

PROJECT No.: TCS/00512/09

DSD CONTRACT No. DC/2009/13 CONSTRUCTION OF SEWAGE TREATMENT WORKS AT YUNG SHUE WAN AND SOK KWU WAN

SOK KWU WAN PORTION AREA
MONTHLY ENVIRONMENTAL MONITORING AND AUDIT
(EM&A) REPORT (No.24) – JULY 2012

PREPARED FOR LEADER CIVIL ENGINEERING CORPORATION LIMITED

Date	Reference No.	Prepared By	Approved By
10 August 2012	TCS00512/09/600/R0528v2	Aula	Shum
		Nicola Hon	T.W. Tam

	Environmental Consultant	Environmental Team Leader

Version	Date	Description
1	7 August 2012	First Submission
2	10 August 2012	Amended against IEC's comments on 10 August 2012

Ouality Index

Scott Wilson CDM Joint Venture

Chief Engineer/Harbour Area Treatment

Scheme

Drainage Services Department

5/F Western Magistracy 2A Pok Fu Lam Road

Hong Kong

Your reference:

Our reference:

05117/6/16/391414

Date:

14 August 2012

BY FAX & EMAIL

Attention: Mr Kenley C K Kwok

Dear Sirs.

Contract No. DC/2009/13 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan Sok Kwu Wan Portion Area Monthly Environmental Monitoring and Audit (EM&A) Report No. 24 (July 2012)

We refer to the Monthly EM&A Monitoring Report No. 24 for July 2012 received under cover of the email from the Environmental Team. Action-United Environmental Services and Consulting (AUES). dated 10 August 2012. We have no comment and have verified the captioned report.

Yours faithfully

SCOTT WILSON CDM JOINT VENTURE

Rodney Ip

Independent Environmental Checker

ICWR/SYSL/ycky

CC

Leader Civil Engineering

AUES ER/LAMMA

CDM

(Attn: Mr Vincent Chan)

(Attn: Mr T.W. Tam)

(Attn: Mr Neil Wong) (Attn: Mr Mark Sin)

EXECUTIVE SUMMARY

ES.01. This is the 24th monthly Environmental Monitoring and Audit (EM&A) Report for Sok Kwu Wan (hereinafter 'this Report') for the designated works under the Environmental Permit [EP-281/2007/A], covering a period from 26 June to 25 July 2012 (hereinafter 'the Reporting Period').

ENVIRONMENTAL MONITORING AND AUDIT ACTIVITIES

ES.02. Environmental monitoring activities under the EM&A programme in this Reporting Period are summarized in the following table.

Issues	Environmental Monitoring Parameters / Inspection	Occasions
Air Quality	1-hour TSP	45
All Quality	24-hour TSP	14*
Construction Noise	$L_{eq(30min)}$ Daytime	16
Water Quality	Marine Water Sampling	11#
Inspection / Audit	ET Regular Environmental Site Inspection	5

^{*} Power failure of HVS was occurred at AM3 on 6 July 2012 after the heavy rainstorm

ES.03. As informed by the Contractor, the marine work of outfall construction has been commenced on 19 July 2011, therefore, water quality was undertaken in this Reporting Period.

BREACH OF ACTION AND LIMIT (A/L) LEVELS

ES.04. No exceedance of air quality and construction noise monitoring were recorded in this Reporting Period. The statistics of environmental exceedance, NOE issued and investigation of exceedance are summarized in the following table.

Environmental	Monitoring	Action	Action Limit Event & Action		ion	
Issues	Parameters Parameters	Level	Level	NOE Issued	Investigation	Corrective Actions
Air Quality	1-hour TSP	0	0	0		
	24-hour TSP	0	0	0		
Construction Noise	L _{eq(30min)} Daytime	0	0	0		
	DO	0	0	0		
Water Quality	Turbidity	0	0	0		
	SS	0	0	0		

Note: NOE – Notification of Exceedance

ENVIRONMENTAL COMPLAINT, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

ES.05. No written or verbal environmental complaint, summons or successful prosecutions were recorded in this Reporting Period.

REPORTING CHANGE

ES.06. No reporting change was made in this Reporting Period.

SITE INSPECTION BY EXTERNAL PARTIES

ES.07. No site inspection was undertaken by external parties i.e. Environmental Protection Department (EPD) or Agriculture, Fisheries and Conservation Department (AFCD) within the Reporting Period.

FUTURE KEY ISSUES

ES.08. During wet season, muddy water and other water quality pollutants via site surface water runoff into

[#] Marine water monitoring on 24 July was cancelled due to the inclement weather and the influence of Tropical Cyclone Warning No.3.

the sea body within Fish culture zone at Picnic Bay and the Secondary recreation contact subzone at Mo Tat Wan is the key issue of the Project. Mitigation measures for water quality should be properly maintained to prevent any muddy or sandy runoff from the loose soil surface overflow on the site boundary.

ES.09. Moreover, special attention should be also paid on the dust mitigation measures to avoid fugitive dust emissions from loose soil surface or haul road. Mitigation measures implemented for control the surface runoff including wheel wash facilities, covering of the loose soil surface or stockpile with tarpaulin sheet, etc., should fully implement.

TABLE OF CONTENTS

1	INTRODUCTION PROJECT BACKGROUND REPORT STRUCTURE	1 1 2
2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE CONSTRUCTION PROGRESS SUMMARY OF ENVIRONMENTAL SUBMISSIONS	3 3 3 3
3	SUMMARY OF BASELINE MONITORING REQUIREMENTS ENVIRONMENTAL ASPECT MONITORING LOCATIONS MONITORING FREQUENCY AND PERIOD MONITORING EQUIPMENT EQUIPMENT CALIBRATION METEOROLOGICAL INFORMATION DATA MANAGEMENT AND DATA QA/QC CONTROL REPORTING DETERMINATION OF ACTION/LIMIT (A/L) LEVELS	4 4 4 5 6 7 7 7 7 8
4	IMPACT MONITORING RESULTS - AIR QUALITY	9
5	IMPACT MONITORING RESULTS – CONSTRUCTION NOISE	10
6	IMPACT MONITORING RESULTS – WATER QULAITY	11
7	ECOLOGY	13
8	WASTE MANAGEMENT	14
9	SITE INSPECTION	15
10	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	16
11	IMPLEMENTATION STATUS OF MITIGATION MEASURES	17
12	IMPACT FORECAST	23
13	CONCLUSIONS AND RECOMMENDATIONS CONCLUSIONS RECOMMENDATIONS	24 24

LIST OF TABLES

Table 2-1	Status of Environmental Licenses and Permits
Table 3-1	Summary of EM&A Requirements
Table 3-2	Location of Air Quality Monitoring Station
Table 3-3	Location of Construction Noise Monitoring Station
Table 3-4	Location of Marine Water Quality Monitoring Station
Table 3-5	Action and Limit Levels for Air Quality
Table 3-6	Action and Limit Levels for Construction Noise
Table 3-7	Action and Limit Levels for Marine Water Quality
Table 4-1	Summary of 24-hour and 1-hour TSP Monitoring Results – AM1
Table 4-2	Summary of 24-hour and 1-hour TSP Monitoring Results – AM2
Table 4-3	Summary of 24-hour and 1-hour TSP Monitoring Results – AM3
Table 5-1	Summarized of Construction Noise Monitoring Results at NM1
Table 5-2	Summarized of Construction Noise Monitoring Results at NM2
Table 5-3	Summarized of Construction Noise Monitoring Results at RNM3
Table 5-4	Summarized of Construction Noise Monitoring Results at NM4
Table 6-1	Summary of Water Quality Results – Mid-ebb Tides (Dissolved Oxygen)
Table 6-2	Summary of Water Quality Results – Mid-ebb Tides (Turbidity & Suspended Solids)
Table 6-3	Summary of Water Quality Results – Mid-flood Tides (Dissolved Oxygen)
Table 6-4	Summary of Water Quality Results – Mid-flood Tides (Turbidity & Suspended Solids)
Table 6-5	Summarized Exceedances of Marine Water Quality
Table 8-1	Summary of Quantities of Inert C&D Materials
Table 8-2	Summary of Quantities of C&D Wastes
Table 8-1	Site Observations
Table 10-1	Statistical Summary of Environmental Complaints
Table 10-2	Statistical Summary of Environmental Summons
Table 10-3	Statistical Summary of Environmental Prosecution
Table 11-1	Environmental Mitigation Measures

LIST OF APPENDICES

Appendix A	Site Layout Plan – Sok Kwu Wan Portion Area
Appendix B	Organization Structure and Contact Details of Relevant Parties
Appendix C	A Master and Three Months Rolling Construction Programme
Appendix D	Location of Monitoring Stations (Air Quality / Construction Noise / Water Quality)
Appendix E	Monitoring Equipments Calibration Certificate
Appendix F	Event and Action Plan
Appendix G	Monitoring Data Sheet
Appendix H	Graphical Plots of Monitoring Results
Appendix I	Meteorological Information
Appendix J	Monthly Summary Waste Flow Table
Appendix K	Weekly Site Inspection Checklist
Appendix L	Implementation Schedule of Mitigation Measures
Appendix M	Tree Inspection Report

1 INTRODUCTION

PROJECT BACKGROUND

- 1.01 The Leader Civil Engineering Corporation Limited (Leader) has been awarded the *Contract DC/2009/13 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan* (the Project) by the Drainage Services Department (DSD) on 4 May 2010. The Project is part of an overall plan approved under a statutory EIA for Outlying Islands Sewerage Stage 1 Phase 2 Package J Sok Kwu Wan Sewage Collection and Treatment (Register No. AEIAR-075/2003) and Disposal Facilities and Outlying Islands Sewerage Stage 1 Phase 1 Package C Yung Shue Wan Sewage Treatment Works and Outfall (Register No. EIA-124/BC). The Environmental Permit (EP) No. EP-281/2007 and EP-282/2007 for the Project have been obtained by the DSD on 29 June 2007 for the relevant works. After July 2009, EP-281/2007/A stead EP-281/2007 is EP for Sok Kwu Wan relevant works.
- 1.02 The Project involves construction of sewage treatment works at Sok Kwu Wan and Yung She Wan with a capacity of 1,430m³/day and 2,850m³/day respectively to provide secondary treatment, construction of 2 pumping stations at Sok Kwu Wan and 1 pumping station at Yung Shue Wan, construction of submarine outfall from the coastline and lying of underground sewerage pipeline. The site layout plan for the captioned work under the Project is showing in *Appendix A*.
- 1.03 According to the Particular Specification (PS) and *Appendix 25* of the Project, Leader should establish an Environmental Team (ET) to implement the environmental monitoring and auditing works to fulfill the requirements as stipulated in the Environmental Monitoring and Audit (EM&A) Manual. This EM&A Manual is referred to the Appendix B of the Review Report on EIA Study Sok Kwu Wan (Final) in January 2007 (Agreement No. CE 20/2005(DS)).
- 1.04 Action-United Environmental Services and Consulting (AUES) has been commissioned by Leader as the ET to implement the relevant EM&A programme. Organization chart of the Environmental Team for the Project is shown in *Appendix B*. For ease of reporting, the proposed EM&A programme for baseline and impact monitoring is spilt to following two stand-alone parts:
 - (a) Proposed EM&A Programme for Baseline and Impact Monitoring Sok Kwu Wan (under EP No. 281/2007/A varied on 23 September 2009)
 - (b) Proposed EM&A Programme for Baseline and Impact Monitoring Yung Shue Wan (under EP No. 282/2007)
- 1.05 According to the EM&A Manual of Sok Kwu Wan and Yung Shue Wan, baseline water quality monitoring should be carried out for consecutive six months before the marine work commencement. Therefore, the baseline reports of Sok Kwu Wan and Yung Shue Wan are divided to two volumes i.e. the Volume 1 for air quality and noise monitoring; and the Volume II for water quality monitoring for separate submission.
- 1.06 There is a concurrent DSD contract "DC/2007/18 Yung Shue Wan and Sok Kwu Wan Village Sewerage, Stage 1 Works" undertaking at Sok Kwu Wan since April 2008.
- 1.07 Consider that the construction works of DC/2007/18 and DC/2009/13 at Sok Kwu Wan is under the same Environmental Permit and EM&A Manual, the performance criteria of air quality and construction noise at Sok Kwu Wan under the Project is recommended to adopt the Action/Limit Levels established by contract DC/2007/18. The Baseline Monitoring Report Volume 1 under the Project for air quality and noise at Sok Kwu Wan was submitted on 9 July 2010 and verified by IEC and for EPD endorsement before the relevant land works commencement on 27 July 2010.
- 1.08 This is the 24th monthly EM&A Report Sok Kwu Wan Portion Area presenting the monitoring results and inspection findings for the Reporting Period from 26 June to 25 July 2012.

REPORT STRUCTURE

1.09 The Monthly Environmental Monitoring and Audit (EM&A) Report – Sok Kwu Wan is structured into the following sections:-

SECTION 1	INTRODUCTION
SECTION 2	PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS
SECTION 3	SUMMARY OF MONITORING REQUIREMENTS
SECTION 4	AIR QUALITY MONITORING RESULTS
SECTION 5	CONSTRUCTION NOISE MONITORING RESULTS
SECTION 6	WATER QUALITY MONITORING RESULTS
SECTION 7	WASTE MANAGEMENT
SECTION 8	SITE INSPECTIONS
SECTION 9	ENVIRONMENTAL COMPLAINTS AND NON-COMPLIANCE
SECTION 10	IMPLEMENTATION STATUES OF MITIGATION MEASURES
SECTION 11	IMPACT FORECAST
SECTION 12	CONCLUSIONS AND RECOMMENDATION

2 PROJECT ORGANIZATION AND CONSTRUCTION PROGRESS

PROJECT ORGANIZATION AND MANAGEMENT STRUCTURE

2.01 Organization structure and contact details of relevant parties with respect to on-site environmental management are shown in *Appendix B*.

CONSTRUCTION PROGRESS

- 2.02 The master and three month rolling construction programme are enclosed in *Appendix C* and the major construction activities undertaken in this Reporting Period are listed below:-
 - Construction of PS1: E&M Works Installation, Plastering, Painting.
 - Construction of PS2: E&M Works Installation, Plastering, Painting.
 - Construction of SKWSTW: Excavation, Soil Compaction, Concreting, Steel Fixing, Formwork Erection, Formwork Removal, Backfilling, Scaffolding Erection, Dismantling Scaffolding.
 - Dredging of SKW Submarine Outfall

SUMMARY OF ENVIRONMENTAL SUBMISSIONS

2.03 Summary of the relevant permits, licences, and/or notifications on environmental protection for this Project in this Reporting Period is presented in *Table 2-1*.

Table 2-1 Status of Environmental Licenses and Permits

Item	Description	License/Permit Status
1	Air Pollution Control (Construction Dust)	Notified EPD on 19 May 2010
	Regulation	Ref.: 317486
2	Chemical Waste Producer Registration	Issued on 8/6/2010
		WPN 5213-912-L2720-01
3	Water Pollution Control Ordinance	Approved on 29/9/2010
		Valid to: 30/09/2015
		Licence no.: WT00007567-2010
4	Billing Account for Disposal of Construction	Issued on 26 May 2010
	Waste	A/C No: 7010815
5	Construction Noise Permit	Permit no. GW-RS0284-12
		Valid from: 26 Mar 2012
		Until: 25 Sep 2012

- 2.04 The "Baseline/Impact Monitoring Methodology (TCS00512/09/600/R0010Ver.4)" was set out in accordance with the Sok Kwu Wan EM&A Manual' requirements. It was approved by the Engineer Representative (ER) and agreed with the Independent Environmental Checker (IEC) and then submitted to the EPD on 8 July 2010.
- 2.05 Baseline Monitoring Report Volume 1 for Sok Kwu Wan (TCS00512/09/600/R0020Ver.3) was verified by the IEC on 12 July 2010 and submitted to EPD on 12 July 2010.
- 2.06 Baseline Water Quality Monitoring Report Volume 2 for Sok Kwu Wan (TCS00512/09/600/R0182v7) was revised against EPD comments and re-submitted on 11 October 2011.

3 SUMMARY OF BASELINE MONITORING REQUIREMENTS

ENVIRONMENTAL ASPECT

- 3.01 The EM&A baseline monitoring programme cover the following environmental issues:
 - Air quality;
 - · Construction noise; and
 - Marine water quality
- 3.02 The ET implements the EM&A programme in accordance with the aforementioned requirements. Detailed air quality, construction noise and water quality of the EM&A programme are presented in the following sub-sections.
- 3.03 A summary monitoring parameters for the air quality, noise and marine water monitoring is presented in *Table 3-1*:

Table 3-1 Summary of EM&A Requirements

Environmental Issue	Parameters	
Air Quality	• 1-hour TSP Monitoring by Real-Time Portable Dust Meter; and	
Air Quality	• 24-hour TSP Monitoring by High Volume Air Sampler.	
Noise	• Leq (30min) during normal working hours; and	
Noise	Leq (15min) during Restricted Hours.	
	In-situ Measurements	
	• Dissolved Oxygen Concentration (DO) (mg/L);	
	• Dissolved Oxygen Saturation (%);	
	• Turbidity (NTU);	
Marine Water Quality	pH unit;	
Waine Water Quanty	• Salinity (ppt);	
	Water depth (m); and	
	• Temperature (°C).	
	Laboratory Analysis	
	Suspended Solids (SS) (mg/L)	

MONITORING LOCATIONS

Air Quality

3.04 Three air monitoring stations: AM1, AM2 and AM3 were designated in the *EM&A Manual Section* 2.5. The detailed air monitoring stations is described in *Table 3-2* and graphical is shown in *Appendix D*.

Table 3-2 Location of Air Quality Monitoring Station

Sensitive Receiver	Location	
AM1	Squatter house in Chung Mei Village	
AM2	Squatter house in Chung Mei Village	
AM3	Football court	

Construction Noise

3.05 According to *EM&A Manual Section 3.4*, there were four noise sensitive receivers (NM1-NM4) designated for the construction noise monitoring. NM1, NM2 and NM4 of the three designated monitoring stations were identified and are monitored by the current DSD contract DC/2007/18. However, the premises monitoring station NM3 was rejected by the owner of 1B Sok Kwu Wan and an alternative noise monitoring station RNM3 replacement was proposed by the contract DC/2007/18 ET and accepted by the IEC and EPD before the baseline monitoring commencement in April 2008. The location RNM3 is located at Sok Kwu Wan Sitting-out area which just 3m width footpath away from the original location house 1B. The detailed construction noise monitoring stations to also under the Project is described in *Table 3-3* and graphical is shown in *Appendix D*.

Table 3-3 Location of Construction Noise Monitoring Station

Sensitive Receiver	Location
NM1	1, Chung Mei Village
NM2	20, Sok Kwu Wan
RNM3	Sok Kwu Wan Sitting-out Area
NM4	2-storey village house at Ta Shui Wan

Water Quality

3.06 Three control stations (C1-C3) and three impact stations (W1-W3) were recommended in the *EM&A Manual Section 4.5*. Impact stations W1-W3 identified at the sensitive receivers (FCZ and secondary contact recreation subzone) to monitor the impacts from the construction of the submarine outfall as well as the effluent discharge from the proposed STW on water quality. Three control stations: C1, C2 & C3 were specified at locations representative of the project site in its undisturbed condition and located at upstream and downstream of the works area. Detailed and co-ordnance of marine water quality monitoring stations is described in *Table 3-4* and the graphical is shown in *Appendix D* and would be performed for EM&A programme.

Table 3-4 Location of Marine Water Quality Monitoring Station

Station	Description	Co-ore	dnance
Station	Description	Easting	Northing
W1	Secondary recreation contact subzone at Mo Tat Wan	832 968	807 732
W2	Fish culture zone at Picnic Bay	832 670	807 985
W3	Fish culture zone at Picnic Bay	832 045	807 893
C1 (flood)	Control Station	833 703	808 172
C2	Control Station	831 467	807 747
C3 (ebb)	Control Station	832 220	808 862

MONITORING FREQUENCY AND PERIOD

3.07 The impact monitoring carried out in the EM&A programme is basically in accordance with the requirements in *EM&A Manual Sections* 2.7, 3.6, 4.7 and 4.8. The monitoring requirements are listed as follows.

Air Quality Monitoring

Parameters: 1-hour TSP and 24-hour TSP.

Frequency: Once in every six days for 24-hour TSP and three times in every six days for

1-hour TSP.

<u>Duration</u>: Throughout the construction period.

Noise Monitoring

<u>Parameters</u>: $L_{eq 30min}$ & $L_{eq(5min)}$, L_{10} and L_{90} .

 $L_{eq(15min)}$ & $L_{eq(5min)}$, L_{10} and L_{90} during the construction undertaken during Restricted hours (19:00 to 07:00 hours next of normal working day and full day of

public holiday and Sunday)

Frequency: Once per week during 0700-1900 hours on normal weekdays. Restricted hour

monitoring should depend on conditions stipulated in Construction Noise Permit.

Duration: Throughout the construction period.

Marine Water Quality Monitoring

Parameters: Duplicate in-situ measurements: water depth, temperature, dissolved oxygen, pH,

turbidity and salinity;

HOKLAS-accredited laboratory analysis: suspended solids

<u>Frequency</u>: Three days a week, at mid ebb and mid flood tides. The interval between 2 sets of monitoring will be more than 36 hours.

Sampling Depth

- (i.) Three depths: 1m below water surface, 1m above sea bottom and at mid-depth when the water depth exceeds 6m.
- (ii.) If the water depth is between 3m and 6m, two depths: 1m below water surface and 1m above sea bottom.
- (iii.) If the water depth is less than 3m, 1 sample at mid-depth is taken

<u>Duration</u>: During the course of marine works

<u>Post-Construction Monitoring – Marine Water</u>

3.08 Upon the marine works (dredging and HDD pipe installation) completion, 4 weeks of post-construction monitoring would be undertaken in accordance with the *Section 4.8 of EM&A Manual*. The requirements of post-construction monitoring such as the parameter, frequency, location and sampling depth is same as the impact monitoring.

MONITORING EQUIPMENT

Air Quality Monitoring

3.09 The 24-hour and 1-hour TSP levels shall be measured by following the standard high volume sampling method as set out in the *Title 40 of the Code of Federal Regulations, Chapter 1 (Part 50), Appendix B*. If the ET proposes to use a direct reading dust meter to measure 1-hour TSP levels, it shall submit sufficient information to the IEC to approve. The filter paper of 24-hour TSP measurement shall be determined by HOKLAS accredited laboratory.

Noise Monitoring

3.10 Sound level meter in compliance with the *International Electrotechnical Commission Publications* 651: 1979 (Type 1) and 804: 1985 (Type 1) specifications shall be used for carrying out the noise monitoring. The sound level meter shall be checked using an acoustic calibrator. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m s⁻¹.

Water Quality Monitoring

- 3.11 **Dissolved Oxygen and Temperature Measuring Equipment** The instrument should be a portable and weatherproof dissolved oxygen (DO) measuring instrument complete with cable and sensor, and use a DC power source. The equipment should be capable of measuring as included a DO level in the range of 0 20 mg L-1 and 0 200% saturation; and a temperature of 0 45 degree Celsius.
- 3.12 *pH Meter* The instrument shall consist of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It shall be readable to 0.1 pH in a range of 0 to 14.
- 3.13 *Turbidity (NTU) Measuring Equipment* The instrument should be a portable and weatherproof turbidity measuring instrument using a DC power source. It should have a photoelectric sensor capable of measuring turbidity between 0 1000 NTU.
- 3.14 **Water Sampling Equipment** A water sampler should comprise a transparent PVC cylinder, with a capacity of not less than 2 litres, which can be effectively sealed with latex cups at both ends. The sampler should have a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler is at the selected water depth.
- 3.15 *Water Depth Detector* A portable, battery-operated echo sounder should be used for the determination of water depth at each designated monitoring station. This unit can either be hand held or affixed to the bottom of the work boat.
- 3.16 *Salinity Measuring Equipment* A portable salinometer capable of measuring salinity in the range of 0 40 parts per thousand (ppt) should be provided for measuring salinity of the water at each monitoring location.

- 3.17 **Sample Containers and Storage** Water samples for suspended solids should be stored in high density polythene bottles with no preservative added, packed in ice (cooled to 4°C without being frozen).
- 3.18 *Monitoring Position Equipment* A hand-held or boat-fixed type digital Differential Global Positioning System (DGPS) with way point bearing indication and Radio Technical Commission for maritime (RTCM) Type 16 error message 'screen pop-up' facilities (for real-time auto-display of error messages and DGPS corrections from the Hong Kong Hydrographic Office), or other equipment instrument of similar accuracy, should be provided and used during marine water monitoring to ensure the monitoring vessel is at the correct location before taking measurements.
- 3.19 **Suspended Solids Analysis** Analysis of suspended solids shall be carried out in a HOKLAS or other international accredited laboratory.

EQUIPMENT CALIBRATION

- 3.20 Calibration of the HVS is performed upon installation in accordance with the manufacturer's instruction using the NIST-certified standard calibrator (Tisch Calibration Kit Model TE-5025A). The calibration data are properly documented and the records are maintained by ET for future reference.
- 3.21 The 1-hour TSP meter was calibrated by the supplier prior to purchase. Zero response of the equipment was checked before and after each monitoring event. In-house calibration with the High Volume Sampler (HVS) in same condition was undertaken in yearly basis.
- 3.22 The sound level meter and calibrator are calibrated and certified by a laboratory accredited under HOKLAS or any other international accreditation scheme at yearly basis.
- 3.23 The Water Quality Monitoring equipments such as DO meter, pH meter, turbidity measuring instrument and salinometer, are calibrated by HOKLAS accredited laboratory of three month intervals.
- 3.24 All updated calibration certificates of the monitoring equipment used for the impact monitoring programme in the Reporting Period would be attached in *Appendix E*.

METEOROLOGICAL INFORMATION

3.25 The meteorological information during the construction phase is obtained from the Wong Chuk Hang Station of the Hong Kong Observatory (HKO) due to it nearly the Project site.

DATA MANAGEMENT AND DATA QA/QC CONTROL

- 3.26 The impact monitoring data are handled by the ET's systematic data recording and management, which complies with in-house Quality Management System. Standard Field Data Sheets (FDS) are used in the impact monitoring programme.
- 3.27 The monitoring data recorded in the equipment e.g. 1-hour TSP meter, sound level meter and Multi-parameter Water Quality Monitoring System, are downloaded directly from the equipments at the end of each monitoring day. The downloaded monitoring data are input into a computerized database properly maintained by the ET. The laboratory results are input directly into the computerized database and QA/QC checked by personnel other than those who input the data. For monitoring activities require laboratory analysis, the local laboratory follows the QA/QC requirements as set out under the HOKLAS scheme for all laboratory testing.

REPORTING

3.28 It was agreed among the ER, IEC, Contractor and ET that, in order to streamline the EM&A report submission and to cater for the occasional delay in obtaining laboratory analysis results, the cutoff day for each month is the 25th i.e. the first day of each report is the 26th of the last month and the end

day, the 25th of that month.

DETERMINATION OF ACTION/LIMIT (A/L) LEVELS

3.29 According to the Sok Kwu Wan Environmental Monitoring and Audit Manual, the air quality, construction noise and marine water quality were set up, namely Action and Limit levels are listed in *Tables 3-5*, *3-6 and 3-7* as below.

Table 3-5 Action and Limit Levels for Air Quality

Monitoring Station	Action Le	vel (μg/m³)	Limit Level (μg/m³)		
Womtoring Station	1-hour	24-hour	1-hour	24-hour	
AM1	343	173	500	260	
AM2	331	175	500	260	
AM3	353	191	500	260	

Table 3-6 Action and Limit Levels for Construction Noise

Monitoring	Action Level	Limit Level				
Location	0700-1900 hours on normal weekdays					
NM1 NM2 RNM3 NM4	When one or more documented complaints are received	75 dB(A) of $L_{eq(30min)}$ during normal hours from 0700 to 1900 hours on normal weekdays, reduced to 70 dB(A) of $L_{eq(30min)}$ for schools and 65 dB(A) during school examination periods				

Table 3-7 Action and Limit Levels for Marine Water Quality

Parameter	Performance	In	npact Stati	on
rarameter	Criteria	W1	W2	W3
DO Concentration (Surface and Middle)	Action Level	5.39	4.64	4.71
(mg/L)	Limit Level	5.29	4.56	4.54
DO Concentration (Bottom)	Action Level	N/A	3.60	3.37
(mg/L)	Limit Level	N/A	3.06	3.18
Turbidity (Depth-Average)	Action Level	4.39	4.84	6.48
(NTU)	Limit Level	6.06	5.99	6.71
Suspended Solids (Depth-Average)	Action Level	12.41	9.24	10.79
(mg/L)	Limit Level	12.68	11.28	12.25

3.30 Should non-compliance of the environmental quality criteria occurs, remedial actions will be triggered according to the Event and Action Plan enclosed in *Appendix F*.

4 IMPACT MONITORING RESULTS - AIR QUALITY

4.01 The impact EM&A programme was carried out as compliance with the contract Particular Specification, Sok Kwu Wan EM&A Manual and the EP.

Results of Air Quality Monitoring

4.02 In this Reporting Period, **45** and **14** monitoring events were performed for 1-hour TSP and 24-hour TSP monitoring respectively at the designated locations AM1, AM2 and AM3. One event of power failure of HVS was recorded at AM3 on 6 July 2012 and it was due to the heavy rainstorm on the day before monitoring. The power supply has been resumed on 11 July 2012 and therefore no making up of lost sample was made. The monitoring results for 24-hour and 1-hour TSP are summarized in *Tables 4-1*, *4-2* and *4-3*. The detail 24-hour TSP data are shown in *Appendix G* and the graphical plots of are shown in *Appendix H*.

Table 4-1 Summary of 24-hour and 1-hour TSP Monitoring Results – AM1

	24-hour			1-hour TSP	$(\mu g/m^3)$		
Date	TSP (µg/m³)	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured	
30-Jun-12	18	28-Jun-12	8:00	74	79	71	
6-Jul-12	18	4-Jul-12	11:00	47	46	40	
11-Jul-12	17	10-Jul-12	10:00	37	39	34	
18-Jul-12	12	16-Jul-12	10:00	49	54	47	
24-Jul-12	81	20-Jul-12	8:00	36	39	32	
Average	29	Avera	ge	48			
(Range)	(12 - 81)	(Rang	(Range) (32 – 79)				

Table 4-2 Summary of 24-hour and 1-hour TSP Monitoring Results – AM2

	24-hour			1-hour TSP	(μg/m ³)		
Date	TSP (μg/m³)	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured	
30-Jun-12	55	28-Jun-12	10:10	79	81	77	
6-Jul-12	21	4-Jul-12	13:15	41	38	37	
11-Jul-12	17	10-Jul-12	12:05	36	35	34	
18-Jul-12	27	16-Jul-12	12:30	53	59	51	
24-Jul-12	88	20-Jul-12	10:10	43	47	38	
Average	42	Avera	ge	50			
(Range)	(17 - 88)	(Rang	(Range) (34 – 81)				

Table 4-3 Summary of 24-hour and 1-hour TSP Monitoring Results – AM3

	24-hour			1-hour TSP			
Date	TSP (µg/m³)	Date	Start Time	1 st hour measured	2 nd hour measured	3 rd hour measured	
30-Jun-12	69	28-Jun-12	12:30	139	136	128	
6-Jul-12	*	4-Jul-12	15:30	112	106	101	
11-Jul-12	30	10-Jul-12	14:30	97	104	99	
18-Jul-12	31	16-Jul-12	14:45	117	123	112	
24-Jul-12	28	20-Jul-12	12:30	101	107	99	
Average	40	Avera	ge	112			
(Range)	(28 - 69)	(Rang	e)	(97–139)			

^{*} Power failure after heavy rainstorm on 5 July 2012.

- 4.03 As shown in *Tables 4-1*, *4-2* and *4-3*, 1-hour and 24-hour TSP results fluctuated well below the Action Level during the Reporting Period.
- 4.04 The meteorological information during the impact monitoring days are summarized in *Appendix I*.

5 IMPACT MONITORING RESULTS - CONSTRUCTION NOISE

5.01 The noise monitoring results are presented in the following sub-sections.

Results of Construction Noise Monitoring

5.02 In this Reporting Period, a total of **16** construction noise monitoring events were undertaken at designated location NM1, NM2, RNM3 and NM4. The results for L_{eq30min} at NM1, NM2, RNM3 and NM3 are summarized in *Tables 5-1, 5-2, 5-3* and *5-4* and graphical plots are shown in *Appendix H*.

Table 5-1 Summarized of Construction Noise Monitoring Results at NM1

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30
28-Jun-12	10:00	10:30	57.7	58.2	58.9	59.5	56.0	55.0	57.8
4-Jul-12	10:50	11:20	61.4	56.8	58.1	56.6	49.5	50.5	57.2
10-Jul-12	14:00	14:30	46.7	49.0	58.5	60.0	48.0	49.5	55.2
16-Jul-12	14:08	14:38	49.2	45.6	49.7	49.8	48.5	51.8	49.5
Limit Le	vel in dI	B(A)		-					75

Table 5-2 Summarized of Construction Noise Monitoring Results at NM2

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30
28-Jun-12	10:40	11:10	65.4	65.5	62.2	63.1	67.5	64.6	65.1
4-Jul-12	11:30	12:00	49.8	48.0	50.5	48.5	48.3	49.0	49.1
10-Jul-12	14:35	15:05	62.0	58.5	56.7	57.3	59.8	56.5	58.9
16-Jul-12	14:45	15:15	58.3	64.6	60.6	56.9	57.5	58.8	60.4
Limit Le	vel in dI	B(A)	- ·					75	

Table 5-3 Summarized of Construction Noise Monitoring Results at RNM3

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30	Corrected* Leq30
28-Jun-12	11:15	11:45	64.8	66.7	63.5	63.7	67.0	64.5	65.3	68.3
4-Jul-12	14:00	14:30	55.2	56.7	57.5	62.0	60.0	70.2	63.8	66.8
10-Jul-12	15:10	15:40	62.4	61.5	61.9	61.8	67.5	65.6	64.1	67.1
16-Jul-12	15:20	15:50	61.9	62.5	61.8	62.0	64.6	62.7	62.7	65.7
Limit Le	vel in dE	B(A)		-						75

^{*} A façade correction of +3dB(A) has been added according to acoustical principles and EPD guidelines.

Table 5-4 Summarized of Construction Noise Monitoring Results at NM4

Date	Start Time	End time	1 st Leq5	2 nd Leq5	3 rd Leq5	4 th Leq5	5 th Leq5	6 th Leq5	Leq30
28-Jun-12	13:00	13:30	58.3	52.3	59.5	53.5	54.9	52.9	56.1
4-Jul-12	14:45	15:15	56.1	61.2	56.9	59.5	58.3	60.0	59.0
10-Jul-12	15:45	16:15	60.0	67.3	56.5	58.4	55.6	52.7	61.3
16-Jul-12	16:00	16:30	53.3	54.1	56.8	58.1	57.3	53.2	55.9
Limit Le	vel in dI	B(A)		-					

5.03 It was noted that no noise complaint (which is an Action Level exceedance) was received. During the noise monitoring, external noise sources from traffic road, animals, human, trolley and ventilation system were observed occasionally. In view of the results shown in *Tables 5-1*, 5-2, 5-3 and 5-4 which were all below 75dB(A), no Action or Limit Level exceedance was triggered during this month.

6 IMPACT MONITORING RESULTS – WATER QULAITY

- 6.01 The construction of marine outfall works was commenced on 19 July 2011 and therefore marine water quality monitoring is required in this Reporting Period. In this Reporting Period, 11 events of water quality monitoring were carried out at the designated locations. One event of scheduled monitoring on 24 July was cancelled due to the inclement weather and the influence of Tropical Cyclone Warning No.3.
- 6.02 The monitoring results including in-situ measurements and laboratory testing results are presented in *Appendix G*. The graphical plots are shown in *Appendix H*.
- 6.03 During the Reporting Period, field measurements of both control and impact stations showed that marine water of the depth average of the salinity concentration was within 20.04 to 32.29 ppt, and pH value was within 7.00 to 8.42.
- 6.04 Monitoring results of 3 key parameters: dissolved oxygen (DO), turbidity and suspended solids (SS) in this Reporting Period, are summarized in *Tables 6-1*, 6-2, 6-3 and 6-4. A summary of exceedances for the 3 parameters are shown in *Table 6-5*.

Table 6-1 Summary of Water Quality Results – Mid-ebb Tides (Dissolved Oxygen)

Sampling date								rf. Dissolved Oxygen conc. of Depth A of Bottom Layer (mg/L)				
• 0	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
26-Jun-12	6.45	6.43	6.26	6.16	6.40	6.11	NA	5.17	4.89	5.02	5.04	4.71
28-Jun-12	6.24	6.06	5.74	5.83	5.58	5.95	NA	5.09	4.58	4.79	4.43	4.55
30-Jun-12	5.86	5.63	5.57	5.25	4.90	5.46	NA	5.02	4.45	4.44	4.25	4.47
4-Jul-12	6.47	6.10	6.06	5.85	5.59	6.28	NA	4.91	4.54	4.97	4.59	4.75
6-Jul-12	5.48	5.59	5.42	5.03	5.77	5.77	NA	4.64	4.27	4.00	4.48	4.48
10-Jul-12	5.73	5.12	4.79	4.64	4.47	4.47	NA	4.67	3.75	3.72	3.24	3.24
12-Jul-12	5.45	5.03	4.90	4.59	3.55	3.55	NA	4.89	3.78	3.96	3.19	3.19
14-Jul-12	5.68	5.22	5.31	4.68	4.49	4.49	NA	4.33	3.67	4.08	3.57	3.57
16-Jul-12	5.84	5.78	5.46	5.40	5.44	5.44	NA	4.92	4.32	4.37	4.14	4.14
18-Jul-12	6.40	6.34	6.01	5.90	6.53	6.53	NA	4.90	3.40	3.56	3.62	3.62
20-Jul-12	6.34	6.62	5.12	6.06	4.69	4.69	NA	3.80	3.60	4.54	3.38	3.38

Table 6-2 Summary of Water Quality Results – Mid-ebb Tides (Turbidity & Suspended Solids)

Commine date		T	urbidity	y Depth Av		Suspended Solids Depth Ave. (mg/L)						
Sampling date	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
26-Jun-12	3.70	3.00	2.42	2.03	2.37	2.18	1.90	3.20	3.60	1.57	1.87	3.47
28-Jun-12	3.80	3.87	3.68	2.84	4.75	3.98	5.20	3.63	4.03	3.10	4.43	3.87
30-Jun-12	2.65	2.87	2.85	2.53	3.15	3.82	7.20	6.97	4.73	6.40	7.27	7.03
4-Jul-12	2.10	2.00	2.95	2.23	2.70	3.42	6.10	4.67	6.43	4.37	4.77	5.67
6-Jul-12	2.25	3.25	2.78	3.67	3.13	1.63	3.10	2.77	1.77	2.60	2.37	2.57
10-Jul-12	4.20	4.07	5.52	4.18	6.40	5.32	8.90	9.10	9.83	8.40	10.70	9.60
12-Jul-12	2.85	1.92	4.41	4.30	5.98	3.75	4.30	7.23	7.47	6.67	5.83	6.57
14-Jul-12	4.10	4.22	3.73	4.82	6.62	4.55	3.30	3.70	5.47	3.13	3.90	5.67
16-Jul-12	3.00	3.28	5.85	3.75	6.82	5.90	3.80	3.70	2.53	4.53	2.20	3.60
18-Jul-12	1.52	1.27	1.10	1.75	0.97	1.90	4.70	7.10	5.13	5.27	4.10	5.93
20-Jul-12	1.71	1.57	1.71	1.77	1.62	1.42	3.20	2.73	3.50	4.87	4.10	2.40

Table 6-3 Summary of Water Quality Results – Mid-flood Tides (Dissolved Oxygen)

Sampling date	Dissolved Oxygen conc. of Depth Ave. of Surf. and Mid Layer (mg/L)							urf. Dissolved Oxygen conc. of Depth Av of Bottom Layer (mg/L)					
	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3	
26-Jun-12	6.49	6.19	5.99	6.24	5.98	5.80	NA	4.72	4.75	4.91	4.85	4.65	
28-Jun-12	6.25	5.89	5.72	5.98	5.58	5.87	NA	3.80	4.41	4.62	4.27	4.69	
30-Jun-12	5.91	5.55	5.59	5.77	5.09	5.32	NA	3.84	4.38	4.62	3.74	4.50	

Sampling date	• •							Dissolved Oxygen conc. of Depth Ave. of Bottom Layer (mg/L)					
	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3	
4-Jul-12	6.49	6.08	6.21	6.53	5.99	6.31	NA	4.02	4.82	5.19	4.45	4.77	
6-Jul-12	5.58	5.32	5.07	5.30	3.93	4.66	NA	4.01	4.14	3.93	4.11	3.68	
10-Jul-12	5.55	4.71	4.71	4.90	3.45	4.71	NA	3.69	3.61	3.45	3.63	3.83	
12-Jul-12	5.57	4.82	5.02	5.40	4.25	4.92	NA	3.70	4.05	4.25	3.39	4.37	
14-Jul-12	5.73	5.09	5.50	6.00	4.59	5.58	NA	3.69	4.44	4.59	4.00	3.99	
16-Jul-12	5.87	5.45	5.25	5.57	4.18	5.26	NA	4.00	4.18	4.18	4.24	4.24	
18-Jul-12	6.45	6.43	4.75	5.93	3.82	6.03	NA	3.86	3.57	3.82	3.52	3.58	
20-Jul-12	6.04	5.03	6.27	4.68	3.62	4.46	NA	3.76	3.97	3.62	4.10	3.67	

Table 6-4 Summary of Water Quality Results – Mid-flood Tides (Turbidity & Suspended Solids)

Compling data		T	urbidity	y Depth Av	e. (NTU)		Susp	ended S	Solids 1	Depth A	ve. (m	g/L)
Sampling date	W1	W2	W3	C1	C2	C3	W1	W2	W3	C1	C2	C3
26-Jun-12	2.70	3.12	1.63	2.67	3.17	2.47	1.00	1.33	0.70	0.77	0.93	0.50
28-Jun-12	3.15	3.33	4.18	3.07	4.03	2.83	3.30	3.40	4.70	3.17	4.63	4.90
30-Jun-12	3.55	4.13	4.98	4.13	5.80	6.63	10.50	6.63	4.57	4.10	6.83	7.47
4-Jul-12	1.65	2.87	3.80	3.03	3.33	2.48	4.40	4.57	5.30	5.60	5.20	5.50
6-Jul-12	1.80	2.30	1.80	1.87	3.30	2.10	4.50	2.57	4.03	4.27	2.93	3.10
10-Jul-12	4.20	3.83	2.58	4.43	3.55	3.65	12.20	7.37	4.73	6.07	4.70	6.00
12-Jul-12	2.25	2.82	2.97	4.32	9.23	4.50	9.10	6.83	6.73	8.00	7.30	8.37
14-Jul-12	3.20	4.10	4.58	4.53	3.46	4.38	5.20	4.70	3.83	2.37	2.60	2.47
16-Jul-12	4.30	3.77	3.83	3.42	5.35	3.05	3.60	4.70	3.40	3.07	3.97	3.60
18-Jul-12	1.73	1.54	1.21	2.07	1.14	2.23	5.60	5.40	4.60	4.77	5.53	5.57
20-Jul-12	1.71	1.74	1.87	1.33	1.39	1.46	1.50	2.27	1.10	1.00	1.47	2.30

Table 6-5 Summarized Exceedances of Marine Water Quality

Station	Do (Ave of & mid-	Surf.	,	ve. of Layer)	Turb (Depth	·	S: (Depth	_	Tot Excee	
	Action	Limit	Action	Limit	Action	Limit	Action	Limit	Action	Limit
				Mic	d-Ebb					
W1	0	0	0	0	0	0	0	0	0	0
W2	0	0	0	0	0	0	0	0	0	0
W3	0	0	0	0	0	0	0	0	0	0
				Mid	-Flood					
W1	0	0	0	0	0	0	0	0	0	0
W2	0	0	0	0	0	0	0	0	0	0
W3	0	0	0	0	0	0	0	0	0	0
No of Exceedance	0	0	0	0	0	0	0	0	0	0

6.05 For marine water monitoring, no exceedance of Action/Limit levels was recorded in this Reporting Period. Therefore, no associated corrective actions were then required.

7 ECOLOGY

- 7.01 According to Clause 3.7 and Figure 4 in the Environmental Permit No. EP-281/2007/A, a total of 12 numbers *Celtis Timorensis* (uncommon species) in Chung Mei at Sok Kwu Wan, are identified to require labeling, fencing and protection. Out of these, four numbers located in the Pumping Station No.1 area are required to be transplanted in advance of pumping station construction and the transplantation proposal has been submitted to EPD previously.
- 7.02 Regular inspection of the transplanted tree was carried out by the landscaping sub-Contractor (Melofield Nursery and Landscape Contractor Limited) on 30 June and 16 July 2012. As a contingency measure in case that CT7 to CT10 can no longer be recovered, additional 7 no. of *Celtis Timorensis* (No. CT_1A to CT7A) were planted adjacent to the under-monitoring *Celtis Timorensis* CT7 to CT10 on 30 April 2011. The tree inspection report is presented in *Appendix M*.

8 WASTE MANAGEMENT

8.01 Waste management was carried out by an on-site Environmental Officer or an Environmental Supervisor from time to time.

Records of Waste Quantities

- 8.02 All types of waste arising from the construction work are classified into the following:
 - Construction & Demolition (C&D) Material;
 - Chemical Waste;
 - General Refuse; and
 - Excavated Soil
- 8.03 The quantities of waste for disposal in this Reporting Period are summarized in *Table 8-1* and *8-2* and the Monthly Summary Waste Flow Table is shown in *Appendix J*. Whenever possible, materials were reused on-site as far as practicable.

Table 8-1 Summary of Quantities of Inert C&D Materials

Type of Waste	Quantity	Disposal Location
C&D Materials (Inert) ('000m ³)	0	-
Reused in the Contract (Inert) ('000m ³)	0	-
Reused in other Projects (Inert) ('000m ³)	0	-
Disposal as Public Fill (Inert) ('000m ³)	0	-

Table 8-2 Summary of Quantities of C&D Wastes

Type of Waste	Quantity	Disposal Location
Metal (kg)	0	-
Paper / Cardboard Packing (kg)	0	-
Plastic (kg)	0	-
Chemical Wastes (kg)	0	-
General Refuses (tonne)	2.96	Outlying Islands Transfer Facilities (Sok Kwu Wan)

8.04 There was no site effluent discharged but the estimated volume of surface runoff was less than 50m³ in this monthly period.

