

PROJECT No.: TCS/00512/09

DSD CONTRACT No. DC/2009/13 CONSTRUCTION OF SEWAGE TREATMENT WORKS AT YUNG SHUE WAN AND SOK KWU WAN

SOK KWU WAN PORTION AREA
MONTHLY ENVIRONMENTAL MONITORING AND AUDIT
(EM&A) REPORT (No.19) – FEBRUARY 2012

PREPARED FOR LEADER CIVIL ENGINEERING CORPORATION LIMITED

Date	Reference No.	Prepared By	Approved By
13 March 2012	TCS00512/09/600/R0445v2	Aula	Shum
		Nicola Hon	T.W. Tam

Environmental Consultant Environmental Team Leader

Version	Date	Description
1	9 March 2012	First Submission
2	13 March 2012	Amended against IEC's comments on 13 March 2012.

Ouality Index

Scott Wilson CDM Joint Venture

Chief Engineer/Harbour Area Treatment

Scheme

Drainage Services Department

5/F Western Magistracy 2A Pok Fu Lam Road

Hong Kong

05117/6/16/386865

Date:

Your reference:

Our reference:

14 March 2012

BY FAX & EMAIL

Attention: Mr Kenley C K Kwok

Dear Sirs,

Contract No. DC/2009/13
Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Sok Kwu Wan Portion Area
Monthly Environmental Monitoring and Audit (EM&A) Report No. 19 (February 2012)

We refer to the Monthly EM&A Monitoring Report No. 19 for February 2012 received under cover of the email from the Environmental Team, Action-United Environmental Services and Consulting (AUES), dated 13 March 2012. We have no comment and have verified the captioned report.

Yours faithfully

SCOTT WILSON CDM JOINT VENTURE

Rodney Ip

Independent Environmental Checker

ICWR/SYSL/ecwc

cc Leader Civil Engineering

AUES

ER/LAMMA

CDM

(Attn: Mr Vincent Chan)

(Attn: Mr T.W. Tam)

(Attn: Mr Neil Wong)

(Attn: Mr Mark Sin)

EXECUTIVE SUMMARY

ES.01. This is the 19th monthly Environmental Monitoring and Audit (EM&A) Report for Sok Kwu Wan (hereinafter 'this Report') for the designated works under the Environmental Permit [EP-281/2007/A], covering a period from 1 to 29 February 2012 (hereinafter 'the Reporting Period').

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

ES.02. Environmental monitoring activities under the EM&A programme in this Reporting Period are summarized in the following table.

Issues	Environmental Monitoring Parameters / Inspection	Occasions
Air Quality	1-hour TSP	45
Air Quality	24-hour TSP	15
Construction Noise	Leq (30min) Daytime	20
Water Quality	Marine Water Sampling	12
Inspection / Audit	ET Regular Environmental Site Inspection	4

ES.03. As informed by the Contractor, the marine work of outfall construction has been commenced on 19 July 2011, therefore, water quality was undertaken in this Reporting Period.

BREACH OF ACTION AND LIMIT (A/L) LEVELS

ES.04. No exceedance of air quality, construction noise and marine water quality monitoring were recorded in this Reporting Period. No Notification of Exceedance (NOE) was, therefore, issued. The statistics of environmental exceedance, NOE issued and investigation of exceedance are summarized in the following table.

Environmental	Monitoring	Action	Limit	Event & Action		
Issues	Parameters Parameters		Level	NOE Issued	Investigation	Corrective Actions
Air Quality	1-hour TSP	0	0	0		
	24-hour TSP	0	0	0		
Construction Noise	Leq _{30min} Daytime	0	0	0	-1	
	DO	0	0	0		
Water Quality	Turbidity	0	0	0		
	SS	0	0	0	-	

Note: NOE - Notification of Exceedance

ENVIRONMENTAL COMPLAINT, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES.05. No written or verbal environmental complaint, summons or successful prosecutions were recorded in this Reporting Period.

REPORTING CHANGE

ES.06. There is no reporting change in this Reporting Period.

SITE INSPECTION BY EXTERNAL PARTIES

ES.07. No site inspection was undertaken by external parties i.e. Environmental Protection Department (EPD) or Agriculture, Fisheries and Conservation Department (AFCD) within the Reporting Period.

FUTURE KEY ISSUES

ES.08. As wet season is approaching, muddy water and other water quality pollutants via site surface water runoff into the sea body within Fish culture zone at Picnic Bay and the Secondary recreation contact subzone at Mo Tat Wan is the key issue of the Project. Mitigation measures for water

Contract No. DC/2009/13 – Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Sok Kwu Wan – EM&A Monthly Report – February 2012

quality should be properly maintained to prevent any muddy or sandy runoff from the loose soil surface overflow on the site boundary.

ES.09. Moreover, special attention should be also paid on the dust mitigation measures to avoid fugitive dust emissions from loose soil surface or haul road. Mitigation measures implemented for control the surface runoff including wheel wash facilities, covering of the loose soil surface or stockpile with tarpaulin sheet, etc., should fully implement.

TABLE OF CONTENTS

1	INTRODUCTION	1
2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS	3
3	SUMMARY OF BASELINE MONITORING REQUIREMENTS	4
4	IMPACT MONITORING RESULTS - AIR QUALITY	9
5	IMPACT MONITORING RESULTS – CONSTRUCTION NOISE	10
6	IMPACT MONITORING RESULTS – WATER QULAITY	11
7	ECOLOGY	13
8	WASTE MANAGEMENT	14
9	SITE INSPECTION	15
10	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	16
11	IMPLEMENTATION STATUS OF MITIGATION MEASURES	17
12	IMPACT FORECAST	23
13	CONCLUSIONS AND RECOMMENDATIONS	24

LIST OF TABLES

Table 2-1	Status of Environmental Licenses and Permits
Table 3-1	Summary of EM&A Requirements
Table 3-2	Location of Air Quality Monitoring Station
Table 3-3	Location of Construction Noise Monitoring Station
Table 3-4	Location of Marine Water Quality Monitoring Station
Table 3-5	Action and Limit Levels for Air Quality
Table 3-6	Action and Limit Levels for Construction Noise
Table 3-7	Action and Limit Levels for Marine Water Quality
Table 4-1	Summary of 24-hour and 1-hour TSP Monitoring Results – AM1
Table 4-2	Summary of 24-hour and 1-hour TSP Monitoring Results – AM2
Table 4-3	Summary of 24-hour and 1-hour TSP Monitoring Results – AM3
Table 5-1	Summarized of Construction Noise Monitoring Results at NM1
Table 5-2	Summarized of Construction Noise Monitoring Results at NM2
Table 5-3	Summarized of Construction Noise Monitoring Results at RNM3
Table 5-4	Summarized of Construction Noise Monitoring Results at NM4
Table 6-1	Summary of Water Quality Results – Mid-ebb Tides (Dissolved Oxygen)
Table 6-2	Summary of Water Quality Results – Mid-ebb Tides (Turbidity & Suspended Solids)
Table 6-3	Summary of Water Quality Results – Mid-flood Tides (Dissolved Oxygen)
Table 6-4	Summary of Water Quality Results – Mid-flood Tides (Turbidity & Suspended Solids)
Table 6-5	Summarized Exceedances of Marine Water Quality
Table 8-1	Summary of Quantities of Inert C&D Materials
Table 8-2	Summary of Quantities of C&D Wastes
Table 8-1	Site Observations
Table 10-1	Statistical Summary of Environmental Complaints
Table 10-2	Statistical Summary of Environmental Summons
Table 10-3	Statistical Summary of Environmental Prosecution
Table 11-1	Environmental Mitigation Measures

LIST OF APPENDICES

Appendix A	Site Layout Plan – Sok Kwu Wan Portion Area
Appendix B	Organization Structure and Contact Details of Relevant Parties
Appendix C	A Master and Three Months Rolling Construction Programme
Appendix D	Location of Monitoring Stations (Air Quality / Construction Noise / Water Quality)
Appendix E	Monitoring Equipments Calibration Certificate
Appendix F	Event and Action Plan
Appendix G	Monitoring Data Sheet
Appendix H	Graphical Plots of Monitoring Results
Appendix I	Meteorological Information
Appendix J	Monthly Summary Waste Flow Table
Appendix K	Weekly Site Inspection Checklist
Appendix L	Implementation Schedule of Mitigation Measures
Appendix M	Tree Inspection Report

1 INTRODUCTION

PROJECT BACKGROUND

- 1.01 The Leader Civil Engineering Corporation Limited (Leader) has been awarded the *Contract DC/2009/13 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan* (the Project) by the Drainage Services Department (DSD) on 4 May 2010. The Project is part of an overall plan approved under a statutory EIA for Outlying Islands Sewerage Stage 1 Phase 2 Package J Sok Kwu Wan Sewage Collection and Treatment (Register No. AEIAR-075/2003) and Disposal Facilities and Outlying Islands Sewerage Stage 1 Phase 1 Package C Yung Shue Wan Sewage Treatment Works and Outfall (Register No. EIA-124/BC). The Environmental Permit (EP) No. EP-281/2007 and EP-282/2007 for the Project have been obtained by the DSD on 29 June 2007 for the relevant works. After July 2009, EP-281/2007/A stead EP-281/2007 is EP for Sok Kwu Wan relevant works.
- 1.02 The Project involves construction of sewage treatment works at Sok Kwu Wan and Yung She Wan with a capacity of 1,430m³/day and 2,850m³/day respectively to provide secondary treatment, construction of 2 pumping stations at Sok Kwu Wan and 1 pumping station at Yung Shue Wan, construction of submarine outfall from the coastline and lying of underground sewerage pipeline. The site layout plan for the captioned work under the Project is showing in *Appendix A*.
- 1.03 According to the Particular Specification (PS) and *Appendix 25* of the Project, Leader should establish an Environmental Team (ET) to implement the environmental monitoring and auditing works to fulfill the requirements as stipulated in the Environmental Monitoring and Audit (EM&A) Manual. This EM&A Manual is referred to the Appendix B of the Review Report on EIA Study Sok Kwu Wan (Final) in January 2007 (Agreement No. CE 20/2005(DS)).
- 1.04 Action-United Environmental Services and Consulting (AUES) has been commissioned by Leader as the ET to implement the relevant EM&A programme. Organization chart of the Environmental Team for the Project is shown in *Appendix B*. For ease of reporting, the proposed EM&A programme for baseline and impact monitoring is spilt to following two stand-alone parts:
 - (a) Proposed EM&A Programme for Baseline and Impact Monitoring Sok Kwu Wan (under EP No. 281/2007/A varied on 23 September 2009)
 - (b) Proposed EM&A Programme for Baseline and Impact Monitoring Yung Shue Wan (under EP No. 282/2007)
- 1.05 According to the EM&A Manual of Sok Kwu Wan and Yung Shue Wan, baseline water quality monitoring should be carried out for consecutive six months before the marine work commencement. Therefore, the baseline reports of Sok Kwu Wan and Yung Shue Wan are divided to two volumes i.e. the Volume 1 for air quality and noise monitoring; and the Volume II for water quality monitoring for separate submission.
- 1.06 There is a concurrent DSD contract "DC/2007/18 Yung Shue Wan and Sok Kwu Wan Village Sewerage, Stage 1 Works" undertaking at Sok Kwu Wan since April 2008.
- 1.07 Consider that the construction works of DC/2007/18 and DC/2009/13 at Sok Kwu Wan is under the same Environmental Permit and EM&A Manual, the performance criteria of air quality and construction noise at Sok Kwu Wan under the Project is recommended to adopt the Action/Limit Levels established by contract DC/2007/18. The Baseline Monitoring Report Volume 1 under the Project for air quality and noise at Sok Kwu Wan was submitted on 9 July 2010 and verified by IEC and for EPD endorsement before the relevant land works commencement on 27 July 2010.
- 1.08 This is the 19th monthly EM&A Report Sok Kwu Wan Portion Area presenting the monitoring results and inspection findings for the Reporting Period from 1 to 29 February 2012.

REPORT STRUCTURE

1.09 The Monthly Environmental Monitoring and Audit (EM&A) Report – Sok Kwu Wan is structured into the following sections:-

SECTION 1	INTRODUCTION
SECTION 2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS
SECTION 3	SUMMARY OF MONITORING REQUIREMENTS
SECTION 4	AIR QUALITY MONITORING RESULTS
SECTION 5	CONSTRUCTION NOISE MONITORING RESULTS
SECTION 6	WATER QUALITY MONITORING RESULTS
SECTION 7	WASTE MANAGEMENT
SECTION 8	SITE INSPECTIONS
SECTION 9	ENVIRONMENTAL COMPLAINTS AND NON-COMPLIANCE
SECTION 10	IMPLEMENTATION STATUES OF MITIGATION MEASURES
SECTION 11	IMPACT FORECAST
SECTION 12	CONCLUSIONS AND RECOMMENDATION

2 PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS

PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE

2.01 Organization structure and contact details of relevant parties with respect to on-site environmental management are shown in *Appendix B*.

CONSTRUCTION PROGRESS

- 2.02 The master and three month rolling construction programme are enclosed in *Appendix C* and the major construction activities undertaken in this Reporting Period are listed below:-
 - Construction of Pumping Station No. 1& 2
 - Rock Slope Cutting Works
 - Construction of submarine outfall

SUMMARY OF ENVIRONMENTAL SUBMISSIONS

2.03 Summary of the relevant permits, licences, and/or notifications on environmental protection for this Project in this Reporting Period is presented in *Table 2-1*.

Table 2-1 Status of Environmental Licenses and Permits

Item	Description	License/Permit Status
1	Air Pollution Control (Construction Dust) Regulation	Notified EPD on 19 May 2010
		Ref.: 317486
2	Chemical Waste Producer Registration	Issued on 8/6/2010
		WPN 5213-912-L2720-01
3	Water Pollution Control Ordinance	Approved on 29/9/2010
		Valid to: 30/09/2015
		Licence no.: WT00007567-2010
4	Billing Account for Disposal of Construction Waste	Issued on 26 May 2010
		A/C No: 7010815
5	Construction Noise Permit	Permit no. GW-RS0771-11
		Valid from: 2 Sep 2011
		Until: 1 Mar 2012

- 2.04 The "Baseline/Impact Monitoring Methodology (TCS00512/09/600/R0010Ver.4)" was set out in accordance with the Sok Kwu Wan EM&A Manual' requirements. It was approved by the Engineer Representative (ER) and agreed with the Independent Environmental Checker (IEC) and then submitted to the EPD on 8 July 2010.
- 2.05 Baseline Monitoring Report Volume 1 for Sok Kwu Wan (TCS00512/09/600/R0020Ver.3) was verified by the IEC on 12 July 2010 and submitted to EPD on 12 July 2010.
- 2.06 Baseline Water Quality Monitoring Report Volume 2 for Sok Kwu Wan (TCS00512/09/600/R0182v7) was revised against EPD comments and re-submitted on 11 October 2011.

3 SUMMARY OF BASELINE MONITORING REQUIREMENTS

ENVIRONMENTAL ASPECT

- 3.01 The EM&A baseline monitoring programme cover the following environmental issues:
 - Air quality;
 - · Construction noise; and
 - Marine water quality
- 3.02 The ET implements the EM&A programme in accordance with the aforementioned requirements. Detailed air quality, construction noise and water quality of the EM&A programme are presented in the following sub-sections.
- 3.03 A summary monitoring parameters for the air quality, noise and marine water monitoring is presented in *Table 3-1*:

Table 3-1 Summary of EM&A Requirements

Environmental Issue	Parameters
Air Quality	1-hour TSP Monitoring by Real-Time Portable Dust Meter; and
Air Quality	• 24-hour TSP Monitoring by High Volume Air Sampler.
Noise	• Leq (30min) during normal working hours; and
Noise	Leq (15min) during Restricted Hours.
	In-situ Measurements
	• Dissolved Oxygen Concentration (DO) (mg/L);
	• Dissolved Oxygen Saturation (%);
	• Turbidity (NTU);
Marine Water Quality	pH unit;
Waine Water Quanty	• Salinity (ppt);
	Water depth (m); and
	• Temperature (°C).
	Laboratory Analysis
	Suspended Solids (SS) (mg/L)

MONITORING LOCATIONS

Air Quality

3.04 Three air monitoring stations: AM1, AM2 and AM3 were designated in the *EM&A Manual Section* 2.5. The detailed air monitoring stations is described in *Table 3-2* and graphical is shown in *Appendix D*.

Table 3-2 Location of Air Quality Monitoring Station

Sensitive Receiver	Location
AM1	Squatter house in Chung Mei Village
AM2	Squatter house in Chung Mei Village
AM3	Football court

Construction Noise

3.05 According to *EM&A Manual Section 3.4*, there were four noise sensitive receivers (NM1-NM4) designated for the construction noise monitoring. NM1, NM2 and NM4 of the three designated monitoring stations were identified and are monitored by the current DSD contract DC/2007/18. However, the premises monitoring station NM3 was rejected by the owner of 1B Sok Kwu Wan and an alternative noise monitoring station RNM3 replacement was proposed by the contract DC/2007/18 ET and accepted by the IEC and EPD before the baseline monitoring commencement in April 2008. The location RNM3 is located at Sok Kwu Wan Sitting-out area which just 3m width footpath away from the original location house 1B. The detailed construction noise monitoring stations to also under the Project is described in *Table 3-3* and graphical is shown in *Appendix D*.

Table 3-3 Location of Construction Noise Monitoring Station

Sensitive Receiver	Location
NM1	1, Chung Mei Village
NM2	20, Sok Kwu Wan
RNM3	Sok Kwu Wan Sitting-out Area
NM4	2-storey village house at Ta Shui Wan

Water Quality

3.06 Three control stations (C1-C3) and three impact stations (W1-W3) were recommended in the *EM&A Manual Section 4.5*. Impact stations W1-W3 identified at the sensitive receivers (FCZ and secondary contact recreation subzone) to monitor the impacts from the construction of the submarine outfall as well as the effluent discharge from the proposed STW on water quality. Three control stations: C1, C2 & C3 were specified at locations representative of the project site in its undisturbed condition and located at upstream and downstream of the works area. Detailed and co-ordnance of marine water quality monitoring stations is described in *Table 3-4* and the graphical is shown in *Appendix D* and would be performed for EM&A programme.

Table 3-4 Location of Marine Water Quality Monitoring Station

Station	Description	Co-ordnance			
Station	Description	Easting	Northing		
W1	Secondary recreation contact subzone at Mo Tat Wan	832 968	807 732		
W2	Fish culture zone at Picnic Bay	832 670	807 985		
W3	Fish culture zone at Picnic Bay	832 045	807 893		
C1 (flood)	Control Station	833 703	808 172		
C2	Control Station	831 467	807 747		
C3 (ebb)	Control Station	832 220	808 862		

MONITORING FREQUENCY AND PERIOD

3.07 The impact monitoring carried out in the EM&A programme is basically in accordance with the requirements in *EM&A Manual Sections* 2.7, 3.6, 4.7 and 4.8. The monitoring requirements are listed as follows.

Air Quality Monitoring

Parameters: 1-hour TSP and 24-hour TSP.

Frequency: Once in every six days for 24-hour TSP and three times in every six days for

1-hour TSP.

<u>Duration</u>: Throughout the construction period.

Noise Monitoring

<u>Parameters</u>: $L_{eq 30min}$ & $L_{eq(5min)}$, L_{10} and L_{90} .

 $L_{eq(15min)}$ & $L_{eq(5min)}$, L_{10} and L_{90} during the construction undertaken during Restricted hours (19:00 to 07:00 hours next of normal working day and full day of

public holiday and Sunday)

Frequency: Once per week during 0700-1900 hours on normal weekdays. Restricted hour

monitoring should depend on conditions stipulated in Construction Noise Permit.

Duration: Throughout the construction period.

Marine Water Quality Monitoring

Parameters: Duplicate in-situ measurements: water depth, temperature, dissolved oxygen, pH,

turbidity and salinity;

HOKLAS-accredited laboratory analysis: suspended solids

Frequency:	Three days a week, at mid ebb and mid flood tides.	The interval between 2 sets
	of monitoring will be more than 36 hours.	

Sampling Depth

- (i.) Three depths: 1m below water surface, 1m above sea bottom and at mid-depth when the water depth exceeds 6m.
- (ii.) If the water depth is between 3m and 6m, two depths: 1m below water surface and 1m above sea bottom.
- (iii.) If the water depth is less than 3m, 1 sample at mid-depth is taken

<u>Duration</u>: During the course of marine works

<u>Post-Construction Monitoring – Marine Water</u>

3.08 Upon the marine works (dredging and HDD pipe installation) completion, 4 weeks of post-construction monitoring would be undertaken in accordance with the *Section 4.8 of EM&A Manual*. The requirements of post-construction monitoring such as the parameter, frequency, location and sampling depth is same as the impact monitoring.

MONITORING EQUIPMENT

Air Quality Monitoring

3.09 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B*. If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to approve. The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory.

Noise Monitoring

3.10 Sound level meter in compliance with the *International Electrotechnical Commission Publications* 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m s⁻¹.

Water Quality Monitoring

- 3.11 **Dissolved Oxygen and Temperature Measuring Equipment** The instrument should be a portable and weatherproof dissolved oxygen (DO) measuring instrument complete with cable and sensor, and use a DC power source. The equipment should be capable of measuring as included a DO level in the range of 0 20 mg L-1 and 0 200 % saturation; and a temperature of 0 45 degree Celsius.
- 3.12 *pH Meter* The instrument shall consist of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It shall be readable to 0.1 pH in a range of 0 to 14.
- 3.13 *Turbidity (NTU) Measuring Equipment* The instrument should be a portable and weatherproof turbidity measuring instrument using a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0 1000 NTU.
- 3.14 **Water Sampling Equipment** A water sampler should comprise a transparent PVC cylinder, with a capacity of not less than 2 litres, which can be effectively sealed with latex cups at both ends. The sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth.
- 3.15 *Water Depth Detector* A portable, battery-operated echo sounder should be used for the determination of water depth at each designated monitoring station. This unit can either be hand held or affixed to the bottom of the work boat.
- 3.16 *Salinity Measuring Equipment* A portable salinometer capable of measuring salinity in the range of 0 40 parts per thousand (ppt) should be provided for measuring salinity of the water at each monitoring location.

- 3.17 **Sample Containers and Storage** Water samples for suspended solids should be stored in high density polythene bottles with no preservative added, packed in ice (cooled to 4°C without being frozen).
- 3.18 *Monitoring Position Equipment* A hand-held or boat-fixed type digital Differential Global Positioning System (DGPS) with way point bearing indication and Radio Technical Commission for maritime (RTCM) Type 16 error message 'screen pop-up' facilities (for real-time auto-display of error messages and DGPS corrections from the Hong Kong Hydrographic Office), or other equipment instrument of similar accuracy, should be provided and used during marine water monitoring to ensure the monitoring vessel is at the correct location before taking measurements.
- 3.19 **Suspended Solids Analysis** Analysis of suspended solids shall be carried out in a HOKLAS or other international accredited laboratory.

EQUIPMENT CALIBRATION

- 3.20 Calibration of the HVS is performed upon installation in accordance with the manufacturer's instruction using the NIST-certified standard calibrator (Tisch Calibration Kit Model TE-5025A). The calibration data are properly documented and the records are maintained by ET for future reference.
- 3.21 The 1-hour TSP meter was calibrated by the supplier prior to purchase. Zero response of the equipment was checked before and after each monitoring event. In-house calibration with the High Volume Sampler (HVS) in same condition was undertaken in yearly basis.
- 3.22 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme at yearly basis.
- 3.23 The Water Quality Monitoring equipments such as DO meter, pH meter, turbidity measuring instrument and salinometer, are calibrated by HOKLAS accredited laboratory of three month intervals.
- 3.24 All updated calibration certificates of the monitoring equipment used for the impact monitoring programme in the Reporting Period would be attached in *Appendix E*.

METEOROLOGICAL INFORMATION

3.25 The meteorological information during the construction phase is obtained from the Wong Chuk Hang Station of the Hong Kong Observatory (HKO) due to it nearly the Project site.

DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.26 The impact monitoring data are handled by the ET's systematic data recording and management, which complies with in-house Quality Management System. Standard Field Data Sheets (FDS) are used in the impact monitoring programme.
- 3.27 The monitoring data recorded in the equipment e.g. 1-hour TSP meter, sound level meter and Multi-parameter Water Quality Monitoring System, are downloaded directly from the equipments at the end of each monitoring day. The downloaded monitoring data are input into a computerized database properly maintained by the ET. The laboratory results are input directly into the computerized database and QA/QC checked by personnel other than those who input the data. For monitoring activities require laboratory analysis, the local laboratory follows the QA/QC requirements as set out under the HOKLAS scheme for all laboratory testing.

DETERMINATION OF ACTION/LIMIT (A/L) LEVELS

3.28 According to the Sok Kwu Wan Environmental Monitoring and Audit Manual, the air quality, construction noise and marine water quality were set up, namely Action and Limit levels are listed in *Tables 3-5*, *3-6 and 3-7* as below.

Table 3-5 Action and Limit Levels for Air Quality

Monitoring Station	Action Le	vel (μg/m³)	Limit Level (μg/m³)		
Wollitoring Station	1-hour	24-hour	1-hour	24-hour	
AM1	343	173	500	260	
AM2	331	175	500	260	
AM3	353	191	500	260	

Table 3-6 Action and Limit Levels for Construction Noise

Monitoring	Action Level	Limit Level			
Location	0700-1900 hours on normal weekdays				
NM1 NM2 RNM3 NM4	When one or more documented complaints are received	75 dB(A) of $L_{eq(30min)}$ during normal hours from 0700 to 1900 hours on normal weekdays, reduced to 70 dB(A) of $L_{eq(30min)}$ for schools and 65 dB(A) during school examination periods			

Table 3-7 Action and Limit Levels for Marine Water Quality

Parameter	Performance	In	npact Stati	on
rarameter	Criteria	W1	W2	W3
DO Concentration (Surface and Middle)	Action Level	5.39	4.64	4.71
(mg/L)	Limit Level	5.29	4.56	4.54
DO Concentration (Bottom)	Action Level	N/A	3.60	3.37
(mg/L)	Limit Level	N/A	3.06	3.18
Turbidity (Depth-Average)	Action Level	4.39	4.84	6.48
(NTU)	Limit Level	6.06	5.99	6.71
Suspended Solids (Depth-Average)	Action Level	12.41	9.24	10.79
(mg/L)	Limit Level	12.68	11.28	12.25

3.29 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan enclosed in *Appendix F*.

4 IMPACT MONITORING RESULTS - AIR QUALITY

4.01 As informed by Leader, the construction of relevant land works at Sok Kwu Wan was commenced on 27 July 2010, therefore, the impact EM&A programme was started as compliance with the contract Particular Specification, Sok Kwu Wan EM&A Manual and the EP.

Results of Air Quality Monitoring

4.02 In this Reporting Period, **45** and **15** monitoring events were performed for 1-hour TSP and 24-hour TSP monitoring respectively at the designated locations AM1, AM2 and AM3. The monitoring results for 24-hour and 1-hour TSP at AM1, AM2 and AM3 are summarized in *Tables 4-1, 4-2* and *4-3* respectively. The detail 24-hour TSP data are shown in *Appendix G* and the graphical plots of are shown in *Appendix H*.

Table 4-1 Summary of 24-hour and 1-hour TSP Monitoring Results – AM1

	24-hour			1-hour TSP	(μg/m ³)		
Date	TSP (µg/m³)	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured	
2-Feb-12	58	1-Feb-12	10:28	92	93	81	
8-Feb-12	97	7-Feb-12	14:38	81	84	71	
14-Feb-12	23	13-Feb-12	10:14	78	80	87	
20-Feb-12	23	17-Feb-12	10:36	99	97	104	
25-Feb-12	39	23-Feb-12	13:15	108	112	119	
		29-Feb-12	13:17	92	97	103	
Average	48	Avera	ge	93			
(Range)	(23 - 97)	(Rang	e)	(71 – 119)			

Table 4-2 Summary of 24-hour and 1-hour TSP Monitoring Results – AM2

	24-hour			1-hour TSP	$(\mu g/m^3)$		
•	TSP (µg/m³)	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured	
2-Feb-12	69	1-Feb-12	10:46	79	87	81	
8-Feb-12	63	7-Feb-12	12:26	66	71	81	
14-Feb-12	25	13-Feb-12	12:38	98	81	86	
20-Feb-12	21	17-Feb-12	10:49	92	87	97	
25-Feb-12	41	23-Feb-12	13:05	112	105	117	
		29-Feb-12	13:01	104	89	86	
Average	44	Avera	Average		90		
(Range)	(21 - 69)	(Rang	e)	(66-117)			

Table 4-3 Summary of 24-hour and 1-hour TSP Monitoring Results – AM3

	24-hour			1-hour TSP	(μg/m ³)		
Date	TSP (µg/m³)	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured	
2-Feb-12	135	1-Feb-12	12:16	88	80	92	
8-Feb-12	89	7-Feb-12	9:47	93	84	80	
14-Feb-12	93	13-Feb-12	14:16	102	98	91	
20-Feb-12	127	17-Feb-12	13:18	112	107	101	
25-Feb-12	47	23-Feb-12	14:00	106	103	119	
		29-Feb-12	9:49	77	90	91	
Average	98	Avera	ge		95		
(Range)	(47 - 135)	(Rang	e)	(77–119)			

- 4.03 As shown in *Tables 4-1, 4-2* and *4-3*, 1-hour TSP results fluctuated well below the Action Level during the Reporting Period. No Notification of Exceedance (NOE) of 24-hour and 1-hour TSP air quality criteria or corrective action was therefore required.
- 4.04 The meteorological information during the impact monitoring days are summarized in *Appendix I*.

5 IMPACT MONITORING RESULTS - CONSTRUCTION NOISE

5.01 The noise monitoring results are presented in the following sub-sections.

Results of Construction Noise Monitoring

5.02 In this Reporting Period, 5 construction noise monitoring events were undertaken at designated location NM1, NM2, RNM3 and NM4. The results for L_{eq30min} at NM1, NM2, RNM3 and NM3 are summarized in *Tables 5-1*, 5-2, 5-3 and 5-4 and graphical plots are shown in *Appendix H*.

Table 5-1 Summarized of Construction Noise Monitoring Results at NM1

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30
1-Feb-12	10:23	10:53	57.2	56.3	56.2	59.6	55.1	56.3	57.0
7-Feb-12	10:12	10:42	58.9	55.2	54.0	56.5	60.1	59.2	57.9
13-Feb-12	10:13	10:43	55.1	56.7	53.8	59.2	55.6	56.2	56.4
23-Feb-12	13:00	13:30	51.5	51.8	50.8	52.3	52.4	51.1	51.7
29-Feb-12	11:00	11:30	50.1	53.3	52.5	52.8	51.6	52.9	52.3
Limit Le	vel in dI	B(A) -					75		

Table 5-2 Summarized of Construction Noise Monitoring Results at NM2

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30
1-Feb-12	13:08	13:38	63.6	62.9	59.6	64.1	62.6	60.9	62.5
7-Feb-12	11:40	12:10	58.9	57.6	58.1	55.1	60.8	56.3	58.2
13-Feb-12	11:36	12:06	63.8	60.9	62.1	63.8	59.7	60.1	62.0
23-Feb-12	13:00	13:30	64.0	61.1	64.7	62.4	70.0	70.7	67.0
29-Feb-12	10:00	10:30	60.2	61.1	60.4	60.9	63.2	62.9	61.6
Limit Le	vel in dI	in dB(A)					75		

Table 5-3 Summarized of Construction Noise Monitoring Results at RNM3

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30	Corrected* Leq30
1-Feb-12	14:16	14:46	59.6	58.3	58.1	59.8	60.1	59.2	59.2	62.2
7-Feb-12	13:23	13:53	55.4	55.5	53.5	55.1	57.9	56.3	55.8	58.8
13-Feb-12	13:47	14:17	52.3	50.9	51.8	53.3	52.6	50.9	52.1	55.1
23-Feb-12	11:20	11:50	65.0	65.4	63.9	67.2	68.3	64.2	66.0	69.0
29-Feb-12	9:00	9:30	51.6	50.3	50.5	53.3	54.1	53.5	52.5	55.5
Limit Le	vel in dE	B(A)	-					75		

^{*} A façade correction of +3dB(A) has been added according to acoustical principles and EPD guidelines.

Table 5-4 Summarized of Construction Noise Monitoring Results at NM4

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30
1-Feb-12	15:40	16:10	59.6	58.3	62.6	59.3	58.2	59.6	59.9
7-Feb-12	14:19	14:49	53.1	56.2	55.9	54.2	57.9	54.6	55.6
13-Feb-12	15:09	15:39	49.6	50.7	52.6	50.3	50.8	52.7	51.3
23-Feb-12	10:40	11:10	57.3	54.7	66.1	55.6	64.3	52.3	61.3
29-Feb-12	9:40	10:10	56.2	54.4	54.5	56.0	55.8	55.4	55.4
Limit Le	vel in dI	B(A)	-					75	

5.03 It was noted that no noise complaint (which is an Action Level exceedance) was received. In view of the results shown in *Tables 5-1*, *5-2*, *5-3* and *5-4* which were all below 75dB(A), no Action or Limit Level exceedance was triggered during this month.

6 IMPACT MONITORING RESULTS – WATER QULAITY

- 6.01 The construction of marine outfall works was commenced on 19 July 2011 and therefore marine water quality monitoring is required in this Reporting Period. In this Reporting Period, 12 events of water quality monitoring were carried out at the designated locations. The monitoring results including in-situ measurements and laboratory testing results are presented in *Appendix G*. The graphical plots are shown in *Appendix H*.
- 6.02 During the Reporting Period, field measurements of both control and impact stations showed that marine water of the depth average of the salinity concentration was within 29.34 to 33.22 ppt, and pH value was within 8.15 to 8.76.
- 6.03 Monitoring results of 3 key parameters: dissolved oxygen (DO), turbidity and suspended solids (SS) in this Reporting Period, are summarized in *Tables 6-1*, 6-2, 6-3 and 6-4. A summary of exceedances for the 3 parameters are shown in *Table 6-5*.

Table 6-1 Summary of Water Quality Results – Mid-ebb Tides (Dissolved Oxygen)

Campling data		Dissolved Oxygen conc. of Depth Ave. of Surf. and Mid Layer (mg/L)					Dissolv	Dissolved Oxygen conc. of Depth Ave. of Bottom Layer (mg/L)				
Sampling date										er (mg/		
	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
3-Feb-12	6.85	6.96	7.02	6.99	6.95	7.09	NA	6.59	6.69	6.67	6.57	6.70
7-Feb-12	6.98	6.95	7.02	7.03	6.95	6.90	NA	6.56	6.73	6.82	6.56	6.57
9-Jan-12	7.02	7.16	7.08	7.01	7.20	6.83	NA	6.83	6.76	6.84	6.58	6.57
11-Feb-12	7.42	6.93	7.14	6.91	7.02	7.02	NA	6.57	6.55	6.56	6.82	6.74
13-Feb-12	6.96	6.95	7.04	6.89	7.03	7.03	NA	6.60	6.81	6.63	6.67	6.67
15-Feb-12	7.02	6.88	7.15	6.98	7.12	7.12	NA	6.65	6.67	6.75	6.89	6.89
17-Feb-12	7.07	6.89	7.14	7.08	7.16	7.16	NA	6.58	6.73	6.67	6.70	6.70
21-Feb-12	8.27	8.72	8.52	8.72	8.42	8.42	NA	8.57	8.16	8.57	7.70	7.70
23-Feb-12	8.28	8.28	8.10	8.40	7.82	7.82	NA	7.65	7.23	8.04	7.07	7.07
25-Feb-12	7.46	7.04	7.57	6.28	8.11	8.11	NA	8.32	8.31	7.84	8.05	8.05
27-Feb-12	8.23	8.08	7.96	8.20	7.06	7.06	NA	7.33	7.16	7.83	6.94	6.94
29-Feb-12	8.56	8.58	8.14	8.58	8.27	8.27	NA	8.15	7.76	8.24	6.72	6.72

Table 6-2 Summary of Water Quality Results – Mid-ebb Tides (Turbidity & Suspended Solids)

Compling data		Τι	ırbidity	Depth Av	e. (NTU)		Suspe	ended S	olids D	epth A	ve. (m	g/L)
Sampling date	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
3-Feb-12	4.10	3.99	4.45	5.65	5.20	4.94	3.10	1.83	1.83	2.50	4.50	2.97
7-Feb-12	3.26	3.98	4.55	5.25	4.43	5.05	2.40	3.20	4.50	2.83	2.35	2.83
9-Jan-12	4.10	4.04	4.21	4.25	4.01	4.96	7.00	5.67	2.53	3.47	4.00	3.00
11-Feb-12	3.97	4.71	5.51	5.59	5.44	4.12	4.60	5.60	4.57	3.93	2.83	5.17
13-Feb-12	3.93	4.70	4.77	4.43	4.83	4.47	5.40	5.07	3.83	4.50	5.43	3.23
15-Feb-12	3.62	4.18	4.74	5.81	4.73	4.95	4.60	3.17	4.20	6.40	5.03	3.93
17-Feb-12	2.67	3.60	4.51	4.37	3.48	4.49	2.40	2.77	3.03	3.87	2.30	2.30
21-Feb-12	4.10	4.57	4.58	4.76	5.13	6.29	5.40	5.80	6.53	6.63	8.43	3.03
23-Feb-12	4.00	4.66	4.39	4.33	4.59	4.33	4.00	3.20	4.13	3.17	2.67	5.13
25-Feb-12	4.11	4.63	4.76	5.16	5.09	5.01	2.10	1.87	3.50	1.60	2.67	4.80
27-Feb-12	4.08	4.84	5.34	5.14	5.37	5.18	4.10	3.67	2.53	2.77	2.60	4.40
29-Feb-12	3.26	4.71	5.52	5.23	6.45	5.32	3.60	4.07	3.63	3.50	2.13	4.77

Table 6-3 Summary of Water Quality Results – Mid-flood Tides (Dissolved Oxygen)

Sampling date		Dissolved Oxygen conc. of Depth Ave. of Surf. and Mid Layer (mg/L)						Dissolved Oxygen conc. of Depth Ave. of Bottom Layer (mg/L)				
. 0	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
3-Feb-12	7.08	7.03	7.04	7.09	6.98	7.07	NA	6.71	6.71	6.74	6.63	6.68
7-Feb-12	6.89	6.82	7.17	7.04	7.03	7.10	NA	6.60	6.74	6.59	6.82	6.70
9-Jan-12	6.88	6.90	7.01	6.85	7.08	7.10	NA	6.66	6.78	6.67	6.85	6.88
11-Feb-12	7.00	7.22	7.21	7.30	7.07	7.19	NA	6.94	6.98	7.06	7.10	6.98
13-Feb-12	7.22	7.10	6.97	6.95	6.56	6.96	NA	6.69	6.68	6.56	6.64	6.65
15-Feb-12	7.03	6.79	6.98	6.90	6.61	7.01	NA	6.42	6.55	6.61	6.65	6.76
17-Feb-12	6.95	7.00	7.07	7.19	6.78	7.05	NA	6.76	6.65	6.78	6.62	6.66
21-Feb-12	8.17	8.23	8.04	8.39	8.35	8.19	NA	7.46	7.68	8.35	8.43	8.21
23-Feb-12	8.23	8.29	8.08	8.35	8.25	7.82	NA	7.30	7.17	8.25	7.85	6.72
25-Feb-12	7.89	8.06	7.88	8.08	8.04	8.09	NA	7.98	7.87	8.04	7.75	7.98
27-Feb-12	8.21	8.10	7.84	8.29	8.29	8.24	NA	8.09	7.85	8.29	7.21	8.13
29-Feb-12	8.23	8.10	7.86	8.43	8.07	8.47	NA	8.02	7.88	8.07	6.74	8.36

Table 6-4 Summary of Water Quality Results – Mid-flood Tides (Turbidity & Suspended Solids)

Compling data		Tı	ırbidity	Depth Av	e. (NTU)		Susp	ended S	Solids 1	Depth A	ve. (mg	g/L)
Sampling date	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
3-Feb-12	3.92	4.03	4.17	4.61	4.77	4.88	7.20	2.17	2.15	4.00	3.00	3.27
7-Feb-12	3.53	4.31	3.85	4.32	4.24	4.81	3.50	1.70	2.37	2.17	1.87	1.27
9-Jan-12	3.89	4.37	4.74	4.80	3.71	4.96	6.30	4.03	5.73	4.70	4.63	4.30
11-Feb-12	3.96	4.50	4.42	4.57	4.69	4.71	5.40	5.10	4.00	4.43	4.77	3.93
13-Feb-12	3.37	3.80	4.54	5.40	4.92	5.21	3.20	5.00	2.70	5.43	5.27	4.90
15-Feb-12	3.96	4.77	4.87	4.67	5.28	5.80	4.60	4.07	4.67	2.50	3.00	4.37
17-Feb-12	2.68	3.09	3.34	4.89	4.64	4.70	2.80	2.20	1.57	5.00	4.30	4.20
21-Feb-12	3.53	4.80	5.16	5.22	4.87	5.61	2.40	3.20	2.97	5.27	3.20	5.77
23-Feb-12	3.66	4.29	4.79	4.54	4.61	4.28	8.20	4.90	4.50	3.60	2.50	3.17
25-Feb-12	4.10	4.50	4.50	4.15	4.80	3.96	5.00	3.63	2.13	4.03	1.75	3.27
27-Feb-12	3.59	4.71	4.65	5.30	5.27	4.61	2.70	3.13	3.17	3.90	2.20	3.63
29-Feb-12	3.98	4.46	5.11	6.18	4.97	5.88	2.90	6.27	5.93	3.27	2.13	2.03

Table 6-5 Summarized Exceedances of Marine Water Quality

Station	Do (Ave of & mid-	Surf.	,	ve. of Layer)	Turb (Depth	•	S! (Depth	_	Tot Excee	
	Action	Limit	Action	Limit	Action	Limit	Action	Limit	Action	Limit
	Mid-Ebb									
W1	0	0	0	0	0	0	0	0	0	0
W2	0	0	0	0	0	0	0	0	0	0
W3	0	0	0	0	0	0	0	0	0	0
				Mid	-Flood					
W1	0	0	0	0	0	0	0	0	0	0
W2	0	0	0	0	0	0	0	0	0	0
W3	0	0	0	0	0	0	0	0	0	0
No of Exceedance	0	0	0	0	0	0	0	0	0	0

6.04 For marine water monitoring, no exceedance of Action/Limit levels was recorded in this Reporting Period. Therefore, no associated corrective actions were then required.

