Zhen Hua Engineering Co., Ltd

Contract No. KL/2013/01

Site Formation for Kai Tak Cruise Terminal Development – Remaining Works

Monthly EM&A Report July 2015 (Version 1.0)

Certified By

(Environmental Team Leader)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: <u>info@cinotech.com.hk</u>

TABLE OF CONTENTS

	1.	age
EX	ECUTIVE SUMMARY	1
Intr	oduction	1
	ironmental Monitoring and Audit Progress	
	aches of Action and Limit Levels	
Futi	re Key Issues	2
1	INTRODUCTION	3
Pur	pose of the report	3
Stru	cture of the report	3
2	PROJECT INFORMATION	4
Bac	kground	4
	ect Organisation	
Con	struction Programme	5
Sun	nmary of Construction Works Undertaken During Reporting Month	5
Stat	us of Environmental Licences, Notification and Permits	6
3	NOISE MONITORING	7
4	WATER QUALITY MONITORING	8
Moi	nitoring Requirements	
	nitoring Locations	
	nitoring Equipment	
	nitoring Parameters, Frequency	
	nitoring Methodology	
	rumentation	
	rating/Analytical Procedures	
_	oratory Analytical Methods	
	QC Requirements	
	ntenance and Calibration	
Res	ults and Observations	13
Eve	nt and Action Plan	. 13
5	WATER QUALITY SURVEILLANCE SYSTEM	14
Inte	rpretation of monitoring results	14
6	ENVIRONMENTAL SITE INSPECTION	16
Site	Audits	16
	lementation Status of Environmental Mitigation Measures	
_	rice on the Solid and Liquid Waste Management Status	
7	ENVIRONMENTAL NON-CONFORMANCE (EXCEEDANCES)	18
Sun	nmary of Exceedances	
	nmary of Environmental Complaint	
Sun	nmary of Notification of Summons and Successful Prosecution	18
8	FUTURE KEY ISSUES	19
Kev	Issues in the Coming Month	19
Moi	nitoring Schedule for the Next Month	19
	struction Programme for the Next Month	

9	CONCL	USIONS AND RECOMMENDATIONS	20
Rec	ommenda	tions	20
LIS	ST OF TA	BLES	
Tab	le I	Summary Table for Monitoring Activities under Project in the Reporting Month	
Tab	le II	Summary Table for Events Recorded in the Reporting Month	
	le 2.1	Key Contacts of the Project	
	le 2.2	Status of Environmental Licences, Notification and Permits	
Tab	le 3.1	Planned Noise Monitoring Stations during Construction Phase	
Tab	le 4.1	Location for Marine Water Quality Monitoring Locations	
Tab	le 4.2	Water Quality Monitoring Equipment	
Tab	le 4.3	Water Quality Monitoring Parameters and Frequency	
Tab	le 4.4	Methods for Laboratory Analysis for Water Samples	
Tab	le 5.1	Monitoring Stations for Water Quality Surveillance System	
Tab	le 6.1	Observations and Recommendations of Site Audit	
Tab	le 6.2	Summary of Marine Sediment in Reporting Month	
LIS	T OF FIG	GURE	
Fig	ure 1	Site Layout Plan	
_	ure 2	Locations of Water Quality Monitoring Stations	
_	ure 3	Planned Noise Monitoring Stations during Construction Phase	
_	ure 4	Project Organisation for Environmental Works	
	ure 5.1	Locations of Monitoring Stations for Water Quality Surveillance Syst	em
115	u10 5.1	8 July 2015 (Typical arrangement)	C111
Figu	ure 5.2	Locations of Monitoring Stations for Water Quality Surveillance Syst	em
Fio	ure 5.3	(8 July 2015) Locations of Monitoring Stations for Water Quality Surveillance Syst	em
115	u10 3.3	24 July 2015 (Typical arrangement)	C111
Figu	ure 5.4	Locations of Monitoring Stations for Water Quality Surveillance Syst	em
		(24 July 2015)	
LIS	ST OF AP	PENDICES	
Apr	endix A	Construction Programme	
	endix B	Action and Limit Levels	
	endix C	Copies of Calibration Certificates	
	endix D	Water Quality Monitoring Schedules	
	endix E	Water Quality Monitoring Results	
	endix F	Water Quality Monitoring Results of Water Quality Surveillance System	
	endix G	Event Action Plans	
	endix H	Summary of Exceedance	
	oendix I	Site Audit Summary	
	endix J	Updated Environmental Mitigation Implementation Schedule	
	oendix K	Complaint Log	

EXECUTIVE SUMMARY

Introduction

1. This is the 4th monthly Environmental Monitoring and Audit (EM&A) Report prepared by Cinotech Consultants Limited for the project "Contract No. KL/2013/01 – Site Formation for Kai Tak Cruise Terminal Development – Remaining Works" (hereinafter called the "Project"). This report documents the findings of EM&A Works conducted in July 2015.

Environmental Monitoring and Audit Progress

2. A summary of the monitoring activities under the Project in this reporting month is listed in **Table I** below:

Table I Summary Table for Monitoring Activities under Project in the Reporting Month

Parameter(s)	Date(s)
Water Quality Monitoring	2 nd , 4 th , 6 th , 8 th , 10 th , 13 th , 15 th , 17 th , 20 th , 22 nd , 24 th , 27 th , 29 th and 31 st July 2015
Environmental Site Inspection	7 th , 16 th , 21 st and 28 th July 2015

Breaches of Action and Limit Levels

3. Summary of the environmental exceedances of the reporting month is tabulated in **Table II**.

Table II Summary Table for Events Recorded in the Reporting Month

	Parameter	No. of Ex	ceedance	related Dredging	ceedance I to the Activities Project
Environmental Monitoring		Action Level	Limit Level	Action Level	Limit Level
	Turbidity	0	0	0	0
	Suspended Solids (SS)	0	0	0	0

Water Quality

4. All water quality monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Noise Monitoring

5. Due to the non-existence of planned NSRs during the reporting period, no noise monitoring was required to be conducted at the planned noise monitoring locations NM1 and NM2.

Complaint Log

6. No environmental complaints were received in the reporting month.

Notification of Summons and Successful Prosecutions

7. No notification of summons and successful prosecution was received in the reporting month.

Reporting Changes

8. This report has been developed in compliance with the reporting requirements for the monthly EM&A Report as required by the EM&A Manual for Dredging Works for Proposed Cruise Terminal at Kai Tak (EM&A Manual).

Future Key Issues

- 9. Major site activities for the coming reporting month will include:
 - (a) Dredging works
 - (b) Fencing erection
 - (c) Sorting and breaking of C&D Materials for further disposal off site
 - (d) Delivery of C&D Materials for further disposal off site
 - (e) Refuse collection at Cha Kwo Ling WSD Flushing Water Intakes
 - (f) Maintenance of silt curtains & silt screen

1 INTRODUCTION

- 1.1 Cinotech Consultants Limited (Cinotech) was appointed by Zhen Hua Engineering Co., Ltd (hereinafter called "the Contractor") as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during dredging works of the Contract No. KL/2013/01 Site Formation for Kai Tak Cruise Terminal Development Remaining Works (hereinafter called the "Project") in accordance with EP Conditions 2.1.
- 1.2 The dredging works under the Project was commenced on 6th May 2015.

Purpose of the report

1.3 This is the 4th EM&A report which summarises the monitoring results and audit findings for the EM&A programme in July 2015.

Structure of the report

- 1.4 The structure of the report is as follows:
 - Section 1: **Introduction -** purpose and structure of the report.
 - Section 2: **Project Information** summarises background and scope of the Project, site description, project organization and contact details, construction programme, the construction works undertaken and the status of Environmental Permits/Licenses during the reporting month.
 - Section 3: **Noise Monitoring -** summarises the monitoring programmes and monitoring locations.
 - Section 4: **Water Quality Monitoring -** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 5: **Water Quality Surveillance System -** summarises the monitoring locations, monitoring results and analytical results.
 - Section 6: **Environmental Site Inspection -** summarises the audit findings of the weekly site inspections undertaken within the reporting month.
 - Section 7: **Environmental Non-conformance** summarises any monitoring exceedance, environmental complaints, environmental summons and successful prosecutions within the reporting month.
 - Section 8: **Future Key Issues -** summarises the impact forecast and monitoring schedule for the next three months.

Section 9: Conclusions and Recommendation

2 PROJECT INFORMATION

Background

- 2.1 The former Kai Tak Airport located in the south-eastern part of Kowloon Peninsula was the international airport of Hong Kong. The Kai Tak Airport had come into operations since 1920s. The operation of the Kai Tak Airport was ceased and replaced by the new airport at Chek Lap Kok in July 1998. After closure, the disused airport site has been occupied by various temporary uses, including a golf driving range on the runway area.
- 2.2 In 2002, the Chief Executive in Council approved the Kai Tak Outline Zoning Plans (No. S/K19/3 and S/K21/3) to provide the statutory framework to proceed with the South East Kowloon Development at the former Kai Tak Airport. However, following the judgment of the Court of Final Appeal in January 2004 regarding the Harbour reclamation, the originally proposed development which involves reclamation has to be reviewed. The Kai Tak Planning Review (KTPR) has resulted with a Preliminary Outline Development Plan (PODP) for Kai Tak in October 2006. Subsequently, the Administration announced in October 2006 a plan to implement a cruise terminal at Kai Tak, as part of the development.
- 2.3 Development of the cruise terminal at Kai Tak would require dredging at the existing seawall at the southern tip of the former Kai Tak Airport runway for construction of a quay deck structure for two berths, and dredging the seabed fronting the new quay to provide necessary manoeuvring basin. The general layout of the proposed cruise terminal construction is shown in **Figure 1**.
- 2.4 The Site Formation for Kai Tak Cruise Terminal Development Project involves a dredging operation exceeding 500,000m³ for construction and operation of the proposed cruise terminal at Kai Tak and is therefore classified as a Designated Project under Item C.12, Part I, Schedule 2 of the Environmental Impact Assessment Ordinance (EIAO). An Environmental Impact Assessment (EIA) Study for the Project has been undertaken in accordance with the EIA Study Brief (No. ESB-159/2006) and the Technical Memorandum on Environmental Impact Assessment Process (EIAO-TM).
- 2.5 Stage 1 dredging and removal and reconstruction of existing seawall were completed. Part of Stage 2 dredging works were commenced on 20th April 2014 and also completed in August 2014. The Remaining Works for Stage 2 dredging works were commenced on 6th May 2015 and was in progress.

Project Organisation

- 2.6 Different parties with different levels of involvement in the Project organization include:
 - Project Proponent Civil Engineering and Development Department (Kowloon Development Office) (CEDD)
 - Engineer's Representative (ER) AECOM Consulting Services Limited
 - Contractor Zhen Hua Engineering Co., Ltd (ZHEC)
 - Environmental Team (ET) Cinotech Consultants Ltd. (Cinotech)
 - Independent Environmental Checker (IEC) Fugro (HK) Limited (Furgo)
- 2.7 The proposed project organization and lines of communication with respect to the onsite environmental management structure are shown in **Figure 4**. The key personnel

contact names and numbers are summarized in Table 2.1.

Table 2.1 Key Contacts of the Project

Party	Role	Position	Name	Phone No.	Fax No.
CEDD	Project Proponent	Senior Engineer	Ms. Esther Yung	2301 1302	2301 1277
AECOM Consulting Services Limited	Engineer's Representative	Resident Engineer	Mr. Tsui Shiu Kai	2148 7638	2148 7277
		Project Manager	Mr. YF Cho	9493 9201	2379 5931
ZHEC	Contractor	Site Agent	Mr. Joe Cheung	9263 6339	
		Environmental Officer	Mr. CK Kwan	9506 3074	2379 5931
Fugro	Independent Environmental Checker (IEC)	IEC	Mr. Joseph Poon	2450 8238	2450 6138
Cinotech	Environmental Team Leader (ETL)	ETL	Dr. Priscilla Choy	2151 2089	3107 1388

Construction Programme

2.8 A copy of Contractor's construction programme is provided in **Appendix A**.

Summary of Construction Works Undertaken During Reporting Month

- 2.9 The major site activities undertaken in the reporting month included:
 - (a) Dredging works
 - (b) Fencing erection
 - (c) Sorting and breaking of C&D Materials for further disposal off site
 - (d) Refuse collection at Cha Kwo Ling WSD Flushing Water Intakes
 - (e) Maintenance of silt curtains & silt screen

Status of Environmental Licences, Notification and Permits

2.10 A summary of the relevant permits, licences, and/or notifications on environmental protection for this Project is presented in **Table 2.2**.

Table 2.2 Status of Environmental Licences, Notification and Permits

Downit / License No	Valid Period		Chatara	
Permit / License No.	From	To	Status	
Environmental Permit (EP)				
EP-328/2009/A	15/06/2009	N/A	Valid	
Construction Noise Permit (CNP)				
GW-RE0414-15	05/05/2015 (19:00)	04/11/2015 (23:00)	Valid	
Marine Dumping Permit				
EP/MD/15-261 (Type 1 – Open Sea Disposal)	30/04/2015	29/10/2015	Valid	

3 NOISE MONITORING

- 3.1 In accordance with the EIA Report and the EM&A Manual, it is anticipated that construction activities, if unmitigated, would not cause any adverse noise impact to the nearest NSRs in the vicinity of the work site. The predicted noise levels at the NSRs would comply with construction noise criteria.
- 3.2 These nearest NSRs are designated for construction noise monitoring as listed in Table 3.1 and **Figure 3**.

Table 3.1 Planned Noise Monitoring Stations during Construction Phase

Monitoring Stations	Description
NM1	Planned Residential Development (R3 site)
NM2	Planned Residential Development (R3 site)

3.3 As per Section 3.1.1 of the EM&A Manual states that "Noise levels shall be monitored to evaluate the construction noise impact if there is any planned noise sensitive receivers (NSRs) occupied within 300m from the works area of this Project during the proposed dredging works". Therefore, the impact monitoring for construction noise shall only be carried out when the planned residential development at the two identified monitoring stations are occupied at a later stage.

4 WATER QUALITY MONITORING

Monitoring Requirements

- 4.1 According to EM&A Manual, impact water quality monitoring shall be carried out three days per week during the course of the dredging works. The interval between two sets of monitoring will not be less than 36 hours except there are exceedances of Action and/or Limit levels in which the monitoring frequency will be increased according to the Action/Event Plan. For selection of tides for *in-situ* measurement and water sampling, tidal range of individual flood and ebb tides should be not less than 0.5m.
- 4.2 Duplicate in-situ measurements and samples shall be carried out in each sampling event.
- 4.3 Impact water quality monitoring was conducted two times per monitoring day during mid ebb and mid flood tides. Dissolved oxygen, Suspended solids (SS), turbidity, pH, salinity and temperature were monitored in accordance with the requirements set out in the EM&A Manual and specification.
- 4.4 **Appendix B** shows the established Action/Limit Levels for the water quality monitoring works.

Monitoring Locations

4.5 Water quality monitoring was conducted at 3 monitoring stations under the Project which are summarized in **Table 4.1**. The monitoring station is also shown in **Figure 2**.

 Table 4.1
 Location for Marine Water Quality Monitoring Locations

Manitaring Stations	Cod	ordinates
Monitoring Stations	Easting	Northing
WSD9 – Tai Wan	837921.0	818330.0
WSD10 – Cha Kwo Ling	841900.9	817700.1
WSD17 – Quarry Bay	839790.3	817032.2

Monitoring Equipment

Instrumentation

4.6 A multi-parameter meters (Model Aquaread AP-2000-D) were used to measure DO, turbidity, salinity, pH and temperature.

Dissolved Oxygen (DO) and Temperature Measuring Equipment

- 4.7 The instrument for measuring dissolved oxygen and temperature was portable and weatherproof complete with cable, sensor, comprehensive operation manuals and use DC power source. It was capable of measuring:
 - a dissolved oxygen level in the range of 0-20 mg/L and 0-200% saturation; and
 - a temperature of 0-45 degree Celsius.
- 4.8 It has a membrane electrode with automatic temperature compensation complete with a cable.

- 4.9 Sufficient stocks of spare electrodes and cables were available for replacement where necessary.
- 4.10 Salinity compensation was built-in in the DO equipment.

Turbidity

4.11 Turbidity was measured in situ by the nephelometric method. The instrument was portable and weatherproof using a DC power source complete with cable, sensor and comprehensive operation manuals. The equipment was capable of measuring turbidity between 0-1000 NTU. The probe cable was not less than 25m in length. The meter was calibrated in order to establish the relationship between NTU units and the levels of suspended solids.

Sampler

4.12 A water sampler, consisting of a transparent PVC or glass cylinder of a capacity of not less than two litres which can be effectively sealed with cups at both ends was used. The water sampler has a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler was at the selected water depth.

Water Depth Detector

4.13 A portable, battery-operated echo sounder was used for the determination of water depth at each designated monitoring station.

pH

4.14 The instrument was consisting of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It was readable to 0.1 pH in a range of 0 to 14. Standard buffer solutions of at least pH 7 and pH 10 were used for calibration of the instrument before and after use.

Salinity

4.15 A portable salinometer capable of recording salinity within the range of 0-40 ppt was used for salinity measurements.

Monitoring Position Equipment

4.16 A hand held Global Positioning System (GPS) was used during water quality monitoring to ensure the monitoring vessel is at the correct location before taking measurements.

Sample Container and Storage

4.17 Following collection, water samples for laboratory analysis were stored in high density polythene bottles (250ml/1L) with no preservatives added, packed in ice (cooled to 4°C without being frozen) and kept in dark during both on-site temporary storage and

shipment to the testing laboratory. The samples were delivered to the laboratory as soon as possible and the laboratory determination works were started within 24 hours after collection of the water samples. Sufficient volume of samples was collected to achieve the detection limit.

Calibration of In Situ Instruments

- 4.18 All in situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring programme. Responses of sensors and electrodes were checked with certified standard solutions before each use. Wet bulb calibration for a DO meter was carried out before measurement at each monitoring event.
- 4.19 For the on-site calibration of field equipment (Multi-parameter Water Quality System), the BS 1427:2009, "Guide to on-site test methods for the analysis of waters" was observed.
- 4.20 Sufficient stocks of spare parts were maintained for replacements when necessary. Backup monitoring equipment was also being made available so that monitoring can proceed uninterrupted even when some equipment was under maintenance, calibration, etc.
- 4.21 The equipment used for impact water quality monitoring is shown in **Table 4.2** and copies of the calibration certificates are shown in **Appendix C**. All the monitoring equipment complied with the requirements set out in the EM&A Manual.

Table 4.2 Water Quality Monitoring Equipment

Equipment	Model and Make	Qty
Multi-parameter Water Quality System	Aquaread AP-2000-D	2

Monitoring Parameters, Frequency

4.22 **Table 4.3** summarizes the monitoring parameters, monitoring period and frequencies of the water quality monitoring. The water quality monitoring schedule for the reporting month is shown in **Appendix D**.

