)
 (ADDITIONAL)
- SAMPLING POINT AS CONTROL POINT (C5 TO C7) AT ABOUT 100m AWAY FROM SILT CURTAIN (ADDITIONAL)

ADDITIONAL WATER QUALITY MONITORING STATIONS

COORDINATE	NORTH	EAST
C1 -	818867.763	839495.740
C5	818152.875	839775.604
C3	817702.158	839931.601
C4	817780.765	840334.093
C5	acourou.	a clusion
C6	POSITIONS CI	
C7	WITH SIL	CURIAIN

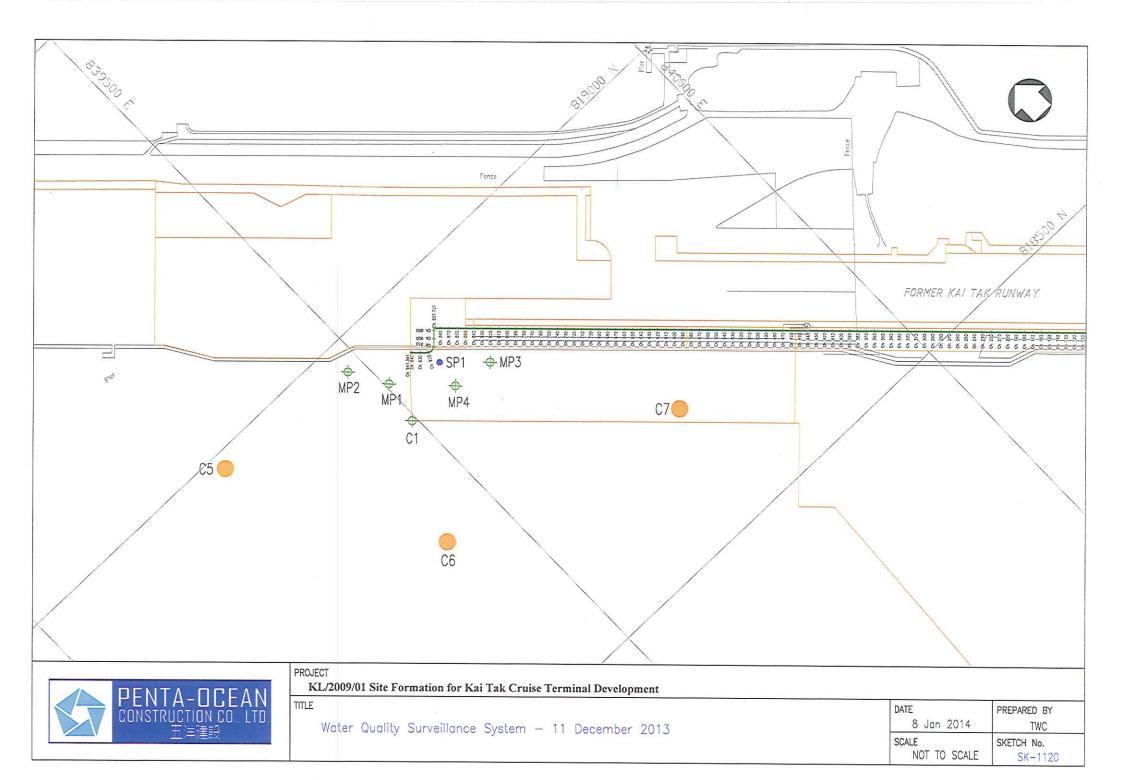
--- SITE BOUNDARY

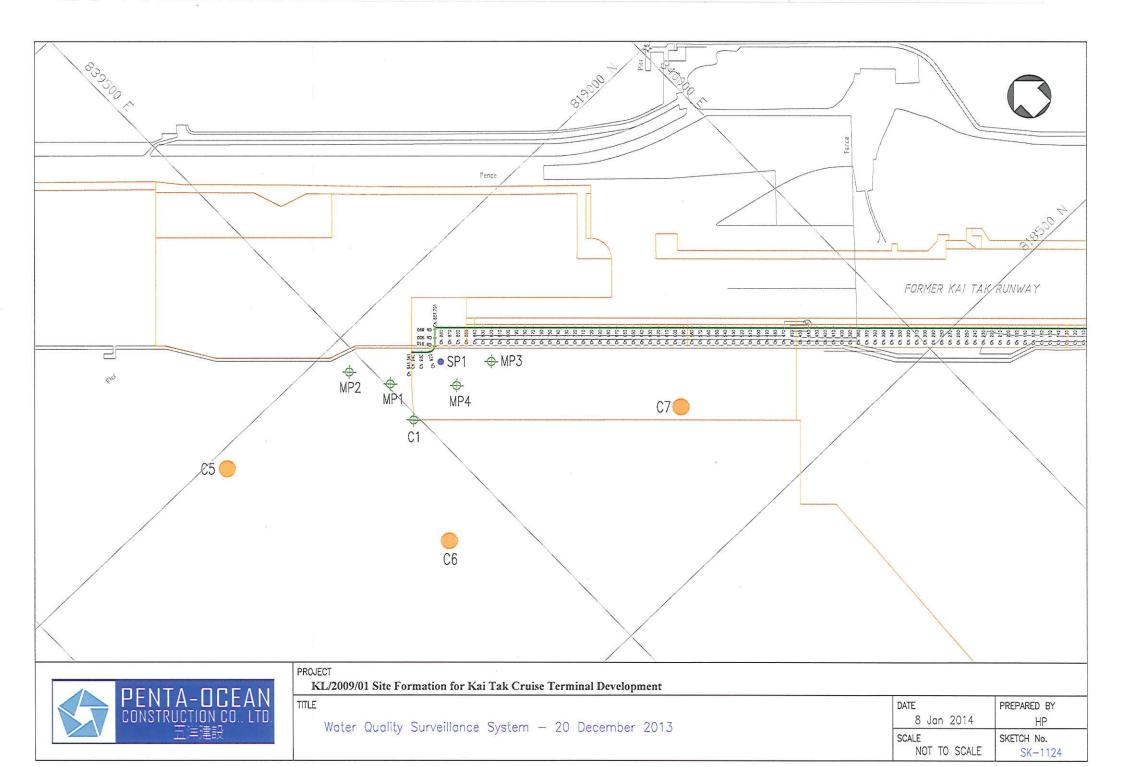
Control Copy

No. 35

BY: 00/967 (34/879) 40. \$5

B	09/10	REVISION AS SHOWN	EW	R.
A	07/10	REMSION AS SHOWN	JY	SC
Selfa	Date	Reriaion	Grava	Crecked


CEDD CONTRACT KL/2009/01 SITE FORMATION FOR KN TAX CRUISE TERNINAL DEVELOPMENT


WATER QUALITY SURVEILLANCE SYSYEM

SKETCH	NO.	(CEDDKL/200901)SK008			0067B
DATE	0640	DRAWN	JY	SCHE	
CHECKEO	AT	APPROVED	SC	ISCALL	NTS
utterto	096 10				

URS SCOTT WILSON LTD
Engineer for the Conduct
ENGINEER'S REPRESENTATIVES OFFICE

Appendix 3.1

Implementation Schedule of Environmental Mitigation Measures

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S3.6	Requirements of the Air Pollution Control (Construction Dust) Regulation shall be adhered to during the construction period.	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	Air Pollution Control (Construction Dust) Regulation
S3.6	In order to minimize the potential odour emissions, if any, the dredged sediment placed on barge should be properly covered as far as practicable to minimise the exposed area and hence the potential odour emissions during the transportation of the dredged sediment.	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM
S4.8	 Good Site Practices: Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program. Mobile plant, if any, should be sited as far away from NSRs as possible. Machines and plant (such as trucks) that may be in intermittent use should be shut down between works periods or should be throttled down to a minimum. Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. Material stockpiles and other structures should be effectively utilised, wherever practicable, in screening noise from on-site construction activities. 	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	NCO EIAO-TM

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S4.9	If there is any planned NSRs within 300m from the work area occupied during the dredging period, an EM&A programme is recommended to be established according to the predicted occurrence of noisy activities. All the recommended mitigation measures for daytime normal working activities should be incorporated into the EM&A programme for implementation during dredging.	Representative NSRs at the former Kai Tak Airport runway / Upon formal occupation	N/A	Not applicable	NCO EIAO-TM
S5.9	 Dredging will be carried out by closed grab dredger to minimize release of sediment and other contaminants during both capital and maintenance dredging. The maximum production rate for dredging from the seabed to provide necessary manoeuvring area would not be more than 4,000m³ per day (and no more than 2 closed grab dredgers) during capital dredging and 2,000m³ per day (and no more than 1 closed grab dredger) during maintenance dredging. The maximum production rate for dredging at or near the seawall area would not be more than 4,000m³ per day for berth construction. No more than two closed grab dredger would be operated at the same time at or near the seawall for berth construction. 	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM WPCO
S5.9	Silt curtains should be deployed around the closed grab dredgers used for dredging at and near the existing seawall of the former Kai Tak Airport runway for construction of the cruise berth structures.	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM, WPCO

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S5.9	Silt screens should be installed at the WSD flushing water intakes at Cha Kwo Ling, Sai Wan Ho, Quarry Bay, Sheung Wan, Wan Chai and Tai Wan for dredging in the manoeuvring basin of the first berth during the capital dredging.	Seawater intakes in Victoria Harbour/ During the construction of cruise terminal	Contractor for capital dredging	Implemented	EIAO-TM, WPCO
S5.9	Silt screens should be installed at the WSD flushing water intakes at Cha Kwo Ling, Quarry Bay and Tai Wan for dredging in the manoeuvring basin of the second berth during the capital dredging.	Seawater intakes in Victoria Harbour / During the construction of cruise terminal	Contractor for capital dredging	Implemented	EIAO-TM, WPCO
S5.9	If the opening has been introduced at the northern runway, silt screens should also be installed at the WSD flushing water intake at Sai Wan Ho, Sheung Wan and Wan Chai for dredging in the manoeuvring basin of the second berth during the capital dredging.	Seawater intake at Sai Wan Ho, Sheung Wan and Wan Chai / During the construction of cruise terminal	Contractor for capital dredging	Implemented	EIAO-TM, WPCO

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S5.9	 Other good site practices that should be undertaken during dredging include: all vessels should be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; all barges / dredgers should be fitted with tight fitting seals to their bottom openings to prevent leakage of material; construction activities should not cause foam, oil, grease, scum, litter or other objectionable matter to be present on the water within the site or dumping grounds; barges or hoppers should not be filled to a level that will cause the overflow of materials or polluted water during loading or transportation. 	Work site and adjacent waters / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO, EIAO-TM, WPCO, WDO
S5.9	Appropriate numbers of portable chemical toilets shall be provided by a licensed contractor to serve the construction workers over the construction site. The Contractor shall also be responsible for waste disposal and maintenance practices.	Work site and adjacent waters / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM, WPCO, WDO

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S5.9	Collection and removal of floating refuse should be performed at regular intervals on a daily basis. The contractor should be responsible for keeping the water within the site boundary and the neighbouring water free from rubbish during the dredging works.	Work site and adjacent waters / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM, WPCO, WDO
S5.9	An environmental monitoring and audit programme should be implemented to verify whether or not impact predictions are representative, and to ensure that all the recommended mitigation measures are implemented properly. If the water quality monitoring data indicate that the proposed dredging works result in unacceptable water quality impacts in the receiving water, appropriate actions should be taken to review the dredging operation and additional measures such as use of frame-type silt curtain, deployment of double silt curtains, slowing down, or rescheduling of works should be implemented as necessary.	6 selected WSD flushing water intakes in Victoria Harbour/ During dredging in construction stage	Environmental Team and verified by Independent Environmental Checker	Implemented	EIAO-TM, WPCO

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S5.9	Silt screens are recommended to be deployed at 6 selected WSD flushing water intakes during the capital dredging. The contractor for capital dredging shall demonstrate and ensure that the design of the silt screen will not affect the normal operation of flushing water intake. The contractor shall obtain consensus from all relevant parties, including WSD and Marine Department on the design of the silt screen at each of the six selected flushing water intake points before installation of the silt screen and commencement of the proposed dredging works. As a mitigation measure to avoid the pollutant and refuse entrapment problems and to ensure that the impact monitoring results are representative, regular maintenance of the silt screens and refuse collection should be performed at the monitoring stations at regular intervals on a daily basis. The Contractor should be responsible for keeping the water behind the silt screen free from floating rubbish and debris during the impact monitoring period.	6 selected WSD flushing water intakes in Victoria Harbour/ During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM, WPCO

Environmental Protection Measures / Mitigation | Location / Timing | Implementation Agent | Implementation Status | Relevant Legislation

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S6.7	Good Site Practices It is not anticipated that adverse waste management related impacts would arise, provided that good site practices are adhered to. Recommendations for good site practices during the dredging activities include:	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM
	Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site.				
	Training of site personnel in proper waste management and chemical waste handling procedures.				
	Provision of sufficient waste disposal points and regular collection for disposal.				
	Appropriate measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers.				
	A recording system for the amount of wastes generated, recycled and disposed of (including the disposal sites).				
	Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal.				

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S6.7 (cont.)	 Encourage collection of aluminium cans, PET bottles and paper by providing separate labelled bins to enable these wastes to be segregated from other general refuse generated by the workforce. Any unused chemicals or those with remaining functional capacity shall be recycled. 	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	EIAO-TM
S6.7	Marine Sediments The dredged marine sediments would be loaded onto barges and transported to the designated disposal sites allocated by the MFC depending on their level of contamination. Sediment classified as Category L would be suitable for Type 1 — Open Sea Disposal. Contaminated sediment would require either Type 1 — Open Sea Disposal (Dedicated Sites) or Type 2 — Confined Marine Disposal and must be dredged and transported with great care in accordance with ETWB TCW No. 34/2002. Subject to the final allocation of the disposal sites by MFC, the dredged contaminated sediment must be effectively isolated from the environment upon final disposal and shall be disposed of at the East Sha Chau Contaminated Mud Pits that are designated for the disposal of contaminated mud in Hong Kong.	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	ETWB TCW No. 34/2002

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S6.7	It will be the responsibility of the Contractor to satisfy the appropriate authorities that the contamination levels of the marine sediment to be dredged have been analysed and recorded. According to the ETWB TCW No. 34/2002, this will involve the submission of a formal Sediment Quality Report to the DEP, prior to the dredging contract being tendered. The contractor for the dredging works shall apply for the allocation of marine sediment disposal sites from all relevant authorities.	Work site / During dredging in construction stage	Contractor for capital dredging	Dumping Permits were issued by EPD	ETWB TCW No. 34/2002
S6.7	 During transportation and disposal of the dredged marine sediments requiring Type 1 and Type 2 disposal, the following measures shall be taken to minimise potential impacts on water quality: Bottom opening of barges shall be fitted with tight fitting seals to prevent leakage of material. Excess material shall be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved. Monitoring of the barge loading shall be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels shall be equipped with automatic self-monitoring devices as specified by the DEP. Barges or hopper barges shall not be filled to a level that would cause the overflow of materials or sediment laden water during loading or transportation. 	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	WDO; WPCO

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S6.7	Chemical Wastes After use, chemical wastes (for example, cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Spent chemicals should be collected by a licensed collector for disposal at the CWTF or other licensed facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	Waste Disposal (Chemical Waste) (General) Regulation; Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes
S6.7	General Refuse General refuse should be stored in enclosed bins or compaction units separate from C&D material. A reputable waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D material. An enclosed and covered area is preferred to reduce the occurrence of 'wind blown' light material.	Work site / During dredging in construction stage	Contractor for capital dredging	Implemented	WDO, WPCO

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S6.7	Construction and Demolition Material It is recommended that the extent of dredging of the existing seawall should be kept to a minimum in the detailed design of the new cruise terminal to minimize generation of C&D material. Mitigation measures and good site practices should be incorporated in the contract document to control potential environmental impact from handling and transportation of C&D material. The mitigation measures include: • Where it is unavoidable to have transient stockpiles of C&D material within the Project work site pending collection for disposal, the transient stockpiles shall be located away from waterfront or storm drains as far as possible. • Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric. • Skip hoist for material transport should be totally enclosed by impervious sheeting. • Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving a construction site. • The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with	Work site / During the construction period	Contractor for capital dredging	Implemented	ETWB TCW No. 33/2002, 31/2004, 19/2005

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S6.7 (cont.)	 The load of dusty materials carried by vehicle leaving a construction site should be covered entirely by clean impervious sheeting to ensure dust materials do not leak from the vehicle. All dusty materials should be sprayed with 	Work site / During the construction period	Contractor for capital dredging	Implemented	ETWB TCW No. 33/2002, 31/2004, 19/2005
	water prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet.				
	The height from which excavated materials are dropped should be controlled to a minimum practical height to limit fugitive dust generation from unloading.				
S6.7	When delivering inert C&D material to public fill reception facilities, the material shall consist entirely of inert construction waste and of size less than 250mm or other sizes as agreed with the Secretary of the Public Fill Committee. In order to monitor the disposal of the surplus C&D material at the designed public fill reception facility and to control fly tipping, a trip-ticket system should be included as one of the contractual requirements and implemented by the Contractor under the Waste Management Plan certified by the Environmental Team and verified by the Independent Environmental Checker who should be responsible for auditing the results of the system.	Work site / During the construction period	Contractor for capital dredging, Engineer, Environmental Team and Independent Environmental Checker	Not applicable	ETWB TCW No. 31/2004

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S7.8	The dredging activities of the proposed cruise terminal should ensure that disturbance to the existing seawall masonry outside the Project boundary should be avoided as far as practicable.	Work site/ During construction of cruise terminal	Contractor for capital dredging as per CEDD's advice	Implemented	Antiquities and Monuments Ordinance EIAO, EIAO-TM Guidance Notes on Assessment of Impact on Sites of Cultural Heritage in Environmental Impact Assessment Studies (GN-CH) Hong Kong Planning Standards and Guidelines (HKPSG)
S7.10, App. 7.1	It is recommended that the dredged spoil should be monitored for the presence of archaeological material. Guidelines for the monitoring brief have been prepared in consultation with the AMO. A qualified marine archaeologist needs to be on standby to provide specialist advice, if required, but the monitoring can be carried out by a member of staff on the dredging barge.	Work site / during dredging in construction stage	Contractor for capital dredging, Environmental Team	Implemented	Antiquities and Monuments Ordinance EIAO, EIAO-TM GN-CH HKPSG Marine Archaeological Investigation Guidelines

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
8.7	Translocate those existing coral colonies attached on boulders that are manually movable by a diver underwater (possibly longest dimension of less than 50cm) located within the hard substrata sea area within the dredging site as far as practicable prior to the commencement of the capital dredging activities. The entire translocation exercise include the preparation of a detailed translocation plan, the pretranslocation coral survey, the coral translocation, and the quarterly post-translocation monitoring for one year. Pre-translocation survey would be focused on identifying and mapping of coral colonies that would be directly impacted by the proposed dredging and investigating the translocation feasibility of these coral colonies. A detailed translocation plan (including pretranslocation coral survey, translocation methodology and monitoring of transplanted corals) should be prepared during the detailed design stage of the Project which, together with the ecologist involved in coral translocation, should be approved by AFCD prior to commencement of the translocation exercises. The proposed relocation of the coral colonies should not affect any private/public marine rights at the recipient site.	Along the section of the former Kai Tak Airport runway that will be directed affected by the cruise terminal construction / During detailed design stage	Other ET specifically employed for coral translocation works	Final Detailed Coral Translocation Plan was approved by EPD in letter ref. (18) in EP2/K19/C/19 Pt.5 dated 5 June 2009. Form 5 was submitted under CEDD's memo ref. (6) in KD 2/31/4 Pt.3 dated 10 June 2009 regarding minor alteration of the position of the coral recipient site. Coral Translocation Report was submitted in Scott Wilson letter ref. 08290/325723 dated 2 July 2009. Post-translocation report shall be referred to the submissions by another ET specifically employed for coral translocation works.	EIAO-TM

EIA Ref#	Environmental Protection Measures / Mitigation Measures	Location / Timing	Implementation Agent	Implementation Status	Relevant Legislation and Guidelines
S8.7	New seawalls at the berth structure of the cruise terminal shall be constructed in order to provide large area of hard substrata for settlement and recruitment of intertidal and subtidal assemblages similar to those previously recorded from existing habitats.	The section of the former Kai Tak Airport runway that will be directed affected by the cruise terminal construction / During detailed design stage	To be confirmed at later stage	To be confirmed at later stage	EIAO-TM
9.6	No fisheries-specific mitigation measures would be required.	-	Not applicable	Not applicable	-

Appendix 4.1

Action and Limit Levels

Action and Limit Levels

Action and Limit Levels for Noise Monitoring

Time Period	Action Level	Limit Level
07:00 – 19:00 hours on normal weekdays	When one documented complaint is received from any one of the sensitive receivers	75 dB(A)

Remarks: No noise monitoring was conducted due to no planned noise sensitive receivers (NSRs) occupied within 300m from the works area of this Project during the dredging works.

Action and Limit Levels for Water Monitoring

Parameters	Action L	evel		Limit Le	vel	
Turbidity in NTU		All Seaso	on_		All Seaso	<u>on</u>
	WSD9	5.67	i	WSD9	12.27	
	WSD10	6.26	i	WSD10	10.47	
	WSD15	8.15		WSD15	14.41	
	WSD17	11.60	1	WSD17	16.91	
	WSD21	9.11		WSD21	15.38	
	WSD19	13.09		WSD19	15.34	
Suspended Solids		Dry Season	Wet Season		Dry Season	Wet Season
(SS) in mg/L	WSD9	6.9	9.7	WSD9	7.8	10.9
	WSD10	7.7	9.1	WSD10	10.3	12.2
	WSD15	7.8	13.5	WSD15	8.4	14.5
	WSD17	9.5	11.2	WSD17	13.7	16.2
	WSD21	13.3	17.1	WSD21	13.9	17.8
	WSD19	16.3	15.1	WSD19	17.0	15.7

Remarks:

Wet season is the period from April to September.

Dry season is the period from October to March.