7 ECOLOGY

- 7.01 According to Clause 3.7 and Figure 4 in the Environmental Permit No. EP-281/2007/A, a total of 12 numbers *Celtis Timorensis* (uncommon species) in Chung Mei at Sok Kwu Wan, are identified to require labeling, fencing and protection. Out of these, four numbers located in the Pumping Station No.1 area are required to be transplanted in advance of pumping station construction and the transplantation proposal has been submitted to EPD previously.
- 7.02 Regular inspection of the transplanted tree was carried out by the landscaping sub-Contractor (Melofield Nursery and Landscape Contractor Limited) on 15 and 29 February 2012. As a contingency measure in case that CT7 to CT10 can no longer be recovered, additional 7 no. of *Celtis Timorensis* (No. CT_1A to CT7A) were planted adjacent to the under-monitoring *Celtis Timorensis* CT7 to CT10 on 30 April 2011.
- 7.03 The tree inspection report is presented in *Appendix M*.

8 WASTE MANAGEMENT

8.01 Waste management was carried out by an on-site Environmental Officer or an Environmental Supervisor from time to time.

Records of Waste Quantities

- 8.02 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste;
 - General Refuse; and
 - Excavated Soil
- 8.03 The quantities of waste for disposal in this Reporting Period are summarized in *Table 8-1* and *8-2* and the Monthly Summary Waste Flow Table is shown in *Appendix J*. Whenever possible, materials were reused on-site as far as practicable.

Table 8-1 Summary of Quantities of Inert C&D Materials

Type of Waste	Quantity	Disposal Location
C&D Materials (Inert) ('000m ³)	0	-
Reused in the Contract (Inert) ('000m ³)	0	-
Reused in other Projects (Inert) ('000m ³)	6.271	WENT Landfill Site
Disposal as Public Fill (Inert) ('000m ³)	0	-

Table 8-2 Summary of Quantities of C&D Wastes

Type of Waste	Quantity	Disposal Location
Metal (kg)	0	-
Paper / Cardboard Packing (kg)	0	-
Plastic (kg)	0	-
Chemical Wastes (kg)	0	-
General Refuses (tonne)	5.660	Outlying Islands Transfer Facilities (Sok Kwu Wan)

8.04 There was no site effluent discharged but the estimated volume of surface runoff was less than 50m³ in this monthly period.

9 SITE INSPECTION

- 9.01 According to the Environmental Monitoring and Audit Manual, the environmental site inspection should been formulated by ET Leader. Regular environmental site inspections had been carried out by the ET to confirm the environmental performance. In this Reporting Period, weekly site inspection by ET was carried out on 7, 14, 21 and 28 February 2012 and a joint-site visit by IEC Representative, RE, the Contractor and ET was carried out on 7 February 2012.
- 9.02 The findings/ deficiencies that observed during the weekly site inspection are listed in *Table 9-1* and the relevant checklists are attached in *Appendix K*.

Table 9-1 Site Observations

Date	Findings / Deficiencies	Follow-Up Status
7 February 2012	No environmental issue was observed during site inspection.	N.A.
14 February 2012	 Dust generation at the slope should be minimized to avoid nuisance to adjacent public road. (Portion H) Stagnant water should be removed or larvicial oil should be applied to suppress mosquito breeding. (Portion H) 	 The deficiency has been followed during site inspection on 28 February 2012. The deficiency has been followed during site inspection on 21 2012.
21 February 2012	Dust generation was still observed, water spraying device was recommended along the slope to minimize the nuisance to public.	The deficiency has been followed during site inspection on 28 February 2012.
28 February 2012	No environmental issue was observed during site inspection.	N.A.

10 ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

10.01 No environmental complaint, summons and prosecution was received in this Reporting Period. The statistical summary table of environmental complaint is presented in *Tables 10-1*, *10-2* and *10-3*.

Table 10-1 Statistical Summary of Environmental Complaints

Donouting Dowied	Environmental Complaint Statistics						
Reporting Period	Frequency	Cumulative	Complaint Nature				
27 July 2010 – 31 December 2011	1 (Nov 2011)	1 (Nov 2011)	water quality				
January 2012	0	1 (Nov 2011)	NA				
February 2012	0	1 (Nov 2011)	NA				

Table 10-2 Statistical Summary of Environmental Summons

Depositing Deviced	Environmental Summons Statistics						
Reporting Period	Frequency	Cumulative	Complaint Nature				
27 July 2010 – 31 December 2011	0	0	NA				
January 2012	0	0	NA				
February 2012	0	0	NA				

Table 10-3 Statistical Summary of Environmental Prosecution

Depositing Deviced	Environmental Prosecution Statistics						
Reporting Period	Frequency	Cumulative	Complaint Nature				
27 July 2010 – 31 December 2011	0	0	NA				
January 2012	0	0	NA				
February 2012	0	0	NA				

11 IMPLEMENTATION STATUS OF MITIGATION MEASURES

11.01 The environmental mitigation measures that recommended in the Sok Kwu Wan Environmental Monitoring and Audit covered the issues of dust, noise, water and waste and they are summarized as following:

Dust Mitigation Measure

- 11.02 Installation of 2m high solid fences around the construction site of Pumping Station P2 is recommended. Implementation of the requirements stipulated in the Air Pollution Control (Construction Dust) Regulation and the following good site practices are recommended to control dust emission from the site:
 - (a) Stockpiles of imported material kept on site should be contained within hoardings, dampened and / or covered during dry and windy weather;
 - (b) Material stockpiled alongside trenches should be covered with tarpaulins whenever works are close to village houses;
 - (c) Water sprays should be used during the delivery and handling of cement, sands, aggregates and the like.
 - (d) Any vehicle used for moving sands, aggregates and construction waste shall have properly fitting side and tail boards. Materials should not be loaded to a level higher than the side and tail boards, and should be covered by a clean tarpaulin.

Noise Mitigation Measure

- 11.03 As detailed in the EIA report, concreting work of the Pumping Station P1a and sewer alignment construction activities would likely cause adverse noise impacts on some of the noise sensitive receivers. Appropriate mitigation measures have therefore been recommended. The mitigation measures recommended in the EIA report are summarised below:
 - (a) Use of quiet equipment for the construction activities of the Pumping Stations and sewer alignment;
 - (b) Use of temporary noise barrier around the site boundary of Pumping Station P1a;
 - (c) Use of kick ripper (saw and lift) method to replace the breaker for pavement removal during sewer alignment construction;
 - (d) Restriction on the number of plant during sewer alignment construction;
 - (e) Use of noise screening structures in the form of acoustic shed or movable barrier wherever practicable and feasible in areas with sufficient clearance and headroom during the construction of sewer alignment;
 - (f) Adoption of manual working method wherever practicable and feasible in areas where the worksites of the proposed sewer alignment are located less than 20m from the residential noise sensitive receivers and less than 30m from the temple and the public library; and
 - (g) Implementation of the following good site practices:
 - Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme.
 - Mobile plant, if any, should be sited as far away from NSRs as possible.
 - Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum.
 - Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs.
 - Material stockpiles and other structures should be effectively utilised, wherever practicable, in screening noise from on-site construction activities.

Water Quality Mitigation Measure

11.04 No-dig method using Horizontal Directional Drilling (HDD) would be used for the installation of outfall pipe of about 480 m from shore to minimize the potential water quality impacts arising from the dredging works required for the submarine outfall construction. For the remaining outfall pipe of about 240m and the diffuser section, open trench dredging would still be required.

- 11.05 During the dredging works, the Contractor should be responsible for the design and implementation of the following mitigation measures.
 - Dredging should be undertaken using closed grab dredgers with a total production rate of 55m³/hr;
 - Deployment of 2-layer silt curtains with first layer enclosing the grab and the second layer at around 50, from the dredging area while dredging works are in progress;
 - all vessels should be sized such that adequate clearance (i.e. minimum clearance of 0.6m) is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash;
 - all pipe leakages should be repaired promptly and plant shall not be operated with leaking pipes;
 - excess material should be cleaned from the decks and exposed fittings of barges before the vessel is moved;
 - adequate freeboard (i.e. minimum of 200m) should be maintained on barges to ensure that decks are not washed by wave action;
 - all barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material; and
 - loading of barges and hoppers should be controlled to prevent splashing of dredged material to the surrounding water, and barges and hoppers should not be filled to a level which would cause the overflow of materials or sediment laden water during loading or transportation; and
 - the decks of all vessels should be kept tidy and free of oil or other substances that might be accidentally or otherwise washed overboard.

Construction Run-off and Drainage

- 11.06 The Contractor should observe and comply with the Water Pollution Control Ordinance and the subsidiary regulations. The Contractor should follow the practices, and be responsible for the design, construction, operation and maintenance of all the mitigation measures as specified in ProPECC PN 1/94 "Construction Site Drainage". The design of the mitigation measures should be submitted by the Contractor to the Engineer for approval. These mitigation measures should include the following practices to minimise site surface runoff and the chance of erosion, and also to retain and reduce any suspended solids prior to discharge:
 - Provision of perimeter channels to intercept storm-runoff from outside the site. These should be constructed in advance of site formation works and earthworks.
 - Works programmes should be designed to minimize works areas at any one time, thus minimising exposed soil areas and reducing the potential for increased siltation and runoff.
 - Sand/silt removal facilities such as sand traps, silt traps and sediment basins should be provided to remove the sand/silt particles from run-off. These facilities should be properly and regularly maintained. These facilities shall be carefully planned to ensure that they would be installed at appropriate locations to capture all surface water generated on site.
 - Careful programming of the works to minimise soil excavation works during rainy seasons.
 - Exposed soil surface should be protected by paving or hydroseeding as soon as possible to reduce the potential of soil erosion.
 - Trench excavation should be avoided in the wet season, and if necessary, these should be excavated and backfilled in short sections.
 - Open stockpiles of construction materials on site should be covered with tarpaulin or similar fabric.

General Construction Activities

11.07 Debris and rubbish generated on-site should be collected, handled and disposed of properly to avoid entering the nearby coastal waters and stormwater drains. All fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. Open drainage channels and culverts near the works areas should be covered to block the entrance of large debris and refuse.

Wastewater Arising from Workforce

11.08 Portable toilets shall be provided by the Contractors, where necessary, to handle sewage from the workforce. The Contractor shall also be responsible for waste disposal and maintenance practices

Sediment Contamination Mitigation Measure

- 11.09 The basic requirements and procedures for dredged mud disposal are specified under the WBTC No. 34/2002. The management of the dredging, use and disposal of marine mud is monitored by the MFC, while the licensing of marine dumping is the responsibility of the Director of Environmental Protection (DEP).
- 11.10 The uncontaminated dredged sediment will be loaded onto barges and transported to the designated marine disposal site. Appropriate dredging methods have been incorporated into the recommended water quality mitigation measures including the use of closed-grab dredgers and silt curtains. Category L sediment would be suitable for disposal at a gazetted open sea disposal ground.
- During transportation and disposal of the dredged marine sediments, the following measures should be taken to minimize potential impacts on water quality:
 - Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved.
 - Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels should be equipped with automatic self-monitoring devices as specified by the DEP.

Construction Waste Mitigation Measure

Good Site Practices and Waste Reduction Measures

- 11.12 It is not anticipated that adverse waste management related impacts would arise, provided that good site practices are strictly followed. Recommendations for good site practices for the construction waste arising include:
 - Nomination of an approved person, such as a site manager, to be responsible for the implementation of good site practices, arranging for collection and effective disposal to an appropriate facility, of all wastes generated at the site.
 - Training of site personnel in proper waste management and chemical handling procedures.
 - Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers.
 - Provision of sufficient waste disposal points and regular collection for disposal.
 - Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Facility.
 - Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors.
 - Maintain records of the quantities of wastes generated, recycled and disposed.
- 11.13 In order to monitor the disposal of C&D waste at landfills and to control fly tipping, a trip-ticket system should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.
- 11.14 Good management and control can prevent the generation of significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:
 - segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal;

- to encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated by the work force:
- any unused chemicals or those with remaining functional capacity should be recycled;
- use of reusable non-timber formwork to reduce the amount of C&D material;
- prior to disposal of C&D waste, it is recommended that wood, steel and other metals should be separated for re-use and / or recycling to minimise the quantity of waste to be disposed of to landfill;
- proper storage and site practices to minimise the potential for damage or contamination of construction materials; and
- plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste.

General Site Wastes

11.15 A collection area should be provided where waste can be stored prior to removal from site. An enclosed and covered area is preferred for the collection of the waste to reduce 'wind blow' of light material.

Chemical Wastes

- 11.16 After use, chemical waste (eg. cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Any unused chemicals or those with remaining functional capacity should be recycled. Spent chemicals should be properly stored on site within suitably designed containers, and should be collected by an approved operator for disposal at the Chemical Waste Treatment Facility or other licenced facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation under the Waste Disposal Ordinance.
- 11.17 Any service shop and minor maintenance facilities should be located on hard standings within a bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles and equipment involving activities with potential for leakages and spillage should only be undertaken with the areas appropriately equipped to control these discharges.

Construction and Demolition Material

- 11.18 The C&D material should be separated on-site into three categories: (i) public fill, the inert portion of the C&D material (e.g. concrete and rubble), which should be re-used on-site or disposed of at a public filling area; (ii) C&D waste for re-use and/or recycling, the non-inert portion of the C&D material, (e.g. steel and other metals, wood, glass and plastic); (iii) C&D waste which cannot be re-used and/or recycled. The waste producers are responsible for its disposal at strategic landfills.
- 11.19 In order to minimise the impact resulting from collection and transportation of material for off-site disposal, it was recommended that inert material should be re-used on-site where possible. Prior to disposal of C&D material, it was also recommended that steel and other metals should be separated for re-use and/or recycling where practicable to minimise the quantity of waste to be disposed of to landfill.

Ecology Mitigation Measure

Terrestrial Ecology

- 11.20 The uncommon tree species should be labelled and probably fenced to avoid direct or indirect disturbance during construction. Works areas should avoid woodland habitats, in particular where these trees are located.
- 11.21 Construction and maintenance of site runoff control measures would be required at all work sites during construction. These should include barriers to direct runoff to sand/silt removal facilities (sand/silt/traps and/or sediment basins); minimisation of earthworks during rainy season (May to September); and coverage of sand/fill piles and exposed earth during storms.

11.22 Special attention should be paid during the breeding season of Romer's Tree Frog (March to September) to ensure their habitat landward to Pumping Station P2 site is well protected from site runoff. Barriers should be deployed completely along the landward side of the pumping station site boundary to prevent any site runoff from entering the tree frog habitat. Intactness of the barriers should be frequently inspected.

Intertidal and Subtidal Ecology

- 11.23 Construction and maintenance of site runoff control measures would be required at all work sites during construction. These should include barriers to direct runoff to sand/silt removal facilities (sand/silt/traps and/or sediment basins); use of silt curtains along coastline; minimisation of earthworks during rainy season (May to September); and coverage of sand/fill piles and exposed earth during storms.
- 11.24 To reduce impacts of sediment resuspension upon nearby habitats and organisms during dredging, all dredging should be done using a closed-grab dredger, and silt curtains should be deployed around the dredger during all dredging activity

Fisheries Mitigation Measure

11.25 Closed grab dredger, deployment of silt curtains around the immediate dredging area and low dredging rate have been recommended in Water Quality of the EIA report in order to minimise sediment release into the water column.

Landscape & Visual Mitigation Measure

- 11.26 Mitigation measures recommended in the EIA Report for landscape and visual impacts during the construction stage are summarised below.
 - Screening of site construction works by use of hoarding that is appropriate to its site context;
 - Retaining existing trees and minimising damage to vegetation where possible by close co-ordination and on site alignment adjusted of rising main and gravity sewer pipelines. Tree protective measures should be implemented to ensure trees identified as to be retained are satisfactorily protected during the construction phase;
 - Careful and efficient transplanting of affected trees (1 no.) to temporary or final transplant location (the proposed tree to be transported is a semi-mature *Macaranga tanarius* and is located at the proposed Pumping Station P2 location);
 - Short excavation and immediate backfilling of sections upon completion of works to reduce active site area;
 - Conservation of top-soil for reuse.
 - Night-time light source from marine fleets should be directed away from the residential units
- 11.27 The implementation schedule of mitigation measures is presented in *Appendix L*.
- 11.28 Leader had been implementing the required environmental mitigation measures according to the Sok Kwu Wan Environmental Monitoring and Audit Manual subject to the site condition. Environmental mitigation measures generally implemented by Leader in this Reporting Period are summarized in *Table 11-1*.

Table 11-1 Environmental Mitigation Measures

Issues	Environmental Mitigation Measures
Water Quality	 Drainage channels were provided to convey run-off into the treatment facilities; and Drainage systems were regularly and adequately maintained.
Air Quality	 Cover all excavated or stockpile of dusty material by impervious sheeting or sprayed with water to maintain the entire surface wet; Public roads around the site entrance/exit had been kept clean and free from dust; and Tarpaulin covering of any dusty materials on a vehicle leaving the site.

Issues	Environmental Mitigation Measures
Noise	 Good site practices to limit noise emissions at the sources;
	 Use of quite plant and working methods;
	• Use of site hoarding or other mass materials as noise barrier to screen noise at
	ground level of NSRs; and
	To minimize plant number use at the worksite.
Waste and	• Excavated material should be reused on site as far as possible to minimize off-site
Chemical	disposal. Scrap metals or abandoned equipment should be recycled if possible;
Management	• Waste arising should be kept to a minimum and be handled, transported and
Wianagement	disposed of in a suitable manner;
	• The Contractor should adopt a trip ticket system for the disposal of C&D
	materials to any designed public filling facility and/or landfill; and
	• Chemical waste shall be handled in accordance with the Code of Practice on the
	Packaging, Handling and Storage of Chemical Wastes.
General	The site was generally kept tidy and clean.

12 IMPACT FORECAST

12.01 Key issues to be considered in the coming month include:

Water Quality

- Erect of sand bag in proper area to avoid any muddy surface runoff from the loose soil surface or haul road during the rainy days; and
- The accumulated stagnant water should be drained away.

Air Quality

- Vehicles shall be cleaned of mud and debris before leaving the site;
- Stockpile and loose soil surface shall be covered with tarpaulin sheet or other means to eliminate the fugitive dust;
- Water spaying on the dry haul road and exit/entrance of the site in regular basis is reminded; and
- Public roads around the site entrance/exit had been kept clean and free from dust.

Noise

- Works and equipment should be located to minimize noise nuisance from the nearest sensitive receiver; and
- Idle equipments should be either turned off or throttled down;

Waste and Chemical Management

- Housekeeping on site shall be improved;
- The Contractor is advised to fence off the construction waste at a designated area in order to maintain the tidiness of the site;
- Drip tray and proper label should be provided for all chemical containers.
- C&D waste should be disposed in regular basis.

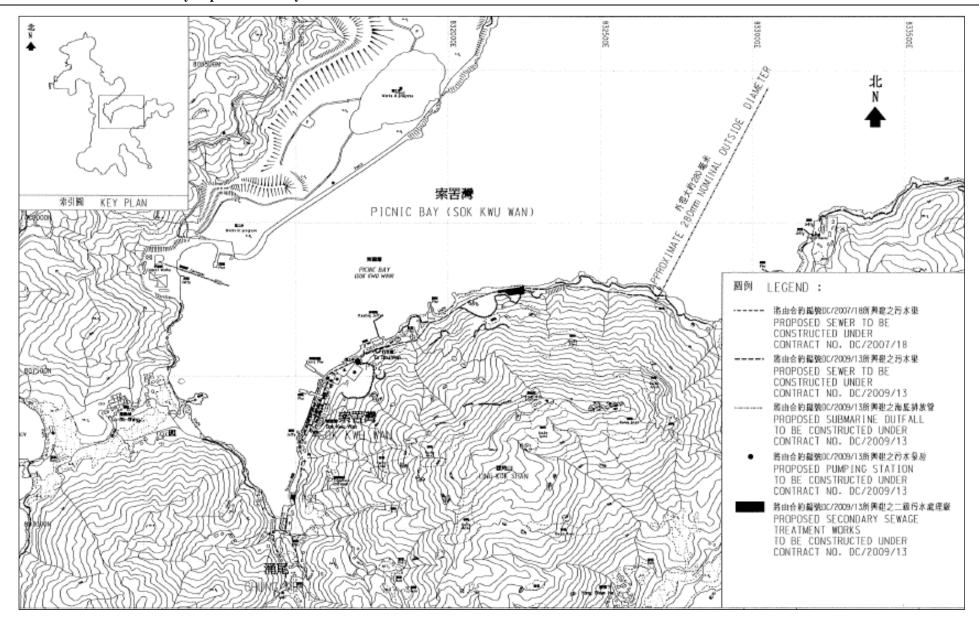
13 CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

- 13.01 This is the 19th monthly EM&A Report covering the construction period from 1 to 29 February 2012.
- 13.02 No 1-hour or 24-hour TSP results were found to be triggered the Action or Limit Level in this Reporting Period.
- 13.03 No noise complaint (an Action Level exceedance) was received and no construction noise measurement results that exceeded the Limit Level were recorded in this Reporting Period.
- 13.04 The monitoring result demonstrated no exceedance of Action or Limit Level of marine water quality monitoring in this Reporting Period.
- 13.05 No documented complaint, notification of summons or successful prosecution was received.
- 13.06 In this Reporting Period, weekly site inspection by ET was carried out on 7, 14, 21 and 28

 February 2012 and a joint-site visit by IEC Representative, RE, the Contractor and ET was carried out on 7 February 2012. All the observation has been rectified during the next week site inspection. The environmental performance of the Project was therefore considered as satisfactory.
- 13.07 No site inspection was undertaken by external parties i.e. Environmental Protection Department (EPD) or Agriculture, Fisheries and Conservation Department (AFCD) within the Reporting Period.

RECOMMENDATIONS


- 13.08 As wet season is approaching, muddy water and other water quality pollutants via site surface water runoff into the sea body within Fish culture zone at Picnic Bay and the Secondary recreation contact subzone at Mo Tat Wan is the key issue of the Project. Mitigation measures for water quality should be properly maintained to prevent any muddy or sandy runoff from the loose soil surface overflow on the site boundary.
- 13.09 Moreover, special attention should be also paid on the dust mitigation measures to avoid fugitive dust emissions from loose soil surface or haul road. Mitigation measures implemented for control the surface runoff including wheel wash facilities, covering of the loose soil surface or stockpile with tarpaulin sheet, etc., should fully implement.

Appendix A

Site Layout Plan – Sok Kwu Wan Portion Area

Appendix B

Organization Structure and Contact Details of Relevant Parties

Contact Details of Key Personnel

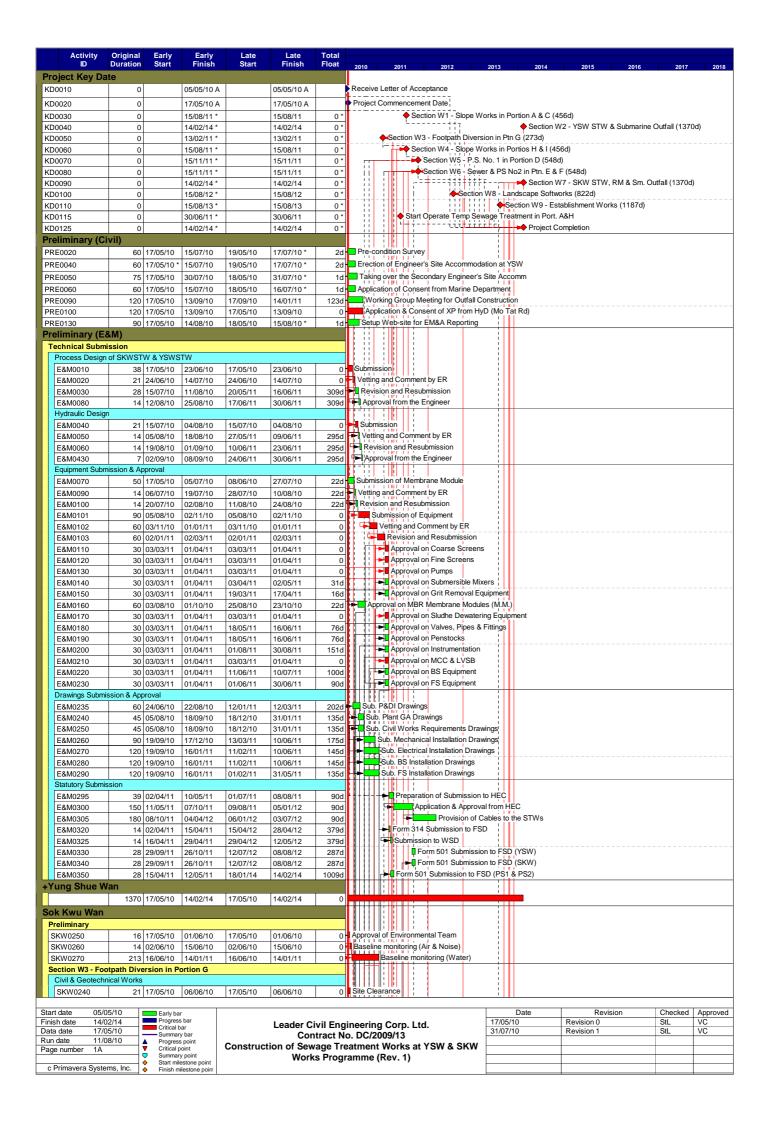
Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
DSD	Employer	Mr Kenley C K Kwok	-	-
SCJV	Engineer's Representative	Mr. Neil Wong	2982 0240	2982 4129
SCJV	Resident Engineer	Mr. Alfred Cheung	2982 0240	2982 4129
Scott Wilson	Independent Environmental Checker	Mr. Rodney Ip	2410 3750	2428 9922
Leader	Project Manager	Mr. Vincent Chan	2982 1750	2982 1163
Leader	Site Agent	Mr. Ron Hung	2982 1750	2982 1163
Leader	Environmental Officer	Mr. K.Y. So	2982 8652	2982 8650
Leader	Section Engineer	Mr. Burgess Yip	2982 1750	2982 1163
Leader	Safety Officer	Mr. Edwin Leung	2982 1750	2982 1163
AUES	Environmental Team Leader	Mr. T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ms. Nicola Hon	2959 6059	2959 6079
AUES	Assistance Environmental Consultant	Mr. Ray Cheung	2959 6059	2959 6079
AUES	Team Supervisor	Mr. Ben Tam	2959 6059	2959 6079

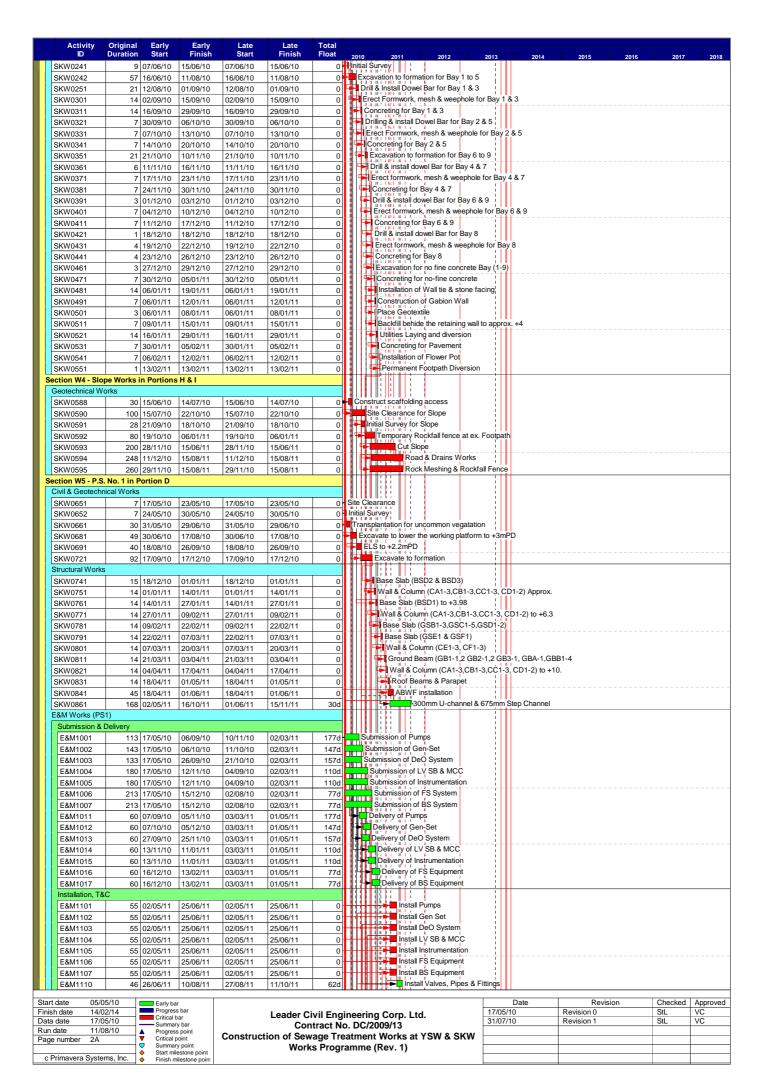
Legend:

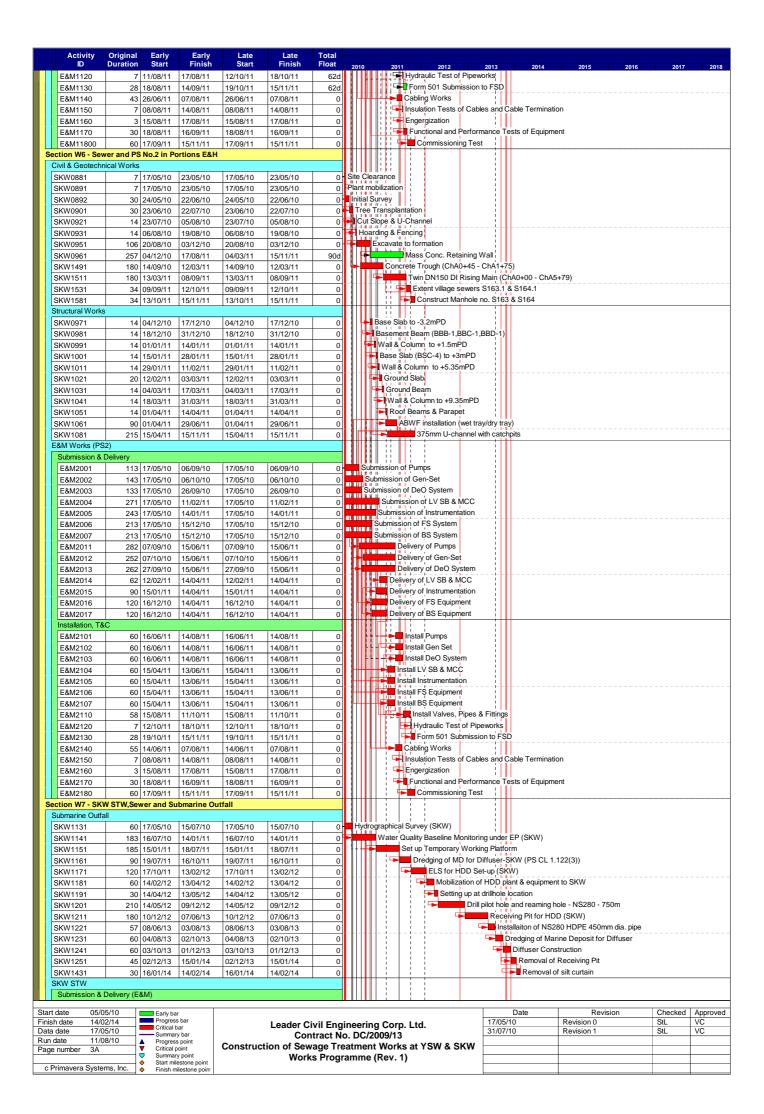
DSD (Employer) – Drainage Services Department

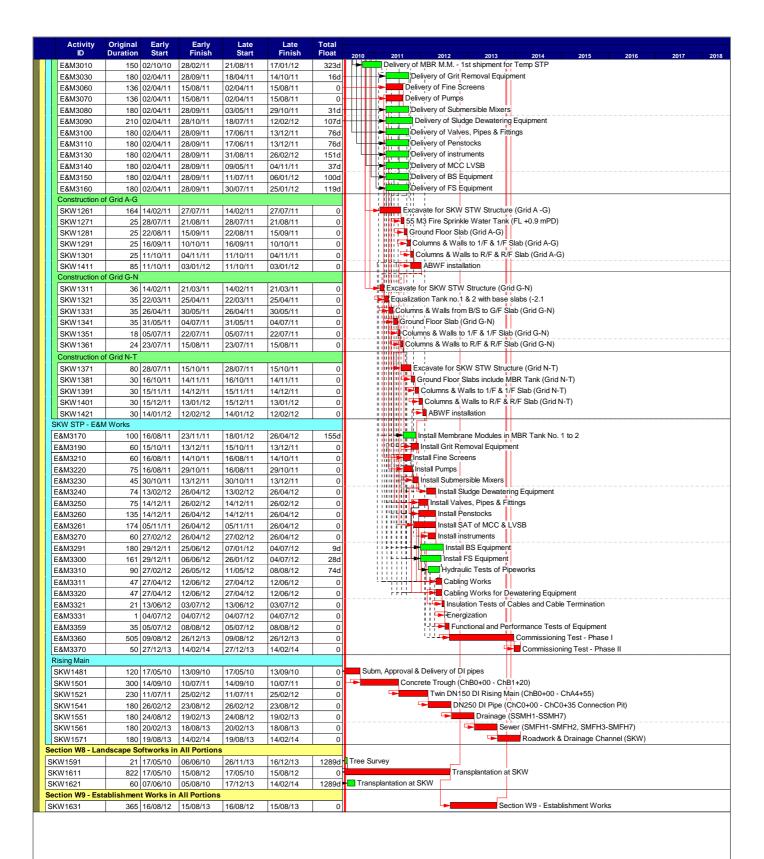
CDM (Engineer) – Scott Wilson CDM Joint Venture

 $Leader\ (Main\ Contractor) - Leader\ Civil\ Engineering\ Corporation\ Limited$


Scott Wilson (IEC) – Scott Wilson Limited


AUES (ET) – Action-United Environmental Services & Consulting




Appendix C

A Master and Three Months Rolling Construction Programme

Start date	05/05/10		Early bar
Finish date	14/02/14		Progress bar
Data date	17/05/10		Critical bar Summary bar
Run date	11/08/10	A	Progress point
Page number	4A	▼	Critical point
		▽	Summary point Start milestone point
c Primavera	Systems, Inc.	*	Finish milestone point

Date	Revision	Checked	Approved
17/05/10	Revision 0	StL	VC
31/07/10	Revision 1	StL	VC

Activity ID	Description	Original	Percent Early Complete Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	2011			2012		
Project Key D	ate	Daracion	ocimpieto otalit	T IIIIOII	Ottart	Timon	. Iout			DEC	JAN	FEB MAR	R APR	MAY	JUN U
KD0010	Receive Letter of Acceptance		100	05/05/10 A		05/05/10 A	1		KD0125	1					
KD0020	Project Commencement Date	0	100	17/05/10 A		17/05/10 A			E&M0010, E&M0070, E&M1001,	1					
KD0030	Section W1 - Slope Works in Portion A & C (456d)	0	100	14/10/11 A		14/10/11 A			KD0125	1					
KD0050	Section W3 - Footpath Diversion in Ptn G (273d)	0	100	24/03/11 A		24/03/11 A			KD0125						
KD0115	Start Operate Temp Sewage Treatment in Port. A&H	0	0	02/06/12		30/06/11 *	-338d *	E&M0510	KD0125	1				-	•
Preliminary (C	Civil)		·												
PRE0020	Pre-condition Survey	60	100 17/05/10 A	15/07/10 A	17/05/10 A	15/07/10 A		KD0020		1					
PRE0040	Erection of Engineer's Site Accommodation at YSW	60	100 17/05/10 A	15/07/10 A	17/05/10 A	15/07/10 A		KD0020		1					
PRE0050	Taking over the Secondary Engineer's Site Accomm	75	100 17/05/10 A	30/07/10 A	17/05/10 A	30/07/10 A		KD0020							
PRE0060	Application of Consent from Marine Department	60	100 17/05/10 A	15/07/10 A	17/05/10 A	15/07/10 A		KD0020							
PRE0090	Working Group Meeting for Outfall Construction	120	100 17/05/10 A	23/11/10 A	17/05/10 A	23/11/10 A		KD0020	SKW1151						
PRE0100	Application & Consent of XP from HyD (Mo Tat Rd)	120		13/10/10 A	17/05/10 A	13/10/10 A		KD0020	SKW1491, SKW1501	1					
PRE0130	Setup Web-site for EM&A Reporting	90	100 17/05/10 A	31/08/10 A	17/05/10 A	31/08/10 A		KD0020							
Preliminary (E	,														
Technical Submi															
<u> </u>	n of SKWSTW & YSWSTW		,		1			Lypana	I 5040000 504000 504000	4					
E&M0010	Submission	38	100 17/05/10 A		17/05/10 A	23/06/10 A		KD0020	E&M0020, E&M0040, E&M0235	4					
E&M0020	Vetting and Comment by ER	21		14/07/10 A	24/06/10 A	14/07/10 A	ļ	E&M0010	E&M0030, E&M0040	4					
E&M0030	Revision and Resubmission	125	100 17/05/10 A		17/05/10 A	30/11/11 A		E&M0020 E&M0030	E&M0080 E&M0295	4					
E&M0080	Approval from the Engineer	14	100 02/11/11 A	30/11/11 A	02/11/11 A	30/11/11 A		EXIVIOUSU	E@INI0293	-					
Hydraulic Desig	·	ا ما	400 47/05/40 A	140/00/40 4	17/05/40 4	10/00/40 4	<u> </u>	E&M0010, E&M0020	E&M0050, E&M0101, E&M0240,						
E&M0040	Submission	21 14	100 17/05/10 A 100 17/09/10 A		17/05/10 A 17/09/10 A	16/09/10 A 09/11/10 A		E&M0040	E&M0060	-					
E&M0050 E&M0060	Vetting and Comment by ER Revision and Resubmission	97	100 17/09/10 A		19/08/10 A	30/11/11 A		E&M0050	E&M0430	-					
E&M0430	Approval from the Engineer	97	100 19/08/10 A			30/11/11 A		E&M0060	E&M0295	- ∮					
	mission & Approval		100 29/03/11 A	[30/11/11 A	23/03/11 A	[30/11/11 A	<u>. </u>			+					
E&M0070	Submission of Membrane Module	50	100 17/05/10 A	05/07/10 A	17/05/10 A	05/07/10 A	1	KD0020	E&M0090						
E&M0090	Vetting and Comment by ER	14	1	19/07/10 A	06/07/10 A	19/07/10 A		E&M0070	E&M0100	1					
E&M0100	Revision and Resubmission	14	100 20/07/10 A	24/02/11 A	20/07/10 A	24/02/11 A		E&M0090	E&M0160						
E&M0101	Submission of Equipment	90	100 04/08/10 A	30/11/11 A	04/08/10 A	30/11/11 A		E&M0040	E&M0102	1					
E&M0102	Vetting and Comment by ER	60	100 18/11/10 A	30/11/11 A	18/11/10 A	30/11/11 A		E&M0101	E&M0103	7					
E&M0103	Revision and Resubmission	60	100 01/02/11 A	30/11/11 A	01/02/11 A	30/11/11 A		E&M0102	E&M0110, E&M0120, E&M0130,	1					
E&M0110	Approval on Coarse Screens	30	100 25/05/11 A	25/05/11 A	25/05/11 A	25/05/11 A		E&M0103	E&M0390]					
E&M0120	Approval on Fine Screens	30	100 12/09/11 A	12/09/11 A	12/09/11 A	12/09/11 A		E&M0103	E&M0400, E&M3060						
E&M0130	Approval on Pumps	30	100 23/06/11 A	23/06/11 A	23/06/11 A	23/06/11 A		E&M0103	E&M0410, E&M3070						
E&M0140	Approval on Submersible Mixers	30	100 23/03/11 A	23/03/11 A	23/03/11 A	23/03/11 A		E&M0103	E&M0420, E&M3080	<u> </u>					
E&M0150	Approval on Grit Removal Equipment	30	100 10/10/11 A	10/10/11 A	10/10/11 A	10/10/11 A		E&M0103	E&M0380, E&M3030	4					
E&M0160	Approval on MBR Membrane Modules (M.M.)	105	100 02/08/10 A	24/02/11 A	02/08/10 A	24/02/11 A		E&M0100	E&M0360, E&M0370, E&M3010	4					
E&M0170	Approval on Sludge Dewatering Equipment	30	100 01/09/11 A	01/09/11 A	01/09/11 A	01/09/11 A		E&M0103	E&M0440, E&M3090						
E&M0180	Approval on Valves, Pipes & Fittings	30	80 19/11/11 A	05/02/12	19/11/11 A	30/11/11	<u>-67c</u>	E&M0103 E&M0103	E&M0450, E&M3100 E&M0460, E&M3110	-					
E&M0190 E&M0200	Approval on Penstocks	30 30	100 15/11/11 A	15/11/11 A 21/06/11 A	15/11/11 A 21/06/11 A	15/11/11 A 21/06/11 A		E&M0103	E&M0470, E&M3130	+					
E&M0200 E&M0210	Approval on Instrumentation Approval on MCC & LVSB	30	100 21/06/11 A 90 19/11/11 A	02/02/12	19/11/11 A	01/04/11 01/04/11	_207~	E&M0103	E&M0480, E&M3140						
E&M0220	Approval on BS Equipment	30	50 30/11/11 A	26/02/12	30/11/11 A	04/10/11	-1450		E&M0490, E&M3150		<u> </u>				
E&M0230	Approval on FS Equipment	30		03/03/12	30/11/11 A	01/11/11	-1230	E&M0103, E&M0290	E&M0295, E&M0320, E&M0500,						
	nission & Approval		. 5 55/11/11/1	1 33, 36, 12	1 22	1		<u> </u>	<u> </u>	 	- -	- - 			
E&M0235	Sub. P&ID Drawings	100	100 24/06/10 A	22/08/10 A	24/06/10 A	22/08/10 A		E&M0010		7					
E&M0240	Sub. Plant GA Drawings	45	90 04/08/10 A	04/02/12	04/08/10 A	06/11/11	-900	E&M0040	E&M0250, E&M0280, E&M0290	1					
E&M0250	Sub. Builder's Works Requirements Drawings	15	90 04/08/10 A	07/02/12	04/08/10 A	07/11/11	-920		E&M0280, E&M0290						
E&M0260	Sub. Mechanical Installation Drawings	60	90 27/09/10 A	05/02/12	27/09/10 A	06/11/11	-920		E&M0250			-			
E&M0270	Sub. Electrical Installation Drawings	60	90 27/09/10 A	05/02/12	27/09/10 A	06/11/11	-920		E&M0250, E&M0280						
E&M0280	Sub. BS Installation Drawings	120	90 27/09/10 A	11/02/12	27/09/10 A	19/09/11	-1450		E&M0220						
E&M0290	Sub. FS Installation Drawings	120	80 13/11/10 A	23/02/12	13/11/10 A	23/10/11	-1230	E&M0240, E&M0250	E&M0230						
Statutory Submis	ssion														
	05/10 Early bar											ate	Revision		d Approved
	02/15 Progress bar Critical bar			L	eader Civil E	ngineering Co	orp. Ltd.				31/01/12	Rev	ision 0	RH	VC
	Summary bar				Contrac	t No. DC/2009	/13								
Page number 1A	I Togress point					reatment Wo									
	Summary point Start milestone point			o-month	nolling Prog	ramme (Feb 2	uı∠-Apı	1 2012)		(Marked on 31 Jan 2012	2)				
c Primavera Syster	ms, Inc.									(warked on 31 Jan 2012	-1				

