

PROJECT No.: TCS/00512/09

DSD CONTRACT No. DC/2009/13 CONSTRUCTION OF SEWAGE TREATMENT WORKS AT YUNG SHUE WAN AND SOK KWU WAN

SOK KWU WAN PORTION AREA
MONTHLY ENVIRONMENTAL MONITORING AND AUDIT
(EM&A) REPORT (NO.22) – MAY 2012

PREPARED FOR LEADER CIVIL ENGINEERING CORPORATION LIMITED

Date	Reference No.	Prepared By	Approved By
13 June 2012	TCS00512/09/600/R0498v3	Aula	Burn
		Nicola Hon	T.W. Tam

Environmental Consultant Environmental Team Leader

Version	Date	Description
1	6 June 2012	First Submission
2	12 June 2012	Amended against IEC's comments on 7 June 2012
3	13 June 2012	Amended against IEC's comments on 13 June 2012

Ouality Index

Scott Wilson CDM Joint Venture

Chief Engineer/Harbour Area Treatment

Scheme

Drainage Services Department

5/F Western Magistracy 2A Pok Fu Lam Road

Hong Kong

Your reference:

Our reference:

05117/6/16/389418

Date:

14 June 2012

BY FAX & EMAIL

Attention: Mr Kenley C K Kwok

Dear Sirs,

Contract No. DC/2009/13
Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Sok Kwu Wan Portion Area
Monthly Environmental Monitoring and Audit (EM&A) Report No. 22 (May 2012)

We refer to the Monthly EM&A Monitoring Report No. 22 for May 2012 received under cover of the email from the Environmental Team, Action-United Environmental Services and Consulting (AUES), dated 12 June 2012. We have no comment and have verified the captioned report.

Yours faithfully SCOTT WILSON CDM JOINT VENTURE

Rodney Ip

Independent Environmental Checker

ICWR/SYSL/ycky

CC

Leader Civil Engineering

AUES ER/LAMMA

CDM

(Attn: Mr Vincent Chan)

(Attn: Mr T.W. Tam) (Attn: Mr Neil Wong)

(Attn: Mr Mark Sin)

EXECUTIVE SUMMARY

ES.01. This is the 22nd monthly Environmental Monitoring and Audit (EM&A) Report for Sok Kwu Wan (hereinafter 'this Report') for the designated works under the Environmental Permit [EP-281/2007/A], covering a period from 26 April to 25 May 2012 (hereinafter 'the Reporting Period').

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

ES.02. Environmental monitoring activities under the EM&A programme in this Reporting Period are summarized in the following table.

Issues	Environmental Monitoring Parameters / Inspection	Occasions
Air Quality	1-hour TSP	45
Air Quality	24-hour TSP	15
Construction Noise	L _{eq(30min)} Daytime	20
Water Quality	Marine Water Sampling	12
Inspection / Audit	ET Regular Environmental Site Inspection	4

ES.03. As informed by the Contractor, the marine work of outfall construction has been commenced on 19 July 2011, therefore, water quality was undertaken in this Reporting Period.

BREACH OF ACTION AND LIMIT (A/L) LEVELS

ES.04. No exceedance of air quality and construction noise monitoring were recorded in this Reporting Period. The statistics of environmental exceedance, NOE issued and investigation of exceedance are summarized in the following table.

Environmental	Monitoring	Action	Limit		Event & Action	
Issues	Parameters	Level	Level	NOE Issued	Investigation	Corrective Actions
Air Quality	1-hour TSP	0	0	0		
	24-hour TSP	0	0	0		
Construction Noise	L _{eq(30min)} Daytime	0	0	0		
	DO	0	0	0		
Water Quality	Turbidity	0	0	0		
	SS	0	0	0		

Note: NOE – Notification of Exceedance

ENVIRONMENTAL COMPLAINT, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES.05. No written or verbal environmental complaint, summons or successful prosecutions were recorded in this Reporting Period.

REPORTING CHANGE

ES.06. No reporting change was made in this Reporting Period.

SITE INSPECTION BY EXTERNAL PARTIES

ES.07. No site inspection was undertaken by external parties i.e. Environmental Protection Department (EPD) or Agriculture, Fisheries and Conservation Department (AFCD) within the Reporting Period.

FUTURE KEY ISSUES

ES.08. During wet season, muddy water and other water quality pollutants via site surface water runoff into the sea body within Fish culture zone at Picnic Bay and the Secondary recreation contact subzone at Mo Tat Wan is the key issue of the Project. Mitigation measures for water quality should be properly maintained to prevent any muddy or sandy runoff from the loose soil surface overflow

on the site boundary.

ES.09. Moreover, special attention should be also paid on the dust mitigation measures to avoid fugitive dust emissions from loose soil surface or haul road. Mitigation measures implemented for control the surface runoff including wheel wash facilities, covering of the loose soil surface or stockpile with tarpaulin sheet, etc., should fully implement.

TABLE OF CONTENTS

1	INTRODUCTION	1
	PROJECT BACKGROUND REPORT STRUCTURE	$\frac{1}{2}$
_		
2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE	3 3
	CONSTRUCTION PROGRESS	3
	SUMMARY OF ENVIRONMENTAL SUBMISSIONS	3
3	SUMMARY OF BASELINE MONITORING REQUIREMENTS	4
	ENVIRONMENTAL ASPECT	4
	MONITORING LOCATIONS	4
	MONITORING FREQUENCY AND PERIOD	5
	MONITORING EQUIPMENT	6
	EQUIPMENT CALIBRATION METEOROLOGICAL INFORMATION	7 7
	DATA MANAGEMENT AND DATA QA/QC CONTROL	7
	REPORTING	7
	DETERMINATION OF ACTION/LIMIT (A/L) LEVELS	8
4	IMPACT MONITORING RESULTS - AIR QUALITY	9
5	IMPACT MONITORING RESULTS – CONSTRUCTION NOISE	10
6	IMPACT MONITORING RESULTS – WATER QULAITY	11
7	ECOLOGY	13
8	WASTE MANAGEMENT	14
9	SITE INSPECTION	15
10	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	16
11	IMPLEMENTATION STATUS OF MITIGATION MEASURES	17
12	IMPACT FORECAST	23
13	CONCLUSIONS AND RECOMMENDATIONS	24
	Conclusions	24
	RECOMMENDATIONS	24

LIST OF TABLES

Table 2-1	Status of Environmental Licenses and Permits
Table 3-1	Summary of EM&A Requirements
Table 3-2	Location of Air Quality Monitoring Station
Table 3-3	Location of Construction Noise Monitoring Station
Table 3-4	Location of Marine Water Quality Monitoring Station
Table 3-5	Action and Limit Levels for Air Quality
Table 3-6	Action and Limit Levels for Construction Noise
Table 3-7	Action and Limit Levels for Marine Water Quality
Table 4-1	Summary of 24-hour and 1-hour TSP Monitoring Results – AM1
Table 4-2	Summary of 24-hour and 1-hour TSP Monitoring Results – AM2
Table 4-3	Summary of 24-hour and 1-hour TSP Monitoring Results – AM3
Table 5-1	Summarized of Construction Noise Monitoring Results at NM1
Table 5-2	Summarized of Construction Noise Monitoring Results at NM2
Table 5-3	Summarized of Construction Noise Monitoring Results at RNM3
Table 5-4	Summarized of Construction Noise Monitoring Results at NM4
Table 6-1	Summary of Water Quality Results – Mid-ebb Tides (Dissolved Oxygen)
Table 6-2	Summary of Water Quality Results – Mid-ebb Tides (Turbidity & Suspended Solids)
Table 6-3	Summary of Water Quality Results – Mid-flood Tides (Dissolved Oxygen)
Table 6-4	Summary of Water Quality Results - Mid-flood Tides (Turbidity & Suspended Solids)
Table 6-5	Summarized Exceedances of Marine Water Quality
Table 8-1	Summary of Quantities of Inert C&D Materials
Table 8-2	Summary of Quantities of C&D Wastes
Table 8-1	Site Observations
Table 10-1	Statistical Summary of Environmental Complaints
Table 10-2	Statistical Summary of Environmental Summons
Table 10-3	Statistical Summary of Environmental Prosecution
Table 11-1	Environmental Mitigation Measures

LIST OF APPENDICES

Appendix A	Site Layout Plan – Sok Kwu Wan Portion Area
Appendix B	Organization Structure and Contact Details of Relevant Parties
Appendix C	A Master and Three Months Rolling Construction Programme
Appendix D	Location of Monitoring Stations (Air Quality / Construction Noise / Water Quality)
Appendix E	Monitoring Equipments Calibration Certificate
Appendix F	Event and Action Plan
Appendix G	Monitoring Data Sheet
Appendix H	Graphical Plots of Monitoring Results
Appendix I	Meteorological Information
Appendix J	Monthly Summary Waste Flow Table
Appendix K	Weekly Site Inspection Checklist
Appendix L	Implementation Schedule of Mitigation Measures
Appendix M	Tree Inspection Report

1 INTRODUCTION

PROJECT BACKGROUND

- 1.01 The Leader Civil Engineering Corporation Limited (Leader) has been awarded the *Contract DC/2009/13 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan* (the Project) by the Drainage Services Department (DSD) on 4 May 2010. The Project is part of an overall plan approved under a statutory EIA for Outlying Islands Sewerage Stage 1 Phase 2 Package J Sok Kwu Wan Sewage Collection and Treatment (Register No. AEIAR-075/2003) and Disposal Facilities and Outlying Islands Sewerage Stage 1 Phase 1 Package C Yung Shue Wan Sewage Treatment Works and Outfall (Register No. EIA-124/BC). The Environmental Permit (EP) No. EP-281/2007 and EP-282/2007 for the Project have been obtained by the DSD on 29 June 2007 for the relevant works. After July 2009, EP-281/2007/A stead EP-281/2007 is EP for Sok Kwu Wan relevant works.
- 1.02 The Project involves construction of sewage treatment works at Sok Kwu Wan and Yung She Wan with a capacity of 1,430m³/day and 2,850m³/day respectively to provide secondary treatment, construction of 2 pumping stations at Sok Kwu Wan and 1 pumping station at Yung Shue Wan, construction of submarine outfall from the coastline and lying of underground sewerage pipeline. The site layout plan for the captioned work under the Project is showing in *Appendix A*.
- 1.03 According to the Particular Specification (PS) and *Appendix 25* of the Project, Leader should establish an Environmental Team (ET) to implement the environmental monitoring and auditing works to fulfill the requirements as stipulated in the Environmental Monitoring and Audit (EM&A) Manual. This EM&A Manual is referred to the Appendix B of the Review Report on EIA Study Sok Kwu Wan (Final) in January 2007 (Agreement No. CE 20/2005(DS)).
- 1.04 Action-United Environmental Services and Consulting (AUES) has been commissioned by Leader as the ET to implement the relevant EM&A programme. Organization chart of the Environmental Team for the Project is shown in *Appendix B*. For ease of reporting, the proposed EM&A programme for baseline and impact monitoring is spilt to following two stand-alone parts:
 - (a) Proposed EM&A Programme for Baseline and Impact Monitoring Sok Kwu Wan (under EP No. 281/2007/A varied on 23 September 2009)
 - (b) Proposed EM&A Programme for Baseline and Impact Monitoring Yung Shue Wan (under EP No. 282/2007)
- 1.05 According to the EM&A Manual of Sok Kwu Wan and Yung Shue Wan, baseline water quality monitoring should be carried out for consecutive six months before the marine work commencement. Therefore, the baseline reports of Sok Kwu Wan and Yung Shue Wan are divided to two volumes i.e. the Volume 1 for air quality and noise monitoring; and the Volume II for water quality monitoring for separate submission.
- 1.06 There is a concurrent DSD contract "DC/2007/18 Yung Shue Wan and Sok Kwu Wan Village Sewerage, Stage 1 Works" undertaking at Sok Kwu Wan since April 2008.
- 1.07 Consider that the construction works of DC/2007/18 and DC/2009/13 at Sok Kwu Wan is under the same Environmental Permit and EM&A Manual, the performance criteria of air quality and construction noise at Sok Kwu Wan under the Project is recommended to adopt the Action/Limit Levels established by contract DC/2007/18. The Baseline Monitoring Report Volume 1 under the Project for air quality and noise at Sok Kwu Wan was submitted on 9 July 2010 and verified by IEC and for EPD endorsement before the relevant land works commencement on 27 July 2010.
- 1.08 This is the 22nd monthly EM&A Report Sok Kwu Wan Portion Area presenting the monitoring results and inspection findings for the Reporting Period from 26 April to 25 May 2012.

REPORT STRUCTURE

1.09 The Monthly Environmental Monitoring and Audit (EM&A) Report – Sok Kwu Wan is structured into the following sections:-

INTRODUCTION
PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS
SUMMARY OF MONITORING REQUIREMENTS
AIR QUALITY MONITORING RESULTS
CONSTRUCTION NOISE MONITORING RESULTS
WATER QUALITY MONITORING RESULTS
WASTE MANAGEMENT
SITE INSPECTIONS
ENVIRONMENTAL COMPLAINTS AND NON-COMPLIANCE
IMPLEMENTATION STATUES OF MITIGATION MEASURES
IMPACT FORECAST
CONCLUSIONS AND RECOMMENDATION

2 PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS

PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE

2.01 Organization structure and contact details of relevant parties with respect to on-site environmental management are shown in *Appendix B*.

CONSTRUCTION PROGRESS

- 2.02 The master and three month rolling construction programme are enclosed in *Appendix C* and the major construction activities undertaken in this Reporting Period are listed below:-
 - Construction of Pumping Station No. 1& 2
 - Rock Slope Cutting Works
 - Construction of submarine outfall

SUMMARY OF ENVIRONMENTAL SUBMISSIONS

2.03 Summary of the relevant permits, licences, and/or notifications on environmental protection for this Project in this Reporting Period is presented in *Table 2-1*.

Table 2-1 Status of Environmental Licenses and Permits

Item	Description	License/Permit Status
1	Air Pollution Control (Construction Dust) Regulation	Notified EPD on 19 May 2010
		Ref.: 317486
2	Chemical Waste Producer Registration	Issued on 8/6/2010
		WPN 5213-912-L2720-01
3	Water Pollution Control Ordinance	Approved on 29/9/2010
		Valid to: 30/09/2015
		Licence no.: WT00007567-2010
4	Billing Account for Disposal of Construction Waste	Issued on 26 May 2010
		A/C No: 7010815
5	Construction Noise Permit	Permit no. GW-RS0284-12
		Valid from: 26 Mar 2012
		Until: 25 Sep 2012
6	Marine Dumping Permit (no. EP/MD/12-133)	Issued on 28 March 2012
		Valid from 29 March 2012
		Until 31 May 2012

- 2.04 The "Baseline/Impact Monitoring Methodology (TCS00512/09/600/R0010Ver.4)" was set out in accordance with the Sok Kwu Wan EM&A Manual' requirements. It was approved by the Engineer Representative (ER) and agreed with the Independent Environmental Checker (IEC) and then submitted to the EPD on 8 July 2010.
- 2.05 Baseline Monitoring Report Volume 1 for Sok Kwu Wan (TCS00512/09/600/R0020Ver.3) was verified by the IEC on 12 July 2010 and submitted to EPD on 12 July 2010.
- 2.06 Baseline Water Quality Monitoring Report Volume 2 for Sok Kwu Wan (TCS00512/09/600/R0182v7) was revised against EPD comments and re-submitted on 11 October 2011.

3 SUMMARY OF BASELINE MONITORING REQUIREMENTS

ENVIRONMENTAL ASPECT

- 3.01 The EM&A baseline monitoring programme cover the following environmental issues:
 - Air quality;
 - · Construction noise; and
 - Marine water quality
- 3.02 The ET implements the EM&A programme in accordance with the aforementioned requirements. Detailed air quality, construction noise and water quality of the EM&A programme are presented in the following sub-sections.
- 3.03 A summary monitoring parameters for the air quality, noise and marine water monitoring is presented in *Table 3-1*:

Table 3-1 Summary of EM&A Requirements

Environmental Issue	Parameters
Air Quality	1-hour TSP Monitoring by Real-Time Portable Dust Meter; and
All Quality	• 24-hour TSP Monitoring by High Volume Air Sampler.
Noise	• Leq (30min) during normal working hours; and
Noise	Leq (15min) during Restricted Hours.
	In-situ Measurements
	 Dissolved Oxygen Concentration (DO) (mg/L);
	• Dissolved Oxygen Saturation (%);
	• Turbidity (NTU);
Marina Water Quality	• pH unit;
Marine Water Quality	• Salinity (ppt);
	Water depth (m); and
	• Temperature (°C).
	Laboratory Analysis
	Suspended Solids (SS) (mg/L)

MONITORING LOCATIONS

Air Quality

3.04 Three air monitoring stations: AM1, AM2 and AM3 were designated in the *EM&A Manual Section* 2.5. The detailed air monitoring stations is described in *Table 3-2* and graphical is shown in *Appendix D*.

Table 3-2 Location of Air Quality Monitoring Station

Sensitive Receiver	Location	
AM1	Squatter house in Chung Mei Village	
AM2	Squatter house in Chung Mei Village	
AM3	Football court	

Construction Noise

3.05 According to *EM&A Manual Section 3.4*, there were four noise sensitive receivers (NM1-NM4) designated for the construction noise monitoring. NM1, NM2 and NM4 of the three designated monitoring stations were identified and are monitored by the current DSD contract DC/2007/18. However, the premises monitoring station NM3 was rejected by the owner of 1B Sok Kwu Wan and an alternative noise monitoring station RNM3 replacement was proposed by the contract DC/2007/18 ET and accepted by the IEC and EPD before the baseline monitoring commencement in April 2008. The location RNM3 is located at Sok Kwu Wan Sitting-out area which just 3m width footpath away from the original location house 1B. The detailed construction noise monitoring stations to also under the Project is described in *Table 3-3* and graphical is shown in *Appendix D*.

Table 3-3 Location of Construction Noise Monitoring Station

Sensitive Receiver	Location
NM1	1, Chung Mei Village
NM2	20, Sok Kwu Wan
RNM3	Sok Kwu Wan Sitting-out Area
NM4	2-storey village house at Ta Shui Wan

Water Quality

3.06 Three control stations (C1-C3) and three impact stations (W1-W3) were recommended in the *EM&A Manual Section 4.5*. Impact stations W1-W3 identified at the sensitive receivers (FCZ and secondary contact recreation subzone) to monitor the impacts from the construction of the submarine outfall as well as the effluent discharge from the proposed STW on water quality. Three control stations: C1, C2 & C3 were specified at locations representative of the project site in its undisturbed condition and located at upstream and downstream of the works area. Detailed and co-ordnance of marine water quality monitoring stations is described in *Table 3-4* and the graphical is shown in *Appendix D* and would be performed for EM&A programme.

Table 3-4 Location of Marine Water Quality Monitoring Station

Station	Description	Co-ordnance			
Station	Description	Easting	Northing		
W1	Secondary recreation contact subzone at Mo Tat Wan	832 968	807 732		
W2	Fish culture zone at Picnic Bay	832 670	807 985		
W3	Fish culture zone at Picnic Bay	832 045	807 893		
C1 (flood)	Control Station	833 703	808 172		
C2	Control Station	831 467	807 747		
C3 (ebb)	Control Station	832 220	808 862		

MONITORING FREQUENCY AND PERIOD

3.07 The impact monitoring carried out in the EM&A programme is basically in accordance with the requirements in *EM&A Manual Sections* 2.7, 3.6, 4.7 and 4.8. The monitoring requirements are listed as follows.

Air Quality Monitoring

Parameters: 1-hour TSP and 24-hour TSP.

Frequency: Once in every six days for 24-hour TSP and three times in every six days for

1-hour TSP.

<u>Duration</u>: Throughout the construction period.

Noise Monitoring

<u>Parameters</u>: $L_{eq 30min}$ & $L_{eq(5min)}$, L_{10} and L_{90} .

 $L_{eq(15min)}$ & $L_{eq(5min)}$, L_{10} and L_{90} during the construction undertaken during Restricted hours (19:00 to 07:00 hours next of normal working day and full day of

public holiday and Sunday)

Frequency: Once per week during 0700-1900 hours on normal weekdays. Restricted hour

monitoring should depend on conditions stipulated in Construction Noise Permit.

Duration: Throughout the construction period.

Marine Water Quality Monitoring

Parameters: Duplicate in-situ measurements: water depth, temperature, dissolved oxygen, pH,

turbidity and salinity;

HOKLAS-accredited laboratory analysis: suspended solids

<u>Frequency</u>: Three days a week, at mid ebb and mid flood tides. The interval between 2 sets of monitoring will be more than 36 hours.

Sampling Depth

- (i.) Three depths: 1m below water surface, 1m above sea bottom and at mid-depth when the water depth exceeds 6m.
- (ii.) If the water depth is between 3m and 6m, two depths: 1m below water surface and 1m above sea bottom.
- (iii.) If the water depth is less than 3m, 1 sample at mid-depth is taken

<u>Duration</u>: During the course of marine works

<u>Post-Construction Monitoring – Marine Water</u>

3.08 Upon the marine works (dredging and HDD pipe installation) completion, 4 weeks of post-construction monitoring would be undertaken in accordance with the *Section 4.8 of EM&A Manual*. The requirements of post-construction monitoring such as the parameter, frequency, location and sampling depth is same as the impact monitoring.

MONITORING EQUIPMENT

Air Quality Monitoring

3.09 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B*. If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to approve. The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory.

Noise Monitoring

3.10 Sound level meter in compliance with the *International Electrotechnical Commission Publications* 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m s⁻¹.

Water Quality Monitoring

- 3.11 **Dissolved Oxygen and Temperature Measuring Equipment** The instrument should be a portable and weatherproof dissolved oxygen (DO) measuring instrument complete with cable and sensor, and use a DC power source. The equipment should be capable of measuring as included a DO level in the range of 0 20 mg L-1 and 0 200% saturation; and a temperature of 0 45 degree Celsius.
- 3.12 *pH Meter* The instrument shall consist of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It shall be readable to 0.1 pH in a range of 0 to 14.
- 3.13 *Turbidity (NTU) Measuring Equipment* The instrument should be a portable and weatherproof turbidity measuring instrument using a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0 1000 NTU.
- 3.14 **Water Sampling Equipment** A water sampler should comprise a transparent PVC cylinder, with a capacity of not less than 2 litres, which can be effectively sealed with latex cups at both ends. The sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth.
- 3.15 *Water Depth Detector* A portable, battery-operated echo sounder should be used for the determination of water depth at each designated monitoring station. This unit can either be hand held or affixed to the bottom of the work boat.
- 3.16 *Salinity Measuring Equipment* A portable salinometer capable of measuring salinity in the range of 0 40 parts per thousand (ppt) should be provided for measuring salinity of the water at each monitoring location.

- 3.17 **Sample Containers and Storage** Water samples for suspended solids should be stored in high density polythene bottles with no preservative added, packed in ice (cooled to 4°C without being frozen).
- 3.18 *Monitoring Position Equipment* A hand-held or boat-fixed type digital Differential Global Positioning System (DGPS) with way point bearing indication and Radio Technical Commission for maritime (RTCM) Type 16 error message 'screen pop-up' facilities (for real-time auto-display of error messages and DGPS corrections from the Hong Kong Hydrographic Office), or other equipment instrument of similar accuracy, should be provided and used during marine water monitoring to ensure the monitoring vessel is at the correct location before taking measurements.
- 3.19 **Suspended Solids Analysis** Analysis of suspended solids shall be carried out in a HOKLAS or other international accredited laboratory.

EQUIPMENT CALIBRATION

- 3.20 Calibration of the HVS is performed upon installation in accordance with the manufacturer's instruction using the NIST-certified standard calibrator (Tisch Calibration Kit Model TE-5025A). The calibration data are properly documented and the records are maintained by ET for future reference.
- 3.21 The 1-hour TSP meter was calibrated by the supplier prior to purchase. Zero response of the equipment was checked before and after each monitoring event. In-house calibration with the High Volume Sampler (HVS) in same condition was undertaken in yearly basis.
- 3.22 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme at yearly basis.
- 3.23 The Water Quality Monitoring equipments such as DO meter, pH meter, turbidity measuring instrument and salinometer, are calibrated by HOKLAS accredited laboratory of three month intervals.
- 3.24 All updated calibration certificates of the monitoring equipment used for the impact monitoring programme in the Reporting Period would be attached in *Appendix E*.

METEOROLOGICAL INFORMATION

3.25 The meteorological information during the construction phase is obtained from the Wong Chuk Hang Station of the Hong Kong Observatory (HKO) due to it nearly the Project site.

DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.26 The impact monitoring data are handled by the ET's systematic data recording and management, which complies with in-house Quality Management System. Standard Field Data Sheets (FDS) are used in the impact monitoring programme.
- 3.27 The monitoring data recorded in the equipment e.g. 1-hour TSP meter, sound level meter and Multi-parameter Water Quality Monitoring System, are downloaded directly from the equipments at the end of each monitoring day. The downloaded monitoring data are input into a computerized database properly maintained by the ET. The laboratory results are input directly into the computerized database and QA/QC checked by personnel other than those who input the data. For monitoring activities require laboratory analysis, the local laboratory follows the QA/QC requirements as set out under the HOKLAS scheme for all laboratory testing.

REPORTING

3.28 It was agreed among the ER, IEC, Contractor and ET that, in order to streamline the EM&A report submission and to cater for the occasional delay in obtaining laboratory analysis results, the cutoff day for each month is the 25th i.e. the first day of each report is the 26th of the last month and the end

day, the 25th of that month.

DETERMINATION OF ACTION/LIMIT (A/L) LEVELS

3.29 According to the Sok Kwu Wan Environmental Monitoring and Audit Manual, the air quality, construction noise and marine water quality were set up, namely Action and Limit levels are listed in *Tables 3-5*, *3-6 and 3-7* as below.

Table 3-5 Action and Limit Levels for Air Quality

Monitoring Station	Action Le	vel (μg/m³)	Limit Level (µg/m³)			
Within the Station	1-hour	24-hour	1-hour	24-hour		
AM1	343	173	500	260		
AM2	331	175	500	260		
AM3	353	191	500	260		

Table 3-6 Action and Limit Levels for Construction Noise

Monitoring	Action Level	Limit Level					
Location	0700-1900 hours on normal weekdays						
NM1 NM2 RNM3 NM4	When one or more documented complaints are received	75 dB(A) of $L_{eq(30min)}$ during normal hours from 0700 to 1900 hours on normal weekdays, reduced to 70 dB(A) of $L_{eq(30min)}$ for schools and 65 dB(A) during school examination periods					

Table 3-7 Action and Limit Levels for Marine Water Quality

Parameter	Performance	In	npact Stati	on
rarameter	Criteria	W1	W2	W3
DO Concentration (Surface and Middle)	Action Level	5.39	4.64	4.71
(mg/L)	Limit Level	5.29	4.56	4.54
DO Concentration (Bottom)	Action Level	N/A	3.60	3.37
(mg/L)	Limit Level	N/A	3.06	3.18
Turbidity (Depth-Average)	Action Level	4.39	4.84	6.48
(NTU)	Limit Level	6.06	5.99	6.71
Suspended Solids (Depth-Average)	Action Level	12.41	9.24	10.79
(mg/L)	Limit Level	12.68	11.28	12.25

3.30 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan enclosed in *Appendix F*.

4 IMPACT MONITORING RESULTS - AIR QUALITY

4.01 The impact EM&A programme was carried out as compliance with the contract Particular Specification, Sok Kwu Wan EM&A Manual and the EP.

Results of Air Quality Monitoring

4.02 In this Reporting Period, **45** and **15** monitoring events were performed for 1-hour TSP and 24-hour TSP monitoring respectively at the designated locations AM1, AM2 and AM3. The monitoring results for 24-hour and 1-hour TSP are summarized in *Tables 4-1*, *4-2* and *4-3*. The detail 24-hour TSP data are shown in *Appendix G* and the graphical plots of are shown in *Appendix H*.

Table 4-1 Summary of 24-hour and 1-hour TSP Monitoring Results – AM1

	24-hour			1-hour TSP	(μg/m ³)			
Date	TSP (µg/m³)	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured		
27-Apr-12	33	30-Apr-12	10:00	79	87	84		
3-May-12	22	5-May-12	10:00	77	81	79		
9-May-12	14	10-May-12	8:00	49	46	47		
15-May-12	17	16-May-12	9:00	51	48	46		
21-May-12	43	22-May-12	8:00	54	58	55		
Average	26	Averaş	ge	63				
(Range)	(14 - 43)	(Rang	e)	(46 - 87)				

Table 4-2 Summary of 24-hour and 1-hour TSP Monitoring Results – AM2

	24-hour			1-hour TSP	(μg/m ³)			
•	TSP (µg/m³)	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured		
27-Apr-12	52	30-Apr-12	12:05	82	86	83		
3-May-12	30	5-May-12	12:05	67	74	68		
9-May-12	27	10-May-12	10:15	57	51	53		
15-May-12	19	16-May-12	11:45	69	73	66		
21-May-12	30	22-May-12	10:30	60	69	57		
Average	32	Averag	ge	68				
(Range)	(19 - 52)	(Rang	e)	(51 – 86)				

Table 4-3 Summary of 24-hour and 1-hour TSP Monitoring Results – AM3

	24-hour			1-hour TSP	$(\mu g/m^3)$			
Date	TSP (µg/m³)	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured		
27-Apr-12	65	30-Apr-12	14:20	174	179	171		
3-May-12	40	5-May-12	14:30	141	149	145		
9-May-12	69	10-May-12	12:30	149	145	147		
15-May-12	132	16-May-12	14:00	139	149	141		
21-May-12	40	22-May-12	12:30	137	148	139		
Average	69	Averaş	ge	150				
(Range)	(40 - 132)	(Rang	e)	(137–179)				

Remark: bold and italic indicated Action Level exceedance.

- 4.03 As shown in *Tables 4-1*, *4-2* and *4-3*, 1-hour and 24-hour TSP results fluctuated well below the Action Level during the Reporting Period.
- 4.04 The meteorological information during the impact monitoring days are summarized in *Appendix I*.

5 IMPACT MONITORING RESULTS – CONSTRUCTION NOISE

5.01 The noise monitoring results are presented in the following sub-sections.

Results of Construction Noise Monitoring

5.02 In this Reporting Period, a total of **20** construction noise monitoring events were undertaken at designated location NM1, NM2, RNM3 and NM4. The results for L_{eq30min} at NM1, NM2, RNM3 and NM3 are summarized in *Tables 5-1, 5-2, 5-3* and *5-4* and graphical plots are shown in *Appendix H*.

Table 5-1 Summarized of Construction Noise Monitoring Results at NM1

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30	
30-Apr-12	13:07	13:37	57.6	55.8	61.0	55.7	54.5	53.0	57.1	
5-May-12	14:00	14:30	53.4	51.6	50.1	52.9	55.2	53.9	53.1	
10-May-12	11:00	11:30	58.8	56.3	62.6	59.9	65.8	56.0	61.3	
16-May-12	13:00	13:30	58.8	58.9	58.1	60.7	62.5	56.9	59.7	
22-May-12	10:30	11:00	49.7	50.3	51.6	50.5	52.9	51.7	51.3	
Limit Le	vel in dI	B(A)		-						

Table 5-2 Summarized of Construction Noise Monitoring Results at NM2

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30
30-Apr-12	13:42	14:12	64.6	62.7	62.8	63.0	62.6	62.7	63.1
5-May-12	14:51	15:21	63.3	63.4	63.0	63.4	64.9	66.4	64.2
10-May-12	11:10	11:40	65.9	65.9	66.5	66.8	66.1	66.2	66.2
16-May-12	13:40	14:10	66.4	66.5	64.4	64.5	64.6	64.1	65.2
22-May-12	11:05	11:35	56.0	55.2	60.4	58.3	58.9	60.5	58.7
Limit Le	vel in dI	B(A)	•						75

Table 5-3 Summarized of Construction Noise Monitoring Results at RNM3

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30	Corrected* Leq30
30-Apr-12	14:21	14:51	63.1	63.8	63.0	62.9	66.8	63.1	64.0	67.0
5-May-12	15:30	16:00	64.7	71.0	68.1	65.0	64.9	63.7	67.1	70.1
10-May-12	13:00	13:30	64.5	66.2	64.5	64.8	65.6	66.1	65.3	68.3
16-May-12	14:15	14:45	63.8	65.6	65.7	65.7	65.4	67.5	65.8	68.8
22-May-12	11:40	12:10	56.2	55.2	56.5	55.0	56.2	55.2	55.8	58.8
Limit Le	vel in dE	B(A)		-						75

^{*} A façade correction of +3dB(A) has been added according to acoustical principles and EPD guidelines.

Table 5-4 Summarized of Construction Noise Monitoring Results at NM4

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30
30-Apr-12	15:07	15:37	61.2	60.3	58.9	64.2	61.3	59.4	61.3
5-May-12	16:05	16:35	64.3	64.2	64.0	64.8	64.1	64.1	64.3
10-May-12	13:35	14:05	66.7	65.9	66.0	66.4	66.4	76.7	70.5
16-May-12	14:50	15:20	66.7	65.9	66.0	66.4	66.4	66.7	66.4
22-May-12	13:00	13:30	59.3	59.8	59.7	61.9	60.6	61.3	60.5
Limit Le	vel in dI	B(A)	-						75

5.03 It was noted that no noise complaint (which is an Action Level exceedance) was received. During the noise monitoring, external noise sources from traffic road, animals, human, trolley and ventilation system were observed occasionally. In view of the results shown in *Tables 5-1*, *5-2*, 5-3 and 5-4 which were all below 75dB(A), no Action or Limit Level exceedance was triggered during this month.

6 IMPACT MONITORING RESULTS – WATER QULAITY

- 6.01 The construction of marine outfall works was commenced on 19 July 2011 and therefore marine water quality monitoring is required in this Reporting Period. In this Reporting Period, 12 events of water quality monitoring were carried out at the designated locations.
- 6.02 The monitoring results including in-situ measurements and laboratory testing results are presented in *Appendix G*. The graphical plots are shown in *Appendix H*.
- 6.03 During the Reporting Period, field measurements of both control and impact stations showed that marine water of the depth average of the salinity concentration was within 24.93 to 34.03 ppt, and pH value was within 7.13 to 8.60.
- 6.04 Monitoring results of 3 key parameters: dissolved oxygen (DO), turbidity and suspended solids (SS) in this Reporting Period, are summarized in *Tables 6-1*, 6-2, 6-3 and 6-4. A summary of exceedances for the 3 parameters are shown in *Table 6-5*.

Table 6-1 Summary of Water Quality Results – Mid-ebb Tides (Dissolved Oxygen)

Sampling date		ed Oxygo and	en conc. Mid Lay	Surf.	Dissolved Oxygen conc. of Depth Ave. of Bottom Layer (mg/L)							
1 0	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
27-Apr-12	6.73	6.74	6.71	6.34	6.56	6.43	NA	6.45	6.49	6.26	6.46	6.32
30-Apr-12	6.53	6.54	6.56	6.53	6.48	6.55	NA	6.51	6.48	6.46	6.55	6.23
2-May-12	5.55	5.51	5.54	4.91	5.62	4.05	NA	5.42	5.28	4.83	5.43	3.70
5-May-12	5.57	5.35	6.19	4.42	6.43	5.22	NA	4.51	4.14	4.07	5.05	4.17
7-May-12	5.51	5.21	5.91	6.21	4.79	4.79	NA	4.45	5.21	5.90	4.44	4.44
10-Apr-12	7.81	7.97	6.75	6.77	7.60	7.60	NA	6.95	7.91	7.08	7.37	7.37
12-Apr-12	7.21	6.94	5.77	7.02	5.80	5.80	NA	5.97	4.05	5.64	5.09	5.09
14-May-12	7.11	7.78	6.54	6.57	6.51	6.51	NA	6.54	5.85	6.49	6.29	6.29
16-May-12	7.52	6.12	8.90	6.57	7.07	7.07	NA	4.09	6.91	5.10	6.32	6.32
18-May-12	10.74	11.34	10.79	10.55	9.50	9.50	NA	10.75	10.49	9.58	7.69	7.69
22-May-12	6.77	5.76	5.68	6.23	5.50	5.50	NA	4.91	4.94	5.18	5.33	5.33
24-May-12	7.53	7.60	7.13	7.40	6.39	6.39	NA	7.30	6.55	7.41	6.55	6.55

Table 6-2 Summary of Water Quality Results – Mid-ebb Tides (Turbidity & Suspended Solids)

Compling data		T	urbidity	Depth Av	e. (NTU)		Suspe	ended S	olids D	epth A	ve. (m	g/L)
Sampling date	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
27-Apr-12	1.31	1.51	1.56	1.77	1.64	1.61	2.80	2.87	2.23	2.67	3.50	5.23
30-Apr-12	0.73	1.53	1.21	1.82	1.27	1.64	2.70	0.90	1.60	1.20	3.30	3.07
2-May-12	0.66	1.05	0.89	0.89	0.76	1.08	0.80	2.10	1.10	0.57	0.50	2.03
5-May-12	0.77	1.07	0.92	0.85	0.81	0.92	1.70	1.17	0.70	1.03	0.50	0.80
7-May-12	0.65	0.81	0.91	0.89	0.77	0.96	1.70	1.20	1.37	1.47	1.00	1.70
10-Apr-12	0.70	1.22	1.93	1.08	1.03	2.06	1.00	0.73	1.20	1.40	1.80	1.53
12-Apr-12	0.70	1.18	1.38	1.15	0.80	0.53	0.50	1.30	0.97	1.13	0.80	1.40
14-May-12	0.50	0.57	1.98	0.78	1.82	0.65	1.60	3.43	3.63	3.83	4.40	3.20
16-May-12	0.75	1.92	0.75	1.63	0.83	1.00	3.00	3.87	2.50	2.83	3.23	3.73
18-May-12	0.40	1.48	0.82	1.28	0.58	0.88	1.00	0.80	1.83	0.50	1.73	2.70
22-May-12	0.85	1.43	1.32	1.03	1.65	1.05	0.60	0.77	1.90	0.63	0.90	0.63
24-May-12	4.30	3.03	2.72	2.83	0.55	2.55	5.70	0.83	0.60	2.53	1.47	1.27

Table 6-3 Summary of Water Quality Results – Mid-flood Tides (Dissolved Oxygen)

Sampling date		Dissolved Oxygen conc. of Depth Ave. of Surf. and Mid Layer (mg/L)							Dissolved Oxygen conc. of Depth Ave. of Bottom Layer (mg/L)			
	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
27-Apr-12	7.92	7.81	7.87	7.37	7.77	7.06	NA	7.53	7.43	7.11	7.49	6.88
30-Apr-12	6.64	6.68	6.68	6.83	6.65	6.69	NA	6.55	6.38	6.42	6.14	6.38
2-May-12	5.50	4.95	5.65	5.15	4.41	4.52	NA	4.32	5.15	4.60	4.14	4.17

Sampling date	Dissolved Oxygen conc. of Depth Ave. of Surf. and Mid Layer (mg/L)						Dissolved Oxygen conc. of Depth Ave. of Bottom Layer (mg/L)					
	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
5-May-12	5.69	6.05	6.41	5.06	4.61	4.52	NA	5.85	6.19	4.76	4.31	4.62
7-May-12	5.68	5.08	5.85	4.17	4.45	4.22	NA	4.46	4.95	4.45	4.87	3.98
10-Apr-12	7.62	6.96	7.47	6.30	6.08	6.85	NA	6.11	6.77	6.08	6.55	6.91
12-Apr-12	6.84	6.53	5.54	5.73	5.11	5.87	NA	5.64	4.56	5.11	5.58	4.82
14-May-12	7.37	7.67	7.86	7.71	7.07	7.81	NA	7.08	6.65	7.07	7.25	6.66
16-May-12	7.46	7.78	8.09	9.81	8.50	7.81	NA	6.05	6.55	8.50	6.36	6.26
18-May-12	10.84	9.61	9.30	8.80	8.24	8.75	NA	8.17	8.65	8.24	8.10	7.77
22-May-12	7.66	6.90	6.47	7.98	7.60	6.54	NA	6.84	6.34	7.60	5.86	5.53
24-May-12	7.32	7.26	6.52	7.89	8.07	7.68	NA	6.98	6.57	8.07	6.35	6.95

Table 6-4 Summary of Water Quality Results – Mid-flood Tides (Turbidity & Suspended Solids)

Complina doto		T	urbidity	y Depth Av	e. (NTU)		Susp	ended S	Solids 1	Depth A	ve. (m	g/L)
Sampling date	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
27-Apr-12	1.57	1.73	1.59	1.90	1.61	1.34	5.50	4.37	3.67	3.67	2.47	2.43
30-Apr-12	1.09	1.70	1.26	1.76	1.25	1.76	1.70	3.37	2.03	3.23	1.75	3.10
2-May-12	0.72	0.69	0.88	1.00	0.77	0.93	0.50	1.70	3.03	0.90	2.17	1.43
5-May-12	0.65	0.77	0.83	0.85	0.77	0.88	1.80	1.40	1.63	1.57	1.13	2.17
7-May-12	0.74	0.86	0.82	0.95	0.80	0.83	0.60	0.50	1.10	0.80	0.60	0.60
10-Apr-12	0.20	1.47	1.38	0.38	3.85	0.50	1.10	1.13	1.37	0.90	1.47	0.70
12-Apr-12	3.50	0.90	0.73	0.73	1.45	0.88	0.50	0.93	1.07	0.73	0.80	0.97
14-May-12	0.50	1.13	1.42	2.28	1.08	0.72	4.60	2.77	1.93	2.93	3.40	3.03
16-May-12	0.50	0.93	1.05	0.72	0.75	0.60	3.10	4.27	3.13	3.47	4.07	3.07
18-May-12	0.55	1.08	0.85	0.50	1.20	0.60	1.10	0.80	0.93	0.63	1.70	0.80
22-May-12	1.05	1.22	1.55	1.00	1.00	1.08	0.50	0.50	0.57	0.80	0.57	1.07
24-May-12	1.25	0.82	0.78	0.60	0.73	0.75	0.70	0.50	0.60	2.07	0.87	0.80

Table 6-5 Summarized Exceedances of Marine Water Quality

Station	Do (Ave of & mid-	f Surf.	DO (Ave. of Bottom Layer)			Turbidity (Depth Ave.)		SS (Depth Ave)		Total Exceedance	
	Action	Limit	Action	Limit	Action	Limit	Action	Limit	Action	Limit	
	Mid-Ebb										
W1	0	0	0	0	0	0	0	0	0	0	
W2	0	0	0	0	0	0	0	0	0	0	
W3	0	0	0	0	0	0	0	0	0	0	
				Mid	-Flood						
W1	0	0	0	0	0	0	0	0	0	0	
W2	0	0	0	0	0	0	0	0	0	0	
W3	0	0	0	0	0	0	0	0	0	0	
No of Exceedance	0	0	0	0	0	0	0	0	0	0	

6.05 For marine water monitoring, no exceedance of Action/Limit levels was recorded in this Reporting Period. Therefore, no associated corrective actions were then required.

7 ECOLOGY

- 7.01 According to Clause 3.7 and Figure 4 in the Environmental Permit No. EP-281/2007/A, a total of 12 numbers *Celtis Timorensis* (uncommon species) in Chung Mei at Sok Kwu Wan, are identified to require labeling, fencing and protection. Out of these, four numbers located in the Pumping Station No.1 area are required to be transplanted in advance of pumping station construction and the transplantation proposal has been submitted to EPD previously.
- 7.02 Regular inspection of the transplanted tree was carried out by the landscaping sub-Contractor (Melofield Nursery and Landscape Contractor Limited) on 30 April and 15 May 2012. As a contingency measure in case that CT7 to CT10 can no longer be recovered, additional 7 no. of *Celtis Timorensis* (No. CT_1A to CT7A) were planted adjacent to the under-monitoring *Celtis Timorensis* CT7 to CT10 on 30 April 2011. The tree inspection report is presented in *Appendix M*.
- 7.03 Following a damage of uncommon tree species, *Celtis Timorenisis* reported by the ET on 25 April 2012, a site inspection has been carried out by the landscape sub-contractor Melofield Nursery & Landscape Contractor Ltd. (Melofield) on 30 April 2012 to investigate the incident. The investigation result is summarized as below:-
 - During the Site Inspection on 30 April 2012, it was found that 3 nos. of additionally planted *Celtis Timorensis*, namely CT_1A, CT_3A and CT_7A, were damaged by tree trunks unexpectedly fell down to the protection area.
 - The trunks end was found attacked by white ants and decayed seriously.
 - For tree ID. CT_1A, the stem was snapped by a broken tree trunk. The status of the plant was death.
 - For tree ID. CT_3A, the stem was damaged by a broken tree trunk. No significant improvement in health and the status of plant is weak.
 - For tree ID. CT_7A, the stem was snapped by a broken tree trunk. The status of the plant was death.
- 7.04 It is concluded that the damage of the plant was due to the tree decayed by white ants, in view of this natural phenomena, no prompt action was recommended by the landscape sub-contractor. However, considering that the condition of remaining plants were in very poor condition, compensatory of additional *Celtis Timorenisis* is proposed and will carried out in the coming warm water season for better growing.

8 WASTE MANAGEMENT

8.01 Waste management was carried out by an on-site Environmental Officer or an Environmental Supervisor from time to time.

Records of Waste Quantities

- 8.02 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste;
 - General Refuse; and
 - Excavated Soil
- 8.03 The quantities of waste for disposal in this Reporting Period are summarized in *Table 8-1* and *8-2* and the Monthly Summary Waste Flow Table is shown in *Appendix J*. Whenever possible, materials were reused on-site as far as practicable.

Table 8-1 Summary of Quantities of Inert C&D Materials

Type of Waste	Quantity	Disposal Location
C&D Materials (Inert) ('000m ³)	0	-
Reused in the Contract (Inert) ('000m ³)	0	-
Reused in other Projects (Inert) ('000m ³)	0	-
Disposal as Public Fill (Inert) ('000m ³)	0.916	WENT Landfill Site

Table 8-2 Summary of Quantities of C&D Wastes

Type of Waste	Quantity	Disposal Location
Metal (kg)	0	-
Paper / Cardboard Packing (kg)	0	-
Plastic (kg)	0	-
Chemical Wastes (kg)	0	-
General Refuses (tonne)	5.09	Outlying Islands Transfer Facilities (Sok Kwu Wan)

8.04 There was no site effluent discharged but the estimated volume of surface runoff was less than 50m³ in this monthly period.

9 SITE INSPECTION

- 9.01 According to the Environmental Monitoring and Audit Manual, the environmental site inspection should been formulated by ET Leader. Regular environmental site inspections had been carried out by the ET to confirm the environmental performance. In this Reporting Period, weekly site inspection by ET was carried out on 2, 8, 15 and 22 May 2012 and a joint-site visit by IEC Representative, RE, the Contractor and ET was carried out on 8 May 2012.
- 9.02 The findings/ deficiencies that observed during the weekly site inspection are listed in *Table 9-1* and the relevant checklists are attached in *Appendix K*.

Table 9-1 Site Observations

Date	Findings / Deficiencies	Follow-Up Status
2 May 2012	Mosquito control is reminded near PS1.	Not required for reminder.
8 May 2012	No environmental issue was observed during site inspection.	N.A.
15 May 2012	No environmental issue was observed during site inspection.	N.A.
22 May 2012	No environmental issue was observed during site inspection.	N.A.

10 ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

10.01 No environmental complaint, summons and prosecution was received in this Reporting Period. The statistical summary table of environmental complaint is presented in *Tables 10-1*, *10-2* and *10-3*.

Table 10-1 Statistical Summary of Environmental Complaints

Donouting Dowied	Envir	Environmental Complaint Statistics						
Reporting Period	Frequency	Cumulative	Complaint Nature					
27 July 2010 – 31 December 2011	1 (Nov 2011)	1 (Nov 2011)	water quality					
January - April 2012	0	1 (Nov 2011)	NA					
May 2012	0	1 (Nov 2011)	NA					

Table 10-2 Statistical Summary of Environmental Summons

Donouting Donied	Environmental Summons Statistics						
Reporting Period	Frequency	Cumulative	Complaint Nature				
27 July 2010 – 31 December 2011	0	0	NA				
January - April 2012	0	0	NA				
May 2012	0	0	NA				

Table 10-3 Statistical Summary of Environmental Prosecution

Domontino Dominal	Environmental Prosecution Statistics					
Reporting Period	Frequency	Cumulative	Complaint Nature			
27 July 2010 – 31 December 2011	0	0	NA			
January - April 2012	0	0	NA			
May 2012	0	0	NA			

11 IMPLEMENTATION STATUS OF MITIGATION MEASURES

11.01 The environmental mitigation measures that recommended in the Sok Kwu Wan Environmental Monitoring and Audit covered the issues of dust, noise, water and waste and they are summarized as following:

Dust Mitigation Measure

- 11.02 Installation of 2m high solid fences around the construction site of Pumping Station P2 is recommended. Implementation of the requirements stipulated in the Air Pollution Control (Construction Dust) Regulation and the following good site practices are recommended to control dust emission from the site:
 - (a) Stockpiles of imported material kept on site should be contained within hoardings, dampened and / or covered during dry and windy weather;
 - (b) Material stockpiled alongside trenches should be covered with tarpaulins whenever works are close to village houses;
 - (c) Water sprays should be used during the delivery and handling of cement, sands, aggregates and the like.
 - (d) Any vehicle used for moving sands, aggregates and construction waste shall have properly fitting side and tail boards. Materials should not be loaded to a level higher than the side and tail boards, and should be covered by a clean tarpaulin.

Noise Mitigation Measure

- 11.03 As detailed in the EIA report, concreting work of the Pumping Station P1a and sewer alignment construction activities would likely cause adverse noise impacts on some of the noise sensitive receivers. Appropriate mitigation measures have therefore been recommended. The mitigation measures recommended in the EIA report are summarised below:
 - (a) Use of quiet equipment for the construction activities of the Pumping Stations and sewer alignment;
 - (b) Use of temporary noise barrier around the site boundary of Pumping Station P1a;
 - (c) Use of kick ripper (saw and lift) method to replace the breaker for pavement removal during sewer alignment construction;
 - (d) Restriction on the number of plant during sewer alignment construction;
 - (e) Use of noise screening structures in the form of acoustic shed or movable barrier wherever practicable and feasible in areas with sufficient clearance and headroom during the construction of sewer alignment;
 - (f) Adoption of manual working method wherever practicable and feasible in areas where the worksites of the proposed sewer alignment are located less than 20m from the residential noise sensitive receivers and less than 30m from the temple and the public library; and
 - (g) Implementation of the following good site practices:
 - Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme.
 - Mobile plant, if any, should be sited as far away from NSRs as possible.
 - Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum.
 - Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs.
 - Material stockpiles and other structures should be effectively utilised, wherever practicable, in screening noise from on-site construction activities.

Water Quality Mitigation Measure

11.04 No-dig method using Horizontal Directional Drilling (HDD) would be used for the installation of outfall pipe of about 480 m from shore to minimize the potential water quality impacts arising from the dredging works required for the submarine outfall construction. For the remaining outfall pipe of about 240m and the diffuser section, open trench dredging would still be required.

- 11.05 During the dredging works, the Contractor should be responsible for the design and implementation of the following mitigation measures.
 - Dredging should be undertaken using closed grab dredgers with a total production rate of 55m³/hr;
 - Deployment of 2-layer silt curtains with first layer enclosing the grab and the second layer at around 50, from the dredging area while dredging works are in progress;
 - all vessels should be sized such that adequate clearance (i.e. minimum clearance of 0.6m) is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash;
 - all pipe leakages should be repaired promptly and plant shall not be operated with leaking pipes;
 - excess material should be cleaned from the decks and exposed fittings of barges before the vessel is moved;
 - adequate freeboard (i.e. minimum of 200m) should be maintained on barges to ensure that decks are not washed by wave action;
 - all barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material; and
 - loading of barges and hoppers should be controlled to prevent splashing of dredged material to the surrounding water, and barges and hoppers should not be filled to a level which would cause the overflow of materials or sediment laden water during loading or transportation; and
 - the decks of all vessels should be kept tidy and free of oil or other substances that might be accidentally or otherwise washed overboard.