9 SITE INSPECTION

- 9.01 According to the Environmental Monitoring and Audit Manual, the environmental site inspection should been formulated by ET Leader. Regular environmental site inspections had been carried out by the ET to confirm the environmental performance. In this Reporting Period, weekly site inspection by ET was carried out on 26 June, 5, 10, 19 and 25 July 2012 and a joint-site visit by RE, the Contractor and ET was carried out on 5 July 2012.
- 9.02 The findings/ deficiencies that observed during the weekly site inspection are listed in *Table 9-1* and the relevant checklists are attached in *Appendix K*.

Table 9-1 Site Observations

Date	Findings / Deficiencies	Follow-Up Status
26 June 2012	• The sedimentation tank at Portion L2 should be cleared to maintain functioning.	Rectified on 5 July 2012.
5 July 2012	 No environmental issue was observed during site inspection. The Contractor is reminded to maintain the desilting facilities properly to avoid any leakage. 	N.A.
10 July 2012	No environmental issue was observed during site inspection.	N.A.
19 July 2012	No environmental issue was observed during site inspection.	N.A.
25 July 2012	No environmental issue was observed during site inspection.	N.A.

10 ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

10.01 No environmental complaint, summons and prosecution was received in this Reporting Period. The statistical summary table of environmental complaint is presented in *Tables 10-1*, *10-2* and *10-3*.

Table 10-1 Statistical Summary of Environmental Complaints

Donouting Dowied	Envir	Environmental Complaint Statistics						
Reporting Period	Frequency	Cumulative	Complaint Nature					
27 July 2010 – 31 December 2011	1 (Nov 2011)	1 (Nov 2011)	water quality					
January - June 2012	0	1 (Nov 2011)	NA					
July 2012	0	1 (Nov 2011)	NA					

Table 10-2 Statistical Summary of Environmental Summons

Depositing Devied	Envi	Environmental Summons Statistics						
Reporting Period	Frequency	Cumulative	Complaint Nature					
27 July 2010 – 31 December 2011	0	0	NA					
January - June 2012	0	0	NA					
July 2012	0	0	NA					

Table 10-3 Statistical Summary of Environmental Prosecution

Domontino Dominal	Enviro	Environmental Prosecution Statistics						
Reporting Period	Frequency	Cumulative	Complaint Nature					
27 July 2010 – 31 December 2011	0	0	NA					
January - June 2012	0	0	NA					
July 2012	0	0	NA					

11 IMPLEMENTATION STATUS OF MITIGATION MEASURES

11.01 The environmental mitigation measures that recommended in the Sok Kwu Wan Environmental Monitoring and Audit covered the issues of dust, noise, water and waste and they are summarized as following:

Dust Mitigation Measure

- 11.02 Installation of 2m high solid fences around the construction site of Pumping Station P2 is recommended. Implementation of the requirements stipulated in the Air Pollution Control (Construction Dust) Regulation and the following good site practices are recommended to control dust emission from the site:
 - (a) Stockpiles of imported material kept on site should be contained within hoardings, dampened and / or covered during dry and windy weather;
 - (b) Material stockpiled alongside trenches should be covered with tarpaulins whenever works are close to village houses;
 - (c) Water sprays should be used during the delivery and handling of cement, sands, aggregates and the like.
 - (d) Any vehicle used for moving sands, aggregates and construction waste shall have properly fitting side and tail boards. Materials should not be loaded to a level higher than the side and tail boards, and should be covered by a clean tarpaulin.

Noise Mitigation Measure

- 11.03 As detailed in the EIA report, concreting work of the Pumping Station P1a and sewer alignment construction activities would likely cause adverse noise impacts on some of the noise sensitive receivers. Appropriate mitigation measures have therefore been recommended. The mitigation measures recommended in the EIA report are summarised below:
 - (a) Use of quiet equipment for the construction activities of the Pumping Stations and sewer alignment;
 - (b) Use of temporary noise barrier around the site boundary of Pumping Station P1a;
 - (c) Use of kick ripper (saw and lift) method to replace the breaker for pavement removal during sewer alignment construction;
 - (d) Restriction on the number of plant during sewer alignment construction;
 - (e) Use of noise screening structures in the form of acoustic shed or movable barrier wherever practicable and feasible in areas with sufficient clearance and headroom during the construction of sewer alignment;
 - (f) Adoption of manual working method wherever practicable and feasible in areas where the worksites of the proposed sewer alignment are located less than 20m from the residential noise sensitive receivers and less than 30m from the temple and the public library; and
 - (g) Implementation of the following good site practices:
 - Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme.
 - Mobile plant, if any, should be sited as far away from NSRs as possible.
 - Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum.
 - Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs.
 - Material stockpiles and other structures should be effectively utilised, wherever practicable, in screening noise from on-site construction activities.

Water Quality Mitigation Measure

11.04 No-dig method using Horizontal Directional Drilling (HDD) would be used for the installation of outfall pipe of about 480 m from shore to minimize the potential water quality impacts arising from the dredging works required for the submarine outfall construction. For the remaining outfall pipe of about 240m and the diffuser section, open trench dredging would still be required.

- 11.05 During the dredging works, the Contractor should be responsible for the design and implementation of the following mitigation measures.
 - Dredging should be undertaken using closed grab dredgers with a total production rate of 55m³/hr;
 - Deployment of 2-layer silt curtains with first layer enclosing the grab and the second layer at around 50, from the dredging area while dredging works are in progress;
 - all vessels should be sized such that adequate clearance (i.e. minimum clearance of 0.6m) is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash;
 - all pipe leakages should be repaired promptly and plant shall not be operated with leaking pipes;
 - excess material should be cleaned from the decks and exposed fittings of barges before the vessel is moved;
 - adequate freeboard (i.e. minimum of 200m) should be maintained on barges to ensure that decks are not washed by wave action;
 - all barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material; and
 - loading of barges and hoppers should be controlled to prevent splashing of dredged material to the surrounding water, and barges and hoppers should not be filled to a level which would cause the overflow of materials or sediment laden water during loading or transportation; and
 - the decks of all vessels should be kept tidy and free of oil or other substances that might be accidentally or otherwise washed overboard.

Construction Run-off and Drainage

- 11.06 The Contractor should observe and comply with the Water Pollution Control Ordinance and the subsidiary regulations. The Contractor should follow the practices, and be responsible for the design, construction, operation and maintenance of all the mitigation measures as specified in ProPECC PN 1/94 "Construction Site Drainage". The design of the mitigation measures should be submitted by the Contractor to the Engineer for approval. These mitigation measures should include the following practices to minimise site surface runoff and the chance of erosion, and also to retain and reduce any suspended solids prior to discharge:
 - Provision of perimeter channels to intercept storm-runoff from outside the site. These should be constructed in advance of site formation works and earthworks.
 - Works programmes should be designed to minimize works areas at any one time, thus minimising exposed soil areas and reducing the potential for increased siltation and runoff.
 - Sand/silt removal facilities such as sand traps, silt traps and sediment basins should be provided to remove the sand/silt particles from run-off. These facilities should be properly and regularly maintained. These facilities shall be carefully planned to ensure that they would be installed at appropriate locations to capture all surface water generated on site.
 - Careful programming of the works to minimise soil excavation works during rainy seasons.
 - Exposed soil surface should be protected by paving or hydroseeding as soon as possible to reduce the potential of soil erosion.
 - Trench excavation should be avoided in the wet season, and if necessary, these should be excavated and backfilled in short sections.
 - Open stockpiles of construction materials on site should be covered with tarpaulin or similar fabric.

General Construction Activities

11.07 Debris and rubbish generated on-site should be collected, handled and disposed of properly to avoid entering the nearby coastal waters and stormwater drains. All fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. Open drainage channels and culverts near the works areas should be covered to block the entrance of large debris and refuse.

Wastewater Arising from Workforce

11.08 Portable toilets shall be provided by the Contractors, where necessary, to handle sewage from the workforce. The Contractor shall also be responsible for waste disposal and maintenance practices

Sediment Contamination Mitigation Measure

- 11.09 The basic requirements and procedures for dredged mud disposal are specified under the WBTC No. 34/2002. The management of the dredging, use and disposal of marine mud is monitored by the MFC, while the licensing of marine dumping is the responsibility of the Director of Environmental Protection (DEP).
- 11.10 The uncontaminated dredged sediment will be loaded onto barges and transported to the designated marine disposal site. Appropriate dredging methods have been incorporated into the recommended water quality mitigation measures including the use of closed-grab dredgers and silt curtains. Category L sediment would be suitable for disposal at a gazetted open sea disposal ground.
- During transportation and disposal of the dredged marine sediments, the following measures should be taken to minimize potential impacts on water quality:
 - Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of
 material. Excess material should be cleaned from the decks and exposed fittings of barges and
 hopper dredgers before the vessel is moved.
 - Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels should be equipped with automatic self-monitoring devices as specified by the DEP.

Construction Waste Mitigation Measure

Good Site Practices and Waste Reduction Measures

- 11.12 It is not anticipated that adverse waste management related impacts would arise, provided that good site practices are strictly followed. Recommendations for good site practices for the construction waste arising include:
 - Nomination of an approved person, such as a site manager, to be responsible for the implementation of good site practices, arranging for collection and effective disposal to an appropriate facility, of all wastes generated at the site.
 - Training of site personnel in proper waste management and chemical handling procedures.
 - Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers.
 - Provision of sufficient waste disposal points and regular collection for disposal.
 - Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Facility.
 - Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors.
 - Maintain records of the quantities of wastes generated, recycled and disposed.
- 11.13 In order to monitor the disposal of C&D waste at landfills and to control fly tipping, a trip-ticket system should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.
- 11.14 Good management and control can prevent the generation of significant amount of waste. Waste reduction is best achieved at the planning and design stage, as well as by ensuring the implementation of good site practices. Recommendations to achieve waste reduction include:
 - segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal;

- to encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated by the work force:
- any unused chemicals or those with remaining functional capacity should be recycled;
- use of reusable non-timber formwork to reduce the amount of C&D material;
- prior to disposal of C&D waste, it is recommended that wood, steel and other metals should be separated for re-use and / or recycling to minimise the quantity of waste to be disposed of to landfill:
- proper storage and site practices to minimise the potential for damage or contamination of construction materials; and
- plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary generation of waste.

General Site Wastes

11.15 A collection area should be provided where waste can be stored prior to removal from site. An enclosed and covered area is preferred for the collection of the waste to reduce 'wind blow' of light material.

Chemical Wastes

- 11.16 After use, chemical waste (eg. cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Any unused chemicals or those with remaining functional capacity should be recycled. Spent chemicals should be properly stored on site within suitably designed containers, and should be collected by an approved operator for disposal at the Chemical Waste Treatment Facility or other licenced facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation under the Waste Disposal Ordinance.
- 11.17 Any service shop and minor maintenance facilities should be located on hard standings within a bunded area, and sumps and oil interceptors should be provided. Maintenance of vehicles and equipment involving activities with potential for leakages and spillage should only be undertaken with the areas appropriately equipped to control these discharges.

Construction and Demolition Material

- 11.18 The C&D material should be separated on-site into three categories: (i) public fill, the inert portion of the C&D material (e.g. concrete and rubble), which should be re-used on-site or disposed of at a public filling area; (ii) C&D waste for re-use and/or recycling, the non-inert portion of the C&D material, (e.g. steel and other metals, wood, glass and plastic); (iii) C&D waste which cannot be re-used and/or recycled. The waste producers are responsible for its disposal at strategic landfills.
- 11.19 In order to minimise the impact resulting from collection and transportation of material for off-site disposal, it was recommended that inert material should be re-used on-site where possible. Prior to disposal of C&D material, it was also recommended that steel and other metals should be separated for re-use and/or recycling where practicable to minimise the quantity of waste to be disposed of to landfill.

Ecology Mitigation Measure

Terrestrial Ecology

- 11.20 The uncommon tree species should be labelled and probably fenced to avoid direct or indirect disturbance during construction. Works areas should avoid woodland habitats, in particular where these trees are located.
- 11.21 Construction and maintenance of site runoff control measures would be required at all work sites during construction. These should include barriers to direct runoff to sand/silt removal facilities (sand/silt/traps and/or sediment basins); minimisation of earthworks during rainy season (May to September); and coverage of sand/fill piles and exposed earth during storms.

11.22 Special attention should be paid during the breeding season of Romer's Tree Frog (March to September) to ensure their habitat landward to Pumping Station P2 site is well protected from site runoff. Barriers should be deployed completely along the landward side of the pumping station site boundary to prevent any site runoff from entering the tree frog habitat. Intactness of the barriers should be frequently inspected.

Intertidal and Subtidal Ecology

- 11.23 Construction and maintenance of site runoff control measures would be required at all work sites during construction. These should include barriers to direct runoff to sand/silt removal facilities (sand/silt/traps and/or sediment basins); use of silt curtains along coastline; minimisation of earthworks during rainy season (May to September); and coverage of sand/fill piles and exposed earth during storms.
- 11.24 To reduce impacts of sediment resuspension upon nearby habitats and organisms during dredging, all dredging should be done using a closed-grab dredger, and silt curtains should be deployed around the dredger during all dredging activity

Fisheries Mitigation Measure

11.25 Closed grab dredger, deployment of silt curtains around the immediate dredging area and low dredging rate have been recommended in Water Quality of the EIA report in order to minimise sediment release into the water column.

Landscape & Visual Mitigation Measure

- 11.26 Mitigation measures recommended in the EIA Report for landscape and visual impacts during the construction stage are summarised below.
 - Screening of site construction works by use of hoarding that is appropriate to its site context;
 - Retaining existing trees and minimising damage to vegetation where possible by close co-ordination and on site alignment adjusted of rising main and gravity sewer pipelines. Tree protective measures should be implemented to ensure trees identified as to be retained are satisfactorily protected during the construction phase;
 - Careful and efficient transplanting of affected trees (1 no.) to temporary or final transplant location (the proposed tree to be transported is a semi-mature *Macaranga tanarius* and is located at the proposed Pumping Station P2 location);
 - Short excavation and immediate backfilling of sections upon completion of works to reduce active site area;
 - Conservation of top-soil for reuse.
 - Night-time light source from marine fleets should be directed away from the residential units
- 11.27 The implementation schedule of mitigation measures is presented in *Appendix L*.
- 11.28 Leader had been implementing the required environmental mitigation measures according to the Sok Kwu Wan Environmental Monitoring and Audit Manual subject to the site condition. Environmental mitigation measures generally implemented by Leader in this Reporting Period are summarized in *Table 11-1*.

Table 11-1 Environmental Mitigation Measures

Issues	Environmental Mitigation Measures				
Ouality	 Drainage channels were provided to convey run-off into the treatment facilities; and Drainage systems were regularly and adequately maintained. 				
	 Cover all excavated or stockpile of dusty material by impervious sheeting or sprayed with water to maintain the entire surface wet; Public roads around the site entrance/exit had been kept clean and free from dust; and Tarpaulin covering of any dusty materials on a vehicle leaving the site. 				

Issues	Environmental Mitigation Measures
Noise	 Good site practices to limit noise emissions at the sources;
	 Use of quite plant and working methods;
	• Use of site hoarding or other mass materials as noise barrier to screen noise at
	ground level of NSRs; and
	To minimize plant number use at the worksite.
Waste and	• Excavated material should be reused on site as far as possible to minimize off-site
Chemical	disposal. Scrap metals or abandoned equipment should be recycled if possible;
Management	• Waste arising should be kept to a minimum and be handled, transported and
wianagement	disposed of in a suitable manner;
	• The Contractor should adopt a trip ticket system for the disposal of C&D
	materials to any designed public filling facility and/or landfill; and
	• Chemical waste shall be handled in accordance with the Code of Practice on the
	Packaging, Handling and Storage of Chemical Wastes.
General	The site was generally kept tidy and clean.

12 IMPACT FORECAST

12.01 Key issues to be considered in the coming month include:

Water Quality

- Erect of sand bag in proper area to avoid any muddy surface runoff from the loose soil surface or haul road during the rainy days; and
- The accumulated stagnant water should be drained away.

Air Quality

- Vehicles shall be cleaned of mud and debris before leaving the site;
- Stockpile and loose soil surface shall be covered with tarpaulin sheet or other means to eliminate the fugitive dust;
- Water spaying on the dry haul road and exit/entrance of the site in regular basis is reminded;
 and
- Public roads around the site entrance/exit had been kept clean and free from dust.

Noise

- Works and equipment should be located to minimize noise nuisance from the nearest sensitive receiver; and
- Idle equipments should be either turned off or throttled down;

Waste and Chemical Management

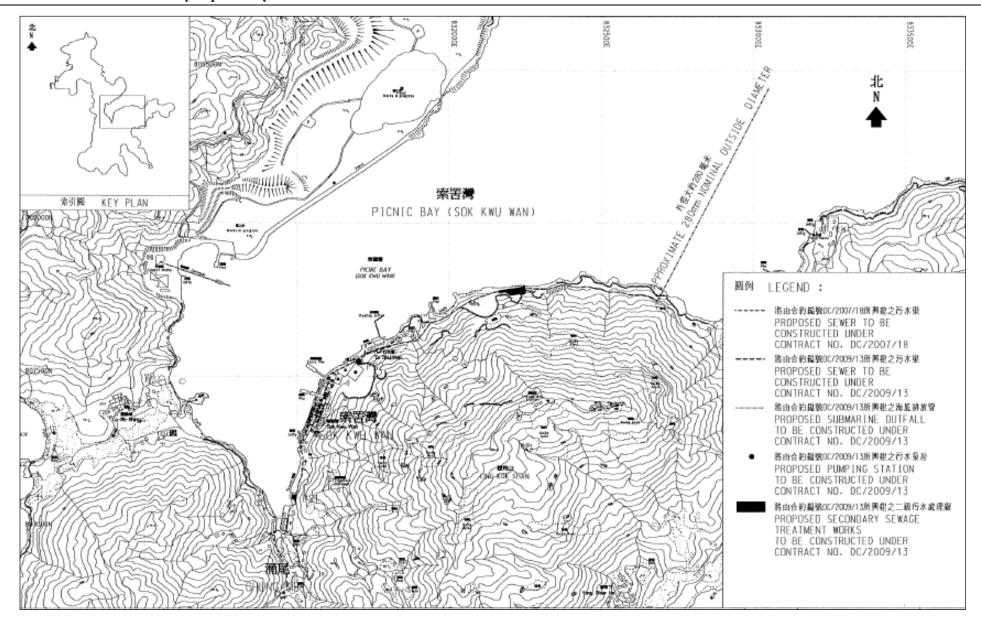
- Housekeeping on site shall be improved;
- The Contractor is advised to fence off the construction waste at a designated area in order to maintain the tidiness of the site;
- Drip tray and proper label should be provided for all chemical containers.
- C&D waste should be disposed in regular basis.

13 CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

- 13.01 This is the 24th monthly EM&A Report covering the construction period from 26 June to 25 July 2012.
- 13.02 Power failure of HVS was occurred at AM3 on 6 July 2012 after the heavy rainstorm. In this Reporting Period, no 1-hour and 24-hour TSP results were found to be triggered the Action or Limit Level
- 13.03 No noise complaint (an Action Level exceedance) was received and no construction noise measurement results that exceeded the Limit Level were recorded in this Reporting Period.
- 13.04 Marine water monitoring on 24 July was cancelled due to the inclement weather and the influence of Tropical Cyclone Warning No.3. Besides, the monitoring result demonstrated no exceedance of Action or Limit Level of marine water quality monitoring in this Reporting Period.
- 13.05 No documented complaint, notification of summons or successful prosecution was received.
- 13.06 In this Reporting Period, weekly site inspection by ET was carried out on 26 June, 5, 10, 19 and 25 July 2012 and a joint-site visit by RE, the Contractor and ET was carried out on 5 July 2012. All the observation has been rectified during the next week site inspection. The environmental performance of the Project was therefore considered as satisfactory.
- 13.07 No site inspection was undertaken by external parties i.e. Environmental Protection Department (EPD) or Agriculture, Fisheries and Conservation Department (AFCD) within the Reporting Period.

RECOMMENDATIONS


- 13.08 During wet season, muddy water and other water quality pollutants via site surface water runoff into the sea body within Fish culture zone at Picnic Bay and the Secondary recreation contact subzone at Mo Tat Wan is the key issue of the Project. Mitigation measures for water quality should be properly maintained to prevent any muddy or sandy runoff from the loose soil surface overflow on the site boundary.
- 13.09 Moreover, special attention should be also paid on the dust mitigation measures to avoid fugitive dust emissions from loose soil surface or haul road. Mitigation measures implemented for control the surface runoff including wheel wash facilities, covering of the loose soil surface or stockpile with tarpaulin sheet, etc., should fully implement.

Appendix A

Site Layout Plan – Sok Kwu Wan Portion Area

Appendix B

Organization Structure and Contact Details of Relevant Parties

Contact Details of Key Personnel

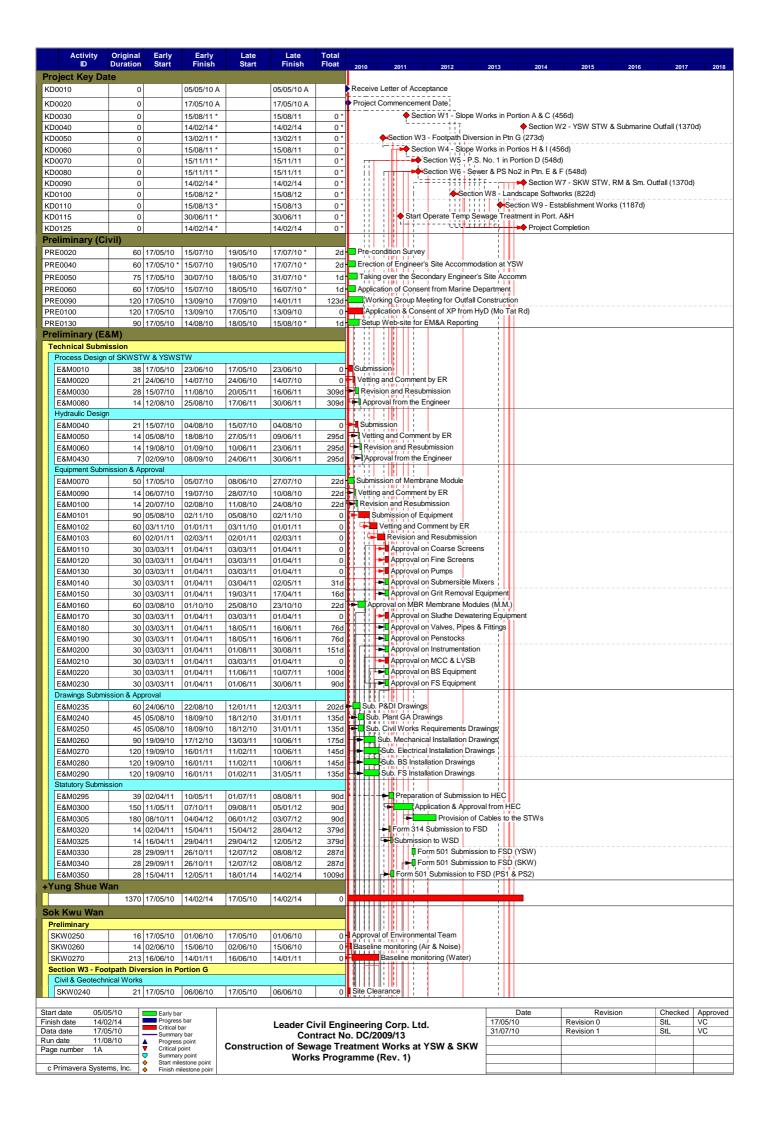
Organization	Project Role	Name of Key Staff	Tel No.	Fax No.
DSD	Employer	Mr Kenley C K Kwok	-	-
SCJV	Engineer's Representative	Mr. Neil Wong	2982 0240	2982 4129
SCJV	Resident Engineer	Mr. Alfred Cheung	2982 0240	2982 4129
Scott Wilson	Independent Environmental Checker	Mr. Rodney Ip	2410 3750	2428 9922
Leader	Project Manager	Mr. Vincent Chan	2982 1750	2982 1163
Leader	Site Agent	Mr. Ron Hung	2982 1750	2982 1163
Leader	Environmental Officer	Mr. K.Y. So	2982 8652	2982 8650
Leader	Section Engineer	Mr. Burgess Yip	2982 1750	2982 1163
Leader	Safety Officer	Mr. Edwin Leung	2982 1750	2982 1163
AUES	Environmental Team Leader	Mr. T. W. Tam	2959 6059	2959 6079
AUES	Environmental Consultant	Ms. Nicola Hon	2959 6059	2959 6079
AUES	Assistance Environmental Consultant	Mr. Ray Cheung	2959 6059	2959 6079
AUES	Team Supervisor	Mr. Ben Tam	2959 6059	2959 6079

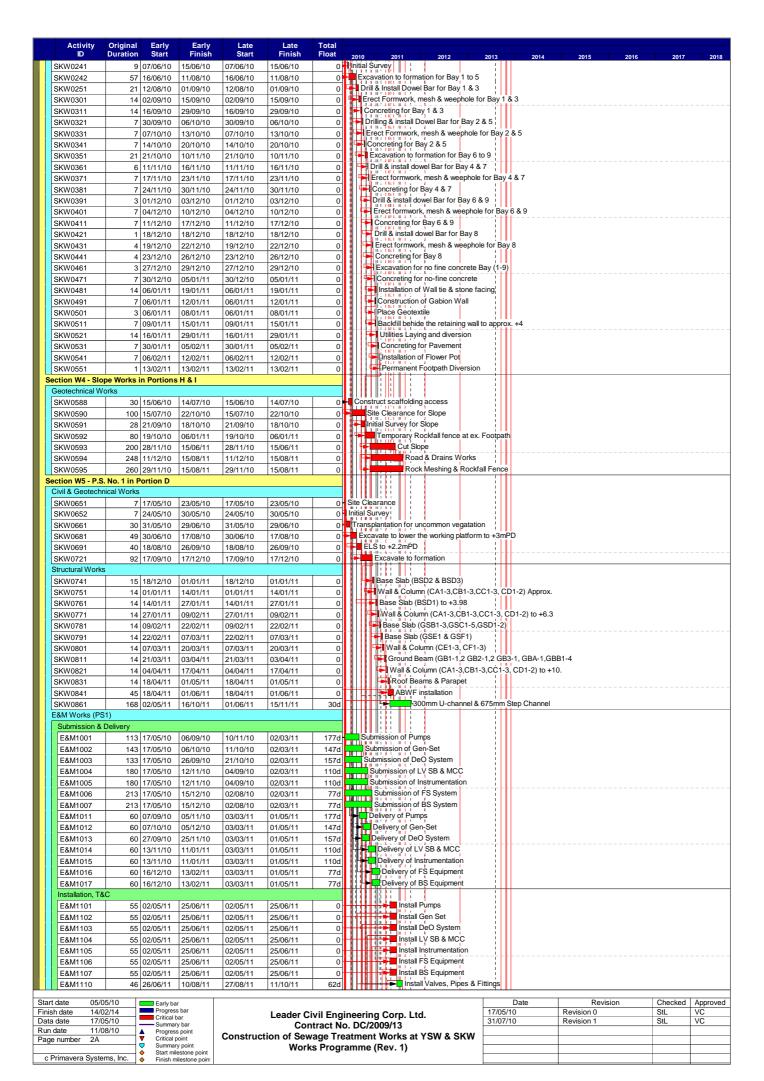
Legend:

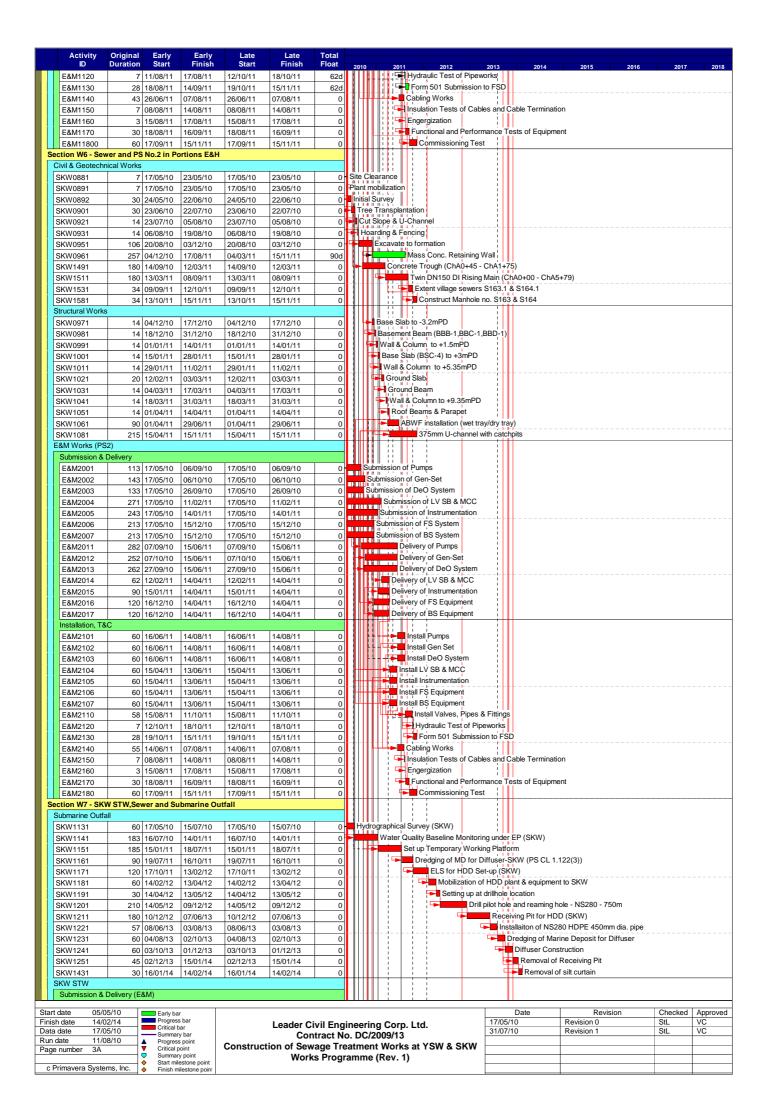
DSD (Employer) – Drainage Services Department

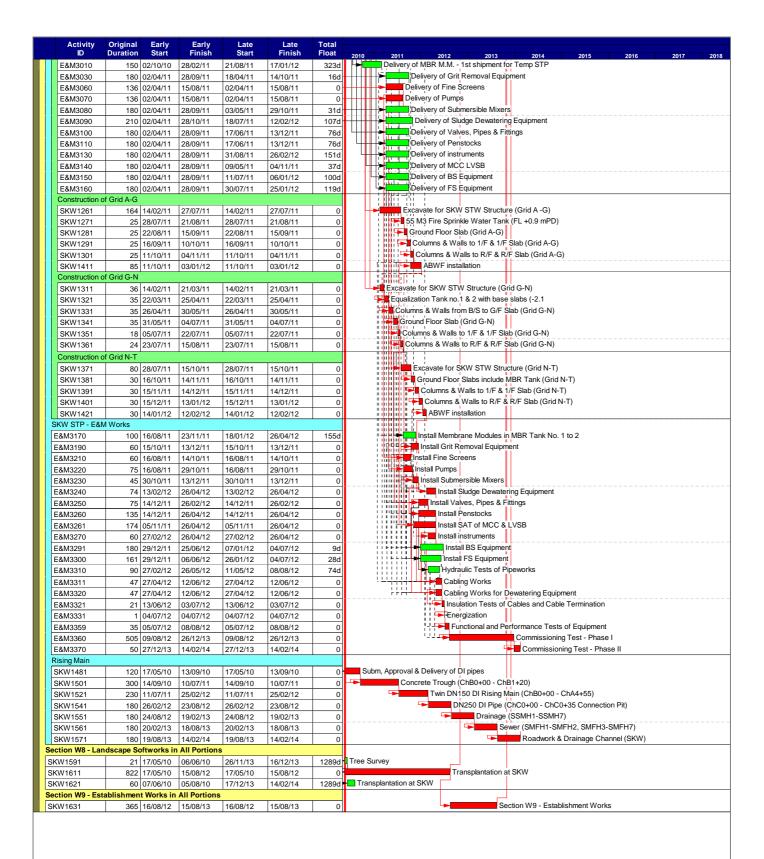
CDM (Engineer) – Scott Wilson CDM Joint Venture

Leader (Main Contractor) - Leader Civil Engineering Corporation Limited


Scott Wilson (IEC) – Scott Wilson Limited


AUES (ET) – Action-United Environmental Services & Consulting




Appendix C

A Master and Three Months Rolling Construction Programme

Start date	05/05/10		Early bar
Finish date	14/02/14		Progress bar
Data date	17/05/10	٦.	Critical bar Summary bar
Run date	11/08/10	Ī▲	
Page number	4A	7	Critical point
c Primavera	Systems, Inc.	_	

Leader Civil Engineering Corp. Ltd.
Contract No. DC/2009/13
Construction of Sewage Treatment Works at YSW & SKW
Works Programme (Rev. 1)

Date	Revision	Checked	Approved
17/05/10	Revision 0	StL	VC
31/07/10	Revision 1	StL	VC

Activ ity ID	Description	Original	Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors			2012 AUG		
Project Key		Jaration	Complete	Start	i ilioii	Otart	- III.GII	Tout			JUN	JUL	AUG	SEP	ОСТ
KD0010	Receive Letter of Acceptance	0	100	I	05/05/10 A	1	05/05/10 A	1		KD0125	•				
KD0020	Project Commencement Date	0	100		17/05/10 A		17/05/10 A			E&M0010, E&M0070, E&M1001, E&M2001,	-				
1120020	Troject Commencement Bate		100		1770071071		17700/1071			KD0125, PRE0020, PRE0040, PRE0050, PRE0060, PRE0090, PRE0100, PRE0130,					
										SKW0250,SKW0588,SKW0651,SKW0881, SKW1131,SKW1481,SKW1591,SKW1611,					
										YSW0020, YSW0050, YSW0075, YSW0180, YSW0200, YSW0220, YSW0240, YSW02401,					
										YSW0412,YSW0422					
KD0030	Section W1 - Slope Works in Portion A & C	0	100		14/10/11 A		14/10/11 A		YSW0100, YSW0110, YSW0140,	KD0125,KD0130	1				
KD0050	Section W3 - Footpath Diversion in Ptn G	0	100	1	24/03/11 A		24/03/11 A		SKW0481	KD0125	T				<u>T</u>
KD0060	Section W4 - Slope Works in Portios H & I	0	100	!	27/03/12 A		27/03/12 A		SKW05938, SKW059416	KD0125, KD0135, SKW05941					
KD0070 KD0080	Section W5 - P.S. No. 1 in Portion D Section W6 - Sewer & PS No2 in Ptn. E & F	0	100	1	10/02/12 A 10/02/12 A		10/02/12 A 10/02/12 A		SKW0741 SKW0971	KD0125 KD0125					!
KD0130	Completion of Maintenance Period of W1	1		13/10/12	13/10/12 *	13/10/12	13/10/12 *	0	KD0030, YSW01755, YSW01805,		1				
- Dualinsina	(O::I)								YSW01810						
+Prelimina	ry (Civii)	120	100	17/05/10 A	13/09/10 A	17/05/10 A	13/09/10 A		KD0020						
Preliminary	/ (E.M)	120	100	17/03/10 A	13/09/10 A	17/03/10 A	13/09/10 A		KD0020						
Technical Sul															
	esign of SKWSTW & YSWSTW														
		198	100	17/05/10 A	30/11/10 A	17/05/10 A	30/11/10 A								
+Hydraulic [Design I	1 400		15/07/10 4	00/44/40 1	15/07/10 1	00/14/40 *								
+Equipment	Submission & Approval	139	100	15/07/10 A	30/11/10 A	15/07/10 A	30/11/10 A								
+Equipment	υσυπισσιστι α πρρισναι	801	97	17/05/10 A	25/07/12	17/05/10 A	15/04/13	265d							
+Drawings S	Submission & Approval				•										
		764	81	24/06/10 A	27/07/12	24/06/10 A	08/03/13	224d							
+Statutory S	ubmission			I	1	1			T						
Vivin or Chris	Won	437	44	01/11/11 A	05/02/13	01/11/11 A	12/10/13	250d							
Yung Shue															
+Fremmary		229	100	17/05/10 A	31/12/10 A	17/05/10 A	31/12/10 A	l		1					
+Section W1	- Slope Works in Portion A & C			•	1										
		843	94	17/05/10 A	05/09/12	17/05/10 A	13/10/12	38d							
+Civil & Stru	YSW STW & Submarine Outfall														
+CIVII & SIII	Work	1046	69	17/05/10 A	22/08/13	17/05/10 A	22/08/13	140d		1					
+Submarine	Outfall				1										
		720	100	17/05/10 A	05/05/12 A	17/05/10 A	05/05/12 A								
+E&M Works	s - YSW STW														
		987	68	24/02/11 A	06/11/13	24/02/11 A	13/10/13	-24d							
Sok Kwu W															
+Preliminary		1 44	. 0	30/06/12	12/08/12	17/05/12	29/06/12	-44d		1					
Section W3 -	Footpath Diversion in Portion G														
+Civil & Geo	otechnical Works														
		603	100	17/05/10 A	09/01/12 A	17/05/10 A	09/01/12 A								
+Geotechnic	Slope Works in Portions H & I														
Tacolectimic	1	980	73	15/06/10 A	19/02/13	15/06/10 A	14/04/15	785d							
	P.S. No. 1 in Portion D				1					1					
+Civil & Geo	technical Works														
	Mode	393	100	17/05/10 A	13/06/11 A	17/05/10 A	13/06/11 A								
+Structural \	vv orks	300	100	14/06/11 A	08/04/12 A	14/06/11 A	08/04/12 Δ	l	l	1	-				
E&M Works	I (PS1)	300	100	I, OU/ IT A	100/04/12 M	I -/ OU/ IT A	00, 07, 12 M	<u> </u>							
	ion & Delivery														
		880	89	17/05/10 A	12/10/12	17/05/10 A	22/06/13	253d							
+Installatio	on, T&C	1		10/00/10	14/40/40	00/00/40	04/40/40	000					<u> </u>		
Section We	Sewer and PS No.2 in Portions E&H	123	0	13/08/12	14/12/12	22/06/13	31/10/13	322d							
	otechnical Works										-				
		937	67	17/05/10 A	21/01/13	17/05/10 A	09/02/13	19d							
+Structural \	Works														
Start date	05/05/10 Early bar												Date	Revision	Checked Approved
Finish date	22/10/15 Progress bar						Lea	der C	ivil Engineering C	orp. Ltd.		3		Revision 0	RH VC
Data date	30/06/12 Summary bar							Cor	ntract No. DC/2009	/13					
Run date Page number	20/07/12 Progress point TA Progress point Critical point					Constru	uction o	f Sev	age Treatment Wo	orks at YSW & SKW					
c Primavera	Summary point Start milestone point					3-m	onth Rol	lling l	Programme (Jul 20	112 - Sep 2012)		_			
	Stat Innestone point Finish milestone point								- '	<u> </u>					

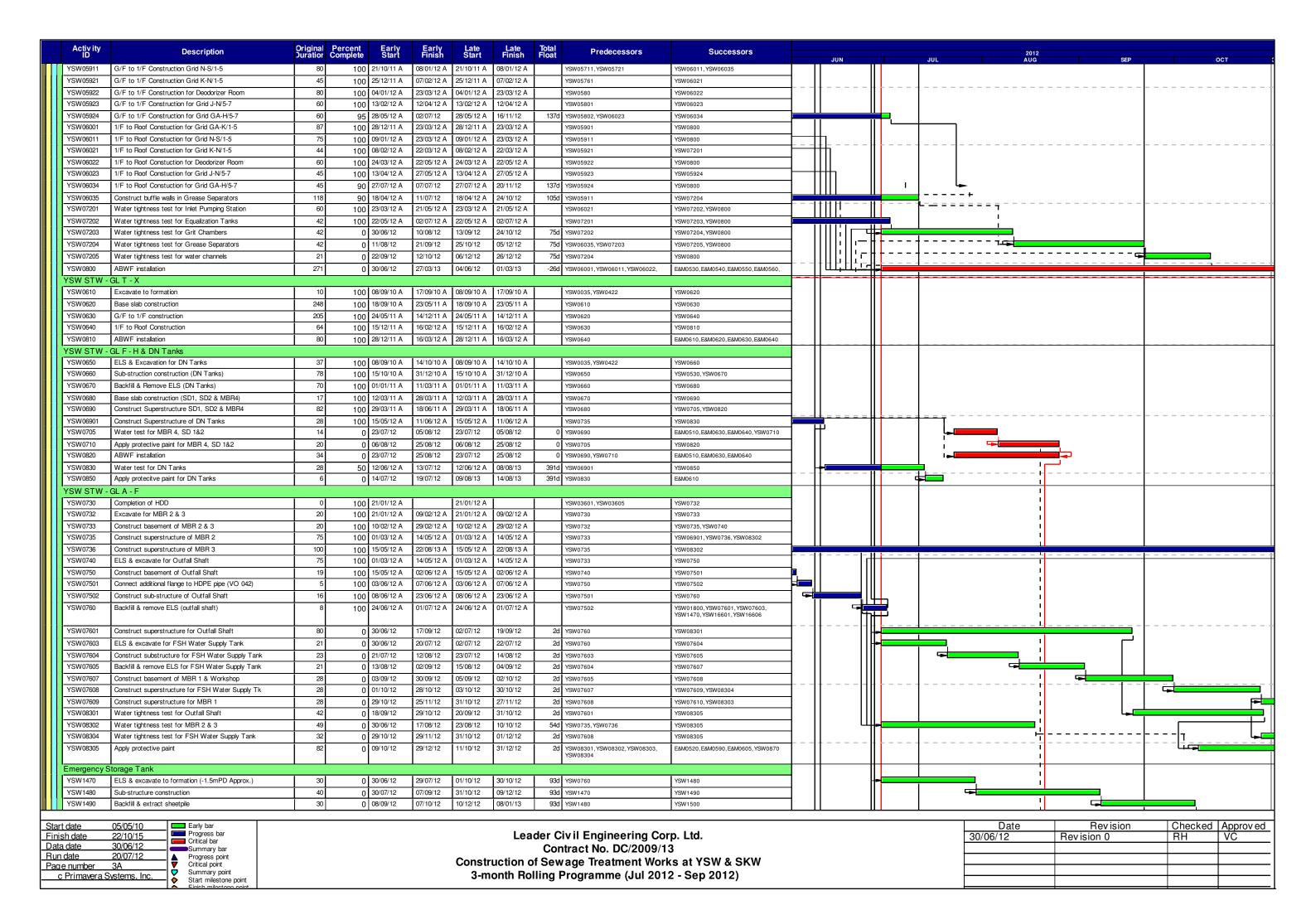
Activ ity ID	Description	Original Ouration	Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors			2012 AUG		
1		400		11/06/11 A		11/06/11 A	11/11/12	76d			JUN	JUL	AUG	SEP	ОСТ
E&M Works (PS2)				<u> </u>											
+Submission & D	Pelivery														
		880	90	17/05/10 A	12/10/12	17/05/10 A	26/07/12	-78d							
+Installation, T&C						•									
		123	(13/08/12	14/12/12	27/07/12	05/01/13	23d							
	STW,Sewer and Submarine Outfall														
+Submarine Outfall							_								
		892	91	17/05/10 A	07/12/12	17/05/10 A	26/05/13	170d							
SKW STW															
+Submission & D	Pelivery (E&M)			Lawarer	Lierenne	Laurani	I			_				_	
Oznatnica i sa of (0.:1 4 0	689	65	24/02/11 A	12/01/13	24/02/11 A	2//10/13	288d							
+Construction of 0	GRIO A-G	202	I 50	28/03/12 A	1 20/11/12	28/03/12 A	00/11/10	l ol							
+Construction of 0	Grid G N	202	1 50	20/03/12 A	29/11/12	20/03/12 A	20/11/12	<u> </u>							
1 I	and G-14	198	I 40	28/03/12 A	24/11/12	28/03/12 A	15/10/12	-40d		1					
+Construction of (Grid N-T		1 70	71	1-4	1-0.00.	10.10.12	1 .44					•		
		97	1 (08/09/12	14/12/12	08/09/12	13/12/12	0		T					
+Rising Main						<u> </u>		<u> </u>							
TI II SIII SIII WAIII		825	l 93	17/05/10 A	I 18/08/12	17/05/10 A	12/09/14	755d		<u> </u>					
Section W8 - Lands	scape Softworks in All Portions			1	1	1	1	1							
1	,	824	95	17/05/10 A	18/08/12	17/05/10 A	08/03/13	203d							
Section W9 - Estab	lishment Works in All Portions	1								I		-			
		365	() 18/08/12	18/08/13	12/03/13	11/03/14	206d		1					