Activity ID	Description		Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	2011 DEC	JAN	FEB	MAR	2012 APR	MAY	JUN U
E&M0295	Preparation of Submission to HEC	39	100	01/11/11 A	30/11/11 A	01/11/11 A	30/11/11 A		E&M0080, E&M0230, E&M0430	E&M0300							
E&M0300	Application & Approval from HEC	150	90	01/11/11 A	18/03/12	01/11/11 A	05/01/12	-73d	E&M0295	E&M0305			11				
E&M0305	Provision of Cables to the STWs	180	0	19/03/12	14/09/12	06/01/12	03/07/12	-73d	E&M0300	E&M0680							
E&M0320	Form 314 Submission to FSD	14	0	04/03/12	17/03/12	25/04/12	08/05/12	52d	E&M0230	E&M0325, E&M0670				-			
E&M0325	Submission to WSD	14	70	01/11/11 A	21/03/12	01/11/11 A	12/05/12	52d	E&M0320	E&M0670, E&M0680							
E&M0350	Form 501 Submission to FSD (PS1 & PS2)	28	0	07/05/12	04/06/12	16/01/15	24/02/15	927d	E&M2016					1		-	=
Yung Shue Wa	an																
Preliminary																l	1
YSW0020	Approval of Environmental Team	16	100	17/05/10 A	01/06/10 A	17/05/10 A	01/06/10 A		KD0020	YSW0030, YSW0040						l	1
YSW0030	Baseline monitoring (Air & Noise)	14		31/07/10 A		31/07/10 A	22/08/10 A		YSW0020	YSW0035						l	1
YSW0035	Baseline Monitoring Report Submission (A & N)	14		23/08/10 A		23/08/10 A	07/09/10 A		YSW0030	YSW0152, YSW0500, YSW0610,						l	1
YSW0040	Baseline monitoring (Water)	213		30/07/10 A		30/07/10 A	31/12/10 A		YSW0020	YSW0350	├ 		- -	∤ -	· - .	l	1
YSW0050	Erect Hoarding and Fencing	60		17/05/10 A	i	17/05/10 A	15/07/10 A				1	i			i	l	1
	SW STW & Submarine Outfall	00	100	17700/1071	10/07/1071	17700/1071	110/07/107					I	+			 	
Civil & Structura												1			1	l	1
YSW0412	Mobilization	30	100	17/05/10 A	I 15/06/10 Δ	17/05/10 A	15/06/10 A		KD0020	YSW0422]]			i I	l	1
YSW0412 YSW0422	Site Clearance	30		17/05/10 A		17/05/10 A	15/06/10 A		KD0020, YSW0412	YSW0432, YSW0500, YSW0610,	1	i	Π		1		[
YSW0422 YSW0432	Initial Survey	14		02/06/10 A	i	02/06/10 A	15/06/10 A		YSW0422	YSW0510	├ 	$\frac{1}{\Gamma}$.	Π		1		
YSW STP - G		14	100	102/00/10 A	1 13/00/10 A	102/00/10 A	13/00/10 A		<u> </u>		H	++	+	 	Ī	 	
YSW0500	ELS & Excavation for Inlet Pumping Station	62	100	17/09/10 A	16/12/10 4	17/09/10 A	16/12/10 A		YSW0035, YSW0422	YSW0510	1	11	Π		1		[
YSW0500 YSW0510	Sub-structure construction (Inlet Pumping Station	30		17/09/10 A		17/09/10 A 17/12/10 A	04/04/11 A		YSW0432, YSW0500	YSW0520	11	ii	\parallel		i	1	[
	1	30		03/01/11 A		i	1		YSW0510	YSW0530, YSW0610	-	11			1	l	1
YSW0520	Backfill & Remove ELS (Inlet Pumping Stn)			<u> </u>		03/01/11 A	05/05/11 A		YSW0520	YSW0540	-	ii			i	l	1
YSW0530	ELS & Excavation for Equalization Tank	40		11/01/11 A	i	11/01/11 A	08/06/11 A		YSW0530	YSW0550	-	11			I .	l	1
YSW0540	Sub-structure construction (Equalization Tank)	40	100	 	i	13/06/11 A	28/09/11 A		YSW0540	YSW0570			11		· - i		
YSW0550	Backfilling & Remove ELS (Equalization Tank)	40	100	 	18/10/11 A	15/08/11 A	18/10/11 A		YSW0550	YSW0580		1.1	Ц		!	l	1
YSW0570	Excavate to formation by open cut	30		 	i	02/07/11 A	31/01/12 A					1.1	<u> </u>		1	l	1
YSW0580	Base slab construction	30		06/07/11 A	i	06/07/11 A	01/07/11	-216d	YSW0570	YSW0590		1.1			I.	l	1
YSW0590	G/F to 1/F construction	50		29/09/11 A	17/02/12	29/09/11 A	16/07/11	-216d	YSW0580	YSW0600		1.1			1	l	1
YSW0600	1/F to Roof construction	50		i		01/11/11 A	05/08/11		YSW0590	YSW0720, YSW0800			- -	<u> </u>	<u>. i</u>		
YSW0720	Water Test	36		09/03/12	13/04/12	06/08/11	10/09/11		YSW0600	E&M0530, E&M0540, E&M0550,		11				l	1
YSW0800	ABWF installation	36	0	09/03/12	13/04/12	06/08/11	10/09/11	-216d	YSW0600	E&M0530, E&M0540, E&M0550,							
YSW STP - G		•		<u> </u>		<u> </u>	•		Lyouana your as your	Lygueses		11			ii	l	1
YSW0610	Excavate to formation	50		08/09/10 A	•	08/09/10 A	17/09/10 A		YSW0035, YSW0422, YSW0520	YSW0620		ii			l ii	l	1
YSW0620	Base slab construction	60		18/09/10 A	•	18/09/10 A	23/05/11 A		YSW0610	YSW0630		11				l	1
YSW0630	G/F to 1/F construction	95	100	27/12/10 A	19/07/11 A	27/12/10 A	19/07/11 A		YSW0620	YSW0640		<u>i i</u>	Ш		l ii	l	1
YSW0640	1/F to Roof Construction	91		20/07/11 A	•	20/07/11 A	26/08/11	-160d	YSW0630	YSW0810, YSW0840					!!	l	1
YSW0810	ABWF installation	86	5	02/01/12 A	21/04/12	02/01/12 A	25/09/11	-209d	YSW0640	E&M0610, E&M0620, E&M0630,	i s		11-	 	 	 	
YSW STP - G	GLF-H&DN Tanks											11	11 1			l	1
YSW0650	ELS & Excavation for DN Tanks	70		21/08/10 A		21/08/10 A	14/10/10 A		YSW0035, YSW0422	YSW0660		- ;;				l	1
YSW0660	Sub-struction construction (DN Tanks)	40	100	15/10/10 A	31/12/10 A	15/10/10 A	31/12/10 A		YSW0650	YSW0670		1.1			!!	l	1
YSW0670	Backfill & Remove ELS (DN Tanks)	32	100	08/01/11 A	15/03/11 A	08/01/11 A	15/03/11 A		YSW0660	YSW0680]	11	$\ \ $			1	1
YSW0680	Base slab construction	30	100	16/03/11 A	28/03/11 A	16/03/11 A	28/03/11 A		YSW0670	YSW0690		1.1	$\ \ $!!		1
YSW0690	Superstructure construction upto +10.5mPD	60	100	30/03/11 A	18/06/11 A	30/03/11 A	18/06/11 A		YSW0680	YSW0700, YSW0820	L I		III				
YSW0700	Apply protective paint	20	0	31/01/12	19/02/12	27/02/11	18/03/11		YSW0690	YSW0710		[1]	-		!!		
YSW0710	Water test	14	0	20/02/12	04/03/12	19/03/11	01/04/11		YSW0700	E&M0510, E&M0630, E&M0640							1
YSW0820	ABWF installation	34	0	31/01/12	04/03/12	27/02/11	01/04/11	-338d	YSW0690	E&M0510, E&M0630, E&M0640		i	-				
YSW STP - G	GLA-F											11					
YSW0730	Completion of HDD	0	100	06/01/12 A		06/01/12 A			YSW0360	YSW0740] ,	🛶 ii	$\ \ $		 		1
YSW0740	ELS & excavate for Outfall Shaft	22		i	21/02/12	03/07/11	25/07/11	-212d	YSW0730	YSW0750]	<u> </u>	-	•			
YSW0750	Sub-structure construction (outfall shaft)	22	0	22/02/12	14/03/12	25/07/11	16/08/11	-212d	YSW0740	YSW0760]	ii	11 1		l ii		1
YSW0760	Backfill & remove ELS (outfall shaft)	24	0	15/03/12	07/04/12	16/08/11	09/09/11	-212d	YSW0750	YSW0770, YSW1470]	11	11 1	📬			1
YSW0770	Excavate to formation by open cut	22	10	30/01/12 A	27/04/12	30/01/12 A	28/09/11	-212d	YSW0760	YSW0780	[iic	 -			1	1
YSW0780	Base slab construction	21		27/04/12	18/05/12	29/09/11	19/10/11	-212d	YSW0770	YSW0790		r	1[111			
YSW0790	Superstructure construction upto +10.5mPD	30		18/05/12	17/06/12	20/10/11	18/11/11	-212d	YSW0780	YSW0795, YSW0870		- ;;	$\ \ $				
YSW0795	Apply protective paint	30		17/06/12	17/07/12	19/11/11	18/12/11	-2124	YSW0790	YSW0830	1	1.1	$\ \ $				
10110700	1. Ab. 1 b. otooti to benin	1 30		1 11/00/12		1 10/11/11	110/12/11	2.20	1	<u>l</u>	I I	11	ш	Ш		1	
Start date 05/0	05/10 Early bar												Date		Revision	Che	ecked Approved
Finish date 24/0	02/15 Progress bar					eader Civil E	ngineering Co	rn I+d				31	/01/12	Revi	sion 0	RH	
Data date 31/0	01/12 Critical bar						ngineering Co										

Start date U5/05/10

Finish date 24/02/15

Data date 31/01/12

Run date 15/02/12

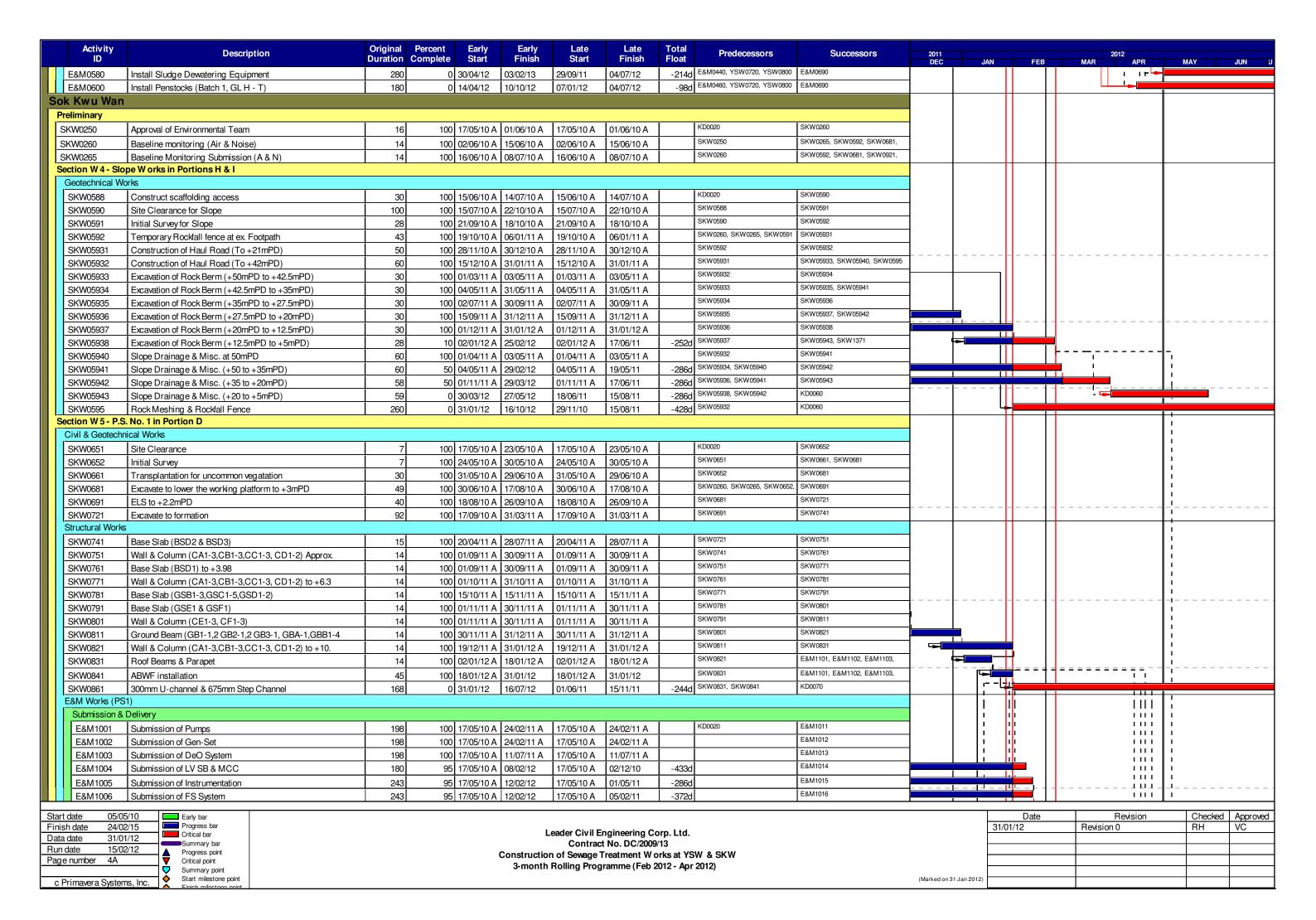
Page number 2A

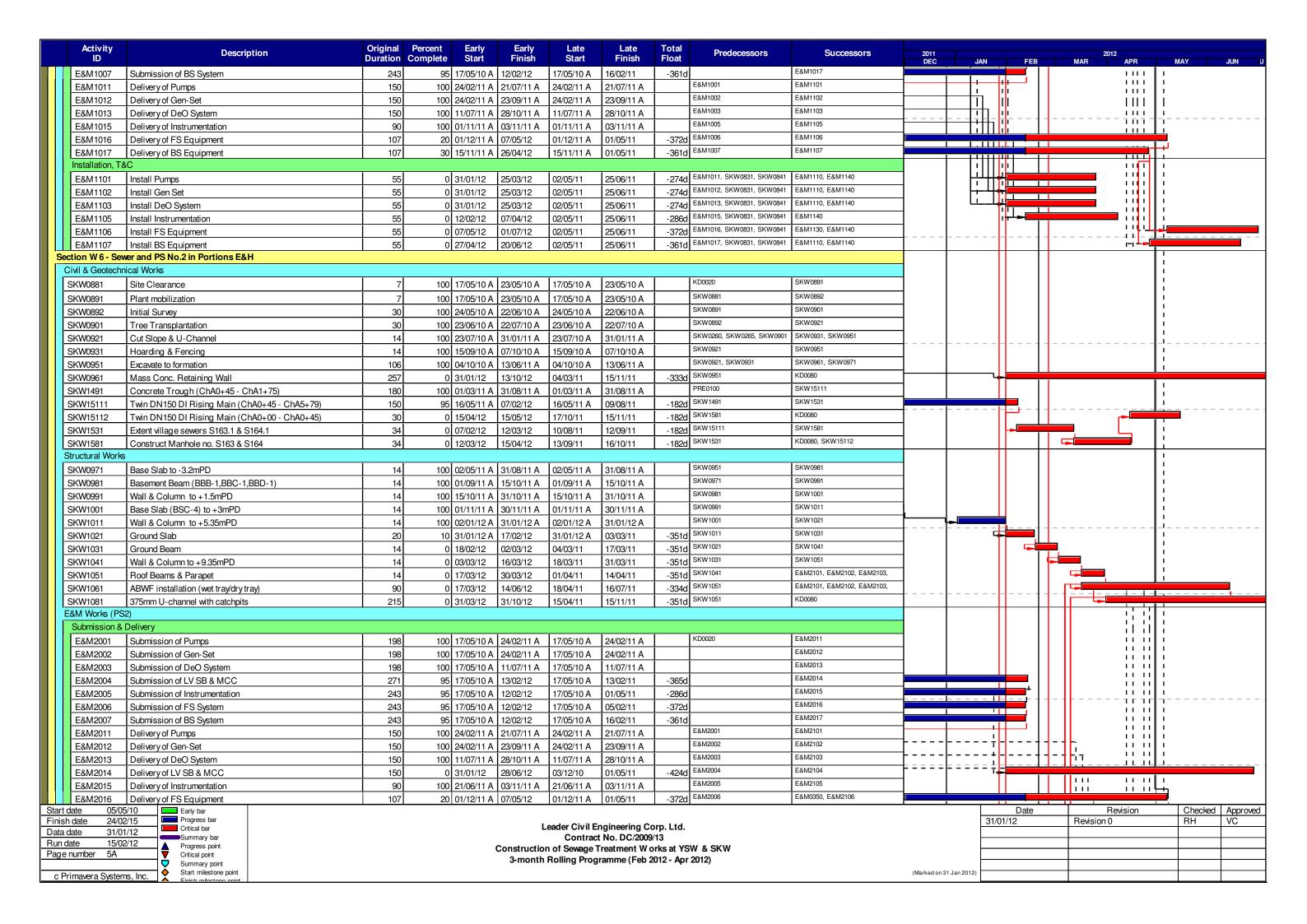
C Primavera Systems, Inc.

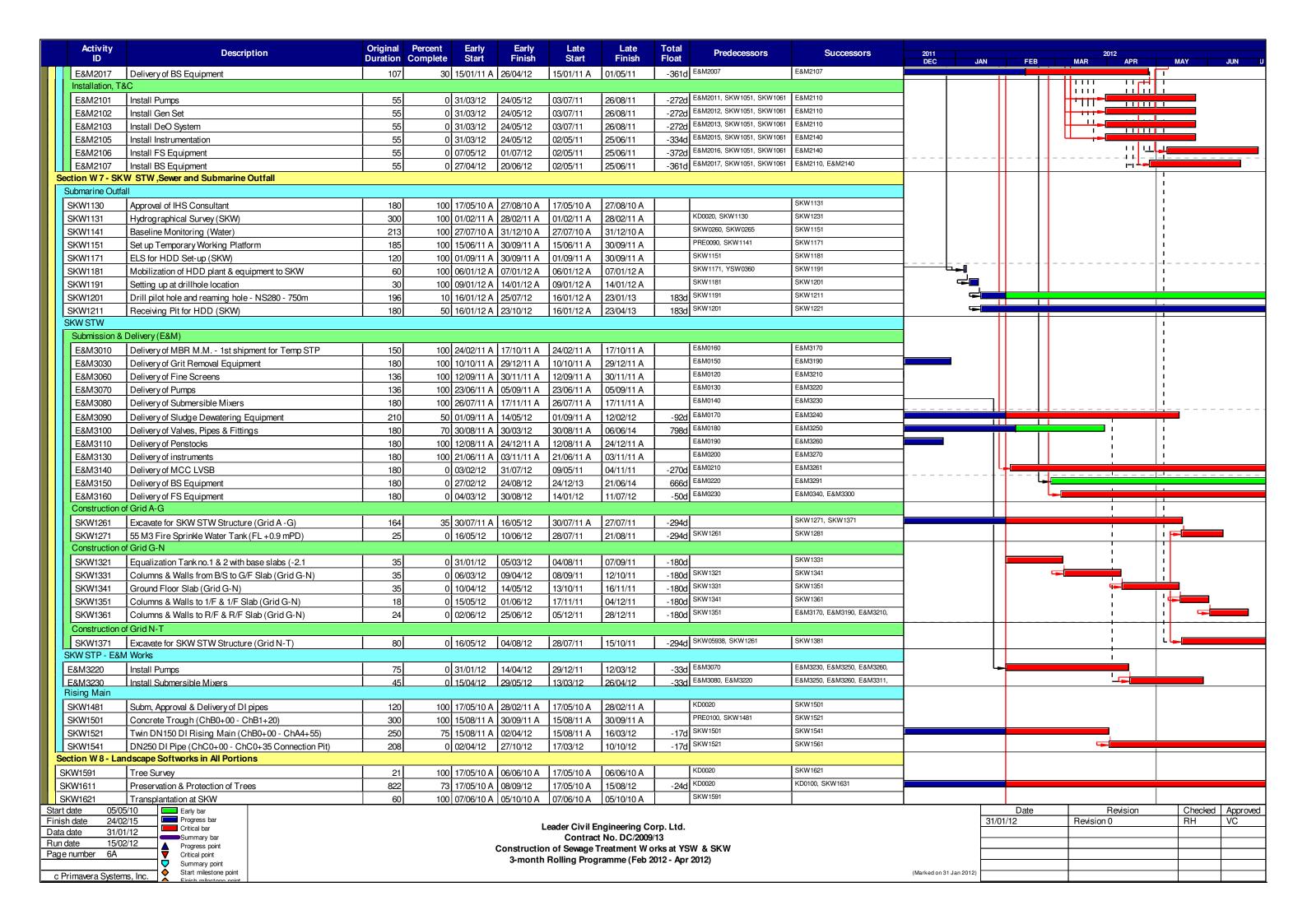
Early bar

Critical bar

Summary bar


Progress point
Critical point
Summary point
Summary point
Summary point
Summary point
Start milestone point


Leader Civil Engineering Corp. Ltd.
Contract No. DC/2009/13
Construction of Sewage Treatment Works at YSW & SKW
3-month Rolling Programme (Feb 2012 - Apr 2012)


Date	Revision	Checked	Approved
31/01/12	Revision 0	RH	VC

(Marked on 31 Jan 2012)

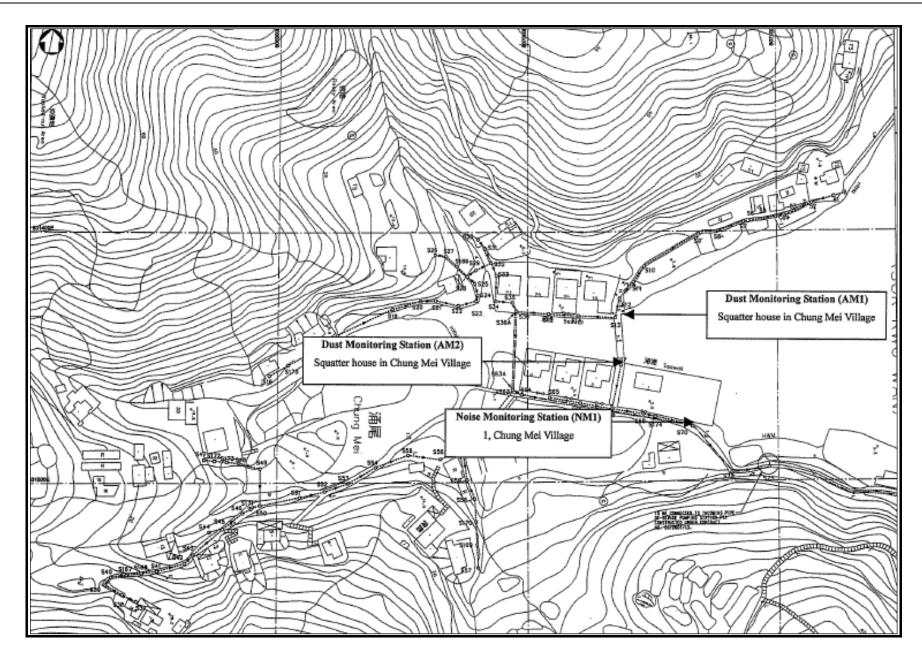
Activity ID	Description		Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Predecessors	Successors	2011				2012		
									FRANCEO FRANCOS FRANCOS	DEC	JAN	FEE	MAR	TT	MAY	JUN
YSW0870	ABWF installation	60)] 0	17/06/12	16/08/12	28/12/11	25/02/12	-173d ^{YSW0790}	E&M0520, E&M0605, E&M0630,	-	11					-
	el / Sprinkler Pump Rm		1	<u> </u>	l	1	1	VOWESSE VOWESSE VOWESSE	Lyougooo	41	ii		Щ	ii		
YSW0840	ELS & excavate to formation (+0 mPD approx.)	30	1	01/02/12	02/03/12	01/09/11	30/09/11	-154d YSW0035, YSW0422, YSW0640		41	17			<u> </u>		
YSW0860	Sub-structure construction	30	1		01/04/12	01/10/11	30/10/11	-154d YSW0840	YSW0880	41				11		
YSW0880	Backfill & remove ELS	30	1		01/05/12	31/10/11	29/11/11	-154d YSW0860	YSW0890	41				11		
YSW0890	Construction Ground Slab at +5.2mPD	30	0	01/05/12	31/05/12	30/11/11	29/12/11	-154d YSW0880	YSW0900, YSW0930	<u> </u>						
YSW0900	Superstructure construction upto +8.2mPD	35	•	•	05/07/12	30/12/11	02/02/12	-154d YSW0890	YSW0910, YSW0925	1				- i-i -		
	Construction of Gurad House	60	<u> </u>	31/05/12	30/07/12	06/05/12	04/07/12	-26d YSW0890	E&M0690, KD0040		1	Н—		 		4
Emergency Sto	orage Tank				<u> </u>		•		L	41				;;		
YSW1470	ELS & excavate to formation (-1.5mPD Approx.)	30	0	08/04/12	07/05/12	07/11/11	06/12/11	-153d YSW0035, YSW0760	YSW1480	<u> </u>						
YSW1480	Sub-structure construction	40	0	08/05/12	16/06/12	07/12/11	15/01/12	-153d ^{YSW1470}	YSW1490							
YSW1490	Backfill & extract sheetpile	30	0	17/06/12	16/07/12	16/01/12	14/02/12	-153d ^{YSW1480}	YSW1500					11		
Road, Drain, C	Cable Draw Pits & Ducting															
YSW0152	Temporary Diversion of Drainage	92	100	02/12/10 A	09/05/11 A	02/12/10 A	09/05/11 A	YSW0035	YSW0153					ii		
YSW0153	Removal of Ex U-Channel where clash with B. Wall	50	100	20/11/10 A	20/04/11 A	20/11/10 A	20/04/11 A	YSW0152	YSW0154	11				<u> </u>		
YSW0154	Construction of Subsoil Drain	90	30	24/08/11 A	02/04/12	24/08/11 A	05/01/12	-88d YSW0153	YSW0155		<u> </u>		111			
YSW0155	RC Concrete Barrier (above Ground Level)	120	0	03/04/12	31/07/12	06/01/12	04/05/12	-88d YSW0154	YSW1640, YSW1660	11						
ubmarine Outfal	, ,									П		11	Ш	11		
SW0180	Coordination of HEC	53	100	17/05/10 A	08/07/10 A	17/05/10 A	08/07/10 A		YSW0350	11				ii		
SW0200	Submission and Approval of Ecologist	60		17/05/10 A		17/05/10 A	15/07/10 A		YSW0210	11						
SW0200	Ecology Survey	90		16/07/10 A		16/07/10 A	11/02/11 A	YSW0200	YSW0350	1						
SW0210 SW0220	Submission and Approval of In. Hydro Survey	90		17/05/10 A		17/05/10 A	27/08/10 A		YSW0230					11		
	<u> </u>	4.5	i	31/08/10 A	i	31/08/10 A	31/01/11 A	YSW0220	YSW0350	 						
SW0230	Hydrogrophical Survey (YSW) Meterial Submission, Appropriate HDDE since	93		17/05/10 A	1	17/05/10 A	31/01/11 A 31/03/11 A	1	YSW0250	+		· -	ΗH	-	-	
SW0240	Material Submission, Approval of HDPE pipe					1	1	YSW0240	YSW0260, YSW0270, YSW0340					- 11		
SW0250	Submit and Approval of Method Statement for HDD	120	i	24/09/10 A	i	24/09/10 A	25/03/11 A	YSW0250	YSW0320, YSW0340	41				ii		
SW0260	Submission of HDD Method Statement to HEC	14	1	26/01/11 A		26/01/11 A	24/03/11 A		·	-11					1	
SW0270	Additional G.I. Boreholes (YSW)	62	1	06/11/10 A		06/11/10 A	19/01/11 A	YSW0250	YSW0280, YSW0320	41				ii ii		
SW0280	Submission of propose alignment to the Eng	14	1	02/02/11 A	1	02/02/11 A	04/03/11 A	YSW0270	YSW0290, YSW0310, YSW0340	41				!!-		
SW0290	Submission of Marine Notice	60	100	31/01/11 A	29/03/11 A	31/01/11 A	29/03/11 A	YSW0280	YSW0350	41					1	
SW0310	Construction of Entry Pit and Preparation Work	39	100	15/03/11 A	31/03/11 A	15/03/11 A	31/03/11 A	YSW0280	YSW0320, YSW0330	<u> </u>				11		
SW0320	Prepare of HDD Drill Rig Set-up (YSW)	39	1	02/04/11 A		02/04/11 A	28/04/11 A		YSW0330, YSW0350	<u> </u>						
SW0330	Establishment of HDD plant & equipment	14	100	09/04/11 A	14/04/11 A	09/04/11 A	14/04/11 A	YSW0310, YSW0320	YSW0340					- 11		
SW0340	Setting up at drillhole location	7	7 100	19/04/11 A	28/04/11 A	19/04/11 A	28/04/11 A	YSW0250, YSW0260, YSW0280,	YSW0350	Ш						
SW0350	Drill pilot hole and reaming hole - NS400 - 530m	123	100	29/04/11 A	08/12/11 A	29/04/11 A	08/12/11 A	YSW0040, YSW0180, YSW0210,	YSW0360		Ļ			ii		
SW0360	Installation of NS400 HDPE 530m	14	100	14/12/11 A	30/12/11 A	14/12/11 A	30/12/11 A	YSW0350	SKW1181, YSW0365, YSW0370,		•					
SW0365	Set up of Silt Curtain as per EP	30	0	31/01/12	29/02/12	20/07/13	18/08/13	536d YSW0360	YSW0370	1 ا	т т					
SW0370	Dredging of Marine Deposit for Diffuser (YSW)	60	0	01/03/12	29/04/12	19/08/13	17/10/13	536d YSW0360, YSW0365	YSW0380	7						
SW0380	Diffuser Construction (YSW)	60	•	30/04/12	28/06/12	18/10/13	16/12/13	536d YSW0370	YSW0390	7				11	_	
&M Works - YS			•	<u> </u>				<u> </u>					Ш	1.1		
&M0360	Delivery of MBR Memb. Mod. (MBR Tk4)	137	7 100	24/02/11 A	21/06/11 A	24/02/11 A	21/06/11 A	E&M0160	E&M0510	1						
&M0370	Delivery of MBR Membrane Modules - 2nd Shipment	150		24/02/11 A		24/02/11 A	17/10/11 A	E&M0160	E&M0520	†		· - ·	Η Ι.	- 11		
&M0380	Delivery of Grit Removal Equipment	180		10/10/11 A		10/10/11 A	29/12/11 A	E&M0150	E&M0530				Hi			
&M0390	Delivery of Coarse Screens	162	-	06/09/11 A	-	06/09/11 A	12/01/12 A	E&M0110	E&M0540							
&M0400	Delivery of Coarse Screens Delivery of Fine Screens	180	-	12/09/11 A	-	12/09/11 A	30/11/11 A	E&M0120	E&M0550	1		4	┧	- - - - - - - - - - - - - - - - - - - -		
	Delivery of Pumps	162	-	23/06/11 A	-	1	05/09/11 A	E&M0130	E&M0560	+		· [-] ·	† H'	: -		
&M0410	 		-		-	23/06/11 A	•	E&M0140	E&M0570	┧┦╌╶╶╶		. -	┧	_ <mark> </mark>		
&M0420	Delivery of Submersible Mixers	162	-	26/02/11 A	-	26/02/11 A	17/11/11 A		E&M0580	4			Ш	11 11	_	
&M0440	Delivery of Sludge Dewatering Equipment	180	-	01/09/11 A		01/09/11 A	28/09/11	2170	E&M0590, E&M0605	- 1			HII	11		
&M0450	Delivery of Valves, Pipes & Fittings	180	-	30/08/11 A		30/08/11 A	23/01/12	-0/0					Ш	T :: ::		
&M0460	Delivery of Penstocks	180	-	12/08/11 A		12/08/11 A	24/12/11 A	E&M0190	E&M0600		===	: <u> </u>	.			
&M0470	Delivery of Instruments	180	-	03/11/11 A	1	03/11/11 A	21/06/11 A	E&M0200	E&M0610	↓ 				Tit II		
&M0480	Delivery of MCC LVSB	177	-		28/07/12	02/04/11	25/09/11	-307d E&M0210	E&M0620	IJ <u></u>		+	Ш			
&M0490	Delivery of BS Equipment	180	-	11/12/11 A		11/12/11 A	25/02/12	-145d E&M0220	E&M0630					11		
&M0500	Delivery FS Equipment	180	20	11/12/11 A	25/07/12	11/12/11 A	24/03/12	-123d ^{E&M0230}	E&M0330, E&M0640							5
	Install Membrane Modules in MBR Tank no. 4	90	0	05/03/12	02/06/12	02/04/11	30/06/11	-55001	KD0115	<u> </u>		. []	 		-1	
&M0510		75	0	14/04/12	27/06/12	11/09/11	24/11/11	-216d E&M0390, YSW0720, YSW0800	E&M0530, E&M0550, E&M0570,					111	1	
&M0510 &M0540	Install Coarse Screens			1440440	12/07/12	11/09/11	09/12/11	-216d E&M0410, YSW0720, YSW0800	E&M0570, E&M0590, E&M0660							
	Install Coarse Screens Install Pumps	90	0	14/04/12	12/07/12	11/03/11										
&M0540 &M0560	Install Pumps	 	0	14/04/12	12/07/12	11/03/11	•					Date		Revision		necked An
&M0540 &M0560	Install Pumps 5/10 Early bar 2/15 Progress bar	 	0	14/04/12				1 & al			31.	Date /01/12	Rev			
&M0540 &M0560 ate 05/05	Install Pumps 5/10 Early bar 2/15 Progress bar Critical bar	 	0	14/04/12		eader Civil E	ngineering Co				31.		Rev	Revision	Ch	
&M0540 &M0560 ate 05/05 date 24/02 ate 31/01 te 15/02	Install Pumps 5/10 Early bar 2/15 Progress bar Critical bar Summary bar	 	0		L	eader Civil E Contrac	t No. DC/2009	13			31.		Rev	Revision	Ch	necked App
&M0540 &M0560 ate 05/05 date 24/02 ate 31/01	Install Pumps 5/10	 	0		L Construction	eader Civil E Contrac n of Sewage 1	t No. DC/2009 Freatment Wo				31.		Rev	Revision	Ch	

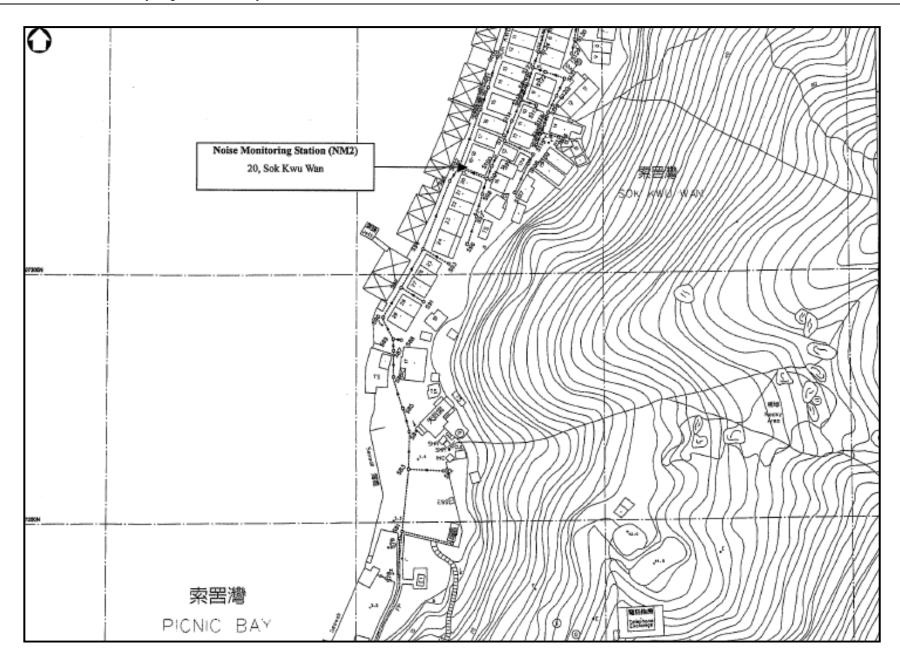
Activity ID	Description	Original	Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	2011 DEC			2012		
Project Key Da	ate	Duration	Complete	Start	Finish	Start	Finish	rioat			DEC	JAN	FEB	MAR APR	MAY	JUN U
KD0010	Receive Letter of Acceptance	0	100		05/05/10 A		05/05/10 A		T	KD0125						
KD0020	Project Commencement Date	0	100		17/05/10 A		17/05/10 A			E&M0010, E&M0070, E&M1001,						
KD0030	Section W1 - Slope Works in Portion A & C (456d)	0	100		14/10/11 A		14/10/11 A			KD0125						
KD0050	Section W3 - Footpath Diversion in Ptn G (273d)	0	100		24/03/11 A		24/03/11 A			KD0125						
KD0115	Start Operate Temp Sewag e Treatment in Port. A&H	0	0		02/06/12		30/06/11 *	-338d *	* E&M0510	KD0125					•	
+Preliminary ((Civil)						1	1	Lugare							
		191	100	17/05/10 A	23/11/10 A	17/05/10 A	23/11/10 A		KD0020							
Preliminary (E	•															
	gn of SKWSTW & YSWSTW															
+1 Tocess Desig		563	100	17/05/10 A	30/11/11 A	17/05/10 A	30/11/11 A	1	<u> </u>		_					
+Hydraulic Desi	ign	1 3001	100	17/05/10 A	00/11/11 A	17/05/10 A	100/11/11 A	<u> </u>								
	Ī	563	100	17/05/10 A	30/11/11 A	17/05/10 A	30/11/11 A				Ī					
+Equipment Sub	omission & Approval															'
		657	96	17/05/10 A	03/03/12	17/05/10 A	30/11/11	-940	d l							
+Drawings Subr	mission & Approval T		1	04/02/15	00/02/15	04/05/15	1.07/4	1	.1	1						
+Statutory Subm	liscion	610	90	24/06/10 A	23/02/12	24/06/10 A	07/11/11	-1080	<u> </u>							
+Statutory Subm	1331011	286	_(c)	01/11/11 ^	14/09/12	01/11/11 Δ	24/02/15	8250	1							
Yung Shue Wa	an		43	51/11/11 A	17/00/14	01/11/11 A	1 	0230	<u>41 </u>							
+Preliminary																
		229	100	17/05/10 A	31/12/10 A	17/05/10 A	31/12/10 A									
Section W 2 - YS	W STW & Submarine Outfall	, ==;,					,									
+Civil & Structur	ral Work							_								
		823	54	17/05/10 A	16/08/12	17/05/10 A	04/07/12	-430	<u> </u>							
+Submarine Out	tfall		1			l	I	T	<u>.</u>							
+E&M Works - \	VOW CTD	774	86	17/05/10 A	28/06/12	17/05/10 A	16/12/13	5360	<u> </u>							
+EXIVI VVOIRS - 1	T	711	₅₇	24/02/11 A	02/02/12	24/02/11 A	04/07/12	-2140	4							-
Sok Kwu Wan		711	57	24/02/11 A	03/02/13	24/02/11 A	04/07/12	-2140	<u> </u>							
+Preliminary																
		53	100	17/05/10 A	08/07/10 A	17/05/10 A	08/07/10 A	1	1		_					
Section W 4 - Slo	ope W orks in Portions H & I							1								
+Geotechnical V																
		855	59	15/06/10 A	16/10/12	15/06/10 A	31/01/12	-4280	k							
	S. No. 1 in Portion D															
+Civil & Geotech	hnical Works	1 1	l			l	1	1	1							
Ctrustural Mari		319	100	17/05/10 A	31/03/11 A	17/05/10 A	31/03/11 A	<u> </u>								
+Structural Worl		454	E0	20/04/11 A	16/07/12	20/04/11 A	31/01/12	-2440	4	1						
E&M Works (PS	I S1)	1 454	53	20/04/11 A	10/0//12	20/04/11 A	131/01/12	-2440	<u>4</u>	<u> </u>						
+Submission 8	·															
		722	91	17/05/10 A	07/05/12	17/05/10 A	03/11/1	-3720	lb l							
+Installation, T	T&C											_				
		153	0	31/01/12	01/07/12	02/05/11	25/06/11	-3720	d	<u> </u>						
	wer and PS No.2 in Portions E&H															
+Civil & Geotech	nnicai works	004		17/05/10 *	10/10/10	17/05/10 4	15/11/11	000	<u></u>	T						
+Structural Worl		881	59	17/05/10 A	13/10/12	17/05/10 A	15/11/11	-3330	<u> </u>							
+Structural vvori		549	17	02/05/11 ^	31/10/12	04/03/11 A	31/01/12	-3510	4	1						
E&M Works (PS		j 5 4 9	1/	02/03/11 A	31/10/12	04/03/11 A	131/01/12	-3310	<u>4</u>	<u> </u>						
+Submission 8	,															
		774	86	17/05/10 A	28/06/12	17/05/10 A	03/11/11	-4240	l l						1	
+Installation, 7			- 1													
Start date 05/05												04/0	Date	Revision		Approved
Finish date 24/02 Data date 31/03	1/12 Critical bar				Le		ngineering Co					31/0	1/12	Revision 0	RH	VC
Run date 15/02	Summary par				Construction		No. DC/2009 reatment Wo		C/W 8. CK/W							
Page number 1A	▼ Critical point			,			reatment w c									
c Primavera Systen	Ctart milestone maint					5 -9	,		,		(Marked on 31 Jan 20	012)				
o i imavora dystem	Einich milactora point															