Construction Run-off and Drainage

- 11.06 The Contractor should observe and comply with the Water Pollution Control Ordinance and the subsidiary regulations. The Contractor should follow the practices, and be responsible for the design, construction, operation and maintenance of all the mitigation measures as specified in ProPECC PN 1/94 "Construction Site Drainage". The design of the mitigation measures should be submitted by the Contractor to the Engineer for approval. These mitigation measures should include the following practices to minimise site surface runoff and the chance of erosion, and also to retain and reduce any suspended solids prior to discharge:
 - Provision of perimeter channels to intercept storm-runoff from outside the site. These should be constructed in advance of site formation works and earthworks.
 - Works programmes should be designed to minimize works areas at any one time, thus minimising exposed soil areas and reducing the potential for increased siltation and runoff.
 - Sand/silt removal facilities such as sand traps, silt traps and sediment basins should be provided to remove the sand/silt particles from run-off. These facilities should be properly and regularly maintained. These facilities shall be carefully planned to ensure that they would be installed at appropriate locations to capture all surface water generated on site.
 - Careful programming of the works to minimise soil excavation works during rainy seasons.
 - Exposed soil surface should be protected by paving or hydroseeding as soon as possible to reduce the potential of soil erosion.
 - Trench excavation should be avoided in the wet season, and if necessary, these should be excavated and backfilled in short sections.
 - Open stockpiles of construction materials on site should be covered with tarpaulin or similar fabric.

General Construction Activities

11.07 Debris and rubbish generated on-site should be collected, handled and disposed of properly to avoid entering the nearby coastal waters and stormwater drains. All fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. Open drainage channels and culverts near the works areas should be covered to block the entrance of large debris and refuse.

Wastewater Arising from Workforce

11.08 Portable toilets shall be provided by the Contractors, where necessary, to handle sewage from the workforce. The Contractor shall also be responsible for waste disposal and maintenance practices

Sediment Contamination Mitigation Measure

- 11.09 The basic requirements and procedures for dredged mud disposal are specified under the WBTC No. 34/2002. The management of the dredging, use and disposal of marine mud is monitored by the MFC, while the licensing of marine dumping is the responsibility of the Director of Environmental Protection (DEP).
- 11.10 The uncontaminated dredged sediment will be loaded onto barges and transported to the designated marine disposal site. Appropriate dredging methods have been incorporated into the recommended water quality mitigation measures including the use of closed-grab dredgers and silt curtains. Category L sediment would be suitable for disposal at a gazetted open sea disposal ground.
- During transportation and disposal of the dredged marine sediments, the following measures should be taken to minimize potential impacts on water quality:
 - Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved.
 - Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels should be equipped with automatic self-monitoring devices as specified by the DEP.

Construction Waste Mitigation Measure

Good Site Practices and Waste Reduction Measures

- 11.12 It is not anticipated that adverse waste management related impacts would arise, provided that good site practices are strictly followed. Recommendations for good site practices for the construction waste arising include:
 - Nomination of an approved person, such as a site manager, to be responsible for the implementation of good site practices, arranging for collection and effective disposal to an appropriate facility, of all wastes generated at the site.
 - Training of site personnel in proper waste management and chemical handling procedures.
 - Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers.
 - Provision of sufficient waste disposal points and regular collection for disposal.
 - Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Facility.
 - Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors.
 - Maintain records of the quantities of wastes generated, recycled and disposed.
- 11.13 In order to monitor the disposal of C&D waste at landfills and to control fly tipping, a trip-ticket system should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.
- 11.14 Good management and control can prevent the generation of significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:
 - segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal;

- to encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated by the work force:
- any unused chemicals or those with remaining functional capacity should be recycled;
- use of reusable non-timber formwork to reduce the amount of C&D material;
- prior to disposal of C&D waste, it is recommended that wood, steel and other metals should be separated for re-use and / or recycling to minimise the quantity of waste to be disposed of to landfill;
- proper storage and site practices to minimise the potential for damage or contamination of construction materials; and
- plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste.

General Site Wastes

11.15 A collection area should be provided where waste can be stored prior to removal from site. An enclosed and covered area is preferred for the collection of the waste to reduce 'wind blow' of light material.

Chemical Wastes

- 11.16 After use, chemical waste (eg. cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Any unused chemicals or those with remaining functional capacity should be recycled. Spent chemicals should be properly stored on site within suitably designed containers, and should be collected by an approved operator for disposal at the Chemical Waste Treatment Facility or other licenced facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation under the Waste Disposal Ordinance.
- 11.17 Any service shop and minor maintenance facilities should be located on hard standings within a bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles and equipment involving activities with potential for leakages and spillage should only be undertaken with the areas appropriately equipped to control these discharges.

Construction and Demolition Material

- 11.18 The C&D material should be separated on-site into three categories: (i) public fill, the inert portion of the C&D material (e.g. concrete and rubble), which should be re-used on-site or disposed of at a public filling area; (ii) C&D waste for re-use and/or recycling, the non-inert portion of the C&D material, (e.g. steel and other metals, wood, glass and plastic); (iii) C&D waste which cannot be re-used and/or recycled. The waste producers are responsible for its disposal at strategic landfills.
- 11.19 In order to minimise the impact resulting from collection and transportation of material for off-site disposal, it was recommended that inert material should be re-used on-site where possible. Prior to disposal of C&D material, it was also recommended that steel and other metals should be separated for re-use and/or recycling where practicable to minimise the quantity of waste to be disposed of to landfill.

Ecology Mitigation Measure

Terrestrial Ecology

- 11.20 The uncommon tree species should be labelled and probably fenced to avoid direct or indirect disturbance during construction. Works areas should avoid woodland habitats, in particular where these trees are located.
- 11.21 Construction and maintenance of site runoff control measures would be required at all work sites during construction. These should include barriers to direct runoff to sand/silt removal facilities (sand/silt/traps and/or sediment basins); minimisation of earthworks during rainy season (May to September); and coverage of sand/fill piles and exposed earth during storms.

11.22 Special attention should be paid during the breeding season of Romer's Tree Frog (March to September) to ensure their habitat landward to Pumping Station P2 site is well protected from site runoff. Barriers should be deployed completely along the landward side of the pumping station site boundary to prevent any site runoff from entering the tree frog habitat. Intactness of the barriers should be frequently inspected.

Intertidal and Subtidal Ecology

- 11.23 Construction and maintenance of site runoff control measures would be required at all work sites during construction. These should include barriers to direct runoff to sand/silt removal facilities (sand/silt/traps and/or sediment basins); use of silt curtains along coastline; minimisation of earthworks during rainy season (May to September); and coverage of sand/fill piles and exposed earth during storms.
- 11.24 To reduce impacts of sediment resuspension upon nearby habitats and organisms during dredging, all dredging should be done using a closed-grab dredger, and silt curtains should be deployed around the dredger during all dredging activity

Fisheries Mitigation Measure

11.25 Closed grab dredger, deployment of silt curtains around the immediate dredging area and low dredging rate have been recommended in Water Quality of the EIA report in order to minimise sediment release into the water column.

Landscape & Visual Mitigation Measure

- 11.26 Mitigation measures recommended in the EIA Report for landscape and visual impacts during the construction stage are summarised below.
 - Screening of site construction works by use of hoarding that is appropriate to its site context;
 - Retaining existing trees and minimising damage to vegetation where possible by close co-ordination and on site alignment adjusted of rising main and gravity sewer pipelines. Tree protective measures should be implemented to ensure trees identified as to be retained are satisfactorily protected during the construction phase;
 - Careful and efficient transplanting of affected trees (1 no.) to temporary or final transplant location (the proposed tree to be transported is a semi-mature *Macaranga tanarius* and is located at the proposed Pumping Station P2 location);
 - Short excavation and immediate backfilling of sections upon completion of works to reduce active site area;
 - Conservation of top-soil for reuse.
 - Night-time light source from marine fleets should be directed away from the residential units
- 11.27 The implementation schedule of mitigation measures is presented in *Appendix L*.
- 11.28 Leader had been implementing the required environmental mitigation measures according to the Sok Kwu Wan Environmental Monitoring and Audit Manual subject to the site condition. Environmental mitigation measures generally implemented by Leader in this Reporting Period are summarized in *Table 11-1*.

Table 11-1 Environmental Mitigation Measures

Issues	Environmental Mitigation Measures
Ouality	 Drainage channels were provided to convey run-off into the treatment facilities; and Drainage systems were regularly and adequately maintained.
	 Cover all excavated or stockpile of dusty material by impervious sheeting or sprayed with water to maintain the entire surface wet; Public roads around the site entrance/exit had been kept clean and free from dust; and Tarpaulin covering of any dusty materials on a vehicle leaving the site.

Issues	Environmental Mitigation Measures
Noise	 Good site practices to limit noise emissions at the sources;
	 Use of quite plant and working methods;
	• Use of site hoarding or other mass materials as noise barrier to screen noise at
	ground level of NSRs; and
	To minimize plant number use at the worksite.
Waste and	• Excavated material should be reused on site as far as possible to minimize off-site
Chemical	disposal. Scrap metals or abandoned equipment should be recycled if possible;
Management	• Waste arising should be kept to a minimum and be handled, transported and
Wianagement	disposed of in a suitable manner;
	• The Contractor should adopt a trip ticket system for the disposal of C&D
	materials to any designed public filling facility and/or landfill; and
	• Chemical waste shall be handled in accordance with the Code of Practice on the
	Packaging, Handling and Storage of Chemical Wastes.
General	The site was generally kept tidy and clean.

12 IMPACT FORECAST

12.01 Key issues to be considered in the coming month include:

Water Quality

- Erect of sand bag in proper area to avoid any muddy surface runoff from the loose soil surface or haul road during the rainy days; and
- The accumulated stagnant water should be drained away.

Air Quality

- Vehicles shall be cleaned of mud and debris before leaving the site;
- Stockpile and loose soil surface shall be covered with tarpaulin sheet or other means to eliminate the fugitive dust;
- Water spaying on the dry haul road and exit/entrance of the site in regular basis is reminded; and
- Public roads around the site entrance/exit had been kept clean and free from dust.

Noise

- Works and equipment should be located to minimize noise nuisance from the nearest sensitive receiver; and
- Idle equipments should be either turned off or throttled down;

Waste and Chemical Management

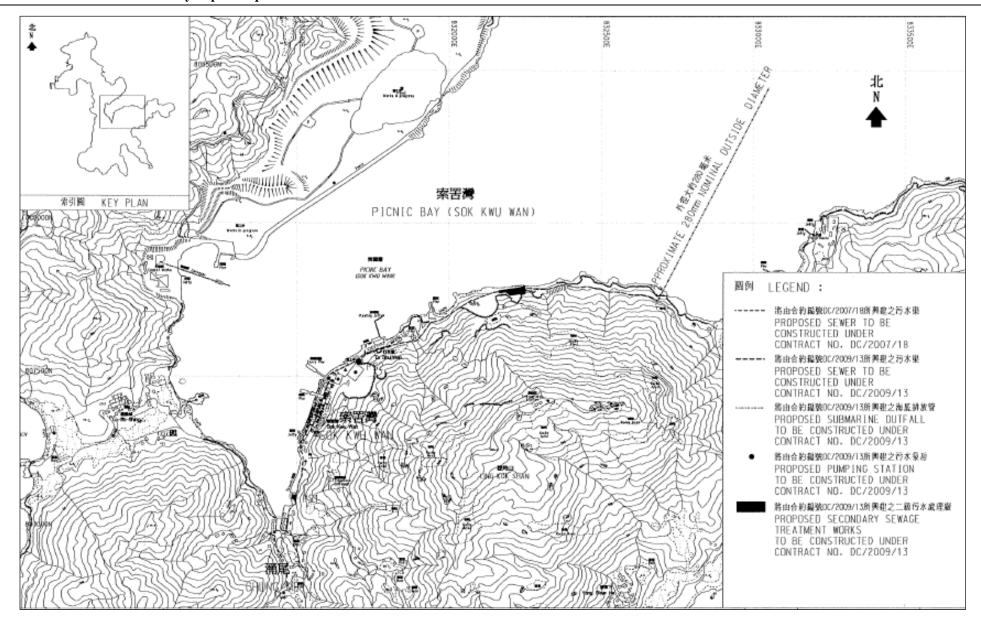
- Housekeeping on site shall be improved;
- The Contractor is advised to fence off the construction waste at a designated area in order to maintain the tidiness of the site;
- Drip tray and proper label should be provided for all chemical containers.
- C&D waste should be disposed in regular basis.

13 CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

- 13.01 This is the 22nd monthly EM&A Report covering the construction period from 26 April to 25 May 2012.
- 13.02 No 1-hour and 24-hour TSP results were found to be triggered the Action or Limit Level in this Reporting Period.
- 13.03 No noise complaint (an Action Level exceedance) was received and no construction noise measurement results that exceeded the Limit Level were recorded in this Reporting Period.
- 13.04 The monitoring result demonstrated no exceedance of Action or Limit Level of marine water quality monitoring in this Reporting Period.
- 13.05 No documented complaint, notification of summons or successful prosecution was received.
- 13.06 In this Reporting Period, weekly site inspection by ET was carried out on 2, 8, 15 and 22 May 2012 and a joint-site visit by IEC Representative, RE, the Contractor and ET was carried out on 8 May 2012. All the observation has been rectified during the next week site inspection. The environmental performance of the Project was therefore considered as satisfactory.
- 13.07 No site inspection was undertaken by external parties i.e. Environmental Protection Department (EPD) or Agriculture, Fisheries and Conservation Department (AFCD) within the Reporting Period.

RECOMMENDATIONS


- 13.08 During wet season, muddy water and other water quality pollutants via site surface water runoff into the sea body within Fish culture zone at Picnic Bay and the Secondary recreation contact subzone at Mo Tat Wan is the key issue of the Project. Mitigation measures for water quality should be properly maintained to prevent any muddy or sandy runoff from the loose soil surface overflow on the site boundary.
- 13.09 Moreover, special attention should be also paid on the dust mitigation measures to avoid fugitive dust emissions from loose soil surface or haul road. Mitigation measures implemented for control the surface runoff including wheel wash facilities, covering of the loose soil surface or stockpile with tarpaulin sheet, etc., should fully implement.

Appendix A

Site Layout Plan – Sok Kwu Wan Portion Area

Appendix B

Organization Structure and Contact Details of Relevant Parties

Contact Details of Key Personnel

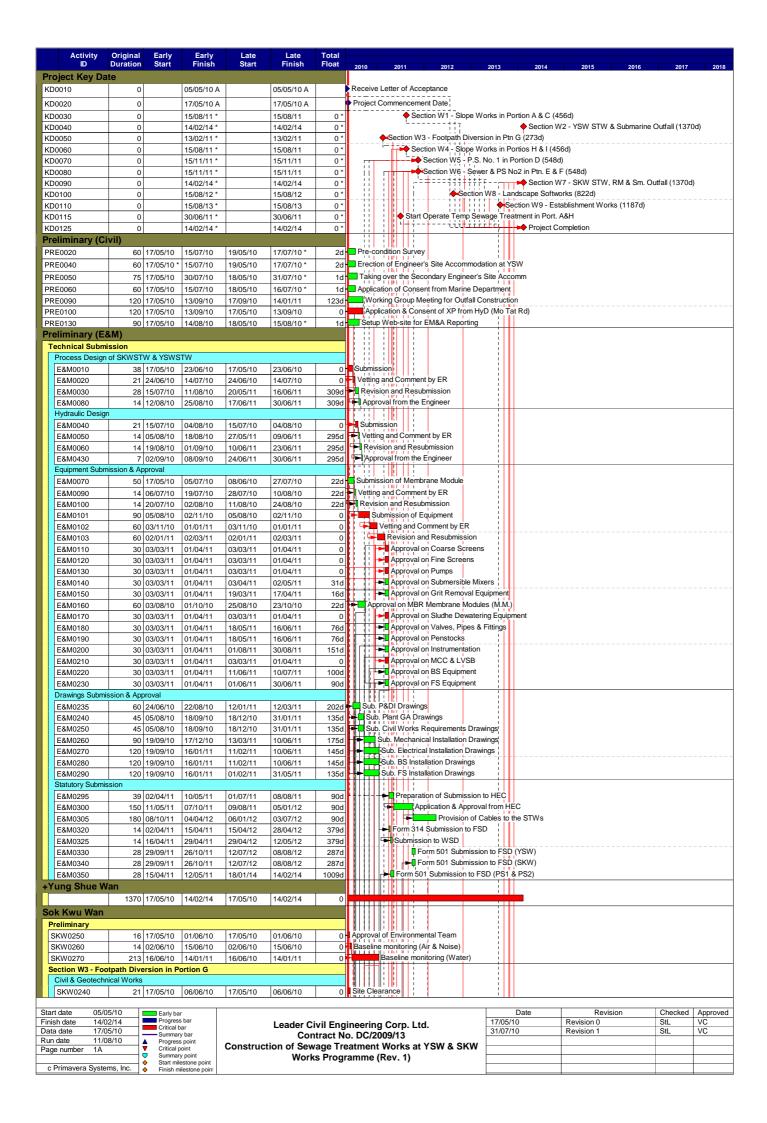
Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
DSD	Employer	Mr Kenley C K Kwok	-	-
SCJV	Engineer's Representative	Mr. Neil Wong	2982 0240	2982 4129
SCJV	Resident Engineer	Mr. Alfred Cheung	2982 0240	2982 4129
Scott Wilson	Independent Environmental Checker	Mr. Rodney Ip	2410 3750	2428 9922
Leader	Project Manager	Mr. Vincent Chan	2982 1750	2982 1163
Leader	Site Agent	Mr. Ron Hung	2982 1750	2982 1163
Leader	Environmental Officer	Mr. K.Y. So	2982 8652	2982 8650
Leader	Section Engineer	Mr. Burgess Yip	2982 1750	2982 1163
Leader	Safety Officer	Mr. Edwin Leung	2982 1750	2982 1163
AUES	Environmental Team Leader	Mr. T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ms. Nicola Hon	2959 6059	2959 6079
AUES	Assistance Environmental Consultant	Mr. Ray Cheung	2959 6059	2959 6079
AUES	Team Supervisor	Mr. Ben Tam	2959 6059	2959 6079

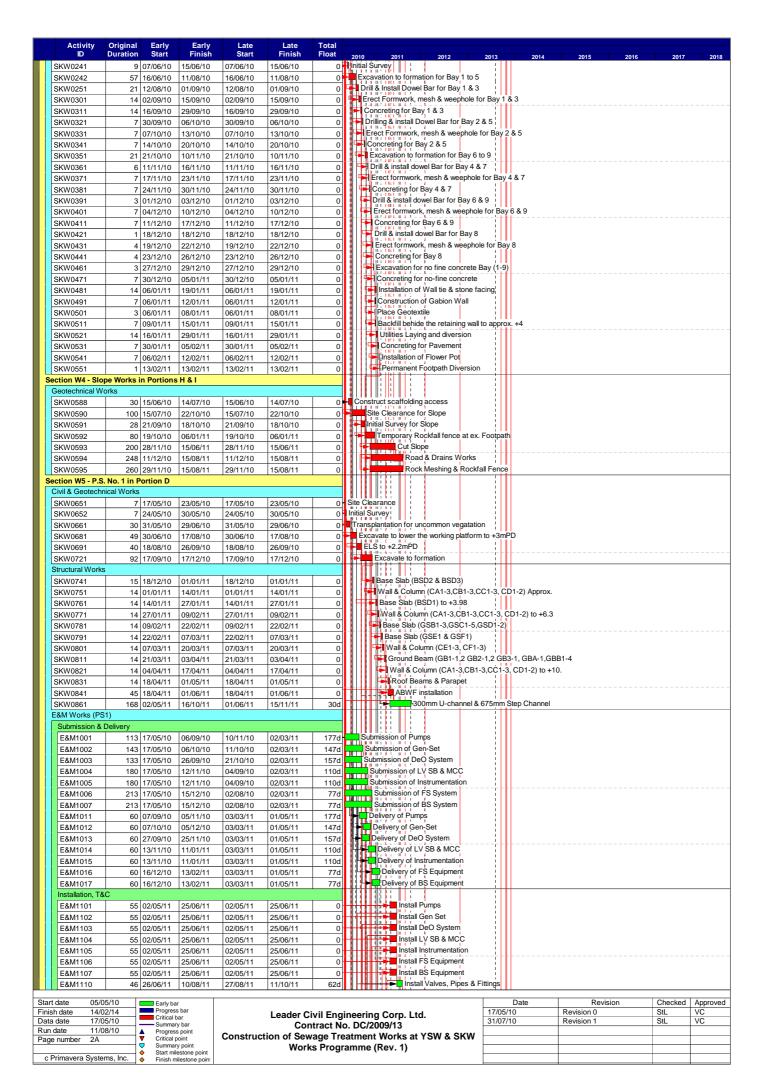
Legend:

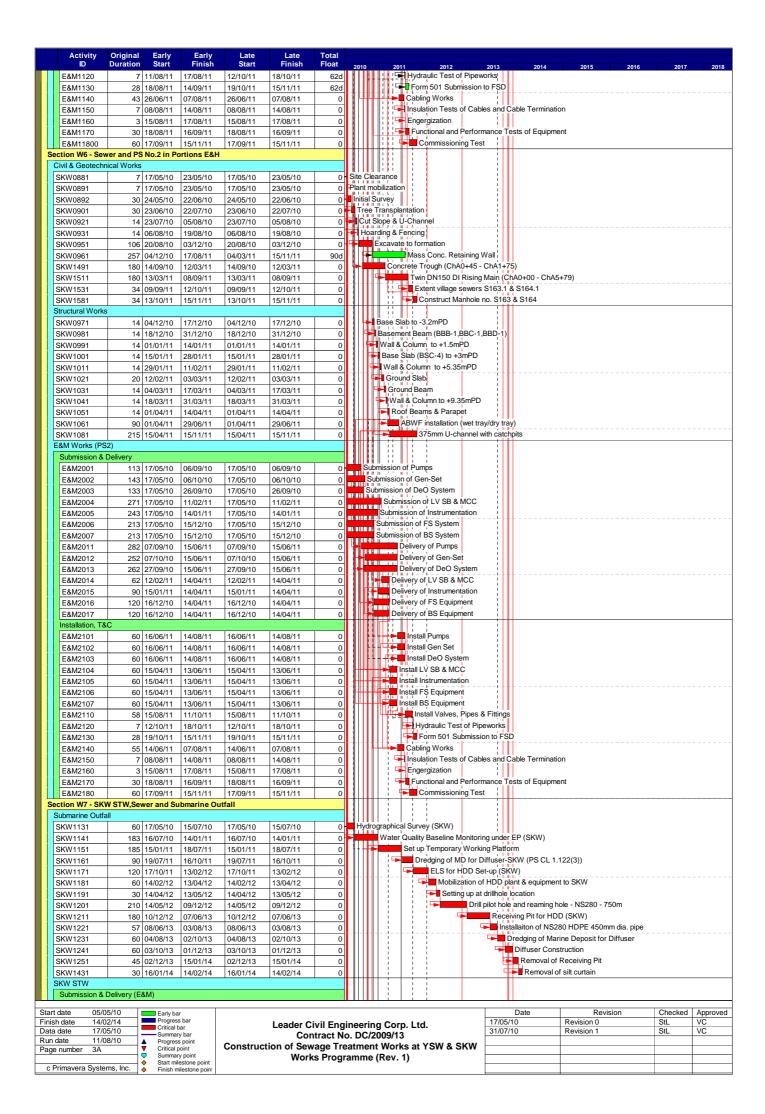
DSD (Employer) – Drainage Services Department

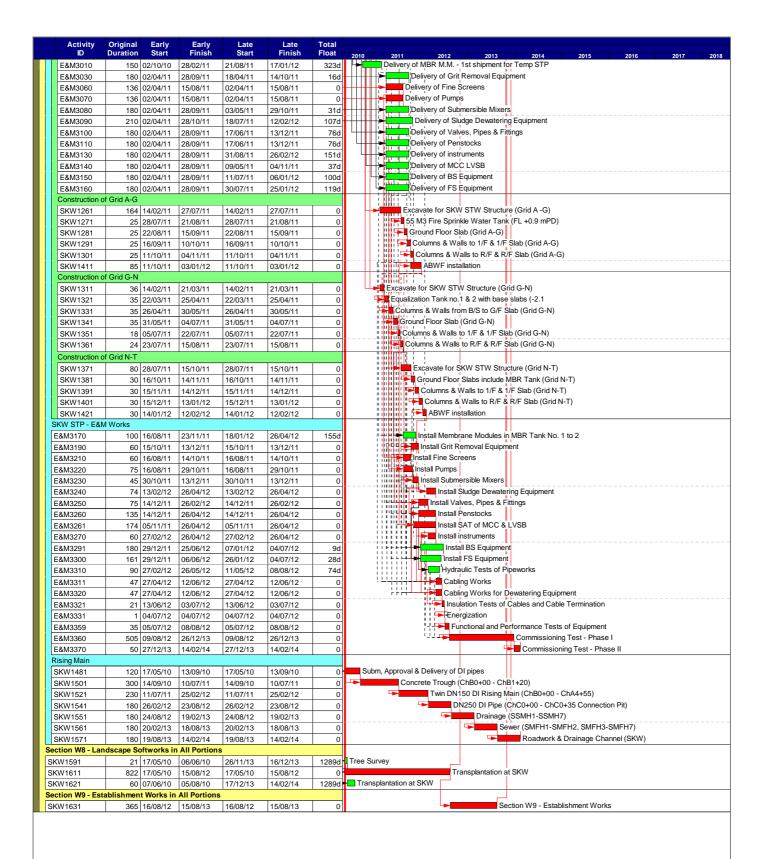
CDM (Engineer) – Scott Wilson CDM Joint Venture

Leader (Main Contractor) - Leader Civil Engineering Corporation Limited


Scott Wilson (IEC) – Scott Wilson Limited


AUES (ET) – Action-United Environmental Services & Consulting




Appendix C

A Master and Three Months Rolling Construction Programme

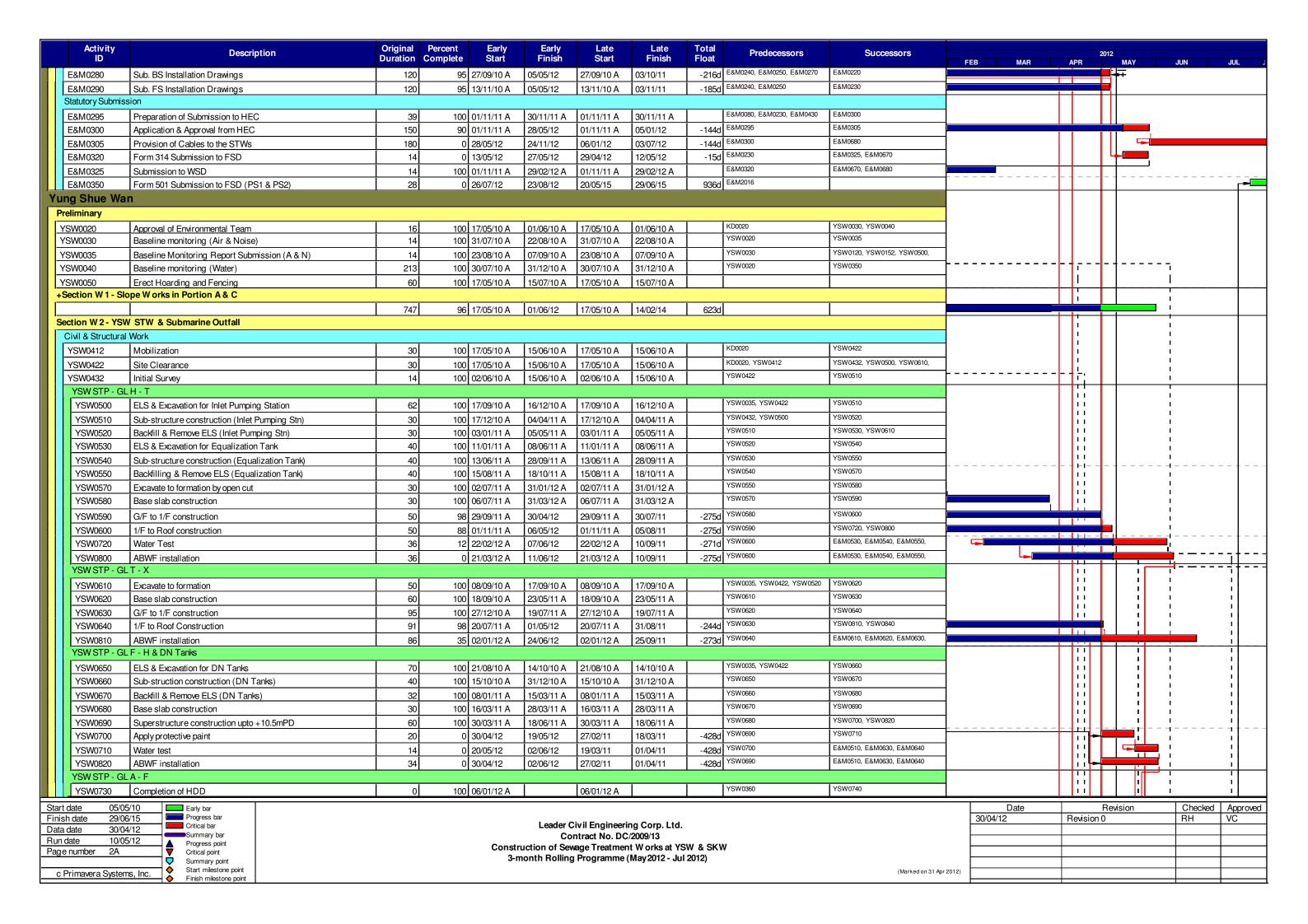
Start date	05/05/10		Early bar
Finish date	14/02/14		Progress bar
Data date	17/05/10	_	Critical bar Summary bar
Run date	11/08/10	A	Progress point
Page number	4A	▼	Critical point
			Summary point Start milestone point
c Primavera	Systems, Inc.] ~	Finish milestone poin

Leader Civil Engineering Corp. Ltd.
Contract No. DC/2009/13
Construction of Sewage Treatment Works at YSW & SKW
Works Programme (Rev. 1)

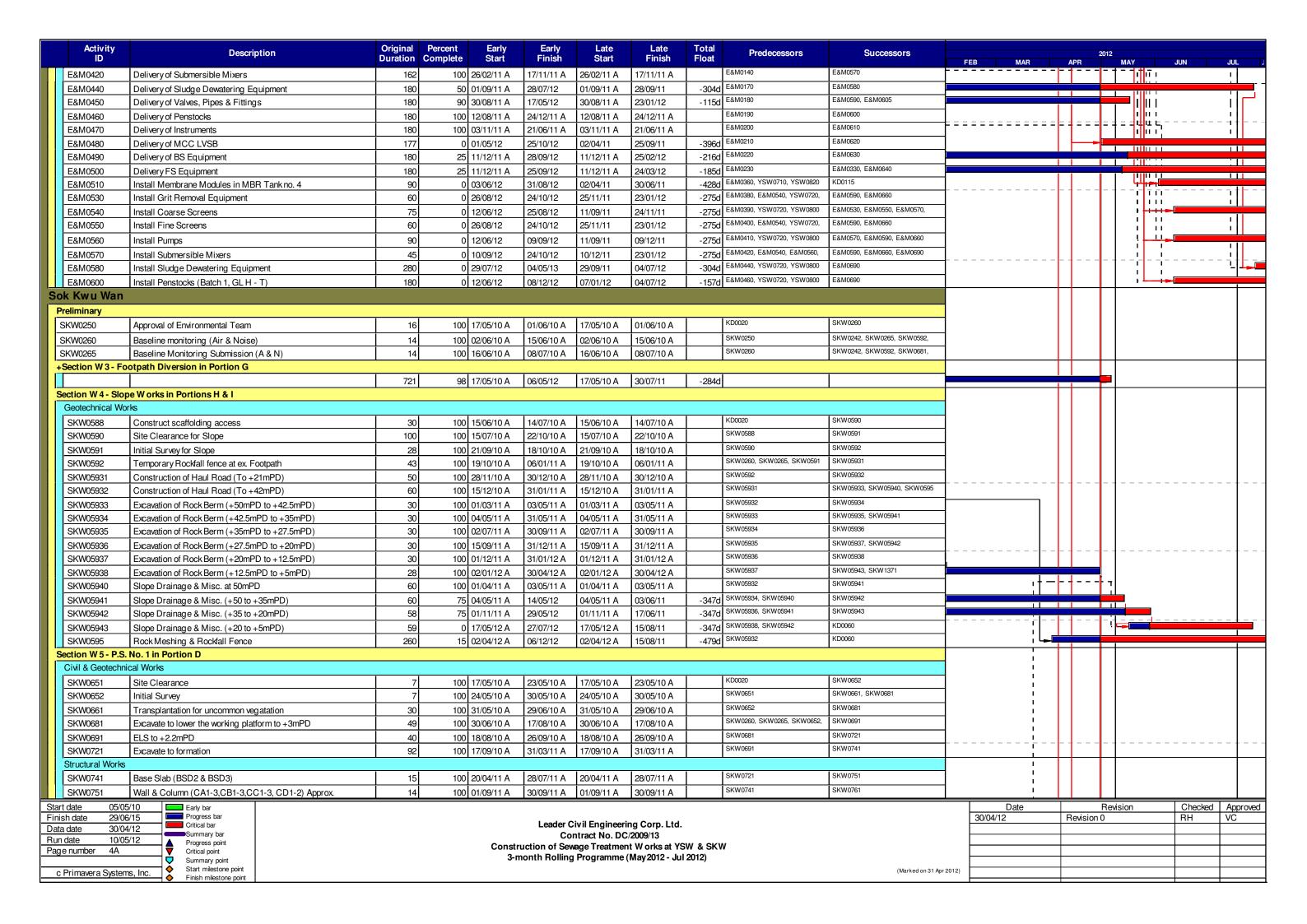
Date	Revision	Checked	Approved
17/05/10	Revision 0	StL	VC
31/07/10	Revision 1	StL	VC

Activity ID	Description	Original Duration (Percent	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors			012		
Project Key Da	ate	Duration	Jonipiete	Start	I IIIISII	Start	Tillisti	1 Ioat			FEB MAR	APR	MAY	JUN	JUL J
KD0010	Receive Letter of Acceptance	1 0	100		05/05/10 A		05/05/10 A	ı		KD0125					
KD0010 KD0020	Project Commencement Date		100		17/05/10 A		17/05/10 A	İ		E&M0010, E&M0070, E&M1001,	-				
KD0030	Section W1 - Slope Works in Portion A & C (456d)	1 0	100		14/10/11 A		14/10/11 A		YSW0150	KD0125	-				
KD0050	Section W3 - Footpath Diversion in Ptn G (273d)		100		24/03/11 A		24/03/11 A		SKW0551	KD0125	1				
KD0030	Start Operate Temp Sewage Treatment in Port. A&H		0		31/08/12		30/06/11 *	-428d *	E&M0510	KD0125	1				
Preliminary (C		<u> </u>	<u>_</u>		101/00/12	1	100/00/11	1200							
PRE0020	Pre-condition Survey	60	100	17/05/10 A	15/07/10 A	17/05/10 A	15/07/10 A	l	KD0020						
PRE0040	Erection of Engineer's Site Accommodation at YSW	60		17/05/10 A	15/07/10 A	17/05/10 A	15/07/10 A		KD0020		1				
PRE0050	Taking over the Secondary Engineer's Site Accomm	75		17/05/10 A	30/07/10 A	17/05/10 A	30/07/10 A		KD0020		1				
PRE0060	Application of Consent from Marine Department	60		17/05/10 A	15/07/10 A	17/05/10 A	15/07/10 A		KD0020		-				
PRE0090	Working Group Meeting for Outfall Construction	120		17/05/10 A	23/11/10 A	17/05/10 A	23/11/10 A		KD0020	SKW1151	1				
PRE0100	Application & Consent of XP from HyD (Mo Tat Rd)	120	100	17/05/10 A	13/10/10 A	17/05/10 A	13/10/10 A		KD0020	SKW1491, SKW1501					
PRE0130	Setup Web-site for EM&A Reporting	90	100	17/05/10 A	31/08/10 A	17/05/10 A	31/08/10 A		KD0020		1				
Preliminary (E		1 221		11,00,101	100,00,1011	111,00,1011	1000/1011								
Technical Submis	•														
	n of SKWSTW & YSWSTW										1				
E&M0010	Submission	38	100	17/05/10 A	23/06/10 A	17/05/10 A	23/06/10 A	l	KD0020	E&M0020, E&M0040, E&M0235					
E&M0020	Vetting and Comment by ER	21		24/06/10 A	14/07/10 A	24/06/10 A	14/07/10 A		E&M0010	E&M0030, E&M0040	1				
E&M0030	Revision and Resubmission	125		17/05/10 A	30/11/11 A	17/05/10 A	30/11/11 A		E&M0020	E&M0080	1				
E&M0080	Approval from the Engineer	14	100	02/11/11 A	30/11/11 A	02/11/11 A	30/11/11 A		E&M0030	E&M0295					
Hydraulic Desig															
E&M0040	Submission	21	100	17/05/10 A	16/09/10 A	17/05/10 A	16/09/10 A		E&M0010, E&M0020	E&M0050, E&M0101, E&M0240,					
E&M0050	Vetting and Comment by ER	14	100	17/09/10 A	09/11/10 A	17/09/10 A	09/11/10 A		E&M0040	E&M0060					
E&M0060	Revision and Resubmission	97	100	19/08/10 A	30/11/11 A	19/08/10 A	30/11/11 A		E&M0050	E&M0430					
E&M0430	Approval from the Engineer	7	100	29/03/11 A	30/11/11 A	29/03/11 A	30/11/11 A		E&M0060	E&M0295					
Equipment Subn	mission & Approval														
E&M0070	Submission of Membrane Module	50	100	17/05/10 A	05/07/10 A	17/05/10 A	05/07/10 A		KD0020	E&M0090					
E&M0090	Vetting and Comment by ER	14		06/07/10 A	19/07/10 A	06/07/10 A	19/07/10 A		E&M0070	E&M0100					
E&M0100	Revision and Resubmission	14	100	20/07/10 A	24/02/11 A	20/07/10 A	24/02/11 A		E&M0090	E&M0160					
E&M0101	Submission of Equipment	90		04/08/10 A	30/11/11 A	04/08/10 A	30/11/11 A		E&M0040	E&M0102					
E&M0102	Vetting and Comment by ER	60		18/11/10 A		18/11/10 A	30/11/11 A		E&M0101	E&M0103					
E&M0103	Revision and Resubmission	60		01/02/11 A		01/02/11 A	30/11/11 A		E&M0102	E&M0110, E&M0120, E&M0130,					
E&M0110	Approval on Coarse Screens	30		25/05/11 A	-	25/05/11 A	25/05/11 A		E&M0103 E&M0103	E&M0390 E&M0400, E&M3060					
E&M0120	Approval on Fine Screens	30		12/09/11 A	12/09/11 A	12/09/11 A	12/09/11 A		E&M0103	E&M0400, E&M3060 E&M0410, E&M3070					
E&M0130	Approval on Pumps	30		23/06/11 A	- 	23/06/11 A	23/06/11 A		E&M0103	E&M0420, E&M3080	-				
E&M0140	Approval on Submersible Mixers	30		23/03/11 A	23/03/11 A	23/03/11 A	23/03/11 A		E&M0103	E&M0380, E&M3030					
E&M0150	Approval on Grit Removal Equipment	30		10/10/11 A	10/10/11 A	10/10/11 A	10/10/11 A	<u> </u>	E&M0100	E&M0360, E&M0370, E&M3010	1				
E&M0160	Approval on MBR Membrane Modules (M.M.)	105 30		02/08/10 A 01/09/11 A	-i	02/08/10 A	24/02/11 A		E&M0103	E&M0440, E&M3090	-				
E&M0170 E&M0180	Approval on Sludge Dewatering Equipment	30		19/11/11 A	01/09/11 A 29/02/12 A	01/09/11 A 19/11/11 A	01/09/11 A 29/02/12 A		E&M0103	E&M0450, E&M3100					
E&M0190	Approval on Valves, Pipes & Fittings Approval on Penstocks	30		15/11/11 A	15/11/11 A	15/11/11 A	15/11/11 A		E&M0103	E&M0460, E&M3110					
E&M0200	Approval on Instrumentation	30		21/06/11 A	08/05/12	21/06/11 A	05/05/12	-3d	E&M0103	E&M0470, E&M3130					
E&M0210	Approval on MCC & LVSB	30		19/11/11 A	01/05/12	19/11/11 A	01/04/11	-396d	E&M0103	E&M0480, E&M3140					
E&M0220	Approval on BS Equipment	30		30/11/11 A	16/05/12	30/11/11 A	13/10/11	-216d	E&M0103, E&M0280	E&M0490, E&M3150					
E&M0230	Approval on FS Equipment	30		30/11/11 A	13/05/12	30/11/11 A	10/11/11		E&M0103, E&M0290	E&M0295, E&M0320, E&M0500,			I		
	nission & Approval		, 5	25.17.171	1 . 5. 55, . 5	1	1		<u> </u>	<u> </u>			+		
E&M0235	Sub. P&ID Drawings	100	100	24/06/10 A	22/08/10 A	24/06/10 A	22/08/10 A		E&M0010						
E&M0240	Sub. Plant GA Drawings	45		04/08/10 A		04/08/10 A	29/02/12 A		E&M0040	E&M0250, E&M0280, E&M0290					
E&M0250	Sub. Builder's Works Requirements Drawings	15		04/08/10 A	03/05/12	04/08/10 A	27/11/11	-158d	E&M0240, E&M0260, E&M0270	E&M0280, E&M0290			<u>, </u>		
E&M0260	Sub. Mechanical Installation Drawings	60		27/09/10 A	02/05/12	27/09/10 A	26/11/11	-158d	E&M0040	E&M0250			<u>F </u>		
E&M0270	Sub. Electrical Installation Drawings	60		27/09/10 A	02/05/12	27/09/10 A	26/11/11		E&M0040	E&M0250, E&M0280					
		· '	-			•	-		•	•				1 -	
	05/10 Early bar Progress bar										Date 30/04/12		Revision		Approved
	04/12 Critical bar						ng Corp. Ltd.				30/04/12	Revision 0	1	RH	VC
Dun data 10/0					Cor	ntract No. DC	/2009/13				-			_	

Contract No. DC/2009/13


Construction of Sewage Treatment W orks at YSW & SKW
3-month Rolling Programme (May 2012 - Jul 2012)

(Marked on 31 Apr 2012)

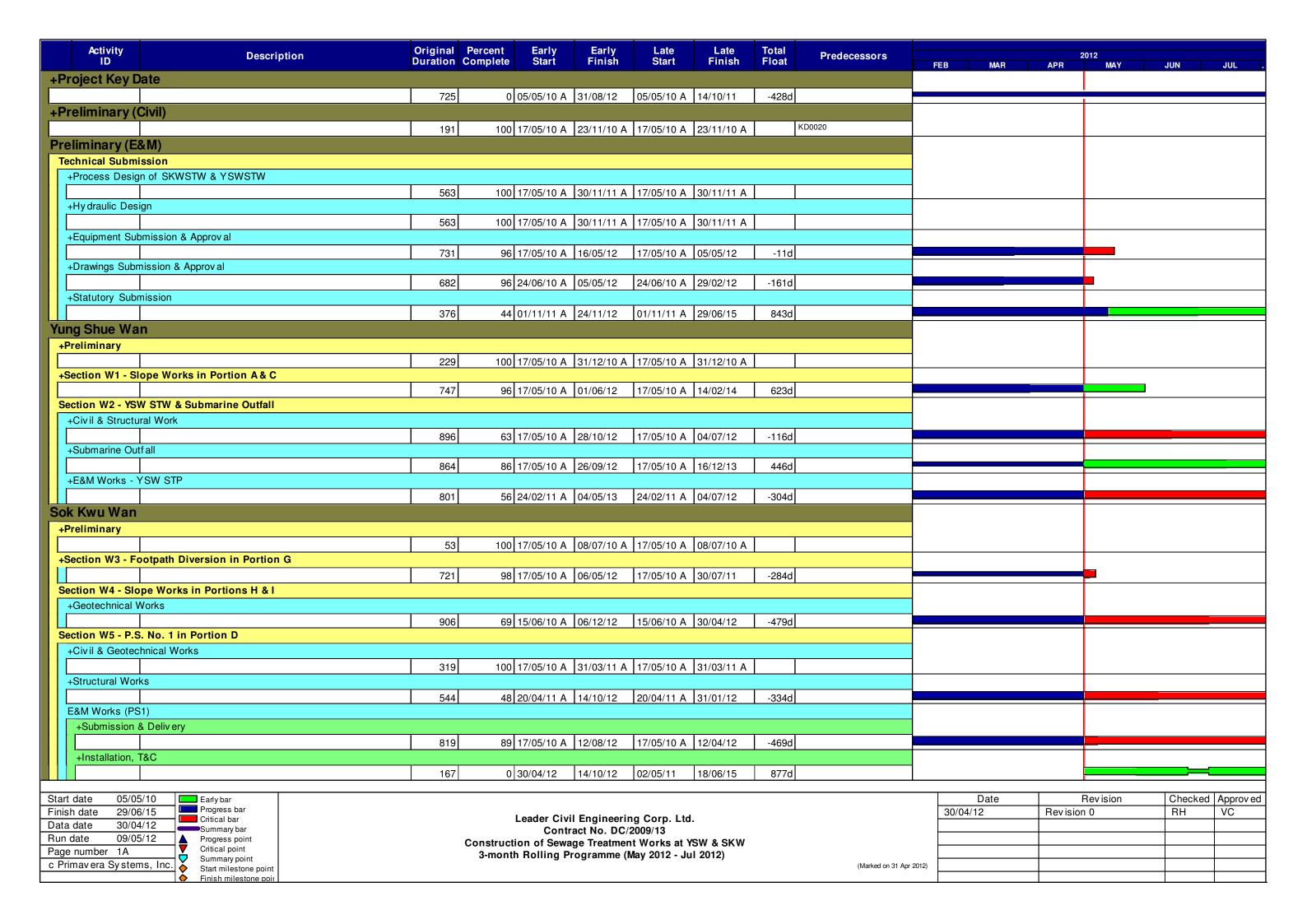

Data date	30/04/12		Critical bar Summary bar
Run date	10/05/12		Progress point
Page number	1A] ₹	Critical point
		Ŏ	Summary point
c Primavera	Systems, Inc.] 💸	Start milestone point Finish milestone point
			T II II II T TTIII COTOTIC POILTE