Revised Action and Limit Levels for Water Monitoring

Station	Turbidity (NTU)			Suspended	Solid (mg/L)			
	Action Level for individual stations		Limit Level for individual stations		Action Leve		Limit Level for individual stations		
	Dry Season	Wet Season	Dry Season	Wet Season	Dry Season	Wet Season	Dry Season	Wet Season	
WSD9	5.6	7.0	10.6	13.4	10.2	12.8	10.8	13.5	
WSD10	6.3	8.1	9.4	12.1	10.0	11.2	11.8	13.2	
WSD15	7.5	11.9	12.5	19.6	10.8	17.5	11.8	19.1	

Lam Environmental Services Limited

Station	Turbidity (I	NTU)			Suspended Solid (mg/L)						
	Action Level for individual stations		Limit Level for individual stations		Action Leve		Limit Level for individual stations				
	Dry Season	Wet Season	Dry Season	Wet Season	Dry Season	Wet Season	Dry Season	Wet Season			
WSD17	10.0	12.9	15.3	19.7	13.2	14.7	15.3	17.0			
WSD19	10.9	13.7	14.7	18.4	14.0	13.3	17.0	16.2			
WSD21	8.9	11.6	13.4	17.6	13.3	16.7	14.0	17.5			

Remarks

Revised Action and Limit Levels for water monitoring was approved on 19 October 2011.

Appendix 4.2

Copies of Calibration Certificates

Water Quality Monitoring Schedule

December 2013

Sunday	T	Monda	y	Tuesda	ay	Wednes	day	Thursd	ay	Frida	у	Saturd	ay
01-1	Dec		02-Dec		03-Dec		04-Dec		05-Dec		06-Dec		07-De
	Mi Mi	npact WQM id-flood id-ebb	17:08 23:52			Impact WQM Mid-ebb Mid-flood	13:17 18:35		10.0		40.5	Impact WQM Mid-ebb Mid-flood	03:0 10:1
08-1	Dec		09-Dec		10-Dec		11-Dec		12-Dec		13-Dec		14-De
	M	npact WQM id-ebb	04:48			Impact WQM Mid-flood	13:54			Impact WQM Mid-flood	15:24		
15-1		id-flood	12:06 16-Dec		17-Dec	Mid-ebb	20:34 18-Dec		19-Dec	Mid-ebb	22:20 20-Dec		21-De
		npact WQM	47.00	Impact WQM		Impact WQM	40,00	Impact WQM	04:44			Impact WQM Mid-ebb	02:0
22-1		id-flood	23-Dec	Mid-ebb	24-Dec	Mid-flood	25-Dec	Mid-ebb	01:14 26-Dec		27-Dec	Mid-flood	09:1 28-De
				Impact WQM Mid-ebb Mid-flood	03:29 11:22			Impact WQM Mid-ebb Mid-flood	04:54 12:50			Impact WQM Mid-flood Mid-ebb	14:2 21:2
29-1	Dec		30-Dec	iviia nood	31-Dec			Wild Hood				ma obb	21.2
	Mi	npact WQM id-flood id-ebb	15:53 22:53										

Notes

- 1. Water Quality Monitoring for 6 water quality monitoring stations: WSD9, WSD10, WSD15, WSD17, WSD21, WSD19
- 2. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.
- 3. Cut-off day is the end of day of each month.
- 4. Contain scheduled monitoring date(s) is/are subject to temporary suspension upon ET confirmation with project on no marine work on site.

Tentative Water Quality Monitoring Schedule

January 2014

Sunday	Monday	/	Tuesday	Wedne	esday	Thurs	day	Frid	ay	Satu	rday
					01-Jan		02-Jan		03-Jan		04-Jan
			22.1			Mid-ebb Mid-flood	13:07 18:25			Mid-flood Mid-ebb	09:05 14:44
05-Jan		06-Jan	07-Jan		08-Jan		09-Jan		10-Jan		11-Jan
	Mid-flood	10:34		Mid-flood	12:07			Mid-flood	13:42		
12-Jan	Mid-ebb	16:26 13-Jan	14-Jan	Mid-ebb	18:41 15-Jan		16-Jan	Mid-ebb	21:18 17-Jan		18-Jan
	Mid-flood	16:02								Mid-ebb	01:27
	Mid-ebb	23:24		Mid-flood		Mid-ebb	00:28			Mid-flood	08:12
19-Jan		20-Jan	21-Jan		22-Jan		23-Jan		24-Jan		25-Jan
	Mid-flood	09:08		Mid-flood	10.21			Mid-flood	11:47		
	Mid-nood Mid-ebb	14:47		Mid-iiood Mid-ebb	10:21 16:18			Mid-iiood Mid-ebb	18:28		
26-Jan		27-Jan	28-Jan		29-Jan		30-Jan	ima ooo	31-Jan		01-Feb
	Mid-flood Mid-ebb	14:28 21:51		Mid-flood Mid-ebb	16:31 23:29			Mid-ebb Mid-flood	12:53 18:21		

Notes:

- 1. Water Quality Monitoring for 6 water quality monitoring stations: WSD9, WSD10, WSD15, WSD17, WSD21, WSD19
- 2. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.
- 3. Cut-off day is the end of day of each month.
- 4. Contain scheduled monitoring date(s) is/are subject to temporary suspension upon ET confirmation with project on no marine work on site.

Tentative Water Quality Monitoring Schedule

February 2014

Sunday	Mon	day	Tues	day	Wedne	esday	Thurs	sday	Fric	day	Satur	day
26-Ja	n	27-Jan		28-Jan		29-Jan		30-Jan		31-Jan		01-Fel
	Mid-flood Mid-ebb	14:28 21:51			Mid-flood Mid-ebb	16:31 23:29			Mid-ebb Mid-flood	12:53 18:21		
02-Fe	b	03-Feb		04-Feb		05-Feb		06-Feb		07-Feb		08-Fe
			Mid-flood Mid-ebb	09:49 15:54			Mid-flood Mid-ebb	11:13 17:54		#REF!	Mid-flood Mid-ebb	12:4: 20:5
09-Fe	ь	10-Feb		11-Feb		12-Feb		13-Feb		14-Feb		15-Fe
	Mid-flood Mid-ebb	10:08 22:27			Mid-flood Mid-ebb	16:29 23:36			Mid-flood	17:50	Mid-ebb	00:3
16-Fe		17-Feb		18-Feb		19-Feb		20-Feb		21-Feb		22-Fe
	Mid-ebb	13:46			Mid-flood	08:57			Mid-flood	10:05		
23-Fe	Mid-flood b	19:45 24-Feb		25-Feb	Mid-ebb	15:00 26-Feb		27-Feb	Mid-ebb	16:30 28-Feb		01-Ma
	Mid-flood	12:46			Mid-flood	15:23			Mid-ebb	11:51		
	Mid-ebb	20:26			Mid-ebb	22:24			Mid-flood	17:24]	

Notes

- $1.\ Water\ Quality\ Monitoring\ for\ 6\ water\ quality\ monitoring\ stations:\ WSD9,\ WSD10,\ WSD15,\ WSD17,\ WSD21,\ WSD19$
- 2. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.
- 3. Cut-off day is the end of day of each month.
- 4. Contain scheduled monitoring date(s) is/are subject to temporary suspension upon ET confirmation with project on no marine work on site.

Tentative Water Quality Monitoring Schedule

March 2014

Sunday	Monda	ay	Tuesday	Wednesday		Thursday	Friday	/	Saturday
23-Feb		24-Feb	25-Feb	26-F	eb	27-Feb		28-Feb	01-Ma
	Impact WQM Mid-flood Mid-ebb	12:46 20:26		Impact WQM Mid-flood 15 Mid-ebb 22			Impact WQM Mid-ebb Mid-flood	11:51 17:24	
02-Mar		03-Mar	04-Mar	05-N		06-Mar	IVIIG-1100G	07-Mar	08-Ma
	Impact WQM Mid-ebb	13:51		Impact WQM Mid-flood 08			Impact WQM Mid-flood	10:04	
09-Mar	Mid-flood	19:52 10-Mar	11-Mar	Mid-ebb 15 12-N		13-Mar	Mid-ebb	16:53 14-Mar	15-Ma
	In the second MOM			Lucas WOM			Increase WOM		
	Impact WQM Mid-flood	08:19		Impact WQM Mid-flood 15	20		Impact WQM Mid-flood	17:00	
	Mid-ebb	20:51		Mid-ebb 22			Mid-ebb	23:38	
16-Mar		17-Mar	18-Mar	19-N	1ar	20-Mar		21-Mar	22-Ma
	Impact WQM mid-ebb	12:47		Impact WQM Mid-ebb 13			Impact WQM Mid-ebb	15:17	
23-Mar	mid-flood	19:00 24-Mar	25-Mar	Mid-flood 20 26-N		27-Mar	Mid-flood	21:59 28-Mar	29-Ma
	Impact WQM			Impact WQM			Impact WQM		
	Mid-flood Mid-ebb	11:02 18:29		Mid-flood 14 Mid-ebb 21			Mid-ebb Mid-flood	10:47 16:24	
30-Mar		31-Mar	01-Apr	02- <i>h</i>		03-Apr	Mia-ilood	04-Apr	05-A p
	Impact WQM Mid-ebb	12:47		Impact WQM Mid-ebb 14			Impact WQM Mid-ebb	15:25	
	Mid-flood	18:58		Mid-flood 20			Mid-flood	22:04	

Notes:

- $1.\ Water\ Quality\ Monitoring\ for\ 6\ water\ quality\ monitoring\ stations:\ WSD9,\ WSD10,\ WSD15,\ WSD17,\ WSD21,\ WSD19$
- 2. Actual monitoring will be subjected to change due to any safety concern or adverse weather condition.
- 3. Cut-off day is the end of day of each month.
- 4. Contain scheduled monitoring date(s) is/are subject to temporary suspension upon ET confirmation with project on no marine work on site.

Appendix 5.1

Monitoring Schedule for the Reporting Month and Coming Three Months

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Information supplied by customer:

CONTACT: KATHIE HO WORK ORDER: HK1310025

CLIENT: LAM GEOTECHNICS LIMITED

DATE RECEIVED: <u>04/11/2013</u> DATE OF ISSUE: <u>05/11/2013</u>

ADDRESS: 11/F, CENTRE POINT, 181-185, GLOUCESTER ROAD,

WANCHAI, HONG KONG

PROJECT: ---

METHOD OF PERFORMANCE CHECK/ CALIBRATION:

Ref: APHA22nd ed 2130B

COMMENTS

It is certified that the item under performance check/calibration has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal acceptance criteria of Pilot Testing Limited will be followed.

Scope of Test:	Turbidity
Equipment Type:	Turbidimeter
Brand Name:	Xin Rui
Model No.:	WGZ-3B
Serial No.:	1203016
Equipment No.:	
Date of Calibration:	5 November, 2013

Remarks:

This is the Final Report. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr. Peter Lee

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

WORK ORDER: <u>HK1310025</u>

DATE OF ISSUE: 5th November 2013

CLIENT: LAM GEOTECHNICS LIMITED

Equipment Type:	Turbidimeter
Brand Name:	Xin Rui
Model No.:	WGZ-3B
Serial No.:	1203016
Equipment No.:	
Date of Calibration:	5 November, 2013
Date of next Calibration:	5 February, 2014

Parameters:

Turbidity

Method Ref: APHA 22nd ed. 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.02	+0.2
4	4.27	+6.8
10	10.3	+3.0
40	42.4	+5.2
100	105	+5.0
400	417	+4.2
1000	970	-3.0
	Tolerance Limit (±%)	10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

Mr. Peter Leé

PILOT TESTING LIMTIED

Page 1 / 2

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

<u>Information supplied by customer:</u>

CONTACT: KATHIE HO

WORK ORDER: HK1310026

CLIENT: LAM GEOTECHNICS LIMITED

DATE RECEIVED: <u>04/11/2013</u> DATE OF ISSUE: <u>05/11/2013</u>

ADDRESS: 11/F, CENTRE POINT, 181-185, GLOUCESTER ROAD,

WANCHAI, HONG KONG

PROJECT: ---

METHOD OF PERFORMANCE CHECK/ CALIBRATION:

Ref: APHA22nd ed 2130B

COMMENTS

It is certified that the item under performance check/calibration has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal acceptance criteria of Pilot Testing Limited will be followed.

Scope of Test:	Turbidity
Equipment Type:	Turbidimeter
Brand Name:	Xin Rui
Model No.:	WGZ-3B
Serial No.:	1203025
Equipment No.:	
Date of Calibration:	5 November, 2013

Remarks:

This is the Final Report. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

Mr. Peter Lee

Tunan

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

WORK ORDER: HK1310026

DATE OF ISSUE: 5th November, 2013

CLIENT: LAM GEOTECHNICS LIMITED

Equipment Type:	Turbidimeter	
Brand Name:	Xin Rui	
Model No.:	WGZ-3B	
Serial No.:	1203025	
Equipment No.:		
Date of Calibration:	5 November, 2013	
Date of next Calibration:	5 February, 2014	

Parameters:

Turbidity

Method Ref: APHA 22nd ed. 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.02	
4	4.20	+5.0
10	10.4	+4.0
40	42.0	+5.0
100	102	+2.0
400	400	0
1000	980	+2.0
	Tolerance Limit (±%)	10.0

Remark: "Displayed Reading" presents the figures shown on item under calibration/checking regardless of equipment precision or significant figures.

Mr. Peter Lee

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:

MR DEREK LO

CLIENT:

LAM GEOTECHNICS LIMITED

ADDRESS:

11/F., CENTRE POINT,

181-185 GLOUCESTER ROAD,

WAN CHAI, HONG KONG

PROJECT:

WORK ORDER:

HK1326638

LABORATORY:

HONG KONG

DATE RECEIVED:

27/09/2013

DATE OF ISSUE:

07/10/2013

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:

Dissolved Oxygen, pH, Salinity and Temperature

Equipment Type:

Multimeter

Brand Name:

YSI

Model No.:

Professional plus

Serial No.:

11F100420

Equipment No.:

Date of Calibration: 07 October, 2013

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung HONG KONG Phone:

852-2610 1044

Fax:

852-2610 2021

Email:

hongkong@alsglobal.com

Mr. Fung Lim Chee. General Manager -

Greater China & Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: Date of Issue: HK1326638

Client:

07/10/2013 LAM GEOTECHNICS LIMITED

Equipment Type:

Multimeter

Brand Name:

YSI

Model No.:

Professional plus

Serial No.:

11F100420

Equipment No.: Date of Calibration:

07 October, 2013

Date of next Calibration:

07 January, 2014

Parameters:

Dissolved Oxygen

Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
		0.01
2.32	2.33	0.01
4.36	4.32	-0.04
6.30	6.29	-0.01
	Tolerance Limit (±mg/L)	0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

1.10th ou 1.0th / 1.1th (2.10th out 1.0th), 1.10th					
Expected Reading	(pH Unit) Displa	ayed Reading (pF	l Unit) To	olerance (pH unit)	
4.0		4.17		0.17	
7.0		7.19		0.19	
10.0		9.96		-0.04	
	Tole	rance Limit (±pH	unit)	0.20	

Salinity

Method Ref: APHA (21st edition), 2520B

method men / in the (= 15t edition		
Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.03	
10	9.94	-0.6
20	19.49	-2.6
30	29.55	-1.5
	Tolerance Limit (±%)	10.0

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
10.0 24.0 41.0	9.8 23.1 40.4	-0.2 -0.9 -0.6
	Tolerance Limit (±°C)	2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee, Richard

General Manager

Greater China & Hong Kong

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:

MR DEREK LO

CLIENT:

LAM GEOTECHNICS LIMITED

ADDRESS:

11/F., CENTRE POINT,

181-185 GLOUCESTER ROAD,

WAN CHAI, HONG KONG

PROJECT:

WORK ORDER:

HK1327829

LABORATORY:

HONG KONG

DATE RECEIVED:

09/10/2013

DATE OF ISSUE:

17/10/2013

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:

Dissolved Oxygen, pH, Salinity and Temperature

Equipment Type:

Multimeter

Brand Name: Model No.:

YSI

Professional plus

Serial No.:

11F100597

Equipment No.:

Date of Calibration: 15 October, 2013

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Ptv Ltd

11/F Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung HONG KONG Phone:

852-2610 1044

Fax:

852-2610 2021

Email:

hongkong@alsglobal.com

Mr. Fung Lim Chee General Manager

Greater China & Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: Date of Issue: HK1327829 17/10/2013

Client:

LAM GEOTECHNICS LIMITED

Equipment Type:

Multimeter

Brand Name:

YSI

Model No.:

Professional plus 11F100597

Serial No.:

--

Equipment No.: Date of Calibration:

15 October, 2013

Date of next Calibration:

15 January, 2014

Parameters:

Dissolved Oxygen

Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
	1.00	0.04
1.85	1.89	0.04
5.22	5.37	0.15
7.95	7.96	0.01
	Tolerance Limit (±mg/L)	0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

Method Reli / II II/ (215t cartic		
Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.01	0.01
7.0	6.98	-0.02
10.0	10.02	0.02
	Tolerance Limit (±pH unit)	0.20

Salinity

Method Ref: APHA (21st edition), 2520B

Method Ref. Al TIA (213t cartion), 2320b				
Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)		
0	0.02			
10	9.61	-3.9		
20	19.65	-1.8		
30	29.86	-0.5		
	Tolerance Limit (± ppt)	10.0		

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
11.0	11.5	0.5
25.0	23.8	-1.2
38.0	37.1	-0.9
	Tolerance Limit (±°C)	2.0

Remark: "Displayed Reading" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

Mr. Fung Lim Chee, Richard

General Manager -

Greater China & Hong Kong

ALS Technichem (HK) Pty Ltd

ALS Environmental

Appendix 5.2

Water Quality Monitoring Results and Graphical Presentation

Water Monitoring Result at WSD9 - Tai Wan Mid-Flood Tide

Date	Time	Weater Condition	Samplin	g Depth	Wat	er Temp	erature		pН			Salinit	ty	D	O Satura	ation		DO ma/L			Turbid NTU		Suspend	led Solids
		Ooridition	n	n	Va	llue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Value	Average
02/12/2013	17:33	Fine	Middle	4	21.10	21.10	21.10	8.16	8.16	0.46	32.32	32.32	32.32	98.0	97.6	07.0	6.97	6.92	6.90	4.38	4.42	4.44	3	3.0
02/12/2013	17:34	rine	Middle	4	21.10	21.10	21.10	8.16	8.16	8.16	32.32	32.32	32.32	96.4	96.1	97.0	6.85	6.84	6.90	4.43	4.42	4.41	3	3.0
04/12/2013	18:08	Fine	Middle	3	20.50	20.50	20.45	8.24	8.24	8.24	33.36	33.36	33.36	85.1	85.0	85.1	6.31	6.31	6.31	4.36	4.15	4.17	3	3.5
04/12/2013	18:09	i iiie	Middle	3	20.40	20.40	20.43	8.24	8.24	0.24	33.36	33.36	33.30	85.1	85.2	03.1	6.31	6.32	0.51	4.09	4.06	4.17	4	3.3
07/12/2013	08:30	Fine	Middle	3	19.90	19.90	19.90	8.28	8.28	8.28	32.38	32.38	32.38	86.2	86.5	86.3	6.50	6.53	6.51	3.92	3.94	3.95	8	8.5
01/12/2013	08:32	1 1110	Middle	3	19.90	19.90	13.30	8.28	8.28	0.20	32.38	32.38	52.50	86.3	86.1	00.5	6.51	6.50	0.51	3.95	3.97	0.90	9	0.5
09/12/2013	13:02	Fine	Middle	3	21.00	21.00	21.00	8.34	8.34	8.34	32.91	32.91	32.91	85.9	85.9	85.7	6.32	6.32	6.30	5.11	5.11	5.11	8	7.5
09/12/2013	13:04	Tille	Middle	3	21.00	21.00	21.00	8.34	8.34	0.54	32.91	32.91	32.91	85.7	85.2	65.7	6.30	6.27	0.30	5.12	5.10	5.11	7	7.5
11/12/2013	16:03	Fine	Middle	3	19.80	19.80	19.75	8.18	8.18	8.18	32.75	32.75	32.76	87.8	88.4	88.0	6.62	6.67	6.63	5.42	5.44	5.44	6	5.5
11/12/2010	16:04	1 1110	Middle	3	19.70	19.70	10.70	8.18	8.18	0.10	32.77	32.77	02.70	88.5	87.3	00.0	6.67	6.57	0.00	5.47	5.41	0.44	5	0.0
13/12/2013	13:45	Cloudy	Middle	3	20.80	20.80	20.80	8.18	8.18	8.19	33.67	33.67	33.67	83.4	83.9	83.8	6.12	6.16	6.15	3.45	3.47	3.46	2	2.0
10/12/2010	13:47	o.ouu,	Middle	3	20.80	20.80	20.00	8.19	8.19	0.10	33.67	33.67	00.07	84.2	83.7		6.18	6.15	0.10	3.47	3.46	0.10	2	2.0
16/12/2013	18:09	Cloudy	Middle	3	19.10	19.10	19.10	8.10	8.10	8.10	33.34	33.34	33.34	85.5	86.0	85.7	6.50	6.54	6.52	5.40	5.41	5.42	11	10.5
	18:10	,	Middle	3	19.10	19.10		8.10	8.10		33.34	33.34		86.1	85.1		6.55	6.47		5.42	5.43		10	
18/12/2013	18:50	Fine	Middle	4	17.40	17.40	17.40	8.50	8.50	8.51	35.86	35.86	35.87	94.7	95.1	94.9	7.32	7.36	7.34	2.94	2.97	2.96	5	5.0
	18:52		Middle	4	17.40	17.40		8.51	8.51		35.88	35.87		94.9	94.9		7.33	7.34		2.93	2.99		5	
21/12/2013	08:00	Fine	Middle	3	17.40	17.40	17.40	8.38	8.38	8.38	36.09	36.09	36.09	88.1	88.6	87.3	6.82	6.79	6.75	5.10	5.13	5.14	7	7.0
	08:02		Middle	3	17.40	17.40		8.38	8.38		36.09	36.09		87.1	85.4		6.75	6.62		5.16	5.18		7	
24/12/2013	10:33	Fine	Middle	3	16.20	16.20	16.20	8.43	8.43	8.43	36.06	36.06	36.06	84.6	85.2	85.0	6.70	6.75	6.74	4.91	4.91	4.92	11	10.5
	10:34		Middle	3	16.20	16.20		8.43	8.43		36.06	36.06		84.8	85.5		6.72	6.79		4.94	4.92		10	
26/12/2013	13:22	Fine	Middle	3	17.80	17.80	17.80	8.30	8.30	8.30	33.68	33.67	33.72	85.8	86.0	86.3	6.67	7.03	6.88	3.43	3.35	3.38	6	5.5
	13:23		Middle	3	17.80	17.80		8.30	8.30		33.77	33.77		86.3	87.1		7.02	6.80		3.25	3.47		5	
28/12/2013	12:39	Fine	Middle	3	15.10	15.10	15.10	8.51	8.51	8.51	36.28	36.28	36.28	94.4	93.6	94.1	7.62	7.56	7.60	3.93	3.92	3.92	5	5.5
	12:40		Middle	3	15.10	15.10		8.51	8.51		36.28	36.28		94.7	93.8		7.65	7.58		3.92	3.91		6	
30/12/2013	14:00	Fine	Middle	4	17.20	17.20	17.20	8.51	8.51	8.53	36.09	36.09	36.10	100.3	100.3	100.1	7.75	7.76	7.74	5.55	5.56	5.54	9	10.0
	14:01		Middle	4	17.20	17.20		8.55	8.55		36.10	36.10		99.8	99.8		7.72	7.72		5.53	5.52		11	