Activity	Description	Original Pe	ercent E	arly E	arly	Late	Late	Total	Predecessors	Successors	2011 2012						
ID	Description	Duration Co	mplete S	tart Fi	inish	Start	Finish	Float	11000000000	0000000000	DEC	JAN	FEB	MAR	APR	MAY	JUN
		93	0 31/0	3/12 01/0	7/12	02/05/11	26/08/11	-310d								1	
ection W7 - SKW STW,Se	wer and Submarine Outfall																
+Submarine Outfall																	
		890	82 17/0	5/10 A 23/10	0/12	17/05/10 A	23/04/13	183d								1	
SKW STW																	
+Submission & Delivery (E	E&M)																
		554	66 24/0	2/11 A 30/08	8/12	24/02/11 A	21/06/14	660d									
+Construction of Grid A-G	i																
		317	30 30/0	7/11 A 10/06	6/12	28/07/11 A	21/08/11	-294d									
+Construction of Grid G-N	l																
		147	0 31/0	1/12 25/06	6/12	04/08/11	28/12/11	-180d									
+Construction of Grid N-T	•																
		80	0 16/0	5/12 04/08	8/12	28/07/11	15/10/11	-294d									
+SKW STP - E&M Works														·	·		
		120	0 31/0	1/12 29/0	5/12	29/12/11	26/04/12	-33d								`	i
+Rising Main																	
		895	69 17/0	5/10 A 27/10	0/12	17/05/10 A	10/10/12	-17d									
Section W8 - Landscape S	oftworks in All Portions																
		846	75 17/0	5/10 A 08/09	9/12	17/05/10 A	15/08/12	-24d								'	

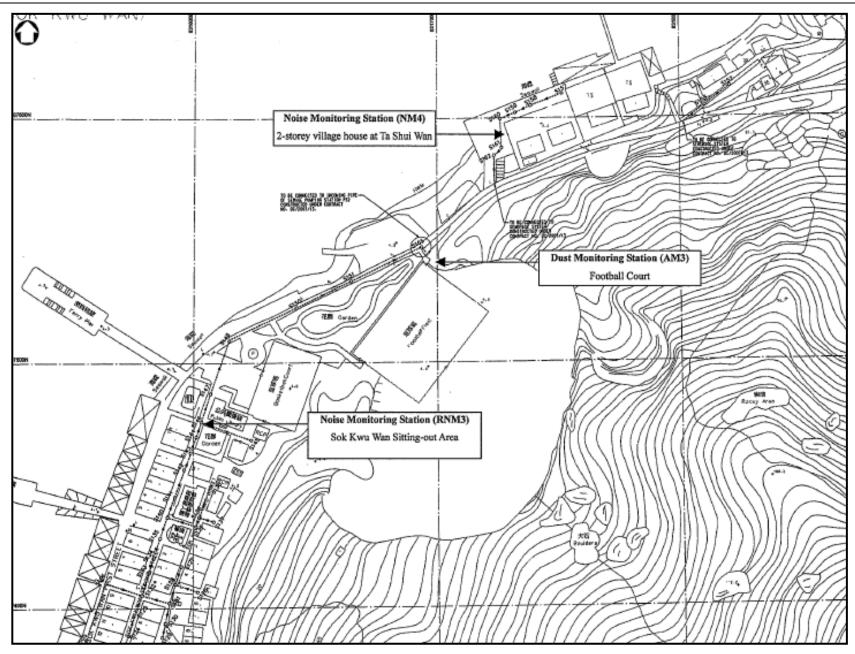
Start date	05/05/10		Early bar
Finish date	24/02/15	┇	Progress bar
Data date	31/01/12	_ ا	Critical bar
Run date	15/02/12	7	Summary bar Progress point
Page number	2A	٦₹	Critical point
		7	Summary point
c Primavera	Systems, Inc.	$\exists $	Start milestone point

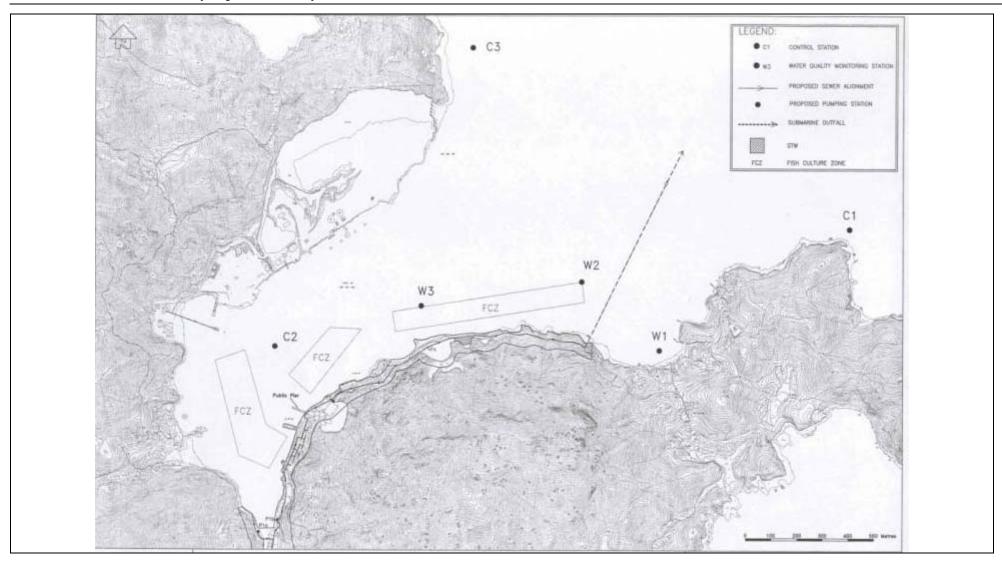
Leader Civil Engineering Corp. Ltd.
Contract No. DC/2009/13
Construction of Sewage Treatment W orks at YSW & SKW
3-month Rolling Programme (Feb 2012 - Apr 2012)


	Date	Revision	Checked	Approved
	31/01/12	Revision 0	RH	VC
(Marked on 31 Jan 2012)				


Appendix D

Location of Monitoring Stations (Air Quality / Construction Noise / Water Quality)





Appendix E

Monitoring Equipments Calibration Certificate

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Ju Operator		. Rootsmeter Orifice I.I	- ,	438320 1941	Ta (K) - Pa (mm) -	294 - 754.38
=======================================		=== === ==============================		== === ===============================	METER	ORFICE
PLATE	VOLUME START	VOLUME STOP	DIFF VOLUME	DIFF TIME	DIFF Hq	DIFF H2O
OR Run #	(m3)	(m3)	(m3)	(min)	(mm)	(in.)
1	NA	NA	1.00	1.4660	3.3	2.00
2	NA	NA	1.00	1.0410	6.4	4.00
3	AN	. NA	1.00	0.9310	8.1	5.00
4	NA	NA	1.00	0.8830	8.9	5.50
5	AN A	NA	1.00	0.7310	13.0	8.00
				<u> </u>	 	 -

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
1.0017 0.9975 0.9952 0.9942 0.9887	0.6833 0.9582 1.0690 1.1260 1.3526	1.4185 2.0061 2.2429 2.3524 2.8371		0.9956 0.9914 0.9892 0.9882 0.9827	0.6791 0.9524 1.0625 1.1191 1.3444	0.8829 1.2486 1.3959 1.4641 1.7657
Qstd slop intercept coefficie	t (b) =	2.11693 -0.02568 0.99993		Qa slope intercept coefficie	t (b) =	1.32558 -0.01598 0.99993
v axis =	SORT [H20 (Pa/760)(298/	_] Га)]	y axis =	SQRT [H2O (7	[a/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ $Qa = 1/m\{[SQRT H2O(Ta/Pa)] - b\}$

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Football court Date of Calibration: 3-Jan-12
Location ID: AM3
Next Calibration Date: 29-Feb-12

Technician: Mr. Ben Tam

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C)

1020.4
17.0

Corrected Pressure (mm Hg)
Temperature (K)

765.3 290

CALIBRATION ORIFICE

Make->	TISCH
Model->	
Serial # ->	1941

Qstd Slope -> Qstd Intercept ->

2.11693 -0.02568

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.4	5.4	10.8	1.591	48	49.50	Slope = 20.6159
13	4	4	8	1.371	44	45.37	Intercept = 16.9129
10	2.7	2.7	5.4	1.129	39	40.22	Corr. coeff. = 0.9997
7	1.6	1.6	3.2	0.872	34	35.06	
5	0.6	0.6	1.2	0.539	27	27.84	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

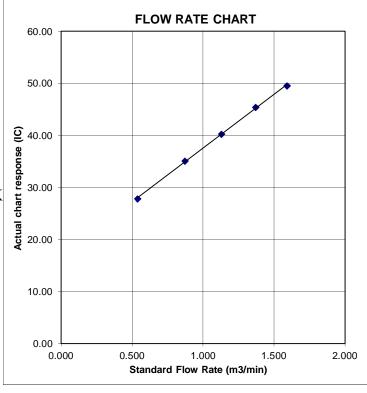
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Pav = daily average pressure

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Squatter house in Chung Mei Village

Location ID: AM2 Ne:

Next Calibration Date: 29-Feb-12 Technician: Mr. Ben Tam

Date of Calibration: 3-Jan-12

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C)

1020.4
17.0

Corrected Pressure (mm Hg)
Temperature (K)

765.3 290

CALIBRATION ORIFICE

Make->	TISCH
Model->	5025A
Serial # ->	1941

Qstd Slope -> Qstd Intercept ->

2.11693 -0.02568

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.9	5.9	11.8	1.663	56	57.75	Slope = 25.5288
13	4.2	4.2	8.4	1.405	50	51.56	Intercept = 15.4955
10	3.1	3.1	6.2	1.209	45	46.40	Corr. coeff. = 0.9998
7	1.8	1.8	3.6	0.924	38	39.18	
5	1.0	1.0	2	0.692	32	33.00	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

m = calibrator Qstd slope

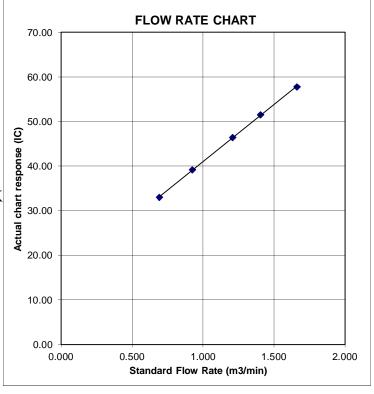
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K

Pstd = actual pressure during calibration (mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Pav = daily average pressure

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Squatter house in Chung Mei Village

Location ID: AM1

Date of Calibration: 3-Jan-12 Next Calibration Date: 29-Feb-12

Technician: Mr. Ben Tam

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C)

1020.4
17.0

Corrected Pressure (mm Hg)
Temperature (K)

765.3 290

CALIBRATION ORIFICE

Make->	TISCH
Model->	5025A
Serial # ->	1941

Qstd Slope -> Qstd Intercept ->

2.11693 -0.02568

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5	5	10	1.532	57	58.78	Slope = 32.9338
13	4	4	8	1.371	52	53.62	Intercept = 8.3816
10	3	3	6	1.189	46	47.43	Corr. coeff. = 0.9999
7	1.7	1.7	3.4	0.898	37	38.15	
5	0.9	0.9	1.8	0.657	29	29.90	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

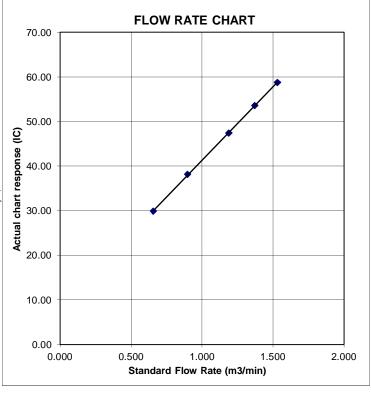
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Pav = daily average pressure

CERTIFICATE OF CALIBRATION AND TESTING

TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

Environment Condition			 Model	9530	
Temperature	68.7 (20.4)	°F (°C)	Iviouei		8520
Relative Humidity	41	%RH	 		23079
Barometric Pressure	28.98 (981.4)	inHg (hPa)	Jeriai ivambei		23073
⊠As Left □As Found			In Tolerance Out of Tolerance		
		Concentratio	n Linearity Plot		
	Device Response (mg/m3) 10.0 0.0		0 0 1 10 100 entration (mg/m3)	o = In Tolerance ● = Out of Tolerance	System ID: DTII01-02
Zero Stability Results Average: (C) (C) (C) (1) (m)	Minimum:		Maximum:	:mg/m ³ Time:	′ 0 0 :hrs

TSI Incorporated does hereby certify that all materials, components, and workmanship used in the manufacture of this equipment are in street accordance with the applicable specifications agreed upon by TSI and the automor and with all published specifications. All performance and acceptance tests required under this contract were successfully conducted according to required specifications. There is no NIST standard for optical mass measurements. Calibration of this instrument performed by TSI has been done using emery oil and has been nominally adjusted to respirable mass of standard ISO 12103-1, A1 test dust (Arizona dust) Our calibration ratio is greater than 1.2:1

Measurement Variable	System ID	Last Cal.	Cal. Due	Measurement Variable	System ID	Last Cal.	Cal. Due
Barometric Pressure	E003733	01-15-11	02-15-12	Temperature	E002873	11-24-10	11-24-11
Humidity	E002873	11-24-10	11-24-11	DC Voltage	E003314	01-05-11	01-05-12
DC Voltage	E003315	01-05-11	01-05-12	Photometer	E003319	07-25-11	01-25-12
Microbalance	E001324	01-04-11	01-04-12	Pressure	E003511	11-12-10	11-12-11
Flowmeter	E003769	06-13-11	06-13-12				

TiThao	Final Function Check	September 13, 2011	
Calibrated		Date	

輝 創 工 程 有 限 公 司

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No.: C112202

Calibration Report

ITEM TESTED

DESCRIPTION : Integrating Sound Level Meter (EQ010)

MANUFACTURER:

Bruel & Kjaer

MODEL NO.

2238

SERIAL NO.

2285721

TEST CONDITIONS

AMBIENT TEMPERATURE : $(23 \pm 2)^{\circ}$ C

RELATIVE HUMIDITY : $(55 \pm 20)\%$

LINE VOLTAGE

TEST SPECIFICATIONS

Calibration check

DATE OF TEST: 18 April 2011

JOB NO. : IC11-0947

TEST RESULTS

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- The Bruel & Kjaer Calibration Laboratory, Denmark
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested by:

Date: 19 April 2011

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No.: C112202

Calibration Report

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using the B & K Acoustic Calibrator 4231, S/N: 2713428 was performed before the test.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment:

Equipment ID CL280

Description

Certificate No.

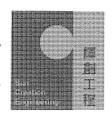
CL280 CL281 40 MHz Arbitrary Waveform Generator

C110018

Multifunction Acoustic Calibrator

C1006860

- 5. Test procedure: MA101N.
- 6. Results:
- 6.1 Sound Pressure Level


6.1.1 Reference Sound Pressure Level

	UUT	Setting		Applied Value		UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
50 - 130	L_{AFP}	A	F	94.00	1	94.0	± 0.7

6.1.2 Linearity

	UU	T Setting		Applied Value		UUT
Range	Parameter	Frequency	Time	Level	Freq.	Reading
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)
50 - 130	L_{AFP}	A	F	94.00	1	94.0 (Ref.)
				104.00		104.0
				114.00		114.0

IEC 60651 Type 1 Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No.: C112202

Calibration Report

6.2 Time Weighting

6.2.1 Continuous Signal

	UUT Setting			Applied Value		UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
50 - 130	L_{AFP}	A	F	94.00	1	94.0	Ref.
	L_{ASP}		S			94.0	± 0.1
	L_{AIP}		I			94.1	± 0.1

6.2.2 Tone Burst Signal (2 kHz)

	UUT	Setting		Applied Value		UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Burst	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	Duration	(dB)	(dB)
30 - 110	L_{AFP}	A	F	106.0	Continuous	106.0	Ref.
	L_{AFMax}				200 ms	105.0	-1.0 ± 1.0
	L_{ASP}		S		Continuous	106.0	Ref.
	L_{ASMax}				500 ms	101.9	-4.1 ± 1.0

6.3 Frequency Weighting

6.3.1 A-Weighting

		Setting		Appli	ed Value	UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)		(dB)	(dB)
50 - 130	L_{AFP}	A	F	94.00	31.5 Hz	54.6	-39.4 ± 1.5
					63 Hz	67.7	-26.2 ± 1.5
					125 Hz	77.7	-16.1 ± 1.0
					250 Hz	85.2	-8.6 ± 1.0
					500 Hz	90.7	-3.2 ± 1.0
					1 kHz	94.0	Ref.
					2 kHz	95.2	$+1.2 \pm 1.0$
					4 kHz	95.0	$+1.0 \pm 1.0$
					8 kHz	92.8	-1.1 (+1.5; -3.0)
					12.5 kHz	89.7	-4.3 (+3.0 ; -6.0)

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No.: C112202

Calibration Report

6.3.2 C-Weighting

C Troisiting)						
	UUT	Setting		Appli	ed Value	UUT	IEC 60651
Range	Parameter	Frequency	Time	Level	Freq.	Reading	Type 1 Spec.
(dB)		Weighting	Weighting	(dB)	_	(dB)	(dB)
50 - 130	L_{CFP}	С	F	94.00	31.5 Hz	91.1	-3.0 ± 1.5
					63 Hz	93.2	-0.8 ± 1.5
					125 Hz	93.8	-0.2 ± 1.0
					250 Hz	94.0	0.0 ± 1.0
					500 Hz	94.0	0.0 ± 1.0
					1 kHz	94.0	Ref.
					2 kHz	93.8	-0.2 ± 1.0
					4 kHz	93.2	-0.8 ± 1.0
					8 kHz	90.9	-3.0 (+1.5 ; -3.0)
					12.5 kHz	87.8	-6.2 (+3.0 ; -6.0)

6.4 Time Averaging

	UUT Setting				Applied Value					IEC 60804
Range (dB)	Parameter	Frequency Weighting	Time Weighting	Frequency (kHz)	Burst Duration (ms)	Burst Duty Factor	Burst Level (dB)	Equivalent Level	Reading (dB)	Type 1 Spec.
30 - 110	L _{Aeq}	A	10 sec.	4	1	1/10	110.0	(dB) 100	99.9	(dB) ± 0.5
	·					1/10 ²		90	89.6	± 0.5
			60 sec.			1/10 ³		80	79.3	± 1.0
			5 min.			1/104		70	69.9	± 1.0

Remarks: - Mfr's Spec.: IEC 60651 Type 1 & IEC 60804 Type 1

- Uncertainties of Applied Value : 94 dB : $31.5 \, \text{Hz} - 125 \, \text{Hz}$: $\pm 0.40 \, \text{dB}$

250 Hz - 500 Hz : ± 0.30 dB 1 kHz : ± 0.20 dB 2 kHz : ± 0.40 dB 4 kHz : ± 0.50 dB 8 kHz : ± 0.70 dB

12.5 kHz : \pm 1.20 dB

104 dB: 1 kHz : \pm 0.10 dB (Ref. 94 dB) 114 dB: 1 kHz : \pm 0.10 dB (Ref. 94 dB)

Burst equivalent level : ± 0.2 dB (Ref. 110 dB continuous sound level)

- The uncertainties are for a confidence probability of not less than 95 %.

Note

The values given in this Calibration Report only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

Sun Creation Engineering Limited Calibration and Testing Laboratory

Certificate No.: C112201

Certificate of Calibration

This is to certify that the equipment

Description: Acoustical Calibrator (EQ082)

Manufacturer: Bruel & Kjaer

Model No.: 4231

Serial No.: 2713428

has been calibrated for the specific items and ranges. The results are shown in the Calibration Report No. C112201.


The equipment is supplied by

Co. Name: Action-United Environmental Services and Consulting

Address: Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

Date of Issue: 19 April 2011

Certified by:

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No.: C112201

Calibration Report

ITEM TESTED

DESCRIPTION : Acoustical Calibrator (EQ082)

MANUFACTURER: Bruel & Kjaer

MODEL NO. : 4231

SERIAL NO. : 2713428

TEST CONDITIONS

AMBIENT TEMPERATURE : $(23 \pm 2)^{\circ}$ C RELATIVE HUMIDITY : $(55 \pm 20)^{\circ}$

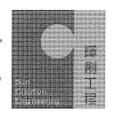
LINE VOLTAGE : ---

TEST SPECIFICATIONS

Calibration check

DATE OF TEST: 18 April 2011 JOB NO.: IC11-0947

TEST RESULTS


The results apply to the particular unit-under-test only. All results are within manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- The Bruel & Kjaer Calibration Laboratory, Denmark
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested by:

Date: 19 April 2011

Sun Creation Engineering Limited Calibration and Testing Laboratory

Report No.: C112201

Calibration Report

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.
- 3. Test equipment:

Equipment ID CL130 CL281 TST150A

<u>Description</u>
Universal Counter
Multifunction Acoustic Calibrator
Measuring Amplifier

Certificate No. C103289 C1006860 C101008

4. Test procedure: MA100N.

5. Results:

5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	94.0	± 0.2	± 0.2
114 dB, 1 kHz	114.0		

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 0	1 kHz ± 0.1 %	± 0.1

Remark: - The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Calibration Report only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT: MR BEN TAM

CLIENT: ACTION UNITED ENVIRO SERVICES ADDRESS: RM A 20/F., GOLDEN KING IND BLDG,

NO. 35-41 TAI LIN PAI ROAD,

KWAI CHUNG, N.T., HONG KONG.

PROJECT: --

LABORATORY: HONG KONG DATE RECEIVED: 16/11/2011 DATE OF ISSUE: 25/11/2011

HK1127006

WORK ORDER:

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:

Dissolved Oxygen, pH, Salinity and Temperature

Description:

YSI Professional Plus

Brand Name:

YSI

Model No.:

YSI Professional Plus

Serial No.:

10G101946

Equipment No.:

--

Date of Calibration: 16 November, 2011

NOTES

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung HONG KONG **Phone:** 852–2610 1044 **Fax:** 852–2610 2021

Email: hongkong@alsglobal.com

Mr Chan Kwok fjai, Godfrey Laboratory Manager - Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 2

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:

HK1127006

Date of Issue:

25/11/2011

Client:

ACTION UNITED ENVIRO SERVICES

Description:

YSI Professional Plus

Brand Name:

YSI

Model No.:

YSI Professional Plus

Serial No.:

10G101946

Equipment No.:

__

Date of Calibration:

16 November, 2011

Date of next Calibration:

16 February, 2012

Parameters:

Dissolved Oxygen

Method Ref: APHA (21st edition), 4500O: G

	Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
	6.04	5.00	0.06
	6.04	5.98	-0.06
	6.85	6.83	-0.02
١	7.76	7.80	0.04
l		Tolerance Limit (±mg/L)	0.20

pH Value

Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
_		
4.0	4.13	0.13
7.0	7.05	0.05
10.0	9.90	-0.10
	Tolerance Limit (±unit)	0.20

Salinity

Method Ref: APHA (21st edition), 2520B

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)
0.00	0.00	
10.00	9.50	-5.0
20.00	19.21	-4.0
30.00	28.58	-4.7
	Tolerance Limit (±%)	10.0

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)
11.0	11.0	0.0
24.5	24.0	-0.5
33.0	33.0	0.0
	Tolerance Limit (°C)	2.0

Mr. Chan Kwok Fai, Godfrey Laboratory)Managel – Hong Kong

ALS Technichem (HK) Pty Ltd

ALS Technichem (HK) Pty Ltd

REPORT OF EOUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:

MR BEN TAM

CLIENT: ADDRESS: **ACTION UNITED ENVIRO SERVICES** RM A 20/F., GOLDEN KING IND BLDG,

NO. 35-41 TAI LIN PAI ROAD,

KWAI CHUNG, N.T., HONG KONG.

PROJECT:

WORK ORDER: HK1129081

LABORATORY: HONG KONG DATE RECEIVED: 09/12/2011

DATE OF ISSUE: 16/12/2011

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal aceptance criteria of ALS will be followed.

Scope of Test:

Dissolved Oxygen, pH, Salinity, Temperature and Turbidity

Description:

YSI Sonde

Brand Name:

YSI

Model No.: Serial No.:

YSI 6820 / 650MDS 02J0912/02K0788 AA

Equipment No.:

Date of Calibration: 16 December, 2011

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung HONG KONG Phone:

852-2610 1044

Fax:

852-2610 2021

Email:

hongkong@alsglobal.com

Mr Chan Kwok Fai, Godfrey Laboratory Manager Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 3

ADDRESS 11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong PHONE +852 2610 1044 FAX +852 2610 2021 ALS TECHNICHEM (HK) PTY LTD Part of the ALS Laboratory Group A Campbell Brothers Limited Company

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: HK1129081 Date of Issue: 16/12/2011

Client: ACTION UNITED ENVIRO SERVICES

Description: YSI Sonde Brand Name: YSI

Model No.: YSI 6820 / 650MDS Serial No.: 02J0912/02K0788 AA

Equipment No.: --

Date of Calibration: 16 December, 2011 Date of next Calibration: 16 March, 2012

Parameters:

Dissolved Oxygen Method Ref: APHA (21st edition), 4500O: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
5.70	5.83	0.13
6.91	7.05	0.14
8.00	8.08	0.08
	Tolerance Limit (±mg/L)	0.20

pH Value Method Ref: APHA (21st edition), 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	3.95	-0.05
7.0	6.95	-0.05
10.0	9.92	-0.08
	Tolerance Limit (±unit)	0.20

Salinity Method Ref: APHA (21st edition), 2520B

Expected Reading (ppt)	Displayed Reading (ppt)	Tolerance (%)
0	0.00	
0	0.00	
10	10.05	0.5
20	20.10	0.5
30	30.89	3.0
	Tolerance Limit (±%)	10.0

Temperature Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)
11.0	10.80	-0.2
22.0	21.40	-0.6
32.0	31.83	-0.2
	Tolerance Limit (°C)	2.0

Mr Chan Kwok Fai, Godfrey Laboratory Manager – Hong Kong

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:

HK1129081

Date of Issue:

16/12/2011

Client:

ACTION UNITED ENVIRO SERVICES

Description:

YSI Sonde

Brand Name:

YSI

Model No.:

YSI 6820 / 650MDS 02J0912/02K0788 AA

Serial No.: Equipment No.:

02,0

Date of Calibration:

16 December, 2011

Date of next Calibration:

16 March, 2012

Parameters:

Turbidity

Method Ref: APHA 21st Ed. 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.6	
4	4.3	7.5
10	10.0	0.0
20	21.5	7.5
50	50.9	1.8
100	99.4	-0.6
	Tolerance Limit (±%)	10.0

Mr Chan Kwok/Fai, Godfrey Laboratory Manager - Hong Kong

Hong Kong Accreditation Service 香港認可處

Certificate of Accreditation

認可證書

This is to certify that 特此證明

ALS TECHNICHEM (HK) PTY LIMITED

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, New Territories, Hong Kong 香港新界葵涌永業街1-3號忠信針織中心11樓

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 為香港認可處執行機關根據認可諮詢委員會建議而接受的

HOKLAS Accredited Laboratory

「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO / IEC 17025: 2005 - General requirements for the competence 此實驗所符合ISO / IEC 17025: 2005 -《測試及校正實驗所能力的通用規定》所訂的要求, of testing and calibration laboratories and it has been accredited for performing specific tests or calibrations as 獲認可進行載於香港實驗所認可計劃《認可實驗所名冊》內下述測試類別中的指定 listed in the HOKLAS Directory of Accredited Laboratories within the test category of 測試或校正工作

Environmental Testing

環境測試

This laboratory is accredited in accordance with the recognised International Standard ISO / IEC 17025: 2005. 本實驗所乃根據公認的國際標準 ISO / IEC 17025 : 2005 獲得認可。 This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory 這項認可資格演示在指定範疇所需的技術能力及實驗所質量管理體系的運作 quality management system (see joint IAF-ILAC-ISO Communiqué). (見國際認可論壇‧國際實驗所認可合作組織及國際標準化組織的聯合公報)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 香港認可處根據認可處執行機關的權限在此蓋上通用印章

CHAN Sing Sing, Terence, Executive Administrator

執行幹事 陳成城 Issue Date: 5 May 2009

簽發日期:二零零九年五月五日

Registration Number : HOKLAS 066

註冊號碼:

Date of First Registration: 15 September 1995 首次註冊日期:一九九五年九月十五日

Appendix F

Event/Action Plan

Air Quality

		All Quality		
EVENT	ACTION			
	ET	IC(E)	ER	CONTRACTOR
ACTION LEVEL				
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IC(E) and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	Check monitoring data submitted by ET; Check Contractor's working method.	Notify Contractor.	Rectify any unacceptable practice; Amend working methods if appropriate.
2. Exceedance for two or more consecutive samples	 Identify source; Inform IC(E) and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IC(E) and Contractor on remedial actions required; If exceedance continues, arrange meeting with IC(E) and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
		LIMIT LEVEL		
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented.	Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IC(E) within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
Exceedance for two or more consecutive samples	 Notify IC(E), ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IC(E) and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures.	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IC(E), agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IC(E) within 3 working days of notification; 3. Implement the agreed proposals; 4. Resubmit proposals if problem still not under control; 5. Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Construction Noise

EVENT	ACTION			
	ET	IC(E)	ER	CONTRACTOR
Action Level	 Notify IC(E) and Contractor; Carry out investigation; Report the results of investigation to the IC(E), ER and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented. 	 Submit noise mitigation proposals to IC(E); Implement noise mitigation proposals.
Limit Level	 Identify source; Inform IC(E), ER, EPD and Contractor; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IC(E), ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IC(E) within 3 working days of notification; 3. Implement the agreed proposals; 4. Resubmit proposals if problem still not under control; 5. Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Water Quality

TOX (TOX I'M)		vvater Quarity	ONT.	
EVENT	700	ACTIO		GOVER LONG P
A COMPANY PROPERTY	ET	IC(E)	ER	CONTRACTOR
ACTION LEVEL		T	T	T
Exceedance for one sampling day	 Repeat in-situ measurement on the next day of exceedance to confirm findings; Identify source(s) of impact; Inform ICE, Contractor, ER, EPD and AFCD; and Check monitoring data, all plant, equipment and Contractor's working methods. 	Check monitoring data submitted by ET and Contractor's working methods	Confirm receipt of notification of non-compliance in writing; and Notify Contractor	Information the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; and 3. Amend working methods if appropriate
2. Exceedance for two or	1. Same as the above;	1. Same as the above;	1. Discuss with IC(E) on the	1. Same as the above;
more consecutive sampling days	 Inform ICE, Contractor, ER, EPD and AFCD; Discuss mitigation measures with IC(E), RE and Contractor; Ensure well implementation of mitigation measures; and Increase the monitoring frequency to daily 	Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; and	proposed mitigation measures; 2. Ensure well implementation of mitigation measures; and 3. Assess the effectiveness of the implemented mitigation measures	Check all plant and equipment and consider changes of working methods; Submit proposal of additional mitigation measures to ER within 3 working days of notification and discuss with ET, IC(E), and ER; and
	until no exceedance of Action Level	4. Supervise the implementation		4. Implement the agreed mitigation
	until no exceedance of retion bever	of mitigation measures.		measures
		LIMIT LEVEL	<u> </u>	measures
Exceedance for one sampling day	 Repeat in-situ measurement on the next day of exceedance to confirm findings; Identify source(s) of impact; Inform ICE, Contractor, ER, EPD and AFCD; Check monitoring data, all plant, equipment and Contractor's working methods; and Discuss mitigation measures with IC(E), RE and Contractor 	Check monitoring data submitted by ET and Contractor's working method Discuss with ER and Contractor on possible remedial actions; and Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly	 Confirm receipt of notification failure in writing; and Discuss with IC(E), ET and Contractor on the proposed mitigation measures; and Request Contractor to review the working methods 	Inform the ER and confirm notification of the failure in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; and Submit proposal of mitigation measures to ER within 3 working days of notification and discuss with ET and ER
Exceedance for two or more consecutive sampling days	 Same as the above; Ensure mitigation measures are implemented; and Increase the monitoring frequency to daily until no exceedance of Limit Level for two consecutive days 	Same as the above; and Supervise the Implementation of mitigation measures	 Same as the above; Ensure well implementation of mitigation measures Make agreement on the mitigation measures to be implemented; and Consider and instruct, if necessary, the Contractor to stow down or to stop all or part of the construction activities until no exceedance of limit level 	measures; 4. Resubmit proposals of mitigation measures if problem still not under control; and

Appendix G

Monitoring Data Sheet

Contract No. DC/2009/13 – Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan
Sok Kwu Wan – EM&A Monthly Report – February 2012
24 hour TCD Monitoring Data Chast
24-hour TSP Monitoring Data Sheet

Air Qualtiy Monitoring - 24-hour TSP Monitoring data sheet

		EI	APSED TI	ME	CHA	ART READ	ING			STANDARD)	INITIAL	FINAL	WEIGHT	DUST
DATE	SAMPLE							AVG	AVG	FLOW	AIR	FILTER	FILTER	DUST	24-hour TSP
	NUMBER	INITIAL	FINAL	ACTUAL	MIN	MAX	AVG	TEMP	PRESS	RATE	VOLUME	WEIGHT	WEIGHT	COLLECTED	IN AIR
				(min)				(oC)	(hPa)	(m3/min)	(std m3)	(g)	(g)	(g)	(ug/m^3)
24-hour TSP	Monitoring F	Results - AN	1 1												
2-Feb-12	24565	11570.48	11593.97	1409.40	31	34	32.5	16	1021.5	0.75	1059	2.772	2.8332	0.0612	58
8-Feb-12	24549	11593.97	11617.48	1410.60	32	35	33.5	12.3	1021.2	0.79	1113	2.7754	2.8838	0.1084	97
14-Feb-12	24372	11617.48	11641.27	1427.40	30	32	31.0	19.4	1014.9	0.70	994	2.8779	2.9003	0.0224	23
20-Feb-12	24564	11641.27	11665.26	1439.40	30	32	31.0	15	1018.5	0.71	1015	2.7756	2.7989	0.0233	23
25-Feb-12	24583	11665.26	11689.25	1439.40	29	32	30.5	16.1	1011.6	0.68	986	2.7519	2.79	0.0381	39
24-hour TSP	Monitoring F	Results - AN	12												
2-Feb-12	24535	10080.33	10104.08	1425.00	32	36	34.0	16	1021.5	0.75	1070	2.75	2.824	0.0740	69
8-Feb-12	24576	10104.08	10127.82	1424.40	31	35	33.0	12.3	1021.2	0.72	1024	2.7574	2.8224	0.0650	63
14-Feb-12	24563	10127.82	10151.8	1438.80	32	37	34.5	19.4	1014.9	0.76	1091	2.7628	2.7896	0.0268	25
20-Feb-12	24562	10151.8	10175.57	1426.20	33	36	34.5	15	1018.5	0.77	1100	2.7698	2.7929	0.0231	21
25-Feb-12	24601	10175.57	10199.34	1426.20	37	39	38.0	16.1	1011.6	0.90	1288	2.7619	2.8105	0.0486	40
24-hour TSP	Monitoring F	Results - AN	13												
2-Feb-12	24534	5636.12	5659.89	1426.2	32	34	33	16	1021.5	0.81	1157	2.7603	2.9169	0.1566	135
8-Feb-12	24577	5659.89	5683.78	1433.4	32	34	33	12.3	1021.2	0.82	1178	2.7592	2.8644	0.1052	89
14-Feb-12	24561	5683.78	5707.51	1423.8	32	34	33	19.4	1014.9	0.80	1135	2.7763	2.8818	0.1055	93
20-Feb-12	24513	5707.51	5731.42	1434.6	32	34	33	15	1018.5	0.81	1165	2.789	2.9366	0.1476	127
25-Feb-12	24584	5731.42	5755.33	1434.6	32	34	33	16.1	1011.6	0.80	1153	2.7647	2.8189	0.0542	47

Contract No. DC/2009/13 – Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Sok Kwu Wan – EM&A Monthly Report – February 2012
Marine Water Quality Monitoring Data Sheet

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

AUES

Sok Kwu Wan

Date 3-Feb-12

Date / Time	Location	Tide*	Co-ord	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	Hue.	East	North	m	m	${\mathfrak C}$	mg/L	%	NTU	ppt	unit	mg/l
2012/2/3 17:40	W1	ME	832967	807719	2.4	1.200	15.10	6.83	103.8	3.92	33.88	8.20	3.1
2012/2/3 17.10	***	IVIL	032701	00//1/	2.1	1.200	15.00	6.86	102.4	4.28	32.18	8.30	5.1
						1.000	15.60	7.20	101.6	3.49	30.08	8.20	1.4
						1.000	15.50	7.06	99.4	4.15	31.15	8.30	
2012/2/3 17:32	W2	ME	832677	807992	12.5	6.250	15.20	6.81	93.2	4.86	33.96	8.30	1.9
						6.250 11.500	15.30 15.20	6.76	95.1	4.36 3.03	32.24 32.44	8.40 8.30	
						11.500	15.20	6.64	90.6 92.4	4.02	30.48	8.40	2.2
	+					1.000	15.40	7.13	102.6	4.02	32.09	8.40	
						1.000	15.40	7.13	102.0	4.45	32.26	8.40	1.7
						6.200	15.00	6.90	98.3	3.46	32.24	8.30	
2012/2/3 17:21	W3	ME	832038	807896	12.4	6.200	15.20	6.80	97.6	5.48	33.82	8.20	0.8
						11.400	15.20	6.72	95.1	4.06	33.36	8.20	
						11.400	15.10	6.65	93.0	4.26	30.92	8.30	3.0
						1.000	15.50	7.03	103.6	5.82	30.45	8.40	1.0
						1.000	15.50	7.06	102.8	5.96	32.11	8.30	1.8
2012/2/2 17.51	O1) (T	022700	000106	10.0	6.900	15.20	6.92	99.4	5.97	32.14	8.40	2.0
2012/2/3 17:51	C1	ME	833708	808186	13.8	6.900	15.30	6.95	98.3	4.48	30.09	8.30	2.0
						12.800	15.00	6.65	95.6	6.38	30.08	8.30	2.7
						12.800	15.00	6.68	94.4	5.30	31.15	8.20	3.7
						1.000	15.30	7.02	102.3	4.38	30.32	8.40	4.6
						1.000	15.30	7.14	100.6	5.31	30.09	8.20	4.0
2012/2/3 17:03	C2	ME	831457	807762	10.9	5.450	15.10	6.82	102.7	5.51	32.26	8.30	7.7
2012/2/3 17:03	C2	IVIL	051457	007702	10.7	5.450	15.10	6.81	100.8	5.92	32.08	8.30	7.7
						9.900	15.00	6.56	96.4	4.02	31.18	8.30	1.2
						9.900	14.90	6.58	95.3	6.03	33.15	8.40	
						1.000	15.30	7.26	102.4	4.49	32.09	8.30	5.6
						1.000	15.20	7.17	102.8	5.06	32.18	8.30	
2012/2/3 18:12	C3	ME	832210	808882	13.7	6.850	15.20	6.93	97.4	4.08	33.42	8.20	1.7
						6.850	15.10	6.98	96.8 91.8	5.83	30.51	8.30	
						12.700	15.00 15.00	6.64	92.4	5.24	33.15 31.16	8.30 8.30	1.6
						12.700	15.00	0.73	92.4	4.92	31.10	8.30	
						1.400	15.40	7.17	102.4	3.92	32,56	8.20	
2012/2/3 12:27	W1	MF	832983	807716	2.8	1.400	15.60	6.98	100.6	3.92	31.45	8.30	7.2
						1.000	15.90	7.22	7.2	3.40	33.42	8.20	
						1.000	15.90	7.14	7.1	4.51	31.45	8.30	2.5
						6.450	15.40	6.91	6.9	4.31	30.26	8.20	
2012/2/3 12:16	W2	MF	832672	807993	12.9	6.450	15.20	6.83	6.8	4.02	32.08	8.40	1.8
						11.900	15.40	6.70	6.7	3.96	31.48	8.30	
						11.900	15.40	6.71	6.7	3,96	32.15	8.40	2.2
						1.000	15.70	7.26	7.3	4.59	32.01	8.40	0.5
						1.000	15.70	7.17	7.2	3.66	32.15	8.30	< 0.5
2012/2/3 12:07	W3	MF	832036	807896	12.3	6.150	15.50	6.90	6.9	3.78	30.14	8.20	0.8
2012/2/3 12:07	W3	IVII	832030	00/090	12.5	6.150	15.60	6.82	6.8	4.08	32.59	8.20	0.8
	1					11.300	15.00	6.73	6.7	5.46	32.18	8.20	3.5
						11.300	15.00	6.69	6.7	3.46	30.18	8.20	ال.ال
						1.000	15.50	7.23	7.2	4.32	32.26	8.30	5.1
						1.000	15.80	7.26	7.3	4.82	33.58	8.30	3.1
2012/2/3 12:45	C1	MF	833693	808183	13.6	6.800	15.70	6.92	6.9	4.96	31.14	8.00	6.1
2012/2/3 12113			033073	000103	15.0	6.800	15.70	6.94	6.9	4.86	32.02	8.20	
						12.600	15.20	6.77	6.8	4.08	30.08	8.40	0.8
	+					12.600	15.30	6.70	6.7	4.62	31.59	8.20	
						1.000	15.80	7.18	7.2	4.18	33.42	8.20	2.1
	1					1.000	15.80	7.07	7.1	5.00	31.45	8.30	
2012/2/3 11:55	C2	MF	831447	807748	11.2	5.600 5.600	15.70	6.82	6.8	5.36	30.26	8.30	1.4
	1					10.200	15.60 15.50	6.83	6.8	4.82 4.49	32.08 31.48	8.30 8.30	
						10.200	15.50	6.60	6.6	4.49	32.15	8.40	5.5
						1.000	15.60	7.18	7.2	5.00	32.13	8.30	
	1					1.000	15.70	7.18	7.2	4.77	32.01	8.30	5.0
	1				l								
						6.850	15.30	6 0/1				8.70	
2012/2/3 13:11	C3	MF	832226	808844	13.7	6.850	15.30	6.94	6.9	5.32	30.14	8.20 8.40	3.3
2012/2/3 13:11	C3	MF	832226	808844	13.7	6.850 6.850 12.700	15.30 15.30 15.20	6.94 6.91 6.65	6.9	4.80 4.32	32.59 32.18	8.20 8.40 8.30	3.3