Run date

Page number 1A

	Activity ID	Description	Original Duration	Percent Early Complete Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	FEB MAR	20 ⁻ APR	2 MAY	JUN	JUL
Y	/SW0740	ELS & excavate for Outfall Shaft	22	75 29/02/12 A	05/05/12	29/02/12 A	16/08/11	-263d	YSW0730	YSW0750				1	
	/SW0750	Sub-structure construction (outfall shaft)	22		27/05/12	17/08/11	07/09/11	-263d	YSW0740	YSW0760		:: 🖶		A !	- !
	/SW0760	Backfill & remove ELS (outfall shaft)	24	0 27/05/12	20/06/12	08/09/11	01/10/11	-263d	YSW0750	YSW0770, YSW1470					il
_	/SW0770	Excavate to formation by open cut	22	 	29/06/12	30/01/12 A	10/10/11	-263d	YSW0760	YSW0780			1 1111		i i
	/SW0780	Base slab construction	21	20 20/02/12 A	15/07/12	20/02/12 A	27/10/11	-263d	YSW0770	YSW0790					
	/SW0790	Superstructure construction upto +10.5mPD	30	 	07/08/12	01/03/12 A	18/11/11	-263d	YSW0780	YSW0795, YSW0870	_			'	
	/SW0795	Apply protective paint	30		06/09/12	19/11/11	18/12/11	-263d	YSW0790	YSW0830		11		!	! .
			<u> </u>	ļ	<u> </u>				YSW0795	E&M0520, E&M0605, E&M0630,				, ;	
	/SW0830	Water test	30		06/10/12	19/12/11	17/01/12	-263d		E&M0520, E&M0605, E&M0630,		!!	!	. !	- !
	/SW0870	ABWF installation	60	0 07/08/12	06/10/12	28/12/11	25/02/12	-224d	10110100	Edivided, Edivided,		├─┤ ┼┼┤ ╸ ┫╴	- 		
		l / Sprinkler Pump Rm	1	l -l	1	1	1	I	YSW0035, YSW0422, YSW0640	YSW0860		11		_ !	!
	/SW0840	ELS & excavate to formation (+0 mPD approx.)	30	 	31/05/12	01/09/11	30/09/11	-244d				+ + + + + + + + + + + + + + + + +	l lıll		-
	/SW0860	Sub-structure construction	30		30/06/12	01/10/11	30/10/11	-244d	YSW0840	YSW0880			1 1:11		1
Y	/SW0880	Backfill & remove ELS	30	0 30/06/12	30/07/12	31/10/11	29/11/11	-244d	YSW0860	YSW0890				, ¦	
<u> Y</u>	/SW0890	Construction Ground Slab at +5.2mPD	30	0 30/07/12	29/08/12	30/11/11	29/12/11	-244d	YSW0880	YSW0900, YSW0930				1	! 🖼
<u>Y</u> ,	/SW0900	Superstructure construction upto +8.2mPD	35	0 29/08/12	03/10/12	30/12/11	02/02/12	-244d	YSW0890	YSW0910, YSW0925		_	1 - 44		
_		Construction of Gurad House	60	0 29/08/12	28/10/12	06/05/12	04/07/12	-116d	YSW0890	E&M0690, KD0040			1 11	i	i
En	mergency Sto	orage Tank													
Y	/SW1470	ELS & excavate to formation (-1.5mPD Approx.)	30	0 20/06/12	20/07/12	07/11/11	06/12/11	-227d	YSW0035, YSW0760	YSW1480					
Y	/SW1480	Sub-structure construction	40	0 20/07/12	29/08/12	07/12/11	15/01/12	-227d	YSW1470	YSW1490					4
Y	/SW1490	Backfill & extract sheetpile	30	0 29/08/12	28/09/12	16/01/12	14/02/12	-227d	YSW1480	YSW1500			i		i i
		able Draw Pits & Ducting													
_	/SW0152	Temporary Diversion of Drainage	92	100 02/12/10 A	09/05/11 A	02/12/10 A	09/05/11 A		YSW0035	YSW0153					i i
	/SW0153	Removal of Ex U-Channel where clash with B. Wall	50	i i	20/04/11 A	20/11/10 A	20/04/11 A		YSW0152	YSW0154			!		!
			+		1	•	1	-85d	YSW0153, YSW0165	YSW0155			<u> </u>		
	/SW0154	Construction of Subsoil Drain	90		20/07/12	24/08/11 A	26/04/12			YSW1640, YSW1660			1 1111		
	/SW0155	RC Concrete Barrier (above Ground Level)	120	93 01/06/11 A	28/07/12	01/06/11 A	04/05/12	-85d	101101, 10110100	1011 1040, 1011 1000		 	 		
	marine Outfal		<u> </u>	<u> </u>	1	1	1	<u> </u>	I	Lyowooso			i		i
YSI	W0180	Coordination of HEC	53	100 17/05/10 A	08/07/10 A	17/05/10 A	08/07/10 A			YSW0350					- !
YSV	W0200	Submission and Approval of Ecologist	60	100 17/05/10 A	15/07/10 A	17/05/10 A	15/07/10 A			YSW0210			i		i
YSV	W0210	Ecolog y Survey	90	100 16/07/10 A	11/02/11 A	16/07/10 A	11/02/11 A		YSW0200	YSW0350			!		- !
YSV	W0220	Submission and Approval of In. Hydro Survey	90	100 17/05/10 A	27/08/10 A	17/05/10 A	27/08/10 A			YSW0230					- il
YSV	W0230	Hydrogrophical Survey (YSW)	45	100 31/08/10 A	31/01/11 A	31/08/10 A	31/01/11 A		YSW0220	YSW0350					- !
YSV	W0240	Material Submission, Approval of HDPE pipe	93	100 17/05/10 A	31/03/11 A	17/05/10 A	31/03/11 A	İ		YSW0250			1 - 11		
YSI	W0250	Submit and Approval of Method Statement for HDD	120	100 24/09/10 A	25/03/11 A	24/09/10 A	25/03/11 A		YSW0240	YSW0260, YSW0270, YSW0340					!
1/01	W0260	Submission of HDD Method Statement to HEC	14	100 26/01/11 A	24/03/11 A	26/01/11 A	24/03/11 A		YSW0250	YSW0320, YSW0340					-
	W0270	Additional G.I. Boreholes (YSW)	62	i i	19/01/11 A	06/11/10 A	19/01/11 A		YSW0250	YSW0280, YSW0320					1
	W0280	Submission of propose alignment to the Eng	1/1	100 02/02/11 A	04/03/11 A	02/02/11 A	04/03/11 A		YSW0270	YSW0290, YSW0310, YSW0340					
	W0290	Submission of Marine Notice	60	i i	29/03/11 A	31/01/11 A	29/03/11 A		YSW0280	YSW0350		- +	4 - 44		
		Construction of Entry Pit and Preparation Work	39	i i	i	15/03/11 A	1		YSW0280	YSW0320, YSW0330					- :
	W0310	'	+		31/03/11 A	+	31/03/11 A		YSW0260, YSW0270, YSW0310	YSW0330, YSW0350			i		- i
	W0320	Prepare of HDD Drill Rig Set-up (YSW)	39		28/04/11 A	02/04/11 A	28/04/11 A		YSW0310, YSW0320	YSW0340					- !
_	W0330	Establishment of HDD plant & equipment	14	100 09/04/11 A	14/04/11 A	09/04/11 A	14/04/11 A						i		i
<u> </u>	W0340	Setting up at drillhole location	7	100 19/04/11 A	28/04/11 A	19/04/11 A	28/04/11 A		YSW0250, YSW0260, YSW0280,	YSW0350			4 - 44		
YSI	W0350	Drill pilot hole and reaming hole - NS400 - 530m	123	100 29/04/11 A	08/12/11 A	29/04/11 A	08/12/11 A		YSW0040, YSW0180, YSW0210,	YSW0360					i
YSI	W0360	Installation of NS400 HDPE 530m	14	100 14/12/11 A	30/12/11 A	14/12/11 A	30/12/11 A		YSW0350	SKW1181, YSW0365, YSW0370,				<u>. </u>	!
YSV	W0365	Set up of Silt Curtain as per EP	30	0 30/04/12	29/05/12	20/07/13	18/08/13	446d		YSW0370			1 1111		;
YSV	W0370	Dredging of Marine Deposit for Diffuser (YSW)	60	0 30/05/12	28/07/12	19/08/13	17/10/13	446d	YSW0360, YSW0365	YSW0380					
YSV	W0380	Diffuser Construction (YSW)	60	0 29/07/12	26/09/12	18/10/13	16/12/13	446d	YSW0370	YSW0390					
E&M	// Works - YS			•									 		1
	M0360	Delivery of MBR Memb. Mod. (MBR Tk4)	137	100 24/02/11 A	21/06/11 A	24/02/11 A	21/06/11 A		E&M0160	E&M0510			:		:
	M0370	Delivery of MBR Membrane Modules - 2nd Shipment	150		17/10/11 A	24/02/11 A	17/10/11 A		E&M0160	E&M0520		-	 	а	i [
	M0380	Delivery of Mish t Memoral Equipment	180	i i	29/12/11 A	10/10/11 A	29/12/11 A	<u> </u>	E&M0150	E&M0530			:	1	:1
				<u> </u>	<u> </u>	+			E&M0110	E&M0540		-	4 - 44	j-	4
	M0390	Delivery of Coarse Screens	162	100 06/09/11 A	12/01/12 A	06/09/11 A	12/01/12 A	-	E&M0120	E&M0550		-	4-44	I NT	!
	M0400	Delivery of Fine Screens	180	100 12/09/11 A	30/11/11 A	12/09/11 A	30/11/11 A					-	4 = 44	,i - = = = = = =	. = =
E&N	M0410	Delivery of Pumps	162	100 23/06/11 A	05/09/11 A	23/06/11 A	05/09/11 A		E&M0130	E&M0560			<u> </u>	ш	
Start date Finish da Data date Run date Page nun	e 30/04 e 10/05	5/15 Progress bar 4/12 Summary bar 5/12 Progress point Critical point			Co uction of Sev	ntract No. DC vage Treatmer	ng Corp. Ltd. /2009/13 It W orks at YS (May2012 - Jul		v		Date 30/04/12	Revision 0	evision	Checked RH	d Approved VC
c Prim	navera System	Summary point Start milestone point		3-11	110111119	, Jyraniine (uy 2012 * UUI			(Marked on 31 Apr 20	012)				+
CEIIII	iavoi a System	Finish milestone point								,				=	

SKW0791 Base Slab (GSE1 & GSF1) 14 100 01/11/11 A 30/11/11 A 01/11/11 SKW0801 SKW0801 Wall & Column (CE1-3, CF1-3) 14 100 01/11/11 A 30/11/11 A 01/11/11 SKW0811 Ground Beam (GB1-1,2 GB2-1,2 GB3-1, GBA-1,GBB1-4 14 100 30/11/11 A 31/12/11 A 30/11/11	Late Late Total Start Finish Float	Predecessors Successors	S 2012 FEB MAR APR MAY JUN JUL
SexW0771 Valid & Column (CA1-3,08D1-3,05C1-3,05D1-2) to +63. 14 100 0191011 A 311011 A 0171011 SexW07701 Base Slab (GSB1 & GSP1) 14 100 0191111 A 301111 A 0171011 SexW07701 SexW0701 SexW	/09/11 A 30/09/11 A SK	KW0751 SKW0771	1
Sew/0781 Base Side (GSR1-3,GSD1-2) 14 100 15/1011 A 15/1011 A 15/1011 SW00201 Base Side (GSR1 4,GSF1) 14 15 15/101 A 15/1011 A 15/1011 SW00201 Base Side (GSR1 4,GSF1) 14 15 15/101 A 15/1011 A 15/1		KW0761 SKW0781	<u> </u>
SeW08011 Mail & Column (CE1-3, CE1-3) 14 100 001/11/1 A 001/11/1 B 001/11/1 B 001/11/1 A 001/11/1 B 00		KW0771 SKW0791	i
SeW0801 Valia Column (CE1-2, CE1-3) 14 100 01/11/11 A 3011/11 A 3011/11 S SEW0801 Corumn (CE1-2, CE1-3, CD1-2) to +10. 14 100 0311/11 A 311/11 A 3011/11 A SEW0801 Valia & Column (CA1-3, CB1-2, CC1-3, CD1-2) to +10. 14 100 0311/11 A 311/11 A 311/11 A 311/11 SEW0801 Valia & Column (CA1-3, CB1-2, CC1-3, CD1-2) to +10. 14 100 02011/2 A 150/11 A 1	/11/11 A 30/11/11 A SK	KW0781 SKW0801	
SKW0821 Well & Column (CAT-3, GB1-3, CG1-3, CD1-2) to +10.	/11/11 A 30/11/11 A SK	KW0791 SKW0811	
SKW0891 Roof Beams & Prapet 14 100 0201/12.A 1801/12.A 0201/12.	/11/11 A 31/12/11 A SK	KW0801 SKW0821	<u> </u>
SKW0841 ABWF installation	/12/11 A 31/01/12 A SK	KW0811 SKW0831	
Sext Sext	/01/12 A 18/01/12 A SK	KW0821 E&M1101, E&M1102, E&N	M1103,
Sext Sext	/01/12 A 01/06/11 -349d SK	KW0831 E&M1101, E&M1102, E&N	M1103,
EaM Works (PS1) Submission & Delivery EaM 1001 17/05/10 A 24/02/11 A 17/05/10 EaM 1002 Submission of Pumps 198 100 17/05/10 A 24/02/11 A 17/05/10 EaM 1003 Submission of DeO System 198 100 17/05/10 A 24/02/11 A 17/05/10 EaM 1003 Submission of DeO System 198 100 17/05/10 A 24/02/11 A 17/05/10 EaM 1003 Submission of DeO System 198 100 17/05/10 A 08/01/12 A 17/05/10 EaM 1004 Submission of Instrumentation 24/3 100 17/05/10 A 08/01/12 A 17/05/10 EaM 1006 Submission of Instrumentation 24/3 100 17/05/10 A 08/01/12 A 17/05/10 EaM 1006 Submission of IS System 24/3 97 17/05/10 A 07/05/12 17/05/10 EaM 1007 Submission of IS System 24/3 97 17/05/10 A 07/05/12 17/05/10 EaM 1012 Delivery of Pumps 15/0		KW0831, SKW0841 KD0070	r - +_=
E&M1001 Submission of Pumps		<u>'</u>	i 11 11 11 11 11 11 11 11 11 11 11 11 11
E8M1002 Submission of Gen-Set 198 100 17/05/10 A 24/02/11 A 17/05/11 E8M10004 Submission of LV SB & MCC 180 100 17/05/10 A 10/7/11 A 17/05/11 E8M10005 Submission of LV SB & MCC 180 100 17/05/10 A 10/7/11 A 17/05/11 E8M1005 Submission of Instrumentation 243 100 17/05/10 A 12/04/12 A 17/05/11 E8M1007 Submission of IPS System 243 97 17/05/10 A 07/05/12 A 12/04/12 A 17/05/11 E8M1007 Submission of IPS System 243 97 17/05/10 A 07/05/12 17/05/11 E8M1007 Submission of IPS System 243 97 17/05/10 A 07/05/12 17/05/11 E8M1017 Delivery of Pumps 150 100 24/02/11 A 24/02/11 E8M1011 Delivery of Pumps 150 100 24/02/11 A 24/02/11 E8M1012 Delivery of Gen-Set 150 100 24/02/11 A 25/07/11 A 24/02/11 E8M1013 Delivery of DeO System 150 100 11/07/11 A 28/10/11 A 11/07/11 E8M1014 Delivery of IPS & MCC 150 30 02/04/12 A 12/08/12 02/04/13 E8M1015 Delivery of IPS Equipment 107 25 01/2/11 A 26/07/12 01/12/11 E8M1016 Delivery of IPS Equipment 107 25 01/2/11 A 26/07/12 01/12/11 E8M1017 Delivery of IPS Equipment 107 25 01/2/11 A 26/07/12 01/12/11 E8M1017 Delivery of IPS Equipment 107 25 01/2/11 A 26/07/12 01/2/11 E8M1011 Install Pumps 55 0 30/04/12 23/06/12 02/05/11 E8M1101 Install Pumps 150 0 03/04/12 23/06/12 02/05/11 E8M1101 Install Pumps 150 0 03/04/12 23/06/12 02/05/11 E8M1101 Install Pumps 150 0 03/04/12 23/06/12 02/05/11 E8M1103 Install IPS Equipment 150 0 03/04/12 23/06/12 02/05/11 E8M1103 Install IPS Equipment 150 0 03/04/12 23/06/12 02/05/11 E8M1103 Install IPS Equipment 150 0 03/04/12 23/06/12 03/06/12 E8M1103 Inst			
E&M1002 Submission of Gen-Set 198 100 17/05/10 A 24/02/11 A 17/05/11 E&M1003 Submission of DeO System 198 100 17/05/10 A 11/07/11 A 17/05/11 E&M1004 Submission of IV SB & MCC 180 100 17/05/10 A 100/11/11 A 17/05/11 E&M1005 Submission of Instrumentation 243 100 17/05/10 A 12/04/12 A 17/05/11 E&M1005 Submission of IPS System 243 97 17/05/10 A 07/05/12 17/05/11 E&M1007 Submission of IPS System 243 97 17/05/10 A 07/05/12 17/05/11 E&M1007 Submission of IPS System 243 97 17/05/10 A 07/05/12 17/05/11 E&M1010 Delivery of Pumps 150 100 24/02/11 A 24/02/11 24/02/11 E&M1011 Delivery of Gen-Set 150 100 24/02/11 A 24/02/11 E&M1012 Delivery of Gen-Set 150 100 24/02/11 A 24/02/11 E&M1013 Delivery of DeO System 150 100 11/07/11 A 24/02/11 E&M1013 Delivery of DeO System 150 100 11/07/11 A 24/02/11 E&M1014 Delivery of IPS Equipment 107 25 01/02/11 A 24/02/11 E&M1015 Delivery of IPS Equipment 107 25 01/12/11 E&M1015 Delivery of IPS Equipment 107 25 01/12/11 A 26/07/12 01/12/11 E&M1017 Delivery of IPS Equipment 107 25 01/12/11 A 26/07/12 01/12/11 E&M1017 Delivery of IPS Equipment 107 25 01/02/11 E&M1018 Delivery of IPS Equipment 107 25 01/02/12 20/05/11 E&M11018 Install IPS Equipment 107 25 01/02/12 20/05/11 E&M11018 Install IPS Equipment 108 01/02/12 20/05/11 E&M11018 Equipment 108 20/05/10 A 20/05/1	/05/10 A 24/02/11 A KD	D0020 E&M1011	1 1 11
E&M1003 Submission of DeO System 198 100 17/05/10 A 11/07/11 A 17/05/11 E&M1004 Submission of LV SB & MCC 180 100 17/05/10 A 12/04/12 17/05/11 E&M1005 Submission of Instrumentation 243 100 17/05/10 A 12/04/12 17/05/11 E&M1006 Submission of Instrumentation 243 97 17/05/10 A 07/05/12 17/05/11 E&M1006 Submission of BS System 243 97 17/05/10 A 07/05/12 17/05/11 E&M1001 Delivery of Pumps 150 100 24/02/11 A 21/07/11 A 24/02/11 E&M1011 Delivery of Pumps 150 100 24/02/11 A 21/07/11 A 24/02/11 E&M1012 Delivery of Gen-Set 150 100 24/02/11 A 21/07/11 A 24/02/11 E&M1012 Delivery of Gen-Set 150 100 24/02/11 A 21/07/11 A 24/02/11 E&M1012 Delivery of Instrumentation 150 100 01/10/11 A 24/02/11 E&M1015 Delivery of Instrumentation 90 100 01/11/11 A 28/01/12 E&M1015 Delivery of Instrumentation 90 100 01/11/11 A 38/07/12 01/12/11 E&M1015 Delivery of Es Equipment 107 25 01/12/11 A 26/07/12 16/11/11 E&M1015 Delivery of Es Equipment 107 45 15/11/11 A 26/07/12 16/11/11 Install and the state of the stat	- i i i	E&M1012	
E&M1004 Submission of LV SB & MCC	- + + + +	E&M1013	!!!!!
E&M1005 Submission of Instrumentation 243 100 17/05/10 A 12/04/12 A 17/05/11 E&M1006 Submission of PS System 243 97 17/05/10 A 07/05/12 17/05/11 E&M1007 Submission of PS System 243 97 17/05/10 A 07/05/12 17/05/11 E&M1011 Delivery of Pumps 150 100 24/02/11 A 24/02/11 24/02/11 E&M1012 Delivery of Gen-Set 150 100 24/02/11 A 24/02/11 24/02/11 E&M1013 Delivery of DeO System 150 100 14/07/11 A 24/02/11 E&M1013 Delivery of DeO System 150 100 14/07/11 A 24/02/11 E&M1014 Delivery of LV SB & MCC 150 30 02/04/12 A 12/08/12 02/04/12 E&M1014 Delivery of LV SB & MCC 150 30 02/04/12 A 12/08/12 02/04/12 E&M1015 Delivery of Instrumentation 90 100 01/11/11 A 26/07/12 01/12/11 E&M1016 Delivery of PS Equipment 107 25 01/12/11 A 26/07/12 01/12/11 E&M1017 Delivery of BS Equipment 107 45 15/11/11 A 05/07/12 15/11/11 Install Europs 55 0 30/04/12 23/06/12 02/05/11 E&M1102 Install Gen Set 55 0 30/04/12 23/06/12 02/05/11 E&M1102 Install Gen Set 55 0 30/04/12 23/06/12 02/05/11 E&M1104 Install LV SB & MCC 55 0 30/04/12 23/06/12 02/05/11 E&M1105 Install Install remarkation 55 0 30/04/12 23/06/12 02/05/11 E&M1105 Install Install remarkation 55 0 30/04/12 23/06/12 02/05/11 E&M1101 Install Velex, Pipes & Fittings 46 0 29/08/12 14/10/12 15/04/13 Section W 6 - Sewer and PS No 2 in Portions E&H Civil & Genoceptrical Works SKW0981 Site Clear ance 7 100 17/05/10 A 23/05/10 A 23/05/10 A SKW0981 Site Clear ance 7 100 17/05/10 A 23/05/10 A 23/05/10 A SKW0981 Site Clear ance 7 100 17/05/10 A 23/05/10 A 23/05/10 A SKW0981 Site Clear ance 7 100 17/05/10 A 23/05/10 A 23/05/10 A SKW0981 Site Clear ance 7 100 17/05/10 A 23/05/10 A SKW0981 Site Clear ance 7 100 17/05/10 A 23/05/10 A 23/05/10 A SKW0981 Site Clear an		E&M1014	
E&M1006 Submission of FS System 243 97 17/05/10 A 07/05/12 17/05/10 E&M1001 Delivery of Pumps 150 100 24/02/11 A 21/07/11 A 24/02/11 E&M1011 Delivery of Pumps 150 100 24/02/11 A 21/07/11 A 24/02/11 E&M1012 Delivery of Den System 150 100 24/02/11 A 23/09/11 A 24/02/11 E&M1013 Delivery of Den System 150 100 11/07/11 A 24/02/11 E&M1014 Delivery of Den System 150 100 11/07/11 A 24/02/11 E&M1015 Delivery of Den System 150 100 01/11/11 A 28/10/11 A		E&M1015	
E&M1007 Submission of BS System 243 97 1706/10 A 07/05/12 17/05/10 E&M1010 Delivery of Pumps 150 100 24/02/11 A 23/03/11 A 24/02/11 E&M1012 Delivery of Gen-Set 150 100 24/02/11 A 23/03/11 A 24/02/11 E&M1013 Delivery of LYS B& MCC 150 30 02/04/12 A 12/08/11 A 11/07/11 E&M1014 Delivery of LYS B& MCC 150 30 02/04/12 A 12/08/12 02/04/12 E&M1015 Delivery of Instrumentation 90 100 01/11/11 A 31/03/12 A 01/11/17 E&M1017 Delivery of BS Equipment 107 25 01/12/11 A 28/07/12 01/12/11 E&M1017 Delivery of BS Equipment 107 45 15/11/11 A 05/07/12 15/11/17 Installation, T&C E&M1101 Install Pumps 55 0 30/04/12 23/06/12 02/05/11 E&M1101 Install Pumps 55 0 30/04/12 23/06/12 02/05/11 E&M1102 Install BDG System 55 0 30/04/12 23/06/12 02/05/11 E&M1103 Install BDG System 55 0 30/04/12 23/06/12 02/05/11 E&M1104 Install LYS & MCC 55 0 30/04/12 23/06/12 02/05/11 E&M1105 Install Instrumentation 55 0 30/04/12 23/06/12 02/05/11 E&M1106 Install Pumps 55 0 30/04/12 23/06/12 02/05/11 02/05/	- i i i	E&M1016	
E&M 1011 Delivery of Pumps 150 100 2402/11 A 21/07/11 A 2402/11 E&M 1012 Delivery of DeO System 150 100 2402/11 A 2309/11 A 2402/11 E&M 1013 Delivery of DeO System 150 100 11/07/11 A 2402/11 E&M 1013 Delivery of DeO System 150 150 30 02/04/12 A 12/08/12 02/04/12 E&M 1014 Delivery of Instrumentation 90 100 01/11/11 A 31/03/12 A 01/11/11 E&M 1015 Delivery of Instrumentation 90 100 01/11/11 A 31/03/12 A 01/11/11 E&M 1015 Delivery of Instrumentation 90 107 25 01/12/11 A 26/07/12 01/12/11 E&M 1017 Delivery of Instrumentation 90 107 25 01/12/11 A 26/07/12 01/12/11 E&M 1017 Delivery of Instrumentation 90 107 45 15/11/11 Install Pumps 55 0 30/04/12 23/06/12 02/05/11 E&M 1101 Install Pumps 55 0 30/04/12 23/06/12 02/05/11 E&M 1102 Install Gen Set 55 0 30/04/12 23/06/12 02/05/11 E&M 1103 Install DeO System 55 0 30/04/12 23/06/12 02/05/11 E&M 1103 Install DeO System 55 0 30/04/12 23/06/12 02/05/11 E&M 1103 Install Pumps 55 0 30/04/12 23/06/12 02/05/11 E&M 1104 Install Pumps 55 0 30/04/12 23/06/12 02/05/11 E&M 1103 Install Pumps 55 0 30/04/12 23/06/12 02/05/11 E&M 1103 Install Poe System 55 0 30/04/12 23/06/12 02/05/11 E&M 1103 Install Poe System 55 0 30/04/12 23/06/12 02/05/11 E&M 1105 Install Poe System 55 0 30/04/12 23/06/12 02/05/11 E&M 1105 Install Poe System 55 0 30/04/12 23/06/12 02/05/11 E&M 1105 Install Poe System 55 0 30/04/12 23/06/12 02/05/11 E&M 1105 Install Poe System 55 0 30/04/12 23/06/12 02/05/11 E&M 1105 Install Poe System 55 0 30/04/12 23/06/12 02/05/11 E&M 1105 Install Poe System 55 0 30/04/12 23/06/12 02/05/11 E&M 1105 Install Poe System 55 0 30/04/12 23/06/12 02/05/11 E&M 1105 Install Poe System 55 0 30/04/12 23/06/12 02/05/11 E&		E&M1017	
E&M1012		&M1001 E&M1101	
E&M1013	- i i i	&M1002 E&M1102	
E8M1014		&M1003 E&M1103	
E&M1015 Delivery of Instrumentation 90 100 01/11/11 A 31/03/12 A 01/11/11 E&M1016 Delivery of BS Equipment 107 25 01/12/11 A 26/07/12 01/12/11 E&M1017 Delivery of BS Equipment 107 45 15/11/11 A 05/07/12 01/12/11 E&M1017 Delivery of BS Equipment 107 45 15/11/11 A 05/07/12 01/12/11 Installation, T&C	1 1	&M1004 E&M1104	
E&M1016 Delivery of FS Equipment 107 25 01/12/11 A 26/07/12 01/12/11 E&M1017 Delivery of BS Equipment 107 45 15/11/11 A 05/07/12 15/11/11 Installation, T&C		&M1005 E&M1105	
E&M11017 Delivery of BS Equipment 107 45 15/11/11 A 05/07/12 15/11/11 Installation, T&C	- i i i	&M1006 E&M1106	
Installation, T&C		&M1007 E&M1107	
E&M1101 Install Pumps 55 0 30/04/12 23/06/12 02/05/11 E&M1102 Install Gen Set 55 0 30/04/12 23/06/12 02/05/11 E&M1103 Install DeO System 55 0 30/04/12 23/06/12 02/05/11 E&M1104 Install LV SB & MCC 55 0 30/04/12 23/06/12 02/05/11 E&M1105 Install Instrumentation 55 0 30/04/12 23/06/12 02/05/11 E&M1106 Install FS Equipment 55 0 26/07/12 19/09/12 02/05/11 E&M1107 Install BS Equipment 55 0 26/07/12 19/09/12 02/05/11 E&M1107 Install SB Equipment 55 0 05/07/12 29/08/12 02/05/11 E&M1107 Install SE Equipment 55 0 05/07/12 29/08/12 02/05/11 E&M1107 Install SE Equipment 55 0 05/07/12 29/08/12 02/05/11 E&M1108 Install Valves, Pipes & Fittings 46 0 29/08/12 14/10/12 15/04/15 E&M1107 Install SE Equipment 7 100 17/05/10 A 23/05/10 A 17/05/10 E&M1108 Section W6 - Sever and PS No.2 in Portions E&H	1000		
E&M1102 Install Gen Set 55	/05/11 25/06/11 -364d E&	&M1011, SKW0831, SKW0841 E&M1110, E&M1140	· · · · · · · · · · · · · · · · · · ·
E&M1103		&M1012, SKW0831, SKW0841	<u> </u>
E&M1104		&M1013, SKW0831, SKW0841	╶──┼ <mark>┼╎╴┤<mark>┼┆┼</mark>┼╴</mark>
E&M1105 Install Instrumentation 555 0 30/04/12 23/06/12 02/05/12 E&M1106 Install FS Equipment 555 0 26/07/12 19/09/12 02/05/12 E&M1107 Install BS Equipment 555 0 05/07/12 29/08/12 02/05/12 E&M1110 Install Valves, Pipes & Fittings 46 0 29/08/12 14/10/12 15/04/15 Section W 6 - Sewer and PS No.2 in Portions E&H Civil & Geotechnical Works SKW0881 Site Clearance 7 100 17/05/10 A 23/05/10 A 17/05/10 A SKW0891 Plant mobilization 7 100 17/05/10 A 23/05/10 A 17/05/10 A SKW0892 Initial Survey 30 100 24/05/10 A 22/05/10 A 24/05/10 A SKW0931 Tree Transplantation 30 100 23/06/10 A 22/07/10 A 23/06/10 A SKW0931 Hoarding & Fencing 14 100 23/07/10 A 31/01/11 A 23/07/10 A SKW0931 Exavate to formation 106	703/11 23/00/11 -3040	&M1014, SKW0831, SKW0841 E&M1140	
E&M1106		&M1015, SKW0831, SKW0841	
E&M1107 Install BS Equipment 55 0 05/07/12 29/08/12 02/05/11 E&M1110 Install Valves, Pipes & Fittings 46 0 29/08/12 14/10/12 15/04/15 Section W 6 - Sewer and PS No.2 in Portions E&H Civil & Geotechnical Works SKW0881 Site Clearance 7 100 17/05/10 A 23/05/10 A 17/05/10 K SKW0891 Plant mobilization 7 100 17/05/10 A 23/05/10 A 17/05/10 K SKW0892 Initial Survey 30 100 24/05/10 A 22/05/10 A 23/05/10 A 24/05/10 A SKW0991 Tree Transplantation 30 100 23/06/10 A 22/07/10 A 23/05/10 A	 	&M1016, SKW0831, SKW0841	
E&M1110 Install Valves, Pipes & Fittings 46 0 29/08/12 14/10/12 15/04/15 Section W 6 - Sewer and PS No.2 in Portions E&H Civil & Geotechnical Works SKW0881 Site Clearance 7 100 17/05/10 A 23/05/10 A 17/05/10 SKW0891 Plant mobilization 7 100 17/05/10 A 23/05/10 A 17/05/10 SKW0892 Initial Survey 30 100 24/05/10 A 22/06/10 A 24/05/10 SKW0991 Tree Transplantation 30 100 23/06/10 A 22/07/10 A 23/06/10 A 23/07/10 SKW0921 Cut Slope & U-Channel 14 100 23/07/10 A 31/01/11 A 23/07/10 A 23/07/10 A 31/01/11 A 23/07/10 A		&M1017, SKW0831, SKW0841	
Section W 6 - Sewer and PS No.2 in Portions E&H Civil & Geotechnical Works SKW0881 Site Clearance 7 100 17/05/10 A 23/05/10 A 17/05/10 B SKW0891 Plant mobilization 7 100 17/05/10 A 23/05/10 A 17/05/10 B SKW0892 Initial Survey 30 100 24/05/10 A 22/06/10 A 24/05/10 B SKW0901 Tree Transplantation 30 100 23/06/10 A 22/07/10 A 23/06/10 A 23/06/11 A 23/06/11 A 23/06/11 A 23/06/11 A 23/06/11 A 23/06/11 A 23/06/1		&M1101, E&M1102, E&M1103, E&M1120	
Civil & Geotechnical Works SKW0881 Site Clearance 7 100 17/05/10 A 23/05/10 A 17/05/10 A SKW0891 Plant mobilization 7 100 17/05/10 A 23/05/10 A 17/05/10 A SKW0892 Initial Survey 30 100 24/05/10 A 22/06/10 A 24/05/10 A SKW0901 Tree Transplantation 30 100 23/06/10 A 22/07/10 A 23/06/10 A SKW0921 Cut Slope & U-Channel 14 100 23/07/10 A 31/01/11 A 31/01/11 A 31/01/11 A 31/01/11 A 31/01/11 A 31/01/11 A	10/00/13 07/14		
SKW0881 Site Clearance 7 100 17/05/10 A 23/05/10 A 17/05/10 SKW0891 Plant mobilization 7 100 17/05/10 A 23/05/10 A 17/05/10 SKW0892 Initial Survey 30 100 24/05/10 A 22/06/10 A 24/05/10 SKW0901 Tree Transplantation 30 100 23/06/10 A 22/07/10 A 23/06/10 SKW0921 Cut Slope & U-Channel 14 100 23/07/10 A 31/01/11 A 23/07/10 SKW0931 Hoarding & Fencing 14 100 15/09/10 A 07/10/10 A 15/09/10 SKW0951 Excavate to formation 106 100 04/10/10 A 13/06/11 A 04/10/10 SKW0961 Mass Conc. Retaining Wall 257 20 31/03/12 A 21/11/12 31/03/12 SKW1491 Concrete Trough (ChA0+45 - ChA1+75) 180 100 01/03/11 A 31/08/11 A 01/03/11 SKW15111 Twin DN150 DI Rising Main (ChA0+00 - ChA0+45) 30 0 27/06/12 27/07/12			<u> </u>
SKW0891 Plant mobilization 7 100 17/05/10 A 23/05/10 A 17/05/10 A SKW0892 Initial Survey 30 100 24/05/10 A 22/06/10 A 24/05/10 A SKW0901 Tree Transplantation 30 100 23/06/10 A 22/07/10 A 23/06/10 A SKW0921 Cut Slope & U-Channel 14 100 23/07/10 A 31/01/11 A 23/07/10 A SKW0931 Hoarding & Fencing 14 100 15/09/10 A 07/10/10 A 15/09/10 A SKW0951 Excavate to formation 106 100 04/10/10 A 13/06/11 A 04/10/10 A SKW1491 Concrete Trough (ChA0+45 - ChA1+75) 180 100 01/03/11 A 31/08/11 A 01/03/11 A SKW15111 Twin DN150 DI Rising Main (ChA0+45 - ChA5+79) 150 95 16/05/11 A 07/05/12 In/05/12 In/05/11 A SKW1531 Extent village sewers S163.1 & S164.1 34 50 07/04/12 A 24/05/12 Or/04/12 In/06/12 In/06/	/05/10 A 23/05/10 A KD	D0020 SKW0891	<u> </u>
SKW0892 Initial Survey 30 100 24/05/10 A 22/06/10 A 24/05/10 A SKW0901 Tree Transplantation 30 100 23/06/10 A 22/07/10 A 23/06/10 A SKW0921 Cut Slope & U-Channel 14 100 23/07/10 A 31/01/11 A 23/07/10 A SKW0931 Hoarding & Fencing 14 100 15/09/10 A 07/10/10 A 15/09/10 A SKW0951 Excavate to formation 106 100 04/10/10 A 13/06/11 A 04/10/10 A SKW0961 Mass Conc. Retaining Wall 257 20 31/03/12 A 21/11/12 31/03/12 A SKW1491 Concrete Trough (ChA0+45 - ChA1+75) 180 100 01/03/11 A 31/08/11 A 01/03/11 A SKW15111 Twin DN150 DI Rising Main (ChA0+45 - ChA5+79) 150 95 16/05/11 A 07/05/12 16/05/11 A SKW1531 Extent village sewers S163.1 & S164.1 34 50 07/04/12 A 24/05/12 07/06/12 17/06/12 13/09/11 SKW1581 Construct Manhole no. S163 & S164	00/10 A 20/00/10 A	KW0881 SKW0892	
SKW0901 Tree Transplantation 30 100 23/06/10 A 22/07/10 A 23/06/10 A SKW0921 Cut Slope & U-Channel 14 100 23/07/10 A 31/01/11 A 23/07/10 A SKW0931 Hoarding & Fencing 14 100 15/09/10 A 07/10/10 A 15/09/10 A SKW0951 Excavate to formation 106 100 04/10/10 A 13/06/11 A 04/10/10 S SKW0961 Mass Conc. Retaining Wall 257 20 31/03/12 A 21/11/12 31/03/12 S SKW1491 Concrete Trough (ChA0+45 - ChA1+75) 180 100 01/03/11 A 31/08/11 A 01/03/11 S SKW15111 Twin DN150 DI Rising Main (ChA0+45 - ChA5+79) 150 95 16/05/11 A 07/05/12 17/10/11 S SKW1531 Extent village sewers S163.1 & S164.1 34 50 07/04/12 A 24/05/12 07/04/12 S SKW1581 Construct Manhole no. S163 & S164 34 0 24/05/12 27/06/12 13/09/11 S SKW0971 Base Slab to -3.2mPD 14 100		KW0891 SKW0901	
SKW0921 Cut Slope & U-Channel 14 100 23/07/10 A 31/01/11 A 23/07/10 A SKW0931 Hoarding & Fencing 14 100 15/09/10 A 07/10/10 A 15/09/10 A SKW0951 Excavate to formation 106 100 04/10/10 A 13/06/11 A 04/10/10 B SKW0961 Mass Conc. Retaining Wall 257 20 31/03/12 A 21/11/12 31/03/12 B SKW1491 Concrete Trough (ChA0+45 - ChA1+75) 180 100 01/03/11 A 31/08/11 A 01/03/11 B SKW15111 Twin DN150 DI Rising Main (ChA0+45 - ChA5+79) 150 95 16/05/11 A 07/05/12 16/05/11 B SKW15310 Twin DN150 DI Rising Main (ChA0+00 - ChA0+45) 30 0 27/06/12 27/07/12 17/10/11 B SKW1531 Extent village sewers S163.1 & S164.1 34 50 07/04/12 A 24/05/12 07/06/12 13/09/11 B SKW0581 Base Slab to -3.2mPD 14 100 02/05/11 A 31/08/11 A 02/05/11 A SKW0981 Basement Beam (BBB-1,BBC-1,BBD-		KW0892 SKW0921	
SKW0931 Hoarding & Fencing 14 100 15/09/10 A 07/10/10 A 15/09/10 A SKW0951 Excavate to formation 106 100 04/10/10 A 13/06/11 A 04/10/10 A SKW0961 Mass Conc. Retaining Wall 257 20 31/03/12 A 21/11/12 31/03/12 SKW1491 Concrete Trough (ChA0+45 - ChA1+75) 180 100 01/03/11 A 31/08/11 A 01/03/11 SKW15111 Twin DN150 DI Rising Main (ChA0+45 - ChA5+79) 150 95 16/05/11 A 07/05/12 16/05/11 SKW15112 Twin DN150 DI Rising Main (ChA0+00 - ChA0+45) 30 0 27/06/12 27/07/12 17/10/11 SKW1531 Extent village sewers S163.1 & S164.1 34 50 07/04/12 A 24/05/12 07/06/12 13/09/11 SKW1581 Construct Manhole no. S163 & S164 34 0 24/05/12 27/06/12 13/09/11 Structural Works SKW0971 Base Slab to -3.2mPD 14 100 01/09/11 A 15/10/11 A 01/09/11 SKW0981 <td></td> <td>KW0260, SKW0265, SKW0901 SKW0931, SKW0951</td> <td> </td>		KW0260, SKW0265, SKW0901 SKW0931, SKW0951	
SKW0951 Excavate to formation 106 100 04/10/10 A 13/06/11 A 04/10/10 A SKW0961 Mass Conc. Retaining Wall 257 20 31/03/12 A 21/11/12 31/03/12 SKW1491 Concrete Trough (ChA0+45 - ChA1+75) 180 100 01/03/11 A 31/08/11 A 01/03/11 SKW15111 Twin DN150 DI Rising Main (ChA0+45 - ChA5+79) 150 95 16/05/11 A 07/05/12 16/05/11 SKW15112 Twin DN150 DI Rising Main (ChA0+00 - ChA0+45) 30 0 27/06/12 27/07/12 17/10/11 SKW1531 Extent village sewers S163.1 & S164.1 34 50 07/04/12 A 24/05/12 07/04/12 SKW1581 Construct Manhole no. S163 & S164 34 0 24/05/12 27/06/12 13/09/11 Structural Works SKW0971 Base Slab to -3.2mPD 14 100 01/09/11 A 15/10/11 A 01/09/11 SKW0981 Basement Beam (BBB-1,BBC-1,BBD-1) 14 100 01/09/11 A 15/10/11 A 01/09/11	01/10 A 31/01/11 A	KW0921 SKW0951	
SKW0961 Mass Conc. Retaining Wall 257 20 31/03/12 A 21/11/12 31/03/12 A SKW1491 Concrete Trough (ChA0+45 - ChA1+75) 180 100 01/03/11 A 31/08/11 A 01/03/11 A SKW15111 Twin DN150 DI Rising Main (ChA0+45 - ChA5+79) 150 95 16/05/11 A 07/05/12 16/05/11 B SKW15112 Twin DN150 DI Rising Main (ChA0+00 - ChA0+45) 30 0 27/06/12 27/07/12 17/10/11 B SKW1531 Extent village sewers S163.1 & S164.1 34 50 07/04/12 A 24/05/12 07/04/12 B SKW1581 Construct Manhole no. S163 & S164 34 0 24/05/12 27/06/12 13/09/11 B Structural Works SKW0971 Base Slab to -3.2mPD 14 100 01/09/11 A 15/10/11 A 01/09/11 B SKW0981 Basement Beam (BBB-1,BBC-1,BBD-1) 14 100 01/09/11 A 15/10/11 A 01/09/11 B	103/10 A 07/10/10 A	KW0921, SKW0931 SKW0961, SKW0971	
SKW1491 Concrete Trough (ChA0+45 - ChA1+75) 180 100 01/03/11 A 31/08/11 A 01/03/11 A SKW15111 Twin DN150 DI Rising Main (ChA0+45 - ChA5+79) 150 95 16/05/11 A 07/05/12 16/05/11 A SKW15112 Twin DN150 DI Rising Main (ChA0+00 - ChA0+45) 30 0 27/06/12 27/07/12 17/10/11 A SKW1531 Extent village sewers S163.1 & S164.1 34 50 07/04/12 A 24/05/12 07/04/12 A SKW1581 Construct Manhole no. S163 & S164 34 0 24/05/12 27/06/12 13/09/11 A Structural Works SKW0971 Base Slab to -3.2mPD 14 100 01/09/11 A 31/08/11 A 02/05/11 A SKW0981 Basement Beam (BBB-1,BBC-1,BBD-1) 14 100 01/09/11 A 15/10/11 A 01/09/11	710/10 A 13/00/11 A		
SKW15111 Twin DN150 DI Rising Main (ChA0+45 - ChA5+79) 150 95 16/05/11 A 07/05/12 16/05/11 A SKW15112 Twin DN150 DI Rising Main (ChA0+00 - ChA0+45) 30 0 27/06/12 27/07/12 17/10/11 SKW1531 Extent village sewers S163.1 & S164.1 34 50 07/04/12 A 24/05/12 07/04/12 SKW1581 Construct Manhole no. S163 & S164 34 0 24/05/12 27/06/12 13/09/11 Structural Works SKW0971 Base Slab to -3.2mPD 14 100 02/05/11 A 31/08/11 A 02/05/11 SKW0981 Basement Beam (BBB-1,BBC-1,BBD-1) 14 100 01/09/11 A 15/10/11 A 01/09/11	 	RE0100 SKW15111	<u> </u>
SKW15112 Twin DN150 DI Rising Main (ChA0+00 - ChA0+45) 30 0 27/06/12 27/07/12 17/10/12 SKW1531 Extent village sewers S163.1 & S164.1 34 50 07/04/12 A 24/05/12 07/04/12 SKW1581 Construct Manhole no. S163 & S164 34 0 24/05/12 27/06/12 13/09/12 Structural Works SKW0971 Base Slab to -3.2mPD 14 100 02/05/11 A 31/08/11 A 02/05/12 SKW0981 Basement Beam (BBB-1,BBC-1,BBD-1) 14 100 01/09/11 A 15/10/11 A 01/09/12	703/11 A 31/06/11 A	KW1491 SKW1531	<u>'</u>
SKW1531 Extent village sewers S163.1 & S164.1 34 50 07/04/12 A 24/05/12 07/04/12 A SKW1581 Construct Manhole no. S163 & S164 34 0 24/05/12 27/06/12 13/09/11 Structural Works SKW0971 Base Slab to -3.2mPD 14 100 02/05/11 A 31/08/11 A 02/05/11 SKW0981 Basement Beam (BBB-1,BBC-1,BBD-1) 14 100 01/09/11 A 15/10/11 A 01/09/11	20/00/11 Z000	KW1581 KD0080	
SKW1581 Construct Manhole no. S163 & S164 34 0 24/05/12 27/06/12 13/09/11 Structural Works SKW0971 Base Slab to -3.2mPD 14 100 02/05/11 A 31/08/11 A 02/05/11 SKW0981 Basement Beam (BBB-1,BBC-1,BBD-1) 14 100 01/09/11 A 15/10/11 A 01/09/11	10/11 13/11/11 2334		
Structural Works SKW0971 Base Slab to -3.2mPD 14 100 02/05/11 A 31/08/11 A 02/05/11 S SKW0981 Basement Beam (BBB-1,BBC-1,BBD-1) 14 100 01/09/11 A 15/10/11 A 01/09/11 A	10 4 /12/4 12/03/11 2004	KW15111 SKW1581	
SKW0971 Base Slab to -3.2mPD 14 100 02/05/11 A 31/08/11 A 02/05/11 A SKW0981 Basement Beam (BBB-1,BBC-1,BBD-1) 14 100 01/09/11 A 15/10/11 A 01/09/11	/09/11 16/10/11 -255d ^{SK}	KW1531 KD0080, SKW15112	
SKW0981 Basement Beam (BBB-1,BBC-1,BBD-1) 14 100 01/09/11 A 15/10/11 A 01/09/1		ZWO0E4 LOIZHAGO4	<u> </u>
	703/11A 31/00/11A	KW0951 SKW0981	
Start date 05/05/10 Early bar	/09/11 A 15/10/11 A SK'	KW0971 SKW0991	1
Finish date 29/06/15 Data date 30/04/12 Run date 10/05/12 Progress bar Critical bar Leader Civil Engli Contract No. Contract No. Construction of Sewage Trea	Engineering Corp. Ltd. ct No. DC/2009/13 Treatment W orks at YSW & SKW gramme (May 2012 - Jul 2012)	(Mar	Date Revision Checked Approve 30/04/12 Revision 0 RH VC


Activity ID	Description	Original Duration	Percent Early Complete Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	FEB	MAR	APR	2012 MAY	JUN	JUL J
SKW0991	Wall & Column to +1.5mPD	14	100 15/10/11 A	31/10/11 A	15/10/11 A	31/10/11 A		SKW0981	SKW1001	1 25	WAIT		WAT	JON	JOE ,
SKW1001	Base Slab (BSC-4) to +3mPD	14	100 01/11/11 A	30/11/11 A	01/11/11 A	30/11/11 A		SKW0991	SKW1011		1				
SKW1011	Wall & Column to +5.35mPD	14	100 02/01/12 A	31/01/12 A	02/01/12 A	31/01/12 A	1	SKW1001	SKW1021		i				
SKW1021	Ground Slab	20	1	29/02/12 A	31/01/12 A	29/02/12 A		SKW1011	SKW1031				1-1		
SKW1031	Ground Beam	14	100 01/02/12 A	29/02/12 A	01/02/12 A	29/02/12 A		SKW1021	SKW1041		i i				
SKW1041	Wall & Column to +9.35mPD	14	0 30/04/12	13/05/12	04/04/11	17/04/11	-3920	SKW1031	SKW1051	L	<u>-</u>	++	-		
SKW1051	Roof Beams & Parapet	14	0 14/05/12	27/05/12	18/04/11	01/05/11	-3920	ļ	E&M2101, E&M2102, E&M2103,		i				
SKW1061	ABWF installation (wet tray/dry tray)	90	60 14/04/12 A	18/06/12	14/04/12 A	16/07/11	-3380	SKW1051	E&M2101, E&M2102, E&M2103,		l I			<u> </u>	1
SKW1081	375mm U-channel with catchpits	215		15/11/12	28/04/12 A	15/11/11	-3660		KD0080		· ·	- - - - -			·
E&M Works (PS)		1 2.0	20 20 0 1/12 / (110/11/12	120/01/12/	10/11/11	1 0000				i	++-	# :		†;
Submission &	•										I I			11	
E&M2001	Submission of Pumps	198	100 17/05/10 A	24/02/11 A	17/05/10 A	24/02/11 A		KD0020	E&M2011		į.			!!	11
E&M2002	Submission of Gen-Set	198	i -	24/02/11 A	17/05/10 A	24/02/11 A			E&M2012		i i			11	
E&M2003	Submission of DeO System	198	 	11/07/11 A	17/05/10 A	11/07/11 A			E&M2013		1			11	11
E&M2004	Submission of LV SB & MCC	271	100 17/05/10 A	13/04/12 A	17/05/10 A	13/04/12 A	<u> </u>		E&M2014		•		i	ii	ii
E&M2005	Submission of Instrumentation	243	 	12/04/12 A	17/05/10 A	12/04/12 A	1	1	E&M2015		<u> </u>			11	
E&M2006	Submission of FS System	243	1	07/05/12	17/05/10 A	10/02/11	-4520	<u> </u>	E&M2016				<u> </u>	<u>i-i</u>	H
E&M2007	Submission of BS System	243	i i	07/05/12	17/05/10 A	04/03/11	-4300		E&M2017		'			11	
E&M2011	Delivery of Pumps	150		21/07/11 A	24/02/11 A	21/07/11 A	1	E&M2001	E&M2101			+-	##-4	1.1	
E&M2012	Delivery of Gen-Set	150	1 1	23/09/11 A	24/02/11 A	23/09/11 A		E&M2002	E&M2102		· - - ·	-	- - - - -	ii	iil
E&M2013	Delivery of DeO System	150		28/10/11 A	11/07/11 A	28/10/11 A	1	E&M2003	E&M2103		· - ·	- -	┨╀╫╼	11	
E&M2014	Delivery of LV SB & MCC	150	i -	12/08/12	02/04/12 A	01/05/11	-4690	E&M2004	E&M2104		:==== <u>=</u>		1 1 1		+
E&M2015	Delivery of Instrumentation	90	100 21/06/11 A	03/11/11 A	21/06/11 A	03/11/11 A	1 4000	E&M2005	E&M2105] 			11	
E&M2016	Delivery of FS Equipment	107	25 01/12/11 A	26/07/12	01/12/11 A	01/05/11	-4520	E&M2006	E&M0350, E&M2106		<u> </u>			1.1	
E&M2017	Delivery of BS Equipment	107		05/07/12	15/01/11 A	01/05/11		E&M2007	E&M2107		l		11 11 11	1 1	╎╎┌──
Installation, T&		107	10 10/01/1177	100/01/12	10/01/11/1	101/00/11	1 1000				1	+	 		11
E&M2101	Install Pumps	55	0 28/05/12	21/07/12	03/07/11	26/08/11	l -330c	E&M2011, SKW1051, SKW1061	E&M2110		i				
E&M2102	Install Gen Set	55	i i	21/07/12	03/07/11	26/08/11	-3300	ł	E&M2110		1			11	
E&M2103	Install DeO System	55	 	21/07/12	03/07/11	26/08/11	-3300	ł	E&M2110		1		│ │ │ │		
E&M2105	Install Instrumentation	55	0 28/05/12	21/07/12	02/05/11	25/06/11	-3920	E&M2015, SKW1051, SKW1061	E&M2140		 			111	
E&M2106	Install FS Equipment	55		19/09/12	02/05/11	25/06/11	-4520	E&M2016, SKW1051, SKW1061	E&M2140		!			!!	
E&M2107	Install BS Equipment	55	1 1	29/08/12	02/05/11	25/06/11	-4300	E&M2017, SKW1051, SKW1061	E&M2110, E&M2140		i		1-1	- -	
E&M2110	Install Valves, Pipes & Fittings	46					-3680	E&M2101, E&M2102, E&M2103,	E&M2120		1				
	W STW ,Sewer and Submarine Outfall		'	<u> </u>	<u>'</u>	<u>. </u>	•	•			i				
Submarine Outfa	ll										1				
SKW1130	Approval of IHS Consultant	180	100 17/05/10 A	27/08/10 A	17/05/10 A	27/08/10 A			SKW1131		1				
SKW1131	Hydrographical Survey (SKW)	300	100 01/02/11 A	28/02/11 A	01/02/11 A	28/02/11 A		KD0020, SKW1130	SKW1231		i				
SKW1141	Baseline Monitoring (Water)	213	100 27/07/10 A	31/12/10 A	27/07/10 A	31/12/10 A		SKW0260, SKW0265	SKW1151		+	+			
SKW1151	Set up Temporary Working Platform	185	100 15/06/11 A	30/09/11 A	15/06/11 A	30/09/11 A		PRE0090, SKW1141	SKW1171		į				
SKW1171	ELS for HDD Set-up (SKW)	120	100 01/09/11 A	30/09/11 A	01/09/11 A	30/09/11 A		SKW1151	SKW1181			_			
SKW1181	Mobilization of HDD plant & equipment to SKW	60	100 06/01/12 A	07/01/12 A	06/01/12 A	07/01/12 A		SKW1171, YSW0360	SKW1191		!				
SKW1191	Setting up at drillhole location	30	100 09/01/12 A	14/01/12 A	09/01/12 A	14/01/12 A		SKW1181	SKW1201		i				
SKW1201	Drill pilot hole and reaming hole - NS280 - 750m	196	100 16/01/12 A	06/07/12 A	16/01/12 A	06/07/12 A		SKW1191	SKW1211		ı				
SKW1211	Receiving Pit for HDD (SKW)	180		29/02/12 A	16/01/12 A	29/02/12 A		SKW1201	SKW1221		i	$\Pi\Pi$			
SKW1221	Installaiton of NS280 HDPE 450mm dia. pipe	57	100 14/03/12 A	14/03/12 A	14/03/12 A	14/03/12 A		SKW1211	KD0090, SKW1231, SKW1441	-	▔▄▎ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗				
SKW1231	Dredging of MD for Diffuser (PS CL 1.122(3))	60	0 30/04/12	28/06/12	04/08/13	02/10/13	4610		SKW1241		Ī	TT9•	*		
SKW1241	Diffuser Construction	60	0 29/06/12	27/08/12	03/10/13	01/12/13	4610		SKW1251		i I			—	
SKW1251	Removal of Receiving Pit	45	0 28/08/12	11/10/12	02/12/13	15/01/14	4610	ł	SKW1431		1		\sqcup		
SKW1441	Construct of 33m Pipe Succeeding Connection Pit	240	0 30/04/12	25/12/12	20/06/13	14/02/14	4160	SKW1221	KD0090		i		*		
SKW STW											I I				
Submission &	<u> </u>		1					Leavere	Leavore		i I				
E&M3010	Delivery of MBR M.M 1st shipment for Temp STP	150	100 24/02/11 A	17/10/11 A	24/02/11 A	17/10/11 A		E&M0160	E&M3170		!				
Start date 05/03 Finish date 29/0	6/15 Progress bar			Leader C	ivil Engineeri	ng Corp. Ltd.				30/04/1	Date 2	Revision	Revision	Checked RH	Approved VC
Data date 30/04 Run date 10/08	5/10 Summary bar			Co	ntract No. DC	:/2009/13						+		-	
Page number 6A	9/12					nt Works at YS		N				+		+ +	
	Summary point		3-n	nonth Rolling	Programme	(May 2012 - Jul	2012)								
c Primavera System	ms, Inc. Start milestone point Finish milestone point								(Marked on 31 Apr 2	012)					
	' - ' - ' - ' - ' - ' - ' - ' - ' - ' -									<u> </u>					