Monitoring Parameters, unit **Depth** Frequency **Stations** Temperature(°C) pH (pH unit) turbidity (NTU) water depth (m) WSD9 3 days per week, at midsalinity (ppt) WSD10 mid-depth flood and mid-ebb tides dissolved oxygen(DO) WSD17 (mg/L and % of saturation) suspended solids (SS) (mg/L)

Table 4.3 Water Quality Monitoring Parameters and Frequency

4.23 Monitoring location/position, time, water depth, sampling depth, pH, salinity, DO saturation, water temperature, tidal stages, weather conditions and any special phenomena or work underway nearby were recorded.

Monitoring Methodology

Instrumentation

4.24 Multi-parameter meters (Model Aquaread AP-2000-D) were used to measure DO, turbidity, salinity, pH and temperature.

Operating/Analytical Procedures

- 4.25 The monitoring stations were accessed by the guide of a hand-held Global Positioning System (GPS) during water quality monitoring in accordance with the EM&A Manual. The depth of the monitoring location was measured using depth meter in order to determine the sampling depths. Afterwards, the probes of the in-situ measurement equipment were lowered to the mid-depth and the measurements were carried out accordingly.
- 4.26 At each measurement, two consecutive measurements of DO concentration, DO saturation, salinity, turbidity, pH and temperature were taken. The probes were retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of each set was more than 25% of the value of the first reading, the reading was discarded and further readings were taken.
- 4.27 Water sampler was lowered into the water to the required depths of sampling. Upon reaching the pre-determined depth, a messenger to activate the sampler was then released to travel down the wire. The water sample was sealed within the sampler before retrieving. At each station, water samples at mid-depth were collected accordingly. Water samples were stored in a cool box and kept at less than 4°C but without frozen and sent to the laboratory as soon as possible. In addition, field information as described

in Section 4.23 was also recorded.

Laboratory Analytical Methods

4.28 The testing of all parameters was conducted by WELLAB Ltd. (HOKLAS Registration No.083) and comprehensive quality assurance and control procedures in place in order to ensure quality and consistency in results. The testing method, reporting limit and detection limit are provided in **Table 4.4**.

Table 4.4 Methods for Laboratory Analysis for Water Samples

Determinant	Instrumentation	Analytical Method	Detection Limit	Reporting Limit
Suspended Solid (SS)	Weighing	APHA 17e 2540D	0.5 mg/L	2.5 mg/L

QA/QC Requirements

Decontamination Procedures

4.29 Water sampling equipment used during the course of the monitoring programme was decontaminated by manual washing and rinsed clean seawater/distilled water after each sampling event. All disposal equipment was discarded after sampling.

Sampling Management and Supervision

- 4.30 All sampling bottles were labelled with the sample I.D (including the indication of sampling station and tidal stage e.g. IS1_me_a), laboratory number and sampling date. Water samples were dispatched to the testing laboratory for analysis as soon as possible after the sampling. All samples were stored in a cool box and kept at less than 4°C but without frozen. All water samples were handled under chain of custody protocols and relinquished to the laboratory representatives at locations specified by the laboratory.
- 4.31 The laboratory determination works were started within 24 hours after collection of the water samples.

Quality Control Measures for Sample Testing

- 4.32 The samples testing were performed by HOKLAS accredited laboratories.
- 4.33 The following quality control programme was performed by the CMA Testing and Certification Laboratories for every batch of 20 samples:
 - ♦ One set of quality control (QC) samples.

Maintenance and Calibration

4.34 All in situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring programme.

Results and Observations

- 4.35 The monitoring results and graphical presentation of water quality at the monitoring stations is shown in **Appendix E.**
- 4.36 The summary of exceedance record in reporting month is shown in **Appendix H.**
- 4.37 All water quality monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedances for suspended solids and turbidity were recorded.

Event and Action Plan

4.38 Should non-compliance of the criteria occur, action in accordance with the Action Plan in **Appendix G** shall be carried out.

5 WATER QUALITY SURVEILLANCE SYSTEM

5.1 2 water quality surveillance monitoring events were conducted on 8 and 24 July 2015 in accordance with Particular Specification, Section 25.38. Turbidity and SS monitoring were conducted at 12 locations which summarized in **Table 5.1** and shown in **Figure 5.**

 Table 5.1
 Monitoring Stations for Water Quality Surveillance System

	Monitoring	Coord	t t
Set	Stations	Northing	Easting
	A1	818527.579	839733.348
Δ.	A2	818742.398	839386.623
A	A3	818496.534	839524.739
	A4	818245.810	839713.112
	B1	D 22 1 24 4 1 2 61 1 14 25	
ъ	B2	Position change with the location of dredger and the silt cur at grab in 4 orthogonal directions from the silt curtain at gra agreed with the Engineer	
В	В3		2
	B4	agreed with t	ne Engineer
	C1		
	C2	Position change with the locatio	C
С	C3	at grab in 4 orthogonal directions from the silt curtain at a greed with the Engineer	2
	C5	agreed with	ne Engineer

Interpretation of monitoring results

- 5.2 The monitoring data and graphical presentations of the monitoring results of water quality surveillance system are shown in **Appendix F.**
- 5.3 The Action and Limit Levels for water quality surveillance system were derived from 120% and 130% of upstream control station's turbidity and SS in depth average at the same tide of the same day with reference to the established way to set the water quality assessment criteria for a monitoring programme in accordance with the Guidelines for Development Projects in Hong Kong issued by EPD.
- 5.4 The Action and Limit Levels for water quality surveillance system were independent to the water quality monitoring works as required under the Environmental Permit and EM&A Manual.
- 5.5 All impact water quality monitoring results at different impact stations of water quality surveillance system were compared with Action and Limit Levels for water quality surveillance system.
- 5.6 Based on the graphical presentation of monitoring results shown in **Appendix F**, conclusion of the water quality surveillance system can be draw as follows:
 - Results of turbidity and suspended solids at Set B and C monitoring stations were below the Action Level for water quality surveillance system except the results of suspended solids at B1 on 24 July 2015 was above the Action Level for water quality surveillance system. The investigation was carried out.
 - According to the investigation, the exceedances are not considered as related to the Project works base on the following reasons:

- Base on the site observation on 24 July 2015 during monitoring, no dispersion of sediment from hopper barge and no dispersion of sediment from the dredging area due to dredging operation to the area outside the site boundary was observed.
- The daily and hourly dredging rate on 24 July 2015 was not exceed the dredging rate as stipulated in the EP requirement.
- The SS results at B2 to B4 and C1 to C3 monitoring stations on 24 July 2015 were below the Action and Limit Levels for water quality surveillance system.
- The SS results at 3 WSD intakes (i.e. WSD 9, 10 and 17) on 24 July 2015 were below the Action and Limit Levels for water quality monitoring.
- In general, no significant rising of SS and turbidity from the dredging area to the control points, water quality impact due to the dredging works to the area outside the site boundary was not anticipated.

6 ENVIRONMENTAL SITE INSPECTION

Site Audits

- 6.1 Site audits were carried out by ET on weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Project site. The summaries of site audits are attached in **Appendix I**.
- 6.2 Site audits for the Project were conducted on 7th, 16th, 21st and 28th July 2015 by ET with the representative of ER and the Contractor in the reporting month. A joint site audit with the representative of IEC, ER, the Contractor and the ET was carried out on 16th and 28th July 2015. The details of observations during site audit are summarized in **Table 6.1**.

Implementation Status of Environmental Mitigation Measures

- 6.3 According to the EIA Study Report, Environmental Permit and the EM&A Manual, the mitigation measures detailed in the documents are recommended to be implemented during the construction phase. An updated summary of the EMIS is provided in **Appendix J**.
- 6.4 Closed grab dredger was used for dredging works to minimize release of sediment and other contaminants during dredging.
- 6.5 No more than two dredgers were used at the same time during the dredging and the total maximum dredging rate was not exceed 4,000m³ per day and 334m³ per hour.
- 6.6 Silt curtain was installed around the dredgers during the dredging operation.
- 6.7 Silt screen was installed at the Water Supplies Department's flushing water intakes at Cha Kwo Ling, Quarry Bay and Tai Wan.
- 6.8 Regular maintenance of the silt screens and refuse collection was performed at the silt screens on daily basis.
- 6.9 During site inspections in the reporting month, no non-conformance was identified. The observations and recommendations made during the audit sessions are summarized in **Table 6.1**.

Table 6.1 Observations and Recommendations of Site Audit

Parameters	Date	Observations and Recommendations	Follow-up
Water Quality	21 July 2015	Clear the stagnant water in drip tray after rain to prevent chemical spillage.	Follow up action will be reported in next report month.
water Quality	28 July 2015	Clear the stagnant water in drip tray regularly to prevent accumulation.	Follow up action will be reported in next report month.
Air Quality	7 July 2015	Water spray should be provided for stockpile area. (Area 2)	Rectification/improvement was observed during the follow-up audit session on 21 July 2015.
Noise	N/A ⁽¹⁾	N/A ⁽¹⁾	N/A ⁽¹⁾
Waste / Chemical Management	30 June 2015	Drip tray should be provided to chemical containers to prevent chemical spillage.	Rectification/improvement was observed during the follow-up audit session on 7 July 2015.
Cultural Heritage Measures	N/A ⁽¹⁾	N/A ⁽¹⁾	N/A ⁽¹⁾

Parameters	Date	Observations and Recommendations	Follow-up
Permits/Licences	N/A ⁽¹⁾	N/A ⁽¹⁾	N/A ⁽¹⁾
Other	N/A ⁽¹⁾	N/A ⁽¹⁾	N/A ⁽¹⁾

Remark: N/A⁽¹⁾-No major environmental deficiency was identified during the site inspection in the reporting month.

Advice on the Solid and Liquid Waste Management Status

- 6.10 According to the Contractor, marine sediment (Type 1 Open Sea Disposal) was generated and disposed during the reporting month.
- 6.11 The amount of marine sediment under the Project during the reporting month is shown in **Table 6.2**.

Table 6.2 Summary of Marine Sediment in Reporting Month

Waste Type	Quantity in the Reporting Month, m³(Bulk Volume)	Cumulative-to-Date m³(Bulk Volume)	Disposal / Dumping Ground
Marine Sediment (Type1 – Open	65,650	116,650	East of Sha Chau
Sea Disposal)			
Marine Sediment			
(Type 1 Open Sea			
Disposal	0		The South of
(Dedicated Site)	U	57,500	Brothers
and Type 2 –			Diomeis
Confined Marine			
Disposal)			

7 ENVIRONMENTAL NON-CONFORMANCE (EXCEEDANCES)

Summary of Exceedances

- 7.1 Summary of exceedance is provided in **Appendix H**.
- 7.2 No Action/Limit Level exceedance was recorded for water quality.

Summary of Environmental Complaint

7.3 No environmental related complaint was received in the reporting month. The Complaint Log is attached in **Appendix K**.

Summary of Notification of Summons and Successful Prosecution

7.4 There was no prosecution or notification of summons received since the Project commencement.

8 FUTURE KEY ISSUES

Key Issues in the Coming Month

- 8.1 Major site activities for the coming reporting month will include:
 - (a) Dredging works
 - (b) Fencing erection
 - (c) Sorting and breaking of C&D Materials for further disposal off site
 - (d) Delivery of C&D Materials for further disposal off site
 - (e) Refuse collection at Cha Kwo Ling WSD Flushing Water Intakes
 - (f) Maintenance of silt curtains & silt screen

Monitoring Schedule for the Next Month

8.2 The tentative water quality monitoring schedule for the next month is shown in **Appendix D**.

Construction Programme for the Next Month

8.3 A tentative construction programme is provided in **Appendix A**.

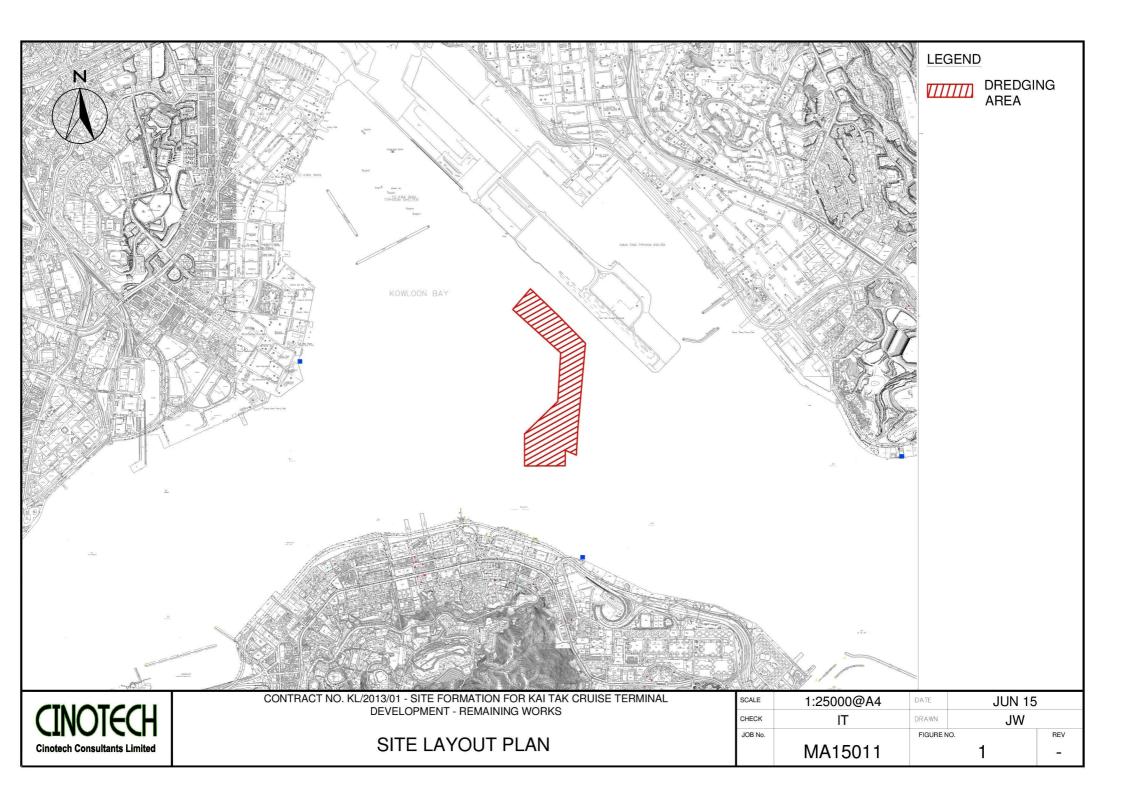
9 CONCLUSIONS AND RECOMMENDATIONS

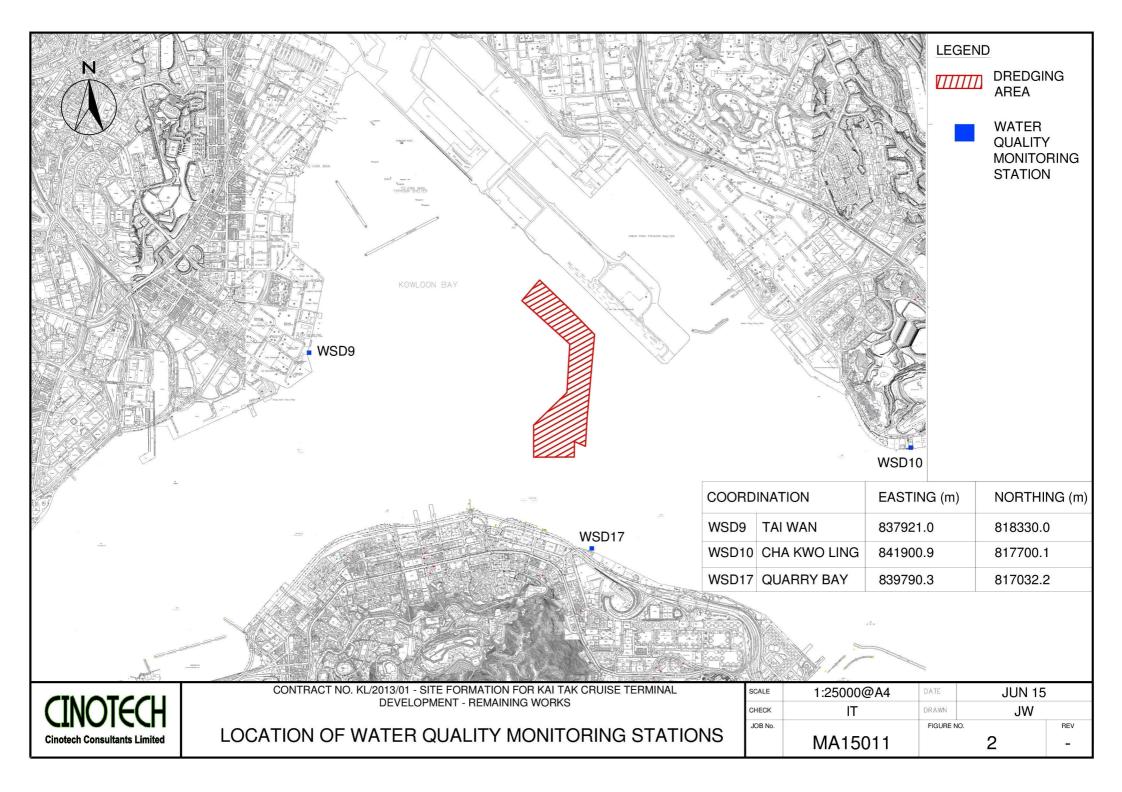
Conclusions

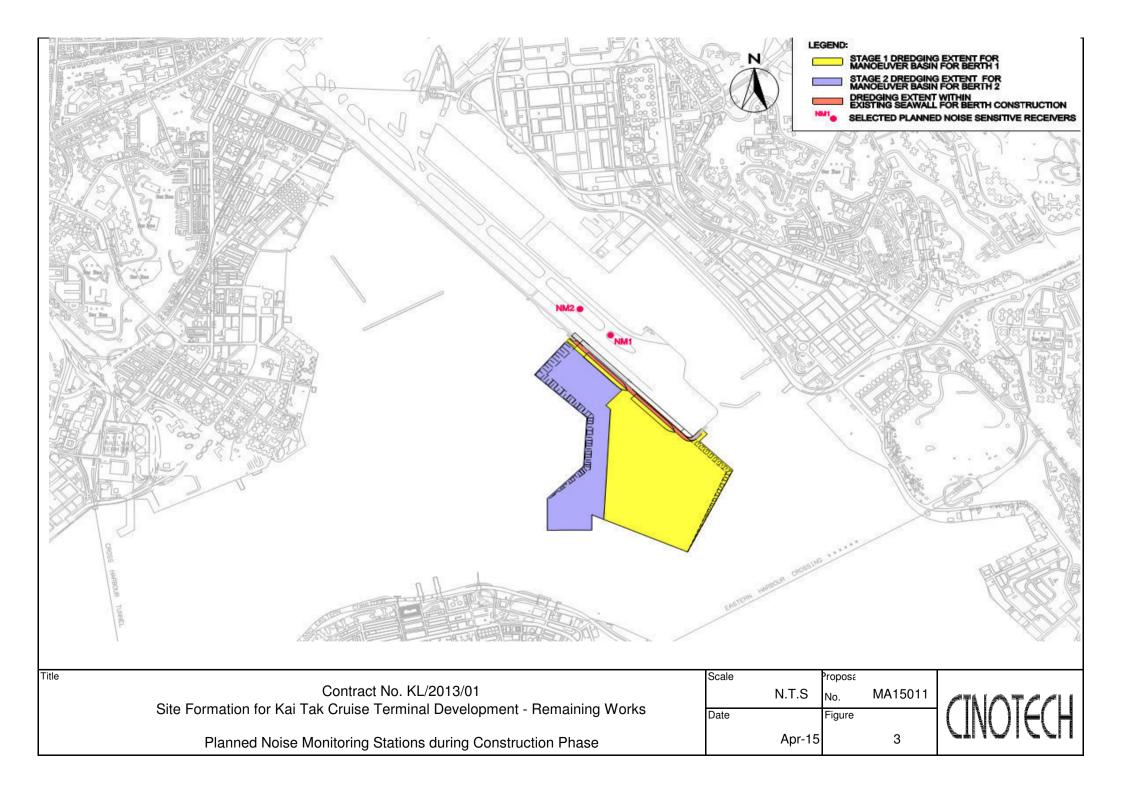
- 9.1 The Environmental Monitoring and Audit (EM&A) Report presents the EM&A works undertaken in July 2015 in accordance with EM&A Manual.
- 9.2 No Action/Limit Level exceedance was recorded for water quality.
- 9.3 Environmental site inspection was conducted on 7th, 16th, 21st and 28th July 2015 by ET in the reporting month. All deficiencies identified during the site inspection have already rectified / improved during the follow-up audit session.
- 9.4 There were no environmental complaint, no notification of summons and successful prosecution received.
- 9.5 The ET will keep track on the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