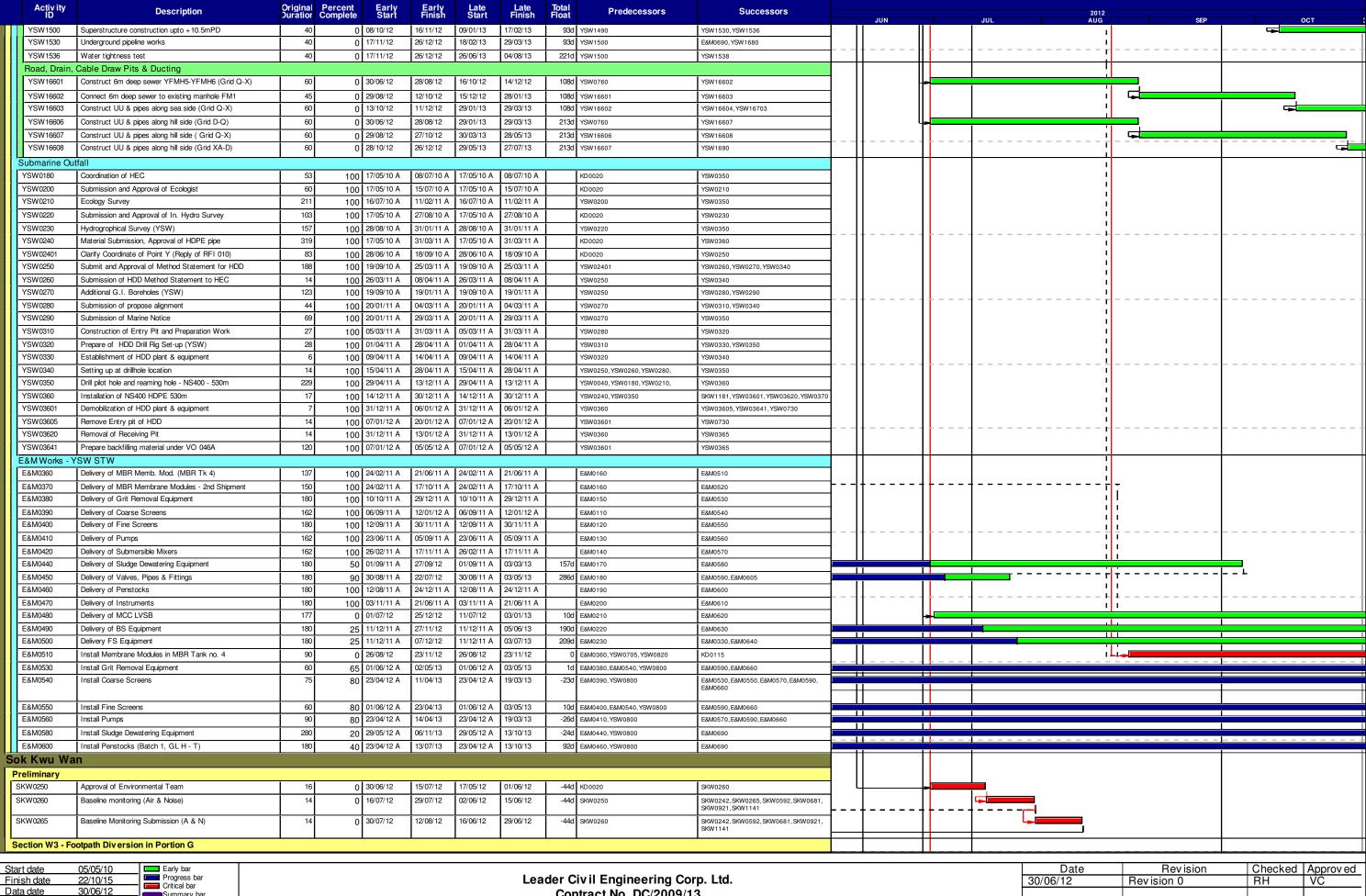
Start date	05/05/10	Early bar
Finish date	22/10/15	Progress bar
Data date	30/06/12	Critical bar Summary bar
Run date	20/07/12	▲ Progress point
Page number	2A	▼ Critical point
c Primavera	Systems, Inc.	Summary point Start milestone point
		Finish milestone poi

Leader Civil Engineering Corp. Ltd.
Contract No. DC/2009/13
Construction of Sewage Treatment Works at YSW & SKW 3-month Rolling Programme (Jul 2012 - Sep 2012)

Date	Revision	Checked	Approv ed
30/06/12	Revision 0	RH	VC

Activ ity	Description	Original	Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Float	Predecessors	Successors						2012			
	<u> </u>	Juration	Complete	Start	rinisn	Start	rinisn	rioat				JUN	<u> </u>	JUL		2012 AUG	SEP		ост
Project Key KD0010	Receive Letter of Acceptance	1 0	100		05/05/10 A	ı	05/05/10 A	ı		KD0125									
	'																		
KD0020	Project Commencement Date	0	100		17/05/10 A		17/05/10 A			E&M0010, E&M0070, E&M1001, E&M2001, KD0125, PRE0020, PRE0040, PRE0050,		1							
										PRE0060, PRE0090, PRE0100, PRE0130, SKW0250, SKW0588, SKW0651, SKW0881,									
										SKW1131,SKW1481,SKW1591,SKW1611, YSW0020,YSW0050,YSW0075,YSW0180,									
										YSW0200, YSW0220, YSW0240, YSW02401, YSW0412, YSW0422	,								
L/Doops					11/10/11 1		44/40/44 A												
KD0030 KD0050	Section W1 - Slope Works in Portion A & C Section W3 - Footpath Diversion in Ptn G		100		14/10/11 A 24/03/11 A		14/10/11 A 24/03/11 A		YSW0100, YSW0110, YSW0140, SKW0481	KD0125, KD0130 KD0125	↓								
KD0050	Section W4 - Slope Works in Portios H & I	0	100		27/03/11 A 27/03/12 A		27/03/11 A 27/03/12 A		SKW0481 SKW05938, SKW059416	KD0125 KD0125,KD0135,SKW05941	_							i	
KD0070	Section W5 - P.S. No. 1 in Portion D	0	100		10/02/12 A		10/02/12 A		SKW0741	KD0125									
KD0080	Section W6 - Sewer & PS No2 in Ptn. E & F	0	100		10/02/12 A		10/02/12 A		SKW0971	KD0125								!	
KD0130	Completion of Maintenance Period of W1	1	0	13/10/12	13/10/12 *	13/10/12	13/10/12 *	0	KD0030, YSW01755, YSW01805,							r - <i>-</i>			I ,
	(0: 11)								YSW01810							·			_ -
Preliminary						Lieuseus	1	1		_						1	ı		1
PRE0020	Pre-condition Survey	60	1	17/05/10 A	15/07/10 A	17/05/10 A	15/07/10 A		KD0020	_	-					!	!		- !
PRE0040 PRE0050	Erection of Engineer's Site Accommodation at YSW Taking over the Secondary Engineer's Site Accomm	60 75		17/05/10 A 17/05/10 A	15/07/10 A 30/07/10 A	17/05/10 A 17/05/10 A	15/07/10 A 30/07/10 A		KD0020 KD0020		-					i	i		i
PRE0060	Application of Consent from Marine Department	60	1	17/05/10 A	15/07/10 A	17/05/10 A	15/07/10 A		KD0020		-					!	!		!
PRE0090	Working Group Meeting for Outfall Construction	120		17/05/10 A	13/09/10 A	17/05/10 A	13/09/10 A		KD0020	SKW1151	-					i i	i		i
PRE0100	Application & Consent of XP from HyD (Mo Tat Rd)	120			13/09/10 A	17/05/10 A	13/09/10 A		KD0020	SKW1491,SKW1501						!			·
PRE0130	Setup Web-site for EM&A Reporting	90		17/05/10 A	14/08/10 A	17/05/10 A	14/08/10 A		KD0020							! !			
Preliminary	(E&M)							<u> </u>								i I	i		i
Technical Subm																!	ļ		!
Process Design	gn of SKWSTW & YSWSTW															i I	i		i
E&M0010	Submission	38	100	17/05/10 A	23/06/10 A	17/05/10 A	23/06/10 A		KD0020	E&M0020, E&M0040, E&M0235						!	!		!
E&M0020	Vetting and Comment by ER	21		24/06/10 A	14/07/10 A	24/06/10 A	14/07/10 A		E&M0010	E&M0030, E&M0040						! 	i		-
E&M0030	Revision and Resubmission	125	100	15/07/10 A	16/11/10 A	15/07/10 A	16/11/10 A		E&M0020	E&M0080						İ	i		_ i
E&M0080	Approval from the Engineer	14	100	17/11/10 A	30/11/10 A	17/11/10 A	30/11/10 A		E&M0030	E&M0295						!	!		ļ .
Hydraulic Des	ign															i I	i		- i
E&M0040	Submission	21		15/07/10 A	04/08/10 A		04/08/10 A		E&M0010, E&M0020	E&M0050, E&M0101, E&M0240, E&M0260,						!	!		!
E&M0050	Vetting and Comment by ER	14		05/08/10 A	18/08/10 A	05/08/10 A	18/08/10 A		E&M0040	E&M0060						! !	i i		-
E&M0060	Revision and Resubmission	97		19/08/10 A	10/11/10 A	19/08/10 A	10/11/10 A		E&M0050	E&M0430	_					İ	i		_ i
E&M0430	Approval from the Engineer		100	24/11/10 A	30/11/10 A	24/11/10 A	30/11/10 A	<u> </u>	E&M0060	E&M0295			<u> </u>			<u> </u>	<u> </u>		<u> </u>
E&M0070	Ibmission & Approval Submission of Membrane Module	50	100	17/05/10 A	05/07/10 A	17/05/10 A	05/07/10 A	1	KD0020	E&M0090						i	i		i
E&M0090	Vetting and Comment by ER	14		06/07/10 A	19/07/10 A	06/07/10 A	19/07/10 A		E&M0070	E&M0100	-					!	į.		!
E&M0100	Revision and Resubmission	14		20/07/10 A	24/02/11 A		24/02/11 A		E&M0090	E&M0160	-					!	i		i
E&M0101	Submission of Equipment	90		05/08/10 A	30/11/11 A		30/11/11 A		E&M0040	E&M0102	1					l	į		İ
E&M0102	Vetting and Comment by ER	60	100	03/11/10 A	30/11/11 A	03/11/10 A	30/11/11 A		E&M0101	E&M0103						! !	i i		-
E&M0103	Revision and Resubmission	60		01/02/11 A	30/11/11 A	01/02/11 A	30/11/11 A		E&M0102	E&M0110, E&M0120, E&M0130, E&M0140,			†			i	i		-ii
E&M0110	Approval on Coarse Screens	30	100	25/05/11 A	25/05/11 A	25/05/11 A	25/05/11 A		E&M0103	E&M0390						!	į.		!
E&M0120	Approval on Fine Screens	30	100	12/09/11 A	12/09/11 A	12/09/11 A	12/09/11 A		E&M0103	E&M0400, E&M3060						! 	i		- i
E&M0130	Approval on Pumps	30	100	23/06/11 A	23/06/11 A	23/06/11 A	23/06/11 A		E&M0103	E&M0410, E&M3070						!	1		!
E&M0140	Approval on Submersible Mixers	30	.00		23/03/11 A	23/03/11 A	23/03/11 A		E&M0103	E&M0420, E&M3080	1		ļ			 			
E&M0150	Approval on Grit Removal Equipment	30			10/10/11 A	10/10/11 A	10/10/11 A		E&M0103	E&M0380, E&M3030	_					i İ	i		i []
E&M0160	Approval on MBR Membrane Modules (M.M.)	105			24/02/11 A	03/08/10 A	24/02/11 A		E&M0100	E&M0360, E&M0370, E&M3010	4					!	1		!
E&M0170	Approval on Sludge Dewatering Equipment	30		01/09/11 A	01/09/11 A	01/09/11 A	01/09/11 A		E&M0103	E&M0440, E&M3090						! 	i		i
E&M0180	Approval on Valves, Pipes & Fittings	30		19/11/11 A	04/07/12	19/11/11 A	15/04/13	286d		E&M0450, E&M3100						!	!		!
E&M0190 E&M0200	Approval on Instrumentation	30		15/11/11 A 21/06/11 A	15/11/11 A 08/03/12 A	15/11/11 A 21/06/11 A	15/11/11 A 08/03/12 A	<u> </u>	E&M0103 E&M0103	E&M0460, E&M3110						<u></u>			
E&M0200 E&M0210	Approval on Instrumentation Approval on MCC & LVSB	30		21/06/11 A 19/11/11 A	08/03/12 A 01/07/12	19/11/11 A	08/03/12 A 10/07/12	40-1	E&M0103 E&M0103	E&M0470, E&M3130		<u> </u>	<u> </u>			I	i		i
E&M0210	Approval on BS Equipment	30		30/11/11 A	15/07/12	30/11/11 A	21/01/13	190d		E&M0480, E&M3140 E&M0490, E&M3150						l 1	1		
E&M0230	Approval on FS Equipment	30		30/11/11 A	25/07/12	30/11/11 A	18/02/13		E&M0103, E&M0290	E&M0295, E&M0320, E&M0500, E&M3160						İ	i		i
	mission & Approval		13	20.10111		25.10.17	1.5.52.0								-	 	1		-
E&M0235	Sub. P&ID Drawings	100	75	24/06/10 A	24/07/12	24/06/10 A	06/03/13	224d	E&M0010	E&M0250						! 			
E&M0240	Sub. Plant GA Drawings	45		04/08/10 A	14/07/12	04/08/10 A	06/03/13		E&M0040	E&M0250, E&M0280, E&M0290		<u> </u>		$\overline{+}$	_	I	i		į į
E&M0250	Sub. Builder's Works Requirements Drawings	15		04/08/10 A	27/07/12	04/08/10 A	08/03/13	224d	E&M0235, E&M0240, E&M0260, E&M02	70 E&M0280, E&M0290			<u> </u>		—	! !	1		
E&M0260	Sub. Mechanical Installation Drawings	60	70	27/09/10 A	17/07/12	27/09/10 A	06/03/13	231d	E&M0040	E&M0250		1+		-	+	I	i		i
E&M0270	Sub. Electrical Installation Drawings	60		27/09/10 A	14/07/12	27/09/10 A	06/03/13	234d	E&M0040	E&M0250, E&M0280		1+		[l		l 	1 =		[
E&M0280	Sub. BS Installation Drawings	120		27/09/10 A	05/07/12	27/09/10 A	12/01/13		E&M0240, E&M0250, E&M0270	E&M0220				<u>'</u>					i
E&M0290	Sub. FS Installation Drawings	120	85	13/11/10 A	17/07/12	13/11/10 A	11/02/13	209d	E&M0240, E&M0250	E&M0230						<u>!</u>	!		!
Statutory Subr		1	,	04/44/42	00/44/4:	04/44/4:	00/44/4:			I						! 	l I		ļ
E&M0295	Preparation of Submission to HEC	39	100	01/11/11 A	30/11/11 A	01/11/11 A	30/11/11 A		E&M0080, E&M0230, E&M0430	E&M0300						<u>- </u>		10,	
Start date	05/05/10 Early bar 22/10/15 Progress bar						Lac	der C	ivil Engineering C	arn Itd					Date		Revision		Approv ed
Finish date Data date	20/06/12						Lea		iv il Engineering C htract No. DC/2009/						30/06/12	He	vision 0	RH	VC
Run date	20/07/12 Summary bar Progress point					00													+
	1A Critical point									rks at YSW & SKW									+
c Primavera S	Start milestone point					3-m	onth Ro	ıııng l	Programme (Jul 20	12 - Sep 2012)									1
	Einich miloctono point																		


March Marc	Activ ity ID	Description	Original Percer Ouration Comple	nt Early te Start	Early Late Finish Start F	Late Tot inish Flo	al Predecessors	Successors		IIIN		201 JUL AUG	2 SEP	ост
March Control Contro	E&M0300	Application & Approval from HEC	150	90 01/11/11 A	09/08/12 01/11/11 A 15/0	04/13 2	50d E&M0295	E&M0305		JUN	<u> </u>	JUL	JEF I	I
March Marc	E&M0305	Provision of Cables to the STWs	180	0 09/08/12	05/02/13 16/04/13 12/	10/13 2	50d E&M0300	E&M0680						
March Marc	E&M0320	Form 314 Submission to FSD	14	0 25/07/12	08/08/12 08/08/13 21/0	08/13 3	79d E&M0230	E&M0325, E&M0670					 	
Part	E&M0325	Submission to WSD	14 1	00 01/11/11 A	29/02/12 A 01/11/11 A 29/0	02/12 A	E&M0320	E&M0670, E&M0680		1 1	1	 -!		
Professor Prof	E&M0350	Form 501 Submission to FSD (PS1 & PS2)	28	0 25/09/12	23/10/12 14/11/12 11/	12/12	50d E&M2016	E&M11800, E&M2180						>
Propose Prop	Yung Shue V	Van										1	I	ı
	Preliminary											!	! !	
Margin Service Princip Service Princip Service Servi	YSW0020	Approval of Environmental Team	16 1	00 17/05/10 A	01/06/10 A 17/05/10 A 01/0	06/10 A	KD0020	YSW00201, YSW0030, YSW00351, YSW004	40			i	i	i
March Marc	YSW00201	Change Baseline Monitoring Location (Air&Noise)	59 1	00 02/06/10 A	30/07/10 A 02/06/10 A 30/0	07/10 A	YSW0020	YSW0030				ļ ļ	1	<u> </u>
	YSW0030	Baseline monitoring (Air & Noise)	23 1	00 31/07/10 A	22/08/10 A 31/07/10 A 22/0	08/10 A	YSW0020, YSW00201	YSW0035				1 :		1 :
Mode	YSW0035	Baseline Monitoring Report Submission (A & N)	16 1	00 23/08/10 A	07/09/10 A 23/08/10 A 07/0	09/10 A	YSW0030	YSW0120, YSW01545, YSW0500, YSW0610	0,			i	i	i
Management Man	YSW00351	Submission & Approval for Monitoring Method (W)	58 1	00 02/06/10 A	29/07/10 A 02/06/10 A 29/0	07/10 A	YSW0020	YSW0040		1 1	L I	<u> </u>	<u> </u>	
Section 12 Section Person A C		Baseline monitoring (Water)					YSW0020, YSW00351	YSW0350				1 :	! !	1 :
	·	<u> </u>	60 1	00 19/05/10 A	17/07/10 A 19/05/10 A 17/0	07/10 A	KD0020	YSW0155				i	<u> </u>	i
Property Property	-	•			 							!	!	!
1907-00 1908 1909	YSW0075	Mobilization			<u> </u>		KD0020	YSW0080, YSW0100	_			1	i I	- I
Proceedings Procedure State Procedure Stat		<u> </u>			<u> </u>			-	_			i	Ì	i
Company Comp		· · · · · · · · · · · · · · · · · · ·										!	!	!
Control Cont					<u> </u>		-	-	-			l ;	i i	- I
					<u> </u>							-		_
1999 1999		•			<u> </u>				⊣ ∣				 	!
Total Control of March Control (March Control) Total Control (March Control) Total Control (March Control) Total												1	i	- I
March Company of the Service March Company Com					<u> </u>				- 1			i	Ì	i
March Compared of All Association color		-		!					-			!	I .	!
March Marc					 									-
Manufaction and Alley Manu					<u> </u>				_			ı	1	1
\$\sqrt{\si	 			!					_			!	l	!
		<u>'</u>			<u> </u>				-			i	i	- i
Townsort Townsort												ı	1	1
1999 1999										+		+!		-
Section Column Section Secti				!					-			i	i	- i
No. Company									- 1			!	!	!
Section 1					-!!!				-				1	
SWINTING Construction of about any please 1				!					-			i	i	- i
SWY-17/20 Conferent stands flave (flave 2) 10 10 20 20 20 20 20 20			 							+		 		-
System S		* /										<u> </u>		
Note Section					<u> </u>				-]			<u> </u>	i
Section W2 - VSW W3 & Submarine Outside Su			14				61d YSW01800	KD0130	-					!
Column Structural Work Yes Work Ye		! '	30		<u> </u>				-					-
Column Structural Work Yes Work Ye	Section W2 - Y5	SW STW & Submarine Outfall		-1						† 	 			
September Sept														
Y-99/0522 Size Clearance 30 100 17/0510 A 15/0610 A			30 1	00 17/05/10 A	15/06/10 A 17/05/10 A 15/0	06/10 A	KD0020	YSW0422						
VSW0502 Initial Sturvey	YSW0422	Site Clearance			<u> </u>		KD0020, YSW0412	YSW0432, YSW0500, YSW0610, YSW0650	-					
YSW0500 ELS & Excavation for finel Pumping Station 105 100 2019/10 A									-					
NWW.0501 ELS & Exceeding for Indel Pumping Station 105 100 09/09/10 A 221/21/0 A 09/09/10 A 221/21/0 A 09/09/10 A 0		<u> </u>								 				
YSW0500 Substituture construction (Infel Pumping Stri) 129 100 20/210 A 20/04/1 A 20/210 A 20/04/1		ELS & Excavation for Inlet Pumping Station	105 1	00 08/09/10 A	21/12/10 A 08/09/10 A 21/	12/10 A	YSW0035, YSW0422	YSW0510	-					
New York Control Secretaria Secretarian For Grant For Grant Secretarian For Grant Secretarian For Grant Secretarian For Grant For Grant Secretarian For Grant For Grant Secretarian For Grant For Grant For Grant For Grant For Grant For Grant For Grant For Grant For Grant For Grant For Grant For Grant For Grant For Grant For Gr	YSW0510	Sub-structure construction (Inlet Pumping Stn)			<u> </u>		YSW0432,YSW0500	YSW0520	-					
YSW0530 ELS & Excavation for Equalization Tank 159 100 01/01/11 A 08/06/11 A 09/06/11 A 100/01/11 A 08/06/11 A 09/06/11 A 100/01/11 A							YSW0510	YSW05701	7 I					
YSW0540 Sub-structure construction (Equalization Tank) 112 100 09/06/11 A 28/09/11 A 19/01/11 A 29/09/11 A 19/01/11 A	YSW0530	ELS & Excavation for Equalization Tank			08/06/11 A 01/01/11 A 08/0	06/11 A	YSW0660	YSW0540, YSW05701	⊣					
YSW0550 Backfilling & Remove ELS (Equalization Tank) 20 100 29/09/11 A 18/10/11 A 29/09/11 A 18/10/11 A YSW0540 YSW05701 ELS & Excavation for Grit Chambers 28 100 09/09/11 A 09/09/11 A 09/09/11 A 09/09/11 A 18/10/11 A YSW05701 YSW0571 Construct sub-structure for Grit Chambers 106 100 07/07/11 A 20/10/11 A 07/07/11 A 09/09/11 A YSW05701 YSW05701 YSW0571 ELS & Excavation for Grease Separators 12 100 21/10/11 A 07/10/11 A 09/09/11 A YSW05701 YSW0571 YSW0571 YSW0571 YSW05701 Y	YSW0540	Sub-structure construction (Equalization Tank)				09/11 A	YSW0530	YSW0550, YSW05901	⊣					
YSW05711 Construct sub-structure for Grit Chambers 106 100 07/07/11 A 20/10/11 A 07/07/11 A 20/10/11 A 17/07/11 A 20/10/11 A 17/07/11 A 1	YSW0550	Backfilling & Remove ELS (Equalization Tank)			18/10/11 A 29/09/11 A 18/	10/11 A	YSW0540	YSW05901		1		T		
YSW05721 Backfill & Remove ELS for Grit Chambers 12 100 21/10/11 A 01/11/11 A 21/10/11 A 01/11/11 A 1/10/11	YSW05701	ELS & Excavation for Grit Chambers			06/07/11 A 09/06/11 A 06/0	07/11 A	YSW0520, YSW0530	YSW05711,YSW05731	╗					
YSW05731 ELS & Excavation for Grease Separators (GS) 34 100 07/07/11 A 09/08/11 A 07/07/11 A 09/08/11 A VSW05701 VSW05751 VSW05751 Construct sub-structure for Grease Separators 52 100 10/08/11 A 30/09/11 A 10/08/11 A VSW05731 VSW05751 VSW05751 Install Dia 400 Puddles in Grease Separators 27 100 01/10/11 A 27/10/11 A 01/10/11 A 27/10/11 A VSW05752 VSW05752 Construct sub-structure for GS (above puddles) 48 100 28/10/11 A 14/12/11 A 28/10/11 A 4/12/11 A VSW05751 VSW05751 VSW05761 VSW05761 VSW05761 Sackfill & remove ELS for Grease Separators 10 100 15/12/11 A 24/12/11 A VSW05751 VSW05761 VSW05801 VSW05801 VSW05801 VSW05802 VSW05802 VSW05802 VSW05802 VSW05802 VSW05802 VSW05802 VSW05802 VSW05802 VSW05802 VSW05802 VSW05802 VSW05802 VSW05802 VSW05802 VSW05801 VSW0	YSW05711	Construct sub-structure for Grit Chambers	106 1	00 07/07/11 A	20/10/11 A 07/07/11 A 20/	10/11 A	YSW05701	YSW05721, YSW05911						
YSW05741 Construct sub-structure for Grease Separators 52 100 10/08/11 A 30/09/11 A YSW05731 YSW05751 YSW05751 Install Dia-400 Puddles in Grease Separators 27 100 01/10/11 A 27/10/11 A 10/10/11 A YSW05752 YSW05752 YSW05752 YSW05752 YSW05752 YSW05752 YSW05752 YSW05752 YSW05751 YSW05752 YSW05801 YSW05801 YSW05801 YSW05801 YSW05801 YSW05801 YSW05801 YSW05801 YSW05801 YSW05802 YSW05801 YSW05801 <td>YSW05721</td> <td>Backfill & Remove ELS for Grit Chambers</td> <td></td> <td></td> <td>01/11/11 A 21/10/11 A 01/</td> <td>11/11 A</td> <td>YSW05711</td> <td>YSW05911</td> <td>╗</td> <td> </td> <td></td> <td></td> <td></td> <td></td>	YSW05721	Backfill & Remove ELS for Grit Chambers			01/11/11 A 21/10/11 A 01/	11/11 A	YSW05711	YSW05911	╗					
YSW05751 Install Dia.400 Puddles in Grease Separators 27 100 01/10/11 A 27/10/11 A 10/10/11 A 27/10/11 A 1/5/10/11 A </td <td>YSW05731</td> <td>ELS & Excavation for Grease Separators (GS)</td> <td>34 1</td> <td>00 07/07/11 A</td> <td>09/08/11 A 07/07/11 A 09/0</td> <td>08/11 A</td> <td>YSW05701</td> <td>YSW05741</td> <td>_ </td> <td>1 </td> <td></td> <td>1</td> <td></td> <td></td>	YSW05731	ELS & Excavation for Grease Separators (GS)	34 1	00 07/07/11 A	09/08/11 A 07/07/11 A 09/0	08/11 A	YSW05701	YSW05741	_	1		1		
YSW05752 Construct sub-structure for GS (above puddles) 48 100 28/10/11 A 14/12/11 A 28/10/11 A 14/12/11 A 15/12/11 A 15/	YSW05741	Construct sub-structure for Grease Separators	52 1	00 10/08/11 A	30/09/11 A 10/08/11 A 30/0	09/11 A	YSW05731	YSW05751		T II	Γ	T		
YSW05761 Backfill & remove ELS for Grease Separators 10 100 15/12/11 A 24/12/11 A 15/12/11 YSW05751	Install Dia.400 Puddles in Grease Separators	27 1	00 01/10/11 A	27/10/11 A 01/10/11 A 27/	10/11 A	YSW05741	YSW05752							
YSW0580 Excavate to Formation for Deodorizer Room 10 100 25/12/11 A 03/01/12 A 12/02/12	YSW05752	Construct sub-structure for GS (above puddles)			14/12/11 A 28/10/11 A 14/	12/11 A	YSW05751	YSW05761	7 I					
YSW05801 Excavate to formation - Grid J-N/5-7 40 100 04/01/12 A 12/02/12 A 04/01/12 A 12/02/12 A YSW0580 YSW05802 YSW05802 Excavate to formation - Grid GA-H/5-7 10 100 13/02/12 A 22/02/12 A 13/02/12 A 22/02/12 A YSW05801 YSW05901 G/F to 1/F Construction Grid GA-K/1-5 90 100 29/09/11 A 27/12/11 A 29/09/11 A 27/12/11 A YSW0540, YSW0550 YSW06001	YSW05761	Backfill & remove ELS for Grease Separators	10 1	00 15/12/11 A	24/12/11 A 15/12/11 A 24/	12/11 A	YSW05752	YSW0580, YSW05921						
YSW05802 Excavate to formation - Grid GA-H/5-7 10 10 100 13/02/12 A 22/02/12 A 13/02/12 A 22/02/12 A 13/02/12 A 22/02/12 A 13/02/12 A 22/02/12 A YSW05801 YSW05901 G/F to 1/F Construction Grid GA-K/1-5 90 100 29/09/11 A 27/12/11 A 29/09/11 A 27/12/11 A 12/09/11 A 27/12/11 A 12/09/11 A 1	YSW0580	Excavate to Formation for Deodorizer Room		I	03/01/12 A 25/12/11 A 03/0	01/12 A	YSW05761	YSW05801, YSW05922		1	L	1		
YSW05901 G/F to 1/F Construction Grid GA-K/1-5 90 100 29/09/11 A 27/12/11 A 29/09/11 A 27/12/11 A VSW0540, YSW0550 YSW06001	YSW05801	Excavate to formation - Grid J-N/5-7	40 1	00 04/01/12 A	12/02/12 A 04/01/12 A 12/0	02/12 A	YSW0580	YSW05802, YSW05923		T II		1		
	YSW05802	Excavate to formation - Grid GA-H/5-7			22/02/12 A 13/02/12 A 22/0	02/12 A	YSW05801	YSW05924						
Start date 05/05/10 Date Revision Checked Approved Finish date 22/10/15 Progress bar Leader Civil Engineering Corp. Ltd.	YSW05901	G/F to 1/F Construction Grid GA-K/1-5	90 1	00 29/09/11 A	27/12/11 A 29/09/11 A 27/	12/11 A	YSW0540, YSW0550	YSW06001	<u> </u>	<u> </u>	<u></u>			
Start Gate US/US/10 Progress bar Date Revision Checked Approved Progress bar Progress bar Leader Civil Engineering Corp. Ltd.	Ctout data	05/05/10										Data	Daviale	Charled America
	Start date Finish date	22/10/15 Early bar Progress bar				Leader	Civil Engineering C	corp. Ltd.						


Start date 05/05/10
Finish date 22/10/15
Data date 30/06/12
Run date 20/07/12
Page number 2A
c Primavera Systems. Inc.

Early bar
Progress bar
Critical bar
Summary bar
Progress point
Critical point
Summary point
Start milestone point

Leader Civil Engineering Corp. Ltd.
Contract No. DC/2009/13
Construction of Sewage Treatment Works at YSW & SKW 3-month Rolling Programme (Jul 2012 - Sep 2012)

Date	Revision	Checked	Approv ed
30/06/12	Revision 0	RH	VC

Leader Civil Engineering Corp. Ltd.
Contract No. DC/2009/13
Construction of Sewage Treatment Works at YSW & SKW 3-month Rolling Programme (Jul 2012 - Sep 2012)

Run date

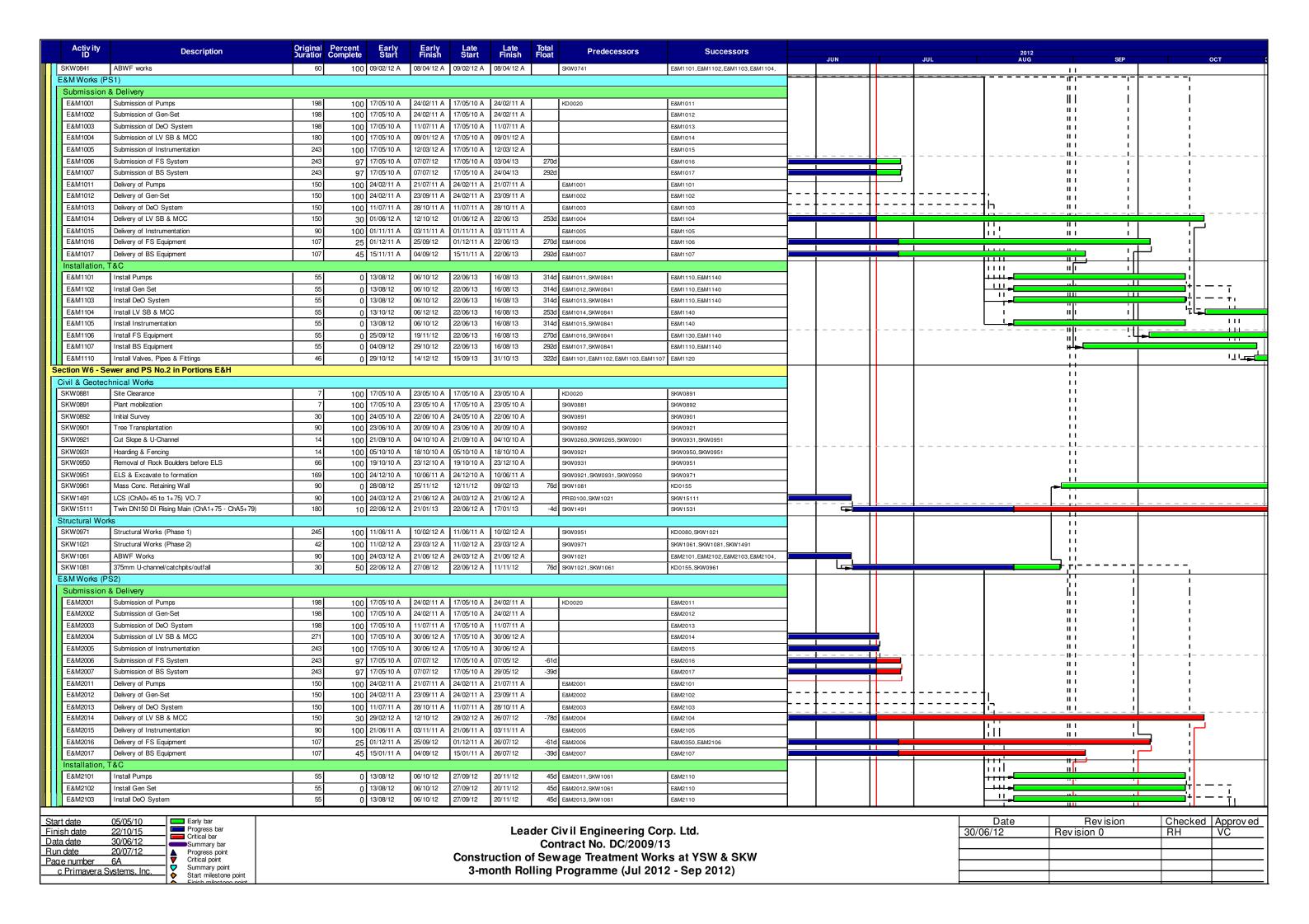
Page number

20/07/12

4A

c Primavera Systems, Inc

Progress point


Summary poin

Start milestone point

Critical point

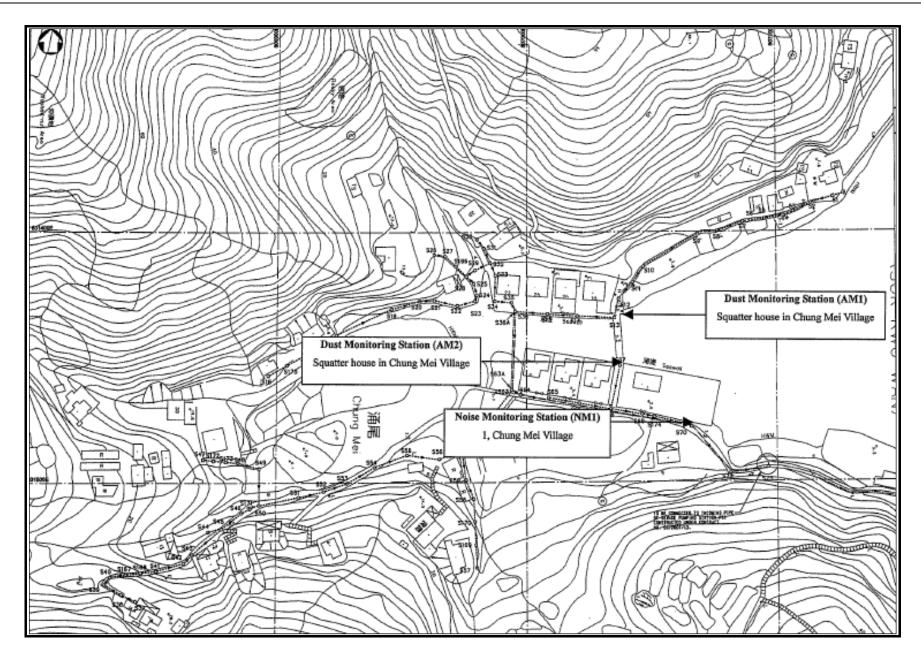
706/12 Revision 0 RH VC

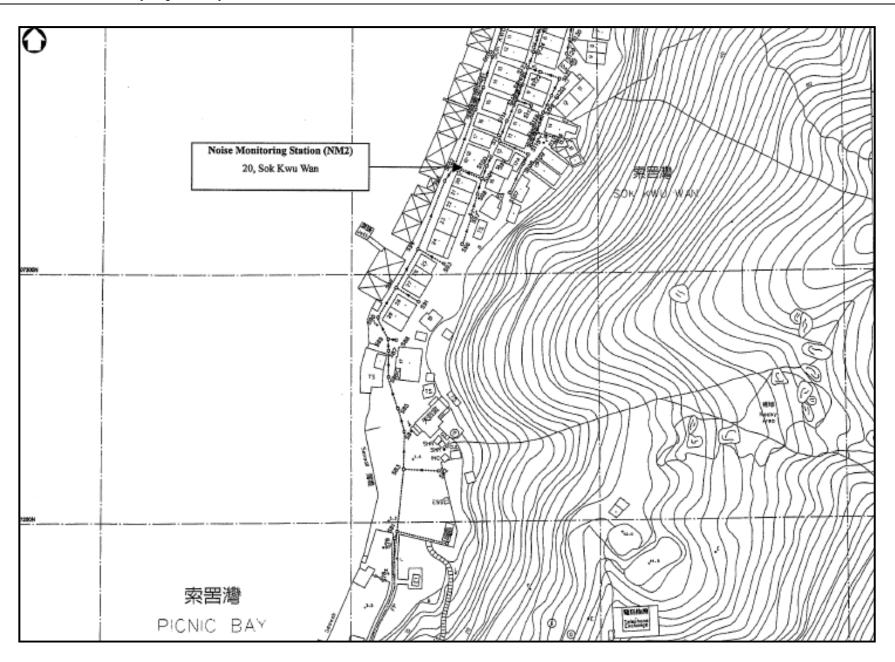
Activ ity ID		Description	Original Duration	Percent Complete	Early Start	Early L Finish S	ate Late tart Finish	Total Float	Predecessors	Successors			_			2012 AUG				
Civil & Geote	chnical Works											JUN	1	JUL		AUG	SE	EP		ОСТ
SKW0240	Site Clearance		21	100	17/05/10 A	06/06/10 A 17/0	5/10 A 06/06/10	A		SKW0241										
SKW0241	Initial Survey		9		07/06/10 A	15/06/10 A 07/0	3/10 A 15/06/10	A	SKW0240	SKW0242										
SKW0242	<u> </u>	0-10 (Incl. VO. 001A)	177	100	30/06/10 A	23/12/10 A 30/0			SKW0241, SKW0260, SKW0265	SKW0461										
SKW0461	Utilities Laying and		70		24/12/10 A	03/03/11 A 24/1			SKW0242	SKW0471	_									
SKW0471	Concreting for Pave		7	<u> </u>	04/03/11 A	10/03/11 A 04/0	.		SKW0461	SKW0481										
SKW0481 SKW04811	Footpath Diversion	- Stage 1 ansition at CH0-35 &CH130-141	14		11/03/11 A 25/03/11 A	24/03/11 A 11/0 30/04/11 A 25/0			SKW0471 SKW0481	KD0050, SKW04811, SKW0491 SKW04821	-									
SKW04811 SKW04821	_ <u> </u>	inage outfall near bay 10	3/		01/05/11 A	03/05/11 A 01/0	.		SKW04811	SKW04831	_									
SKW04821	Cable diversion by I		26	!	04/05/11 A	29/05/11 A 04/0			SKW04821	SKW04841	-									
SKW04841		and Drawpit by PCCW	12	!	20/05/11 A	31/05/11 A 20/0			SKW04831	SKW04851	-									
SKW04851	Soil backfilling behin		14	!	01/06/11 A	14/06/11 A 01/0			SKW04841	SKW04861			+							
SKW04861	Concreting for footp		7		15/06/11 A	21/06/11 A 15/0			SKW04851	SKW04871										
SKW04871	Relocation of Temp	Safety Fence at SKW STW A-G	57	100	22/06/11 A	17/08/11 A 22/0	S/11 A 17/08/11	A	SKW04861	SKW04881										
SKW04881	Disposal of excavat	ion material at A-G SKW STW	138	100	18/08/11 A	02/01/12 A 18/0	3/11 A 02/01/12	А	SKW04871	SKW04885										
SKW04885	Footpath Diversion	- Stage 2	7	100	03/01/12 A	09/01/12 A 03/0	/12 A 09/01/12	A	SKW04881	SKW1261	T		1	l				L		
Section W4 - 9	Slope Works in Po	rtions H & I																		
Geotechnica	l Works																			
SKW0588	Construct scaffolding	ng access	30		15/06/10 A	14/07/10 A 15/0		A	KD0020	SKW0590										
SKW0590	Site Clearance for S	Slope	100		15/07/10 A	22/10/10 A 15/0		Α	SKW0588	SKW0591	╛									
SKW0591	Initial Survey for Sl		28		21/09/10 A	18/10/10 A 21/0		!	SKW0590	SKW0592	_									
SKW0592		fence at ex. Footpath	43		31/08/10 A	12/10/10 A 31/0			SKW0260, SKW0265, SKW0591	SKW05931	4									
SKW05931	<u> </u>	Il Road (To +30mPD)	50		03/09/10 A	22/10/10 A 03/0			SKW0592	SKW05932	+		·							
SKW05932		Il Road (To +42.5mPD)	68	100	23/10/10 A	29/12/10 A 23/1			SKW05931	SKW059322	4									
SKW059321	_	s (IBG 1 - 119, SI No. 11B)	121		03/11/10 A	03/03/11 A 03/1		!	Louise	SKW059411	4									
SKW059322 SKW059323	+	Vorks (VO. No. 9,12 &16)	174	!	11/01/11 A	03/07/11 A 11/0			SKW05932	SKW059341	\dashv									
	_	Vest Slope (+56 to +42.5mPD)	12	<u> </u>	17/03/11 A	17/03/11 A 17/0			Loranosooo	SKW059324	_									
SKW059324 SKW059325		Il Road (+42.5 to +56mPD) s (IBG 120-139, SI No. 11C)	12	1 100	18/03/11 A 30/03/11 A	29/03/11 A 18/0 15/04/11 A 30/0			SKW059323 SKW059324	SKW059325 SKW05933										
SKW059323		(+56mPD to +42.5mPD)	2		16/04/11 A	17/04/11 A 16/0		_!	SKW059325	SKW059331	_									
SKW059331		s (IBG 140-189, SI No. 11D)	45	 	18/04/11 A	01/06/11 A 18/0			SKW05933	SKW05934	-									
SKW05934		(+42.5mPD to +35mPD)	32		02/06/11 A	03/07/11 A 02/0			SKW059331	SKW059341	-									
SKW059341		Vest Slope (+20 to +4.8mPD)	1	100	04/07/11 A	04/07/11 A 04/0			SKW059322, SKW05934	SKW05935	-									
SKW05935		(+35mPD to +27.5mPD)	83	<u> </u>	08/07/11 A	28/09/11 A 08/0			SKW059341	SKW05936			+							
SKW05936	West Slope Cutting	(+27.5mPD to +20mPD)	61	100	29/09/11 A	28/11/11 A 29/0	9/11 A 28/11/11	A	SKW05935	SKW05937	_									
SKW05937	West Slope Cutting	(+20mPD to +12.5mPD)	39	<u> </u>		06/01/12 A 29/1	/11 A 06/01/12	A	SKW05936	SKW05938										
SKW05938	West Slope Cutting	(+12.5mPD to +4.8mPD)	90	100	07/01/12 A	27/03/12 A 07/0	/12 A 27/03/12	A	SKW05937	KD0060, SKW1261, SKW1311, SKW1371										
SKW05941	Slope Stormwater [Drainage	300	100	28/03/12 A	25/05/12 A 28/0	3/12 A 25/05/12	A	KD0060	SKW05942	<u> </u>	† 1	· 		. – – – – –		- <u>-</u>			
SKW059411	East Slope Cutting	(+50mPD to +42.5mPD)	72	100	04/03/11 A	14/05/11 A 04/0	3/11 A 14/05/11	A	SKW059321	SKW059412		T		1			i			
SKW059412	East Slope Cutting	(+42.5mPD to +35mPD)	82	100	15/05/11 A	04/08/11 A 15/0	5/11 A 04/08/11	A	SKW059411	SKW059413							1			
SKW059413		(+35mPD to +27.5mPD)	55	100	05/08/11 A	28/09/11 A 05/0			SKW059412	SKW059414							1			
SKW059414		(+27.5mPD to +20mPD)	61		29/09/11 A		9/11 A 28/11/11		SKW059413	SKW059415							i			
SKW059415		(+20mPD to +12.5mPD)	39	!	29/11/11 A	!!	/11 A 06/01/12	!	SKW059414	SKW059416							_ i			
SKW059416		(+12.5mPD to +4.8mPD)	81		07/01/12 A	27/03/12 A 07/0			SKW059415	KD0060, SKW1311, SKW1371	_						<u> </u>			
SKW05942	Slope Miscellaneous		61	!	26/05/12 A	07/09/12 26/0			SKW05941	SKW05943, SKW0595		1					1;			
SKW05943 SKW05944	Slope Treatment (S	Protection (SI No. 31)	60		07/09/12	06/11/12 26/0 22/12/12 10/0			SKW05942 SKW05943	SKW05944 SKW05945	_									
	<u> </u>	<u> </u>		<u>. </u>		! !				<u> </u>							11			-
SKW05948 SKW05963	Soil Nailing Works (Determine Alignmer	vO. No. 52) It & Foundation Design of RFB	300 120		10/02/12 A 10/02/13 A		2/12 A 03/07/14 2/13 A 08/06/12		SKW05948	SKW05963 SKW059631,SKW05964,SKW05965										
SKW059631	GEO Approval of F		70	!	09/06/12 A	! !	6/12 A 20/03/14	!	SKW05948	SKW05968	┨						11			
SKW05964		ing of RFB Material	180		09/06/12 A		6/12 A 14/04/15		SKW05963	SKW05972	→ □						• •			
SKW05965	Site clearance & Fo	<u> </u>	62		09/06/12 A		6/12 A 06/03/14		SKW05963	SKW05967	🗔					i	11			
SKW05967	Plant mobilization		14		09/08/12	23/08/12 07/0			SKW05965	SKW05968	┦				-		1 I 1 I			
SKW05968	Construction of and	hors & pull out test	180	<u> </u>	23/08/12	19/02/13 21/0			SKW059631, SKW05967	SKW05969	T	†	· ·	1		ها		<u> </u>		
Section W5 -	P.S. No. 1 in Portic											1					11			
	chnical Works																H			
SKW0651	Site Clearance		7	100	17/05/10 A	23/05/10 A 17/0	5/10 A 23/05/10	A	KD0020	SKW0652							11			
SKW0652	Initial Survey		7	100	24/05/10 A	30/05/10 A 24/0	5/10 A 30/05/10	A	SKW0651	SKW0661,SKW0681							11			
SKW0661		uncommon vegatation	30		31/05/10 A	29/06/10 A 31/0		A	SKW0652	SKW0681							11			
SKW0681	Excavate to lower t	he working platform to +3mPD	49	!	30/06/10 A	17/08/10 A 30/0		Α	SKW0260, SKW0265, SKW0652,	SKW0691	_						11			
SKW0691	ELS to +2.2mPD		40		18/08/10 A	26/09/10 A 18/0		!	SKW0681	SKW0721	4 :	l	ļ	l						
SKW0721	Excavate to format	ion	270	100	17/09/10 A	13/06/11 A 17/0	9/10 A 13/06/11	Α	SKW0691	SKW0741		 					1.1	_		
Structural W			1		L 44/00/44 :	L00/00/40 A L	1/44 A Logissis	۸ ا	Louise	Lunaana mausa ::							1 I 1 I			
SKW0741	RC Works for Stru	cture	240	100	14/06/11 A	08/02/12 A 14/0	5/11 A 08/02/12	А	SKW0721	KD0070, SKW0841										
Start date Finish date Data date Run date Page number c Primavera	05/05/10 22/10/15 30/06/12 20/07/12 5A Systems, Inc.	Early bar Progress bar Critical bar Summary bar Progress point Critical point Summary point Start milestone point					nstruction	Col of Sev	civil Engineering Co ntract No. DC/2009/1 vage Treatment Wor Programme (Jul 201	3 ks at YSW & SKW					30/06/12		Revision Revision 0	n	Checked RH	Approved VC
		Finish milestone point							<u> </u>	<u> </u>										\bot