	Activity ID	Description	Original Duration	Percent Early Complete Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors	2012 FEB MAR APR MAY JUN JUL J
	E&M3030	Delivery of Grit Removal Equipment	180	100 10/10/11 A	29/12/11 A	10/10/11 A	29/12/11 A		E&M0150	E&M3190	1
	E&M3060	Delivery of Fine Screens	136	100 12/09/11 A	30/11/11 A	12/09/11 A	30/11/11 A		E&M0120	E&M3210]
	E&M3070	Delivery of Pumps	136	100 23/06/11 A	05/09/11 A	23/06/11 A	05/09/11 A		E&M0130	E&M3220	
	E&M3080	Delivery of Submersible Mixers	180	100 26/07/11 A	17/11/11 A	26/07/11 A	17/11/11 A		E&M0140	E&M3230	
	E&M3090	Delivery of Sludge Dewatering Equipment	210	50 01/09/11 A	12/08/12	01/09/11 A	12/02/12	-182d	E&M0170	E&M3240	·
	E&M3100	Delivery of Valves, Pipes & Fittings	180	70 30/08/11 A	22/06/12	30/08/11 A	29/09/14	803d	E&M0180	E&M3250	
	E&M3110	Delivery of Penstocks	180	100 12/08/11 A	24/12/11 A	12/08/11 A	24/12/11 A		E&M0190	E&M3260]
	E&M3130	Delivery of instruments	180	100 21/06/11 A	03/11/11 A	21/06/11 A	03/11/11 A		E&M0200	E&M3270	
	E&M3140	Delivery of MCC LVSB	180	0 01/05/12	28/10/12	09/05/11	04/11/11	-359d	E&M0210	E&M3261	
	E&M3150	Delivery of BS Equipment	180	0 16/05/12	12/11/12	22/03/14	20/10/14	675d	E&M0220	E&M3291	
	E&M3160	Delivery of FS Equipment	180	5 13/04/12 A	31/10/12	13/04/12 A	11/07/12	-112d	E&M0230	E&M0340, E&M3300	
	Construction of	f Grid A-G									<u> </u>
	SKW1261	Excavate for SKW STW Structure (Grid A -G)	164	100 30/07/11 A	30/04/12 A	30/07/11 A	30/04/12 A		SKW0551	SKW1271, SKW1371	
1	SKW1271	55 M3 Fire Sprinkle Water Tank (FL +0.9 mPD)	25	0 07/05/12	31/05/12	28/07/11	21/08/11	-284d	SKW1261	SKW1281	
	SKW1281	Ground Floor Slab (Grid A-G)	25	0 01/06/12	25/06/12	22/08/11	15/09/11	-284d	SKW1271	SKW1291	
1	SKW1291	Columns & Walls to 1/F & 1/F Slab (Grid A-G)	25	0 26/06/12	20/07/12	16/09/11	10/10/11	-284d	SKW1281	KD0090, SKW1301	
	SKW1301	Columns & Walls to R/F & R/F Slab (Grid A-G)	25	0 21/07/12	14/08/12	11/10/11	04/11/11	-284d	SKW1291	E&M3261, E&M3291, E&M3311,	
	SKW1411	ABWF installation	85	0 21/07/12	13/10/12	11/10/11	03/01/12	-284d	SKW1301	E&M3261, E&M3291, E&M3311	
	Construction of	f Grid G-N			<u>. </u>						<u> </u>
<u> </u>	SKW1321	Equalization Tank no.1 & 2 with base slabs (-2.1	35	60 02/04/12 A	13/05/12	02/04/12 A	07/09/11	-249d		SKW1331	
	SKW1331	Columns & Walls from B/S to G/F Slab (Grid G-N)	35	0 14/05/12	17/06/12	08/09/11	12/10/11	-249d	SKW1321	SKW1341	
	SKW1341	Ground Floor Slab (Grid G-N)	35	0 18/06/12	22/07/12	13/10/11	16/11/11	-249d	SKW1331	SKW1351	
	SKW1351	Columns & Walls to 1/F & 1/F Slab (Grid G-N)	18	0 23/07/12	09/08/12	17/11/11	04/12/11	-249d		SKW1361	
	SKW1361	Columns & Walls to R/F & R/F Slab (Grid G-N)	24	0 10/08/12	02/09/12	05/12/11	28/12/11	-249d	SKW1351	E&M3170, E&M3190, E&M3210,	
C	Construction of	f Grid N-T									!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
	SKW1371	Excavate for SKW STW Structure (Grid N-T)	80	20 02/04/12 A	09/07/12	02/04/12 A	15/10/11	-268d	SKW05938, SKW1261	SKW1381	
	SKW1381	Ground Floor Slabs include MBR Tank (Grid N-T)	30	0 10/07/12	08/08/12	16/10/11	14/11/11	-268d		SKW1391	
	SKW1391	Columns & Walls to 1/F & 1/F Slab (Grid N-T)	30	0 09/08/12	07/09/12	15/11/11	14/12/11	-268d	SKW1381	SKW1401	i
SK	W STP - E&M	Works									<u> </u>
E8	&M3220	Install Pumps	75	0 30/04/12	13/07/12	29/12/11	12/03/12	-123d		E&M3230, E&M3250, E&M3260,	
E8	kM3230	Install Submersible Mixers	45	0 14/07/12	27/08/12	13/03/12	26/04/12	-123d	E&M3080, E&M3220	E&M3250, E&M3260, E&M3311,	'
Ris	sing Main		_		_	_		_			
	KW1481	Subm, Approval & Delivery of DI pipes	120			17/05/10 A	28/02/11 A	<u> </u>	KD0020	SKW1501	
Sk	KW1501	Concrete Trough (ChB0+00 - ChB1+20)	300	100 15/08/11 A	30/09/11 A	15/08/11 A	30/09/11 A		PRE0100, SKW1481	SKW1521	
	(W1521	Twin DN150 DI Rising Main (ChB0+00 - ChA4+55)	250		18/06/12	15/08/11 A	16/03/12	-94d	SKW1501	SKW1541	
		DN250 DI Pipe (ChC0+00 - ChC0+35 Connection Pit)	208	0 19/06/12	12/01/13	17/03/12	10/10/12	-94d	SKW1521	SKW1561	-
		dscape Softworks in All Portions									4
SKW	V1591	Tree Survey	21	100 17/05/10 A	06/06/10 A	17/05/10 A	06/06/10 A		KD0020	SKW1621	
	V1611	Preservation & Protection of Trees	822	85 17/05/10 A	31/08/12	17/05/10 A	15/08/12	-15d	KD0020	KD0100, SKW1631	_
SKV	V1621	Transplantation at SKW	60	100 07/06/10 A	05/10/10 A	07/06/10 A	05/10/10 A		SKW1591		

Start date	05/05/10		Early bar
Finish date	29/06/15		Progress bar
Data date	30/04/12	┱	Critical bar Summary bar
Run date	10/05/12		Progress point
Page number	7A		Critical point
		7	Summary point
c Primavera	Systems, Inc.	$\neg \diamond$	Start milestone point
	- /	$\dashv \diamond$	Finish milestone poin

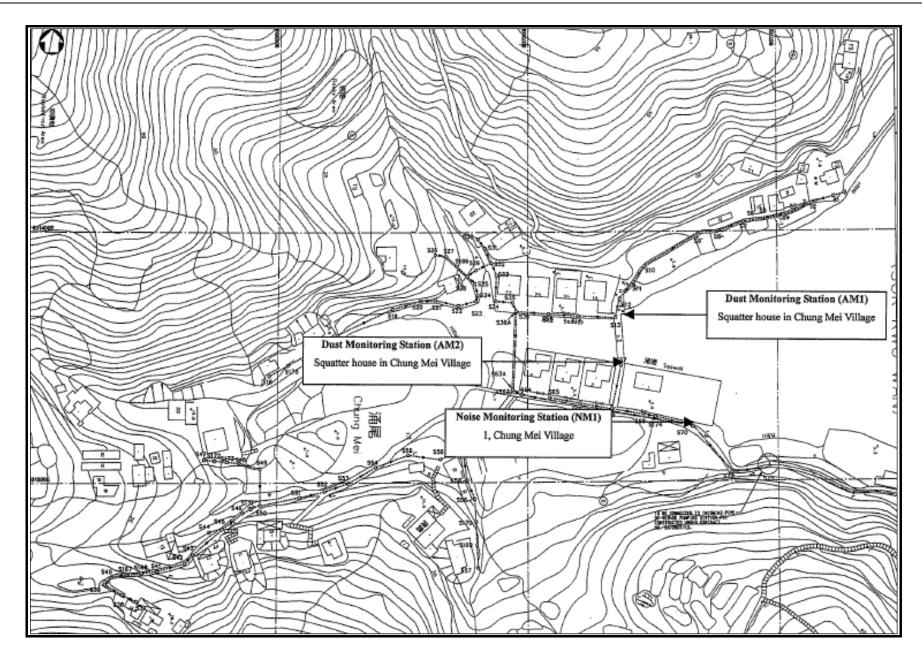
Leader Civil Engineering Corp. Ltd.
Contract No. DC/2009/13
Construction of Sewage Treatment W orks at YSW & SKW
3-month Rolling Programme (May 2012 - Jul 2012)

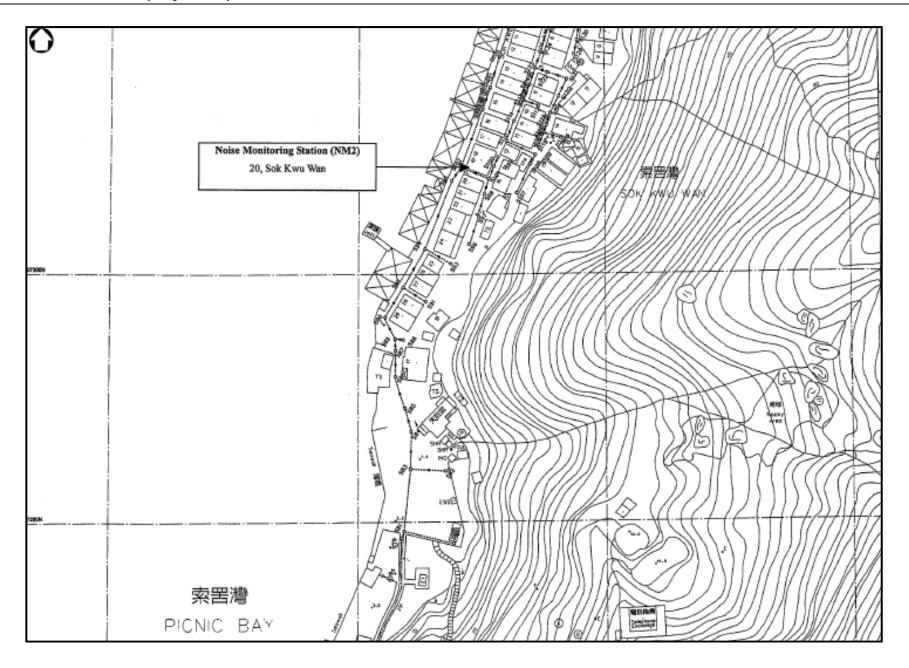
Date	Revision	Checked	Approved
30/04/12	Revision 0	RH	S

Activity	Description	Original	Percent Early	Early Finish	Late	Late	Total	Predecessors				2012		
ID *	Description	Duration	Complete Start	Finish	Start	Finish	Float	Fredecessors	FEB	MAR	APR	MAY	JUN	JUL
Section W6 - Sewer and I	PS No.2 in Portions E&H													
+Civil & Geotechnical Wo	orks													
		920	67 17/05/10	A 21/11/12	17/05/10 A	15/11/11	-372d							
+Structural Works														
		564	46 02/05/11 /	A 15/11/12	04/04/11 A	29/02/12	-366d							
E&M Works (PS2)														
+Submission & Deliver	У													
		819	90 17/05/10 /	A 12/08/12	17/05/10 A	13/04/12	-469d							
+Installation, T&C		•												
		139	0 28/05/12	14/10/12	02/05/11	11/10/11	-368d		1					
Section W7 - SKW STW,S	Sewer and Submarine Outfall	•			•		<u>, </u>							
+Submarine Outfall														
		954	79 17/05/10 /	A 25/12/12	17/05/10 A	14/02/14	416d							
+SKW STW														
		628	59 24/02/11	A 12/11/12	24/02/11 A	20/10/14	675d							
+SKW STP - E&M Works	3	•				•								
		120	0 30/04/12	27/08/12	29/12/11	26/04/12	-123d							
+Rising Main														
		972	71 17/05/10	A 12/01/13	17/05/10 A	10/10/12	-94d							
Section W8 - Landscape	e Softworks in All Portions		<u> </u>											
		837	86 17/05/10 /	A 31/08/12	17/05/10 A	15/08/12	-15d							

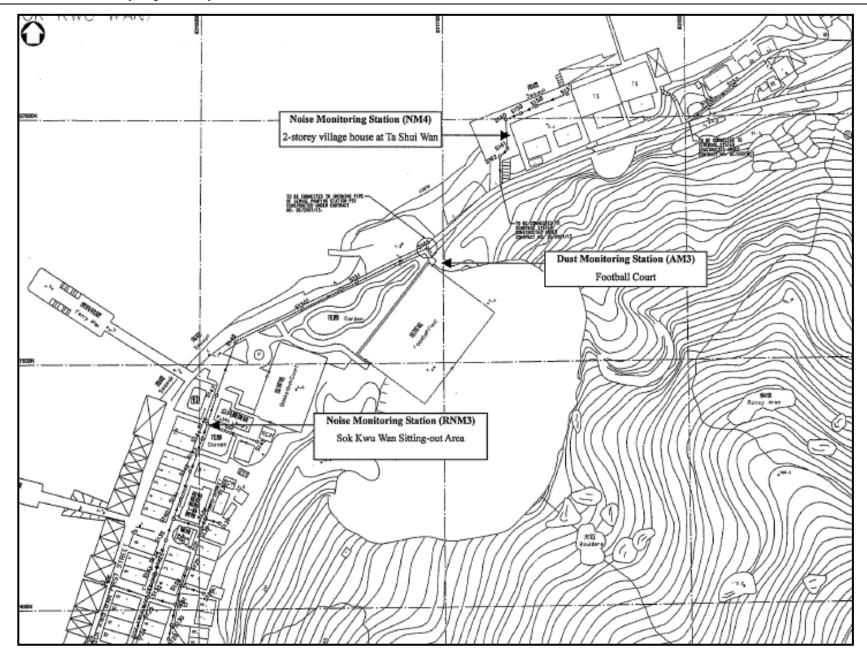
Start date	05/05/10		Early bar
Finish date	29/06/15		Progress bar Critical bar
Data date	30/04/12		Summary bar
Run date	09/05/12	A	Progress point
Page number	2A	◩	Critical point
c Primavera S	Systems, Inc.	\	Summary point Start milestone point
		♦	Finish milestone poir

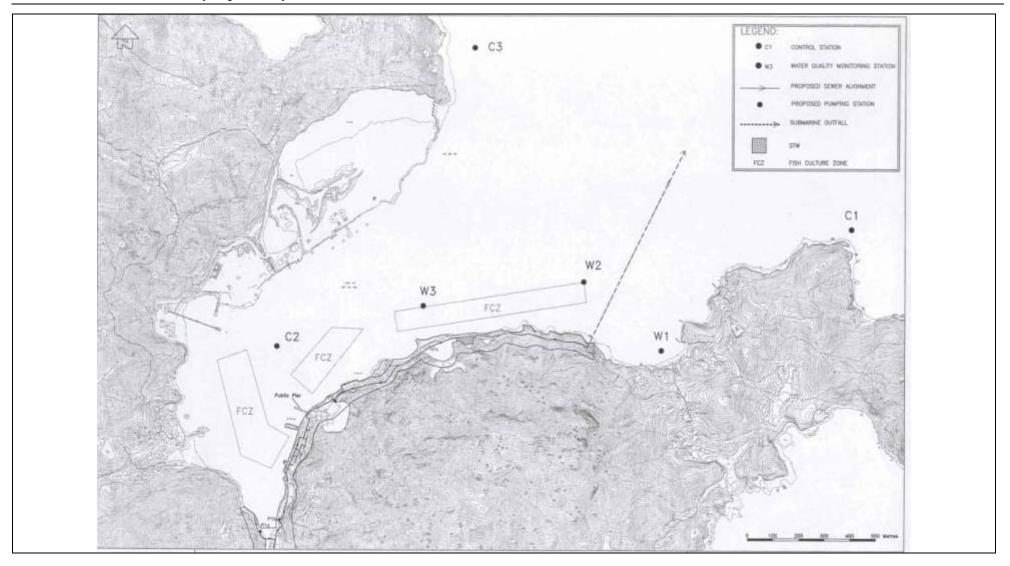
Leader Civil Engineering Corp. Ltd.
Contract No. DC/2009/13
Construction of Sewage Treatment Works at YSW & SKW
3-month Rolling Programme (May 2012 - Jul 2012)


Date	Revision	Checked	Approv ed
30/04/12	Revision 0	RH	VC


Appendix D

Location of Monitoring Stations (Air Quality / Construction Noise / Water Quality)





Appendix E

Monitoring Equipments Calibration Certificate

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - Jun 02, 2011 Rootsmeter S/N 0438320 Ta (K) - 29 Operator Tisch Orifice I.D 1941 Pa (mm) - 754.3								
=======================================		=== === ==============================		== === ===============================	METER	ORFICE		
PLATE	VOLUME START	VOLUME STOP	DIFF VOLUME	DIFF TIME	DIFF Hq	DIFF H2O		
OR Run #	(m3)	(m3)	(m3)	(mm)	(in.)			
1	NA	NA	1.00	1.4660	3.3	2.00		
2	NA	NA	1.00	1.0410	6.4	4.00		
3	AN	. NA	1.00	8.1	5.00			
4	NA	NA	1.00	8.9	5.50			
5	AN A	NA	1.00	0.7310	13.0	8.00		
				<u> </u>	 	 -		

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
1.0017 0.9975 0.9952 0.9942 0.9887	0.6833 0.9582 1.0690 1.1260 1.3526	1.4185 2.0061 2.2429 2.3524 2.8371		0.9956 0.9914 0.9892 0.9882 0.9827	0.6791 0.9524 1.0625 1.1191 1.3444	0.8829 1.2486 1.3959 1.4641 1.7657
Qstd slop intercept coefficie	t (b) =	2.11693 -0.02568 0.99993		Qa slope intercept coefficie	t (b) =	1.32558 -0.01598 0.99993
v axis =	SORT [H20 (Pa/760)(298/	_] Га)]	y axis =	SQRT [H2O (7	[a/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa] Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ $Qa = 1/m\{[SQRT H2O(Ta/Pa)] - b\}$

Location: Squatter house in Chung Mei Village

Location ID: AM1

Date of Calibration: 1-Mar-12 Next Calibration Date: 30-Apr-12 Technician: Mr. Ben Tam

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C)

1014.1
16.7

Corrected Pressure (mm Hg)
Temperature (K)

760.575 290

CALIBRATION ORIFICE

Make->	TISCH
Model->	5025A
Serial # ->	1941

Qstd Slope -> Qstd Intercept ->

2.11693 -0.02568

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.1	5.1	10.2	1.543	58	59.68	Slope = 32.0196
13	4	4	8	1.368	52	53.51	Intercept = 9.8964
10	3	3	6	1.186	46	47.34	Corr. coeff. = 0.9995
7	1.6	1.6	3.2	0.869	37	38.07	
5	0.9	0.9	1.8	0.655	30	30.87	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

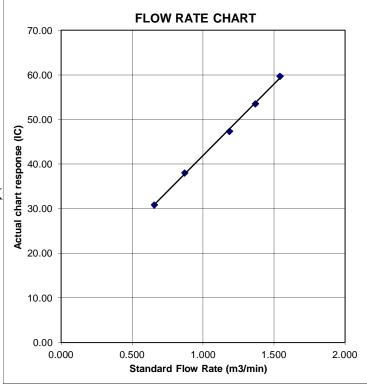
I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hg

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Location: Squatter house in Chung Mei Village

Location ID: AM2 Next Calibration Date: 30-Apr-12

Technician: Mr. Ben Tam

Date of Calibration: 1-Mar-12

CONDITIONS

Sea Level Pressure (hPa)
Temperature (°C)

1014.1
16.7

Corrected Pressure (mm Hg)
Temperature (K)

760.575

CALIBRATION ORIFICE

Make->	TISCH
Model->	5025A
Serial # ->	1941

Qstd Slope -> Qstd Intercept ->

2.11693 -0.02568

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.8	5.8	11.6	1.645	58	59.68	Slope = 28.8551
13	4.2	4.2	8.4	1.401	51	52.48	Intercept = 12.1734
10	3	3	6	1.186	45	46.31	Corr. coeff. = 0.9998
7	1.8	1.8	3.6	0.922	38	39.10	
5	1.0	1.0	2	0.690	31	31.90	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

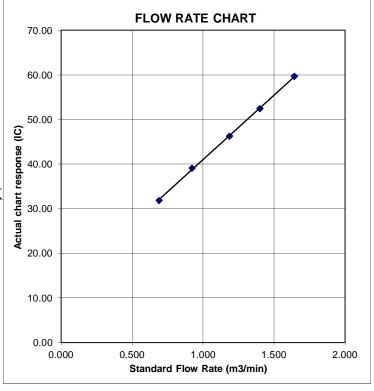
I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hg

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Location: Football court

Location ID: AM3

Date of Calibration: 1-Mar-12

Next Calibration Date: 30-Apr-12

Technician: Mr. Ben Tam

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C)

1014.1
16.7

Corrected Pressure (mm Hg)
Temperature (K)

760.575 290

CALIBRATION ORIFICE

Make->	TISCH
Model->	5025A
Serial # ->	1941

Qstd Slope -> Qstd Intercept ->

2.11693 -0.02568

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR			
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION			
18	5.4	5.4	10.8	1.587	47	48.36	Slope = 23.5114			
13	4.2	4.2	8.4	1.401	43	44.25	Intercept = 11.1340			
10	2.6	2.6	5.2	1.105	36	37.05	Corr. coeff. = 0.9999			
7	1.5	1.5	3	0.842	30	30.87				
5	0.8	0.8	1.6	0.618	25	25.73				

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

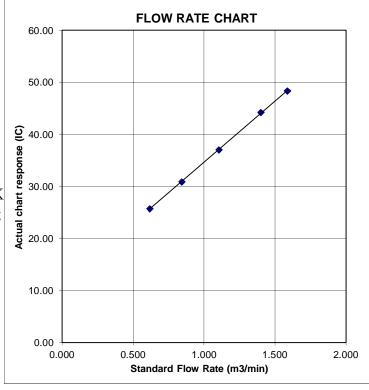
I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hg

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Location: Squatter house in Chung Mei Village

Date of Calibration: 30-Apr-12 Location ID: AM1 Next Calibration Date: 30-Jun-12

Technician: Mr. Ben Tam

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C)

1005.8	
28.5	

Corrected Pressure (mm Hg) Temperature (K)

754.35 302

CALIBRATION ORIFICE

Make->	TISCH
Model->	5025A
Serial # ->	1941

Qstd Slope -> Qstd Intercept ->

11693 0.02568

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR		
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION		
18	5.1	5.1	10.2	1.506	58	57.11	Slope = 31.6154		
13	4.1	4.1	8.2	1.352	52	51.20	Intercept = 8.9091		
10	3	3	6	1.158	46	45.30	Corr. coeff. = 0.9992		
7	1.6	1.6	3.2	0.849	36	35.45			
5	0.9	0.9	1.8	0.640	30	29.54			

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

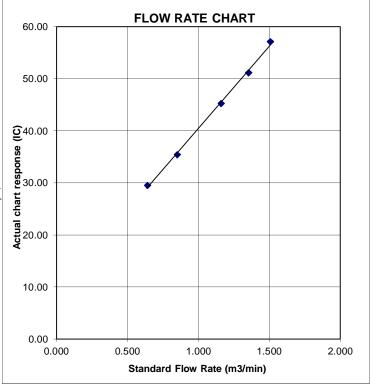
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K

Pstd = actual pressure during calibration (mm Hg

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Location: Squatter house in Chung Mei Village

Location ID: AM2 Next Calibration Date: 30-Jun-12

Technician: Mr. Ben Tam

Date of Calibration: 30-Apr-12

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C)

1005.8
28.5

Corrected Pressure (mm Hg)
Temperature (K)

754.35 302

CALIBRATION ORIFICE

Make->	TISCH
Model->	5025A
Serial # ->	1941

Qstd Slope -> Qstd Intercept ->

2.11693 -0.02568

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	Ι	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.8	5.8	11.6	1.606	57	56.13	Slope = 27.7477
13	4.3	4.3	8.6	1.384	52	51.20	Intercept = 12.1561
10	3	3	6	1.158	45	44.31	Corr. coeff. = 0.9989
7	1.8	1.8	3.6	0.900	38	37.42	
5	0.9	0.9	1.8	0.640	30	29.54	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

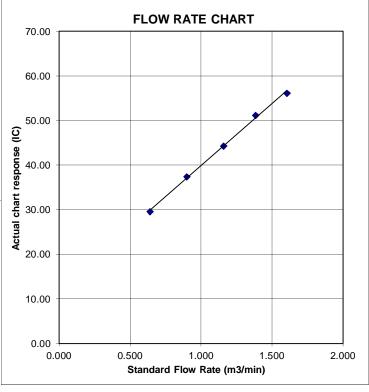
I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hg

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Location: Football court

Location ID: AM3

Date of Calibration: 30-Apr-12

Next Calibration Date: 30-Jun-12

Tackgridgen May Rep. Terr.

Technician: Mr. Ben Tam

CONDITIONS

Sea Level Pressure (hPa)
Temperature (°C)

1005.8
28.5

Corrected Pressure (mm Hg)
Temperature (K)

754.35 302

CALIBRATION ORIFICE

Make->	TISCH
Model->	5025A
Serial # ->	1941

Qstd Slope -> Qstd Intercept ->

2.11693 -0.02568

CALIBRATION

Plate	H20 (I.)	H2O (R)	H20	Ostd	Ţ	IC	LINEAR
	` ′	1		_	1		
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.4	5.4	10.8	1.550	47	46.28	Slope = 22.7418
13	4.1	4.1	8.2	1.352	41	40.37	Intercept = 10.4615
10	2.6	2.6	5.2	1.079	36	35.45	Corr. coeff. = 0.9971
7	1.5	1.5	3	0.823	29	28.56	
5	0.8	0.8	1.6	0.604	25	24.62	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

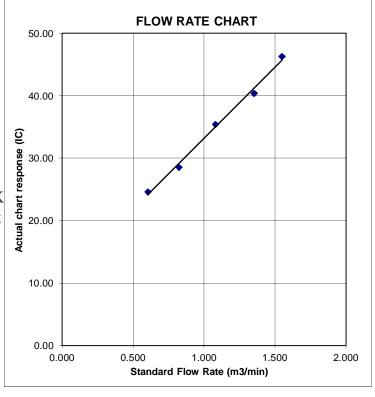
I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hg

For subsequent calculation of sampler flow:


1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

CERTIFICATE OF CALIBRATION AND TESTING

TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

Environment Condition			Model		8520			
Temperature	68.7 (20.4)	°F (°C)	Iviouei					
Relative Humidity	41	%RH	 Serial Numbe	.3*		23079		
Barometric Pressure	28.98 (981.4)	inHg (hPa)	Serial Numbe	1		250	113	
⊠As Left □As Found			In Tolerance Out of Tolerance					
		Concentration	Linearity Plot					
	Device Response (mg/m3) 10.0		0 0 1 10 10 ntration (mg/m3)	o = In Tolera • = Out of To				
					****	System ID: I	OTH01-02	
Zero Stability Results Average:	Minimum:		Maximum:		Time:			
	g/m^3 \circ . \circ	00 mg/m³	0.001	:mg/m ³	1	00	:hrs.	

Zero Stability Results			
Average:	Minimum:	Maximum:	Time:
0.000 :mg/m³	0.000 :mg/m ³	0.00 :mg/m ³	4:00 :hrs.

TSI Incorporated does hereby certify that all materials, components, and workmanship used in the manufacture of this equipment are in struct accordance with the applicable specifications agreed upon by TSI and the customer and with all published specifications. All performance and acceptance tests required under this contract were successfully conducted according to required specifications. There is no NIST standard for optical mass measurements. Calibration of this instrument performed by TSI has been done using emery oil and has been nominally adjusted to respirable mass of standard ISO 12103-1, A1 test dust (Arizona dust) Our calibration ratio is greater than 1.2:1

Measurement Variable Barometric Pressure Humidity	System ID E003733 E002873	Last Cal. 01-15-11 11-24-10	Cal. Due 02-15-12 11-24-11	Measurement Variable Temperature DC Voltage	System ID E002873 E003314	Last Cal. 11-24-10 01-05-11	Cal. Due 11-24-11 01-05-12
DC Voltage	E003315	01-05-11	01-05-12	Photometer	E003319	07-25-11	01-25-12
Microbalance	E001324	01-04-11	01-04-12	Pressure	E003511	11-12-10	11-12-11
Flowmeter	E003769	06-13-11	06-13-12	1			

T. Thao	Final Function Check	September 13, 2011	
Calibrated		Date	

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C122418

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC12-0960)

Description / 儀器名稱

Sound Level Meter (EQ068)

Manufacturer / 製造商 Model No. / 型號

Rion NI.-31

Serial No. / 編號

00410247

Supplied By / 委託者

Action-United Environmental Services and Consulting

Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓

TEST SPECIFICATIONS / 測試規範

Calibration

DATE OF TEST / 測試日期

20 April 2012

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification. (after adjustment)

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Precision Measurement Ltd., UK
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By 測試

L K Yeung

Certified By

核證

KC Lee

Date of Issue 簽發日期

23 April 2012

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準,局部複印本證書需先獲本實驗所書而批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

Certificate No.: C122418

證書編號

校正證書

 The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.

2. Self-calibration using the internal standard (After Adjustment) was performed before the test form 6.1.1.2 to 6.4.

3. The results presented are the mean of 3 measurements at each calibration point.

4. Test equipment:

Equipment ID

Description

Certificate No.

CL280 CL281 40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator C120016 DC110233

Test procedure: MA101N.

6. Results:

6.1 Sound Pressure Level

6.1.1 Reference Sound Pressure Level

6.1.1.1 Before Adjustment

UUT Setting			Applied	Applied Value		IEC 60651 Type 1		
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Spec. (dB)	
30 - 120	LA	A	Fast	94.00	1	* 92.9	± 0.7	

^{*} Out of Mfr's Spec.

6.1.1.2 After Adjustment

	UUT Setting				d Value	UUT	IEC 60651 Type 1	
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Spec. (dB)	
30 - 120	LA	A	Fast	94.00	- 1	94.0	± 0.7	


6.1.2 Linearity

	UU	T Setting		Applied	UUT	
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
30 - 120	LA	A	Fast	94.00	1	94.0 (Ref.)
				104.00		104.0
				114.00		114.0

IEC 60651 Type 1 Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可測源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

Certificate No.: C122418

證書編號

6.2 Time Weighting

6.2.1 Continuous Signal

	UUT Setting			Applied	d Value	UUT	IEC 60651 Type 1	
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level Freq. (dB) (kHz)		3 A	Spec. (dB)	
30 - 120	LA	A	Fast	94.00	1	94.0	Ref.	
			Slow		0.1	94.0	± 0.1	

6.2.2 Tone Burst Signal (2 kHz)

UUT Setting			App	lied Value	UUT	IEC 60651 Type 1		
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Burst Duration	Reading (dB)	Spec. (dB)	
20 -110	LA	A	Fast	106.00	Continuous	106.0	Ref.	
	L _A max				200 ms	105.1	-1.0 ± 1.0	
	L _A		Slow		Continuous	106.0	Ref.	
	L _A max			+	500 ms	102.0	-4.1 ± 1.0	

6.3 Frequency Weighting

A-Weighting 6.3.1

	UL	T Setting		App	lied Value	UUT	IEC 60651 Type 1
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Spec. (dB)
30 - 120	L _A	A	Fast	94.00	31.5 Hz	54.3	-39.4 ± 1.5
		0.			63 Hz	67.7	-26.2 ± 1.5
			125 Hz	77.8	-16.1 ± 1.0		
				250 Hz	85.3	-8.6 ± 1.0	
					500 Hz	90.7	-3.2 ± 1.0
					1 kHz	94.0	Ref.
					2 kHz	95.3	$+1.2 \pm 1.0$
					4 kHz	95.1	$+1.0 \pm 1.0$
		L 3			8 kHz	93.0	-1.1 (+1.5; -3.0)
					12.5 kHz	90.1	-4.3 (+3.0; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

Certificate No.: C122418

證書編號

6.3.2 C-Weighting

	UU	JT Setting		App	lied Value	UUT	IEC 60651 Type 1	
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Spec. (dB)	
30 - 120	Lc	C	Fast	94.00	31.5 Hz	90.7	-3.0 ± 1.5	
	100		1.4		63 Hz	93.1	-0.8 ± 1.5	
					125 Hz	93.8	-0.2 ± 1.0	
					250 Hz	94.0	0.0 ± 1.0	
					500 Hz	94.0	0.0 ± 1.0	
					1 kHz	94.0	Ref.	
					2 kHz	93.9	-0.2 ± 1.0	
					4 kHz	93.4	-0.8 ± 1.0	
	,				8 kHz	91.1	-3.0 (+1.5; -3.0)	
					12.5 kHz	88.2	-6.2 (+3.0; -6.0)	

6.4 Time Averaging

	UU	T Setting			Applied Value			UUT	IEC 60804	
Range (dB)	Mode	Frequency Weighting	Integrating Time	Freq. (kHz)	Burst Duration (ms)	Burst Duty Factor	Burst Level (dB)	Equivalent Level (dB)	Reading (dB)	Type 1 Spec. (dB)
20 - 110	LAcq	Α	10 sec.	4	1	1/10	110.0	100	100.0	± 0.5
						$1/10^2$	1	90	90.0	± 0.5
			60 sec.			1/103		80	80.0	± 1.0
			5 min.	7. 1. 4. 4		1/104		70	70.0	± 1.0

Remarks: - Mfr's Spec.: IEC 60651 Type 1 & IEC 60804 Type 1

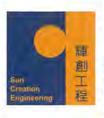
- Uncertainties of Applied Value: 94 dB: 63 Hz - 125 Hz $: \pm 0.35 \, dB$

250 Hz - 500 Hz : ± 0.30 dB 1 kHz $: \pm 0.20 \text{ dB}$ 2 kHz - 4 kHz : ± 0.35 dB : ± 0.45 dB 8 kHz

12.5 kHz : ± 0.70 dB

104 dB : 1 kHz $: \pm 0.10 \text{ dB (Ref. 94 dB)}$ 114 dB : 1 kHz : ± 0.10 dB (Ref. 94 dB) Burst equivalent level : ± 0.2 dB (Ref. 110 dB continuous sound level)

Tel 電話: 2927 2606


The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Fax/傳耳: 2744 8986

⁻ The uncertainties are for a confidence probability of not less than 95 %.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C122426

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC12-0960)

Description / 儀器名稱

Acoustical Calibrator (EQ082)

Manufacturer / 製造商

Bruel & Kjaer

Model No. / 型號

4231

Serial No. / 編號

2713428

Supplied By / 委託者

Action-United Environmental Services and Consulting

Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}C$

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓:

TEST SPECIFICATIONS / 測試規範

Calibration

DATE OF TEST / 測試日期

20 April 2012

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By 測試

L K Yeung

Certified By 核證

K/C Lee

Date of Issue 簽發日期

23 April 2012

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可測源至國際標準。 局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

6/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 - 核正及檢測實驗所

c/o 香港新界屯門與安里一號青山灣機樓四樓

Tel 7世話: 2927 2606 Fax/傳真: 2744 8986

E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Page 1 of 3

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C122426

證書編號

The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement
of the test.

2. The results presented are the mean of 3 measurements at each calibration point.

3. Test equipment:

Equipment ID CL130 CL281 TST150A DescriptionCertificate No.Universal CounterC113350Multifunction Acoustic CalibratorDC110233Measuring AmplifierC120886

Test procedure : MA100N.

5. Results:

5.1 Sound Level Accuracy

5.1.1 Before Adjustment

UUT Nominal Value	Measured Value (dB)	Mfr's Spec. (dB)	Uncertainty of Measured Value (dB)
94 dB, 1 kHz	94.1	± 0.2	± 0.2
114 dB, 1 kHz	114.1	1 11 27 7 . 7	

5.1.2 After Adjustment

UUT Nominal Value	Measured Value (dB)	Mfr's Spec. (dB)	Uncertainty of Measured Value (dB)
94 dB, 1 kHz	94.0	± 0.2	± 0.2
114 dB, 1 kHz	114.0		

5.2 Frequency Accuracy

5.2.1 Before Adjustment

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value (Hz)
(kHz)	(kHz)	Spec.	
1	1.000 0	1 kHz ± 0.1 %	± 0.1

5.2.2 After Adjustment

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 0	1 kHz ± 0.1 %	± 0.1

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可測源至國際標準。局部複印本證書書先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C122426

證書編號

Remark: The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:

MR BEN TAM

CLIENT: ADDRESS: **ACTION UNITED ENVIRO SERVICES** RM A 20/F., GOLDEN KING IND BLDG.

NO. 35-41 TAI LIN PAI ROAD, KWAI CHUNG,

PROJECT:

N.T., HONG KONG.

WORK ORDER:

HK1210811

LABORATORY:

HONG KONG

DATE RECEIVED:

25/04/2012

DATE OF ISSUE:

02/05/2012

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal acceptance criteria of ALS will be followed.

Scope of Test:

Dissolved Oxygen, pH, Salinity, Temperature and Turbidity

Description:

YSI Sonde

Brand Name:

YSI

Model No.: Serial No.:

YSI 6820 / 650MDS 02J0912 / 02K0788 AA

Equipment No.:

Date of Calibration: 27 April, 2012

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung HONG KONG Phone:

852-2610 1044

Fax:

852-2610 2021

Email:


hongkong@alsglobal.com

Mr Chan Kwok/Fai, Godfrey Laboratory Manager - Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 3

ADDRESS 11/F, Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong PHONE +852 2610 1044 FAX +852 2610 2021 ALS TECHNICHEM (HK) PTY LTD Part of the ALS Laboratory Group A Campbell Brothers Limited Company

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: HK1210811 Date of Issue: 02/05/2012

Client: ACTION UNITED ENVIRO SERVICES

Description: YSI Sonde

Brand Name: YSI

Model No.: YSI 6820 / 650MDS Serial No.: 02J0912 / 02K0788 AA

Equipment No.: --

Date of Calibration: 27 April, 2012 Date of next Calibration: 27 July, 2012

Parameters:

Dissolved Oxygen Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)
6.43	6.33	-0.10
7.80	7.76	-0.04
8.35	8.30	-0.05
	Tolerance Limit (±mg/L)	0.20

pH Value Method Ref: APHA 21st Ed. 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.07	0.07
7.0	7.08	0.08
10.0	9.94	-0.06
	Tolerance Limit (±unit)	0.2

Salinity Method Ref: APHA (21st edition), 2520B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.00	1
10	10.67	6.7
20	21.12	5.6
30	31.59	5.3
	Tolerance Limit (±%)	10.0

Mr.Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:

HK1210811

Date of Issue:

02/05/2012

Client:

ACTION UNITED ENVIRO SERVICES

Description:

YSI Sonde

Brand Name:

YSI

Model No.:

YSI 6820 / 650MDS

Serial No.:

02J0912 / 02K0788 AA

Equipment No.:

--

Date of Calibration:

27 April, 2012

Date of next Calibration:

27 July, 2012

Parameters:

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
16.0	15.46	-0.5
25.0	24.66	-0.3
35.0	34.40	-0.6
	Tolerance Limit (°C)	2.0

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)
0	0.7	- 50
4	4.31	7.7
10	10.7	7.0
20	20.9	4.5
50	53.8	7.6
100	107.4	7.4
	Tolerance Limit (±%)	10.0

Mr Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

ALS Technichem (HK) Pty Ltd

ALS Environmental

Page 3 of 3

Hong Kong Accreditation Service 香港認可處

Certificate of Accreditation

認可證書

This is to certify that 特此證明

ALS TECHNICHEM (HK) PTY LIMITED

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, New Territories, Hong Kong 香港新界葵涌永業街1-3號忠信針織中心11樓

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 為香港認可處執行機關根據認可諮詢委員會建議而接受的

HOKLAS Accredited Laboratory

「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO / IEC 17025: 2005 - General requirements for the competence 此實驗所符合ISO / IEC 17025: 2005 -《測試及校正實驗所能力的通用規定》所訂的要求, of testing and calibration laboratories and it has been accredited for performing specific tests or calibrations as 獲認可進行載於香港實驗所認可計劃《認可實驗所名冊》內下述測試類別中的指定 listed in the HOKLAS Directory of Accredited Laboratories within the test category of 測試或校正工作

Environmental Testing

環境測試

This laboratory is accredited in accordance with the recognised International Standard ISO / IEC 17025: 2005. 本實驗所乃根據公認的國際標準 ISO / IEC 17025 : 2005 獲得認可。 This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory 這項認可資格演示在指定範疇所需的技術能力及實驗所質量管理體系的運作 quality management system (see joint IAF-ILAC-ISO Communiqué). (見國際認可論壇‧國際實驗所認可合作組織及國際標準化組織的聯合公報)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 香港認可處根據認可處執行機關的權限在此蓋上通用印章

CHAN Sing Sing, Terence, Executive Administrator

執行幹事 陳成城 Issue Date: 5 May 2009

簽發日期:二零零九年五月五日

Registration Number : HOKLAS 066

註冊號碼:

Date of First Registration: 15 September 1995 首次註冊日期:一九九五年九月十五日

Appendix F

Event/Action Plan

Air Quality

		mi Quanty		
EVENT	ACTION			
	ET	IC(E)	ER	CONTRACTOR
ACTION LEVEL				
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IC(E) and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	Notify Contractor.	Rectify any unacceptable practice; Amend working methods if appropriate.
2. Exceedance for two or more consecutive samples	 Identify source; Inform IC(E) and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IC(E) and Contractor on remedial actions required; If exceedance continues, arrange meeting with IC(E) and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented.	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
		LIMIT LEVEL		
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented.	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IC(E) within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
Exceedance for two or more consecutive samples	 Notify IC(E), ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IC(E) and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IC(E), agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IC(E) within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Construction Noise

EVENT	ACTION			
	ET	IC(E)	ER	CONTRACTOR
Action Level	 Notify IC(E) and Contractor; Carry out investigation; Report the results of investigation to the IC(E), ER and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented. 	 Submit noise mitigation proposals to IC(E); Implement noise mitigation proposals.
Limit Level	 Identify source; Inform IC(E), ER, EPD and Contractor; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IC(E), ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IC(E) within 3 working days of notification; 3. Implement the agreed proposals; 4. Resubmit proposals if problem still not under control; 5. Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Water Quality

EVENT		ACTIO	ON .	
EVENT	ET	IC(E)	ER	CONTRACTOR
ACTION LEVEL	E1	TC(E)	EK	CONTRACTOR
Exceedance for one sampling day	 Repeat in-situ measurement on the next day of exceedance to confirm findings; Identify source(s) of impact; Inform ICE, Contractor, ER, EPD and AFCD; and Check monitoring data, all plant, equipment and Contractor's working methods. 	Check monitoring data submitted by ET and Contractor's working methods	Confirm receipt of notification of non-compliance in writing; and Notify Contractor	 Information the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; and Amend working methods if appropriate
Exceedance for two or more consecutive sampling days	Same as the above; Inform ICE, Contractor, ER, EPD and AFCD; Discuss mitigation measures with IC(E), RE and Contractor; Ensure well implementation of mitigation measures; and Increase the monitoring frequency to daily until no exceedance of Action Level	Same as the above; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly; and Supervise the implementation of mitigation measures.	Discuss with IC(E) on the proposed mitigation measures; Ensure well implementation of mitigation measures; and Assess the effectiveness of the implemented mitigation measures	Same as the above; Check all plant and equipment and consider changes of working methods; Submit proposal of additional mitigation measures to ER within 3 working days of notification and discuss with ET, IC(E), and ER; and Implement the agreed mitigation measures
		LIMIT LEVEL		
Exceedance for one sampling day	 Repeat in-situ measurement on the next day of exceedance to confirm findings; Identify source(s) of impact; Inform ICE, Contractor, ER, EPD and AFCD; Check monitoring data, all plant, equipment and Contractor's working methods; and Discuss mitigation measures with IC(E), RE and Contractor 	submitted by ET and Contractor's working method 2. Discuss with ER and Contractor on possible remedial actions; and 3. Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly	Confirm receipt of notification failure in writing; and Discuss with IC(E), ET and Contractor on the proposed mitigation measures; and Request Contractor to review the working methods	Inform the ER and confirm notification of the failure in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; and Submit proposal of mitigation measures to ER within 3 working days of notification and discuss with ET and ER
Exceedance for two or more consecutive sampling days	 Same as the above; Ensure mitigation measures are implemented; and Increase the monitoring frequency to daily until no exceedance of Limit Level for two consecutive days 	Same as the above; and Supervise the Implementation of mitigation measures	Same as the above; Ensure well implementation of mitigation measures Make agreement on the mitigation measures to be implemented; and Consider and instruct, if necessary, the Contractor to stow down or to stop all or part of the construction activities until no exceedance of limit level	measures; 4. Resubmit proposals of mitigation measures if problem still not under control; and

Appendix G

Monitoring Data Sheet

24-hour TSP Monitoring Data Sheet

Air Qualtiy Monitoring - 24-hour TSP Monitoring data sheet

		EI	APSED TI	ME	CHA	ART READ	ING			STANDARD	ı	INITIAL	FINAL	WEIGHT	DUST
DATE	SAMPLE							AVG	AVG	FLOW	AIR	FILTER	FILTER	DUST	24-hour TSP
	NUMBER	INITIAL	FINAL	ACTUAL	MIN	MAX	AVG	TEMP	PRESS	RATE	VOLUME	WEIGHT	WEIGHT	COLLECTED	IN AIR
				(min)				(oC)	(hPa)	(m3/min)	(std m3)	(g)	(g)	(g)	(ug/m^3)
24-hour TSP	Monitoring I	Results - AN	11												
27-Apr-12	24714	11929.91	11953.9	1439.40	32	34	33.0	23.6	1009.5	0.72	1039	2.7588	2.7932	0.0344	33
3-May-12	24719	11953.9	11977.89	1439.40	32	34	33.0	29	1005.5	0.75	1081	2.7461	2.77	0.0239	22
9-May-12	24753	11977.89	12001.88	1439.40	32	34	33.0	29.2	1008.9	0.75	1083	2.734	2.7495	0.0155	14
15-May-12	24756	12001.88	12025.87	1439.40	32	34	33.0	28	1007.6	0.75	1085	2.7545	2.7726	0.0181	17
21-May-12	24761	12025.87	12049.86	1439.40	32	34	33.0	25.9	1007.6	0.76	1090	2.7374	2.7839	0.0465	43
24-hour TSP	Monitoring I	Results - AN	12												
27-Apr-12	24713	10430.01	10454	1439.40	32	34	33.0	23.6	1009.5	0.72	1040	2.743	2.7967	0.0537	52
3-May-12	24717	10454	10477.99	1439.40	32	34	33.0	29	1005.5	0.74	1063	2.7474	2.7793	0.0319	30
9-May-12	24752	10477.99	10501.98	1439.40	32	34	33.0	29.2	1008.9	0.74	1066	2.728	2.7567	0.0287	27
15-May-12	24755	10501.98	10525.97	1439.40	32	34	33.0	28	1007.6	0.74	1068	2.7402	2.76	0.0198	19
21-May-12	24762	10525.97	10549.96	1439.40	32	34	33.0	25.9	1007.6	0.75	1074	2.751	2.7836	0.0326	30
24-hour TSP	Monitoring I	Results - AN	13												
27-Apr-12	24715	5995.91	6019.9	1439.4	34	36	35	23.6	1009.5	1.02	1462	2.7597	2.8552	0.0955	65
3-May-12	24721	6019.9	6043.89	1439.4	33	35	34	29	1005.5	1.02	1467	2.7454	2.8044	0.0590	40
9-May-12	24754	6043.89	6067.88	1439.4	33	35	34	29.2	1008.9	1.02	1470	2.7686	2.8695	0.1009	69
15-May-12	24757	6067.88	6091.87	1439.4	33	35	34	28	1007.6	1.02	1473	2.7506	2.9453	0.1947	132
21-May-12	24788	6091.87	6115.86	1439.4	33	35	34	25.9	1007.6	1.03	1480	2.7636	2.8224	0.0588	40