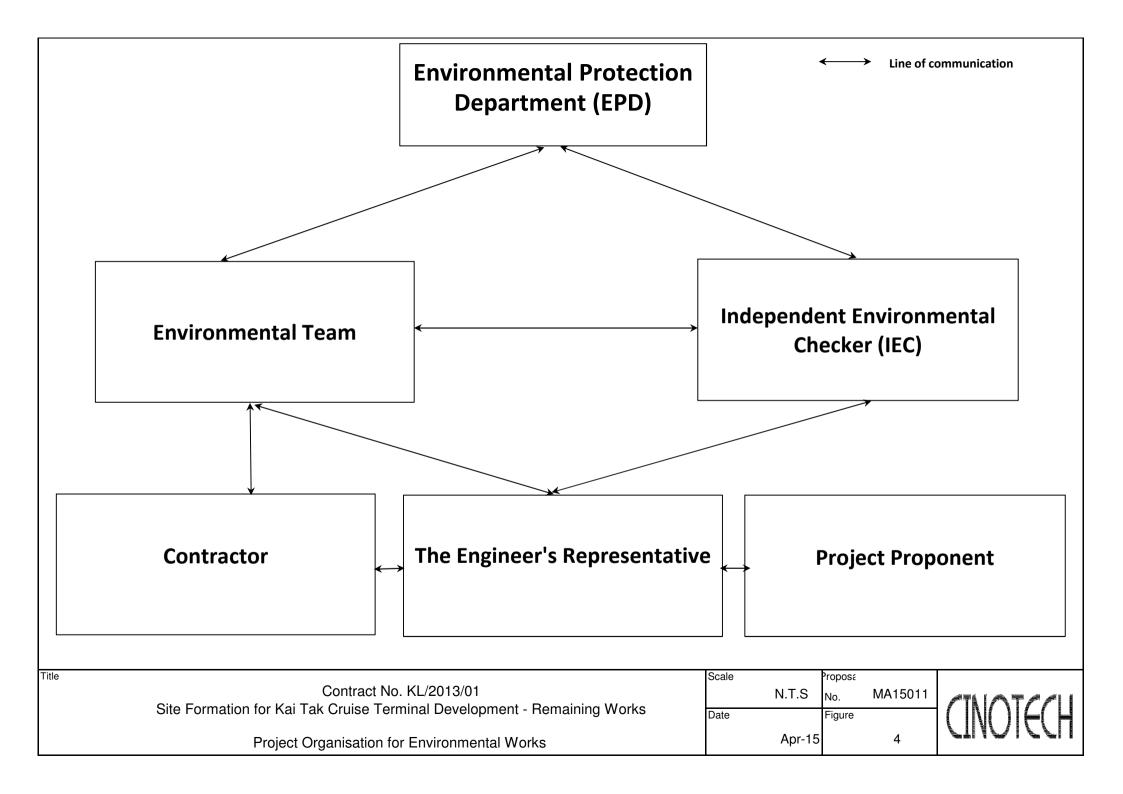
Recommendations

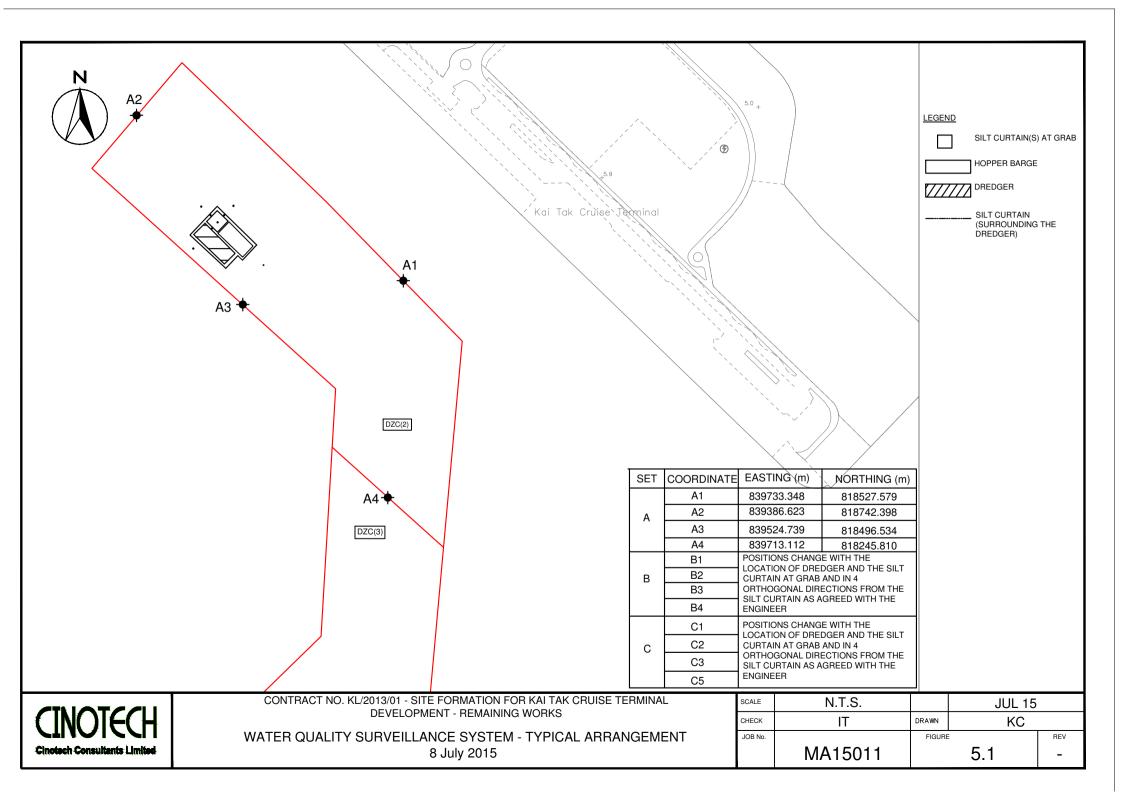
9.6 According to the environmental audit performed in the reporting month, the following recommendations were made:

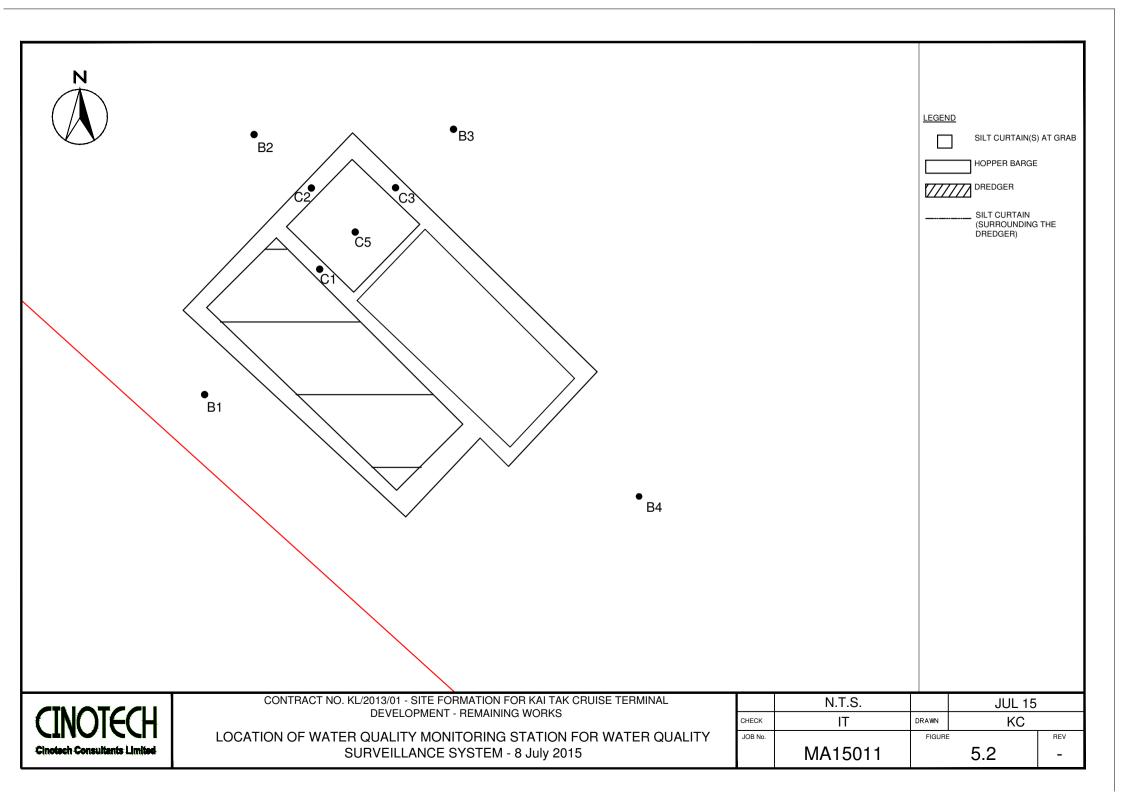

Water Quality

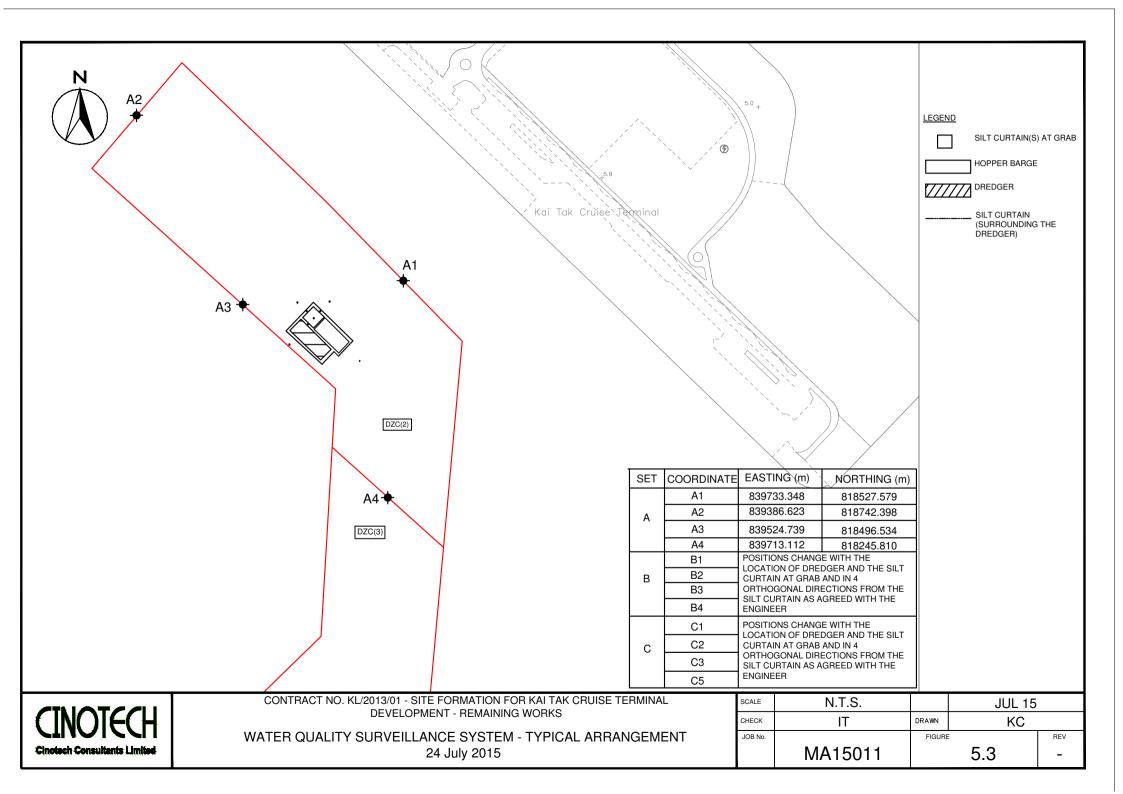

- To provide regularly check and maintenance for the silt curtain / screen throughout the dredging period.
- To clear the floating refuse at the silt screen at WSD flushing water intake regularly.
- Stagnant water in drip trays should be cleared regularly to avoid accumulation, especially during rainy season.

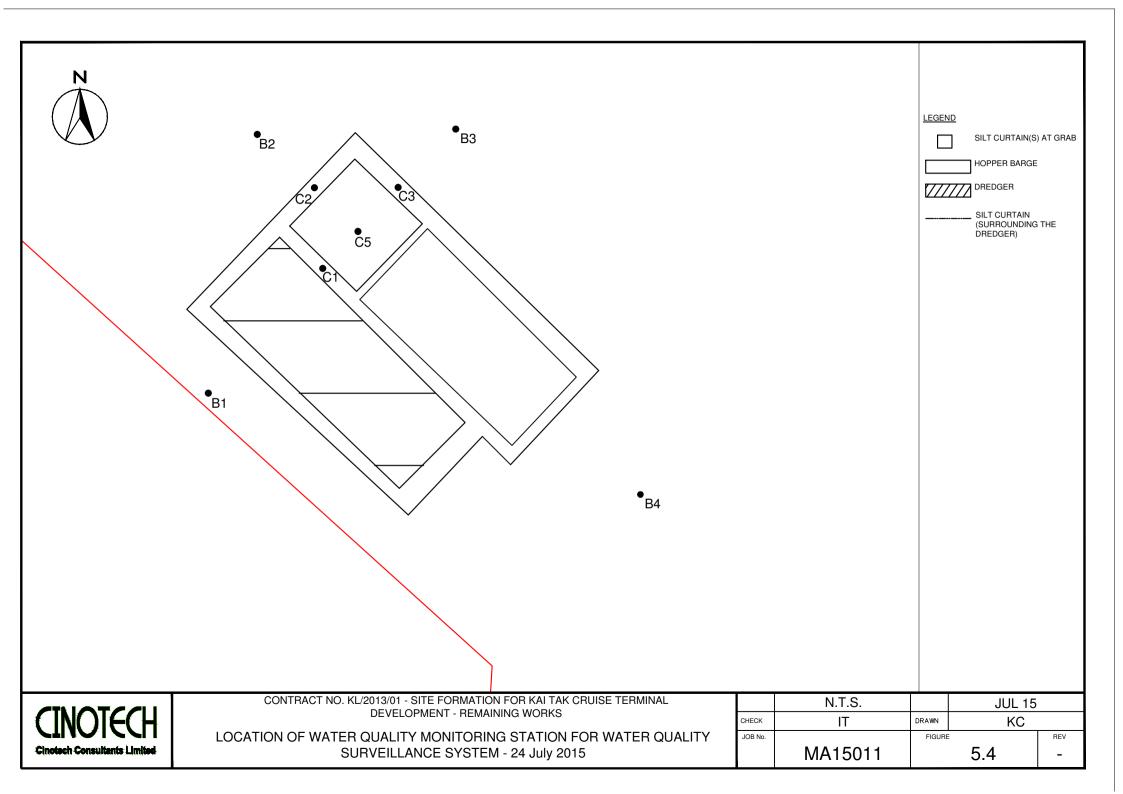

Air Quality

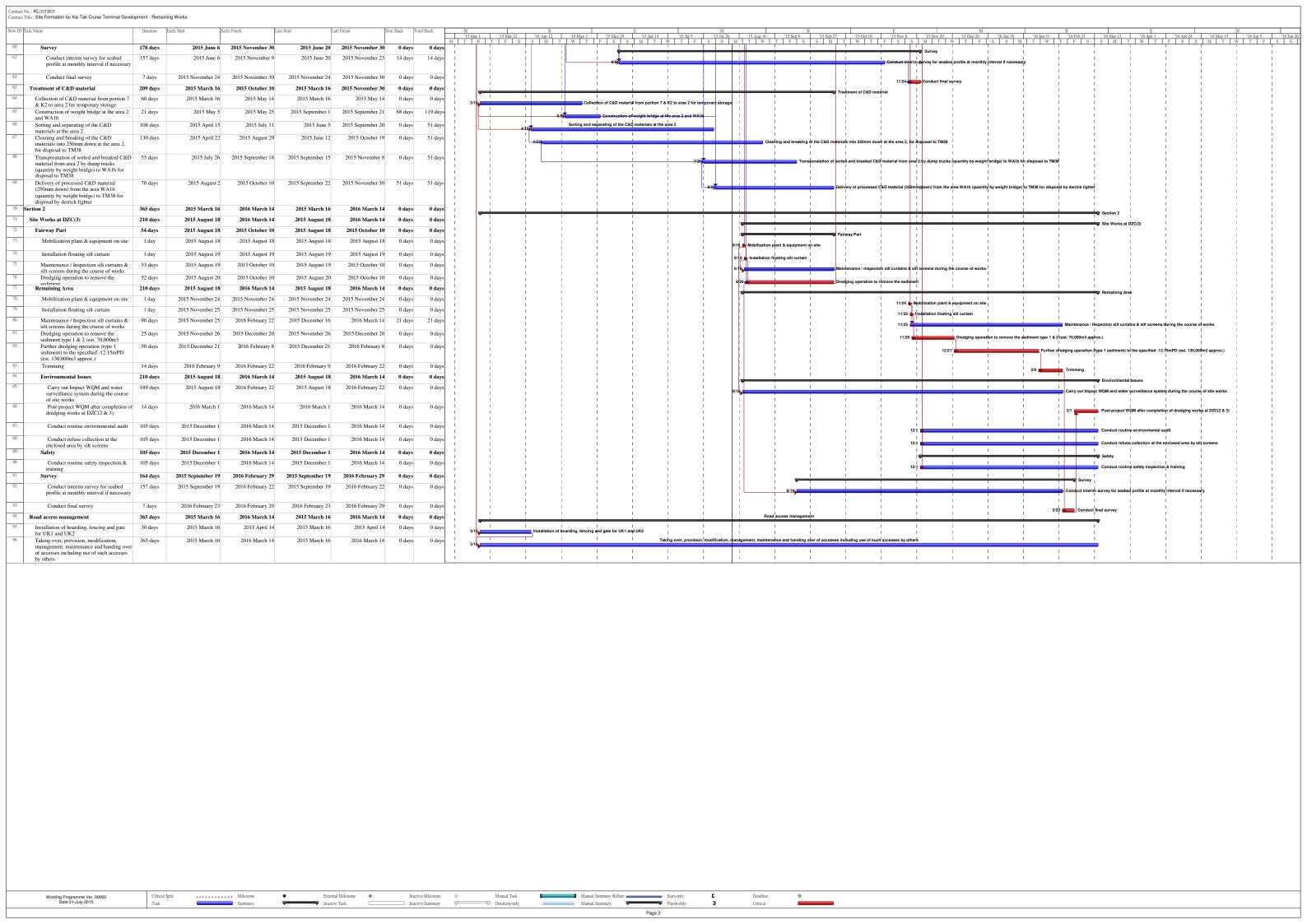

• Water spraying should be provided at the site areas and the area with dust generating activities to suppress dust generation.