Water Monitoring Result at WSD10 - Cha Kwo Ling Mid-Flood Tide

Date	Time	Weater Condition	Samplin	g Depth	Wat	er Temp	perature		pН			Salinit	ty	D	O Satur	ation		DO mg/L			Turbio			ded Solids
		Condition	n	n	Va		Average	Va	lue	Average	Va	lue	Average	Va	, .	Average	Va	lue	Average	Va	lue	Average		Average
02/12/2013	17:10	Fine	Middle	3	20.30	20.30	20,25	8.18	8.18	0.40	32.43	32.43	32.44	88.6	89.1	89.2	6.62	6.66	0.00	3.21	3.14	2.44	3	2.0
02/12/2013	17:12	Fine	Middle	3	20.20	20.20	20.25	8.18	8.18	8.18	32.44	32.44	32.44	89.5	89.4	69.2	6.68	6.68	6.66	3.12	3.10	3.14	3	3.0
04/12/2013	17:28	Fine	Middle	3	21.10	21.10	21.10	8.28	8.28	8,28	33.06	33.06	33.05	85.5	86.3	85.8	6.26	6.32	6.28	4.86	4.77	4.74	4	4.0
04/12/2013	17:29	FILLE	Middle	3	21.10	21.10	21.10	8.28	8.28	0.20	33.03	33.04	33.03	86.4	85.0	00.0	6.32	6.23	0.20	4.69	4.63	4.74	4	4.0
07/12/2013	08:45	Fine	Middle	3	20.40	20.40	20.40	8.20	8.20	8.20	32.71	32.71	32.75	92.6	92.3	92.3	6.90	6.88	6.88	5.13	5.11	4.98	6	6.0
01/12/2013	08:47	Tille	Middle	3	20.40	20.40	20.40	8.20	8.20	0.20	32.79	32.79	32.73	92.3	92.1	32.3	6.88	6.85	0.00	4.79	4.88	4.50	6	0.0
09/12/2013	12:24	Fine	Middle	3	21.00	21.00	21.00	8.27	8.27	8.27	32.47	32.47	32.47	87.3	88.2	87.9	6.43	6.49	6.47	3.92	3.95	3.96	17	16.5
00/12/2010	12:26	1 1110	Middle	3	21.00	21.00	21.00	8.27	8.27	0.27	32.47	32.47	02.47	88.2	87.9	07.0	6.49	6.48	0.41	3.97	3.98	0.00	16	10.0
11/12/2013	15:30	Fine	Middle	3	20.30	20.30	20.30	8.18	8.18	8.18	31.07	31.07	31.07	94.9	94.4	94.4	7.07	7.02	7.03	4.13	4.19	4.16	3	3.0
,	15:32	0	Middle	3	20.30	20.30	20.00	8.18	8.18	0.10	31.07	31.07	01.01	94.0	94.4	•	7.00	7.03	7.00	4.19	4.12	0	3	0.0
13/12/2013	14:01	Cloudy	Middle	3	20.70	20.70	20.70	8.19	8.19	8.19	33.86	33.86	33.86	84.2	84.0	84.6	6.19	6.17	6.22	5.00	4.98	4.95	4	3.5
	14:02	5.522,	Middle	3	20.70	20.70		8.19	8.19		33.86	33.86		85.2	85.0		6.26	6.24	-	4.90	4.90		3	
16/12/2013	17:39	Cloudy	Middle	3	19.10	19.10	19.10	8.20	8.20	8.20	33.50	33.50	33.50	90.2	90.3	90.1	6.86	6.86	6.85	6.24	6.12	6.11	12	11.5
	17:41	,	Middle	3	19.10	19.10		8.20	8.20		33.50	33.50		90.0	89.7		6.85	6.83		6.05	6.02		11	
18/12/2013	18:15	Fine	Middle	3	16.20	16.20	16.25	8.51	8.51	8.51	35.70	35.70	35.70	88.5	88.5	88.5	7.00	7.01	7.01	5.11	5.13	5.16	8	8.0
	18:16		Middle	3	16.30	16.30		8.51	8.51		35.70	35.70		88.6	88.2		7.02	6.99		5.18	5.20		8	
21/12/2013	08:31	Fine	Middle	3	17.70	17.70	17.60	8.53	8.53	8.54	36.20	36.20	36.21	93.3	93.1	92.8	7.16	7.14	7.12	5.92	5.91	5.90	6	8.0
	08:32		Middle	3	17.50	17.50		8.55	8.55		36.21	36.21		92.6	92.2		7.10	7.06		5.90	5.86		10	
24/12/2013	11:01	Fine	Middle	3	17.50	17.50	17.35	8.45	8.45	8.48	36.03	36.03	36.05	92.0	93.3	92.9	7.12	7.21	7.18	4.90	4.99	5.00	8	8.0
	11:02		Middle	3	17.20	17.20		8.50	8.50		36.06	36.06		93.1	93.0		7.20	7.19		5.10	5.01		8	
26/12/2013	12:45	Fine	Middle	3	18.60	18.60	18.55	8.32	8.32	8.32	29.73	31.98	31.05	87.7	87.0	87.3	6.79	6.77	6.75	3.70	3.62	3.47	4	4.5
	12:46		Middle	3	18.50	18.50		8.32	8.32		31.44	31.05		87.9	86.5		6.81	6.62		3.48	3.07		5	
28/12/2013	13:15	Fine	Middle	3	16.50	16.50	16.50	8.50	8.50	8.50	36.22	36.22	36.22	99.8	99.7	99.5	7.86	7.85	7.83	3.61	3.58	3.58	3	3.0
	13:16		Middle	3	16.50	16.50		8.50	8.50		36.22	36.22		99.2	99.1		7.81	7.80		3.57	3.56		3	
30/12/2013	14:33	Fine	Middle	3	17.20	17.20	17.20	8.47	8.47	8.50	36.29	36.29	36.29	104.7	104.5	103.8	8.09	8.09	8.01	2.75	2.65	2.70	3	4.0
	14:34		Middle	3	17.20	17.20		8.53	8.53		36.29	36.29		103.2	102.6		7.95	7.92		2.75	2.66		5	

Water Monitoring Result at WSD15 - Sai Wan Ho Mid-Flood Tide

Date	Time	Weater Condition	Samplin	g Depth	Wat	er Temp	erature		pН			Salinit	ty	D	O Satur	ation		DO ma/L			Turbid NTU		Suspend	led Solids
		Condition	n	n	Va	llue	Average	Va	lue	Average	Va	lue	Average	Va		Average	Va	lue	Average	Va	lue	Average	Value	Average
02/12/2013	16:33	Fine	Middle	3	20.50	20.50	00.45	8.17	8.17	0.40	32.43	32.43	00.44	85.6	85.3	05.5	6.37	6.32	0.00	3.00	3.01	0.04	2	2.0
02/12/2013	16:34	rine	Middle	3	20.40	20.40	20.45	8.18	8.18	8.18	32.45	32.45	32.44	84.2	86.9	85.5	6.28	6.47	6.36	3.02	3.02	3.01	2	2.0
04/12/2013	19:02	Fine	Middle	4	20.50	20.50	20.45	8.24	8.24	8.24	33.51	33.52	33.52	85.1	85.9	85.3	6.30	6.36	6.32	6.33	6.52	6.41	5	5.0
04/12/2013	19:03	FILLE	Middle	4	20.40	20.40	20.45	8.24	8.24	0.24	33.52	33.52	33.32	85.5	84.6	00.0	6.34	6.28	0.32	6.44	6.34	0.41	5	5.0
07/12/2013	09:15	Fine	Middle	3	20.30	20.30	20.30	8.22	8.22	8.22	32.73	32.73	32.73	91.8	92.1	91.8	6.85	6.86	6.85	4.56	4.48	4.47	7	7.0
01/12/2013	09:17	Tille	Middle	3	20.30	20.30	20.30	8.22	8.22	0.22	32.73	32.73	32.73	91.6	91.7	31.0	6.84	6.85	0.05	4.43	4.41	7.77	7	7.0
09/12/2013	11:58	Fine	Middle	3	21.10	21.10	21.10	8.26	8.26	8.26	32.44	32.44	32.44	87.9	88.5	88.9	6.49	6.54	6.56	4.05	4.02	4.02	16	16.5
03/12/2013	11:59	Tille	Middle	3	21.10	21.10	21.10	8.26	8.26	0.20	32.44	32.44	52.44	89.6	89.7	00.5	6.60	6.60	0.50	4.01	4.01	4.02	17	10.5
11/12/2013	14:58	Fine	Middle	3	20.40	20.40	20.40	8.12	8.12	8.12	32.82	32.82	32.82	96.1	95.9	96.0	7.17	7.15	7.19	4.39	4.39	4.39	<2	<2
	14:59		Middle	3	20.40	20.40		8.12	8.12		32.82	32.82		96.0	95.9		7.25	7.17		4.37	4.41		<2	
13/12/2013	14:29	Cloudy	Middle	3	20.80	20.80	20.80	8.00	8.00	8.00	33.35	33.35	33.36	97.0	94.2	93.0	7.12	6.92	6.83	5.41	5.41	5.41	3	3.5
	14:31	,	Middle	3	20.80	20.80		8.00	8.00		33.37	33.37		91.4	89.5		6.71	6.57		5.40	5.42		4	
16/12/2013	17:10	Cloudy	Middle	3	18.80	18.80	18.80	8.24	8.24	8.24	33.73	33.73	33.73	88.4	88.2	87.7	6.73	6.72	6.69	5.79	5.89	5.88	10	10.0
	17:12		Middle	3	18.80	18.80		8.24	8.24		33.73	33.73		87.6	86.6		6.68	6.61		5.92	5.93		10	
18/12/2013	17:52	Fine	Middle	3	16.30	16.30	16.30	8.49	8.49	8.49	35.72	35.72	35.72	88.1	88.3	88.0	6.96	6.98	6.96	5.57	5.56	5.56	6	6.5
	17:53		Middle	3	16.30	16.30		8.49	8.49		35.72	35.72		88.0	87.7		6.96	6.94		5.56	5.56		7	
21/12/2013	09:03	Fine	Middle	3	18.00	18.00	18.00	8.47	8.47	8.47	36.16	36.16	36.16	93.8	94.3	93.9	7.17	7.22	7.19	6.30	6.31	6.30	13	13.5
	09:05		Middle	3	18.00	18.00		8.47	8.47		36.16	36.16		94.1	93.4		7.20	7.15		6.31	6.28	1	14	
24/12/2013	11:30	Fine	Middle	3	18.00	18.00	17.85	8.49	8.49	8.49	35.96	35.96	35.97	88.9	88.6	88.4	6.81	6.79	6.76	3.56	3.59	3.61	5	4.5
	11:31		Middle	3	17.70	17.70		8.49	8.49		35.98	35.98		87.6	88.4		6.72	6.70		3.64	3.65		4	
26/12/2013	10:39	Fine	Middle	3	17.50	17.60	17.53	8.38	8.38	8.38	32.28	32.28	32.28	93.6	94.3	94.3	7.53	7.58	7.58	1.22	1.29	1.22	3	3.0
	10:40		Middle	3	17.50	17.50		8.38	8.38		32.28	32.28		94.6	94.7		7.60	7.62		1.19	1.18		3	
28/12/2013	13:40	Fine	Middle	3	16.10	16.10	16.05	8.58	8.58	8.59	36.32	36.32	36.32	95.9	97.1	96.3	7.56	7.67	7.61	3.72	3.77	3.76	4	3.0
	13:42		Middle	3	16.00	16.00		8.60	8.60	<u> </u>	36.32	36.32		96.1	96.2		7.60	7.60		3.78	3.78	<u> </u>	2	<u> </u>
30/12/2013	15:02	Fine	Middle	4	16.60	16.60	16.55	8.67	8.67	6.67	36.19	36.19	36.19	78.2	78.5	78.2	6.12	5.94	6.07	4.59	4.61	4.61	7	6.5
	15:04		Middle	4	16.50	16.50		0.67	8.67		36.19	36.19		78.0	78.0		6.10	6.10		4.61	4.61		6	

Water Monitoring Result at WSD17 - Quarry Bay Mid-Flood Tide

Date	Time	Weater Condition		ng Depth		°C	erature		pH -			Salini ppt	ty	D	O Satur	ation		DO mg/L			Turbid		m	
			ı	n	Va	lue	Average	Va	ılue	Average	Va	lue	Average	Va	llue	Average	Va	lue	Average	Va	lue	Average	Value	Average
02/12/2013	16:01	Fine	Middle	4	20.70	20.70	20.75	8.13	8.13	8.14	32.40	32.40	32.41	89.2	89.0	89.4	6.61	6.59	6.62	3.20	3.23	3.22	4	3.5
	16:02		Middle	4	20.80	20.80		8.14	8.14		32.42	32.42		89.7	89.5		6.64	6.63		3.25	3.21		3	
04/12/2013	18:38	Fine	Middle	4	20.10	20.10	20.10	8.27	8.27	8.27	33.53	33.53	33.53	86.3	86.3	86.3	6.14	6.14	6.14	5.15	4.71	4.83	3	3.0
	18:39		Middle	4	20.10	20.10		8.27	8.27		33.53	33.53		86.1	86.5		6.12	6.15		4.66	4.78		3	
07/12/2013	10:10	Fine	Middle	3	20.20	20.20	20.20	8.22	8.22	8.22	32.67	32.67	32.67	89.7	90.0	90.0	6.70	6.72	6.72	8.32	8.30	8.30	12	12.5
	10:12		Middle	3	20.20	20.20		8.22	8.22		32.67	32.67		90.3	89.9		6.75	6.72		8.29	8.29		13	
09/12/2013	11:30	Fine	Middle	3	21.30	21.30	21.35	8.14	8.14	8.14	32.42	32.42	32.42	78.8	79.5	79.7	5.77	5.83	5.83	4.19	4.22	4.23	18	12.0
	11:31		Middle	3	21.40	21.40		8.14	8.14		32.43	32.42		80.4	79.9		5.88	5.84		4.30	4.22		6	
11/12/2013	14:30	Fine	Middle	4	20.60	20.60	20.60	8.16	8.16	8.17	32.65	32.65	32.66	87.0	90.7	88.9	5.48	5.76	5.61	3.81	3.82	3.81	3	3.0
	14:32		Middle	4	20.60	20.60		8.17	8.17		32.67	32.67		89.2	88.7		5.64	5.57		3.82	3.78		3	
13/12/2013	14:54	Cloudy	Middle	3	20.80	20.80	20.80	8.25	8.25	8.25	33.67	33.67	33.67	85.6	85.7	85.8	6.31	6.30	6.31	3.47	3.45	3.45	<2	<2
	14:57		Middle	3	20.80	20.80		8.25	8.25		33.67	33.67		85.8	85.9		6.31	6.31		3.44	3.44		<2	
16/12/2013	16:36	Cloudy	Middle	3	18.50	18.50	18.50	8.24	8.24	8.24	32.98	32.98	32.98	88.9	88.6	88.4	6.85	6.83	6.81	6.42	6.45	6.46	11	11.5
	16:38		Middle	3	18.50	18.50		8.24	8.24		32.98	32.98		87.7	88.3		6.76	6.80		6.48	6.49		12	<u> </u>
18/12/2013	17:20	Fine	Middle	3	17.40	17.40	17.40	8.46	8.46	8.46	35.73	35.73	35.73	90.5	90.6	90.5	7.00	7.03	7.01	3.83	3.83	3.78	5	8.0
	17:22		Middle	3	17.40	17.40		8.46	8.46		35.73	35.73		90.9	90.1		7.04	6.98		3.73	3.73		11	<u> </u>
21/12/2013	10:57	Fine	Middle	3	17.80	17.80	17.80	8.57	8.57	8.57	36.08	36.08	36.08	89.5	89.7	90.2	6.86	6.88	6.92	7.07	7.03	7.07	15	13.5
	10:59		Middle	3	17.80	17.80		8.57	8.57		36.08	36.08		90.4	91.2		6.93	6.99		7.09	7.10		12	
24/12/2013	13:00	Fine	Middle	3	17.70	17.70	17.70	8.53	8.53	8.53	35.92	35.92	35.92	86.0	85.3	85.3	6.60	6.57	6.55	8.27	7.90	7.98	8	7.5
	13:02		Middle	3	17.70	17.70		8.53	8.53		35.92	35.92		85.2	84.5		6.55	6.49		7.88	7.87		7	<u> </u>
26/12/2013	11:12	Fine	Middle	3	17.50	17.50	17.50	8.26	8.26	8.26	31.32	31.32	31.33	72.9	73.2	73.0	5.79	5.82	5.80	3.83	3.92	3.68	4	4.5
	11:13		Middle	3	17.50	17.50		8.26	8.26		31.33	31.33		73.1	72.8		5.80	5.78		3.46	3.50		5	<u> </u>
28/12/2013	14:18	Fine	Middle	3	16.60	16.60	16.60	8.57	8.57	8.58	36.01	36.01	36.03	93.7	94.5	94.3	7.36	7.43	7.41	3.92	3.84	3.86	2	2.5
	14:19		Middle	3	16.60	16.60		8.59	8.59		36.04	36.04		94.7	94.3		7.44	7.41		3.83	3.83		3	
30/12/2013	16:15	Fine	Middle	4	16.60	16.60	16.60	8.60	8.60	8.60	36.14	36.14	36.14	94.5	95.1	95.2	7.40	7.45	7.45	4.89	4.95	4.88	6	6.0
	16:16		Middle	4	16.60	16.60		8.60	8.60		36.14	36.14		95.7	95.4		7.49	7.46		4.90	4.79		6	

Water Monitoring Result at WSD21 - Wan Chai Mid-Flood Tide

Date	Time	Weater Condition		ng Depth	Wat	er Temp	erature		pH -			Salini	ty	D	O Satur %	ation		DO mg/L			Turbid NTU			led Solids g/L
			r	n	Va	llue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	llue	Average	Value `	Average
02/12/2013	15:22	Fine	Middle	2	21.30	21.20	21.25	8.72	8.71	8.72	35.06	35.06	35.06	68.8	69.2	69.2	4.98	5.01	5.01	3.70	3.71	3.71	4	4.0
	15:24		Middle	2	21.30	21.20		8.72	8.71		35.06	35.06		69.0	69.7		5.00	5.05		3.72	3.71		4	
04/12/2013	18:05	Fine	Middle	2	20.80	20.80	20.75	8.39	8.39	8.39	35.40	35.40	35.39	68.1	67.8	67.6	4.96	4.94	4.93	4.37	4.36	4.33	5	4.5
0 17 12/2010	18:07		Middle	2	20.70	20.70	20.10	8.39	8.39	0.00	35.38	35.38	00.00	67.5	67.1	07.10	4.92	4.90		4.28	4.29		4	
07/12/2013	10:18	Fine	Middle	2	20.60	20.60	20.60	8.38	8.38	8.38	35.35	35.35	35.36	61.7	61.3	61.6	4.51	4.48	4.50	3.42	3.56	3.48	6	5.0
01/12/2010	10:20	1 1110	Middle	2	20.60	20.60	20.00	8.38	8.38	0.00	35.36	35.36	00.00	61.5	61.7	01.0	4.49	4.51	4.00	3.46	3.46	0.40	4	0.0
09/12/2013	10:56	Fine	Middle	2	21.00	21.00	21.00	8.40	8.39	8.40	35.30	35.30	35.30	65.7	66.3	66.0	4.77	4.81	4.79	3.52	3.52	3.50	7	11.5
03/12/2013	10:58	TING	Middle	2	21.00	21.00	21.00	8.40	8.39	0.40	35.30	35.30	33.30	66.1	65.7	00.0	4.80	4.77	4.75	3.48	3.47	3.30	16	11.5
11/12/2013	13:59	Fine	Middle	2	20.90	20.90	20.90	8.47	8.47	8.47	35.46	35.46	35.46	65.8	67.2	66.9	4.76	4.86	4.85	3.81	3.80	3.80	3	3.0
11/12/2013	14:01	TING	Middle	2	20.90	20.90	20.30	8.47	8.47	0.47	35.46	35.46	33.40	67.8	66.7	00.5	4.93	4.85	4.00	3.79	3.79	3.00	3	3.0
13/12/2013	15:06	Cloudy	Middle	2	20.90	20.90	20.93	8.22	8.22	8.21	32.47	32.52	32.52	74.0	74.2	74.0	5.45	5.47	5.45	3.63	3.63	3.59	2	2.0
13/12/2013	15:08	Cloudy	Middle	2	20.90	21.00	20.93	8.19	8.19	0.21	32.55	32.55	32.32	73.9	73.7	74.0	5.44	5.43	3.43	3.60	3.48	3.39	2	2.0
16/12/2013	16:03	Cloudy	Middle	2	19.90	19.90	19.90	8.18	8.18	8.18	32.33	32.33	32.33	84.1	84.4	84.4	6.31	6.36	6.35	7.80	7.79	7.79	12	12.0
10/12/2013	16:05	Oloudy	Middle	2	19.90	19.90	15.50	8.18	8.18	0.10	32.33	32.33	32.33	84.5	84.5	04.4	6.37	6.37	0.55	7.78	7.79	7.75	12	12.0
18/12/2013	16:56	Fine	Middle	2	19.60	19.60	19.60	8.28	8.25	8.26	32.33	32.33	32.33	82.1	82.3	82.5	6.24	6.24	6.26	5.90	5.92	5.93	5	5.5
10/12/2010	16:57	1 1110	Middle	2	19.60	19.60	10.00	8.25	8.25	0.20	32.33	32.33	02.00	82.5	83.0	02.0	6.27	6.30	0.20	5.93	5.95	0.00	6	0.0
21/12/2013	09:48	Fine	Middle	1	19.10	19.10	19.10	8.24	8.24	8.24	32.62	32.62	32.62	71.3	71.9	72.2	5.45	5.50	5.52	4.88	4.87	4.84	6	7.0
21/12/2013	09:50	TING	Middle	1	19.10	19.10	13.10	8.24	8.24	0.24	32.62	32.62	32.02	72.9	72.6	12.2	5.57	5.56	3.32	4.81	4.80	4.04	8	7.0
24/12/2013	11:59	Fine	Middle	2	18.90	18.90	18.90	8.19	8.19	8.19	32.62	32.62	32.62	76.7	76.8	77.2	5.89	5.96	5.95	6.83	6.86	6.86	13	13.0
24/12/2010	12:01	1 1110	Middle	2	18.90	18.90	10.00	8.19	8.19	0.10	32.62	32.62	02.02	77.8	77.4	77.2	5.98	5.95	0.00	6.87	6.88	0.00	13	10.0
26/12/2013	11:39	Fine	Middle	2	17.90	17.90	17.80	8.23	8.23	8.22	32.26	32.26	32.25	72.4	72.2	71.8	5.71	5.70	5.68	4.52	4.49	4.46	2	2.5
20/12/2010	11:40	1 1110	Middle	2	17.70	17.70	17.00	8.21	8.21	V.22	32.23	32.23	02.20	71.5	71.1	71.0	5.66	5.64	0.00	4.44	4.40	7.70	3	2.0
28/12/2013	14:53	Fine	Middle	2	17.40	17.40	17.30	8.30	8.31	8.31	32.74	32.74	32.74	83.2	83.1	82.6	6.56	6.54	6.51	4.75	4.73	4.74	2	2.0
25, .2/2010	14:54		Middle	2	17.20	17.20		8.31	8.31	5.51	32.74	32.74	02.74	82.1	82.1	52.0	6.48	6.47	5.51	4.73	4.73		2	
30/12/2013	15:39	Fine	Middle	2	17.20	17.20	17.20	8.29	8.28	8.29	32.81	32.81	32.81	85.9	86.3	86.0	6.80	6.83	6.80	3.21	3.21	3.21	6	5.5
00/12/2010	15:40	1 1110	Middle	2	17.20	17.20	17.20	8.29	8.28	0.20	32.81	32.81	02.01	85.8	85.8	00.0	6.78	6.79	0.00	3.20	3.20	0.21	5	0.0