Marine Water Quality Monitoring Data Sheet

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

AUES

Sok Kwu Wan

Date 27-Apr-12

Date / Time	Location	Tide*	Co-ord	inates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11de*	East	North	m	m	್ಕೆ	mg/L	%	NTU	ppt	unit	mg
2012/4/27 15:25	W1	ME	832971	807727	2.2	1.100	29.59	6.77	82.9	1.2	29.59	8.44	2.8
2012/4/27 13.23	VV 1	IVIL	032971	007727	2.2	1.100	29.58	6.69	82.8	1.4	29.58	8.38	2.0
						1.000	29.43	6.94	82.4	1.7	29.43	8.58	3.4
						1.000	29.50	6.86	82.6	1.6	29.50	8.51	٥.٠
2012/4/27 15:15	W2	ME	832683	808001	13.4	6.700	29.82	6.60	83.5	1.5	29.82	8.39	4.3
2012/4/27 13.13	VV Z	IVIL	032003	000001	13.4	6.700	29.79	6.59	83.4	1.6	29.79	8.37	4.
						12.400	30.31	6.45	84.9	1.3	30.31	8.30	1.0
						12.400	30.13	6.46	84.4	1.4	30.13	8.31	1.
						1.000	29.52	6.84	82.7	1.6	29.52	8.48	1.
						1.000	29.54	6.77	82.7	1.7	29.54	8.44	1.
2012/4/27 15:00	W3	ME	832065	807891	13.5	6.750	30.43	6.65	85.2	1.6	30.43	8.39	2.
2012/4/27 15:00	W 3	IVIE	832003	607691	13.3	6.750	30.46	6.58	85.3	1.7	30.46	8.36	۷.
						12.500	29.84	6.52	83.6	1.4	29.84	8.34	2
						12.500	29.71	6.46	83.2	1.4	29.71	8.32	3.
						1.000	29.08	6.39	81.4	2.1	29.08	8.37	2
						1.000	29.07	6.38	81.4	2.1	29.07	8.35	3.
) (F)	000.00	000164	15.7	7.850	29.17	6.31	81.7	1.5	29.17	8.31	,
2012/4/27 15:45	C1	ME	833697	808164	15.7	7.850	29.17	6.29	81.7	1.5	29.17	8.28	1.
						14,700	29.16	6.29	81.6	1.8	29.16	8.27	
						14.700	29.08	6.23	81.4	1.6	29.08	8.25	2.
						1.000	28.43	6.61	79.6	1.6	28.43	8.31	
						1.000	28.43	6.60	79.6	1.6	28.43	8.29	2.
						6.650	29.94	6.51	83.8	1.8	29.94	8.32	
2012/4/27 14:45	C2	ME	831454	808001	13.3	6.650	29.92	6.51	83.8	1.7	29.92	8.32	6.
						12.300	30.43	6.46	85.2	1.4	30.43	8.32	
						12.300	30.43	6.46	85.1	1.7	30.43	8.32	1.
						1.000	28.64	6.45	80.2	1.6	28.64	8.29	
													2.
						1.000 7.950	29.03	6.44	81.3	1.7	29.03 29.10	8.27 8.23	
2012/4/27 16:05	C3	ME	832219	808889	15.9		29.10	6.42	81.5	1.8			6.
						7.950	29.12	6.42	81.5	1.9	29.12	8.24	-
						14.900	29.47	6.32	82.5	1.3	29.47	8.24	7.
						14.900	29.41	6.32	82.5	1.2	29.41	8.24	
						1.050	***	= 0.5	00.10		40.50	0.50	
2012/4/27 8:55	W1	MF	832985	807737	2.7	1.350	29.68	7.96	83.10	1.5	29.68	8.52	5.
2012/ 1/27 0.00						1.350	29.73	7.88	83.24	1.6	29.73	8.46	
						1.000	29.74	8.08	83.27	1.9	29.74	8.56	5.
						1.000	29.77	7.94	83.36	1.9	29.77	8.48	٥.
2012/4/27 8:45	W2	MF	832691	807991	15.3	7.650	29.90	7.63	83.72	1.8	29.90	8.36	5.
2012/ 1/27 0:15	", 2	1111	032071	007771	13.3	7.650	29.92	7.57	83.78	1.9	29.92	8.34	٥.
						14.300	30.70	7.56	85.96	1.4	30.70	8.52	2.
						14.300	30.72	7.50	86.02	1.5	30.72	8.40	۷.
						1.000	28.82	8.17	80.70	1.8	28.82	8.44	4.
						1.000	28.96	8.09	81.09	1.8	28.96	8.38	4.
2012///27 0.20	11/2	ME	022062	007074	155	7.750	30.11	7.65	84.31	1.4	30.11	8.29	4
2012/4/27 8:30	W3	MF	832062	807874	15.5	7.750	30.03	7.59	84.08	1.5	30.03	8.28	4.
						14.500	31.21	7.43	87.39	1.5	31.21	8.26	
						14.500	31.24	7.43	87.47	1.6	31.24	8.26	2.
						1.000	29.83	7.48	83.52	1.8	29.83	8.46	
						1.000	29.83	7.46	83.52	2.0	29.83	8.42	4.
									84.11	1.6	30.04	8.30	
			000===	000.75	45.	8,550	30.04	/,30	04.11				4.
2012/4/27 9:15	C1	MF	833721	808156	17.1	8.550 8.550	30.04 30.05	7.30 7.25		_	30.05	8.29	
2012/4/27 9:15	C1	MF	833721	808156	17.1	8.550	30.05	7.25	84.14	1.8	30.05 30.97	8.29 8.28	
2012/4/27 9:15	C1	MF	833721	808156	17.1	8.550 16.100	30.05 30.97	7.25 7.14	84.14 86.72	1.8 2.0	30.97	8.28	
2012/4/27 9:15	C1	MF	833721	808156	17.1	8.550 16.100 16.100	30.05 30.97 31.01	7.25 7.14 7.09	84.14 86.72 86.83	1.8 2.0 2.2	30.97 31.01	8.28 8.27	2.
2012/4/27 9:15	C1	MF	833721	808156	17.1	8.550 16.100 16.100 1.000	30.05 30.97 31.01 29.62	7.25 7.14 7.09 7.91	84.14 86.72 86.83 82.94	1.8 2.0 2.2 1.4	30.97 31.01 29.62	8.28 8.27 8.22	2.
						8.550 16.100 16.100 1.000	30.05 30.97 31.01 29.62 29.48	7.25 7.14 7.09 7.91 7.91	84.14 86.72 86.83 82.94 82.54	1.8 2.0 2.2 1.4 1.5	30.97 31.01 29.62 29.48	8.28 8.27 8.22 8.21	2.
2012/4/27 9:15 2012/4/27 8:15	C1 C2	MF	833721 831449	808156 807765	17.1	8.550 16.100 16.100 1.000 1.000 7.550	30.05 30.97 31.01 29.62 29.48 31.03	7.25 7.14 7.09 7.91 7.91 7.66	84.14 86.72 86.83 82.94 82.54 86.88	1.8 2.0 2.2 1.4 1.5 1.7	30.97 31.01 29.62 29.48 31.03	8.28 8.27 8.22 8.21 8.21	2.
						8.550 16.100 16.100 1.000 1.000 7.550 7.550	30.05 30.97 31.01 29.62 29.48 31.03 31.03	7.25 7.14 7.09 7.91 7.91 7.66 7.60	84.14 86.72 86.83 82.94 82.54 86.88 86.88	1.8 2.0 2.2 1.4 1.5 1.7	30.97 31.01 29.62 29.48 31.03 31.03	8.28 8.27 8.22 8.21 8.21 8.20	2.
						8.550 16.100 16.100 1.000 1.000 7.550 7.550 14.100	30.05 30.97 31.01 29.62 29.48 31.03 31.03 30.87	7.25 7.14 7.09 7.91 7.91 7.66 7.60 7.49	84.14 86.72 86.83 82.94 82.54 86.88 86.88 86.44	1.8 2.0 2.2 1.4 1.5 1.7 1.8 1.6	30.97 31.01 29.62 29.48 31.03 31.03 30.87	8.28 8.27 8.22 8.21 8.21 8.20 8.17	2. - 1. - 3.
						8.550 16.100 16.100 1.000 1.000 7.550 7.550 14.100	30.05 30.97 31.01 29.62 29.48 31.03 31.03 30.87 30.88	7.25 7.14 7.09 7.91 7.91 7.66 7.60 7.49 7.49	84.14 86.72 86.83 82.94 82.54 86.88 86.88 86.44 86.46	1.8 2.0 2.2 1.4 1.5 1.7 1.8 1.6 1.6	30.97 31.01 29.62 29.48 31.03 31.03 30.87 30.88	8.28 8.27 8.22 8.21 8.21 8.20 8.17 8.17	2. 1.
						8.550 16.100 16.100 1.000 1.000 7.550 7.550 14.100 1.000	30.05 30.97 31.01 29.62 29.48 31.03 31.03 30.87 30.88 29.32	7.25 7.14 7.09 7.91 7.91 7.66 7.60 7.49 7.49 7.15	84.14 86.72 86.83 82.94 82.54 86.88 86.88 86.44 86.46 82.10	1.8 2.0 2.2 1.4 1.5 1.7 1.8 1.6 1.6	30.97 31.01 29.62 29.48 31.03 31.03 30.87 30.88 29.32	8.28 8.27 8.22 8.21 8.21 8.20 8.17 8.17 8.40	2. - 1. - 3.
						8.550 16.100 16.100 1.000 1.000 7.550 7.550 14.100 1.000 1.000	30.05 30.97 31.01 29.62 29.48 31.03 31.03 30.87 30.88 29.32 29.32	7.25 7.14 7.09 7.91 7.91 7.66 7.60 7.49 7.49 7.15 7.08	84.14 86.72 86.83 82.94 82.54 86.88 86.88 86.44 86.46 82.10	1.8 2.0 2.2 1.4 1.5 1.7 1.8 1.6 1.6 1.3	30.97 31.01 29.62 29.48 31.03 31.03 30.87 30.88 29.32 29.32	8.28 8.27 8.22 8.21 8.21 8.20 8.17 8.17 8.40 8.36	2. - 1. - 3.
2012/4/27 8:15				807765		8.550 16.100 1.000 1.000 1.000 7.550 14.100 14.100 1.000 8.650	30.05 30.97 31.01 29.62 29.48 31.03 31.03 30.87 30.88 29.32 29.32 29.47	7.25 7.14 7.09 7.91 7.91 7.66 7.60 7.49 7.49 7.15 7.08	84.14 86.72 86.83 82.94 82.54 86.88 86.88 86.44 86.46 82.10 82.10	1.8 2.0 2.2 1.4 1.5 1.7 1.8 1.6 1.6 1.3 1.4	30.97 31.01 29.62 29.48 31.03 31.03 30.87 30.88 29.32 29.32 29.47	8.28 8.27 8.22 8.21 8.21 8.20 8.17 8.17 8.40 8.36	- 2. - 1.1 - 3. - 2.1
	C2	MF	831449		15.1	8.550 16.100 16.100 1.000 1.000 7.550 7.550 14.100 1.000 1.000	30.05 30.97 31.01 29.62 29.48 31.03 31.03 30.87 30.88 29.32 29.32	7.25 7.14 7.09 7.91 7.91 7.66 7.60 7.49 7.49 7.15 7.08	84.14 86.72 86.83 82.94 82.54 86.88 86.88 86.44 86.46 82.10	1.8 2.0 2.2 1.4 1.5 1.7 1.8 1.6 1.6 1.3	30.97 31.01 29.62 29.48 31.03 31.03 30.87 30.88 29.32 29.32	8.28 8.27 8.22 8.21 8.21 8.20 8.17 8.17 8.40 8.36	2.: - 1.: - 3.: - 2.: - 3.

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 30-Apr-12

Date / Time	Location	Tide*	Co-oro	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11de*	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg
2012/4/30 16:45	W1	ME	832943	832943	2.2	1.100	30.34	6.54	87.5	0.7	30.34	8.49	2.′
2012/4/30 10.43	*** 1	IVIL	032743	032743	2.2	1.100	30.35	6.51	87.2	0.8	30.35	8.45	۷.
						1.000	30.47	6.49	86.9	1.8	30.47	8.42	1.4
						1.000	30.59	6.56	88.0	1.6	30.59	8.41	1
2012/4/30 16:35	W2	ME	832680	832680	13.3	6.650	30.73	6.58	88.3	1.3	30.73	8.35	0.7
2012/4/30 10.33	*** 2	IVIL	032000	032000	13.3	6.650	30.74	6.53	87.4	1.4	30.74	8.34	0.
						12.300	30.19	6.46	86.6	1.5	30.19	8.58	0.0
						12.300	30.34	6.57	88.0	1.6	30.34	8.48	0.0
						1.000	30.53	6.57	87.9	0.9	30.53	8.40	0.7
						1.000	30.55	6.54	87.7	1.1	30.55	8.39	0.
2012/4/30 16:20	W3	ME	832049	832049	13.5	6.750	30.70	6.53	87.6	1.5	30.70	8.34	3.0
2012/4/30 10.20	W 3	ME	632049	632049	13.3	6.750	30.72	6.59	88.3	1.5	30.72	8.31	٥.١
						12.500	30.16	6.56	87.8	1.1	30.16	8.49	1
						12.500	30.15	6.40	85.7	1.2	30.15	8.44	1.
						1.000	30.48	6.32	84.6	1.9	30.48	8.35	
						1.000	30.49	6.59	88.4	1.8	30.49	8.33	1.
2012/4/20 17 05	C1	M	022712	022712	15.2	7.650	30.63	6.62	88.9	1.6	30.63	8.32	,
2012/4/30 17:05	C1	ME	833713	833713	15.3	7.650	30.64	6.59	88.3	1.7	30.64	8.32	1.
						14.300	15.75	6.63	88.9	2.0	30.40	8.56	
						14.300	26.52	6.29	84.2	1.9	30.34	8.47	1.
						1.000	30,29	6.30	84.2	1.6	30.29	8.35	
						1.000	30.31	6.48	86.9	1.7	30.31	8.33	2.
						6.600	30.42	6.50	87.0	1.2	30.42	8.30	
2012/4/30 16:05	C2	ME	831479	831479	13.2	6.600	30.38	6.62	88.7	1.3	30.38	8.30	3.
						12,200	30.54	6.61	88.6	1.0	30.54	8.29	
						12.200	30.55	6.49	86.9	0.9	30.55	8.29	3.
						1.000	30.15	6.36	85.1	1.4	30.15	8.40	
						1.000	30.19	6.68	89.7	1.4	30.19	8.36	3.
						7.850	30.19	6.69	89.8	1.4	30.19	8.32	
2012/4/30 17:25	C3	ME	832234	832234	15.7		30.44		86.4		30.41	8.31	5.
						7.850		6.45		1.6			
						14.700	30.48	6.28	84.2	1.9	30.48	8.30	1.
						14.700	30.48	6.18	82.8	1.9	30.48	8.28	
						1.400	30.17	6.66	89.24	1.2	30.17	8.21	
2012/4/30 11:55	W1	MF	832957	807719	2.8	1.400	30.17	6.62	88.92	1.0	30.17	8.20	1.
						1.000	30.59	6.69	89.82	2.0	30.59	8.22	
						1.000	30.59	6.72	89.55	2.1	30.59	8.23	4.
						7.700	30.55	6.65	89.15	1.6	30.55		
2012/4/30 11:45	W2	MF	832653	808007	15.4	7.700	30.60	6.65	89.13	1.8	30.60	8.23 8.23	4.
						14.400	30.25		88.29	1.3	30.25	8.45	
						14.400		6.60					1.
							30.28	6.51	87.08	1.4	30.28	8.41	
								_				0.07	
						1.000	30.58	6.68	89.91	1.8	30.58	8.37	2.
						1.000 1.000	30.58 30.64	6.68 6.67	89.64	1.8	30.64	8.36	2.
2012/4/30 11:30	W3	MF	832062	807907	15.3	1.000 1.000 7.650	30.58 30.64 30.69	6.68 6.67 6.71	89.64 90.09	1.8 0.6	30.64 30.69	8.36 8.32	
2012/4/30 11:30	W3	MF	832062	807907	15.3	1.000 1.000 7.650 7.650	30.58 30.64 30.69 30.72	6.68 6.67 6.71 6.64	89.64 90.09 89.19	1.8 0.6 0.9	30.64 30.69 30.72	8.36 8.32 8.33	
2012/4/30 11:30	W3	MF	832062	807907	15.3	1.000 1.000 7.650 7.650 14.300	30.58 30.64 30.69 30.72 29.92	6.68 6.67 6.71 6.64 6.48	89.64 90.09 89.19 86.94	1.8 0.6 0.9 1.2	30.64 30.69 30.72 29.92	8.36 8.32 8.33 8.46	2.
2012/4/30 11:30	W3	MF	832062	807907	15.3	1.000 1.000 7.650 7.650 14.300 14.300	30.58 30.64 30.69 30.72 29.92 29.91	6.68 6.67 6.71 6.64 6.48 6.27	89.64 90.09 89.19 86.94 84.06	1.8 0.6 0.9 1.2 1.2	30.64 30.69 30.72 29.92 29.91	8.36 8.32 8.33 8.46 8.42	2.
2012/4/30 11:30	W3	MF	832062	807907	15.3	1.000 1.000 7.650 7.650 14.300 14.300 1.000	30.58 30.64 30.69 30.72 29.92 29.91 30.62	6.68 6.67 6.71 6.64 6.48 6.27 6.86	89.64 90.09 89.19 86.94 84.06 92.12	1.8 0.6 0.9 1.2 1.2 2.1	30.64 30.69 30.72 29.92 29.91 30.62	8.36 8.32 8.33 8.46 8.42 8.40	2.
2012/4/30 11:30	W3	MF	832062	807907	15.3	1.000 1.000 7.650 7.650 14.300 14.300 1.000	30.58 30.64 30.69 30.72 29.92 29.91 30.62 30.66	6.68 6.67 6.71 6.64 6.48 6.27 6.86 6.84	89.64 90.09 89.19 86.94 84.06 92.12 91.94	1.8 0.6 0.9 1.2 1.2 2.1 2.0	30.64 30.69 30.72 29.92 29.91 30.62 30.66	8.36 8.32 8.33 8.46 8.42 8.40 8.39	2.
						1.000 1.000 7.650 7.650 14.300 14.300 1.000 1.000 8.700	30.58 30.64 30.69 30.72 29.92 29.91 30.62 30.66 30.85	6.68 6.67 6.71 6.64 6.48 6.27 6.86 6.84 6.85	89.64 90.09 89.19 86.94 84.06 92.12 91.94 90.63	1.8 0.6 0.9 1.2 1.2 2.1 2.0 1.8	30.64 30.69 30.72 29.92 29.91 30.62 30.66 30.85	8.36 8.32 8.33 8.46 8.42 8.40 8.39 8.35	1.
2012/4/30 11:30 2012/4/30 12:15	W3	MF	832062 833711	807907	15.3	1.000 1.000 7.650 7.650 14.300 14.300 1.000 1.000 8.700 8.700	30.58 30.64 30.69 30.72 29.92 29.91 30.62 30.66 30.85 30.85	6.68 6.67 6.71 6.64 6.48 6.27 6.86 6.84 6.85	89.64 90.09 89.19 86.94 84.06 92.12 91.94 90.63 90.41	1.8 0.6 0.9 1.2 1.2 2.1 2.0 1.8 2.0	30.64 30.69 30.72 29.92 29.91 30.62 30.66 30.85 30.85	8.36 8.32 8.33 8.46 8.42 8.40 8.39 8.35 8.35	1 3
						1.000 1.000 7.650 7.650 14.300 14.300 1.000 1.000 8.700	30.58 30.64 30.69 30.72 29.92 29.91 30.62 30.66 30.85	6.68 6.67 6.71 6.64 6.48 6.27 6.86 6.84 6.85	89.64 90.09 89.19 86.94 84.06 92.12 91.94 90.63	1.8 0.6 0.9 1.2 1.2 2.1 2.0 1.8	30.64 30.69 30.72 29.92 29.91 30.62 30.66 30.85	8.36 8.32 8.33 8.46 8.42 8.40 8.39 8.35	2 1 3
						1.000 1.000 7.650 7.650 14.300 14.300 1.000 1.000 8.700 8.700	30.58 30.64 30.69 30.72 29.92 29.91 30.62 30.66 30.85 30.85	6.68 6.67 6.71 6.64 6.48 6.27 6.86 6.84 6.85	89.64 90.09 89.19 86.94 84.06 92.12 91.94 90.63 90.41	1.8 0.6 0.9 1.2 1.2 2.1 2.0 1.8 2.0	30.64 30.69 30.72 29.92 29.91 30.62 30.66 30.85 30.85	8.36 8.32 8.33 8.46 8.42 8.40 8.39 8.35 8.35	2. 1. 3.
						1.000 1.000 7.650 7.650 14.300 14.300 1.000 1.000 8.700 8.700	30.58 30.64 30.69 30.72 29.92 29.91 30.62 30.66 30.85 30.85 30.37	6.68 6.67 6.71 6.64 6.48 6.27 6.86 6.84 6.85 6.77 6.45	89.64 90.09 89.19 86.94 84.06 92.12 91.94 90.63 90.41 86.40	1.8 0.6 0.9 1.2 1.2 2.1 2.0 1.8 2.0 1.4	30.64 30.69 30.72 29.92 29.91 30.62 30.66 30.85 30.85 30.37	8.36 8.32 8.33 8.46 8.42 8.40 8.39 8.35 8.35 8.46	2. 1. 3. 2. 3.
						1.000 1.000 7.650 7.650 14.300 14.300 1.000 1.000 8.700 8.700 16.400	30.58 30.64 30.69 30.72 29.92 29.91 30.62 30.66 30.85 30.85 30.37 30.36	6.68 6.67 6.71 6.64 6.48 6.27 6.86 6.84 6.85 6.77 6.45	89.64 90.09 89.19 86.94 84.06 92.12 91.94 90.63 90.41 86.40 85.86	1.8 0.6 0.9 1.2 1.2 2.1 2.0 1.8 2.0 1.4 1.3	30.64 30.69 30.72 29.92 29.91 30.62 30.66 30.85 30.85 30.37 30.36	8.36 8.32 8.33 8.46 8.42 8.40 8.39 8.35 8.35 8.46 8.43	2. 1. 3. 2. 3.
2012/4/30 12:15	C1	MF	833711	808159	17.4	1.000 1.000 7.650 7.650 14.300 14.300 1.000 1.000 8.700 8.700 16.400 1.000	30.58 30.64 30.69 30.72 29.92 29.91 30.62 30.66 30.85 30.85 30.37 30.36 30.23	6.68 6.67 6.71 6.64 6.48 6.27 6.86 6.84 6.85 6.77 6.45 6.40	89.64 90.09 89.19 86.94 84.06 92.12 91.94 90.63 90.41 86.40 85.86 89.91	1.8 0.6 0.9 1.2 1.2 2.1 2.0 1.8 2.0 1.4 1.3	30.64 30.69 30.72 29.92 29.91 30.62 30.66 30.85 30.85 30.37 30.36 30.23	8.36 8.32 8.33 8.46 8.42 8.40 8.39 8.35 8.35 8.46 8.43	2. 1. 3. 2. 3.
						1.000 1.000 7.650 7.650 14.300 1.000 1.000 8.700 8.700 16.400 1.000 1.000	30.58 30.64 30.69 30.72 29.92 29.91 30.62 30.66 30.85 30.37 30.36 30.23 30.23	6.68 6.67 6.71 6.64 6.27 6.86 6.84 6.85 6.77 6.45 6.40 6.69	89.64 90.09 89.19 86.94 84.06 92.12 91.94 90.63 90.41 86.40 85.86 89.91 90.09	1.8 0.6 0.9 1.2 1.2 2.1 2.0 1.8 2.0 1.4 1.3 1.5	30.64 30.69 30.72 29.92 29.91 30.62 30.66 30.85 30.85 30.37 30.36 30.23	8.36 8.32 8.33 8.46 8.42 8.40 8.39 8.35 8.35 8.46 8.43	2. 1. 3. 2. 3.
2012/4/30 12:15	C1	MF	833711	808159	17.4	1.000 1.000 7.650 7.650 14.300 1.000 1.000 8.700 8.700 16.400 1.000 1.000 1.000 7.550	30.58 30.64 30.69 30.72 29.91 30.62 30.66 30.85 30.85 30.37 30.36 30.23 30.23 30.23	6.68 6.67 6.71 6.64 6.48 6.27 6.86 6.84 6.85 6.77 6.45 6.40 6.69 6.70	89.64 90.09 89.19 86.94 84.06 92.12 91.94 90.63 90.41 86.40 85.86 89.91 90.09 89.46	1.8 0.6 0.9 1.2 2.1 2.0 1.8 2.0 1.4 1.3 1.5 1.5	30.64 30.69 30.72 29.92 29.91 30.62 30.66 30.85 30.85 30.37 30.36 30.23 30.23 30.23	8.36 8.32 8.33 8.46 8.42 8.40 8.39 8.35 8.35 8.46 8.43 8.43 8.43	2. 1. 3. 2. 3. 1.
2012/4/30 12:15	C1	MF	833711	808159	17.4	1.000 1.000 7.650 7.650 14.300 14.300 1.000 8.700 8.700 16.400 16.400 1.000 1.000 7.550 7.550 14.100	30.58 30.64 30.69 30.72 29.92 29.91 30.62 30.66 30.85 30.37 30.36 30.23 30.23 30.23 30.88 30.92	6.68 6.67 6.71 6.64 6.48 6.27 6.86 6.84 6.85 6.77 6.45 6.40 6.69 6.70 6.66 6.56	89.64 90.09 89.19 86.94 84.06 92.12 91.94 90.63 90.41 86.40 85.86 89.91 90.09 89.46 88.07 82.53	1.8 0.6 0.9 1.2 1.2 2.1 2.0 1.8 2.0 1.4 1.3 1.5 1.5 1.2 1.3 0.8	30.64 30.69 30.72 29.92 29.91 30.62 30.66 30.85 30.85 30.37 30.36 30.23 30.23 30.23 30.88 30.92	8.36 8.32 8.33 8.46 8.42 8.40 8.39 8.35 8.46 8.43 8.43 8.43 8.43 8.40 8.37 8.37	2. 1. 3. 2. 3.
2012/4/30 12:15	C1	MF	833711	808159	17.4	1.000 1.000 7.650 7.650 14.300 14.300 1.000 8.700 8.700 16.400 16.400 1.000 1.000 7.550 7.550 14.100 14.100	30.58 30.64 30.69 30.72 29.92 29.91 30.62 30.66 30.85 30.37 30.36 30.23 30.23 30.23 30.90 30.90	6.68 6.67 6.71 6.64 6.48 6.27 6.86 6.84 6.85 6.77 6.45 6.40 6.69 6.70 6.66 6.56 6.15	89.64 90.09 89.19 86.94 84.06 92.12 91.94 90.63 90.41 86.40 85.86 89.91 90.09 89.46 88.07 82.53 82.22	1.8 0.6 0.9 1.2 1.2 2.1 2.0 1.8 2.0 1.4 1.3 1.5 1.5 1.2 1.3 0.8	30.64 30.69 30.72 29.92 29.91 30.62 30.85 30.85 30.37 30.36 30.23 30.23 30.23 30.92 30.90	8.36 8.32 8.33 8.46 8.42 8.40 8.39 8.35 8.46 8.43 8.43 8.43 8.43 8.43 8.43 8.43 8.43	2. 1. 3. 2. 3. 1. <0
2012/4/30 12:15	C1	MF	833711	808159	17.4	1.000 1.000 7.650 7.650 14.300 14.300 1.000 8.700 8.700 16.400 1.000 1.000 7.550 7.550 14.100 1.000 1.000	30.58 30.64 30.69 30.72 29.91 30.62 30.66 30.85 30.37 30.36 30.23 30.23 30.23 30.90 30.90 30.90	6.68 6.67 6.71 6.64 6.48 6.27 6.86 6.84 6.85 6.77 6.45 6.40 6.69 6.70 6.66 6.56 6.15 6.13	89.64 90.09 89.19 86.94 84.06 92.12 91.94 90.63 90.41 86.40 85.86 89.91 90.09 89.46 88.07 82.53 82.22 90.72	1.8 0.6 0.9 1.2 1.2 2.1 2.0 1.8 2.0 1.4 1.3 1.5 1.5 1.5 1.2 1.3 0.8 1.1	30.64 30.69 30.72 29.92 29.91 30.62 30.85 30.85 30.37 30.36 30.23 30.23 30.23 30.90 30.90 30.90	8.36 8.32 8.33 8.46 8.42 8.40 8.39 8.35 8.46 8.43 8.43 8.40 8.37 8.37 8.36 8.35	2. 1. 3. 2. 3. 1. <0
2012/4/30 12:15 2012/4/30 11:15	C1 C2	MF	833711 831454	808159	17.4	1.000 1.000 7.650 7.650 14.300 1.000 1.000 8.700 8.700 16.400 1.000 1.000 7.550 7.550 14.100 1.000 1.000 1.000	30.58 30.64 30.69 30.72 29.92 29.91 30.62 30.66 30.85 30.37 30.36 30.23 30.23 30.23 30.90 30.90 30.15 30.24	6.68 6.67 6.71 6.64 6.27 6.86 6.84 6.85 6.77 6.45 6.69 6.70 6.66 6.56 6.15 6.13	89.64 90.09 89.19 86.94 84.06 92.12 91.94 90.63 90.41 86.40 85.86 89.91 90.09 89.46 88.07 82.53 82.22 90.72 90.99	1.8 0.6 0.9 1.2 1.2 2.1 2.0 1.8 2.0 1.4 1.3 1.5 1.5 1.2 1.3 0.8 1.1	30.64 30.69 30.72 29.92 29.91 30.62 30.85 30.85 30.37 30.36 30.23 30.23 30.88 30.92 30.90 30.90 30.15	8.36 8.32 8.33 8.46 8.42 8.40 8.39 8.35 8.46 8.43 8.43 8.40 8.37 8.37 8.36 8.35 8.31	2. 2. 1. 1. 3. 3. 2. 3. 1. 1
2012/4/30 12:15	C1	MF	833711	808159	17.4	1.000 1.000 7.650 7.650 14.300 1.000 1.000 8.700 8.700 16.400 1.000 1.000 7.550 7.550 14.100 1.000	30.58 30.64 30.69 30.72 29.91 30.62 30.66 30.85 30.85 30.37 30.23 30.23 30.23 30.90 30.90 30.90 30.15 30.24	6.68 6.67 6.71 6.64 6.48 6.27 6.86 6.84 6.85 6.77 6.45 6.40 6.69 6.70 6.66 6.56 6.15 6.13 6.87 6.81	89.64 90.09 89.19 86.94 84.06 92.12 91.94 90.63 90.41 86.40 85.86 89.91 90.09 89.46 88.07 82.53 82.22 90.72 90.99 88.20	1.8 0.6 0.9 1.2 2.1 2.0 1.8 2.0 1.4 1.3 1.5 1.5 1.2 1.3 0.8 1.1 1.8	30.64 30.69 30.72 29.92 29.91 30.62 30.66 30.85 30.85 30.23 30.23 30.23 30.23 30.92 30.90 30.90 30.90 30.94 30.76	8.36 8.32 8.33 8.46 8.42 8.40 8.39 8.35 8.46 8.43 8.43 8.40 8.37 8.36 8.35 8.36 8.31 8.39	2. 1. 3. 2. 3. 1. 1. <0
2012/4/30 12:15 2012/4/30 11:15	C1 C2	MF	833711 831454	808159	17.4	1.000 1.000 7.650 7.650 14.300 1.000 1.000 8.700 8.700 16.400 1.000 1.000 7.550 7.550 14.100 1.000 1.000 1.000	30.58 30.64 30.69 30.72 29.92 29.91 30.62 30.66 30.85 30.37 30.36 30.23 30.23 30.23 30.90 30.90 30.15 30.24	6.68 6.67 6.71 6.64 6.27 6.86 6.84 6.85 6.77 6.45 6.69 6.70 6.66 6.56 6.15 6.13	89.64 90.09 89.19 86.94 84.06 92.12 91.94 90.63 90.41 86.40 85.86 89.91 90.09 89.46 88.07 82.53 82.22 90.72 90.99	1.8 0.6 0.9 1.2 1.2 2.1 2.0 1.8 2.0 1.4 1.3 1.5 1.5 1.2 1.3 0.8 1.1	30.64 30.69 30.72 29.92 29.91 30.62 30.85 30.85 30.37 30.36 30.23 30.23 30.88 30.92 30.90 30.90 30.15	8.36 8.32 8.33 8.46 8.42 8.40 8.39 8.35 8.46 8.43 8.43 8.40 8.37 8.37 8.36 8.35 8.31	2. 1. 3. 2. 3. 1. <0

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 2-May-12

Date / Time	Location	Tide*	Co-oro	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	Tiuc	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg/l
2012/5/2 9:45	W1	ME	832960	807713	2.1	1.050	25.50	5.65	79.5	0.6	25.60	8.27	0.8
2012/3/2 7.13	""1	WILL	032700	007713	2.1	1.050	25.50	5.45	78.8	0.7	25.67	8.27	0.0
						1.000	25.20	5.59	78.7	0.9	26.19	8.26	0.5
						1.000	25.20	5.56	78.4	0.8	26.13	8.25	
2012/5/2 9:35	W2	ME	832674	807980	13.3	6.650	24.10	5.46	76.6	0.8	28.86	8.28	0.6
						6.650 12.300	24.10 23.60	5.44 5.47	76.4 76.7	1.1	28.90 30.12	8.28 8.29	
						12.300	23.60	5.36	75.2	1.5	30.12	8.29	5.2
						1.000	25.20	5.63	79.4	0.7	26.52	8.29	
						1.000	25.10	5.60	79.4	0.8	26.49	8.21	0.5
						6.550	24.20	5.47	77.0	0.8	28.97	8.23	
2012/5/2 9:20	W3	ME	832046	807889	13.1	6.550	24.10	5.46	76.8	0.9	29.04	8.22	0.5
						12.100	23.70	5.36	75.0	1.0	29.62	8.25	
						12.100	23.70	5.20	72.8	1.1	29.90	8.23	2.3
						1.000	25.70	4.96	69.4	0.8	23.49	8.30	
						1.000	25.70	4.94	69.2	0.9	23.43	8.29	0.5
						7.600	24.50	4.86	68.2	0.7	27.62	8.27	
2012/5/2 10:05	C1	ME	833724	808159	15.2	7.600	24.50	4.86	68.1	0.8	27.46	8.27	0.7
						14.200	23.70	4.89	68.6	0.9	30.02	8.30	0.5
						14.200	23.70	4.77	66.9	1.2	30.05	8.29	0.5
						1.000	24.40	5.65	79.5	0.6	28.24	8.15	0.5
						1.000	24.40	5.57	78.3	0.7	28.25	8.16	0.5
						6.600	24.10	5.69	80.0	0.7	29.28	8.18	
2012/5/2 9:05	C2	ME	831454	807725	13.2	6.600	24.00	5.58	78.4	0.8	29.24	8.18	0.5
						12.200	23.80	5.53	77.5	0.8	29,44	8.17	0.5
						12.200	23.80	5.33	74.6	1.0	29.45	8.17	0.5
						1.000	24.50	4.25	59.6	0.7	27.52	8.25	
						1.000	24.50	4.20	59.0	0.9	27.41	8.25	0.5
						7.550	23.60	3.99	56.0	0.8	30.14	8.28	
2012/5/2 10:25	C3	ME	832227	808835	15.1	7.550	23.60	3.75	52.6	1.2	30.14	8.28	1.6
						14.100	23.60	3.72	52.1	1.3	30.15	8.28	4.0
						14.100	23.60	3.68	51.7	1.5	30.15	8.27	4.0
2012/5/2 15:00	W1	MF	832970	807741	2.7	1.350	25.20	5.45	76.5	0.7	26.21	8.34	0.5
2012/3/2 13:00	W I	IVIF	832970	807741	2.7	1.350	25.20	5.55	77.2	0.7	26.21	8.33	0.3
						1.000	24.90	5.16	72.6	0.6	27.10	8.29	0.5
						1.000	24.90	5.04	70.8	0.6	27.05	8.29	0.5
2012/5/2 14:50	W2	MF	832660	807986	15.1	7.550	23.50	4.80	67.8	0.6	30.82	8.29	0.7
2012/3/2 14.30	W Z	IVII	032000	007900	13.1	7.550	23.20	4.80	67.2	0.7	31.01	8.31	0.7
						14.100	23.10	4.32	60.6	0.8	30.97	8.28	3.9
						14.100	23.10	4.32	60.0	0.8	30.97	8.26	3.9
						1.000	24.10	5.90	82.80	0.8	29.47	8.26	0.8
						1.000	24.00	5.72	80.55	0.9	29.57	8.26	0.0
2012/5/2 14:35	W3	MF	832049	807902	15.3	7.650	23.20	5.54	77.85	0.7	31.03	8.29	3.2
2012/3/2 14.33	""3	1411	032017	001702	13.3	7.650	23.20	5.45	76.50	0.8	31.03	8.29	3.2
						14.300	23.20	5.22	72.45	0.9	30.69	8.24	5.1
						14.300	23.20	5.09	71.10	1.1	30.76	8.26	5.1
						1.000	24.50	5.30	74.50	0.9	27.84	8.34	0.5
						1.000	24.50	5.20	73.50	1.0	27.81	8.33	0.5
2012/5/2 15:20	C1	MF	833711	808197	16.7	8.350	23.20	5.10	71.00	0.7	30.99	8.33	1.6
						8.350	23.20	5.00	70.00	1.0	30.99	8.32	
						15.700	23.20	4.70	65.50	1.1	31.02	8.34	0.6
						15.700	23.20	4.50	63.00	1.3	31.02	8.33	
	1					1.000	25.80	4.62	65.7	0.6	26.35	8.13	0.5
						1.000	25.30	4.62	65.7	0.8	27.18	8.12	
2012/5/2 14:20	C2	MF	831457	807761	15.1	7.550	23.30	4.20	59.4	0.7	30.87	8.19	3.1
						7.550	23.30	4.20	58.8	0.7	30.79	8.18	
	1					14.100	23.30	4.14	57.6	0.8	30.80	8.18	2.9
	1					14.100	23.30	4.14	57.6	0.9	30.81	8.17	
						1.000	24.00	4.81	67.0	0.7	29.15	8.30	0.5
						1.000	24.00	4.75	67.0	0.9	29.18	8.29	-
2012/5/2 15:40	C3	MF	832225	808857	16.5	8.250	23.30	4.26	60.0	0.9	30.92	8.27	3.2
						8.250	23.20	4.26	60.0	1.0	30.99	8.29	
						15.500	23.10	4.20	58.8	1.0	31.15	8.31	0.6
						15.500	23.10	4.14	58.2	1.0	31.15	8.30	

MF- Mid Flood Tide ME- Mid Ebb tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 5-May-12

Date / Time	Location	Tide*	Co-on	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11de*	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg
2012/5/5 11:15	W1	ME	832960	807737	2.2	1.100	25.70	5.55	77.8	0.7	24.91	8.57	1.7
2012/3/3 11.13	** 1	IVIL	032700	001131	2.2	1.100	25.70	5.58	78.1	0.8	24.94	8.54	1.7
						1.000	25.70	5.58	78.7	0.7	25.03	8.55	1.4
						1.000	25.70	5.61	79.2	0.9	25.05	8.53	1
2012/5/5 11:05	W2	ME	832679	807973	13.2	6.600	23.60	5.24	73.6	0.9	30.38	8.31	1.6
2012/3/3 11.03	VV Z	IVIL	032019	001913	13.2	6.600	23.50	4.97	69.7	1.2	30.31	8.29	1.0
						12.200	23.30	4.59	64.3	1.3	30.81	8.26	0.5
						12.200	23.30	4.43	62.0	1.4	30.89	8.14	0
						1.000	26.00	6.62	93.8	0.7	24.84	8.56	0.7
						1.000	25.90	6.60	93.6	0.7	25.10	8.52	0.
2012/5/5 10:50	W3	ME	832049	807889	13.1	6.550	23.90	5.83	81.9	0.8	29.64	8.30	0.9
2012/3/3 10.30	W 3	IVIE	032049	007009	13.1	6.550	23.80	5.72	80.2	0.9	29.65	8.29	0.
						12.100	23.40	4.27	59.5	1.1	29.90	8.24	0
						12.100	23.40	4.01	55.9	1.3	29.89	8.21	0.:
						1.000	25.40	4.51	63.6	0.8	25.63	8.53	
						1.000	25.40	4.49	63.3	0.7	25.70	8.51	1.
2012/5/5 11 25	- 01) ATT	02271	000104	15.0	7.600	24.20	4.36	61.2	0.6	28.82	8.38	,
2012/5/5 11:35	C1	ME	833714	808184	15.2	7.600	24.40	4.33	60.9	0.8	28.27	8.39	1.
						14.200	23.30	4.14	58.1	0.9	31.05	8.31	_
						14.200	23.30	3.99	56.0	1.2	31.07	8.30	0.
						1.000	26.00	6.92	98.1	0.7	24.71	8.38	
						1.000	26.00	6.95	98.5	0.8	24.73	8.39	0.
						6.600	23.70	6.15	86.3	0.7	30.05	8.17	
2012/5/5 10:35	C2	ME	831472	807763	13.2	6.600	23.60	5.68	79.7	0.8	30.16	8.13	0.
						12,200	23.60	5.39	75.5	0.8	29.95	8.07	
						12.200	23.60	4.71	66.0	1.0	29.99	8.06	0.
						1.000	25.10	5.46	77.0	0.7	26.55	8.49	
						1.000	25.10	5.34	75.3	0.7	26.66	8.46	1.
						7.650	23.80	5.15	72.3	0.7	29.86	8.33	
2012/5/5 11:55	C3	ME	832204	808871	15.3				69.0				0.
						7.650	24.00	4.91	59.4	1.0	29.07	8.33	
						14.300	23.30	4.26 4.08	57.0	1.2	30.18	8.27	0.
						14.300	23.30	4.06	37.0	1.1	30.16	8.27	
2012/5/5 15 10	22.11) (T)	000071	007745	2.0	1.400	25.50	5.76	81.6	0.6	25.96	8.52	
2012/5/5 17:40	W1	MF	832971	807745	2.8	1.400	25.50	5.61	79.2	0.7	25.98	8.51	1.
						1.000	25.10	6.21	87.6	0.7	26.78	8.44	
						1.000	25.00	6.15	86.7	0.7	26.91	8.43	1.
						7.650	23.60	5.97	83.7	0.6	30.48	8.34	
2012/5/5 17:30	W2	MF	832666	807962	15.3	7.650	23.50	5.88	82.5	0.8	30.43	8.30	1.
						14.300	23.10	5.85	81.9	0.8	31.55	8.29	
						14.300	23.10	5.85	81.9	0.9	31.44	8.28	1.
						1.000	24.20	6.50	91.5	0.7	29.03	8.35	
						1.000	24.10	6.45	90.5	0.9	29.17	8.32	1.
						7,550	23.80	6.38	89.5	0.9	29.76	8.31	
2012/5/5 17:15	W3	MF	832055	807895	15.1	7.550	23.80	6.30	88.5	0.8	29.70	8.30	1.
						14.100	23.80	6.20	86.8	0.9	29.82	8.28	-
													2.
	+					14.100	23.70	6.18	86.5	0.9	29.86	8.26	-
						1.000	25.30	5.34	75.3	0.8	26.10	8.52	1.
						1.000	25.20	5.19	73.2	0.8	26.21	8.48	
2012/5/5 18:00	C1	MF	833712	808175	17.1	8.550	23.40	4.89	68.7	0.8	31.05	8.32	1.
						8.550	23.40	4.83	67.5	0.7	30.83	8.30	
						16.100	23.10	4.77	66.9	1.0	31.37	8.27	1.
	4					16.100	23.10	4.74	66.0	1.0	31.43	8.25	_
						1.000	25.00	4.74	66.9	0.6	26.98	8.46	1.
						1.000	24.90	4.71	66.6	0.7	27.08	8.45	
2012/5/5 17:00	C2	MF	831469	807735	15.1	7.550	24.20	4.53	63.9	0.8	28.86	8.31	1.
	C2	1.11	031 10)	00.755	13.1	7.550	24.20	4.47	62.7	0.8	28.89	8.29	
						14.100	24.10	4.32	60.9	0.8	28.90	8.28	1.
						14.100	24.10	4.29	60.3	0.9	28.90	8.27	1.
						1.000	25.50	4.50	63.6	0.7	25.75	8.47	2.
					l	1.000	25.50	4.50	63.6	0.6	25.73	8.46	۷.
						1.000							_
2012/5/5 19-20	C2	ME	832225	202227	17.2	8.650	25.20	4.53	63.9	0.9	26.14	8.43	1.
2012/5/5 18:20	C3	MF	832225	808887	17.3		25.20 25.20	4.53 4.53	63.9 63.9	0.9 0.9	26.13	8.43 8.42	1.
2012/5/5 18:20	C3	MF	832225	808887	17.3	8.650	25.20						2.

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 7-May-12

Date / Time	Location	Tide*	Co-or	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	Tiue.	East	North	m	m	${\mathfrak C}$	mg/L	%	NTU	ppt	unit	mg/
2012/5/7 13:45	W1	ME	832974	807725	2.3	1.150	25.50	5.46	76.5	0.6	26.98	8.62	1.7
2012/3// 15.43	VV I	IVIL	032974	001123	2.3	1.150	25.50	5.55	79.5	0.7	26.97	8.57	1./
						1.000	25.40	5.54	79.1	0.7	27.05	8.58	0.5
						1.000	25.40	5.60	79.5	0.8	27.06	8.54	0.5
2012/5/7 13:35	W2	ME	832652	807988	13.3	6.650	25.30	4.95	70.1	0.7	27.10	8.50	1.4
2012/3// 15.55	VV Z	IVIL	032032	007900	15.5	6.650	25.30	4.75	68.4	0.8	27.10	8.48	1.5
						12.300	24.70	4.50	64.5	0.9	28.54	8.45	1.0
						12.300	24.70	4.40	62.5	1.0	28.62	8.44	1.
						1.000	24.70	6.05	86.9	0.7	28.46	8.53	1.9
						1.000	24.60	6.05	85.8	0.7	28.62	8.47	1.
2012/5/7 13:20	W3	ME	832051	807912	13.2	6.600	24.20	5.83	82.5	0.8	29.51	8.37	1.
2012/3// 13.20	****	IVIL	032031	007712	13.2	6.600	24.20	5.72	81.4	0.9	29.60	8.36	1.
						12.200	24.10	5.17	73.7	1.1	29.61	8.33	0.:
						12.200	24.10	5.25	75.1	1.2	29.48	8.30	0
						1.000	25.40	6.30	90.1	0.7	27.07	8.49	1.
						1.000	25.40	6.30	89.8	0.9	27.03	8.48	1.
2012/5/7 14:05	C1	ME	833707	808159	15.3	7.650	25.30	6.10	87.2	0.9	27.17	8.45	1.:
2012/3// 14.03	CI	IVIL	033707	000139	13.3	7.650	25.20	6.15	85.5	1.0	27.35	8.45	1
						14.300	25.20	5.90	84.2	0.9	27.35	8.44	1.
						14.300	25.20	5.90	83.8	1.0	27.35	8.43	1.
						1.000	24.60	5.06	71.5	0.6	28.49	8.68	0.
						1.000	24.60	4.95	69.3	0.7	28.51	8.63	0.
2012/5/7 12:05	C2	ME	021461	807750	12.2	6.650	23.80	4.62	66.1	0.7	30.47	8.48	1.
2012/5/7 13:05	C2	ME	831461	807750	13.3	6.650	23.80	4.51	63.8	0.7	30.49	8.46	1.
						12.300	23.80	4.48	62.7	0.9	30.23	8.42	1.
						12.300	23.80	4.40	61.6	1.0	30.26	8.40	1.
						1.000	25.50	4.41	62.7	0.8	27.00	8.43	0
						1.000	25.50	4.51	62.7	0.9	27.04	8.43	0.
				000075	45.5	7.750	25.30	4.51	63.8	0.9	27.20	8.43	
2012/5/7 14:25	C3	ME	832222	808875	15.5	7.750	25.30	4.40	61.6	1.0	27.20	8.41	2.
						14.500	25.30	4.29	60.5	1.0	27.20	8.42	
						14.500	25.30	4.29	60.5	1.2	27.19	8.42	2.
						1 11500	23.50	1127	00.5	112	2711)	0.12	
						1.400	24.70	5.85	80.2	0.7	27.86	8.53	
2012/5/7 8:45	W1	MF	832969	807744	2.8	1.400	24.70	5.51	78.9	0.8	27.98	8.48	0.
						1.400	24.70	5.47	77.4	0.7	27.69	8.48	
						1.000	24.80	5.15	72.7	0.7	27.69	8.46	0.:
							24.50	4.91		0.7	28.74		
2012/5/7 8:35	W2	MF	832654	807963	15.5	7.750		_	69.6 67.7			8.42	0.
						7.750	24.40	4.80		0.8	28.97	8.41	
						14.500	24.00	4.58	64.0	0.9	28.83	8.25	0.
						14.500	23.90	4.35	60.6	1.2	28.78	8.16	
						1.000	24.80	6.36	89.7	0.6	27.43	8.57	1.
						1.000	24.70	6.15	86.4	0.7	27.67	8.48	
2012/5/7 8:20	W3	MF	832053	807900	15.3	7.650	24.30	5.55	78.3	0.7	29.18	8.39	1.
						7.650	24.20	5.34	75.3	0.8	29.32	8.37	
						14.300	24.00	4.98	69.3	0.9	27.60	8.20	0.
	-					14.300	24.00	4.92	68.4	1.2	27.62	8.19	J.
						1.000	24.70	4.32	60.6	0.8	27.99	8.47	0.
						1.000	24.70	4.26	60.0	0.8	28.00	8.45	J.
2012/5/7 9:05	C1	MF	833714	808175	17.1	8.550	24.60	4.08	57.6	0.9	28.18	8.43	0.
2012/0/17:00	Ü.	1.11	033711	000175	1/.1	8.550	24.60	4.02	57.0	1.1	28.18	8.42	<u>`</u> .
						16.100	24.30	4.48	63.0	1.1	29.23	8.38	1.
						16.100	24.20	4.41	62.3	1.0	29.27	8.38	1.
						1.000	25.00	5.95	83.7	0.7	26.59	8.33	0.
						1.000	25.00	5.81	81.6	0.7	26.58	8.32	0.
	1	MF	831453	807754	15.3	7.650	24.90	5.43	76.6	0.8	27.17	8.30	0.
2012/5/7 8·05	Co	1411.	051455	007734	13.3	7.650	24.80	5.31	74.8	0.8	27.24	8.28	0.
2012/5/7 8:05	C2					14.300	24.40	4.96	69.3	0.8	27.06	8.17	0.
2012/5/7 8:05	C2					14.300	24.40	4.77	66.6	1.0	27.08	8.16	0.
2012/5/7 8:05	C2					14.500				0.5	25.05		ı — — —
2012/5/7 8:05	C2					1.000	24.70	4.35	60.8	0.7	27.95	8.39	Λ.
2012/5/7 8:05	C2						24.70 24.70	4.35 4.28	60.8	0.7	27.95	8.39 8.38	0.:
		мг	922224	000070	167	1.000							
2012/5/7 8:05 2012/5/7 9:25	C2 C3	MF	832221	808879	16.7	1.000 1.000	24.70	4.28	60.0	0.7	27.95	8.38	0.5
		MF	832221	808879	16.7	1.000 1.000 8.350	24.70 24.30	4.28 4.13	60.0 58.5	0.7 0.8	27.95 29.14	8.38 8.37	

MF- Mid Flood Tide ME- Mid Ebb tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 10-Apr-12