FIGURE(S)









APPENDIX A CONSTRUCTION PROGRAMME

Page 1

APPENDIX B ACTION AND LIMIT LEVELS

Appendix B - Action and Limit Levels

Action and Limit Levels for Water Quality Monitoring

	Turbidity (NTU)				Suspended Solid (mg/L)			
Station	Action	Level	Limit	Level	Action	Level	Limit	Level
Station	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet
	Season	Season	Season	Season	Season	Season	Season	Season
WSD9	5.6	7.0	10.6	13.4	10.2	12.8	10.8	13.5
WSD10	6.3	8.1	9.4	12.1	10.0	11.2	11.8	13.2
WSD17	10.0	12.9	15.3	19.7	13.2	14.7	15.3	17.0

APPENDIX C COPIES OF CALIBRATION CERTIFCATES

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong, Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

APPLICANT: **Cinotech Consultants Limited**

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

C/W/150422-2 Test Report No.: Date of Issue: 2015-04-22 2015-04-22 Date Received: Date Tested: 2015-04-22 Date Completed: 2015-04-22 Next Due Date: 2015-07-21

ATTN: Mr. W.K. Tang

Page:

1 of 2

Certificate of Calibration

Item for calibration:

Description

: Multiparameter Water Quality Probe

Manufacturer

: Aguaread Ltd : AP-2000-D

Model No.

: 128041320

Serial No. Equipment No.

: W.18.09

Test conditions:

Room Temperature

: 24 degree Celsius

Relative Humidity

: 66 %

Test Specifications:

Dissolved Oxygen, Conductivity & Salinity Sensor,

- 1. Performance check against Winkler titration
- 2. Conductivity performance check with Potassium Chloride standard solution
- 3. Salinity performance check with Sodium Chloride standard solution

Turbidity Sensor, Batch: 12213

1. Calibration check with Formazin standard solution

pH / ORP electrode

- 1. Calibration check with standard pH buffer
- 2. Redox performance check with ZoBell's standard solution

Depth Meter

1. Calibration check at 1m water level depth

Methodologies:

1. Aquaprobe AP-2000 Manual

2. In-house method with reference to APHA and ISO standards Conductivity (APHA 20ed 2510), Salinity (APHA 20ed 2520B) Dissolved Oxygen (APHA 20ed 4500-O C), Turbidity (APHA 19ed 2130 B), pH (ISO 10523, Section 9.1 and APHA 19ed 4500-H+B), Redox electrode (APHA 20ed 2580)

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T. Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

Test Report No.: C/W/150422-2
Date of Issue: 2015-04-22
Date Received: 2015-04-22
Date Tested: 2015-04-22
Date Completed: 2015-04-22
Next Due Date: 2015-07-21

Page:

2 of 2

Results:

1. Conductivity performance check

0 .c 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Fe-R-1997 (198-1004)
Specific C	Conductivity, µS/cm		personal contraction of the cont
Instrument Reading	Theoretical Value	Correction, µS/cm	Acceptable range
1420	1420	0	1420 ± 20

2. Salinity Performance check

Salinity, ppt		Correction and	A cooptable range
Instrument Reading	Theoretical Value	Correction, ppt	Acceptable range
30.0	30.0	0.0	30.0 ± 3

3. Dissolved Oxygen check

Oxygen level in	Dissolved C	xygen, mg O ₂ /L	Correction, mg	Acceptable
water at 20°C	D.O. Meter	Winkler Titration	O ₂ /L	range
Saturated	9.1	9.1	0.0	± 0.2
Half-saturated	5.6	5.6	0.0	± 0.2
Zero	0.0	0.0	0.0	± 0.2

4. Turbidity check

Turbidity value in solution, NTU	Calibration Value, NTU	Correction, NTU	Acceptable range
0.00	0.00	0.00	0.00 ± 0.05
100	100	0	100 ± 5
1000	1000	0	1000 ± 100

5. pH Meter check

Test Parameters	Performance characteristic	Acceptable range
Liquid junction error ΔpH _i , pH unit	0.01	Less than 0.05
Shift on stirring ΔpH _s , pH unit	0.01	Less than 0.02
Noise ΔpH _n , pH unit	0.00	Less than 0.02

6. Redox Meter check

Redox	, mV	
Instrument Reading	Theoretical Value	Acceptable range
228	229	229 <u>+</u> 10

7. Depth Meter check

Instrument Reading, m	Calibration Value, m	Correction, m	Acceptable range
1.0	1.00	0.00	1.00 ± 0.05

WELLAB LIMITED Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T. Hong Kong. Tel: 2898 7388 Fax: 2898 7076 Website: www.wellab.com.hk

TEST REPORT

APPLICANT:

Cinotech Consultants Limited

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/W/150515-1
Date of Issue: 2015-05-15
Date Received: 2015-05-15
Date Tested: 2015-05-15
Date Completed: 2015-05-15

Next Due Date: Page:

2015-08-14 1 of 2

ATTN:

Mr. W.K. Tang

Certificate of Calibration

Item for calibration:

Description

: Multiparameter Water Quality Probe

Manufacturer

: Aquaread Ltd

Model No.

:AP-2000-D :122630720

Serial No. Equipment No.

: W.18.06

Test conditions:

Room Temperature

: 23 degree Celsius

Relative Humidity

: 67 %

Test Specifications:

Dissolved Oxygen, Conductivity & Salinity Sensor,

- 1. Performance check against Winkler titration
- 2. Conductivity performance check with Potassium Chloride standard solution
- 3. Salinity performance check with Sodium Chloride standard solution

Turbidity Sensor, Batch: 12213

1. Calibration check with Formazin standard solution

pH / ORP electrode, Batch: 11933

- 1. Calibration check with standard pH buffer
- 2. Redox performance check with ZoBell's standard solution

Depth Meter

1. Calibration check at 1m water level depth

Methodologies:

1. Aquaprobe AP-2000 Manual

 In-house method with reference to APHA and ISO standards Conductivity (APHA 20ed 2510), Salinity (APHA 20ed 2520B)
 Dissolved Oxygen (APHA 20ed 4500-O C), Turbidity (APHA 19ed 2130 B), pH (ISO 10523, Section 9.1 and APHA 19ed 4500-H+B), Redox electrode (APHA 20ed 2580)

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

PATRICK TSE

Laboratory Manager

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

Test Report No.: C/W/150515-1
Date of Issue: 2015-05-15
Date Received: 2015-05-15
Date Tested: 2015-05-15
Date Completed: 2015-05-15
Next Due Date: 2015-08-14

Page:

2 of 2

Results:

1. Conductivity performance check

Specific C	onductivity, μS/cm		
Instrument Reading	Theoretical Value	Correction, µS/cm	Acceptable range
1420	1420	0	1420 ± 20

2. Salinity Performance check

Salinity, ppt		Correction ant	Acceptable range
Instrument Reading	Theoretical Value	Correction, ppt	Acceptable range
30.0	30.0	0.0	30.0 ± 3

3. Dissolved Oxygen check

Oxygen level in	Dissolved Oxygen, mg O ₂ /L		Correction, mg	Acceptable
water at 20°C	D.O. Meter	Winkler Titration	O ₂ /L	range
Saturated	9.1	9.1	0.0	± 0.2
Half-saturated	5.6	5.6	0.0	± 0.2
Zero	0.0	0.0	0.0	± 0.2

4. Turbidity check

Turbidity value in solution, NTU	Calibration Value, NTU	Correction, NTU	Acceptable range
0.00	0.00	0.00	0.00 ± 0.05
100	100	0	100 ± 5
1000	1000	0	1000 ± 100

5. pH Meter check

Test Parameters	Performance characteristic	Acceptable range		
Liquid junction error ΔpH _i , pH unit	0.01	Less than 0.05		
Shift on stirring ΔpH _s , pH unit	0.01	Less than 0.02		
Noise ΔpH _n , pH unit	0.00	Less than 0.02		

6. Redox Meter check

Redox	, mV	
Instrument Reading	Theoretical Value	Acceptable range
228	229	229+10

7. Depth Meter check

Instrument Reading, m	Calibration Value, m	Correction, m	Acceptable range 1.00 ± 0.05	
1.0	1.00	0.00		

ATTN:

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

Cinotech Consultants Limited APPLICANT:

Room 1710, Technology Park,

18 On Lai Street,

Shatin, NT, Hong Kong

Test Report No.: C/W/150515-3 Date of Issue: 2015-05-15

Date Received: 2015-05-15

Date Tested: 2015-05-15

Date Completed: 2015-05-15 Next Due Date: 2015-08-14

1 of 2

Page: Mr. W.K. Tang

Certificate of Calibration

Item for calibration:

Description

: Multiparameter Water Quality Probe

Manufacturer

: Aquaread Ltd

Model No.

:AP-2000-D : 122430520

Serial No. Equipment No.

: W.18.08

Test conditions:

Room Temperature

: 23 degree Celsius

Relative Humidity

: 67 %

Test Specifications:

Dissolved Oxygen, Conductivity & Salinity Sensor,

- 1. Performance check against Winkler titration
- 2. Conductivity performance check with Potassium Chloride standard solution
- 3. Salinity performance check with Sodium Chloride standard solution

Turbidity Sensor, Batch: 12213

1. Calibration check with Formazin standard solution

pH / ORP electrode, Batch: 11933

- 1. Calibration check with standard pH buffer
- 2. Redox performance check with ZoBell's standard solution

Depth Meter

1. Calibration check at 1m water level depth

Methodologies:

1. Aquaprobe AP-2000 Manual

2. In-house method with reference to APHA and ISO standards Conductivity (APHA 20ed 2510), Salinity (APHA 20ed 2520B) Dissolved Oxygen (APHA 20ed 4500-O C), Turbidity (APHA 19ed 2130 B), pH (ISO 10523, Section 9.1 and APHA 19ed 4500-H+B), Redox electrode (APHA 20ed 2580)

PREPARED AND CHECKED BY:

For and On Behalf of WELLAB Ltd.

Laboratory Manager

This report may not be reproduced except with prior written approval from WELLAB LIMITED and the results relate only to the items calibrated or tested.

WELLAB LIMITED

Rms 816, 1516 & 1701, Technology Park, 18 On Lai Street, Shatin, N.T, Hong Kong. Tel: 2898 7388 Fax: 2898 7076

Website: www.wellab.com.hk

TEST REPORT

Test Report No.: C/W/150515-3
Date of Issue: 2015-05-15
Date Received: 2015-05-15
Date Tested: 2015-05-15
Date Completed: 2015-05-15
Next Due Date: 2015-08-14

Page:

2 of 2

Results:

1. Conductivity performance check

Specific C	onductivity, µS/cm			
Instrument Reading Theoretical Value		Correction, µS/cm	Acceptable range	
1420	1420	0	1420 ± 20	

2. Salinity Performance check

Sali	nity, ppt	Correction ant	Acceptable range
Instrument Reading	Theoretical Value	Correction, ppt	Acceptable range
30.0	30.0	0.0	30.0 ± 3

3. Dissolved Oxygen check

Oxygen level in	Dissolved O	xygen, mg O ₂ /L	Correction, mg	Acceptable
water at 20°C	D.O. Meter	Winkler Titration	O ₂ /L	range
Saturated	Saturated 9.1 9.1		0.0	± 0.2
Half-saturated	5.6	5.6	0.0	± 0.2
Zero	0.0	0.0	0.0	± 0.2

4. Turbidity check

Turbidity value in solution, NTU	Calibration Value, NTU	Correction, NTU	Acceptable range	
0.00	0.00	0.00	0.00 ± 0.05	
100	100	0	100 ± 5	
1000	1000	0	1000 ± 100	

5. pH Meter check

Test Parameters	Performance characteristic	Acceptable range		
Liquid junction error ΔpH _i , pH unit	0.01	Less than 0.05		
Shift on stirring ΔpH _s , pH unit	0.01	Less than 0.02		
Noise ΔpH _n , pH unit	0.00	Less than 0.02		

6. Redox Meter check

Redox	, mV	
Instrument Reading	Theoretical Value	Acceptable range
228	229	229±10

7. Depth Meter check

Instrument Reading, m	Calibration Value, m	Correction, m	Acceptable range
1.0	1.00	0.00	1.00 ± 0.05

APPENDIX D WATER QUALITY MONITORING SCHEDULES

Contract No. KL/2013/01 - Site Formation For Kai Tak Cruise Terminal Development - Remaining Works Water Quality Monitoring Schedule (July 2015)

Sunday	Monday	/	Tuesday	Wednes		Thursda		Frida		Saturd	
					1-Jul		2-Jul		3-Jul		4-Jul
						Mid-Ebb Mid-Flood	12:27 19:32			Mid-Flood Mid-Ebb	7:10 13:56
5-Jul		6-Jul	7-Jul		8-Jul		9-Jul		10-Jul		11-Jul
	Mid-Flood Mid-Ebb	8:49 15:26		Mid-Flood Mid-Ebb	10:49 17:11			Mid-Flood Mid-Ebb	13:46 19:28		
12-Jul		13-Jul	14-Jul		15-Jul		16-Jul		17-Jul		18-Jul
	Mid-Ebb Mid-Flood	10:36 17:28		Mid-Ebb Mid-Flood	12:02 19:00			Mid-Ebb Mid-Flood	13:18 20:12		
19-Jul		20-Jul	21-Jul		22-Jul		23-Jul		24-Jul		25-Jul
	Mid-Flood Mid-Ebb	8:18 15:00		Mid-Flood Mid-Ebb	9:31 16:00			Mid-Flood Mid-Ebb	11:47 17:49		
26-Jul		27-Jul	28-Jul		29-Jul		30-Jul		31-Jul		
	Mid-Ebb Mid-Flood	9:27 16:38		Mid-Ebb Mid-Flood	10:43 17:59			Mid-Ebb Mid-Flood	12:10 19:12		

Contract No. KL/2013/01 - Site Formation For Kai Tak Cruise Terminal Development - Remaining Works Tentative Water Quality Monitoring Schedule (August 2015)

Sunday	Monda	ay	Tuesday	Wedne	sday	Thursday	Frida	ıy	Saturday
									1-Aug
2-Aug		3-Aug	4-Aug		5-Aug	6-Aug		7-Aug	8-Aug
	Mid-Flood	07:53		Mid-Flood	09:39		Mid-Flood	12:06	
	Mid-Ebb	14:24		Mid-Ebb	15:55		Mid-Ebb	17:53	
9-Aug		10-Aug	11-Aug		12-Aug	13-Aug		14-Aug	15-Aug
,	Mid-Ebb	09:36		Mid-Ebb	11:07		Mid-Ebb	12:23	
	Mid-Ebb Mid-Flood	16:40		Mid-Ebb Mid-Flood	18:07		Mid-Ebb Mid-Flood	19:08	
16-Aug		17-Aug	18-Aug		19-Aug	20-Aug		21-Aug	22-Aug
10-Aug		17-Aug	10-Aug		17-Aug	20-Aug		21-Aug	22-Aug
		27.00			00.45			40.40	
	Mid-Flood Mid-Ebb	07:30 14:01		Mid-Flood Mid-Ebb	08:45 15:05		Mid-Flood Mid-Ebb	10:16 16:19	
							= 55		
23-Aug		24-Aug	25-Aug		26-Aug	27-Aug		28-Aug	29-Aug
23-Aug		24-Aug	25-Aug		20-Aug	27-Aug		28-Aug	29-Aug
	Mid-Ebb Mid-Flood	07:31 14:56		Mid-Ebb Mid-Flood	09:33 17:01		Mid-Ebb Mid-Flood	11:03 18:05	
'	iviiu-Fi00u	14.50		IVIIU-FIOOU	17.01		IVIIU-FIOOU	10.03	
30-Aug		31-Aug							
	Mid-Ebb	13:21							
	Mid-Flood	19:49							
				1			l		

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

APPENDIX E
WATER QUALITY MONITORING
RESULTS AND GRAPHICAL
PRESENTATION

Water Quality Monitoring Results at WSD9 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	þ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)	Suspended	Solids (mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
2-Jul-15	Sunny	Moderate	11:01	Middle	3.5	26.8 26.5	26.7	8.3 8.3	8.3	31.2 31.2	31.2	78.3 78.2	78.3	5.3 5.3	5.3	6.5 5.8	6.2	8 7	7.5
4-Jul-15	Sunny	Moderate	13:54	Middle	4.2	27.0 27.2	27.1	8.1 8.1	8.1	31.0 31.0	31.0	82.9 84.5	83.7	5.6 5.6	5.6	6.3 6.2	6.3	12 12	12.0
6-Jul-15	Sunny	Moderate	14:23	Middle	4.1	28.6 28.8	28.7	8.5 8.5	8.5	32.6 32.1	32.4	83.4 83.1	83.3	5.4 5.4	5.4	5.1 4.7	4.9	6 6	6.0
8-Jul-15	Sunny	Moderate	15:48	Middle	4.4	25.0 24.9	25.0	8.3 8.3	8.3	33.6 33.6	33.6	75.7 75.3	75.5	5.2 5.2	5.2	6.5 6.7	6.6	9 9	9.0
10-Jul-15	Fine	Moderate	19:59	Middle	4.1	27.2 27.1	27.2	7.9 7.9	7.9	31.1 31.1	31.1	66.4 65.7	66.1	4.4 4.4	4.4	5.3 5.9	5.6	6 6	6.0
13-Jul-15	Sunny	Moderate	09:42	Middle	3.9	26.8 26.9	26.9	8.4 8.4	8.4	34.5 34.3	34.4	61.4 61.8	61.6	4.1 4.1	4.1	6.7 6.4	6.6	6 7	6.5
15-Jul-15	Sunny	Moderate	10:33	Middle	3.2	28.9 28.7	28.8	8.2 8.3	8.3	30.1 30.1	30.1	83.8 83.9	83.9	5.5 5.5	5.5	6.3 6.7	6.5	5 4	4.5
17-Jul-15	Sunny	Moderate	11:51	Middle	4.6	27.6 27.3	27.5	8.2 8.2	8.2	31.6 32.0	31.8	78.5 78.7	78.6	5.2 5.2	5.2	7.0 6.2	6.6	5 5	5.0
20-Jul-15	Cloudy	Moderate	13:31	Middle	4.3	27.2 27.3	27.3	8.3 8.3	8.3	31.1 31.5	31.3	81.9 77.9	79.9	5.5 5.2	5.4	6.8 6.8	6.8	3 3	3.0
22-Jul-15	Cloudy	Moderate	15:53	Middle	3.7	26.4 26.2	26.3	8.1 8.1	8.1	31.6 31.6	31.6	78.6 81.1	79.9	5.3 5.5	5.4	4.7 4.8	4.8	10 9	9.5
24-Jul-15	Cloudy	Moderate	17:20	Middle	3.5	26.3 26.2	26.3	8.2 8.2	8.2	30.6 30.5	30.6	85.1 84.6	84.9	5.8 5.8	5.8	3.5 4.1	3.8	8 8	8.0
27-Jul-15	Sunny	Moderate	09:03	Middle	3.8	27.0 27.0	27.0	8.1 8.1	8.1	30.3 30.7	30.5	78.2 78.7	78.5	5.3 5.3	5.3	6.2 6.3	6.3	<2.5 <2.5	<2.5
29-Jul-15	Sunny	Moderate	10:04	Middle	3.8	27.6 27.5	27.6	8.0 8.0	8.0	32.9 33.2	33.1	117.7 117.7	117.7	7.7 7.7	7.7	6.7 6.5	6.6	7 6	6.5
31-Jul-15	Sunny	Moderate	12:37	Middle	3.4	27.0 27.0	27.0	8.0 8.0	8.0	35.0 35.0	35.0	109.2 108.6	108.9	7.2 7.1	7.2	3.7 3.8	3.8	5 4	4.5