Water Monitoring Result at WSD19 - Sheung Wan Mid-Flood Tide

Date	Time	Weater Condition		ng Depth	Wat	er Temp	erature		pH -			Salini	ty	D	O Satur %	ation		DO mg/L			Turbid		Suspend	led Solids g/L
			r	n	Va	ılue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	lue	Average	Va	alue	Average	Value	Average
02/12/2013	15:01	Fine	Middle	3	22.00	22.00	22.05	8.19	8.19	8.18	32.55	32.55	32.56	88.9	90.3	89.8	6.43	6.52	6.49	6.23	6.30	6.30	7	8.0
02/12/2010	15:02	1 1110	Middle	3	22.10	22.10	22.00	8.16	8.16	0.10	32.56	32.56	02.00	90.0	90.1	00.0	6.50	6.51	0.40	6.31	6.35	0.00	9	0.0
04/12/2013	19:31	Fine	Middle	2	20.10	20.10	20.10	8.21	8.21	8.22	33.27	33.27	33.27	73.3	73.5	73.8	5.47	5.49	5.51	4.06	4.09	4.07	4	4.0
04/12/2010	19:32	1 1110	Middle	2	20.10	20.10	20.10	8.23	8.21	0.22	33.27	33.27	00.21	74.3	74.1	70.0	5.55	5.53	0.01	4.10	4.02	4.01	4	4.0
07/12/2013	11:02	Fine	Middle	3	20.40	20.40	20.35	8.14	8.14	8.14	32.38	32.38	32.38	88.0	87.4	87.8	6.57	6.53	6.56	6.00	6.00	6.00	7	6.5
017.12/2010	11:04	10	Middle	3	20.30	20.30	20.00	8.14	8.14	0	32.38	32.38	02.00	87.9	87.8	07.0	6.56	6.56	0.00	6.01	6.00	0.00	6	0.0
09/12/2013	10:30	Fine	Middle	4	22.00	22.00	22.05	8.09	8.09	8.09	32.32	32.32	32.33	84.5	86.0	85.6	6.14	6.22	6.20	6.81	6.65	6.60	12	12.5
00/12/2010	10:31	10	Middle	4	22.10	22.10	22.00	8.09	8.09	0.00	32.33	32.33	02.00	86.1	85.6	00.0	6.23	6.20	0.20	6.50	6.43	0.00	13	12.0
11/12/2013	13:20	Fine	Middle	3	20.60	20.60	20.60	8.09	8.09	8.09	32.47	32.47	32.47	82.4	82.9	82.9	6.12	6.16	6.16	3.73	3.70	3.69	5	5.5
	13:21		Middle	3	20.60	20.60		8.09	8.09		32.47	32.47		83.5	82.7		6.21	6.15		3.68	3.66		6	
13/12/2013	15:32	Cloudy	Middle	3	20.50	20.50	20.45	8.18	8.18	8.18	32.91	32.91	32.95	78.7	78.8	78.6	5.83	5.84	5.82	6.31	6.42	6.40	4	4.5
	15:34		Middle	3	20.40	20.40		8.18	8.18		32.99	32.99		78.7	78.0		5.82	5.78		6.43	6.42		5	
16/12/2013	15:30	Cloudy	Middle	3	18.30	18.30	18.30	8.23	8.23	8.23	33.19	33.19	33.19	76.0	76.8	76.5	5.88	5.94	5.92	5.82	5.80	5.78	12	11.5
	15:32	·	Middle	3	18.30	18.30		8.23	8.23		33.19	33.19		76.7	76.6		5.93	5.94		5.77	5.73		11	
18/12/2013	16:09	Fine	Middle	4	18.50	18.50	18.45	7.85	7.85	7.92	35.69	35.69	35.69	90.3	90.7	90.2	6.85	6.88	6.83	6.71	6.63	6.61	9	8.5
	16:11		Middle	4	18.40	18.40		7.99	7.99		35.69	35.69		89.5	90.1		6.79	6.80		6.60	6.49		8	
21/12/2013	10:19	Fine	Middle	4	18.00	18.00	18.00	8.53	8.53	8.53	35.92	35.92	35.92	85.3	85.1	84.5	6.52	6.50	6.45	4.76	4.72	4.73	5	6.5
	10:20		Middle	4	18.00	18.00		8.53	8.53		35.92	35.92		84.7	83.0		6.44	6.34		4.71	4.71		8	
24/12/2013	12:30	Fine	Middle	4	17.90	17.90	17.90	8.48	8.48	8.48	35.98	35.98	35.98	93.1	93.3	93.3	7.14	7.17	7.17	5.41	5.48	5.45	9	9.0
	12:32		Middle	4	17.90	17.90		8.48	8.48		35.98	35.98		93.5	93.3		7.18	7.17		5.50	5.42		9	
26/12/2013	12:02	Fine	Middle	2	17.80	17.80	17.75	8.21	8.21	8.22	33.67	33.67	33.67	76.2	76.4	76.9	5.93	5.95	5.99	5.59	5.51	5.49	8	8.0
	12:03		Middle	2	17.70	17.70		8.22	8.22		33.67	33.67	<u> </u>	77.6	77.4		6.04	6.03		5.45	5.41		8	
28/12/2013	15:19	Fine	Middle	4	17.10	17.10	17.10	8.58	8.58	8.58	35.82	35.82	35.82	90.3	90.9	90.5	7.02	7.06	7.03	10.32	10.32	10.32	3	4.0
	15:20		Middle	4	17.10	17.10		8.58	8.58		35.82	35.82	<u> </u>	90.5	90.2		7.03	7.01		10.31	10.32		5	
30/12/2013	16:50	Fine	Middle	4	17.70	17.70	17.70	8.52	8.52	8.53	36.26	36.26	36.27	91.6	92.9	92.3	7.01	7.11	7.05	4.91	4.95	4.96	7	7.0
	16:52		Middle	4	17.70	17.70		8.53	8.53		36.27	36.27		92.4	92.4		7.04	7.05		4.98	4.99		7	

Water Monitoring Result at WSD9 - Tai Wan Mid-Ebb Tide

Date	Time	Weater Condition		g Depth	Wate	er Temp	erature		pН			Salinit	ту	D	O Satur	ation		DO mg/L			Turbid NTU		Suspende	
		Condition	n	n	Va		Average	Va	lue	Average	Va		Average	Va	lue	Average	Va		Average	Va		Average		Average
02/12/2013	23:12	Fine	Middle	2	19.60	19.60	19.55	8.22	8.22	8.22	33.19	33.19	33,24	84.0	85.7	85.3	6.40	6.45	6.44	1.69	1.64	1.60	4	3.0
02/12/2013	23:13	Fille	Middle	2	19.50	19.50	19.55	8.22	8.22	0.22	33.28	33.28	33.24	85.7	85.6	00.0	6.46	6.45	0.44	1.51	1.56	1.00	2	3.0
04/12/2013	12:02	Fine	Middle	3	20.30	20.30	20.25	8.19	8.19	8.19	32.55	32.55	32.55	93.4	93.6	93.6	6.98	7.00	7.00	4.19	4.19	4.20	3	3.5
04/12/2013	12:04	Tille	Middle	3	20.20	20.20	20.23	8.19	8.19	0.19	32.54	32.54	32.33	94.0	93.5	93.0	7.03	6.99	7.00	4.20	4.21	4.20	4	3.3
07/12/2013	02:19	Fine	Middle	3	19.10	19.10	19.10	8.15	8.15	8.15	33.36	33.36	33.36	79.5	80.0	80.0	6.04	6.08	6.08	1.81	1.77	1.78	3	3.0
07/12/2010	02:20	1 1110	Middle	3	19.10	19.10	10.10	8.15	8.15	0.10	33.36	33.36	00.00	80.5	80.0	00.0	6.12	6.08	0.00	1.79	1.75	1.70	3	0.0
09/12/2013	03:53	Fine	Middle	2	21.30	21.30	21.35	8.34	8.33	8.33	33.28	33.33	33.32	84.7	85.6	85.1	6.20	6.24	6.20	1.71	1.81	1.71	7	7.0
00,12,2010	03:54	0	Middle	2	21.40	21.40	21.00	8.32	8.32	0.00	33.34	33.33	00.02	85.1	84.8	00.1	6.20	6.17	0.20	1.64	1.66		7	1.0
11/12/2013	20:02	Cloudy	Middle	3	20.30	20.30	20.30	8.28	8.28	8.28	33.75	33.75	33.74	88.3	88.6	88.3	6.56	6.57	6.55	2.99	3.12	2.97	3	3.0
	20:03	,	Middle	3	20.30	20.30		8.28	8.28		33.72	33.72		88.6	87.8		6.57	6.51		2.91	2.84		3	
13/12/2013	21:56	Cloudy	Middle	2	20.50	20.50	20.50	8.26	8.26	8.26	33.64	33.64	33.64	81.4	82.5	82.0	6.01	6.09	6.06	2.49	2.39	2.33	<2	2.0
	21:57	,	Middle	2	20.50	20.50		8.26	8.26		33.64	33.64		81.6	82.4		6.03	6.09		2.20	2.22		2	
17/12/2013	23:55	Cloudy	Middle	2	17.10	17.10	17.10	8.33	8.33	8.34	33.59	33.59	33.59	86.3	86.6	86.1	6.81	6.82	6.78	3.05	3.08	3.00	12	12.0
	23:56	•	Middle	2	17.10	17.10		8.34	8.34		33.59	33.59		86.0	85.5		6.77	6.73		3.10	2.75		12	
19/12/2013	00:43	Fine	Middle	2	14.20	14.20	14.20	8.34	8.34	8.34	33.37	33.37	33.38	83.8	83.5	83.8	6.97	6.97	7.00	2.54	2.51	2.50	4	4.0
	00:44		Middle	2	14.20	14.20		8.34	8.34		33.38	33.38		84.1	83.9		7.03	7.01		2.48	2.46		4	
21/12/2013	01:27	Fine	Middle	3	17.50	17.50	17.50	8.33	8.33	8.33	33.90	33.90	33.90	89.1	89.4	90.4	6.96	6.98	7.06	4.77	4.81	4.75	8	7.5
	01:28		Middle	3	17.50	17.50		8.33	8.33		33.90	33.91		90.9	92.0		7.10	7.18		4.63	4.79		7	
24/12/2013	02:41	Fine	Middle	2	16.40	16.40	16.40	8.30	8.30	8.31	33.82	33.82	33.82	89.4	89.3	89.7	7.13	7.12	7.16	2.28	2.26	2.27	16	17.0
	02:42		Middle	2	16.40	16.40		8.31	8.31		33.82	33.82		89.9	90.0		7.17	7.21		2.29	2.25		18	
26/12/2013	04:36	Fine	Middle	2	16.20	16.20	16.20	8.33	8.33	8.33	33.82	33.82	33.82	89.6	89.4	89.8	7.17	7.15	7.19	2.08	1.97	2.07	3	3.5
	04:37		Middle	2	16.20	16.20		8.33	8.33		33.81	33.82		89.6	90.7		7.17	7.26		2.10	2.13		4	
28/12/2013	19:28	Fine	Middle	3	15.60	15.60	15.60	8.41	8.41	8.41	33.85	33.85	33.86	94.4	94.8	94.3	7.65	7.68	7.64	1.65	1.52	1.60	<2	<2
	19:29		Middle	3	15.60	15.60		8.40	8.40		33.87	33.87		94.0	93.9		7.61	7.61		1.60	1.63		<2	
30/12/2013	22:21	Fine	Middle	2	15.80	15.80	15.80	8.33	8.33	8.33	32.67	32.72	32.66	85.8	86.3	86.2	7.42	7.45	7.45	1.82	1.76	1.66	3	2.5
	22:22		Middle	2	15.80	15.80		8.33	8.33		32.62	32.62		86.5	86.2		7.48	7.45		1.53	1.51		2	

Water Monitoring Result at WSD10 - Cha Kwo Ling Mid-Ebb Tide

Date	Time	Weater Condition	Samplin	g Depth	Wat	er Temp °C	erature		pН			Salini	ty	D	O Satura	ation		DO mg/L			Turbidi NTU		Suspend	led Solids
		Ooridition	n	n	Va		Average	Va	lue	Average	Va	lue	Average	Va		Average	Va		Average	Va		Average		Average
02/12/2013	22:46	Fine	Middle	2	19.60	19.60	19.60	8.22	8.22	8.23	33.07	33.07	33.24	84.9	86.1	85.7	6.39	6.50	6.46	3.41	3.28	3.31	3	3.0
02/12/2013	22:47	i iiie	Middle	2	19.60	19.60	19.00	8.23	8.23	0.23	33.40	33.40	33.24	86.2	85.7	65.7	6.49	6.45	0.40	3.30	3.23	5.51	3	3.0
04/12/2013	12:32	Fine	Middle	3	21.30	21.30	21.30	8.19	8.19	8.19	32.56	32.56	32.56	90.9	90.9	90.9	6.66	6.66	6.66	5.68	5.67	5.68	4	4.0
04/12/2013	12:34	i iiie	Middle	3	21.30	21.30	21.30	8.19	8.19	0.19	32.56	32.56	32.30	90.9	90.7	30.3	6.66	6.65	0.00	5.68	5.69	5.00	4	4.0
07/12/2013	01:55	Fine	Middle	3	19.10	19.10	19.05	8.24	8.24	8.25	33.55	33.55	33.55	83.3	83.4	83.1	6.32	6.34	6.31	5.12	5.10	5.16	6	6.0
07/12/2013	01:56	i iiie	Middle	3	19.00	19.00	19.03	8.25	8.25	0.23	33.55	33.55	33.33	82.9	82.8	03.1	6.29	6.27	0.51	5.24	5.19	5.10	6	0.0
09/12/2013	03:35	Fine	Middle	2	21.20	21.20	21.20	8.12	8.12	8.13	33.61	33.61	33.61	82.5	83.4	83.0	6.03	6.09	6.06	2.15	2.13	2.14	17	17.0
03/12/2013	03:36	Tille	Middle	2	21.20	21.20	21.20	8.13	8.13	0.13	33.61	33.62	33.01	82.8	83.1	03.0	6.04	6.06	0.00	2.09	2.17	2.14	17	17.0
11/12/2013	19:27	Cloudy	Middle	3	20.90	20.90	20.90	8.25	8.25	8.25	33.18	33.16	32.88	88.3	89.4	88.1	6.49	6.54	6.45	4.17	4.25	4.01	5	4.5
11/12/2013	19:28	Cloudy	Middle	3	20.90	20.90	20.50	8.25	8.25	0.23	32.48	32.69	32.00	87.8	86.9	00.1	6.42	6.36	0.40	3.70	3.93	4.01	4	4.5
13/12/2013	21:28	Cloudy	Middle	2	20.50	20.50	20.50	8.28	8.28	8.28	33.83	33.85	33.85	81.9	82.7	83.4	6.02	6.10	6.15	4.94	4.86	4.93	3	3.0
13/12/2013	21:29	Cloudy	Middle	2	20.50	20.50	20.50	8.28	8.28	0.20	33.85	33.85	33.03	84.3	84.8	05.4	6.22	6.25	0.15	4.97	4.96	4.55	3	5.0
17/12/2013	23:15	Cloudy	Middle	2	17.00	17.00	17.00	8.35	8.35	8.35	32.99	33.50	33.49	77.6	78.7	80.2	6.12	6.21	6.33	6.00	5.96	5.91	14	14.0
11712/2010	23:16	Cicaay	Middle	2	17.00	17.00	11100	8.35	8.35	0.00	33.73	33.73	00.10	81.6	82.8	00.2	6.43	6.54	0.00	5.87	5.81	0.01	14	
19/12/2013	00:12	Fine	Middle	2	14.70	14.70	14.70	8.32	8.32	8.32	33.73	33.73	33.73	82.3	82.7	82.8	6.79	6.82	6.82	3.03	3.08	3.07	9	8.0
10,12,2010	00:13		Middle	2	14.70	14.70	0	8.32	8.32	0.02	33.73	33.73	00.10	83.1	82.9	02.0	6.85	6.83	0.02	3.10	3.06	0.01	7	0.0
21/12/2013	01:03	Fine	Middle	3	17.50	17.50	17.50	8.35	8.35	8.35	33.94	33.94	33.66	86.2	85.9	85.4	6.73	6.70	6.63	4.13	4.26	4.20	7	5.5
21/12/2010	01:04	Tille	Middle	3	17.50	17.50	17.00	8.35	8.35	0.00	33.21	33.56	00.00	84.9	84.7	00.4	6.56	6.52	0.00	4.25	4.16	4.20	4	0.0
24/12/2013	02:15	Fine	Middle	2	16.50	16.50	16.50	8.16	8.16	8.17	33.73	33.73	33.75	82.4	82.6	82.5	6.56	6.59	6.57	2.70	2.77	2.72	16	14.5
21,12,2010	02:16		Middle	2	16.50	16.50	10.00	8.17	8.17	0	33.76	33.76	00.70	82.8	82.0	02.0	6.60	6.53	0.01	2.73	2.66	22	13	
26/12/2013	04:08	Fine	Middle	2	16.00	16.00	16.00	8.34	8.34	8.34	33.67	33.67	33.66	84.3	86.4	85.7	6.79	6.95	6.88	3.80	3.77	3.64	3	3.0
	04:09		Middle	2	16.00	16.00		8.34	8.34		33.64	33.64		86.9	85.3		6.91	6.87		3.48	3.52		3	
28/12/2013	19:10	Fine	Middle	3	15.20	15.20	15.20	8.35	8.35	8.35	34.02	34.03	34.03	87.9	87.9	88.4	7.16	7.16	7.21	3.74	3.70	3.67	3	3.5
	19:11		Middle	3	15.20	15.20		8.35	8.35		34.03	34.03		88.8	88.9		7.24	7.28		3.66	3.57		4	
30/12/2013	21:55	Fine	Middle	2	15.60	15.60	15.60	8.38	8.38	8.38	32.14	32.14	32.16	91.2	91.9	91.3	7.97	8.01	7.96	2.42	2.51	2.44	4	4.0
00,12,20.0	21:56		Middle	2	15.60	15.60	.0.00	8.38	8.38	0.00	32.17	32.17	02.10	91.2	91.0		7.94	7.93		2.44	2.40		4	