Date / Time	Location	Tide*	Co-or	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	Tiuc	East	North	m	m	${\mathfrak C}$	mg/L	%	NTU	ppt	unit	mg
2012/5/10 15:25	W1	ME	832975	807741	2.3	1.150	26.06	7.81	114.2	0.7	30.31	8.24	1.0
2012/3/10 13.23	VV I	IVIL	032973	007741	2.3	1.150	26.07	7.82	114.5	0.7	30.33	8.24	1.0
						1.000	26.09	8.91	130.6	0.8	30.38	8.18	0.5
						1.000	26.12	7.63	111.9	0.8	30.36	8.17	0.5
2012/5/10 15:15	W2	ME	832661	807974	13.4	6.700	25.86	7.54	110.7	1.2	31.35	8.12	0.9
2012/3/10 13.13	11 2	IVIL	032001	001714	13.7	6.700	25.82	7.78	114.4	0.9	31.69	8.10	0.7
						12.400	24.46	6.88	100.5	0.8	34.66	8.00	0.8
						12.400	24.17	7.02	102.3	2.8	35.22	7.93	0.0
						1.000	26.04	7.00	103.0	0.8	31.16	8.12	0.9
						1.000	26.07	6.75	99.2	0.8	31.12	8.10	0.7
2012/5/10 15:00	W3	ME	832039	807876	13.1	6.550	25.85	6.92	102.1	1.1	32.31	8.05	1.1
2012/3/10 13:00	***3	IVIL	032037	007070	13.1	6.550	25.15	6.32	92.5	0.8	33.09	8.01	1
						12.100	24.99	8.02	117.5	2.1	33.65	7.99	1.6
						12.100	24.53	7.80	114.0	6.0	34.44	7.92	1.0
						1.000	25.88	7.64	111.6	1.0	30.94	8.22	1.5
						1.000	25.73	7.42	108.4	1.0	31.08	8.20	1.,
2012/5/10 15:45	C1	ME	833711	808163	15.1	7.550	25.53	6.43	94.2	0.8	31.44	8.15	1.0
2012/10/10/13/43	CI	14117	033711	000103	13.1	7.550	25.52	5.59	81.7	2.5	31.46	8.15	1.1
						14.100	24.76	7.06	103.0	0.6	33.86	8.07	1.
						14.100	24.72	7.10	103.6	0.6	33.91	8.07	1.
						1.000	25.09	7.86	112.2	0.6	31.92	8.13	0.
						1.000	25.07	7.64	111.0	0.6	31.92	8.09	0.
2012/5/10 14 45	GO.	ME	021440	007750	10.0	6.650	24.72	7.56	109.7	0.6	32.84	7.98	0.
2012/5/10 14:45	C2	ME	831449	807753	13.3	6.650	24.37	7.35	105.5	1.3	33.56	7.90	0.
						12.300	24.22	7.34	106.4	1.5	34.08	7.80	2
						12.300	24.20	7.39	107.2	1.6	34.21	7.76	3.
						1.000	25.59	7.43	108.6	0.8	31.45	8.12	0
						1.000	25.61	7.81	114.2	0.9	31.33	8.13	0.
						7.550	24.74	6.87	100.5	0.7	34.06	8.07	
2012/5/10 16:05	C3	ME	832231	808874	15.1	7.550	24.64	7.18	104.8	0.9	34.14	8.06	2.
						14.100	23.52	6.22	90.4	4.6	36.59	7.92	
						14.100	23.46	5.40	78.3	4.5	36.62	7.88	1.
						111100	23110	3.10	70.5	115	30.02	7.00	
						1.350	25.68	7.70	110.60	0.2	28.19	8.03	
2012/5/10 8:45	W1	MF	832969	807702	2.7	1.350	25.66	7.70	108.43	0.2	28.21	8.03	1.
						1.000	25.26	7.11	108.43	0.2	29.60	8.10	
						1.000	25.25	7.11	102.32	0.8	29.51	8.07	1.
2012/5/10 8:35	W2	MF	832674	807989	15.4	7.700	24.84	6.91	100.32	1.6	32.49	7.99	1.
						7.700	24.60	6.75	97.76	1.2	32.76	7.97	
						14.400	23.24	6.02	86.64	2.2	35.86	7.82	0.
						14.400	23.22	6.20	89.10	2.2	35.84	7.79	
						1.000	25.38	7.69	110.70	0.4	29.37	8.05	0.
						1.000	25.36	7.73	111.24	0.6	29.40	8.04	
2012/5/10 8:20	W3	MF	832049	807897	15.1	7.550	24.48	7.36	106.47	1.5	32.96	7.97	0.
						7.550	24.48	7.08	102.51	1.3	32.94	7.97	<u> </u>
						14.100	23.66	6.93	99.90	2.2	34.79	7.87	2.
						14.100	23.67	6.61	95.40	2.3	34.82	7.86	
						1.000	25.66	6.88	98.95	0.4	28.46	8.02	0.
						1.000	25.63	6.20	89.10	0.4	28.56	7.99	
2012/5/10 9:05	C1	MF	833697	808186	16.7	8.350	25.00	6.13	88.65	0.3	31.29	7.96	1.
2012/0/10 7.00	C1	1111	033071	000100	10.7	8.350	24.98	6.02	86.95	0.7	31.34	7.95	1.
						15.700	24.68	6.06	87.95	0.1	33.03	7.91	0.
						15.700	24.70	6.11	88.65	0.4	32.91	7.91	0.
						1.000	25.42	7.78	112.00	1.3	29.43	8.07	1.
						1.000	25.40	7.82	112.70	0.8	29.41	8.08	1.
	C2	MF	831477	807749	15.5	7.750	24.48	7.78	112.50	3.5	33.00	8.00	0.
2012/5/10 8:05	CZ	IVIT	651477	007749	13.3	7.750	24.36	7.27	105.10	5.0	33.15	8.00	0.
2012/5/10 8:05						14.500	24.31	6.58	94.90	6.0	33.03	7.93	
2012/5/10 8:05							24.31	6.52	94.00	6.5	32.87	7.91	2.
2012/5/10 8:05						14.500							
2012/5/10 8:05						1.000	25.02	6.74	97.45	0.9	31.36	7.93	4
2012/5/10 8:05							25.02 25.04	7.01	97.45 101.40	0.9	31.39	7.93	1.
		1	020245	000070	17.0	1.000							1.
2012/5/10 8:05	C3	MF	832215	808879	17.3	1.000 1.000	25.04	7.01	101.40	0.2 0.4	31.39	7.94	0.
	C3	MF	832215	808879	17.3	1.000 1.000 8.650	25.04 24.58	7.01 6.82	101.40 99.00	0.2	31.39 33.46	7.94 7.92	

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 12-Apr-12

Date / Time	Location	Tide*	Co-ore	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11 de *	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg
2012/5/12 17:40	W1	ME	832962	807741	2.2	1.100	25.80	7.13	103.5	0.7	30.85	8.24	0.5
2012/3/12 17.40	*** 1	IVIL	032702	007741	2.2	1.100	25.82	7.29	105.8	0.7	30.89	8.24	0
						1.000	25.97	7.22	104.8	0.4	30.65	8.21	0.9
						1.000	25.92	7.02	101.8	0.6	30.50	8.20	0.,
2012/5/12 17:30	W2	ME	832661	807987	13.3	6.650	25.74	6.82	98.9	0.8	30.80	8.17	0.7
2012/3/12 17.30	*** 2	IVIL	032001	001701	15.5	6.650	25.74	6.70	97.2	0.6	30.90	8.17	0.7
						12.300	24.99	6.38	92.6	2.8	31.00	8.04	2.3
						12.300	25.08	5.56	80.6	1.9	31.22	8.05	۷.,
						1.000	25.88	6.09	88.5	1.3	30.66	8.12	1.1
						1.000	25.86	5.77	83.8	1.3	30.54	8.12	1
2012/5/12 17:15	W3	ME	832048	807879	13.1	6.550	25.37	5.67	82.2	0.8	30.99	8.02	0.5
2012/3/12 17.13	*** 5	IVIL	032040	007079	13.1	6.550	25.31	5.55	80.6	0.7	31.00	8.02	0
						12.100	24.59	4.00	58.1	1.5	31.22	7.83	1.3
						12.100	24.51	4.09	59.4	2.7	31.60	7.81	1.3
						1.000	26.04	7.14	103.7	1.4	30.50	8.30	1.1
						1.000	25.94	7.43	107.8	0.3	30.65	8.28	1.1
2012/5/12 18:05	C1	ME	833705	808198	15.7	7.850	25.41	6.84	99.3	0.9	30.88	8.22	1.8
2012/3/12 10.03	CI	IVIE	655705	000190	13.7	7.850	25.45	6.67	96.8	0.4	30.94	8.21	1.0
						14.700	25.11	5.83	84.6	0.5	31.56	8.16	0
						14.700	25.26	5.46	79.3	3.4	31.50	8.17	0.:
						1.000	26.38	5.91	85.7	0.3	30.50	7.81	1.
						1.000	26.42	5.70	82.7	0.6	30.60	7.79	1.
2012/5/12 15 00	72		004.450	0000016	400	6.650	25.35	5.89	85.5	0.3	31.22	7.56	
2012/5/12 17:00	C2	ME	831479	807746	13.3	6.650	25.35	5.71	82.9	0.4	31.46	7.55	0.
						12,300	24.85	5.05	70.2	1.4	32.10	7.56	
						12.300	24.78	5.12	71.3	1.8	31.22	7.55	0.
						1.000	25.56	5.87	85.2	0.8	30.40	8.22	
						1.000	25.56	5.89	85.5	0.6	30.50	8.22	1.
					45.0	7.650	25.28	5.71	82.9	0.4	31.20	8.18	
2012/5/12 18:25	C3	ME	832213	808874	15.3	7.650	25.29	5.66	82.1	0.6	31.00	8.18	0.
						14.300	25.09	5.37	77.9	0.5	31.50	8.14	
						14.300	25.10	5.28	76.6	0.3	31.66	8.14	1.0
						14.500	25.10	5.20	70.0	0.5	31.00	0.17	
						1.350	25.42	6.84	99.3	3.5	30.69	8.28	
2012/5/12 10:40	W1	MF	832969	807754	2.7	1.350	25.42	6.84	99.3	3.5	30.69	8.28	0.
	-												
						1.000	25.45	7.04	102.0	0.5	30.56	8.26	0.
						1.000	25.44	6.66	96.6	0.9	30.56	8.25	
2012/5/12 10:30	W2	MF	832681	807971	15.3	7.650	24.87	6.22	90.4	0.6	32.51	8.18	1.
						7.650	24.87	6.22	90.4	0.6	32.51	8.18	
						14.300	23.91	5.96	86.3	1.4	34.71	8.07	1.
						14.300	23.59	5.33	76.7	1.4	34.96	8.05	
						1.000	25.42	5.57	80.7	0.9	30.38	8.12	1.
						1.000	25.42	5.61	81.2	0.5	30.36	8.13	
2012/5/12 10:15	W3	MF	832053	807891	15.1	7.550	25.33	5.54	80.3	0.4	30.60	8.12	1.
2012/1/12 10:13	","	1111	032033	007071	1.7.1	7.550	25.30	5.43	78.6	0.3	30.64	8.11	1.
								1.00	66.7	1.2	32.76	7.96	0.
						14.100	24.48	4.62		1.1	32.74	7.96	0.
						14.100	24.51	4.49	65.0				0.
						14.100 1.000	24.51 25.47	4.49 6.38	92.6	0.4	32.10	8.26	. U.
						14.100 1.000 1.000	24.51 25.47 25.50	4.49 6.38 5.71	92.6 82.8	0.4 0.7	32.10 32.20	8.26	
2012/5/12 11:05	C1	ME	932717	202170	17.1	14.100 1.000	24.51 25.47	4.49 6.38	92.6	0.4	32.10		0
2012/5/12 11:05	C1	MF	833717	808179	17.1	14.100 1.000 1.000	24.51 25.47 25.50	4.49 6.38 5.71	92.6 82.8	0.4 0.7	32.10 32.20	8.26	0.
2012/5/12 11:05	C1	MF	833717	808179	17.1	14.100 1.000 1.000 8.550	24.51 25.47 25.50 25.32	4.49 6.38 5.71 5.46	92.6 82.8 79.2	0.4 0.7 0.7	32.10 32.20 32.51	8.26 8.24	
2012/5/12 11:05	C1	MF	833717	808179	17.1	14.100 1.000 1.000 8.550 8.550	24.51 25.47 25.50 25.32 25.34	4.49 6.38 5.71 5.46 5.38	92.6 82.8 79.2 78.1	0.4 0.7 0.7 1.2	32.10 32.20 32.51 32.54	8.26 8.24 8.24	
2012/5/12 11:05	Cl	MF	833717	808179	17.1	14.100 1.000 1.000 8.550 8.550 16.100	24.51 25.47 25.50 25.32 25.34 24.95	4.49 6.38 5.71 5.46 5.38 5.13	92.6 82.8 79.2 78.1 74.5	0.4 0.7 0.7 1.2 0.7	32.10 32.20 32.51 32.54 32.20	8.26 8.24 8.24 8.21	0.
2012/5/12 11:05	C1	MF	833717	808179	17.1	14.100 1.000 1.000 8.550 8.550 16.100 16.100	24.51 25.47 25.50 25.32 25.34 24.95 25.00	4.49 6.38 5.71 5.46 5.38 5.13 5.09	92.6 82.8 79.2 78.1 74.5 73.9	0.4 0.7 0.7 1.2 0.7 0.7	32.10 32.20 32.51 32.54 32.20 32.10	8.26 8.24 8.24 8.21 8.21	0.
						14.100 1.000 1.000 8.550 8.550 16.100 16.100 1.000	24.51 25.47 25.50 25.32 25.34 24.95 25.00 25.42	4.49 6.38 5.71 5.46 5.38 5.13 5.09 6.11	92.6 82.8 79.2 78.1 74.5 73.9 88.7	0.4 0.7 0.7 1.2 0.7 0.7 0.9	32.10 32.20 32.51 32.54 32.20 32.10 30.70	8.26 8.24 8.24 8.21 8.21 8.27	0.
2012/5/12 11:05	C1 C2	MF	833717	808179	17.1	14.100 1.000 1.000 8.550 8.550 16.100 1.000 1.000	24.51 25.47 25.50 25.32 25.34 24.95 25.00 25.42 25.44	4.49 6.38 5.71 5.46 5.38 5.13 5.09 6.11 5.54	92.6 82.8 79.2 78.1 74.5 73.9 88.7 80.4	0.4 0.7 0.7 1.2 0.7 0.7 0.7 0.9 0.9	32.10 32.20 32.51 32.54 32.20 32.10 30.70 30.69	8.26 8.24 8.24 8.21 8.21 8.27 8.28	0.
						14.100 1.000 1.000 8.550 8.550 16.100 1.000 1.000 7.550 7.550	24.51 25.47 25.50 25.32 25.34 24.95 25.00 25.42 25.44 25.37 25.34	4.49 6.38 5.71 5.46 5.38 5.13 5.09 6.11 5.54 5.53 5.57	92.6 82.8 79.2 78.1 74.5 73.9 88.7 80.4 80.1	0.4 0.7 0.7 1.2 0.7 0.7 0.9 0.9 0.7 0.7	32.10 32.20 32.51 32.54 32.20 32.10 30.70 30.69 30.37 30.41	8.26 8.24 8.24 8.21 8.21 8.27 8.28 7.97 8.00	0.
						14.100 1.000 1.000 8.550 8.550 16.100 1.000 1.000 7.550 7.550 14.100	24.51 25.47 25.50 25.32 25.34 24.95 25.00 25.42 25.44 25.37 25.34 25.04	4.49 6.38 5.71 5.46 5.38 5.13 5.09 6.11 5.54 5.53 5.57	92.6 82.8 79.2 78.1 74.5 73.9 88.7 80.4 80.1 80.6 81.5	0.4 0.7 0.7 1.2 0.7 0.7 0.9 0.9 0.7 0.7 3.5	32.10 32.20 32.51 32.54 32.20 32.10 30.70 30.69 30.37 30.41 31.34	8.26 8.24 8.24 8.21 8.21 8.27 8.28 7.97	0.
						14.100 1.000 1.000 8.550 8.550 16.100 1.000 1.000 7.550 7.550 14.100 14.100	24.51 25.47 25.50 25.32 25.34 24.95 25.00 25.42 25.44 25.37 25.34 25.04 24.98	4.49 6.38 5.71 5.46 5.38 5.13 5.09 6.11 5.54 5.53 5.57 5.63	92.6 82.8 79.2 78.1 74.5 73.9 88.7 80.4 80.1	0.4 0.7 0.7 1.2 0.7 0.7 0.9 0.9 0.7 0.7 2.0	32.10 32.20 32.51 32.54 32.20 32.10 30.70 30.69 30.37 30.41 31.34 31.40	8.26 8.24 8.24 8.21 8.21 8.27 8.28 7.97 8.00 7.99 7.99	0. 0. 1.
						14.100 1.000 1.000 8.550 8.550 16.100 1.000 1.000 1.000 7.550 7.550 14.100 1.000	24.51 25.47 25.50 25.32 25.34 24.95 25.00 25.42 25.42 25.37 25.34 25.04 24.98 25.46	4.49 6.38 5.71 5.46 5.38 5.13 5.09 6.11 5.54 5.53 5.57 5.63 5.57	92.6 82.8 79.2 78.1 74.5 73.9 88.7 80.4 80.6 81.5 79.9 94.0	0.4 0.7 0.7 1.2 0.7 0.7 0.9 0.9 0.7 0.7 2.0 0.6	32.10 32.20 32.51 32.54 32.20 32.10 30.70 30.69 30.37 30.41 31.34 31.40 30.80	8.26 8.24 8.24 8.21 8.21 8.27 8.28 7.97 8.00 7.99 7.99 8.24	0. 0. 1.
2012/5/12 10:00	C2	MF	831469	807762	15.1	14.100 1.000 1.000 8.550 8.550 16.100 1.000 1.000 7.550 7.550 14.100 1.000 1.000	24.51 25.47 25.50 25.32 25.34 24.95 25.00 25.42 25.44 25.37 25.34 25.04 24.98 25.46 25.47	4.49 6.38 5.71 5.46 5.38 5.13 5.09 6.11 5.54 5.53 5.57 5.63 5.53 6.47 6.83	92.6 82.8 79.2 78.1 74.5 73.9 88.7 80.4 80.1 80.6 81.5 79.9 94.0	0.4 0.7 0.7 1.2 0.7 0.9 0.9 0.7 0.7 2.0 0.6 1.4	32.10 32.20 32.51 32.54 32.20 32.10 30.70 30.69 30.37 30.41 31.34 31.40 30.80 30.85	8.26 8.24 8.24 8.21 8.21 8.27 8.28 7.97 8.00 7.99 7.99 8.24 8.25	0.3 0.3 0.3
						14.100 1.000 1.000 8.550 8.550 16.100 1.000 1.000 7.550 7.550 14.100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	24.51 25.47 25.50 25.32 25.34 24.95 25.00 25.42 25.44 25.37 25.34 25.04 24.98 25.46 25.47 25.47	4.49 6.38 5.71 5.46 5.38 5.13 5.09 6.11 5.54 5.53 5.57 5.63 5.53 6.47 6.83 5.17	92.6 82.8 79.2 78.1 74.5 73.9 88.7 80.4 80.1 80.6 81.5 79.9 94.0 99.1	0.4 0.7 0.7 1.2 0.7 0.7 0.9 0.9 0.7 0.7 3.5 2.0 0.6 1.4	32.10 32.20 32.51 32.54 32.20 32.10 30.70 30.69 30.37 30.41 31.34 31.40 30.80 30.85 30.90	8.26 8.24 8.24 8.21 8.21 8.27 8.28 7.97 8.00 7.99 7.99 8.24 8.25 8.22	0.3 0.3 0.3
2012/5/12 10:00	C2	MF	831469	807762	15.1	14.100 1.000 1.000 8.550 8.550 16.100 1.000 1.000 7.550 7.550 14.100 1.000 1.000	24.51 25.47 25.50 25.32 25.34 24.95 25.00 25.42 25.44 25.37 25.34 25.04 24.98 25.46 25.47	4.49 6.38 5.71 5.46 5.38 5.13 5.09 6.11 5.54 5.53 5.57 5.63 5.53 6.47 6.83	92.6 82.8 79.2 78.1 74.5 73.9 88.7 80.4 80.1 80.6 81.5 79.9 94.0	0.4 0.7 0.7 1.2 0.7 0.9 0.9 0.7 0.7 2.0 0.6 1.4	32.10 32.20 32.51 32.54 32.20 32.10 30.70 30.69 30.37 30.41 31.34 31.40 30.80 30.85	8.26 8.24 8.24 8.21 8.21 8.27 8.28 7.97 8.00 7.99 7.99 8.24 8.25	0.3 0.3 0.3 1.3 0.3 0.3

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 14-May-12

Date / Time	Location	Tide*	Co-ore	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11de+	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg/
2012/5/14 8:45	W1	ME	832969	807734	2.2	1.100	25.56	6.97	85.0	0.4	30.10	8.11	1.6
2012/3/14 0.43	*** 1	IVIL	032707	007754	2.2	1.100	25.57	7.26	88.6	0.6	30.20	8.11	1.0
						1.000	25.61	8.36	102.0	0.7	30.22	8.01	3.7
						1.000	25.77	7.81	95.3	0.4	30.31	8.01	5.7
2012/5/14 8:35	W2	ME	832673	807991	13.3	6.650	25.29	7.52	91.7	0.5	30.98	8.01	2.6
2012/3/14 0.33	*** 2	IVIL	032013	007771	15.5	6.650	25.27	7.43	90.6	0.3	30.99	8.00	2.0
						12.300	24.98	6.55	79.8	0.7	31.25	7.97	4.0
						12.300	25.00	6.54	79.8	0.8	31.16	7.97	7.0
						1.000	25.49	6.98	85.2	0.7	30.55	8.09	4.5
						1.000	25.45	6.85	83.5	0.9	30.46	8.08	7.5
2012/5/14 8:20	W3	ME	832049	807807	13.3	6.650	25.19	6.23	76.0	0.4	30.80	8.06	2.5
2012/3/14 0.20	*** 5	IVIL	032049	007007	15.5	6.650	25.20	6.08	74.2	3.9	30.68	8.06	2.3
						12.300	24.88	5.90	71.9	3.0	31.22	8.02	3.9
						12.300	24.85	5.80	70.8	3.0	31.66	8.00	3.9
						1.000	25.55	7.17	87.4	0.6	30.54	8.12	4.7
						1.000	25.55	6.71	81.9	0.4	30.45	8.12	4.7
2012/5/14 9:05	C1	ME	833712	808165	15.7	7.850	25.18	6.29	76.7	0.7	31.25	8.06	3.4
2012/3/14 9.03	CI	NIE	033712	606103	13.7	7.850	25.17	6.12	74.7	0.9	31.45	8.05	3.4
						14.700	24.69	6.27	76.5	1.1	32.10	8.00	2.4
						14.700	24.68	6.71	81.9	1.0	32.01	7.99	3.4
						1.000	25.26	6.66	81.2	0.7	30.10	8.07	
						1.000	25.25	6.52	79.5	0.6	30.23	8.08	5.7
2012/5/11 1 2 2 5	72		004.450	005510	40.5	6.750	25.06	6.52	79.5	2.0	30.35	8.07	4.0
2012/5/14 8:05	C2	ME	831473	807740	13.5	6.750	25.04	6.33	77.2	1.5	30.55	8.07	4.2
						12,500	25.01	6.34	77.3	3.0	31.02	8.07	2.0
						12.500	25.00	6.24	76.2	3.1	30.10	8.06	3.3
						1.000	25.56	6.94	84.6	0.5	30.45	8.07	
						1.000	25.58	6.87	83.8	0.3	30.55	8.07	2.5
						7.750	25.04	6.15	75.1	0.4	31.02	8.03	
2012/5/14 9:25	C3	ME	832214	808853	15.5	7.750	25.02	6.21	75.7	0.5	30.90	8.03	4.2
						14.500	24.77	5.98	72.9	0.9	31.55	7.98	
						14.500	24.77	5.97	72.8	1.3	31.58	7.99	2.9
						14.500	24.01	5.91	72.0	1.5	31.30	1.77	
						1.400	26.03	7.09	86.5	0.5	30.45	7.87	
2012/5/14 13:40	W1	MF	832966	807745	2.8		26.00	7.65	93.3	0.5	30.43	7.86	4.0
	-					1.400							
						1.000	26.26	7.93	96.7	1.0	31.02	7.73	1.2
						1.000	26.25	7.73	94.2	0.6	31.05	7.71	
2012/5/14 13:30	W2	MF	832674	807989	15.4	7.700	25.52	7.67	93.6	0.8	31.27	7.62	5.2
						7.700	25.53	7.37	89.9	0.6	31.46	7.62	
						14.400	24.75	7.31	89.2	2.0	32.15	7.48	1.9
						14.400	24.73	6.84	83.4	1.8	31.99	7.47	
						1.000	26.93	8.32	101.5	0.9	30.50	7.50	1.
						1.000	26.92	8.16	99.6	1.7	30.55	7.43	
2012/5/14 13:15	W3	MF	832051	807892	15.5	7.750	25.58	7.58	92.5	1.1	31.12	7.21	3.4
2012/3/11 13.13	,,,,	1411	032031	007072	13.3	7.750	25.57	7.40	90.3	0.9	31.22	7.18	٥.
						14.500	25.10	6.55	79.9	2.1	32.12	6.95	1.:
						14.500	25.13	6.75	82.3	1.8	32.66	6.94	1
						1.000	26.32	7.80	95.2	1.4	30.14	7.82	3.:
						1.000	26.16	7.81	95.3	7.9	30.51	7.82	٥
		MF	833717	807189	17.3	8.650	25.47	7.74	94.4	1.5	31.50	7.77	2.5
2012/5/14 14:00	C1		033/11/	00/109	17.5	8.650	25.40	7.48	91.3	0.7	31.64	7.77	۷.
2012/5/14 14:00	C1	IVII				0.050		7.11	86.8	1.3	32.10	7.74	2.
2012/5/14 14:00	C1	MIF				16.300	25.33	7.11					2.
2012/5/14 14:00	C1	IVIF					25.33 25.33	7.11	85.7	0.9	32.50	7.73	
2012/5/14 14:00	C1	MF				16.300			85.7 88.8	0.9	32.50 30.50	7.73 7.99	2.4
2012/5/14 14:00	C1	MF				16.300 16.300	25.33	7.02					2.9
				007530	15.5	16.300 16.300 1.000	25.33 26.82	7.02 7.28	88.8	0.8	30.50	7.99	
2012/5/14 14:00	C1 C2	MF	831460	807739	15.5	16.300 16.300 1.000 1.000	25.33 26.82 26.82	7.02 7.28 6.91	88.8 84.3	0.8 0.1	30.50 30.46	7.99 7.98	
				807739	15.5	16.300 16.300 1.000 1.000 7.750 7.750	25.33 26.82 26.82 25.98 25.99	7.02 7.28 6.91 7.50 7.38	88.8 84.3 91.5 90.0	0.8 0.1 0.5 0.6	30.50 30.46 30.98 31.15	7.99 7.98 7.63 7.53	3.
				807739	15.5	16.300 16.300 1.000 1.000 7.750 7.750 14.500	25.33 26.82 26.82 25.98 25.99 25.50	7.02 7.28 6.91 7.50 7.38 7.07	88.8 84.3 91.5 90.0 86.3	0.8 0.1 0.5 0.6 2.1	30.50 30.46 30.98 31.15 32.01	7.99 7.98 7.63 7.53 7.36	3.
				807739	15.5	16.300 16.300 1.000 1.000 7.750 7.750 14.500	25.33 26.82 26.82 25.98 25.99 25.50 25.48	7.02 7.28 6.91 7.50 7.38 7.07 7.42	88.8 84.3 91.5 90.0 86.3 90.5	0.8 0.1 0.5 0.6 2.1 2.4	30.50 30.46 30.98 31.15 32.01 32.55	7.99 7.98 7.63 7.53 7.36 7.36	3.3
				807739	15.5	16.300 16.300 1.000 1.000 7.750 7.750 14.500 1.000	25.33 26.82 26.82 25.98 25.99 25.50 25.48 25.95	7.02 7.28 6.91 7.50 7.38 7.07 7.42 8.10	88.8 84.3 91.5 90.0 86.3 90.5 98.8	0.8 0.1 0.5 0.6 2.1 2.4 0.7	30.50 30.46 30.98 31.15 32.01 32.55 30.90	7.99 7.98 7.63 7.53 7.36 7.36 7.83	3.3
2012/5/14 13:00	C2	MF	831460			16.300 16.300 1.000 1.000 7.750 7.750 14.500 1.000	25.33 26.82 26.82 25.98 25.99 25.50 25.48 25.95 26.02	7.02 7.28 6.91 7.50 7.38 7.07 7.42 8.10 8.04	88.8 84.3 91.5 90.0 86.3 90.5 98.8 98.1	0.8 0.1 0.5 0.6 2.1 2.4 0.7 0.7	30.50 30.46 30.98 31.15 32.01 32.55 30.90 30.88	7.99 7.98 7.63 7.53 7.36 7.36 7.83 7.83	2.9 3.1 4.2 2.8
				807739	15.5	16.300 16.300 1.000 1.000 7.750 7.750 14.500 14.500 1.000 8.650	25.33 26.82 26.82 25.98 25.99 25.50 25.48 25.95 26.02 25.52	7.02 7.28 6.91 7.50 7.38 7.07 7.42 8.10 8.04 7.51	88.8 84.3 91.5 90.0 86.3 90.5 98.8 98.1 91.6	0.8 0.1 0.5 0.6 2.1 2.4 0.7 0.7 0.6	30.50 30.46 30.98 31.15 32.01 32.55 30.90 30.88 31.55	7.99 7.98 7.63 7.53 7.36 7.36 7.83 7.83 7.80	3.1
2012/5/14 13:00	C2	MF	831460			16.300 16.300 1.000 1.000 7.750 7.750 14.500 1.000	25.33 26.82 26.82 25.98 25.99 25.50 25.48 25.95 26.02	7.02 7.28 6.91 7.50 7.38 7.07 7.42 8.10 8.04	88.8 84.3 91.5 90.0 86.3 90.5 98.8 98.1	0.8 0.1 0.5 0.6 2.1 2.4 0.7 0.7	30.50 30.46 30.98 31.15 32.01 32.55 30.90 30.88	7.99 7.98 7.63 7.53 7.36 7.36 7.83 7.83	3.5 4.5 2.8

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 16-May-12

Date / Time	Location	Tide*	Co-ordinates		Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11de+	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg/
2012/5/16 9:47	W1	ME	832968	807731	2.3	1.150	26.41	7.60	111.6	0.9	30.02	8.21	3.0
2012/3/10 7.47	*** 1	IVIL	032700	007751	2.3	1.150	26.40	7.44	109.2	0.6	30.05	8.22	5.0
						1.000	26.39	6.48	95.5	6.9	30.42	8.20	3.6
						1.000	26.42	6.04	88.9	0.6	30.23	8.21	5.0
2012/5/16 9:37	W2	ME	832681	807980	13	6.500	26.49	6.02	89.1	0.6	31.11	8.20	2.4
2012/3/10 7.37	*** 2	IVIL	032001	007700		6.500	26.50	5.96	88.1	1.0	31.11	8.20	2.7
						12.000	24.93	5.48	80.3	1.2	34.44	8.12	5.6
						12.000	24.94	5.55	81.5	1.2	34.39	8.11	5.0
						1.000	26.46	8.98	132.9	0.5	31.15	8.15	2.8
						1.000	26.47	9.13	135.1	0.5	31.13	8.16	2.0
2012/5/16 9:22	W3	ME	832044	807895	13.1	6.550	26.11	8.84	130.9	0.6	32.11	8.17	2.0
2012/3/10 9.22	*** 5	IVIL	032044	007093	13.1	6.550	26.13	8.63	127.8	0.8	32.14	8.16	2.0
						12.100	25.02	7.17	105.5	1.1	34.16	8.06	2.7
						12.100	25.02	6.65	97.8	1.0	34.16	8.06	2.7
						1.000	26.44	7.80	114.8	0.6	29.97	8.17	2.5
						1.000	26.44	7.12	104.6	0.6	29.98	8.19	2.3
2012/5/16 10:07	C1	ME	833707	808180	14.6	7.300	26.41	5.85	86.2	0.6	30.68	8.20	
2012/3/10 10.07	CI	NIE	633101	000100	14.0	7.300	26.38	5.51	81.4	0.8	30.74	8.20	
						13.600	25.04	5.24	77.2	3.6	34.22	8.15	2.6
						13.600	25.01	4.95	73.0	3.6	34.24	8.14	3.6
						1.000	26.55	7.39	109.3	0.6	30.71	8.08	1.
2012/5/16 9:07						1.000	26.60	7.13	105.5	0.8	30.69	8.10	1.4
	72		004.450	005550	42.5	6.350	25.56	6.90	101.7	0.8	32.99	8.04	
	C2	ME	831470	807753	12.7	6.350	25.56	6.85	100.9	0.6	32.99	8.04	5.0
						11.700	25,39	6.31	92.9	1.1	33,37	8.05	2.2
						11.700	25.38	6.33	93.3	1.1	33.40	8.05	3.3
						1.000	26.48	7.02	103.5	0.6	29.71	8.22	
						1.000	26.49	6.48	95.4	0.5	29.65	8.22	1.1
2012/5/16 10:27						7.250	26.37	5.52	80.4	0.9	30.71	8.22	
	C3	ME	832224	808858	14.5	7.250	26.37	5.28	76.8	0.5	30.72	8.22	2.8
						13.500	25.15	4.50	67.5	2.1	34.13	8.18	
						13.500	25.17	4.80	70.5	1.4	34.10	8.18	7.3
						13.300	23.17	4.00	70.5	1.4	34.10	0.10	
						1.350	26.60	7.61	112.50	0.5	30.63	8.05	
2012/5/16 15:40	W1	MF	832969	807730	2.7		26.59	7.01		0.5			3.1
						1.350			108.45		30.65	8.06	
						1.000	26.70	8.39	124.10	0.6	30.25	7.91	4.4
						1.000	26.72	8.13	120.30	0.5	30.24	7.92	
2012/5/16 15:30	W2	MF	832684	807986	15.1	7.550	25.93	7.50	110.90	0.4	32.51	7.92	6.1
						7.550	25.93	7.10	105.00	0.4	32.50	7.92	
						14.100	24.43	6.24	91.35	2.1	35.27	7.76	1.3
						14.100	24.44	5.85	85.50	1.6	35.26	7.75	
						1.000	26.80	8.55	126.80	0.4	30.41	7.82	3.:
						1.000	26.80	8.45	125.20	0.9	30.39	7.81	5
2012/5/16 15:15	W3	MF	832051	807890	15.5	7.750	26.31	7.78	115.20	0.4	31.71	7.75	2.:
2012/0/10 10.10	17.5	1111	032031	007070	13.3	7.750	26.28	7.58	112.40	0.4	31.85	7.74	2.,
						14.500	25.63	6.52	96.40	2.0	33.24	7.66	3.1
						14.500	25.50	6.57	97.10	2.2	33.59	7.65	٥.,
						1.000	26.89	9.95	147.30	0.4	29.77	8.09	3.9
						1.000	26.88	10.06	148.90	0.6	29.78	8.10	٥.,
								9.68	143.00	0.4	32.22	8.06	2.4
2012/5/14 14:10	C1	ME	922704	000175	16.2	8.150	25.97	9.08			22.24	0.07	۷.۰
2012/5/16 16:10	C1	MF	833704	808175	16.3	8.150 8.150	25.97 25.97	9.55	141.20	0.8	32.21	8.06	
2012/5/16 16:10	C1	MF	833704	808175	16.3				141.20 123.60	0.8	32.21	8.06	4
2012/5/16 16:10	C1	MF	833704	808175	16.3	8.150	25.97	9.55					4.
2012/5/16 16:10	C1	MF	833704	808175	16.3	8.150 15.300	25.97 25.41	9.55 8.38	123.60	1.2	33.65	8.02	
2012/5/16 16:10	C1	MF	833704	808175	16.3	8.150 15.300 15.300	25.97 25.41 25.41	9.55 8.38 8.61	123.60 127.10	1.2 0.9	33.65 33.66	8.02 8.02	
						8.150 15.300 15.300 1.000	25.97 25.41 25.41 27.03	9.55 8.38 8.61 8.91	123.60 127.10 132.90	1.2 0.9 0.5	33.65 33.66 30.74	8.02 8.02 7.39	2.9
2012/5/16 16:10 2012/5/16 15:00	C1	MF	833704 831473	808175	16.3	8.150 15.300 15.300 1.000 1.000	25.97 25.41 25.41 27.03 27.00	9.55 8.38 8.61 8.91 9.48	123.60 127.10 132.90 141.40	1.2 0.9 0.5 0.6	33.65 33.66 30.74 30.81	8.02 8.02 7.39 7.35	2.9
						8.150 15.300 15.300 1.000 1.000 7.600 7.600	25.97 25.41 25.41 27.03 27.00 26.59 26.58	9.55 8.38 8.61 8.91 9.48 9.33 9.23	123.60 127.10 132.90 141.40 138.70 137.20	1.2 0.9 0.5 0.6 0.7 0.6	33.65 33.66 30.74 30.81 31.44 31.45	8.02 8.02 7.39 7.35 7.23 7.21	2.9
						8.150 15.300 15.300 1.000 1.000 7.600 7.600 14.200	25.97 25.41 25.41 27.03 27.00 26.59 26.58 25.33	9.55 8.38 8.61 8.91 9.48 9.33 9.23 6.39	123.60 127.10 132.90 141.40 138.70 137.20 94.20	1.2 0.9 0.5 0.6 0.7 0.6 1.0	33.65 33.66 30.74 30.81 31.44 31.45 33.84	8.02 8.02 7.39 7.35 7.23 7.21 6.83	2.9
						8.150 15.300 15.300 1.000 1.000 7.600 7.600 14.200	25.97 25.41 25.41 27.03 27.00 26.59 26.58 25.33 25.34	9.55 8.38 8.61 8.91 9.48 9.33 9.23	123.60 127.10 132.90 141.40 138.70 137.20 94.20 93.30	1.2 0.9 0.5 0.6 0.7 0.6 1.0	33.65 33.66 30.74 30.81 31.44 31.45 33.84 33.84	8.02 8.02 7.39 7.35 7.23 7.21 6.83 6.79	2.9 3.9
						8.150 15.300 15.300 1.000 1.000 7.600 7.600 14.200 14.200	25.97 25.41 25.41 27.03 27.00 26.59 26.58 25.33 25.34 26.39	9.55 8.38 8.61 8.91 9.48 9.33 9.23 6.39 6.33 8.07	123.60 127.10 132.90 141.40 138.70 137.20 94.20 93.30 119.30	1.2 0.9 0.5 0.6 0.7 0.6 1.0 1.1	33.65 33.66 30.74 30.81 31.44 31.45 33.84 33.84 31.03	8.02 8.02 7.39 7.35 7.23 7.21 6.83 6.79 8.08	2.9 3.9 5.4
2012/5/16 15:00	C2	MF	831473	807749	15.2	8.150 15.300 15.300 1.000 1.000 7.600 7.600 14.200 14.200 1.000	25.97 25.41 25.41 27.03 27.00 26.59 26.58 25.33 25.34 26.39 26.39	9.55 8.38 8.61 8.91 9.48 9.33 9.23 6.39 6.33 8.07 7.94	123.60 127.10 132.90 141.40 138.70 137.20 94.20 93.30 119.30	1.2 0.9 0.5 0.6 0.7 0.6 1.0 1.1 0.4 0.9	33.65 33.66 30.74 30.81 31.44 31.45 33.84 33.84 31.03 31.05	8.02 8.02 7.39 7.35 7.23 7.21 6.83 6.79 8.08 8.09	4.1 2.5 3.5 5.4
						8.150 15.300 15.300 1.000 1.000 7.600 7.600 14.200 1.000 1.000 8.200	25.97 25.41 25.41 27.03 27.00 26.59 26.58 25.33 25.34 26.39 26.39 25.84	9.55 8.38 8.61 8.91 9.48 9.33 9.23 6.39 6.33 8.07 7.94 7.68	123.60 127.10 132.90 141.40 138.70 137.20 94.20 93.30 119.30 117.40 113.50	1.2 0.9 0.5 0.6 0.7 0.6 1.0 1.1 0.4 0.9 0.3	33.65 33.66 30.74 30.81 31.44 31.45 33.84 33.84 31.03 31.05 32.58	8.02 8.02 7.39 7.35 7.23 7.21 6.83 6.79 8.08 8.09 8.06	2.9 3.9 5.4
2012/5/16 15:00	C2	MF	831473	807749	15.2	8.150 15.300 15.300 1.000 1.000 7.600 7.600 14.200 14.200 1.000	25.97 25.41 25.41 27.03 27.00 26.59 26.58 25.33 25.34 26.39 26.39	9.55 8.38 8.61 8.91 9.48 9.33 9.23 6.39 6.33 8.07 7.94	123.60 127.10 132.90 141.40 138.70 137.20 94.20 93.30 119.30	1.2 0.9 0.5 0.6 0.7 0.6 1.0 1.1 0.4 0.9	33.65 33.66 30.74 30.81 31.44 31.45 33.84 33.84 31.03 31.05	8.02 8.02 7.39 7.35 7.23 7.21 6.83 6.79 8.08 8.09	2.9 3.9 5.4 2.9

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 18-May-12

Date / Time	Location	Tide*	Co-ordinates		Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11de*	East	North	m	m	ဗ	mg/L	%	NTU	ppt	unit	mg
2012/5/18 11:00	W1	ME	832962	807730	2.3	1.150	26.46	10.74	156.9	0.4	28.82	8.21	1.0
2012/3/10 11:00	.,,	.,,,	032702	007730	2.0	1.150	26.48	10.74	156.9	0.4	28.74	8.22	1.0
						1.000	26.49	11.74	171.7	0.5	28.87	8.21	1.4
					12.9	1.000	26.49	11.61	169.8	0.4	28.87	8.22	
2012/5/18 10:50	W2	ME	832681	807979		6.450	26.40	11.05	162.0	0.5	29.58	8.20	0.5
						6.450	26.46	10.97	160.6	0.8	29.13	8.22	
						11.900	25.42	10.86	159.8	2.6	33.14	8.12	0.5
						11.900	24.43	10.64	155.2	4.1	34.52	8.10	
						1.000	26.71	11.06	161.0	0.3	27.48	8.24	0.5
						1.000	26.70	10.81	157.4	0.5	27.50	8.23	
2012/5/18 10:35	W3	ME	832043	807899	12.9	6.450	26.48	10.65	156.1	0.5	29.19	8.19	3.1
						6.450	26.52	10.65	156.2	0.5	29.20	8.18	
						11.900	26.52	10.51	154.5	0.6	29.74	8.18	1.9
						11.900	26.57	10.46	153.9	2.5	29.58	8.16	
						1.000	26.46	10.73	156.8 156.3	0.4	28.84	8.21 8.21	0.5
						1.000	26.45	10.70		0.5	28.78		0.5
2012/5/18 11:20	C1	ME	833712	808179	15.2	7.600 7.600	26.37 26.36	10.53 10.24	154.5 150.2	0.3	29.77 29.77	8.18 8.19	
						14.200	25.62	9.77	143.6	3.0	32.30	8.19	
						14.200	25.62	9.77	137.7	3.0	32.74	8.14	0.5
						1.000	26.43	9.39	143.2		27.94		
						1.000	26.43	9.83	138.7	0.6	27.94	8.10 8.10	4.2
						6.350	26.58	9.34	136.8	0.5	29.02	8.14	
2012/5/18 10:20	C2	ME	831470	807752	12.7	6.350	26.59	9.33	135.8	0.3	29.02	8.15	0.5
						11.700	25.43	7.66	111.9	0.4	31.88	7.87	
						11.700	26.49	7.71	111.9	1.5	29.28	8.14	0.:
						1.000	26.48 26.48	9.81 9.77	143.4 142.9	0.4	28.85 28.84	8.21 8.21	0.
						7.650	26.35	9.77	139.2	0.3	29.81	8.19	
2012/5/18 11:40	C3	ME	832216	808870	15.3	7.650	26.35	9.49	137.3	0.7	29.80	8.19	7.
						14.300	26.06	9.30	136.6	2.2	31.52	8.14	
						14.300	26.16	9.27	132.9	0.7	30.74	8.15	0.:
						14.500	20.10	9.04	132.9	0.7	30.74	0.13	
						1.400	26.45	11.56	168.9	0.4	28.86	8.23	
2012/5/18 17:40	W1	MF	832960	807735	2.8	1.400	26.45	10.11	147.8	0.7	28.89	8.23	1.
						1.000	26.42	8.23	120.4	0.4	28.99	8.22	
						1.000	26.46	11.16	163.3	0.4	28.97	8.23	0.:
						7.750	26.05	9.70	142.5	0.5	30.94	8.20	
2012/5/18 17:30	W2	MF	832652	807969	15.5	7.750	26.05	9.34	137.2	0.6	30.94	8.19	0.:
						14.500	25.26	8.28	121.4	2.0	33.07	8.15	
						14.500	25.27	8.06	118.2	2.4	33.10	8.15	1.
						1.000	26.49	9,53	138.8	0.9	28.18	8.19	
						1.000	26.51	9.34	136.2	0.6	28.21	8.19	1.
						7,550	26,49	9.18	134.4	0.5	29.00	8.19	
2012/5/18 17:15	W3	MF	832048	807889	15.1	7.550	26.50	9.16	134.0	0.5	28.80	8.21	0.
						14.100	25.72	8.73	128.3	1.5	32.07	8.16	
						14.100	26.02	8.56	125.9	1.1	31.14	8.18	0.
						1.000	26.47	9.50	148.9	0.4	28.69	8.21	
						1.000	26.52	9.50	149.2	0.4	28.63	8.24	0.
	C1					8.550	25.92	9.08	133.6	0.3	31.61	8.20	
		MF	833697	808179	17.1	8.550	25.93	8.83	129.5	0.7	30.95	8.19	0.
2012/5/18 18:00	C1					16.100	25.54	8.35	122.6	0.7	32.34	8.15	
2012/5/18 18:00	C1						25.58	8.13	119.3	0.5	32.20	8.15	0.
2012/5/18 18:00	C1					16,100			162.6	0.5	27.54	8.18	_
2012/5/18 18:00	C1					16.100 1.000		11.02			1.72		0.
2012/5/18 18:00	C1					16.100 1.000 1.000	26.59	11.02 11.43	166.3	0.5	27.55	8.22	
			00117	0077	4.5.	1.000	26.59 26.60		166.3	0.5 1.4	27.55 28.81	8.22	
2012/5/18 18:00 2012/5/18 17:00	C1 C2	MF	831457	807731	15.3	1.000 1.000 7.650	26.59 26.60 26.53	11.43 9.11	166.3 133.3	1.4	28.81	8.22 8.15	4.
		MF	831457	807731	15.3	1.000 1.000 7.650 7.650	26.59 26.60 26.53 26.47	9.11 9.11	166.3 133.3 132.7	1.4 1.0	28.81 28.28	8.22 8.15 8.18	
		MF	831457	807731	15.3	1.000 1.000 7.650 7.650 14.300	26.59 26.60 26.53 26.47 26.10	9.11 9.11 7.89	166.3 133.3 132.7 116.0	1.4 1.0 2.3	28.81 28.28 31.08	8.22 8.15 8.18 8.15	
		MF	831457	807731	15.3	1.000 1.000 7.650 7.650 14.300 14.300	26.59 26.60 26.53 26.47 26.10 26.09	11.43 9.11 9.11 7.89 8.31	166.3 133.3 132.7 116.0 122.2	1.4 1.0 2.3 1.5	28.81 28.28 31.08 31.00	8.22 8.15 8.18 8.15 8.15	0.
		MF	831457	807731	15.3	1.000 1.000 7.650 7.650 14.300 14.300 1.000	26.59 26.60 26.53 26.47 26.10 26.09 26.55	11.43 9.11 9.11 7.89 8.31 8.95	166.3 133.3 132.7 116.0 122.2 130.8	1.4 1.0 2.3 1.5 0.4	28.81 28.28 31.08 31.00 28.65	8.22 8.15 8.18 8.15 8.15 8.25	0.:
2012/5/18 17:00	C2					1.000 1.000 7.650 7.650 14.300 14.300 1.000	26.59 26.60 26.53 26.47 26.10 26.09 26.55 26.50	11.43 9.11 9.11 7.89 8.31 8.95 8.83	166.3 133.3 132.7 116.0 122.2 130.8 129.1	1.4 1.0 2.3 1.5 0.4 0.5	28.81 28.28 31.08 31.00 28.65 28.69	8.22 8.15 8.18 8.15 8.15 8.25 8.25	0.:
		MF	831457	807731	15.3	1.000 1.000 7.650 7.650 14.300 14.300 1.000 1.000 8.350	26.59 26.60 26.53 26.47 26.10 26.09 26.55 26.50 26.52	11.43 9.11 9.11 7.89 8.31 8.95 8.83 8.66	166.3 133.3 132.7 116.0 122.2 130.8 129.1 126.6	1.4 1.0 2.3 1.5 0.4 0.5 0.7	28.81 28.28 31.08 31.00 28.65 28.69 28.79	8.22 8.15 8.18 8.15 8.15 8.25 8.25 8.24	0.:
2012/5/18 17:00	C2					1.000 1.000 7.650 7.650 14.300 14.300 1.000	26.59 26.60 26.53 26.47 26.10 26.09 26.55 26.50	11.43 9.11 9.11 7.89 8.31 8.95 8.83	166.3 133.3 132.7 116.0 122.2 130.8 129.1	1.4 1.0 2.3 1.5 0.4 0.5	28.81 28.28 31.08 31.00 28.65 28.69	8.22 8.15 8.18 8.15 8.15 8.25 8.25	0.:

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 22-May-12

Date / Time	Location	Tide*	Co-ordinates		Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11de+	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg/
2012/5/22 13:40	W1	ME	832960	807735	2.2	1.100	26.08	6.63	97.9	0.8	31.91	7.71	0.6
2012/3/22 13:10	,,,,	14112	032700	001133	2.2	1.100	26.09	6.90	101.9	0.9	31.88	7.72	0.0
						1.000	26.05	6.18	91.3	0.9	31.94	7.74	0.5
					13.5	1.000	26.04	6.30	93.0	1.2	31.94	7.71	
2012/5/22 13:30	W2	ME	832659	807982		6.750	26.05	5.25	77.6	1.6	32.13	7.68	1.3
						6.750	26.04	5.33	78.9	1.2	32.08	7.68	
						12.500	26.02	5.02	74.4	2.0	32.57	7.69	0.5
						12.500	26.05	4.79	70.9	1.7	32.29	7.68	-
						1.000	26.22	6.27	92.6	1.0	31.43	7.66	1.6
						1.000	26.22	5.62	83.0	0.8	31.46	7.64	
2012/5/22 13:15	W3	ME	832049	807890	13.1	6.550	25.94	5.46	80.5	0.7	31.87	7.60	2.2
						6.550	25.98	5.36	79.0	1.7	31.80	7.60	
						12.100	25.93	5.09	75.5	2.8	32.92	7.64	1.9
						12.100	25.89	4.79	70.6	0.9	32.01	7.63	
						1.000	26.04	7.21	106.5	1.1	31.79	7.85	0.5
						1.000	26.01	6.08	89.7	0.9	31.82	7.84	0.9
2012/5/22 14:00	C1	ME	833716	808180	15.1	7.550	26.07	6.01	88.7	0.9	31.88	7.84	
			323713	000100	-511	7.550	26.00	5.63	83.0	1.0	31.89	7.83	
						14.100	26.00	5.37	79.3	1.2	31.93	7.83	0.
						14.100	25.99	4.99	73.6	1.1	31.94	7.83	٥.
						1.000	26.22	6.29	92.9	1.0	31.42	7.56	0.
2012/5/22 13:00						1.000	26.23	5.62	83.0	1.4	31.40	7.50	0.
	C2	ME	831460	807757	13.2	6.600	25.94	5.05	74.3	1.3	31.79	7.41	1.
	CZ	IVIL	631400	001131	13.2	6.600	25.90	5.04	74.2	2.4	31.98	7.39	1.
						12.200	25.88	5.00	74.2	2.0	33.19	7.41	0.
						12.200	25.87	5.65	83.8	1.8	33.15	7.42	0.
						1.000	26.05	6.06	89.5	1.5	31.75	7.83	0
						1.000	26.05	5.86	86.5	1.1	31.75	7.83	0.
2012/5/22 11 20	70			000054		7.550	26.03	5.47	80.8	0.8	31.87	7.84	0
2012/5/22 14:20	C3	ME	832212	808851	15.1	7.550	26.04	5.29	78.1	0.8	31.88	7.84	0.
						14.100	26.03	5.15	76.1	1.2	31.91	7.85	
						14.100	26.00	5.08	74.9	0.9	31.92	7.84	0.
						1.350	25.82	7.74	113.56	1.2	31.47	8.07	_
2012/5/22 8:45	W1	MF	832966	807732	2.7	1.350	25.81	7.58	111.15	0.9	31.48	8.06	0.5
						1.000	25.81	7.23	105.95	2.5	31.37	8.08	
						1.000	25.84	6.97	102.18	0.9	31.35	8.08	0.
						7.650	25.79	6.65	97.50	1.2	31.45	8.09	
2012/5/22 8:35	W2	MF	832682	807977	15.3	7.650	25.82	6.74	98.93	1.0	31.43	8.10	0.
						14.300	25.87	6.81	100.10	0.9	31.50	8.11	
						14.300	25.86	6.87	100.10	0.9	31.48	8.09	0.
						1.000	25.84	6.58	96.53	1.3	31.13	8.03	0.
						1.000	25.86	6.48	94.97	1.3	31.11	8.01	<u> </u>
2012/5/22 8:20	W3	MF	832051	807901	15.1	7.550	25.81	6.42	94.06	1.1	31.35	8.05	0.
						7.550	25.81	6.40	93.86	2.2	31.35	8.03	
						14.100	25.79	6.36	93.34	1.7	31.42	8.05	0.
	+					14.100	25.81	6.32	92.82	1.7	31.39	8.05	-
						1.000	25.81	8.49	124.61	0.9	31.47	8.06	1.
						1.000	25.84	8.00	117.39	0.8	31.45	8.04	
2012/5/22 9:05	C1	MF	833713	808169	16.5	8.250	25.89	7.77	114.21	0.9	31.59	8.07	0.
						8.250	25.89	7.67	112.78	1.4	31.59	8.07	
						15.500	25.95	7.62	112.13	0.8	31.60	8.07	0.
						15.500	25.90	7.58	111.54	1.2	31.78	8.08	, ·
						1.000	25.98	5.89	86.06	1.1	30.33	7.93	0.
						1.000	25.98	6.05	88.53	0.9	30.35	7.95	J.
2012/5/22 8:05	C2	MF	831474	807732	15.1	7.550	25.90	5.94	86.97	0.9	30.81	7.97	0.
2012/0/22 0:00	C2	1111	031474	007752	1.7.1	7.550	25.95	6.00	87.75	0.8	30.56	7.97	0.
						14.100	25.93	5.92	86.84	1.2	30.88	7.98	0.
						14.100	25.90	5.80	85.02	1.1	30.89	7.99	0.
		· <u></u>				1.000	25.91	7.36	108.16	1.0	31.59	8.05	0.
						1.000	25.92	6.85	100.82	1.0	31.60	8.05	U.
2012/5/22 0-25	C3	MI	922210	202274	167	8.350	25.93	6.01	88.47	1.2	31.60	8.07	1 .
2012/5/22 9:25	C.S	MF	832219	808874	16.7	8.350	25.93	5.93	87.17	0.8	31.61	8.08	1.
	1					15 700	25.94	5.54	81.77	1.3	32.34	8.10	
						15.700	23.94	5.54	01.77	1.5	JZ.J4	0.10	1.