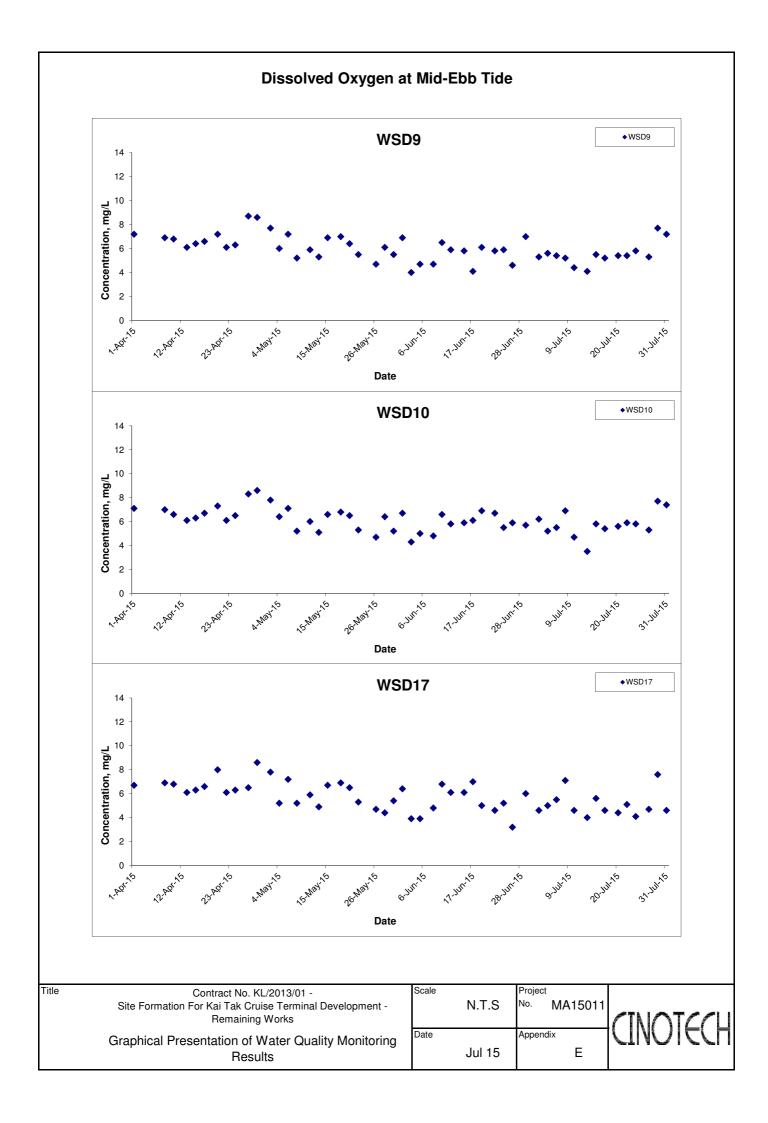
Water Quality Monitoring Results at WSD9 - Mid-Flood Tide

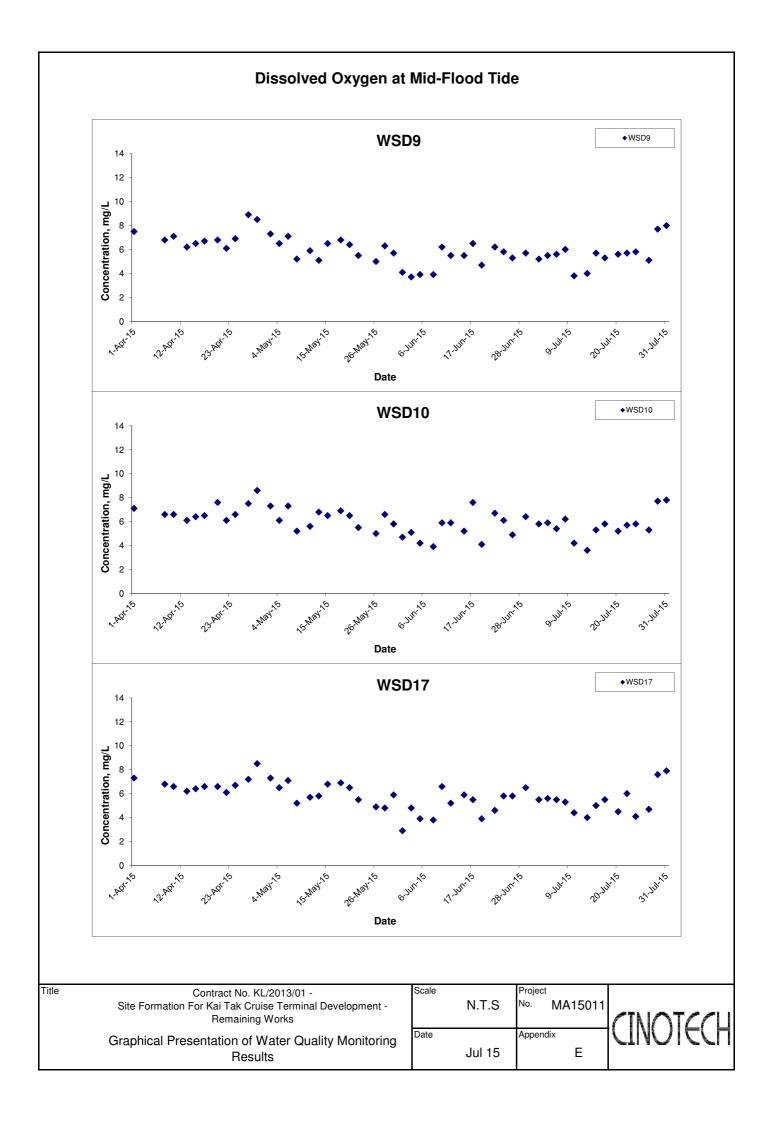
Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidit	ty(NTU)	Suspended	Solids (mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Ave	erage
2-Jul-15	Fine	Moderate	18:14	Middle	4.1	27.2 27.0	27.1	8.4 8.3	8.4	32.4 32.5	32.5	78.7 76.9	77.8	5.2 5.1	5.2	5.8 6.2	6.0	7 7	7.0
4-Jul-15	Sunny	Moderate	07:14	Middle	3.2	28.6 28.4	28.5	8.2 8.2	8.2	30.1 30.1	30.1	84.2 84.2	84.2	5.5 5.5	5.5	6.0 6.4	6.2	9 9	9.0
6-Jul-15	Sunny	Moderate	07:40	Middle	4.2	28.6 28.7	28.7	8.4 8.4	8.4	32.4 33.0	32.7	86.7 85.7	86.2	5.6 5.5	5.6	4.7 4.6	4.7	6 6	6.0
8-Jul-15	Sunny	Moderate	10:56	Middle	4.3	25.3 25.3	25.3	8.4 8.4	8.4	32.9 32.9	32.9	87.5 87.4	87.5	6.0 6.0	6.0	6.6 6.8	6.7	12 12	12.0
10-Jul-15	Sunny	Moderate	14:34	Middle	3.8	27.1 27.1	27.1	8.0 7.9	8.0	31.0 31.0	31.0	56.2 56.0	56.1	3.8 3.7	3.8	4.8 4.5	4.7	11 11	11.0
13-Jul-15	Sunny	Moderate	16:30	Middle	4	26.9 27.1	27.0	8.4 8.4	8.4	33.7 33.7	33.7	60.2 60.3	60.3	4.0 4.0	4.0	6.0 5.9	6.0	7 7	7.0
15-Jul-15	Fine	Moderate	19:24	Middle	4.2	26.7 26.9	26.8	8.1 8.1	8.1	30.9 30.9	30.9	83.2 84.8	84.0	5.6 5.7	5.7	6.6 6.5	6.6	4 4	4.0
17-Jul-15	Fine	Moderate	18:46	Middle	4.8	28.0 27.8	27.9	8.3 8.2	8.3	31.8 31.4	31.6	81.3 78.9	80.1	5.3 5.2	5.3	6.0 6.2	6.1	9 8	8.5
20-Jul-15	Cloudy	Moderate	07:02	Middle	4.5	27.2 27.1	27.2	8.2 8.3	8.3	31.6 31.8	31.7	84.7 82.3	83.5	5.6 5.5	5.6	6.5 6.5	6.5	5 5	5.0
22-Jul-15	Cloudy	Moderate	08:01	Middle	3.1	26.3 26.0	26.2	7.8 7.8	7.8	30.6 30.6	30.6	83.9 83.8	83.9	5.7 5.7	5.7	3.6 3.0	3.3	10 10	10.0
24-Jul-15	Rainy	Moderate	10:49	Middle	3.5	26.8 26.7	26.8	8.2 8.1	8.2	30.6 30.6	30.6	86.1 86.3	86.2	5.8 5.8	5.8	3.8 4.0	3.9	6 6	6.0
27-Jul-15	Sunny	Moderate	15:15	Middle	4	27.1 27.1	27.1	8.1 8.1	8.1	30.8 30.4	30.6	75.4 76.4	75.9	5.1 5.1	5.1	6.0 6.4	6.2	4 4	4.0
29-Jul-15	Fine	Moderate	18:36	Middle	3.6	26.9 26.9	26.9	8.0 8.0	8.0	33.1 33.0	33.1	115.8 115.6	115.7	7.7 7.7	7.7	4.0 3.6	3.8	5 6	5.5
31-Jul-15	Fine	Moderate	17:50	Middle	3.5	27.4 27.2	27.3	8.1 8.0	8.1	34.7 34.7	34.7	122.0 121.5	121.8	8.0 7.9	8.0	6.1 6.7	6.4	5 5	5.0

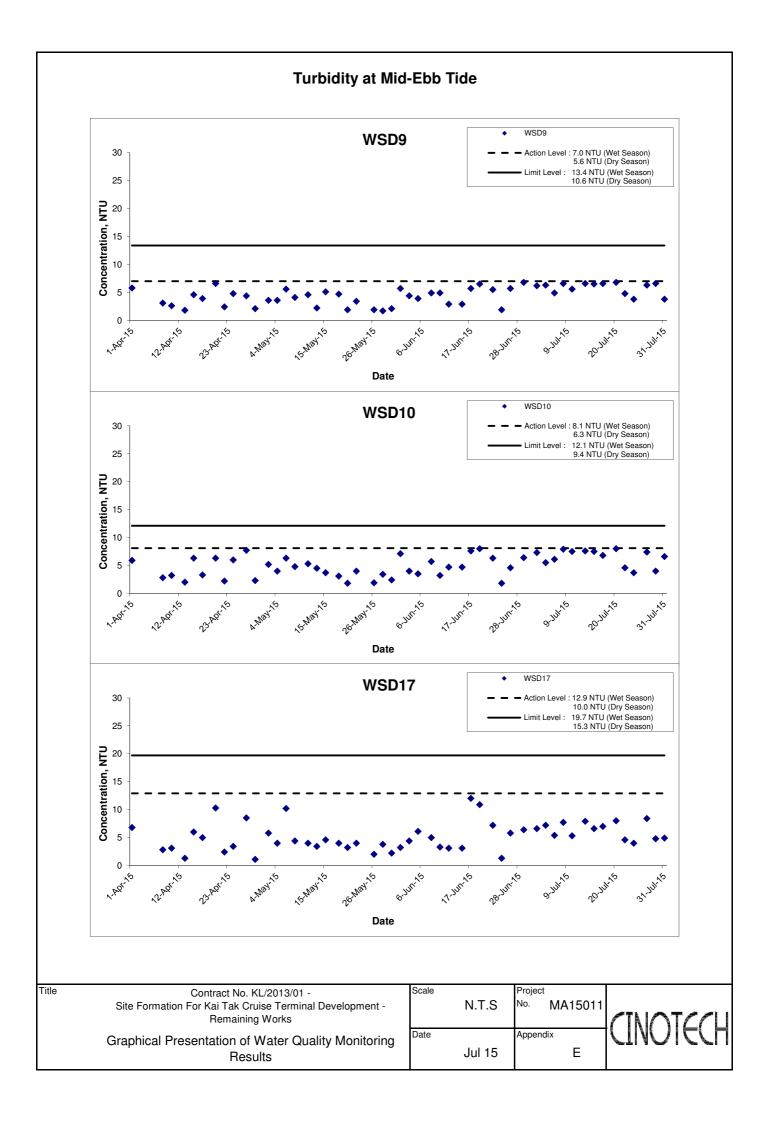
Water Quality Monitoring Results at WSD10 - Mid-Ebb Tide

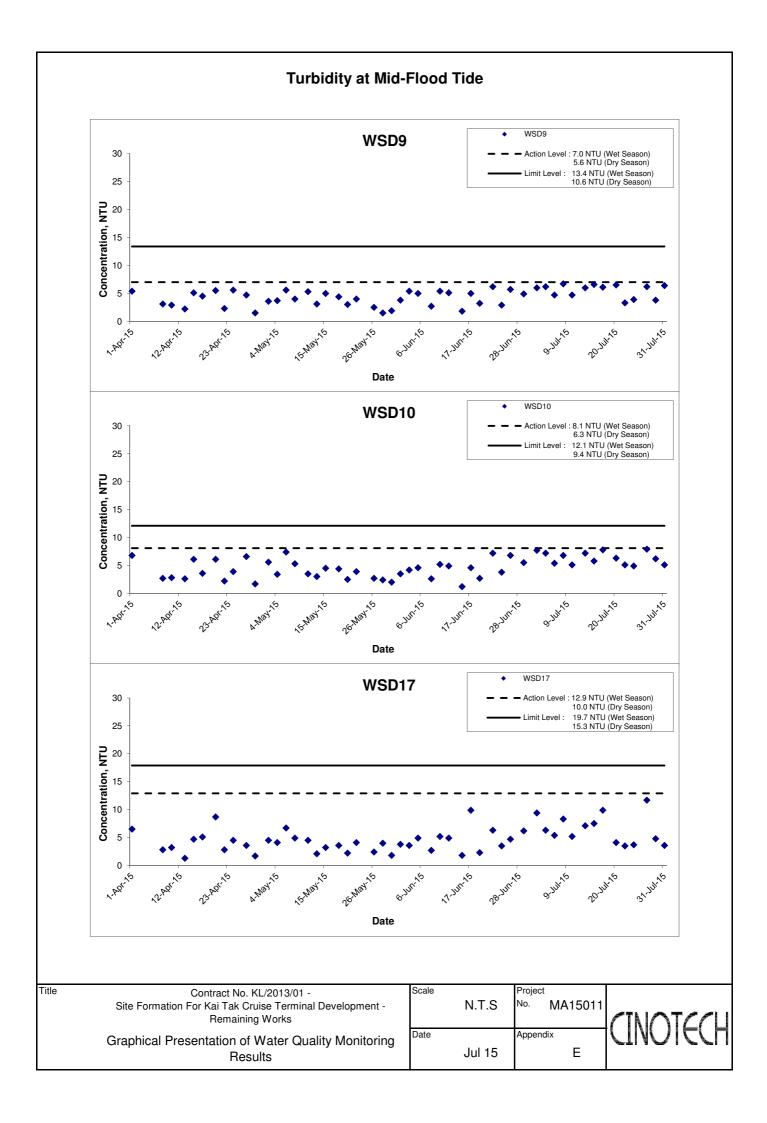
Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	þ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)	Suspended	Solids (mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
2-Jul-15	Sunny	Moderate	11:19	Middle	6.5	27.8 27.8	27.8	8.3 8.3	8.3	31.2 31.2	31.2	94.2 93.9	94.1	6.2 6.2	6.2	7.3 7.3	7.3	6 6	6.0
4-Jul-15	Sunny	Moderate	13:37	Middle	6.5	28.1 27.8	28.0	8.1 8.1	8.1	31.4 31.4	31.4	78.9 79.1	79.0	5.2 5.2	5.2	5.4 5.5	5.5	7 6	6.5
6-Jul-15	Sunny	Moderate	14:12	Middle	6.5	28.9 28.7	28.8	8.6 8.5	8.6	32.8 33.4	33.1	85.1 86.1	85.6	5.5 5.5	5.5	6.2 6.0	6.1	5 5	5.0
8-Jul-15	Sunny	Moderate	16:06	Middle	5.8	25.4 25.4	25.4	8.4 8.4	8.4	33.6 33.6	33.6	101.0 100.9	101.0	6.9 6.8	6.9	7.8 7.9	7.9	10 11	10.5
10-Jul-15	Fine	Moderate	20:18	Middle	5.8	27.6 27.5	27.6	7.9 7.8	7.9	31.6 31.7	31.7	71.6 70.1	70.9	4.7 4.6	4.7	7.5 7.4	7.5	5 6	5.5
13-Jul-15	Sunny	Moderate	10:41	Middle	5.7	27.3 27.2	27.3	8.5 8.5	8.5	33.7 33.7	33.7	53.0 52.6	52.8	3.5 3.5	3.5	7.6 7.5	7.6	5 5	5.0
15-Jul-15	Sunny	Moderate	10:51	Middle	6.3	27.9 27.5	27.7	8.2 8.2	8.2	30.2 30.1	30.2	87.0 87.0	87.0	5.8 5.8	5.8	7.5 7.5	7.5	5 5	5.0
17-Jul-15	Sunny	Moderate	12:10	Middle	6.2	28.6 28.6	28.6	8.2 8.2	8.2	31.2 31.1	31.2	80.6 82.7	81.7	5.3 5.4	5.4	6.7 6.8	6.8	5 6	5.5
20-Jul-15	Cloudy	Moderate	13:51	Middle	6.3	27.4 27.9	27.7	8.2 8.2	8.2	31.8 30.9	31.4	83.0 85.8	84.4	5.5 5.7	5.6	8.0 7.9	8.0	5 5	5.0
22-Jul-15	Cloudy	Moderate	15:37	Middle	6.2	26.7 26.5	26.6	8.1 8.1	8.1	31.4 31.4	31.4	88.0 86.4	87.2	5.9 5.8	5.9	4.5 4.6	4.6	5 5	5.0
24-Jul-15	Cloudy	Moderate	17:35	Middle	4.5	26.5 26.4	26.5	8.2 8.1	8.2	30.7 30.8	30.8	86.0 86.2	86.1	5.8 5.8	5.8	3.8 3.5	3.7	7 7	7.0
27-Jul-15	Sunny	Moderate	09:22	Middle	4.3	27.2 27.2	27.2	8.1 8.1	8.1	29.9 29.9	29.9	79.8 78.0	78.9	5.4 5.2	5.3	7.4 7.3	7.4	3 3	3.0
29-Jul-15	Sunny	Moderate	10:21	Middle	3.9	27.3 26.9	27.1	8.0 8.0	8.0	33.0 33.0	33.0	116.8 116.2	116.5	7.7 7.7	7.7	4.3 3.7	4.0	5 6	5.5
31-Jul-15	Sunny	Moderate	12:19	Middle	3.4	27.4 27.2	27.3	8.0 8.0	8.0	35.0 35.1	35.1	113.3 113.6	113.5	7.4 7.4	7.4	6.5 6.7	6.6	7 7	7.0