Water Monitoring Result at WSD15 - Sai Wan Ho Mid-Ebb Tide

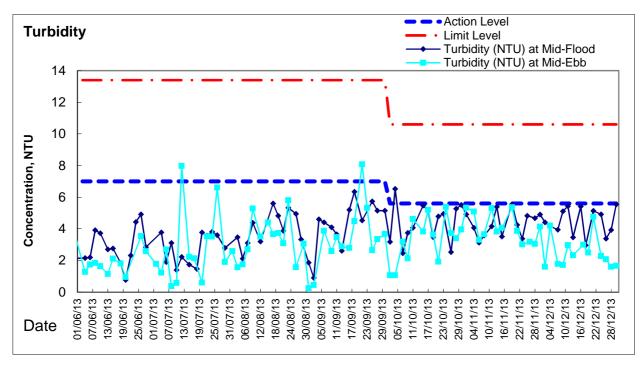
Date	Time	Weater Condition		g Depth	Wat	er Temp °C	erature		pH -			Salinit	у	D	O Satur	ation		DO ma/L			Turbidi NTU		Suspend	led Solids
			r	n	Va	lue	Average	Va	lue	Average	Val		Average	Va	llue	Average	Va	lue	Average	Va		Average		Average
02/12/2013	00:10	Fine	Middle	3	19.90	19.90	19.90	8.20	8.20	8.21	33.14	33.14	33.14	78.8	79.1	78.9	5.90	5.94	5.92	2.79	2.67	2.77	4	3.5
02,12,2010	00:11		Middle	3	19.90	19.90	10.00	8.21	8.21	0.2	33.14	33.14	00.11	79.1	78.7	7 0.0	5.93	5.89	0.02	2.89	2.72	2	3	0.0
04/12/2013	13:00	Fine	Middle	3	21.20	21.20	21.20	8.18	8.18	8.18	32.55	32.55	32.55	89.7	86.4	88.9	6.59	6.33	6.53	5.59	5.59	5.55	4	4.0
0 1/ 12/2010	13:01		Middle	3	21.20	21.20	21120	8.18	8.18	0.10	32.55	32.55	02.00	89.1	90.3	00.0	6.59	6.62	0.00	5.58	5.43	0.00	4	
07/12/2013	03:12	Fine	Middle	3	19.50	19.50	19.45	8.22	8.22	8.22	32.86	32.86	32.86	76.6	78.2	77.3	5.83	5.93	5.61	1.23	1.29	1.24	4	4.0
01712/2010	03:13		Middle	3	19.40	19.40	10110	8.22	8.22	0.22	32.86	32.86	02.00	77.1	77.1	77.10	5.35	5.34	0.01	1.20	1.25		4	
09/12/2013	04:53	Fine	Middle	3	21.00	21.00	21.00	8.18	8.18	8.18	33.47	33.47	33.47	78.1	79.8	79.0	5.73	5.85	5.79	1.10	1.31	1.15	17	17.5
00/12/2010	04:54		Middle	3	21.00	21.00	2.100	8.18	8.18	0.10	33.47	33.47	00.17	79.0	79.0	7 0.0	5.79	5.79	0.70	1.11	1.09	0	18	
11/12/2013	20:54	Cloudy	Middle	3	20.10	20.10	20.10	8.31	8.31	8.31	33.72	33.72	33.76	87.8	88.2	88.0	6.77	6.79	6.80	2.90	2.88	2.92	5	4.0
117.1272010	20:55	Cidady	Middle	3	20.10	20.10	20110	8.31	8.31	0.0 .	33.79	33.79	00.70	88.3	87.6	00.0	6.90	6.73	0.00	2.93	2.97	2.02	3	
13/12/2013	23:03	Cloudy	Middle	3	20.30	20.30	20.30	8.26	8.26	8.26	33.55	33.55	33.56	79.9	80.9	80.6	5.93	6.00	5.98	2.22	2.31	2.24	<2	<2
10,12,2010	23:04	Cidady	Middle	3	20.30	20.30	20.00	8.26	8.26	0.20	33.56	33.56	00.00	81.1	80.6	00.0	6.02	5.98	0.00	2.16	2.27	2.2 .	<2	
17/12/2013	00:53	Cloudy	Middle	3	17.40	17.40	17.40	8.33	8.33	8.33	33.27	33.27	33.27	79.7	81.7	80.7	6.25	6.41	6.33	2.21	2.35	2.24	14	13.0
	00:54	,	Middle	3	17.40	17.40		8.33	8.33		33.27	33.27		80.4	80.9		6.32	6.35		2.19	2.22		12	
19/12/2013	01:40	Fine	Middle	3	16.00	16.00	15.98	8.33	8.33	8.33	33.40	33.44	33.42	80.8	81.4	81.5	6.53	6.59	6.59	2.64	2.32	2.43	10	8.0
	01:41		Middle	3	15.90	16.00		8.33	8.33		33.44	33.41		81.7	81.9		6.60	6.62		2.36	2.40		6	
21/12/2013	02:23	Fine	Middle	3	17.50	17.50	17.50	8.27	8.27	8.28	33.28	33.29	33.29	81.5	82.7	82.1	6.39	6.48	6.43	2.70	2.73	2.72	3	3.5
	02:24		Middle	3	17.50	17.50		8.28	8.28		33.29	33.29		82.5	81.7		6.46	6.39		2.76	2.67		4	
24/12/2013	03:33	Fine	Middle	3	16.60	16.60	16.60	8.25	8.25	8.26	32.77	32.78	32.78	82.4	82.8	83.1	6.39	6.42	6.54	1.30	1.53	1.34	4	4.0
	03:34		Middle	3	16.60	16.60		8.27	8.27		32.79	32.79		83.6	83.4		6.68	6.66		1.24	1.28		4	
26/12/2013	06:44	Fine	Middle	3	16.40	16.40	16.35	8.23	8.23	8.24	32.45	32.45	32.46	84.0	84.5	85.2	6.76	6.81	6.86	1.51	1.35	1.42	4	3.5
	06:45		Middle	3	16.30	16.30		8.24	8.24		32.46	32.46		86.0	86.1		6.93	6.93		1.40	1.42		3	
28/12/2013	20:58	Fine	Middle	4	15.40	15.40	15.40	8.38	8.38	8.38	34.05	34.05	34.05	89.2	89.1	89.3	7.25	7.28	7.27	3.89	3.62	3.52	2	2.5
	20:59	-	Middle	4	15.40	15.40		8.38	8.38		34.05	34.05		89.3	89.5		7.26	7.27		3.29	3.26		3	
30/12/2013	23:26	Fine	Middle	3	16.10	16.10	16.10	8.32	8.32	8.32	32.06	32.06	32.29	83.8	84.1	84.3	7.12	7.14	7.16	1.64	1.61	1.65	4	4.0
	23:27	-	Middle	3	16.10	16.10		8.32	8.32	-	32.52	32.52		84.7	84.6		7.19	7.18	-	1.68	1.66		4	

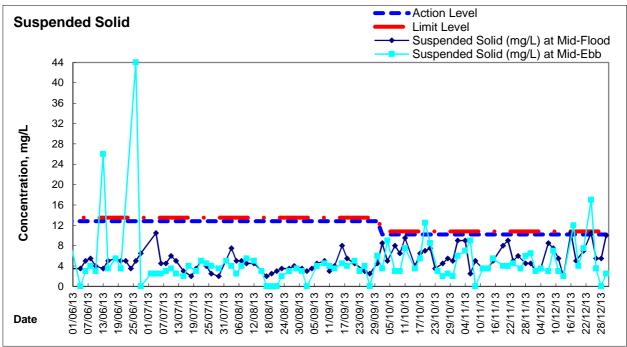
Water Monitoring Result at WSD17 - Quarry Bay Mid-Ebb Tide

Date	Time	Weater Condition	Samplin	g Depth	Wat	er Temp °C	erature		pН			Salinit	у	D	O Satur	ation		DO mg/L			Turbid		Suspend	led Solids
		Condition	n	n	Va		Average	Va	lue	Average	Va	lue	Average	Va		Average	Va		Average	Va	lue	Average		Average
00/40/0040	23:40	Ein -	Middle	3	19.80	19.80	40.75	8.19	8.19	0.40	33.16	33.16	00.40	75.6	75.8	75.0	5.68	5.71	F 70	3.29	3.55	0.45	3	0.5
02/12/2013	23:41	Fine	Middle	3	19.70	19.70	19.75	8.19	8.19	8.19	33.16	33.16	33.16	76.2	75.6	75.8	5.73	5.68	5.70	3.51	3.46	3.45	4	3.5
04/12/2013	13:33	Fine	Middle	3	21.60	21.60	21.60	8.11	8.11	8.12	32.39	32.39	32.45	95.0	93.1	92.8	6.94	6.80	6.75	6.21	6.19	6.20	6	6.0
04/12/2013	13:34	rille	Middle	3	21.60	21.60	21.00	8.13	8.13	0.12	32.50	32.50	32.43	91.6	91.5	92.6	6.69	6.56	0.75	6.20	6.21	6.20	6	6.0
07/12/2013	02:45	Fine	Middle	3	19.10	19.10	19.05	8.29	8.29	8.29	32.55	32.55	32.73	79.0	79.3	79.4	6.07	6.08	6.03	3.60	3.70	3.72	8	8.0
01/12/2013	02:46	Tille	Middle	3	19.00	19.00	13.03	8.28	8.28	0.23	32.91	32.91	32.73	79.6	79.6	75.4	6.08	5.87	0.03	3.78	3.80	5.72	8	0.0
09/12/2013	04:21	Fine	Middle	3	21.00	21.00	21.00	8.19	8.19	8.19	33.33	33.33	33.33	77.5	79.3	79.2	5.58	5.84	5.71	2.28	2.26	2.30	19	11.5
00/12/2010	04:22	T IIIC	Middle	3	21.00	21.00	21.00	8.19	8.19	0.10	33.33	33.33	00.00	79.5	80.5	70.2	5.53	5.90	0.71	2.30	2.35	2.00	4	11.0
11/12/2013	20:37	Cloudy	Middle	3	20.20	20.20	20.20	8.28	8.28	8.28	33.49	33.49	33.49	79.6	81.4	80.9	5.96	6.05	6.03	3.54	3.31	3.35	6	5.0
11/12/2010	20:38	Cioday	Middle	3	20.20	20.20	20.20	8.28	8.28	0.20	33.49	33.49	00.40	81.6	80.9	00.0	6.07	6.02	0.00	3.28	3.25	0.00	4	0.0
13/12/2013	22:40	Cloudy	Middle	3	20.30	20.30	20.30	8.23	8.23	8.23	33.51	33.51	33.51	77.6	77.4	77.7	5.75	5.74	5.76	2.28	2.22	2.30	<2	<2
10/12/2010	22:41		Middle	3	20.30	20.30	20.00	8.23	8.23	0.20	33.50	33.50	00.01	77.9	77.8		5.78	5.77	0.10	2.34	2.36	2.00	<2	
17/12/2013	00:31	Cloudy	Middle	3	17.40	17.40	17.40	8.32	8.32	8.32	33.46	33.46	33.47	81.0	81.0	81.3	6.25	6.25	6.30	3.70	3.48	3.45	11	11.0
	00:32		Middle	3	17.40	17.40		8.32	8.32		33.47	33.47		81.5	81.7		6.29	6.41		3.34	3.26		11	
19/12/2013	01:15	Fine	Middle	3	15.70	15.70	15.70	8.33	8.33	8.33	32.38	32.38	32.38	76.4	76.9	77.1	6.23	6.28	6.29	3.71	3.59	3.50	4	4.0
	01:16		Middle	3	15.70	15.70		8.33	8.33		32.38	32.38		77.5	77.5		6.32	6.32		3.35	3.33		4	
21/12/2013	01:55	Fine	Middle	3	17.10	17.10	17.10	8.23	8.23	8.24	32.56	32.56	32.57	73.8	75.4	75.7	5.81	5.93	5.95	5.17	5.21	5.19	3	4.0
	01:56		Middle	3	17.10	17.10		8.24	8.24		32.58	32.58		76.4	77.0		6.01	6.06		5.20	5.18		5	
24/12/2013	03:08	Fine	Middle	3	16.60	16.60	16.60	8.32	8.32	8.32	33.79	33.79	33.79	79.5	79.1	79.5	6.31	6.28	6.31	2.94	2.90	2.89	6	6.5
	03:09		Middle	3	16.60	16.60		8.32	8.32		33.79	33.79		79.6	79.9		6.32	6.34		2.88	2.85		7	
26/12/2013	05:54	Fine	Middle	3	16.40	16.40	16.40	8.32	8.32	8.32	33.73	33.73	33.73	80.1	80.4	80.4	6.39	6.41	6.41	2.77	2.81	2.83	4	4.0
	05:55		Middle	3	16.40	16.40		8.32	8.32		33.73	33.73		80.5	80.4		6.42	6.41		2.85	2.89		4	
28/12/2013	20:13	Fine	Middle	4	15.40	15.40	15.40	8.38	8.38	8.38	32.61	32.61	32.61	81.4	81.1	80.9	5.67	5.67	5.66	4.80	4.63	4.49	4	4.0
	20:14		Middle	4	15.40	15.40		8.38	8.38		32.61	32.61		80.4	80.8		5.69	5.62		4.20	4.33		4	
30/12/2013	22:53	Fine	Middle	3	16.00	16.00	16.00	8.32	8.32	8.32	33.75	33.75	33.76	79.2	79.2	79.6	6.38	6.37	6.41	3.04	3.10	3.11	6	5.5
	22:54		Middle	3	16.00	16.00		8.32	8.32		33.76	33.76		79.9	80.1		6.44	6.45		3.13	3.16		5	

Water Monitoring Result at WSD21 - Wan Chai Mid-Ebb Tide

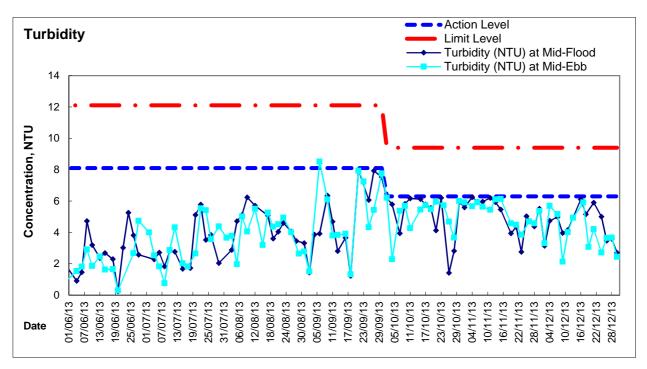
Date	Time	Weater Condition		ng Depth	Wat	er Temp	erature		pH -			Salinit	ту	D	O Satur	ation		DO ma/L			Turbid			ded Solids
			r	m	Va	llue	Average	Va	ılue	Average	Va		Average	Va	lue	Average	Va	lue	Average	Va	alue	Average	Value	Average
02/12/2013	23:23	Fine	Middle	3	20.80	20.80	20.70	8.43	8.43	8.42	34.77	34.77	34.77	58.2	57.9	57.7	4.26	4.24	4.23	2.32	2.44	2.39	3	3.5
02/12/2010	23:25	Tille	Middle	3	20.60	20.60	20.70	8.40	8.40	0.42	34.77	34.77	04.77	57.5	57.3	01.1	4.22	4.21	4.20	2.42	2.39	2.00	4	0.0
04/12/2013	14:01	Fine	Middle	2	21.10	21.10	21.10	8.10	8.10	8.11	34.92	34.92	34.92	67.9	68.2	68.1	4.93	4.96	4.96	3.98	3.99	4.00	3	3.0
04/12/2010	14:03	Tille	Middle	2	21.10	21.10	21.10	8.11	8.11	0.11	34.92	34.92	04.02	68.0	68.4	00.1	4.95	4.99	4.50	4.01	4.02	4.00	3	0.0
07/12/2013	02:25	Fine	Middle	2	20.60	20.60	20.60	8.34	8.34	8.34	34.52	34.52	34.52	62.5	62.8	63.1	4.59	4.61	4.63	2.02	2.01	2.02	6	6.5
01712/2010	02:27	10	Middle	2	20.60	20.60	20.00	8.34	8.34	0.0 .	34.52	34.52	0 1102	63.4	63.6	00	4.66	4.67		2.02	2.01	2.02	7	0.0
09/12/2013	06:31	Fine	Middle	2	21.20	21.20	21.20	8.33	8.33	8.33	33.57	33.54	33.56	60.5	60.9	60.7	4.42	4.44	4.43	3.30	3.30	3.30	5	10.5
00/12/2010	06:33	10	Middle	2	21.20	21.20	21120	8.33	8.33	0.00	33.57	33.54	00.00	60.6	60.7	00.1	4.42	4.43		3.30	3.30	0.00	16	10.0
11/12/2013	18:15	Cloudy	Middle	2	20.60	20.60	20.60	8.09	8.09	8.10	32.54	32.54	32.54	78.6	78.3	78.3	5.82	5.85	5.82	5.02	4.99	5.00	3	2.5
11/12/2010	18:17	Cidady	Middle	2	20.60	20.60	20.00	8.11	8.11	0.10	32.54	32.54	02.0	78.2	77.9	7 0.0	5.81	5.79	0.02	5.00	4.98	0.00	2	2.0
13/12/2013	21:58	Cloudy	Middle	2	20.70	20.70	20.70	8.16	8.16	8.16	31.89	31.89	31.90	71.9	73.0	73.0	5.36	5.46	5.45	3.16	3.15	3.16	2	2.0
10/12/2010	22:00	Cidady	Middle	2	20.70	20.70	20.70	8.16	8.16	0.10	31.90	31.90	01.00	72.9	74.3	7 0.0	5.47	5.52	0.10	3.16	3.15	0.10	2	2.0
17/12/2013	23:53	Cloudy	Middle	2	19.40	19.40	19.40	8.13	8.13	8.13	30.69	30.72	30.71	71.0	68.1	69.7	5.45	5.24	5.37	4.15	4.12	4.13	10	10.0
	23:55	,	Middle	2	19.40	19.40		8.13	8.13		30.70	30.71		71.2	68.3		5.49	5.28		4.10	4.13		10	
19/12/2013	01:31	Fine	Middle	2	17.60	17.60	17.50	8.22	8.22	8.22	31.73	31.73	31.72	74.6	74.3	73.7	5.88	5.85	5.85	4.86	4.84	4.83	5	5.0
.0,	01:33		Middle	2	17.40	17.40		8.21	8.21		31.71	31.71	•	73.0	72.8		5.83	5.82		4.80	4.81		5	
21/12/2013	02:46	Fine	Middle	2	18.30	18.30	18.28	8.20	8.20	8.20	31.85	31.85	31.85	68.4	68.1	67.9	5.32	5.30	5.29	5.22	5.18	5.16	3	3.0
	02:48		Middle	2	18.30	18.20		8.19	8.19		31.84	31.84		67.7	67.3		5.28	5.25		5.14	5.11		3	
24/12/2013	04:24	Fine	Middle	2	17.30	17.30	17.20	8.17	8.17	8.17	31.33	31.33	31.31	69.5	69.1	68.9	5.54	5.52	5.51	3.63	3.58	3.57	6	6.0
	04:26		Middle	2	17.10	17.10		8.17	8.17		31.29	31.29		68.7	68.3		5.50	5.48		3.54	3.52		6	
26/12/2013	05:38	Fine	Middle	2	17.70	17.70	17.45	8.18	8.18	8.18	32.67	32.67	32.66	79.6	79.1	78.9	6.25	6.22	6.21	4.75	4.74	4.69	5	4.5
	05:40		Middle	2	17.20	17.20		8.18	8.18		32.64	32.64		78.7	78.2		6.20	6.18		4.65	4.62		4	
28/12/2013	21:38	Fine	Middle	3	16.10	16.10	16.05	8.31	8.31	8.31	32.93	32.93	32.94	87.6	87.3	87.3	7.08	7.06	7.06	3.56	3.50	3.49	2	2.5
	21:40		Middle	3	16.00	16.00		8.31	8.31		32.94	32.94		87.2	87.0		7.06	7.04		3.47	3.42		3	
30/12/2013	23:28	Fine	Middle	2	16.70	16.70	16.65	8.26	8.26	8.27	31.91	31.91	31.91	76.8	76.4	76.3	6.17	6.15	6.14	4.73	4.73	4.68	3	4.0
	23:30		Middle	2	16.60	16.60		8.27	8.27		31.90	31.90		76.1	75.9		6.13	6.11		4.66	4.61		5	

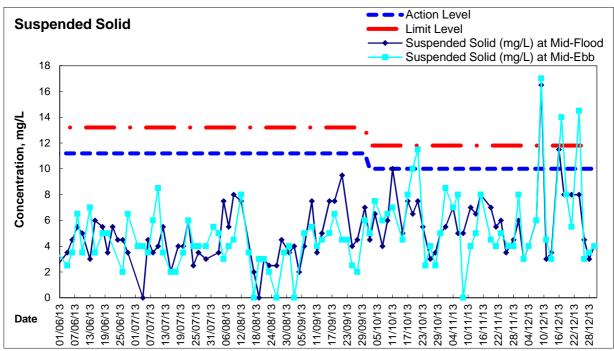



Water Monitoring Result at WSD19 - Sheung Wan Mid-Ebb Tide

Date	Time	Weater Condition		ng Depth	Wat	er Temp °C	erature		pH -			Salinit	у	D	O Satur	ation		DO ma/L			Turbid NTU			ded Solids
			r	n	Va	lue	Average	Va	lue	Average	Va		Average	Va	lue	Average	Va	lue	Average	Va	alue	Average	Value	Average
02/12/2013	00:38	Fine	Middle	2	20.00	19.80	19.85	8.21	8.21	8.21	33.21	33.23	33.17	77.8	77.9	78.1	5.84	5.84	5.86	4.73	4.90	4.77	3	3.0
02/12/2010	00:39	Tillo	Middle	2	19.80	19.80	10.00	8.21	8.21	0.21	32.99	33.26	00.17	78.4	78.2	70.1	5.88	5.87	0.00	4.70	4.76	4.11	3	0.0
04/12/2013	14:30	Fine	Middle	3	21.80	21.80	21.90	8.22	8.22	8.20	32.51	32.51	32.52	83.9	84.1	83.3	6.08	6.09	6.04	6.41	6.55	6.49	8	8.0
04/12/2010	14:32	Tillo	Middle	3	22.00	22.00	21.00	8.18	8.18	0.20	32.52	32.52	02.02	83.1	82.2	00.0	6.01	5.99	0.04	6.50	6.48	0.40	8	0.0
07/12/2013	03:40	Fine	Middle	2	19.40	19.40	19.40	8.09	8.09	8.10	32.95	32.95	32.97	73.5	74.3	74.1	5.56	5.63	5.56	4.01	3.97	4.00	5	5.0
01,12,2010	03:41	0	Middle	2	19.40	19.40		8.11	8.11	0.10	32.98	32.98	02.07	74.0	74.4		5.50	5.54	0.00	4.04	3.98		5	0.0
09/12/2013	05:30	Fine	Middle	2	20.90	20.90	20.90	8.09	8.09	8.10	33.13	33.13	33.13	70.4	70.5	71.7	5.18	5.18	5.27	3.88	3.90	3.80	18	12.5
00/12/2010	05:31	0	Middle	2	20.90	20.90	20.00	8.10	8.10	0.10	33.13	33.13	55.15	73.5	72.3		5.41	5.32	0.2.	3.75	3.65	0.00	7	12.0
11/12/2013	21:35	Cloudy	Middle	2	20.20	20.20	20.20	8.26	8.26	8.26	33.38	33.38	33.40	77.4	77.9	78.2	5.76	5.78	5.82	5.41	5.30	5.15	6	6.0
11,12,2010	21:36	Ciouay	Middle	2	20.20	20.20	20.20	8.26	8.26	0.20	33.41	33.41	55.15	78.9	78.6	10.2	5.87	5.85	0.02	4.92	4.97	0.10	6	0.0
13/12/2013	23:35	Cloudy	Middle	2	20.40	20.40	20.40	8.22	8.22	8.22	33.64	33.64	33.64	79.7	79.3	79.4	5.90	5.87	5.88	3.28	3.25	3.29	2	2.0
10/12/2010	23:36	Cioudy	Middle	2	20.40	20.40	20.10	8.21	8.21	0.22	33.64	33.64	00.01	79.3	79.4		5.87	5.86	0.00	3.30	3.34	0.20	2	2.0
17/12/2013	01:20	Cloudy	Middle	2	17.30	17.30	17.30	8.32	8.32	8.32	33.41	33.41	33.41	74.6	74.7	74.8	5.86	5.86	5.87	5.00	4.98	4.89	9	9.5
	01:21		Middle	2	17.30	17.30		8.31	8.31		33.41	33.41		75.1	74.8		5.89	5.87		4.83	4.73		10	
19/12/2013	02:08	Fine	Middle	2	16.30	16.30	16.30	8.32	8.32	8.32	33.48	33.48	33.48	79.0	78.6	78.5	6.33	6.30	6.29	3.67	3.60	3.66	6	5.5
	02:09		Middle	2	16.30	16.30		8.31	8.31		33.47	33.47		78.1	78.2		6.26	6.27		3.70	3.68		5	
21/12/2013	02:51	Fine	Middle	2	17.30	17.30	17.30	8.33	8.33	8.33	33.64	33.64	33.64	76.0	75.4	75.6	6.96	5.91	6.18	3.25	3.18	3.19	4	4.0
	02:52		Middle	2	17.30	17.30		8.33	8.33		33.64	33.64		75.1	75.7		5.89	5.94		3.14	3.19	0.10	4	
24/12/2013	04:07	Fine	Middle	2	16.70	16.70	16.70	8.30	8.30	8.30	33.74	33.74	33.74	74.9	75.5	75.4	5.94	5.99	5.98	4.07	4.02	3.82	9	8.5
	04:08		Middle	2	16.70	16.70		8.30	8.30		33.74	33.74		75.5	75.5		5.99	5.99		3.63	3.54		8	
26/12/2013	05:19	Fine	Middle	2	16.00	16.00	16.00	8.15	8.15	8.16	33.55	33.55	33.56	75.9	76.5	76.3	6.11	6.16	6.15	2.40	2.36	2.46	5	4.0
	05:20	-	Middle	2	16.00	16.00		8.16	8.16		33.56	33.56		76.7	76.2		6.17	6.14		2.43	2.65		3	
28/12/2013	21:55	Fine	Middle	2	15.50	15.50	15.50	8.35	8.35	8.35	33.78	33.78	33.78	83.4	83.5	83.3	6.76	6.77	6.76	6.10	6.01	5.80	7	7.0
	21:56		Middle	2	15.50	15.50		8.34	8.34		33.78	33.78		83.4	83.0		6.78	6.74		5.41	5.68		7	
30/12/2013	00:25	Fine	Middle	2	16.20	16.20	16.20	8.32	8.32	8.32	32.80	32.80	32.80	78.1	79.2	78.8	6.61	6.70	6.61	5.06	5.00	5.03	6	6.0
	00:26		Middle	2	16.20	16.20		8.31	8.31		32.79	32.79		78.9	79.1		6.55	6.59		5.03	5.02		6	