Activ ity ID	Description	Original Ouration	Percent Complete	Early Start	Early Finish	Late Start	Late Finish	Total Predecessors	Successors				2012 JUL AUG SEP OCT
E&M2104	Install LV SB & MCC	55	0	13/10/12	06/12/12	27/07/12	19/09/12	-78d E&M2014,SKW1061	E&M2140		JUN	T	JUL AUG SEP OCT
E&M2105	Install Instrumentation	55		13/08/12	06/10/12		19/09/12	-17d E&M2015, SKW1061	E&M2140				
E&M2106	Install FS Equipment	55		25/09/12	19/11/12		19/09/12	-61d E&M2016,SKW1061	E&M2140			+	- +
E&M2107	Install BS Equipment	55		04/09/12	29/10/12		19/09/12	-39d E&M2017,SKW1061	E&M2110.E&M2140				
E&M2110	Install Valves, Pipes & Fittings	46		29/10/12	14/12/12		05/01/13	23d E&M2101,E&M2102,E&M2103,E&M210					
	KW STW,Sewer and Submarine Outfall	1	<u> </u>		1		1						11
Submarine Ou	<u> </u>												ii
SKW1130	Approval of IHS Consultant	180	100	17/05/10 A	27/08/10 A	17/05/10 A	27/08/10 A	<u> </u>	SKW1131				H
SKW1131	Hydrographical Survey (SKW)	300		01/02/11 A			28/02/11 A	KD0020,SKW1130	SKW1231				
SKW1141	Baseline Monitoring (Water)	213		27/07/10 A			31/12/10 A	SKW0260, SKW0265	SKW1151				ii
SKW1151	Set up Temporary Working Platform	90		15/06/11 A	30/09/11 A		30/09/11 A	PRE0090, SKW1141	SKW1171				11
SKW1171	ELS for HDD Set-up (SKW)	90		01/09/11 A	30/09/11 A		30/09/11 A	SKW1151	SKW1181				
SKW1181	Mobilization of HDD plant & equipment to SKW	60		06/01/12 A			07/01/12 A	SKW1171, YSW0360	SKW1191		+		-
SKW1191	Setting up at drillhole location	33		09/01/12 A			14/01/12 A	SKW1181	SKW1201				H
SKW1201	Drill pilot hole and reaming hole - NS280 - 750m	45		16/01/12 A			16/02/12 A	SKW1191	SKW1211	_			<u> </u>
SKW1211	Receiving Pit for HDD (SKW)	60		16/01/12 A	29/02/12 A		29/02/12 A	SKW1201	SKW1221	-			
SKW1221	Installaiton of NS280 HDPE 450mm dia. pipe	30		31/03/12 A			30/04/12 A	SKW1211	KD0090,SKW1231,SKW1441	_			ii
SKW1221	Removal of Receiving Platform	60		01/05/12 A	24/08/12 24/08/12		10/02/13	170d SKW1131,SKW1221	SKW1241		 	<u> </u>	<u>- + + </u>
SKW1241	Dredging of MD for Diffuser (PS CL 1.122(3))	60		25/08/12	23/10/12		11/04/13	170d SKW1231	E&M3359,SKW1251				
SKW1241 SKW1251	Diffuser Construction	15		24/10/12	07/12/12		26/05/13	170d SKW1231	SKW1431	-			II C
111	Dilituser Construction	40	0	24/10/12	07/12/12	11/04/13	20/03/13	1700 SKW1241	5KW 1431			+	++
SKW STW	& Delivery (E&M)												
E&M3010		1 150	100	24/02/11 A	I 17/10/11 A I	24/02/11 A	17/10/11 A	L Fahlot Co	F0M0470				ii
<u> </u>	Delivery of MBR M.M 1st shipment for Temp STP	150						E&M0160	E8M3170				ii
E&M3030	Delivery of Grit Removal Equipment	180		10/10/11 A		L .	29/12/11 A	E&M0150	E&M3190	_			11
E&M3060	Delivery of Fine Screens			12/09/11 A	30/11/11 A		30/11/11 A	E&M0120	E&M3210				
E&M3070	Delivery of Pumps	136		23/06/11 A			05/09/11 A	E&M0130	E&M3220	_			ii
E&M3080	Delivery of Submersible Mixers	180		26/07/11 A			17/11/11 A	E&M0140	E&M3230				_ L LL
E&M3090	Delivery of Sludge Dewatering Equipment	210		01/09/11 A	12/10/12		27/10/13	380d E&M0170	E&M3240	_			
E&M3100	Delivery of Valves, Pipes & Fittings	180		30/08/11 A	02/10/12		04/09/13	337d E&M0180	E&M3250			T	H
E&M3110	Delivery of Penstocks	180		12/08/11 A			24/12/11 A	E&M0190	E&M3260	_			H
E&M3130	Delivery of instruments	180		21/06/11 A			03/11/11 A	E&M0200	E&M3270				H
E&M3140	Delivery of MCC LVSB	180	-	01/07/12	28/12/12		19/07/13	203d E&M0210	E&M3261		+		
E&M3150	Delivery of BS Equipment	180		15/07/12	11/01/13		19/09/13	251d E&M0220	E&M3291				
E&M3160	Delivery of FS Equipment	180	5	30/06/12 A	12/01/13	30/06/12 A	08/10/13	269d E&M0230	E&M0340, E&M3300		•		ii
Construction		1 404	0.4	00/00/10 A	L00/00/10	00/00/10 A	07/00/10	O CIGARO COST CIGAROS COS	SKW1271,SKW1371				11
SKW1261	Excavate for SKW STW Structure (Grid A -G)	164		28/03/12 A			07/09/12	0 SKW04885, SKW05938					11
SKW1271	55 M3 Fire Sprinkle Water Tank (FL +0.9 mPD)	36		08/09/12	14/10/12		13/10/12	0 SKW1261	SKW1281				
SKW1281	Ground Floor Slab (Grid A-G)	46	0	14/10/12	29/11/12	14/10/12	28/11/12	0 SKW1271	SKW1291				11
Construction		1 001		00/00/10 1	Locionita	00/00/40 4	05/00/40 4	Laurence arress	Lawrence manage				ii
SKW1311	Excavate for SKW STW Structure (Grid G-N)	90				28/03/12 A		SKW05938, SKW059416	SKW1321,SKW1371			<u> </u>	11
SKW1321	Equalization Tank no.1 & 2 with base slabs (-2.1	42		26/06/12 A	15/09/12		06/08/12	-40d SKW1311	SKW1331	_	-		111.
SKW1331	Columns & Walls from B/S to G/F Slab (Grid G-N)	35		15/09/12	20/10/12		10/09/12	-40d SKW1321	SKW1341	\dashv			11
SKW1341	Ground Floor Slab (Grid G-N)	35	0	20/10/12	24/11/12	11/09/12	15/10/12	-40d SKW1331	SKW1351				11
Construction			. 1	00/00/10	L44/40/40	00/00/40	40/40/40	ol gravana gravana va sava	Lawren				
SKW1371	Excavate for SKW STW Structure (Grid N-T)	97	0	08/09/12	14/12/12	08/09/12	13/12/12	0 SKW05938, SKW059416, SKW1261, SKW1311	SKW1381				· <u></u>
					<u> </u>								
Rising Main													
SKW1481	Subm, Approval & Delivery of DI pipes	120		17/05/10 A	13/09/10 A	17/05/10 A	13/09/10 A	KD0020	SKW1501				
SKW1501	LCS (ChB0+00 - ChB1+20)	300	100	14/09/10 A	10/07/11 A	14/09/10 A	10/07/11 A	PRE0100,SKW1481	SKW1521				
SKW1521	Twin DN150 DI Rising Main (ChB0+00 - ChA4+55)	250	80	11/07/11 A	18/08/12	11/07/11 A	12/09/14	755d SKW1501	KD0090				
Section W8 - La	Indscape Softworks in All Portions												
SKW1591	Tree Survey	21	100	17/05/10 A	06/06/10 A	17/05/10 A	06/06/10 A	KD0020	SKW1621				
SKW1611	Preservation & Protection of Trees	822	-	17/05/10 A	18/08/12	17/05/10 A	08/03/13	203d KD0020	KD0100, SKW1631				
SKW1621	Transplantation at SKW	90	100	07/06/10 A	04/09/10 A	07/06/10 A	04/09/10 A	SKW1591	KD0100				
Section W9 - E	stablishment Works in All Portions												
SKW1631	Section W9 - Establishment Works	365	0	18/08/12	18/08/13	12/03/13	11/03/14	206d SKW1611	KD0110				L-
										-			

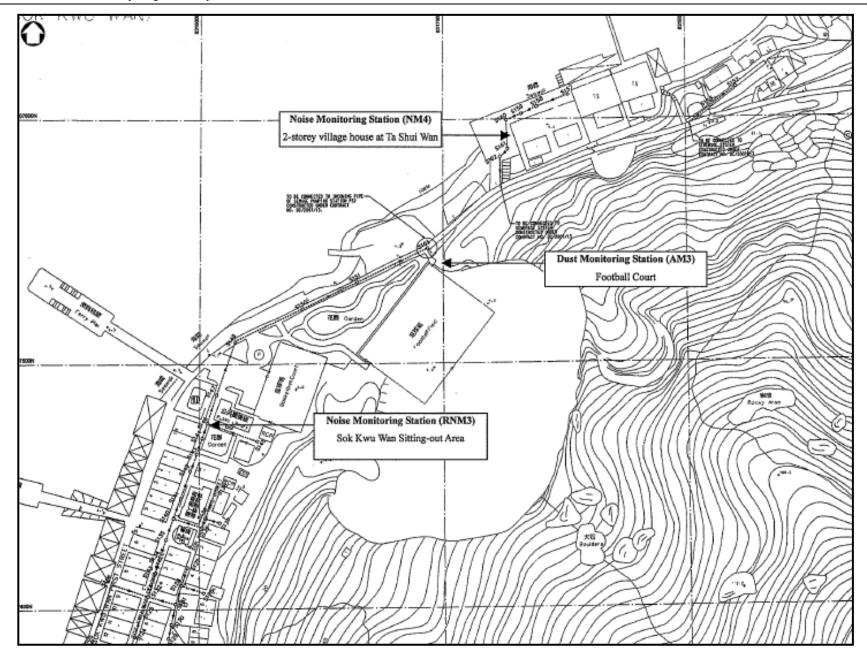
Start date	05/05/10		Early bar
Finish date	22/10/15		Progress bar Critical bar
Data date	30/06/12		Summary bar
Run date	20/07/12		▲ Progress point
Page number	7A		▼ Critical point
c Primavera	Systems, Inc.		Summary pointStart milestone point
		_	V Start milestone poin

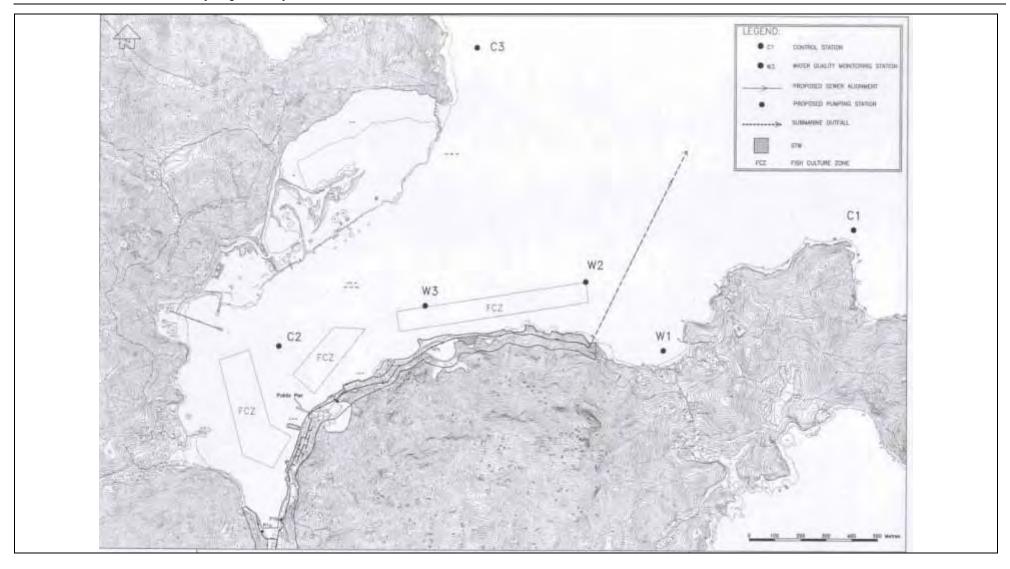
Leader Civil Engineering Corp. Ltd.
Contract No. DC/2009/13
Construction of Sewage Treatment Works at YSW & SKW 3-month Rolling Programme (Jul 2012 - Sep 2012)


Date	Revision	Checked	Approv ed
30/06/12	Revision 0	RH	VC


Appendix D

Location of Monitoring Stations
(Air Quality / Construction Noise / Water Quality)





Appendix E

Monitoring Equipments Calibration Certificate

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, ÖH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - M Operator		Rootsmeter Orifice I.I		438320 1483	Ta (K) - Pa (mm) -	294 754.38
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA	NA NA NA NA NA	1.00 1.00 1.00 1.00	1.4140 0.9960 0.8910 0.8510 0.7020	3.2 6.4 7.9 8.7 12.8	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)	Va	(x axis) Qa	(y axis)
1.0018 0.9976 0.9955 0.9945 0.9890	0.7085 1.0016 1.1173 1.1686 1.4088	1.4185 2.0061 2.2429 2.3524 2.8371	0.9957 0.9915 0.9894 0.9884 0.9830	0.7042 0.9955 1.1105 1.1615 1.4003	0.8829 1.2486 1.3959 1.4641 1.7657
Qstd slo intercep coeffici y axis =	ot (b) = lent (r) =	2.02742 -0.02027 0.99996 	Qa slor intercer coeffici y axis =	ot (b) =	1.26953 -0.01262 0.99996

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)
Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa]
Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{[SQRT(H2O(Pa/760)(298/Ta))] - b\}$ Qa = $1/m\{[SQRT H2O(Ta/Pa)] - b\}$

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Squatter house in Chung Mei Village

Date of Calibration: 3-Jul-12 Location ID: AM1 Next Calibration Date: 3-Sep-12

Technician: Mr. Ben Tam

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C)

1005.3
29.1

Corrected Pressure (mm Hg) Temperature (K)

302

CALIBRATION ORIFICE

Make->	TISCH
Model->	5025A
Serial # ->	1483

Qstd Slope -> Qstd Intercept ->

.02742 0.02027

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.2	5.2	10.4	1.584	57	56.00	Slope = 28.2706
13	4.1	4.1	8.2	1.407	52	51.09	Intercept = 10.9492
10	3	3	6	1.205	45	44.21	Corr. coeff. = 0.9981
7	1.6	1.6	3.2	0.883	36	35.37	
5	1.0	1.0	2	0.700	32	31.44	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

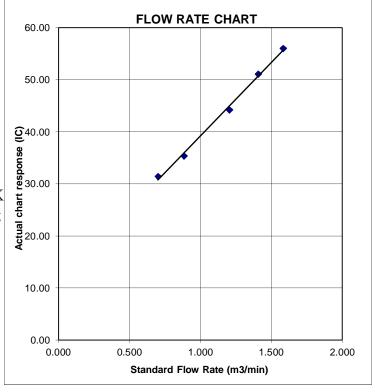
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Pav = daily average pressure

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Squatter house in Chung Mei Village

Location ID: AM2 Next Calibration Date: 3-Sep-12

Technician: Mr. Ben Tam

Date of Calibration: 3-Jul-12

CONDITIONS

Sea Level Pressure (hPa) Temperature (°C) 1005.3 29.1

Corrected Pressure (mm Hg)
Temperature (K)

753.975 302

CALIBRATION ORIFICE

Make-> TISCH
Model-> 5025A
Serial # -> 1483

Qstd Slope -> Qstd Intercept ->

2.02742 -0.02027

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.9	5.8	11.7	1.679	58	56.99	Slope = 27.7062
13	4.2	4.2	8.4	1.424	51	50.11	Intercept = 10.6854
10	3	3	6	1.205	45	44.21	Corr. coeff. = 0.9990
7	1.8	1.8	3.6	0.936	38	37.34	
5	1.0	1.0	2	0.700	30	29.48	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

m = calibrator Qstd slope

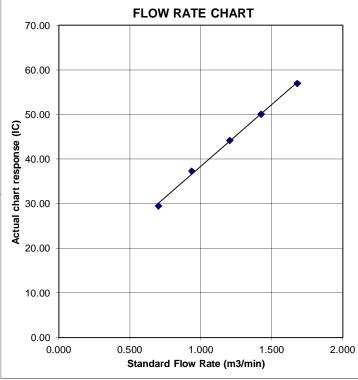
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K

Pstd = actual pressure during calibration (mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Pav = daily average pressure

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Football court

Location ID: AM3

Date of Calibration: 3-Jul-12

Next Calibration Date: 3-Sep-12

Technician: Mr. Ben Tam

CONDITIONS

Sea Level Pressure (hPa)
Temperature (°C)

1005.3
29.1

Corrected Pressure (mm Hg)
Temperature (K)

753.975 302

CALIBRATION ORIFICE

Make->	TISCH
Model->	5025A
Serial # ->	1483

Qstd Slope -> Qstd Intercept ->

2.02742 -0.02027

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	I	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.5	5.5	11	1.628	46	45.20	Slope = 22.1554
13	4.1	4.1	8.2	1.407	41	40.28	Intercept = 9.1345
10	2.7	2.7	5.4	1.144	35	34.39	Corr. coeff. = 0.9996
7	1.5	1.5	3	0.855	29	28.49	
5	0.9	0.9	1.8	0.665	24	23.58	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

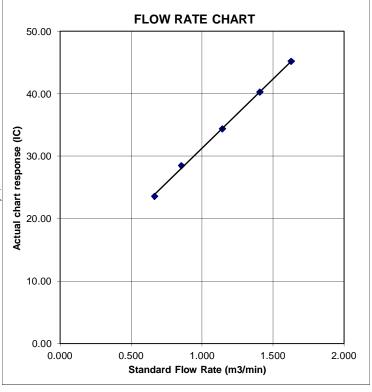
m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K Pstd = actual pressure during calibration (mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tay = daily average temperature

Pav = daily average pressure

CERTIFICATE OF CALIBRATION AND TESTING

Environment Condition			Model			3 52 0
l'emperature	68.5 (20.3)	°F (°C)	TYTOUC!			
Relative Humidity	19	%RH	 		1 2	23080
Barometric Pressure	29.11 (985.8)	inHg (hPa)				
🖾 As Left		×	In Tolerance			
☐ As Found			Out of Tolerance			
100, 27 hans the desired and a strain of the	**************************************	Concentratio	n Linearity Plot			
	100	Concentratio	ii Linearity 1 lot			
	Device Response (mg/m3) 1°0 1		0			
	(mg		0			
	011.56		:			
	lesp		0			
	ice I	- 0	4			
	Devi			o = In Tolerance		
	0.01			● = Out of Tolerance)	
		01 0.1	1 10 100	0		
	0.		entration (mg/m3)			
					System	ID: DTH01-02
Zero Stability Results						
Average:	Minimum:		Maximum:	Time:	: 50	
0.000 :mg	/m3 0.00	:mg/m ²	n	$:mg/m^3$:hrs

Final Function Check

March 8, 2012

Date

CERTIFICATE OF CALIBRATION AND TESTING

TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

Environment Condition			Model			85	20
Temperature	68.7 (20.4)	°F (°C)	Iviouei			00,	20
Relative Humidity	41	%RH	 Serial Numbe	.3*		230	170
Barometric Pressure	28.98 (981.4)	inHg (hPa)	Serial Numbe	1		250	113
⊠As Left □As Found			In Tolerance Out of Tolerance				
		Concentration	Linearity Plot				
	Device Response (mg/m3) 10.0 10.0		0 0 1 10 10 ntration (mg/m3)	o = In Tolera • = Out of To			
					************	System ID: I	OTH01-02
Zero Stability Results Average:	Minimum:		Maximum:		Time:		
	g/m^3 \circ . \circ	00 mg/m³	0.001	:mg/m ³	1	00	:hrs.

Zero Stability Results			
Average:	Minimum:	Maximum:	Time:
0.000 :mg/m³	0.000 :mg/m ³	0.00 :mg/m ³	4:00 :hrs.

TSI Incorporated does hereby certify that all materials, components, and workmanship used in the manufacture of this equipment are in struct accordance with the applicable specifications agreed upon by TSI and the customer and with all published specifications. All performance and acceptance tests required under this contract were successfully conducted according to required specifications. There is no NIST standard for optical mass measurements. Calibration of this instrument performed by TSI has been done using emery oil and has been nominally adjusted to respirable mass of standard ISO 12103-1, A1 test dust (Arizona dust) Our calibration ratio is greater than 1.2:1

Measurement Variable Barometric Pressure Humidity DC Voltage	System ID E003733 E002873 E003315	Last Cal. 01-15-11 11-24-10 01-05-11	Cal. Due 02-15-12 11-24-11 01-05-12	Measurement Variable Temperature DC Voltage Photometer	System ID E002873 E003314 E003319	Last Cal. 11-24-10 01-05-11 07-25-11	Cal. Due 11-24-11 01-05-12 01-25-12
DC Voltage	E003315	01-05-11	01-05-12	Photometer	E003319	07-25-11	01-25-12
Microbalance	E001324	01-04-11	01-04-12	Pressure	E003511	11-12-10	11-12-11
Flowmeter	E003769	06-13-11	06-13-12	1			

T. Thao	Final Function Check	September 13, 2011	
Calibrated		Date	

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.:

C122418

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC12-0960)

Description / 儀器名稱

Sound Level Meter (EQ068)

Manufacturer / 製造商 Model No. / 型號

Rion NI.-31

Serial No. / 編號

00410247

Supplied By / 委託者

Action-United Environmental Services and Consulting

Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓

TEST SPECIFICATIONS / 測試規範

Calibration

DATE OF TEST / 測試日期

20 April 2012

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification. (after adjustment)

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Precision Measurement Ltd., UK
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By 測試

L K Yeung

Certified By

核證

KC Lee

Date of Issue 簽發日期

23 April 2012

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準,局部複印本證書需先獲本實驗所書而批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

Certificate No.: C122418

證書編號

校正證書

 The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.

2. Self-calibration using the internal standard (After Adjustment) was performed before the test form 6.1.1.2 to 6.4.

3. The results presented are the mean of 3 measurements at each calibration point.

4. Test equipment:

Equipment ID

Description

Certificate No.

CL280 CL281 40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator C120016 DC110233

Test procedure: MA101N.

6. Results:

6.1 Sound Pressure Level

6.1.1 Reference Sound Pressure Level

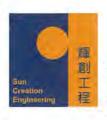
6.1.1.1 Before Adjustment

UUT Setting				Applied	d Value	UUT	IEC 60651 Type 1	
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Spec. (dB)	
30 - 120	LA	A	Fast	94.00	1	* 92.9	± 0.7	

^{*} Out of Mfr's Spec.

6.1.1.2 After Adjustment

	UUT Setting				d Value	UUT	IEC 60651 Type 1	
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Spec. (dB)	
30 - 120	LA	A	Fast	94.00	- 1	94.0	± 0.7	


6.1.2 Linearity

	UU	T Setting		Applied	UUT	
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
30 - 120	LA	A	Fast	94.00	1	94.0 (Ref.)
				104.00		104.0
				114.00		114.0

IEC 60651 Type 1 Spec. : \pm 0.4 dB per 10 dB step and \pm 0.7 dB for overall different.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可測源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

Certificate No.: C122418

證書編號

6.2 Time Weighting

6.2.1 Continuous Signal

	UUT Setting				d Value	UUT	IEC 60651 Type 1	
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Spec. (dB)	
30 - 120	LA	A	Fast	94.00	1	94.0	Ref.	
			Slow		0.1	94.0	± 0.1	

6.2.2 Tone Burst Signal (2 kHz)

	UUT Setting				lied Value	UUT	IEC 60651 Type 1	
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Burst Duration	Reading (dB)	Spec. (dB)	
20 -110	L _A A		Fast	106.00	Continuous	106.0	Ref.	
	L _A max				200 ms	105.1	-1.0 ± 1.0	
	LA		Slow		Continuous	106.0	Ref.	
	L _A max			+	500 ms	102.0	-4.1 ± 1.0	

6.3 Frequency Weighting

A-Weighting 6.3.1

	UL	T Setting		App	lied Value	UUT	IEC 60651 Type 1
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Spec. (dB)
30 - 120	L _A	A	Fast	94.00	31.5 Hz	54.3	-39.4 ± 1.5
					63 Hz	67.7	-26.2 ± 1.5
				125 Hz	77.8	-16.1 ± 1.0	
				250 Hz	85.3	-8.6 ± 1.0	
				500 Hz	90.7	-3.2 ± 1.0	
					1 kHz	94.0	Ref.
					2 kHz	95.3	$+1.2 \pm 1.0$
					4 kHz	95.1	$+1.0 \pm 1.0$
		L 3			8 kHz	93.0	-1.1 (+1.5; -3.0)
					12.5 kHz	90.1	-4.3 (+3.0; -6.0)

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

Certificate No.: C122418

證書編號

6.3.2 C-Weighting

	UU	JT Setting		App	lied Value	UUT	IEC 60651 Type 1
Range (dB)	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Spec. (dB)
30 - 120	Lc	C	Fast	94.00	31.5 Hz	90.7	-3.0 ± 1.5
			1.4		63 Hz	93.1	-0.8 ± 1.5
			1	125 Hz	93.8	-0.2 ± 1.0	
					250 Hz	94.0	0.0 ± 1.0
					500 Hz	94.0	0.0 ± 1.0
					1 kHz	94.0	Ref.
					2 kHz	93.9	-0.2 ± 1.0
					4 kHz	93.4	-0.8 ± 1.0
	,				8 kHz	91.1	-3.0 (+1.5; -3.0)
					12.5 kHz	88.2	-6.2 (+3.0; -6.0)

6.4 Time Averaging

	UU	T Setting		Applied Value					UUT	IEC 60804
Range (dB)	Mode	Frequency Weighting	Integrating Time	Freq. (kHz)	Burst Duration (ms)	Burst Duty Factor	Burst Level (dB)	Equivalent Level (dB)	Reading (dB)	Type 1 Spec. (dB)
20 - 110	LAcq	Α	10 sec.	4	1	1/10	110.0	100	100.0	± 0.5
						$1/10^2$	1-000	90	90.0	± 0.5
			60 sec.		1	1/103		80	80.0	± 1.0
	11		5 min.	7. 1. 4. 4		1/104		70	70.0	± 1.0

Remarks: - Mfr's Spec.: IEC 60651 Type 1 & IEC 60804 Type 1

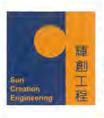
- Uncertainties of Applied Value: 94 dB: 63 Hz - 125 Hz $: \pm 0.35 \, dB$

250 Hz - 500 Hz : ± 0.30 dB 1 kHz $: \pm 0.20 \text{ dB}$ 2 kHz - 4 kHz : ± 0.35 dB : ± 0.45 dB 8 kHz

12.5 kHz : ± 0.70 dB

104 dB : 1 kHz $: \pm 0.10 \text{ dB (Ref. 94 dB)}$ 114 dB : 1 kHz : ± 0.10 dB (Ref. 94 dB) Burst equivalent level : ± 0.2 dB (Ref. 110 dB continuous sound level)

Tel 電話: 2927 2606


The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Fax/傳耳: 2744 8986

⁻ The uncertainties are for a confidence probability of not less than 95 %.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C122426

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC12-0960)

Description / 儀器名稱

Acoustical Calibrator (EQ082)

Manufacturer / 製造商

Bruel & Kjaer

Model No. / 型號

4231

Serial No. / 編號

2713428

Supplied By / 委託者

Action-United Environmental Services and Consulting

Unit A, 20/F., Gold King Industrial Building, 35-41 Tai Lin Pai Road, Kwai Chung, N.T.

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}C$

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓:

TEST SPECIFICATIONS / 測試規範

Calibration

DATE OF TEST / 測試日期

20 April 2012

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By 測試

L K Yeung

Certified By 核證

K/C Lee

Date of Issue 簽發日期

23 April 2012

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可測源至國際標準。 局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

6/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 - 核正及檢測實驗所

c/o 香港新界屯門與安里一號青山灣機樓四樓

Tel 7世話: 2927 2606 Fax/傳真: 2744 8986

E-mail/電郵: callab@suncreation.com Website/網址: www.suncreation.com

Page 1 of 3

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C122426

證書編號

The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement
of the test.

2. The results presented are the mean of 3 measurements at each calibration point.

3. Test equipment:

Equipment ID CL130 CL281 TST150A DescriptionCertificate No.Universal CounterC113350Multifunction Acoustic CalibratorDC110233Measuring AmplifierC120886

Test procedure : MA100N.

5. Results:

5.1 Sound Level Accuracy

5.1.1 Before Adjustment

UUT Nominal Value	Measured Value (dB)	Mfr's Spec. (dB)	Uncertainty of Measured Value (dB)
94 dB, 1 kHz	94.1	± 0.2	± 0.2
114 dB, 1 kHz	114.1	1 11 27 7 . 7	

5.1.2 After Adjustment

UUT Nominal Value	Measured Value (dB)	Mfr's Spec. (dB)	Uncertainty of Measured Value (dB)
94 dB, 1 kHz	94.0	± 0.2	± 0.2
114 dB, 1 kHz	114.0		

5.2 Frequency Accuracy

5.2.1 Before Adjustment

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value (Hz)
(kHz)	(kHz)	Spec.	
1	1.000 0	1 kHz ± 0.1 %	± 0.1

5.2.2 After Adjustment

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000 0	1 kHz ± 0.1 %	± 0.1

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可測源至國際標準。局部複印本證書畫先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C122426

證書編號

Remark: The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

ALS Technichem (HK) Pty Ltd

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

CONTACT:

MR BEN TAM

CLIENT: ADDRESS: **ACTION UNITED ENVIRO SERVICES** RM A 20/F., GOLDEN KING IND BLDG.

NO. 35-41 TAI LIN PAI ROAD, KWAI CHUNG,

PROJECT:

N.T., HONG KONG.

WORK ORDER:

HK1210811

LABORATORY:

HONG KONG

DATE RECEIVED:

25/04/2012

DATE OF ISSUE:

02/05/2012

COMMENTS

It is certified that the item under calibration/checking has been calibrated/checked by corresponding calibrated equipment in the laboratory.

Maximum Tolerance and calibration frequency stated in the report, unless otherwise stated, the internal acceptance criteria of ALS will be followed.

Scope of Test:

Dissolved Oxygen, pH, Salinity, Temperature and Turbidity

Description:

YSI Sonde

Brand Name:

YSI

Model No.: Serial No.:

YSI 6820 / 650MDS 02J0912 / 02K0788 AA

Equipment No.:

Date of Calibration: 27 April, 2012

NOTES

This is the Final Report and supersedes any preliminary report with this batch number. Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ISSUING LABORATORY: HONG KONG

Address

ALS Technichem (HK) Pty Ltd

11/F Chung Shun Knitting Centre

1-3 Wing Yip Street

Kwai Chung HONG KONG Phone:

852-2610 1044

Fax:

852-2610 2021

Email:

hongkong@alsglobal.com

Mr Chan Kwok/Fai, Godfrey Laboratory Manager - Hong Kong

This report may not be reproduced except with prior written approval from ALS Technichem (HK) Pty Ltd.

Page 1 of 3

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order: HK1210811 Date of Issue: 02/05/2012

Client: ACTION UNITED ENVIRO SERVICES

Description: YSI Sonde

Brand Name: YSI

Model No.: YSI 6820 / 650MDS Serial No.: 02J0912 / 02K0788 AA

Equipment No.: --

Date of Calibration: 27 April, 2012 Date of next Calibration: 27 July, 2012

Parameters:

Dissolved Oxygen Method Ref: APHA (21st edition), 45000: G

Expected Reading (mg/L)	ed Reading (mg/L) Displayed Reading (mg/L)	
6.43	6.33	-0.10
7.80	7.76	-0.04
8.35	8.30	-0.05
	Tolerance Limit (±mg/L)	0.20

pH Value Method Ref: APHA 21st Ed. 4500H:B

Expected Reading (pH Unit)	Displayed Reading (pH Unit)	Tolerance (pH unit)
4.0	4.07	0.07
7.0	7.08	0.08
10.0	9.94	-0.06
	Tolerance Limit (±unit)	0.2

Salinity Method Ref: APHA (21st edition), 2520B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)	
0	0.00	(
10	10.67	6.7	
20	21.12	5.6	
30	31.59	5.3	
	Tolerance Limit (±%)	10.0	

Mr.Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

REPORT OF EQUIPMENT PERFORMANCE CHECK/CALIBRATION

Work Order:

HK1210811

Date of Issue:

02/05/2012

Client:

ACTION UNITED ENVIRO SERVICES

Description:

YSI Sonde

Brand Name:

YSI

Model No.:

YSI 6820 / 650MDS

Serial No.:

02J0912 / 02K0788 AA

Equipment No.:

--

Date of Calibration:

27 April, 2012

Date of next Calibration:

27 July, 2012

Parameters:

Temperature

Method Ref: Section 6 of International Accreditation New Zealand Technical

Guide No. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

Expected Reading (°C)	Displayed Reading (°C)	Tolerance (°C)
16.0	15.46	-0.5
25.0	24.66	-0.3
35.0	34.40	-0.6
	Tolerance Limit (°C)	2.0

Turbidity

Method Ref: APHA (21st edition), 2130B

Expected Reading (NTU)	Displayed Reading (NTU)	Tolerance (%)	
0	0.7	- 50	
4	4.31	7.7	
10	10.7	7.0	
20	20.9	4.5	
50	53.8	7.6	
100	107.4	7.4	
	Tolerance Limit (±%)	10.0	

Mr Chan Kwok Fai, Godfrey Laboratory Manager - Hong Kong

ALS Technichem (HK) Pty Ltd

ALS Environmental

Page 3 of 3

Hong Kong Accreditation Service 香港認可處

Certificate of Accreditation

認可證書

This is to certify that 特此證明

ALS TECHNICHEM (HK) PTY LIMITED

11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, New Territories, Hong Kong 香港新界葵涌永業街1-3號忠信針織中心11樓

has been accepted by the HKAS Executive, on the recommendation of the Accreditation Advisory Board, as a 為香港認可處執行機關根據認可諮詢委員會建議而接受的

HOKLAS Accredited Laboratory

「香港實驗所認可計劃」認可實驗所

This laboratory meets the requirements of ISO / IEC 17025: 2005 - General requirements for the competence 此實驗所符合ISO / IEC 17025: 2005 -《測試及校正實驗所能力的通用規定》所訂的要求, of testing and calibration laboratories and it has been accredited for performing specific tests or calibrations as 獲認可進行載於香港實驗所認可計劃《認可實驗所名冊》內下述測試類別中的指定 listed in the HOKLAS Directory of Accredited Laboratories within the test category of 測試或校正工作

Environmental Testing

環境測試

This laboratory is accredited in accordance with the recognised International Standard ISO / IEC 17025: 2005. 本實驗所乃根據公認的國際標準 ISO / IEC 17025 : 2005 獲得認可。 This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory 這項認可資格演示在指定範疇所需的技術能力及實驗所質量管理體系的運作 quality management system (see joint IAF-ILAC-ISO Communiqué). (見國際認可論壇‧國際實驗所認可合作組織及國際標準化組織的聯合公報)。

The common seal of the Hong Kong Accreditation Service is affixed hereto by the authority of the HKAS Executive 香港認可處根據認可處執行機關的權限在此蓋上通用印章

CHAN Sing Sing, Terence, Executive Administrator

執行幹事 陳成城 Issue Date: 5 May 2009

簽發日期:二零零九年五月五日

Registration Number : HOKLAS 066

註冊號碼:

Date of First Registration: 15 September 1995 首次註冊日期:一九九五年九月十五日

Appendix F

Event/Action Plan

Air Quality

-		All Quality		
EVENT	ACTION			
	ET	IC(E)	ER	CONTRACTOR
ACTION LEVEL				
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IC(E) and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	Check monitoring data submitted by ET; Check Contractor's working method.	Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate.
Exceedance for two or more consecutive samples	 Identify source; Inform IC(E) and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IC(E) and Contractor on remedial actions required; If exceedance continues, arrange meeting with IC(E) and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented.	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
		LIMIT LEVEL		
Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented.	Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IC(E) within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
Exceedance for two or more consecutive samples	1. Notify IC(E), ER, Contractor and EPD; 2. Identify source; 3. Repeat measurement to confirm findings; 4. Increase monitoring frequency to daily; 5. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; 6. Arrange meeting with IC(E) and ER to discuss the remedial actions to be taken; 7. Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results; 8. If exceedance stops, cease additional monitoring.	Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures.	Confirm receipt of notification of failure in writing; Notify Contractor; In consolidation with the IC(E), agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IC(E) within 3 working days of notification; 3. Implement the agreed proposals; 4. Resubmit proposals if problem still not under control; 5. Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Construction Noise

EVENT	ACTION			
	ET	IC(E)	ER	CONTRACTOR
Action Level	 Notify IC(E) and Contractor; Carry out investigation; Report the results of investigation to the IC(E), ER and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness 	 Review the analysed results submitted by the ET; Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented. 	 Submit noise mitigation proposals to IC(E); Implement noise mitigation proposals.
Limit Level	 Identify source; Inform IC(E), ER, EPD and Contractor; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IC(E), ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IC(E), EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	1. Take immediate action to avoid further exceedance; 2. Submit proposals for remedial actions to IC(E) within 3 working days of notification; 3. Implement the agreed proposals; 4. Resubmit proposals if problem still not under control; 5. Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Water Quality

		water Quanty		
EVENT		ACTIO		
	ET	IC(E)	ER	CONTRACTOR
ACTION LEVEL				
Exceedance for one sampling day	 Repeat in-situ measurement on the next day of exceedance to confirm findings; Identify source(s) of impact; Inform ICE, Contractor, ER, EPD and AFCD; and Check monitoring data, all plant, equipment and Contractor's working methods. 	submitted by ET and Contractor's working methods	 Confirm receipt of notification of non-compliance in writing; and Notify Contractor 	 Information the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice; and Amend working methods if appropriate
2. Exceedance for two or	1. Same as the above;	1. Same as the above;	1. Discuss with IC(E) on the	1. Same as the above;
more consecutive sampling days	 Inform ICE, Contractor, ER, EPD and AFCD; Discuss mitigation measures with IC(E), 	2. Discuss with ET and Contractor on possible remedial actions;	proposed mitigation measures; 2. Ensure well implementation of mitigation measures; and	2. Check all plant and equipment and consider changes of working methods;
	RE and Contractor; 4. Ensure well implementation of mitigation measures; and	3. Review the proposed mitigation measures submitted by Contractor and advise the	3. Assess the effectiveness of the implemented mitigation measures	3. Submit proposal of additional mitigation measures to ER within 3 working days of notification and
	5. Increase the monitoring frequency to daily until no exceedance of Action Level	ER accordingly; and 4. Supervise the implementation of mitigation measures.		discuss with ET, IC(E), and ER; and 4. Implement the agreed mitigation measures
		LIMIT LEVEL		
Exceedance for one sampling day	 Repeat in-situ measurement on the next day of exceedance to confirm findings; Identify source(s) of impact; Inform ICE, Contractor, ER, EPD and AFCD; Check monitoring data, all plant, equipment and Contractor's working methods; and Discuss mitigation measures with IC(E), RE and Contractor 	submitted by ET and Contractor's working method 2. Discuss with ER and Contractor on possible remedial actions; and 3. Review the proposed mitigation measures submitted by Contractor and advise the ER accordingly	failure in writing; and 2. Discuss with IC(E), ET and 3. Contractor on the proposed mitigation measures; and 4. Request Contractor to review the working methods	 Inform the ER and confirm notification of the failure in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; and Submit proposal of mitigation measures to ER within 3 working days of notification and discuss with ET and ER
Exceedance for two or more consecutive sampling days	 Same as the above; Ensure mitigation measures are implemented; and Increase the monitoring frequency to daily until no exceedance of Limit Level for two consecutive days 	Same as the above; and Supervise the Implementation of mitigation measures	 Same as the above; Ensure well implementation of mitigation measures Make agreement on the mitigation measures to be implemented; and Consider and instruct, if necessary, the Contractor to stow down or to stop all or part of the construction activities until no exceedance of limit level 	 Same as the above; Take immediate action to avoid further exceedance; Implement the agreed mitigation measures; Resubmit proposals of mitigation measures if problem still not under control; and As directed by the Engineer, to slow down or to stop all or part of the construction activities until to no exceedance of Limit Level.