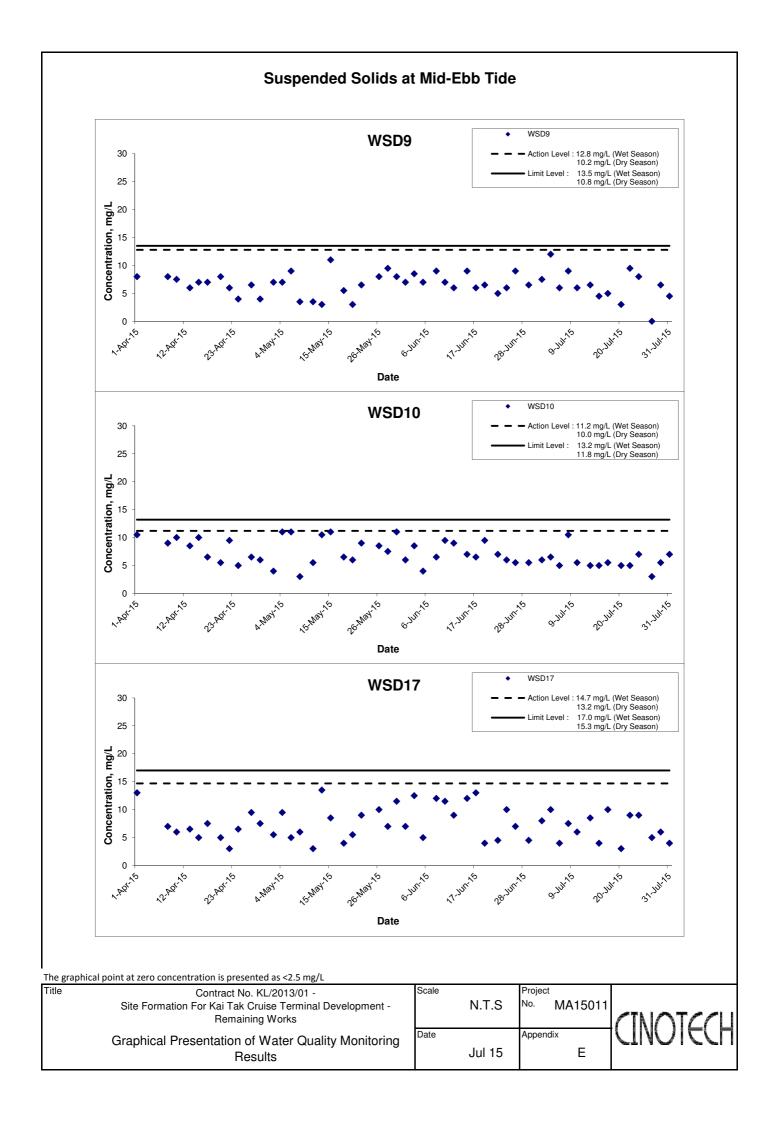
Water Quality Monitoring Results at WSD10 - Mid-Flood Tide

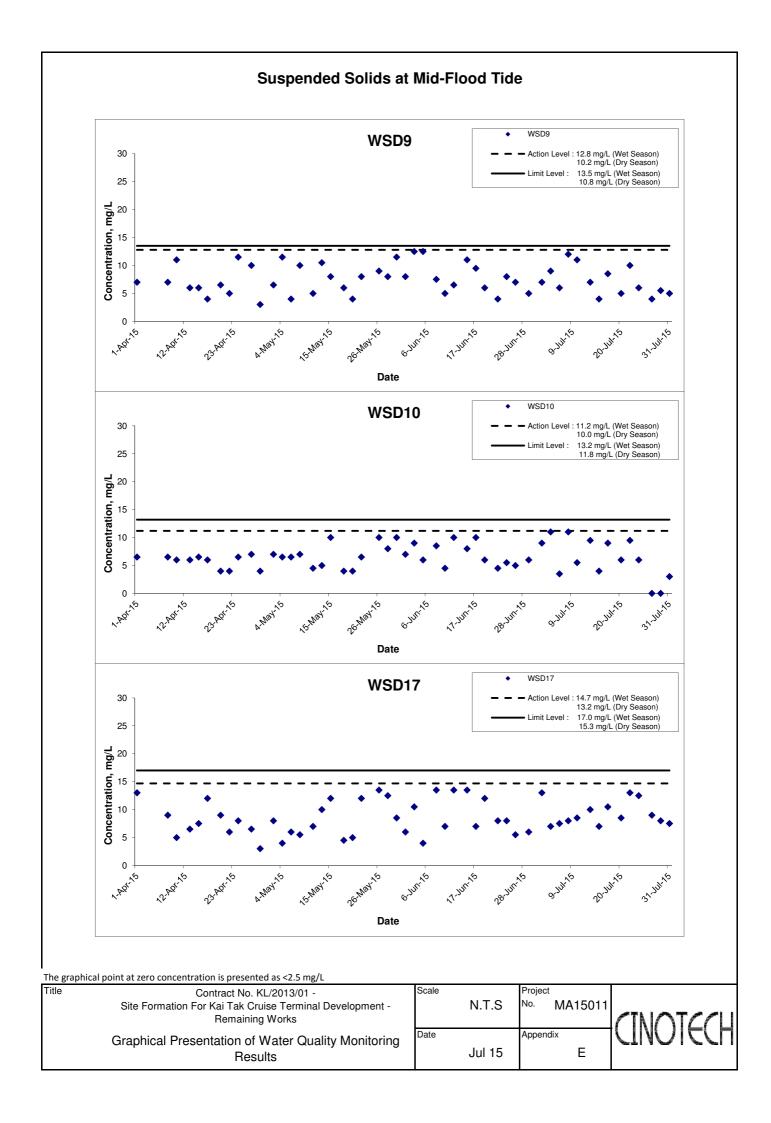

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	þ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)	Suspended	Solids (mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Ave	erage
2-Jul-15	Fine	Moderate	18:33	Middle	6.5	27.5 27.3	27.4	8.4 8.4	8.4	32.0 32.1	32.1	86.6 86.9	86.8	5.7 5.8	5.8	7.6 7.7	7.7	9 9	9.0
4-Jul-15	Sunny	Moderate	07:32	Middle	6.3	27.6 27.2	27.4	8.2 8.1	8.2	30.2 30.2	30.2	87.4 87.4	87.4	5.8 5.9	5.9	7.2 7.2	7.2	11 11	11.0
6-Jul-15	Sunny	Moderate	07:30	Middle	6.5	28.9 28.7	28.8	8.4 8.4	8.4	32.9 32.6	32.8	84.1 83.5	83.8	5.4 5.4	5.4	5.3 5.4	5.4	4 3	3.5
8-Jul-15	Sunny	Moderate	11:18	Middle	5.6	25.6 25.6	25.6	8.4 8.4	8.4	32.8 32.8	32.8	90.7 90.6	90.7	6.2 6.2	6.2	6.7 6.8	6.8	11 11	11.0
10-Jul-15	Sunny	Moderate	15:03	Middle	5.7	27.6 27.6	27.6	8.0 8.0	8.0	30.3 30.3	30.3	62.3 62.1	62.2	4.2 4.1	4.2	4.9 5.2	5.1	5 6	5.5
13-Jul-15	Sunny	Moderate	16:45	Middle	6.1	27.1 27.1	27.1	8.5 8.5	8.5	33.9 33.9	33.9	53.4 55.2	54.3	3.5 3.6	3.6	6.9 7.4	7.2	10 9	9.5
15-Jul-15	Fine	Moderate	19:07	Middle	6.5	27.8 27.5	27.7	8.1 8.1	8.1	31.3 31.3	31.3	79.3 79.5	79.4	5.2 5.3	5.3	5.7 5.8	5.8	4 4	4.0
17-Jul-15	Fine	Moderate	19:04	Middle	6.3	28.3 28.1	28.2	8.3 8.3	8.3	31.7 32.1	31.9	89.2 88.3	88.8	5.8 5.8	5.8	7.7 7.8	7.8	9 9	9.0
20-Jul-15	Cloudy	Moderate	07:22	Middle	6.1	27.2 27.6	27.4	8.3 8.2	8.3	31.4 31.0	31.2	77.4 78.1	77.8	5.2 5.2	5.2	6.5 6.1	6.3	6 6	6.0
22-Jul-15	Cloudy	Moderate	08:20	Middle	6.1	27.3 27.3	27.3	7.8 7.8	7.8	30.6 30.6	30.6	84.7 84.4	84.6	5.7 5.6	5.7	5.2 4.9	5.1	10 9	9.5
24-Jul-15	Rainy	Moderate	10:24	Middle	4.5	26.5 26.4	26.5	8.2 8.2	8.2	30.5 30.5	30.5	85.1 84.6	84.9	5.8 5.7	5.8	4.8 4.9	4.9	6 6	6.0
27-Jul-15	Sunny	Moderate	15:34	Middle	4.5	27.4 27.4	27.4	8.2 8.1	8.2	30.6 31.0	30.8	79.3 78.7	79.0	5.3 5.2	5.3	8.0 7.8	7.9	<2.5 <2.5	<2.5
29-Jul-15	Fine	Moderate	18:19	Middle	3.8	27.4 27.2	27.3	8.0 8.0	8.0	33.1 33.1	33.1	117.4 116.7	117.1	7.7 7.7	7.7	6.2 6.2	6.2	<2.5 <2.5	<2.5
31-Jul-15	Fine	Moderate	17:58	Middle	3.6	25.8 25.9	25.9	7.9 7.9	7.9	33.0 33.0	33.0	115.7 115.6	115.7	7.8 7.8	7.8	4.8 5.3	5.1	3 3	3.0


Water Quality Monitoring Results at WSD17 - Mid-Ebb Tide


Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)	Suspended	Solids (mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average
2-Jul-15	Sunny	Moderate	11:10	Middle	6.6	27.0 26.8	26.9	8.3 8.3	8.3	31.2 31.3	31.3	68.2 67.3	67.8	4.6 4.5	4.6	6.4 6.7	6.6	8 8	8.0
4-Jul-15	Sunny	Moderate	13:46	Middle	6.6	27.7 27.7	27.7	8.2 8.1	8.2	31.8 31.8	31.8	75.1 74.6	74.9	5.0 4.9	5.0	7.2 7.2	7.2	10 10	10.0
6-Jul-15	Sunny	Moderate	14:01	Middle	7.2	28.7 28.5	28.6	8.5 8.5	8.5	32.8 33.0	32.9	87.0 83.7	85.4	5.6 5.4	5.5	5.5 5.3	5.4	4 4	4.0
8-Jul-15	Sunny	Moderate	15:57	Middle	6.1	25.6 25.5	25.6	8.5 8.5	8.5	33.6 33.7	33.7	105.5 105.3	105.4	7.1 7.1	7.1	7.6 7.8	7.7	8 7	7.5
10-Jul-15	Fine	Moderate	20:07	Middle	6.3	27.9 27.8	27.9	8.0 7.9	8.0	30.9 31.0	31.0	70.0 68.2	69.1	4.6 4.5	4.6	5.5 5.1	5.3	6 6	6.0
13-Jul-15	Sunny	Moderate	09:50	Middle	6	26.6 26.7	26.7	8.4 8.4	8.4	33.9 33.9	33.9	59.8 60.2	60.0	4.0 4.0	4.0	8.0 7.7	7.9	9 8	8.5
15-Jul-15	Sunny	Moderate	10:42	Middle	6.2	27.8 27.7	27.8	8.2 8.2	8.2	30.1 30.1	30.1	83.2 83.4	83.3	5.5 5.6	5.6	6.6 6.6	6.6	4 4	4.0
17-Jul-15	Sunny	Moderate	12:01	Middle	6.5	27.8 27.6	27.7	8.2 8.2	8.2	32.1 32.7	32.4	70.3 69.1	69.7	4.6 4.5	4.6	6.9 7.1	7.0	10 10	10.0
20-Jul-15	Cloudy	Moderate	13:41	Middle	6.7	27.1 27.0	27.1	8.3 8.3	8.3	31.1 31.8	31.5	66.1 64.2	65.2	4.4 4.3	4.4	8.6 7.3	8.0	3 3	3.0
22-Jul-15	Cloudy	Moderate	15:45	Middle	6.3	25.7 26.0	25.9	8.1 8.1	8.1	32.0 32.0	32.0	74.0 74.8	74.4	5.0 5.1	5.1	4.7 4.5	4.6	9	9.0
24-Jul-15	Cloudy	Moderate	17:27	Middle	5.5	26.3 26.1	26.2	8.0 8.1	8.1	30.9 30.7	30.8	60.5 59.6	60.1	4.1 4.1	4.1	4.0 3.9	4.0	9	9.0
27-Jul-15	Sunny	Moderate	09:12	Middle	5	27.4 27.3	27.4	8.1 8.1	8.1	30.8 31.4	31.1	70.7 70.0	70.4	4.7 4.7	4.7	8.3 8.5	8.4	5 5	5.0
29-Jul-15	Sunny	Moderate	10:12	Middle	5.2	26.0 26.0	26.0	7.9 7.9	7.9	31.3 31.1	31.2	111.7 111.6	111.7	7.6 7.6	7.6	4.8 4.8	4.8	6 6	6.0
31-Jul-15	Sunny	Moderate	12:28	Middle	5.5	25.9 25.8	25.9	7.9 7.9	7.9	33.3 33.2	33.3	68.4 67.0	67.7	4.6 4.5	4.6	4.5 5.2	4.9	4 4	4.0


Water Quality Monitoring Results at WSD17 - Mid-Flood Tide


Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissolved O	xygen (mg/L)	Turbidi	ty(NTU)	Suspended	Solids (mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	Ave	erage
2-Jul-15	Fine	Moderate	18:24	Middle	6.6	26.5 26.8	26.7	8.3 8.4	8.4	32.9 32.9	32.9	81.5 82.4	82.0	5.5 5.5	5.5	9.1 9.7	9.4	13 13	13.0
4-Jul-15	Sunny	Moderate	07:23	Middle	6.2	27.5 27.4	27.5	8.2 8.1	8.2	30.1 30.2	30.2	83.6 83.8	83.7	5.6 5.6	5.6	6.3 6.3	6.3	7 7	7.0
6-Jul-15	Sunny	Moderate	07:19	Middle	7	28.8 28.4	28.6	8.4 8.4	8.4	31.8 32.4	32.1	83.1 84.4	83.8	5.4 5.5	5.5	5.3 5.5	5.4	7 8	7.5
8-Jul-15	Sunny	Moderate	11:02	Middle	6.1	25.0 25.0	25.0	8.4 8.4	8.4	33.1 33.2	33.2	78.0 77.7	77.9	5.3 5.3	5.3	8.7 7.8	8.3	8 8	8.0
10-Jul-15	Sunny	Moderate	14:47	Middle	5.9	28.1 28.0	28.1	8.0 8.0	8.0	30.5 30.5	30.5	67.3 65.7	66.5	4.4 4.3	4.4	5.0 5.3	5.2	8 9	8.5
13-Jul-15	Sunny	Moderate	16:38	Middle	6.5	26.7 26.8	26.8	8.4 8.4	8.4	34.0 34.0	34.0	60.4 60.8	60.6	4.0 4.0	4.0	6.8 7.3	7.1	10 10	10.0
15-Jul-15	Fine	Moderate	19:16	Middle	6.6	27.4 27.4	27.4	8.1 8.1	8.1	31.7 31.7	31.7	75.4 75.0	75.2	5.0 5.0	5.0	7.5 7.5	7.5	7 7	7.0
17-Jul-15	Fine	Moderate	18:55	Middle	6.8	27.3 27.6	27.5	8.2 8.3	8.3	33.2 33.1	33.2	84.1 83.6	83.9	5.5 5.5	5.5	9.3 10.5	9.9	11 10	10.5
20-Jul-15	Cloudy	Moderate	07:12	Middle	6.7	27.2 27.6	27.4	8.3 8.2	8.3	31.1 32.1	31.6	67.5 67.5	67.5	4.5 4.5	4.5	4.5 3.7	4.1	9 8	8.5
22-Jul-15	Cloudy	Moderate	08:11	Middle	6.2	26.5 26.3	26.4	7.8 7.8	7.8	30.6 30.7	30.7	88.3 87.5	87.9	6.0 5.9	6.0	3.7 3.3	3.5	13 13	13.0
24-Jul-15	Rainy	Moderate	10:31	Middle	5.5	26.1 26.0	26.1	8.1 8.1	8.1	30.7 30.7	30.7	59.9 59.2	59.6	4.1 4.0	4.1	4.0 3.4	3.7	13 12	12.5
27-Jul-15	Sunny	Moderate	15:25	Middle	5.1	27.6 27.6	27.6	8.1 8.1	8.1	32.1 32.0	32.1	72.1 69.3	70.7	4.8 4.6	4.7	10.8 12.6	11.7	9 9	9.0
29-Jul-15	Fine	Moderate	18:28	Middle	5.2	26.0 26.0	26.0	7.9 7.9	7.9	31.2 31.2	31.2	111.8 111.7	111.8	7.6 7.6	7.6	4.5 5.1	4.8	8 8	8.0
31-Jul-15	Fine	Moderate	18:07	Middle	5.5	27.1 27.3	27.2	8.0 8.0	8.0	35.0 35.1	35.1	121.0 121.3	121.2	7.9 7.9	7.9	3.7 3.4	3.6	7 8	7.5