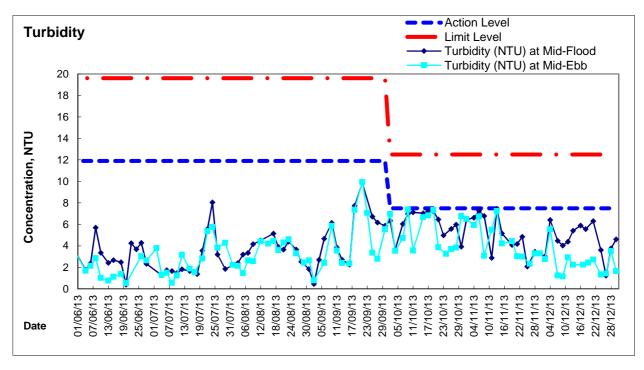
Graphic Presentation of Water Quality Result of WSD9 - Tai Wan

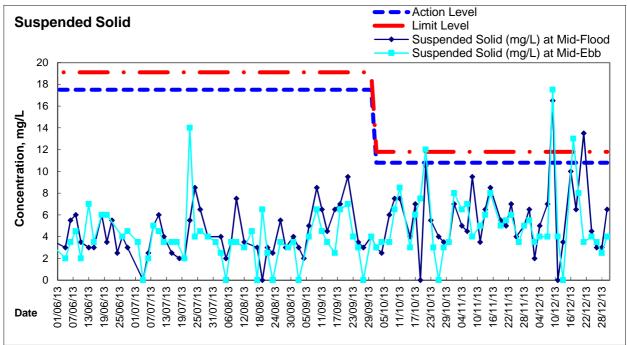




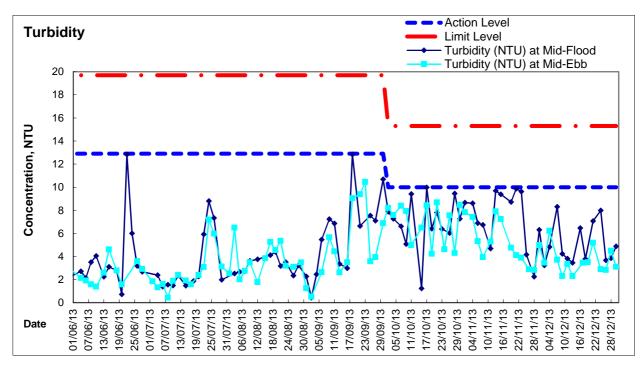
- Two sets of Suspended Solid Action and Limit levels for the dry season (October to March) and wet season (April to September).
- New sets of Turbidity and SS Action Level and Limit Level for dry and wet season were approved by EPD on 19 Oct 2011

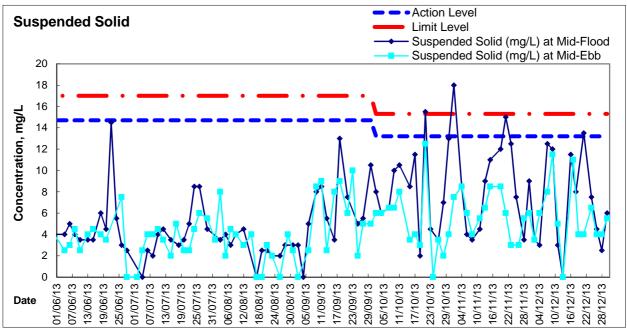
Graphic Presentation of Water Quality Result of WSD10 - Cha Kwo Ling





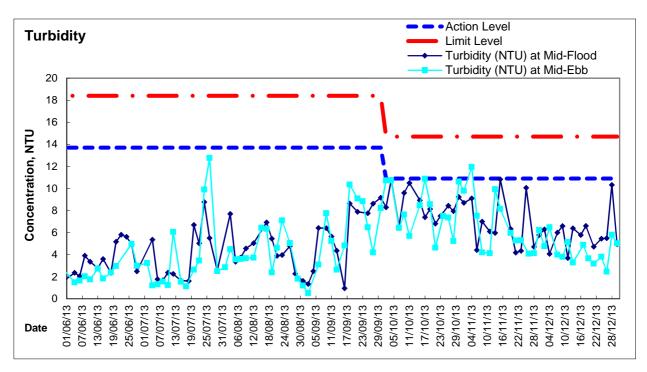
- Two sets of Suspended Solid Action and Limit levels for the dry season (October to March) and wet season (April to September).
- New sets of Turbidity and SS Action Level and Limit Level for dry and wet season were approved by EPD on 19 Oct 2011

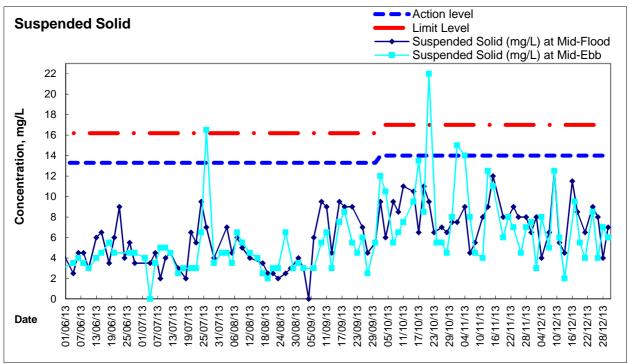

Graphic Presentation of Water Quality Result of WSD15 - Sai Wan Ho



- Two sets of Suspended Solid Action and Limit levels for the dry season (October to March) and wet season (April to September).
- New sets of Turbidity and SS Action Level and Limit Level for dry and wet season were approved by EPD on 19 Oct 2011

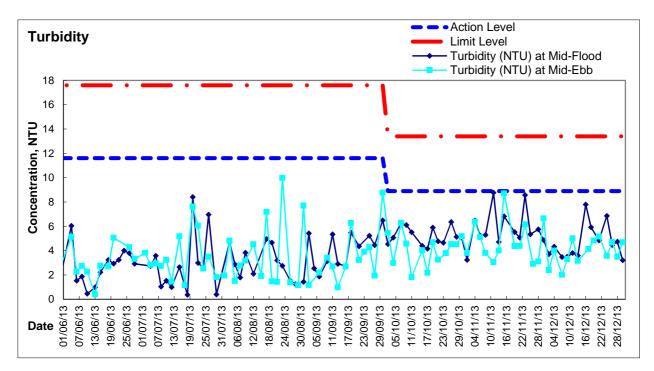
Graphic Presentation of Water Quality Result of WSD17 - Quarry Bay

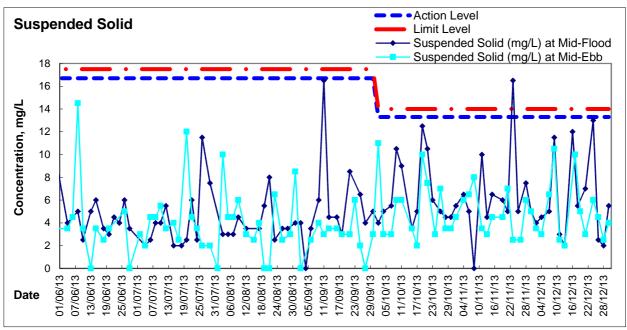




- Two sets of Suspended Solid Action and Limit levels for the dry season (October to March) and wet season (April to September).
- New sets of Turbidity and SS Action Level and Limit Level for dry and wet season were approved by EPD on 19 Oct 2011

Graphic Presentation of Water Quality Result of WSD19 - Sheung Wan





- Two sets of Suspended Solid Action and Limit levels for the dry season (October to March) and wet season (April to September).
- New sets of Turbidity and SS Action Level and Limit Level for dry and wet season were approved by EPD on 19 Oct 2011

Graphic Presentation of Water Quality Result of WSD21 - Wan Chai

- Two sets of Suspended Solid Action and Limit levels for the dry season (October to March) and wet season (April to September).
- New sets of Turbidity and SS Action Level and Limit Level for dry and wet season were approved by EPD on 19 Oct 2011

Appendix 5.3

Event and Action Plan

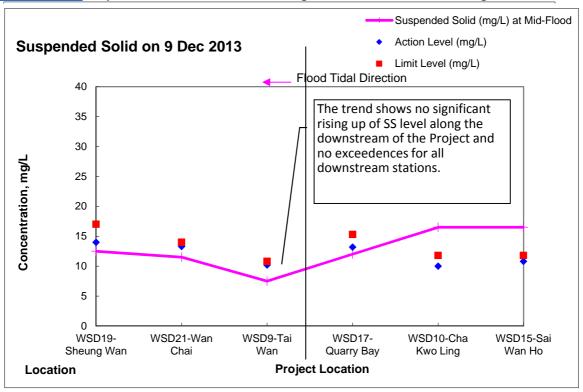
Event and Action Plan for Construction Noise

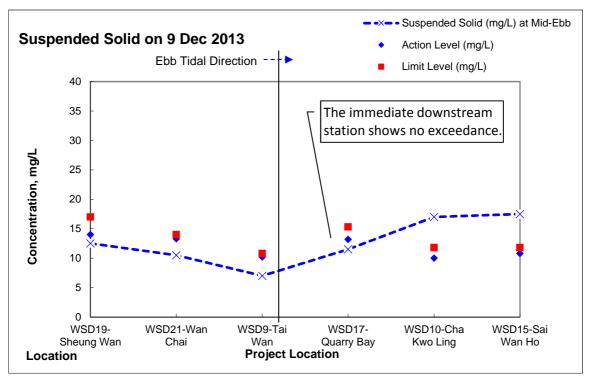
EVENT	ACTION			
	ET	IC(E)	ER	CONTRACTOR
Action Level	 Notify IEC and Contractor; Carry out investigation; Report the results of investigation to the IEC, ER and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness. 	1. Review the analysed results submitted by the ET; 2. Review the proposed remedial measures by the Contractor and advise the ER accordingly; 3. Supervise the implementation of remedial measures.	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented. 	Submit noise mitigation proposals to IEC; Implement noise mitigation proposals.
Limit Level	 Identify source; Inform IEC, ER, EPD and Contractor; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IEC, ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures.	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. Require Contractor to propose remedial measures for the analysed noise problem; 4. Ensure remedial measures properly implemented; 5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IEC within 3 working days of notification; 3. Implement the agreed proposals; 4. Submit further proposal if problem still not under control; 5. Stop the relevant portion of works as instructed by the ER until the exceedance is abated.

Event and Action Plan for Marine Water Quality

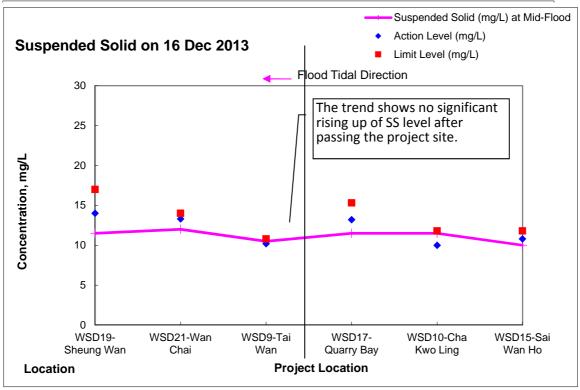
EVENT		ACTION	N		
	ET	IEC	ER	CONTRACTOR	
Action level being exceeded by one sampling day	 Repeat in-situ measurement to confirm findings; Identify source(s) of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor; (The above actions should be taken within 1 working day after the exceedance is identified) Repeat measurement on next day of exceedance. 	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented. (The above actions should be taken within 1 working day after the exceedance is identified)	1. Inform the ER and confirm notification of the non-compliance in writing; 2. Rectify unacceptable practice; 3. Check all plant and equipment; 4. Review the working methods and consider additional measures such as use of frame-type silt curtain, deployment of double silt curtains, slowing down, or rescheduling of works; 5. Discuss with ET and IEC and propose mitigation measures to IEC and ER; 6. Implement the agreed mitigation measures. 7. (The above actions should be taken within 1 working day after the exceedance is identified)	
Action level being exceeded by more than one consecutive sampling days	Identify source(s) of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC and Contractor;	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER	Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented; Assess the effectiveness	Inform the Engineer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and	

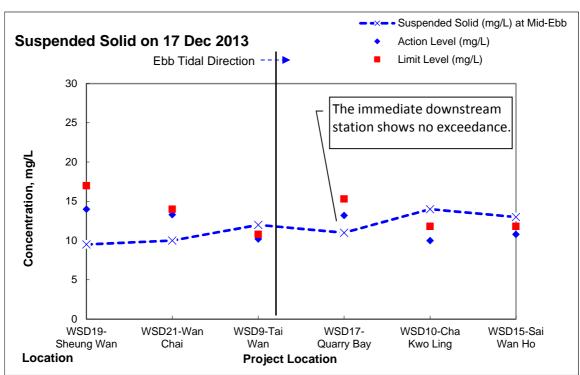
EVENT	ACTION			
	ET	IEC	ER	CONTRACTOR
	5. Ensure mitigation measures are implemented; 6. Prepare to increase the monitoring frequency to daily; 7. (The above actions should be taken within 1 working day after the exceedance is identified) 8. Repeat measurement on next working day of exceedance.	accordingly; 3. Assess the effectiveness of the implemented mitigation measures. 4. (The above actions should be taken within 1 working day after the exceedance is identified)	of the implemented mitigation measures. 4. (The above actions should be taken within 1 working day after the exceedance is identified)	equipment; 4. Review the working methods and consider additional measures such as use of frametype silt curtain, deployment of double silt curtains, slowing down, or rescheduling of works; 5. Discuss with ET and IEC and propose mitigation measures to IEC and ER within 3 working days; 6. Implement the agreed mitigation measures. 7. (The above actions should be taken within 1 working day after the exceedance is identified)

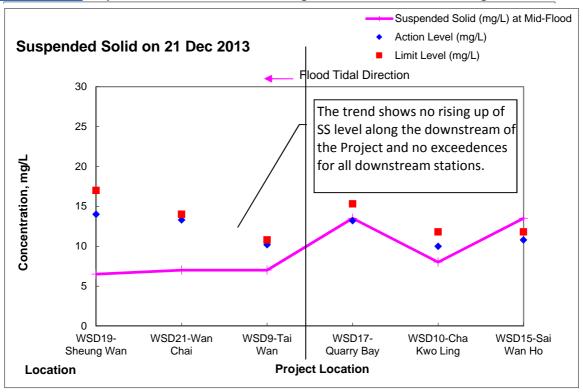

EVENT	ACTION			
	ET	IEC	ER	CONTRACTOR
Limit level being exceeded by one sampling day	1. Repeat in-situ measurement to confirm findings; 2. Identify source(s) of impact; 3. Inform IEC, Contractor and EPD; 4. Check monitoring data, all plant, equipment and Contractor's working methods; 5. Discuss mitigation measures with IEC, ER and Contractor; 6. Ensure mitigation measures are implemented; 7. Increase the monitoring frequency to daily until no exceedance of Limit Level. 8. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	1. Inform the Engineer and confirm notification of the non-compliance in writing; 2. Rectify unacceptable practice; 3. Check all plant and equipment; 4. Review the working methods and consider additional measures such as use of frametype silt curtain, deployment of double silt curtains, slowing down, or rescheduling of works; 5. Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days; 6. Implement the agreed mitigation measures. 7. (The above actions should be taken within 1 working day after the exceedance is identified)

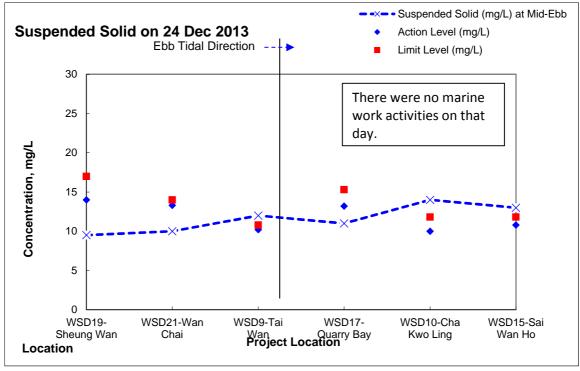


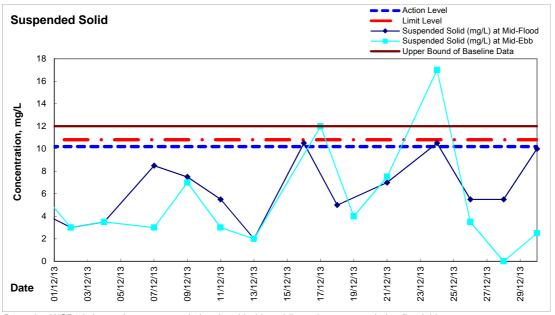
EVENT	ACTION			
	ET	IEC	ER	CONTRACTOR
Limit level being exceeded by more than one consecutive sampling days	 Identify source(s) of impact; Inform IEC, Contractor and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, ER and Contractor; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit level for two consecutive days. (The above actions should be taken within 1 working day after the exceedance is identified) 	1. Discuss with ET and Contractor on the mitigation measures; 2. Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; 3. Assess the effectiveness of the implemented mitigation measures. 4. (The above actions should be taken within 1 working day after the exceedance is identified)	1. Discuss with IEC, ET and Contractor on the proposed mitigation measures; 2. Request Contractor to critically review the working methods; 3. Make agreement on the mitigation measures to be implemented; 4. Assess the effectiveness of the implemented mitigation measures; 5. Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the marine work until no exceedance of Limit level. 6. (The above actions should be taken within 1 working day after the exceedance is identified)	1. Inform the ER and confirm notification of the non-compliance in writing; 2. Rectify unacceptable practice; 3. Check all plant and equipment; 4. Review the working methods and consider additional measures such as use of frametype silt curtain, deployment of double silt curtains, slowing down, or rescheduling of works; 5. Discuss with ET, IEC and ER and propose mitigation measures to IEC and ER within 3 working days; 6. Implement the agreed mitigation measures; 7. As directed by the Engineer, to slow down or to stop all or part of the marine work or construction activities. 8. (The above actions should be taken within 1 working day after the exceedance is identified)


Appendix 5.4

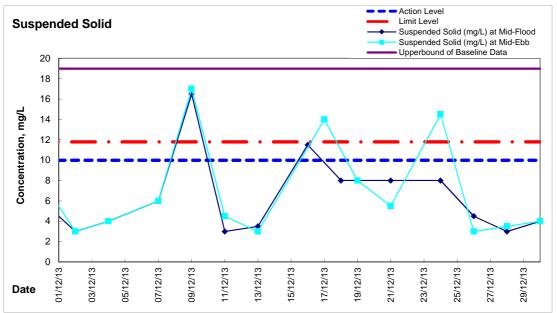




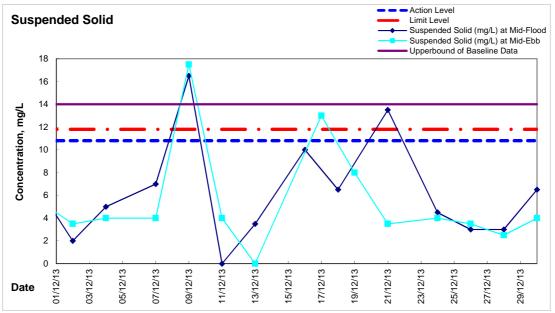




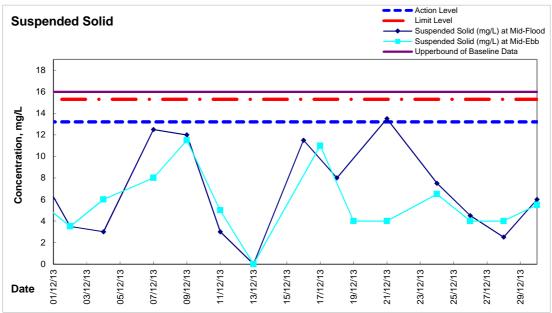
Appendix 5.5


Graphic Presentation of Water Quality Result with respect to Local Variation

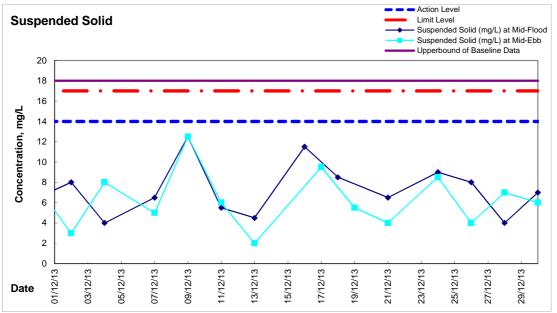
Graphic Presentation of Water Quality Result of WSD9 - Tai Wan with respect to Local Variation


Remarks: WSD9 is located at upstream during the ebb tides while at downstream during flood tides.