MF- Mid Flood Tide

ME- Mid Ebb tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 7-Feb-12

Date / Time	Location	Tide*	Co-or	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	1100*	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg
2012/2/7 17:18	W1	ME	832967	807738	2.4	1.200	16.80	6.97	94.3	3.31	33.18	8.30	2.4
2012/2// 17.10	** 1	IVIL	032701	007730	2.7	1.200	16.70	6.99	95.6	3.20	32.23	8.20	2
						1.000	16.70	7.11	100.8	3.22	30.15	8.30	2.9
						1.000	16.80	7.05	99.4	3.26	30.59	8.20	2.,
2012/2/7 17:12	W2	ME	832671	807991	14.3	7.150	16.70	6.88	95.1	3.46	31.96	8.20	5.1
2012/2// 17.12	*** 2	IVIL	032071	001771	14.5	7.150	16.80	6.74	96.8	4.38	32.62	8.40	5.1
						13.300	16.60	6.53	90.4	4.68	32.18	8.30	1.6
						13.300	16.60	6.59	90.7	4.85	31.40	8.40	1.0
						1.000	16.80	7.25	102.8	4.99	32.44	8.30	4.8
						1.000	16.80	7.27	101.9	4.38	30.04	8.40	4.0
2012/2/7 16:59	W3	ME	832038	807896	14.6	7.300	16.80	6.76	101.4	3.78	30.67	8.40	5.
2012/2// 10.39	W 3	IVIE	632036	007090	14.0	7.300	16.70	6.79	99.5	4.91	31.11	8.50	٥.
						13.600	16.60	6.81	96.3	4.21	32.48	8.40	2
						13.600	16.60	6.65	95.1	5.02	32.24	8.40	3.
						1.000	16.80	7.06	96.3	4.91	33.44	8.40	1
						1.000	16.80	7.32	98.4	5.31	32.07	8.10	1.
2012/2/7 17 21	G1) (E	000500	000101	140	7.450	16.70	6.88	92.1	5.02	32.86	8.40	4
2012/2/7 17:31	C1	ME	833702	808181	14.9	7.450	16.80	6.87	90.8	5.21	33.18	8.30	4.
						13.900	16.60	6.89	89.4	5.80	33.18	8.30	_
						13.900	16.50	6.75	88.1	5.27	32.96	8.40	2.
						1.000	16.80	7.11	103.6	3.19	31.15	8.20	
						1.000	16.70	7.05	102.3	3.91	32.40	8.40	3.
						5.900	16.50	6.88	95.9	4.38	32.48	8.30	
2012/2/7 16:41	C2	ME	831459	807757	11.8	5.900	16.50	6.74	97.3	4.65	33.09	8.30	1.
						10.800	16.40	6.53	92.4	4.96	31.50	8.30	
						10.800	16.40	6.59	93.8	5.49	32.28	8.40	<0
						1.000	16.70	6.96	99.7	4.99	30.15	8.30	
						1.000	16.70	7.07	96.8	5.30	32.11	8.20	2.
						8.050	16.80	6.81	94.2	4.67	33.59	8.40	
2012/2/7 17:57	C3	ME	832224	808864	16.1								3.
						8.050	16.70	6.76	93.8 90.1	6.07	30.48	8.30	
						15.100	16.50	6.64		4.91	32.40	8.40	2.
						15.100	16.60	6.50	90.7	4.38	31.49	8.20	
						1.400	16.80	6.96	99.6	3.49	30.64	8.30	
2012/2/7 12:51	W1	MF	832961	807734	2.8	1,400	16.70	6.81	98.8	3.56	30.15	8.40	3.
						1.000	16.80	6.94	101.9	3.46	30.46	8.30	
						1.000	16.70	6.97	100.8	3.82	30.59	8.40	2.
						6.950	16.80	6.62	95.6	3.48	32.21	8.30	
2012/2/7 12:38	W2	MF	832676	807991	13.9	6.950	16.70	6.74	96.3	5.81	31.13	8.30	1.
						12,900	16.50	6.59	92.3	4.31	30.38	8.40	
						12.900	16.40	6.60	93.1	4.96	32.65	8.30	0.
						1.000	16.70	7.07	103.8	4.22	32.11		
										4.22		8.40 8.30	2.
						1.000	16.80	7.31	102.6		32.29		
2012/2/7 12:24	W3	MF	832038	807896	13.6	6.800	16.70	7.24	100.2	3.96	31.19	8.40	2.
						6.800	16.80	7.04	99.0	3.40	33.48	8.40	
						12.600	16.50	6.82	98.4	4.31	32.44	8.30	2.
						12.600	16.50	6.66	97.1	2.26	34.62	8.40	
						1.000	16.70	7.09	99.1	3.96	31.15	8.40	1.
						1.000	16.80	7.13	99.4	4.88	30.84	8.40	
2012/2/7 14:11	C1	MF	833694	808170	14.6	7.300	16.50	6.98	95.8	4.59	32.06	8.50	1.
						7.300	16.60	6.96	96.3	3.26	31.77	8.40	
						13.600	16.40	6.53	90.1	4.92	30.27	8.40	3.
						13.600	16.40	6.64	91.4	4.31	32.69	8.30	
						1.000	16.80	7.11	102.3	3.18	30.31	8.30	1.
						1.000	16.70	7.08	101.6	4.81	33.42	8.40	1.
	C2	MF	831459	807754	12.1	6.050	16.70	6.92	100.1	4.32	32.48	8.30	2.
2012/2/7 12:02	ÇZ	1411.	031439	001134	12.1	6.050	16.80	6.99	99.8	3.88	30.21	8.40	۷.
2012/2/7 12:02						11.100	16.50	6.83	96.2	3.92	30.96	8.40	2.
2012/2/7 12:02					l	11.100	16.50	6.80	97.3	5.32	31.15	8.30	۷.
2012/2/7 12:02						11.100			101.2	2.45	31.95	8.30	1
2012/2/7 12:02						1.000	16.90	7.26	101.3	3.45			Λ.
2012/2/7 12:02							16.90 16.90	7.26 7.23	101.3	5.22	30.56	8.30	0.
	<i>C</i> 2	МЕ	022214	909961	147	1.000							
2012/2/7 12:02	C3	MF	832214	808861	14.7	1.000 1.000	16.90	7.23	102.4	5.22	30.56	8.30	
	C3	MF	832214	808861	14.7	1.000 1.000 7.350	16.90 16.60	7.23 6.91	102.4 97.6	5.22 4.78	30.56 33.19	8.30 8.40	1.

MF- Mid Flood Tide ME- Mid Ebb tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 9-Jan-12

Date / Time	Location	Tide*	Co-oro	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	Hue.	East	North	m	m	${\mathfrak C}$	mg/L	%	NTU	ppt	unit	mg
2012/2/9 12:49	W1	ME	832947	807751	2.6	1.300	13.60	6.94	99.8	4.24	32.59	8.30	7.0
EUIE/E/J IE. 17	***	14112	032711	007751	2.0	1.300	13.70	7.09	97.7	3.96	31.42	8.30	7.0
						1.000	13.60	7.18	101.0	4.91	30.21	8.40	7.1
						1.000	13.60	7.19	100.1	4.48	31.75	8.10	
2012/2/9 12:38	W2	ME	832686	807992	14.8	7.400	13.20	7.24	99.8	4.22	29.44	8.40	3.:
						7.400	13.60	7.01	97.2	3.90	30.59	8.20	
						13.800	13.30	6.85	94.6	3.64	30.15	8.20	6.
						13.800	13.30	6.81	95.1	3.09	31.66	8.30	
						1.000	13.60	7.22	102.4	3.78	33.15	8.20	1.
						7.050	13.60	7.19 6.94	102.9 101.3	4.99 4.92	31.64	8.40	
2012/2/9 13:46	W3	ME	832036	807890	14.1	7.050	13.50 13.40	6.97	101.3	3.88	33.56 32.66	8.30 8.30	4.
						13.100	13.40	6.77	97.8	3.48	32.48	8.40	
						13.100	13.30	6.75	96.2	4.22	32.46	8.20	0.
						1.000	13.60	7.11	101.3	3.94	33.46	8.20	
						1.000	13.50	7.11	100.8	3.86	32.49	8.40	2.
						7.600	13.70	6.81	99.2	4.25	32.49	8.30	
2012/2/9 13:05	C1	ME	833692	808179	15.2	7.600	13.50	6.96	98.3	4.21	33.54	8.50	2.
						14.200	13.80	6.92	95.2	4.28	33.19	8.30	1
						14.200	13.60	6.75	96.6	4.94	32.15	8.40	5.
						1.000	13.90	7.12	100.8	3.18	30.32	8.30	_
						1.000	13.80	8.08	99.7	4.20	32.96	8.30	2.
2012/2010 12 50	72		004.450	005550	42.0	6.900	13.20	6.88	102.3	4.32	31.45	8.40	2
2012/2/9 13:58	C2	ME	831459	807758	13.8	6.900	13.70	6.72	98.6	4.21	31.88	8.20	2.
						12.800	13.50	6.51	94.6	4.69	32.23	8.30	7
						12.800	13.50	6.65	95.1	3.48	32.79	8.30	7.
						1.000	13.50	6.84	100.9	3.96	32.25	8.40	2.
						1.000	13.70	6.99	97.8	4.61	30.53	8.30	۷.
2012/2/9 13:28	C3	ME	832218	808884	15.6	7.800	13.60	6.76	98.4	4.92	31.11	8.40	4.
2012/2/9 13.20	C	NIE	032210	000004	13.0	7.800	13.80	6.72	96.1	5.44	29.10	8.20	4.
						14.600	13.50	6.54	95.1	5.99	30.45	8.40	2.
						14.600	13.80	6.59	94.2	4.83	30.92	8.20	۷.
						1.350	13.60	6.83	98.6	3.85	33.18	8.40	
2012/2/9 17:42	W1	MF	832981	807738	2.7	1.350	13.70	6.92	98.0	3.92	32.15	8.30	6.
						1.000	13.70	7.11	103.8	3.49	30.14	8.40	
						1.000	13.80	6.95	103.8	4.50	33.90	8.50	2.
						7.450	13.60	6.82	96.3	4.33	32.28	8.30	
2012/2/9 17:33	W2	MF	832676	807996	14.9	7.450	13.40	6.72	97.2	4.92	32.09	8.30	6.
						13.900	13.30	6.64	91.1	4.22	30.15	8.30	
						13.900	13.40	6.67	92.4	4.78	33.15	8.40	3.
						1.000	13.60	7.24	103.90	4.18	30.96	8.30	
						1.000	13.70	7.11	102.60	4.81	30.82	8.20	5.
	1							6.85	99.70	4.38	31.15	8.40	-
2012/2/0 17 22	1110) /rr	022026	007001	1.4.0	7.400	13.70	0.00		4.59	31.15	0.40	7.
2012/2/9 17:22	W3	MF	832036	807891	14.8	7.400	13.40	6.85	99.80	4.39	31.13	8.40	
2012/2/9 17:22	W3	MF	832036	807891	14.8				99.80 95.20	5.21	32.28	8.40	А
2012/2/9 17:22	W3	MF	832036	807891	14.8	7.400	13.40	6.85			32.28 32.28		4.
2012/2/9 17:22	W3	MF	832036	807891	14.8	7.400 13.800 13.800 1.000	13.40 13.50 13.50 13.70	6.85 6.76 6.79 6.96	95.20 96.40 104.60	5.21 5.24 4.38	32.28 32.28 31.15	8.30 8.40 8.40	
2012/2/9 17:22	W3	MF	832036	807891	14.8	7.400 13.800 13.800 1.000 1.000	13.40 13.50 13.50 13.70 13.70	6.85 6.76 6.79 6.96 6.95	95.20 96.40 104.60 103.10	5.21 5.24 4.38 4.46	32.28 32.28 31.15 32.28	8.30 8.40 8.40 8.30	
						7.400 13.800 13.800 1.000 1.000 7.800	13.40 13.50 13.50 13.70 13.70 13.60	6.85 6.76 6.79 6.96 6.95 6.79	95.20 96.40 104.60 103.10 100.80	5.21 5.24 4.38 4.46 4.68	32.28 32.28 31.15 32.28 33.48	8.30 8.40 8.40 8.30 8.50	6.
2012/2/9 17:22 2012/2/9 18:05	W3	MF MF	832036 833706	807891	14.8	7.400 13.800 13.800 1.000 1.000 7.800 7.800	13.40 13.50 13.50 13.70 13.70 13.60 13.60	6.85 6.76 6.79 6.96 6.95 6.79 6.70	95.20 96.40 104.60 103.10 100.80 96.10	5.21 5.24 4.38 4.46 4.68 4.59	32.28 32.28 31.15 32.28 33.48 33.86	8.30 8.40 8.40 8.30 8.50 8.20	6.
						7.400 13.800 13.800 1.000 1.000 7.800 7.800 14.600	13.40 13.50 13.50 13.70 13.70 13.60 13.60 15.20	6.85 6.76 6.79 6.96 6.95 6.79 6.70 6.65	95.20 96.40 104.60 103.10 100.80 96.10 94.80	5.21 5.24 4.38 4.46 4.68 4.59 5.26	32.28 32.28 31.15 32.28 33.48 33.86 32.16	8.30 8.40 8.40 8.30 8.50 8.20 8.20	6.
						7.400 13.800 13.800 1.000 1.000 7.800 7.800 14.600	13.40 13.50 13.50 13.70 13.70 13.60 13.60 15.20 13.20	6.85 6.76 6.79 6.96 6.95 6.79 6.70 6.65 6.69	95.20 96.40 104.60 103.10 100.80 96.10 94.80 95.40	5.21 5.24 4.38 4.46 4.68 4.59 5.26 5.40	32.28 32.28 31.15 32.28 33.48 33.86 32.16 32.28	8.30 8.40 8.40 8.30 8.50 8.20 8.20 8.30	6.
						7.400 13.800 13.800 1.000 1.000 7.800 7.800 14.600 1.000	13.40 13.50 13.50 13.70 13.70 13.60 13.60 15.20 13.20 13.70	6.85 6.76 6.79 6.96 6.95 6.79 6.70 6.65 6.69 7.12	95.20 96.40 104.60 103.10 100.80 96.10 94.80 95.40 101.3	5.21 5.24 4.38 4.46 4.68 4.59 5.26 5.40 3.12	32.28 32.28 31.15 32.28 33.48 33.86 32.16 32.28 30.38	8.30 8.40 8.40 8.30 8.50 8.20 8.20 8.30 8.30	6. 4. 3.
						7.400 13.800 13.800 1.000 1.000 7.800 7.800 14.600 1.000 1.000	13.40 13.50 13.50 13.70 13.70 13.60 13.60 15.20 13.20 13.70	6.85 6.76 6.79 6.96 6.95 6.79 6.70 6.65 6.69 7.12 7.09	95.20 96.40 104.60 103.10 100.80 96.10 94.80 95.40 101.3 102.6	5.21 5.24 4.38 4.46 4.68 4.59 5.26 5.40 3.12 3.20	32.28 32.28 31.15 32.28 33.48 33.86 32.16 32.28 30.38 33.45	8.30 8.40 8.40 8.30 8.50 8.20 8.20 8.30 8.30 8.40	6. 4. 3.
						7.400 13.800 13.800 1.000 1.000 7.800 7.800 14.600 1.000 1.000 7.050	13.40 13.50 13.50 13.70 13.70 13.60 13.60 15.20 13.20 13.70 13.70 13.60	6.85 6.76 6.79 6.96 6.95 6.79 6.70 6.65 6.69 7.12 7.09	95.20 96.40 104.60 103.10 100.80 96.10 94.80 95.40 101.3 102.6	5.21 5.24 4.38 4.46 4.68 4.59 5.26 5.40 3.12 3.20 3.19	32.28 32.28 31.15 32.28 33.48 33.86 32.16 32.28 30.38 33.45 31.15	8.30 8.40 8.40 8.30 8.50 8.20 8.20 8.30 8.30 8.30	6. 4. 3.
2012/2/9 18:05	C1	MF	833706	808184	15.6	7.400 13.800 13.800 1.000 1.000 7.800 7.800 14.600 1.000 1.000 7.050	13.40 13.50 13.50 13.70 13.70 13.60 13.60 15.20 13.20 13.70 13.60 13.60	6.85 6.76 6.79 6.96 6.95 6.79 6.70 6.65 6.69 7.12 7.09 7.14	95.20 96.40 104.60 103.10 100.80 96.10 94.80 95.40 101.3 102.6 95.1	5.21 5.24 4.38 4.46 4.68 4.59 5.26 5.40 3.12 3.20 3.19 3.86	32.28 32.28 31.15 32.28 33.48 33.86 32.16 32.28 30.38 33.45 31.15 32.28	8.30 8.40 8.40 8.30 8.50 8.20 8.20 8.30 8.30 8.40	6. 4. 3.
2012/2/9 18:05	C1	MF	833706	808184	15.6	7,400 13,800 13,800 1,000 1,000 7,800 7,800 14,600 1,000 1,000 7,050 7,050 13,100	13.40 13.50 13.50 13.70 13.70 13.60 13.60 15.20 13.70 13.70 13.70 13.60 13.60 13.30	6.85 6.76 6.79 6.96 6.95 6.70 6.65 6.69 7.12 7.09 7.14 6.95 6.88	95.20 96.40 104.60 103.10 100.80 96.10 94.80 95.40 101.3 102.6 95.1 96.4 93.8	5.21 5.24 4.38 4.46 4.68 4.59 5.26 5.40 3.12 3.20 3.19 3.86 4.56	32.28 32.28 31.15 32.28 33.48 33.86 32.16 32.28 30.38 33.45 31.15 32.28 32.24	8.30 8.40 8.40 8.30 8.50 8.20 8.20 8.30 8.40 8.30 8.40	6. 4. 3. 3. 7.
2012/2/9 18:05	C1	MF	833706	808184	15.6	7,400 13,800 13,800 1,000 1,000 7,800 14,600 14,600 1,000 1,000 7,050 7,050 13,100	13.40 13.50 13.50 13.70 13.70 13.70 13.60 15.20 13.70 13.70 13.60 13.30 13.30	6.85 6.76 6.79 6.96 6.95 6.79 6.70 6.65 6.69 7.12 7.09 7.14 6.95 6.88	95.20 96.40 104.60 103.10 100.80 96.10 94.80 95.40 101.3 102.6 95.1 96.4 93.8	5.21 5.24 4.38 4.46 4.68 4.59 5.26 5.40 3.12 3.20 3.19 3.86 4.56 4.33	32.28 32.28 31.15 32.28 33.48 33.86 32.16 32.28 30.38 33.45 31.15 32.28 32.28 33.45 31.15	8.30 8.40 8.40 8.30 8.50 8.20 8.20 8.30 8.30 8.40 8.30 8.40 8.30	6. 4. 3. 3. 7. 3.
2012/2/9 18:05	C1	MF	833706	808184	15.6	7,400 13,800 13,800 1,000 1,000 7,800 14,600 14,600 1,000 1,000 7,050 7,050 13,100 1,000 1,000	13.40 13.50 13.50 13.70 13.70 13.60 13.60 15.20 13.70 13.70 13.60 13.60 13.30 13.30 13.30	6.85 6.76 6.79 6.96 6.95 6.79 6.70 6.65 6.69 7.12 7.09 7.14 6.95 6.88 6.81	95.20 96.40 104.60 103.10 100.80 96.10 94.80 95.40 101.3 102.6 95.1 96.4 93.8 92.9	5.21 5.24 4.38 4.46 4.68 4.59 5.26 5.40 3.12 3.20 3.19 3.86 4.56 4.33 4.88	32.28 32.28 31.15 32.28 33.48 33.86 32.16 32.28 30.38 33.45 31.15 32.28 32.28 32.24 33.49 32.88	8.30 8.40 8.40 8.30 8.50 8.20 8.20 8.30 8.30 8.40 8.30 8.40 8.30	6. 4. 3. 3. 7. 3.
2012/2/9 18:05 2012/2/9 17:09	C1 C2	MF	833706 831468	808184	15.6	7.400 13.800 13.800 1.000 1.000 7.800 7.800 14.600 1.000 1.000 7.050 7.050 13.100 1.000 1.000	13.40 13.50 13.70 13.70 13.70 13.60 13.20 13.70 13.60 13.60 13.60 13.30 13.30 13.80	6.85 6.76 6.79 6.96 6.95 6.79 6.70 6.65 6.69 7.12 7.09 7.14 6.95 6.88 6.81 7.18	95.20 96.40 104.60 103.10 100.80 96.10 94.80 95.40 101.3 102.6 95.1 96.4 93.8 92.9 100.1	5.21 5.24 4.38 4.46 4.68 4.59 5.26 5.40 3.12 3.20 3.19 3.86 4.56 4.33 4.88 4.21	32.28 32.28 31.15 32.28 33.48 33.86 32.16 32.28 30.38 33.45 31.15 32.28 32.28 32.24 33.49 32.88 33.45	8.30 8.40 8.40 8.30 8.50 8.20 8.30 8.30 8.40 8.30 8.40 8.30 8.40 8.30	6. 4. 3. 3. 7. 3. 4.
2012/2/9 18:05	C1	MF	833706	808184	15.6	7.400 13.800 13.800 1.000 1.000 7.800 7.800 14.600 1.000 1.000 7.050 7.050 13.100 13.100 1.000 1.000 7.850	13.40 13.50 13.70 13.70 13.70 13.60 13.60 13.20 13.70 13.60 13.60 13.30 13.30 13.80 13.80 13.80	6.85 6.76 6.79 6.96 6.95 6.79 6.65 6.69 7.12 7.09 7.14 6.95 6.88 6.81 7.16 7.04	95.20 96.40 104.60 103.10 100.80 96.10 94.80 95.40 101.3 102.6 95.1 96.4 93.8 92.9 100.1 99.8	5.21 5.24 4.38 4.46 4.68 4.59 5.26 5.40 3.12 3.20 3.19 3.86 4.56 4.33 4.88 4.21 5.87	32.28 32.28 31.15 32.28 33.48 33.86 32.16 32.28 30.38 33.45 31.15 32.28 32.24 33.49 32.88 33.45 32.14	8.30 8.40 8.40 8.30 8.50 8.20 8.30 8.30 8.40 8.30 8.40 8.30 8.40 8.30 8.30	4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
2012/2/9 18:05 2012/2/9 17:09	C1 C2	MF	833706 831468	808184	15.6	7.400 13.800 13.800 1.000 1.000 7.800 7.800 14.600 1.000 1.000 7.050 7.050 13.100 1.000 1.000	13.40 13.50 13.70 13.70 13.70 13.60 13.20 13.70 13.60 13.60 13.60 13.30 13.30 13.80	6.85 6.76 6.79 6.96 6.95 6.79 6.70 6.65 6.69 7.12 7.09 7.14 6.95 6.88 6.81 7.18	95.20 96.40 104.60 103.10 100.80 96.10 94.80 95.40 101.3 102.6 95.1 96.4 93.8 92.9 100.1	5.21 5.24 4.38 4.46 4.68 4.59 5.26 5.40 3.12 3.20 3.19 3.86 4.56 4.33 4.88 4.21	32.28 32.28 31.15 32.28 33.48 33.86 32.16 32.28 30.38 33.45 31.15 32.28 32.28 32.24 33.49 32.88 33.45	8.30 8.40 8.40 8.30 8.50 8.20 8.30 8.30 8.40 8.30 8.40 8.30 8.40 8.30	6 4 3 7 3 4.9

MF- Mid Flood Tide

ME- Mid Ebb tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 11-Feb-12

Date / Time	Location	Tide*	Co-oro	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11de+	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg
2012/2/11 13:44	W1	ME	832990	807711	2.5	1.250	15.10	7.76	96.3	3.92	30.86	8.40	4.6
2012/2/11 13.11	,,,,	14112	032//0	007711	2.3	1.250	15.30	7.07	97.7	4.02	30.44	8.30	1.0
						1.000	15.20	7.08	100.6	3.99	32.15	8.40	5.4
						1.000	15.30	7.14	99.7	4.26	30.75	8.40	
2012/2/11 13:32	W2	ME	832692	807988	14.7	7.350	15.20	6.81	95.8	4.21	33.59	8.40	5.2
						7.350	15.10	6.70	96.0	5.09	30.66	8.40	
						13.700	15.00	6.54	92.1	5.28	32.96	8.40	6.2
						13.700	15.00	6.59	91.6	5.41	32.58	8.30	
						1.000	15.20 15.20	7.26	102.6	4.41	33.15 30.85	8.30 8.20	2.
						1.000		7.38 6.94	101.8 97.8	5.52 5.49	32.08		
2012/2/11 14:21	W3	ME	832031	807896	15.6	7.800 7.800	15.20 15.10	6.99	97.8	5.96	31.44	8.30 8.30	7.
						14.600	15.10	6.51	96.1	5.88	33.82	8.40	
						14.600	15.00	6.59	95.0	5.81	32.86	8.30	3.
						1.000	15.10	7.00	100.3	5.22	33.48	8.40	
						1.000	15.10	6.96	99.8	5.44	31.86	8.30	6.
						7.950	15.20	6.81	95.3	5.49	30.55	8.30	
2012/2/11 14:02	C1	ME	833695	808161	15.9	7.950	15.20	6.87	93.5	5.92	32.67	8.30	2.
						14.900	15.10	6.51	90.8	5.59	31.59	8.20	
						14.900	15.10	6.60	91.1	5.88	32.29	8.40	2.
						1.000	15.00	7.18	101.8	4.18	30.32	8.50	
						1.000	15.20	7.09	99.6	5.88	33.11	8.40	3.
						7.750	15.00	6.90	98.1	5.22	31.49	8.40	
2012/2/11 14:50	C2	ME	831458	807764	15.5	7.750	15.10	6.92	99.1	4.21	32.65	8.30	2.
						14.500	14.90	6.84	95.8	6.69	30,38	8.30	
						14.500	15.00	6.79	96.7	6.48	33.94	8.10	2.
						1.000	15.20	7.26	102.6	4.48	32.66	8.30	
						1.000	15.30	7.19	98.4	4.20	32.96	8.30	5.
						7.900	15.10	6.82	95.9	4.15	33.11	8.30	
2012/2/11 14:36	C3	ME	832214	808870	15.8	7.900	15.40	6.81	97.2	3.49	31.08	8.30	4.
						14.800	15.00	6.76	90.1	2.48	32.14	8.20	-
						14.800	15.00	6.72	91.0	5.91	32.11	8.40	5.
2012/2/11 10:07	W1	MF	832981	807736	2.6	1.300	15.40	7.16	98.6	3.90	33.39	8.30	5.
2012/2/11 10.07	VV 1	IVII	032901	607730	2.0	1.300	15.10	6.84	98.9	4.01	32.87	8.40	٥.
						1.000	15.00	7.38	101.6	3.82	31.56	8.20	3.
						1.000	15.20	7.42	100.8	3.40	33.48	8.30	٥.
2012/2/11 9:59	W2	MF	832679	807992	15.2	7.600	15.00	7.01	98.3	4.49	32.28	8.30	4.
2012/2/11 9.39	VV Z	IVII	032019	001992	13.2	7.600	15.10	7.08	97.6	6.30	30.07	8.40	7.
						14.200	14.90	6.96	95.6	4.38	31.19	8.20	7.
						14.200	15.00	6.92	94.8	4.60	32.29	8.30	/.
						1.000	14.90	7.24	100.8	3.98	32.15	8.20	2.
						1.000	15.30	7.33	100.9	4.02	30.11	8.30	٥.
2012/2/11 9:43	W3	MF	832036	807899	15.3	7.650	15.10	7.09	98.6	4.26	30.49	8.30	5.
						7.650	15.10	7.17	97.1	4.55	32.23	8.40	ļ
						14.300	15.00	7.01	93.4	4.82	32.28	8.30	4.
						14.300	15.00	6.95	95.1	4.90	32.95	8.40	
						1.000	15.10 14.90	7.46 7.31	104.8 100.1	4.31	34.08	8.40	5.
						7.900	15.20	7.31	98.7	4.83 4.60	30.86	8.40	
	C1	MF	833708	808169	15.8	7.900	14.90	7.19	98.7	4.60	30.48 32.92	8.30 8.40	3.
2012/2/11 10:25						14.800	14.98	7.19	99.6	4.80	31.55	8.40	
2012/2/11 10:25						14.800	14.98	7.04	94.2	4.09	30.15	8.30	4.
2012/2/11 10:25						1.000	15.20	7.04	102.3	3.91	30.13	8.30	
2012/2/11 10:25						1.000	15.10	7.23	102.3	4.03	31.16	8.40	4.
2012/2/11 10:25					•	1.000	15.10	7.01	99.7	5.28	31.49	8.20	
						7 300			99.8	5.10	32.48	8.40	4.
2012/2/11 10:25	C2	MF	831458	807759	14.6	7.300 7.300	15.20	6.96	99 A			8.40	
	C2	MF	831458	807759	14.6	7.300	15.20	6.96 7.16					
	C2	MF	831458	807759	14.6	7.300 13.600	15.20 15.00	7.16	92.7	4.96	32.28	8.30	4.
	C2	MF	831458	807759	14.6	7.300 13.600 13.600	15.20 15.00 15.00	7.16 7.04	92.7 95.4	4.96 4.86	32.28 30.81	8.30 8.30	
	C2	MF	831458	807759	14.6	7.300 13.600 13.600 1.000	15.20 15.00 15.00 15.10	7.16 7.04 7.33	92.7 95.4 98.6	4.96 4.86 4.82	32.28 30.81 32.68	8.30 8.30 8.30	
2012/2/11 9:26						7.300 13.600 13.600 1.000	15.20 15.00 15.00 15.10 15.00	7.16 7.04 7.33 7.25	92.7 95.4 98.6 99.7	4.96 4.86 4.82 4.38	32.28 30.81 32.68 32.48	8.30 8.30 8.30 8.40	3.4
	C2	MF	831458 832239	807759 808876	14.6	7.300 13.600 13.600 1.000 1.000 7.800	15.20 15.00 15.00 15.10 15.00 15.20	7.16 7.04 7.33 7.25 7.11	92.7 95.4 98.6 99.7 95.1	4.96 4.86 4.82 4.38 4.91	32.28 30.81 32.68 32.48 30.81	8.30 8.30 8.30 8.40 8.30	3.4
2012/2/11 9:26						7.300 13.600 13.600 1.000	15.20 15.00 15.00 15.10 15.00	7.16 7.04 7.33 7.25	92.7 95.4 98.6 99.7	4.96 4.86 4.82 4.38	32.28 30.81 32.68 32.48	8.30 8.30 8.30 8.40	3.4

MF- Mid Flood Tide ME- Mid Ebb tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 13-Feb-12

Date / Time	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11de*	East	North	m	m	ပ္	mg/L	%	NTU	ppt	unit	mg
2012/2/13 16:15	W1	ME	832951	807714	2.8	1.400	20.20	6.90	98.8	3.94	31.59	8.30	5.4
2012/2/13 10:13	"" 1	14112	032/31	007711	2.0	1.400	20.10	7.02	97.2	3.92	32.08	8.40	٥.
						1.000	20.20	7.04	102.4	4.82	31.82	8.30	5.6
						1.000	20.20	7.08	101.7	4.92	32.25	8.50	
2012/2/13 16:28	W2	ME	832672	807996	15.3	7.650	20.00	6.85	99.8	4.80	30.81	8.30	4.9
						7.650	20.20	6.81	100.8	4.48	30.59	8.50	
						14.300	20.10	6.59	96.1 99.6	4.14 5.02	31.77 32.58	8.40 8.40	4.7
						1.000	20.00	7.11	101.4	4.30	32.38	8.40	
						1.000	20.30	7.11	101.4	4.07	30.15	8.30	3.
						7.550	20.30	6.99	99.1	5.08	32.89	8.40	
2012/2/13 16:42	W3	ME	832038	807896	15.1	7.550	20.10	6.92	98.0	4.95	33.48	8.20	3.
						14.100	20.10	6.81	95.4	5.14	30.96	8.30	
						14.100	20.20	6.80	96.1	5.10	33.14	8.40	4.
						1.000	20.40	7.00	100.9	4.28	32.76	8.40	
						1.000	20.40	6.92	102.4	4.38	30.68	8.30	4.
						7.800	20.10	6.81	97.8	4.48	32.82	8.40	
2012/2/13 15:56	C1	ME	833708	808179	15.6	7.800	20.10	6.84	96.1	4.82	31.69	8.20	4.
						14.600	20.00	6.72	96.5	4.59	30.21	8.30	
						14.600	20.00	6.54	95.0	4.02	32.24	8.10	4.
						1.000	20.40	7.18	102.3	4.11	30.32	8.30	
						1.000	20.40	7.07	100.9	4.64	32.20	8.40	4.
						7.450	20.20	6.92	95.1	5.10	31.96	8.30	
2012/2/13 15:24	C2	ME	831468	807757	14.9	7.450	19.90	6.94	97.8	5.10	33.18	8.50	5.
						13.900	20.10	6.64	92.4	5.08	30.40	8.40	
						13.900	19.90	6.70	93.1	4.92	32.11	8.40	6.
						1.000	20.40	6.95	102.8	4.91	30.48	8.30	
						1.000	20.40	6.94	100.4	4.32	30.48	8.20	3.
						7.950	20.20	6.51	99.0	4.48	31.18	8.30	
2012/2/13 15:39	C3	ME	832226	808890	15.9	7.950	19.90	6.56	96.8	4.21	32.55	8.40	2.
						14.900	20.20	6.49	95.2	4.59	32.25	8.20	
						14.900	20.30	6,46	96.1	4.28	31.40	8.40	3.
2012/2/12 10 22	77/1	ME	022000	007716	2.0	1.400	20.10	7.18	102.3	3.27	31.40	8.30	2
2012/2/13 10:22	W1	MF	832990	807715	2.8	1.400	20.20	7.25	99.1	3.46	31.18	8.40	3.
						1.000	20.30	7.24	100.1	3.61	30.48	8.30	
						1.000	20.40	7.28	99.8	3.50	32.28	8.30	4.
2012/2/12 10:14	W2	MF	832672	907000	15.2	7.650	20.10	6.99	97.2	3.92	31.41	8.20	4.
2012/2/13 10:14	W Z	MF	832072	807992	15.3	7.650	20.00	6.90	95.3	3.80	31.49	8.40	4.
						14.300	19.90	6.62	92.3	4.00	32.15	8.30	6.
						14.300	20.10	6.76	93.9	3.95	32.25	8.50	0.
						1.000	20.30	7.09	101.8	4.15	30.08	8.20	2
						1.000	20.30	7.08	100.6	4.40	33.86	8.50	2.
2012/2/13 9:52	W3	MF	832039	807899	15.2	7.600	20.00	6.84	98.3	4.92	31.15	8.40	2.
2012/2/13 9:32	VV 3	IVIP	032039	007899	13.2	7.600	20.20	6.88	97.2	4.49	30.55	8.40	Ζ.
						14.200	20.10	6.65	96.2	4.69	32.44	8.30	2.
						14.200	20.10	6.70	96.9	4.59	31.64	8.40	Ζ.
						1.000	20.30	7.08	102.1	4.90	30.59	8.20	7.
						1.000	20.20	7.09	99.6	5.28	30.59	8.40	1.
2012/2/13 10:39	C1	MF	833694	808183	15.6	7.800	20.20	6.81	94.3	5.08	31.51	8.40	3.
2012/2/13 10.37	C1	1411	055094	000103	13.0	7.800	20.10	6.80	94.9	5.40	31.64	8.30	J.
						14.600	20.10	6.55	93.1	5.82	32.19	8.50	4.
						14.600	20.00	6.56	90.9	5.92	32.28	8.40	
						1.000	20.30	7.11	102.3	4.11	32.49	8.20	5.
						1.000	20.20	7.19	101.9	4.92	32.28	8.30	J.
2012/2/13 9:31	C2	MF	831468	807759	13.8	6.900	20.20	6.85	99.4	5.28	30.81	8.40	4.
	, J.		031100	00,157	15.0	6.900	20.30	6.88	99.6	4.01	30.86	8.40	
						12.800	20.00	6.56	98.1	5.81	32.28	8.40	5.
						12.800	20.00	6.72	96.2	5.38	31.15	8.50	J.
						1.000	20.20	7.14	101.8	5.56	33.55	8.40	4.
						1.000	20.30	7.19	100.4	5.99	31.18	8.40	ļ
2012/2/13 10:52	C3	MF	832218	808877	15.9	7.950	20.10	6.80	95.1	5.81	33.44	8.40	5.
2012/2/10 10:02	0.5	1111	032210	000011	13.7	7.950	20.20	6.72	96.4	4.82	32.38	8.50	٦.
	1					14.900	20.20	6.62	93.8	4.14	30.48	8.30	5.
						14.900	20.00	6.68	92.0	4.96	30.38	8.40	

MF- Mid Flood Tide ME- Mid Ebb tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

15-Feb-12 Date

Date / Time	Location	Tide*	Co-oro	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	1100*	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg/
2012/2/15 17:35	W1	ME	832949	807740	2.6	1.300	20.00	7.08	99.4	3.69	32.18	8.40	4.6
2012/2/13 17.33	***1	IVIL	032747	007740	2.0	1.300	20.10	6.96	98.1	3.54	30.45	8.50	7.0
						1.000	19.70	7.11	100.5	3.41	33.15	8.30	3.6
						1.000	19.90	6.90	99.6	3.83	33.22	8.30	5.0
2012/2/15 17:28	W2	ME	832698	807969	15.1	7.550	19.70	6.80	95.1	4.58	31.54	8.40	2.7
			0020,0			7.550	19.80	6.72	94.7	4.68	30.54	8.40	
						14.100	19.60	6.64	92.8	4.44	32.59	8.50	3.2
						14.100	19.60	6.65	92.9	4.15	33.48	8.50	
						1.000	20.10	7.23	103.4	4.38	33.15	8.40	4.4
						1.000	20.10	7.28	102.8	4.38	30.51	8.50	
2012/2/15 17:19	W3	ME	832057	807906	15.2	7.600	19.40	7.09	99.1	4.48	30.51	8.50	4.0
						7.600	19.80	6.98	98.4	5.01	32.11	8.40	
						14.200	19.60	6.64	98.3	5.21	32.59	8.40	4.2
						14.200	19.70	6.69	96.5	4.96	30.18	8.40	
						1.000	19.80 19.80	7.22 7.08	102.3 104.8	5.36 5.64	33.36 32.15	8.50 8.40	7.1
						7.650	19.80	6.81	104.8				
2012/2/15 17:46	C1	ME	833708	808190	15.3	7.650	19.90	6.82	101.5	5.31 5.21	32.11 30.28	8.50 8.40	3.0
						14.300	19.80	6.76	92.8	6.50	30.28	8.30	-
						14.300	19.70	6.74	92.8	6.84	33.18	8.50	8.
						1.000	19.70	7.32	102.3	4.18	30.39	8.30	
						1.000	19.90	7.24	99.6	4.18	33.45	8.30	6.
						7.550	19.80	7.00	95.1	5.39	32.45	8.40	
2012/2/15 17:06	C2	ME	831481	807758	15.1	7.550	19.80	6.92	96.3	4.96	32.23	8.40	4.
						14.100	19.50	6.88	90.5	4.48	32.59	8.40	
						14.100	19.50	6.90	93.8	5.31	33.15	8.40	3.
						1.000	20.10	7.30	100.8	4.98	32.38	8.40	
						1.000	19.90	7.31	99.6	5.84	30.45	8.50	4.
						7.550	20.00	6.88	95.1	4.85	30.56	8.40	
2012/2/15 18:02	C3	ME	832214	808877	15.1	7.550	20.10	6.83	96.8	4.81	33.15	8.40	3.
						14.100	19.20	6.59	90.4	4.77	31.14	8.30	
						14.100	19.20	6.64	91.3	4.43	32.22	8.40	4.
						1 11100	17120	0.01	71.0	11.15	32,22	0.10	
						1.400	19.80	6.92	99,60	3.92	33.15	8.30	
2012/2/15 12:11	W1	MF	832981	807748	2.8	1.400	19.80	7.14	99.70	3.99	30.80	8.40	4.
						1.000	19.60	6.94	102,40	4.09	33.38	8.30	
						1.000	19.90	6.88	101.80	4.77	29.51	8.20	2.
2012/2/15 11 56	1110) (F)	000000	007000	15.6	7.800	19.70	6.70	99.10	4.31	32.15	8.30	- 4
2012/2/15 11:56	W2	MF	832698	807992	15.6	7.800	19.80	6.65	95.40	4.62	30.49	8.30	4.
						14.600	19.50	6.34	92.80	4.90	33.88	8.30	4
						14.600	19.30	6.49	93.10	5.93	31.65	8.40	4.
						1.000	19.40	7.18	103.80	4.38	32.26	8.40	4
						1.000	19.50	7.04	100.10	4.52	30.96	8.40	4.
2012/2/15 10:53	W3	MF	832026	807901	15.3	7.650	19.50	6.90	97.20	4.92	31.14	8.40	5.
2012/2/13 10.33	VV 3	IVIF	652020	00/901	13.3	7.650	19.60	6.79	98.10	4.65	32.56	8.30	٥.
						14.300	19.40	6.53	95.40	5.92	32.96	8.30	4.
						14.300	19.30	6.56	93.40	4.81	29.48	8.40	+.
						1.000	19.70	6.99	101.80	4.22	34.16	8.40	3.
						1.000	19.90	7.07	100.50	4.21	32.59	8.40	٥.
2012/2/15 11:16	C1	MF	833702	808176	15.8	7.900	19.60	6.80	99.40	4.98	32.45	8.40	2.
	0.1	1.11	033702	000170	15.0	7.900	19.70	6.72	98.40	3.86	30.64	8.50	
						14.800	19.40	6.65	92.10	5.81	29.11	8.30	2.
						14.800	19.40	6.56	93.50	4.92	32.51	8.40	
						1.000	19.90	7.23	102.30	4.18	30.33	8.30	2.
						1.000	19.80	7.17	100.80	5.08	33.48	8.40	
2012/2/15 12:28	C2	MF	831469	807768	14.8	7.400	20.10	6.94	98.10	5.28	32.86	8.40	4.
	0.2		551.07	00.700		7.400	19.90	6.83	99.70	6.22	30.14	8.30	
						13.800	19.40	6.68	95.30	4.96	33.81	8.30	2.
						13.800	19.40	6.62	96.40	5.94	32.48	8.40	
						1.000	19.80	7.15	100.70	6.56	30.23	8.30	8.
						1.000	19.80	7.24	99.80	6.49	30.78	8.30	
2012/2/15 10:53	C3	MF	832246	808880	15.7	7.850	19.80	6.82	95.20	5.38	31.40	8.40	3.
_ : - = - = - = - = - = - = - = - = - = -			5522.5	222000	2311	7.850	19.90	6.83	94.10	7.07	31.86	8.30	
						14.700	19.50	6.76	92.80	4.46	32.08	8.40	1.4
						14.700	19.50	6.75	93.00	4.82	32.98	8.40	