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

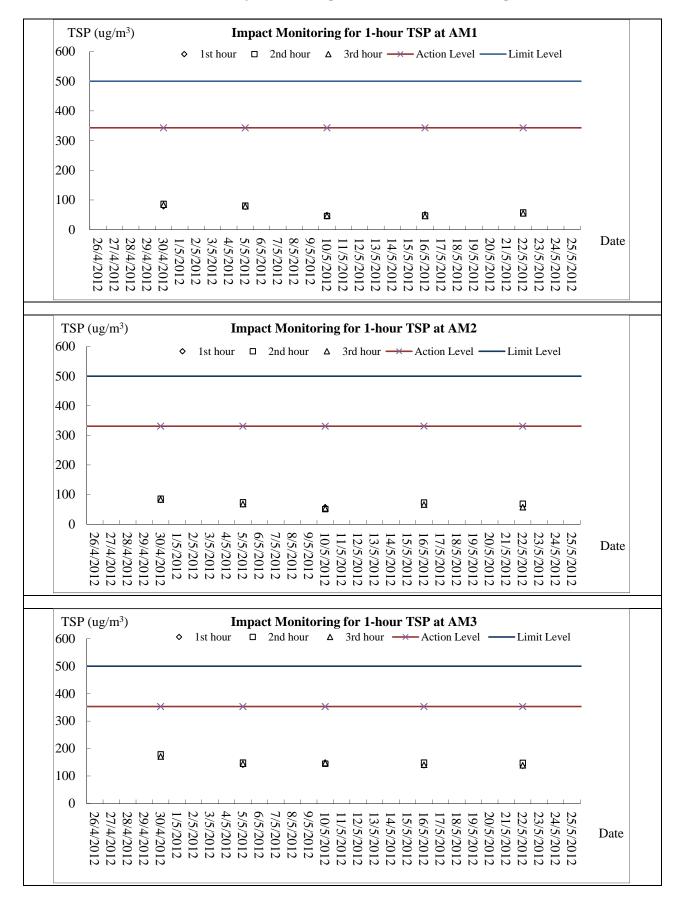
AUES

Sok Kwu Wan

Date 24-May-12

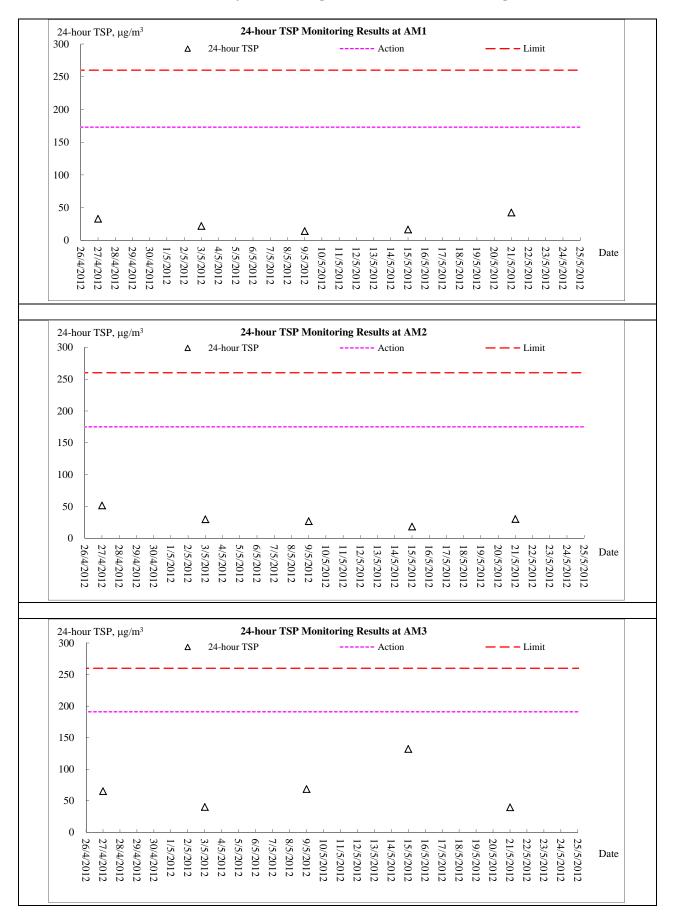
Date / Time	Location	Tide*	Co-ordinates		Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
	Location	11de*	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg
2012/5/24 14:00	W1	ME	832970	807724	2.1	1.050	26.35	7.67	114.5	4.1	32.73	8.16	5.1
2012/3/24 14.00	***1	IVIL	032710	001124	2.1	1.050	26.34	7.39	110.2	4.5	32.74	8.16	5.
						1.000	26.45	8.03	119.6	0.7	32.25	8.12	0.6
						1.000	26.45	7.65	114.0	0.7	32.26	8.11	0.0
2012/5/24 13:50	W2	ME	832662	807980	13.3	6.650	26.33	7.51	112.1	1.6	32.85	8.14	1.4
2012/3/24 13.30	*** 2	IVIL	032002		13.3	6.650	26.34	7.22	107.8	1.9	32.85	8.14	1
						12.300	26.50	7.33	110.0	6.0	33.38	8.17	0.:
						12.300	26.55	7.28	109.3	7.3	33.33	8.17	0.
						1.000	26.29	7.17	106.1	0.4	31.57	8.01	0.
						1.000	26.27	8.01	118.5	0.4	31.58	8.00	0.
2012/5/24 13:35	W3	ME	832046	807890	13.1	6.550	26.30	6.64	98.8	3.0	32.81	8.05	0.
2012/3/24 13.33	W 3	ME	632040	007090	15.1	6.550	26.28	6.71	99.9	2.4	32.81	8.05	0.
						12.100	26.49	6.62	99.3	4.7	33.26	8.08	0
						12.100	26.47	6.48	97.1	5.4	33.28	8.09	0.
						1.000	26.31	7.76	115.4	5.6	32.27	8.14	0
						1.000	26.34	7.38	109.7	0.5	32.26	8.13	0.
2012/5/21112	24		000545	0004.60		7.550	26.29	7.12	105.9	0.6	32.50	8.15	6.4
2012/5/24 14:20	C1	ME	833717	808162	15.1	7,550	26,27	7.34	109.1	2.5	32,49	8.15	6.
						14.100	26.38	7.43	111.1	3.7	33.07	8.16	
						14.100	26.45	7.39	110.5	4.1	32.99	8.18	0.
						1.000	26.29	5.92	87.4	0.3	31.38	7.94	
						1.000	26.30	6.76	100.0	0.6	31.46	7.87	0.
2012/5/24 13:20						6.550	26.10	6.59	97.5	0.4	32.16	7.88	
	C2	ME	831459	807744	13.1	6.550	26.10	6.31	93.5	0.4	32.20	7.89	3.
						12.100	26.29	6.64	99.0	0.8	32.20	7.89	1
						12.100	26.30	6.46	96.4	0.8	32.92	7.89	0.
						1.000	26.44	8.10	120.7	1.0	32.39	8.19	
													1.
			832207			1.000	26.45	8.90	132.8	2.0	32.38	8.18	ļ
2012/5/24 14:40	C3	ME		808859	15.3	7.650	26.40	7.69	114.7	2.4	32.62	8.17	0.9
						7.650	26.40	7.49	111.7	2.0	32.63	8.17	
						14.300	26.40	7.25	108.3	4.0	32.84	8.17	1.
						14.300	26.40	7.22	107.8	3.9	32.81	8.17	
			000000	007722	2.6	1.300	26.15	7.21	106.75	1.1	32.02	8.14	0.
2012/5/24 8:45	W1	MF	832969	807733	2.0			7.43	109.90				
2012/5/24 8:45	W1	MF	832969	807733	2.0	1.300	26.14			1.4	32.00	8.14	
2012/5/24 8:45	W1	MF	832969	807733	2.0	1.000	26.05	7.54	111.32	0.3	31.80	8.09	0.
2012/5/24 8:45	W1	MF	832969	80//33	2.0	1.000 1.000	26.05 26.07	7.54 7.70	111.32 113.68	0.3 0.8	31.80 31.80	8.09 8.09	0.
	W1	MF MF	832969	807973		1.000 1.000 7.750	26.05 26.07 26.10	7.54 7.70 6.87	111.32 113.68 101.57	0.3 0.8 0.4	31.80 31.80 31.97	8.09 8.09 8.12	
2012/5/24 8:45 2012/5/24 8:35					15.5	1.000 1.000 7.750 7.750	26.05 26.07 26.10 26.11	7.54 7.70 6.87 6.93	111.32 113.68 101.57 102.48	0.3 0.8 0.4 0.3	31.80 31.80 31.97 31.97	8.09 8.09 8.12 8.13	
						1.000 1.000 7.750 7.750 14.500	26.05 26.07 26.10 26.11 26.39	7.54 7.70 6.87 6.93 7.05	111.32 113.68 101.57 102.48 105.07	0.3 0.8 0.4 0.3 1.6	31.80 31.80 31.97 31.97 32.49	8.09 8.09 8.12 8.13 8.15	0.
						1.000 1.000 7.750 7.750 14.500 14.500	26.05 26.07 26.10 26.11 26.39 26.36	7.54 7.70 6.87 6.93 7.05 6.92	111.32 113.68 101.57 102.48 105.07 102.97	0.3 0.8 0.4 0.3 1.6 1.5	31.80 31.80 31.97 31.97 32.49 32.49	8.09 8.09 8.12 8.13 8.15 8.14	0.
						1.000 1.000 7.750 7.750 14.500 14.500 1.000	26.05 26.07 26.10 26.11 26.39 26.36 26.00	7.54 7.70 6.87 6.93 7.05 6.92 6.53	111.32 113.68 101.57 102.48 105.07 102.97 95.97	0.3 0.8 0.4 0.3 1.6 1.5 0.8	31.80 31.80 31.97 31.97 32.49 32.49 31.05	8.09 8.09 8.12 8.13 8.15 8.14 8.01	0.
						1.000 1.000 7.750 7.750 14.500 14.500 1.000	26.05 26.07 26.10 26.11 26.39 26.36 26.00 26.01	7.54 7.70 6.87 6.93 7.05 6.92 6.53 6.43	111.32 113.68 101.57 102.48 105.07 102.97 95.97 94.43	0.3 0.8 0.4 0.3 1.6 1.5 0.8 0.8	31.80 31.80 31.97 31.97 32.49 32.49 31.05 31.05	8.09 8.09 8.12 8.13 8.15 8.14 8.01 8.03	0.
						1.000 1.000 7.750 7.750 14.500 14.500 1.000 1.000 7.650	26.05 26.07 26.10 26.11 26.39 26.36 26.00 26.01 26.11	7.54 7.70 6.87 6.93 7.05 6.92 6.53 6.43 6.61	111.32 113.68 101.57 102.48 105.07 102.97 95.97 94.43 97.51	0.3 0.8 0.4 0.3 1.6 1.5 0.8 0.8	31.80 31.80 31.97 31.97 32.49 32.49 31.05 31.05 31.68	8.09 8.09 8.12 8.13 8.15 8.14 8.01 8.03 8.06	0.
2012/5/24 8:35	W2	MF	832659	807973	15.5	1.000 1.000 7.750 7.750 14.500 14.500 1.000 1.000 7.650 7.650	26.05 26.07 26.10 26.11 26.39 26.36 26.00 26.01 26.11 26.19	7.54 7.70 6.87 6.93 7.05 6.92 6.53 6.43 6.61 6.51	111.32 113.68 101.57 102.48 105.07 102.97 95.97 94.43 97.51 96.25	0.3 0.8 0.4 0.3 1.6 1.5 0.8 0.8 1.0	31.80 31.80 31.97 31.97 32.49 32.49 31.05 31.05 31.68 31.73	8.09 8.09 8.12 8.13 8.15 8.14 8.01 8.03 8.06 8.07	0.
2012/5/24 8:35	W2	MF	832659	807973	15.5	1.000 1.000 7.750 7.750 14.500 14.500 1.000 1.000 7.650 7.650	26.05 26.07 26.10 26.11 26.39 26.36 26.00 26.01 26.11 26.19 26.23	7.54 7.70 6.87 6.93 7.05 6.92 6.53 6.43 6.61 6.51	111.32 113.68 101.57 102.48 105.07 102.97 95.97 94.43 97.51 96.25 95.20	0.3 0.8 0.4 0.3 1.6 1.5 0.8 0.8 1.0 1.2	31.80 31.80 31.97 31.97 32.49 32.49 31.05 31.05 31.68 31.73 32.04	8.09 8.09 8.12 8.13 8.15 8.14 8.01 8.03 8.06 8.07 8.11	- 0. - 0. - 0.
2012/5/24 8:35	W2	MF	832659	807973	15.5	1.000 1.000 7.750 7.750 14.500 14.500 1.000 1.000 7.650 7.650 14.300	26.05 26.07 26.10 26.11 26.39 26.36 26.00 26.01 26.11 26.19 26.23 26.22	7.54 7.70 6.87 6.93 7.05 6.92 6.53 6.43 6.61 6.51 6.42	111.32 113.68 101.57 102.48 105.07 102.97 95.97 94.43 97.51 96.25 95.20	0.3 0.8 0.4 0.3 1.6 1.5 0.8 0.8 1.0 1.2 0.5 0.4	31.80 31.80 31.97 31.97 32.49 32.49 31.05 31.05 31.68 31.73 32.04 32.05	8.09 8.09 8.12 8.13 8.15 8.14 8.01 8.03 8.06 8.07 8.11 8.12	- 0. - 0. - 0.
2012/5/24 8:35	W2	MF	832659	807973	15.5	1.000 1.000 7.750 7.750 14.500 14.500 1.000 7.650 7.650 14.300 14.300 1.000	26.05 26.07 26.10 26.11 26.39 26.36 26.00 26.01 26.11 26.19 26.23 26.22 26.20	7.54 7.70 6.87 6.93 7.05 6.92 6.53 6.43 6.61 6.51 6.42 6.72 5.82	111.32 113.68 101.57 102.48 105.07 102.97 95.97 94.43 97.51 96.25 95.20 99.61 86.17	0.3 0.8 0.4 0.3 1.6 1.5 0.8 1.0 1.2 0.5 0.4 0.3	31.80 31.80 31.97 31.97 32.49 32.49 31.05 31.05 31.68 31.73 32.04 32.05 32.06	8.09 8.09 8.12 8.13 8.15 8.14 8.01 8.03 8.06 8.07 8.11 8.12 8.16	- 0. - 0. - 0. - 0.
2012/5/24 8:35	W2	MF	832659	807973	15.5	1.000 1.000 7.750 7.750 14.500 14.500 1.000 7.650 7.650 14.300 14.300 1.000	26.05 26.07 26.10 26.11 26.39 26.36 26.00 26.01 26.11 26.19 26.23 26.22 26.10 26.12	7.54 7.70 6.87 6.93 6.92 6.53 6.43 6.61 6.51 6.42 6.72 5.82 8.78	111.32 113.68 101.57 102.48 105.07 102.97 95.97 94.43 97.51 96.25 95.20 99.61 86.17 129.99	0.3 0.8 0.4 0.3 1.6 1.5 0.8 0.8 1.0 1.2 0.5 0.4 0.3	31.80 31.80 31.97 31.97 32.49 32.49 31.05 31.05 31.68 31.73 32.04 32.05 32.06 32.07	8.09 8.09 8.12 8.13 8.15 8.14 8.01 8.03 8.06 8.07 8.11 8.12 8.16 8.17	- 0. - 0. - 0. - 0.
2012/5/24 8:35	W2	MF	832659	807973	15.5	1.000 1.000 7.750 7.750 14.500 14.500 1.000 1.000 7.650 7.650 14.300 14.300 1.000 1.000 1.000 1.000 1.000 1.000 1.000	26.05 26.07 26.10 26.11 26.39 26.36 26.00 26.01 26.11 26.19 26.23 26.22 26.10 26.12	7.54 7.70 6.87 6.93 7.05 6.92 6.53 6.43 6.61 6.51 6.42 6.72 5.82 8.78	111.32 113.68 101.57 102.48 105.07 102.97 95.97 94.43 97.51 96.25 95.20 99.61 86.17 129.99	0.3 0.8 0.4 0.3 1.6 1.5 0.8 0.8 1.0 1.2 0.5 0.4 0.3	31.80 31.80 31.97 31.97 32.49 32.49 31.05 31.05 31.68 31.73 32.04 32.05 32.06 32.07 32.15	8.09 8.09 8.12 8.13 8.15 8.14 8.01 8.03 8.06 8.07 8.11 8.12 8.16 8.17 8.15	- 0. - 0. - 0. - 0. - 0.
2012/5/24 8:35 2012/5/24 8:20	W2	MF	832659	807973 807894	15.5	1.000 1.000 7.750 7.750 14.500 14.500 1.000 7.650 7.650 14.300 14.300 1.000 1.000 8.450 8.450	26.05 26.07 26.10 26.11 26.39 26.36 26.00 26.01 26.11 26.19 26.23 26.22 26.10 26.12 26.12	7.54 7.70 6.87 6.93 7.05 6.692 6.53 6.43 6.61 6.51 6.42 6.72 5.82 8.78 8.67	111.32 113.68 101.57 102.48 105.07 102.97 95.97 94.43 97.51 96.25 95.20 99.61 86.17 129.99 128.59	0.3 0.8 0.4 0.3 1.6 1.5 0.8 1.0 1.2 0.5 0.4 0.3 0.4 0.3	31.80 31.80 31.97 31.97 32.49 32.49 31.05 31.05 31.68 31.73 32.04 32.05 32.05 32.06 32.07 32.15	8.09 8.09 8.12 8.13 8.15 8.14 8.01 8.03 8.06 8.07 8.11 8.12 8.16 8.17 8.15	- 0. - 0. - 0. - 0. - 0.
2012/5/24 8:35 2012/5/24 8:20	W2	MF	832659	807973 807894	15.5	1.000 1.000 7.750 7.750 14.500 14.500 1.000 1.000 7.650 7.650 14.300 14.300 1.000 1.000 8.450 8.450 15.900	26.05 26.07 26.10 26.11 26.39 26.36 26.00 26.01 26.11 26.19 26.23 26.22 26.10 26.12 26.12 26.18	7.54 7.70 6.87 6.93 7.05 6.92 6.53 6.43 6.61 6.51 6.42 6.72 5.82 8.78 8.67 8.28	111.32 113.68 101.57 102.48 105.07 102.97 95.97 94.43 97.51 96.25 95.20 99.61 86.17 129.99 128.59 122.78	0.3 0.8 0.4 0.3 1.6 1.5 0.8 1.0 1.2 0.5 0.4 0.3 0.4 0.3 0.5	31.80 31.80 31.97 31.97 32.49 32.49 31.05 31.05 31.68 31.73 32.04 32.05 32.06 32.07 32.15 32.16 32.41	8.09 8.09 8.12 8.13 8.15 8.14 8.01 8.03 8.06 8.07 8.11 8.12 8.16 8.17 8.15 8.17	- 0. - 0. - 0. - 0. - 3.
2012/5/24 8:35 2012/5/24 8:20	W2	MF	832659	807973 807894	15.5	1.000 1.000 7.750 7.750 14.500 14.500 1.000 1.000 7.650 7.650 14.300 14.300 1.000 1.000 8.450 8.450 15.900	26.05 26.07 26.10 26.11 26.39 26.36 26.00 26.01 26.11 26.19 26.23 26.22 26.10 26.12 26.12 26.17 26.25 26.26	7.54 7.70 6.87 6.93 7.05 6.92 6.53 6.61 6.51 6.42 6.72 5.82 8.78 8.67 8.28	111.32 113.68 101.57 102.48 105.07 102.97 95.97 94.43 97.51 96.25 95.20 99.61 86.17 129.99 128.59 122.78 119.91	0.3 0.8 0.4 0.3 1.6 1.5 0.8 1.0 1.2 0.5 0.4 0.3 0.4 0.3 0.4 0.3	31.80 31.80 31.97 31.97 32.49 32.49 31.05 31.05 31.68 31.73 32.04 32.05 32.06 32.07 32.15 32.16 32.41	8.09 8.09 8.12 8.13 8.15 8.14 8.01 8.03 8.06 8.07 8.11 8.12 8.16 8.17 8.15 8.17 8.18	- 0. - 0. - 0. - 0. - 3.
2012/5/24 8:35 2012/5/24 8:20	W2	MF	832659	807973 807894	15.5	1.000 1.000 7.750 7.750 14.500 14.500 1.000 7.650 7.650 14.300 14.300 1.000 8.450 8.450 15.900 1.000	26.05 26.07 26.10 26.11 26.39 26.36 26.00 26.01 26.11 26.19 26.22 26.10 26.12 26.12 26.18 26.17 26.25 26.25 26.26	7.54 7.70 6.87 6.93 7.05 6.92 6.53 6.43 6.61 6.51 6.42 6.72 5.82 8.78 8.67 8.28 8.07 8.06	111.32 113.68 101.57 102.48 105.07 102.97 95.97 94.43 97.51 96.25 95.20 99.61 86.17 129.99 128.59 122.78 119.91 119.84 94.43	0.3 0.8 0.4 0.3 1.6 1.5 0.8 0.8 1.0 1.2 0.5 0.4 0.3 0.4 0.3 0.4 0.3 0.5	31.80 31.80 31.97 31.97 32.49 32.49 31.05 31.05 31.05 31.68 31.73 32.04 32.05 32.06 32.07 32.15 32.16 32.41 32.43 30.68	8.09 8.09 8.12 8.13 8.15 8.14 8.01 8.03 8.06 8.07 8.11 8.12 8.16 8.17 8.15 8.17 8.18	- 0. - 0. - 0. - 0. - 3. - 1.
2012/5/24 8:35 2012/5/24 8:20	W2	MF	832659	807973 807894	15.5	1.000 1.000 7.750 7.750 14.500 14.500 1.000 7.650 7.650 14.300 14.300 1.000 8.450 8.450 8.450 15.900 1.000 1.000	26.05 26.07 26.10 26.11 26.39 26.36 26.00 26.01 26.11 26.19 26.22 26.10 26.12 26.12 26.18 26.17 26.26 26.06 26.01 26.17 26.26	7.54 7.70 6.87 6.93 6.92 6.53 6.43 6.61 6.51 6.42 6.72 5.82 8.78 8.67 8.28 8.07 8.06 6.44 6.45	111.32 113.68 101.57 102.48 105.07 102.97 95.97 94.43 97.51 96.25 95.20 99.61 86.17 129.99 122.78 119.91 119.84 94.43 94.85	0.3 0.8 0.4 0.3 1.6 1.5 0.8 0.8 1.0 1.2 0.5 0.4 0.3 0.4 0.3 0.4 0.3 0.5 0.8	31.80 31.80 31.97 31.97 32.49 32.49 31.05 31.05 31.68 31.73 32.04 32.05 32.06 32.07 32.15 32.16 32.41 32.43 30.68 30.78	8.09 8.09 8.12 8.13 8.15 8.14 8.01 8.03 8.06 8.07 8.11 8.12 8.16 8.17 8.15 8.17 8.15 8.17	- 0. - 0. - 0. - 0. - 3. - 1.
2012/5/24 8:35 2012/5/24 8:20	W2	MF	832659	807973 807894	15.5	1.000 1.000 7.750 7.750 14.500 14.500 1.000 7.650 7.650 14.300 1.000	26.05 26.07 26.10 26.11 26.39 26.36 26.00 26.01 26.11 26.19 26.22 26.10 26.12 26.12 26.17 26.25 26.03 26.04 26.04	7.54 7.70 6.87 6.93 7.05 6.92 6.53 6.43 6.61 6.51 6.42 6.72 5.82 8.78 8.67 8.28 8.07 8.06 6.44 6.45 6.39	111.32 113.68 101.57 102.48 105.07 102.97 95.97 94.43 97.51 96.25 95.20 99.61 86.17 129.99 128.59 122.78 119.91 119.84 94.43 94.85 93.87	0.3 0.8 0.4 0.3 1.6 1.5 0.8 0.8 1.0 1.2 0.5 0.4 0.3 0.4 0.3 0.5 0.8 0.8	31.80 31.80 31.97 31.97 32.49 32.49 31.05 31.05 31.68 31.73 32.04 32.05 32.06 32.07 32.15 32.16 32.41 32.43 30.68 30.78	8.09 8.09 8.12 8.13 8.15 8.14 8.01 8.03 8.06 8.07 8.11 8.12 8.16 8.17 8.15 8.17 8.18 8.18 7.90 7.91	- 0 0 0 0 0 1.
2012/5/24 8:35 2012/5/24 8:20 2012/5/24 9:05	W2	MF MF	832659 832049 833691	807973 807894 808179	15.5	1.000 1.000 7.750 7.750 14.500 14.500 1.000 7.650 7.650 14.300 14.300 1.000 1.000 8.450 8.450 15.900 1.000 7.650 7.650	26.05 26.07 26.10 26.11 26.39 26.36 26.00 26.01 26.11 26.19 26.23 26.22 26.10 26.12 26.17 26.25 26.26 26.06 26.01 26.17 26.25 26.26	7.54 7.70 6.87 6.93 7.05 6.92 6.53 6.43 6.61 6.51 6.42 6.72 5.82 8.78 8.67 8.28 8.07 8.06 6.44 6.45 6.39 6.34	111.32 113.68 101.57 102.48 105.07 102.97 95.97 94.43 97.51 96.25 95.20 99.61 86.17 129.99 128.59 122.78 119.91 119.84 94.43 94.43 94.43 93.87 93.10	0.3 0.8 0.4 0.3 1.6 1.5 0.8 1.0 1.2 0.5 0.4 0.3 0.4 0.3 0.5 0.8 1.0 0.3	31.80 31.80 31.97 31.97 32.49 32.49 31.05 31.05 31.68 31.73 32.04 32.05 32.06 32.07 32.15 32.16 32.41 32.43 30.68 30.78 30.98 31.03	8.09 8.09 8.12 8.13 8.15 8.14 8.01 8.03 8.06 8.07 8.11 8.12 8.16 8.17 8.15 8.17 8.18 8.18 7.88 7.90 7.91	- 0 0 0 0 0 1.
2012/5/24 8:35 2012/5/24 8:20 2012/5/24 9:05	W2	MF MF	832659 832049 833691	807973 807894 808179	15.5	1.000 1.000 7.750 7.750 14.500 14.500 1.000 7.650 7.650 14.300 1.000 1.000 8.450 8.450 1.000	26.05 26.07 26.10 26.11 26.39 26.36 26.00 26.01 26.11 26.19 26.23 26.22 26.10 26.12 26.17 26.25 26.26 26.03 26.04 26.04 26.04 26.04	7.54 7.70 6.87 6.93 7.05 6.692 6.53 6.43 6.61 6.51 6.42 6.72 5.82 8.78 8.67 8.28 8.07 8.06 6.44 6.45 6.39 6.34 6.29	111.32 113.68 101.57 102.48 105.07 102.97 95.97 94.43 97.51 96.25 95.20 99.61 86.17 129.99 128.59 122.78 119.91 119.84 94.43 94.43 94.85 93.87 93.10	0.3 0.8 0.4 0.3 1.6 1.5 0.8 0.8 1.0 1.2 0.5 0.4 0.3 0.4 0.3 0.5 0.8 1.0 0.5 0.8	31.80 31.80 31.97 31.97 32.49 32.49 31.05 31.05 31.68 31.73 32.04 32.05 32.06 32.07 32.15 32.16 32.41 32.43 30.68 30.78 30.98 31.03 31.91	8.09 8.09 8.12 8.13 8.15 8.14 8.01 8.03 8.06 8.07 8.11 8.12 8.16 8.17 8.18 8.18 7.88 7.88 7.90 7.91 7.95	- 0. 0. 0 0. 0 0. 1. 1 0. 0.
2012/5/24 8:35 2012/5/24 8:20 2012/5/24 9:05	W2	MF MF	832659 832049 833691	807973 807894 808179	15.5	1.000 1.000 7.750 7.750 14.500 14.500 1.000 1.000 7.650 14.300 14.300 1.000	26.05 26.07 26.10 26.11 26.39 26.36 26.00 26.01 26.11 26.19 26.23 26.22 26.10 26.12 26.12 26.18 26.03 26.04 26.04 26.04 26.04 26.04 26.17 26.18	7.54 7.70 6.87 6.93 7.05 6.92 6.53 6.43 6.61 6.51 6.42 6.72 5.82 8.78 8.67 8.28 8.07 8.06 6.44 6.45 6.39 6.34 6.29 6.41	111.32 113.68 101.57 102.48 105.07 102.97 94.43 97.51 96.25 95.20 99.61 86.17 129.99 128.59 122.78 119.91 119.84 94.43 94.85 93.87 93.10 93.17 94.78	0.3 0.8 0.4 0.3 1.6 1.5 0.8 0.8 1.0 1.2 0.5 0.4 0.3 0.5 0.8 1.3 0.5 0.8 1.3 0.5 1.0 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	31.80 31.80 31.97 31.97 32.49 32.49 31.05 31.05 31.68 31.73 32.04 32.05 32.06 32.15 32.16 32.41 32.43 30.68 30.78 30.78 30.98 31.03 31.91	8.09 8.09 8.12 8.13 8.15 8.14 8.01 8.03 8.06 8.07 8.11 8.12 8.16 8.17 8.18 8.18 7.88 7.90 7.91 7.91 7.95 7.96	- 0. 0. 0 0. 0 0. 1. 1 0. 0.
2012/5/24 8:35 2012/5/24 8:20 2012/5/24 9:05	W2	MF MF	832659 832049 833691	807973 807894 808179	15.5	1.000 1.000 7.750 7.750 14.500 14.500 1.000 1.000 7.650 14.300 1.000 1.000 8.450 8.450 15.900 1.000 7.650 14.300 1.00	26.05 26.07 26.10 26.11 26.39 26.36 26.00 26.01 26.11 26.19 26.22 26.10 26.12 26.18 26.12 26.18 26.17 26.25 26.26 26.03 26.04 26.04 26.04 26.04 26.04 26.04 26.17 26.18	7.54 7.70 6.87 6.93 7.05 6.92 6.53 6.43 6.61 6.51 6.42 6.72 5.82 8.78 8.67 8.28 8.07 8.06 6.44 6.45 6.39 6.34 6.29 6.41 8.39	111.32 113.68 101.57 102.48 105.07 102.97 95.97 94.43 97.51 96.25 95.20 99.61 86.17 129.99 128.59 122.78 119.84 94.43 94.85 93.87 93.10 93.17 94.78 144.62	0.3 0.8 0.4 0.3 1.6 1.5 0.8 0.8 1.0 1.2 0.5 0.4 0.3 0.4 0.3 0.4 0.3 0.5 0.5 0.3 0.2 1.9 1.2 0.3	31.80 31.80 31.97 31.97 32.49 32.49 31.05 31.05 31.05 31.05 31.05 32.04 32.05 32.06 32.07 32.15 32.16 32.41 32.43 30.68 30.78 30.98 31.03 31.91 31.92 31.90	8.09 8.09 8.12 8.13 8.15 8.14 8.01 8.03 8.06 8.07 8.11 8.12 8.16 8.17 8.15 8.17 8.15 8.17 8.19 7.90 7.91 7.95 7.96 8.12	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
2012/5/24 8:35 2012/5/24 8:20 2012/5/24 9:05	W2	MF MF	832659 832049 833691	807973 807894 808179	15.5	1.000 1.000 7.750 7.750 7.750 14.500 14.500 1.000 1.000 7.650 7.650 14.300 1.000 1.000 8.450 8.450 8.450 15.900 1.000 7.650 7.650 14.300 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	26.05 26.07 26.10 26.11 26.39 26.36 26.00 26.01 26.11 26.19 26.22 26.10 26.12 26.12 26.18 26.17 26.26 26.04 26.04 26.04 26.04 26.04 26.17 26.19	7.54 7.70 6.87 6.93 6.92 6.53 6.43 6.61 6.51 6.42 6.72 5.82 8.78 8.67 8.28 8.07 8.06 6.44 6.45 6.39 6.34 6.29 6.41 8.39 7.60	111.32 113.68 101.57 102.48 105.07 102.97 95.97 94.43 97.51 96.25 95.20 99.61 86.17 129.99 128.59 122.78 119.91 119.84 94.43 94.85 93.87 93.10 93.17 94.78 144.62	0.3 0.8 0.4 0.3 0.8 0.8 0.4 0.3 0.8 0.8 0.8 0.0 1.2 0.5 0.4 0.3 0.4 0.3 0.5 0.5 0.3 0.2 1.9 1.9 0.3 0.4	31.80 31.80 31.97 31.97 32.49 32.49 31.05 31.05 31.68 31.73 32.04 32.05 32.06 32.07 32.15 32.16 32.41 32.43 30.68 30.78 30.98 31.03 31.91 31.90 31.89	8.09 8.09 8.12 8.13 8.15 8.14 8.01 8.03 8.06 8.07 8.11 8.12 8.16 8.17 8.15 8.17 8.18 7.88 7.90 7.91 7.95 7.96 8.12 8.12	0.: 0.: 0.: 0.: 0.: 0.: 0.: 0.: 0.: 0.: 0.: 0.: 0.: 0.: 0.: 0.:.
2012/5/24 8:35 2012/5/24 8:20 2012/5/24 9:05	W2	MF MF	832659 832049 833691	807973 807894 808179	15.5	1.000 1.000 7.750 7.750 14.500 14.500 1.000 7.650 7.650 14.300 1.000 1.000 8.450 8.450 8.450 15.900 1.000 7.650 7.650 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	26.05 26.07 26.10 26.11 26.39 26.36 26.00 26.01 26.11 26.19 26.22 26.12 26.12 26.12 26.18 26.17 26.25 26.26 26.04 26.04 26.04 26.04 26.07 26.17 26.19	7.54 7.70 6.87 6.93 7.05 6.92 6.53 6.43 6.61 6.51 6.42 6.72 5.82 8.78 8.67 8.28 8.07 8.06 6.44 6.45 6.39 6.34 6.29 6.41 8.39 7.60 7.42	111.32 113.68 101.57 102.48 105.07 102.97 95.97 94.43 97.51 96.25 95.20 99.61 86.17 129.99 128.59 122.78 119.91 119.84 94.85 93.87 93.10 93.17 94.78 144.62 131.04 128.03	0.3 0.8 0.4 0.3 1.6 1.5 0.8 0.8 1.0 1.2 0.5 0.4 0.3 0.4 0.3 0.5 0.8 1.3 0.5 0.3 0.2 1.9 1.2 0.3 0.4 0.4 0.3 0.5 0.3	31.80 31.80 31.80 31.97 32.49 32.49 31.05 31.05 31.68 31.73 32.04 32.05 32.06 32.07 32.15 32.16 32.41 32.43 30.68 30.78 30.98 31.03 31.91 31.92 31.90 31.89 32.02	8.09 8.09 8.12 8.13 8.15 8.14 8.01 8.03 8.06 8.07 8.11 8.12 8.16 8.17 8.15 8.17 8.18 7.90 7.91 7.95 7.96 8.12 8.12 8.12 8.13	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
2012/5/24 8:35 2012/5/24 8:20 2012/5/24 9:05 2012/5/24 8:05	W2 W3 C1 C2	MF MF	832659 832049 833691 831459	807973 807894 808179 807761	15.5 15.3 16.9	1.000 1.000 7.750 7.750 7.750 14.500 14.500 1.000 1.000 7.650 7.650 14.300 1.000 1.000 8.450 8.450 8.450 15.900 1.000 7.650 7.650 14.300 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	26.05 26.07 26.10 26.11 26.39 26.36 26.00 26.01 26.11 26.19 26.22 26.10 26.12 26.12 26.18 26.17 26.26 26.04 26.04 26.04 26.04 26.04 26.17 26.19	7.54 7.70 6.87 6.93 6.92 6.53 6.43 6.61 6.51 6.42 6.72 5.82 8.78 8.67 8.28 8.07 8.06 6.44 6.45 6.39 6.34 6.29 6.41 8.39 7.60	111.32 113.68 101.57 102.48 105.07 102.97 95.97 94.43 97.51 96.25 95.20 99.61 86.17 129.99 128.59 122.78 119.91 119.84 94.43 94.85 93.87 93.10 93.17 94.78 144.62	0.3 0.8 0.4 0.3 0.8 0.8 0.4 0.3 0.8 0.8 0.8 0.0 1.2 0.5 0.4 0.3 0.4 0.3 0.5 0.5 0.3 0.2 1.9 1.9 0.3 0.4	31.80 31.80 31.97 31.97 32.49 32.49 31.05 31.05 31.68 31.73 32.04 32.05 32.06 32.07 32.15 32.16 32.41 32.43 30.68 30.78 30.98 31.03 31.91 31.90 31.89	8.09 8.09 8.12 8.13 8.15 8.14 8.01 8.03 8.06 8.07 8.11 8.12 8.16 8.17 8.15 8.17 8.18 7.88 7.90 7.91 7.95 7.96 8.12 8.12	0.: 0.: 0.: 0.: 0.: 0.: 0.: 0.: 0.: 0.: 0.: 0.: 0.:.

MF- Mid Flood Tide ME- Mid Ebb tide

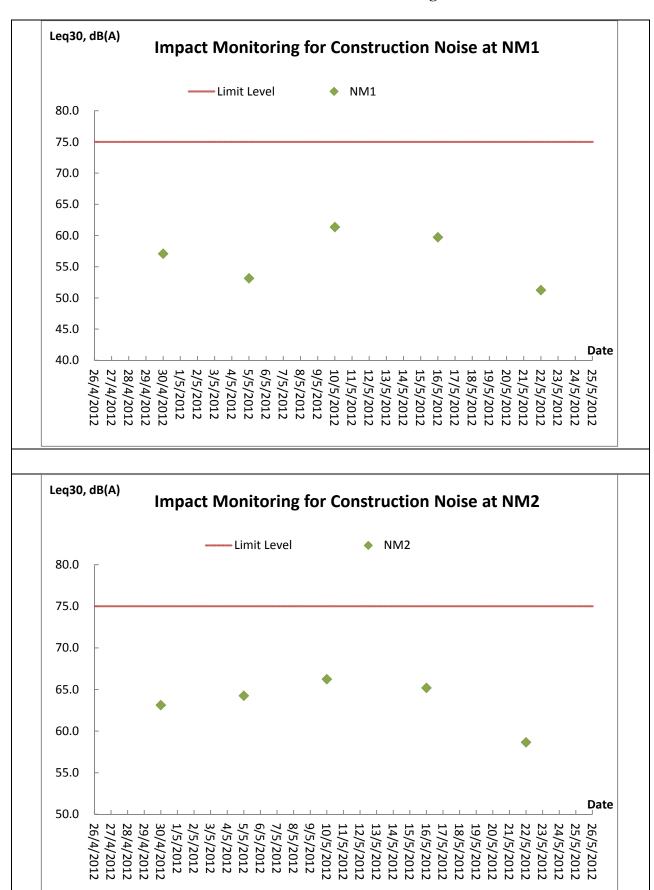


Appendix H

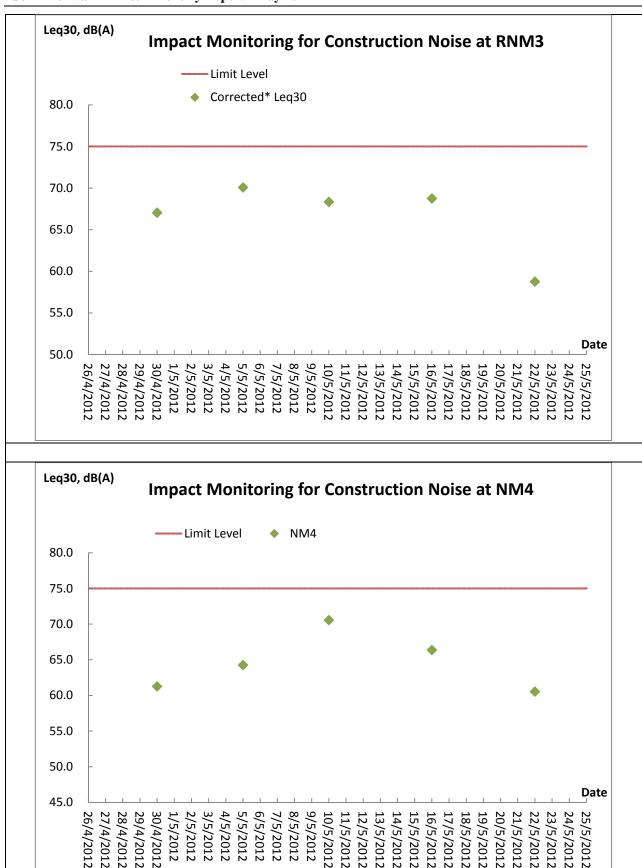
Graphical Plots of Monitoring Results



Air Quality Monitoring – 1 hour TSP Monitoring

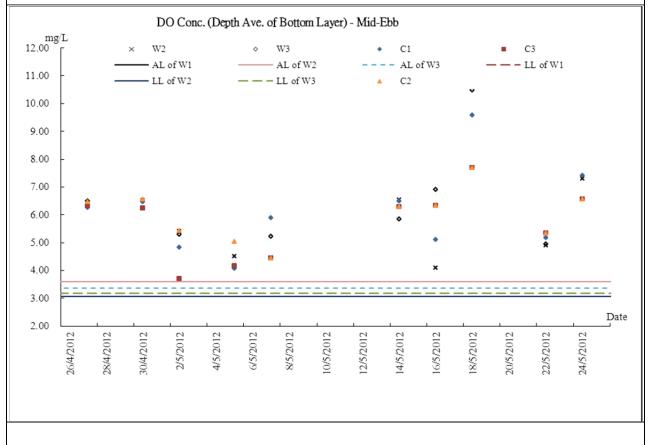


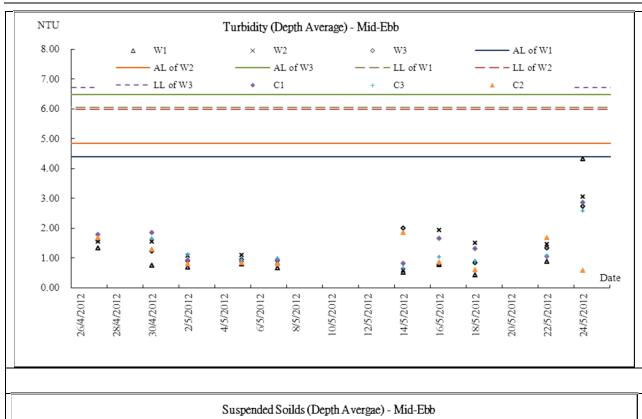
Air Quality Monitoring – 24 hour TSP Monitoring

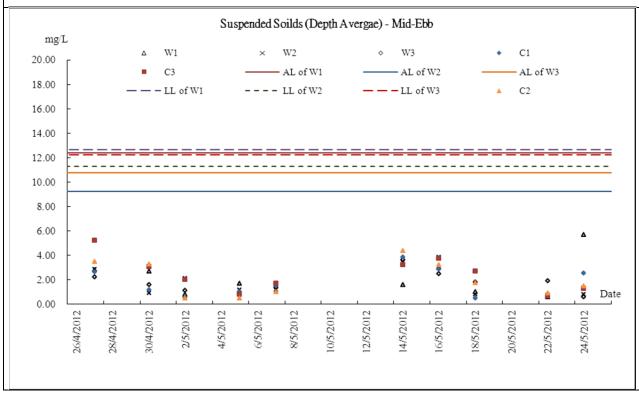


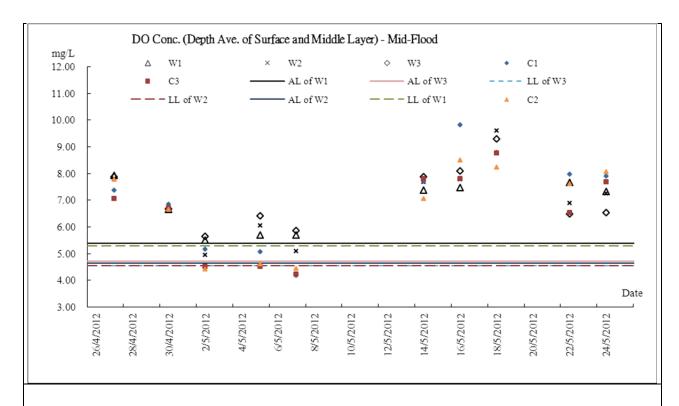
Construction Noise Monitoring

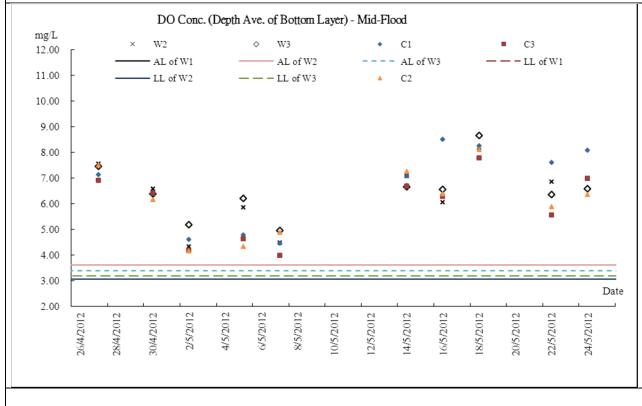


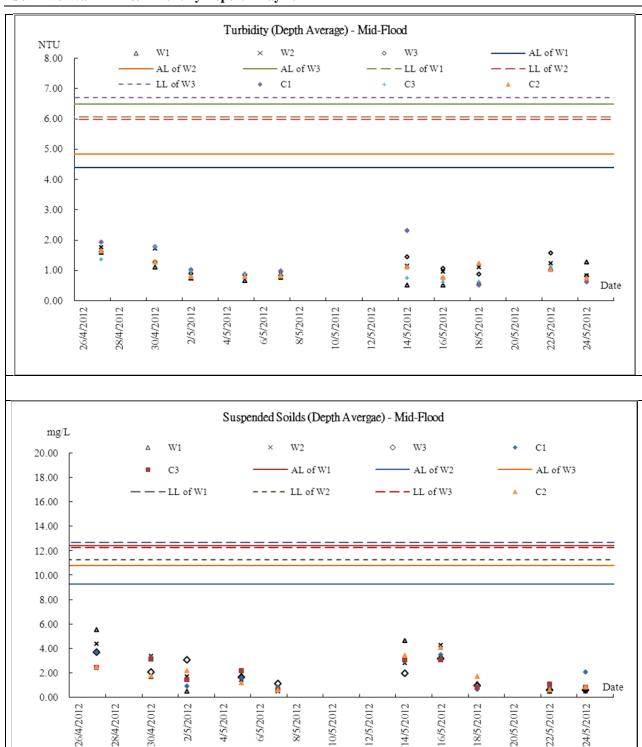





Marine Water Quality Monitoring - Mid-Ebb Tide







Marine Water Quality Monitoring - Mid-Flood Tide

Appendix I

Meteorological Information

Meteorological Data Extracted from HKO during the Reporting Period

Date		Weather
26-Apr-12	Thu	Sunny periods.
27-Apr-12	Fri	Cloudy with occasional rain.
28-Apr-12	Sat	Holiday
29-Apr-12	Sun	Sunny periods.
30-Apr-12	Mon	Moderate to fresh southeasterly winds.
1-May-12	Tue	Holiday
2-May-12	Wed	Mainly fine and hot.
3-May-12	Thu	Sunny intervals with a few showers.
4-May-12	Fri	Moderate east to southeasterly winds.
5-May-12	Sat	Light to moderate southwesterly winds.
6-May-12	Sun	Mainly fine and hot.
7-May-12	Mon	Moderate east to southeasterly winds.
8-May-12	Tue	Mainly fine and hot.
9-May-12	Wed	Sunny intervals with a few showers.
10-May-12	Thu	Moderate southerly winds.
11-May-12	Fri	Moderate east to southeasterly winds.
12-May-12	Sat	Light to moderate easterly winds.
13-May-12	Sun	Isolated thunderstorms
14-May-12	Mon	Moderate southerly winds.
15-May-12	Tue	Sunny intervals tomorrow with a few thunderstorms.
16-May-12	Wed	Cloudy with showers.
17-May-12	Thu	Cloudy with scattered showers and a few isolated thunderstorms.
18-May-12	Fri	Cloudy with occasional rain and a few squally thunderstorms.
19-May-12	Sat	Mainly fine.
20-May-12	Sun	Fresh easterly winds
21-May-12	Mon	occasionally strong offshore and on high ground
22-May-12	Tue	Moderate to fresh easterly winds.
23-May-12	Wed	Moderate east to southeasterly winds.
24-May-12	Thu	Moderate southerly winds.
25-May-12	Fri	Mainly fine.