Appendix G

Monitoring Data Sheet

24-hour TSP Monitoring Data Sheet

Air Qualtiy Monitoring - 24-hour TSP Monitoring data sheet

		EI	APSED TI	ME	CHA	ART READ	ING			STANDARD		INITIAL	FINAL	WEIGHT	DUST
DATE	SAMPLE							AVG	AVG	FLOW	AIR	FILTER	FILTER	DUST	24-hour TSP
	NUMBER	INITIAL	FINAL	ACTUAL	MIN	MAX	AVG	TEMP	PRESS	RATE	VOLUME	WEIGHT	WEIGHT	COLLECTED	IN AIR
				(min)				(oC)	(hPa)	(m3/min)	(std m3)	(g)	(g)	(g)	(ug/m^3)
24-hour TSP	Monitoring F	Results - AN	11												
30-Jun-12	24851	12193.8	12217.79	1439.40	31	33	32.0	28.7	1006.2	0.72	1037	2.6971	2.7161	0.0190	18
6-Jul-12	24856	12217.79	12241.78	1439.40	30	32	31.0	28.7	1006.1	0.70	1006	2.7443	2.7619	0.0176	18
11-Jul-12	24891	12247.78	12271.77	1439.40	30	32	31.0	29	1005.8	0.70	1005	2.7486	2.7654	0.0168	17
18-Jul-12	24894	12271.77	12295.76	1439.40	30	31	30.5	29.1	1006.6	0.68	980	2.7481	2.7595	0.0114	12
24-Jul-12	24917	12295.76	12319.75	1439.40	31	33	32.0	26.9	996.5	0.73	1053	2.7639	2.8492	0.0853	81
24-hour TSP	Monitoring F	Results - AN	12												
30-Jun-12	24837	10693.9	10717.89	1439.40	31	33	32.0	28.7	1006.2	0.70	1013	2.7223	2.7783	0.0560	55
6-Jul-12	24857	10717.89	10741.88	1439.40	31	33	32.0	28.7	1006.1	0.76	1091	2.7402	2.7626	0.0224	21
11-Jul-12	24890	10741.88	10765.87	1439.40	31	33	32.0	29	1005.8	0.76	1090	2.7608	2.7788	0.0180	17
18-Jul-12	24893	10765.87	10789.86	1439.40	32	33	32.5	29.1	1006.6	0.78	1116	2.734	2.7646	0.0306	27
24-Jul-12	24918	10789.86	10813.85	1439.40	31	33	32.0	26.9	996.5	0.76	1088	2.786	2.8818	0.0958	88
24-hour TSP	Monitoring F	Results - AN	13												
30-Jun-12	24852	6259.8	6283.79	1439.4	31	33	32	28.7	1006.2	1.02	1465	2.7126	2.8136	0.1010	69
6-Jul-12															power failure
11-Jul-12	24858	6283.79	6307.78	1439.4	32	33	32.5	29	1005.8	1.04	1496	2.7255	2.7702	0.0447	30
18-Jul-12	24892	6307.78	6331.77	1439.4	32	32	32	29.1	1006.6	1.02	1465	2.7315	2.7771	0.0456	31
24-Jul-12	24919	6331.77	6355.76	1439.4	31	33	32	26.9	996.5	1.02	1462	2.791	2.8317	0.0407	28

Marine Water Quality Monitoring Data Sheet

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

AUES

Sok Kwu Wan

Date 26-Jun-12

Date / Time	Location	Tide*	Co-ord	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11de	East	North	m	m	౮	mg/L	%	NTU	ppt	unit	mg/l
2012/6/26 16:20	W1	ME	832968	807731	2.1	1.050	28.44	6.42	86.3	3.8	25.79	7.73	1.9
2012/0/20 10:20	.,,	1112	032700	007751	211	1.050	28.33	6.48	87.3	3.6	25.86	7.73	
						1.000	28.41	6.84	91.9	3.5	25.89	7.77	6.0
						1.000	28.36	6.69	89.8	3.5	25.87	7.76	
2012/6/26 16:10	W2	ME	832681	807973	12.6	6.300	28.20 28.09	6.19	83.5 81.0	3.5 3.3	26.65 26.87	7.75 7.74	2.1
						11.600	27.01	5,22	70.5	2.1	33.03	7.74	
						11.600	26.99	5.12	69.1	2.1	33.13	7.61	1.5
						1.000	28.15	6.52	87.6	3.3	26.44	7.78	
						1.000	28.18	6.56	88.3	3.1	26.42	7.75	1.6
2012/6/26 15 55	1110) (F)	000016	0.07000	10.1	6.050	27.98	6.06	81.8	2.9	27.93	7.69	0.0
2012/6/26 15:55	W3	ME	832046	807890	12.1	6.050	27.73	5.90	79.3	2.1	29.62	7.67	8.2
						11.100	27.33	5.02	67.5	1.6	31.94	7.62	1.0
						11.100	27.32	4.77	64.1	1.5	31.99	7.61	1.0
						1.000	28.25	6.57	88.1	2.9	25.94	7.73	2.5
						1.000	28.24	6.55	87.8	3.1	25.68	7.73	2.3
2012/6/26 16:40	C1	ME	833712	808196	13.5	6.750	27.73	5.76	77.0	3.1	29.13	7.66	1.1
2012/0/20 10:10						6.750	27.79	5.77	77.2	1.0	29.09	7.67	
						12.500	26.38	5.02	67.0	1.1	35.06	7.57	1.1
						12.500	26.23	5.03	67.1	1.0	35.17	7.57	
						1.000	28.29	6.63	89.4 91.3	3.3	26.35	7.69	2.3
						1.000 6.050	28.29	6.74	83.7	3.3 2.4	26.44 30.01	7.65 7.55	
2012/6/26 15:40	C2	ME	831454	807753	12.1	6.050	27.66	6.06	82.0	2.4	30.01	7.54	2.1
						11.100	27.22	5.09	68.7	1.6	32.59	7.48	
						11.100	27.24	4.98	67.2	1.6	32.58	7.47	1.2
						1.000	28.17	6.42	86.6	3.0	26.10	7.69	
						1.000	28.20	6.35	85.7	2.9	26.07	7.69	1.0
2012151251251	90		000000	000000	10.5	6.750	27.72	5.94	80.2	2.3	29.20	7.67	0.0
2012/6/26 17:00	C3	ME	832203	808883	13.5	6.750	27.72	5.73	77.2	2.7	29.21	7.67	8.8
						12.500	26.10	4.73	63.5	1.1	35.42	7.57	0.6
						12.500	25.99	4.69	63.1	1.1	35.55	7.55	0.0
			_										
2012/6/26 10:10	W1	MF	832969	807735	2.7	1.350	28.05	6.56	88.1	2.5	23.75	7.88	1.0
2012/0/20 10:10	.,	1111	032707	007755	217	1.350	27.98	6.43	86.2	2.9	23.82	7.88	1.0
						1.000	27.99	6.79	91.4	2.8	23.78	7.88	0.8
						1.000	28.02	6.66	89.5	2.8	23.75	7.88	
2012/6/26 10:00	W2	MF	832674	807990	13.5	6.750	27.91	5.64	75.3	2.2	28.06	7.86	0.8
						6.750 12.500	27.92 26.54	5.68 4.73	76.1 63.2	2.4 4.2	28.12 33.87	7.88 7.81	
						12.500	26.41	4.72	63.2	4.2	34.25	7.76	2.4
						1.000	28.06	6.46	85.5	3.1	23.77	7.70	
						1.000	27.99	6.59	87.1	3.3	23.91	7.89	0.6
2012/6/26 2 45	1110	1.00	020040	0.07000	10.5	6.750	27.67	5.54	74.0	0.6	29.46	7.84	0.0
2012/6/26 9:45	W3	MF	832049	807899	13.5	6.750	27.51	5.36	71.5	0.6	29.63	7.86	0.8
						12.500	26.72	4.72	63.4	1.0	33.73	7.81	0.7
						12.500	26.68	4.78	64.5	1.2	33.83	7.81	0.7
						1.000	27.99	6.79	91.1	3.7	23.33	7.92	1.2
						1.000	28.00	6.79	91.5	3.6	23.34	7.91	1.2
2012/6/26 10:30	C1	MF	833707	808179	15.6	7.800	27.72	5.72	76.6	3.0	28.13	7.90	0.6
						7.800	27.81	5.66	75.6	2.8	27.81	7.90	
						14.600	26.52	4.85 4.98	64.6	1.5	34.35 34.45	7.83 7.83	0.5
	+					14.600	26.48 28.02	6.37	66.6 85.2	1.4 3.3	23.79	7.83	
						1.000	28.02	6.32	83.2	3.3	23.79	7.74	0.8
						6.650	28.05	5.55	74.0	3.1	24.89	7.74	
2012/6/26 9:30	C2	MF	831461	807739	13.3	6.650	28.03	5.67	75.9	3.4	24.97	7.77	0.8
						12.300	26.98	4.93	66.1	3.0	32.79	7.73	1.0
						12.300	26.96	4.76	63.7	3.0	32.76	7.72	1.2
						1.000	27.97	6.06	80.8	2.9	23.51	7.90	0.5
						1.000	28.01	6.07	81.0	2.6	23.51	7.90	0.5
2012/6/26 10:50	C3	MF	83231	808877	15.7	7.850	27.68	5.46	72.9	2.0	28.32	7.90	0.5
2012/0/20 10.30		1411.	05251	000077	13.7	7.850	27.73	5.63	75.5	2.5	28.28	7.90	V.J
						14.700	26.59	4.68	62.6	2.5	33.95	7.79	0.5
	1	l				14.700	26.52	4.62	61.6	2.3	33.99	7.77	1

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 28-Jun-12

Date / Time	Location	Tide*	Co-oro	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	Tiuc	East	North	m	m	${\mathfrak C}$	mg/L	%	NTU	ppt	unit	mg/
2012/6/28 8:45	W1	ME	832963	807730	2.3	1.150	28.61	6.20	83.4	3.8	20.18	7.64	5.2
2012/0/20 0.43	VV I	IVIL	032903	007730	2.3	1.150	28.60	6.28	84.9	3.8	20.30	7.66	3.2
						1.000	28.60	6.45	86.6	3.3	20.33	7.77	4.3
						1.000	28.58	6.32	85.1	4.0	20.35	7.76	7.5
2012/6/28 8:35	W2	ME	832674	808006	12.5	6.250	28.04	5.80	78.5	3.4	25.92	7.55	2.6
2012/0/20 0.55	VV Z	IVIL	032074	808000	12.3	6.250	27.86	5.66	76.4	3.5	26.71	7.51	2.0
						11.500	25.08	5.20	70.9	4.5	35.40	7.31	4.0
						11.500	24.94	4.97	67.4	4.5	35.62	7.27	4.0
						1.000	28.50	6.00	80.3	3.9	20.69	7.90	4.9
						1.000	28.53	6.14	82.7	3.9	20.49	7.90	4.9
2012///20 0 20	77.70	ME	022047	007000	10.5	6.250	28.16	5.29	70.7	3.5	24.48	7.76	2.0
2012/6/28 8:20	W3	ME	832047	807890	12.5	6.250	28.10	5.54	74.4	3.8	24.25	7.76	3.2
						11.500	24.77	4.71	63.3	3.5	35.54	7.55	
						11.500	24.74	4.45	59.6	3.5	35.54	7.51	4.0
						1.000	28.75	6.26	84.3	3.8	20.10	7.89	
						1.000	28.74	6.10	81.9	39	20.10	7.90	5.6
							27.26	5.50	73.8	2.4	29.03	7.61	
2012/6/28 8:05	C1	ME	833723	808154	13.5	6.750	27.26	5.47	73.4	3.3	29.03	7.62	2.5
											35.57		
						12.500	24.77	4.81	64.4	2.2		7.36	1.2
						12.500	24.67	4.77	63.9	2.5	35.65	7.38	
						1.000	28.44	5.92	80.7	4.1	20.98	7.65	2.6
						1.000	28.43	5.92	79.8	3.8	20.98	7.73	
2012/6/28 8:06	C2	ME	831454	807739	12.2	6.100	28.51	5.23	70.1	4.0	23.02	7.76	2.5
2012/0/20 0:00	CZ	IVIL	031434	001139	12.2	6.100	28.39	5.24	70.2	4.0	23.33	7.75	۷.,
						11.200	25.43	4.51	60.0	6.1	34.53	7.59	8.2
						11.200	25.48	4.35	57.8	6.5	34.57	7.57	0
						1.000	28.80	6.19	83.7	3.6	20.14	7.87	2.6
						1.000	28.64	6.23	84.6	3.7	20.32	7.88	3.8
						6.850	27.14	5.78	78.2	2.4	30.75	7.61	
2012/6/28 9:25	C3	ME	832237	808890	13.7	6.850	26.79	5.62	76.0	2.8	31.09	7.59	2.0
						12.700	24.65	4.65	62.7	5.6	35.73	7.46	
						12.700	24.65	4.45	59.9	5.8	35.80	7.44	5.8
						12.700	24.00	4.43	39.9	5.0	33.00	7.44	
						1 200	20.06	6.33	05.24	2.1	20.39	7.46	
2012/6/28 13:06	W1	MF	832960	807726	2.6	1.300	28.86		85.34	3.1		7.46	3.:
						1.300	29.06	6.17	82.85	3.2	19.68	7.82	
						1.000	28.86	6.44	86.29	3.4	20.33	7.22	4.2
						1.000	28.98	6.42	86.20	3.5	20.26	7.33	
2012/6/28 13:20	W2	MF	832681	807981	13.3	6.650	27.72	5.36	71.50	2.8	27.73	8.03	3.
2012/0/20 13.20	VV Z	IVII	032001	007901	13.3	6.650	27.37	5.33	71.15	3.0	28.79	7.94	٥.
						12.300	25.52	3.93	52.97	3.4	35.15	7.57	2.:
						12.300	25.44	3.67	49.43	3.9	35.23	7.59	۷
						1.000	29.04	6.17	82.63	3.8	20.58	7.38	2
						1.000	29.12	6.22	83.62	3.4	20.65	7.29	3.:
						6.550	28.08	5.38	71.93	3.9	25.59	7.87	
2012/6/28 13:35	W3	MF	832049	807895	13.1	6.550	27.74	5.12	68.24	3.4	26.39	7.81	4.
						12.100	26.42	4.41	59.23	5.4	33.13	7.43.	
						12.100	26.27	4.40	59.22	5.2	33.27	7.36	6.
	+					1.000	28.93	6.41	86.04	2.7	20.18	7.90	1
													2.
						1.000	28.99	6.43	86.38	3.8	20.09	8.10	
2012/6/28 12:46	C1	MF	833724	808194	15.1	7.550	27.72	5.63	75.55	2.2	28.43	7.69	4.3
						7.550	27.28	5.44	72.76	3.5	29.12	7.88	-
						14.100	25.51	4.56	60.52	3.0	35.20	7.95	2.
						14.100	25.44	4.68	62.50	3.2	35.28	7.56	
						1.000	29.50	5.96	80.30	3.4	20.68	7.55	3.
						1.000	29.27	5.85	78.82	3.4	20.74	7.54	٥.
2012///20 12 50	CO	Val.	921.450	807744	12.1	6.550	28.16	5.17	69.58	4.2	24.22	7.16	0.
	C2	MF	831459	807744	13.1	6.550	28.17	5.36	72.35	4.2	24.19	7.12	8.0
2012/6/28 13:50						12.100	26.66	4.37	59.04	4.2	31.88	7.77	_
2012/6/28 13:50						12.100	26.64	4.16	55.96	4.8	31.81	7.74	2.5
2012/6/28 15:50						1.000	29.71	6.05	80.55	3.5	19.50	7.31	
2012/6/28 13:50										3.3			8.
2012/0/28 15:50							20 83	6.14					
2012/6/28 15:50						1.000	29.83	6.14 5.70	82.04 76.70		19.43	7.30	
2012/6/28 14:10	C3	MF	832246	808849	15.1	1.000 7.550	27.38	5.70	76.79	3.1	27.64	7.55	4.:
	C3	MF	832246	808849	15.1	1.000 7.550 7.550	27.38 27.45	5.70 5.61	76.79 75.43	3.1 2.6	27.64 27.50	7.55 7.50	4.:
	C3	MF	832246	808849	15.1	1.000 7.550	27.38	5.70	76.79	3.1	27.64	7.55	4

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 30-Jun-12

Date / Time	Location	Tide*	Co-oro	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	1100*	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg
2012/6/30 9:40	W1	ME	832960	807727	2.2	1.100	26.97	5.83	82.8	2.7	29.19	7.96	7.2
2012/0/30 7.40	***1	IVIL	032700	007727	2.2	1.100	26.96	5.90	83.9	2.6	29.19	7.96	7.2
						1.000	26.95	6.07	85.9	2.6	29.10	7.97	6.6
						1.000	26.99	5.89	83.5	2.4	29.14	7.98	0.0
2012/6/30 9:30	W2	ME	832675	807971	12.5	6.250	26.83	5.22	74.3	1.8	30.28	7.96	8.0
2012/0/30 7.30	112	IVIL	032013	007771	12.5	6.250	26.79	5.35	76.3	1.7	30.24	7.96	0.0
						11.500	26.12	5.46	78.5	4.4	32.34	7.91	6.3
						11.500	25.94	4.57	65.0	4.3	32.63	7.87	0
						1.000	27.00	6.05	86.0	2.6	29.13	7.97	4.4
						1.000	26.94	5.89	83.7	2.8	29.34	7.97	
2012/6/30 9:15	W3	ME	832039	807889	12.3	6.150	26.83	5.06	71.6	1.9	30.24	7.97	5.9
2012/0/30 7.13	,,,,	IVIL	032037	007007	12.5	6.150	26.80	5.28	75.0	2.3	30.26	7.97	٥.,
						11.300	26.08	4.59	65.1	3.9	32.30	7.90	3.9
						11.300	26.24	4.31	60.9	3.6	31.82	7.91	ر.ر
						1.000	26.94	5.39	76.1	2.2	29.17	7.96	5.1
						1.000	27.02	5.45	77.0	2.2	29.12	7.98	٥.,
2012/6/30 10:00	C1	ME	833719	808184	13.4	6.700	26.87	5.08	72.1	2.1	30.44	7.96	5.
2012/0/30 10:00	CI	IVIL	033719	000104	13.4	6.700	26.88	5.10	72.4	2.0	30.43	7.96	٦.
						12.400	25.94	4.51	64.1	3.2	32.72	7.88	8.4
						12.400	25.92	4.37	62.0	3.5	32.78	7.86	0.
						1.000	26.95	5.09	72.9	1.9	29.26	8.02	6
						1.000	26.93	5.10	72.0	2.4	29.29	8.00	6.
2012///20 0 00	GO.	ME	021.475	007722	10.0	6.150	26.91	4.74	67.1	2.1	30.10	7.98	7
2012/6/30 9:00	C2	ME	831475	807733	12.3	6.150	26.90	4.68	66.1	2.2	30.11	7.98	7.
						11.300	26.54	4.39	62.1	5.1	31.80	7.94	
						11.300	25.91	4.10	58.0	5.2	32.77	7.88	7.
						1.000	26,94	5.63	79.7	2.7	29.39	7.94	
						1.000	26.90	5.68	80.6	2.7	29.54	7.94	6.
						6.750	26.93	5.21	74.1	3.4	30.31	7.96	
2012/6/30 10:20	C3	ME	832238	808874	13.5	6.750	26.84	5.32	75.8	3.5	30.44	7.94	8.
						12.500	25.99	4.59	64.9	5.1	32.67	7.88	
						12.500	25.91	4.36	61.8	5.5	32.79	7.86	6.9
						12.500	23171	1150	0110	3.5	32177	7100	
						1.350	26.99	5.98	85.32	3.5	29.66	7.94	
2012/6/30 16:05	W1	MF	832968	807737	2.7	1.350	26,94	5.84	83.17	3.6	29.72	7.93	10
						1.000	27.06	6.07	86.09	3.2	29.47	7.95	
						1.000	27.00	6.05	85.92	3.1	29.54	7.94	7.
							26.82	4.98	70.36	2.9	30.53	7.94	
2012/6/30 15:55	W2	MF	832667	807979	13.5	6.750							5.
						6.750	26.81 25.87	5.12	72.60	3.0	30.55	7.92	
						12.500	/3 K/	3.79	54.90	5.4	34.19	7.88	_
						10.500					2126		/.
						12.500	25.65	3.89	55.80	7.2	34.36	7.86	/.
						1.000	25.65 27.07	3.89 6.03	84.20	3.6	29.45	7.86 7.95	
						1.000 1.000	25.65 27.07 27.07	3.89 6.03 5.97	84.20 82.88	3.6 3.7	29.45 29.45	7.86 7.95 7.96	
2012/6/30 15:40	W3	MF	832047	807897	13.1	1.000 1.000 6.550	25.65 27.07 27.07 26.78	3.89 6.03 5.97 5.25	84.20 82.88 74.76	3.6 3.7 2.7	29.45 29.45 31.52	7.86 7.95 7.96 7.90	5.
2012/6/30 15:40	W3	MF	832047	807897	13.1	1.000 1.000 6.550 6.550	25.65 27.07 27.07 26.78 26.58	3.89 6.03 5.97 5.25 5.12	84.20 82.88 74.76 72.78	3.6 3.7 2.7 2.2	29.45 29.45 31.52 31.82	7.86 7.95 7.96 7.90 7.89	5.
2012/6/30 15:40	W3	MF	832047	807897	13.1	1.000 1.000 6.550 6.550 12.100	25.65 27.07 27.07 26.78 26.58 25.57	3.89 6.03 5.97 5.25 5.12 4.37	84.20 82.88 74.76 72.78 62.27	3.6 3.7 2.7 2.2 8.8	29.45 29.45 31.52 31.82 34.44	7.86 7.95 7.96 7.90 7.89 7.85	5.
2012/6/30 15:40	W3	MF	832047	807897	13.1	1.000 1.000 6.550 6.550 12.100	25.65 27.07 27.07 26.78 26.58 25.57 25.56	3.89 6.03 5.97 5.25 5.12 4.37 4.39	84.20 82.88 74.76 72.78 62.27 62.66	3.6 3.7 2.7 2.2 8.8 8.9	29.45 29.45 31.52 31.82 34.44 34.44	7.86 7.95 7.96 7.90 7.89 7.85 7.84	5.
2012/6/30 15:40	W3	MF	832047	807897	13.1	1.000 1.000 6.550 6.550 12.100 12.100 1.000	25.65 27.07 27.07 26.78 26.58 25.57 25.56 26.95	3.89 6.03 5.97 5.25 5.12 4.37 4.39 6.08	84.20 82.88 74.76 72.78 62.27 62.66 86.50	3.6 3.7 2.7 2.2 8.8 8.9 3.3	29.45 29.45 31.52 31.82 34.44 34.44 29.42	7.86 7.95 7.96 7.90 7.89 7.85 7.84 7.93	5. 3. 4.
2012/6/30 15:40	W3	MF	832047	807897	13.1	1.000 1.000 6.550 6.550 12.100 12.100 1.000 1.000	25.65 27.07 27.07 26.78 26.58 25.57 25.56 26.95 27.02	3.89 6.03 5.97 5.25 5.12 4.37 4.39 6.08 6.16	84.20 82.88 74.76 72.78 62.27 62.66 86.50 87.82	3.6 3.7 2.7 2.2 8.8 8.9 3.3 3.0	29.45 29.45 31.52 31.82 34.44 34.44 29.42 29.39	7.86 7.95 7.96 7.90 7.89 7.85 7.84 7.93 7.93	5. 3. 4.
						1.000 1.000 6.550 6.550 12.100 12.100 1.000 1.000 7.750	25.65 27.07 27.07 26.78 26.58 25.57 25.56 26.95 27.02 26.22	3.89 6.03 5.97 5.25 5.12 4.37 4.39 6.08 6.16 5.58	84.20 82.88 74.76 72.78 62.27 62.66 86.50 87.82 79.64	3.6 3.7 2.7 2.2 8.8 8.9 3.3 3.0 2.2	29.45 29.45 31.52 31.82 34.44 34.44 29.42 29.39 32.66	7.86 7.95 7.96 7.90 7.89 7.85 7.84 7.93 7.93	5. 3. 4.
2012/6/30 15:40	W3	MF	832047 833727	807897	13.1	1.000 1.000 6.550 6.550 12.100 12.100 1.000 1.000 7.750	25.65 27.07 27.07 26.78 26.58 25.57 25.56 26.95 27.02 26.22 26.21	3.89 6.03 5.97 5.25 5.12 4.37 4.39 6.08 6.16 5.58 5.25	84.20 82.88 74.76 72.78 62.27 62.66 86.50 87.82 79.64 74.61	3.6 3.7 2.7 2.2 8.8 8.9 3.3 3.0 2.2	29.45 29.45 31.52 31.82 34.44 34.44 29.42 29.39 32.66 32.63	7.86 7.95 7.96 7.90 7.89 7.85 7.84 7.93 7.93 7.86 7.85	5. 3. 4.
						1.000 1.000 6.550 6.550 12.100 12.100 1.000 1.000 7.750	25.65 27.07 27.07 26.78 26.58 25.57 25.56 26.95 27.02 26.22	3.89 6.03 5.97 5.25 5.12 4.37 4.39 6.08 6.16 5.58	84.20 82.88 74.76 72.78 62.27 62.66 86.50 87.82 79.64	3.6 3.7 2.7 2.2 8.8 8.9 3.3 3.0 2.2	29.45 29.45 31.52 31.82 34.44 34.44 29.42 29.39 32.66	7.86 7.95 7.96 7.90 7.89 7.85 7.84 7.93 7.93	5. 3. 4. 3.
						1.000 1.000 6.550 6.550 12.100 12.100 1.000 1.000 7.750	25.65 27.07 27.07 26.78 26.58 25.57 25.56 26.95 27.02 26.22 26.21	3.89 6.03 5.97 5.25 5.12 4.37 4.39 6.08 6.16 5.58 5.25	84.20 82.88 74.76 72.78 62.27 62.66 86.50 87.82 79.64 74.61	3.6 3.7 2.7 2.2 8.8 8.9 3.3 3.0 2.2	29.45 29.45 31.52 31.82 34.44 34.44 29.42 29.39 32.66 32.63	7.86 7.95 7.96 7.90 7.89 7.85 7.84 7.93 7.93 7.86 7.85	5. 3. 4. 3.
						1.000 1.000 6.550 6.550 12.100 12.100 1.000 1.000 7.750 7.750 14.500 1.000	25.65 27.07 27.07 26.78 26.58 25.57 25.56 26.95 27.02 26.22 26.21 25.73 25.62 27.09	3.89 6.03 5.97 5.25 5.12 4.37 4.39 6.08 6.16 5.58 5.25 4.62 4.62 5.59	84.20 82.88 74.76 72.78 62.27 62.66 86.50 87.82 74.61 65.66 65.79 70.03	3.6 3.7 2.7 2.2 8.8 8.9 3.3 3.0 2.2 2.1 7.2 7.0	29.45 29.45 31.52 31.82 34.44 34.44 29.42 29.39 32.66 32.63 33.92 33.96 29.42	7.86 7.95 7.96 7.90 7.89 7.85 7.84 7.93 7.93 7.86 7.85 7.85 7.85 7.85 8.02	5. 3. 4. 3. 3. 5.
						1.000 1.000 6.550 6.550 12.100 12.100 1.000 7.750 7.750 14.500	25.65 27.07 27.07 26.78 26.58 25.57 25.56 26.95 27.02 26.22 26.21 25.73 25.62	3.89 6.03 5.97 5.25 5.12 4.37 4.39 6.16 5.58 5.25 4.62	84.20 82.88 74.76 72.78 62.27 62.66 86.50 87.82 79.64 74.61 65.66 65.79	3.6 3.7 2.7 2.2 8.8 8.9 3.3 3.0 2.2 2.1 7.2	29.45 29.45 31.52 31.82 34.44 34.44 29.42 29.39 32.66 32.63 33.92 33.96	7.86 7.95 7.96 7.90 7.89 7.85 7.84 7.93 7.93 7.86 7.85 7.81	5. 3. 4. 3. 3.
2012/6/30 16:25	C1	MF	833727	808154	15.5	1.000 1.000 6.550 6.550 12.100 12.100 1.000 1.000 7.750 7.750 14.500 1.000	25.65 27.07 27.07 26.78 26.58 25.57 25.56 26.95 27.02 26.22 26.21 25.73 25.62 27.09	3.89 6.03 5.97 5.25 5.12 4.37 4.39 6.08 6.16 5.58 5.25 4.62 4.62 5.59	84.20 82.88 74.76 72.78 62.27 62.66 86.50 87.82 74.61 65.66 65.79	3.6 3.7 2.7 2.2 8.8 8.9 3.3 3.0 2.2 2.1 7.2 7.0	29.45 29.45 31.52 31.82 34.44 34.44 29.42 29.39 32.66 32.63 33.92 33.96 29.42	7.86 7.95 7.96 7.90 7.89 7.85 7.84 7.93 7.93 7.86 7.85 7.85 7.85 7.85 8.02	5. 3. 4. 3. 3. 5.
						1.000 1.000 6.550 6.550 12.100 1.000 1.000 7.750 7.750 14.500 1.000 1.000	25.65 27.07 27.07 26.78 26.58 25.57 25.56 26.95 27.02 26.22 26.21 25.73 25.62 27.09 27.09	3.89 6.03 5.97 5.25 5.12 4.37 4.39 6.08 6.16 5.58 5.25 4.62 4.62 5.59 5.43	84.20 82.88 74.76 72.78 62.27 62.66 86.50 87.82 79.64 74.61 65.66 65.79 70.03	3.6 3.7 2.7 2.2 2.8 8.9 3.3 3.0 2.2 2.1 7.0 3.5 3.8	29.45 29.45 31.52 31.82 34.44 34.44 29.42 29.39 32.66 32.63 33.92 33.96 29.42 29.43	7.86 7.95 7.96 7.90 7.89 7.85 7.84 7.93 7.86 7.85 7.85 7.81 8.02 8.01	5. 3. 4. 3. 3. 5.
2012/6/30 16:25	C1	MF	833727	808154	15.5	1.000 1.000 6.550 6.550 12.100 1.000 1.000 7.750 7.750 14.500 1.000 1.000 6.650	25.65 27.07 27.07 26.78 26.58 25.57 25.56 26.95 27.02 26.22 26.21 25.73 25.62 27.09 27.09 26.83	3.89 6.03 5.97 5.25 5.12 4.37 4.39 6.08 6.16 5.58 5.25 4.62 4.62 5.59 5.43	84.20 82.88 74.76 72.78 62.27 62.66 86.50 87.82 79.64 74.61 65.66 65.79 70.03 77.17	3.6 3.7 2.7 2.2 8.8 8.9 3.3 3.0 2.2 2.1 7.2 7.0 3.5 3.8 3.0	29.45 29.45 31.52 31.82 34.44 29.42 29.39 32.66 32.63 33.92 33.96 29.42 29.43 30.79	7.86 7.95 7.96 7.90 7.89 7.85 7.84 7.93 7.86 7.85 7.88 8.02 8.01	5. 3. 4. 3. 3. 5.
2012/6/30 16:25	C1	MF	833727	808154	15.5	1.000 1.000 6.550 6.550 12.100 1.000 1.000 7.750 7.750 14.500 1.000 1.000 6.650 6.650	25.65 27.07 27.07 26.78 26.58 25.57 25.56 26.95 27.02 26.22 26.21 25.73 25.69 27.09 26.83 26.77	3.89 6.03 5.97 5.25 5.12 4.37 4.39 6.08 6.16 5.58 5.25 4.62 4.62 5.59 5.43 4.58	84.20 82.88 74.76 72.78 62.27 62.66 86.50 87.82 79.64 74.61 65.66 65.79 70.03 77.17 65.07 67.47	3.6 3.7 2.7 2.2 8.8 8.9 3.3 3.0 2.2 2.1 7.2 7.0 3.5 3.8 3.0 2.7	29.45 29.45 31.52 31.82 34.44 34.44 29.42 29.39 32.66 32.63 33.92 33.96 29.42 29.43 30.79 30.75	7.86 7.95 7.96 7.90 7.89 7.85 7.84 7.93 7.86 7.85 7.81 8.02 8.01 7.94 7.93	5. 3. 4. 3. 3. 5.
2012/6/30 16:25	C1	MF	833727	808154	15.5	1.000 1.000 6.550 6.550 12.100 12.100 1.000 7.750 7.750 14.500 14.500 1.000 1.000 6.650 6.650 12.300	25.65 27.07 26.78 26.58 25.57 25.56 26.95 27.02 26.22 26.21 25.73 25.62 27.09 26.83 26.77 25.58	3.89 6.03 5.97 5.25 5.12 4.37 4.39 6.08 6.16 5.58 5.25 4.62 4.62 5.59 5.43 4.58 4.76	84.20 82.88 74.76 72.78 62.27 62.66 86.50 87.82 79.64 74.61 65.66 65.79 70.03 77.17 65.07 67.47 53.38	3.6 3.7 2.7 2.2 8.8 8.9 3.3 3.0 2.2 2.1 7.2 7.0 3.5 3.8 3.0 2.7	29.45 29.45 31.52 31.82 34.44 34.44 29.42 29.39 32.66 32.63 33.92 33.96 29.42 29.43 30.79 30.75 34.34	7.86 7.95 7.96 7.90 7.89 7.84 7.93 7.86 7.85 7.81 8.02 8.01 7.94 7.93 7.86	53433559
2012/6/30 16:25	C1	MF	833727	808154	15.5	1.000 1.000 6.550 6.550 12.100 12.100 1.000 7.750 7.750 14.500 1.000 1.000 6.650 6.650 12.300 1.000	25.65 27.07 27.07 26.78 26.58 25.57 25.56 26.95 27.02 26.22 26.21 25.73 25.62 27.09 27.09 26.83 26.77 25.58 25.58	3.89 6.03 5.97 5.25 5.12 4.37 4.39 6.08 6.16 5.58 5.25 4.62 4.62 5.59 5.43 4.58 4.76 3.75 3.73 5.57	84.20 82.88 74.76 72.78 62.27 62.66 86.50 87.82 79.64 74.61 65.66 65.79 70.03 77.17 65.07 67.47 53.38 52.97 78.48	3.6 3.7 2.7 2.2 8.8 8.9 3.3 3.0 2.2 2.1 7.2 7.0 3.5 3.8 3.0 2.7 10.6 11.2 3.0	29.45 29.45 31.52 31.82 34.44 34.44 29.42 29.39 32.66 32.63 33.92 33.96 29.42 29.43 30.79 30.75 34.34 34.34	7.86 7.95 7.96 7.90 7.89 7.85 7.84 7.93 7.93 7.86 7.85 7.81 8.02 8.01 7.94 7.93 7.86 7.86 7.86 7.87	53433559
2012/6/30 16:25 2012/6/30 15:23	C1 C2	MF	833727 831453	808154	15.5	1.000 1.000 6.550 6.550 12.100 1.000 1.000 7.750 7.750 14.500 1.000 1.000 6.650 6.650 12.300 1.000 1.000	25.65 27.07 27.07 26.78 26.58 25.57 25.56 26.95 27.02 26.22 26.21 25.73 25.62 27.09 27.09 26.83 26.77 25.58 26.87 26.87	3.89 6.03 5.97 5.25 5.12 4.37 4.39 6.08 6.16 5.58 5.25 4.62 4.62 5.59 5.43 4.58 4.76 3.75 5.62	84.20 82.88 74.76 72.78 62.27 62.66 86.50 87.82 79.64 74.61 65.66 65.79 70.03 77.17 65.07 67.47 53.38 52.97 78.48	3.6 3.7 2.7 2.2 2.8 8.8 8.9 3.3 3.0 2.2 2.1 7.0 3.5 3.8 3.0 2.7 10.6 11.2 3.0 3.0	29.45 29.45 31.52 31.82 34.44 29.42 29.39 32.66 32.63 33.92 33.96 29.42 29.43 30.79 30.75 34.34 34.34 30.14 29.59	7.86 7.95 7.96 7.90 7.89 7.85 7.84 7.93 7.86 7.85 7.81 8.02 8.01 7.94 7.93 7.86 7.86 7.91 7.94	7. 5. 3. 4. 3. 3. 5. 2. 8. 9. 6.
2012/6/30 16:25	C1	MF	833727	808154	15.5	1.000 1.000 6.550 6.550 12.100 1.000 1.000 7.750 7.750 14.500 14.500 1.000 6.650 6.650 6.650 12.300 1.000 1.000 1.000 1.000	25.65 27.07 27.07 26.78 26.58 25.57 25.56 26.95 27.02 26.22 26.21 25.73 25.62 27.09 26.83 26.77 25.58 26.87 26.99 26.99 26.12	3.89 6.03 5.97 5.25 5.12 4.37 4.39 6.08 6.16 5.58 5.25 4.62 4.62 5.59 5.43 4.58 4.76 3.75 5.62 5.20	84.20 82.88 74.76 72.78 62.27 62.66 86.50 87.82 79.64 74.61 65.66 65.79 70.03 77.17 65.07 67.47 53.38 52.97 78.48 79.35	3.6 3.7 2.7 2.2 8.8 8.9 3.3 3.0 2.2 2.1 7.2 7.0 3.5 3.8 3.0 2.7 10.6 11.2 3.0 3.0 4.6	29.45 29.45 31.52 31.82 34.44 29.42 29.39 32.66 32.63 33.92 33.96 29.42 29.43 30.79 30.75 34.34 34.34 30.14 29.59 32.94	7.86 7.95 7.96 7.90 7.89 7.85 7.84 7.93 7.86 7.85 7.88 8.02 8.01 7.94 7.93 7.86 7.86 7.87 7.89 7.89 7.89 7.80 7.80 7.80 7.80 7.86	5. 3. 4. 3. 3. 5. 2. 8. 9.
2012/6/30 16:25 2012/6/30 15:23	C1 C2	MF	833727 831453	808154	15.5	1.000 1.000 6.550 6.550 12.100 1.000 1.000 7.750 7.750 14.500 1.000 1.000 6.650 6.650 12.300 1.000 1.000	25.65 27.07 27.07 26.78 26.58 25.57 25.56 26.95 27.02 26.22 26.21 25.73 25.62 27.09 27.09 26.83 26.77 25.58 26.87 26.87	3.89 6.03 5.97 5.25 5.12 4.37 4.39 6.08 6.16 5.58 5.25 4.62 4.62 5.59 5.43 4.58 4.76 3.75 5.62	84.20 82.88 74.76 72.78 62.27 62.66 86.50 87.82 79.64 74.61 65.66 65.79 70.03 77.17 65.07 67.47 53.38 52.97 78.48	3.6 3.7 2.7 2.2 2.8 8.8 8.9 3.3 3.0 2.2 2.1 7.0 3.5 3.8 3.0 2.7 10.6 11.2 3.0 3.0	29.45 29.45 31.52 31.82 34.44 29.42 29.39 32.66 32.63 33.92 33.96 29.42 29.43 30.79 30.75 34.34 34.34 30.14 29.59	7.86 7.95 7.96 7.90 7.89 7.85 7.84 7.93 7.86 7.85 7.81 8.02 8.01 7.94 7.93 7.86 7.86 7.91 7.94	5. 3. 4. 3. 3. 3. 5. 2. 8. 8. 9. 6.

MF- Mid Flood Tide ME- Mid Ebb tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 4-Jul-12

Date / Time	Loostion	Tide*	Co-ore	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	1100*	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg/l
2012/7/4 12:25	W1	ME	832960	807732	2.3	1.150	28.09	6.46	87.4	2.1	28.60	7.04	6.1
2012/// 12:20	,,,,	.,,,	032900	007732	210	1.150	28.15	6.48	87.9	2.1	28.56	7.05	0.1
						1.000	28.07	6.57	89.0	2.1	28.25	7.39	4.1
						1.000	28.01	6.38	86.1	2.2	28.32	7.32	
2012/7/4 12:15	W2	ME	832663	808001	12.6	6.300	27.48	5.74	77.6	2.3	29.60	7.08	4.8
						6.300	27.53	5.73	77.6	1.7	29.42	7.04	
						11.600	27.32	5.35	73.2	1.7	30.23	6.95	5.1
						11.600	27.36	4.48	59.9	2.0	30.13	6.94	
						1.000	28.17	6.59	89.6	1.2	27.82	7.97	5.8
						1.000	28.24	6.22 5.67	84.1	1.5 2.0	28.08 29.22	7.88	
2012/7/4 12:00	W3	ME	832053	807900	12.3	6.150 6.150	27.76 27.60	5.78	76.6 78.4	1.4	29.22	7.73 7.69	5.8
						11.300	26.79	4.68	63.0	5.4	32.72	7.55	
						11.300	26.80	4.40	58.9	6.2	32.73	7.53	7.7
						1.000	27.84	5.95	79.5	1.8	28.81	7.05	
						1.000	27.78	6.17	82.8	1.6	28.85	7.03	4.2
						6.850	27.44	5.67	77.3	1.8	29.63	7.05	
2012/7/4 12:45	C1	ME	833717	808166	13.7	6.850	27.49	5.63	75.7	2.3	29.62	7.03	4.2
						12.700	26.47	5.02	67.7	2.9	33.78	6.90	
						12.700	26.52	4.92	66.2	3.0	33.26	6.87	4.7
						1.000	28.27	6.12	83.0	2.2	28.11	7.90	
						1.000	28.28	5.83	78.6	2.3	28.11	7.91	6.0
						6.250	27.18	5.28	71.3	1.9	30.95	7.85	
2012/7/4 11:45	C2	ME	831460	807751	12.5	6.250	27.16	5.12	68.6	2.0	31.12	7.84	5.7
						11.500	26.67	4.65	62.3	4.7	32.82	7.76	
						11.500	26.74	4.53	60.8	3.1	32.79	7.76	2.6
						1.000	27.94	6.79	92.9	2.3	28.65	7.76	
						1.000	28.05	6.52	88.9	2.2	28.57	7.27	5.8
						6.750	27.45	5.88	79.8	1.4	29.82	7.23	
2012/7/4 13:05	C3	ME	832215	808843	13.5	6.750	27.43	5.96	81.2	1.5	29.74	7.24	4.9
						12.500	26.74	4.78	64.4	6.6	32.60	7.17	
						12.500	26.62	4.71	64.0	6.5	32.82	7.17	6.3
2012/7/4 17:40	W1	MF	832970	807727	2.7	1.350	28.43	6.49	87.9	1.8	28.23	7.71	4.4
2012/// 17110	,,,,	1111	032)10	007727	2.7	1.350	28.39	6.49	88.1	1.5	28.26	7.72	
						1.000	28.43	6.58	88.4	2.3	28.23	7.61	5.6
						1.000	28.40	6.63	89.6	2.0	28.23	7.63	
2012/7/4 17:30	W2	MF	832660	807981	13.5	6.750	27.75	5.45	73.0	2.1	28.76	7.52	2.8
						6.750	27.72	5.66	77.8	1.9	28.78	7.52	
						12.500	27.17	4.17	56.4	4.1	31.07	7.43	5.3
						12.500	27.05	3.86	52.4	4.8	31.25	7.43	
						1.000	28.44	6.58	89.03 90.18	2.7	28.10 28.10	7.58 7.59	5.4
						1.000 6.650	28.43	6.63 5.87	79.56	2.6	28.60	7.45	
2012/7/4 17:15	W3	MF	832041	807890	13.3	6.650	27.74	5.78	78.37	2.1	28.67	7.43	4.8
						12.300	27.74	4 79	64 90	6.6	31.89	7.44	
						12.300	26.92	4.86	66.33	6.8	32.11	7.29	5.7
						1.000	28.03	7.06	96.19	2.1	28.16	7.90	
						1.000	28.04	6.83	92.75	2.2	28.17	7.89	5.1
						7.850	27.39	6.21	84.56	2.2	29.43	7.76	
2012/7/4 18:00	C1	MF	833726	808198	15.7	7.850	27.43	6.02	81.68	2.1	29.44	7.76	6.3
						14.700	26.83	5.14	69.49	4.6	31.95	7.66	
						14.700	26.98	5.24	71.08	5.0	31.66	7.67	5.4
						1.000	28.49	6.26	75.9	3.0	27.70	7.90	0.5
						1.000	28.46	6.49	88.7	3.0	27.80	7.81	3.6
2012/7/11/7/202		1.00	021.475	0077.40	10.5	6.750	27.79	5.63	76.8	2.5	28.44	7.51	
2012/7/4 17:00	C2	MF	831475	807748	13.5	6.750	27.84	5.56	75.5	1.8	28.45	7.47	6.0
						12.500	27.05	4.48	60.7	4.9	31.30	7.28	
		<u></u>				12.500	27.04	4.42	60.1	4.8	31.45	7.24	6.0
						1.000	28.02	6.72	91.0	1.4	28.19	7.85	4.5
						1.000	28.01	6.71	91.0	1.7	28.20	7.85	4.5
2012/7// 10 20	G2	ME	922100	202252	16.1	8.050	27.14	5.95	80.2	2.6	30.57	7.71	
2012/7/4 18:20	C3	MF	832199	808852	16.1	8.050	27.11	5.85	79.3	2.6	30.62	7.70	6.0
						15.100	26.98	4.63	62.2	3.3	31.52	7.69	
	ı					15.100	27.04	4.92	66.6	3.3	31.02	7.69	6.0

MF- Mid Flood Tide ME- Mid Ebb tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

6-Jul-12 Date

Date / Time	Location	Tide*	Co-on	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11de+	East	North	m	m	ဗ	mg/L	%	NTU	ppt	unit	mg
2012/7/6 13:40	W1	ME	832971	807741	2.2	1.100	28.01	5.41	81.9	2.3	28.63	7.80	3.1
2012/1/0 15.40	** 1	IVIL	032771	007771	2.2	1.100	28.06	5.56	84.3	2.2	28.59	7.81	5.1
						1.000	28.03	5.91	89.2	2.3	28.55	7.86	3.4
						1.000	27.98	5.72	86.6	2.4	28.57	7.86	٥.
2012/7/6 13:30	W2	ME	832661	807983	12.5	6.250	27.33	5.52	83.8	1.7	29.86	7.75	2.1
2012/1/0 15.50	W Z	IVIL	032001	007903	12.5	6.250	27.36	5.22	79.2	1.7	29.83	7.75	2.1
						11.500	25.92	4.71	71.3	5.7	34.17	7.59	2.8
						11.500	25.91	4.56	69.2	5.7	33.96	7.49	۷.(
						1.000	28.15	5.46	82.5	2.4	28.62	7.58	1.5
						1.000	28.23	5.61	84.9	2.5	28.56	7.59	1
2012/7/6 13:15	W3	ME	832045	807901	12.5	6.250	27.06	5.46	82.6	1.4	31.11	7.43	1.
2012///0 13.13	W 3	NIE	652045	807901	12.3	6.250	27.08	5.15	77.8	1.5	31.11	7.46	1.
						11.500	26.53	4.43	66.9	4.4	32.79	7.36	2
						11.500	26.52	4.11	62.0	4.5	32.78	7.31	2.
						1.000	28.19	5.40	82.1	2.0	28.26	7.90	0.
						1.000	28.18	5.41	82.1	2.1	28.29	7.90	3.
2012/7/6 14 22	01	ME	021.47.4	007706	10.7	6.850	27.45	4.61	70.1	2.1	29.54	7.84	
2012/7/6 14:00	C1	ME	831474	807736	13.7	6.850	27.45	4.68	71.0	2.5	29.55	7.83	1.
						12.700	25.59	3.98	60.2	6.4	34.53	7.61	_
						12.700	25.65	4.01	60.8	6.9	34.46	7.60	2.
						1.000	28.13	5.80	87.9	2.6	28.18	7.74	
						1.000	28.16	6.08	92.1	2.6	28.30	7.71	3.
						6.150	26.91	5.71	86.3	3.2	31.69	7.45	
2012/7/6 12:57	C2	ME	831461	807752	12.3	6.150	26.82	5.48	82.9	2.6	31.85	7.42	2.
						11.300	26.54	4.56	68.8	3.9	32.69	7.26	
						11.300	26.54	4.40	66.5	3.9	32.59	7.21	2.
						1.000	28.14	5.44	82.8	1.6	28.30	7.90	
						1.000	28.14	5.43	82.6	1.0	28.31	7.90	1.
						7.000	27.40	5.23	79.5	2.7	29.61	7.91	
2012/7/6 14:20	C3	ME	832229	808853	14		27.37		74.1		29.64	7.84	3.
						7.000		4.88		1.8			
						13.000	26.39	3.99	60.3	0.7	32.55	7.73	2.
						13.000	20.02	3.98	60.3	1.1	32.20	7.74	
						1.300	27.39	5.70	85.9	1.9	27.82	7.87	
2012/7/6 8:45	W1	MF	832963	807734	2.6	1.300	27.44	5.47	82.4	1.7	27.78	7.87	4.
						1.000	27.42	6.03	90.9	1.2	27.72	7.86	
						1.000	27.43	5.83	87.9	1.3	27.67	7.87	2.
						6.750	27.41	4.63	69.8	2.3	28.72	7.92	
2012/7/6 8:35	W2	MF	832675	807979	13.5		27.41	4.80	72.5	1.8	28.74	7.92	3.
						6.750	26.02	3.96	59.7		33.26		
						12.500 12.500				3.6		7.72	2.
							26.02	4.06	61.3	3.6	33.24	7.72	
						1.000	27.46	5.61	81.9	1.2	27.62	7.86	2.
						1.000	27.46	5.90	85.4	1.4	27.67	7.87	
2012/7/6 8:20	W3	MF	832051	807894	13.5	6.750	27.37	4.47	67.4	2.5	28.73	7.92	7.
					-	6.750	27.37	4.30	64.8	2.3	28.74	7.92	-
						12.500	26.29	4.03	60.8	1.6	32.61	7.80	1.
						12.500	26.85	4.24	64.1	1.8	31.00	7.83	
						1.000	27.49	5.85	88.1	2.4	28.16	8.04	3.
						1.000	27.49	6.03	90.9	2.2	28.28	8.03	
2012/7/6 9:05	C1	MF	833683	808192	16.1	8.050	27.21	4.73	71.4	1.4	29.63	7.97	5.
2012/110 7:03	Ç1	1111	333003	030172	10.1	8.050	27.24	4.59	69.2	1.7	29.61	7.96	
						15.100	26.22	3.80	57.4	1.3	32.94	7.87	4.
						15.100	26.64	4.05	61.2	2.2	32.09	7.90	7.
						1.000	27.45	5.31	79.6	1.1	27.54	7.75	1.
						1.000	27.43	5.27	79.3	1.4	27.53	7.79	1.
	1	MF	831453	807741	13.7	6.850	27.43	4.40	66.3	2.1	28.32	7.90	2.
2012/7/6 0.05	CO	IVI	651455	007741	13./	6.850	27.44	4.73	71.3	2.4	28.31	7.91	Δ.
2012/7/6 8:05	C2					12.700	27.37	4.23	63.8	6.1	29.03	7.78	
2012/7/6 8:05	C2							3.99	60.2	6.7	29.10	7.77	4.
2012/7/6 8:05	C2					12.700	27.31						_
2012/7/6 8:05	C2					12.700 1.000	27.50	4.73	71.5	1.9	28.28	7.97	^
2012/7/6 8:05	C2						27.50	4.73					3.
			00000	000070	160	1.000 1.000	27.50 27.50	4.73 4.80	72.5	1.5	28.27	7.98	
2012/7/6 8:05	C2 C3	MF	832234	808878	16.3	1.000	27.50 27.50 27.23	4.73 4.80 4.36	72.5 65.9	1.5 2.8	28.27 30.22	7.98 7.97	3.
		MF	832234	808878	16.3	1.000 1.000 8.150	27.50 27.50	4.73 4.80	72.5	1.5	28.27	7.98	