MF- Mid Flood Tide

ME- Mid Ebb tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 17-Feb-12

Date / Time	Location	Tide*	Co-oro	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11de+	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg/
2012/2/17 9:20	W1	ME	832946	807717	2.7	1.350	15.25	6.97	102.4	2.60	30.81	8.40	2.4
2012/2/17 7.20	,,,,	14112	032710	007717	2.7	1.350	15.20	7.16	97.6	2.74	32.28	8.30	2.1
						1.000	15.20	7.11	100.6	3.20	31.11	8.40	3.0
						1.000	15.30	6.93	98.7	3.50	33.55	8.30	
2012/2/17 9:12	W2	ME	832673	807991	15.8	7.900	15.00	6.81	95.1	3.50	32.49	8.40	2.0
						7.900	15.10	6.72	94.9	3.60	32.22	8.30	
						14.800	15.00 14.90	6.55	90.8	3.90 3.90	30.96 33.38	8.30 8.40	3.3
						1.000	15.30	7.33	100.3		30.86	8.40	
						1.000	15.20	7.20	99.6	3.69 3.58	32.55	8.30	2.:
						7.550	15.20	7.20	99.0	4.12	31.45	8.30	
2012/2/17 8:58	W3	ME	832049	807906	15.1	7.550	15.10	6.94	95.3	4.12	33.51	8.20	3.
						14.100	14.50	6.65	92.0	5.09	32.26	8.30	
						14.100	14.50	6.80	93.8	5.69	32.18	8.20	3.
						1.000	15.20	7.14	103.5	3.90	32.45	8.40	
						1.000	15.20	7.14	102.4	3.87	34.10	8.40	4.
		_				7.700	15.00	7.04	97.4	4.01	31.18	8.40	
2012/2/17 9:36	C1	ME	833707	808189	15.4	7.700	15.00	6.90	95.9	4.96	30.59	8.30	4.
						14.400	14.90	6.64	90.2	4.99	32.14	8.40	
						14.400	14.80	6.69	89.1	4.48	32.45	8.30	3.
						1.000	15.30	7.29	102.3	2.63	30.31	8.40	
						1.000	15.20	7.36	101.9	2.60	32.23	8.30	1.
						7.100	14.90	7.04	99.4	3.60	32.49	8.30	
2012/2/17 8:41	C2	ME	831457	807758	14.2	7.100	15.00	6.95	98.6	3.80	33.24	8.20	2.
						13,200	14.80	6.72	92.3	4.15	33.18	8.40	
						13.200	14.90	6.68	94.1	4.13	30.48	8.30	3.
						1.000	15.20	7.11	101.1	3.64	33.44	8.30	
						1.000	15.20	7.23	98.6	3.24	33.50	8.40	3.
						7.800	14.90	6.92	95.4	4.60	32.56	8.30	
2012/2/17 9:54	C3	ME	832216	808883	15.6	7.800	15.00	6.84	96.8	4.93	32.16	8.30	1.
						14.600	15.00	6.59	90.1	5.15	33.18	8.40	
						14.600	15.00	6.60	88.4	5.38	34.46	8.40	2.
2012/2/17 12 57	77.11) (E	000040	007710	0.6	1.300	15.00	6.91	101.4	2.60	32.85	8.40	2
2012/2/17 13:57	W1	MF	832943	807713	2.6	1.300	15.10	6.98	102.8	2.76	30.19	8.40	2.
						1.000	15.20	7.07	103.8	2.96	32.48	8.30	2
						1.000	15.20	7.13	100.7	2.80	32.46	8.30	3.
2012/2/17 12 44	227.0	ME	022670	007004	14.0	7.450	15.10	6.90	99.2	2.60	30.16	8.40	0
2012/2/17 13:44	W2	MF	832679	807994	14.9	7.450	15.00	6.91	96.8	2.64	30.03	8.30	0.
						13.900	15.00	6.75	93.2	3.56	33.55	8.30	2
						13.900	15.00	6.76	94.1	3.98	31.64	8.40	2.
						1.000	15.30	7.22	103.8	2.64	30.13	8.40	0
						1.000	15.30	7.33	102.6	2.49	32.74	8.30	0.
2012/2/17 13:32	W3	MF	832067	807874	15.6	7.800	15.10	6.90	95.1	3.88	32.45	8.30	2.
2012/2/1/ 13.32	VV 3	IVIF	652007	00/0/4	13.0	7.800	15.00	6.81	96.1	3.90	33.65	8.40	۷.
						14.600	15.00	6.65	90.8	3.64	31.09	8.40	1.
						14.600	15.10	6.64	92.5	3.49	31.76	8.40	1.
						1.000	15.30	7.33	104.8	4.46	32.86	8.40	4.
						1.000	15.30	7.36	105.6	4.65	32.55	8.30	4.
2012/2/17 14:18	C1	MF	833692	808193	14.8	7.400	15.00	7.11	98.7	5.51	33.89	8.30	5.
2012/2/1/ 17.10	C1	1411	053072	000193	17.0	7.400	15.20	6.95	98.4	5.20	30.53	8.30	<i></i>
						13.800	15.00	6.76	94.6	4.61	31.40	8.40	5.
						13.800	15.00	6.79	94.0	4.90	31.64	8.40	<i></i>
						1.000	15.20	7.18	102.3	4.19	30.91	8.40	3.
						1.000	15.10	7.06	101.8	4.88	32.24	8.30	J.
2012/2/17 13:13	C2	MF	831469	807761	14.2	7.100	14.90	6.92	99.4	4.23	32.45	8.30	6.
	C2		03110)	00,701	11.2	7.100	15.00	6.80	98.1	4.65	30.99	8.30	J.
						13.200	15.00	6.59	96.3	5.06	31.11	8.30	3.
						13.200	15.10	6.64	95.2	4.81	32.86	8.40	٥.
						1.000	15.30	7.23	105.8	4.65	32.86	8.30	5.
						1.000	15.30	7.18	104.5	4.53	32.64	8.30	<i>J</i> .
2012/2/17 14:33	C3	MF	832214	808881	15	7.500	15.00	6.84	99.4	4.83	30.16	8.30	3.
4914141114133	()	1411	032214	000001	1.5	7.500	15.00	6.96	97.0	4.46	30.78	8.40	ر.
						14.000	14.90	6.70	93.8	4.83	32.49	8.40	3.

MF- Mid Flood Tide ME- Mid Ebb tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 21-Feb-12

Date / Time	Location	Tide*	Co-oro	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	Tiuc	East	North	m	m	${\mathfrak C}$	mg/L	%	NTU	ppt	unit	mg/l
2012/2/21 12:48	W1	ME	832967	807717	2.6	1.300	16.20	8.25	100.5	4.03	29.75	8.37	5.4
2012/2/21 12.40	VV I	IVIL	032901	007717	2.0	1.300	16.20	8.28	100.9	4.16	29.76	8.33	3.4
						1.000	16.20	8.85	107.2	4.65	29.59	8.77	2.8
						1.000	16.20	8.77	106.2	4.23	29.60	8.70	2.0
2012/2/21 12:34	W2	ME	832696	807991	14.6	7.300	16.00	8.65	104.7	4.86	29.71	8.52	4.3
2012/2/21 12.51	112	IVIL	032070	001771	11.0	7.300	16.00	8.61	104.1	4.28	29.72	8.50	1.5
						13.600	15.80	8.58	103.8	4.59	29.75	8.55	10.3
						13.600	15.90	8.55	103.4	4.79	29.75	8.46	
						1.000	16.10	8.58	104.3	4.20	29.58	8.44	9.6
						1.000	16.10	8.53	103.8	4.38	29.59	8.41	
2012/2/21 12:21	W3	ME	832029	707896	14.2	7.100	16.00	8.49	103.2	4.69	29.67	8.28	5.5
						7.100	16.00	8.47	103.0	4.48	29.68	8.27	
						13.200	16.00	8.23	100.2	4.80	29.67	8.25	4.5
						13.200	16.00	8.08	98.4	4.91	29.65	8.22	
						1.000	15.90	8.85	107.2	4.35	29.59	8.77	9.9
						1.000	15.90	8.77	106.2	4.64	29.60	8.70	
2012/2/21 12:59	C1	ME	833691	808198	14.9	7.450	15.80	8.65	104.7 104.1	4.96	29.71	8.52	3.2
						7.450	15.80	8.61		4.20	29.72	8.50	-
						13.900 13.900	15.70 15.70	8.58 8.55	103.8 103.4	5.08 5.32	29.75 29.75	8.55 8.46	6.8
	+							+					
						1.000	16.20 16.20	8.50 8.48	103.5 103.2	4.92 4.31	29.56 29.57	8.05 8.06	5.5
						6.900	16.10	8.37	103.2	5.82	29.74	8.21	
2012/2/21 12:08	C2	ME	831468	807750	13.8	6.900	16.10	8.32	102.0	5.22	29.74	8.20	5.2
						12.800	15.90	7.79	94.8	4.83	29.74	8.22	
						12.800	15.90	7.60	92.6	5.65	29.71	8.21	14.6
						1.000	16.00	8.64	104.9	6.86	29.70	8.79	
						1.000	16.00	8.40	104.9	6.97	29.64	8.79	3.4
						7,500	15.80	8.48	102.0	5.88	29.00	8.62	
2012/2/21 13:24	C3	ME	832249	808843	15	7.500	15.80	8.46	102.8	6.29	29.78	8.57	2.0
						14.000	15.70	8.41	102.8	5.85	29.79	8.54	
						14.000	15.50	8.41	102.2	5.90	29.79	8.48	3.7
						14.000	15.50	0.41	102.2	3.90	29.00	0.40	
						1.450	16.00	8.18	99.5	3,59	29.73	8.23	
2012/2/21 17:42	W1	MF	832954	807738	2.9	1.450	16.00	8.16	99.2	3.46	29.73	8.22	2.4
						1.000	16.30	8.26	100.4	3.95	29.80	8.25	
						1.000	16.30	8.21	99.8	3.84	29.80	8.22	2.9
						7.900	15.20	8.27	100.5	4.87	29.86	8.24	
2012/2/21 17:31	W2	MF	832677	807969	15.8	7.900	15.20	8.17	99.3	4.90	29.86	8.22	3.1
						14.800	16.00	7.51	91.0	5.96	29.77	8.20	
						14.800	16.00	7.41	89.7	5.30	29.70	8.19	3.6
						1.000	16.30	8.15	99.1	5.81	29.82	8.39	
						1.000	16.30	8.15	99.2	4.65	29.83	8.37	3.8
						7.950	16.10	7.96	97.0	4.70	29.89	8.30	
2012/2/21 17:18	W3	MF	832038	807896	15.9	7.950	16.10	7.90	96.4	5.08	29.87	8.27	3.0
						14.900	15.80	7.70	94.0	4.88	29.93	8.30	
						14.900	15.90	7.66	93.6	5.81	29.96	8.28	2.1
	1					1.000	16.20	8.61	104.9	4.22	29.32	8.89	
						1.000	16.20	8.35	101.7	4.98	29.31	8.77	4.8
2012/0/21 1=			0005	0004		7.800	16.10	8.23	100.3	5.25	29.45	8.80	
2012/2/21 17:56	C1	MF	833719	808173	15.6	7.800	16.00	8.35	101.8	5.38	29.50	8.70	2.1
						14.600	16.00	8.34	101.8	5.65	29.65	8.77	
						14.600	16.00	8.36	102.0	5.82	29.70	8.65	8.9
						1.000	16.10	8.53	103.5	4.83	29.43	8.23	
						1.000	16.10	8.51	103.3	4.81	29.44	8.22	2.1
2012/2/21 17 06	C22	ME	021450	007746	14.0	7.400	15.80	8.75	106.1	4.64	29.68	8.25	
2012/2/21 17:06	C2	MF	831450	807746	14.8	7.400	15.80	8.72	105.7	4.36	29.68	8.23	4.4
						13.800	15.50	8.45	102.5	5.83	29.83	8.23	2.5
						13.800	15.60	8.40	101.8	4.77	29.83	8.22	3.1
	1					1.000	16.10	8.24	100.2	5.97	29.83	8.56	
					l		16.00	8.19	99.6	4.88	29.82	8.48	6.8
						1.000	10.00						
2012/0/21 12 15	- CC	3.00	000000	000072	150	1.000 7.950	16.00	8.16	99.3	5.18	29.86	8.40	
2012/2/21 18:16	C3	MF	832228	808872	15.9								5.4
2012/2/21 18:16	C3	MF	832228	808872	15.9	7.950	16.00	8.16	99.3	5.18	29.86	8.40	5.4

MF- Mid Flood Tide

ME- Mid Ebb tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 23-Feb-12

Date / Time	Location	Tide*	Co-ore	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	Tiuc	East	North	m	m	${\mathfrak C}$	mg/L	%	NTU	ppt	unit	mg/
2/23/2012 15:09:59	W1	ME	832966	807720	2.4	1.200	16.70	8.29	101.2	4.11	29.86	8.28	4.0
2/23/2012 13:09:39	VV 1	IVIL	032900	007720	2.4	1.200	16.70	8.27	100.9	3.88	29.85	8.25	4.0
						1.000	16.70	8.53	103.9	4.31	29.63	8.33	2.2
						1.000	16.60	8.43	102.6	4.45	29.64	8.28	2.2
2/23/2012 15:01:51	W2	ME	832677	807990	12.5	6.250	16.50	8.13	98.9	4.68	29.83	8.24	3.0
2/23/2012 13:01:31	2		032011	007770	12.0	6.250	15.40	8.01	97.4	4.60	29.83	8.22	5.0
						11.500	16.00	7.79	94.6	4.98	29.55	8.17	4.4
						11.500	16.10	7.51	91.2	4.91	29.60	8.15	
						1.000	16.50	8.10	99.0	4.20	29.83	8.52	2.8
						1.000	16.40	8.01	97.9	4.02	29.82	8.42	
2/23/2012 14:52:20	W3	ME	832035	807895	12.4	6.200	16.20	8.36	101.9	4.55	29.89	8.66	3.9
						6.200	16.10	7.94	96.8	4.49	29.89	8.52	
						11.400	16.20	7.33	89.3	4.51	29.73	8.31	5.7
						11.400	16.00	7.12	86.7	4.56	29.74	8.27	
						1.000	16.50 16.50	8.56 8.45	104.3	4.17 4.20	29.85 29.85	8.59 8.48	3.0
						6.900	16.30	8.32	102.9	4.23	29.89	8.33	
2/23/2012 15:21:20	C1	ME	833708	808186	13.8	6.900	16.30	8.26	101.3	4.23	29.89	8.30	3.6
						12.800	16.00	8.04	97.9	4.28	29.90	8.24	
						12.800	16.10	8.04	97.9	4.38	29.92	8.23	2.9
						1.000	16.10	7.97	98.2	4.49	29.91	8.45	
						1.000	16.50	7.88	97.1	4.73	29.85	8.35	2
						5.450	16.40	7.81	95.5	4.65	29.95	8.27	
2/23/2012 14:42:14	C2	ME	831457	807761	10.9	5.450	16.30	7.61	93.1	4.66	29.95	8.24	1.0
						9.900	16.20	7.17	87.5	4.42	29.76	8.12	
						9.900	16.20	6.97	85.1	4.41	29.79	8.10	4.:
						1.000	16.40	8.17	99.9	4.21	29.75	8.44	
						1.000	16.40	8.12	99.3	4.15	29.76	8.38	5.4
						6.850	16.20	8.04	98.2	4.16	29.84	8.30	
2/23/2012 15:36:07	C3	ME	832210	808882	13.7	6.850	16.20	7.96	97.3	4.29	29.85	8.27	5.2
						12.700	16.20	7.38	90.2	4.68	29.85	8.20	
						12.700	16.20	7.42	90.7	4.47	29.85	8.20	4.8
2/22/2012 15 00 50	****		000004	005546	2.0	1.400	16.30	8.27	100.80	3.46	29.67	8.16	0.4
2/23/2012 15:09:59	W1	MF	832981	807716	2.8	1.400	16.30	8.19	99.90	3.86	29.67	8.15	8.2
						1.000	16.70	8.43	103.00	3.95	29.84	8.64	-
						1.000	16.70	8.24	100.60	4.01	29.83	8.51	5.4
0/02/0010 15 01 51	1110	ME	020770	007005	10.0	6.450	16.40	8.26	100.80	4.12	29.86	8.36	
2/23/2012 15:01:51	W2	MF	832672	807995	12.9	6.450	16.50	8.22	100.30	4.25	29.86	8.31	6.3
						11.900	16.30	7.36	89.60	4.75	29.67	8.23	3.0
						11.900	16.30	7.23	88.10	4.65	29.68	8.19	3.0
						1.000	16.50	8.29	101.40	4.64	29.84	8.49	6.
						1.000	16.50	8.16	100.00	4.51	29.84	8.46	0.
2/23/2012 14:52:20	W3	MF	832038	807896	12.3	6.150	16.20	7.94	96.80	4.71	29.85	8.22	3.:
LI LI LU LU LT.J L. LU	۷۷ ک	1411.	032030	007090	12.3	6.150	16.20	7.92	96.60	4.93	29.85	8.19	۶.,
						11.300	16.20	7.34	89.30	4.90	29.65	8.18	3.
						11.300	16.20	7.00	85.20	5.05	29.64	8.15	٧.
						1.000	16.50	8.35	101.80	4.19	29.61	8.21	3.4
						1.000	16.50	8.33	101.50	4.16	29.61	8.18	ļ .
2/23/2012 15:21:20	C1	MF	833693	808183	13.6	6.800	16.20	8.39	102.30	4.55	29.75	8.23	4.
						6.800	16.20	8.34	101.70	4.58	29.77	8.18	
						12.600	16.10	8.27	101.00	4.82	29.82	8.19	3.
						12.600	16.10	8.22	100.30	4.94	29.82	8.17	
						1.000	16.50	8.08	98.80	4.25	29.66	8.53	1.3
						1.000	16.40	7.99	97.70	4.40	29.66	8.43	-
2/23/2012 14:42:14	C2	MF	831445	807748	11.2	5.600	16.20	8.02	98.10	4.60	29.80	8.31	1.9
						5.600	16.10	8.08	98.80	4.68	29.80	8.28	
						10.200	16.10	7.85	96.00	4.85	29.81	8.19	4.
	 					10.200	16.10	7.84	95.90	4.90	29.82	8.17	
						1.000	16.40	7.79	96.00	3.89	29.83	8.25	2.
						1.000	16.40	7.74	95.40	3.90	29.83	8.21	
2/23/2012 15:36:07	C3	MF	832226	808846	13.7	6.850	16.20	7.93	96.90	4.35	29.91	8.16	3.
						6.850	16.20	7.80	95.30	4.40	29.91	8.14	-
						12.700	16.20	6.82	83.20	4.55	29.84	8.12	4.2
	•				1	12.700	16.20	6.61	80.70	4.56	29.84	8.12	

MF- Mid Flood Tide ME- Mid Ebb tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 25-Feb-12

Date / Time	Location	Tide*	Co-oro	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11de*	East	North	m	m	°C	mg/L	%	NTU	ppt	unit	mg
2/25/2012 14:18:31	W1	ME	832964	807751	2.6	1.300	16.70	7.48	92.2	4.06	29.80	8.45	2.1
2/23/2012 14.10.31	** 1	IVIL	032704	007731	2.0	1.300	16.70	7.43	91.7	4.15	29.81	8.38	2.1
						1.000	16.70	7.43	91.6	4.50	29.85	8.46	0.9
						1.000	16.60	7.68	94.2	4.87	29.86	8.38	0.7
2/25/2012 13:57:58	W2	ME	832683	87976	15.7	7.850	16.30	6.53	79.9	4.33	29.89	8.29	2.5
2/23/2012 13.37.30	11 2	IVIL	032003	01710	13.7	7.850	16.30	6.53	79.7	4.76	29.90	8.26	2.0
						14.700	16.30	8.39	102.9	4.70	29.69	8.20	2.2
						14.700	16.30	8.24	101.0	4.63	29.68	8.17	2.2
						1.000	16.50	7.94	97.2	4.09	29.91	8.40	4.2
						1.000	16.50	7.85	96.2	4.25	29.91	8.31	7.2
2/25/2012 13:46:12	W3	ME	832036	807890	15.3	7.650	16.20	7.33	89.6	5.48	29.94	8.19	2.7
2/23/2012 13.40.12	*** 5	IVIL	032030	007090	13.3	7.650	16.20	7.14	87.3	5.97	29.95	8.17	2.,
						14.300	16.00	8.31	101.4	4.31	29.81	8.12	3.6
						14.300	16.00	8.31	101.4	4.48	29.81	8.12	5.0
						1.000	16.50	8.19	99.9	4.55	29.85	8.49	2.2
						1.000	16.50	8.12	99.1	4.68	29.86	8.40	Z.2
2/25/2012 14:27:10	C1	ME	833684	909176	16.3	8.150	16.20	4.64	56.5	5.90	29.90	8.26	1.4
2/25/2012 14:27:18	CI	IVIE	033084	808176	10.5	8.150	16.20	4.17	50.8	5.81	29.90	8.24	1.4
						15.300	16.00	7.82	95.7	6.55	29.92	8.23	1.4
		<u></u>				15.300	16.10	7.85	96.1	3.49	29.93	8.21	1.3
						1.000	16.50	8.09	98.7	5.37	29.82	8.51	0
						1.000	16.50	8.08	98.6	4.96	29.83	8.47	3.4
2/25/2012 12 25 50	72		004.455	005556	450	7.900	16.30	8.19	99.9	4.77	29.83	8.39	
2/25/2012 13:35:59	C2	ME	831457	807756	15.8	7.900	16.20	8.08	98.6	4.82	29.91	8.23	1.9
						14.800	16.10	8.08	98.6	4.90	29.87	8.12	
						14.800	16.00	8.01	97.7	5.72	29.66	8.08	2.
						1.000	16.50	8.55	104.0	4.80	29.36	8.19	
						1.000	16.50	8.52	103.8	5.65	29.58	8.14	7.
						8.100	16.20	8.29	101.2	4.88	29.84	8.16	
2/25/2012 14:50:35	C3	ME	832218	808883	16.2	8.100	16.20	8.18	99.8	5.24	29.85	8.14	3.
						15.200	15.90	8.09	98.7	5.49	29.93	8.13	
						15.200	15.90	7.99	97.4	4.02	29.94	8.12	2.9
						13.200	13.70	1.57	71.7	7.02	2).)¬	0.12	
						1.350	16.40	7.94	97.4	4.03	29.89	8.45	
2/25/2012 08:57:29	W1	MF	832973	807761	2.7	1.350	16.80	7.84	96.2	4.03	29.89	8.39	5.0
						1.000	16.80	8.13	90.2	4.10	29.89	8.17	
													3.
						1.000	16.80	8.14	99.7	4.31	29.64	8.22	
2/25/2012 08:49:22	W2	MF	932675	807994	15.9	7.950	16.40	8.02	98.4	4.20	29.89	8.19	4.
						7.950	16.40	7.95	97.5	4.65	29.89	8.17	
						14.900	16.30	8.01	98.2	4.86	29.90	8.13	3.
								501					
						14.900	16.30	7.94	97.4	4.97	29.90	8.12	
						1.000	16.50	7.82	95.6	4.26	29.82	8.12 8.42	2
						1.000 1.000	16.50 16.50	7.82 7.77	95.6 95.0	4.26 5.03	29.82 29.82	8.12 8.42 8.37	2.
2/25/2012 08:31:15	W3	MF	832029	807929	15 1	1.000 1.000 7.550	16.50 16.50 16.40	7.82 7.77 8.01	95.6 95.0 97.7	4.26 5.03 4.96	29.82 29.82 29.84	8.12 8.42 8.37 8.31	
2/25/2012 08:31:15	W3	MF	832029	807929	15.1	1.000 1.000 7.550 7.550	16.50 16.50 16.40 16.40	7.82 7.77 8.01 7.90	95.6 95.0 97.7 96.4	4.26 5.03 4.96 4.24	29.82 29.82 29.84 29.84	8.12 8.42 8.37 8.31 8.27	
2/25/2012 08:31:15	W3	MF	832029	807929	15.1	1.000 1.000 7.550 7.550 14.100	16.50 16.50 16.40 16.40 16.40	7.82 7.77 8.01 7.90 7.89	95.6 95.0 97.7 96.4 96.2	4.26 5.03 4.96 4.24 4.33	29.82 29.82 29.84 29.84 29.84	8.12 8.42 8.37 8.31 8.27 8.20	1.
2/25/2012 08:31:15	W3	MF	832029	807929	15.1	1.000 1.000 7.550 7.550	16.50 16.50 16.40 16.40 16.40 16.30	7.82 7.77 8.01 7.90 7.89 7.84	95.6 95.0 97.7 96.4 96.2 95.6	4.26 5.03 4.96 4.24 4.33 4.16	29.82 29.82 29.84 29.84 29.84 29.84	8.12 8.42 8.37 8.31 8.27	1.
2/25/2012 08:31:15	W3	MF	832029	807929	15.1	1.000 1.000 7.550 7.550 14.100 14.100 1.000	16.50 16.50 16.40 16.40 16.30 16.30	7.82 7.77 8.01 7.90 7.89 7.84 8.09	95.6 95.0 97.7 96.4 96.2 95.6 99.3	4.26 5.03 4.96 4.24 4.33 4.16 2.26	29.82 29.82 29.84 29.84 29.84 29.84 29.90	8.12 8.42 8.37 8.31 8.27 8.20 8.19 8.61	1.
2/25/2012 08:31:15	W3	MF	832029	807929	15.1	1.000 1.000 7.550 7.550 14.100 14.100 1.000 1.000	16.50 16.50 16.40 16.40 16.40 16.30 16.30	7.82 7.77 8.01 7.90 7.89 7.84 8.09 8.08	95.6 95.0 97.7 96.4 96.2 95.6 99.3 99.1	4.26 5.03 4.96 4.24 4.33 4.16 2.26 2.45	29.82 29.82 29.84 29.84 29.84 29.84 29.90 29.90	8.12 8.42 8.37 8.31 8.27 8.20 8.19 8.61 8.54	1.
						1.000 1.000 7.550 7.550 14.100 14.100 1.000	16.50 16.50 16.40 16.40 16.30 16.30	7.82 7.77 8.01 7.90 7.89 7.84 8.09	95.6 95.0 97.7 96.4 96.2 95.6 99.3	4.26 5.03 4.96 4.24 4.33 4.16 2.26	29.82 29.82 29.84 29.84 29.84 29.84 29.90	8.12 8.42 8.37 8.31 8.27 8.20 8.19 8.61	1. 2.
	W3	MF	832029 833704	807929 808213	15.1	1.000 1.000 7.550 7.550 14.100 14.100 1.000 1.000	16.50 16.50 16.40 16.40 16.40 16.30 16.30	7.82 7.77 8.01 7.90 7.89 7.84 8.09 8.08	95.6 95.0 97.7 96.4 96.2 95.6 99.3 99.1	4.26 5.03 4.96 4.24 4.33 4.16 2.26 2.45	29.82 29.82 29.84 29.84 29.84 29.84 29.90 29.90	8.12 8.42 8.37 8.31 8.27 8.20 8.19 8.61 8.54	1. 2.
						1.000 1.000 7.550 7.550 14.100 14.100 1.000 1.000 8.050	16.50 16.50 16.40 16.40 16.30 16.30 16.20 16.20	7.82 7.77 8.01 7.90 7.89 7.84 8.09 8.08 8.10	95.6 95.0 97.7 96.4 96.2 95.6 99.3 99.1 99.3	4.26 5.03 4.96 4.24 4.33 4.16 2.26 2.45 3.90	29.82 29.82 29.84 29.84 29.84 29.84 29.90 29.90 29.90	8.12 8.42 8.37 8.31 8.27 8.20 8.19 8.61 8.54 8.38	1. 2. 4. 4.
						1.000 1.000 7.550 7.550 14.100 14.100 1.000 1.000 8.050 8.050	16.50 16.50 16.40 16.40 16.30 16.30 16.20 16.20	7.82 7.77 8.01 7.90 7.89 7.84 8.09 8.08 8.10	95.6 95.0 97.7 96.4 96.2 95.6 99.3 99.1 99.3 98.6	4.26 5.03 4.96 4.24 4.33 4.16 2.26 2.45 3.90 3.36	29.82 29.82 29.84 29.84 29.84 29.84 29.90 29.90 29.90 29.92 29.92	8.12 8.42 8.37 8.31 8.27 8.20 8.19 8.61 8.54 8.38 8.34	1. 2. 4. 4.
						1.000 1.000 7.550 7.550 14.100 14.100 1.000 1.000 8.050 8.050 15.100	16.50 16.50 16.40 16.40 16.40 16.30 16.30 16.20 16.20 16.20	7.82 7.77 8.01 7.90 7.89 7.84 8.09 8.08 8.10 8.04	95.6 95.0 97.7 96.4 96.2 95.6 99.3 99.1 99.3 98.6 98.9	4.26 5.03 4.96 4.24 4.33 4.16 2.26 2.45 3.90 3.36 6.64	29.82 29.82 29.84 29.84 29.84 29.84 29.90 29.90 29.90 29.92 29.92 29.92	8.12 8.42 8.37 8.31 8.27 8.20 8.19 8.61 8.54 8.38 8.34 8.29	1 2 4 4 3
						1.000 1.000 7.550 7.550 14.100 1.000 1.000 8.050 8.050 15.100	16.50 16.50 16.40 16.40 16.40 16.30 16.30 16.20 16.20 16.20 16.20	7.82 7.77 8.01 7.90 7.89 7.84 8.09 8.08 8.10 8.04 8.06	95.6 95.0 97.7 96.4 96.2 95.6 99.3 99.1 99.3 98.6 98.9	4.26 5.03 4.96 4.24 4.33 4.16 2.26 2.45 3.90 3.36 6.64 6.31	29.82 29.82 29.84 29.84 29.84 29.84 29.90 29.90 29.92 29.92 29.92 29.92	8.12 8.42 8.37 8.31 8.27 8.20 8.19 8.61 8.54 8.38 8.34 8.29 8.27	1 2 4 4 3
2/25/2012 09:09:50	Cl	MF	833704	808213	16.1	1.000 1.000 7.550 7.550 14.100 14.100 1.000 1.000 8.050 8.050 15.100 1.000	16.50 16.50 16.40 16.40 16.30 16.30 16.20 16.20 16.20 16.20 16.20	7.82 7.77 8.01 7.90 7.89 7.84 8.09 8.08 8.08 8.04 8.06 8.01	95.6 95.0 97.7 96.4 96.2 95.6 99.3 99.1 99.3 98.6 98.9 98.2	4.26 5.03 4.96 4.24 4.33 4.16 2.26 2.45 3.36 6.64 6.31 4.18	29.82 29.82 29.84 29.84 29.84 29.84 29.90 29.90 29.90 29.92 29.92 29.92 29.93 29.68	8.12 8.42 8.37 8.31 8.27 8.20 8.19 8.61 8.54 8.38 8.34 8.29 8.27 8.42	1 2 4 4 3 <0
2/25/2012 09:09:50						1.000 1.000 7.550 7.550 14.100 1.000 1.000 8.050 8.050 15.100 1.000 1.000	16.50 16.50 16.40 16.40 16.40 16.30 16.30 16.20 16.20 16.20 16.20 16.20 16.50	7.82 7.77 8.01 7.90 7.89 7.84 8.09 8.08 8.10 8.04 8.06 8.01 7.56	95.6 95.0 97.7 96.4 96.2 95.6 99.3 99.1 99.3 98.6 98.9 98.9 93.3	4.26 5.03 4.96 4.24 4.33 4.16 2.26 2.45 3.90 3.36 6.64 6.31 4.18 4.96	29.82 29.82 29.84 29.84 29.84 29.84 29.90 29.90 29.92 29.92 29.92 29.92 29.93 29.68 29.69	8.12 8.42 8.37 8.31 8.27 8.20 8.19 8.61 8.54 8.38 8.34 8.34 8.34 8.34 8.34 8.35	1 2 4 4 3 <0
2/25/2012 09:09:50	Cl	MF	833704	808213	16.1	1.000 1.000 7.550 7.550 14.100 1.000 1.000 8.050 8.050 15.100 1.000 1.000 1.000 7.450	16.50 16.40 16.40 16.40 16.30 16.30 16.20 16.20 16.20 16.20 16.50 16.50 16.50	7.82 7.77 8.01 7.90 7.89 7.84 8.09 8.08 8.10 8.04 8.06 7.56 7.58	95.6 95.0 97.7 96.4 96.2 95.6 99.3 99.1 99.3 98.6 98.9 98.2 93.1 93.3	4.26 5.03 4.96 4.24 4.33 4.16 2.26 2.45 3.90 3.36 6.64 6.31 4.18 4.96 4.23	29.82 29.82 29.84 29.84 29.84 29.84 29.90 29.90 29.92 29.92 29.92 29.92 29.92 29.93 29.68 29.69 29.72	8.12 8.42 8.37 8.31 8.27 8.20 8.19 8.61 8.54 8.38 8.34 8.29 8.42 8.36 8.32	1. 2. 4. 3. <00
2/25/2012 09:09:50	Cl	MF	833704	808213	16.1	1.000 1.000 7.550 7.550 14.100 14.100 1.000 8.050 8.050 15.100 1.000 1.000 7.450 7.450	16.50 16.40 16.40 16.40 16.30 16.20 16.20 16.20 16.20 16.20 16.50 16.50 16.40 16.40 16.40	7.82 7.77 8.01 7.90 7.89 7.84 8.09 8.08 8.10 8.04 8.06 8.01 7.56 7.58 7.57	95.6 95.0 97.7 96.4 96.2 95.6 99.3 99.1 99.3 98.6 98.9 98.2 93.1 93.3 93.1	4.26 5.03 4.96 4.24 4.33 4.16 2.26 2.45 3.90 3.36 6.64 6.31 4.18 4.96 4.23 4.11	29.82 29.82 29.84 29.84 29.84 29.84 29.90 29.90 29.92 29.92 29.92 29.93 29.68 29.69 29.72	8.12 8.42 8.37 8.31 8.27 8.20 8.19 8.61 8.54 8.38 8.34 8.29 8.27 8.42 8.36 8.32 8.32	1. 2. 4. 4. 3. <0
2/25/2012 09:09:50	Cl	MF	833704	808213	16.1	1.000 1.000 7.550 7.550 14.100 14.100 1.000 8.050 8.050 15.100 15.100 1.000	16.50 16.50 16.40 16.40 16.40 16.30 16.20 16.20 16.20 16.20 16.20 16.50 16.50 16.40	7.82 7.77 8.01 7.90 7.89 7.84 8.09 8.08 8.10 8.04 8.06 8.01 7.56 7.58 7.57	95.6 95.0 97.7 96.4 96.2 95.6 99.3 99.1 99.3 98.6 98.9 98.2 93.1 93.3 93.1 94.3	4.26 5.03 4.96 4.24 4.33 4.16 2.26 2.45 3.90 3.36 6.64 6.31 4.18 4.96 4.23 4.11 5.92	29.82 29.82 29.84 29.84 29.84 29.90 29.90 29.92 29.92 29.92 29.92 29.92 29.92 29.93 29.68 29.69 29.72 29.75	8.12 8.42 8.37 8.31 8.27 8.20 8.19 8.61 8.54 8.38 8.34 8.29 8.27 8.42 8.36 8.32 8.32 8.32	1.4 2.2 4.3 4. 3.4 <0 1.3
2/25/2012 09:09:50	Cl	MF	833704	808213	16.1	1.000 1.000 7.550 7.550 14.100 14.100 1.000 8.050 8.050 15.100 15.100 1.000 7.450 7.450 13.900 1.000	16.50 16.40 16.40 16.40 16.30 16.30 16.20 16.20 16.20 16.20 16.50 16.50 16.40 16.40 16.40 16.20 16.50	7.82 7.77 8.01 7.90 7.89 7.84 8.09 8.08 8.10 8.04 8.06 7.56 7.58 7.57 7.68 7.87	95.6 95.0 97.7 96.4 96.2 95.6 99.3 99.1 99.3 98.6 98.9 98.2 93.1 93.3 94.3 96.1 93.2	4.26 5.03 4.96 4.24 4.33 4.16 2.26 2.45 3.90 3.36 6.64 6.31 4.18 4.96 4.23 4.11 5.92 5.38 3.28	29.82 29.82 29.84 29.84 29.84 29.84 29.90 29.90 29.92 29.92 29.92 29.92 29.93 29.68 29.69 29.72 29.75 29.75 29.86	8.12 8.42 8.37 8.31 8.27 8.20 8.19 8.61 8.54 8.38 8.34 8.29 8.27 8.42 8.36 8.32 8.25 8.20 8.18	1.4 2.2 4.3 4. 3.4 <0 1.3
2/25/2012 09:09:50 2/25/2012 08:09:37	C1	MF	833704 831453	808213	16.1	1.000 1.000 7.550 7.550 14.100 1.000 1.000 8.050 8.050 15.100 1.000 1.000 7.450 7.450 7.450 13.900 1.000 1.000	16.50 16.40 16.40 16.40 16.30 16.30 16.20 16.20 16.20 16.20 16.50 16.40 16.40 16.40 16.40 16.20 16.50	7.82 7.77 8.01 7.90 7.89 7.84 8.09 8.08 8.10 8.04 8.06 8.01 7.56 7.58 7.57 7.68 8.12 8.09	95.6 95.0 97.7 96.4 96.2 95.6 99.3 99.1 99.3 98.6 98.9 98.2 93.1 94.3 96.1 93.2 99.5	4.26 5.03 4.96 4.24 4.33 4.16 2.26 2.45 3.90 3.36 6.64 6.31 4.18 4.96 4.23 4.11 5.92 5.38 3.28 3.96	29.82 29.82 29.84 29.84 29.84 29.90 29.90 29.92 29.92 29.92 29.93 29.68 29.69 29.72 29.75 29.75 29.75 29.75 29.75 29.86 29.90	8.12 8.42 8.37 8.31 8.27 8.20 8.19 8.61 8.54 8.38 8.34 8.29 8.27 8.42 8.36 8.32 8.25 8.20 8.38 8.34 8.35 8.31 8.31 8.31 8.32 8.34 8.35 8.35 8.36 8.36 8.37 8.37 8.38 8.39 8.30 8.00	2.2.2 1.3.1 2.2.2 4.3.3 4.3 <0 1.3.1
2/25/2012 09:09:50 2/25/2012 08:09:37	Cl	MF	833704	808213	16.1	1.000 1.000 7.550 7.550 14.100 1.000 1.000 8.050 8.050 15.100 1.000 1.000 7.450 7.450 13.900 1.000 1.000 1.000 7.900	16.50 16.40 16.40 16.40 16.30 16.30 16.20 16.20 16.20 16.20 16.20 16.20 16.50 16.50 16.40 16.40 16.50 16.50 16.50 16.50 16.50 16.50 16.50 16.50 16.50	7.82 7.77 8.01 7.90 7.89 7.84 8.09 8.08 8.10 8.04 8.06 7.56 7.58 7.57 7.68 7.87 7.63 8.12 8.09 8.12	95.6 95.0 97.7 96.4 96.2 95.6 99.3 99.1 99.3 98.6 98.9 98.2 93.1 94.3 96.1 93.2 99.5	4.26 5.03 4.96 4.24 4.33 4.16 2.26 2.45 3.90 3.36 6.64 6.31 4.18 4.96 4.23 4.11 5.92 5.38 3.28 3.96 3.31	29.82 29.82 29.84 29.84 29.84 29.90 29.90 29.92 29.92 29.92 29.92 29.93 29.68 29.69 29.72 29.75 29.75 29.75 29.75 29.86 29.90 29.90	8.12 8.42 8.37 8.31 8.27 8.20 8.19 8.61 8.54 8.38 8.34 8.29 8.27 8.42 8.36 8.32 8.25 8.20 8.38 8.34 8.35 8.36 8.31 8.31 8.54 8.38 8.34 8.36 8.36 8.37 8.38 8.30 8.00	1.4 2 4 4 3 <0 1 1
2/25/2012 08:31:15 2/25/2012 09:09:50 2/25/2012 08:09:37 2/25/2012 09:33:51	C1	MF	833704 831453	808213	16.1	1.000 1.000 7.550 7.550 14.100 1.000 1.000 8.050 8.050 15.100 1.000 1.000 7.450 7.450 7.450 13.900 1.000 1.000	16.50 16.40 16.40 16.40 16.30 16.30 16.20 16.20 16.20 16.20 16.50 16.40 16.40 16.40 16.40 16.20 16.50	7.82 7.77 8.01 7.90 7.89 7.84 8.09 8.08 8.10 8.04 8.06 8.01 7.56 7.58 7.57 7.68 8.12 8.09	95.6 95.0 97.7 96.4 96.2 95.6 99.3 99.1 99.3 98.6 98.9 98.2 93.1 94.3 96.1 93.2 99.5	4.26 5.03 4.96 4.24 4.33 4.16 2.26 2.45 3.90 3.36 6.64 6.31 4.18 4.96 4.23 4.11 5.92 5.38 3.28 3.96	29.82 29.82 29.84 29.84 29.84 29.90 29.90 29.92 29.92 29.92 29.93 29.68 29.69 29.72 29.75 29.75 29.75 29.75 29.75 29.86 29.90	8.12 8.42 8.37 8.31 8.27 8.20 8.19 8.61 8.54 8.38 8.34 8.29 8.27 8.42 8.36 8.32 8.25 8.20 8.38 8.34 8.35 8.31 8.31 8.31 8.32 8.34 8.35 8.35 8.36 8.36 8.37 8.37 8.38 8.39 8.30 8.00	1.4 2.2 4.3 4. 3.4 <0 1.3