Appendix J

Monthly Summary Waste Flow Table

Monthly Summary Waste Flow Table for May 2012

			Actu	ıal Quant	ities of In	nert C&D	Material	s Genera	ted Mont	hly				Α	Actual Qu	antities	of C&D	Wastes	Generate	ed Montl	nly	
Month	Generated Large Broken Concrete Concrete		Reused Con	tract	Reused in other Projects (d)		Disposed as Public Fill (e)		Imported Fill (f)		Metals		Paper/ cardboard packaging		Plastics		Chemical Waste		Others, e.g. rubbish			
	(in '00	00m ³)	(in '00	00m ³)	(in '00	00m^3)	(in '00)0m ³)	(in '00	00m ³)	(in '00)0m ³)	(in '00	00kg)	(in '00	00kg)	(in '00	00kg)	(in '00	00kg)	(in to	onne)
	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW
2011	10.430	33.543	0.160	0.407	0.740	1.059	0.000	0.000	9.690	32.484	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	206.870	46.690
Jan	0.000	3.311	0.000	0.000	0.000	0.000	0.000	0.000	0.000	3.311	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	22.530	5.090
Feb	0.170	6.271	0.000	0.000	0.000	0.000	0.000	0.000	0.170	6.271	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	14.860	5.660
Mar	0.619	4.543	0.000	0.000	0.000	0.000	0.000	0.000	0.619	4.543	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	6.940	9.500
Apr	0.157	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.157	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	9.520	1.700
May	0.353	0.916	0.000	0.000	0.000	0.000	0.000	0.000	0.353	0.916	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	6.750	5.090
Jun																						
<mark>Sub-total</mark>	11.729	48.585	0.160	0.407	0.740	1.059	0.000	0.000	10.989	47.526	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	267.470	73.730
Jul																						
Aug																						
Sep																						
Oct																						
Nov																						
Dec																						
Total	11.729	48.585	0.160	0.407	0.740	1.059	0.000	0.000	10.989	47.526	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	267.470	73.730
10001	60.3	313	0.5	67	1.799		0.0	00	58.5	58.515		0.000		0.000		00	0.0	00	0.0	00	341.	200

Remark: Assume 1.0 m^3 vehicle dump load = 1.6 tonnes C&D materials

YSW: Yung Shue Wan

SKW: Sok Kwu Wan

Appendix K

Weekly Site Inspection Checklist

Environmental Team - Weekly Site Inspection and Audit Checklist - Sok Kwu Wan Project: TCS/00512/09 Checklist No. TCS512B- 0 つのブンル) Inspected by Construction of Sewage Treatment Works at ETL/ ET's Representative: Yung Shue Wan and Sok Kwu Wan RE's Representative: Contractor's Representative: IEC's Representative: 2 May 2/1/2 Date: 14200 on. PART A: GENERAL INFORMATION **Environmental Permit No.** Weather: Sunny Fine Cloudy Rainv EP-281/2007A Temperature: °C Humidity: High Moderate Low Wind: Strong Breeze Light Area Inspected Sok Kwu Wan 1 PART B: SITE AUDIT Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Not Note: Follow Photo/ Follow Up: Observations requiring follow-Up actions N/A: Not Applicable Yes No N/A Obs. Up Remarks Section 1: Water Quality 1.01 Is an effluent discharge license obtained for the Project? 1.02 Is the effluent discharged in accordance with the discharge licence? Is the discharge of turbid water avoided? 1.03 Are there proper desilting facilities in the drainage systems to 1.04 reduce SS levels in effluent? Are there channels, sandbags or bunds to direct surface run-off to 1.05 sedimentation tanks? Are there any perimeter channels provided at site boundaries to 1.06 intercept storm runoff from crossing the site? 1.07 Is drainage system well maintained? As excavation proceeds, are temporary access roads protected by 1.08 crushed stone or gravel? 1.09 Are temporary exposed slopes properly covered? 1.10 Are earthworks final surfaces well compacted or protected? 1.11 Are manholes adequately covered or temporarily sealed? 1.12 Are there any procedures and equipment for rainstorm protection? Are wheel washing facilities well maintained? 1.13 1.14 Is runoff from wheel washing facilities avoided? 1.15 Are there toilets provided on site? 1.16 Are toilets properly maintained? Are the vehicle and plant servicing areas paved and located within 1.17 roofed areas? 1.18 Is the oil leakage or spillage avoided? Are there any measures to prevent leaked oil from entering the 1.19 drainage system? Are there any measures to collect spilt cement and concrete 1.20 washings during concreting works? Are there any oil interceptors/grease traps in the drainage systems for vehicle and plant servicing areas, canteen kitchen, etc?

Are the oil interceptors/grease traps maintained properly?

1.22

Note	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance;	Not	Yes	No	Follow	NI/A	Photo/
1.23	Follow Up: Observations requiring follow-Up actions N/A: Not Applicable Is used bentonite recycled where appropriate?	Obs.		NO	Up	N/A	Remarks
1.23	Designated settlement area for runoff/wheel wash waste is provide						
1.24	and located at the streambed with 1-2m deep, 12m long and around 50m ³ capacities for sedimentation.						
1.25	No excavation is undertaken in the settlement area.		Ø.				
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.						
1.27	Mobile toilets should provide on site and located away the stream course.						
1.28	License collector should be employed for handling the sewage of mobile toilet.					Ø	
1.29	Is ponding /stand water avoided?						
1.30	Is open stockpiles well covered by impermeable sheet?		\square				
Secti	on 2: Air Quality		>				
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?						
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?						
2.03	Are the excavated materials sprayed with water during handling?						
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?		\square				
2.05	Is the exposed earth properly treated within six months after the last construction activities?						
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?						
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?						
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?						
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?		Q,				
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?						
2.11	Is dark smoke emission from plant/equipment avoided?		\square				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?						
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?		\Box				
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?					. 🔲	
2.15	Is open burning avoided?						
2.16	Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.						
Section	on 3: Noise					-	
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?		ď,				
3.02	Is silenced equipment adopted?						
3.03	Is idle equipment turned off or throttled down?						
3.04	Are all plant and equipment well maintained and in good condition?						
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?						
3.06	Are hand held breakers fitted with valid noise emission labels during operation?		\mathbf{d}				<u></u>
3.07	Are air compressors fitted with valid noise emission labels during operation?			·			

Note	Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during operation?						
3.09	Are Construction Noise Permit(s) applied for percussive piling works?					Ø	
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?						
3.11	Are valid Construction Noise Permit(s) posted at site entrances?				П		
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).						•
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)						
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).					Image: Control of the con	
Sect	on 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.		·Q				
4.02	Are receptacles available for general refuse collection?						
4.03	Is general refuse sorting or recycling implemented?		\Box				
4.04	Is general refuse disposed of properly and regularly?						
4.05	Is the Contractor registered as a chemical waste producer?						
4.06	Are the chemical waste containers and storage area properly labelled?						
4.07	Are the chemical wastes stored in proper storage areas?						
4.08	Is the chemical container or equipment provided with drip tray?						
4.09	Is the chemical waste storage area used for storage of chemical waste only?						
4.10	Are incompatible chemical wastes stored in different areas?						
4.11	Are the chemical wastes disposed of by licensed collectors?		Ø,				
4.12	Are trip tickets for chemical wastes disposal available for inspection?						
4.13	Are chemical/fuel storage areas bounded?		Ø,		П	\Box	
4.14	Are designated areas identified for storage and sorting of construction wastes?		M				
4.15	Are construction wastes sorted (inert and non-inert) on site?						
4.16	Are construction wastes reused?						
4.17	Are construction wastes disposed of properly?						
4.18	Are site hoardings and signboards made of durable materials instead of timber?						
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\square				
4.20	Are appropriate procedures followed if contaminated material exists?		Ø				
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?		\square				
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.						
4.23	Contaminated sediments will managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.		· .				

	ronmental Team – Weekly Site Inspection and A						<u>AUES</u>
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Sectio	on 5: Landscape & Visual	· · · · · · · · · · · · · · · · · · ·				/	Nomarks
.01	Are retained and transplanted trees in health condition?						Refer to Monthly EM&A report - Appendix M - Mill
.02	Are retained and transplanted trees properly protected?				Ø		1
03	Are surgery works carried out for the damaged trees?					4	
.04	Is damage to trees outside site boundary due to construction activities avoided?						
.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?		ď				
ectic	on 6: Others		/				
.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?		Ø				
Ren	k Kwu Wan) narks: lings of Site Inspection: (2 May ンロン); F	ollow u	p:				
Ren	narks: lings of Site Inspection: (2 Hay 2012); F			equir	ed fo	v vei	ninder.
Ren	narks:			equir	ed fo	v vei	ninder.
Ren Find	narks: lings of Site Inspection: (2 Hay 2012); F			equir	ed to	v vei	ninder.
Ren	narks: lings of Site Inspection: (2 May 2012); F 1059 Ho control is reminded lear PSI.	}	Not r				ninder.
Ren	narks: lings of Site Inspection: (2 May 2012); F MUSquito control is reminded lear PS (.		Not r		ed fo		ninder.
Ren	narks: lings of Site Inspection: (2 May 2012); F 1059 Ho control is reminded lear PSI.		Not r				ninder.

The transplanted and retained uncommon tree species trees were found to be labeled, fenced and protected.

IEC's representative	RE's representative	ET's representative	EO's representative	Contractor's representative
()	Joseph NC' REOW.	(Nuistus)	ley 4 Aur (H.S. Ceun)	(;

Proje	ect:	TCS/00512/09	Inspect	ed by		Checklist No. TCS512B- D&U 2012			
		Construction of Sewage Treatment Works at	ETL/ ET	"s Repres	entative:		Now	a Hun	
	-	Yung Shue Wan and Sok Kwu Wan		presentat tor's Rep			Josep		
	-			epresenta		ve:	<u>Edu</u> Setin		
Date:	:	8 May 2012	Time:	· ·			9:	15am	
	RT A:	GENERAL INFORMATION				Env	ironmenta	al Permit No.	
	ather:		Rainy			✓ EP- 2	281/2007A		
	perature: nidity:	High Moderate Low							
Win	-		Calm						
Area 1	Inspec	ted Kwu Wan							
•	OOK	Wa Wali							
PART	ГВ:	SITE AUDIT			-				
Note:	Not OI Follow	bs.: Not Observed; Yes: Compliance; No: Non-Compliance; VD: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks	
Secti	on 1: W	ater Quality	L			•			
1.01	ls an	effluent discharge license obtained for the Project?							
1.02	Is the	effluent discharged in accordance with the discharge licence?							
1.03	Is the	discharge of turbid water avoided?							
1.04	Are the reduced	nere proper desilting facilities in the drainage systems to e SS levels in effluent?							
1.05	Are th	ere channels, sandbags or bunds to direct surface run-off to entation tanks?							
1.06	Are the interce	nere any perimeter channels provided at site boundaries to ept storm runoff from crossing the site?							
1.07	ls drai	inage system well maintained?							
1.08	As exc	cavation proceeds, are temporary access roads protected by ed stone or gravel?							
1.09	Are te	mporary exposed slopes properly covered?							
1.10	Are ea	arthworks final surfaces well compacted or protected?							
1.11	Are m	anholes adequately covered or temporarily sealed?							
1.12	Are the	ere any procedures and equipment for rainstorm protection?		막					
1.13	Are wh	neel washing facilities well maintained?							
1.14	ls runc	off from wheel washing facilities avoided?							
1.15	Are the	ere toilets provided on site?							
1.16	Are toi	lets properly maintained?							
1.17	Are the roofed	e vehicle and plant servicing areas paved and located within areas?							
1.18	Is the	oil leakage or spillage avoided?							
1.19	Are the	ere any measures to prevent leaked oil from entering the ge system?							
1.20	Are th washin	nere any measures to collect spilt cement and concrete angs during concreting works?							
1.21	Are the	ere any oil interceptors/grease traps in the drainage systems icle and plant servicing areas, canteen kitchen, etc?							
1.22		e oil interceptors/grease traps maintained properly?							

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.23	Is used bentonite recycled where appropriate?					\Box	
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m³ capacities for sedimentation.						
1.25	No excavation is undertaken in the settlement area.						-
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.		d				Patricia
1.27	Mobile toilets should provide on site and located away the stream course.						
1.28	License collector should be employed for handling the sewage of mobile toilet.						
1.29	Is ponding /stand water avoided?						
1.30	Is open stockpiles well covered by impermeable sheet?						
Section	on 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?		V				
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?						
2.03	Are the excavated materials sprayed with water during handling?						
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?		Image: Control of the control of the				
2.05	Is the exposed earth properly treated within six months after the last construction activities?		Image: second control of the control of				
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?						
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?		Ø				
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?		V				
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?						
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?		U				
2.11	Is dark smoke emission from plant/equipment avoided?						
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?		V				
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?						
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?						
2.15	Is open burning avoided?						
2.16	Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.						
Section	on 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?		d				
3.02	Is silenced equipment adopted?						
3.03	Is idle equipment turned off or throttled down?		I				
3.04	Are all plant and equipment well maintained and in good condition?						
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?						
3.06	Are hand held breakers fitted with valid noise emission labels during operation?		V				
3.07	Are air compressors fitted with valid noise emission labels during operation?		d				

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during operation?		V				
3.09	Are Construction Noise Permit(s) applied for percussive piling works?						
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?						
3.11	Are valid Construction Noise Permit(s) posted at site entrances?						
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).						
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)					U	
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).						
Section	n 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.						
4.02	Are receptacles available for general refuse collection?						
4.03	Is general refuse sorting or recycling implemented?						
4.04	Is general refuse disposed of properly and regularly?						
4.05	Is the Contractor registered as a chemical waste producer?						
4.06	Are the chemical waste containers and storage area properly labelled?						
4.07	Are the chemical wastes stored in proper storage areas?						
4.08	Is the chemical container or equipment provided with drip tray?						
4.09	Is the chemical waste storage area used for storage of chemical waste only?		回				
4.10	Are incompatible chemical wastes stored in different areas?		i d				
4.11	Are the chemical wastes disposed of by licensed collectors?						
4.12	Are trip tickets for chemical wastes disposal available for inspection?						
4.13	Are chemical/fuel storage areas bounded?						
4.14	Are designated areas identified for storage and sorting of construction wastes?	63	Ø				
4.15	Are construction wastes sorted (inert and non-inert) on site?		V				
4.16	Are construction wastes reused?						
4.17	Are construction wastes disposed of properly?		9				
4.18	Are site hoardings and signboards made of durable materials instead of timber?						
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?						
4.20	Are appropriate procedures followed if contaminated material exists?						
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?						
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.						
4.23	Contaminated sediments will managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.						

Environmental Team	– Weekly S	Site Inspection	and Audit	Checklist -	Sok Kwu	Wan
---------------------------	------------	-----------------	-----------	-------------	---------	-----

AUES

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks		
Section	on 5: Landscape & Visual								
5.01	Are retained and transplanted trees in health condition?		· 🔲				Refer to Monthly EM&A report - Appendix M —		
5.02	Are retained and transplanted trees properly protected?						2		
5.03	Are surgery works carried out for the damaged trees?								
5.04	Is damage to trees outside site boundary due to construction activities avoided?		Ø						
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?								
Section	on 6: Others								
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?								
(Sok Kwu Wan)									
Rer	narks:								
Fine	dings of Site Inspection: (8 May NP):	Follow u	ıp:						

No environmental issue was observed clearing she inspection.

The transplanted and retained uncommon tree species trees were found to be labeled, fenced and protected.

IEC's representative	RE's representative	ET's representative	EO's representative	Contractor's representative
Seline Leung)	(Joseph NCI) RAON	(News Han)	Penghod (H.S. buny)	() *

Project:	TCS/00512/09 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan	RE's R	T's Represe epresentati ctor's Repr	ve: esentati		Ray () Jasoph Edin	TCS512B-
Date:	15-5-2012	Time:	lepresentat	ive:	-	2.0m	<u> </u>
PART A	A: GENERAL INFORMATION				Env	ironmental	Permit No.
Weathe		Rainy			✓ EP-2	81/2007A	
Temperar Humidity Wind:	y: High Moderate Low	Calm					
Area Insi 1 S	pected ok Kwu Wan						
PART B:	SITE AUDIT	· · · · · · · · · · · · · · · · · · ·					
Note: No	ot Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; of Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
	1: Water Quality						
.01 is	an effluent discharge license obtained for the Project?						
.02 Is	the effluent discharged in accordance with the discharge licence?						
.03 Is	the discharge of turbid water avoided?		Ø				
	e there proper desilting facilities in the drainage systems to duce SS levels in effluent?		Ø				
	re there channels, sandbags or bunds to direct surface run-off to						
oe Ar	e there any perimeter channels provided at site boundaries to the servent storm runoff from crossing the site?		Q/				
.07 ls	drainage system well maintained?						
	s excavation proceeds, are temporary access roads protected by ushed stone or gravel?						
	e temporary exposed slopes properly covered?						
.10 Are	e earthworks final surfaces well compacted or protected?						
11 Are	e manholes adequately covered or temporarily sealed?						
12 Are	e there any procedures and equipment for rainstorm protection?					. 🗆	
13 Are	e wheel washing facilities well maintained?						-
14 ls r	runoff from wheel washing facilities avoided?		Ø,				
15 Аге	e there toilets provided on site?		A				
16 Are	e toilets properly maintained?						
	e the vehicle and plant servicing areas paved and located within ofed areas?						
	the oil leakage or spillage avoided?						
10 Are	e there any measures to prevent leaked oil from entering the		ГÍ				

Are the oil interceptors/grease traps maintained properly?

Are there any measures to collect spilt cement and concrete

Are there any oil interceptors/grease traps in the drainage systems for vehicle and plant servicing areas, canteen kitchen, etc?

1.19

1.20

1.21

1.22

drainage system?

washings during concreting works?

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.23	Is used bentonite recycled where appropriate?						
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m ³ capacities for sedimentation.			. 🔲			
1.25	No excavation is undertaken in the settlement area.						
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.						
1.27	Mobile toilets should provide on site and located away the stream course.						
1.28	License collector should be employed for handling the sewage of mobile toilet.						
1.29	Is ponding /stand water avoided?		2				
1.30	Is open stockpiles well covered by impermeable sheet?						
Sectio	n 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?						
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?						
2.03	Are the excavated materials sprayed with water during handling?		Ø				
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?						
2.05	is the exposed earth properly treated within six months after the last construction activities?		Ø				
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?						
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?						
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?						
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?						
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?		ď				-
2.11	Is dark smoke emission from plant/equipment avoided?						
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?						
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?						
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?						
2.15	Is open burning avoided?						·
2.16	Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.					. 🔲	
Sectio	n 3: Noise		. /				•
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?						
3.02	Is silenced equipment adopted?						
3.03	Is idle equipment turned off or throttled down?						
3.04	Are all plant and equipment well maintained and in good condition?						
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?						
3.06	Are hand held breakers fitted with valid noise emission labels during operation?						<u> </u>
3.07	Are air compressors fitted with valid noise emission labels during operation?						

AU 5

	Note	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
•	3.08	Are flaps and panels of mechanical equipment closed during operation?						
	3.09	Are Construction Noise Permit(s) applied for percussive piling works?						
	3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?						
	3.11	Are valid Construction Noise Permit(s) posted at site entrances?						
	3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).						
	3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure) Temporary/Moveable noise barrier equal to or more than 3m height						
	3.14	with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).						
	Section	on 4: Waste/Chemical Management						
	4.01	Waste Management Plan had been submit to Engineer for approval.						
	4.02	Are receptacles available for general refuse collection?						
	4.03	Is general refuse sorting or recycling implemented?						
	4.04	Is general refuse disposed of properly and regularly?						
	4.05	Is the Contractor registered as a chemical waste producer?						
	4.06	Are the chemical waste containers and storage area properly labelled?						
	4.07	Are the chemical wastes stored in proper storage areas?		Ø				
	4.08	Is the chemical container or equipment provided with drip tray?						
	4.09	is the chemical waste storage area used for storage of chemical waste only?						
	4.10	Are incompatible chemical wastes stored in different areas?		_				
	4.11	Are the chemical wastes disposed of by licensed collectors?						
4	4.12	Are trip tickets for chemical wastes disposal available for inspection?						
4	4.13	Are chemical/fuel storage areas bounded?						
2	4.14	Are designated areas identified for storage and sorting of construction wastes?						
4	4.15	Are construction wastes sorted (inert and non-inert) on site?						
4	1.16	Are construction wastes reused?	. 🗌					
4	1.17	Are construction wastes disposed of properly?	,					
4	1.18	Are site hoardings and signboards made of durable materials instead of timber?						
4	.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?						
4	.20	Are appropriate procedures followed if contaminated material exists?		Ó				
4	.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?						
4	.22	Site cleanliness and appropriate waste management training had provided for the site workers.						
4.	.23	Contaminated sediments will managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.						

	ronmental Team – Weekly Site Inspection and A						AUE
ote:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
ectic	n 5: Landscape & Visual						; ;
01	Are retained and transplanted trees in health condition?						Refer to Monthly EM&A report MAU
.02	Are retained and transplanted trees properly protected?						
.03	Are surgery works carried out for the damaged trees?						•
.04	Is damage to trees outside site boundary due to construction activities avoided?						
.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?						
ectio	n 6: Others						
.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?						
(Sol	ς Kwu Wan)						
•	narks:						
rinc	lings of Site Inspection: (15-5-20 ()):	Follow u	p:				
	No environmental 7534e	·——					
	1 1 1 - inspection	(\	nes	صعص	~ Wes	h.ov	· Overflow
	is observed during inspection	1	zwi-	100.4	i t	7	overflow
	All Areas.	,	• •	VIEW I	- TO E	ay (of KIW
			Was	fore	ud to	2 60	but on.
) .			pacer.
					- A		7000
					Ssept	· ·	region
						•	
าe tr	ansplanted and retained uncommon tree species trees	were four	nd to be	labeled,	fenced a	nd prote	ected.
	epresentative RE's representative ET's representati	tive	EO's rep	rocontati		Contract	or's representative

Project:	TCS/00512/09 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan	RE's R	T's Repres			NZUD NZUD Toces	L 10
			Representa			- FXXXIII	n cenacy
Date:	22 Hay zur	Time:				142	W pm
PART A:	GENERAL INFORMATION					vironmental	Permit No.
Weather: Temperatu	Sunny	Rainy		. [✓ EP-	281/2007A	
Humidity:	High Moderate Low						
Wind:	Strong Breeze Light	Calm					
Area Inspe 1 Sol	ected « Kwu Wan						
PART B:	SITE AUDIT						
lote: Not	Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; ow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
	Water Quality	1 220,					
.01 Is a	n effluent discharge license obtained for the Project?						
.02 Is th	e effluent discharged in accordance with the discharge licence?						
.03 Is th	e discharge of turbid water avoided?		Þ.				
.04 Are	there proper desilting facilities in the drainage systems to uce SS levels in effluent?						
.05 Are	there channels, sandbags or bunds to direct surface run-off to mentation tanks?						
	there any perimeter channels provided at site boundaries to cept storm runoff from crossing the site?		ď				
.07 Is dr	ainage system well maintained?						
	excavation proceeds, are temporary access roads protected by hed stone or gravel?		\square				
.09 Are	temporary exposed slopes properly covered?						
.10 Are	earthworks final surfaces well compacted or protected?						
.11 Are	manholes adequately covered or temporarily sealed?						
.12 Are	there any procedures and equipment for rainstorm protection?						
13 Are	wheel washing facilities well maintained?						·····
.14 Is ru	noff from wheel washing facilities avoided?						•
.15 Are	there toilets provided on site?					<u> </u>	
16 Are t	oilets properly maintained?						
	the vehicle and plant servicing areas paved and located within a areas?						
	e oil leakage or spillage avoided?						
	there any measures to prevent leaked oil from entering the lage system?						
an Are	there any measures to collect spilt cement and concrete ings during concreting works?					. — _ 	
Are t	here any oil interceptors/grease traps in the drainage systems ehicle and plant servicing areas, canteen kitchen, etc?						
101 V	he oil interceptors/grease traps maintained properly?						

	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance;	Not			Follow		Photo/
Note:	Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Obs.	Yes	No	Up	N/A	Remarks
1.23	Is used bentonite recycled where appropriate?						·
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m ³ capacities for sedimentation.						
1.25	No excavation is undertaken in the settlement area.						
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.						
1.27	Mobile toilets should provide on site and located away the stream course.					<u></u>	
1.28	License collector should be employed for handling the sewage of mobile toilet.					Ø.	
1.29	Is ponding /stand water avoided?		7				
1.30	Is open stockpiles well covered by impermeable sheet?						
Section	on 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?		\square				
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?						•
2.03	Are the excavated materials sprayed with water during handling?						
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?						
2.05	Is the exposed earth properly treated within six months after the last construction activities?						
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?						
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?						
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?		Ø,				
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?						
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?						
2.11	Is dark smoke emission from plant/equipment avoided?		ĮŽ				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?						
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?						;
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?						
2.15	Is open burning avoided?		Ź				
	Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.		Ø		. 🔲		
	n 3: Noise						
	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?						
3.02	Is silenced equipment adopted?				•		
3.03	Is idle equipment turned off or throttled down?						
3.04	Are all plant and equipment well maintained and in good condition?		Ø				
	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?						
	Are hand held breakers fitted with valid noise emission labels during operation?						
	Are air compressors fitted with valid noise emission labels during operation?		ď				
							

Note	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during operation?			. [.]			
3.09	Are Construction Noise Permit(s) applied for percussive piling works?						
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?	. 🗀	Ø				
3,11	Are valid Construction Noise Permit(s) posted at site entrances?		Z	. 🗆			
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).						
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure) Temporary/Moveable noise barrier equal to or more than 3m height		ď				
3.14	with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).				. 🗀 .		
Secti	on 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.				. 🔲		
4.02	Are receptacles available for general refuse collection?						
4.03	Is general refuse sorting or recycling implemented?			. 🔲			
4.04	Is general refuse disposed of properly and regularly?						
4.05	Is the Contractor registered as a chemical waste producer?						
4.06	Are the chemical waste containers and storage area properly labelled?		Ø	. 🗆			
4.07	Are the chemical wastes stored in proper storage areas?						
4.08	Is the chemical container or equipment provided with drip tray?		\square				
4.09	Is the chemical waste storage area used for storage of chemical waste only?						
4.10	Are incompatible chemical wastes stored in different areas?						
4.11	Are the chemical wastes disposed of by licensed collectors?						
4.12	Are trip tickets for chemical wastes disposal available for inspection?		Ø				
4.13	Are chemical/fuel storage areas bounded?						
4.14	Are designated areas identified for storage and sorting of construction wastes?		Ø				
4.15	Are construction wastes sorted (inert and non-inert) on site?						
4.16	Are construction wastes reused?						
4.17	Are construction wastes disposed of properly?		Ø	<u> </u>			
4.18	Are site hoardings and signboards made of durable materials instead of timber?			- <u> </u>			
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?						
4.20	Are appropriate procedures followed if contaminated material exists?						
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?						
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.						
4.23	Contaminated sediments will managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.		Ø				

ENVI	ronmental Team – Weekly Site Inspection an	ia Audit C	necklist	- 30K	wu wa			
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not e Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks	
Section	n 5: Landscape & Visual							
5.01	Are retained and transplanted trees in health condition?						Refer to Monthly EM&A report - Appendix M 「人のよう)	oi 2
5.02	Are retained and transplanted trees properly protected?							., 2
5.03	Are surgery works carried out for the damaged trees?					Z	era.	
5.04	Is damage to trees outside site boundary due to construct activities avoided?	ion 🔲						
5.05	Is the night-time lighting controlled to minimize glare to sensit receivers?	tive						
Section	n 6: Others						·	
6.01	Are relevant Environmental Permits posted at all vehicle sentrances/exits?	site	Z					
(86)	(Kuu Wan)					· · · · · · · · · · · · · · · · · · ·		
·	(Kwu Wan)							
Ren	narks:							
Find	lings of Site Inspection: (27 Hay 2012 .):	Follow u	ıp:					
ì.								
()	so adherse emironmental issues							
Ú	ras obsensed during							
	Serger CONVING							
	CTLP TURNE atten:							
	site inspection:							
		•						
The tr	ansplanted and retained uncommon tree species tre	es were fou	ınd to be l	labeled,	fenced ar	nd prote	ected.	
IEC's r	epresentative RE's representative ET's represe	entative	EO's rep	resentativ	⁄e (Contract	or's representative	

Appendix L

Implementation Schedule of Mitigation Measures

Implementation Schedule of Air Quality Measures

EIA	EM&A	EM&A Ref Environmental Protection Measures*	Location /	Implementation		lementa Stages**		Relevant Legislation
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	C	0	& Guidelines
Constr	uction Phase							
3.32	2.34	Installation of 2m high solid fences around the construction site of Pumping Station P2.	Work site / during construction	Contractor		$\sqrt{}$		
3.34	2.34	 Adopting the following good site practices and follow the dust control requirements of the Air Pollution Control (Construction Dust) Regulation: Stockpiles of imported material kept on site should be contained within hoardings, dampened and / or covered during dry and windy weather; Material stockpiled alongside trenches should be covered with tarpaulins whenever works are close to village houses; Water sprays should be used during the delivery and handling of cement, sands, aggregates and the like. Any vehicle used for moving sands, aggregates and construction waste should have properly fitting side and tail boards. Materials should not be loaded to a level higher than the side and tail boards, and should be covered by a clean tarpaulin. 	Work site / during construction	All contractors		~		EIAO-TM, APCO, Air Pollution Control (Construction Dust) Regulation
3.36	Section 2	1 hour and 24 hour dust monitoring and site audit	Designated air monitoring locations / throughout construction period	Contractor/ Environmental Team		V		EM&A Manual

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Noise Measures

EIA	EM&A	Environmental Protection Measures*	Location/Timing	Implementation		olementa Stages *		Relevant Legislation &
Ref	Ref		g	Agent	D	C	O	Guidelines
Construct	tion Phase							
4.41-4.43	3.19	 Use of quiet PME for the construction of the pumping stations Use of temporary noise barrier during the construction of Pumping Station P1a 	Work site /during the construction of Pumping Stations	Contractor		√		EIAO-TM, NCO
4.44 – 4.49	3.19	 Implementation of following measures during the sewer construction: Use of quiet PME or method; Restriction on the number plant (1 item for each type of plant); and Good Site Practices Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program. Mobile plant, if any, should be sited as far away from NSRs as possible. Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum. Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities. 	Work site /during the construction of Sewer.	Contractor				

EIA	EM&A	Environmental Protection Measures*	Location/Timing	Implementation	Implementation Stages **			Relevant Legislation &
Ref	Ref			Agent	D	C	O	Guidelines
4.50 – 4.53	3.19	 Use of noise screening structures such as acoustic shed and barrier wherever practicable and feasible in areas with sufficient clearance and headroom. Adoption of manual working method wherever practicable and feasible in areas where the worksites of the proposed sewer alignment are located less than 20 m from the residential NSRs and less than 30 m from the temple (THT) and the public library. Use of PME for the construction of the section of sewer between the NSR and the Pumping Station P1a should not be allowed during the excavation work of Pumping Station P1a. 	Work site /during the construction of Sewer.	Contractor		√ ·		
4.60	Section 35	Noise monitoring	Designated noise monitoring locations / throughout construction period	Contractor/ Environmental Team		V		EM&A Manual

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Water Quality Control Measures

EIA	EM&A	Environmental Protection Measures*	Location (duration /completion of	Implementation		lement Stages*		Relevant Legislation
Ref	Ref		measures)	Agent	D	C	O	and Guidelines
	ruction Phas							
5.77	4.35	No-dig method using Horizontal Directional Drilling (HDD) would be used for the installation of outfall pipe of about 480 m from shore to minimize the potential water quality impacts arising from the dredging works required for the submarine outfall construction. Silt curtains will be installed around the exit area of the pilot drill.	Marine works site / During construction of submarine outfall	Contractor		√ 		
5.73	4.36	Dredging Works	Marine works site	Contractor				
5.78	4.30	 Implementation of following measures during the dredging works: dredging should be undertaken using closed grab dredgers with a maximum total production rate of 55m³/hr; deployment of 2-layer silt curtains with the first layer enclosing the grab and the second layer at around 50m from the dredging area while dredging works are in progress; dredging operation should be undertaken during ebb tide only; all vessels should be sized such that adequate clearance (i.e. minimum clearance of 0.6m) is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; all pipe leakages should be repaired promptly and plant should not be operated with leaking pipes; excess material should be cleaned from the decks and exposed fittings of barges before the vessel is moved; 	and at the identified water sensitive receivers/ During construction	Contractor		V		
		 adequate freeboard (i.e. minimum of 200mm) should be maintained on barges to ensure that decks are not washed by wave action; all barges should be fitted with tight fitting seals to their bottom 						
		openings to prevent leakage of material;						
		• loading of barges should be controlled to prevent splashing of dredged material to the surrounding water, and barges should not be filled to a level which will cause the overflow of materials or polluted water during loading or transportation; and						

EIA EM&A Ref Ref		Environmental Protection Measures*	Location (duration /completion of	Implementation		lement Stages*	Relevant Legislation	
Ref	Ref	Environmental Protection Weasures	measures)	Agent	D	C	O	and Guidelines
		• the decks of all vessels should be kept tidy and free of oil or other substances that might be accidentally or otherwise washed overboard.						
5.79	4.37	Construction Run-off and Drainage	Construction works	Contractor				ProPECC
		Implementation of the following site practices outlined in ProPECC PN 1/94 for "Construction Site Drainage"	sites					PN 1/94
		• Provision of perimeter channels to intercept storm-runoff from outside the site. These should be constructed in advance of site formation works and earthworks.						
		• Works programmes should be designed to minimize works areas at any one time, thus minimizing exposed soil areas and reducing the potential for increased siltation and runoff.						
		• Sand / silt removal facilities such as sand traps, silt traps and sediment basins should be provided to remove the sand / silt particles from run-off. These facilities should be properly and regularly maintained. These facilities should be carefully planned to ensure that they would be installed at appropriate locations to capture all surface water generated on site.						
		• Careful programming of the works to minimise soil excavation works during rainy seasons.						
		• Exposed soil surface should be protected by paving or hydroseeding as soon as possible to reduce the potential of soil erosion.						
		• Trench excavation should be avoided in the wet season, and if necessary, these should be excavated and backfilled in short sections.						
		Open stockpiles of construction materials on site should be covered with tarpaulin or similar fabric						
5.80	4.38	General Construction Activities	Construction works	Contractor				
		Debris and rubbish generated on-site should be collected, handled and disposed of properly to avoid entering the nearby coastal waters and stormwater drains. All fuel tanks and storage areas should be provided	sites					

EIA	EM&A	Location (duration /completion of		Implementation	Implementation Stages**			Relevant Legislation
Ref	Ref	Environmental Protection Weasures	measures)	Agent	D	C	0	and Guidelines
		with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. Open drainage channels and culverts near the works areas should be covered to block the entrance of large debris and refuse.						
5.81	4.39	Wastewater Arising from Workforce Portable toilets should be provided by the Contractors, where necessary, to handle sewage from the workforce. The Contractor should also be responsible for waste disposal and maintenance practices.	Construction works sites	Contractor		V		
5.96	Section 4	Water quality monitoring	Designated water monitoring locations/ throughout construction period	Contractor		V		EM&A Manual

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

N/A Not applicable

Implementation Schedule of Sediment Contamination Mitigation Measures

EIA	EM&A	Environmental Protection Measures*	Location / Timing	Implementation	Implementation Stages**			Relevant Legislation &
Ref	Ref	Zin vin olimentan 1 Toteetton Toteasures	Location / Timing	Agent	D	C	О	Guidelines
6.17	5.3	Follow the requirement and procedures for dredged mud disposal specified under the WBTC No. 34/2002.	Marine works site / during dredging works	Contractor		V		WBTC No. 34/2002
6.18	5.4	Implement appropriate dredging methods which have been incorporated into the recommended water quality mitigation measures.	Marine works site, during dredging works	Contractor		√		
6.19	5.5	 During the transportation and disposal of the dredged sediment, the following measures should be taken: Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved. Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels should be equipped with automatic self monitoring devices as specified by the DEP. 	Marine works site and at the identified sensitive receivers	Contractor		V		

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Solid Waste Management Measures

EIA	EM&A		Location /	Implementation		plementa Stages **		Relevant Legislation &
Ref	Ref Environmental Protection Measures*		Timing	Agent	D	C	0	Guidelines
Construct	tion Phase							
7.14	6.4	 Good site practices Nomination of an approved person, such as a site manager, to be responsible for implementation of good site practices, arranging for collection and effective disposal to an appropriate facility, of all wastes generated at the site Training (proper waste management and chemical handling procedure) should be provided for site staffs Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers. Provision of sufficient waste disposal points and regular collection for disposal. Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Facility. Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors. Maintain records of the quantities of wastes generated, recycled and disposed. 	Work sites/During construction	Contractor		٨		Waste Disposal Ordinance (Cap.54)
7.15	6.5	To monitor the disposal of C&D waste at landfills and to control fly tipping, a trip-ticket system should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.	Work sites/During construction	Contractor		V		WBTC No. 21/2002
7.16	6.6	Recommendations to achieve waste reduction include: • segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; • to encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated	Work sites/During construction	Contractor		V		WBTC No. 4/98, 5/98

EIA	EM&A		Location /	Implementation		olementa Stages **		Relevant Legislation & Guidelines
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	C	0	
		 by the work force; any unused chemicals or those with remaining functional capacity should be recycled; use of reusable non-timber formwork to reduce the amount of C&D material; prior to disposal of C&D waste, it is recommended that wood, steel and other metals should be separated for the use and for recycling to minimize the guestite of wester. 						
		re-use and / or recycling to minimise the quantity of waste to be disposed of to landfill; • proper storage and site practices to minimise the potential for damage or contamination of construction materials; and • plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste.						
7.18	6.7	General Site Wastes A collection area for construction site waste should be provided where waste can be stored prior to removal from site An enclosed and covered area for the collection of the waste is recommended to reduce 'wind blow' of light material	Work sites/During construction	Contractor		V		Public Health and Municipal Services Ordinance (Cap. 132)
7.19-7.20	6.8 – 6.9	 Chemical Wastes After use, chemical waste should be handled according to the Code of Practice on the Package, Labelling and Storage of Chemical Wastes Any unused chemicals or those with remaining functional capacity should be recycled Waste should be properly stored on site within suitably designed containers and should be collected by an approved licensed waste collectors for disposal at the Chemical Waste Treatment Facility or other licenced facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation under the Waste Disposal Ordance. 	Work sites/During construction	Contractor		V		Waste Disposal (Chemical Waste) (General) Regulation, Code of Practice on the Packaging Labelling and Storage of Chemical Wastes

EIA	EM&A		Location /	Implementation		olementa Stages **		Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Timing Agent D		C	0	Guidelines	
		 Any service shop and minor maintenance facilities should be located on hard standing within a bunded area, and sumps and oil interceptors should be provided. 						
		• Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should be undertaken within the designated areas equipped control these discharges						
7.21-7.22	6.10 – 6.11	 Construction and Demolition Material The C&D waste should be separated on-site into three categories: public fill, the inert portion of the C&D material (e.g. concrete and rubble), which should be re-used on-site or disposed of at a public filling area; C&D waste for re-use and / or recycling, the non-inert portion of the C&D material, (e.g. steel and other metals, woods, glass and plastic); C&D waste which cannot be re-used and / or recycled (e.g. wood, glass and plastic) Where possible, inert material should be re-used on-site Where practicable, steel and other metals should be separated for re-use and/or recycling prior to disposal of C&D material	During all construction phases	Contractors		V		WBTC No. 4/98, 5/98, 21/2002, 25/99, 12/2000

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Ecological Impact Measures

EIA Ref	EM&A Ref	Environmental Protection Measures*	Location / Timing	Implementation Agent	Imp	lementa Stages		Relevant Legislation & Guidelines
			Timing	Agent	D	С	O	Guidennes
	ction Phase	r	T	Γ	1	,	ı	T
8.157	7.2	 Terrestrial Ecology Labeling and fencing of the uncommon tree species Avoidance of use of woodland habitats as Works Area, in particular where trees are located 	Work sites / during construction phase	Contractor		V		
8.159 – 8.160	7.3	Subtidal Ecology Use of HDD technique Dredging Use of closed-grab dredger Deploy silt curtains during dredging.	Marine works site / during dredging works	Contractor		٧		
8.161	7.4	 Site runoff Construction and maintenance of sand / silt removal facilities Silt curtains Timing of earthworks Coverage of sand / fill piles during storms. Barriers along the landward side of Pumping Station P2 site boundary (to prevent site runoff from entering area with Romer's Tree Frog) 	All work sites / during construction phase	Contractor		√		

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Fisheries Impact Measures

EIA	EM&A				ementa tages*		Relevant Legislation	
Ref	Ref		Timing	Agent	D	C	O	& Guidelines
9.29	8.3	Use of closed grab dredging and silt curtains around the immediate dredging area and low dredging rates as recommended in Water Quality of the EIA report	Marine works site, during dredging works	Contractor		V		TM on EIA Process
9.32	Section 8	Water quality monitoring (see Implementation Schedule for Water Quality Control Measures)	Designated monitoring locations / throughout construction period and 1 year following operation of the STW	Contractor and Environmental Team		V	V	EM&A Manual

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Landscape and Visual Impact Measures

EIA EM&A Ref Ref		M&A Ref Environmental Protection Measures*	Location /	Implementation	Implementation Stages **			Relevant Legislation &
Kei	Kei		Timing	Agent	D	C	0	Guidelines
Constr	uction Pha	ase						
10.74	9.10	Retaining existing trees and minimizing damage to vegetation by close coordination and on site alignment adjusted of rising main and gravity sewer pipelines.	All sites	Contractor		√		WBTC No. 14/2002
		Careful and efficient transplanting of affected trees to temporary or final transplant location (the proposed tree to be transplanted is a semi-mature <i>Macaranga tanarius</i> and is located at the proposed Pumping Station P2 location).	All sites	Contractor		V		WBTC No. 14/2002
		Short excavation and immediate backfilling sections upon completion of works to reduce active site area.	All sites	Contractor		√		
		Screening of site construction works by use of hoarding that is appropriate to its site.	All sites	Contractor		V		WBTC No. 19/2001
		Conservation of topsoil for reuse.	All sites	Contractor		V		
		Night-time light source from marine fleets should be directed away from the residential units.	Outfall area.	Contractor		√		

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Appendix M

Tree Inspection Report

經緯園藝有限公司

Melofield Nursery & Landscape Contractor Ltd

元朗下攸田村 125 號 125, Ha Yau Tin Tsuen, Yuen Long, N.T.

TEL: (852) 2572-0048 FAX: (822)2573-9099 E-mail: melofield@netvigator.com

Contract No. DC/2009/13

Project Name: Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Tree Inspection Report for Celtis timorensis

Inspection Date: 30-04-2012

1. Introduction

According to the requirement in the Environmental Permit EP-281/2007/A, the uncommon tree species, *Celtis timorensis*, found in the pumping station P1b area as shown in figure below shall be properly transplanted to the area immediately south of the Pumping Station P1b before commencement of construction of the Pumping Station P1b

This Tree Inspection Report describes the bi weekly monitoring result of the *Celtis timorensis*, which were additionally planted as the compensation of previously transplanted Celtis timorensis CT7, CT8, CT9 & CT10.

2. Summary of Inspection

Date of Inspection	30 April 2012, around 15:30
Location	A soil ground adjacent to the Pumping
	Station P1b Chung Mei, at Sok Kwu Wan,
	Lamma Island.
Weather	Cloudy, the vegetations are located under
	the shade of existing tall trees.
The labeled Celtis timorensis	CT_1A, CT_2A, CT_3A, CT_4A, CT_5A,
under Tree Protection Zone 2	CT_6A & CT_7A,

3. Proposed Inspection Schedule

Month	Actual / proposed Inspection Date
July, 2011	14 and 25 July 2011
August, 2011	9 and 26 August 2011
September, 2011	5 and 23 September 2011
October, 2011	10 and 24 October 2011
November, 2011	8 November 2011
December, 2011	14 and 30 December 2011
January 2012	31 January 2012
February 2012	15 and 29 February 2012
March 2012	15 and 31 March 2012
April 2012	16 and 30 April 2012

4. Summary of Inspection Result

Tree No	Speciation	Health Status
CT_1A	Celtis timorensis	Very Poor
CT_2A	Celtis timorensis	Very Poor
CT_3A	Celtis timorensis	Very Poor
CT_4A	Celtis timorensis	Fair
CT_5A	Celtis timorensis	Good
CT_6A	Celtis timorensis	Good
CT_7A	Celtis timorensis	Very Poor

<u>Inspection parameters or criteria</u>

Good Leaves and stem grown very lush, additional or larger in size of leaves can be observed in each inspection

Fair Green leaves can be found. No major unhealthy condition of the plant is observed. The condition is stable.

Poor Fewer green leaves than usual are observed. No new leaf is grown and the condition keep stable. The bark is dry. The plant is weak.

Very Poor No new green leaf or bud can be observed. The bark is dry. The plant is weak.

Death The plant was death.

5. Description of Inspection Results:

During the Site Inspection on 30 Apr, it was found that 3 nos. of additionally planted Celtis timorensis were damaged by tree trunks unexpectedly fell down to the protection area. The trunks end was found attacked by white ants and decayed seriously.

Tree ID: CT_1A

Current Status: Death

Justification: The stem was snapped by a broken tree trunk. The plant was death.

Tree ID:CT_2A

Current Status: Very Poor

Justification: Leaves were dry. The bark was also dry. No significant improvement in health. The plant was very weak.

Tree ID: CT_3A

Current Status: Very Poor

Justification: The stem was damaged by a broken tree trunk. No significant improvement in health. The plant was weak.

Tree ID: CT_4A

Current Status: Very Poor

Justification: Leaves were dry. The bark was also dry. No significant improvement in health. The plant was very weak.

Tree ID: CT_5A

Current Status: Good

Justification: Green leaves were found growing. Significant improvement in health. The plant was healthy. Some leaves were damaged by insect.

Tree ID: CT_6A

Current Status: Good

Justification: Green leaves were found growing. Significant improvement in health. The plant was healthy.

經緯園藝有限公司

Melofield Nursery & Landscape Contractor Ltd

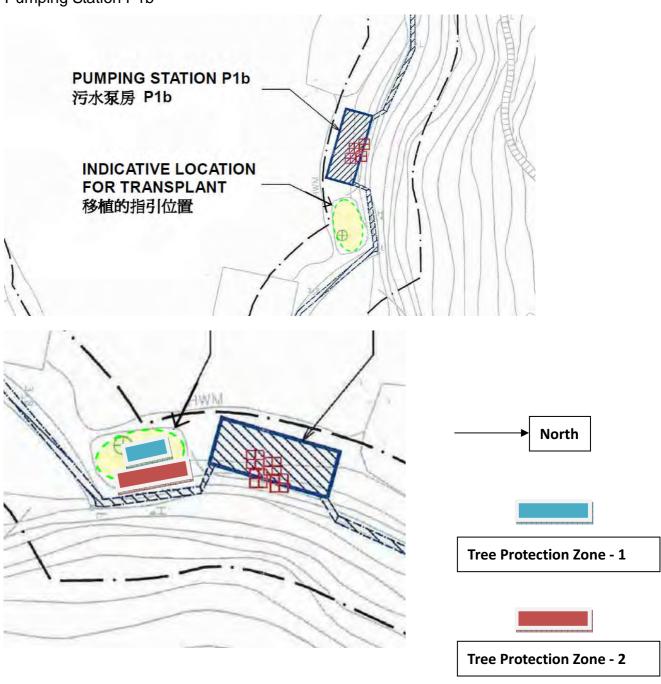
元朗下攸田村 125 號 125, Ha Yau Tin Tsuen, Yuen Long, N.T.

TEL: (852) 2572-0048 FAX: (822)2573-9099 E-mail: melofield@netvigator.com

Contract No. DC/2009/13

Project Name: Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan


Tree Inspection Report for Celtis timorensis

<u>Inspection Date: 15-05-2012</u>

1. Introduction

According to the requirement in the Environmental Permit EP-281/2007/A, the uncommon tree species, *Celtis timorensis*, found in the pumping station P1b area as shown in figure below shall be properly transplanted to the area immediately south of the Pumping Station P1b before commencement of construction of the Pumping Station P1b

This Tree Inspection Report describes the bi weekly monitoring result of the *Celtis timorensis*, which were additionally planted as the compensation of previously transplanted Celtis timorensis CT7, CT8, CT9 & CT10.

2. Summary of Inspection

Date of Inspection	15 May 2012, around 15:30
Location	A soil ground adjacent to the Pumping
	Station P1b Chung Mei, at Sok Kwu Wan,
	Lamma Island.
Weather	Cloudy, the vegetations are located under
	the shade of existing tall trees.
The labeled Celtis timorensis	CT_2A, CT_3A, CT_4A, CT_5A & CT_6A
under Tree Protection Zone 2	

3. Proposed Inspection Schedule

Month	Actual / proposed Inspection Date
July, 2011	14 and 25 July 2011
August, 2011	9 and 26 August 2011
September, 2011	5 and 23 September 2011
October, 2011	10 and 24 October 2011
November, 2011	8 November 2011
December, 2011	14 and 30 December 2011
January 2012	31 January 2012
February 2012	15 and 29 February 2012
March 2012	15 and 31 March 2012
April 2012	16 and 30 April 2012
May 2012	15 May 2012

4. Summary of Inspection Result

Tree No	Speciation	Health Status
CT_2A	Celtis timorensis	Fair
CT_3A	Celtis timorensis	Fair
CT_4A	Celtis timorensis	Very Poor
CT_5A	Celtis timorensis	Good
CT_6A	Celtis timorensis	Good

<u>Inspection parameters or criteria</u>

Good Leaves and stem grown very lush, additional or larger in size of leaves can be observed in each inspection

Fair Green leaves can be found. No major unhealthy condition of the plant is observed. The condition is stable.

Poor Fewer green leaves than usual are observed. No new leaf is grown and the condition keep stable. The bark is dry. The plant is weak.

Very Poor No new green leaf or bud can be observed. The bark is dry. The plant is weak.

5. Description of Inspection Results:

Tree ID:CT_2A

Current Status: Fair

Justification: New green leaves were found. Significant improvement in health. The plant was growing.

Tree ID: CT_3A

Current Status: Fair

Justification: New green leaves were found. Significant improvement in health. The plant was growing.

Tree ID: CT_4A

Current Status: Very Poor

Justification: Leaves were dry. The bark was also dry. No significant improvement in health. The plant was very weak.

Tree ID: CT_5A

Current Status: Good

Justification: Green leaves were found. Significant improvement in health. The plant was healthy. Some leaves were damaged by insect.

Tree ID: CT_6A

Current Status: Good

Justification: Green leaves were found. Significant improvement in health. The plant was healthy.

Overall Condition

In the Tree Protection Zone 2, the condition of CT_4A was generally poor. The health of CT_2A,CT_3A,CT_5A and CT_6A were found satisfactory. Regular watering and weeding will be carried out during dry weather. They may better recover under this warm and rainy weather. Some newly grown green leaves were found eaten by insects. Remove any insect found on the plant physically to prevent the bud attacked by leaf-feeding insect. No pesticide should be used when the plants are weak.

Considering the condition of CT4A were in very poor condition, compensatory of additional Celtis timorensis is proposed and will be carried out in the coming warm weather season for better growing.

Tree ID: CT_7A

Current Status: Death

Justification: The stem was snapped by a broken tree trunk. The plant was death.

Overall Condition

In the Tree Protection Zone 2, the condition of CT_1A, CT_3A and CT_7A were damaged by a fell tree trunk. The health of CT5A and CT6A were found satisfactory. Regular watering and weeding will be carried out during dry weather. They may better recover under this warm and rainy weather. Some newly grown green leaves were found eaten by insects. Remove any insect found on the plant physically to prevent the bud attacked by leaf-feeding insect. No pesticide should be used when the plants are weak.

Considering the condition of CT2A and CT4A were in very poor condition, compensatory of additional Celtis timorensis is proposed and will be carried out in the coming warm weather season for better growing.