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 10-Jul-12

Date / Time	Location	Tide*	Co-oro	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11de*	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg/
2012/7/10 16:30	W1	ME	832973	807730	2.1	1.050	28.94	5.56	82.6	4.2	25.59	7.76	8.9
2012/11/10 10:50	***	IVIL	032713	001130	2.1	1.050	28.97	5.90	83.9	4.2	25.48	7.85	0.7
						1.000	28.91	5.45	81.9	3.5	25.41	8.00	6.5
						1.000	28.89	5.27	80.1	3.5	25.44	7.98	
2012/7/10 16:20	W2	ME	832685	807981	12.6	6.300	27.78	5.00	76.3	4.8	26.88	7.64	9.1
						6.300	27.82	4.78	72.7	4.8	26.85	7.58	
						11.600	25.64	4.87	74.1	3.9	33.92	7.23	11.
						11.600	25.39	4.47	68.1	3.9	34.20	7.17	
						1.000	29.20	5.25	79.2	6.5	25.91	7.86	10.
						1.000	29.18	5.11	77.7	6.5	25.97	7.93	
2012/7/10 16:05	W3	ME	832053	807890	12.5	6.250	29.01	4.13	62.7	5.0	28.00	7.84	9.8
						6.250	27.36	4.67	70.6	5.1	28.47	7.40	
						11.500	27.35	3.94	59.9	5.0	34.23	7.31	9.4
						11.500	25.59	3.56	54.1	5.0	34.06	6.99	
						1.000	25.41	5.13	78.1	4.2	25.60	6.90	7.8
						1.000	28.89	4.82	73.4	4.2	25.69	8.04	
2012/7/10 16:50	C1	ME	833716	808163	13.8	6.900	28.89	4.33	66.0	4.2	25.69	8.04	12.
						6.900	27.76	4.31	65.6	4.8	27.23	7.78	
						12.800	27.79	3.74	56.8	3.8	35.60	7.74	5.0
						12.800	25.00	3.70	56.3	3.9	35.20	7.33	
						1.000	24.60	4.79	75.0	4.0	25.60	7.23	7.4
						1.000	29.25	4.84	73.7	4.0	25.98	7.69	
2012/7/10 15:50	C2	ME	831477	807736	12.6	6.300	27.51	4.15	62.9	8.8	28.37	7.18	14.
						6.300	27.32	4.10	62.1	8.8	28.57	7.25	
						11.600	25.91	3.36	50.9	6.4	33.10	6.74	9.9
						11.600	25.89	3.13	47.5	6.4	33.02	6.67	
						1.000	28.89	5.21	79.5	5.2	25.73	7.92	9.0
						1.000	28.90	5.35	81.6	5.2	25.72	7.96	
2012/7/10 17:10	C3	ME	832196	808837	13.5	6.750	27.43	5.05	76.8	5.0	27.74	7.60	9.
						6.750	27.66	4.83	73.5	5.0	27.39	7.64	
						12.500	24.59	3.96	60.2	5.6	35.49	7.21	10.
						12.500	24.55	3.66	55.7	5.9	35.52	7.15	
2012/7/10 10 10	77.71) (E)	000000	007720	0.7	1.350	28.61	5.42	82.1	4.2	24.88	7.82	1.0
2012/7/10 10:40	W1	MF	832960	807728	2.7	1.350	28.50	5.68	85.1	4.2	24.88	7.84	12.
						1.000	28.21	5.29	80.2	2.1	24.96	8.00	4.
						1.000	28.21	5.31	80.6	2.8	24.98	7.96	4.3
2012/7/10 10 20	1110) (F)	000674	007006	10.5	6.750	27.38	4.12	62.5	3.5	28.17	7.72	
2012/7/10 10:30	W2	MF	832674	807996	13.5	6.750	27.20	4.13	62.7	3.5	28.55	7.64	7.
						12.500	25.94	3.78	56.8	5.5	33.12	7.43	10
						12.500	25.60	3.59	53.6	5.6	33.61	7.39	10.
						1.000	28.92	5.36	79.5	2.3	25.41	8.25	_
						1.000	28.90	5.13	77.7	2.6	25.44	8.20	5.
2012/7/10 10 15	1112	ME	922040	207205	12.2	6.650	27.30	4.17	63.2	2.2	28.60	7.89	4 '
2012/7/10 10:15	W3	MF	832049	807895	13.3	6.650	27.49	4.20	65.3	2.4	28.37	7.82	4.3
						12.300	25.98	3.55	54.1	3.0	33.07	7.56	4
						12.300	25.83	3.67	55.8	3.0	33.24	7.46	4.0
						1.000	28.17	5.34	80.7	3.4	25.16	8.00	3.4
						1.000	28.11	5.42	82.1	3.4	25.21	7.87	3.
2012/7/10 11:00	C1	MIZ	932720	202105	15 1	7.550	27.17	4.58	69.5	4.6	28.64	7.52	9.
2012/7/10 11:00	CI	MF	833729	808185	15.1	7.550	27.14	4.27	64.8	4.6	28.65	7.45	9.
						14.100	25.66	3.31	50.3	5.0	33.50	7.12	5.
						14.100	25.46	3.59	54.6	5.6	33.18	7.01	٥.
						1.000	28.53	4.96	74.9	2.5	25.40	8.04	3.:
						1.000	28.50	4.81	72.7	2.5	25.38	8.05	٥
2012/7/10 10:00	C2	MF	831475	807739	13.5	6.750	28.40	4.17	63.4	3.4	26.71	7.95	5.:
2012///10 10:00	C2	IVIL	0314/3	007739	15.5	6.750	28.39	4.53	68.9	3.4	26.71	7.95	٥.:
						12.500	26.07	3.81	57.8	4.3	32.12	7.59	5.
	ı					12.500	26.07	3.46	52.6	5.2	32.13	7.57	٥.
						1.000	28.47	4.57	69.3	2.7	25.10	7.51	4.9
						1.000							4.
						1.000	28.16	4.80	72.7	2.7	25.23	7.49	
2012/7/10 11:20	Co	MIT	922212	900051	15.2			4.80 4.79	72.7 72.8	2.7 3.0	25.23 28.52	7.49 7.29	<i>(</i> '
2012/7/10 11:20	C3	MF	832213	808851	15.3	1.000	28.16						6.7
2012/7/10 11:20	C3	MF	832213	808851	15.3	1.000 7.650	28.16 27.14	4.79	72.8	3.0	28.52	7.29	6.7

MF- Mid Flood Tide ME- Mid Ebb tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

12-Jul-12 Date

Date / Time	Location	Tide*	Co-ore	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	Hue.	East	North	m	m	${\mathfrak C}$	mg/L	%	NTU	ppt	unit	mg/
2012/7/12 9:00	W1	ME	832973	807739	2.8	1.400	28.71	5.35	80.8	3.1	23.09	8.17	4.3
2012/1/12 9.00	VV 1	IVIL	032913	007739	2.0	1.400	28.67	5.54	83.7	2.6	23.12	8.17	4.3
						1.000	28.72	5.38	80.6	2.5	22.86	8.20	7.3
						1.000	28.65	5.16	77.9	2.6	23.08	8.18	7.5
2012/7/12 8:49	W2	ME	832674	807976	13.6	6.800	27.87	4.66	70.7	2.2	25.56	8.02	5.6
2012/1/12 0.49	W Z	IVIL	032074	007970	13.0	6.800	27.62	4.91	74.4	1.9	26.77	7.97	5.0
						12.600	24.87	5.71	86.6	1.0	34.66	7.60	8.8
						12.600	24.90	4.08	61.6	1.3	34.62	7.57	0.0
						1.000	28.64	5.61	84.6	3.0	22.94	8.18	5.
						1.000	28.59	5.28	79.5	2.5	23.14	8.17	٥.
2012/7/12 8:33	W3	ME	832051	807897	13.4	6.700	28.27	4.07	61.7	4.5	25.91	8.02	8.4
2012/1/12 0.33	","	14112	032031	001071	13.1	6.700	28.27	4.64	70.0	4.5	25.95	8.01	0.
						12.400	24.75	4.01	60.8	6.0	35.01	7.53	8.9
						12.400	24.78	3.54	53.6	6.0	34.99	7.51	0.,
						1.000	28.55	4.55	68.7	4.6	23.44	8.20	9.0
						1.000	28.54	4.66	70.3	4.6	23.46	8.19	
2012/7/12 9:13	C1	ME	833712	808186	15.7	7.850	27.14	4.58	69.5	2.8	28.23	7.89	4.
						7.850	27.16	4.56	69.2	2.8	28.33	7.87	
						14.700	24.54	4.09	62.0	5.5	35.59	7.60	6.
						14.700	24.43	3.84	58.2	5.5	35.62	7.54	
						1.000	28.85	3.87	60.3	7.5	24.34	8.13	5.
						1.000	28.83	3.73	56.1	7.0	24.37	8.12	
2012/7/12 8:09	C2	ME	831451	807739	13.1	6.550	28.59	3.33	50.3	6.1	25.78	8.00	6.
						6.550	28.43	3.26	49.2	5.7	25.84	7.99	
						12.100	26.28	3.38	51.2	4.7	31.16	7.60	6.0
						12.100	26.21	3.00	45.3	4.9	31.45	7.52	
						1.000	28.62	5.15	77.8	2.7	23.25	8.15	4.
						1.000	28.60	5.31	80.2	3.2	23.25	8.16	
2012/7/12 9:33	C3	ME	832214	808853	16.1	8.050	27.09	4.98	75.5	3.7	28.46	7.82	7.
				808853	10.1	8.050	27.12	5.20	78.9	3.7	28.41	7.82	
						15.100	24.47	4.34	65.1	4.6	35.65	7.57	7.
						15.100	24.37	3.90	59.2	4.6	35.73	7.52	
						1.150	29.28	5.47	82.91	1.6	23.36	7.87	
2012/7/12 13:58	W1	MF	832961	807727	2.3	1.150	29.29	5.68	84.20	2.9	23.34	7.91	9.
						1.000	29.07	5.26	79.64	2.5	23.47	8.10	
						1.000	28.83	5.43	82.18	2.7	23.58	8.03	4.4
						6.250	27.10	4.13	62.65	1.6	28.45	7.57	
2012/7/12 13:43	W2	MF	832682	807996	12.5	6.250	27.19	4.44	67.42	2.0	28.20	7.53	5.
						11.500	25.32	3.72	56.48	3.9	33.53	7.19	
						11.500	25.08	3.69	55.90	4.2	34.18	7.11	10
						1.000	29.25	5.25	79.30	2.8	23.78	7.59	
						1.000	29.16	5.15	77.78	2.6	23.81	7.56	6.
2012/7/12 12 22	7770	.	020045	007004	10.7	6.350	28.05	4.95	75.14	2.0	25.67	7.31	-
2012/7/12 13:30	W3	MF	832045	807901	12.7	6.350	27.98	4.71	71.53	1.4	25.80	7.24	6.
						11.700	25.47	4.00	60.85	4.5	33.02	7.67	
						11.700	25.55	4.10	62.34	4.5	33.20	7.58	7.
						1.000	29.25	5.66	85.87	3.9	23.58	8.18	9.
						1.000	29.31	5.65	85.69	3.6	23.59	8.15	9.
2012/7/12 14:14	C1	MIL	922701	909165	1.4.2	7.100	27.38	5.44	82.70	3.4	27.80	7.75	7.
2012/7/12 14:14	CI	MF	833701	808165	14.2	7.100	26.86	4.82	73.25	3.8	29.23	7.57	/.
						13.200	24.61	4.23	64.27	5.6	35.13	7.15	6.
						13.200	24.57	4.27	64.98	5.6	34.94	7.10	O.
						1.000	29.23	5.25	60.45	5.5	24.04	8.22	6.
						1.000	29.06	5.08	76.69	5.6	23.92	8.17	υ.
2012/7/12 13:15	C2	MF	832474	807752	12.4	6.200	27.33	4.10	62.33	9.4	28.42	7.98	9.
2012///12 13.13	CZ	IVIT	032474	007732	12.4	6.200	27.63	4.38	66.54	8.8	27.42	7.88	9.
						11.400	26.43	3.43	52.18	12.5	31.15	7.96	6.
						11.400	26.45	3.34	50.87	13.6	30.93	8.01	0.
						1.000	29.20	4.99	75.70	3.6	23.65	7.95	8.
						1.000	28.77	5.15	78.06	3.6	23.95	7.93	0.
2012/7/12 14:33	C3	MF	832229	808866	14.6	7.300	26.53	5.05	76.74	3.2	30.14	7.43	5.9
2012/1/12 14.33	C	IVII	632229	000000	14.0	7.300	26.55	4.48	68.03	3.0	30.12	7.41	ر.ز
						13.600	25.01	4.59	69.92	6.5	34.36	7.21	10.

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 14-Jul-12

Date / Time	Location	Tide*	Co-ore	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	1100*	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg
2012/7/14 10:04	W1	ME	832960	807735	2.2	1.100	29.14	5.63	85.6	4.0	21.88	8.03	3.3
2012/1/14 10:04	***1	IVIL	032700	001133	2,2	1.100	29.11	5.74	87.5	4.2	21.89	8.05	٥.,
						1.000	29.05	5.69	86.7	4.8	21.95	8.08	2.6
						1.000	29.06	5.38	82.0	4.9	21.94	8.07	2.0
2012/7/14 9:52	W2	ME	832651	807971	12.5	6.250	28.50	4.88	74.5	3.7	23.76	7.96	4.8
2012/1/17 7.52	*** 2	IVIL	032031	007771	12.0	6.250	28.51	4.92	75.0	4.3	23.29	7.96	7.0
						11.500	25.78	5.16	78.8	3.2	32.51	7.46	3.7
						11.500	25.73	3.50	52.9	4.4	32.50	7.41	٥.,
						1.000	29.15	5.94	90.5	4.5	21.70	8.13	3.7
						1.000	29.17	5.27	80.4	4.5	21.71	8.12	٥.
2012/7/14 9:30	W3	ME	832049	807899	12.5	6.250	27.26	4.87	74.4	3.2	27.54	7.77	4.:
2012/1/14 9.30	W J	IVIL	032049	007099	12.3	6.250	27.00	5.15	78.7	3.9	27.87	7.67	4
						11.500	24.26	3.88	59.3	3.0	34.93	7.20	0 1
						11.500	24.98	3.46	52.8	3.3	33.87	7.20	8.
						1.000	29.05	4.50	68.5	5.4	21.91	8.19	0
						1.000	29.04	4.95	75.4	5.1	21.93	8.16	2.
2012/7/14 10 20	C1) III	022707	000100	10.6	6.800	27.03	4.67	72.9	6.7	27.77	7.70	_
2012/7/14 10:20	C1	ME	833724	808188	13.6	6.800	27.03	4.62	70.3	6.9	28.06	7.67	3.
						12.600	24.51	4.16	63.4	2.2	34.96	7.33	_
						12.600	23.71	4.01	61.0	2.6	35.57	7.22	3.
						1.000	29.19	5.20	79.7	7.8	21.89	8.06	
						1.000	29.18	4.66	71.3	7.7	21.92	8.13	4.
						6.150	28.67	4.26	65.2	6.7	23,59	8.03	
2012/7/14 9:50	C2	ME	831487	807749	12.3	6.150	28.61	3.85	58.9	6.4	23.77	7.98	3.
						11.300	25.36	3.63	55.5	5.5	32.85	7.40	
						11.300	25.34	3.50	53.5	5.6	32.80	7.35	4.
						1.000	29.10	6.41	97.8	6.6	21.91	8.06	
						1.000	29.10	5.91	90.1	6.4	21.91	8.08	7.
						6.850	26.32	5.25	80.1	4.5	29.93	7.56	
2012/7/14 10:45	C3	ME	808245	808852	13.7		27.00	5.50			28.24		4.
						6.850			83.9	4.2		7.63	
						12.700	23.84	4.23	63.5 63.9	2.8	35.46 34.48	7.25	4.
						12.700	24.09	4.18	03.9	2.8	34.40	7.28	
						1.300	29.32	5.74	87.2	3.2	22.56	7.76	_
2012/7/14 16:02	W1	MF	832973	807741	2.6	1.300	29.29	5.72	87.5	3.2	22.58	7.79	5.
						1.000	29.05	5.58	84.4	2.9	22.71	7.78	
						1.000	29.08	5.72	87.5	2.9	22.68	7.78	3.
						6.750	26.59	4.29	65.6	5.4	30.05	7.37	
2012/7/14 15:46	W2	MF	832676	807988	13.5	6.750	26.35	4.79	76.0	5.4	30.08	7.22	5.
						12.500	24.69	3.87	58.4	4.0	34.68	6.90	
						12.500	24.65	3.52	53.6	4.0	34.73	6.84	4.
						1.000	29.03	5.75	87.2		23.02		
								5.75	90.9	5.1		7.69 7.66	4.
						1.000	29.20 25.78	5.14	78.5	5.4 4.5	22.89 32.25	6.99	1
2012/7/14 15:25	W3	MF	832051	807886	13.3	6.650							3.
						6.650	25.73	5.16	78.6	4.3	32.18	6.87	-
						12.300	24.59	4.29	65.4	4.0	34.83	6.93	3.
						12.300	24.58	4.59	70.0	4.2	34.86	6.87	
						1.000	29.34	6.62	101.0	5.7	22.08	8.01	1.
						1.000	29.37	6.22	94.8	5.7	22.11	7.96	<u> </u>
	C1	MF	833691	808193	15.1	7.550	27.05	5.74	87.6	4.4	29.90	7.54	1.
2012/7/14 16:17	· · · ·		33377	000170		7.550	26.44	5.41	82.6	3.6	29.28	7.36	<u> </u>
2012/7/14 16:17						14.100	24.87	4.47	68.2	3.4	34.03	7.01	3.
2012/7/14 16:17						14.100	24.72	4.70	71.7	4.4	34.15	6.91	
2012/7/14 16:17							29.02	5.58	66.2	4.2	23.34	7.04	2.
2012/7/14 16:17						1.000		6.00	92.5	4.0	23.62	6.94	
2012/7/14 16:17						1.000	28.91	6.09					ı
	C	ME	831455	807761	13.1	1.000 6.550	25.93	5.09	77.9	2.7	32.35	7.09	1
2012/7/14 16:17	C2	MF	831455	807761	13.1	1.000 6.550 6.550	25.93 25.80	5.09 4.92	77.9 75.2	2.9	32.45	6.98	1.
	C2	MF	831455	807761	13.1	1.000 6.550	25.93	5.09					
	C2	MF	831455	807761	13.1	1.000 6.550 6.550	25.93 25.80	5.09 4.92	75.2	2.9	32.45	6.98	
	C2	MF	831455	807761	13.1	1.000 6.550 6.550 12.100	25.93 25.80 25.38	5.09 4.92 4.02	75.2 61.1	2.9 3.5	32.45 33.66	6.98 7.56	4.
	C2	MF	831455	807761	13.1	1.000 6.550 6.550 12.100 12.100	25.93 25.80 25.38 25.31	5.09 4.92 4.02 3.99	75.2 61.1 60.8	2.9 3.5 3.5	32.45 33.66 31.48	6.98 7.56 7.39	4.
2012/7/14 15:00						1.000 6.550 6.550 12.100 12.100 1.000	25.93 25.80 25.38 25.31 29.38	5.09 4.92 4.02 3.99 5.92	75.2 61.1 60.8 90.2	2.9 3.5 3.5 2.9	32.45 33.66 31.48 22.15	6.98 7.56 7.39 7.73	4.
	C2	MF	831455 832214	807761	13.1	1.000 6.550 6.550 12.100 12.100 1.000	25.93 25.80 25.38 25.31 29.38 29.39	5.09 4.92 4.02 3.99 5.92 5.94	75.2 61.1 60.8 90.2 90.6	2.9 3.5 3.5 2.9 2.9	32.45 33.66 31.48 22.15 22.12	6.98 7.56 7.39 7.73 7.77	1. 4. 0.
2012/7/14 15:00						1.000 6.550 6.550 12.100 12.100 1.000 1.000 7.650	25.93 25.80 25.38 25.31 29.38 29.39 26.80	5.09 4.92 4.02 3.99 5.92 5.94 5.28	75.2 61.1 60.8 90.2 90.6 79.7	2.9 3.5 3.5 2.9 2.9 3.7	32.45 33.66 31.48 22.15 22.12 30.93	6.98 7.56 7.39 7.73 7.77 7.38	4.

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 16-Jul-12

Date / Time	Location	Tide*	Co-oro	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11de.	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg/
2012/7/16 10:40	W1	ME	832977	807749	2.3	1.150	28.45	5.76	81.9	3.0	23.26	8.01	3.8
2012///10 10.40	VV 1	IVIL	032911	007749	2.3	1.150	28.44	5.92	84.4	3.0	23.33	8.04	5.0
						1.000	28.48	6.14	86.9	2.0	23.57	7.91	2.7
						1.000	28.49	5.98	85.0	2.0	23.56	7.96	2.1
2012/7/16 10:30	W2	ME	832688	807969	12.6	6.300	25.26	5.59	79.9	4.6	32.63	7.50	6.1
2012/1/10 10:50	112	IVIL	032000	001707	12.0	6.300	25.63	5.40	76.8	4.6	31.58	7.47	0.1
						11.600	24.39	5.05	72.3	3.0	34.24	7.35	2.3
						11.600	24.19	4.80	68.6	3.5	34.43	7.30	2.0
						1.000	28.46	5.63	79.8	6.2	23.46	7.88	3.5
						1.000	28.50	5.84	83.0	6.4	23.53	7.92	0.0
2012/7/16 10:15	W3	ME	832055	807911	12.5	6.250	26.86	5.09	72.2	6.1	28.98	7.65	1.6
2012///10 10:13	.,,		032033	00//11	1213	6.250	25.65	5.28	74.9	6.0	30.86	7.49	
						11.500	24.35	4.48	63.7	5.3	34.20	7.30	2.:
						11.500	24.28	4.17	59.1	5.1	34.24	7.26	۷.
						1.000	28.46	5.85	83.1	2.3	23.26	8.08	2.3
						1.000	28.46	5.68	80.6	3.3	23.30	8.09	۷.۱
2012/7/16 11:00	C1	ME	833684	808153	14.7	7.350	25.21	5.04	71.5	3.7	32.85	7.57	8.:
2012///10 11:00	C1	11111	055004	000133	1 T./	7.350	25.16	5.04	71.4	4.4	33.00	7.52	0
						13.700	23.17	4.38	61.9	4.5	35.42	7.34	2.
						13.700	22.91	4.36	61.7	4.3	35.62	7.29	۷.
·						1.000	28.51	5.71	82.2	7.4	22.94	7.92	1.
						1.000	28.48	5.79	82.5	7.4	23.07	7.94	1.
2012/7/16 10:00	C2	ME	831483	807732	12.3	6.150	25.05	5.16	73.3	6.8	32.89	7.45	2.
2012///10 10:00	CZ	ME	031403	001132	12.5	6.150	25.50	5.08	72.0	6.9	31.19	7.42	Ζ.
						11.300	24.60	4.22	59.8	6.4	33.82	7.32	2.
						11.300	24.26	4.05	57.3	6.0	34.25	7.26	Ζ.
						1.000	28.41	5.81	83.0	7.2	23.42	8.02	2
						1.000	28.45	5.85	83.6	7.0	23.36	8.06	3.
2012/7/1/ 11 20	G22		000004	000450		7.250	27.62	5.50	78.5	6.3	26.65	7.88	0
2012/7/16 11:20	C3	ME	832201	808153	14.5	7.250	27.29	5.28	75.3	4.8	27.25	7.82	3.
						13.500	24.04	4.35	61.9	5.1	34.64	7.41	
						13.500	23.38	4.18	59.4	5.0	35.32	7.35	3.
2012/7/16 17 10	7774) (E	0000000	007710	2.0	1.400	28.63	5.99	85.1	4.0	24.28	7.92	2
2012/7/16 17:40	W1	MF	832973	807712	2.8	1.400	28,66	5.76	81.6	4.6	24.24	7.96	3.
						1.000	28.58	6.04	85.8	4.0	24.10	8.03	
						1.000	28.58	5.99	85.0	4.3	23.98	8.02	6.
2012/7/1/17/20	****		000654	005050	40.5	6.750	27.14	4.88	68.9	4.1	29.01	7.64	
2012/7/16 17:30	W2	MF	832674	807959	13.5	6.750	27.10	4.91	69.4	3.8	28.98	7.61	3.
						12.500	25.56	4.06	57.4	3.1	33.82	7.37	
						12.500	25.38	3.93	55.5	3.3	34.04	7.28	3.
						1.000	29.11	5.69	80.0	4.7	24.56	7.81	
						1.000	28.92	5.86	82.4	4.9	24.73	7.82	3.
						6.650	26.89	4.85	68.6	4.5	29.69	7.33	
2012/7/16 17:15	W3	MF	832039	807912	13.3	6.650	26.63	4.60	64.9	4.6	30.11	7.28	2.
						12,300	23.95	4.14	58.7	2.1	35.36	7.78	
						12.300	23.94	4.22	60.1	2.2	35.37	7.76	3.
						1.000	28.73	6.06	85.9	4.6	24.14	8.01	
						1.000	28.73	6.11	86.8	2.8	24.14	8.01	2.
						7.800	26.82	5.15	73.1	3.5	29.26	7.55	
2012/7/16 18:00	C1	MF	833692	808149	15.6	7.800	27.12	4.96	70.2	4.0	28.90	7.59	3.
						14.600	25.36	4.90	57.5	2.8	33.97	7.34	
						14.600	25.27	4.08	60.6		34.00	7.29	2.
	1					1.000	29.13		80.0	2.8 3.4	24.72	7.29	-
						1.000	29.13	5.66 5.57	78.7	6.5	24.72	7.71	4.
													
2012/7/16 17:00	C2	MF	831454	807729	13.2	6.600	27.46	4.86	68.7	5.0	28.06	7.33	2.
						6.600	27.31	5.10	72.4	5.0	28.11	7.29	-
						12.200	25.19	4.37	62.0	6.2	33.35	6.86	4.
						12.200	25.14	4.11	58.2	6.0	33.38	6.79	
						1.000	28.62	5.31	75.1	3.0	24.11	7.92	3.
						1.000	28.58	5.43	76.8	2.3	24.15	7.96	
2012/7/16 18:20	C3	MF	832197	808884	15.8	7.900	26.48	5.13	72.9	3.0	30.31	7.55	4.
						7.900	26.58	5.15	73.3	3.8	30.23	7.53	<u> </u>
						14.800	25.40	4.33	61.5	3.1	33.87	7.34	2.9
					1	14.800	25.39	4.15	58.9	3.1	33.87	7.31	۷٠.

MF- Mid Flood Tide

Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

Date 18-Jul-12

Date / Time	Location	Tide*	Co-ore	dinates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11de*	East	North	m	m	င	mg/L	%	NTU	ppt	unit	mg
2012/7/18 11:40	W1	ME	832966	807745	2.2	1.100	27.90	6.41	93.4	1.5	23.72	8.39	4.7
2012///10 11.40	*** 1	IVIL	032700	007743	2.2	1.100	27.90	6.39	93.1	1.6	23.72	8.39	7.7
						1.000	28.00	6.61	96.3	1.2	23.68	8.38	7.7
						1.000	28.00	6.59	96.0	1.4	23.70	8.38	
2012/7/18 11:30	W2	ME	832650	807981	12.5	6.250	27.70	6.08	88.6	1.0	24.32	8.33	4.7
						6.250	27.70	6.09	88.7	1.1	24.32	8.33	
						11.500	23.20	5.00	70.1	1.3	33.87	7.99	8.9
						11.500	23.10	4.80	64.0	1.6	33.95	7.99	
						1.000	28.20	6.70	97.9	1.2	23.59	8.38	2.7
						1.000	28.20	6.70	97.9	1.1	23.60	8.38	
2012/7/18 11:15	W3	ME	832058	807895	12.4	6.200	27.30	5.52	80.8	1.1	26.63	8.27	7.5
						6.200	27.10	5.10	74.5	0.9	26.87	8.24	
						11.400	23.50	3.43	49.1	1.2	33.76	8.03	5.2
						11.400	23.40	3.37	48.0	1.2	33.86	7.99	J
						1.000	28.00	6.98	101.9	1.3	23.94	8.42	5.2
						1.000	28.00	7.01	102.4	1.7	23.95	8.41	
2012/7/18 12:00	C1	ME	833713	808164	13.2	6.600	26.80	4.92	71.8	1.8	27.88	8.19	5.0
						6.600	26.90	4.67	68.3	1.5	27.62	8.18	
						12.200	25.00	3.42	49.7	2.0	31.95	8.06	5.0
						12.200	24.90	3.71	53.7	2.2	32.07	8.02	J.
						1.000	28.30	7.55	110.6	1.2	23.85	8.36	3.0
						1.000	28.30	7.55	110.6	1.3	23.84	8.37	٥.,
2012/7/18 11:00	C2	ME	831481	807729	12.2	6.100	28.10	5.53	81.3	0.9	24.86	8.25	3.
2012///10 11.00	CZ	IVIL	031401	001129	12.2	6.100	28.10	5.50	80.9	0.8	24.87	8.24	٥.
						11.200	24.90	3.65	52.9	0.8	31.90	7.92	5.:
						11.200	24.90	3.59	52.1	0.8	31.93	7.91	٦.
						1.000	28.00	6.50	95.0	1.3	24.07	8.41	4.
						1.000	28.00	6.51	95.1	1.5	24.09	8.40	4.
2012/7/10 12 20	G2	ME	022240	000070	12.6	6.800	26.90	5.29	77.3	2.1	27.48	8.24	_
2012/7/18 12:20	C3	ME	832249	808870	13.6	6.800	26.90	5.10	74.5	1.9	27.53	8.23	5.
						12.600	24.40	3.48	50.2	2.6	32.67	8.05	7.
						12.600	24.00	3.78	54.2	2.0	32.98	8.02	7.
								4.00					
2012/7/18 17:40	W1	MF	832961	807738	2.8	1.400	28.20	6.39	91.8	1.6	20.52	8.41	5.
2012/11/10 17110		1111	032901	007730	2.0	1.400	28.10	6.51	95.4	1.8	24.16	8.42	٥.
						1.000	28.10	7.53	110.6	1.2	24.78	8.44	4.
						1.000	28.10	7.51	110.3	1.3	24.78	8.44	
2012/7/18 17:30	W2	MF	832658	807966	13.5	6.750	26.60	5.55	80.9	2.0	27.92	8.28	4.
2012///10 17.50	*** 2	1411	032030	007700	15.5	6.750	26.50	5.13	74.6	1.9	28.01	8.24	т.
						12.500	23.30	3.99	56.9	1.4	33.72	8.04	6.
						12.500	23.30	3.74	53.3	1.4	33.73	8.04	0.
						1.000	27.40	5.75	84.1	1.3	26.11	8.39	3.
						1.000	27.40	5.72	83.8	1.4	26.13	8.38	٥.
2012/7/18 17:15	W3	MF	832041	807899	13.5	6.750	26.00	3.95	57.6	1.2	29.88	8.22	5.
2012///10 17.13	C VV	IVIT	032041	00/099	13.3	6.750	25.90	3.59	52.3	1.2	29.94	8.19	٥.
					il .			3.67	52.9	1.1	31.66	8.09	4.
						12.500	24.70			1.2	31.66	8.09	4.
						12.500 12.500	24.70 24.70	3.47	50.2	1.2			4.
							24.70 28.00		50.2 101.2	1.2	28.87	8.41	4.
						12.500	24.70	3.47				8.41 8.41	
2012/7/10 10.00	C1	ME	932701	909100	15 /	12.500 1.000	24.70 28.00	3.47 6.75	101.2	1.2	28.87		
2012/7/18 18:00	C1	MF	833701	808199	15.4	12.500 1.000 1.000	24.70 28.00 28.00	3.47 6.75 6.89	101.2 101.4	1.2 1.4	28.87 25.52	8.41	
2012/7/18 18:00	C1	MF	833701	808199	15.4	12.500 1.000 1.000 7.700	24.70 28.00 28.00 26.00	3.47 6.75 6.89 5.25	101.2 101.4 70.5	1.2 1.4 2.0	28.87 25.52 14.97	8.41 8.14	5.
2012/7/18 18:00	C1	MF	833701	808199	15.4	12.500 1.000 1.000 7.700 7.700	24.70 28.00 28.00 26.00 25.90	3.47 6.75 6.89 5.25 4.81	101.2 101.4 70.5 62.6	1.2 1.4 2.0 2.1	28.87 25.52 14.97 10.16	8.41 8.14 8.14	5.
2012/7/18 18:00	C1	MF	833701	808199	15.4	12.500 1.000 1.000 7.700 7.700 14.400	24.70 28.00 28.00 26.00 25.90 24.40	3.47 6.75 6.89 5.25 4.81 3.92	101.2 101.4 70.5 62.6 56.7	1.2 1.4 2.0 2.1 2.9	28.87 25.52 14.97 10.16 32.62	8.41 8.14 8.14 7.99	5.
2012/7/18 18:00	Cl	MF	833701	808199	15.4	12.500 1.000 1.000 7.700 7.700 14.400 14.400	24.70 28.00 28.00 26.00 25.90 24.40 24.40	3.47 6.75 6.89 5.25 4.81 3.92 3.71	101.2 101.4 70.5 62.6 56.7 53.3	1.2 1.4 2.0 2.1 2.9 2.8	28.87 25.52 14.97 10.16 32.62 32.68	8.41 8.14 8.14 7.99 7.99	5.
						12.500 1.000 1.000 7.700 7.700 14.400 1.000	24.70 28.00 28.00 26.00 25.90 24.40 24.40 28.50	3.47 6.75 6.89 5.25 4.81 3.92 3.71 6.33	101.2 101.4 70.5 62.6 56.7 53.3 93.7 92.8	1.2 1.4 2.0 2.1 2.9 2.8 1.4	28.87 25.52 14.97 10.16 32.62 32.68 25.04 25.22	8.41 8.14 8.14 7.99 7.99 8.48 8.46	5. 4. 5.
2012/7/18 18:00 2012/7/18 17:00	C1 C2	MF	833701 831457	808199	15.4	12.500 1.000 1.000 7.700 7.700 14.400 1.000 1.000	24.70 28.00 28.00 26.00 25.90 24.40 24.40 28.50 28.40	3.47 6.75 6.89 5.25 4.81 3.92 3.71 6.33 6.27	101.2 101.4 70.5 62.6 56.7 53.3 93.7 92.8 66.0	1.2 1.4 2.0 2.1 2.9 2.8 1.4 1.3	28.87 25.52 14.97 10.16 32.62 32.68 25.04	8.41 8.14 8.14 7.99 7.99 8.48	5. 4. 5.
						12.500 1.000 1.000 7.700 7.700 14.400 1.000 1.000 6.600 6.600	24.70 28.00 28.00 26.00 25.90 24.40 24.40 28.50 28.40 25.40	3.47 6.75 6.89 5.25 4.81 3.92 3.71 6.33 6.27 4.54	101.2 101.4 70.5 62.6 56.7 53.3 93.7 92.8 66.0 63.8	1.2 1.4 2.0 2.1 2.9 2.8 1.4 1.3	28.87 25.52 14.97 10.16 32.62 32.68 25.04 25.22 30.86 30.95	8.41 8.14 8.14 7.99 7.99 8.48 8.46 8.21 8.17	5. 4. 5.
						12.500 1.000 1.000 7.700 7.700 14.400 1.000 1.000 6.600 6.600 12.200	24.70 28.00 28.00 26.00 25.90 24.40 24.40 28.50 28.40 25.40 25.30 24.60	3.47 6.75 6.89 5.25 4.81 3.92 3.71 6.33 6.27 4.54 4.40 3.61	101.2 101.4 70.5 62.6 56.7 53.3 93.7 92.8 66.0 63.8 51.5	1.2 1.4 2.0 2.1 2.9 2.8 1.4 1.3 1.1 1.0 0.9	28.87 25.52 14.97 10.16 32.62 32.68 25.04 25.22 30.86 30.95 31.69	8.41 8.14 8.14 7.99 7.99 8.48 8.46 8.21 8.17	5. 4. 5.
						12.500 1.000 1.000 7.700 7.700 14.400 1.000 1.000 6.600 6.600 12.200 12.200	24.70 28.00 28.00 26.00 25.90 24.40 24.40 28.50 28.40 25.40 25.30 24.60	3.47 6.75 6.89 5.25 4.81 3.92 3.71 6.33 6.27 4.54 4.40 3.61 3.43	101.2 101.4 70.5 62.6 56.7 53.3 93.7 92.8 66.0 63.8 51.5 49.4	1.2 1.4 2.0 2.1 2.9 2.8 1.4 1.3 1.1 1.0 0.9 1.1	28.87 25.52 14.97 10.16 32.62 32.68 25.04 25.04 25.22 30.86 30.95 31.69	8.41 8.14 8.14 7.99 7.99 8.48 8.46 8.21 8.17 8.12 8.09	5. 4. 5. 4. 7.
						12.500 1.000 1.000 7.700 7.700 14.400 1.000 1.000 6.600 6.600 12.200 1.000	24.70 28.00 28.00 26.00 25.90 24.40 24.40 28.50 28.40 25.30 24.60 24.60 28.10	3.47 6.75 6.89 5.25 4.81 3.92 3.71 6.33 6.27 4.54 4.40 3.61 3.43 6.42	101.2 101.4 70.5 62.6 56.7 53.3 93.7 92.8 66.0 63.8 51.5 49.4	1.2 1.4 2.0 2.1 2.9 2.8 1.4 1.3 1.1 1.0 0.9 1.1	28.87 25.52 14.97 10.16 32.62 32.68 25.04 25.22 30.86 30.95 31.69 24.86	8.41 8.14 8.14 7.99 7.99 8.48 8.46 8.21 8.17 8.12 8.09 8.41	5. 4. 5. 4. 7.
2012/7/18 17:00	C2	MF	831457	807763	13.2	12.500 1.000 1.000 7.700 7.700 14.400 1.000 1.000 6.600 6.600 12.200 1.000 1.000	24.70 28.00 28.00 25.90 24.40 24.40 28.50 28.40 25.30 24.60 28.10 28.10	3.47 6.75 6.89 5.25 4.81 3.92 3.71 6.33 6.27 4.54 4.40 3.61 3.43 6.42 6.61	101.2 101.4 70.5 62.6 56.7 53.3 93.7 92.8 66.0 63.8 51.5 49.4 97.1	1.2 1.4 2.0 2.1 2.9 2.8 1.4 1.3 1.1 1.0 0.9 1.1 1.5	28.87 25.52 14.97 10.16 32.62 32.68 25.04 25.22 30.86 30.95 31.69 31.69 24.86 24.90	8.41 8.14 8.14 7.99 7.99 8.48 8.46 8.21 8.17 8.12 8.09 8.41 8.42	5 4 5 4 7 5
						12.500 1.000 1.000 7.700 7.700 14.400 1.000 1.000 6.600 6.600 12.200 1.000 1.000 1.000 7.850	24.70 28.00 28.00 26.00 25.90 24.40 28.50 28.40 25.30 24.60 24.60 28.10 28.10 28.10	3.47 6.75 6.89 5.25 4.81 3.92 3.71 6.33 6.27 4.54 4.40 3.61 3.61 3.61 6.42 6.61 5.63	101.2 101.4 70.5 62.6 56.7 53.3 93.7 92.8 66.0 63.8 51.5 49.4 97.1 82.3	1.2 1.4 2.0 2.1 2.9 2.8 1.4 1.3 1.1 1.0 0.9 1.1 1.5 1.6 2.1	28.87 25.52 14.97 10.16 32.62 32.68 25.04 25.22 30.86 30.95 31.69 24.86 24.90 27.15	8.41 8.14 8.14 7.99 7.99 8.48 8.46 8.21 8.17 8.12 8.09 8.41 8.42 8.27	5 4 5 4 7 5 6
2012/7/18 17:00	C2	MF	831457	807763	13.2	12.500 1.000 1.000 7.700 7.700 14.400 1.000 1.000 6.600 6.600 12.200 1.000 1.000	24.70 28.00 28.00 25.90 24.40 24.40 28.50 28.40 25.30 24.60 28.10 28.10	3.47 6.75 6.89 5.25 4.81 3.92 3.71 6.33 6.27 4.54 4.40 3.61 3.43 6.42 6.61	101.2 101.4 70.5 62.6 56.7 53.3 93.7 92.8 66.0 63.8 51.5 49.4 97.1	1.2 1.4 2.0 2.1 2.9 2.8 1.4 1.3 1.1 1.0 0.9 1.1 1.5	28.87 25.52 14.97 10.16 32.62 32.68 25.04 25.22 30.86 30.95 31.69 31.69 24.86 24.90	8.41 8.14 8.14 7.99 7.99 8.48 8.46 8.21 8.17 8.12 8.09 8.41 8.42	5 4 5 4 7 5

MF- Mid Flood Tide

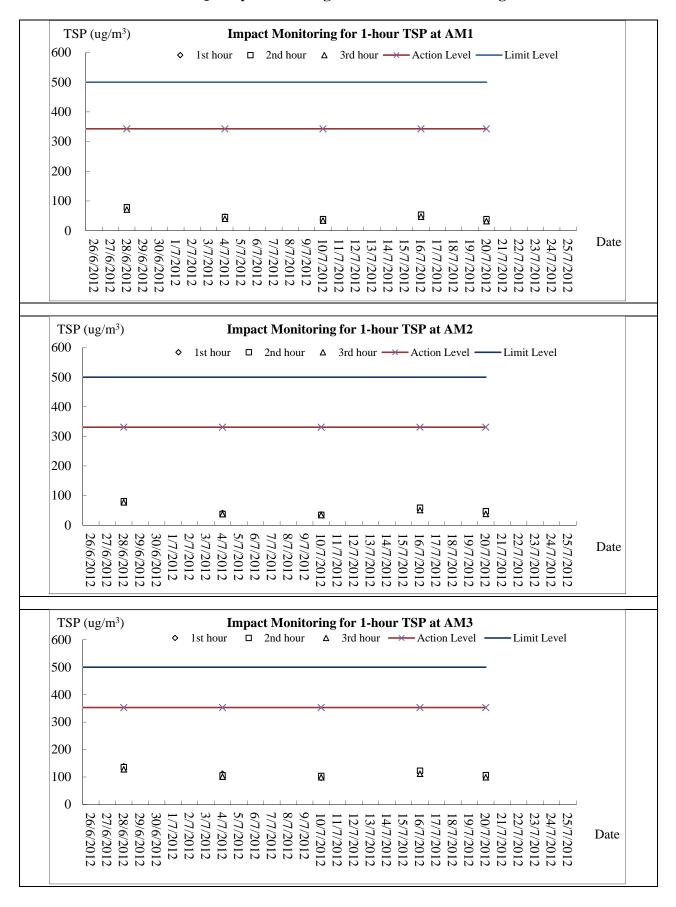
Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan

20-Jul-12 Date

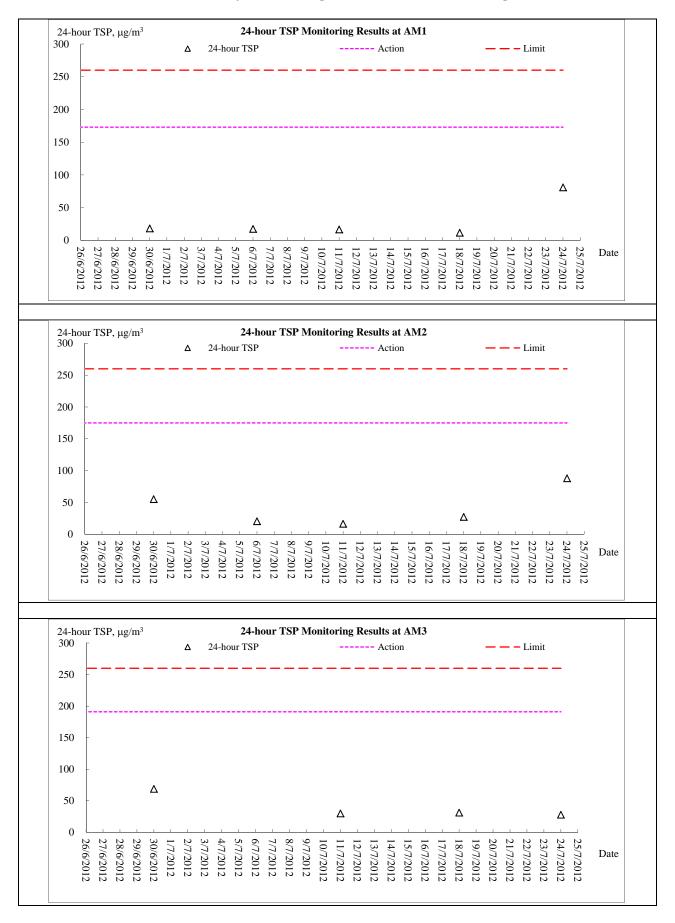
Date / Time	Location	Tide*	Co-oro	linates	Water Depth	Sampling Depth	Temp	DO Conc	DO Saturation	Turbidity	Salinity	pН	SS
Date / Time	Location	11de+	East	North	m	m	ဗ	mg/L	%	NTU	ppt	unit	mg
2012/7/20 12:55	W1	ME	832965	807737	2.2	1.100	27.50	6.29	93.0	1.7	27.92	8.38	3.2
2012/1/20 12:33	,,,,	THE	032703	007757	2.2	1.100	27.50	6.38	94.5	1.7	27.89	8.38	3.2
						1.000	27.70	8.30	105.5	1.6	27.50	8.42	2.6
						1.000	27.70	8.23	104.6	1.5	27.60	8.41	2.0
2012/7/20 12 45	2210	ME	022654	007000	10.5	6.250	26.20	5.16	63.9	1.5	30.20	8.26	2.0
2012/7/20 12:45	W2	ME	832654	807980	12.5	6.250	26.20	4.78	59.1	1.6	30.20	8.26	2.8
						11.500	25.10	3.94	47.8	1.5	32.60	8.17	
						11.500	24.30	3.66	43.7	1.8	32.65	8.13	2.8
						1.000	28.20	6.10	90.6	1.6	27.28	8.24	
													2.1
						1.000	28.10	6.01	89.0	1.6	27.73	8.24	
2012/7/20 12:30	W3	ME	832049	807899	12.3	6.150	26.40	4.20	61.8	1.9	30.47	8.18	2.
2012/1/20 12:30	,,,,	11111	032017	00/0//	12.3	6.150	25.80	4.16	61.0	1.8	31.02	8.15	2.
						11.300	25.00	3.50	50.9	1.6	32.17	8.13	-
						11.300	24.80	3.69	53.4	1.7	32.46	8.10	5.:
						1.000	27.10	6.45	95.2	1.5	28.62	8.54	
						1.000	27.10	6.26	92.5	1.5	28.70	8.50	7.
						6.900	26.80	6.13	90.4	2.0	29.29	8.42	
2012/7/20 13:15	C1	ME	833712	808196	13.8	6.900	26.50	5.41	79.6	2.0	29.52	8.38	4.
													-
						12.800	26.10	4.80	70.4	1.8	30.50	8.31	2.
	_					12.800	25.70	4.28	62.6	1.8	31.26	8.28	
						1.000	28.00	5.35	80.8	1.6	30.26	8.33	3.
						1.000	27.90	5.26	78.9	1.5	29.20	8.31	<u> </u>
2012/7/20 12 17	C22	ME	021.450	007700	10.1	6.050	25.20	4.16	60.6	1.6	32.10	8.18	
2012/7/20 12:15	C2	ME	831459	807732	12.1	6.050	25.00	3.99	58.0	1.6	32.34	8.16	2.
						11.100	24.20	3.60	52.0	1.8	33.06	8.10	
						11.100	24.20	3.16	45.4	1.7	33.05	8.07	7.
	+												
						1.000	26.90	5.91	87.0	1.3	28.76	8.36	3.:
						1.000	26.90	5.85	86.2	1.4	29.02	8.36	
2012/7/20 13:35	C3	ME	832242	808874	14.1	7.050	26.20	5.64	76.0	1.2	30.65	8.27	1.5
2012/1/20 15.55	CS	IVIL	032242	000074	14.1	7.050	25.80	4.29	62.5	1.4	30.24	8.24	1.
						13.100	24.60	3.73	53.7	1.7	32.07	8.20	
						13.100	23,90	3.69	52.8	1.6	32.77	8.16	1.5
						1.350	25.70	6.16	90.20	1.8	30.91	8.19	
2012/7/20 8:40	W1	MF	832971	807741	2.7		25.70			1.6	31.20	8.19	1.:
						1.350		5.91	87.10				
						1.000	27.40	6.25	92.00	1.7	27.42	8.43	2.:
						1.000	27.30	6.02	88.60	1.7	27.59	8.41	
2012/7/20 8:30	W2	MF	832683	807972	13.5	6.750	25.30	3.93	52.40	1.7	30.20	8.14	3.
2012/1/20 6.30	VV Z	IVII	632063	001912	13.3	6.750	24.80	3.91	52.60	1.8	30.60	8.15	٥
						12.500	24.60	3.84	48.90	1.7	32.60	8.15	
						12.500	24.60	3.67	49.95	1.8	31.54	8.15	1.
						1.000	27.80	6.90	103.70	1.9	29.99	8.47	
									99.70				1.
						1.000	27.70	6.69		1.8	28.61	8.41	
2012/7/20 8:15	W3	MF	832037	807889	13.5	6.750	26.90	5.76	84.50	1.8	28.22	8.25	1.
	1					6.750	26.90	5.71	83.80	1.9	28.25	8.25	
								3.95	57.12	1.8	31.49	8.08	1.
						12.500	24.90			1.9	32.06	8.07	1.
						12.500 12.500	24.90 24.90	3.99	57.90	1./			
									57.90 80.36	1.5	28.85	8.24	- 1
						12.500	24.90	3.99				8.24 8.23	1.
						12.500 1.000 1.000	24.90 26.50 26.40	3.99 5.49 5.19	80.36 75.88	1.5 1.6	28.85 29.21	8.23	
2012/7/20 9:00	C1	MF	833730	808152	15.4	12.500 1.000 1.000 7.700	24.90 26.50 26.40 25.20	3.99 5.49 5.19 4.14	80.36 75.88 60.30	1.5 1.6 1.3	28.85 29.21 31.78	8.23 8.16	
	C1	MF	833730	808152	15.4	12.500 1.000 1.000 7.700 7.700	24.90 26.50 26.40 25.20 25.10	3.99 5.49 5.19 4.14 3.89	80.36 75.88 60.30 55.20	1.5 1.6 1.3 1.4	28.85 29.21 31.78 28.37	8.23 8.16 8.16	0.
	C1	MF	833730	808152	15.4	12.500 1.000 1.000 7.700 7.700 14.400	24.90 26.50 26.40 25.20 25.10 24.30	3.99 5.49 5.19 4.14 3.89 3.78	80.36 75.88 60.30 55.20 53.46	1.5 1.6 1.3 1.4 1.1	28.85 29.21 31.78 28.37 29.64	8.23 8.16 8.16 8.13	0.
	C1	MF	833730	808152	15.4	12.500 1.000 1.000 7.700 7.700 14.400 14.400	24.90 26.50 26.40 25.20 25.10 24.30 24.30	3.99 5.49 5.19 4.14 3.89 3.78 3.45	80.36 75.88 60.30 55.20 53.46 49.45	1.5 1.6 1.3 1.4 1.1	28.85 29.21 31.78 28.37 29.64 32.13	8.23 8.16 8.16 8.13 8.12	0.
	Cl	MF	833730	808152	15.4	12.500 1.000 1.000 7.700 7.700 14.400 1.000	24.90 26.50 26.40 25.20 25.10 24.30 24.30 27.60	3.99 5.49 5.19 4.14 3.89 3.78 3.45 6.96	80.36 75.88 60.30 55.20 53.46 49.45 88.29	1.5 1.6 1.3 1.4 1.1 1.1	28.85 29.21 31.78 28.37 29.64 32.13 28.90	8.23 8.16 8.16 8.13 8.12 8.30	0.
	C1	MF	833730	808152	15.4	12.500 1.000 1.000 7.700 7.700 14.400 14.400	24.90 26.50 26.40 25.20 25.10 24.30 27.60 27.50	3.99 5.49 5.19 4.14 3.89 3.78 3.45 6.96 6.86	80.36 75.88 60.30 55.20 53.46 49.45 88.29 86.85	1.5 1.6 1.3 1.4 1.1	28.85 29.21 31.78 28.37 29.64 32.13 28.90 28.46	8.23 8.16 8.16 8.13 8.12	0.
2012/7/20 9:00						12.500 1.000 1.000 7.700 7.700 14.400 1.000	24.90 26.50 26.40 25.20 25.10 24.30 24.30 27.60	3.99 5.49 5.19 4.14 3.89 3.78 3.45 6.96	80.36 75.88 60.30 55.20 53.46 49.45 88.29	1.5 1.6 1.3 1.4 1.1 1.1	28.85 29.21 31.78 28.37 29.64 32.13 28.90	8.23 8.16 8.16 8.13 8.12 8.30	0.
	C1 C2	MF	833730 831476	808152	15.4	12.500 1.000 1.000 7.700 7.700 14.400 1.000 1.000	24.90 26.50 26.40 25.20 25.10 24.30 27.60 27.50	3.99 5.49 5.19 4.14 3.89 3.78 3.45 6.96 6.86	80.36 75.88 60.30 55.20 53.46 49.45 88.29 86.85	1.5 1.6 1.3 1.4 1.1 1.1 1.7	28.85 29.21 31.78 28.37 29.64 32.13 28.90 28.46	8.23 8.16 8.16 8.13 8.12 8.30 8.29	0.
2012/7/20 9:00						12.500 1.000 1.000 7.700 7.700 14.400 1.000 1.000 6.600 6.600	24.90 26.50 26.40 25.20 25.10 24.30 24.30 27.60 27.50 25.00 24.70	3.99 5.49 5.19 4.14 3.89 3.78 3.45 6.96 6.86 5.09 3.90	80.36 75.88 60.30 55.20 53.46 49.45 88.29 86.85 73.80 56.40	1.5 1.6 1.3 1.4 1.1 1.1 1.7 1.9 1.0	28.85 29.21 31.78 28.37 29.64 32.13 28.90 28.46 31.96 32.43	8.23 8.16 8.16 8.13 8.12 8.30 8.29 8.11 8.06	0. 0. 0.
2012/7/20 9:00						12.500 1.000 1.000 7.700 7.700 14.400 1.000 1.000 6.600 6.600 12.200	24.90 26.50 26.40 25.20 25.10 24.30 27.60 27.50 25.00 24.70 24.20	3.99 5.49 5.19 4.14 3.89 3.78 3.45 6.96 6.86 5.09 3.90 4.16	80.36 75.88 60.30 55.20 53.46 49.45 88.29 86.85 73.80 56.40 59.62	1.5 1.6 1.3 1.4 1.1 1.1 1.7 1.9 1.0 1.2	28.85 29.21 31.78 28.37 29.64 32.13 28.90 28.46 31.96 32.43 32.56	8.23 8.16 8.16 8.13 8.12 8.30 8.29 8.11 8.06 8.01	0. 0. 0.
2012/7/20 9:00						12.500 1.000 1.000 7.700 7.700 14.400 1.000 1.000 6.600 6.600 12.200 12.200	24.90 26.50 26.40 25.20 25.10 24.30 27.60 27.50 25.00 24.70 24.20	3.99 5.49 5.19 4.14 3.89 3.78 3.45 6.96 6.86 5.09 3.90 4.16 4.05	80.36 75.88 60.30 55.20 53.46 49.45 88.29 86.85 73.80 56.40 59.62 58.42	1.5 1.6 1.3 1.4 1.1 1.1 1.7 1.9 1.0 1.2 1.2	28.85 29.21 31.78 28.37 29.64 32.13 28.90 28.46 31.96 32.43 32.56 33.29	8.23 8.16 8.16 8.13 8.12 8.30 8.29 8.11 8.06 8.01	0.9
2012/7/20 9:00						12.500 1.000 1.000 7.700 7.700 14.400 1.000 1.000 6.600 6.600 12.200 1.000	24.90 26.50 26.40 25.20 25.10 24.30 24.30 27.60 27.50 24.70 24.20 24.20 27.20	3.99 5.49 5.19 4.14 3.78 3.45 6.96 6.86 5.09 3.90 4.16 4.05	80.36 75.88 60.30 55.20 53.46 49.45 88.29 86.85 73.80 56.40 59.62 58.42 68.60	1.5 1.6 1.3 1.4 1.1 1.7 1.9 1.0 1.2 1.4 1.7	28.85 29.21 31.78 28.37 29.64 32.13 28.90 28.46 31.96 32.43 32.56 33.29 27.86	8.23 8.16 8.16 8.13 8.12 8.30 8.29 8.11 8.06 8.01 8.00 8.28	0.9 0.9 0.1 2.1
2012/7/20 9:00						12.500 1.000 1.000 7.700 7.700 14.400 1.000 1.000 6.600 6.600 12.200 1.000 1.000	24.90 26.50 26.40 25.20 25.10 24.30 27.50 25.00 27.50 24.70 24.20 27.20 27.20	3.99 5.49 5.19 4.14 3.89 3.78 3.45 6.96 6.86 5.09 3.90 4.16 4.05 4.66 4.59	80.36 75.88 60.30 55.20 53.46 49.45 88.29 86.85 73.80 56.40 59.62 58.42 68.60 67.50	1.5 1.6 1.3 1.4 1.1 1.7 1.9 1.0 1.2 1.2 1.4 1.7	28.85 29.21 31.78 28.37 29.64 32.13 28.90 28.46 31.96 32.43 32.56 33.29 27.86 27.89	8.23 8.16 8.16 8.13 8.12 8.30 8.29 8.11 8.06 8.01 8.00 8.28 8.28	0.9 0.9 0.1 2.1
2012/7/20 9:00 2012/7/20 8:00	C2	MF	831476	807774	13.2	12.500 1.000 1.000 7.700 7.700 14.400 1.000 1.000 6.600 6.600 12.200 1.000 1.000 1.000 7.800	24.90 26.50 26.40 25.20 25.10 24.30 27.60 27.50 24.70 24.20 24.20 27.20 27.20 25.40	3.99 5.49 5.19 4.14 3.89 3.78 3.45 6.96 6.86 5.09 3.90 4.16 4.05 4.66 4.59 4.41	80.36 75.88 60.30 55.20 53.46 49.45 88.29 86.85 73.80 56.40 59.62 58.42 68.60 67.50 63.00	1.5 1.6 1.3 1.4 1.1 1.7 1.9 1.0 1.2 1.4 1.7	28.85 29.21 31.78 28.37 29.64 32.13 28.90 28.46 31.96 32.43 32.56 33.29 27.86 27.89 27.59	8.23 8.16 8.16 8.13 8.29 8.11 8.06 8.01 8.00 8.28 8.28 8.28	0.5 0.9 0.1 2.1 1.4
2012/7/20 9:00						12.500 1.000 1.000 7.700 7.700 14.400 1.000 1.000 6.600 6.600 12.200 1.000 1.000	24.90 26.50 26.40 25.20 25.10 24.30 27.50 25.00 27.50 24.70 24.20 27.20 27.20	3.99 5.49 5.19 4.14 3.89 3.78 3.45 6.96 6.86 5.09 3.90 4.16 4.05 4.66 4.59	80.36 75.88 60.30 55.20 53.46 49.45 88.29 86.85 73.80 56.40 59.62 58.42 68.60 67.50	1.5 1.6 1.3 1.4 1.1 1.7 1.9 1.0 1.2 1.2 1.4 1.7	28.85 29.21 31.78 28.37 29.64 32.13 28.90 28.46 31.96 32.43 32.56 33.29 27.86 27.89	8.23 8.16 8.16 8.13 8.12 8.30 8.29 8.11 8.06 8.01 8.00 8.28 8.28	0.5 0.9 0.1 2.1 1.4
2012/7/20 9:00 2012/7/20 8:00	C2	MF	831476	807774	13.2	12.500 1.000 1.000 7.700 7.700 14.400 1.000 1.000 6.600 6.600 12.200 1.000 1.000 1.000 7.800	24.90 26.50 26.40 25.20 25.10 24.30 27.60 27.50 24.70 24.20 24.20 27.20 27.20 25.40	3.99 5.49 5.19 4.14 3.89 3.78 3.45 6.96 6.86 5.09 3.90 4.16 4.05 4.66 4.59 4.41	80.36 75.88 60.30 55.20 53.46 49.45 88.29 86.85 73.80 56.40 59.62 58.42 68.60 67.50 63.00	1.5 1.6 1.3 1.4 1.1 1.7 1.9 1.0 1.2 1.2 1.4 1.7 1.9	28.85 29.21 31.78 28.37 29.64 32.13 28.90 28.46 31.96 32.43 32.56 33.29 27.86 27.89 27.59	8.23 8.16 8.16 8.13 8.29 8.11 8.06 8.01 8.00 8.28 8.28 8.28	1.6 0.5 0.9 0.5 2.5 1.4 3.2 0.7

MF- Mid Flood Tide

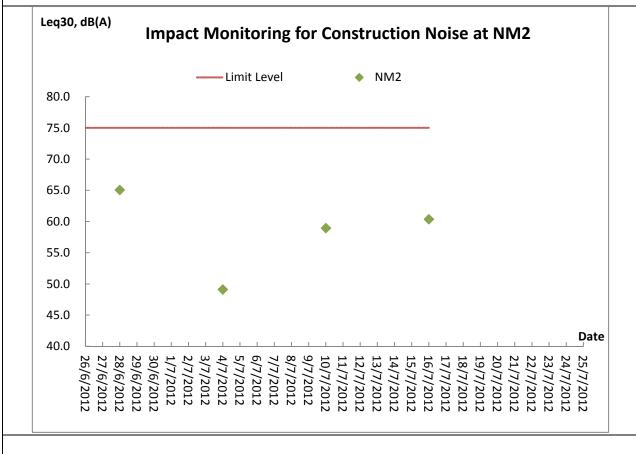


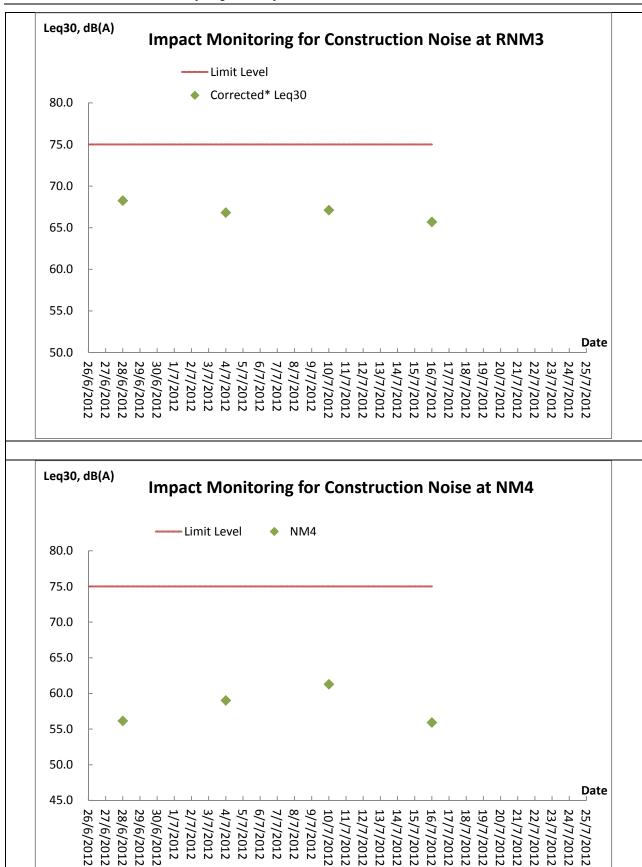
Appendix H

Graphical Plots of Monitoring Results

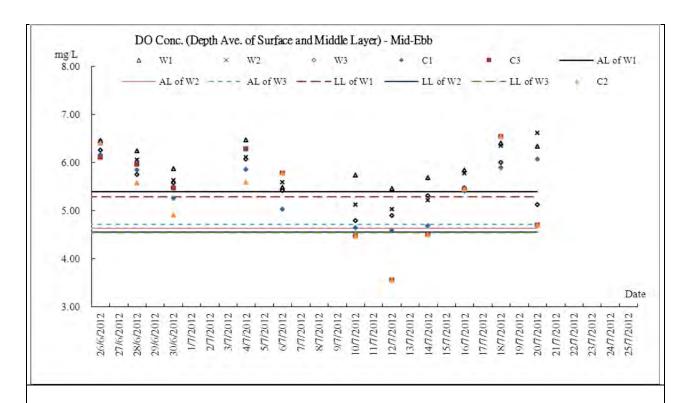


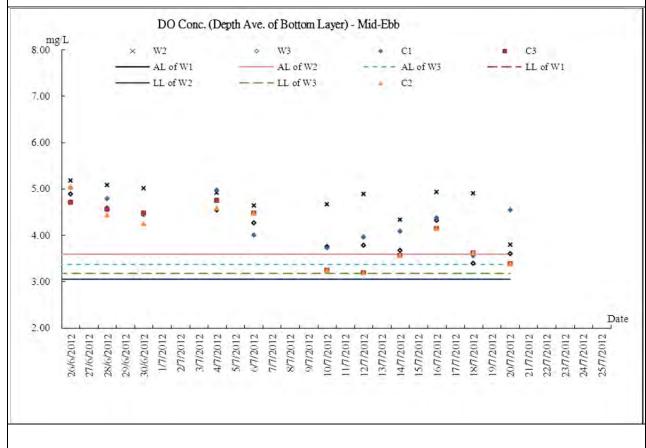
Air Quality Monitoring - 1 hour TSP Monitoring

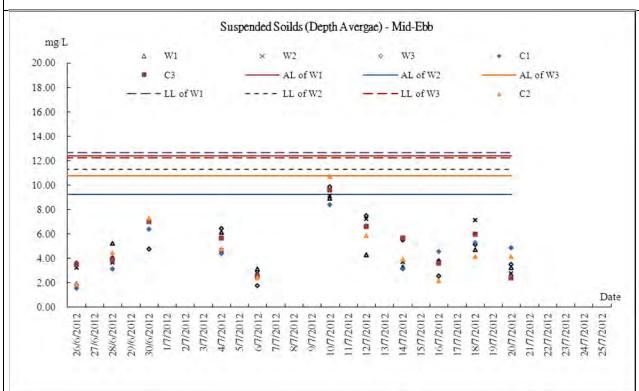

Air Quality Monitoring – 24 hour TSP Monitoring

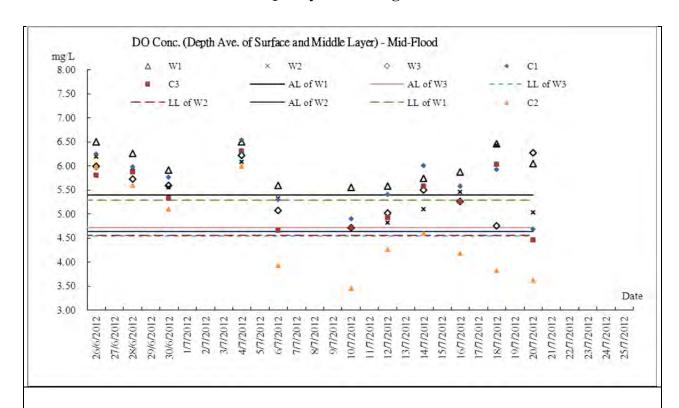


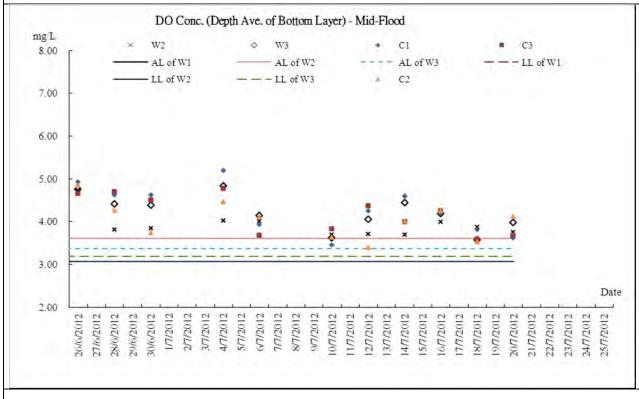
Construction Noise Monitoring

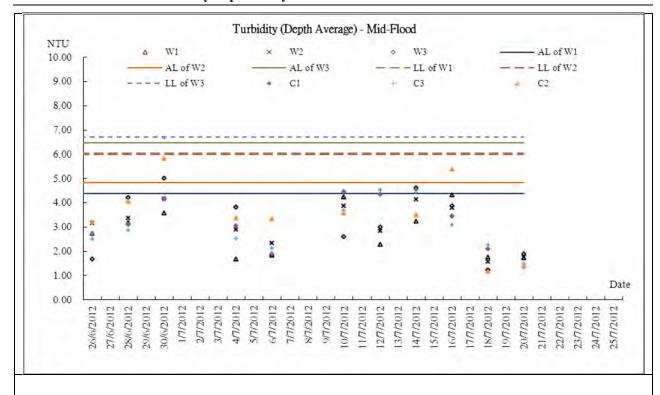


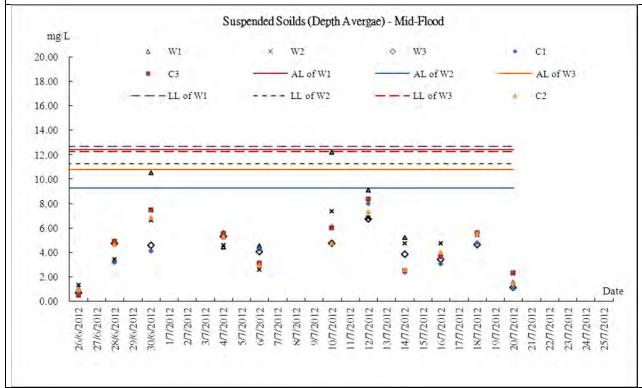



Marine Water Quality Monitoring - Mid-Ebb Tide








Marine Water Quality Monitoring - Mid-Flood Tide

Appendix I

Meteorological Information

Meteorological Data Extracted from HKO during the Reporting Period

Date		Weather
26-Jun-12	Tue	Moderate west to northwesterly winds.
27-Jun-12	Wed	Very hot in the afternoon.
28-Jun-12	Thu	Mainly fine and hot
29-Jun-12	Fri	Tropical Storm
30-Jun-12	Sat	Tropical Storm
1-Jul-12	Sun	HOLIDAY
2-Jul-12	Mon	HOLIDAY
3-Jul-12	Tue	Moderate southwesterly winds.
4-Jul-12	Wed	Mainly fine.
5-Jul-12	Thu	Very hot in the afternoon.
6-Jul-12	Fri	Moderate south to southwesterly winds.
7-Jul-12	Sat	Very hot during the day
8-Jul-12	Sun	Mainly fine.
9-Jul-12	Mon	Mainly fine and very hot
10-Jul-12	Tue	Fine and very hot apart from one or two isolated showers at first.
11-Jul-12	Wed	Very hot in the afternoon.
12-Jul-12	Thu	Mainly cloudy with a few showers.
13-Jul-12	Fri	Hot with sunny intervals
14-Jul-12	Sat	Moderate southwesterly winds, fresh offshore.
15-Jul-12	Sun	Mainly fine and very hot.
16-Jul-12	Mon	Mainly fine and very hot.
17-Jul-12	Tue	Moderate south to southwesterly winds.
18-Jul-12	Wed	Sunny periods in the afternoon.
19-Jul-12	Thu	Mainly cloudy with a few showers.
20-Jul-12	Fri	Mainly fine and very hot.
21-Jul-12	Sat	The Strong Wind Signal, No. 1
22-Jul-12	Sun	The Strong Wind Signal, No. 1
23-Jul-12	Mon	The Strong Wind Signal, No. 3
24-Jul-12	Tue	The Strong Wind Signal, No. 3 and 8
25-Jul-12	Wed	Moderate east to southeasterly winds.

Appendix J

Monthly Summary Waste Flow Table

Monthly Summary Waste Flow Table for July 2012

			Actu	ıal Quant	ities of In	nert C&D	Material	s Genera	ted Mont	hly				A	ctual Qu	antities	of C&D	Wastes	Generate	ed Montl	nly	
Month		Quantity erated +(d)+(e)	Large 1	crete	Reusec Con	tract	Reused Proj	ects	Dispo Publi (6	c Fill	Import (i	_	Me	tals	Pap cardb packa	oard	Plas	stics	Chemical Waste		Oth e.g. ru	
	(in '0	00m^3)	(in '00	00m ³)	(in '00	$00m^3$)	(in '00	00m ³)	(in '00	00m ³)	(in '00	00m ³)	(in '00	00kg)	(in '00	00kg)	(in '0	00kg)	(in '00	00kg)	(in to	onne)
	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW	YSW	SKW
2011	10.430	33.543	0.160	0.407	0.740	1.059	0.000	0.000	9.690	32.484	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	206.870	46.690
Jan	0.000	3.311	0.000	0.000	0.000	0.000	0.000	0.000	0.000	3.311	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	22.530	5.090
Feb	0.170	6.271	0.000	0.000	0.000	0.000	0.000	0.000	0.170	6.271	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	14.860	5.660
Mar	0.619	4.543	0.000	0.000	0.000	0.000	0.000	0.000	0.619	4.543	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	6.940	9.500
Apr	0.157	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.157	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	9.520	1.700
May	0.353	0.916	0.000	0.000	0.000	0.000	0.000	0.000	0.353	0.916	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	6.750	5.090
Jun	0.091	0.000	0.000	0.003	0.000	0.000	0.000	0.000	0.091	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	26.710	6.400
<mark>Sub-total</mark>	11.820	48.585	0.160	0.410	0.740	1.059	0.000	0.000	11.080	47.526	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	294.180	80.130
Jul	0.248	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.248	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	15.610	2.960
Aug																						
Sep																						
Oct																						
Nov																						
Dec																						
Total	12.068	48.585	0.160	0.410	0.740	1.059	0.000	0.000	11.328	47.526	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	309.790	83.090
Total	60.0	652	0.5	69	1.7	99	0.0	00	58.8	354	0.0	00	0.0	00	0.0	00	0.0	00	0.0	00	392.	880

Remark: Assume 1.0 m^3 vehicle dump load = 1.6 tonnes C&D materials

YSW: Yung Shue Wan

SKW: Sok Kwu Wan

Appendix K

Weekly Site Inspection Checklist

Environmental Team – Weekly Site Inspection and Audit Checklist – Sok Kwu Wan

AUES

Pro	ject:	TCS/00512/09		Inspect	ed by		Ch	ecklist N	10. TC\$512B-7606212
		Construction of Sewage Treatm	ent Works at	ETL/ ET	's Repres	entative:		1/7	esto Has
		Yung Shue Wan and Sok Kwu W	/an		presentat	iive: resentativ		را	Seph Ng.
		,			epresenta		e:	\- (divin Celung
Date	e:	26 June 2012		Time:	·			4	420U.
PA	RT A:		RAL INFORMATION				Env	ironmen	tal Permit No.
	eather: nperature:	Sunny Fine	Cloudy F	Rainy			✓ EP-2	81/2007	\
	midity:	High Moderate	Low						
Wi	nd:	Strong Breeze	Light C	Calm					
Area 1	a Inspec Sok F	ted (wu Wan							
							•	·	
PAR	TB:		SITE AUDIT	- .				·- ·-	
Note	: Not Ot Follow	os.: Not Observed; Yes: Compliance; No: Non r Up: Observations requiring follow-Up actions	-Compliance; N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Sect	ion 1: W	ater Quality			~				
1.01	Is an e	effluent discharge license obtained for th	e Project?						
1.02	ls the	effluent discharged in accordance with th	ne discharge licence?						
1.03	Is the	discharge of turbid water avoided?							
1.04	Are th	nere proper desilting facilities in the o SS levels in effluent?	Irainage systems to						
1.05		ere channels, sandbags or bunds to dire entation tanks?	ect surface run-off to						
1.06		ere any perimeter channels provided a ept storm runoff from crossing the site?	at site boundaries to						
1.07	ls drai	nage system well maintained?							
1.08	As exc crushe	cavation proceeds, are temporary accesed stone or gravel?	s roads protected by						
1.09		mporary exposed slopes properly covere	d?		ď				
1.10	Are ea	rthworks final surfaces well compacted o	or protected?						
1.11	Are ma	anholes adequately covered or temporar	ily sealed?						
1.12	Are the	ere any procedures and equipment for ra	instorm protection?		Ø				
1.13	Are wh	eel washing facilities well maintained?							
1.14	ls runo	ff from wheel washing facilities avoided?			ď				
1.15	Are the	re toilets provided on site?							
1.16	Are toil	ets properly maintained?	· .						
1.17	Are the roofed a	vehicle and plant servicing areas paver areas?	d and located within						
1.18	Is the o	il leakage or spillage avoided?							,
1.19		ere any measures to prevent leaked of e system?	I from entering the						
1,20	Are the washing	ere any measures to collect spilt cer gs during concreting works?	ment and concrete			Ċ			
1.21	Are the	re any oil interceptors/grease traps in th cle and plant servicing areas, canteen ki	e drainage systems tchen, etc?						•
1.22	Are the	oil interceptors/grease traps maintained	properly?						

Environmental Team – Weekly Site Inspection and Audit Checklist – Sok Kwu Wan

Note	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.23	Is used bentonite recycled where appropriate?						rentat 1/2
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m ³ capacities for sedimentation.						
1.25	No excavation is undertaken in the settlement area.					Z	
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.						,
1.27	Mobile toilets should provide on site and located away the stream course.						
1.28	License collector should be employed for handling the sewage of mobile toilet.					ď	
1.29	Is ponding /stand water avoided?		Þ				
1.30	Is open stockpiles well covered by impermeable sheet?		Ď				•
Secti	on 2: Air Quality		?				
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?		Z				
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?						
2.03	Are the excavated materials sprayed with water during handling?						7/1
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?						
2.05	Is the exposed earth properly treated within six months after the last construction activities?						
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?		Ó				
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?	_ 🗆					***
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?		Ó				
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?						
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?		\square				.,
2.11	Is dark smoke emission from plant/equipment avoided?		Ø				
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?						
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?		Ø				
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?						
2.15	Is open burning avoided?		Ø				
2.16	Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awalting removal from site.		Ø				
Section	n 3: Noise				•		
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?						
3.02	Is silenced equipment adopted?		\square				
3.03	Is idle equipment turned off or throttled down?						
3.04 _.	Are all plant and equipment well maintained and in good condition?						
	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?						
	Are hand held breakers fitted with valid noise emission labels during operation?						<u> </u>
.07	Are air compressors fitted with valid noise emission labels during operation?		<u> </u>				
						_	

Environmental Team – Weekly Site Inspection and Audit Checklist – Sok Kwu Wan

AUES

Note	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during operation?						· ·
3.09	Are Construction Noise Permit(s) applied for percussive piling works?					Ċ	
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?		Ź				<u> </u>
3.11	Are valid Construction Noise Permit(s) posted at site entrances?				П		
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).		Ú				
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)						
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).		. 🗹				
Secti	on 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.						
4.02	Are receptacles available for general refuse collection?		ď				*··
4.03	Is general refuse sorting or recycling implemented?		· 🗹				
4.04	Is general refuse disposed of properly and regularly?						
4.05	Is the Contractor registered as a chemical waste producer?		ď				
4.06	Are the chemical waste containers and storage area properly labelled?						
4.07	Are the chemical wastes stored in proper storage areas?						
4.08	Is the chemical container or equipment provided with drip tray?				□ .		
4.09	Is the chemical waste storage area used for storage of chemical waste only?		Ø				···
4.10	Are incompatible chemical wastes stored in different areas?						
4.11	Are the chemical wastes disposed of by licensed collectors?		Ø				· · · · · · · · · · · · · · · · · · ·
4.12	Are trip tickets for chemical wastes disposal available for inspection?		ď				
4.13	Are chemical/fuel storage areas bounded?						,
4.14	Are designated areas identified for storage and sorting of construction wastes?		ĮŽ′				
4.15	Are construction wastes sorted (inert and non-inert) on site?	·	Ø				
4.16	Are construction wastes reused?		Ó				
4.17	Are construction wastes disposed of properly?		. 	□ .			
4.18	Are site hoardings and signboards made of durable materials instead of timber?		Į				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?						
4 20	Are appropriate procedures followed if contaminated material exists?						
4.21	ls relevant license/ permit for disposal of construction waste or excavated materials available for inspection?		<u> </u>				
1 22	Site cleanliness and appropriate waste management training had provided for the site workers.						
1.00	Contaminated sediments will managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.		ĬĸĮ				

	ronmental Team – Weekly Site Inspection and A	udit Cl	necklist	- Sok	Kwu Wa	ın	AUE5_
Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs,	Yes	No	Follow Up	N/A	Photo/ Remarks
Section	on 5: Landscape & Visual		•				
5.01	Are retained and transplanted trees in health condition?				□		Refer to Monthly EM&A report - June > Appendix M
5.02	Are retained and transplanted trees properly protected?						
5.03	Are surgery works carried out for the damaged trees?				Ø		
5.04	Is damage to trees outside site boundary due to construction activities avoided?						
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?						
Section	on 6: Others		,				
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?		Ø				
(So	k Kwu Wan)		-				
Ren	narks:						
riik	lings of Site Inspection: (つん June つい)): F	ollow u	μ.				
	Il Fedimentetion truck at position LZ should be cleared to marita's		rect	fied	on S	Jul	y 2012.
	functioning,	,					
			•				
•							
•			•			•	
The fi	ransplanted and retained uncommon tree species trees v	vere fou	nd to he	labeled	, fenced a	nd prote	ected.
						prot	
EC's	epresentative RE's representative ET's representat	ive -	E0's ror	resentat	ive	Contract	or's representative

Project:	TCS/00512/09 Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan	RE's Re	ed by ''s Represe epresentati etor's Repre	/e:	_	_	Cheung n Neg
	(IEC's R	epresentati	ve:			
Date:	5-7-2012	Time:	-·			9:0) Van
PART A		,					Permit No.
Weather Tempera		Rainy			_ √] EP-2	81/2007A	
Humidit							
Wind:	Strong Breeze Light	Calm					
	sp ected Sok Kwu Wan	· <u></u>					
PART B:							
Note: N	lot Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Section	1: Water Quality		/			-	
1.01 Is	s an effluent discharge license obtained for the Project?						
1.02 Is	s the effluent discharged in accordance with the discharge licence?		Ø,				
1.03 ls	s the discharge of turbid water avoided?						
	Are there proper desilting facilities in the drainage systems to educe SS levels in effluent?						
	Are there channels, sandbags or bunds to direct surface run-off to sedimentation tanks?						
	Are there any perimeter channels provided at site boundaries to intercept storm runoff from crossing the site?						
1.07 ls	s drainage system well maintained?						
	As excavation proceeds, are temporary access roads protected by crushed stone or gravel?		Ø				
1.09 A	Are temporary exposed slopes properly covered?						,
1.10 A	Are earthworks final surfaces well compacted or protected?						
1.11 A	Are manholes adequately covered or temporarily sealed?						
1.12 A	Are there any procedures and equipment for rainstorm protection?						
1.13 A	Are wheel washing facilities well maintained?						
l.14 ls	s runoff from wheel washing facilities avoided?		2				
1.15 A	Are there toilets provided on site?					Ø,	
1.16 A	Are toilets properly maintained?		J.			ď	
	Are the vehicle and plant servicing areas paved and located within coofed areas?						
1.18 ls	s the oil leakage or spillage avoided?						
	Are there any measures to prevent leaked oil from entering the drainage system?						
1 20 A	Are there any measures to collect spilt cement and concrete washings during concreting works?		Ø				
	Are there any oil interceptors/grease traps in the drainage systems or vehicle and plant servicing areas, canteen kitchen, etc?		口				
			/				

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1,23	Is used bentonite recycled where appropriate?						
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m ³ capacities for sedimentation.						
1.25	No excavation is undertaken in the settlement area.						
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.						
1.27	Mobile toilets should provide on site and located away the stream course.						
1.28	License collector should be employed for handling the sewage of mobile toilet.						
1.29	Is ponding /stand water avoided?						
1.30	Is open stockpiles well covered by impermeable sheet?		\Box				
Secti	on 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?						
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?						
2.03	Are the excavated materials sprayed with water during handling?						
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?						
2.05	Is the exposed earth properly treated within six months after the last construction activities?						
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?		<u> </u>				.,
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?						
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?		\square				
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?		Ø				
2,10	is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?		Ø				
2.11	Is dark smoke emission from plant/equipment avoided?						
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?		\Box				
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?						
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?						
2.15	Is open burning avoided?		Ø				
2,16	Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.		otag				
Secti	on 3: Noise		_				
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?		Ø				
3.02	Is silenced equipment adopted?						81 -
3.03	Is idle equipment turned off or throttled down?						
3.04	Are all plant and equipment well maintained and in good condition?		Ø				
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?		Ø				
3.06	Are hand held breakers fitted with valid noise emission labels during operation?		Ø,				
3.07	Are air compressors fitted with valid noise emission labels during operation?		₫				
							

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during operation?						
3.09	Are Construction Noise Permit(s) applied for percussive piling works?						
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?						
3.11	Are valid Construction Noise Permit(s) posted at site entrances?						
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).						
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)					Ø	
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).						
Section	on 4: Waste/Chemical Management		_				
4.01	Waste Management Plan had been submit to Engineer for approval.						
4.02	Are receptacles available for general refuse collection?						
4.03	Is general refuse sorting or recycling implemented?		Ø				
4.04	Is general refuse disposed of properly and regularly?		<u>d</u>				
4.05	Is the Contractor registered as a chemical waste producer?		Ø				
4.06	Are the chemical waste containers and storage area properly labelled?		Ø				
4.07	Are the chemical wastes stored in proper storage areas?						
4.08	Is the chemical container or equipment provided with drip tray?		ď				
4.09	Is the chemical waste storage area used for storage of chemical waste only?		ď				
4.10	Are incompatible chemical wastes stored in different areas?						
4.11	Are the chemical wastes disposed of by licensed collectors?						
4.12	Are trip tickets for chemical wastes disposal available for inspection?		Ø				
4.13	Are chemical/fuel storage areas bounded?		Ø				
4.14	Are designated areas identified for storage and sorting of construction wastes?						
4.15	Are construction wastes sorted (inert and non-inert) on site?		\square				
4.16	Are construction wastes reused?						
4.17	Are construction wastes disposed of properly?						
4.18	Are site hoardings and signboards made of durable materials instead of timber?						
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\Box				
4.20	Are appropriate procedures followed if contaminated material exists?		Ø				
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?		Ø				
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		\Box				
4.23	Contaminated sediments will managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.						

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Section 5: Landscape & Visual							
5.01	Are retained and transplanted trees in health condition?						Refer to Monthly EM&A report - Appendix M
5.02	Are retained and transplanted trees properly protected?						
5.03	Are surgery works carried out for the damaged trees?						····
5.04	Is damage to trees outside site boundary due to construction activities avoided?						
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?						
Sectio	n 6: Others						
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?						

(Sok Kwu Wan)

Remarks:

Findings of Site Inspection: ($\xi - 7 - 2012$): Follow up:

No environmental issue is observed

during inspection but the

Contractor is reminded to maintain the desilting facilities properly

to avoid any lookage.

The transplanted and retained uncommon tree species trees were found to be labeled, fenced and protected.

IEC's representative	RE's representative	ET's representative	EO's representative	Contractor's representative	_
	\				
	Depl	\sim			
	\bigcirc 1	Rayer	PP		
()	(,)	(Ray Chauser)	(KY &.)	()	
	Josephic		('		
	Riou).				

Project: Date: PART A: Weather: Temperate Humidity Wind: Area Insp. 1 So	Sunny Fine Cloudy Foure: Moderate Low Strong Breeze Light	RE's Re Contrac	ed by 's Represer presentativ tor's Repre	ve: esentativ	e: 	Environmental Permit No.		
PART B:	SITE AUDIT							
	t Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; llow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks	
Section 1.	; Water Quality							
1.01 ls	an effluent discharge license obtained for the Project?		Z					
1.02 ls t	the effluent discharged in accordance with the discharge licence?		Ø					
1.03 ls t	the discharge of turbid water avoided?							
1.04 Are	e there proper desilting facilities in the drainage systems to duce SS levels in effluent?							
105 Are	e there channels, sandbags or bunds to direct surface run-off to dimentation tanks?		\Box					
	e there any perimeter channels provided at site boundaries to ercept storm runoff from crossing the site?							
1.07 Is	drainage system well maintained?							
1.00	excavation proceeds, are temporary access roads protected by ushed stone or gravel?		\Box					
1.09 Are	e temporary exposed slopes properly covered?		\Box					
1.10 Are	e earthworks final surfaces well compacted or protected?		Ø					
1.11 Are	e manholes adequately covered or temporarily sealed?		Ø					
1.12 Ar	e there any procedures and equipment for rainstorm protection?							
1.13 Ar	e wheel washing facilities well maintained?		团					
1.14 Is	runoff from wheel washing facilities avoided?		Þ.					
1.15 Ar	e there toilets provided on site?						- 10	
1.16 Ar	e toilets properly maintained?		\square					
	e the vehicle and plant servicing areas paved and located within ofed areas?		\square					
1.18 is	the oil leakage or spillage avoided?		Ø	·				
i. 19 dra	e there any measures to prevent leaked oil from entering the ainage system?							
1.20 Ar	e there any measures to collect spilt cement and concrete ashings during concreting works?							
	e there any oil interceptors/grease traps in the drainage systems r vehicle and plant servicing areas, canteen kitchen, etc?			, 🗆				
1.22 Ar	e the oil interceptors/grease traps maintained properly?							

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.23	Is used bentonite recycled where appropriate?						
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m³ capacities for sedimentation.						
1.25	No excavation is undertaken in the settlement area.						
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.						
1.27	Mobile toilets should provide on site and located away the stream course.						
1.28	License collector should be employed for handling the sewage of mobile toilet.						
1.29	Is ponding /stand water avoided?						
1.30	Is open stockpiles well covered by impermeable sheet?						
Section	on 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?		Ŋ				
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?		Ó				
2.03	Are the excavated materials sprayed with water during handling?						_
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?						
2.05	Is the exposed earth properly treated within six months after the last construction activities?						
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?						
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?						· · · · · · · · · · · · · · · · · · ·
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?						
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?						
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?						
2.11	Is dark smoke emission from plant/equipment avoided?						
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?						
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?						
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?						
2.15	Is open burning avoided?						
2.16	Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.		Ø				
Section	on 3: Noise						
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?						
3.02	Is silenced equipment adopted?		\Box				
3.03	Is idle equipment turned off or throttled down?						
3.04	Are all plant and equipment well maintained and in good condition?		<u>a</u>				
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?		Ø				
3.06	Are hand held breakers fitted with valid noise emission labels during operation?		\square				
3.07	Are air compressors fitted with valid noise emission labels during operation?						