MF- Mid Flood Tide ME- Mid Ebb tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 27-Feb-12

Date / Time	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	Tiuc	East	North	m	m	${\mathfrak C}$	mg/L	%	NTU	ppt	unit	mg/
2012/2/27 15:37	W1	ME	832970	807764	2.7	1.350	16.20	8.25	99.0	4.23	29.76	8.60	4.1
2012/2/2/ 15.5/	VV 1	IVIL	032970	007704	2.1	1.350	16.20	8.20	98.5	3.93	29.77	8.47	4.1
						1.000	16.50	7.99	95.8	4.41	29.65	8.49	3.1
						1.000	16.50	8.05	96.6	4.90	29.66	8.43	5.1
2012/2/27 15:27	W2	ME	832676	807994	15.6	7.800	16.00	8.20	98.6	5.26	29.77	8.31	4.7
2012/2/2/ 15.2/	W Z	IVIL	032070	007994	13.0	7.800	16.00	8.08	97.2	5.16	29.76	8.27	4.7
						14.600	15.80	7.44	89.6	4.38	29.71	8.20	3.2
						14.600	15.80	7.22	87.0	4.92	29.71	8.18	J.2
						1.000	15.60	8.06	97.1	4.77	29.75	8.52	3.2
						1.000	15.60	7.96	95.9	4.92	29.73	8.43	٥.,
2012/2/27 15:12	W3	ME	832041	807899	14.8	7.400	15.60	8.00	96.7	5.02	29.83	8.31	1.3
2012/2/27 13.12	***	IVIL	0320+1	007077	14.0	7.400	15.60	7.83	94.6	5.87	29.83	8.27	1.0
						13.800	15.50	7.24	87.4	5.48	29.61	8.19	2.0
						13.800	15.50	7.07	85.4	5.96	29.60	8.17	۷.۱
						1.000	15.50	8.10	97.0	4.79	29.74	8.31	3.1
						1.000	15.50	8.13	97.3	5.42	29.74	8.27	٥
2012/2/27 15:46	C1	ME	833703	808201	15.8	7.900	15.40	8.32	99.6	4.80	29.70	8.26	2.:
2012/2/2/ 13.40	CI	IVIL	033703	000201	13.0	7.900	15.20	8.24	98.7	4.46	29.70	8.23	۷.
						14.800	15.00	7.98	95.7	5.78	29.70	8.20	2.9
						14.800	15.00	7.67	92.0	5.59	29.71	8.17	Ζ.
						1.000	15.60	7.07	86.1	5.86	29.90	8.53	1.
						1.000	15.50	7.03	85.7	4.41	29.92	8.45	1.
2012/2/27 14-50	CO	ME	021456	007750	147	7.350	15.30	7.10	86.6	5.81	29.95	8.32	4.
2012/2/27 14:59	C2	ME	831456	807759	14.7	7.350	15.30	7.04	85.8	4.96	29.94	8.28	4.4
						13.700	15.00	7.14	87.0	5.82	29.90	8.20	
						13.700	15.00	6.74	82.1	5.38	29.90	8.17	2.0
						1.000	15.60	8.49	102.2	4.40	29.66	8.36	0.1
						1.000	15.60	8.42	101.4	5.87	29.67	8.31	3.
						8.050	15.60	8.45	101.6	5.96	29.71	8.39	
2012/2/27 14:43	C3	ME	832218	808864	16.1	8.050	15.70	8.36	100.6	4.40	29.74	8.32	3.0
						15.100	15.70	7.80	93.8	4.73	29.76	8.25	
						15.100	15.70	7.95	95.6	5.70	29.76	8.22	6.4
						13.100	15.70	1.75	75.0	3.10	2).10	0.22	
						1.400	15.60	8.21	98.60	3.69	29.58	8.48	
2012/2/27 9:18	W1	MF	832964	807753	2.8	1.400	15.60	8.21	98.60	3.49	29.59	8.43	2.
						1.000	15.70	8.13	97.60	4.10	29.70	8.56	
						1.000	15.60	8.09	97.10	4.23	29.70	8.48	3.:
						7.800	15.50	8.11	97.50	4.84	29.74	8.35	
2012/2/27 9:04	W2	MF	832674	807991	15.6	7.800	16.10	8.07	97.00	4.77	29.74	8.32	2.
						14.600	16.10	8.13	97.70	5.21	29.74	8.26	
						14.600	16.20	8.05	96.80	5.08	29.75	8.24	3.
						1.000		+	94.70		29.73	8.49	
						1.000	16.50	7.86 7.80	93.90	4.83 4.22	29.72	8.49	3.
							16.50						
2012/2/27 8:51	W3	MF	832038	807896	15.2	7.600	16.20	7.88	94.90	3.29	29.76	8.30	3.
						7.600	16.20	7.83	94.40	4.75 5.81	29.76	8.27 8.24	-
							10.00	7.88	71.70	2.01	27.11	0.21	2.
						14.200	16.00	7.82	94.20	4.99	29.77	8.22	-
						1.000	15.70	8.23	98.50	5.45	29.65	8.56	4.
						1.000	15.70	8.25	98.80	5.46	29.67	8.37	-
2012/2/27 9:26	C1	MF	833697	808196	16.7	8.350	15.70	8.35	99.90	5.88	29.69	8.30	2.
						8.350	15.40	8.31	99.50	4.85	29.69	8.27	-
						15.700	15.40	8.33	99.80	4.34	29.70	8.25	4.
	1					15.700	15.50	8.25	98.90	5.82	29.71	8.21	
						1.000	15.50	7.11	86.80	4.48	29.80	8.41	1.
						1.000	15.60	7.13	87.00	5.72	29.80	8.31	<u> </u>
2012/2/27 8:38	C2	MF	831459	807754	14.9	7.450	15.60	7.59	92.70	6.59	29.84	8.27	2.
/ 0.00	22			00.70	/	7.450	15.40	7.36	89.90	4.47	29.85	8.19	
						13.900	15.40	7.29	88.90	6.08	29.84	8.10	2.
						13.900	15.30	7.13	86.90	4.26	29.87	8.05	۷.
						1.000	15.50	8.25	99.40	5.78	29.75	8.58	3.
						1.000	15.50	8.18	98.60	4.92	29.75	8.50	٠.,
2012/2/27 9:46	C3	MF	832214	808859	16.1	8.050	15.30	8.32	100.30	4.88	29.79	8.60	4.
2012/2/2/7.40	<i>C.</i> 3	1411	032214	0000039	10.1	8.050	15.40	8.21	99.00	4.90	29.79	8.41	7.
	1					15.100	15.30	8.16	98.40	3.58	29.80	8.20	1
						13.100				0.00		0.00	2.0

MF- Mid Flood Tide

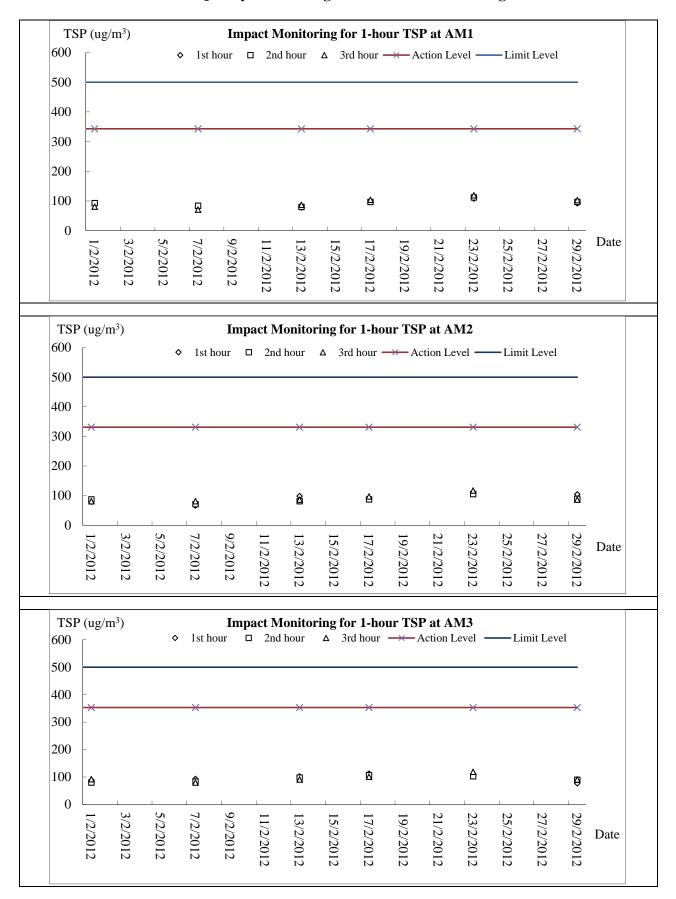
ME- Mid Ebb tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

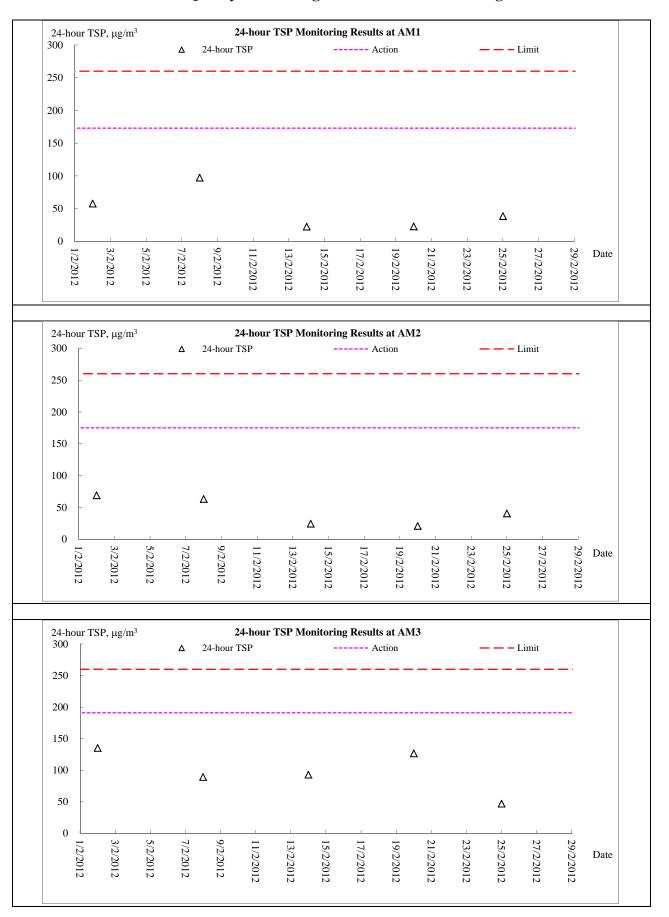
Sok Kwu Wan

29-Feb-12 Date

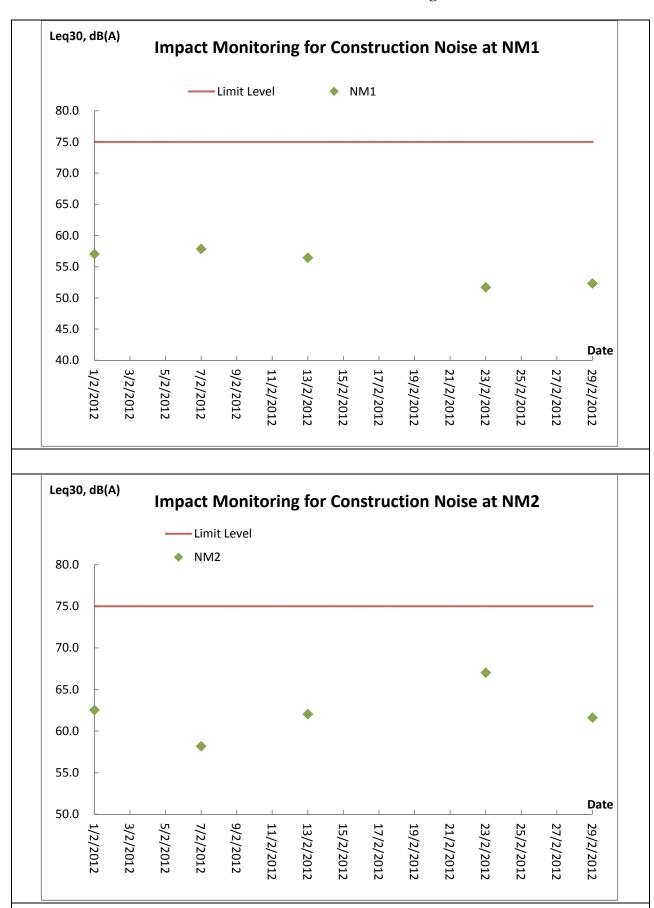
Date / Time	Location	Tide*	Co-oro	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	Tide*	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg/l
2012/2/29 17:15	W1	ME	832976	807768	2.9	1.450	15.10	8.62	102.4	3.12	29.55	8.49	3.6
2012/2/27 17:13	.,,	1112	032710	007700	2.,,	1.450	15.10	8.49	101.0	3.40	29.55	8.43	3.0
						1.000	14.90	8.71	103.2	4.51	29.55	8.62	3.6
						1.000 8.050	14.90 14.70	8.62 8.49	102.2 100.4	4.54 4.92	29.56 29.69	8.55 8.37	
2012/2/29 16:23	W2	ME	832678	807996	16.1	8.050	14.70	8.49	100.4	4.92	29.69	8.35	4.0
						15.100	14.70	8.30	98.2	5.50	29.54	8.26	
						15.100	14.80	8.00	94.6	4.03	29.51	8.22	4.6
						1.000	15.30	8.01	96.0	5.30	29.68	8.46	2.2
						1.000	15.30	7.91	94.7	4.96	29.68	8.41	3.2
2012/2/20 16:11	W3	ME	922029	807903	15.6	7.800	15.00	8.31	98.9	4.80	29.70	8.34	2.9
2012/2/29 16:11	W 3	ME	832038	807903	13.0	7.800	15.00	8.33	99.1	6.59	29.70	8.32	2.9
						14.600	14.90	7.82	92.7	6.67	29.42	8.25	4.8
						14.600	14.90	7.70	91.2	4.81	29.42	8.23	7.0
						1.000	14.90	8.66	102.9	3.08	29.58	8.49	3,5
						1.000	14.90	8.75	103.8	4.84	29.62	8.36	
2012/2/29 16:40	C1	ME	833697	808197	16.7	8.350 8.350	14.90 14.80	8.60 8.32	102.0 98.7	5.75 5.63	29.63 29.65	8.32 8.21	5.0
						15.700	14.80	8.28	98.7	6.49	29.65	8.21	
						15.700	14.80	8.19	97.6	5.56	29.63	8.21	2.0
						1.000	15.50	9.11	109.6	8.56	29.83	8.81	
						1.000	15.50	8.18	98.4	6.53	29.83	8.58	2.0
						7.600	15.50	7.94	95.5	5.59	29.81	8.35	2.5
2012/2/29 16:00	C2	ME	831451	807763	15.2	7.600	15.50	7.86	94.5	6.82	29.82	8.33	2.5
						14.200	15.50	6.73	80.3	5.31	28.65	8.23	1.0
						14.200	15.50	6.70	80.0	5.88	28.65	8.22	1.9
						1.000	14.90	8.54	101.2	5.38	29.50	8.23	4.1
						1.000	14.90	8.50	100.8	4.40	29.51	8.19	4.1
2012/2/29 16:52	C3	ME	832216	808859	17.1	8.550	14.90	8.54	101.3	5.56	29.67	8.17	2.7
2012/2/2/ 10:02	0.5		032210	000037	1711	8.550	14.90	8.62	102.3	4.47	29.67	8.25	
						16.100	14.90	8.50	100.8	4.92	29.69	8.14	7.5
						16.100	14.90	8.45	100.3	7.20	29.69	8.14	
2012/2/20 10 10	77/1	ME	022071	007751	2.0	1.400	15.10	8.23	97.90	3.79	29.35	8.54	2.0
2012/2/29 10:10	W1	MF	832961	807751	2.8	1.400	15.10	8.23	98.00	4.16	29.32	8.50	2.9
						1.000	15.30	8.10	96.90	3.98	29.71	8.42	7.1
						1.000	15.30	8.11	97.00	4.12	29.71	8.38	7.1
2012/2/29 9:21	W2	MF	832677	807996	16.1	8.050	15.30	8.12	97.10	4.16	29.73	8.26	6.1
2012/2/27 7.21	112	1111	032011	001770	10.1	8.050	15.30	8.07	96.60	4.55	29.75	8.26	0.1
						15.100	15.30	8.03	96.10	5.02	29.71	8.26	5.6
	-					15.100	15.30	8.00	95.70	4.90	29.71	8.20	
						1.000	15.60	7.82	93.90	4.49	29.45	8.51	7.4
						1.000 6.450	15.60 15.50	7.79 7.91	93.60 95.10	5.96 4.86	29.45 29.78	8.43 8.31	
2012/2/29 9:16	W3	MF	832031	807901	12.9	6.450	15.50	7.91	95.10	5.05	29.78	8.29	5.5
						11.900	15.50	7.89	93.20	6.48	29.78	8.27	
						11.900	15.50	7.86	94.60	3.83	29.79	8.21	4.9
						1.000	14.90	8.43	100.10	5.96	29.65	8.46	2 5
						1.000	14.90	8.41	99.90	7.25	29.64	8.44	3.5
2012/2/29 9:30	C1	MF	833696	808201	14.6	7.300	14.90	8.49	100.90	4.83	29.68	8.61	3.2
20141417 7.JU	CI	1411.	-033090	000201	14.0	7.300	14.90	8.39	99.70	6.46	29.68	8.45	الم.د
						13.600	14.90	8.09	96.10	5.20	29.68	8.34	3.1
	1					13.600	14.90	8.04	95.60	7.40	29.68	8.34	
						1.000	15.70	7.47	90.00	4.77	29.44	8.31	1.5
						1.000 6.400	15.70 15.70	7.45 7.46	89.80 90.00	5.21 5.38	29.47	8.27	
2012/2/29 9:00	C2	MF	831463	807755	12.8	6.400	15.70	7.46	89.30	6.20	29.66 29.65	8.36 8.26	2.7
						11.800	15.70	6.78	81.80	4.96	29.62	8.05	
						11.800	15.70	6.70	80.80	3.31	29.62	8.07	2.2
	1					1.000	14.90	8.49	100.80	5.93	29.62	8.32	
						1.000	14.90	8.48	100.70	5.95	29.63	8.29	2.4
2012/2/20 0.52	Co	ME	922219	909962	15	7.500	14.90	8.45	100.40	4.81	29.67	8.19	1.6
2012/2/29 9:52	C3	MF	832218	808863	15	7.500	14.90	8.46	100.50	5.82	29.68	8.17	1.6
						14.000	14.90	8.42	100.00	6.86	29.63	8.23	2.1
		1			ì	14.000	14.90	8.30	98.60	5.91	29.62	8.20	2.1

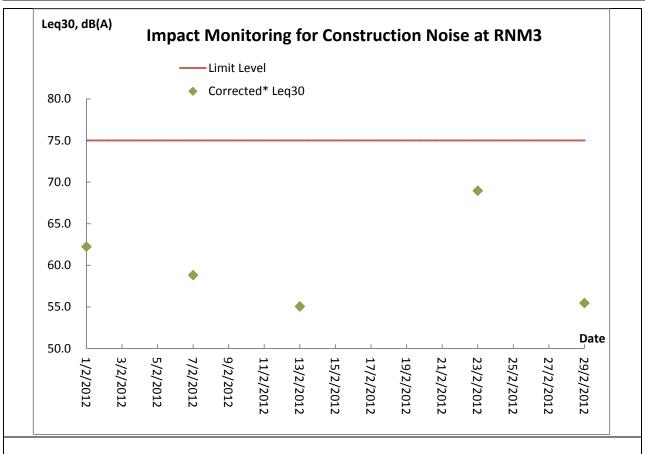

MF- Mid Flood Tide

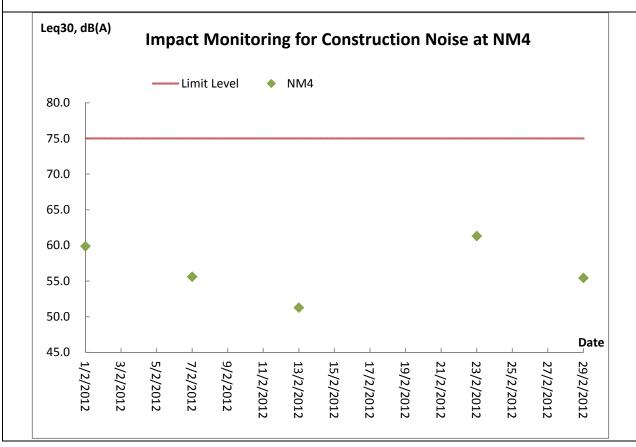
ME- Mid Ebb tide

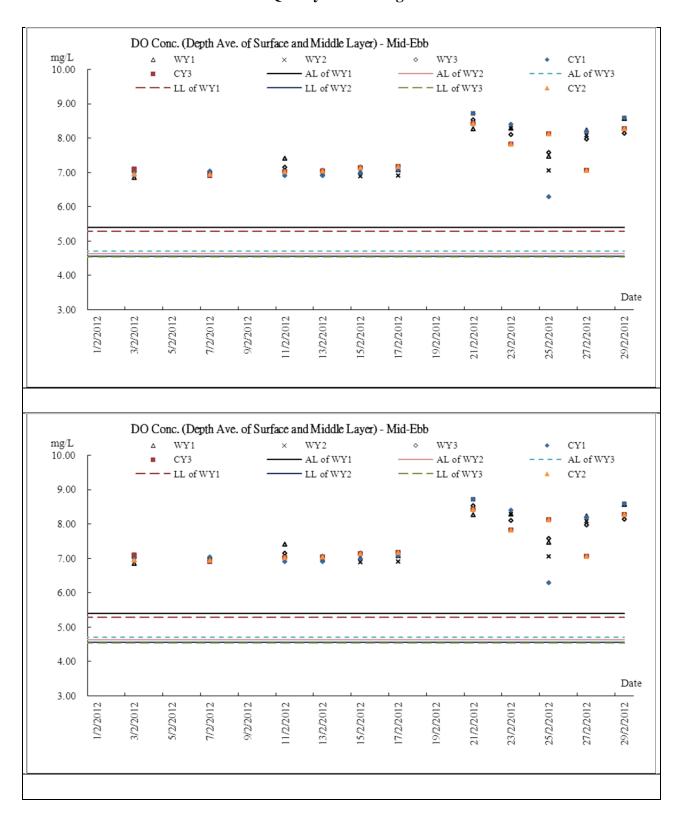

Appendix H

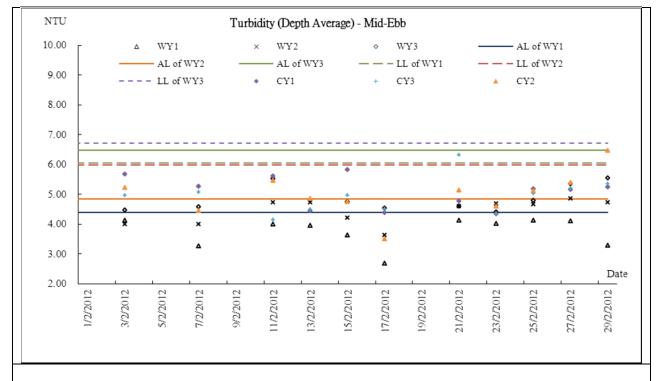
Graphical Plots of Monitoring Results

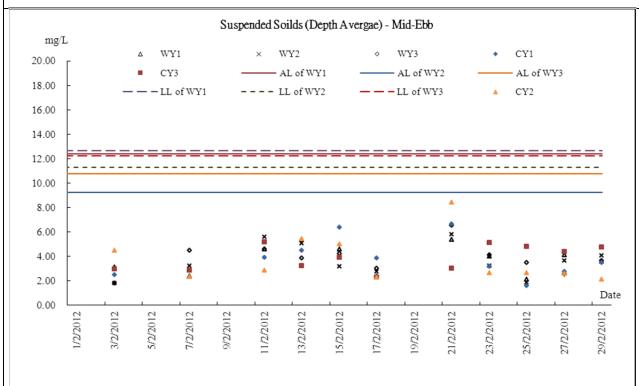

Air Quality Monitoring – 1 hour TSP Monitoring

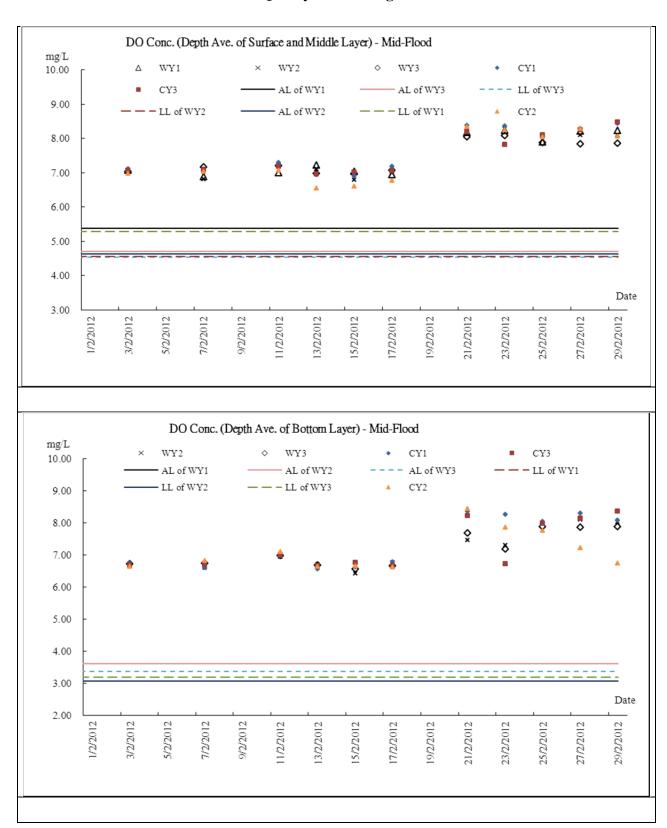


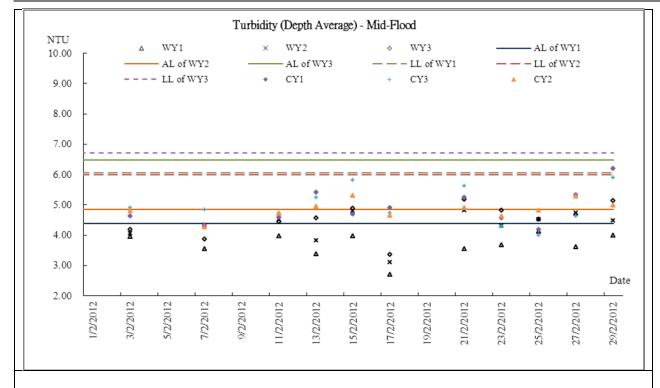

Air Quality Monitoring - 24 hour TSP Monitoring

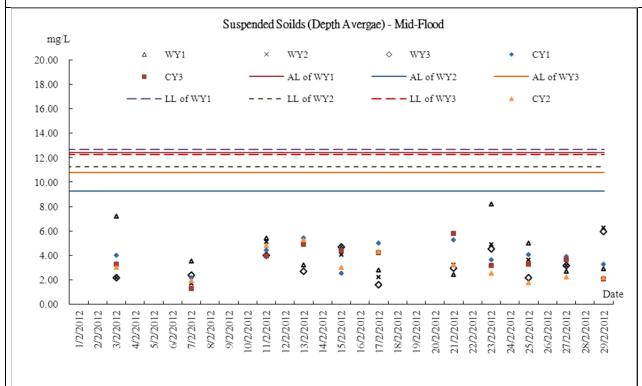

Construction Noise Monitoring






Marine Water Quality Monitoring - Mid-Ebb Tide





Marine Water Quality Monitoring - Mid-Flood Tide

Appendix I

Meteorological Information

Meteorological Data Extracted from HKO during the Reporting Period

Date		Weather
1-Feb-12	Wed	Sunny intervals.
2-Feb-12	Thu	Cloudy with a few mist patches
3-Feb-12	Fri	Moderate easterly winds
4-Feb-12	Sat	Mainly cloudy.
5-Feb-12	Sun	Moderate easterly winds
6-Feb-12	Mon	Moderate easterly winds, fresh at times offshore
7-Feb-12	Tue	Mainly cloudy.
8-Feb-12	Wed	Moderate easterly winds
9-Feb-12	Thu	Mainly cloudy.
10-Feb-12	Fri	Cloudy with a few mist patches
11-Feb-12	Sat	Cloudy with one or two rain patches.
12-Feb-12	Sun	Cloudy with a few mist patches
13-Feb-12	Mon	Cloudy with one or two rain patches and coastal fog.
14-Feb-12	Tue	Cloudy with one or two rain patches.
15-Feb-12	Wed	Moderate easterly winds.
16-Feb-12	Thu	Moderate easterly winds
17-Feb-12	Fri	Sunny intervals.
18-Feb-12	Sat	Cloudy with a few mist patches
19-Feb-12	Sun	Sunny intervals.
20-Feb-12	Mon	Moderate easterly winds.
21-Feb-12	Tue	Mainly cloudy with one or two rain patches.
22-Feb-12	Wed	Humid with fog.
23-Feb-12	Thu	Cloudy with a few rain patches
24-Feb-12	Fri	Sunny intervals.
25-Feb-12	Sat	Moderate to fresh northerly winds
26-Feb-12	Sun	Fresh easterly winds
27-Feb-12	Mon	Moderate to fresh northerly winds
28-Feb-12	Tue	Mainly cloudy with one or two rain patches.
29-Feb-12	Wed	Cloudy with a few rain patches at first

Appendix J

Monthly Summary Waste Flow Table

Monthly Summary Waste Flow Table for February 2012

			Actu	ıal Quant	ities of In	nert C&D	Material	s Genera	ted Mont	hly				A	ctual Qu	antities	of C&D	Wastes	Generate	ed Montl	nly	
Month	Total Q Gene (a) = (c)	•	Hard Re Large I Cone (t	crete	Reused Con	tract	Reused Proj (c	ects	Dispo Publi (6	c Fill	Import (1		Me	tals	Pap cardb packa	oard	Plas	stics	Cher Wa		Oth e.g. ru	
	(in '00	00m ³)	(in '00	00m ³)	(in '00	00m^3)	(in '00)0m ³)	(in '00	00m ³)	(in '00)0m ³)	(in '00	00kg)	(in '00	00kg)	(in '00	00kg)	(in '00	00kg)	(in to	nne)
	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW
2011	10.430	33.543	0.160	0.407	0.740	1.059	0.000	32.454	9.690	0.030	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	206.870	46.690
Jan	0.000	3.311	0.000	0.000	0.000	0.000	0.000	3.311	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	22.530	5.090
Feb	0.170	6.271	0.000	0.000	0.000	0.000	0.000	6.271	0.170	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	14.860	5.660
Mar																						
Apr																						
May																						
Jun																						
<mark>Sub-total</mark>	10.599	43.125	0.160	0.407	0.740	1.059	0.000	42.036	9.860	0.030	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	244.260	57.440
Jul																						
Aug																						
Sep																						
Oct																						
Nov																						
Dec																						
Total	10.599	43.125	0.160	0.407	0.740	1.059	0.000	42.036	9.860	0.030	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	244.260	57.440
Total	53.7	724	0.5	67	1.7	99	42.0)36	9.8	90	0.0	00	0.0	00	0.0	00	0.0	00	0.0	00	301.	700

Remark: Assume 1.0 m^3 vehicle dump load = 1.6 tonnes C&D materials

YSW: Yung Shue Wan SKW: Sok Kwu Wan

Appendix K

Weekly Site Inspection Checklist

Environmental Team – Weekly Site Inspection and Audit Checklist – Sok Kwu Wan

Humic Wind:	Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan	RE's Re Contrac	ed by 's Represer presentativ tor's Repre	e: sentativ	e:	Jack Edgan Selin 9:3	houng, Poon Lowg
PART					r. 11		Ph. C. C
	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
	n 1: Water Quality				_		
1.01	Is an effluent discharge license obtained for the Project?						
1.02	Is the effluent discharged in accordance with the discharge licence?						
1.03	Is the discharge of turbid water avoided?						
	Are there proper desilting facilities in the drainage systems to reduce SS levels in effluent?						
	Are there channels, sandbags or bunds to direct surface run-off to sedimentation tanks?						
	Are there any perimeter channels provided at site boundaries to intercept storm runoff from crossing the site?						
1.07	Is drainage system well maintained?						
1.08	As excavation proceeds, are temporary access roads protected by crushed stone or gravel?						
1.09	Are temporary exposed slopes properly covered?						
1.10	Are earthworks final surfaces well compacted or protected?						
1.11	Are manholes adequately covered or temporarily sealed?						
1.12	Are there any procedures and equipment for rainstorm protection?		Z				
1.13	Are wheel washing facilities well maintained?						
1.14	Is runoff from wheel washing facilities avoided?		ď				
1.15	Are there toilets provided on site?						
1.16	Are toilets properly maintained?						
	Are the vehicle and plant servicing areas paved and located within roofed areas?		ď				
1.18	Is the oil leakage or spillage avoided?						~
	Are there any measures to prevent leaked oil from entering the drainage system?						
1 20	Are there any measures to collect spilt cement and concrete washings during concreting works?						
	Are there any oil interceptors/grease traps in the drainage systems for vehicle and plant servicing areas, canteen kitchen, etc?		Ø,				
	Are the oil interceptors/grease traps maintained properly?		Ø				

Environmental Team – Weekly Site Inspection and Audit Checklist – Sok Kwu Wan

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.23	Is used bentonite recycled where appropriate?		П				
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m³ capacities for sedimentation.						
1.25	No excavation is undertaken in the settlement area.						
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.						
1.27	Mobile toilets should provide on site and located away the stream course.					1	
1.28	License collector should be employed for handling the sewage of mobile toilet.						
1.29	Is ponding /stand water avoided?						
1.30	Is open stockpiles well covered by impermeable sheet?						
Section	on 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?		Ø				
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		Ø				
2.03	Are the excavated materials sprayed with water during handling?		Ø				
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?		Ø				
2.05	Is the exposed earth properly treated within six months after the last construction activities?						
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?						
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?						
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?		Ø				
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?						
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?						
2.11	Is dark smoke emission from plant/equipment avoided?		Ø				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?						
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?						
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		Ø				
2.15	Is open burning avoided?		7				
2.16	Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.						
Section	on 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?						<u></u>
3.02	Is silenced equipment adopted?						·
3.03	Is idle equipment turned off or throttled down?						
3.04	Are all plant and equipment well maintained and in good condition?						
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?		Ø				
3.06	Are hand held breakers fitted with valid noise emission labels during operation?						
3.07	Are air compressors fitted with valid noise emission labels during operation?		白				

Environmental Team – Weekly Site Inspection and Audit Checklist – Sok Kwu Wan

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during operation?						
3.09	Are Construction Noise Permit(s) applied for percussive piling works?						
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?						
3.11	Are valid Construction Noise Permit(s) posted at site entrances?						
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).						****
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)						
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).						
Section	on 4: Waste/Chemical Management		<i>.</i>				
4.01	Waste Management Plan had been submit to Engineer for approval.						
4.02	Are receptacles available for general refuse collection?		Ø				
4.03	Is general refuse sorting or recycling implemented?						
4.04	Is general refuse disposed of properly and regularly?						
4.05	Is the Contractor registered as a chemical waste producer?						
4.06	Are the chemical waste containers and storage area properly labelled?		Z				
4.07	Are the chemical wastes stored in proper storage areas?		Ø				
4.08	Is the chemical container or equipment provided with drip tray?						
4.09	Is the chemical waste storage area used for storage of chemical waste only?		Ø				
4.10	Are incompatible chemical wastes stored in different areas?		Ø,				
4.11	Are the chemical wastes disposed of by licensed collectors?						
4.12	Are trip tickets for chemical wastes disposal available for inspection?			剪			
4.13	Are chemical/fuel storage areas bounded?						
4.14	Are designated areas identified for storage and sorting of construction wastes?						
4.15	Are construction wastes sorted (inert and non-inert) on site?						
4.16	Are construction wastes reused?		Ø.				
4.17	Are construction wastes disposed of properly?		Ø				
4.18	Are site hoardings and signboards made of durable materials instead of timber?						
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?						
4.20	Are appropriate procedures followed if contaminated material exists?		乜				
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?						
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		d				
4.23	Contaminated sediments will managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.						

Environmental Team - Weekly Site Inspection and Audit Checklist - Sok Kwu Wan

AUES

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Section	n 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?						Refer to Monthly EM&A report - Appendix M
5.02	Are retained and transplanted trees properly protected?						
5.03	Are surgery works carried out for the damaged trees?						
5.04	Is damage to trees outside site boundary due to construction activities avoided?						
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?						
Section	on 6: Others		_				
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?		Ø				

(Sok Kwu Wan)

IEC's representative

Remarks:

Findings of Site Inspection: (7-7-20): Follow up:

No environmental issue was

observed during site inspection

The transplanted and retained uncommon tree species trees were found to be labeled, fenced and protected.

ET's representative

Selva May Ray Jeuny Hoshin (Selina Leng) (Asleng)

EO's representative

Contractor's representative

RE's representative

Envir	onmental Team – Weekly Site Inspection and	Audit C	hecklist	– Sok	Kwu W	an	AUES			
Project	: TCS/00512/09	Inspect	ted by		CI	necklist No.	TCS512B-			
-	Construction of Sewage Treatment Works at	•	T's Represe	ntative:		Ray Chew				
	Yung Shue Wan and Sok Kwu Wan		epresentati			Joseph Not				
			ctor's Repre Representati		'e:	Edin	eunos			
Date:	14-2-2012	Time:	•			201	^			
PART	A: GENERAL INFORMATION				Env	ا ironmental/	Permit No.			
Weath										
Temper										
Humid Wind:		Calm								
	spected									
1	Sok Kwu Wan									
PART E	S: SITE AUDIT	-					II.			
		Not			Follow		Photo/			
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Obs.	Yes	No	Up	N/A	Remarks			
	1: Water Quality			 1	<u> </u>		·			
	Is an effluent discharge license obtained for the Project?									
1.02	Is the effluent discharged in accordance with the discharge licence?									
	Is the discharge of turbid water avoided?	Ш			Ц					
1.04	Are there proper desilting facilities in the drainage systems to reduce SS levels in effluent?									
	Are there channels, sandbags or bunds to direct surface run-off to sedimentation tanks?		Ø							
	Are there any perimeter channels provided at site boundaries to intercept storm runoff from crossing the site?									
1.07	ls drainage system well maintained?		Z							
	As excavation proceeds, are temporary access roads protected by crushed stone or gravel?		ď							
1.09	Are temporary exposed slopes properly covered?									
1.10	Are earthworks final surfaces well compacted or protected?									
1.11	Are manholes adequately covered or temporarily sealed?		Ø,							
1.12	Are there any procedures and equipment for rainstorm protection?		Ø							
1.13	Are wheel washing facilities well maintained?		Ø							
1.14	s runoff from wheel washing facilities avoided?		Ø							
1.15	Are there toilets provided on site?									
1.16	Are toilets properly maintained?									
	Are the vehicle and plant servicing areas paved and located within roofed areas?									
1.18	s the oil leakage or spillage avoided?									
	Are there any measures to prevent leaked oil from entering the drainage system?		Z							
	Are there any measures to collect spilt cement and concrete washings during concreting works?		\Box							
121	Are there any oil interceptors/grease traps in the drainage systems for vehicle and plant servicing areas, canteen kitchen, etc?									

1.22

Are the oil interceptors/grease traps maintained properly?

Environmental Team – Weekly Site Inspection and Audit Checklist – Sok Kwu Wan

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.23	Is used bentonite recycled where appropriate?						
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m³ capacities for sedimentation.						
1.25	No excavation is undertaken in the settlement area.						
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.						
1.27	Mobile toilets should provide on site and located away the stream course.						·
1.28	License collector should be employed for handling the sewage of mobile toilet.						
1.29	Is ponding /stand water avoided?						Ramark 2
1.30	Is open stockpiles well covered by impermeable sheet?						
Section	on 2: Air Quality		,			•	
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?						
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		d				
2.03	Are the excavated materials sprayed with water during handling?		Z,				
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?		ď				
2.05	Is the exposed earth properly treated within six months after the last construction activities?		Ø				
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?						
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?						Romark 1
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?						
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?		Ø				
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?						
2.11	Is dark smoke emission from plant/equipment avoided?						
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?						
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?		Ø				
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?						
2.15	Is open burning avoided?		Ø				
2.16	Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.		Ø				
Section	nn 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?						
3.02	Is silenced equipment adopted?						
3.03	Is idle equipment turned off or throttled down?		ď				
3.04	Are all plant and equipment well maintained and in good condition?		Ø				
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?						
3.06	Are hand held breakers fitted with valid noise emission labels during operation?						
3.07	Are air compressors fitted with valid noise emission labels during operation?						