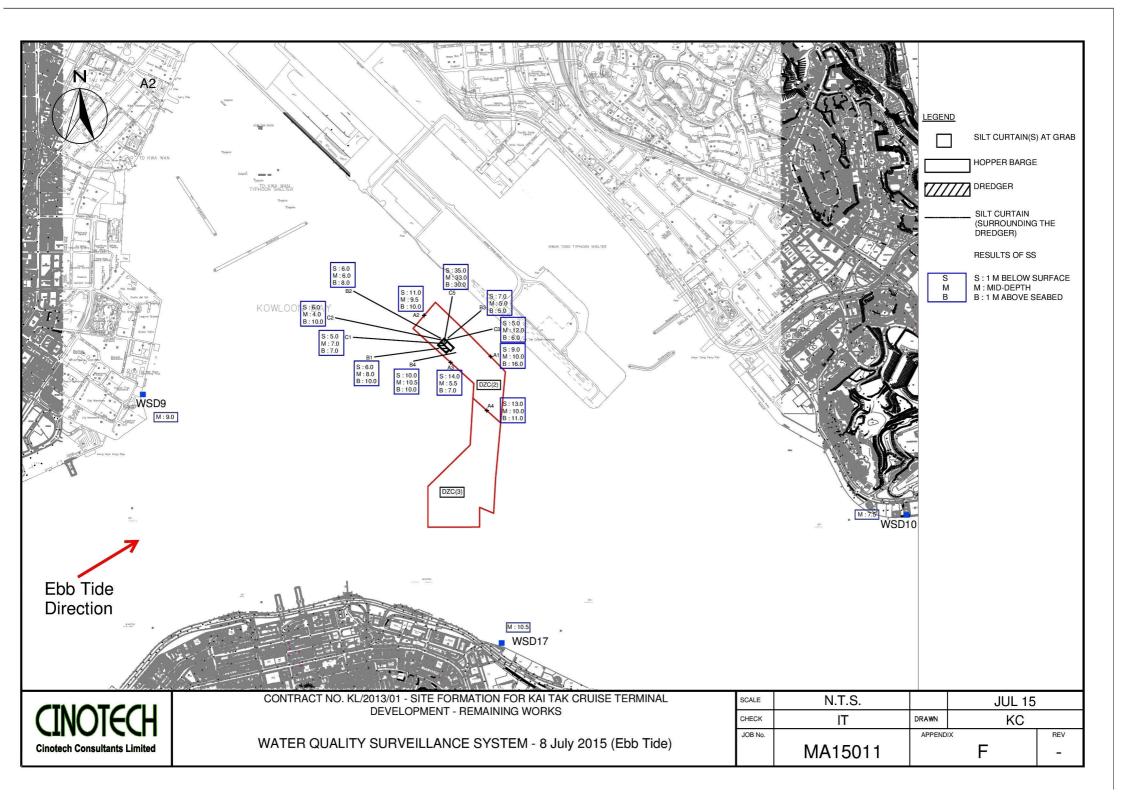


APPENDIX F WATER QUALITY MONITORING RESULTS OF WATER QUALITY SURVEILLANCE SYSTEM

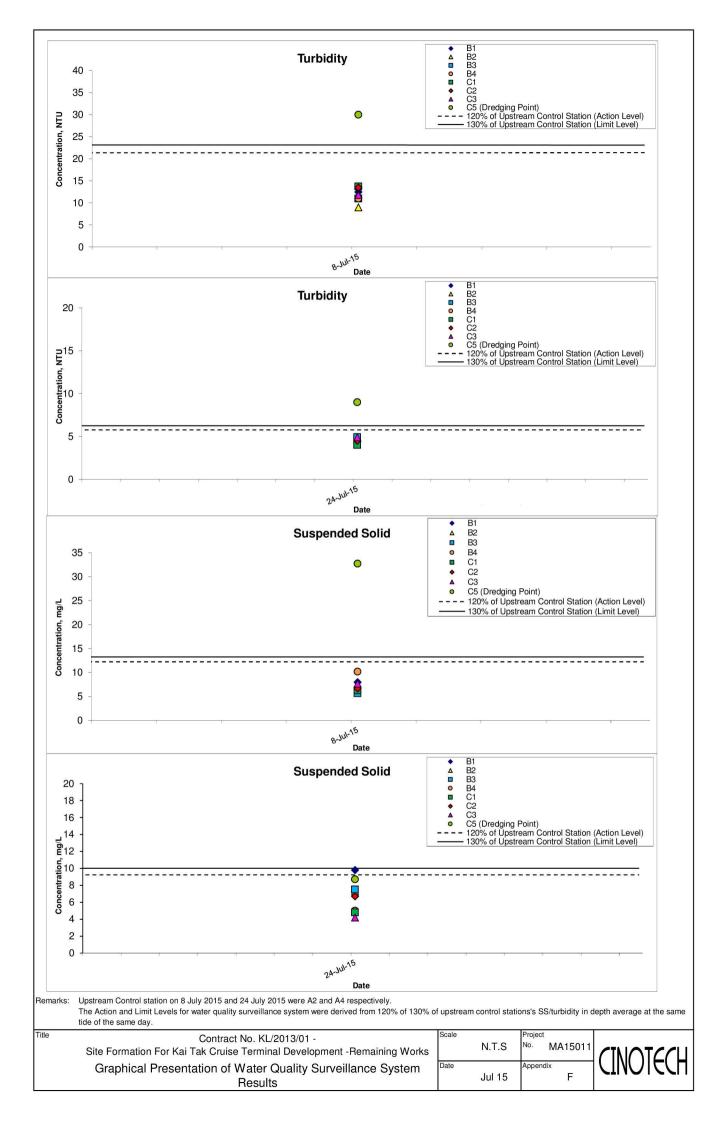
Contract No. KL/2013/01 Site Formation For Kai Tak Cruise Terminal Development - Remaining Works (Water Quality Surveillance System)

Water Quality Monitoring Results on

8 July, 2015 (Ebb Tide)


Date	Weather	Sea	Sampling	Dent	th (m)		Turbidity(NTU)		Susp	ended Solids ((mg/L)
Date	Condition	Condition**	Time	-	1	Value 6.3	Average	DA*	Value 9	Average	DA*
				Surface	1	6.2	6.3		9	9.0	
A1	Sunny	Moderate	15:07	Middle	7	10.6 10.6	10.6	10.0	10 10	10.0	11.7
				Bottom	13	13.2 12.7	13.0		16 16	16.0	
				Surface	1	13.2 13.6	13.4		11 11	11.0	
A2	Sunny	Moderate	15:15	Middle	6.5	16.0 15.8	15.9	17.8	10 9	9.5	10.2
				Bottom	12	24.1 23.8	24.0		10 10	10.0	
				Surface	1	13.5 13.7	13.6		14 14	14.0	
А3	Sunny	Moderate	15:21	Middle	5.5	18.4 18.8	18.6	15.9	6 5	5.5	8.8
				Bottom	10	15.1 15.7	15.4		7 7	7.0	
				Surface	1	7.3 7.3	7.3		13 13	13.0	
A4	Sunny	Moderate	15:27	Middle	4.5	7.3 7.4	7.4	7.4	10 10	10.0	11.3
				Bottom	8	7.5 7.7	7.6		11 11	11.0	
				Surface	1	7.4 7.5	7.5		6 6	6.0	
B1	Sunny	Moderate	14:44	Middle	5	15.6 15.7	15.7	12.5	8 8	8.0	8.0
				Bottom	9	14.2 14.1	14.2		10 10	10.0	
				Surface	1	3.8 4.2	4.0		6 6	6.0	
B2	Sunny	Moderate	14:50	Middle	6.5	12.3 12.5	12.4	9.0	6 6	6.0	6.7
				Bottom	12	9.5 11.8	10.7		8	8.0	
				Surface	1	6.6 6.6	6.6		7 7	7.0	
В3	Sunny	Moderate	14:56	Middle	6.5	12.7 12.4	12.6	11.0	5 5	5.0	5.7
				Bottom	12	13.5 13.8	13.7		5 5	5.0	
				Surface	1	8.9 8.8	8.9		10 10	10.0	
B4	Sunny	Moderate	15:02	Middle	7	12.6 12.9	12.8	11.0	10 11	10.5	10.2
				Bottom	13	11.1 11.5	11.3		10 10	10.0	
				Surface	1	10.5 10.6	10.6		5 5	5.0	
C1	Sunny	Moderate	14:24	Middle	5	14.8 12.7	13.8	13.7	7 7	7.0	6.3
				Bottom	9	16.0 17.2	16.6		7 7	7.0	
				Surface	1	11.9 11.9	11.9		6 6	6.0	
C2	Sunny	Moderate	14:31	Middle	5	13.4 13.9	13.7	13.5	4 4	4.0	6.7
				Bottom	9	14.8 15.1	15.0		10 10	10.0	
				Surface	1	11.1 11.2	11.2		5 5	5.0	
C3	Sunny	Moderate	14:38	Middle	5.5	12.5 12.9	12.7	11.8	12 12	12.0	7.7
				Bottom	10	11.0 11.8	11.4		6 6	6.0	
				Surface	1	22.1 21.6	21.9		34 36	35.0	
C5	Sunny	Moderate	14:16	Middle	6	30.7 31.6	31.2	30.0	33 33	33.0	32.7
				Bottom	11	36.7 36.8	36.8		30 30	30.0	


Contract No. KL/2013/01 Site Formation For Kai Tak Cruise Terminal Development - Remaining Works (Water Quality Surveillance System)


Water Quality Monitoring Results on

24 July, 2015 (Flood Tide)

Date	Weather	Sea	Sampling	Dent	th (m)		Turbidity(NTU)		Susp	ended Solids (mg/L)
Date	Condition	Condition**	Time		1	Value 3.8	Average	DA*	Value 11	Average	DA*
				Surface	1	4.2	4.0		12	11.5	
A1	Cloudy	Moderate	13:20	Middle	7	3.6 4.0	3.8	3.9	8 8	8.0	7.8
				Bottom	13	3.8 4.1	4.0		4 4	4.0	
				Surface	1	4.5 4.2	4.4		5 5	5.0	
A2	Cloudy	Moderate	13:53	Middle	5	2.2 2.6	2.4	3.6	6 6	6.0	6.3
				Bottom	9	3.9 4.1	4.0		8 8	8.0	
				Surface	1	4.2 4.1	4.2		7 8	7.5	
А3	Cloudy	Moderate	13:28	Middle	6	3.9 3.5	3.7	4.1	7 8	7.5	8.0
				Bottom	11	4.2 4.7	4.5		9 9	9.0	
				Surface	1	4.3 5.0	4.7		14 14	14.0	
A4	Cloudy	Moderate	13:36	Middle	5.5	5.1 5.3	5.2	4.8	4 4	4.0	7.7
				Bottom	10	4.5 4.3	4.4		5 5	5.0	
				Surface	1	3.8 3.7	3.8		7 7	7.0	
B1	Cloudy	Moderate	12:50	Middle	6.5	4.0 4.5	4.3	4.4	9 8	8.5	9.8
				Bottom	12	5.3 5.0	5.2		14 14	14.0	
				Surface	1	4.1 4.1	4.1		7 7	7.0	
B2	Cloudy	Moderate	12:27	Middle	7	4.2 3.8	4.0	4.9	8 8	8.0	7.3
				Bottom	13	6.8 6.4	6.6		7 7	7.0	
				Surface	1	3.4 3.6	3.5		5 5	5.0	
В3	Cloudy	Moderate	12:13	Middle	6.5	4.9 4.4	4.7	4.9	8 9	8.5	7.5
				Bottom	12	6.2 6.5	6.4		9 9	9.0	
				Surface	1	3.1 3.2	3.2		5 4	4.5	
B4	Cloudy	Moderate	12:55	Middle	6.5	5.1 5.6	5.4	4.3	5 5	5.0	5.0
				Bottom	12	4.4 4.1	4.3		6 5	5.5	
				Surface	1	4.0 3.8	3.9		4 4	4.0	
C1	Cloudy	Moderate	12:38	Middle	6.5	4.1 4.0	4.1	4.0	3 4	3.5	4.8
				Bottom	12	4.2 3.8	4.0		7 7	7.0	
				Surface	1	4.5 4.8	4.7		5 4	4.5	
C2	Cloudy	Moderate	12:43	Middle	7	3.7 4.1	3.9	4.5	6 6	6.0	6.7
				Bottom	13	5.1 4.5	4.8		10 9	9.5	
				Surface	1	5.5 5.4	5.5		6 5	5.5	
C3	Cloudy	Moderate	12:19	Middle	6.5	4.6 4.2	4.4	4.9	3 3	3.0	4.2
				Bottom	12	5.0 4.6	4.8		4 4	4.0	
				Surface	1	10.2 10.7	10.5		10 10	10.0	
C5	Cloudy	Moderate	12:05	Middle	6	8.7 8.3	8.5	9.0	7 6	6.5	8.7
				Bottom	11	8.0 7.9	8.0		10 9	9.5]

APPENDIX G EVENT ACTION PLANS

Event	ET	IEC	ER	Contractor
Action level being exceeded by one sampling day	 Repeat <i>in situ</i> measurement to confirm findings; Identify source(s) of impact; Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods. Discuss mitigation measures with IEC and Contractor; (The above actions should be taken within 1 working day after the exceedance is identified) Repeat measurement on next day of exceedance. 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified) 	 Discuss with IEC on the proposed mitigation measures; Make agreement on the mitigation measures to be implemented. (The above actions should be taken within 1 working day after the exceedance is identified) 	 Inform ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment; Review the working methods and consider additional measures such as use of frame-type silt curtain, deployment of double silt curtains, slowing down, or rescheduling of works; Discuss with ET and IEC and proposed mitigation measures to IEC and ER; Implement the agreed mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)
Action level being exceeded by more than one	 Identify source(s) of impact; Inform IEC and Contractor; 	Discuss with ET and Contractor on the mitigation measures;	Discuss with IEC on the proposed mitigation measures;	Inform ER and confirm notification of the non-compliance in writing;

Event		ET		IEC		ER		Contractor
consecutive sampling days	3.4.5.6.7.8.	Check monitoring data, all plant, equipment and Contractor's working methods. Discuss mitigation measures with IEC and Contractor; Ensure mitigation measures are implemented; Prepare to increase the monitoring frequency to daily; (The above actions should be taken within 1 working day after the exceedance is identified) Repeat measurement on next day of exceedance.	3.	Review proposals on mitigation measures submitted by Contractor and advise the ER accordingly; Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	 3. 4. 	Make agreement on the mitigation measures to be implemented. Assess the effectiveness of the implemented mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)	 3. 4. 5. 7. 	Rectify unacceptable practice; Check all plant and equipment; Review the working methods and consider additional measures such as use of frame-type silt curtain, deployment of double silt curtains, slowing down, or rescheduling of works; Discuss with ET and IEC and proposed mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)
Limit level being exceeded by one sampling day	1. 2. 3. 4.	Repeat <i>in situ</i> measurement to confirm findings; Identify source(s) of impact; Inform IEC, Contractor and EPD; Check monitoring data, all plant,	1.	Discuss with ET and Contractor on the mitigation measures; Review proposals on mitigation measures submitted by Contractor and	1.	Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the	 2. 3. 	Inform ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment;

Event	ET	IEC	ER	Contractor
	5. Discuss mitigation measures with IEC, ER and Contractor;	 advise the ER accordingly; 3. Assess the effectiveness of the implemented mitigation measures. 4. (The above actions should be taken within 1 working day after the exceedance is identified) 	working methods; 3. Make agreement on the mitigation measures to be implemented. 4. Assess the effectiveness of the implemented mitigation measures. 5. (The above actions should be taken within 1 working day after the exceedance is identified)	 Review the working methods and consider additional measures such as use of frame-type silt curtain, deployment of double silt curtains, slowing down, or rescheduling of works; Discuss with ET and IEC and ER and proposed mitigation measures to IEC and ER within 3 working days; Implement the agreed mitigation measures. (The above actions should be taken within 1 working day after the exceedance is identified)
Limit level being exceeded by more than one consecutive	 Identify source(s) of impact; Inform IEC, Contractor and EPD; Check monitoring data, all plant, 	 Discuss with ET and Contractor on the mitigation measures; Review proposals on 	Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to	Inform ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice;
sampling days	 equipment and Contractor's working methods. 4. Discuss mitigation measures with IEC FR and Contractor: 	mitigation measures submitted by Contractor and advise the ER accordingly; 3. Assess the effectiveness of	critically review the working methods; 3. Make agreement on the mitigation measures to be	3. Check all plant and equipment;4. Review the working methods and consider additional measures such as use of

Event	ET	IEC	ER	Contractor
	 Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Limit Level for two consecutive days. (The above actions should be taken within 1 working day after the exceedance is identified) 	the implemented mitigation measures. 4. (The above actions should be taken within 1 working day after the exceedance is identified)	 implemented. 4. Assess the effectiveness of the implemented mitigation measures. 5. Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the marine work until no exceedance of Limit level. 6. (The above actions should be taken within 1 working day after the exceedance is identified) 	frame-type silt curtain, deployment of double silt curtains, slowing down, or rescheduling of works; 5. Discuss with ET and IEC and ER and proposed mitigation measures to IEC and ER within 3 working days; 6. Implement the agreed mitigation measures. 7. As directed by the Engineer, to slow down or to stop all or part of construction activities. 8. (The above actions should be taken within 1 working day after the exceedance is identified)

APPENDIX H SUMMARY OF EXCEEDANCE

Appendix H - Exceedance Report

Exceedance Report for Water Quality

Environmental Monitoring	Parameter	No. of Exceedance		No. of Exceedance related to the Dredging Activities of this Project	
_		Action Level	Limit Level	Action Level	Limit Level
Water Quality	Turbidity	0	0	0	0
Water Quality	Suspended Solids (SS)	0	0	0	0

APPENDIX I SITE AUDIT SUMMARY

Site Formation for Kai Tak Cruise Terminal Development – Remaining Works

Record Summary of Environmental Site Inspection

Checklist Reference Number	150707
Date	7 July 2015 (Tuesday)
Time	10:00 - 11:30

Ref. No.	Non-Compliance	Related Item No.
+	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	A. Water Quality No environmental deficiency was identified during the site inspection.	
150707-R01	B. Air Quality Water spray should be provided for the stockpile area. (Area 2)	C 6
	C. Noise No environmental deficiency was identified during the site inspection.	
	D. Waste / Chemical Management No environmental deficiency was identified during the site inspection.	
	E. Cultural Heritage Measures • No environmental deficiency was identified during the site inspection.	
	F. Permits / Licences • No environmental deficiency was identified during the site inspection.	
	 G. Others Follow-up on the previous audit session (Ref. No. 150630), no major environmental deficiencies were identified. 	

	Name	Signature	Date
Recorded by	KC Chung	Olux	7 July 2015
Checked by	Dr. Priscilla Choy	WF	7 July 2015

Site Formation for Kai Tak Cruise Terminal Development - Remaining Works

Record Summary of Environmental Site Inspection

This pection throw matter	
Checklist Reference Number	150716
Date	16 July 2015 (Thursday)
Time	14:00 - 15:15

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
	 A. Water Quality No environmental deficiency was identified during the site inspection. 	
	 B. Air Quality No environmental deficiency was identified during the site inspection. 	
	C. NoiseNo environmental deficiency was identified during the site inspection.	
	 D. Waste / Chemical Management No environmental deficiency was identified during the site inspection. 	:
	 E. Cultural Heritage Measures No environmental deficiency was identified during the site inspection. 	
	 F. Permits / Licences No environmental deficiency was identified during the site inspection. 	
	 G. Others Follow-up on the previous audit session (Ref. No. 150707), follow-up action is required for item 150707-R01. 	