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
3.08	Are flaps and panels of mechanical equipment closed during operation?						
3.09	Are Construction Noise Permit(s) applied for percussive piling works?						
3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?		d				
3.11	Are valid Construction Noise Permit(s) posted at site entrances?						
3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).						
3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)					W	
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).						
Section	on 4: Waste/Chemical Management						
4.01	Waste Management Plan had been submit to Engineer for approval.						
4.02	Are receptacles available for general refuse collection?		\square				
4.03	Is general refuse sorting or recycling implemented?		Ø,				
4.04	Is general refuse disposed of properly and regularly?						
4.05	Is the Contractor registered as a chemical waste producer?						
4.06	Are the chemical waste containers and storage area properly labelled?		Ø				
4.07	Are the chemical wastes stored in proper storage areas?						
4.08	Is the chemical container or equipment provided with drip tray?						
4.09	Is the chemical waste storage area used for storage of chemical waste only?						
4.10	Are incompatible chemical wastes stored in different areas?						
4.11	Are the chemical wastes disposed of by licensed collectors?		Ø				
4,12	Are trip tickets for chemical wastes disposal available for inspection?		\square				
4.13	Are chemical/fuel storage areas bounded?		\Box				
4.14	Are designated areas identified for storage and sorting of construction wastes?		\(\sigma\)				
4.15	Are construction wastes sorted (inert and non-inert) on site?						
4.16	Are construction wastes reused?		Ø				
4.17	Are construction wastes disposed of properly?						
4.18	Are site hoardings and signboards made of durable materials instead of timber?		Ø				
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		ZÍ				
4.20	Are appropriate procedures followed if contaminated material exists?						
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?						
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.		Ø,				<u> </u>
4.23	Contaminated sediments will managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.		\mathbb{Z}^{ℓ}				

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Section	n 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?						Refer to Monthly EM&A report - Appendix M
5.02	Are retained and transplanted trees properly protected?						
5.03	Are surgery works carried out for the damaged trees?				\square		**
5.04	Is damage to trees outside site boundary due to construction activities avoided?						
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?						
Section	on 6: Others						
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?		Ø				

(Sok Kwu Wan)

Remarks:

No environmental issue is observed during inspection

The transplanted and retained uncommon tree species trees were found to be labeled, fenced and protected.

IEC's representative RE's representative ET's representative EO's representative Contractor's representative

| Josephaic | Fay Change | Lager |
| Part W. | Part W. | Part W. | Part W. |
| Part W. | Part W.

roject:	TCS/00512/09	Inspecte	d by		Che	ecklist No.	TCS512B-		
	Construction of Sewage Treatment Works at		's Represer			Pay Cheury			
	Yung Shue Wan and Sok Kwu Wan		presentativ tor's Repre		e:	Joseph Ny - Edwintern			
		IEC's Ro	presentativ	/e:		1			
Date:	19-7-2012	Time:		<u> </u>		2Pm			
PART A: Weather:	GENERAL INFORMATION Sunny Fine Cloudy	Environmental Permit No. ✓ EP- 281/2007A							
Temperatu		Rainy				.,,			
Humidity:	High Moderate Low								
Wind:		Calm							
Area Inspe 1 Sol	ected k Kwu Wan								
PART B:	SITE AUDIT	Not			Follow		Photo/		
Note: Not Foll	Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; low Up: Observations requiring follow-Up actions N/A: Not Applicable	Obs.	Yes	No	Up	N/A	Remarks		
	Water Quality								
	an effluent discharge license obtained for the Project?								
	he effluent discharged in accordance with the discharge licence?								
	he discharge of turbid water avoided? there proper desitting facilities in the drainage systems to								
red	uce SS levels in effluent?						11111111		
sed	e there channels, sandbags or bunds to direct surface run-off to dimentation tanks?		Ø,	Ш		<u> </u>			
1.06 Are inte	e there any perimeter channels provided at site boundaries to ercept storm runoff from crossing the site?								
1.07 ls d	Iralnage system well maintained?								
	excavation proceeds, are temporary access roads protected by shed stone or gravel?		Ø						
1.09 Are	e temporary exposed slopes properly covered?								
1. 10 Are	e earthworks final surfaces well compacted or protected?								
1.11 Are	e manholes adequately covered or temporarily sealed?								
	e there any procedures and equipment for rainstorm protection?		d						
	wheel washing facilities well maintained?								
	runoff from wheel washing facilities avoided?								
	there toilets provided on site?					_ 			
	·					- -			
Δrc	e toilets properly maintained? e the vehicle and plant servicing areas paved and located within					 			
roo	ofed areas?								
	the oil leakage or spillage avoided?								
1.19 dra	e there any measures to prevent leaked oil from entering the ninage system?								
A	e there any measures to collect spilt cement and concrete shings during concreting works?		D,	Ш					
1.20 wa:									
wa:	e there any oil interceptors/grease traps in the drainage systems vehicle and plant servicing areas, canteen kitchen, etc?				Ш	Ш_			

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1.23	Is used bentonite recycled where appropriate?						
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m ³ capacities for sedimentation.						
1.25	No excavation is undertaken in the settlement area.						
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.						
1.27	Mobile toilets should provide on site and located away the stream course.						
1.28	License collector should be employed for handling the sewage of mobile toilet.						
1.29	Is ponding /stand water avoided?						
1.30	Is open stockpiles well covered by impermeable sheet?		Q				
Section	on 2: Air Quality						
2.01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?		\square				
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?						
2.03	Are the excavated materials sprayed with water during handling?						
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?		Ø				
2.05	Is the exposed earth properly treated within six months after the last construction activities?						
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?						
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?						
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?						
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?						
2.10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?		Ø				
2,11	Is dark smoke emission from plant/equipment avoided?						
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?						
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?						
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?						
2.15	Is open burning avoided?		\square				
2.16	Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.						
Section	nn 3: Noise		<i>.</i>				
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?						
3.02	Is silenced equipment adopted?						
3.03	Is idle equipment turned off or throttled down?						
3.04	Are all plant and equipment well maintained and in good condition?						
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?		$\mathbf{Z}_{_{f}}$				
3.06	Are hand held breakers fitted with valid noise emission labels during operation?		Ø,				
3.07	Are air compressors fitted with valid noise emission labels during operation?		Ø				

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not	Yes	No	Follow	N/A	Photo/
3.08	Are flaps and panels of mechanical equipment closed during operation?	Obs.		<u> </u>	U p		Remarks
3.09	Are Construction Noise Permit(s) applied for percussive piling works?						
3.10	Are Construction Noise Permil(s) applied for general construction works during restricted hours?						
3.11	Are valid Construction Noise Permit(s) posted at site entrances?		<u></u>				
0.40	Use of quiet plant had been used on site to minimise the			_			
3.12	construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures). Temporary/Moveable noise barrier or site hoarding are provide or	Ц			Ц	Ц	
3.13	erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)						
3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise miligation measures (Level 2 miligation measures).						
Section	on 4: Waste/Chemical Management		_				
4.01	Waste Management Plan had been submit to Engineer for approval.		Ø				
4.02	Are receptacles available for general refuse collection?		\square				
4.03	Is general refuse sorting or recycling implemented?						
4.04	Is general refuse disposed of properly and regularly?		Ø				
4.05	Is the Contractor registered as a chemical waste producer?		\Box				
4.06	Are the chemical waste containers and storage area properly labelled?						
4.07	Are the chemical wastes stored in proper storage areas?						
4.08	Is the chemical container or equipment provided with drip tray?		\square				
4.09	Is the chemical waste storage area used for storage of chemical waste only?		Ø,				
4.10	Are incompatible chemical wastes stored in different areas?		Ø				
4.11	Are the chemical wastes disposed of by licensed collectors?		\square				
4.12	Are trip tickets for chemical wastes disposal available for inspection?		\square				
4.13	Are chemical/fuel storage areas bounded?		ď,				
4.14	Are designated areas identified for storage and sorting of construction wastes?		ď				
4.15	Are construction wastes sorted (inert and non-inert) on site?						
4.16	Are construction wastes reused?						,
4,17	Are construction wastes disposed of properly?						
4.18	Are site hoardings and signboards made of durable materials instead of timber?						
4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?		\square				
4.20	Are appropriate procedures followed if contaminated material exists?		口				
4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?						
4.22	Site cleanliness and appropriate waste management training had provided for the site workers.						
4.23	Contaminated sediments will managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002,						Audita

Section 5: Landscape & Visual Refer to Me	Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
### Section of the Inspection of Torright	Section		Jus.			- OP		i/eilidi#8
5.02 Are retained and transplanted trees properly protected? 5.03 Are surgery works carried out for the damaged trees? 5.04 Is damage to froze suiside site boundary due to construction 5.05 Is the night-time lighting controlled to minimize glare to sensitive 5.06 Is the night-time lighting controlled to minimize glare to sensitive 6.01 Are relevant Environmental Permits posted at all vahicle site 6.01 Are relevant Environmental Permits posted at all vahicle site 6.01 Are relevant Environmental Permits posted at all vahicle site 7.02 Environmental Formula for Costage 7.5 6.03 Are relevant Environmental Formula posted at all vahicle site 7.04 Environmental Formula for Costage 7.5 6.05 Environmental Formula for Table Formula for Tab	5.01	Are retained and transplanted trees in health condition?						Refer to Monthly EM&A report - Appendix M
5.04 Is damage to trees outside site boundary due to construction	5.02	Are retained and transplanted trees properly protected?						
Sactivities avoided? 5.05 is the inhight-lime lighting controlled to minimize glare to sensitive	5.03	Are surgery works carried out for the damaged trees?						
Section 6: Others 6.01 Are relevant Environmental Permits posted at all vehicle site	5.04							
Are relevant Environmental Permits posted at all vehicle site	5.05			Ø				
(Sok Kwu Wan) Remarks: Findings of Site Inspection: (10-7-72/2): Follow up: No environmental revues is observed during inspection. The transplanted and retained uncommon tree species trees were found to be labeled, fenced and protected. (EC's representative RE's representative E7's representative Contractor's representative Contr	Sectio	n 6: Others						
Remarks: Findings of Site Inspection: (101-7-7012): Follow up: No environmental resides 78 observed during inspection The transplanted and retained uncommon tree species trees were found to be labeled, fenced and protected. IEC's representative RE's representative ET's representative EO's representative Contractor's representative	6.01			Ø				
Findings of Site Inspection: (1977-7212): Follow up: No environmental resures is observed. Every inspection. The transplanted and retained uncommon tree species trees were found to be labeled, fenced and protected. EC's representative RE's representative ET's representative EO's representative Contractor's representative Them.	(Sol	ι Kwu Wan)		TO PARTIE CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONT				
No environmental 79748 78 observed during 7 napaction The transplanted and retained uncommon tree species trees were found to be labeled, fenced and protected. EC's representative RE's representative EO's representative Contractor's representative RE's representative Contractor's representative REAL.	Rem	narks:						
No environmental resurces 79 observed. Eurory 7 representative Et's representative E0's representative Contractor's representative RE's representative EN's representative Contractor's representative RE's representative EN's representative EN's representative EN's representative Contractor's representative EN's Representative EN's Representative EN's Representative EN's Representative EN's Representative EN's Representative EN's Representative EN's Representative EN's Representative EN's Representative EN's Representative EN's Representative EN's Representative EN's Representative EN's Representative EN's Representative EN's Representative EN's Representative EN's Representative EN's Representative			- 11					
Fine transplanted and retained uncommon tree species trees were found to be labeled, fenced and protected. EC's representative RE's representative EO's representative Contractor's represen	1 1110	ings of Site Inspection. (\(\sigma_i = \(\lambda_i \)	ronow u	ıp.				
The transplanted and retained uncommon tree species trees were found to be labeled, fenced and protected. EC's representative RE's representative EO's representative Contractor's represen	1	to environmental rosues 75						
EC's representative RE's representative ET's representative EO's representative Contractor's represen		observed during inspection						
EC's representative RE's representative ET's representative EO's representative Contractor's represen								
EC's representative RE's representative ET's representative EO's representative Contractor's represen								
EC's representative RE's representative ET's representative EO's representative Contractor's represen								
EC's representative RE's representative ET's representative EO's representative Contractor's represen								
EC's representative RE's representative ET's representative EO's representative Contractor's represen								
EC's representative RE's representative ET's representative EO's representative Contractor's represen								
EC's representative RE's representative ET's representative EO's representative Contractor's represen								
EC's representative RE's representative ET's representative EO's representative Contractor's represen								
EC's representative RE's representative ET's representative EO's representative Contractor's represen								
EC's representative RE's representative ET's representative EO's representative Contractor's represen								
EC's representative RE's representative ET's representative EO's representative Contractor's represen								
Freph.	The tr	ansplanted and retained uncommon tree species trees	were four	nd to be l	abeled,	fenced ar	nd prote	cted.
Ray Cheung) (U.C. (pg)	EC's r	epresentative RE's representative ET's representa	tive	EO's rep	resentati	vө (Contracto	r's representative
Ray Cheung) (U.C. (on)								\
(Ray Cheung) (U.C. (on)		Preph.		\mathbb{I}				
(Ray Cheung) (U.C. (on)		Ragn	-	Jen 4	~ f/~	-		•
	,	() (Ray Cheu	~9)	7. N'C	(en) ()

AUES Environmental Team – Weekly Site Inspection and Audit Checklist – Sok Kwu Wan Checklist No. TCS512B-Project: TCS/00512/09 inspected by ETL/ ET's Representative: Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan RE's Representative: Contractor's Representative: IEC's Representative: 24-7-212 Time: Date: Environmental Permit No. PART A: **GENERAL INFORMATION** EP-281/2007A Cloudy Weather: Sunny Fine °C Temperature: Moderate Humldity: High Low Breeze Calm Wind: Strong Light Area Inspected Sok Kwu Wan SITE AUDIT PART B: Photo/ Follow Not Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Yes No N/A Note: Follow Up: Observations requiring follow-Up actions N/A: Not Applicable Obs. Remarks Section 1: Water Quality П 1.01 Is an effluent discharge license obtained for the Project? Is the effluent discharged in accordance with the discharge licence? 1.02 Is the discharge of turbid water avoided? 1.03 Are there proper desilting facilities in the drainage systems to 1.04 reduce SS levels in effluent? Are there channels, sandbags or bunds to direct surface run-off to 1.05 sedimentation tanks? Are there any perimeter channels provided at site boundaries to 1.06 intercept storm runoff from crossing the site?

M

 $| \cdot |$

M

П

Is drainage system well maintained?

Are temporary exposed slopes properly covered?

Are wheel washing facilities well maintained?

Is runoff from wheel washing facilities avoided?

Are there toilets provided on site?

Are toilets properly maintained?

Is the oil leakage or spillage avoided?

washings during concreting works?

roofed areas?

drainage system?

Are earthworks final surfaces well compacted or protected?

Are manholes adequately covered or temporarily sealed?

Are there any procedures and equipment for rainstorm protection?

Are the vehicle and plant servicing areas paved and located within

Are there any measures to prevent leaked oil from entering the

Are there any measures to collect spilt cement and concrete

Are there any oil interceptors/grease traps in the drainage systems

for vehicle and plant servicing areas, canteen kitchen, etc?

Are the oil interceptors/grease traps maintained properly?

crushed stone or gravel?

As excavation proceeds, are temporary access roads protected by

1.07

1.08

1.09

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

1.21

1.22

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
1,23	Is used bentonite recycled where appropriate?						
1.24	Designated settlement area for runoff/wheel wash waste is provide and located at the streambed with 1-2m deep, 12m long and around 50m ³ capacities for sedimentation.						
1.25	No excavation is undertaken in the settlement area.						
1.26	Concreting wastes water should be neutralized below the pH Action Levels before discharge.						
1.27	Mobile toilets should provide on site and located away the stream course.						
1.28	License collector should be employed for handling the sewage of mobile tollet.						
1.29	Is ponding /stand water avoided?						
1.30	Is open stockpiles well covered by impermeable sheet?						
Section	on 2: Air Quality		_				
2,01	Are there wheel washing facilities with high pressure jets provided at every vehicle exit point?		<u> </u>				
2.02	Are vehicles washed to remove any dusty materials from their bodies and wheels before leaving construction sites?						
2.03	Are the excavated materials sprayed with water during handling?						
2.04	Are stockpiles of dusty materials sprayed with water, covered or placed in sheltered areas?						
2.05	Is the exposed earth properly treated within six months after the last construction activities?						
2.06	Are the access roads sprayed with water to maintain the entire road surface wet or paved?						
2.07	Is the surface where any drilling, cutting, polishing or breaking operation continuously sprayed with water?						
2.08	Is the load on vehicles covered entirely by clean impervious sheeting?						
2.09	Is the loading of materials to a level higher than the side and tail boards during transportation by vehicles avoided?						
2,10	Is the road leading to the construction site within 30m of the vehicle entrance kept clear of dusty materials?						
2.11	Is dark smoke emission from plant/equipment avoided?						
2.12	Are de-bagging, batching and mixing processes carried out in sheltered areas during the use of bagged cement?						
2.13	Are site vehicles travelling within the speed limit not more than 15km/hour?						
2.14	Are hoardings of not less than 2.4m high provided along the site boundary, which adjoins areas accessible to the public?						
2.15	Is open burning avoided?						
2.16	Excavated materials from the stream must remove form site on the same day. The materials shall be stored in covered impermeable skips awaiting removal from site.		Ø				
Section	on 3: Noise		_				
3.01	Are noisy equipment and activities positioned as far as practicable from the sensitive receivers?						
3.02	Is silenced equipment adopted?			Ш	Ш		
3.03	Is idle equipment turned off or throttled down?						
3.04	Are all plant and equipment well maintained and in good condition?						
3.05	Are noise barriers or enclosures provided at areas where construction activities cause noise impact on sensitive receivers?		2				
3.06	Are hand held breakers fitted with valid noise emission labels during operation?						
3.07	Are air compressors fitted with valid noise emission labels during operation?						

ſ		Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance;	Not		N -	Follow	NICA	Photo/
	Note:	Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Obs.	Yes	No	Up	N/A	Remarks
	3.08	Are flaps and panels of mechanical equipment closed during operation?						
	3.09	Are Construction Noise Permit(s) applied for percussive piling works?						
	3.10	Are Construction Noise Permit(s) applied for general construction works during restricted hours?						
	3.11	Are valid Construction Noise Permit(s) posted at site entrances?						
	3.12	Use of quiet plant had been used on site to minimise the construction noise impact to the surrounding residences/dwellings (Level 1 mitigation measures).						
	3.13	Temporary/Moveable noise barrier or site hoarding are provide or erect at the site boundary to minimise the noise impact of the closest NSRs or stationary equipments shield by the noise barrier which cannot visible from NSRs (Level 2 mitigation measure)		a				
	3.14	Temporary/Moveable noise barrier equal to or more than 3m height with 10kg/m2 are provide for noise mitigation measures (Level 2 mitigation measures).						
	Section	on 4: Waste/Chemical Management						
	4.01	Waste Management Plan had been submit to Engineer for approval.						
	4.02	Are receptacles available for general refuse collection?						
	4.03	Is general refuse sorting or recycling implemented?						
	4.04	Is general refuse disposed of properly and regularly?						
	4.05	Is the Contractor registered as a chemical waste producer?						
	4.06	Are the chemical waste containers and storage area properly labelled?		Ø				
	4.07	Are the chemical wastes stored in proper storage areas?						
	4.08	Is the chemical container or equipment provided with drip tray?		Ø				
	4.09	Is the chemical waste storage area used for storage of chemical waste only?						
	4.10	Are incompatible chemical wastes stored in different areas?						
	4.11	Are the chemical wastes disposed of by licensed collectors?						
	4.12	Are trip lickets for chemical wastes disposal available for inspection?		\square				
	4.13	Are chemical/fuel storage areas bounded?						
	4.14	Are designated areas identified for storage and sorting of construction wastes?						
	4.15	Are construction wastes sorted (inert and non-inert) on site?						
	4.16	Are construction wastes reused?						
	4.17	Are construction wastes disposed of properly?						
	4.18	Are site hoardings and signboards made of durable materials instead of timber?						
	4.19	Is trip ticket system implemented for the disposal of construction wastes and records available for inspection?						
	4.20	Are appropriate procedures followed if contaminated material exists?		\square				
	4.21	Is relevant license/ permit for disposal of construction waste or excavated materials available for inspection?						
	4.22	Site cleanliness and appropriate waste management training had provided for the site workers.						
	4.23	Contaminated sediments will managed according to WBTC No.12/2000 and EWTB TC(W) No. 34/2002.						

Note:	Not Obs.: Not Observed; Yes: Compliance; No: Non-Compliance; Follow Up: Observations requiring follow-Up actions N/A: Not Applicable	Not Obs.	Yes	No	Follow Up	N/A	Photo/ Remarks
Section	on 5: Landscape & Visual						
5.01	Are retained and transplanted trees in health condition?						Refer to Monthly EM&A report - Appendix M
5.02	Are retained and transplanted trees properly protected?						
5.03	Are surgery works carried out for the damaged trees?						
5.04	Is damage to trees outside site boundary due to construction activities avoided?						
5.05	Is the night-time lighting controlled to minimize glare to sensitive receivers?						A B B B B B B B B B B B B B B B B B B B
Section 6: Others				/			
6.01	Are relevant Environmental Permits posted at all vehicle site entrances/exits?		Ø				

(Sok Kwu Wan)

Remarks:

Findings of Site Inspection: ($2\xi - 7 - 2012$): Follow up:

No environmental issue is observed during site inspection.

The transplanted and retained uncommon tree species trees were found to be labeled, fenced and protected.

IEC's representative	RE'S representative	ET'S representative	EU's representative	Contractor's representative
		Raye	Jeg 40 Em	
()	()	(Ray Cheing)	(His.ley)	()

Appendix L

Implementation Schedule of Mitigation Measures

Implementation Schedule of Air Quality Measures

EIA Ref	EM&A Ref	Environmental Protection Measures*	Location / Timing	Implementation Agent	
Constr	ruction Phase				
3.32	2.34	Installation of 2m high solid fences around the construction site of Pumping Station P2.	Work site / during construction	Contractor	
3.34	2.34	 Adopting the following good site practices and follow the dust control requirements of the Air Pollution Control (Construction Dust) Regulation: Stockpiles of imported material kept on site should be contained within hoardings, dampened and / or covered during dry and windy weather; Material stockpiled alongside trenches should be covered with tarpaulins whenever works are close to village houses; Water sprays should be used during the delivery and handling of cement, sands, aggregates and the like. Any vehicle used for moving sands, aggregates and construction waste should have properly fitting side and tail boards. Materials should not be loaded to a level higher than the side and tail boards, and should be covered by a clean tarpaulin. 	Work site / during construction	All contractors	
3.36	Section 2	1 hour and 24 hour dust monitoring and site audit	Designated air monitoring locations / throughout construction period	Contractor/ Environmental Team	

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public D=Design, C=Construction, O=Operation

Implementation Schedule of Noise Measures

EIA	EM&A	Environmental Protection Measures*	Location/Timing	Implementation		olementa Stages *:		Relevant Legislation &
Ref	Ref			Agent	D	C	О	Guidelines
Construct	tion Phase							
4.41-4.43	3.19	 Use of quiet PME for the construction of the pumping stations Use of temporary noise barrier during the construction of Pumping Station P1a 	Work site /during the construction of Pumping Stations	Contractor		V		EIAO-TM, NCO
4.44 – 4.49	3.19	 Implementation of following measures during the sewer construction: Use of quiet PME or method; Restriction on the number plant (1 item for each type of plant); and Good Site Practices Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction program. Mobile plant, if any, should be sited as far away from NSRs as possible. Machines and plant (such as trucks) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum. Plant known to emit noise strongly in one direction should, wherever possible, be orientated so that the noise is directed away from the nearby NSRs. Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction activities. 	Work site /during the construction of Sewer.	Contractor		V		

EIA	EM&A	Environmental Protection Measures*	Location/Timing	Implementation		lementa Stages **		Relevant Legislation &
Ref	Ref			Agent	D	C	O	Guidelines
4.50 – 4.53	3.19	 Use of noise screening structures such as acoustic shed and barrier wherever practicable and feasible in areas with sufficient clearance and headroom. Adoption of manual working method wherever practicable and feasible in areas where the worksites of the proposed sewer alignment are located less than 20 m from the residential NSRs and less than 30 m from the temple (THT) and the public library. Use of PME for the construction of the section of sewer between the NSR and the Pumping Station P1a should not be allowed during the excavation work of Pumping Station P1a. 	Work site /during the construction of Sewer.	Contractor		√ ·		
4.60	Section 35	Noise monitoring	Designated noise monitoring locations / throughout construction period	Contractor/ Environmental Team		V		EM&A Manual

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Water Quality Control Measures

EIA	EM&A	Environmental Protection Measures*	Location (duration	Implementation		lement Stages*		Relevant Legislation
Ref	Ref		/completion of measures)	Agent	D	С	O	and Guidelines
	ruction Phas		r	_			ı	
5.77	4.35	No-dig method using Horizontal Directional Drilling (HDD) would be used for the installation of outfall pipe of about 480 m from shore to minimize the potential water quality impacts arising from the dredging works required for the submarine outfall construction. Silt curtains will be installed around the exit area of the pilot drill.	Marine works site / During construction of submarine outfall	Contractor		V		
5.73 - 5.78	4.36	 Dredging Works Implementation of following measures during the dredging works: dredging should be undertaken using closed grab dredgers with a maximum total production rate of 55m³/hr; deployment of 2-layer silt curtains with the first layer enclosing the grab and the second layer at around 50m from the dredging area while dredging works are in progress; dredging operation should be undertaken during ebb tide only; all vessels should be sized such that adequate clearance (i.e. minimum clearance of 0.6m) is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; all pipe leakages should be repaired promptly and plant should not be operated with leaking pipes; excess material should be cleaned from the decks and exposed fittings of barges before the vessel is moved; adequate freeboard (i.e. minimum of 200mm) should be maintained on barges to ensure that decks are not washed by wave action; all barges should be fitted with tight fitting seals to their bottom openings to prevent leakage of material; 	Marine works site and at the identified water sensitive receivers/ During construction	Contractor		V		
		• loading of barges should be controlled to prevent splashing of dredged material to the surrounding water, and barges should not be filled to a level which will cause the overflow of materials or polluted water during loading or transportation; and						

EIA	EM&A	Environmental Protection Measures*	Location (duration /completion of	Implementation Agent	Implementation Stages**			Relevant Legislation
Ref Ref	Ref		measures)		D	C	O	and Guidelines
		• the decks of all vessels should be kept tidy and free of oil or other substances that might be accidentally or otherwise washed overboard.						
5.79	4.37	Construction Run-off and Drainage	Construction works	Contractor				ProPECC
		Implementation of the following site practices outlined in ProPECC PN 1/94 for "Construction Site Drainage"	sites					PN 1/94
		• Provision of perimeter channels to intercept storm-runoff from outside the site. These should be constructed in advance of site formation works and earthworks.						
		• Works programmes should be designed to minimize works areas at any one time, thus minimizing exposed soil areas and reducing the potential for increased siltation and runoff.						
		• Sand / silt removal facilities such as sand traps, silt traps and sediment basins should be provided to remove the sand / silt particles from run-off. These facilities should be properly and regularly maintained. These facilities should be carefully planned to ensure that they would be installed at appropriate locations to capture all surface water generated on site.						
		• Careful programming of the works to minimise soil excavation works during rainy seasons.						
		• Exposed soil surface should be protected by paving or hydroseeding as soon as possible to reduce the potential of soil erosion.						
		• Trench excavation should be avoided in the wet season, and if necessary, these should be excavated and backfilled in short sections.						
		Open stockpiles of construction materials on site should be covered with tarpaulin or similar fabric						
5.80	4.38	General Construction Activities	Construction works	Contractor		√		
		Debris and rubbish generated on-site should be collected, handled and disposed of properly to avoid entering the nearby coastal waters and stormwater drains. All fuel tanks and storage areas should be provided	sites					

EIA	EM&A	Environmental Protection Measures*	Location (duration /completion of	Implementation	Implementation Stages**			Relevant Legislation
Ref	Ref	Environmental Protection (vicasures	measures)	Agent	D	C	0	and Guidelines
		with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank. Open drainage channels and culverts near the works areas should be covered to block the entrance of large debris and refuse.						
5.81	4.39	Wastewater Arising from Workforce Portable toilets should be provided by the Contractors, where necessary, to handle sewage from the workforce. The Contractor should also be responsible for waste disposal and maintenance practices.	Construction works sites	Contractor		V		
5.96	Section 4	Water quality monitoring	Designated water monitoring locations/ throughout construction period	Contractor		V		EM&A Manual

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

N/A Not applicable

Implementation Schedule of Sediment Contamination Mitigation Measures

EIA	EM&A	Environmental Protection Measures*	Location / Timing	Implementation]
Ref	Ref	Environmental Protection Measures	Location / Timing	Agent	D
6.17	5.3	Follow the requirement and procedures for dredged mud disposal specified under the WBTC No. 34/2002.	Marine works site / during dredging works	Contractor	
6.18	5.4	Implement appropriate dredging methods which have been incorporated into the recommended water quality mitigation measures.	Marine works site, during dredging works	Contractor	
6.19	5.5	 During the transportation and disposal of the dredged sediment, the following measures should be taken: Bottom opening of barges should be fitted with tight fitting seals to prevent leakage of material. Excess material should be cleaned from the decks and exposed fittings of barges and hopper dredgers before the vessel is moved. Monitoring of the barge loading should be conducted to ensure that loss of material does not take place during transportation. Transport barges or vessels should be equipped with automatic self monitoring devices as specified by the DEP. 	Marine works site and at the identified sensitive receivers	Contractor	

specified by the DEP.

All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Solid Waste Management Measures

EIA	EM&A		Location /	Implementation	Implementation Stages **			Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	C	0	Guidelines
Construc	tion Phase					ı	I	
7.14	6.4	 Good site practices Nomination of an approved person, such as a site manager, to be responsible for implementation of good site practices, arranging for collection and effective disposal to an appropriate facility, of all wastes generated at the site Training (proper waste management and chemical handling procedure) should be provided for site staffs Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers. Provision of sufficient waste disposal points and regular collection for disposal. Separation of chemical wastes for special handling and appropriate treatment at the Chemical Waste Treatment Facility. Regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors. Maintain records of the quantities of wastes generated, recycled and disposed. 	Work sites/During construction	Contractor		٨		Waste Disposal Ordinance (Cap.54)
7.15	6.5	To monitor the disposal of C&D waste at landfills and to control fly tipping, a trip-ticket system should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.	Work sites/During construction	Contractor		V		WBTC No. 21/2002
7.16	6.6	Recommendations to achieve waste reduction include: • segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal; • to encourage collection of aluminium cans by individual collectors, separate labelled bins should be provided to segregate this waste from other general refuse generated	Work sites/During construction	Contractor		V		WBTC No. 4/98, 5/98

EIA	EM&A		Location /	Implementation		olementa Stages **		Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Timing	Timing Agent		C	0	Guidelines
		 by the work force; any unused chemicals or those with remaining functional capacity should be recycled; use of reusable non-timber formwork to reduce the amount of C&D material; prior to disposal of C&D waste, it is recommended that wood, steel and other metals should be separated for re-use and / or recycling to minimise the quantity of waste to be disposed of to landfill; proper storage and site practices to minimise the potential for damage or contamination of construction materials; and plan and stock construction materials carefully to 			D			
		minimise amount of waste generated and avoid unnecessary generation of waste.						
7.18	6.7	 General Site Wastes A collection area for construction site waste should be provided where waste can be stored prior to removal from site An enclosed and covered area for the collection of the waste is recommended to reduce 'wind blow' of light material 	Work sites/During construction	Contractor		V		Public Health and Municipal Services Ordinance (Cap. 132)
7.19-7.20	6.8 – 6.9	 Chemical Wastes After use, chemical waste should be handled according to the Code of Practice on the Package, Labelling and Storage of Chemical Wastes Any unused chemicals or those with remaining functional capacity should be recycled Waste should be properly stored on site within suitably designed containers and should be collected by an approved licensed waste collectors for disposal at the Chemical Waste Treatment Facility or other licenced facility in accordance with the Waste Disposal (Chemical Waste) (General) Regulation under the Waste Disposal Ordance. 	Work sites/During construction	Contractor		V		Waste Disposal (Chemical Waste) (General) Regulation, Code of Practice on the Packaging Labelling and Storage of Chemical Wastes

EIA	EM&A		Location /	Implementation		lementa Stages **		Relevant Legislation &
Ref	Ref	Environmental Protection Measures*	Timing	Agent	D	C	O	Guidelines
		 Any service shop and minor maintenance facilities should be located on hard standing within a bunded area, and sumps and oil interceptors should be provided. 						
		• Maintenance of vehicles and equipment involving activities with potential for leakage and spillage should be undertaken within the designated areas equipped control these discharges						
7.21-7.22	6.10 – 6.11	 Construction and Demolition Material The C&D waste should be separated on-site into three categories: public fill, the inert portion of the C&D material (e.g. concrete and rubble), which should be re-used on-site or disposed of at a public filling area; C&D waste for re-use and / or recycling, the non-inert portion of the C&D material, (e.g. steel and other metals, woods, glass and plastic); C&D waste which cannot be re-used and / or recycled (e.g. wood, glass and plastic) Where possible, inert material should be re-used on-site Where practicable, steel and other metals should be separated for re-use and/or recycling prior to disposal of C&D material	During all construction phases	Contractors		V		WBTC No. 4/98, 5/98, 21/2002, 25/99, 12/2000

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Ecological Impact Measures

EIA Ref	EM&A Ref	Environmental Protection Measures*	Location / Implementation Timing Agent		Imp	lementa Stages		Relevant Legislation & Guidelines
G i			Tilling	Timing Agent -		С	C O Guidelines	
	tion Phase			T a	ı	1 1	ı	T
8.157	7.2	 Terrestrial Ecology Labeling and fencing of the uncommon tree species Avoidance of use of woodland habitats as Works Area, in particular where trees are located 	Work sites / during construction phase	Contractor		٧		
8.159 – 8.160	7.3	Subtidal Ecology Use of HDD technique Dredging Use of closed-grab dredger Deploy silt curtains during dredging.	Marine works site / during dredging works	Contractor		٧		
8.161	7.4	 Site runoff Construction and maintenance of sand / silt removal facilities Silt curtains Timing of earthworks Coverage of sand / fill piles during storms. Barriers along the landward side of Pumping Station P2 site boundary (to prevent site runoff from entering area with Romer's Tree Frog) 	All work sites / during construction phase	Contractor		V		

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Fisheries Impact Measures

EIA	EM&A	Environmental Protection Measures*		Implementation Stages**			Relevant Legislation	
Ref	Ref		Timing	Agent	D	C	O	& Guidelines
9.29	8.3	Use of closed grab dredging and silt curtains around the immediate dredging area and low dredging rates as recommended in Water Quality of the EIA report	Marine works site, during dredging works	Contractor		V		TM on EIA Process
9.32	Section 8	Water quality monitoring (see Implementation Schedule for Water Quality Control Measures)	Designated monitoring locations / throughout construction period and 1 year following operation of the STW	Contractor and Environmental Team		V	√	EM&A Manual

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Implementation Schedule of Landscape and Visual Impact Measures

EIA Ref	EM&A Ref	Environmental Protection Measures*	Location /	Implementation	Implementation Stages **			Relevant Legislation &
Kei	Kei		Timing	Agent	D	C	O	Guidelines
Constr	uction Pha	ase						
10.74	9.10	Retaining existing trees and minimizing damage to vegetation by close coordination and on site alignment adjusted of rising main and gravity sewer pipelines.	All sites	Contractor		$\sqrt{}$		WBTC No. 14/2002
		Careful and efficient transplanting of affected trees to temporary or final transplant location (the proposed tree to be transplanted is a semi-mature <i>Macaranga tanarius</i> and is located at the proposed Pumping Station P2 location).	All sites	Contractor		V		WBTC No. 14/2002
		Short excavation and immediate backfilling sections upon completion of works to reduce active site area.	All sites	Contractor		√		
		Screening of site construction works by use of hoarding that is appropriate to its site.	All sites	Contractor		V		WBTC No. 19/2001
		Conservation of topsoil for reuse.	All sites	Contractor		V		
		Night-time light source from marine fleets should be directed away from the residential units.	Outfall area.	Contractor		V		

^{*} All recommendations and requirements resulted during the course of EIA Process, including ACE and/or accepted public comment to the proposed project.

^{**} D=Design, C=Construction, O=Operation

Appendix M

Tree Inspection Report

經緯園藝有限公司

Melofield Nursery & Landscape Contractor Ltd

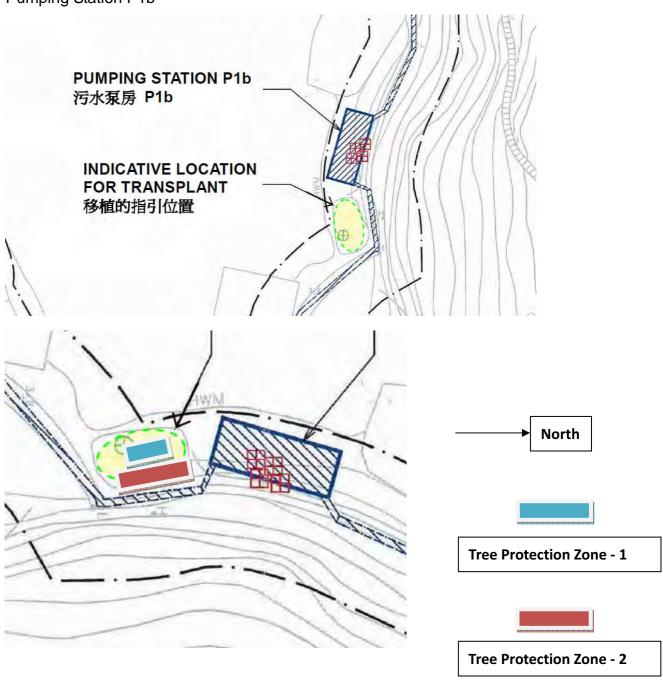
元朗下攸田村 125 號 125, Ha Yau Tin Tsuen, Yuen Long, N.T.

TEL: (852) 2572-0048 FAX: (822)2573-9099 E-mail: melofield@netvigator.com

Contract No. DC/2009/13

Project Name: Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan


Tree Inspection Report for Celtis timorensis

<u>Inspection Date: 30-06-2012</u>

1. Introduction

According to the requirement in the Environmental Permit EP-281/2007/A, the uncommon tree species, *Celtis timorensis*, found in the pumping station P1b area as shown in figure below shall be properly transplanted to the area immediately south of the Pumping Station P1b before commencement of construction of the Pumping Station P1b

This Tree Inspection Report describes the bi weekly monitoring result of the *Celtis timorensis*, which were additionally planted as the compensation of previously transplanted Celtis timorensis CT7, CT8, CT9 & CT10.

2. Summary of Inspection

Date of Inspection	30 June 2012, around 15:30
Location	A soil ground adjacent to the Pumping
	Station P1b Chung Mei, at Sok Kwu Wan,
	Lamma Island.
Weather	Cloudy, the vegetations are located under
	the shade of existing tall trees.
The labeled Celtis timorensis	CT_2A, CT_3A, CT_4A, CT_5A & CT_6A
under Tree Protection Zone 2	

3. Proposed Inspection Schedule

Month Actual / proposed Inspection Da	
July, 2011	14 and 25 July 2011
August, 2011	9 and 26 August 2011
September, 2011	5 and 23 September 2011
October, 2011	10 and 24 October 2011
November, 2011	8 November 2011
December, 2011	14 and 30 December 2011
January 2012	31 January 2012
February 2012	15 and 29 February 2012
March 2012	15 and 31 March 2012
April 2012	16 and 30 April 2012
May 2012	15 and 31 May 2012
June 2012	15 and 30 June 2012

4. Summary of Inspection Result

Tree No	Speciation	Health Status
CT_2A	Celtis timorensis	Fair
CT_3A	Celtis timorensis	Fair
CT_4A	Celtis timorensis	Very Poor
CT_5A	Celtis timorensis	Good
CT_6A	Celtis timorensis	Good

<u>Inspection parameters or criteria</u>

Good Leaves and stem grown very lush, additional or larger in size of leaves can be observed in each inspection

Fair Green leaves can be found. No major unhealthy condition of the plant is observed. The condition is stable.

Poor Fewer green leaves than usual are observed. No new leaf is grown and the condition keep stable. The bark is dry. The plant is weak.

Very Poor No new green leaf or bud can be observed. The bark is dry. The plant is weak.

5. Description of Inspection Results:

Tree ID:CT_2A

Current Status: Fair

Justification: New green leaves were found. Significant improvement in health. The plant was growing.

Tree ID: CT_3A

Current Status: Fair

Justification: New green leaves were found. Significant improvement in health. The plant was growing.

Tree ID: CT_4A

Current Status: Very Poor

Justification: Leaves were dry. The bark was also dry. No significant improvement in health. The plant was very weak.

Tree ID: CT_5A

Current Status: Good

Justification: Green leaves were found. Significant improvement in health. The plant was healthy. Some leaves were damaged by insect.

Tree ID: CT_6A

Current Status: Good

Justification: Green leaves were found. Significant improvement in health. The plant was healthy.

Overall Condition

In the Tree Protection Zone 2, the condition of CT_4A was generally poor. The health of CT_2A,CT_3A,CT_5A and CT_6A were found satisfactory. Regular watering and weeding will be carried out during dry weather. They may better recover under this warm and rainy weather. Some newly grown green leaves were found eaten by insects. Remove any insect found on the plant physically to prevent the bud attacked by leaf-feeding insect. No pesticide should be used when the plants are weak.

Considering the condition of CT4A were in very poor condition, compensatory of additional Celtis timorensis is proposed and will be carried out in the coming warm weather season for better growing.

經緯園藝有限公司

Melofield Nursery & Landscape Contractor Ltd

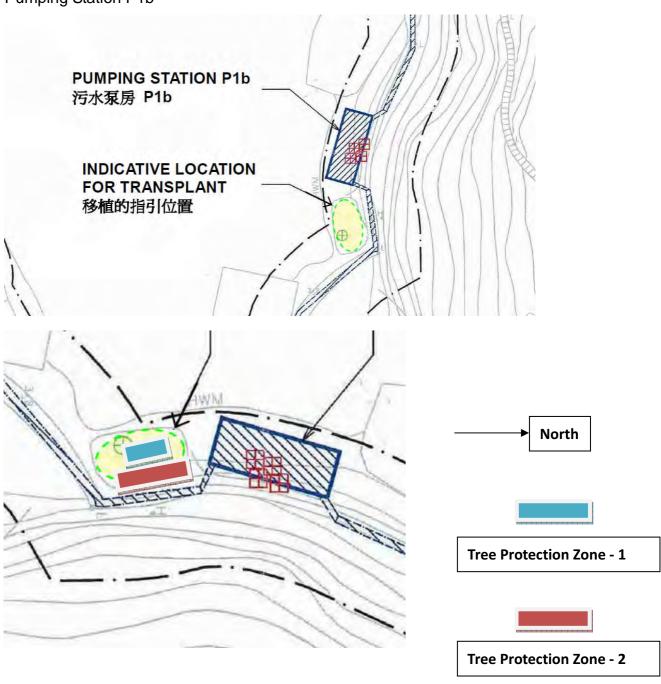
元朗下攸田村 125 號 125, Ha Yau Tin Tsuen, Yuen Long, N.T.

TEL: (852) 2572-0048 FAX: (822)2573-9099 E-mail: melofield@netvigator.com

Contract No. DC/2009/13

Project Name: Construction of Sewage Treatment Works at Yung Shue Wan and Sok Kwu Wan

Sok Kwu Wan


Tree Inspection Report for Celtis timorensis

<u>Inspection Date: 16-07-2012</u>

1. Introduction

According to the requirement in the Environmental Permit EP-281/2007/A, the uncommon tree species, *Celtis timorensis*, found in the pumping station P1b area as shown in figure below shall be properly transplanted to the area immediately south of the Pumping Station P1b before commencement of construction of the Pumping Station P1b

This Tree Inspection Report describes the bi weekly monitoring result of the *Celtis timorensis*, which were additionally planted as the compensation of previously transplanted Celtis timorensis CT7, CT8, CT9 & CT10.

2. Summary of Inspection

Date of Inspection	16 July 2012, around 15:30
Location	A soil ground adjacent to the Pumping
	Station P1b Chung Mei, at Sok Kwu Wan,
	Lamma Island.
Weather	Cloudy, the vegetations are located under
	the shade of existing tall trees.
The labeled Celtis timorensis	CT_2A, CT_3A, CT_4A, CT_5A & CT_6A
under Tree Protection Zone 2	

3. Proposed Inspection Schedule

Month	Actual / proposed Inspection Date
August, 2011	9 and 26 August 2011
September, 2011	5 and 23 September 2011
October, 2011	10 and 24 October 2011
November, 2011	8 November 2011
December, 2011	14 and 30 December 2011
January 2012	31 January 2012
February 2012	15 and 29 February 2012
March 2012	15 and 31 March 2012
April 2012	16 and 30 April 2012
May 2012	15 and 31 May 2012
June 2012	15 and 30 June 2012
July 2012 16 July 2012	

4. Summary of Inspection Result

Tree No	Speciation	Health Status
CT_2A	Celtis timorensis	Fair
CT_3A	Celtis timorensis	Fair
CT_4A	Celtis timorensis	Very Poor
CT_5A	Celtis timorensis	Good
CT_6A	Celtis timorensis	Good

<u>Inspection parameters or criteria</u>

Good Leaves and stem grown very lush, additional or larger in size of leaves can be observed in each inspection

Fair Green leaves can be found. No major unhealthy condition of the plant is observed. The condition is stable.

Poor Fewer green leaves than usual are observed. No new leaf is grown and the condition keep stable. The bark is dry. The plant is weak.

Very Poor No new green leaf or bud can be observed. The bark is dry. The plant is weak.

5. Description of Inspection Results:

Tree ID:CT_2A

Current Status: Fair

Justification: New green leaves were found. Significant improvement in health. The plant was growing.

Tree ID: CT_3A

Current Status: Fair

Justification: New green leaves were found. Significant improvement in health. The plant was growing.

Tree ID: CT_4A

Current Status: Very Poor

Justification: Leaves were dry. The bark was also dry. No significant improvement in health. The plant was very weak.

Tree ID: CT_5A

Current Status: Good

Justification: Significant improvement in health. The plant was healthy. Some leaves were damaged by insect.

Tree ID: CT_6A

Current Status: Good

Justification: Significant improvement in health. The plant was healthy.

Overall Condition

In the Tree Protection Zone 2, the condition of CT_4A was generally poor. The health of CT_2A,CT_3A,CT_5A and CT_6A were found satisfactory. Regular watering and weeding will be carried out during dry weather. They may better recover under this warm and rainy weather. Some newly grown green leaves were found eaten by insects. Remove any insect found on the plant physically to prevent the bud attacked by leaf-feeding insect. No pesticide should be used when the plants are weak.