Environmental Team – Weekly Site Inspection and Audit Checklist – Sok Kwu Wan

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during operation?						-
3.09	Are Construction Noise Permit(s) applied for percussive piling works?						
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?						
3.11	Are valid Construction Noise Permit(s) posted at site entrances?						
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).						
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)						
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).					Ø	
Section	on 4: Waste/Chemical Management					•	
4.01	Waste Management Plan had been submit to Engineer for approval.		Z				
4.02	Are receptacles available for general refuse collection?		ZÍ,				
4.03	Is general refuse sorting or recycling implemented?		Ø				
4.04	Is general refuse disposed of properly and regularly?						
4.05	Is the Contractor registered as a chemical waste producer?						
4.06	Are the chemical waste containers and storage area properly labelled?						
4.07	Are the chemical wastes stored in proper storage areas?		Z,				
4.08	Is the chemical container or equipment provided with drip tray?		Ø				·
4.09	Is the chemical waste storage area used for storage of chemical waste only?						
4.10	Are incompatible chemical wastes stored in different areas?						
4.11	Are the chemical wastes disposed of by licensed collectors?						
4.12	Are trip tickets for chemical wastes disposal available for inspection?		ď				
4.13	Are chemical/fuel storage areas bounded?						
4.14	Are designated areas identified for storage and sorting of construction wastes?						
4.15	Are construction wastes sorted (inert and non-inert) on site?						
4.16	Are construction wastes reused?						
4.17	Are construction wastes disposed of properly?						
4.18	Are site hoardings and signboards made of durable materials instead of timber?						
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?						
4.20	Are appropriate procedures followed if contaminated material exists?						
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?						
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.						
4.23	Contaminated sediments will managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.						

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Section	on 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?						Refer to Monthly EM&A report - Appendix M
5.02	Are retained and transplanted trees properly protected?				Ø		<u> </u>
5.03	Are surgery works carried out for the damaged trees?				\square		
5.04	Is damage to trees outside site boundary due to construction activities avoided?						
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?						
Sectio	nn 6: Others		,				
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?		Ø				

(Sok Kwu Wan)

Remarks:

Findings of Site Inspection: ($\ \ \ \ \ \ \ \ \ \ \ \ \ \ \)$: Follow up:

Portion H

- Dust generation at the aslope

should be minimized to avoid

nuricance to adjacont public road. (Romarkel)

- Stagnart voter to be removed or added larricial oil to suppress

mosquito breeding. (Renove 2) Grid A-B/1. portion H. Joseph

The transplanted and retained uncommon tree species trees were found to be labeled, fenced and protected.

IEC's representative	RE's representative	ET's representative	EO's representative	Contractor's representative	
	Joseph	Rayn	Lewy 40 sh		
((Joseph NC)	(Ray Chang)	(H.S. lung)	()	

Environmental Team – Weekly Site Inspection and Audit Checklist – Sok Kwu Wan

Weathe Tempera	Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Date: 2(-7-20\7 PART A: GENERAL INFORMATION Weather: Sunny Fine Cloudy Temperature: "0°C Humidity: High Moderate Low			ntative: ve: esentativ	e:	Checklist No. TCS512B- Ray Choma Tucky Poor Folian lewy 2:30pm Environmental Permit No. EP-281/2007A				
1 Sok Kwu Wan										
PART B:	SITE AUDIT		·							
	ot Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; offlow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks			
Section	1: Water Quality									
1.01 ls	an effluent discharge license obtained for the Project?									
1.02 ls	the effluent discharged in accordance with the discharge licence?									
1.03 ls	the discharge of turbid water avoided?		Z							
1.04 Ar	re there proper desilting facilities in the drainage systems to educe SS levels in effluent?									
	re there channels, sandbags or bunds to direct surface run-off to edimentation tanks?		Ø							
	re there any perimeter channels provided at site boundaries to tercept storm runoff from crossing the site?		Ø							
1.07 ls	drainage system well maintained?		\square							
	s excavation proceeds, are temporary access roads protected by rushed stone or gravel?		Z							
1.09 Ar	re temporary exposed slopes properly covered?									
1.10 Ar	re earthworks final surfaces well compacted or protected?		Ø,							
1.11 Ar	re manholes adequately covered or temporarily sealed?		Ø							
1.12 Ar	re there any procedures and equipment for rainstorm protection?		Ø,							
1.13 Ar	re wheel washing facilities well maintained?		ď,							
1.14 ls	runoff from wheel washing facilities avoided?		Ø							
1.15 Ar	re there toilets provided on site?									
1.16 Ar	re toilets properly maintained?									
	re the vehicle and plant servicing areas paved and located within ofed areas?		Ø,							
1.18 ls	the oil leakage or spillage avoided?		otan							
	re there any measures to prevent leaked oil from entering the rainage system?									
	re there any measures to collect spilt cement and concrete ashings during concreting works?									
1.21 Ar	re there any oil interceptors/grease traps in the drainage systems r vehicle and plant servicing areas, canteen kitchen, etc?									
	re the oil interceptors/grease traps maintained properly?		\Box							

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.23	Is used bentonite recycled where appropriate?		П			$\overline{\Lambda}$	
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m ³ capacities for sedimentation.						
1.25	No excavation is undertaken in the settlement area.		Ø				
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.						<u> </u>
1.27	Mobile toilets should provide on site and located away the stream course.		\square				
1.28	License collector should be employed for handling the sewage of mobile toilet.						
1.29	Is ponding /stand water avoided?	A	Ø,				
1.30	Is open stockpiles well covered by impermeable sheet?						-
Section	on 2: Air Quality		_				
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?						
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?						
2.03	Are the excavated materials sprayed with water during handling?		Ø				
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?		Z				
2.05	Is the exposed earth properly treated within six months after the last construction activities?		Ø				
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?		ď				
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?		NA.				Remark 1
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?						
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?						·
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?		Z				
2.11	Is dark smoke emission from plant/equipment avoided?		Ø,				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?		ď				
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?						
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?		Ø				
2.15	ls open burning avoided?		Ø				
2.16	Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.						
Section	on 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?						
3.02	Is silenced equipment adopted?		Ø,				
3.03	Is idle equipment turned off or throttled down?		Ø				
3.04	Are all plant and equipment well maintained and in good condition?						
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?						
3.06	Are hand held breakers fitted with valid noise emission labels during operation?		\square				
3.07	Are air compressors fitted with valid noise emission labels during operation?						·

Environmental Team – Weekly Site Inspection and Audit Checklist – Sok Kwu Wan

							
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
.08	Are flaps and panels of mechanical equipment closed during operation?						
.09	Are Construction Noise Permit(s) applied for percussive piling works?						
.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?						
.11	Are valid Construction Noise Permit(s) posted at site entrances?		ď				
.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).						
.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier						
.14	which cannot visible from NSRs (Level 2 mitigation measure) Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).						·· · .
ectic	n 4: Waste/Chemical Management						
.01	Waste Management Plan had been submit to Engineer for approval.		Ø				
.02	Are receptacles available for general refuse collection?		Ø				
.03	Is general refuse sorting or recycling implemented?		Ø				
.04	Is general refuse disposed of properly and regularly?						
.05	Is the Contractor registered as a chemical waste producer?		Ø				
.06	Are the chemical waste containers and storage area properly labelled?						**************************************
.07	Are the chemical wastes stored in proper storage areas?		Ø,				
.08	Is the chemical container or equipment provided with drip tray?		Ø,				
.09	Is the chemical waste storage area used for storage of chemical waste only?		ď				
.10	Are incompatible chemical wastes stored in different areas?		ď				
.11	Are the chemical wastes disposed of by licensed collectors?						
.12	Are trip tickets for chemical wastes disposal available for inspection?		Ø				
.13	Are chemical/fuel storage areas bounded?		Ø				
.14	Are designated areas identified for storage and sorting of construction wastes?						
.15	Are construction wastes sorted (inert and non-inert) on site?		Ø,				
.16	Are construction wastes reused?		Ø				
.17	Are construction wastes disposed of properly?						
.18	Are site hoardings and signboards made of durable materials instead of timber?		Ø				
.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		Ø		. 🔲		
.20	Are appropriate procedures followed if contaminated material exists?						
.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?		团				
.22	Site cleanliness and appropriate waste management training had provided for the site workers.		\Box				
.23	Contaminated sediments will managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.				Z		

Environmental Team - Weekly Site Inspection and Audit Checklist - Sok Kwu Wan

AUES

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Sectio	n 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?						Refer to Monthly EM&A report - Appendix M
5.02	Are retained and transplanted trees properly protected?				Ø,		
5.03	Are surgery works carried out for the damaged trees?				Ø		
5.04	Is damage to trees outside site boundary due to construction activities avoided?		Z,				
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?		Ø				
Sectio	on 6: Others						
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?						

(Sok Kwu Wan)

Remarks:

Findings of Site Inspection: (21-7-2017):

Follow up:

Dust generation was still observed, water spraying device was renommended along the slope to minimize the nurisance to public.

(Portion H)

The transplanted and retained uncommon tree species trees were found to be labeled, fenced and protected.

IEC's representative	RE's representative	ET's representative	EO's representative	Contractor's representative
	•	-		
			Λ	
	\mathcal{M}	Roju	// ,	
	1/1	(angle -	Ley 40 shu	
()	(SACKY POW)	(Ray Change)	(H.S. leng)	()
•	שמשן דשטחנ	land 2 and	17.0,009.	

Environmental Team - Weekly Site Inspection and Audit Checklist - Sok Kwu Wan

Weath Temper Humid Wind: Area In	Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan RE's Representative: Contractor's Representative: Time: ART A: GENERAL INFORMATION Veather: Sunny Fine Cloudy Rainy Compensative: Contractor's Representative: Contractor's Representative: Contractor's Representative: Time: ART A: GENERAL INFORMATION Veather: Understand Information Rainy Compensative: Contractor's Representative: Co				Checklist No. TCS512B- Ray (herney Joseph May Edward Lerney Environmental Permit No. EP-281/2007A				
PART E					F-II		Photo/		
	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks		
	1: Water Quality								
1.01	s an effluent discharge license obtained for the Project?								
1.02	Is the effluent discharged in accordance with the discharge licence?				Ц				
	Is the discharge of turbid water avoided?			Ш	<u> </u>				
1.04	Are there proper desilting facilities in the drainage systems to reduce SS levels in effluent?		\Box						
	Are there channels, sandbags or bunds to direct surface run-off to sedimentation tanks?								
	Are there any perimeter channels provided at site boundaries to intercept storm runoff from crossing the site?								
1.07	ls drainage system well maintained?		Ø						
	As excavation proceeds, are temporary access roads protected by crushed stone or gravel?								
	Are temporary exposed slopes properly covered?								
1.10	Are earthworks final surfaces well compacted or protected?								
1.11	Are manholes adequately covered or temporarily sealed?								
1.12	Are there any procedures and equipment for rainstorm protection?								
1.13	Are wheel washing facilities well maintained?								
1.14	Is runoff from wheel washing facilities avoided?		Ø						
1.15	Are there toilets provided on site?								
1.16	Are toilets properly maintained?								
1.17	Are the vehicle and plant servicing areas paved and located within		Ø						
1.18	roofed areas? Is the oil leakage or spillage avoided?		П						
1.19	Are there any measures to prevent leaked oil from entering the		<u> </u>		\Box	\Box			
Ē	drainage system? Are there any measures to collect spilt cement and concrete								
1.20	washings during concreting works? Are there any oil interceptors/grease traps in the drainage systems		EJ/						
1.21	for vehicle and plant servicing areas, canteen kitchen, etc?								
1.22	Are the oil interceptors/grease traps maintained properly?		Ľ		Ц	Ш			

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.23	Is used bentonite recycled where appropriate?					<u> </u>	
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m³ capacities for sedimentation.						
1.25	No excavation is undertaken in the settlement area.						
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.		Ø				
1.27	Mobile toilets should provide on site and located away the stream course.					0	
1.28	License collector should be employed for handling the sewage of mobile toilet.						
1.29	is ponding /stand water avoided?						
1.30	Is open stockpiles well covered by impermeable sheet?						
Section	ол 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?						
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?						
2.03	Are the excavated materials sprayed with water during handling?						
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?		Ø,				
2.05	Is the exposed earth properly treated within six months after the last construction activities?		Ø				
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?						
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?						
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?		Q				<u> </u>
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?		Ø				
· 2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?						
2.11	Is dark smoke emission from plant/equipment avoided?						·
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?		Q				
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?		ď				
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?						
2.15	Is open burning avoided?		Ø				
2.16	Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.		d				<u> </u>
Sect	ion 3: Noise		,				
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?						
3.02	Is silenced equipment adopted?						
3.03	Is idle equipment turned off or throttled down?						·
3.04	Are all plant and equipment well maintained and in good condition?		, 🛛				
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?	ш	Δ				but it
3.06	Are hand held breakers fitted with valid noise emission labels during operation?						
3.07	Are air compressors fitted with valid noise emission labels during operation?						
	•						

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during operation?						
3.09	Are Construction Noise Permit(s) applied for percussive piling works?		Ø				
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?		Ø				
3.11	Are valid Construction Noise Permit(s) posted at site entrances?		Ø				
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).	\Box				Ø	
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure) Temporary/Moveable noise barrier equal to or more than 3m height						
3.14	with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).			لــا		<u>.</u>	
Section	on 4: Waste/Chemical Management		/			_	
4.01	Waste Management Plan had been submit to Engineer for approval.						
4.02	Are receptacles available for general refuse collection?						
4.03	Is general refuse sorting or recycling implemented?						
4.04	Is general refuse disposed of properly and regularly?						
4.05	Is the Contractor registered as a chemical waste producer?						
4.06	Are the chemical waste containers and storage area properly labelled?		Ø				
4.07	Are the chemical wastes stored in proper storage areas?						
4.08	Is the chemical container or equipment provided with drip tray?						
4.09	Is the chemical waste storage area used for storage of chemical waste only?						
.4.10	Are incompatible chemical wastes stored in different areas?						
4.11	Are the chemical wastes disposed of by licensed collectors?						
4.12	Are trip tickets for chemical wastes disposal available for inspection?		Ø				
4.13	Are chemical/fuel storage areas bounded?		ď				
4.14	Are designated areas identified for storage and sorting of construction wastes?						
.4.15	Are construction wastes sorted (inert and non-inert) on site?						
4.16	Are construction wastes reused?		ď				
4.17	Are construction wastes disposed of properly?		Ø				
4.18	Are site hoardings and signboards made of durable materials instead of timber?						
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		Q				
4.20	Are appropriate procedures followed if contaminated material exists?		Ø				
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?	. Ц					
4.22	provided for the site workers.	ليا					
4.23	Contaminated sediments will managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.					Ø	

Envi	ronmental Team ~ Weekly Site Inspection and A	Audit Ch	necklist	- Sok	Kwu Wa	ın	AUES
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Section	on 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?				ď		Refer to Monthly EM&A report - Appendix M
5.02	Are retained and transplanted trees properly protected?				Ø		
5.03	Are surgery works carried out for the damaged trees?				Ø		
5.04	Is damage to trees outside site boundary due to construction activities avoided?						
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?						
Section	on 6: Others		_				
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?		Ø				
(So	k Kwu Wan)	. "					
Ren	narks:						
Fine	dings of Site Inspection: (28 ~ 7 ~ 1 ~ 1):	Follow u	p:				
١	to onvironmental issue was found						
	do environmental issue was found during site inspection-						
							,

The transplanted and retained uncommon tree species trees were found to be labeled, fenced and protected.

IEC's representative	RE's representative	ET's representative	EO's representative	Contractor's representative	_
	Booth.	Ragu			
()	Joseph NC)	- - // -	(;	()	•

Appendix L

Implementation Schedule of Mitigation Measures

Implementation Schedule of Air Quality Measures

EIA	EM&A	Environmental Protection Measures*	Location /	Implementation		olementa Stages**		Relevant Legislation
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	C	0	& Guidelines
Constr	ruction Phase							
3.32	2.34	Installation of 2m high solid fences around the construction site of Pumping Station P2.	Work site / during construction	Contractor		√		
3.34	2.34	 Adopting the following good site practices and follow the dust control requirements of the Air Pollution Control (Construction Dust) Regulation: Stockpiles of imported material kept on site should be contained within hoardings, dampened and / or covered during dry and windy weather; Material stockpiled alongside trenches should be covered with tarpaulins whenever works are close to village houses; Water sprays should be used during the delivery and handling of cement, sands, aggregates and the like. Any vehicle used for moving sands, aggregates and construction waste should have properly fitting side and tail boards. Materials should not be loaded to a level higher than the side and tail boards, and should be covered by a clean tarpaulin. 	Work site / during construction	All contractors		V		EIAO-TM, APCO, Air Pollution Control (Construction Dust) Regulation
3.36	Section 2	1 hour and 24 hour dust monitoring and site audit	Designated air monitoring locations / throughout construction period	Contractor/ Environmental Team		V		EM&A Manual

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Noise Measures

EIA	EM&A	Environmental Protection Measures*	Location/Timing	Implementation		olementa Stages *:		Relevant Legislation &
Ref	Ref	22.12.02.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2		Agent	D	C	0	Guidelines
Construct	tion Phase							
4.41-4.43	3.19	 Use of quiet PME for the construction of the pumping stations Use of temporary noise barrier during the construction of Pumping Station P1a 	Work site /during the construction of Pumping Stations	Contractor		√ 		EIAO-TM, NCO
4.44 – 4.49	3.19	 Implementation of following measures during the sewer construction: Use of quiet PME or method; Restriction on the number plant (1 item for each type of plant); and Good Site Practices Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program. Mobile plant, if any, should be sited as far away from NSRs as possible. Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum. Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities. 	Work site /during the construction of Sewer.	Contractor		√ ·		

EIA	EM&A	Environmental Protection Measures* Location/Liming *		Implementation		lementa Stages **		Relevant Legislation &
Ref	Ref			Agent	D	C	0	Guidelines
4.50 – 4.53	3.19	 Use of noise screening structures such as acoustic shed and barrier wherever practicable and feasible in areas with sufficient clearance and headroom. Adoption of manual working method wherever practicable and feasible in areas where the worksites of the proposed sewer alignment are located less than 20 m from the residential NSRs and less than 30 m from the temple (THT) and the public library. Use of PME for the construction of the section of sewer between the NSR and the Pumping Station P1a should not be allowed during the excavation work of Pumping Station P1a. 	Work site /during the construction of Sewer.	Contractor		√ ·		
4.60	Section 35	Noise monitoring	Designated noise monitoring locations / throughout construction period	Contractor/ Environmental Team		V		EM&A Manual

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Water Quality Control Measures

EIA		Environmental Protection Measures*	Location (duration /completion of	Implementation		lement Stages*	Relevant Legislation		
Ref	Ref		measures)	Agent	D	C	0	and Guidelines	
	ruction Phas		T	T		. ,		1	
5.77	4.35	No-dig method using Horizontal Directional Drilling (HDD) would be used for the installation of outfall pipe of about 480 m from shore to minimize the potential water quality impacts arising from the dredging works required for the submarine outfall construction. Silt curtains will be installed around the exit area of the pilot drill.	Marine works site / During construction of submarine outfall	Contractor		√			
5.73	4.36	Dredging Works	Marine works site	Contractor		√			
5.78	4.30	 Implementation of following measures during the dredging works: dredging should be undertaken using closed grab dredgers with a maximum total production rate of 55m³/hr; 	and at the identified water sensitive receivers/	Contractor		V			
		• deployment of 2-layer silt curtains with the first layer enclosing the grab and the second layer at around 50m from the dredging area while dredging works are in progress;	During construction						
		 dredging operation should be undertaken during ebb tide only; all vessels should be sized such that adequate clearance (i.e. minimum clearance of 0.6m) is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; 							
		• all pipe leakages should be repaired promptly and plant should not be operated with leaking pipes;							
		• excess material should be cleaned from the decks and exposed fittings of barges before the vessel is moved;							
		• adequate freeboard (i.e. minimum of 200mm) should be maintained on barges to ensure that decks are not washed by wave action;							
		• all barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material;							
		• loading of barges should be controlled to prevent splashing of dredged material to the surrounding water, and barges should not be filled to a level which will cause the overflow of materials or polluted water during loading or transportation; and							

EIA	EM&A	Environmental Protection Measures*	Location (duration	Implementation	Implementation Stages**			Relevant Legislation
Ref	Ref	Environmental Protection Measures*	/completion of measures)	Agent	D	C	О	and Guidelines
		• the decks of all vessels should be kept tidy and free of oil or other substances that might be accidentally or otherwise washed overboard.						
5.79	4.37	Construction Run-off and Drainage	Construction works	Contractor		1		ProPECC
		Implementation of the following site practices outlined in ProPECC PN 1/94 for "Construction Site Drainage"	sites					PN 1/94
		• Provision of perimeter channels to intercept storm-runoff from outside the site. These should be constructed in advance of site formation works and earthworks.						
		Works programmes should be designed to minimize works areas at any one time, thus minimizing exposed soil areas and reducing the potential for increased siltation and runoff.						
		• Sand / silt removal facilities such as sand traps, silt traps and sediment basins should be provided to remove the sand / silt particles from run-off. These facilities should be properly and regularly maintained. These facilities should be carefully planned to ensure that they would be installed at appropriate locations to capture all surface water generated on site.						
		• Careful programming of the works to minimise soil excavation works during rainy seasons.						
		• Exposed soil surface should be protected by paving or hydroseeding as soon as possible to reduce the potential of soil erosion.						
		• Trench excavation should be avoided in the wet season, and if necessary, these should be excavated and backfilled in short sections.						
		Open stockpiles of construction materials on site should be covered with tarpaulin or similar fabric						
5.80	4.38	General Construction Activities	Construction works	Contractor		√		
		Debris and rubbish generated on-site should be collected, handled and disposed of properly to avoid entering the nearby coastal waters and stormwater drains. All fuel tanks and storage areas should be provided	sites					

EIA	EM&A	Environmental Protection Measures*	Location (duration /completion of	Implementation	_	lement Stages*	Relevant Legislation	
Ref	Ref	Environmental Protection (vicasures	measures)	Agent	D	C	0	and Guidelines
		with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. Open drainage channels and culverts near the works areas should be covered to block the entrance of large debris and refuse.						
5.81	4.39	Wastewater Arising from Workforce Portable toilets should be provided by the Contractors, where necessary, to handle sewage from the workforce. The Contractor should also be responsible for waste disposal and maintenance practices.	Construction works sites	Contractor		V		
5.96	Section 4	Water quality monitoring	Designated water monitoring locations/ throughout construction period	Contractor		V		EM&A Manual

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

N/A Not applicable

Implementation Schedule of Sediment Contamination Mitigation Measures

EIA	EM&A	Environmental Protection Measures*	Location / Timing Implementation St		plementa Stages**		Relevant Legislation &	
Ref	Ref	Zin vin olimentan 1 Toteetton Toteasures	Location / Timing	Contractor	D	C	О	Guidelines
6.17	5.3	Follow the requirement and procedures for dredged mud disposal specified under the WBTC No. 34/2002.	Marine works site / during dredging works	Contractor		V		WBTC No. 34/2002
6.18	5.4	Implement appropriate dredging methods which have been incorporated into the recommended water quality mitigation measures.	Marine works site, during dredging works	Contractor		√		
6.19	5.5	 During the transportation and disposal of the dredged sediment, the following measures should be taken: Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved. Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels should be equipped with automatic self monitoring devices as specified by the DEP. 	Marine works site and at the identified sensitive receivers	Contractor		V		

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Solid Waste Management Measures

EIA	Dof EM&A Environmental Protection Massures*	Location /	Implementation		plementa Stages **		Relevant Legislation &	
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	C	O	Guidelines
Construct	ion Phase			1		· I	I	
7.14	6.4	 Good site practices Nomination of an approved person, such as a site manager, to be responsible for implementation of good site practices, arranging for collection and effective disposal to an appropriate facility, of all wastes generated at the site Training (proper waste management and chemical handling procedure) should be provided for site staffs Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers. Provision of sufficient waste disposal points and regular collection for disposal. Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Facility. Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors. Maintain records of the quantities of wastes generated, recycled and disposed. 	Work sites/During construction	Contractor		٧		Waste Disposal Ordinance (Cap.54)
7.15	6.5	To monitor the disposal of C&D waste at landfills and to control fly tipping, a trip-ticket system should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.	Work sites/During construction	Contractor		V		WBTC No. 21/2002
7.16	6.6	Recommendations to achieve waste reduction include: segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; to encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated	Work sites/During construction	Contractor		٧		WBTC No. 4/98, 5/98

EIA	EM&A	EM&A Environmental Protection Magnetic	Location /	Implementation	Implementation Stages **			Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Timing	Timing Agent Agent		C	O	Guidelines
		 by the work force; any unused chemicals or those with remaining functional capacity should be recycled; use of reusable non-timber formwork to reduce the amount of C&D material; prior to disposal of C&D waste, it is recommended that wood, steel and other metals should be separated for re-use and / or recycling to minimise the quantity of waste to be disposed of to landfill; proper storage and site practices to minimise the potential for damage or contamination of construction materials; and plan and stock construction materials carefully to 						
7.18	6.7	minimise amount of waste generated and avoid unnecessary generation of waste. General Site Wastes A collection area for construction site waste should be provided where waste can be stored prior to removal from site An enclosed and covered area for the collection of the waste is	Work sites/During construction	Contractor		√		Public Health and Municipal Services Ordinance (Cap. 132)
7.19-7.20	6.8 - 6.9	Chemical Wastes After use, chemical waste should be handled according to the Code of Practice on the Package, Labelling and Storage of Chemical Wastes Any unused chemicals or those with remaining functional capacity should be recycled Waste should be properly stored on site within suitably designed containers and should be collected by an approved licensed waste collectors for disposal at the Chemical Waste Treatment Facility or other licenced facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation under the Waste Disposal Ordance.	Work sites/During construction	Contractor		V		Waste Disposal (Chemical Waste) (General) Regulation, Code of Practice on the Packaging Labelling and Storage of Chemical Wastes

EIA	EM&A		Location /	Implementation		Implementation Stages **		Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	C	0	Guidelines
		 Any service shop and minor maintenance facilities should be located on hard standing within a bunded area, and sumps and oil interceptors should be provided. 						
		• Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should be undertaken within the designated areas equipped control these discharges						
7.21-7.22	6.10 – 6.11	 Construction and Demolition Material The C&D waste should be separated on-site into three categories: public fill, the inert portion of the C&D material (e.g. concrete and rubble), which should be re-used on-site or disposed of at a public filling area; C&D waste for re-use and / or recycling, the non-inert portion of the C&D material, (e.g. steel and other metals, woods, glass and plastic); C&D waste which cannot be re-used and / or recycled (e.g. wood, glass and plastic) Where possible, inert material should be re-used on-site Where practicable, steel and other metals should be separated for re-use and/or recycling prior to disposal of C&D material	During all construction phases	Contractors		V		WBTC No. 4/98, 5/98, 21/2002, 25/99, 12/2000

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Ecological Impact Measures

EIA Ref EM&A Ref		H NVIPANMENTAL PRATECTION VIDAGIIPECA	Location / Timing	Implementation Agent	Implementation Stages			Relevant Legislation & Guidelines
			Tilling	Agent	D	C	O Guidennes	
	ction Phase		T	Τ~	1			T
8.157	7.2	 Terrestrial Ecology Labeling and fencing of the uncommon tree species Avoidance of use of woodland habitats as Works Area, in particular where trees are located 	Work sites / during construction phase	Contractor		V		
8.159 – 8.160	7.3	Subtidal Ecology Use of HDD technique Dredging Use of closed-grab dredger Deploy silt curtains during dredging.	Marine works site / during dredging works	Contractor		٧		
8.161	7.4	 Site runoff Construction and maintenance of sand / silt removal facilities Silt curtains Timing of earthworks Coverage of sand / fill piles during storms. Barriers along the landward side of Pumping Station P2 site boundary (to prevent site runoff from entering area with Romer's Tree Frog) 	All work sites / during construction phase	Contractor		V		

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Fisheries Impact Measures

EIA	EM&A	Environmental Protection Measures*		Implementation	Implementation Stages**			Relevant Legislation
Ref	Ref		Timing	Agent	D	C	O	& Guidelines
9.29	8.3	Use of closed grab dredging and silt curtains around the immediate dredging area and low dredging rates as recommended in Water Quality of the EIA report	Marine works site, during dredging works	Contractor		V		TM on EIA Process
9.32	Section 8	Water quality monitoring (see Implementation Schedule for Water Quality Control Measures)	Designated monitoring locations / throughout construction period and 1 year following operation of the STW	Contractor and Environmental Team		V	V	EM&A Manual

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Landscape and Visual Impact Measures

EIA	EM&A	Environmental Protection Measures*	Location /	Implementation Agent	Implementation Stages **			Relevant Legislation &
Ref	Ref		Timing		D	C	0	Guidelines
Constr	uction Ph	ase						
10.74	9.10	Retaining existing trees and minimizing damage to vegetation by close coordination and on site alignment adjusted of rising main and gravity sewer pipelines.	All sites	Contractor		√ 		WBTC No. 14/2002
		Careful and efficient transplanting of affected trees to temporary or final transplant location (the proposed tree to be transplanted is a semi-mature <i>Macaranga tanarius</i> and is located at the proposed Pumping Station P2 location).	All sites	Contractor		√		WBTC No. 14/2002
		Short excavation and immediate backfilling sections upon completion of works to reduce active site area.	All sites	Contractor		V		
		Screening of site construction works by use of hoarding that is appropriate to its site.	All sites	Contractor		V		WBTC No. 19/2001
		Conservation of topsoil for reuse.	All sites	Contractor		V		
		Night-time light source from marine fleets should be directed away from the residential units.	Outfall area.	Contractor		√		

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Appendix M

Tree Inspection Report

經緯園藝有限公司

Melofield Nursery & Landscape Contractor Ltd

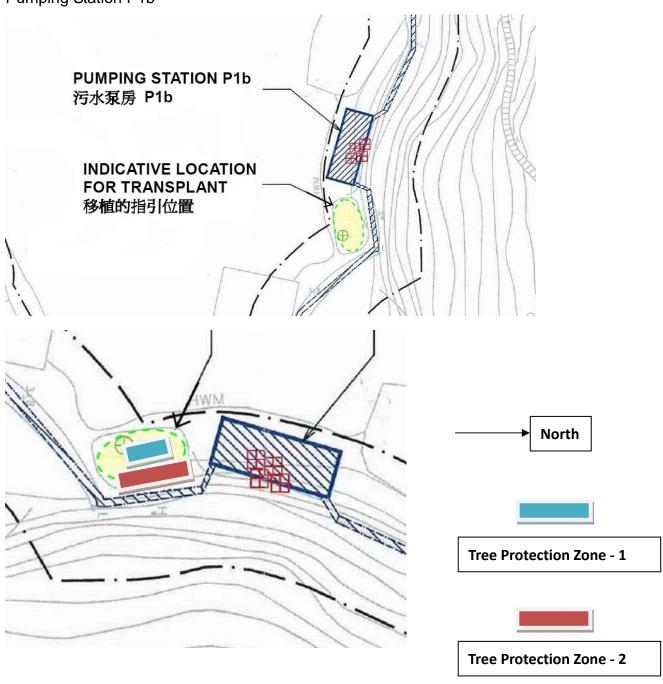
元朗下攸田村 125 號 125, Ha Yau Tin Tsuen, Yuen Long, N.T.

TEL: (852) 2572-0048 FAX: (822)2573-9099 E-mail: melofield@netvigator.com

Contract No. DC/2009/13

Project Name: Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan


Tree Inspection Report for Celtis timorensis

<u>Inspection Date: 15-02-2012</u>

1. Introduction

According to the requirement in the Environmental Permit EP-281/2007/A, the uncommon tree species, *Celtis timorensis*, found in the pumping station P1b area as shown in figure below shall be properly transplanted to the area immediately south of the Pumping Station P1b before commencement of construction of the Pumping Station P1b

This Tree Inspection Report describes the bi weekly monitoring result of the *Celtis timorensis*, which were additionally planted as the compensation of previously transplanted Celtis timorensis CT7, CT8, CT9 & CT10.

2. Summary of Inspection

Date of Inspection	15 February 2012, around 14:30
Location	A soil ground adjacent to the Pumping
	Station P1b Chung Mei, at Sok Kwu Wan,
	Lamma Island.
Weather	Cloudy, the vegetations are located under
	the shade of existing tall trees.
The labeled Celtis timorensis	CT_1A, CT_2A, CT_3A, CT_4A, CT_5A,
under Tree Protection Zone 2	CT_6A & CT_7A,

3. Proposed Inspection Schedule

Month	Actual / proposed Inspection Date		
July, 2011	14 and 25 July 2011		
August, 2011	9 and 26 August 2011		
September, 2011	5 and 23 September 2011		
October, 2011	10 and 24 October 2011		
November, 2011	8 November 2011		
December, 2011	14 and 30 December 2011		
January 2012	31 January 2012		
February 2012	15 February 2012		

4. Summary of Inspection Result

Tree No	Speciation	Health Status
CT_1A	Celtis timorensis	Very Poor
CT_2A	Celtis timorensis	Very Poor
CT_3A	Celtis timorensis	Very Poor
CT_4A	Celtis timorensis	Very Poor
CT_5A	Celtis timorensis	Good
CT_6A	Celtis timorensis	Good
CT_7A	Celtis timorensis	Very Poor

Inspection parameters or criteria

Good Leaves and stem grown very lush, additional or larger in size of leaves can be observed in each inspection

Fair Green leaves can be found. No major unhealthy condition of the plant is observed. The condition is stable.

Poor Fewer green leaves than usual are observed. No new leaf is grown and the condition keep stable. The bark is dry. The plant is weak.

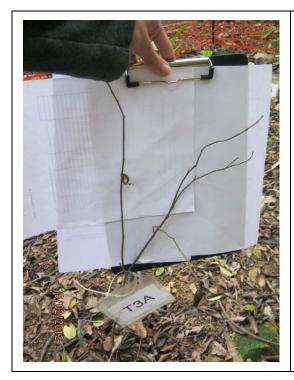
Very Poor No new green leaf or bud can be observed. The bark is dry. The plant is weak.

5. Description of Inspection Results:

Tree ID: CT_1A

Current Status: Very Poor

Justification: Leaves were dry. The bark was also dry. No significant improvement in health. The plant was very weak.


Tree ID:CT_2A

Current Status: Very Poor

Justification: Leaves were dry. The bark was also dry. No significant improvement in health. The plant was very weak.

Tree ID: CT_3A

Current Status: Very Poor

Justification: Leaves were dry. The bark was also dry. No significant improvement in health. The plant was very weak.

Tree ID: CT_4A

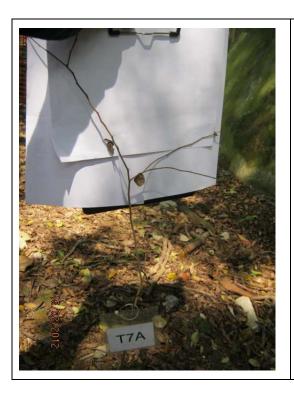
Current Status: Very Poor

Justification: Leaves were dry. The bark was also dry. No significant improvement in health. The plant was weak.

Tree ID: CT_5A

Current Status: Good

Justification: Green leaves were found. Significant improvement in health. The plant was healthy. Some leaves were damaged by insect.


Tree ID: CT_6A

Current Status: Good

Justification: Green leaves were found. Significant improvement in health. The plant was healthy.

Tree ID: CT_7A

Current Status: Very Poor

Justification: Leaves were dry. The bark was also dry. No significant improvement in health. The plant was weak.

Overall Condition

In the Tree Protection Zone 2, the condition of CT_1A-7A was generally poor. The health of CT5A and CT6A were found satisfactory. Regular watering and weeding will be carried out during dry weather. They may better recover under this warm and rainy weather. Some newly grown green leaves were found eaten by insects. Remove any insect found on the plant physically to prevent the bud attacked by leaf-feeding insect. No pesticide should be used when the plants are weak.

Considering the condition of CT1A to CT4A, CT_7A were in very poor condition, compensatory of additional Celtis timorensis is proposed and will be carried out in the coming warm weather season for better growing.

經緯園藝有限公司

Melofield Nursery & Landscape Contractor Ltd

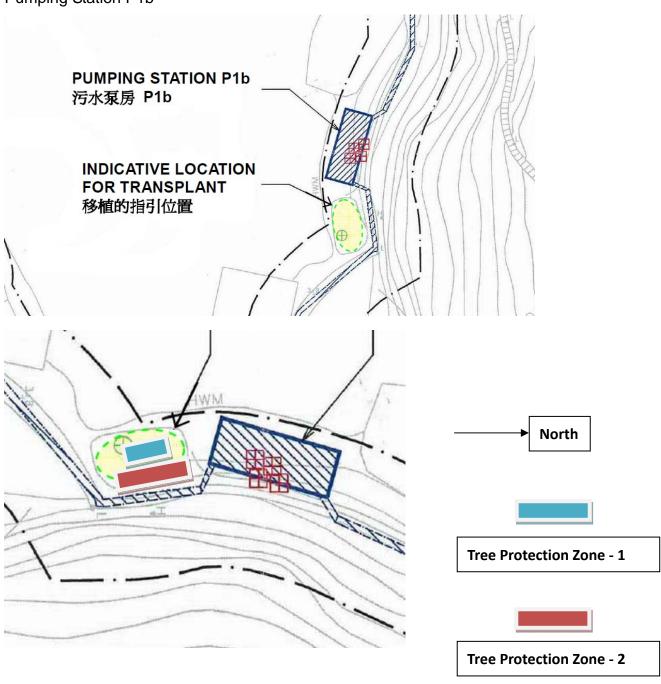
元朗下攸田村 125 號 125, Ha Yau Tin Tsuen, Yuen Long, N.T.

TEL: (852) 2572-0048 FAX: (822)2573-9099 E-mail: melofield@netvigator.com

Contract No. DC/2009/13

Project Name: Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan


Tree Inspection Report for Celtis timorensis

Inspection Date: 29-02-2012

1. Introduction

According to the requirement in the Environmental Permit EP-281/2007/A, the uncommon tree species, *Celtis timorensis*, found in the pumping station P1b area as shown in figure below shall be properly transplanted to the area immediately south of the Pumping Station P1b before commencement of construction of the Pumping Station P1b

This Tree Inspection Report describes the bi weekly monitoring result of the *Celtis timorensis*, which were additionally planted as the compensation of previously transplanted Celtis timorensis CT7, CT8, CT9 & CT10.

2. Summary of Inspection

Date of Inspection	29 February 2012, around 14:30
Location	A soil ground adjacent to the Pumping
	Station P1b Chung Mei, at Sok Kwu Wan,
	Lamma Island.
Weather	Cloudy, the vegetations are located under
	the shade of existing tall trees.
The labeled Celtis timorensis	CT_1A, CT_2A, CT_3A, CT_4A, CT_5A,
under Tree Protection Zone 2	CT_6A & CT_7A,

3. Proposed Inspection Schedule

Month	Actual / proposed Inspection Date		
July, 2011	14 and 25 July 2011		
August, 2011	9 and 26 August 2011		
September, 2011	5 and 23 September 2011		
October, 2011	10 and 24 October 2011		
November, 2011	8 November 2011		
December, 2011	14 and 30 December 2011		
January 2012	31 January 2012		
February 2012	15 and 29 February 2012		

4. Summary of Inspection Result

Tree No	Speciation	Health Status
CT_1A	Celtis timorensis	Very Poor
CT_2A	Celtis timorensis	Very Poor
CT_3A	Celtis timorensis	Very Poor
CT_4A	Celtis timorensis	Very Poor
CT_5A	Celtis timorensis	Good
CT_6A	Celtis timorensis	Good
CT_7A	Celtis timorensis	Very Poor

Inspection parameters or criteria

Good Leaves and stem grown very lush, additional or larger in size of leaves can be observed in each inspection

Fair Green leaves can be found. No major unhealthy condition of the plant is observed. The condition is stable.

Poor Fewer green leaves than usual are observed. No new leaf is grown and the condition keep stable. The bark is dry. The plant is weak.

Very Poor No new green leaf or bud can be observed. The bark is dry. The plant is weak.

5. Description of Inspection Results:

Tree ID: CT_1A

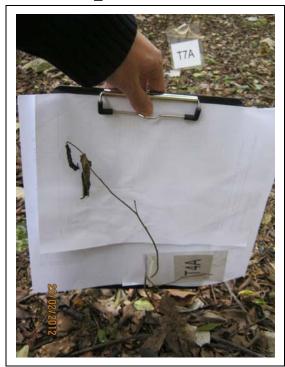
Current Status: Very Poor

Justification: Leaves were dry. The bark was also dry. No significant improvement in health. The plant was very weak.

Tree ID:CT_2A

Current Status: Very Poor

Justification: Leaves were dry. The bark was also dry. No significant improvement in health. The plant was very weak.


Tree ID: CT_3A

Current Status: Very Poor

Justification: Leaves were dry. The bark was also dry. No significant improvement in health. The plant was very weak.

Tree ID: CT_4A

Current Status: Very Poor

Justification: Leaves were dry. The bark was also dry. No significant improvement in health. The plant was weak.

Tree ID: CT_5A

Current Status: Good

Justification: Green leaves were found. Significant improvement in health. The plant was healthy.

Tree ID: CT_6A

Current Status: Good

Justification: Green leaves were found. Significant improvement in health. The plant was healthy.

Tree ID: CT_7A

Current Status: Very Poor

Justification: Leaves were dry. The bark was also dry. No significant improvement in health. The plant was weak.

Overall Condition

In the Tree Protection Zone 2, the condition of CT_1A-7A was generally poor. The health of CT5A and CT6A were found satisfactory. Regular watering and weeding will be carried out during dry weather. They may better recover under this warm and rainy weather. Some newly grown green leaves were found eaten by insects. Remove any insect found on the plant physically to prevent the bud attacked by leaf-feeding insect. No pesticide should be used when the plants are weak.

Considering the condition of CT1A to CT4A, CT_7A were in very poor condition, compensatory of additional Celtis timorensis is proposed and will be carried out in the coming warm weather season for better growing.