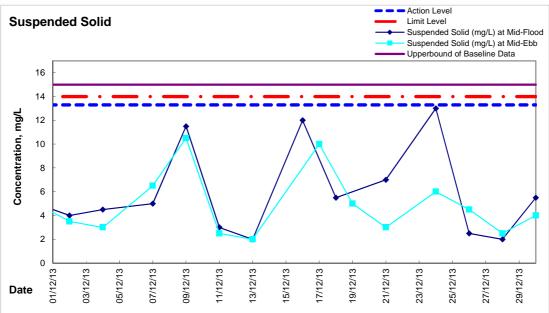
Graphic Presentation of Water Quality Result of WSD10 - Cha Kwo Ling with respect to Local Variation


Remarks: WSD10 is located at upstream during the flood tides while at downstream during ebb tides.

Graphic Presentation of Water Quality Result of WSD15 - Sai Wan Ho with respect to Local Variation


Remarks: WSD15 is located at upstream during the flood tides while at downstream during ebb tides.

Graphic Presentation of Water Quality Result of WSD17 - Quarry Bay with respect to Local Variation

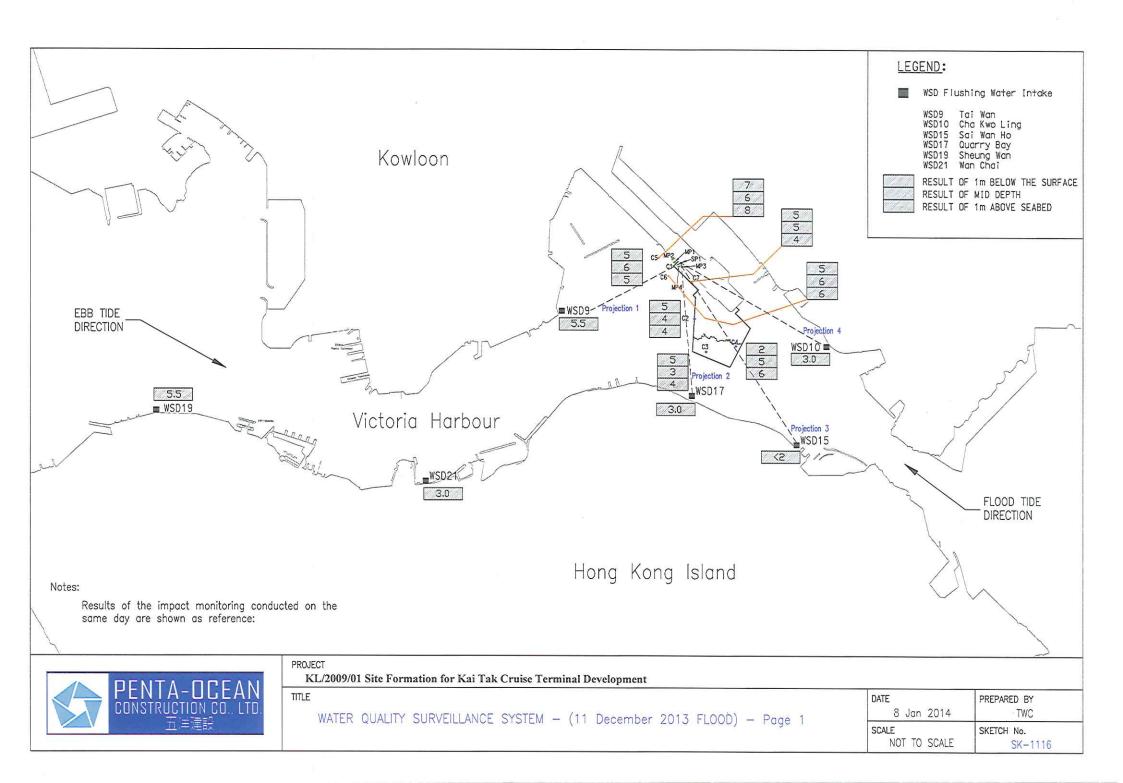

Remarks: WSD17 is located at upstream during the flood tides while at downstream during ebb tides.

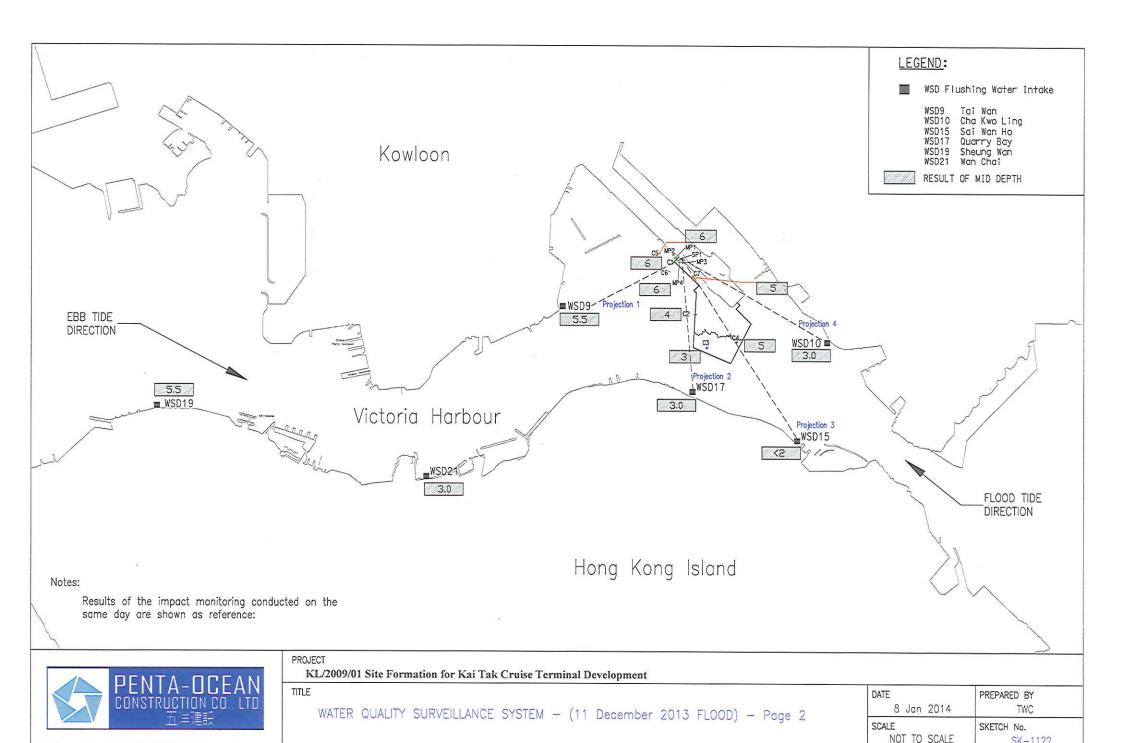
Graphic Presentation of Water Quality Result of WSD19 - Sheung Wan with respect to Local Variation

Remarks: WSD19 is located at upstream during the ebb tides while at downstream during flood tides.

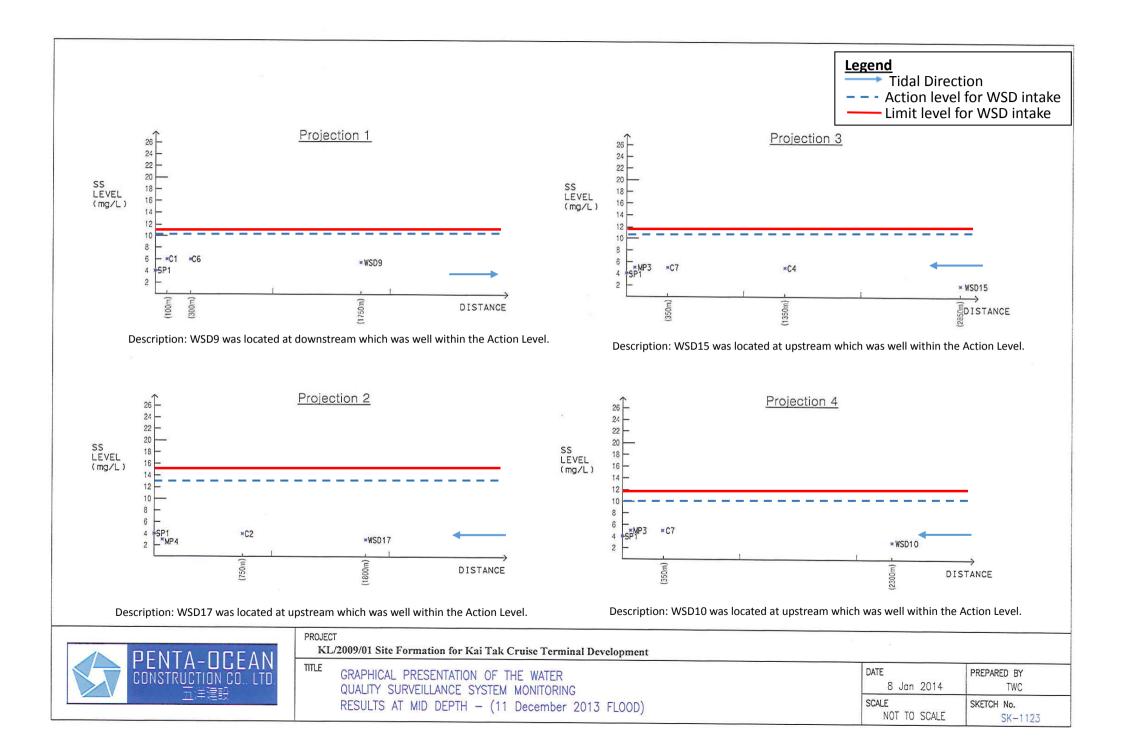
Graphic Presentation of Water Quality Result of WSD21 - Wan Chai with respect to Local Variation

Remarks: WSD21 is located at upstream during the ebb tides while at downstream during flood tides.

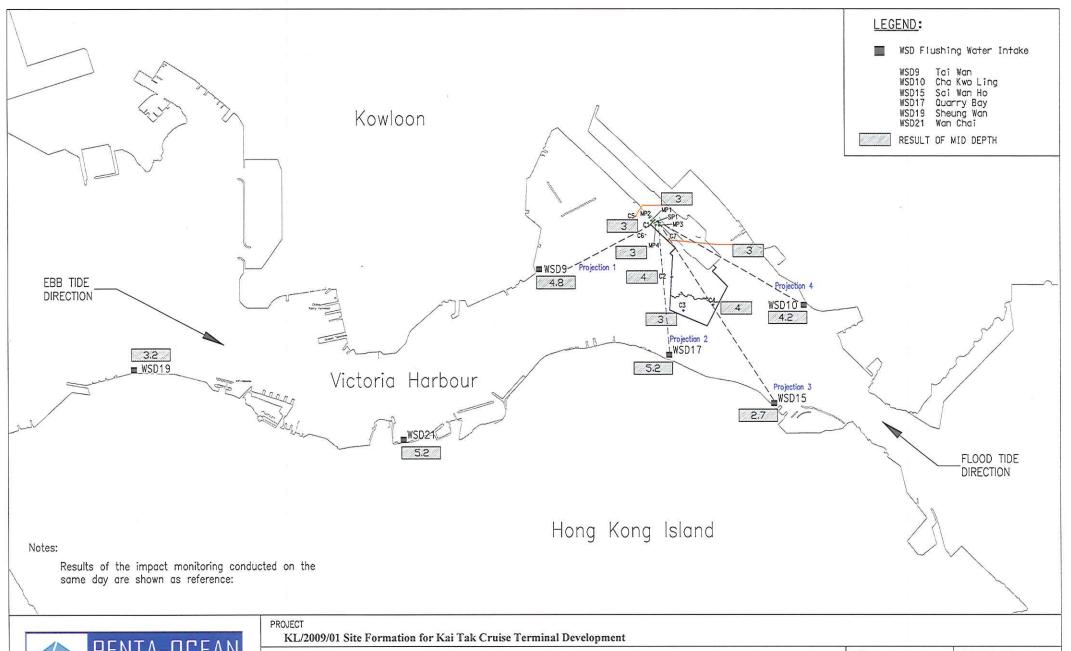

Appendix 5.6


Graphical Presentation of Water Quality Surveillance System

Water Quality Surveillance System Monitoring Results - 11 December 2013 (Flood Tide)


Moni	toring Location	Turbidity in NTU	Compare to Trigger Level	Suspended Solids in mg/L	Compare to Trigger Level
	1m below the surface	1.69	N/A	4	N/A
SP1	mid depth	2.78	N/A	4	N/A
	1m above the seabed	2.41	N/A	5	N/A
	1m below the surface	1.88	N/A	4	N/A
MP1	mid depth	1.52	N/A	4	N/A
	1m above the seabed	1.64	N/A	8	N/A
	1m below the surface	1.06	N/A	4	N/A
MP2	mid depth	2.84	N/A	6	N/A
	1m above the seabed	2.81	N/A	4	N/A
	1m below the surface	1.63	N/A	6	N/A
MP3	mid depth	2.46	N/A	5	N/A
	1m above the seabed	2.69	N/A	7	N/A
	1m below the surface	2.47	N/A	5	N/A
MP4	mid depth	1.84	N/A	3	N/A
	1m above the seabed	1.70	N/A	4	N/A
	1m below the surface	2.27	Lower	5	Lower
C1	mid depth	2.14	Lower	6	Lower
	1m above the seabed	2.84	Lower	5	Lower
	1m below the surface	2.48	Lower	5	Lower
C2	mid depth	2.48	Lower	4	Lower
	1m above the seabed	2.38	Lower	4	Lower
	1m below the surface	2.10	Lower	5	Lower
C3	mid depth	2.48	Lower	3	Lower
	Im above the seabed	2.27	Lower	4	Lower
	1m below the surface	1.58	Lower	2	Lower
C4	mid depth	1.62	Lower	. 5	Lower
	1m above the seabed	1.48	Lower	6	Lower
	1m below the surface	3.12	N/A	7	N/A
C5	mid depth	2.62	N/A	6	N/A
	Im above the seabed	2.94	N/A	8	N/A
	1m below the surface	2.74	N/A	5	N/A
C6	mid depth	2.73	N/A	6	N/A
	1m above the seabed	2.75	N/A	6	N/A
	1m below the surface	2.00	N/A	5	N/A
C7	mid depth	2.78	N/A	5	N/A
	1m above the seabed	2.58	N/A	4	N/A

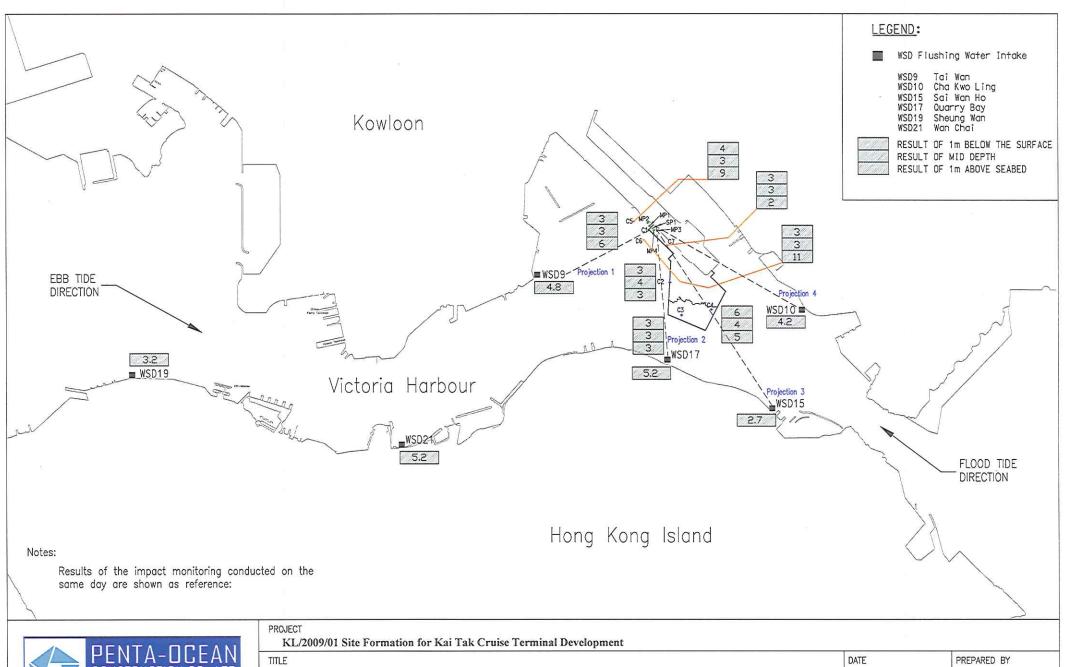
Control Point	Trigger Level for Turbidity in NTU for All Season	Trigger Level for SS in mg/L for Dry Season (October - March)
C1	12.3 for Flood Tide	
C2	12.3 for Flood Tide	14.0
C3	16.9	14.0
C4	10.5 for Ebb Tide	


SK-1122

Water Quality Surveillance System Monitoring Results - 20 December 2013 (Ebb Tide)

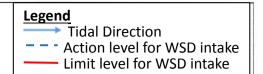
Monit	toring Location	Turbidity in NTU	Compare to Trigger	Suspended Solids in mg/L	Compare to Trigger
MALES VIET SEA	1m below the surface	2.65	N/A	5	N/A
SP1	mid depth	2.41	N/A	4	N/A
	Im above the seabed	4.41	N/A	5	N/A
	Im below the surface	2.90	N/A	4	N/A
MP1	mid depth	3.01	N/A	11	N/A
	1m above the seabed	2.37	N/A	11	N/A
	1m below the surface	2.26	N/A	5	N/A
MP2	mid depth	4.11	N/A	5	N/A
	1m above the seabed	2.39	N/A	4	N/A
	1m below the surface	2.52	N/A	7	N/A
MP3	mid depth	3.19	N/A	5	N/A
	1m above the seabed	3.66	N/A	4	N/A
	1m below the surface	2.26	N/A	5	N/A
MP4	mid depth	4.73	N/A	3	N/A
	1m above the seabed	4.50	N/A	3	N/A
	1m below the surface	4.07	Lower	3	Lower
C1	mid depth	4.65	Lower	3	Lower
	1m above the seabed	3.44	Lower	6	Lower
	1m below the surface	2.76	Lower	3	Lower
C2	mid depth	1.62	Lower	4	Lower
	1m above the seabed	2.52	Lower	3	Lower
	1m below the surface	6.63	Lower	3	Lower
C3	mid depth	4.82	Lower	3	Lower
	1m above the seabed	4.54	Lower	3	Lower
	1m below the surface	1.49	Lower	6	Lower
C4	mid depth	1.75	Lower	4	Lower
-4	1m above the seabed	2.25	Lower	5	Lower
	1m below the surface	3.06	N/A	4	N/A
C5	mid depth	2.74	N/A	3	N/A
	1m above the seabed	2.35	N/A	9	N/A
	1m below the surface	3.11	N/A	3	N/A
C6	mid depth	3.02	N/A	3	N/A
	1m above the seabed	1.90	N/A	11	N/A
	1m below the surface	3.04	N/A	3	N/A
C7	mid depth	1.95	N/A	3	N/A
	1m above the seabed	2.16	N/A	2	N/A

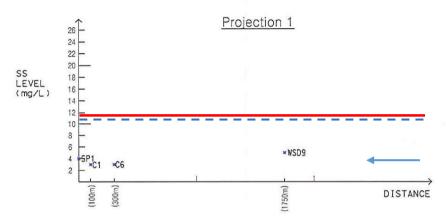
Control Point	Trigger Level for Turbidity in NTU for All Season	Trigger Leve Season	el for SS in mg/L for Dry (October - March)
C1	12.3 for Flood Tide		
C2	12.3 for Flood Tide		14.0
C3	16.9		14.0
C4	10.5 for Ebb Tide		



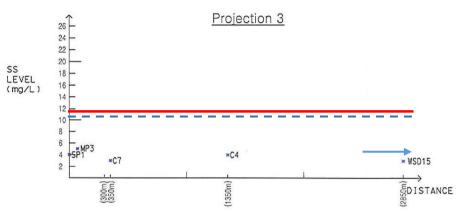
TITLE

WATER QUALITY SURVEILLANCE SYSTEM - (20 December 2013 EBB) - Page 1

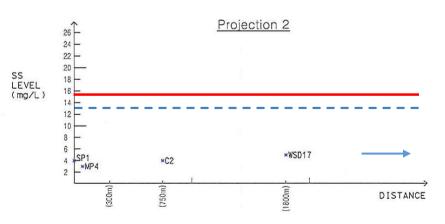

DAT	ΓE	PREPARED BY	
	8 Jan 2014	HP	
SC	ALE	SKETCH No.	_
	NOT TO SCALE	SK-1126	

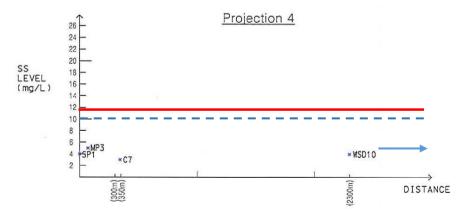


PENTA-DCEAN CONSTRUCTION CO.. LTD. 五洋建設


WATER QUALITY SURVEILLANCE SYSTEM - (20 December 2013 EBB) - Page 2

DATE	PREPARED BY
8 Jan 2014	HP
SCALE	SKETCH No.
NOT TO SCALE	SK-1125




Description: WSD9 was located at upstream which was well within the Action Level.

Description: WSD15 was located at downstream which was well within the Action Level.

Description: WSD17 was located at downstream which was well within the Action Level.

Description: WSD10 was located at downstream which was well within the Action Level.

PROJECT

KL/2009/01 Site Formation for Kai Tak Cruise Terminal Development

GRAPHICAL PRESENTATION OF THE WATER
QUALITY SURVEILLANCE SYSTEM MONITORING
RESULTS AT MID DEPTH — (20 December 2013 EBB)

DATE	PREPARED BY
8 Jan 2014	TWC
SCALE	SKETCH No.
NOT TO SCALE	SK-1127

Appendix 5.7

Details of Notification of Exceedances

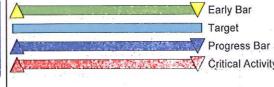
Ref no.	Date	Tidal	Location	Parameters (Unit)	Average	Action Level	Limit Level	Level of Exceedance	Follow-up action	
				. ,						Design of the found of a sufficiency of the sufficiency of the standard contractions
X308	09-Dec-13	Mid-flood	WSD10	SS (mg/L)	16.5	10.0	11.8	Limit Level	Action taken / to be taken: Possible reason: Remarks / Other Obs:	Reviewed the trend of monitoring results and checked contractor's construction activities. Silt screen was inspected and confirmed in a proper condition during the water monitoring. Any abnormal observation should be recorded, but no sign of traceable source was visualized and identified during monitoring. Localized impact or changes in ambient conditions There were no marine works conducted by the contractor on that day. Since WSD10 was located at the upstream of the Project, it is considered that the exceedance was not caused by the Project works. No exceedance in SS was recorded at the next monitoring tide (11 Dec flood-tide was 3.0mg/L). It is concluded that the source of impact may be the variations of water quality in the vinicity of the station or potential discharge from nearby nullah around WSD10 and not related to the project work. Hence, no further mitigation nor repeated measurement under the EAP is required.
X309	09-Dec-13	Mid-flood	WSD15	SS (mg/L)	16.5	10.8	11.8	Limit Level	Action taken / to be taken: Possible reason: Remarks / Other Obs:	Reviewed the trend of monitoring results and checked contractor's construction activities. Silt screen was inspected and confirmed in a proper condition during the water monitoring. Any abnormal observation should be recorded, but no sign of traceable source was visualized and identified during monitoring. Localized impact or changes in ambient conditions There were no marine works conducted by the contractor on that day. Since WSD15 was located at the upstream of the Project, it is considered that the exceedance was not caused by the Project works. No exceedance in SS was recorded at the next monitoring tide (11 Dec flood-tide was <2mg/L). It is concluded that the source of impact may be the variations of water quality in the vinicity of the station or potential discharge from nearby nullah around WSD15 and not related to the project work. Hence, no further mitigation nor repeated measurement under the EAP is required.