	Name	Signature	Date
Recorded by	KC Chung	Cly	16 July 2015
Checked by	Dr. Priscilla Choy	WI	16 July 2015

Contract No. KL/2013/01

Site Formation for Kai Tak Cruise Terminal Development – Remaining Works

Record Summary of Environmental Site Inspection

Checklist Reference Number	150721
Date	21 July 2015 (Tuesday)
Time	10:00 - 11:45

Ref. No.	Non-Compliance	Related Item No.
-	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
150721-R01	A. Water Quality Clear the stagnant water in drip tray after rain to prevent chemical spillage.	B 14
	B. Air Quality No environmental deficiency was identified during the site inspection.	
	 C. Noise No environmental deficiency was identified during the site inspection. 	
	D. Waste / Chemical Management No environmental deficiency was identified during the site inspection.	
	E. Cultural Heritage Measures • No environmental deficiency was identified during the site inspection.	
	F. Permits / Licences • No environmental deficiency was identified during the site inspection.	
	 G. Others Follow-up on the previous audit session (Ref. No. 150716), all environmental deficiencies was improved/rectified. 	

	Name	Signature	Date
Recorded by	KC Chung	Cly	21 July 2015
Checked by	Dr. Priscilla Choy	WI	21 July 2015

Site Formation for Kai Tak Cruise Terminal Development - Remaining Works

Record Summary of Environmental Site Inspection

Checklist Reference Number	150728
Date	28 July 2015 (Tuesday)
Time	10:00 - 12:00

Ref. No.	Non-Compliance	Related Item No.
-	None identified	
Ref. No.	Remarks/Observations	Related Item No.
150728-R01	A. Water Quality Clear the stagnant water in drip tray regularly to prevent accumulation.	В9
	B. Air Quality No environmental deficiency was identified during the site inspection.	
	C. Noise • No environmental deficiency was identified during the site inspection.	
	D. Waste / Chemical Management No environmental deficiency was identified during the site inspection.	
	E. Cultural Heritage Measures • No environmental deficiency was identified during the site inspection.	
	F. Permits / Licences • No environmental deficiency was identified during the site inspection.	
	 G. Others Follow-up on the previous audit session (Ref. No. 150721), follow up action is required for item 150721-R01 which was remarked as 150728-R01. 	

	Name	Signature	Date
Recorded by	KC Chung	Chy	28 July 2015
Checked by	Dr. Priscilla Choy	2	28 July 2015

APPENDIX J UPDATED ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

EIA Ref.	Recommended Mitigation Measures	Implementation Agent	Location/ Timing of the measures	Implementation Stage	Implementation
					Status
Air Qual	ity				
S3.6	Requirements of the Air Pollution Control (Construction Dust) Regulation	Contractor for capital	Work site/ during dredging in the	Construction stage	
	shall be adhered to during the construction period.	dredging	construction stage and maintenance		*
			dredging during operation stage		
S3.6	In order to minimize the potential odour emissions, if any, the dredged	Contractor for capital and	Work site/ during dredging in the	Construction stage and	
	sediment placed on barge should be properly covered as far as	maintenance dredging	construction stage and maintenance	Operation stage	٨
	practicable to minimize the exposed area and hence the potential odour		dredging during operation stage		
	emissions during the transportation of the dredged sediment.				
Construc	ction Noise (Air borne)				
S4.8	Good Site Practices:	Contractor for capital and	Work site/ during dredging in the	Construction stage and	
	Only well-maintained plant should be operated on-site and plant	maintenance dredging	construction stage and maintenance	Operation stage	۸
	should be serviced regularly during the construction program.		dredging during operation stage		
	Mobile plant, if any, should be sited as far away from NSRs as				٨
	possible.				
	Machines and plant (such as trucks) that may be in intermittent				
	use should be shut down between works periods or should be				٨
	throttled down to a minimum.				
	Plant known to emit noise strongly in one direction should,				٨
	wherever possible, be orientated so that the noise is directed away				
	from the nearby NSRs.				۸
	Material stockpiles and other structures should effectively utilized,				
	wherever practicable, in screening noise from on-site construction				۸
	activities.				
S4.9	If there is any planned NSRs within 300 m from the work area occupied	Developer of cruise	Representative NSRs at the former	Construction	N/A
	during the dredging period, an EM&A programme is recommended to be	terminal	Kai Tak Airport runway/ Prior and	Stage and Operation stage	

EIA Ref.	Recommended Mitigation Measures	Implementation Agent	Location/ Timing of the measures	Implementation Stage	Implementation
					Status
	established according to the predicted occurrence of noisy activities. All		during the capital and maintenance		
	the recommended mitigation measures for daytime normal working		dredging		
	activities should be incorporated into the EM&A programme for				
	implementation during dredging.				
Water Qu	ıality				
S5.9	Dredging will be carried out by closed grab dredger to minimize	Contractor for capital and	Work site/ during dredging in the	Construction	۸
	release of sediment and other contaminants during both capital	maintenance dredging	construction stage and maintenance	Stage and Operation stage	
	and maintenance dredging.		dredging during operation stage		
	The maximum production rate for dredging from the seabed to				۸
	provide necessary manoeuvering area would not be more than				
	4,000m ³ per day (and no more than 2 closed grab dredgers)				
	during capital dredging and 2,000m³ per day maintenance				
	dredging.				
	The maximum production rate for dredging at or near the seawall				۸
	area would not be more than 4,000m³ per day for berth				
	construction. No more than two closed grab dredger would be				
	operated at the same time at or near the seawall for berth				
	construction.				
S5.9	Silt curtains should be deployed around the closed grab dredgers used	Contractor for capital	Work site/ during dredging in the	Construction	۸
	for dredging at and near the existing seawall of the former Kai Tak runway	dredging	construction stage	stage	
	for construction of the cruise berth structures.				
S5.9	Silt screens should be installed at the WSD flushing water intakes at Cha	Contractor for capital	Seawater intakes in Victoria	Construction	۸
	Kwo Ling, Sai Wan Ho, Quarry Bay, Sheung Wan, Wan Chai and Tai Wan	dredging	Harbour/ During the construction of	stage	
	for dredging in the manoeuvring basin of the first berth during the capital		cruise terminal		
	dredging				

EIA Ref.	Recommended Mitigation Measures	Implementation Agent	Location/ Timing of the measures	Implementation Stage	Implementation
					Status
S5.9	Silt screens should be installed at the WSD flushing water intakes at Cha	Contractor for capital	Seawater intakes in Victoria	Construction stage	۸
	Kwo Ling, Quarry Bay, and Tai Wan for dredging in the manoeuvring	dredging	Harbour/ During the construction of		
	basin of the second berth during the capital dredging.		cruise terminal		
S5.9	If the opening has been introduced at the northern runway, silt screen	CEDD	Seawater intake at Sai Wan Ho,	Construction stage	۸
	should also be installed at the WSD flushing water intake at Sai Wan Ho,		Sheung Wan and Wan Chai/ During		
	Sheung Wan and Wan Chai for dredging in the manoeuvring basin of the		the construction of cruise terminal		
	second berth during the capital dredging.				
S5.9	Other good site practices that should be undertaken during dredging	Contractor for capital and	Work site and adjacent waters/	Construction stage and	
	include:	maintenance dredging	during dredging in the construction	Operation stage	۸
	All vessels should be sized so that adequate clearance is		stage and maintenance dredging		
	maintained between vessels and the seabed in all tide conditions,		during operation stage		
	to ensure that undue turbidity is not generated by turbulence from				
	vessel movement or propeller wash;				۸
	All barges / dredgers should be fitted with tight fitting seals to their				
	bottom openings to prevent leakage of material;				۸
	Construction activities should not cause foam, oil, grease, scum,				
	litter or other objectionable matter to be present on the water				
	within the site or dumping grounds;				۸
	Barges or hoppers should not be filled to a level that will cause the				
	overflow of materials or polluted water during loading or				
	transportation.				
S5.9	Appropriate numbers or portable chemical toilets shall be provided by a	Contractor for capital and	Work site and adjacent waters/	Construction stage and	۸
	licensed contractor to serve the construction workers over the	maintenance dredging	during dredging in the construction	Operation stage	
	construction site. The Contractor shall also be responsible for waste		stage and maintenance dredging		
	disposal and maintenance practices		during operation stage		

EIA Ref.	Recommended Mitigation Measures	Implementation Agent	Location/ Timing of the measures	Implementation Stage	Implementation
					Status
S5.9	Collection and removal of floating refuse should be performed at regular	Contractor for capital and	Work site and adjacent waters/	Construction stage and	۸
	intervals on a daily basis. The Contractor should be responsible for	maintenance dredging	during dredging in the construction	Operation stage	
	keeping the water within the site boundary and the neighbouring water		stage and maintenance dredging		
	free from rubbish during the dredging works.		during operation stage		
S5.9	An environmental monitoring and audit programme should be	Developer of cruise	Selected water receiver points in	Construction stage and	۸
	implemented to verify whether or not impact predictions are	terminal	Victoria Harbour/ Prior and during	Operation stage	
	representative, and to ensure that all the recommended mitigation		the construction of cruise terminal		
	measures are implemented properly. If the water quality monitoring data		and maintenance dredging		
	indicate that the proposed dredging works result in unacceptable water				
	quality impacts in the receiving water, appropriate actions should be				
	taken to review the dredging operation and additional measures such as				
	use of frame-type silt curtain, deployment of double silt curtains, slowing				
	down, or rescheduling or works should be implemented as necessary.				
S5.9	Silt screens are recommended to be deployed at six selected WSD	Contractor for capital	Selected water receiver points in	Construction stage	۸
	flushing water intakes during the capital dredging. The Contractor for	dredging	Victoria Habour/ during dredging in		
	capital dredging shall demonstrate and ensure that the design of the silt		the constriction stage		
	screen will not affect the normal operation of flushing water intake. The				
	Contractor shall obtain consensus from all relevant parties, including				
	WSD and Marine Department on the design of the silt screen at each of				
	the six selected flushing water intake points before installation of the silt				
	screen and commencement of the proposed dredging works. As a				
	mitigation measure to avoid the pollutant and refuse entrapment				
	problems and to ensure that the impact monitoring results are				
	representative, regular maintenance of the silt screens and refuse				
	collection should be performed at the monitoring stations at regular				

EIA Ref.	Recommended Mitigation Measures	Implementation Agent	Location/ Timing of the measures	Implementation Stage	Implementation
					Status
	intervals on a daily basis. The Contractor should be responsible for				
	keeping the water behind the silt screen free from floating rubbish and				
	debris during the impact monitoring period.				
Waste M	anagement				
S6.7	Good Site Practices It is not anticipated that adverse waste management	Contractor for capital and	Work site/ during dredging in the	Construction	
	related impacts would arise, provided that good site practices are	maintenance dredging	construction stage and maintenance	stage and Operation stage	
	adhered to. Recommendations for good site practices during the		dredging during operation stage		
	dredging activities include:				
	Nomination of an approved person, such as a site manager, be				٨
	responsible for good site practices, arrangements for collection				
	and effective disposal to an appropriate facility, of all wastes				
	generated at the site.				
	Training of site personnel in proper waste management and				٨
	chemical waste handling procedures.				
	Provision of sufficient waste disposal points and regular collection				٨
	for disposal.				
	Appropriate measure to minimize windblown litter and dust during				٨
	transportation of waste by either covering trucks or by transporting				
	wastes in enclosed containers.				
	A recording system for the amount of wastes generated, recycled				
	and disposed of (including the disposal sites).				٨
	Segregation and storage of different types of waste in different				
	containers, skips or stockpiles to enhance reuse or recycling of				٨
	materials and their proper disposal.				
	Encourage collection of aluminium cans, PET bottles and paper by				٨

EIA Ref.	Recommended Mitigation Measures	Implementation Agent	Location/ Timing of the measures	Implementation Stage	Implementation
					Status
	providing separate labeled bins to enable these wastes to be				
	segregated from other general refuse generated by the work force.				
	Any unused chemicals or those with remaining functional capacity				٨
	shall be recycled.				
S6.7	Marine Sediments The dredged marine sediments would be loaded onto	Contractor for capital and	Work site/ during dredging in	Construction stage and	۸
	barges and transported to the designated disposal sites allocated by the	maintenance dredging	construction stage and maintenance	Operation stage	
	MFC depending on their level of contamination. Sediment classified as		dredging during operation stage		
	Category L would be suitable for Type 1 -Open Sea Disposal (Dedicated				
	Sites) or Type 2 -Confined Marine Disposal and must be dredged and				
	transported with great care in accordance with ETWB TCW No. 34/2002.				
	Subject to the final allocation of the disposal sites by MFC, the dredged				
	contaminated sediment must be effectively isolated from the environment				
	upon final disposal and shall be disposed of at the East Sha Chau				
	Contaminated Mud Pits that are designated for the disposal of				
	contaminated mud in Hong Kong.				
S6.7	It will be the responsibility of the Contractor to satisfy the appropriate	Contractor for capital and	Work site/ during dredging in the	Construction stage and	٨
	authorities that the contamination levels of the marine sediment to be	maintenance dredging	construction stage and maintenance	Operation stage	
	dredged have been analysed and recorded. According to the ETWB TCW		dredging during operation stage		
	No. 34/2002, this will involve the submission of a formal Sediment Quality				
	Report to the DEP, prior to the dredging contract being tendered. The				
	Contractor for the dredging works shall apply for the allocation of marine				
	sediment disposal sites from all relevant authorities.				
S6.7	During transportation and disposal of the dredged marine sediments	Contractor for capital and	Work site/ during dredging in the	Construction stage and	
	requiring Type 1 and Type 2 disposal, the following measures shall be	maintenance dredging	construction stage and maintenance	Operation stage	
	taken to minimize potential impacts on water quality:		dredging during operation stage		

EIA Ref.	Recommended Mitigation Measures	Implementation Agent	Location/ Timing of the measures	Implementation Stage	Implementation
					Status
	Bottom opening of barges shall be fitted with tight fitting seals to				
	prevent leakage of material. Excess material shall be cleaned from				۸
	the decks and exposed fittings or barges and hopper dredgers				
	before the vessel is moved.				
	Monitoring of the barge loading shall be conducted to ensure that				۸
	loss of material does not take place during transportation.				
	Transport barges or vessels shall be equipped with automatic				
	self-monitoring devices as specified by the DEP.				
	Barges or hopper barges shall not be filled to a level that would				۸
	cause the overflow of materials or sediment laden water during				
	loading or transportation.				
S6.7	Chemical wastes After use, chemical wastes (for example, cleaning	Contractor for capital and	Work site/ during dredging in the	Construction stage and	۸
	fluids, solvents, lubrication oil and fuel) should be handles according to	maintenance dredging	construction stage and maintenance	Operation stage	
	the Code of Practice on the Packaging, Labelling and Storage of		dredging during operation stage		
	Chemical Wastes. Spent chemicals should be collected by a licensed				
	collector for disposal at the CWTF or other licensed facility in accordance				
	with the Waste Disposal (Chemical Waste) (General) Regulation.				
S6.7	General Refuse General refuse should be stored in enclosed bins or	Contractor for capital and	Work site/ during dredging in the	Construction stage and	۸
	compaction units separate from C&D material. A reputable waste	maintenance dredging	construction stage and maintenance	Operation stage	
	collector should be employed by the Contractor to remove general refuse		dredging during operation stage		
	from the site, separately from C&D material. An enclosed and covered				
	area is preferred to reduce the occurrence of 'wind blown' light material.				
S6.7	Construction and Demolition Material It is recommended that the extend	Contractor for capital	Work site/ during the construction	Construction stage	
	of dredging of the existing seawall should be kept to a minimum in the	dredging	period		
	detailed design of the new cruise terminal to minimize generation of C&D				

EIA Ref.	Recommended Mitigation Measures	Implementation Agent	Location/ Timing of the measures	Implementation Stage	Implementation
					Status
	material. Mitigation measures and good site practices should be				
	incorporated in the contract document to control potential environmental				
	impact from handling and transportation of C&D material. The mitigation				
	measures include:				^
	Where it is unavoidable to have transient stockpiles of C&D				
	material with the Project work site pending collection for disposal,				
	the transient stockpiles shall be located away from waterfront or				
	storm drains as far as possible.				
	Open stockpiles of construction materials or construction wastes				^
	on-site should be covered with tarpaulin or similar fabric.				
	Skip hoist for material transport should be totally enclosed by				^
	impervious sheeting.				
	Every vehicle should be washed to remove any dusty materials				^
	from its body and wheels before leaving a construction site.				
	The area where vehicle washing takes place and the section of the				^
	road between the washing facilities and the exit point should be				
	paved with concrete, bituminous materials or hardcores.				
	The load of dusty materials carried by vehicle leaving a				
	construction site should be covered entirely by clean impervious				^
	sheeting to ensure dust materials do not leak from the vehicle.				
	All dusty materials should be sprayed with water prior to any				
	loading, unloading or transfer operation so as to maintain the				*
	dusty materials wet.				
	The height from which excavated materials are dropped should be				۸
	controlled to a minimum practical height to limit fugitive dust				

EIA Ref.	Recommended Mitigation Measures	Implementation Agent	Location/ Timing of the measures	Implementation Stage	Implementation
					Status
	generation from unloading.				
S6.7	When delivering inert C&D material to public fill reception facilities, the	Contractor and	Work site/ During the construction	Construction stage	۸
	material shall consist entirely of inert construction waste and of size less	Independent	period		
	than 250mm or other sizes as agreed with the Secretary of the Public Fill	Environmental Checker			
	Committee. In order to monitor the disposal of the surplus C&D material				
	at the designed public fill reception facility and to control fly tipping, a				
	trip-ticket system should be included as one of the contractual				
	requirements and implemented by an Environmental Team undertaking				
	the Environmental Monitoring and Audit work. An Independent				
	Environmental Checker should be responsible for auditing the results of				
	the system.				
Cultural	Heritage				
S7.8	The dredging activities of the proposed cruise terminal should ensure that	Developer of cruise	Work site/ During the design and	Design stage and	۸
	disturbance to the existing seawall masonry outside the Project boundary	terminal	construction of cruise terminal	Construction stage	
	should be avoided as far as practicable.				
7.10,	It is recommended that the dredged spoil should be monitored for the	Developer of cruise	Work site/ during dredging in the	During construction	۸
Appendix	presence of archaeological material. Guidelines for the monitoring brief	terminal/ Contractor for	construction stage		
7.1	have been prepared in consultation with the AMO. A qualified marine	capital dredging			
	archaeologist needs to be on standby to provide specialist advice, if				
	required, but the monitoring can be carried out by a member of staff of				
	dredging barge.				

Remarks: ^ Compliance of mitigation measure

* Recommendation was made during site audit but improved/rectified by the contractor

N/A Not Applicable at this stage as no such site activities were conducted in the reporting month

APPENDIX K COMPLAINT LOG

Appendix K - Complaint Log

Log Ref.	Location	Received Date	Details of Complaint	Investigation/ Mitigation Action	Status
-		-			