Define	Doto	Tidal	Location	Doromotoro (Unit)	Augraga	Action Lovel	Limit Laval	Loyal of Evacadanas	Follow up action	
Ref no.	Date		Location	Parameters (Unit)				Level of Exceedance		
X310	09-Dec-13	Mid-ebb	WSD10	SS (mg/L)	17.0	10.0	11.8	Limit Level	Action taken / to be taken:	Reviewed the trend of monitoring results and checked contractor's construction activities. Silt screen was inspected and confirmed in a proper condition during the water monitoring. Any abnormal observation should be recorded, but no sign of traceable source was visualized and identified during monitoring.
									Possible reason:	Localized impact or changes in ambient conditions.
									Remarks / Other Obs:	There were no marine works conducted by the contractor on that day. At WSD17, the immediate downstream station, there was no exceedance of SS. No further exceedance of SS was recorded in the next monitoring day (11 Dec flood-tide was
										3mg/L). It is concluded that the exceedance was not caused by the Project works and may be caused by variations of water quality in the vicinity of the station, potential
										discharge from nearby nullah. Hence, no further mitigation nor repeated measurement under the EAP is required.
X311	09-Dec-13	Mid-ebb	WSD15	SS (mg/L)	17.5	10.8	11.8	Limit Level	Action taken / to be taken:	Reviewed the trend of monitoring results and checked contractor's construction activities. Silt screen was inspected and confirmed in a proper condition during the water monitoring. Any abnormal observation should be recorded, but no sign of traceable source was visualized and identified during monitoring.
									Possible reason:	Localized impact or changes in ambient conditions.
									Remarks / Other Obs:	There were no marine works conducted by the contractor on that day. At WSD17, the immediate downstream station, there was no exceedance of SS. No further exceedance of SS was recorded in the next monitoring day (11 Dec flood-tide was <2mg/L). It is concluded that the exceedance was not caused by the Project works and may be caused by variations of water quality in the vicinity of the station, potential discharge from nearby nullah. Hence, no further mitigation nor repeated measurement under the EAP is required.

Ref no.	Date	Tidal	Location	Parameters (Unit)	Average	Action Level	Limit Level	Level of Exceedance	Follow-up action	
X312	16-Dec-13	Mid-flood		SS (mg/L)	10.5	10.2	10.8		Action taken / to be taken:	Reviewed the trend of monitoring results and checked contractor's construction
7312	10-Dec-13	IVIIG-IIOOG	WSD9	33 (IIIg/L)	10.5	10.2	10.8	Action Level	Action taken, to be taken.	activities. Silt screen was inspected and confirmed in a proper condition during the water monitoring. Any abnormal observation should be recorded, but no sign of traceable source was visualized and identified during monitoring.
									Possible reason: Remarks / Other Obs:	Localized impact or changes in ambient conditions. There were no marine works conducted by the contractor on that day. There were no rising of SS levels after passing through the project site. The overall SS levels at all stations show a similar magnitude. It is concluded that the exceedance was not caused by the Project works and may be caused by variations of water quality in the vicinity of the station, potential discharge from nearby nullah. Hence, no further mitigation nor repeated measurement under the EAP is required.
X313	16-Dec-13	Mid-flood	WSD10	SS (mg/L)	11.5	10.0	11.8	Action Level	Action taken / to be taken:	Reviewed the trend of monitoring results and checked contractor's construction activities. Silt screen was inspected and confirmed in a proper condition during the water monitoring. Any abnormal observation should be recorded, but no sign of traceable source was visualized and identified during monitoring.
									Possible reason: Remarks / Other Obs:	Localized impact or changes in ambient conditions There were no marine works conducted by the contractor on that day. Since WSD10 was located at the upstream of the Project, it is considered that the exceedance was not caused by the Project works. It is concluded that the source of impact may be the variations of water quality in the vinicity of the station or potential discharge from nearby nullah around WSD10 and not related to the project work. Hence, no further mitigation nor repeated measurement under the EAP is required.

Ref no.	Date	Tidal	Location	Parameters (Unit)	Average	Action Level	Limit Level	Level of Exceedance	Follow-up action	
X314	17-Dec-13	Mid-ebb	WSD9	SS (mg/L)	12.0	10.2	10.8	Limit Level	Action taken / to be taken: Possible reason: Remarks / Other Obs:	Reviewed the trend of monitoring results and checked contractor's construction activities. Silt screen was inspected and confirmed in a proper condition during the water monitoring. Any abnormal observation should be recorded, but no sign of traceable source was visualized and identified during monitoring. Localized impact or changes in ambient conditions There were no marine works conducted by the contractor on that day. Since WSD9 was located at the upstream of the Project, it is considered that the exceedance was not caused by the Project works. It is concluded that the source of impact may be the variations of water quality in the vinicity of the station or potential discharge from nearby nullah around WSD9 and not related to the project work. Hence, no further mitigation nor repeated measurement under the EAP is required.
X315	17-Dec-13	Mid-ebb	WSD10	SS (mg/L)	14.0	10.0	11.8	Limit Level	Action taken / to be taken: Possible reason: Remarks / Other Obs:	Reviewed the trend of monitoring results and checked contractor's construction activities. Silt screen was inspected and confirmed in a proper condition during the water monitoring. Any abnormal observation should be recorded, but no sign of traceable source was visualized and identified during monitoring. Localized impact or changes in ambient conditions. There were no marine works conducted by the contractor on that day. At WSD17, the immediate downstream station, there was no exceedance of SS and no rising of SS level after passing through the project site. It is concluded that the exceedance was not caused by the Project works and may be caused by variations of water quality in the vicinity of the station, potential discharge from nearby nullah. Hence, no further mitigation nor repeated measurement under the EAP is required.
X316	17-Dec-13	Mid-ebb	WSD15	SS (mg/L)	13.0	10.8	11.8	Limit Level	Action taken / to be taken: Possible reason: Remarks / Other Obs:	Reviewed the trend of monitoring results and checked contractor's construction activities. Silt screen was inspected and confirmed in a proper condition during the water monitoring. Any abnormal observation should be recorded, but no sign of traceable source was visualized and identified during monitoring. Localized impact or changes in ambient conditions. There were no marine works conducted by the contractor on that day. At WSD17, the immediate downstream station, there was no exceedance of SS and no rising of SS level after passing through the project site. It is concluded that the exceedance was not caused by the Project works and may be caused by variations of water quality in the vicinity of the station, potential discharge from nearby nullah. Hence, no further mitigation nor repeated measurement under the EAP is required.

Ref no.	Date	Tidal	Location	Parameters (Unit)	Average	Action Level	Limit Level	Level of Exceedance	Follow-up action	
X317	21-Dec-13	Mid-flood	WSD15	SS (mg/L)	13.5	10.8	11.8	Limit Level	Action taken / to be taken:	Reviewed the trend of monitoring results and checked contractor's construction activities. Silt screen was inspected and confirmed in a proper condition during the water monitoring. Any abnormal observation should be recorded, but no sign of traceable source was visualized and identified during monitoring.
									Possible reason: Remarks / Other Obs:	Localized impact or changes in ambient conditions There were no marine works conducted by the contractor on that day. Since WSD15 was located at the upstream of the Project, it is considered that the exceedance was not caused by the Project works. No rising up up of SS level along the downstream of the Project and no exceedences for all downstream stations. It is concluded that the source of impact may be the variations of water quality in the vinicity of the station or potential discharge from
X318	21-Dec-13	Mid-flood	WSD17	SS (mg/L)	13.5	13.2	15.3	Action Level	Action taken / to be taken:	nearby nullah around WSD15 and not related to the project work. Hence, no further mitigation nor repeated measurement under the EAP is required. Reviewed the trend of monitoring results and checked contractor's construction
										activities. Silt screen was inspected and confirmed in a proper condition during the water monitoring. Any abnormal observation should be recorded, but no sign of traceable source was visualized and identified during monitoring.
									Possible reason: Remarks / Other Obs:	Localized impact or changes in ambient conditions There were no marine works conducted by the contractor on that day. Since WSD17 was located at the upstream of the Project, it is considered that the exceedance was not caused by the Project works. No rising up up of SS level along the downstream of the Project and no exceedences for all downstream stations. It is concluded that the source of impact may be the variations of water quality in the vinicity of the station or potential discharge from nearby nullah around WSD17 and not related to the project work. Hence, no further mitigation nor repeated measurement under the EAP is required.


Ref no.	Date	Tidal	Location	Parameters (Unit)	Average	Action Level	Limit Level	Level of Exceedance	Follow-up action	
X319	24-Dec-13	Mid-ebb	WSD9	SS (mg/L)	17.0	10.2	10.8	Limit Level	Action taken / to be taken:	Reviewed the trend of monitoring results and checked contractor's construction activities. Silt screen was inspected and confirmed in a proper condition during the water monitoring. Any abnormal observation should be recorded, but no sign of traceable source was visualized and identified during monitoring.
									Possible reason: Remarks / Other Obs:	Localized impact or changes in ambient conditions There were no marine works conducted by the contractor on that day. Since WSD9 was located at the upstream of the Project, it is considered that the exceedance was not caused by the Project works. No rising up up of SS level along the downstream of the Project and no exceedences for all downstream stations. It is concluded that the source of impact may be the variations of water quality in the vinicity of the station or potential discharge from nearby nullah around WSD9 and not related to the project work. Hence, no further mitigation nor repeated measurement under the EAP is required.
X320	24-Dec-13	Mid-ebb	WSD10	SS (mg/L)	14.5	10.0	11.8	Limit Level	Action taken / to be taken:	Reviewed the trend of monitoring results and checked contractor's construction activities. Silt screen was inspected and confirmed in a proper condition during the water monitoring. Any abnormal observation should be recorded, but no sign of traceable source was visualized and identified during monitoring.
									Possible reason: Remarks / Other Obs:	Localized impact or changes in ambient conditions. There were no marine works conducted by the contractor on that day. At WSD17, the immediate downstream station, there was no exceedance of SS and no rising of SS level after passing through the project site. No further exceedance of SS was recorded in the consecutive monitoring (24 Dec flood tide was 8.0mg/L). It is concluded that the exceedance was not caused by the Project works and may be caused by variations of water quality in the vicinity of the station, potential discharge from nearby nullah. Hence, no further mitigation nor repeated measurement under the EAP is required.
X321	24-Dec-13	Mid-flood	WSD9	SS (mg/L)	10.5	10.2	10.8	Action Level	Action taken / to be taken:	activities. Silt screen was inspected and confirmed in a proper condition during the water monitoring. Any abnormal observation should be recorded, but no sign of traceable source was visualized and identified during monitoring.
									Possible reason: Remarks / Other Obs:	Localized impact or changes in ambient conditions. There were no marine works conducted by the contractor on that day. No further exceedance of SS was recorded in the next monitoring (26 Dec ebb tide was 3.5mg/L). In view of no marine works were conducted on the monitoring date, it is concluded that the exceedance was not caused by the Project works and may be contributed by variations of water quality in the vicinity of the station, potential discharge from nearby nullah. Hence, no further mitigation nor repeated measurement under the EAP is required.

Appendix 9.0

Construction Programme

Activity Description					. 2	*		, 2												2.00					
ID	Activity	Activity	Orig	Farly	Late	Farly	Late	Total	%	2013							(42.3	2014					88612		
Contract Period PD1200 Project Completion 0 0 0 0 0 0 0 0 0	A Company of Company								Company of the Compan		30	,6	13	IN 120	27	3	10	FEB	17	24	3	10	17 17	24	.3
Project Completion 0 0 0 02/01/14* 02/01/14* 0 99 Project Completion Project Completion Project Completion	Site For	mation KT Cruise Terminal Devel	opmen	it												I I									
Project Completion 0 0 0 02/01/14* 02/01/14* 0 99 Project Completion Project Completion	Contract	Period														1									
FW1010 EMSD Installation of Gangway - Phase 2 Berth 53 1911/13 2911/13 2911/13 2911/13 2911/13 2911/13 2911/14 1 99 Temporary Accommodation Tatlogo Servicing of Temp Accommodation for the Engineer 1,406 28/01/10A 28/01/10A 28/01/14 1 99 Temporary Accommodation for the Engineer 1,406 28/01/10A 28/01/10A 28/01/14 1 99 Temporary Accommodation for the Engineer 1,406 28/01/10A 28/01/10A 28/01/14 2 99 Temporary Accommodation for the Engineer 1,406 28/01/10A 28/01/14 2 99 Temporary Accommodation for the Engineer 1,406 28/01/10A 28/01/14 2 99 Temporary Accommodation for the Engineer 1,406 28/01/10A 28/01/14 2 99 Temporary Accommodation for the Engineer 1,406 28/01/14 2 99 Temporary Accommodation for the Engineer 1,406 28/01/14 2 99 Temporary Accommodation for the Engineer 1,406 28/01/14 2 99 Temporary Accommodation for the Engineer 1,406 28/01/14 2 99 Temporary Accommodation for the Engineer 1,406 28/01/14 2 99 Temporary Accommodation for the Engineer 1,406 28/01/14 2 99 Temporary Accommodation for the Engineer 1,406 28/01/14 2 99 Temporary Accommodation for the Engineer 1,407 2 1,	PD1200	Project Completion	0			02/01/14* 0	02/01/14*	0	99	۵		Project Co	mpletion			I 				- 1	48 E II	12 20			
FW1010 EMSD Installation of Gangway - Phase 2 Berth 53 1911/13 2911/13 2911/13 2911/13 2911/13 2911/13 2911/14 1 99 Temporary Accommodation Tatlogo Servicing of Temp Accommodation for the Engineer 1,406 28/01/10A 28/01/10A 28/01/14 1 99 Temporary Accommodation for the Engineer 1,406 28/01/10A 28/01/10A 28/01/14 1 99 Temporary Accommodation for the Engineer 1,406 28/01/10A 28/01/10A 28/01/14 2 99 Temporary Accommodation for the Engineer 1,406 28/01/10A 28/01/14 2 99 Temporary Accommodation for the Engineer 1,406 28/01/10A 28/01/14 2 99 Temporary Accommodation for the Engineer 1,406 28/01/10A 28/01/14 2 99 Temporary Accommodation for the Engineer 1,406 28/01/14 2 99 Temporary Accommodation for the Engineer 1,406 28/01/14 2 99 Temporary Accommodation for the Engineer 1,406 28/01/14 2 99 Temporary Accommodation for the Engineer 1,406 28/01/14 2 99 Temporary Accommodation for the Engineer 1,406 28/01/14 2 99 Temporary Accommodation for the Engineer 1,406 28/01/14 2 99 Temporary Accommodation for the Engineer 1,406 28/01/14 2 99 Temporary Accommodation for the Engineer 1,407 2 1,	Prelimin	aries & General Requirements														l I									
FM/1010 EMSD Installation of Gangway - Phase 2 Berth 53 19/12/13 29	the second second								450							1		gran.	4.13.7					er gebie	
TA1060 Servicing of Temp Accommodation for the Engineer 1,406 28/01/10A 28/01/10A 01/01/14 1 99 VServicing of Temp Accommodation for the Engineer TA1070 Maintenance of Traffic Flow 1,344 28/02/10A 28/02/10A 31/12/13 02/01/14 2 99 VMaintenance of Traffic Flow Environmental and Site Safety Monitoring Estitute of SSP & EMP 1,422 07/12/09A 07/12/09A 07/12/09A 01/01/14 1 99 VMonthly Update of SSP & EMP 1,422 07/12/09A 05/02/10A 05/02/10A 01/01/14 1 99 VMonthly Update of SSP & EMP 1,380 05/02/10A 05/02/10A 01/01/14 02/01/14 1 99 VMonthly Update of SSP & EMP 1,424 07/12/09A 05/02/10A 01/01/14 02/01/14 1 99 VMonthly Update of SSP & EMP 1,425 07/12/09A 05/02/10A 01/01/14 02/01/14 1 99 VMonthly Update of SSP & EMP 1,425 07/12/09A 05/02/10A 05/02/10A 01/01/14 02/01/14 1 99 VMonthly Update of SSP & EMP 1,425 07/12/09A 05/02/10A 01/01/14 02/01/14 1 99 VMonthly Update of SSP & EMP 1,425 07/12/09A 05/02/10A	IFW1010	EMSD Installation of Gangway - Phase 2 Berth	53	19/12/13	29/12/13	23/12/13 0	02/01/14	10	90	EMSD I	nstallati	ion of Gangwa	y - Phase 2 E	Berth		1		e ²¹ 24			€.				
TA1070 Maintenance of Traffic Flow 1,344 28/02/10A 31/12/13 02/01/14 2 99	Temporary A				, , , ×											1	Tar. Sal		6. 1. S. C.	1	. 183.2.		e de constituir de la c	1 455	
Environmental and Site Safety Monitoring Es1050 Monthly Update of SSP & EMP 1,422 07/12/09A 07/12/09A 07/12/09A 01/01/14 1 99 ES1110 Impact Monitoring for Water Quality 1,380 05/02/10A 05/02/10A 05/02/10A 01/01/14 1 99 Mobilization & Site Clearance MP1020 Routine Site Cleanliness and Tidiness 1,484 30/11/09A 30/11/09A 02/01/14 02/01/14 0 99 MP1080 Disposal of Surplus C&D Material 695 10/03/10A 10/03/10A 25/12/13 02/01/14 8 99 Portion NPA (Bay NDA) Miscellaneous Work	TA1060	Servicing of Temp Accommodation for the Engineer			-		Section Control of the	1	99						the Enginee	er _i		1 2 4	10.10	-					
ES1050 Monthly Update of SSP & EMP 1,422 07/12/09A 07/12	TA1070	Maintenance of Traffic Flow	1,344	28/02/10A	28/02/10A	31/12/13 0)2/01/14	2	99		YN	Maintenance o	f Traffic Flow			-	1 201 2 24 25 1		191 . 7		50°				
ES110 Impact Monitoring for Water Quality 1,380 05/02/10A 05/02/10A 01/01/14 02/01/14 1 99 Mobilization & Site Clearance MP1020 Routine Site Cleanliness and Tidiness 1,484 30/11/09A 30/11/09A 02/01/14 02/01/14 0 99 MP1060 Disposal of Surplus C&D Material 695 10/03/10A 10/03/10A 25/12/13 02/01/14 8 99 Section 4 - Portions MQ4, LS3, NDA & DZB Roviton NDA (Bay NDA) Miscellaneous Work	Environmen	tal and Site Safety Monitoring							1			-													
Mobilization & Site Clearance MP1020 Routine Site Cleanliness and Tidiness 1,484 30/11/09A 30/11/09A 02/01/14 02/01/14 0 99 MP1060 Disposal of Surplus C&D Material 695 10/03/10A 10/03/10A 25/12/13 02/01/14 8 99 Section 4 - Portions MQ4, LS3, NDA & DZB Portion NDA (Bay NDA) Miscellaneous Work	ES1050	Monthly Update of SSP & EMP	1,422	07/12/09A	07/12/09A	01/01/14 0)2/01/14	1	99				720 7200			i									
MP1020 Routine Site Cleanliness and Tidiness 1,484 30/11/09A 30/11/09A 02/01/14 02/01/14 0 99 Routine Site Cleanliness and Tidiness	ES1110	Impact Monitoring for Water Quality	1,380	05/02/10A	05/02/10A	01/01/14 0)2/01/14	1	99		1	Impact Monit	oring for Wa	ter Quality			* * * * * * * * * * * * * * * * * * * *		-						
MP1060 Disposal of Surplus C&D Material 695 10/03/10A 10/03/10A 25/12/13 02/01/14 8 99 VDisposal of Surplus C&D Material Section 4 - Portions MQ4, LS3, NDA & DZB Portion NDA (Bay NDA) Miscellaneous Work	Mobilization	1 & Site Clearance										88				1		To a					ed se		× ,
Section 4 - Portions MQ4, LS3, NDA & DZB Portion NDA (Bay NDA) Miscellaneous Work	MP1020	Routine Site Cleanliness and Tidiness	1,484	30/11/09A	30/11/09A	02/01/14 0)2/01/14	0	99					s and Tidines	SS	-									
Portion NDA (Bay NDA) Miscellaneous Work	MP1060	Disposal of Surplus C&D Material	695	10/03/10A	10/03/10A	25/12/13 0)2/01/14	8	99	VDisp	osal of	Surplus C&D	Material			- L									
Miscellaneous Work	Section 4	- Portions MQ4, LS3, NDA & DZB														1								5.7	
	Portion NDA	(Bay NDA)						21111113								1									
SW.41.6030 Surface Drainage & Fencing Erection 28 19/12/13 31/12/13 21/12/13 02/01/14 12 90 Surface Drainage & Fencing Erection		Col. Care Care Care Care Care Care Care Care									.					E .	*			arin en					
	SW.41.6030	Surface Drainage & Fencing Erection	28	19/12/13	31/12/13	21/12/13 0	02/01/14	12	90	Surface Dra	ainage 8	& Fencing Ere	tion							أحجا					

Penta-Ocean Construction Co., Ltd.

CEDD Contract No. KL/2009/01 Site Formation for Kai Tak Cruise Terminal Development Three Months Rolling Programme (January 2014 to March 2014)

Sheet 1 of 1	Start Date		
	Finish Date		
	Data Date		
	Run Date		
	1		

30/11/09						
02/01/14	Date	1.1	- Revision	on .	Checked	Approved
19/12/13	31/05/11	K.			TM	WT
31/12/13 13:42	10/10/12	La .	4.1	1 3 70	TT	KT
01/12/10 10.42	1 1 100	50.0	1,000	74.5	i di x	· . · · . · . · . · . · .
	-4-0		99 3			